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EXPECTATIONS 
Prerequisites: 

• As this is the second volume of the series, the student should already have studied 
the material from first-semester physics, including uniform acceleration, vector 
addition, applications of Newton’s second law, conservation of energy, Hooke’s law, 
and rotation. 

• The student should know some basic algebra skills, including how to combine like 
terms, how to isolate an unknown, how to solve the quadratic equation, and how to 
apply the method of substitution.  Needed algebra skills were reviewed in Volume 1. 

• The student should have prior exposure to trigonometry.  Essential trigonometry 
skills were reviewed in Volume 1. 

Use: 
• This book is intended to serve as a supplement for students who are attending 

physics lectures, reading a physics textbook, or reviewing physics fundamentals. 
• The goal is to help students quickly find the most essential material. 

Concepts: 
• Each chapter reviews relevant definitions, concepts, laws, or equations needed to 

understand how to solve the problems. 
• This book does not provide a comprehensive review of every concept from physics, 

but does cover most physics concepts that are involved in solving problems. 
Strategies: 

• Each chapter describes the problem-solving strategy needed to solve the problems 
at the end of the chapter. 

• This book covers the kinds of fundamental problems which are commonly found in 
standard physics textbooks. 

Help: 
• Every chapter includes representative examples with step-by-step solutions and 

explanations.  These examples should serve as a guide to help students solve similar 
problems at the end of each chapter. 

• Each problem includes the main answer(s) on the same page as the question.  At the 
back of the book, you can find hints, intermediate answers, directions to help walk 
you through the steps of each solution, and explanations regarding common issues 
that students encounter when solving the problems.  It’s very much like having your 
own physics tutor at the back of the book to help you solve each problem. 
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INTRODUCTION 
The goal of this study guide workbook is to provide practice and help carrying out essential 
problem-solving strategies that are standard in electricity and magnetism.  The aim here is 
not to overwhelm the student with comprehensive coverage of every type of problem, but 
to focus on the main strategies and techniques with which most physics students struggle. 

This workbook is not intended to serve as a substitute for lectures or for a textbook, 
but is rather intended to serve as a valuable supplement.  Each chapter includes a concise 
review of the essential information, a handy outline of the problem-solving strategies, and 
examples which show step-by-step how to carry out the procedure.  This is not intended to 
teach the material, but is designed to serve as a time-saving review for students who have 
already been exposed to the material in class or in a textbook.  Students who would like 
more examples or a more thorough introduction to the material should review their lecture 
notes or read their textbooks. 

Every exercise in this study guide workbook applies the same strategy which is solved 
step-by-step in at least one example within the chapter.  Study the examples and then 
follow them closely in order to complete the exercises.  Many of the exercises are broken 
down into parts to help guide the student through the exercises.  Each exercise tabulates 
the corresponding answers on the same page.  Students can find additional help in the hints 
section at the back of the book, which provides hints, answers to intermediate steps, 
directions to walk students through every solution, and explanations regarding issues that 
students commonly ask about. 

Every problem in this book can be solved without the aid of a calculator.  You may use 
a calculator if you wish, though it is a valuable skill to be able to perform basic math 
without relying on a calculator. 
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The mathematics and physics concepts are not two 
completely separate entities. The equations speak the 
concepts. Let the equations guide your reasoning. 
 

— Chris McMullen, Ph.D. 
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1 COULOMB’S LAW 

Relevant Terminology 

Electric charge – a fundamental property of a particle that causes the particle to experience 
a force in the presence of an electric field.  (An electrically neutral particle has no charge 
and thus experiences no force in the presence of an electric field.) 
Electric force – the push or pull that one charged particle exerts on another.  Oppositely 
charged particles attract, whereas like charges (both positive or both negative) repel. 
Coulomb’s constant – the constant of proportionality in Coulomb’s law (see below). 
 
Coulomb’s Law 

According to Coulomb’s law, any two objects with charge attract or repel one another with 
an electrical force that is directly proportional to each charge and inversely proportional to 
the square of the separation between the two charges: 

𝐹𝐹𝑒𝑒 = 𝑘𝑘
|𝑞𝑞1||𝑞𝑞2|
𝑅𝑅2

 

The absolute values around each charge indicate that the magnitude of the force is positive.  
Note the subscript on 𝐹𝐹𝑒𝑒:  It’s 𝐹𝐹 sub 𝑒𝑒 (not 𝐹𝐹 times 𝑒𝑒).  The subscript serves to distinguish 
electric force (𝐹𝐹𝑒𝑒) from other kinds of forces, such as gravitational force (𝐹𝐹𝑔𝑔).  The 
proportionality constant in Coulomb’s law is called Coulomb’s constant (𝑘𝑘): 

𝑘𝑘 = 8.99 × 109  
N∙m2

C2 ≈ 9.0 × 109  
N∙m2

C2  

In this book, we will round Coulomb’s constant to 9.0 × 109  N∙m
2

C2  such that the problems 
may be solved without using a calculator.  (This rounding is good to 1 part in 900.) 
 
Symbols and SI Units 

Symbol Name SI Units 

𝐹𝐹𝑒𝑒 electric force N 

𝑞𝑞 charge C 

𝑅𝑅 separation m 

𝑘𝑘 Coulomb’s constant N∙m2

C2  or kg∙m
3

C2∙s2
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Notes Regarding Units 

The SI units of Coulomb’s constant (𝑘𝑘) follow by solving for 𝑘𝑘 in Coulomb’s law: 

𝑘𝑘 =
𝐹𝐹𝑒𝑒𝑅𝑅2

𝑞𝑞1𝑞𝑞2
 

The SI units of 𝑘𝑘 equal N∙m
2

C2  because these are the SI units of 𝐹𝐹𝑒𝑒𝑅𝑅
2

𝑞𝑞1𝑞𝑞2
.  This follows since the SI 

unit of electric force (𝐹𝐹𝑒𝑒) is the Newton (N), the SI unit of charge (𝑞𝑞) is the Coulomb (C), 
and the SI unit of separation (𝑅𝑅) is the meter (m).  Recall from first-semester physics that a 
Newton is equivalent to: 

1 N = 1 
kg∙m

s2  

Plugging this into N∙m
2

C2 , the SI units of 𝑘𝑘 can alternatively be expressed as kg∙m
3

C2∙s2
. 

 
Essential Concepts 

The matter around us is composed of different types of atoms.  Each atom consists of 
protons and neutrons in its nucleus, surrounded by electrons. 

• Protons have positive electric charge. 
• Neutrons are electrically neutral. 
• Electrons have negative electric charge. 

Whether two charges attract or repel depends on their relative signs: 
• Opposite charges attract.  For example, electrons are attracted to protons. 
• Like charges repel.  For example, two electrons repel.  Similarly, two protons repel. 

The charge of an object depends on how many protons and electrons it has: 
• If the object has more protons than electrons (meaning that the object has lost 

electrons), the object has positive charge. 
• If the object has more electrons than protons (meaning that the object has gained 

electrons), the object has negative charge. 
• If the object has the same number of protons as electrons, the object is electrically 

neutral.  Its net charge is zero. 
(Atoms tend to gain or lose valence electrons from their outer shells.  It’s not easy to gain 
or lose protons since they are tightly bound inside the nucleus of the atom.  One way for 
objects to become electrically charged is through rubbing, such as rubbing glass with fur.)  
Some materials tend to be good conductors of electricity; others are good insulators. 

• Charges flow readily through a conductor.  Most metals are good conductors. 
• Charges tend not to flow through an insulator.  Glass and wood are good insulators. 

When two charged objects touch (or are connected by a conductor), charge can be 
transferred from one object to the other.  See the second example in this chapter. 
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Metric Prefixes 

Since a Coulomb (C) is a very large amount of charge, we often use the following metric 
prefixes when working with electric charge. 

Prefix Name Power of 10 

m milli 10−3 

µ micro 10−6 

n nano 10−9 

p pico 10−12 

Note:  The symbol µ is the lowercase Greek letter mu.  When it is used as a metric prefix, it 
is called micro.  For example, 32 µC is called 32 microCoulombs. 

Algebra with Powers 

It may be helpful to recall the following rules of algebra relating to powers: 

𝑥𝑥𝑎𝑎𝑥𝑥𝑏𝑏 = 𝑥𝑥𝑎𝑎+𝑏𝑏      ,     
𝑥𝑥𝑎𝑎

𝑥𝑥𝑏𝑏
= 𝑥𝑥𝑎𝑎−𝑏𝑏    ,     𝑥𝑥−𝑎𝑎 =

1
𝑥𝑥𝑎𝑎

     ,     
1
𝑥𝑥−𝑎𝑎

= 𝑥𝑥𝑎𝑎

𝑥𝑥0 = 1     ,     (𝑥𝑥𝑎𝑎)𝑏𝑏 = 𝑥𝑥𝑎𝑎𝑏𝑏     ,     (𝑎𝑎𝑥𝑥)𝑏𝑏 = 𝑎𝑎𝑏𝑏𝑥𝑥𝑏𝑏 

p 

p p 

ppn 
pn 

p pp pn 

p ppn 

e 

e 

e e 
ppnnnn
p
p

nnn
ppp
ppn 
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Coulomb’s Law Strategy 

How you solve a problem involving Coulomb’s depends on which kind of problem it is: 
• In this chapter, we will focus on the simplest problems, which involve two charged 

objects attracting or repelling one another.  For simple problems like these, plug the 
known values into the following equation and solve for the unknown quantity. 

𝐹𝐹𝑒𝑒 = 𝑘𝑘
|𝑞𝑞1||𝑞𝑞2|
𝑅𝑅2

 

Look at the units and wording to determine which symbols you know. 
o A value in Coulombs (C) is electric charge, 𝑞𝑞. 
o A value in meters (m) is likely related to the separation, 𝑅𝑅. 
o A value in N is a force, such as electric force, 𝐹𝐹𝑒𝑒 . 

o You should know Coulomb’s constant:  𝑘𝑘 = 9.0 × 109  N∙m
2

C2 . 
If two charged objects touch or are connected by a conductor, in a fraction of a 
second the excess charge will redistribute and the system will attain static 
equilibrium.  The two charges will then be equal:  The new charge, 𝑞𝑞, will equal 

𝑞𝑞 = 𝑞𝑞1+𝑞𝑞2
2

.  Coulomb’s law then reduces to 𝐹𝐹𝑒𝑒 = 𝑘𝑘 𝑞𝑞2

𝑅𝑅2
. 

• If a problem gives you three or more charges, apply the technique of vector addition, 
as illustrated in Chapter 3. 

• If a problem involves other forces, like tension in a cord, apply Newton’s second law, 
as illustrated in Chapter 5. 

• If a problem involves an electric field, 𝐸𝐸, (not to be confused with electric force, 𝐹𝐹𝑒𝑒 , 
or electric charge, 𝑞𝑞), see Chapter 2, 3, or 5, depending on the nature of the problem. 

Inverse-square Laws 

Coulomb’s law and Newton’s law of gravity are examples of inverse-square laws:  Each of 
these laws features a factor of 1

𝑅𝑅2
.  (Newton’s law of gravity was discussed in Volume 1.) 

𝐹𝐹𝑒𝑒 = 𝑘𝑘
|𝑞𝑞1||𝑞𝑞2|
𝑅𝑅2

     ,     𝐹𝐹𝑔𝑔 = 𝐺𝐺
𝑚𝑚1𝑚𝑚2

𝑅𝑅2
 

Coulomb’s law has a similar structure to Newton’s law of gravity:  Both force laws involve a 
proportionality constant, a product of sources (|𝑞𝑞1||𝑞𝑞2| or 𝑚𝑚1𝑚𝑚2), and 1

𝑅𝑅2
.   

𝑞𝑞1 𝑞𝑞2 

𝑅𝑅 
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Elementary Charge 

Protons have a charge equal to 1.60 × 10−19 C (to three significant figures).  We call this 
elementary charge and give it the symbol 𝑒𝑒.  Electrons have the same charge, except for 
being negative.  Thus, protons have charge +𝑒𝑒, while electrons have charge −𝑒𝑒.  When a 
macroscopic object is charged, its charge will be a multiple of 𝑒𝑒, since all objects are made 
up of protons, neutrons, and electrons.  If you need to use the charge of a proton or electron 
to solve a problem, use the value of 𝑒𝑒 below. 
 

Elementary Charge 

𝑒𝑒 = 1.60 × 10−19 C 

 
Example:  A small strand of monkey fur has a net charge of 4.0 µC while a small piece of 
glass has a net charge of −5.0 µC.  The strand of fur is 3.0 m from the piece of glass.  What is 
the electric force between the monkey fur and the piece of glass? 
 
Make a list of the known quantities: 

• The strand of fur has a charge of 𝑞𝑞1 = 4.0 µC. 
• The piece of glass has a charge of 𝑞𝑞2 = −5.0 µC. 
• The separation between them is 𝑅𝑅 = 3.0 m. 

• Coulomb’s constant is 𝑘𝑘 = 9.0 × 109  N∙m
2

C2 . 
Convert the charges from microCoulombs (µC) to Coulombs (C).  Recall that the metric 
prefix micro (µ) stands for one millionth:  µ = 10−6. 

𝑞𝑞1 = 4.0 µC = 4.0 × 10−6 C 
𝑞𝑞2 = −5.0 µC = −5.0 × 10−6 C 

Plug these values into Coulomb’s law.  It’s convenient to suppress units until the end in 
order to avoid clutter.  Note that the absolute value of −5 is +5. 

𝐹𝐹𝑒𝑒 = 𝑘𝑘
|𝑞𝑞1||𝑞𝑞2|
𝑅𝑅2

= (9 × 109)
|4 × 10−6||−5 × 10−6|

(3)2 = (9 × 109)
(4 × 10−6)(5 × 10−6)

(3)2  

If not using a calculator, it’s convenient to separate the powers: 

𝐹𝐹𝑒𝑒 =
(9)(4)(5)

(3)2 × 10910−610−6 = 20 × 10−3 = 0.020 N 

Note that 10910−610−6 = 109−6−6 = 109−12 = 10−3 according to the rule 𝑥𝑥𝑚𝑚𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑚𝑚+𝑛𝑛.  
The answer is 𝐹𝐹𝑒𝑒 = 0.020 N, which could also be expressed as 20 × 10−3 N, 2.0 × 10−2 N, or 
20 mN (meaning milliNewtons, where the prefix milli, m, stands for 10−3).  
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Example:  A metal banana-shaped earring has a net charge of −3.0 µC while a metal 
monkey-shaped earring has a net charge of 7.0 µC.  The two earrings are brought together, 
touching one another for a few seconds, after which the earrings are placed 6.0 m apart.  
What is the electric force between the earrings when they are placed 6.0 m apart? 
 
The “trick” to this problem is to realize that charge is transferred from one object to the 
other when they touch.  The excess charge splits evenly between the two earrings.  The 
excess charge (or the net charge) equals 𝑞𝑞𝑛𝑛𝑒𝑒𝑛𝑛 = −3.0 µC + 7.0 µC = 4.0µC.  Half of this 
charge will reside on each earring after contact is made:  𝑞𝑞 = 𝑞𝑞𝑛𝑛𝑒𝑒𝑛𝑛

2
= 4.0 µC

2
= 2.0 µC.  You 

could obtain the same answer via the following formula: 

𝑞𝑞 =
𝑞𝑞1 + 𝑞𝑞2

2
=
−3.0 µC + 7.0 µC

2
=

4.0 µC
2

= 2.0 µC 

Convert the charge from microCoulombs (µC) to Coulombs (C).  Recall that the metric 
prefix micro (µ) stands for one millionth:  µ = 10−6. 

𝑞𝑞 = 2.0 µC = 2.0 × 10−6 C 
Set the two charges equal to one another in Coulomb’s law. 

𝐹𝐹𝑒𝑒 = 𝑘𝑘
𝑞𝑞2

𝑅𝑅2
= (9 × 109)

(2 × 10−6)2

(6)2 = (9 × 109)
(2)2(10−6)2

(6)2 = (9 × 109)
(2)2(10−12)

(6)2  

Note that (2 × 10−6)2 = (2)2(10−6)2 according to the rule (𝑥𝑥𝑥𝑥)2 = 𝑥𝑥2𝑥𝑥2 and note that 
(10−6)2 = 10−12 according to the rule (𝑥𝑥𝑚𝑚)𝑛𝑛 = 𝑥𝑥𝑚𝑚𝑛𝑛.  If not using a calculator, it’s 
convenient to separate the powers: 

𝐹𝐹𝑒𝑒 =
(9)(2)2

(6)2 × 10910−12 = 1.0 × 10−3 N 

Note that 10910−12 = 109−12 = 10−3 according to the rule 𝑥𝑥𝑚𝑚𝑥𝑥−𝑛𝑛 = 𝑥𝑥𝑚𝑚−𝑛𝑛.  The answer is 
𝐹𝐹𝑒𝑒 = 0.0010 N, which could also be expressed as 1.0 × 10−3 N or 1.0 mN (meaning 
milliNewtons, where the prefix milli, m, stands for 10−3).  
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1.  A coin with a monkey’s face has a net charge of −8.0 µC while a coin with a monkey’s tail 
has a net charge of −3.0 µC.  The coins are separated by 2.0 m.  What is the electric force 
between the two coins?  Is the force attractive or repulsive? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.  A small glass rod and a small strand of monkey fur are each electrically neutral initially.  
When a monkey rubs the glass rod with the monkey fur, a charge of 800 nC is transferred 
between them.  The monkey places the strand of fur 20 cm from the glass rod.  What is the 
electric force between the fur and the rod?  Is the force attractive or repulsive? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answers:  0.054 N (repulsive), 0.144 N (attractive) 
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3.  A metal banana-shaped earring has a net charge of −2.0 µC while a metal apple-shaped 
earring has a net charge of 8.0 µC.  The earrings are 3.0 m apart. 
 
(A) What is the electric force between the two earrings?  Is it attractive or repulsive? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(B) The two earrings are brought together, touching one another for a few seconds, after 
which the earrings are once again placed 3.0 m apart.  What is the electric force between 
the two earrings now?  Is it attractive or repulsive? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answers:  0.016 N (attractive), 0.0090 N (repulsive) 
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2 ELECTRIC FIELD 

Relevant Terminology 

Electric charge – a fundamental property of a particle that causes the particle to experience 
a force in the presence of an electric field.  (An electrically neutral particle has no charge 
and thus experiences no force in the presence of an electric field.) 
Electric force – the push or pull that one charged particle exerts on another.  Oppositely 
charged particles attract, whereas like charges (both positive or both negative) repel. 
Electric field – force per unit charge. 
 
Electric Field Equations 

Electric force (F�⃗ 𝑒𝑒) equals charge (𝑞𝑞) times electric field (E�⃗ ).  This equation is always true, 
but is only useful when you wish to relate electric force to electric field. 

F�⃗ 𝑒𝑒 = 𝑞𝑞E�⃗  
If you want to find the electric field created by a single pointlike charge, use the following 
equation, where 𝑅𝑅 is the distance from the pointlike charge.  The absolute values represent 
that the magnitude (𝐸𝐸) of the electric field vector (E�⃗ ) is always positive.  

𝐸𝐸 =
𝑘𝑘|𝑞𝑞|
𝑅𝑅2

 

To find the electric field created by a system of pointlike charges, see the strategy outlined 
in Chapter 3.  To find the electric field created by a continuous distribution of charge (such 
as a plate or sphere with charge on it), see Chapter 6. 
 
Symbols and SI Units 

Symbol Name SI Units 

𝐸𝐸 electric field N/C or V/m 

𝐹𝐹𝑒𝑒 electric force N 

𝑞𝑞 charge C 

𝑅𝑅 distance from the charge m 

𝑘𝑘 Coulomb’s constant N∙m2

C2  or kg∙m
3

C2∙s2
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Notes Regarding Units 

The SI units of electric field (𝐸𝐸) follow by solving for 𝐸𝐸 in the equation F�⃗ 𝑒𝑒 = 𝑞𝑞E�⃗ : 

E�⃗ =
F�⃗ 𝑒𝑒
𝑞𝑞

 

The SI units of 𝐸𝐸 equal N
C

 because force (𝐹𝐹𝑒𝑒) is measured in Newtons (N) and charge (𝑞𝑞) is 

measured in Coulombs (C).  Since a Newton is equivalent to 1 N = 1 kg∙m
s2 , the SI units of 

electric field could be expressed as kg∙m
C∙s2

.  In Chapter 8, we will learn that the electric field 

between two parallel plates equals 𝐸𝐸 = ∆𝑉𝑉
𝑑𝑑

, where potential difference (∆𝑉𝑉) is measured in 
Volts (V) and the distance between the plates (𝑑𝑑) is measured in meters (m).  Therefore, 
yet another way to express electric field is V

m
.  It’s convenient to use N

C
 for the units of 

electric field when working with force, and to use V
m

 for the units of electric field when 
working with electric potential. 
 
Essential Concepts 

Every charged particle creates an electric field around it.  The formula 𝐸𝐸 = 𝑘𝑘|𝑞𝑞|
𝑅𝑅2

 expresses 
that the electric field is stronger in the region of space close to the charged particle and gets 
weaker farther away from the particle (that is, as the distance 𝑅𝑅 increases, electric field 
decreases by a factor of 1

𝑅𝑅2
). 

 
When there are two or more charged particles, each charge creates its own electric field, 
and the net electric field is found through vector addition (as we will see in Chapter 3). 
 
Electric field has different values at different locations in space (just like gravitational field 
is stronger near earth’s surface and noticeably weaker if you go halfway to the moon). 
 
Once you know the value of the electric field at a given point in space, if a charged particle 
is placed at that same point (that is, the point where you know the value of the electric 
field), then you can use the equation F�⃗ 𝑒𝑒 = 𝑞𝑞E�⃗  to determine what force would be exerted on 
that charged particle.  We call such a particle a test charge. 
 
The direction of the electric field is based on the concept of a test charge.  To determine the 
direction of the electric field at a particular point, imagine placing a positive test charge at 
that point.  The direction of the electric field is the same as the direction of the electric force 
that would be exerted on that positive test charge. 
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Electric Field Strategy 

How you solve a problem involving electric field depends on which kind of problem it is: 
• If you want to find the electric field created by a single pointlike charge, use the 

following equation. 

𝐸𝐸 =
𝑘𝑘|𝑞𝑞|
𝑅𝑅2

 

𝑅𝑅 is the distance from the pointlike charge to the point where the problem asks you 
to find the electric field.  If the problem gives you the coordinates (𝑥𝑥1,𝑦𝑦1) of the 
charge and the coordinates (𝑥𝑥2,𝑦𝑦2) of the point where you need to find the electric 
field, apply the distance formula to find 𝑅𝑅. 

𝑅𝑅 = �(𝑥𝑥2 − 𝑥𝑥1)2 + (𝑦𝑦2 − 𝑦𝑦1)2 
• If you need to relate the magnitude of the electric field (𝐸𝐸) to the magnitude of the 

electric force (𝐹𝐹𝑒𝑒), use the following equation.  The absolute values are present 
because the magnitudes (𝐸𝐸 and 𝐹𝐹𝑒𝑒) of the vectors must be positive. 

𝐹𝐹𝑒𝑒 = |𝑞𝑞|𝐸𝐸 
• If a problem gives you three or more charges, apply the technique of vector addition, 

as illustrated in Chapter 3. 
• If a problem involves other forces, like tension in a cord, apply Newton’s second law, 

as illustrated in Chapter 5. 
• If a problem involves finding the electric field created by a continuous distribution 

of charge (such as a plate or cylinder), see Chapter 6. 
 
Important Distinctions 

The first step toward mastering electric field problems is to study the terminology:  You 
need to be able to distinguish between electric charge (𝑞𝑞), electric field (𝐸𝐸), and electric 
force (𝐹𝐹𝑒𝑒).  Read the problems carefully, memorize which symbol is used for each quantity, 
and look at the units to help distinguish between them: 

• The SI unit of electric charge (𝑞𝑞) is the Coulomb (C). 
• The SI units of electric field (𝐸𝐸) can be expressed as N

C
 or V

m
. 

• The SI unit of electric force (𝐹𝐹𝑒𝑒) is the Newton (N). 
The second step is to learn which equations to use in which context. 

• Use the equation 𝐸𝐸 = 𝑘𝑘|𝑞𝑞|
𝑅𝑅2

 when you want to find the electric field created by a 
pointlike charge at a particular point in space. 

• Use the equation 𝐹𝐹𝑒𝑒 = |𝑞𝑞|𝐸𝐸 to find the force that would be exerted on a pointlike 
charge in the presence of an (external) electric field. 

It may be helpful to remember that a pointlike charge doesn’t exert a force on itself.  The 
electric field created by one charge can, however, exert a force on a different charge. 
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Coulomb’s Law and Electric Field 

Consider the two pointlike charges illustrated below.  The left charge, 𝑞𝑞1, creates an electric 
field everywhere in space, including the location of the right charge, 𝑞𝑞2.  We could use the 
formula 𝐸𝐸1 = |𝑞𝑞1|

𝑅𝑅2
 to find the magnitude of 𝑞𝑞1’s electric field at the location of 𝑞𝑞2.  We could 

then find the electric force exerted on 𝑞𝑞2 using the equation 𝐹𝐹𝑒𝑒 = |𝑞𝑞2|𝐸𝐸1.  If we combine 
these two equations together, we get Coulomb’s law, as shown below. 

𝐹𝐹𝑒𝑒 = |𝑞𝑞2|𝐸𝐸1 = |𝑞𝑞2|
𝑘𝑘|𝑞𝑞1|
𝑅𝑅2

= 𝑘𝑘
|𝑞𝑞1||𝑞𝑞2|
𝑅𝑅2

 

Similarly, we could use the formula 𝐸𝐸2 = |𝑞𝑞2|
𝑅𝑅2

 to find the magnitude of 𝑞𝑞2’s electric field at 
the location of 𝑞𝑞1, and then we could then find the electric force exerted on 𝑞𝑞1 using the 
equation 𝐹𝐹𝑒𝑒 = |𝑞𝑞1|𝐸𝐸2.  We would obtain the same result, 𝐹𝐹𝑒𝑒 = 𝑘𝑘 |𝑞𝑞1||𝑞𝑞2|

𝑅𝑅2
.  This should come as 

no surprise, since Newton’s third law of motion states that the force that 𝑞𝑞1 exerts on 𝑞𝑞2 is 
equal in magnitude and opposite in direction to the force that 𝑞𝑞2 exerts on 𝑞𝑞1. 

Example:  A monkey’s earring has a net charge of −400 µC.  The earring is in the presence 
of an external electric field with a magnitude of 5,000 N/C.  What is the magnitude of the 
electric force exerted on the earring? 

Make a list of the known quantities and the desired unknown: 
• The earring has a charge of 𝑞𝑞 = −400 µC = −400 × 10−6 C = −4.0 × 10−4 C.  Recall 

that the metric prefix micro (µ) stands for 10−6.  Note that 100 × 10−6 = 10−4. 
• The electric field has a magnitude of 𝐸𝐸 = 5,000 N/C. 
• We are looking for the magnitude of the electric force, 𝐹𝐹𝑒𝑒 . 

Based on the list above, we should use the following equation. 
𝐹𝐹𝑒𝑒 = |𝑞𝑞|𝐸𝐸 = |−4.0 × 10−4| × 5000 = (4.0 × 10−4) × 5000 = 20,000 × 10−4 = 2.0 N 

The magnitude of a vector is always positive (that’s why we took the absolute value of the 
charge).  The electric force exerted on the earring is 𝐹𝐹𝑒𝑒 = 2.0 N.

Note that we used the equation 𝐹𝐹𝑒𝑒 = |𝑞𝑞|𝐸𝐸 because we were finding the force exerted on a 
charge in the presence of an external electric field.  We didn’t use the equation 𝐸𝐸 = |𝑞𝑞|

𝑅𝑅2

because the problem didn’t require us to find an electric field created by the charge.  (The 
problem didn’t state what created the electric field, and it doesn’t matter as it isn’t relevant 
to solving the problem.)  

𝑞𝑞1 𝑞𝑞2 

𝑅𝑅 
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Example:  A small strand of monkey fur has a net charge of 50 µC.  (A) Find the magnitude 
of the electric field a distance of 3.0 m from the strand of fur.  (B) If a small strand of lemur 
fur with a net charge of 20 µC is placed 3.0 m from the strand of monkey fur, what force will 
be exerted on the strand of lemur fur? 

(A) Make a list of the known quantities and the desired unknown: 
• The strand of fur has a charge of 𝑞𝑞 = 50 µC = 50 × 10−6 C = 5.0 × 10−  C.  Recall 

that the metric prefix micro (µ) stands for 10−6.  Note that 10 × 10−6 = 10− . 
• We wish to find the electric field at a distance of 𝑅𝑅 = 3.0 m from the strand of fur. 

• We also know that Coulomb’s constant is 𝑘𝑘 = 9.0 × 109  N∙m
2

C2 . 
Based on the list above, we should use the following equation. 

𝐸𝐸 =
𝑘𝑘|𝑞𝑞|
𝑅𝑅2

=
(9 × 109)|5 × 10− |

(3)2 =
(9)(5)

(3)2 × 10910− = 5.0 × 104 N/C 

Note that 10910− = 109− = 104 according to the rule 𝑥𝑥𝑚𝑚𝑥𝑥−𝑛𝑛 = 𝑥𝑥𝑚𝑚−𝑛𝑛.  The answer is 
𝐸𝐸 = 5.0 × 104 N/C, which could also be expressed as 50,000 N/C. 
 
(B) Use the result from part (A) with the following equation. 

𝐹𝐹𝑒𝑒 = |𝑞𝑞2|𝐸𝐸 = |20 × 10−6| × 5.0 × 104 = 100 × 10−2 = 1.0 N 
The electric force exerted on the strand of lemur fur is 𝐹𝐹𝑒𝑒 = 1.0 N. 
 
Example:  A gorilla-shaped earring, shown as a dot () below, with a charge of 600 µC lies 
at the origin.  What is the magnitude of the electric field at the point (3.0 m, 4.0 m), which is 
marked as a star () below? 

 
First, we need to find the distance between the charge and the point where we’re trying to 
find the electric field.  Apply the distance formula. 

𝑅𝑅 = (𝑥𝑥2 − 𝑥𝑥1)2 + (𝑥𝑥2 − 𝑥𝑥1)2 = (3 − 0)2 + (4 − 0)2 = 9 + 16 = 25 = 5.0 m 
Next, use the equation for the electric field created by a pointlike object. 

𝐸𝐸 =
𝑘𝑘|𝑞𝑞|
𝑅𝑅2

=
(9 × 109)|600 × 10−6|

(5)2 = 2.16 × 10  N/C

Note that 10910−6 = 109−6 = 103 and 103102 = 10  according to the rule 𝑥𝑥𝑚𝑚𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑚𝑚+𝑛𝑛.
The answer is 𝐸𝐸 = 2.16 × 10  N/C, which could also be expressed as 216,000 N/C. 

3.0 m 

600 µC 𝑥𝑥 

𝑥𝑥 

4.0 m 
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4.  A small furball from a monkey has a net charge of −300 µC.  The furball is in the 
presence of an external electric field with a magnitude of 80,000 N/C.  What is the 
magnitude of the electric force exerted on the furball? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.  A gorilla’s earring has a net charge of 800 µC.  Find the magnitude of the electric field a 
distance of 2.0 m from the earring. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answers:  24 N, 1.8 × 106 N/C 
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6.  A monkey’s earring experiences an electric force of 12 N in the presence of an external 
electric field of 30,000 N/C.  The electric force is opposite to the electric field.  What is the 
net charge of the earring? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7.  A small strand of monkey fur has a net charge of 80 µC.  Where does the electric field 
created by the strand of fur equal 20,000 N/C? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answers:  −400 µC, 6.0 m 

www.engineersreferencebookspdf.com



Chapter 2 – Electric Field 

22 
 

8.  A pear-shaped earring, shown as a dot () below, with a charge of 30 µC lies at the point 
(3.0 m, 6.0 m). 

(A) What is the magnitude of the electric field at the point (−5.0 m, 12.0 m), which is 
marked as a star () above? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(B) If a small strand of chimpanzee fur with a net charge of 500 µC is placed at the point 
(−5.0 m, 12.0 m), marked with a star (), what force will be exerted on the strand of fur? 

Want help?  Check the hints section at the back of the book. 
Answers:  2700 N/C, 1.35 N

(−5.0 m, 12.0 m) 

30 µC µ
𝑥𝑥 

𝑥𝑥 

(3.0 m, 6.0 m) 
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3 SUPERPOSITION OF ELECTRIC FIELDS 

Essential Concepts 

When two or more charges create two or more electric fields, the net electric field can be 
found through the principle of superposition.  What this means is to add the electric field 
vectors together using the strategy of vector addition.  Similarly, when there are three or 
more charges and you want to find the net electric force exerted on one of the charges, the 
net force can be found using vector addition. 
 
Superposition Equations 

Depending on the question, either find the magnitude of the electric field created by each 
charge at a specified point or find the magnitude of the electric force exerted on a specified 
charge by each of the other charges. 

𝐸𝐸1 =
𝑘𝑘|𝑞𝑞1|
𝑅𝑅12

     ,     𝐸𝐸2 =
𝑘𝑘|𝑞𝑞2|
𝑅𝑅22

     ,     𝐸𝐸3 =
𝑘𝑘|𝑞𝑞3|
𝑅𝑅32

     ⋯ 

𝐹𝐹1 =
𝑘𝑘|𝑞𝑞1||𝑞𝑞|
𝑅𝑅12

     ,     𝐹𝐹2 =
𝑘𝑘|𝑞𝑞2||𝑞𝑞|
𝑅𝑅22

     ,     𝐹𝐹3 =
𝑘𝑘|𝑞𝑞3||𝑞𝑞|
𝑅𝑅32

     ⋯ 

Use the distance formula to determine each of the 𝑅𝑅’s. 
𝑅𝑅𝑖𝑖 = �(𝑥𝑥2 − 𝑥𝑥1)2 + (𝑦𝑦2 − 𝑦𝑦1)2 

Apply trigonometry to find the direction of each electric field or electric force vector. 

𝜃𝜃𝑖𝑖 = tan−1 �
∆𝑦𝑦
∆𝑥𝑥
� 

Add the electric field or electric force vectors together using the vector addition strategy.  
Either use 𝐸𝐸’s or 𝐹𝐹’s, depending on what the questions asks for.  Apply trig to determine the 
components of the given vectors. 

𝐸𝐸1𝑥𝑥 = 𝐸𝐸1 cos 𝜃𝜃1      ,     𝐸𝐸1𝑦𝑦 = 𝐸𝐸1 sin𝜃𝜃1      ,     𝐸𝐸2𝑥𝑥 = 𝐸𝐸2 cos 𝜃𝜃2      ,     𝐸𝐸2𝑦𝑦 = 𝐸𝐸2 sin𝜃𝜃2      ⋯ 
𝐹𝐹1𝑥𝑥 = 𝐹𝐹1 cos 𝜃𝜃1      ,     𝐹𝐹1𝑦𝑦 = 𝐹𝐹1 sin𝜃𝜃1      ,     𝐹𝐹2𝑥𝑥 = 𝐹𝐹2 cos 𝜃𝜃2      ,     𝐹𝐹2𝑦𝑦 = 𝐹𝐹2 sin𝜃𝜃2      ⋯ 

Combine the respective components together to find the components of the resultant 
vector.  Either use 𝐸𝐸’s or 𝐹𝐹’s (not both). 

𝐸𝐸𝑥𝑥 = 𝐸𝐸1𝑥𝑥 + 𝐸𝐸2𝑥𝑥 + ⋯+ 𝐸𝐸𝑁𝑁𝑥𝑥     ,     𝐸𝐸𝑦𝑦 = 𝐸𝐸1𝑦𝑦 + 𝐸𝐸2𝑦𝑦 + ⋯+ 𝐸𝐸𝑁𝑁𝑦𝑦 
𝐹𝐹𝑥𝑥 = 𝐹𝐹1𝑥𝑥 + 𝐹𝐹2𝑥𝑥 + ⋯+ 𝐹𝐹𝑁𝑁𝑥𝑥     ,     𝐹𝐹𝑦𝑦 = 𝐹𝐹1𝑦𝑦 + 𝐹𝐹2𝑦𝑦 + ⋯+ 𝐹𝐹𝑁𝑁𝑦𝑦 

Use the Pythagorean theorem to find the magnitude of the net electric field or net electric 
force.  Use an inverse tangent to determine the direction of the resultant vector. 

𝐸𝐸 = �𝐸𝐸𝑥𝑥2 + 𝐸𝐸𝑦𝑦2     ,     𝜃𝜃𝐸𝐸 = tan−1 �
𝐸𝐸𝑦𝑦
𝐸𝐸𝑥𝑥
� 

𝐹𝐹𝑒𝑒 = �𝐹𝐹𝑥𝑥2 + 𝐹𝐹𝑦𝑦2     ,     𝜃𝜃𝐹𝐹 = tan−1 �
𝐹𝐹𝑦𝑦
𝐹𝐹𝑥𝑥
� 
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Symbols and SI Units 

Symbol Name Units 

𝐸𝐸 magnitude of electric field N/C or V/m 

𝐹𝐹𝑒𝑒 magnitude of electric force N 

𝜃𝜃 direction of E�⃗  or F�⃗ 𝑒𝑒 ° 

𝑞𝑞 charge C 

𝑅𝑅 distance from the charge m 

𝑑𝑑 distance between two charges m 

𝑘𝑘 Coulomb’s constant N∙m2

C2  or kg∙m
3

C2∙s2
 

 
Important Distinction 

There are two similar kinds of superposition problems: 
• One kind gives you two or more pointlike charges and asks you to find the net 

electric field at a particular point in space (usually where there is no charge). 
• The other kind gives you three or more pointlike charges and asks you to find the 

net electric force exerted on one of the charges. 
When you are finding electric field, work with 𝐸𝐸’s.  When you are finding electric force, 
work with 𝐹𝐹’s.  Note that the equation for the electric field created by a pointlike charge has 
a single charge, 𝐸𝐸 = 𝑘𝑘|𝑞𝑞|

𝑅𝑅2
, whereas the equation for the electric force exerted on one charge 

by another has a pair of charges, 𝐹𝐹𝑒𝑒 = 𝑘𝑘|𝑞𝑞1||𝑞𝑞|
𝑅𝑅2

.  Use the absolute value of the charge in the 

formulas 𝐸𝐸 = 𝑘𝑘|𝑞𝑞|
𝑅𝑅2

 and 𝐹𝐹𝑒𝑒 = 𝑘𝑘|𝑞𝑞1||𝑞𝑞|
𝑅𝑅2

, since the magnitude of a vector is always positive.  The 
sign of the charge instead factors into the direction of the vector (see the first step of the 
strategy on the next page). 
 
With electric field, you work with one charge at a time:  𝐸𝐸 = 𝑘𝑘|𝑞𝑞|

𝑅𝑅2
.  With electric force, you 

work with pairs of charges:  𝐹𝐹𝑒𝑒 = 𝑘𝑘|𝑞𝑞1||𝑞𝑞|
𝑅𝑅2

. 
 
If you need to find net electric force, you could first find the net electric field at the location 
of the specified charge, and once you’re finished you could apply the equation F�⃗ 𝑛𝑛𝑒𝑒𝑛𝑛 = 𝑞𝑞E�⃗ 𝑛𝑛𝑒𝑒𝑛𝑛.  
In this case, 𝐹𝐹𝑛𝑛𝑒𝑒𝑛𝑛 = |𝑞𝑞|𝐸𝐸𝑛𝑛𝑒𝑒𝑛𝑛 and 𝜃𝜃𝐹𝐹 = 𝜃𝜃𝐸𝐸  if 𝑞𝑞 > 0 whereas 𝜃𝜃𝐹𝐹 = 𝜃𝜃𝐸𝐸 + 180° if 𝑞𝑞 < 0.  
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Superposition Strategy 

Either of the two kinds of problems described below are solved with a similar strategy. 
• Given two or more pointlike charges, find the net electric field at a specified point. 
• Given three or more pointlike charges, find the net electric force on one charge. 

To find the net electric field, work with 𝐸𝐸’s.  To find the net electric force, work with 𝐹𝐹’s. 
1. Begin by drawing a sketch of the individual electric fields created by each charge at 

the specified point or the electric forces exerted on the specified charge. 
• For electric field, imagine a positive “test” charge at the specified point and 

draw arrows based on how the positive “test” charge would be pushed by 
each of the given charges.  Label these E�⃗ 1, E�⃗ 2, etc. 

• For electric force, consider whether each of the charges attracts or repels the 
specified charge.  Opposite charges attract, whereas like charges repel.  Label 
these F�⃗ 1, F�⃗ 2, etc. 

2. Use the distance formula to determine the distance from each charge to the point 
specified (for electric field) or to the specified charge (for electric force). 

𝑅𝑅𝑖𝑖 = �∆𝑥𝑥2 + ∆𝑦𝑦2 
3. Apply trig to determine the direction of each vector counterclockwise from the +𝑥𝑥-

axis.  First, get the reference angle using the rise (∆𝑦𝑦) and run (∆𝑥𝑥) with the formula 
below.  Then use geometry to find the angle counterclockwise from the +𝑥𝑥-axis. 

𝜃𝜃𝑟𝑟𝑒𝑒𝑟𝑟 = tan−1 �
∆𝑦𝑦
∆𝑥𝑥
� 

4. Either find the magnitude of the electric field created by each pointlike charge at the 
specified point or find the magnitude of the electric force exerted by each of the 
other charges on the specified charge. 

𝐸𝐸1 =
𝑘𝑘|𝑞𝑞1|
𝑅𝑅12

     ,     𝐸𝐸2 =
𝑘𝑘|𝑞𝑞2|
𝑅𝑅22

     ,     𝐸𝐸3 =
𝑘𝑘|𝑞𝑞3|
𝑅𝑅32

     ⋯ 

𝐹𝐹1 =
𝑘𝑘|𝑞𝑞1||𝑞𝑞|
𝑅𝑅12

     ,     𝐹𝐹2 =
𝑘𝑘|𝑞𝑞2||𝑞𝑞|
𝑅𝑅22

     ,     𝐹𝐹3 =
𝑘𝑘|𝑞𝑞3||𝑞𝑞|
𝑅𝑅32

     ⋯ 

5. Apply trig to determine the components of the given vectors. 
𝐸𝐸1𝑥𝑥 = 𝐸𝐸1 cos 𝜃𝜃1      ,     𝐸𝐸1𝑦𝑦 = 𝐸𝐸1 sin𝜃𝜃1      ,     𝐸𝐸2𝑥𝑥 = 𝐸𝐸2 cos 𝜃𝜃2      ,     𝐸𝐸2𝑦𝑦 = 𝐸𝐸2 sin𝜃𝜃2      ⋯ 
𝐹𝐹1𝑥𝑥 = 𝐹𝐹1 cos 𝜃𝜃1      ,     𝐹𝐹1𝑦𝑦 = 𝐹𝐹1 sin𝜃𝜃1      ,     𝐹𝐹2𝑥𝑥 = 𝐹𝐹2 cos 𝜃𝜃2      ,     𝐹𝐹2𝑦𝑦 = 𝐹𝐹2 sin𝜃𝜃2      ⋯ 

6. Add the respective components together to find the components of the resultant. 
𝐸𝐸𝑥𝑥 = 𝐸𝐸1𝑥𝑥 + 𝐸𝐸2𝑥𝑥 + ⋯+ 𝐸𝐸𝑁𝑁𝑥𝑥     ,     𝐸𝐸𝑦𝑦 = 𝐸𝐸1𝑦𝑦 + 𝐸𝐸2𝑦𝑦 + ⋯+ 𝐸𝐸𝑁𝑁𝑦𝑦 
𝐹𝐹𝑥𝑥 = 𝐹𝐹1𝑥𝑥 + 𝐹𝐹2𝑥𝑥 + ⋯+ 𝐹𝐹𝑁𝑁𝑥𝑥     ,     𝐹𝐹𝑦𝑦 = 𝐹𝐹1𝑦𝑦 + 𝐹𝐹2𝑦𝑦 + ⋯+ 𝐹𝐹𝑁𝑁𝑦𝑦 

7. Use the Pythagorean theorem to find the magnitude of the resultant vector.  Use an 
inverse tangent to determine the direction of the resultant vector. 

𝐸𝐸 = �𝐸𝐸𝑥𝑥2 + 𝐸𝐸𝑦𝑦2     ,     𝜃𝜃𝐸𝐸 = tan−1 �
𝐸𝐸𝑦𝑦
𝐸𝐸𝑥𝑥
�      or     𝐹𝐹 = �𝐹𝐹𝑥𝑥2 + 𝐹𝐹𝑦𝑦2     ,     𝜃𝜃𝐹𝐹 = tan−1 �

𝐹𝐹𝑦𝑦
𝐹𝐹𝑥𝑥
� 
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Example:  A strand of monkey fur with a charge of 4.0 µC lies at the point ( 3 m, 1.0 m).  A 
strand of gorilla fur with a charge of −16.0 µC lies at the point (− 3 m, 1.0 m).  What is the 
magnitude of the net electric field at the point ( 3 m, −1.0 m)? 

 
Begin by sketching the electric field vectors created by each of the charges.  In order to do 
this, imagine a positive “test” charge at the point ( 3 m, −1.0 m), marked by a star above.  
We call the monkey fur charge 1 (𝑞𝑞1 = 4.0 µC) and the gorilla fur charge 2 (𝑞𝑞2 = −16.0 µC). 

• A positive “test” charge at ( 3 m, −1.0 m) would be repelled by 𝑞𝑞1 = 4.0 µC.  Thus, 
we draw E1 directly away from 𝑞𝑞1 = 4.0 µC (straight down). 

• A positive “test” charge at ( 3 m, −1.0 m) would be attracted to 𝑞𝑞2 = −16.0 µC.  
Thus, we draw E2 towards 𝑞𝑞2 = −16.0 µC (up and to the left). 

Find the distance between each charge (shown as a dot above) and the point (shown as a 
star) where we’re trying to find the net electric field.  Apply the distance formula.

 

𝑅𝑅1 = 𝑥𝑥12 + 𝑥𝑥12 = 3 − 3
2

+ (−1 − 1)2 = 02 + (−2)2 = 4 = 2.0 m 

𝑅𝑅2 = 𝑥𝑥22 + 𝑥𝑥22 = 3 − − 3
2

+ (−1 − 1)2 = 2 3
2

+ (−2)2 = 16 = 4.0 m 

Note that 12 = (4)(3) = 4 3 = 2 3.  In the diagram above, 𝑞𝑞1 is 2.0 m above the star 
(that’s why 𝑅𝑅1 = 2.0 m), while 𝑅𝑅2 is the hypotenuse of the right triangle.  Since the top side 
is 2 3 m wide and the right side is 2.0 m high, the Pythagorean theorem can be used to find 

the hypotenuse:  2 3
2

+ 22 = 12 + 4 = 16 = 4.0 m.  That’s why 𝑅𝑅2 = 4.0 m. 

( 3 m, 1.0 m) 
+4.0 µC 

𝑥𝑥 

𝑥𝑥 
−16.0 µC 

( 3 m, −1.0 m) 

(− 3 m, 1.0 m)

+4.0 µC −16.0 µC 

1 

2 

µ
𝑞𝑞1 

16.0
𝑞𝑞2 

𝑞𝑞1 𝑞𝑞2

𝑅𝑅2 𝑅𝑅1 
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Next, find the direction of E1 and E2.  Since E1 points straight down, 1 = 270°.  (Recall 
from trig that 0° points along +𝑥𝑥, 90° points along +𝑥𝑥, 180° points along −𝑥𝑥, and 270°
points along −𝑥𝑥.)  The angle 2 points in Quadrant II (up and to the left).  To determine the 
precise angle, first find the reference angle from the right triangle.  The reference angle is 
the smallest angle with the positive or negative 𝑥𝑥-axis.  

 
Apply trig to determine the reference angle, using the rise ( 𝑥𝑥) and the run ( 𝑥𝑥). 

𝑒𝑒 = tan−1
𝑥𝑥
𝑥𝑥

= tan−1
2

2 3
= tan−1

1
3

= tan−1
3

3
= 30° 

Note that 1
3

= 1
3

3
3

= 3
3

 since 3 3 = 3.  Relate the reference angle to 2 using geometry.  

In Quadrant II, the angle counterclockwise from the +𝑥𝑥-axis equals 180° minus the 
reference angle.  (Recall that trig basics were reviewed in Volume 1 of this series.) 

 
2 = 180° − 𝑒𝑒 = 180° − 30° = 150° 

Find the magnitude of the electric field created by each pointlike charge at the specified 
point.  First convert the charges from µC to C:  𝑞𝑞1 = 4.0 × 10−6 C and 𝑞𝑞2 = −16.0 × 10−6 C.  
Use the values 𝑅𝑅1 = 2.0 m and 𝑅𝑅2 = 4.0 m, which we found previously. 

𝐸𝐸1 =
𝑘𝑘|𝑞𝑞1|
𝑅𝑅12

=
(9 × 109)|4 × 10−6|

(2)2 =
(9)(4)

(2)2 × 10910−6 = 9.0 × 103 N/C 

𝐸𝐸2 =
𝑘𝑘|𝑞𝑞2|
𝑅𝑅22

=
(9 × 109)|−16 × 10−6|

(4)2 =
(9)(16)

(4)2 × 10910−6 = 9.0 × 103 N/C 

Note that 10910−6 = 109−6 = 103 according to the rule 𝑥𝑥𝑚𝑚𝑥𝑥−𝑛𝑛 = 𝑥𝑥𝑚𝑚−𝑛𝑛.  Also note that the 
minus sign from 𝑞𝑞2 = −16.0 × 10−6 C vanished with the absolute values (because the 
magnitude of the electric field vector can’t be negative).  Following is a summary of what 
we know thus far. 

• 𝑞𝑞1 = 4.0 × 10−6 C, 𝑅𝑅1 = 2.0 m, 1 = 270°, and 𝐸𝐸1 = 9.0 × 103 N/C. 
• 𝑞𝑞2 = −16.0 × 10−6 C, 𝑅𝑅2 = 4.0 m, 2 = 150°, and 𝐸𝐸2 = 9.0 × 103 N/C. 

𝑞𝑞1 𝑞𝑞2 

1

2 

𝑒𝑒  

𝑞𝑞2 𝑒𝑒  
2 

2 
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We are now prepared to add the electric field vectors.  We will use the magnitudes and 
directions (𝐸𝐸1 = 9.0 × 103 N/C, 𝐸𝐸2 = 9.0 × 103 N/C, 𝜃𝜃1 = 270°, and 𝜃𝜃2 = 150°) of the two 
electric field vectors to determine the magnitude and direction (𝐸𝐸 and 𝜃𝜃𝐸𝐸) of the resultant 
vector.  The first step of vector addition is to find the components of the given vectors. 

𝐸𝐸1𝑥𝑥 = 𝐸𝐸1 cos 𝜃𝜃1 = (9 × 103) cos(270°) = (9 × 103)(0) = 0 
𝐸𝐸1𝑦𝑦 = 𝐸𝐸1 sin𝜃𝜃1 = (9 × 103) sin(270°) = (9 × 103)(−1) = −9.0 × 103 N/C 

𝐸𝐸2𝑥𝑥 = 𝐸𝐸2 cos𝜃𝜃2 = (9 × 103) cos(150°) = (9 × 103)�−
√3
2
� = −

9√3
2

× 103 N/C 

𝐸𝐸2𝑦𝑦 = 𝐸𝐸2 sin𝜃𝜃2 = (9 × 103) sin(150°) = (9 × 103) �
1
2
� =

9
2

× 103 N/C 

The second step of vector addition is to add the respective components together. 

𝐸𝐸𝑥𝑥 = 𝐸𝐸1𝑥𝑥 + 𝐸𝐸2𝑥𝑥 = 0 + �−
9√3

2
× 103� = −

9√3
2

× 103 N/C 

𝐸𝐸𝑦𝑦 = 𝐸𝐸1𝑦𝑦 + 𝐸𝐸2𝑦𝑦 = −9 × 103 +
9
2

× 103 = −
9
2

× 103 N/C 

The final step of vector addition is to apply the Pythagorean theorem and inverse tangent 
to determine the magnitude and direction of the resultant vector. 

𝐸𝐸 = �𝐸𝐸𝑥𝑥2 + 𝐸𝐸𝑦𝑦2 = ��−
9√3

2
× 103�

2

+ �−
9
2

× 103�
2

= �
9
2

× 103���−√3�
2

+ (−1)2 

We factored out �9
2

× 103� to make the arithmetic simpler.  The minus signs disappear since 

they are squared.  For example, (−1)2 = +1. 

𝐸𝐸 = �
9
2

× 103�√3 + 1 = �
9
2

× 103�√4 = �
9
2

× 103� (2) = 9.0 × 103 N/C 

𝜃𝜃𝐸𝐸 = tan−1 �
𝐸𝐸𝑦𝑦
𝐸𝐸𝑥𝑥
� = tan−1 �

−9
2 × 103

− 9√3
2 × 103

� = tan−1 �
1
√3
� = tan−1 �

√3
3
� 

Note that − 9
2

× 103 cancels out (divide both the numerator and denominator by this).  Also 

note that 1
√3

= 1
√3

√3
√3

= √3
3

 since √3√3 = 3.  The reference angle for the answer is 30° since 

tan 30° = √3
3

.  However, this isn’t the answer because the answer doesn’t lie in Quadrant I.  
Since 𝐸𝐸𝑥𝑥 < 0 and 𝐸𝐸𝑦𝑦 < 0 (find these values above), the answer lies in Quadrant III.  Apply 
trig to determine 𝜃𝜃𝐸𝐸  from the reference angle:  In Quadrant III, add 180° to the reference 
angle. 

𝜃𝜃𝐸𝐸 = 180° + 𝜃𝜃𝑟𝑟𝑒𝑒𝑟𝑟 = 180° + 30° = 210° 
The final answer is that the magnitude of the net electric field at the specified point equals 
𝐸𝐸 = 9.0 × 103 N/C and its direction is 𝜃𝜃𝐸𝐸 = 210°.  
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Example:  A monkey places three charges on the corners of a right triangle, as illustrated 
below.  Determine the magnitude and direction of the net electric force exerted on 𝑞𝑞3. 

 
Begin by sketching the two electric forces exerted on 𝑞𝑞3. 

• Charge 𝑞𝑞3 is attracted to 𝑞𝑞1 because they have opposite signs.  Thus, we draw F1
towards 𝑞𝑞1 (to the right). 

• Charge 𝑞𝑞3 is repelled by 𝑞𝑞2 because they are both negative.  Thus, we draw F2
directly away from 𝑞𝑞2 (down and to the left). 

 
Find the distance between each charge.  Note that 𝑅𝑅1 = 3.0 m (the width of the triangle).
Apply the distance formula to find 𝑅𝑅2. 

 

𝑅𝑅2 = 𝑥𝑥22 + 𝑥𝑥22 = 32 + 32 = 9 + 9 = 18 = (9)(2) = 9 2 = 3 2 m 

Next, find the direction of F1 and F2.  Since F1 points to the right, 1 = 0°.  (Recall from trig 
that 0° points along +𝑥𝑥.)  The angle 2 points in Quadrant III (down and to the left).  To 
determine the precise angle, first find the reference angle from the right triangle.  The 
reference angle is the smallest angle with the positive or negative 𝑥𝑥-axis.  Apply trig to 
determine the reference angle, using the rise ( 𝑥𝑥) and the run ( 𝑥𝑥). 

𝑒𝑒 = tan−1
𝑥𝑥
𝑥𝑥

= tan−1
3
3

= tan−1(1) = 45° 

Relate the reference angle to 2 using geometry.  In Quadrant III, the angle counter-
clockwise from the +𝑥𝑥-axis equals 180° plus the reference angle. 

+2.0 µC −3.0 µC 3 0
𝑞𝑞3 

0 C
𝑞𝑞1 

𝑞𝑞2−2 2 µC 

3.0 m 

3.0 m 

2 
1 + − −

𝑞𝑞3 
+
𝑞𝑞1 

𝑞𝑞2 − 

𝑅𝑅2

𝑅𝑅1 
𝑞𝑞3 𝑞𝑞1

𝑞𝑞2 
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2 = 180° + 𝑒𝑒 = 180° + 45° = 225° 

 
Find the magnitude of the electric force exerted on 𝑞𝑞3 by each of the other charges.  First 
convert the charges to SI units:  𝑞𝑞1 = 2.0 × 10−6 C, 𝑞𝑞2 = −2 2 × 10−6 C, and 𝑞𝑞3 = −3.0 ×
10−6 C.  Use the values 𝑅𝑅1 = 3.0 m and 𝑅𝑅2 = 3 2 m, which we found previously.  Note that 
𝑞𝑞3 appears in both formulas below because we are finding the net force exerted on 𝑞𝑞3.

𝐹𝐹1 =
𝑘𝑘|𝑞𝑞1||𝑞𝑞3|

𝑅𝑅12
=

(9 × 109)|2 × 10−6||−3 × 10−6|
(3)2 = 6.0 × 10−3 N 

𝐹𝐹2 =
𝑘𝑘|𝑞𝑞2||𝑞𝑞3|

𝑅𝑅22
=

(9 × 109) −2 2 × 10−6 |−3 × 10−6|

3 2
2 = 3 2 × 10−3 N 

Note that 10910−610−6 = 109−6−6 = 10−3 according to the rule 𝑥𝑥𝑚𝑚𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑚𝑚+𝑛𝑛, and that 

3 2
2

= (3)2 2
2

= (9)(2) = 18.  Also note that the minus signs vanished with the 
absolute values (because the magnitude of the force can’t be negative).  Following is a 
summary of what we know thus far. 

• 𝑞𝑞1 = 2.0 × 10−6 C, 𝑅𝑅1 = 3.0 m, 1 = 0°, and 𝐹𝐹1 = 6.0 × 10−3 N. 
• 𝑞𝑞2 = −2 2 × 10−6 C, 𝑅𝑅2 = 3 2 m, 2 = 225°, and 𝐹𝐹2 = 3 2 × 10−3 N. 
• 𝑞𝑞3 = −3.0 × 10−6 C. 

We are now prepared to add the force vectors.  We will use the magnitudes and directions 
(𝐹𝐹1 = 6.0 × 10−3 N, 𝐹𝐹2 = 3 2 × 10−3 N, 1 = 0°, and 2 = 225°) of the two force vectors to 
determine the magnitude and direction (𝐹𝐹 and 𝐹𝐹) of the resultant vector.  The first step of 
vector addition is to find the components of the given vectors. 

𝐹𝐹1 = 𝐹𝐹1 cos 1 = (6 × 10−3) cos(0°) = (6 × 10−3)(1) = 6.0 × 10−3 N 
𝐹𝐹1 = 𝐹𝐹1 sin 1 = (6 × 10−3) sin(0°) = (6 × 10−3)(0) = 0 

𝐹𝐹2 = 𝐹𝐹2 cos 2 = 3 2 × 10−3 cos(225°) = 3 2 × 10−3 −
2

2
= −3.0 × 10−3 N 

𝐹𝐹2 = 𝐹𝐹2 sin 2 = 3 2 × 10−3 sin(225°) = 3 2 × 10−3 −
2

2
= −3.0 × 10−3 N 

𝑒𝑒  

2 1 
𝑞𝑞3 𝑞𝑞1 

𝑞𝑞2

𝑒𝑒  

2

2 
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Note that �3√2� �− √2
2
� = − (3)�√2��√2�

2
= − (3)(2)

2
= −6

2
= −3 since √2√2 = 2.  The second 

step of vector addition is to add the respective components together. 
𝐹𝐹𝑥𝑥 = 𝐹𝐹1𝑥𝑥 + 𝐹𝐹2𝑥𝑥 = 6 × 10−3 + (−3 × 10−3) = 3.0 × 10−3 N 
𝐹𝐹𝑦𝑦 = 𝐹𝐹1𝑦𝑦 + 𝐹𝐹2𝑦𝑦 = 0 + (−3 × 10−3) = −3.0 × 10−3 N 

The final step of vector addition is to apply the Pythagorean theorem and inverse tangent 
to determine the magnitude and direction of the resultant vector. 

𝐹𝐹 = �𝐹𝐹𝑥𝑥2 + 𝐹𝐹𝑦𝑦2 = �(3 × 10−3)2 + (−3 × 10−3)2 = (3 × 10−3)�(1)2 + (−1)2 

We factored out (3 × 10−3) to make the arithmetic simpler.  The minus sign disappears 
since it is squared:  (−1)2 = +1. 

𝐹𝐹 = (3 × 10−3)√1 + 1 = (3 × 10−3)√2 = 3√2 × 10−3 N 

𝜃𝜃𝐹𝐹 = tan−1 �
𝐹𝐹𝑦𝑦
𝐹𝐹𝑥𝑥
� = tan−1 �

−3 × 10−3

3 × 10−3
� = tan−1(−1) 

The reference angle for the answer is 45° since tan 45° = 1.  However, this isn’t the answer 
because the answer doesn’t lie in Quadrant I.  Since 𝐹𝐹𝑥𝑥 > 0 and 𝐹𝐹𝑦𝑦 < 0 (find these values 
above), the answer lies in Quadrant IV.  Apply trig to determine 𝜃𝜃𝐹𝐹  from the reference 
angle:  In Quadrant IV, subtract the reference angle from 360°. 

𝜃𝜃𝐹𝐹 = 360° − 𝜃𝜃𝑟𝑟𝑒𝑒𝑟𝑟 = 360° − 45° = 315° 
The final answer is that the magnitude of the net electric force exerted on 𝑞𝑞3 equals 
𝐹𝐹 = 3√2 × 10−3 N and its direction is 𝜃𝜃𝐹𝐹 = 315°.  
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9.  A monkey-shaped earring with a charge of 6.0 µC lies at the point (0, 2.0 m).  A banana-
shaped earring with a charge of −6.0 µC lies at the point (0, −2.0 m).  Your goal is to find 
the magnitude of the net electric field at the point (2.0 m, 0). 

 
(A) Sketch the electric field vectors created by the two charges at the point (2.0 m, 0).  
Label E1, E2, 1, and 2.  Label the angles counterclockwise from the +𝑥𝑥-axis. 

(B) Apply the distance formula to determine 𝑅𝑅1 and 𝑅𝑅2. 

(C) Apply trig to find the reference angles for each electric field vector. 

(D) Use your answers to part (C) and part (A) to determine 1 and 2 counterclockwise 
from the +𝑥𝑥-axis.  Be sure that their Quadrants match your sketch from part (A). 

(E) Determine the magnitudes (𝐸𝐸1 and 𝐸𝐸2) of the two electric field vectors. 

Note:  You’re not finished yet.  This problem is continued on the next page. 

(0, −2.0 m) 

+6.0 µC 

𝑥𝑥

𝑥𝑥 

(0, 2.0 m)
−6.0 µC 

𝑥𝑥
(2.0 m, 0) 

+6 0 µC
(0, 2.0 m) 
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(F) Determine the components (𝐸𝐸1𝑥𝑥, 𝐸𝐸1𝑦𝑦, 𝐸𝐸2𝑥𝑥, and 𝐸𝐸2𝑦𝑦) of the electric field vectors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
(G) Determine the components (𝐸𝐸𝑥𝑥 and 𝐸𝐸𝑦𝑦) of the resultant vector. 
 
 
 
 
 
 
 
 
 
(H) Determine the magnitude (𝐸𝐸) of the net electric field at the point (2.0 m, 0). 
 
 
 
 
 
 
 
 
 
(I) Determine the direction (𝜃𝜃𝐸𝐸) of the net electric field at the point (2.0 m, 0). 
 
 
 
 
 
 

 
 
Want help or intermediate answers?  Check the hints section at the back of the book. 

Answers to (H) and (I):  6750√2 N/C, 270° 
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10.  A monkey places three charges on the vertices of an equilateral triangle, as illustrated 
below.  Your goal is to determine the magnitude and direction of the net electric force 
exerted on 𝑞𝑞3. 

 
(A) Sketch the forces that 𝑞𝑞1 and 𝑞𝑞2 exert on 𝑞𝑞3.  Label F1, F2, 1, and 2.  Label the angles 
counterclockwise from the +𝑥𝑥-axis.  (Choose +𝑥𝑥 to point right and +𝑥𝑥 to point up.) 

(B) Determine the distances 𝑅𝑅1 and 𝑅𝑅2. 

(C) Find the reference angles for each force vector. 

(D) Use your answers to part (C) and part (A) to determine 1 and 2 counterclockwise 
from the +𝑥𝑥-axis.  Be sure that their Quadrants match your sketch from part (A). 
 
 
 
 
(E) Determine the magnitudes (𝐹𝐹1 and 𝐹𝐹2) of the two force vectors.

Note:  You’re not finished yet.  This problem is continued on the next page. 

+4.0 µC 4 0 µC
𝑞𝑞3 𝑞𝑞1 

𝑞𝑞2 +3.0 µC 

2.0 m 

−3.0 µC 

2.0 m 

2.0 m 
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(F) Determine the components (𝐹𝐹1𝑥𝑥, 𝐹𝐹1𝑦𝑦, 𝐹𝐹2𝑥𝑥, and 𝐹𝐹2𝑦𝑦) of the force vectors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
(G) Determine the components (𝐹𝐹𝑥𝑥 and 𝐹𝐹𝑦𝑦) of the resultant vector. 
 
 
 
 
 
 
 
 
 
(H) Determine the magnitude (𝐹𝐹) of the net electric force exerted on 𝑞𝑞3. 
 
 
 
 
 
 
 
 
 
(I) Determine the direction (𝜃𝜃𝐹𝐹) of the net electric force exerted on 𝑞𝑞3. 
 
 
 
 
 
 

 
 
Want help or intermediate answers?  Check the hints section at the back of the book. 

Answers to (H) and (I):  27 mN, 240° 
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Strategy to Find the Point Where the Net Electric Field Equals Zero 

If a problem gives you two pointlike charges and asks you where the net electric field is 
zero, follow these steps.  This strategy is illustrated in the example that follows. 

1. Define three distinct regions (as shown in the following example): 
• One region lies between the two pointlike charges. 
• Two of the regions are outside of the two pointlike charges. 

2. Draw a “test” point in each of the three regions defined in the previous step.  Sketch 
the electric fields created by each pointlike charge at each “test” point (so there will 
be three pairs of electric fields in your diagram).  To do this, imagine placing a 
positive “test” charge at each “test” point.  Ask yourself which way each charge 
would push (or pull) on the positive “test” charge. 

3. In which region could the two electric fields have opposite direction and also have 
equal magnitude? 

• If the two charges have the same sign, the answer is the region between the 
two charges. 

• If the two charges have opposite sign, the answer is the region outside of the 
two charges, on the side with whichever charge has the smallest value of |𝑞𝑞|. 

4. Set the magnitudes of the two electric fields at the “test” point equal to one another. 
𝐸𝐸1 = 𝐸𝐸2 

𝑘𝑘|𝑞𝑞1|
𝑅𝑅12

=
𝑘𝑘|𝑞𝑞2|
𝑅𝑅22

 

Divide both sides by 𝑘𝑘.  Cross-multiply.  Plug in the values of the charges. 
5. You have one equation with two unknowns.  The unknowns are 𝑅𝑅1 and 𝑅𝑅2.  Get the 

second equation from the picture that you drew in Steps 1-3.  Label 𝑅𝑅1 and 𝑅𝑅2 (the 
distances from the “test” point to each pointlike charge) for the correct region.  Call 
𝑑𝑑 the distance between the two pointlike charges. 

• If the two charges have the same sign, the equation will be: 
𝑅𝑅1 + 𝑅𝑅2 = 𝑑𝑑 

• If the two charges have opposite sign, the equation will be one of these, 
depending upon which charge has the greater value of |𝑞𝑞|: 

𝑅𝑅1 = 𝑅𝑅2 + 𝑑𝑑 
𝑅𝑅2 = 𝑅𝑅1 + 𝑑𝑑 

6. Isolate 𝑅𝑅1 or 𝑅𝑅2 in the previous equation (if one isn’t already isolated).  Substitute 
this expression into the simplified equation from Step 4.  Plug in the value of 𝑑𝑑. 

7. Squareroot both sides of the equation.  Carry out the algebra to solve for 𝑅𝑅1 and 𝑅𝑅2.  
Use these answers to determine the location where the net electric field equals zero.  
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Example:  A monkey places two small spheres a distance of 5.0 m apart, as shown below.  
The left sphere has a charge of −4.0 µC, while the right sphere has a charge of −9.0 µC.  
Find the point where the net electric field equals zero. 

Consider each of the three regions shown below.  Imagine placing a positive “test” charge 
where you see the three stars () in the diagram below.  Since 𝑞𝑞1 and 𝑞𝑞2 are both negative, 
the positive “test” charge would be attracted to both 𝑞𝑞1 and 𝑞𝑞2.  Draw the electric fields 
towards 𝑞𝑞1 and 𝑞𝑞2 in each region. 

I. Region I is left of 𝑞𝑞1. 1 and 2 both point to the right.  They won’t cancel here. 
II. Region II is between 𝑞𝑞1 and 𝑞𝑞2.  1 points left, while 2 points right.  They can cancel 

out in Region II. 
III. Region III is right of 𝑞𝑞2.  1 and 2 both point left.  They won’t cancel here. 

 
We know that the answer lies in Region II, since that is the only place where the electric 
fields could cancel out.  In order to find out exactly where in Region II the net electric field 
equals zero, set the magnitudes of the electric fields equal to one another. 

𝐸𝐸1 = 𝐸𝐸2 
𝑘𝑘|𝑞𝑞1|
𝑅𝑅12

=
𝑘𝑘|𝑞𝑞2|
𝑅𝑅22

 

Divide both sides by 𝑘𝑘 (it will cancel out) and cross-multiply. 
|𝑞𝑞1|𝑅𝑅22 = |𝑞𝑞2|𝑅𝑅12 

Plug in the values of the charges. 
|−4.0 × 10−6|𝑅𝑅22 = |−9.0 × 10−6|𝑅𝑅12 

Divide both sides by 10−6 (it will cancel out).  The minus signs disappear when you apply 
the absolute values. 

4𝑅𝑅22 = 9𝑅𝑅12 
Since we have two unknowns (𝑅𝑅1 and 𝑅𝑅2), we need a second equation.  We can get the 
second equation by studying the diagram below. 

 

𝑞𝑞1 𝑞𝑞2 

 

𝑞𝑞1 𝑞𝑞2
1 

 
2 

 

Region 
I 

1 
 

2 
 

1 
 

2 
 

Region 
II 

Region 
III 

𝑞𝑞1 𝑞𝑞2 
1 

 
2 

 

𝑅𝑅1 𝑅𝑅2 
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𝑅𝑅1 + 𝑅𝑅2 = 𝑑𝑑 
Recall that 𝑑𝑑 is the distance between the two charges.  Isolate 𝑅𝑅2 in the previous equation. 

𝑅𝑅2 = 𝑑𝑑 − 𝑅𝑅1 
Substitute the previous equation into the equation 4𝑅𝑅22 = 9𝑅𝑅12, which we found earlier. 

4(𝑑𝑑 − 𝑅𝑅1)2 = 9𝑅𝑅12 
Squareroot both sides of the equation.  (This trick lets you avoid the quadratic equation.) 

�4(𝑑𝑑 − 𝑅𝑅1)2 = �9𝑅𝑅12 

Recall the rule from algebra that �𝑥𝑥𝑦𝑦 = √𝑥𝑥�𝑦𝑦. 

√4�(𝑑𝑑 − 𝑅𝑅1)2 = √9�𝑅𝑅12 

2�(𝑑𝑑 − 𝑅𝑅1)2 = 3�𝑅𝑅12 

Also recall from algebra that √𝑥𝑥2 = 𝑥𝑥. 
2(𝑑𝑑 − 𝑅𝑅1) = 3𝑅𝑅1 

Distribute the 2. 
2𝑑𝑑 − 2𝑅𝑅1 = 3𝑅𝑅1 

Add 2𝑅𝑅1 to both sides of the equation. 
2𝑑𝑑 = 5𝑅𝑅1 

Divide both sides of the equation by 5.  Recall that the distance between the charges was 
given in the problem:  𝑑𝑑 = 5.0 m. 

𝑅𝑅1 =
2𝑑𝑑
5

=
(2)(5)

5
=

10
5

= 2.0 m 

The net electric field is zero in Region II, a distance of 𝑅𝑅1 = 2.0 m from the left charge (and 
therefore a distance of 𝑅𝑅2 = 3.0 m from the right charge, since 𝑅𝑅1 + 𝑅𝑅2 = 𝑑𝑑 = 5.0 m).  
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11.  A monkey places two small spheres a distance of 9.0 m apart, as shown below.  The left 
sphere has a charge of 25 µC, while the right sphere has a charge of 16 µC.  Find the point 
where the net electric field equals zero. 

Want help?  Check the hints section at the back of the book. 
Answer:  between the two spheres, 5.0 m from the left sphere 

(4.0 m from the right sphere)   

𝑞𝑞1 𝑞𝑞2 
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12.  A monkey places two small spheres a distance of 4.0 m apart, as shown below.  The left 
sphere has a charge of 2.0 µC, while the right sphere has a charge of −8.0 µC.  Find the point 
where the net electric field equals zero. 

Want help?  Check the hints section at the back of the book. 
Answer:  left of the left sphere, a distance of 4.0 m from the left sphere

(8.0 m from the right sphere)

𝑞𝑞1 𝑞𝑞2 
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4 ELECTRIC FIELD MAPPING 

Relevant Terminology 

Lines of force – a map of electric field lines showing how a positive “test” charge at any 
point on the map would be pushed, depending on the location of the “test” charge. 
Electric field lines – the same as lines of force.  Since F�⃗ 𝑒𝑒 = 𝑞𝑞E�⃗ , if a positive “test” charge 𝑞𝑞 is 
placed at a particular point in an electric field map, the electric field lines show which way 
the “test” charge would be pushed.  In this way, electric field lines serve as lines of force. 
Equipotential surface – a set of points (lying on a surface) that have the same electric 
potential.  The change in electric potential is proportional to the work done moving a charge 
between two points.  No work is done moving a charge along an equipotential surface, since 
electric potential is the same throughout the surface.  We will explore electric potential 
more fully in Chapter 7. 
 
Essential Concepts 

Given a set of charged objects, an electric field map shows electric field lines (also called 
lines of force) and equipotential surfaces. 

• The lines of force show which way a positive “test” charge would be pushed at any 
point on the diagram.  It would be pushed along a tangent line to the line of force. 

• The equipotential surfaces show surfaces where electric potential is constant. 
The lines of force and equipotential surfaces really exist everywhere in space, but we draw 
a fixed number of lines of force and equipotential surfaces in an electric field map to help 
visualize the electrostatics.  When drawing an electric field map, it is important to keep the 
following concepts in mind: 

• Lines of force travel from positive charges to negative charges, or in the direction of 
decreasing electric potential (that is, from higher potential to lower potential). 

• Lines of force are perpendicular to equipotential surfaces. 
• Two lines of force can’t intersect.  Otherwise, a “test” charge at the point of inter-

section would be pushed in two different directions at once. 
• Two different equipotential surfaces can’t intersect.  Otherwise, the point of inter-

section would be multi-valued. 
• Lines of force are perpendicular to charged conductors. 

When interpreting an electric field map, keep the following concepts in mind: 
• The magnitude of the electric field is stronger where the electric field lines are more 

dense and weaker where the electric field lines are less dense. 
• Electric field lines are very dense around charged objects. 
• The value of electric potential is constant along an equipotential surface. 
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Electric Field Mapping Equations 

In first-year physics courses, we mostly analyze electric field maps conceptually, using 
equations mostly as a guide. 

For example, consider the equation for the electric field created by a single pointlike 
charge.

𝐸𝐸 =
𝑘𝑘|𝑞𝑞|
𝑅𝑅2

 

The above equation shows that electric field is stronger near a charged object (where 𝑅𝑅 is 
smaller), and weaker further away from the charged object (where 𝑅𝑅 is larger).  It also 
shows that a larger value of |𝑞𝑞| produces a stronger electric field.  The effect of 𝑅𝑅 is greater 
than the effect of |𝑞𝑞|, since 𝑅𝑅 is squared. 
 
If there are two or more charged objects, we find the net electric field at a particular point 
in the diagram through superposition (vector addition), as discussed in Chapter 3.  In an 
electric field map, we do this conceptually by joining the vectors tip-to-tail:  The tip of one 
vector is joined to the tail of the other vector.  The net electric field, 𝑛𝑛𝑒𝑒𝑛𝑛, is the resultant of 
the two vectors joined together tip-to-tail. 

 
The equation F𝑒𝑒 = 𝑞𝑞E is helpful for interpreting an electric field map.  It shows that if a 
positive “test” charge 𝑞𝑞 is placed at a particular point on the map, the “test” charge would 
be pushed along a tangent line to the line of force (or electric field line). 

One equation that we use computationally, rather than conceptually, when interpreting an 
electric field map is the following equation for approximating the electric field at a specified 
point on an electric field map.  

𝐸𝐸 ≈
𝑅𝑅

 

The way to use this equation is to draw a straight line connecting two equipotential 
surfaces, such that the straight line passes through the desired point and is, on average, 
roughly perpendicular to each equipotential.  Then measure the length of this line, 𝑅𝑅.  To 
find the value of , simply subtract the values of electric potential for each equipotential.

𝑛𝑛𝑒𝑒𝑛𝑛 = 1 + 2 
𝑛𝑛𝑒𝑒𝑛𝑛 

1 

2

𝑅𝑅 
1 2 
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Symbols and SI Units 

Symbol Name SI Units 

𝐸𝐸 magnitude of electric field N/C or V/m 

𝑞𝑞 charge C 

𝑘𝑘 Coulomb’s constant N∙m2

C2  or kg∙m
3

C2∙s2
 

𝑅𝑅 distance from the charge m 

𝐹𝐹𝑒𝑒 magnitude of electric force N 

𝑉𝑉 electric potential V 

∆𝑉𝑉 potential difference V 

∆𝑅𝑅 distance between two points m 

 
Strategy for Conceptually Drawing Net Electric Field 

A prerequisite to drawing and interpreting an electric field map is to be able to apply the 
principle of superposition visually.  If a problem gives you two or more pointlike charges 
and asks you to sketch the electric field vector at a particular point, follow this strategy. 

1. Imagine placing a positive “test” charge at the specified point. 
2. Draw an electric field vector at the location of the “test” charge for each of the 

pointlike charges given in the problem. 
• For a positive charge, draw an arrow directly away from the positive charge, 

since a positive “test” charge would be repelled by the positive charge. 
• For a negative charge, draw an arrow towards the negative charge, since a 

positive “test” charge would be attracted to the negative charge. 
3. The lengths of the arrows that you draw should be proportional to the magnitudes 

of the electric field vectors.  The closer the “test” charge is to a charged object, the 
greater the magnitude of the electric field.  If any of the charged objects have more 
charge than other charged objects, this also increases the magnitude of the electric 
field. 

4. Apply the principle of superposition to draw the net electric field vector.  Join the 
arrows from Step 2 together tip-to-tail in order to form the resultant vector, as 
illustrated in the examples that follow (pay special attention to the last example).  
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Example:  Sketch the electric field at points A, B, and C for the isolated positive sphere
shown below. 

 
If a positive “test” charge were placed at points A, B, or C, it would be repelled by the 
positive sphere.  Draw the electric field directly away from the positive sphere. 

 
Example:  Sketch the electric field at points D, E, and F for the isolated negative sphere 
shown below. 

 
If a positive “test” charge were placed at points D, E, or F, it would be attracted to the 
negative sphere.  Draw the electric field towards the negative sphere.  Furthermore, the 
electric field gets weaker as a function of 1

𝑅𝑅2
 as the points get further from the charged 

sphere.  Therefore, the arrow should be longest at point D and shortest at point F. 

 
Example:  Sketch the electric field at point G for the pair of equal but oppositely charged 
spheres shown below.  (This configuration is called an electric dipole.) 

 
If a positive “test” charge were placed at point G, it would be repelled by the positive sphere 
and attracted to negative sphere.  First draw two separate electric fields (one for each 
sphere) and then draw the resultant of these two vectors for the net electric field. 

 
The electric fields don’t cancel:  They both point right.  Contrast this with the next example.  

A 

B 

C 

+  

+   
 

 

 

A 

B 

C 

−  D E F 

−   
 

D  
 

E 
𝐹𝐹 

 
𝐹𝐹 F 

+  G −  

 
 

G 

𝑅𝑅 
 

 
 

+  −  
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Example:  Sketch the electric field at point H for the pair of positive spheres shown below. 

 
If a positive “test” charge were placed at point H, it would be repelled by each positive 
sphere.  First draw two separate electric fields (one for each sphere) and then draw the 
resultant of these two vectors for the net electric field. 

 
The two electric fields cancel out.  The net electric field at point H is zero:  = 0. 
It is instructive to compare this example with the previous example. 
Example:  Sketch the electric field at points I and J for the pair of equal but oppositely 
charged spheres shown below. 

 
If a positive “test” charge were placed at point I or J, it would be repelled by the positive 
sphere and attracted to the negative sphere.  First draw two separate electric fields (one 
for each sphere) and then draw the resultant of these two vectors for the net electric field.  
Move one of the arrows (we moved 𝑅𝑅) to join the two vectors ( and 𝑅𝑅) tip-to-tail.  The 
resultant vector, , which is the net electric field at the specified point, begins at the tail of 

 and ends at the tip of 𝑅𝑅, as shown below.  Note how the vertical components cancel at J. 

  

+  H +  

+  𝑅𝑅 
 

H +   
 = 0 

 

+  

I 

−  

J 

 
 

+  

I 

−  

 
 

𝑅𝑅 
 

𝑅𝑅 
 

 
 

 
 

𝑅𝑅 
 

𝑅𝑅 
 

J 
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13.  Sketch the electric field at points A, B, and C for the isolated positive sphere shown 
below. 
 
 

 
 
 
14.  Sketch the electric field at points D, E, and F for the isolated negative sphere shown 
below. 
 
 

 
 
 
15.  Sketch the electric field at points G, H, I, J, K, and M for the pair of equal but oppositely 
charged spheres shown below.  (We skipped L in order to avoid possible confusion in the 
answer key, since we use  for the electric field created by the left charge.) 

 

Want help?  The problems from Chapter 4 are fully solved in the back of the book.  

+  

A 

B C 

−  

D E F 

−  

I

+  

H 

G J 

K 

M 
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16.  Sketch the electric field at points N, O, P, S, T, and U for the pair of negative spheres 
shown below.  (We skipped Q in order to avoid possible confusion with the charge.  We also 
skipped R in order to avoid possible confusion in the answer key, since we use 𝑅𝑅 for the 
electric field created by the right charge.) 

 
 
 
 

17.  Sketch the electric field at point V for the three charged spheres (two are negative, 
while the bottom left is positive) shown below, which form an equilateral triangle. 
 
 
 

 
 
 

Want help?  The problems from Chapter 4 are fully solved in the back of the book.  

−  

P

−  

O 

N S 

T 

U 

V 

+  −  

−  
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Strategy for Drawing an Electric Field Map 

To draw an electric field map for a system of charged objects, follow these steps: 
1. The lines of force (or electric field lines) should travel perpendicular to the surface 

of a charged object (called an electrode) when they meet the charged object. 
2. Lines of force come out of positive charges and go into negative charges.  Put arrows 

on your lines of force to show the direction of the electric field along each line. 
3. Near a pointlike charge, the lines of force should be approximately radial (like the 

spokes of a bicycle wheel).  If there are multiple charges in the picture, the lines 
won’t be perfectly radial, but will curve somewhat, and will appear less radial as 
they go further away from one pointlike charge towards a region where other 
charges will carry significant influence. 

4. If there are multiple charges and if all of the charges have the same value of |𝑞𝑞|, the 
same number of lines of force should go out of (or into) each charge.  If any of the 
charges has a higher value of |𝑞𝑞| than the others, there should be more lines of force 
going out of (or into) that charge.  The charge is proportional to the number of lines 
of force going out of (or into) it. 

5. Draw smooth lines of force from positive charges to negative charges.  Note that 
some lines may go off the page.  Also not that although we call them “lines of force,” 
they are generally “curves” and seldom are straight “lines.” 

6. Make sure that every point on your lines of force satisfies the superposition principle 
applied in the previous examples and problems.  The tangent line must be along the 
direction of the net electric field at any given point.  Choose a variety of points in 
different regions of your map and apply the superposition principle at each point in 
order to help guide you as to how to draw the lines of force. 

7. Two lines of force can’t intersect.  When you believe that your electric field map is 
complete, make sure that your lines of force don’t cross one another anywhere on 
your map. 

8. To represent equipotential surfaces, draw smooth curves that pass perpendicularly 
through your lines of force.  Make sure that your equipotentials are perpendicular to 
your lines of force at every point of intersection.  (An equipotential will intersect 
several lines of force.  This doesn’t contradict point 7, which says that two lines of 
force can’t intersect one another.)  Although equipotentials are really surfaces, they 
appear to be curves when drawn on a sheet of paper:  They are surfaces in 3D space, 
but your paper is just a 2D cross section of 3D space. 

9. Two equipotential surfaces representing two different values of electric potential 
(meaning that they have different values in Volts) won’t cross.  

www.engineersreferencebookspdf.com



Essential Trig-based Physics Study Guide Workbook 

49 
 

Example:  Sketch an electric field map for the single isolated positive charge shown below. 

 

No matter where you might place a positive “test” charge in the above diagram, the “test” 
charge would be repelled by the positive charge + .  Therefore, the lines of force radiate 
outward away from the positive charge (since it is completely isolated, meaning that there 
aren’t any other charges around).  The equipotential surfaces must be perpendicular to the 
lines of force:  In this case, the equipotential surfaces are concentric spheres centered 
around the positive charge.  Although they are drawn as circles below, they are really 
spheres that extend in 3D space in front and behind the plane of the paper. 

 
Example:  Sketch an electric field map for the single isolated negative charge shown below. 

 

This electric field map is nearly identical to the previous electric field map:  The only 
difference is that the lines radiate inward rather than outward, since a positive “test” 
charge would be attracted to the negative charge − . 

 

+  

+  

−  

−  
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Example:  Sketch an electric field map for the equal but opposite charges (called an electric 
dipole) shown below. 

 

Make this map one step at a time:
• First, sample the net electric field in a variety of locations using the superposition 

strategy that we applied in the previous examples.  If you review the previous 
examples, you will see that a couple of them featured the electric dipole: 

o The net electric field points to the right in the center of the diagram (where a 
positive “test” charge would be repelled by +  and attracted to − ). 

o The net electric field points to the right anywhere along the vertical line that 
bisects the diagram, as the vertical components will cancel out there.

o The net electric field points to the left along the horizontal line to the left of 
+  or to the right of − , but points to the right between the two charges. 

o The net electric field is somewhat radial (like the spokes of a bicycle wheel) 
near either charge, where the closer charge has the dominant effect. 

• Beginning with the above features, draw smooth curves that leave +  and head into 
−  (except where the lines go beyond the scope of the diagram).  The lines aren’t 
perfectly radial near either charge, but curve so as to leave +  and reach − . 

• Check several points in different regions:  The tangent line at any point on a line of 
force should match the direction of the net electric field from superposition. 

• Draw smooth curves for the equipotential surfaces.  Wherever an equipotential 
intersects a line of force, the two curves must be perpendicular to one another. 

In the diagram below, we used solid (—) lines for the lines of force (electric field lines) 
with arrows () indicating direction, and dashed lines (----) for the equipotentials. 

+  −  

+  −  
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18.  Sketch an electric field map for the two positive charges shown below. 

(A) First just draw the lines of force. 

 

(B) Now add the equipotential surfaces. 

 

Want help?  The problems from Chapter 4 are fully solved in the back of the book. 

+  +  

+  +  
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Strategy for Interpreting an Electric Field Map 

When analyzing an electric field map, there are a variety of concepts that may apply, 
depending upon the nature of the question: 

• To find the location of a pointlike charge on an electric field map, look for places 
where electric field lines converge or diverge.  They diverge from a positive point-
charge and converge towards a negative point-charge. 

• If a question asks you which way a “test” charge would be pushed, find the direction 
of the tangent to the line of force at the specified point.  The tangent to the line of 
force tells you which way a positive “test” charge would be pushed; if a negative 
“test” charge is used, the direction will be opposite. 

• To find the value of electric potential at a specified point, look at the values of the 
electric potentials labeled for the equipotential surfaces.  If the specified point is 
between two electric potentials, look at the two equipotentials surrounding it and 
estimate a value between them. 

• To find the potential difference between two points (call them  and ), read off the 
electric potential at each point and subtract the two values:  = − . 

• To estimate the magnitude of the electric field at a specified point, apply the 
following equation. 

𝐸𝐸 ≈
𝑅𝑅

 

First draw a straight line connecting two equipotential surfaces, such that the 
straight line passes through the desired point and is, on average, roughly 
perpendicular to each equipotential.  (See the example below.)  Then measure the 
length of this line, 𝑅𝑅.  To find the value of , simply subtract the values of electric 
potential for each equipotential. 

• If a question asks you about the strength of the electric field at different points, 
electric field is stronger where the lines of force are more dense and it is weaker 
where the lines of force are less dense. 

• If a question gives you a diagram of equipotential surfaces and asks you to draw the 
lines of force (or vice-versa), draw smooth curves that pass perpendicularly through 
the equipotentials, from positive to negative.  

𝑅𝑅 
1 2 
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Example:  Consider the electric field map drawn below. 

 
(A) At which point(s) is there a pointlike charge?  Is the charge positive or negative? 
There is a charge at point A where the lines of force diverge from.  The charge is positive 
because the lines of force go away from point A. 
(B) Rank the electric field strength at points B, C, and D. 
Between these 3 points, the electric field is stronger at point D, where the lines of force are 
more dense, and weaker at point C, where the lines of force are less dense:  𝐸𝐸 > 𝐸𝐸 > 𝐸𝐸 . 

Example:  Consider the map of equipotentials drawn below. 

                         
(A) Estimate the magnitude of the electric field at the star () in the diagram above. 
First note that the above diagram shows equipotentials, not lines of force.  Draw a straight 
line through the star () from higher voltage to lower voltage that is approximately 
perpendicular (on average) to the two equipotentials on either side of point X.  Subtract the 
values of electric potential (in Volts) for these two equipotentials to get the potential 
difference:  = 4 − 2 = 2 V.  Measure the length of the line with a ruler:  𝑅𝑅 = 1.0 cm.  
Convert 𝑅𝑅 to meters:  𝑅𝑅 = 0.010 m.  Apply the following formula.  Recall that a Volt per 
meter V

m
 equals a Newton per Coulomb N

C
. 

𝐸𝐸 ≈
𝑅𝑅

=
2

0.01
= 200

V
m

 

(B) If a positive “test” charge were placed at the star (), which way would it be pushed? 
It would be pushed along the line of force, which is the straight line that we drew through 
the star () in the diagram above.  

A 
D 

C 

B 

2 V 4 V 4 V 5 V 5 V 6 V 8 V 2 V 4 V 4 V 5 V 5 V 6 V 8 V 
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19.  Consider the map of equipotentials drawn below.  Note that the diagram below shows 
equipotentials, not lines of force. 

 

(A) Sketch the lines of force for the diagram above. 

(B) At which point(s) is there a pointlike charge?  Is the charge positive or negative? 
 
 
(C) Rank the electric field strength at points A, B, and C. 
 
 
(D) Estimate the magnitude of the electric field at the star () in the diagram above. 
 
 
 
 
 
 
 
 
(E) If a negative “test” charge were placed at the star (), which way would it be pushed? 
 
 

Want help?  The problems from Chapter 4 are fully solved in the back of the book. 

A 

B 

C 

D 

1.0 V 

3.0 V 

5.0 V 

7.0 V 

9.0 V 
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5 ELECTROSTATIC EQUILIBRIUM 

Relevant Terminology 

Electrostatic equilibrium – when a system of charged objects is in static equilibrium 
(meaning that the system is motionless). 
Electric charge – a fundamental property of a particle that causes the particle to experience 
a force in the presence of an electric field.  (An electrically neutral particle has no charge 
and thus experiences no force in the presence of an electric field.) 
Electric force – the push or pull that one charged particle exerts on another.  Oppositely 
charged particles attract, whereas like charges (both positive or both negative) repel. 
Electric field – force per unit charge. 
 
Essential Concepts 

When a system of charged objects is in electrostatic equilibrium, we can apply Newton’s 
second law with the components of the acceleration set equal to zero (since an object 
doesn’t have acceleration when it remains in static equilibrium). 
 
Electrostatic Equilibrium Equations 

Many electrostatic equilibrium problems are an application of Newton’s second law.  Recall 
that Newton’s second law was covered in Volume 1 of this series.  To apply Newton’s 
second law, draw a free-body diagram (FBD) for each object, and sum the components of 
the forces acting on each object.  In electrostatic equilibrium, set 𝑎𝑎𝑥𝑥 = 0 and 𝑎𝑎𝑦𝑦 = 0. 

� 𝐹𝐹𝑥𝑥 = 𝑚𝑚𝑎𝑎𝑥𝑥      ,     � 𝐹𝐹𝑦𝑦 = 𝑚𝑚𝑎𝑎𝑦𝑦 

When an object with charge 𝑞𝑞 is in the presence of an external electric field (E�⃗ ), the object 
experiences an electric force (F�⃗ 𝑒𝑒), which is parallel to E�⃗  if 𝑞𝑞 > 0 and opposite to E�⃗  if 𝑞𝑞 < 0. 

𝐹𝐹𝑒𝑒 = |𝑞𝑞|𝐸𝐸 
If there are two (or more) charged objects in the problem, apply Coulomb’s law. 

𝐹𝐹𝑒𝑒 =
𝑘𝑘|𝑞𝑞1||𝑞𝑞2|

𝑅𝑅2  

Any object in the presence of a gravitational field experiences weight (𝑊𝑊), which equals 
mass (𝑚𝑚) times gravitational acceleration (𝑔𝑔).  Weight pulls straight down. 

𝑊𝑊 = 𝑚𝑚𝑔𝑔 
When a stationary object is in contact with a surface, the force of static friction (𝑓𝑓𝑠𝑠) is less 
than or equal to the coefficient of static friction (𝜇𝜇𝑠𝑠) times normal force (𝑁𝑁). 

𝑓𝑓𝑠𝑠 ≤ 𝜇𝜇𝑠𝑠𝑁𝑁 
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Symbols and SI Units 

Symbol Name SI Units 

𝐸𝐸 magnitude of electric field N/C or V/m 

𝐹𝐹𝑒𝑒 magnitude of electric force N 

𝑞𝑞 charge C 

𝑅𝑅 distance between two charges m 

𝑘𝑘 Coulomb’s constant N∙m2

C2  or kg∙m3

C2∙s2  

𝑚𝑚 mass kg 

𝑚𝑚𝑔𝑔 weight N 

𝑁𝑁 normal force N 

𝑓𝑓 friction force N 

𝜇𝜇 coefficient of friction unitless 

𝑇𝑇 tension N 

𝑎𝑎𝑥𝑥 𝑥𝑥-component of acceleration m/s2 

𝑎𝑎𝑦𝑦 𝑦𝑦-component of acceleration m/s2 

 
Important Distinction 

It’s important to distinguish between electric charge (𝑞𝑞), electric field (𝐸𝐸), and electric 
force (𝐹𝐹𝑒𝑒).  Read the problems carefully, memorize which symbol is used for each quantity, 
and look at the units to help distinguish between them: 

• The SI unit of electric charge (𝑞𝑞) is the Coulomb (C). 
• The SI units of electric field (𝐸𝐸) can be expressed as N

C
 or V

m
. 

• The SI unit of electric force (𝐹𝐹𝑒𝑒) is the Newton (N). 
It’s also important to learn when to use which equation for electric force. 

• Use the equation 𝐹𝐹𝑒𝑒 = |𝑞𝑞|𝐸𝐸 for a charged object that is in the presence of an external 
electric field. 

• Use the equation 𝐹𝐹𝑒𝑒 = 𝑘𝑘|𝑞𝑞1||𝑞𝑞2|
𝑅𝑅2  when there are two or more charges in a problem.  
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Electrostatic Equilibrium Strategy 

To apply Newton’s second law to a system in electrostatic equilibrium, follow these steps. 
1. Draw a free-body diagram (FBD) for each object.  Label the forces acting on each 

object.  Consider each of the following forces: 
• Every object has weight (𝑚𝑚𝑔𝑔).  Draw 𝑚𝑚𝑔𝑔 straight down.  If there are multiple 

objects, distinguish their masses with subscripts:  𝑚𝑚1𝑔𝑔, 𝑚𝑚2𝑔𝑔, etc. 
• Does the problem mention an external electric field?  If so, any charged 

object in the problem will experience an electric force (|𝑞𝑞|𝐸𝐸), which is 
parallel to E�⃗  if 𝑞𝑞 > 0 and opposite to E�⃗  if 𝑞𝑞 < 0. 

• Are there two or more charged objects in the problem?  If so, each pair will 
experience electric forces �𝑘𝑘|𝑞𝑞1||𝑞𝑞2|

𝑅𝑅2 � according to Coulomb’s law.  The forces 
are attractive for opposite charges and repulsive for like charges. 

• Is the object in contact with a surface?  If it is, draw normal force (𝑁𝑁) 
perpendicular to the surface.  If there are two or more normal forces in the 
problem, use 𝑁𝑁1, 𝑁𝑁2, etc. 

• If the object is in contact with a surface, there will also be a friction force (𝑓𝑓).  
Draw the friction force opposite to the potential velocity.  If there is more 
than one friction force, use 𝑓𝑓1, 𝑓𝑓2, etc. 

• Is the object connected to a cord, rope, thread, or string?  If so, there will be a 
tension (𝑇𝑇) along the cord.  If two objects are connected to one cord, draw 
equal and oppositely directed forces acting on the two objects in accordance 
with Newton’s third law.  If there are two separate cords, then there will be 
two different pairs of tensions (𝑇𝑇1 and 𝑇𝑇2), one pair for each cord. 

• Does the problem describe or involve any other forces, such as a monkey’s 
pull (𝑃𝑃)?  If so, draw and label these forces. 

2. Label the +𝑥𝑥- and +𝑦𝑦-axes in each FBD. 
3. Write Newton’s second law in component form for each object.  The components of 

acceleration (𝑎𝑎𝑥𝑥 and 𝑎𝑎𝑦𝑦) equal zero in electrostatic equilibrium. 

� 𝐹𝐹1𝑥𝑥 = 0     ,     � 𝐹𝐹1𝑦𝑦 = 0     ,     � 𝐹𝐹2𝑥𝑥 = 0     ,     � 𝐹𝐹2𝑦𝑦 = 0 

4. Rewrite the left-hand side of each sum in terms of the 𝑥𝑥- and 𝑦𝑦-components of the 
forces acting on each object.  Consider each force one at a time.  Ask yourself if the 
force lies on an axis: 

• If a force lies on a positive or negative coordinate axis, the force only goes in 
that sum (𝑥𝑥 or 𝑦𝑦) with no trig. 

• If a force lies in the middle of a Quadrant, the force goes in both the 𝑥𝑥- and 𝑦𝑦-
sums using trig.  One component will involve cosine, while the other will 
involve sine.  Whichever axis is adjacent to the angle gets the cosine. 
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5. Check the signs of each term in your sum.  If the force has a component pointing 
along the +𝑥𝑥-axis, it should be positive in the 𝑥𝑥-sum, but if it has a component 
pointing along the −𝑥𝑥-axis, it should be negative in the 𝑥𝑥-sum.  Apply similar 
reasoning for the 𝑥𝑥-sum. 

6. Apply algebra to solve for the desired unknown(s). 
 
Example:  A monkey dangles two charged banana-shaped earrings from two separate 
threads, as illustrated below.  Once electrostatic equilibrium is attained, the two earrings
have the same height and are separated by a distance of 3.0 m.  Each earring has a mass of 
3
2

kg.  The earrings carry equal and opposite charge.

 
(A) What is the tension in each thread? 
Draw and label a FBD for each earring. 

• Each earring has weight (𝑚𝑚 ) pulling straight down. 
• Tension ( ) pulls along each thread. 
• The two earrings attract one another with an electric force (𝐹𝐹𝑒𝑒) via Coulomb’s law.  

The electric force is attractive because the earrings have opposite charge. 

 
Apply Newton’s second law.  In electrostatic equilibrium, 𝑎𝑎 = 0 and 𝑎𝑎 = 0.

• Since tension doesn’t lie on an axis,  appears in both the 𝑥𝑥- and 𝑥𝑥-sums with trig.  
In the FBD, since 𝑥𝑥 is adjacent to 30°, cosine appears in the 𝑥𝑥-sum.

• Since the electric force is horizontal, 𝐹𝐹𝑒𝑒 appears only in the 𝑥𝑥-sums with no trig. 
• Since weight is vertical, 𝑚𝑚  appears only in the 𝑥𝑥-sums with no trig. 

30° 30° 

30° 
 

𝑥𝑥 

𝑥𝑥 

𝑚𝑚  

F𝑒𝑒 

30° 
 

𝑥𝑥 

𝑥𝑥

𝑚𝑚  

𝑥𝑥
F𝑒𝑒 
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� 𝐹𝐹1𝑥𝑥 = 𝑚𝑚𝑎𝑎𝑥𝑥      ,     � 𝐹𝐹1𝑦𝑦 = 𝑚𝑚𝑎𝑎𝑦𝑦      ,     � 𝐹𝐹2𝑥𝑥 = 𝑚𝑚𝑎𝑎𝑥𝑥      ,     � 𝐹𝐹2𝑦𝑦 = 𝑚𝑚𝑎𝑎𝑦𝑦 

𝐹𝐹𝑒𝑒 − 𝑇𝑇 sin 30° = 0    ,    𝑇𝑇 cos 30° − 𝑚𝑚𝑔𝑔 = 0    ,    𝑇𝑇 sin 30° − 𝐹𝐹𝑒𝑒 = 0    ,    𝑇𝑇 cos 30° − 𝑚𝑚𝑔𝑔 = 0  
We can solve for tension in the equation from the 𝑦𝑦-sums. 

𝑇𝑇 cos 30° − 𝑚𝑚𝑔𝑔 = 0 
Add weight (𝑚𝑚𝑔𝑔) to both sides of the equation. 

𝑇𝑇 cos 30° = 𝑚𝑚𝑔𝑔 
Divide both sides of the equation by cos 30°. 

𝑇𝑇 =
𝑚𝑚𝑔𝑔

cos 30°
 

In this book, we will round 𝑔𝑔 = 9.81 m/s2 to 𝑔𝑔 ≈ 10 m/s2 in order to show you how to 
obtain an approximate answer without using a calculator.  (Feel free to use a calculator if 
you wish.  It’s a valuable skill to be able to estimate an answer without a calculator, which 
is the reason we will round 9.81 to 10.) 

𝑇𝑇 =
�√3

25� (9.81)

cos 30°
≈

�√3
25� (10)

√3
2

 

To divide by a fraction, multiply by its reciprocal.  Note that the reciprocal of √3
2

 is 2
√3

. 

𝑇𝑇 ≈ �
√3
25

� (10)
2

√3
=

20√3
25√3

=
20
25

=
4
5

 N 

Note that 20
25

 reduces to 4
5
 if you divide the numerator and denominator both by 5.  The 

answer is 𝑇𝑇 ≈ 4
5

 N. 
(B) What is the charge of each earring? 
First, solve for the electric force in the equation from the 𝑥𝑥-sums from part (A). 

𝐹𝐹𝑒𝑒 − 𝑇𝑇 sin 30° = 0 
Add 𝑇𝑇 sin 30° to both sides of the equation. 

𝐹𝐹𝑒𝑒 = 𝑇𝑇 sin 30° 
Plug in the tension that we found in part (A). 

𝐹𝐹𝑒𝑒 ≈
4
5

sin 30° =
4
5

�
1
2

� =
2
5

 N 

Now apply Coulomb’s law (Chapter 1). 

𝐹𝐹𝑒𝑒 = 𝑘𝑘
|𝑞𝑞1||𝑞𝑞2|

𝑅𝑅2  

Since the charges are equal in value and opposite in sign, either 𝑞𝑞1 = 𝑞𝑞 and 𝑞𝑞2 = −𝑞𝑞 or 
vice-versa.  It doesn’t matter which, since the magnitude of the electric force involves 
absolute values (magnitudes of vectors are always positive).  Note that 𝑞𝑞𝑞𝑞 = 𝑞𝑞2. 

𝐹𝐹𝑒𝑒 = 𝑘𝑘
𝑞𝑞2

𝑅𝑅2 
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Multiply both sides of the equation by 𝑅𝑅2. 
𝐹𝐹𝑒𝑒𝑅𝑅2 = 𝑘𝑘𝑞𝑞2 

Divide both sides of the equation by Coulomb’s constant. 
𝐹𝐹𝑒𝑒𝑅𝑅2

𝑘𝑘
= 𝑞𝑞2 

Squareroot both sides of the equation.  Note that √𝑅𝑅2 = 𝑅𝑅.  Recall that 𝑘𝑘 = 9.0 × 109  N∙m2

C2 . 

𝑞𝑞 = �𝐹𝐹𝑒𝑒𝑅𝑅2

𝑘𝑘
= 𝑅𝑅�𝐹𝐹𝑒𝑒

𝑘𝑘
 

𝑞𝑞 ≈ 3�
2
5

9 × 109  

Note that 2
5
 can be expressed as 4 × 10−1 since 2

5
= 0.4 and 4 × 10−1 = 0.4. 

𝑞𝑞 ≈ 3�4 × 10−1

9 × 109  

Apply the rule 𝑥𝑥
−𝑚𝑚

𝑥𝑥𝑛𝑛 = 𝑥𝑥−𝑚𝑚−𝑛𝑛. 

𝑞𝑞 ≈ 3�4 × 10−1−9

9
= 3�4 × 10−10

9
 

Apply the rule �𝑥𝑥𝑦𝑦
𝑧𝑧

= √𝑥𝑥√𝑦𝑦
√𝑧𝑧

. 

𝑞𝑞 ≈ 3
√4√10−10

√9
=

(3)(2)(10−5)
3

= 2.0 × 10−5 C 

Note that √10−10 = 10−5 since (10−5)2 = 10−10.  The answer is 𝑞𝑞 ≈ 2.0 × 10−5 C, which 
can also be expressed as 𝑞𝑞 ≈ 20 µC using the metric prefix micro (µ = 10−6).  One charge is 
+20 µC, while the other charge is −20 µC.  (Without more information, there is no way to 
determine which one is positive and which one is negative.)  
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Example:  The 80-g banana-shaped earring illustrated below is suspended in midair in 
electrostatic equilibrium. The earring is connected to the ceiling by a thread that makes a 
60° angle with the vertical. The earring g µ m
electric field directed horizontally to the right.  Find the magnitude of the electric field. 

 
Draw and label a FBD for the earring. 

• The earring has weight (𝑚𝑚 ) pulling straight down. 
• Tension ( ) pulls along the thread. 
• The horizontal electric field ( ) exerts an electric force (F𝑒𝑒 = 𝑞𝑞 ) on the charge, 

which is parallel to the electric field since the charge is positive. 

 
Apply Newton’s second law.  In electrostatic equilibrium, 𝑎𝑎 = 0 and 𝑎𝑎 = 0.

• Since tension doesn’t lie on an axis, appears in both the 𝑥𝑥- and 𝑥𝑥-sums with trig.  
In the FBD, since 𝑥𝑥 is adjacent to 60°, cosine appears in the 𝑥𝑥-sum. 

• Since the electric force is horizontal, |𝑞𝑞|𝐸𝐸 appears in only the 𝑥𝑥-sum with no trig.  
Recall that 𝐹𝐹𝑒𝑒 = |𝑞𝑞|𝐸𝐸 for a charge in an external electric field. 

• Since weight is vertical, 𝑚𝑚 appears only in the 𝑥𝑥-sum with no trig.

𝐹𝐹 = 𝑚𝑚𝑎𝑎      ,     𝐹𝐹 = 𝑚𝑚𝑎𝑎  

|𝑞𝑞|𝐸𝐸 − sin 60° = 0    ,    cos 60° −𝑚𝑚 = 0 
We can solve for magnitude of the electric field (𝐸𝐸) in the equation from the 𝑥𝑥-sum. 

|𝑞𝑞|𝐸𝐸 − sin 60° = 0 
|𝑞𝑞|𝐸𝐸 = sin 60° 

Divide both sides of the equation by the charge. 

60°

60° 
 

𝑥𝑥 

𝑥𝑥 

𝑚𝑚  

𝑥𝑥
𝑞𝑞  
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𝐸𝐸 =
𝑇𝑇 sin 60°

|𝑞𝑞|  

If we knew the tension, we could plug it into the above equation in order to find the electric 
field.  However, the problem didn’t give us the tension (and it’s not equal to weight).  
Fortunately, we can solve for tension using the equation from the 𝑦𝑦-sum from Newton’s 
second law. 

𝑇𝑇 cos 60° − 𝑚𝑚𝑔𝑔 = 0 
𝑇𝑇 cos 60° = 𝑚𝑚𝑔𝑔 

𝑇𝑇 =
𝑚𝑚𝑔𝑔

cos 60°
 

Convert the mass from grams (g) to kilograms (kg):  𝑚𝑚 = 80 g = 0.08 kg = 2
25

 kg.  (Note 

that 0.08 = 2
25

.  Try it on your calculator, if needed.) 

𝑇𝑇 =
� 2

25� (9.81)

cos 60°
≈

� 2
25� (10)

1
2

 

Note that we rounded 9.81 to 10.  To divide by a fraction, multiply by its reciprocal.  The 
reciprocal of 1

2
 is 2. 

𝑇𝑇 ≈ �
2

25
� (10)(2) =

40
25

=
8
5

 N 

We can plug this in for tension in the equation for electric field that we had found before.  
Convert the charge from microCoulombs to Coulombs:  𝑞𝑞 = 200 µC = 2.00 × 10−4 C. 

𝐸𝐸 =
𝑇𝑇 sin 60°

|𝑞𝑞| ≈
�8

5� sin 60°
2 × 10−4 =

�8
5� �√3

2 �

2 × 10−4 =
2√3

5
× 104 

Note that 8√3
5(2)

= 8√3
10

= 4√3
5

.  If you divide this by 2, you get 2√3
5

.  Then when you divide by 

10−4, you multiply by 104 according to the rule 1
𝑥𝑥−𝑛𝑛 = 𝑥𝑥𝑛𝑛. 

𝐸𝐸 ≈
2√3

5
× 104 =

2√3
5

× 10 × 103 = 2√3 × 2 × 103 = 4√3 × 103 = 4000√3 
N
C

 

Here, we used the fact that 104 = 10 × 103.  Note that 10
5

= 2 and that 103 = 1000.  The 

answer is that the magnitude of the electric field is 𝐸𝐸 ≈ 4000√3 N
C

.  
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20.   A poor monkey spends his last nickel on two magic bananas.  When he dangles the two 
9 3-kg (which is heavy because the magic bananas are made out of metal) bananas from 
cords, they “magically” spread apart as shown below.  Actually, it’s because they have equal 
electric charge. 

(A) Draw a FBD for each object (two in all).  Label each force and the 𝑥𝑥- and 𝑥𝑥-coordinates. 

 
(B) Write the 𝑥𝑥- and 𝑥𝑥-sums for the forces acting on each object.  There will be four sums.  
On the line immediately below each sum, rewrite the left-hand side in terms of the forces. 
 
 
 
 
 
(C) What is the tension in each cord? 
 
 
 
 
 
 
 
 
 
 
(D) What is the charge of each banana? 
 
 
 
 
 
 
 

Want help?  Check the hints section at the back of the book. 
Answers:  180 N, 200 µC   

2.0 m 
60° 

2.0 m 
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21.  The 60-g banana-shaped earring illustrated below is suspended in midair in electro-
static equilibrium. The earring is connected to the floor by a thread that makes a 60° angle 
with the vertical. The earring g µ there is a uniform electric field 
directed 60° above the horizontal. 

(A) Draw a FBD for the earring.  Label each force and the 𝑥𝑥- and 𝑥𝑥-coordinates. 

(B) Write the 𝑥𝑥- and 𝑥𝑥-sums for the forces acting on the earring.  There will be two sums.  
On the line immediately below each sum, rewrite the left-hand side in terms of the forces. 
 
 
 
 
 
(C) Determine the magnitude of the electric field.  
 
 
 
 
 
 
 
 
 
 
(D) Determine the tension in the thread. 
 
 
 
 
 
 
 

Want help?  Check the hints section at the back of the book. 
Answers:  2000 3 N/C, 3  N

60° 
60° 

E 
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6 GAUSS’S LAW 

Relevant Terminology 

Electric charge – a fundamental property of a particle that causes the particle to experience 
a force in the presence of an electric field.  (An electrically neutral particle has no charge 
and thus experiences no force in the presence of an electric field.) 
Electric field – force per unit charge. 
Electric flux – a measure of the relative number of electric field lines that pass through a 
surface. 
Net flux – the electric flux through a closed surface. 
Open surface – a surface that doesn’t entirely enclose a volume.  An ice-cream cone is an 
example of an open surface because an ant could crawl out of it. 
Closed surface – a surface that completely encloses a volume.  A sealed box is an example of 
a closed surface because an ant could be trapped inside of it. 
Conductor – a material through which electrons are able to flow readily.  Metals tend to be 
good conductors of electricity. 
Insulator – a material through which electrons are not able to flow readily.  Wood and glass 
are examples of good insulators. 
 
Gauss’s Law 

Electric flux (Φ𝑒𝑒) is a measure of the relative number of electric field lines passing through 
a surface.  (Electric field lines were discussed in Chapter 4.)  If the magnitude of the electric 
field (𝐸𝐸) is constant over a surface, and if the angle between the electric field (E�⃗ ) and the 
area vector (A��⃗ ) is constant over the surface, the electric flux is given by the following 
equation, where 𝜃𝜃 is the angle between E�⃗  and A��⃗ .  The direction of A��⃗  is perpendicular to the 
surface.  Note that Φ𝑒𝑒 is maximum when 𝜃𝜃 = 0° and zero when 𝜃𝜃 = 90°. 

Φ𝑒𝑒 = 𝐸𝐸𝐸𝐸 cos 𝜃𝜃 
According to Gauss’s law, the net electric flux (Φ𝑛𝑛𝑒𝑒𝑛𝑛) through a closed surface (often called a 
Gaussian surface) is proportional to the charge enclosed (𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒) by the surface. 

Φ𝑛𝑛𝑒𝑒𝑛𝑛 =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒
𝜖𝜖0

 

The constant 𝜖𝜖0 is called the permittivity of free space.  To apply Gauss’s law, we begin by 
drawing the electric field lines (like we did in Chapter 4) in order to visualize a closed 
surface for which the magnitude of the electric field (𝐸𝐸) is constant over the surface and for 
which the angle between the electric field (E�⃗ ) and the area vector (A��⃗ ) is also constant over 
the surface.  Such a surface allows us to apply the equation Φ𝑒𝑒 = 𝐸𝐸𝐸𝐸 cos𝜃𝜃.  As we will see, 
sometimes we divide the closed surface up into pieces where Φ𝑛𝑛𝑒𝑒𝑛𝑛 = Φ𝑒𝑒1 + Φ𝑒𝑒2 + ⋯. 
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Symbols and SI Units 

Symbol Name SI Units 

𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒 the charge enclosed by the Gaussian surface C 

𝑄𝑄 total charge of the object C 

E electric field N/C or V/m 

Φ𝑒𝑒 electric flux N∙m2

C
 or kg∙m

3

C∙s2
 

Φ𝑛𝑛𝑒𝑒𝑛𝑛 the net electric flux through a closed surface N∙m2

C
 or kg∙m

3

C∙s2
 

𝜖𝜖0 permittivity of free space C2

N∙m2 or C2∙s2

kg∙m3 

𝑘𝑘 Coulomb’s constant N∙m2

C2  or kg∙m
3

C2∙s2
 

𝑥𝑥,𝑦𝑦, 𝑧𝑧 Cartesian coordinates m, m, m 

𝑟𝑟 distance from the origin m 

𝑟𝑟𝑒𝑒 distance from the 𝑧𝑧-axis m 

𝑎𝑎 radius of a circle m 

𝑇𝑇 thickness m 

𝐿𝐿 length m 

𝑑𝑑 distance m 

𝐸𝐸 surface area m2 

𝑉𝑉 volume m3 

𝜆𝜆 linear charge density C/m 

𝜎𝜎 surface charge density C/m2 

𝜌𝜌 volume charge density C/m3 

Note:  The symbol Φ is the uppercase Greek letter phi,* 𝜖𝜖 is lowercase epsilon, 𝜆𝜆 is 
lowercase lambda, 𝜎𝜎 is lowercase sigma, and 𝜌𝜌 is lowercase rho.  

                                                        
* Cool physics note:  If you rotate uppercase phi (Φ) sideways, it resembles Darth Vader’sTM spaceship. 
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Essential Concepts 

The net flux passing through a closed surface is proportional to the number of electric field 
lines passing through the surface, and according to Gauss’s law this is proportional to the 
net charge enclosed by the surface: 

• If more electric field lines go out of the surface than come into the surface, the net 
flux through the surface is positive.  This indicates that there is a net positive charge 
inside of the closed surface.  In the example below, electric field lines are heading 
out of the spherical surface (represented by the dashed circle), but none are heading 
into the surface. According to Gauss’s law, there must be a net positive charge 
inside of the closed surface. 

 

• If fewer electric field lines go out of the surface than come into the surface, the net 
flux through the surface is negative.  This indicates that there is a net negative 
charge inside of the closed surface.  In the example below, electric field lines are 
heading into the spherical surface (represented by the dashed circle), but none are 
heading out of the surface.  According to Gauss’s law, there must be a net negative 
charge inside of the closed surface. 

 

+  

−  
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• If the same number of electric field lines go out of the surface as come into the 
surface, the net flux through the surface is zero.  This indicates that the net charge 
inside of the closed surface is zero.  In the example below, for every electric field line 
that heads out of the elliptical surface (represented by the dashed ellipse) there is 
another electric field line which heads back into the surface.  The net charge inside 
of the closed surface is zero (the positive and negative charges cancel out). 

 
The example below includes 4 different closed surfaces: 

• The net flux through closed surface A is positive.  It encloses a positive charge. 
• The net flux through closed surface B is zero.  The positive and negative charges 

inside cancel out (the net charge enclosed is zero). 
• The net flux through closed surface C is zero.  There aren’t any charges enclosed. 
• The net flux through closed surface D is negative.  It encloses a negative charge. 

+  −  

+  −  

A DC 

B 

www.engineersreferencebookspdf.com



Essential Trig-based Physics Study Guide Workbook 
 

69 
 

Strategy for Applying Gauss’s Law 

If there is enough symmetry in an electric field problem for it to be practical to take 
advantage of Gauss’s law, follow these steps: 

1. Sketch the electric field lines (or lines of force) for the problem following the 
technique discussed in Chapter 4. 

2. Look at these electric field lines.  Try to visualize a closed surface (like a sphere, 
cylinder, or cube) called a Gaussian surface for which the electric field lines would 
always be parallel to, anti-parallel to, or perpendicular to (or a combination of 
these) the surface no matter which part of the surface they pass through.  When the 
electric field lines are parallel or anti-parallel to the surface, you want the 
magnitude of the electric field to be constant over that part of the surface.  These 
features make the left-hand side of Gauss’s law very easy to compute.  The closed 
surface must also enclose some of the electric charge. 

3. Study the examples that follow.  Most Gauss’s law problems have a geometry that is 
very similar to one of these examples (an infinite line, an infinite plane, an infinitely 
long cylinder, or a sphere).  The Gaussian surfaces that we draw in the examples are 
basically the same as most of the Gaussian surfaces encountered in the problems.  
This makes Steps 1-2 very easy. 

4. Write down the formula for Gauss’s law. 

Φ𝑛𝑛𝑒𝑒𝑛𝑛 =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒
𝜖𝜖0

 

If the surface is a sphere, there will just be one term.  If the surface is a cylinder, 
break the closed surface up into three surfaces:  one for the body and one for each 
end.  For a horizontal cylinder, Φ𝑛𝑛𝑒𝑒𝑛𝑛 = Φ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + Φ𝑙𝑙𝑒𝑒𝑙𝑙𝑛𝑛 𝑒𝑒𝑛𝑛𝑏𝑏 + Φ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑛𝑛 𝑒𝑒𝑛𝑛𝑏𝑏.  This is shown 
in the examples. 

5. Rewrite the left-hand side of Gauss’s law.  Recall that the direction of A��⃗  is 
perpendicular to the surface. 

• If E�⃗  is perpendicular to A��⃗  for part of a surface, then Φ𝑒𝑒 = 0 for that part of the 
surface (since cos 90° = 0 in Φ𝑒𝑒 = 𝐸𝐸𝐸𝐸 cos 𝜃𝜃). 

• If E�⃗  is parallel to A��⃗  for part of a surface, then Φ𝑒𝑒 = 𝐸𝐸𝐸𝐸 for that part of the 
surface (since cos 0° = 1 in Φ𝑒𝑒 = 𝐸𝐸𝐸𝐸 cos 𝜃𝜃). 

• If E�⃗  is anti-parallel to A��⃗  for part of a surface, then Φ𝑒𝑒 = −𝐸𝐸𝐸𝐸 for that part of 
the surface (since cos 180° = −1 in Φ𝑒𝑒 = 𝐸𝐸𝐸𝐸 cos𝜃𝜃). 

6. If you choose your Gaussian surface wisely in Step 2, you will get: 

𝐸𝐸1𝐸𝐸1 + 𝐸𝐸2𝐸𝐸2 + ⋯+ 𝐸𝐸𝑁𝑁𝐸𝐸𝑁𝑁 =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒
𝜖𝜖0

 

Here, 𝐸𝐸1𝐸𝐸1 is the flux through one part of the surface, 𝐸𝐸2𝐸𝐸2 is the flux through 
another part of the surface, and so on.  For a sphere, there is just one term.  For a 
cylinder, there are three terms (though one or two terms may be zero). 
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7. Replace each area with the appropriate expression, depending upon the geometry. 
• The surface area of a sphere is 𝐸𝐸 = 4𝜋𝜋𝑟𝑟2. 
• The area of the end of a right-circular cylinder is 𝐸𝐸 = 𝜋𝜋𝑟𝑟𝑒𝑒2. 
• The surface area of the body of a right-circular cylinder is 𝐸𝐸 = 2𝜋𝜋𝑟𝑟𝑒𝑒𝐿𝐿. 

Gauss’s law problems with spheres or cylinders generally involve two different 
radii:  The radius of the Gaussian sphere or cylinder is 𝑟𝑟 or 𝑟𝑟𝑒𝑒 , whereas the radius of 
a charged sphere or cylinder is a different symbol (which we will usually call 𝑎𝑎 in 
this book, but may be called 𝑅𝑅 in other textbooks – we are using 𝑎𝑎 in order to avoid 
possible confusion between radius and resistance later in this book). 

8. Isolate the electric field in your simplified equation from Gauss’s law.  (This should 
be a simple algebra exercise.) 

9. Consider each region in the problem.  There will ordinarily be at least two regions.  
One region may be inside of a charged object and another region may be outside of 
the charged object, for example.  We will label the regions with Roman numerals (I, 
II, III, IV, V, etc.). 

10. Determine the net charge enclosed in each region.  In a given region, if the Gaussian 
surface encloses the entire charged object, the enclosed charge (𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒) will equal the 
total charge of the object (𝑄𝑄).  However, if the Gaussian surface encloses only a 
fraction of the charged object, you will need to find the fraction of the charge 
enclosed by the Gaussian surface.  If the object is uniformly charged, you may use 
one of the following equations, depending upon the geometry: 

• 𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒 = 𝜆𝜆𝐿𝐿𝑒𝑒𝑛𝑛𝑒𝑒 for an arc length (like a rod or thin ring). 
• 𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒 = 𝜎𝜎𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒 for a surface area (like a solid disc or thin spherical shell). 
• 𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒 = 𝜌𝜌𝑉𝑉𝑒𝑒𝑛𝑛𝑒𝑒 for a 3D solid (like a solid sphere or a solid cylinder). 

11. For each region, substitute the charge enclosed (from Step 10) into the simplified 
expression for the electric field (from Step 8). 

 
The Permittivity of Free Space 

The constant 𝜖𝜖0 in Gauss’s law is called the permittivity of free space (meaning vacuum, a 
region completely devoid of matter).  The permittivity of free space (𝜖𝜖0) is related to 

Coulomb’s constant �𝑘𝑘 = 9.0 × 109  N∙m
2

C2 �: 

𝜖𝜖0 =
1

4𝜋𝜋𝑘𝑘
 

From this equation, we see that 𝜖𝜖0’s units are the reciprocal of 𝑘𝑘’s units.  Since the SI units 

of 𝑘𝑘 are N∙m
2

C2 , it follows that the SI units of 𝜖𝜖0 are C2

N∙m2.  If you plug the numerical value for 𝑘𝑘 

�9.0 × 109  N∙m
2

C2 � into the above formula, you will find that 𝜖𝜖0 = 8.8 × 10−12  C2

N∙m2.  However, 

in this book we will often write 𝜖𝜖0 = 10−9

36𝜋𝜋
 C2

N∙m2 in order to avoid the need of a calculator.  

www.engineersreferencebookspdf.com



Essential Trig-based Physics Study Guide Workbook 

71 
 

Example:  A very thin, infinitely† large sheet of charge lies in the 𝑥𝑥𝑥𝑥 plane.  The positively 
charged sheet has uniform charge density .  Derive an expression for the electric field on 
either side of the infinite sheet. 

 
First sketch the electric field lines for the infinite sheet of positive charge.  If a positive test 
charge were placed to the right of the sheet, it would be repelled to the right.  If a positive 
test charge were placed to the left of the sheet, it would be reprelled to the left.  Therefore, 
the electric field lines are directed away from the sheet, as shown above on the right.  We 
choose a right-circular cylinder to serve as our Gaussian surface, as illustrated below.  The 
reasons for this choice are: 

• E is parallel to A at the ends of the cylinder (both are horizontal). 
• E is perpendicular to A over the body of the cylinder (E is horizontal while A is not). 
• The magnitude of E is constant over either end of the cylinder, since every point on 

the end is equidistant from the infinite sheet. 

               
† In practice, this result for the “infinite” sheet applies to a finite sheet when you’re calculating the electric 
field at a distance from the sheet that is very small compared to the dimensions of the sheet and which is not 
near the edges of the sheet.  A common example encountered in the laboratory is the parallel-plate capacitor 
(Chapter 10), for which the separation between the plates is very small compared to the size of the plates. 

𝑥𝑥 

 

𝑥𝑥 
(out) 

𝑥𝑥 

 

𝑥𝑥 
(out)

E  

E  

Region I  
< 0 

Region II  
> 0 

𝑥𝑥 

 

𝑥𝑥 
(out) 

A 𝑒𝑒 𝑛𝑛 

A𝑏𝑏  

A 𝑔𝑔 𝑛𝑛 E  

E  

Region I  
< 0 

Region II  
> 0 
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Write the formula for Gauss’s law. 

Φ𝑛𝑛𝑒𝑒𝑛𝑛 =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒
𝜖𝜖0

 

The net flux on the left-hand side of the equation involves the complete surface of the 
Gaussian cylinder.  The surface of the cylinder includes a left end, a body, and a right end. 

Φ𝑙𝑙𝑒𝑒𝑙𝑙𝑛𝑛 + Φ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + Φ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑛𝑛 =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒
𝜖𝜖0

 

Recall that the direction of A��⃗  is perpendicular to the surface, and that 𝜃𝜃 is the angle 
between E�⃗  and A��⃗ .  Study the direction of E�⃗  and A��⃗  at each end and the body of the cylinder in 
the previous diagram. 

• For the ends, 𝜃𝜃 = 0° in Φ𝑒𝑒 = 𝐸𝐸𝐸𝐸 cos 𝜃𝜃 because E�⃗  and A��⃗  either both point right or 
both point left. 

• For the body, 𝜃𝜃 = 90° because E�⃗  and A��⃗  are perpendicular.  Since cos 90° = 0, the 
electric flux through the body is zero. 

𝐸𝐸𝐸𝐸𝑙𝑙𝑒𝑒𝑙𝑙𝑛𝑛 cos 0° + 0 + 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑛𝑛 cos 0° =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒
𝜖𝜖0

 

Recall from trig that cos 0° = 1. 

𝐸𝐸𝐸𝐸𝑙𝑙𝑒𝑒𝑙𝑙𝑛𝑛 + 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑛𝑛 =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒
𝜖𝜖0

 

The two ends have the same area (the area of a circle):  𝐸𝐸𝑙𝑙𝑒𝑒𝑙𝑙𝑛𝑛 = 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑛𝑛 = 𝐸𝐸𝑒𝑒𝑛𝑛𝑏𝑏. 

2𝐸𝐸𝐸𝐸𝑒𝑒𝑛𝑛𝑏𝑏 =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒
𝜖𝜖0

 

Isolate the magnitude of the electric field by dividing both sides of the equation by 2𝐸𝐸𝑒𝑒𝑛𝑛𝑏𝑏 . 

𝐸𝐸 =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒

2𝜖𝜖0𝐸𝐸𝑒𝑒𝑛𝑛𝑏𝑏
 

Now we need to determine how much charge is enclosed by the Gaussian surface.  For a 
plane of charge, we use the equation for surface charge density (Step 10 on page 70). 

𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒 = 𝜎𝜎𝐸𝐸𝑒𝑒𝑛𝑛𝑏𝑏 
The charge enclosed by the Gaussian surface is illustrated by the circle shaded in black on 
the previous diagram.  This area, 𝐸𝐸𝑒𝑒𝑛𝑛𝑏𝑏, is the same as the area of either end of the cylinder.  
Substitute this expression for the charge enclosed into the previous equation for electric 
field. 

𝐸𝐸 =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒

2𝜖𝜖0𝐸𝐸𝑒𝑒𝑛𝑛𝑏𝑏
=

𝜎𝜎𝐸𝐸𝑒𝑒𝑛𝑛𝑏𝑏
2𝜖𝜖0𝐸𝐸𝑒𝑒𝑛𝑛𝑏𝑏

=
𝜎𝜎

2𝜖𝜖0
 

The magnitude of the electric field is 𝐸𝐸 = 𝜎𝜎
2𝜖𝜖0

.  Note that this answer is a constant:  The 

electric field created by an infinite sheet of charge is uniform.  
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Example:  An infinite slab is like a very thick infinite sheet:  It’s basically a rectangular box 
with two infinite dimensions and one finite thickness.  The infinite nonconducting slab with 
thickness  shown below is parallel to the 𝑥𝑥𝑥𝑥 plane, centered about = 0, and has uniform 
positive charge density .  Derive an expression for the electric field in each region. 

 
This problem is similar to the previous example.  The difference is that the infinite slab has 
thickness, unlike the infinite sheet.  The electric field lines look the same, and we choose the 
same Gaussian surface:  a right-circular cylinder.  The math will also start out the same 
with Gauss’s law.  To save time, we’ll simply repeat the steps that are identical to the 
previous example, and pick up from where this solution deviates from the previous one.  It 
would be a good exercise to see if you can understand each step (if not, review the previous 
example for the explanation). 

𝑛𝑛𝑒𝑒𝑛𝑛 =
𝑞𝑞𝑒𝑒𝑛𝑛

0
 

𝑒𝑒 𝑛𝑛 + 𝑏𝑏 + 𝑔𝑔 𝑛𝑛 =
𝑞𝑞𝑒𝑒𝑛𝑛

0
 

𝐸𝐸 𝑒𝑒 𝑛𝑛 cos 0° + 0 + 𝐸𝐸 𝑔𝑔 𝑛𝑛 cos 0° =
𝑞𝑞𝑒𝑒𝑛𝑛

0
 

𝐸𝐸 𝑒𝑒 𝑛𝑛 + 𝐸𝐸 𝑔𝑔 𝑛𝑛 =
𝑞𝑞𝑒𝑒𝑛𝑛

0
 

2𝐸𝐸 𝑒𝑒𝑛𝑛 =
𝑞𝑞𝑒𝑒𝑛𝑛

0
 

𝐸𝐸 =
𝑞𝑞𝑒𝑒𝑛𝑛

2 0 𝑒𝑒𝑛𝑛
 

What’s different now is the charge enclosed by the Gaussian surface.  Since the slab has 
thickness, the Gaussian surface encloses a volume of charge, so we use the equation for 
volume charge density (Step 10 on page 70) instead of surface charge density. 

𝑞𝑞𝑒𝑒𝑛𝑛 = 𝑒𝑒𝑛𝑛  
  

I  
< −

2
 

III  
>

2
 II  

−
2

< <
2

 

𝑥𝑥 

 

𝑥𝑥 
(out)

A 𝑒𝑒 𝑛𝑛

I  
< −

2
 

III  
>

2
 

A𝑏𝑏  

A 𝑔𝑔 𝑛𝑛 

E  

E  

II  
−

2
< <

2
 

𝑥𝑥 

 

𝑥𝑥 
(out)
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Here, 𝑒𝑒𝑛𝑛  is the volume of the slab enclosed by the Gaussian surface.  There are two cases 
to consider: 

• The Gaussian surface could be longer than the thickness of the slab.  This will help 
us find the electric field in regions I and III (see the regions labeled below). 

• The Gaussian surface could be shorter than the thickness of the slab.  This will help 
us find the electric field in region II. 

 
Regions I and III:  < −

2
 and >

2
. 

When the Gaussian cylinder is longer than the thickness of the slab, the volume of charge 
enclosed equals the intersection of the cylinder and the slab:  It is a cylinder with a length 
equal to the thickness of the slab.  The volume of this cylinder equals the thickness of the 
slab times the area of the circular end. 

𝑒𝑒𝑛𝑛 = 𝑒𝑒𝑛𝑛  
In this case, the charge enclosed is: 

𝑞𝑞𝑒𝑒𝑛𝑛 = 𝑒𝑒𝑛𝑛 = 𝑒𝑒𝑛𝑛  
Substitute this expression into the previous equation for electric field. 

𝐸𝐸 = 𝐸𝐸 =
𝑞𝑞𝑒𝑒𝑛𝑛

2 0 𝑒𝑒𝑛𝑛
= 𝑒𝑒𝑛𝑛

2 0 𝑒𝑒𝑛𝑛
=

2 0
The answer will be different in region II. 

Region II:  −
2

< <
2

. 
When the Gaussian cylinder is shorter than the thickness of the slab, the volume of charge 
enclosed equals the volume of the Gaussian cylinder.  The length of the Gaussian cylinder is 
2| | (since the Gaussian cylinder extends from −  to + ), where −

2
< <

2
.  The shorter 

the Gaussian cylinder, the less charge it encloses.  The volume of the Gaussian cylinder 
equals 2| | times the area of the circular end. 

𝑒𝑒𝑛𝑛 = 2| | 𝑒𝑒𝑛𝑛  

I  
< −

2
 

III  
>

2
 II  

−
2

< <
2
 

𝑥𝑥 

 

𝑥𝑥 
(out) I  

< −
2

 

III  
>

2
 II  

−
2

< <
2

 

𝑥𝑥 

 

𝑥𝑥 
(out) 
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In this case, the charge enclosed is: 
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒 = 𝜌𝜌𝑉𝑉𝑒𝑒𝑛𝑛𝑒𝑒 = 𝜌𝜌2|𝑧𝑧|𝐸𝐸𝑒𝑒𝑛𝑛𝑏𝑏 

Substitute this expression into the previous equation for electric field. 

𝐸𝐸𝐼𝐼𝐼𝐼 =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒

2𝜖𝜖0𝐸𝐸𝑒𝑒𝑛𝑛𝑏𝑏
=
𝜌𝜌2|𝑧𝑧|𝐸𝐸𝑒𝑒𝑛𝑛𝑏𝑏
2𝜖𝜖0𝐸𝐸𝑒𝑒𝑛𝑛𝑏𝑏

=
𝜌𝜌|𝑧𝑧|
𝜖𝜖0

 

Note that the two expressions (for the different regions) agree at the boundary:  That is, if 
you plug in 𝑧𝑧 = 𝑇𝑇

2
 into the expression for the electric field in region II, you get the same 

answer as in regions I and III.  It is true in general that the electric field is continuous across 
a boundary (except when working with a conductor):  If you remember this, you can use it 
to help check your answers to problems that involve multiple regions. 
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Example:  A solid spherical insulator‡ centered about the origin with positive charge  has 
radius 𝑎𝑎 and uniform charge density .  Derive an expression for the electric field both 
inside and outside of the sphere.  

 
First sketch the electric field lines for the positive sphere.  Regardless of where a positive 
test charge might be placed, it would be repelled directly away from the center of the 
sphere.  Therefore, the electric field lines radiate outward, as shown above on the right (but 
realize that the field lines really radiate outward in three dimensions, and we are really 
working with spheres, not circles).  We choose our Gaussian surface to be a sphere (shown 
as a dashed circle above) concentric with the charged sphere such that E and A will be 
parallel and the magnitude of E will be constant over the Gaussian surface (since every 
point on the Gaussian sphere is equidistant from the center of the positive sphere).  Write 
the formula for Gauss’s law. 

𝑛𝑛𝑒𝑒𝑛𝑛 =
𝑞𝑞𝑒𝑒𝑛𝑛

0
 

The net electric flux is 𝑛𝑛𝑒𝑒𝑛𝑛 = 𝐸𝐸 cos , and = 0° since the electric field lines radiate 
outward, perpendicular to the surface (and therefore parallel to A, which is always 
perpendicular to the surface). 

𝐸𝐸 cos 0° =
𝑞𝑞𝑒𝑒𝑛𝑛

0
 

Recall from trig that cos 0° = 1. 

𝐸𝐸 =
𝑞𝑞𝑒𝑒𝑛𝑛

0
 

The surface area of a sphere is = 4 2.  Substitute this expression for surface area into 
the previous equation for electric field. 

𝐸𝐸4 2 =
𝑞𝑞𝑒𝑒𝑛𝑛

0
 

Isolate the magnitude of the electric field by dividing both sides of the equation by 4 2. 

               
‡ If it were a conductor, all of the excess charge would move to the surface due to Gauss’s law.  We’ll discuss 
why that’s the case as part of the following example (see the example with the conducting shell). 

+  𝑎𝑎 
Region I  

< 𝑎𝑎 
Region I  

Region II 
> 𝑎𝑎

+  𝑎𝑎 

 
EA 

Region I  
< 𝑎𝑎 

Region I  
Region II 

> 𝑎𝑎 
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𝐸𝐸 =
𝑞𝑞𝑒𝑒𝑛𝑛

4 0
2 

Now we need to determine how much charge is enclosed by the Gaussian surface.  We must 
consider two different regions: 

• The Gaussian sphere could be smaller than the charged sphere.  This will help us 
find the electric field in region I. 

• The Gaussian sphere could be larger than the charged sphere.  This will help us find 
the electric field in region II. 

 
Region I:  < 𝑎𝑎.
Inside of the charged sphere, only a fraction of the sphere’s charge is enclosed by the 
Gaussian sphere.  For a solid charged sphere, we write 𝑞𝑞𝑒𝑒𝑛𝑛 = 𝑒𝑒𝑛𝑛  (Step 10 on page 70).  

The formula for the volume of a sphere of radius  is 𝑒𝑒𝑛𝑛 = 4 3

3
.  Note that  is the radius 

of the Gaussian sphere, not the radius of the actual charged sphere.  (The radius of the 
charged sphere is instead represented by the symbol 𝑎𝑎.) 

𝑞𝑞𝑒𝑒𝑛𝑛 =
4 3

3
 

Substitute this expression for the charge enclosed into the previous equation for electric 
field. 

𝐸𝐸 =
𝑞𝑞𝑒𝑒𝑛𝑛

4 0
2 =

4 3

3
÷ 4 0

2 =
4 3

3
×

1
4 0

2 =
3 0

 

𝐸𝐸 =
3 0

 

The answer is different outside of the charged sphere.  We will explore that on the next
page.  

𝑎𝑎  
Region I  

< 𝑎𝑎 

𝑎𝑎 

 

Region II 
> 𝑎𝑎 
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Region II:  𝑟𝑟 > 𝑎𝑎. 
Outside of the charged sphere, 100% of the charge is enclosed by the Gaussian surface:  
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒 = 𝑄𝑄.  We’ll get the same expression as before, but with 𝑎𝑎 in place of 𝑟𝑟. 

𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒 = 𝑄𝑄 =
4𝜋𝜋𝜌𝜌𝑎𝑎3

3
 

Substitute this into the equation for electric field that we obtained from Gauss’s law. 

𝐸𝐸𝐼𝐼𝐼𝐼 =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒

4𝜋𝜋𝜖𝜖0𝑟𝑟2
=

4𝜋𝜋𝜌𝜌𝑎𝑎3

3
÷ 4𝜋𝜋𝜖𝜖0𝑟𝑟2 =

4𝜋𝜋𝜌𝜌𝑎𝑎3

3
×

1
4𝜋𝜋𝜖𝜖0𝑟𝑟2

=
𝜌𝜌𝑎𝑎3

3𝜖𝜖0𝑟𝑟2
 

𝐸𝐸𝐼𝐼𝐼𝐼 =
𝜌𝜌𝑎𝑎3

3𝜖𝜖0𝑟𝑟2
 

 
Alternate forms of the answers in regions I and II. 
There are multiple ways to express our answers for regions I and II.  For example, we could 
use the equation 𝜖𝜖0 = 1

4𝜋𝜋𝜋𝜋
 to work with Coulomb’s constant (𝑘𝑘) instead of the permittivity 

of free space (𝜖𝜖0).  Since the total charge of the sphere is 𝑄𝑄 = 4𝜋𝜋𝜋𝜋𝑎𝑎3

3
 (we found this equation 

for region II above), we can express the electric field in terms of the total charge (𝑄𝑄) of the 
sphere instead of the charge density (𝜌𝜌). 
 
Region I:  𝑟𝑟 < 𝑎𝑎. 

𝐸𝐸𝐼𝐼 =
𝜌𝜌𝑟𝑟
3𝜖𝜖0

=
4𝜋𝜋𝑘𝑘𝜌𝜌𝑟𝑟

3
=

𝑄𝑄𝑟𝑟
4𝜋𝜋𝜖𝜖0𝑎𝑎3

=
𝑘𝑘𝑄𝑄𝑟𝑟
𝑎𝑎3

 

Region II:  𝑟𝑟 > 𝑎𝑎. 

𝐸𝐸𝐼𝐼𝐼𝐼 =
𝜌𝜌𝑎𝑎3

3𝜖𝜖0𝑟𝑟2
=

4𝜋𝜋𝑘𝑘𝜌𝜌𝑎𝑎3

3𝑟𝑟2
=

𝑄𝑄
4𝜋𝜋𝜖𝜖0𝑟𝑟2

=
𝑘𝑘𝑄𝑄
𝑟𝑟2

 

Note that the electric field in region II is identical to the electric field created by a pointlike 
charge (see Chapter 2).  Note also that the expressions for the electric field in the two 
different regions both agree at the boundary:  That is, in the limit that 𝑟𝑟 approaches 𝑎𝑎, both 
expressions approach 𝜋𝜋𝑘𝑘

𝑎𝑎2
. 
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Example:  A solid spherical insulator centered about the origin with positive charge 5  has 
radius 𝑎𝑎 and uniform charge density .  Concentric with the spherical insulator is a thick 
spherical conducting shell of inner radius , outer radius , and total charge 3 .  Derive an 
expression for the electric field in each region. 

 
This problem is very similar to the previous example, except that there are four regions, 
and there is a little “trick” to working with the conducting shell for region III.  The same 
Gaussian sphere from the previous example applies here, and the math for Gauss’s law 
works much the same way here.  The real difference is in figuring out the charge enclosed 
in each region. 

Region I:  < 𝑎𝑎. 
The conducting shell does not matter for region I, since none of its charge will reside in a 
Gaussian sphere with < 𝑎𝑎.  Thus, we will obtain the same result as for region I of the 
previous example, except that the total charge of the sphere is now 5  (this was stated in 
the problem).  We’ll use one of the alternate forms of the equation for electric field that 
involves the total charge of the inner sphere (see the bottom of page 78), except that where 
we previously had  for the total charge, we’ll change that to 5  for this problem. 

𝐸𝐸 =
5𝑘𝑘
𝑎𝑎3

 

Region II:  𝑎𝑎 < < . 
The conducting shell also does not matter for region II, since again none of its charge will 
reside in a Gaussian sphere with < .  (Recall that Gauss’s law involves the charge 
enclosed, 𝑞𝑞𝑒𝑒𝑛𝑛 , by the Gaussian sphere.)  We obtain the same result as for region II of the 
previous example (see the bottom of page 78), with  replaced by 5  for this problem. 

𝐸𝐸 =
5𝑘𝑘

2  

5  

E A 

𝑎𝑎 

 

I II 
III

IV 

 

 

3  

5  𝑎𝑎 

I II 
III 

IV 

 

 

3  
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Region III:  < < . 
Now the conducting shell matters.  The electric field inside of the conducting shell equals 
zero once electrostatic equilibrium is attained (which just takes a fraction of a second). 

𝐸𝐸 = 0 
Following are the reasons that the electric field must be zero in region III: 

• The conducting shell, like all other forms of macroscopic matter, consists of protons, 
neutrons, and electrons. 

• In a conductor, electrons can flow readily. 
• If there were a nonzero electric field inside of the conductor, it would cause the 

charges (especially, the electrons) within its volume to accelerate.  This is because 
the electric field would result in a force according to F = 𝑞𝑞E, while Newton’s second 
law ( F = 𝑚𝑚a) would result in acceleration. 

• In a conductor, electrons redistribute in a fraction of a second until electrostatic 
equilibrium is attained (unless you connect a power supply to the conductor to 
create a constant flow of charge, for example, but there is no power supply involved 
in this problem). 

• Once electrostatic equilibrium is attained, the charges won’t be moving, and 
therefore the electric field within the conducting shell must be zero. 

Because the electric field is zero in region III, we can reason how the total charge of the 
conducting shell (which equals 3  according to the problem) is distributed.  According to 
Gauss’s law, 𝑛𝑛𝑒𝑒𝑛𝑛 = 𝑞𝑞𝑒𝑒𝑛𝑛 .  Since 𝐸𝐸 = 0 in region III, from the equation 𝑒𝑒 = 𝐸𝐸 cos , the 

left-hand side of Gauss’s law is zero in region III.  The right-hand side of Gauss’s law must 
also equal zero, meaning that the charge enclosed by a Gaussian surface in region III must 
equal zero:  𝑞𝑞𝑒𝑒𝑛𝑛 = 0.  

 
A Gaussian sphere in region III ( < < ) encloses the inner sphere plus the inner surface 
of the conducting shell (see the dashed curve in the diagram above). 

𝑞𝑞𝑒𝑒𝑛𝑛 = 5 + 𝑞𝑞 𝑛𝑛𝑛𝑛𝑒𝑒 = 0 
Since the charge enclosed in region III is zero, we can conclude that 𝑞𝑞 𝑛𝑛𝑛𝑛𝑒𝑒 = −5 .  The 
total charge of the conducting shell equals 3  according to the problem.  Therefore, if we 
add the charge of the inner surface and outer surface of the conducting shell together, we 

5  𝑎𝑎 

I II 
III 

IV 

 

 

3
 

𝑞𝑞 𝑛𝑛𝑛𝑛𝑒𝑒  
𝑞𝑞 𝑛𝑛𝑒𝑒  

www.engineersreferencebookspdf.com



Essential Trig-based Physics Study Guide Workbook 
 

81 
 

must get 3𝑄𝑄. 
𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 + 𝑞𝑞𝑏𝑏𝑜𝑜𝑛𝑛𝑒𝑒𝑟𝑟 = 3𝑄𝑄 
−5𝑄𝑄 + 𝑞𝑞𝑏𝑏𝑜𝑜𝑛𝑛𝑒𝑒𝑟𝑟 = 3𝑄𝑄 

𝑞𝑞𝑏𝑏𝑜𝑜𝑛𝑛𝑒𝑒𝑟𝑟 = 3𝑄𝑄 + 5𝑄𝑄 = 8𝑄𝑄 
The conducting shell has a charge of −5𝑄𝑄 on its inner surface and a charge of 8𝑄𝑄 on its 
outer surface, for a total charge of 3𝑄𝑄.  (It’s important to note that “inner sphere” and 
“inner surface of the conducting shell” are two different things.  In our notation, 𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 
represents the charge on the “inner surface of the conducting shell.”  Note that 𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 does 
not refer to the “inner sphere.”) 
 
Region IV:  𝑟𝑟 < 𝑐𝑐. 
A Gaussian sphere in region IV encloses a total charge of 8𝑄𝑄 (the 5𝑄𝑄 from the inner sphere 
plus the 3𝑄𝑄 from the conducting shell).  The formula for the electric field is the same as for 
region II, except for changing the total charge enclosed to 8𝑄𝑄. 

𝐸𝐸𝐼𝐼𝐼𝐼 =
8𝑘𝑘𝑄𝑄
𝑟𝑟2
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Example:  An infinite line of positive charge lies on the -axis and has uniform charge 
density .  Derive an expression for the electric field created by the infinite line charge. 

 
First sketch the electric field lines for the infinite line charge.  Wherever a positive test 
charge might be placed, it would be repelled directly away from the -axis.  Therefore, the 
electric field lines radiate outward, as shown above on the right (but realize that the field 
lines really radiate outward in three dimensions).  We choose our Gaussian surface to be a 
cylinder (see the right diagram above) coaxial with the line charge such that E and A will be 
parallel along the body of the cylinder (and E and A will be perpendicular along the ends).  
Write the formula for Gauss’s law. 

𝑛𝑛𝑒𝑒𝑛𝑛 =
𝑞𝑞𝑒𝑒𝑛𝑛

0
 

The net flux on the left-hand side of the equation involves the complete surface of the 
Gaussian cylinder.  The surface of the cylinder includes a left end, a body, and a right end. 

𝑒𝑒 𝑛𝑛 + 𝑏𝑏 + 𝑔𝑔 𝑛𝑛 =
𝑞𝑞𝑒𝑒𝑛𝑛

0
 

Recall that the direction of A is perpendicular to the surface, and that  is the angle 
between E and A.  Study the direction of E and A at each end and the body of the cylinder 
in the previous diagram. 

• For the ends, = 90° because E and A are perpendicular.  Since cos 90° = 0, the 
electric flux through the body is zero. 

• For the body, = 0° in 𝑒𝑒 = 𝐸𝐸 cos  because E and A are parallel. 

0 + 𝐸𝐸 𝑏𝑏 cos 0° + 0 =
𝑞𝑞𝑒𝑒𝑛𝑛

0
 

Recall from trig that cos 0° = 1. 

𝐸𝐸 𝑏𝑏 =
𝑞𝑞𝑒𝑒𝑛𝑛

0
 

The area is the surface area of the Gaussian cylinder of radius  (which is a variable, since 
the electric field depends upon the distance from the line charge).  Note that  is the 

𝑥𝑥

 

𝑥𝑥 

 
A 𝑒𝑒 𝑛𝑛 

A𝑏𝑏  

A 𝑔𝑔 𝑛𝑛 

E 

E 
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distance from the 𝑧𝑧-axis (from cylindrical coordinates), and not the distance to the origin 
(which we use in spherical coordinates).  The area of the body of a cylinder is 𝐸𝐸 = 2𝜋𝜋𝑟𝑟𝑒𝑒𝐿𝐿, 
where 𝐿𝐿 is the length of the Gaussian cylinder.  (We choose the Gaussian cylinder to be 
finite, unlike the infinite line of charge.) 

𝐸𝐸2𝜋𝜋𝑟𝑟𝑒𝑒𝐿𝐿 =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒
𝜖𝜖0

 

Isolate the magnitude of the electric field by dividing both sides of the equation by 2𝜋𝜋𝑟𝑟𝑒𝑒𝐿𝐿. 

𝐸𝐸 =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒

2𝜋𝜋𝜖𝜖0𝑟𝑟𝑒𝑒𝐿𝐿
 

Now we need to determine how much charge is enclosed by the Gaussian cylinder.  For a 
line charge, we use the equation for linear charge density (Step 10 on page 70). 

𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒 = 𝜆𝜆𝐿𝐿 
The charge enclosed by the Gaussian cylinder is 𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒 = 𝜆𝜆𝐿𝐿, where 𝐿𝐿 is the length of the 
Gaussian cylinder.  Substitute this into the previous equation for electric field. 

𝐸𝐸 =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒

2𝜋𝜋𝜖𝜖0𝑟𝑟𝑒𝑒𝐿𝐿
=

𝜆𝜆𝐿𝐿
2𝜋𝜋𝜖𝜖0𝑟𝑟𝑒𝑒𝐿𝐿

=
𝜆𝜆

2𝜋𝜋𝜖𝜖0𝑟𝑟𝑒𝑒
 

𝐸𝐸 =
𝜆𝜆

2𝜋𝜋𝜖𝜖0𝑟𝑟𝑒𝑒
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Example:  An infinite solid cylindrical conductor coaxial with the -axis has radius 𝑎𝑎 and
uniform charge density .  Derive an expression for the electric field both inside and 
outside of the conductor. 

 
The electric field lines for this infinite charged cylinder radiate away from the -axis just 
like the electric field lines for the infinite line charge in the previous example.  As with the 
previous example, we will apply a Gaussian cylinder coaxial with the -axis, and the math 
will be virtually the same as in the previous example.  One difference is that this problem 
involves two different regions, and another difference is that this problem involves a 
surface charge density ( ) instead of a linear charge density ( ). 
 
Region I:  < 𝑎𝑎. 
Since the cylinder is a conductor, the electric field will be zero in region I. 

𝐸𝐸 = 0 
The reasoning is the same as it was a few examples back when we had a problem with a 
conducting shell.  If there were a nonzero electric field inside the conducting cylinder, it 
would cause the charged particles inside of it (namely the valence electrons) to accelerate.  
Within a fraction of a second, the electrons in the conducting cylinder will attain electro-
static equilibrium, after which point the electric field will be zero inside the volume of the 
conducting cylinder.  Since E = 0 inside the conducting cylinder and since 𝑛𝑛𝑒𝑒𝑛𝑛 = 𝑞𝑞𝑒𝑒𝑛𝑛

according to Gauss’s law, the net charge within the conducting cylinder must also be zero
(recall that 𝑒𝑒 = 𝐸𝐸 cos ).  Therefore, the net charge that resides on the conducting 
cylinder must reside on its surface. 

Region II:  > 𝑎𝑎. 
Since the electric field lines for this problem closely resemble the electric field lines of the 
previous example, the math for Gauss’s law will start out the same.  We will repeat those
equations to save time, and then pick up our discussion where this solution deviates from 
the previous one.  Again, it would be wise to try to follow along, and review the previous 

𝑥𝑥 

 
𝑎𝑎 

𝑥𝑥 

A𝑏𝑏

E 

A 𝑒𝑒 𝑛𝑛 

E 

A 𝑔𝑔 𝑛𝑛 𝑎𝑎  
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example if necessary. 

Φ𝑛𝑛𝑒𝑒𝑛𝑛 =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒
𝜖𝜖0

 

Φ𝑙𝑙𝑒𝑒𝑙𝑙𝑛𝑛 + Φ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + Φ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑛𝑛 =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒
𝜖𝜖0

 

0 + 𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 cos 0° + 0 =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒
𝜖𝜖0

 

𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒
𝜖𝜖0

 

𝐸𝐸2𝜋𝜋𝑟𝑟𝑒𝑒𝐿𝐿 =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒
𝜖𝜖0

 

𝐸𝐸 =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒

2𝜋𝜋𝜖𝜖0𝑟𝑟𝑒𝑒𝐿𝐿
 

This is the point where the solution is different for the infinite conducting cylinder than for 
the infinite line charge.  When we determine how much charge is enclosed by the Gaussian 
cylinder, we will work with 𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒 = 𝜎𝜎𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒  (Step 10 on page 70).  For a solid cylinder, we 
would normally use 𝜌𝜌𝑉𝑉𝑒𝑒𝑛𝑛𝑒𝑒, but since this is a conducting cylinder, as we reasoned in region 
I, all of the charge resides on its surface, not within its volume.  (If this had been an 
insulator instead of a conductor, then we would use 𝜌𝜌𝑉𝑉𝑒𝑒𝑛𝑛𝑒𝑒 for a solid cylinder.) 

𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒 = 𝜎𝜎𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒 
The surface area of the body of a cylinder is 𝐸𝐸 = 2𝜋𝜋𝑎𝑎𝐿𝐿.  Here, we use the radius of the 
conducting cylinder (𝑎𝑎), not the radius of the Gaussian cylinder (𝑟𝑟𝑒𝑒), because the charge lies 
on a cylinder of radius 𝑎𝑎 (we’re finding the charge enclosed).   Plug this expression into the 
equation for the charge enclosed. 

𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒 = 𝜎𝜎𝐸𝐸𝑒𝑒𝑛𝑛𝑒𝑒 = 𝜎𝜎2𝜋𝜋𝑎𝑎𝐿𝐿 
Substitute this into the previous equation for electric field. 

𝐸𝐸𝐼𝐼𝐼𝐼 =
𝑞𝑞𝑒𝑒𝑛𝑛𝑒𝑒

2𝜋𝜋𝜖𝜖0𝑟𝑟𝑒𝑒𝐿𝐿
=

𝜎𝜎2𝜋𝜋𝑎𝑎𝐿𝐿
2𝜋𝜋𝜖𝜖0𝑟𝑟𝑒𝑒𝐿𝐿

=
𝜎𝜎𝑎𝑎
𝜖𝜖0𝑟𝑟𝑒𝑒

 

𝐸𝐸𝐼𝐼𝐼𝐼 =
𝜎𝜎𝑎𝑎
𝜖𝜖0𝑟𝑟𝑒𝑒

 

It’s customary to write this in terms of charge per unit length, 𝜆𝜆 = 𝑘𝑘
𝐿𝐿

, rather than charge per 

unit area, 𝜎𝜎 = 𝑘𝑘
𝐴𝐴

= 𝑘𝑘
2𝜋𝜋𝑎𝑎𝐿𝐿

, in which case the answer is identical to the previous example: 

𝐸𝐸𝐼𝐼𝐼𝐼 =
𝜆𝜆

2𝜋𝜋𝜖𝜖0𝑟𝑟𝑒𝑒
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22.  An infinite solid cylindrical insulator coaxial with the -axis has radius 𝑎𝑎 and uniform 
positive charge density .  Derive an expression for the electric field both inside and 
outside of the charged insulator. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Want help?  Check the hints section at the back of the book. 
Answers:  𝐸𝐸 =

2
, 𝐸𝐸 = 𝑎𝑎2

2

𝑥𝑥 

 
𝑎𝑎 
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23.  Two very thin, infinitely large sheets of charge have equal and opposite uniform charge 
densities +  and − .  The positive sheet lies in the 𝑥𝑥𝑥𝑥 plane at = 0 while the negative 
sheet is parallel to the first at = .  Derive an expression for the electric field in each of 
the three regions.

 

Want help?  Check the hints section at the back of the book. 
Answers:  𝐸𝐸 = 0, 𝐸𝐸 = , 𝐸𝐸 = 0 

𝑥𝑥 

 

𝑥𝑥 
(out)

I  
< 0 III  

>  

(out) II  
0 < <  

+  −  
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24.  Two very thin, infinitely large sheets of charge have equal and opposite uniform charge 
densities +  and − .  The two sheets are perpendicular to one another, with the positive 
sheet lying in the 𝑥𝑥𝑥𝑥 plane and with the negative sheet lying in the 𝑥𝑥  plane.  Derive an 
expression for the electric field in the octant where 𝑥𝑥, 𝑥𝑥, and  are all positive. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answer:  𝐸𝐸 = 2
2

𝑥𝑥 

 

𝑥𝑥
(out)

+  

−  
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7 ELECTRIC POTENTIAL 

Relevant Terminology 

Electric charge – a fundamental property of a particle that causes the particle to experience 
a force in the presence of an electric field.  (An electrically neutral particle has no charge 
and thus experiences no force in the presence of an electric field.) 
Electric force – the push or pull that one charged particle exerts on another.  Oppositely 
charged particles attract, whereas like charges (both positive or both negative) repel. 
Electric field – force per unit charge. 
Electric potential energy – a measure of how much electrical work a charged particle can do 
by changing position. 
Electric potential – electric potential energy per unit charge.  Specifically, the electric 
potential difference between two points equals the electric work per unit charge that 
would be involved in moving a charged particle from one point to the other. 
 
Electric Potential Equations 

If you want to find the electric potential created by a single pointlike charge, use the 
following equation, where 𝑅𝑅 is the distance from the pointlike charge.  Unlike previous 
equations for electric force and electric field, 𝑅𝑅 is not squared in the equation for electric 
potential and there are no absolute values (sign matters here). 

𝑉𝑉 =
𝑘𝑘𝑘𝑘
𝑅𝑅

 

To find the electric potential created by a system of pointlike charges, simply add up the 
electric potentials for each charge.  Since electric potential is a scalar (not a vector), it’s 
much easier to add electric potentials than it is to add electric fields (Chapter 3). 

𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑘𝑘𝑘𝑘1
𝑅𝑅1

+
𝑘𝑘𝑘𝑘2
𝑅𝑅2

+ ⋯+
𝑘𝑘𝑘𝑘𝑁𝑁
𝑅𝑅𝑁𝑁

 

Electric potential energy (𝑃𝑃𝑃𝑃𝑛𝑛) equals charge (𝑘𝑘) times electric potential (𝑉𝑉). 
𝑃𝑃𝑃𝑃𝑛𝑛 = 𝑘𝑘𝑉𝑉 

To find the electric potential energy of a system of charges, first find the electric potential 
energy (𝑃𝑃𝑃𝑃𝑛𝑛) for each pair of charges. 

𝑃𝑃𝑃𝑃𝑛𝑛 = 𝑘𝑘
𝑘𝑘1𝑘𝑘2
𝑅𝑅

 

Potential difference (∆𝑉𝑉) is the difference in electric potential between two points. 
∆𝑉𝑉 = 𝑉𝑉𝑓𝑓 − 𝑉𝑉𝑖𝑖 

Electrical work (𝑊𝑊𝑛𝑛) equals charge (𝑘𝑘) times potential difference (∆𝑉𝑉). 
𝑊𝑊𝑛𝑛 = 𝑘𝑘∆𝑉𝑉 
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Symbols and SI Units 

Symbol Name SI Units 

𝑉𝑉 electric potential V 

∆𝑉𝑉 potential difference V 

𝑃𝑃𝑃𝑃𝑛𝑛 electric potential energy J 

𝑊𝑊𝑛𝑛 electrical work J 

𝑘𝑘 charge C 

𝑅𝑅 distance from the charge m 

𝑘𝑘 Coulomb’s constant N∙m2

C2  or kg∙m
3

C2∙s2
 

 
Notes Regarding Units 

The SI unit of electric potential (𝑉𝑉) is the Volt (V).  From the equation 𝑃𝑃𝑃𝑃𝑛𝑛 = 𝑘𝑘𝑉𝑉, a Volt can 
be related to the SI unit of energy by solving for electric potential: 

𝑉𝑉 =
𝑃𝑃𝑃𝑃𝑛𝑛
𝑘𝑘

 

According to this equation, one Volt (V) equals a Joule (J) per Coulomb (C), 1 V = 1 J/C, 
since the SI unit of energy is the Joule and the SI unit of charge is the Coulomb. 
 
Important Distinctions 

It’s important to be able to distinguish between several similar terms.  Units can help. 
• The SI unit of electric charge (𝑘𝑘) is the Coulomb (C). 
• The SI units of electric field (𝑃𝑃) can be expressed as N

C
 or V

m
. 

• The SI unit of electric force (𝐹𝐹𝑛𝑛) is the Newton (N). 
• The SI unit of electric potential (𝑉𝑉) is the Volt (V). 
• The SI unit of electric potential energy (𝑃𝑃𝑃𝑃𝑛𝑛) is the Joule (J). 

It’s also important not to confuse similar equations. 
• Coulomb’s law for electric force has a pair of charges:  𝐹𝐹𝑛𝑛 = 𝑘𝑘 |𝑞𝑞1||𝑞𝑞2|

𝑅𝑅2
. 

• The electric field for a pointlike charge has one charge:  𝑃𝑃 = 𝑘𝑘|𝑞𝑞|
𝑅𝑅2

. 
• The electric potential energy for a system involves a pair of charges:  𝑃𝑃𝑃𝑃𝑛𝑛 = 𝑘𝑘 𝑞𝑞1𝑞𝑞2

𝑅𝑅
. 

• The electric potential for a pointlike charge has one charge:  𝑉𝑉 = 𝑘𝑘𝑞𝑞
𝑅𝑅

. 
Note that 𝑅𝑅 is squared in the top two equations, but not the bottom equations. 
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Electric Potential Strategy 

How you solve a problem involving electric potential depends on the type of problem:
• If you want to find the electric potential created by a single pointlike charge, use the 

following equation. 

=
𝑘𝑘𝑞𝑞
𝑅𝑅

 

𝑅𝑅 is the distance from the pointlike charge to the point where the problem asks you 
to find the electric potential.  If the problem gives you the coordinates (𝑥𝑥1,𝑥𝑥1) of the 
charge and the coordinates (𝑥𝑥2,𝑥𝑥2) of the point where you need to find the electric 
field, apply the distance formula to find 𝑅𝑅. 

𝑅𝑅 = (𝑥𝑥2 − 𝑥𝑥1)2 + (𝑥𝑥2 − 𝑥𝑥1)2 
• For a system of pointlike charges, add the electric potentials for each charge. 

𝑛𝑛𝑒𝑒𝑛𝑛 =
𝑘𝑘𝑞𝑞1
𝑅𝑅1

+
𝑘𝑘𝑞𝑞2
𝑅𝑅2

+ +
𝑘𝑘𝑞𝑞
𝑅𝑅

 

Be sure to use the signs of the charges.  There are no absolute values. 
• If you need to relate the electric potential ( ) to electric potential energy ( 𝐸𝐸𝑒𝑒), use 

the following equation. 
𝐸𝐸𝑒𝑒 = 𝑞𝑞  

• If a problem involves a moving charge and involves electric potential, see the 
conservation of energy strategy of Chapter 8. 

• If a problem involves electric field and potential difference, see Chapter 8. 
 
Example:  A strand of monkey fur with a charge of 6.0 µC lies at the point ( 3 m, 1.0 m).  A 
strand of gorilla fur with a charge of −36.0 µC lies at the point (− 3 m, 1.0 m).  What is the 
net electric potential at the point ( 3 m, −1.0 m)? 

 
We need to determine how far each charge is from the field point at ( 3 m, −1.0 m), which 
is marked with a star ().  The distances 𝑅𝑅1 and 𝑅𝑅2 are illustrated below. 

 

( 3 m, 1.0 m) 
+6.0 µC 

𝑥𝑥 

𝑥𝑥 
−36.0 µC 

( 3 m, −1.0 m) 

(− 3 m, 1.0 m) 

𝑞𝑞1 𝑞𝑞2 

𝑅𝑅2 𝑅𝑅1 

www.engineersreferencebookspdf.com



Chapter 7 – Electric Potential 

92 
 

Apply the distance formula to determine these distances. 

𝑅𝑅1 = 𝑥𝑥12 + 𝑥𝑥12 = 3 − 3
2

+ (−1 − 1)2 = 02 + (−2)2 = 4 = 2.0 m 

𝑅𝑅2 = 𝑥𝑥22 + 𝑥𝑥22 = 3 − − 3
2

+ (−1 − 1)2 = 2 3
2

+ (−2)2 = 16 = 4.0 m 

The net electric potential equals the sum of the electric potentials for each pointlike charge. 

𝑛𝑛𝑒𝑒𝑛𝑛 =
𝑘𝑘𝑞𝑞1
𝑅𝑅1

+
𝑘𝑘𝑞𝑞2
𝑅𝑅2

 

Convert the charges to SI units:  𝑞𝑞1 = 6.0 µC = 6.0 × 10−6 C and 𝑞𝑞2 = −36.0 µC = −36.0 ×
10−6 C.  Recall that the metric prefix micro (µ) stands for one millionth:  µ = 10−6.  Note 
that we can factor out Coulomb’s constant. 

𝑛𝑛𝑒𝑒𝑛𝑛 = 𝑘𝑘
𝑞𝑞1
𝑅𝑅1

+
𝑞𝑞2
𝑅𝑅2

= (9 × 109)
6 × 10−6

2
+
−36 × 10−6

4
 

𝑛𝑛𝑒𝑒𝑛𝑛 = (9 × 109)(3 × 10−6 − 9 × 10−6) 
We can also factor out the 10−6. 

𝑛𝑛𝑒𝑒𝑛𝑛 = (9 × 109)(10−6)(3− 9) = (9 × 109)(10−6)(−6) = −54 × 103 V = −5.4 × 104 V
Note that 10910−6 = 109−6 = 103 according to the rule 𝑥𝑥𝑚𝑚𝑥𝑥−𝑛𝑛 = 𝑥𝑥𝑚𝑚−𝑛𝑛.  Also note that  
54 × 103 = 5.4 × 104.  The answer is 𝑛𝑛𝑒𝑒𝑛𝑛 = −5.4 × 104 V, which is the same as 
−54 × 103 V, and can also be expressed as 𝑛𝑛𝑒𝑒𝑛𝑛 = −54 kV, since the metric prefix kilo (k) 
stands for 103 = 1000. 
 
25.  A monkey-shaped earring with a charge of 7 2 µC lies at the point (0, 1.0 m).  A 
banana-shaped earring with a charge of −3 2 µC lies at the point (0, −1.0 m).  Your goal is 
to find the net electric potential at the point (1.0 m, 0). 

Determine the net electric potential at the point (1.0 m, 0). 

Want help or intermediate answers?  Check the hints section at the back of the book. 
Answer:  36 kV 

(0, −1.0 m) 

+7 2 µC 

𝑥𝑥

𝑥𝑥 

(0, 1.0 m)
−3 2 µC 

𝑥𝑥
(1.0 m, 0) 

+7 2 C
(0, 1.0 m) 
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8 MOTION OF A CHARGED PARTICLE 

IN A UNIFORM ELECTRIC FIELD 

Relevant Terminology 

Electric charge – a fundamental property of a particle that causes the particle to experience 
a force in the presence of an electric field.  (An electrically neutral particle has no charge 
and thus experiences no force in the presence of an electric field.) 
Electric force – the push or pull that one charged particle exerts on another.  Oppositely 
charged particles attract, whereas like charges (both positive or both negative) repel. 
Electric field – force per unit charge. 
Electric potential energy – a measure of how much electrical work a charged particle can do 
by changing position. 
Electric potential – electric potential energy per unit charge.  Specifically, the electric 
potential difference between two points equals the electric work per unit charge that 
would be involved in moving a charged particle from one point to the other. 
Potential difference – the difference in electric potential between two points.  Potential 
difference is the work per unit charge needed to move a test charge between two points. 
 
Uniform Electric Field Equations 

A uniform electric field is one that is constant throughout a region of space.  A charged 
particle in an electric field (E�⃗ ) experiences an electric force (F�⃗ 𝑒𝑒) given by: 

F�⃗ 𝑒𝑒 = 𝑞𝑞E�⃗  
Recall from Volume 1 that the force of gravity (F�⃗ 𝑔𝑔), which is also called weight, equals mass 
(𝑚𝑚) times gravitational acceleration (g�⃗ ). 

F�⃗ 𝑔𝑔 = 𝑚𝑚g�⃗  
According to Newton’s second law, net force (∑ F�⃗ ) equals mass (𝑚𝑚) times acceleration (a�⃗ ).  
Recall that Newton’s second law was discussed extensively in Volume 1. 

� F�⃗ = 𝑚𝑚a�⃗  

Potential difference (∆𝑉𝑉) is the difference in electric potential between two points. 
∆𝑉𝑉 = 𝑉𝑉𝑓𝑓 − 𝑉𝑉𝑖𝑖 

In a uniform electric field between two parallel plates, the magnitude of the electric field 
equals the potential difference divided by the separation between the plates (𝑑𝑑): 

𝐸𝐸 =
∆𝑉𝑉
𝑑𝑑
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Electrical work (𝑊𝑊𝑒𝑒) equals charge (𝑞𝑞) times potential difference (∆𝑉𝑉), and work also 
equals the negative of the change in electric potential energy. 

𝑊𝑊𝑒𝑒 = 𝑞𝑞∆𝑉𝑉 = −∆𝑃𝑃𝐸𝐸𝑒𝑒 
A charged particle traveling parallel to a uniform electric field has uniform acceleration.  
Recall the equations of uniform acceleration from the first volume of this book. 

∆𝑦𝑦 = 𝑣𝑣𝑦𝑦0𝑡𝑡 +
1
2
𝑎𝑎𝑦𝑦𝑡𝑡2 

𝑣𝑣𝑦𝑦 = 𝑣𝑣𝑦𝑦0 + 𝑎𝑎𝑦𝑦𝑡𝑡 
𝑣𝑣𝑦𝑦2 = 𝑣𝑣𝑦𝑦02 + 2𝑎𝑎𝑦𝑦∆𝑦𝑦 

 
Symbols and SI Units 

Symbol Name SI Units 

𝐸𝐸 electric field N/C or V/m 

𝐹𝐹𝑒𝑒 electric force N 

𝑚𝑚 mass kg 

𝑔𝑔 gravitational acceleration m/s2 

𝑎𝑎𝑦𝑦 𝑦𝑦-component of acceleration m/s2 

𝑣𝑣𝑦𝑦0 𝑦𝑦-component of initial velocity m/s 

𝑣𝑣𝑦𝑦 𝑦𝑦-component of final velocity m/s 

∆𝑦𝑦 𝑦𝑦-component of net displacement m 

𝑡𝑡 time s 

𝑑𝑑 separation between parallel plates m 

𝑉𝑉 electric potential V 

∆𝑉𝑉 potential difference V 

𝑃𝑃𝐸𝐸𝑒𝑒 electric potential energy J 

𝑊𝑊𝑒𝑒 electrical work J 

𝑞𝑞 charge C 
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Uniform Electric Field Strategy 

How you solve a problem involving a uniform electric field depends on the type of problem: 
• For a problem where a uniform electric field is created by two parallel plates, you 

may need to relate the magnitude of the electric field to the potential difference 
between the plates. 

𝐸𝐸 =
∆𝑉𝑉
𝑑𝑑

 

• If you need to work with acceleration (either because it’s given in the problem as a 
number or because the problems asks you to find it), ordinarily you will need to 
apply Newton’s second law at some stage of the solution.  We discussed Newton’s 
second law at length in Volume 1, but here are the essentials for applying Newton’s 
second law in the context of a uniform electric field: 

o First draw a free-body diagram (FBD) to show the forces acting on the 
charged object.  Label the electric force as 𝑞𝑞E�⃗  and draw it along the electric 
field lines if the charge is positive or opposite to the electric field lines if the 
charge is negative.  (If the electric field is created by two parallel plates, the 
electric field lines run from the positive plate to the negative plate.)  Unless 
gravity is negligible (which may be the case), label the weight of the object as 
𝑚𝑚g�⃗  and draw it toward the center of the planet (which is straight down in 
most diagrams). 

o Apply Newton’s second law by stating that the net force acting on the object 
equals the object’s mass times its acceleration. 

� F�⃗ = 𝑚𝑚a�⃗  
In most uniform electric field problems, this becomes ±|𝑞𝑞|𝐸𝐸 ± 𝑚𝑚𝑔𝑔 = 𝑚𝑚𝑎𝑎𝑦𝑦, 
where you have to determine the signs based on your FBD and choice of 
coordinates (that is, which way +𝑦𝑦 points). 

When working with acceleration, you may need additional equations: 
o If the object travels parallel to the electric field lines, you may use the 

equations of one-dimensional acceleration: 

∆𝑦𝑦 = 𝑣𝑣𝑦𝑦0𝑡𝑡 +
1
2
𝑎𝑎𝑦𝑦𝑡𝑡2     ,     𝑣𝑣𝑦𝑦 = 𝑣𝑣𝑦𝑦0 + 𝑎𝑎𝑦𝑦𝑡𝑡     ,     𝑣𝑣𝑦𝑦2 = 𝑣𝑣𝑦𝑦02 + 2𝑎𝑎𝑦𝑦∆𝑦𝑦 

o Otherwise, you need the equations of projectile motion (see Volume 1). 
• If you don’t know acceleration and aren’t looking for it, you probably need to use 

work or energy instead (for example, by applying conservation of energy). 
𝑊𝑊𝑒𝑒 = 𝑞𝑞∆𝑉𝑉 = −∆𝑃𝑃𝐸𝐸𝑒𝑒 

If a charged particle accelerates through a potential difference (and no other fields): 
o |𝑞𝑞|∆𝑉𝑉 = 1

2
𝑚𝑚(𝑣𝑣2 − 𝑣𝑣02) if it is gaining speed.  Note the absolute values. 

o |𝑞𝑞|∆𝑉𝑉 = 1
2
𝑚𝑚(𝑣𝑣02 − 𝑣𝑣2) if it is losing speed.  Note the absolute values. 
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Example:  As illustrated below, two large parallel charged plates are separated by a 
distance of 25 cm.  The potential difference between the plates is 110 V.  A tiny object with 
a charge of +500 µC and mass of 10 g begins from rest at the positive plate. 

 
(A) Determine the acceleration of the tiny charged object.
We will eventually need to know the magnitude of the electric field (𝐸𝐸).  We can get that 
from the potential difference ( ) and the separation between the plates ( ).  Convert  
from cm to m:  = 25 cm = 0.25 m.  Note that 1

0.2
= 4 (there are 4 quarters in a dollar). 

𝐸𝐸 = =
110
0.25

= (110)(4) = 440 N/C 

Draw a free-body diagram (FBD) for the tiny charged object. 
• The electric force (𝑞𝑞E) pulls straight down.  Since the charged object is positive, the 

electric force (𝑞𝑞E) is parallel to the electric field (E), and since the electric field lines 
travel from the positive plate to the negative plate, E points downward. 

• The weight (𝑚𝑚g) of the object pulls straight down. 
• We choose +𝑥𝑥 to point upward. 

 
Apply Newton’s second law to the tiny charged object.  Since we chose +𝑥𝑥 to point upward 
and since 𝑞𝑞E and 𝑚𝑚g both point downward, |𝑞𝑞|𝐸𝐸 and 𝑚𝑚  will both be negative in the sum. 

𝐹𝐹 = 𝑚𝑚𝑎𝑎  

−|𝑞𝑞|𝐸𝐸 −𝑚𝑚 = 𝑚𝑚𝑎𝑎  
Divide both sides of the equation by mass.  Convert the charge from µC to C and the mass 
from g to kg:  𝑞𝑞 = 500 µC = 5.00 × 10−4 C and 𝑚𝑚 = 10 g = 0.010 kg. 

𝑎𝑎 =
−|𝑞𝑞|𝐸𝐸 −𝑚𝑚

𝑚𝑚
=
−|5 × 10−4|(440) − (0.01)(9.81)

0.01
 

In this book, we will round gravity from 9.81 to 10 m/s2 in order to work without a 
calculator.  (This approximation is good to 19 parts in 1000.) 

𝑎𝑎 ≈
−|5 × 10−4|(440) − (0.01)(10)

0.01
=
−0.22 − 0.1

0.01
=
−0.32
0.01

= −32 m/s2 

The symbol ≈ means “is approximately equal to.”  The answer is 𝑎𝑎 ≈ −32 m/s2. 

+𝑥𝑥 

 

+ + + + + + + + + 
+ + + + + + + + + 

− − − − − − − − − 
− − − − − − − − − 

𝑚𝑚  
𝑞𝑞E 

+𝑥𝑥 
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(If you don’t round gravity, you get 𝑎𝑎𝑦𝑦 = −31.8 m/s2, which still equals −32 m/s2 to 2 
significant figures.) 
 
(B) How fast is the charged object moving just before it reaches the negative plate? 
Now that we know the acceleration, we can use the equations of one-dimensional uniform 
acceleration.  Begin by listing the knowns (out of ∆𝑦𝑦, 𝑣𝑣𝑦𝑦0, 𝑣𝑣𝑦𝑦, 𝑎𝑎𝑦𝑦, and 𝑡𝑡). 

• 𝑎𝑎𝑦𝑦 ≈ −32 m/s2.  We know this from part (A).  It’s negative because the object 
accelerates downward (and because we chose +𝑦𝑦 to point upward). 

• ∆𝑦𝑦 = −0.25 m.  The net displacement of the tiny charged object equals the 
separation between the plates.  It’s negative because it finishes below where it 
started (and because we chose +𝑦𝑦 to point upward). 

• 𝑣𝑣𝑦𝑦0 = 0.  The initial velocity is zero because it starts from rest. 
• We’re solving for the final velocity (𝑣𝑣𝑦𝑦). 

We know 𝑎𝑎𝑦𝑦, ∆𝑦𝑦, and 𝑣𝑣𝑦𝑦0.  We’re looking for 𝑣𝑣𝑦𝑦.  Choose the equation with these symbols. 
𝑣𝑣𝑦𝑦2 = 𝑣𝑣𝑦𝑦02 + 2𝑎𝑎𝑦𝑦∆𝑦𝑦 

𝑣𝑣𝑦𝑦2 = 02 + 2(−32)(−.25) = 16 
𝑣𝑣𝑦𝑦 = √16 = ±4 = −4.0 m/s 

We chose the negative root because the object is heading downward in the final position 
(and because we chose +𝑦𝑦 to point upward).  The object moves 4.0 m/s just before impact. 
 
Note:  We couldn’t use the equations from the bottom of page 95 in part (B) of the last 
example because there is a significant gravitational field in the problem.  That is, 
𝑚𝑚𝑔𝑔 = 0.1 N compared to |𝑞𝑞|𝐸𝐸 = 0.22 N.  Compare part (B) of the previous example with 
the next example, where we can use the equations from the bottom of page 95. 
 
Example:  A charged particle with a charge of +200 µC and a mass of 5.0 g accelerates from 
rest through a potential difference of 5000 V.  The effects of gravity are negligible during 
this motion compared to the effects of electricity.  What is the final speed of the particle? 
Since the only significant field is the electric field, we may use the equation from page 95.  
In this case, the particle is speeding up (it started from rest).  Convert the charge from µC to 
C and the mass from g to kg:  𝑞𝑞 = 200 µC = 2.00 × 10−4 C and 𝑚𝑚 = 5.0 g = 0.0050 kg. 

|𝑞𝑞|∆𝑉𝑉 =
1
2
𝑚𝑚(𝑣𝑣2 − 𝑣𝑣02) 

𝑣𝑣 = �2|𝑞𝑞|∆𝑉𝑉
𝑚𝑚

+ 𝑣𝑣02 = �2|2 × 10−4|(5000)
0.005

+ 02 = √400 = 20 m/s 

The final speed of the particle is 𝑣𝑣 = 20 m/s..  
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26.  As illustrated below, two large parallel charged plates are separated by a distance of 20
cm.  The potential difference between the plates is 120 V.  A tiny object with a charge of 
+1500 µC and mass of 18 g begins from rest at the positive plate. 

 
(A) Determine the acceleration of the tiny charged object.

(B) How fast is the charged object moving just before it reaches the negative plate?

Want help or intermediate answers?  Check the hints section at the back of the book. 
Answer:  40 m/s2, 4.0 m/s

+𝑥𝑥 

 

− − − − − − − − − 
− − − − − − − − − 

+ + + + + + + + + 
+ + + + + + + + + 
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9 EQUIVALENT CAPACITANCE 

Relevant Terminology 

Conductor – a material through which electrons are able to flow readily.  Metals tend to be 
good conductors of electricity. 
Capacitor – a device that can store charge, which consists of two separated conductors 
(such as two parallel conducting plates). 
Capacitance – a measure of how much charge a capacitor can store for a given voltage. 
Equivalent capacitance – a single capacitor that is equivalent (based on how much charge it 
can store for a given voltage) to a given configuration of capacitors. 
Charge – the amount of electric charge stored on the positive plate of a capacitor. 
Potential difference – the electric work per unit charge needed to move a test charge 
between two points in a circuit.  Potential difference is also called the voltage. 
Voltage – the same thing as potential difference.  However, the term “potential difference” 
better emphasizes what it means conceptually, whereas “voltage” only conveys the units. 
Electric potential energy – a measure of how much electrical work a capacitor could do 
based on the charge stored on its plates and the potential difference across its plates. 
DC – direct current.  The direction of the current doesn’t change in time. 
 
Equivalent Capacitance Equations 

The capacitance (𝐶𝐶) of a capacitor equals the ratio of the charge (𝑄𝑄) stored on the positive 
plate to the potential difference (∆𝑉𝑉) across the plates.  The same equation is written three 
ways below, depending upon what you need to solve for.  Tip:  𝑄𝑄 is never downstairs. 

𝐶𝐶 =
𝑄𝑄

∆𝑉𝑉
     ,     𝑄𝑄 = 𝐶𝐶∆𝑉𝑉     ,     ∆𝑉𝑉 =

𝑄𝑄
𝐶𝐶

 

The energy (𝑈𝑈) stored by a capacitor can be expressed three ways, depending upon what 
you know.  Plug 𝑄𝑄 = 𝐶𝐶∆𝑉𝑉 into the first equation to obtain the second equation, and plug 
∆𝑉𝑉 = 𝑄𝑄

𝐶𝐶
 into the first equation to obtain the third equation. 

𝑈𝑈 =
1
2

𝑄𝑄∆𝑉𝑉     ,     𝑈𝑈 =
1
2

𝐶𝐶∆𝑉𝑉2     ,     𝑈𝑈 =
𝑄𝑄2

2𝐶𝐶
 

For 𝑁𝑁 capacitors connected in series, the equivalent series capacitance is given by: 
1
𝐶𝐶𝑠𝑠

=
1
𝐶𝐶1

+
1

𝐶𝐶2
+ ⋯ +

1
𝐶𝐶𝑁𝑁

 

For 𝑁𝑁 capacitors connected in parallel, the equivalent parallel capacitance is given by: 
𝐶𝐶𝑝𝑝 = 𝐶𝐶1 + 𝐶𝐶2 + ⋯ + 𝐶𝐶𝑁𝑁 

Note that the formulas for capacitors in series and parallel are backwards compared to the 
formulas for resistors (Chapter 11).  
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Symbols and SI Units 

Symbol Name SI Units 

 capacitance F 

 the charge stored on the positive plate of a capacitor C 

 the potential difference between two points in a circuit V 

 the energy stored by a capacitor J 

Notes Regarding Units 

The SI unit of capacitance ( ) is the Farad (F).  From the equation = , the Farad (F) can 
be related to the Coulomb (C) and Volt (V):  1 F = 1 C/V.  The SI unit of energy ( ) is the 
Joule (J).  From the equation = 1

2
, we get:  1 J = 1 C·V (it’s times a Volt, not per Volt).

Note that the C’s don’t match.  The SI unit of capacitance ( ) is the Farad (F), whereas the 
SI unit of charge ( ) is the Coulomb (C). 
 
Schematic Symbols Used in Capacitor Circuits 

Schematic Representation Symbol Name 

 
 capacitor 

  battery or DC power supply 

Many textbooks draw a capacitor as  and a battery as .  One 
problem with this is that capacitors and batteries look alike with sloppy handwriting.  
We’re making one plate curve like a C (for capacitor) and making the short line a box for 
the battery so that students can tell them apart even if their drawing is a bit sloppy.  In our 
notation, the symbol  represents an ordinary capacitor (it does not represent 
a polarized or electrolytic capacitor in this book), and so it won’t matter which side has the 
line and which side has the C (since in actuality they could both be straight, parallel plates). 
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Essential Concepts 

The figures below show examples of what parallel (on the left) and series (on the right) 
combinations of capacitors look like.  Some students can apply this easily, while others 
struggle with this visual skill.  If you find yourself getting series and parallel wrong when 
you check your solutions, you need to make a concerted effort to memorize the following 
tips and study how to apply them.  Those who learn these tips well have a big advantage.

 
Tips 

• Two capacitors are in series if there exists at least one way to reach one capacitor 
from the other without crossing a junction.  (See below for an explanation of what a 
junction is.)  For series, it’s okay to cross other circuit elements (like a battery).  Ask 
yourself if it’s possible to reach one capacitor from the other without passing a 
junction.  If yes, they’re in series.  If no, they’re not in series.  (Just because they’re 
not in series doesn’t mean they will be in parallel.  They might not be in either.) 

• Two capacitors are in parallel if you can place two forefingers – one from each hand 
– across one capacitor and move both forefingers across another capacitor without 
crossing another circuit element (capacitor, battery, resistor, etc.)  For parallel, it’s 
okay to cross a junction.  You must be able to do this with both forefingers (just one 
is insufficient).  If you can do it with both fingers, the two capacitors are in parallel.  
If not, they aren’t in parallel.  (Just because they’re not in parallel doesn’t mean they 
will be in series.  They might not be in either series or parallel.) 

A junction is a place where two (or more) different wires join together, or a place where 
one wire branches off into two (or more) wires.  Imagine an electron traveling along the 
wire.  If you want to know if a particular point is a junction, ask yourself if the electron 
would have a choice of paths (to head in two different possible directions) when it reaches 
that point, or if it would be forced to continue along a single path.  If it has a choice, it’s a 
junction.  If it’s forced to keep going along a single path, it’s not a junction. 

 

  

  

1 

2 

    1 2 
parallel 

series 

junctions not junctions 

   
1 2 
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Following is an example of how to apply the rule for series.  In the left diagram below, 1
and 2 are in series because an electron could travel from 1 to 2 without crossing a 
junction.  In the right diagram below, none of the capacitors are in series because it would 
be impossible for an electron to travel from one capacitor to any other capacitor without 
crossing a junction.  See if you can find the two junctions in the right diagram below.  Note 
that 3 and 4 are in parallel.  Study the parallel rule from the previous page to see why. 

 
Following is an example of how to apply the rule for parallel.  In the left diagram below, 6
and  are in parallel because you can move both fingers from one capacitor (starting with 
one finger on each side) to the other capacitor without crossing other capacitors or 
batteries (it’s okay to cross junctions for the parallel rule).  In the right diagram below, 
none of the capacitors are in parallel because you can only get one finger from one 
capacitor to another (the other finger would have to cross a capacitor, which isn’t allowed).
Note that 9 and 10 are in series.  Study the series rule to see why. 

 
When analyzing a circuit, it’s important to be able to tell which quantities are the same in 
series or parallel: 

• Two capacitors in series always have the same charge ( ). 
• Two capacitors in parallel always have the same potential difference ( ). 

Metric Prefixes

Prefix Name Power of 10 

µ micro 10−6 

n nano 10−9 

p pico 10−12 

1 

series  
 

 series 

2 
  

 

3 

4 

  
 

 
 none in 

series 

  

  

 

9 10 

none in 
parallel 

 
10 

  

  

6 

 

parallel 
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Strategy for Analyzing Capacitor Circuits 

Most standard physics textbook problems involving circuits with capacitors can be solved 
following these steps:

1. Visually reduce the circuit one step at a time by identifying series and parallel 
combinations.  If you pick any two capacitors at random, you can’t force them to be 
in series or parallel (they might be neither).  Instead, you need to look at several 
different pairs until you find a pair that are definitely in series or parallel.  Apply the 
rules discussed on pages 101-102 to help identify series or parallel combinations. 

• If two (or more) capacitors are in series, you may remove all the capacitors 
that were in series and replace them with a new capacitor.  Keep the wire 
that connected the capacitors together when you redraw the circuit.  Give the 
new capacitor a unique name (like 1).  In the math, you will solve for 1
using the series formula. 

 

• If two (or more) capacitors are in parallel, when you redraw the circuit, keep 
one of the capacitors and its connecting wires, but remove the other 
capacitors that were in parallel with it and also remove their connecting 
wires.  Give the new capacitor a unique name (like 1).  In the math, you will 
solve for 1 using the parallel formula. 

 
2. Continue redrawing the circuit one step at a time by identifying series and parallel 

combinations until there is just one capacitor left in the circuit.  Label this capacitor 
the equivalent capacitance ( 𝑒𝑒𝑞𝑞). 

3. Compute each series and parallel capacitance by applying the formulas below. 
1

=
1
1

+
1
2

+ +
1

 

= 1 + 2 + +  

    1 2 
series 

  1 
replace with 

  

  

1 

2 

parallel 
1 

  

replace with 

which is the same as: 

  
1 
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4. Continue applying Step 3 until you solve for the last capacitance in the circuit, 𝐶𝐶𝑒𝑒𝑒𝑒. 
5. If a problem asks you to find charge, potential difference, or energy stored, begin 

working backwards through the circuit one step at a time, as follows: 
A. Start at the very last circuit, which has the equivalent capacitance (𝐶𝐶𝑒𝑒𝑒𝑒).  

Solve for the charge (𝑄𝑄𝑒𝑒𝑒𝑒) stored on the capacitor using the formula below, 
where ∆𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the potential difference of the battery or DC power supply. 

𝑄𝑄𝑒𝑒𝑒𝑒 = 𝐶𝐶𝑒𝑒𝑒𝑒∆𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
B. Go backwards one step in your diagrams:  Which diagram did the equivalent 

capacitance come from?  In that diagram, are the capacitors connected in 
series or parallel? 

• If they were in series, write a formula like 𝑄𝑄𝑒𝑒𝑒𝑒 = 𝑄𝑄𝑏𝑏 = 𝑄𝑄𝑏𝑏 (but use 
their labels from your diagram, which are probably not 𝑄𝑄𝑏𝑏 and 𝑄𝑄𝑏𝑏).  
Capacitors in series have the same charge. 

• If they were in parallel, write a formula like ∆𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ∆𝑉𝑉𝑏𝑏 = ∆𝑉𝑉𝑏𝑏 (but 
use their labels from your diagram, which are probably not ∆𝑉𝑉𝑏𝑏 and 
∆𝑉𝑉𝑏𝑏).  Capacitors in parallel have the same potential difference. 

C. In Step B, did you set charges or potential differences equal? 
• If you set charges equal (like 𝑄𝑄𝑒𝑒𝑒𝑒 = 𝑄𝑄𝑏𝑏 = 𝑄𝑄𝑏𝑏), find the potential 

difference of the desired capacitor, with a formula like ∆𝑉𝑉𝑏𝑏 = 𝑄𝑄𝑎𝑎
𝐶𝐶𝑎𝑎

. 

• If you set potential differences equal (like ∆𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ∆𝑉𝑉𝑏𝑏 = ∆𝑉𝑉𝑏𝑏), find 
the charge of the desired capacitor, with a formula like 𝑄𝑄𝑏𝑏 = 𝐶𝐶𝑏𝑏∆𝑉𝑉𝑏𝑏. 

D. Continue going backward one step at a time, applying Steps B and C above 
each time, until you solve for the desired unknown.  Note that the second 
time you go backwards, you won’t write 𝑄𝑄𝑒𝑒𝑒𝑒 or ∆𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, but will use the label 
for the appropriate charge or potential difference from your diagram.  (This 
is illustrated in the example that follows.) 

E. If a problem asks you to find the energy (𝑈𝑈) stored in a capacitor, first find 
the charge (𝑄𝑄) or potential difference (∆𝑉𝑉) for the specified capacitor by 
applying Steps A-D above, and then use one of the formulas below. 

𝑈𝑈 =
1
2

𝑄𝑄∆𝑉𝑉     ,     𝑈𝑈 =
1
2

𝐶𝐶∆𝑉𝑉2     ,     𝑈𝑈 =
𝑄𝑄2

2𝐶𝐶
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Example:  Consider the circuit shown below. 

 
(A) Determine the equivalent capacitance of the circuit.* 
Study the four capacitors in the diagram above.  Can you find two capacitors that are either 
in series or parallel?  There is only one pair to find presently:  The 4.0-µF and 12.0-µF
capacitors are in series because an electron could travel from one to the other without 
crossing a junction.  Redraw the circuit, replacing the 4.0-µF and 12.0-µF capacitors with a 
single capacitor called 1.  Also label the other circuit elements.  Calculate 1 using the 
formula for capacitors in series.  To add fractions, make a common denominator. 

1
1

=
1
4

+
1
12

=
1
4

+
1

12
=

3
12

+
1

12
=

3 + 1
12

=
4

12
=

1
3

 

1 = 3.0 µF 
(Note that 1 does not equal 4 plus 12.  Try it:  The correct answer is 3, not 16.)  Tip:  For 
series capacitors, remember to find the reciprocal at the end of the calculation.

 
Study the three capacitors in the diagram above.  Can you find two capacitors that are 
either in series or parallel?  There is only one pair to find presently:  1 and 9 are in 
parallel because both fingers can reach 1 from 9 (starting with one finger on each side of 

               
* That is, from one terminal of the battery to the other. 

  
3.0 V 

4.0 µF 12.0 µF 

9.0 µF 

24.0 µF 

A B   

   4.0 F
 

  

1 

9 

24 

A B  

  

𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 
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9) without crossing a battery or capacitor.  (Remember, it’s okay to cross junctions in 
parallel.  Note that 24 is not part of the parallel combination because one finger would 
have to cross the battery.)  Redraw the circuit, replacing 1 and 9 with a single capacitor 
called 1.  Calculate 1 using the formula for capacitors in parallel. 

1 = 1 + 9 = 3 + 9 = 12.0 µF 

 
There are just two capacitors in the diagram above.  Are they in series or parallel?  24 and 

1 are in series because it’s possible for an electron to travel from 24 to 1 without 
crossing a junction.  (They’re not in parallel because one finger would have to cross the 
battery.)  Redraw the circuit, replacing 24 and 1 with a single capacitor called 𝑒𝑒𝑞𝑞 (since 
this is the last capacitor remaining).  Calculate 𝑒𝑒𝑞𝑞 using the formula for capacitors in 
series.  Note that points A and B disappear in the following diagram:  Since point B lies 
between 24 and 1, it’s impossible to find this point on the next diagram.  (It’s also worth 
noting that, in the diagram above, points A and B are no longer junctions.  Study this.) 

1
𝑒𝑒𝑞𝑞

=
1
24

+
1
1

=
1

24
+

1
12

=
1

24
+

2
24

=
1 + 2

24
=

3
24

=
1
8

 

𝑒𝑒𝑞𝑞 = 8.0 µF 
The equivalent capacitance is 𝑒𝑒𝑞𝑞 = 8.0 µF. 

 
(B) What is the potential difference between points A and B? 
You can find points A and B on the original circuit and on all of the simplified circuits 
except for the very last one.  The way to find the potential difference ( ) between points 
A and B is to identify a single capacitor that lies between these two points in any of the 
diagrams.  Since 1 is a single capacitor lying between points A and B, = 1.  That 
is, we just need to find the potential difference across 1 in order to solve this part of the 
problem.  Note that 1 is less than 𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 (the potential difference of the battery).  The 

  

1 

24 

A B   

𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 

𝑒𝑒𝑞𝑞 
 

𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 
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potential difference supplied by the battery was given as ∆𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 3.0 V on the original 
circuit.  This is the work per unit charge needed to move a “test” charge from one terminal 
of the battery to the other.  It would take less work to go from point A to point B, so ∆𝑉𝑉𝐴𝐴𝐴𝐴 
(which equals ∆𝑉𝑉𝑝𝑝1) is less than 3.0 V.  You can see this in the second-to-last figure:  A 
positive “test” charge would do some work going across 𝐶𝐶𝑝𝑝1 to reach point B and then it 
would do more work going across 𝐶𝐶24 to reach the negative terminal of the battery:  
∆𝑉𝑉𝑝𝑝1 + ∆𝑉𝑉24 = 3.0 V.  We won’t need this equation in the math:  We’re just explaining why 
∆𝑉𝑉𝑝𝑝1 isn’t 3.0 V. 
 
We must work “backwards” through our simplified circuits, beginning with the circuit that 
just has 𝐶𝐶𝑒𝑒𝑒𝑒, in order to solve for potential difference (or charge or energy stored).  The 
math begins with the following equation, which applies to the last circuit. 

𝑄𝑄𝑒𝑒𝑒𝑒 = 𝐶𝐶𝑒𝑒𝑒𝑒∆𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = (8)(3) = 24.0 µC 
Note that 1 µF × V = 1 µC since 1 F × V = 1 C. 
 
Now we will go one step backwards from the simplest circuit (with just 𝐶𝐶𝑒𝑒𝑒𝑒) to the second-
to-last circuit (which has 𝐶𝐶24 and 𝐶𝐶𝑝𝑝1).  Are 𝐶𝐶24 and 𝐶𝐶𝑝𝑝1 in series or parallel?  We already 
answered this in part (A):  𝐶𝐶24 and 𝐶𝐶𝑝𝑝1 are in series.  What’s the same in series:  charge (𝑄𝑄) 
or potential difference (∆𝑉𝑉)?  Charge is the same in series.  Therefore, we set the charges of 
𝐶𝐶24 and 𝐶𝐶𝑝𝑝1 equal to one another and also set them equal to the charge of the capacitor that 
replaced them (𝐶𝐶𝑒𝑒𝑒𝑒).  This is expressed in the following equation.  This is Step 5B of the 
strategy (on pages 103-104). 

𝑄𝑄24 = 𝑄𝑄𝑝𝑝1 = 𝑄𝑄𝑒𝑒𝑒𝑒 = 24.0 µC 
According to Step 5C of the strategy, if we set the charges equal to one another, we must 
calculate potential difference.  Based on the question for part (B), do we need the potential 
difference across 𝐶𝐶24 or 𝐶𝐶𝑝𝑝1?  We need ∆𝑉𝑉𝑝𝑝1 since we already reasoned that ∆𝑉𝑉𝐴𝐴𝐴𝐴 = ∆𝑉𝑉𝑝𝑝1. 

∆𝑉𝑉𝑝𝑝1 =
𝑄𝑄𝑝𝑝1

𝐶𝐶𝑝𝑝1
=

24 µC
12 µF

= 2.0 V 

Note that all of the subscripts match in the above equation.  Note that the µ’s cancel.  Your 
solutions to circuit problems need to be well-organized so that you can easily find previous 
information.  In the above equation, you need to hunt for 𝑄𝑄𝑝𝑝1 and 𝐶𝐶𝑝𝑝1 in earlier parts of the 
solution to see that 𝑄𝑄𝑝𝑝1 = 24.0 µC and 𝐶𝐶𝑝𝑝1 = 12.0 µF.  The potential difference between 
points A and B is ∆𝑉𝑉𝐴𝐴𝐴𝐴 = 2.0 V since ∆𝑉𝑉𝐴𝐴𝐴𝐴 = ∆𝑉𝑉𝑝𝑝1. 
 
Does this seem like a long solution to you?  It’s actually very short:  If you look at the math, 
it really consists of only a few lines.  Most of the space was taken up by explanations to try 
to help you understand the process.  The next two parts of this example will try to help you 
further.  After you read the problem, draw the original diagram on a blank sheet of paper, 
and see if you can rework the solution on your own.  Reread this example if you get stuck. 
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(C) How much charge is stored by the 4.0-µF capacitor? 
We don’t need to start over:  Just continue working backwards from where we left off in 
part (B).  First, let’s see where we’re going.  Find the 4.0-µF capacitor on the original circuit 
and follow the path that it took as the circuit was simplified:  The 4.0-µF capacitor was part 
of the series that became 𝐶𝐶𝑠𝑠1, and 𝐶𝐶𝑠𝑠1 was part of the parallel combination that became 𝐶𝐶𝑝𝑝1.  
We found information about 𝐶𝐶𝑝𝑝1 in part (B):  𝑄𝑄𝑝𝑝1 = 24.0 µC and ∆𝑉𝑉𝑝𝑝1 = 2.0 V.  In part (C), 
we will begin from there. 
 
Note that 𝐶𝐶𝑝𝑝1 came about by connecting 𝐶𝐶9 and 𝐶𝐶𝑠𝑠1 in parallel.  What’s the same in parallel:  
charge (𝑄𝑄) or potential difference (∆𝑉𝑉)?  Potential difference is the same in parallel.  
Therefore, we set the potential differences of 𝐶𝐶9 and 𝐶𝐶𝑠𝑠1 equal to one another and also set 
them equal to the potential difference of the capacitor that replaced them (𝐶𝐶𝑝𝑝1).  This is 
expressed in the following equation.  This is Step 5B of the strategy (see page 104). 

∆𝑉𝑉9 = ∆𝑉𝑉𝑠𝑠1 = ∆𝑉𝑉𝑝𝑝1 = 2.0 V 
According to Step 5C of the strategy, if we set the potential differences equal to one 
another, we must calculate charge.  Based on the question for part (C), do we need the 
charge across 𝐶𝐶9 or 𝐶𝐶𝑠𝑠1?  We need 𝑄𝑄𝑠𝑠1 since the 4.0-µF capacitor is part of 𝐶𝐶𝑠𝑠1. 

𝑄𝑄𝑠𝑠1 = 𝐶𝐶𝑠𝑠1∆𝑉𝑉𝑠𝑠1 = (3)(2) = 6.0 µC 
You have to go all the way back to part (A) to find the value for 𝐶𝐶𝑠𝑠1, whereas ∆𝑉𝑉𝑠𝑠1 appears 
just one equation back. 
 
We’re not quite done yet:  We need to go one more step back to reach the 4.0-µF capacitor.  
Note that 𝐶𝐶𝑠𝑠1 came about by connecting 𝐶𝐶4 and 𝐶𝐶12 in series.  What’s the same in series:  
charge (𝑄𝑄) or potential difference (∆𝑉𝑉)?  Charge is the same in series.  Therefore, we set the 
charges of 𝐶𝐶4 and 𝐶𝐶12 equal to one another and also set them equal to the charge of the 
capacitor that replaced them (𝐶𝐶𝑠𝑠1).  This is expressed in the following equation. 

𝑄𝑄4 = 𝑄𝑄12 = 𝑄𝑄𝑠𝑠1 = 6.0 µC 
The charge stored by the 4.0-µF capacitor is 𝑄𝑄4 = 6.0 µC. 
 
(D) How much energy is stored by the 4.0-µF capacitor? 
Compare the questions for parts (C) and (D).  They’re almost identical, except that now 
we’re looking for energy (𝑈𝑈) instead of charge (𝑄𝑄).  In part (C), we found that 𝑄𝑄4 = 6.0 µC.  
Look at the three equations for the energy stored by a capacitor (Step 5E on page 104).  
Given 𝐶𝐶4 = 4.0 µF and 𝑄𝑄4 = 6.0 µC, choose the appropriate equation. 

𝑈𝑈4 =
𝑄𝑄4

2

2𝐶𝐶4
=

(6 µC)2

2(4 µF)
=

36
8

=
9
2

 µJ = 4.5 µJ 

Note that µ
2

µ
= µ.  The energy stored by the 4.0-µF capacitor is 𝑈𝑈4 = 4.5 µJ (microJoules). 

 
Note:  You can find another example of series and parallel in Chapter 11.  
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27.  Consider the circuit shown below. 
(A) Redraw the circuit step by step until only a single equivalent capacitor remains.  Label 
each reduced capacitor using a symbol with subscripts. 

Note:  You’re not finished yet.  This problem is continued on the next page.  

12.0 nF 

12 V 

6.0 nF 

5.0 nF

18.0 nF 24.0 nF 

24.0 nF

36.0 nF 
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(B) Determine the equivalent capacitance of the circuit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(C) Determine the charge stored on each 24.0-nF capacitor. 
 
 
 
 
 
 
 
 
 
 
(D) Determine the energy stored by the 18-nF capacitor. 
 
 
 
 
 
 

 
 
Want help?  Check the hints section at the back of the book. 

Answers:  12 nF, 96 nC, 64 nJ   
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28.  Consider the circuit shown below. 
(A) Redraw the circuit step by step until only a single equivalent capacitor remains.  Label 
each reduced capacitor using a symbol with subscripts. 

Note:  You’re not finished yet.  This problem is continued on the next page.  

4.0 V 

24.0 µF 

12.0 µF 

15.0 µF 5.0 µF 

18.0 µF 

36.0 µF 

A 

B 

6.0 µF 
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(B) Determine the equivalent capacitance of the circuit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(C) Determine the potential difference between points A and B. 
 
 
 
 
 
 
 
 
 
 
(D) Determine the energy stored on the 5.0-µF capacitor. 
 
 
 
 
 
 

 
 
Want help?  Check the hints section at the back of the book. 

Answers:  16 µF, 2.0 V, 10 µJ 
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10 PARALLEL-PLATE CAPACITORS 

Relevant Terminology 

Conductor – a material through which electrons are able to flow readily.  Metals tend to be 
good conductors of electricity. 
Capacitor – a device that can store charge, which consists of two separated conductors 
(such as two parallel conducting plates). 
Capacitance – a measure of how much charge a capacitor can store for a given voltage. 
Charge – the amount of electric charge stored on the positive plate of a capacitor. 
Potential difference – the electric work per unit charge needed to move a test charge 
between two points in a circuit.  Potential difference is also called the voltage. 
Electric potential energy – a measure of how much electrical work a capacitor could do 
based on the charge stored on its plates and the potential difference across its plates. 
Electric field – electric force per unit charge. 
Dielectric – a nonconducting material that can sustain an electric field.  The presence of a 
dielectric between the plates of a capacitor enhances its ability to store charge. 
Dielectric constant – the enhancement factor by which a capacitor can store more charge 
(for a given potential difference) by including a dielectric between its plates. 
Dielectric strength – the maximum electric field that a dielectric can sustain before it breaks 
down (at which point charge could transfer across the dielectric in the form of a spark). 
Permittivity – a measure of how a dielectric material affects an electric field. 
 
Capacitance Equations 

The following equation applies only to a parallel-plate capacitor.  Its capacitance (𝐶𝐶) is 
proportional to the dielectric constant (𝜅𝜅), permittivity of free space (𝜖𝜖0), and the area of 
one plate (𝐴𝐴), and is inversely proportional to the separation between the plates (𝑑𝑑). 

𝐶𝐶 =
𝜅𝜅𝜖𝜖0𝐴𝐴
𝑑𝑑

 

The dielectric strength (𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚) is the maximum electric field that a dielectric can sustain. 

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 =
∆𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑

 

The equations from Chapter 9 apply to all capacitors (not just parallel-plate capacitors): 

𝐶𝐶 =
𝑄𝑄
∆𝑉𝑉

     ,     𝑄𝑄 = 𝐶𝐶∆𝑉𝑉     ,     ∆𝑉𝑉 =
𝑄𝑄
𝐶𝐶

 

𝑈𝑈 =
1
2
𝑄𝑄∆𝑉𝑉     ,     𝑈𝑈 =

1
2
𝐶𝐶∆𝑉𝑉2     ,     𝑈𝑈 =

𝑄𝑄2

2𝐶𝐶
 

1
𝐶𝐶𝑠𝑠

=
1
𝐶𝐶1

+
1
𝐶𝐶2

+ ⋯+
1
𝐶𝐶𝑁𝑁

     ,     𝐶𝐶𝑝𝑝 = 𝐶𝐶1 + 𝐶𝐶2 + ⋯+ 𝐶𝐶𝑁𝑁 
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Symbols and SI Units 

Symbol Name SI Units 

𝐶𝐶 capacitance F 

𝜖𝜖0 permittivity of free space C2

N∙m2 or C2∙s2

kg∙m3 

𝜅𝜅 dielectric constant unitless 

𝐴𝐴 area of one plate m2 

𝑑𝑑 separation between the plates m 

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 dielectric strength N/C or V/m 

∆𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 maximum potential difference V 

𝑄𝑄 the charge stored on the positive plate of a capacitor C 

∆𝑉𝑉 the potential difference between two points in a circuit V 

𝑈𝑈 the energy stored by a capacitor J 

Note:  The symbol 𝜅𝜅 is the lowercase Greek letter kappa and 𝜖𝜖 is epsilon. 
 
Numerical Values 

Recall (from Chapter 6) that the permittivity of free space (𝜖𝜖0) is related to Coulomb’s 

constant (𝑘𝑘) via 𝜖𝜖0 = 1
4𝜋𝜋𝜋𝜋

.  Also recall that 𝑘𝑘 = 9.0 × 109  N∙m
2

C2  and 𝜖𝜖0 = 8.8 × 10−12  C2

N∙m2 ≈
10−9

36𝜋𝜋
 C2

N∙m2, where the value 10
−9

36𝜋𝜋
 C2

N∙m2 is friendlier if you don’t use a calculator. 
 
In order to solve some textbook problems, you need to look up values of the dielectric 
constant (𝜅𝜅) or dielectric strength (𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚) in a table (most textbooks include such a table). 
 
Important Distinctions 

Be careful not to confuse lowercase kay (𝑘𝑘) for Coulomb’s constant �𝑘𝑘 = 9.0 × 109  N∙m
2

C2 � 
with the Greek letter kappa (𝜅𝜅), which represents the dielectric constant.  You need to 
familiarize yourself with the equations enough to recognize which is which.  Also be careful 
not to confuse the permittivity (𝜖𝜖) with electric field (𝐸𝐸). 
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Parallel-plate Capacitor Strategy 

How you solve a problem involving a parallel-plate capacitor depends on which quantities 
you are trying to relate: 

1. Make a list of the symbols that you know (see the chart on page 114).  The units can 
help you figure out which symbols you know.  For a textbook problem, you may 
need to look up a value for the dielectric constant (𝜅𝜅) or dielectric strength (𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚).  

You should already know 𝑘𝑘 = 9.0 × 109  N∙m
2

C2  and 𝜖𝜖0 = 8.8 × 10−12  C2

N∙m2 ≈
10−9

36𝜋𝜋
 C2

N∙m2. 
2. Choose equations based on which symbols you know and which symbol you are 

trying to solve for: 
• The following equation applies only to parallel-plate capacitors: 

𝐶𝐶 =
𝜅𝜅𝜖𝜖0𝐴𝐴
𝑑𝑑

 

If the plates are circular, 𝐴𝐴 = 𝜋𝜋𝑎𝑎2.  If they are square, 𝐴𝐴 = 𝐿𝐿2.  If they are 
rectangular, 𝐴𝐴 = 𝐿𝐿𝐿𝐿. 

• The following equations apply to all capacitors: 

𝐶𝐶 =
𝑄𝑄
∆𝑉𝑉

     ,     𝑄𝑄 = 𝐶𝐶∆𝑉𝑉     ,     ∆𝑉𝑉 =
𝑄𝑄
𝐶𝐶

 

• The equation for dielectric strength is: 

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 =
∆𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑

 

• The energy stored in a capacitor can be expressed three different ways: 

𝑈𝑈 =
1
2
𝑄𝑄∆𝑉𝑉     ,     𝑈𝑈 =

1
2
𝐶𝐶∆𝑉𝑉2     ,     𝑈𝑈 =

𝑄𝑄2

2𝐶𝐶
 

3. Carry out any algebra needed to solve for the unknown. 
4. If any capacitors are connected in series or parallel, you will need to apply the 

strategy from Chapter 9. 
• The following diagram shows two dielectrics in series. 

 
• The following diagram shows two dielectrics in parallel. 

 
5. If there is a charged particle moving between the plates, see Chapter 8.  
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Example:  A parallel-plate capacitor has rectangular plates with a length of 25 mm and 
width of 50 mm.  The separation between the plates is of 5.0 mm.  A dielectric is inserted 
between the plates.  The dielectric constant is 72𝜋𝜋 and the dielectric strength is 3.0 × 106 V

m
. 

(A) Determine the capacitance. 
Make a list of the known quantities and identify the desired unknown symbol: 

• The capacitor plates have a length 𝐿𝐿 = 25 mm and width 𝐿𝐿 = 50 mm. 
• The separation between the plates is 𝑑𝑑 = 5.0 mm. 
• The dielectric constant is 𝜅𝜅 = 72𝜋𝜋 and the dielectric strength is 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = 3.0 × 106 V

m
. 

• We also know 𝜖𝜖0 = 8.8 × 10−12  C2

N∙m2, which we will approximate as 𝜖𝜖0 ≈
10−9

36𝜋𝜋
 C2

N∙m2. 

• The unknown we are looking for is capacitance (𝐶𝐶). 
The equation for the capacitance of a parallel-plate capacitor involves area, so we need to 
find area first.  Before we do that, let’s convert the length, width, and separation to SI units. 

𝐿𝐿 = 25 mm = 0.025 m =
1

40
 m     ,     𝐿𝐿 = 50 mm = 0.050 m =

1
20

 m 

𝑑𝑑 = 5.0 mm = 0.0050 m =
1

200
 m 

We converted to fractions, but you may work through the math with decimals if you prefer.  
Decimals are more calculator friendly, whereas fractions are sometimes simpler for 
working by hand (for example, fractions sometimes make it easier to spot cancellations).  
The area of a rectangular plate is: 

𝐴𝐴 = 𝐿𝐿𝐿𝐿 = �
1

40
� �

1
20
� =

1
800

 m2 = 0.00125 m2 

Now we are ready to use the equation for capacitance.  To divide by a fraction, multiply by 
its reciprocal.  Note that the reciprocal of 1

200
 is 200. 

𝐶𝐶 =
𝜅𝜅𝜖𝜖0𝐴𝐴
𝑑𝑑

=
(72𝜋𝜋) �10−9

36𝜋𝜋 � �
1

800�

� 1
200�

= (72𝜋𝜋)�
10−9

36𝜋𝜋
��

1
800

� (200) = �
72𝜋𝜋
36𝜋𝜋

� (10−9) �
200
800

 � 

𝐶𝐶 = (2)(10−9) �
1
4
� =

1
2

× 10−9 F =
1
2

 nF = 0.50 nF 

(B) What is the maximum charge that this capacitor can store on its plates? 
The key to this solution is to note the word “maximum.”  Let’s find the maximum potential 
difference (∆𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚) across the plates.  

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 =
∆𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑

     ⇒      ∆𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑 = (3 × 106) �
1

200
� = 15,000 V 

For any capacitor, 𝑄𝑄 = 𝐶𝐶∆𝑉𝑉.  Therefore, the maximum charge is: 

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐶𝐶∆𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = �
1
2

× 10−9� (15,000) = 7.5 × 10−6 C = 7.5 µC 
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Where Does the Parallel-Plate Capacitor Formula Come From? 

Consider a parallel-plate capacitor with vacuum* or air between its plates. 

 
It’s common for the distance between the plates ( ) to be small compared to the length and 
width of the plates, in which case we may approximate the parallel-plate capacitor as 
consisting of two infinite charged planes.  We found the electric field between two infinitely 
large, parallel, oppositely charged plates in Problem 23 of Chapter 6.  Applying Gauss’s law, 
the electric field in the region between the plates is 𝐸𝐸 = .  (See Chapter 6, Problem 23, 

and the hints to that problem.)  Combine this equation for electric field with the equation 
𝐸𝐸 = , which can be expressed as = 𝐸𝐸 , for a parallel-plate capacitor. 

= 𝐸𝐸 =
0

 

Substitute this expression into the general equation for capacitance.  To divide by a 
fraction, multiply by its reciprocal.  Note that the reciprocal of  is . 

= =

0

= 0 = 0  

Recall from Chapter 6 that surface charge density ( ) is related to charge ( ) by = .  
Substitute this expression into the previous equation for capacitance. 

= 0 = 0( )
= 0  

               
* For vacuum = 1, and for air ≈ 1, such that we won’t need to worry about the dielectric constant.  (If 
there is a dielectric, it simply introduces a factor of  into the final expression.) 

𝑥𝑥

 

𝑥𝑥 
(out) 

I  
< 0 III  

>  

(out) II  
0 < <  

+  −  
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29.  A parallel-plate capacitor has circular plates with a radius of 30 mm.  The separation 
between the plates is of 2.0 mm.  A dielectric is inserted between the plates.  The dielectric 
constant is 8.0 and the dielectric strength is 6.0 × 106 V

m
. 

 
(A) Determine the capacitance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(B) What is the maximum charge that this capacitor can store on its plates? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answers:  0.10 nF, 1.2 µC 
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11 EQUIVALENT RESISTANCE 

Relevant Terminology 

Conductor – a material through which electrons are able to flow readily.  Metals tend to be 
good conductors of electricity. 
Resistance – a measure of how well a component in a circuit resists the flow of current. 
Resistor – a component in a circuit which has a significant amount of resistance. 
Equivalent resistance – a single resistor that is equivalent (based on how much current it 
draws for a given voltage) to a given configuration of resistors. 
Current – the instantaneous rate of flow of charge through a wire. 
Potential difference – the electric work per unit charge needed to move a test charge 
between two points in a circuit.  Potential difference is also called the voltage. 
Electric power – the instantaneous rate at which electrical work is done. 
DC – direct current.  The direction of the current doesn’t change in time. 
 
Equivalent Resistance Equations 

According to Ohm’s law, the potential difference (∆𝑉𝑉) across a resistor is directly 
proportion to the current (𝐼𝐼) through the resistor by a factor of its resistance (𝑅𝑅).  The same 
equation is written three ways below, depending upon what you need to solve for. 

∆𝑉𝑉 = 𝐼𝐼𝑅𝑅     ,     𝐼𝐼 =
∆𝑉𝑉
𝑅𝑅

     ,     𝑅𝑅 =
∆𝑉𝑉
𝐼𝐼

 

The power (𝑃𝑃) dissipated in a resistor can be expressed three ways, depending upon what 
you know.  Plug ∆𝑉𝑉 = 𝐼𝐼𝑅𝑅 into the first equation to obtain the second equation, and plug 
𝐼𝐼 = ∆𝑉𝑉

𝑅𝑅
 into the first equation to obtain the third equation. 

𝑃𝑃 = 𝐼𝐼∆𝑉𝑉     ,     𝑃𝑃 = 𝐼𝐼2𝑅𝑅     ,     𝑃𝑃 =
∆𝑉𝑉2

𝑅𝑅
 

For 𝑁𝑁 resistors connected in series, the equivalent series resistance is given by: 
𝑅𝑅𝑠𝑠 = 𝑅𝑅1 + 𝑅𝑅2 + ⋯+ 𝑅𝑅𝑁𝑁 

For 𝑁𝑁 resistors connected in parallel, the equivalent parallel resistance is given by: 
1
𝑅𝑅𝑝𝑝

=
1
𝑅𝑅1

+
1
𝑅𝑅2

+ ⋯+
1
𝑅𝑅𝑁𝑁

 

Note that the formulas for resistors in series and parallel are backwards compared to the 
formulas for capacitors (Chapter 9).  You can get a feeling for why that is by comparing 
Ohm’s law (∆𝑉𝑉 = 𝐼𝐼𝑅𝑅) to the equation for capacitance with ∆𝑉𝑉 solved for �∆𝑉𝑉 = 𝑄𝑄

𝐶𝐶
�.  Since 

current (𝐼𝐼) is the instantaneous rate of flow of charge (𝑄𝑄), the structural difference 
between the equations for resistance and capacitance is that ∆𝑉𝑉 is directly proportional to 
𝑅𝑅, but inversely proportional to 𝐶𝐶.  
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Symbols and SI Units 

Symbol Name SI Units 

𝑅𝑅 resistance  

 electric current A 

 the potential difference between two points in a circuit V 

 electric power W 

Notes Regarding Units 

The SI unit of current ( ) is the Ampère (A) and the SI unit of resistance (𝑅𝑅) is the Ohm ( ).  
From the equation 𝑅𝑅 = , the Ohm ( ) can be related to the Ampère (A) and Volt (V):
1  = 1 V/A.  The SI unit of power ( ) is the Watt (W).  From the equation = , we get:  
1 W = 1 A·V (it’s an Ampère times a Volt, not per Volt). 

Schematic Symbols Used in Resistor Circuits 

Schematic Representation Symbol Name 

 𝑅𝑅 resistor 

  battery or DC power supply 

 
measures 

 
voltmeter 

 
measures 

 
ammeter 

 

 

V 

A 
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Essential Concepts 

The figures below show examples of what parallel (on the left) and series (on the right) 
combinations of resistors look like.  Recall that we discussed how to determine whether or 
not two circuit elements are in series or parallel in Chapter 9.  It may help to review 
Chapter 9 before proceeding. 

 
A voltmeter is a device that measures potential difference.  A voltmeter has a very large 
internal resistance and is connected in parallel with a circuit element (left diagram below).  
A voltmeter has a large internal resistance so that it draws only a negligible amount of 
current. 

 
An ammeter is a device that measures current.  An ammeter has a very small internal 
resistance and is connected in series with a circuit element (right diagram above).  When a 
student accidentally connects an ammeter in parallel with a resistor, the ammeter draws a 
tremendous amount of current (a greater proportion of electrons take the path of less 
resistance, and since an ammeter has very little internal resistance most of the electrons 
travel through the ammeter if it’s connected in parallel with a resistor), which blows the
ammeter’s fuse.  Thus, students must be careful to connect an ammeter in series with a 
circuit element so that the current must go through a resistance in addition to the ammeter.  
The reason that an ammeter has very little resistance is so that it will have very little 
influence on the current that it measures. 

Metric Prefix 

Prefix Name Power of 10 

k kilo 103 

𝑅𝑅1 𝑅𝑅2 
series 

𝑅𝑅1 

𝑅𝑅2 

parallel 

𝑅𝑅 

𝑅𝑅 

V 

A 
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Strategy for Analyzing Resistor Circuits 

If a resistor circuit has just one battery and if it can be solved via series and parallel 
combinations, follow these steps (if a circuit has two or more batteries, see Chapter 13): 

1. Is there a voltmeter or ammeter in the circuit?  If so, redraw the circuit as follows: 
• Remove the voltmeter and also remove its connecting wires. 
• Remove the ammeter, patching it up with a line (see below). 

 
2. Visually reduce the circuit one step at a time by identifying series and parallel 

combinations.  If you pick any two resistors at random, you can’t force them to be in 
series or parallel (they might be neither).  Instead, you need to look at several 
different pairs until you find a pair that are definitely in series or parallel.  Apply the 
rules discussed on pages 101-102 to help identify series or parallel combinations. 

• If two (or more) resistors are in series, you may remove all the resistors that 
were in series and replace them with a new resistor.  Keep the wire that
connected the resistors together when you redraw the circuit.  Give the new 
resistor a unique name (like 𝑅𝑅 1).  In the math, you will solve for 𝑅𝑅 1 using 
the series formula. 

 

• If two (or more) resistors are in parallel, when you redraw the circuit, keep 
one of the resistors and its connecting wires, but remove the other resistors 
that were in parallel with it and also remove their connecting wires.  Give the 
new resistor a unique name (like 𝑅𝑅 1).  In the math, you will solve for 𝑅𝑅 1

using the parallel formula. 

 
3. Continue redrawing the circuit one step at a time by identifying series and parallel 

combinations until there is just one resistor left in the circuit.  Label this resistor the 
equivalent resistance (𝑅𝑅𝑒𝑒𝑞𝑞).

A 

𝑅𝑅1 𝑅𝑅2
series replace with 

𝑅𝑅 1

𝑅𝑅1 

𝑅𝑅2 

parallel 

𝑅𝑅 1 

replace with 

which is the same as: 
𝑅𝑅 1 
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4. Compute each series and parallel resistance by applying the formulas below. 
𝑅𝑅𝑠𝑠 = 𝑅𝑅1 + 𝑅𝑅2 + ⋯+ 𝑅𝑅𝑁𝑁 
1
𝑅𝑅𝑝𝑝

=
1
𝑅𝑅1

+
1
𝑅𝑅2

+ ⋯+
1
𝑅𝑅𝑁𝑁

 

5. Continue applying Step 4 until you solve for the last resistance in the circuit, 𝑅𝑅𝑒𝑒𝑒𝑒. 
6. If a problem asks you to find current, potential difference, or power, begin working 

backwards through the circuit one step at a time, as follows: 
A. Start at the very last circuit, which has the equivalent resistance (𝑅𝑅𝑒𝑒𝑒𝑒).  Solve 

for the current (𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) which passes through both the battery and the 
equivalent resistance using the formula below, where ∆𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the potential 
difference of the battery or DC power supply. 

𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
∆𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑅𝑅𝑒𝑒𝑒𝑒

 

B. Go backwards one step in your diagrams:  Which diagram did the equivalent 
resistance come from?  In that diagram, are the resistors connected in series 
or parallel? 

• If they were in series, write a formula like 𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐼𝐼𝑏𝑏 = 𝐼𝐼𝑏𝑏 (but use 
their labels from your diagram, which are probably not 𝐼𝐼𝑏𝑏 and 𝐼𝐼𝑏𝑏).  
Resistors in series have the same current. 

• If they were in parallel, write a formula like ∆𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ∆𝑉𝑉𝑏𝑏 = ∆𝑉𝑉𝑏𝑏 (but 
use their labels from your diagram, which are probably not ∆𝑉𝑉𝑏𝑏 and 
∆𝑉𝑉𝑏𝑏).  Resistors in parallel have the same potential difference. 

C. In Step B, did you set currents or potential differences equal? 
• If you set currents equal (like 𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐼𝐼𝑏𝑏 = 𝐼𝐼𝑏𝑏), find the potential 

difference of the desired resistor, with a formula like ∆𝑉𝑉𝑏𝑏 = 𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏. 
• If you set potential differences equal (like ∆𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ∆𝑉𝑉𝑏𝑏 = ∆𝑉𝑉𝑏𝑏), find 

the current of the desired resistor, with a formula like 𝐼𝐼𝑏𝑏 = ∆𝑉𝑉𝑎𝑎
𝑅𝑅𝑎𝑎

. 

D. Continue going backward one step at a time, applying Steps B and C above 
each time, until you solve for the desired unknown.  Note that the second 
time you go backwards, you won’t write 𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 or ∆𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, but will use the label 
for the appropriate current or potential difference from your diagram.  (This 
is illustrated in the example that follows.) 

E. If a problem asks you to find the power (𝑃𝑃) dissipated in a resistor, first find 
the current (𝐼𝐼) or potential difference (∆𝑉𝑉) for the specified resistor by 
applying Steps A-D above, and then use one of the formulas below. 

𝑃𝑃 = 𝐼𝐼∆𝑉𝑉     ,     𝑃𝑃 = 𝐼𝐼2𝑅𝑅     ,     𝑃𝑃 =
∆𝑉𝑉2

𝑅𝑅
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Example:  Consider the circuit shown below. 

 
(A) Determine the equivalent resistance of the circuit.* 
The first step is to redraw the circuit, treating the meters as follows: 

• Remove the voltmeter and also remove its connecting wires. 
• Remove the ammeter, patching it up with a line. 

 
Study the eight resistors in the diagram above.  Can you find two resistors that are either in 
series or parallel?  There are two combinations to find.  See if you can find them. 

• 𝑅𝑅 , 𝑅𝑅1, 𝑅𝑅11, 𝑅𝑅6, and 𝑅𝑅  are all in series because an electron could travel through all 
five resistors without crossing a junction.  When we redraw the circuit, we will 
replace these five resistors with a single resistor called 𝑅𝑅 1.  Calculate 𝑅𝑅 1 using the 
formula for resistors in series. 

𝑅𝑅 1 = 𝑅𝑅 + 𝑅𝑅1 + 𝑅𝑅11 + 𝑅𝑅6 + 𝑅𝑅 = 5 + 1 + 11 + 6 + 7 = 30  
• The two 8.0-  resistors are in parallel.  You can see this using the “finger” rule from 

Chapter 9 (page 101):  If you put both forefingers across one 𝑅𝑅 , you can get both 
forefingers across the other 𝑅𝑅  without crossing other circuit elements (like a 
battery or resistor).  (Remember, it’s okay to cross a junction in parallel.  Note that 
𝑅𝑅2 is not part of the parallel combination because one finger would have to cross the 
battery.)  When we redraw the circuit, we will replace these two resistors with a 
single resistor called 𝑅𝑅 1. Calculate 𝑅𝑅 1 using the formula for resistors in parallel. 

1
𝑅𝑅 1

=
1
𝑅𝑅

+
1
𝑅𝑅

=
1
8

+
1
8

=
1 + 1

8
=

2
8

=
1
4

 

𝑅𝑅 1 = 4.0  

               
* That is, from one terminal of the battery to the other. 

5.0  
A 

V 

1.0  

11.0  8.0  

7.0  

120 V 

2.0  6.0  

𝑅𝑅  
 

𝑅𝑅1 

𝑅𝑅11 𝑅𝑅  

𝑅𝑅  

𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 

𝑅𝑅2 𝑅𝑅6 
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Study the three resistors in the diagram above.  Can you find two resistors that are either in 
series or parallel?  There is only one pair to find presently:  𝑅𝑅 1 and 𝑅𝑅2 are in series because
an electron could travel from one to the other without crossing a junction.  Redraw the 
circuit, replacing 𝑅𝑅 1 and 𝑅𝑅2 with a single resistor called 𝑅𝑅 2.  Calculate 𝑅𝑅 2 using the 
formula for resistors in series. 

𝑅𝑅 2 = 𝑅𝑅 1 + 𝑅𝑅2 = 4 + 2 = 6.0  

 
There are just two resistors in the diagram above.  Are they in series or parallel?  𝑅𝑅 2 and 
𝑅𝑅 1 are in parallel (use both forefingers to verify this).  Redraw the circuit, replacing 𝑅𝑅 2
and 𝑅𝑅 1 with a single resistor called 𝑅𝑅𝑒𝑒𝑞𝑞 (since this is the last resistor remaining).  Calculate 
𝑅𝑅𝑒𝑒𝑞𝑞 using the formula for resistors in parallel.  Add fractions with a common denominator. 

1
𝑅𝑅𝑒𝑒𝑞𝑞

=
1
𝑅𝑅 2

+
1
𝑅𝑅 1

=
1
6

+
1

30
=

5
30

+
1

30
=

1 + 5
30

=
6

30
=

1
5

 

𝑅𝑅𝑒𝑒𝑞𝑞 = 5.0  
The equivalent resistance is 𝑅𝑅𝑒𝑒𝑞𝑞 = 4.0 .  Tip:  For parallel resistors, remember to find the 
reciprocal at the end of the calculation. 

 
(B) What numerical value with units does the ammeter read? 
An ammeter measures current.  Find the ammeter in the original circuit:  The ammeter is 
connected in series with the 8.0- resistor.  We need to find the current through the 8.0-
resistor.  We must work “backwards” through our simplified circuits, beginning with the 
circuit that just has 𝑅𝑅𝑒𝑒𝑞𝑞, in order to solve for current (or potential difference or power).  
The math begins with the following equation, which applies to the last circuit. 

𝑅𝑅 1 𝑅𝑅 1 
𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 

𝑅𝑅2 

𝑅𝑅 1 𝑅𝑅 2 
𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 

𝑅𝑅𝑒𝑒𝑞𝑞 
𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 
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𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
∆𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑅𝑅𝑒𝑒𝑒𝑒

=
120

5
= 24 A 

Now we will go one step backwards from the simplest circuit (with just 𝑅𝑅𝑒𝑒𝑒𝑒) to the second-
to-last circuit (which has 𝑅𝑅𝑠𝑠2 and 𝑅𝑅𝑠𝑠1).  Are 𝑅𝑅𝑠𝑠2 and 𝑅𝑅𝑠𝑠1 in series or parallel?  We already 
answered this in part (A):  𝑅𝑅𝑠𝑠2 and 𝑅𝑅𝑠𝑠1 are in parallel.  What’s the same in parallel:  current 
(𝐼𝐼) or potential difference (∆𝑉𝑉)?  Potential difference is the same in parallel.  Therefore, we 
set the potential differences of 𝑅𝑅𝑠𝑠2 and 𝑅𝑅𝑠𝑠1 equal to one another and also set them equal to 
the potential difference of the resistor that replaced them (𝑅𝑅𝑒𝑒𝑒𝑒).  This is expressed in the 
following equation.  This is Step 6B of the strategy.  Note that the potential difference 
across 𝑅𝑅𝑒𝑒𝑒𝑒 is ∆𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. 

∆𝑉𝑉𝑠𝑠2 = ∆𝑉𝑉𝑠𝑠1 = ∆𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 120 V 
According to Step 6C of the strategy, if we set the potential differences equal to one 
another, we must calculate current.  Based on the question for part (B), do we need the 
current through 𝑅𝑅𝑠𝑠2 or 𝑅𝑅𝑠𝑠1?  We need 𝐼𝐼𝑠𝑠2 since the ammeter is part of 𝑅𝑅𝑠𝑠2. 

𝐼𝐼𝑠𝑠2 =
∆𝑉𝑉𝑠𝑠2
𝑅𝑅𝑠𝑠2

=
120

6
= 20 A 

You have to go all the way back to part (A) to find the value for 𝑅𝑅𝑠𝑠2, whereas ∆𝑉𝑉𝑠𝑠2 appears 
just one equation back.  Note that all of the subscripts match in the above equation. 
 
We haven’t reached the ammeter yet, so we must go back (at least) one more step.  𝑅𝑅𝑠𝑠2 
replaced 𝑅𝑅𝑝𝑝1 and 𝑅𝑅2.  Are 𝑅𝑅𝑝𝑝1 and 𝑅𝑅2 in series or parallel?  They are in series.  What’s the 
same in series:  current (𝐼𝐼) or potential difference (∆𝑉𝑉)?  Current is the same in series.  
Therefore, we set the currents through 𝑅𝑅𝑝𝑝1 and 𝑅𝑅2 equal to one another and also set them 
equal to the current of the resistor that replaced them (𝑅𝑅𝑠𝑠2).  This is expressed in the 
following equation.  This is Step 6B of the strategy (again). 

𝐼𝐼𝑝𝑝1 = 𝐼𝐼2 = 𝐼𝐼𝑠𝑠2 = 20 A 
According to Step 6C of the strategy, if we set the currents equal to one another, we must 
calculate potential difference.  Based on the question for part (B), do we need the potential 
difference across 𝑅𝑅𝑝𝑝1 or 𝑅𝑅2?  We need ∆𝑉𝑉𝑝𝑝1 since the ammeter is part of 𝑅𝑅𝑝𝑝1. 

∆𝑉𝑉𝑝𝑝1 = 𝐼𝐼𝑝𝑝1𝑅𝑅𝑝𝑝1 = (20)(4) = 80 V 
 
We must go back (at least) one more step because we still haven’t reached the ammeter.  
𝑅𝑅𝑝𝑝1 replaced the two 𝑅𝑅8’s.  Are the two 𝑅𝑅8’s in series or parallel?  They are in parallel.  
What’s the same in parallel:  current (𝐼𝐼) or potential difference (∆𝑉𝑉)?  Potential difference is 
the same in parallel.  Therefore, we set the potential differences of the two 𝑅𝑅8’s equal to one 
another and also set them equal to the potential difference of the resistor that replaced 
them (𝑅𝑅𝑝𝑝1).  This is expressed in the following equation.  This is Step 6B of the strategy. 

∆𝑉𝑉8 = ∆𝑉𝑉8 = ∆𝑉𝑉𝑝𝑝1 = 80 V 
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According to Step 6C of the strategy, if we set the potential differences equal to one 
another, we must calculate current.  The current through each 𝑅𝑅8 will be the same: 

𝐼𝐼8 =
∆𝑉𝑉8
𝑅𝑅8

=
80
8

= 10 A 

The ammeter reading is 𝐼𝐼𝐴𝐴 = 𝐼𝐼8 = 10 A. 
 
(C) What numerical value with units does the voltmeter read? 
A voltmeter measures potential difference.  Find the voltmeter in the original circuit:  The 
voltmeter is connected across the 1.0-Ω, 11.0-Ω, and 6.0-Ω resistors.  We need to find the 
potential difference across these resistors, working backwards.  We don’t need to start 
over:  Just continue working backwards from where we left off in part (B). 
 
We found information about 𝑅𝑅𝑠𝑠1 in part (B):  ∆𝑉𝑉𝑠𝑠1 = ∆𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 120 V.  In part (C), we will 
begin from there.  Since we already know the potential difference across 𝑅𝑅𝑠𝑠1, we’ll calculate 
the current through 𝑅𝑅𝑠𝑠1. 

𝐼𝐼𝑠𝑠1 =
∆𝑉𝑉𝑠𝑠1
𝑅𝑅𝑠𝑠1

=
120
30

= 4.0 A 

𝑅𝑅𝑠𝑠1 replaced 𝑅𝑅5, 𝑅𝑅1, 𝑅𝑅11, 𝑅𝑅6, and 𝑅𝑅7.  Are these five resistors in series or parallel?  They are 
in series.  What’s the same in series:  current (𝐼𝐼) or potential difference (∆𝑉𝑉)?  Current is 
the same in series.  Therefore, we set the currents through these five resistors equal to one 
another and also set them equal to the current of the resistor that replaced them (𝑅𝑅𝑠𝑠1).  
This is expressed in the following equation.  This is Step 6B of the strategy. 

𝐼𝐼5 = 𝐼𝐼1 = 𝐼𝐼11 = 𝐼𝐼6 = 𝐼𝐼7 = 𝐼𝐼𝑠𝑠1 = 4.0 A 
According to Step 6C of the strategy, if we set the currents equal to one another, we must 
calculate potential difference.  Based on the question for part (B), which resistor(s) do we 
need the potential difference across?  We need ∆𝑉𝑉1, ∆𝑉𝑉11, and ∆𝑉𝑉6 since the voltmeter is 
connected across those three resistors. 

∆𝑉𝑉1 = 𝐼𝐼1𝑅𝑅1 = (4)(1) = 4 V 
∆𝑉𝑉11 = 𝐼𝐼11𝑅𝑅11 = (4)(11) = 44 V 
∆𝑉𝑉6 = 𝐼𝐼6𝑅𝑅6 = (4)(6) = 24 V 

Since the same current passes through all three of these resistors, we add the ∆𝑉𝑉’s together 
to see what the voltmeter reads (Chapter 13 will show how to do this more properly). 

∆𝑉𝑉𝑉𝑉 = ∆𝑉𝑉1 + ∆𝑉𝑉11 + ∆𝑉𝑉6 = 4 + 44 + 24 = 72 V 
The voltmeter reading is ∆𝑉𝑉𝑉𝑉 = 72 V. 
 
(D) How much power is dissipated in the 5.0-Ω resistor? 
We found the current through 𝑅𝑅5 in part (C):  𝐼𝐼5 = 4.0 A.  Choose the appropriate equation. 

𝑃𝑃5 = 𝐼𝐼52𝑅𝑅5 = (4)2(5) = (16)(5) = 80 W 
The power dissipated in the 5.0-Ω resistor is 𝑃𝑃5 = 80 W.  (Note that 𝐼𝐼5 is squared in the 
equation above.)  

www.engineersreferencebookspdf.com



Chapter 11 – Equivalent Resistance 

128 
 

30.  Consider the circuit shown below. 
(A) Redraw the circuit step by step until only a single equivalent resistor remains.  Label 
each reduced resistor using a symbol with subscripts. 

Note:  You’re not finished yet.  This problem is continued on the next page.

240 V 54.0  

4.0  15.0  9.0  

15.0  18.0  12.0  
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(B) Determine the equivalent resistance of the circuit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(C) Determine the power dissipated in either 15-Ω resistor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Want help?  Check the hints section at the back of the book. 

Answers:  12 Ω, 375 W  
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31.  Consider the circuit shown below. 
(A) Redraw the circuit step by step until only a single equivalent resistor remains.  Label 
each reduced resistor using a symbol with subscripts. 

Note:  You’re not finished yet.  This problem is continued on the next page.  

240 V 

16  

A 

V 

32  

24 

12  

24  

12  

4.0  4.0  
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(B) Determine the equivalent resistance of the circuit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(C) What numerical value with units does the ammeter read? 
 
 
 
 
 
 
 
 
 
 
(D) What numerical value with units does the voltmeter read? 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answers:  16 Ω, 20
3

 A, 160 V  
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32.  Determine the equivalent resistance of the circuit shown below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Want help?  Check the hints section at the back of the book. 
Answer:  8.0  

9.0  

4.0  

4.0  

6.0  

6.0  

9.0  

3.0  

4.0  

6.0  

480 V 
12.0  

9.0  3.0  
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12 CIRCUITS WITH SYMMETRY 

Relevant Terminology 

Conductor – a material through which electrons are able to flow readily.  Metals tend to be 
good conductors of electricity. 
Resistance – a measure of how well a component in a circuit resists the flow of current. 
Resistor – a component in a circuit which has a significant amount of resistance. 
Equivalent resistance – a single resistor that is equivalent (based on how much current it 
draws for a given voltage) to a given configuration of resistors. 
Current – the instantaneous rate of flow of charge through a wire. 
Electric potential – electric potential energy per unit charge. 
Potential difference – the electric work per unit charge needed to move a test charge 
between two points in a circuit.  Potential difference is also called the voltage. 

Symbols and SI Units 

Symbol Name SI Units 

𝑅𝑅 resistance  

 electric current A 

 electric potential V 

 the potential difference between two points in a circuit V 

Schematic Symbols for Resistors and Batteries

Schematic Representation Symbol Name 

 𝑅𝑅 resistor 

  battery or DC power supply  
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Essential Concepts 

A wire only impacts the equivalent resistance of a circuit if current flows through it. 
• If there is no current flowing through a wire, the wire may be removed from the 

circuit without affecting the equivalent resistance. 
• If a wire is added to a circuit in such a way that no current flows through the wire, 

the wire’s presence won’t affect the equivalent resistance. 

Let’s apply Ohm’s law to such a wire.  The potential difference across the length of the wire 
equals the current through the wire times the resistance of the wire.  (Although the wire’s 
resistance may be small compared to other resistances in the circuit, every wire does have 
some resistance.) 

𝑒𝑒 = 𝑒𝑒𝑅𝑅 𝑒𝑒 
If the potential difference across the wire is zero, Ohm’s law tells us that there won’t be any 
current in the wire. 

With a symmetric circuit, we consider the electric potential ( ) at points between resistors, 
and try to find two such points that definitely have the same electric potential.  If two points 
have the same electric potential, then the potential difference between those two points 
will be zero.  We may then add or remove a wire between those two points without 
disturbing the equivalent resistance of the circuit. 

For a circuit with a single power supply, electric potential is highest at the positive terminal 
and lowest at the negative terminal.  Our goal is to find two points between resistors that 
are equal percentages – in terms of electric potential, not in terms of distance – between the 
two terminals of the battery. 

For example, in the circuit on the left below, points B and C are each exactly halfway (in 
terms of electric potential) from the negative terminal to the positive terminal.  In the 
circuit in the middle, points F and G are each one-third of the way from the negative to the 
positive, since 4  is one-third of 12  (note that 4 + 8 = 12 ).  In the circuit on the 
right, J and K are also each one-third of the way from the negative to the positive, since 2  
is one-third of 6  (note that 2 + 4 = 6 ) and 4  is one-third of 12 . 

  

3  3  

3 3  
A 

B 

C
D

4  8  

4  8 
E 

F

G
H 

2 4  

4  8  
I 

J 

K
L 
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Strategy for Analyzing a Symmetric Circuit 

Some resistor (or capacitor) circuits that have a single battery don’t have any series or 
parallel combinations when you first look at them, but if there is enough symmetry in the 
circuit, you may still be able to apply series and parallel methods.  If so, follow these steps: 

1. Label the points between the resistors A, B, C, etc. 
2. “Unfold” the circuit as follows. 

• Think of the negative terminal of the power supply as the “ground.”  Draw it 
at the bottom of the picture. 

• Think of the positive terminal of the power supply as the “roof.”  Draw it at 
the top of the picture. 

• All other points lie above the ground and below the roof.  If a point in the 
original circuit is closer to the roof than it is to the ground (in terms of 
electric potential, which you can gauge percentage-wise by looking at 
resistance – don’t think in terms of distance), draw it closer to the roof than 
to the ground in your “unfolded” circuit. 

• Look for (at least one) pair of points that are definitely the same percentage 
of electric potential between the ground and the roof.  If either point is 
“closer” (in terms of electric potential, not in terms of distance) to the 
negative or to the positive terminal, then those points are not the same 
percentage from the ground to the roof.  Once you identify two points that 
are the same percentage from the ground to the roof, draw them the same 
“height” in your unfolded circuit. 

• Study the examples that follow.  They will help you learn how to visually 
unfold a circuit. 

3. When you’re 100% sure that two points have the same electric potential, do one of 
the following: 

• If there is already a wire connecting those two points, remove the wire.  Since 
the potential difference across the wire is zero, there isn’t any current in the 
wire, so it’s safe to remove it. 

• If there isn’t already a wire connecting those two points, add a wire between 
the points.  Make it a very short wire.  Make the wire so short that the two 
points merge together into a single point (see the examples). 

4. You should now see series and parallel combinations that weren’t present before.  If 
so, now you can analyze the circuit using the strategy from Chapter 11.  (When it’s 
not possible to use series and parallel combinations, you may still apply Kirchhoff’s 
rules, which we will learn in Chapter 13).  
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Example:  Twelve identical 12-  resistors are joined together to form a cube, as illustrated 
below.  If a battery is connected by joining its negative terminal to point F and its positive 
terminal to point C, what will be the equivalent resistance of the cube?  (This connection is 
across a body diagonal between opposite corners of the cube.) 

  
Note that no two resistors presently appear to be in series or parallel. 

• Since there is a junction between any two resistors, none are in series. 
• If you try the parallel rule with two forefingers (page 101), you should find that 

another resistor always gets in the way of one of your fingers.  Thus, no two 
resistors are in parallel. 

Fortunately, there is enough symmetry in the circuit to find points with the same potential. 
 
We will “unfold” the circuit with point F at the bottom (call it the “ground”) and point C at 
the top (call it the “roof”).  This is based on how the battery is connected. 

• Points E, B, and H are each one step from point F (the “ground”) and two steps from 
point C (the “roof”).  Neither of these points is closer to the “ground” or the “roof.”  
Therefore, points B, E, and H have the same electric potential. 

• Points A, D, and G are each two steps from point F (the “ground”) and one step from 
point C (the “roof”).  Neither of these points is closer to the “ground” or the “roof.”  
Therefore, points A, D, and G have the same electric potential. 

• Draw points E, B, and H at the same “height” in the “unfolded” circuit.  Draw points 
A, D, and G at the same “height,” too.  Draw points E, B, and H closer to point F (the 
“ground”) and points A, D, and G closer to point C (the “roof”). 

• Study the “unfolded” circuit at the top right and compare it to the original circuit at 
the top left.  Try to understand the reasoning behind how it was drawn. 

B 

C 

G 

E 

F 

D 

H 

A 

12  

B 

C D 

E F 

G H 

A 12  

12  

12  

12  12  

12  12  

12  12  

12  12  
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Consider points E, B, and H, which have the same electric potential: 
• There are presently no wires connecting these three points. 
• Therefore, we will add wires to connect points E, B, and H. 
• Make these new wires so short that you have to move points E, B, and H toward one 

another.  Make it so extreme that points E, B, and H merge into a single point, which 
we will call EBH. 

Do the same thing with points A, D, and G, merging them into point ADG.  With these 
changes, the diagram from the top right of the previous page turns into the diagram at the 
left below.  Study the two diagrams to try to understand the reasoning behind it. 

                                         
It’s a good idea to count corners and resistors to make sure you don’t forget one: 

• The cube has 8 corners:  A, B, C, D, E, F, G, and H. 
• The cube has 12 resistors:  one along each edge. 

If you count, you should find 12 resistors in the left diagram above.  The top 3 are in 
parallel (𝑅𝑅 1), the middle 6 are in parallel (𝑅𝑅 2), and the bottom 3 are in parallel (𝑅𝑅 3). 

1
𝑅𝑅 1

=
1

12
+

1
12

+
1

12
=

3
12

=
1
4

          𝑅𝑅 1 = 4.0  

1
𝑅𝑅 2

=
1

12
+

1
12

+
1

12
+

1
12

+
1

12
+

1
12

=
6

12
=

1
2

          𝑅𝑅 2 = 2.0  

1
𝑅𝑅 3

=
1

12
+

1
12

+
1

12
=

3
12

=
1
4

          𝑅𝑅 3 = 4.0  

After drawing the reduced circuit, 𝑅𝑅 1, 𝑅𝑅 2, and 𝑅𝑅 3 are in series, forming 𝑅𝑅𝑒𝑒𝑞𝑞. 
𝑅𝑅𝑒𝑒𝑞𝑞 = 𝑅𝑅 1 + 𝑅𝑅 2 + 𝑅𝑅 3 = 4 + 2 + 4 = 10.0  

The equivalent resistance of the cube along a body diagonal is 𝑅𝑅𝑒𝑒𝑞𝑞 = 10.0 .  

EBH 

C 

F 

ADG 

EBH 

C 

F 

ADG 

𝑅𝑅 1 

𝑅𝑅 3 

𝑅𝑅 2 

C 

F 

𝑅𝑅𝑒𝑒𝑞𝑞 
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Example:  Twelve identical 12-  resistors are joined together to form a cube, as illustrated 
below.  If a battery is connected by joining its negative terminal to point H and its positive 
terminal to point C, what will be the equivalent resistance of the cube?  (This connection is 
across a face diagonal between opposite corners of one square face of the cube.  Contrast 
this with the previous example.  It will make a huge difference in the solution.) 

 
We will “unfold” the circuit with point H at the bottom (call it the “ground”) and point C at 
the top (call it the “roof”).  This is based on how the battery is connected. 

• Points G and D are each one step from point H (the “ground”) and also one step from 
point C (the “roof”).  Each of these points is exactly halfway between the “ground” 
and the “roof.”  Therefore, points D and G have the same electric potential. 

• Points B and E are each two steps from point H (the “ground”) and also two steps
from point C (the “roof”).  Each of these points is exactly halfway between the 
“ground” and the “roof.”  Therefore, points B and E have the same electric potential. 

• Furthermore, points G, D, B, and E all have the same electric potential, since we have 
reasoned that all 4 points are exactly halfway between the “ground” and the “roof.” 

• Draw points G, D, B, and E at the same height in the “unfolded” circuit. 
• Draw point F closer to point H (the “ground”) and point A closer to point C (the 

“roof”). 
Study the “unfolded” circuit at the top right and compare it to the original circuit at the top 
left.  Try to understand the reasoning behind how it was drawn. 

Count corners and resistors to make sure you don’t forget one: 
• See if you can find all 8 corners (A, B, C, D, E, F, G, and H) in the “unfolded” circuit. 
• See if you can find all 12 resistors in the “unfolded” circuit. 

C 

G 
B 

D 

A 

E 

H 

F 

12  

B

C D 

E F 

G H 

A 12  

12  

12  

12  12  

12  12  

12  12  

12  12  
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Consider points G, D, B, and E, which have the same electric potential: 
• There are presently resistors between points D and B and also between E and G. 
• Therefore, we will remove these two wires. 

With these changes, the diagram from the top right of the previous page turns into the 
diagram at the left below. 

 
In the diagram above on the left: 

• The 2 resistors from H to D and D to C are in series (𝑅𝑅 1).
• The 2 resistors from F to B and B to A are in series (𝑅𝑅 2). 
• The 2 resistors from F to E and E to A are in series (𝑅𝑅 3). 
• The 2 resistors from H to G and G to C are in series (𝑅𝑅 4). 
• Note that points D, B, E and G are not junctions now that the wires connecting D to B 

and E to G have been removed. 
𝑅𝑅 1 = 12 + 12 = 24.0  
𝑅𝑅 2 = 12 + 12 = 24.0  
𝑅𝑅 3 = 12 + 12 = 24.0
𝑅𝑅 4 = 12 + 12 = 24.0  

In the diagram above on the right: 
• 𝑅𝑅 1 and 𝑅𝑅 4 are in parallel.  They form 𝑅𝑅 1. 
• 𝑅𝑅 2 and 𝑅𝑅 3 are in parallel.  They form 𝑅𝑅 2. 

1
𝑅𝑅 1

=
1
𝑅𝑅 1

+
1
𝑅𝑅 4

=
1

24
+

1
24

=
2

24
=

1
12

          𝑅𝑅 1 = 12.0  

1
𝑅𝑅 2

=
1
𝑅𝑅 2

+
1
𝑅𝑅 3

=
1

24
+

1
24

=
2

24
=

1
12

          𝑅𝑅 2 = 12.0  

C 

G 
B 

D

A 

E 

H 

F 
F 

C 

H 

A 

𝑅𝑅 1 𝑅𝑅 2 𝑅𝑅 3 𝑅𝑅 4 

𝑅𝑅 

𝑅𝑅 
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In the diagram above on the left, 𝑅𝑅, 𝑅𝑅 2, and 𝑅𝑅 are in series.  They form 𝑅𝑅 . 

𝑅𝑅 = 𝑅𝑅 + 𝑅𝑅 2 + 𝑅𝑅 = 12 + 12 + 12 = 36.0  
In the diagram above in the middle, 𝑅𝑅 1 and 𝑅𝑅  are in parallel.  They form 𝑅𝑅𝑒𝑒𝑞𝑞. 

1
𝑅𝑅𝑒𝑒𝑞𝑞

=
1
𝑅𝑅 1

+
1
𝑅𝑅

=
1

12
+

1
36

=
3

36
+

1
36

=
4

36
=

1
9

 

𝑅𝑅𝑒𝑒𝑞𝑞 = 9.0  
The equivalent resistance of the cube along a face diagonal is 𝑅𝑅𝑒𝑒𝑞𝑞 = 9.0 .  

F 

C 

H 

A 

𝑅𝑅 1 𝑅𝑅 2 

𝑅𝑅 

𝑅𝑅 

C 

𝑅𝑅 1 𝑅𝑅  

H 

C 

H 

𝑅𝑅𝑒𝑒𝑞𝑞 
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33.  Twelve identical 12-  resistors are joined together to form a cube, as illustrated below.  
If a battery is connected by joining its negative terminal to point D and its positive terminal 
to point C, what will be the equivalent resistance of the cube?  (This connection is across an 
edge.  Contrast this with the examples.  It will make a significant difference in the solution.) 

Want help?  Check the hints section at the back of the book. 
Answer:  7.0

12  

B

C D 

E F 

G H 

A 12  

12  

12  

12  12  

12  12

12 12  

12  12  
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34.  Determine the equivalent resistance of the circuit shown below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Want help?  Check the hints section at the back of the book. 
Answer:  10.0 

10.0  20.0  

5.0  10.0  
A 

B 

C 
D 

8.0     
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13 KIRCHHOFF’S RULES 

Relevant Terminology 

Conductor – a material through which electrons are able to flow readily.  Metals tend to be 
good conductors of electricity. 
Resistance – a measure of how well a component in a circuit resists the flow of current. 
Resistor – a component in a circuit which has a significant amount of resistance. 
Current – the instantaneous rate of flow of charge through a wire. 
Potential difference – the electric work per unit charge needed to move a test charge 
between two points in a circuit.  Potential difference is also called the voltage. 
Electric power – the instantaneous rate at which electrical work is done. 
Battery – a device that supplies a potential difference between positive and negative 
terminals.  It is a source of electric energy in a circuit. 

Symbols and SI Units 

Symbol Name SI Units 

𝑅𝑅 resistance  

 electric current A 

 the potential difference between two points in a circuit V 

 electric power W 

Schematic Symbols

Schematic Representation Symbol Name 

 𝑅𝑅 resistor 

  battery or DC power supply 

Note:  The long line of the battery symbol represents the positive terminal.  
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Schematic Representation Symbol Name 

 
measures 

 
voltmeter 

 
measures 

 
ammeter 

Essential Concepts 

Every circuit consists of loops and junctions. 

Charge must be conserved at every junction in a circuit.  Since current is the instantaneous 
rate of flow of charge, the sum of the currents entering a junction must equal the sum of the 
currents exiting the junction (such that the total charge is conserved every moment).  This 
is Kirchhoff’s (pronounced Kir-cough, not Kirch-off) junction rule. 

𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒 𝑛𝑛𝑔𝑔

=
𝑒𝑒 𝑛𝑛 𝑛𝑛𝑔𝑔

 

For an example of Kirchhoff’s junction rule, see the junction below.  Currents 1 and 2 go 
into the junction, whereas 3 comes out of the junction.  Therefore, for this particular 
junction, Kirchhoff’s junction rule states that 1 + 2 = 3. 

Energy must be conserved going around every loop in a circuit.  Since energy is the ability 
to do work and since electrical work equals charge times potential difference, if you 
calculate all of the ’s going around a loop exactly once, they must add up to zero (such 
that the total energy of the system plus the surroundings is conserved).  This is Kirchhoff’s 
loop rule.  

= 0 

The potential difference across a battery equals its value in volts, and is positive when 
going from the negative terminal to the positive terminal and negative when going from the 
positive terminal to the negative terminal.  The potential difference across a resistor is 𝑅𝑅 
(according to Ohm’s law), and is positive when going against the current and negative 
when going with the current.  A recipe for the signs is included on page 147. 

V 

A 

1 

2 

3 
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Each distinct current in a circuit begins and ends at a junction.  Identify the junctions in the 
circuit to help draw and label the currents correctly.  (Recall that the term “junction” was 
defined on page 101, which includes visual examples.)  The circuit shown below has two 
junctions (B and D) and three distinct currents shown as solid arrows ( ): 

•  runs from B to D.
• runs from D to B. 
• 𝑅𝑅 runs from B to D. 

Since  and 𝑅𝑅 enter junction D, while  exits junction D, according to Kirchhoff’s junction 
rule, + 𝑅𝑅 = .  (If instead you apply the junction rule to junction B, you get = + 𝑅𝑅, 
which is the same equation.)  Note:  The dashed arrows ( ) below show the sense of 
traversal of the test charge.  The dashed arrows ( ) are not currents.  See the Important 
Distinction note at the bottom of this page. 

 
In the strategy that follows, we will count the number of “smallest loops” in a circuit.  
Consider the circuit shown above.  There are actually 3 loops all together:  There is a left
loop (ABDA), a right loop (BCDB), and a big loop going all the way around (ABCDA).  
However, there are only 2 “smallest loops” – the left loop and the right loop.  We won’t
count loops like the big one (ABCDA). 

Important Distinction 

There are two types of arrows used in Kirchhoff’s rules problems: 
• We will use solid arrows ( ) for currents. 
• We will use dashed arrows ( ) to show the sense of traversal of our “test” charge. 

Our “test” charge either travels around a loop clockwise or counterclockwise (it’s our 
choice).  As our “test” charge travels around the loop, we add up the ’s for Kirchhoff’s 
loop rule.  The “test” charge sometimes travels opposite to a current, and sometimes travels 
along a current.  It’s important to realize that currents and the sense of traversal (which 
way the “test” charge is traveling) are two different things.  Study the circuit illustrated 
above to see the difference between arrows that represent currents and arrows that 
represent the sense of traversal of the “test” charge. 

A C 

D 

B 

 𝑅𝑅 
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Strategy for Applying Kirchhoff’s Rules 

When there are two or more batteries, you generally need to apply Kirchhoff’s rules.  When 
there is a single battery and the circuit can be analyzed via series and parallel techniques, 
the strategies from Chapters 11 and 12 are usually more efficient.  To apply Kirchhoff’s 
rules to a circuit involving resistors and batteries, follow these steps: 

1. Is there a voltmeter or ammeter in the circuit?  If so, redraw the circuit as follows:
• Remove the voltmeter and also remove its connecting wires. 
• Remove the ammeter, patching it up with a line (see below). 

 
2. Draw and label a current in each distinction branch.  (Do this after removing any 

voltmeters.)  Draw an arrow to represent each current:  Don’t worry if you guess the 
direction incorrectly (you will simply get a minus sign later on if you guess wrong 
now – it doesn’t really matter).  Note that each current begins and ends at a junction. 

3. Draw and label a sense of traversal for each of the “smallest loops.”  This is the 
direction that your “test” charge will travel as it traverses each loop.  This arrow will 
either be clockwise or counterclockwise, and it’s different from the currents. 

4. Figure out how many junction equations are needed to solve the problem. 
• Count the number of distinct currents in the circuit.  Call this . 
• Count the number of “smallest” loops in the circuit.  Call this . 
• Call the number of junction equations that you need .

You need to write down = −  junction equations.  Here is an example.  If 
there are = 3 currents and = 2 “smallest loops,” you need to write down 

= 3 − 2 = 1 junction equation. 
5. Choose  junctions and apply Kirchhoff’s junction rule to each of those junctions.  

For each junction, set the sum of the currents entering the junction equal to the sum 
of the currents exiting the junction.  For example, for the junction illustrated below, 
the junction equation is 𝑎𝑎 + = 𝑏𝑏 (since 𝑎𝑎 and  go into the junction, while 𝑏𝑏
comes out of the junction). 

 
6. Label the positive and negative terminals of each battery (or DC power supply).  The 

long line of the schematic symbol represents the positive terminal. 

 

A 

𝑏𝑏 

 

𝑎𝑎

 

+ − 
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7. Apply Kirchhoff’s loop rule to each of the “smallest loops” in the circuit.  Pick a point 
in each loop to start and finish at.  Travel around the loop in the direction that you 
drew in Step 3 (the sense of traversal of your “test” charge, which is either clock-
wise or counterclockwise).  Imagine your “test” charge “swimming” around the loop 
as indicated.  As your “test” charge “swims” around the loop, it will encounter 
resistors and batteries. 
 
When your “test” charge comes to a battery: 

• If the “test” charge comes to the negative terminal first, write a positive 
potential difference (since it rises in potential going from the negative 
terminal to the positive terminal). 

• If the “test” charge comes to the positive terminal first, write a negative 
potential difference (since it drops in potential going from the positive 
terminal to the negative terminal). 

When your “test” charge comes to a resistor: 
• If the “test” charge is “swimming” opposite to the current (compare the 

arrow for the sense of traversal to the arrow for the current), write +𝐼𝐼𝑅𝑅 
(since it rises in potential when it swims “upstream” against the current). 

• If the “test” charge is “swimming” in the same direction as the current 
(compare the arrow for the sense of traversal to the arrow for the current), 
write −𝐼𝐼𝑅𝑅 (since it drops in potential when it swims “downstream” with the 
current). 

When the “test” charge returns to its starting point, add all of the terms up and set 
the sum equal to zero.  Then go onto the next “smallest loop” until there are no 
“smallest loops” left.  Study the following example, which illustrates how to apply 
Kirchhoff’s rules. 

8. You have 𝑁𝑁𝐶𝐶  unknowns (the number of distinct currents).  You also have 𝑁𝑁𝐶𝐶  
equations:  𝑁𝑁𝐽𝐽 junctions and 𝑁𝑁𝐿𝐿 loops.  Solve these 𝑁𝑁𝐶𝐶  equations for the unknown 
currents.  The example will show you how to perform the algebra efficiently. 

9. If you need to find power, look at your diagram to see which current is involved.  Use 
the equation 𝑃𝑃 = 𝐼𝐼2𝑅𝑅 for a resistor and 𝑃𝑃 = 𝐼𝐼Δ𝑉𝑉 for a battery. 

10. If you need to find the potential difference between two points in a circuit (or if you 
need to find what a voltmeter reads), apply the loop rule (Step 7), but don’t go all of 
the way around the loop:  Start at the first point and stop when you reach the second 
point.  Don’t set the sum equal to zero:  Instead, plug in the unknowns and add up 
the values.  The value you get equals the potential difference between the points. 

11. If you need to rank electric potential at two or more points, set the electric potential 
equal to zero at one point and apply Step 10 to find the electric potential at the other 
points.  Study the example, which shows how to rank electric potential. 
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Example:  Consider the circuit illustrated below. 

 
(A) Find each of the currents.
There are three distinct currents.  See the solid arrows ( ) in the diagram above: 

•  exits junction A and enters junction C.  (Note that neither B nor D is a junction.) 
• exits junction C and enters junction A. 
• 𝑅𝑅 exits junction C and enters junction A. 

Draw the sense of traversal in each loop.  The sense of traversal is different from current.  
The sense of traversal shows how your “test” charge will “swim” around each loop (which 
will sometimes be opposite to an actual current).  See the dashed arrows ( ) in the 
diagram above:  We chose our sense of traversal to be clockwise in each loop. 

Count the number of distinct currents and “smallest” loops:
• There are = 3 distinct currents:  , , and 𝑅𝑅 .  These are the unknowns. 
• There are = 2 “smallest” loops:  the left loop (ACDA) and the right loop (ABCA). 

Therefore, we need = − = 3 − 2 = 1 junction equation.  We choose junction A.  
(We’d get the same answer for junction C in this case.) 

• Which currents enter junction A?   and 𝑅𝑅 go into junction A. 
• Which currents exit junction A?   leaves junction A. 

According to Kirchhoff’s junction rule, for this circuit we get: 
+ 𝑅𝑅 =  

(This is different from the example on page 145.  It is instructive to compare these cases.) 
 
Next we will apply Kirchhoff’s loop rule to the left loop and right loop. 

• In each case, our “test” charge will start at point A.  (This is our choice.) 
• In each case, our “test” charge will “swim” around the loop with a clockwise sense of 

traversal.  This is shown by the dashed arrows ( ). 
• Study the sign conventions in Step 7 of strategy.  If you want to solve Kirchhoff’s 

rules problems correctly, you need to be able to get the signs correct. 

36  

6.0 V 

3.0  

16  

A 

C

12 V 

18 V 

D 

B 

 

𝑅𝑅 

 

+ 

+ 

+ 
6.0 V

− − 

12 V
− 
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Let’s apply Kirchhoff’s loop rule to the left loop, starting at point A and heading clockwise: 
• Our “test” charge first comes to a 6.0-V battery.  The “test” charge comes to the 

positive terminal of the battery first.  According to Step 7, we write −6.0 V (since the 
“test” charge drops electric potential, going from positive to negative).  Note:  The 
direction of the current does not matter for a battery. 

• Our “test” charge next comes to a 36-Ω resistor.  The “test” charge is heading down 
from A to C presently, whereas the current 𝐼𝐼𝑀𝑀 is drawn upward.  Since the sense of 
traversal is opposite to the current, according to Step 7 we write +36 𝐼𝐼𝑀𝑀, multiplying 
current (𝐼𝐼𝑀𝑀) times resistance (36 Ω) according to Ohm’s law, Δ𝑉𝑉 = 𝐼𝐼𝑅𝑅.  (The 
potential difference is positive when the test charge goes against the current when 
passing through a resistor.) 

• Our “test” charge next comes to a 3.0-Ω resistor.  The “test” charge is heading left, 
whereas the current 𝐼𝐼𝐿𝐿 is heading right here.  Since the traversal is opposite to the 
current, we write +3 𝐼𝐼𝐿𝐿. 

• Finally, our “test” charge comes to an 18-V battery.  The “test” charge comes to the 
positive terminal of the battery first.  Therefore, we write −18.0 V. 

Add these four terms together and set the sum equal to zero.  As usual, we’ll suppress the 
units (V for Volts and Ω for Ohms) to avoid clutter until the calculation is complete.  Also as 
usual, we’ll not worry about significant figures (like 6.0) until the end of the calculation.  
(When using a calculator, it’s proper technique to keep extra digits and not to round until 
the end of the calculation.  This reduces round-off error.  In our case, however, we’re not 
losing anything to rounding by writing 6.0 as 6.) 

−6 + 36 𝐼𝐼𝑀𝑀 + 3 𝐼𝐼𝐿𝐿 − 18 = 0 
 
Now apply Kirchhoff’s loop rule to the right loop, starting at point A and heading clockwise.  
We’re not going to include such elaborate explanations with each term this time.  Study the 
diagram and the rules (and the explanations for the left loop), and try to follow along. 

• Write −12 V for the 12.0-V battery since the “test” charge comes to the positive 
terminal first. 

• Write +16 𝐼𝐼𝑅𝑅 for the 16-Ω resistor since the “test” charge swims opposite to the 
current 𝐼𝐼𝑅𝑅 . 

• Write −36 𝐼𝐼𝑀𝑀 for the 36-Ω resistor since the “test” charge swims in the same 
direction as the current 𝐼𝐼𝑀𝑀. 

• Write +6 V for the 6.0-V battery since the “test” charge comes to the negative 
terminal first. 

Add these four terms together and set the sum equal to zero. 
−12 + 16 𝐼𝐼𝑅𝑅 − 36 𝐼𝐼𝑀𝑀 + 6 = 0 
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We now have three equations in three unknowns. 
𝐼𝐼𝑀𝑀 + 𝐼𝐼𝑅𝑅 = 𝐼𝐼𝐿𝐿 

−6 + 36 𝐼𝐼𝑀𝑀 + 3 𝐼𝐼𝐿𝐿 − 18 = 0 
−12 + 16 𝐼𝐼𝑅𝑅 − 36 𝐼𝐼𝑀𝑀 + 6 = 0 

First, we will substitute the junction equation into the loop equations.  According to the 
junction equation, 𝐼𝐼𝐿𝐿 is the same as 𝐼𝐼𝑀𝑀 + 𝐼𝐼𝑅𝑅 .  Just the first loop equation has 𝐼𝐼𝐿𝐿 .  We will 
rewrite the first loop equation with 𝐼𝐼𝑀𝑀 + 𝐼𝐼𝑅𝑅 in place of 𝐼𝐼𝐿𝐿. 

−6 + 36 𝐼𝐼𝑀𝑀 + 3 (𝐼𝐼𝑀𝑀 + 𝐼𝐼𝑅𝑅) − 18 = 0 
Distribute the 3 to both terms. 

−6 + 36 𝐼𝐼𝑀𝑀 + 3 𝐼𝐼𝑀𝑀 + 3 𝐼𝐼𝑅𝑅 − 18 = 0 
Combine like terms.  The −6 and −18 are like terms:  They make −6 − 18 = −24.  The 
36 𝐼𝐼𝑀𝑀 and 3 𝐼𝐼𝑀𝑀 are like terms:   They make 36 𝐼𝐼𝑀𝑀 + 3 𝐼𝐼𝑀𝑀 = 39 𝐼𝐼𝑀𝑀. 

−24 + 39 𝐼𝐼𝑀𝑀 + 3 𝐼𝐼𝑅𝑅 = 0 
Add 24 to both sides of the equation. 

39 𝐼𝐼𝑀𝑀 + 3 𝐼𝐼𝑅𝑅 = 24 
We can simplify this equation if we divide both sides of the equation by 3. 

13 𝐼𝐼𝑀𝑀 + 𝐼𝐼𝑅𝑅 = 8 
We’ll return to this equation in a moment.  Let’s work with the other loop equation now. 

−12 + 16 𝐼𝐼𝑅𝑅 − 36 𝐼𝐼𝑀𝑀 + 6 = 0 
Combine like terms.  The −12 and +6 are like terms:  They make −12 + 6 = −6. 

−6 + 16 𝐼𝐼𝑅𝑅 − 36 𝐼𝐼𝑀𝑀 = 0 
Add 6 to both sides of the equation. 

16 𝐼𝐼𝑅𝑅 − 36 𝐼𝐼𝑀𝑀 = 6 
We can simplify this equation if we divide both sides of the equation by 2. 

8 𝐼𝐼𝑅𝑅 − 18 𝐼𝐼𝑀𝑀 = 3 
Let’s put our two simplified equations together. 

13 𝐼𝐼𝑀𝑀 + 𝐼𝐼𝑅𝑅 = 8 
8 𝐼𝐼𝑅𝑅 − 18 𝐼𝐼𝑀𝑀 = 3 

It helps to write them in the same order.  Note that 8 𝐼𝐼𝑅𝑅 − 18 𝐼𝐼𝑀𝑀 = −18 𝐼𝐼𝑀𝑀 + 8 𝐼𝐼𝑅𝑅 . 
13 𝐼𝐼𝑀𝑀 + 𝐼𝐼𝑅𝑅 = 8 

−18 𝐼𝐼𝑀𝑀 + 8 𝐼𝐼𝑅𝑅 = 3 
The “trick” is to make equal and opposite coefficients for one of the currents.  If we multiply 
the top equation by −8, we will have −8 𝐼𝐼𝑅𝑅 in the top equation and +8 𝐼𝐼𝑅𝑅 in the bottom. 

−104 𝐼𝐼𝑀𝑀 − 8 𝐼𝐼𝑅𝑅 = −64 
−18 𝐼𝐼𝑀𝑀 + 8 𝐼𝐼𝑅𝑅 = 3 

Now 𝐼𝐼𝑅𝑅 cancel out if we add the two equations together.  The sum of the left-hand sides 
equals the sum of the right-hand sides. 

−104 𝐼𝐼𝑀𝑀 − 8 𝐼𝐼𝑅𝑅 − 18 𝐼𝐼𝑀𝑀 + 8 𝐼𝐼𝑅𝑅 = −64 + 3 
−104 𝐼𝐼𝑀𝑀 − 18 𝐼𝐼𝑀𝑀 = −61 

−122 𝐼𝐼𝑀𝑀 = −61 
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Divide both sides of the equation by −122. 

𝐼𝐼𝑀𝑀 = −
61

−122
= +

1
2

 A = 0.50 A 

Once you get a numerical value for one of your unknowns, you may plug this value into any 
of the previous equations.  Look for one that will make the algebra simple.  We choose: 

13 𝐼𝐼𝑀𝑀 + 𝐼𝐼𝑅𝑅 = 8 
13
2

+ 𝐼𝐼𝑅𝑅 = 8 

𝐼𝐼𝑅𝑅 = 8 −
13
2

=
16
2
−

13
2

=
16 − 13

2
=

3
2

 A = 1.50 A 

Once you have two currents, plug them into the junction equation. 

𝐼𝐼𝐿𝐿 = 𝐼𝐼𝑀𝑀 + 𝐼𝐼𝑅𝑅 =
1
2

+
3
2

= 0.5 + 1.5 = 2.0 A 

The currents are 𝐼𝐼𝑀𝑀 = 0.50 A, 𝐼𝐼𝑅𝑅 = 1.50 A, and 𝐼𝐼𝐿𝐿 = 2.0 A. 
 
Tip:  If you get a minus sign when you solve for a current: 

• Keep the minus sign. 
• Don’t go back and alter your diagram. 
• Don’t rework the solution.  Don’t change any equations. 
• If you need to plug the current into an equation, keep the minus sign. 
• The minus sign simply means that the current’s actual direction is opposite to the 

arrow that you drew in the beginning of the problem.  It’s not a big deal. 
 
(B) How much power is dissipated in the 3.0-Ω resistor? 
Look at the original circuit.  Which current passes through the 3.0-Ω resistor?  The current 
𝐼𝐼𝐿𝐿 passes through the 3.0-Ω resistor.  Use the equation for power.  Note that the current is 
squared in the following equation. 

𝑃𝑃3 = 𝐼𝐼𝐿𝐿2𝑅𝑅3 = (2)2(3) = (4)(3) = 12 W 
 
(C) Find the potential difference between points A and C. 
Apply Kirchhoff’s loop rule, beginning at A and ending C (or vice-versa:  the only difference 
will be a minus sign in the answer).  Don’t set the sum to zero (since we’re not going 
around a complete loop).  Instead, plug in the currents and add up the values.  It doesn’t 
matter which path we take (we’ll get the same answer either way), but we’ll choose to go 
down the middle branch.  We’re finding 𝑉𝑉𝐶𝐶 − 𝑉𝑉𝐴𝐴:  It’s final minus initial (from A to C). 

𝑉𝑉𝐶𝐶 − 𝑉𝑉𝐴𝐴 = −6 + 36 𝐼𝐼𝑀𝑀 = −6 + 36 �
1
2
� = −6 + 18 = 12.0 V 

The first term is −6.0 V because we came to the positive terminal first, while the second 
term is +36 𝐼𝐼𝑀𝑀 because we went opposite to the current 𝐼𝐼𝑀𝑀:  We went down from A to C, 
whereas 𝐼𝐼𝑀𝑀 is drawn up.  The potential difference going from point A to point C is 
𝑉𝑉𝐶𝐶 − 𝑉𝑉𝐴𝐴 = 12.0 V. 
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(D) Rank the electric potential at points A, B, C, and D. 
To rank electric potential at two or more points, set the electric potential at one point equal 
to zero and then apply Kirchhoff’s loop rule the same way that we did in part (C).  It won’t 
matter which point we choose to have zero electric potential, as the relative values will still 
come out in the same order.  We choose point A to have zero electric potential. 

𝑉𝑉𝐴𝐴 = 0 
Traverse from A to B to find the potential difference 𝑉𝑉𝐵𝐵 − 𝑉𝑉𝐴𝐴 (final minus initial).  There is 
just a 12.0-V battery between A and B.  Going from A to B, we come to the positive terminal 
first, so we write −12.0 V (review the sign conventions in Step 7, if necessary). 

𝑉𝑉𝐵𝐵 − 𝑉𝑉𝐴𝐴 = −12 
Plug in the value for 𝑉𝑉𝐴𝐴. 

𝑉𝑉𝐵𝐵 − 0 = −12 
𝑉𝑉𝐵𝐵 = −12.0 V 

Now traverse from B to C to find the potential difference 𝑉𝑉𝐶𝐶 − 𝑉𝑉𝐵𝐵.  There is just a 16-Ω 
resistor between B and C.  Going from B to C, we are traversing opposite to the current 𝐼𝐼𝑅𝑅 , 
so we write +16 𝐼𝐼𝑅𝑅 . 

𝑉𝑉𝐶𝐶 − 𝑉𝑉𝐵𝐵 = +16 𝐼𝐼𝑅𝑅  
Plug in the values for 𝑉𝑉𝐵𝐵 and 𝐼𝐼𝑅𝑅 . 

𝑉𝑉𝐶𝐶 − (−12) = 16(1.5) 
Note that subtracting a negative number equates to addition. 

𝑉𝑉𝐶𝐶 + 12 = 24 
𝑉𝑉𝐶𝐶 = 24 − 12 = 12.0 V 

(Note that 𝑉𝑉𝐶𝐶 and 𝑉𝑉𝐵𝐵 are not the same:  That minus sign makes a big difference.)  Now 
traverse from C to D to find the potential difference 𝑉𝑉𝐷𝐷 − 𝑉𝑉𝐶𝐶.  There is just a 3.0-Ω resistor 
between C and D.  Going from C to D, we are traversing opposite to the current 𝐼𝐼𝐿𝐿, so we 
write +3 𝐼𝐼𝐿𝐿 . 

𝑉𝑉𝐷𝐷 − 𝑉𝑉𝐶𝐶 = +3 𝐼𝐼𝐿𝐿 
Plug in the values for 𝑉𝑉𝐶𝐶 and 𝐼𝐼𝐿𝐿. 

𝑉𝑉𝐷𝐷 − 12 = 3(2) 
𝑉𝑉𝐷𝐷 − 12 = 6 

𝑉𝑉𝐷𝐷 = 6 + 12 = 18.0 V 
(You can check for consistency by now going from D to A.  If you get 𝑉𝑉𝐴𝐴 = 0, everything 
checks out).  Let’s tabulate the electric potentials: 

• The electric potential at point A is 𝑉𝑉𝐴𝐴 = 0. 
• The electric potential at point B is 𝑉𝑉𝐵𝐵 = −12.0 V. 
• The electric potential at point C is 𝑉𝑉𝐶𝐶 = 12.0 V. 
• The electric potential at point D is 𝑉𝑉𝐷𝐷 = 18.0 V. 

Now it should be easy to rank them:  D is highest, then C, then A, and B is lowest. 
𝑉𝑉𝐷𝐷 > 𝑉𝑉𝐶𝐶 > 𝑉𝑉𝐴𝐴 > 𝑉𝑉𝐵𝐵 

 

www.engineersreferencebookspdf.com



Essential Trig-based Physics Study Guide Workbook 

153 
 

35.  Consider the circuit illustrated below. 
(A) Find each of the currents. 

Note:  You’re not finished yet.  This problem is continued on the next page.  

A B 

C D 
6.0  

24 V 

V 

18 V 

21 V 

3.0  

3.0  
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(B) What numerical value, with units, does the voltmeter read? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(C) Rank the electric potential at points A, B, C, and D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answers:  3.0 A, 8.0 A, 5.0 A, 39 V, 𝑉𝑉𝐵𝐵 > 𝑉𝑉𝐴𝐴 > 𝑉𝑉𝐷𝐷 > 𝑉𝑉𝐶𝐶 
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14 MORE RESISTANCE EQUATIONS 

Relevant Terminology 

Conductor – a material through which electrons are able to flow readily.  Metals tend to be 
good conductors of electricity. 
Conductivity – a measure of how well a given material conducts electricity. 
Resistivity – a measure of how well a given material resists the flow of current.  The 
resistivity is the reciprocal of the conductivity.
Resistance – a measure of how well a component in a circuit resists the flow of current. 
Internal resistance – the resistance that is internal to a battery or power supply. 
Resistor – a component in a circuit which has a significant amount of resistance. 
Temperature coefficient of resistivity – a measure of how much the resistivity of a given 
material changes when its temperature changes. 
Current – the instantaneous rate of flow of charge through a wire. 
Current density – electric current per unit of cross-sectional area. 
Potential difference – the electric work per unit charge needed to move a test charge 
between two points in a circuit.  Potential difference is also called the voltage. 
Emf – the potential difference that a battery or DC power supply would supply to a circuit 
neglecting its internal resistance. 
Electric power – the instantaneous rate at which electrical work is done. 
Battery – a device that supplies a potential difference between positive and negative 
terminals.  It is a source of electric energy in a circuit. 
Electric field – force per unit charge. 

Schematic Symbols 

Schematic Representation Symbol Name 

 𝑅𝑅 resistor 

 battery or DC power supply  
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Resistance Equations 

Recall Ohm’s law, which relates the potential difference (Δ𝑉𝑉) across a resistor to the 
current (𝐼𝐼) through the resistor and the resistance (𝑅𝑅) of the resistor. 

Δ𝑉𝑉 = 𝐼𝐼𝑅𝑅 
Every battery or power supply has internal resistance (𝑟𝑟).  When a battery or power supply 
is connected in a circuit, the potential difference (Δ𝑉𝑉) measured between its terminals is 
less than the actual emf (𝜀𝜀) of the battery or power supply. 

𝜀𝜀 = Δ𝑉𝑉 + 𝐼𝐼𝑟𝑟 
If we combine the above equations, we get the following equation, which shows that the 
external resistance (𝑅𝑅) and internal resistance (𝑟𝑟) both affect the current. 

𝜀𝜀 = 𝐼𝐼(𝑅𝑅 + 𝑟𝑟) 
The conductivity is a measure of how well a given material conducts electricity, whereas 
the resistivity is a measure of how well a given material resists the flow of current.  The 
resistivity (𝜌𝜌) is the reciprocal of the conductivity (𝜎𝜎). 

𝜌𝜌 =
1
𝜎𝜎

 

The current density (J⃗) is proportional to the electric field (E�⃗ ) and the conductivity (𝜎𝜎). 
J⃗ = 𝜎𝜎E�⃗  

For a long, straight wire shaped like a right-circular cylinder, the resistance (𝑅𝑅) of the wire 
is directly proportional to the resistivity (𝜌𝜌) of the material and the length of the wire (𝐿𝐿), 
and is inversely proportional to the cross-sectional area (𝐴𝐴) of the wire. 

𝑅𝑅 =
𝜌𝜌𝐿𝐿
𝐴𝐴

 

Resistivity (𝜌𝜌) and resistance (𝑅𝑅) depend on temperature, and depend on the temperature 
coefficient of resistivity (𝛼𝛼).  In the following equations, ∆𝑇𝑇 = 𝑇𝑇 − 𝑇𝑇0 equals the change in 
temperature, and 𝜌𝜌0 and 𝑅𝑅0 are values of resistivity and resistance at some reference 
temperature (𝑇𝑇0). 

𝜌𝜌 = 𝜌𝜌0(1 + 𝛼𝛼∆𝑇𝑇) 
𝑅𝑅 ≈ 𝑅𝑅0(1 + 𝛼𝛼∆𝑇𝑇) 

Recall the equation for electric power (𝑃𝑃), which can be expressed three ways. 

𝑃𝑃 = 𝐼𝐼∆𝑉𝑉 = 𝐼𝐼2𝑅𝑅 =
∆𝑉𝑉2

𝑅𝑅
 

Also recall the formulas for series and parallel resistors (Chapter 11): 
𝑅𝑅𝑠𝑠 = 𝑅𝑅1 + 𝑅𝑅2 + ⋯+ 𝑅𝑅𝑁𝑁 
1
𝑅𝑅𝑝𝑝

=
1
𝑅𝑅1

+
1
𝑅𝑅2

+ ⋯+
1
𝑅𝑅𝑁𝑁

 

The current (𝐼𝐼) and current density (J⃗) are related to one another by: 

𝐽𝐽 =
𝐼𝐼
𝐴𝐴
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Symbols and SI Units 

Symbol Name SI Units 

𝑅𝑅 resistance Ω 

𝑅𝑅0 resistance at a reference temperature Ω 

𝑟𝑟 internal resistance of a battery or power supply Ω 

𝜌𝜌 resistivity Ω∙m 

𝜌𝜌0 resistivity at a reference temperature Ω∙m 

𝜎𝜎 conductivity 1
Ω∙m

  

𝐿𝐿 the length of the wire m 

𝐴𝐴 cross-sectional area m2 

𝛼𝛼 temperature coefficient of resistivity 1
K

 or 1
°C

 

𝑇𝑇 temperature K 

𝑇𝑇0 reference temperature K 

𝐼𝐼 electric current A 

𝐽𝐽 current density A/m2 

∆𝑉𝑉 the potential difference between two points in a circuit V 

𝜀𝜀 emf V 

𝑃𝑃 electric power W 

Note:  The symbols 𝜌𝜌, 𝜎𝜎, and 𝛼𝛼 are the lowercase Greek letters rho, sigma, and alpha, while 
𝜀𝜀 is a variation of the Greek letter epsilon. 
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Notes Regarding Units 

• The SI units of resistivity (𝜌𝜌) follow by solving for 𝜌𝜌 in the equation 𝑅𝑅 = 𝜌𝜌𝜌𝜌
𝐴𝐴

:  We get 

𝜌𝜌 = 𝑅𝑅𝐴𝐴
𝜌𝜌

.  If you plug in Ω for 𝑅𝑅, m2 for 𝐴𝐴, and m for 𝐿𝐿, you find that the SI units for 𝜌𝜌 

are Ω∙m.  (It’s Ohms times meters, not per meter.)  Note that m2

m
= m.  Since 

conductivity (𝜎𝜎) is the reciprocal of resistivity (𝜌𝜌), that is 𝜎𝜎 = 1
𝜌𝜌

, it follows that the SI 

units of conductivity are 1
Ω∙m

. 

• Since the SI unit of temperature is the Kelvin (K), it follows that the SI units of the 
temperature coefficient of resistivity (𝛼𝛼) are 1

K
.  Note that 𝛼𝛼 has the same numerical 

value in both 1
K

 and 1
°C

* since the change in temperature, ∆𝑇𝑇 = 𝑇𝑇 − 𝑇𝑇0, works out the 
same in both Kelvin and Celsius (because 𝑇𝑇𝐾𝐾 = 𝑇𝑇𝑐𝑐 + 273.15). 

• The SI units for current density (𝐽𝐽) are A/m2, since current density is a measure of 
current per unit area and since the SI unit for current (𝐼𝐼) is the Ampère (A). 

 
Important Distinctions 

Pay attention to the differences between similar quantities: 
• Resistance (𝑅𝑅) is measured in Ohms (Ω) and depends on the material, the length of 

the wire, and the thickness of the wire, whereas resistivity (𝜌𝜌) is measured in  
Ωm and is just a property of the material itself.  Look at the units given in a problem 
to help tell whether the value is resistance or resistivity. 

• Emf (𝜀𝜀) and potential difference (∆𝑉𝑉) are both measured in Volts (V).  The emf (𝜀𝜀) 
represents the voltage that you could get if the battery or power supply didn’t have 
internal resistance, whereas the potential difference (∆𝑉𝑉) across the terminals is 
less than the actual emf when the battery or power supply is connected in a circuit.  
If you connect a voltmeter across the terminals of a battery or power supply that is 
connected in a circuit, it measures potential difference (∆𝑉𝑉). 

• Emf stands for “electromotive” force, but it’s not really a force and doesn’t have the 
units of force.  However, a battery creates an electric field which accelerates the 
charges according to F�⃗ = 𝑞𝑞E�⃗ .  Emf is also not quite an “electromagnetic field,” but 
potential difference is related to electric field through ∆𝑉𝑉 = 𝐸𝐸𝐸𝐸 (if E�⃗  is uniform). 

• For temperature-dependent problems, note that 𝜌𝜌0 and 𝑅𝑅0 correspond to some 
reference temperature 𝑇𝑇0, while 𝜌𝜌 and 𝑅𝑅 correspond to a different temperature 𝑇𝑇. 

• The SI unit of current (𝐼𝐼) is the Ampère (A), while for current density (𝐽𝐽) it is A/m2.  

                                                        
* Note that we only use the degree symbol (°) for Celsius (°C) and Fahrenheit (°F), but not for Kelvin (K).  The 
reason behind this is that Kelvin is special since it is the SI unit for absolute temperature. 
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Resistor Strategy 

How you solve a problem involving a resistor depends on the context: 
1. Make a list of the symbols that you know (see the chart on page 157).  The units can 

help you figure out which symbols you know.  For a textbook problem, you may 
need to look up a value for the conductivity (𝜎𝜎), resistivity (𝜌𝜌), or the temperature 
coefficient of resistivity (𝛼𝛼).  Note that you can find 𝜌𝜌 by looking up 𝜎𝜎, or vice-versa. 

2. If a problem tells you the gauge of a wire (like “gauge-22 nichrome”), try looking up 
the gauge in your textbook.  The gauge is another way of specifying thickness. 

3. If a problem gives you the color codes of a resistor (if you are performing an 
experiment in a lab, many resistors are color-coded), you can determine its 
resistance by looking up a chart of resistor color codes. 

4. Choose equations based on which symbols you know and which symbol you are 
trying to solve for: 

• Resistance (𝑅𝑅) in Ω can be related to resistivity (𝜌𝜌) in Ωm for a typical wire. 

𝑅𝑅 =
𝜌𝜌𝐿𝐿
𝐴𝐴

 

For a wire with circular cross section, 𝐴𝐴 = 𝜋𝜋𝑎𝑎2, where lowercase 𝑎𝑎 is the 
radius of the wire (not to be confused with area, 𝐴𝐴).  If the problem gives you 
the thickness (𝑇𝑇) of the wire, it’s the same as diameter (𝐷𝐷):  𝑎𝑎 = 𝐷𝐷

2
= 𝑇𝑇

2
.  If a 

problem gives you conductivity (𝜎𝜎) instead of resistivity (𝜌𝜌), note that 𝜌𝜌 = 1
𝜎𝜎

. 

• If the problem involves both temperature and resistance (or resistivity), use 
the appropriate equation from below, where ∆𝑇𝑇 = 𝑇𝑇 − 𝑇𝑇0. 

𝜌𝜌 = 𝜌𝜌0(1 + 𝛼𝛼∆𝑇𝑇) 
𝑅𝑅 ≈ 𝑅𝑅0(1 + 𝛼𝛼∆𝑇𝑇) 

• The emf (𝜀𝜀) and internal resistance (𝑟𝑟) of a battery or power supply are 
related to the potential difference (∆𝑉𝑉) measured across the terminals and 
the current (𝐼𝐼).  Ohm’s law (∆𝑉𝑉 = 𝐼𝐼𝑅𝑅) also applies to emf problems, where 𝑅𝑅 
is the external (or load) resistance. 

𝜀𝜀 = Δ𝑉𝑉 + 𝐼𝐼𝑟𝑟     ,     𝜀𝜀 = 𝐼𝐼(𝑅𝑅 + 𝑟𝑟)     ,     ∆𝑉𝑉 = 𝐼𝐼𝑅𝑅 
• Ohm’s law applies to problems that involve resistance. 

∆𝑉𝑉 = 𝐼𝐼𝑅𝑅 
• Electric power can be expressed three different ways: 

𝑃𝑃 = 𝐼𝐼∆𝑉𝑉 = 𝐼𝐼2𝑅𝑅 =
∆𝑉𝑉2

𝑅𝑅
 

• Current density (J⃗) is related to electric field (E�⃗ ) and current (𝐼𝐼) through the 
following equations.  (The latter is true for a uniform current density.) 

J⃗ = 𝜎𝜎E�⃗      ,     𝐽𝐽 =
𝐼𝐼
𝐴𝐴
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5. Carry out any algebra needed to solve for the unknown. 
6. If any resistors are connected in series or parallel, you will need to apply the 

strategy from Chapter 11. 
 
Example:  A long, straight wire has the shape of a right-circular cylinder.  The length of the 
wire is 8.0 m and the thickness of the wire is 0.40 mm.  The resistivity of the wire is 
𝜋𝜋 × 10−8 Ω∙m.  What is the resistance of the wire? 
Make a list of the known quantities and identify the desired unknown symbol: 

• The length of the wire is 𝐿𝐿 = 8.0 m and the thickness of the wire is 𝑇𝑇 = 0.40 mm. 
• The resistivity is 𝜌𝜌 = 𝜋𝜋 × 10−8 Ω∙m. 
• The unknown we are looking for is resistance (𝑅𝑅). 

The equation relating resistance to resistivity involves area, so we need to find area first.  
Before we do that, let’s convert the thickness to SI units. 

𝑇𝑇 = 0.40 mm = 0.00040 m = 4 × 10−4 m 
The radius of the circular cross section is one-half the diameter, and the diameter is the 
same as the thickness. 

𝑎𝑎 =
𝐷𝐷
2

=
𝑇𝑇
2

=
4 × 10−4

2
= 2 × 10−4 m 

The cross-sectional area of the wire is the area of a circle: 
𝐴𝐴 = 𝜋𝜋𝑎𝑎2 = 𝜋𝜋(2 × 10−4)2 = 𝜋𝜋(4 × 10−8) m2 = 4𝜋𝜋 × 10−8 m2 

Now we are ready to use the equation for resistance. 

𝑅𝑅 =
𝜌𝜌𝐿𝐿
𝐴𝐴

=
(𝜋𝜋 × 10−8)(8)
(4𝜋𝜋 × 10−8) = 2.0 Ω 

The resistance is 𝑅𝑅 = 2.0 Ω.  (Note that the 𝜋𝜋’s and 10−8’s both cancel out.) 
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Example:  A resistor is made from a material that has a temperature coefficient of resist-
ivity of 5.0 × 10−3 /°C .  Its resistance is 40 Ω at 20 °C.  What is its temperature at 80 °C? 
Make a list of the known quantities and identify the desired unknown symbol: 

• The reference temperature is 𝑇𝑇0 = 20 °C and the specified temperature is 𝑇𝑇 = 80 °C. 
• The reference resistance is 𝑅𝑅0 = 40 Ω. 
• The temperature coefficient of resistivity is 𝛼𝛼 = 5.0 × 10−3 /°C. 
• The unknown we are looking for is the resistance (𝑅𝑅) corresponding to 𝑇𝑇 = 80 °C. 

Apply the equation for resistance that depends on temperature. 
𝑅𝑅 ≈ 𝑅𝑅0(1 + 𝛼𝛼∆𝑇𝑇) = 𝑅𝑅0[1 + 𝛼𝛼(𝑇𝑇 − 𝑇𝑇0)] = (40)[1 + (5 × 10−3)(80− 20)] 

𝑅𝑅 ≈ (40)[1 + (5.0 × 10−3)(60)] = (40)[1 + 300 × 10−3] 
𝑅𝑅 ≈ (40)(1 + 0.3) = (40)(1.3) = 52 Ω 

The resistance of the resistor at 𝑇𝑇 = 80 °C is 𝑅𝑅 ≈ 52 Ω.† 
Example:  A battery has an emf of 12 V and an internal resistance of 2.0 Ω.  The battery is 
connected across a 4.0-Ω resistor. 
(A) What current would an ammeter measure through the 4.0-Ω resistor? 
Make a list of the known quantities and identify the desired unknown symbol: 

• The emf of the battery is 𝜀𝜀 = 12 V and its internal resistance is 𝑟𝑟 = 2.0 Ω. 
• The load resistance (or external resistance) is 𝑅𝑅 = 4.0 Ω. 
• The unknown we are looking for is the current (𝐼𝐼). 

Choose the emf equation that involves the above symbols. 
𝜀𝜀 = 𝐼𝐼(𝑅𝑅 + 𝑟𝑟) 

Divide both sides of the equation by (𝑅𝑅 + 𝑟𝑟). 

𝐼𝐼 =
𝜀𝜀

𝑅𝑅 + 𝑟𝑟
=

12
4 + 2

=
12
6

= 2.0 A 

The ammeter would measure 𝐼𝐼 = 2.0 A.  (Note that if the battery had negligible internal 
resistance, the ammeter would have measured 12

4
= 3.0 A.  In this example, the internal 

resistance is quite significant, but in most good batteries, the internal resistance would be 
much smaller than 2.0 Ω, and thus would not be significant unless the load resistance were 
relatively small.) 
(B) What potential difference would a voltmeter measure across the 4.0-Ω resistor? 
Now we are solving for ∆𝑉𝑉.  Apply Ohm’s law. 

∆𝑉𝑉 = 𝐼𝐼𝑅𝑅 = (2)(4) = 8.0 V 
The voltmeter would measure ∆𝑉𝑉 = 8.0 V.  (Again, this is a significant deviation from the 
12-V emf of the battery because this example has a dramatically large internal resistance.) 
  
                                                        
† The similar equation for resistivity involves an equal sign, whereas with resistance it is approximately equal.  
The reason this is approximate is that we’re neglecting the effect that thermal expansion has on the length 
and thickness.  The effect that temperature has on resistivity is generally more significant to the change in 
resistance than the effect that temperature has on the length and thickness of the wire, so the approximation 
is usually very good. 
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Where Does the Resistance-Resistivity Formula Come From? 

Consider a right-circular cylinder of length , radius 𝑎𝑎, uniform cross-section, and uniform 
resistivity, where the terminals of a battery are connected across the circular ends of the 
cylinder to create an approximately uniform electric field along the length of the cylinder. 

 
Solve for resistance in Ohm’s law: 

𝑅𝑅 =
| |

 

Recall from Chapter 8 that 𝐸𝐸 = , which can be expressed as = 𝐸𝐸 .  (This equation 
applies when there is a uniform electric field.)  Since the battery is connected across the 
ends of the cylinder, in this problem, the distance  is the same as the length of the wire, , 
such that = 𝐸𝐸 .  Recall the equations for current density, =  (which can also be 
expressed as = ) and = 𝐸𝐸.  Substitute these equations into Ohm’s law. 

𝑅𝑅 =
| |

=
𝐸𝐸

=
𝐸𝐸
𝐸𝐸

= =  

𝑅𝑅 =  

In the last step, we used the equation = 1, which can also be written = 1 (the 

conductivity and resistivity have a reciprocal relationship, as each is the reciprocal of the 
other).  

𝑎𝑎

 

A E 
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36.  A long, straight wire has the shape of a right-circular cylinder.  The length of the wire is 
𝜋𝜋 m and the thickness of the wire is 0.80 mm.  The resistance of the wire is 5.0 Ω.  What is 
the resistivity of the wire? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37.  A resistor is made from a material that has a temperature coefficient of resistivity of 
2.0 × 10−3 /°C .  Its resistance is 30 Ω at 20 °C.  At what temperature is its resistance equal 
to 33 Ω? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answers:  8.0 × 10−7 Ω∙m, 70 °C 
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38.  A battery has an emf of 36 V.  When the battery is connected across an 8.0-Ω resistor, a 
voltmeter measures the potential difference across the resistor to be 32 V. 
 
(A) What is the internal resistance of the battery? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(B) How much power is dissipated in the 8.0-Ω resistor? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answers:  1.0 Ω, 128 W 
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15 LOGARITHMS AND EXPONENTIALS 

Relevant Terminology 

In the expression 𝑥𝑥𝑛𝑛, the quantity 𝑛𝑛 can be referred to either as the power or as the 
exponent of the quantity 𝑥𝑥, while the quantity 𝑥𝑥 is called the base. 
 
Essential Concepts 

Consider the expression 𝑦𝑦 = 𝑏𝑏𝑥𝑥.  Solving for 𝑦𝑦 is easy.  For example, when 𝑦𝑦 = 43, this 
means to multiply 4 by itself 3 times:  𝑦𝑦 = 43 = (4)(4)(4) = 64.  As another example, you 
could calculate 𝑦𝑦 = 91.5 on your calculator by entering 9^1.5.  The answer is 27. 
 
What if you want to solve for 𝑥𝑥 in the equation 𝑦𝑦 = 𝑏𝑏𝑥𝑥?  Some cases you can reason out.  
For example, when 81 = 3𝑥𝑥 , you might figure out that 𝑥𝑥 = 4 since 34 = 81.  You’re asking 
yourself, “What power do you need to raise 3 to in order to make 81?”  But what if the 
problem is 40 = 10𝑥𝑥?  What would you enter on your calculator to figure out 𝑥𝑥? 
 
The answer has to do with logarithms.  A logarithm is a function that helps you solve for the 
exponent in an equation like 𝑦𝑦 = 𝑏𝑏𝑥𝑥 . 
 
The logarithm logb 𝑦𝑦 = 𝑥𝑥 is exactly the same equation as 𝑦𝑦 = 𝑏𝑏𝑥𝑥, except that the logarithm 
gives you the answer for the exponent (𝑥𝑥).  Following are a few examples. 

• log10 1000 = 𝑥𝑥 is the same thing as 1000 = 10𝑥𝑥 .  Read it as, “Log base 10 of 1000.”  
It means the same thing as, “10 to the power of what makes 1000?”  The answer is 
𝑥𝑥 = 3 because 103 = (10)(10)(10) = 1000. 

• The answer to 40 = 10𝑥𝑥  can be found by writing the logarithm log10 40 = 𝑥𝑥.  This 
says that 𝑥𝑥 is the log base 10 of 40, meaning 10 to what power makes 40?  You can’t 
figure this one out in your head.  If you have a calculator that has both the “log” 
function and the “ln” function, the “log” button is usually for base 10.  In that case, 
enter log(40) on your calculator, as it means the same thing as log10 40.  Try it.  The 
correct answer is 1.602 (and the digits go on indefinitely).  You can check that this is 
the correct answer by entering 101.602 on your calculator.  You’ll get 39.99, which is 
very close to 40 (the slight difference comes from rounding to 1.602). 

• log2 32 means, “What power of 2 makes 32?”  It’s the same problem as 2𝑥𝑥 = 32, 
where 𝑥𝑥 = log2 32.  The answer is log2 32 = 5 because 25 = 2 × 2 × 2 × 2 × 2 = 32.  
This problem isn’t as easy to do on your calculator,* since most calculators don’t 
have a built-in log-base-2 button (it’s usually log for base 10 and ln for base 𝑒𝑒).  
However, it is easy to check that 25 = 32. 

                                                        
* You could do it with the change of base formula:  log2 32 = log10 32 / log10 2.  Try it.  You should get 5. 
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Euler’s number (𝑒𝑒) comes up frequently in physics.  Numerically, Euler’s number is: 
𝑒𝑒 = 2.718281828 … 

The … represents that the digits continue forever without repeating (similar to how the 
digits of 𝜋𝜋 continue forever without repeating). 
 
The function 𝑒𝑒𝑥𝑥 is called an exponential.  When we write 𝑒𝑒𝑥𝑥, it’s approximately the same 
thing as writing 2.718𝑥𝑥 (just like 3.14 is approximately the same number as 𝜋𝜋). 
 
A logarithm of base 𝑒𝑒 is called a natural log.  We use ln to represent a natural log.  For 
example, ln 𝑥𝑥 means the natural log of 𝑥𝑥, which also means log𝑒𝑒 𝑥𝑥 (log base 𝑒𝑒 of 𝑥𝑥). 
 
Logarithm and Exponential Equations 

Following are some handy logarithm and exponential identities: 
ln(𝑥𝑥𝑦𝑦) = ln(𝑥𝑥) + ln(𝑦𝑦) 

ln �
𝑥𝑥
𝑦𝑦
� = ln(𝑥𝑥) − ln(𝑦𝑦) 

ln �
1
𝑥𝑥
� = ln(𝑥𝑥−1) = − ln(𝑥𝑥) 

ln(𝑥𝑥𝑎𝑎) = 𝑎𝑎 ln (𝑥𝑥) 
ln(1) = 0 

𝑒𝑒𝑥𝑥+𝑦𝑦 = 𝑒𝑒𝑥𝑥𝑒𝑒𝑦𝑦 
𝑒𝑒𝑥𝑥−𝑦𝑦 = 𝑒𝑒𝑥𝑥𝑒𝑒−𝑦𝑦 

𝑒𝑒−𝑥𝑥 =
1
𝑒𝑒𝑥𝑥

 

(𝑒𝑒𝑥𝑥)𝑎𝑎 = 𝑒𝑒𝑎𝑎𝑥𝑥 
𝑒𝑒0 = 1     ,     ln(𝑒𝑒) = 1 

ln(𝑒𝑒𝑥𝑥) = 𝑥𝑥     ,     𝑒𝑒ln (𝑥𝑥) = 𝑥𝑥 
The change of base formula is handy when you need to take a logarithm of a base other 
than 10 or 𝑒𝑒 on a calculator.  This formula lets you use log base 10 instead of log base 𝑏𝑏. 

log𝑏𝑏 𝑦𝑦 =
log10 𝑦𝑦
log10 𝑏𝑏
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Graphs of Exponentials and Logarithms 
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Example:  Simplify ln �1
𝑒𝑒
�. 

Apply the rule ln �𝑥𝑥
𝑦𝑦
� = ln(𝑥𝑥) − ln (𝑦𝑦). 

ln �
1
𝑒𝑒
� = ln(1) − ln(𝑒𝑒) = 0 − 1 = −1 

Note that ln(1) = 0 and ln(𝑒𝑒) = 1.  These values are worth memorizing. 
 
Example:  What is ln(2) + ln(0.5)? 
Apply the rule ln(𝑥𝑥𝑦𝑦) = ln(𝑥𝑥) + ln (𝑦𝑦). 

ln(2) + ln(0.5) = ln[(2)(0.5)] = ln(1) = 0 
Once again we need to know that ln(1) = 0. 
 
Example:  Evaluate log4 64. 
This means:  “4 raised to what power makes 64?” 
The answer is 3 because 43 = 64. 
 
Example:  Simplify 2 ln�√3�. 
Apply the rule ln(𝑥𝑥𝑎𝑎) = 𝑎𝑎 ln (𝑥𝑥). 

2 ln�√3� = ln ��√3�
2
� = ln(3) 

 
Example:  Simplify ln(8𝑒𝑒) − ln (4𝑒𝑒). 

Apply the rule ln �𝑥𝑥
𝑦𝑦
� = ln(𝑥𝑥) − ln (𝑦𝑦). 

ln(8𝑒𝑒) − ln(4𝑒𝑒) = ln �
8𝑒𝑒
4𝑒𝑒
� = ln �

8
4
� = ln (2) 

 
Example:  Solve for 𝑥𝑥 in the equation 𝑒𝑒𝑥𝑥 = 2. 
Take the natural logarithm of both sides of the equation. 

ln(𝑒𝑒𝑥𝑥) = ln (2) 
Apply the rule ln(𝑒𝑒𝑥𝑥) = 𝑥𝑥. 

𝑥𝑥 = ln (2) 
 
Example:  Solve for 𝑥𝑥 in the equation ln(𝑥𝑥) = 3. 
Exponentiate both sides of the equation. 

𝑒𝑒ln(𝑥𝑥) = 𝑒𝑒3 
Apply the rule 𝑒𝑒ln(𝑥𝑥) = 𝑥𝑥. 

𝑥𝑥 = 𝑒𝑒3 
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39.  Evaluate log5 625. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answer:  4  
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40.  Solve for 𝑥𝑥 in the equation 6𝑒𝑒−𝑥𝑥/2 = 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Want help?  Check the hints section at the back of the book. 

Answer:  2 ln (3) 
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16 RC CIRCUITS 

Relevant Terminology 

Half-life – the time it takes to decay to one-half of the initial value, or to grow to one-half of 
the final value. 
Time constant – the time it takes to decay to 1

𝑒𝑒
 or ≈ 37% of the initial value, or to grow to 

1 − 1
𝑒𝑒

 or ≈ 63% of the final value. 
Capacitor – a device that can store charge, which consists of two separated conductors 
(such as two parallel conducting plates). 
Capacitance – a measure of how much charge a capacitor can store for a given voltage. 
Charge – the amount of electric charge stored on the positive plate of a capacitor. 
Potential difference – the electric work per unit charge needed to move a test charge 
between two points in a circuit.  Potential difference is also called the voltage. 
Electric potential energy – a measure of how much electrical work a component of an 
electric circuit can do. 
Resistance – a measure of how well a component in a circuit resists the flow of current. 
Resistor – a component in a circuit which has a significant amount of resistance. 
Current – the instantaneous rate of flow of charge through a wire.
Electric power – the instantaneous rate at which electrical work is done. 

Schematic Symbols Used in RC Circuits 

Schematic Representation Symbol Name 

 𝑅𝑅 resistor 

 battery or DC power supply 

 
 capacitor 
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Discharging a Capacitor in an RC Circuit 

In a simple RC circuit like the one shown below, a capacitor with initial charge 𝑚𝑚 (the 
subscript 𝑚𝑚 stands for “maximum”) loses its charge with exponential decay.  The current 
that transfers the charge between the two plates also decays exponentially from an initial 
value of 𝑚𝑚. 

= 𝑚𝑚𝑒𝑒−𝑛𝑛/      ,     = 𝑚𝑚𝑒𝑒−𝑛𝑛/  
The time constant ( ) equals the product of the resistance (𝑅𝑅) and capacitance ( ). 

= 𝑅𝑅  
The half-life ( ½) is related to the time constant ( ) by: 

½ =  ln(2) 
The resistor and capacitor equations still apply: 

=      ,     = 𝑅𝑅     ,     𝑚𝑚 = 𝑚𝑚     ,     𝑚𝑚 = 𝑚𝑚𝑅𝑅 

Charging a Capacitor in an RC Circuit 

When a battery is connected to a resistor and capacitor in series as shown below, an 
initially uncharged capacitor has the charge on its plates grow according to 1 − 𝑒𝑒−𝑛𝑛/ .  The 
current that transfers the charge between the two plates instead decays exponentially from 
an initial value of 𝑚𝑚. 

= 𝑚𝑚(1 − 𝑒𝑒−𝑛𝑛/ )     ,     = 𝑚𝑚𝑒𝑒−𝑛𝑛/  
The time constant ( ) and half-life ( ½) obey the same equations: 

= 𝑅𝑅      ,     ½ =  ln (2) 
The resistor and capacitor equations still apply.  In the case of charging, the symbol 𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛
represents the potential difference supplied by the battery, while  and 𝑅𝑅 represent 
the potential differences across the capacitor and resistor, respectively. 

=     ,     𝑅𝑅 = 𝑅𝑅    ,     𝑚𝑚 = 𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛     ,     𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 = 𝑚𝑚𝑅𝑅 

 

   

𝑅𝑅 

  

𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 

𝑅𝑅 
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Symbols and SI Units 

Symbol Name SI Units 

𝑡𝑡 time s 

𝑡𝑡½ half-life s 

𝜏𝜏 time constant s 

𝐶𝐶 capacitance F 

𝑄𝑄 the charge stored on the positive plate of a capacitor C 

∆𝑉𝑉 the potential difference between two points in a circuit V 

𝑈𝑈 energy stored J 

𝑅𝑅 resistance Ω 

𝐼𝐼 electric current A 

𝑃𝑃 electric power W 

Note:  The symbol 𝜏𝜏 is the lowercase Greek letter tau. 
 
Note Regarding Units 

From the equation 𝜏𝜏 = 𝑅𝑅𝐶𝐶, the SI units for time constant (𝜏𝜏) must equal an Ohm (Ω) times a 
Farad (F) – the SI units of resistance (𝑅𝑅) and capacitance (𝐶𝐶).  From the equation 𝐶𝐶 = 𝑄𝑄

∆𝑉𝑉
, 

we can write a Farad (F) as C
V
 since charge (𝑄𝑄) is measured in Coulombs (C).  Similarly, 

from 𝑅𝑅 = ∆𝑉𝑉
𝐼𝐼

, we can write an Ohm (Ω) as V
A
 since current (𝐼𝐼) is measured in Ampères (A).  

Thus, the units of 𝜏𝜏 are V
A
∙ C

V
= C

A
.  Current is the rate of flow of charge:  𝐼𝐼 = 𝑑𝑑𝑄𝑄

𝑑𝑑𝑡𝑡
.  Thus, an 

Ampère equals a Coulomb per second:  1 A = 1 C
s
, which can be written C

A
= s with a little 

algebra.  Therefore, the SI unit of the time constant (𝜏𝜏) is the second (s).  
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Strategy for RC Circuits 

Apply the equations that relate to RC circuits: 
• For a discharging capacitor: 

𝑄𝑄 = 𝑄𝑄𝑚𝑚𝑒𝑒−𝑡𝑡/𝜏𝜏     ,     𝐼𝐼 = 𝐼𝐼𝑚𝑚𝑒𝑒−𝑡𝑡/𝜏𝜏 
𝑄𝑄𝑚𝑚 = 𝐶𝐶∆𝑉𝑉𝑚𝑚     ,     ∆𝑉𝑉𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑅𝑅 

• For a charging capacitor: 
𝑄𝑄 = 𝑄𝑄𝑚𝑚(1 − 𝑒𝑒−𝑡𝑡/𝜏𝜏)     ,     𝐼𝐼 = 𝐼𝐼𝑚𝑚𝑒𝑒−𝑡𝑡/𝜏𝜏 
𝑄𝑄𝑚𝑚 = 𝐶𝐶∆𝑉𝑉𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡     ,     ∆𝑉𝑉𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡 = 𝐼𝐼𝑚𝑚𝑅𝑅 

• In either case, the time constant is: 
𝜏𝜏 = 𝑅𝑅𝐶𝐶 

• You can find the half-life from the time constant: 
𝑡𝑡½ = 𝜏𝜏 ln (2) 

• The equations for capacitance and resistance apply: 
𝑄𝑄 = 𝐶𝐶∆𝑉𝑉𝐶𝐶      ,     ∆𝑉𝑉𝑅𝑅 = 𝐼𝐼𝑅𝑅 

• To find energy, see Chapter 9.  To find power, see Chapter 11. 
• If necessary, apply rules from Chapter 15 regarding logarithms and exponentials. 

 
Important Distinctions 

Note the three different times involved in RC circuits: 
• 𝑡𝑡 (without a subscript) represents the elapsed time. 
• 𝑡𝑡½ is the half-life.  It’s the time it takes to reach one-half the maximum value. 
• 𝜏𝜏 is the time constant:  𝜏𝜏 = 𝑅𝑅𝐶𝐶.  Note that 𝑡𝑡½ = 𝜏𝜏 ln (2).  
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Example:  A 3.0-µF capacitor with an initial charge of 24 µC discharges while connected in 
series with a 4.0-Ω resistor. 
(A) What is the initial potential difference across the capacitor? 
Use the equation for capacitance:  𝑄𝑄𝑚𝑚 = 𝐶𝐶Δ𝑉𝑉𝑚𝑚.  Divide both sides of the equation by 𝐶𝐶. 

Δ𝑉𝑉𝑚𝑚 =
𝑄𝑄𝑚𝑚
𝐶𝐶

=
24 × 10−6

3 × 10−6
= 8.0 V 

Recall that the metric prefix micro (µ) stands for 10−6.  It cancels out here.  The initial 
potential difference across the capacitor is Δ𝑉𝑉𝑚𝑚 = 8.0 V. 
(B) What is the initial current? 
The current begins at its maximum value.  Apply Ohm’s law:  Δ𝑉𝑉𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑅𝑅.  Divide by 𝑅𝑅. 

𝐼𝐼𝑚𝑚 =
Δ𝑉𝑉𝑚𝑚
𝑅𝑅

=
8
4

= 2.0 A 

The initial current is 𝐼𝐼𝑚𝑚 = 2.0 A. 
(C) What is the time constant for the circuit? 
Use the equation for time constant involving resistance and capacitance. 

𝜏𝜏 = 𝑅𝑅𝐶𝐶 = (4)(3 × 10−6) = 12 × 10−6 s = 12 µs 
The time constant is 𝜏𝜏 = 12 µs, which can be expressed as 12 × 10−6 s or 1.2 × 10−5 s. 
(D) How long will it take for the capacitor to have one-half of its initial charge? 
Solve for the half-life. 

𝑡𝑡½ = 𝜏𝜏 ln(2) = 12 ln(2)  µs 
The half-life is 𝑡𝑡½ = 12 ln(2)  µs.  If you use a calculator, it’s 𝑡𝑡½ = 8.3 µs. 
 
Example:  A capacitor discharges while connected in series with a 50-kΩ resistor.  The 
current drops from its initial value of 4.0 A down to 2.0 A after 500 ms.  What is the 
capacitance of the capacitor? 
 
The “trick” to this problem is to realize that 500 ms is the half-life because the current has 
dropped to one-half of its initial value.  Convert ms to s and convert kΩ to Ω. 

𝑡𝑡½ = 500 ms = 0.500 s =
1
2

 s 

𝑅𝑅 = 50 kΩ = 50,000 Ω = 5.0 × 104 Ω 
Find the time constant from the half-life.  Divide by ln(2) in the equation 𝜏𝜏 ln(2) = 𝑡𝑡½. 

𝜏𝜏 =
𝑡𝑡½

ln(2) =
1

2 ln (2)
 

Now use the other equation for time constant:  𝜏𝜏 = 𝑅𝑅𝐶𝐶.  Divide both sides by 𝑅𝑅. 

𝐶𝐶 =
𝜏𝜏
𝑅𝑅

= �
1

2 ln(2)� �
1

5.0 × 104
� =

1
10 × 104 ln(2)

=
1

105 ln (2)
=

10−5

ln(2)  F 

The capacitance is 𝐶𝐶 = 10−5

ln(2)  F.  If you use a calculator, it is 𝐶𝐶 = 14 µF, which is the same as 

14 × 10−6 F or 1.4 × 10−5 F.  
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Example:  Prove that 𝑡𝑡½ = 𝜏𝜏 ln(2) for a discharging capacitor. 
Start with the equation for charge. 

𝑄𝑄 = 𝑄𝑄𝑚𝑚𝑒𝑒−𝑡𝑡/𝜏𝜏 
The above equation is true for any time 𝑡𝑡.  When the time happens to equal one-half life, the 
charge will equal 𝑄𝑄𝑚𝑚

2
, one-half of its maximum value.  (That’s what the definition of half-life 

states.)  Plug in 𝑄𝑄𝑚𝑚
2

 for 𝑄𝑄 and 𝑡𝑡½ for 𝑡𝑡. 
𝑄𝑄𝑚𝑚
2

= 𝑄𝑄𝑚𝑚𝑒𝑒−𝑡𝑡½/𝜏𝜏 

Divide both sides of the equation by 𝑄𝑄𝑚𝑚.  It will cancel. 
1
2

= 𝑒𝑒−𝑡𝑡½/𝜏𝜏 

Take the natural log of both sides of the equation. 

ln �
1
2
� = ln�𝑒𝑒−𝑡𝑡½/𝜏𝜏� 

Recall from Chapter 15 that ln(𝑒𝑒𝑥𝑥) = 𝑥𝑥. 

ln �
1
2
� = −𝑡𝑡½/𝜏𝜏 

Recall from Chapter 15 that ln �1
𝑥𝑥
� = −ln (𝑥𝑥). 

− ln(2) = −𝑡𝑡½/𝜏𝜏 
Multiply both sides of the equation by – 𝜏𝜏 

𝜏𝜏 ln(2) = 𝑡𝑡½ 
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41.  A 5.0-µF capacitor with an initial charge of 60 µC discharges while connected in series 
with a 20-kΩ resistor. 
 
(A) What is the initial potential difference across the capacitor? 
 
 
 
 
 
 
 
 
 
(B) What is the initial current? 
 
 
 
 
 
 
 
 
 
(C) What is the half-life? 
 
 
 
 
 
 
 
 
 
(D) How much charge is stored on the capacitor after 0.20 s? 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answers:  12 V, 0.60 mA, ln(2)
10

 s (or 0.069 s), 60
𝑒𝑒2

 µC (or 8.1 µC) 
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42.  A 4.0-µF capacitor discharges while connected in series with a resistor.  The current 
drops from its initial value of 6.0 A down to 3.0 A after 200 ms. 
 
(A) What is the time constant? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(B) What is the resistance of the resistor? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answers:  1
5 ln (2)

 s (or 0.29 s), 50
ln (2)

 kΩ (or 72 kΩ) 
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17 BAR MAGNETS 

Relevant Terminology 

Magnetic field – a magnetic effect created by a moving charge (or current). 

Essential Concepts 

A bar magnet creates magnetic field lines and interacts with other magnets in such a way 
that it appears to have well-defined north and south poles. 

• Like magnetic poles repel.  For example, the north pole of one magnet repels the 
north pole of another magnet. 

• Opposite magnetic poles attract.  The north pole of one magnet attracts the south 
pole of another magnet. 

The magnetic field lines outside of a bar magnet closely resemble the electric field lines of 
the electric dipole (Chapter 4).  (Inside the magnet is much different.) 

 
It’s worth studying the magnetic field lines illustrated above. 

• The magnetic field lines exit the north end of the magnet and enter the south end of 
the magnet.

• In between the north and south poles, the magnetic field lines run from north to 
south.  However, note that in the above diagram the magnetic field lines run the 
opposite direction in the other two regions. 

o Left of the north pole, the magnetic field lines are headed to the left. 
o Right of the south pole, the magnetic field lines are also headed to the left. 
o However, between the two poles, the magnetic field lines run to the right. 

 
Important Distinction 

Magnets have north and south poles, whereas positive and negative charges create electric 
fields.  It’s improper to use the term “charge” to refer to a magnetic pole, or to use the 
adjectives “positive” or “negative” to describe a magnetic pole.  

N S 
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How Does a Magnet Work? 

Moving charges create magnetic fields.  Atoms consist of protons, neutrons, and electrons.  
Protons and electrons have electric charge.*  Each atom has its own tiny magnetic field due 
to the motions† of its charges.  Most macroscopic materials are nonmagnetic because their 
atomic magnetic fields are randomly aligned, such that on average their magnetic fields 
cancel out.  A magnet is a material where the atomic magnetic fields are at least partially 
aligned, creating a significant net magnetic field. 

 
If you break a magnet in half, you don’t get two chunks that each have a single magnetic 
pole.  Instead, you get two smaller magnets, each with their own north and south poles. 
 
Symbols and SI Units

Symbol Name SI Units 

 magnetic field T 

               
* Although neutrons are electrically neutral, they are composed of fractionally charged particles called quarks.  
Those quarks actually create magnetic fields which give the neutron a magnetic field.  So even though the 
neutron is electrically neutral, it still creates a magnetic field.  However, we’ll focus on protons and electrons.  
If you see a question in a physics course asking about the magnetic field made by a neutron, the answer is 
probably “zero” (if your class ignores quarks).  The main idea is that a moving charge creates a magnetic field. 
† Technically, even a stationary electron or proton creates a magnetic field due to an intrinsic property called 
spin.  Electrons have both orbital and spin angular momentum.  (The earth has orbital angular momentum 
from its annual revolution around the sun and the earth also has spin angular momentum from its daily 
rotation about its axis.  We can measure two similar kinds of angular momentum for an electron, except that 
unlike the earth, electrons are evidently pointlike.  How can a “point” spin?  Good question.  That’s why we 
say that the spin angular momentum of an electron is an intrinsic property.)  Both kinds of angular 
momentum give charged particles magnetic fields.  If you see a question in a physics course asking you which 
kinds of particles create magnetic fields, the correct answer is probably “moving charges.”  The main idea is 
that moving charges create magnetic fields. 

N 

S
S 

N 

S 

N 

S 

N 
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How Does a Compass Work? 

A compass needle is a tiny bar magnet.  The earth behaves like a giant magnet with its 
magnetic south pole near geographic north.  The north end of a compass needle is attracted 
to the magnetic south pole of the earth (since opposite magnetic poles attract). 

 
 
Strategy to Determine the Direction of the Magnetic Field of a Bar Magnet 

If you’re given a bar magnet and want to determine the direction of the magnetic field at a 
specified point: 

• First sketch the magnetic field lines that the bar magnet creates.  Study the diagram 
on page 179 to aid with this.  Remember that magnetic field lines leave the north 
end of the magnet and enter the south end of the magnet. 

• One of the magnetic field lines will pass through the specified point.  (If you draw 
enough magnetic field lines in your diagram, at least one will come near the 
specified point.)  What is the direction of the magnetic field line when it passes 
through the specified point?  That’s the answer to the question. 

Example:  Sketch the magnetic field at points A, B, and C for the magnet shown below. 
 
Sketch the magnetic field lines by rotating the 
diagram on page 179.  The magnetic field points 
up ( ) at point A, up ( ) at point B, and down ( ) 
at point C. 
 
 
  

Image of earth from NASA.

N 

Image of earth from NASA.
S 

N 

S 

A

B 

C 

N 

S

A 

B

C 
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43.  Sketch the magnetic field at the points indicated in each diagram below. 
 
(A)           (B) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(C)           (D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Want help?  This problem is fully sketched in the back of the book.

N
 S 

B 

A 

C 
N 

S 

F 

D 

E 

N 

S 

G 

I

H 

J 

L 

K 
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18 RIGHT-HAND RULE FOR MAGNETIC FORCE 

Relevant Terminology 

Electric charge – a fundamental property of a particle that causes the particle to experience 
a force in the presence of an electric field.  (An electrically neutral particle has no charge 
and thus experiences no force in the presence of an electric field.) 
Velocity – a combination of speed and direction. 
Current – the instantaneous rate of flow of charge through a wire. 
Magnetic field – a magnetic effect created by a moving charge (or current). 
Magnetic force – the push or pull that a moving charge (or current) experiences in the 
presence of a magnetic field. 

Essential Concepts 

A moving charge (or current-carrying wire) in the presence of an external magnetic field 
( ) experiences a magnetic force ( 𝑚𝑚).  The direction of the magnetic force is non-obvious:  
It’s not along the magnetic field, and it’s not along the velocity (or current).  Fortunately, 
the following right-hand rule correctly provides the direction of the magnetic force.

To find the direction of the magnetic force ( 𝑚𝑚) exerted on a moving charge (or current-
carrying wire) in the presence of an external magnetic field ( ): 

• Point the extended fingers of your right hand along the velocity ( ) or current ( ). 
• Rotate your forearm until your palm faces the magnetic field ( ), meaning that your 

palm will be perpendicular to the magnetic field. 
• When your right-hand is simultaneously doing both of the first two steps, your 

extended thumb will point along the magnetic force ( 𝑚𝑚). 
• As a check, if your fingers are pointing toward the velocity ( ) or current ( ) while 

your thumb points along the magnetic force ( 𝑚𝑚), if you then bend your fingers as 
shown below, your fingers should now point along the magnetic field ( ). 

 
 (out) 

 

 or  
 

 (out) 
 

 or  
 

𝑚𝑚 
 
 

𝑚𝑚 
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Important Exception 

If the velocity (𝒗𝒗��⃗ ) or current (𝐼𝐼) is parallel or anti-parallel to the magnetic field (𝐁𝐁��⃗ ), the 
magnetic force (�⃗�𝐅𝑚𝑚) is zero.  In Chapter 21, we’ll learn that in these two extreme cases, 
𝜃𝜃 = 0° or 180° such that sin𝜃𝜃 = 0. 
 
Symbols and SI Units 

Symbol Name SI Units 

𝐁𝐁��⃗  magnetic field T 

�⃗�𝐅𝑚𝑚 magnetic force N 

𝒗𝒗��⃗  velocity m/s 

𝐼𝐼 current A 

 
Special Symbols 

Symbol Name 

⊗ into the page 

⊙ out of the page 

𝑝𝑝 proton 

𝑛𝑛 neutron 

𝑒𝑒− electron 

N north pole 

S south pole 

 
Protons, Neutrons, and Electrons 

• Protons have positive electric charge. 
• Neutrons are electrically neutral. 
• Electrons have negative electric charge. 
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Strategy to Apply the Right-hand Rule for Magnetic Force 

Note the meaning of the following symbols: 
• The symbol ⊗ represents an arrow going into the page. 
• The symbol ⊙ represents an arrow coming out of the page. 

There are a variety of problems that involve right-hand rules: 
• If there is a magnet in the problem, first sketch the magnetic field (𝐁𝐁��⃗ ) lines for the 

magnet as described in Chapter 17.  This will help you find the direction of 𝐁𝐁��⃗ . 
• To find the direction of the magnetic force (�⃗�𝐅𝑚𝑚) exerted on a moving charge (or 

current-carrying wire) in the presence of an external magnetic field (𝐁𝐁��⃗ ):* 
o Note:  If the velocity (𝒗𝒗��⃗ ) or current (𝐼𝐼) happens to be parallel or anti-parallel 

to the magnetic field (𝐁𝐁��⃗ ), the magnetic force (�⃗�𝐅𝑚𝑚) is zero.  Stop here. 
o Point the fingers of your right hand along the velocity (𝒗𝒗��⃗ ) or current (𝐼𝐼). 
o Rotate your forearm until your palm faces the magnetic field (𝐁𝐁��⃗ ). 
o Make sure that you are doing both of the first two steps simultaneously. 
o Your extended thumb is pointing along the magnetic force (�⃗�𝐅𝑚𝑚). 
o Note:  For a negative charge (like an electron), the answer is backwards. 

• If you already know the direction of �⃗�𝐅𝑚𝑚 and either 𝒗𝒗��⃗  or 𝐼𝐼, and are instead looking for 
magnetic field (𝐁𝐁��⃗ ), point your fingers along 𝒗𝒗��⃗  or 𝐼𝐼, point your thumb along �⃗�𝐅𝑚𝑚, and 
your palm will face 𝐁𝐁��⃗ . 

• If you already know the direction of �⃗�𝐅𝑚𝑚 and 𝐁𝐁��⃗ , and are instead looking for 𝒗𝒗��⃗  or 𝐼𝐼, face 
your palm toward 𝐁𝐁��⃗ , point your thumb along �⃗�𝐅𝑚𝑚, and your fingers will point toward 
𝒗𝒗��⃗  or 𝐼𝐼. 

• If a loop of wire is in the presence of a magnetic field (𝐁𝐁��⃗ ) and a question asks you 
about the loop rotating (or expanding or contracting), first apply the right-hand rule 
to find the direction of the magnetic force (�⃗�𝐅𝑚𝑚) exerted on each part of the wire. 

• If a problem involves a charge traveling in a circle, apply the right-hand rule at a 
point in the circle.  The magnetic force (�⃗�𝐅𝑚𝑚) will point toward the center of the circle 
because a centripetal force causes an object to travel in a circle. 

• If you don’t know the direction of �⃗�𝐅𝑚𝑚 and you’re not looking for the direction of �⃗�𝐅𝑚𝑚, 
use the right-hand rule from Chapter 19 instead. 

• To find the direction of the magnetic field (𝐁𝐁��⃗ ) created by a moving charge or 
current-carrying wire, apply the right-hand rule from Chapter 19. 

• To find the force that one wire (or moving charge) exerts on another wire (or 
moving charge), apply the strategy from Chapter 20. 

                                                        
* Unfortunately, not all textbooks apply this right-hand rule the same way, though the other versions of this 
right-hand rule are equivalent to this one.  Thus, if you read another book, it may teach this rule differently. 
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Example:  What is the direction of the magnetic force exerted on the current shown below? 

 
Apply the right-hand rule for magnetic force: 

• Point your fingers up ( ), along the current ( ). 
• At the same time, face your palm to the left ( ), along the magnetic field ( ). 
• If your fingers point up ( ) at the same time as your palm faces left ( ), your thumb 

will be pointing out of the page ( ).  Tip:  Make sure you’re using your right hand.† 
• Your thumb is the answer:  The magnetic force ( 𝑚𝑚) is out of the page ( ). 
• Note:  The symbol  represents an arrow pointing out of the page. 

Example:  What is the direction of the magnetic force exerted on the proton shown below? 

 
Apply the right-hand rule for magnetic force: 

• Point your fingers left ( ), along the velocity ( ) of the proton ( ). 
• At the same time, face your palm into the page ( ), along the magnetic field ( ). 
• Your thumb points down:  The magnetic force ( 𝑚𝑚) is down ( ). 

Example:  What is the direction of the magnetic force exerted on the current shown below? 

 
               

† This should seem obvious, right?  But guess what:  If you’re right-handed, when you’re taking a test, your 
right hand is busy writing, so it’s instinctive to want to use your free hand, which is the wrong one. 

 

 

   

   

   

   

  

 

 

N
 S 
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First, sketch the magnetic field lines for the bar magnet (recall Chapter 17). 

 
The dashed line in the diagram above shows the location of the current.  On average, what 
is the direction of the magnetic field ( ) lines where the dashed line (current) is?  Where 
the current is located, the magnetic field lines point to the left on average.  Now we are 
prepared to apply the right-hand rule for magnetic force: 

• Point your fingers up ( ), along the current ( ). 
• At the same time, face your palm to the left ( ), along the magnetic field ( ). 
• Your thumb points out of the page:  The magnetic force ( 𝑚𝑚) is out of the page ( ). 

Example:  What is the direction of the magnetic force exerted on the electron shown below? 

 
Apply the right-hand rule for magnetic force: 

• Point your fingers into the page ( ), along the velocity ( ) of the electron (𝑒𝑒−). 
• At the same time, face your palm up ( ), along the magnetic field ( ). 
• Your thumb points to the right ( ).  However, electrons are negatively charged, so 

the answer is backwards for electrons. 
• Therefore, the magnetic force ( 𝑚𝑚) is to the left ( ). 

Example:  What is the direction of the magnetic field for the situation shown below, 
assuming that the magnetic field is perpendicular‡ to the current? 

 

               
‡ The magnetic force is always perpendicular to both the current and the magnetic field, but the current and 
magnetic field need not be perpendicular.  We will work with the angle between  and  in Chapter 21. 

N
 S 

 

𝑒𝑒− 
 

 

𝑚𝑚 
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Invert the right-hand rule for magnetic force.  In this example, we already know the 
direction of 𝑚𝑚, and are instead solving for the direction of . 

• Point your fingers to the left ( ), along the current ( ). 
• At the same time, point your thumb (it’s not your palm in this example) out of the 

page ( ), along the magnetic force ( 𝑚𝑚). 
• Your palm faces down:  The magnetic field ( ) is down ( ). 

 
Check your answer by applying the right-hand rule the usual way.  Look at the diagram 
above.  Point your fingers to the left ( ), along , and face your palm down ( ), along .  
Your thumb will point out of the page ( ), along 𝑚𝑚.  It all checks out. 

Example:  What is the direction of the magnetic force exerted on the current shown below? 

 
This is a “trick” question.  Well, it’s an “easy” question when you remember the trick.  See 
the note in the strategy on page 185:  In this example, the current ( ) is anti-parallel to the 
magnetic field ( ).  Therefore, the magnetic force ( 𝑚𝑚) is zero (and thus has no direction). 

Example:  What must be the direction of the magnetic field in order for the proton to travel 
in the circle shown below? 
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In Volume 1 of this series, we learned that an object traveling in a circle experiences a 
centripetal force.  This means that the magnetic force ( 𝑚𝑚) must be pushing on the proton 
towards the center of the circle.  See the diagram on the left below:  For the position 
indicated, the velocity ( ) is down (along a tangent) and the magnetic force ( 𝑚𝑚) is to the 
left (toward the center).  Invert the right-hand rule to find the magnetic field.

• Point your fingers down ( ), along the velocity ( ). 
• At the same time, point your thumb (it’s not your palm in this example) to the left 

( ), along the magnetic force ( 𝑚𝑚). 
• Your palm faces out of the page:  The magnetic field ( ) is out of the page ( ). 

 
Example:  Would the rectangular loop shown below tend to rotate, contract, or expand? 

  
First, apply the right-hand rule for magnetic force to each side of the rectangular loop: 

• Left side:  Point your fingers down ( ) along the current ( ) and your palm to the 
right ( ) along the magnetic field ( ).  The magnetic force ( 𝑚𝑚) is out of the page 
( ). 

• Bottom side:  The current ( ) points right ( ) and the magnetic field ( ) also points 
right ( ).  Since and  are parallel, the magnetic force ( 𝑚𝑚) is zero. 

• Right side:  Point your fingers up ( ) along the current ( ) and your palm to the right 
( ) along the magnetic field ( ).  The magnetic force ( 𝑚𝑚) is into the page ( ). 

• Top side:  The current ( ) points left ( ) and the magnetic field ( ) points right ( ).  
Since  and  are anti-parallel, the magnetic force ( 𝑚𝑚) is zero. 

We drew these forces on the diagram on the right above.  The left side of the loop is pulled 
out of the page, while the right side of the loop is pushed into the page.  What will happen?  
The loop will rotate about the dashed axis. 

𝑚𝑚  

 

    

    

    

    

 

 

 

  
𝑛𝑛 = 0 

𝑏𝑏 𝑛𝑛 = 0 

𝑒𝑒 𝑛𝑛 =  𝑔𝑔 𝑛𝑛 =  
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44.  Apply the right-hand rule for magnetic force to answer each question below. 

(A) What is the direction of the magnetic (B) What is the direction of the magnetic 
force exerted on the current?  force exerted on the proton? 

(C) What is the direction of the magnetic (D) What is the direction of the magnetic 
force exerted on the current?  force exerted on the electron? 

(E) What is the direction of the magnetic      (F) What is the direction of the magnetic 
force exerted on the proton?       field, assuming that the magnetic field is 
           perpendicular to the current? 
 
 
 
 
 
 
 
 

Want help?  The problems from Chapter 18 are fully solved in the back of the book.
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45.  Apply the right-hand rule for magnetic force to answer each question below. 

(A) What is the direction of the magnetic (B) What is the direction of the magnetic 
force exerted on the proton? force exerted on the current? 

(C) What is the direction of the magnetic (D) What is the direction of the magnetic 
force exerted on the current?  force exerted on the proton? 

(E) What is the direction of the magnetic      (F) What is the direction of the magnetic 
force exerted on the electron?       field, assuming that the magnetic field is 
           perpendicular to the current? 
 
 
 
 
 
 
 
 

Want help?  The problems from Chapter 18 are fully solved in the back of the book.
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46.  Apply the right-hand rule for magnetic force to answer each question below. 

(A) What is the direction of the magnetic (B) What is the direction of the magnetic 
force exerted on the current?  force exerted on the electron? 

(C) What must be the direction of the (D) What must be the direction of the 
magnetic field in order for the proton to magnetic field in order for the electron to 
travel in the circle shown below? travel in the circle shown below? 

(E) Would the rectangular loop tend to (F) Would the rectangular loop tend to 
rotate, expand, or contract? rotate, expand, or contract? 

Want help?  The problems from Chapter 18 are fully solved in the back of the book.

𝑒𝑒−𝑒𝑒

N
 S 
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19 RIGHT-HAND RULE FOR MAGNETIC FIELD 

Relevant Terminology 

Current – the instantaneous rate of flow of charge through a wire. 
Magnetic field – a magnetic effect created by a moving charge (or current). 
Solenoid – a coil of wire in the shape of a right-circular cylinder. 

Essential Concepts 

A long straight wire creates magnetic field lines that circulate around the current, as shown 
below. 

 
We use a right-hand rule (different from the right-hand rule that we learned in Chapter 18) 
to determine which way the magnetic field lines circulate.  This right-hand rule gives you 
the direction of the magnetic field ( ) created by a current ( ) or moving charge: 

• Imagine grabbing the wire with your right hand.  Tip:  You can use a pencil to 
represent the wire and actually grab the pencil. 

• Grab the wire with your thumb pointing along the current ( ). 
• Your fingers represent circular magnetic field lines traveling around the wire 

toward your fingertips.  At a given point, the direction of the magnetic field is tangent
to these circles (your fingers). 

 

 

 

thumb points along current 

magnetic field 
lines 
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Important Distinction 

There are two different right-hand rules used in magnetism: 
• One right-hand rule is used to find the direction of the magnetic force ( 𝑚𝑚) exerted 

on a current or moving charge in the presence of an external magnetic field ( ).  We 
discussed that right-hand rule in Chapter 18. 

• A second right-hand rule is used to find the direction of the magnetic field ( ) 
created by a current or moving charge.  This is the subject of the current chapter.  
Note that this right-hand rule does not involve magnetic force ( 𝑚𝑚). 

Symbols and SI Units 

Symbol Name SI Units 

 magnetic field T 

 current A 

Special Symbols 

Symbol Name 

 into the page 

 out of the page 

Schematic Symbols 

Schematic Representation Symbol Name 

 𝑅𝑅 resistor 

  battery or DC power supply 

Recall that the long line represents the positive terminal, while the small rectangle 
represents the negative terminal.  Current runs from positive to negative.  
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Strategy to Apply the Right-hand Rule for Magnetic Field 

Note the meaning of the following symbols: 
• The symbol  represents an arrow going into the page. 
• The symbol  represents an arrow coming out of the page. 

If there is a battery in the diagram, label the positive and negative terminals of each battery 
(or DC power supply).  The long line of the schematic symbol represents the positive 
terminal, as shown below.  Draw the conventional* current the way that positive charges 
would flow:  from the positive terminal to the negative terminal. 

 
There are a variety of problems that involve right-hand rules: 

• To find the direction of the magnetic field ( ) at a specified point that is created by a 
current ( ) or moving charge: 

o Grab the wire with your thumb pointing along the current ( ), with your 
fingers wrapped in circles around the wire. 

o Your fingers represent circular magnetic field lines traveling around the wire 
toward your fingertips.  At a given point, the direction of the magnetic field is 
tangent to these circles (your fingers). 

o Note:  For a negative charge (like an electron), the answer is backwards. 
• If you already know the direction of the magnetic field ( ) and are instead looking 

for the current ( ), invert the right-hand rule for magnetic field as follows: 
o Grab the wire with your fingers wrapped in circles around the wire such that 

your fingers match the magnetic field at the specified point.  Your fingers 
represent circular magnetic field lines traveling around the wire toward your 
fingertips.  The direction of the magnetic field is tangent to these circles. 

o Your thumb represents the direction of the current along the wire. 
o Note:  For a negative charge (like an electron), the answer is backwards. 

• If the problem involves magnetic force ( 𝑚𝑚), use the strategy from Chapter 18 or 20: 
o To find the direction of the magnetic force exerted on a current-carrying wire 

(or moving charge) in the presence of an external magnetic field, apply the 
strategy from Chapter 18. 

o To find the force that one wire (or moving charge) exerts on another wire (or 
moving charge), apply the strategy from Chapter 20.  The strategy from 
Chapter 20 combines the two right-hand rules from Chapters 18 and 19. 

               
* Of course, it’s really the electrons moving through the wire, not positive charges.  However, all of the signs in 
physics are based on positive charges, so it’s “conventional” to draw the current based on what a positive 
charge would do.  Remember, all the rules are backwards for electrons, due to the negative charge. 

 

+ − 
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Example:  What is the direction of the magnetic field at points A and C for the current 
shown below? 

Apply the right-hand rule for magnetic field: 
• Grab the current with your thumb pointing to the right ( ), along the current ( ). 
• Your fingers make circles around the wire (toward your fingertips), as shown in the 

diagram below on the left. 
• The magnetic field ( ) at a specified point is tangent to these circles, as shown in the 

diagram below on the right.  Try to visualize the circles that your fingers make:  
Above the wire, your fingers are coming out of the page, while below the wire, your 
fingers are going back into the page.  (Note that in order to truly “grab” the wire, 
your fingers would actually go “through” the page, with part of your fingers on each 
side of the page.  Your fingers would intersect the paper above the wire, where they 
are headed out of the page, and also intersect the paper below the wire, where they 
are headed back into the page.)   At point A the magnetic field ( ) points out of the 
page ( ), while at point C the magnetic field ( ) points into the page ( ). 

• It may help to study the diagram on the top of page 193 and compare it with the 
diagrams shown below.  These are actually all the same pictures. 

 

Example:  What is the direction of the magnetic field at points D and E for the current 
shown below? 

 

A 

C 

A 

C 

 

 
 

 

 

 

 

D 

E  
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Apply the right-hand rule for magnetic field: 
• Grab the current with your thumb pointing out of the page ( ), along the current 

( ). 
• Your fingers make counterclockwise (use the right-hand rule to see this) circles 

around the wire (toward your fingertips), as shown in the diagram below on the left. 
• The magnetic field ( ) at a specified point is tangent to these circles, as shown in the 

diagram below on the right.  Draw tangent lines at points D and E with the arrows 
headed counterclockwise.  See the diagram below on the right. At point D the 
magnetic field ( ) points to the left ( ), while at point E the magnetic field ( ) 
points up ( ).

 

Example:  What is the direction of the magnetic field at points F and G for the current 
shown below? 

Apply the right-hand rule for magnetic field: 
• Imagine grabbing the steering wheel of a car with your right hand, such that your 

thumb points counterclockwise (since that’s how the current is drawn above).  No 
matter where you grab the steering wheel, your fingers are coming out of the page 
( ) at point F.  The magnetic field ( 𝐹𝐹) points out of the page ( ) at point F. 

• For point G, grab the steering wheel at the rightmost point (that point is nearest to 
point G, so it will have the dominant effect).  Your fingers are going into of the page 
( ) at point G.  The magnetic field ( ) points into the page ( ) at point G. 

 
Tip:  The magnetic field outside of the loop is opposite to its direction inside the loop.

D 

E   

 

   

 

F G 

 

 

𝐹𝐹   
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Example:  What is the direction of the magnetic field at point H for the loop shown below? 

First label the positive (+) and negative (−) terminals of the battery (the long line is the 
positive terminal) and draw the current from the positive terminal to the negative 
terminal.  See the diagram below on the left.  Then apply the right-hand rule for magnetic 
field.  It turns out to be identical to point F in the previous example, since again the current 
is traveling through the loop in a counterclockwise path.  The magnetic field ( 𝐹𝐹) points out 
of the page ( ) at point H. 

 

Example:  What is the direction of the magnetic field at point J for the loop shown below?

 
Note that this loop (unlike the two previous examples) does not lie in the plane of the 
paper.  Rather, this loop is a horizontal circle with the solid (—) semicircle in front of the 
paper and the dashed (---) semicircle behind the paper.  It’s like the rim of a basketball 
hoop.  Apply the right-hand rule for magnetic field: 

• Imagine grabbing the front of the rim of a basketball hoop with your right hand, 
such that your thumb points to your right (since in the diagram above, the current is 
heading to the right in the front of the loop). 

• Your fingers are going up ( ) at point J inside of the loop.  The magnetic field ( ) 
points up ( ) at point J. 

 

𝑅𝑅 

H 

𝑅𝑅 

 
+ − 

 
H 

𝑅𝑅 

 
+ − 

 
  

 
J 

 
J 

 

www.engineersreferencebookspdf.com



Essential Trig-based Physics Study Guide Workbook 

199 
 

Example:  What is the direction of the magnetic field inside the solenoid shown below?

A solenoid is a coil of wire wrapped in the shape of a right-circular cylinder.  The solenoid 
above essentially consists of several (approximately) horizontal loops.  Each horizontal 
loop is just like the previous example.  Note that the current ( ) is heading the same way (it 
is pointing to the right in the front of each loop).  Therefore, just as in the previous 
example, the magnetic field ( ) points up ( ) inside of the solenoid. 
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47.  Determine the direction of the magnetic field at each point indicated below. 
 
(A)      (B)        (C) 
 
 
 
 
 
 
 
 
 
 
 
(D)      (E)        (F) 
 
 
 
 
 
 
 
 
 
 
 
(G)      (H)        (I) 
 
 
 
 
 
 
 
 
 
 

Want help?  This problem is fully solved in the back of the book.

 

R 

A C 

 

  D 

E 

F 
 

H J G 
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𝑅𝑅 
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20 COMBINING THE TWO RIGHT-HAND RULES 

Relevant Terminology 

Electric charge – a fundamental property of a particle that causes the particle to experience 
a force in the presence of an electric field.  (An electrically neutral particle has no charge 
and thus experiences no force in the presence of an electric field.) 
Velocity – a combination of speed and direction. 
Current – the instantaneous rate of flow of charge through a wire. 
Magnetic field – a magnetic effect created by a moving charge (or current). 
Magnetic force – the push or pull that a moving charge (or current) experiences in the 
presence of a magnetic field. 
Solenoid – a coil of wire in the shape of a right-circular cylinder. 

Essential Concepts 

To find the magnetic force that one current-carrying wire (call it 𝑎𝑎) exerts on another 
current-carrying wire (call it 𝑏𝑏), apply both right-hand rules in combination.  In this 
example, we’re thinking of 𝑎𝑎 as exerting the force and 𝑏𝑏 as being pushed or pulled by the 
force.  (Of course, it’s mutual:  𝑎𝑎 exerts a force on 𝑏𝑏, and 𝑏𝑏 also exerts a force on 𝑎𝑎.  
However, we will calculate just one force at a time.  So for the purposes of the calculation, 
let’s consider the force that 𝑎𝑎 exerts on 𝑏𝑏.) 

• First find the direction of the magnetic field ( 𝑎𝑎) created by the current ( 𝑎𝑎), which 
we’re thinking of as exerting the force, at the location of the second current ( 𝑏𝑏).  Put 
the field point () on 𝑏𝑏 and ask yourself, “What is the direction of 𝑎𝑎 at the ?”  
Apply the right-hand rule for magnetic field (Chapter 19) to find 𝑎𝑎 from 𝑎𝑎. 

• Now find the direction of the magnetic force ( 𝑎𝑎) that the first current ( 𝑎𝑎) exerts on 
the second current ( 𝑏𝑏).  Apply the right-hand rule for magnetic force (Chapter 18) 
to find 𝑎𝑎 from 𝑏𝑏 and 𝑎𝑎.  In this step, we use the second current ( 𝑏𝑏) because that is 
the current we’re thinking of as being pushed or pulled by the force. 

• Note that both currents get used:  The first current ( 𝑎𝑎), which we’re thinking of as 
exerting the force, is used in the first step to find the magnetic field ( 𝑎𝑎), and the 
second current ( 𝑏𝑏), which we’re thinking of as being pushed or pulled by the force, 
is used in the second step to find the magnetic force ( 𝑎𝑎). 

  

𝑎𝑎 
 

𝑏𝑏 
 field 

point 
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Symbols and SI Units 

Symbol Name SI Units 

 magnetic field T 

𝑚𝑚 magnetic force N 

 velocity m/s 

 current A 

Special Symbols 

Symbol Name 

 into the page 

 out of the page 

 proton 

 neutron 

𝑒𝑒− electron 

Schematic Symbols 

Schematic Representation Symbol Name 

 𝑅𝑅 resistor 

 battery or DC power supply 

Recall that the long line represents the positive terminal.  
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Strategy to Find the Direction of the Magnetic Force that Is Exerted by One 
Current on Another Current 

Note the meaning of the following symbols: 
• The symbol  represents an arrow going into the page. 
• The symbol  represents an arrow coming out of the page. 

If there is a battery in the diagram, label the positive and negative terminals of each battery 
(or DC power supply).  The long line of the schematic symbol represents the positive 
terminal, as shown below.  Draw the conventional current the way that positive charges 
would flow:  from the positive terminal to the negative terminal. 

 
To find the magnetic force that one current-carrying wire exerts on another current-
carrying wire, follow these steps:  

1. Determine which current the problem is thinking of as exerting the force.  We call 
that 𝑎𝑎 below.  Determine which current the problem is thinking of as being pushed 
or pulled by the force.  We call that 𝑏𝑏 below.  (Note:  A current does not exert a net 
force on itself.  We will find the force that one current exerts on another.) 

2. Draw a field point () on 𝑏𝑏.  Apply the right-hand rule for magnetic field (Chapter 
19) to find the direction of the magnetic field ( 𝑎𝑎) that 𝑎𝑎 creates at the field point. 

3. Apply the right-hand rule for magnetic force (Chapter 18) to find the direction of the 
magnetic force ( 𝑎𝑎) exerted on 𝑏𝑏 in the presence of the magnetic field ( 𝑎𝑎). 

Example:  What is the direction of the magnetic force that the top current ( 1) exerts on the 
bottom current ( 2) in the diagram below? 

 
This problem is thinking of the magnetic force that is exerted by 1 and which is pushing or 
pulling 2.  We therefore draw a field point on 2, as shown below. 

 
Apply the right-hand rule for magnetic field (Chapter 19) to 1.  Grab 1 with your thumb 
along 1 and your fingers wrapped around 1.  What are your fingers doing at the field point 
()?  They are going into the page ( ) at the field point ().  The magnetic field ( 1) that 
1 makes at the field point () is into the page ( ). 

 

+ − 

1 
 

2 
 

1 
 

2 
 field point 
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Now apply the right-hand rule for magnetic force (Chapter 18) to 2.  Point your fingers to 
the right ( ), along 2.  At the same time, face your palm into the page ( ), along 1.  Your 
thumb points up ( ), along the magnetic force ( 1).  The top current ( 1) pulls the bottom 
current ( 2) upward ( ). 

Example:  What is the direction of the magnetic force that the bottom current ( 2) exerts on 
the top current ( 1) in the diagram below? 

 
This time, the problem is thinking of the magnetic force that is exerted by 2 and which is 
pushing or pulling 1.  We therefore draw a field point on 1, as shown below. 

 
Apply the right-hand rule for magnetic field (Chapter 19) to 2.  Grab 2 with your thumb 
along 2 and your fingers wrapped around 2.  What are your fingers doing at the field point 
()?  They are coming out of the page ( ) at the field point ().  The magnetic field ( 2) 
that 2 makes at the field point () is out of the page ( ). 

Now apply the right-hand rule for magnetic force (Chapter 18) to 1.  Point your fingers to 
the right ( ), along 1.  At the same time, face your palm out of the page ( ), along 2.  
Your thumb points down ( ), along the magnetic force ( 2).  The bottom current ( 2) pulls 
the top current ( 1) downward ( ). 

It is instructive to compare these two examples.  If you put them together, what you see is 
that two parallel currents attract.  If you apply the right-hand rules to anti-parallel currents, 
you will discover that two anti-parallel currents repel. 

Example:  What is the direction of the magnetic force that the top current ( 1) exerts on the 
bottom current ( 2) in the diagram below? 

 

1 
 

2 
 

1 
 

2 
 

field point 

1 
 

2 
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This problem is thinking of the magnetic force that is exerted by 1 and which is pushing or 
pulling 2.  We therefore draw a field point on 2, as shown below. 

 
Apply the right-hand rule for magnetic field (Chapter 19) to 1.  Grab 1 with your thumb 
along 1 and your fingers wrapped around 1.  What are your fingers doing at the field point 
()?  They are going into the page ( ) at the field point ().  The magnetic field ( 1) that 
1 makes at the field point () is into the page ( ). 

Now apply the right-hand rule for magnetic force (Chapter 18) to 2.  Point your fingers 
down ( ), along 2.  At the same time, face your palm into the page ( ), along 1.  Your 
thumb points to the right ( ), along the magnetic force ( 1).  The top current ( 1) pushes 
the bottom current ( 2) to the right ( ). 

Example:  What is the direction of the magnetic force that the outer current ( 1) exerts on 
the inner current ( 2) at point A in the diagram below? 

 
This problem is thinking of the magnetic force that is exerted by 1 and which is pushing or 
pulling 2.  In this example, the field point () is already marked as point A.  Apply the 
right-hand rule for magnetic field (Chapter 19) to 1.  Grab 1 with your thumb along 1 and 
your fingers wrapped around 1.  What are your fingers doing at point A ()?  They are 
coming out of the page ( ) at point A ().  The magnetic field ( 1) that 1 makes at the 
point A () is out of the page ( ). 

Now apply the right-hand rule for magnetic force (Chapter 18) to 2.  Do this at point A.  
Point your fingers to the right ( ) at point A (since 2 is heading to the right when it passes 
through point A).  At the same time, face your palm out of the page ( ), along 1.  Tip:  
Turn the book to make this more comfortable.  Your thumb points down ( ), along the 
magnetic force ( 1).  The top current ( 1) pulls the bottom current ( 2) down ( ) at point A. 

field point 

1 
 

2 
 

1 

2 

A 
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48.  Determine the direction of the magnetic force at the indicated point.  

(A) that 1 exerts on 2  (B) that 1 exerts on 2 (C) that 2 exerts on 1 
 
 
 
 
 
 
 
 
 
 
 
(D) that 1 exerts on 2 at A (E) that is exerted on 2 (F) that 1 exerts on 2 

(G) that 1 exerts on the  (H) that 1 exerts on 2 (I) that 1 exerts on 2 at C 

Want help?  This problem is fully solved in the back of the book.

1 

2 

1 2 
1 

2 

1

2 
A 

2 

𝑅𝑅 

 1 

2 2 

1

  
2 

 
1 1

 
C 

1 2 
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21 MAGNETIC FORCE 

Relevant Terminology 

Electric charge – a fundamental property of a particle that causes the particle to experience 
a force in the presence of an electric field.  (An electrically neutral particle has no charge 
and thus experiences no force in the presence of an electric field.) 
Velocity – a combination of speed and direction. 
Current – the instantaneous rate of flow of charge through a wire. 
Magnetic field – a magnetic effect created by a moving charge (or current). 
Magnetic force – the push or pull that a moving charge (or current) experiences in the 
presence of a magnetic field. 
 
Magnetic Force Equations 

A charge moving in the presence of an external magnetic field (𝐁𝐁��⃗ ) experiences a magnetic 
force (�⃗�𝐅𝑚𝑚) that involves the angle (𝜃𝜃) between velocity (𝒗𝒗��⃗ ) and the magnetic field. 

𝐹𝐹𝑚𝑚 = |𝑞𝑞|𝑣𝑣𝑣𝑣 sin𝜃𝜃 
A current consists of a stream of moving charges.  Thus, a current-carrying conductor 
similarly experiences a magnetic force in the presence of a magnetic field.  In the equation 
below, 𝐿𝐿 is the length of the wire in the direction of the current and 𝜃𝜃 is the angle between 
current and the magnetic field 

𝐹𝐹𝑚𝑚 = 𝐼𝐼𝐿𝐿𝑣𝑣 sin𝜃𝜃 
If a charged particle moves in a circle in a uniform magnetic field, apply Newton’s second 
law in the context of uniform circular motion, where ∑𝐹𝐹𝑖𝑖𝑖𝑖 represents the sum of the inward 
components of the forces and 𝑎𝑎𝑐𝑐 is the centripetal acceleration (discussed in Volume 1): 

�𝐹𝐹𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑎𝑎𝑐𝑐     ,     𝑎𝑎𝑐𝑐 =
𝑣𝑣2

𝑅𝑅
 

If you need to find the net torque exerted on a current loop with area 𝐴𝐴, use the following 
equation.  Recall that torque (𝜏𝜏) was discussed in Volume 1 of this series. 

𝜏𝜏𝑖𝑖𝑛𝑛𝑛𝑛 = 𝐼𝐼𝐴𝐴𝑣𝑣 sin𝜃𝜃 
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Essential Concepts 

Magnetic field is one of three kinds of fields that we have learned about: 
• Current (𝐼𝐼) or moving charge is the source of a magnetic field (𝐁𝐁��⃗ ). 
• Charge (𝑞𝑞) is the source of an electric field (𝐄𝐄�⃗ ). 
• Mass (𝑚𝑚) is the source of a gravitational field (𝐠𝐠�⃗ ). 

Source Field Force 

mass (𝑚𝑚) gravitational field (𝐠𝐠�⃗ ) 𝐹𝐹𝑔𝑔 = 𝑚𝑚𝑚𝑚 

charge (𝑞𝑞) electric field (𝐄𝐄�⃗ ) 𝐹𝐹𝑛𝑛 = |𝑞𝑞|𝐸𝐸 

current (𝐼𝐼) magnetic field (𝐁𝐁��⃗ ) 𝐹𝐹𝑚𝑚 = |𝑞𝑞|𝑣𝑣𝑣𝑣 sin𝜃𝜃 

 
Consider a few special cases of the equations 𝐹𝐹𝑚𝑚 = |𝑞𝑞|𝑣𝑣𝑣𝑣 sin𝜃𝜃 and 𝐹𝐹𝑚𝑚 = 𝐼𝐼𝐿𝐿𝑣𝑣 sin𝜃𝜃: 

• When the velocity (𝒗𝒗��⃗ ) or current (𝐼𝐼) is parallel to the magnetic field (𝐁𝐁��⃗ ), the angle is 
𝜃𝜃 = 0° and the magnetic force (�⃗�𝐅𝑚𝑚) is zero because sin 0° = 0. 

• When the velocity (𝒗𝒗��⃗ ) or current (𝐼𝐼) is anti-parallel to the magnetic field (𝐁𝐁��⃗ ), the 
angle is 𝜃𝜃 = 180° and the magnetic force (�⃗�𝐅𝑚𝑚) is zero because sin 180° = 0. 

• When the velocity (𝒗𝒗��⃗ ) or current (𝐼𝐼) is perpendicular to the magnetic field (𝐁𝐁��⃗ ), the 
angle is 𝜃𝜃 = 90° and the magnetic force (�⃗�𝐅𝑚𝑚) is maximum because sin 90° = 1. 

 
Magnetic field supplies a centripetal force:  Magnetic fields tend to cause moving charges to 
travel in circles.  A charged particle traveling in a uniform magnetic field for which no other 
forces are significant will experience one of the following types of motion: 

• The charge will travel in a straight line if 𝜃𝜃 = 0° or 𝜃𝜃 = 180°.  This is the case when 
the velocity (𝒗𝒗��⃗ ) is parallel or anti-parallel to the magnetic field (𝐁𝐁��⃗ ). 

• The charge will travel in a circle if 𝜃𝜃 = 90°.  This is the case when the velocity (𝒗𝒗��⃗ ) is 
perpendicular to the magnetic field (𝐁𝐁��⃗ ). 

• Otherwise, the charge will travel along a helix. 
 
The two equations 𝐹𝐹𝑚𝑚 = |𝑞𝑞|𝑣𝑣𝑣𝑣 sin𝜃𝜃 and 𝐹𝐹𝑚𝑚 = 𝐼𝐼𝐿𝐿𝑣𝑣 sin𝜃𝜃 correspond to the right-hand rule 
for magnetic force that we learned in Chapter 18.  The right-hand rule for magnetic force 
helps to visualize the direction of the magnetic force (�⃗�𝐅𝑚𝑚).  
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Recall the equation for torque (𝜏𝜏) from Volume 1 of this series, where 𝜃𝜃 in this equation is 
the angle between �⃗�𝐫 and �⃗�𝐅: 

𝜏𝜏 = 𝑟𝑟𝐹𝐹 sin𝜃𝜃 
When a magnetic field exerts a net torque on a rectangular current loop, the force is 
𝐹𝐹𝑚𝑚 = 𝐼𝐼𝐿𝐿𝑣𝑣 sin 𝜃𝜃.  There are two torques (one on each half of the loop), where 𝑟𝑟 is half the 
width of the loop:  𝑟𝑟 = 𝑊𝑊

2
.  The net torque is then 𝜏𝜏𝑖𝑖𝑛𝑛𝑛𝑛 = 𝜏𝜏1 + 𝜏𝜏2 = �𝑊𝑊

2
� (𝐼𝐼𝐿𝐿𝑣𝑣 sin𝜃𝜃) +

�𝑊𝑊
2
� (𝐼𝐼𝐿𝐿𝑣𝑣 sin𝜃𝜃) = 𝐼𝐼𝐿𝐿𝐼𝐼𝑣𝑣 sin 𝜃𝜃.  Note that 𝐴𝐴 = 𝐿𝐿𝐼𝐼 is the area of the loop, such that: 

𝜏𝜏𝑖𝑖𝑛𝑛𝑛𝑛 = 𝐼𝐼𝐴𝐴𝑣𝑣 sin𝜃𝜃 
This 𝜃𝜃 is the angle between the magnetic field (𝐁𝐁��⃗ ) and the axis of the loop. 
 
Protons, Neutrons, and Electrons 

• Protons have positive electric charge. 
• Neutrons are electrically neutral (although they are made up of fractionally charged 

particles called quarks). 
• Electrons have negative electric charge. 

 
Protons have a charge equal to 1.60 × 10−19 C (to three significant figures).  We call this 
elementary charge and give it the symbol 𝑒𝑒.  Electrons have the same charge, except for 
being negative.  Thus, protons have charge +𝑒𝑒, while electrons have charge −𝑒𝑒.  If you need 
to use the charge of a proton or electron to solve a problem, use the value of 𝑒𝑒 below. 
 

Elementary Charge 

𝑒𝑒 = 1.60 × 10−19 C 

 
Special Symbols 

Symbol Name 

⊗ into the page 

⊙ out of the page 

𝑝𝑝 proton 

𝑛𝑛 neutron 

𝑒𝑒− electron 
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Symbols and Units 

Symbol Name Units 

𝐁𝐁��⃗  magnetic field T 

𝑣𝑣 magnitude of the magnetic field T 

�⃗�𝐅𝑚𝑚 magnetic force N 

𝐹𝐹𝑚𝑚 magnitude of the magnetic force N 

𝑞𝑞 electric charge C 

𝒗𝒗��⃗  velocity m/s 

𝑣𝑣 speed m/s 

𝐼𝐼 current A 

𝐿𝐿 length of the wire m 

𝜃𝜃 angle between 𝒗𝒗��⃗  and 𝐁𝐁��⃗  or between 𝐼𝐼 and 𝐁𝐁��⃗  ° or rad 

 
Notes Regarding Units 

The SI unit of magnetic field (𝑣𝑣) is the Tesla (T).  A Tesla can be related to other SI units by 
solving for 𝑣𝑣 in the equation 𝐹𝐹𝑚𝑚 = 𝐼𝐼𝐿𝐿𝑣𝑣 sin𝜃𝜃: 

𝑣𝑣 =
𝐹𝐹𝑚𝑚

𝐼𝐼𝐿𝐿 sin𝜃𝜃
 

Recall that the SI unit of magnetic force (𝐹𝐹𝑚𝑚) is the Newton (N), the SI unit of current (𝐼𝐼) is 
the Ampère (A), the SI unit of length (𝐿𝐿) is the meter (m), and sin𝜃𝜃 is unitless (sine equals 
the ratio of two sides of a triangle, and the units cancel out in the ratio).  Plugging these 
units into the above equation, a Tesla (T) equals: 

1 T = 1 
N
A∙m

 

It’s better to write A∙m than to write the m first because mA could be confused with 
milliAmps (mA).  Recall from first-semester physics that a Newton is equivalent to: 

1 N = 1 
kg∙m

s2  

Plugging this into N
A∙m

, a Tesla can alternatively be expressed as kg
A∙s2

.  Magnetic field is 
sometimes expressed in Gauss (G), where 1 T = 104 G, but the Tesla (T) is the SI unit.  
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Strategy to Find Magnetic Force 

Note:  If a problem gives you the magnetic field in Gauss (G), convert to Tesla (T): 
1 G = 10−4 T 

(Previously, we wrote this as 1 T = 104 G, which is equivalent.  We write 1 G = 10−4 T to 
convert from Gauss to Tesla, and 1 T = 104 G to convert back from Tesla to Gauss.) 
How you solve a problem involving magnetic force depends on the context: 

• You can relate the magnitude of the magnetic field (𝑣𝑣) to the magnitude of the 
magnetic force (𝐹𝐹𝑚𝑚) using trig: 

𝐹𝐹𝑚𝑚 = |𝑞𝑞|𝑣𝑣𝑣𝑣 sin𝜃𝜃      or     𝐹𝐹𝑚𝑚 = 𝐼𝐼𝐿𝐿𝑣𝑣 sin𝜃𝜃 
Here, 𝜃𝜃 is the angle between 𝒗𝒗��⃗  and 𝐁𝐁��⃗  or between 𝐼𝐼 and 𝐁𝐁��⃗ . 

• If a charged particle is traveling in a circle in an uniform magnetic field, apply 
Newton’s second law in the context of uniform circular motion, where ∑𝐹𝐹𝑖𝑖𝑖𝑖 is the 
sum of the inward components of the forces and 𝑎𝑎𝑐𝑐 is the centripetal acceleration: 

�𝐹𝐹𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑎𝑎𝑐𝑐 

In most of the problems encountered in first-year physics courses, the only force 
acting on the charged particle is the magnetic force, such that: 

|𝑞𝑞|𝑣𝑣𝑣𝑣 sin𝜃𝜃 = 𝑚𝑚𝑎𝑎𝑐𝑐 
If the magnetic field is perpendicular to the velocity, 𝜃𝜃 = 90° and sin𝜃𝜃 = 1.  You 

may need to recall UCM equations, such as 𝑎𝑎𝑐𝑐 = 𝑣𝑣2

𝑅𝑅
, 𝑣𝑣 = 𝑅𝑅𝑅𝑅, and 𝑅𝑅 = 2𝜋𝜋

𝑇𝑇
. 

• To find the net torque exerted on a current loop in a magnetic field, apply the 
following equation: 

𝜏𝜏𝑖𝑖𝑛𝑛𝑛𝑛 = 𝐼𝐼𝐴𝐴𝑣𝑣 sin𝜃𝜃 
The symbols in this equation are: 

o 𝐼𝐼 is the current running through the loop. 
o 𝐴𝐴 is the area of the loop.  For example, for a rectangle, 𝐴𝐴 = 𝐿𝐿𝐼𝐼. 
o 𝑣𝑣 is the magnitude of the magnetic field. 
o 𝜃𝜃 is the angle between the magnetic field (𝐁𝐁��⃗ ) and the axis of the loop. 

• To find the force that one current exerts on another, see Chapter 22.  
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Example:  A particle with a charge of 200 µC is traveling vertically straight upward with a 
speed of 4.0 km/s in a region where there is a uniform magnetic field.  The magnetic field 
has a magnitude of 500,000 G and is oriented horizontally to the east.  What are the 
magnitude and direction of the magnetic force exerted on the charged particle? 

Make a list of the known quantities: 
• The charge is 𝑞𝑞 = 200 µC.  Convert this to SI units:  𝑞𝑞 = 2.00 × 10−4 C.  Recall that 

the metric prefix µ stands for 10−6. 
• The speed is = 4.0 km/s.  Convert this to SI units:  = 4000 m/s.  Recall that the 

metric prefix k stands for 1000. 
• The magnetic field has a magnitude of = 500,000 G.  Convert this to SI units using 

the conversion factor 1 G = 10−4 T.  The magnetic field is = 50 T. 
• The angle between  and  is = 90° because the velocity and magnetic field are 

perpendicular:  is vertical, whereas is horizontal.
Use the appropriate trig equation to find the magnitude of the magnetic force. 

𝐹𝐹𝑚𝑚 = |𝑞𝑞| sin = (2 × 10−4)(4000)(50) sin 90° = 40 N 
To find the direction of the magnetic force, apply the right-hand rule.  Let’s establish a 
coordinate system: 

• On a map, we usually choose +𝑥𝑥 to point east. 
• On a map, we usually choose +𝑥𝑥 to point north. 
• Then +  is vertically upward.  Note that in our picture, “up” means out of the page. 

 
Apply the right-hand rule for magnetic force, using the picture above. 

• Point your fingers out of the page ( ), along the velocity ( ).  Note that vertically 
“upward” is out of the page (not “up”) in the map above. 

• At the same time, face your palm to the right ( ), along the magnetic field ( ). 
• Tip:  Rotate your book to make it more comfortable to get your hand in this position. 
• Your thumb points north ( ).  This direction is north (not “up”) in this context. 

The magnetic force has a magnitude of 𝐹𝐹𝑚𝑚 = 40 N and a direction that points to the north.  

𝑥𝑥 (east) 

𝑥𝑥 (north)

 (up) 

−  (down) 

−𝑥𝑥 (west) 

−𝑥𝑥 (south) 
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Example:  A current of 3.0 A runs along a 2.0-m long wire in a region where there is a 
magnetic field of 5.0 T.  The current makes a 30° with the magnetic field.  What is the 
magnitude of the magnetic force exerted on the wire? 
 
Make a list of the known quantities: 

• The current is 𝐼𝐼 = 3.0 A. 
• The length of the wire is 𝐿𝐿 = 2.0 m. 
• The magnetic field has a magnitude of 𝑣𝑣 = 5.0 T. 
• The angle between 𝐼𝐼 and 𝐁𝐁��⃗  is 𝜃𝜃 = 30°. 

Use the appropriate trig equation to find the magnitude of the magnetic force. 

𝐹𝐹𝑚𝑚 = 𝐼𝐼𝐿𝐿𝑣𝑣 sin𝜃𝜃 = (3)(2)(5) sin 30° = 30 �
1
2
� = 15 N 

The magnetic force exerted on the wire is 𝐹𝐹𝑚𝑚 = 15 N.  
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Example:  A particle with a positive charge of 500 µC and a mass of 4.0 g travels in a circle 
with a radius of 2.0 m with constant speed in a uniform magnetic field of 60 T.  How fast is 
the particle traveling? 
 
Apply Newton’s second law to the particle.  Since the particle travels with uniform circular 
motion (meaning constant speed in a circle), the acceleration is centripetal (inward): 

�𝐹𝐹𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑎𝑎𝑐𝑐 

The magnetic force supplies the needed centripetal force.  Apply the equation 𝐹𝐹𝑚𝑚 =
|𝑞𝑞|𝑣𝑣𝑣𝑣 sin𝜃𝜃.  Since the particle travels in a circle (and not a helix), we know that 𝜃𝜃 = 90°. 

|𝑞𝑞|𝑣𝑣𝑣𝑣 sin 90° = 𝑚𝑚𝑎𝑎𝑐𝑐  

In Volume 1 of this series, we learned that 𝑎𝑎𝑐𝑐 = 𝑣𝑣2

𝑅𝑅
.  Note that sin 90° = 1. 

|𝑞𝑞|𝑣𝑣𝑣𝑣 = 𝑚𝑚
𝑣𝑣2

𝑅𝑅
 

Divide both sides of the equation by the speed.  Note that 𝑣𝑣
2

𝑣𝑣
= 𝑣𝑣. 

|𝑞𝑞|𝑣𝑣 = 𝑚𝑚
𝑣𝑣
𝑅𝑅

 

Multiply both sides by 𝑅𝑅 and divide by 𝑚𝑚.  Convert the charge and mass to SI units:  

𝑞𝑞 = 5.00 × 10−4 C and 𝑚𝑚 = 4.0 × 10−3 kg.  Note that 10
−4

10−3
= 10−4 × 103 = 10−4+3 = 10−1. 

𝑣𝑣 =
|𝑞𝑞|𝑣𝑣𝑅𝑅
𝑚𝑚

=
(5 × 10−4)(60)(2)

4 × 10−3
=

(5)(60)(2)
4

10−4

10−3
= 150 × 10−1 = 15 m/s 
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Example:  The rectangular loop illustrated below carries a current of 2.0 A.  The magnetic 
field has a magnitude of 30 T.  Determine the net torque that is exerted on the loop. 

 
We saw conceptual problems like this in Chapter 18.  If you apply the right-hand rule for 
magnetic force to each side of the loop, you will see that the loop will rotate about the 
dashed axis. 

• The magnetic force ( 𝑚𝑚) is zero for the top and bottom wires because the current 
( ) is parallel or anti-parallel to the magnetic field ( ):  = 0° or = 180°. 

• The magnetic force ( 𝑚𝑚) pushes the right wire into the page ( ) because your 
fingers point up ( ) along  and your palm faces right ( ) along , such that your 
thumb points into the page ( ). 

• The magnetic force ( 𝑚𝑚) pushes the left wire out of the page ( ) because your 
fingers point down ( ) along  and your palm faces right ( ) along , such that your 
thumb points out of the page ( ). 

Apply the equation for the net torque exerted on a current loop.  The area of the loop is 
= .  The angle in the torque equation is = 90° because the magnetic field is 

perpendicular to the axis of the loop (which is different from the axis of rotation:  the axis 
of rotation is the vertical dashed line about which the loop rotates, whereas the axis of the 
loop is perpendicular to the loop and passing through its center – this may be easier to 
visualize if you look at a picture of a solenoid in Chapter 19 and think about the axis of the 
solenoid, which is the same as the axis of each of its loops).  The magnetic field is 
horizontal, while the axis of the loop (not the axis of rotation) is perpendicular to the page.

𝑛𝑛𝑒𝑒𝑛𝑛 = sin = sin = (2)(4)(2)(30) sin 90° = 480 Nm 

 

 

4.0 m 

2.0 m 
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49.  There is a uniform magnetic field of 0.50 T directed along the positive 𝑦𝑦-axis. 
 
(A) Determine the force exerted on a 4.0-A current in a 3.0-m long wire heading along the 
negative 𝑧𝑧-axis. 
 
 
 
 
 
 
 
 
 
 
 
 
(B) Determine the force on a 200-µC charge moving 60 km/s at an angle of 30° below the 
+𝑥𝑥-axis. 
 
 
 
 
 
 
 
 
 
 
 
 
(C) In which direction(s) could a proton travel and experience zero magnetic force? 
 
 
 
 
 
 
 
 
 
 

 
 
Want help?  Check the hints section at the back of the book. 

Answers:  6.0 N along +𝑥𝑥, 3√3 N along +𝑧𝑧, along ±𝑦𝑦 
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50.  As illustrated below, a 0.25-g object with a charge of −400 µC travels in a circle with a 
constant speed of 4000 m/s in an approximately zero-gravity region where there is a 
uniform magnetic field of 200,000 G perpendicular to the page. 
 
(A) What is the direction of the magnetic field? 

(B) What is the radius of the circle? 

Want help?  Check the hints section at the back of the book. 
Answers:   , 125 m
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51.  A 30-A current runs through the rectangular loop of wire illustrated below.  There is a 
uniform magnetic field of 8000 G directed downward.  The width (which is horizontal) of 
the rectangle is 50 cm and the height (which is vertical) of the rectangle is 25 cm. 
 
(A) Find the magnitude of the net force exerted on the loop. 

(B) Find the magnitude of the net torque exerted on the loop. 

Want help?  Check the hints section at the back of the book. 
Answers:  0, 3.0 Nm
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22 MAGNETIC FIELD 

Relevant Terminology 

Electric charge – a fundamental property of a particle that causes the particle to experience 
a force in the presence of an electric field.  (An electrically neutral particle has no charge 
and thus experiences no force in the presence of an electric field.) 
Current – the instantaneous rate of flow of charge through a wire. 
Magnetic field – a magnetic effect created by a moving charge (or current). 
Magnetic force – the push or pull that a moving charge (or current) experiences in the 
presence of a magnetic field. 
Solenoid – a coil of wire in the shape of a right-circular cylinder. 
Turns – the loops of a solenoid. 
Permeability – a measure of how a substance affects a magnetic field. 

Magnetic Force Equations 

To find the magnetic field ( ) created by a long straight wire a distance  from the axis of 
the wire (assuming that  is small compared to the length of the wire), use the following 
equation, where the constant 0 is the permeability of free space. 

= 0

2
 

To find the magnetic field created by a circular loop of wire at the center of the loop, use the 
following equation, where 𝑎𝑎 is the radius of the loop.

= 0

2𝑎𝑎
 

To find the magnetic field created by a long, tightly wound solenoid near the center of the 
solenoid, use the following equation, where  is the number of loops (called turns),  is the 
length of the solenoid, and =  is the number of turns per unit length. 

= 0 = 0  

 
Also recall the equation (Chapter 21) for the force exerted on a current in a magnetic field. 

𝐹𝐹𝑚𝑚 = sin  

 
 

  

  
  

 
𝑎𝑎 
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Special Symbols 

Symbol Name 

⊗ into the page 

⊙ out of the page 

 
Symbols and Units 

Symbol Name Units 

𝐵𝐵 magnitude of the magnetic field T 

𝐼𝐼 current A 

𝜇𝜇0 permeability of free space T∙m
A

  

𝑟𝑟𝑐𝑐 distance from a long, straight wire m 

𝑎𝑎 radius of a loop m 

𝑁𝑁 number of loops (or turns) unitless 

𝑛𝑛 number of turns per unit length 1
m

  

𝐿𝐿 length of a wire or length of a solenoid m 

𝐹𝐹𝑚𝑚 magnitude of the magnetic force N 

𝜃𝜃 angle between 𝒗𝒗��⃗  and 𝐁𝐁��⃗  or between 𝐼𝐼 and 𝐁𝐁��⃗  ° or rad 

 
Important Distinction 

Note that permittivity and permeability are two different quantities from two different 
contexts: 

• The permittivity (𝜖𝜖) is an electric quantity (Chapter 10) relating to electric field (𝐄𝐄�⃗ ). 
• The permeability (𝜇𝜇) is a magnetic quantity relating to magnetic field (𝐁𝐁��⃗ ). 

The permittivity of free space (𝜖𝜖0) and the permeability of free space (𝜇𝜇0) can be combined 
together to make the speed of light in vacuum:  𝑐𝑐 = 1

�𝜖𝜖0𝜇𝜇0
.  
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Strategy to Find Magnetic Field 

Note:  If a problem gives you the magnetic field in Gauss (G), convert to Tesla (T): 
1 G = 10−4 T 

How you solve a problem involving magnetic field depends on the context: 
• To find the magnetic field created by a long straight wire, at the center of a circular 

loop, or at the center of a solenoid, use the appropriate equation: 
o At a distance 𝑟𝑟𝑐𝑐 from the axis of a long straight wire (left figure on page 219): 

𝐵𝐵 =
𝜇𝜇0𝐼𝐼

2𝜋𝜋𝑟𝑟𝑐𝑐
 

o At the center of a circular loop of radius 𝑎𝑎: 

𝐵𝐵 =
𝜇𝜇0𝐼𝐼
2𝑎𝑎

 

o Near the center of a long, tightly wound solenoid with 𝑁𝑁 loops and length 𝐿𝐿: 

𝐵𝐵 =
𝜇𝜇0𝑁𝑁𝐼𝐼
𝐿𝐿

= 𝜇𝜇0𝑛𝑛𝐼𝐼 

Here, 𝑛𝑛 = 𝑁𝑁
𝐿𝐿

 is the number of turns (or loops) per unit length. 

Note that the permeability of free space is 𝜇𝜇0 = 4𝜋𝜋 × 10−7  T∙m
A

. 

• If you also need to find the direction of the magnetic field (B��⃗ ), apply the right-hand 
rule for magnetic field (Chapter 19). 

• If there are two or more currents, to find the magnitude of the net magnetic field 
(𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛) at a specified point (called the field point), first find the magnetic field 
(𝐵𝐵1,𝐵𝐵2,⋯) at the field point due to each current using the equations above, and then 
find the net magnetic field using the principle of superposition.  This means to find 
the direction of B��⃗ 1, B��⃗ 2,⋯ using the right-hand rule for magnetic field (Chapter 19), 
and then find 𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛 depending on the situation, as noted below: 

o If B��⃗ 1 and B��⃗ 2 are parallel, simply add their magnitudes:  𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐵𝐵1 + 𝐵𝐵2. 
o If B��⃗ 1 and B��⃗ 2 are anti-parallel, subtract their magnitudes:  𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛 = |𝐵𝐵1 − 𝐵𝐵2|. 
o If B��⃗ 1 is perpendicular to B��⃗ 2, use the Pythagorean theorem:  𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛 = �𝐵𝐵12 + 𝐵𝐵22. 
o Otherwise, add B��⃗ 1 and B��⃗ 2 according to vector addition (as in Chapter 3). 

• If you need to find the magnitude of the magnetic force (𝐹𝐹𝑚𝑚) exerted on a current (𝐼𝐼) 
in an external magnetic field (𝐵𝐵), apply the equation 𝐹𝐹 = 𝐼𝐼𝐿𝐿𝐵𝐵 sin𝜃𝜃 from Chapter 21.  
If you also need to find the direction of the magnetic force, apply the right-hand rule 
for magnetic force (Chapter 18). 

• If there are two parallel or anti-parallel currents and you need to find the magnetic 
force that one current (call it 𝐼𝐼𝑎𝑎) exerts on the other current (call it 𝐼𝐼𝑏𝑏), first find the 
magnetic field that 𝐼𝐼𝑎𝑎 creates at the location of 𝐼𝐼𝑏𝑏 using 𝐵𝐵𝑎𝑎 = 𝜇𝜇0𝐼𝐼𝑎𝑎

2𝜋𝜋𝜋𝜋
, where 𝑑𝑑 is the 

distance between the currents.  Next, find the force exerted on 𝐼𝐼𝑏𝑏 using the equation 
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𝐹𝐹𝑎𝑎 = 𝐼𝐼𝑏𝑏𝐿𝐿𝑏𝑏𝐵𝐵𝑎𝑎 sin𝜃𝜃.  Note that both currents (𝐼𝐼𝑎𝑎 and 𝐼𝐼𝑏𝑏) get used in the math, but in 
different steps.  Also note that 𝐿𝐿𝑏𝑏 is the length of the wire for 𝐼𝐼𝑏𝑏, what we labeled as 
𝐹𝐹𝑎𝑎 is the force exerted on 𝐼𝐼𝑏𝑏 (by 𝐼𝐼𝑎𝑎), and 𝜃𝜃 is the angle between 𝐼𝐼𝑏𝑏 and B��⃗ 𝑎𝑎.  If you also 
need to find the direction of the magnetic force that one current exerts on another, 
apply the technique discussed in Chapter 20. 

• If there are three or more parallel or anti-parallel currents and you need to find the 
magnitude of the net magnetic force (𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛) exerted on one of the currents, first find 
the magnetic force (𝐹𝐹1,𝐹𝐹2,⋯) exerted on the specified current due to each of the 
other currents using the technique from the previous step (regarding how to find 
the magnetic force that one current exerts on another current), and then find the net 
magnetic force using the principle of superposition.  This means to find the direction 
of F�⃗ 1, F�⃗ 2,⋯ using the technique from Chapter 20, and then find 𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 depending on 
the situation, as noted below: 

o If F�⃗ 1 and F�⃗ 2 are parallel, simply add their magnitudes:  𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐹𝐹1 + 𝐹𝐹2. 
o If F�⃗ 1 and F�⃗ 2 are anti-parallel, subtract their magnitudes:  𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 = |𝐹𝐹1 − 𝐹𝐹2|. 
o If F�⃗ 1 is perpendicular to F�⃗ 2, use the Pythagorean theorem:  𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 = �𝐹𝐹12 + 𝐹𝐹22. 
o Otherwise, add F�⃗ 1 and F�⃗ 2 according to vector addition (as in Chapter 3). 

• To find the net magnetic force (𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛) that one current exerts on a rectangular loop of 
wire, first apply the technique from Chapter 20 to find the direction of the magnetic 
force exerted on each side of the rectangular loop.  If the long straight wire is 
perpendicular to two sides of the rectangular loop, two of these forces will cancel 
out, and then you can apply the technique from the previous step twice to solve the 
problem.  This is illustrated in the last example of this chapter. 

• If you need to derive an equation for magnetic field, see Chapter 20. 
 
The Permeability of Free Space 

The constant 𝜇𝜇0 is called the permeability of free space (meaning vacuum).  The 
permeability of free space (𝜇𝜇0) is 𝜇𝜇0 = 4𝜋𝜋 × 10−7  T∙m

A
.  The units of the permeability can be 

found by solving for 𝜇𝜇0 in the equation 𝐵𝐵 = 𝜇𝜇0𝐼𝐼
2𝜋𝜋𝑟𝑟𝑐𝑐

 to get 𝜇𝜇0 = 2𝜋𝜋𝑟𝑟𝑐𝑐𝐵𝐵
𝐼𝐼

.  Since the SI unit of 

magnetic field (𝐵𝐵) is the Tesla (T), the SI unit of current (𝐼𝐼) is the Ampère (A), and the SI 
unit of distance (𝑟𝑟𝑐𝑐) is the meter (m), it follows that the SI units of 𝜇𝜇0 are T∙m

A
.  It’s better to 

write T∙m than to write the m first because mT could be confused with milliTesla (mT).  
Recall from Chapter 21 that a Tesla (T) equals 1 T = 1 N

A∙m
.  Plugging this in for a Tesla in 

the units of 𝜇𝜇0, we find that the units of 𝜇𝜇0 can alternatively be expressed as N
A2

.  If you recall 

that a Newton is equivalent to 1 N = 1 kg∙m
s2 , yet another way to write the units of 𝜇𝜇0 is kg∙m

A2s2. 
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Example:  The long straight wire shown below carries a current of 5.0 A.  What are the 
magnitude and direction of the magnetic field at the point marked with a star (), which is 
25 cm from the wire?  

 
Convert the distance  from cm to m:  = 25 cm = 0.25 m = 1

4
m.  Apply the equation for

the magnetic field created by a long straight wire. 

= 0

2
=

(4 × 10− )(5)

2 1
4

 

To divide by a fraction, multiply by its reciprocal.  Note that the reciprocal of 1
4
 is 4. 

=
(4 × 10− )(5)

2
(4) = 40 × 10−  T = 4.0 × 10−6 T 

Apply the right-hand rule for magnetic field (Chapter 19) to find the direction of the 
magnetic field at the field point: 

• Grab the current with your thumb pointing to the right ( ), along the current ( ). 
• Your fingers make circles around the wire (toward your fingertips). 
• The magnetic field ( ) at a specified point is tangent to these circles.  At the field 

point (), the magnetic field ( ) points out of the page ( ). 

 
The magnitude of the magnetic field at the field point () is = 4.0 × 10−6 T and its 
direction is out of the page ( ). 

Example:  A tightly wound solenoid has a length of 50 cm, has 200 loops, and carries a 
current of 3.0 A.  What is the magnitude of the magnetic field at the center of the solenoid? 

Convert the distance  from cm to m:  = 50 cm = 0.50 m = 1
2

 m.  Apply the equation for 
the magnetic field at the center of a solenoid. 

= 0 =
(4 × 10− )(200)(3)

1
2

 

To divide by a fraction, multiply by its reciprocal.  Note that the reciprocal of 1
2
 is 2. 

= (4 × 10− )(200)(3)(2) = 4800 × 10−  T = 4.8 × 10−4 T 
The magnitude of the magnetic field near the center of the solenoid is = 4.8 × 10−4 T, 
which could also be expressed in milliTesla (mT) as = 0.48  mT = 1.5 mT. 

 

 
25 cm 
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Example:  In the diagram below, the top wire carries a current of 3.0 A, the bottom wire 
carries a current of 4.0 A, each wire is 9.0 m long, and the distance between the wires is 
0.50 m.  What are the magnitude and direction of the net magnetic field at a point () that 
is midway between the two wires? 

 
First find the magnitude of the magnetic fields created at the field point by each of the 
currents.  In each case, =

2
= 0.

2
= 0.25 m because the field point () is halfway 

between the two wires. 

1 = 0 1

2
=

(4 × 10− )(3)
2 (0.25) = 24 × 10−  T = 2.4 × 10−6 T 

2 = 0 2

2
=

(4 × 10− )(4)
2 (0.25) = 32 × 10−  T = 3.2 × 10−6 T 

Before we can determine how to combine these magnetic fields, we must apply the right-
hand rule for magnetic field (Chapter 19) in order to determine the direction of each of 
these magnetic fields. 

• Grab the current with your thumb pointing along the current.  When you do this for 
1, your thumb will point right ( ), and when you do this for 2, your thumb will 

point left ( ). 
• Your fingers make circles around the wire (toward your fingertips). 
• The magnetic field ( ) at a specified point is tangent to these circles.  At the field 

point (), the magnetic fields ( 1 and 2) both point into the page ( ). 
• Here’s why:  When you grab 1 with your thumb pointing right, your fingers are 

below the wire and going into the page.  When you grab 2 with your thumb pointing 
left, your fingers are above that wire and are also going into the page. 

Since 1 and 2 both point in the same direction, which is into the page ( ), we add their 
magnitudes in order to find the magnitude of the net magnetic field. 

𝑛𝑛𝑒𝑒𝑛𝑛 = 1 + 2 = 2.4 × 10−6 + 3.2 × 10−6 = 5.6 × 10−6 T 
The net magnetic field at the field point has a magnitude of 𝑛𝑛𝑒𝑒𝑛𝑛 = 5.6 × 10−6 T and a 
direction that is into the page ( ).  

1 
 

2 
 

field point 
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Example:  In the diagram below, the top wire carries a current of 2.0 A, the bottom wire 
carries a current of 3.0 A, each wire is 6.0 m long, and the distance between the wires is 
0.20 m.  What are the magnitude and direction of the magnetic force that the top current 
( 1) exerts on the bottom current ( 2)? 

 
First imagine a field point () at the location of 2 (since the force specified in the problem 
is exerted on 2), and find the magnetic field at the field point () created by 1.  When we 
do this, we use 1 = 2.0 A and = = 0.20 m (since the field point is 0.20 m from 1). 

 

1 = 0 1

2
=

(4 × 10− )(2)
2 (0.2) = 20 × 10−  T = 2.0 × 10−6 T 

Now we can find the force exerted on 2.  When we do this, we use 2 = 3.0 A (since 2 is 
experiencing the force specified in the problem) and = 90° (since 2 is to the right and 1
is into the page – as discussed below).  What we’re calling 𝐹𝐹1 is the magnitude of the force 
that 1 exerts on 2. 

𝐹𝐹1 = 2 2 1 sin = (3)(6)(2 × 10−6) = 36 × 10−6 N = 3.6 × 10−  N 
To find the direction of this force, apply the technique from Chapter 20.  First apply the 
right-hand rule for magnetic field (Chapter 19) to 1.  Grab 1 with your thumb along 1 and 
your fingers wrapped around 1.  What are your fingers doing at the field point ()?  They 
are going into the page ( ) at the field point ().  The magnetic field ( 1) that 1 makes at 
the field point () is into the page ( ). 

Now apply the right-hand rule for magnetic force (Chapter 18) to 2.  Point your fingers to 
the right ( ), along 2.  At the same time, face your palm into the page ( ), along 1.  Your 
thumb points up ( ), along the magnetic force ( 1).  The top current ( 1) pulls the bottom 
current ( 2) upward ( ). 

The magnetic force that 1 exerts on 2 has a magnitude of 𝐹𝐹1 = 3.6 × 10−  N and a 
direction that is straight upward ( ).  (You might recall from Chapter 20 that parallel
currents attract one another.)  

1 
 

2 
 

1 
 

2 
 field point 
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Example:  In the diagram below, the left wire carries a current of 4.0 A, the middle wire 
carries a current of 5.0 A, the right wire carries a current of 8.0 A, each wire is 3.0 m long, 
and the distance between neighboring wires is 0.10 m.  What are the magnitude and 
direction of the net magnetic force exerted on the right current ( 3)? 

 
Here is how we will solve this problem: 

• We’ll find the force that 1 exerts on 3 the way that we solved the previous example.
• We’ll similarly find the force that 2 exerts on 3. 
• Once we know the magnitudes and directions of both forces, we will know how to 

combine them (see the top bullet point on page 222). 
First imagine a field point () at the location of 3 (since the force specified in the problem 
is exerted on 3), and find the magnetic fields at the field point () created by 1 and 2.  
When we do this, note that 1 = 0.1 + 0.1 = 0.20 m and 2 = 0.10 m (since these are the 
distances from 1 to 3 and from 2 to 3, respectively). 

 

1 = 0 1

2 1
=

(4 × 10− )(4)
2 (0.2) = 40 × 10− T = 4.0 × 10−6 T

2 = 0 2

2 2
=

(4 × 10− )(5)
2 (0.1) = 100 × 10−  T = 1.0 × 10−  T 

Now we can find the forces that 1 and 2 exert on 3.  When we do this, we use 3 = 8.0 A
(since 3 is experiencing the force specified in the problem) and = 90° (since 3 is down 
and since 1 and 2 are perpendicular to the page – as discussed on the following page).  
What we’re calling 𝐹𝐹1 is the magnitude of the force that 1 exerts on 3, and what we’re 
calling 𝐹𝐹2 is the magnitude of the force that 2 exerts on 3. 

𝐹𝐹1 = 3 3 1 sin = (8)(3)(4 × 10−6) sin 90° = 96 × 10−6 N = 9.6 × 10−  N 
𝐹𝐹2 = 3 3 2 sin = (8)(3)(1 × 10− ) sin 90° = 24 × 10−  N = 2.4 × 10−4 N 

1 

2 3 

1 

2 3 

field point 
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Before we can determine how to combine these magnetic forces, we must apply the 
technique from Chapter 20 in order to determine the direction of each of these forces. 
 
First apply the right-hand rule for magnetic field (Chapter 19) to 𝐼𝐼1 and 𝐼𝐼2.  When you grab 
𝐼𝐼1 with your thumb along 𝐼𝐼1 and your fingers wrapped around 𝐼𝐼1, your fingers are going into 
the page (⊗) at the field point ().  The magnetic field (𝐁𝐁��⃗ 1) that 𝐼𝐼1 makes at the field point 
() is into the page (⊗).  When you grab 𝐼𝐼2 with your thumb along 𝐼𝐼2 and your fingers 
wrapped around 𝐼𝐼2, your fingers are coming out of the page (⊙) at the field point ().  The 
magnetic field (𝐁𝐁��⃗ 2) that 𝐼𝐼2 makes at the field point () is out of the page (⊙). 
 
Now apply the right-hand rule for magnetic force (Chapter 18) to 𝐼𝐼3.  Point your fingers 
down (↓), along 𝐼𝐼3.  At the same time, face your palm into the page (⊗), along 𝐁𝐁��⃗ 1.  Your 
thumb points to the right (→), along the magnetic force (�⃗�𝐅1) that 𝐼𝐼1 exerts on 𝐼𝐼3.  The 
current 𝐼𝐼1 pushes 𝐼𝐼3 to the right (→).  Once again, point your fingers down (↓), along 𝐼𝐼3.  At 
the same time, face your palm out of the page (⊙), along 𝐁𝐁��⃗ 2.  Now your thumb points to the 
left (←), along the magnetic force (�⃗�𝐅2) that 𝐼𝐼2 exerts on 𝐼𝐼3.  (You might recall from Chapter 
20 that parallel currents, like 𝐼𝐼2 and 𝐼𝐼3, attract one another and anti-parallel currents, like 𝐼𝐼1 
and 𝐼𝐼3, repel one another.) 
 
Since �⃗�𝐅1 and �⃗�𝐅2 point in opposite directions, as �⃗�𝐅1 points right (→) and �⃗�𝐅2 points left (←), 
we subtract their magnitudes in order to find the magnitude of the net magnetic force.  We 
use absolute values because the magnitude of the net magnetic force can’t be negative. 

𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 = |𝐹𝐹1 − 𝐹𝐹2| = |9.6 × 10−5 − 2.4 × 10−4| 
You need to express both numbers in the same power of 10 before you subtract them.  Note 
that 2.4 × 10−4 = 24 × 10−5.  (Enter both numbers on your calculator and compare them, 
if necessary.) 
𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 = |9.6 × 10−5 − 24 × 10−5| = |−14.4 × 10−5 N| = 14.4 × 10−5 N = 1.44 × 10−4 N 

The net magnetic force that 𝐼𝐼1 and 𝐼𝐼2 exert on 𝐼𝐼3 has a magnitude of 𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 = 1.4 × 10−4 N (to 
two significant figures) and a direction that is to the left (←).  The reason that it’s to the left 
is that 𝐹𝐹2 (which equals 2.4 × 10−4 N, which is the same as 24 × 10−5 N) is greater than 𝐹𝐹1 
(which equals 9.6 × 10−5 N), and the dominant force �⃗�𝐅2 points to the left.  When you put 
both numbers in the same power of 10, it’s easier to see that 24 × 10−5 N is greater than 
9.6 × 10−5 N.  (If the two forces aren’t parallel or anti-parallel, you would need to apply 
trig, as in Chapter 3, in order to find the direction of the net magnetic force.)  
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Example:  In the diagram below, the long straight wire is 14.0 m long and carries a current 
of 2.0 A, while the square loop carries a current of 3.0 A.  What are the magnitude and 
direction of the net magnetic force that the top current ( 1) exerts on the square loop ( 2)? 

 
The first step is to determine the direction of the magnetic force that 1 exerts on each side 
of the square loop.  Apply the right-hand rule for magnetic field (Chapter 19) to 1.  Grab 1
with your thumb along 1 and your fingers wrapped around 1.  What are your fingers doing 
below 1, where the square loop is?  They are going into the page ( ) where the square 
loop is.  The magnetic field ( 1) that 1 makes at the square loop is into the page ( ). 

Now apply the right-hand rule for magnetic force (Chapter 18) to each side of the loop. 
• Bottom side:  Point your fingers to the left ( ) along the current ( 2) and your palm 

into the page ( ) along the magnetic field ( 1).  The magnetic force ( 𝑏𝑏 𝑛𝑛) is down ( ). 
• Left side:  Point your fingers up ( ) along the current ( 2) and your palm into the 

page ( ) along the magnetic field ( 1).  The magnetic force ( 𝑒𝑒 𝑛𝑛) is left ( ). 
• Top side:  Point your fingers to the right ( ) along the current ( 2) and your palm 

into the page ( ) along the magnetic field ( 1).  The magnetic force ( 𝑛𝑛 ) is up ( ). 
• Right side:  Point your fingers down ( ) along the current ( 2) and your palm into 

the page ( ) along the magnetic field ( 1).  The magnetic force ( 𝑔𝑔 𝑛𝑛) is right ( ). 

 

2 

1 

2.0 m 

2.0 m 

2.0 m 

2 

1 

𝑒𝑒 𝑛𝑛 𝑔𝑔 𝑛𝑛 

𝑛𝑛  

𝑏𝑏 𝑛𝑛 

1 

 
𝑛𝑛

   

    

𝑛𝑛     

  2   
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Study the diagram at the bottom of the previous page.  You should see that �⃗�𝐅𝑙𝑙𝑛𝑛𝑙𝑙𝑛𝑛 and �⃗�𝐅𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑛𝑛 
cancel out: 

• �⃗�𝐅𝑙𝑙𝑛𝑛𝑙𝑙𝑛𝑛 and �⃗�𝐅𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑛𝑛 point in opposite directions:  One points right, the other points left. 
• �⃗�𝐅𝑙𝑙𝑛𝑛𝑙𝑙𝑛𝑛 and �⃗�𝐅𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑛𝑛 have equal magnitudes:  They are the same distance from 𝐼𝐼1. 

We don’t need to calculate �⃗�𝐅𝑙𝑙𝑛𝑛𝑙𝑙𝑛𝑛 and �⃗�𝐅𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑛𝑛 because they will cancel out later when we find 
the magnitude of the net force.  (These would also be a challenge to calculate since they are 
perpendicular to 𝐼𝐼1:  That problem would involve calculus.) 
 
You might note that �⃗�𝐅𝑛𝑛𝑏𝑏𝑡𝑡 and �⃗�𝐅𝑏𝑏𝑏𝑏𝑛𝑛 also have opposite directions (one points up, the other 
points down).  However, �⃗�𝐅𝑛𝑛𝑏𝑏𝑡𝑡 and �⃗�𝐅𝑏𝑏𝑏𝑏𝑛𝑛 do not cancel because �⃗�𝐅𝑛𝑛𝑏𝑏𝑡𝑡 is closer to 𝐼𝐼1 and �⃗�𝐅𝑏𝑏𝑏𝑏𝑛𝑛 is 
further from 𝐼𝐼1. 
 
To begin the math, find the magnetic fields created by 𝐼𝐼1 at the top and bottom of the 
square loop.  When we do this, note that 𝑑𝑑𝑛𝑛𝑏𝑏𝑡𝑡 = 2.0 m and 𝑑𝑑𝑏𝑏𝑏𝑏𝑛𝑛 = 2 + 2 = 4.0 m (since 
these are the distances from 𝐼𝐼1 to the top and bottom of the square loop, respectively).  We 
use 𝐼𝐼1 = 2.0 A in each case because 𝐼𝐼1 is creating these two magnetic fields. 

𝐵𝐵𝑛𝑛𝑏𝑏𝑡𝑡 =
𝜇𝜇0𝐼𝐼1

2𝜋𝜋𝑑𝑑𝑛𝑛𝑏𝑏𝑡𝑡
=

(4𝜋𝜋 × 10−7)(2)
2𝜋𝜋(2) = 2.0 × 10−7 T 

𝐵𝐵𝑏𝑏𝑏𝑏𝑛𝑛 =
𝜇𝜇0𝐼𝐼1

2𝜋𝜋𝑑𝑑𝑏𝑏𝑏𝑏𝑛𝑛
=

(4𝜋𝜋 × 10−7)(2)
2𝜋𝜋(4) = 1.0 × 10−7 T 

Now we can find the forces that 𝐼𝐼1 exerts on the top and bottom sides of the square loop.  
When we do this, we use 𝐼𝐼2 = 3.0 A (since 𝐼𝐼2 is experiencing the force specified in the 
problem) and 𝜃𝜃 = 90° (since we already determined that 𝐁𝐁��⃗ 1, which points into the page, is 
perpendicular to the loop).  We also use the width of the square, 𝐿𝐿2 = 2.0 m, since that is 
the distance that 𝐼𝐼2 travels in the top and bottom sides of the square loop. 

𝐹𝐹𝑛𝑛𝑏𝑏𝑡𝑡 = 𝐼𝐼2𝐿𝐿2𝐵𝐵𝑛𝑛𝑏𝑏𝑡𝑡 sin𝜃𝜃 = (3)(2)(2.0 × 10−7) sin 90° = 12.0 × 10−7 N 
𝐹𝐹𝑏𝑏𝑏𝑏𝑛𝑛 = 𝐼𝐼2𝐿𝐿2𝐵𝐵𝑏𝑏𝑏𝑏𝑛𝑛 sin𝜃𝜃 = (3)(2)(1.0 × 10−7) sin 90° = 6.0 × 10−7 N 

Since �⃗�𝐅𝑛𝑛𝑏𝑏𝑡𝑡 and �⃗�𝐅𝑏𝑏𝑏𝑏𝑛𝑛 point in opposite directions, as �⃗�𝐅𝑛𝑛𝑏𝑏𝑡𝑡 points up (↑) and �⃗�𝐅𝑏𝑏𝑏𝑏𝑛𝑛 points down 
(↓), we subtract their magnitudes in order to find the magnitude of the net magnetic force.  
We use absolute values because the magnitude of the net magnetic force can’t be negative. 

𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 = �𝐹𝐹𝑛𝑛𝑏𝑏𝑡𝑡 − 𝐹𝐹𝑏𝑏𝑏𝑏𝑛𝑛� = |12.0 × 10−7 − 6.0 × 10−7| = 6.0 × 10−7 N 
The net magnetic force that 𝐼𝐼1 exerts on 𝐼𝐼2 has a magnitude of 𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 = 6.0 × 10−7 N and a 
direction that is straight upward (↑).  The reason that it’s upward is that 𝐹𝐹𝑛𝑛𝑏𝑏𝑡𝑡 (which equals 
12.0 × 10−7 N) is greater than 𝐹𝐹𝑏𝑏𝑏𝑏𝑛𝑛 (which equals 6.0 × 10−7 N), and the dominant force 
�⃗�𝐅𝑛𝑛𝑏𝑏𝑡𝑡 points upward.  (If the two forces aren’t parallel or anti-parallel, you would need to 
apply trig, as in Chapter 3, in order to find the direction of the net magnetic force.)  
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52.  Three currents are shown below.  The currents run perpendicular to the page in the 
directions indicated.  The triangle, which is not equilateral, has a base of 4.0 m and a height 
of 4.0 m.  Find the magnitude and direction of the net magnetic field at the midpoint of the 
base. 

Want help?  Check the hints section at the back of the book. 
Answers:  16 2 × 10−  T, 135°

 
8.0 A 

 

 

8.0 A 

32 A 
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53.  In the diagram below, the top wire carries a current of 8.0 A, the bottom wire carries a 
current of 5.0 A, each wire is 3.0 m long, and the distance between the wires is 0.050 m.  
What are the magnitude and direction of the magnetic force that the top current ( 1) exerts 
on the bottom current ( 2)? 

Want help?  Check the hints section at the back of the book. 
Answers:  4.8 × 10−4 N, down

1 
 

2 
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54.  In the diagram below, the left wire carries a current of 3.0 A, the middle wire carries a 
current of 4.0 A, the right wire carries a current of 6.0 A, each wire is 5.0 m long, and the 
distance between neighboring wires is 0.25 m.  What are the magnitude and direction of 
the net magnetic force exerted on the right current ( 3)? 

Want help?  Check the hints section at the back of the book.
Answers:  6.0 × 10−  N, right

1 

2 

3 
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55.  The three currents below lie at the three corners of a square.  The currents run 
perpendicular to the page in the directions indicated.  The currents run through 3.0-m long 
wires, while the square has 25-cm long edges.  Find the magnitude and direction of the net 
magnetic force exerted on the 2.0-A current. 

Want help?  Check the hints section at the back of the book. 
Answers:  192 2 × 10−  N, 315°

4.0 A 
  

 
 

2.0 A 

4.0 A 
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56.  In the diagram below, the long straight wire is 5.0 m long and carries a current of 6.0 A, 
while the rectangular loop carries a current of 8.0 A.  What are the magnitude and direction 
of the net magnetic force that the top current ( 1) exerts on the rectangular loop ( 2)?

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answers:  3.84 × 10−  N, down

2 

1 

0.50 m 

1.5 m 

0.25 m 
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23 AMPÈRE’S LAW 

Relevant Terminology 

Electric charge – a fundamental property of a particle that causes the particle to experience 
a force in the presence of an electric field.  (An electrically neutral particle has no charge 
and thus experiences no force in the presence of an electric field.) 
Current – the instantaneous rate of flow of charge through a conductor. 
Filamentary current – a current that runs through a very thin wire. 
Magnetic field – a magnetic effect created by a moving charge (or current). 
Magnetic force – the push or pull that a moving charge (or current) experiences in the 
presence of a magnetic field. 
Open path – a curve that doesn’t bound an area.  A U-shaped curve (∪) is an example of an 
open path because it doesn’t separate the region inside of it from the region outside of it. 
Closed path – a curve that bounds an area.  A triangle (△) is an example of a closed path 
because the region inside of the triangle is completely isolated from the region outside of it. 
Solenoid – a coil of wire in the shape of a right-circular cylinder. 
Toroidal coil – a coil of wire in the shape of a single-holed ring torus (which is a donut). 
 
Ampère’s Law 

According to Ampère’s law, the sum of 𝐵𝐵ℓ cos 𝜃𝜃 for each section of a closed path (often 
called an Ampèrian loop) is proportional to the current enclosed (𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒) by the path. 

𝐵𝐵1ℓ1 cos 𝜃𝜃1 + 𝐵𝐵2ℓ2 cos 𝜃𝜃2 + ⋯+ 𝐵𝐵𝑁𝑁ℓ𝑁𝑁 cos 𝜃𝜃𝑁𝑁 = 𝜇𝜇0𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒 
The sum is over a closed path.  The constant 𝜇𝜇0 is called the permeability of free space.  The 
symbol 𝓵𝓵�⃗  represents the length of a given section of the path, and has a direction that is 
tangent to the path.  The sections of the path correspond to sections where the magnetic 
field (B��⃗ ) makes a constant angle 𝜃𝜃 with 𝓵𝓵�⃗  and where B��⃗  has a constant magnitude. 
 
Current Densities 

We use different kinds of current densities (analogous to the charge densities 𝜆𝜆, 𝜎𝜎, and 𝜌𝜌 of 
Chapter  6) when calculating magnetic field, depending upon the geometry. 

• A surface current density K��⃗  applies to current that runs along a conducting surface, 
such as a strip of copper. 

• Current density J�⃗  is distributed throughout a volume, such as current that runs 
along the length of a solid right-circular cylinder. 
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Symbols and SI Units 

Symbol Name SI Units 

𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒 the current enclosed by the Ampèrian loop A 

𝐼𝐼 the total current A 

B��⃗  magnetic field T 

𝜇𝜇0 the permeability of free space T∙m
A

  

𝑥𝑥,𝑦𝑦, 𝑧𝑧 Cartesian coordinates m, m, m 

𝑟𝑟 distance from the origin m 

𝑟𝑟𝑒𝑒 distance from the 𝑧𝑧-axis m 

K��⃗  surface current density (distributed over a surface) A/m 

J�⃗  current density (distributed throughout a volume) A/m2 

𝐿𝐿 length of a solenoid m 

ℓ the arc length of a given section of the path m 

𝐴𝐴 area m2 

𝑉𝑉 volume m3 

𝑁𝑁 number of loops (or turns) unitless 

𝑛𝑛 number of turns per unit length  1
m

  

𝑎𝑎 radius m 

𝑇𝑇 thickness m 

 
Special Symbols 

Symbol Name 

⊗ into the page 

⊙ out of the page 

www.engineersreferencebookspdf.com



Essential Trig-based Physics Study Guide Workbook 
 

237 
 

Strategy for Applying Ampère’s Law 

If there is enough symmetry in a magnetic field problem for it to be practical to take 
advantage of Ampère’s law, follow these steps: 

1. Sketch the magnetic field lines by applying the right-hand rule for magnetic field.  It 
may be helpful to review Chapter 19 before proceeding. 

2. Look at these magnetic field lines.  Try to visualize a closed path (like a circle or 
rectangle) called an Ampèrian loop for which the magnetic field lines would always 
be tangential or perpendicular to (or a combination of these) the path no matter 
which part of the path they pass through.  When the magnetic field lines are 
tangential to the path, you want the magnitude of the magnetic field to be constant 
over that part of the path.  These features make the left-hand side of Ampère’s law 
very easy to compute.  The closed path must also enclose some of the current. 

3. Study the examples that follow.  Most Ampère’s law problems have a geometry that 
is very similar to one of these examples (an infinitely long cylinder, an infinite plane, 
a solenoid, or a toroidal coil).  The Ampèrian loops that we draw in the examples are 
basically the same as the Ampèrian loops encountered in most of the problems.  This 
makes Steps 1-2 very easy. 

4. Write down the formula for Ampère’s law. 
𝐵𝐵1ℓ1 cos 𝜃𝜃1 + 𝐵𝐵2ℓ2 cos 𝜃𝜃2 + ⋯+ 𝐵𝐵𝑁𝑁ℓ𝑁𝑁 cos 𝜃𝜃𝑁𝑁 = 𝜇𝜇0𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒 

If the path is a circle, there will just be one term.  If the path is a rectangle, break the 
closed path up into four open paths:  one for each side (see the examples). 

5. Simplify the left-hand side of Ampère’s law.  Note that 𝓵𝓵�⃗  is tangential to the path. 
• If B��⃗  is parallel to 𝓵𝓵�⃗ , then 𝐵𝐵ℓ cos𝜃𝜃 = 𝐵𝐵ℓ since cos 0° = 1. 
• If B��⃗  is anti-parallel to 𝓵𝓵�⃗ , then 𝐵𝐵ℓ cos 𝜃𝜃 = −𝐵𝐵ℓ since cos 180° = −1. 
• If B��⃗  is perpendicular to 𝓵𝓵�⃗ , then 𝐵𝐵ℓ cos𝜃𝜃 = 0 since cos 90° = 0. 

6. If you choose your Ampèrian loop wisely in Step 2, you will either get 𝐵𝐵ℓ or zero for 
each part of the closed path, such that Ampère’s law simplifies to: 

𝐵𝐵1ℓ1 + 𝐵𝐵2ℓ2 + ⋯+ 𝐵𝐵𝑁𝑁ℓ𝑁𝑁 = 𝜇𝜇0𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒 
For a circle, there is just one term.  For a rectangle, there are four terms – one for 
each side (though some terms may be zero). 

7. Replace each length with the appropriate expression, depending upon the geometry. 
• The circumference of a circle is ℓ = 2𝜋𝜋𝑟𝑟. 
• For a rectangle, ℓ = 𝐿𝐿 or ℓ = 𝑊𝑊 for each side. 

Ampère’s law problems with cylinders generally involve two different radii:  The 
radius of an Ampèrian circle is 𝑟𝑟𝑒𝑒, whereas the radius of a conducting cylinder is a 
different symbol (which we will usually call 𝑎𝑎 in this book, but may be called 𝑅𝑅 in 
other textbooks – we are using 𝑎𝑎 to avoid possible confusion between radius and 
resistance). 
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8. Isolate the magnetic field in your simplified equation from Ampère’s law.  (This 
should be a simple algebra exercise.) 

9. Consider each region in the problem.  There will ordinarily be at least two regions.  
One region may be inside of a conductor and another region may be outside of the 
conductor, or the two regions might be on opposite sides of a conducting sheet, for 
example.  We will label the regions with Roman numerals (I, II, III, IV, V, etc.). 

10. Determine the net current enclosed in each region.  In a given region, if the 
Ampèrian loop encloses the entire current, the current enclosed (𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒) will equal the 
total current (𝐼𝐼).  However, if the Ampèrian loop encloses only a fraction of the 
current, you will need to determine the fraction of the current enclosed, as shown in 
an example.  If the current is uniform, you may use the equations below. 

𝐾𝐾 =
𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒
𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒

 

𝐽𝐽 =
𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒
𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒

 

For a surface current density (K��⃗ ), divide the current by the width (𝑤𝑤) of the surface 
(which is perpendicular to the current).  For a 3D current density (J�⃗ ), divide the 
current by the cross-sectional area (𝐴𝐴). 

11. For each region, substitute the current enclosed (from Step 10) into the simplified 
expression for the magnetic field (from Step 8). 

 
Important Distinctions 

Although Ampère’s law is similar to Gauss’s law (Chapter 6), the differences are important: 
• Ampère’s law involves magnetic field (B��⃗ ), not electric field (E�⃗ ). 
• Ampère’s law is over a closed path (𝐶𝐶), not a closed surface (𝑆𝑆). 
• Ampère’s law involves arc length (𝓵𝓵�⃗ ) on the left-hand side, not area (A��⃗ ). 
• Ampère’s law involves the current enclosed (𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒), not the charge enclosed (𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒). 
• Ampère’s law involves the permeability of free space (𝜇𝜇0), not permittivity (𝜖𝜖0). 

Ampère’s law for magnetism 𝐵𝐵1ℓ1 cos𝜃𝜃1 + 𝐵𝐵2ℓ2 cos 𝜃𝜃2 + ⋯ = 𝜇𝜇0𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒 

Gauss’s law for electrostatics 𝐸𝐸1𝐴𝐴1 cos𝜃𝜃1 + 𝐸𝐸2𝐴𝐴2 cos 𝜃𝜃2 + ⋯ =
𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒
𝜖𝜖0
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Example:  An infinite solid cylindrical conductor coaxial with the -axis has radius 𝑎𝑎, 
uniform current density J along + , and carries total current .  Derive an expression for 
the magnetic field both inside and outside of the cylinder. 

 
First sketch the magnetic field lines for the conducting cylinder.  It’s hard to draw, but the 
cylinder is perpendicular to the page with the current ( ) coming out of the page ( ).  
Apply the right-hand rule for magnetic field (Chapter 19):  Grab the current with your 
thumb pointing out of the page ( ), along the current ( ).  Your fingers make counter-
clockwise (use the right-hand rule to see this) circles around the wire (toward your 
fingertips), as shown in the diagram above. 
 
We choose our Ampèrian loop to be a circle (dashed line above) coaxial with the 
conducting cylinder such that B and  (which is tangent to the Ampèrian loop) will be 
parallel and the magnitude of B will be constant over the Ampèrian loop (since every point 
on the Ampèrian loop is equidistant from the axis of the conducting cylinder).

 
Write the formula for Ampère’s law. 

1 1 cos 1 + 2 2 cos 2 + + cos = 0 𝑒𝑒𝑛𝑛  

𝑎𝑎 

J 

 

 

 

𝑎𝑎 
Region I  

< 𝑎𝑎 

Region II 
> 𝑎𝑎 

𝑎𝑎 

B 

 

Region I  
< 𝑎𝑎 

Region II 
> 𝑎𝑎 

Region I  
 J 
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There is just one term for the Ampèrian circle, since the magnitude of B is constant along 
the Ampèrian circle (because every point on the circle is equidistant from the axis of the 
conducting cylinder).  The angle = 0° since the magnetic field lines make circles coaxial 
with our Ampèrian circle (and are therefore parallel to , which is tangent to the Ampèrian 
circle).  See the previous diagram. 

cos 0° = 0 𝑒𝑒𝑛𝑛  
Recall from trig that cos 0° = 1. 

= 0 𝑒𝑒𝑛𝑛  
This arc length  equals the circumference of the Ampèrian circle:  = 2 .  Substitute this 
expression for circumference into the previous equation for magnetic field. 

2 = 0 𝑒𝑒𝑛𝑛  
Isolate the magnitude of the magnetic field by dividing both sides of the equation by 2 . 

= 0 𝑒𝑒𝑛𝑛

2
 

Now we need to determine how much current is enclosed by the Ampèrian circle.  For a 
solid conducting cylinder, we write = 𝑒𝑒𝑛𝑛

𝑒𝑒𝑛𝑛
 (Step 10 on page 238), which may also be 

expressed as: 
𝑒𝑒𝑛𝑛 = 𝑒𝑒𝑛𝑛  

The area is the region of intersection of the Ampèrian circle and the conducting cylinder.  
We must consider two different regions: 

• The Ampèrian circle could be smaller than the conducting cylinder.  This will help us 
find the magnetic field in region I. 

• The Ampèrian circle could be larger than the conducting cylinder.  This will help us 
find the magnetic field in region II. 

 

𝑎𝑎  
Region I  

< 𝑎𝑎 

𝑎𝑎 

 

Region II 
> 𝑎𝑎 
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Region I:  𝑟𝑟𝑒𝑒 < 𝑎𝑎. 
Inside of the conducting cylinder, only a fraction of the cylinder’s current is enclosed by the 
Ampèrian circle.  In this region, the area enclosed is the area of the Ampèrian circle:  
𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜋𝜋𝑟𝑟𝑒𝑒2. 

𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜋𝜋𝑟𝑟𝑒𝑒2𝐽𝐽 
Substitute this expression for the current enclosed into the previous equation for magnetic 
field. 

𝐵𝐵𝐼𝐼 =
𝜇𝜇0𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒
2𝜋𝜋𝑟𝑟𝑒𝑒

=
𝜇𝜇0

2𝜋𝜋𝑟𝑟𝑒𝑒
(𝜋𝜋𝑟𝑟𝑒𝑒2𝐽𝐽) =

𝜇𝜇0𝐽𝐽𝑟𝑟𝑒𝑒
2

 

𝐵𝐵𝐼𝐼 =
𝜇𝜇0𝐽𝐽𝑟𝑟𝑒𝑒

2
 

The answer is different outside of the conducting cylinder.  We will explore that next. 
 
Region II:  𝑟𝑟𝑒𝑒 > 𝑎𝑎. 
Outside of the conducting cylinder, 100% of the current is enclosed by the Ampèrian circle.  
In this region, the area enclosed extends up to the radius of the conducting cylinder:  
𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜋𝜋𝑎𝑎2. 

𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐼𝐼 = 𝜋𝜋𝑎𝑎2𝐽𝐽 
Substitute this into the equation for magnetic field that we obtained from Ampère’s law. 

𝐵𝐵𝐼𝐼𝐼𝐼 =
𝜇𝜇0𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒
2𝜋𝜋𝑟𝑟𝑒𝑒

=
𝜇𝜇0

2𝜋𝜋𝑟𝑟𝑒𝑒
(𝜋𝜋𝑎𝑎2𝐽𝐽) =

𝜇𝜇0𝐽𝐽𝑎𝑎2

2𝑟𝑟𝑒𝑒
 

𝐵𝐵𝐼𝐼𝐼𝐼 =
𝜇𝜇0𝐽𝐽𝑎𝑎2

2𝑟𝑟𝑒𝑒
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Alternate forms of the answers in regions I and II. 
Since the total current is 𝐼𝐼 = 𝜋𝜋𝑎𝑎2𝐽𝐽 (we found this equation for region II above), we can 
alternatively express the magnetic field in terms of the total current (𝐼𝐼) of the conducting 
cylinder instead of the current density (𝐽𝐽). 
 
Region I:  𝑟𝑟𝑒𝑒 < 𝑎𝑎. 

𝐵𝐵𝐼𝐼 =
𝜇𝜇0𝐽𝐽𝑟𝑟𝑒𝑒

2
=
𝜇𝜇0𝐼𝐼𝑟𝑟𝑒𝑒
2𝜋𝜋𝑎𝑎2

 

Region II:  𝑟𝑟𝑒𝑒 > 𝑎𝑎. 

𝐵𝐵𝐼𝐼𝐼𝐼 =
𝜇𝜇0𝐽𝐽𝑎𝑎2

2𝑟𝑟𝑒𝑒
=

𝜇𝜇0𝐼𝐼
2𝜋𝜋𝑟𝑟𝑒𝑒

 

Note that the magnetic field in region II is identical to the magnetic field created by long 
straight filamentary current (see Chapter 22).  Note also that the expressions for the 
magnetic field in the two different regions both agree at the boundary:  That is, in the limit 
that 𝑟𝑟𝑒𝑒 approaches 𝑎𝑎, both expressions approach 𝜇𝜇0𝐼𝐼

2𝜋𝜋𝜋𝜋
.  
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Example:  The infinite current sheet illustrated below is a very thin infinite conducting 
plane with uniform current density* K coming out of the page.  The infinite current sheet 
lies in the 𝑥𝑥𝑥𝑥 plane at = 0.  Derive an expression for the magnetic field on either side of 
the infinite current sheet. 

 
First sketch the magnetic field lines for the current sheet.  Note that the current ( ) is 
coming out of the page ( ) along K.  Apply the right-hand rule for magnetic field (Chapter 
19):  Grab the current with your thumb pointing out of the page ( ), along the current ( ).
As shown above, the magnetic field (B) lines are straight up ( ) to the right of the sheet and 
straight down ( ) to the left of the sheet. 

We choose our Ampèrian loop to be a rectangle lying in the 𝑥𝑥 plane (the same as the plane 
of this page) such that B and  (which is tangent to the Ampèrian loop) will be parallel or 
perpendicular at each side of the rectangle.  The Ampèrian rectangle is centered about the 
current sheet, as shown above on the left (we redrew the Ampèrian rectangle again on the 
right in order to make it easier to visualize ). 

• Along the top and bottom sides, B is vertical and  is horizontal, such that B and 
are perpendicular. 

• Along the right and left sides, B and  are both parallel (they either both point up or 
both point down). 

Write the formula for Ampère’s law. 
1 1 cos 1 + 2 2 cos 2 + + cos = 0 𝑒𝑒𝑛𝑛  

The closed path on the left-hand side of the equation involves the complete path of the 
Ampèrian rectangle.  The rectangle includes four sides:  the right, top, left, and bottom 
edges. 

𝑔𝑔 𝑛𝑛 𝑔𝑔 𝑛𝑛 cos 𝑔𝑔 𝑛𝑛 + 𝑛𝑛 𝑛𝑛 cos 𝑛𝑛 + 𝑒𝑒 𝑛𝑛 𝑒𝑒 𝑛𝑛 cos 𝑒𝑒 𝑛𝑛 + 𝑏𝑏 𝑛𝑛 𝑏𝑏 𝑛𝑛 cos 𝑏𝑏 𝑛𝑛 = 0 𝑒𝑒𝑛𝑛  

               
* Note that a few textbooks may use different symbols for the current densities, K and J. 

𝑥𝑥 

 

𝑥𝑥 

B  

B  

Region I  
< 0 

Region II  
> 0 
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Recall that 𝜃𝜃 is the angle between B��⃗  and 𝓵𝓵�⃗ .  Also recall that the direction of 𝓵𝓵�⃗  is tangential to 
the Ampèrian loop.  Study the direction of B��⃗  and 𝓵𝓵�⃗  at each side of the rectangle in the 
previous diagram. 

• For the right and left sides, 𝜃𝜃 = 0° because B��⃗  and 𝓵𝓵�⃗  either both point up or both 
point down. 

• For the top and bottom sides, 𝜃𝜃 = 90° because B��⃗  and 𝓵𝓵�⃗  are perpendicular. 
𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡ℓ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 cos 0° + 𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡ℓ𝑡𝑡𝑡𝑡𝑡𝑡 cos 90° + 𝐵𝐵𝑙𝑙𝑒𝑒𝑙𝑙𝑡𝑡ℓ𝑙𝑙𝑒𝑒𝑙𝑙𝑡𝑡 cos 0° + 𝐵𝐵𝑏𝑏𝑡𝑡𝑡𝑡ℓ𝑏𝑏𝑡𝑡𝑡𝑡 cos 90° = 𝜇𝜇0𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒 

Recall from trig that cos 0° = 1 and cos 90° = 0. 
𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡ℓ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 + 0 + 𝐵𝐵𝑙𝑙𝑒𝑒𝑙𝑙𝑡𝑡ℓ𝑙𝑙𝑒𝑒𝑙𝑙𝑡𝑡 + 0 = 𝜇𝜇0𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒 

We choose our Ampèrian rectangle to be centered about the infinite sheet such that the 
value of 𝐵𝐵 is the same† at both ends. 

𝐵𝐵𝐿𝐿 + 𝐵𝐵𝐿𝐿 = 2𝐵𝐵𝐿𝐿 = 𝜇𝜇0𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒 
Note that 𝐿𝐿 is the height of the Ampèrian rectangle, not the length of the current sheet 
(which is infinite).  Isolate the magnitude of the magnetic field by dividing both sides of the 
equation by 2𝐿𝐿. 

𝐵𝐵 =
𝜇𝜇0𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒

2𝐿𝐿
 

Now we need to determine how much current is enclosed by the Ampèrian rectangle.  For a 
current sheet, we write 𝐾𝐾 = 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒

𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒
 (Step 10 on page 238), which can also be expressed as 

𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐾𝐾𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒.  In this example, 𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒 is along the length 𝐿𝐿 of the Ampèrian rectangle (since 
that’s the direction that encompasses some current). 

𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐾𝐾𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐾𝐾𝐿𝐿 
Substitute this expression for the current enclosed into the previous equation for magnetic 
field. 

𝐵𝐵 =
𝜇𝜇0𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒

2𝐿𝐿
=
𝜇𝜇0
2𝐿𝐿

(𝐾𝐾𝐿𝐿) =
𝜇𝜇0𝐾𝐾

2
 

The magnitude of the magnetic field is 𝐵𝐵 = 𝜇𝜇0𝐾𝐾
2

, which is a constant.  Thus, the magnetic 
field created by an infinite current sheet is uniform.  

                                                        
† Once we reach our final answer, we will see that this doesn’t matter:  It turns out that the magnetic field is 
independent of the distance from the infinite current sheet. 
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Example:  The infinite tightly wound solenoid illustrated below is coaxial with the -axis 
and carries an insulated filamentary current .  Derive an expression for the magnetic field 
inside of the solenoid. 

 
First sketch the magnetic field lines for the solenoid.  Recall that we have already done this 
in Chapter 19:  As shown above, the magnetic field (B) lines are straight up ( ) inside of the 
solenoid. 

We choose our Ampèrian loop to be a rectangle with one edge perpendicular to the axis of 
the solenoid such that B and  (which is tangent to the Ampèrian loop) will be parallel or 
perpendicular at each side of the rectangle. 

• Along the top and bottom sides, B is vertical and  is horizontal, such that B and 
are perpendicular. 

• Along the right and left sides, B and  are both parallel (they either both point up or 
both point down). 

Write the formula for Ampère’s law. 
1 1 cos 1 + 2 2 cos 2 + + cos = 0 𝑒𝑒𝑛𝑛  

The left-hand side of the equation involves the complete path of the Ampèrian rectangle.  
The rectangle includes four sides.

𝑔𝑔 𝑛𝑛 𝑔𝑔 𝑛𝑛 cos 𝑔𝑔 𝑛𝑛 + 𝑛𝑛 𝑛𝑛 cos 𝑛𝑛 + 𝑒𝑒 𝑛𝑛 𝑒𝑒 𝑛𝑛 cos 𝑒𝑒 𝑛𝑛 + 𝑏𝑏 𝑛𝑛 𝑏𝑏 𝑛𝑛 cos 𝑏𝑏 𝑛𝑛 = 0 𝑒𝑒𝑛𝑛  

Recall that  is the angle between B and .  Also recall that the direction of s is tangential 
to the Ampèrian loop.  Study the direction of B and  at each side of the rectangle in the 
previous diagram. 

• For the right and left sides, = 0° because B and either both point up or both 
point down. 

• For the top and bottom sides, = 90° because B and  are perpendicular.
𝑔𝑔 𝑛𝑛 𝑔𝑔 𝑛𝑛 cos 0° + 𝑛𝑛 𝑛𝑛 cos 90° + 𝑒𝑒 𝑛𝑛 𝑒𝑒 𝑛𝑛 cos 0° + 𝑏𝑏 𝑛𝑛 𝑏𝑏 𝑛𝑛 cos 90° = 0 𝑒𝑒𝑛𝑛  

Recall from trig that cos 0° = 1 and cos 90° = 0. 
𝑔𝑔 𝑛𝑛 𝑔𝑔 𝑛𝑛 + 0 + 𝑒𝑒 𝑛𝑛 𝑒𝑒 𝑛𝑛 + 0 = 0 𝑒𝑒𝑛𝑛
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It turns out that the magnetic field outside of the solenoid is very weak compared to the 
magnetic field inside of the solenoid.  With this in mind, we will approximate 𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 ≈ 0 
outside of the solenoid, such that 𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡ℓ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 ≈ 0. 

𝐵𝐵𝑙𝑙𝑒𝑒𝑙𝑙𝑡𝑡ℓ𝑙𝑙𝑒𝑒𝑙𝑙𝑡𝑡 = 𝜇𝜇0𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒 
We will drop the subscripts from the remaining magnetic field.  The length is the length of 
the left side of the Ampèrian rectangle. 

𝐵𝐵𝐿𝐿 = 𝜇𝜇0𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒 
Isolate the magnitude of the magnetic field by dividing both sides of the equation by 𝐿𝐿. 

𝐵𝐵 =
𝜇𝜇0𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒
𝐿𝐿

 

Now we need to determine how much current is enclosed by the Ampèrian rectangle.  The 
answer is simple:  The current passes through the Ampèrian rectangle 𝑁𝑁 times.  Therefore, 
the current enclosed by the Ampèrian rectangle is 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑁𝑁𝐼𝐼.  Substitute this expression for 
the current enclosed into the previous equation for magnetic field. 

𝐵𝐵 =
𝜇𝜇0𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒
𝐿𝐿

=
𝜇𝜇0𝑁𝑁𝐼𝐼
𝐿𝐿

= 𝜇𝜇0𝑛𝑛𝐼𝐼 

Note that lowercase 𝑛𝑛 is the number of turns (or loops) per unit length:  𝑛𝑛 = 𝑁𝑁
𝐿𝐿

.  For a truly 
infinite solenoid, 𝑁𝑁 and 𝐿𝐿 would each be infinite, yet 𝑛𝑛 is finite.  The magnitude of the 
magnetic field inside of the solenoid is 𝐵𝐵 = 𝜇𝜇0𝑛𝑛𝐼𝐼, which is a constant.  Thus, the magnetic 
field inside of an infinitely long, tightly wound solenoid is uniform.  
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Example:  The tightly wound toroidal coil illustrated below carries an insulated filamentary 
current .  Derive an expression for the magnetic field in the region that is shaded gray in 
the diagram below. 

 
Although some students struggle to visualize or draw the toroidal coil, you shouldn’t be 
afraid of the math:  As we will see, the mathematics involved in this application of Ampère’s
law is very simple. 

First sketch the magnetic field lines for the toroidal coil.  Apply the right-hand rule for 
magnetic field (Chapter 19):  As shown above, the magnetic field (B) lines are circles 
running along the (circular) axis of the toroidal coil.  We choose our Ampèrian loop to be a 
circle inside of the toroid (dashed circle above) such that B and  (which is tangent to the 
Ampèrian loop) will be parallel.  Write the formula for Ampère’s law. 

1 1 cos 1 + 2 2 cos 2 + + cos = 0 𝑒𝑒𝑛𝑛  
There is just one term for the Ampèrian circle, since the magnitude of B is constant along 
the Ampèrian circle (because every point on the circle is equidistant from the center of the 
toroidal coil).  The angle = 0° since the magnetic field lines make circles along the axis of 
the toroid (and are therefore parallel to , which is tangent to the Ampèrian circle). 

cos 0° = 0 𝑒𝑒𝑛𝑛  
Recall from trig that cos 0° = 1. 

= 0 𝑒𝑒𝑛𝑛
This arc length  equals the circumference of the Ampèrian circle:  = 2 .  Substitute this 
expression for circumference into the previous equation for magnetic field.  Isolate the 
magnitude of the magnetic field by dividing both sides of the equation by = 2 . 

= 0 𝑒𝑒𝑛𝑛

2
 

Similar to the previous example, the current enclosed by the Ampèrian loop is 𝑒𝑒𝑛𝑛 = . 

= 0

2
 

The magnitude of the magnetic field inside of the toroidal coil is =
2

.   
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57.  An infinite solid cylindrical conductor coaxial with the -axis has radius 𝑎𝑎 and uniform 
current density J.  Coaxial with the solid cylindrical conductor is a thick infinite cylindrical 
conducting shell of inner radius , outer radius , and uniform current density J.  The 
conducting cylinder carries total current  coming out of the page, while the conducting 
cylindrical shell carries the same total current , except that its current is going into the 
page.  Derive an expression for the magnetic field in each region.  (This is a coaxial cable.) 

 

Want help?  Check the hints section at the back of the book. 
Answers:  =

2 𝑎𝑎2
, =

2
, =

2− 2

2 ( 2−𝑏𝑏2) (see the note in the hints), = 0 

𝑎𝑎 

I II 
III 

IV 

 

 

 J 

 J 
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58.  An infinite conducting slab with thickness  is parallel to the 𝑥𝑥𝑥𝑥 plane, centered about 
= 0, and has uniform current density J coming out of the page.  Derive an expression for 

the magnetic field in each region. 

 

Want help?  Check the hints section at the back of the book. 
Answers:  = −

2
, = 0  , =

2

I  
< −

2
 

III  
>

2
 II  

−
2

< <
2

𝑥𝑥 

 

𝑥𝑥 J 
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59.  An infinite solid cylindrical conductor coaxial with the -axis has radius 𝑎𝑎, uniform 
current density J along + , and carries total current .  As illustrated below, the solid 
cylinder has a cylindrical cavity with radius 𝑎𝑎

2
centered about a line parallel to the -axis 

and passing through the point 𝑎𝑎
2

, 0, 0 .    Determine the magnitude and direction of the 

magnetic field at the point 3𝑎𝑎
2

, 0, 0 . 

 

Want help?  Check the hints section at the back of the book. 
Answer:  =

1 𝑎𝑎

𝑎𝑎 

3𝑎𝑎
2

, 0, 0  
J 

𝑥𝑥 

𝑥𝑥 
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24 LENZ’S LAW 

Relevant Terminology 

Current – the instantaneous rate of flow of charge through a wire. 
Magnetic field – a magnetic effect created by a moving charge (or current). 
Magnetic flux –a measure of the relative number of magnetic field lines that pass through a 
surface. 
Solenoid – a coil of wire in the shape of a right-circular cylinder. 
 
Essential Concepts 

According to Faraday’s law, a current (𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖) is induced in a loop of wire when there is a 
changing magnetic flux through the loop.  The magnetic flux (Φ𝑚𝑚) through the loop is a 
measure of the relative number of magnetic field lines passing through the loop.  There are 
three ways for the magnetic flux (Φ𝑚𝑚) to change: 

• The average value of the magnetic field (𝐁𝐁��⃗ 𝑒𝑒𝑒𝑒𝑒𝑒) in the area of the loop may change.  
One way for this to happen is if a magnet (or current-carrying wire) is getting closer 
to or further from the loop. 

• The area of the loop may change.  This is possible if the shape of the loop changes. 
• The orientation of the loop or magnetic field lines may change.  This can happen, for 

example, if the loop or a magnet rotates. 
Note:  If the magnetic flux through a loop isn’t changing, no current is induced in the loop. 
 
In Chapter 25, we’ll learn how to apply Faraday’s law to calculate the induced emf or the 
induced current.  In Chapter 24, we’ll focus on how to determine the direction of the 
induced current.  Lenz’s law gives the direction of the induced current (𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖). 
 
According to Lenz’s law, the induced current runs through the loop in a direction such that 
the induced magnetic field created by the induced current opposes the change in the 
magnetic flux.  That’s the “fancy” way of explaining Lenz’s law.  Following is what the 
“fancy” definition really means: 

• If the magnetic flux (Φ𝑚𝑚) through the area of the loop is increasing, the induced 
magnetic field (𝐁𝐁��⃗ 𝑖𝑖𝑖𝑖𝑖𝑖) created by the induced current (𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖) will be opposite to the 
external magnetic field (𝐁𝐁��⃗ 𝑒𝑒𝑒𝑒𝑒𝑒). 

• If the magnetic flux (Φ𝑚𝑚) through the area of the loop is decreasing, the induced 
magnetic field (𝐁𝐁��⃗ 𝑖𝑖𝑖𝑖𝑖𝑖) created by the induced current (𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖) will be parallel to the 
external magnetic field (𝐁𝐁��⃗ 𝑒𝑒𝑒𝑒𝑒𝑒). 

In the strategy, we’ll break Lenz’s law down into four precise steps. 
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Special Symbols 

Symbol Name 

 into the page 

 out of the page 

N north pole 

S south pole 

Symbols and SI Units 

Symbol Name SI Units 

𝑒𝑒 𝑛𝑛 external magnetic field (that is, external to the loop) T 

𝑛𝑛  induced magnetic field (created by the induced current) T 

𝑚𝑚 magnetic flux through the area of the loop T∙m2 or Wb 

𝑛𝑛  induced current (that is, induced in the loop) A 

 velocity m/s 

Schematic Symbols 

Schematic Representation Symbol Name 

 𝑅𝑅 resistor 

  battery or DC power supply 

Recall that the long line represents the positive terminal, while the small rectangle 
represents the negative terminal.  Current runs from positive to negative. 
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Strategy to Apply Lenz’s Law 

Note the meaning of the following symbols: 
• The symbol  represents an arrow going into the page. 
• The symbol  represents an arrow coming out of the page. 

If there is a battery in the diagram, label the positive and negative terminals of each battery 
(or DC power supply).  The long line of the schematic symbol represents the positive 
terminal, as shown below.  Draw the conventional* current the way that positive charges 
would flow:  from the positive terminal to the negative terminal. 

 
To determine the direction of the induced current in a loop of wire, apply Lenz’s law in four 
steps as follows: 

1. What is the direction of the external magnetic field ( 𝑒𝑒 𝑛𝑛) in the area of the loop?  
Draw an arrow to show the direction of 𝑒𝑒 𝑛𝑛. 

• What is creating a magnetic field in the area of the loop to begin with? 
• If it is a bar magnet, you’ll need to know what the magnetic field lines of a bar 

magnet look like (see Chapter 17). 
• You want to know the direction of 𝑒𝑒 𝑛𝑛 specifically in the area of the loop. 
• If 𝑒𝑒 𝑛𝑛 points in multiple directions within the area of the loop, ask yourself 

which way 𝑒𝑒 𝑛𝑛 points on average. 
2. Is the magnetic flux ( 𝑚𝑚) through the loop increasing or decreasing?  Write one of 

the following words:  increasing, decreasing, or constant. 
• Is the relative number of magnetic field lines passing through the loop 

increasing or decreasing? 
• Is a magnet or external current getting closer or further from the loop? 
• Is something rotating?  If so, ask yourself if more or fewer magnetic field 

lines will pass through the loop while it rotates. 
3. What is the direction of the induced magnetic field ( 𝑛𝑛 ) created by the induced 

current?  Determine this from your answer for 𝑚𝑚 in Step 2 and your answer for 

𝑒𝑒 𝑛𝑛 in Step 1 as follows.  Draw an arrow to show the direction of 𝑛𝑛 .
• If 𝑚𝑚 is increasing, draw 𝑛𝑛  opposite to your answer for Step 1. 
• If 𝑚𝑚 is decreasing, draw 𝑛𝑛  parallel to your answer for Step 1. 
• If 𝑚𝑚 is constant, then 𝑛𝑛 = 0 and there won’t be any induced current.

               
* Of course, it’s really the electrons moving through the wire, not positive charges.  However, all of the signs in 
physics are based on positive charges, so it’s “conventional” to draw the current based on what a positive 
charge would do.  Remember, all the rules are backwards for electrons, due to the negative charge. 

 

+ − 
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4. Apply the right-hand rule for magnetic field (Chapter 19) to determine the direction 
of the induced current (𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖) from your answer to Step 3 for the induced magnetic 
field (𝐁𝐁��⃗ 𝑖𝑖𝑖𝑖𝑖𝑖).  Draw and label your answer for 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖  on the diagram. 

• Be sure to use your answer to Step 3 and not your answer to Step 1. 
• You’re actually inverting the right-hand rule.  In Chapter 19, we knew the 

direction of the current and applied the right-hand rule to determine the 
direction of the magnetic field.  With Lenz’s law, we know the direction of the 
magnetic field (from Step 3), and we’re applying the right-hand rule to 
determine the direction of the induced current. 

• The right-hand rule for magnetic field still works the same way.  The 
difference is that now you’ll need to grab the loop both ways (try it both with 
your thumb clockwise and with your thumb counterclockwise to see which 
way points your fingers correctly inside of the loop). 

• What matters is which way your fingers are pointing inside of the loop (they 
must match your answer to Step 3) and which way your thumb points (this is 
your answer for the direction of the induced current). 

 
Important Distinctions 

Magnetic field (𝐁𝐁��⃗ ) and magnetic flux (Φ𝑚𝑚) are two entirely different quantities.  The 
magnetic flux (Φ𝑚𝑚) through a loop of wire depends on three things: 

• the average value of magnetic field over the loop (𝐁𝐁��⃗ 𝑒𝑒𝑒𝑒𝑒𝑒) 
• the area of the loop (𝐴𝐴) 
• the direction (𝜃𝜃) of the magnetic field relative to the axis of the loop. 

Two different magnetic fields are involved in Lenz’s law: 
• There is external magnetic field (𝐁𝐁��⃗ 𝑒𝑒𝑒𝑒𝑒𝑒) in the area of the loop, which is produced by 

some source other than the loop in question.  The source could be a magnet or it 
could be another current. 

• An induced magnetic field (𝐁𝐁��⃗ 𝑖𝑖𝑖𝑖𝑖𝑖) is created by the induced current (𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖) in 
response to a changing magnetic flux (Φ𝑚𝑚). 
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Example:  If the magnetic field is increasing in the diagram below, what is the direction of 
the current induced in the loop? 

 
Apply the four steps of Lenz’s law: 

1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is out of the page ( ).  It happens to already be 
drawn in the problem. 

2. The magnetic flux ( 𝑚𝑚) is increasing because the problem states that the external 
magnetic field is increasing. 

3. The induced magnetic field ( 𝑛𝑛 ) is into the page ( ).  Since 𝑚𝑚 is increasing, the 
direction of 𝑛𝑛  is opposite to the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 

4. The induced current ( 𝑛𝑛 ) is clockwise, as drawn below.  If you grab the loop with 
your thumb pointing clockwise and your fingers wrapped around the wire, inside 
the loop your fingers will go into the page ( ).  Remember, you want your fingers 
to match Step 3 inside the loop:  You don’t want your fingers to match Step 1 or the 
magnetic field lines already drawn in the beginning of the problem. 

 
Example:  If the magnetic field is decreasing in the diagram below, what is the direction of 
the current induced in the loop? 

 
Apply the four steps of Lenz’s law: 

1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is down ( ).  It happens to already be drawn in 
the problem. 

2. The magnetic flux ( 𝑚𝑚) is decreasing because the problem states that the external 
magnetic field is decreasing. 

3. The induced magnetic field ( 𝑛𝑛 ) is down ( ).  Since 𝑚𝑚 is decreasing, the direction 
of 𝑛𝑛  is the same as the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 

   

   

   

   

 

 
𝑛𝑛  𝑛𝑛  
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4. The induced current ( 𝑛𝑛 ) runs to the left in the front of the loop (and therefore 
runs to the right in the back of the loop), as drawn below.  Note that this loop is 
horizontal.  If you grab the front of the loop with your thumb pointing to the left and 
your fingers wrapped around the wire, inside the loop your fingers will go down ( ). 

 
Example:  As the magnet is moving away from the loop in the diagram below, what is the 
direction of the current induced in the loop? 

 
Apply the four steps of Lenz’s law: 

1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is to the right ( ).  This is because the magnetic 
field lines of the magnet are going to the right, away from the north (N) pole, in the 
area of the loop as illustrated below.  Tip:  When you view the diagram below, ask 
yourself which way, on average, the magnetic field lines would be headed if you 
extend the diagram to where the loop is. 

2. The magnetic flux ( 𝑚𝑚) is decreasing because the magnet is getting further away 
from the loop. 

3. The induced magnetic field ( 𝑛𝑛 ) is to the right ( ).  Since 𝑚𝑚 is decreasing, the 
direction of 𝑛𝑛  is the same as the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 

4. The induced current ( 𝑛𝑛 ) runs down the front of the loop (and therefore runs up 
the back of the loop), as drawn below.  Note that this loop is vertical.  If you grab the 
front of the loop with your thumb pointing down and your fingers wrapped around 
the wire, inside the loop your fingers will go to the right ( ). 

𝑛𝑛  

𝑛𝑛  

N
 S  

N
 S 

𝑛𝑛

𝑛𝑛  
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Example:  As the right loop travels toward the left loop in the diagram below, what is the 
direction of the current induced in the right loop? 

 
1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is into the page ( ).  This is because the left loop 

creates a magnetic field that is into the page in the region where the right loop is.  
Get this from the right-hand rule for magnetic field (Chapter 19).  When you grab 
the left loop with your thumb pointed counterclockwise (along the given current) 
and your fingers wrapped around the wire, outside of the left loop (because the 
right loop is outside of the left loop) your fingers point into the page. 

 
2. The magnetic flux ( 𝑚𝑚) is increasing because the right loop is getting closer to the 

left loop so the magnetic field created by the left loop is getting stronger in the area 
of the right loop. 

3. The induced magnetic field ( 𝑛𝑛 ) is out of the page ( ).  Since 𝑚𝑚 is increasing, the 
direction of 𝑛𝑛 is opposite to the direction of 𝑒𝑒 𝑛𝑛 from Step 1.

4. The induced current ( 𝑛𝑛 ) is counterclockwise, as drawn below.  If you grab the loop 
with your thumb pointing counterclockwise and your fingers wrapped around the 
wire, inside the loop your fingers will come out of the page ( ).  Remember, you 
want your fingers to match Step 3 inside the right loop (not Step 1). 

 
Example:  In the diagram below, a conducting bar slides to the right along the rails of a bare 
U-channel conductor in the presence of a constant magnetic field.  What is the direction of 
the current induced in the conducting bar? 

 

 

 

 
𝑒𝑒 𝑛𝑛 

 

 
𝑛𝑛  𝑛𝑛  
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1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is into the page ( ).  It happens to already be 
drawn in the problem. 

2. The magnetic flux ( 𝑚𝑚) is decreasing because the area of the loop is getting smaller 
as the conducting bar travels to the right.  Note that the conducting bar makes 
electrical contract where it touches the bare U-channel conductor.  The dashed (---) 
line below illustrates how the area of the loop is getting smaller as the conducting 
bar travels to the right. 

3. The induced magnetic field ( 𝑛𝑛 ) is into the page ( ).  Since 𝑚𝑚 is decreasing, the 
direction of 𝑛𝑛  is the same as the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 

4. The induced current ( 𝑛𝑛 ) is clockwise, as drawn below.  If you grab the loop with 
your thumb pointing clockwise and your fingers wrapped around the wire, inside 
the loop your fingers will go into the page ( ).  Since the induced current is 
clockwise in the loop, the induced current runs up ( ) the conducting bar. 

 
Example:  In the diagrams below, the loop rotates, with the bottom of the loop coming out 
of the page and the top of the loop going into the page, making the loop horizontal.  What is 
the direction of the current induced in the loop during this 90° rotation? 

 
1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is out of the page ( ).  It happens to already be 

drawn in the problem. 
2. The magnetic flux ( 𝑚𝑚) is decreasing because fewer magnetic field lines pass 

through the loop as it rotates.  At the end of the described 90° rotation, the loop is 
horizontal and the final magnetic flux is zero. 

3. The induced magnetic field ( 𝑛𝑛 ) is out of the page ( ).  Since 𝑚𝑚 is decreasing, 
the direction of 𝑛𝑛  is the same as the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 

 
𝑛𝑛  𝑛𝑛  
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4. The induced current ( 𝑛𝑛 ) is counterclockwise, as drawn below.  If you grab the loop 
with your thumb pointing counterclockwise and your fingers wrapped around the 
wire, inside the loop your fingers will come out of the page ( ). 

 
Example:  In the diagrams below, the loop rotates such that the point (•) at the top of the 
loop moves to the right of the loop.  What is the direction of the current induced in the loop 
during this 90° rotation? 

 
1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is out of the page ( ).  It happens to already be 

drawn in the problem. 
2. The magnetic flux ( 𝑚𝑚) is constant because the number of magnetic field lines 

passing through the loop doesn’t change.  It is instructive to compare this example 
to the previous example. 

3. The induced magnetic field ( 𝑛𝑛 ) is zero because the magnetic flux ( 𝑚𝑚) through 
the loop is constant.

4. The induced current ( 𝑛𝑛 ) is also zero because the magnetic flux ( 𝑚𝑚) through the 
loop is constant. 

 
𝑛𝑛

𝑛𝑛  
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60.  If the magnetic field is increasing in the diagram below, what is the direction of the 
current induced in the loop? 
 

1.  𝑒𝑒 𝑛𝑛 is __________.  (Draw an arrow.) 

2.  𝑚𝑚 is  increasing  /  decreasing  /  constant. 
(Circle one.) 

3.  𝑛𝑛  is __________.  (Draw an arrow.) 

4.  Draw and label 𝑛𝑛  in the diagram. 

61.  If the magnetic field is decreasing in the diagram below, what is the direction of the 
current induced in the loop? 

1.  𝑒𝑒 𝑛𝑛 is __________.  (Draw an arrow.) 

2.  𝑚𝑚 is  increasing  /  decreasing  /  constant. 
(Circle one.) 

3.  𝑛𝑛  is __________.  (Draw an arrow.) 

4.  Draw and label 𝑛𝑛  in the diagram. 

62.  If the magnetic field is increasing in the diagram below, what is the direction of the 
current induced in the loop? 

1.  𝑒𝑒 𝑛𝑛 is __________.  (Draw an arrow.) 

2.  𝑚𝑚 is  increasing /  decreasing  /  constant. 
(Circle one.) 

3.  𝑛𝑛  is __________.  (Draw an arrow.) 

4.  Draw and label 𝑛𝑛  in the diagram. 

Want help?  The problems from Chapter 28 are fully solved in the back of the book.
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63.  As the magnet is moving towards the loop in the diagram below, what is the direction 
of the current induced in the loop? 
 

1.  𝑒𝑒 𝑛𝑛 is __________.  (Draw an arrow.) 

2.  𝑚𝑚 is  increasing  /  decreasing  /  constant. 
(Circle one.) 

3.  𝑛𝑛  is __________.  (Draw an arrow.)  

4.  Draw and label 𝑛𝑛  in the diagram. 

64.  As the magnet is moving away from the loop in the diagram below, what is the 
direction of the current induced in the loop? 

1.  𝑒𝑒 𝑛𝑛 is __________.  (Draw an arrow.) 

2.  𝑚𝑚 is  increasing  /  decreasing  /  constant. 
(Circle one.) 

3.  𝑛𝑛  is __________.  (Draw an arrow.) 

4.  Draw and label 𝑛𝑛  in the diagram. 

65.  As the magnet (which is perpendicular to the page) is moving into the page and 
towards the loop in the diagram below, what is the direction of the current induced in the 
loop?  (Unlike the magnet, the loop lies in the plane of the page.) 
 

1.  𝑒𝑒 𝑛𝑛 is __________.  (Draw an arrow.) 

2.  𝑚𝑚 is  increasing  /  decreasing  /  constant. 
(Circle one.) 

3.  𝑛𝑛  is __________.  (Draw an arrow.) 

4.  Draw and label 𝑛𝑛  in the diagram. 

Want help?  The problems from Chapter 24 are fully solved in the back of the book.

 

 N
 S 

 

N

S 
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66.  As the current increases in the outer loop in the diagram below, what is the direction of 
the current induced in the inner loop? 
 

1.  𝑒𝑒 𝑛𝑛 is __________.  (Draw an arrow.) 

2.  𝑚𝑚 is  increasing  /  decreasing  /  constant. 
(Circle one.) 

3.  𝑛𝑛  is __________.  (Draw an arrow.) 

4.  Draw and label 𝑛𝑛  in the diagram. 

67.  As the current in the straight conductor decreases in the diagram below, what is the 
direction of the current induced in the rectangular loop? 

1.  𝑒𝑒 𝑛𝑛 is __________.  (Draw an arrow.) 

2.  𝑚𝑚 is  increasing  /  decreasing  /  constant. 
(Circle one.) 

3.  𝑛𝑛  is __________.  (Draw an arrow.) 

4.  Draw and label 𝑛𝑛  in the diagram. 

68.  As the potential difference of the DC power supply increases in the diagram below, 
what is the direction of the current induced in the right loop? 
 

1.  𝑒𝑒 𝑛𝑛 is __________.  (Draw an arrow.) 

2.  𝑚𝑚 is  increasing  /  decreasing  /  constant. 
(Circle one.) 

3.  𝑛𝑛  is __________.  (Draw an arrow.) 

4.  Draw and label 𝑛𝑛  in the diagram. 

Want help?  The problems from Chapter 24 are fully solved in the back of the book.

 

𝑅𝑅 

 
+ − 
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69.  As the conducting bar illustrated below slides to the right along the rails of a bare U-
channel conductor, what is the direction of the current induced in the conducting bar?  

1.  𝑒𝑒 𝑛𝑛 is __________.  (Draw an arrow.) 

2.  𝑚𝑚 is  increasing  /  decreasing  /  constant. 
(Circle one.) 

3.  𝑛𝑛  is __________.  (Draw an arrow.) 

4.  Draw and label 𝑛𝑛  in the diagram. 

70.  As the conducting bar illustrated below slides to the left along the rails of a bare U-
channel conductor, what is the direction of the current induced in the conducting bar? 

1.  𝑒𝑒 𝑛𝑛 is __________.  (Draw an arrow.) 

2.  𝑚𝑚 is  increasing  /  decreasing  /  constant. 
(Circle one.) 

3.  𝑛𝑛  is __________.  (Draw an arrow.) 

4.  Draw and label 𝑛𝑛  in the diagram. 

71.  As the vertex of the triangle illustrated below is pushed downward from point A to 
point C, what is the direction of the current induced in the triangular loop? 

1.  𝑒𝑒 𝑛𝑛 is __________.  (Draw an arrow.) 

2.  𝑚𝑚 is  increasing  /  decreasing  /  constant. 
(Circle one.) 

3.  𝑛𝑛  is __________.  (Draw an arrow.) 

4.  Draw and label 𝑛𝑛  in the diagram. 

Want help?  The problems from Chapter 24 are fully solved in the back of the book.
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72.  The loop in the diagram below rotates with the right side of the loop coming out of the 
page.  What is the direction of the current induced in the loop during this 90° rotation? 

1.  𝑒𝑒 𝑛𝑛 is __________.  (Draw an arrow.) 

2.  𝑚𝑚 is  increasing  /  decreasing  /  constant. 
(Circle one.) 

3.  𝑛𝑛  is __________.  (Draw an arrow.) 

4.  Draw and label 𝑛𝑛  in the diagram. 

73.  The magnetic field in the diagram below rotates 90° clockwise.  What is the direction of 
the current induced in the loop during this 90° rotation? 

1.  𝑒𝑒 𝑛𝑛 is __________.  (Draw an arrow.) 

2.  𝑚𝑚 is  increasing  /  decreasing  /  constant. 
(Circle one.) 

3.  𝑛𝑛  is __________.  (Draw an arrow.) 

4.  Draw and label 𝑛𝑛  in the diagram. 

74.  The loop in the diagram below rotates with the top of the loop coming out of the page.  
What is the direction of the current induced in the loop during this 90° rotation? 

1.  𝑒𝑒 𝑛𝑛 is __________.  (Draw an arrow.) 

2.  𝑚𝑚 is  increasing  /  decreasing  /  constant. 
(Circle one.) 

3.  𝑛𝑛  is __________.  (Draw an arrow.) 

4.  Draw and label 𝑛𝑛  in the diagram. 

Want help?  The problems from Chapter 24 are fully solved in the back of the book.
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25 FARADAY’S LAW 

Relevant Terminology 

Electric charge – a fundamental property of a particle that causes the particle to experience 
a force in the presence of an electric field.  (An electrically neutral particle has no charge 
and thus experiences no force in the presence of an electric field.) 
Current – the instantaneous rate of flow of charge through a wire. 
Potential difference – the electric work per unit charge needed to move a test charge 
between two points in a circuit.  Potential difference is also called the voltage. 
Emf – the potential difference that a battery or DC power supply would supply to a circuit 
neglecting its internal resistance. 
Magnetic field – a magnetic effect created by a moving charge (or current). 
Magnetic flux –a measure of the relative number of magnetic field lines that pass through a 
surface. 
Solenoid – a coil of wire in the shape of a right-circular cylinder. 
Turns – the loops of a coil of wire (such as a solenoid). 
Permeability – a measure of how a substance affects a magnetic field. 
 
Magnetic Flux Equations 

Magnetic flux (Φ𝑚𝑚) is a measure of the relative number of magnetic field lines passing 
through a surface.  If the magnitude of the magnetic field (𝐵𝐵) is constant over a surface, and 
if the angle between the magnetic field (B��⃗ ) and the area vector (A��⃗ ) is constant over the 
surface, the magnetic flux is given by the following equation, where 𝜃𝜃 is the angle between 
B��⃗  and A��⃗ .  The direction of A��⃗  is perpendicular to the surface.  Note that Φ𝑚𝑚 is maximum when 
𝜃𝜃 = 0° and zero when 𝜃𝜃 = 90°. 

Φ𝑚𝑚 = 𝐵𝐵𝐵𝐵 cos 𝜃𝜃 
In this case, 𝜃𝜃 is the angle between the axis of the loop (which is perpendicular to the plane 
of the loop and passes through the center of the loop) and the direction of the magnetic 
field.  Magnetic flux is maximum when magnetic field lines are perpendicular to the area of 
the loop. 
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Faraday’s Law Equations 

According to Faraday’s law, a current ( 𝑛𝑛 ) is induced in a loop of wire when there is a 
changing magnetic flux through the loop.  Lenz’s law provides the direction of the induced 
current, while Faraday’s law provides the emf ( 𝑛𝑛 ) induced in the loop (from which the 
induced current can be determined). 

𝑛𝑛 = − 𝑚𝑚 

The factor of  represents the total number of loops.  Many physics problems relating to 
Faraday’s law involve a magnetic field that is uniform throughout the area of the loop, in 
which case the equation for magnetic flux is: 

𝑚𝑚 = cos  
Unlike the emf of a battery or power supply such as we discussed in Chapter 14, the emf 
induced via Faraday’s law involves no internal resistance.  Thus, when we apply Ohm’s law 
to solve for the induced current, the equation looks like this: 

𝑛𝑛 = 𝑛𝑛 𝑅𝑅  
Here, 𝑅𝑅  is the combined resistance of the  loops.  If a problem gives you the resistivity 
( ) of the wire, you can find the resistance using the following equation from Chapter 14. 

𝑅𝑅 =
𝑒𝑒

 

Note that  is the total length of the wire.  (For a solenoid, this  is not the same as the 
length of the solenoid.)  Note also that 𝑒𝑒 is the cross-sectional area of the wire, 
involving the radius of the wire, and not the area of the loop.  Magnetic flux involves the 
area of the loop ( ), whereas the resistivity equation involves the area of the wire ( 𝑒𝑒).

 
Motional emf ( 𝑛𝑛 ) arises when a conducting bar of length  travels with a velocity 
through a uniform magnetic field ( ).  An example of motional emf is illustrated above.

𝑛𝑛 = −  
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Magnetic Field Equations 

Recall the magnetic field equations from Chapter 22.  If the magnetic field isn’t given in the 
problem, you may need to apply one of the following equations to find the external 
magnetic field in the area of the loop before you can find the magnetic flux, or you may 
need to apply Ampère’s law (Chapter 23) to derive an equation for magnetic field. 

= 0

2
     (long straight wire) 

= 0 = 0      (center of a solenoid) 

Recall that the permeability of free space is 0 = 4 × 10−  T∙m
A

. 

Essential Concepts 

The magnetic flux through a loop of wire must change in order for a current to be induced 
in the loop via Faraday’s law.  There are three ways for the magnetic flux ( 𝑚𝑚) to change: 

• The average value of the magnetic field ( 𝑒𝑒 𝑛𝑛) in the area of the loop may change.  
One way for this to happen is if a magnet (or current-carrying wire) is getting closer 
to or further from the loop. 

• The area of the loop may change.  This is possible if the shape of the loop changes. 
• The orientation of the loop or magnetic field lines may change.  This can happen, for 

example, if the loop or a magnet rotates.
Note:  If the magnetic flux through a loop isn’t changing, no current is induced in the loop. 

Important Distinction 

Magnetic field ( ) and magnetic flux ( 𝑚𝑚) are two entirely different quantities.  The 
magnetic flux ( 𝑚𝑚) through a loop of wire depends on three things: 

• the average value of magnetic field over the loop ( 𝑒𝑒 𝑛𝑛) 
• the area of the loop ( ) 
• the direction ( ) of the magnetic field relative to the axis of the loop. 

Note that two different areas are involved in the equations: 
•  is the area of the loop, involving the radius (𝑎𝑎) of the loop. 
• 𝑒𝑒 is the cross-sectional area of the wire, involving the radius (𝑎𝑎 𝑒𝑒) of the wire. 

𝑎𝑎 𝑎𝑎 𝑒𝑒
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Symbols and Units 

Symbol Name Units 

Φ𝑚𝑚 magnetic flux T∙m2 or Wb 

𝐵𝐵 magnitude of the external magnetic field T 

𝐵𝐵 area of the loop m2 

𝐵𝐵𝑤𝑤𝑖𝑖𝑤𝑤𝑤𝑤 area of the wire m2 

𝜃𝜃 
angle between 𝐁𝐁��⃗  and the axis of the loop, 

or the angle between 𝐁𝐁��⃗  and 𝑑𝑑A��⃗  
° or rad 

𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 induced emf V 

𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖  induced current A 

𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 resistance of the loops Ω 

𝜌𝜌 resistivity Ω∙m 

𝑁𝑁 number of loops (or turns) unitless 

𝑛𝑛 number of turns per unit length 1
m

  

𝑡𝑡 time s 

𝜇𝜇0 permeability of free space T∙m
A

  

𝑟𝑟𝑐𝑐 distance from a long, straight wire m 

𝑎𝑎 radius of a loop m 

𝑎𝑎𝑤𝑤𝑖𝑖𝑤𝑤𝑤𝑤 radius of a wire m 

ℓ length of the wire or length of conducting bar m 

𝐿𝐿 length of a solenoid m 

𝑣𝑣 speed m/s 

𝜔𝜔 angular speed rad/s 

Note:  The symbol Φ is the uppercase Greek letter phi. 
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Special Symbols 

Symbol Name 

⊗ into the page 

⊙ out of the page 

 
Notes Regarding Units 

The SI unit of magnetic flux (Φ𝑚𝑚) is the Weber (Wb), which is equivalent to T∙m2.  It’s fairly 
common to express magnetic flux in T∙m2 rather than Wb, perhaps to help avoid possible 
confusion with the Watt (W).  If you do use the Weber (Wb), be careful not to forget the b. 
 
The units of magnetic flux (Φ𝑚𝑚) follow from the equation Φ𝑚𝑚 = 𝐵𝐵𝐵𝐵 cos 𝜃𝜃.  Since the SI unit 
of magnetic field (𝐵𝐵) is the Tesla (T), the SI units of area (𝐵𝐵) are square meters (m2), and 
the cosine function is unitless (since it’s a ratio of two distances), it follows that the SI units 
of magnetic flux (Φ𝑚𝑚) are T∙m2 (the SI unit of 𝐵𝐵 times the SI units of 𝐵𝐵). 
 
Strategy to Apply Faraday’s Law 

Note:  If a problem gives you the magnetic field in Gauss (G), convert to Tesla (T): 
1 G = 10−4 T 

Note the meaning of the following symbols: 
• The symbol ⊗ represents an arrow going into the page. 
• The symbol ⊙ represents an arrow coming out of the page. 

To solve a problem involving Faraday’s law, make a list of the known quantities and choose 
equations that relate them to solve for the desired unknown. 

• At some stage in the problem, you will need to apply one of the two equations for 
Faraday’s law: 

o The main Faraday’s law equation relates the induced emf (𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖) to the change 
in the magnetic flux (Φ𝑚𝑚). 

𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = −𝑁𝑁
∆Φ𝑚𝑚

∆𝑡𝑡
 

In this case, you will ordinarily need to find the magnetic flux before you can 
use the equation.  See the bullet point regarding magnetic flux. 

o The motional emf equation applies to a conducting bar of length ℓ traveling 
with speed 𝑣𝑣 through a uniform magnetic field, where the length ℓ is 
perpendicular to the velocity of the conducting bar. 

𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = −𝐵𝐵ℓ𝑣𝑣 
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• Subtract the initial magnetic flux from the final magnetic flux in order to find the 
change in magnetic flux:  ΔΦ𝑚𝑚=Φ𝑚𝑚 −Φ𝑚𝑚0.  The magnetic flux must change in order 
for an emf (or current) to be induced in a loop of wire. 

• Most Faraday’s law problems (except for motional emf) require finding magnetic 
flux (Φ𝑚𝑚) before you apply Faraday’s law. 

Φ𝑚𝑚 = 𝐵𝐵𝐵𝐵 cos 𝜃𝜃 
Here, 𝜃𝜃 is the angle between 𝐁𝐁��⃗  and the axis of the loop (which is perpen-dicular to 
the loop and passes through its center). 

• Recall the formulas for area for some common objects.  For a circle, 𝐵𝐵 = 𝜋𝜋𝑎𝑎2.  For a 
rectangle, 𝐵𝐵 = 𝐿𝐿𝐿𝐿.  For a square, 𝐵𝐵 = 𝐿𝐿2.  For a triangle, 𝐵𝐵 = 1

2
𝑏𝑏ℎ. 

• To find the induced current (𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖), apply Ohm’s law. 
𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

If you also need the direction of the induced current, apply Lenz’s law (Chapter 24).  
If you know the resistivity (𝜌𝜌) or can look it up, use it to find resistance as follows: 

𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
𝜌𝜌ℓ
𝐵𝐵𝑤𝑤𝑖𝑖𝑤𝑤𝑤𝑤

 

• If a loop is rotating with constant angular speed, recall the formula for constant 
angular speed (𝜔𝜔): 

𝜔𝜔 =
∆𝜃𝜃
∆𝑡𝑡

 

• Note:  If you’re not given the value of the magnetic field in the area of the loop, you 
may need to use an equation at the top of page 267 or apply Ampère’s law (Chapter 
23).  
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Example:  A rectangular loop lies in the 𝑥𝑥𝑥𝑥 plane, centered about the origin.  The loop is 3.0 
m long and 2.0 m wide.  A uniform magnetic field of 40,000 G makes a 30° angle with the 𝑧𝑧-
axis.  What is the magnetic flux through the area of the loop? 
 
First convert the magnetic field from Gauss (G) to Tesla (T) given that 1 G = 10−4 T:  
𝐵𝐵 = 40,000 G = 4.0 T.  We need to find the area of the rectangle before we can find the 
magnetic flux: 

𝐵𝐵 = 𝐿𝐿𝐿𝐿 = (3)(2) = 6.0 m2 
Use the equation for the magnetic flux for a uniform magnetic field through a planar 
surface.  Since 𝜃𝜃 is the angle between the magnetic field and the axis of the loop, in this 
example 𝜃𝜃 = 30°.  Note that the 𝑧𝑧-axis is the axis of the rectangular loop because the axis of 
a loop is defined as the line that is perpendicular to the loop and passing through the center 
of the loop. 

Φ𝑚𝑚 = 𝐵𝐵𝐵𝐵 cos 𝜃𝜃 = (4)(6) cos 30° = 24 �
√3
2
� = 12√3 T∙m2 

The magnetic flux through the loop is Φ𝑚𝑚 = 12√3 T∙m2. 
 
Example:  A circular loop of wire with a radius of 25 cm and resistance of 6.0 Ω lies in the 𝑥𝑥𝑧𝑧 
plane.  A magnetic field is oriented along the +𝑥𝑥 direction and is uniform throughout the 
loop at any given moment.  The magnetic field increases from 4.0 T to 16.0 T in 250 ms. 
(A) What is the average emf induced in the loop during this time? 
First convert the radius and time to SI units:  𝑎𝑎 = 25 cm = 0.25 m = 1

4
 m and 𝑡𝑡 = 250 ms 

= 0.250 s = 1
4

 s.  We need to find the area of the circle before we can find the magnetic flux. 

𝐵𝐵 = 𝜋𝜋𝑎𝑎2 = 𝜋𝜋 �
1
4
�
2

=
𝜋𝜋

16
 m2 

(A benefit of using the symbol 𝑎𝑎 for the radius of the loop is to avoid possible confusion 
with resistance, but then you must still distinguish lowercase 𝑎𝑎 for radius from uppercase 
𝐵𝐵 for area.)  Next find the initial and final magnetic flux.  Use the equation for the magnetic 
flux through a loop in a uniform magnetic field.  Note that 𝜃𝜃 = 𝜃𝜃0 = 0° because the 𝑥𝑥-axis is 
the axis of the loop (because the axis of a loop is defined as the line that is perpendicular to 
the loop and passing through the center of the loop) and the magnetic field lines run 
parallel to the 𝑥𝑥-axis.  Recall from trig that cos 0° = 1. 

Φ𝑚𝑚0 = 𝐵𝐵0𝐵𝐵0 cos 𝜃𝜃0 = (4) �
𝜋𝜋

16
� cos 0° =

𝜋𝜋
4

 T∙m2 

Φ𝑚𝑚 = 𝐵𝐵𝐵𝐵 cos𝜃𝜃 = (16) �
𝜋𝜋

16
� cos 0° = 𝜋𝜋 T∙m2 

Subtract these values to find the change in the magnetic flux. 

∆Φ𝑚𝑚 = Φ𝑚𝑚 −Φ𝑚𝑚 = 𝜋𝜋 −
𝜋𝜋
4

=
4𝜋𝜋
4
−
𝜋𝜋
4

=
3𝜋𝜋
4

 T∙m2 
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There is just one loop in this example such that = 1.  Recall that = 250 ms = 1
4

 s. 

𝑛𝑛 = − 𝑚𝑚 = −(1)
3
4
1
4

= −
3
4

(4) = −3  V 

To divide by a fraction, multiply by its reciprocal.  Note that the reciprocal of 1
4
 is 4.  The 

average emf induced in the loop is 𝑛𝑛 = −3  V.  If you use a calculator, this comes out to
𝑛𝑛 = −9.4 V. 

(B) What is the average current induced in the loop during this time? 
Apply Ohm’s law. 

𝑛𝑛 = 𝑎𝑎 𝑒𝑒𝑅𝑅  

𝑛𝑛 = 𝑛𝑛

𝑅𝑅
= −

3
6

= −
2

 A 

The average current induced in the loop is 𝑛𝑛 = −
2

 A.  If you use a calculator, this comes 
out to 𝑛𝑛 = −1.6 A. 

Example:  The rectangular loop illustrated below is stretched at a constant rate, such that 
the right edge travels with a constant speed of 2.0 m/s to the right while the left edge 
remains fixed.  The height of the rectangle is 25 cm.  The magnetic field is uniform and has a 
magnitude of 5000 G.  What is the emf induced in the loop? 

 
First convert the height and magnetic field to SI units.  Recall that 1 G = 10−4 T.

= 25 cm = 0.25 m =
1
4

 m 

= 5000 G = 0.50 T =
1
2

 T 

Since the length of the rectangle is changing, we can’t get a fixed numerical value for the 
area.  That’s not a problem though:  We’ll just express the area in symbols (length times 
height, using the variable 𝑥𝑥 to represent the length of the rectangle): 

= 𝑥𝑥 
Substitute this expression into the equation for the magnetic flux through a loop in a 
uniform magnetic field. 

𝑚𝑚 = cos = 𝑥𝑥 cos  
Now substitute the expression for magnetic flux into Faraday’s law.
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𝑛𝑛 = − 𝑚𝑚 = −
( 𝑥𝑥 cos )

 

The magnetic field, height, and angle are constants.  Only 𝑥𝑥 is changing in this problem.  We 
may factor the constants out of the change in the magnetic flux.

𝑛𝑛 = − cos
𝑥𝑥

 

You should recognize 
𝑛𝑛
 as the velocity of an object moving along the 𝑥𝑥-axis with constant 

speed:  =
𝑛𝑛
. 

𝑛𝑛 = − cos  
There is just one loop, so = 1.  Note that = 0° because the axis of the loop and the 
magnetic field lines are both perpendicular to the plane of the page in the given diagram. 

𝑛𝑛 = −(1)
1
2

1
4

(2) cos 0° = −
1
4

 V = −0.25 V 

The emf induced in the loop is 𝑛𝑛 = −1
4

 V = −0.25 V.  Note that you could obtain the 
same answer by applying the motional emf equation to the right side (which is moving) of 
the loop, using the height ( = 0.25 m) for  in the equation 𝑛𝑛 = − .  Try it. 

Example:  The conducting bar illustrated below has a length of 5.0 cm and travels with a 
constant speed of 40 m/s through a uniform magnetic field of 3000 G.  What emf is induced 
across the ends of the conducting bar? 

 
First convert the height and magnetic field to SI units.  Recall that 1 G = 10−4 T.

= 5.0 cm = 0.050 m =
1

20
 m 

= 3000 G = 0.30 T =
3

10
T

Use the equation for motional emf. 

𝑛𝑛 = − = −
3

10
1

20
(40) = −

6
10

= −
3
5

 V = −0.60 V 

The emf induced across the conducting bar is 𝑛𝑛 = −3  V = −0.60 V.  
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75.  A circular loop of wire with a diameter of 8.0 cm lies in the 𝑥𝑥 plane, centered about the 
origin.  A uniform magnetic field of 2,500 G is oriented along the +𝑥𝑥 direction.  What is the 
magnetic flux through the area of the loop? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76.  The vertical loop illustrated below has the shape of a square with 2.0-m long edges.  
The uniform magnetic field shown makes a 30° angle with the plane of the square loop and 
has a magnitude of 7.0 T.  What is the magnetic flux through the area of the loop? 

Want help?  Check the hints section at the back of the book. 
Answers:  4 × 10−4 T∙m2, 14 T∙m2

 

30° 
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77.  A rectangular loop of wire with a length of 50 cm, a width of 30 cm, and a resistance of 
4.0 Ω lies in the 𝑥𝑥𝑥𝑥 plane.  A magnetic field is oriented along the +𝑧𝑧 direction and is uniform 
throughout the loop at any given moment.  The magnetic field increases from 6,000 G to 
8,000 G in 500 ms. 
 
(A) Find the initial magnetic flux through the loop. 
 
 
 
 
 
 
 
(B) Find the final magnetic flux through the loop. 
 
 
 
 
 
 
 
(C) What is the average emf induced in the loop during this time? 
 
 
 
 
 
 
 
 
(D) What is the average current induced in the loop during this time? 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answers:  0.090 T∙m2, 0.120 T∙m2, −60 mV, −15 mA  
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78.  The top vertex of the triangular loops of wire illustrated below is pushed up in 250 ms.  
The base of the triangle is 50 cm, the initial height is 25 cm, and the final height is 50 cm.  
The magnetic field has a magnitude of 4000 G.  There are 200 loops. 

 
(A) Find the initial magnetic flux through each loop. 
 
 
 
 
 
 
 
 
 
(B) Find the final magnetic flux through each loop. 
 
 
 
 
 
 
 
 
 
(C) What is the average emf induced in the loop during this time? 
 
 
 
 
 
 
 
 
 
(D) Find the direction of the induced current. 
 

Want help?  Check the hints section at the back of the book. 
Answers:  1

40
T∙m2, 1

20
T∙m2, −20 V, counterclockwise   

B 
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79.  Consider the loop in the figure below, which initially has the shape of a square.  Each 
side is 2.0 m long and has a resistance of 5.0 .  There is a uniform magnetic field of 
5000 3 G directed into the page.  The loop is hinged at each vertex.  Monkeys pull corners 
K and M apart until corners L and N are 2.0 m apart, changing the shape to that of a 
rhombus.  The duration of this process is 2 − 3  s.  

(A) Find the initial magnetic flux through the loop. 

(B) Find the final magnetic flux through the loop. 
 
 
 
 
 
 
 
(C) What is the average current induced in the loop during this time? 
 
 
 
 
 
 
 
(D) Find the direction of the induced current. 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answers:  2 3 T∙m2, 3.0 T∙m2, 3
20

 A, clockwise   

    

   

   

   

K 

L 

M 

N 

L 

N 

K M 
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80.  A solenoid that is not connected to any power supply has 300 turns, a length of 18 cm, 
and a radius of 4.0 cm.  A uniform magnetic field with a magnitude of 500,000 G is initially 
oriented along the axis of the solenoid.  The axis of the solenoid rotates through an angle of 
30° relative to the magnetic field with a constant angular speed of 20 rad/s. 
 
What average emf is induced during the 30° rotation? 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answer:  1440�2 − √3� V ≈ 386 V   
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81.  In the diagram below, a conducting bar with a length of 12 cm slides to the right with a 
constant speed of 3.0 m/s along the rails of a bare U-channel conductor in the presence of a 
uniform magnetic field of 25 T.  The conducting bar has a resistance of 3.0  and the U-
channel conductor has negligible resistance. 

(A) What emf is induced across the ends of the conducting bar? 

(B) How much current is induced in the loop? 
 
 
 
 
 
 
 
 
 
 
 
 
 
(C) Find the direction of the induced current. 
 

Want help?  Check the hints section at the back of the book. 
Answers:   −9.0 V, −3.0 A, counterclockwise 
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82.  The conducting bar illustrated below has a length of 8.0 cm and travels with a constant 
speed of 25 m/s through a uniform magnetic field of 40,000 G.  What emf is induced across 
the ends of the conducting bar? 

Want help?  Check the hints section at the back of the book. 
Answer:   −8.0 V   
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83.  A solenoid has 3,000 turns, a length of 50 cm, and a radius of 5.0 mm.  The current 
running through the solenoid is increased from 3.0 A to 7.0 A in 16 ms.  A second solenoid 
coaxial with the first solenoid has 2,000 turns, a length of 20 cm, a radius of 5.0 mm, and a 
resistance of 5.0 Ω.  The second solenoid is not connected to the first solenoid or any power 
supply. 
 
(A) What initial magnetic field does the first solenoid create inside of its coils? 
 
 
 
 
 
 
 
(B) What is the initial magnetic flux through each loop of the second solenoid? 
 
 
 
 
 
 
 
(C) What is the final magnetic flux through each loop of the second solenoid? 
 
 
 
 
 
 
 
(D) What is the average current induced in the second solenoid during this time? 
 
 
 
 

 
 
Want help?  Check the hints section at the back of the book. 

Answers:  72𝜋𝜋 × 10−4 T ≈ 0.023 T, 18𝜋𝜋2 × 10−8 T∙m2 ≈ 1.8 × 10−6 T∙m2, 
42𝜋𝜋2 × 10−8 T∙m2 ≈ 4.1 × 10−6 T∙m2, −6𝜋𝜋2 × 10−3 A ≈ −0.059 A 
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84.  A rectangular loop of wire with a length of 150 cm and a width of 80 cm lies in the 𝑥𝑥𝑥𝑥 
plane.  A magnetic field is oriented along the +𝑧𝑧 direction and its magnitude is given by the 
following equation, where SI units have been suppressed. 

𝐵𝐵 = 15𝑒𝑒−𝑒𝑒/3 
What is the average emf induced in the loop from 𝑡𝑡 = 0 to 𝑡𝑡 = 3.0 s? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answers:  �6 − 6
𝑤𝑤
�  V ≈ 3.8 V 
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26 INDUCTANCE 

Relevant Terminology 

Inductor – a coil of any geometry.  Even a single loop of wire serves as an inductor. 
Inductance – the property of an inductor for which a changing current causes an emf to be 
induced in the inductor (as well as in any other nearby conductors). 
Solenoid – a coil of wire in the shape of a right-circular cylinder. 
Toroidal coil – a coil of wire in the shape of a single-holed ring torus (which is a donut). 
Turns – the loops of a coil of wire (such as a solenoid). 
Half-life – the time it takes to decay to one-half of the initial value, or to grow to one-half of 
the final value. 
Time constant – the time it takes to decay to 1

𝑒𝑒
 or ≈ 37% of the initial value, or to grow to 

�1 − 1
𝑒𝑒
� or ≈ 63% of the final value. 

Electric charge – a fundamental property of a particle that causes the particle to experience 
a force in the presence of an electric field.  (An electrically neutral particle has no charge 
and thus experiences no force in the presence of an electric field.) 
Current – the instantaneous rate of flow of charge through a wire. 
DC – direct current.  The direction of the current doesn’t change in time. 
Potential difference – the electric work per unit charge needed to move a test charge 
between two points in a circuit.  Potential difference is also called the voltage. 
Emf – the potential difference that a battery or DC power supply would supply to a circuit 
neglecting its internal resistance. 
Back emf – the emf induced in an inductor via Faraday’s law.  The back emf acts against the 
applied potential difference. 
Magnetic field – a magnetic effect created by a moving charge (or current). 
Magnetic flux – a measure of the relative number of magnetic field lines that pass through a 
surface. 
Permeability – a measure of how a substance affects a magnetic field. 
Resistance – a measure of how well a component in a circuit resists the flow of current. 
Resistor – a component in a circuit which has a significant amount of resistance. 
Capacitor – a device that can store charge, which consists of two separated conductors 
(such as two parallel conducting plates). 
Capacitance – a measure of how much charge a capacitor can store for a given voltage. 
Magnetic energy – a measure of how much magnetic work an inductor could do based on 
the current running through its loops. 
Electric potential energy – a measure of how much electrical work a capacitor could do 
based on the charge stored on its plates and the potential difference across its plates. 
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Inductance Equations 

An inductor experiences a self-induced emf via Faraday’s law when the current running 
through the inductor changes.  The self-induced emf ( ) is proportional to the inductance
( ) and the instantaneous rate of change of the current ( ). 

= −  

Since 𝑛𝑛 = −
𝑛𝑛

 according to Faraday’s law, it follows that −
𝑛𝑛

= −
𝑛𝑛

, which 
leads to the following formula: 

= 𝑚𝑚 

Two nearby inductors experience mutual inductance (in addition to their self-inductances).  
The equations of mutual inductance ( ) are similar to the equations for self-inductance.  
The symbol 12 represents the magnetic flux through inductor 1 created by inductor 2. 

1 = − 12
2      ,     2 = − 21

1      ,     12 = 1 12

2
     ,     21 = 2 21

1
 

Recall the equation for magnetic flux ( 𝑚𝑚) for a uniform magnetic field. 
𝑚𝑚 = cos  

The magnetic energy stored in an inductor is: 

=
1
2

2

Schematic Symbols Used in Circuits 

Schematic Representation Symbol Name 

 𝑅𝑅 resistor 

 
 capacitor 

  inductor 

  battery or DC power supply 
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Symbols and Units 

Symbol Name Units 

𝐿𝐿 inductance (or self-inductance) H 

𝑀𝑀 mutual inductance H 

𝜀𝜀𝐿𝐿 self-induced emf V 

𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 induced emf V 

𝐼𝐼 current A 

𝑡𝑡 time s 

Φ𝑚𝑚 magnetic flux T∙m2 or Wb 

𝑁𝑁 number of loops (or turns) unitless 

𝑛𝑛 number of turns per unit length 1
m

  

𝐵𝐵 magnitude of the external magnetic field T 

𝐵𝐵 area of the loop m2 

𝜃𝜃 
angle between 𝐁𝐁��⃗  and the axis of the loop, 

or the angle between 𝐁𝐁��⃗  and 𝑑𝑑A��⃗  
° or rad 

𝑅𝑅 resistance Ω 

𝐶𝐶 capacitance F 

𝑈𝑈𝐿𝐿 magnetic energy stored in an inductor J 

𝑄𝑄 the charge stored on the positive plate of a capacitor C 

∆𝑉𝑉 the potential difference between two points in a circuit V 

𝑡𝑡½ half-life s 

𝜏𝜏 time constant s 

𝜔𝜔 angular frequency rad/s 

𝜑𝜑 phase angle rad 

Note:  The symbols Φ and 𝜑𝜑 are the uppercase and lowercase forms of the Greek letter phi. 
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Inductors in RL Circuits 

In a simple RL circuit like the one shown below on the left, the current drops from its 
maximum value 𝑚𝑚 (the subscript 𝑚𝑚 stands for “maximum”) with exponential decay.  When 
a DC power supply is added to the circuit like the diagram below in the middle, the current 
rises to its maximum value 𝑚𝑚 according to 1 − 𝑒𝑒−𝑛𝑛/ .  Note:  If there is an AC power supply 
involved, use the equations from Chapter 27 instead. 

= 𝑚𝑚𝑒𝑒−𝑛𝑛/      (left diagram) 
= 𝑚𝑚(1 − 𝑒𝑒−𝑛𝑛/ )     (middle diagram)  

The time constant ( ) equals the inductance ( ) divided by the resistance (𝑅𝑅).

=
𝑅𝑅

 

The half-life ( ½) is related to the time constant ( ) by: 
½ =  ln(2) 

The resistor and inductor equations still apply, where 𝑅𝑅 is the potential difference across 
the resistor: 

𝑅𝑅 = 𝑅𝑅     ,     = −  

                                 

Inductors in LC Circuits

In a simple LC circuit like the one shown above on the right, the current ( ) and charge ( ) 
both oscillate in time (provided that there was some current or charge to begin with).  
Note:  If there is an AC power supply involved, use the equations from Chapter 27 instead. 

= − 𝑚𝑚 sin( + )      (right diagram) 
= 𝑚𝑚 cos( + )      (right diagram) 

The symbol  represents the phase constant and  represents the angular frequency.  The 
phase constant shifts the sine (or cosine) function horizontally. 

=
1

 

Recall that angular frequency ( ) is related to frequency ( ) by = 2 .  The maximum 
charge stored on the capacitor is related to the maximum current through the inductor: 

𝑚𝑚 = 𝑚𝑚 

𝑅𝑅 

 

𝑅𝑅 

 

𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 
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Inductors in RLC Circuits 

In a simple RLC circuit like the one shown below, for a small value of resistance (𝑅𝑅), the 
current ( ) and charge ( ) both undergo damped harmonic motion (similar to an 
oscillating spring with friction present).  Note:  If there is an AC power supply involved, use 
the equations from Chapter 27 instead. 

= 𝑚𝑚𝑒𝑒−𝑅𝑅𝑛𝑛/2 cos( + ) 

≈      (for a very short time interval) 

For the RLC circuit, the angular frequency ( ) is (the subscript  stands for “damped”): 

=
1
−

𝑅𝑅
2

2

 

There is a critical resistance, 𝑅𝑅 , for which no damping occurs.  We find this value by setting 

 equal to zero, which happens if 1 = 𝑅𝑅
2

2
.  Squareroot both sides to get 1 = 𝑅𝑅

2
.  

Multiply both sides by 2  to get 2 = 𝑅𝑅 .  Since 2 = 4 2, we can write 4 2
= 𝑅𝑅 , which 

reduces to the equation below. 

𝑅𝑅 =
4

 

How damped the harmonic motion is depends upon the value of the critical resistance: 
• If 𝑅𝑅 > 𝑅𝑅 , the motion is said to be overdamped. 
• If 𝑅𝑅 = 𝑅𝑅 , the motion is said to be critically damped. 
• If 𝑅𝑅 < 𝑅𝑅 , the motion is said to be underdamped. 
• If 𝑅𝑅 << 𝑅𝑅  (read this as “much less than”), the behavior is that of a simple LC circuit. 

 
The resistor, capacitor, and inductor equations still apply to RLC circuits.  (Again, if there is 
an AC power supply involved, use equations from Chapter 27 instead). 

=      ,     𝑅𝑅 = 𝑅𝑅     ,     = −  

𝑅𝑅 
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Essential Concepts 

Self-inductance and mutual inductance relate to Lenz’s law and Faraday’s law (Chapters 
24-25).  When the current running through an inductor changes, the magnetic field created 
by the current changes, which causes the magnetic flux through the inductor (as well as any 
other inductors that happen to be nearby) to change.  This changing magnetic flux induces 
an emf in the inductor.  When the emf is induced in the same inductor (as opposed to the 
case of mutual inductance), we call this the self-induced emf. 
 
How much emf is induced depends on how rapidly the current is changing. 
 
Lenz’s law and Faraday’s law similarly cause a back emf to be induced in a motor. 
 
Notes Regarding Units 

The SI unit of inductance (𝐿𝐿) is the Henry (H).  A Henry can be related to other SI units 
according to the equation 𝐿𝐿 = 𝑁𝑁Φ𝑚𝑚

𝐼𝐼
.  Since the number of loops (𝑁𝑁) is unitless, the SI units 

of magnetic flux (Φ𝑚𝑚) are (T∙m2), and the SI unit of current (𝐼𝐼) is the Ampère (A), it follows 
from the previous equation that a Henry (H) equals: 

1 H = 1
T∙m2

A
 

From the equation 𝜏𝜏 = 𝐿𝐿
𝑅𝑅

, the SI unit for time constant (𝜏𝜏) must equal a Henry (H) divided 

by an Ohm (Ω).  That is, 1 s = 1 H
Ω

.  We can also get this from the equation 𝜀𝜀𝐿𝐿 = −𝐿𝐿 𝑖𝑖𝐼𝐼
𝑖𝑖𝑡𝑡

, which 

shows that a Volt (V) is related to a Henry (H) by:  1 V = 1 H∙ A
s
.  Rearranging this equation, 

we get 1 s = 1 H∙ A
V

.  From the equation 𝑅𝑅 = ∆𝑉𝑉
𝐼𝐼

, we can write an Ohm (Ω) as V
A
.  Thus, the A

V
 

equals 1
Ω

, and we again see that 1 s = 1 H
Ω

.  Put another way, 1 H = 1 Ω∙s (it’s an Ohm times a 
second, not per second). 
 
Recall from Chapter 16 that the time constant of an RC circuit was 𝜏𝜏 = 𝑅𝑅𝐶𝐶.  We noted in 
Chapter 16 that the SI unit of capacitance (𝐶𝐶), which is the Farad (F), can be expressed as 
1 F = 1 s

Ω
.  When inductance and capacitance are multiplied, their units simplify as follows:  

H∙F = (Ω∙s) � s
Ω
� = s2.  Therefore, the SI unit of √𝐿𝐿𝐶𝐶 is the second and 1

√𝐿𝐿𝐿𝐿
 has units 

consistent with angular frequency (𝜔𝜔), which is measured in radians per second. 
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Strategy for Solving Inductor Problems 

How you solve a problem involving an inductor depends on the context: 
• Inductance (𝐿𝐿) can be related to magnetic flux (Φ𝑚𝑚). 

𝐿𝐿 =
𝑁𝑁Φ𝑚𝑚

𝐼𝐼
 

Magnetic flux (Φ𝑚𝑚) is related to a uniform magnetic field (B��⃗ ) by: 
Φ𝑚𝑚 = 𝐵𝐵𝐵𝐵 cos 𝜃𝜃 

• Self-induced emf (𝜀𝜀𝐿𝐿) is related to inductance (𝐿𝐿) by the change in the current. 

𝜀𝜀𝐿𝐿 = −𝐿𝐿
∆𝐼𝐼
∆𝑡𝑡

 

• For mutual inductance, use the following equations, where Φ12 is the magnetic flux 
through inductor 1 created by inductor 2. 

𝜀𝜀1 = −𝑀𝑀12
∆𝐼𝐼2
∆𝑡𝑡

     ,     𝜀𝜀2 = −𝑀𝑀21
∆𝐼𝐼1
∆𝑡𝑡

     ,     𝑀𝑀12 =
𝑁𝑁1Φ12

𝐼𝐼2
     ,     𝑀𝑀21 =

𝑁𝑁2Φ21

𝐼𝐼1
 

• The magnetic energy stored in an inductor is: 

𝑈𝑈𝐿𝐿 =
1
2
𝐿𝐿𝐼𝐼2 

• If a problem involves a circuit, see the following strategy (unless it involves an AC 
power supply, then see Chapter 27 instead). 
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Strategy for Circuits with Inductors 

Note:  If the circuit involves an AC power supply, see Chapter 27 instead. 
For an RL, LC, or RLC circuit that doesn’t have an AC power supply, use these equations: 

• For an RL circuit with no battery, where there is initial current 𝐼𝐼𝑚𝑚: 
𝐼𝐼 = 𝐼𝐼𝑚𝑚𝑒𝑒−𝑡𝑡/𝜏𝜏 

𝜏𝜏 =
𝐿𝐿
𝑅𝑅

     ,     𝑡𝑡½ = 𝜏𝜏 ln (2) 

∆𝑉𝑉𝑅𝑅 = 𝐼𝐼𝑅𝑅     ,     𝜀𝜀𝐿𝐿 = −𝐿𝐿
∆𝐼𝐼
∆𝑡𝑡

 

• For an RL circuit with a battery, where the initial current is zero: 
𝐼𝐼 = 𝐼𝐼𝑚𝑚(1 − 𝑒𝑒−𝑡𝑡/𝜏𝜏) 

𝜏𝜏 =
𝐿𝐿
𝑅𝑅

     ,     𝑡𝑡½ = 𝜏𝜏 ln(2) 

∆𝑉𝑉𝑅𝑅 = 𝐼𝐼𝑅𝑅     ,     𝜀𝜀𝐿𝐿 = −𝐿𝐿
∆𝐼𝐼
∆𝑡𝑡

 

• For an LC circuit with no battery, where the initial charge is 𝑄𝑄𝑚𝑚: 
𝐼𝐼 = −𝐼𝐼𝑚𝑚 sin(𝜔𝜔𝑡𝑡 + 𝜑𝜑)      ,     𝑄𝑄 = 𝑄𝑄𝑚𝑚 cos(𝜔𝜔𝑡𝑡 + 𝜑𝜑) 

𝜔𝜔 =
1

√𝐿𝐿𝐶𝐶
= 2𝜋𝜋𝑓𝑓 

𝐼𝐼𝑚𝑚 = 𝜔𝜔𝑄𝑄𝑚𝑚 
• For an RLC circuit with no battery, where the maximum charge is 𝑄𝑄𝑚𝑚: 

𝑄𝑄 = 𝑄𝑄𝑚𝑚𝑒𝑒−𝑅𝑅𝑡𝑡/2𝐿𝐿 cos(𝜔𝜔𝑖𝑖𝑡𝑡 + 𝜑𝜑) 

𝐼𝐼 ≈
∆𝑄𝑄
∆𝑡𝑡

     (for a very short time interval) 

𝜔𝜔𝑖𝑖 = � 1
𝐿𝐿𝐶𝐶

− �
𝑅𝑅

2𝐿𝐿
�
2

 

The critical resistance (𝑅𝑅𝑐𝑐) determines if the system is underdamped (𝑅𝑅 < 𝑅𝑅𝑐𝑐), 
critically damped (𝑅𝑅 = 𝑅𝑅𝑐𝑐), or overdamped (𝑅𝑅 > 𝑅𝑅𝑐𝑐). 

𝑅𝑅𝑐𝑐 = �4𝐿𝐿
𝐶𝐶

 

• For any of these circuits, to find energy or power, use the following equations: 

𝑈𝑈𝐿𝐿 =
𝑄𝑄2

2𝐶𝐶
    ,     𝑃𝑃𝑅𝑅 = 𝐼𝐼∆𝑉𝑉𝑅𝑅     ,     𝑈𝑈𝐿𝐿 =

𝐿𝐿𝐼𝐼2

2
 

• If necessary, apply rules from Chapter 15 regarding logarithms and exponentials.  
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Important Distinctions 

Note that we use the symbol 𝐿𝐿 for inductance.  Therefore, if there is an inductor involved in 
a problem, you should use a different symbol, such as lowercase ℓ, for length. 
 
DC stands for direct current, whereas AC stands for alternating current.  This chapter 
involved circuits that either have a DC power supply or no power supply at all.  If a problem 
involves an AC power supply, see Chapter 27 instead. 
 
Note the three different times involved in RL, LC, and RLC circuits: 

• 𝑡𝑡 (without a subscript) represents the elapsed time. 
• 𝑡𝑡½ is the half-life.  It’s the time it takes to reach one-half the maximum value. 
• 𝜏𝜏 is the time constant:  𝜏𝜏 = 𝐿𝐿

𝑅𝑅
.  Note that 𝑡𝑡½ = 𝜏𝜏 ln (2). 

 
Don’t confuse the terms inductor and insulator. 

• An inductor is a coil of wire and relates to Faraday’s law. 
• An insulator is a material through which electrons don’t flow readily. 

Note that the opposite of a conductor is an insulator.  An inductor is not the opposite of a 
conductor.  In fact, an inductor is constructed from a conductor that is wound in the shape 
of a coil. 
 
A coil of any geometry is termed an inductor.  A solenoid is a specific type of inductor where 
the coil has the shape of a tight helix wound around a right-circular cylinder.  All solenoids 
are inductors, but not all inductors are solenoids.  One example of an inductor that isn’t a 
solenoid is the toroidal coil (see Chapter 23). 
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Example:  The emf induced in an inductor is −6.0 mV when the current through the 
inductor increases at a rate of 3.0 A/s.  What is the inductance? 
 
First convert the self-induced emf from milliVolts (mV) to Volts (V):  𝜀𝜀𝐿𝐿 = −0.0060 V.  Note 
that ∆𝐼𝐼

∆𝑡𝑡
= 3.0 A/s is the rate at which the current increases.  Use the equation that relates 

the self-induced emf to the inductance. 

𝜀𝜀𝐿𝐿 = −𝐿𝐿
∆𝐼𝐼
∆𝑡𝑡

 

−0.006 = −𝐿𝐿(3) 
Divide both sides of the equation by −3.  The minus signs cancel. 

𝐿𝐿 =
0.006

3
= 0.0020 H = 2.0 × 10−3 H = 2.0 mH 

The inductance is 𝐿𝐿 = 2.0 mH.  That’s in milliHenry (mH):  Recall that the metric prefix 
milli (m) stands for 10−3. 
 
Example:  An inductor has an inductance of 12 mH. 
(A) What is the time constant if the inductor is connected in series with a 3.0-Ω resistor? 
First convert the inductance from milliHenry (mH) to Henry (H):  𝐿𝐿 = 0.012 H.  Use the 
equation for the time constant of an RL circuit. 

𝜏𝜏 =
𝐿𝐿
𝑅𝑅

=
0.012

3
= 0.0040 s = 4.0 ms 

The time constant is 𝜏𝜏 = 4.0 ms.  (That’s in milliseconds.) 
(B) What is the angular frequency of oscillations in the current if the inductor is connected 
in series with a 30-µF capacitor? 
First convert the capacitance from microFarads (µF) to Farads (F):  𝐶𝐶 = 3.0 × 10−5 F.  Use 
the equation for the angular frequency in an LC circuit. 

𝜔𝜔 =
1

√𝐿𝐿𝐶𝐶
=

1
�(0.012)(3.0 × 10−5)

=
1

√0.036 × 10−5
=

1
√36 × 10−8

 

Note that 3.6 × 10−7 = 36 × 10−8.  It’s simpler to take a square root of an even power of 
10, which makes it preferable to work with 10−8 instead of 10−7.  Apply the rule from 
algebra that √𝑎𝑎𝑎𝑎 = √𝑎𝑎√𝑎𝑎. 

𝜔𝜔 =
1
√36

1
√10−8

=
1
6

1
10−4

=
1
6

× 104 rad/s 

The angular frequency is 𝜔𝜔 = 1
6

× 104 rad/s.  If you use a calculator, this works out to 
𝜔𝜔 = 1.7 × 103 rad/s.  
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85.  The emf induced in an 80-mH inductor is −0.72 V when the current through the 
inductor increases at a constant rate.  What is the rate at which the current increases? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86.  A 50.0-Ω resistor is connected in series with a 20-mH inductor.  What is the time 
constant? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answers:  9.0 A/s, 0.40 ms   
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87.  A 40.0-µF capacitor that is initially charged is connected in series with a 16.0-mH 
inductor.  What is the angular frequency of oscillations in the current? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answer:  1250 rad/s 
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27 AC CIRCUITS 

Relevant Terminology 

AC – alternating current.  The direction of the current alternates in time. 
DC – direct current.  The direction of the current doesn’t change in time. 
Root-mean square (rms) value – square the values, average them, and then take the square-
root.  AC multimeters measure rms values of current or potential difference. 
Frequency – the number of cycles completed per unit time. 
Angular frequency – the number of radians completed per unit time. 
Period – the time it takes to complete one cycle. 
Electric charge – a fundamental property of a particle that causes the particle to experience 
a force in the presence of an electric field. 
Current – the instantaneous rate of flow of charge through a wire. 
Potential difference – the electric work per unit charge needed to move a test charge 
between two points in a circuit.  Potential difference is also called the voltage. 
Emf – the potential difference that a battery or DC power supply would supply to a circuit 
neglecting its internal resistance. 
Magnetic field – a magnetic effect created by a moving charge (or current). 
Resistance – a measure of how well a component in a circuit resists the flow of current. 
Resistor – a component in a circuit which has a significant amount of resistance. 
Capacitor – a device that can store charge, which consists of two separated conductors 
(such as two parallel conducting plates). 
Capacitance – a measure of how much charge a capacitor can store for a given voltage. 
Inductor – a coil of any geometry.  Even a single loop of wire serves as an inductor. 
Inductance – the property of an inductor for which a changing current causes an emf to be 
induced in the inductor (as well as in any other nearby conductors). 
Impedance – the ratio of the maximum potential difference to the maximum current in an 
AC circuit.  It combines the effects of resistance and reactance. 
Reactance – the effect that capacitors and inductors have on the current in an AC circuit, 
causing the current to be out of phase with the potential difference. 
Inductive reactance – the effect that an inductor has on the current in an AC circuit, causing 
the current to lag the potential difference across an inductor by 90°. 
Capacitive reactance – the effect that a capacitor has on the current in an AC circuit, causing 
the current to lead the potential difference across a capacitor by 90°. 
Electric power – the instantaneous rate at which electrical work is done. 
Transformer – a device that steps AC potential difference up or down. 
Primary – refers to the input inductor of a transformer connected to an AC power supply. 
Secondary – refers to the output inductor of a transformer, yielding the adjusted voltage.  
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Equations for a Series RLC Circuit with an AC Power Supply 

Consider the series RLC circuit illustrated above, which has an AC power supply.  The 
following equations apply to such a circuit: 

• The potential difference across each circuit element is (where “ps” stands for “power 
supply”): 

= 𝑚𝑚 sin( )     ,     𝑅𝑅 = 𝑅𝑅𝑚𝑚 sin( ) 
= 𝑚𝑚 cos( )     ,     = − 𝑚𝑚 cos( ) 

The values on the left-hand sides of the above equations are instantaneous values; 
they vary in time.  The quantities with a subscript 𝑚𝑚 (which stands for “maximum”) 
are maximum values.  The maximum values are related to the maximum current by: 

𝑚𝑚 = 𝑚𝑚      ,     𝑅𝑅𝑚𝑚 = 𝑚𝑚𝑅𝑅     ,     𝑚𝑚 = 𝑚𝑚      ,     𝑚𝑚 = 𝑚𝑚  
The symbol  is called the impedance and  is called the reactance.  See below. 

• The current in the circuit is: 
= 𝑚𝑚 sin( − ) 

The angle  is called the phase angle.  See the following page. 
• Ohm’s law is effectively generalized by defining a quantity called impedance ( ). 

𝑚𝑚 = 𝑚𝑚      ,     = 𝑅𝑅2 + ( − )2 
The impedance ( ) includes both resistance (𝑅𝑅) and reactances (  and ). 

• There are two kinds of reactance: 
o Inductive reactance ( ) is the ratio of the maximum potential difference 

across the inductor to the maximum current.  Its SI unit is the Ohm ( ).  It is 
directly proportional to the angular frequency ( ) and the inductance ( ). 

=      ,     𝑚𝑚 = 𝑚𝑚  
o Capacitive reactance ( ) is the ratio of the maximum potential difference 

across the capacitor to the maximum current.  Its SI unit is the Ohm ( ).  It is 
inversely proportional to the angular frequency ( ) and the capacitance ( ). 

=
1

     ,      𝑚𝑚 = 𝑚𝑚  

• The root-mean-square (rms) values are related to the maximum values by: 

𝑚𝑚 = 𝑚𝑚

2
     ,     𝑚𝑚 = 𝑚𝑚

2
 

𝑅𝑅 

 

 

 

 

~ 
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• The phase angle (𝜑𝜑) describes the horizontal shift in the graph of the current 
compared to the graph of the potential difference. 

𝜑𝜑 = tan−1 �
𝑋𝑋𝐿𝐿 − 𝑋𝑋𝐶𝐶

𝑅𝑅
� 

The sign of the phase angle has the following significance: 
o If 𝑋𝑋𝐿𝐿 > 𝑋𝑋𝐶𝐶 , the phase angle is positive, meaning that the current lags behind 

the potential difference of the power supply. 
o If 𝑋𝑋𝐿𝐿 < 𝑋𝑋𝐶𝐶 , the phase angle is negative, meaning that the current leads the 

potential difference of the power supply. 
o If 𝑋𝑋𝐿𝐿 = 𝑋𝑋𝐶𝐶, the phase angle is zero, meaning that the current is in phase with 

the potential difference of the power supply.  This corresponds to the 
resonance frequency (see below). 

• The angular frequency (𝜔𝜔), frequency (𝑓𝑓), and period (𝑇𝑇) are related by: 

𝜔𝜔 = 2𝜋𝜋𝑓𝑓 =
2𝜋𝜋
𝑇𝑇

     ,     𝑓𝑓 =
1
𝑇𝑇

 

The resonance frequency is the frequency which gives the greatest value of the rms 
current.  (In an AC circuit, it turns out that the value of 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝 is a function of the 
frequency.)  Resonance occurs when 𝑋𝑋𝐿𝐿 = 𝑋𝑋𝐶𝐶 (since this minimizes the impedance, 
it thereby maximizes the rms current).  At resonance, the angular frequency is: 

𝜔𝜔0 =
1

√𝐿𝐿𝐶𝐶
= 2𝜋𝜋𝑓𝑓0 

Note that some texts refer to the “resonance frequency,” but mean 𝜔𝜔0 rather than 𝑓𝑓0. 
• The instantaneous power (𝑃𝑃) delivered by the AC power supply is: 

𝑃𝑃 = 𝐼𝐼Δ𝑉𝑉𝑝𝑝𝑝𝑝 = 𝐼𝐼𝑚𝑚Δ𝑉𝑉𝑚𝑚 sin(𝜔𝜔𝜔𝜔) sin(𝜔𝜔𝜔𝜔 − 𝜑𝜑) 
The average power (𝑃𝑃𝑎𝑎𝑎𝑎) is: 

𝑃𝑃𝑎𝑎𝑎𝑎 = 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝Δ𝑉𝑉𝑟𝑟𝑚𝑚𝑝𝑝 cos𝜑𝜑 = 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝2 𝑅𝑅 
The factor of cos𝜑𝜑 is called the power factor. 

• The quality factor (𝑄𝑄0), where the 𝑄𝑄0 does not refer to charge, provides a measure of 
the sharpness of a graph of 𝑃𝑃𝑎𝑎𝑎𝑎  as a function of 𝜔𝜔. 

𝑄𝑄0 =
𝜔𝜔0

Δ𝜔𝜔
=
𝜔𝜔0𝐿𝐿
𝑅𝑅

 

Here, 𝜔𝜔0 is the resonance frequency (see above) and Δ𝜔𝜔 is the width of the curve of 
𝑃𝑃𝑎𝑎𝑎𝑎  as a function of 𝜔𝜔 between the two points for which 𝑃𝑃𝑎𝑎𝑎𝑎  equals half of its 
maximum value.  Hence, Δ𝜔𝜔 is termed the “full width at half maximum” (FWHM). 

• The current (𝐼𝐼) and the charge (𝑄𝑄) stored on the capacitor are related by: 

𝐼𝐼 ≈
∆𝑄𝑄
∆𝜔𝜔

     (for a very short time interval) 
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Symbols and SI Units 

Symbol Name SI Units 

∆𝑉𝑉𝑝𝑝𝑝𝑝 instantaneous potential difference across the power supply V 

∆𝑉𝑉𝑅𝑅 instantaneous potential difference across the resistor V 

∆𝑉𝑉𝐿𝐿 instantaneous potential difference across the inductor V 

∆𝑉𝑉𝐶𝐶 instantaneous potential difference across the capacitor V 

∆𝑉𝑉𝑚𝑚 maximum potential difference across the power supply V 

∆𝑉𝑉𝑟𝑟𝑚𝑚𝑝𝑝 root-mean-square value of the potential difference V 

∆𝑉𝑉𝑅𝑅𝑚𝑚 maximum potential difference across the resistor V 

∆𝑉𝑉𝐿𝐿𝑚𝑚 maximum potential difference across the inductor V 

∆𝑉𝑉𝐶𝐶𝑚𝑚 maximum potential difference across the capacitor V 

∆𝑉𝑉𝑖𝑖𝑖𝑖 input voltage V 

∆𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 output voltage V 

𝑁𝑁𝑝𝑝 number of loops in the primary inductor unitless 

𝑁𝑁𝑝𝑝 number of loops in the secondary inductor unitless 

𝐼𝐼 instantaneous current A 

𝐼𝐼𝑚𝑚 maximum value (amplitude) of the current A 

𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝 root-mean-square value of the current A 

𝑅𝑅 resistance Ω 

𝐿𝐿 inductance H 

𝐶𝐶 capacitance F 

𝑍𝑍 impedance Ω 

𝑋𝑋𝐿𝐿 inductive reactance Ω 

𝑋𝑋𝐶𝐶 capacitive reactance Ω 
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 instantaneous power W 

𝑎𝑎  average power W 

 time s 

 angular frequency rad/s 

0 resonance (angular) frequency rad/s 

 full-width at half maximum (FWHM) rad/s 

 frequency Hz 

0 resonance frequency Hz 

 period s 

 phase angle rad 

0 quality factor (not charge) unitless 

 instantaneous charge stored on the capacitor C 

Schematic Symbols Used in AC Circuits 

Schematic Representation Symbol Name 

 𝑅𝑅 resistor 

 
capacitor 

  inductor 

 
 AC power supply 

 
 transformer 

  

~ 
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Phasors 

In an AC circuit, the current is generally not in phase with the potential difference, meaning 
that a graph of current as a function of time is shifted horizontally compared to a graph of 
the power supply potential difference as a function of time.  Both the current and potential 
difference are sine waves, but the phase angle ( ) in = 𝑚𝑚 sin( − ) shifts the current’s 
graph compared to = 𝑚𝑚 sin( ).

• When  is positive, the current lags behind the power supply’s potential difference. 
• When  is negative, the current leads the power supply’s potential difference. 
• When  is zero, the current is in phase with the power supply’s potential difference. 

Inductors and capacitors cause the phase shift in an AC circuit: 
• Because of Faraday’s law, which can be expressed as = −

𝑛𝑛
 (see Chapter 26), 

the current in an inductor lags the inductor’s potential difference by 90°. 
• Because current is the instantaneous rate of flow of charge, ≈

𝑛𝑛
, the current in a 

capacitor leads the capacitor’s potential difference by 90°. 

 
Visually, in the graph above, you can see that: 

• Shifting a sine wave 90° to the left turns it into a cosine function. 
• Shifting a sine wave 90° to the right turns it into a negative cosine function. 

In a series RLC circuit with an AC power supply, the phase angle ( ) can be any value 
between −90° and 90°.  The current can lead or lag the power supply voltage by any value 
from 0° to 90°.  The extreme cases where the current leads or lags the power supply 
voltage by 90° only occur for purely capacitive or purely inductive circuits (which are 
technically impossible, as the wires and connections always have some resistance).  

 

sin  − cos  

cos  

sin  
cos  
− cos  

 
90° 180° 270° 360° 0° 

1 

−1 

0°
0 
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We use phasor diagrams in order to determine the phase angle in an AC circuit.  A phasor is 
basically a vector, with a magnitude and direction as follows: 

• The amplitude* ( 𝑚𝑚) of the potential difference is the magnitude of the phasor. 
• The phase angle serves as the direction of the phasor. 

The phase angle ( ) equals 90° for an inductor, 0° for a resistor, and −90° for a capacitor.  
Therefore, a phasor diagram for a series RLC circuit with an AC power supply looks the 
diagram below on the left. 

 
The right diagram above combines the phasors for the inductor and capacitor.  Since these 
phasors point in opposite directions, we subtract the two magnitudes when doing the 
vector addition (or phasor addition) for these two phasors.  From the right diagram above, 
we see that the amplitude ( 𝑚𝑚) of the potential difference supplied by the power supply 
can be found from the Pythagorean theorem, since 𝑅𝑅𝑚𝑚 is perpendicular to 𝑚𝑚 − 𝑚𝑚. 

𝑚𝑚 = 𝑅𝑅𝑚𝑚
2 + ( 𝑚𝑚 − 𝑚𝑚)2

Since each potential difference amplitude is proportional to the amplitude of the current 
( 𝑚𝑚 = 𝑚𝑚 , 𝑅𝑅𝑚𝑚 = 𝑚𝑚𝑅𝑅, 𝑚𝑚 = 𝑚𝑚 , and 𝑚𝑚 = 𝑚𝑚 ), we can divide the previous 
equation by 𝑚𝑚 to get an equation for impedance ( ): 

= 𝑅𝑅2 + ( − )2 
Therefore, it would be just as effective to draw an impedance triangle like the one below. 

 
From the impedance triangle, we can find the phase angle ( ) through trig. 

tan =
−
𝑅𝑅

 

 

               
* It works the same if you use rms values ( 𝑚𝑚 ) instead, since a simple 2 is involved. 

𝑅𝑅𝑚𝑚 

𝑚𝑚 

𝑚𝑚 

𝑚𝑚 

 
0° 

90° 

−90° 

𝑅𝑅𝑚𝑚 

𝑚𝑚 

 

𝑚𝑚 − 𝑚𝑚 

𝑅𝑅

 

 

−  

𝑅𝑅 

 
 −  
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Resonance in an RLC Circuit 

Inductive and capacitive reactance both depend on frequency in an AC circuit: 
• Inductive reactance is directly proportional to frequency according to 𝑋𝑋𝐿𝐿 = 𝜔𝜔𝐿𝐿.  The 

reason for this is that at higher frequencies, the current changes rapidly, and rapid 
changes in current increase the induced emf according to Faraday’s law:  𝜀𝜀𝐿𝐿 = −𝐿𝐿 ∆𝐼𝐼

∆𝑜𝑜
. 

• Capacitive reactance is inversely proportional to frequency according to 𝑋𝑋𝐶𝐶 = 1
𝜔𝜔𝐶𝐶

.  
The reason for this is that when the frequency approaches zero, the capacitive 
reactance must be very high, since the current (𝐼𝐼 = ∆𝑉𝑉𝐶𝐶

𝑋𝑋𝐶𝐶
) must be zero in the extreme 

case that 𝜔𝜔 is zero.  (That’s because when 𝜔𝜔 equals zero, you get a DC circuit, and no 
current passes through the capacitor in a steady-state DC circuit.) 

Because inductive and capacitive reactance depend on frequency, the amplitude of the 
current also depends on frequency. 

𝐼𝐼𝑚𝑚 =
∆𝑉𝑉𝑚𝑚
𝑍𝑍

=
∆𝑉𝑉𝑚𝑚

�𝑅𝑅2 + (𝑋𝑋𝐿𝐿 − 𝑋𝑋𝐶𝐶)2
=

∆𝑉𝑉𝑚𝑚

�𝑅𝑅2 + �𝜔𝜔𝐿𝐿 − 1
𝜔𝜔𝐶𝐶�

2
 

For given values of ∆𝑉𝑉𝑚𝑚, 𝑅𝑅, 𝐿𝐿, and 𝐶𝐶, the amplitude of the current is maximized when 
𝑋𝑋𝐿𝐿 = 𝑋𝑋𝐶𝐶 (since the denominator reaches its minimum possible value, 𝑅𝑅, when 𝑋𝑋𝐿𝐿 − 𝑋𝑋𝐶𝐶 = 0, 
and since a smaller denominator makes the current greater).  If you set 𝑋𝑋𝐿𝐿 = 𝑋𝑋𝐶𝐶, you get: 

𝜔𝜔0𝐿𝐿 =
1

𝜔𝜔0𝐶𝐶
 

Multiply both sides of the equation by 𝜔𝜔0 (which does not cancel) and divide by 𝐿𝐿: 

𝜔𝜔0
2 =

1
𝐿𝐿𝐶𝐶

 

Squareroot both sides of the equation. 

𝜔𝜔0 =
1

√𝐿𝐿𝐶𝐶
 

The resonance frequency (𝜔𝜔0) is the value of 𝜔𝜔 that maximizes 𝐼𝐼𝑚𝑚.  The maximum possible 
current (𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚, which is in general different from 𝐼𝐼𝑚𝑚) is: 

𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚 =
∆𝑉𝑉𝑚𝑚
𝑅𝑅

 

Note that 𝐼𝐼𝑚𝑚 = ∆𝑉𝑉𝑚𝑚
𝑍𝑍

, whereas 𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚 = ∆𝑉𝑉𝑚𝑚
𝑅𝑅

.  The quantity 𝐼𝐼𝑚𝑚 is the amplitude of the current:  
The current varies as a sine wave, and 𝐼𝐼𝑚𝑚 is the peak of that sine wave.  The peak value of 
the sine wave, 𝐼𝐼𝑚𝑚, depends on the frequency.  You get the maximum possible peak, 𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚, at 
the resonance frequency.  That is, 𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚 is the greatest possible 𝐼𝐼𝑚𝑚.  It corresponds to the 
minimum possible impedance:  𝑍𝑍𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑅𝑅.  Less impedance yields more current. 
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Quality Factor 

The average power ( 𝑎𝑎 ) is plotted below as a function of angular frequency ( ) for a series 
RLC circuit with an AC power supply.  The average power is maximum for the resonance 
frequency ( 0).  The quantity  shown below is the full-width at half the maximum
(FWHM).  To find , read off the maximum value of the graph, 𝑎𝑎 ,𝑚𝑚𝑎𝑎 , divide this quantity 

by 2 to get ,
2

, find the two values of  where the curve has a height equal to ,
2

, and 
subtract these two values of :  = 2 − 1. 

 
There are two ways to determine the quality factor ( 0).  If you are given a graph of 
average power as a function of angular frequency, read off the values of 0 and  (as 
described in the previous paragraph, and as shown above). 

0 = 0  

If you are given  and 𝑅𝑅, you can use these values instead of 0 and . 

0 = 0

𝑅𝑅
 

The quality factor provides a measure of the sharpness of the average power curve.  A 
higher value of 0 corresponds to an average power curve with a narrower peak. 
 
Root-mean-square (rms) Values 

An AC multimeter used as an AC ammeter or AC voltmeter measures root-mean-square
(rms) values.  They don’t measure “average” values in the usual since:  A sine wave is zero 
on “average,” since it’s above the horizontal axis half the time and equally below the 
horizontal axis the other half of the time.  Here is what root-mean-square means: 

• First square all of the values. 
• Then find the average of the squared values. 
• Take the squareroot of the previous answer.

Although the ordinary “average” of a sine wave is zero over one cycle, the rms value of a 
sine wave isn’t zero.  That’s because everything becomes nonnegative in the second step, 
when every value is squared. 

 

𝑎𝑎  

 

𝑎𝑎 ,𝑚𝑚𝑎𝑎  

𝑎𝑎 ,𝑚𝑚𝑎𝑎

2
 

 

0 
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The rms Value of a Sine Wave 

The current and potential difference are sinusoidal waves.  The instantaneous values are 
constantly varying.  The peak values, 𝐼𝐼𝑚𝑚 and ∆𝑉𝑉𝑚𝑚, are the amplitudes of the sine waves.  
When we measure rms values, these measured values are related to the peak values by the 
average value of a sine wave. 

∆𝑉𝑉𝑟𝑟𝑚𝑚𝑝𝑝 = ∆𝑉𝑉𝑚𝑚�sın2(𝜃𝜃)����������      ,     𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝 = 𝐼𝐼𝑚𝑚�sın2(𝜃𝜃)���������� 

It turns out that the average value of the sine function over one cycle equals one-half of its 
amplitude.† 

sın2(𝜃𝜃)���������� =
1
2

 

To find the rms value, take the squareroot of both sides. 

rms value of sin 𝜃𝜃 = �sın2(𝜃𝜃)���������� =
1
√2

=
1
√2

√2
√2

=
√2
2

 

In the last step, we rationalized the denominator by multiplying the numerator and 
denominator both by √2.  If you enter them correctly on your calculator, you will see that 
1
√2

 and √2
2

 are both the same and approximately equal to 0.7071. 

 

If we substitute �sın2(𝜃𝜃)���������� = 1
√2

 (which is the same as saying �sın2(𝜃𝜃)���������� = √2
2
� into the 

equations at the top of the page, we get: 

Δ𝑉𝑉𝑟𝑟𝑚𝑚𝑝𝑝 =
Δ𝑉𝑉𝑚𝑚
√2

     ,     𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝 =
𝐼𝐼𝑚𝑚
√2

 

Therefore, what an AC multimeter measures is 1
√2

 (which is about 70.71%) of the amplitude 

of the AC current or potential difference (depending on the type of meter used). 
  

                                                        
† This can be shown using calculus (specifically, the mean-value theorem). 
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Transformers 

A transformer is a device consisting of two inductors, which utilizes Faraday’s law to step 
AC voltage up or down.  A typical transformer is illustrated below. 

The transformer shown above consists of two inductors, called the primary and secondary.  
An AC power supply provides the input voltage (potential difference) to the primary.  The 
alternating current in the primary creates a changing magnetic flux in the secondary, which 
induces a potential difference (and therefore also a current) in the secondary according to 
Faraday’s law.  The presence of the magnet (shown in gray above) helps to reduce losses. 

The ratio of the potential difference in the secondary ( 𝑛𝑛) to the potential difference in 
the primary ( 𝑛𝑛) equals the ratio of the number of turns (or loops) in the secondary ( )
to the number of turns in the primary ( ). 

𝑛𝑛

𝑛𝑛
=  

Neglecting any losses, the power supplied to the primary equals the power delivered to the 
secondary.  Recall that power ( ) equals current ( ) times potential difference ( ). 

𝑛𝑛 𝑛𝑛 = 𝑛𝑛 𝑛𝑛 
According to Ohm’s law, 𝑛𝑛 = 𝑛𝑛

𝑅𝑅𝑒𝑒
 and 𝑛𝑛 = 𝑛𝑛

𝑅𝑅
. 

𝑛𝑛

𝑅𝑅𝑒𝑒𝑞𝑞
𝑛𝑛 = 𝑛𝑛

𝑅𝑅 𝑎𝑎
𝑛𝑛

𝑛𝑛
2

𝑅𝑅𝑒𝑒𝑞𝑞
= 𝑛𝑛

2

𝑅𝑅 𝑎𝑎
 

Since 𝑛𝑛 = 𝑛𝑛 , this becomes: 

𝑛𝑛
2

𝑅𝑅𝑒𝑒𝑞𝑞
=

1
𝑅𝑅 𝑎𝑎

𝑛𝑛

2

= 𝑛𝑛
2

𝑅𝑅 𝑎𝑎

2

 

1
𝑅𝑅𝑒𝑒𝑞𝑞

=
1

𝑅𝑅 𝑎𝑎

2

 

Reciprocate both sides of the equation. 

𝑅𝑅𝑒𝑒𝑞𝑞 = 𝑅𝑅 𝑎𝑎

2

 

This is the equivalent resistance of the transformer from the primary perspective. 

~𝑛𝑛 𝑛𝑛 𝑅𝑅 𝑎𝑎   𝑅𝑅 
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High-pass and Low-pass Filters 

The frequency dependence of capacitive reactance can be utilized to create high-pass and 
low-pass filters. 

• A high-pass filter effectively blocks (or attenuates) low frequencies and lets high 
frequencies pass through.  See the diagram below on the left. 

• A low-pass filter effectively blocks (or attenuates) high frequencies and lets low 
frequencies pass through.  See the diagram below on the right. 

 
In both types of filters, the input voltage equals the potential difference of the AC power 
supply for an RLC circuit where the inductive reactance is set equal to zero ( = 0), since 
there is no inductor in the circuit.  Recall that capacitive reactance is = 1 . 

𝑛𝑛 = 𝑚𝑚 = 𝑚𝑚 𝑅𝑅2 + (0 − )2 = 𝑚𝑚 𝑅𝑅2 + 2 = 𝑚𝑚 𝑅𝑅2 +
1 2

 

For a high-pass filter, the output voltage equals the potential difference across the resistor. 
𝑛𝑛 = 𝑚𝑚𝑅𝑅 

𝑛𝑛

𝑛𝑛
= 𝑚𝑚𝑅𝑅

𝑚𝑚 𝑅𝑅2 + 1 2
=

𝑅𝑅

𝑅𝑅2 + 1 2
 

When the angular frequency ( ) is high, the ratio 𝑛𝑛

𝑛𝑛
 is close to 100% (since 1  is small for 

large values of ), and when the angular frequency is ( ) low, the ratio 𝑛𝑛

𝑛𝑛
 is close to 0% 

(since 1  is large for small values of , which makes the denominator of 𝑛𝑛

𝑛𝑛
 large, and a 

large denominator makes a fraction smaller). 

For a low-pass filter, the output voltage equals the potential difference across the capacitor. 
𝑛𝑛 = 𝑚𝑚  

𝑛𝑛

𝑛𝑛
= 𝑚𝑚

𝑚𝑚 𝑅𝑅2 + 1 2
=

1

𝑅𝑅2 + 1 2
 

In this case, when the angular frequency ( ) is low, the ratio 𝑛𝑛

𝑛𝑛
 is close to 100%, and 

when the angular frequency is ( ) high, the ratio 𝑛𝑛

𝑛𝑛
 is close to 0%. 

~ 𝑛𝑛 𝑅𝑅 

 
 

𝑛𝑛 

high-pass filter 

~ 𝑛𝑛 

𝑅𝑅 

 
 𝑛𝑛 

low-pass filter 
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Important Distinctions 

DC stands for direct current, whereas AC stands for alternating current.  This chapter 
involves circuits that have an AC power supply.  If a problem involves a DC power supply 
(or no power supply at all), see Chapter 26 instead (or Chapter 18 for an RC circuit). 
 
The subscript 𝑚𝑚 on potential difference (such as Δ𝑉𝑉𝑚𝑚 or Δ𝑉𝑉𝑅𝑅𝑚𝑚) or on current (𝐼𝐼𝑚𝑚) indicates 
that it’s the amplitude of the corresponding sine wave (it’s a peak or maximum value).  
(Some texts use a different notation for this, but have some way of telling which quantities 
are amplitudes and which are not.)  Similarly, the subscripts 𝑟𝑟𝑚𝑚𝑟𝑟 (as in 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝) stand for 
root-mean-square values.  Potential differences (such as Δ𝑉𝑉𝑝𝑝𝑝𝑝 or Δ𝑉𝑉𝑅𝑅) or currents (𝐼𝐼) which 
do not have a subscript 𝑚𝑚 or 𝑟𝑟𝑚𝑚𝑟𝑟 are instantaneous values.  It’s very important to tell 
whether or not a potential difference or current is an instantaneous value or not:  The 
reason is that some equations apply only to maximum or rms values and are not true for 
instantaneous values.  It would be a mistake, for example, to use an equation which has 
subscript 𝑚𝑚’s and plug in instantaneous values instead. 
 
The “maximum current” is 𝐼𝐼𝑚𝑚, which means for a given value of angular frequency (𝜔𝜔), as 
the current oscillates in time according to 𝐼𝐼 = 𝐼𝐼𝑚𝑚 sin(𝜔𝜔𝜔𝜔 − 𝜑𝜑), the current oscillates 
between a “maximum” value (called the amplitude) of 𝐼𝐼𝑚𝑚 and minimum value of −𝐼𝐼𝑚𝑚.  Since 
there is another sense in which current is maximized, it’s important to distinguish between 
𝐼𝐼𝑚𝑚 and 𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚.  (Again, some books adopt different notation, but still have some way of telling 
these symbols apart.)  The current 𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚 is the maximum possible value of 𝐼𝐼𝑚𝑚, which occurs 
at the resonance frequency (𝜔𝜔0). 

• ∆𝑉𝑉𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑍𝑍 involves the amplitude of the current and the impedance, and is true at 
any value of 𝜔𝜔. 

• ∆𝑉𝑉𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚𝑅𝑅 involves the maximum possible current and the resistance, and is true 
only when the angular frequency equals 𝜔𝜔0 (the resonance frequency). 

 
Remember that we use the symbol 𝑄𝑄0 to represent the quality factor of an AC circuit.  Don’t 
confuse the quality factor with the charge (𝑄𝑄) stored on the capacitor. 
 
Technically, the symbol 𝜔𝜔 is the angular frequency in rad/s, whereas the symbol 𝑓𝑓 is the 
frequency in Hertz (Hz).  The angular frequency and frequency are related by 𝜔𝜔 = 2𝜋𝜋𝑓𝑓.  
Unfortunately, there are books which use the term “frequency,” but really mean 𝜔𝜔 instead 
of 𝑓𝑓, or which refer to “resonance frequency,” but really mean 𝜔𝜔0 instead of 𝑓𝑓0.  If you’re 
using another book, read the chapter on AC circuits carefully and study the examples, as 
this will show you exactly what that book means by the word “frequency.”  (This workbook 
has a handy chart in each chapter to clarify exactly how we are using each symbol.)  
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Strategy for AC Circuits 

Note:  If a circuit involves a DC power supply (or no power supply), see Chapter 26 instead. 
 
For an RL, RC, LC, or RLC circuit that has an AC power supply, the following equations 
apply.  Choose the relevant equation based on which quantities you are given in a problem 
and which quantity you are solving for. 

• The units following a number can help you identify the given information. 
o A value in Hertz (Hz) is frequency (𝑓𝑓).  If it says “resonance,” it’s 𝑓𝑓0. 
o A value in rad/s is angular frequency (𝜔𝜔).  If it says “resonance,” it’s 𝜔𝜔0.  

Another quantity measured in rad/s is the full-width at half max (∆𝜔𝜔). 
o A value in seconds (s) may be the time (𝜔𝜔), but could also be period (𝑇𝑇). 
o A value in Henry (H) is inductance (𝐿𝐿).  Note that 1mH = 0.001 H. 
o A value in Farads (F) is capacitance (𝐶𝐶).  Note that µ = 10−6 and n = 10−9. 
o A value in Ohms (Ω) may be resistance (𝑅𝑅), but could also be impedance (𝑍𝑍), 

inductive reactance (𝑋𝑋𝐿𝐿), or capacitive reactance (𝑋𝑋𝐶𝐶). 
o A value in Ampères (A) is current, but you must read carefully to see if it’s 𝐼𝐼𝑚𝑚 

(which may be called the amplitude, maximum, or peak value), 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝 (the 
root-mean square value), 𝐼𝐼 (the instantaneous value), or 𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚 (the maximum 
possible value of 𝐼𝐼𝑚𝑚, which occurs at resonance). 

o A value in Volts (V) is potential difference (also called voltage), and involves 
even more choices:  the amplitude of the power supply voltage (Δ𝑉𝑉𝑚𝑚), the 
amplitude for the voltage across a specific element (Δ𝑉𝑉𝑅𝑅𝑚𝑚, Δ𝑉𝑉𝐿𝐿𝑚𝑚, Δ𝑉𝑉𝐶𝐶𝑚𝑚), an 
rms value (Δ𝑉𝑉𝑟𝑟𝑚𝑚𝑝𝑝, Δ𝑉𝑉𝑅𝑅𝑟𝑟𝑚𝑚𝑝𝑝, Δ𝑉𝑉𝐿𝐿𝑟𝑟𝑚𝑚𝑝𝑝, Δ𝑉𝑉𝐶𝐶𝑟𝑟𝑚𝑚𝑝𝑝), or an instantaneous value (Δ𝑉𝑉𝑝𝑝𝑝𝑝, 
Δ𝑉𝑉𝑅𝑅, Δ𝑉𝑉𝐿𝐿, Δ𝑉𝑉𝐶𝐶).  Some books adopt different notation, such as using lowercase 
letters (like 𝑣𝑣𝑅𝑅) for instantaneous values and uppercase values (like 𝑉𝑉𝑅𝑅 for 
amplitudes).  When using another book, compare notation carefully.  The 
handy chart of symbols in this chapter should aid in such a comparison. 

o A value in Watts (W) is the instantaneous power (𝑃𝑃) or average power (𝑃𝑃𝑎𝑎𝑎𝑎). 
o A value in radians (rad) is the phase angle (𝜑𝜑).  If a value is given in degrees 

(°), convert it to radians using 180° = 𝜋𝜋 rad.  Check that your calculator is in 
radians mode (not degrees mode).  That’s because 𝜔𝜔 is in rad/s. 

• The equations involve angular frequency (𝜔𝜔).  If you’re given the frequency (𝑓𝑓) in 
Hertz (Hz) or period (𝑇𝑇) in sec, first calculate the angular frequency:  𝜔𝜔 = 2𝜋𝜋𝑓𝑓 = 2𝜋𝜋

𝑇𝑇
. 

• Note that some equations require finding the reactance before you can use them. 
o The inductive reactance is 𝑋𝑋𝐿𝐿 = 𝜔𝜔𝐿𝐿. 
o The capacitive reactance is 𝑋𝑋𝐶𝐶 = 1

𝜔𝜔𝐶𝐶
. 

• The main equation for impedance is: 
𝑍𝑍 = �𝑅𝑅2 + (𝑋𝑋𝐿𝐿 − 𝑋𝑋𝐶𝐶)2 
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• The main equation for the phase angle is: 

𝜑𝜑 = tan−1 �
𝑋𝑋𝐿𝐿 − 𝑋𝑋𝐶𝐶

𝑅𝑅
� 

• The resonance angular frequency (𝜔𝜔0) and resonance frequency (𝑓𝑓0) are: 

𝜔𝜔0 =
1

√𝐿𝐿𝐶𝐶
= 2𝜋𝜋𝑓𝑓0 

• If you see the word “power,” use one of the following equations: 
o The instantaneous power (𝑃𝑃) is:  𝑃𝑃 = 𝐼𝐼Δ𝑉𝑉𝑝𝑝𝑝𝑝 = 𝐼𝐼𝑚𝑚Δ𝑉𝑉𝑚𝑚 sin(𝜔𝜔𝜔𝜔) sin(𝜔𝜔𝜔𝜔 − 𝜑𝜑). 
o The average power (𝑃𝑃𝑎𝑎𝑎𝑎) is:  𝑃𝑃𝑎𝑎𝑎𝑎 = 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝Δ𝑉𝑉𝑟𝑟𝑚𝑚𝑝𝑝 cos𝜑𝜑 = 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝2 𝑅𝑅. 
o The factor of cos𝜑𝜑 is called the power factor. 

• There are two ways to determine the quality factor: 
o If you know the resistance (𝑅𝑅) and inductance (𝐿𝐿), use the equation 𝑄𝑄0 = 𝜔𝜔0𝐿𝐿

𝑅𝑅
. 

o If you’re given a graph of average power (𝑃𝑃𝑎𝑎𝑎𝑎) as a function of angular 
frequency (𝜔𝜔), read off the values of 𝜔𝜔0 and Δ𝜔𝜔 (as described and shown on 
page 303), and then use the equation 𝑄𝑄0 = 𝜔𝜔0

Δ𝜔𝜔
. 

• The maximum (or peak) voltages (also called potential differences) can be related 
through the equation ∆𝑉𝑉𝑚𝑚 = �∆𝑉𝑉𝑅𝑅𝑚𝑚2 + (∆𝑉𝑉𝐿𝐿𝑚𝑚 − ∆𝑉𝑉𝐶𝐶𝑚𝑚)2, where ∆𝑉𝑉𝑚𝑚 is the power 
supply voltage.  These values are also related to the maximum current through 
∆𝑉𝑉𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑍𝑍, ∆𝑉𝑉𝑅𝑅𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑅𝑅, ∆𝑉𝑉𝐿𝐿𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑋𝑋𝐿𝐿, and ∆𝑉𝑉𝐶𝐶𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑋𝑋𝐶𝐶 .  These five equations can 
also be written with rms values instead of maximum values. 

• In general, ∆𝑉𝑉𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑍𝑍, but at resonance this becomes ∆𝑉𝑉𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚𝑅𝑅, where 𝐼𝐼𝑚𝑚 is the 
maximum current for a given 𝜔𝜔 and 𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚 is the maximum possible value of 𝐼𝐼𝑚𝑚, 
which occurs at the resonance frequency (𝜔𝜔0). 

• If you need to switch between rms and maximum (or peak) values, note that: 

Δ𝑉𝑉𝑟𝑟𝑚𝑚𝑝𝑝 =
Δ𝑉𝑉𝑚𝑚
√2

     ,     𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝 =
𝐼𝐼𝑚𝑚
√2

 

• The instantaneous voltages and currents are: 
∆𝑉𝑉𝑝𝑝𝑝𝑝 = ∆𝑉𝑉𝑚𝑚 sin(𝜔𝜔𝜔𝜔)     ,     ∆𝑉𝑉𝑅𝑅 = ∆𝑉𝑉𝑅𝑅𝑚𝑚 sin(𝜔𝜔𝜔𝜔) 
∆𝑉𝑉𝐿𝐿 = ∆𝑉𝑉𝐿𝐿𝑚𝑚 cos(𝜔𝜔𝜔𝜔)     ,     ∆𝑉𝑉𝐶𝐶 = −∆𝑉𝑉𝐶𝐶𝑚𝑚 cos(𝜔𝜔𝜔𝜔) 

𝐼𝐼 = 𝐼𝐼𝑚𝑚 sin(𝜔𝜔𝜔𝜔 − 𝜑𝜑) 
Note that the instantaneous values depend on time (𝜔𝜔). 

• If you need to draw or work with a phasor, it’s basically a vector for which: 
o The amplitude (∆𝑉𝑉𝑚𝑚) of the potential difference is the magnitude of the 

phasor.  (You could use rms values instead of peak values.) 
o The phase angle serves as the direction of the phasor.  Measure the angle 

counterclockwise from the +𝑥𝑥-axis. 
o The phase angle (𝜑𝜑) equals 90° for an inductor, 0° for a resistor, and −90° for 

a capacitor. 
Use the technique of vector addition (like in Chapter 3) to add phasors together. 
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• If a problem involves a transformer, see the next strategy. 
• If a problem involves a high-pass or low-pass filter, see the last strategy below. 

 
Strategy for Transformers 

To solve a problem involving a transformer: 
• The ratio of the secondary voltage (∆𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜) to the primary voltage (∆𝑉𝑉𝑖𝑖𝑖𝑖) equals the 

ratio of the number of turns (or loops) in the secondary (𝑁𝑁𝑝𝑝) to the number of turns 
in the primary (𝑁𝑁𝑝𝑝): 

∆𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
∆𝑉𝑉𝑖𝑖𝑖𝑖

=
𝑁𝑁𝑝𝑝
𝑁𝑁𝑝𝑝

 

• The equivalent resistance of the transformer from the primary perspective is: 

𝑅𝑅𝑒𝑒𝑒𝑒 = 𝑅𝑅𝑙𝑙𝑜𝑜𝑎𝑎𝑙𝑙 �
𝑁𝑁𝑝𝑝
𝑁𝑁𝑝𝑝
�
2

 

 
Strategy for High-pass or Low-pass Filters 

To solve a problem with a simple high-pass or low-pass filter: 
• For the high-pass filter shown on the left of page 306: 

∆𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
∆𝑉𝑉𝑖𝑖𝑖𝑖

=
𝑅𝑅

�𝑅𝑅2 + � 1
𝜔𝜔𝐶𝐶�

2
 

• For the low-pass filter shown on the right of page 306: 

∆𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
∆𝑉𝑉𝑖𝑖𝑖𝑖

=
1
𝜔𝜔𝐶𝐶

�𝑅𝑅2 + � 1
𝜔𝜔𝐶𝐶�

2
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Example:  An AC power supply that provides an rms voltage of 20 V and operates at an 
angular frequency of 40 rad/s is connected in series with a 1.5-kΩ resistor, a 40-H inductor, 
and a 250-µF capacitor. 
 
Begin by making a list of the given quantities in SI units: 

• The rms voltage is ∆𝑉𝑉𝑟𝑟𝑚𝑚𝑝𝑝 = 20 V.  This relates to the power supply. 
• The angular frequency is 𝜔𝜔 = 40 rad/s.  Note:  It’s not 𝜔𝜔0 (that is, it isn’t resonance). 
• The resistance is 𝑅𝑅 = 1500 Ω.  The metric prefix kilo (k) stands for 1000. 
• The inductance is 𝐿𝐿 = 40 H. 
• The capacitance is 𝐶𝐶 = 2.5 × 10−4 F.  The metric prefix micro (µ) stands for 10−6. 

(A) What is the amplitude of the AC power supply voltage? 
We’re solving for ∆𝑉𝑉𝑚𝑚.  Find the equation that relates ∆𝑉𝑉𝑟𝑟𝑚𝑚𝑝𝑝 to ∆𝑉𝑉𝑚𝑚. 

Δ𝑉𝑉𝑟𝑟𝑚𝑚𝑝𝑝 =
Δ𝑉𝑉𝑚𝑚
√2

 

Multiply both sides of the equation by √2. 
Δ𝑉𝑉𝑚𝑚 = Δ𝑉𝑉𝑟𝑟𝑚𝑚𝑝𝑝√2 = (20)�√2� = 20√2 V 

The amplitude of the AC power supply voltage is Δ𝑉𝑉𝑚𝑚 = 20√2 V.  If you use a calculator, you 
get Δ𝑉𝑉𝑚𝑚 = 28 V to two significant figures. 
(B) What is the frequency of the AC power supply in Hertz? 
Use the equation that relates angular frequency to frequency. 

𝜔𝜔 = 2𝜋𝜋𝑓𝑓 
Divide both sides of the equation by 2𝜋𝜋. 

𝑓𝑓 =
𝜔𝜔
2𝜋𝜋

=
40
2𝜋𝜋

=
20
𝜋𝜋

 Hz 

The frequency is 𝑓𝑓 = 20
𝜋𝜋

 Hz.  Using a calculator, this comes out to 𝑓𝑓 = 6.4 Hz. 
(C) What is the inductive reactance? 
Use the equation that relates inductive reactance to inductance. 

𝑋𝑋𝐿𝐿 = 𝜔𝜔𝐿𝐿 = (40)(40) = 1600 Ω 
The inductive reactance is 𝑋𝑋𝐿𝐿 = 1600 Ω. 
(D) What is the capacitive reactance? 
Use the equation that relates capacitive reactance to capacitance. 

𝑋𝑋𝐶𝐶 =
1
𝜔𝜔𝐶𝐶

=
1

(40)(2.5 × 10−4) =
1

100 × 10−4
=

1
10−2

= 102 = 100 Ω 

The capacitive reactance is 𝑋𝑋𝐶𝐶 = 100 Ω. 
(E) What is the impedance of the RLC circuit? 
Use the equation that relates impedance to resistance and reactance. 

𝑍𝑍 = �𝑅𝑅2 + (𝑋𝑋𝐿𝐿 − 𝑋𝑋𝐶𝐶)2 = �15002 + (1600 − 100)2 = �15002 + 15002 = 1500√2 Ω 
The impedance is 𝑍𝑍 = 1500√2 Ω.  Using a calculator, this comes out to 𝑍𝑍 = 2.1 kΩ, where 
the metric prefix kilo (k) stands for 1000. 
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(F) What is the phase angle for the current with respect to the power supply voltage? 
Use the equation that relates the phase angle to resistance and reactance. 

𝜑𝜑 = tan−1 �
𝑋𝑋𝐿𝐿 − 𝑋𝑋𝐶𝐶

𝑅𝑅
� = tan−1 �

1600 − 100
1500

� = tan−1 �
1500
1500

� = tan−1(1) = 45° 

The phase angle is 𝜑𝜑 = 45°.  Since the phase angle is positive, the current lags behind the 
power supply’s potential difference by 45° (one-eighth of a cycle, since 360° is full-cycle). 
(G) What is the rms current for the RLC circuit? 
One way to do this is to first solve for the amplitude (𝐼𝐼𝑚𝑚) of the current from the amplitude 
(∆𝑉𝑉𝑚𝑚) of the potential difference of the power supply and the impedance (𝑍𝑍).  Recall that 
we found Δ𝑉𝑉𝑚𝑚 = 20√2 V in part (A) and 𝑍𝑍 = 1500√2 Ω in part (E). 

∆𝑉𝑉𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑍𝑍 
Divide both sides of the equation by 𝑍𝑍. 

𝐼𝐼𝑚𝑚 =
∆𝑉𝑉𝑚𝑚
𝑍𝑍

=
20√2

1500√2
=

1
75

 A 

Now use the equation that relates 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝 to 𝐼𝐼𝑚𝑚. 

𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝 =
𝐼𝐼𝑚𝑚
√2

=
1

75√2
=

1
75√2

√2
√2

=
√2

150
 A 

Note that we multiplied by √2
√2

 in order to rationalize the denominator.  Also note that 

√2√2 = 2.  The rms current is 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝 = √2
150

 A.  If you use a calculator, this works out to 
𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝 = 0.0094 A, which can also be expressed as 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝 = 9.4 mA since the prefix milli (m) 
stands for m = 10−3.  An alternative way to solve this problem would be to use the 
equation ∆𝑉𝑉𝑟𝑟𝑚𝑚𝑝𝑝 = 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝𝑍𝑍 instead of ∆𝑉𝑉𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑍𝑍.  You would get the same answer either way 
(provided that you do the math correctly). 
(H) What frequency (in Hz) should the power supply be adjusted to in order to create the 
maximum possible current? 
Qualitatively, the answer is the resonance frequency (𝑓𝑓0).  Quantitatively, first solve for 𝜔𝜔0 
from the inductance and capacitance. 

𝜔𝜔0 =
1

√𝐿𝐿𝐶𝐶
=

1

�(40)(2.5 × 10−4)
=

1
√100 × 10−4

=
1

√10−2
=

1
10−1

= 10 rad/s 

Technically, 𝜔𝜔0 is the “resonance angular frequency” (though it’s not uncommon for books 
or scientists to say “resonance frequency” and really mean 𝑓𝑓0 – however, this problem 
specifically says “in Hz,” so we’re definitely looking for 𝑓𝑓0, not 𝜔𝜔0 since the units of 𝜔𝜔0 are 
rad/s).  To find 𝑓𝑓0, use the following equation. 

𝜔𝜔0 = 2𝜋𝜋𝑓𝑓0 
Divide both sides of the equation by 2𝜋𝜋. 

𝑓𝑓0 =
𝜔𝜔0

2𝜋𝜋
=

10
2𝜋𝜋

=
5
𝜋𝜋

 Hz 

The resonance frequency in Hertz is 𝑓𝑓0 = 5
𝜋𝜋

 Hz.  Using a calculator, it is 𝑓𝑓0 = 1.6 Hz. 
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(I) What is the maximum possible amplitude of the current that could be obtained by 
adjusting the frequency of the power supply? 
The answer is not the 𝐼𝐼𝑚𝑚 = 1

75
 A (which equates to ≈0.013 A) that we found as an inter-

mediate answer in part (G).  The symbol 𝐼𝐼𝑚𝑚 is the maximum value of the instantaneous 
current for a given frequency (the current oscillates between 𝐼𝐼𝑚𝑚 and −𝐼𝐼𝑚𝑚), but we can get 
an even larger value of 𝐼𝐼𝑚𝑚 using a different frequency.  Which frequency gives you the most 
current?  The answer is the resonance frequency.  We found the resonance angular 
frequency to be 𝜔𝜔0 = 10 rad/s in part (H), but we don’t actually need this number:  The 
resonance frequency is the frequency for which 𝑋𝑋𝐿𝐿 = 𝑋𝑋𝐶𝐶.  When 𝑋𝑋𝐿𝐿 = 𝑋𝑋𝐶𝐶, the impedance 
equals the resistance, as expressed in the following equation. 

∆𝑉𝑉𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚𝑅𝑅 
Note that for any frequency, ∆𝑉𝑉𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑍𝑍, but for the resonance frequency, this simplifies to 
∆𝑉𝑉𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚𝑅𝑅 (since 𝑍𝑍 equals 𝑅𝑅 at resonance).  The symbol 𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚 represents the maximum 
possible value of 𝐼𝐼𝑚𝑚.  Divide both sides of the equation by 𝑅𝑅. 

𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚 =
∆𝑉𝑉𝑚𝑚
𝑅𝑅

 

Recall that we found Δ𝑉𝑉𝑚𝑚 = 20√2 V in part (A). 

𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚 =
20√2
1500

=
√2
75

 A 

The maximum possible current that could be obtained by adjusting the frequency is 

𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚 = √2
75

 A, and this occurs when the frequency is adjusted to 𝑓𝑓0 = 5
𝜋𝜋

 Hz = 1.6 Hz (or 
when the angular frequency equals 𝜔𝜔0 = 10 rad/s).  If you use a calculator, the answer 
works out to 𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚 = 0.019 A = 19 mA.  As a check, note that this value is larger than the 
value of 𝐼𝐼𝑚𝑚 = 1

75
 A = 13 mA that we found in part (G).  Just to be clear, our final answer to 

this part of the problem is 𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚 = √2
75

 A = 0.019 A = 19 mA. 
(J) What is the minimum possible impedance that could be obtained by adjusting the 
frequency of the power supply? 
The maximum current and minimum impedance go hand in hand:  Both occur at resonance.  
It should make sense:  Less impedance results in more current (for a fixed amplitude of 
potential difference).  As we discussed in part (I), at resonance, the impedance equals the 
resistance.  There is no math to do!  Just write the following (well, if you’re taking a class, it 
would also be wise, and perhaps required, for you to explain your answer): 

𝑍𝑍𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑅𝑅 = 1500 Ω 
The minimum possible impedance that could be obtained by adjusting the frequency is 
𝑍𝑍𝑚𝑚𝑖𝑖𝑖𝑖 = 1500 Ω, and this occurs when the frequency equals 𝑓𝑓0 = 5

𝜋𝜋
 Hz = 1.6 Hz (or when 

the angular frequency equals 𝜔𝜔0 = 10 rad/s).  Tip:  Since the minimum possible impedance 
equals the resistance, for any problem in which you calculate 𝑍𝑍, check that your answer for 
𝑍𝑍 is greater than 𝑅𝑅 (otherwise, you know that you made a mistake). 
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(K) What is the average power delivered by the AC power supply? 
Use one of the equations for average power. 

𝑃𝑃𝑎𝑎𝑎𝑎 = 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝Δ𝑉𝑉𝑟𝑟𝑚𝑚𝑝𝑝 cos𝜑𝜑 = 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝2 𝑅𝑅 
Either equation will work.  Recall that we found 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝 = √2

150
 A in part (G) and 𝜑𝜑 = 45° in 

part (F), while ∆𝑉𝑉𝑟𝑟𝑚𝑚𝑝𝑝 = 20 V was given in the problem. 

𝑃𝑃𝑎𝑎𝑎𝑎 = 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝Δ𝑉𝑉𝑟𝑟𝑚𝑚𝑝𝑝 cos𝜑𝜑 = �
√2

150
� (20) cos 45° = �

√2
150

� (20) �
√2
2
� =

(2)(20)
300

=
40

300
=

2
15

 W 

Note that √2√2 = 2.  The average power that the AC power supply delivers to the circuit is 
𝑃𝑃𝑎𝑎𝑎𝑎 = 2

15
 W.  If you use a calculator, this comes out to 𝑃𝑃𝑎𝑎𝑎𝑎 = 0.13 W, which could also be 

expressed as 𝑃𝑃𝑎𝑎𝑎𝑎 = 130 mW using the metric prefix milli (m), since m = 10−3.  Note that 
you would get the same answer using the other equation: 

𝑃𝑃𝑎𝑎𝑎𝑎 = 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝2 𝑅𝑅 = �
√2
150

�
2

(1500) =
2

15
 W 

(L) What is the quality factor for the RLC circuit described in the problem? 
Use the equation for quality factor (𝑄𝑄0) that involves the resonance angular frequency 
(𝜔𝜔0), resistance (𝑅𝑅), and inductance (𝐿𝐿). 

𝑄𝑄0 =
𝜔𝜔0𝐿𝐿
𝑅𝑅

=
(10)(40)

1500
=

400
1500

=
4

15
 

The quality factor for this RLC circuit is 𝑄𝑄0 = 4
15

.  (Note that the numbers in this problem 
are not typical of most RLC circuits.  We used numbers that made the arithmetic simpler so 
that you could focus more on the strategy and follow along more easily.  A typical RLC 
circuit has a much higher quality factor – above 10, perhaps as high as 100.  One of the 
unusual things about this problem is that the resistance, which is 1500 Ω, is very large.) 
(M) What would an AC voltmeter measure across the resistor? 
The AC voltmeter would measure the rms value across the resistor, which is ∆𝑉𝑉𝑅𝑅𝑟𝑟𝑚𝑚𝑝𝑝.  Note 
that we can rewrite the equation ∆𝑉𝑉𝑅𝑅𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑅𝑅 in terms of rms values as:‡ 

∆𝑉𝑉𝑅𝑅𝑟𝑟𝑚𝑚𝑝𝑝 = 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝𝑅𝑅 = �
√2

150
� (1500) = 10√2 V 

Recall that we found 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝 = √2
150

 A in part (G).  An AC voltmeter would measure the voltage 

across the resistor to be ∆𝑉𝑉𝑅𝑅𝑟𝑟𝑚𝑚𝑝𝑝 = 10√2 V.  Using a calculator, it is ∆𝑉𝑉𝑅𝑅𝑟𝑟𝑚𝑚𝑝𝑝 = 14 V. 
(N) What would an AC voltmeter measure across the inductor? 
The AC voltmeter would measure the rms value across the inductor, which is ∆𝑉𝑉𝐿𝐿𝑟𝑟𝑚𝑚𝑝𝑝.  Note 
that we can rewrite the equation ∆𝑉𝑉𝐿𝐿𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑋𝑋𝐿𝐿 in terms of rms values as: 

∆𝑉𝑉𝐿𝐿𝑟𝑟𝑚𝑚𝑝𝑝 = 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝𝑋𝑋𝐿𝐿 = �
√2
150

� (1600) =
32√2

3
 V 

                                                        
‡ The reason this works is that Δ𝑉𝑉𝑟𝑟𝑚𝑚𝑝𝑝 = Δ𝑉𝑉𝑚𝑚

√2
 and 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝 = 𝐼𝐼𝑚𝑚

√2
.  When you substitute these equations into 

∆𝑉𝑉𝑅𝑅𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑅𝑅, the √2’s cancel out and you get ∆𝑉𝑉𝑅𝑅𝑟𝑟𝑚𝑚𝑝𝑝 = 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝𝑅𝑅. 
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An AC voltmeter would measure the voltage across the inductor to be ∆𝑉𝑉𝐿𝐿𝑟𝑟𝑚𝑚𝑝𝑝 = 32√2
3

 V.  
Using a calculator, it is ∆𝑉𝑉𝐿𝐿𝑟𝑟𝑚𝑚𝑝𝑝 = 15 V. 
(O) What would an AC voltmeter measure across the capacitor? 
The AC voltmeter would measure the rms value across the capacitor, which is ∆𝑉𝑉𝐶𝐶𝑟𝑟𝑚𝑚𝑝𝑝.  Note 
that we can rewrite the equation ∆𝑉𝑉𝐶𝐶𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑋𝑋𝐶𝐶  in terms of rms values as 

∆𝑉𝑉𝐶𝐶𝑟𝑟𝑚𝑚𝑝𝑝 = 𝐼𝐼𝑟𝑟𝑚𝑚𝑝𝑝𝑋𝑋𝐶𝐶 = �
√2

150
� (100) =

2√2
3

 V 

An AC voltmeter would measure the voltage across the inductor to be ∆𝑉𝑉𝐶𝐶𝑟𝑟𝑚𝑚𝑝𝑝 = 2√2
3

 V.  
Using a calculator, it is ∆𝑉𝑉𝐶𝐶𝑟𝑟𝑚𝑚𝑝𝑝 = 0.94 V. 
(P) What would an AC voltmeter measure if the two probes were connected across the 
inductor-capacitor combination? 
We must do phasor addition in order to figure this out.  See the discussion of phasors on 
pages 300-301.  The phase angle for the inductor is 90°, so the phasor for the inductor 
points straight up.  The phase angle for the capacitor is −90°, so the phasor for the 
capacitor points straight down.  Since these two phasors are opposite, we subtract the rms 
potential differences across the inductor and capacitor: 

∆𝑉𝑉𝐿𝐿𝐶𝐶𝑟𝑟𝑚𝑚𝑝𝑝 = |∆𝑉𝑉𝐿𝐿𝑟𝑟𝑚𝑚𝑝𝑝 − ∆𝑉𝑉𝐶𝐶𝑟𝑟𝑚𝑚𝑝𝑝| = �
32√2

3
−

2√2
3
� =

30√2
3

= 10√2 V 

An AC voltmeter would measure the voltage across the inductor-capacitor combination to 
be ∆𝑉𝑉𝐿𝐿𝐶𝐶𝑟𝑟𝑚𝑚𝑝𝑝 = 10√2 V.  Using a calculator, it is ∆𝑉𝑉𝐿𝐿𝐶𝐶𝑟𝑟𝑚𝑚𝑝𝑝 = 14 V. 
(Q) Show that the answers to parts (M) through (O) are consistent with the 20-V rms 
voltage supplied by the AC power supply. 
Use the following equation to check the rms value of the AC power supply. 

∆𝑉𝑉𝑟𝑟𝑚𝑚𝑝𝑝 = �∆𝑉𝑉𝑅𝑅𝑟𝑟𝑚𝑚𝑝𝑝2 + (∆𝑉𝑉𝐿𝐿𝑟𝑟𝑚𝑚𝑝𝑝 − ∆𝑉𝑉𝐶𝐶𝑟𝑟𝑚𝑚𝑝𝑝)2 = ��10√2�
2

+ �
32√2

3
−

2√2
3
�
2

 

∆𝑉𝑉𝑟𝑟𝑚𝑚𝑝𝑝 = ��10√2�
2

+ �
30√2

3
�
2

= ��10√2�
2

+ �10√2�
2

= √200 + 200 = √400 = 20 V 

This checks out with the value of ∆𝑉𝑉𝑟𝑟𝑚𝑚𝑝𝑝 = 20 V given in the problem. 
 
It’s instructive to note that it would be incorrect to add the answers for ∆𝑉𝑉𝑅𝑅𝑟𝑟𝑚𝑚𝑝𝑝, ∆𝑉𝑉𝐿𝐿𝑟𝑟𝑚𝑚𝑝𝑝, and 
∆𝑉𝑉𝐶𝐶𝑟𝑟𝑚𝑚𝑝𝑝 together.  If you did that, you would get the incorrect answer of 30 V.  The correct 
way to combine these values is through phasor addition, which accounts for the direction 
(or phase angle) of each phasor.  The equation ∆𝑉𝑉𝑟𝑟𝑚𝑚𝑝𝑝 = �∆𝑉𝑉𝑅𝑅𝑟𝑟𝑚𝑚𝑝𝑝2 + (∆𝑉𝑉𝐿𝐿𝑟𝑟𝑚𝑚𝑝𝑝 − ∆𝑉𝑉𝐶𝐶𝑟𝑟𝑚𝑚𝑝𝑝)2 
combines the values together correctly, as explained on pages 300-301. 
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Example:  What is the quality factor for the graph of average power shown below? 

 
Read off the needed values from the graph: 

• The resonance angular frequency is 0 = 3500 rad/s.  This is the angular frequency 
for which the curve reaches its peak. 

• The maximum average power is 𝑎𝑎 ,𝑚𝑚𝑎𝑎 = 8.0 W.  This is the maximum vertical 
value of the curve. 

• One-half of the maximum average power is ,
2

=
2

= 4.0 W. 

• Draw a horizontal line on the graph where the vertical value of the curve is equal to 
4.0 W, which corresponds to ,

2
. 

• Draw two vertical lines on the graph where the curve intersects the horizontal line 
that you drew in the previous step.  See the right figure above.  These two vertical 
lines correspond to 1 and 2. 

• Read off 1 and 2 from the graph:  1 = 3250 rad/s and 2 = 3750 rad/s. 
• Subtract these values:  = 2 − 1 = 3750 − 3250 = 500 rad/s.  This is the full-

width at half max. 
Use the equation for quality factor that involves  and 0. 

0 = 0 =
3500
500

= 7.0 

Example:  An AC power supply with an rms voltage of 120 V is connected across the 
primary coil of a transformer.  The transformer has 300 turns in the primary coil and 60 
turns in the secondary coil.  What is the rms output voltage? 

Use the ratio equation for a transformer. 
𝑛𝑛

𝑛𝑛
=  

Cross-multiply. 
𝑛𝑛 = 𝑛𝑛  

𝑛𝑛 = 𝑛𝑛 =
(120)(60)

300
= 24 V

 

𝑎𝑎  

𝑎𝑎 ,𝑚𝑚𝑎𝑎  

𝑎𝑎 ,𝑚𝑚𝑎𝑎

2
 

0
 

1 
 

2 
 

 (rad/s) 

𝑎𝑎  (W) 

2000 3000 4000 

2.0 

4.0 

6.0 

8.0 

0 
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88.  The current varies as a sine wave in an AC circuit with an amplitude of 2.0 A.  What is 
the rms current? 
 
 
 
 
 
 
 
 
 
 
89.  An AC circuit where the power supply’s frequency is set to 50 Hz includes a 30-mH 
inductor.  What is the inductive reactance? 
 
 
 
 
 
 
 
 
 
 
 
90.  An AC circuit where the power supply’s frequency is set to 100 Hz includes a 2.0-µF 
capacitor.  What is the capacitive reactance? 
 
 
 
 
 
 
 
 

 
 
Want help?  Check the hints section at the back of the book. 

Answers:  √2 A, 3𝜋𝜋 Ω, 2500
𝜋𝜋

 Ω  
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91.  An AC power supply that operates at an angular frequency of 25 rad/s is connected in 
series with a 100√3-Ω resistor, a 6.0-H inductor, and an 800-µF capacitor.  What is the 
impedance for this RLC circuit? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92.  An AC power supply that operates at an angular frequency of 25 rad/s is connected in 
series with a 100√3-Ω resistor, a 6.0-H inductor, and an 800-µF capacitor.  What is the 
phase angle for the current with respect to the power supply voltage? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answers:  200 Ω, 30°  

www.engineersreferencebookspdf.com



Essential Trig-based Physics Study Guide Workbook 
 

319 
 

93.  An AC power supply that provides an rms voltage of 200 V and operates at an angular 
frequency of 50 rad/s is connected in series with a 50√3-Ω resistor, a 3.0-H inductor, and a 
100-µF capacitor. 
 
(A) What would an AC ammeter measure for this RLC circuit? 
 
 
 
 
(B) What would an AC voltmeter measure across the resistor? 
 
 
 
 
(C) What would an AC voltmeter measure across the inductor? 
 
 
 
 
(D) What would an AC voltmeter measure across the capacitor? 
 
 
 
 
(E) What would an AC voltmeter measure if the two probes were connected across the 
inductor-capacitor combination? 
 
 
 
 
(F) Show that the answers to parts (B) through (D) are consistent with the 200-V rms 
voltage supplied by the AC power supply. 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answers:  2.0 A, 100√3 V, 300 V, 400 V, 100 V  
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94.  An AC power supply is connected in series with a 100√3-Ω resistor, an 80-mH 
inductor, and a 50-µF capacitor. 
 
(A) What angular frequency would produce resonance for this RLC circuit? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(B) What is the resonance frequency in Hertz? 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Want help?  Check the hints section at the back of the book. 

Answers:  500 rad/s, 250
𝜋𝜋

 Hz  
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95.  An AC power supply that provides an rms voltage of 120 V is connected in series with a 
30-Ω resistor, a 60-H inductor, and a 90-µF capacitor. 
 
(A) What is the maximum possible rms current that the AC power supply could provide to 
this RLC circuit? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(B) What is the minimum possible impedance for this RLC circuit? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answers:  4.0 A, 30 Ω  
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96.  An AC power supply that provides an rms voltage of 3.0 kV and operates at an angular 
frequency of 25 rad/s is connected in series with a 500√3-Ω resistor, an 80-H inductor, and 
an 80-µF capacitor. 
 
(A) What is the rms current for this RLC circuit? 
 
 
 
 
 
 
 
(B) What is the average power delivered by the AC power supply? 
 
 
 
 
 
 
 
(C) What angular frequency would produce resonance for this RLC circuit? 
 
 
 
 
 
 
 
(D) What is the maximum possible rms current that could be obtained by adjusting the 
frequency of the power supply? 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answers:  √3 A, 1500√3 W, 12.5 rad/s, 2√3 A   
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97.  An AC power supply is connected in series with a 2.0-  resistor, a 30-mH inductor, and 
a 12-µF capacitor.  What is the quality factor for this RLC circuit? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98.  What is the quality factor for the graph of average power shown below? 
 

 
 
 
 
 
 
 

Want help?  Check the hints section at the back of the book. 
Answers:  25, 11

 (rad/s) 

𝑎𝑎  (W) 

400 500 600 

10 

20 

30 

40 

0 
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99.  An AC power supply with an rms voltage of 240 V is connected across the primary coil 
of a transformer.  The transformer has 400 turns in the primary coil and 100 turns in the 
secondary coil.  What is the rms output voltage? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100.  An AC power supply with an rms voltage of 40 V is connected across the primary coil 
of a transformer.  The transformer has 200 turns in the primary coil.  How many turns are 
in the secondary coil if the rms output voltage is 120 V? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Want help?  Check the hints section at the back of the book. 

Answers:  60 V, 600 turns 
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HINTS, INTERMEDIATE ANSWERS, AND EXPLANATIONS 

How to Use This Section Effectively 

Think of hints and intermediate answers as training wheels.  They help you proceed with 
your solution.  When you stray from the right path, the hints help you get back on track. 
The answers also help to build your confidence. 

However, if you want to succeed in a physics course, you must eventually learn to rely 
less and less on the hints and intermediate answers.  Make your best effort to solve the 
problem on your own before checking for hints, answers, and explanations.  When you 
need a hint, try to find just the hint that you need to get over your current hurdle.  Refrain 
from reading additional hints until you get further into the solution. 

When you make a mistake, think about what you did wrong and what you should have 
done differently.  Try to learn from your mistake so that you don’t repeat the mistake in 
other solutions. 

It’s natural for students to check hints and intermediate answers repeatedly in the 
early chapters.  However, at some stage, you would like to be able to consult this section 
less frequently.  When you can solve more problems without help, you know that you’re 
really beginning to master physics. 
 
Would You Prefer to See Full Solutions? 

Full solutions are like a security blanket:  Having them makes students feel better.  But full 
solutions are also dangerous:  Too many students rely too heavily on the full solutions, or 
simply read through the solutions instead of working through the solutions on their own.  
Students who struggle through their solutions and improve their solutions only as needed 
tend to earn better grades in physics (though comparing solutions after solving a problem 
is always helpful). 

It’s a challenge to get just the right amount of help.  In the ideal case, you would think 
your way through every solution on your own, seek just the help you need to make 
continued progress with your solution, and wait until you’ve solved the problem as best 
you can before consulting full solutions or reading every explanation. 

With this in mind, full solutions to all problems are contained in a separate book.  This 
workbook contains hints, intermediate answers, explanations, and several directions to 
help walk you through the steps of every solution, which should be enough to help most 
students figure out how to solve all of the problems.  However, if you need the security of 
seeing full solutions to all problems, look for the book 100 Instructive Trig-based Physics 
Examples with ISBN 978-1-941691-12-0.  The solution to every problem in this workbook 
can be found in that book.  
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How to Cover up Hints that You Don’t Want to See too Soon 

There is a simple and effective way to cover up hints and answers that you don’t want to 
see too soon: 

• Fold a blank sheet of paper in half and place it in the hints and answers section.  This 
will also help you bookmark this handy section of the book. 

• Place the folded sheet of paper just below your current reading position.  The folded 
sheet of paper will block out the text below. 

• When you want to see the next hint or intermediate answer, just drop the folded 
sheet of paper down slowly, just enough to reveal the next line. 

• This way, you won’t reveal more hints or answers than you need. 
 
You learn more when you force yourself to struggle through the problem.  Consult the hints 
and answers when you really need them, but try it yourself first.  After you read a hint, try 
it out and think it through as best you can before consulting another hint.  Similarly, when 
checking intermediate answers to build confidence, try not to see the next answer before 
you have a chance to try it on your own first. 
 
Chapter 1:  Coulomb’s Law 

1.  First identify the given quantities. 

• The knowns are 𝑞𝑞1 = −8.0 µC, 𝑞𝑞2 = −3.0 µC, 𝑅𝑅 = 2.0 m, and 𝑘𝑘 = 9.0 × 109  N∙m
2

C2 . 

• Convert the charges from microCoulombs (µC) to Coulombs (C).  Note that the 
metric prefix micro (µ) stands for 10−6, such that 1 µC = 10−6 C.  The charges are 
𝑞𝑞1 = −8.0 × 10−6 C and 𝑞𝑞2 = −3.0 × 10−6 C. 

• Plug these values into Coulomb’s law:  𝐹𝐹𝑒𝑒 = 𝑘𝑘 |𝑞𝑞1||𝑞𝑞2|
𝑅𝑅2

. 

• Apply the rule 𝑥𝑥𝑚𝑚𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑚𝑚+𝑛𝑛.  Note that 10910−610−6 = 109−12 = 10−3. 
• Note that 𝑅𝑅2 = 22 = 4.0 m2.  Also note that 54 × 10−3 = 5.4 × 10−2 = 0.054. 
• The answer is 𝐹𝐹𝑒𝑒 = 0.054 N.  It can also be expressed as 54 × 10−3 N, 5.4 × 10−2 N, 

or 54 mN (meaning milliNewtons, where the prefix milli, m, stands for 10−3). 
• The force is repulsive because two negative charges repel one another. 

 
2.  First identify the given quantities. 

• The knowns are 𝑞𝑞1 = 800 nC, 𝑞𝑞2 = −800 nC, 𝑅𝑅 = 20 cm, and 𝑘𝑘 = 9.0 × 109  N∙m
2

C2 . 

• Convert the charges from nanoCoulombs (nC) to Coulombs (C).  Note that the 
metric prefix nano (n) stands for 10−9, such that 1 nC = 10−9 C.  The charges are 
𝑞𝑞1 = 800 × 10−9 C = 8.0 × 10−7 C and 𝑞𝑞2 = −800 × 10−9 C = −8.0 × 10−7 C.  Note 
that 100 × 10−9 = 10−7.  (It doesn’t matter which charge is negative.) 
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• Convert the distance from centimeters (cm) to meters (m):  𝑅𝑅 = 20 cm = 0.20 m. 
• Plug these values into Coulomb’s law:  𝐹𝐹𝑒𝑒 = 𝑘𝑘 |𝑞𝑞1||𝑞𝑞2|

𝑅𝑅2
. 

• Apply the rule 𝑥𝑥𝑚𝑚𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑚𝑚+𝑛𝑛.  Note that 10910−910−9 = 109−18 = 10−9. 
• Note that 𝑅𝑅2 = 0.22 = 0.04 m2.  Also note that 144 × 10−3 = 1.44 × 10−1 = 0.144. 
• The answer is 𝐹𝐹𝑒𝑒 = 0.144 N.  It can also be expressed as 144 × 10−3 N, 1.44 ×

10−1 N, or 144 mN (meaning milliNewtons, where the prefix milli, m, equals 10−3). 
• The force is attractive because opposite charges attract one another.  We know that 

the charges are opposite because when the charge was transferred (during the 
process of rubbing), one object gained electrons while the other lost electrons, 
making one object negative and the other object positive (since both were neutral 
prior to rubbing). 

 
3.  First identify the given quantities. 

(A) The knowns are 𝑞𝑞1 = −2.0 µC, 𝑞𝑞2 = 8.0 µC, 𝑅𝑅 = 3.0 m, and 𝑘𝑘 = 9.0 × 109  N∙m
2

C2 . 

• Convert the charges from microCoulombs (µC) to Coulombs (C).  Note that the 
metric prefix micro (µ) stands for 10−6, such that 1 µC = 10−6 C.  The charges are 
𝑞𝑞1 = −2.0 × 10−6 C and 𝑞𝑞2 = 8.0 × 10−6 C. 

• Plug these values into Coulomb’s law:  𝐹𝐹𝑒𝑒 = 𝑘𝑘 |𝑞𝑞1||𝑞𝑞2|
𝑅𝑅2

. 

• Apply the rule 𝑥𝑥𝑚𝑚𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑚𝑚+𝑛𝑛.  Note that 10910−610−6 = 109−12 = 10−3. 
• Note that 𝑅𝑅2 = 32 = 9.0 m2.  Also note that 16 × 10−3 = 1.6 × 10−2 = 0.016. 
• The answer is 𝐹𝐹𝑒𝑒 = 0.016 N.  It can also be expressed as 16 × 10−3 N, 1.6 × 10−2 N, 

or 16 mN (meaning milliNewtons, where the prefix milli, m, stands for 10−3). 
• The force is attractive because opposite charges attract one another. 

(B) To the extent possible, the charges would like to neutralize when contact is made.  The 
−2.0 µC isn’t enough to completely neutralize the +8.0 µC, so what will happen is that the 
−2.0 µC will pair up with +2.0 µC from the +8.0 µC, leaving a net excess charge of +6.0 µC.  
One-half of the net excess charge, +6.0 µC, resides on each earring.  That is, after contact, 
each earring will have a charge of 𝑞𝑞 = +3.0 µC.  That’s what happens conceptually.  You can 
arrive at the same answer mathematically using the formula below. 

𝑞𝑞 =
𝑞𝑞1 + 𝑞𝑞2

2
 

• The knowns are 𝑞𝑞 = 3.0 µC = 3.0 × 10−6 C, 𝑅𝑅 = 3.0 m, and 𝑘𝑘 = 9.0 × 109  N∙m
2

C2 . 

• Set the two charges equal in Coulomb’s law:  𝐹𝐹𝑒𝑒 = 𝑘𝑘 𝑞𝑞2

𝑅𝑅2
. 

• The answer is 𝐹𝐹𝑒𝑒 = 0.0090 N.  It can also be expressed as 9.0 × 10−3 N or 9.0 mN 
(meaning milliNewtons, where the prefix milli, m, stands for 10−3). 

• The force is repulsive because two positive charges repel one another.  (After they 
make contact, both earrings become positively charged.) 
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Chapter 2:  Electric Field 

4.  First identify the given quantities and the desired unknown. 
• The knowns are 𝑞𝑞 = −300 µC and 𝐸𝐸 = 80,000 N/C.  Solve for 𝐹𝐹𝑒𝑒 . 
• Convert the charge from microCoulombs (µC) to Coulombs (C).  Note that the metric 

prefix micro (µ) stands for 10−6.  The charge is 𝑞𝑞 = −3.0 × 10−4 C. 
• Plug these values into the following equation:  𝐹𝐹𝑒𝑒 = |𝑞𝑞|𝐸𝐸.  The answer is 𝐹𝐹𝑒𝑒 = 24 N. 

 
5.  First identify the given quantities and the desired unknown. 

• The knowns are 𝑞𝑞 = 800 µC, 𝑅𝑅 = 2.0 m, and 𝑘𝑘 = 9.0 × 109  N∙m
2

C2 .  Solve for 𝐸𝐸. 

• Convert the charge from microCoulombs (µC) to Coulombs (C).  Note that the metric 
prefix micro (µ) stands for 10−6.  The charge is 𝑞𝑞 = 8.0 × 10−4 C. 

• Plug these values into the following equation:  𝐸𝐸 = 𝑘𝑘|𝑞𝑞|
𝑅𝑅2

. 

• Apply the rule 𝑥𝑥𝑚𝑚𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑚𝑚+𝑛𝑛.  Note that 10910−4 = 109−4 = 105. 
• Note that 𝑅𝑅2 = 22 = 4.0 m2.  Also note that 18 × 105 = 1.8 × 106. 
• The answer is 𝐸𝐸 = 1.8 × 106 N/C.  It can also be expressed as 18 × 105 N/C. 

 
6.  First identify the given quantities and the desired unknown. 

• The knowns are 𝐹𝐹𝑒𝑒 = 12 N and 𝐸𝐸 = 30,000 N/C.  Solve for |𝑞𝑞|. 
• Plug these values into the following equation:  𝐹𝐹𝑒𝑒 = |𝑞𝑞|𝐸𝐸. 
• The absolute value of the charge is |𝑞𝑞| = 4.0 × 10−4 C. 
• The charge must be negative since the force (F�⃗ 𝑒𝑒) is opposite to the electric field (E�⃗ ). 
• The answer is 𝑞𝑞 = −4.0 × 10−4 C, which can also be expressed as 𝑞𝑞 = −400 µC. 

 
7.  First identify the given quantities and the desired unknown. 

• The knowns are 𝑞𝑞 = 80 µC, 𝐸𝐸 = 20,000 N/C, and 𝑘𝑘 = 9.0 × 109  N∙m
2

C2 .  Solve for 𝑅𝑅. 

• Convert the charge from microCoulombs (µC) to Coulombs (C).  Note that the metric 
prefix micro (µ) stands for 10−6.  The charge is 𝑞𝑞 = 8.0 × 10−5 C. 

• Plug these values into the following equation:  𝐸𝐸 = 𝑘𝑘|𝑞𝑞|
𝑅𝑅2

. 

• Solve for 𝑅𝑅.  Multiply both sides by 𝑅𝑅2.  Divide both sides by 𝐸𝐸.  Squareroot both 

sides.  You should get 𝑅𝑅 = �𝑘𝑘|𝑞𝑞|
𝐸𝐸

. 

• Apply the rule 𝑥𝑥𝑚𝑚𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑚𝑚+𝑛𝑛.  Note that 10910−5 = 109−5 = 104. 

• Apply the rule 𝑥𝑥
𝑚𝑚

𝑥𝑥𝑛𝑛
= 𝑥𝑥𝑚𝑚−𝑛𝑛.  Note that 104103 = 104−3 = 101 = 10. 

• Note that √3.6 × 10 = √36 = 6. 
• The answer is 𝑅𝑅 = 6.0 m. 
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8.  First apply the distance formula, 𝑅𝑅 = (𝑥𝑥2 − 𝑥𝑥1)2 + (𝑥𝑥2 − 𝑥𝑥1)2, to determine how far the 
point (−5.0 m, 12.0 m) is from (3.0 m, 6.0 m).  You should get 𝑅𝑅 = (−8)2 + 62 = 10 m. 
(A) Identify the given quantities and the desired unknown. 

• The knowns are 𝑞𝑞 = 30 µC, 𝑅𝑅 = 10 m, and 𝑘𝑘 = 9.0 × 109  N∙m
2

C2 .  Solve for 𝐸𝐸. 

• Convert the charge from microCoulombs (µC) to Coulombs (C).  Note that the metric 
prefix micro (µ) stands for 10−6.  The charge is 𝑞𝑞 = 3.0 × 10−  C. 

• Plug these values into the following equation:  𝐸𝐸 = |𝑞𝑞|
𝑅𝑅2

. 

• Apply the rule 𝑥𝑥𝑚𝑚𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑚𝑚+𝑛𝑛.  Note that 10910− = 109− = 104. 
• The answer is 𝐸𝐸 = 2.7 × 103 N/C.  It can also be expressed as 2700 N/C. 

(B) Identify the given quantities and the desired unknown. 
• The knowns are 𝑞𝑞 = 500 µC and 𝐸𝐸 = 2700 N/C.  Solve for 𝐹𝐹𝑒𝑒 . 
• Convert the charge from microCoulombs (µC) to Coulombs (C).  Note that the metric 

prefix micro (µ) stands for 10−6.  The charge is 𝑞𝑞 = 5.0 × 10−4 C. 
• Plug these values into the following equation:  𝐹𝐹𝑒𝑒 = |𝑞𝑞|𝐸𝐸.  The answer is 𝐹𝐹𝑒𝑒 = 1.35 N. 

Chapter 3:  Superposition of Electric Fields 

9.  Begin by sketching the electric field vectors created by each of the charges.  We choose 
to call the positive charge 𝑞𝑞1 = 6.0 µC and the negative charge 𝑞𝑞2 = −6.0 µC. 
(A) Imagine a positive “test” charge at the point (2.0 m, 0), marked by a star. 

• A positive “test” charge at (2.0 m, 0) would be repelled by 𝑞𝑞1 = 6.0 µC.  Thus, we 
draw E1 directly away from 𝑞𝑞1 = 6.0 µC (diagonally down and to the right). 

• A positive “test” charge at (2.0 m, 0) would be attracted to 𝑞𝑞2 = −6.0 µC.  Thus, we 
draw E2 toward 𝑞𝑞2 = −6.0 µC (diagonally down and to the left). 

(We have drawn multiple diagrams below to help label the different parts clearly.) 

 
(B) Use the distance formula. 

𝑅𝑅1 = 𝑥𝑥12 + 𝑥𝑥12     ,     𝑅𝑅2 = 𝑥𝑥22 + 𝑥𝑥22 

• Check your distances:  | 𝑥𝑥1| = | 𝑥𝑥2| = 2.0 m and | 𝑥𝑥1| = | 𝑥𝑥2| = 2.0 m. 
• You should get 𝑅𝑅1 = 𝑅𝑅2 = 2 2 m. 

𝑅𝑅2 

𝑅𝑅1 
𝑞𝑞1 

𝑞𝑞2 1 2 

2 

2 1 

1 

1 𝑒𝑒  
𝑅𝑅1 

𝑞𝑞1 

𝑥𝑥1 

𝑥𝑥1 
𝑅𝑅2 

𝑞𝑞2 

𝑥𝑥2
𝑥𝑥2 2

2 𝑒𝑒  
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(C) Use an inverse tangent to determine each reference angle. 

𝜃𝜃1𝑟𝑟𝑒𝑒𝑟𝑟 = tan−1 �
∆𝑦𝑦1
∆𝑥𝑥1

�      ,     𝜃𝜃2𝑟𝑟𝑒𝑒𝑟𝑟 = tan−1 �
∆𝑦𝑦2
∆𝑥𝑥2

� 

• The reference angle is the smallest angle between the vector and the horizontal. 
• You should get 𝜃𝜃1𝑟𝑟𝑒𝑒𝑟𝑟 = 𝜃𝜃2𝑟𝑟𝑒𝑒𝑟𝑟 = 45°. 

(D) Use the reference angles to determine the direction of each electric field vector 
counterclockwise from the +𝑥𝑥-axis.  Recall from trig that 0° points along +𝑥𝑥, 90° points 
along +𝑦𝑦, 180° points along −𝑥𝑥, and 270° points along −𝑦𝑦. 

• E�⃗ 1 lies in Quadrant IV: 
𝜃𝜃1 = 360° − 𝜃𝜃1𝑟𝑟𝑒𝑒𝑟𝑟 

• E�⃗ 2 lies in Quadrant III: 
𝜃𝜃2 = 180° + 𝜃𝜃2𝑟𝑟𝑒𝑒𝑟𝑟 

• You should get 𝜃𝜃1 = 315° and 𝜃𝜃2 = 225°. 
(E) First convert the charges from µC to C:  𝑞𝑞1 = 6.0 × 10−6 C and 𝑞𝑞2 = −6.0 × 10−6 C. 

• Use the following equations.  Note the absolute values. 

𝐸𝐸1 =
𝑘𝑘|𝑞𝑞1|
𝑅𝑅12

     ,     𝐸𝐸2 =
𝑘𝑘|𝑞𝑞2|
𝑅𝑅22

 

• Note that 27
4

= 6.75 and 10910−6 = 103.  Also note that �2√2�
2

= (4)(2) = 8. 

• The magnitudes of the electric fields are 𝐸𝐸1 = 6,750 N/C and 𝐸𝐸2 = 6,750 N/C. 
(F) Use trig to determine the components of the electric field vectors. 

𝐸𝐸1𝑥𝑥 = 𝐸𝐸1 cos 𝜃𝜃1      ,     𝐸𝐸1𝑦𝑦 = 𝐸𝐸1 sin𝜃𝜃1      ,     𝐸𝐸2𝑥𝑥 = 𝐸𝐸2 cos 𝜃𝜃2      ,     𝐸𝐸2𝑦𝑦 = 𝐸𝐸2 sin𝜃𝜃2 
• 𝐸𝐸1𝑥𝑥 = 3375√2 N/C.  It’s positive because E�⃗ 1 points to the right, not left. 
• 𝐸𝐸1y = −3375√2 N/C.  It’s negative because E�⃗ 1 points downward, not upward. 
• 𝐸𝐸2𝑥𝑥 = −3375√2 N/C.  It’s negative because E�⃗ 2 points to the left, not right. 
• 𝐸𝐸2𝑦𝑦 = −3375√2 N/C.  It’s negative because E�⃗ 2 points downward, not upward. 

(G) Add the respective components together. 
𝐸𝐸𝑥𝑥 = 𝐸𝐸1𝑥𝑥 + 𝐸𝐸2𝑥𝑥     ,     𝐸𝐸𝑦𝑦 = 𝐸𝐸1𝑦𝑦 + 𝐸𝐸2𝑦𝑦 

• 𝐸𝐸𝑥𝑥 = 0 and 𝐸𝐸𝑦𝑦 = −6750√2 N/C. 
• If you study the diagrams from part (A), you should be able to see why 𝐸𝐸𝑥𝑥 = 0. 

(H) Apply the Pythagorean theorem. 

𝐸𝐸 = �𝐸𝐸𝑥𝑥2 + 𝐸𝐸𝑦𝑦2 

The magnitude of the net electric field is 𝐸𝐸 = 6750√2 N/C.  Magnitudes can’t be negative. 
(I) Take an inverse tangent. 

𝜃𝜃𝐸𝐸 = tan−1 �
𝐸𝐸𝑦𝑦
𝐸𝐸𝑥𝑥
� 

Although the argument is undefined, 𝜃𝜃𝐸𝐸 = 270° since 𝐸𝐸𝑥𝑥 = 0 and 𝐸𝐸𝑦𝑦 < 0.  Since E�⃗  lies on the 
negative 𝑦𝑦-axis, the angle is 270°. 
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10.  Begin by sketching the forces that 𝑞𝑞1 and 𝑞𝑞2 exert on 𝑞𝑞3. 
(A) Recall that opposite charges attract, while like charges repel. 

• Since 𝑞𝑞1 and 𝑞𝑞3 have opposite signs, 𝑞𝑞1 pulls 𝑞𝑞3 to the left.  Thus, we draw F1
towards 𝑞𝑞1 (to the left). 

• Since 𝑞𝑞2 and 𝑞𝑞3 are both positive, 𝑞𝑞2 pushes 𝑞𝑞3 down and to the right.  Thus, we 
draw F2 directly away from 𝑞𝑞2 (down and to the right). 

 
(B) Since each charge lies on the vertex of an equilateral triangle, each 𝑅𝑅 equals the edge 
length:  𝑅𝑅1 = 𝑅𝑅2 = 2.0 m. 
(C) Recall that the reference angle is the smallest angle between the vector and the 
horizontal axis.  Since F1 lies on the horizontal axis, its reference angle is 1 𝑒𝑒 = 0°.  The 
second vector lies 2 𝑒𝑒 = 60° from the horizontal.  (Equilateral triangles have 60° angles.) 
(D) Use the reference angles to determine the direction of each force counterclockwise 
from the +𝑥𝑥-axis.  Recall from trig that 0° points along +𝑥𝑥, 90° points along +𝑥𝑥, 180° points 
along −𝑥𝑥, and 270° points along −𝑥𝑥. 

• F1 lies on the negative 𝑥𝑥-axis: 
1 = 180° − 1 𝑒𝑒  

• F2 lies in Quadrant IV: 
2 = 360° − 2 𝑒𝑒  

• You should get 1 = 180° and 2 = 300°. 
(E) First convert the charges from µC to C:  𝑞𝑞1 = −3.0 × 10−6 C, 𝑞𝑞2 = 3.0 × 10−6 C, and 
𝑞𝑞3 = 4.0 × 10−6 C. 

• Use the following equations. 

𝐹𝐹1 =
𝑘𝑘|𝑞𝑞1||𝑞𝑞3|

𝑅𝑅12
     ,     𝐹𝐹2 =

𝑘𝑘|𝑞𝑞2||𝑞𝑞3|
𝑅𝑅22

 

• Note that 10910−610−6 = 10−3 and that 27 × 10−3 = 0.027.
• The magnitudes of the forces are 𝐹𝐹1 = 0.027 N = 27 mN and 𝐹𝐹2 = 0.027 N = 27 mN. 

(F) Use trig to determine the components of the forces. 
𝐹𝐹1 = 𝐹𝐹1 cos 1      ,     𝐹𝐹1 = 𝐹𝐹1 sin 1      ,     𝐹𝐹2 = 𝐹𝐹2 cos 2      ,     𝐹𝐹2 = 𝐹𝐹2 sin 2 

• 𝐹𝐹1 = −27 mN.  It’s negative because F1 points to the left, not right. 
• 𝐹𝐹1 = 0.  It’s zero because F1 is horizontal. 

𝑞𝑞3 𝑞𝑞1

𝑞𝑞2 

𝑅𝑅2 

𝑅𝑅1 

1 

2 

2 

1 

2 𝑒𝑒  

𝑞𝑞3 
1 

2
𝑞𝑞3 

2 
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• 𝐹𝐹2 = 2
2

 mN.  It’s positive because F2 points to the right, not left. 

• 𝐹𝐹2 = −2
2

3 mN.  It’s negative because F2 points downward, not upward. 
(G) Add the respective components together. 

𝐹𝐹 = 𝐹𝐹1 + 𝐹𝐹2 , 𝐹𝐹 = 𝐹𝐹1 + 𝐹𝐹2
• 𝐹𝐹 = −2

2
 mN and 𝐹𝐹 = −2

2
3 mN. 

• If you study the diagrams from part (A), you should see why 𝐹𝐹 < 0 and 𝐹𝐹 < 0. 
(H) Apply the Pythagorean theorem. 

𝐹𝐹 = 𝐹𝐹2 + 𝐹𝐹2 

The magnitude of the net electric force is 𝐹𝐹 = 0.027 N = 27 mN, where the prefix milli (m) 
stands for one-thousandth (10−3). 
(I) Take an inverse tangent. 

𝐹𝐹 = tan−1
𝐹𝐹
𝐹𝐹

 

The reference angle is 60° and the net force lies in Quadrant III because 𝐹𝐹 < 0 and 𝐹𝐹 < 0.  
The direction of the net electric force is 𝐹𝐹 = 240°. In Quadrant III, 𝐹𝐹 = 180° + 𝑒𝑒 . 

11.  Begin with a sketch of the electric fields in each region. 
• Imagine placing a positive “test” charge in each region.  Since 𝑞𝑞1 and 𝑞𝑞2 are both 

positive, the positive “test” charge would be repelled by both 𝑞𝑞1 and 𝑞𝑞2.  Draw the 
electric fields away from 𝑞𝑞1 and 𝑞𝑞2 in each region. 

I. Region I is left of 𝑞𝑞1.  1 and 2 both point left.  They won’t cancel here. 
II. Region II is between 𝑞𝑞1 and 𝑞𝑞2.  1 points right, while 2 points left.  They can 

cancel out in Region II. 
III. Region III is right of 𝑞𝑞2.  1 and 2 both point right.  They won’t cancel here. 

 
• The net electric field can only be zero in Region II. 
• Set the magnitudes of the electric fields equal to one another. 

𝐸𝐸1 = 𝐸𝐸2 
𝑘𝑘|𝑞𝑞1|
𝑅𝑅12

=
𝑘𝑘|𝑞𝑞2|
𝑅𝑅22

 

• Divide both sides by 𝑘𝑘 (it will cancel out) and cross-multiply. 
|𝑞𝑞1|𝑅𝑅22 = |𝑞𝑞2|𝑅𝑅12 

• Plug in the values of the charges and simplify. 

𝑞𝑞1 𝑞𝑞2 
2 

 
1 

 

Region 
I 

1 
 

2 
 

1 
 

2 
 

Region 
II 

Region 
III 
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25𝑅𝑅22 = 16𝑅𝑅12 
• Study the diagram to relate 𝑅𝑅1 and 𝑅𝑅2 to the distance between the charges, . 

 
𝑅𝑅1 + 𝑅𝑅2 =  

• Isolate 𝑅𝑅2 in the previous equation:  𝑅𝑅2 = − 𝑅𝑅1.  Substitute this expression into the 
equation 25𝑅𝑅22 = 16𝑅𝑅12, which we found previously. 

25( − 𝑅𝑅1)2 = 16𝑅𝑅12 
• Squareroot both sides of the equation and simplify.  Apply the rules 𝑥𝑥𝑥𝑥 = 𝑥𝑥 𝑥𝑥

and 𝑥𝑥2 = 𝑥𝑥 to write 25( − 𝑅𝑅1)2 = 25 ( − 𝑅𝑅1)2 = 5( − 𝑅𝑅1). 
5( − 𝑅𝑅1) = 4𝑅𝑅1 

• Distribute the 5 and combine like terms.  Note that 5𝑅𝑅1 + 4𝑅𝑅1 = 9𝑅𝑅1. 
5 = 9𝑅𝑅1 

• Divide both sides of the equation by 9. 

𝑅𝑅1 =
5
9

 

• The net electric field is zero in Region II, a distance of 𝑅𝑅1 = 5.0 m from the left 
charge (and therefore a distance of 𝑅𝑅2 = 4.0 m from the right charge, since 
𝑅𝑅1 + 𝑅𝑅2 = = 9.0 m). 

12.  Begin with a sketch of the electric fields in each region. 
• Imagine placing a positive “test” charge in each region.  Since 𝑞𝑞1 is positive, 1 will 

point away from 𝑞𝑞1 in each region because a positive “test” charge would be repelled 
by 𝑞𝑞1.  Since 𝑞𝑞2 is negative, 2 will point towards 𝑞𝑞2 in each region because a 
positive “test” charge would be attracted to 𝑞𝑞2. 
IV. Region I is left of 𝑞𝑞1.  1 points left and 2 points right.  They can cancel here. 
V. Region II is between 𝑞𝑞1 and 𝑞𝑞2.  1 and 2 both point right.  They won’t cancel 

out in Region II. 
VI. Region III is right of 𝑞𝑞2.  1 points right and 2 points left.  Although 1 and 

2 point in opposite directions in Region III, they won’t cancel in this region 
because it is closer to the stronger charge, such that |𝐸𝐸2| > |𝐸𝐸1|. 

 

𝑞𝑞1 𝑞𝑞2 
2 

 
1 

 

𝑅𝑅1 𝑅𝑅2 

𝑞𝑞1 𝑞𝑞2 
1 

 
2 

 

Region 
I 

1 
 
2 

1 
 

2
 

Region 
II 

Region 
III 
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• The net electric field can only be zero in Region I.
• Set the magnitudes of the electric fields equal to one another. 

𝐸𝐸1 = 𝐸𝐸2
𝑘𝑘|𝑞𝑞1|
𝑅𝑅12

=
𝑘𝑘|𝑞𝑞2|
𝑅𝑅22

 

• Divide both sides by 𝑘𝑘 (it will cancel out) and cross-multiply. 
|𝑞𝑞1|𝑅𝑅22 = |𝑞𝑞2|𝑅𝑅12 

• Plug in the values of the charges and simplify.  Note the absolute values. 
2𝑅𝑅22 = 8𝑅𝑅12 

• Divide both sides of the equation by 2.
𝑅𝑅22 = 4𝑅𝑅12 

• Study the diagram to relate 𝑅𝑅1 and 𝑅𝑅2 to the distance between the charges, . 

 
𝑅𝑅1 + = 𝑅𝑅2 

• Substitute the above expression into the equation 𝑅𝑅22 = 4𝑅𝑅12. 
( + 𝑅𝑅1)2 = 4𝑅𝑅12 

• Squareroot both sides of the equation and simplify.  Note that 𝑥𝑥2 = 𝑥𝑥 such that 
( + 𝑅𝑅1)2 = + 𝑅𝑅1.  Also note that 4 = 2. 

+ 𝑅𝑅1 = 2𝑅𝑅1 
• Combine like terms.  Note that 2𝑅𝑅1 − 𝑅𝑅1 = 𝑅𝑅1. 

= 𝑅𝑅1 
• The net electric field is zero in Region I, a distance of 𝑅𝑅1 = 4.0 m from the left charge 

(and therefore a distance of 𝑅𝑅2 = 8.0 m from the right charge, since 𝑅𝑅1 + = 𝑅𝑅2 and 
since = 4.0 m). 

Chapter 4:  Electric Field Mapping 

13.  If a positive “test” charge were placed at points A, B, or C, it would be repelled by the 
positive sphere.  Draw the electric field directly away from the positive sphere.  Draw a 
shorter arrow at point B, since point B is further away from the positive sphere. 

 

𝑞𝑞1 𝑞𝑞2 
1 

 
2 

 

𝑅𝑅1
𝑅𝑅2 

 

+

 
 

 
 

 

A 

B C 
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14.  If a positive “test” charge were placed at points D, E, or F, it would be attracted to the 
negative sphere.  Draw the electric field towards the negative sphere.  Draw a longer arrow 
at point E, since point E is closer to the negative sphere. 

 

15.  If a positive “test” charge were placed at any of these points, it would be repelled by the 
positive sphere and attracted to the negative sphere.  First draw two separate electric fields 
(one for each sphere) and then draw the resultant of these two vectors for the net electric 
field.  Move one of the arrows (we moved 𝑅𝑅) to join the two vectors (  and 𝑅𝑅) tip-to-tail.  
The resultant vector, 𝑛𝑛𝑒𝑒𝑛𝑛, which is the net electric field at the specified point, begins at the 
tail of  and ends at the tip of 𝑅𝑅.  The length of  or 𝑅𝑅 depends on how far the point is 
from the respective sphere. 

 

16.  If a positive “test” charge were placed at any of these points, it would be attracted to 
each negative sphere.  First draw two separate electric fields (one for each sphere) and 
then draw the resultant of these two vectors for the net electric field.  Move one of the 
arrows (we moved 𝑅𝑅) to join the two vectors (  and 𝑅𝑅) tip-to-tail.  The resultant vector, 

𝑛𝑛𝑒𝑒𝑛𝑛, which is the net electric field at the specified point, begins at the tail of  and ends at 
the tip of 𝑅𝑅.  The length of  or 𝑅𝑅 depends on how far the point is from the respective 
sphere. 

−  

 
 

D E 

𝐹𝐹 
 

F 

 
 

 
 

−  

I 

+  

 
 

𝑅𝑅 
 

 

 

𝑅𝑅 
 

𝑅𝑅 
 

𝑅𝑅H 

 
 

G 

𝑅𝑅 
 

 
 

 
 

J 

𝑅𝑅 

 
 

𝑅𝑅 
 

 
 

K 

 
 

𝑅𝑅 
 

𝑅𝑅 
 

𝑅𝑅 
 

M 
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17.  If a positive “test” charge were placed at point V, it would be repelled by the positive 
sphere and attracted to each negative sphere.  First draw three separate electric fields (one 
for each sphere) and then draw the resultant of these three vectors for the net electric field.  
Move two of the arrows to join the three vectors tip-to-tail.  The resultant vector, 𝑛𝑛𝑒𝑒𝑛𝑛, 
which is the net electric field at the specified point, begins at the tail of the first vector and 
ends at the tip of the last vector.  Each of the three separate electric fields has the same 
length since point V is equidistant from the three charged spheres.

 

18.  Make this map one step at a time: 
• First, sample the net electric field in a variety of locations using the superposition 

strategy that we applied in the previous problems and examples. 
o The net electric field is zero in the center of the diagram (where a positive 

“test” charge would be repelled equally by both charged spheres).  This point 
is called a saddle point in this diagram. 

o The net electric field points to the left along the horizontal line to the left of 
the left sphere and points to the right of the right sphere. 

o The net electric field is somewhat radial (like the spokes of a bicycle wheel) 
near either charge, where the closer charge has the dominant effect. 

• Beginning with the above features, draw smooth curves that leave each positive 
sphere.  The lines aren’t perfectly radial near either charge, but curve due to the 
influence of the other sphere. 

 
 

−  

P

−  
 
𝑅𝑅 

 

 
  

 

𝑅𝑅 
 

𝑅𝑅 
 

O 

 
 

N 

𝑅𝑅 
 

 
 

 
 

S 𝑅𝑅 
 

= 0 
 

𝑅𝑅 
 

 
 T 

 𝑅𝑅
 

𝑅𝑅 
 

𝑅𝑅 
 

U 

 
 

 
 

𝑏𝑏 𝑛𝑛,𝑅𝑅 
 

V 

 
 

+  −  

𝑛𝑛  
 

−  

𝑏𝑏 𝑛𝑛,  
 

𝑏𝑏 𝑛𝑛,  
 

𝑛𝑛
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• Check several points in different regions:  The tangent line at any point on a line of 
force should match the direction of the net electric field from superposition. 

• Draw smooth curves for the equipotential surfaces.  Wherever an equipotential 
intersects a line of force, the two curves must be perpendicular to one another. 

19.  (A) Draw smooth curves that are perpendicular to the equipotentials wherever the 
lines of force intersect the equipotentials.  Include arrows showing that the lines of force 
travel from higher electric potential (in Volts) to lower electric potential. 

 
(B) There is a negative charge at point D where the lines of force converge. 
(C) The lines of force are more dense at point B and less dense at point C:  𝐸𝐸 > 𝐸𝐸 > 𝐸𝐸 . 
(D) Draw an arrow through the star () that is on average roughly perpendicular to the 
neighboring equipotentials.  The potential difference is = 7 − 5 = 2.0 V.  Measure the 
length of the line with a ruler:  𝑅𝑅 = 0.8 cm = 0.008 m.  Use the following formula. 

𝐸𝐸 ≈
𝑅𝑅

=
2

0.008
= 250

V
m

or 250
N
C

(E) It would be pushed opposite to the arrow drawn through the star above (because the 
arrow shows how a positive “test” charge would be pushed, and this question asks about a 
negative test charge).  Note that this arrow isn’t quite straight away from point D because 
there happens to be a positive horizontal rod at the bottom which has some influence. 

  

+  +

  

A 

B 

C 

D 

1.0 V 

3.0 V 

5.0 V 

7.0 V 

9.0 V 
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Chapter 5:  Electrostatic Equilibrium 

20.  Check your free-body diagrams (FBD).  Note that the angle with the vertical is 30° 
(split the 60° angle at the top of the triangle in half to find this.) 

 
• Weight (𝑚𝑚 ) pulls straight down. 
• Tension ( ) pulls along the cord. 
• The two bananas repel one another with an electric force (𝐹𝐹𝑒𝑒) via Coulomb’s law. 
• Apply Newton’s second law.  In electrostatic equilibrium, 𝑎𝑎 = 0 and 𝑎𝑎 = 0. 
• Since tension doesn’t lie on an axis,  appears in both the 𝑥𝑥- and 𝑥𝑥-sums with trig.  

In the FBD, since 𝑥𝑥 is adjacent to 30°, cosine appears in the 𝑥𝑥-sum. 
• Since the electric force is horizontal, 𝐹𝐹𝑒𝑒 appears only the 𝑥𝑥-sums with no trig. 
• Since weight is vertical, 𝑚𝑚  appears only in the 𝑥𝑥-sums with no trig. 

𝐹𝐹1 = 𝑚𝑚𝑎𝑎      ,     𝐹𝐹1 = 𝑚𝑚𝑎𝑎      ,     𝐹𝐹2 = 𝑚𝑚𝑎𝑎      ,     𝐹𝐹2 = 𝑚𝑚𝑎𝑎  

sin 30° − 𝐹𝐹𝑒𝑒 = 0    ,    cos 30° −𝑚𝑚 = 0    ,    𝐹𝐹𝑒𝑒 − sin 30° = 0    ,    cos 30° −𝑚𝑚 = 0 
(A) Solve for tension in the 𝑥𝑥-sum. 

=
𝑚𝑚

cos 30°
• The tension is ≈ 180 N.  (If you don’t round gravity, = 177 N.) 

(B) First solve for electric force in the 𝑥𝑥-sum. 
𝐹𝐹𝑒𝑒 = sin 30° 

• Plug in the tension from part (A).  The electric force is 𝐹𝐹𝑒𝑒 ≈ 90 N. 
• Apply Coulomb’s law. 

𝐹𝐹𝑒𝑒 = 𝑘𝑘
|𝑞𝑞1||𝑞𝑞2|
𝑅𝑅2

 

• Set the charges equal to one another.  Note that |𝑞𝑞||𝑞𝑞| = 𝑞𝑞2. 

𝐹𝐹𝑒𝑒 = 𝑘𝑘
𝑞𝑞2

𝑅𝑅2
 

• Solve for 𝑞𝑞.  Multiply both sides by 𝑅𝑅2 and divide by 𝑘𝑘.  Squareroot both sides. 

𝑞𝑞 =
𝐹𝐹𝑒𝑒𝑅𝑅2

𝑘𝑘
= 𝑅𝑅

𝐹𝐹𝑒𝑒
𝑘𝑘

 

30° 
 

𝑥𝑥 

𝑥𝑥 

𝑚𝑚  

F𝑒𝑒 

30° 
 

𝑥𝑥 

𝑥𝑥 

𝑚𝑚  

𝑥𝑥
F𝑒𝑒 
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• Note that 𝑅𝑅2 = 𝑅𝑅.  Coulomb’s constant is 𝑘𝑘 = 9.0 × 109  N∙m
2

C2 . 

• Plug in numbers.  Note that 90
9

= 10 and that 10
10

= 10− = 10−4. 

• The charge is 𝑞𝑞 = 2.0 × 10−4 C, which can also be expressed as 𝑞𝑞 = 200 µC using the 
metric prefix micro (µ = 10−6).  Either both charges are positive or both charges are 
negative (there is no way to tell which without more information). 

21.  Check your free-body diagram (FBD).  Verify that you labeled your angles correctly. 

 
• Weight (𝑚𝑚 ) pulls straight down. 
• Tension ( ) pulls along the thread. 
• The electric field ( ) exerts an electric force (F𝑒𝑒 = 𝑞𝑞 ) on the charge, which is 

parallel to the electric field since the charge is positive. 
• Apply Newton’s second law.  In electrostatic equilibrium, 𝑎𝑎 = 0 and 𝑎𝑎 = 0. 
• Since tension doesn’t lie on an axis, appears in both the 𝑥𝑥- and 𝑥𝑥-sums with trig.  

In the FBD, since 𝑥𝑥 is adjacent to 60° (for tension), cosine appears in the 𝑥𝑥-sum. 
• Since the electric force doesn’t lie on an axis, |𝑞𝑞|𝐸𝐸 appears in both the 𝑥𝑥- and 𝑥𝑥-sums 

with trig.  Recall that 𝐹𝐹𝑒𝑒 = |𝑞𝑞|𝐸𝐸 for a charge in an external electric field.  In the FBD, 
since 𝑥𝑥 is adjacent to 60° (for 𝑞𝑞 ), cosine appears in the 𝑥𝑥-sum. 

• Since weight is vertical, 𝑚𝑚  appears only in the 𝑥𝑥-sum with no trig. 

𝐹𝐹 = 𝑚𝑚𝑎𝑎      ,     𝐹𝐹 = 𝑚𝑚𝑎𝑎  

|𝑞𝑞|𝐸𝐸 cos 60° − sin 60° = 0    ,    |𝑞𝑞|𝐸𝐸 sin 60° − cos 60° −𝑚𝑚 = 0 

• Simplify each equation.  Note that cos 60° = 1
2
 and sin 60° = 3

2
. 

|𝑞𝑞|𝐸𝐸
2

=
3

2
    ,   

|𝑞𝑞|𝐸𝐸 3
2

−
2

= 𝑚𝑚  

(A) Each equation has two unknowns (𝐸𝐸 and  are both unknown).  Make a substitution in 
order to solve for the unknowns.  Isolate  in the first equation.  Multiply both sides of the 
equation by 2 and divide both sides by 3. 

=
|𝑞𝑞|𝐸𝐸

3
 

60° 

𝑥𝑥 

 
𝑥𝑥 

𝑚𝑚  

𝑞𝑞  

60° 

www.engineersreferencebookspdf.com



Hints, Intermediate Answers, and Explanations 
 

340 
 

• Substitute this expression for tension in the other equation. 
|𝑞𝑞|𝐸𝐸√3

2
−
𝑇𝑇
2

= 𝑚𝑚𝑚𝑚 

|𝑞𝑞|𝐸𝐸√3
2

−
|𝑞𝑞|𝐸𝐸
2√3

= 𝑚𝑚𝑚𝑚 

• The algebra is simpler if you multiply both sides of this equation by √3. 
3|𝑞𝑞|𝐸𝐸

2
−

|𝑞𝑞|𝐸𝐸
2

= 𝑚𝑚𝑚𝑚√3 

• Note that √3√3 = 3 and √3
√3

= 1.  Combine like terms.  The left-hand side becomes: 
3|𝑞𝑞|𝐸𝐸

2
−

|𝑞𝑞|𝐸𝐸
2

= �
3
2
−

1
2
� |𝑞𝑞|𝐸𝐸 = |𝑞𝑞|𝐸𝐸 

• Therefore, the previous equation simplifies to: 
|𝑞𝑞|𝐸𝐸 = 𝑚𝑚𝑚𝑚√3 

• Solve for the electric field.  Divide both sides of the equation by the charge. 

𝐸𝐸 =
𝑚𝑚𝑚𝑚√3

|𝑞𝑞|  

• Convert the mass from grams (g) to kilograms (kg):  𝑚𝑚 = 60 g = 0.060 kg = 3
50

 kg.  
Convert the charge from microCoulombs (µC) to Coulombs:  𝑞𝑞 = 300 µC = 3.00 ×

10−4 C.  Note that √3
5

104 = √3
5

(10)(103) since (10)(103) = 104.  Also note that 
√3
5

(10)(103) = 2√3 × 103 = 2000√3. 

• The magnitude of the electric field is 𝐸𝐸 = 2000√3 N
C

. 

(B) Plug 𝐸𝐸 = 2000√3 N
C

 into 𝑇𝑇 = |𝑞𝑞|𝐸𝐸
√3

.  The tension equals 𝑇𝑇 ≈ 3
5

 N = 0.60 N (if you round 𝑚𝑚). 
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GET A DIFFERENT ANSWER? 
If you get a different answer and can’t find your mistake even after consulting the hints and 
explanations, what should you do? 
 
Please contact the author, Dr. McMullen. 
 
How?  Visit one of the author’s blogs (see below).  Either use the Contact Me option, or click 
on one of the author’s articles and post a comment on the article. 
 

www.monkeyphysicsblog.wordpress.com 
www.improveyourmathfluency.com 
www.chrismcmullen.wordpress.com 

 
Why? 

• If there happens to be a mistake (although much effort was put into perfecting the 
answer key), the correction will benefit other students like yourself in the future. 

• If it turns out not to be a mistake, you may learn something from Dr. McMullen’s 
reply to your message. 

 
99.99% of students who walk into Dr. McMullen’s office believing that they found a mistake 
with an answer discover one of two things: 

• They made a mistake that they didn’t realize they were making and learned from it. 
• They discovered that their answer was actually the same.  This is actually fairly 

common.  For example, the answer key might say 𝑡𝑡 = √3
3

 s.  A student solves the 

problem and gets 𝑡𝑡 = 1
√3

 s.  These are actually the same:  Try it on your calculator 

and you will see that both equal about 0.57735.  Here’s why:  1
√3

= 1
√3

√3
√3

= √3
3

. 

 
Two experienced physics teachers solved every problem in this book to check the answers, 
and dozens of students used this book and provided feedback before it was published.  
Every effort was made to ensure that the final answer given to every problem is correct. 
 
But all humans, even those who are experts in their fields and who routinely aced exams 
back when they were students, make an occasional mistake.  So if you believe you found a 
mistake, you should report it just in case.  Dr. McMullen will appreciate your time. 
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Chapter 6:  Gauss’s Law 

22.  This problem is similar to the examples with a line charge or cylinder.  Study those 
examples and try to let them serve as a guide.  If you need help, you can always return here. 

• Begin by sketching the electric field lines.  See the diagram below. 

 
• Write down the equation for Gauss’s law:  𝑛𝑛𝑒𝑒𝑛𝑛 = 𝑞𝑞𝑒𝑒𝑛𝑛 .

• Just as in the examples with cylindrical symmetry, Gauss’s law reduces to 
𝐸𝐸2 = 𝑞𝑞𝑒𝑒𝑛𝑛 .  Isolate 𝐸𝐸 get 𝐸𝐸 = 𝑞𝑞𝑒𝑒𝑛𝑛

2
. 

• Use the equation 𝑞𝑞𝑒𝑒𝑛𝑛 = 𝑒𝑒𝑛𝑛  to find the charge enclosed in each region. 
• The volume of a cylinder is 𝑒𝑒𝑛𝑛 = 2 .  The length of the Gaussian cylinder is . 
• You should get 𝑞𝑞𝑒𝑒𝑛𝑛 = 2  in region I and 𝑞𝑞𝑒𝑒𝑛𝑛 = 𝑎𝑎2  in region II. 
• Plug 𝑞𝑞𝑒𝑒𝑛𝑛 = 2  and 𝑞𝑞𝑒𝑒𝑛𝑛 = 𝑎𝑎2 into the previous equation for electric field, 

𝐸𝐸 = 𝑞𝑞𝑒𝑒𝑛𝑛
2

.  The answers are 𝐸𝐸 =
2

 and 𝐸𝐸 = 𝑎𝑎2

2
. 

𝑥𝑥 

 

E 
A𝑏𝑏  

A 𝑒𝑒 𝑛𝑛

E 

A 𝑔𝑔 𝑛𝑛  𝑎𝑎 
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23.  The “trick” to this problem is to apply the principle of superposition (see Chapter 3). 
• First, ignore the negative plane and find the electric field in each region due to the 

positive plane.  Call this E1.  This should be easy because this part of the solution is 
identical to one of the examples:  If you need help with this, see the example on page 
71.  You should get 𝐸𝐸1 =

2
.  To the left of the positive plane, E1 points to the left, 

while to the right of the positive plane, E1 points to the right (since a positive “test” 
charge would be repelled by the positive plane).  The direction of E1 in each region 
is illustrated below with solid arrows. 

 
• Next, ignore the positive plane and find the electric field in each region due to the 

negative plane.  Call this E2.  You should get 𝐸𝐸2 =
2

.  To the left of the negative 

plane, E2 points to the right, while to the right of the negative plane, E2 points to the 
left (since a positive “test” charge would be attracted to the negative plane).  The 
direction of E2 in each region is illustrated above with dashed arrows. 

• Note that E1 and E2 are both equal in magnitude.  They also have the same direction 
in region II, but opposite directions in regions I and III. 

• Add the vectors E1 and E2 to find the net electric field, E𝑛𝑛𝑒𝑒𝑛𝑛, in each region.  In 
regions I and III, the net electric field is zero because E1 and E2 are equal and 
opposite, whereas in region II the net electric field is twice E1 because E1 and E2 are 
equal and point in the same direction (both point to the right in region II, as a 
positive “test” charge would be repelled to the right by the positive plane and also 
attracted to the right by the negative plane).  Note that 𝐸𝐸 = 2𝐸𝐸1, = 2

2
= . 

𝐸𝐸 = 0,     𝐸𝐸 =
0

,     𝐸𝐸 = 0 

𝑥𝑥 

 

I  
< 0 

III  
>  

II  
0 < <  

+  −  
E1,  E1,  E1,

E2,  E2, E2,
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24.  Apply the same strategy from the previous problem.  Review the hints to Problem 23. 
• First, ignore the negative plane and find the electric field in the specified region due 

to the positive plane.  Call this E1.  This should be easy because this part of the 
solution is identical to one of the examples:  If you need help with this, see the
example on page 71.  You should get 𝐸𝐸1 =

2
.  It points to the right since a positive 

“test” charge in the first octant would be repelled by the positive plane.  The 
direction of E1 in the specified region is illustrated below with a solid arrow.

 
• Next, ignore the positive plane and find the electric field in the first octant due to the 

negative plane.  Call this E2.  You should get 𝐸𝐸2 =
2

.  It points to down since a 

positive “test” charge in the first octant would be attracted to the negative plane.    
The direction of E2 in the specified region is illustrated above with a dashed arrow. 

• Note that the 𝑥𝑥 plane was drawn in the problem, with +  pointing to the right and 
+𝑥𝑥 pointing up.  (The +𝑥𝑥-axis comes out of the page, like most of the three-
dimensional problems in this chapter.) 

• The vectors E1 and E2 have equal magnitude, but are perpendicular.  When we add 
the vectors to get the net electric field, E𝑛𝑛𝑒𝑒𝑛𝑛, we get 𝐸𝐸𝑛𝑛𝑒𝑒𝑛𝑛 =

2
2 (using the 

Pythagorean theorem, 𝐸𝐸𝑛𝑛𝑒𝑒𝑛𝑛 = 𝐸𝐸12 + 𝐸𝐸22).  The direction of the net electric field in 
the specified region is diagonally in between E1 and E2 (between + and −𝑥𝑥). 

𝑥𝑥 

+  

−  

E1 
E2 
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Chapter 7:  Electric Potential 

25.  We choose to call 𝑞𝑞1 = 7 2 µC and 𝑞𝑞2 = −3 2 µC.
(A) Use the distance formula. 

𝑅𝑅1 = 𝑥𝑥12 + 𝑥𝑥12     ,     𝑅𝑅2 = 𝑥𝑥22 + 𝑥𝑥22 

• Check your distances:  | 𝑥𝑥1| = | 𝑥𝑥2| = 1.0 m and | 𝑥𝑥1| = | 𝑥𝑥2| = 1.0 m. 
• You should get 𝑅𝑅1 = 𝑅𝑅2 = 2 m. 

 
(B) First convert the charges from µC to C:  𝑞𝑞1 = 7 2 × 10−6 C and 𝑞𝑞2 = −3 2 × 10−6 C. 

• Use the equation for the electric potential of a system of two pointlike charges. 

𝑛𝑛𝑒𝑒𝑛𝑛 =
𝑘𝑘𝑞𝑞1
𝑅𝑅1

+
𝑘𝑘𝑞𝑞2
𝑅𝑅2

 

• Note that 2
2

= 1 and 10910−6 = 103.  Note that the second term is negative. 

• The net electric potential at (1.0 m, 0) is 𝑛𝑛𝑒𝑒𝑛𝑛 = 36 kV, where the metric prefix kilo 
(k) is 103 = 1000.  It’s the same as 36,000 V, 36 × 103 V, or 3.6 × 104 V. 

 

𝑅𝑅1 
𝑞𝑞1 

𝑥𝑥1 

𝑥𝑥1 
𝑅𝑅2 

𝑞𝑞2 

𝑥𝑥2
𝑥𝑥2 

www.engineersreferencebookspdf.com



Hints, Intermediate Answers, and Explanations 

346 
 

Chapter 8:  Motion of a Charged Particle in a Uniform Electric Field 

26.  This problem is similar to the first example of this chapter. 
(A) First calculate the electric field between the plates with the equation 𝐸𝐸 = . 

• Note that = 20 cm = 0.20 m.  You should get 𝐸𝐸 = 600 N/C.  (1 N/C = 1 V/m.) 
• Draw a free-body diagram (FBD) for the tiny charged object. 

o The electric force (𝑞𝑞E) pulls up.  Since the charged object is positive, the electric 
force (𝑞𝑞E) is parallel to the electric field (E), and since the electric field lines 
travel from the positive plate to the negative plate, E points upward. 

o The weight (𝑚𝑚g) of the object pulls straight down. 

• Apply Newton’s second law to the tiny charged object:  𝐹𝐹 = 𝑚𝑚𝑎𝑎 . 
• You should get |𝑞𝑞|𝐸𝐸 −𝑚𝑚 = 𝑚𝑚𝑎𝑎 .  Sign check:  𝑞𝑞E is up (+) while 𝑚𝑚g is down (−). 
• Solve for the acceleration.  You should get: 

𝑎𝑎 =
|𝑞𝑞|𝐸𝐸 −𝑚𝑚

𝑚𝑚
 

• Convert the charge from µ to C and the mass from g to kg. 
• You should get 𝑞𝑞 = 1.5 × 10−3 C and 𝑚𝑚 = 0.018 kg. 
• The acceleration is 𝑎𝑎 = 40 m/s2.  The charge accelerates upward. 

(B) Use an equation of one-dimensional uniform acceleration.  First list the knowns. 
• 𝑎𝑎 = 40 m/s2.  We know this from part (A).  It’s positive because the object 

accelerates upward (and because we chose +𝑥𝑥 to point upward).
• 𝑥𝑥 = 0.20 m (the separation between the plates).  It’s positive because it finishes 

above where it started (and because we chose +𝑥𝑥 to point upward). 
• 0 = 0.  The initial velocity is zero because it starts from rest. 
• We’re solving for the final velocity ( ). 
• Choose the equation with these symbols:  2 = 0

2 + 2𝑎𝑎 𝑥𝑥. 
• The final velocity is = 4.0 m/s (heading upward). 

𝑚𝑚  

𝑞𝑞E 
+𝑥𝑥 
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Chapter 9:  Equivalent Capacitance 

27.  (A) Redraw the circuit, simplifying it one step at a time by identifying series and 
parallel combinations.  Try it yourself first, and then check your diagrams below. 

 

 
(B) Apply the formulas for series and parallel capacitors. 

• The two 24-nF capacitors are in series.  They became 1.  The 6-nF capacitor is in 
series with the 12-nF capacitor.  They became 2.  In each case, an electron could 
travel from one capacitor to the other without crossing a junction.  These reductions 
are shown in the left diagram above. 

• Compute 1 and 2 using 1

1
= 1

2
+ 1

2
 and 1

2
= 1 + 1

12
.  Note that 1

6
+ 1

12
= 2

12
+

1
12

= 3
12

= 1
4
.  You should get 1 = 12.0 nF and 2 = 4.0 nF. 

• In the top left diagram,  and 2 are in parallel.  They became 1. 
• Compute 1 using 1 = + 2.  You should get 1 = 9.0 nF. 
• In the top right diagram, 1 and 1  are in series.  They became 3. 

• Compute 3 using 1
3

= 1

1
+ 1

1
.  You should get 3 = 6.0 nF. 

2 

𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛

 

1  

1 

36 

1  

1 

1 

36 

𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 

3 1 

36 

𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 

2 

36 

𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 
𝑒𝑒𝑞𝑞 

𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 
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• Next, 1 and 3 are in parallel.  They became 2. 
• Compute 2 using 2 = 1 + 3.  You should get 2 = 18.0 nF. 
• Finally, 36 and 2 are in series.  They became 𝑒𝑒𝑞𝑞. 

• Compute 𝑒𝑒𝑞𝑞 using 1
𝑒𝑒

= 1

3
+ 1

2
.  The answer is 𝑒𝑒𝑞𝑞 = 12 nF. 

(C) Work your way backwards through the circuit one step at a time.  Study the parts of the 
example that involved working backwards.  Try to think your way through the strategy. 

• Begin the math with the equation 𝑒𝑒𝑞𝑞 = 𝑒𝑒𝑞𝑞 𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛.  You should get 𝑒𝑒𝑞𝑞 = 144 nC. 
• Going back one picture from the last, 36 and 2 are in series (replaced by 𝑒𝑒𝑞𝑞). 

o Charge is the same in series.  Write 36 = 2 = 𝑒𝑒𝑞𝑞 = 144 nC. 

o Calculate potential difference:  2 = 2

2
.  You should get 2 = 8.0 V. 

• Going back one more step, 1 and 3 are in parallel (replaced by 2). 
o ’s are the same in parallel.  Write 1 = 3 = 2 = 8.0 V. 
o Calculate charge:  1 = 1 1.  You should get 1 = 96 nC.

• Going back one more step, 24 and 24 are in series (replaced by 1). 
o Charge is the same in series.  Write 24 = 24 = 1 = 96 nC.
o The answer is 24 = 96 nC. 

(D) We found 3 = 8.0 V in part (C).  Continue working backwards from here. 
• Calculate the charge stored on 3:  3 = 3 3.  You should get 3 = 48 nC. 
• Going back one step from there, 1 and 1 are in series (replaced by 3).

o Charge is the same in series.  Write 1 = 1 = 3 = 48 nC. 

o Use the appropriate energy equation:  1 = 1
2

2 1
.  Note that 1  is squared. 

o The answer is 1 = 64 nJ. 

28.  (A) Redraw the circuit, simplifying it one step at a time by identifying series and 
parallel combinations.  Try it yourself first, and then check your diagrams below. 

 

𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 

𝑒𝑒𝑞𝑞 

𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 

3 

1 

2 

A 

B 

6 

𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 

1 

6 
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(B) Apply the formulas for series and parallel capacitors. 
• Three pairs are in parallel:  the 5 and 15, the 24 and 36, and the 12 and 18.  These 

became 𝐶𝐶𝑝𝑝1, 𝐶𝐶𝑝𝑝2, and 𝐶𝐶𝑝𝑝3.  These reductions are shown in the left diagram above. 
• Compute 𝐶𝐶𝑝𝑝1, 𝐶𝐶𝑝𝑝2, and 𝐶𝐶𝑝𝑝3.  For example, the formula for 𝐶𝐶𝑝𝑝1 is 𝐶𝐶𝑝𝑝1 = 𝐶𝐶5 + 𝐶𝐶15.  You 

should get 𝐶𝐶𝑝𝑝1 = 20.0 µF, 𝐶𝐶𝑝𝑝2 = 60.0 µF, and 𝐶𝐶𝑝𝑝3 = 30.0 µF. 
• In the left diagram above, 𝐶𝐶𝑝𝑝1, 𝐶𝐶𝑝𝑝2, and 𝐶𝐶𝑝𝑝3 are in series.  They became 𝐶𝐶𝑠𝑠1. 

• Compute 𝐶𝐶𝑠𝑠1 using 1
𝐶𝐶𝑠𝑠1

= 1
𝐶𝐶𝑝𝑝1

+ 1
𝐶𝐶𝑝𝑝2

+ 1
𝐶𝐶𝑝𝑝3

.  You should get 𝐶𝐶𝑠𝑠1 = 10.0 µF.  Note that 
1
20

+ 1
60

+ 1
30

= 3
60

+ 1
60

+ 2
60

= 6
60

= 1
10

. 

• Next, 𝐶𝐶𝑠𝑠1 and 𝐶𝐶6 are in parallel.  They became 𝐶𝐶𝑒𝑒𝑒𝑒. 
• Compute 𝐶𝐶𝑒𝑒𝑒𝑒 using 𝐶𝐶𝑒𝑒𝑒𝑒 = 𝐶𝐶𝑠𝑠1 + 𝐶𝐶6.  The answer is 𝐶𝐶𝑒𝑒𝑒𝑒 = 16 µF. 

(C) Work your way backwards through the circuit one step at a time.  Study the parts of the 
example that involved working backwards.  Try to think your way through the strategy. 

• Begin the math with the equation 𝑄𝑄𝑒𝑒𝑒𝑒 = 𝐶𝐶𝑒𝑒𝑒𝑒∆𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏.  You should get 𝑄𝑄𝑒𝑒𝑒𝑒 = 64 µC. 
• Going back one step, 𝐶𝐶𝑠𝑠1 and 𝐶𝐶6 are in parallel (replaced by 𝐶𝐶𝑒𝑒𝑒𝑒). 

o ∆𝑉𝑉’s are the same in parallel.  Write ∆𝑉𝑉𝑠𝑠1 = ∆𝑉𝑉6 = ∆𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 4.0 V. 
o Calculate charge:  𝑄𝑄𝑠𝑠1 = 𝐶𝐶𝑠𝑠1∆𝑉𝑉𝑠𝑠1.  You should get 𝑄𝑄𝑠𝑠1 = 40 µC. 

• Going back one more step, 𝐶𝐶𝑝𝑝1, 𝐶𝐶𝑝𝑝2, and 𝐶𝐶𝑝𝑝3 are in series (replaced by 𝐶𝐶𝑠𝑠1). 
o Charge is the same in series.  Write 𝑄𝑄𝑝𝑝1 = 𝑄𝑄𝑝𝑝2 = 𝑄𝑄𝑝𝑝3 = 𝑄𝑄𝑠𝑠1 = 40 µC. 

o Calculate potential difference:  ∆𝑉𝑉𝑝𝑝1 = 𝑄𝑄𝑝𝑝1
𝐶𝐶𝑝𝑝1

.  You should get ∆𝑉𝑉𝑝𝑝1 = 2.0 V. 

• The answer is ∆𝑉𝑉𝐴𝐴𝐴𝐴 = 2.0 V because ∆𝑉𝑉𝐴𝐴𝐴𝐴 = ∆𝑉𝑉𝑝𝑝1 (since 𝐶𝐶𝑝𝑝1 is a single capacitor 
between points A and B). 

(D) We found ∆𝑉𝑉𝑝𝑝1 = 2.0 V in part (C).  Continue working backwards from here. 
• Going back one step from there, 𝐶𝐶5 and 𝐶𝐶15 are in parallel (replaced by 𝐶𝐶𝑝𝑝1). 

o ∆𝑉𝑉’s are the same in parallel.  Write ∆𝑉𝑉5 = ∆𝑉𝑉15 = ∆𝑉𝑉𝑝𝑝1 = 2.0 V. 

o Use the appropriate energy equation:  𝑈𝑈5 = 1
2
𝐶𝐶5∆𝑉𝑉52.  Note that ∆𝑉𝑉5 is 

squared.  The answer is 𝑈𝑈5 = 10 µJ. 
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Chapter 10:  Parallel-plate and Other Capacitors 

29.  Make a list of the known quantities and identify the desired unknown symbol: 
• The capacitor plates have a radius of 𝑎𝑎 = 30 mm. 
• The separation between the plates is 𝑑𝑑 = 2.0 mm. 
• The dielectric constant is 𝜅𝜅 = 8.0 and the dielectric strength is 𝐸𝐸𝑚𝑚𝑏𝑏𝑚𝑚 = 6.0 × 106 V

m
. 

• We also know 𝜖𝜖0 = 8.8 × 10−12  C2

N∙m2, which we will approximate as 𝜖𝜖0 ≈
10−9

36𝜋𝜋
 C2

N∙m2. 

• The unknown we are looking for is capacitance (𝐶𝐶). 
• Convert the radius and separation to SI units. 

𝑎𝑎 = 30 mm = 0.030 m =
3

100
 m     ,     𝑑𝑑 = 2.0 mm = 0.0020 m =

1
500

 m 

• Find the area of the circular plate:  𝐴𝐴 = 𝜋𝜋𝑎𝑎2.  Note that 𝑎𝑎 is squared.  Also note that 

� 1
100
�
2

= 1
10,000

.  You should get 𝐴𝐴 = 9𝜋𝜋
10,000

 m2.  As a decimal, it’s 𝐴𝐴 = 0.00283 m2. 

(A) Use the equation 𝐶𝐶 = 𝜅𝜅𝜖𝜖0𝐴𝐴
𝑑𝑑

.  Note that 1

� 1
500�

= 500. 

• The capacitance is 𝐶𝐶 = 0.10 nF, which is the same as 𝐶𝐶 = 1.0 × 10−10 F. 
(B) First find the maximum potential difference (∆𝑉𝑉𝑚𝑚𝑏𝑏𝑚𝑚) across the plates. 

• Use the equation 𝐸𝐸𝑚𝑚𝑏𝑏𝑚𝑚 = ∆𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑

.  Multiply both sides of the equation by 𝑑𝑑 to solve for 
∆𝑉𝑉𝑚𝑚𝑏𝑏𝑚𝑚.  You should get ∆𝑉𝑉𝑚𝑚𝑏𝑏𝑚𝑚 = 12,000 V. 

• Use the equation  𝑄𝑄𝑚𝑚𝑏𝑏𝑚𝑚 = 𝐶𝐶∆𝑉𝑉𝑚𝑚𝑏𝑏𝑚𝑚.  The maximum charge is:  𝑄𝑄 = 1.2 µC, which can 
also be expressed as 𝑄𝑄 = 1.2 × 10−6 C. 
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Chapter 11:  Equivalent Resistance 

30.  (A) Redraw the circuit, simplifying it one step at a time by identifying series and 
parallel combinations.  Try it yourself first, and then check your diagrams below. 

 
(B) Apply the formulas for series and parallel resistors.

• The 9.0-  and 18.0-  resistors are in series.  They became 𝑅𝑅 1.  The 4.0-  and 12.0-
resistors are in series. They became 𝑅𝑅 2.  In each case, an electron could travel 

from one resistor to the other without crossing a junction.  These reductions are 
shown in the left diagram above. 

• Compute 𝑅𝑅 1 and 𝑅𝑅 2 using 𝑅𝑅 1 = 𝑅𝑅9 + 𝑅𝑅1  and 𝑅𝑅 2 = 𝑅𝑅4 + 𝑅𝑅12.  You should get 
𝑅𝑅 1 = 27  and 𝑅𝑅 2 = 16 . 

• In the top left diagram, 𝑅𝑅 1 and 𝑅𝑅 4 are in parallel.  They became 𝑅𝑅 1. 

• Compute 𝑅𝑅 1 using 1
𝑅𝑅 1

= 1
𝑅𝑅 1

+ 1
𝑅𝑅

.  Note that 1
2

+ 1
4

= 2
4

+ 1
4

= 3
4

= 1
1

.  You should 

get 𝑅𝑅 1 = 18 . 
• In the top right diagram, 𝑅𝑅 1 and the two 𝑅𝑅1 ’s are in series.  They became 𝑅𝑅 3. 
• Compute 𝑅𝑅 3 using 𝑅𝑅 3 = 𝑅𝑅1 + 𝑅𝑅 1 + 𝑅𝑅1 .  You should get 𝑅𝑅 3 = 48 . 
• Finally, 𝑅𝑅 2 and 𝑅𝑅 3 are in parallel.  They became 𝑅𝑅𝑒𝑒𝑞𝑞. 

• Compute 𝑅𝑅𝑒𝑒𝑞𝑞 using 1
𝑅𝑅𝑒𝑒

= 1
𝑅𝑅 2

+ 1
𝑅𝑅 3

.  The answer is 𝑅𝑅𝑒𝑒𝑞𝑞 = 12 . 

(C) Work your way backwards through the circuit one step at a time.  Study the parts of the 
example that involved working backwards.  Try to think your way through the strategy. 

• Begin the math with the equation 𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛
𝑅𝑅𝑒𝑒

.  You should get 𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 = 20 A. 

• Going back one picture from the last, 𝑅𝑅 2 and 𝑅𝑅 3 are in parallel (replaced by 𝑅𝑅𝑒𝑒𝑞𝑞). 
o ’s are the same in parallel.  Write 2 = 3 = 𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 = 240 V.  (Note 

that 𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 is the potential difference across 𝑅𝑅𝑒𝑒𝑞𝑞.) 

o Calculate current:  3 = 3
𝑅𝑅 3

.  You should get 3 = 5.0 A. 

𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 𝑅𝑅 4 

𝑅𝑅1  

𝑅𝑅1  

𝑅𝑅 1 𝑅𝑅 2 𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 𝑅𝑅 1 

𝑅𝑅1  

𝑅𝑅1  

𝑅𝑅 2 

𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 𝑅𝑅 3 𝑅𝑅 2 𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 𝑅𝑅𝑒𝑒𝑞𝑞 

www.engineersreferencebookspdf.com



Hints, Intermediate Answers, and Explanations 

352 
 

• Going back one more step, 𝑅𝑅 1 and the two 𝑅𝑅1 ’s are in series (replaced by 𝑅𝑅 3). 
o Current is the same in series.  Write 1 = 1 = 1 = 3 = 5.0 A. 
o Use the appropriate power equation:  1 = 1

2 𝑅𝑅1 .  Note that 1  is squared. 
• The answer is 1 = 375 W. 

31.  (A) The first step is to redraw the circuit, treating the meters as follows: 
• Remove the voltmeter and also remove its connecting wires. 
• Remove the ammeter, patching it up with a line. 

Redraw the circuit a few more times, simplifying it one step at a time by identifying series 
and parallel combinations.  Try it yourself first, and then check your diagrams below. 

 
(B) Apply the formulas for series and parallel resistors. 

• The 16.0-  and 32.0-  resistors are in series.  They became 𝑅𝑅 1.  The two 24.0-  
resistors are in series.  They became 𝑅𝑅 2.  The two 12.0-  resistors are in series.  
They became 𝑅𝑅 3.  In each case, an electron could travel from one resistor to the 
other without crossing a junction.  These reductions are shown above on the right. 

• Compute 𝑅𝑅 1, 𝑅𝑅 2, and 𝑅𝑅 3 using 𝑅𝑅 1 = 𝑅𝑅16 + 𝑅𝑅32, 𝑅𝑅 2 = 𝑅𝑅24 + 𝑅𝑅24, and 𝑅𝑅 3 = 𝑅𝑅12 +
𝑅𝑅12.  You should get 𝑅𝑅 1 = 48 , 𝑅𝑅 2 = 48 , and 𝑅𝑅 3 = 24 . 

𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 

𝑅𝑅16 

B C 

𝑅𝑅32 

𝑅𝑅24 

𝑅𝑅12 

𝑅𝑅24 

𝑅𝑅12 

𝑅𝑅4 𝑅𝑅4 𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 

𝑅𝑅 1 

B C 
𝑅𝑅 2

𝑅𝑅 3 

𝑅𝑅4 𝑅𝑅4 

𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 

𝑅𝑅 1 

B C 
𝑅𝑅 1 

𝑅𝑅4 𝑅𝑅4 𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 

𝑅𝑅 1 

𝑅𝑅 4 

𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 

𝑅𝑅𝑒𝑒𝑞𝑞 
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• In the top right diagram, 𝑅𝑅𝑠𝑠2 and 𝑅𝑅𝑠𝑠3 are in parallel.  They became 𝑅𝑅𝑝𝑝1. 

• Compute 𝑅𝑅𝑝𝑝1 using 1
𝑅𝑅𝑝𝑝1

= 1
𝑅𝑅𝑠𝑠2

+ 1
𝑅𝑅𝑠𝑠3

.  Note that 1
48

+ 1
24

= 1
48

+ 2
48

= 3
48

= 1
16

.  You should 

get 𝑅𝑅𝑝𝑝1 = 16 Ω. 
• In the bottom left diagram, 𝑅𝑅𝑝𝑝1 and the two 𝑅𝑅4’s are in series.  They became 𝑅𝑅𝑠𝑠4. 
• Compute 𝑅𝑅𝑠𝑠4 using 𝑅𝑅𝑠𝑠4 = 𝑅𝑅4 + 𝑅𝑅𝑝𝑝1 + 𝑅𝑅4.  You should get 𝑅𝑅𝑠𝑠4 = 24 Ω. 
• Finally, 𝑅𝑅𝑠𝑠1 and 𝑅𝑅𝑠𝑠4 are in parallel.  They became 𝑅𝑅𝑒𝑒𝑒𝑒. 

• Compute 𝑅𝑅𝑒𝑒𝑒𝑒 using 1
𝑅𝑅𝑒𝑒𝑒𝑒

= 1
𝑅𝑅𝑠𝑠1

+ 1
𝑅𝑅𝑠𝑠4

.  The answer is 𝑅𝑅𝑒𝑒𝑒𝑒 = 16 Ω. 

(C) Work your way backwards through the circuit one step at a time.  Study the parts of the 
example that involved working backwards.  Try to think your way through the strategy. 

• An ammeter measures current.  We need to find the current through the 12.0-Ω 
resistors because the ammeter is connected in series with the 12.0-Ω resistors. 

• Begin the math with the equation 𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ∆𝑉𝑉𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏
𝑅𝑅𝑒𝑒𝑒𝑒

.  You should get 𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 15 A. 

• Going back one picture from the last, 𝑅𝑅𝑠𝑠1 and 𝑅𝑅𝑠𝑠4 are in parallel (replaced by 𝑅𝑅𝑒𝑒𝑒𝑒). 
o ∆𝑉𝑉’s are the same in parallel.  Write ∆𝑉𝑉𝑠𝑠1 = ∆𝑉𝑉𝑠𝑠4 = ∆𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 240 V.  (Note 

that ∆𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the potential difference across 𝑅𝑅𝑒𝑒𝑒𝑒.) 

o Calculate current:  𝐼𝐼𝑠𝑠4 = ∆𝑉𝑉𝑠𝑠4
𝑅𝑅𝑠𝑠4

.  You should get 𝐼𝐼𝑠𝑠4 = 10 A. 

• Going back one more step, 𝑅𝑅𝑝𝑝1 and the two 𝑅𝑅4’s are in series (replaced by 𝑅𝑅𝑠𝑠4). 
o Current is the same in series.  Write 𝐼𝐼4 = 𝐼𝐼𝑝𝑝1 = 𝐼𝐼4 = 𝐼𝐼𝑠𝑠4 = 10 A. 
o Calculate potential difference:  ∆𝑉𝑉𝑝𝑝1 = 𝐼𝐼𝑝𝑝1𝑅𝑅𝑝𝑝1.  You should get ∆𝑉𝑉𝑝𝑝1 = 160 V. 

• Going back one more step, 𝑅𝑅𝑠𝑠2 and 𝑅𝑅𝑠𝑠3 are in parallel (replaced by 𝑅𝑅𝑝𝑝1). 
o ∆𝑉𝑉’s are the same in parallel.  Write ∆𝑉𝑉𝑠𝑠2 = ∆𝑉𝑉𝑠𝑠3 = ∆𝑉𝑉𝑝𝑝1 = 160 V. 

o Calculate current:  𝐼𝐼𝑠𝑠3 = ∆𝑉𝑉𝑠𝑠3
𝑅𝑅𝑠𝑠3

.  You should get 𝐼𝐼𝑠𝑠3 = 20
3

 A.  Note that 160
24

= 20
3

. 

• Going back one more step, the two 𝑅𝑅12’s are in series (replaced by 𝑅𝑅𝑠𝑠3). 
o Current is the same in series.  Write 𝐼𝐼12 = 𝐼𝐼12 = 𝐼𝐼𝑠𝑠3 = 20

3
 A. 

o 𝐼𝐼12 is what the ammeter reads since the ammeter is in series with the 𝑅𝑅12’s. 
• The ammeter reads 𝐼𝐼12 = 20

3
 A.  As a decimal, it’s 𝐼𝐼12 = 6.7 A. 

(D) Continue working your way backwards through the circuit. 
• A voltmeter measures potential difference.  We need to find the potential difference 

between points B and C.  This means that we need to find ∆𝑉𝑉𝑝𝑝1. 
• This will be easy because we already found ∆𝑉𝑉𝑝𝑝1 = 160 V in part (C).  See the hints 

to part (C). 
• The voltmeter reads ∆𝑉𝑉𝑝𝑝1 = 160 V. 
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32.  Redraw the circuit, simplifying it one step at a time by identifying series and parallel 
combinations.  Try it yourself first, and then check your diagrams below. 

Apply the formulas for series and parallel resistors. 
• The three 6.0-  resistors are in series.  They became 𝑅𝑅 1.  The three 4.0-  resistors 

are in series.  They became 𝑅𝑅 2.  (The two 3.0-  resistors are also in series, but it 
turns out to be convenient to save those for a later step.  If you combine them now, it 
will be okay.) 

• Compute 𝑅𝑅 1 and 𝑅𝑅 2 using 𝑅𝑅 1 = 𝑅𝑅6 + 𝑅𝑅6 + 𝑅𝑅6 and 𝑅𝑅 2 = 𝑅𝑅4 + 𝑅𝑅4 + 𝑅𝑅4.  You should 
get 𝑅𝑅 1 = 18  and 𝑅𝑅 2 = 12 . 

• In the top left diagram, 𝑅𝑅 1 and 𝑅𝑅9 are in parallel.  They became 𝑅𝑅 1.  Also, 𝑅𝑅12 and 
𝑅𝑅 2 are in parallel.  They became 𝑅𝑅 2. 

• Compute 𝑅𝑅 1 and 𝑅𝑅 2 using 1
𝑅𝑅 1

= 1
𝑅𝑅 1

+ 1
𝑅𝑅

 and 1
𝑅𝑅 2

= 1
𝑅𝑅12

+ 1
𝑅𝑅 2

.  You should get 

𝑅𝑅 1 = 6.0  and 𝑅𝑅 2 = 6.0 . 
• In the top right diagram, 𝑅𝑅 1 and the two 𝑅𝑅9’s are in series.  They became 𝑅𝑅 3.  Also, 

𝑅𝑅 2 and the two 𝑅𝑅3’s are in series.  They became 𝑅𝑅 4. 
• Compute 𝑅𝑅 3 and 𝑅𝑅 4 using 𝑅𝑅 3 = 𝑅𝑅9 + 𝑅𝑅 1 + 𝑅𝑅9 and 𝑅𝑅 4 = 𝑅𝑅3 + 𝑅𝑅 2 + 𝑅𝑅3.  You 

should get 𝑅𝑅 3 = 24  and 𝑅𝑅 4 = 12 . 
• Finally, 𝑅𝑅 3 and 𝑅𝑅 4 are in parallel.  They became 𝑅𝑅𝑒𝑒𝑞𝑞. 

• Compute 𝑅𝑅𝑒𝑒𝑞𝑞 using 1
𝑅𝑅𝑒𝑒

= 1
𝑅𝑅 3

+ 1
𝑅𝑅

.  The answer is 𝑅𝑅𝑒𝑒𝑞𝑞 = 8.0 . 

𝑅𝑅9 

𝑅𝑅 2 

𝑅𝑅 1 

𝑅𝑅9 

𝑅𝑅3 𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 
𝑅𝑅12

𝑅𝑅9 𝑅𝑅3 

3 𝑅𝑅 1 

𝑅𝑅9 

𝑅𝑅3 𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 
𝑅𝑅 2 

𝑅𝑅9 𝑅𝑅3 

𝑅𝑅 3 𝑅𝑅 4 𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 𝑅𝑅𝑒𝑒𝑞𝑞 𝑏𝑏𝑎𝑎𝑛𝑛𝑛𝑛 
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Chapter 12:  Circuits with Symmetry 

33.  Study the examples to try to understand how to identify points with the same electric 
potential and how to “unfold” the circuit. 

• “Unfold” the circuit with point D at the bottom (call it the “ground”) and point C at 
the top (call it the “roof”).  This is how the battery is connected. 

• Points B and H are each one step from point D (the “ground”) and two steps from 
point C (the “roof”).  Points B and H have the same electric potential. 

• Points A and G are each two steps from point D (the “ground”) and one step from 
point C (the “roof”).  Points A and G have the same electric potential. 

• Draw points B and H at the same height in the “unfolded” circuit. 
• Draw points A and G at the same height in the “unfolded” circuit. 
• Draw points B and H closer to point D (the “ground”) and points A and G closer to 

point C (the “roof”). 
• Between those two pairs (B and H, and A and G), draw point F closer to point D (the 

“ground”) and point E closer to point C (the “roof”). 
• Compare your attempt to “unfold” the circuit with the left diagram below. 

 
• Points B and H have the same electric potential.  There are presently no wires 

connecting points B and H.  Add wires to connect points B and H.  Make these new 
wires so short that you have to move points B and H toward one another.  Make it so 
extreme that points B and H merge into a single point, which we will call BH. 

• Similarly, collapse points A and G into a single point called AG. 
• With these changes, the diagram on the left above turns into the diagram in the 

middle above.  In the middle diagram above, you should be able to find several pairs 
of resistors that are either in series or parallel. 

C 

G A 

H B 

E 

D 

F 

C 

AG 

BH 

E 

D 

F 

C 

AG 

BH 

E 

D 

F 

𝑅𝑅 1 

𝑅𝑅 2 

𝑅𝑅 3 

𝑅𝑅 4 

𝑅𝑅  

𝑅𝑅 𝑅𝑅 
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• There are 5 pairs of parallel resistors in the middle diagram on the previous page:
o The two resistors between C and AG form 𝑅𝑅 1. 
o The two resistors between AG and E form 𝑅𝑅 2. 
o The two resistors between AG and BH form 𝑅𝑅 3. 
o The two resistors between F and BH form 𝑅𝑅 4. 
o The two resistors between BH and D form 𝑅𝑅 . 

• As usual when reducing a parallel combination, remove one of the paths and rename 
the remaining resistor.  Compare the right two diagrams on the previous page. 

• Calculate 𝑅𝑅 1 thru 𝑅𝑅  with formulas like 1
𝑅𝑅 1

= 1
12

+ 1
12

. 

• You should get 𝑅𝑅 1 = 𝑅𝑅 2 = 𝑅𝑅 3 = 𝑅𝑅 4 = 𝑅𝑅 = 6.0 . 
• 𝑅𝑅 2, 𝑅𝑅, and 𝑅𝑅 4 are in series (forming 𝑅𝑅 1) in the right diagram on the previous page. 
• Calculate 𝑅𝑅 1 using 𝑅𝑅 1 = 𝑅𝑅 2 + 𝑅𝑅 + 𝑅𝑅 4.  You should get 𝑅𝑅 1 = 24.0 . 

 
• 𝑅𝑅 1 and 𝑅𝑅 3 are in parallel in the left diagram above.  They form 𝑅𝑅 6. 

• Calculate 𝑅𝑅 6 using 1
𝑅𝑅

= 1
𝑅𝑅 1

+ 1
𝑅𝑅 3

.  You should get 𝑅𝑅 6 = 24   (or 4.8 ).  Note that 
1
24

+ 1
6

= 1
24

+ 4
24

=
24

.  (Then since 1
𝑅𝑅

=
24

, flip it to get 𝑅𝑅 6 = 24 .) 

• 𝑅𝑅 1, 𝑅𝑅 6, and 𝑅𝑅  are in series (forming 𝑅𝑅 2) in the second diagram above. 

• Calculate 𝑅𝑅 2 using 𝑅𝑅 2 = 𝑅𝑅 1 + 𝑅𝑅 6 + 𝑅𝑅 .  You should get 𝑅𝑅 1 = 4  (or 16.8 ).  

Note that 6 + 24 + 6 = 30 + 24 + 30 = 4.  (This is series:  Don’t flip it.) 
• 𝑅𝑅 and 𝑅𝑅 2 are in parallel in the third diagram above.  They form 𝑅𝑅𝑒𝑒𝑞𝑞. 

• Calculate 𝑅𝑅𝑒𝑒𝑞𝑞 using 1
𝑅𝑅𝑒𝑒

= 1
𝑅𝑅

+ 1
𝑅𝑅 2

.  You should get 𝑅𝑅𝑒𝑒𝑞𝑞 = 7.0 .  Note that 
1
4/

+ 1
12

=
4

+ 1
12

=
4

+
4

= 12
4

= 1.  (This is parallel:  Do flip it.) 

C 

AG 

BH 

D 

𝑅𝑅 1 

𝑅𝑅 3 

𝑅𝑅  

𝑅𝑅 1 𝑅𝑅 

BH 

C 

F 

AG 

𝑅𝑅 1 

𝑅𝑅  

𝑅𝑅 6 𝑅𝑅 

C 

D 

𝑅𝑅 2𝑅𝑅 

C 

D 

𝑅𝑅𝑒𝑒𝑞𝑞
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34.  Study the “Essential Concepts” section on page 134. 
• Which points have the same electric potential? 
• Point B is one-third the way from point A (the “ground,” since it’s at the negative 

terminal) to point D (the “roof,” since it’s at the positive terminal), since 10 is one 
third of 30 (the 30 comes from adding 10 to 20). 

• Point C is also one-third the way from point A  to point D, since 5 is one third of 15 
(the 15 comes from adding 5 to 10). 

• Therefore, points B and C have the same electric potential:  = . 
• The potential difference between points B and C is zero:  = − = 0. 
• From Ohm’s law, = 𝑅𝑅 .  Since = 0, the current from B to C must be 

zero:  = 0.
• Since there is no current in the 8.0-  resistor, we may remove this wire without 

affecting the equivalent resistance of the circuit.  See the diagram below. 

 
• Now it should be easy to solve for the equivalent resistance.  Try it! 
• The 10.0-  and 20.0-  resistors are in series.  You should get 𝑅𝑅 1 = 30.0 . 
• The 5.0-  and 10.0-  resistors are in series.  You should get 𝑅𝑅 2 = 15.0 . 
• 𝑅𝑅 1 and 𝑅𝑅 2 are in parallel.  You should get 𝑅𝑅𝑒𝑒𝑞𝑞 = 10.0 . 

 
Chapter 13:  Kirchhoff’s Rules 

35.  Remove the voltmeter and its connecting wires.  Draw the currents:  See , , and 𝑅𝑅
below – solid arrows ( ).  Draw the sense of traversal in each loop – dashed arrows ( ). 

 

10.0  20.0  

5.0  10.0  
A

B 

C 
D 

𝑅𝑅 1 

𝑅𝑅 2 
A D 

𝑅𝑅𝑒𝑒𝑞𝑞 
A D 

A B 

C D 
6.0 

24 V 18 V 21 V 

3.0  

3.0  

𝑅𝑅 
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(A) Draw and label your currents the same way as shown on the previous page.  That way, 
the hints will match your solution and prove to be more helpful.  (If you’ve already solved 
the problem a different way, there isn’t any reason that you can’t get out a new sheet of 
paper and try it this way.  If you’re reading the hints, it appears that you would like some 
help, so why not try it?) 

• Apply Kirchhoff’s junction rule.  We chose junction A.  In our drawing, currents 𝐼𝐼𝐿𝐿 
and 𝐼𝐼𝑅𝑅 enter A, whereas 𝐼𝐼𝑀𝑀 exits A.  Therefore, 𝐼𝐼𝐿𝐿 + 𝐼𝐼𝑅𝑅 = 𝐼𝐼𝑀𝑀.  (If you draw your 
currents differently, the junction equation will be different for you.) 

• Apply Kirchhoff’s loop rule to the left loop.  We chose to start at point A and traverse 
clockwise through the circuit.  (If you draw your currents or sense of traversal 
differently, some signs will be different for you.) 

−3 𝐼𝐼𝑀𝑀 + 18 − 6 𝐼𝐼𝐿𝐿 + 24 = 0 
• Apply Kirchhoff’s loop rule to the right loop.  We chose to start at point A and 

traverse clockwise through the circuit.  (If you draw your currents or sense of 
traversal differently, some signs will be different for you.) 

+3 𝐼𝐼𝑅𝑅 − 21 − 18 + 3 𝐼𝐼𝑀𝑀 = 0 
• Tip:  If you apply the same method to perform the algebra as in the hints, your 

solution will match the hints and the hints will prove to be more helpful. 
• Solve for 𝐼𝐼𝑅𝑅 in the junction equation.  (Why?  Because you would have to plug in 𝐼𝐼𝑀𝑀 

twice, but will only have to plug in 𝐼𝐼𝑅𝑅 once, so it’s a little simpler.)  You should get 
𝐼𝐼𝑅𝑅 = 𝐼𝐼𝑀𝑀 − 𝐼𝐼𝐿𝐿. 

• Replace 𝐼𝐼𝑅𝑅 with 𝐼𝐼𝑀𝑀 − 𝐼𝐼𝐿𝐿 the equation for the right loop.  Combine like terms.  Bring 
the constant term to the right.  You should get 6 𝐼𝐼𝑀𝑀 − 3 𝐼𝐼𝐿𝐿 = 39. 

• Simplify the equation for the left loop.  Combine like terms.  Bring the constant term 
to the right.  Multiply both sides of the equation by −1.  (This step is convenient, as 
it will remove all of the minus signs.)  You should get 3 𝐼𝐼𝑀𝑀 + 6 𝐼𝐼𝐿𝐿 = 42. 

• Multiply the equation 6 𝐼𝐼𝑀𝑀 − 3 𝐼𝐼𝐿𝐿 = 39 by 2.  This will give you −6 𝐼𝐼𝐿𝐿 in one equation 
and +6 𝐼𝐼𝐿𝐿 in the other equation.  You should get 12 𝐼𝐼𝑀𝑀 − 6 𝐼𝐼𝐿𝐿 = 78. 

• Add the two equations (3 𝐼𝐼𝑀𝑀 + 6 𝐼𝐼𝐿𝐿 = 42 and 12 𝐼𝐼𝑀𝑀 − 6 𝐼𝐼𝐿𝐿 = 78) together.  You 
should get 15 𝐼𝐼𝑀𝑀 = 120. 

• Divide both sides of the equation by 15.  You should get 𝐼𝐼𝑀𝑀 = 8.0 A. 
• Plug this answer into the equation 3 𝐼𝐼𝑀𝑀 + 6 𝐼𝐼𝐿𝐿 = 42.  Solve for 𝐼𝐼𝐿𝐿. 
• You should get 𝐼𝐼𝐿𝐿 = 3.0 A.  Plug 𝐼𝐼𝐿𝐿 and 𝐼𝐼𝑀𝑀 into the junction equation. 
• You should get 𝐼𝐼𝑅𝑅 = 5.0 A. 

(B) Find the potential difference between the two points where the voltmeter had been 
connected.  Study the example, which shows how to apply Kirchhoff’s loop rule to find the 
potential difference between two points. 

• Choose the route along the two batteries (the math is simpler). 
• You should get +18 + 21 = 39 V (it’s positive if you go towards point B). 
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(C) Study the last part of the example, which shows you how to rank electric potential. 
• Set the electric potential at one point to zero.  We chose 𝑉𝑉𝐴𝐴 = 0. 
• Apply the loop rule from A to B.  Based on how we drew the currents, we get 𝑉𝑉𝐵𝐵 − 𝑉𝑉𝐴𝐴 

= +3 𝐼𝐼𝑅𝑅.  Plug in values for 𝑉𝑉𝐴𝐴 and 𝐼𝐼𝑅𝑅 .  Solve for 𝑉𝑉𝐵𝐵.  You should get 𝑉𝑉𝐵𝐵 = 15 V. 
• Apply the loop rule from B to D.  You should get 𝑉𝑉𝐷𝐷 − 𝑉𝑉𝐵𝐵 = −21.  Plug in the value 

for 𝑉𝑉𝐵𝐵.  You should get 𝑉𝑉𝐷𝐷 = 𝑉𝑉𝐵𝐵 − 21 = −6.0 V. 
• Apply the loop rule from D to C.  You should get 𝑉𝑉𝐶𝐶 − 𝑉𝑉𝐷𝐷 = −6 𝐼𝐼𝐿𝐿 .  Plug in values for 

𝑉𝑉𝐷𝐷 and 𝐼𝐼𝐿𝐿 .  You should get 𝑉𝑉𝐶𝐶 = −24.0 V.  (Note that 𝑉𝑉𝐶𝐶 + 6 = −18, since subtracting 
negative 6 equates to adding positive 6.  Then subtracting 6 from both sides gives 
you the −24.) 

• Check your answer by going from C to A.  You should get 𝑉𝑉𝐴𝐴 − 𝑉𝑉𝐶𝐶 = 24.  Plug in the 
value for 𝑉𝑉𝐶𝐶.  You should get 𝑉𝑉𝐴𝐴 + 24 = 24 (because subtracting negative 24 is the 
same as adding positive 24).  Subtract 24 from both sides to get 𝑉𝑉𝐴𝐴 = 0.  Since we 
got the same value, 𝑉𝑉𝐴𝐴 = 0, as we started out with, everything checks out. 

• List the values of electric potential that we found:  𝑉𝑉𝐴𝐴 = 0, 𝑉𝑉𝐵𝐵 = 15 V, 𝑉𝑉𝐷𝐷 = −6.0 V, 
and 𝑉𝑉𝐶𝐶 = −24.0 V.  Electric potential is highest at B, then A, then D, and lowest at C. 

𝑉𝑉𝐵𝐵 > 𝑉𝑉𝐴𝐴 > 𝑉𝑉𝐷𝐷 > 𝑉𝑉𝐶𝐶 
Note:  Not every physics textbook solves Kirchhoff’s rules problems the same way.  If you’re 
taking a physics course, it’s possible that your instructor or textbook will apply a different 
(but equivalent) method. 
 
Chapter 14:  More Resistance Equations 

36.  Make a list of symbols.  Choose the appropriate equation. 
• The known symbols are 𝑅𝑅 = 5.0 Ω, 𝐿𝐿 = 𝜋𝜋 m, and 𝑇𝑇 = 0.80 mm. 
• Convert the thickness to meters:  𝑇𝑇 = 8.0 × 10−4 m. 
• The thicnkess equals the diameter of the wire.  Solve for the radius of the wire. 
• The radius of the wire is 𝑎𝑎 = 𝐷𝐷

2
= 𝑇𝑇

2
.  You should get 𝑎𝑎 = 4.0 × 10−4 m. 

• Find the cross-sectional area of the wire:  𝐴𝐴 = 𝜋𝜋𝑎𝑎2.  Note that 𝑎𝑎2 = (4 × 10−4)2 =
(4)2(10−4)2 = 16 × 10−8 m2.  You should get 𝐴𝐴 = 16𝜋𝜋 × 10−8 m2. 

• Use the formula 𝑅𝑅 = 𝜌𝜌𝐿𝐿
𝐴𝐴

.  Solve for 𝜌𝜌.  You should get 𝜌𝜌 = 𝑅𝑅𝐴𝐴
𝐿𝐿

. 

• The resistivity is 𝜌𝜌 = 8.0 × 10−7 Ω∙m.  It’s the same as 𝜌𝜌 = 80 × 10−8 Ω∙m. 
 

37.  Make a list of symbols.  Choose the appropriate equation. 
• The known symbols are 𝛼𝛼 = 2.0 × 10−3 /°C, 𝑅𝑅0 = 30 Ω, 𝑅𝑅 = 33 Ω, and 𝑇𝑇0 = 20 °C. 
• Use the formula 𝑅𝑅 ≈ 𝑅𝑅0(1 + 𝛼𝛼∆𝑇𝑇).  Note that 33

30
= 1.1 and 1.1 − 1 = 0.1. 

• You should get 0.1 ≈ 0.002(𝑇𝑇 − 20).  Divide both sides by 0.002, then add 20. 
• The answer is 𝑇𝑇 = 70 °C. 
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38.  Make a list of symbols.  Choose the appropriate equation. 
(A) The known symbols are 𝜀𝜀 = 36 V, ∆𝑉𝑉 = 32 V, and 𝑅𝑅 = 8.0 Ω. 

• Apply Ohm’s law:  ∆𝑉𝑉 = 𝐼𝐼𝑅𝑅.  Solve for the current:  𝐼𝐼 = ∆𝑉𝑉
𝑅𝑅

. 

• The current is 𝐼𝐼 = 4.0 A. 
• Use the formula 𝜀𝜀 = 𝐼𝐼(𝑅𝑅 + 𝑟𝑟).  Solve for the internal resistance (𝑟𝑟). 
• Note that 36

4
= 9 and 9 − 8 = 1. 

• The internal resistance is 𝑟𝑟 = 1.0 Ω. 
(B) Use the formula 𝑃𝑃 = 𝐼𝐼∆𝑉𝑉. 

• The power dissipated in the resistor is 𝑃𝑃 = 128 W. 
 
Chapter 15:  Logarithms and Exponentials 

39.  5 raised to what power equals 625?  The answer is 4 since 54 = 625. 
 

40.  Divide both sides of the equation by 6.  You should get 𝑒𝑒−𝑥𝑥/2 = 1
3
. 

• Take the natural log of both sides of the equation.  You should get −𝑥𝑥
2

= ln �1
3
�. 

• To see why, note that 𝑒𝑒ln(𝑦𝑦) = 𝑦𝑦.  Let 𝑦𝑦 = −𝑥𝑥
2
. 

• Multiply both sides of the equation by −2.  You should get 𝑥𝑥 = −2 ln �1
3
�. 

• Apply the rule ln �1
𝑦𝑦
� = −ln (𝑦𝑦).  You should get 𝑥𝑥 = 2 ln(3). 

• The answer is 𝑥𝑥 = 2 ln(3), which is approximately 𝑥𝑥 = 2.197. 
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Chapter 16:  RC Circuits 

41.  Make a list of symbols.  Choose the appropriate equation. 
• The known symbols are 𝐶𝐶 = 5.0 µF, 𝑄𝑄𝑚𝑚 = 60 µC, and 𝑅𝑅 = 20 kΩ. 
• Apply the metric prefixes:  µ = 10−6 and k = 103. 
• The known symbols are 𝐶𝐶 = 5.0 × 10−6 F, 𝑄𝑄𝑚𝑚 = 6.0 × 10−5 C, and 𝑅𝑅 = 2.0 × 104 Ω. 

(A) Use the equation for capacitance:  𝑄𝑄𝑚𝑚 = 𝐶𝐶Δ𝑉𝑉𝑚𝑚. 
• Solve for Δ𝑉𝑉𝑚𝑚.  You should get Δ𝑉𝑉𝑚𝑚 = 𝑄𝑄𝑚𝑚

𝐶𝐶
. 

• The initial potential difference across the capacitor is Δ𝑉𝑉𝑚𝑚 = 12.0 V. 
(B) Apply Ohm’s law:  Δ𝑉𝑉𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑅𝑅.  Solve for 𝑅𝑅.  You should get 𝐼𝐼𝑚𝑚 = Δ𝑉𝑉𝑚𝑚

𝑅𝑅
. 

• The initial current is 𝐼𝐼𝑚𝑚 = 0.60 mA, which is the same as 0.00060 A or 6.0 × 10−4 A. 
(C) Use the equation 𝜏𝜏 = 𝑅𝑅𝐶𝐶. 

• The time constant is 𝜏𝜏 = 1
10

 s or 𝜏𝜏 = 0.10 s. 

• Use the equation 𝑡𝑡½ = 𝜏𝜏 ln(2). 

• The half-life is 𝑡𝑡½ = ln(2)
10

s.  If you use a calculator, 𝑡𝑡½ = 0.069 s. 

(D) Use the equation 𝑄𝑄 = 𝑄𝑄𝑚𝑚𝑒𝑒−𝑡𝑡/𝜏𝜏.  Plug in 𝑡𝑡 = 0.20 s. 
• Note that −0.20

0.10
= −2.  Also note that 𝑒𝑒−2 = 1

𝑒𝑒2
. 

• The charge stored on the capacitor is 𝑄𝑄 = 60
𝑒𝑒2

 µC.  If you use a calculator, 𝑄𝑄 = 8.1 µC. 
 

42.  Make a list of symbols.  Choose the appropriate equation. 
• The known symbols are 𝐶𝐶 = 4.0 µF, 𝐼𝐼𝑚𝑚 = 6.0 A, 𝐼𝐼 = 3.0 A, and 𝑡𝑡½ = 200 ms. 
• Apply the metric prefixes:  µ = 10−6 and m = 10−3. 
• The capacitance is 𝐶𝐶 = 4.0 × 10−6 F and the half-life is 𝑡𝑡½ = 0.200 s = 1

5
 s. 

(A) Use the equation 𝑡𝑡½ = 𝜏𝜏 ln(2).  Solve for 𝜏𝜏.  You should get 𝜏𝜏 = 𝑡𝑡½
ln(2). 

• The time constant is 𝜏𝜏 = 1
5 ln (2)

 s.  If you use a calculator, 𝜏𝜏 = 0.29 s. 

(B) Use the equation 𝜏𝜏 = 𝑅𝑅𝐶𝐶.  Solve for 𝑅𝑅.  You should get 𝑅𝑅 = 𝜏𝜏
𝐶𝐶

. 

• The resistance is 𝑅𝑅 = 50
ln (2)

 kΩ.  If you use a calculator, 𝑅𝑅 = 72 kΩ = 72,000 Ω. 
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Chapter 17:  Bar Magnets 

43.  Sketch the magnetic field lines by rotating the diagram on page 179. 
(A)  

 
(B)  

 
(C) 

 
(D) 
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Chapter 18:  Right-hand Rule for Magnetic Force 

44.  Study the right-hand rule on page 183 and think your way through the examples. 
Tip:  If you find it difficult to physically get your right hand into the correct position, try 
turning your book around until you find an angle that makes it more comfortable. 
(A) Point your fingers down ( ), along the current ( ). 

• At the same time, face your palm to the right ( ), along the magnetic field ( ). 
• Your thumb points out of the page:  The magnetic force ( 𝑚𝑚) is out of the page ( ). 

(B) Point your fingers up ( ), along the velocity ( ). 
• At the same time, face your palm into the page ( ), along the magnetic field ( ). 
• Your thumb points to the left:  The magnetic force ( 𝑚𝑚) is to the left ( ). 

(C) Tip:  Turn the book to make it easier to get your right hand into the correct position.
• Point your fingers to the right ( ), along the current ( ). 
• At the same time, face your palm out of the page ( ), along the magnetic field ( ). 
• Your thumb points down:  The magnetic force ( 𝑚𝑚) is down ( ). 

(D) Point your fingers out of the page ( ), along the velocity ( ). 
• At the same time, face your palm up ( ), along the magnetic field ( ). 
• Your thumb points to the left, but that’s not the answer:  The electron has negative

charge, so the answer is backwards:  The magnetic force ( 𝑚𝑚) is to the right ( ). 
(E) First sketch the magnetic field lines for the bar magnet (see Chapter 17).  What is the 
direction of the magnetic field lines where the proton is?  See point A below:  is down. 

• Point your fingers to the right ( ), along the velocity ( ). 
• At the same time, face your palm down ( ), along the magnetic field ( ). 
• Your thumb points into the page:  The magnetic force ( 𝑚𝑚) is into the page ( ). 

(F) Invert the right-hand rule for magnetic force.  This time, we’re solving for , not 𝑚𝑚. 
• Point your fingers down ( ), along the current ( ). 
• At the same time, point your thumb (it’s not your palm in this example) to the left

( ), along the magnetic force ( 𝑚𝑚). 
• Your palm faces out of the page:  The magnetic field ( ) is out of the page ( ). 

N 

S

A 
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45.  Study the right-hand rule on page 183 and think your way through the examples. 
(A) Point your fingers down ( ), along the velocity ( ). 

• At the same time, face your palm to the left ( ), along the magnetic field ( ). 
• Your thumb points into the page:  The magnetic force ( 𝑚𝑚) is into the page ( ). 

(B) Point your fingers into the page ( ), along the current ( ).
• At the same time, face your palm down ( ), along the magnetic field ( ). 
• Your thumb points to the left:  The magnetic force ( 𝑚𝑚) is to the left ( ). 

(C) This is a “trick” question.  In this example, the current ( ) is anti-parallel to the 
magnetic field ( ).  According to the strategy on page 185, the magnetic force ( 𝑚𝑚) is 
therefore zero (and thus has no direction).  In Chapter 21, we’ll see that in this case, 

= 180° such that 𝐹𝐹𝑚𝑚 = sin 180° = 0. 
(D) First sketch the magnetic field lines for the bar magnet (see Chapter 17).  What is the 
direction of the magnetic field lines where the proton is?  See point A below:   is down.  
(Note that the north pole is at the bottom of the figure.  The magnet is upside down.) 

 
• Point your fingers to the left ( ), along the velocity ( ). 
• At the same time, face your palm down ( ), along the magnetic field ( ). 
• Your thumb points out of the page:  The magnetic force ( 𝑚𝑚) is out of the page ( ). 

(E) Point your fingers diagonally up and to the left ( ), along the velocity ( ). 
• At the same time, face your palm out of the page ( ), along the magnetic field ( ). 
• Your thumb points diagonally up and to the right ( ), but that’s not the answer:  The 

electron has negative charge, so the answer is backwards:  The magnetic force ( 𝑚𝑚) 
is diagonally down and to the left ( ). 

(F) Invert the right-hand rule for magnetic force. This time, we’re solving for , not 𝑚𝑚. 
• Point your fingers out of the page ( ), along the current ( ). 
• At the same time, point your thumb (it’s not your palm in this example) to the left 

( ), along the magnetic force ( 𝑚𝑚). 
• Your palm faces up:  The magnetic field ( ) is up ( ). 

N 

S 
A 
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46.  Study the right-hand rule on page 183 and think your way through the examples. 
(A) Point your fingers diagonally down and to the right ( ), along the current ( ). 

• At the same time, face your palm diagonally up and to the right ( ), along the 
magnetic field ( ). 

• Your thumb points out of the page:  The magnetic force ( 𝑚𝑚) is out of the page ( ). 
(B) First sketch the magnetic field lines for the bar magnet (see Chapter 17).  What is the 
direction of the magnetic field lines where the electron is?  See point A below:   is left. 

• Point your fingers into the page ( ), along the velocity ( ). 
• At the same time, face your palm to the left ( ), along the magnetic field ( ). 
• Your thumb points up ( ), but that’s not the answer:  The electron has negative

charge, so the answer is backwards:  The magnetic force ( 𝑚𝑚) is down ( ). 
(C) The magnetic force ( 𝑚𝑚) is a centripetal force:  It pushes the proton towards the center 
of the circle.  For the position indicated, the velocity ( ) is up (along a tangent) and the 
magnetic force ( 𝑚𝑚) is to the left (toward the center).  Invert the right-hand rule to find the 
magnetic field. 

• Point your fingers up ( ), along the instantaneous velocity ( ). 
• At the same time, point your thumb (it’s not your palm in this example) to the left 

( ), along the magnetic force ( 𝑚𝑚). 
• Your palm faces into the page:  The magnetic field ( ) is into the page ( ). 

(D) It’s the same as part (C), except that the electron has negative charge, so the answer is 
backwards:  The magnetic field ( ) is out of the page ( ). 
(E) First, apply the right-hand rule for magnetic force to each side of the rectangular loop: 

• Left side:  The current ( ) points up ( ) and the magnetic field ( ) also points up ( ).  
Since  and  are parallel, the magnetic force ( 𝑒𝑒 𝑛𝑛) is zero. 

• Top side:  Point your fingers to the right ( ) along the current ( ) and your palm up 
( ) along the magnetic field ( ).  The magnetic force ( 𝑛𝑛 ) is out of the page ( ). 

• Right side:  The current ( ) points down ( ) and the magnetic field ( ) points up ( ).  
Since  and  are anti-parallel, the magnetic force ( 𝑔𝑔 𝑛𝑛) is zero. 

• Bottom side:  Point your fingers to the left ( ) along the current ( ) and your palm 
up ( ) along the magnetic field ( ).  The magnetic force ( 𝑏𝑏 𝑛𝑛) is into the page ( ). 
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The top side of the loop is pulled out of the page, while the bottom side of the loop is 
pushed into the page.  What will happen?  The loop will rotate about the dashed axis. 
(F) First, apply the right-hand rule for magnetic force to each side of the rectangular loop: 

• Bottom side:  Point your fingers to the right ( ) along the current ( ) and your palm 
out of the page ( ) along the magnetic field ( ).  The magnetic force ( 𝑏𝑏 𝑛𝑛) is down ( ). 

• Right side:  Point your fingers up ( ) along the current ( ) and your palm out of the 
page ( ) along the magnetic field ( ).  The magnetic force ( 𝑔𝑔 𝑛𝑛) is to the right ( ). 

• Top side:  Point your fingers to the left ( ) along the current ( ) and your palm out 
of the page ( ) along the magnetic field ( ).  The magnetic force ( 𝑛𝑛 ) is up ( ). 

• Left side:  Point your fingers down ( ) along the current ( ) and your palm out of the 
page ( ) along the magnetic field ( ).  The magnetic force ( 𝑒𝑒 𝑛𝑛) is to the left ( ). 

 
The magnetic force on each side of the loop is pulling outward, which would tend to make 
the loop try to expand.  (That’s the tendency:  Whether or not it actually will expand 
depends on such factors as how strong the forces are and the rigidity of the materials.) 
 

 

𝑒𝑒 𝑛𝑛 = 0 

𝑔𝑔 𝑛𝑛 = 0 

𝑛𝑛 =  

𝑏𝑏 𝑛𝑛 =  

 
 

 

    

    

    

     

 

𝑒𝑒 𝑛𝑛 𝑔𝑔 𝑛𝑛 

𝑛𝑛  

𝑏𝑏 𝑛𝑛 
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Chapter 19:  Right-hand Rule for Magnetic Field 

47.  Study the right-hand rule on page 193 and think your way through the examples. 
(A) Apply the right-hand rule for magnetic field: 

• Grab the current with your thumb pointing to the down ( ), along the current ( ). 
• Your fingers make circles around the wire (toward your fingertips). 
• The magnetic field ( ) at a specified point is tangent to these circles, as shown in the 

diagram below on the right.  At point A the magnetic field ( ) points into the page 
( ), while at point C the magnetic field ( ) points out of the page ( ). 

 
(B) Apply the right-hand rule for magnetic field: 

• Grab the current with your thumb pointing into the page ( ), along the current ( ). 
• Your fingers make clockwise (use the right-hand rule to see this) circles around the 

wire (toward your fingertips), as shown in the diagram below on the left. 
• The magnetic field ( ) at a specified point is tangent to these circles, as shown in the 

diagram below on the right.  Draw tangent lines at points D, E, and F with the arrows 
headed clockwise.  See the diagram below on the right.  At point D the magnetic field 
( ) points up ( ), at point E the magnetic field ( ) points left ( ), and at point F 
the magnetic field ( 𝐹𝐹) points diagonally down and to the right ( ). 

• Note:  The magnetic field is clockwise here, whereas it was counterclockwise in a 
similar example, because here the current is heading into the page, while in the 
example it was coming out of the page. 

 
  

A C 

 

 

 

  
  

D

E 

F 
 

  

 

 

𝐹𝐹 
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(C) Apply the right-hand rule for magnetic field: 
• Grab the loop with your right hand, such that your thumb points clockwise (since 

that’s how the current is drawn in the problem).  No matter where you grab the 
loop, your fingers are going into the page ( ) at point H.  The magnetic field ( ) 
points into the page ( ) at point H. 

• For point G, grab the loop at the leftmost point (that point is nearest to point G, so it 
will have the dominant effect).  For point J, grab the loop at the rightmost point (the 
point nearest to point J).  Your fingers are coming out of the page ( ) at points G 
and J.  The magnetic field (  and ) points out of the page ( ) at points G and J. 

• Note:  These answers are the opposite inside and outside of the loop compared to 
the similar example because the current is clockwise in this problem, whereas the 
current was counterclockwise in the similar example. 

(D) This problem is essentially the same as part (C), except that the current is counter-
clockwise instead of clockwise.  The answers are simply the opposite of part (C)’s answers: 

• The magnetic field ( ) points out of the page ( ) at point L. 
• The magnetic field (  and ) points into the page ( )at points K and M. 

(E) First label the positive (+) and negative (−) terminals of the battery (the long line is 
the positive terminal) and draw the current from the positive terminal to the negative 
terminal.  See the diagram below on the left. 

Now apply the right-hand rule for magnetic field: 
• This problem is the same as point H from part (C), since the current is traveling 

through the loop in a clockwise path. 
• The magnetic field ( ) points into the page ( ) at point N. 

𝑅𝑅

 
+ − 

 
N 

𝑅𝑅 

 
+ − 
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(F) Note that this loop (unlike the three previous problems) does not lie in the plane of the 
paper.  This loop is a horizontal circle with the solid (—) semicircle in front of the paper 
and the dashed (---) semicircle behind the paper.  It’s like the rim of a basketball hoop.  
Apply the right-hand rule for magnetic field: 

• Imagine grabbing the front of the rim of a basketball hoop with your right hand, 
such that your thumb points to your left (since in the diagram, the current is 
heading to the left in the front of the loop). 

• Your fingers are going down (↓) at point O inside of the loop.  The magnetic field 
(𝐁𝐁��⃗ 𝑂𝑂) points down (↓) at point O. 

• Note:  This answer is the opposite of the similar example because the current is 
heading in the opposite direction in this problem compared to that example. 

(G) This is similar to part (F), except that now the loop is vertical instead of horizontal.  
Apply the right-hand rule for magnetic field: 

• Imagine grabbing the front of the loop with your right hand, such that your thumb 
points up (since in the diagram, the current is heading up in the front of the loop). 

• Your fingers are going to the left (←) at point P inside of the loop.  The magnetic 
field (𝐁𝐁��⃗ 𝑃𝑃) points to the left (←) at point P. 

(H) This is the same as part (G), except that the current is heading in the opposite 
direction.  The answer is simply the opposite of part (G)’s answer.  The magnetic field (𝐁𝐁��⃗ 𝑄𝑄) 
points to the right (→) at point Q. 
(I) This solenoid essentially consists of several (approximately) horizontal loops.  Each 
horizontal loop is just like part (F).  Note that the current (𝐼𝐼) is heading the same way (it is 
pointing to the left in the front of each loop) in parts (I) and (F).  Therefore, just as in part 
(F), the magnetic field (𝐁𝐁��⃗ 𝑅𝑅) points down (↓) at point R inside the solenoid. 
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Chapter 20:  Combining the Two Right-hand Rules 

48.  First apply the right-hand rule from Chapter 19 to find the magnetic field.  Next apply 
the right-hand rule from Chapter 18 to find the magnetic force. 
(A) Draw the field point on 2 since we want the force exerted on 2. 

 
• Apply the right-hand rule for magnetic field (Chapter 19) to 1.  Grab 1 with your 

thumb down ( ), along 1, and your fingers wrapped around 1.  Your fingers are 
coming out of the page ( ) at the field point ().  The magnetic field ( 1) that 1
makes at the field point () is out of the page ( ). 

• Now apply the right-hand rule for magnetic force (Chapter 18) to 2.  Point your 
fingers up ( ), along 2.  At the same time, face your palm out of the page ( ), along 

1.  Your thumb points to the right ( ), along the magnetic force ( 1). 
• The left current ( 1) pushes the right current ( 2) to the right ( ).  (They repel.) 

(B) Draw the field point on 2 since we want the force exerted on 2. 

 
• Apply the right-hand rule for magnetic field (Chapter 19) to 1.  Grab 1 with your 

thumb down ( ), along 1, and your fingers wrapped around 1.  Your fingers are 
coming out of the page ( ) at the field point ().  The magnetic field ( 1) that 1
makes at the field point () is out of the page ( ). 

• Now apply the right-hand rule for magnetic force (Chapter 18) to 2.  Point your 
fingers down ( ), along 2.  At the same time, face your palm out of the page ( ), 
along 1.  Your thumb points to the left ( ), along the magnetic force ( 1). 

• The left current ( 1) pulls the right current ( 2) to the left ( ).  (They attract.) 
(C) Note that the wording of this problem is different:  Note the difference in the subscripts. 

• Draw the field point on 1 (not on 2) since we want the force exerted on 1. 
• Apply the right-hand rule for magnetic field (Chapter 19) to 2 (not 1).  Grab 2 with 

your thumb down ( ), along 2, and your fingers wrapped around 2.  Your fingers 
are going into the page ( ) at the field point ().  The magnetic field ( 2) that 2
(it’s not 1 in this problem) makes at the field point () is into the page ( ). 

1 

2 

field 
point 

1 2 

field 
point 
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• Now apply the right-hand rule for magnetic force (Chapter 18) to 1 (not 2).  Point 

your fingers to the left ( ), along 1 (it’s not 2 in this problem).  At the same time, 
face your palm into the page ( ), along 2.  Your thumb points down ( ), along the 
magnetic force ( 2). 

• The right current ( 2) pushes the left current ( 1) downward ( ).
• Note that we found 2 and 2 in this problem (not 1 and 1) because this problem 

asked us to find the magnetic force exerted by 2 on 1 (not by 1 on 2). 
(D) The field point is point A since we want the force exerted on 2 at point A. 

• Apply the right-hand rule for magnetic field (Chapter 19) to 1.  Grab 1 with your 
thumb along 1 and your fingers wrapped around 1.  Your fingers are going into the 
page ( ) at the field point (point A).  The magnetic field ( 1) that 1 makes at the 
field point (point A) is into the page ( ). 

• Now apply the right-hand rule for magnetic force (Chapter 18) to 2 at point A.  
Point your fingers up ( ), since 2 runs upward at point A.  At the same time, face 
your palm into the page ( ), along 1.  Your thumb points to the left ( ), along the 
magnetic force ( 1). 

• The outer current ( 1) pushes the inner current ( 2) to the left ( ) at point A.  More 
generally, the outer current pushes the inner current inward.  (They repel.) 

(E) Draw the field point on 2 since we want the force exerted on 2. 
• Label the positive (+) and negative (−) terminals of the battery:  The long line is the 

positive (+) terminal.  We draw the current from the positive terminal to the 
negative terminal:  In this problem, the current ( 1) runs clockwise, as shown below. 

 
• Apply the right-hand rule for magnetic field (Chapter 19) to 1.  Grab 1 at the bottom

of the loop, with your thumb left ( ), since 1 runs to the left at the bottom of the 
loop.  Your fingers are coming out of the page ( ) at the field point ().  The 
magnetic field ( 1) that 1 makes at the field point () is out of the page ( ). 

1 

2 

field 
point 

field point 
2 

𝑅𝑅 

 
1 

+−
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• Now apply the right-hand rule for magnetic force (Chapter 18) to 2.  Point your 
fingers to the right ( ), along 2.  At the same time, face your palm out of the page 
( ), along 1.  Tip:  Turn the book to make it more comfortable to position your 
hand as needed.  Your thumb points down ( ), along the magnetic force ( 1). 

• The top current ( 1) pushes the bottom current ( 2) downward ( ).  (They repel.) 
(F) Draw the field point in the center of the loop since we want the force exerted on 2. 

 
• Apply the right-hand rule for magnetic field (Chapter 19) to 1.  Grab 1 with your 

thumb along 1 and your fingers wrapped around 1.  Your fingers are going into the 
page ( ) at the field point ().  The magnetic field ( 1) that 1 makes at the field 
point () is into the page ( ). 

• Now apply the right-hand rule for magnetic force (Chapter 18) to 2.  The current 
( 2) runs into the page ( ), and the magnetic field ( 1) is also into the page ( ).  
Recall from Chapter 18 that the magnetic force ( 1) is zero when the current ( 2) 
and magnetic field ( 1) are parallel. 

• The outer current ( 1) exerts no force on the inner current ( 2):  1 = 0.
(G) Draw the field point inside of the loop since we want the force exerted on the proton. 

 
• Apply the right-hand rule for magnetic field (Chapter 19) to 1.  Grab 1 with your 

thumb along 1 and your fingers wrapped around 1.  Your fingers are coming out of 
the page ( ) at the field point ().  The magnetic field ( 1) that 1 makes at the 
field point () is out of the page ( ). 

• Note that the symbol  represents a proton, while the symbol  represents velocity. 
• Now apply the right-hand rule for magnetic force (Chapter 18) to the proton ( ).  

Point your fingers to the right ( ), along .  At the same time, face your palm out of
the page ( ), along 1.  Tip:  Turn the book to make it more comfortable to position 
your hand as needed.  Your thumb points down ( ), along the magnetic force ( 1). 

• The current ( 1) pushes the proton downward ( ). 

1 

field 
point 

field 
point

1 
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(H) Draw the field point on 2 since we want the force exerted on 2. 

 
• Apply the right-hand rule for magnetic field (Chapter 19) to 1.  Grab 1 with your 

thumb out of the page ( ), along 1, and your fingers wrapped around 1.  Your 
fingers are headed upward ( ) at the field point ().  The magnetic field ( 1) that 1
makes at the field point () is upward ( ). 

• Note:  In the diagram above on the right, we drew a circular magnetic field line 
created by 1.  The magnetic field ( 1) that 1 makes at the field point () is tangent 
to that circular magnetic field line, as we learned in Chapter 19. 

• Now apply the right-hand rule for magnetic force (Chapter 18) to 2.  Point your 
fingers into the page ( ), along 2.  At the same time, face your palm upward ( ), 
along 1.  Your thumb points to the right ( ), along the magnetic force ( 1). 

• The left current ( 1) pushes the right current ( 2) to the right ( ).  (They repel.) 
(I) The field point is point C since we want the force exerted on 2 at point C. 

• Apply the right-hand rule for magnetic field (Chapter 19) to 1.  Grab 1 at the right of 
the left loop, with your thumb upward ( ), since 1 runs upward at the right of the 
left loop.  (We’re using the right side of the left loop since this point is nearest to the 
right loop, as it will have the dominant effect.)  Your fingers are going into the page 
( ) at the field point ().  The magnetic field ( 1) that 1 makes at the field point 
() is into the page ( ). 

• Now apply the right-hand rule for magnetic force (Chapter 18) to 2 at point C.  Point 
your fingers to the right ( ), since 2 runs to the right at point C.  At the same time, 
face your palm into the page ( ), along 1.  Your thumb points up ( ), along the 
magnetic force ( 1). 

• The left current ( 1) pushes the right ( 2) upward ( ) at point C.  More generally, the 
left loop pushes the right loop inward (meaning that at any point on the right loop, 
the magnetic force that 1 exerts on 2 is toward the center of the right loop). 

 

1 1
 

1 

field
point 

1 1
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Chapter 21:  Magnetic Force 

49.  The magnetic field is = 1
2

 T for all parts of this problem. 
(A) Apply the equation 𝐹𝐹𝑚𝑚 = sin . 

• = 90° because the current ( ) is perpendicular to the magnetic field ( ). 
• The magnitude of the magnetic force is 𝐹𝐹𝑚𝑚 = 6.0 N. 
• One way to find the direction of the magnetic force ( 𝑚𝑚) is to apply the right-hand 

rule for magnetic force (Chapter 18).  Draw a right-handed, three-dimensional 
coordinate system with 𝑥𝑥, 𝑥𝑥, and .  For example, put +𝑥𝑥 to the right, +𝑥𝑥 up, and +  
out of the page, like the diagram on page 212.  Then point your fingers into the page 
( ), along the current ( ).  At the same time, face your palm upward ( ), along the 
magnetic field ( ).  Your thumb points to the right ( ), along the magnetic force 
( 𝑚𝑚), which is along the +𝑥𝑥-axis. 

(B) Apply the equation 𝐹𝐹𝑚𝑚 = |𝑞𝑞| sin . 
• Convert the charge from µC to C using µ = 10−6.  You should get 𝑞𝑞 = 2.00 × 10−4 C. 
• Convert the speed to SI units using k = 1000.  You should get = 60,000 m/s.
• = 120° because the velocity ( ) is 30° below the 𝑥𝑥-axis and the magnetic field ( ) 

points along the +𝑥𝑥-axis:  30° + 90° = 120°.  See the diagram below. 

 
• Note that 10−4 × 103 = 10−1 = 1

10
. 

• The magnitude of the magnetic force is 𝐹𝐹𝑚𝑚 = 3 3 N. 
• To find the direction of the magnetic force ( 𝑚𝑚), apply the right-hand rule for 

magnetic force (Chapter 18).  Point your fingers right and downward ( ), along the 
velocity ( ).  At the same time, face your palm upward ( ), along the magnetic field 
( ).  Your thumb points out of the page ( ), along the magnetic force ( 𝑚𝑚), which is 
along the + -axis. 

𝑥𝑥

𝑥𝑥 

 

−  

−𝑥𝑥

−𝑥𝑥

 

 
30° 
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(C) Apply the equation 𝐹𝐹𝑚𝑚 = |𝑞𝑞|𝑣𝑣𝐵𝐵 sin𝜃𝜃. 
• Which value(s) of 𝜃𝜃 make sin𝜃𝜃 = 0? 
• The answer is 𝜃𝜃 = 0° or 180°, since sin 0° = 0 and sin 180° = 0. 
• This means that the velocity (𝒗𝒗��⃗ ) must either be parallel or anti-parallel to the 

magnetic field (𝐁𝐁��⃗ ).  Since the magnetic field points along the +𝑦𝑦-axis, the velocity 
must point along +𝑦𝑦 or −𝑦𝑦. 

 
50.  (A) This is just like Problem 46, part (D) in Chapter 18 on page 192, which similarly 
has a negative charge.  The only difference is that this problem has the charge moving 
clockwise instead of counterclockwise, so the answer is into the page (⊗). 
(B) Apply Newton’s second law to the particle.  The acceleration is centripetal. 

• Begin with ∑𝐹𝐹𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑎𝑎𝑐𝑐.  Use the equations 𝐹𝐹𝑚𝑚 = |𝑞𝑞|𝑣𝑣𝐵𝐵 sin𝜃𝜃 and 𝑎𝑎𝑐𝑐 = 𝑣𝑣2

𝑅𝑅
. 

• You should get |𝑞𝑞|𝑣𝑣𝐵𝐵 sin𝜃𝜃 = 𝑚𝑚𝑣𝑣2

𝑅𝑅
.  Divide both sides of the equation by 𝑣𝑣. 

• You should get |𝑞𝑞|𝐵𝐵 sin𝜃𝜃 = 𝑚𝑚𝑣𝑣
𝑅𝑅

.  Note that 𝑣𝑣
2

𝑣𝑣
= 𝑣𝑣.  Also note that 𝜃𝜃 = 90°. 

• Multiply both sides of the equation by 𝑅𝑅 and divide by |𝑞𝑞|𝐵𝐵. 
• You should get 𝑅𝑅 = 𝑚𝑚𝑣𝑣

|𝑞𝑞|𝐵𝐵
.  Convert everything to SI units. 

• You should get |𝑞𝑞| = 4.00 × 10−4 C, 𝑚𝑚 = 0.00025 kg = 1
4000

 kg, and 𝐵𝐵 = 20 T. 

• The radius is 𝑅𝑅 = 125 m.  (That may seem like a huge circle, but particles travel in 
much larger circles at some particle colliders, such as the Large Hadron Collider.) 
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51.  First, apply the right-hand rule for magnetic force to each side of the rectangular loop: 
• Top side:  Point your fingers to the right ( ) along the current ( ) and your palm 

down ( ) along the magnetic field ( ).  The magnetic force ( 𝑛𝑛 ) is into the page ( ). 
• Right side:  The current ( ) points down ( ) and the magnetic field ( ) also points 

down ( ).  Since  and  are parallel, the magnetic force ( 𝑔𝑔 𝑛𝑛) is zero.
• Bottom side:  Point your fingers to the left ( ) along the current ( ) and your palm 

down ( ) along the magnetic field ( ).  The magnetic force ( 𝑏𝑏 𝑛𝑛) is out of the page 
( ). 

• Left side:  The current ( ) points up ( ) and the magnetic field ( ) points down ( ).  
Since  and  are anti-parallel, the magnetic force ( 𝑒𝑒 𝑛𝑛) is zero. 

 
• The top side of the loop is pushed into the page, while the bottom side of the loop is 

pulled out of the page.  The loop rotates about the dashed axis shown above. 
(A) Find the force exerted on each side of the loop. 

• Calculate the magnitudes of the two nonzero forces, 𝐹𝐹𝑛𝑛  and 𝐹𝐹𝑏𝑏 𝑛𝑛, using the 

equation 𝐹𝐹𝑚𝑚 = sin .  Note that = 50 cm = 1
2

 m (the correct length is the 

“width”), = 8000 G = 0.80 T = 4  T, and = 90°.  (Recall that 1 G = 10−4 T.) 

• You should get 𝐹𝐹𝑛𝑛 = 𝐹𝐹𝑏𝑏 𝑛𝑛 = 12 N. 
• Since 𝑛𝑛  is into the page ( ) and 𝑏𝑏 𝑛𝑛 is out of the page ( ), and since the two 

forces have equal magnitudes, they cancel out:  𝐹𝐹𝑛𝑛𝑒𝑒𝑛𝑛 = 0. 
(B) Don’t insert the net force, 𝐹𝐹𝑛𝑛𝑒𝑒𝑛𝑛, into the equation = 𝐹𝐹 sin .  Although the net force is 
zero, the net torque isn’t zero.  There are two ways to solve this problem. 

• One way is to apply the formula 𝑛𝑛𝑒𝑒𝑛𝑛 = sin .  Note that = 90°. 
• Note that =  (width × height), where = 50 cm = 1

2
 m and = 25 cm = 1

4
 m. 

• The net torque is 𝑛𝑛𝑒𝑒𝑛𝑛 = 3.0 Nm. 
• Another way to find the net torque is to apply the equation = 𝐹𝐹 sin  to both 𝐹𝐹𝑛𝑛

and 𝐹𝐹𝑏𝑏 𝑛𝑛, separately, using =
2

 (see the dashed line in the figure above). 

• Then add the two torques together:  𝑛𝑛𝑒𝑒𝑛𝑛 = 1 + 2.  Although the forces are 
opposite and cancel out, the torques are in the same direction because both torques 
cause the loop to rotate in the same direction.  You should get 𝑛𝑛𝑒𝑒𝑛𝑛 = 3.0 Nm.  

𝑒𝑒 𝑛𝑛 = 0 

𝑔𝑔 𝑛𝑛 = 0 

𝑛𝑛 =  

𝑏𝑏 𝑛𝑛 =  

 
 

𝑒𝑒
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Chapter 22:  Magnetic Field 

52.  Draw the field point at the midpoint of the base, as shown below.  Draw and label the 
relevant distances on the diagram, too. 

 
• There are three separate magnetic fields to find:  One magnetic field is created by 

each current at the field point.  Use the following equations.

𝑒𝑒 𝑛𝑛 = 0 𝑒𝑒 𝑛𝑛

2 𝑒𝑒 𝑛𝑛
     ,     𝑛𝑛 = 0 𝑛𝑛

2 𝑛𝑛
     ,     𝑔𝑔 𝑛𝑛 = 0 𝑔𝑔 𝑛𝑛

2 𝑔𝑔 𝑛𝑛
 

• Note that 𝑒𝑒 𝑛𝑛 = 2.0 m, 𝑛𝑛 = 4.0 m, and 𝑔𝑔 𝑛𝑛 = 2.0 m.  (See the diagram above.) 

• Recall that the permeability of free space is 0 = 4 × 10−  T∙m
A

. 

• Check that 𝑒𝑒 𝑛𝑛 = 8.0 × 10−  T, 𝑛𝑛 = 16.0 × 10−  T, and 𝑔𝑔 𝑛𝑛 = 8.0 × 10−  T. 
• Apply the right-hand rule for magnetic field (Chapter 19) to find the direction of 

each magnetic field at the field point. 
o When you grab 𝑒𝑒 𝑛𝑛 with your thumb out of the page ( ), along 𝑒𝑒 𝑛𝑛, and 

your fingers wrapped around 𝑒𝑒 𝑛𝑛, your fingers are going up ( ) at the field 
point ().  The magnetic field ( 𝑒𝑒 𝑛𝑛) that 𝑒𝑒 𝑛𝑛 makes at the field point () is 
straight up ( ). 

o When you grab 𝑛𝑛 with your thumb into the page ( ), along 𝑛𝑛 , and your 
fingers wrapped around 𝑛𝑛 , your fingers are going to the left ( ) at the field 
point ().  The magnetic field ( 𝑛𝑛 ) that 𝑛𝑛  makes at the field point () is 
to the left ( ). 

o When you grab 𝑔𝑔 𝑛𝑛 with your thumb into the page ( ), along 𝑔𝑔 𝑛𝑛, and 
your fingers wrapped around 𝑔𝑔 𝑛𝑛, your fingers are going up ( ) at the field 
point ().  The magnetic field ( 𝑔𝑔 𝑛𝑛) that 𝑔𝑔 𝑛𝑛 makes at the field point () 
is straight up ( ). 

• Since 𝑒𝑒 𝑛𝑛 and 𝑔𝑔 𝑛𝑛 both point straight up ( ), we add them: 
= 𝑒𝑒 𝑛𝑛 + 𝑔𝑔 𝑛𝑛 

• Check your intermediate answer:  = 16.0 × 10− T.  You’re not finished yet.

 
8.0 A 

 

 

8.0 A 

32 A 

8.0 A field 
point 

4.0 m 

2.0 m 2.0 m 
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• Since 𝑛𝑛  is perpendicular to 𝑒𝑒 𝑛𝑛 and 𝑔𝑔 𝑛𝑛 (since 𝑛𝑛  points to the left, while 

𝑒𝑒 𝑛𝑛 and 𝑔𝑔 𝑛𝑛 both point up), we use the Pythagorean theorem, with 
representing the combination of 𝑒𝑒 𝑛𝑛 and 𝑔𝑔 𝑛𝑛. 

𝑛𝑛𝑒𝑒𝑛𝑛 = 𝑛𝑛
2 + 2

• The magnitude of the net magnetic field at the field point is 𝑛𝑛𝑒𝑒𝑛𝑛 = 16 2 × 10−  T.  
If you use a calculator, this comes out to 𝑛𝑛𝑒𝑒𝑛𝑛 = 23 × 10−  T = 2.3 × 10−6 T. 

• You can find the direction of the net magnetic field with an inverse tangent. 

= tan−1  

• Note that = − 𝑛𝑛  (since 𝑛𝑛  points to the left). 
• We choose +𝑥𝑥 to point right and +𝑥𝑥 to point up, such that the answer lies in 

Quadrant II (since 𝑛𝑛  points left, while 𝑒𝑒 𝑛𝑛 and 𝑔𝑔 𝑛𝑛 point up).  The reference 
angle is 45° and the Quadrant II angle is = 180° − 𝑒𝑒 = 135°. 

• The direction of the net magnetic field at the field point is = 135°.

53.  Draw a field point () at the location of 2 (since the force specified in the problem is 
exerted on 2), and find the magnetic field at the field point () created by 1. 

 
• First use the equation for the magnetic field created by a long straight wire, where 

= = 0.050 m = 1
20

 m is the distance between the wires. 

1 = 0 1

2
 

• Check your intermediate answer:  1 = 320 × 10−  T = 3.2 × 10−  T. 
• Now use the equation for magnetic force:  𝐹𝐹1 = 2 2 1 sin . 
• Note that = 90° because 2 points left and 1 is into the page (see below). 
• The magnetic force that 1 exerts on 2 has a magnitude of 𝐹𝐹1 = 4.8 × 10−4 N, which 

can also be expressed as 𝐹𝐹1 = 48 × 10−  N, 𝐹𝐹1 = 0.00048 N, or 𝐹𝐹1 = 0.48 mN. 
• Apply the technique from Chapter 20 to find the direction of the magnetic force. 

o Apply the right-hand rule for magnetic field (Chapter 19) to 1.  Grab 1 with 
your thumb to the right ( ), along 1, and your fingers wrapped around 1.  
Your fingers are going into the page ( ) at the field point ().  The magnetic 
field ( 1) that 1 makes at the field point () is into the page ( ). 

o Now apply the right-hand rule for magnetic force (Chapter 18) to 2.  Point 

1 
 

2 
 field point 

www.engineersreferencebookspdf.com



Essential Trig-based Physics Study Guide Workbook 

379 
 

your fingers to the left ( ), along 2.  At the same time, face your palm into 
the page ( ), along 1.  Your thumb points down ( ), along the magnetic 
force ( 1). 

• The top current ( 1) pushes the bottom current ( 2) straight down ( ).  (They repel.) 

54.  Draw a field point () at the location of 3 (since the force specified in the problem is 
exerted on 3), and find the magnetic fields at the field point () created by 1 and 2. 

 
• First use the equation for the magnetic field created by a long straight wire. 

1 = 0 1

2 1
     ,     2 = 0 2

2 2
 

• Note that 1 = 0.25 + 0.25 = 0.50 m and 2 = 0.25 m. 
• Check your intermediate answers:  1 = 12 × 10−  T and 1 = 32 × 10−  T. 
• Now use the equation for magnetic force:  𝐹𝐹1 = 3 3 1 sin  and 𝐹𝐹2 = 3 3 2 sin . 
• Note that = 90° because 3 is perpendicular to the magnetic fields.
• Check your intermediate answers:  𝐹𝐹1 = 360 × 10−  N and 𝐹𝐹2 = 960 × 10−  N. 
• In order to determine how to combine the individual forces to find the net force, you 

must determine the direction of 1 and 2.  Apply the strategy from Chapter 20, just 
as we did in the previous problem.  Check your answers below: 

o 1 is to the left ( ), since 1 is parallel to 3 and parallel currents attract. 
o 2 is to the right ( ), since 2 is anti-parallel to 3 and anti-parallel currents 

repel. 
• Since 1 and 2 have opposite directions, subtract them to find the net force. 

𝐹𝐹𝑛𝑛𝑒𝑒𝑛𝑛 = |𝐹𝐹1 − 𝐹𝐹2| 
• The net magnetic force that 1 and 2 exert on 3 has a magnitude of 𝐹𝐹𝑛𝑛𝑒𝑒𝑛𝑛 = 600 ×

10−  N, which can also be expressed as 𝐹𝐹𝑛𝑛𝑒𝑒𝑛𝑛 = 6.0 × 10−  N. 
• The direction of the net magnetic force that 1 and 2 exert on 3 is to the right ( ), 

since 𝐹𝐹2 is greater than 𝐹𝐹1 and since 2 points to the right. 

1 

2 

3 

field point 
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55.  Draw a field point () at the location of the 2.0-A current (since the force specified in 
the problem is exerted on the 2.0-A current), and find the magnetic fields at the field point 
() created by the 4.0-A currents. 

 
• First use the equation for the magnetic field created by a long straight wire. 

𝑒𝑒 𝑛𝑛 = 0 𝑒𝑒 𝑛𝑛

2 𝑒𝑒 𝑛𝑛
    ,     𝑛𝑛 = 0 𝑛𝑛

2 𝑛𝑛
 

• Note that 𝑒𝑒 𝑛𝑛 = 0.25 m and 𝑔𝑔 𝑛𝑛 = 0.25 m. 
• Check your intermediate answers:  𝑒𝑒 𝑛𝑛 = 32 × 10−  T and 𝑛𝑛 = 32 × 10−  T. 
• Now use the equations 𝐹𝐹𝑒𝑒 𝑛𝑛 = 𝑏𝑏 𝑏𝑏 𝑒𝑒 𝑛𝑛 sin  and 𝐹𝐹𝑛𝑛 = 𝑏𝑏 𝑏𝑏 𝑛𝑛 sin . 
• Note:  The subscript  stands for “bottom right” (the 2.0-A current). 
• Note that = 90° because 𝑏𝑏  is perpendicular to the magnetic fields. 
• Check your intermediate answers:  𝐹𝐹𝑒𝑒 𝑛𝑛 = 192 × 10−  N and 𝐹𝐹𝑛𝑛 = 192 × 10−  N. 
• In order to determine how to combine the individual forces to find the net force, you 

must determine the direction of 𝑒𝑒 𝑛𝑛 and 𝑛𝑛 .  Apply the strategy from Chapter 20, 
just as we did in Problem 53.  Check your answers below: 

o 𝑒𝑒 𝑛𝑛 is to the right ( ), since 𝑒𝑒 𝑛𝑛 is anti-parallel to 𝑏𝑏  and anti-parallel 
currents repel. 

o 𝑛𝑛  is down ( ), since 𝑛𝑛  is anti-parallel to 𝑏𝑏  and anti-parallel currents 
repel. 

• Since 𝑒𝑒 𝑛𝑛 and 𝑛𝑛  are perpendicular, we use the Pythagorean theorem. 

𝐹𝐹𝑛𝑛𝑒𝑒𝑛𝑛 = 𝐹𝐹𝑒𝑒 𝑛𝑛
2 + 𝐹𝐹𝑛𝑛2  

• The magnitude of the net magnetic force at the field point is 𝐹𝐹𝑛𝑛𝑒𝑒𝑛𝑛 = 192 2 × 10−  N.  
If you use a calculator, this comes out to 𝐹𝐹𝑛𝑛𝑒𝑒𝑛𝑛 = 272 × 10−  N = 2.7 × 10−  N. 

• You can find the direction of the net magnetic force with an inverse tangent. 

𝐹𝐹 = tan−1
𝐹𝐹
𝐹𝐹

= tan−1
−𝐹𝐹𝑛𝑛
𝐹𝐹 𝑒𝑒 𝑛𝑛

 

• We choose +𝑥𝑥 to point right and +𝑥𝑥 to point up, such that the answer lies in 
Quadrant IV (since 𝑒𝑒 𝑛𝑛 points right, while 𝑛𝑛 points down).  The reference angle 
is 45° and the Quadrant IV angle is 𝐹𝐹 = 360° − 𝑒𝑒 = 315°. 

4.0 A 
 

 
 

4.0 A 

field 
point 
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56.  Study the last example from Chapter 22, since this problem is very similar to that 
example.  The first step is to determine the direction of the magnetic force that 1 exerts on 
each side of the rectangular loop, using the technique from Chapter 20. 

• Apply the right-hand rule for magnetic field (Chapter 19) to 1.  Grab 1 with your 
thumb along 1 and your fingers wrapped around 1.  Your fingers are going out of 
the page ( ) where the rectangular loop is.  The magnetic field ( 1) that 1 makes 
at the rectangular loop is out of the page ( ). 

Now apply the right-hand rule for magnetic force (Chapter 18) to each side of the loop. 
• Bottom side:  Point your fingers to the left ( ) along the current ( 2) and your palm 

out of the page ( ) along the magnetic field ( 1).  The magnetic force ( 𝑏𝑏 𝑛𝑛) is up ( ). 
• Left side:  Point your fingers up ( ) along the current ( 2) and your palm out of the 

page ( ) along the magnetic field ( 1).  The magnetic force ( 𝑒𝑒 𝑛𝑛) is right ( ). 
• Top side:  Point your fingers to the right ( ) along the current ( 2) and your palm 

out of the page ( ) along the magnetic field ( 1).  The magnetic force ( 𝑛𝑛 ) is down ( ).
• Right side:  Point your fingers down ( ) along the current ( 2) and your palm out of 

the page ( ) along the magnetic field ( 1).  The magnetic force ( 𝑔𝑔 𝑛𝑛) is left ( ). 

 
• Note that 𝑒𝑒 𝑛𝑛 and 𝑔𝑔 𝑛𝑛 cancel out in the calculation for the net magnetic force 

because they have equal magnitudes (since they are the same distance from 1) and 
opposite direction.  However, 𝑛𝑛  and 𝑏𝑏 𝑛𝑛 do not cancel.

• Begin the math with the following equations.

𝑛𝑛 = 0 1

2 𝑛𝑛
     ,     𝑏𝑏 𝑛𝑛 = 0 1

2 𝑏𝑏 𝑛𝑛
 

• Note that 𝑛𝑛 = 0.25 m and 𝑏𝑏 𝑛𝑛 = 0.25 + 0.50 = 0.75 m. 
• Check your intermediate answers:  𝑛𝑛 = 48 × 10−  T and 𝑏𝑏 𝑛𝑛 = 16 × 10−  T. 
• Now use the equations 𝐹𝐹𝑛𝑛 = 2 2 𝑛𝑛 sin  and 𝐹𝐹𝑏𝑏 𝑛𝑛 = 2 2 𝑏𝑏 𝑛𝑛 sin . 
• Note that = 90° because the loop is perpendicular to the magnetic fields. 
• Note that 2 = 1.5 m (the width of the rectangular loop) since that is the distance 

that 2 travels in the top and bottom sides of the rectangular loop. 
• Check your intermediate answers:  𝐹𝐹𝑛𝑛 = 576 × 10−  N and 𝐹𝐹𝑏𝑏 𝑛𝑛 = 192 × 10−  N. 
• Since 𝑛𝑛 and 𝑏𝑏 𝑛𝑛 have opposite directions, subtract them to find the net force.

𝐹𝐹𝑛𝑛𝑒𝑒𝑛𝑛 = 𝐹𝐹𝑛𝑛 − 𝐹𝐹𝑏𝑏 𝑛𝑛  

2 

1 

1 
𝑒𝑒 𝑛𝑛 

𝑔𝑔 𝑛𝑛 𝑛𝑛  

𝑏𝑏 𝑛𝑛 

   
𝑔𝑔𝑔𝑔𝑔𝑔 𝑛𝑛

      

𝑒𝑒 𝑛𝑛
   2       
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• The net magnetic force that 1 exerts on 2 has a magnitude of 𝐹𝐹𝑛𝑛𝑒𝑒𝑛𝑛 = 384 × 10− N, 
which can also be expressed as 𝐹𝐹𝑛𝑛𝑒𝑒𝑛𝑛 = 3.84 × 10−  N. 

• The direction of the net magnetic force that 1 exerts on 2 is down ( ), since 𝐹𝐹𝑛𝑛  is 
greater than 𝐹𝐹𝑏𝑏 𝑛𝑛 and since 𝑛𝑛  points down. 

Chapter 23:  Ampère’s Law 

57.  This problem is similar to the example with the infinite solid cylindrical conductor. 
Note:  If you recall how we treated the conducting shell in the context of Gauss’s law 
(Chapter 6), you’ll want to note that the solution to a conducting shell problem in the 
context of Ampère’s law is significantly different because current is not an electrostatic 
situation (since current involves a flow of charge).  Most notably, the magnetic field is not
zero in region III, like the electric field would be in an electrostatic Gauss’s law problem.
(However, as we will see, in this particular problem the magnetic field is zero in region IV.) 

 
Region I:  < 𝑎𝑎.

• The conducting shell doesn’t matter in region I.  The answer is exactly the same as 
the example with the infinite solid cylinder:  =

2 𝑎𝑎2
.  Note that this is one of the 

alternate forms of the equation on page 242. 
Region II:  𝑎𝑎 < < . 

• The conducting shell also doesn’t matter in region II.  The answer is again exactly 
the same as the example with the infinite solid cylinder:  =

2
. 

Region III:  < < . 
• There is a “trick” to finding the current enclosed in region III:  You must consider 

both conductors for this region, plus the fact that the two currents run in opposite 
directions. 
 

B

s 

𝑎𝑎 

 

I II 
III 

IV 

 

 

 J 

J J 
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• The current enclosed in region III includes 100% of the solid cylinder’s current, +𝐼𝐼, 
which comes out of the page (⊙) plus a fraction of the cylindrical shell’s current, −𝐼𝐼, 
which goes into the page (⊗):  𝐼𝐼𝑙𝑙𝑛𝑛𝑐𝑐 = 𝐼𝐼 − 𝐼𝐼𝑠𝑠ℎ𝑙𝑙𝑙𝑙𝑙𝑙. 

• Note that 𝐼𝐼𝑠𝑠ℎ𝑙𝑙𝑙𝑙𝑙𝑙 refers to the current enclosed within the shell in region III, which will 
be a fraction of the cylindrical shell’s total current (𝐼𝐼). 

• Apply the equation 𝐼𝐼𝑠𝑠ℎ𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐽𝐽𝐴𝐴𝑠𝑠ℎ𝑙𝑙𝑙𝑙𝑙𝑙 to find the current enclosed within the shell in 
region III. 

• The area of the shell is 𝐴𝐴𝑠𝑠ℎ𝑙𝑙𝑙𝑙𝑙𝑙 = 𝜋𝜋𝑟𝑟𝑐𝑐2 − 𝜋𝜋𝑏𝑏2 = 𝜋𝜋(𝑟𝑟𝑐𝑐2 − 𝑏𝑏2), since the current enclosed 
in the shell extends from the inner radius of the shell, 𝑏𝑏, up to the radius of the 
Ampèrian circle, 𝑟𝑟𝑐𝑐. 

• You should get 𝐼𝐼𝑠𝑠ℎ𝑙𝑙𝑙𝑙𝑙𝑙 = 𝜋𝜋𝐽𝐽(𝑟𝑟𝑐𝑐2 − 𝑏𝑏2). 
• If we go from 𝑏𝑏 all the way out to 𝑐𝑐, we will get the total current:  𝐼𝐼 = 𝜋𝜋𝐽𝐽(𝑐𝑐2 − 𝑏𝑏2). 
• Divide the two equations to get the following ratio.  Note that the 𝜋𝜋𝐽𝐽 cancels out. 

𝐼𝐼𝑠𝑠ℎ𝑙𝑙𝑙𝑙𝑙𝑙
𝐼𝐼

=
𝑟𝑟𝑐𝑐2 − 𝑏𝑏2

𝑐𝑐2 − 𝑏𝑏2
 

• Multiply both sides by 𝐼𝐼. 

𝐼𝐼𝑠𝑠ℎ𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐼𝐼 �
𝑟𝑟𝑐𝑐2 − 𝑏𝑏2

𝑐𝑐2 − 𝑏𝑏2
� 

• Plug this expression for 𝐼𝐼𝑠𝑠ℎ𝑙𝑙𝑙𝑙𝑙𝑙 into the previous equation 𝐼𝐼𝑙𝑙𝑛𝑛𝑐𝑐 = 𝐼𝐼 − 𝐼𝐼𝑠𝑠ℎ𝑙𝑙𝑙𝑙𝑙𝑙.  The minus 
sign represents that the shell’s current runs opposite to the solid cylinder’s current. 

𝐼𝐼𝑙𝑙𝑛𝑛𝑐𝑐 = 𝐼𝐼 − 𝐼𝐼 �
𝑟𝑟𝑐𝑐2 − 𝑏𝑏2

𝑐𝑐2 − 𝑏𝑏2
� = 𝐼𝐼 �1 −

𝑟𝑟𝑐𝑐2 − 𝑏𝑏2

𝑐𝑐2 − 𝑏𝑏2
� 

• We factored out the 𝐼𝐼.  Subtract the fractions using a common denominator. 

𝐼𝐼𝑙𝑙𝑛𝑛𝑐𝑐 = 𝐼𝐼 �
𝑐𝑐2 − 𝑏𝑏2

𝑐𝑐2 − 𝑏𝑏2
−
𝑟𝑟𝑐𝑐2 − 𝑏𝑏2

𝑐𝑐2 − 𝑏𝑏2
� = 𝐼𝐼 �

𝑐𝑐2 − 𝑏𝑏2 − 𝑟𝑟𝑐𝑐2 + 𝑏𝑏2

𝑐𝑐2 − 𝑏𝑏2
� = 𝐼𝐼 �

𝑐𝑐2 − 𝑟𝑟𝑐𝑐2

𝑐𝑐2 − 𝑏𝑏2
� 

• Note that when you distribute the minus sign (−) to the second term, the two minus 
signs combine to make +𝑏𝑏2.  That is, −(𝑟𝑟𝑐𝑐2 − 𝑏𝑏2) = −𝑟𝑟𝑐𝑐2 + 𝑏𝑏2.  The 𝑏𝑏2’s cancel out. 

• Plug this expression for 𝐼𝐼𝑙𝑙𝑛𝑛𝑐𝑐 into the equation for magnetic field from Ampère’s law. 

𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼 =
𝜇𝜇0𝐼𝐼𝑙𝑙𝑛𝑛𝑐𝑐
2𝜋𝜋𝑟𝑟𝑐𝑐

=
𝜇𝜇0𝐼𝐼(𝑐𝑐2 − 𝑟𝑟𝑐𝑐2)
2π𝑟𝑟𝑐𝑐(𝑐𝑐2 − 𝑏𝑏2) 

• Check your answer for consistency:  Verify that your solution matches your answer 
for regions II and IV at the boundaries.  As 𝑟𝑟𝑐𝑐 approaches 𝑏𝑏, the 𝑐𝑐2 − 𝑏𝑏2 will cancel 
out and the magnetic field approaches 𝜇𝜇0𝐼𝐼

2π𝑏𝑏
, which matches region II at the boundary.  

As 𝑟𝑟𝑐𝑐 approaches 𝑐𝑐, the magnetic field approaches 0, which matches region IV at the 
boundary.  Our solution checks out. 

• Note:  It’s possible to get a seemingly much different answer that turns out to be 
exactly the same (even if it doesn’t seem like it’s the same) if you approach the 
enclosed current a different way.  (Of course, if your answer is different, it could also 
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just be wrong.)  So if you obtained a different answer, see if it matches one of the 
alternate forms of the answer (you might not be wrong after all). 

• A common way that students arrive at a different (yet equivalent) answer to this 
problem is to obtain the total current for the solid conductor instead of the 
conducting shell.  The total current for the solid conductor is 𝐼𝐼 = 𝐽𝐽𝜋𝜋𝑎𝑎2, since the 
cross-sectional area for the solid conductor is 𝜋𝜋𝑎𝑎2. 

• In this case, find the shell current by dividing 𝐼𝐼𝑠𝑠ℎ𝑙𝑙𝑙𝑙𝑙𝑙 = 𝜋𝜋𝐽𝐽(𝑟𝑟𝑐𝑐2 − 𝑏𝑏2) by 𝐼𝐼 = 𝐽𝐽𝜋𝜋𝑎𝑎2. 

𝐼𝐼𝑠𝑠ℎ𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐼𝐼 �
𝑟𝑟𝑐𝑐2 − 𝑏𝑏2

𝑎𝑎2
� 

• Recall that the current enclosed equals 𝐼𝐼𝑙𝑙𝑛𝑛𝑐𝑐 = 𝐼𝐼 − 𝐼𝐼𝑠𝑠ℎ𝑙𝑙𝑙𝑙𝑙𝑙. 

𝐼𝐼𝑙𝑙𝑛𝑛𝑐𝑐 = 𝐼𝐼 − 𝐼𝐼 �
𝑟𝑟𝑐𝑐2 − 𝑏𝑏2

𝑎𝑎2
� = 𝐼𝐼 �1 −

𝑟𝑟𝑐𝑐2 − 𝑏𝑏2

𝑎𝑎2
� = 𝐼𝐼 �

𝑎𝑎2

𝑎𝑎2
−
𝑟𝑟𝑐𝑐2 − 𝑏𝑏2

𝑎𝑎2
� = 𝐼𝐼 �

𝑎𝑎2 − 𝑟𝑟𝑐𝑐2 + 𝑏𝑏2

𝑎𝑎2
� 

• In this case, the magnetic field in region III is: 

𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼 =
𝜇𝜇0𝐼𝐼𝑙𝑙𝑛𝑛𝑐𝑐
2𝜋𝜋𝑟𝑟𝑐𝑐

=
𝜇𝜇0𝐼𝐼(𝑎𝑎2 + 𝑏𝑏2 − 𝑟𝑟𝑐𝑐2)

2π𝑟𝑟𝑐𝑐𝑎𝑎2
 

• You can verify that this expression matches region II as 𝑟𝑟𝑐𝑐 approaches 𝑏𝑏, but it’s 
much more difficult to see that it matches region IV as 𝑟𝑟𝑐𝑐 approaches 𝑐𝑐.  With this in 
mind, it’s arguably better to go with our previous answer, which is the same as the 
answer shown above: 

𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼 =
𝜇𝜇0𝐼𝐼(𝑐𝑐2 − 𝑟𝑟𝑐𝑐2)
2π𝑟𝑟𝑐𝑐(𝑐𝑐2 − 𝑏𝑏2) 

• Another way to have a correct, but seemingly different, answer to this problem is to 
express your answer in terms of the current density (𝐽𝐽) instead of the total current 

(𝐼𝐼).  For example, 𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼 = 𝜇𝜇0𝐽𝐽(𝑐𝑐2−𝑟𝑟𝑐𝑐2)
2𝑟𝑟𝑐𝑐

 or 𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼 = 𝜇𝜇0𝐽𝐽(𝑎𝑎2−𝑟𝑟𝑐𝑐2+𝑏𝑏2)
2𝑟𝑟𝑐𝑐

.  (There are yet other ways 

to get a correct, yet different, answer:  You could mix and match our substitutions 
for 𝐼𝐼𝑠𝑠ℎ𝑙𝑙𝑙𝑙𝑙𝑙 and I, for example.) 

• Two common ways for students to arrive at an incorrect answer to this problem are 
to find the area from 0 to 𝑟𝑟𝑐𝑐 for 𝐼𝐼𝑠𝑠ℎ𝑙𝑙𝑙𝑙𝑙𝑙 (instead of finding it from 𝑏𝑏 to 𝑟𝑟𝑐𝑐) or to forget to 
include the solid cylinder’s current in 𝐼𝐼𝑙𝑙𝑛𝑛𝑐𝑐 = 𝐼𝐼 − 𝐼𝐼𝑠𝑠ℎ𝑙𝑙𝑙𝑙𝑙𝑙. 

Region IV:  𝑟𝑟 > 𝑐𝑐. 
• Outside both of the conducting cylinders, the net current enclosed is zero:  

𝐼𝐼𝑙𝑙𝑛𝑛𝑐𝑐 = 𝐼𝐼 − 𝐼𝐼 = 0.  That’s because one current equal to +𝐼𝐼 comes out of page for the 
solid cylinder, while another current equal to −𝐼𝐼 goes into page for the cylindrical 
shell.  Therefore, the net magnetic field in region IV is zero:  𝐵𝐵𝐼𝐼𝐼𝐼 = 0. 
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58.  This problem is similar to the example with an infinite current sheet.  Study that 
example and try to let it serve as a guide.  If you need help, you can always return here. 

• Begin by sketching the magnetic field lines.  See the diagram below. 

 
• Write down the equation for Ampère’s law. 
• Just as in the example with an infinite current sheet, Ampère’s law reduces to 

2 = 0 𝑒𝑒𝑛𝑛 .  Isolate  to get = 𝑒𝑒𝑛𝑛
2

.  See page 244. 

• Apply the equation 𝑒𝑒𝑛𝑛 = 𝑒𝑒𝑛𝑛  to find the current enclosed in each region. 
• This involves the area of intersection between the Ampèrian rectangle (see above) 

and the infinite current sheet. 
• The area enclosed equals the length times the width.  You should get 𝑒𝑒𝑛𝑛 = in 

regions I and III, and 𝑒𝑒𝑛𝑛 = 2  in region II. 
• You should get 𝑒𝑒𝑛𝑛 = in regions I and III, and 𝑒𝑒𝑛𝑛 = 2 in region II.
• Substitute these expressions for the current enclosed in the three regions into the 

previous equation for magnetic field, = 𝑒𝑒𝑛𝑛
2

.

• The answers are = −
2

, = 0  , and =
2

. 

• Note that in region II, when > 0, B  points along +𝑥𝑥, but when < 0, B points 
along −𝑥𝑥. 

I  
< −

2
 

III  
>

2
 II  

−
2

< <
2
 

𝑥𝑥 

 

𝑥𝑥 
B  

B  

J 
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59.  There are a couple of “tricks” involved in this solution.  The first “trick” is to apply the 
principle of superposition (vector addition), which we learned in Chapter 3.  Another 
“trick” is to express the current correctly for each object (we’ll clarify this “trick” when we 
reach that stage of the solution). 

• Geometrically, we could make a complete solid cylinder (which we will call the “big” 
cylinder) by adding the given shape (which we will call the “given” shape, and which 
inclues the cavity) to a solid cylinder that is the same size as the cavity (which we 
will call the “small” cylinder).  See the diagram below. 

• First find the magnetic field due to the big cylinder (ignoring the cavity) at a 
distance = 3𝑎𝑎

2
 away from the axis of the cylinder.  Since the field point 3𝑎𝑎

2
, 0, 0

lies outside of the cylinder, use the equation for the magnetic field in region II from 
the example with the infinite cylinder.  We will use one of the alternate forms from 
the bottom of page 242.  𝑏𝑏 𝑔𝑔 =

2
=

3 𝑎𝑎
 (for region II with = 3𝑎𝑎

2
. 

• Apply the right-hand rule for magnetic field (Chapter 19) to see that the magnetic 
field points up ( ) along +𝑥𝑥 at the field point 3𝑎𝑎

2
, 0, 0 . 

• Next find the magnetic field due to the small cylinder (the same size as the cavity) at 
a distance = 𝑎𝑎 away from the axis of this small cylinder.  Note that the field point 
is closer to the axis of the small cylinder (which “fits” into the cavity) than it is to the 
axis of the big cylinder:  That’s why = 𝑎𝑎 for the small cylinder, whereas = 3𝑎𝑎

2
for the big cylinder.  The equation is the same, except for the distance being smaller:  

𝑚𝑚𝑎𝑎 =
2

=
2 𝑎𝑎

 (for region II with = 𝑎𝑎). 

• Note that the two currents are different.  More current would pass through the big 
cylinder than would proportionately pass through the small cylinder:  𝑏𝑏 𝑔𝑔 > 𝑚𝑚𝑎𝑎 . 

• Find the magnetic field of the given shape (the cylinder with the cavity) through the 
principle of superposition.  We subtract, as shown geometrically above. 

B𝑔𝑔 𝑒𝑒𝑛𝑛 = B𝑏𝑏 𝑔𝑔 − B 𝑚𝑚𝑎𝑎  

• You should get 𝑔𝑔 𝑒𝑒𝑛𝑛 =
𝑎𝑎 3

−
2

.  We factored out the 
𝑎𝑎

. 

• Use the equation =  to find the current corresponding to each shape, where  is 
the cross-sectional area (which has the shape of a circle). 

+ = 

big given 

small r u 

B𝑔𝑔 𝑒𝑒𝑛𝑛 B𝑏𝑏 𝑔𝑔 B 𝑚𝑚𝑎𝑎  

r 
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• Check your intermediate answers: 
o 𝐼𝐼𝑏𝑏𝑟𝑟𝑟𝑟 = 𝐽𝐽𝜋𝜋𝑎𝑎2.  (The big cylinder has a radius equal to 𝑎𝑎.) 

o 𝐼𝐼𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙𝑙𝑙 = 𝐽𝐽𝜋𝜋𝑎𝑎2

4
.  (The small cylinder has a radius equal to 𝑎𝑎

2
.  When you square 𝑎𝑎

2
 

in the formula 𝜋𝜋𝑟𝑟2 for the area of a circle, you get 𝑎𝑎
2

4
�. 

o 𝐼𝐼𝑟𝑟𝑟𝑟𝑔𝑔𝑙𝑙𝑛𝑛 = 3𝐽𝐽𝜋𝜋𝑎𝑎2

4
.  (Get this by subtracting:  𝐼𝐼𝑏𝑏𝑟𝑟𝑟𝑟 − 𝐼𝐼𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙𝑙𝑙 .  Note that 1 − 1

4
= 3

4
�. 

• Note the following.  For example, you can divide equations to find that: 

𝐼𝐼𝑏𝑏𝑟𝑟𝑟𝑟 =
4
3
𝐼𝐼𝑟𝑟𝑟𝑟𝑔𝑔𝑙𝑙𝑛𝑛 

𝐼𝐼𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙𝑙𝑙 =
1
3
𝐼𝐼𝑟𝑟𝑟𝑟𝑔𝑔𝑙𝑙𝑛𝑛 

• The second “trick” to this solution is to realize that what the problem is calling the 
total current (𝐼𝐼) refers to the current through the “given” shape (the cylinder with 
the cavity in it). 

• Set 𝐼𝐼𝑟𝑟𝑟𝑟𝑔𝑔𝑙𝑙𝑛𝑛 = 𝐼𝐼 in the above equations.  You should get: 

𝐼𝐼𝑏𝑏𝑟𝑟𝑟𝑟 =
4
3
𝐼𝐼 

𝐼𝐼𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙𝑙𝑙 =
1
3
𝐼𝐼 

• Substitute these equations into the previous equation for B��⃗ 𝑟𝑟𝑟𝑟𝑔𝑔𝑙𝑙𝑛𝑛. 

• Note that 1
3
4
3
− 1

2
1
3

= 4
9
− 1

6
= 8

18
− 3

18
= 5

18
. 

• The final answer is 𝐵𝐵𝑟𝑟𝑟𝑟𝑔𝑔𝑙𝑙𝑛𝑛 = 5𝜇𝜇0𝐼𝐼
18π𝑎𝑎

. 

• Note:  If you came up with 5
24

 instead of 5
18

, you probably made the “mistake” of 
setting 𝐼𝐼𝑏𝑏𝑟𝑟𝑟𝑟 equal to the total current (𝐼𝐼) instead of setting 𝐼𝐼𝑟𝑟𝑟𝑟𝑔𝑔𝑙𝑙𝑛𝑛 equal to the total 
current (𝐼𝐼). 
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Chapter 24:  Lenz’s Law 

60.  Apply the four steps of Lenz’s law. 
1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is into the page ( ).  It happens to already be 

drawn in the problem. 
2. The magnetic flux ( 𝑚𝑚) is increasing because the problem states that the external 

magnetic field is increasing. 
3. The induced magnetic field ( 𝑛𝑛 ) is out of the page ( ).  Since 𝑚𝑚 is increasing, the 

direction of 𝑛𝑛  is opposite to the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 
4. The induced current ( 𝑛𝑛 ) is counterclockwise, as drawn below.  If you grab the loop 

with your thumb pointing counterclockwise and your fingers wrapped around the 
wire, inside the loop your fingers will come out of the page ( ).  Remember, you 
want your fingers to match Step 3 inside the loop:  You don’t want your fingers to 
match Step 1 or the magnetic field lines originally drawn in the problem. 

 

61.  Apply the four steps of Lenz’s law. 
1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is to the left ( ).  It happens to already be drawn 

in the problem.
2. The magnetic flux ( 𝑚𝑚) is decreasing because the problem states that the external 

magnetic field is decreasing. 
3. The induced magnetic field ( 𝑛𝑛 ) is to the left ( ).  Since 𝑚𝑚 is decreasing, the 

direction of 𝑛𝑛  is the same as the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 
4. The induced current ( 𝑛𝑛 ) runs up the front of the loop (and therefore runs down 

the back of the loop), as drawn below.  Note that this loop is vertical.  If you grab the 
front of the loop with your thumb pointing up and your fingers wrapped around the 
wire, inside the loop your fingers will go to the left ( ). 

 

62.  Apply the four steps of Lenz’s law. 
1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is up ( ).  It happens to already be drawn in the 

problem. 

 
𝑛𝑛  𝑛𝑛  

𝑛𝑛  

𝑛𝑛  
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2. The magnetic flux ( 𝑚𝑚) is increasing because the problem states that the external
magnetic field is increasing. 

3. The induced magnetic field ( 𝑛𝑛 ) is down ( ).  Since 𝑚𝑚 is increasing, the direction 
of 𝑛𝑛  is opposite to the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 

4. The induced current ( 𝑛𝑛 ) runs to the left in the front of the loop (and therefore 
runs to the right in the back of the loop), as drawn below.  Note that this loop is 
horizontal.  If you grab the front of the loop with your thumb pointing to the left and 
your fingers wrapped around the wire, inside the loop your fingers will go down ( ).  
Remember, you want your fingers to match Step 3 inside the loop (not Step 1). 

 

63.  Apply the four steps of Lenz’s law. 
1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is to the left ( ).  This is because the magnetic 

field lines of the magnet are going to the left, towards the south (S) pole, in the area 
of the loop as illustrated below.  Tip:  When you view the diagram below, ask 
yourself which way, on average, the magnetic field lines would be headed if you 
extend the diagram to where the loop is.  (Don’t use the velocity in Step 1.) 

 
2. The magnetic flux ( 𝑚𝑚) is increasing because the magnet is getting closer to the 

loop.  This is the step where the direction of the velocity ( ) matters. 
3. The induced magnetic field ( 𝑛𝑛 ) is to the right ( ).  Since 𝑚𝑚 is increasing, the 

direction of 𝑛𝑛  is opposite to the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 
4. The induced current ( 𝑛𝑛 ) runs down the front of the loop (and therefore runs up in 

the back of the loop), as drawn below.  Note that this loop is vertical.  If you grab the 
front of the loop with your thumb pointing down and your fingers wrapped around 
the wire, inside the loop your fingers will go to the right ( ).  Remember, you want 
your fingers to match Step 3 inside the loop (not Step 1). 

 

𝑛𝑛  

𝑛𝑛  

N
 S 

𝑛𝑛  

𝑛𝑛  
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64.  Apply the four steps of Lenz’s law. 
1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is up ( ).  This is because the magnetic field lines 

of the magnet are going up, away from the north (N) pole, in the area of the loop as 
illustrated below.  Ask yourself:  Which way, on average, would the magnetic field 
lines be headed if you extend the diagram to where the loop is? 

 
2. The magnetic flux ( 𝑚𝑚) is decreasing because the magnet is getting further away 

from the loop.  This is the step where the direction of the velocity ( ) matters. 
3. The induced magnetic field ( 𝑛𝑛 ) is up ( ).  Since 𝑚𝑚 is decreasing, the direction of 

𝑛𝑛  is the same as the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 
4. The induced current ( 𝑛𝑛 ) runs to the right in the front of the loop (and therefore 

runs to the left in the back of the loop), as drawn below.  Note that this loop is 
horizontal.  If you grab the front of the loop with your thumb pointing right and your 
fingers wrapped around the wire, inside the loop your fingers will go up ( ). 

 

65.  Apply the four steps of Lenz’s law. 
1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is into the page ( ).  This is because the 

magnetic field lines of the magnet are going into the page (towards the loop), away 
from the north (N) pole, in the area of the loop as illustrated below.  Ask yourself:   
Which way, on average, would the magnetic field lines be headed if you extend the 
diagram to where the loop is? 

N 

S 

𝑛𝑛  

𝑛𝑛  

390
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2. The magnetic flux ( 𝑚𝑚) is increasing because the magnet is getting closer to the 
loop.  This is the step where the direction of the velocity ( ) matters. 

3. The induced magnetic field ( 𝑛𝑛 ) is out of the page ( ).  Since 𝑚𝑚 is increasing, the 
direction of 𝑛𝑛  is opposite to the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 

4. The induced current ( 𝑛𝑛 ) is counterclockwise, as drawn below.  If you grab the loop 
with your thumb pointing counterclockwise and your fingers wrapped around the 
wire, inside the loop your fingers will come out of the page ( ).  Remember, you 
want your fingers to match Step 3 inside the loop (not Step 1). 

 

66.  Apply the four steps of Lenz’s law. 
1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is out of the page ( ).  This is because the outer

loop creates a magnetic field that is out of the page in the region where the inner
loop is.  Get this from the right-hand rule for magnetic field (Chapter 19).  When you 
grab the outer loop with your thumb pointed counterclockwise (along the given 
current) and your fingers wrapped around the wire, inside the outer loop (because 
the inner loop is inside of the outer loop) your fingers point out of the page. 

 
2. The magnetic flux ( 𝑚𝑚) is increasing because the problem states that the given 

current is increasing. 
3. The induced magnetic field ( 𝑛𝑛 ) is into the page ( ).  Since 𝑚𝑚 is increasing, the 

direction of 𝑛𝑛  is opposite to the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 
4. The induced current ( 𝑛𝑛 ) is clockwise, as drawn below.  If you grab the loop with 

your thumb pointing clockwise and your fingers wrapped around the wire, inside 
the loop your fingers will go into the page ( ).  Remember, you want your fingers 
to match Step 3 inside the loop (not Step 1). 

 

 
𝑛𝑛  𝑛𝑛  

 
𝑒𝑒 𝑛𝑛 

𝑛𝑛  𝑛𝑛  
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67.  Apply the four steps of Lenz’s law. 
1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is out of the page ( ).  This is because the given 

current creates a magnetic field that is out of the page in the region where the loop 
is.  Get this from the right-hand rule for magnetic field (Chapter 19).  When you grab 
the given current with your thumb pointed to the left and your fingers wrapped 
around the wire, below the given current (because the loop is below the straight 
wire) your fingers point out of the page. 

 
2. The magnetic flux ( 𝑚𝑚) is decreasing because the problem states that the given 

current is decreasing. 
3. The induced magnetic field ( 𝑛𝑛 ) is out of the page ( ).  Since 𝑚𝑚 is decreasing, 

the direction of 𝑛𝑛  is the same as the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 
4. The induced current ( 𝑛𝑛 ) is counterclockwise, as drawn below.  If you grab the loop 

with your thumb pointing counterclockwise and your fingers wrapped around the 
wire, inside the loop your fingers will come out of the page ( ). 

 

68.  Apply the four steps of Lenz’s law. 
1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is out of the page ( ).  First of all, an external 

current runs clockwise through the left loop, from the positive (+) terminal of the 
battery to the negative (−) terminal, as shown below.  Secondly, the left loop creates 
a magnetic field that is out of the page in the region where the right loop is.  Get this 
from the right-hand rule for magnetic field (Chapter 19).  When you grab the right 
side of the left loop (because that side is nearest to the right loop) with your thumb 
pointed down (since the given current runs down at the right side of the left loop), 
outside of the left loop (because the right loop is outside of the left loop) your 
fingers point out of the page. 

 

 

𝑒𝑒 𝑛𝑛

 
𝑛𝑛  𝑛𝑛  

𝑒𝑒 𝑛𝑛𝑅𝑅 

 
1

+ − 
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3. The magnetic flux ( 𝑚𝑚) is increasing because the problem states that the potential 
difference in the battery is increasing, which increases the external current. 

4. The induced magnetic field ( 𝑛𝑛 ) is into the page ( ).  Since 𝑚𝑚 is increasing, the 
direction of 𝑛𝑛  is opposite to the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 

5. The induced current ( 𝑛𝑛 ) is clockwise, as drawn below.  If you grab the loop with 
your thumb pointing clockwise and your fingers wrapped around the wire, inside 
the loop your fingers will go into the page ( ).  Remember, you want your fingers 
to match Step 3 inside the loop (not Step 1). 

 

69.  Apply the four steps of Lenz’s law. 
1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is out of the page ( ).  It happens to already be 

drawn in the problem. 
2. The magnetic flux ( 𝑚𝑚) is decreasing because the area of the loop is getting smaller 

as the conducting bar travels to the right.  Note that the conducting bar makes 
electrical contract where it touches the bare U-channel conductor.  The dashed (---) 
line below illustrates how the area of the loop is getting smaller as the conducting 
bar travels to the right. 

3. The induced magnetic field ( 𝑛𝑛 ) is out of the page ( ).  Since 𝑚𝑚 is decreasing, 
the direction of 𝑛𝑛  is the same as the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 

4. The induced current ( 𝑛𝑛 ) is counterclockwise, as drawn below.  If you grab the loop 
with your thumb pointing counterclockwise and your fingers wrapped around the 
wire, inside the loop your fingers will come out of the page ( ).  Since the induced 
current is counterclockwise in the loop, the induced current runs down ( ) the 
conducting bar. 

 

 
𝑛𝑛  𝑛𝑛  

 
𝑛𝑛  𝑛𝑛  

www.engineersreferencebookspdf.com



Hints, Intermediate Answers, and Explanations 

394 
 

70.  Apply the four steps of Lenz’s law. 
1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is into the page ( ).  It happens to already be 

drawn in the problem. 
2. The magnetic flux ( 𝑚𝑚) is increasing because the area of the loop is getting larger as 

the conducting bar travels to the left.  Note that the conducting bar makes electrical 
contract where it touches the bare U-channel conductor.  The dashed (---) line 
below illustrates how the area of the loop is getting larger as the conducting bar 
travels to the left. 

3. The induced magnetic field ( 𝑛𝑛 ) is out of the page ( ).  Since 𝑚𝑚 is increasing, the 
direction of 𝑛𝑛  is opposite to the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 

4. The induced current ( 𝑛𝑛 ) is counterclockwise, as drawn below.  If you grab the loop 
with your thumb pointing counterclockwise and your fingers wrapped around the 
wire, inside the loop your fingers will come out of the page ( ).  Since the induced 
current is counterclockwise in the loop, the induced current runs down ( ) the 
conducting bar.  Remember, you want your fingers to match Step 3 inside the loop 
(not Step 1). 

 

71.  Apply the four steps of Lenz’s law. 
1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is out of the page ( ).  It happens to already be 

drawn in the problem. 
2. The magnetic flux ( 𝑚𝑚) is decreasing because the area of the loop is getting smaller 

as the vertex of the triangle is pushed down from point A to point C.  The formula for 
the area of a triangle is = 1

2
, and the height ( ) is getting shorter. 

3. The induced magnetic field ( 𝑛𝑛 ) is out of the page ( ).  Since 𝑚𝑚 is decreasing, 
the direction of 𝑛𝑛  is the same as the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 

4. The induced current ( 𝑛𝑛 ) is counterclockwise, as drawn on the next page.  If you 
grab the loop with your thumb pointing counterclockwise and your fingers wrapped 
around the wire, inside the loop your fingers will come out of the page ( ). 

 
𝑛𝑛  𝑛𝑛  
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72.  Apply the four steps of Lenz’s law. 
1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is into the page ( ).  It happens to already be 

drawn in the problem. 
2. The magnetic flux ( 𝑚𝑚) is decreasing because fewer magnetic field lines pass 

through the loop as it rotates.  At the end of the described 90° rotation, the loop is 
vertical and the final magnetic flux is zero. 

3. The induced magnetic field ( 𝑛𝑛 ) is into the page ( ).  Since 𝑚𝑚 is decreasing, the 
direction of 𝑛𝑛  is the same as the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 

4. The induced current ( 𝑛𝑛 ) is clockwise, as drawn below.  If you grab the loop with 
your thumb pointing clockwise and your fingers wrapped around the wire, inside 
the loop your fingers will go into the page ( ). 

 

73.  Apply the four steps of Lenz’s law. 
1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is initially upward ( ).  It happens to already be 

drawn in the problem. 
2. The magnetic flux ( 𝑚𝑚) is constant because the number of magnetic field lines 

passing through the loop doesn’t change.  The magnetic flux through the loop is zero 
at all times.  This will be easier to see when you study Faraday’s law in Chapter 25:  
The angle between the axis of the loop (which is perpendicular to the page) and the 
magnetic field (which remains in the plane of the page throughout the rotation) is 
90° such that 𝑚𝑚 = cos = cos 90° = 0 (since cos 90° = 0). 

3. The induced magnetic field ( 𝑛𝑛 ) is zero because the magnetic flux ( 𝑚𝑚) through 
the loop is constant. 

4. The induced current ( 𝑛𝑛 ) is also zero because the magnetic flux ( 𝑚𝑚) through the 
loop is constant. 

 
𝑛𝑛  

𝑛𝑛  

 
𝑛𝑛  𝑛𝑛  
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74.  Apply the four steps of Lenz’s law. 
1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is downward ( ).  It happens to already be drawn 

in the problem. 
2. The magnetic flux ( 𝑚𝑚) is increasing because more magnetic field lines pass 

through the loop as it rotates.  At the beginning of the described 90° rotation, the 
initial magnetic flux is zero.  This will be easier to see when you study Faraday’s law 
in Chapter 25:  The angle between the axis of the loop and the magnetic field is 
initially 90° such that 𝑚𝑚 = cos = cos 90° = 0 (since cos 90° = 0).  As the 
loop rotates,  decreases from 90° to 0° and cos  increases from 0 to 1.  Therefore, 
the magnetic flux increases during the described 90° rotation.

3. The induced magnetic field ( 𝑛𝑛 ) is upward ( ).  Since 𝑚𝑚 is increasing, the 
direction of 𝑛𝑛  is opposite to the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 

4. The induced current ( 𝑛𝑛 ) runs to the right in the front of the loop (and therefore 
runs to the left in the back of the loop), as drawn below.  Note that this loop is 
horizontal at the end of the described 90° rotation.  If you grab the front of the loop 
with your thumb pointing right and your fingers wrapped around the wire, inside 
the loop your fingers will go up ( ). 

 
 
Chapter 25:  Faraday’s Law 

75.  First convert the diameter and magnetic field to SI units.  Recall that 1 G = 10−4 T. 
• You should get = 8.0 cm = 0.080 m and = 2500 G = 0.25 T = 1

4
 T. 

• Find the radius from the diameter:  𝑎𝑎 =
2

.  You should get 𝑎𝑎 = 0.040 m.  (We’re 
using 𝑎𝑎 for radius to avoid possible confusion with resistance.) 

• Find the area of the loop:  = 𝑎𝑎2.  You should get = 0.0016  m2, which works 
out to = 0.0050 m2 if you use a calculator. 

• Use the equation 𝑚𝑚 = cos .  Note that = 0° since the axis of the loop is the 𝑥𝑥-
axis (because the axis of the loop is perpendicular to the loop). 

• The magnetic flux through the area of the loop is 𝑚𝑚 = 0.0004  T∙m2 = 4 ×
10−4 T∙m2.  If you use a calculator, it is 𝑚𝑚 = 0.0013 T∙m2 = 1.3 × 10−3 T∙m2. 

76.  Find the area of the loop:  = 2.  You should get = 4.0 m2. 
• Use the equation 𝑚𝑚 = cos .  Note that = 60° (not 30°) because the axis of the 

loop is perpendicular to the loop.  See the diagram that follows. 

𝑛𝑛  

𝑛𝑛  
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• Since the axis of the loop is perpendicular to the loop and since the loop is vertical, 

the axis of the loop is horizontal, as shown above.  We need the angle that the 
magnetic field ( ) makes with the axis of the loop, which is = 60°. 

• The magnetic flux through the area of the loop is 𝑚𝑚 = 14 T∙m2. 

77.  First convert the given quantities to SI units.  Recall that 1 G = 10−4 T. 
• You should get = 0.50 m, = 0.30 m, 0 = 0.60 T, = 0.80 T, and = 0.500 s. 
• Find the area of the loop:  = .  You should get = 0.15 m2. 

(A) Use the equation 𝑚𝑚0 = 0 cos .  Note that = 0°. 
• The initial magnetic flux is 𝑚𝑚0 = 0.090 T∙m2. 

(B) Use the equation 𝑚𝑚 = cos . 
• The final magnetic flux is 𝑚𝑚 = 0.12 T∙m2. 

(C) Subtract your previous answers:  𝑚𝑚 = 𝑚𝑚 − 𝑚𝑚0.   
• Use the equation 𝑛𝑛 = −

𝑛𝑛
.  Note that = 1. 

• The average emf induced in the loop is 𝑛𝑛 = −0.060 V, which can alternatively be 
expressed as 𝑛𝑛 = −60 mV, where the metric prefix milli (m) stands for 10−3. 

(D) Use the equation 𝑛𝑛 = 𝑛𝑛
𝑅𝑅

.

• The average current induced in the loop is 𝑛𝑛 = −0.015 A, which can alternatively 
be expressed as 𝑛𝑛 = −15 mA, where the metric prefix milli (m) stands for 10−3. 

78.  First convert the given quantities to SI units.  Recall that 1 G = 10−4 T. 
• You should get = 0.50 m = 1

2
 m (where  is the base of the triangle), 0 =

0.25 m = 1
4

 m, = 0.50 m = 1
2

 m, = 0.40 T = 2  T, and = 0.250 s = 1
4

 s. 

• Find the initial area:  0 = 1
2 0.  You should get 0 = 0.0625 m2 = 1

16
 m2. 

• Find the final area:  = 1
2

.  You should get = 0.125 m2 = 1  m2. 
(A) Use the equation 𝑚𝑚0 = 0 cos .  Note that = 0°. 

• The initial magnetic flux is 𝑚𝑚0 = 0.025 T∙m2 = 1
40

 T∙m2. 
(B) Use the equation 𝑚𝑚 = cos . 

• The final magnetic flux is 𝑚𝑚 = 0.050 T∙m2 = 1
20

 T∙m2. 
(C) Subtract your previous answers:  𝑚𝑚 = 𝑚𝑚 − 𝑚𝑚0.   

 
30° 

60° axis 

30°loop 
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• Use the equation 𝑛𝑛 = −
𝑛𝑛

.  Note that = 200. 

• The average emf induced in the loop is 𝑛𝑛 = −20 V. 
(D) Apply the four steps of Lenz’s law (Chapter 24). 

1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is into the page ( ).  It happens to already be 
drawn in the problem. 

2. The magnetic flux ( 𝑚𝑚) is increasing because the area of the loop is getting larger as 
the vertex of the triangle is pushed up.  The formula for the area of a triangle is 

= 1
2

, and the height ( ) is getting taller. 

3. The induced magnetic field ( 𝑛𝑛 ) is out of the page ( ).  Since 𝑚𝑚 is increasing, the 
direction of 𝑛𝑛  is opposite to the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 

4. The induced current ( 𝑛𝑛 ) is counterclockwise, as drawn below.  If you grab the loop 
with your thumb pointing counterclockwise and your fingers wrapped around the 
wire, inside the loop your fingers will come out of the page ( ). Remember, you 
want your fingers to match Step 3 inside the loop (not Step 1). 

 

79.  First convert the magnetic field to Tesla using 1 G = 10−4 T. 

• You should get = 3
2

 T, which is = 0.87 T if you use a calculator. 

• Find the initial area (for the square):  0 = 2.  You should get 0 = 4.0 m2. 
• Find the final area (for the rhombus).  You don’t need to look up the formula for the 

area of a rhombus.  Divide the rhombus into four equal right triangles, as illustrated 
below.  Note that the hypotenuse of each right triangle equals the length of each side 
of the square:  = 2.0 m.  The height of each right triangle is one-half of the final 
distance between points L and N:  = 2

2
= 1.0 m. 

• Apply the Pythagorean theorem to solve for the base of each right triangle. 
• Starting with 2 + 2 = 2, solve for the base.  You should get = 2 − 2. 
• The base of each right triangle comes out to = 3 m. 

• Find the area of each right triangle:  𝑛𝑛 = 1
2

.  You should get 𝑛𝑛 = 3
2

 m2. 

• The area of the rhombus is 4 times the area of one of the right triangles:  = 4 𝑛𝑛 . 
• The final area (for the rhombus) is = 2 3 m2.  Using a calculator, = 3.5 m2. 

 
𝑛𝑛  

𝑛𝑛  

= 2.0 m 

 

= 1.0 m 2.0 m 
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(A) Use the equation 𝑚𝑚0 = 0 cos .  Note that = 0°. 
• The initial magnetic flux is 𝑚𝑚0 = 2 3 T∙m2.  Using a calculator, 𝑚𝑚0 = 3.5 T∙m2. 

(B) Use the equation 𝑚𝑚 = cos . 
• The final magnetic flux is 𝑚𝑚 = 3.0 T∙m2. 

(C) Subtract your previous answers:  𝑚𝑚 = 𝑚𝑚 − 𝑚𝑚0.   
• Use the equation 𝑛𝑛 = −

𝑛𝑛
.  Note that = 1. 

• The average emf induced in the loop is 𝑛𝑛 = 3 V.  Using a calculator, 𝑛𝑛 = 1.7 V. 
• Note:  If you’re not using a calculator, there is a “trick” to the math.  See below. 

𝑛𝑛 = − 𝑚𝑚 = −(1)
3 − 2 3
2 − 3

=
2 3 − 3
2 − 3

3
3

=
2 3 − 3 3

2 3 − 3
= 3 V 

• Note that we distributed the minus sign:  −(1) 3 − 2 3 = −3 + 2 3 = 2 3 − 3.  

Then we multiplied by 3
3
.  We then distributed the 3 in the denominator only:  

2 − 3 3 = 2 3 − 3 (since 3 3 = 3).  Finally, (2 3 − 3) cancels out. 
• Use the equation 𝑛𝑛 = 𝑛𝑛

𝑅𝑅
.  Note that 𝑅𝑅 = 5 + 5 + 5 + 5 = 20  (since the 

loop has 4 sides and each side has a resistance of 5.0 ). 

• The average current induced in the loop is 𝑛𝑛 = 3
20

 A.  Using a calculator, 𝑛𝑛

= 0.087 A, which can also be expressed as 𝑛𝑛 = 87 mA since the metric prefix milli 
(m) stands for m = 10−3. 

(D) Apply the four steps of Lenz’s law (Chapter 24). 
1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is into the page ( ).  It happens to already be 

drawn in the problem. 
2. The magnetic flux ( 𝑚𝑚) is decreasing because the area of the loop is getting smaller.  

One way to see this is to compare = 2 3 m2 = 3.5 m2 to 0 = 4.0 m2.  Another 
way is to imagine the extreme case where points L and N finally touch, for which the 
area will equal zero.  Either way, the area of the loop is getting smaller. 

3. The induced magnetic field ( 𝑛𝑛 ) is into the page ( ).  Since 𝑚𝑚 is decreasing, the 
direction of 𝑛𝑛  is the same as the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 

4. The induced current ( 𝑛𝑛 ) is clockwise, as drawn below.  If you grab the loop with 
your thumb pointing clockwise and your fingers wrapped around the wire, inside
the loop your fingers will go into the page ( ). 

 

 
𝑛𝑛  

𝑛𝑛  
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80.  First convert the radius and magnetic field to SI units.  Recall that 1 G = 10−4 T. 
• You should get 𝑎𝑎 = 0.040 m and 𝐵𝐵 = 50 T.  (We’re using 𝑎𝑎 for radius to avoid 

possible confusion with resistance.) 
• Note that the length of the solenoid (18 cm) is irrelevant to the solution.  Just ignore 

it.  (In the lab, you can measure almost anything you want, such as the temperature, 
so it’s a valuable skill to be able to tell which quantities you do or don’t need.) 

• Find the area of each loop:  𝐴𝐴 = 𝜋𝜋𝑎𝑎2.  You should get 𝐴𝐴 = 0.0016𝜋𝜋 m2, which works 
out to 𝐴𝐴 = 0.0050 m2 if you use a calculator. 

• Convert ∆𝜃𝜃 from 30° to radians using 180° = 𝜋𝜋 rad.  You should get ∆𝜃𝜃 = 𝜋𝜋
6

 rad. 

• Use the equation 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = −𝑁𝑁 ∆Φ𝑚𝑚
∆𝑒𝑒

. 

• Use the equation Φ𝑚𝑚0 = 𝐵𝐵𝐴𝐴 cos 𝜃𝜃0.  Note that 𝜃𝜃0 = 0°. 
• The initial magnetic flux is Φ𝑚𝑚0 = 0.08𝜋𝜋 T∙m2.  Using a calculator, Φ𝑚𝑚0 = 0.251 T∙m2. 
• Use the equation Φ𝑚𝑚 = 𝐵𝐵𝐴𝐴 cos 𝜃𝜃.  Note that 𝜃𝜃 = 30°. 
• The final magnetic flux is Φ𝑚𝑚 = 0.04𝜋𝜋√3 T∙m2.  Using a calculator, Φ𝑚𝑚 = 0.218 T∙m2. 
• Subtract:  ∆Φ𝑚𝑚 = Φ𝑚𝑚 −Φ𝑚𝑚0.  You should get ∆Φ𝑚𝑚 = 0.04𝜋𝜋�√3 − 2� T∙m2 =

−0.04𝜋𝜋�2 − √3� T∙m2.  Using a calculator, ∆Φ𝑚𝑚 = −0.034 T∙m2.  (You could be off 
by a little round-off error.) 

• The angular speed is 𝜔𝜔 = 20 rad/s.  Since the angular speed is constant, 𝜔𝜔 = ∆𝜃𝜃
𝑒𝑒

.  

Multiply both sides by 𝑡𝑡 to get 𝜔𝜔𝑡𝑡 = ∆𝜃𝜃.  Divide both sides by 𝜔𝜔 to get 𝑡𝑡 = ∆𝜃𝜃
𝜔𝜔

. 

• Plug ∆𝜃𝜃 = 𝜋𝜋
6

 rad and 𝜔𝜔 = 20 rad/s into ∆𝑡𝑡 = ∆𝜃𝜃
𝜔𝜔

.  You should get ∆𝑡𝑡 = 𝜋𝜋
120

 s.  Using a 
calculator, this comes out to ∆𝑡𝑡 = 0.026 s. 

• Plug numbers into 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = −𝑁𝑁 ∆Φ𝑚𝑚
∆𝑒𝑒

.  Note that 𝑁𝑁 = 300, ∆Φ𝑚𝑚 = −0.04𝜋𝜋�2 −
√3� T∙m2 = −0.034 T∙m2, and ∆𝑡𝑡 = 𝜋𝜋

120
 s = 0.026 s. 

• The average emf induced from 0° to 30° is 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = 1440�2 − √3� V.  Using a 

calculator, this comes out to 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = 386 V.  Note that 1
∆𝑒𝑒

= 120
𝜋𝜋

 in units of 1
s
. 

 
81.  First convert the length to meters.  You should get ℓ = 0.12 m. 
(A) The “easy” way to solve this problem is to use the motional emf equation:  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = −𝐵𝐵ℓ𝑣𝑣. 

• If you prefer to do it the “long” way (or if that’s the way you already did it), then you 
should follow the third example from this chapter closely, as that example solves a 
very similar problem the “long” way.  See pages 272-273. 

• Plug 𝐵𝐵 = 25 T, ℓ = 0.12 m, and 𝑣𝑣 = 3.0 m/s into the equation 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = −𝐵𝐵ℓ𝑣𝑣. 
• The emf induced across the ends of the conducting bar is 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = −9.0 V. 

(B) Use the equation 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

.  Note that 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 3.0 Ω. 

• The current induced in the loop is 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 = −3.0 A 
(C) Apply the four steps of Lenz’s law (Chapter 24). 
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1. The external magnetic field ( 𝑒𝑒 𝑛𝑛) is into the page ( ).  It happens to already be 
drawn in the problem. 

2. The magnetic flux ( 𝑚𝑚) is increasing because the area of the loop is getting larger as 
the conducting bar travels to the right.  Note that the conducting bar makes 
electrical contract where it touches the bare U-channel conductor.  The dashed (---) 
line below illustrates how the area of the loop is getting larger as the conducting bar 
travels to the right. 

3. The induced magnetic field ( 𝑛𝑛 ) is out of the page ( ).  Since 𝑚𝑚 is increasing, the 
direction of 𝑛𝑛  is opposite to the direction of 𝑒𝑒 𝑛𝑛 from Step 1. 

4. The induced current ( 𝑛𝑛 ) is counterclockwise, as drawn on the next page.  If you 
grab the loop with your thumb pointing counterclockwise and your fingers wrapped 
around the wire, inside the loop your fingers will come out of the page ( ).  Since 
the induced current is counterclockwise in the loop, the induced current runs up ( ) 
the conducting bar.  Remember, you want your fingers to match Step 3 inside the 
loop (not Step 1). 

 

82.  First convert the length and magnetic field to SI units.  Recall that 1 G = 10−4 T. 
• You should get = 0.080 m and = 4.0 T. 
• Use the motional emf equation:  𝑛𝑛 = − . 
• The emf induced across the ends of the conducting bar is 𝑛𝑛 = −8.0 V. 

83.  Use subscripts 1 and 2 to distinguish between the two different solenoids. 
• 1 = 3000, 1 = 0.50 m, and 𝑎𝑎1 = 0.0050 m for the first solenoid. 
• 2 = 2000, 2 = 0.20 m, and 𝑎𝑎2 = 0.0050 m for the second solenoid. 
• 10 = 3.0 A and 1 = 7.0 A for the initial and final current in the first solenoid. 
• 𝑅𝑅2 = 5.0  for the resistance of the second solenoid. 
• = 0.016 s since the metric prefix milli (m) stands for 10−3. 

(A) Note that the problem specifies magnetic field ( ).  We’re not finding magnetic flux yet. 
• Use the equation 10 = 1 1

1
 to find the initial magnetic field created by the first 

 
𝑛𝑛  

𝑛𝑛  
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solenoid.  (This equation was at the top of page 267, and is also in Chapter 22.) 
• Recall that the permeability of free space is 𝜇𝜇0 = 4𝜋𝜋 × 10−7  T∙m

A
. 

• The initial magnetic field created by the first solenoid is 𝐵𝐵10 = 72𝜋𝜋 × 10−4 T.  Using 
a calculator, 𝐵𝐵10 = 0.023 T. 

(B) Use the equation Φ2𝑚𝑚0 = 𝐵𝐵10𝐴𝐴2 cos 𝜃𝜃, where 𝜃𝜃 = 0° and 𝐴𝐴2 is for the second solenoid. 
• The initial magnetic flux is Φ2𝑚𝑚0 = 18𝜋𝜋2 × 10−8 T∙m2.  Using a calculator, Φ2𝑚𝑚0 = 

1.8 × 10−6 T∙m2.  Check that your area is 𝐴𝐴2 = 25𝜋𝜋 × 10−6 m2 ≈ 7.85 × 10−5 m2.  
Note that 𝑎𝑎2 = 0.0050 m is squared in 𝐴𝐴2 = 𝜋𝜋𝑎𝑎22. 

(C) Use the equation Φ2𝑚𝑚 = 𝐵𝐵1𝐴𝐴2 cos 𝜃𝜃, where 𝜃𝜃 = 0° and 𝐴𝐴2 is for the second solenoid. 
• First find 𝐵𝐵1 = 𝜇𝜇0𝑁𝑁1𝐼𝐼1

𝐿𝐿1
 using 𝐼𝐼1 = 7.0 A.  Check that 𝐵𝐵1 = 168𝜋𝜋 × 10−4 T ≈ 0.053 T. 

• The final magnetic flux is Φ2𝑚𝑚 = 42𝜋𝜋2 × 10−8 T∙m2.  If you use a calculator, it is 
Φ2𝑚𝑚 = 4.1 × 10−6 T∙m2. 

(D) Subtract your previous answers:  ∆Φ2𝑚𝑚 = Φ2𝑚𝑚 − Φ2𝑚𝑚0.   
• Use the equation 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = −𝑁𝑁2

∆Φ2𝑚𝑚
∆𝑒𝑒

.  Be sure to use 𝑁𝑁2 = 2000 (not 𝑁𝑁1 = 3000).  
That’s because we want the emf induced in the second solenoid. 

• The average emf induced in the loop is 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = −0.03𝜋𝜋2 V.  Using a calculator, 
𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = −0.296 V.  (Since 𝜋𝜋2 ≈ 10, that’s essentially how the decimal point moved.) 

• Use the equation 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖
𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

.  The average current induced in the loop is 

𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 = −6𝜋𝜋2 × 10−3 A = −6𝜋𝜋2 mA.  Using a calculator, 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 = −0.059 A. 
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84.  First convert the distances to meters. 
• You should get 𝐿𝐿 = 1.50 m and 𝑊𝑊 = 0.80 m. 
• Find the area of the loop:  𝐴𝐴 = 𝐿𝐿𝑊𝑊.  You should get 𝐴𝐴 = 1.2 m2. 
• Use the equation Φ𝑚𝑚0 = 𝐵𝐵0𝐴𝐴 cos 𝜃𝜃.  Note that 𝜃𝜃 = 0°. 
• Plug 𝑡𝑡 = 0 into 𝐵𝐵 = 15𝑒𝑒−𝑡𝑡/3 to find the initial magnetic field (𝐵𝐵0). 
• You should get 𝐵𝐵0 = 15 T.  Note that 𝑒𝑒0 = 1 (see Chapter 15). 
• The initial magnetic flux is Φ𝑚𝑚0 = 18 T∙m2.  Note that (15)(1.2) = 18. 
• Use the equation Φ𝑚𝑚 = 𝐵𝐵𝐴𝐴 cos 𝜃𝜃.  Note that 𝜃𝜃 = 0°. 
• Plug 𝑡𝑡 = 3.0 s into 𝐵𝐵 = 15𝑒𝑒−𝑡𝑡/3 to find the final magnetic field (𝐵𝐵). 
• You should get 𝐵𝐵 = 15

𝑒𝑒
 T.  Using a calculator with 𝑒𝑒 ≈ 2.718, you get 𝐵𝐵 = 5.52 T. 

• The final magnetic flux is Φ𝑚𝑚 = 18
𝑒𝑒

 T∙m2.  Using a calculator, Φ𝑚𝑚 = 6.6 T∙m2. 

• Subtract:  ∆Φ𝑚𝑚 = Φ𝑚𝑚 −Φ𝑚𝑚0.  You should get ∆Φ𝑚𝑚 = −�18 − 18
𝑒𝑒
�  T∙m2.  Using a 

calculator, ∆Φ𝑚𝑚 = −11.4 T∙m2.  (You could be off by a little round-off error.) 
• Use the equation 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = −𝑁𝑁 ∆Φ𝑚𝑚

∆𝑡𝑡
. 

• The average emf induced from 𝑡𝑡 = 0 to 𝑡𝑡 = 3.0 s is 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = �6 − 6
𝑒𝑒
�  V.  Using a 

calculator, this comes out to 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = 3.8 V. 
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Chapter 26:  Inductance 

85.  First convert the inductance to Henry using m = 10−3.  You should get 𝐿𝐿 = 0.080 H. 
• Use the equation 𝜀𝜀𝐿𝐿 = −𝐿𝐿 ∆𝐼𝐼

∆𝑡𝑡
.  Solve for ∆𝐼𝐼

∆𝑡𝑡
. 

• The rate at which the current increases is ∆𝐼𝐼
∆𝑡𝑡

= 9.0 A/s. 
 

86.  First convert the inductance to Henry using m = 10−3.  You should get 𝐿𝐿 = 0.020 H. 
• Use the equation 𝜏𝜏 = 𝐿𝐿

𝑅𝑅
.  The time constant is 𝜏𝜏 = 0.00040 s = 0.40 ms. 

 
87.  First convert to SI units.  You should get 𝐿𝐿 = 0.0160 H and 𝐶𝐶 = 4.0 × 10−5 F. 

• Use the equation 𝜔𝜔 = 1
√𝐿𝐿𝐿𝐿

.  The angular speed is 𝜔𝜔 = 1250 rad/s. 

• It may help to write 𝐿𝐿𝐶𝐶 as 𝐿𝐿𝐶𝐶 = 64 × 10−8 such that √𝐿𝐿𝐶𝐶 = √64 × 10−8.  Use the 
rule from algebra that √𝑎𝑎𝑎𝑎 = √𝑎𝑎√𝑎𝑎 to get √𝐿𝐿𝐶𝐶 = √64 × √10−8 = 8.0 × 10−4. 

• Note that 1
8×10−4

= 104

8
= 10,000

8
= 1250. 

 
 
Chapter 27:  AC Circuits 

88.  Identify the given symbol.  Which quantity represents the amplitude of the current? 
• You are given 𝐼𝐼𝑚𝑚 = 2.0 A.  Use the equation 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟 = 𝐼𝐼𝑚𝑚

√2
. 

• The rms current is 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟 = √2 A, which is the same as 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟 = 2
√2

 A.  Multiply the 

numerator and denominator by √2 in order to rationalize the denominator of the 

fraction:  2
√2

= 2
√2

√2
√2

= 2√2
2

= √2.  If you use a calculator, 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟 = 1.4 A. 

 
89.  You are given 𝑓𝑓 = 50 Hz and 𝐿𝐿 = 30 mH. 

• Convert the inductance to Henry.  You should get 𝐿𝐿 = 0.030 H. 
• Use the equation 𝜔𝜔 = 2𝜋𝜋𝑓𝑓.  You should get 𝜔𝜔 = 100𝜋𝜋 rad/s. 
• Use the equation 𝑋𝑋𝐿𝐿 = 𝜔𝜔𝐿𝐿.  The inductive reactance is 𝑋𝑋𝐿𝐿 = 3𝜋𝜋 Ω.  If you use a 

calculator, 𝑋𝑋𝐿𝐿 = 9.4 Ω. 
 

90.  You are given 𝑓𝑓 = 100 Hz and 𝐶𝐶 = 2.0 µF. 
• Convert the capacitance to Farads.  You should get 𝐶𝐶 = 2.0 × 10−6 F. 
• Use the equation 𝜔𝜔 = 2𝜋𝜋𝑓𝑓.  You should get 𝜔𝜔 = 200𝜋𝜋 rad/s. 
• Use the equation 𝑋𝑋𝐿𝐿 = 1

𝜔𝜔𝐿𝐿
.  The capacitive reactance is 𝑋𝑋𝐿𝐿 = 2500

𝜋𝜋
 Ω.  If you use a 

calculator, 𝑋𝑋𝐿𝐿 = 796 Ω, which is 800 Ω or 0.80 kΩ to two significant figures. 
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91.  Convert the capacitance to Farads.  You should get 𝐶𝐶 = 8.0 × 10−4 F. 
• First use the equations 𝑋𝑋𝐿𝐿 = 𝜔𝜔𝐿𝐿 and 𝑋𝑋𝐿𝐿 = 1

𝜔𝜔𝐿𝐿
. 

• You should get 𝑋𝑋𝐿𝐿 = 150 Ω and 𝑋𝑋𝐿𝐿 = 50 Ω. 
• Use the equation 𝑍𝑍 = �𝑅𝑅2 + (𝑋𝑋𝐿𝐿 − 𝑋𝑋𝐿𝐿)2. 

• The impedance is 𝑍𝑍 = 200 Ω.  Note that �100√3�
2

= 30,000 and √40,000 = 200. 

 
92.  Use the equation 𝜑𝜑 = tan−1 �𝑋𝑋𝐿𝐿−𝑋𝑋𝐶𝐶

𝑅𝑅
�. 

• The values of 𝑋𝑋𝐿𝐿 and 𝑋𝑋𝐿𝐿 are the same as in Problem 91. 

• The phase angle is 𝜑𝜑 =30°.  Note that 100
100√3

= 1
√3

= 1
√3

√3
√3

= √3
3

 and tan−1 �√3
3
� = 30°. 

 
93.  Convert the capacitance to Farads.  You should get 𝐶𝐶 = 1.0 × 10−4 F. 

• First use the equations 𝑋𝑋𝐿𝐿 = 𝜔𝜔𝐿𝐿 and 𝑋𝑋𝐿𝐿 = 1
𝜔𝜔𝐿𝐿

. 

• You should get 𝑋𝑋𝐿𝐿 = 150 Ω and 𝑋𝑋𝐿𝐿 = 200 Ω. 
• Use the equation 𝑍𝑍 = �𝑅𝑅2 + (𝑋𝑋𝐿𝐿 − 𝑋𝑋𝐿𝐿)2. 

• You should get 𝑍𝑍 = 100 Ω.  Note that �50√3�
2

= 7500 and √10,000 = 100. 

(A) Use the equation ∆𝑉𝑉𝑟𝑟𝑚𝑚𝑟𝑟 = 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟𝑍𝑍.  Divide both sides by 𝑍𝑍.  You should get 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟 = ∆𝑉𝑉𝑟𝑟𝑚𝑚𝑟𝑟
𝑍𝑍

. 

• (Alternatively, you could first use the equation 𝐼𝐼𝑚𝑚 = ∆𝑉𝑉𝑚𝑚
𝑍𝑍

 and then use the equations 

𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟 = 𝐼𝐼𝑚𝑚
√2

 and ∆𝑉𝑉𝑟𝑟𝑚𝑚𝑟𝑟 = ∆𝑉𝑉𝑚𝑚
√2

.) 

• An AC ammeter would measure 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟 = 2.0 A. 
(B) Use the equation ∆𝑉𝑉𝑅𝑅𝑟𝑟𝑚𝑚𝑟𝑟 = 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟𝑅𝑅. 

• An AC voltmeter would measure ∆𝑉𝑉𝑅𝑅𝑟𝑟𝑚𝑚𝑟𝑟 = 100√3 V across the resistor.  Using a 
calculator, ∆𝑉𝑉𝑅𝑅𝑟𝑟𝑚𝑚𝑟𝑟 = 173 V = 0.17 kV. 

(C) Use the equation ∆𝑉𝑉𝐿𝐿𝑟𝑟𝑚𝑚𝑟𝑟 = 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟𝑋𝑋𝐿𝐿. 
• An AC voltmeter would measure ∆𝑉𝑉𝐿𝐿𝑟𝑟𝑚𝑚𝑟𝑟 = 300 V across the inductor. 

(D) Use the equation ∆𝑉𝑉𝐿𝐿𝑟𝑟𝑚𝑚𝑟𝑟 = 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟𝑋𝑋𝐿𝐿 . 
• An AC voltmeter would measure ∆𝑉𝑉𝐿𝐿𝑟𝑟𝑚𝑚𝑟𝑟 = 400 V across the capacitor. 

(E) Subtract the previous two answers.  ∆𝑉𝑉𝐿𝐿𝐿𝐿𝑟𝑟𝑚𝑚𝑟𝑟 = |∆𝑉𝑉𝐿𝐿𝑟𝑟𝑚𝑚𝑟𝑟 − ∆𝑉𝑉𝐿𝐿𝑟𝑟𝑚𝑚𝑟𝑟|. 
• The reason for this is that the phasors for the inductor and capacitor point in 

opposite directions:  The phase angle for the inductor is 90°, while the phase angle 
for the capacitor is −90°. 

• An AC voltmeter would measure ∆𝑉𝑉𝐿𝐿𝐿𝐿𝑟𝑟𝑚𝑚𝑟𝑟 = 100 V across the inductor-capacitor 
combination. 

(F) Use the equation ∆𝑉𝑉𝑟𝑟𝑚𝑚𝑟𝑟 = �∆𝑉𝑉𝑅𝑅𝑟𝑟𝑚𝑚𝑟𝑟2 + (∆𝑉𝑉𝐿𝐿𝑟𝑟𝑚𝑚𝑟𝑟 − ∆𝑉𝑉𝐿𝐿𝑟𝑟𝑚𝑚𝑟𝑟)2. 
• You should get ∆𝑉𝑉𝑟𝑟𝑚𝑚𝑟𝑟 = 200 V, which agrees with the value given in the problem. 

• Note that �100√3�
2

= 30,000 and √40,000 = 200. 
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94.  Convert the inductance and capacitance to SI units. 
• You should get 𝐿𝐿 = 0.080 H and 𝐶𝐶 = 5.0 × 10−5 F. 

(A) Use the equation 𝜔𝜔0 = 1
√𝐿𝐿𝐿𝐿

. 

• The resonance angular frequency is 𝜔𝜔0 = 500 rad/s. 
• Note that √0.4 × 10−5 = √4 × 10−6 = √4√10−6 = 2 × 10−3. 

• Also note that 1
2×10−3

= 103

2
= 1000

2
= 500. 

(B) Use the equation 𝜔𝜔0 = 2𝜋𝜋𝑓𝑓0. 
• Divide both sides of the equation by 2𝜋𝜋.  You should get 𝑓𝑓0 = 𝜔𝜔0

2𝜋𝜋
. 

• The resonance frequency in Hertz is 𝑓𝑓0 = 250
𝜋𝜋

 Hz.  Using a calculator, it is 𝑓𝑓0 = 80 Hz. 

 
95.  As explained in part (I) of the first example in this chapter, the answer is not what we 
have called 𝐼𝐼𝑚𝑚.  In our notation, the symbol 𝐼𝐼𝑚𝑚 is the maximum value of the instantaneous 
current for a given frequency (the current oscillates between 𝐼𝐼𝑚𝑚 and −𝐼𝐼𝑚𝑚).  See page 313. 
(A) In our notation, 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 is the largest possible value of 𝐼𝐼𝑚𝑚 that can be obtained by varying 
the frequency, and it occurs at the resonance frequency. 

• However, note that 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 is the amplitude of the current when the frequency equals 
the resonance frequency.  That’s not quite what the question asked for. 

• This problem asked for the maximum value of the rms current.  So what we’re really 
looking for is 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚, where 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

√2
. 

• The equation ∆𝑉𝑉𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑍𝑍 reduces to ∆𝑉𝑉𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅 at the resonance frequency, since 
at resonance 𝑋𝑋𝐿𝐿 = 𝑋𝑋𝐿𝐿 such that 𝑍𝑍 reduces to 𝑅𝑅. 

• Divide both sides of the equation ∆𝑉𝑉𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅 by √2 in order to rewrite this 
equation in terms of rms values:  ∆𝑉𝑉𝑟𝑟𝑚𝑚𝑟𝑟 = 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅.  Divide both sides by 𝑅𝑅 to get 

𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 = ∆𝑉𝑉𝑟𝑟𝑚𝑚𝑟𝑟
𝑅𝑅

.  Plug numbers into this equation.  Note that ∆𝑉𝑉𝑟𝑟𝑚𝑚𝑟𝑟 = 120 V. 

• The maximum possible rms current that the AC power supply could provide to this 
RLC circuit is 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 = 4.0 A. 

(B) The maximum current and minimum impedance both occur at resonance. 
• Less impedance results in more current (for a fixed rms power supply voltage). 
• As we discussed in part (A), at resonance, the impedance equals the resistance. 
• There is no math to do (but if this happens to be an assigned homework problem for 

you, then you should explain your answer). 
• The minimum possible impedance that could be obtained by adjusting the frequency 

is 𝑍𝑍𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑅𝑅 = 30 Ω. 
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96.  Convert the potential difference and capacitance to SI units. 
• You should get ∆𝑉𝑉𝑟𝑟𝑚𝑚𝑟𝑟 = 3000 V and 𝐶𝐶 = 8.0 × 10−5 F. 
• First use the equations 𝑋𝑋𝐿𝐿 = 𝜔𝜔𝐿𝐿 and 𝑋𝑋𝐿𝐿 = 1

𝜔𝜔𝐿𝐿
. 

• You should get 𝑋𝑋𝐿𝐿 = 2000 Ω and 𝑋𝑋𝐿𝐿 = 500 Ω. 
• Use the equation 𝑍𝑍 = �𝑅𝑅2 + (𝑋𝑋𝐿𝐿 − 𝑋𝑋𝐿𝐿)2. 
• You should get 𝑍𝑍 = 1000√3 Ω. 

• Note that �500√3�
2

= 750,000 and √3,000,000 = √3√1,000,000 = 1000√3. 

(A) Use the equation ∆𝑉𝑉𝑟𝑟𝑚𝑚𝑟𝑟 = 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟𝑍𝑍.  Divide both sides by 𝑍𝑍.  You should get 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟 = ∆𝑉𝑉𝑟𝑟𝑚𝑚𝑟𝑟
𝑍𝑍

. 

• (Alternatively, you could first use the equation 𝐼𝐼𝑚𝑚 = ∆𝑉𝑉𝑚𝑚
𝑍𝑍

 and then use the equations 

𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟 = 𝐼𝐼𝑚𝑚
√2

 and ∆𝑉𝑉𝑟𝑟𝑚𝑚𝑟𝑟 = ∆𝑉𝑉𝑚𝑚
√2

.) 

•  The rms current for this RLC circuit is 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟 = √3 A.  Using a calculator, 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟 = 1.7 A. 

• Note that 3000
1000√3

= 3
√3

= 3
√3

√3
√3

= 3√3
3

= √3.  Multiply by √3
√3

 in order to rationalize the 

denominator.  Note that √3√3 = 3. 
(B) Use the equation 𝑃𝑃𝑚𝑚𝑎𝑎 = 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟2 𝑅𝑅. 

• The average power that the AC power supply delivers to the circuit is 𝑃𝑃𝑚𝑚𝑎𝑎 =
1500√3 W.  If you use a calculator, this comes out to 𝑃𝑃𝑚𝑚𝑎𝑎 = 2.6 kW, where the metric 
prefix kilo (k) stands for k = 1000. 

• Note that √3√3 = 3 such that �√3√3��500√3� = (3)�500√3� = 1500√3. 
• Note that you would get the same answer using the equation 𝑃𝑃𝑚𝑚𝑎𝑎 = 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟Δ𝑉𝑉𝑟𝑟𝑚𝑚𝑟𝑟 cos𝜑𝜑 

(provided that you do the math correctly). 
(C) Use the equation 𝜔𝜔0 = 1

√𝐿𝐿𝐿𝐿
. 

• The resonance angular frequency is 𝜔𝜔0 = 25
2

 rad/s = 12.5 rad/s (or 13 rad/s if you 
round to two significant figures, as you should in this problem). 

• Note that √640 × 10−5 = √64 × 10−4 = √64√10−4 = 8.0 × 10−2. 

• Also note that 1
8×10−2

= 102

8
= 100

8
= 25

2
= 12.5. 

(D) Use the same equation and reasoning that we applied in Problem 95, part (A). 
• The equation you need is 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 = ∆𝑉𝑉𝑟𝑟𝑚𝑚𝑟𝑟

𝑅𝑅
. 

• The maximum possible rms current that the AC power supply could provide to this 
RLC circuit is 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 = 2√3 A.  Using a calculator, 𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 = 3.5 A. 

• Note that 3000
500√3

= 6
√3

= 6
√3

√3
√3

= 6√3
3

= 2√3.  Multiply by √3
√3

 in order to rationalize the 

denominator.  Note that √3√3 = 3. 
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97.  Convert the inductance and capacitance to SI units. 
• You should get 𝐿𝐿 = 0.030 H and 𝐶𝐶 = 1.2 × 10−5 F. 
• First use the equation 𝜔𝜔0 = 1

√𝐿𝐿𝐿𝐿
. 

• The resonance angular frequency is 𝜔𝜔0 = 5000
3

 rad/s. 

• Use the equation 𝑄𝑄0 = 𝜔𝜔0𝐿𝐿
𝑅𝑅

. 

• The quality factor for this RLC circuit is 𝑄𝑄0 = 25. 
 

98.  Read off the needed values from the graph: 
• The resonance angular frequency is 𝜔𝜔0 = 550 rad/s.  This is the angular frequency 

for which the curve reaches its peak. 
• The maximum average power is 𝑃𝑃𝑚𝑚𝑎𝑎,𝑚𝑚𝑚𝑚𝑚𝑚 = 40 W.  This is the maximum vertical value 

of the curve. 
• One-half of the maximum average power is 𝑃𝑃𝑚𝑚𝑎𝑎,𝑚𝑚𝑚𝑚𝑚𝑚

2
= 40

2
= 20 W. 

• Study the pictures on pages 303 and 316. 
• Draw a horizontal line on the graph where the vertical value of the curve is equal to 

20 W, which corresponds to 𝑃𝑃𝑚𝑚𝑎𝑎,𝑚𝑚𝑚𝑚𝑚𝑚
2

. 

• Draw two vertical lines on the graph where the curve intersects the horizontal line 
that you drew in the previous step.  See the right figure on page 316.  These two 
vertical lines correspond to 𝜔𝜔1 and 𝜔𝜔2. 

• Read off 𝜔𝜔1 and 𝜔𝜔2 from the graph:  𝜔𝜔1 = 525 rad/s and 𝜔𝜔2 = 575 rad/s. 
• Subtract these values:  ∆𝜔𝜔 = 𝜔𝜔2 − 𝜔𝜔1 = 575 − 525 = 50 rad/s.  This is the full-

width at half max.  Recall that the resonance frequency is 𝜔𝜔0 = 550 rad/s. 
• Use the equation 𝑄𝑄0 = 𝜔𝜔0

Δ𝜔𝜔
.  The quality factor for this graph is 𝑄𝑄0 = 11. 

 
99.  Identify the given quantities:  ∆𝑉𝑉𝑖𝑖𝑖𝑖 = 240 V, 𝑁𝑁𝑝𝑝 = 400, and 𝑁𝑁𝑟𝑟 = 100. 

• Use the equation ∆𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
∆𝑉𝑉𝑖𝑖𝑖𝑖

= 𝑁𝑁𝑟𝑟
𝑁𝑁𝑝𝑝

.  Cross multiply to get ∆𝑉𝑉𝑜𝑜𝑜𝑜𝑡𝑡𝑁𝑁𝑝𝑝 = ∆𝑉𝑉𝑖𝑖𝑖𝑖𝑁𝑁𝑟𝑟. 

• Divide both sides of the equation by 𝑁𝑁𝑝𝑝.  You should get ∆𝑉𝑉𝑜𝑜𝑜𝑜𝑡𝑡 = ∆𝑉𝑉𝑖𝑖𝑖𝑖𝑁𝑁𝑟𝑟
𝑁𝑁𝑝𝑝

. 

• The output voltage is ∆𝑉𝑉𝑜𝑜𝑜𝑜𝑡𝑡 = 60 V. 
 

100.  Identify the given quantities:  ∆𝑉𝑉𝑖𝑖𝑖𝑖 = 40 V, 𝑁𝑁𝑝𝑝 = 200, and ∆𝑉𝑉𝑜𝑜𝑜𝑜𝑡𝑡 = 120 V. 

• Use the equation ∆𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
∆𝑉𝑉𝑖𝑖𝑖𝑖

= 𝑁𝑁𝑟𝑟
𝑁𝑁𝑝𝑝

.  Cross multiply to get ∆𝑉𝑉𝑜𝑜𝑜𝑜𝑡𝑡𝑁𝑁𝑝𝑝 = ∆𝑉𝑉𝑖𝑖𝑖𝑖𝑁𝑁𝑟𝑟. 

• Divide both sides of the equation by ∆𝑉𝑉𝑖𝑖𝑖𝑖.  You should get 𝑁𝑁𝑟𝑟 = ∆𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑁𝑁𝑝𝑝
∆𝑉𝑉𝑖𝑖𝑖𝑖

. 

• The secondary has 𝑁𝑁𝑟𝑟 = 600 turns (or loops). 
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WAS THIS BOOK HELPFUL? 
A great deal of effort and thought was put into this book, such as: 

• Breaking down the solutions to help make physics easier to understand. 
• Careful selection of examples and problems for their instructional value. 
• Multiple stages of proofreading, editing, and formatting. 
• Two physics instructors worked out the solution to every problem to help check all 

of the final answers. 
• Dozens of actual physics students provided valuable feedback. 

 
If you appreciate the effort that went into making this book possible, there is a simple way 
that you could show it: 
 
Please take a moment to post an honest review. 
 
For example, you can review this book at Amazon.com or BN.com (for Barnes & Noble). 
 
Even a short review can be helpful and will be much appreciated.  If you’re not sure what to 
write, following are a few ideas, though it’s best to describe what’s important to you. 

• Were you able to understand the explanations? 
• Did you appreciate the list of symbols and units? 
• Was it easy to find the equations you needed? 
• How much did you learn from reading through the examples? 
• Did the hints and intermediate answers section help you solve the problems? 
• Would you recommend this book to others?  If so, why? 

 
Are you an international student? 
 
If so, please leave a review at Amazon.co.uk (United Kingdom), Amazon.ca (Canada), 
Amazon.in (India), Amazon.com.au (Australia), or the Amazon website for your country. 
 
The physics curriculum in the United States is somewhat different from the physics 
curriculum in other countries.  International students who are considering this book may 
like to know how well this book may fit their needs.  
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THE SOLUTIONS MANUAL 
The solution to every problem in this workbook can be found in the following book: 
 

100 Instructive Trig-based Physics Examples 
Fully Solved Problems with Explanations 

Volume 2:  Electricity and Magnetism 
Chris McMullen, Ph.D. 

ISBN:  978-1-941691-12-0 
 
If you would prefer to see every problem worked out completely, along with explanations, 
you can find such solutions in the book shown below.  (The workbook you are currently 
reading has hints, intermediate answers, and explanations.  The book described above 
contains full step-by-step solutions.) 
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VOLUME 3 
If you want to learn more physics, volume 3 covers additional topics. 
 
Volume 3:  Waves, Fluids, Sound, Heat, and Light 

• Sine waves 
• Simple harmonic motion 
• Oscillating springs 
• Simple and physical pendulums 
• Characteristics of waves 
• Sound waves 
• The decibel system 
• The Doppler effect 
• Standing waves 
• Density and pressure 
• Archimedes’ principle 
• Bernoulli’s principle 
• Pascal’s principle 
• Heat and temperature 
• Thermal expansion 
• Ideal gases 
• The laws of thermodynamics 
• Light waves 
• Reflection and refraction 
• Snell’s law 
• Total internal reflection 
• Dispersion 
• Thin lenses 
• Spherical mirrors 
• Diffraction 
• Interference 
• Polarization 
• and more  
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ABOUT THE AUTHOR 
Chris McMullen is a physics instructor at Northwestern State University of Louisiana and 
also an author of academic books.  Whether in the classroom or as a writer, Dr. McMullen 
loves sharing knowledge and the art of motivating and engaging students. 

He earned his Ph.D. in phenomenological high-energy physics (particle physics) from 
Oklahoma State University in 2002.  Originally from California, Dr. McMullen earned his 
Master's degree from California State University, Northridge, where his thesis was in the 
field of electron spin resonance. 

As a physics teacher, Dr. McMullen observed that many students lack fluency in 
fundamental math skills.  In an effort to help students of all ages and levels master basic 
math skills, he published a series of math workbooks on arithmetic, fractions, algebra, and 
trigonometry called the Improve Your Math Fluency Series.  Dr. McMullen has also 
published a variety of science books, including introductions to basic astronomy and 
chemistry concepts in addition to physics textbooks. 

Dr. McMullen is very passionate about teaching.  Many students and observers have 
been impressed with the transformation that occurs when he walks into the classroom, and 
the interactive engaged discussions that he leads during class time.  Dr. McMullen is well-
known for drawing monkeys and using them in his physics examples and problems, 
applying his creativity to inspire students.  A stressed-out student is likely to be told to 
throw some bananas at monkeys, smile, and think happy physics thoughts. 

 
 

 
Author, Chris McMullen, Ph.D.  
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PHYSICS 
The learning continues at Dr. McMullen’s physics blog: 
 

www.monkeyphysicsblog.wordpress.com 
 
More physics books written by Chris McMullen, Ph.D.: 

• An Introduction to Basic Astronomy Concepts (with Space Photos) 
• The Observational Astronomy Skywatcher Notebook 
• An Advanced Introduction to Calculus-based Physics 
• Essential Calculus-based Physics Study Guide Workbook 
• Essential Trig-based Physics Study Guide Workbook 
• 100 Instructive Calculus-based Physics Examples 
• 100 Instructive Trig-based Physics Examples 
• Creative Physics Problems 
• A Guide to Thermal Physics 
• A Research Oriented Laboratory Manual for First-year Physics 
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SCIENCE 
Dr. McMullen has published a variety of science books, including: 

• Basic astronomy concepts 
• Basic chemistry concepts 
• Balancing chemical reactions 
• Creative physics problems 
• Calculus-based physics textbook 
• Calculus-based physics workbooks 
• Trig-based physics workbooks 
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MATH 
This series of math workbooks is geared toward practicing essential math skills: 

• Algebra and trigonometry 
• Fractions, decimals, and percents 
• Long division 
• Multiplication and division 
• Addition and subtraction 

 

www.improveyourmathfluency.com 
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PUZZLES 
The author of this book, Chris McMullen, enjoys solving puzzles.  His favorite puzzle is 
Kakuro (kind of like a cross between crossword puzzles and Sudoku).  He once taught a 
three-week summer course on puzzles.  If you enjoy mathematical pattern puzzles, you 
might appreciate: 
 

300+ Mathematical Pattern Puzzles 
 
Number Pattern Recognition & Reasoning 

• pattern recognition 
• visual discrimination 
• analytical skills 
• logic and reasoning 
• analogies 
• mathematics 
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VErBAl ReAcTiONS 
Chris McMullen has coauthored several word scramble books.  This includes a cool idea 
called VErBAl ReAcTiONS. A VErBAl ReAcTiON expresses word scrambles so that they look 
like chemical reactions.  Here is an example: 
 

2 C + U + 2 S + Es → S U C C Es S 
 
The left side of the reaction indicates that the answer has 2 C’s, 1 U, 2 S’s, and 1 Es.  
Rearrange CCUSSEs to form SUCCEsS. 
 
Each answer to a VErBAl ReAcTiON is not merely a word, it’s a chemical word.  A chemical 
word is made up not of letters, but of elements of the periodic table.  In this case, SUCCEsS 
is made up of sulfur (S), uranium (U), carbon (C), and Einsteinium (Es). 
 
Another example of a chemical word is GeNiUS.  It’s made up of germanium (Ge), nickel 
(Ni), uranium (U), and sulfur (S). 
 
If you enjoy anagrams and like science or math, these puzzles are tailor-made for you. 
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BALANCING CHEMICAL 
REACTIONS 

2 C2H6 + 7 O2  4 CO2 + 6 H2O 
 
Balancing chemical reactions isn’t just chemistry practice. 
 
These are also fun puzzles for math and science lovers. 
 

Balancing Chemical Equations Worksheets 
Over 200 Reactions to Balance 

Chemistry Essentials Practice Workbook with Answers 
Chris McMullen, Ph.D. 
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CURSIVE HANDWRITING 

for... MATH LOVERS 
Would you like to learn how to write in cursive? 
 
Do you enjoy math? 
 
This cool writing workbook lets you practice writing math terms with cursive handwriting.  
Unfortunately, you can’t find many writing books oriented around math. 
 

Cursive Handwriting for Math Lovers 
by Julie Harper and Chris McMullen, Ph.D. 
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