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Preface

The book Understandable Electric Circuits is based on my teaching notes for the
circuit analysis course that I have taught for many years at Canadian and Chinese
institutions. The English version of this book continues in the spirit of its successful
Chinese version, which was published by the ‘Higher Education Press’, the largest
and the most prominent publisher of educational books in China, in 2005 and
reprinted in 2009.

This unique and well-structured book provides understandable and effective
introduction to the fundamentals of DC/AC circuits, including current, voltage, power,
resistor, capacitor, inductor, impedance, admittance, dependent/independent sources,
basic circuit laws/rules (Ohm’s law, KVL/KCL, voltage/current divider rules), series/
parallel and wye/delta circuits, methods of DC/AC analysis (branch current and
mesh/node analysis), the network theorems (superposition, Thevenin’s/Norton’s
theorems, maximum power transfer, Millman’s and substitution theorems), transient
analysis, RLC circuits and resonance, mutual inductance and transformers and more.

Key features

As an aid to readers, the book provides some noteworthy features:

● Clear and easy-to-understand written style, procedures and examples.
● Outlining (boxing) of all important principles, concepts, laws/rules and for-

mulas to emphasize and locate important facts and points.
● Objectives at the beginning of each chapter to highlight to readers the knowl-

edge that is expected to be obtained in the chapter.
● Summary at the end of each chapter to emphasize the key points and formulas

in the chapter, which is convenient for students reviewing before exams.
● Laboratory experiments at the end of each chapter are convenient for hands-on

practice. They also include how to use basic electrical instruments such as the
multimeter and oscilloscope.

● Tables organizing and summarizing variables, values and formulas, which
clearly present the important information.

Suitable readers

This book is intended for college and university students, technicians, technologists,
engineers or any other professionals who require a solid foundation in the basics of
electric circuits.



It targets an audience from all sectors in the fields of electrical, electronic and
computer engineering such as electrical, electronics, computers, communications,
control and automation, embedded systems, signal processing, power electronics,
industrial instrumentation, power systems (including renewable energy), electrical
apparatus and machines, nanotechnology, biomedical imaging and more. It is also
suitable for non-electrical or electronics readers. It provides readers with the
necessary foundation for DC/AC circuits in related fields.

To make this book more reader friendly, the concepts, new terms, laws/rules
and theorems are explained in an easy-to-understand style. Clear step-by-step
procedures for applying methods of DC/AC analysis and network theorems make
this book easy for readers to learn electric circuits themselves.

Acknowledgements

Special thanks to Lisa Reading, the commissioning editor for books at the Institu-
tion of Engineering and Technology. I really appreciate her belief in my ability to
write this book, and her help and support in publishing it. I also appreciate the
support from Bianca Campbell, books and journals sales manager, Suzanne Bishop,
marketing manager, Felicity Hull, marketing executive, and Jo Hughes, production
controller.

In addition, I would like to express my sincere gratitude to Ramya Srinivasan
(project manager of my production process from MPS Ltd) for her highly efficient
work and good guidance/suggestions that have helped to refine the writing of this
book.

I would also like to express my gratitude to Ying Nan, an electrical and
computer engineer, for taking the time to edit some chapters of this book.

In addition, it is my good fortune to have help and support from my family
members: My husband, Li Wang (an electronics and physics instructor), for
translating several chapters of this book from Chinese to English even though he is
very weak after having several operations. My daughter Alice Wang (a busy PhD
student), who deserves a special acknowledgement for her patience and dedication
to editing some chapters and all the experiments in the book, and also proofreading
the entire book. And finally, my son Evan Wang has given a hand in editing several
chapters. They deserve sincere acknowledgement for their time and energy. My
special thanks to all of them.
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Chapter 1

Basic concepts of electric circuits

Objectives

After completing this chapter, you will be able to:

● understand the purpose of studying electric circuits
● know the requirements of a basic electric circuit
● become familiar with circuit symbols
● become familiar with the schematics of electric circuits
● understand the concepts of current and voltage
● understand resistance and its characteristics
● become familiar with the ammeter, voltmeter and ohmmeter
● know the difference between the electron flow and the conventional

current flow
● know the concept of reference directions of voltage and current
● know how to apply Ohm’s law

1.1 Introduction

1.1.1 Why study electric circuits?

Electrical energy is the great driving force and the supporting pillar for modern
industry and civilization. Our everyday life would be unthinkable without
electricity or the use of electronic products.

Any complex electrical and electronic device or control system is founded
from the basic theory of electric circuits. Only when you have grasped and
understood the basic concepts and principles of electric circuits can you fur-
ther study electrical, electronic and computer engineering and other related
areas.

When you start reading this book, perhaps you have already chosen the
electrical or the electronic fields as your professional goal – a wise choice!
Electrical, electronic and computer engineering has made and continues to
make incredible contributions to most aspects of human society – a truth that
cannot be neglected. Moreover, it may have a bigger impact on human

01_Wang_Chapter01_p001-030 29 May 2010; 13:7:25



civilization in the future. Therefore, experts forecast that demand for profes-
sionals in this field will grow continuously. This is good news for people who
have chosen these areas of study.

Reading this book or other electric circuit book is a first step into the
electrical, electronic and computer world that will introduce you to the foun-
dation of the professions in these areas.

1.1.2 Careers in electrical, electronic and computer engineering

Nowadays, electrical, electronic and computer technology is developing so
rapidly that many career options exist for those who have chosen this field. As
long as you have gained a solid foundation in electric circuits and electronics,
the training that most employers provide in their branches will lead you into a
brand new professional career very quickly.

There are many types of jobs for electrical and electronic engineering
technology. Only a partial list is as follows:

● Electrical engineer
● Electronics engineer
● Electrical design engineer
● Control and automation engineer
● Process and system engineer
● Instrument engineer
● Robotics engineer
● Product engineer
● Field engineer
● Reliability engineer
● Integrated circuits (IC) design engineer
● Computer engineer
● Power electronics engineer
● Electrical and electronics engineering professor/lecturer
● Designer and technologist
● Biomedical engineering technologist
● Electrical and electronics technician
● Hydro technician
● Electrician
● Equipment maintenance technician
● Electronic test technician
● Calibration/lab technician
● Technical writer for electronic products
● Electronic repair

Electrical and electronic technicians, technologists, engineers and experts
will be in demand in the future, so you definitely do not want to miss this good
opportunity.

2 Understandable electric circuits
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1.1.3 Milestones of electric circuit theory

Many early scientists have made great contributions in developing the theorems
of electrical circuits. The laws and physical quantities that they discovered are
named after them, and all are important milestones in the field of electric
engineering. We list here only the ones that are described in this book.

● Coulomb is the unit of electric charge; it was named in the honour of
Charles Augustin de Coulomb (1736–1806), a French physicist. Coulomb
developed Coulomb’s law, which is the definition of the electrostatic force
of attraction and repulsion, and the principle of charge interactions
(attraction or repulsion of positive and negative electric charges).

● Faraday is the unit of capacitance; it was named in the honour of Michael
Faraday (1791–1867), an English physicist and chemist. He discovered that
relative motion of the magnetic field and conductor can produce electric
current, which we know today as the Faraday’s law of electromagnetic
induction. Faraday also discovered that the electric current originates from
the chemical reaction that occurs between two metallic conductors.

● Ampere is the unit of electric current; it was named in the honour of André-
Marie Ampère (1775–1836), a French physicist. He was one of the main
discoverers of electromagnetism and is best known for defining a method
to measure the flow of current.

● Ohm is the unit of resistance; it was named in the honour of Georg Simon
Ohm (1789–1854), a German physicist. He established the relationship
between voltage, current and resistance, and formulated the most famous
electric circuit law – Ohm’s law.

● Volt is the unit of voltage; it was named in the honour of Alessandro Volta
(1745–1827), an Italian physicist. He constructed the first electric battery
that could produce a reliable, steady current.

● Watt is the unit of power; it was named in the honour of James Watt
(1736–1819), a Scottish engineer and inventor. He made great improve-
ments in the steam engine and made important contributions in the area
of magnetic fields.

● Lenz’s law was named in the honour of Heinrich Friedrich Emil Lenz (1804–
1865), a Baltic German physicist. He discovered that the polarity of the
induced current that is produced in the conductor of the magnetic field
always resists the change of its induced voltage; this is known as Lenz’s law.

● Maxwell is the unit of magnetic flux; it was named in the honour of James
Clerk Maxwell (1831–1879), a Scottish physicist and mathematician. The
German physicist Wilhelm Eduard Weber (1804–1891) shares the honour
with Maxwell (1 Wb ¼ 108 Mx). Maxwell had established the Maxwell’s
equations that represent perfect ways to state the fundamentals of elec-
tricity and magnetism.

● Hertz is the unit of frequency; it was named in the honour of Heinrich
Rudolf Hertz (1857–1894), a German physicist and mathematician. He

Basic concepts of electric circuits 3
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was the first person to broadcast and receive radio waves. Through the
low-frequency microwave experiment, Hertz confirmed Maxwell’s elec-
tromagnetic theory.

● Henry is the unit of inductance; it was named in the honour of Joseph
Henry (1797–1878), a Scottish-American scientist. He discovered self-
induction and mutual inductance.

● Joule is the unit of energy; it was named in the honour of James Prescott
Joule (1818–1889), an English physicist. He made great contributions in
discovering the law of the conservation of energy. This law states that
energy may transform from one form into another, but is never lost.
Joule’s law was named after him and states that heat will be produced in an
electrical conductor.

The majority of the laws and units of measurement stated above will be
used in the later chapters of this book. Being familiar with them will be bene-
ficial for further study of electric circuits.

1.2 Electric circuits and schematic diagrams

1.2.1 Basic electric circuits

An electric circuit is a closed loop of pathway with electric charges flowing
through it. More specifically, an electric circuit can be defined as a sum of all
electric components in the closed loop of pathway with flowing electric charges,
such as an electric circuit that includes resistors, capacitors, inductors, power
sources, switches, wires, etc. (these electric components will be explained later).

Electric circuit

A closed loop of pathway with electric charges or current flowing
through it.

A basic electric circuit contains three components: the power supply,
the load and the wires (conductors) (Figure 1.1). Wires connect the power

Power

Supply
Load

Wire

Wire

Figure 1.1 Requirements of a basic circuit
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supply and the load, and carry electric charges through the circuit. A power
supply is a device that supplies electrical energy to the load of the circuit; it
can convert other forms of energy to electrical energy. The electric battery
and generator are examples of power supply. For example:

● the battery converts chemical energy into electrical energy.
● the hydroelectric generator converts hydroenergy (the energy of moving

water) into electrical energy.
● the thermo generator converts heat energy into electrical energy.
● the nuclear power generator converts nuclear energy into electrical energy.
● the wind generator converts wind energy into electrical energy.
● the solar generator converts solar energy into electrical energy.

Load is a device that is usually connected to the output terminal of an
electric circuit. It consumes or absorbs electrical energy from the source. The
load may be any device that can receive electrical energy and convert it into
other forms of energy. For example:

● electric lamp converts electrical energy into light energy
● electric stove converts electrical energy into heat energy
● electric motor converts electrical energy into mechanical energy
● electric fan converts electrical energy into wind energy
● speaker converts electrical energy into sound energy

Therefore, light bulb, electric stove, electric motor, electric fan and speaker
are all electric loads.

Requirements of a basic circuit

● Power supply (power source) is a device that supplies electrical
energy to a load; it can convert the other energy forms into electrical
energy.

● Load is a device that is connected to the output terminal of an elec-
tric circuit, and consumes electrical energy.

● Wires connect the components in a circuit together, and carry electric
charges through the circuit.

Figure 1.2 is an example of a simple electric circuit – a flashlight (or electric
torch) circuit. In this circuit the battery is the power supply and the small light
bulb is the load, and they are connected together by wires.

1.2.2 Circuit schematics (diagrams) and symbols

Studying electric circuits usually requires drawing or recognizing circuit
diagrams. Circuit diagrams can make electric circuits easier to understand,

Basic concepts of electric circuits 5
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analyse and calculate. It is not very difficult to draw a realistic pictorial
representation of the flashlight circuit as shown in Figure 1.2, but when
studying more theories of electric circuits, circuits can be more and more
complex and drawing the pictorial representation of the circuits will not be
very realistic.

The more common electric circuits are usually represented by schematics.
A schematic is a simplified circuit diagram that shows the interconnection of
circuit components. It uses standard graphic circuit symbols according to the
layout of the actual circuit connection. This is a way to draw circuit diagrams
far more quickly and easily.

The circuit symbols are the idealization and approximation of the actual
circuit components. For example, both the battery and the direct current (DC)
generator can convert other energy forms into electrical energy and produce
DC voltage. Therefore, they are represented by the same circuit symbol – the
DC power supply E.

The electric lamp, electric stove, electric motor and other loads can be
represented by a circuit symbol – the resistor R, since all of them have the same
characteristic of converting electrical energy into other forms of energies and
consuming electrical energy.

The different circuit components are represented by different circuit sym-
bols. Table 1.1 lists some commonly used electric circuit symbols in this book.
The most commonly used circuit symbols are the resistor, capacitor, inductor,
power supply, ground, switch, etc.

Schematics are represented by circuit symbols according to the layout of
the actual circuit connection. The schematic of the flashlight circuit (Figure 1.2)
is shown in Figure 1.3.

Further study of this book will help you understand all the circuit elements
in Table 1.1.

(Switch)

Figure 1.2 The flashlight circuit

E E
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Table 1.1 The commonly used circuit schematic symbols

Component Circuit symbol

DC power supply

AC power supply

Current source

Lamp

Connected wires

Unconnected wires

Fixed resistor

Variable resistor
or

Capacitor

Inductor

Switch

Speaker

Ground

Fuse

Ohmmeter Ω

Ammeter A

Voltmeter V

Transformer

Figure 1.3 Schematic of the flashlight circuit
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1.3 Electric current

There are several key circuit quantities in electric circuit theory: electric cur-
rent, voltage, power, etc. These circuit quantities are very important to study in
electric circuits, and they will be used throughout this book. This section will
discuss one of them – the electric current.

1.3.1 Current

Although we cannot see electric charges or electric current in the electric cir-
cuits, they are analogous to the flow of water in a water hose or pipe. Water
current is a flow of water through a water circuit (faucet, pipe or hose, etc.);
electric current is a flow of electric charges through an electric circuit (wires,
power supply and load).

Water is measured in litres or gallons, so you can measure the amount of
water that flows out of the tap at certain time intervals, i.e. litres or gallons per
minute or hour. Electric current is measured by the amount of electric charges
that flows past a given point at a certain time interval in an electric circuit. If Q
represents the amount of charges that is moving past a point at time t, then the
current I is:

Current ¼ Charge
Time

or I ¼ Q

t

If you have learned calculus, current also can be expressed by the derivative:
i ¼ dq=dt.

Electric current I
● Current is the flow of electric charges through an electric circuit.
● Current I is measured by the amount of charges Q that flows past a

given point at a certain time t: I ¼ Q/t

Note: Italic letters have been used to represent the quantity symbols and
non-italic letters to represent unit symbols.

Quantity Quantity symbol Unit Unit symbol

Charge Q Coulombs C
Time t Seconds s
Current I Amperes A
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A current of 1 A means that there is 1 C of electric charge passing through
a given cross-sectional area of wire in 1 s:

1 A ¼ 1 C
1 s

More precisely, 1 A of current actually means there are about 6.25 6 1018

charges passing through a given cross-sectional area of wire in 1 s, since 1 C is
approximately equal to 6.25 6 1018 charges (1 C � 6.25 6 1018 charges), as
shown in Figure 1.4.

Example 1.1: If a charge of 100 C passes through a given cross-sectional area of
wire in 50 s, what is the current?

Solution:

Since Q ¼ 100 C and t ¼ 50 s

I ¼ Q

t
¼ 100 C

50 s
¼ 2 A

1.3.2 Ammeter

Ammeter is an instrument that can be used to measure current, and its symbol
is A . It must be connected in series with the circuit to measure current, as
shown in Figure 1.5.

1.3.3 The direction of electric current

When early scientists started to work with electricity, the structure of atoms
was not very clear, and they assumed at that time the current was a flow of
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There are 6.25 � 1018 charges passing through this given cross-sectional area in 1 s

Figure 1.4 1 A of current
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Figure 1.5 Measuring current with an ammeter
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positive charges (protons) from the positive terminal of a power supply (such
as a battery) to its negative terminal.

Which way does electric charge really flow? Later on, scientists discovered
that electric current is in fact a flow of negative charges (electrons) from the
negative terminal of a power supply to its positive terminal. But by the time the
real direction of current flow was discovered, a flow of positive charges (pro-
tons) from the positive terminal of a power supply to its negative terminal had
already been well established and used commonly in electrical circuitry.

Currently, there are two methods to express the direction of electric cur-
rent. One is known as the conventional current flow version, in which the cur-
rent is defined as a flow of positive charges (protons) from the positive terminal
of a power supply to its negative terminal. The other is called electrons flow
version, in which the current is defined as a flow of negative charges (electrons)
from the negative terminal of a power supply unit to its positive terminal.
These two methods are shown in Figure 1.6.

Because the charge or current cannot be seen in electric circuits, it will
make no difference as to which method is used, and it will not affect the ana-
lysis, design, calculation, measurement and applications of the electric circuits
as long as one method is used consistently. In this book, the conventional
current flow version is used.

Conventional and electron current flow version

● Conventional current flow is defined as a flow of positive charges
(protons) from the positive terminal of a power supply to its negative
terminal.

● Electron flow version is defined as a flow of negative charges (electrons)
from the negative terminal of a power supply to its positive terminal.

1.4 Electric voltage

1.4.1 Voltage/electromotive force

We have analysed the flow of water in the water circuit to the flow of electric
current in the electric circuit. The concept of a water circuit can help develop an
understanding of another important circuit quantity – voltage.

I I

(a) Conventional current flow (b) Electron flow 

Figure 1.6 The direction of electric current
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The concept of voltage works on the principle of a water gun. The trigger
of a water gun is attached to a pump that squirts water out of a tiny hole at
the muzzle. If there is no pressure from the gun (the trigger is not pressed),
there will be no water out of the muzzle. Low-pressure squirting produces thin
streams of water over a short distance, while high pressure produces a very
powerful stream over a longer distance.

Just as water pressure is required for a water gun or water circuit, electric
pressure or voltage is required for an electric circuit. Voltage is responsible for
the pushing and pulling of electrons or current through an electric circuit. The
higher the voltage, the greater the current will be.

Let us further analyse the voltage by using the previous flashlight or torch
circuit in Figure 1.2. If only a small lamp is connected with wires without a
battery in this circuit, the flashlight will not work. Since electric charges in the
wire (conductor) randomly drift in different directions, a current cannot form in
a specific direction. Once the battery is connected to the load (lamp) bywires, the
positive electrode of the battery attracts the negative charges (electrons), and the
negative electrode of the battery repels the electrons. This causes the electrons to
flow in one direction and produce electric current in the circuit.

The battery is one example of a voltage source that produces electromotive
force (EMF) between its two terminals. When EMF is exerted on a circuit, it
moves electrons around the circuit or causes current to flow through the circuit
since EMF is actually ‘the electron-moving force’. It is the electric pressure or
force that is supplied by a voltage source, which causes current to flow in a
circuit. EMF produced by a voltage source is analogous to water pressure
produced by a pump in a water circuit.

Voltage is symbolized by V (italic letter), and its unit is volts (non-italic
letter V). EMF is symbolized by E, and its unit is also volts (V).

Electromotive force (EMF)

EMF is an electric pressure or force that is supplied by a voltage source,
which causes electric current to flow in a circuit.

1.4.2 Potential difference/voltage

Assuming there are two water tanks A and B, water will flow from tank A to B
only when tank A has a higher water level than tank B, as shown in Figure 1.7.

A B

Figure 1.7 Water-level difference
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Common sense tells us that ‘water flows to the lower end’, so water will only
flow when there is a water-level difference. It is the water-level difference that
produces the potential energy for tank A, and work is done when water flows
from tank A to B.

This concept can also be used in the electric circuit. As water will flow
between two places in a water circuit only when there is a water-level differ-
ence, current will flow between two points in an electric circuit only when there
is an electrical potential difference.

For instance, if a light bulb is continuously kept on, i.e. to maintain con-
tinuous movement of electrons in the circuit, the two terminals of the lamp
need to have an electrical potential difference. This potential difference or
voltage is produced by the EMF of the voltage source, and it is the amount of
energy or work that would be required to move electrons between two points.
Work is represented by W and measured in joules (J). The formula may be
expressed as:

Voltage ¼ Work
Charge

or V ¼ W

Q

If you have learned calculus, voltage can also be expressed by the derivative
v ¼ dw/dq.

Voltage V (or potential difference)

V is the amount of energy or work required to move electrons between
two points: V ¼ W/Q.

For example, if 1 J of energy is used to move a 1 C charge from point a to
b, it will have a 1 V potential difference or voltage across two points, as shown
in Figure 1.8.

W = 1J

Q = 1C

V = 1V

a b

Figure 1.8 Potential difference or voltage

Quantity Quantity symbol Unit Unit symbol

Voltage V Volt V
Work (energy) W Joule J
Charge Q Coulomb C
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Although voltage and potential difference are not exactly same, the two are
used interchangeably. Current will flow between two points in a circuit only
when there is a potential difference. The voltage or the potential difference
always exists between two points.

There are different names representing voltage or potential difference in
electric circuits, such as the source voltage, applied voltage, load voltage, vol-
tage drop, voltage rise, etc. What are the differences between them?

The EMF can be called source voltage or applied voltage since it is supplied by
a voltage source and applied to the load in a circuit. Voltage across the two
terminals of the load is called the load voltage. Voltage across a component in a
circuit is sometimes called voltage dropwhen current flows from a higher potential
point to a lower potential point in the circuit, or voltage rise when current flows
from a lower potential point to a higher potential point in the circuit.

Source voltage or applied voltage (E or VS):

EMF can be called source voltage or applied voltage (the EMF is sup-
plied by a voltage source and applied to the load in a circuit).

Load voltage (V): Voltage across the two terminals of the load.

Voltage drop:

Voltage across a component when current flows from a higher potential
point to a lower potential point.

Voltage rise:

Voltage across a component when current flows from a lower potential
point to a higher potential point.

1.4.3 Voltmeter

Voltmeter is an instrument that can be used to measure voltage. Its symbol is V .
The voltmeter should be connected in parallel with the circuit component

to measure voltage, as shown in Figure 1.9.

V

Figure 1.9 Measuring voltage with a voltmeter
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1.5 Resistance and Ohm’s law

1.5.1 Resistor

Let us use the water current as an example again to explain the resistor. What
will happen when we throw some rocks into a small creek? The speed of the
water current will slow down in the creek. This is because the rocks (water
resistance) ‘resist’ the flow of water. A similar concept may also be used in an
electric circuit. The resistor (current resistance) ‘resists’ the flow of electrical
current. The higher the value of resistance, the smaller the current will be. The
resistance of a conductor is a measure of how difficult it is to resist the current
flow.

As mentioned in section 1.2, the lamp, electric stove, motor and other such
loads may be represented by resistor R because once this kind of load is con-
nected to an electric circuit, it will consume electrical energy, cause resistance
and reduce current in the circuit.

Sometimes resistor R will need to be adjusted to a different level for dif-
ferent applications. For example, the intensity of light of an adjustable lamp
can be adjusted by using resistors. A resistor can also be used to maintain a safe
current level in a circuit. A resistor is a two-terminal component of a circuit
that is designed to resist or limit the flow of current. There are a variety of
resistors with different resistance values for different applications.

The resistor and resistance of a circuit have different meanings. A resistor is
a component of a circuit. The resistance is a measure of a material’s opposition
to the flow of current, and its unit is ohms (O).

Resistor (R): A two-terminal component of a circuit that limits the flow
of current.

Resistance (R): The measure of a material’s opposition to the flow of
current.

Resistors are of many different types, materials, shapes and sizes, but all of
them belong to one of the two categories, either fixed or variable. A fixed
resistor has a ‘fixed’ resistance value and cannot be changed. A variable resis-
tor has a resistance value that can be easily changed or adjusted manually or
automatically.

Symbols of the resistor

● Fixed resistor
● Variable resistor

or
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1.5.2 Factors affecting resistance

There is no ‘perfect’ electrical conductor; every conductor that makes up the
wires has some level of resistance no matter what kind of material it is made
from. There are four main factors affecting the resistance in a conductor:
the cross-sectional area of the wire (A), length of the conductor (‘), tempera-
ture (T) and resistivity of the material (r) (Figure 1.10).

● Cross-sectional area of the wire A: More water will flow through a wider
pipe than that through a narrow pipe. Similarly, the larger the diameter of
the wire, the greater the cross-sectional area, the less the resistance in the
wire and the more the flow of current.

● Length ‘: The longer the wire, the more the resistance and the more the
time taken for the current to flow.

● Resistivity r: It is a measure for the opposition to flowing current through
a material of wire, or how difficult it is for current to flow through a
material. The different materials have different resistivity, i.e. more or less
resistance in the materials.

● Temperature T: Resistivity of a material is dependent upon the tempera-
ture surrounding the material. Resistivity increases with an increase in
temperature for most materials. Table 1.2 lists resistivity of some materials
at 20 8C.

A

�

r

Figure 1.10 Factors affecting resistance

Table 1.2 Table of resistivities (r)

Material Resistivity r (O � m)

Copper 1.68 6 1078

Gold 2.44 6 1078

Aluminium 2.82 6 1078

Silver 1.59 6 1078

Iron 1.0 6 1077

Brass 0.8 6 1077

Nichrome 1.1 6 1076

Tin 1.09 6 1077

Lead 2.2 6 1077
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Factors affecting resistance can be mathematically expressed with the
following formula:

R ¼ r
‘

A

Factors affecting resistance

R ¼ r ‘
A

� �
where A is the cross-sectional area, ‘ the length, T the tem-

perature and r the resistivity (conducting ability of a material for a wire).

Note: r is a Greek letter pronounced ‘rho’ (see Appendix A for a list of Greek
letters).

Example 1.3: There is a copper wire 50 m in length with a cross-sectional area
of 0.13 cm2. What is the resistance of the wire?

Solution:

‘ ¼ 50 m ¼ 5 000 cm; A ¼ 0.13 cm2;
r ¼ 1.68 6 1078 O � m ¼ 1.68 6 1076 O � cm (copper)

R ¼ r
‘

A
¼ ð1:68 � 10�6 O � cmÞð5 000 cmÞ

0:13 cm2
� 0:0646O

The resistance of this copper wire is 0.0646 O. Although there is resistance in
the copper wire, it is very small. A 50-m-long wire only has 0.0646 O resistance;
thus we can say that copper is a good conducting material. Copper and alu-
minium are commonly used conducting materials with reasonable price and
better conductivity.

1.5.3 Ohmmeter

Ohmmeter is an instrument that can be used to measure resistance. Its symbol
is Ω . The resistor must be removed from the circuit to measure resistance as
shown in Figure 1.11.

E R Ω

Figure 1.11 Measuring resistance with an ohmmeter
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Voltmeter V : An instrument that is used to measure voltage; it should be
connected in parallel with the component.

Ammeter A : An instrument that is used to measure current; it should be
connected in series in the circuit.

Ohmmeter Ω : An instrument that is used to measure resistance, and the
resistor must be removed from the circuit to measure the resistance.

1.5.4 Conductance

Conductance (G) is a term that is opposite of the term resistance. It is the ability
of a material to pass current rather than resist it, or how easy rather than how
difficult it is for current to flow through a circuit. Conductance is the con-
ductivity of the material; the less the resistance R of the material, the greater the
conductance G, the better the conductivity of the material, and vice versa.

The factors that affect resistance are the same for conductance, but in the
opposite way. Mathematically, conductance is the reciprocal of resistance, i.e.

G ¼ 1
R

or G ¼ A

r‘
,R ¼ r

‘

A

� �

Increasing the cross-sectional area (A) of the wire or reducing the wire length (‘)
can get better conductivity. This can be seen from the equation of conductance.
It is often preferable and more convenient to use conductance in parallel cir-
cuits. This will be discussed in later chapters.

Conductance G

G is the reciprocal of resistance: G ¼ 1/R

The SI unit of conductance is the siemens (S). Some books use a unit mho (

O

) for
conductance, which was derived from spelling ohm backwards and with an
upside-down Greek letter omega

O

. Mho actually is the reciprocal of ohm, just
as conductance G is the reciprocal of resistance R.

Example 1.4: What is the conductance if the resistance R is 22 O?

Solution: G ¼ 1/R ¼ 1/22 O � 0.0455 S or 0.0455

O

1.5.5 Ohm’s law

Ohm’s law is a very important and useful equation in electric circuit theory. It
precisely expresses the relationship between current, voltage and resistance
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with a simple mathematical equation. Ohm’s law states that current through a
conductor in a circuit is directly proportional to the voltage across it and
inversely proportional to the resistance in it, i.e.

I ¼ V

R
or I ¼ E

R

Any form of energy conversion from one type to another can be expressed as
the following equation:

Effect ¼ Cause
Opposition

In an electric circuit, it is the voltage that causes current to flow, so current flow
is the result or effect of voltage, and resistance is the opposition to the current
flow. Replacing voltage, current and resistance into the above expression will
obtain Ohm’s law:

Current ¼ Voltage
Resistance

Ohm’s law

● Ohm’s law expresses the relationship between I, V and R.
● I through a conductor is directly proportional to V, and inversely

proportional to R: I ¼ V/R or I ¼ E/R.

1.5.6 Memory aid for Ohm’s law

Using mathematics to manipulate Ohm’s law, and solving for V and R
respectively, we can write Ohm’s law in several different forms:

V ¼ IR; I ¼ V=R; R ¼ V=I

These three equations can be illustrated in Figure 1.12 as a memory aid for
Ohm’s law. By covering one of the three variables from Ohm’s law in the
diagram, we can get the right form of Ohm’s law to calculate the unknown.

I R

V
(a)

V

I R

(b)

I R

V
(c)

Figure 1.12 Memory aid for Ohm’s law. (a) V ¼ IR. (b) I ¼ V/R. (c) R ¼ V/I
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1.5.7 The experimental circuit of Ohm’s law

The experimental circuit with a resistor of 125 O in Figure 1.13 may prove
Ohm’s law. If a voltmeter is connected in the circuit and the source voltage is
measured, E ¼ 2.5 V. Also, connecting an ammeter and measuring the current
in the circuit will result in I ¼ 0.02 A. With Ohm’s law we can confirm that
current in the circuit is indeed 0.02 A:

I ¼ E=R ¼ 2:5 V=125 O ¼ 0:02 A

1.5.8 I–V characteristic of Ohm’s law

Using a Cartesian coordinate system, voltage V (x-axis) is plotted against
current I (y-axis); this graph of current versus voltage will be a straight line, as
shown in Figure 1.14.

When voltage V is 10 V and current is 1 A, R ¼ V/I ¼ 10 V/1 A ¼ 10 O.
When voltage V is 5 V and current is 0.5 A, R ¼ V/I ¼ 5 V/0.1 A ¼ 10 O.
So the straight line in Figure 1.14 describes the current–voltage relation-

ship of a 10-O resistor. The different lines with different slopes on the I–V
characteristic can represent the different values of resistors. For example, a
20-O resistor can be illustrated as in Figure 1.15.

Since I–V characteristic shows the relationship between current I and vol-
tage V for a resistor, it is called the I–V characteristic of Ohm’s law.

A

R = 125 Ω2.5 V

0.02 A

V E
�

�

Figure 1.13 The experimental circuit of Ohm’s law

V

I
R

0

1 A

0.1 A

5 V 10 V

Figure 1.14 I–V characteristics (R ¼ 10 O)
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The I–V characteristic of the straight line illustrates the behaviour of a
linear resistor, i.e. the resistance does not change with the voltage or current. If
the voltage decreases from 10 to 5 V, the resistance still equals 20 O as shown in
Figure 1.15. When the relationship of voltage and current is not a straight line,
the resultant resistor will be a non-linear resistor.

1.5.9 Conductance form of Ohm’s law

Ohm’s law can be written in terms of conductance as follows:

I ¼ GV since G ¼ 1=R; and I ¼ V=Rð Þ

1.6 Reference direction of voltage and current

1.6.1 Reference direction of current

When performing circuit analysis and calculations in many situations, the
actual current direction through a specific component or branch may change
sometimes, and it may be difficult to determine the actual current direction for
a component or branch. Therefore, it is convenient to assume an arbitrarily
chosen current direction (with an arrow), which is the concept of reference
direction of current. If the resultant mathematical calculation for current
through that component or branch is positive (I 4 0), the actual current
direction is consistent with the assumed or reference direction. If the resultant
mathematical calculation for the current of that component is negative (I5 0),
the actual current direction is opposite to the assumed or reference direction.
As shown in Figure 1.16, the solid line arrows indicate the reference

V

I
R

0

0.5 A

0.25 A

5 V 10 V

Figure 1.15 I–V characteristics (R ¼ 20 O)

5 Ω10 V 5 Ω10 V

I = 2 A

I > 0

I = –2 A

I < 0

Figure 1.16 Reference direction of current
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current directions and the dashed line arrows indicate the actual current
directions.

Reference direction of current

Assuming an arbitrarily chosen direction as the reference direction of
current I:

● If I 4 0 the actual current direction is consistent with the reference
current direction.

● If I 5 0 the actual current direction is opposite to the reference
current direction.

Figure 1.17 shows two methods to represent the reference direction of
current:

● Expressed with an arrow, the direction of the arrow indicates the reference
direction of current.

● Expressed with a double subscription, for instance Iab, indicates the
reference direction of current is from point a to b.

1.6.2 Reference polarity of voltage

Similar to the current reference direction, the voltage reference polarity is also an
assumption of arbitrarily chosen polarity. If the resultant calculation for voltage
across a component is positive (V4 0), the actual voltage polarity is consistent
with the assumed reference polarity. If the resultant calculation is negative (V5 0),
the actual voltage polarity is opposite to the assumed reference polarity. As
shown in Figure 1.18, the positive (þ) and negative (7) polarities represent the
reference voltage polarities, and arrows represent the actual voltage polarities.

I

R

(a) (b)

R

b

a

Iab

Figure 1.17 Reference direction of current I. (a) Arrow indicates the reference I
direction. (b) Double subscription indicates the reference I
direction
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Reference polarity of voltage

Assuming an arbitrarily chosen voltage polarity as the reference polarity
of voltage:

● If V 4 0 the actual voltage polarity is consistent with the reference
voltage polarity.

● If V 5 0 the actual voltage polarity is opposite to the reference vol-
tage polarity.

Figure 1.19 shows three methods to indicate the reference polarity of voltage:

● Expressed with an arrow, the direction of the arrow points from positive to
negative.

● Expressed with polarities, positive sign (þ) indicates a higher potential
position, and negative sign (7) indicates a lower potential position.

● Expressed with a double subscription, for instance Vab, indicates that the
potential position a is higher than the potential position b.

1.6.3 Mutually related reference polarity of current/voltage

If the reference direction of current is assigned by flow from the positive side to
the negative side of voltage across a component (the reference arrow pointing
from þ to 7), then the reference current direction and reference voltage
polarity is consistent. In other words, along with the current reference direction

+

–

+ V – V

+

–

V > 0 V < 0

Figure 1.18 Reference polarity of voltage

R R

+

b
–

a

V Vab
VR

Figure 1.19 Methods indicating the reference polarity of voltage
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is the voltage from positive to negative polarity. This is called the mutually
related reference direction or polarity of current/voltage. In this case, if we only
know one reference direction or polarity, it is also possible to determine the
other, and this is shown in Figure 1.20.

Mutually related reference polarity of V and I

If the reference I direction is assigned by an arrow pointing from þ to 7
of voltage across a component, then the reference I direction and refer-
ence V polarity is consistent.

Summary

Milestones of the electric circuits

Name of scientist Nationality Name of

unit/law

Named for

Charles Augustin de
Coulomb

French Coulomb Unit of charge (C)

Alessandro Volta Italian Volt Unit of voltage (V)
André-Marie Ampère French Ampere Unit of current (A)
Georg Simon Ohm German Ohm Unit of resistance (O)
James Watt Scottish Watt Unit of power (W)
Friedrich Emil Lenz German Lenz Lenz’s law
James Clerk Maxwell Scottish Maxwell Unit of flux (maxwell),

Maxwell’s magnetic
field equation

Wilhelm Eduard
Weber

German Webber Unit of flux (weber)
1 Wb ¼ 108 Mx

Heinrich Rudolf Hertz German Hertz Unit of frequency (Hz)
Kirchhoff German Kirchhoff Kirchhoff’s current and

voltage laws
Joseph Henry Scottish-American Henry Unit of inductance (H)
James Prescott Joule British Joule Unit of energy (J)
Michael Faraday British Faraday Unit of capacitance (F)

II

R
R

++

–
–

V
V

(a) (b)

Figure 1.20 (a) Mutually related reference polarity of I and V.
(b) Non-mutually related reference polarity of I and V
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Basic concepts

● Electric circuit: A closed loop of pathway with electric current flowing
through it.

● Requirements of a basic circuit:
● Power supply (power source): A device that supplies electrical energy

to a load.
● Load: A device that is connected to the output terminal of a circuit,

and consumes electrical energy.
● Wires: Wires connect the power supply unit and load together, and

carry current flowing through the circuit.
● Schematic: A simplified circuit diagram that shows the interconnection of

circuit components, and is represented by circuit symbols.
● Circuit symbols: The idealization and approximation of the actual circuit

components.
● Electric current (I): A flow of electric charges through an electric circuit:

I ¼ Q/t (or I ¼ dq/dt).
● Current direction:

● Conventional current flow version: A flow of positive charge
(proton) from the positive terminal of a power supply to its negative
terminal.

● Electron flow version: A flow of negative charge (electron) from the
negative terminal of a power supply unit to its positive terminal.

● Ammeter: An instrument used for measuring current, represented by the
symbol A . It should be connected in series in the circuit.

● Electromotive force (EMF): An electric pressure or force supplied by a
voltage source causing current to flow in a circuit.

● Voltage (V) or potential difference: The amount of energy orwork thatwould
be required to move electrons between two points: V ¼ W/Q (or v ¼ dw/dt).

● Source voltage or applied voltage (E or VS): EMF can be called source
voltage or applied voltage. The EMF is supplied by a voltage source and
applied to the load in a circuit.

● Load voltage (V): Voltage across two terminals of the load.
● Voltage drop: Voltage across a component when current flows from a

higher potential point to a lower potential point in a circuit.
● Voltage rise: Voltage across a component when current flows from a lower

point to a higher point in a circuit.
● Voltmeter: An instrument used for measuring voltage. Its symbol is V

and it should be connected in parallel with the component.
● Resistor (R): A two-terminal component of a circuit that limits the flow of

current.
● Resistance (R): Measure of a material’s opposition to the flow of current.
● Factors affecting resistance: R ¼ rð‘=AÞ, where cross-sectional area (A),

length (‘), temperature (T) and resistivity (r).
● Ohmmeter: An instrument used for measuring resistance. Its symbol is Ω

and the resistor must be removed from the circuit to measure the resistance.
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● Conductance (G): It is the reciprocal of resistance: G ¼ 1/R.
● Ohm’s law: It expresses the relationship between current I, voltage V and

resistance R.

I ¼ V

R
or I ¼ E

R

● Conductance form of Ohm’s law: I ¼ GV.
● Reference direction of current: Assuming an arbitrarily chosen current

direction as the reference direction of current:
● If I4 0 actual current direction is consistent with the reference current

direction.
● If I 5 0 actual current direction is opposite to the reference current

direction.
● Reference polarity of voltage: Assuming an arbitrarily chosen voltage

polarity as the reference polarity of voltage:
● If V4 0 actual voltage polarity is consistent with the reference voltage

polarity.
● If V 5 0 actual voltage polarity is opposite to the reference voltage

polarity.
● Mutually related polarity of voltage and current: If the reference current

direction is assigned by an arrow pointing from þ to 7 voltage of the
component, then the reference current direction and reference voltage
polarity is consistent.

● Symbols and units of electrical quantities:

Experiment 1: Resistor colour code

Objectives

● Become familiar with the breadboard
● Interpret the colour code for resistors
● Measure resistors with a multimeter (ohmmeter function)

Quantity Quantity symbol Unit Unit symbol

Charge Q Coulomb C
EMF E Volt V
Work (energy) W Joule J
Resistance R Ohm O
Resistivity r Ohm � metres O � m
Conductance G Siemens or mho S or

O

Current I Ampere A
Voltage V or E Volt V
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Equipment and components

● Breadboard
● Resistors: 12 O (2), 100 O (2), 2.7 kO (2), 3.9 kO, 8.2 kO, 1.1 MO, 15 kO,

470 O, 18 O, 56 kO, 4.7 kO
● Digital multimeter

Background information

Breadboard guide

● The Universal Solderless Breadboard, or usually known as the bread-
board, is one type of circuit board. It offers an easy way to change com-
ponents or wire connections on the breadboard without soldering.

● The breadboard is a good training tool and is usually used in the lab to perform
experiments on electric or electronic circuits, or for professionals to build
temporary electrical or electronic circuits to try out ideas for circuit designs.

● Figure L1.1 is a photograph of a small breadboard, and Figure L1.2 is
what the underneath of the breadboard looks like.

● The breadboard contains an array of holes where the leads of components
and jumper wires can be inserted. The bottom of the board has many strips
of metal, which is laid out as shown in Figure L1.2. These strips connect
the holes on top of the board. The top and bottom rows will be used to
connect the power supply. Figure L1.3(a) is a simple circuit, and Figure
L1.3(b) shows how to build this circuit on the breadboard.

Resistor colour code guide (four band)

● Most resistors are very small and it is hard to print the values on them.
Usually the small resistors have different colour bands on them, and the

Figure L1.1 A breadboard

Figure L1.2 The underneath of the breadboard
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standard resistor colour code can be used to interpret the values of dif-
ferent resistors.

● To determine the value of a resistor from the colour band markings, hold
the resistor so that the colour bands are closest to the left end as shown in
Figure L1.4.

● The first two colour bands on the left side of the resistor represent two digits
(0–9), the third band represents the number of zeros to add to the integers
(multiplier), and the fourth band represents the tolerance of the resistance.

● The resistor colour code is shown in Table L1.1, and the tolerance of the
resistance is shown in Table L1.2.

Note: Memory aid: Better Be Right Or Your Great Big Venture Goes West
Source: http://www.wikihow.com/Discussion:Remember-Electrical-Resistor-

Color-Codes

Table L1.1 Resistor colour code

Colour Digit

Black 0
Brown 1
Red 2
Orange 3
Yellow 4
Green 5
Blue 6
Violet 7
Grey 8
White 9

Figure L1.4 Resistor colour bands

+

-

RE

(a) (b)

Figure L1.3 Building a simple circuit on the breadboard
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Example: If a resistor has colour bands of brown (1), black (0), red (add two
zeros) and silver (tolerance is 10%) from left to right side respectively, it indi-
cates that its resistance lies between 900 and 1100 O:

R ¼ 1 000O� 10% ¼ 1 000 � 100 ¼ 900 to 1100O

Example: If one needs to find a resistor with the value of 470 O, its colour
bands should be yellow (4), violet (7) and brown (add one zero).

Multimeter guide

● A multimeter or VOM (volt–ohm–millimetre) is an electrical and elec-
tronic measuring instrument that combines functions of voltmeter,
ammeter, ohmmeter, etc. There are two types of multimeters: digital
multimeter (DMM) and analog multimeter. DMM is a very commonly
used instrument, since it is easier to use and has a higher level of
accuracy.

● Method for measuring resistance with a DMM (ohmmeter function):
● Turn off the power supply if the resistor has been connected in the

circuit.
● Insert the multimeter’s leads into the sockets labelled COM and V/O

as shown in Figure L1.5, and turn on the multimeter.
● Turn the central selector switch pointing to the ohms range (with O

sign), and to where the maximum range of the estimated resistor value
is closed.

● Make the measurement by connecting the resistor in parallel with the
two leads of the multimeter (connect or touch one lead from the
multimeter to one end of the resistor, and connect or touch the other
lead of the multimeter to the other end of the resistor).

● If measuring an unknown resistor, adjust the multimeter range from
the maximum to the lower range until suitable resistance is read.

● Turn off the multimeter.

Note: To get more accurate measurement result, be sure not to grab the resis-
tor’s leads with your hands when you are measuring resistors, since you will
add your own resistance (in parallel) to the resistor. Better insert the resistors
into the holes of the breadboard to measure them.

Table L1.2 Tolerance of resistance

Colour Tolerance (%)

Gold +5
Silver +10
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Procedure

1. Familiarize with the resistor colour code. Use the resistor colour code chart
in Table L1.1 to find the six resistors listed in Table L1.3 from the lab. List
the colour band identification for these six resistors, and fill in the ‘Colour
code’ and the ‘Resistance range’ columns in Table L1.3.

Table L1.3

Resistor Colour code Resistance range Measured value

Example: 470 O Yellow, violet, brown,
gold

446.5 O7493.5 O 470.5 O

12 O
100 O
2.7 kO
3.9 kO
82 kO
1.1 MO

Figure L1.5 Multimeter
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2. Get the multimeter to function as an ohmmeter, and measure the six
resistors in Table L1.3 with multimeter and fill in the ‘Measured value’
column in Table L1.3.

3. Construct the circuits shown in Figure L1.6 on the breadboard with the
right resistors. Show your circuits to the instructor to get check-up and
signature.

Conclusion

The conclusion may include the following information:

● lab objectivities accomplished
● results, errors and error analysis
● problems encountered during the experiment and their solutions
● knowledge and skills obtained from the lab

18 Ω

56 kΩ

470 Ω

�
�

�

�

�

�
4.7 kΩ

15 kΩ
12 Ω

100 Ω

2.7 kΩ

12 Ω 100 Ω

2.7 kΩ

3.9 kΩ1.1 MΩ

8.2 kΩ

Figure L1.6 Construct circuits on the breadboard
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Chapter 2

Basic laws of electric circuits

Objectives

After completing this chapter, you will be able to:

● define energy and power
● calculate power
● know the reference directions of power
● analyse and calculate circuits with Kirchhoff’s voltage law (KVL)
● analyse and calculate circuits with Kirchhoff’s current law (KCL)
● define the branch, node, network and loop
● understand the concepts of the ideal voltage source and the actual voltage source.

2.1 Power and energy

2.1.1 Work

You may have learned in physics that work is the result when a force acts on an
object and causes it to move a certain distance. Work (W ) is the product of the
force (F ) and the displacement (S) in the direction of the motion.

Work

W ¼ F6S

whereW is, if using for example a force of 1 N to lift an object to 1 m, the
1 J of work done in overcoming the downward force of gravity as shown
in Figure 2.1.

Quantity Quantity Symbol Unit Unit symbol

Work W Joule J
Force F Newton N
Displacement S Meter m
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Note: When the force (F) and displacement (S) do not point in the same
direction, the formula to calculate work will be:

W ¼ (F cos y)S

● where the angle y is the angle between force (F) and displacement (S),
● when y is 0 degree, cos08 ¼ 1, W ¼ (Fcosy)S ¼ FS.

It is the same in an electric circuit. Work is done after the electrons or
charges are moved to a certain distance in a circuit as a result of applying an
electric field force from the power supply.

2.1.2 Energy

Energy is the ability to do work; it is not work itself, but a transfer of energy.
Even though you can’t ever really see it, you use energy to do work every day.
For example, after you eat and sleep, your body converts the stored energy to
keep you doing daily work, such as walking, running, reading, writing, etc.

The law of conservation of energy is one of most important rules in natural
science. It states that energy can neither be created nor destroyed, but can only
be converted from one form to another. ‘Converted’ means ‘never disappeared’
in physics terms. For example:

Electrical generator: mechanical energy ! electrical energy.
Lamp: electrical energy ! light energy.
Battery: chemical energy ! electrical energy.

2.1.3 Power

Power refers to the speed of energy conversion or consumption; it is a measure of
how fast energy is transforming or being used. For example in Figure 2.1, 1 N
object lifted to 1 m may have different time rates depending on the amount of
power applied. If a higher power is applied to the object (an adult is lifting it), it
will take a shorter period of time to lift it; and if a lower power is applied to the
object (a kid is lifting it), it will take a longer period of time to lift it. So power is
defined as the rate of doing work, or the amount of work done per unit of time.

Our daily consumption of electricity is electrical energy, and not electrical
power. The hydro bill that you receive is for electrical power – the amount of
electrical energy consumed in 1 or 2 months.

1 N

1 m
F

1 N

Figure 2.1 Work
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Energy and power

● Energy is the ability to do work.
● Power is the speed of energy conversion, or work done per unit of

time: Power ¼ Work=time or P ¼ W=t

Electrical power is the speed of electrical energy conversion or consumption in
an electric circuit, and it is a measure of how fast electrons or charges are
moving in a circuit.

Since current is the amount of charge (Q) that flows past a given point at
the certain time: I ¼ Q=t and voltage is the amount of work that is required to
move electrons between two points: V ¼ W=Q or Wc ¼ QV:

Substituting work W into the power equation gives P¼W=t¼QV=t¼ IV:
It can also be expressed as the form of a derivative:

p ¼ ðdw=dtÞ ¼ ðdw=dqÞðdq=dtÞ ¼ vi

Substituting Ohm’s law into the power equation P ¼ IV obtains the other
two different power equations:

P ¼ VI ¼ ðIRÞI ¼ I2R ðOhm’s law : V ¼ IRÞ

P ¼ VI ¼ V
V

R
¼ V 2

R
Ohm’s law : I ¼ V

R

� �

(Electrical) Power P

P ¼ IV ¼ I2R ¼ V 2=R ðor P ¼ IE ¼ E2=RÞ

Quantity Quantity symbol Unit Unit symbol

Electrical Power:
Work or Energy W Joule J
Time t Second s
Power P Watt W

Or: Kilowatt-hour kWh
Hour h
Watt W

Quantity Quantity symbol Unit Unit symbol

Power P Watt W
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The above three power equations can be illustrated in Figure 2.2 as the mem-
ory aid for power equations. By covering power in any diagram, the correct
equation will be obtained to calculate the unknown power.

Example 2.1: In a circuit, voltage V ¼ 10 V, current I ¼ 1 A and resistance
R ¼ 10 O, calculate the power in this circuit by using three power equations,
respectively.

Solution:

P ¼ IV ¼ ð1AÞð10VÞ ¼ 10W

P ¼ I2R ¼ ð1AÞ2ð10OÞ ¼ 10W

P ¼ V 2=R ¼ ð10VÞ2=10O ¼ 10W

Example 2.1 proved that the three power equations are equivalent since each
equation leads to the same value of power at 10 W.

If power is given in a circuit, using mathematical skill to manipulate the
power equations and solving for current I and voltage V, respectively, we can
express current I and voltage V as follows:

since P ¼ I2R or I2 ¼ P/R, so I ¼ ffiffiffiffiffiffiffiffiffiffi
P=R

p
since P ¼ V2/R or V2=PR, so V ¼ ffiffiffiffiffiffiffi

PR
p

Example 2.2: If power consumed on a 2.5 O resistor is 10 W in a circuit, cal-
culate the current flowing through this resistor.

Solution:

I ¼
ffiffiffiffiffiffiffiffiffi
P=R

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10W=2:5O

p
¼ 2A

2.1.4 The reference direction of power

When a component in a circuit has mutually related reference polarity of cur-
rent and voltage (refer to chapter 1, section 1.6.3), power is positive, i.e. P4 0,
meaning the component absorption (or consumption) of energy. When a
component in a circuit has non-mutually related reference polarity of current
and voltage, power is negative, i.e. P 5 0, meaning the component releasing
(or providing) of energy. The concept of the reference direction of power can
be illustrated in Figure 2.3.

V I
P P

I2 R P R
V2 

Figure 2.2 Memory aid for power equations

34 Understandable electric circuits

02_Wang_Chapter02_p031-062 29 May 2010; 10:34:31



The reference direction of power

● If a circuit has mutually related reference polarity of current and
voltage: P 4 0 (absorption energy).

● If a circuit has non-mutually related reference polarity of current and
voltage: P 5 0 (releasing energy).

Example 2.3: Determine the reference direction of power in Figure 2.4(a and b).

Solution:

(a) P ¼ IV ¼ (2 A)(3 V) ¼ 6 W (P 4 0, the resistor absorbs energy).
(b) P ¼ I (7V) ¼ (2 A)(73 V) ¼ 76 W (P 5 0, the resistor releases energy).

Example 2.4: I ¼ 2 A, V1 ¼ 6 V, V2 ¼ 14 V and E ¼ 20 V in a circuit as shown
in Figure 2.5. Determine the powers dissipated on the resistors R1, R2, and R1

and R2 in series in this figure.

Solution:

Power for R1 (a to b): P1 ¼ V1I ¼ (6 V)(2 A) ¼ 12 W (absorption).
Power for R2 (b to c): P2 ¼ V2I ¼ (14 V)(2 A) ¼ 28 W (absorption).
Power for R1 and R2 (a to d): P3 ¼ (7E)I ¼ (720 V)(2 A) ¼ 740 W
(releasing).
P1 þ P2 þ P3 ¼ 12 W þ 28 W 7 40 W ¼ 0 (energy conservation).

I �

�

V

�

�

V

I

(a)  P  > 0 (b)  P  < 0 

Figure 2.3 The reference direction of power

I � 2 A

� �V � 3 V

I � 2 A

� �V � 3 V

(a) (b)

Figure 2.4 Illustrations for Example 2.3
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2.2 Kirchhoff’s voltage law (KVL)

In 1847, a German physicist, physics professor Kirchhoff (Gustav Kirchhoff,
1824–1887) at Berlin University developed the two laws that established the
relationship between voltage and current in an electric circuit. Kirchhoff’s laws
are the most important fundamental circuit laws for analysing and calculating
electric circuits after Ohm’s law.

2.2.1 Closed-loop circuit

A closed-loop circuit is a conducting path in a circuit that has the same starting
and ending points. If the current flowing through a circuit from any point
returns current to the same starting point, it would be a closed-loop circuit. As
current flows through a closed-loop circuit, it is same as having a round trip, so
the starting and ending points are the same, and they have the same potential
positions. For example, Figure 2.6 is a closed-loop circuit, since current I starts
at point a, passes through points b, c, d and returns to the starting point a.

2.2.2 Kirchoff’s voltage law #1

KVL #1 states that the algebraic sum of the voltage or potential difference
along a closed-loop circuit is always equal to zero at any moment, or the sum

E
R1

R2

I  = 2 A

�

V1

V2

�

�

�

a a

cd

b
�

�

Figure 2.5 Circuit for Example 2.4

I 

d

a b

c

V2 = 10 V

V1 = 10 V

E1 = 10 V

E2 = 10 V

V3  = 10 V

R3

R2

R1

�
�

�
�

Figure 2.6 A closed-loop circuit
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of voltages in a closed-loop is always equal to zero, i.e. SV ¼ 0. The voltage in
KVL includes voltage rising from the voltage sources (E) and voltage dropping
on circuit elements or loads.

The algebraic sum used in KVL #1 means that there are voltage polarities
existing in a closed-loop circuit. It requires assigning a loop direction and it could
be in either clockwise or counter-clockwise directions (usually clockwise).

● Assign a positive sign (þ) for voltage (V or E) in the equation SV ¼ 0, if
the voltage reference polarity and the loop direction are the same, i.e. if the
voltage reference polarity is from positive to negative and the loop direc-
tion is clockwise.

● Assign a negative sign (7) for voltage (V or E) in the equation SV ¼ 0, if the
voltage reference polarity and the loop direction are opposite, i.e. if the voltage
reference polarity is fromnegative topositive, and the loopdirection is clockwise.

Example 2.5a: Verify KVL #1 for the circuit of Figure 2.7.

Solution:

Applying SV ¼ 0 in Figure 2.7:

V1 þ V2 þ V3 � E2 � E1 ¼ 0

ð2:5 þ 2:5 þ 2:5 � 5 � 2:5ÞV ¼ 0

KVL #1

SV ¼ 0

● Assign a þve sign for V or E if its reference polarity (þ to 7) and
loop direction (clockwise) are the same.

● Assign a 7ve sign for V or E if its reference polarity (7 to þ) and
loop direction (clockwise) are opposite.

V1 = 2.5 V 

E1 = 2.5 V

E2 = 5 V

V3 = 2.5 V

V2 = 2.5 V

�

I

�

�

�

�

�

R3

R2

R1
�

�

�

�

Figure 2.7 Circuit for Example 2.5
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2.2.3 KVL #2

KVL can also be expressed in another way: the sum of the voltage drops (V)
around a closed loop must be equal to the sum of the voltage rises or voltage
sources in a closed-loop circuit, i.e. SV ¼ SE.

● Assign a positive sign (þ) for V, if its reference and loop directions are the
same; assign a negative sign (7) for V, if its reference and the loop direc-
tions are opposite.

● Assign a negative sign (7) for the voltage source (E) in the equation, if its
reference polarity and the loop direction are the same, i.e. if its polarity is
from þve to –ve and the loop direction is clockwise. Assign a positive sign
(þ) for voltage source (E) in the equation if its reference polarity and loop
direction are opposite, i.e. if its polarity is from negative to positive and the
loop direction is clockwise.

Example 2.5b: Verify KVL #2 for the circuit of Figure 2.7.

Solution:

Applying SV ¼ SE in Figure 2.7:

V1 þ V2 þ V3 ¼ E2 þ E1

ð2:5 þ 2:5 þ 2:5ÞV ¼ ð2:5 þ 5ÞV
7:5V ¼ 7:5V

KVL #2

SV ¼ SE

● Assign a þve sign for V if its reference polarity and loop direction are
the same; assign a 7ve sign for V if its reference direction and loop
direction are opposite.

● Assign a 7ve sign for E if its reference polarity and loop direction
are the same; assign a þve sign for E if its polarity and loop direction
are opposite.

2.2.4 Experimental circuit of KVL

KVL can be approved by an experimental circuit in Figure 2.8. If using a
multimeter (voltmeter function) to measure voltages on all resistors and power
supply in the circuit of Figure 2.8, the total voltage drops on all the resistors
should be equal to the voltage for the DC power supply.

KVL #1, SV ¼ 0: (10 þ 10 þ 10 7 30) V ¼ 0
KVL #2, SV ¼ SE: (10 þ 10 þ 10) V ¼ 30 V
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Example 2.6: Determine resistance R3 in the circuit of Figure 2.9.

Solution:

R3
V3

I
; V3 ¼ ?

Applying KVL #1, SV ¼ 0: V1 þ V2 þ V3 þ V4 7E ¼ 0
Therefore:

V1 ¼ I R1 ¼ (0.25 A)(2.5 O) ¼ 0.625 V
V2 ¼ I R2 ¼ (0.25 A)(5 O) ¼ 1.25 V
V4 ¼ I R4 ¼ (0.25 A)(4 O) ¼ 1 V

Solve for V3 from V1 þ V2 þ V3 þ V47E ¼ 0:

V3 ¼ E 7 V1 7 V2 7 V4 ¼ (5 7 0.625 7 1.25 7 1)V ¼ 2.125 V

Therefore,

R3 ¼ V3

I
¼ 2:125V

0:25A
¼ 8:5 O

V
10 V

10 V

30 V

100 Ω

100 Ω

10 V

100 Ω

�

� �

�

� �

V

V

V

�

�

Figure 2.8 Experimental circuit of KVL

E2 = 5 V

R1 = 2.5 Ω

R2 = 5 Ω

R4 = 4 Ω

R3 = ?

I = 0.25 A

�

�

�

��

�

�
�

�

�

Figure 2.9 Circuit for Example 2.6
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2.2.5 KVL extension

KVL can be expanded from a closed-loop circuit to any scenario loop in a
circuit, because voltage or potential difference in the circuit can exist between
any two points in a circuit.

Vab in the circuit of Figure 2.10 can be calculated using KVL #2 as follows:

SV ¼ SE : V þ Vab ¼ E

Vab ¼ E � V

¼ ð10 � 1ÞV
¼ 9V

Example 2.7: Determine the voltage across points a to b (Vab) in the circuit of
Figure 2.11.

Solution:

Vab can be solved by two methods as follows:

Method 1: SV ¼ 0: V1 þ Vab þ V4 7 E ¼ 0,
where Vab ¼ E 7 V1 7 V4 ¼ (5 7 1.5 7 1)V ¼ 2.5 V.
Method 2: SV ¼ 0: V2 þ V3 7 Vab ¼ 0,
where Vab ¼ V2 þ V3 ¼ (2 þ 0.5)V ¼ 2.5 V.

E = 10 V 

R

aI

V = 1 V 

Vab 

b

�

�

�

�

�

�

Figure 2.10 KVL extension

V1 = 1.5 V

E = 5 V
V3 = 0.5 V

V2 = 2 V

V4 = 1 V

�

�

�

�

�

�

��

b

a

�

�

Figure 2.11 Circuit for Example 2.7
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2.2.6 The physical property of KVL

The results from Example 2.7 show that voltage across two points a and b is
the same, and it does not matter which path or branch is used to solve for
voltage between these two points, the result should be the same. Therefore, the
physical property of KVL is that voltage does not depend on the path.

2.3 Kirchhoff’s current law (KCL)

2.3.1 KCL #1

KCL #1 states that the algebraic sum of the total currents entering and exiting
a node or junction of the circuit is equal to zero, i.e. SI ¼ 0.

● Assign a positive sign (þ) to the current in the equation if current is entering
the node.

● Assign a negative sign (7) to the current in the equation if current is exiting
the node.

A node or junction is the intersectional point of two or more current paths
where current has several possible paths to flow. A branch is a current path
between two nodes with one or more circuit components in series. For instance,
point A is a node in Figure 2.12, and it has six branches. I1, I2 and I3 are the
currents flowing into node A; I4, I5 and I6 are the currents exiting the node A.

Applying KCL #1: I1 þ I2 þ I3 7 I4 7 I5 7 I6 ¼ 0

KCL #1

SI ¼ 0

● Assign a þve sign for current in KCL if I is entering the node.
● Assign a 7ve sign for current in KCL if I is exiting the node.

2.3.2 KCL #2

KCL can also be expressed in another way: the total current flowing into a
node is equal to the total current flowing out of the node, i.e. SIin ¼ SIout

A

I3 I4

I5

I6I1

I2

Figure 2.12 Nodes and branches
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● Assign a positive sign (þ) to current Iin in the equation if current is entering
the node; assign a negative sign (7) for Iin if current is exiting the node.

● Assign a positive sign (þ) to current Iout in the equation if current is exiting
the node; assign a negative sign (7) for Iout if current is entering the node.

Example 2.8: Verify KVL #1 and #2 for the circuit of Figure 2.13.

Solution:

KCL #2: SIin ¼ SIout: I1 þ I2 ¼ I3 þ I4 þ I5
Substituting I with its respective values, we get (15 þ 10)A ¼ (7 þ 8 þ 10)A
KCL #1: SI ¼ 0: I1 þ I2 7 I3 7 I4 7 I5 ¼ 0
Substituting Iwith its respective values, we get (15þ 107 77 87 10)A¼ 0

Example 2.9: Determine the current I1 at node A and B in Figure 2.14.

Solution:

Node A:
SI ¼ 0 : I1 � I2 � I3 � I4 ¼ 0

SIin ¼ SIout : I1 ¼ I2 þ I3 þ I4

Node B:

SI ¼ 0 : I2 þ I3 þ I4 � I1 ¼ 0
SIin ¼ SIout : I2 þ I3 þ I4 ¼ I1

a

I2 = 10 A
I3 = 7 A 

I4 = 8 A 

I5 = 10 A I1 = 15 A 

Figure 2.13 Circuit for Example 2.8

AI1

B

I4
I3

I2

�

�

Figure 2.14 Circuit for Example 2.9
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KCL #2

SIin ¼ SIout

● Assign a þve sign for Iin if current is entering the node; assign a 7ve
sign for Iin, if current is exiting the node.

● Assign a þve sign for Iout if current is exiting the node; assign a 7ve
sign for Iout, if current is entering the node.

Water flowing in a pipe can be analogized as current flowing in a con-
ducting wire with KCL. Water flowing into a pipe should be equal to the
water flowing out of the pipe. For example, in Figure 2.15, water flows in the
three upstream creeks A, B and C merging together to a converging point and
forms the main water flow out of the converging point to the downstream
creek.

Example 2.10: Determine current I3 (you may calculate it by using one KCL,
and prove it by using another one).

A

B

C

Figure 2.15 Creeks

I4 = ?
I1

I2 I3

10 A

20 A

5 A

Figure 2.16 Circuit for Example 2.10
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Solution:

SI ¼ 0 : I1 � I2 þ I3 þ I4 ¼ 0;

I4 ¼ I2 � I1 � I3 ¼ ð20 � 10 � 5ÞA ¼ 5A

SIin ¼ SIout : I1 þ I3 þ I4 ¼ I2
ð10 þ 5 þ 5ÞA ¼ 20A

20A ¼ 20A ðhence provedÞ

The KCL can be proved by an experimental circuit in Figure 2.17.

Measure branch currents I1 and I2 (entering) using two multimeters
(ammeter function), and they are equal to the source branch current I3 (exit-
ing), I3 ¼ I1 þ I2 ¼ 0.25 A.

2.3.3 Physical property of KCL

The physical property of KCL is that charges cannot accumulate in a node;
what arrives at a node is what leaves that node. This results from conservation
of charges, i.e. charges can neither be created nor destroyed or the amount of
charges that enter the node equals the amount of charges that exit the node.
Another property of KCL is the continuity of current (or charges), which is
similar to the continuity of flowing water, i.e. the water or current will never
discontinue at any moment in a pipe or conductor.

2.3.4 Procedure to solve a complicated problem

It does not matter which field of natural science the problems belong to or how
complicated they are, the procedure for analysing and solving them are all
similar. The following steps outline the procedure:

1. Start from the unknown value in the problem and find the right equation
that can solve this unknown.

E = 10 V A A

A

I1 = 0.1 A I2 = 0.15 A

I3 = 0.25 A

�
�

Figure 2.17 Experimental circuit for KCL
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2. Determine the new unknown of the equation in step 1 and find the equa-
tion to solve this unknown.

3. Repeat steps 1 and 2 until there are no more unknowns in the equation.
4. Substitute the solution from the last step into the previous equation, and

solve the unknown. Repeat until the unknown in the original problem is
solved.

Now let’s try to use this method to solve I1 in Example 2.11.

Example 2.11: I1 ¼ ?

Solution:

The unknown in this problem is I1. Find the right equation to solve I1.

● At node C:

I1 þ 4A ¼ I2 þ 3A I2 ¼ ? ð2:1Þ

(Besides I1, the unknown in this equation is I2.)
● Find the right equation to solve I2. At node B:

I2 þ 3A ¼ 4Aþ I3 þ 2A I3 ¼ ? ð2:2Þ
(Besides I2, the unknown in this equation is I3.)

● Find the right equation to solve I3. At node A: I3 þ 4 A ¼ (5 þ 1)A, solve
for I3: I3 ¼ 2 A (there are no more unknown elements in this equation
except for I3).

● Substitute I3 ¼ 2 A into (2.2) and solve for I2: I2 þ 3 A ¼ (4 þ 2 þ 2)A, so
I2 ¼ 5 A.

● Substitute I2 ¼ 5 A into (2.1) and solve for I1: I1 þ 4 A ¼ (5 þ 3)A,
therefore, I1 ¼ 4 A.

4 A 

I2

I3

I1

A

BC

3 A 

1 A 

5 A 

4 A 2 A 

Figure 2.18 Circuit for Example 2.11
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2.3.5 Supernode

The concept of the node can be extended to a circuit that contains several
nodes and branches, and this circuit can be treated as a supernode. The circuit
between nodes a and b in Figure 2.19 within the dashed circle can be treated as
an extended node or supernode A; KCL can be applied to it:

SIin ¼ SIout or I1 ¼ I2

Example 2.12: Determine the magnitudes and directions of I3, I4 and I7 in the
circuit of Figure 2.20.

Solution: Treat the circuit between the nodes A and D (inside of the circle) as a
supernode, and current entering the node A should be equal to current exiting
the node D, therefore, I7 ¼ I1 ¼ 5 A.

● At node A: Since current entering node A is I1 ¼ 5 A, and current leaving
node A is I2 ¼ 6 A, so I2 4 I1. I3 must be current entering node A to satisfy
SIin ¼ SIout, i.e. I1 þ I3 ¼ I2 or 5 A þ I3 ¼ 6 A, therefore, I3 ¼ 1 A.

I1 I2

A

a b

Figure 2.19 Supernode

A

I1 = 5 A

I2 = 6 A

I5 = 4 AI6 = 1 A

I7 = ?

I3

I4
BC

D

Figure 2.20 Circuit for Example 2.12
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● At node B: Since current entering node B is I2 ¼ 6 A and currents exiting
node B is I5 ¼ 4 A, so I2 4 I5. I4 must be current exiting node B to satisfy
SIin ¼ SIout, i.e. I2 ¼ I4 þ I5 or 6 A ¼ I4 þ 4 A, therefore, I4 ¼ 2 A.

● Prove it at node C: I4 ¼ I3 þ I6, 2 A ¼ 1 A þ 1 A, 2 A ¼ 2 A (proved).

2.3.6 Several important circuit terminologies

● Node: The intersectional point of two or more current paths where current
has several possible paths to flow.

● Branch: A current path between two nodes where one or more circuit
components is in series.

● Loop: A complete current path where current flows back to the start.
● Mesh: A loop in the circuit that does not contain any other loops (non-

redundant loop).

Note: A mesh is always a loop, but a loop is not necessary a mesh. A mesh can
be analogized as a windowpane, and a loop may include several such
windowpanes.

Example 2.13: List nodes, branches, meshes and loops in Figure 2.21.

Solution:

● Node: four nodes – A, B, C and D
● Branch: six branches – AB, BD, AC, BC, CD and AD
● Mesh: 1, 2 and 3
● Loop: 1, 2, 3, A–B–D–C–A, A–B–D–A, etc.

2.4 Voltage source and current source

A power supply is a circuit device that provides electrical energy to drive the
system, and it is a source that can provide EMF (electromotive force) and
current to operate the circuit. The power supply can be classified into two
categories: voltage source and current source.

A

B

C
D

1 2

3

Figure 2.21 Illustration for Example 2.13
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2.4.1 Voltage source

2.4.1.1 Ideal voltage source

An ideal voltage source is a two-terminal circuit device that can provide a con-
stant output voltage, Vab, across its terminals, and is shown in Figure 2.22(a).
Voltage of the ideal voltage source, VS, will not change even if an external circuit
such as a load, RL, is connected to it as shown in Figure 2.22(b), so it is an
independent voltage source. This means that the voltage of the ideal voltage
source is independent of variations in its external circuit or load. The ideal vol-
tage source has a zero internal resistance (RS ¼ 0), and it can provide maximum
current to the load.

Current in the ideal voltage source is dependant on variations in its exter-
nal circuit, so when the load resistance RL changes, the current in the ideal
voltage source also changes since I ¼ V/RL. The characteristic curve of an
ideal voltage source is shown in Figure 2.22(c). The terminal voltage Vab for an
ideal voltage source is a constant, and same as the source voltage (Vab ¼ VS),
no matter what its load resistance RL is.

Ideal voltage source

● It can provide a constant terminal voltage that is independent of the
variations in its external circuit, Vab ¼ VS.

● Its internal resistance, RS ¼ 0. Its current depends on variations in its
external circuit.

2.4.1.2 Real voltage source

Usually a real-life application of a voltage source, such as a battery, DC gen-
erator or DC power supply, etc., will not reach a perfect constant output vol-
tage after it is connected to an external circuit or load, since nothing is perfect.
The real voltage sources all have a non-zero internal resistance RS (RS 6¼ 0).

The real voltage source (or voltage source) can be represented as an ideal
voltage sourceVS in series with an internal resistorRS as shown in Figure 2.23(a).
Once a load resistor RL is connected to the voltage source (Figure 2.23(b)),
the terminal voltage of the source Vab will change if the load resistance RL

changes. Since the internal resistance RS is usually very small, Vab will be a little
bit lower than the source voltage VS (Vab ¼ VS 7 IRS).

VS VS

VS
RL

a

b

a

b

I

V

�

�
0 I  or  t 

V

(a)  Ideal voltage source (b)  Ideal voltage source with a load (c)  Characteristic curve

�
�

�
�

Figure 2.22 Ideal voltage source
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A smaller internal resistance can also provide a higher current through the
external circuit of the real voltage source because I ¼ VS/(RS þ RL). Once the
load resistance RL changes, current I in this circuit will change, and the term-
inal voltage Vab also changes. This is why the terminal voltage of the real
voltage source is not possible to keep at an ideal constant level (Vab 6¼ VS).

The internal resistance of a real voltage source usually is much smaller than
the load resistance, i.e. RS � RL, so the voltage drop on the internal resistance
(IRS) is also very small, and therefore, the terminal voltage of the real voltage
source (Vab) is approximately stable:

Vab ¼ VS � IRS � VS

When a battery is used as a real voltage source, the older battery will have a
higher internal resistance RS and a lower terminal voltage Vab.

Real voltage source (voltage source)

It has a series internal resistance RS, and RS � RL. The terminal voltage
of the real voltage source is: Vab ¼ VS 7 IRS.

Example 2.14: Determine the terminal voltages of the circuit in Figure 2.24(a
and b).

0 I or t

V

VS ↓

↑
VRS  = IRS

a

b

I �

�

RS

RL
VS

Vab
�
�

a

b

RS

VS �
�

(a)  Real voltage
source

(b)  Real voltage source
with a load

(c)  Characteristic curve

Figure 2.23 Real voltage source

(b)  RS = 25 Ω(a)  RS = 0.005 Ω

a

RS

VS

RL

3 V

0.005 Ω
5 Ω

b

�
�

I
RS

VS

RL 5 Ω

a

b

3 V

50 Ω

�
�

Figure 2.24 Circuits for Example 2.14
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WhenRS ¼ 0:005O; I ¼ VS

ðRS þ RLÞ ¼
3V

ð0:005Oþ 5OÞ � 0:5994A

Vab ¼ IRL ¼ ð0:5994AÞð5OÞ ¼ 2:997V

WhenRS ¼ 50O; I ¼ VS

ðRS þ RLÞ ¼
3V

ð50Oþ 5OÞ � 0:055A

Vab ¼ IRL ¼ ð0:055AÞð5OÞ ¼ 0:275V

The above example indicates that the internal resistance has a great impact
on the terminal voltage and current of the voltage source. Only when the
internal resistance is very small, can the terminal voltage of the source be kept
approximately stable, such as when RS ¼ 0.005 O, Vab ¼ 2.997 V � VS ¼ 3 V.

In this case, the terminal voltage Vab is very close to the source voltage VS.
But when RS ¼ 50 O , Vab ¼ 0.275 V � VS ¼ 3 V, i.e. the terminal voltage Vab

is much less than the source voltage VS.
A real voltage source has three possible working conditions:

● When an external load RL is connected to a voltage source (Figure 2.25(a)):
Vab ¼ VS � IRS; I ¼ ðVS=RS þ RLÞ.

● Open circuit: when there is no external load RL connected to a voltage
source (Figure 2.25(b)): Vab ¼ VS; I ¼ 0:

● Short circuit: when a jump wire is connected to the two terminals of a
voltage source (Figure 2.25(c)): Vab ¼ 0; I ¼ ðVS=RSÞ:

2.4.2 Current source

The current source is a circuit device that can provide a stable current to the
external circuit. A transistor, an electronic element you may have heard, can be
approximated as an example of a current source.

2.4.2.1 Ideal current source

An ideal current source is a two-terminal circuit device that can provide a
constant output current IS through its external circuit. Current of the ideal

VS
VS VS

RL Vab
Vab

I = 0

a

RS RS RS

b

a

b

I �

�

�

�

a

b

Vab = 0

(a)  With a load   (b)  Open circuit   (c)  Short circuit  

���
�
�

�

�
��

Figure 2.25 Three states of a voltage source
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current source will not change even an external circuit (load RL) is connected to
it, so it is an independent current source. This means the current of the ideal
voltage source is independent of variations in its external circuit or load. The
ideal current source has an infinite internal resistance (RS ¼ ?), so it can
provide a maximum current to the load. Its two-terminal voltage is determined
by the external circuit or load.

The symbol of an ideal current source is shown in Figure 2.26(a), and its
characteristic curve is shown in Figure 2.26(b). IS represents the current for
current source, and the direction of the arrow is the current direction of the
source.

Ideal current source

● It can provide a constant output current IS that does not depend on
the variations in its external circuit.

● Its internal resistance RS ¼ ?.
● Its voltage depends on variations in its external circuit. Vab ¼ ISRL.

Example 2.15: The load resistance RL is 1 000 and 50 O, respectively, in Figure
2.27. Determine the terminal voltage Vab for the ideal current source in the
circuit.

IS
IS

I

V or t

(a)  Symbol of an ideal
current source

(b)  Characteristic curve

Figure 2.26 Ideal current source

IS RL

b

a

0.02 A Vab

�

�

Figure 2.27 Circuit for Example 2.15
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Solution:

When RL ¼ 1000O; Vab ¼ IS RL ¼ ð0:02AÞ ð1000OÞ ¼ 20V

When RL ¼ 50O; Vab ¼ IS RL ¼ ð0:02AÞ ð50OÞ ¼ 1V

The conditions of open circuit and short circuit of an ideal current source
are as follows:

● Open circuit, Vab ¼ ?, I ¼ 0, as shown in Figure 2.28(a).
● Short circuit, Vab ¼ 0, I ¼ IS, as shown in Figure 2.28(b).

2.4.2.2 Real current source

Usually a real-life application of current source will not reach a perfect con-
stant output current after it is connected to an external circuit or load, as the
real current sources all have a non-infinite internal resistance RS.

The real current source (or current source) can be represented as an ideal
current source IS in parallel with an internal resistor RS. Once a load resistor
RL is connected to the current source as shown in Figure 2.29, the current of
the source will change if the load resistance RL changes. Since the internal
resistance RS of the current source usually is very large, the load current I will
be a little bit lower than the source current IS.

IS RS RL

a

b

I

Figure 2.29 A real current source

(a)  Open circuit 

IS

�

�
a

b

I

Vab � 0IS

a

Vab � ∞

I � 0

b

�

�

(b)  Short circuit 

Figure 2.28 Open circuit and short circuit of an ideal current source
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Once the load resistance RL changes, the current in the load will also
changes. This is why the current of the real current source is not possible to
keep at an ideal constant level.

A higher internal resistance RS can provide a higher current through the
external circuit of the real current source. The internal resistance of a real
current source usually is much greater than the load resistance (RS � RL), and
therefore the output current of the real current source is approximately stable.

Real current source (current source)

● It has an internal resistance RS (RS � RL).
● RS is in parallel with the current source.

2.5 International units for circuit quantities

2.5.1 International system of units (SI)

The international system of units (SI) was developed at the General Conference
of the International Weight and Measures, which is the international authority
that ensures dissemination and modifications of the SI units to reflect the latest
advances in science and commerce. SI originates from the French ‘Le Système
International d’Unités’, which means the international system of units or the
metric system to most people.

SI system is the world’s most widely used modern metric system of mea-
surement. Each physical quantity has a SI unit. There are seven basic units of
the SI system and they are listed in Table 2.1.

SI units

International system of units (SI) is the world’s most widely used modern
metric system of measurement. There are seven base units of the SI
system.

Table 2.1 SI basic units

Quantity Quantity symbol Unit Unit symbol

Length l Metre m
Mass M Kilogram kg
Time t Second s
Current I Ampere A
Temperature T Kelvin K
Amount of substance m Mole mol
Intensity of light I Candela cd
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All other metric units can be derived from the seven SI basic units that are
called ‘derived quantities’. Some derived SI units for circuit quantities are given
in Table 2.2.

As you study the circuit theory more in-depth, you may use and add more
circuit quantities and their derived SI units in this table.

2.5.2 Metric prefixes (SI prefixes)

Some time there are very large or small numbers when doing circuit analysis
and calculation. A metric prefix (or SI prefix) is often used in the circuit cal-
culation to reduce the number of zeroes. Large and small numbers are made by
adding SI prefixes. A metric prefix is a modifier on the root unit that is in
multiples of 10. In general science, the most common metric prefixes, such as
milli, centi and kilo are used. In circuit analysis, more metric prefixes, such as
nano and pico are used. Table 2.3 contains a complete list of metric prefixes.

Example 2.16:

ðaÞ 47000O ¼ ð?ÞkO
ðbÞ 0:0505A ¼ ð?ÞmA

ðcÞ 0:0005V ¼ ð?ÞmV
ðdÞ 15000000000C ¼ ð?ÞGC

Solution:

ðaÞ 47000O ¼ 47 � 103 O ¼ 47 kO
ðbÞ 0:0505A ¼ 50:5 � 10�3A ¼ 50:5mA

ðcÞ 0:0005V ¼ 500 � 10�6 V ¼ 500 mV
ðdÞ 15000000000C ¼ 15 � 109 ¼ 15GC

Note:

● If a number is a whole number, move the decimal point to the left, and
multiply the positive exponent of 10 (moving the decimal point three places
each time). In Example 2.16(a), 47 000O ¼ 476 103O (moving the decimal
point three places to the left).

Table 2.2 Some circuit quantities and their SI units

Quantity Quantity symbol Unit Unit symbol

Voltage V Volt V
Resistance R Ohm S
Charge Q Coulomb C
Power P Watt W
Energy W Joule J
Electromotive force E or VS Volt V
Conductance G Siemens S
Resistivity r Ohm � metre O � m
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● If a number is a decimal number, move the decimal point to the right, and
multiply the negative exponent of 10.
In Example 2.16(b), 0.0505 A ¼ 50.5 6 1073 A (moving the decimal point
three places to the right).

● If numbers have different prefixes, convert them to the same prefix first,
then do the calculation.

Example 2.17: Determine the result of 30mA+2000mA.

Solution:

30mAþ 2000 mA ¼ 30 � 10�3 Aþ 2000 � 10�6 A

¼ 30 � 10�3 Aþ 2 � 10�3 A

¼ ð30 þ 2ÞmA

¼ 32mA

Summary

Basic concepts

● Power: the speed of energy conversion, or work done per unit of time,
P ¼ W/t.

Table 2.3 Metric prefix table

Prefix Symbol
(abbreviation)

Exponential
(power of 10)

Multiple value (in full)

Yotta Y 1024 1 000 000 000 000 000 000 000 000
Zetta Z 1021 1 000 000 000 000 000 000 000
Exa E 1018 1 000 000 000 000 000 000
Peta P 1015 1 000 000 000 000 000
Tera T 10

12
1 000 000 000 000

Giga G 10
9

1 000 000 000
Mega M 106 1 000 000
myria my 104 10 000
kilo k 103 1 000
hecto h 102 100
deka da 10 10
deci d 1071

0.1
centi c 10

72
0.01

milli m 1073
0.001

micro m (mu) 10
76

0.000 001
nano n 10

79
0.000 000 001

pico p 10712
0.000 000 000 001

femto f 10715
0.000 000 000 000 001

atto a 10718
0.000 000 000 000 000 001

zepto z 10721
0.000 000 000 000 000 000 001

yocto y 10724 0.000 000 000 000 000 000 000 001

Note: The most commonly used prefixes are shown in bold.
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● Energy: the ability to do work.
● The reference direction of power:

● If a circuit has mutually related reference polarity of current and vol-
tage: P 4 0 (absorption energy).

● If a circuit has non-mutually related reference polarity of current and
voltage: P 5 0 (releasing energy).

● Branch: a current path between two nodes where one or more circuit
components in series.

● Node: the intersectional point of two or more current paths where current
has several possible paths to flow.

● Supernode: a part of the circuit that contains several nodes and branches.
● Loop: a complete current path where current flows back to the start.
● Mesh: a loop in the circuit that does not contain any other loops.
● Ideal voltage source: can provide a constant terminal voltage that does not

depend on the variables in its external circuit. Its current depends on
variables in its external circuit, Vab ¼ VS, RS ¼ 0.

● Real voltage source: with a series internal resistance RS (RS � RL), the
terminal voltage of the real voltage source is: Vab ¼ VS 7 IRS.

● Ideal current source: can provide a constant output current Is that does
not depend on the variations in its external circuit, RS ¼ ?. Its
voltage depends on variations in its external circuit.

● Real current source: with an internal resistance RS in parallel with the ideal
current source, RS � RL.

Formulas

● Work: W ¼ FS
● Power: P ¼ W/t
● Electrical power: P ¼ IV ¼ I2R ¼ V2/R
● KVL #1: SV ¼ 0

● Assign a þve sign for V or E if its reference polarity and loop direction
are the same.

● Assign a 7ve sign for V or E if its reference polarity and loop direc-
tion are opposite.

● KVL #2: SV ¼ SE
● Assign a þve sign for V if its reference polarity and loop direction are

the same; assign a 7ve sign for V if its reference direction and loop
direction are opposite.

● Assign a 7ve sign for E if its reference polarity and loop direction are
the same; assign a þve sign for E if its polarity and loop direction are
opposite.

● KCL #1: SIin ¼ 0
● Assign a þve sign for I if current is entering the node.
● Assign a 7ve sign for I if current is exiting the node.
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● KCL #2: SIin ¼ Iout
● Assign a þve sign for Iin if current is entering the node; assign a 7ve

sign for Iin if current is exiting the node.
● Assign a þve sign for Iout if current is exiting the node; assign a 7ve

sign for Iout if current is entering the node.
● Some circuit quantities and their SI units

● The commonly used metric prefixes

Experiment 2: KVL and KCL

Objectives

● Construct and analyse series and parallel circuits.
● Apply Ohm’s law and plot I–V characteristics.
● Experimentally verify KVL.
● Experimentally verify KCL.
● Analyse experimental data, circuit behaviour and performance, and com-

pare them to theoretical equivalents.

Background information

● Ohm’s law: V ¼ IR

Quantity Quantity symbol Unit Unit symbol

Voltage V Volt V
Resistance R Ohm O
Charge Q Coulomb C
Power P Watt W
Energy W Joule J
Electro motive force E or VS Volt V
Conductance G Siemens S
Resistivity r Ohm � metre O � m

Prefix Symbol

(abbreviation)

Exponential

(power of 10)

pico p 10712

nano n 1079

micro m 1076

milli m 1073

kilo K 103

mega M 106

giga G 109

tera T 1012
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● I–V characteristics:

● KVL: SV ¼ 0, or SV ¼ SE
● KCL: SI ¼ 0, or SIin ¼ SIout

Equipment and components

● Digital multimeter (DMM)
● Breadboard
● DC power supply
● Switch
● Resistors: 240 O, 2.4 kO, 91 O, 2.7 kO, 3.9 kO and 910 O
● Some alligator clips
● Some wires and leads with banana-plug ends

Notes: (apply these notes to all experiments in this book)

● The ammeter (function) of the multimeter should be connected to the
circuit after the power supply has been turned off.

● The voltmeter (function) of the multimeter should be connected in parallel
with the component to measure voltage, and ammeter (function) should be
connected in series with the component to measure current.

● Turn off the power supply before doing any circuit rearrangement, other-
wise it will damage or harm experimental devices and components.

● Connect the negative terminal of the power supply to the ground using the
black wire, and connect the positive terminal of the power supply to the
component using the red wire. Connect other circuit components using
different colour wires other than red and black.

● Use the actual resistance values to do the calculation.

Multimeter guide

● Recall: A multimeter is an electrical and electronic measuring instrument
that combines functions of ammeter, voltmeter, ohmmeter, etc.

● Method for measuring voltage with a digital multimeter (voltmeter
function):
● Turn on the power supply after components have been connected in

the circuit.

V

I
R

0
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● Insert the multimeter’s leads into the sockets labelled COM and V/O
and turn on the multimeter (Figure L2.1).

● Turn the central selector switch pointing to the voltage ranges with the
DCV sign (DCV is for measuring DC voltage, and ACV is for mea-
suring AC voltage), and where the estimated voltage value should be
less than the maximum range.

● Make the measurement by connecting the component in parallel with
the two leads of the multimeter. Connect or touch the red lead from
the multimeter to terminal of the component, which is expected to
have the more positive voltage, and connect or touch the black lead to
the other terminal of the component.

● Read the displayed voltage value on the scale.
● Turn off the multimeter after the measurement.

● Method for measuring current with a digital multimeter (ammeter
function):
● Insert the multimeter’s leads into the sockets labelled COM and A.
● Connect the multimeter in series with the resistor branch that is going

to make a measurement.

Figure L2.1 Multimeter
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● Turn the central selector switch pointing to the current ranges (with
mA or 10 A sign) where the estimated current value is closed to the
maximum range.

● Turn on the power supply.
● Read the displayed current value on the scale.
● Turn off the multimeter after the measurement.

Procedure

Part I: Kirchhoff’s voltage law (KVL)

1. Use the resistor colour code to choose three resistors with resistor values
listed in Table L2.1. Measure each resistor using the multimeter (ohmmeter
function). Record the values in Table L2.1.

2. Construct the series circuit shown in Figure L2.2 on the breadboard.

3. Calculate circuit current and voltages cross each resistor in Figure L2.2
(assuming the switch is turned on). Record the values in Table L2.2.

Table L2.1

Resistance R1 R2 R3

Colour code resistor value 240 O 2.4 kO 91 O
Measured value

R1 = 240

R3 = 91 Ω

E 9 V R2 = 2.4 kΩ�
�

Figure L2.2 A series circuit

Table L2.2

I VR1
VR2

VR3
VT

Formula for calculations
Calculated value
Measured value
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4. Set the power supply to 9 V, then turn on the switch, connect the multi-
meter (voltmeter function) in parallel with each resistor and power supply,
and measure voltages across each resistor and power supply. Record the
values in Table L2.2.

5. Use the direct method or indirect method to measure the circuit current.
Record the value in Table L2.2.
● Direct method: Connect the multimeter (ammeter function) in series

with the circuit components, then turn on the switch and measure
circuit current directly.

● Indirect method: Apply Ohm’s law to calculate the current with mea-
sured voltage and resistance.

6. Use measured values to plot I–V characteristics for 240 O resistor.
7. Substitute the measured voltage values from Table L2.2 into KVL equa-

tions to verify SV ¼ 0 and SV ¼ SE.

Part II: Kirchhoff’s current law (KCL)

1. Construct a parallel circuit as shown in Figure L2.3 to the breadboard.

2. Calculate each branch current and total current in the circuit of Figure
L2.3 (assuming the switch is turned on). Record the values in Table L2.3.

3. Set the power supply to 10 V, turn on the switch, measure each branch
current and total current in the circuit by using direct or indirect methods
(get the multimeter to function as an ammeter). Record the values in
Table L2.3.

4. Substitute the measured current values from Table L2.3 into KCL equa-
tions to verify SI ¼ 0 and Iin ¼ SIout.

2.7 kΩ 3.9 kΩ 910 Ω10 V �
�

Figure L2.3 A parallel circuit

Table L2.3

Current I1 I2 I3 IT

Formula for calculation
Calculated values
Measured values
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Conclusion

Write your conclusions below:
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Chapter 3

Series–parallel resistive circuits

Objectives

After completing this chapter, you will be able to:

● identify series circuits, parallel circuits and series–parallel circuits
● know how to determine the equivalent resistance for series, parallel and

series–parallel resistive circuits
● calculate the resistance, voltage, current and power for series, parallel and

series–parallel resistive circuits
● understand and apply the voltage-divider (VDR) and current-divider (CDR)

rules
● identify the wye (Y) and delta (D) circuits
● know the method of wye (Y) and delta (D) conversions
● apply the method of D–Y conversions to simplify bridge circuits
● understand the method for measuring the unknown resistance of a balanced

bridge circuit

3.1 Series resistive circuits and voltage-divider rule

Series, parallel and series–parallel resistive circuits are very often used electrical
or electronic circuits. It is very important to construct electric circuits in dif-
ferent ways as to make practical use of them.

3.1.1 Series resistive circuits

A series circuit is the simplest circuit. It has all its elements connected in one
loop of wire. It can be analogized by water flowing in a series of tanks con-
nected by a pipe. The water flows through the pipe from tank to tank. The
same amount of water will flow in each tank. The same is true of an electrical
circuit. There is only one pathway by which charges can travel in a series cir-
cuit. The same amount of charges will flow in each component of the circuit,
such as a light bulb, i.e. the current flow is the same throughout the circuit, so it
has just one current in the series circuit.
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Series circuit

● The components are connected one after the other.
● There is only one current path.
● The current flow through each component is always the same.

For example, Figure 3.1 illustrates an electrical circuit with three light
bulbs (resistors) connected in series. If an ammeter is connected behind each
light bulb, once the power turns on, the same current reading will be read on
each ammeter. If we swap the position of the ammeter and the light bulb, the
ammeter will still read the same current value. A practical example of a series
circuit is a string of old Christmas lights.

Many practical series circuits may not be as easily identifiable as Figures 3.1
and 3.2(a). Figure 3.2(b and c) are also series circuits but drawn in different
ways. As long as the circuit elements are connected one after the other, and there

E

Figure 3.1 Series circuit

..

.

(a)

(d)

(b) (c)

R1 R2 R3 Rn ...
E

V1 V2 V3 Vn+ − + − −+ + −

+ -

Figure 3.2 (a–c) Series resistive circuits and (d) series circuit
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is only one current path for the circuit, it is said that they are connected in series.
It does not matter if there is a different arrangement of the elements.

3.1.1.1 Total series voltage

The voltage across the source or power supply (total voltage) is equal to
the sum of the voltage that drops across each resistor in a series circuit, i.e. the
source voltage shared by each resistor. The terminal of the resistor connecting
to the positive side of the voltage source is positive, and the terminal of the
resistor connecting to the negative side of the voltage source is negative.

The total voltage VT in the circuit of Figure 3.2(d) can be determined by
Kirchhoff’s voltage law (KVL) and Ohm’s law. For n resistors connected in
series, the total voltage will be as follows:

Total series voltage (VT or E)

VT ¼ E ¼ V1 þ V2 þ � � � þ Vn

VT ¼ IR1 þ IR2 þ � � � þ IRn ¼ IRT
ð3:1Þ

For a series resistive circuit, (3.1) of the total voltage gives

VT ¼ IðR1 þ R2 þ � � � þ RnÞ
and

RT ¼ R1 þ R2 þ � � � þ Rn

RT is the mathematical equation for computing the total resistance (or
equivalent resistance Req) of a series resistive circuit.

3.1.1.2 Total series resistance (or equivalent resistance)

The total resistance (RT) of a series resistive circuit is the sum of all resistances
in the circuit. It is also called the equivalent resistance (Req) because this
resistance is equivalent to the sum of all resistances when you look through the
two terminals of the series resistive circuit. The equivalent resistance of a series
resistive circuit is the amount of resistance that a single resistor would need to
equal the overall effect of the all resistors that are present in the circuit.

The total resistance of a series resistive circuit is always greater than any
single resistance in that circuit.

Total series resistance (RT) or equivalent resistance (Req)

RT ¼ R1 þ R2 þ � � � þ Rn
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3.1.1.3 Series current

From the definition of a series circuit we know that there is only one current
path in a series circuit, that the current flowing through each element is always
the same and that the current is always the same at any point in a series circuit.
The current I flowing in a series resistive circuit, such as the one in Figure 3.2(d),
can be determined from Ohm’s law as follows:

Series current (I)

I ¼ VT

RT
¼ E

RT
¼ V1

R1
¼ V2

R2
¼ � � � ¼ Vn

Rn

3.1.1.4 Series power

Each of the resistors in a series circuit consumes power, which is dissipated in
the form of heat. The total power (PT) consumed by a series circuit is the sum
of power dissipated by the individual resistor. Since this power must come from
the source, the total power is actually the power supplied by the source. Mul-
tiply the current I on both sides of the total voltage equation VT ¼ E ¼ V1 þ V2

þ � � � þ Vn, to get the total power PT ¼ IE ¼ IV1 þ IV2 þ � � � þ IVn.
Therefore, the total power in a series resistive circuit can be expressed as

follows:

Total series power (PT)

PT ¼ P1 þ P2 þ � � � þ Pn or PT ¼ IE ¼ I2RT ¼ (E2/RT)

The power dissipated by the individual resistor in a series resistive circuit is
as follows:

P1 ¼ I2R1 ¼ IV1 ¼ V 2
1

R1

P2 ¼ I2R2 ¼ IV2 ¼ V 2
2

R2

� � �

Pn ¼ I2Rn ¼ IVn ¼ V 2
n

Rn
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Example 3.1: A series resistive circuit is shown in Figure 3.3. Determine the
following:

(a) Total resistance RT

(b) Current I in the circuit
(c) Voltage across the resistor R1

(d) Total voltage VT

(e) Total power PT

Solution:

(a) RT ¼ R1 þ R2 þ R3 ¼ (10 þ 20 þ 30)kO ¼ 60 kO

(b) I ¼ (E/RT) ¼ (60 V/60 kO) ¼ 1 mA

(c) V1 ¼ IR1 ¼ (1 mA)(10 kO) ¼ 10 V

(d) VT ¼ IRT ¼ (1 mA)(60 kO) ¼ 60 V, VT ¼ E ¼ 60 V (checked)

(e) PT ¼ IE ¼ (1 mA)(60 V) ¼ 60 mW or PT ¼ I2RT ¼ (1 mA)2(60 kO) ¼
60 mW (checked)

3.1.2 Voltage-divider rule (VDR)

The VDR can be exhibited by using a pot (short for potentiometer). A pot is a
variable resistor whose resistance across its terminals can be varied by turning
a knob.

A pot is connected to a voltage source, as shown in Figure 3.4(a). Using a
voltmeter to measure the voltage across the pot, the voltage relative to the
negative side of the 100 V voltage source is ½ E ¼ 50 V when the arrow
(knob) is at the middle of the potentiometer. The voltage will increase when
the arrow moves up, and the voltage will decrease when the arrow moves
down. This is the principle of the voltage divider, i.e. the voltage divider is a
design technique used to create different output voltages that is proportional

R2 = 20 kΩE 60 V

R3 = 30 kΩ

R1 = 10 kΩ

Figure 3.3 Circuit for Example 3.1
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to the input voltage. Actually, a potentiometer itself is an adjustable voltage
divider.

The circuit in Figure 3.4(a) is equivalent to (b) since R¼ R1 þ R2 ¼ 100 kO.
Therefore, the voltage divider means that the source voltage E or total
voltage VT is divided according to the value of the resistors in the series circuit.
The output voltage from the divider changes when any of the resistor values
change.

In Figure 3.4(b),

I ¼ E

R1 þ R2

V1 ¼ IR1 ¼ E

R1 þ R2
R1 ¼ E

R1

R1 þ R2
¼ 100 V

50 kO
ð50 þ 50ÞkO ¼ 50 V

V2 ¼ IR2 ¼ E

R1 þ R2
R2 ¼ E

R2

R1 þ R2
¼ 100 V

50 kO
ð50 þ 50ÞkO ¼ 50 V

The above two equations are the VDRs for a series circuit of two resistors.
When there are n resistors in series, using the same method we can obtain the
general form of the VDR as follows:

I ¼ E

R1 þ R2 þ � � � þ Rn
¼ E

RT

VX ¼ IRX ¼ E

RT
RX ¼ E

RX

RT
or VX ¼ VT

RX

RT

where RX and VX are the unknown resistance and voltage, and RT and VT are
the total resistance and voltage in the series circuit.

E

(a) (b)

100 V ←
R = 100 k Ω

E 100 V

R1 = 50 kΩ

R2 = 50 kΩ

 
I

Figure 3.4 Voltage divider
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VDR

● General form: VX ¼ VT
RX
RT

or VX ¼ E RX
RT

ðX ¼ 1; 2; . . . ; nÞ
● When there are only two resistors in series: V1 ¼ VT

R1
R1þR2

;
V2 ¼ VT

R2
R1þR2

Note: The numerator of the VDR is always the unknown resistance (this is
worth memorizing).

Example 3.2: Use the VDR to determine the voltage drops across resistors R2

and R3 in the circuit of Figure 3.5.

Solution:

Use the general form of the VDR VX ¼ E(RX/RT)

V2 ¼ E
R2

RT
¼ E

R2

R1 þ R2 þ R3
¼ 60 V

20 kO
ð10 þ 20 þ 10Þ kO

¼ 30 V

V3 ¼ E
R3

RT
¼ E

R3

R1 þ R2 þ R3
¼ 60 V

10 kO
ð10 þ 20 þ 10Þ kO

¼ 15 V

The practical application of the voltage divider can be the volume control of
audio equipment. The knob of the pot in the circuit will eventually let you
adjust the volume of the audio equipment.

E 60 V

R1 = 10 kΩ

R2 = 20 kΩ

R3 = 10 kΩ

Figure 3.5 Circuit for Example 3.2
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3.1.3 Circuit ground

Usually, there is a ground for each electric circuit. Electrical circuit grounding is
important because it is always at zero potential (0 V), and provides a reference
voltage level in which all other voltages in a circuit are measured. There are two
types of circuit grounds: one is the earth ground and another is the common
ground (or chassis ground). Since an equal number of negative and positive
charges are distributed throughout the earth at any given time, the earth is an
electrically neutral body. So the earth is always at zero potential (0 V) and
measurements can be made by using earth as a reference. An earth ground
usually consists of a ground rod or a conductive pipe driven into the soil.

A chassis ground is a connection to the main chassis of a piece of electronic
or electrical equipment, such as a metal plate. Chassis ground is also called
common ground. All chassis grounds should lead to earth ground, so that it
also provides a point that has zero voltage. The neutral point in the alternating
circuit (AC) is an example of the common ground.

The difference between these two grounds can be summarized as follows:

● Earth ground: Connecting one terminal of the voltage source to the earth.
The symbol for it is:

● Common ground or chassis ground: The common point for all elements in
the circuit. All the common points are electrically connected together
through metal plates or wires. The symbol for the common point is:

In a circuit, the voltage with the single-subscript notation (such as Vb) is
the voltage drop from the point b with respect to ground. And the voltage with
the double-subscripts notation (such as Vbc) is the voltage drop across the two
points b and c (each point is represented by a subscript).

Example 3.3: Determine Vbc, Vbe and Vb in the circuit of Figure 3.6.

R1 = 10 kΩ

R2 = 20 kΩ

R3 = 20 kΩ
R4 = 10 kΩ

E 120 V

a b

e d

c

Figure 3.6 Circuit for Example 3.3
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Solution:

Vbc ¼VR2 ¼ E
R2

RT
¼ E

R2

R1 þ R2 þ R3 þ R4

¼120 V
20 kO

ð10 þ 20 þ 20 þ 10ÞkO ¼ 120 V
20 kO
60 kO

¼ 40 V

Vbe ¼ E
R2 þ R3 þ R4

RT
¼ 120V

ð20 þ 20 þ 10ÞkO
60 kO

¼ 100 V

(Use the general form of the VDR VX ¼ E (RX/RT). There the unknown
voltage VX ¼ Vbe, and the unknown resistance RX ¼ R2 þ R3 þ R4).

Vb ¼ Vbe ¼ 100 V

Ground and voltage subscript notation

● Earth ground: connects to the earth (V ¼ 0).
● Common ground (chassis ground): the common point for all com-

ponents in the circuit (V ¼ 0).
● Single-subscript notation: the voltage from the subscript with respect

to ground.
● Double-subscript notation: the voltage across the two subscripts.

3.2 Parallel resistive circuits and the current-divider rule

3.2.1 Parallel resistive circuits

If any one of the light bulbs or resistors burns out or is removed in a series
resistive circuit, the circuit is broken, no charges or current will move through
the circuit and the entire circuit would stop operating. This is because there is
only one current path in a series circuit. Old style Christmas lights were often
wired in series, so if one light bulb burned out, the whole string of lights went
off. This is the main disadvantage of a series circuit.

A parallel resistive circuit is composed of two or more series circuits con-
nected to the same power source. Thus, it has more than one path for charges
or current to follow. An obvious advantage of the parallel circuit is that burn
out or removal of one bulb does not affect the other bulbs. They continue
to operate because there is still a separate, independent path from the source to
each of the other bulbs, so the other bulbs will stay lit.

Parallel resistive circuits also can be analogized by flowing water. When
water flowing in a river across small islands, the one water path will be divided
by the islands and split into many more water paths. When the water has
passed the islands, it will become a single water path again. This scenario is
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illustrated in Figure 3.7(a). The circuit in Figure 3.7(b) is parallel resistive cir-
cuit equivalent to Figure 3.7(a).

In the parallel resistive circuit, the source current divides among the
available resistive branches in different paths. The total current I as illustrated
in Figure 3.7(b) leaves the positive terminal of the voltage source and flows to
node a (or supernode – chapter 2), which is a connecting point for the four
branches. At node a, the total current I divides into three currents I1, I2 and I3.
These three currents flow through their resistors and rejoin at node b. The total
current then flows from b back to the negative terminal of the source.

Note that the node does not have to physically be one single point. As long
as several branches are connected together, then that part of the circuit is
considered to be a node.

From the parallel circuit in Figure 3.7(b), we can see that circuit elements
(resistors) are connected in parallel if the ends of one element are connected
directly to the corresponding ends of the other.

Many practical series circuits may not be as easily identifiable as Figure
3.7(b), and circuits in Figure 3.8 are also parallel circuits but drawn in different
ways. As long as the circuit elements are connected end to end and there are at
least two current paths in the circuit, it is said that they are connected in par-
allel. It does not matter if there are different arrangements of the elements.

R2R1 R3

E

(a) (b)

I

b

I1 I2
I3

a

Figure 3.7 Parallel circuit

R1

R4

R2

R3 R2

R3

R1

R2

R1

Figure 3.8 Parallel resistive circuits
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A parallel circuit has two main advantages when compared with series
circuits. The first is that a failure of one element does not lead to the failure of
the other elements. The other is that more elements may be added in parallel
without the need for increasing voltage.

Parallel circuit

● The components are connected end to end.
● There are at least two current paths in the circuit.
● The voltage across each component is the same.

3.2.1.1 Parallel voltage

Since all resistors in a parallel resistive circuit are connected between the two
notes, the voltage between these two notes must be the same. In this case, the
voltage drop across each resistor must be the same. All these must be equal to
the supply voltage E for the parallel resistive circuit shown in Figure 3.9. If all
the resistors are light bulbs and have the same resistances as in Figure 3.9, they
will glow at the same brightness as they each receive the same voltage.

The voltage drop across each resistor must equal the voltage of the source
in a parallel resistive circuit. This can be expressed in the following mathema-
tical equation:

Parallel voltage

V ¼ E ¼ V1 ¼ V2 ¼ � � � ¼ Vn

3.2.1.2 Parallel current

If the parallel circuit was a river, the total volume of water in the river would be
the sum of water in each branch (Figure 3.7(a)). This is the same with the
current in the parallel resistive circuit. The total current is equal to the sum of
currents in each resistive branch, and the total current entering and exiting
parallel resistive circuit is the same.

V2R1 Rn

E

I1 In

… …

IT

I2

V1

V

R2 Vn

Figure 3.9 V and I in a parallel circuit
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If resistances are different in each branch of a parallel circuit, the branch
currents will be different. The branch currents can be determined by Ohm’s
law, and the characteristics of the total current in a parallel circuit can be
expressed in the following equations:

Parallel current

● Branch currents: I1 ¼ V

R1
; I2 ¼ V

R2
; . . . ; In ¼ V

Rn

● Total current: IT ¼ V

Req
¼ I1 þ I2 þ � � � þ In

3.2.1.3 Equivalent parallel resistance

How much current is flowing through each branch in the parallel resistive
circuit in Figure 3.9? It depends on the amount of resistance in each branch.
The total resistance in a parallel circuit can be found by applying Ohm’s law to
the equation of the total current:

V

Req
¼ I1 þ I2 þ � � � þ In ¼ V

R1
þ V

R2
þ � � � þ V

Rn
¼ V

1
R1

þ 1
R2

þ � � � þ 1
Rn

� �

Dividing the voltages on both sides of the equal sign in the above equation
gives

1
Req

¼ 1
R1

þ 1
R2

þ � � � þ 1
Rn

Solving for Req from the above equation will give the equivalent resistance for
the parallel circuit:

Req ¼ 1
ð1=R1Þ þ ð1=R2Þ þ � � � þ ð1=RnÞ

So the total resistance of a set of resistors in a parallel resistive circuit is found
by adding up the reciprocals of the resistance values and then taking the reci-
procal of the total.

It will be more convenient to use the conductance than the resistance in the
parallel circuits. Since the conductance G ¼ 1/R, therefore,

Geq ¼ 1
Req

¼ 1
R1

þ 1
R2

þ � � � þ 1
Rn

¼ G1 þ G2 þ � � � þ Gn

74 Understandable electric circuits

03_Wang_Chapter03_p063-100 29 May 2010; 13:6:48



When there are only two resistors in parallel:

Req ¼ 1
ð1=R1Þ þ ð1=R2Þ ¼

1
ðR1 þ R2Þ=ðR1R2Þ ¼

R1R2

R1 þ R2

Usually parallel can be expressed by a symbol of ‘//’ such as: R1 // R2 // � � � // Rn.

Equivalent parallel resistance and conductance

● Req ¼ 1
ð1=R1Þ þ ð1=R2Þ þ � � � þ ð1=RnÞ ¼ R1==R2== � � � ==Rn

● Geq ¼ G1 þ G2 þ � � � þ Gn

When n ¼ 2: Req ¼ R1R2

R1 þ R2
¼ R1==R2

Note: The total resistance of the series resistive circuit is always greater than the
individual resistance, and the total resistance of the parallel resistive circuit is
always less than the individual resistance. So usually for parallel circuits the
equivalent resistance is used instead of the total resistance.

3.2.1.4 Total parallel power

The total power is the sum of the power dissipated by the individual resistors in
a parallel resistive circuit. By multiplying a voltage V to both sides of the
equation for total current IT ¼ I1 þ I2 þ � � � þ In, the total power equation for
the parallel circuits is obtained as follows:

IT V ¼ I1 V þ I2 V þ � � � þ In V ¼ PT

Total parallel power

PT ¼ P1 þ P2 þ � � � þ Pn or PT ¼ ITV ¼ I2
TReq ¼ V 2

Req

The power consumed by each resistor in a parallel circuit is expressed as:

P1 ¼ I1V ¼ I2
1 R1 ¼ V 2

R1
; P2 ¼ I2V ¼ I2

2 R2 ¼ V 2

R2
; . . . ; Pn ¼ InV ¼ I2

n Rn ¼ V 2

Rn

Example 3.4: A parallel circuit is shown in Figure 3.10. Determine (a) R2, (b) IT
and (c) P3, given Req ¼ 1.25 kO, R1 ¼ 20 kO, R3 ¼ 2 kO and I3 ¼ 18 mA.
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Solution:

(a) Since R2 ¼ 1/G2, determine G2 first.

Geq ¼ G1 þ G2 þ G3

G2 ¼ Geq � G1 � G3 ¼ 1
Req

� 1
R1

� 1
R3

¼ 1
1:25 kO

� 1
20 kO

� 1
2 kO

¼ 0:25 mS

; R2 ¼ 1
G2

¼ 1
0:25 mS

¼ 4 kO

Req ¼ 1
ð1=R1Þ þ ð1=R2Þ þ ð1=R3Þ ¼

1
ð1=20 kOÞ þ ð1=4 kOÞ þ ð1=2 kOÞ

¼1:25 kO ðprovedÞ

(b) IT ¼ E

Req
¼ V3

Req
¼ I3R3

Req
¼ ð18 mAÞð2 kOÞ

1:25 kO
¼ 28:8 mA

(c) P3 ¼ I23R3 ¼ (18 mA)2(2 kO) ¼ 648 mW

3.2.2 Current-divider rule (CDR)

The VDR can be used for series circuits, and the CDR can be used for parallel
circuits. As previously mentioned, parallel circuits can be analogized by flowing
water. It is like a river, the water flowing through the river will be divided by
small islands and the flow is split creating more water paths. This was shown in
Figure 3.7(a).

The equations of the current divider can be derived by the following:
A parallel resistive circuit with n resistors was shown in Figure 3.9. In this

circuit:

I1 ¼ E

R1
; I2 ¼ E

R2
; . . . ; In ¼ E

Rn

R3

R2R1E

IT

I1

I2

I3

Figure 3.10 Figure for Example 3.4
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Inserting E ¼ ITReq into the above equations gives:

I1 ¼ IT
Req

R1
; I2 ¼ IT

Req

R2
; . . . ; In ¼ IT

Req

Rn

These are the general form current-divider equations.
When there are only two resistors in parallel:

I1 ¼ IT
Req

R1
¼ IT

ðR1R2=ðR1 þ R2ÞÞ
R1

¼ IT
R2

R1 þ R2

I2 ¼ IT
Req

R2
¼ IT

ðR1R2=ðR1 þ R2ÞÞ
R2

¼ IT
R1

R1 þ R2

CDR

● General form: IX ¼ IT
Req

RX
or IX ¼ IT

GX
Geq

● When there are two resistors in parallel: I1 ¼ IT
R2

R1þR2
;

I2 ¼ IT
R1

R1þR2

There IX and RX are unknown current and resistance, and IT is the total
current in the parallel resistive circuit.

Note: The CDR is similar in form to the VDR. The difference is that the
denominator of the general form current divider is the unknown resistance.
When there are two resistors in parallel, the numerator is the other resistance
(other than the unknown resistance).

Recall the VDR:

VX ¼ VT
RX

RT
; V1 ¼ VT

R1

R1 þ R2
; V2 ¼ VT

R2

R1 þ R2
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Example 3.5: Determine the current I1, I2 and I3 in the circuit of Figure 3.11.

Solution:

Req ¼ R1==R2==R3 ¼ 1
ð1=R1Þ þ ð1=R2Þ þ ð1=R3Þ

¼ 1
ð1=ð10OÞÞ þ ð1=ð20OÞÞ þ ð1=ð30OÞÞ � 5:455O

I1 ¼ IT
Req

R1

¼ 60 mA
5:455O

10O
¼ 32:73 mA

I2 ¼ IT
Req

R2

¼ 60 mA
5:455O

20O
� 16:37 mA

I3 ¼ IT
Req

R3

¼ 60 mA
5:455O

30O
¼ 10:91 mA

The conclusion that can be drawn from the above example is that the greater
the branch resistance, the less the current flows through that branch, or the less
the share of the total current.

R1 = 10 Ω R2 = 20 Ω R3 = 30 ΩE

I1 I2 I3
IT  = 60 mA

Figure 3.11 Circuit for Example 3.5
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Example 3.6: Determine the resistance R2 for the circuit in Figure 3.12.

Solution:

Solve R2 from the current-divider formula

I2 ¼ IT½R1=ðR1 þ R2Þ�
I2ðR1 þ R2Þ ¼ ITR1

I2R2 ¼ ITR1 � I2R1; R2 ¼ R1ðIT � I2Þ
I2

R2 ¼ 10Oð30 � 10ÞmA
10 mA

¼ 20O

3.3 Series–parallel resistive circuits

Themost practical electric circuits are not simple series or parallel configurations,
but combinations of series and parallel circuits, or the series–parallel configura-
tions.Many circuits have various combinations of series and parallel components,
i.e. circuit elements are series-connected in some parts and parallel in others.

The series–parallel configurations have a variety of circuit forms, and some
of them may be very complex. However, the same principles and rules or laws
that have been introduced in the previous chapters are applied. The key to
solving series–parallel circuits is to identify which parts of the circuit are series
and which parts are parallel and then simplify them to an equivalent circuit and
find an equivalent resistance.

Series–parallel circuit

The series–parallel circuit is a combination of series and parallel circuits.

R1 = 10 Ω

R2E

IT  = 30 mA

I1

I2 = 10 mA

Figure 3.12 Circuit for Example 3.6
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3.3.1 Equivalent resistance

Method for determining the equivalent resistance of series–parallel circuits:

● Determine the equivalent resistance of the parallel part of the series–
parallel circuits.

● Determine the equivalent resistance of the series part of the series–parallel
circuits.

● Plot the equivalent circuit if necessary.
● Repeat the above steps until the resistances in the circuit can be simplified

to a single equivalent resistance Req.

Note:Determine Req step by step from the far end of the circuit to the terminals
of the Req.

Example 3.7: Analysis of the series–parallel circuit in Figure 3.13.
InFigure 3.13(a), the resistorR5 is in series withR6 and in parallel withR4 and

R3. This can be expressed by the equivalent circuit in Figure 3.13(b).R2 is in series
with (R5þ R6) //R4 //R3 and in parallel withR1. That is the equivalent resistance
Req for the series–parallel circuit, i.e. Req ¼ {[(R5 þ R6) // R4 // R3] þ R2} // R1.

Example 3.8: Determine the equivalent resistance Req for the circuit shown in
Figure 3.14(a).

Solution: Req ¼ [(R5 // R6 þ R4) // (R7 þ R8 ) þ R3] // R2 þ R1

R2 R2

R3

R1 R1R4
R6

R5

Req (R5 + R6) // R4 // R3

(a) (b)

Figure 3.13 Circuits for Example 3.7

(R5 // R6 + R4) // (R7 + R8)

E

(a) (b)

E

R3

R2

R1 R5

R4

R6

R7

R8

R2

R3

R1

Figure 3.14 Circuits for Example 3.8
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Example 3.9: Determine the Req for the circuit shown in Figure 3.15(a).

Solution: Req ¼ [(R3 // R4 // R5) þ R2 ] // (R6 þ R7) þ R1

3.3.2 Method for analysing series–parallel circuits

After determining the equivalent resistance of the series–parallel circuit, the
total current as well as currents and voltages for each resistor can be deter-
mined by using the following steps:

● Apply Ohm’s law with the equivalent resistance solved from the previous
section to determine the total current in the equivalent circuit IT ¼ E/Req.

● Apply the VDR, CDR, Ohm’s law, KCL and KVL to determine the
unknown currents and voltages.

Example 3.10: Determine the currents and voltages for each resistor in the
circuit of Figure 3.16.

E

(a) (b)

E

R3 R3

R2

R1 R1

R5

R4

R6

R7

R4

R2

R5

R6 + R7

Figure 3.15 Circuits for Example 3.9

E

A

B

C

IT

I1

I3 I4

I2

R3

R2
R1

R5

R4

Figure 3.16 Circuit for Example 3.10
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Solution:

● Req ¼ (R1 // R2) þ [(R4 þ R5) // R3]

IT ¼ E

Req

● VR1 ¼ VR2 ¼ VAB ¼ ITðR1==R2Þ; I1 ¼ VAB

R1
; I2 ¼ VAB

R2

or I1 ¼ IT
R2

R1 þ R2
; I2 ¼ IT

R1

R1 þ R2
ðthe CDRÞ

● VR3 ¼ VR4 þ VR5 ¼ VBC ¼ IT½ðR4 þ R5Þ==R3�

I3 ¼ VBC

R3
; I4;5 ¼ VBC

R4 þ R5

Check: IT ¼ I1 þ I2 or IT ¼ I3 þ I4;5 ðKCLÞ
VAB þ VBC ¼ E ðKVLÞ

Example 3.11: Determine the current IT in the circuit of Figure 3.17.

Solution:

IT ¼ I5 + I6

The method of analysis: IT ¼ ?

IT ¼ I5 þ I6 ðI5 ¼ ?; I6 ¼ ?Þ

I5 ¼ VAB

RAB
I5 ¼ VAB

RAB
; VAB ¼ E; RAB ¼ ?

� �

RAB ¼ ½ðR1==R2 þ R3Þ==R4� þ R5

I6 ¼ VCD

RCD
I6 ¼ VCD

RCD
; VCD ¼ E; RCD ¼ ?

� �

RCD ¼ ½ðR8 þ R9Þ==R7� þ R6

E

A

B

C

D

IT

I5 I6

R3

R2

R1

R5

R4

R6

R7

R8

R9

Figure 3.17 Circuit for Example 3.11
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3.4 Wye (Y) and delta (D) configurations and their
equivalent conversions

3.4.1 Wye and delta configurations

Sometimes the circuit configurations will be neither in series nor in parallel, and
the analysis method for series–parallel circuits described in previous chapters
may not apply. For example, the configuration of three resistors Ra, Rb and Rc

in the circuit of Figure 3.18(a) are neither in series nor in parallel. So how do
we determine the equivalent resistance Req for this circuit? If we convert this to
the configuration of resistors R1, R2 and R3 in the circuit of Figure 3.18(b), the
problem can be easily solved, i.e. Req ¼ [(R1+ Rd) // (R2 þ Re)] þ R3.

The resistors ofRa, Rb and Rc in the circuit of Figure 3.18(a) are said to be in
the delta (D) configuration; R1, R2 and R3 in the circuit of Figure 3.18(b) is called
the wye (Y) configuration. The delta and wye designations are from the fact that
they look like a triangle and the letter Y, respectively, in electrical drawings.
They are also referred to as tee (T) and pi (p) circuits as shown in Figure 3.19.

Wye (Y) and delta (D) configurations

Y or T configuration: R2

R3

R1

D or p configuration:
Ra

Rc

Rb

Wye (Y) and delta (D) configurations are often used in three phase AC
circuits. They can also be used in the bridge circuit that will be discussed later.
It is very important to know the conversion method of the two circuits and be
able to convert back and forth between the wye (Y) and delta (D) configurations.

(a) (b)

Ra

Rc

Rb

Rd

Re

Req = ?

Rd

R1

R2

R3

Re

Req = ?

Figure 3.18 Delta (D) and wye (Y) conversions
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3.4.2 Delta to wye conversion (D!Y)

There are three terminals in the delta (D) or wye (Y) configurations that can be
connected to other circuits. The delta or wye conversion is used to establish
equivalence for the circuits with three terminals, meaning that the resistors of
the circuits between any two terminals must have the same values for both
circuits as shown in Figure 3.20.

i:e: Rac ðYÞ ¼ Rac ðDÞ Rab ðYÞ ¼ Rab ðDÞ Rbc ðYÞ ¼ Rbc ðDÞ

The following equations can be obtained from Figure 3.20:

Rac ¼ R1 þ R3 ¼ Rb==ðRa þ RcÞ ¼ RbðRa þ RcÞ
Rb þ ðRa þ RcÞ ð3:2Þ

Rab ¼ R1 þ R2 ¼ Rc==ðRa þ RbÞ ¼ RcðRa þ RbÞ
Rc þ ðRa þ RbÞ ð3:3Þ

Rbc ¼ R2 þ R3 ¼ Ra==ðRb þ RcÞ ¼ RaðRb þ RcÞ
Ra þ ðRb þ RcÞ ð3:4Þ

Δ (Delta)

Ra

Rc

Rb

π (Pi )

Ra

Rc

Rb

Y (Wye)

R3

R1

R2

T (Tee)

R3

R1 R2

Figure 3.19 p and T configurations
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Subtracting equation (3.3) from the sum of equations (3.2) and (3.4) gives

ðR1 þ R3Þ þ ðR2 þ R3Þ � ðR1 þ R2Þ ¼ RbRa þ RbRc

Rb þ ðRa þ RcÞ þ
RaRb þ RaRc

Ra þ ðRb þ RcÞ

� RcRa þ RcRb

Rc þ ðRa þ RbÞ

2R3 ¼ 2RaRb

Ra þ Rb þ Rc
R3 ¼ RaRb

Ra þ Rb þ Rc
ð3:5Þ

Similarly, subtracting equation (3.4) from the sum of equations (3.2) and (3.3)
gives

R1 ¼ RbRc

Ra þ Rb þ Rc
ð3:6Þ

And subtracting equation (3.2) from the sum of equations (3.3) and (3.4) gives

R2 ¼ RaRc

Ra þ Rb þ Rc
ð3:7Þ

The circuit in delta configuration is converted to wye configuration as shown in
Figure 3.21.

a b

c

Ra

Rc

Rb

R3

R1
R2

Figure 3.20 Delta and wye configurations

Series–parallel resistive circuits 85

03_Wang_Chapter03_p063-100 29 May 2010; 13:6:51



Equations for D!Y

R1 ¼ RbRc

Ra þ Rb þ Rc
; R2 ¼ RaRc

Ra þ Rb þ Rc
; R3 ¼ RaRb

Ra þ Rb þ Rc

3.4.3 Wye to delta conversion (Y!D)
The equations to convert wye to delta configuration can be derived based on
(3.5–3.7).

Adding the products of equations (3.7) and (3.5), (3.5) and (3.6), and (3.6)
and (3.7) gives

R2R3 þ R3R1 þ R1R2 ¼ RaRcRaRb

ðRa þ Rb þ RcÞ2 þ
RaRbRbRc

ðRa þ Rb þ RcÞ2

þ RbRcRaRc

ðRa þ Rb þ RcÞ2

R2R3 þ R3R1 þ R1R2 ¼ RaRbRcðRa þ Rb þ RcÞ
ðRa þ Rb þ RcÞ2 ¼ RaRbRc

Ra þ Rb þ Rc
ð3:8Þ

a

b

c

a

b

c

a b

c

a b

c

Ra

Rc

Rb

Ra

Rc

Rb

R1

R2

R3

R1

R2

R3

Figure 3.21 Delta converted to wye configuration
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Using (3.8) to divide (3.6), (3.7) and (3.5) individually will give the equations to
convert wye to delta configurations as follows:

Equations for Y!D

Ra ¼R1R2 þ R2R3 þ R3R1

R1
; Rb ¼ R1R2 þ R2R3 þ R3R1

R2
;

Rc ¼R1R2 þ R2R3 þ R3R1

R3

For example, (3.8) divided by (3.6) gives

R2R3 þ R3R1 þ R1R2

R1
¼ RaRbRc=ðRa þ Rb þ RcÞ

RbRc=ðRa þ Rb þ RcÞ ¼ Ra

The circuit in wye configuration is converted to delta as shown in Figure 3.22.

3.4.3.1 RY and RD

If all resistors in the wye (Y) configuration have the same values, i.e. R1 ¼ R2 ¼
R3 ¼ RY, then all the resistances in the delta (D) configuration will also be the
same, i.e. Ra ¼ Rb ¼ Rc ¼ RD. This can be obtained from Y!D or D!Y
conversion equations. Use Y!D as an example.

RD ¼ Ra ¼ R1R2 þ R2R3 þ R3R1

R1
¼ 3RYRY

RY
¼ 3RY

RD ¼ Rb ¼ R1R2 þ R2R3 þ R3R1

R2
¼ 3RYRY

RY
¼ 3RY

RD ¼ Rc ¼ R1R2 þ R2R3 þ R3R1

R3
¼ 3RYRY

RY
¼ 3RY

c

a

(a) (b)

b
a b

c

Ra

Rc

Rb

R1

R2

R3

Figure 3.22 Wye converted to delta configuration
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So all delta resistances (RD) have the same values.

Ra ¼ Rb ¼ Rc ¼ RD ¼ 3RY

In the above condition, the delta resistance RD and wye resistance RY has the
following relationship:

If Ra ¼ Rb ¼ Rc ¼ RD; R1 ¼ R2 ¼ R3 ¼ RY

RY ¼ 1
3

RD or RD ¼ 3RY

Example 3.12: Convert D to Y in the circuit of Figure 3.22, then Y to D to
prove the accuracy of the equations. There the delta resistances Ra ¼ 30 O,
Rb ¼ 20 O and Rc ¼ 10 O.

Solution:

D ! Y:

R3 ¼ RaRb

Ra þ Rb þ Rc
¼ ð30OÞð20OÞ

30Oþ 20Oþ 10O
¼ 10O

R2 ¼ RaRc

Ra þ Rb þ Rc
¼ ð30OÞð10OÞ

30Oþ 20Oþ 10O
¼ 5O

R1 ¼ RbRc

Ra þ Rb þ Rc
¼ ð20OÞð10OÞ

30Oþ 20Oþ 10O
� 3:33O

Y ! D:

Ra ¼ R1R2 þ R2R3 þ R3R1

R1
¼ ½ð3:33Þð5Þ þ ð5Þð10Þ þ ð10Þð3:33Þ�O2

3:33O

¼ 99:95O2

3:33O
� 30O

Rb ¼ R1R2 þ R2R3 þ R3R1

R2
¼ 99:95O2

5O
� 20O

Rc ¼ R1R2 þ R2R3 þ R3R1

R3
¼ 99:95O2

10O
� 10O

The calculated delta resistances Ra ¼ 30 O, Rb ¼ 20 O and Rc ¼ 10 O are the
same with the resistances that were given (proved).
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3.4.4 Using D ! Y conversion to simplify bridge circuits

Sir Charles Wheatstone (1802–1875), a British physicist and inventor, is most
famous for the Wheatstone bridge circuit. He was the first person who imple-
mented the bridge circuit when he ‘found’ the description of the device. The
bridge was invented by Samuel Hunter Christie (1784–1865), a British scientist.
The Wheatstone bridge circuit can be used to measure unknown resistors. A
basic Wheatstone bridge circuit is illustrated in Figure 3.23(a).

Example 3.13: Determine the equations to calculate the total current IT and
branch current I4 for the bridge circuit in Figure 3.23(a).

To determine the equation for the total current IT of the bridge circuit, the
equivalent resistance Req has to be determined first. The normal series–parallel
analysis methods cannot be used to determine this resistance. However, Figure
3.23(a) can be converted to Figure 3.23(b) using the D ! Y equivalent con-
version, and R1, R2 and R3 in Figure 3.23(b) can be determined by the equa-
tions of D ! Y conversion.

R1 ¼ RbRc

Ra þ Rb þ Rc
; R2 ¼ RaRc

Ra þ Rb þ Rc
; R3 ¼ RaRb

Ra þ Rb þ Rc

The equivalent resistance Req of the bridge can be determined as follows:

Req ¼ R3 þ ½ðR1 þ R4Þ==ðR2 þ R5Þ�

The total current can be solved as IT ¼ E/Req.

(a) (b)

BAE

C

Ra

Rc

Rb

R4

I4

IT

R5

BA
E

C

IT

R4

I4

R1

R2

R3

R5

Figure 3.23 Wheatstone bridge circuit. (a) Delta (D) and (b) wye (Y)
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The branch current I4 ¼ ITððR2 þ R5Þ=½ðR1 þ R4Þ þ ðR2 þ R5Þ�Þ (the CDR).
If the wire between A and B in the circuit of Figure 3.23(a) is open, the

equivalent resistance Req will be

Req ¼ ðRb þ R4Þ==ðRa þ R5Þ

3.4.5 Balanced bridge

When the voltage across points A and B in a bridge circuit shown in
Figure 3.24 is zero, i.e. VAB ¼ 0, the Wheatstone bridge is said to be balanced.
A balanced Wheatstone bridge circuit can accurately measure an unknown
resistor.

First determine the voltage VAB in the points A and B.

The voltage VAB is the voltage from point A to ground (VA) and then from
ground to point B, i.e.

VAB ¼ VA þ ð�VBÞ

VAB ¼ E
R2

R1 þ R2
� E

R4

R3 þ R4
ðthe VDRÞ

VAB ¼ E
R2ðR3 þ R4Þ � R4ðR1 þ R2Þ

ðR1 þ R2ÞðR3 þ R4Þ ¼ E
R2R3 � R4R1

ðR1 þ R2ÞðR3 þ R4Þ

BAE

R1

R2

R3

R4

IT

Figure 3.24 A balanced bridge
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When VAB ¼ 0, or when the bridge is balanced, the numerator of the above
equation will be zero, i.e.

R2R3 � R4R1 ¼ 0; this gives: R2R3 ¼ R4R1

Balanced bridge

When VAB ¼ 0, R2R3 ¼ R4R1

3.4.6 Measure unknown resistors using the balanced bridge

The method of using the balanced bridge to measure an unknown resistor is as
follows:

If the unknown resistor is in the position of R4 in the circuit of Figure 3.24,
using a variable (adjustable) resistor to replace R2 and connecting a Galvan-
ometer in between terminals A and B can measure the small current IG in
terminals A and B as shown in Figure 3.25. (A galvanometer is a type of
ammeter that can measure small current accurately.)

Adjust R2 until the current IG measured by the Galvanometer or current in
the A and B branch is zero (IG ¼ 0). This means VAB ¼ 0, or the bridge is
balanced. RX ¼ R4 at this time can be determined by the equation of the
balanced bridge as follows:

From: R2R3 ¼ R4R1

Solving for R4: RX ¼ R4 ¼ R2R3

R1

BAE

R1

R2

R3

RX

IT

IG

Figure 3.25 Measure an unknown R using a balanced bridge
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So the unknown resistor value can be determined from the ratios of the
resistances in a balanced Wheatstone bridge.

Example 3.14: R1 ¼ 100 O, R2 ¼ 330 O and R3 ¼ 470 O in a balanced bridge
circuit as shown in Figure 3.25. Determine the unknown resistance RX.

Solution:

From R2R3 ¼ R4R1 solving for R4

RX ¼ R4
R2R3

R1
¼ ð330OÞð470OÞ

100O
¼ 1:551 kO

Summary

Series circuits

● Series circuits: All components are connected one after the other, there is
only one circuit path, and the current flow through each component is
always the same.

● Total series voltage:

VT ¼ E ¼ V1 þ V2 þ � � � þ Vn ¼ IRT

VT ¼ IR1 þ IR2 þ � � � þ IRn ¼ IRT

● Total series resistance (equivalent resistance Req): RT ¼ R1 þ R2 þ � � � þ Rn

● Series current:

I ¼ VT

RT
¼ E

RT
¼ V1

R1
¼ V2

R2
¼ � � � ¼ Vn

Rn

● Total series power: PT ¼ P1 þ P2 þ � � � þ Pn ¼ IE ¼ I2RT ¼ E2

RT

● The VDR
General form:

VX ¼ VT
RX

RT
or VX ¼ E

RX

RT
ðX ¼ 1; 2; . . . ; nÞ

When there are only two resistors in series:

V1 ¼ VT
R1

R1 þ R2
; V2 ¼ VT

R2

R1 þ R2

● The earth ground: Connects to the earth (V ¼ 0).
● Common ground or chassis ground: the common point for all components

in the circuit (V ¼ 0).
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● Single-subscript notation: the voltage from the subscript with respect to
ground.

● Double-subscript notation: the voltage across the two subscripts.

Parallel circuits

● Parallel circuits: The components are connected end to end, there are at
least two current paths in the circuit, and the voltage across each compo-
nent is the same.

● Parallel voltage: V ¼ E ¼ V1 ¼ V2 ¼ � � � ¼ Vn

● Parallel currents:

I1 ¼ V

R1
; I2 ¼ V

R2
; . . . ; In ¼ V

Rn

IT ¼ V

Req
¼ I1 þ I2 þ � � � þ In

● Equivalent parallel resistance:

Req ¼ 1
ð1=R1Þ þ ð1=R2Þ þ � � � þ ð1=RnÞ ¼ R1==R2== � � � ==Rn

When n ¼ 2:

Req ¼ R1R2

R1 þ R2
¼ R1==R2

● Equivalent parallel conductance: Geq ¼ G1 þ G2 þ � � � þ Gn

● Total parallel power:

PT ¼ P1 þ P2 þ � � � þ Pn ¼ I2
TReq ¼ V 2

Req
¼ ITV

● The CDR
General form:

IX ¼ IT
Req

RX
or IX ¼ IT

GX

Geq

(IX and RX are unknown current and resistance.)

When there are two resistors in parallel:

I1 ¼ IT
R2

R1 þ R2
; I2 ¼ IT

R1

R1 þ R2
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Series–parallel circuits

● Series–parallel circuits are a combination of series and parallel circuits.
● Method for determining the equivalent resistance of series–parallel circuits:

● Determine the equivalent resistance of the parallel part of the series–
parallel circuits.

● Determine the equivalent resistance of the series part of the series–
parallel circuits.

● Plot the equivalent circuit if necessary.
● Repeat the above steps until the resistance in the circuit can be sim-

plified to a single equivalent resistance Req.
● Method for analysing series–parallel circuits:

● Apply Ohm’s law to determine the total current:

IT ¼ E

Req

● Apply VDR, CDR, Ohm’s law, KCL and KVL to determine the
unknown currents and voltages.

Wye and delta configurations and their conversions

● Y or T circuit: R2

R3

R1

, D or p circuit:
Ra

Rc

Rb

● D ! Y:

R1 ¼ RbRc

Ra þ Rb þ Rc
; R2 ¼ RaRc

Ra þ Rb þ Rc
; R3 ¼ RaRb

Ra þ Rb þ Rc

● Y ! D:

Ra ¼ R1R2 þ R2R3 þ R3R1

R1
; Rb ¼ R1R2 þ R2R3 þ R3R1

R2
;

Rc ¼ R1R2 þ R2R3 þ R3R1

R3

● If Ra ¼ Rb ¼ Rc ¼ RD and R1 ¼ R2 ¼ R3 ¼ RY:

RY
1
3

RD or RD ¼ 3RY

● The balanced bridge: When VAB ¼ 0, R2R3 ¼ R4R1
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Experiment 3: Series–parallel resistive circuits

Objectives

● Review series and parallel resistive circuits.
● Construct and analyse series–parallel resistive circuits.
● Measure voltages and currents for series–parallel resistive circuits.
● Review the applications of KCL and KVL.
● Verify the theoretical analysis, and compare the experimental results with

theory calculations.
● Apply the CDR to circuit analysis.
● Design and test a voltage divider.
● Measure unknown resistors using a Wheatstone bridge circuit.

Background information

● Equivalent (or total) series resistance: Req ¼ RT ¼ R1 þ R2 þ � � � þ Rn

● Equivalent parallel resistance:

Req ¼ 1
ð1=R1Þ þ ð1=R2Þ þ � � � þ ð1=RnÞ ¼ R1==R2== � � � ==Rn

● When there are only two resistors in parallel:

Req ¼ R1R2

R1 þ R2
¼ R1==R2

● For a balanced Wheatstone bridge: when VAB ¼ 0, R2 R3 ¼ R4R1

● CDR:

IX ¼ IT
Req

RX

When there are only two resistors in parallel:

I1 ¼ IT
R2

R1 þ R2
; I2 ¼ IT

R1

R1 þ R2

● VDR:

VX ¼ VT
RX

RT
or VX ¼ E

RX

RT

When there are only two resistors in parallel:

V1 ¼ VT
R1

R1 þ R2
; V2 ¼ VT

R2

R1 þ R2
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Equipment and components

● Digital multimeter
● Breadboard
● DC power supply
● Switch
● Resistors:

● four resistors with any values,
● one 10 kO variable resistor,
● 360 O, 510 O, 5.1 kO, 750 O, 1.2 kO, 2.4 kO, 5.1 kO, 910 O, 2.4 kO, 6.2

and 9.1 kO each and
● two 1.1 kO.

Procedure

Part I: Equivalent series and parallel resistance

1. Take four unknown resistors and record their colour code resistor values in
Table L3.1.

2. Get the multimeter to function as an ohmmeter and measure the values of
these four resistors. Record the values in Table L3.1.

3. Connect four resistors in series with the DC power supply as shown in
Figure L3.1. Adjust the source voltage to the suitable value according to the
value of the resistors, and then connect the DC power supply to the circuit
in Figure L3.1 (consult your instructor before you turn on the switch).

4. Calculate the equivalent series resistance Req, voltage across each resistor
VAB,, VBC, VCD, VDE, current I, and record in Table L3.2.
Use direct method or indirect method to measure current I.

Table L3.1

Resistance R1 R2 R3 R4

Colour code resistor value
Measured value

R1 R2 R3 R4

A
B C D

VS

E

Figure L3.1 A series circuit
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Recall:

● Direct method: Connect the multimeter (ammeter function) in series
with the circuit components, turn on the switch and measure circuit
current directly.

● Indirect method: Applying Ohm’s law to calculate current by using the
measured voltage and resistance.

5. Turn on the switch for the circuit in Figure L3.1, get the multimeter
function as an ohmmeter, voltmeter and ammeter, respectively, and mea-
sure Req, VAB,, VBC, VCD, VDE, current I. Record the values in Table L3.2.

6. Connect four resistors in parallel with the DC power supply as shown in
Figure L3.2.

7. Calculate the equivalent parallel resistance Req, currents IR1 ; IR2 ; IR3 ; IR4 and
IT. Record the values in Table L3.3.

8. Turn on the switch for the circuit in Figure L3.2, measure Req,
IR1 ; IR2 ; IR3 ; IR4 and IT using the multimeter (ohmmeter and ammeter func-
tions). Record the values in Table L3.3.

Table L3.2

Req VAB VBC VCD VDE I

Formula for calculations
Calculated value
Measured value

VS R1 R2 R3 R4

Figure L3.2 A parallel circuit

Table L3.3

Req IT IR1
IR2

IR3
IR4

Formula for calculations
Calculated value
Measured value
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Part II: Series–parallel resistive circuit

1. Connect a series–parallel circuit as shown in Figure L3.3 on the breadboard.

2. Calculate the equivalent resistance Req, currents IT, I5.1 kO (current flowing
through the branch of 5.1 kO resistor), and voltages VAB, VBC and VCD for
the circuit in Figure L3.3. Record the values in Table L3.4.

3. Turn on the switch for the circuit in Figure L3.3, measure Req, IT, I5.1 kO,
VAB, VBC and VCD. Record the values in Table L3.4.

Part III: Voltage divider

1. Design and construct a voltage divider as shown in Figure L3.4. When E ¼
12 V, VA ¼ 6 V (voltage across the resistor R2), and I ¼ 6 mA, calculate
resistance R1 and R2. Record the values in Table L3.5.

2. Measure resistance R1 and R2 using the multimeter (ohmmeter function)
for the circuit in Figure L3.4. Record the values in Table L3.5.

10 V

   2.4 kΩ 

 1.2 kΩ
   5.1 kΩ

C

B

510 Ω360 Ω

750 ΩD

A

Figure L3.3 A series–parallel circuit

Table L3.4

Req IT VAB VBC VCD I5.1 kO

Formula for calculations
Calculated value
Measured value

E 12 V

R1

R2

A

I = 6 mA

Figure L3.4 Voltage divider circuit
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3. Calculate voltages VR1 and VR2 for the circuit in Figure L3.4. Record the
values in Table L3.5.

4. Measure voltages VR1 and VR2 using the multimeter (voltmeter function) for
the circuit in Figure L3.4. Record the values in Table L3.5.

Part IV: Wheatstone bridge

1. Measure the value of each resistor of RX using the multimeter (ohmmeter
function) in Table L3.6. Record the values in Table L3.6.

2. Construct a bridge circuit as shown in Figure L3.5 on the breadboard, and
connect the 910 O RX resistor (R4 ¼ RX) to the circuit.

Table L3.5

R1 R2 VR1
VR2

Formula for calculations
Calculated value
Measured value

Table L3.6

Colour code value for RX 910 O 2.4 kO 6.2 kO 9.1 kO

Multimeter measured RX value
Formula to calculate R3

Multimeter measured R3 value
Bridge measured RX value

BAE = 10 V

R1 = 1.1 kΩ

R2 = 1.1 kΩ

R3

R4 = RX

V

Figure L3.5 Bridge circuit
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3. Calculate the value of the variable resistor R3 for the balanced bridge
circuit (when RX ¼ 910 O, and VAB ¼ 0) in Figure L3.5. Record the value
in Table L3.6.

4. Turn on the switch, and carefully adjust the variable resistor R3 when using
the multimeter (voltmeter function) to measure the voltage across term-
inals A and B until the multimeter voltage is approximately zero.

5. Turn off the switch, use the multimeter (ohmmeter function) to measure
the value of the variable resistor R3. Record the value in Table L3.6.

6. Calculate the value of RX when VAB ¼ 0 using the formula of the balanced
bridge (use measured R3 value). Record the values in Table L3.6.

7. Turn off the switch for the circuit in Figure L3.5, then replace the other
three RX resistors listed in Table L3.6 one by one to the circuit, and repeat
steps 3 to 6.

8. Compare the measured and calculated RX values. Are there any significant
differences? If so, explain the reasons.

Conclusion

Write your conclusions below:
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Chapter 4

Methods of DC circuit analysis

Objectives

After completing this chapter, you will be able to:

● convert voltage source to an equivalent current source and vice versa
● know the methods of voltage sources in series and parallel
● know the methods of current sources in series and parallel
● understand the branch current analysis method and apply it to circuit

analysis
● understand the mesh analysis method and apply it to circuit analysis
● understand the node voltage analysis method and apply it to circuit analysis

4.1 Voltage source, current source and their equivalent
conversions

4.1.1 Source equivalent conversion

It is sometimes easier to convert a current source to an equivalent voltage
source or vice versa to analyse and calculate the circuits. The source equivalent
conversion means that if loads are connected to both the terminals of the two
sources after conversion, the load voltage VL and current IL of the two sources
should be the same (Figure 4.1). So the source equivalent conversion actually
means that the source terminals are equivalent, though the internal character-
istics of each source circuit are not equivalent.

If the internal resistance RS in Figure 4.1(a and b) is equal, the source vol-
tage is E ¼ ISRS in Figure 4.1(a) and the source current is IS ¼ E/RS in Figure
4.1(b), then the current source and voltage source can be equivalently converted.

When performing the source equivalent conversion, we need to pay
attention to the polarities of the sources. The reference polarities of voltage and
current of the sources should be the same before and after the conversion as
shown in Figures 4.1 and 4.2 (notice the polarities of sources E and IS in the
two figures).
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Source equivalent conversion

● Voltage source ! Current source RS ¼ RS; IS ¼ E=RS

● Current source ! Voltage source RS ¼ RS; E ¼ IS=RS

The following procedure can verify that the load voltage VL and load
current IL in two circuits of Figure 4.1(a and b) are equal after connecting a
load resistor RL to the two terminals of these circuits.

E

RS

RL

a

b

(a) (b)

IL
+

–

RS RL

a

b

VL

+

–

VL

IS

IL

Figure 4.1 Sources equivalent conversion

RS

a

b

(a) (b)

RS

a

b

IS

ES

Figure 4.2 Polarity of conversion
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● The voltage source in Figure 4.1(a):

IL ¼ E

RS þ RL

VL ¼ E
RL

RS þ RL
¼ ISRS

RL

RS þ RL

(Applying the voltage-divider rule and E ¼ ISRS)

● The current source in Figure 4.1(b):

IL ¼ IS
RS

RS þ RL
¼ E

RS þ RL

VL ¼ IL RL ¼ IS
RS

RS þ RL

� �
RL

(Applying the current-divider rule and E ¼ ISRS)

So the load voltages and currents in the two circuits of Figure 4.1(a and b) are
the same, and the source conversion equations have been proved.

Example 4.1: Convert the voltage source in Figure 4.3(a) to an equivalent current
source and calculate the load current IL for the circuit in Figure 4.3(a and b).

Solution: The equivalent current source after the source conversion is shown in
Figure 4.3(b); RS is still 2 O in Figure 4.3(b).

For Figure 4.3(b):

IS ¼ E

RS
¼ 6V

2O
¼ 3A

IL ¼ IS
RS

RS þ RL
¼ 3A

2O
ð2 þ 10ÞO ¼ 0:5A

E = 6 V

a

b

(a) (b)

     IL

RS RL = 10 ΩRL = 10 Ω

RS = 2 Ω

a

b

IS

 IL

Figure 4.3 Circuit for Example 4.1
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For Figure 4.3(a):

IL ¼ E

RS þ RL
¼ 6V

ð2 þ 10ÞO ¼ 0:5A

Example 4.2: Convert the current source in Figure 4.4(a) to an equivalent
voltage source, and determine the voltage source ES and internal resistance RS

in Figure 4.4(b).

Solution:

RS ¼ 10O

ES ¼ ISRS ¼ ð5AÞð10OÞ ¼ 50V

4.1.2 Sources in series and parallel

4.1.2.1 Voltage sources in series

A circuit of voltage sources in series and its equivalent circuit are shown in
Figure 4.5. Voltage sources connected in series are similar with the resistors
connected in series, that is the equivalent internal resistance RS for series vol-
tage sources is the sum of the individual internal resistances:

RS ¼ RS1 þ RS2 þ � � � þ RSn

and the equivalent voltage E or VS for series voltage sources is the algebraic
sum of the individual voltage sources:

E ¼ E1 þ E2 þ � � � þ En

or

VS ¼ V1 þ V2 þ � � � þ Vn

R2 = 10 Ω

R1 = 5 Ω IS = 5 A

RS = 10 Ω

E1 = 20 VE1 = 20 V

R1 = 5 Ω RS = 10 Ω

E2 = 50 V

(a) (b)

R2 = 10 Ω

Figure 4.4 Circuit for Example 4.2
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Assign a positive sign (+) if the individual voltage has the same polarity as
the equivalent voltage E (or VS); assign a negative sign (7) if the individual
voltage has a different polarity from the equivalent voltage E (or VS) as shown
in Figure 4.5.

A flashlight is an example of voltage sources in series, where batteries are
connected in series to increase the total equivalent voltage.

Voltage sources in series

RS ¼ RS1 þ RS2 þ � � � þ RSn

E ¼ E1 þ E2 þ � � � þ En or VS ¼ V1 þ V2 þ � � � þ Vn

● Assign a +ve sign if En has same polarity as E (or VS)
● Assign a 7ve sign if En has different polarity from E (or VS)

4.1.2.2 Voltage sources in parallel

A circuit of voltage sources in parallel and its equivalent circuit are shown in
Figure 4.6. The equivalent voltage for the parallel voltage sources is the same
as the voltage for each individual voltage source:

E ¼ E1 ¼ E2 ¼ � � � ¼ En or VS ¼ VS1 ¼ VS2 ¼ � � � ¼ VSn

and the equivalent internal resistance RS is the individual internal resistances in
parallel:

RS ¼ RS1 == RS2 == � � � == RSn

Note: Only voltage sources that have the same values and polarities can be
connected in parallel by using the method mentioned above. If voltage sources

RS1

En

E1

RSn

...

 RS2
RS = RS1 + RS2 + ... + RSn

E = E1 – E2 + ... + En

E2

(a) (b)

Figure 4.5 Voltage sources in series

Methods of DC circuit analysis 105

04_Wang_Chapter04_p101-126 31 May 2010; 17:51:48



having different values and polarities are connected in parallel, it can be solved
by using Millman’s theory, which will be discussed in chapter 5 (section 5.4).

An example of an application for voltage sources connected in parallel is
for boosting (or jump starting) a ‘dead’ vehicle. You may have experienced
using jumper cables by connecting the dead battery in parallel with a good car
battery or with a booster (battery charger) to recharge the dead battery. It is
the process of using the power from a charged battery to supplement the power
of a discharged battery. It can provide twice the amount of current to the
battery of the ‘dead’ vehicle and successfully start the engine.

Voltage sources in parallel

RS þ RS1 == RS2 == � � � == RSn

E ¼ E1 ¼ E2 ¼ � � � ¼ En or VS ¼ VS1 ¼ VS2 ¼ � � � ¼ VSn

Only voltage sources that have the same values and polarities can be in
parallel.

4.1.2.3 Current sources in parallel

A circuit of current sources in parallel and its equivalent circuit are shown in
Figure 4.7. Current sources connected in parallel can be replaced by a single
equivalent resistance RS in parallel with a single equivalent current IS.

RS1 RSnRS2

IS = IS1 – IS2 +...+ ISn

...IS1 IS2
ISn

RS = RS1 // RS2 // ... RSn

(a) (b)

Figure 4.7 Current sources in parallel

RS1

E2 EnE1

 RSnRS2 RS = RS1// RS2// ... // RSn

E = E1 = E2 = ... = En

...

Figure 4.6 Voltage sources in parallel
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The equivalent resistance RS is the individual internal resistances in parallel:

RS ¼ RS1 == RS2 == � � � == RSn

The equivalent current IS is the algebraic sum of the individual current
sources:

IS ¼ IS1 þ IS2 þ � � � þ ISn

Assign a positive sign (+) if the individual current is in the same direction as
the equivalent current IS; assign a negative sign (7) if the individual current is
in a different direction from the equivalent current IS.

Current sources in parallel

RS ¼ RS1 == RS2 == . . . == RSn

IS ¼ IS1 þ IS2 þ � � � þ ISn

● Assign a +ve sign for ISn if it has the same polarity as IS
● Assign a 7ve sign for ISn if it has different polarity from IS

4.1.2.4 Current sources in series

Only current sources that have the same polarities and same values can be con-
nected in series. There is only one current path in a series circuit, so there must be
only one current flowing through it. This is the same concept as Kirchhoff’s
current law (KCL), otherwise if the current entering point A does not equal the
current exiting point A in Figure 4.8, KCL would be violated at point A.

Current sources in series

Only current sources that have the same polarities and values can be
connected in series.

3 A 7 A?

A

Figure 4.8 KCL is violated at point A
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Example 4.3: Determine the load voltage VL in Figure 4.9.

Solution: The process of source equivalent conversion is shown in the circuit of
Figure 4.9. Determine VL by using the voltage-divider rule as follows:

VL ¼ Vab ¼ IRL ¼ E

RT
RL

¼ ð�4 þ 12 � 2ÞV
ð2 þ 2 þ 4 þ 2ÞO ð2OÞ ¼ 1:2V

4.2 Branch current analysis

The methods of analysis stated in chapter 3 are limited to an electric circuit that
has a single power source. If an electric circuit or network has more than one
source, it can be solved by the circuit analysis techniques that are discussed in
chapters 4 and 5. The branch current analysis is one of several basic methods
for analysing electric circuits.

The branch current analysis is a circuit analysis method that writes and
solves a system of equations in which the unknowns are the branch currents.
This method applies Kirchhoff’s laws and Ohm’s law to the circuit and solves
the branch currents from simultaneous equations. Once the branch currents

4 Ω

2 Ω

8 Ω

8 Ω

2 A 4 A 4 Ω

4 V
a

b

+

–

+

–

VL = ?

2 V

2 V

2 + 4 = 6 A

2 Ω

4 V

8//8 = 4 Ω

2 V

 4//4 = 2 ΩRL = 2 Ω RL = 2 Ω VL

2 Ω

4 V +

–

2 Ω

(2 Ω) (6 A) = 12 V

4 Ω 2 V

RL= 2 Ω

a

a

b

b

V
L

Figure 4.9 Circuit for Example 4.3
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have been solved, other circuit quantities such as voltages and powers can also
be determined.

The branch current analysis technique will use the terms node, branch and
independent loop (or mesh); let us review the definitions of these terms.

● Node: The intersectional point of two or more current paths where current
has several possible paths to flow.

● Branch: A current path between two nodes where one or more circuit
components is in series.

● Loop: A complete current path that allows current to flow back to the start.
● Mesh: A loop in the circuit that does not contain any other loop (it can be

analysed as a windowpane).

The circuits in Figure 4.10 have three meshes (or independent loops) and
different number of nodes (the dark dots).

Branch current analysis

A circuit analysis method that writes and solves a system of Kirchhoff’s
current law (KCL) and voltage law (KVL) equations in which the
unknowns are the branch currents (it can be used for a circuit that has
more than one source).

4.2.1 Procedure for applying the branch circuit analysis

1. Label the circuit.
● Label all the nodes.
● Assign an arbitrary reference direction for each branch current.
● Assign loop direction for each mesh (choose clockwise direction).

2. Apply KCL to numbers of independent nodes (n7 1), where n is the number
of nodes.

3. Apply KVL to each mesh (or windowpane), and the number of KVL
equations should be equal to the number of meshes, or Equation # ¼
branch # – (nodes # 71).

1 2

3

1 2 3 1
2

3

Figure 4.10 Nodes and meshes
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4. Solve the simultaneous equations resulting from steps 2 and 3, using
determinant or substitution methods to determine each branch current.

5. Calculate the other circuit unknowns from the branch currents in the
problem if necessary.

The procedure of applying the branch current analysis method is demon-
strated in the following example.

Example 4.4:Use the branch current analysis method to determine each branch
current, power on resistor R2 and also the voltage across the resistor R1 in the
circuit of Figure 4.11.

Solution: This circuit contains two voltage sources, and cannot be solved by
using the methods we have learned in chapter 3; let us try to use the branch
current analysis method.

1. Label the circuit as shown in Figure 4.11.
● Label the nodes a and b.
● Assign an arbitrary reference direction for each branch current as

shown in Figure 4.11.
● Assign clockwise loop direction for each mesh as shown in Figure 4.11.

2. Apply KCL to n � 1ð Þ ¼ 2 � 1ð Þ ¼ 1 number of independent nodes (there
are two nodes a and b, and n ¼ 2):

I1 þ I2 ¼ I3 ð4:1Þ

3. Apply KVL to each mesh (windowpane). The number of KVL equations
should be equal to the number of meshes. As there are two meshes in
Figure 4.11, we should write two KVL equations.

Or Equation # ¼ branch #� ðnodes #� 1Þ ¼ 3 � ð2 � 1Þ ¼ 2

Mesh 1: I1R1 þ I3R3 � E1 ¼ 0 ð4:2Þ
Mesh 2: � I2R2 � I3R3 þ E2 ¼ 0 ð4:3Þ

R1 = 2 Ω R2 = 2 Ω

R3 = 3 Ω

I1 I3

I2

E2 = 5 VE1 = 10 V 1 2

a

b

Figure 4.11 Circuit for Example 4.4
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Recall KVL #1 (SV ¼ 0): Assign a positive sign (+) for E or V ¼ IR
if its reference polarity and loop direction are the same; otherwise assign a
negative sign (7).

4. Solve the simultaneous equations resulting from steps 2 and 3, and determine
branch currents I1, I2 and I3 (three equations can solve three unknowns).
● Rewrite the above three equations in standard form:

I1 þ I2 � I3 ¼ 0

I1R1 þ 0 þ I3R3 ¼ E1

0 � I2R2 � I3R3 ¼ �E2

● Substitute the values into equations:

I1 þ I2 � I3 ¼ 0

2I1 þ 0 þ 3I3 ¼ 10V

0 � 2I2 � 3I3 ¼ �5V

● Solve simultaneous equations using determinant method:

D ¼
1 1 �1

2 0 3

0 �2 �3

�������

�������
¼ ð1Þð0Þð�3Þ þ ð2Þð�2Þð�1Þ þ ð0Þð1Þð3Þ � ð�1Þð0Þð0Þ
� ð3Þð�2Þð1Þ � ð�3Þð2Þð1Þ

¼ 4 � ð�6Þ � ð�6Þ ¼ 16

I1 ¼

0 1 �1

10 0 3

�5 �2 �3

�������

�������
D

¼ ð10Þð�2Þð�1Þ þ ð�5Þð3Þð1Þ � ð�3Þð10Þð1Þ
16

� 2:19A

I2 ¼

1 0 �1

2 10 3

0 �5 �3

�������

�������
D

¼ ð1Þð10Þð�3Þ þ ð2Þð�5Þð�1Þ � ð�3Þð�5Þð1Þ
16

� 0:31A
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I3 ¼

1 1 0

2 0 10

0 �2 �5

�������

�������
D

¼ �ð10Þð�2Þð1Þ � ð�5Þð2Þð1Þ
16

� 1:88A

I1 � 2:19A; I2 � �0:31A; I3 � 1:88A

(Negative sign (7) for I2 indicates that the actual direction of I2 is opposite
with its assigned reference direction.)

5. Calculate the other circuit unknowns from the branch currents:

P2 ¼ I2
2 R2 ¼ ð�0:31Þ2ð2Þ � 0:19W

V1 ¼ I1R1 ¼ ð2:19Þð2Þ ¼ 4:38V

Example 4.5: Determine current I3 in Figure 4.12 using the branch current
analysis.

Solution:

1. Label the nodes, reference direction for branch currents and loop direc-
tions in the circuit as shown in Figure 4.12.

2. Apply KCL to n � 1ð Þ ¼ 2 � 1ð Þ ¼ 1 number of independent nodes (there
are two nodes or supernodes a and b, so n ¼ 2): �I1 þ I2 þ I3 þ I4 ¼ 0
I4 ¼ 6Að Þ:

3. Apply KVL around each mesh (or windowpanes); there are three meshes in
Figure 4.12, so you should write three KVL equations.

There is no need to write KVL for mesh 1 since mesh 1 current is
already known to be equal to the source current I1 (I1 ¼ 5 A); therefore, the
number of loop equations can be reduced from 3 to 2:

Mesh 1: � I1R1 þ E1 þ E2 � I2R2 ¼ 0

Mesh 2: I2R2 � E2 � I3R3 ¼ 0

R3 = 0.5 Ω

E1 = 2.5 V 2 3

 R2 = 1.5 Ω

I4 = 6 A1

a

b

R1 = 1 Ω

E2 = 4 V
I1 I2 I3

Figure 4.12 Circuit for Example 4.5
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4. Solve the simultaneous equations resulting from steps 2 and 3, and deter-
mine the branch current I2.

�I1 � 1:5I2 ¼ �2:5 � 4 �I1 � 1:5I2 þ 0I3 ¼ �6:5
0I1 þ 1:5I2 � 0:5I3 ¼ 4 0I1 þ 1:5I2 � 0:5I3 ¼ 4
�I1 þ I2 þ I3 ¼ �6 �I1 þ I2 þ I3 ¼ �6

Solve the above simultaneous equations using the determinant method:

D ¼
�1 �1:5 0

0 1:5 �0:5

�1 1 1

�������

�������
¼ ð�1Þð1:5Þð1Þ þ ð�1Þð�0:5Þð�1:5Þ � ð�0:5Þð1Þð�1Þ ¼ �2:75

I2 ¼

�1 �6:5 0

0 4 �0:5

�1 �6 1

�������

�������
D

¼ ð�1Þð4Þð1Þ þ ð�1Þð�0:5Þð�6:5Þ � ð�0:5Þð�6Þð�1Þ
�2:75

� 1:55A

I2 � 1:55A

4.3 Mesh current analysis

The branch current analysis in section 4.2 is a circuit analysis method that
writes and solves a system of KCL and KVL equations in which the unknowns
are the branch currents. Mesh current analysis is a circuit analysis method that
writes and solves a system of KVL equations in which the unknowns are the
mesh currents (a current that circulates in the mesh). It can be used for a circuit
that has more than one source.

The branch current analysis is a fundamental method for understanding
mesh current analysis; mesh analysis is more practical and easier to use. Mesh
current analysis uses KVL and does not need to use KCL. Applying KVL to
get the mesh equations and solve unknowns implies that it will have less
unknown variables, less simultaneous equations and therefore less calculation
than branch current analysis. After solving mesh currents, the branch currents
of the circuit will be easily determined.

Mesh current analysis

A circuit analysis method that writes and solves a system of KVL equa-
tions in which the unknowns are the mesh currents (it can be used for a
circuit that has more than one source).
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4.3.1 Procedure for applying mesh current analysis

1. Identify each mesh, and label all the nodes and reference directions for
each mesh current (a current that circulates in the mesh) clockwise.

2. Apply KVL to each mesh of the circuit, and the number of KVL equations
should be equal to the number of meshes (windowpanes).

Or Equation # ¼ branch # � ðnodes # � 1Þ

Assign a positive sign (+) for each self-resistor voltage, and a negative sign
(7) for each mutual-resistor voltage in KVL equations.
● Self-resistor: A resistor that is located in a mesh where only one mesh

current flows through it.
● Mutual resistor: A resistor that is located in a boundary of two meshes

and has two mesh currents flowing through it.

3. Solve the simultaneous equations resulting from step 2 using determinant
or substitution methods, and determine each mesh current.

4. Calculate the other circuit unknowns such as branch currents from the
mesh currents in problem if necessary (choose the reference direction of
branch currents first).

Note:

● Convert the current source to the voltage source first in the circuit, if there
is any.

● If the circuit has a current source, the source current will be the same as the
mesh current, so the number of KVL equations can be reduced.

The procedure for applying the mesh current analysis method is demon-
strated in the following examples.

Example 4.6: Use the mesh current analysis method to determine each mesh
current and branch currents IR1 , IR2 and IR3 in the circuit of Figure 4.13.

Solution:

1. Label all the reference directions for each mesh current I1 and I2 (clockwise)
as shown in Figure 4.13.

R2 = 10 Ω R3 = 20 Ω

E3 = 10 VE1 = 30 V

IR3IR2IR1

a

b

E2 = 20 V

R1 = 10 Ω

I1 I2

Figure 4.13 Circuit for Example 4.6
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2. Apply KVL around each mesh (windowpane), and the number of KVL
equations is equal to the number of meshes (there are two meshes in Figure
4.13). Alternatively, use the number ofKVL: [branch #7 (nodes #71)]=37
(27 1) ¼ 2.

Assign a positive sign (+) for each self-resistor voltage, and a negative
sign (7) for each mutual-resistor voltage in KVL (SV ¼ SE).

Mesh 1: ðR1 þ R2Þ I1 � R2 I2 ¼ �E1 þ E2

Mesh 2: �R2 I1 þ ðR2 þ R3Þ I2 ¼ �E2 � E3

Note: These equations were written by inspection of the circuit (inspection
method):

First column I1 Second column I2 Source E

Mesh 1: (Self-resistor)I1 7 (Mutual resistor)I2 = 7E1 þ E2

Mesh 2: (Mutual resistor)I1 + (Self-resistor)I2 = 7E27E3

3. Solve the simultaneous equations resulting from step 2, and determine the
mesh currents I1 and I2:

ð10 þ 10ÞI1 � 10I2 ¼ �30 þ 20

20I1 � 10I2 ¼ �10
ð4:4Þ

�10I1 þ ð10 þ 20ÞI2 ¼ �20 � 10

�10I1 þ 30I2 ¼ �30
ð4:5Þ

Solve for I1 and I2 using the substitution method as follows:

● Solve for I1 from (4.4):

20I1 ¼ �10 þ 10I2

I1 ¼ � 1
2
þ 1

2
I2

ð4:6Þ

● Substitute I1 into (4.5) and solve for I2:

�10 � 1
2
þ 1

2
I2

� �
þ 30I2 ¼ �30

I2 ¼ �1:4A

● Substitute I2 into (4.6) and solve for I1:

I1 ¼ 1
2
þ 1

2
ð�1:4Þ

I1 ¼ �0:2A
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4. Assuming the reference direction of unknown branch current IR2 as shown
in Figure 4.13, calculate IR2 from the mesh currents by applying KCL at
node a:

X
I ¼ 0 : �IR1

� IR2
þ IR3

¼ 0 or I1 � IR2
� I2 ¼ 0

ðsince I1 ¼ �IR1
and I2 ¼ �IR3

Þ
IR2 ¼ I1 � I2 ¼ �0:2 � ð�1:4Þ ¼ 1:2A

IR1 ¼ �I1 ¼ 0:2A; IR3 ¼ �I2 ¼ 1:4A

Example 4.7:Write the mesh equations using the mesh current analysis method
for the circuit in Figure 4.14.

Solution: Convert the current source to a voltage source as shown in Figure 4.14.

1. Label all the nodes and the reference directions for each mesh current
(clockwise), as shown in Figure 4.14(b);

2. Apply KVL for each mesh (windowpane), and the number of KVL equations
is equal to the number of meshes (there are three meshes in Figure 4.14(b))

Mesh 1: ðR1 þ R2 þ R3ÞI1 � R3I2 � R2I3 ¼ Es � E

Mesh 2: �R3I1 þ ðR3 þ R4 þ R5ÞI2 � R4I3 ¼ E

Mesh 3: �R2I1 � R4I2 þ ðR2 þ R4 þ R6ÞI3 ¼ 0

4.4 Nodal voltage analysis

The node voltage analysis is another method for analysis of an electric circuit
with two or more sources. The node voltage analysis is a circuit analysis

R1

E

R2 R4

Es

R2 R4

E

R3R3

R6

Is
R5

R1

R6

R5I1 I2

I3

(a) (b)

Figure 4.14 Circuit for Example 4.7 (ES ¼ ISR1)
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method that writes and solves a set of simultaneous KCL equations in which
the unknowns are the node voltages. Recall that node is the intersectional point
of two or more current paths. Node voltage is voltage between a node and the
reference node.

Node voltage analysis

A circuit analysis method that writes and solves a set of simultaneous
KCL equations in which the unknowns are the node voltages (it can be
used for a circuit that has more than one source).

4.4.1 Procedure for applying the node voltage analysis

1. Label the circuit.
● Label all the nodes and choose one of them to be the reference node.

Usually ground or the node with the most branch connections should
be chosen as the reference node (at which voltage is defined as zero).

● Assign an arbitrary reference direction for each branch current (this
step can be skipped if using the inspection method).

2. Apply KCL to all n7 1 nodes except for the reference node (n is the number
of nodes).
● Method 1: Write KCL equations and apply Ohm’s law to the

equations; either resistance or conductance can be used. Assign a
positive sign (+) for the self- resistor or self-conductance voltage and a
negative sign (7) for the mutual-resistor or mutual-conductor voltage.

● Method 2: Convert voltage sources to current sources and write KCL
equations using the inspection method.

3. Solve the simultaneous equations and determine each nodal voltage.
4. Calculate the other circuit unknowns such as branch currents from the

nodal voltages in the problem, if necessary.

The procedure to apply node voltage analysis method is demonstrated in
the following example.

Example 4.8: Write the node voltage equations for the circuit shown in Figure
4.15(a) using node voltage analysis method.

Solution:

1. Label nodes a, b and c, and choose ground c to be the reference node; assign
the reference current directions for each branch as shown in Figure 4.15(a).

2. Apply KCL to n – 1 ¼ 3 – 1 ¼ 2 nodes (nodes a and b).
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● Method 1: Write KCL equations and apply Ohm’s law to the equations.

Node a: I1 � I2 � I3 ¼ 0;
E1 � Va

R1
� Va

R2
� Va � Vb

R3
¼ 0

Node b: I3 � I4 � I5 ¼ 0;
Va � Vb

R3
� Vb

R4
� Vb þ E2

R5
¼ 0

Or use conductance (G ¼ 1/R)

ðE1 � VaÞG1 � VaG2 � ðVa � VbÞG3 ¼ 0

ðVa � VbÞG3 � VbG4 � ðVb þ E2ÞG5 ¼ 0

● Method 2: Convert two voltage sources to current sources from Figure
4.15(a) to Figure 4.15(b), and write KCL equations by inspection.

– Use conductance:

First column (Va) Second column (Vb) Source IS

Node a: (G1 þ G2 þ G3)Va 7 G3Vb = I1
Node b: 7G3Va + (G3 þ G4 þ G5)Vb = 7I5

R4

R5

E2

I4

R2

I2

E1

R1 R3

I1

I3

I5

a b

c

R2 R1 R4

a b

c

I1 R5
I5

R3

(a)

(b)

Figure 4.15 (a) Circuit for Example 4.8. (b) Circuit for method 2
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– Use resistance:

1
R1

þ 1
R2

þ 1
R3

� �
Va � 1

R3
Vb ¼ I1

� 1
R3

Va þ 1
R3

þ 1
R4

þ 1
R5

� �
Vb ¼ �I5

Note: The inspection method is similar with the one in mesh current analysis.
The difference is that mesh current analysis uses mesh currents in each column,
and node voltage analysis uses node voltage in each column. (Assign a positive
sign (+) for the self-resistance/conductance voltage and entering node current,
and a negative sign (7) for the mutual-conductor or mutual-resistor voltage
and exiting node current.)

3. Two equations can solve two unknowns, which are the node voltages Va

and Vb.

Example 4.9: Use the node voltage analysis to calculate resistances R1 and R2,
and current I1 and I2 for the circuit shown in Figure 4.16(a).

R1

R1 = 12 Ω

E
R2 Is

R2 = 24 Ω
Is = 2 A

E = 60 V

I2

I1

c a

b

c

d

I1 = 60/12 = 5 A
I1'

R1 = 12 Ω 

d

(a) (b)

I1
I2

(c)

R1 // R2

I2

a

bb

I1 = 5 A Is= 2 A
R2 = 24 Ω

a

R1 = 12 Ω I1 = 5 A

I2

Is = 2 A

Figure 4.16 Circuits for Example 4.9
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Solution:

● Label nodes a and b, and choose b to be the reference node, and assign the
reference current direction for each branch as shown in Figure 4.16(b).

● Apply KCL to n 7 1 ¼ 2 7 1 ¼ 1 node (node a):
● Use method 1: Write KCL equations and apply Ohm’s law to the

equations:

I1 � I2 þ IS ¼ 0;
E � Va

R1
� Va

R2
þ IS ¼ 0

● Or use conductance: E � Vað ÞG1 � VaG2 þ Is ¼ 0

● Solve the above equation and determine the node voltage Va:

E

R1
� Va

R1
� Va

R2
þ IS ¼ 0

E

R1
þ IS ¼ Va

1
R1

þ 1
R2

� �

Va ¼ ðE=R1Þ þ IS
ð1=R1Þ þ ð1=R2Þ ¼

½ð60=12Þ þ 2�A
½ð1=12Þ þ ð1=24Þ�S ¼ 7A

0:125 S
¼ 56V

● Calculate the branch currents from the nodal voltages:

I1 ¼ E � Va

R1
¼ ð60 � 56ÞV

12O
¼ 0:33A

I2 ¼ �Va

R2
¼ � 56V

24O
� �2:33A

● Use method 2: Convert voltage source to current source from the
circuit of Figure 4.16(a) to the circuit of Figure 4.16(c):

I1 ¼ E

R1
¼ 60

12
¼ 5A R1==R2¼ 12==24 ¼ 8 O

Write KCL equation to node a using the inspection method:

Va

R1==R2
¼ I1 þ IS

Va ¼ ðI1 þ IsÞ ðR1==R2Þ ¼ ð5Aþ 2AÞ ð8OÞ ¼ 56V

(Va is the same as that from method 1)

Example 4.10:Write node voltage equations with resistances and conductances
in the circuit of Figure 4.17 using the inspection method.
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Solution:

1. Label all nodes a, b, c and d (n ¼ 4) in the circuit as shown in Figure 4.17,
and choose d to be the reference node. (The step to assign each branch
current with reference direction can be skipped since it is used for the
inspection method.)

2. Write KCL equations to n7 1 ¼ 47 1 ¼ 3 nodes using the inspection
method.
● Use resistance:

Node a:
1

R1
þ 1

R5

� �
Va � 1

R1
Vb � 1

R5
Vc ¼ IS

Node b: � 1
R1

Va þ 1
R1

þ 1
R2

þ 1
R3

� �
Vb � 1

R3
VC ¼ 0

Node c: � 1
R5

Va � 1
R3

Vb þ 1
R3

þ 1
R4

þ 1
R5

� �
VC ¼ 0

● Use conductance:

Node a: ðG1 þ G5ÞVa � G1Vb � G5Vc ¼ IS
Node b: � G1Va þ ðG1 þ G2 þ G3ÞVb � G3Vc ¼ 0

Node c: � G5Va � G3Vb þ ðG3 þ G4 þ G5ÞVc ¼ 0

3. Three equations can solve three unknowns (node voltages Va, Vb and Vc)

4.5 Node voltage analysis vs. mesh current analysis

The choice between mesh current analysis and node voltage analysis is often
made on the basis of the circuit structure:

● The node voltage analysis is preferable for solving a circuit that is a par-
allel circuit, with current source(s), less nodes and more branches, and thus
it is more convenient to solve the circuit unknowns.

R1 R
3

R
2

R
5

R
4

b c

I
s

a

d

Figure 4.17 Circuit for Example 4.10
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● The mesh current analysis is preferable for solving a circuit that has fewer
meshes, more nodes, with voltage sources and requires solving circuit
branch currents.

Summary

Source equivalent conversions and sources in series and parallel

● Voltage source ! Current source: RS ¼ RS; IS ¼ E

RS

● Current source ! Voltage source: RS ¼ RS;E ¼ ISRS

● Voltage sources in series: RS ¼ RS1 þ RS2 þ . . . þ RSn
Assign a positive sign (+) if it has the same polarity with E (or VS),
otherwise assign a negative sign (7).

● Voltage sources in parallel:
RS ¼ RS1==RS2== � � � ==RSn

E ¼ E1 ¼ E2 ¼ � � �En

Only voltage sources that have the same values and polarities can be in
parallel.

● Current sources in series: Only current sources that have the same pola-
rities and values can be in series.

Branch current analysis

A circuit analysis method that writes and solves a system of KCL and KVL
equations in which the unknowns are the branch currents.

The procedure for applying the branch current analysis is given in
Section 4.2.1.

Mesh current analysis

A circuit analysis method that writes and solves a system of KVL equations in
which the unknowns are the mesh currents (it can be used for a circuit that has
more than one source).

The procedure for applying the mesh current analysis is given in
Section 4.3.1.

Nodal voltage analysis

A circuit analysis method that writes and solves a set of simultaneous of KCL
equations in which the unknowns are the node voltages.

The procedure for applying the nodal voltage analysis is given in
Section 4.4.1.

Note: The branch current analysis, mesh current analysis and node voltage
analysis can be used for a circuit that has more than one source.
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Experiment 4: Mesh current analysis and nodal voltage analysis

Objectives

● Construct circuits with two voltage sources.
● Experimentally verify the methods of solving a circuit with two power

supplies.
● Experimentally verify the mesh current analysis method.
● Experimentally verify the node voltage analysis method.
● Analyse the experimental data, circuit behaviour and performance, and

compare them to the theoretical equivalents.

Equipment and components

● Multimeter
● Breadboard
● Dual-output DC power supply
● Switches (2)
● Resistors: 1.8 kO (2), 3 kO, 8.2 kO, 9.1 kO and 3.9 kO

Background information

● Mesh current analysis: A circuit analysis method that writes and solves a
system of KVL equations in which the unknowns are the mesh currents. It
can be used for a circuit that has more than one source.

● Nodal voltage analysis: A circuit analysis method that writes and solves a
set of simultaneous KCL equations in which the unknowns are the node
voltages. It can be used for a circuit that has more than one source.

Lab procedure

Part I: Experimentally verify the mesh current analysis method

1. Construct a circuit as shown in Figure L4.1 on the breadboard.
2. Calculate voltage VR2 and current IR2 using the mesh current analysis method

(assuming the switches are turned on). Record the values in Table L4.1.

a

b

E1 = 12 V E2 = 5 V

R1 = 1.8 kΩ R2 = 1.8 kΩ R3 = 3 kΩ

I1
IR2

Figure L4.1 Circuit for mesh current analysis
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3. Set outputs of the dual-output power supply to 12 and 5 V, respectively,
and turn on the two switches. Connect the multimeter (voltmeter function)
in parallel to resistor R2 and measure VR2 . Record the values in Table L4.1.

4. Use direct method or indirect method to measure current IR2 . Record the
value in Table L4.1.

5. Compare the measured values and calculated values; are there any sig-
nificant differences? If so, explain the reasons.

Part II: Experimentally verify the nodal voltage analysis method

1. Construct a circuit shown in Figure L4.2 on the breadboard.

2. Calculate the nodal voltage Va using the nodal voltage analysis method
(assuming the two switches are turned on). Record the value in Table L4.2.

3. Calculate branch currents I1, I2 and I3. Record the values in Table L4.2.

Table L4.1 Circuit for mesh current analysis

Quantity IR2
VR2

Formula for calculations
Calculated value
Measured value

a

b

E1 = 10 V E2 = 12 V

R1 = 8.2 kΩ
R2 = 3.9 kΩ

R3 = 9.1 kΩ

I1

I2

I3

Figure L4.2 Circuit for nodal voltage analysis

Table L4.2 Circuit for nodal voltage analysis

Va I1 I2 I3

Formula for calculations
Calculated value
Measured value
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4. Set outputs of the dual-output power supply to 10 and 12 V, respectively,
and then turn on the two switches. Connect the multimeter (voltmeter
function) in parallel to resistor R2 and measure Va. Record the values in
Table L4.2.

5. Measure branch currents I1, I2 and I3 using either the direct method or
indirect method. Record the values in Table L4.2.

6. Compare the measured values and calculated values; are there any sig-
nificant differences? If so, explain the reasons.

Conclusion

Write your conclusions below:
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Chapter 5

The network theorems

Objectives

After completing this chapter, you will be able to:

● understand the concept of linear circuits
● determine currents or voltages of networks using the superposition

theorem
● understand Thevenin’s and Norton’s theorems and know how to convert

their equivalent circuits
● determine currents or voltages of networks using Thevenin’s and Norton’s

theorems
● understand the maximum power transfer theorem, and the method of

transferring maximum power to the load
● determine currents or voltages of the parallel voltage source circuits using

Millman’s theorem
● determine currents or voltages of networks using the substitution theorem

The main methods for analysing series and parallel circuits in chapter 3
are Kirchhoff’s laws. The branch current method, mesh or loop analysis
method and node voltage analysis method also use KCL and KVL as the
main backbone. When the practical circuits are more and more complex,
especially in multi-loop electric circuits, the applications of the above meth-
ods solving for currents and voltages can be quite complicated. This is
because you need to solve the higher-order mathematic equations when using
these methods, i.e. you have to use complex algebra to handle multiple circuit
unknowns.

The scientists working in the field of electrical engineering have developed
more simplified theorems to analyse these kinds of complex circuits (the com-
plicated circuit is also called the network). This chapter presents several theo-
rems useful for analysing such complex circuits or networks. These theorems
include the superposition theorem, Thevenin’s theorem, Norton’s theorem,
Millman’s theorem and the substitution theorem. In electrical network analysis,
the fundamental rules are still Ohm’s law and Kirchhoff’s laws.
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Network

A network is a complicated circuit.

Linearity property

The linearity property of a component describes a linear relationship between
cause and effect. The pre-requirement of applying some of the above network
theorems is that the analysed network must be a linear circuit. The components
of a linear circuit are the linear components.

An example of linear component is a linear resistor. The voltage and current
(input/output) of this linear resistor have a directly proportional (a straight line)
relationship. A linear circuit has an output that is directly proportional to its
input. The linear circuit can also be defined as follows: as long as the input/
output signal timing does not depend on any characteristic of the input signal, it
will be a linear circuit.

5.1 Superposition theorem

5.1.1 Introduction

When several power sources are applied to a single circuit or network at the same
time, the superposition theorem can be used to separate the original network into
several individual circuits for each power source working separately. Then, use
series/parallel analysis to determine voltages and currents in themodified circuits.
The actual unknown currents and voltages with all power sources can be deter-
mined by their algebraic sum; this is the meaning of the theorem’s name –
‘superimposed’. This method can avoid complicated mathematical calculations.

Superposition theorem

The unknown voltages or currents in a network are the sum of the vol-
tages or currents of the individual contributions from each single power
supply, by setting the other inactive sources to zero.

5.1.2 Steps to apply the superposition theorem

1. Turn off all power sources except one, i.e. replace the voltage source with
the short circuit (placing a jump wire), and replace the current source with
an open circuit. Redraw the original circuit with a single source.

2. Analyse and calculate this circuit by using the single source series–parallel
analysis method.

128 Understandable electric circuits

05_Wang_Chapter05_p127-162 31 May 2010; 14:58:56



3. Repeat steps 1 and 2 for the other power sources in the circuit.
4. Determine the total contribution by calculating the algebraic sum of all

contributions due to single sources.

(The result should be positive when the reference polarity of the unknown
in the single source circuit is the same as the reference polarity of the unknown
in the original circuit; otherwise it should be negative.)

Note: The superposition theorem can be applied to the linear network to
determine only the unknown currents and voltages. It cannot calculate power,
since power is a nonlinear variable. Power can be calculated by the voltages
and currents that have been determined by the superposition theorem.

Example 5.1: Determine the branch current Ic in the circuit of Figure 5.1(a) by
using the superposition theorem.

Solution:

1. Choose E1 to apply to the circuit first and use a jump wire to replace E2 as
shown in Figure 5.1(b).

=

(a) (b)

(c)

I
a I

b I
c

E
1 

= 48 V E
2 

= 24 V

R
1 

= 8 Ω R
3 

= 8 Ω

R
4 

= 8 ΩR
2 

= 8 Ω 

R
5 

= 16 Ω

I
a
′

I
b
′ I

c
′

E
1 

= 48 V

R
3 

= 8 Ω

R
4 

= 8 Ω

R
5 

= 16 Ω
R

1 
= 8 Ω

R
2 

= 8 Ω

I
a
′′ I

b
′′

I
c
′′

E
2 

= 24 V

R
3 

= 8 Ω

R
4 

= 8 Ω

R
5 

= 16 Ω
R

1 
= 8 Ω

R
2 

= 8 Ω

+

Figure 5.1 Circuit for Example 5.1

2. Determine Ic
0 in the circuit of Figure 5.1(b):

R0
eq ¼ R5==ðR3 þ R4Þ þ ðR1 þ R2Þ

¼ 16 � ð8 þ 8Þ
16 þ ð8 þ 8Þ þ ð8 þ 8Þ

� �
O ¼ 24O
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(View from the E1 branch in the circuit of Figure 5.1(b) to determine
Req

0.)

Ia
0 ¼ E1

Req
0 ¼

48 V
24O

¼ 2 A

Ic
0 ¼ Ia

0 R3 þ R4

R3 þ R4 þ R5

¼ 2 A
ð8 þ 8ÞO

ð8 þ 8 þ 16ÞO ¼ 1 A

3. When E2 is applied to the circuit, replace E1 with a short circuit as shown in
Figure 5.1(c) and calculate Ic

00:

Req
00 ¼ R5==ðR1 þ R2Þ þ ðR3 þ R4Þ

¼ 16 � ð8 þ 8Þ
16 þ ð8 þ 8Þ þ ð8 þ 8Þ

� �
O ¼ 24O

(View from the E2 branch in the circuit of Figure 5.1(c) to determine Req
00.)

Ib
00 ¼ E2

R 00
eq

¼ 24 V
24O

¼ 1 A

Ic ¼ Ib
R1 þ R2

R1 þ R2 þ R5

¼ 1 A
ð8 þ 8ÞO

ð8 þ 8 þ 16ÞO ¼ 0:5 A

4. Calculate the sum of currents Ic
0 and Ic

00:

Ic ¼ I 0c þ Ic ¼ ð1 þ 0:5ÞA ¼ 1:5 A

Example 5.2: Determine the branch current I2 and power P2 of the circuit in
Figure 5.2(a) by using the superposition theorem.

Solution:

1. When E is applied only to the circuit (using an open circuit to replace the
current source I1), calculate I2

0 by assuming the reference direction of I2
0 as

shown in Figure 5.2(b).
2. Determine I2

0 in the circuit of Figure 5.2(b):

I2
0 ¼ E

ðR2==R3Þ þ R1

¼ 25 V
ð100 � 100Þ=ð100 þ 100Þð Þ þ 50½ �O ¼ 0:25 A ¼ 250 mA
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3. When the current source I1 is applied only to the circuit (the voltage source
E is replaced by a jump wire), the circuit is as shown in Figure 5.2(c).
Calculate I2

0 by assuming the reference direction of I2
00 as shown in the

circuit of Figure 5.2(c):

I2
00 ¼ I1

R1

R1 þ R2==R3

¼ 50 mA
50O

50 þ ð100 � 100Þ=ð100 þ 100Þ½ �O ¼ 25 mA

(Apply the current divider rule to the branches R1 and R2 // R3.)
4. Calculate the sum of currents I2

0 and I2
00:

I2 ¼ �I2
0 þ I2

00 ¼ �250 þ 25ð ÞmA ¼ �225 mA ¼ �0:225 A

I2
0 is negative as its reference direction in Figure 5.2(b) is opposite to that

of I2 in the original circuit of Figure 5.2(a). The negative I2 implies that the
actual direction of I2 in Figure 5.2(a) is opposite to its reference direction.

Determine the power P2: P2 ¼ I2
2 R2 ¼ ð�0:225 AÞ2ð100OÞ � 5:06 W

Example 5.3: Determine the branch current I3 in the circuit of Figure 5.3(a)
using the superposition theorem.

=

+

R3 = 100 Ω R3 = 100 Ω

R3 = 100 Ω 

R1 = 50 Ω

E = 25 V 
I1 = 50 mA

100 ΩR2

I2

R1 = 50 Ω
100 Ω

E = 25 V

R2

I
2
′

I1 = 50 mA
R1 = 50 Ω

100 ΩR2

I
2
′′

(a) (b)

(c)

Figure 5.2 Circuit for Example 5.2
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Solution:

1. Choose E1 to apply to the circuit first and use a jump wire to replace E2

and an open circuit to replace the current source I as shown in Figure
5.3(b).

2. Use the circuit in Figure 5.3(b) to determine I3
0:

I3
0 ¼ I1

0 R2

R2 þ ðR3 þ R4Þ
¼ ð19:84 mAÞ 0:55 kO

0:55 kOþ ð0:375 þ 0:45ÞkO � 7:94 mA

(Apply the current divider rule to the branches R2 and (R3 þ R4).)
There

I1
0 ¼ E1

Req
0 ¼

E1

ðR3 þ R4Þ==R2 þ R1

¼ 12:5 V
½ðð0:375 þ 0:45Þ � 0:55Þ=ðð0:375 þ 0:45Þ þ 0:55Þ þ 0:3�kO

� 19:84 mA

R1 R3

R2

R1 R3

R4+

R1 R3

+E1
R4

E2

R2

R4   I
R2

R4  = 0.45 kΩ 
R1 = 0.3 kΩ  R2 = 0.55 kΩ 

R3  = 0.375 kΩ

E1 = 12.5 V
E2 = 5 V 

I3

I =  5 mA  =

(a)

(b) (c) (d)

I
3
′

I
1
′

I
3
′′

I
2
′′

I
3
′′′

Figure 5.3 Circuit for Example 5.3
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3. . Use the circuit in Figure 5.3(c) to determine I3
00:

I3
00 ¼ I2

00 R1

R1 þ ðR3 þ R4Þ
¼ ð6:49 mAÞ 0:3 kO

½0:3 þ ð0:375 þ 0:45Þ�kO � 1:73 mA

(Apply the current divider rule to the branches R1 and (R3 þ R4).)
There

I2
00 ¼ E2

Req
00 ¼

E2

ðR3 þ R4Þ==R1 þ R2

¼ 5 V
ðð0:375 þ 0:45Þð0:3ÞÞ=ðð0:375 þ 0:45Þ þ 0:3Þ þ 0:55½ �kO

� 6:49 mA

. Use the circuit in Figure 5.3(d) to determine I3
000:

I3
000 ¼ I

R4

ðR1==R2 þ R3Þ þ R4

¼ ð5 mAÞ 0:45 kO
ðð0:3 � 0:55Þ=ð0:3 þ 0:55Þ þ 0:375Þ þ 0:45½ �kO � 2:21 mA

(Apply the current divider rule to the branches R4 and (R1 // R2 þ R3).)
4. Calculate the sum of currents I3

0, I300 and I3
000:

I3 ¼ I3
0 þ I3

00 � I3
000 ¼ 7:94 þ 1:73 � 2:21ð ÞmA ¼ 7:46 mA

I3
000 is negative since its reference direction is opposite to that of I3 in the

original circuit of Figure 5.3(a).

5.2 Thevenin’s and Norton’s theorems

5.2.1 Introduction

Thevenin’s and Norton’s theorems are two of the most widely used theorems to
simplify the linear circuit for ease of network analysis. In 1883, French tele-
graph engineer M. L. Thevenin published his theorem of network analysis
method. Forty-three years later, American engineer E. L. Norton in Bell Tel-
ephone laboratory published a similar theorem, but he used the current source
to replace the voltage source in the equivalent circuit. These two theorems state
that any complicated linear two-terminal network with power supplies can be
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simplified to an equivalent circuit that includes an actual voltage source
(Thevenin’s theorem) or an actual current source (Norton’s theorem).

Here, ‘the linear two-terminal network with power supplies’ means:

● network: the relatively complicated circuit
● linear network: the circuits in the network are the linear circuits
● two-terminal network: the network with two terminals that can be con-

nected to the external circuits
● network with the power supplies: network includes the power supplies

No matter how complex the inside construction of any two-terminal net-
work with power supplies is, they can all be illustrated in Figure 5.4(a).

According to Thevenin’s andNorton’s theorems, we can draw the following
conclusion: any linear two-terminal network with power supplies can be
replaced by an equivalent circuit as shown in Figure 5.4(b or c). The equivalent
means that any load resistor branch (or unknown current or voltage branch)
connected between the terminals of Thevenin’s or Norton’s equivalent circuit
will have the same current and voltage as if it were connected to the terminals of
the original circuit.

Thevenin’s and Norton’s theorems allow for analysis of the performance
of a circuit from its terminal properties only.

RTH

VTH

IN
RN

a

b
a

b

a

RL

RL

b

R
L

(a)

(b)

(c)

Figure 5.4 Thevenin’s and Norton’s theorems. (a) Linear two-terminal network
with the power supply. (b) Thevenin’s theorem. (c) Norton’s
theorem

134 Understandable electric circuits

05_Wang_Chapter05_p127-162 31 May 2010; 14:58:57



Any linear two-terminal network with power supplies can be replaced by a
simple equivalent circuit, which has a single power source and a single resistor.

● Thevenin’s theorem: Thevenin’s equivalent circuit is a voltage source –
with an equivalent resistance RTH in series with an equivalent voltage
source VTH.

● Norton’s theorem: Norton’s equivalent circuit is a current source –
with an equivalent resistance RN in parallel with an equivalent cur-
rent source IN.

In short we can conclude that any combination of power supplies and
resistors with two terminals can be replaced by a single voltage source and a
single series resistor for Thevenin’s theorem, and replaced by a single current
source and a single parallel resistor for Norton’s theorem.

The key to applying these two theorems is to determine the equivalent
resistance RTH and the equivalent voltage VTH for Thevenin’s equivalent cir-
cuit, the equivalent resistance RN and the equivalent current IN for Norton’s
equivalent circuit. The value of RN in Norton’s equivalent circuit is the same as
RTH of Thevenin’s equivalent circuit.

Note: The ‘TH’ in VTH and RTH means Thevenin, and the ‘N’ in IN and RN

means Norton.
These two theorems are used very often to calculate the load (or a branch)

current or voltage in practical applications. The load resistor can be varied
sometimes (for instance, the wall plug can connect to 60 or 100 W lamps). Once
the load is changed, the whole circuit has to be re-analysed or re-calculated.
But if Thevenin’s and Norton’s theorems are used, Thevenin’s and Norton’s
equivalent circuits will not be changed except for their external load branches.
The variation of the load can be determined more conveniently by using
Thevenin’s or Norton’s equivalent circuits.

5.2.2 Steps to apply Thevenin’s and Norton’s theorems

1. Open and remove the load branch (or any unknown current or voltage
branch) in the network, and mark the letters a and b on the two terminals.

2. Determine the equivalent resistance RTH or RN. It equals the equivalent
resistance, looking at it from the a and b terminals when all sources are
turned off or equal to zero in the network. (A voltage source should be
replaced by a short circuit, and a current source should be replaced by an
open circuit.) That is

RTH ¼ RN ¼ Rab
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3. Determine Thevenin’s equivalent voltage VTH. It equals the open-circuit
voltage from the original linear two-terminal network of a and b, i.e.

VTH ¼ Vab

4. Determine Norton’s equivalent current IN. It equals the short-circuit cur-
rent from the original linear two-terminal network of a and b, i.e.

IN ¼ Isc ðwhere ‘sc’ means the short circuitÞ

5. Plot Thevenin’s or Norton’s equivalent circuit, and connect the load branch
(or unknown current or voltage branch) to a and b terminals of the equivalent
circuit. Then the load (or unknown) voltage or current can be determined.

The above procedure for analysing circuits by using Thevenin’s and
Norton’s theorems is illustrated in the circuits of Figure 5.5.

Example 5.4: Determine the load current IL in the circuit of Figure 5.6(a) by
using Thevenin’s and Norton’s theorems.

RTH

VTH

IN
RN

a

b

a

a

RL

RL

b

RL

b

VTH  = Vab

RTH = RN = Rab

a

b

E  = 0 
Is = 0

IN = Isc

a

b

a

b

Figure 5.5 The procedure for applying Thevenin’s and Norton’s theorems

ILE = 48 V

R1 = 12 Ω
R3 = 12 ΩR2 = 12 Ω

RL = 8 Ω

Figure 5.6(a) Circuit for Example 5.4
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Solution:

1. Open and remove the load branch RL, and mark a and b on the terminals
of the load branch as shown in the circuit of Figure 5.6(b).

2. Determine Thevenin’s and Norton’s equivalent resistances RTH and RN (the
voltage source is replaced by a short circuit) in the circuit of Figure 5.6(c).

RTH ¼ RN ¼ Rab ¼ R1==R2==R3 ¼ ð12==12==12ÞO ¼ 4O

3. . Determine Thevenin’s equivalent voltage VTH: Use the circuit in Fig-
ure 5.6(d) to calculate the open-circuit voltage across terminals a and b.

VTH ¼ Vab ¼ E
R2==R3

R1 þ R2==R3

¼ 48 V
ð12==12ÞO

ð12 þ 12==12ÞO ¼ 16 V

(Apply the voltage divider rule to the resistors R2//R3 and R1.)
. Determine Norton’s equivalent current IN: Use the circuit in Figure

5.6(e) to calculate the short-circuit current in terminals a and b.

E = 48 V

R1 = 12 Ω
R3 = 12 Ω

R2 = 12 Ω

a

b

Figure 5.6(b) Circuit for Example 5.4

R1 = 12 Ω

R2 = 12 Ω

a

b

Figure 5.6(c)

E = 48 V

R1 = 12 Ω R3 = 12 Ω
R2 = 12 Ω

a

b

Figure 5.6(d)
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IN ¼ Isc ¼ E

R1
¼ 48 V

12O
¼ 4 A

Since the current in the branch E and R1 will go through a short cut without
resistance – through the branches a and b – and will not go through the
branches R2 and R3 that have resistances, in this case IN ¼ E=R1.

4. Plot Thevenin’s and Norton’s equivalent circuits as shown in Figure 5.6
(f and g). Connect the load RL to a and b terminals of the equivalent
circuits and determine the load current IL.

● Use Thevenin’s equivalent circuit in Figure 5.6(f) to determine IL.

IL ¼ VTH

RTH þ RL
¼ 16 V

4 þ 8ð ÞO � 1:33 A

● Use Norton’s equivalent circuit in Figure 5.6(g) to calculate IL.

E = 48V

R1 = 12 Ω
R3  = 12ΩR2 = 12Ω

a

b

I  = IscN

Figure 5.6(e)

RTH = 4 Ω

VTH = 16 V
b

a

RL = 8 Ω

IL

Figure 5.6(f)

IN = 4 A
RN = 4 Ω

a

RL = 8 Ω

b

IL

Figure 5.6(g)
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IL ¼ IN
RN

RN þ RL

¼ 4 A
4O

4 þ 8ð ÞO � 1:33 A
(current divider rule)

5.2.3 Viewpoints of the theorems

One important way to apply Thevenin’s and Norton’s theorems for analysing
any network is to determine the viewpoints of Thevenin’s and Norton’s
equivalent circuits. The load branch (or any unknown current or voltage
branch) belongs to the external circuit of the linear two-terminal network with
power sources. The opening two terminals of the branch are the viewpoints for
Thevenin’s and Norton’s equivalent circuits.

There could be different viewpoints for the bridge circuit as shown in
Figure 5.7(a). If we want to determine the branch current I3, we use A and B as
viewpoints; if we want to determine the branch current I2, we use D and C as
viewpoints, etc. Different equivalent circuits and results will be obtained from
using different viewpoints.

Example 5.5: For the circuit in Figure 5.7(a):

1. Plot Thevenin’s equivalent circuit for calculating the current I3.
2. Determine Norton’s equivalent circuit for the viewpoints B–C.
3. Determine Thevenin’s equivalent circuit for the viewpoints D–B.

Solution:

(a) The viewpoints for calculating I3 should be A–B (Figure 5.7(a)).

1. Open and remove R3 in the branch A–B of Figure 5.7(a) and mark the
letters a and b, as shown in the circuit of Figure 5.7(b).

E

     A

R3

R2 R4

R1

B

C

D

R1

R2 R4

E

A

B

C

D

I3

R3

I2 I4

Figure 5.7(a) Viewpoints for the theorem

R4R2

R1 b

a
A

BE

Figure 5.7(b) Circuit for Example 5.5
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2. Determine RTH and Rab. Replace the voltage source E with a short
circuit, as shown in the circuit of Figure 5.7(c).

RTH ¼ Rab ¼ ðR2==R4Þ==R1

3. Determine VTH using the circuit in Figure 5.7(d).

VTH ¼ Vab ¼ E
R1

R1 þ R2==R4
(voltage divider rule)

4. Plot Thevenin’s equivalent circuit as shown in the circuit of Figure 5.7(e).
Connect R3 to a and b terminals of the equivalent circuit and determine
the current I3:

I3 ¼ VTH

RTH þ R3

R4R2

R1 b

a
A

B

RTH = Rab

R4 R1R2

a

b

RTH = Rab

Figure 5.7(c)

R4R2

R1

a

E

VTH = Vab

b

Figure 5.7(d)

R3

RTH

a

VTH

b

I3

A

B

Figure 5.7(e)

140 Understandable electric circuits

05_Wang_Chapter05_p127-162 31 May 2010; 14:59:2



(b) Norton’s equivalent circuit for the viewpoints B–C:

1. Open and remove R4 in the branch B–C of Figure 5.7(a), and mark
the letters a and b on the two terminals as shown in the circuit of
Figure 5.7(f).

2. Determine RN. Replace the voltage source with a short circuit as
shown in the circuit of Figure 5.7(g).

3. Determine IN using the circuit in Figure 5.7(h).

Since the current will go through the short cut without resistance – the
branch a and b – and will not go through the branch with resistance
R2, IN ¼ IT:

IN ¼ IT ¼ E

R1==R3

R3

R2

R1

a

C

B
E

b

Figure 5.7(f)

R3

R2

R1

a

C

B

b

RTH = Rab

Figure 5.7(g)

R3

R2

R1

a
E

b

IT

IN = Isc

Figure 5.7(h)
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4. Plot Norton’s equivalent circuit as shown in the circuit of Figure 5.7(i).

(c) Thevenin’s equivalent circuit for the viewpoint D–B:

1. Open branch D–B (Figure 5.7(a)) and mark the letters a and b on the
two terminals as shown in the circuit of Figure 5.7(j).

2. Determine RTH. Replace the voltage source with a short circuit as
shown in the circuits of Figure 5.7(k).

RTH ¼ Rab ¼ ðR1==R2Þ þ ðR3==R4Þ

R4RN

a

b C

B

Is

Figure 5.7(i)

R4

ba
D B

R3R1

R2

E

Figure 5.7(j)

R4

ba
D B

R3
R1

R2

R2R1 R3 R4

a b

Figure 5.7(k)
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3. Determine VTH using the circuit in Figure 5.7(j):

VTH ¼ Vab ¼ Va þ ð�VbÞ ¼ E
R2

R1 þ R2
� E

R4

R3 þ R4

4. Plot Thevenin’s equivalent circuit as shown in the circuit of Figure 5.7(l).

Example 5.6: Determine current IL in the circuit of Figure 5.8(a) by using
Norton’s theorem.

Solution:

1. Open and remove RL in the load branch (Figure 5.8(b)) and mark the
letters a and b on its two terminals, as shown in the circuit of Figure 5.8(b).

2. Determine RN. Replace the current source with an open circuit as shown in
the circuit of Figure 5.8(c).

a

b

RTH

VTH

D

B

Figure 5.7(l)

R1 = 200Ω

IL
R2 = 200Ω

R = 400Ω

I = 1mA

3

RL=100ΩR4 = 500Ω

Figure 5.8(a) Circuit for Example 5.6

R1 = 200Ω R2 = 200Ω

R3 = 400Ω

I = 1mA

a

b

R4= 500Ω

Figure 5.8(b)
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RN ¼ Rab ¼ ðR1==R2 þ R3Þ==R4

¼ ½ð200==200 þ 400Þ==500�O ¼ 250O

3. Calculate IN using the circuit of Figure 5.8(d).

IN ¼ I ¼ 1 mA

Since the current I will flow through the short cut without resistance – the
branch a and b – and will not go through the branch with resistance, IN ¼ I.

4. Plot Norton’s equivalent circuit as shown in the circuit of Figure 5.8(e).
Connect RL to the a and b terminals of the equivalent circuit, and calculate
the current IL.

IL ¼ IN
RN

RL þ RN

¼ 1 mA
250O

ð250 þ 100ÞO � 0:71 mA

R1 = 200 Ω R2 = 200 Ω

a

bR3 = 400 Ω

R4 = 500 Ω RN = Rab

Figure 5.8(c)

IN= IscR2 = 200Ω

R3 = 400Ω

R4 = 500ΩR1 = 200Ω I = 1mA

a

b

Figure 5.8(d)

RN = 250 Ω RL = 100 Ω

a

IL 

IN = 1 mA

b

Figure 5.8(e)
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When applying Thevenin’s and Norton’s theorems to analyse networks, it
is often necessary to combine theorems that we have learned in the previous
chapters. This is explained in the following example.

Example 5.7: Determine Norton’s equivalent circuit for the left part of the
terminals a and b in the circuit of Figure 5.9(a) and determine the current IL.

Solution:

1. Open and remove the current source part on the right side of the circuit
from the terminals a and b (Figure 5.9(a)), as shown in the circuit of
Figure 5.9(b).

2. Determine RN. Replace the voltage source with a short circuit, and the
current source with an open circuit, as shown in the circuit of Figure 5.9(c).

RL = 42 Ω
I1 = 45 mA

I2 = 140 mA
E = 6 V

R1 = 30 Ω IL

a

b

R2 = 70 Ω

Figure 5.9(a) Circuit for Example 5.7

I1 = 45 mA
E = 6 V

R1 = 30 Ω a

b

R2 = 70 Ω

Figure 5.9(b)

R1 = 30 Ω

R2 = 70 Ω RN = Rab

a

b

Figure 5.9(c)
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RN ¼ Rab ¼ R1==R2 ¼ ð30 � 70ÞO
ð30 þ 70ÞO ¼ 21O

3. Determine IN using the circuit in Figure 5.9(d). Since there are two power
supplies in this circuit, it is necessary to apply the network analysing
method for this complex circuit. Let us try to use the superposition theo-
rem to determine IN.

● When the single voltage source E is applied only to the circuit, the
circuit is shown in Figure 5.9(e).

Since R2 is short circuited by the IN
0 (recall that current always goes

through the short cut without resistance):

; IN
0 ¼ E

R1
¼ 6 V

30O
¼ 0:2 A ¼ 200 mA

● When the single current source I1 is applied only to the circuit, the
circuit is shown in Figure 5.9(f).

R1 = 30 Ω

R2 = 70 ΩE = 6 V

a

b

INI1 = 45 mA

Figure 5.9(d)

R1 = 30 Ω

R2 = 70 ΩE = 6 V

a

b

IN′

Figure 5.9(e)

R1  = 30 Ω

R2 = 70 Ω

a

b

I  ′′
N

I1= 45 mA

Figure 5.9(f)
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Since R1 and R2 are short circuited by IN
00:

IN
00 ¼ I1 ¼ 45 mA

● Determine IN:

IN ¼ IN
0�IN

00 ¼ ð200 � 45ÞmA ¼ 155 mA

4. Plot Norton’s equivalent circuit. Connect the right side of the a and b
terminals of the current source (Figure 5.9(a)) to the a and b terminals of
Norton’s equivalent circuit, as shown in the circuits of Figure 5.9(g).
Determine the current IL.

IL ¼ ðIN þ I2Þ RN

RL þ RN

¼ ð155 þ 140ÞmA
21O

ð42 þ 21ÞO � 98:33 mA

5.3 Maximum power transfer

Practical circuits are usually designed to provide power to the load. When
working in electrical or electronic engineering fields you are sometimes asked
to design a circuit that will transfer the maximum power from a given source to
a load. The maximum power transfer theorem can be used to solve this kind of
problem. The maximum power transfer theorem states that when the load
resistance is equal to the source’s internal resistance, the maximum power will
be transferred to the load.

From the last section, we have learned that any linear two-terminal net-
work with power supply can be equally substituted by Thevenin’s or Norton’s
equivalent circuits. Therefore, the maximum power transfer theorem implies
that when the load resistance (RL) of a circuit is equal to the internal resistance
(RS) of the source or the equivalent resistance of Thevenin’s or Norton’s
equivalent circuits (RTH or RN), maximum power will be dissipated in the load.
This concept is illustrated in the circuits of Figure 5.10.

RN = 21 Ω
RN = 21 ΩI2 = 140 mA

IN = 155 mA

a

b

RL = 42 Ω

IL
IN + I2

a

b

RL = 42 Ω

IL

Figure 5.9(g)
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The maximum power transfer theorem

When the load resistance is equal to the internal resistance of the source
(RL ¼ RS); or when the load resistance is equal to the Thevenin’s/
Norton’s equivalent resistance of the network (RL ¼ RTH ¼ RN), the
maximum power can be transferred to the load.

The maximum power transfer theorem is used very often in radios, recor-
ders, stereos, CDs, etc. If the load component is a speaker and the circuit that
drives the speaker is a power amplifier, when the resistance of the speaker RL is
equal to the internal resistance RS of the amplifier equivalent circuit, the
amplifier can transfer the maximum power to the speaker, i.e. the maximum
volume can be delivered by the speaker.

Using the equivalent circuit in Figure 5.10(d) to calculate the power
consumed by the load resistor RL gives

PL ¼ IL
2RL ¼ VS

RS þ RL

� �2

RL ð5:1Þ

When RL ¼ RS, the maximum power that can be transferred to the load is

PL ¼ VS
2

ð2RSÞ2 RS ¼ VS
2

4RS

RTH

VTH

IN RN

a

b
a

b

a

RL

RL

b

RL

RL = RTH

RL = RN

RL

V
S

Rs

a

b

RL = RS

(a)

(b)

(c)

(d)

IL

Figure 5.10 The maximum power transfer
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The maximum load power

PL ¼ VS
2

4RS

If VS ¼ 10 V; RS ¼ 30O; and RL ¼ 30O

Then

PL ¼ VS
2

4RS
¼ 102 V

4ð30OÞ � 833 mW

The maximum power transfer theorem can be proved by using an experi-
ment circuit as shown in Figure 5.11.When the variable resistorRL is adjusted, it
will change the value of the load resistor. Replacing the load resistance RL with
different values in (5.1) gives different load power PL, as shown in Table 5.1.

Such as when RL ¼ 10 O:

PL ¼ I2RL ¼ VS

RS þ RL

� �2

RL

¼ 10 V
ð30 þ 10ÞO

� �2

10O ¼ 0:625 W

Rs = 30 Ω

a

b

RL

Vs = 10 V

Figure 5.11 The experiment circuit

Table 5.1 The load power

RL (O) PL (W)

10 0.625
20 0.8
30 0.833
40 0.816
50 0.781
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When RL ¼ 20 O:

PL ¼ I2RL ¼ VS

RS þ RL

� �2

RL

¼ 10 V
ð30 þ 20ÞO

� �2

20O ¼ 0:8 W

The RL and PL curves can be plotted from Table 5.1 as shown in Figure 5.12.

Table 5.1 and Figure 5.12 shows that only when RL ¼ RS (30 O), the power
for the resistor RL reaches the maximum point A (0.833 W).

Proof of the maximum power transfer equation: The maximum power
transfer equation RL ¼ RS can be derived by the method of getting the max-
imum value in calculus (skip this part if you haven’t learned calculus yet). Take
the derivative for RL in (5.1), and let its derivative equal to zero, giving the
following:

dP

dRL
¼

d ðVS=ðRS þ RLÞÞ2RL

h i
dRL

¼ 0

VS
2 ðRS þ RLÞ2 � 2RLðRS þ RLÞ

ðRS þ RLÞ4 ¼ 0

VS
2 RS

2 þ 2RSRL þ RL
2 � 2RLRS � 2RL

2

ðRS þ RLÞ4 ¼ 0

P (W)
L 

R (Ω)L
10 20 30 40 500

A
R

L
= R

S

0.2

0.4

0.6

0.8

1

Figure 5.12 RL–PL curve
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VS
2 RS

2 � RL
2

ðRS þ RLÞ4 ¼ 0

VS
2ðRS þ RLÞðRS � RLÞ

ðRS þ RLÞ4 ¼ 0

VS
2 RS � RL

ðRS þ RLÞ3 ¼ 0

i:e: RS � RL ¼ 0 or RL ¼ RS hence proved:

5.4 Millman’s and substitution theorems

5.4.1 Millman’s theorem

Millman’s theorem is named after the Russian electrical engineering professor
Jacob Millman (1911–1991) who proved this theorem. A similar method,
known as Tank’s method, had already been used before Millman’s proof.

The method using series–parallel power sources was stated in chapter 4.
However, the series–parallel method can only be used in power sources that
have the same polarities and values. Millman’s theorem in this chapter can be
used to analyse circuits of parallel voltage sources that have different polarities
and values. This can be shown in the circuits of Figure 5.13.

Millman’s theorem states that for a circuit of parallel branches, with each
branch consisting of a resistor or a voltage/current source, this circuit can be
replaced by a single voltage source with voltage Vm in series with a resistor Rm

as shown in Figure 5.13.
Millman’s theorem, therefore, can determine the voltage across the parallel

branches of a circuit.

 Rn

E1

R1

a

b

E2

R2

En

a

b

Vm

Rm

…

Figure 5.13 Millman’s theorem
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Millman’s theorem

When several voltage sources or branches consisting of a resistor are in
parallel, they can be replaced by a single voltage source.

Vm ¼ RmIm ¼ Rm
E1

R1
þ E2

R2
þ :::þ En

Rn

� �
Rm ¼ R1==R2== . . . ==Rn

Note: Vm is the algebraic sum for all the individual terms in the equation. It will
be positive if En and Vm have the same polarities, otherwise it will be negative.
The letter m in Vm and Rm means Millman.

Example 5.8: Determine the load voltage VL in the circuit of Figure 5.14 using
Millman’s theorem.

Solution:

Rm ¼ R1==R2==R3==R4 ¼ ð100==100==100==100ÞO ¼ 25O

Vm ¼ RmIm ¼ Rm
E1

R1
þ E2

R2
� E3

R3
� E4

R4

� �

¼ ð25OÞ 40 V
100O

þ 30 V
100O

� 20 V
100O

� 10 V
100O

� �
¼ 10 V

VL ¼ Vm
RL

RL þ Rm
¼ ð10 VÞ 30O

ð30 þ 25ÞO � 5:455 V

5.4.2 Substitution theorem

Substitution theorem

A branch in a network that consists of any component can be replaced by
an equivalent branch that consists of any combination of components, as
long as the currents and voltages on that branch do not change after the
substitution.

E1 = 40V

R1 = 100Ω

a

b

a

b

E2 = 30V

R4 = 100Ω

E3 = 20V Rm = 25Ω

Vm = 10V

RL = 30Ω VL

R2 = 100Ω R3 = 100Ω

E4 = 10V
RL = 30Ω

Figure 5.14 Circuit for Example 5.8
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This theorem can be illustrated in the circuits of Figures 5.15 and 5.16.

The current and voltage of branch a–b in the circuit of Figure 5.15 can be
determined as follows:

The voltage across branch a–b: V2 ¼ E
R2

R1 þ R2
¼ 20 V

6kO
ð2 þ 6ÞkO ¼ 15 V

The current in branch a–b: I ¼ E

R1 þ R2
¼ 20V

ð2 þ 6ÞkO ¼ 2:5 mA

According to the definition of the substitution theorem, any branch in the
circuit of Figure 5.16 can replace the a–b branch in the circuit of Figure 5.15,
since their voltages and currents are the same as the voltages and currents in
branch a–b in the circuit of Figure 5.15.

Example 5.9: Use a current source with a 30 O internal resistor to replace the
a–b branch in the circuit of Figure 5.17(a).

a

b

R1 = 2 kΩ

E = 20 V R2 = 6 kΩ V2 = 15 V

I = 2.5 mA 

Figure 5.15 Circuit 1 of the substitution theorem

a

R = 6 kΩ

I = 2.5 mA 

15 V

+

-

2.5 mA

a

E = 15 V

I = 2.5 mA 

a

+

-

15 V
5 V

a

R = 2 kΩ

E = 10 V

+

-

I = 2.5 mA

Figure 5.16 Circuit 2 of the substitution theorem

R3 = 7.5 Ω
E = 2.5 V

R1 = 2 Ω

a

b

R2 = 5 Ω
I

Figure 5.17(a) Circuit for Example 5.9
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Solution:

● Figure 5.17(b) shows the resultant circuit after the current source with a 30O
internal resistor replaced the a–b branch in the circuit of Figure 5.17(a).

● Determine the voltage and current in the a–b branch of the circuit in
Figure 5.17(a).

Vab ¼ E
R2==R3

R1 þ R2==R3
¼ 2:5 V

ðð5 � 7:5Þ=ð5 þ 7:5ÞÞO
ð2 þ ð5 � 7:5Þ=ð5 þ 7:5ÞÞO ¼ 1:5 V

ðvoltage divider ruleÞ
I ¼ Vab

R3
¼ 1:5 V

7:5O
¼ 0:2 A ¼ 200 mA

● Determine the currents in the substituted branch and the current source
branch using the circuit in Figure 5.17(c).

I3
0 ¼ Vab

R3
0 ¼

1:5 V
30O

¼ 50 mA

Therefore, to maintain the terminal voltage Vab ¼ 1.5 V in the original
branch, the current I3

0 in the R3
0 branch should be 50 mA. Using KCL we can

get the current I0 in the current source branch:

I 0 ¼ I�I3
0¼ ð200 � 50ÞmA ¼ 150 mA

R3′ = 30 Ω

E = 2.5 V

R1 = 2 Ω

a

b

R2 = 5 Ω  I ′

Figure 5.17(b)

R3′ = 30 ΩI ′ = 50 mA

I3′ = 50 mA

a

b

I = 200 mA

+

-

Vab = 1.5 V

Figure 5.17(c)
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Summary

Linear circuit: includes the linear components (such as resistors).

Superposition theorem

● The unknown voltages or currents in any linear network are the sum of the
voltages or currents of the individual contributions from each single power
supply, by setting the other inactive sources to zero.

● Steps to apply superposition theorem:

1. Turn off all power sources except one, i.e. replace the voltage source
with the short circuit, and replace the current source with an open
circuit. Redraw the original circuit with a single source.

2. Analyse and calculate this circuit by using the single source series–
parallel analysis method, and repeat steps 1 and 2 for the other power
sources in the circuit.

3. Determine the total contribution by calculating the algebraic sum of
all contributions due to single sources.

The result should be positive when the reference polarity of the unknown
in the single source circuit is the same as the reference polarity of the unknown
in the original circuit; otherwise it should be negative.

The linear two-terminal network with the sources

It is a linear complex circuit that has power sources and two terminals.

Thevenin’s and Norton’s theorems

● Any linear two-terminal network with power supplies can be replaced by a
simple equivalent circuit that has a single power source and a single resistor.

● Thevenin’s theorem: The equivalent circuit is a voltage source (with an
equivalent resistance RTH in series with an equivalent voltage source VTH).

● Norton’s theorem: The equivalent circuit is a current source (with an
equivalent resistance RN in parallel with an equivalent current source IN).

● Steps to apply Thevenin’s and Norton’s theorems:

1. Open and remove the load branch (or any unknown current or voltage
branch) in the network, and mark the letter a and b on the two
terminals.

2. Determine the equivalent resistance RTH or RN. It equals the equiva-
lent resistance, looking at it from the a and b terminals when all
sources are turned off or equal to zero in the network. (A voltage
source should be replaced by a short circuit, and a current source
should be replaced by an open circuit.) That is

RTH ¼ RN ¼ Rab
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3. Determine Thevenin’s equivalent voltage VTH. It equals the open-
circuit voltage from the original linear two-terminal network of a and
b, i.e. VTH ¼ Vab

4. Determine Norton’s equivalent current IN. It equals to the short-cir-
cuit current from the original linear two-terminal network of a and b,
i.e. IN ¼ Isc.

5. Plot Thevenin’s or Norton’s equivalent circuit, and connect the load
branch (or unknown current or voltage branch) to a and b terminals of
the equivalent circuit. Then the load (or unknown) voltage or current
can be determined.

Maximum power transfer theorem

When the load resistance is equal to the internal resistance of the source (RL ¼
RS); or when the load resistance is equal to the Thevenin’s/Norton’s equivalent
resistance of the network (RL=RTH ¼ RN), maximum power will be trans-
ferred to the load.

Millman’s theorem

When several voltage sources or branches consisting of a resistor are in par-
allel, they can be replaced by a branch with a voltage source.

Vm ¼ RmIm ¼ Rm

�
E1

R1
þ E2

R2
þ � � � þ En

Rn

�
; Rm ¼ R1==R2== ::: ==Rn

Substitution theorem

A branch in a network that consists of any component can be replaced by an
equivalent branch that consists of any combination of components, as long as
the currents and voltages on that branch do not change after the substitution.

Experiment 5A: Superposition theorem

Objectives

● Understand the superposition theorem through experiment.
● Construct a circuit with two voltage sources, and collect and evaluate

experimental data to verify applications of the superposition theorem.
● Analyse experimental data, circuit behaviour and performance, and

compare them to theoretical equivalents.

Equipment and components

● Breadboard
● Multimeter
● Dual-output DC power supply
● Resistors: 5.1, 7.5, and 11 kO
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Background information

● Superposition theorem: The unknown voltages or currents in any linear
network are the sum of the voltages or currents of the individual con-
tributions from each single power supply, by setting the other inactive
sources to zero.

● Steps to apply superposition theorem:

1. Turn off all power sources except one, i.e. replace the voltage source with
a short circuit (by placing a jump wire), and replace the current source
with an open circuit. Redraw the original circuit with a single source.

2. Analyse and calculate this circuit using the single source series–parallel
analysis method, and repeat steps 1 and 2.

3. Determine the total contribution by calculating the algebraic sum of
all contributions due to single sources.

(The result should be positive when the reference polarity of the unknown
in the single source circuit is the same with the polarity of the unknown in the
original circuit; otherwise it should be negative.)

Procedure

1. Measure the values of resistors listed in Table L5.1 using a multimeter
(ohmmeter function) and record in Table L5.1.

2. Construct a circuit on the breadboard as shown in Figure L5.1(b).
3. Calculate the equivalent resistance Req

0 from the terminals a and b in the
circuit of Figure L5.1(b). Record the value in Table L5.2.

4. Calculate currents I1
0 and I3

0 in the circuit of Figure L5.1(b). Record the
values in Table L5.2.

5. Measure the equivalent resistance Req
0 and currents I1

0 and I3
0 using the

multimeter (ohmmeter and ammeter functions) in Figure L5.1(b). Record
the values in Table L5.2.

6. Reconstruct a circuit as shown in Figure L5.1(c) on the breadboard.
7. Calculate the equivalent resistance Req

00 from the terminals c and d in the
circuit of Figure L5.1(c). Record the values in Table L5.2.

8. Calculate currents I1
00 and I3

00 in the circuit of Figure L5.1(c). Record the
values in Table L5.2.

Table L5.1

Resistance R1 R2 R3

Nominal value 5.1 kO 7.5 kO 11 kO
Measured value
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9. Measure the equivalent resistance Req
00 and currents I1

00 and I3
00 in Figure

L5.1(c) using a multimeter (ohmmeter and ammeter functions). Record the
values in Table L5.2.

10. Calculate I3 ¼ I3
0 þ I3

00 from Table L5.2 using the calculated values.
Record the value in Table L5.2.

11. Construct a circuit as shown in Figure L5.1(a) on the breadboard and mea-
sure current I3 in the circuit of Figure L5.1(a). Record the value in Table L5.2.

12. Compare the measured values and calculated values; are there any sig-
nificant differences? If so, explain the reasons.

Conclusion

Write your conclusions below:

Table L5.2

Resistance Req
0 I1

0 I3
0 Req

00 I1
00 I3

00 I3

Formula for calculations
Calculated value
Measured value

                 E2 = 12V

R3 = 11kΩ

I3E1 = 6V

b

c

d

a

R1 = 5.1kΩ        R2 = 7.5kΩ

I1 I2

(a)

+
E1 = 6V

    R3 = 11kΩ
=

a

b

c

d

 I ′1

 I ′3
 I ′2

        R1 = 5.1kΩ        R2 = 7.5kΩ

R3 = 11kΩ

E2 = 12V

a

b

c

d

 I ′′1

 I ′′3

 I ′′2

        R1= 5.1kΩ        R2 = 7.5kΩ

(b) (c)

Figure L5.1 Superposition theorem
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Experiment 5B: Thevenin’s and Norton’s theorems

Objectives

● Understand Thevenin’s and Norton’s theorems and the maximum power
transfer theorem through this experiment.

● Construct electric circuits, and collect and evaluate experimental data to
verify the applications of Thevenin’s and Norton’s theorems.

● Construct electric circuits, and collect and evaluate experimental data to
verify the applications of the maximum power transfer theorem.

● Analyse experimental data, circuit behaviour and performance, and
compare them to the theoretical equivalents.

Equipment and components

● Breadboard
● Multimeter
● DC power supply
● Resistors: 300 O, 750 O, 620 O, 180 O, 1 kO, and one 10 kO variable resistor

Background information

● Any linear two-terminal network (complex circuit) with power supplies
can be replaced by a simple equivalent circuit that has a single power
source and a single resistor.

● Thevenin’s theorem: Thevenin’s equivalent circuit is an actual voltage
source that has an equivalent resistance RTH in series with an equivalent
voltage source VTH.

● Norton’s theorem: Norton’s equivalent circuit is an actual current source
that has an equivalent resistance RN in parallel with an equivalent current
source IN.

● The maximum power transfer theorem: When the load resistance is equal
to the internal resistance of the source (RL ¼ RS); or when the load resis-
tance is equal to the Thevenin/Norton equivalent resistance of the circuit
(RL ¼ RTH ¼ RN), maximum power will be dissipated in the load.

Procedure

Part I: Thevenin’s and Norton’s theorems

1. Measure the values of the resistors listed in Table L5.3 using a multimeter
(ohmmeter function) and record in Table L5.3.

Table L5.3

Resistor R1 R2 R3 RL

Colour code value 300 O 620 O 750 O 180 O
Measured Value
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2. Calculate RTH and VTH of Thevenin’s equivalent circuit in Figure L5.2(a).
Record the values in Table L5.4.

3. Calculate RN and IN of Norton’s equivalent circuit in Figure L5.2(a).
Record the values in Table L5.4.

4. Calculate the load current IL in Thevenin’s and Norton’s equivalent
circuits of Figure L5.2(b and c). Record the values in Table L5.4.

5. Construct a circuit as shown in Figure L5.3(a) on the breadboard.

6. Measure the open-circuit voltage Vab (Vab ¼ VTH) on the two terminals a
and b in the circuit of Figure L5.3(a) using a multimeter (voltmeter func-
tion). Record the value in Table L5.4.

= 180 Ω
R
R

L
R

L

R
L

NIN

a

b

IL

= 180 Ω

a

b

ETH

IL
RTH

3 = 750 Ω

E1 = 12V

a

b

= 180 Ω
1 = 300 Ω

R

R
R

2 = 620 Ω

(a) (b) (c)

Figure L5.2 Thevenin’s and Norton’s equivalent circuits

Table L5.4

RTH VTH (Vab) RN IN
(ISC)

IL
(Figure

L5.2(b))

IL
(Figure

L5.2(c))

Formula for
calculations

Calculated value
Measured value

3 = 750Ω

E1= 12V

a

b

1 = 300Ω

R

R
R

2 = 620Ω

a

b

R3 = 750Ω

1 = 300Ω
R

R

2 = 620Ω

(a) (b)

Figure L5.3 Thevenin’s and Norton’s circuits
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7. Measure short-circuit current Isc (Isc ¼ IN) from a to b in Figure L5.3(a)
using a multimeter (ammeter function). Record the value in Table L5.4.

8. Disconnect the power supply E in Figure L5.3(a), and use a jump wire con-
necting the two terminals of E as shown in Figure L5.3(b). Measure the
equivalent resistance at terminals of a to b (Rab ¼ RTH ¼ RN) in Figure L5.3
(b) using a multimeter (ohmmeter function). Record the value in Table L5.4.

9. Construct a circuit as shown in Figure L5.2(b) (with measured VTH and
RTH) on the breadboard, and measure the load current IL using a multi-
meter (ammeter function). Record the value in Table L5.4.

10. Compare the measured values and the calculated values. Are there any
significant differences? If so, state the reasons.

Part II: Maximum power transfer

1. Construct a circuit as shown in Figure L5.4 on the breadboard. RS repre-
sents the internal resistance for power supply or the Thevenin’s or
Norton’s equivalent resistances.

2. Measure the open-circuit voltage Vab in the circuit of Figure L5.4 (without
connecting the load RL) using a multimeter (voltmeter function). Record
the value in Table L5.5.

Rs = 1 kΩ

a

b

RL

Vs = 10 V

Figure L5.4 Maximum power transfer circuit

Table L5.5

Load Resistor RL Measured
RL Value

Measured
VRL

Value
Calculated
PL Value

RL1

RL2

RL3

RL4

RL5 1 kO
RL6

RL7

RL8

RL9

Open-circuit voltage Vab =

The network theorems 161

05_Wang_Chapter05_p127-162 31 May 2010; 14:59:30



3. Connect the 10-kO variable resistor RL to the circuit in Figure L5.4 and
change the value of the variable resistor nine times from lower to higher
values (one of the values should be 1 kO). Measure each RL and VRL

using a
multimeter (ohmmeter and voltmeter functions). Record the values in Table
L5.5.

4. Calculate power dissipated in each load resistor and record the values in
Table L5.5.

5. Sketch the RL–PL curve (use PL as vertical axis and RL as horizontal axis).
6. When the load resistance is equal to the internal resistance of the source

(RL ¼ RS ¼ 1 kO), is PL at the maximum point on the curve? Why?

Conclusion

Write your conclusions below:
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Chapter 6

Capacitors and inductors

Objectives

After completing this chapter, you will be able to:

● describe the basic structure of the capacitor and inductor
● explain the charging and discharging behaviours of a capacitor
● understand the storing and releasing energy of an inductor
● define capacitance and inductance
● list the factors affecting capacitance and inductance
● understand the relationship between voltage and current in capacitive and

inductive circuits
● calculate energy stored in capacitors and inductors
● determine the equivalent capacitance and inductance in series, parallel and

series–parallel configurations

There are three important fundamental circuit elements: the resistor, capacitor
and inductor. The resistor (R) has appeared in circuit analysis in the previous
chapters. The other two elements – the capacitor (C) and inductor (L) will be
introduced in this chapter. Both of these electric elements can store energy that
has been absorbed from the power supply, and release it to the circuit. A
capacitor can store energy in the electric field, and an inductor can store energy
in the magnetic field. This is different with a resistor that consumes or dis-
sipates electric energy.

Three basic circuit components

● Resistor (R)
● Capacitor (C)
● Inductor (L)

A circuit containing only resistors has limited applications. Practical elec-
tric circuits usually combine the above three basic elements and possibilities
along with other devices.
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6.1 Capacitor

6.1.1 The construction of a capacitor

A capacitor has applications in many areas of electrical and electronic circuits,
and it extends from households to industry and the business world. For instance,
it is used in flash lamps (for flash camera), power systems (power supply
smoothing, surge protections), electronic engineering, communications, compu-
ters, etc. There are many different types of capacitors, but no matter how
differently their shapes and sizes, they all have the same basic construction.

A capacitor has two parallel conductive metal plates separated by an iso-
lating material (the dielectric). The dielectric can be of insulating material, such
as paper, vacuum, air, glass, plastic film, oil, mica, ceramics, etc. The basic
construction of a capacitor is shown in Figure 6.1.

A capacitor can be represented by a capacitor schematic symbol as its
circuit model. Similar to resistors, there are two basic types of capacitors,
variable and fixed, and their schematic symbols are shown in Figure 6.2
(a and b).

Dielectric

Plate

Plate

Figure 6.1 The basic construction of a capacitor

+

–

+

–

(a) (b)

Figure 6.2 Symbols of capacitor. (a) Fixed: unpolarized and polarized and
(b) variable
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A variable capacitor is a capacitor that possesses a value that may be
changed manually or automatically. A fixed capacitor is a capacitor that pos-
sesses a fixed value and cannot be adjusted. For a fixed polarized capacitor,
connect its positive (þ) lead to the higher voltage point in the circuit, and
negative (7) lead to the lower voltage point. For an unpolarized capacitor, it
does not matter which lead connects to where.

Electrolytic capacitors are usually polarized, and non-electrolytic capaci-
tors are unpolarized. Electrolytic capacitors can have higher working voltages
and store more charges than non-electrolytic capacitors.

Capacitor C

An energy storage element that has two parallel conductive metal plates
separated by an isolating material (the dielectric).

6.1.2 Charging a capacitor

A purely capacitive circuit with an uncharged capacitor (VC ¼ 0), a three-
position switch, and a DC (direct current) voltage source (E) is shown in Fig-
ure 6.3(a). With the switch at position 0, the circuit is open, and the potential
difference between the two metal plates of the capacitor is zero (VC ¼ 0). Two
plates of the capacitor have the same size and are made by the same conducting
material, so they should have the same number of charges at the initial condition.

Once the three-position switch is turned on to position 1 as shown in
Figure 6.3(b), the DC voltage source is connected to the two leads of the
capacitor. From the rule ‘opposites attract and likes repel’, we know that
the positive pole of the voltage source will attract electrons from the positive
plate of the capacitor, and the negative pole of the voltage source will attract
positive charges from the negative plate of the capacitor; this causes current I
to flow in the circuit.

Plate A loses electrons and shows positive; plate B loses positive charges
and thus shows negative. Thus, the electric field is built up between the two
metal plates of the capacitor, and the potential difference (VC) appears on the

E

1

2
C E

1

+ + + +

- - - - - -

+ + 2

A

B
I

0

Vc = 0 Vc

(a) (b)

Figure 6.3 Charging a capacitor
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capacitor with positive (þ) on plate A and negative (7) on plate B, as shown in
Figure 6.3(b).

Once voltage across the capacitor VC has reached the source voltage VS,
i.e. VC ¼ E, there is no more potential difference between the source and
capacitor, the charging current cesses to flow (I ¼ 0), and the process of
charging the capacitor is completed. This is the process of charging a capacitor.

6.1.3 Energy storage element

When the switch is turned off to position 0 in the circuit shown in Figure 6.3(a),
the capacitor and power supply will disconnect. If the voltage across the
capacitor VC is measured at this time using a multimeter (voltmeter function),
VC should still be the same with the source voltage (VC ¼ E) even without a
power supply connected to it. This is why a capacitor is called an energy sto-
rage element, as it can store charges absorbed from the power supply and store
electric energy obtained from charging. Once a capacitor has transferred some
charges through charging, an electric field is built up between the two plates of
the capacitor, and it can maintain the potential difference across it.

The isolating material (dielectric) between the two metal plates isolates the
charges between the two plates. Charges will not be able to cross the insulating
material from one plate to another. So the energy storage element capacitor
will keep its charged voltage VC for a long time (duration will depend on the
quality and type of the capacitor). Since the insulating material will not be
perfect and a small leakage current may flow through the dielectric, this may
eventually slowly dissipate the charges.

6.1.4 Discharging a capacitor

When the switch is closed to position 2 as shown in the circuit of Figure 6.4,
the capacitor and wires in the circuit forms a closed path. At this time, the
capacitor is equivalent to a voltage source, as voltage across the capacitor VC

will cause the current to flow in the circuit. Since there is no resistor in this
circuit, it is a short circuit, and a high current causes the capacitor to release its
charges or stored energy in a short time. This is known as discharging a
capacitor. After the capacitor has released all its stored energy, the voltage
across the capacitor will be zero (VC ¼ 0), the current in the circuit ceases to
flow (I ¼ 0) and the discharge process is completed.

E

1

2

C E

1

+ + +

− − −

2
A

B
VCI

(a) (b)

Figure 6.4 Discharging a capacitor
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The capacitor cannot release energy that is more than it has absorbed and
stored, therefore it is a passive component. A passive component is a compo-
nent that absorbs (but not produce) energy.

The concept of a capacitor may be analogous to a small reservoir. It acts as
a reservoir that stores and releases water. The process of charging a capacitor
from the power supply is similar to a reservoir storing water. The process of
discharging a capacitor is similar to a reservoir releasing water.

There is an important characteristic that implies in the charge and dis-
charge of a capacitor. That is, the voltage on the capacitor won’t be able to
change instantly; it will always take time, i.e. gradually increase (charging) or
decrease (discharge).

Charging/Discharging a capacitor

An electric element that can store and release charges that it absorbed
from the power supply.

● Charging: The process of storing energy.
● Discharging: The process of releasing energy.

6.1.5 Capacitance

As previously mentioned, once the source voltage is applied to two leads of a
capacitor, the capacitor starts to store energy or charges. The charges (Q) that
are stored are proportional to the voltage (V) across it. This can be expressed
by the following formula:

Q ¼ CV or C ¼ Q

V
This is analogous to a pump pumping water to a reservoir. The higher the
pressure, the more water will be pumped into the reservoir. The higher
the voltage, the more charges a capacitor can store.

The voltage and charge (V–Q) characteristic of a capacitor is shown in
Figure 6.5, demonstrating that the capacitor voltage is proportional to the
amount of charges a capacitor can store.

V

Q

Figure 6.5 Q–V characteristic of a capacitor

Capacitors and inductors 167

06_Wang_Chapter06_p163-194 31 May 2010; 17:54:0



C is the capacitance, which is the value of the capacitor and describes the
amount of charges stored in the capacitor. Just as a resistor is a component and
resistance is the value of a resistor, capacitor is a component and capacitance is
the value of a capacitor. Resistor is symbolized by R while resistance is R:
capacitor is symbolized by C while capacitance is C.

Capacitance C

C, the value of the capacitor, is directly proportional to its stored charges,
and inversely proportional to the voltage (V) across it.

C ¼ Q

V

A capacitor can store 1 C charge when 1 V of voltage is applied to it.
That is,

1 F ¼ 1 C
1 V

Farad is a very large unit of measure for most practical capacitors. Microfarad
(mF) or picofarad (pF) are more commonly used units for capacitors.

Recall

1mF ¼ 10�6 F and

1 pF ¼ 10�12 F

Note: m is a Greek letter called ‘mu’ (see Appendix A for a list of Greek
letters).

Example 6.1: If a 50 mC charge is stored on the plates of a capacitor, determine
the voltage across the capacitor if the capacitance of the capacitor is 1000 pF.

Solution:

Q ¼ 50 mC; C ¼ 1000 pF; V ¼ ?

V ¼ Q

C
¼ 50 mC

1000 pF
¼ 50 � 10�6 C

1000 � 10�12 F
¼ 0:05 � 106 V ¼ 50 KV

Quantity Quantity symbol Unit Unit symbol

Capacitance C Farad F
Charge Q Coulomb C
Voltage V Volt V
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6.1.6 Factors affecting capacitance

There are three basic factors affecting the capacitance of a capacitor, and they
are determined by the construction of a capacitor as shown below:

● The area of plates (A): A is directly proportional to the charge Q; the larger
the plate area, the more electric charges that can be stored.

● The distance between the two plates (d): The shorter the distance between
two plates, the stronger the produced electric field that will increase the
ability to store charges. Therefore, the distance (d) between the two plates
is inversely proportional to the capacitance (C).

● The dielectric constant (k): Different insulating materials (dielectrics) will
have a different impact on the capacitance. The dielectric constant (k) is
directly proportional to the capacitance (C).

The factors affecting the capacitance of a capacitor are illustrated in
Figure 6.6.

Factors affecting capacitance

C ¼ 8:85 � 10�12 kA

d

Dielectric constants for some commonly used capacitor materials are listed
in Table 6.1.

A

d k

Figure 6.6 Factors affecting capacitance

Quantity Quantity symbol Unit Unit symbol

Plates area A Square meter m2

Distance d Meter m
Dielectric constant k No unit
Capacitance C Farad F
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Example 6.2: Determine the capacitance if the area of plates for a capacitor is
0.004 m2, the distance between the plates is 0.006 m and the dielectric for this
capacitor is mica.

Solution:

A ¼ 0:004 m2; d ¼ 0:006 m and k ¼ 5

C ¼ 8:85 � 10�12 kA

d
¼ 8:85 � 10�12 5 � 0:004m2

0:006m
¼ 29:5 pF

6.1.7 Leakage current

The dielectric between two plates of the capacitor is insulating material, and
practically no insulating material is perfect (i.e. 100 per cent of the insulation).
Once voltage is applied across the capacitor, there may be a very small current
through the dielectric, and this is called the leakage current in the capacitor.
Although the leakage current is very small, it is always there. That is why the
charges or the energy stored on the capacitor plates will eventually leak off. But
the leakage current is so small that it can be ignored for the application.
(Electrolytic capacitors have higher leakage current.)

Leakage current

A very small current through the dielectric.

6.1.8 Breakdown voltage

As mentioned earlier, a capacitor charging acts as a pump pumping water into
a reservoir, or a water tank. The higher the pressure, the more water will be
pumped into the tank. If the tank is full and still continues to increase pressure,
the tank may break down or become damaged by such high pressure.

Table 6.1 Dielectric constants of some insulating materials

Material Dielectric constant

Vacuum 1
Air 1.0006
Paper (dry) 2.5
Glass (photographic) 7.5
Mica 5
Oil 4
Polystyrene 2.6
Teflon 2.1
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This is similar to a capacitor. If the voltage across a capacitor is too high
and exceeds the capacitor’s working or breakdown voltage, the capacitor’s
dielectric will break down, causing current to flow through it. As a result, this
may explode or permanently damage the capacitor. Therefore, when using a
capacitor, pay attention to the maximum working voltage, which is the max-
imum voltage a capacitor can have. The applied voltage of the capacitor can
never exceed the capacitor’s breakdown voltage.

Breakdown voltage

The voltage that causes a capacitor’s dielectric to become electrically
conductive. It may explode or permanently damage the capacitor.

6.1.9 Relationship between the current and voltage of a capacitor

The relationship between the current and voltage for a resistor is Ohm’s law for
a resistor. The relationship between the current and voltage for a capacitor is
Ohm’s law for a capacitor. It can be obtained mathematically as follows.

A quantity that varies with time (such as a capacitor that takes time to
charge/discharge) is called instantaneous quantity, which is the quantity at a
specific time. Usually the lowercase letters symbolize instantaneous quantities,
and the uppercase letters symbolize the constants or average quantities. The
equation Q ¼ CV in terms of instantaneous quantity is q ¼ Cv.

Note: If you haven’t learned calculus, just keep in mind that i ¼ C(Dv/Dt) or
iC ¼ C(dvC/dt) is Ohm’s law for a capacitor, and skip the following mathematic
derivation process, where Dv and Dt or dv and dt are very small changes in
voltage and time.

Differentiating the equation q ¼ Cv yields

dq

dt
¼ C

dv

dt

Recall that current is the rate of movement of charges, and has the i ¼ dq/dt
notation in calculus.

Substitute i ¼ dq/dt into the equation of dq/dt ¼ C(dv/dt) yields

i ¼ C
dv

dt
or i ¼ C

Dv

Dt

This is Ohm’s law for a capacitor. The relationship between voltage and cur-
rent of a capacitor can be expressed by Figure 6.7(b).

The relationship of voltage and current for a capacitor shows that when the
applied voltage at two leads of the capacitor changes, the charges (q) stored on
the plates of the capacitor will also change. This will cause current to flow in
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the capacitor circuit. Current and the rate of change of voltage are directly
proportional to each other.

The reference polarities of capacitor voltage and current should be
mutually related. That is, the reference polarities of voltage and current of a
capacitor should be consistent, as shown in Figure 6.7(a).

Ohm’s law for a capacitor

The current of a capacitor iC is directly proportional to the ratio of
capacitor voltage dvC/dt (or DvC/Dt) and capacitance C.

iC ¼ C
dvC

dt
or i ¼ C

DvC

Dt

where dvC and dt or DvC, and Dt are very small changes in voltage and time.
The relationship of voltage and current in a capacitive circuit shows that

the faster the voltage changes with time, the greater the amount of capacitive
current flows through the circuit. Similarly, the slower the voltage changes with
time, the smaller the amount of current, and if voltage does not change
with time, the current will be zero. Zero current means that the capacitor acts
like an open circuit for DC voltage at this time. Voltage that does not change
with time is DC voltage, meaning that current is zero when DC voltage is
applied to a capacitor. Therefore, the capacitor may play an important role for
blocking the DC current. This is a very important characteristic of a capacitor.

DC blocking

Current through a capacitor is zero when DC voltage applied to it (open-
circuit equivalent). A capacitor can block DC current.

Note: Although there is a DC voltage source applied to the capacitive circuit in
Figures 6.3 and 6.4, the capacitor charging/discharging happened at the moment

i

C V
+

-

i

dt
dv

C

0

(a) (b)

Figure 6.7 Relationship between v and i of a capacitor
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when the switch turned to different locations, i.e. when the voltage across the
capacitor changes within a moment. When the capacitor charging/dischaging
has finished, the capacitor is equivalent to an open circuit for that circuit.

6.1.10 Energy stored by a capacitor

As mentioned earlier, a capacitor is an energy storage element. It can store
energy that it absorbed from charging and maintain voltage across it. Energy
stored by a capacitor in the electric field can be derived as follows.

The instantaneous electric power of a capacitor is given by p ¼ ni. Sub-
stituting this into the capacitor’s current i ¼ C(dv/dt) yields

p ¼ Cv
dv

dt

Since the relationship between power and work is P ¼W/t (energy is the ability
to do work), and, instantaneous power for this expression is p ¼ dw/dt,
substituting it into p ¼ Cv(dv/dt) yields

dw

dt
¼ Cv

dv

dt

Integrating the above expression:ðt

0

dw

dt
dt ¼ C

ðv

0
v

dv

dt
dt

gives

W ¼ 1
2

Cv2

Note: If you haven’t learned calculus, just keep in mind that W ¼ ½(Cn2), and
skip the above mathematic derivation process.

Energy stored by a capacitor

WC ¼ 1
2

Cv2

Quantity Quantity symbol Unit Unit symbol

Energy W Joule J
Capacitor C Farad F
Voltage V Volt V
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The expression for energy stored by a capacitor demonstrates that the
capacitor’s energy depends on the values of the capacitor and voltage across the
capacitor.

Example 6.3: A 15 V voltage is applied to a 2.2 mF capacitor. Determine the
energy this capacitor has stored.

Solution:

WC ¼ 1
2

Cv2

¼ 1
2
ð2:2 mFÞ � ð15 VÞ2

¼ 247:5 mJ

6.2 Capacitors in series and parallel

Same as resistors, capacitors may also be connected in series or parallel to
obtain a suitable resultant value that may be either higher or lower than a
single capacitor value.

The total or equivalent capacitance Ceq will decrease for a series capacitive
circuit and it will increase for a parallel capacitive circuit. The total or equivalent
capacitance has the opposite form with the total or equivalent resistance Req.

6.2.1 Capacitors in series

A circuit of n capacitors is connected in series as shown in Figure 6.8.

Applying Kirchhoff’s voltage law (KVL) to the above circuit gives

E ¼ V1 þ V2 þ � � � þ Vn

and since V ¼ Q/C, substituting it into the above expression yields

Qeq

Ceq
¼ Q1

C1
þ Q2

C2
þ � � � þ Qn

Cn

E

V1C1Q1

Q2

Qn

C2

Cn

V2

Vn

…

Figure 6.8 n capacitors in series
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where E ¼ Qeq/Ceq, Qeq is the equivalent (or total) charges and Ceq is the
equivalent (or total) capacitance for a series capacitive circuit respectively.
Since only one current flows in a series circuit, each capacitor will store the
same amount of charges, i.e. Qeq ¼ Q1 ¼ Q2 ¼ . . . ¼ Qn ¼ Q therefore,

Q

Ceq
¼ Q

C1
þ Q

C2
þ � � � þ Q

Cn

Dividing by Q on both sides of the above expression gives

1
Ceq

¼ 1
C1

þ 1
C2

þ � � � þ 1
Cn

or Ceq ¼ 1
ð1=C1Þ þ ð1=C2Þ þ � � � þ ð1=CnÞ

This is the equation for calculating the series equivalent (total) capacitance.
This formula has the same form with the formula for calculating equivalent
parallel resistance (1/Req) ¼ (1/R1) þ (1/R2) þ . . . þ (1/Rn). When there are
two capacitors in series, it also has the same form with the formula for cal-
culating two resistors in parallel, i.e. Ceq ¼ C1C2/(C1 þ C2) and Req ¼ R1R2/
(R1 þ R2).

Equivalent (total) series capacitance

● n capacitors in series: Ceq ¼ 1
ð1=C1Þþð1=C2Þþ���þð1=CnÞ

● Two capacitors in series: Ceq ¼ C1C2
C1þC2

Example 6.4:Determine the charges Q stored by each capacitor in the circuit of
Figure 6.9.

Solution: Since Q ¼ CV, or Q ¼ CeqE, solve for Ceq first.

E = 25 V

C1

C2

C3

C4

100 μF

100 μF

100 μF

100 μF

Figure 6.9 Circuit for Example 6.4
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Ceq ¼ 1
ð1=C1Þ þ ð1=C2Þ þ ð1=C3Þ þ ð1=C4Þ

¼ 1
½ð1=100Þ þ ð1=100Þ þ ð1=100Þ þ ð1=100ÞmF� ¼ 25 mF

Therefore,

Q ¼ CeqE ¼ ð25 mFÞ ð25 VÞ ¼ 625 mC

Example 6.4 shows that when capacitors are connected in series, the total or
equivalent capacitance Ceq (25 mF) is less than any one of the individual
capacitances (100 mF).

The physical characteristic of the series equivalent capacitance is that the
single series equivalent capacitance Ceq has the total dielectric (or total distance
between the plates) of all the individual capacitors. The formula for factors
affecting the capacitance (C ¼ 8.85 6 10712kA/d) shows that if the distance
between the plates of a capacitor (d) increases, the capacitance (C) will
decrease. This is shown in Figure 6.10.

6.2.2 Capacitors in parallel

A circuit of n capacitors connected in parallel is shown in Figure 6.11.
The charge stored on the individual capacitor in this circuit is

Q1 ¼ C1V ; Q2 ¼ C2V ; Qn ¼ CnV ; ðwhere V ¼ EÞ

Ceq

Figure 6.10 The physical characteristic of series Ceq

E …
Q1

C1
C2 Cn

Q2 Qn

Figure 6.11 n capacitors in parallel
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The total charge Qeq in this circuit should be the sum of all stored charges on
the individual capacitor, i.e.

Qeq ¼ Q1 þ Q2 þ � � � þ Qn

therefore,

CeqV ¼ C1V þ C2V þ � � � þ CnV

dividing both sides by V yields

Ceq ¼ C1 þ C2 þ � � � þ Cn

This is the equation for calculating the parallel equivalent (total) capacitance.
As you may have noticed, this equation has the same form with the equation
for calculating series resistances (Req ¼ R1 þ R2 þ. . .þ Rn).

Equivalent (total) parallel capacitance

Ceq ¼ C1 þ C2 þ . . . þ Cn

Equation for calculating capacitance is exactly opposite the equations for
calculating resistance. Capacitors in series result in parallel form as resistances,
and capacitors in parallel result in series form as resistances.

Example 6.5: Determine the total charge in all the capacitors in the circuit of
Figure 6.12.

Solution: Since Q ¼ CV, i.e. Qeq ¼ CeqE and
Ceq ¼ C1 þ C2 þ � � � þ Cn ¼ ð100 þ 10 þ 20 þ 320ÞmF ¼ 450 mF therefore,

Qeq ¼ CeqE

¼ ð450 mFÞð60 VÞ
¼ 27 000 mC

From Example 6.5, we can see that when capacitors are connected in parallel,
the total or equivalent capacitance Ceq (450 mF) is greater than any one of the

E = 60 V
C1 = 100 μF C2 = 10 μF C3 = 20 μF C4 = 320 μF

Figure 6.12 Circuit for Example 6.5
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individual capacitances (C1 ¼ 100 mF, C2 ¼ 10 mF, C3 ¼ 20 mF and C4 ¼
320 mF).

The physical characteristic of the equation for calculating the parallel
equivalent capacitance is that a single parallel equivalent capacitor Ceq has the
total area of plates of the individual capacitors. From the formula of factors
affecting the capacitance (C¼ 8.856 10712kA/d), we can see that if the area of
plates (A) of a capacitor increases, the capacitance will increase. This is shown
in Figure 6.13.

6.2.3 Capacitors in series–parallel

Similar to resistors, capacitors may also be connected in various combinations.
When serial and parallel capacitors are combined together, series–parallel
capacitor circuits result and an example is shown in the following.

Example 6.6: Determine the equivalent capacitance through two terminals a
and b in the circuit of Figure 6.14.

Solution:

C4;5 ¼ C4C5

C4 þ C5
¼ ð0:5mFÞð2mFÞ

ð0:5 þ 2ÞmF
¼ 0:4 mF

C2;3;4;5 ¼ C2 þ C3 þ C4;5 ¼ ð2 þ 0:6 þ 0:4ÞmF ¼ 3 mF

Ceq ¼ C1C2;3;4;5

C1 þ C2;3;4;5
¼ ð6mFÞð3mFÞ

ð6 þ 3ÞmF
¼ 2 mF

Ceq

Figure 6.13 The physical characteristic of parallel Ceq

b

a

C1 = 6 μF

C2 = 2 μF

C4 = 0.5 μF

C3 = 0.6 μF C5 = 2 μF

Figure 6.14 Circuit for Example 6.6
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6.3 Inductor

We have learned about two of the three important fundamental passive circuit
elements (components that absorb but not produce energy), the resistor and
the capacitor. The third element is the inductor (or coil). Inductors have many
applications in electrical and electronic devices, including electrical generators,
transformers, radios, TVs, radars, motors, etc. As previously mentioned, both
capacitors and inductors are energy storage elements. The difference between
the two is that a capacitor stores transferred energy in the electric field, and an
inductor stores transferred energy in the magnetic field. Since inductors are
based on the theory of electromagnetism induction, let us review some concepts
of electromagnetism induction you may have learned in physics that will be
used in the following section.

6.3.1 Electromagnetism induction

6.3.1.1 Electromagnetic field

All stationary electrical charges are surrounded by electric fields, and the move-
ment of a charge will produce a magnetic field. When the charge changes its
velocity of motion (or when the charge is accelerated), an electromagnetic field is
generated. Therefore, whenever a changing current flows through a conductor,
the area surrounding the conductor will produce an electromagnetic field.

The electromagnetic field can be visualized by inserting a current-carrying
conductor (wire) through a hole in a cardboard and sprinkling some iron
filings on it. As the changing current flows through the conductor, the iron
fillings will align themselves with the circles surrounding the conductor; these
are magnetic lines of force. The direction of these lines of force can be deter-
mined by the right-hand spiral rule, as shown in Figure 6.15. The area shows
that the magnetic characteristics are called the magnetic field, as it is produced
by the changing current-carrying conductor, and therefore, it is also called the
electromagnetic field. This is the principle of electricity producing magnetism.

● Right-hand spiral rule:
Thumb = the direction of current.
Four fingers = the direction of magnetic lines of force or direction of the
flux (the total magnetic lines of force).

E

I

→
→

Figure 6.15 Electricity produces magnetism
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Electromagnetic field

The surrounding area of a conductor with a changing current can gen-
erate an electromagnetic field.

6.3.1.2 Faraday’s law

In 1831, British physicist and chemist Michael Faraday discovered how an
electromagnetic field can be induced by a changing magnetic flux. When there
is a relative movement between a conductor and a magnetic field (or a chan-
ging current through the conductor), it will induce a changing magnetic flux F
(the total number of magnetic lines of force) surrounding the conductor, hence
an electromagnetic field is generated. This electromagnetic field will produce
an induced voltage and current.

For example, in Figure 6.16, if a magnet bar is moved back and forth in a
coil of wire (conductor), or if the coil is moved back and forth close to the
magnet and through the magnetic field, the magnetic lines of flux will be cut
and a voltage vL across the coil will be induced (vL can be measured by using a
voltmeter.) Or, an electromotive force (emf, eL) that has an opposite polarity
with vL will be induced, and this will result in an induced current in the coil.
This is the principle of a magnet producing electricity.

Faraday observed that the induced voltage (vL) is directly proportional to
the rate of change of flux (df/dt) and also the number of turns (N) in the coil,
and is expressed mathematically as vL ¼ N(df/dt). In other words, the faster
the relative movement between the conductor and magnetic fields, or the more
the turns the coil has, the higher the voltage will be produced.

Faraday’s law

● When there is a relative movement between a conductor and mag-
netic field, the changing magnetic flux will induce an electromagnetic
field and produce an induced voltage (vL).

● vL is directly proportional to the rate of change of flux (df/dt) and
the number of turns (N) in the coil, vL ¼ N(df/dt).

V

Figure 6.16 Magnet produces electricity
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6.3.1.3 Lenz’s law

In 1834, Russian physicist Heinrich Lenz developed a companion result with
the Faraday’s law. Lenz defined the polarity of induced effect and stated that
an induced effect is always opposed to the cause producing it. When there is a
relative movement between a conductor and a magnetic field (or a changing
current through the conductor), an induced voltage (vL) or induced emf (eL)
and also an induced current (i) will be produced. The polarity of the induced
emf is always opposite to the change of the original current.

When the switch is turned on in the circuit of Figure 6.17, the current (cause)
in the circuit will increase, but the induced emf (effect) will try to stop it from
increasing. When the switch is turned off, the current i will decrease, but the
polarity of induced emf (eL) changes and will try to stop it from decreasing. This
is because an induced current in the circuit flows in a direction that can create a
magnetic field that will counteract the change in the original magnetic flux.

Mathematically, Lenz’s law can be expressed as follows:

If i > 0;
di

dt
> 0; then eL ¼ �L

di

dt
; or vL ¼ L

di

dt

� �

where di/dt is the rate of change of current, and the minus sign for eL is to
remind us that the induced emf always acts to oppose the change in magnetic
flux that generates the emf and current.

The induced voltage (vL) and induced emf (eL) have opposite polarities
(E ¼ 7V); this emf is also called the counter emf. However, the induced vol-
tage (vL) has the same polarity with the direction of induced current (i). This is
similar to the concept of the mutually related reference polarity of voltage and
current.

Lenz’s law

● When there is a changing current through the conductor, an induced
voltage (vL) or induced emf (eL) and also an induced current (i) will
be produced.

E RL eL vL eL vL

+

-

-

+

i

E

+

- +

-

Figure 6.17 Lenz’s law
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● The polarity of the induced emf (eL) is always opposite to the change
of the original current. eL ¼ �L di

dt or vL ¼ L di
dt

The letter L in the above equation is called inductance (or self-inductance),
which is discussed below.

6.3.2 Inductor

An inductor (L) is made by winding a given length of wire into a loop or coil
around a core (centre of the coil). Inductors may be classified as air-core
inductors or iron-core inductors. An air-core inductor is simply a coil of wire.
But this coil turns out to be a very important electric/electronic element
because of its magnetic properties. Iron-core provides a better path for the
magnetic lines of force and a stronger magnetic field for the iron-core inductor
as compared to the air-core inductor.

The schematic symbol for an air-core inductor looks like a coil of wire as
shown in Figure 6.18(a). The schematic symbol for an iron-core inductor is
shown in Figure 6.18(b). Similar to resistors and capacitors, the inductor can
be also classified as fixed and variable.

Inductor L

An inductor is an energy storage element that is made by winding a given
length of wire into a loop or coil around a core.

6.3.3 Self-inductance

When current flows through an inductor (coil) that is the same as a current-
carrying conductor, a magnetic field will be induced around the inductor.
According to the principle of electromagnetic induction, Faraday’s law and
Lenz’s law, when there is a relative movement between an inductor and

L L L L

Air-core Variable

air-core

Iron-core Variable

iron-core

(b)(a)

Figure 6.18 Schematic symbols for inductors
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magnetic field or when current changes in the inductor, the changing magnetic
flux will induce an electromagnetic field resulting in an induced voltage (vL), or
induced emf (eL), and also an induced current (i).

The measurement of the changing current in an inductor that is able to
generate induced voltage is called inductance. The inductor is symbolized by L
while inductance is symbolized by L, and the unit of inductance is henry (H).
The resistor, capacitor and inductor are circuit components, and the resistance,
capacitance and inductance are the value or capacity of these components. So
inductance is the capacity to store energy in the magnetic field of an inductor.

Inductance L (or self-inductance)

The measurement of the changing current in an inductor that is able to gene-
rate induced voltage is called inductance that is measured in henries (H).

6.3.4 Relationship between inductor voltage and current

Lenz’s law vL ¼ L(di/dt) shows the relationship between current and voltage
for an inductor, and it is Ohm’s law for an inductor. There, the inductance (L)
and the current rate of change (di/dt) determine the induced voltage (nL). The
induced voltage nL is directly proportional to the inductance L and the current
rate of change di/dt. This relationship can be illustrated as in Figure 6.19.

Ohm’s law for an inductor

An inductor’s voltage nL is directly proportional to the inductance L and
the rate of change current di/dt: nL ¼ L(di/dt).

Ohm’s law for an inductor nL ¼ L(di/dt) has a similar form as Ohm’s law
for a capacitor iC ¼ C(dnC/dt). These two are very important formulas that will
be used in future circuits.

Quantity Quantity symbol Unit Unit symbol

Inductance (or Self-Inductance) L Henry H

L

+

-
dt

di

dt

di

vL = L

     i

vL
L

Figure 6.19 Characteristics of an inductor’s voltage and current
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The larger the inductance, or the greater the change of current, the higher
the induced voltage in the coil. When the current does not change with
time (DC current), i.e. di/dt ¼ 0, the inductor voltage (vL) is also zero. Zero
voltage means that an inductor acts like a short circuit for DC current.
Therefore, the inductor may play an important role for passing the DC current.
This is a very important characteristic of an inductor and is opposite to that of
a capacitor. Recall that a capacitor can block DC and acts like an open circuit
for DC.

Passing DC

● Voltage across an inductor is zero when a DC current flows through
it (short-circuit equivalent).

● An inductor can pass DC.

6.3.5 Factors affecting inductance

There are some basic factors affecting the inductance of an inductor (iron-
core). These parameters are determined by the construction of an inductor as
shown in the following (if all other factors are equal):

● The number of turns (N) for the coil: More turns for a coil will produce a
stronger magnetic field resulting in a higher induced voltage and
inductance.

● The length of the core (l): A longer core will make a loosely spaced coil and
a longer distance between each turn, and therefore producing a weaker
magnetic field resulting in a smaller inductance.

● The cross-section area of the core (A): A larger core area requires more
wire to construct a coil, and therefore it can produce a stronger magnetic
field resulting in a higher inductance.

● The permeability of the material of the core (m): A core material with
higher permeability will produce a stronger magnetic field resulting in a
higher inductance. (Permeability of the material of the core determines the
ability of material to produce a magnetic field. Different materials have
different degrees of permeability.)

Factors affecting the inductance of an inductor are illustrated in Figure 6.20.

Factors affecting inductance

L ¼ N2Am
l
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Where inductance is symbolized by L, measured in henries (H); area of the core
is symbolized by A, measured in m2; permeability is symbolized by m; number
of turns is symbolized by N.

From the expression of the factor affecting inductance, we can see that
either when the number of turns of a coil increases, or when the cross-section
area of the core increases, or when core material with higher permeability is
chosen, or when the length of core is reduced, the inductance of an inductor will
increase.

6.3.6 The energy stored by an inductor

Same as a capacitor, an inductor is also an energy storage element. When
voltage is applied to two leads of an inductor, the current flows through the
inductor and will generate energy, and this energy is then absorbed by the
inductor and stored in the magnetic field as electromagnetic field builds up.
The energy stored by an inductor can be derived as follows:

The instantaneous electric power of an inductor is given by

p ¼ ivL

Since the relationship between power and work is P ¼ W=t (energy is the
ability to do work), and the instantaneous power for this expression is p¼ dw/dt.

Substituting p ¼ dw/dt and vL ¼ L(di/dt) into the instantaneous power
expression p ¼ inL gives

dw

dt
¼ Li

di

dt

A
N

L

μ

Figure 6.20 Factors affecting inductance
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Integrating both sides:

ðt

0

dw

dt
dt ¼

ðt

0

Li
di

dt
dt

Therefore

w ¼ L

ðt

0

idi; i:e: w ¼ 1
2

Li2

Note: If you haven’t learned calculus, just keep in mind thatWL ¼ (½)Li2, and
skip the above mathematic derivation process.

This equation has a similar form with the energy equation of a capacitor
(WC ¼ (½)Cv2).

The equation for energy stored by an inductor shows that the inductor’s
energy depends on the inductance and the inductor’s current.

When current increases, an inductor absorbs energy and stores it in the
magnetic field of the inductor. When current decreases, an inductor releases the
stored energy to the circuit. Same as a capacitor, an inductor will not be able to
release more energy than it has stored, so it is also called a passive element.

Energy stored by an inductor

WL ¼ 1
2

Li2

where inductance L is measured in H, energy W is measured in J and
current i is measured in A.

Example 6.7: Current in a 0.01 H inductor is i(t) ¼ 5e72tA, determine the
energy stored by the inductor and induced voltage nL.

Solution:

WL ¼ 1
2

Li2 ¼ 1
2
ð0:01 HÞð5e�2tAÞ2 ¼ 1

2
ð0:01 HÞð25e�4tAÞ ¼ 0:125e�4tJ

vL ¼ L
di

dt
¼ 0:01

d
dt
ð5e�2tÞ ¼ 0:01 Hð�2Þð5Þðe�2tAÞ ¼ �0:1e�2tV

Note: If you haven’t learned calculus, skip the vL part.

6.3.7 Winding resistor of an inductor

When winding a given length of wire into a loop or coil around a core, an
inductor is formed. A coil or inductor always has resistance. This is because
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there is always a certain internal resistance distributed in the wire, and the
longer the wire, the more turns of coils there are, and thus the wire will have a
significantly higher internal resistance. This is called the winding resistance of a
coil (Rw). An inductor circuit with winding resistance is shown in Figure 6.21.

Winding resistance Rw

The internal resistance in the wire of an inductor.

Example 6.8: The winding resistance for an inductor in the circuit of
Figure 6.22 is 5 O. When the current approaches a steady state (does not
change any more), the energy stored by the inductor is 4 J. What is the
inductance of the inductor?

Rw

L

Figure 6.21 Winding resistance

L

I

E = 20 V 

R = 45 Ω

Rw = 5 Ω

Figure 6.22 Circuit for Example 6.8

Solution:

E ¼ 20 V; R ¼ 45O; Rw ¼ 5O; and WL ¼ 4 J: L ¼ ?

I ¼ E

R þ Rw
¼ 20 V

ð45 þ 5ÞO ¼ 0:4 A
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From WL = ½(Li2)
solving for L:

L ¼ 2WL

I2
¼ 2 � 4 J

ð0:4 AÞ2 ¼ 50 H

(i ¼ I since the current approaches to steady state)

6.4 Inductors in series and parallel

Similar to resistors and capacitors, inductors may also be connected in series or
in parallel to obtain a suitable resultant value that may be either higher or
lower than a single inductor value. The equivalent (total) series or parallel
inductance has the same form as the equivalent (total) series or parallel resis-
tance. The equivalent inductance will increase if inductors are in series, and the
equivalent (total) inductance will decrease if inductors are in parallel.

6.4.1 Inductors in series

A circuit of n inductors connected in series is shown in Figure 6.23.

Equivalent series inductance

Leq ¼ L1 þ L2 þ . . . þ Ln

This is the equation for calculating the equivalent (total) series inductance.
As you may have noticed, this formula has the same form as the formula for
calculating series resistances (Req ¼ R1 þ R2 þ . . . þ Rn).

6.4.2 Inductors in parallel

A circuit of n inductors connected in parallel is shown in Figure 6.24.

…
Leq

L1 L2 Ln

Figure 6.23 Inductors in series

L1 L2 LnLeq …

Figure 6.24 Inductors in parallel
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Equivalent parallel inductance

● n inductors in parallel: Leq ¼ 1
ð1=L1Þþð1=L2Þþ���þð1=LnÞ

● Two inductors in parallel: Leq ¼ L1L2

L1þL2

These are the equations for calculating the equivalent parallel inductance.
As you may have noticed, these equations have the same forms as the equa-
tions for calculating parallel resistance Req ¼ 1/(1/R1) þ (1/R2) þ . . . þ (1/Rn),
also Req ¼ R1R2/(R1 þ R2).

6.4.3 Inductors in series–parallel

Similar to resistors and capacitors, inductors may also be connected in various
combinations of series and parallel. An example of a series–parallel inductive
circuit is shown in the following.

Example 6.9: Determine the equivalent inductance for the series–parallel
inductive circuit shown in Figure 6.25.

Solution:

Leq ¼ ½ðL4 þ L5Þ==L3 þ ðL2 þ L6Þ�==L1

Leq ¼ ðð1 þ 1Þ � 2Þ=ðð1 þ 1Þ þ 2Þ þ 1 þ 1½ � � 3
ðð1 þ 1Þ � 2Þ=ðð1 þ 1Þ þ 2Þ þ 1 þ 1½ � þ 3

H ¼ 1:5 H

Example 6.10: There are three inductors in a series–parallel inductive circuit:
40, 40 and 50 H. If Leq ¼ 70 H, how are these inductors connected?

Leq

L2 = 1H

L1 = 3H

L6 = 1H L5 = 1H

L4 = 1H
L3 = 2H

Figure 6.25 Circuit for Example 6.9
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Solution:

Leq ¼ 50 H þ ð40 HÞ==ð40 HÞ ¼ 70 H

or Leq ¼ 50 H þ 40 � 40
40 þ 40

H ¼ 70 H

So two 40 H inductors are in parallel, and then in series with a 50 H inductor.

Summary

Capacitor

● Capacitor (C): An energy storage element that has two conductive plates
separated by an isolating material (the dielectric).

● Capacitor charging: Capacitor stores absorbed energy.
● Capacitor discharging: Capacitor releases energy to the circuit.
● Capacitance (C): The value of the capacitor, C ¼ Q/U.
● Factors affecting capacitance:

C ¼ 8:85 � 10�12 kA

d

● Leakage current: A very small current through the dielectric.
● Breakdown voltage: The voltage that causes a capacitor’s dielectric to

become electrically conductive, it can explode or permanently damage the
capacitor.

● Blocking DC: A capacitor can block DC current (open-circuit equivalent).

Inductor

● Electromagnetic field: The surrounding area of a conductor with a chan-
ging current can generate an electromagnetic field.

● Faraday’s law:

vL ¼ N
df
dt

● Lenz’s law :

eL ¼ �L
di

dt
or vL ¼ L

di

dt

● Inductor (L): An energy storage element that is made by winding a given
length of wire into a loop or coil around a core.

● Inductance (L): The measurement of the changing current in an inductor
that produces the ability to generate induced voltage is called inductance.
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● Factors affecting inductance:

L ¼ N2Am
l

● Winding resistance (Rw): The internal resistance in the wire of an inductor.

The characteristics of the resistor, capacitor and inductor

Experiment 6: Capacitors

Objectives

● Understand the characteristics of a capacitor through experiment.
● Verify the equations of capacitors in series and parallel through

experiment.
● Apply the voltage divider rule in a capacitive circuit.
● Analyse experimental data, circuit behaviour and performance, and com-

pare them to the theoretical equivalents.

Background information

● Parallel equivalent capacitance:

Ceq ¼ C1 þ C2 þ � � � þ Cn

● Series equivalent capacitance:

Ceq ¼ 1
ð1=C1Þ þ ð1=C2Þ þ � � � þ ð1=CnÞ

Characteristic Resistor Capacitor Inductor

Ohm’s law V ¼ IR iC ¼ C(dnC/dt) nL ¼ L(di/dt)

Energy W ¼ pt or dw ¼ pdt WC ¼ ½(Cn2) WL ¼ ½(Li2)

Series Req ¼ R1 þ R2

þ . . . þ Rn

Ceq ¼ 1/[(1/C1)
þ (1/C2) þ . . .

þ (1/Cn)]
Two capacitors:

Ceq ¼ C1C2/
(C1 þ C2)

Leq ¼ L1 þ L2

þ . . . þ Ln

Parallel Req ¼ 1/[(1/R1)
þ (1/R2) þ . . .

þ (1/Rn)]
Two resistors:

Req ¼ R1R2/
(R1 þ R2)

Ceq ¼ C1 þ C2 þ . . .

þ Cn

Leq ¼ 1/[(1/L1)
þ (1/L2) þ . . . þ
(1/Ln)]

Two inductors:
Req ¼ L1L2/
(L1 þ L2)

Elements
in DC

Open-circuit
equivalent

Short-circuit
equivalent
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When n ¼ 2:

Ceq ¼ C1C2

C1 þ C2

● Voltage divider rule for capacitive circuit:

VC1 ¼ E
Ceq

C1
; VC2 ¼ E

Ceq

C2

Recall the voltage divider rule for resistive circuit:

VR1 ¼ E
R1

Req
VR2 ¼ E

R2

Req

Equipment and components

● Multimeter
● Breadboard
● DC power supply
● Z meter or LCZ meter (or any other measuring instruments that can be

used to measure capacitance):
● Z meter: A measuring instrument that can be used to measure the

values of capacitors.
● LCZ meter: A measuring instrument that can be used to measure the

values of capacitors and inductors.
● Capacitors:

● 30 and 470 mF electrolytic capacitors each
● Four non-electrolytic capacitors with any values

Note: Electrolytic capacitors are polarized. Connect the positive lead of the
capacitor to the positive terminal of the DC power supply, and negative lead to
the negative terminal of the DC power supply. Non-electrolytic capacitors are
non-polarized, so they can be connected either way in a circuit.

Procedure

Part I: Capacitors in series and parallel

1. Take four non-electrolytic capacitors, short circuit each capacitor with a
bit of wire to release or discharge the stored charges on the capacitor.
Record their nominal values in Table L6.1. (A capacitor can hold its stored
charges for days or weeks and can shock you even when it is not connected
to a circuit.)

Table L6.1

Capacitor C1 C2 C3 C4

Nominal value
Measured value
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2. Measure the value of each capacitor using a Z meter or LCZ meter and
record in Table L6.1.

3. Connect each circuit as shown in Figure L6.1(a, b and c) on the bread-
board. Calculate the equivalent capacitance for each circuit. Record the
values in Table L6.2.

4. Measure the equivalent capacitance for each circuit in Figure L6.1. Record
the values in Table L6.2.

5. Compare the measured values and calculated values, are there any sig-
nificant differences? If so, explain the reasons.

Part II: Apply voltage divider rule in the capacitive circuit

1. Take two capacitors with the value shown in Table L6.3, short circuit each
capacitor with a bit of wire to release or discharge the stored charges on the
capacitor.

2. Connect a series capacitive circuit as shown in Figure L6.2 on the
breadboard.

C1 C2 C3 C4 C1 C2 C3 C4

C1

C2

C3

C4

(a) (b) (c)

Figure L6.1 Capacitors in series and parallel

Table L6.2

Equivalent capacitance Ceq for Figure

L6.1(a)

Ceq for Figure

L6.1(b)

Ceq for Figure

L6.1(c)

Formula for calculations
Calculated value
Measured value

Table L6.3

Capacitor C1 C2

Nominal value 30 mF 470 mF
Measured value
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3. Calculate VC1 and VC2 in the circuit of Figure L6.2 using the voltage divider
rule. Record the values in Table L6.4.

4. Measure the voltage across each capacitor from Figure L6.2 using the
multimeter (voltmeter function). Record the values in Table L6.4.

5. Compare the measured values and calculated values, are there any sig-
nificant differences? If so, explain the reasons.

Note: Take down the measurement quickly, otherwise the capacitor will dis-
charge gradually.

Conclusion

Write your conclusions below:

E = 6 V
VC1

VC2

C1 = 30 μF

C2 = 470 μF

Figure L6.2 Capacitor in series

Table L6.4

VC1
VC2

Formula for calculations
Calculated value
Measured value
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Chapter 7

Transient analysis of circuits

Objectives

After completing this chapter, you will be able to:

● understand the first-order circuits and concepts of the step response and
source-free response of the circuits

● understand the initial conditions in the switching circuit
● understand the concepts of the transient and steady states of RL and RC

circuits
● determine the charging/discharging process in an RC circuit
● determine the energy storing/releasing process in an RL circuit
● understand the concepts of time constants for RL and RC circuits
● plot the voltages and currents verse time curves for RL and RC circuits
● understand the relationship between the time constant and the charging/

discharging in an RC circuit
● understand the relationship between the time constant and the energy

storing/releasing in an RL circuit

7.1 Transient response

7.1.1 The first-order circuit and its transient response

There are three basic elements in an electric circuit, the resistor R, capacitor C
and inductor L. The circuits in this chapter will combine the resistor(s) R with
an energy storage element capacitor C or an inductor L to form an RL
(resistor–inductor) or RC (resistor–capacitor) circuit. These circuits exhibit the
important behaviours that are fundamental to much of analogue electronics,
and they are used very often in electric and electronic circuits.

Analysis RL or RC circuits still use Kirchhoff’s current law (KCL) and
Kirchhoff’s voltage law (KVL). The main difference between these types of cir-
cuits and pure resistor circuits is that the pure resistor circuits can be analysed by
algebraicmethods. Since the relationship of voltages and currents in the capacitor
and inductor circuits is expressed by the derivative, differential equations (the
equations with the derivative) will be used to describe RC and RL circuits.
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RL or RC circuits that are described by the first-order differential equa-
tions, or the circuits that include resistor(s), and only one single energy storage
element (inductor or capacitor), are called the first-order circuits.

First-order circuit

● The circuit that contains resistor(s), and a single energy storage ele-
ment (L or C).

● RL or RC circuits that are described by the first-order differential
equations.

We have discussed the concept of charging/discharging behaviour of the
energy storage element capacitor C in chapter 6. Another energy storage ele-
ment inductor L also has the similarly energy storing/releasing behaviour. The
difference is that charging/discharging of a capacitor is in the electric filed, and
the energy storing/releasing of an inductor is in the magnetic field.

There are two types of circuit states in RL or RC circuit, the transient and
steady states.

The transient state is the dynamic state that occurs by a sudden change of
voltage, current, etc. in a circuit. That means the dynamic state of the circuit has
been changed, such as the process of charging/discharging a capacitor or energy
storing/releasing for an inductor as the result of the operation of a switch.

The steady-state is an equilibrium condition that occurs in a circuit
when all transients have finished. It is the stable-circuit state when all the
physical quantities in the circuit have stopped changing. For the process of
charging/discharging a capacitor or energy storing/releasing for an induc-
tor, it is the result of the operation of a switch in the circuit after a certain
time interval.

Transient state: The dynamic state that occurs when the physical quan-
tities have been changed suddenly.

Steady state: An equilibrium condition that occurs when all physical
quantities have stopped changing and all transients have finished.

7.1.2 Circuit responses

A response is the effect of an output resulting from an input. The first-order
RL or RC circuit has two responses, one is called the step response, and the
other is the source-free response.

The step response for a general system states that the time behaviour of the
outputs when its inputs change from zero to unity value (1) in a very short
time. And the step response for an RC or RL circuit is the circuit responses
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(outputs) when the initial state of the energy store elements L or C is zero and
the input (DC power source) is not zero in a very short time.

It is when a DC source voltage is instantly applied to the circuit, the energy
store elements L or C hasn’t stored energy yet and the output current or vol-
tage generated in this first-order circuit. Or the charging process of the energy
storing process of the capacitor or inductor. The step response can be analo-
gized as a process to fill up water in a reservoir or a water bottle.

Following are some of the basic terms for a step response:

● The initial state: the state when an energy storage element hasn’t stored
energy yet.

● Input (excitation): the power supply.
● Output (response): the resultant current and voltage.

Step response

The circuit response when the initial condition of the energy store ele-
ments (L or C) is zero, and the input (DC power source) is not zero in a
very short time, i.e. the charging/storing process of the C or L.

The source-free response or natural response is opposite to the step
response. It is the circuit response when the input is zero, and the initial con-
dition of the capacitor or inductor is not zero (the energy has been stored to
the capacitor or inductor). It is the discharging or energy releasing process of
the capacitor or inductor in an RC or RL circuit. The source-free response can
also be analogized as the process to release water in a reservoir or a water
bottle.

Source-free (or natural) response

The circuit response when the input (DC power source) is zero, and the
initial condition of the energy store elements (L or C) is not zero, i.e. the
discharging/releasing process of the C or L.

When an RC or RL circuit that is initially at ‘rest’ with zero initial condi-
tion and a DC voltage source is switched on to this circuit instantly, this DC
voltage source can be analogized as a unit-step function, since it ‘steps’ from
zero to a unit constant value (1). So the step response can be also called the
unit-step response.

The unit-step response is defined as follows: All initial conditions of the
circuit are zero at time less than zero (t 5 0), i.e. at the moment of time before
the power turns on. And the response v(t) or output voltage for this condition
is obviously also zero. After the power turns on (t 4 0), the response v(t) will
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be a constant unit value 1, as shown in the following mathematical expression
and also can be illustrated in Figure 7.1(b).

vðtÞ ¼ 0; t < 0
1; t > 0

�

This unit-step function can be expressed as the switch in the circuit of Figure
7.1(a), when t ¼ 0, the switch turns to position 1, a DC power source is con-
nected to the RC circuit, and produces a unit-step response to the circuit.

7.1.3 The initial condition of the dynamic circuit

The process of charging and discharging of a capacitor needs a switch to
connect or disconnect to the DC source in the RC circuit, as shown in the
circuit of Figure 7.1(a). The instantly turned on or turned off the switch, or
the source input that is switched ‘on’ or ‘off’ in an RC or RL circuit is called
the switching circuit. At the moment when the circuit is suddenly switched, the
capacitor voltage and inductor current will not change instantly, this concept
can be described as t ¼ 07 and t ¼ 0þ.

● t ¼ 07 is the instant time interval before switching the circuit (turn off the
switch).

● t ¼ 0þ is the instant time interval after switching the circuit (turn on the
switch).

At this switching moment, the non-zero initial capacitor voltage
and inductor current can be expressed as follows:

vCð0þ Þ ¼ vCð0� Þ and iLð0þÞ ¼ iLð0�Þ
And

● vC (07) is the capacitor voltage at the instant time before the switch is
closed.

● vC (0þ) is the capacitor voltage at the instant time after the switch
is closed.

● vL (07) is the inductor current at the instant time before the switch is closed.
● iL (0þ) is the inductor current at the instant time after the switch is closed.

(a) (b)

0
t

1C

1

2 3

R

E = 1 V

Figure 7.1 Step function
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Initial conditions

● Switching circuit: the instantly turned on or turned off switch in the
circuit.

● t ¼ 07: the instant time interval before the switch is closed.
● t ¼ 0þ: the instant time interval after the switch is closed.
● At the instant time before/after the switch is closed, vC and iL do not

change instantly: vCð0þÞ ¼ vCð0�Þ and iLð0þÞ ¼ iLð0�Þ:

7.2 The step response of an RC circuit

Chapter 6 has discussed the charging and discharging process of a capacitor.
When there are no resistors in the circuit, a pure capacitive circuit will
fill with electric charges instantly, or release the stored electric charges
instantly. But there is always a small amount of resistance in the practical
capacitive circuits. Sometimes a resistor will be connected to a capacitive
circuit that is used very often in the different applications of the electronic
circuits.

Figure 7.2 is a resistor–capacitor series circuit that has a switch connecting
to the DC power supply. Such a circuit is generally referred to as an RC circuit.
All important concepts of step response (charging) or source-free response
(discharging) and transient and steady state of an RC circuit can be analysed
by this simple circuit.

7.2.1 The charging process of an RC circuit

Assuming the capacitor has not been charged yet in the circuit of Figure 7.2,
the switch is in position 2 (middle).

What will happen when the switch is turned to position 1, and the DC
power source (E) is connected to the RC series circuit as shown in the circuit of
Figure 7.3?

E C

1 R

2 3

Figure 7.2 An RC circuit
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The energy storing element capacitor C will start charging. Since there is a
resistor in this circuit, the process of the capacitor’s charging will not finish
instantly, the capacitor will gradually store the electric charges.

This RC circuit is similar to a reservoir (or a water bottle) filling with water
to capacity. If the door of the reservoir opened only to a certain width, the
reservoir will need more time to fill up with the water (or the water bottle will
need more time to fill up with water if the tab didn’t fully open).

The voltage across the capacitor vC is not instantaneously equal to the
source voltage E when the switch is closed to 1. The capacitor voltage v is zero
at the beginning. It needs time to overcome the resistance R of the circuit to
gradually charge to the source voltage E. After this charging time interval or
the transient state of the RC circuit, the capacitor can be fully charged; this is
shown Figure 7.4.

Figure 7.4(b) indicates that capacitor voltage vC increases exponentially
from zero to its final value (E). The voltage across the capacitor will be
increased until it reaches the source voltage (E), at that time no more charges
will flow onto the plates of the capacitor, i.e. the circuit current stops flowing.
And the capacitor will reach a state of dynamic equilibrium (steady state).

The state of the circuit voltage or current after charging is called the steady
state. Once they reach the steady state, the current and voltage in the circuit
will not change any more, and at this time, the capacitor voltage is equal to the
source voltage, i.e. vC ¼ E. The circuit current is zero, and the capacitor is
equivalent to an open circuit as shown in the circuit of Figure 7.4(a). For this

E

1

3

R

vC= E

E
vC

0

(a) (b)

t

Figure 7.4 The charging process of an RC circuit

E C

1 vR

3

R

vC

+

−

−+

i

Figure 7.3 RC charging circuit
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open circuit, the current stops to flow. Therefore, there is no voltage drop
across the resistor.

The phenomena of the capacitor voltage vC increases dexponentially from
zero to its final value E (or a charging process) in an RC circuit can be also
analysed by the quantity analysis method as follows.

7.2.2 Quantity analysis for the charging process of the RC circuit

The polarities of the capacitor and resistor voltages of the RC circuit are shown
in Figure 7.3. Applying KVL to this circuit will result in

vR þ vC ¼ E ð7:1Þ

The voltage drop across the resistor is Ri (Ohm’s law) while the current
through this circuit is i ¼ CðdvC=dtÞ (from chapter 6, section 1.9), i.e.

vR ¼ Ri i ¼ C
dvC

dt

Therefore,

vR ¼ RC
dvC

dt
ð7:2Þ

Substituting (7.2) into (7.1) yields

RC
dvC

dt
þ vC ¼ E ð7:3Þ

● Determine the capacitor voltage vC

Note: If you haven’t learned calculus, then just keep in mind that (7.4) is the
equation for the capacitor voltage vC during the discharging process in an RC
circuit, and skip the following mathematical derivation process.

The first-order differentia (7.3) can be rearranged as

vC � E ¼ �RC
dvC

dt

Divide both sides by 7RC

� 1
RC

ðvC � EÞ ¼ dvC

dt

rearrange

� dt

RC
¼ dvC

vC � E
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Integrating the above equation on both sides yields

� 1
RC

ðt

0

dt ¼
ðvC

0

dvC

vC � E

� t

RC

���t
0
¼ ln vC � EjvC

0

��
rearrange

� t

RC
¼ ln vC � Ejj � ln �Ej j

ln
vC � E

�E

����
���� ¼ � t

RC

Taking the natural exponent (e) on both sides results in

eln ðvc�EÞ=ð�EÞj j ¼ e�t=RC

vC � E

�E
¼ e�t=RC

Solve for vC

vC ¼ Eð1 � e�t=RCÞ ð7:4Þ

The above equation is the capacitor voltage during the charging process in
an RC circuit.

● Determine the resistor voltage vR

Applying KVL in the circuit of Figure 7.3

vR þ vC ¼ E

rearrange

vR ¼ E � vC ð7:5Þ

Substituting the capacitor voltage vC ¼ Eð1 � e�t=RCÞ into (7.5) yields

vR ¼ E � Eð1 � e�t=RCÞ

Therefore, the resistor voltage is

vR ¼ Ee�t=RC
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● Determine the charging current i

Dividing both sides of the equation vR ¼ Ee�t=RC by R yields

vR

R
¼ E

R
e�t=RC

Applying Ohm’s law to the left side of the above equation will result in the
charging current i

i ¼ E

R
e�t=RC

Charging equations for an RC circuit

● Capacitor voltage: vC ¼ Eð1 � e�t=RCÞ
● Resistor voltage: vR ¼ Ee�t=RC

● Charging current: i ¼ E
R e�t=RC

Mathematically, these three equations indicate that capacitor voltage
increases exponentially from initial value zero to the final value E; the resistor
voltage and the charging current decay exponentially from initial value E and
E/R (or Imax) to zero, respectively. And t is the charging time in the equations.

According to the above mathematical equations, the curves of vC, vR and i
versus time can be plotted as in Figure 7.5.

Example 7.1: For the circuit shown in Figure 7.3, if E ¼ 25 V, R ¼2.5 kO and
C ¼ 2.5 mF, the charging time t ¼ 37.5 ms. Determine the resistor voltage vR
and capacitor voltage vC.

Solution:

RC ¼ (2.5 kO)(2.5 mF) ¼ 6.25 ms
● vR ¼ Ee�t=RC

¼ ð25 VÞðeð�37:5=6:25ÞmsÞ
¼ ð25 VÞðe�6Þ
� 0:062 V

vC

E

t0

E
R
E

ivR

tt 00

Figure 7.5 vC, vR and i versus t
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● vC ¼ Eð1 � e�t=RCÞ
¼ ð25 VÞð1 � eð�37:5=6:25ÞmsÞ
¼ ð25 VÞð1 � e�6Þ
¼ 24:938 V

These results can be checked by using KVL: vR þ vC ¼ E.
Substituting the values into KVL yields

vR þ vC ¼ E

ð0:062 þ 24:938ÞV ¼ 25 V ðcheckedÞ

Thus, the sum of the capacitor voltage and resistor voltage must be equal to the
source voltage in the RC circuit.

7.3 The source-free response of the RC circuit

7.3.1 The discharging process of the RC circuit

Consider a capacitor C that has initially charged to a certain voltage value v0
(such as the DC source voltage E) through the charging process of the last sec-
tion in the circuit of Figure 7.4(a). The voltage across the capacitor is vC ¼ E,
whose function will be the same as a voltage source in the right loop of the RC
circuit in Figure 7.6.

Once the switch turns to position 3 as shown in the circuit of Figure 7.6(b),
the capacitor will start discharging, but now it will be different than a pure
capacitive circuit that can discharge instantly. The discharging time will
increase since there is a resistor in the circuit. It needs some time to overcome
the resistance and eventually release all the charges from the capacitor. Once
the capacitor has finished the discharge, the capacitor voltage vC will be 0, the
discharging curve is shown in Figure 7.7.

This is similar to a reservoir that has an opened door to release the water (or
the water bottle has an opened lid to pour water). But the releasing door of a
reservoir is not open wide enough, so it will need some time to release all the water.

vR

3

1

E vC = E

+

−

+−

iE C

1 R

2 3

vC = E

(a) (b)

Figure 7.6 Discharging process of the RC circuit
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7.3.2 Quantity analysis of the RC discharging process

The equations used to calculate the capacitor voltage vC, resistor voltage vR
and discharging current i of the capacitor discharging circuit can be determined
by the following mathematical analysis method.

Applying KVL to the circuit in Figure 7.6(b) will result in

vR � vC ¼ 0 or vR ¼ vC ð7:6Þ
Since

vR ¼ iR and i ¼ �C
dvC

dt

Substitute i into the equation of vR

vR ¼ �RC
dvC

dt
ð7:7Þ

The negative sign (7) in the above equation is because the current i and vol-
tage vC in the circuit of Figure 7.6(b) have opposite polarities.

Substitute (7.7) into the left-hand side of (7.6)

�RC
dvC

dt
¼ vC

Divide both sides of the above equation by 7RC

dvC

dt
¼ � 1

RC
vC ð7:8Þ

● Determine the capacitor voltage vC

Note: If you haven’t learned calculus, then just keep in mind that (7.10) is the
equation for the capacitor voltage vC during the charging process in an RC
circuit, and skip the following mathematical derivation process.

Integrating (7.8) on both sides yields

ð
dvC

vC
¼ � 1

RC

ð
dt

t

vC

E

0

Figure 7.7 Discharge curve of the RC circuit

Transient analysis of circuits 205

07_Wang_Chapter07_p195-226 29 May 2010; 11:24:49



ln jvCj ¼ � 1
RC

t þ ln A

(ln A – the constant of the integration)

or

ln jvCj � ln A ¼ � 1
RC

t

Rearrange ln
vC

A

��� ��� ¼ � t

ðRCÞ
Taking the natural exponent (e) on both sides of the above equation:

eln jvC=Aj ¼ e�t=RC

Therefore,

vC

A
¼ e�t=RC or vC ¼ Ae�t=RC ð7:9Þ

As the capacitor has been charged to an initial voltage value v0 before
being connected to the circuit in Figure 7.6(b), the initial condition (initial
value) of the capacitor voltage should be

vCð0�Þ ¼ V0

v0 can be any initial voltage value for the capacitor, such as the source
voltage E.

Immediately before/after the switch is closed to the position 3 in the circuit
of Figure 7.6(b), vC does not change instantly (from the section 7.1.3),
therefore,

vCð0 þ Þ ¼ vCð0 � Þ or vC ¼ V0

When t ¼ 0, substituting vC ¼ v0 in (7.9) yields

V0 ¼ Ae�0=RC

That is

V0 ¼ A
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Substitute v0 ¼ A into (7.9)

vC ¼ V0e�t=RC ð7:10Þ

This is the equation of the capacitor voltage for the RC discharging circuit.

● Determine the resistor voltage vR

According to (7.6)

vR ¼ vC

Substitute (7.10) into (7.6) yields

vR ¼ V0e�t=RC ð7:11Þ

● Determine the discharge current i
Since

i ¼ vR

R
ðOhm

‘

s lawÞ

Substitute (7.11) into the above Ohm’s law will result in

i ¼ V0

R
e�t=RC

Discharging equations for an RC circuit

● Capacitor voltage: vC ¼ V0e�t=RC

● Resistor voltage: vR ¼ V0e�t=RC

● Discharging current: i ¼ V0
R e�t=RC

In the above equations, t is the discharging time. V0 is the initial capacitor
voltage.

These three equations mathematically indicate that capacitor voltage vC
and the resistor voltage vR decay exponentially from initial value V0 to the final
value zero; and the discharging current i decays exponentially from the initial
value v0/R (or Imax) to the final value zero. The curves of vC, vR and i versus
time t can be illustrated as shown in Figure 7.8.

The discharging voltage and current decay exponentially from the initial
value to zero, this means that the capacitor gradually releases the stored
energy, and eventually the energy stored in the capacitor will be released to the
circuit completely, and it will be received by the resistor and convert to heat
energy.
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7.3.3 RC time constant t
In an RC circuit, the charging and discharging is a gradual process that
needs some time. The time rate of this process depends on the values of
circuit capacitance C and resistance R. The variation of the R and C will
affect rate of the charging and discharging. The product of the R and C is
called the RC time constant and it can be expressed as a Greek letter t (tau),
i.e. t ¼ RC.

Generally speaking, the time constant is the time interval required for a
system or circuit to change from one state to another, i.e. the time required
from the transient to the steady state or to charge or discharge in an RC
circuit.

RC time constant

t ¼ RC

The time constant t represents the time the capacitor voltage reaches (increa-
ses) to 63.2% of its final value (steady state) or the time the capacitor voltage
decays (decreases) below to 36.8% of its initial value. The higher the R and C
values (or when the time constant t increases), the longer the charging or dis-
charging time; lesser the vC variation, longer the time to reach the final or
initial values. This can be shown in Figure 7.9.

Quantity Quantity symbol Unit Unit symbol

Resistance R Ohm O
Capacitance C Farad F
Time constant t Second s

t

vC, vR

V0

0 t0

i

R
V0

Figure 7.8 The curves of vC, vR and i versus t
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7.3.4 The RC time constant and charging/discharging

The capacitor charging/discharging voltages when the time is 1 t and 2 t can be
determined from the equations of the capacitor voltage in the RC charging/
discharging circuit.

That is

vC ¼ Eð1 � e�t=� Þ and vC ¼ V0e�t=�

For example, when v0 ¼ E ¼ 100 V,
● at t ¼ 1 t

● Capacitor charging voltage:

vC ¼ Eð1 � e�t=� Þ
¼ 100 Vð1 � e�1�=� Þ
� 63:2 V

● Capacitor discharging voltage:

vC ¼ V0e�t=�

¼ 100 V e�1�=�

� 36:8 V

● at t ¼ 2 t
● Capacitor charging voltage:

vC ¼ Eð1 � e�t=� Þ
¼ 100 Vð1 � e�2�=� Þ
� 86:5 V

● Capacitor discharging voltage:

vC ¼ V0e�t=�

¼ 100 V e�2�=�

� 13:5 V

(a) (b)

vC

E

t0
τ Increases

E

vC

t0

τ Increases

Figure 7.9 The effect of the time constant t to vC. (a)Charging and (b) discharging
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Using the same method as above, the capacitor charging/discharging vol-
tages can be determined when the time is 3, 4 and 5 t. These results are sum-
marized in Table 7.1 and Figure 7.10.

The data in Table 7.1 and graphs in Figure 7.10 mean that when the time
constant is 1 t, the capacitor will charge to 63.2% of the final value (source vol-
tage), and discharge to 36.8% of the initial value (the initial capacitor voltage). If
the final and initial value are 100 V, it will charge to 63.2 V and discharge to 36.8 V.

When the time constant is 2 t, the capacitor will charge to 86.5% of the
final value, and discharge to 13.5% of the initial value.

According to this sequence, if the time constant is 5 t, the capacitor will
charge to 99.3% of the final value, and discharge to 0.67% of the initial value.

When the time is 5 t, the circuit will reach the steady state, which means
that the capacitor will charge approaching to the source voltage E, or discharge
approaching to zero. Therefore, when time has passed 4 to 5 t, charging/dis-
charging of the capacitor will be almost finished. After 5 t, the transient state
of RC circuit will be finished and enter the steady state of the circuit.

Time constant t for and charging/discharging

● When t ¼ 1 t: the capacitor charges to 63.2% of the final value and
discharges to 36.8% of the initial value.

t

vC

E

0
t

0

63.2%

86.5% 95% 98.2% 99.3%
vC

E

36.8%

13.5%
5% 1.8% 0.67%

1 2 3 4 5τ τ τ τ τ 1 2 3 4 5τ τ τ τ τ

Figure 7.10 The charging/discharging curves of the capacitor voltage

Table 7.1 The capacitor charging/discharging voltages

Charging/discharging time Capacitor charging
voltage: vC ¼ Eð1 � e�t=� Þ

Capacitor discharging
voltage: vC ¼ V0e�t=�

1 t 63.2% of E 36.8% of E
2 t 86.5% of E 13.5% of E
3 t 95.0% of E 5% of E
4 t 98.2% of E 1.8% of E
5 t 99.3% of E 0.67% of E
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● When t ¼ 5 t: the capacitor charges to 99.3% of the final value and
discharges to 0.67% of the initial value.

Example 7.2: In the circuit of Figure 7.6(a), the source voltage is 100 V, the
resistance is 10 kO, and the capacitance is 0.005 mF. In how much time can the
capacitor voltage be discharged to 5 V after the switch is turned to position 3?

Solution:

E ¼ 100 V; R ¼ 10 kO ; C ¼ 0:005 mF; t ¼ ?

The time constant t for discharging is: t ¼ RC¼ (10 kO)(0.005 mF) ¼ 50 ms.
The capacitor voltage discharging to 5 V is 5% of the initial value E

(100 V). Table 7.1 and Figure 7.10 indicate that the time capacitor discharges
to 5% of the initial value is 3 t. Therefore, the capacitor discharging time is

t ¼ 3 � ¼ 3ð50 msÞ ¼ 150 ms

Example 7.3: In an RC circuit, R ¼ 5 kO, the transient state has last 1 s in this
circuit. Determine the capacitance C.

Solution: The transient state in the RC circuit will last 5 t, therefore,

5 � ¼ 1 s or � ¼ 1
5
¼ 0:2 s

, � ¼ RC therefore C ¼ �

R
¼ ð0:2 sÞ

ð5kOÞ ¼ 40ms

7.4 The step response of an RL circuit

Figure 7.11(a) is a resistor and inductor series circuit, it runs through a switch
connecting to the DC power supply. Such a circuit is generally referred to as an
RL circuit. An RC circuit stores the charges in the electric field, and an RL
circuit stores the energy in the magnetic field. We will use the term charging/
discharging in an RC circuit, and the term energy storing/releasing in an RL
circuit. All important concepts of the magnetic storing/releasing or transient
and steady state of RL circuit can be analysed by a simple circuit as shown in
Figure 7.11.

The step response (storing) and source-free response (releasing) of an RL
circuit is similar to the step response and source-free response of an RC circuit.
After understanding the RC circuit, its method of analysis can be used to
analyse the RL circuit in a similar fashion.

Transient analysis of circuits 211

07_Wang_Chapter07_p195-226 29 May 2010; 11:24:52



Figure 7.11(a) is a circuit that can be used to analyse RL step response and
source-free response.

7.4.1 Energy storing process of the RL circuit

In the circuit of Figure 7.11(a), assuming the energy has not been stored in the
inductor yet, the switch is in position 2. What will happen when the switch is
turned to position 1, and the DC power source is connected to the RL series
circuit as shown in the circuit of Figure 7.11(b)?

As it has beenmentioned in chapter 6, when the switch in Figure 7.11(a) turns
to position 1, the current will flow through this RL circuit, the electromagnetic
field will be built up in the inductor L, and will produce the induced voltage VL.
The inductor L absorbs the electric energy from the DC source and converts it to
magnetic energy. This energy storing process of the inductor in an RL circuit is
similar to the electron charging process of the capacitor in an RC circuit.

Since there is a resistor R in the circuit of Figure 7.11(b), it will be different
as a pure inductor circuit that can store energy instantly. After the switch is
turned to position 1, the current needs time to overcome the resistance in this
RL circuit. Therefore, the process of the inductor’s energy storing will not
finish instantly. The current iL in the RL circuit will reach the final value
(maximum value) after a time interval, as shown in Figure 7.12.

The phenomenon of the inductor current iL in an RL circuit increases
exponentially from zero to its final value (Imax) or from the transient to the
steady state can also be analysed by the quantitative analysis method below.

iL
Imax

t0
5τ

Figure 7.12 Current versus time curve in the RL circuit

E L

1 R

2 3

E

VR1

iL VL

+

−

+ −

3

(a) (b)

Figure 7.11 RL circuit
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7.4.2 Quantitative analysis of the energy storing process
in an RL circuit

The polarities of the inductor and resistor voltages of an RL circuit are shown
in the circuit of Figure 7.11(b). Applying KVL to this circuit will result in

vL þ vR ¼ E ð7:12Þ

Substituting vL ¼ L(di/dt) (from chapter 6, section 6.3.4) and vR ¼ Ri, where
i ¼ iL, with (7.12) yields

L
diL

dt
þ RiL ¼ E

Applying a similar analysis method for the RC charging circuit in section 7.2
will yield the equation of the current in RL circuit during the process of energy
storing as given in the following sections.

● Determine the current iL

iL ¼ E

R
ð1 � e�t=ðL=RÞÞ

¼ E

R
ð1 � e�t=� Þ

¼ Imaxð1 � e�t=� Þ

ð7:13Þ

The time constant of RL circuit is

� ¼ L

R

The final value for the current is

Imax ¼ E

R

● Determine the resistor voltage vR

Applying Ohm’s law

vR ¼ Ri ð7:14Þ

Keeping in mind that i ¼ iL and substituting i by the current iL in (7.14)
yields

vR ¼R
E

R
ð1 � e�t=� Þ

¼Eð1 � e�t=� Þ

Transient analysis of circuits 213

07_Wang_Chapter07_p195-226 29 May 2010; 11:24:53



The final value for the resistor voltage is

E ¼ ImaxR

● Determine the inductor voltage vL

According to (7.12)

vL þ vR ¼ E

Substitute vR and solving for vL

vL ¼ E � vR

¼ E � Eð1 � e�t=�Þ
¼ Ee�t=�

Energy storing equations for an RL circuit

● Circuit current: iL ¼ E
R ð1 � e�t=� Þ

● Resistor voltage: vR ¼ Eð1 � e�t=� Þ
● Inductor voltage: vL ¼ Ee�t=�

In the above equations, t is the energy storing time, and t ¼ L/R is the time
constant of the RL circuit.

These three equations mathematically indicate that circuit current and
resistor voltage increase exponentially from initial value zero to the final value
E/R and E, respectively; the inductor voltage decays exponentially from initial
value E to zero.

According to the above mathematical equations, the curves of iL, vR and vL
versus time can be illustrated in Figure 7.13.

Example 7.4: The resistor voltage vR ¼ 10(1 7 e72t)V and circuit current
iL ¼ 2(17e72t) A in an RL circuit is shown in the circuit of Figure 7.11(b).
Determine the time constant t and inductance L in this circuit.

iL

t0

vR

tt 00

vL

E ER
E

Figure 7.13 Curves of iL, vR and vL versus time
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Solution: The given resistor voltage

vR ¼ Eð1 � e�t=� Þ
¼ 10ð1 � e�2tÞV

with

E ¼ 10 V and � t

�
¼ �2t

or

� ¼ 1
2

s ¼ 0:5 s

The given current

iL ¼ E

R
ð1 � e�t=� Þ ¼ 2ð1 � e�2tÞA

with

E

R
¼ 2 A E ¼ 10 V; R ¼ E

I
¼ 10 V

2 A
¼ 5O

The time constant

� ¼ L

R

Solve for L

L ¼ R� ¼ ð5OÞð0:5 sÞ ¼ 2:5 H

7.5 Source-free response of an RL circuit

7.5.1 Energy releasing process of an RL circuit

Consider an inductor L that has initially stored energy and has the induced
voltage vL through the energy storing process of the last section. If the switch
turns to position 3 at this moment (Figure 7.14(b)), the inductor voltage vL has
a function just like a voltage source in the right loop of this RL circuit.

(a) (b)

E L

1

2 3

vL= E

vR

R
+

−

3

1

E vL

+

−

+ −

iL

vR

R

Figure 7.14 RL circuit
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Without connecting the resistor R in this circuit, at the instant when the
switch turns to position 3, the inductor will release the stored energy immedi-
ately. This might produce a spark on the switch and damage the circuit com-
ponents. But if there is a resistor R in the circuit, the resistance in the circuit
will increase the time required for releasing energy, the current in the circuit
will take time to decay from the stored initial value to zero. This means the
inductor releases the energy gradually, and the resistor absorbs the energy and
converts it to heat energy. The current iL curve of the energy release process in
the RL circuit is illustrated in Figure 7.15.

7.5.2 Quantity analysis of the energy release process
of an RL circuit

The equations to calculate the inductor voltage vL, resistor voltage vR and
circuit current iL of the RL energy releasing circuit can be determined by the
following mathematical analysis method.

Applying KVL to the circuit in Figure 7.14(b) will result in

vL þ vR ¼ 0 or vL ¼ �vR ð7:15Þ

Substituting vL ¼ LðdiL=dtÞ and vR ¼ RiL into (7.15) yields

L
diL

dt
¼ �RiL ð7:16Þ

● Determine the circuit current

Note: If you haven’t learned calculus, then just keep in mind that (7.18) is the
equation for the current in the RL circuit during the energy releasing, and skip
the following mathematical derivation process.

Divide L on both sides in (7.16)

diL

dt
¼ �RiL

L

iL

t0

R
E

Figure 7.15 Energy release curve of the RL circuit
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Integrating the above equation on both sides yieldsð
diL

iL
¼ �

ð
R

L
dt; ln jiLj ¼ �R

L
t þ ln A

Rearrange:

lnjiLj � ln A ¼ �R

L
t

Taking the natural exponent (e) on both sides results in

elnjiL=Aj ¼ eð�R=LÞt or
iL
A

¼ eð�R=LÞt

Solve for iL

iL ¼ Aeð�R=LÞt ð7:17Þ

Since energy has been stored in the inductor before it is been connected to
the circuit in Figure 7.14(b), its initial condition or value should be

iLð0�Þ ¼ I0

(I0 can be any initial current, such as I0 ¼ E/R)

Since immediately before/after the switch is closed to position 3, iL does
not change, therefore,

iLð0þÞ ¼ iLð0�Þ or iL ¼ I0

When t ¼ 0, substitute iL ¼ I0 into (7.17) yields

I0 ¼ Aeð�R=LÞ�0 i:e: I0 ¼A

Therefore,

iL ¼ I0e�t=� ð7:18Þ

In the above equation, t ¼ L/R is the time constant for the RL circuit.

● Determine the resistor voltage
Keep in mind that i ¼ iL and apply Ohm’s law to (7.18)

vR ¼ Ri ¼ RðI0e�t=� Þ ¼ RI0e�t=�

● Determine the inductor voltage
Substituting (7.18) into vL þ vR ¼ 0 (as in (7.15)) results in

vL ¼ �vR ¼ �RI0e�t=�
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Energy releasing equations for an RL circuit

● Circuit current: iL ¼ I0e�t=�

● Resistor voltage: vR ¼ I0Re�t=�

● Inductor voltage: vL ¼ �I0Re�t=�

In the above equations, t is the energy releasing time, I0 ¼ E/R is the initial
current for the inductor and t ¼ L/R is the time constant for the RL circuit.

These three equations mathematically indicate that inductor current,
resistor voltage and inductor voltage decay exponentially from initial value I0,
I0R and 7I0R, respectively, to the final value zero. The curves of iL, vR and vL
versus time can be illustrated in Figure 7.16.

7.5.3 RL time constant t
In an RL circuit, the storing and releasing of energy is a gradual process that needs
time. The time rate of this process depends on the values of the circuit inductance L
and resistance R. The variation of R and L will affect the rate of the energy storing
and releasing. The quotient of L and R is called the RL time constant t ¼ L/R.

The RL time constant is the time interval required from the transient to the
steady state or the energy storing/releasing time in an RL circuit.

vR vL

t0t

iL

0

I0 I0 R
0 t

� I0 R

Figure 7.16 Curves of iL, vR and vL versus time

RL time constant

� ¼ L

R

Quantity Quantity symbol Unit Unit symbol

Resistance R Ohm O
Inductance L Henry H
Time constant t Second s
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The time constant t represents the time the inductor current reaches
(increases) to 63.2% of its final value (steady state); the time of the inductor
current decays (decreases) below to 36.8% of the its initial value. The higher
the value of L, the lower the R (or when the time constant t increases),
the longer the storing or releasing time, the lesser the iL variation and
the longer the time to reach the final or initial values. This can be shown in
Figure 7.17.

7.5.4 The RL time constant and the energy storing and releasing

Similar to an RC circuit, the circuit current for an RL circuit can be determined
when the time constant is 1 t, 2 t, . . ., 5 t, according to the equations of
iL ¼ ðE=RÞð1 � e�t=�Þ and iL ¼ I0e�t=� , respectively. These results are summar-
ized in Table 7.2 and Figure 7.18.

Example 7.5: In the RL circuit of Figure 7.14, the resistance R is 100 O and the
transient state has lasted 25 ms. Determine the inductance L.

Solution: The time of a transient state usually lasts 5� , and this transient state is
5� ¼ 25 ms; ; � ¼ ð25 ms=5Þ ¼ 5 ms.

The time constant � ¼ L=R; ; L ¼ R� ¼ ð100OÞð5 msÞ ¼ 500 mH.

Table 7.2 Relationship between the time constant and the inductor current

RL energy
storing/releasing

time

Increasing the inductor
current (storing):

iL ¼ E
R ð1 � e�t=� Þ

Decreasing the inductor
current (releasing):

iL ¼ I0e�t=�

1 t 63.2% of E/R 36.8% of I0
2 t 86.5% of E/R 13.5% of I0
3 t 95.0% of E/R 5% of I0
4 t 98.2% of E/R 1.8% of I0
5 t 99.3% of E/R 0.67% of I0

iL

t0t

iL

0

I0

E

)( ↑τ)( ↑τ

R

Figure 7.17 Effect of the time constant t on iL (L" or R#)
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Example 7.6: In the circuit of Figure 7.14(b), R ¼ 2 kO, L ¼ 40 H, E ¼ 1 V and
t ¼ 0.2 ms. Determine the circuit current iL in this energy releasing circuit.

Solution:

� ¼ L

R
¼ 40 H

2 kO
¼ 20 ms

iL ¼ I0e�t=� ¼ E

R
e�t=� ¼ 1 V

2 kO
eð�0:2=20Þms � 0:5 mA

Summary

● First-order circuit:
● The circuit that contains resistor(s), and a single energy storage ele-

ment (L or C).
● RL or RC circuits that are described by the first-order differential

equations.
● Transient state: The dynamic state that occurs when the physical quantities

have been changed suddenly.
● Steady state: An equilibrium condition that occurs when all physical

quantities have stopped changing and all transients have finished.
● Step response: The circuit response when the initial condition of the L or C

is zero, and the input is not zero in a very short time, i.e. the charging/
storing process of the C or L.

● Source-free response: The circuit response when the input is zero, and the
initial condition of L or C is not zero, i.e. the discharging/releasing process
of the C or L.

t

iL

0
t

0

63.2%

86.5% 95% 98.2% 99.3%
I0

36.8%

13.5%
5%

1.8% 0.67%

E
R

iL

1 τ 2 τ 3 τ 4 τ 5 τ 1 τ 2 τ 3 τ 4 τ 5 τ

Figure 7.18 Relationship of inductor current and time constant
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● The initial condition:
● t ¼ 07: the instant time before switching
● t ¼ 0þ: the instant time after switching
● vCð0 þ Þ ¼ vCð0 � Þ; iLð0þÞ ¼ iLð0�Þ
● Immediately before/after the switch is closed, vC and iL do not change

instantly.
● The relationship between the time constants of RC/RL circuits and char-

ging/storing or discharging/releasing:
● Summary of the first-order circuits (see p. 222).

Experiment 7: The first-order circuit (RC circuit)

Objectives

● Understand the capacitor charging/discharging characteristics in the RC
circuit (the first-order circuit) by experiment.

● Construct an RC circuit, collect and evaluate experimental data to verify
the capacitor charging/discharging characteristics in an RC circuit.

● Analyse and verify the capacitor’s charging/discharging time by experiment.
● Analyse the experimental data, circuit behaviour and performance, and

compare them to the theoretical equivalents.

Background information

● RC charging (the step response):

vC ¼ Eð1 � e�t=� Þ; vR ¼ Ee�t=�

● RC discharging (the source-free response):

vC ¼ V0e�t=� ; vR ¼ V0e�t=�

● RC time constant t.

� ¼ RC

Time vC and iL increasing
(charging/storing):

vC ¼ Eð1 � e�t=RCÞ;
iL ¼ E

R ð1 � e�t=� Þ

vC and iL decaying
(discharging/releasing):

vC ¼ V0e�t=RC;
iL ¼ I0e�t=�

1 t 63.2% 36.8%
2 t 86.5% 13.5%
3 t 95.0% 5%
4 t 98.2% 1.8%
5 t 99.3% 0.67%
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Equipment and components

● Multimeters (two)
● Breadboard
● DC power supply
● Stopwatch
● Z meter or LCZ meter
● Switch
● Resistors: 1 and 100 kO
● Capacitor: 100 mF electrolytic capacitor

Procedure

Part I: Charging/discharging process in an RC circuit

1. Use a jump wire to short circuit the 100 mF capacitor terminals to dis-
charge it, then measure the value of capacitor using a Z meter or LCZ
meter and record in Table L7.1.

2. Construct an RC circuit as shown in Figure L7.1 on the breadboard.

3. Turn on the switch to position 1 in the circuit of Figure L7.1, and observe
the needles of the two multimeters (voltmeter function). Wait until voltage
across the capacitor reaches to steady state (does not change any more),
and record the observation of capacitor voltage vC and resistor voltage vR
in Table L7.2 (such as 0–10 V, etc.).

Table L7.1

Capacitor C

Nominal value 100 mF
Measured value

1

2 = 1 kΩ

100 μF=
E = 10 V

V

V

R

C

Figure L7.1 An RC circuit
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4. Turn on the switch to position 2 in the circuit of Figure L7.1, observe the
needles of two multimeters (voltmeter function). Wait until voltage across
the capacitor vC decreased to 0 V, record the observations of capacitor
voltage vC and resistor voltage vR in Table L7.1 (such as 10–0 V, etc.).

Part II: Capacitor’s characteristics in DC circuit

1. Measure the resistors listed in Table L7.3 using the multimeter (ohmmeter
function), and record the measured values in Table L7.3.

2. Use a jump wire to short circuit the 100 mF capacitor terminals to dis-
charge it, then measure the value of capacitor using a Z meter or LCZ
meter and record in Table L7.3.

3. Construct a circuit as shown in Figure L7.2 on the breadboard.

4. Calculate the time constant t for the circuit in Figure L7.2 (use measured R
and C values). Record the value in Table L7.4.

5. Calculate the capacitor charging/discharging voltage vC and vR when t ¼ t.
Record the values in Table L7.4.

Table L7.2

Switching position vC vR
Turn on the switch to position 1
Turn on the switch to position 2

Table L7.3

Component R C
Nominal value 100 kO 100 mF
Measured value

1

2 =100 kΩ

E = 10 V

V

V

R

10 μF=C

Figure L7.2 The RC circuit for Part II
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6. Turn on the switch to position 1, observe time required for capacitor vol-
tage vC charging to 6.3 V using both multimeter (voltmeter function) and
stopwatch, this is the charging time constant t. Also measure vR at this
time, and record t, vC and vR in Table L7.4.

7. Keep the switch at position 1 and make sure it does not change, and
observe capacitor voltage vC using the multimeter (voltmeter function)
until the capacitor voltage reaches and stays at 10 V (vC ¼ 10 V). Then turn
on the switch to position 2, and observe the time required for the capacitor
voltage to decrease to 3.6 V using both the multimeter (voltmeter function)
and stopwatch (this is the discharging time constant t). Also measure vC
and vR at this time and record the values in Table L7.4.

Note: Since electrolyte capacitors may conduct leakage current, the measure-
ment and calculation may be a little different, but it still can approximately
verify the theory.

Conclusion

Write your conclusions below:

Table L7.4

t vC vR

Charging formula
Discharging formula
Calculated value for charging
Calculated value for discharging
Measured value for charging
Measured value for discharging
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Chapter 8

Fundamentals of AC circuits

Objectives

After completing this chapter, you should be able to:

● understand the difference between DC and AC
● understand the definitions of AC phase shift, period, frequency, peak to

peak, peak, RMS values, phasor, etc.
● understand the relationship of period and frequency
● understand and define three important components of sinusoidal waveform
● define the phase difference between sinusoidal voltage and current
● convert sinusoidal time-domain quantities to phasor-domain forms, and

vice versa
● analyse the sinusoidal AC circuits using phasors
● study the effect of resistive, inductive, and capacitive elements in AC circuits

8.1 Introduction to alternating current (AC)

8.1.1 The difference between DC and AC

Previous chapters have studied DC (direct current) circuits. The DC power
supply provides a constant voltage and current; hence, all resulting voltages
and currents in DC circuit are constant and do not change with time. That is,
the polarity of DC voltage and direction of DC current do not change, only
their magnitude changes.

This chapter will discuss the alternating current (AC) circuits, in which the
voltage alternates its polarity and the current alternates its direction periodi-
cally. Since the AC power supply provides an alternating voltage and current,
the resulting currents and voltages in AC circuit also periodically switch their
polarities and directions. Similar to DC circuits, an alternating voltage is called
AC voltage and alternating current is called AC current.

Before the 19th century, the DC power supply was the main form of elec-
trical energy to provide electricity. Since then, DC and AC have had constant
competition; AC gradually showed its advantages and rapidly developed in the
latter of the 19th century, and is still commonly used in current industries,
businesses and homes throughout the world.
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This is because the AC power can be more cost-effective for long-distance
transmission from power plants to industrial, commercial or residential areas.
This is why power transmission for electricity today is nearly all AC. It is also
easy to convert from AC to DC, allowing for a wide range of applications.

8.1.2 DC and AC waveforms

The DC voltage and current do not change their polarity or direction over
time, only their magnitude changes. A DC waveform (a graph of voltage and
current versus time) is shown in Figure 8.1.

There is also a type of DC waveform known as the pulsing DC, in which
the amplitude of DC pulse changes periodically from zero to the maximum
with time, but its polarity or direction does not change with time (always above
zero), so it still belongs to the DC category. Figure 8.2 shows some pulsating
DC waveforms.

Direct current (DC)

● The polarity of DC voltage and direction of DC current do not
change.

● The pulsing DC changes pulse amplitude periodically, but the
polarity does not change.

t

V or I

0

Figure 8.1 DC waveform

t

V or I

V or I

V or I

0

t0

t0

Figure 8.2 Pulsing DC waveforms
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AC voltage and current periodically change polarity or direction with time.
A few examples of AC waveforms are shown in Figure 8.3.

The sinusoidal or sine AC wave is the most basic and widely used AC
waveform, and is often referred to as AC, although other waveforms such as
square wave, triangle wave, etc. also belong to AC. The sine AC wave energy is
the type of power that is generated by the utility power industries around the
world.

Sine AC voltage and current vary with sine (or we could use cosine by
adding 908 to the sine wave) function, the symbol of AC source is . AC
quantities are represented by lowercase letters (e, v, i, etc.) and DC quantities
use uppercase letters (E, V, I, etc.).

Alternating current (AC)

● The polarity of voltage and direction of AC current periodically change
with time (such as sine wave, square wave, saw-tooth wave, etc.).

● Sine AC (or AC) varies over time according to sine (or cosine)
function, and is the most widely used AC.

A sine function can be described as a mathematical expression of
f ðtÞ ¼ Fm sinðot þ cÞ. This is the expression of sine function in the time
domain (the quantity versus time). Applying the expression of sine function to
electrical quantities will obtain general expressions of AC voltage and current
as follows:

Sinusoidal voltage: vðtÞ ¼ Vmsinðot þ cÞ
Sinusoidal current: iðtÞ ¼ Im sinðot þ cÞ

8.1.3 Period and frequency

The waveform of a sinusoidal function is shown in Figure 8.4.

V or I

V or I

V or I

t+
_

t

t

0

0

0

Figure 8.3 AC waveforms
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● Period T: It is the time to complete one full cycle of the waveform, or the
positive and negative alternations of one revolution. T is measured in
seconds (s).

● Frequency f: It is the number of cycles of waveforms within 1 s. The fre-
quency is measured in hertz (Hz).

For instance, in Figure 8.5, the number of complete cycles in 1 s is 2, so it
has a frequency of 2 Hz.

● Relationship of T and f: The frequency f of the waveform is inversely
proportional to period T of the waveform, i.e. f ¼ 1=T .

Period and frequency

● Period T: Time to complete one full cycle.
● Frequency f: Number of cycles per second.
● f ¼ 1=T

8.1.4 Three important components of a sine function

There are three important components in the expression of the sine function
f ðtÞ ¼ Fmsinðot þ cÞ: peak value Fm, angular velocity O and phase shift c.

● Peak value Fm: In the expression f ðtÞ ¼ Fmsinðot þ cÞ, Fm is the peak
value or amplitude of the sine wave (Im for current or Vm for voltage). It is
the distance from zero of the horizontal axis to the maximum point

w t

f(t)

0
2pp

Fm

T

Figure 8.4 Sinusoidal waveform

 t(s)

f(t)

0

t = 1s

Figure 8.5 Frequency of sine waveform
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(positive or negative) that a waveform can reach during its entire cycle
(Figure 8.6 (a)). It is measured in volts or amperes.

● Angular velocity o (the Greek letter omega): Angular velocity or angular
frequency of a sinewave reflects the rate of change of the rotation of thewave.

Angular velocity ¼ Rotating distance/Time

(Same with the linear motion: Velocity ¼ Distance/Time)
Since the time required for a sine wave to complete one cycle is period T,

the distance of one cycle is 2p as shown in Figure 8.4, so the angular velocity
can be determined by

o ¼ 2p
T

The relationship between the angular velocity and frequency is

o ¼ 2p
T

¼ 2pf f ¼ 1
T

� �

Since the angular velocity is directly proportional to the frequency, it is also
called the angular frequency. It is measured in radian per second (rad/s).

● Phase c (the Greek letter phi): The phase or phase shift of a sine wave is an
angle that represents the position of the wave shifted from a reference
point at the vertical axis (08). It is measured in degrees or radians. A sine
wave may shift to the left or right of 08. The range of phase shift is between
7p and þp.
● If phase shift c ¼ 0, the waveform of sine function f ðtÞ ¼ Fmsinot

starts from t ¼ 0 as shown in Figure 8.6(a).
● If phase shift c has a negative value (c 5 0), the waveform of sine

function f ðtÞ ¼ Fmðot � cÞ will shift to the right side of 08 as shown in
Figure 8.6(b).

● If phase shift c has a positive value (c 4 0), the waveform of sine
function f ðtÞ ¼ Fmðot þ cÞ will shift to the left side of 08 as shown in
Figure 8.6(c).

0

Fm

0
0

f(t)

w t w t w t

f(t)f(t)

2p
p

ψ ψ
(a) (b) (c)

Figure 8.6 The peak value and phase of the sine wave
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Three important components of sine function

f ðtÞ ¼ Fm sinðot þ cÞ

● Fm: Peak value (amplitude)
● o: Angular velocity or angular frequency
● o ¼ 2p=T ¼ 2pf (p ¼ 1808)
● c: Phase or phase shift

● c 4 0: Waveform shifted to the left side of 08
● c 5 0: Waveform shifted to the right side of 08

Example 8.1: Given a sinusoidal voltage vðtÞ ¼ 6sinð25t � 30�ÞV, determine its
peak voltage, phase angle and frequency, and plot its waveform.

Solution:

Peak value: Vm ¼ 6 V

Phase: c ¼ 7308 (c 5 0, waveform shifted to the right side of 08)
Frequency: f ¼ 1=T
Since o ¼ 2p=T and o ¼ 25 rad=s

T ¼ 2p
o

¼ 2p rad
25 rad=s

� 0:25s f ¼ 1
T
¼ 1

0:25 s
¼ 4 Hz

The waveform is shown in Figure 8.7.

8.1.5 Phase difference of the sine function

For two different sine waves with the same frequency, the angular displace-
ment of their phases is called phase difference and is denoted by � (lowercase
Greek letter phi). It is a phase angle by which one wave leads or lags another.

wt
2pp

 = 30°

0

Vm = 6V

T = 0.25 s
ψ

v(t)

Figure 8.7 Waveform for Example 8.1

For instance, given the general expressions of sinusoidal voltage and cur-
rent as

vðtÞ ¼ Vmsinðot þ cvÞ and iðtÞ ¼ Imsinðot þ ciÞ
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the phase difference between voltage and current is

� ¼ ðot þ cvÞ � ðot þ ciÞ ¼ cv � ci

● If � ¼ cv � ci ¼ 0, the twowaveforms are in phase as shown in Figure 8.8(a).

● If � ¼ cv � ci > 0, voltage leads current, or current lags voltage as shown
in Figure 8.8(b).

● If � ¼ cv � ci < 0, current leads voltage, or voltage lags current, as shown
in Figure 8.8(c).

● If � ¼ cv � ci ¼ �p=2 (or +908), then voltage and current are orthogo-
nal, or is a right angle (orthos means ‘straight’, and gonia means ‘angle’). It
is shown in Figure 8.8(d).

w t
0

v

i

Figure 8.8(a) Two waveforms are in phase
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v i

0
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w t

Figure 8.8(b) Current lags voltage
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y
v

y
if

f

w t w t

Figure 8.8(c) Current leads voltage
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● If � ¼ cv � ci ¼ �p (or �180�), voltage and current are out of phase as
shown in Figure 8.8(e).

Phase difference � ¼ cv � ci

For two waves with the same frequency such as vðtÞ ¼ Vm sinðot þ cvÞ
and iðtÞ ¼ Im sinðot þ ciÞ:
● If � ¼ 0: v and i are in phase
● If � 4 0: v leads i
● If � 5 0: v lags i
● If � ¼ �p=2: v and i are orthogonal
● If � ¼ �p: v and i are out of phase

Example 8.2: Determine the phase difference of the following functions and
plot their waveforms.

(a) vðtÞ ¼ 20 sinðot þ 30�ÞV; iðtÞ ¼ 12 sinðot þ 60�ÞA
(b) vðtÞ ¼ 5 sinðot þ 60�ÞV; iðtÞ ¼ 2:5 sinðot þ 20�ÞA
Solution:

(a) � ¼ cv � ci ¼ 30� � 60� ¼ �30� < 0
So voltage lags current 308 as shown in Figure 8.9(a).

(b) � ¼ cv � ci ¼ 60� � 20� ¼ 40� > 0
So voltage leads current 408 as shown in Figure 8.9(b).

wt
2pp

0

v
i

Figure 8.8(e) Voltage and current are out of phase
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v
i

v
i
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2
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Figure 8.8(d) Voltage and current are orthogonal
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8.2 Sinusoidal AC quantity

A sinusoidal AC quantity such as AC voltage or current can be described in a
number of ways. They can be described by their peak value, peak–peak value,
instantaneous value, average value or root mean square (RMS) value. The
different expressions will provide different ways to analyse the sinusoidal AC
quantity, and it is also because a sinusoidal wave always varies periodically and
there is no one single value that can truly describe it.

8.2.1 Peak and peak–peak value

As previously mentioned, the peak value of the sinusoidal waveform is one of
three important components of the sine function, and is the amplitude or
maximum value Fm in sine function f ðtÞ ¼ Fm sinðot þ cÞ. The peak value is
denoted by Fpk as shown in Figure 8.10.

wt
0

v

i

20

30°

30°
60°

Figure 8.9(a) Figure for Example 8.2(a)

w t
0

v

i

5

40°

20°

60°

Figure 8.9(b) Figure for Example 8.2(b)
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f(t)

Fp–p

Fm = Fpk

Figure 8.10 Peak and peak–peak value
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The peak–peak value Fp–p represents the distance from negative to positive
peak, or minimum to maximum peak, or between peak and trough of the
waveform, so Fp–p ¼ 2Fpk as shown in Figure 8.10.

To determine the maximum values that electrical equipment can withstand,
the peak values or peak–peak values of the AC quantities should be considered.

8.2.2 Instantaneous value

The instantaneous value of the sinusoidal waveform f(t) varies with time, and it
is the value at any instant time t (or ot) in any particular point of a waveform.
Instantaneous values of the variables are denoted by lowercase letters, such as
voltage v, current i, etc.

Example 8.3: Given a sinusoidal AC voltage vðtÞ ¼ Vm sinot as shown in
Figure 8.11, determine the instantaneous voltage v1 (voltage at 308) and v2
(voltage at 1358) when Vm ¼ 5 V.

Solution:

v1 ¼ Vmsinot ¼ 5 sin30� ¼ 2:5 V
v2 ¼ Vmsinot ¼ 5 sin135� � 3:54 V

8.2.3 Average value

Because of the symmetry of the sinusoidal waveform, its average value in a com-
plete full cycle is always zero. For a sinusoidal function f ðtÞ ¼ Fm sinðot þ cÞ,
its average value is defined as the average of its half-cycle (0 to p), as shown in
Figures 8.12 and 8.13.

wt

v2

0

v(t)

v1

135°30°

V
m

= 5V

90°

Figure 8.11 Figure for Example 8.3

wt0 π

Fm

f(t)

Figure 8.12 Average value
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The average value of a half-cycle sinusoidal wave with a zero phase shift
can be derived by using integration as follows:

Note: If you haven’t learned calculus, then just keep in mind that Favg ¼ 0:637Fm

is the equation for the average value of a half-cycle sinusoidal wave, and skip
the following mathematic derivation process.

Favg ¼Area
p

¼ 1
p

Zp

0

f ðtÞdt ¼ 1
p

Zp

0

Fmsinotdot

¼Fm

p
½ � cosot�p0 ¼ �Fm

p
½cosp� cos0�

¼ � Fm

p
ð�1 � 1Þ ¼ 2Fm

p
� 0:637Fm

Favg � 0:637Fm

Therefore, the average value of a half-cycle sinusoidal wave is 0.637 times the
peak value, as shown in Figure 8.13.

Peak value, peak–peak value, instantaneous value and average value

For a sinusoidal waveform:
● Peak value Fpk ¼ Fm: The amplitude or maximum value
● Peak–peak value Fp–p: Fp–p ¼ 2Fpk

● Instantaneous value f(t): The value at any time at any particular
point of the waveform

● Average value Favg: Favg ¼ 0:637Fm

8.2.4 Root mean square (RMS) value

1. Applications of RMS value: RMS value (also referred to as the effective
value) of the sinusoidal waveform is widely used in practice. For example,
the values measured and displayed on instruments and the nominal rat-
ings of the electrical equipment are RMS values. In North America, the
single-phase AC voltage 110 V from the wall outlet is an RMS value.

0

F
m

π

f(t)

0.637

wt

Figure 8.13 Average value
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2. The physical meaning of RMS value: For a sinusoidal waveform, the phy-
sical meaning of the AC RMS value is the heating effect of the sine wave.
That is, an AC source RMS value will deliver the equivalent amount of
average power to a load as a DC source. For instance, whether turning on
the switch 1 (connect to DC) or switch 2 (connect to AC) in Figure 8.14,
20-V DC or 20-V ACRMS value will deliver the same amount of power (40
W) to the resistor (lamp). If the lamp is replaced by an electric heater, then
the heating effect delivered by 20-VDC and 20-VACRMSwill be the same.

1 2

20-V DC 20-V RMS

P = 40W

R = 10Ω

I = 2A

Figure 8.14 RMS value

3. Quantitative analysis of RMS value: The average power generated by an
AC power supply is

pAC ¼ i2ACR ¼ ðImsinotÞ2R ¼ ðI2
msin2otÞR

pAC ¼ I2
m

1
2
ð1 � cos2otÞ

� �
R ¼ I2

mR

2
� I2

mR

2
cos2ot

as sin2ot ¼ 1=2ð1 � cos2otÞ.
Only the first part in the above power expression represents the

average power of AC, since the average value of the second part in the
power expression (a cosine function) is zero, i.e. PAC ¼ ðI2

mRÞ=2.

● The average power generated by DC voltage is Pavg ¼ I2R.
● RMS value of AC current: According to the physical meaning of

RMS, the average AC power is equivalent to the average DC power
when the AC source is an RMS value, so ðI2

mRÞ=2 ¼ I2R or I2 ¼ I2
m=2.

Taking the square root of both sides of the equation gives

I ¼
ffiffiffiffiffi
I2
m

2

r
¼ Imffiffiffi

2
p � 0:707Im or Im ¼

ffiffiffi
2

p
I � 1:414I ð8:1Þ
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The current I in (8.1) is the RMS value of the AC current, and Im is the
peak value or amplitude of the AC current.

● RMS value of AC voltage: It can be obtained by the same approach by
determining the RMS value of the AC current, i.e.

V ¼ V mffiffiffi
2

p ¼ 0:707 V m or Vm ¼
ffiffiffi
2

p
V ¼ 1:414 V ð8:2Þ

The voltage V in (8.2) is the RMS value of AC voltage, and Vm is the
peak value or amplitude of the AC voltage.

● RMS value of a periodical function f(t): Equations (8.1) and (8.2) indicate
the relationship between the RMS value and the peak value, which is
related by

ffiffiffi
2

p
. However, this relation only applies to the sine wave. For a

non sine wave function f(t), the following general equation can be used to
determine its RMS value.

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

Z T

0
f 2ðtÞdt

s
ðT is the period of the functionÞ

The name root mean square (RMS) is obtained from the above equation,
in which the term 1/T denotes the average (mean), f 2(t) denotes the square
(square) and

ffip
denotes the square root (root) value.

RMS value of AC function

● RMS value or effective value of AC: An AC source with RMS value
will deliver the equivalent amount of power to a load as a DC source.

● V ¼ 0:707 Vm, I ¼ 0:707Im or Vm ¼ ffiffiffi
2

p
V, Im ¼ ffiffiffi

2
p

I

● The general equation to calculate RMS value: F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

R T
0 f 2ðtÞdt

q

8.3 Phasors

8.3.1 Introduction to phasor notation

Charles Proteus Steinmetz, a German-American mathematician and electrical
engineer, developed the phasor notation in 1893. A phasor is a vector that
contains both magnitude and direction or amplitude and phase information. It
can be used to represent AC quantities. Since phasors have magnitudes and
directions, they can be represented as complex numbers.

A phasor notation or phasor domain is a method that uses complex
numbers to represent the sinusoidal quantities for analysing AC circuits. It can
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represent sine waves in terms of their peak value (magnitude) and phase angle
(direction). The peak value can be easily converted to the RMS value.

The phasor notation can simplify the calculations for AC sinusoidal cir-
cuits; therefore, it is widely used in circuit analysis and calculations. Note that
the phasor notation can be used for sinusoidal quantities only when all wave-
forms have the same frequency.

We have learned that a sinusoidal wave can be represented by its three
important components: the peak value (or RMS value), the phase angle and
the angular frequency. In an AC circuit, the AC source voltage and the current
are the sinusoidal values with the same frequency, so the resulting voltages and
currents in the circuit should also be sinusoidal values with the same frequency
or angular frequency. Therefore, voltages and currents in an AC circuit can be
analysed by using the phasor notation, i.e. they can be determined by the peak
value or RMS value and the phase shift of the phasor notation.

Phasor

● A phasor is a vector that contains both amplitude and angle infor-
mation, and it can be represented as complex number.

● Phasor notation is a method that uses complex numbers to represent
the sinusoidal quantities for analysing AC circuits when all quantities
have the same frequency.

The key for understanding the phasor notation is to know how to use
complex numbers. Therefore, we will review some important formulas of
complex numbers that you may have learned in previous mathematics courses.

8.3.2 Complex numbers review

The complex number has two main forms, the rectangular form and the
polar form.

● Rectangular form: A ¼ x þ jy ð j ¼ ffiffiffiffiffiffiffi�1
p Þ

where x is the real part and y is the imagery part of the complex number A;
j is called the imagery unit.

Note: The symbol i is used to represent imagery unit in mathematics. Since i
has been used to represent AC current in the circuit analysis, j is used to denote
the imagery unit rather than i to avoid confusion.

● Polar form: A ¼ affc
This is the abbreviated form of the exponential form A ¼ ae jc, in which a
is called modulus of the complex number, and the angle c is called argu-
ment of the complex number.
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● Convert rectangular form to polar form (refer to Figure 8.15).

Let A ¼ x þ jy ¼ affc
Applying a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
(Pythagorus theory) gives

A ¼ x þ jy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
tan�1y=x ¼ affc

● Convert polar form to rectangular or triangular form.
x ¼ acosc and y ¼ asinc can be obtained from Figure 8.15.

So A ¼ affc ¼ x þ jy ¼ a(cosc þ jsinc).

Euler’s formula can also be used for the conversion of triangular form to
exponential form

e jc ¼ coscþ jsinc or ae jc ¼ aðcoscþ jsincÞ
● Operations on complex numbers: Given two complex numbers

A1 ¼ x1 þ jy1 ¼ a1ffc1 and A2 ¼ x2 þ jy2 ¼ a2ffc2

The basic algebraic operations of these two complex numbers are
given as follows:

Addition: A1 þ A2 ¼ ðx1 þ x2Þ þ jðy1 þ y2Þ
Subtraction: A1 � A2 ¼ ðx1 � x2Þ þ jðy1 � y2Þ
Multiplication:

● Polar form: A1 � A2 ¼ a1 � a2ffðc1 þ c2Þ
● Rectangular form: A1 � A2 ¼ ðx1 þ jy1Þðx2 þ jy2Þ ¼ ðx1x2 � y1y2Þ

þ jðx2y1 þ x1y2Þ
Here j2¼ ffiffiffiffiffiffiffi�1

p ffiffiffiffiffiffiffi�1
p ¼ ð ffiffiffiffiffiffiffi�1

p Þ2 ¼ �1 is used.

Division:

● Polar form:

A1

A2
¼ a1

a2
ffðc1 � c2Þ

● Rectangular form:

A1

A2
¼ x1 þ jy1

x2 þ jy2
¼ ðx1 þ jy1Þðx2 � jy2Þ

ðx2 þ jy2Þðx2 � jy2Þ ¼
x1x2 þ y1y2

x2
2 þ y2

2

þ j
x2y1 � x1y2

x2
2 þ y2

2

x

y

0

a

+

+j

y

Figure 8.15 Complex number

Fundamentals of AC circuits 241

08_Wang_Chapter08_p227-264 31 May 2010; 15:31:12



It will be much simpler to use the polar form on operations of multiplication
and division.

Complex numbers

● Rectangular form: A ¼ x þ jy

● Polar form: A ¼ affc
● Conversion between rectangular and polar forms:

A ¼ x þ jy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
tan�1 y

x
¼ affc

A ¼ affc ¼ x þ jy ¼ aðcoscþ jsincÞ

● Addition and subtraction: A1 � A2 ¼ ðx1 � x2Þ þ jðy1 � y2Þ
● Multiplication: A1 � A2 ¼ a1 � a2ffðc1 þ c2Þ ¼ ðx1 þ jy1Þðx2 þ jy2Þ
● Division:

A1

A2
¼ a1

a2
ffðc1 � c2Þ ¼

x1 þ jy1

x2 þ jy2

8.3.3 Phasor

Using the phase notation to represent the sinusoidal function is based on Euler’s
formula e j� ¼ cos�þ jsin�. For a sinusoidal function f ðtÞ ¼ Fmsinðot þ cÞ,
replacing � with (ot þ c) in Euler’s formula gives

ejðotþcÞ ¼ cosðot þ cÞ þ jsinðot þ cÞ

where cosðot þ cÞ ¼ Re½ejðotþcÞ� and sinðot þ cÞ ¼ Jm½e jðotþcÞ�.
‘Re[ ]’ and ‘Jm[ ]’ stand for ‘real part’ and ‘imaginary part’ of complex

numbers, respectively.
Therefore, sine function f ðtÞ ¼ Fmsinðot þ cÞ ¼ Jm½Fme jðotþcÞ� ¼

Jm½Fmejce jot�.
That is, a sinusoidal function is actually taking the imaginary part of the

complex number

f ðtÞ ¼ Jm½Fme jce jot� ð8:3Þ

There are two terms in (8.3), Fme jc and e jot. The second term e jot is called
the rotating factor that varies with time t, which will be discussed later. The
first term is the phasor of the sinusoidal function

Fme jc ¼ Fmffc ¼ F
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So (8.3) of sine function can be written as

f ðtÞ ¼ Fmsinðot þ cÞ ¼ Jm½Fe jot�

Therefore, the first term in (8.3) is F ¼ Fmffc, where boldface letter F
represents a phasor (vector) quantity, similar to the boldface that indicates a
vector quantity in maths and physics. A phasor quantity can also be repre-
sented by a little dot on the top of the letter, such as _F ¼ Fmffc. There is no
difference between operations on phasors and complex numbers, since both of
them are vectors.

If the sinusoidal currents and voltages in an AC circuit are represented by
vectors with the complex numbers, this is known as phasors. The sinusoidal
voltage vðtÞ ¼ Vmsinðot þ cÞ and current iðtÞ ¼ Imsinðot þ cÞ in an AC circuit
can be expressed in the phasor domain as:

● Peak value:

_V ¼ Vmffcv or V ¼ Vmffcv

_I ¼ Imffci or I ¼ Imffci

● RMS value:

_V ¼ Vffcv or V ¼ Vffcv

_I ¼ Iffci or I ¼ Iffci

8.3.4 Phasor diagram

Since a phasor is a vector that can be represented by a complex number, it can
be presented with a rotating line in the complex plane as shown in Figure 8.16.
The length of the phasor is the peak value Fm (or RMS value F). The angle
between the rotating line and the positive horizontal axis is the phase angle c of
the sinusoidal function. This diagram is called the phasor diagram.

y

y

0

Fm

+j

F = Fm

+

Figure 8.16 Phasor diagram
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Example 8.4: Use the phasor notation to express the following voltage and
current in which 710 and 12 are the peak values.

(a) v ¼ �10sinð60t þ 25�ÞV
(b) i ¼ 12sinð25t � 20�ÞA
Solution:

(a) _V ¼ �10ff25�V

(b) _I ¼ 12ff � 20�A

Example 8.5: Use the instantaneous value to express the following voltage and
current in which 120 and 12 are RMS values.

(a) _V ¼ 120ff30�V
(b) _I ¼ 12ff0�A

Solution:

(a) v ¼ 120
ffiffiffi
2

p
sinðot þ 30�ÞV

(b) i ¼ 12
ffiffiffi
2

p
sinot A

8.3.5 Rotating factor

In the sinusoidal expression of f ðtÞ ¼ Fmsinðot þ cÞ ¼ Jm½Fme jce jot�, the term
e jot varies with time t, known as the rotating factor or time factor. As time
changes, it rotates counterclockwise at angular frequency o in a radius Fm of
the circle, as shown in Figure 8.17.

The rotating factor e jot can be represented by Euler’s formula

e jot ¼ cosot þ jsinot

when ot ¼ �90�: e�j90� ¼ cosð �90�Þ þ jsinð �90�Þ ¼ �j.

Therefore, +908 is also the rotating factor (�j ¼ �90�).

Phasor

Time domain Phasor domain

f ðtÞ ¼ Fmsinðot þ cÞ Fm ¼ Fmffc or _Fm ¼ Fmffc ðPeak valueÞ
F ¼ Fffc or _F ¼ Fffc ðRMS valueÞ

vðtÞ ¼ Vmsinðot þ cÞ _Vm ¼ Vmffcv, _V ¼ Vffcv

iðtÞ ¼ Imsinðot þ cÞ _Im ¼ Imffci, _I ¼ Iffci
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Rotating factor

e jot or �j ¼ �90�

Asinusoidal function can be represented by a rotating phasor that rotates 3608
in a complex plane as shown in Figure 8.18. The instantaneous value of the sinu-
soidal wave at any time is equal to the projection of its relative rotating phasor on
the vertical axis ( j ) at that time. The geometric meaning of the sinusoidal function

f ðtÞ ¼ Fmsinðot þ cÞ ¼ Im½Fme jce jot�

represented by the rotational phasor motion can be seen from the following
example.

Example 8.6: In Figure 8.18,
When t ¼ t0 ¼ 0, the phasor is F ¼ Fmffc.
When t ¼ t1, the phasor is F ¼ Fmff90�.
And it goes from c to 3608.

0
+1

+ j

Fm

– j

w

ψ

Figure 8.17 Rotating factor

Fm

Fm

–j

w

wt

ψ

ψ

0

+j

90°0

t = t0 t = t1

t = t0

t = t1

Figure 8.18 Sine wave and phasor motion
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8.3.6 Differentiation and integration of the phasor

Note: Skip the following part and start from Example 8.8 if you haven’t
learned calculus.

For a sinusoidal function f ðtÞ ¼ Fmsinðot þ cÞ, the derivative of the sinu-
soidal function with respect to time can be obtained by its phasor Fmultiplying
with jo, i.e.

df ðtÞ
dt

, joF

This is equivalent to a phasor that rotates counterclockwise by 908 on the
complex plane since þj ¼ þ90�. (Appendix B provides the details for how to
derive the above differentiation of the sinusoidal function in phasor notation.)

The integral of the sinusoidal function with respect to time can be obtained
from its phasor divided by jo, i.e.

Z
f ðtÞdt ¼

_F

jo

This is equivalent to a phasor that rotates clockwise on the complex plane by
908 (since 1=j ¼ �j ¼ �90�).

Differentiation and integration of the sinusoidal function
in phasor notation

Differentiation: df ðtÞ=dt , joF or jo _F ðþj ¼ þ90�Þ
Integration:

R
f ðtÞdt , F=jo or ð1=joÞ _F (1=j ¼ �j ¼ �90�)

Example 8.7: Convert the following sinusoidal time-domain expression to its
equivalent phasor domain, and determine voltage _V (or V).

2v � 6
dv

dt
þ 4

Z
vdt ¼ 20sinð4t þ 30�Þ

Solution:

2 _V � 6jo _V þ 4
_V

jo
¼ 20ff30�

Since o ¼ 4 in the original expression, so

2 _V � 6 j4 _V þ 4
_V

j4
¼ 20ff30�

_V ð2 � 24j � jÞ ¼ 20ff30�

_V ¼ 20ff30�

2 � j25
� 20ff30�

25ff � 85:43� ¼ 0:8ff115:43�
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Note: The complex number of the denominate is

Z ¼ x þ jy ¼ 2 � j25 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
tan�1 y

x

(Since x is positive and y is negative in 27j25, the angle should be in the fourth
quadrant, i.e. 785.438.)

Example 8.8: Convert the phasor-domain voltage and current to their equiva-
lent sinusoidal forms (time domain).

(a) _I ¼ j5e�j30� mA
(b) _V ¼ �6 þ j8 V

Solution:

(a) _I ¼ j5ff � 30� mA ¼ 5ff90�ff � 30� mA ð j ¼ 90�Þ
¼ 5ffð90� � 30�ÞmA ¼ 5ff60� mA

iðtÞ ¼ 5sinðot þ 60�ÞmA

(b) _V ¼ �6 þ j8 V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð� 6Þ2 þ 82

q
tan�1ff 8

�6 V � 10ff126:87� V

(Since y is positive and x is negative, it should be in the second quadrant.)

vðtÞ ¼ 10sinðot þ 126:87�ÞV

If the phasors are used to express sinusoidal functions, the algebraic operations
of sinusoidal functions of the same frequency can be replaced by algebraic
operations of the equivalent phasors, which is shown in Example 8.9.

Example 8.9: Calculate the sum of the following two voltages

v1ðtÞ ¼ 2 sin ðot þ 60�ÞV and v2ðtÞ ¼ 10 sin ðot � 40�ÞV

Solution: Convert the sinusoidal time-domain voltages to their equivalent
phasor forms

_V1 ¼ 2ff60� V and _V2 ¼ 10ff �40� V

So _V1 þ _V2 ¼ 2ff60� þ 10ff �40�

¼ 2 cos 60� þ j2 sin 60� þ 10 cos ð�40�Þ þ j10 sin ð�40�Þ
� 1 þ j 1:732 þ 7:66 � j6:43

¼ 8:66 � j4:698

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:662 þ ð�4:698Þ2

q
tan�1 �4:698

8:66

� �

� 9:85ff � 28:48� V

(Since y is negative and x is positive, it should be in the fourth quadrant.)

; vðtÞ ¼ 9:85 sin ðot � 28:48�ÞV
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8.4 Resistors, inductors and capacitors in sinusoidal AC circuits

Any AC circuit may contain a combination of three basic circuit elements:
resistor, inductors and capacitors. When these elements are connected to a
sinusoidal AC voltage source, all resulting voltages and currents in the circuit
are also sinusoidal and have the same frequency as AC voltage source.
Therefore, they can all be converted from the sinusoidal time-domain form
f ðtÞ ¼ Fmsinðot þ cÞ to the phasor-domain form F ¼ Fmffc.

8.4.1 Resistor’s AC response

A resistor is connected to a sinusoidal voltage source as shown in Figure 8.19(a).

Where the source voltage is

e ¼ Vmsinðot þ cÞ

The sinusoidal current in the circuit can be obtained by applying Ohm’s law for
AC circuits (v ¼ Ri), i.e.

iR ¼ e

R
¼ VRm

R
sinðot þ cÞ ¼ IRmsinðot þ cÞ

where IRm ¼ VRm=R (peak values) or I ¼ VR=R (RMS value), and voltage
across the resistor is the same as the source voltage, i.e. e ¼ vR or
vR ¼ Vmsinðot þ cÞ.

The above sinusoidal expressions of resistor voltage vR and current iR
indicate that voltage and current in the circuit have the same frequency f (since
o ¼ 2pf ) and the same phase angle c (or vR and iR are in phase). This is also
illustrated in Figure 8.19(b).

Assuming the initial phase angle is zero, i.e. c ¼ 08, then

iR ¼ vR

R
¼ IRmsinot

vR ¼ RiR ¼ VRmsinot

This is illustrated in Figure 8.19(c).

w t

φ

0
e vR

vR

iR
R

(a) (b)

iR

+

–

Figure 8.19 Resistor’s AC response
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Relationship of voltage and current of a resistor in an AC circuit

● Instantaneous values (time domain):

vR ¼ VRmsinðot þ cÞ
iR ¼ IRmsinðot þ cÞ

● Ohm’s law:
VRm ¼ IRmR ðpeak valueÞ
VR ¼ IRR ðRMS valueÞ

The sinusoidal expressions of resistor voltage (vR) and current (iR) are in
the time domain. The peak and RMS values of the resistor voltage and the
current in phasor domain also obey the Ohm’s law as follows:

Peak value: _IRm ¼ _VRm=R or VRm ¼ IRmR

RMS value: _IR ¼ _VR=R or VR ¼ IRR

If it is expressed in terms of conductance, it will give

_IR ¼ G _VR G ¼ 1=Rð Þ

The relationship of the resistor voltage and current in an AC circuit can be
presented by a phasor diagram illustrated in Figure 8.20(b).

w t

vR

iR
0

Figure 8.19(c) When c ¼ 08

(a) (b)

vRR

+

–

IR

E
•

•

•

vR

0

+j

+

IR
y

•

•

Figure 8.20 The phasor diagram of the AC resistive circuit
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Example 8.10: If R ¼ 10 O, iR ¼ 6
ffiffiffi
2

p
sinðot � 30�ÞA in Figure 8.20(a), deter-

mine the voltage across resistor in phasor domain.

Solution: vR ¼ RiR ¼ 10 	 6
ffiffiffi
2

p
sinðot � 30�Þ ¼ 60

ffiffiffi
2

p ðsinot � 30�Þ
So _VRm ¼ 60

ffiffiffi
2

p ff � 30� V.

Resistor’s AC response in phasor domain

● Ohm’s law:
Peak value: _V Rm ¼ _IRm R or VRm ¼ IRmR

RMS value: _VR ¼ _IR R or VR ¼ IRR

Using conductance: _IR ¼ G _VRðG ¼ 1=RÞ
● Phasor diagram: �!_IR �!_VR

(AC resistor voltage and current are in phase)

Note that we can use Ohm’s law in AC circuits as long as the circuit
quantities are consistently expressed, i.e. both the voltage and current are peak
values, RMS values, instantaneous values, etc.

8.4.2 Inductor’s AC response

If an AC voltage source is applied to an inductor as shown in Figure 8.21(a),
the current flowing through the inductor will be

iL ¼ ILmsinðot þ cÞ ð8:4Þ

We have learned from chapter 6 that the relationship between the voltage
across the inductor and the current that flows through it is

vL ¼ L
di
dt

ð8:5Þ

(a) (b)

vL

+

–

e L

iL

0

vL

iL

90°

w t

Figure 8.21 Inductor’s AC response
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Note: If you haven’t learned calculus, then just keep in mind that
vL ¼ oLILm sinðot þ cþ 90�Þ is the sinusoidal expression of the inductor vol-
tage, and skip the following mathematic derivation process.

Substituting (8.4) into (8.5) and applying differentiation gives

vL ¼ L
diL

dt
¼ L

d½ILmsinðot þ cÞ�
dt

¼ oLILmcosðot þ cÞ

¼ oLILmsinðot þ cþ 90�Þ

Therefore

vL ¼ oLILmsinðot þ cþ 90�Þ ð8:6Þ

Note: cos� ¼ sinðot þ 90�Þ
The sinusoidal expressions of the inductor voltage vL and current iL indi-

cate that in an AC inductive circuit, the voltage and current have the same
angular frequency (o) and a phase difference. The inductor voltage vL leads
the current iL by 908 as illustrated in Figure 8.21(b) if we assume that initial
phase angle c ¼ 08.

The relationship between the voltage and current in an inductive sinusoidal
AC circuit can be obtained from (8.6), which is given by

VLm ¼ oLILmðpeak valueÞ or VL ¼ oLILðRMS valueÞ
This is also known as Ohm’s law for an inductive circuit, where oL is called
inductive reactance and is denoted by XL, i.e.

XL ¼ oL ¼ 2pfL ðo ¼ 2pf Þ
So VLm ¼ XLILmðpeak valueÞ and VL ¼ XLILðRMS valueÞ
or XL ¼ VLm=ILm; XL ¼ VL=IL

where XL is measured in ohms (O) and is the same as resistance R.
Recall that conductance G is the reciprocal of resistance R, and in an

inductive circuit, the reciprocal of reactance is called inductive susceptance and
is denoted by BL, i.e. BL ¼ 1=XL, and is measured in siemens (S) or mho (

O

).

Relationship of voltage and current of inductor in an AC circuit

● Instantaneous values (time domain)

iL ¼ ILmsinðot þ cÞ
vL ¼ XLILmsinðot þ cþ 90�Þ
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● Ohm’s law:

VLm ¼ XLILm (peak value)

VL ¼ XLIL (RMS value)

● Inductive reactance: XL ¼ oL ¼ 2pfL
● Inductive susceptance: BL ¼ 1=XL

In an AC inductive circuit, the relationship between the voltage and cur-
rent is not only determined by the value of inductance L in the circuit, but also
related to the angular frequency o. If an inductor has a fixed value in the
circuit of Figure 8.21(a), inductance L in the circuit is a constant, and the
higher the angular frequency o, the greater the voltage across the inductor

VL "¼ XLIL ¼ ðo " LÞIL

When o ! 1, VL ! 1, i.e. when the angular frequency approaches to infi-
nite, the inductor behaves as an open circuit in which the current is reduced to
zero.

The lower the angular frequency o, the lower the voltage across the
inductor

VL #¼ XLIL ¼ ðo # LÞIL

When o ¼ 0, VL ¼ 0, i.e. the AC voltage across the inductor now is equivalent
to a DC voltage since the frequency (o ¼ 2pf Þ does not change any more.
Recall that the inductor is equivalent to a short circuit at DC. In this case, the
inductor is shortened because of zero voltage across the inductor.

This indicates that an inductor can pass the high-frequency signals (pass
AC) and block the low-frequency signals (block DC).

Characteristics of an inductor

● An inductor can pass AC (open-circuit equivalent).
● An inductor can block DC (short-circuit equivalent).

The sinusoidal expressions of the inductor voltage vL and current iL are in
the time domain. The peak and RMS values of the inductor voltage and the
current in phasor domain also obey Ohm’s law as follows:

Peak value: _V Lm ¼ jXL _ILm or VLm ¼ jXLILm

RMS value: _VL ¼ jXL _IL or VL ¼ jXLIL
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This is because

vL ¼ L
diL

dt
, LjoIL (differentiating: multiply by jo)

So _VL ¼ ð joLÞ_IL or _VL ¼ jXL _IL ðXL ¼ oLÞ.
The relationship of the inductor voltage and current in an AC circuit can

be presented by a phasor diagram illustrated in Figure 8.22(b and c). Figure
8.22(b) is when the initial phase angle is zero, i.e. c ¼ 08, and Figure 8.22(c) is
when c 6¼ 08 (the inductor current lags voltage by 908).

Inductor’s AC response in phasor domain

● Ohm’s law:
Peak value: _VLm ¼ jXL _ILm or VLm ¼ jXLILm

RMS value: _VL ¼ jXL _IL or VL ¼ jXLIL

● Phasor diagram:
0

90º

VL

IL

● Inductor voltage leads the current by 908.

Example 8.11: In an AC inductive circuit, given vL ¼ 6
ffiffiffi
2

p
sinð60t þ 35�ÞV and

L is 0.2 H, determine the current through the inductor in time domain.

Solution: Inductive reactance XL ¼ oL ¼ ð60 rad=sÞð0:2 HÞ ¼ 12O

_ILm ¼
_V Lm

jXL
¼ 6

ffiffiffi
2

p ff35� V
j12O

¼ 6
ffiffiffi
2

p ff35� V
12ff90� O

¼ 0:5
ffiffiffi
2

p
ff � 55� A

vL

+

–

vL

iL

90°
90°

0

e L

+j

+ +

+j

0
y

vL

•

IL
•

IL
•

•

(a) (b) (c)

Figure 8.22 The phasor diagram of the AC inductive circuit

Convert the inductor current from the phasor domain to the time domain

iL ¼ 0:5
ffiffiffi
2

p
sinð60t � 55�ÞA
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8.4.3 Capacitor’s AC response

If an AC voltage source is applied to a capacitor as shown in Figure 8.23(a),
the voltage across the capacitor will be

vC ¼ VCmsinðot þ cÞV

As we have learned from chapter 6, the relationship between the voltage across
the capacitor and the current through it is

iC ¼ C
dvC

dt

Substituting vC into the above expression and applying differentiation gives

iC ¼ C
d½VCmsinðot þ cÞ�

dt
¼ oCVCmsinðot þ cþ 90�Þ

That is

iC ¼ oCVCmsinðot þ cþ 90�Þ ð8:7Þ
The sinusoidal expressions of the capacitor voltage vC and current iC indicated

that in an AC capacitive circuit, the voltage and current have the same angular
frequency (o) and a phase difference. The capacitor current leads the voltage by
908 as illustrated in Figure 8.23(b), if we assume that the initial phase angle c¼ 08.

The relationship between voltage and current in an inductive sinusoidal
AC circuit can be obtained from (8.7), which is given by

ICm ¼ ðoCÞVCm ðpeak valueÞ
or

IC ¼ ðoCÞVC ðRMS valueÞ
This is also known as Ohm’s law for a capacitive circuit, where oC is called
capacitive reactance that is denoted by the reciprocal of XC, i.e.

(a) (b)

–
e C

Ic

+

vc

•

90°

0

vc

Ic

w t

•

Figure 8.23 Capacitor’s AC response
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XC ¼ 1
oC

¼ 1
2pfC

ðo ¼ 2pf Þ

So

XC ¼ VCm

ICm
ðpeak valueÞ

or

XC ¼ VC

IC
ðRMS valueÞ

XC is measured in ohms (O) and that is the same as resistance R and inductive
reactance XL.

Recall that the inductive susceptance BL is the reciprocal of the inductive
reactance XL. The reciprocal of capacitive reactance is called capacitive sus-
ceptance and is denoted by BC, i.e. BC ¼ 1=XC, and it is also measured in sie-
mens or mho (same as BL).

The relationship of voltage and current of capacitor in an AC circuit

● Instantaneous values (time domain):

vC ¼ VCmsinðot þ cÞ
iC ¼ ocVCmsinðot þ cþ 90�Þ

● Ohm’s law:

VCm¼ XCICm (peak value)
VC ¼ XCIC (RMS value)

● Capacitive reactance: XC ¼ 1=oC ¼ 1=2pfC
● Capacitive susceptance: BC ¼ 1=XC

Similar to an inductor, in an AC capacitive circuit not only is the rela-
tionship between voltage and current determined by the value of capacitive C
in the circuit but it is also related to angular frequency o. If there is a fixed
capacitor in Figure 8.23(a), the conductance C in the circuit is a constant, and
the higher the angular frequency o, the lower the voltage across the capacitor.

VC # ¼ XCIC ¼ IC

o " C

When o ! 1, VC ! 0, i.e. when the angular frequency approaches infinite,
the capacitor behaves as a short circuit in which the voltage across it will be
reduced to zero.
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The lower the angular frequency o, the higher the voltage across the
capacitor.

VC "¼ IC

o # C

When o ! 0, VC ! 1, i.e. the AC voltage across the capacitor now is equivalent
to aDC voltage since the frequency ðo ¼ 2pf Þ does not change any more. Recall
that a capacitor is equivalent to an open circuit at DC. In this case, the capa-
citor is open because there will be no current flowing through the capacitor.

This indicates that a capacitor can block the high-frequency signal (block
AC) and pass the low-frequency signal (pass DC). The characteristics of a
capacitor are opposite to those of an inductor.

Characteristics of a capacitor

● A capacitor can pass DC (short-circuit equivalent).
● A capacitor can block AC (open-circuit equivalent).

The sinusoidal expressions of the capacitor voltage vC and current iC are in
the time domain. The peak and RMS values of the capacitor voltage and the
current in phasor domain also obey Ohm’s law as follows:

Peak value: _V Cm ¼ �jXC _ICm or VCm ¼ �jXCICm

RMS value: _V C ¼ �jXC _IC or VC ¼ �jXCIC

This is because iC ¼ C
dvC

dt
, CjoVC (differentiating: multiply by jo).

So _IC ¼ joC _V C ¼ jð1=XCÞ _V C XC ¼ 1=oCð Þ

or _V C ¼ �jXC _IC ð1=j ¼� jÞ:

The relationship of the capacitor voltage and current in an AC circuit can
be presented by a phasor diagram and is illustrated in Figure 8.24(b and c).
Figure 8.24(b) is when the initial phase angle is zero, i.e. c ¼ 08 (capacitor
voltage lags current by 908), and Figure 8.24(c) is when c 6¼ 08

(a) (b) (c)

90°

0

+j

+
Vc

•

Ic
•

–

C
+

vce

Ic
•

90°
vc

+j

+
0

•
Ic
•

Figure 8.24 The phasor diagram of an AC capacitive circuit
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Capacitor’s AC response in phasor domain

● Ohm’s law:
Peak value: _V Cm ¼ �jXC _ICm or VCm ¼ �jXCICm

RMS value: _VC ¼ �j _XCIC or VC ¼ �jXCIC

● Phasor diagram:
0

90º

I
C

•

V
C

•

Capacitor current leads voltage by 908.

Example 8.12: Given a capacitive circuit in which vC ¼ 50
ffiffiffi
2

p
sinðot � 20�ÞV,

capacitance is 5 mF and frequency is 500 Hz, determine the capacitor current in
the time domain.

Solution:

o ¼ 2pf ¼ 2pð500 HzÞ � 3142 rad=s

XC ¼ 1
oC

¼ 1
ð3 142 rad=sÞð5 	 10�6 FÞ � 63:65O

; ICm ¼ VCm

XC
¼ 50

ffiffiffi
2

p
V

63:65O
� 786

ffiffiffi
2

p
mA

iC ¼ 786
ffiffiffi
2

p
sinðot � 20� þ 90�Þ ¼ 786

ffiffiffi
2

p
sinðot þ 70�ÞmA

Summary

● Direct current (DC)
● The polarity of DC voltage and direction of DC current do not change.
● The pulsing DC changes the amplitude of the pulse, but does not

change the polarity.
● Alternating current (AC)

● The voltage and current periodically change polarity with time (such
as sine wave, square wave, saw-tooth wave, etc.).

● Sine AC varies over time according to the sine function, and is the
most widely used AC.

● Period and frequency
● Period T is the time to complete one full cycle of the waveform.
● Frequency f is the number of cycles of waveforms within 1 s: f ¼ 1=T .

● Three important components of the sinusoidal function f ðtÞ ¼ Fmsinðot þ cÞ
● Fm: Peak value (amplitude)
● o: Angular velocity (or angular frequency) o ¼ 2p=T ¼ 2pf
● c: Phase or phase shift
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● c 4 0: Waveform shifted to the left side of 08
● c 5 0: Waveform shifted to the right side of 08

● Phase difference �: For two waves with the same frequency such as

vðtÞ ¼ Vmsin ðot þ cvÞ; iðtÞ ¼ Im sinðot þ ciÞ
� ¼ cv � ci

● If � ¼ 0: v and i in phase
● If � 4 0: v leads i
● If � 5 0: v lags i
● If � ¼ �p=2: v and i are orthogonal
● If � ¼ +p: v and i are out of phase

● Peak value, peak–peak value, instantaneous value and average value of
sine waveform.
● Peak value Fpk ¼ Fm: the amplitude
● Peak–peak value Fp–p: Fp–p ¼ 2Fpk

● Instantaneous value f(t): value at any time at any particular point of
the waveform

● Average value: average value of a half-cycle of the sine waveform
Favg ¼ 0:637Fm

● RMS value (or effective value) of AC sinusoidal function
● If an AC source delivers the equivalent amount of power to a resistor

as a DC source, which is the effective or RMS value of AC.

V ¼ V mffiffiffi
2

p ¼ 0:707 Vm; I ¼ Imffiffiffi
2

p ¼ 0:707 Im

● The general formula to calculate RMS value is

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

Z T

0
f 2ðtÞdt

s

● Complex numbers
● Rectangular form: A ¼ x þ jy
● Polar form: A ¼ affc
● Conversion between rectangular and polar forms:

A ¼ x þ jy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
tan�1 y

x
¼ affc

A ¼ affc ¼ x þ jy ¼ aðcoscþ jsincÞ

● Addition and subtraction: A1 � A2 ¼ ðx1 � x2Þ þ jðy1 � y2Þ
● Multiplication: A1 � A2 ¼ a1 � a2ffðc1 þ c2Þ ¼ ðx1 þ jy1Þðx2 þ jy2Þ
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● Division:

A1

A2
¼ a1

a2
ffðc1 � c2Þ ¼

x1 þ jy1

x2 þ jy2

● Phasor
● A phasor is a vector that contains both amplitude and angle infor-

mation, and can be represented as a complex number.
● The phasor notation is a method that uses complex numbers to

represent the sinusoidal quantities for analysing AC circuits when all
quantities have the same frequency.

● Rotation factor: e jot or �j ¼ �90�

● Differentiation and integration of the sinusoidal function in phasor
notation:
● Differentiation: df ðtÞ=dt ¼ joF or jo _F (þj ¼ þ90�)
● Integration:

R
f ðtÞdt ¼ F=jo or ð1=joÞ _F ð1=j ¼ �j ¼ �90�Þ

● Characteristics of the inductor and capacitor:

● Three basic elements in an AC circuit

Time domain Phasor domain

f ðtÞ ¼ Fmsinðot þ cÞ Fm ¼ Fmffc or _Fm ¼ Fmffc ðpeak valueÞ
F ¼ Fffc or _F ¼ Fffc ðRMS valueÞ

vðtÞ ¼ Vmsin ðot þ cÞ _Vm ¼ Vmffcv, _V ¼ Vffcv

iðtÞ ¼ Imsin ðot þ cÞ _Im ¼ Imffci, _I ¼ Iffci

Element DC (v ¼ 0) AC (v ! `) Characteristics

Inductor Short circuit Open circuit Pass DC and block AC
Capacitor Open circuit Short circuit Pass AC and block DC

Element Time domain Phasor

domain

Resistance

and
reactance

Conductance

and
susceptance

Phasor

diagram

Resistor vR ¼ RiR _V R ¼ _IRR R G ¼ 1=R
•
I
R

V
R

Inductor vL ¼ Lðdi=dtÞ _VL ¼ jXL _IL XL ¼ oL BL ¼ 1=XL
0

90º

v
L

I
L

Capacitor iC ¼ CðdvC=dtÞ _VC ¼ �jXC _IC XC ¼ 1=oC BC ¼ 1=XC

0
90º

•

•

I
C

v
C
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Experiment 8: Measuring DC and AC voltages using
the oscilloscope

Objectives

● Become familiar with the operations of a function generator.
● Become familiar with the settings and correction of an oscilloscope.
● Become familiar with the operations of an oscilloscope.
● Become familiar with the method to measure DC and AC voltages with an

oscilloscope.

Background information

1. Function generator: The function generator is an electronic equipment that
can generate various types of waveforms that can have different fre-
quencies and amplitudes. A function generator can be used as an AC vol-
tage source to provide time-varying signals such as sine waves, square
waves, triangle waves, etc.

2. Oscilloscope: The oscilloscope is one of the most important experimental
and measurement instruments available for testing electric and electronic
circuits. Its main function is to display waveforms to observe and analyse
voltage, frequency, period and phase difference of DC or AC signals.
The oscilloscope is a complex testing equipment and it is important to be
familiar with its operations. There are various types of oscilloscopes that
may look different, but most of their controls (knobs and buttons) in Table
L8.1 have similar functions. Figure L8.1 shows the front panel of an
oscilloscope. We will use this oscilloscope as an example for a brief
description of the operations of the oscilloscope.

● Intensity control (INTENSITY): It can adjust the brightness of the
display.

● Focus control (FOCUS): It can adjust the sharpness and clarity of the
display.

Table L8.1 The main controls of an oscilloscope

Display Horizontal
control

Vertical control Selecting switch Probe

INTENSITY Time base setting
(TIME/DIV)

Volts per division
(VOLTS/DIV)

Channel coupling
(CH I–DUAL–
CH II)

61

FOCUS Horizontal
position control
(X-POS $)

Vertical position
control
(Y-POS)

Input coupling
(DC–GND–AC)

610
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● Time base control (TIME/DIV – seconds per division): It can set up the
length of time displayed per horizontal square (division) on the screen.

● Volts per division selector (VOLTS/DIV – volts per division): It can set
up the waveform amplitude value per vertical square (division) on the
screen.

Measured amplitude ¼ ðNumber of vertical divisionsÞ 	 ðVOLTS=DIVÞ

Note: There is a small calibration (CAL) knob in the centre of both the
VOLTS/DIV and TIME/DIV knobs. It should be in the fully clockwise posi-
tion for the accuracy of the measurement.

● Horizontal position control (X-POS$): It can adjust the horizontal posi-
tion of the waveform.

● Vertical position control (Y-POSl): It can adjust the vertical position of
the waveform.

● Channel coupling (CH I–DUAL–CH II):
CH I: Displays the input signal from channel I.
CH II: Displays the input signal from channel II.
DUAL: Displays the input signals from both channels I and II.

● Input coupling (DC–GND–AC): The connection from the test circuit to
the oscilloscope.

Figure L8.1 An oscilloscope
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DC: The DC position can display both DC and AC waveforms (the AC
signal is superimposed on the DC waveform).
AC: The AC position blocks the DC waveform and only displays AC
waveform.
GND: The GND position has a horizontal line on the screen that repre-
sents zero reference.

● 61 Probe: Can measure and read the signal directly but may load the
circuit under test and distort the waveform.

● 610 Probe: Needs to multiply by 10 for each measured reading (more
accurate).

Equipment and components

● Digital multimeter
● Breadboard
● DC power supply
● Oscilloscope
● Function generator

Procedure

Part I: Measure DC voltage using an oscilloscope

1. Set up the oscilloscope controls to the following positions:
● Channel coupling: CH I or CH II
● Input coupling: Set up to GND and adjust the trace to the central

reference line (0 V) first, then switch to DC
● TIME/DIV: 1 ms/DIV
● Trigger: Auto

(The trigger can stabilize repeating waveforms and capture single-shot
waveforms.)

2. Connect a circuit as shown in Figure L8.2. The negative terminal of DC
power, ground of the oscilloscope probe, and negative terminal of the
multimeter (voltmeter function) should be connected together.

3. Set up the oscilloscope probe to 61, adjust VOLTS/DIV of the oscillo-
scope to 1 V/DIV, and adjust DC power supply to 3 V. The voltmeter
reading should be 3 V now. The DC wave on the oscilloscope screen

E
Oscilloscope

V

+

–

Figure L8.2 Measuring DC voltage using an oscilloscope
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occupies three vertical grids (squares) at this time, so the voltage measured
by the oscilloscope is also 3 V.

ð3 vertical divisionsÞ 	 ð1 V=DIVÞ ¼ 3 V

4. Keep the oscilloscope probe at61, adjust VOLTS/DIV of the oscilloscope
to 0.5 V/DIV, and adjust DC power supply to 4 V. The DC wave on the
oscilloscope screen occupies eight vertical divisions at this time.

ð8 vertical divisionsÞ 	 ð0:5 V=DIVÞ ¼ 4 V

Read the value on the voltmeter, and record it in Table L8.2.

5. Keep the oscilloscope probe at 61, adjust VOLTS/ DIV of the oscillo-
scope to 2 V/DIV, and adjust DC power supply to 5 V. Read the voltage
value on the voltmeter and oscilloscope, and record them in Table L8.2.

6. Set up the oscilloscope probe to 610, adjust DC power supply to 8, 12 and
16 V, respectively, and adjust VOLTS/DIV to suitable positions. Read the vol-
tage values on the voltmeter and oscilloscope, and record them in Table L8.2.

Part II: AC measurements using an oscilloscope

1. Replace the DC power supply by a function generator in Figure L8.2. The
ground of the function generator, ground of the oscilloscope probe and nega-
tive terminal of multimeter (voltmeter function) should be connected together.
● Set up the function generator:

Waveform: sine

Frequency: 1.5 kHz

DC offset: 0 V

Amplitude knob: minimum (Fully counter clockwise)

● Set up the oscilloscope:
VOLTS/DIV: 0.5 V/DIV

Channel coupling: CH I

TIME/DIV: 0.2 ms/DIV

Table L8.2

Probe DC power
supply (V)

Vertical division
(DIV)

VOLTS/DIV
(V/DIV)

Voltmeter
(V)

Oscilloscope
(V)

61 Example: 3 3 1 3 3
4 8 0.5 4
5 2

610 8
12
16
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Input coupling: Set up to GND and adjust the trace to the central
reference line (0 V) first, then switch to AC

2. Adjust the amplitude knob of the function generator until that sine wave
on the vertical division of the oscilloscope screen occupies six divisions
(squares). The voltage amplitude at this time is

VP�P ¼ ð6 DIVÞ 	 ð0:5 V=DIVÞ ¼ 3 V

Note that the reading of the multimeter is RMS value, and it can be
converted to the peak value comparing with the waveform obtained from
the oscilloscope.

3. Adjust the horizontal position control of the oscilloscope (X-POS) until the
sine wave on the oscilloscope screen occupies four horizontal divisions.

● Determine the period of the sine wave T:

Period ðTÞ ¼ ðNumber of horizontal divisionsÞ 	 ðTIME=DIVÞ
T ¼ ð4 divisionsÞ 	 ð0:2 ms=DIVÞ ¼ 0:8 ms

● Determine the frequency f:

f ¼ 1
T
¼ 1

0:8 ms
¼ 1:25 kHz

4. Adjust the horizontal position control of the oscilloscope (X-POS) until the
sine wave on the oscilloscope screen occupies six horizontal divisions
(adjust the frequency knob on the function generator if necessary). Deter-
mine the period T and frequency f of the sine wave, and record the values
in Table L8.3 (keep TIME/DIV ¼ 0.2 ms/DIV).

5. Adjust TIME/DIV of the oscilloscope to 0.5 ms/DIV, and adjust the hor-
izontal position control of the oscilloscope (X-POS) until the sine wave on the
oscilloscope screen occupies five horizontal divisions. Determine the periodT
and frequency f of the sine wave, and record the values in Table L8.3.

Conclusion

Write your conclusions below:

Table L8.3

Period T Frequency f

Step 4
Step 5
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Chapter 9

Methods of AC circuit analysis

Objectives

After completing this chapter, you will be able to:

● understand concepts and characteristics of the impedance and admittance of
AC circuits

● define the impedance and admittance of resistor R, inductor L and capacitor C
● determine the impedance and admittance of series and parallel AC circuits
● apply the voltage divider and current divider rules to AC circuits
● apply KCL and KVL to AC circuits
● understand the concepts of instantaneous power, active power, reactive power,

apparent power, power triangle and power factor
● apply the mesh analysis, node voltage analysis, superposition theorem and

Thevinin’s and Norton’s theorems, etc. to analyse AC circuits

9.1 Impedance and admittance

9.1.1 Impedance
In the previous chapter, we had learned that the phasor forms of relationship
between voltage and current for resistor, inductor and capacitor in an AC circuit are
as follows:

_VR ¼ _IRR; _VL ¼ j _ILXL; _VC ¼ �j _ICXC

The above equations can be changed to a ratio of voltage and current

_VR

_IR
¼ R;

_VL

_IL
¼ jXL;

_VC

_IC
¼ �jXC

The ratio of voltage and current is the impedance of an AC circuit, and it can be
generally expressed as Z ¼ _V=_I . This equation is also known as Ohm’s law of AC
circuits.

The physical meaning of the impedance is that it is a measure of the opposition
to AC current in an AC circuit. It is similar to the concept of resistance in DC
circuits, so the impedance is also measured in ohms. The impedance can be
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extended to the inductor and capacitor in an AC circuit. It is a complex number that
describes both the amplitude and phase characteristics.

The impedances of resistor, inductor and capacitor are as follows:

ZR ¼ R ¼
_VR

_IR
; ZL ¼ jXL ¼

_VL

_IL
; ZC ¼ �jXC ¼

_VC

_IC

Impedance Z
● Z is a measure of the opposition to AC current in an AC circuit.
● Ohm’s law in AC circuits: Z ¼ _V=_I :

9.1.2 Admittance
Recall that the conductance G is the inverse of resistance R, and it is a measure of
how easily current flows in a DC circuit. It is more convenient to use the con-
ductance in a parallel DC circuit. Similarly, the admittance is the inverse of
impedance Z, it is denoted by Y, Y = 1/Z, and is measured in siemens (S). The
admittance is a measure of how easily a current can flow in an AC circuit. It can
be expressed as the ratio of current and voltage of an AC circuit, i.e. Y ¼ _I= _V . It
is more convenient to use the admittance in a parallel AC circuit.

Admittance Y
● Y is the measure of how easily current can flow in an AC circuit.
● Y is the inverse of impedance: Y ¼ 1/Z.
● Ohm’s law in AC circuits: _I ¼ _VY :

The admittance of resistor, inductor and capacitor are as follows:

YR ¼ 1
R
; YL ¼ 1

jXL
¼ �j

1
XL

; YC ¼ 1
�jXC

¼ j
1

XC
j ¼ 1

�j

� �

Quantity Quantity Symbol Unit Unit symbol

Admittance Y Siemens S

Quantity Quantity Symbol Unit Unit symbol

Impedance Z Ohm O
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9.1.3 Characteristics of the impedance
Since the impedance is a vector quantity, it can be expressed in both polar form and
rectangular form (complex number) as follows:

Z ¼ zfff ¼ R þ j X ¼ zðcosfþ j sinfÞ ð9:1Þ

The rectangular form is the sum of the real part and the imaginary part, where the
real part of the complex is the resistance R, and the imaginary part is the reactance
X. The reactance is the difference of inductive reactive and capacitive reactance, i.e.

X ¼ XL � XC

The lower case letter z in (9.1) is the magnitude of the impedance, which is

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ X 2

p

The corresponding angle f between the resistance R and reactance X is called the
impedance angle and can be expressed as follows:

f ¼ tan�1 X

R

The relationship between R, X and Z in the expression of the impedance is a right
triangle, and can be described using the Pythagoras’ theorem. This can be illu-
strated in Figure 9.1(a).

Figure 9.1(a) is an impedance triangle. If we multiply each side of the quantity
in the impedance triangle by current _I the following expressions will be obtained:

_Vz ¼ Z _Iz; _VX ¼ _IXX ; _VR ¼ _IXR

These can form another triangle that is called the voltage triangle, which is
illustrated in Figure 9.1(b). If we divide each side of the value by voltage _V in the
impedance triangle, the following expressions will be obtained:

_Iz ¼
_Vz

Z
; _IX ¼

_VX

X
; _IR ¼

_VR

R

R
f f f

X
z Vz

VX

VR IR

IX

Iz

(a) (b) (c)

Figure 9.1 Impedance, voltage and current triangles

Methods of AC circuit analysis 267

09_Wang_Chapter09_p265-306 31 May 2010; 16:13:52



The above expression can form another triangle that is called the current triangle,
and it is illustrated in Figure 9.1(c). The characteristics of the impedance triangle in
Figure 9.1(a) can be summarized as follows:

● If X 4 0 or X ¼ XL � XC > 0; XL > XC: The reactance X is above the hor-
izontal axis, and the impedance angle f 4 0. The circuit is more inductive as
shown in Figure 9.2(a).

● If X 5 0 or X ¼ XL � XC < 0; XC > XL: The reactance X is below the hor-
izontal axis, and the impedance angle f < 0. The circuit is more capacitive as
shown in Figure 9.2(b).

● If X = 0 or X ¼ XL � XC ¼ 0; XC ¼ XL: The impedance angle
f ¼ 0, the circuit will look like a purely resistive circuit (z = R) as shown in
Figure 9.2(c).

Example 9.1: Determine the impedance Z in the circuit of Figure 9.3 and plot the
phasor diagram of the impedance.

Solution: The impedances in series in an AC circuit behave like resistors in series.

0

XL

XL XL

+ 

+j

R

XL – XC

(XL > XC) (XL = XC)(XC > XL)

XL – XC XC

XC XC

z

+j

+ 

f > 0 f < 0 f = 0

R

z

0 +0

+j

R

R = z

(a) (b) (c)

f f

Figure 9.2 The phasor diagrams of the impedance

ZR ZL

ZC

R = 1.5 Ω XL = 2.5 Ω

XC = 3 ΩZ

Figure 9.3 Circuit for Example 9.1
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So,

Z ¼ ZR þ ZL þ ZC ¼ R þ jX ¼ R þ jðXL � XCÞ
¼ 1:5Oþ jð2:5 � 3ÞO ¼ 1:5O� j0:5O

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:52 þ ð�0:5Þ2

q
tan�1 �0:5

1:5
� 1:58ff � 18:44� O

Note: Since the imaginary term is 70.5 on y-coordinate, and the real term is þ1.5 on
the x-coordinate, the impedance angle for this circuit is located in the 4th quadrant.

The circuit for Example 9.1 is more capacitive since XC > XL, and f < 0 as
shown in Figure 9.4.

9.1.4 Characteristics of the admittance
The admittance is also a complex number; it can be expressed in both polar and
rectangular forms as follows:

Y ¼ yfffy ¼ G þ jB ¼ yðcosfþ j sinfÞ ð9:2Þ

The real part of the complex is the conductance G, and the imaginary part is
called the susceptance B. The susceptance is measured in the same way as the
admittance, i.e. siemens (S). The susceptance is the difference of the capacitive
susceptance and inductive susceptance, i.e. B ¼ BC � BL:

The lower case letter y in (9.2) is the magnitude of the admittance,
i.e. y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2 þ B2
p

+j

+ 

XL = 2.5 Ω

XC = 3 Ω

XL – XC = –0.5 Ω

R = 1.5 Ω 

f
z

0

Figure 9.4 Impedance angle for Example 9.1
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The corresponding angle f between the conductance G and susceptance B is
called the admittance angle and can be expressed as

fy ¼ tan�1 B

G

The admittance of resistor, inductor and capacitor are as follows:

YR ¼ 1
R
¼ G; YL ¼ 1

jXL
¼ �j

1
XL

; YC ¼ 1
�jXC

¼ j
1

XC

The impedance, admittance, susceptance and their relationship can be sum-
marized as given in Table 9.1.

The characteristics of the admittance triangle in Figure 9.5 can be summarized
as follows:

XL ¼ oL; XC ¼ 1
oC

; j ¼ 1
�j

� �

Table 9.1 Impedance and admittance

Component
Impedance
Z ¼ _V= _I

Admittance
Y ¼ 1/Z Conductance and susceptance

Resistor (R) ZR ¼ R YR ¼ G Conductance: G ¼ 1/R

Inductor (L) ZL ¼ jXL YL ¼ 7jBL Inductive susceptance:
BL ¼ 1/XL

Capacitor (C) ZC ¼ 7jXC YC ¼ jBC Capacitive susceptance:
BC ¼ 1/XC

Z ¼ zfff ¼ R þ jX Y ¼ yfffy ¼ G þ jB Reactance: X ¼ XL � XC

z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ X 2

p
y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2 þ B2
p

Susceptance: B ¼ BC � BL

f ¼ tan�1 X

R
fy ¼ tan�1 B

G

0 + 
G

G = YY
+ fy fy

G

Y

0 +0
G

+j+j+j

(BL = BC)
(BL > BC)

(BC > BL)

BC – BL

BC – BL

BCBC

BC

BL

BL

BL

fy = 0
fy < 0

fy > 0

(a) (b) (c)

Figure 9.5 The phasor diagrams of the admittance
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● If B 4 0 or B ¼ ðBC � BLÞ > 0, BC > BL: The susceptance B is above the
horizontal axis, the admittance angle fy 4 0, and the circuit is more capacitive
as shown in Figure 9.5(a).

● If B 5 0 or B ¼ ðBC � BLÞ < 0, BL > BC: The susceptance B is below the
horizontal axis, the admittance angle fy < 0, and the circuit is more inductive
as shown in Figure 9.5(b).

● If B ¼ 0 or B ¼ ðBC � BLÞ ¼ 0, BL ¼ BC: The admittance angle fy ¼ 0,
the circuit will look like a purely resistive circuit (Y ¼ G) as shown in
Figure 9.5(c).

Characteristics of impedance and admittance
● If X 4 0, f 4 0, B 5 0, fy 5 0: The circuit is more inductive.
● If X 5 0, f 5 0, B 4 0, fy 4 0: The circuit is more capacitive.
● If X ¼ 0, f ¼ 0, B ¼ 0, fy ¼ 0: The circuit is purely resistive.

Example 9.2: Determine the admittance in the circuit of Figure 9.6 and plot the
phasor diagrams of the admittance.

Solution: The admittances in parallel in AC circuits behave like the conductances
in parallel in DC circuits.
So,

Y ¼YR þ YL þ YC ¼ G þ jB ¼ G þ jðBC � BLÞ

¼ 1
13:3O

þ j
1

13:3O
� 1

5:72O

� �
� 0:075 S þ jð0:075 � 0:175ÞS

¼ 0:075 S � j0:1 S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0752 þ ð�0:1Þ2

q
tan�1 �0:1

0:075
¼ 0:125ff � 53:13� S

Note: The admittance angle for this circuit is located in the fourth quadrant since
the imaginary term is 70.1 and the real term is þ0.075.

Y XL XC

13.3 Ω 5.72 Ω 13.3 Ω
R

Figure 9.6 Circuit for Example 9.2
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Since BL 4 BC (BL ¼ 0.175, BC ¼ 0.075) and fy 5 0, the circuit is more inductive
as shown in Figure 9.7.

9.2 Impedance in series and parallel

9.2.1 Impedance of series and parallel circuits
The impedances in series and parallel AC circuits behave like resistors in series and
parallel DC circuits, except the phasor form (complex number) is used. The
equivalent impedance (or total impedance) for a series circuit in Figure 9.8 is given
as

Zeq ¼ Z1 þ Z2 þ � � � þ Zn

The equivalent impedance (or total impedance) for a parallel circuit in Figure
9.9 is given as

Zeq ¼ 1
ð1=Z1Þ þ ð1=Z2Þ þ � � � þ ð1=ZnÞ ¼ Z1==Z2== . . . ==Zn

Yeq ¼ Y1 þ Y2 þ � � � þ Yn

+ j

+ 

BC = 0.075 S

BL= 0.175 S

BC – BL 

Y = 0.125 S

0
G = 0.075 S

fy = –53.1°

Figure 9.7 Admittance angle for Example 9.2

Z1 Z2

Zeq

Zn…

Figure 9.8 Impedance of a series circuit

…Z1 Z2
Zeq Zn

Figure 9.9 Impedance of a parallel circuit

272 Understandable electric circuits

09_Wang_Chapter09_p265-306 31 May 2010; 16:13:55



The equivalent impedance is the reciprocal of equivalent admittance,
Zeq ¼ 1=Yeq. If only have two impedances in parallel, the equivalent impedance is
given as

Zeq ¼ Z1Z2

Z1 þ Z2
¼ Z1==Z2

Impedances in series and parallel
● Impedances in series: Zeq ¼ Z1 þ Z2 þ � � � þ Zn

● Impedances in parallel:
Zeq ¼ Z1==Z2== � � � ==Zn; Yeq ¼ Y1 þ Y2 þ � � � þ Yn

● Two impedances in parallel: Zeq ¼ Z1Z2

Z1 þ Z2

To determine the equivalent impedance in series and parallel AC circuits, use
the same method that determines the equivalent resistance in series and parallel DC
circuits.

9.2.2 Voltage divider and current divider rules
The voltage divider and current divider rules in phasor form in AC circuits are very
similar to the DC circuits as follows:

_V1 ¼ Z1

Z1 þ Z2

_E; _V2 ¼ Z2

Z1 þ Z2

_E

_I1 ¼ Z2

Z1 þ Z2

_IT; _I2 ¼ Z1

Z1 þ Z2

_IT

(a) (b)

Z1

Z2

1V

2V

E
•

•

•
Z1 Z2E

1I 2ITI
•

•
•

•

Figure 9.10 Voltage and current dividers
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9.2.3 The phasor forms of KVL and KCL
The phasor forms of Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law
(KCL) also hold true in AC circuits.

Phasor forms of KVL and KCL
● KVL : S _V ¼ 0 or _V1 þ _V2 þ � � � þ _Vn ¼ _E
● KCL : S_I ¼ 0 or _Iin ¼ _Iout

The following examples show how to use the above equations in series-parallel
AC circuits.

Example 9.3: Determine the following values for the circuit in Figure 9.11.

● the input equivalent impedance Zeq and
● the current _I3 in the branch of RL and XL.

Solution:

(a) Zeq ¼ Z1 þ Z2==Z3

Z1 ¼ R1 ¼ 4 kO

Z2 ¼ �jXC ¼ �j8 kO

Z3 ¼ RL þ jXL ¼ 4 kOþ j8 kO � 8:94ff63:44� kO

Z2==Z3 ¼ Z2Z3

Z2 þ Z3
¼ ð�j8Þð4 þ j8Þ

�j8 þ 4 þ j8
kO ¼ 64 � j32

4
kO � 71:55ff � 26:57

4ff0� kO

� ð16 � j8ÞkO
¼ 17:9ff � 26:57� kO ¼ 17:9½cosð�26:57�Þ þ j sinð�26:57�Þ�kO

Zeq ¼ Z1 þ Z2==Z3

¼ ½4 þ ð16 � j8Þ�kO ¼ ð20 � j8ÞkO � 21:54ff � 21:8� kO

Z1

Z3

E = 100V∠0°
Z2

I3

I1

I2

R1 = 4kΩ RL = 4kΩ

XL  = 8kΩ

XC = 8kΩ

Figure 9.11 Circuit for Example 9.3
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(b) _I3 ¼ Z2

Z2 þ Z3

_I1

Here _I1 ¼
_E

Zeq
¼ 100ff0� V

21:54ff � 21:8� O
� 4:64ff 21:8� mA

; _I3 ¼ Z2

Z2 þ Z3

_I1

¼ð4:64ff21:8�ÞmA
8ff � 90�kO

ð�j8 þ 4 þ j8ÞkO ¼ 37:12ff � 68:2
4ff0�

mA

¼ 9:28ff � 68:2�mA

Example 9.4: Determine the voltage across the inductor L for the circuit in
Figure 9.12.

Z1 = 120Ω

(a) (b)

VL
VLE = 40 sin (2t-30°)V

R = 120Ω

L = 10H C = 20mF

+

–

E = 40V ∠–30° Z3 = –j25ΩZ2 = j20Ω
+

–

Figure 9.12 Circuits for Example 9.4

Solution:

● Convert the time domain to the phasor domain as shown in Figure 9.12(b) first.

Z1 ¼ R ¼ 120O

Z2 ¼ jXL ¼ jðoLÞ ¼ jð2 � 10 HÞ ¼ j20O

Z3 ¼ �jXC ¼ �j
1
oC

¼ �j
1

2 � 20 mF
¼ �j25O

e ¼ 40 sinð2t � 30�ÞV ) _E ¼ 40ff � 30�V

● _VL ¼ _E
Z2==Z3

Z1 þ Z2==Z3
ðZ2==Z3 ¼ ?Þ

Z2==Z3 ¼ Z2Z3

Z2 þ Z3
¼ j20ð�j25Þ

j20 � j25
O ¼ 500

�j5
O ¼ j100O
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; _VL ¼ _E ¼ Z2==Z3

Z1 þ Z2==Z3
¼ ð40ff� 30�ÞV j100O

ð120 þ j100ÞO
� 4000ff 60�

156:2ff 39:8� V

� 25:61ff 20:2� V

After converting the phasor form to the time form gives

vL ¼ 25:61 sinð2t þ 20:2�ÞV

9.3. Power in AC circuits

There are different types of power in AC circuits, such as instantaneous power,
active power, reactive power and apparent power.

9.3.1 Instantaneous power p
The instantaneous power p is the power dissipated in a component of an AC circuit
at any instant time. It is the product of instantaneous voltage v and current i at that
particular moment (Figure 9.13), i.e. instantaneous power can be expressed as

p ¼ vi

If v ¼ Vm sinðot þ fÞ and i ¼ Im sinot

Then, p ¼ vi ¼ VmIm sinot sinðot þ fÞ

, � sin x sin y ¼ 1
2
½cosðx þ yÞ � cosðx � yÞ�

; p ¼ � 1
2

V mIm½cosð2ot þ fÞ � cosf�
¼ VI cosf� VI cosð2ot þ fÞ ðVm ¼

ffiffiffi
2

p
V; Im ¼

ffiffiffi
2

p
IÞ

¼ VI cosf� VIðcos 2ot cosf� sin 2ot sinfÞ

½, cosðx þ yÞ ¼ cos x cos y � sin x sin y�

Loadv

+

–

i

Figure 9.13 Instantaneous power
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Therefore, instantaneous power is given as

p ¼ VI cosfð1 � cos 2otÞ þ VI sinf sin 2ot

The waveform of the instantaneous power can be obtained from the product of
instantaneous voltage and current at each point on their waveforms as shown in
Figure 9.14.

Such as:

● at time t ¼ 0 : i ¼ 0, p ¼ vi ¼ 0
● at time t ¼ t1 : v ¼ 0, p ¼ vi ¼ 0
● between time 0 * t1 : v 4 0 and i 4 0, \ p ¼ vi 4 0
● between time t1 * t2 : v 5 0 and i 4 0, \ p ¼ vi 5 0
● between time t2 * t3 : v 5 0 and i 5 0, \ p ¼ vi 4 0

When instantaneous power p is 40 (p is positive), the component stores
energy provided by the source. When instantaneous power p is 50 (p is negative),
the component returns the stored energy to the source.

Instantaneous power p
p is the product of instantaneous voltage and current at any instant time:

p ¼ vi ¼ VI cosf ð1 � cos 2otÞ þ VIðsinf sin 2otÞ

p 4 0: The component absorbs (stores) energy.
p 5 0: The component returns (releases) energy.

● Instantaneous power for a resistive component pR: Since voltage and current in
a purely resistive circuit is in phase, i.e. f ¼ 0, substituting this into the
equation of the instantaneous power gives

0

v
i

t

p

t1

t3t2

Figure 9.14 The waveform of instantaneous power
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pR ¼ vi ¼ VI cos0�ð1 � cos 2otÞ þ VI sin0� sin 2ot

¼ VI � VI cos 2ot ¼ VIð1 � cos 2otÞ ð9:3Þ

The first part VI in (9.3) is average power dissipated in the resistive load (p 4 0,
the load absorbs power). The second part in (9.3) is a sinusoidal quantity with a
double frequency 2o, this indicates that when voltage and current waveforms
oscillate one full cycle in one period of time, power waveform will oscillate two
cycles as illustrated in Figure 9.15. The mathematical expression and the
waveform all show that instantaneous power of a resistive load is always
positive, or a resistor always dissipates power, indicating that the resistor is an
energy consuming element.

● Instantaneous power for capacitive and inductive components: In a purely
inductive load circuit, voltage leads current by 908. In a purely capacitive
circuit, voltage lags current by 908. Substituting f ¼ 	90� into the equation of
instantaneous power gives

p ¼ VI cosð	90�Þð1 � cos 2otÞ þ VI sinð	90�Þ sin 2ot ¼ 	VI sin 2ot

ð9:3Þ

The instantaneous power for inductive and capacitive loads can be obtained
from (9.3) as follows:

● Instantaneous power for an inductive load: pL ¼ VI sin 2ot
● Instantaneous power for a capacitive load: pC ¼ �VI sin 2ot

The diagrams of instantaneous power for inductive and capacitive loads are
illustrated in Figure 9.16.

As seen from (9.3) and waveforms in Figure 9.16, both the instantaneous
powers of inductive and capacitive loads are sinusoidal quantities with a double
frequency 2o. They have an average value of zero over a complete cycle since the
positive and negative waveforms will cancel each other out. When instantaneous
power is positive, the component stores energy; when instantaneous power is

0

v

i
t

pR

VI

Figure 9.15 The waveform of instantaneous power for a R load

278 Understandable electric circuits

09_Wang_Chapter09_p265-306 31 May 2010; 16:13:58



negative, the component releases energy. Therefore, the inductor and capacitor do
not absorb power, they convert or transfer energy between the source and elements.
This also indicates that the inductor and capacitor are energy storage elements.

Instantaneous power for R, L and C components
● pR ¼ VI � VI cos 2ot
● pL ¼ VI sin 2ot
● pC ¼ �VI sin 2ot

9.3.2 Active power P (or average power)
The active power is also known as average power, which is the product of the RMS
voltage and RMS current in an AC circuit. It is actually the average power dis-
sipation on the resistive load, i.e. the average power within one period of time (one
full cycle) for a sinusoidal power waveform in an AC circuit.

The active power is also called true or real power since the power is really
dissipated by the load resistor, and it can be converted to useful energy such as heat

0

v

t

pL

i

Store / Release / Store / Release

(a)

0

v

t

pC

i

Release / Store / Release / Store
 

(b)

Figure 9.16 The waveforms of instantaneous power for L and C loads
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or light energy, etc. Electric stoves and lamps are examples of this kind of resistive
load.

The instantaneous power always varies with time and is difficult to measure, so
it is not very practical to use. Since it is the actual power dissipated in the load,
average or active power P is used more often in AC sinusoidal circuits. Average
power is easy to measure by an AC power metre (an instrument to measure AC
power) in an AC circuit. Average power is the average value of instantaneous power
in one period of time. It can be obtained from integrating for instantaneous power in
one period of time.

Note: If you haven’t learned calculus, then just keep in mind that P ¼ VI cosf is
the equation for average power, and skip the following mathematical derivation
process.

P ¼ 1
T

Z T

0
pðtÞdt ¼ 1

T

Z T

0
½VI cosfð1 � cos 2otÞ þ VI sinf sin 2ot�dot

P ¼ 1
T

VI cosfðotÞ T
0

�� þ VI sinf
1
T

Z T

0
sin 2otdot ¼ VI cosf ð9:4Þ

where f is a constant, and ot is a variable, so the first part of the integration is a
constant VI cosf. The integration of the second part is zero (integrating for sine
function), since the average power value for a cosine function in one period of time
is zero.

Therefore, active or average power P is a constant. It consists of the product of
RMS values of voltage and current VI and cosf where cosf is called power factor
and it will be discussed at the end of this section.

When active power P 4 0, the element absorbs power; when active power
P 5 0, the element releases power.

● When f ¼ 0�, the voltage and current are in phase, the circuit is a purely
resistive circuit, and PR ¼ VI cos 0� ¼ VI ð, cos 0� ¼ 1Þ
Therefore,

PR ¼ VI ¼ I2R ¼ V 2

R

or

PR ¼ VI ¼ Vmffiffiffi
2

p Imffiffiffi
2

p ¼ 1
2

VmIm

● When f ¼ 90�, the voltage leads the current by 908, the circuit is a purely
inductive circuit, and PL ¼ VI cos 90� ¼ 0 ð, cos 90� ¼ 0Þ, i.e. PL ¼ 0.
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● When f ¼ �90�, the current leads the voltage by 908, the circuit is a
purely capacitive circuit, and PC ¼ VI cosð�90�Þ ¼ 0 ½, cosð�90�Þ ¼ 0�,
i.e. PC ¼ 0.

Active power P (or average power, real power and true power)
The active power is the average value of the instantaneous power that is
actually dissipated by the load.

P ¼ VI cosf

When f ¼ 0� PR ¼ VI ¼ 1
2

VmIm ¼ I2R ¼ V 2

R

When f ¼ 90� PL ¼ 0

When f ¼ �90� PC ¼ 0

9.3.3 Reactive power Q
Since the effect of charging/discharging in a capacitor C and storing/releasing
energy from an inductor L is that energy is only exchanged or transferred back and
forth between the source and the component and will not do any real work for the
load. So the average power dissipated on the load is zero. The reactive power Q can
describe the maximum velocity of energy transferring between the source and the
storage element L or C.

The first part in (9.4) is active or average power. The integration of the second
part of (9.4) is zero, and that is the reactive power. While energy is converting
between the source and energy store elements, the load will do not do any actual
work, and average power dissipated on the load will be zero. Also, because the
physical meaning of the reactive power is the maximum velocity of energy con-
version between the energy storing element and the source, the peak value of the
second part is reactive power, denoted as Q. It can be expressed mathematically as
Q ¼ VI sinf, and measured in volt-amperes reactive (Var).

● When f ¼ 0�, the circuit is a purely resistive circuit:

QR ¼ VI sin 0� ¼ 0 ð, sin 0� ¼ 0Þ

Quantity Quantity symbol Unit Unit symbol

Active power P Watt W
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● When f ¼ 90�, the circuit is a purely inductive circuit:

QL ¼ VI sin 90� ¼ VI ð, sin 90� ¼ 1Þ

Substituting V ¼ IXL or I ¼ V

XL
into QL gives

QL ¼ VI ¼ I2XL ¼ V 2

XL

● When f ¼ �90�, the circuit is a purely capacitive circuit:

QC ¼ VI sinð�90�Þ ¼ �VI ½sinð�90�Þ ¼ �1�

Substituting V ¼ IXC or I ¼ V

XC
into QC gives

QC ¼ �VI ¼ �I2XC ¼ �V 2

XC

Since QL is positive (QL 4 0) and QC is negative (QC 5 0), the inductor absorbs
(consumes) reactive power, and the capacitor produces (releases) reactive power.

Reactive power Q
Q is the maximum velocity of energy conversion between the source and
energy storing element.

Q ¼ VI sinf

When f ¼ 0� QR ¼ 0

When f ¼ 90� QL ¼ VI ¼ I2XL ¼ V 2

XL

When f ¼ �90� QC ¼ �VI ¼ �I2XC ¼ �V 2

XC

9.3.4 Apparent power S
When the voltage V across a load produces a current I in the circuit of Figure 9.17,
the power produced in the load is the product of voltage and current VI. If the load
Z includes both the resistor and storage element inductor or capacitor, then VI will
be neither a purely active power nor a purely reactive power. Since VI is the
expression of the power equation, it is called apparent power. Apparent power is

Quantity Quantity symbol Unit Unit symbol

Reactive power Q Volt-amperes reactive Var
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the maximum average power rating that a source can provide to the load or max-
imum capacity of an AC source and is denoted as S.

The mathematical expression of apparent power is the product of the source
current and voltage, i.e. S ¼ IV and is measured in VA (volt-amperes).

Substituting I ¼ V/Z or V ¼ IZ into apparent power S equation gives:

S ¼ I2Z ¼ V 2

Z

Usually the power listed on the nameplates of electrical equipment is the apparent power.

Apparent power S
S is the maximum average power rating that a source can provide to an AC
circuit.

S ¼ IV ¼ I2Z ¼ V 2=Z

where S represents apparent power, measured in VA.

Different types of power in AC circuits are summarized in Table 9.2.

Z V

+

-

I

Figure 9.17 Apparent power

Table 9.2 Powers in AC circuits

Power General expression R L C

Instantaneous
power

p ¼ VI cosf
(1 – cos 2ot)
þ VI sinf sin 2ot

pR ¼ VI
– VIcos 2ot

pL ¼
VIsin 2ot

pL ¼
–VIsin 2ot

Active
power

P ¼ VI cosf PR ¼ VI
¼ 1/2(VmIm)
¼ I2R ¼ V2/R

PL ¼ 0 PC ¼ 0

Reactive
power

Q ¼ VI sinf QR ¼ 0 QL ¼ VI
¼ I2XL

¼ V2/XL

QC¼ –VI
¼ –I2XC

¼ V2/XC

Apparent
power

S ¼ VI ¼ I2Z ¼ V2/Z
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9.3.5 Power triangle
We have discussed three different powers in AC circuits, the active power, reactive
power and apparent power. Now the question is what are the relationships between
these three powers. These three powers are actually related to one another in a right
triangle, is called the power triangle, and can be derived as follows.

For a series resistor, inductor and capacitor circuit, if the circuit is more induc-
tive ðX ¼ XL � XC > 0; f > 0Þ, then the impedance triangle, voltage triangle and
current triangle can be illustrated as shown in Figure 9.18(a–c) (refer to section 9.1).

If we multiply all quantities on each side of the voltage triangle by the current
I, it will yield VI = S, IVX = Q and VRI = P and this can be illustrated as a power
triangle as shown in Figure 9.18(d).

If the circuit load is more capacitive (XC > XL, f < 0), the circuit triangles
will be opposite to the inductive circuit triangles as shown in Figure 9.19.

The impedance triangle indicates that it has an angle f between resistance R
and impedance Z of the circuit. It is called the impedance angle; f is also in the
power triangle. Later on, we’ll introduce the power factor cos f, and f is also
called the power factor angle.

f

Z

R

X
f

•

V

•
I VR

•

•

VX f

•

I

IR
•

IX
•

(a) (b) (c)

f

S Q

P
(d)

Figure 9.18 Circuit triangles for a more inductive circuit

f
R

X
Z S

Q

P
f f f

•
V

VR

•

XV
•

IR
•

IX
•

•
I

(a) (b) (c) (d)

Figure 9.19 Circuit triangles for a more capacitive circuit
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The relationship between different powers in the power triangle can be
obtained from the Pythagoras’ theorem, i.e. S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ Q2

p
If expressed by complex numbers, it will give: _S ¼ P þ jQ
This is known as the phasor power. The phasor apparent power can also be

expressed as

_S ¼ _V _I ¼ _I2Z ¼
_V 2

Z

The impedance angle f can be obtained from circuit triangles (either inductive
or capacitive circuit) and can be expressed as

f ¼ tan�1 Q

P
¼ tan�1 X

R
¼ tan�1

_VX

_VR
¼ tan�1

_IX

_IR

Active power P and reactive power Q can be expressed with the impedance
angle f and obtained from the power triangle in Figures 9.18 or 9.19 as:

P ¼ S cosf and Q ¼ S sinf

Power triangle

f

S

P

Q

P ¼ S cosf; Q ¼ S sinf; S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ Q2

p
;

Impedance angle:

f ¼ tan�1 Q

P
¼ tan�1 X

R
¼ tan�1ð _VX= _VRÞ ¼ tan�1ð_IX=_IRÞ

Phasor power:

_S ¼ _V _I ¼ _I2Z ¼ _V 2=Z; _S ¼ P þ jQ

9.3.6 Power factor (PF)
The ratio of active power P and apparent power S is called the power factor PF, and
represented by cosf. It also can be obtained from the power triangle as
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PF ¼ P

S
cosf

For a purely resistive circuit ðf ¼ 0�Þ, the reactive power Q is zero, so the
apparent power S is equal to the active power P, i.e.

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ Q2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ 02

p
¼ P

and the power factor is 1, i.e. cosf ¼ P=S ¼ P=P ¼ 1
This is the maximum value for the power factor cosf.
For a purely reactive load ðf ¼ 	90�Þ, active power P in the circuit is zero, so

the power factor is also zero, i.e. cosf ¼ P=S ¼ 0=S ¼ 0.
Therefore, the range of the power factor cosf is between 0 and 1, and the

impedance angle f is between 08 and +908.
The power factor is an important factor in circuit analysis. The circuit source

will produce active power P to the load, and the amount of the active power P can
be determined by the power factor cosf. This is indicated in the equation of
P ¼ S cosf.

If the power factor cosf of the load is the maximum value of 1, the active
power produced by the source is the maximum capacity of the source, and all the
energy supplied by the source will be consumed by the load (P ¼ S, , cosf ¼ 1 ).

If the power factor cosf decreases, the active power P produced by the source
will also decrease accordingly ðP #¼ S cosf #Þ.

So increasing the power factor can increase the real power in a circuit. But
how to increase the power factor of a circuit? A method called power-factor
correction can be used. This method can increase the power factor and does not
affect the load voltage and current. Since most of the loads of the electrical sys-
tems are inductive loads (such as the loads that are driven by a motor), an
inductive load in parallel with a capacitor (Figure 9.20(b)) can increase the power
factor of the load.

(c)(b)

C

R

L

I

S

P

Qʹ

QC

fʹ
f

Q

R

(a)

L

Figure 9.20 Increasing the power factor
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The power triangle in Figure 9.20(c) indicates that when a capacitor C is in
parallel with the inductive load, the reactive power Q in the circuit will be reduced
to Q0 (Q0 ¼ Q 7 QC). Therefore, the impedance angle will reduce from f to f0,
and the power factor cosf will increase to cosf0.

Since f#! cosf", for instance cos 30� ¼ 0:866 is > cos 60� ¼ 0:5, the total
current I will also decrease, since I #¼ P=ðV cosf "Þ ðP ¼ S cosf ¼ VI cosfÞ.
This can reduce the source current and line power loss (I2R). This is why increasing
the power factor has a significant meaning.

Power factor (cos f)
● cosf ¼ P=S ð0 
 cosf 
 1; cosf� dimensionlessÞ:
● When cosf ¼ 1: All energy supplied by the source is consumed by

the load.
● Power-factor correction: An inductive load in parallel with a capacitor can

increase cosf.

9.3.7 Total power
When calculating the total power in a complicated series–parallel circuit, determine
the active power P and reactive power Q in each branch first, and the sum of all the
active powers is the total active power PT. The difference between QLT and QCT is
the total reactive power QT. QLT is the sum of all reactive powers for the inductors
and QCT is the sum of all reactive powers for the capacitors. The total apparent
power S can be determined by using QT and PT using the Pythagoras’ theorem, i.e..

ST ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

T þ Q2
T

q

The total power factor can be determined by using the total active and reactive
power, i.e.

PFT ¼ cosfT ¼ PT

ST

Total power
● Total active power: PT ¼ P1 þ P2 þ � � � þ Pn

● Total reactive power:
QT ¼ QLT � QCT ¼ ðQL1 þ QL2 þ � � �Þ � ðQC1 þ QC2 þ � � �Þ
where QLT is the total reactive power for inductors and QCT the total
reactive power for capacitors.
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● Total apparent power: ST ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

T þ Q2
T

p
● Total power factor: PFT ¼ cosfT ¼ PT=ST

Example 9.5: Determine the total power factor cosf in the circuit of Figure 9.21
and plot the power triangle for this circuit.

Solution:

● Total power factor PFT ¼ cosfT ¼ PT?

ST?
; ST ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT?2 þ QT?2

p
(the symbol

‘?’ indicates an unknown).
Total active power: PT ¼ P1 þ P2 þ P3 ¼ ð10 þ 30þ 20ÞW ¼ 60 W

Total reactive power: QT ¼ QLT � QCT ¼ ð70 � 15ÞVar ¼ 55 Var

Total apparent power: ST ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

T þ Q2
T

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

602 þ 552
p ¼ 81:39 VA

Total power factor: PFT ¼ cosfT ¼ PT

ST
¼ 60 W

81:39 VA
� 0:74

● Impedance angle: f ¼ cos�1 fT ¼ cos�1 0:74 � 42:3�

● The power triangle is shown in Figure 9.22.

Example 9.6: Determine the following values in the circuit shown in Figure 9.23:

● the total power PT, QT and ST for the circuit
● power factor cosf
● power triangle
● source current I
● the capacitance C needed to increase the power factor cosf to 0.87
● the source current I0 after increasing the power factor

Z1

Z2 Z3
E = 10 V ∠ 0°

P1 = 10 W

P2 = 30 W

QC = 15 Var

P3 = 20 W

QL = 70 Var

Figure 9.21 Circuit for Example 9.5

42.3°=f

PT = 60 W

QT = 55 Var
ST = 81.39 VA

Figure 9.22 The power triangle for Example 9.5
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Solution:

(a) Lamp: P1 ¼ 5 � 100 W ¼ 500 W

Heating: P2 ¼ I2R ¼ ð10 AÞ2ð5OÞ ¼ 500 W

Q2 ¼ I2XL ¼ ð10 AÞ2ð5OÞ ¼ 500 Var

Electric stove: P3 ¼ 6 kW ¼ 6 000 W; f ¼ cos�10:75 � 41:4�

Q3 ¼ P3 tanf ¼ ð6 000 WÞðtan 41:4�Þ � 5 290 Var; f ¼ tan�1ðQ=PÞð Þ
Total power: PT ¼ P1 þ P2 þ P3 ¼ ð500 þ 500 þ 6 000ÞW ¼ 7 000 W

QT ¼ Q1 þ Q2 þ Q3 ¼ 0 þ 500 Var þ 5 290 Var ¼ 5 790 Var

ST ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT þ QT

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 0002 þ 5 7902

p � 9 084:3 VA

(b) Power factor PFT ¼ cosfT ¼ PT

ST
¼ 7 000

9 084:3
� 0:77

(c) Power triangle (as shown in Figure 9.24): f ¼ cos�1 0:77 � 39:7�

(d) Source current I: ,ST ¼ EI

; I ¼ ST

E
¼ 9 084:3 VA

110 V
� 82:6 A

Therefore, _I ¼ 82:6ff � 39:7�A (Voltage leads current or current lags voltage
in the inductive load, so f ¼ �39:7�.)

(e) The capacitance C that needs to increase the power factor to 0.87 can be
determined by the following way:

C ¼ 1
2pfXC?

) QC ¼ �V 2

XC
) XC ¼ � V 2

QC?
) XC ¼ 1

2pfC

� �

QT ¼ QC þ Q0
T? ) Q0

T ¼ PT tanf0? ) f0 ¼ cos�1 0:87

(as shown in Figure 9.25)

10 A
60 kW

0.75 PF
C

• • •

• • •

f = 60 Hz

5 lamps

100 W/each R = 5Ω 

XL = 5Ω I

E =110 V∠0°
•

Lamps Heating Electric stove

Figure 9.23 Circuit for Example 9.6

PT = 7000 W

QT = 5790 Var

ST = 9084.3 VA

f = 39.7°

Figure 9.24 Power triangle for Example 9.6
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Therefore, to increase the power factor to 0.87, the power factor angle
should be reduced to f0 ¼ cos�1 0:87 � 29:5�.
The reactive power can be determined from the above expression as

Q0
T ¼ PT tanf0 ¼ 7 000 tan 29:5� � 3 960 Var

The new power factor angle f0 is shown in Figure 9.25. QC can be obtained
from Figure 9.25:

QC ¼ QT � Q0
T ¼ 5 790 � 3 960 ¼ 1 830 Var

XC ¼ �V 2

QC
¼ � E2

QC
¼ �1102 V

1 830 Var
� 6:61O

(The voltage across XL and R is equal to E.)

Therefore

C ¼ 1
2pfXC

¼ 1
2pð60 HzÞð6:61OÞ � 0:0004 F ¼ 400 mF

That is the capacitance C needed to increase the power factor to 0.87
should be 400 µF.

(f) The source current I 0 after increasing the power factor can be determined
by the following expression:

P ¼ S cosf ¼ IE cosf

So,

I 0 ¼ PT

E cosf0 ¼
7000 W

110 V cos 29:5�
� 73:1 A

Comparing with the original source current I = 82.6 A from step (d),
after a capacitor is in parallel and the power factor is increased, the source
current is I 0 = 73.1 A. So the source current can decrease 9.5 A (I 7 I 0 =
82.6 A 7 73.1 A = 9.5 A). This can reduce the line power loss (I2R) and
utilize the capacity of the source more efficiently.

9.4 Methods of analysing AC circuits

All analysis methods that we have learned for analysing DC circuits with one or
two more sources can also be used for analysing AC circuits, such as the branch

P

Qc

QT

ST = 9084.3 VA

Q′T

= 3960 Var
29.5°=f

Figure 9.25 New power factor angle
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current analysis, mesh analysis, node voltage analysis, superposition theorem,
Thevenin’s and Norton’s theorems, etc. But the phasor form will be used to
represent the circuit quantities. Since these analysis methods have been discussed
in detail for DC circuits (chapters 4 and 5), some examples will be presented to use
these methods in AC circuits or networks. Reviewing chapters 4 and 5 before
reading the following contents is highly recommended.

9.4.1 Mesh current analysis
The procedure for applying the mesh current analysis method in an AC circuit:

1. Identify each mesh and label the reference directions for each mesh current
clockwise.

2. Apply KVL around each mesh of the circuit, and the numbers of KVL equa-
tions should be equal to the numbers of mesh (windowpanes). Sign each self-
impedance voltage as positive and each mutual-impedance voltage as negative
in KVL equations.
● Self-impedance: An impedance that only has one mesh current flowing

through it.
● Mutual-impedance: An impedance that is located on the boundary of two

meshes and has two mesh currents flowing through it.
3. Solve the simultaneous equations resulting from step 2, and determine each

mesh current.

Note:
● Convert the current source to the voltage source first in the circuit, if there is

any.
● If the circuit has a current source, the source current will be the same with the

mesh current, so the number of KVL equations can be reduced.

The procedure for applying the mesh current analysis method in an AC circuit
is demonstrated in the following example.

Example 9.7: Use the mesh current analysis method to determine the mesh current
I1 in the circuit of Figure 9.26.

Solution: Convert the current source to the voltage source (connect R and X to Z) as
shown in Figure 9.26(b). There, _E2 ¼ _IR3 ¼ ð2:5 Aff0�Þð4 OÞ ¼ 10 Vff 0�:

1. Label all the reference directions for each mesh current _I1 and _I2 (clockwise),
as shown in Figure 9.26(b).

2. Write KVL around each mesh (windowpane), and the number of KVL is equal
to the number of meshes (there are two meshes in Figure 9.26(b)).

Sign each self-impedance voltage as positive, and each mutual-impedance
voltage as negative in KVL ðS _V ¼ S _EÞ.

Mesh 1: ðZ1 þ Z2Þ_I1 � Z2 _I2 ¼ � _E1

Mesh 2: �Z2 _I1 þ ðZ2 þ Z3Þ_I2 ¼ � _E2
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Substitute the following values of Z1, Z2 and Z3 into the above equations:

Z1 = (6 7 j6)O, Z2 = 2O and Z3 = (4 þ j8)O

so, ð8 � j6Þ_I1 � 2_I2 ¼ �10 V

�2_I1 þ ð6 þ j8Þ_I2 ¼ �10 V

3. Solve the simultaneous equations resulting from step 2 using the determinant
method, and determine the mesh current _I1:

_I1 ¼
�10ff 0� �2
�10ff 0� 6 þ j8

����
����

8 � j6 �2
�2 6 þ j8

����
����
� 1:18ff � 151:9� A

9.4.2 Node voltage analysis
The following is the procedure for applying the node analysis method in an AC
circuit.

1. Label the circuit:
● Label all the nodes and choose one of them to be the reference node.
● Assign an arbitrary reference direction for each branch current (this step

can be skipped if using the inspection method).

(a)

(b)

R1 = 6 Ω

XC = 6 Ω

R2 = 2 Ω R3 = 4 Ω

XL = 8 Ω–

+
E1 = 10 V∠ 0°

•

R1 = 6 Ω

XC = 6 Ω

R
3
 = 4 ΩXL = 8 Ω

Z1 R2 = 2 Ω

Z3

Z2

+

–

–

+

I2

•
•

1I E2 = 10V∠ 0°
•

E1 = 10 V∠ 0°
•

I = 2.5 A ∠ 0°
•

Figure 9.26 Circuits for Example 9.7
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2. Apply KCL to all n71 nodes except for the reference node (n is the number of
nodes).
● Method 1: Write KCL equations and apply Ohm’s law to the equations

(assign a positive sign (þ) to the self-impedance voltage and entering node
current, and negative sign (7) for the mutual-impedance voltage and
exiting node current).

● Method 2: Convert voltage sources to current sources and write KCL
equations using the inspection method.

3. Solve the simultaneous equations and determine each nodal voltage.

The procedure for applying the node voltage analysis method in an AC circuit is
demonstrated in the following example.

Example 9.8: Write node equations for the circuit in Figure 9.27(a).

1. Label nodes a, b, c and d, and choose ground d to be the reference node as
shown in Figure 9.27(a).

2. Convert two voltage sources to current sources from Figure 9.27(a) to Figure
9.27(b), and write KCL equations to n 7 1 ¼ 4 7 1 ¼ 3 nodes by inspection
(method 2). KCL equations are shown in Table 9.3.

3. Three equations can solve three unknowns that are node voltages.

9.4.3 Superposition theorem
The following is the procedure for applying the superposition theorem in an AC
circuit:

1. Turn off all power sources except one, i.e. replace the voltage source with the
short circuit (placing a jump wire), and replace the current source with an open
circuit. Redraw the original circuit with a single source.

2. Analyse and calculate this circuit by using the single source method, and repeat
steps 1 and 2 for the other power sources in the circuit.

3. Determine the total contribution by calculating the algebraic sum of all con-
tributions due to single sources.

a

bc d

–j1Ω

+

–

a

b
c d

5j A==

+–

–j1 Ω –j1 Ω

–j1 Ω

1 Ω 1 Ω
5 Ω

2.5 Ω
5 Ω

2.5 Ω

j1 Ω
j1 Ω

2 V ∠0º

5 ∠0º

1∠–90º

5 V ∠0º

i1

–2j A== 2 ∠0º

1∠90º
i2

(a) (b)

Figure 9.27 Circuits for Example 9.8
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(The result should be positive when the reference polarity of the unknown in
the single source circuit is the same with the original circuit, otherwise it should be
negative.)

The procedure for applying the superposition theorem in an AC circuit is
demonstrated in the following example.

Example 9.9: Determine _Vc in circuit as shown in Figure 9.28(a) by using the
superposition theorem.

Solution:

1. Choose _E to apply to the circuit first, and use an open circuit to replace the
current source _I as shown in Figure 9.28(b), and calculate _V 0

c:

_V 0
C ¼ _E

Z2

Z1 þ Z2
¼ �10Vff0�

7:5Off � 90�

10O� j7:5O

¼ �75ff � 90�

12:5ff � 36:87�
V ¼ �6ff � 53:13� V

2. When the current source _I is applied to the circuit only and the voltage source
_E is replaced by a jump wire, the circuit is as shown in Figure 9.28(c). Cal-
culate _V 00

c in Figure 9.28(c):

_V 00
C ¼ _IðZ1==Z2Þ

Z1==Z2 ¼ Z1Z2

Z1 þ Z2
¼ 10ð�j7:5Þ

10 � j7:5
O

� 75ff � 90�

12:5ff � 36:87� O ¼ 6ff � 53:13� O

_V 00
C ¼ _IðZ1==Z2Þ ¼ ð2ff0� AÞð6ff � 53:13�OÞ ¼ 12ff � 53:13� V

R = 10 Ω Z1 Z2

XC = 7.5 Ω
I = 2A ∠0°VC-

+

-

+
•

•

E = 10 V ∠0°

•

+

R = 10 Ω

Z1

Z2

XC = 7.5 Ω
=

+

-
-

+

'VC

•

•
E = 10 V ∠0°

R = 10 Ω

Z1

Z2

XC = 7.5 Ω
+

-
''VC

• •

I = 2A ∠0°

(a)

(b) (c)

Figure 9.28 Circuits for Example 9.9

Methods of AC circuit analysis 295

09_Wang_Chapter09_p265-306 31 May 2010; 16:14:14



3. Calculate the sum of voltages _V 0
C and _V 00

C:

_VC ¼ _V 0
C þ _V 00

C ¼ �6ff � 53:13� V þ 12ff � 53:13� V

¼ ½�6 cosð�53:13�Þ � 6j sinð�53:13�Þ
þ 12 cosð�53:13�Þ þ 12j sinð�53:13�Þ�V

� ½�3:6 þ j4:8 þ 7:2 � j9:6�V ¼ ð3:6 � j4:8ÞV ¼ 6ff � 53:13�V

9.4.4 Thevenin’s and Norton’s theorems
The following is the procedure for applying Thevenin’s and Norton’s theorems in
an AC circuit.
1. Open and remove the load branch (or any unknown current or voltage

branch) in the network, and mark the letter a and b on the two terminals.
2. Determine the equivalent impedance ZTH or ZN: It should be equal to the

equivalent impedance when you look at it from the a and b terminals when all
sources are turned off or equal to zero. (A voltage source should be replaced by
a short circuit, and a current source should be replaced by an open circuit.)

i.e. ZTH ¼ ZN ¼ Zab

3.
● Determine Thevenin’s equivalent voltage VTH: It equals the open circuit vol-

tage from the original linear two-terminal network of a and b, i.e. VTH ¼ Vab.
● Determine Norton’s equivalent current IN: It equals the short circuit current

for the original linear two-terminal network of a and b, i.e. IN ¼ Isc.

4. Plot Thevenin’s or Norton’s equivalent circuits, and connect the load (or
unknown current or voltage branch) to a and b terminals of the equivalent
circuit. Then the load voltage or current can be calculated.

The procedure for applying Thevenin’s and Norton’s theorems method in an
AC circuit is demonstrated in the following example.

Example 9.10: Determine the current _IL in the load branch of Figure 9.29(a) by
using Thevenin’s theorem, and use Norton’s theorem to check the answer.

Solution:

1. Open the load branch and remove ZL, and label a and b on the terminals of the
load branch as shown in Figure 9.29(b).

2. Determine Thevenin’s equivalent impedance ZTH (the voltage source _E is
replaced by a short circuit) in Figure 9.29(b):

ZTH ¼Zab ¼ Z3 þ Z4 þ Z1==Z2

ZTH ¼ 1 � j1 þ �j2:5ð2:5 þ j2:5Þ
�j2:5 þ ð2:5 þ j2:5Þ

� �
O ¼ 1 � j1 þ 6:25 � j6:25

2:5

� �
O

¼ð1 � j1 þ 2:5 � j2:5ÞO ¼ ð3:5 � j3:5ÞO � 4:95ff � 45�O
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3. Determine Thevenin’s equivalent voltage _V TH by using Figure 9.29(c) to
calculate the open circuit voltage across terminals a and b:

_VTH ¼ _Vab ¼ _Vcd

Since _I ¼ 0 for Z3 and Z4 in Figure 9.29(c), voltages across Z3 and Z4 are
also zero

; _VTH ¼ _Vcd ¼ _E
Z2

Z1 þ Z2
¼ 5ff0� V

2:5 þ j2:5
�j2:5 þ ð2:5 þ j2:5Þ O

� 5ff0�ð1:414ff45�Þ � 7:07ff45� V

4. Plot Thevenin’s equivalent circuit as shown in Figure 9.29(d). Connect the
load ZL to a and b terminals of the equivalent circuit and calculate the load
current _IL.

0°∠
-

+

5V=
•
E

•

-j2.5 Ω j2.5 Ω

2.5 Ω ZL = (1.5 + j3.5) Ω

1 Ω

-j Ω

IL

(a)

a

b

-j2.5 Ω
j2.5 Ω

2.5 Ω

RTH = Zab

Z1 Z4

Z2

Z3

1 Ω

-j Ω
a

b

c

d

•

•j2.5 Ω

2.5 Ω

-j2.5 Ω

Z1 Z2

Z4

Z3 1 Ω

-j Ω

E = 5 V∠0°

VTH

(b) (c)

Figure 9.29 Circuits for Example 9.10(a)–(c)
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_IL ¼
_VTH

ZTH þ ZL
¼ 7:07ff45� V

ð3:5 � j3:5ÞOþ ð1:5 þ j3:5ÞO ¼ 7:07ff45� V
5O

� 1:4ff45� A

5. Determine Norton’s equivalent circuit in Figure 9.29(a) as seen by ZL.
● Norton’s equivalent impedance ZN:

ZN ¼ ZTH ¼ 3.5 7 j3.5 = 4.95 ff7458

● Norton’s equivalent current IN: It is equal to the short circuit current for
the original two-terminal circuit of a and b (as shown in Figure 9.29(e, I).

_IN ¼ _ISC ¼ _I
Z2

Z2 þ ðZ3 þ Z4Þ (the current-divider rule).

There,

_I ¼
_E

Z1 þ Z2==ðZ3 þ Z4Þ ¼
5ff0� V

�j2:5 þ ð2:5 þ j2:5Þð1 � j1Þ
ð2:5 þ j2:5Þ þ ð1 � j1Þ

� �
O

¼ 5ff0�V
ð� j2:5 þ ðj5Þ=ð3:5 þ j1:5ÞÞO � 1:54ff68:2�A

Therefore,
_IN ¼ _I

Z2

Z2 þ ðZ3 þ Z4Þ

¼ 1:54ff68:2�A
ð2:5 þ j2:5ÞO

½2:5 þ j2:5 þ ð1 � j1Þ�O � 1:43ff90�A

6. Use Norton’s theorem to check the load current _IL: Determine the load current
_IL on the terminals of a and b in Figure 9.29(e, II) by using Norton’s equivalent
circuit.

_IL ¼ _IN
ZN

ZN þ ZL
¼ 1:43ff90� A

4:95ff � 45� O
½ð3:5 � j3:5Þ þ ð1:5 þ j3:5Þ�O

¼ 1:43ff90� A
4:95ff � 45�

5
� 1:4ff45� A

Therefore, _IL is the same by Norton’s theorem as the method by using
Thevenin’s theorem (checked).

-

+

a

b

•

•

ZTH = 4.95 Ω∠-45°

ZL = (1.5 + j3.5) Ω

IL

VTH = 7.07 ∠45° V

Figure 9.29(d) Thevenin’s equivalent circuit for Example 9.10
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a

b

ZN = 4.95 ∠-45
0 Ω

ZL = (1.5 + j3.5) ΩIN = 1.43 ∠90.1
0 A

•

IL
•

a

b

•

•

•

-j Ω

1 Ω

-j 2.5 Ω
j 2.5 Ω

2.5 Ω
E = 5 ∠0° 

V

Z1

Z4

IN
Z2

Z3

I

(I)

(II)

Figure 9.29(e) Norton’s equivalent circuit for Example 9.10

Summary

Impedance and admittance

XL ¼ oL; XC ¼ 1
oC

; j ¼ 1
�j

� �

Component Impedance
Z ¼ _V= _I

Admittance Y ¼ 1/Z Conductance
and susceptance

R ZR ¼ R YR ¼ G Conductance:
G ¼ 1/R

L ZL ¼ jXL YL ¼ 7jBL Inductive
susceptance:
BL ¼ 1/XL

C ZC ¼ 7jXC YC ¼ jBC Capacitive
susceptance:
BC ¼ 1/XC

Z ¼ z fff ¼ R þ jX Y ¼ y ff fy ¼ G þ jB Reactance:
X ¼ XL � XC

and susceptance:
B ¼ BC � BL

z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ X 2

p
y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2 þ B2
p

f ¼ tan�1X

R
fy ¼ tan�1 B

G
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● Impedance, voltage, current and power triangles
● For a more inductive circuit:

V
•

X

I
•V

•

V
•

R I
•

R

I
•

XI
•

f f f
•

f

S Q

PR

X
Z

● For a more capacitive circuit:

f f f f

V
•

X I
•

X

I
•

RV
•

R

I
•

V
•X

R

Z

P

S
Q

Impedance angle: f ¼ tan�1X

R
¼ tan�1

_VX

_V R
¼ tan�1

_IX

_IR
¼ tan�1 Q

P

● Characteristics of impedance and admittance:
● The inductive load: X 4 0 (XL 4 XC), f 40, B 5 0 (BL 4BC), fy 5 0
● The capacitive load: X 5 0 (XC 4 XL), f 50, B 4 0 (BC 4BL), fy 4 0
● The resistive load: X ¼ 0 (XC ¼ XL), f ¼ 0, B ¼ 0 (BL ¼ BC), fy ¼ 0.

Impedances in series and parallel
● Impedances in series: Zeq ¼ Z1 þ Z2 þ � � � þ Zn

● Impedances in parallel: Zeq¼ 1
ð1=Z1Þþð1=Z2Þþ���þð1=ZnÞ¼Z1==Z2==���==Zn

Zeq¼ 1
Yeq

Yeq¼Y1þY2þ���þYn

Two impedances in parallel: Zeq ¼ Z1Z2

Z1 þ Z2
¼ Z1==Z2

● Voltage-divider rule for impedance: _V1 ¼ Z1

Z1 þ Z2

_E _V2 ¼ Z2

Z1 þ Z2

_E

Current-divider rule for impedance: _I1 ¼ Z2

Z1 þ Z2

_IT _I2 ¼ Z1

Z1 þ Z2

_IT

● The phasor forms of KVL and KCL: S _I ¼ 0 _Iin ¼ _Iout

S _V ¼ 0 _V1 þ _V2 þ � � � þ _Vn ¼ _E
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Power of AC circuits

● Power: P ¼ S cos f, Q ¼ S sin f, S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ Q2

p

Power General form R L C

Instantaneous
power

p ¼ ui ¼VI cosf
(1 – cos 2ot)
þ VI sinf sin 2ot

pR ¼ VI –
VI cos 2ot

pL ¼
VI sin 2ot

pC ¼
–VIsin 2ot

Active
power

P ¼ VI cosf PR ¼ VI ¼
1/2VmIm ¼ I2R
¼ V 2/R

PL ¼ 0 PC ¼ 0

Reactive
power

Q ¼ VI sinf QR ¼ 0 QL ¼ VI
¼ I2XL

¼ V2/XL

QC ¼ –VI
¼ –I2XC

¼ V2/XC

Apparent
power

S ¼ VI ¼ I2Z ¼ V2/Z

Quantity Quantity Symbol Unit Unit symbol

Instantaneous Power p Watt W
Active Power P Watt W
Reactive power Q Volt-amperes reactive Var
Apparent power S Volt-Amperes VA

f

S

P

Q

Phasor power: _S ¼ R þ jQ ¼ _V _I ¼ _I2Z ¼ _V 2=Z
● Power factor

● Power factor: PF ¼ cos f ¼ P

S
ð0 
 cosf 
 1Þ

● Power-factor correction: A capacitor in parallel with the inductive load
can increase the power factor (the power factor angle f# ! cosf")

cosf" ! line current _I # _I #¼ P

Vcosf "
� �

! line power loss ð_I2RÞ # !
utilize capacity of the source more efficiently.

● Total power
● Total active power: PT ¼ P1 þ P2 þ � � � þ Pn

● Total reactive power:
QT ¼ QLT � QCT ¼ ðQL1 þ QL2 þ � � � Þ � ðQC1 þ QC2 þ � � � Þ (QLT is the
total reactive power of inductors, and QCT is the total reactive power of
capacitors.)

● Total apparent power: ST ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

T þ Q2
T

p
ST ¼ S1 þ S2 þ � � � þ Sn

● Total power factor: PFT ¼ cos fT ¼ PT

ST
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● Analysis methods for AC sinusoidal circuits

All analysis methods that are used to analyse DC circuits with one or two more
sources can also be used to analyse AC circuits.

Experiment 9: Sinusoidal AC circuits

Objectives
● To become familiar with the operation of an oscilloscope for measuring the

sinusoidal AC voltage.
● To become familiar with the operation of an oscilloscope for measuring the

phase difference of two waveforms.
● To verify theoretical calculations of the AC series–parallel circuits through

experiment.

Background information
● XL ¼ oL ¼ 2pfL; XC ¼ 1

oC
¼ 1

2pfC
● ZR ¼ R, ZL ¼ jXL, ZC ¼ 7jXC

● Use the oscilloscope to measure the phase difference f (with dual-channel CH
I and CH II):

Example L9.1: There are two sinusoidal waveforms A and B with complete cycles
of 2p(3608) as shown in Figure L9.1. If these two waveforms appear on the screen
of the oscilloscope and occupy six horizontal grids, determine the phase difference
of waveforms A and B in Figure L9.1.

Solution: Each grid is 608 ð360�=6 grids ¼ 60�=gridsÞ. Since there is one grid
difference between waveform A and B as shown in Figure L9.1, the phase differ-
ence of waveforms A and B is 608. (If the distance between A and B is 0.5 grids, the
phase difference will be 308, i.e. 0.5 6 608 ¼ 308.)

Use the oscilloscope to measure the current in the inductive or capacitive branch
(indirect measurement): Connect a small resistor, called a sensing resistor, in series with
the inductor or the capacitor. Measure the voltage across the sensing resistor, and then
calculate the branch current using Ohm’s law. Since the sensing resistance is very small,
its impact on the circuit measurement and calculation may be negligible.

0

B
A

2π
π

Figure L9.1 Phase difference
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Equipment and components
● Multimeter
● Breadboard
● Function generator
● Oscilloscope
● Z meter or LCZ meter
● Switch
● Resistors:15 O (two) and 510 O
● Inductor: 1.1 mH
● Capacitor: 3 600 pF

Procedure
1. Connect a circuit as shown in Figure L9.2 on the breadboard. Use the multi-

meter (ohmmeter function) and Z meter or LCZ meter to measure the values of
the resistor, inductor and capacitor, and record in Table L9.1.

2. Use the measured R, L and C values to calculate XC, XL and Zeq of the circuit
shown in Figure L9.2 (at frequency of 80 kHz) and record the results in
Table L9.2.

E = 3 sin ωt V

f = 80 kHz

L = 1.1 mH
R = 510 Ω

C = 3 600 pF

A B

C

Figure L9.2 Experiment circuit

Table L9.1

R RL RC L C

Nominal value 510O 15O 15O 1.1 mH 3 600 pF
Measured value

Table L9.2

XC XL Zeq
*

Formula for calculation
Calculated value

*Refer to chapter 9, section 9.2
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3. Adjust the frequency of the function generator to 80 kHz. Connect the oscillo-
scope probe CH I to the point A in the circuit of Figure L9.2, connect the probe
ground of the oscilloscope to the ground of the function generator, and then
measure the output sinusoidal voltage of the function generator.

Resistor branch
4. Adjust the output voltage of the function generator to 6 V peak–peak value (Ep7p¼

6 V). Connect the oscilloscope probe CH II to point B in the circuit of Figure L9.2
(choose DUAL channel coupling for the oscilloscope), then measure the voltage
across the resistor VR (peak value) and record in Table L9.3.

5. Use the measured VR value to calculate the current IR in the resistive branch
(Ohm’s law) and record it in Table L9.3. Then use the oscilloscope to observe
and determine the phase difference fR of resistor voltage VR relative to source
voltage E, and record in Table L9.3.

Inductor branch
6. Connect a 15 O resistor RL (sensing resistor) to the inductive branch as shown

in Figure L9.3.
7. Connect the oscilloscope probe CH II to the point D in the circuit of Figure

L9.3, and measure the peak voltage on resistor RL and record the result as VRL

in Table L9.3.
8. Use the measured VRL to calculate the current IL in the inductor branch

(Ohm’s law) and record it in Table L9.3. Then use the oscilloscope to observe
and determine the phase difference oL of VRL relative to the source voltage E.
Record the result in Table L9.3.

Note: The oscilloscope probe CH I is still connected to point A of the circuit in
Figure L9.3.

Capacitor branch
9. Connect a 15 o resistor RC to the circuit as shown in Figure L9.4.
10. Connect the oscilloscope probe CH II to point E of the circuit in Figure L9.4,

measure the peak voltage on resistor RC and record the measurement as VRC in
Table L9.3.

Table L9.3

Resistive branch Inductive branch Capacitive branch

Parameter VR IR fR VRL IL fL VRC IC fC

Measured value
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11. Use the measured VRC to calculate the capacitor current IC (Ohm’s law) and
record it in Table L9.3. Then use the oscilloscope to observe and determine the
phase difference cC of capacitor voltage VRC relative to source voltage E and
record in Table L9.3.

Phasor form
12. Calculate the branch currents _IR; _IL and _IC in the circuit of Figure L9.2 in

phasor form (use peak values) and record in Table L9.4.

13. Convert the measured values IR, IL and IC in Table L9.3 to the phasor form and
record in Table L9.4 (as the measured value). Compare the measured values and
calculated values. Are there any significant differences? If so, explain the
reasons.

Conclusion

Write your conclusions below:

Table L9.4

_IR _IL _IC

Formula for calculations
Calculated value
Measured value
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Chapter 10

RLC circuits and resonance

Objectives

After completing this chapter, you will be able to:

● understand concepts and characteristics of series and parallel resonance
● determine the following quantities of series and parallel resonant circuits:

resonant frequency, resonant current, resonant voltage, resonant impe-
dance, bandwidth and quality factor

● plot the frequency response curves of current, voltage and impedance for
series and parallel resonant circuits

● understand characteristics of the selectivity in series and parallel of reso-
nant circuits

● understand the actual parallel resonant circuits
● understand the applications of the resonant circuits

The resonant phenomena that will be introduced in this chapter have a
wide range of applications in electrical and electronic circuits, particularly in
communication systems. Resonant circuits are simple combinations of induc-
tors, capacitors, resistors and a power source. However, since the capacitor or
inductor voltage/current in a resonant circuit could be much higher than the
source voltage or current, a small input signal can produce a large output
signal when resonance appears in a circuit. This is why the resonant circuit is
one of the most important circuits in electronic communication systems.

Resonance may also damage the circuit elements if it is not used properly.
So it is very important to analyse and study resonant phenomena and to know
its pros and cons.

10.1 Series resonance

10.1.1 Introduction

Resonance may occur in a series resistor, inductor and capacitor (RLC) circuit,
as shown in Figure 10.1, when the capacitor reactance XC is equal to the
inductor reactance XL.
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When the magnitudes of inductive reactance XL and capacitive reactance
XC are equal (XL ¼ XC), or when reactance X is zero (X ¼ XL 7 XC ¼ 0), the
equivalent or total circuit impedance Z is equal to the resistance R, i.e.

_Z ¼ R þ jðXL � XCÞ ¼ R

Under the above condition, resonance will occur in the RLC series circuit. That
is, when resonance occurs in a series RLC circuit, the energy of the reactive
components in the circuit will compensate each other (XL ¼ XC), and the
equivalent impedance of the series RLC circuit will be the lowest (Z ¼ R). This
is the characteristic of the series resonant circuit.

Series resonance

XL ¼ XC, X ¼ 0, Z ¼ R

10.1.2 Frequency of series resonance

The angular frequency of the series resonant circuit can be obtained from

XL ¼ XC or oL ¼ 1
oC

Solving for o gives or ¼ 1=
ffiffiffiffiffiffiffi
LC

p
. (The subnotation ‘r’ stands for resonance.)

Since o ¼ 2pf , solving for f gives the series resonant frequency as

fr ¼ 1

2p
ffiffiffiffiffiffiffi
LC

p

This is a very important equation for the series resonance. The resonant fre-
quency fr is dependent on the circuit elements inductor (L) and capacitor (C),
meaning that it may produce or remove resonance by adjusting the inductance
L or capacitance C in the RLC series circuit.

Frequency of series resonance

Resonant frequency: fr ¼ 1=2p
ffiffiffiffiffiffiffi
LC

p
Resonant angular frequency: or ¼ 1=

ffiffiffiffiffiffiffi
LC

p

R

C

L

VS

VR
VL

VC

I
•

• •

•
•

Figure 10.1 An RLC series circuit
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10.1.3 Impedance of series resonance

As previously mentioned, when series resonance occurs, the circuit’s equivalent
impedance is at the minimum (Z ¼ R). This is illustrated in Figure 10.2, which
is the response curve of the impedance Z versus frequency f in the series reso-
nant circuit. When f ¼ fr, the impedance Z is at the lowest point on the curve.

10.1.4 Current of series resonance

When resonance occurs in a series RLC circuit, the impedance of the circuit is
equal to the resistance (Z ¼ R), and the resonant current will be

_I ¼
_V

Z
¼

_V

R

Therefore, when f ¼ fr, XL ¼ XC, the only opposition to the flow of the current
is resistance R, i.e. the impedance is minimum and current is maximum in a
series resonant circuit. Figure 10.3 illustrates the response curve of current I
versus frequency f in the series resonant circuit, and the current is at the highest
point on the curve when f ¼ fr.

I and Z of series resonance

● Impedance is minimum at series resonance: Z ¼ R
● Current is maximum at series resonance: _I ¼ _V= _Z ¼ _V=R

Z

f
fr

0

Figure 10.2 The response curve of Z vs. f for series resonance

f
fr

0

I
•

Figure 10.3 The response curve of I vs. f for series resonance
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10.1.5 Phasor diagram of series resonance

An RLC series resonant circuit is equivalent to a purely resistive circuit since
Z ¼ R. The capacitor and inductor voltages in the series resonant circuit are
equal in magnitude but are opposite in phase since XL ¼ XC, _VL ¼ jXL _IL and
_VC ¼ �jXC _IC.

The resistor voltage is equal to the source voltage ( _VR ¼ _E) since X ¼ 0
when series resonance occurs. Thus, the current _I and source voltage _E are also
in phase (since _VR and _I in phase), and the phase difference between _E and _I is
zero (f ¼ 0). A phasor diagram of the series resonant circuit is illustrated in
Figure 10.4.

Phasor relationship of series resonance

● _VL and _VC are equal in magnitude but opposite in phase.
● _I and _E are in phase, and f ¼ 0.

10.1.6 Response curves of XL, XC and Z versus f

The response curves of the inductive reactance XL, capacitive reactance XC and
impedance Z versus frequency f are illustrated in Figure 10.5.

+  j

+0

VR = E

VL

VC

I
•

•

•

• •

Figure 10.4 Phasor diagram of the series resonant circuit

f

XL  > XC

0
fr

(Z = R)

XL < XC

XL

XC

Z

Figure 10.5 Response curves of XL, XC and Z vs. f
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● XL and f are directly proportional ðXL ¼ 2pfLÞ, i.e. as frequency increases,
and XL increases.

● XC and f are inversely proportional ðXC ¼ 1=2pfCÞ, i.e. as frequency
increases XC decreases.

● When frequency f is zero in the circuit, XL ¼ 0, XC and Z approach infinite,

ðZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ð2pfL � ð1=2pfCÞÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ð0 �1Þ2

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R þ12
p ) 1Þ.

The response curves of XL, XC and Z versus f show that when the circuit
frequency is below the resonant frequency fr, the inductive reactance XL is
lower than the capacitive reactance XC and the circuit appears capacitive.
When the circuit frequency is above the resonant frequency fr, the inductive
reactance XL is higher than the capacitive reactance XC, and the circuit appears
more inductive. Only when the circuit frequency is equal to the resonant fre-
quency fr, the resonance occurs in the circuit. Impedance Z is equal to the
circuit resistance R and has a minimum value, and the circuit appears purely
resistive. These can be summarized as follows:

Characteristics of series resonance

● When f 5 fr, XL 5 XC: the circuit is more capacitive.
● When f 4 fr, XL 4 XC: the circuit is more inductive.
● When f ¼ fr, XL ¼ XC, I ¼ Imax, Z ¼ Zmin ¼ R: the circuit is purely

resistive and resonance occurs.

10.1.7 Phase response of series resonance

The phase response of the series resonant circuit can also be obtained from
Figure 10.5.

● When the frequency of the circuit is above the resonant frequency fr, the
circuit is more inductive XL 4 XC, voltage leads current, and the phase
difference is between zero and positive 908 (0 � f � 908).

● When the frequency of the circuit is below the resonant frequency fr, the
circuit is more capacitive XL 5 XC, the voltage lags current, and the phase
difference is between zero and negative 908 (7908 � f � 0).

● When the frequency of the circuit is equal to the resonant frequency fr,
XL ¼ XC, Z ¼ R, voltage and current are in phase, and the phase difference
is zero (f ¼ 0).

The phase response of the series resonant circuit can be illustrated in
Figure 10.6.

The following characteristics of the series resonant circuit can also be
obtained from Figure 10.6.

● When the frequency increases from the resonant frequency fr to infinite,
the phase angle approaches positive 908.
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● When the frequency decreases from the resonant frequency fr to zero, the
phase angle approaches negative 908.

The expression of the phase angle is

f ¼ tan�1 X

R
¼ tan�1 XL � XC

R
¼ tan�1 2pfL � ð1=2pfCÞ

R

Phase response of series resonance

● When f ! 1; f ! þ90�

● When f ! 0; f ! �90�

10.1.8 Quality factor

There is an important parameter known as quality factor in the resonant cir-
cuit, which is denoted as Q. The quality factor is defined as the ratio of stored
energy and consumed energy in physics and engineering, so it is the ratio of the
reactive power stored by an inductor or a capacitor and average power con-
sumed by a resistor in a resonant circuit, i.e.

Quality factor Q ¼ Reactive power=average power ð10:1Þ
The quality factor can be used to measure the energy that a circuit stores and
consumes.

The lower the energy consumption of a resistor (power loss) in a circuit, the
higher the quality factor, and the better the quality of the resonant circuit.
If substituting the equations of the reactive power and average power into
the quality factor equation (10.1), the quality factor of the series resonance will
be obtained as follows:

Q ¼ I2XL

I2R
¼ XL

R
¼ oL

R

where R is the total or equivalent resistance in the series circuit.

f0
fr

+90°

–90°

f

Figure 10.6 Phase response of the series resonant circuit
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Similarly, the quality factor Q can also be expressed by the capacitive
reactance and the resistance as

Q ¼ XC

R
¼ 1

oCR

The quality factor can be used to judge the quality of an inductor (or coil). A
coil always contains a certain amount of winding resistance Rw, which is the
resistance of the wire in the winding. The quality factor Q for a coil is defined
as the ratio of the inductive reactance and the winding resistance, i.e.

Q ¼ XL

Rw

The lower the winding resistance Rw of a coil, the higher the quality of the coil.

Note: Both the quality factor and reactive power are denoted by the letter Q, so
be careful not to confuse them. The quality factor is a dimensionless para-
meter, and the unit of reactive power is Var, which can be used to distinguish
between these two quantities.

Quality factor Q
● Quality factor: is the ratio of the reactive power and average power.
● Quality factor of the series resonance: Q ¼ XL=R ¼ XC=R.
● Quality factor of the coil: Q ¼ XL=Rw.

(The lower the Rw, the higher the quality of the coil.)

10.1.9 Voltage of series resonant

Multiplying current _I for both the denominator and nominator of the quality
factor equation Q ¼ XL=R, gives

Q ¼ XL

R
¼

_IXL

_IR
¼

_VL

_E

Similarly, for Q ¼ XC=R

Q ¼
_IXC

_IR
¼

_V C

_E

Therefore, when the resonance occurs in an RLC series circuit:

_VL ¼ _VC ¼ _EQ ð10:2Þ
The quality factor Q is always greater than 1, so the inductor or capacitor
voltage may greatly exceed the source voltage in a series resonant circuit, as can

10_Wang_Chapter10_p307-332 31 May 2010; 15:53:57

RLC circuits and resonance 313



be seen from the equation (10.2). This means that a lower input voltage may
produce a higher output voltage; therefore, the series resonance is also known
as the voltage resonance. That is one of the reasons that series resonant circuits
have a wide range of applications.

When choosing the storage elements L and C for a series resonant circuit,
the affordability of their maximum voltage should be taken into account, or
else the high resonant voltage may damage circuit components.

The concept of circuit resonance is similar to resonance in physics, which is
defined as a system oscillating at maximum amplitude at resonant frequency,
so a small input force can produce a large output vibration.

There are many examples of resonance in daily life, such as pushing a child
in a playground swing to the resonant frequency, which makes the swing go
higher and higher to the maximum amplitude with very little effort. Another
example is bouncing a basketball. Once the ball is bounced to the resonant
frequency, it will yield a smooth response, and the ball will reach maximum
height since a small force produces a large vibration.

Resonance may also cause damage. For example, a legend says that when a
team of soldiers walking a uniform pace passed through a bridge, the bridge
collapsed since the uniform pace reached resonant frequency that resulted in a
small force producing a large vibration.

Voltage of series resonance

● A lower input voltage may produce a higher output voltage.
● Inductor or capacitor voltage may greatly exceed the supply voltage

_VL ¼ _VC ¼ _EQ ðQ > 1Þ
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Example 10.1: A series resonant circuit is shown in Figure 10.7. Determine the
total equivalent impedance, quality factor, and inductor voltage of this circuit.

Solution:

Z ¼ RT ¼ R þ Rw ¼ ð2 þ 0:5ÞO ¼ 2:5ff0� O

fr ¼ 1

2p
ffiffiffiffiffiffiffi
LC

p ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2:5 mHÞð0:25 mFÞp � 6 366 Hz

XL ¼ 2pfL ¼ 2pð6 366Þð2:5 mHÞ � 100O

Q ¼ XL

RT
¼ 100O

2:5O
¼ 40

_VL ¼ jXL _I ¼
_E

Z
jXL

¼ 2:5ff0� V
2:5ff0� O

� 100ff90� O ¼ 100ff90� V
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This example shows that the inductor voltage of the series resonant circuit is
indeed greater than the supply voltage.

ð _VL ¼ 100ff90� VÞ > ð _E ¼ 2:5ff0� VÞ

10.2 Bandwidth and selectivity

10.2.1 The bandwidth of series resonance

When an RLC series circuit is in resonance, its impedance will reach the
minimum value and the current will reach the maximum value. The curve of
the current versus frequency of the series resonant circuit is illustrated in Figure
10.8. As displayed in the diagram, the current reaches the maximum value Imax

as the frequency closes in on the resonant frequency fr, which is located at the
centrer of the curve.

The characteristic of the resonant circuit can be expressed in terms of its
bandwidth (BW) or pass-band. The bandwidth of the resonant circuit is the
difference between two frequency points f2 and f1.

BW ¼ f2 � f1

where f2 and f1 are called critical, cutoff or half-power frequencies.

R = 2 Ω

L = 2.5 mH

Rw = 0.5 Ω

C = 0.25 μF

+

–
E = 2.5 V ∠0°
•

Figure 10.7 Circuit for Example 10.1

I

f
fr

0
f1 f2

Imax

Imax0.707 Pmax2
1

BW

Figure 10.8 Bandwidth of a series resonant circuit
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As shown in Figure 10.8, the bandwidth of the resonant circuit is a fre-
quency range between f2 and f1 when current I is equivalent to 0.707 of its
maximum value Imax, or 70.7 per cent of the maximum value of the curve.

The reason to define the term ‘half-power’ frequency can be derived from
the following mathematical process. The power delivered by the source at the
points f1 and f2 can be determined from the power formula P ¼ I2R

Pf 1
¼ I2

f 1
R ¼ ð0:707ImaxÞ2R � 0:5I2

maxR ¼ 0:5Pmax

and

Pf 2
¼ I2

f 2
R ¼ ð0:707ImaxÞ2R � 0:5I2

maxR ¼ 0:5Pmax

Therefore, at both points f2 and f1, the circuit power is only one-half of the
maximum power that it is produced by the source at resonance frequency fr,
where f2 is the upper critical frequency, and f1 is the lower critical frequency.

Bandwidth (pass-band)

● Bandwidth (BW ¼ f2 7 f1) is the range of frequencies at I ¼
0.707Imax.

● f2 and f1 are critical, or cutoff or half-power frequencies:
Pf 1;2

¼ 0:5Pmax.

10.2.2 The selectivity of series resonance

Figure 10.8 shows the frequency range between f2 and f1 at which the current is
near its maximum value, and the series resonant circuits can select frequencies
in this range. The curve in the Figure 10.8 is called the selectivity curve of the
series resonant circuit. The selectivity is the capability of a series resonant cir-
cuit to choose the maximum current that is closer to the resonant frequency fr.
The steeper the selectivity curve, the faster the signal attenuation (reducing),
the higher the maximum current value, and the better the circuit selectivity. For
example, in Figure 10.9, the selectivity curve 1 has a bandwidth of BW1 and a
maximum current I1max, which has a better current selectivity than selectivity
curve 2 or 3. This means that the series resonant circuit of curve 1 has a higher
quality and can be expressed as Q ¼ fr=BW, where Q is the quality factor of the
series resonant circuit.

The bandwidth BW is an important characteristic for the resonant circuit.
A series resonant circuit with a narrower bandwidth has a better current
selectivity. A series resonant circuit with a wider bandwidth is good for passing
the signals. Sometimes in order to take into account both aspects, the selec-
tivity curve between narrow and wide curves may be chosen, such as the
selectivity curve 2 (BW2) in Figure 10.9. Therefore, the concepts of bandwidth
and selectivity may apply to different circuits with different design choices.
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Selectivity of the series resonance

The capability of the circuit to choose the maximum current Imax closer
to the resonant frequency fr.

10.2.3 The quality factor and selectivity

The quality factor Q in the resonant circuit is a measure of the quality and
selectivity of a resonant circuit. The higher the Q value, the narrower the
bandwidth ðBW #¼ fr=Q "Þ, the higher the maximum current, and the better
the current selectivity, which is desirable in many applications. As mentioned
earlier, the disadvantage of the narrower BW or higher Q is that the ability for
passing signals in the circuit will be reduced. The lower the Q value, the wider
the bandwidth ðBW "¼ fr=Q #Þ, and the better the ability to pass signals;
however, it will have a poor current selectivity. This is the reason that Q is
denoted as the ‘quality’ factor since it represents the quality of a resonant
circuit.

Example 10.2: Given a series resonant circuit shown in Figure 10.10(a), deter-
mine the bandwidth BW and current _I (phasor-domain) of this circuit with
three resistors that are 50, 100, and 200 O, and plot their selectivity curves.

Solution: When R ¼ 50 O:

Q ¼ XL

R
¼ 2 kO

50O
¼ 40; BW1 ¼ fr

Q
¼ 50 Hz

40
¼ 1:25 Hz

_I ¼
_E

Z
¼

_E

R
¼ 10ff0� V

50O
¼ 0:2ff0� A

I

f0
BW1

BW3

BW2

I1max

I3max

I2max

3

2

1

Figure 10.9 Selectivity of a series resonant circuit
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When R ¼ 100 O:

Q ¼ XL

R
¼ 2 kO

100O
¼ 20; BW2 ¼ fr

Q
¼ 50 Hz

20
¼ 2:5 Hz

_I ¼
_E

Z
¼

_E

R
¼ 10ff0� V

100O
¼ 0:1ff0� A

When R ¼ 200 O:

Q ¼ XL

R
¼ 2 kO

200O
¼ 10; BW3 ¼ fr

Q
¼ 50 Hz

10
¼ 5 Hz

_I ¼
_E

Z
¼

_E

R
¼ 10ff0� V

200O
¼ 0:05ff0� A

Example 10.2 shows that the selectivity curve of a resonant circuit depends
greatly upon the amount of resistance in the circuit. When resistance R in a
series resonant circuit has a smaller value, the selectivity curve of the circuit is

XL = 2 kΩ

R = 50 Ω
+

E = 10 V∠0° 

 XC = 2 kΩfr = 50 Hz

0

BW1 = 1.25 Hz

BW3 = 5 Hz

BW2 = 2.5 Hz

fr = 50 Hz

0.2 A

0.1 A

0.05 A

I

f

(a)

(b) •

–

•

Figure 10.10 (a) Circuit for Example 10.2; (b) Selectivity curve for
Example 10.2
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steeper, the quality factor Q has a higher value, the current at the resonant
frequency fr has a higher value, and the selectivity is better. However, the pass-
band (BW) of the circuit with a smaller R value is narrower, and the ability to
pass signal will be poor.

Quality factor and selectivity

● Quality factor: a measure of the quality and selectivity of a resonant
circuit Q ¼ fr=BW:

● Q "¼ XL=R#) BW#¼ fr=Q": the steeper the selectivity curve, the
better the current selectivity, but the worse the ability to pass signals.

● Q #¼ XL=R") BW"¼ fr=Q#: the flatter the selectivity curve, the
worse the current selectivity, but the better the ability to pass signals.

The analysis method of the series resonant circuit can also be applied to the
parallel resonant circuits.

10.2.3.1 Series resonance summary

10.3 Parallel resonance

10.3.1 Introduction

Resonance may occur in a parallel resistor, inductor and capacitor (RLC)
circuit, as shown in Figure 10.11, when the circuit inductive susceptance BL is
equal to the capacitive susceptance BC.

jwL
jwC
1

IT IR IL IC
E

R

•

•

• • •

Figure 10.11 A parallel RLC circuit

Characteristics Series resonance

Condition of resonance XL ¼ XC, X ¼ 0, Z ¼ R
Resonant frequency fr ¼ 1= 2p

ffiffiffiffiffiffiffi
LC

p� �
Impedance Z ¼ R minimum (admittance Y maximum)
Current _IT ¼ _V=R (maximum)
Bandwidth BW ¼ f2 7 f1 ¼ fr/Q
Quality factor Q ¼ XL=R ¼ XC=R
Relationship of voltage

and quality factor

_VL ¼ _VC ¼ _EQ

10_Wang_Chapter10_p307-332 31 May 2010; 15:53:59

RLC circuits and resonance 319



The analysis method of the parallel resonance is similar to series resonance.
When the magnitudes of the capacitive susceptance BC and the inductive sus-
ceptance BL are equal (BC ¼ BL), or when the susceptance B is zero (B ¼ BC 7
BL ¼ 0), the circuit input equivalent (total) admittance Y is equal to the circuit
conductance G, i.e.

Y ¼ G þ j B ¼ G

Under the above condition, resonance will occur in the RLC parallel circuit.
That is, when the resonance occurs in an RLC parallel circuit, the energy of the
reactive components in the circuit will compensate each other (BC ¼ BL), and
the equivalent admittance of the parallel RLC circuit is at the lowest (Y ¼ G).
This is the characteristic of the parallel resonant circuit.

Parallel resonance

BC ¼ BL, B ¼ 0, Y¼ G

10.3.2 Frequency of parallel resonance

The angular frequency of the parallel resonant circuit can be obtained from

Y ¼ G þ jðBC � BLÞ ¼ 1
R
þ j oC � 1

oL

� �

From BC ¼ BL or oC ¼ 1=oL, solving for o gives or ¼ 1=
ffiffiffiffiffiffiffi
LC

p
.

Since o ¼ 2pf , the parallel resonant frequency is fr ¼ 1=ð2p ffiffiffiffiffiffiffi
LC

p Þ.
You may have noticed that the parallel resonant angular frequency or and

resonant frequency fr are the same with those in the series resonant circuit. The
resonant frequency fr is dependent on the circuit elements L and C, meaning
that if adjusting the inductance L or capacitance C in the RLC parallel circuit,
resonance may be produced or removed.

Frequency of parallel resonance

● Resonant frequency: fr ¼ 1= 2p
ffiffiffiffiffiffiffi
LC

p� �
● Resonant angular frequency: or ¼ 1=

ffiffiffiffiffiffiffi
LC

p

10.3.3 Admittance of parallel resonance

As previously mentioned, when parallel resonance occurs, the equivalent
admittance Y of the circuit is at the minimum (Y ¼ G), B ¼ BC � BL ¼ 0 so the
circuit equivalent impedance Z is at a maximum ðZ "¼ 1=Y #Þ. This is shown in
Figure 10.12, which is the response curve of the impedance Z versus the fre-
quency f in the parallel resonant circuit. When f ¼ fr, the impedance Z is at the
highest point on the curve and this is opposite to the series resonance.
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10.3.4 Current of parallel resonance

When resonance appears in a parallel RLC circuit, the impedance of the circuit
is equal to the resistance (Z ¼ R), and the total current in the circuit will be

_IT ¼
_V

Z
¼

_V

R

Therefore, when f ¼ fr, BC ¼ BL, Y ¼ G, the admittance Y is at the minimum
, Y ¼ G þ j (BC 7 BL), the impedance Z is at the maximum, and the
current is at the minimum in the parallel resonant circuit, _IT#¼ _V=Z"¼ _V=R.
Figure 10.13 illustrates the response curve of current I versus frequency f in
the parallel resonant circuit and current is at the lowest point on the curve
when f ¼ fr. This is also opposite of series resonance.

I and Z of parallel resonance

● Impedance is maximum at parallel resonance:

Z ¼ R ðB ¼ 0; Y ¼ GÞ; ,Y ¼ G þ jðBC � BLÞ

● Current is minimum at parallel resonance: _I ¼ _V= _Z ¼ _V=R

Z

f
fr

0

Figure 10.12 The response curve of Z vs. f for parallel resonance

f
fr

0

I
•

Figure 10.13 The response curve of I vs. f for parallel resonance
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10.3.5 Phasor diagram of parallel resonance

An RLC parallel resonant circuit is equivalent to a purely resistive circuit since
Y ¼ G and Z ¼ R. The capacitor and inductor branch currents in the parallel
resonant circuit are equal in magnitude but opposite in phase, since BL ¼ BC

(BL ¼ 1/XL; BC ¼ 1/XC) and

_IL ¼ VL

jXL
¼ �j

VL

XL
; _IC ¼ VC

�jXC
¼ j

VC

XC
þj ¼ �1

j

� �

i.e. _IL ¼ �_IC.
The resistor voltage is equal to the source voltage ð _VR ¼ _EÞ in the parallel

resonant circuit of Figure 10.13. The total current ð_ITÞ and the source voltage _E
are in phase (since _VR and _E are in phase) and the phase difference between _E
and _IT is zero, i.e. the admittance angle fy ¼ 0. A phasor diagram of the
parallel resonant circuit is illustrated in Figure 10.14.

Phasor relationship of parallel resonance

● _IL and _IC are equal in magnitude but opposite in phase, _IL ¼ �_IC.
● _IT and _E are in phase, and fy ¼ 0.

0
IT

IC

IL

E = VR•

• • •

•

Figure 10.14 Phasor diagram of the parallel resonant circuit
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10.3.6 Quality factor

From the previous description, we know that the quality factor is the ratio of
the reactive power stored by an inductor or a capacitor and the average power
dissipated by a resistor in a circuit, i.e. quality factor Q ¼ reactive power/
average power.

If we substitute the expressions of the reactive power and average power in
Figure 10.11 into the quality factor equation, the quality factor of a parallel
resonance will be obtained as follows:

Q ¼
_E2=XL

_E2=R
¼ R

XL
ð, _VL ¼ _VR ¼ _EÞ
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Similarly, the quality factor Q can be expressed by the capacitive reactance and
the resistance as

Q ¼ R

XC

The quality factor of a parallel resonant circuit is inverted with the series
resonant circuit. Recall the quality factor of a series resonant circuit:

Q ¼ XL

R
¼ XC

R

Quality factor Q

Quality factor of the parallel resonance:

Q ¼ R=XL ¼ R=XC

10.3.7 Current of parallel resonance

Dividing the voltage _E for both the denominator and the numerator of the
quality factor equation

Q ¼
_E2=XL

_E2=R

gives

Q ¼
_E=X L

_E=R
¼

_IL

_IT

Similarly

For Q ¼
_E2=XC

_E2=R
; Q ¼

_E=XC

_E=R
¼

_IC

_IT

Therefore, when resonance occurs in an RLC parallel circuit

_IL ¼ _IC ¼ _ITQ ð10:3Þ

Usually the quality factor Q is always greater than 1, the inductor or capacitor
branch current may greatly exceed the total supply current in a parallel reso-
nant circuit, and this can be seen from the equation (10.3). This means that a
lower input current may produce a higher output current, and therefore the
parallel resonance is also known as current resonance. It is similar to series
resonance, and there are benefits and disadvantages to using parallel reso-
nance. When choosing the storage elements L and C for a parallel resonant
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circuit, the affordability of their maximum current should be taken into
account, or else the higher resonant current may damage circuit components.

Current of parallel resonance

● A lower input current may produce a higher output current.
● The inductor or capacitor current may greatly exceed the supply

current

_IL ¼ _IC ¼ _ITQ ðQ > 1Þ

10.3.8 Bandwidth of parallel resonance

The characteristic of the parallel resonant circuit can be expressed in terms of
its bandwidth (BW) or pass-band. Recall that BW ¼ f2 � f1 or BW ¼ fr=Q.

The bandwidth of the parallel resonant circuit is illustrated in Figure 10.15.
When the RLC parallel circuit is in resonance, its current reaches the minimum
value. The BW of the parallel resonant circuit is a frequency range between
the critical or cutoff frequencies f2 and f1, when the current is equivalent
to 0.707 of its maximum value Imax, or 70.7 per cent of the maximum value of
the curve.

10.3.8.1 Parallel resonance summary

I

f
fr

0
f1 f2

BW

Imax

0.707Imax

Figure 10.15 The bandwidth of the parallel resonance

Characteristics Parallel resonance

Conditions of resonance BL ¼ BC, B ¼ 0, Y ¼ G
Resonant frequency fr ¼ 1= 2p

ffiffiffiffiffiffiffi
LC

p� �
Impedance Z ¼ R maximum (admittance Y minimum)
Current _IT ¼ _V=R (minimum)
Bandwidth BW ¼ f2 � f1 ¼ fr=Q
Quality factor Q ¼ R=XL ¼ R=XC

Relationship of current and
quality factor

_IL ¼ _IC ¼ _ITQ
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10.4 The practical parallel resonant circuit

In practical electrical or electronic system applications, the parallel resonant
circuit is usually is formed by an inductor (coil) in parallel with a capacitor.
Since a practical coil always has internal resistance (winding resistance), an
actual parallel resonant circuit will look like the one illustrated in Figure 10.16.

C

L

R

IL IC

VS

I
•

•

• •

Figure 10.16 A practical parallel circuit
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10.4.1 Resonant admittance

The input equivalent admittance of the practical parallel circuit shown in
Figure 10.16 is

Y ¼ 1
R þ jXL

þ j
1

XC

Multiplying (R 7 jXL) to the numerator and denominator of the first term in
the above expression gives

Y ¼ R

R2 þ X 2
L

� j
XL

R2 þ X 2
L

þ j
1

XC

or

Y ¼ R

R2 þ X 2
L

þ j
1

XC
� XL

R2 þ X 2
L

� �
ð10:4Þ

The parallel resonance occurs when the circuit admittance Y is equal to the
circuit conductance G (Y ¼ G), so when the resonance occurs for the practical
parallel circuit in Figure 10.16, the resonant admittance should be

Y ¼ G ¼ R

R2 þ X 2
L

ð,Y ¼ G þ jBÞ
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10.4.2 Resonant frequency

According to the parallel resonant conditions, resonance occurs when the
capacitive susceptance BC is equal to the inductive susceptance BL, i.e. BC ¼ BL

Thus, (10.4) gives

XL

R2 þ X 2
L

¼ 1
XC

or

oL

R2 þ ðoLÞ2 ¼ oC ð10:5Þ

The resonance frequency and angular frequency for the circuit in Figure 10.16
can be obtained from (10.5) as follows:

Resonance angular frequency:

or ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L � CR2

L2C

r
¼ 1ffiffiffiffiffiffiffi

LC
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � CR2

L

r

Resonance frequency:

fr ¼ 1

2p
ffiffiffiffiffiffiffi
LC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � CR2

L

r
ðo ¼ 2pf Þ

This indicates that resonance will occur in the circuit of Figure 10.16 only when

1 � CR2

L
> 0; 1 >

CR2

L
; R2 <

L

C
; or R <

ffiffiffiffi
L

C

r

If 1 � ðCR2=LÞ < 0; resonance will not occur.

Practical parallel resonance

● Resonant admittance:

Y ¼ R

R2 þ X 2
L

● Resonant angular frequency:

or ¼ 1ffiffiffiffiffiffiffi
LC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � CR2

L

r

● Resonant frequency:

fr ¼ 1

2p
ffiffiffiffiffiffiffi
LC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � CR2

L

r

● When 1 � ðCR2=LÞ > 0, or R <
ffiffiffiffiffiffiffiffiffi
L=C

p
resonance occurs.
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10.4.3 Applications of the resonance

As previously mentioned, resonant circuits are used in a wide range of appli-
cations in communication systems, such as filters, tuners, etc. The purpose of
resonant circuits are the same 7 to select a specific frequency (resonant fre-
quency fr ) and reject all others, or select signals over a specific frequency range
that is between the cutoff frequencies f1 and f2.

The key circuit of a communication system is a tuned amplifier (tuning
circuit). Figure 10.17 is a simplified radio tuning circuit for a radio circuit. The
combination of a practical parallel resonant circuit and an amplifier can select
the appropriate signal to be amplified.

The input signals in the radio tuner circuit have a wide frequency range,
because there are many different radio signals from different radio stations.
When adjusting the capacitance of the variable capacitor in the practical par-
allel resonant circuit (i.e. adjusting the switch of the radio channel), the circuit
resonant frequency fr will consequently change. Once fr matches the desired
input signal frequency with the highest input impedance, the desired input
signal will be passed, and this is the only signal that will be amplified. After it is
amplified by the amplifier in the circuit, this signal of the corresponding station
can be clearly heard.

Figure 10.18 is a simplified series radio tuning circuit. It is similar to the
parallel tuning circuit. When adjusting the capacitance of the variable capa-
citor in the series resonant circuit, the circuit resonant frequency fr will change.
Once fr matches the desired input signal frequency with the highest current, the
desired input signal will be passed and amplified.

C

L

RW

ffr
0

Z
•

Figure 10.17 A simplified parallel radio tuner

ffr
0

L

R

C

I

VS

•

•

Figure 10.18 A simplified series radio tuner
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Summary

Series/parallel resonance

Characteristics Series resonance Parallel resonance

Conditions of
resonance

XL ¼ XC, X ¼ 0, Z ¼ R BL ¼ BC, B ¼ 0, Y ¼ G

Phasor relationship ● _VL and _VC are equal
in magnitude but
opposite in phase.

● _I and _E in
phase f ¼ 0.

● _IL and _IC are equal
in magnitude but
opposite in phase.

● _IT and _E in
phase jy ¼ 0.

Phasor diagram
+j

+0
•
VR = E

•
VL

•
VC

•

•
I

0
•

IT

•
IC

•
IL

E = VR

••

Resonant frequency fr ¼ 1=ð2p ffiffiffiffiffiffiffi
LC

p Þ fr ¼ 1=2p
ffiffiffiffiffiffiffi
LC

p

Impedance Z ¼ R minimum
(admittance Y
maximum)

Z

f
fr

0

Z ¼ R maximum
(admittance Y
minimum)

Z

f
fr

0

Current _I ¼ _V=R (maximum)

f
fr

0

•

I

_IT ¼ _V=R (minimum)

f
fr

0

•
I

Bandwidth BW ¼ f2 � f1 ¼ fr=Q BW ¼ f2 � f1 ¼ fr=Q

Quality factor Q ¼ XL=R ¼ XC=R or
Q ¼ fr=BW

Q ¼ R=XL ¼ R=XC or
Q ¼ fr=BW

Relationship of
voltage/current
and Q

_VL ¼ _V C ¼ _EQ _IL ¼ _IC ¼ _ITQ
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● Bandwidth (pass-band): the frequency range corresponding to _I ¼ 0:707_Imax,
and BW ¼ f2 7 f1.

● f2 and f1: critical frequencies or cutoff frequencies or half-power point
frequencies. Pf 1;2

¼ 0:5Pmax

● Quality factor: a measure of the quality and selectivity of a resonant
circuit.

● Selectivity: the capability of the circuit to choose the maximum current
closer to the resonant frequency fr.

● In a series resonant circuit, VL or VC may greatly exceed the supply voltage
E, i.e. a lower input voltage may produce a higher output voltage.

● In a parallel resonant circuit, IL or IC may greatly exceed the total current
IT, i.e. a lower input current may produce a higher output current.

Experiment 10: Series resonant circuit

Objectives

● Observe and analyse the characteristics of a resonant circuit by using the
oscilloscope and function generator.

● Determine the resonant frequency fr of the series resonant circuit by
experiment.

● Observe and analyse the frequency versus current curve and verify that the
circuit current reaches the maximum in a RLC series resonant circuit by
experiment.

Background information

● Impedance of RLC series circuit: Z ¼ R þ jðXL � XCÞ
● Resonance: XL ¼ XC; VL ¼ VC; _VR ¼ _E
● Current reaches maximum at the series resonance: _I ¼ _VR=R

f
fr

0

•
I

● Resonant frequency: fr ¼ 1=2p
ffiffiffiffiffiffiffi
LC

p
● Quality factor: Q ¼ XL=R ¼ XC=R

Equipment and components

● Multimeter
● Breadboard

10_Wang_Chapter10_p307-332 31 May 2010; 15:54:4

RLC circuits and resonance 329



● Function generator
● Oscilloscope
● LCZ meter or Z meter
● Resistor: 300 O
● Inductor: 12 mH
● Capacitor: 0.0013 µF

Procedure

1. Use multimeter (ohmmeter function) to measure the winding resistance Rw

of the 12-mH inductor. Record the value in Table L10.1.

2. Calculate the quality factor Q of the series resonant circuit in Figure L10.1
using Q ¼ XL=ðR þ RwÞ (inductor has a winding resistance RW). Record the
value in Table L10.1.

3. Compute the resonant frequency fr and record the value in Table L10.1.
4. Set the sinusoidal output voltage of the function generator to 4 V (peak

value), and then adjust the frequency of the function generator to the cir-
cuit resonant frequency fr.

5. Construct a circuit as shown in Figure L10.1 on the breadboard.
6. Use the oscilloscope CH I to measure the peak source voltage E from the

function generator in Figure L10.1. Note that the ground of the oscillo-
scope, function generator and circuit should be connected together.

7. Use the oscilloscope CH II to measure the voltage across resistor VR (peak
value). Record the value in Table L10.1. Is the value of VR and supply
voltage E approximately equal?

Table L10.1

Rw Q fr VR VC VL

Value

R = 300 Ω

C = 0.0013 μFL = 12 mH

Ve = 4 sin ωt

Figure L10.1 Series RLC resonant circuit
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8. Exchange the position of the capacitor and resistor in the circuit as shown
in Figure L10.2, and so that ground of the oscilloscope, function generator
and circuit (capacitor) are connected together. Then measure the voltage
across the capacitor (VC), and record the value in Table L10.1.

9. Exchange the position of the capacitor and inductor in the circuit as shown
in Figure L10.3, so that the ground of the oscilloscope, function generator
and circuit (inductor) are connected together. Then measure the voltage
across the inductor (VL), and record the value in Table L10.1.

10. Calculate the currents and voltages of the RLC series resonant circuit at
different frequencies given in Table L10.2. Record the values in Table
L10.2.

R = 300 Ω

C = 0.0013 μF

L = 12 mH

Ve = 4 sin ωt

Figure L10.2 The circuit to measure VC

R = 300 ΩC = 0.0013 μF

L = 12 mHVe = 4 sin ωt

Figure L10.3 The circuit to measure VL

Table L10.2

F I VR VC VL

0.3 fr ¼
0.6 fr ¼
fr ¼
1.4 fr ¼
1.7 fr ¼
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11. Adjust the frequency of function generator to 0.3 fr, 0.6 fr, fr, 1.4 fr and
1.7 fr, respectively. Repeat steps 7–9 and record the results in Table L10.3.

12. Does the circuit current reach the maximum at resonant frequency fr? If
not, explain the reason.

13. Based on the data in Table L10.2, plot the current versus frequency curve
(with current I in the vertical axis and frequency f in the horizontal axis).

Conclusion

Write your conclusions below:

Table L10.3

f VR VC VL

0.3 fr ¼
0.6 fr ¼
fr ¼
1.4 fr ¼
1.7 fr ¼
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Chapter 11

Mutual inductance and transformers

Objectives

After completing this chapter, you should be able to:

● understand the concept of mutual inductance
● understand the dot convention concept
● know the basic construction of a transformer
● know different types of transformers
● understand the characteristics of transformers
● determine the turns ratio of an ideal transformer
● calculate the current, voltage, impedance and power of the primary and

secondary of a transformer
● understand the concept of impedance matching of a transformer
● know applications of transformers

The concept of self-inductance has been introduced in chapter 6. This
chapter will introduce the mutual inductance and transformer. A transformer
is a device that is built based on the principle of mutual inductance and can be
used to increase or decrease the voltage or current, and transfer electric energy
from one circuit to another. It also can be used for impedance matching.
Transformers have a very wide range of applications in power systems, tele-
communications, radio, instrumentation and many other electrical and elec-
tronics fields.

11.1 Mutual inductance

11.1.1 Mutual inductance and coefficient of coupling

As discussed in chapter 6 (section 6.3), when a changing current flows through
a coil (inductor), it will produce an electromagnetic field around the coil, and
as a result an induced voltage vL will flow across it. The changing current in
a coil that produces the ability to generate an induced voltage is called
self-inductance. Mutual inductance is the ability of a coil to produce an
induced voltage due to the changing of the current in another coil nearby.
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In Figure 11.1, a coil L1 is placed close to another coil L2. When AC cur-
rent i1 flows through the first coil L1, the changing of alternating current will
produce a changing electromagnetic field and flux f1, resulting in a self-
induced voltage v1 across the first coil L1. Since the two coils are very close,
there is also a portion of magnetic flux, f1–2, that is produced by changing the
electromagnetic field linked to the coil L2, and consequently produces the
induced voltage v2 across the second coil L2. The phenomenon of a portion of
the flux of a coil linking to another coil is called inductive coupling, and this is
the principle of mutual inductance.

Mutual inductance is denoted by LM and can be expressed mathematically
using the following formula: LM ¼ k

ffiffiffiffiffiffiffiffiffiffi
L1L2

p
:

Mutual inductance

An inducted voltage in one coil due to a current change in a nearby coil.

LM ¼ k
ffiffiffiffiffiffiffiffiffiffi
L1L2

p

There are three factors that affect mutual inductance: inductances of the
two coils L1, L2 and the coupling coefficient k. The coefficient of coupling k
determines the degree of the coupling between the two coils, and it is the ratio
of f1–2 and f1:

k ¼ f1�2

f1

f1 is the magnetic flux generated by the current i1 in the first coil L1, and f1–2 is
the portion of the magnetic flux that is generated by the current i1 in the first
coil L1 and linked to the second coil as shown in Figure 11.2(a). f1–2 is called
the crossing link flux.

e

i1

�

v1

�

�
�

v2L1 L2

Figure 11.1 Magnetic coupling
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The induced voltage generated by a changing current (AC) that flows
through the self-inductance coil L1 is given by v1 ¼ L(di1)/dt (chapter 6). So
when the AC current i1 flows through the second coil L2, the induced voltage in
the coil L2 is given by v2 ¼ LM(di1)/dt, or _V2 ¼ jLM _I1 in the phasor form.

In practice, not all of the magnetic flux generated by current i1 will pass
through L1 and L2, and the portion of the magnetic flux that does not link with
L1 and L2 is known as a leakage flux. The closer the two coils are placed (or if
the two coils have a common core as shown in Figure 11.3(b)), the higher the
cross-linking flux f1–2 and the lower the leakage flux.

The full-coupling occurs when k ¼ (f1–2)/(f1) ¼ 1, i.e. f1–2 ¼ f1, when all
of the flux link coils 1 and 2, and there will be no leakage flux. If the gap
between the two coils is large, it will cause the cross-linking flux to decrease, the
leakage flux to increase, and the coupling coefficient k to decrease. k is in the
range between 0 and 1 (0 � k � 1).

Coefficient of coupling

● The coefficient of the coupling: k ¼ ðf1�2Þ=f1 (0 � k � 1).
● f1: The flux generated by the current i1 in the first coil L1.
● f1–2: The flux generated by the current i1 in the coil L1 cross-linking

to coil L2.

11.1.2 Dot convention

The polarity of the induced voltage across the mutually coupled coils can be
determined by the dot convention method. This method can be used to indicate
whether the induced voltage in the second coil is in phase or out of phase with
the voltage in the first coil.

The dot convention method places two small phase dots (.) or asterisks (*),
one on the coil L1 and the other on the coil L2, to indicate that polarities of the
induced voltage v1 in the coil L1 and v2 in the adjacent coil L2 are same at these
points, as shown in Figure 11.3. This means that the dotted terminals of coils

(a) (b)

L1 L2

LM

k

e
L1

L2

k

LMi1

f1

f12

Figure 11.2 Mutual inductance
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should have the same voltage polarity at all time, and dotted terminals are
known as corresponding terminals.

Dot convention

Dotted terminals of coils have the same voltage polarity.

11.2 Basic transformer

11.2.1 Transformer

A transformer is an electrical device formed by two coils that are wound on a
common core. You may have seen transformers on top of utility poles. A trans-
former uses the principle of mutual inductance to convert AC electrical energy
from input to output. Recall that mutual inductance is the ability of a coil to
produce induced voltage due to the changing of current in another coil nearby.

Figure 11.4 shows two simplified transformer circuits. A changing current
from the AC voltage source in the first coil produces a changing magnetic field,
inducing a voltage in the second coil. The first coil is called primary winding,
and the second coil connected to the load ZL is called secondary winding.

Structurally, the transformers are categorized as two main types: the air-
core and iron-core transformers. The symbols for them are shown in Figure 11.4
(a and b), respectively (inside the dashed lines).

� ��

� � �
*

*

**

v1 v2 v1

�

�

�

� ��

� �.

.

.

v1 v2 v1 v2

.

(a) (b)

Figure 11.3 Dot convention

e ZL
L1 L2 e ZL

(a) (b)

Figure 11.4 Implified transformer circuits (a) air-core; (b) iron-core
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Transformer

A transformer uses the principle of mutual inductance to convert AC
electrical energy from input to output.

11.2.2 Air-core transformer

The air-core transformers are usually used in high-frequency circuits, such as
in instrumentation, radio and TV circuits. An air-core transformer does not
have a physical core, so it can be obtained by placing the two coils L1 and L2

close to each other, or by winding both the coils L1 and L2 on a hollow
cylindrical-shaped core with isolating material as illustrated in Figure 11.5(b).
The circuit of an air-core transformer is shown in Figure 11.5(a), there
R1 and R2 represent the primary and secondary winding resistors of the
transformer.

The air-core transformer is also known as a linear transformer. When the
core of the transformer is made by the insulating material with constant per-
meability, such as air, plastic, wood, etc., it is a liner transformer.

Air-core transformer

A transformer uses the principle of mutual inductance to convert AC
electrical energy from input to output.

11.2.3 Iron-core transformer

Iron-core transformers are usually used in audio circuits and power systems.
The coils of the iron-core transformer are wound on the ferromagnetic
material that are laminated sheets insulated to each other, as illustrated in
Figure 11.6.

(a) (b)

L1

L2

vs ZLL1 L2

R1 R2

Figure 11.5 Air-core transformer

Mutual inductance and transformers 337

11_Wang_Chapter11_p333-350 31 May 2010; 15:56:18



When two coils are wound on a common core, it will have higher cross-
linking flux and lower leakage flux. The ferromagnetic materials can provide
an easy path for the magnetic flux. Furthermore, if two coils are wound on a
common core, the flux generated in the coil L1 will almost all link with the coil
L2. This means that the coupling coefficient k is close to 1, and this is the
reason that iron-core transformer is usually considered as the ideal transformer
(k ¼ 1).

11.2.4 Ideal transformer

The coupling coefficient k of an ideal transformer is 1, i.e. ideal full-coupling,
neglecting winding resistance and magnetic losses in the coils of the transfor-
mer. Figure 11.6(a) is a circuit of an ideal transformer with the voltage source,
and the load, and the portion within the dashed line is the symbol of the ideal
transformer.

An iron-core transformer is considered the ideal transformer because it
uses ferromagnetic materials with high permeability as its core. Also the pri-
mary and secondary windings are wound on a common core, which have near
zero leakage flux and can achieve a full-coupling (k ¼ 1).

● Transformer parameters: The parameters of an ideal transformer in Figure
11.6(a) are listed in Table 11.1.

f

e

ZS � ZL

�

��

vSvP

�

iP iS

Z

NP NS

ZP

(a) (b)

Figure 11.6 Iron-core transformer

Table 11.1

Parameters Name

vP Primary voltage
vS Secondary voltage
Np Number of turns on the primary coil
NS Number of turns on the secondary coil
ip Primary current
iS Secondary current
ZP Primary impedance
ZS ¼ ZL Secondary or load impedance
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● Turns ratio n: The turns ratio of a transformer is the ratio of the number of
turns, i.e. the number of turns on the secondary coil NS to the number of
turns on the primary coil NP, which can be derived from the voltage ratio
of the secondary and primary voltages. From Faraday’s law described in
chapter 6, vL ¼ N df

dt we can get:

● the primary voltage vP ¼ NP
df
dt

● the secondary voltage vS ¼ NS
df
dt

Dividing vS by vP gives the transformer’s turns ratio n:

vS

vP
¼ NS

NP
¼ n

If the transformer is an ideal transformer, i.e. the transformer has no
power loss itself, the input power is equal to the output power, i.e. pP ¼ pS or
vPiP ¼ vSiS, so

iP=iS ¼ vS=vP ¼ n ð11:1Þ
vP ¼ vS/n can be obtained from (11.1), and also iP ¼ n iS. The primary impe-
dance can be obtained by substituting vP and iP into ZP as follows:

ZP ¼ vP

iP
¼ vS=n

n iS
¼ 1

n2
ZL

or

n2 ¼ ZL=ZP; n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZL=ZP

p
where the secondary impedance is the load ZL

ZL ¼ vS

iS

Turns ratio

● Instantaneous form: n ¼ NS=NP ¼ vS=vP ¼ iP=iS ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZL=ZP

p
, or

ZL ¼ n2ZP

● Phasor form: n ¼ NS=NP ¼ _VS= _VP ¼ _IP=_IS ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZL=ZP

p

Power

● Instantaneous form: pS ¼ iSvS; pP ¼ iPvP

● Phasor form: _PS ¼ _IS _VS; _PP ¼ _IP _VP

● Conversion of the voltage, current and impedance: The expressions of the
transformer’s turns ratio indicate that a transformer can be used to convert
voltage, current and impedance.
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● Voltage conversion:
● From the primary to the secondary, multiplying by n: vS = nvP
● From the secondary to the primary,multiplying by 1/n: vP= (1/n)vS

● Current conversion:
● From the primary to the secondary, multiplying by 1/n: iS¼ (1/n)(iP)
● From the secondary to the primary, multiplying by n: iP ¼ n iS

● Impedance conversion:
● From the primary to the secondary, multiplying by 1/n2: ZP ¼

(1/n2)(ZL)
● From the secondary to the primary, multiplying by n2: ZL ¼ n2ZP

(The converted impedance is also called the reflected impedance, meaning
the reflection of the primary impedance results in the secondary impedance.)

Transformer parameters conversion

● Voltage conversion: vS ¼ nvP; vP ¼ ð1=nÞðvSÞ
● Current conversion: iS ¼ ð1=nÞðiPÞ; iP ¼ n iS

● Impedance conversion: ZL ¼ n2ZP; ZP ¼ ð1=n2ÞðZLÞ

Example 11.1: The number of turns on the primary is 40 for an ideal trans-
former, and the number of turns on the secondary is 100. _VP ¼ 50 V, _IP ¼ 5 A
and ZL ¼ 2 O. Determine the transformer’s turns ratio, secondary voltage,
secondary current, primary impedance (reflected from the secondary) and the
primary power (the amplitude only).

Solution:

● n ¼ NS

NP
¼ 100

40
¼ 2:5

● _VS ¼ n _VP ¼ ð2:5Þð50 VÞ ¼ 125 V

● _IS ¼
_IP

n
¼ 5 A

2:5
¼ 2 A

● ZP ¼ ZL

n2
¼ 2O

2:52
¼ 0:32O

● _PS ¼ _IS _VS¼ð2 AÞð125 VÞ ¼ 250 W ¼ 0:25 kW

11.3 Step-up and step-down transformers

11.3.1 Step-up transformer

A step-up transformer is a transformer that can increase its secondary voltage.
Since a step-up transformer always has more secondary winding turns than the
primary, the secondary voltage of a step-up transformer (vS) is always higher
than the primary voltage (vP ), i.e. vS 4 vP. The value of the secondary voltage
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depends on the turns ratio (n). The equation of n ¼ NS/NP ¼ vS/vP indicates
that to have a higher secondary voltage, the number of turns on the secondary
winding must be greater than that of the primary, i.e. NS 4 NP as illustrated in
Figure 11.7(a), meaning the turns ratio n ¼ (NS/NP) 4 1. This is an important
characteristic of a step-up transformer.

Step-up transformer

● vS 4 vP
● NS 4 NP

● n 4 1

11.3.2 Step-down transformer

A step-down transformer is a transformer that can decrease its secondary voltage.
Since a step-down transformer always has less turns on the secondarywinding than
the primary, the secondary voltage of a step-down transformer (vS) is always lower
than the primary voltage (vP), i.e. vS 5 vP. The value of the secondary voltage
depends on the turns ratio (n). The equation n ¼ NS/NP ¼ vS/vP indicates that to
have a voltage that is lower in secondary than primary, the number of turns on the
secondary coil must be lesser than primary, i.e. NS 5 NP as illustrated in Figure
11.7(b), meaning the turns ratio n ¼ (NS/NP) 5 1. This is an important char-
acteristic of a step-down transformer, which is opposite of a step-up transformer.

Step-down transformer

● vS 5 vP
● NS 5 NP

● n 5 1

Example 11.2: If a transformer has 125 turns of secondary windings and 250
turns of primary windings, calculate its turns ratio and determine if it is a step-
up or a step-down transformer.

(a) (b)

vP

NP

vS

NS

vP
vS

NP

NS

Figure 11.7 (a) Step-up and (b) step-down transformers
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Solution: Since NS ¼ 125, NP ¼ 250 and NS 5 NP

or n ¼ NS=NP ¼ 125=250 ¼ 1=2 ¼ 0:551, i.e. n 5 1

it is a step-down transformer.

11.3.3 Applications of step-up and step-down transformers

As mentioned in the previous section, transformers can be used to convert
voltage, current and impedance. In the power system, the basic usage of
transformers is stepping up or stepping down the voltage or current, which will
require converting voltage or current from primary to secondary winding.
The functions of step-up and step-down transformers are to increase or
decrease the voltage of their secondary windings, and have important appli-
cations in the power transmission system. A simplified power transmission
system is illustrated in Figure 11.8.

The voltage generated from the generator of a power plant needs to rise to
a very high value through the step-up transformer so that it can be delivered
through long-distance transmission lines. This can reduce the loss of energy or
power created due to the winding resistance in the line (I2Rw ¼ PLoss) for a
long-distance-line transmission, and improve the efficiency of the electricity
transmission.

Decreasing the current to reduce the power loss on the transmission line
may reduce the output power (P ¼ IV) of the transmission system. If the vol-
tage is increased through the step-up transformer before the transmission, it
can maintain the same output power, but reduce the power loss on the line, i.e.:

~P ¼ ðI # ÞðV " Þ ) ðI2 # ÞðRÞ ¼ PLoss #

If a step-up transformer is used to increase the voltage by 100 V, then the
current will reduce by 100 A ½vS "¼ ðn " ÞðvPÞ; iS #¼ ð1=n "ÞðiPÞ�, and the loss
of the power due to the winding resistance in the line will reduce to 10 000 W,
since I2Rw ¼ PLoss and I2 # Rw ) PLoss #.

The local distribution stations require step-down transformers to reduce
the very high voltage by the long distance transmission and can send it to
commercial or residential areas.

Power plant 
22 kV 500 kV

66 kV

4800 kV
220 kV/110 kV

Industries

Step-down

transformer 

Step-down

transformer 

Step-down

transformer 

Step-up

transformer 

Commercial areas Residential areas 

Figure 11.8 Power transmission system
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11.3.4 Other types of transformers

There are other types of commonly used transformers listed as follows:

● Center-tapped transformer: It has a tap (connecting point) in the middle of
the secondary winding, and it can provide two balanced output voltages
with the same value, as shown in Figure 11.9(a).

● Multiple-tapped transformer: It has multiple taps in the secondary wind-
ing, and it can provide several output voltages with different values, as
shown in Figure 11.9(b).

● Adjustable (or variable) transformer: The output voltage of adjustable (or
variable) transformer across the secondary winding is adjustable. The
secondary winding of the adjustable transformer can provide an output
voltage that may be variable in a range of zero to the maximum values. An
adjustable transformer is shown in Figure 11.9(c).

● Auto-transformer: It is a transformer with only a single winding, which is a
common coil for both the primary and the secondary coils, and a portion of the
common coil acts as part of both the primary and secondary coils, as shown in
Figure 11.9(d). An auto-transformer can be made smaller and lighter.

Figure 11.9 (b) Multiple-tapped transformer

Figure 11.9 (c) Adjustable transformer

Figure 11.9 (a) Center-tapped transformer
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11.4 Impedance matching

In addition to stepping-up and stepping-down voltages, a transformer has
another important application, matching the load and source impedance in a
circuit to achieve the maximum power transfer from the source to the load. It is
known as impedance matching.

11.4.1 Maximum power transfer

The theory of maximum power transfer in the DC circuits was introduced in
chapter 5, i.e. the maximum power delivered from a source to a load in a circuit
can be achieved when the load resistance is equal to the internal resistance of
the source (RL ¼ RS), or when the load resistance is equal to the Thevenin/
Norton equivalent resistance of the network (RL ¼ RTH ¼ RN).

This theory can also be applied to an AC circuit by replacing the resistance
with impedance. When the load impedance ZL is equal to the source internal
impedance ZS, the power received by the load from the source reaches the
maximum, this is shown in Figure 11.10.

Maximum power transfer

When ZL = ZS, the power delivered from the source to the load reaches
the maximum.

Figure 11.9 (d) Auto-transformer

e

ZS
ZL

Figure 11.10 Impedance matching
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11.4.2 Impedance matching

In the practical circuits (or Thevenin’s equivalent circuits), the internal resis-
tance of the source is fixed, usually is not matching with the load impedance,
and also not adjustable. In this case, a transformer with an appropriate turns
ratio n can be placed between the load and source to make the load impedance
and the source internal resistance equal, and to achieve the maximum power
transfer, i.e. n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ZL=ZP

p
.

Impedance matching

Place a transformer with n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZL=ZP

p
between the source and the load to

achieve maximum power transfer.

Example 11.3: A simplified amplifier circuit is illustrated in Figure 11.11(a).
The circuit within dashed lines is Thevenin’s equivalent circuit for the amplifier
circuit, and its internal resistance is 100 O. How do we deliver the maximum
power to the speaker if the resistance of the speaker is 4 O (so the speaker can
have the maximum volume)?

Solution:

● Since the load impedance (ZL ¼ RL ¼ 4 O) does not match with the source
internal impedance (ZS ¼ RS ¼ 100 O) currently, the maximum power
cannot be delivered to the speaker if the source and load are connected
directly.

● Choose an audio transformer with the appropriate turns ratio n, i.e.

n ¼
ffiffiffiffiffi
ZL

ZP

r
¼

ffiffiffiffiffiffiffiffi
4

100

r
¼ 0:2 ¼ 1

5

(a) (b)

100 Ω

e

4 Ω
e

100 Ω

n = 1/5

4 Ω

Figure 11.11 Circuits for Example 11.3
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● Therefore, if placing an impedance matching transformer with the turns
ratio of 1/5 between the amplifier and speaker as illustrated inFigure 11.11(b),
the speaker will have the maximum volume.

Summary

Mutual inductance

● Mutual inductance: An inducted voltage in one coil due to a change cur-
rent in the other nearby coil.

● LM ¼ k
ffiffiffiffiffiffiffiffiffiffi
L1L2

p
.

● Coefficient of coupling: k ¼ f1�2

f1
ð0 � k � 1Þ.

● Dot conversion: Dotted terminals of coils have the same voltage polarity.

Basic transformer

● Transformer: It uses the principle of mutual inductance to convert AC
electrical energy from input to output.

● The parameters of an ideal transformer (k ¼ 1):

● Turns ratio: n ¼ NS=NP ¼ vS=vP ¼ iP=iS ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZL=ZP

p
or ZL ¼ n2ZP

In phasor form: n ¼ NS=NP ¼ _VS= _VP ¼ _IP=_IS ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZL=ZP

p
● Power: pS ¼ iSvS; pP ¼ iPvP

_PS ¼ _IS _VS _PP ¼ _IP _VP

● Transformer conversion (V, I and Z):
● Voltage conversion: vS ¼ n vP; vP ¼ ð1=nÞðvSÞ
● Current conversion: iS ¼ ð1=nÞðiPÞ; iP ¼ n iS

● Impedance conversion: ZL ¼ n2ZP; ZP ¼ ð1=n2ÞðZLÞ
● Step-up transformer:

● vS 4 vP
● NS 4 NP

● n 4 1
● Step-down transformer:

● vS 5 vP

Parameters Name

vP Primary voltage
vS Secondary voltage
NP Number of turns on the primary coil
NS Number of turns on the secondary coil
iP Primary current
iS Secondary current
ZP Primary impedance
ZS ¼ ZL Secondary or load impedance
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● NS 5 NP

● n 5 1
● Impedance matching: Place a transformer with the turns ratio n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ZL=ZP

p
between the source and the load to achieve maximum power transfer from
the source to the load.

Experiment 11: Transformer

Objectives

● Experimentally verify the equation for calculating the turns ratio of the
transformer.

● Experimentally verify the theory of impedance matching transformer.
● Analyse experimental data, circuit behaviour and performance, and com-

pare them to the theoretical equivalents.

Background information

● The turns ratio of the transformer: n ¼ NS=NP ¼ vS=vP ¼ iP=iS ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZL=ZP

p
● Impedance matching: Place a transformer with the turns ratio n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ZL=ZP

p
between the source and the load (if Zin 6¼ ZL) to achieve maximum power
transfer from the source to the load.

● Formula for the transformer’s impedance matching: ZL ¼ n2ZP

Equipment and components

● Multimeter
● Breadboard
● Function generator
● A small transformer with lower secondary voltage (12–25 V)
● A small audio transformer
● Continuously adjustable auto-transformer
● Several resistors
● A small audio speaker

Procedure

Part I: Turns ratio of a transformer

1. Choose a small transformer with lower secondary voltage (12–25 V) in the
laboratory, and measure the primary (RP) and secondary (RS) resistances
of the transformer using a multimeter (ohmmeter function). Record the
values in Table L11.1.

Table L11.1

Primary
resistance RP

Secondary
resistance RS

Calculated turns ratio
n ¼ VS /VP

Measured turns
ratio n
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2. Calculate the turns ratio n of the transformer using the primary and sec-
ondary voltages of the transformer (from the nameplate). Record the
values in Table L11.1.

3. Plug the primary of the adjustable auto-transformer into the AC power
outlet, and connect the secondary adjustable auto-transformer to the pri-
mary of the small transformer, as shown in Figure L11.1(a).
Note: The continuously adjustable auto-transformer is used as a variable
AC voltage source. If the primary voltage of the small transformer is not
too high, a function generator can be used to replace the adjustable
auto-transformer.

4. Adjust the output voltage of the auto-transformer until it is slightly lower
than the rated primary voltage of the small transformer, then measure the
primary and secondary voltages (RMS values) of the small transformer
using a multimeter (voltmeter function). Calculate the turns ratio n of the
small transformer using measured primary and secondary voltages, and
record the value in the column ‘Measured turns ratio’ in Table L11.1.

5. Connect a suitable load resistor RL to the secondary of the small trans-
former as shown in Figure L11.1(b). Determine the value of resistor RL by
calculating the secondary current IS and power PS, and make sure that IS
and PS will not exceed the rated current and power of the small transfor-
mer after connecting RL to the secondary. Calculate the primary current
IP (IP = PP/VP) and record the value in Table L11.2.

vP vS

Figure L11.1 (a) Auto-transformer and small transformer

VP VS RL

ISIP

Figure L11.1 (b) The circuit for step 5

Table L11.2

Primary current IP Secondary current IS Turns ratio: n ¼ IP /IS
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6. Measure the secondary current IS using either the direct or indirect
method. Record the value in Table L11.2.

7. Calculate turns ratio n of the transformer using primary and secondary
currents in Table L11.2, and record the value. Compare the turns ratio n of
the transformer in Tables L11.1 and L11.2. Are there any significant dif-
ferences? If so, explain the reasons.

Part II: Impedance matching

1. Set the frequency of the function generator to 2 kHz. Then connect a small
audio speaker to the two terminals of the function generator as shown in
Figure L11.2(a)

2. Adjust the output voltage of the function generator to a suitable value so
that the speaker reaches a comfortable listening volume.

3. Measure the voltage across the two terminals of the speaker in
Figure L11.2(a). Record the value in Table L11.3 in ‘Without transformer’
row.

4. Calculate the turns ratio ðn ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZL=ZP

p Þ of a transformer that can be used
as the impedance matching. Record the value in Table L11.3.
● The output impedance of the function generator ZP usually is about

600 O.
● The impedance of the small speaker ZL usually is about 8 O.

5. Find a small audio transformer that has a turns ratio n closer to the cal-
culated n in step 4, and connect it between the function generator and
speaker as shown in Figure L11.2(b).

Table L11.3

Voltage across the speaker Without transformer:

With transformer:

Transformer turns ratio: n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZL=ZP

p

(a) (b)

e
e

Figure L11.2 Circuit for Part II
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6. Measure the voltage across the speaker in Figure. L11.2(b). Record the
value in Table L11.3 in the row ‘With transformer’.

7. Compare the volume of the speaker with and without the transformer, and
explain the reason in the conclusion.

Conclusion

Write your conclusions below:
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Chapter 12

Circuits with dependent sources

Objectives

After completing this chapter, you should be able to:

● understand the concept of the dependent source
● define four types of dependent sources
● know how to convert dependent sources equivalently
● understand the methods for analysing circuits with dependent sources

The DC and AC circuits we have discussed in the previous chapters have
independent voltage/current sources (Figure 12.1) and will not be affected by
other voltages and currents in the circuit. The circuits we will analyze in this
chapter have dependent (or controlled) sources, in which the source voltage or
current is a function of other voltage or current in the circuit. Dependent
sources are a useful concept in modelling and analysing electronic components,
such as transistors, amplifiers, filters, etc.

V

I

i

v

Figure 12.1 Independent sources
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12.1 Dependent sources

12.1.1 Dependent (or controlled) sources

As the name suggests, when a source voltage or current is controlled by or
dependent on other voltage or current in the circuit, it is called a dependent (or
controlled) source. The dependent sources can be categorized into the following
four types according to whether it is controlled by a circuit voltage or current, as
well as whether the dependent source itself is a voltage source or current source:

● voltage-controlled voltage source (VCVS)
● voltage-controlled current source (VCCS)
● current-controlled voltage source (CCVS)
● current-controlled current source (CCCS)

The above dependent sources can be represented by the symbols in
Figure 12.2.

In this figure, k1, k2, k3 and k4 are called control coefficients or gain
parameters.

A voltage-controlled source has a voltage across its two terminals that
equals to a control coefficient k multiplied by a controlling voltage or current
elsewhere in the same circuit. A current-controlled source has a current in its
branch that equals to a control coefficient k multiplied by a voltage or current
elsewhere in the same circuit.

5_I in the circuit of Figure 12.3(a) represents a CCCS. Its control coefficient k
is 5, and the current _I is a controlling current through the 5O resistor branch in the
same circuit. 8 _V in the circuit of Figure 12.3(b) is a VCVS. Its control coefficient
is 8, and the voltage _V is a controlling voltage across resistorR2 in the same circuit.

+ –

+ –

k1V

k2I

k3V

k4I

(VCVS)

(VCCS)

(CCVS)

(CCCS)

+ –

–

V

I

(a) (b)

Figure 12.2 Dependent sources: (a) controlling sources and (b) controlled
sources
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After you take an analogue electronics course, you will understand that a
good example for modelling a CCCS is a transistor circuit. Based on the
property of a bipolar transistor, a current amplifier, its large collect current ic is
proportional to the small base current ib according to the relationship ic ¼ bib.
In this equation, the current gain b is the same as the control coefficient k in the
dependent source.

Dependent (controlled) sources

The source voltage or current is a function of the other voltage or current
in the same circuit.

12.1.2 Equivalent conversion of dependent sources

Equivalent conversion of dependent sources is the same as the equivalent
conversion of independent sources. For instance, the voltage-controlled source
in Figure 12.4(a) can be converted equivalently to a current-controlled source
as shown in Figure 12.4(b), and vice versa. Internal resistance RS of the
source does not change before and after the conversion, just apply Ohm’s law
to convert the source.

5 V

2 Ω 3 Ω

5 Ω
5

R1

+ -

+ -•
V

8V

•

•

I
•
I

•
E1 E2

R2

•

Figure 12.3 Circuits with dependent sources

(a) (b)

⇔

Rs

b

+

-

a

VS

•
RS

a

b

IS
•

Figure 12.4 Equivalent conversion: (a) RS ¼ RS; _VS ¼ _ISRS and
(b) RS ¼ RS; _IS ¼ _VS=RS
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Example 12.1: The VCVS in Figure 12.5(a) can be converted equivalently to a
VCCS as shown in Figure 12.5(b).

Example 12.2: The CCCS in Figure 12.6(a) can be converted equivalently to a
CCVS as shown in Figure 12.6(b).

Equivalent conversion of dependent sources

The same as the equivalent conversion of independent sources:
● controlled current source!controlled voltage source:

RS ¼ RS; VS

� ¼ IS

�
RS

● controlled voltage source!controlled current source:

RS ¼ RS; I
�

S ¼ V
�

S

RS

(a) (b)

R = 2 kΩ 

b

+

-

a
+

-

10∠0° V
•
V = V∠0° R = 2 kΩ 

a

b
-

+

I = 5∠0° mA
• •
V V∠0°

Figure 12.5 Circuit for Example 12.1. (a) Voltage-controlled voltage source
(VCVS) and (b) voltage-controlled current source (VCCS),
_I ¼ _V=R ¼ 10 Vff0�=2 kO ¼ 5ff0� mA

⇒

b

a

5 kΩ10∠0° mA•
I = I∠0° A

+

-

a

b

5 kΩ

I∠0° A V = 50∠0° V
•

•
I

(a) (b)

Figure 12.6 Circuit for Example 12.2. (a) Current-controlled current source
(CCCS) and (b) current-controlled voltage source (CCVS),
_V ¼ _IRS ¼ ð10ff0� mAÞð5 kOÞ ¼ 50ff0� V
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12.2 Analysing circuits with dependent sources

The analysing methods for circuits with dependent sources are similar to that
for circuits with independent sources. The following examples will describe
these methods.

Example 12.3: Determine the current I in the circuit of Figure 12.7(a).

(a)

2 Ω

4 Ω4 Ω

2 Ω2 A

2I I

0.5I 3 A

(b)

4 Ω 2 Ω

a

1 A 0.5I

I2I

Figure 12.7 Circuits for Example 12.3

Solution: Simplify and convert the circuit of Figure 12.7(a) to that in Figure
12.7(b).

There,

3 A � 2 A ¼ 1 A

2�þ 4�==4� ¼ 4�

Note: This circuit has a CCCS, simplify the circuit without changing the CCCS
(both controlling branches and controlled source).

Write the KCL equation for the node a in Figure 12.7(b):

�I ¼ 0 : 1 A � 2I � I þ 0:5I ¼ 0
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Current I can be solved from the above equation:

�2:5I ¼ �1 A

; I ¼ 0:4 A

Example 12.4: Determine the voltage V in the circuit of Figure 12.8.

Solution:

Applying KVL,
P

V = 0:

�6 þ 2I þ 4V þ 8 þ 3I ¼ 0
That is

2 þ 5I þ 4V ¼ 0

Substituting V¼ 73I into the above equation gives:

2 þ 5I þ 4ð�3IÞ ¼ 0

2 þ 5I � 12I ¼ 0

Solving for I:

2 � 7I ¼ 0; I � 0:29 A

Solving for V:

V ¼ �3I ¼ ð�3�Þð0:29 AÞ ¼ �0:87 V

Example 12.5: Write node voltage equations for the circuit in Figure 12.9 using
the node voltage analysis method. (Write KVL by treating the dependent
source as an independent source first, and then represent the control quantity
as node voltages.)

6 V

2 Ω

3 Ω

+ -
4 V

+ -V

I

8 V

Figure 12.8 Circuit for Example 12.4
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Solution: The procedure for applying the node voltage analysis method
(chapter 4, section 4) to the above circuit is as follows:

1. Label nodes a, b and c, and choose ground c as the reference node as
shown in Figure 12.9.

2. Write KCL equations to n71 = 371 = 2 nodes (nodes a and b) by
inspection.

Node a:

1
R1

þ 1
R2

þ 1
R3

� �
Va � 1

R3
Vb ¼ 1

R1
E1 ð12:1Þ

Node b:

� 1
R3

Vaþ 1
R3

þ 1
R4

� �
Vb ¼ 3V ð12:2Þ

Substituting the control voltage V ¼ Va � Vb to (12.2) gives:

� 1
R3

Vaþ 1
R3

þ 1
R4

� �
Vb ¼ 3ðVa � VbÞ ð12:3Þ

3. Solving (12.1) and (12.3) can determine the node voltage Va and Vb (if R1,
R2, R3 and E1 are given).

Example 12.6: Use the mesh current analysis method to write mesh equations
for the circuit in Figure 12.10. (Write KVL by treating the dependent source as
an independent source first, and then represent the controlling quantity as
mesh current.)

Solution: The procedure for applying the mesh current analysis method
(chapter 4, section 3) to the above circuit is as follows:

1. Label all the reference directions for each mesh current I1, I2 and I2
(clockwise) as shown in Figure 12.10.

R2 R4 3V (VCCS)

E1

R1

R3a

c

V -+

b

Figure 12.9 Circuit for Example 12.5
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2. Apply KVL around each mesh (windowpane), and ensure the number of
KVL equations is equal to the number of meshes (there are three meshes in
Figure 12.10).
Mesh 1:

ðR1 þ R2ÞI1 � R1I2 � R2I3 ¼ E ð12:4Þ

Mesh 2:

�R1I1 þ ðR1 þ R3ÞI2 � R3I3 ¼ �7I0 ð12:5Þ

Mesh 3:

�R2I1 � R3 I2 þ ðR2 þ R3 þ R4ÞI3 ¼ 0

Substituting the controlling current I0 = I17I2 to (12.5) yields

�R2I1 þ ðR1 þ R3ÞI2 � R3I3 ¼ �7ðI1 � I2Þ ð12:6Þ

3. Solving all the three simultaneous equations, (12.4), (12.5) and (12.6),
resulting from step 2 can determine the three mesh currents I1, I2 and I3.

Example 12.7:Determine the branch current I for the circuit in Figure 12.11 by
using the superposition theorem. (The dependent source will not act separately

E+
-

 +

I

-
7I0

I1

R3

R4

R2

R1

I0

I2

I3

(CCVS)

Figure 12.10 Circuit for Example 12.6

(a) (b) (c)

+=
20 V

I = ?

6 A

4I
(CCVS)

4 Ω

−
+

2 Ω

−
+

4 Ω
2 Ω

6 A

4I

I"I'

−
+

4 Ω

2 Ω
4I20 V

Figure 12.11 Circuits for Example 12.7
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in the superposition theorem. Do not change the dependent source in the cir-
cuit when another independent source is acting in the circuit.)

Solution: The procedure for using the superposition theorem (chapter 5,
section 5.1) to the above circuit is as follows:

1. Choose 20 V voltage source applied to the circuit first, replace the 6
A current source with an open circuit as shown in Figure 12.11(b), and
calculate I 0:

I 0 ¼ 20 V
4Oþ 2O

� 3:33 A

2. When a 6 A current source is applied to the circuit, replace the 20 V voltage
source with a short circuit as shown in Figurec 12.11(c), and calculate I 00:

I 00 ¼ � 6 A
2 O

2 Oþ 4 O
¼ �2 A ðthe current � divider ruleÞ

(The 6 A current is negative due to its assumed direction to be opposite to I 00.)

3. Calculate the sum of currents I 0 and I 00:

I ¼ I 0 þ I 00 ¼ 3:33 A þ ð�2 AÞ ¼ 1:33 A

Example 12.8: Determine the voltage across the two terminals a and b in
Figure 12.12(a) by using Thevenin’s theorem.

5 V

2 Ω 3 Ω

RL

I

b

a

2I (CCCS)

(a)

2 Ω

+
–

3 Ω

I = 0

a

b

2I = 0 5 V

CCCS

(b)

2 Ω 3 Ω
+ –

CCVS

a

b

I

(2I × 3)  = 6I

(c)

Figure 12.12 (a–c) Circuits for Example 12.8
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Solution: The procedure for using Thevenin’s theorem (chapter 5, section 5.2)
to the above circuit is as follows:
1. Open and remove the load branch resistor RL, and mark a and b on the

terminals of the load branch as shown in Figure 12.12(b).
2. Determine Thevenin’s equivalent voltage VTH: Since the branches a and b

are open, I = 0, and the CCCS is also 0 (2I = 0) in the circuit of
Figure 12.12(b), so:

VTH ¼ Vab ¼ 5 V

3. Determine Thevenin’s equivalent resistance RTH: Replace the 5 V voltage
source with a short circuit and convert CCCS to CCVS as shown in Figure
12.12(c).

RTH ¼ Rab ¼ Vab

I
¼ 6I þ ð2�þ 3�ÞI

I
¼ 11�

4. Plot Thevenin’s equivalent circuit as shown in Figure 12.12(d).

Analysing circuits with dependent sources

Analysing circuits with dependent sources is similar to the methods of
analysis for circuits with independent sources.

Summary

● Dependent (controlled) sources: The source voltage or current is a function
of other voltage or current in the circuit.
● VCVS
● VCCS
● CCVS
● CCCS

(d)

RL

a

b

VTH = 5 V

RTH = 11 Ω

Figure 12.12 (d) Thevenin’s equivalent circuit
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● Equivalent conversion of dependent sources is the same as the equivalent
conversion of independent sources:
● controlled current source!controlled voltage source:

RS ¼ RS; _VS ¼ _ISRS

● controlled voltage source!controlled current source:

RS ¼ RS; _IS ¼
_V

RS

● The method of analysis for circuits with dependent sources is similar to the
methods of analysis for circuits with independent sources (ideal sources).
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Appendix A

Greek alphabet

Uppercase/lowercase Letter Uppercase/lowercase Letter

A a Alpha N n Nu
B b Beta � x Xi
� g Gamma O o Omicron
D d Delta � p Pi
E " Epsilon P r Rho
Z z Zeta S s or B Sigma
H Z Eta T t Tau
Y y Theta Y u Upsilon
I i Iota � f Phi
K k Kappa X w Chi
� l Lambda � c Psi
M m Mu � o Omega
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Appendix B

Differentiation of the phasor

For a sinusoidal function f ðtÞ ¼ Fmsinðot þ cÞ, taking the derivative of f(t)
with respect to t gives

df ðtÞ
dt

¼ Fmo cosðot þ cÞ

and

df ðtÞ
dt

¼ Fmo sinðot þ cþ 90�Þ

¼ Jm½oFmejðotþcþ90�Þ� ¼ JmðoFmejotejcej90� Þ ¼ JmðjoFejotÞ
There

F¼Fmejc

and ej90� ¼ j (From Euler’s formula, ej90� ¼ cos 90� þ jsin 90� ¼ j)
Therefore, the phasor of df ðtÞ=dt is joF (there ejot is the rotating factor), i.e.

df ðtÞ
dt

, joF

Therefore, the derivative of the sinusoidal function with respect to time can
be obtained by its phasor F multiplying with jo; this is equivalent to a phasor
that rotates counterclockwise by 908on the complex plane (since þj ¼ þ90�).
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Index

Active power 279–81, 285–6
Adjustable transformer 343
Admittance 266, 269–72, 299–300
Air-core transformer 337
Alternating current (ac) 227, 229,

260, 263
Ampere 3, 8
Amplitude 230, 232
Ammeter 9, 17, 24, 91
Angular frequency 231–2, 257
Angular velocity 231–2, 257
Apparent power 282–3, 301
Applied voltage 13, 24
Autotransformer 343
Average power 279–81
Average value 236–7, 258

Balanced bridge 90–1, 94
Bandwidth 315–16, 329
Blocking ac 256
Branch 41, 47, 56
Branch current analysis 108–9, 122
Breadboard 26–7
Breakdown voltage 170–1, 190

Capacitance 167–8, 190
Capacitive reactance 254–5, 267
Capacitive susceptance 255, 270, 299
Capacitors 164–7, 190

ac response 254–7
charging 165–6, 190, 209–10
discharging 166–7, 190, 209–10
in parallel 176–7
in series 174–5

Capacitors in series–parallel 178
Center-tapped transformer 343

Charging equations 209
Charging process of an RC circuit

199–201
Characteristics of

a capacitor 191, 256, 259
admittance 269–71, 300
impedance 271, 300
an inductor 191, 252, 259
a resistor 191

Chassis ground 70–1, 92
Circuit ground 70
Circuits quantities and their SI units

54
Circuit symbol 5–7
Closed-loop circuit 36–7
Coefficient of the coupling 335, 346
Complex number 240–2, 258–9
Common ground 70–1, 92
Conductance 17, 25, 259, 299
Conductance form of Ohm’s law 20,

25
Controlled source 352–3, 360
Conversion between rectangular and

polar forms 241–2, 258
Conversion of dependent sources

353–4
Conventional current flow version

10, 24
Critical frequencies 315–16
Current 8

direction 9–10, 24
source 50–1
sources in series 107–8, 122
triangle 267, 284, 300

Current-controlled current source
(CCCS) 352, 360



Current-controlled voltage source
(CCVS) 352, 360

Current divider rule (CDR) 76–7,
93–4, 300

Current source ! Voltage source 102,
122, 361

Circuit symbol 6, 24
Cutoff frequency 315–16

DC Blocking 172, 252
D and p configuration 83–4, 94
Delta to wye conversion (D ! Y)

84–6, 94
Dependent sources 352–4, 360
Dielectric constant 169–70
Differentiation of the sine function in

phasor notation 246, 259
Direct current (dc) 228, 257
Discharging equations 207, 222
Discharging process of the RC circuit

204–5
Dot convention 335–6, 346
Double-subscript notation 70–1, 93

Earth ground 70–1, 92
Effective value 237, 239, 258
Electric circuit 4, 24
Electric current 8, 24
Electric power 33
Electrolytic capacitor 192
Electron flow version 10, 24
Electromagnetic field 179–80, 190
Electromotive force (EMF) 11, 13, 24
Energy 32, 56
Energy storage element 166
Energy releasing equations for RL

circuit 218
Energy storing equations for RL

circuit 214
Energy stored by a capacitor 173
Energy stored by an inductor 185–6
Equivalent parallel capacitance 177
Equivalent parallel inductance 189
Equivalent resistance 65
Equivalent series capacitance 175

Equivalent (total) series resistance
65, 92

Equivalent series inductance 188
Equivalent parallel resistance 74–5, 93
Euler’s formula 241–2
Excitation 197

Factors affecting capacitance 169, 190
Factors affecting inductance 184–5,

191
Factors affecting resistance 15–16, 24
Faraday’s law 180, 190
First-order circuit 195–6, 220, 222
Frequency 229–30, 257
Frequency of series resonance 308
Function generator 260

Half-power frequency 315–16

I–V characteristic 19–20
Ideal current source 50–1, 56
Ideal transformer 338–9, 346
Ideal voltage source 48, 56
Impedance 265–6, 271, 300

angle 284–5, 300
matching 344–5, 347
in series 272–3, 300
in parallel 272–3, 300
triangle 284, 300

Inductance 182–3, 190
Inductive reactance 251–2
Inductive susceptance 251–2, 270,

299
Inductors 182, 190

ac response 250–1, 253
in series 188
in series–parallel 189
in parallel 188–9

Initial conditions 198–9, 221
Initial state 197
Input 197
Iron-core transformer 337–8
Instantaneous power 276–9, 301
Instantaneous value 236–7, 244, 258
International system of units (SI) 53–4
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Integration of the sine function, in
phasor notation 246, 259

Kirchhoff’s current law (KCL) 41–3,
56, 274, 300

Kirchhoff’s voltage law (KVL) 36–8,
56, 274, 300

KVL extension 40

LCZ meter 192
Leakage current 170, 190
Lenz’s law 181–2, 190
Linear circuits 128, 155
Linear network 134
Linear two-terminal network with the

sources 135, 155
Linearity property 128
Load 5, 24
Load voltage 13, 24
Loop 47, 56

Maximum power 148–9
Maximum power transfer 147–8, 156,

344
Mesh 47, 56
Mesh current analysis 113, 122–3,

291
Metric prefix 54–5, 57
Milestones of the electric circuits 3–4,

23
Multimeter 28–9, 58–60
Multiple-tapped transformer 343
Mutual inductance 333–4, 346
Millman’s theorem 151–2, 156
Mutually related ref. polarity of

V and I 22–3, 25

Natural response 197–8
Network 134
Network with the power supplies

134
Node 47, 56
Node voltage analysis 116–17, 123,

292–3
Norton’s theorem 135–6, 155–6, 296

Ohmmeter 16–17, 24
Ohm’s law 19–20, 25, 250, 252

for a capacitor 172
for an inductor 183

Operations on complex numbers 241
Oscilloscope 260–4
Output 197

Parallel circuit 71–3, 93
Parallel current 73–4, 93
Parallel power 75, 93
Parallel resonance 319, 322, 326, 328
Parallel voltage 73, 93
Pass-band 316
Passing dc 184
Peak value 235–7, 257–8
Peak-peak value 235–7, 258
Period 229–30, 257
Phasor 239–40, 242–4, 259

domain 244, 259
diagram 243, 322
notation 239–40, 259
power 285, 301

Phase difference 232–4, 258
Phase shift 230–2, 257
Polar form 240–2, 258
Potential difference 11–2, 24
Power 32–3, 56–7

of ac circuits 276–7, 301
source 5, 24
triangle 284–5, 300

Power factor 285–7, 301
Power-factor correction 286–7, 301
Practical parallel circuit 325, 327

Quality factor 312–13, 317, 322–3, 329

Resonant circuit 307
RC circuit 199
RC time constant 208–9
Reactance 259, 267, 270, 299
Reactive power 281–2, 301
Real current source 52–3, 56
Real power 279–81
Real voltage source 48–9, 56
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Rectangular form 240–2, 258
Reference direction of current 20–1, 25
Reference polarity of voltage 21–2, 25
Reference direction of power 34–5,

56
Resistance 14, 24
Resistivity 15–16, 24
Resistors 14

ac response 248–50
colour code 26–7

Requirements of a basic circuit 5, 24
Response 196
Right-hand spiral rule 179
RL circuit 211–2, 216
RL time constant 218–19
RMS value 237–9, 258
Rotating factor 244–5, 259

Schematic 5–6, 24
Selectivity 316–17, 329
Self-inductance (inductance) 182–3,

190
Series circuit 63–4, 92–3
Series current 66, 92
Series–parallel circuit 79, 94
Series power 66
Series resonance 307–8, 317, 328
Short circuit 50
SI units 53–4, 57
SI prefixes 54–5, 57
Single-subscript notation 70–1, 93
Source equivalent conversion 102,

122
Source-free response 197, 220
Source voltage 13, 24
Steady-state 196, 220
Step-down transformer 341–2, 346–7
Step response 196–7, 220
Step-up transformer 340–1, 346
Substitution theorem 152–3, 156
Supernode 46, 56
Superposition theorem 128–9, 155,

293–5
Susceptance 259, 269–70, 299
Switching circuit 198
Symbols and units of electrical

quantities 25

t = 0– 198, 221
t = 0+ 198, 221
Thevenin’s theorem 135–6,

155–6, 296
Time constant 208–9, 218, 221–2
Time domain 244, 259
Total power 287–8, 301
Total series resistance 65, 92
Total series voltage 65, 92
Transformer 336–7
Transformer parameters conversion

340, 346
Transient state 196, 220
True power 279, 281
Turns ratio 339, 346
Two-terminal network 134–5

Viewpoints 139
Voltage 11–13, 24

divider 273
drop 13, 24
rise 13, 24
source 48–50
sources in parallel 105–6, 122
sources in series 104–5, 122
triangle 284, 300

Voltage-controlled current source
(VCCS) 352, 360

Voltage-controlled voltage source
(VCVS) 352, 360

Voltage divider rule (VDR) 67–9, 92,
300

Voltage source ! Current source 102,
122

Voltmeter 13, 17, 24, 58

Wheatstone bridge 89
Winding resistance 186–7, 191
Wires 5, 24
Work 31, 56
Wye and delta configurations 83–4
Wye to delta conversion (Y ! D) 86–7

Y ! D 86–7, 94
Y or T configuration 83–4, 94

Z meter 192
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