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Preface

As circuit complexity continues to increase, the microelectronic industry must possess the ability to
quickly adapt to the market changes and new technology through automation and simulations. The
purpose of this book is to provide in a single volume a comprehensive reference work covering the broad
spectrum of filter design from passive, active, to digital. The book is written and developed for the
practicing electrical engineers and computer scientists in industry, government, and academia. The goal
is to provide the most up-to-date information in the field.
Over the years, the fundamentals of the field have evolved to include a wide range of topics and a broad

range of practice. To encompass such a wide range of knowledge, this book focuses on the key concepts,
models, and equations that enable the design engineer to analyze, design, and predict the behavior of
large-scale systems that employ various types of filters. While design formulas and tables are listed,
emphasis is placed on the key concepts and theories underlying the processes.
This book stresses fundamental theory behind professional applications and uses several examples to

reinforce this point. Extensive development of theory and details of proofs have been omitted. The reader
is assumed to have a certain degree of sophistication and experience. However, brief reviews of theories,
principles, and mathematics of some subject areas are given. These reviews have been done concisely with
perception.
The compilation of this book would not have been possible without the dedication and efforts of

Professor Rashid Ansari and Dr. A. Enis Cetin, and most of all the contributing authors. I wish to thank
them all.

Wai-Kai Chen
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1.1 Introduction

An electrical filter is a system that can be used to modify, reshape, or manipulate the frequency spectrum
of an electrical signal according to some prescribed requirements. For example, a filter may be used to
amplify or attenuate a range of frequency components, reject or isolate one specific frequency compon-
ent, and so on. The applications of electrical filters are numerous, for example,

. To eliminate signal contamination such as noise in communication systems

. To separate relevant from irrelevant frequency components

. To detect signals in radios and TV’s

. To demodulate signals

. To bandlimit signals before sampling

. To convert sampled signals into continuous-time signals

. To improve the quality of audio equipment, e.g., loudspeakers

. In time-division to frequency-division multiplex systems

1-1
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. In speech synthesis

. In the equalization of transmission lines and cables

. In the design of artificial cochleas

Typically, an electrical filter receives an input signal or excitation and produces an output signal or
response. The frequency spectrum of the output signal is related to that of the input by some rule of
correspondence. Depending on the type of input, output, and internal operating signals, three general
types of filters can be identified, namely, continuous-time, sampled-data, and discrete-time filters.
A continuous-time signal is one that is defined at each and every instant of time. It can be represented

by a function x(t) whose domain is a range of numbers (t1, t2), where �1� t1 and t2�1. A sampled-
data or impulse-modulated signal is one that is defined in terms of an infinite summation of continuous-
time impulses (see Ref. [1, Chapter 6]). It can be represented by a function

x̂(t) ¼
X1

n¼�1
x(nT)d(t � nT)

where d(t) is the impulse function. The value of the signal at any instant in the range nT< t< (nþ 1)T is
zero. The frequency spectrum of a continuous-time or sampled-data signal is given by the Fourier
transform.*
A discrete-time signal is one that is defined at discrete instants of time. It can be represented by a

function x(nT), where T is a constant and n is an integer in the range (n1, n2) such that �1� n1 and
n2�1. The value of the signal at any instant in the range nT< t< (nþ 1)T can be zero, constant, or
undefined depending on the application. The frequency spectrum in this case is obtained by evaluating
the z transform on the unit circle jzj ¼ 1 of the z plane.

Depending on the format of the input, output, and internal operating signals, filters can be classified
either as analog or digital filters. In analog filters the operating signals are varying voltages and currents,
whereas in digital filters they are encoded in some binary format. Continuous-time and sampled-data
filters are always analog filters. However, discrete-time filters can be analog or digital.
Analog filters can be classified on the basis of their constituent components as

. Passive RLC filters

. Crystal filters

. Mechanical filters

. Microwave filters

. Active RC filters

. Switched-capacitor filters

Passive RLC filters comprise resistors, inductors, and capacitors. Crystal filters are made of piezoelectric
resonators that can be modeled by resonant circuits. Mechanical filters are made of mechanical reson-
ators. Microwave filters consist of microwave resonators and cavities that can be represented by resonant
circuits. Active RC filters comprise resistors, capacitors, and amplifiers; in these filters, the performance of
resonant circuits is simulated through the use of feedback or by supplying energy to a passive circuit.
Switched-capacitor filters comprise resistors, capacitors, amplifiers, and switches. These are discrete-time
filters that operate like active filters but through the use of switches the capacitance values can be kept
very small. As a result, switched-capacitor filters are amenable to VLSI implementation.
This section provides an introduction to the characteristics of analog filters. Their basic characteriza-

tion in terms of a differential equation is reviewed in Section 1.2 and by applying the Laplace transform,
an algebraic equation is deduced that leads to the s-domain representation of a filter. The representation
of analog filters in terms of the transfer function is then developed. Using the transfer function, one can

* See Chapter 4 of Fundamentals of Circuits and Filters.

1-2 Passive, Active, and Digital Filters

https://engineersreferencebookspdf.com



obtain the time-domain response of a filter to an arbitrary excitation, as shown in Section 1.3. Some
important time-domain responses, i.e., the impulse and step responses, are examined. Certain filter
parameters related to the step response, namely, the overshoot, delay time, and rise time, are then
considered. The response of a filter to a sinusoidal excitation is examined in Section 1.4 and is then used
to deduce the basic frequency-domain representations of a filter, namely, its frequency response and loss
characteristic. Some idealized filter characteristics are then identified and the differences between
idealized and practical filters are delineated in Section 1.5. Practical filters tend to introduce signal
degradation through amplitude and=or delay distortion. The causes of these types of distortion are
examined in Section 1.6. In Section 1.7, certain special classes of filters, e.g., minimum-phase and allpass
filters, are identified and their applications mentioned. This chapter concludes with a review of the design
process and the tasks that need to be undertaken to translate a set of filter specifications into a working
prototype.

1.2 Characterization

A linear causal analog filter with input x(t) and output y(t) can be characterized by a differential equation
of the form

bn
dny(t)
dtn

þ bn�1
dn�1y(t)
dtn�1

þ � � � þ b0y(t) ¼ an
dnx(t)
dtn

þ an�1
dn�1x(t)
dtn�1

þ � � � þ a0x(t)

The coefficients a0, a1, . . . , an and b0, b1, . . . , bn are functions of the element values and are real if the
parameters of the filter (e.g., resistances, inductances, etc.) are real. If they are independent of time,
the filter is time invariant. The input x(t) and output y(t) can be either voltages or currents. The order of
the differential equation is said to be the order of the filter.

An analog filter must of necessity incorporate reactive elements that can store energy. Consequently,
the filter can produce an output even in the absence of an input. The output on such an occasion is
caused by the initial conditions of the filter, namely,

dn�1y(t)
dtn�1

����
t¼0

,
dn�2y(t)
dtn�2

����
t¼0

, . . . , y(0)

The response in such a case is said to be the zero-input response. The response obtained if the initial
conditions are zero is sometimes called the zero-state response.

1.2.1 Laplace Transform

The most important mathematical tool in the analysis and design of analog filters is the Laplace
transform. It owes its widespread application to the fact that it transforms differential into algebraic
equations that are a lot easier to manipulate. The Laplace transform of x(t) is defined as*

X(s) ¼
ð1

�1
x(t)e�stdt

where s is a complex variable of the form s¼sþ jv. Signal x(t) can be recovered from X(s) by applying
the inverse Laplace transform, which is given by

* See Chapter 3 by J. R. Deller, Jr. in Fundamentals of Circuits and Filters.
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x(t) ¼ 1
2pj

ðCþj1

C�j1
X(s)estds

where C is a positive constant. A shorthand notation of the Laplace transform and its inverse are

X(s) ¼ +x(t) and x(t) ¼ +�1X(s)

Alternatively,

X(s) $ x(t)

A common practice in the choice of symbols for the Laplace transform and its inverse is to use upper case
for the s domain and lower case for the time domain.
On applying the Laplace transform to the nth derivative of some function of time y(t), we find that

+
dny(t)
dtn

� �
¼ snY(s)� sn�1y(0)� sn�2 dy(t)

dt

����
t¼0

� � � � � dn�1y(t)
dtn�1

����
t¼0

Now, on applying the Laplace transform to an nth-order differential equation with constant coefficients,
we obtain

bns
n þ bn�1s

n�1 þ � � � þ b0
� �

Y(s)þCy(s) ¼ ans
n þ an�1s

n�1 þ � � � þ a0
� �

X(s)þCx(s)

where
X(s) and Y(s) are the Laplace transforms of the input and output, respectively
Cx(s) and Cy(s) are functions that combine all the initial-condition terms that depend on x(t) and

y(t), respectively

1.2.2 Transfer Function

An important s-domain characterization of an analog filter is its transfer function, as for any other linear
system. This is defined as the ratio of the Laplace transform of the response to the Laplace transform of
the excitation.
An arbitrary linear, time-invariant, continuous-time filter, which may or may not be causal, can be

represented by the convolution integral

y(t) ¼
ð1

�1
h(t � t)x(t)dt ¼

ð1
�1

h(t)x(t � t)dt

where h(t) is the impulse response of the filter. The Laplace transform yields

Y(s) ¼
ð1

�1

ð1
�1

h(t � t)x(t)dt

2
4

3
5e�stdt

¼
ð1

�1

ð1
�1

h(t � t)e�stx(t)dt dt

¼
ð1

�1

ð1
�1

h(t � t)e�st � est � e�stx(t)dt dt
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Changing the order of integration, we obtain

Y(s) ¼
ð1

�1

ð1
�1

h(t � t)e�s(t�t) � x(t)e�stdt dt

¼
ð1

�1

ð1
�1

h(t � t)e�s(t�t)dt � x(t)e�stdt

Now, if we let t¼ t0 þ t, then dt=dt0 ¼ 1 and t� t¼ t0; hence,

Y(s) ¼
ð1

�1

ð1
�1

h(t0)e�st0dt0 � x(t)e�stdt

¼
ð1

�1
h(t0)e�st0dt0 �

ð1
�1

x(t)e�stdt

¼ H(s)X(s)

Therefore, the transfer function is given by

H(s) ¼ Y(s)
X(s)

¼ +h(t) (1:1)

In effect, the transfer function is equal to the Laplace transform of the impulse response.
Some authors define the transfer function as the Laplace transform of the impulse response. Then

through the use of the convolution integral, they show that the transfer function is equal to the ratio of
the Laplace transform of the response to the Laplace transform of the excitation. The two definitions are,
of course, equivalent.
Typically, in analog filters the input and output are voltages, e.g., x(t)þ vi(t) and y(t)þ vo(t). In such a

case the transfer function is given by

Vo(s)
Vi(s)

¼ HV (s)

or simply by

Vo

Vi
¼ HV (s)

However, on occasion the input and output are currents, in which case

Io(s)
Ii(s)

� Io
Ii
¼ HI(s)

The transfer function can be obtained through network analysis using one of several classical methods,*
e.g., by using

* See Chapters 18 through 27 of this volume.
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. Kirchhoff ’s voltage and current laws

. Matrix methods

. Flow graphs

. Mason’s gain formula

. State-space methods

A transfer function is said to be realizable if it characterizes a stable and causal network. Such a transfer
function must satisfy the following constraints:

1. It must be a rational function of s with real coefficients.
2. Its poles must lie in the left-half s plane.
3. The degree of the numerator polynomial must be equal to or less than that of the denominator

polynomial.

A transfer function may represent a network comprising elements with real parameters only if its
coefficients are real. The poles must be in the left-half s plane to ensure that the network is stable and
the numerator degree must not exceed the denominator degree to assure the existence of a causal network.

1.3 Time-Domain Response

From Equation 1.1,

Y(s) ¼ H(s)X(s)

Therefore, the time-domain response of a filter to some arbitrary excitation can be deduced by obtaining
the inverse Laplace transform of Y(s), i.e.,

y(t) ¼ +�1 H(s)X(s)f g

1.3.1 General Inversion Formula

If

1. the singularities of Y(s) in the finite plane are poles,* and
2. Y(s) ! 0 uniformly with respect to the angle of s as jsj ! 1 with s�C, where C is a positive

constant, then [2]

y(t) ¼
0 for t < 0

1
2pj

ÐCþj1

C�j1
Y(s)estds ¼ 1

2pj

Ð
G

Y(s)estds for t � 0

8<
: (1:2)

where G is a contour in the counterclockwise sense make up of the part of the circle s¼Re ju to the left of
line s¼C and the segment of the line s¼C that overlaps the circle, as depicted in Figure 1.1; C and R are
sufficiently large to ensure that G encloses all the finite poles of Y(s).
From the residue theorem [3] and Equation 1.2, we have

y(t) ¼
0 for t < 0
1
2pj

Ð
G

Y(s)estds ¼PK
i¼1

res
s¼pi

Y0(s) for t � 0

8<
:

* Such a function is said to be meromorphic [2,3].
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where Y0(s)¼Y(s)est and K is the number of poles in
Y(s). If Y0(s) has a pole pi of order mi, the residue can
be obtained by using the general formula [3]

res
z¼pi

Y0(s) ¼ 1
mi � 1ð Þ! lims!pi

dmi�1

dsmi�1
(s� pi)

miY0(s)½ �

Note that complex poles yield complex residues. Hence,
like the poles of Y0(s), its residues occur in complex–
conjugate pairs. For this reason, y(t) is found to be a real
function of t, as can be easily verified.
Condition 1 listed previously may not be satisfied

sometimes, for example, if

lim
s!1Y(s) ¼ A0

where A0 is a constant. In such a case, we can express
Y(s) as

Y(s) ¼ A0 þ Y 0(s)

where Y0(s) satisfies conditions 1 and 2. Thus,

y(t) ¼ A0d(t)þ+�1Y 0(s)

The inverse Laplace transform of Y 0(s) can now be obtained by using the inversion formula.

1.3.2 Inverse by Using Partial Fractions

The simplest way to obtain the time-domain response of a filter is to express H(s)X(s) as a partial-fraction
expansion and then invert the resulting fractions individually. If Y(s) has simple poles, we can write

Y(s) ¼ A0 þ
XK
i¼1

Ai

s� pi

where A0 is a constant and

Ai ¼ lim
s!pi

s� pið ÞY(s)½ �

is the residue of pole s¼ pi. On applying the general inversion formula to each partial fraction, we obtain

y(t) ¼ A0d(t)þ u(t)
XK
i¼1

Aie
pit

where d(t) and u(t) are the impulse function and unit step, respectively.

jω

R

C

Γ

σ

×

×

×

×
×

×

×

×

R      ∞ 

s plane

FIGURE 1.1 Contour G for the evaluation of the
inverse Laplace transform.
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1.3.3 Impulse and Step Responses

The response of a filter to an impulse d(t) designated as

y(t) ¼ 5d(t) � h(t)

where5 is an operator, is of considerable importance. Its absolute integrability guarantees the stability of
the filter* and its Laplace transform, namely, H(s), is the transfer function as has been shown in the
section on the transfer function.
For an Nth-order, causal, linear, and time-invariant filter

H(s) ¼ a0 þ a1sþ a2s2 þ � � � þ aMsM

b0 þ b1sþ b2s2 þ � � � þ bNsN

where M�N.
The step (or unit-step) response is the output of a filter to the signal

u(t) ¼ 1 for t � 0
0 for t < 0

�

The Laplace transform of u(t) is 1=s. Hence, the step response of an arbitrary filter is obtained as

y(t) ¼ 5u(t) � yu(t) ¼ +�1 H(s)
s

� �

1.3.4 Overshoot, Delay Time, and Rise Time

Three time-domain parameters of a filter are usually associated with the step response [4], namely, the
overshoot, delay time, and rise time. The overshoot g is the difference between the peak value and
the asymptotic value of the step response in percent as t ! 1. The delay time td is the time required for
the step response to reach 50% of the asymptotic value. The rise time tr is the time required for the step
response to increase from 10% to 90% of the asymptotic value. These three parameters are illustrated in
Figure 1.2, where K¼ a0=b0 is a scaling constant that normalizes the asymptotic value of the step response
as t ! 1 to unity.
The delay and rise times defined in terms of the step response entail quite a bit of computation.

Alternative definitions of these parameters that are easier to use have been proposed by Elmore [4]. These
are based on the impulse response and give accurate results if the overshoot is small. The delay time is
defined as

tD ¼
ð1
0

th(t)dt

and the rise time assumes the form

tR ¼ 2p
ð1
0

t � tDð Þ2h(t)dt
2
4

3
5
1=2

¼ ffiffiffiffiffiffi
2p

p ð1
0

t2h(t)dt � t2D

2
4

3
5
1=2

* See Section 22.1 of Fundamentals of Circuits and Filters.
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The physical interpretation of these parameters is illustrated in Figure 1.3a and b. If the overshoot is
small, say less than 1%, then

tD � td and tR � tr

The simplification brought about by Elmore’s definitions can be easily demonstrated. Consider a filter
whose step response approaches unity as t ! 1. Such a filter has a transfer function of the form

H(s) ¼ 1þ a1sþ a2s2 þ � � � þ aMsM

1þ b1sþ b2s2 þ � � � þ bNsN
(1:3)

y u
 (t

)/K

t1 tt2

τr

τd

γ
1.0
0.9

0.5

0.1

FIGURE 1.2 Overshoot, delay time, and rise time.

h(
t) y u

(t)

1.0

0t t

Area = 1

(a) (b)

τD τD
τR τR

FIGURE 1.3 Physical interpretation of Elmore’s definitions of delay and rise times: (a) impulse response h(t) and
(b) unit-step response yu(t).

General Characteristics of Filters 1-9

https://engineersreferencebookspdf.com



that is, a0¼ b0¼ 1. From the definition of the Laplace transform,

H(s) ¼
ð1
0

h(t)e�stdt

¼
ð1
0

h(t) 1� st þ s2t2

2!
� � � �

	 

dt

¼
ð1
0

h(t)dt � s
ð1
0

th(t)dt þ s2

2!

ð1
0

t2h(t)dt � � � �

¼
ð1
0

h(t)dt � stD þ s2

2!
t2R
2p

þ t2D

	 

� � � � (1:4)

Alternatively, from Equation 1.3, direct division gives

H(s) ¼ 1� b1 � a1ð Þsþ b21 � a1b1 þ a2 � b2
� �

s2 þ � � � (1:5)

Now by comparing Equations 1.4 and 1.5, we deduce

ð1
0

h(t)dt ¼ 1, tD ¼ b1 � a1

and

tR ¼ 2p b21 � a21 þ 2 a2 � b2ð Þ� � �1=2
The previous definitions are based on the assumption that the unit-step response approaches unity as
t ! 1. If this is not the case, i.e., coefficients a0 and b0 are not equal to unity, then we can write

H(s) ¼ KH0(s)

where K¼ a0=b0 and

H0(s) ¼ 1þ a01sþ a02s
2 þ � � � þ a0Ms

M

1þ b01sþ b02s2 þ � � � þ b0NsN

Using the coefficients of H0(s) in the formulas for tD and tR yields approximate values for the delay time
and rise time, since these parameters are independent of the absolute value of the step response.

1.4 Frequency-Domain Analysis
The frequency response of an analog filter is deduced by finding its steady-state sinusoidal response, as
we shall now demonstrate.
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1.4.1 Sinusoidal Response

Consider an Nth-order analog filter characterized by a transfer function H(s). The sinusoidal response of
such a filter is

y(t) ¼ +�1[H(s)X(s)]

where

X(s) ¼ +[u(t) sinvt] ¼ v

(sþ jv)(s� jv)
(1:6)

The product H(s)X(s) satisfies conditions 1 and 2 imposed on the general inversion formula of Equation
1.2. Hence, for t� 0, we have

y(t) ¼ 1
2pj

ð
G

Y(s)estds ¼
X

res H(s)X(s)est½ � (1:7)

where G is a contour enclosing the poles of H(s) and X(s) as in Figure 1.1.
Assuming simple poles for the transfer function, Equations 1.6 and 1.7 give

y(t) ¼
XN
i¼1

X pið Þepit res
s¼pi

H(s)þ 1
2j

H( jv)ejvt �H(�jv)e�jvt
� �

(1:8)

If the filter is assumed to be stable, then the poles are in the left-half s plane, i.e., pi¼siþ jvi with si< 0.*
As a consequence

lim
t!1 epit ¼ lim

t!1 esit � ejvit
� � ¼ 0

and since the residues of H(s) are finite, the steady-state sinusoidal response is obtained from
Equation 1.8 as

~y(t) ¼ lim
t!1 y(t) ¼ 1

2j
H( jv)ejvt � H(�jv)e�jvt
� �

(1:9)

Equation 1.9 was deduced on the assumption that the poles of the transfer function are simple. However,
it also applies for transfer functions with higher-order poles.
Now from the definition of the Laplace transform

H(s) ¼
ð1

�1
h(t)e�stdt

and hence

H(�jv) ¼
ð1

�1
h(t)ejvtdt ¼

ð1
�1

h(t)e�jvtdt

2
4

3
5
*

¼ H*( jv) (1:10)

* See Chapter 22.1 of Fundamentals of Circuits and Filters.
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If we write

H( jv) ¼ M(v)eju(v) (1:11)

where

M(v) ¼ H( jv)j j and u(v) ¼ arg H( jv) (1:12)

the steady-state sinusoidal response of the filter is obtained from Equations 1.9 through 1.12 as

~y(t) ¼ 1
2j

M(v)eju(v)ejvt �M(v)e�ju(v)e�jvt
� �

¼ M(v)
1
2j

ej[vtþu(v)] � e�j[vtþu(v)]
� �

¼ M(v) sin[vt þ u(v)]

The preceding analysis has shown that the steady-state response of an analog filter to a sinusoid of unit
amplitude is a sinusoid of amplitude M(v), shifted by an angle u(v). In effect, for a given frequency v,
the filter introduces a gain M(v) and a phase shift u(v).
As functions of frequency, M(v) and u(v) are known as the amplitude (or magnitude) response and

phase response of the filter, respectively. The transfer function evaluated on the imaginary axis, namely,
H(jv) is the frequency response and, as was shown, its magnitude and angle are the amplitude response
and phase response, respectively.
Two other quantities of a filter, which are of significant interest, are its phase and group delays These

are defined as

tp(v) ¼ � u(v)
v

and tg(v) ¼ � du(v)
dv

respectively. For filters, the group delay is the more important of the two. As a function of frequency,
tg(v) is usually referred to as the delay characteristic.

1.4.2 Graphical Construction

Consider a filter characterized by a transfer function of the form

H(s) ¼ H0
N(s)
D(s)

¼ H0

QM
i¼1 (s� zi)QN

i¼1 (s� pi)
mi

(1:13)

where H0 is a constant. The frequency response of the filter is obtained as

H( jv) ¼ M(v)eju(v) ¼ H0
QM

i¼1 ( jv� zi)QN
i¼1 (jv� pi)

mi
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By letting

jv� zi ¼ Mzie
jczi (1:14)

jv� pi ¼ Mpie
jcpi (1:15)

we obtain

M(v) ¼ H0j jQM
i¼1 MziQN

i¼1 M
mi
pi

(1:16)

and

u(v) ¼ arg H0 þ
XM
i¼1

czi �
XN
i¼1

micpi (1:17)

where arg H0¼p if H0 is negative.
The gain and phase shift M(v) and u(v) for some frequency v¼vi can be determined graphically by

using the following procedure:

1. Mark the zeros and poles of the filter in the s plane.
2. Draw the phasor s¼ jvi, where vi is the frequency of interest.
3. Draw a phasor of the type in Equation 1.14 for each simple zero of H(s).
4. Draw mi phasor of the type in Equation 1.15 for each pole of order mi.
5. Measure the magnitudes and angles of the phasors in steps 3 and 4 and use them in Equations 1.16

and 1.17 to calculate the gain M(vi) and phase shift u(vi), respectively.

The amplitude and phase responses of a filter can be determined by repeating the preceding procedure
for frequencies v¼v1, v2, . . . , in the range 0 to 1. The procedure is illustrated in Figure 1.4.
It should be mentioned that the modern approach for the analysis of filters is through the use of the

many circuit analysis programs such as SPICE.* Nevertheless, the above graphical method is of interest
and merits consideration for two reasons. First, it illustrates some of the fundamental properties of filters.
Second, it provides a certain degree of intuition about the expected amplitude or phase response of a
filter. For example, if a filter has pole close to the jv axis, then as v approaches the neighborhood of the
pole, the magnitude of the phasor from the pole to the jv axis decreases rapidly to a very small value and
then increases as v increases above this value. As a result, the amplitude response will exhibit a large peak
in the frequency range close to the pole. On the other hand, a zero close to or on the jv axis will lead to a
notch in the amplitude response when v is in the neighborhood of the zero.
Other situations are of interest, for example, if the poles of a filter are located in a band of the s

plane below the horizontal line s¼vc and its zeros are located above this line, then the filter will pass
low-frequency and attenuate high-frequency components since Mzi<Mpi if v>vc for all i. Such a filter
is said to be a low-pass filter. If the zeros are located below the line s¼vc and the poles above it, then
the filter will pass high-frequency and attenuate low-frequency components, i.e., the filter will be a
high-pass one.

* See Chapter 8 of Computer Aided Design and Design Automation, contribution of J.G. Rollins.
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1.4.3 Loss Function

Quite often, it is desirable to represent a filter in terms of its loss function. Consider a filter represented by
the voltage transfer function

Vo(s)
Vi(s)

¼ H(s) ¼ N(s)
D(s)

where
Vi(s) and Vo(s) are the Laplace transforms of the input and output voltages, respectively
N(s) and D(s) are polynomials in s

The loss (or attenuation) of the filter in decibels is defined as

A(v) ¼ 20 log
Vi( jv)
Vo( jv)

����
���� ¼ 20 log

1
H( jv)j j ¼ 10 log L v2

� �
(1:18)

where

L v2
� � ¼ 1

H( jv)H(�jv)

A(v) as a function of v is the loss characteristic.

jω

ψp3

ψz1

Mp2

p1

p3

p2

z1

s plane

z2

jωi

σ

jωi – p1 = Mp1
 e jψp1

jωi – z1 = Mz1
 e jψz1

FIGURE 1.4 Graphical method for the evaluation of the frequency response.
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With v¼ s=j in Equation 1.18, the function

L �s2
� � ¼ D(s)D(�s)

N(s)N(�s)

can be formed. This is called the loss function of the filter and, as is evident, its zeros are the poles of H(s)
and their negatives, whereas its poles are the zeros of H(s) and their negatives.

1.5 Ideal and Practical Filters

An ideal low-pass filter is one that will pass only low-frequency components. Its loss characteristic is
given by

A(v) ¼ 0 for 0 � v < vc

1 for vc < v < 1
�

The frequency ranges 0 to vc and vc to 1 are the passband and stopband, respectively. The boundary
between the passband and stopband, namely, vc, is the cutoff frequency. An ideal high-pass filter will pass
all components with frequencies above the cutoff frequency and reject all components with frequencies
below the cutoff frequency, i.e.,

A(v) ¼ 1 for 0 � v < vc

0 for vc < v < 1
�

Idealized loss characteristics can similarly be identified for bandpass and bandstop filters as

A(v) ¼
1 for 0 � v < vc1

0 for vc1 < v < vc2

1 for vc2 � v < 1

8<
:

and

A(v) ¼
0 for 0 � v < vc1

1 for vc1 < v < vc2

0 for vc2 � v < 1

8<
:

respectively.
Practical filters differ from ideal ones in that the passband loss is not zero, the stopband loss is not

infinite, and the transition between passband and stopband is gradual. Practical loss characteristics for
low-pass, high-pass, bandpass, and bandstop filters assume the forms

ALP(v)
� Ap for 0 � v < vp

� Aa for va � v � 1

(

AHP(v)
� Aa for 0 � v � va

� Ap for vp � v < 1

(

ABP(v)

� Aa for 0 � v � va1

� Ap for vp1 � v � vp2

� Aa for va2 � v � 1

8>><
>>:
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and

ABS(v) ¼
� Ap for 0 � v � vp1

� Aa for va1 � v � va2

� Ap for vp2 � v � 1

8><
>:

respectively, where vp, vp1, and vp2 are passband edges, va, va1, and va2 are stopband edges, Ap is the
maximum passband loss, and Aa is the minimum stopband loss. In practice, Ap is determined from the
allowable amplitude distortion (see Section 1.6) and Aa is dictated by the allowable adjacent channel
interference and the desirable signal-to-noise ratio.
It should be mentioned that in practical filters the cutoff frequency vc is not a very precise term. It is

often used to identify some hypothetical boundary between passband and stopband such as the 3 dB
frequency in Butterworth filters, the passband edge in Chebyshev filters, the stopband edge in inverse-
Chebyshev filters, or the geometric mean of the passband and stopband edges in elliptic filters.
If a filter is required to have a piecewise constant loss characteristic (or amplitude response) and the

shape of the phase response is not critical, the filter can be fully specified by its band edges, the minimum
passband and maximum stopband losses Ap and Aa, respectively.

1.6 Amplitude and Delay Distortion

In practice, a filter can distort the information content of the signal. Consider a filter characterized by a
transfer function H(s) and assume that its input and output signal are vi(t) and vo(t). The frequency
response of the filter is given by

H( jv) ¼ M(v)eju(v)

where M(v) and u(v) are the amplitude and phase responses, respectively.
The frequency spectrum of vi(t) is its Fourier transform, namely, Vi(jv). Assume that the information

content of vi(t) is concentrated in frequency band B given by

B ¼ v:vL � v � vHf g

and that its frequency spectrum is zero elsewhere.
Let us assume that the amplitude response is constant with respect to band B, i.e.,

M(v) ¼ G0 for v 2 B (1:19)

and that the phase response is linear, i.e.,

u(v) ¼ �tgvþ uo for v 2 B (1:20)

where tg is a constant. This implies that the group delay is constant with respect to band B, i.e.,

t(v) ¼ � du(v)
dv

¼ tg for v 2 B
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The frequency spectrum of the output signal vo(t) can be obtained from Equations 1.19 and 1.20 as

Vo( jv) ¼ H( jv)Vi( jv) ¼ M(v)eju(v)Vi( jv)

¼ G0e
�jvtgþju0

� �
Vi( jv) ¼ G0e

ju0 e�jvtg Vi( jv)
� �

and from the time-shifting theorem of the Fourier transform

vo(t) ¼ G0e
ju0vi t � tg
� �

We conclude that the amplitude response of the filter is flat and its phase response is a linear function of
v (i.e., the delay characteristic is flat) in band B, then the output signal is a delayed replica of the input
signal except that a gain Go and a constant phase shift u0 are introduced.

If the amplitude response of the filter is not flat in band B, then amplitude distortion will be introduced
since different frequency components of the signal will be amplified by different amounts.

If the delay characteristic is not flat in band B, then delay (or phase) distortion will be introduced since
different frequency components will be delayed by different amounts.
Amplitude distortion can be quite objectionable in practice and, consequently, in each frequency

band that carries information, the amplitude response is required to be constant to within a
prescribed tolerance. The amount of amplitude distortion allowed determines the maximum
passband loss Ap.
If the ultimate receiver of the signal is the human ear, e.g., when a speech or music signal is to be

processed, delay distortion is quite tolerable. However, in other applications it can be as objectionable as
amplitude distortion and the delay characteristic is required to be fairly flat. Applications of this type
include data transmission, where the signal is to be interpreted by digital hardware, and image process-
ing, where the signal is used to reconstruct an image that is to be interpreted by the human eye. The
allowable delay distortion dictates the degree of flatness in the delay characteristic.

1.7 Minimum-Phase, Nonminimum-Phase, and Allpass Filters

Filters satisfying prescribed loss specifications for applications where delay distortion is unimportant
can be readily designed with transfer functions whose zeros are on the jv axis or in the left-half s
plane. Such transfer functions are said to be minimum-phase since the phase response at a given
frequency v is increased if any one of the zeros is moved into the right-half s plane, as will now be
demonstrated.

1.7.1 Minimum-Phase Filters

Consider a filter where the zeros zi for i¼ 1, 2, . . . ,M are replaced by their mirror images and let the new
zeros be located at z ¼ �zi, where

Re �zi ¼ �Re zi and Im �zi ¼ Im zi

as depicted in Figure 1.5. From the geometry of the new zero-pole plot, the magnitude and angle of each
phasor jv� �zi are given by
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M�zi ¼ Mzi and c�zi ¼ p� czi

respectively. The amplitude response of the modified filter is obtained from Equation 1.16 as

M(v) ¼ H0j jQM
i¼1 M�ziQN

i¼1 M
mi
pi

¼ H0j jQM
i¼1 MziQN

i¼1 M
mi
pi

¼ M(v)

Therefore, replacing the zeros of the transfer function by their mirror images leaves the amplitude
response unchanged.
The phase response of the original filter is given by Equation 1.17 as

u(v) ¼ arg H0 þ
XM
i¼1

czi �
XN
i¼1

micpi (1:21)

and since c�zi ¼ p� czi , the phase response of the modifier filter is given by

�u(v) ¼ arg H0 þ
XM
i¼1

c�zi �
XN
i¼1

micpi

¼ arg H0 þ
XM
i¼1

(p� czi )�
XN
i¼1

micpi (1:22)

that is, the phase response of the modified filter is different from that of the original filter. Furthermore,
from Equations 1.21 and 1.22

�u(v)� u(v) ¼
XM
i¼1

(p� 2czi )

and since �p=2 � �czi � p=2, we have

�u(v)� u(v) � 0

jω – zi s planejω 
zi

ψzi

σ

jω 
jω – zi

zi

ψzi

σ

FIGURE 1.5 Zero-pole plots of minimum-phase and corresponding nonminimum-phase filter.
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or

�u(v) � u(v)

As a consequence, the phase response of the modified filter is equal to or greater than that of the original
filter for all v.

A frequently encountered requirement in the design of filters is that the delay characteristic be flat to
within a certain tolerance within the passband(s) in order to achieve tolerable delay distortion, as was
demonstrated in Section 1.6. In these and other filters in which the specifications include constraints on
the phase response or delay characteristic, a nonminimum-phase transfer function is almost always
required.

1.7.2 Allpass Filters

An allpass filter is one that has a constant amplitude response. Consider a transfer function of the type
given by Equation 1.13. From Equation 1.10, H(�jv) is the complex conjugate of H(jv), and hence a
constant amplitude response can be achieved if

M2(v) ¼ H(s)H(�s)js¼jv ¼ H2
0
N(s)
D(s)

	 N(�s)
D(�s)

����
s¼jv

¼ H2
0

Hence, an allpass filter can be obtained if

N(�s) ¼ D(s)

that is, the zeros of such a filter must be the mirror images of the poles and vice versa. A typical zero-pole
plot for an allpass filter is illustrated in Figure 1.6. A second-order allpass transfer function is given by

HAP(s) ¼ s2 � bsþ c
s2 þ bsþ c

where b> 0 for stability. As described previously, we
can write

M2(v) ¼ HAP(s)HAP(�s)js¼jv

¼ s2 � bsþ c
s2 þ bsþ c

	 s2 þ bsþ c
s2 � bsþ c

����
s¼jv

¼ 1

Allpass filters can be used to modify the phase
responses of filters without changing their amplitude
responses. Hence, they are used along with minimum-
phase filters to obtain nonminimum-phase filters that
satisfy amplitude and phase response specifications
simultaneously.

jω 

s plane

FIGURE 1.6 Typical zero-pole plot of an allpass
filter.
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1.7.3 Decomposition of Nonminimum-Phase Transfer Functions

Some methods for the design of filters satisfying amplitude and phase response specifications, usually
methods based on optimization, yield a nonminimum-phase transfer function. Such a transfer function
can be easily decomposed into a product of a minimum-phase and an allpass transfer function, i.e.,

HN(s) ¼ HM(s)HAP(s)

Consequently, a nonminimum-phase filter can be implemented as a cascade arrangement of a minimum-
phase and an allpass filter.
The preceding decomposition can be obtained by using the following procedure:

1. For each zero in the right-half s plane, augment the transfer function by a zero and a pole at the
mirror image position of the zero.

2. Assign the left-half s-plane zeros and the original poles to the minimum-phase transfer function
HM(s).

3. Assign the right-half s-plane zeros and the left-hand s-plane poles generated in step 1 to the allpass
transfer function HAP(s).

This procedure is illustrated in Figure 1.7. For example, if

Minimum-phase filter

Nonminimum-phase filter

s plane

Allpass filter

FIGURE 1.7 Decomposition of nonminimum-phase transfer function.
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HN(s) ¼ s2 þ 4sþ 5ð Þ s2 � 3sþ 7ð Þ(s� 5)
s2 þ 2sþ 6ð Þ s2 þ 4sþ 9ð Þ(sþ 2)

then, we can write

HN(s) ¼ s2 þ 4sþ 5ð Þ s2 � 3sþ 7ð Þ(s� 5)
s2 þ 2sþ 6ð Þ s2 þ 4sþ 9ð Þ(sþ 2)

	 s2 þ 3sþ 7ð Þ(sþ 5)
s2 þ 3sþ 7ð Þ(sþ 5)

Hence,

HN(s) ¼ s2 þ 4sþ 5ð Þ s2 þ 3sþ 7ð Þ(sþ 5)
s2 þ 2sþ 6ð Þ s2 þ 4sþ 9ð Þ(sþ 2)

	 s2 � 3sþ 7ð Þ(s� 5)
s2 þ 3sþ 7ð Þ(sþ 5)

or

HN(s) ¼ HM(s)HAP(s)

where

HM(s) ¼ s2 þ 4sþ 5ð Þ s2 þ 3sþ 7ð Þ(sþ 5)
s2 þ 2sþ 6ð Þ s2 þ 4sþ 9ð Þ(sþ 2)

HAP(s) ¼ s2 � 3sþ 7ð Þ(s� 5)
s2 þ 3sþ 7ð Þ(sþ 5)

1.8 Introduction to the Design Process

The design of filters starts with a set of specifications and ends with the implementation of a prototype. It
comprises four general steps, as follows:

1. Approximation
2. Realization
3. Study of imperfections
4. Implementation

1.8.1 The Approximation Step

The approximation step is the process of generating a transfer function that satisfies the desired
specifications, which may concern the amplitude, phase, and possibly the time-domain response of
the filter.
The available methods for the solution of the approximation problem can be classified as closed-form

or iterative. In closed-form methods, the problem is solved through a small number of design steps using
a set of closed-form formulas or transformations. In iterative methods, an initial solution is assumed and,
through the application of optimization methods, a series of progressively improved solutions are
obtained until some design criterion is satisfied. Closed-form solutions are very precise and entail a
minimal amount of computation. However, the available solutions are useful in applications where
the loss characteristic is required to be piecewise constant to within some prescribed tolerances. Iterative
methods, on the other hand, entail a considerable amount of computation but can be used to design filters
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with arbitrary amplitude and phase response characteristics (see Ref. [1, Chapter 14]) for the application of
these methods for the design of digital filters). Some classical closed-form solutions are the so-called
Butterworth, Chebyshev, and elliptic* approximations to be described in Chapter 2 by A.M. Davis.
In general, the designer is interested in simple and reliable approximation methods that yield precise

designs with the minimum amount of computation.

1.8.2 The Realization Step

The synthesis of a filter is the process of converting some characterization of the filter into a network. The
process of converting the transfer function into a network is said to be the realization step and the
network obtained is sometimes called the realization.
The realization of a transfer function can be accomplished by expressing it in some form that allows

the identification of an interconnection of elemental filter subnetworks and=or elements. Many realiza-
tion methods have been proposed in the past that lead to structures of varying complexity and properties.
In general, the designer is interested in realizations that are economical in terms of the number
of elements, do not require expensive components, and are not seriously affected by variations in
the element values such as may be caused by variations in temperature and humidity, and drift due to
element aging.

1.8.3 Study of Imperfections

During the approximation step, the coefficients of the transfer function are determined to a high degree
of precision and the realization is obtained on the assumption that elements are ideal, i.e., capacitors are
lossless, inductors are free of winding capacitances, amplifiers have infinite bandwidths, and so on.
In practice, however, the filter is implemented with nonideal elements that have finite tolerances and are
often nonlinear. Consequently, once a realization is obtained, sometimes referred to as a paper design,
the designer must embark on the study of the effects of element imperfections. Several types of analysis
are usually called for ranging from tolerance analysis, study of parasitics, time-domain analysis, sensi-
tivity analysis, noise analysis, etc. Tight tolerances result in high-precision filters but the cost per unit
would be high. Hence the designer is obliged to determine the highest tolerance that can be tolerated
without violating the specifications of the filter throughout its working life. Sensitivity analysis is a related
study that will ascertain the degree of dependence of a filter parameter, e.g., the dependence of the
amplitude response on a specific element. If the loss characteristic of a filter is not very sensitive to certain
capacitance, then the designer would be able to use a less precise and cheaper capacitor, which would, of
course, decrease the cost of the unit.

1.8.4 Implementation

Once the filter is thoroughly analyzed and found to meet the desired specifications under ideal
conditions, a prototype is constructed and tested. Decisions to be made involve the type of components
and packaging, and the methods are to be used for the manufacture, testing, and tuning of the filter.
Problems may often surface at the implementation stage that may call for one or more modifications in
the paper design. Then the realization and possibly the approximation may have to be redone.

* To be precise, the elliptic approximation is not a closed-form method, since the transfer function coefficients are given in
terms of certain infinite series. However, these series converge very rapidly and can be treated as closed-form formulas for
most practical purposes (see Ref. [1, Chapter 5]).
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1.9 Introduction to Realization

Realization tends to depend heavily on the type of filter required. The realization of passive RLC filters
differs quite significantly from that of active filters which, in turn, is entirely different from the realization
of microwave filters.

1.9.1 Passive Filters

Passive RLC filters have been the mainstay of communications since the 1920s and, furthermore, they
continue to be of considerable importance today for frequencies in the 100–500 kHz range.
The realization of passive RLC filters has received considerable attention through the years and it is, as

a consequence, highly developed and sophisticated. It can be accomplished by using available filter-
design packages such as FILSYN [5] and FILTOR [6]. In addition, several filter-design handbooks and
published design tables are available [7–10].
The realization of passive RLC filters starts with a resistively terminated LC two-port network such as

that in Figure 1.8. Then through one of several approaches, the transfer function is used to generate
expressions for the z or y parameters of the LC two-port. The realization of the LC two-port is achieved
by realizing the z or y parameters. The realization of passive filters is considered in Section I.

1.9.2 Active Filters

Since the reactance of an inductor is vL, increased inductance values are required to achieve reason-
able reactance values at low frequencies. For example, an inductance of 1 mH which will present a
reactance of 6.28 kV at 1 MHz will present only 0.628 V at 100 Hz. Thus, as the frequency range of
interest is reduced, the inductance values must be increased if a specified impedance level is to be
maintained. This can be done by increasing the number of turns on the inductor coil and to some extent
by using ferromagnetic cores of high permeability. Increasing the number of turns increases the
resistance, the size, and the cost of the inductor. The resistance is increased because the length of
the wire is increased [R¼ (r3 length)=Area], and hence the Q factor is reduced. The cost goes up
because the cost of materials as well as the cost of labor go up, since an inductor must be individually
wound. For these reasons, inductors are generally incompatible with miniaturization or microcircuit
implementation.
The preceding physical problem has led to the invention and development of a class of inductorless

filters known collectively as active filters. Sensitivity considerations, which will be examined in Chapter 4
by I. Filanovsky, have led to two basic approaches to the design of active filters. In one approach, the
active filter is obtained by simulating the inductances in a passive RLC filter or by realizing a signal flow
graph of the passive RLC filter. In another approach, the active filter is obtained by cascading a number of
low-order filter sections of some type, as depicted in Figure 1.9a where Zo0 is the output impedance of the
signal source.

R1

R2Vi VoLC network

FIGURE 1.8 Passive RLC filter.
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Each filter section is made up of an interconnection of resistors, capacitors, and active elements, and by
Thévenin’s theorem, it can be represented by its input impedance, open-circuit voltage transfer function,
and output impedance as shown in Figure 1.9b. The voltage transfer function of the configuration is
given by

H(s) ¼ Vo

Vi

and since the input voltage of section k is equal to the output voltage of section k� 1, i.e., Vik¼Vo(k�1)

for k¼ 2, 3, . . . , K, and Vo¼VoK we can write

H(s) ¼ Vo

Vi
¼ Vi1

Vi
	 Vo1

Vi1
	 Vo2

Vi2
	 � � � 	 VoK

ViK
(1:23)

where

Vi1

Vi
¼ Zi1

Zo0 þ Zi1
(1:24)

and

Vok

Vik
¼ Zi(kþ1)

Zok þ Zi(kþ1)
Hk(s) (1:25)

is the transfer function of the kth section. From Equations 1.23 through 1.25, we obtain

H(s) ¼ Vo

Vi
¼ Zi1

Zo0 þ Zi1

YK
k¼1

Zi(kþ1)

Zok þ Zi(kþ1)
Hk(s)

Now if

Zikj j 
 Zo(k�1)j j

Zo0

Vi Vo1 Vo2 ViK

Vik Zik

Zok

Vok

VoK = VoVi2

(a)

(b)

Hk(s) Vik

Vi1
H2(s)H1(s) HK(s)

FIGURE 1.9 (a) Cascade realization and (b) Thévenin equivalent circuit of filter section.
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for k¼ 1, 2, . . . , K, then the loading effect produced by section kþ 1 on section k can be neglected
and hence

H(s) ¼ Vo

Vi
¼
YK
k�1

Hk(s)

Evidently, a highly desirable property in active filter sections is that the magnitude of the input
impedance be large and=or that of the output impedance be small since in such a case the transfer
function of the cascade structure is equal to the product of the transfer functions of the individual
sections.
An arbitrary Nth-order transfer function obtained by using the Butterworth, Bessel, Chebyshev,

inverse-Chebyshev, or elliptic approximation can be expressed as

H(s) ¼ H0(s)
YK
k¼1

a2ks2 þ a1ksþ a0k
s2 þ b1ksþ b0k

where

H0(s) ¼
a10sþa00
b10sþb00

for odd N

1 for even N

�

The first-order transfer function H0(s) for the case of an odd-order can be readily realized using the RC
network of Figure 1.10.

1.9.3 Biquads

From the above analysis, we note that all we need to be able to realize an arbitrary transfer function is a
circuit that realizes the biquadratic transfer function

HBQ(s) ¼ a2s2 þ a1sþ a0
s2 þ b1sþ b0

¼ a2 sþ z1ð Þ sþ z2ð Þ
sþ p1ð Þ sþ p2ð Þ (1:26)

where zeros and poles occur in complex conjugate pairs, i.e., z2¼ z1* and p2¼ p1*. Such a circuit is
commonly referred to as a biquad.

Vi Vo

C1

C2 G2

G1

FIGURE 1.10 First-order RC network.
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After some manipulation, the transfer function in Equation 1.26 can be expressed as

HBQ(s) ¼ K
s2 þ 2Re z1ð Þsþ Re z1ð Þ2þ Im z1ð Þ2
s2 þ 2Re p1ð Þsþ Re p1ð Þ2þ Im p1ð Þ2

¼ K
s2 þ vz=Qzð Þsþ v2

z

s2 þ vp=Qp
� �

sþ v2
p

where
K¼ a2
vz and vp are the zero and pole frequencies, respectively
Qz and Qp are the zero and pole quality factors (or Q factors for short), respectively

The formulas for the various parameters are as follows:

vz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re z1ð Þ2þ Im z1ð Þ2

q
vp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re p1ð Þ2þ Im p1ð Þ2

q
Qz ¼ vz

2 Re z1

Qp ¼ vp

2 Re p1

The zero and pole frequencies are approximately equal to the frequencies of minimum gain and
maximum gain, respectively. The zero and pole Q factors have to do with the selectivity of the filter.
A high zero Q factor results in a deep notch in the amplitude response, whereas a high pole Q factor
results in a very peaky amplitude response.
The dc gain and the gain as v ! 1 in decibels are given by

M0 ¼ 20 log HBQ(0)j j ¼ 20 log K
v2
z

v2
p

 !

and

M1 ¼ 20 log HBQ( j1)j j ¼ 20 logK

respectively.

1.9.4 Types of Basic Filter Sections

Depending on the values of the transfer function coefficients, five basic types of filter sections can be
identified, namely, low-pass, high-pass, bandpass, notch (sometimes referred to as bandreject), and
allpass. These sections can serve as building blocks for the design of filters that can satisfy arbitrary
specifications. They are actually sufficient for the design of all the standard types of filters, namely,
Butterworth, Chebyshev, inverse-Chebyshev, and elliptic filters.

1.9.4.1 Low-Pass Section

In a low-pass section, we have a2¼ a1¼ 0 and a0 ¼ Kv2
p. Hence, the transfer function assumes the form

HLP(s) ¼ a0
s2 þ b1sþ b0

¼ Kv2
p

s2 þ vp=Qp
� �

sþ v2
p

(see Figure 1.11a)
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1.9.4.2 High-Pass Section

In a high-pass section, we have a2¼K and a1¼ a0¼ 0. Hence, the transfer function assumes the form

HHP(s) ¼ a2s2

s2 þ b1sþ b0
¼ Ks2

s2 þ vp=Qp
� �

sþ v2
p

(see Figure 1.11b)

1.9.4.3 Bandpass Section

In a bandpass section, we have a1¼Kvp=Qp and a2¼ a0¼ 0. Hence the transfer function assumes the
form

HBP(s) ¼ a1s
s2 þ b1sþ b0

¼ K vp=Qp
� �

s

s2 þ vp=Qp
� �þ v2

p

(see Figure 1.11c)

s plane
|H

LP
 (j

ω)
|

|H
LP

 (j
ω)

|
|H

BP
 (j

ω)
|

M

K

ωp

ωM

ωM

ωp

ωp

ω

ω

M

K2

(a)

(b)

(c)

M
Qp

1 √2
K

FIGURE 1.11 Basic second-order filter sections: (a) low-pass, (b) high-pass, (c) bandpass,
(continued)
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1.9.4.4 Notch Section

In a notch section, we have a2¼K, a1¼ 0, and a0 ¼ Kv2
p. Hence, the transfer function assumes the form

HN(s) ¼ a2s2 þ a0
s2 þ b1sþ b0

¼ K s2 þ v2
z

� �
s2 þ vp=Qp

� �
sþ v2

p

(see Figure 1.11d)

1.9.4.5 Allpass Section

In an allpass section, we have a2¼K, a1¼�Kwp=Qp, and a0 ¼ Kv2
p. Hence the transfer function

assumes the form

M2 M

K

K

(d)

(e)

K K

|HN( jω)||HN( jω)||HN( jω)|

≈ωM ≈ωM ωp = ωzωz

ωz
ω2p

ωz

ωp

Qp

ω ω ω

K
ω2z
ω2p

K
√2

FIGURE 1.11 (continued) (d) notch, and (e) allpass.

1-28 Passive, Active, and Digital Filters

https://engineersreferencebookspdf.com



HAP(s) ¼ a2s2 þ a1sþ a0
s2 þ b1sþ b0

¼
K s2 � vp=Qp

� �
sþ v2

p

h i
s2 þ vp=Qp

� �
sþ v2

p

(see Figure 1.11e)
The design of active and switched-capacitor filters is treated in some detail in Section II.

References

1. A. Antoniou, Digital Filters: Analysis, Design, and Applications, 2nd ed. New York: McGraw-Hill,
1993.

2. R. J. Schwarz and B. Friedland, Linear Systems, New York: McGraw-Hill, 1965.
3. E. Kreyszig, Advanced Engineering Mathematics, 3rd ed. New York: Wiley, 1972.
4. R. Schaumann, M. S. Ghausi, and K. R. Laker, Design of Analog Filters, Englewood Cliffs, NJ: Prentice

Hall, 1990.
5. G. Szentirmai, FILSYN—A general purpose filter synthesis program, Proc. IEEE, 65, 1443–1458,

Oct. 1977.
6. A. S. Sedra and P. O. Brackett, Filter Theory and Design: Active and Passive, Portland, OR: Matrix,

1978.
7. J. K. Skwirzynski, Design Theory and Data for Electrical Filters, London: Van Nostrand, 1965.
8. R. Saal, Handbook of Filter Design, Backnang: AEG Telefunken, 1979.
9. A. I. Zverev, Handbook of Filter Synthesis, New York: Wiley, 1967.
10. E. Chirlian, LC Filters: Design, Testing, and Manufacturing, New York: Wiley, 1983.

General Characteristics of Filters 1-29

https://engineersreferencebookspdf.com



https://engineersreferencebookspdf.com



2
Approximation

Artice M. Davis
San Jose State University

2.1 Introduction ................................................................................ 2-1
2.2 Butterworth LPP Approximation........................................... 2-8
2.3 Chebyshev LPP Approximation ........................................... 2-12
2.4 Bessel–Thompson LPP Approximation.............................. 2-18
2.5 Elliptic Approximation ........................................................... 2-23
References ............................................................................................ 2-33

2.1 Introduction

The approximation problem for filters is illustrated in Figure 2.1. A filter is often desired to produce a
given slope of gain over one or more frequency intervals, to remain constant over other intervals, and to
completely reject signals having frequencies contained in still other intervals. Thus, in the example shown
in the figure, the desired gain is zero for very low and very high frequencies. The centerline, shown
dashed, is the nominal behavior and the shaded band shows the permissible variation in the gain
characteristic. Realizable circuits must always generate smooth curves and so cannot exactly meet the
piecewise linear specification represented by the centerline. Thus, the realizable behavior is shown by the
smooth, dark curve that lies entirely within the shaded tolerance band.
What type of frequency response function can be postulated that will meet the required specifications

and, at the same time, be realizable: constructible with a specified catalog of elements? The answer
depends upon the types of elements allowed. For instance, if one allows pure delays with a common delay
time, summers, and scalar multipliers, a trigonometric polynomial will work; this, however, will cause the
gain function to be repeated in a periodic manner. If this is permissible, one can then realize the filter in
the form of an FIR digital filter or as a commensurate transmission line filter, and in fact, it can be
realized in such a fashion that the resulting phase behavior is precisely linear. If one fits the required
behavior with a rational trigonometric function, a function that is the ratio of two trigonometric
polynomials, an economy of hardware will result. The phase, however, will unfortunately no longer be
linear. These issues are discussed at greater length in Ref. [1].
Another option would be to select an ordinary polynomial in v as the approximating function.

Polynomials, however, behave badly at infinity. They approach infinity as v!�1, a highly undesirable
solution. For this reason, one must discard polynomials. A rational function of v, however, will work
nicely for the ratio of two polynomials will approach zero as v ! �1 if the degree of the numerator
polynomial is selected to be of lower degree than that of the denominator. Furthermore, by the
Weierstrass theorem, such a function can approximate any continuous function arbitrarily closely over
any closed interval of finite length [2]. Thus, one sees that the rational functions in v offer a suitable
approximation for analog filter design and, in fact, do not have the repetitive nature of the trigonometric
rational functions.
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Suppose, therefore, that the gain function is of the form

A(v) ¼ N(v)
D(v)

¼ a0 þ a1vþ a2v2 þ � � � þ arvr

b0 þ b1vþ b2v2 þ � � � þ bqvq
(2:1)

where r� q for reasons mentioned above. Assuming that the filter to be realized is constrained to be
constructable with real* elements, one must require that A(�v)¼A(v), that is, that the gain be an event
function of frequency. But then, as it is straightforward to show, one must require that all the odd
coefficients of both numerator and denominator be zero. This means that the gain is a function of v2:

A(v) ¼ N(v2)
D(v2)

¼ a0 þ a1v2 þ � � � þ amv2m

b0 þ b1v2 þ � � � þ bnv2n
¼ A(v�2) (2:2)

The expression has been reindexed and the constants redefined in an obvious manner. The net result is
that one must approximate the desired characteristic by the ratio of two polynomials in v2; the objective
is to determine the numerator and denominator coefficients to meet the stated specifications. Once this is
accomplished one must compute the filter transfer function G(s) in order to synthesize the filter [4,5].
Assuming that G(s) is real (has real coefficients), then its complex conjugate satisfies G*(s)¼G(s*), from
which it follows that G(s) is related to A(v2) by the relationship

[G(s)G(�s)]s¼jv ¼ G( jv)G*( jv) ¼ G( jv)j j2¼ A2(v2) (2:3)

In fact, it is more straightforward to simply cast the original approximation problem in terms of A2(v2),
rather than in terms of A(v). In this case, Equation 2.2 becomes

A2(v2) ¼ N(v2)
D(v2)

¼ a0 þ a1v2 þ � � � þ amv2m

b0 þ b1v2 þ � � � þ bnv2n
(2:4)

Thus, one can assume that the approximation process produces A2(v2) as the ratio of two real
polynomials in v2. Since Equation 2.3 requires the substitutions s ! jv, one also has s2 ! �v2, and
conversely. Thus, Equation 2.3 becomes

G(s)G(�s) ¼ A2(�s2) (2:5)

Though this has been shown to hold only on the imaginary axis, it continues to hold for other complex
values of s as well by analytic continuation.y

A(ω)

ω

FIGURE 2.1 General approximation problem.

* Complex filters are quite possible to construct, as recent work [3] shows.
y A function analytic in a region is completely determined by its values along any line segment in that region—in this case, by
its value along the jv axis.
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The problem now is to compute G(s) from Equation 2.5, a process known as the factorization problem.
The solution is not unique; in fact, the phase is arbitrary—subject only to certain realizability conditions.
To see this, just let G( jv)¼A(v)ejf(v), where fv is an arbitrary phase function. Then, Equation 2.3
implies that

G( jv)G*( jv) ¼ A(v)ejf(v) � A(v)e�jf(v) ¼ A2(v) (2:6)

If the resulting structure is to have the property of minimum phase [6], the phase function is determined
completely by the gain function. If not, one can simply perform the factorization and accept whatever
phase function results from the particular process chosen. As has been pointed out earlier in this chapter,
it is often desirable that the phase be a linear function of frequency. In this case, one must follow the
filter designed by the above process with a phase equalization filter, one that has constant gain and a
phase characteristic that, when summed with that of the first filter, produces linear phase. As it happens,
the human ear is insensitive to phase nonlinearity, so the phase is not of much importance for filters
designed to operate in the audio range. For those intended for video applications, however, it is vitally
important. Nonlinear phase produces, for instance, the phenomenon of multiple edges in a reproduced
picture.
If completely arbitrary gain characteristics are desired, computer optimization is necessary [6]. Indeed,

if phase is of great significance, computer algorithms are available for the simultaneous approximation of
both gain and phase. These are complex and unwieldy to use, however, so for more modest applications
the above approach relying upon gain approximation only suffices. In fact, the approach arose histor-
ically in the telephone industry in its earlier days in which voice transmission was the only concern, data
and video transmission being unforeseen at the time. Furthermore, the frequency division multiplexing
of voice signals was the primary concern; hence, a number of standard desired shapes of frequency
response were generated: low pass, high pass, bandpass, and bandreject (or notch). Typical but stylized
specification curves are shown in Figure 2.2. This figure serves to define the following parameters: the
minimum passband gain Ap, the maximum stopband gain As, the passband cutoff frequency vp,
the stopband cutoff frequency vs (the last two parameters are for low-pass and high-pass filters only),
the center frequency vo, upper passband and stopband cutoff frequencies vpu and vsu, and lower
passband and stopband cutoff frequencies vpl and vsl (the last four parameters are for the bandpass

A(ω) A(ω)

A(ω)A(ω)

Ap

1
Ap

Ap

1

1
Ap

1

ωp ωp

ωo ωoωpu ωsu ωsu ωpuωs1ωp1 ωp1ωs1

ωs ωs
ω ω

ωω

As As

AsAs As

(a) (b)

(d)(c)

FIGURE 2.2 Catalog of basic filter types: (a) low pass, (b) high pass, (c) bandpass, and (d) bandreject.
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and band-reject filters only). As shown in the figure, the maximum passband gain is usually taken to be
unity. In the realization process, the transfer function scale factor is often allowed to be a free parameter
that is resolved in the design procedure. The resulting ‘‘flat gain’’ (frequency independent) difference
from unity is usually considered to be of no consequence, as long as it is not too small, thus creating
signal-to-noise ratio problems. There is a fifth standard type that we have not shown: the allpass filter.
It has a constant gain for all frequencies, but with a phase characteristic that can be tailored to fit a
standard specification in order to compensate for phase distortion. Frequency ranges where the gain is
relatively large are called passbands and those where the gain is relatively small, stopbands. Those in
between—where the gain is increasing or decreasing—are termed transition bands.

In order to simplify the design even more, one bases the design of all other types of filter in terms of
only one: the low pass. In this case, one says that the low-pass filter is a prototype. The specifications of
the desired filter type are transformed to those of an equivalent low-pass prototype, and the transfer
function for this filter is determined to meet the transformed specifications. Letting the low-pass
frequency be symbolized by V and the original by v, one sets

V ¼ f (v) (2:7)

The approximation problem is then solved in terms of V. Letting

p ¼ jV (2:8)

one then has G(p), the desired transfer function.
Two approaches are now possible. One is to apply the inverse transformation, letting

s ¼ jv ¼ jf �1(V) ¼ jf �1(p=j) (2:9)

thus obtaining the desired transfer function

G(s) ¼ G( jv) ¼ G[jf �1(V)] ¼ G[jf �1(p=j)] (2:10)

The other consists of designing the circuit to realize the low-pass prototype filter, then transform each of
the elements from functions of p to functions of s by means of the complex frequency transformation

s ¼ jv ¼ jf �1(V) ¼ jf �1(p=j) (2:11)

As it happens, the transformation p¼ f(s) has a special form. It can be shown that if f is real for real values
of s, thereby having real parameters, and maps the imaginary axis of the p plane into the imaginary axis of
the s plane then it must be an odd function; furthermore, if it is to map positive real rational functions
into those of like kind (necessary for realizability with R, L, and C elements, as well as possibly ideal
transformers*), it must be a reactance function. (See Ref. [7] for details.) Since it is always desirable from
an economic standpoint to design filters of minimum order, it is desirable that the transformation be of
the smallest possible degree. As a result, the following transformations are used:

(lpp $ lp) p ¼ ks (2:12)

(lpp $ hp) p ¼ k
s

(2:13)

* For active realizations, those containing dependent sources, this condition is not necessary.
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(lpp $ bp) p ¼ s2 þ v2
o

Bs
(2:14)

(lpp $ br) p ¼ Bs
s2 þ v2

o
(2:15)

where the parameters k, B, and vo are real constants to be determined by the particular set of
specifications. We have used the standard abbreviations of lpp for low-pass prototype, lp for low pass,
hp for high pass, bp for bandpass, and br for bandreject. Often the letter f is added; for example, one might
use the acronym brf for bandreject filter. The reason for including the transformation in Equation 2.12 is
to allow standardization of the lpp. For instance, one can transform from an lpp with, say, a passband
cutoff frequency of 1 rad=s to a low-pass filter with a passband cutoff of perhaps 1 kHz.
As a simple example, suppose a bandreject filter were being designed and that the result of the

approximation process were

H(p) ¼ 1
pþ 1

(2:16)

Then the br transfer function would be

H(s) ¼ H(p)½ �p¼ Bs= s2þv2
oð Þ½ �¼

1
Bs

s2þv2
o
þ 1

¼ s2 þ v2
o

s2 þ Bsþ v2
o

(2:17)

(The parameters vo and B would be determined by the bandreject specifications.) As one can readily see,
a first-order lpp is transformed into a second-order brf. In general, for bandpass and bandreject design,
the object transfer function is of twice the order of the lpp. Since the example is so simple, it can readily
be seen that the circuit in Figure 2.3 realizes the lpp voltage gain function in Equation 2.16. If one applies
the transformation in Equation 2.15 the 1-V resistor maps into a 1-V resistor, but the 1 F capacitor maps
into a combination of elements having the admittance

Y(p) ¼ p ¼ 1
s
B þ v2

o
Bs

(2:18)

But this is simply the series connection of a capacitor of value B=v2
o farads and an inductor of value 1=B

henrys. The resulting bandreject filter is shown in Figure. 2.4.
The only remaining ‘‘loose end’’ is the determination of the constant(s) in the appropriate transform-

ation equation selected appropriately from Equations 2.12 through 2.15. This will be done here for the

1 Ω

1 F

–

VVs

+

+
–

FIGURE 2.3 Low-pass prototype.

1 Ω

–

VVs

+

+
–

B
ω2

o

1
B

H

F

FIGURE 2.4 Resulting bandreject filter.
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lpp3 bp transformation (Equation 2.14). It is typical, and the reader should have no difficulty working
out the other cases. Substituting p¼ jV and s¼ jv in Equation 2.14, one gets

jV ¼ �v2 þ v2
o

jBv
(2:19)

or

V ¼ v2 � v2
o

Bv
¼ v

B
� v2

o

Bv
(2:20)

This clearly shows that v¼�vo maps into V¼ 0 and v¼�1 into V¼�1. However, as v ! 0þ,
V ! �1 and as v ! 0�, V ! þ1. Of perhaps more interest is the inverse transformation. Solving
Equation 2.20 for v in terms of V, one finds that*

v ¼ BV
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BV
2

� �
þ v2

o

s
(2:21)

Now, consider pairs of values ofV, of which one is the negative of the other. Letting vþ be the image ofV
with V> 0 and v� be the image of �V, one has

vþ ¼ BV
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BV
2

� �
þ v2

o

s
(2:22)

and

v� ¼ �BV
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BV
2

� �
þ v2

o

s
(2:23)

Subtracting, one obtains

vþ � v� ¼ BV (2:24)

vþv� ¼ v2
o (2:25)

Thus, the geometric mean of vþ and v� is the parameter vo; furthermore, the lpp frequenciesV¼ 1 rad=s
map into points whose difference is the parameter B. Recalling that A(V) has to be an even function of
V, one sees that the gain magnitudes at these two points must be identical. If the lpp is designed so
that V¼ 1 rad=s is the ‘‘bandwidth’’ (single-sided), then the object bpf will have a (two-sided) bandwidth
of B rad=s.
An example should clarify things. Figure 2.5 shows a set of bandpass filter gain specifications. Some

slight generality has been allowed over those shown in Figure 2.2 by allowing the maximum stopband
gains to be different in the two stopbands.
The graph is semilog: the vertical axis is linear with a dB scale and the horizontal axis is a log scale

(base 10). The �0.1 dB minimum passband gain, by the way, is called the passband ripple because actual

* The negative sign on the radical gives v< 0 and the preceding treatment only considers positive v.
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realized response is permitted to ‘‘ripple’’ back and forth between 0 and �0.1 dB. Notice that
the frequency has been specified in terms of kilohertz—often a practical unit. Equation 2.20, however,
can be normalized to any unit without affecting V. Thus, by normalizing v to 2p3 103, one can
substitute f in kilohertz for v; the parameters vo (replaced of fo symbolically) and B will then be in
kilohertz also.
Now, notice that 53 20¼ 100 6¼ 43 27¼ 108, so the specifications are not geometrically symmetric

relative to any frequency. Somewhat arbitrarily choosing f0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 20

p ¼ 10 kHz, one can force the
specifications to have geometric symmetry by the following device: simply reduce the upper stopband
cutoff frequency from 27 to 25 kHz. Then force the two stopband attenuations to be identical by
decreasing the �30 dB lower stopband figure to �40 dB. This results in the modified specifications
shown in Figure 2.6. If one chooses to map the upper and lower passband cutoff frequencies toV¼ 1 rad=s
(a quite typical choice, as many filter design catalogs are tabulated under this assumption), one then has

B ¼ 20� 5 ¼ 15 kHz (2:26)

This fixes the parameters in the transformation and the lpp stopband frequency can be determined from
Equation 2.20:

Vs ¼ 252 � 102

15� 25
¼ 25

15
� 100
375

¼ 1:498 rad=s (2:27)

The lpp specifications then assume the form
shown in Figure 2.7. Once the lpp approximation
problem is solved, one can then transform either the
derived transfer function or the synthesized circuit
back up to bandpass form since the parameters of
the transformation are known.

A( f ) (dB)

–40
–30

–0.1
0

f (kHz)
4 5 20 27

FIGURE 2.5 Bandpass filter specifications.

A( f ) (dB)

–40–40

–0.1
0

f (kHz)
4 5 20 25

FIGURE 2.6 Bandpass filter specifications.

A1pp(ω) (dB)

1 Ωs

Ω (rad/s)

–40

–0.1
0

FIGURE 2.7 Bandpass filter specifications.
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2.2 Butterworth LPP Approximation

For performing lpp approximations, it is more convenient to work with the characteristic function k(v)
than with the gain function. It is defined by the equation

A2(v) ¼ 1
1þ K2(v)

(2:28)

Although V was used in Section 2.1 to denote lpp frequency, the lower case v is used here and
throughout the remainder of the section. No confusion should result because frequency will henceforth
always mean lpp frequency. The main advantage in using the characteristic function is simply that it
approximates zero over any frequency interval for which the gain function approximates unity. Further,
it becomes infinitely large when the gain becomes zero. These ideas are illustrated in Figure 2.8. Notice
that K(v) can be either positive or negative in the passband for it is squared in the defining equation.
The basic problem in lpp filter approximation is therefore to find a characteristic function that
approximates zero in the passband, approximates infinity in the stopband, and makes the transition
from one to the other rapidly. Ideally, it would be exactly zero in the passband, then become abruptly
infinity for frequencies in the stopband.

The nth-order Butterworth approximation is defined by

K(v) ¼ vn (2:29)

This characteristic function is sketched in Figure 2.9 for two values of n—one small and the other
large. As is easily seen, the larger order provides a better approximation to the idea ‘‘brick wall’’ lpp
response. Notice, however, that K(1)¼ 1 regardless of the order; hence A(1)¼ 0.5 (�3 dB) regardless of
the order.
It is conventional to define the loss function H(s) to be reciprocal of the gain function:

H(s) ¼ 1
G(s)

(2:30)

Letting s¼ jv and applying Equation 2.28 results in

H( jv)j j2�K2(v) ¼ 1 (2:31)

A(ω)

Ap

1

ωp ωs ω (rad/s)

As

(a)

K(ω) ∞

ω (rad/s)

(b)
ωp

ωs

1
1 – A2

s

–1
1 – A2

p 

1
1 – A2

p 

FIGURE 2.8 Filter specifications in terms of the characteristic function: (a) gain and (b) characteristic function.

2-8 Passive, Active, and Digital Filters

https://engineersreferencebookspdf.com



which is one form of Feldtkeller’s equation, a fundamental equation in the study of filters. The loss
approximates unity wherever the characteristic function approximates zero and infinity when the latter
approximates infinity.
The loss function can be used to illustrate a striking property of the Butterworth approximation.

Taking the kth derivative of Equation 2.31, one has

dk H( jv)j j2
dvk

¼ dkK2(v)
dvk

¼ dkv2n

dvk
¼ (2n)!

k!
v2n�k (2:32)

This has the value zero at v¼ 0 for k� 2n� 1. It is the unique polynomial having this property among
the set of all monic* polynomials of order 2n or lower having the value zero at the origin. But this means
that the square of the Butterworth characteristic function K(v) is the flattest of all such polynomials at
v¼ 0. Since adding one to K2(v) produces the loss function jH(jv)j2, the same is true of it relative to the
set of all loss functions having the value unity at the origin. For this reason, the Butterworth approxi-
mation is often called the maximally flat magnitude (or MFM) approximation.
The passband ripple parameter Ap is always 1=

ffiffiffi
2

p
for a Butterworth lpp; note that if a different

ripple parameter is desired, one must treat the corresponding filter as a general low-pass filter, then
apply Equation 3.8 of this book. The value of the parameter in that frequency transformation is
determined by the requirement that the frequency at which the desired filter assumes the value 1=

ffiffiffi
2

p
map into a lpp passband frequency of 1 rad=s. The required order is determined from the equation

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2n

s

p � As (2:33)

or, rearranged,

n �
log 1

A2
s
� 1

h i
2 log vsð Þ (2:34)

The value of n is, of course, chosen to be the smallest integer greater than the expression on the right-
hand side of Equation 2.34.

K(ω)

ω (rad/s)

Large n Small n

1

1

FIGURE 2.9 Butterworth characteristic function.

* A monic polynomial is one where the leading coefficient (highest power of v) is unity.
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Since only one parameter is in the Butterworth approximation, Equation 2.34 completely determines
A(v). That is, the MFM is a one-parameter approximation. The only remaining item of concern is the
determination of G(s), for synthesis of the actual filter requires knowledge of the transfer function. As was
pointed out in Section 2.1, this is the factorization problem. In general, the solution is given by Equation
2.5, repeated here for convenience as Equation 2.35:

G(s)G(�s) ¼ A2(�s2) (2:35)

In the present case, we have

G(s)G(�s) ¼ 1
1þ (�s2)n

¼ 1
1þ (�1)ns2n

(2:36)

How does one find G(s) from this equation? The solution merely lies in applying the restriction that the
resulting filter is to be stable. This means that the poles of G(s)G(�s) that lie in the right-half plane must
be discarded and the remaining ones assigned to G(s). In this connection, observe that any poles on the
imaginary axis must be off even multiplicity since G(s)G(�s) is an even function (or, equivalently, since
A2(v2)¼ jG( jv)j2 is nonnegative). Furthermore, any even-order poles of G(s)G(�s) on the imaginary
axis could only result from one or more poles of G(s), itself, at the same location. But such a G(s)
represents a filter that is undesirable because, at best, it is only marginally stable. As will be shown, this
situation does not occur for Butterworth filters.
The problem now is merely to find all the poles of G(s)G(�s), then to sort them. These poles are

located at the zeros of the denominator in Equation 2.36. Thus, one must solve

1þ (�s2)n ¼ 0 (2:37)

or, equivalently,

s2n ¼ (�1)n�1 (2:38)

Representing s in polar coordinates by

s ¼ rejf (2:39)

one can write Equation 2.38 in the form

r2nej2nf ¼ ej(n�1)p (2:40)

This has the solution

r ¼ 1 (2:41)

and

f ¼ p

2
þ (2k� 1)

p

2n
(2:42)

where k is any integer. Of course, only those values of f between 0 and 2p rad are to be considered
unique.
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As an example, suppose that n¼ 2; that is, one is interested in determining the transfer function of
a second-order Butterworth filter. Then the unique values of f determined from Equation 2.42 are
p=4, 3p=4, 5p=4, and 7p=4. All other values are simply these four with integer multiples of 2p added. The
last two represent poles in the right-half plane, so are simply discarded. The other two correspond to
poles at s¼�0.707� j0.707. Letting D(s) be the numerator polynomial of G(s), then, one has

D(s) ¼ s2 þ ffiffiffi
2

p
sþ 1 (2:43)

The poles of G(s)G(�s) are sketched in Figure 2.10. Notice that if one assigns the left-half plane poles to
G(s), then those in the right-half plane will be those of G(�s).
Perhaps another relatively simple example is in order. To this end, consider the third-order Butter-

worth transfer function n¼ 3. In this case, the polar angles of the poles of G(s) are at p=3, 2p=3, p, 4p=3,
5p=3, and 2p. This pole pattern is shown in Figure 2.11.
The denominator polynomial corresponds to those in the
left-half plane. It is

D(s) ¼ (sþ 1) s2 þ sþ 1
� � ¼ s3 þ 2s2 þ 2sþ 1 (2:44)

The pattern for the general nth order case is similar—all
the poles of G(s)G(�s) lie on the unit circle and are equally
spaced at intervals of p=n radians, but are offset by p=2
radians relative to the positive real axis. A little thought will
convince one that this means that no poles ever fall on the
imaginary axis.
The factorization procedure determines the denomin-

ator polynomial in G(s). But what about the numerator?
Since the characteristic function is a polynomial, it is clear
that G( jv), and hence G(s) itself, will have a constant
numerator. For this reason, the Butterworth approxima-
tion is referred to as an all-pole filter. Sometimes it is
also called a polynomial filter, referring to the fact that
the characteristic function is a polynomial. As was men-
tioned earlier, the constant is usually allowed to float freely
in the synthesis process and is determined only at the
conclusion of the design process. However, more can be
said. Writing

G(s) ¼ a
D(s)

(2:45)

one can apply Equation 2.36 to show that a2¼ 1, provided
that jG(0)j is to be one, as is the case for the normalized
lpp. This implies that

a ¼ �1 (2:46)

If a passive unbalanced (grounded) filter is desired the
positive sign must be chosen. Otherwise, one can opt for
either.

jω

45°
σ

Unit circle

FIGURE 2.10 Poles of the second-order But-
terworth transfer function.

jω

60°

σ

Unit circle

FIGURE 2.11 Poles of the third-order Butter-
worth transfer function.
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2.3 Chebyshev LPP Approximation

The main advantage of the Butterworth approximation is that it is simple. It does not, however, draw
upon the maximum approximating power of polynomials. In fact, a classical problem in mathematics is
to approximate a given continuous function on a closed bounded interval with a polynomial of a specified
maximum degree. One can choose to define the error of approximation in many ways, but the so-called
minimax criterion seems to be the most suitable for filter design. It is the minimum value, computed over
all polynomials of a specified maximum degree, of the maximum difference between the polynomial
values and those of the specified function. This is illustrated in Figure 2.12. The minimax error in
this case occurs at vx. It is the largest value of the magnitude of the difference between the function values
f(v) and those of a given candidate polynomial pn(v). The polynomial of best fit is the one for which this
value is the smallest.
The basic lpp approximation problem is to pick the characteristic function to be that polynomial of a

specified maximum degree no more than, say, n, which gives the smallest maximum error of approxi-
mation to the constant value 0 over the interval 0�v� 1 (arbitrarily assuming that the passband cutoff is
to be 1 rad=s). In this special case, the solution is known in closed form: it is the Chebyshev* polynomial
of degree n. Then, K(v) is polynomial eTn(v), where

Tn(v) ¼ cos [n cos�1 (v)] (2:47)

and e is the minimax error (a constant).
It is perhaps not clear that Tn(v) is actually a polynomial; however, upon computing the first few by

applying simple trigonometric identities one has the results shown in Table 2.1. In fact, again by calling
upon simple trigonometric identities, one can derive the general recurrence relation

f (ω)

Pn(ω)

ωa ωx ωb
ω

FIGURE 2.12 Minimax error criterion.

* If the name of the Russian mathematician is transliterated from the French, in which the first non-Russian translations
were given, it is spelled Tchebychev.

TABLE 2.1 Chebyshev Polynomial
of Degree n

n Tn(v)

0 1

1 v

2 2v2 � 1

3 4v3 � 3v

4 8v4 � 8v2 þ 1
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Tn(v) ¼ 2vTn�1(v)� Tn�2(v); n � 2 (2:48)

The Chebyshev polynomials have an enormous number of interesting properties and to explore them all
would require a complete monograph. Among those of the most interest for filtering applications,
however, are these. First, from the recursion relationship (Equation 2.48) one can see that Tn(v) is
indeed a polynomial of order n; furthermore, its leading coefficient is 2n�1. If n is even, Tn(v) is an even
polynomial in v and if n is odd, Tn(v) is an odd polynomial. The basic definition in Equation 2.47 clearly
shows that the extreme values of Tn(v) over the interval 0�v� 1 are�1. Some insight into the behavior
of the Chebyshev polynomials can be obtained by making the transformation f¼ cos�1(v). Then,
Tn(f)¼ cos(nf), a trigonometric function that is quite well known. The behavior of T15, for example,
is shown in Figure 2.13. The basic idea is this: the Chebyshev polynomial of nth order is merely a cosine
of ‘‘frequency’’ n=4, which ‘‘starts’’ at v¼ 1 and ‘‘runs backward’’ to v¼ 0. Thus, it is always 1 at v¼ 1
and as v goes from 1 rad=s to 0 rad=s backward, it goes through n quarter-periods (or n=4 full periods).
Thus, at v¼ 0 the value of this polynomial will be either 0 or �1, depending upon the specific value of
n. If n is even, an integral number of half-periods will have been described and the resulting value will be
�1; if n is odd, an integral number of half-periods plus a quarter-period will have been described and the
value will be zero.
Based on the foregoing theory, one sees that the best approximation to the ideal lpp characteristic over

the passband is, for a given passband tolerance, e, given by

A2(v) ¼ 1
1þ e2T2

n(v)
(2:49)

It is, of course, known as the Chebyshev approximation and the resulting filter as the Chebyshev lpp of
order n. The gain magnitude A(v) is plotted for n¼ 5 and e¼ 0.1 in Figure 2.14. The passband behavior
looks like ripples in a container of water, and since the crests are equally spaced above and below the
average value, it is called equiripple behavior. In the passband, the maximum value is 1 and the minimum
value is

0

1

2

0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
–1

1

π
2

φ = cos–1 (ω)

0

1

0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ω (rad/s)
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 T15(ω)

FIGURE 2.13 Behavior of the Chebyshev polynomials.
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Amin ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2

p (2:50)

The passband ripple is usually specified as the peak to peak variation in dB. Since the maximum value is
one, that is 0 dB, this quantity is related to the ripple parameter e through the equation

passband ripple in dB ¼ 20 log
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2

p
(2:51)

The Chebyshev approximation is the best possible among the class of all-pole filters—over the passband.
But what about its stopband behavior? As was pointed out previously, it is desirable that—in addition to
approximating zero in the passband—the characteristic function should go to infinity as rapidly as
possible in the stopband. Now it is a happy coincidence that the Chebyshev polynomial goes to infinity
for v> 1 faster than any other polynomial of the same order. Thus, the Chebyshev approximation is the
best possible among the class of polynomial, or all-pole, filters.
The basic definition of the Chebyshev polynomial works fine for values of v in the passband, where

v� 1. For larger values of v, however, cos�1(v) is a complex number. Fortunately, there is an alternate
form that avoids complex arithmetic. To derive this form, simply recognize the complex nature of
cos�1(v) explicitly and write

x ¼ cos�1(v) (2:52)

One then has*

v ¼ cos(x) ¼ cos[ j(jx)] ¼ cosh( jx) (2:53)

so

jx ¼ cosh�1(v) (2:54)

Thus, one can also write

Tn(v) ¼ cos[ jn( jx)] ¼ cosh[n( jx)] ¼ cosh[n cosh�1(v)] (2:55)

(a) (b)

A(ω)

ω
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10 0.5 1.5 2

0.5

0
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ω

1
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0.995

FIGURE 2.14 Frequency response of a fifth-order Chebyshev lpp: (a) passband and (b) overall.

* Since cos(x)¼ cosh(jx).
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This result is used to compute the required filter order. Assuming as usual that As is the maximum
allowed stopband gain, one uses the square root of Equation 2.49 to get

A vsð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2T2

n vsð Þp � As (2:56)

Solving, one has

Tn vsð Þ � 1
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
A2
s
� 1

s
(2:57)

Since vs� 1, it is most convenient to use the hyperbolic form in Equation 2.55:

n �
cosh�1 1

e

ffiffiffiffiffiffiffiffiffiffiffiffi
1
A2
s
� 1

q� �
cosh�1 vsð Þ (2:58)

To summarize, one first determines the parameter e from the allowed passband ripple, usually using
Equation 2.51; then one determines the minimum order required using Equation 2.58. The original filter
specifications must, of course, be mapped into the lpp domain through appropriate choice(s) of the
constant(s) in the transformation Equations 2.12 through 2.15. Notice that the definition of passband for
the Chebyshev filter differs from that of the Butterworth unless the passband ripple is 3 dB. For the
Chebyshev characteristic, the passband cutoff frequency is that frequency at which the gain goes through
the value 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2

p
for the last time as v increases.

The only remaining item is the determination of the transfer function G(s) by factorization. Again, this
requires the computation of the poles of G(s)G(�s). Using Equation 2.49, one has

G(s)G(�s) ¼ A2(v)
� �

s¼jv¼
1

1þ e2 T2
n(v)

� �
s¼jv

(2:59)

Thus, the poles are at those values of s for which

T2
n(v)

� �
s¼jv¼

�1
e2

(2:60)

or*

cos n cos�1 s
j

	 
� �
¼ �j

1
e

(2:61)

Letting

cos�1(s=j) ¼ aþ jb, there results (2:62)

cos(na) cosh(nb)� j sin(na) sinh(nb) ¼ �j
1
e

(2:63)

* Since s is complex anyway, nothing is to be gained from using the hyperbolic form.
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Equating real and imaginary parts, one has

cos (na) cos (nb) ¼ 0 (2:64a)

and

sin (na) sinh (nb) ¼ � 1
e

(2:64b)

Since cosh(nb)> 0 for any b, one must have

cos (na) ¼ 0 (2:65)

which can hold only if

a ¼ (2kþ 1)
p

2n
k any integer (2:66)

But, in this case, sin [(2kþ 1)p=2]¼�1, so application of Equation 2.64b gives

sinh (nb) ¼ � 1
e

(2:67)

One can now solve for b:

b ¼ � 1
n
sinh�1 1

e

� �
(2:68)

Equations 2.66 through 2.68 together determine a and b, hence cos�1(s=j). Taking the cosine of both sides
of Equation 2.62 and using Equations 2.65 and 2.68 gives

s ¼� sin (2kþ 1)
p

2n

h i
sinh

1
n
sinh�1 1

e

	 
� �

þ j cos (2kþ 1)
p

2n

h i
cosh

1
n
sinh�1 1

e

	 
� �
(2:69)

Letting s¼sþ jv as usual, one can rearrange Equation 2.69 into the form

s

sinh 1
n sinh

�1 1
e

� �� �
" #2

þ v

cos h 1
n sinh

�1 1
e

� �� �
" #2

¼ 1 (2:70)

which is the equation of an ellipse in the s plane with real axis intercepts of

so ¼ � sinh
1
n
sinh�1 1

e

	 
� �
(2:71)

and imaginary axis intercepts of

vo ¼ � cosh
1
n
sinh�1 1

e

	 
� �
(2:72)

This is shown in Figure 2.15.
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As an example, suppose that a Chebyshev lpp is to be designed that has a passband ripple of 0.1 dB, a
maximum stopband gain of �20 dB, and vs¼ 2 rad=s. Then, one can use Equation 2.51 to find* the
ripple parameter e:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100:1=10 � 1

p
¼ 0:1526 (2:73)

Equation 2.58 gives the minimum order required:

n �
cosh�1 1

0:1526

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

(0:1)2
� 1

q� �
cosh�1 (2)

¼ cosh�1 (65:20)

cosh�1 (2)
¼ 3:70 (2:74)

In doing this computation by hand, one often uses the identity

cosh�1(x) ¼ ln x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

ph i
(2:75)

which can be closely approximated by

cosh�1(x) ¼ ln (2x) (2:76)

if x 	 1. In the present case, a fourth-order filter is required. The poles are shown in Table 2.2 and
graphed in Figure 2.16.
By selecting the left-half plane poles and forming the corresponding factors, then multiplying them,

one finds the denominator polynomial of G(s) to be

D(s) ¼ s4 þ 1:8040s3 þ 2:2670s2 þ 2:0257sþ 0:8286 (2:77)

1
n

1
ε

ω

σ

j cosh sinh–1

1
n

1
εsinh sinh–1

FIGURE 2.15 Pole locations for G(s)G(�s) for the Chebyshev filter.

* For practical designs, a great deal of precision is required for higher-order filters.
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As for the Butterworth example of Section 2.2, one finds the scale factor:

k ¼ 0:8286 (2:78)

Therefore, the complete transfer function is

G(s) ¼ k
D(s)

¼ 0:8286
s4 þ 1:8040s3 þ 2:2670s2 þ 2:0257sþ 0:8286

(2:79)

Of course, if completely automated algorithms are not being used to design such a filter as the one in our
example, numerical assistance is required. The computation in the preceding example was performed in
MATLAB1—a convenient package for many computational problems in filter design.

2.4 Bessel–Thompson LPP Approximation

Thus far, two all-pole approximations have been presented. As was pointed out in Section 2.3, the
Chebyshev is better than the Butterworth—in fact, it is the best all-pole approximation available. So why
bother with the Butterworth at all, other than as an item of historical interest? The answer lies in the
phase. The Chebyshev filter has a phase characteristic that departs farther from linearity than that of the

TABLE 2.2 Pole Locations

k Real Part Imaginary Part

0 0.2642 1.1226

1 0.6378 0.4650

2 0.6378 �0.4650

3 0.2642 �1.1266

4 �0.2642 �1.1266

5 �0.6378 �0.4650

6 �0.6378 0.4650

7 �0.2642 1.1226

+

+

+

+

++

+ +

1.5

0.5

–0.5

–1.5

–1

1

0

–1 –0.5 0 0.5 1

FIGURE 2.16 Pole locations for example filter.
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Butterworth; put differently, its group delay deviates from a constant by a greater amount. Thus, the
Butterworth approximation is still a viable approximation in applications where phase linearity is of
some importance.
The question naturally arises as to whether there is an lpp approximation that has better phase

characteristics than that of the Butterworth. The answer is yes, and that is the topic of this section,
which will follow [8]—perhaps the simplest development of all.
Recall that the gain function G(s) is the inversion of the loss function H(s):

G(s) ¼ 1
H(s)

(2:80)

Also, recall that it was the loss function jh(jv)j ¼ 1=A(v) (or, rather, its square jh( jv)j2) that was required
to have MFM property at v¼ 0,

dk H( jv)j j2
dvk

" #
v¼0

¼ dkv2n

dvk

" #
v¼0

¼ (2n)!
k!

v2n�k

� �
v¼0

¼ 0 (2:81)

for k ¼ 0, 1, . . . , 2n� 1. The question to be asked and answered in this section is whether there exists a
similar approximation for the group delay tg(v) a maximally flat delay (MFD) approximation.
To answer this question, the phase will be written in terms of the loss function H( jv). Since the latter

quantity can be written in polar form as

H( jv) ¼ 1
G( jv)

¼ 1
A(v)ejf(v)

¼ 1
A(v)

e�jf(v) (2:82)

the (complex) logarithm is

lnH( jv) ¼ � lnA(v)� jf(v) (2:83)

Thus,

f(v) ¼ �Im{ lnH( jv) } (2:84)

The group delay is merely the negative of the derivative of the phase, so one has

tg(v) ¼ � df
dv

¼ d
dv

Im{ lnH( jv) } ¼ Im
d
dv

lnH( jv)

� �

¼ Im j
d

d( jv)
lnH( jv)

� �
¼ Re

d
d( jv)

lnH( jv)

� �
(2:85)

Recalling that the even part of a complex function F(s) is given by

Ev{F(s) } ¼ F(s)þ F(�s)
2

(2:86)

one can use the symmetry property for real F(s) (in the present context, F(s) is assumed to be a rational
function, so a real F(s) is one with real coefficients) to show that
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Ev{F(s) }s¼jv ¼ F( jv)þ F(�jv)
2

¼ F( jv)þ F*( jv)
2

¼ Re{F( jv) } (2:87)

In this manner, one can analytically extend the group delay function tg( jv) so that it becomes a
function of s:

tg(s) ¼ Ev
d
ds

lnH(s)

� �
¼ Ev

H0(s)
H(s)

� �
¼ 1

2
H0(s)
H(s)

þH0(�s)
H(�s)

� �
(2:88)

In the present case, it will be assumed that H(s) is a polynomial. In this manner, an all-pole (or
polynomial) filter will result. Thus, one can write

H(s) ¼
Xn
k¼0

anks
k (2:89)

The superscript on the (assumed real) coefficient matches the upper limit on the sum and is the assumed
filter order. The group delay function is, thus, a real rational function:

tg(s) ¼ N(s)
D(s)

(2:90)

where N(s), the numerator polynomial, and D(s), the denominator polynomial, have real coefficients and
are of degrees no greater than 2n� 1 and 2n, respectively, by inspection of Equation 2.88. But, again
according to Equation 2.88, tg(s) is an even function. Thus,

tg(�s) ¼ N(�s)
D(�s)

¼ tg(s) ¼ N(s)
D(s)

(2:91)

The last equation, however, implies that

N(�s)
N(s)

¼ D(�s)
D(s)

¼ 1 (2:92)

The last equality is arrived at by the following reasoning. N(s) and D(s) are assumed to have no common
factors—any such have already been cancelled in the formation of tg(s). Thus, the two functions of s in
Equation 2.92 are independent; since they must be equal for s, they must therefore equal a constant. But
this constant is unity, as is easily shown by allowing s to become infinite and noting that the degrees and
leading coefficients of N(�s) and N(s) are the same.
The implication of the preceding development is simply that N(s) and D(s) consist of only even powers

of s. Looking at N(s), for example, and letting it be written

N(s) ¼
X2n�1

k¼0

rks
k (2:93)

one has

N(�s) ¼
X2n�1

k¼0

rk(�s)k ¼ N(s) ¼
Xm
k¼0

rk(s)
k (2:94)
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This however implies that the rk are zero for odd k. Hence N(s) consists of only even powers of s.
The same is true ofD(s) and therefore of tg(s). Clearly, therefore tg(v) will consist of only even powers ofv,
that is, it will be a function of v2. Now there is to be an MFD approximation one must have by analogy
with the MFM approximation in Section 2.2,

dktg(v)

d(v2)k
¼ 0 (2:95)

for k¼ 1, 2, . . . , n� 1. The constraint is, of course, that tg must come from a polynomial loss function
H(s) whose zeros [poles of G(s)] all lie in the left-half plane.
It is convenient to normalize time so that the group delay T, say, at v¼ 0 is 1 s; this is equivalent to

scaling the frequency variable v to be vT. Here, it will be assumed that this has been performed already.
A slight difference exists between the MFD and MFM approximations; the latter approximates zero at
v¼ 0, while the former approximates T¼ 1s at v¼ 0. The two become the same, however, if one
considers the function

tg(s)� 1 ¼ P(s)
2H(s)H(�s)

(2:96)

where P(s) has a maximum order of 2n. The form on the right-hand side of this expression can be readily
verified by consideration of Equation 2.88, the basic result for the following derivation. Furthermore,
writing P(s) in the form

P(s) ¼
Xn
k¼0

Pk s2
� �k

(2:97)

it is readily seen that

po ¼ p1 ¼ � � � ¼ pn�1 ¼ 0 (2:98)

The lowest-order coefficient is clearly zero because tg(0)¼ 1; furthermore, all odd coefficients are zero
since tg is even. Finally, all other coefficients in Equation 2.98 have to be zero if one imposes the MFD
condition in Equation 2.95.*
At this stage, one can write the group delay function in the form

tg(s) ¼ N(s)
D(s)

¼ 1þ pns2n

2H(s)H(�s)
¼ 2H(s)H(�s)þ pns2n

2H(s)H(�s)
(2:99)

It was pointed out immediately after Equation 2.90, however, that the degree of N(s) is at most 2n� 1.
Hence, the coefficient of s2n in the numerator of Equation 2.99 have vanished, and one therefore also has

2(�1)nan þ pn ¼ 0 (2:100)

or, equivalently,

pn ¼ 2(�1)nþ1an (2:101)

* The derivatives are easy to compute, but this is omitted here for reasons of space.
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Finally, this allows one to write Equation 2.99 in the form

tg(s) ¼ H(s)H(�s)þ (�1)nþ1ans2n

H(s)H(�s)
(2:102)

If one now equates Equations 2.102 and 2.88 and simplifies, there results

H0(s)H(�s)þ H0(�s)H(s)� 2H(s)H(�s) ¼ 2(�1)nþ1ans
2n (2:103)

Multiplying both sides by s�2n, taking the derivative (noting that (d=ds)H(�s)¼�H0(�s)), one obtains
(after a bit of algebra)

Ev{[sH00(s)� 2(sþ n)H0(s)þ 2nH(s)]H(�s)} ¼ 0 (2:104)

Now, if so is a zero of this even function, the �so will also be a zero. Further, since all of the coefficients in
H(s) are real, s*0 and �s*0 must also be zeros as well; that is, the zeros must occur in a quadrantally
symmetric manner. Each zero must belong either to H(�s), or to the factor it multiplies, or to both.
The degree of the entire expression in Equation 2.40 is 2n and H(�s) has n zeros. Thus, the expression in
square brackets must have n zeros. Now here is the crucial step in the logic: if the filter being designed is
to be stable, then all n zeros H(�s) must be in the (open) right-half plane. This implies that the factor in
square brackets must have n zeros in the (open) left-half plane. Since the expression has degree n, these
zeros can be found from the equation

sH00(s)� 2(sþ n)H0(s)þ 2nH(s) ¼ 0 (2:105)

This differential equation can be transformed into that of Bessel; here, however, the solution will be
derived directly by recursion. Using Equation 2.89 for H(s), computing its derivatives, reindexing, and
using Equation 2.105, one obtains, for 0� k� n� 1,

(kþ 1)kankþ1 � 2n(kþ 1)ankþ1 � 2kank þ 2nank ¼ 0 (2:106)

This produces the recursion formula

ankþ1 ¼
2(n� k)

(2n� k)(kþ 1)
ank ; 0 � k � n� 1 (2:107)

or, normalizing the one free constant so that ann ¼ 1 and reindexing, gives

ankþ1 ¼
2(n� k)

(2n� k)(kþ 1)
; 0 � k � n� 1 (2:108)

The resulting polynomials for H(s) are closely allied with the Bessel polynomials. The first several are
given in Table 2.3 and the corresponding gain and group delay characteristics are plotted (using
MATLAB) in Figure 2.17. Notice that the higher the order, the more accurately the group delay
approximates a constant and the better the gain approximates the ideal lpp; the latter behavior, however,
is fairly poor. A view of the group delay behavior in the passband is shown for the third-order filter in
Figure 2.18.
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2.5 Elliptic Approximation

The Butterworth approximation provides a very fine approximation to the ideal ‘‘brick wall’’ lpp
response at v¼ 0, but is poor for other frequencies; the Chebyshev, on the other hand, spreads out the
error of approximation throughout the passband and thereby achieves a much better amplitude approxi-
mation. This is one concrete application of a general result in approximation theory known as the
Weierstrass theorem [2], which asserts the possibility of uniformly approximating a continuous function
on a compact set by a polynomial or by a rational function.
A compact set is the generalization of a closed and bounded interval—the setting for the Chebyshev

approximation sketched in Figure 2.19. The compact set is the closed interval [�1, 1],* the continuous

TABLE 2.3 Bessel Polynomials of Order n

n H(s)

1 sþ 1

2 s2þ 3sþ 3

3 s3þ 6s2þ 15sþ 15

4 s4þ 10s3þ 45s2þ 105sþ 105

1

0

0.8

0.6

0.4

0.2

1

0

0.8

0.6

0.4

0.2

0 5
ω (rad/s) 

A(ω)

n = 1

(a)
0 5

ω (rad/s) 

τg(ω)

(b)
1010

n = 3 n = 2
n = 1 n = 2

n = 3

FIGURE 2.17 Gain and group delay characteristics for the Bessel–Thompson filters of orders one through three:
(a) gain and (b) group delay.

ω (rad/s) 

τg(s)

0.50 1

1

0.998

0.996

FIGURE 2.18 Group delay of third-order Bessel filter.

* Here, we are explicitly observing that the characteristic function to be approximated is even in v.
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function to be approximated is the constant 0, and the approximating function is a polynomial of degree n
(in the figure n is three). A careful inspection of this figure reveals that the maximum error of
approximation occurs exactly four times on a set of four discrete points within the interval and the
sign of this maximum error alternates from one such point to its adjacent neighbor. This is no
coincidence; in fact, the polynomial of best approximation of degree n is characterized by this alternation
or equiripple property: the error function achieves its maximum value exactly nþ 1 times on the interval
of approximation and the signs at these points alternate. If one finds a polynomial by any means that has
this property it is the unique polynomial of best approximation.
In the present case, one simply notes that the cosine function has the required equiripple behavior.

That is, as f varies between �p=2 and p=2, cos(nf) varies between its maximum and minimum values
of �1 a total of nþ 1 times. But cos(nf) is not a polynomial, and the problem (for reasons stated in
the introduction) is to determine a polynomial having this property. At this point, one observes that
if one makes the transformation

f ¼ cos�1 (v) (2:109)

then, as v varies from �1 to þ1, f varies from �p=2 to þp=2. This transformation is, fortunately, one-
to-one over this range; furthermore, even more fortunately, the overall function

Tn(v) ¼ cos [n cos�1 (v)] (2:110)

is a polynomial as desired. Of course, the maximum error is �1, an impractically large value. This is
easily rectified by requiring that the approximating polynomial be

pn(v) ¼ eTn(v) ¼ e cos [n cos�1 (v)] (2:111)

In terms of gain and characteristic functions, therefore, one has

G(v) ¼ 1
1þ K2(v)

¼ 1
1þ e2T2

n(v)
(2:112)

That is, pn(v)¼ eTn(v) is the best approximation to the characteristic function K(v).
Since the gain function to be approximated is even in v, K(v)—and, therefore, pn(v)¼ eTn(v)—must

be either even or odd. As one can recall, the Chebyshev polynomials have this property. For this reason, it
is only necessary to discuss the situation for v� 0 for the extension to negative v is then obvious.

–ε

ε

–1 1 ω

Pn(ω)

FIGURE 2.19 Chebyshev approximation.
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The foregoing sets the stage for the more general problem, which will now be addressed. As noted
previously, the Weierstrass theorem holds for more general compact sets. Thus, as a preliminary exercise,
the approximation problem sketched in Figure 2.20 will be discussed. That figure shows two closed
intervals as the compact set on which the approximation is to occur. The function to be approximated
is assumed to be the constant a on the first interval and the constant b on the second.* In order to cast
this into the filtering context, it will be assumed that the constant a is small and the constant b large.
The sharpness of the transition characteristic can then be set to any desired degree by allowing vp to
approach unity from below and v1

s to approach unity from above. Notice that the frequency scaling
will be different here than for the all-pole case in which the right-hand interval endpoint was allowed to
be unity.
In addition to more general compact sets, the Weierstrass theorem allows the approximating function

to be a general real rational function, which has been denoted by Rmn(v) in the figure. This notation
means that the numerator and denominator polynomials have maximum degree m and n, respectively.
Now suppose that one specifies that b¼ 1=a and suppose Rmn(v) is a reciprocal function, that is, one
having the property that

Rmn
1
v

	 

¼ 1

Rmn(v)
(2:113)

Then, if one determines its coefficients such that the equiripple property holds on the interval �vp�
v�vp, it will also hold on the interval vs1�v�vs2. Of course, this interval is constrained such
that vs1¼ 1=vp. The other interval endpoint will then extend to þ1 (and, by symmetry, there will
also be an interval on the negative frequency axis with one endpoint at �1=vp and the other at �1).
This is, of course, not a compact set but the approximation theorem continues to hold anyway because it
is equivalent to approximating a¼ 1=b on the low-pass interval [�vp, vp). Thus, one can let a¼ 0
and b¼1 and simultaneously approximate the ideal characteristic function

Rmn(ω)

b + ε

b–ε

a + ε

a–ε

b

a

–ωp ωp ωs1 ωs2
ω

1

FIGURE 2.20 Chebyshev rational approximation.

* One should note that this function is continuous on the compact set composed of the two closed intervals.
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K(v) ¼
0; jvj � vp

1; jvj � 1
vp

(
(2:114)

with the real and even or odd (for realizability) rational function Rmn(v) having the aforementioned
reciprocal property. The Weierstrass theorem equiripple property for such rational functions demands
that the total number of error extrema* on the compact set be mþ nþ 2. (This assumes the degree of
both polynomials to be relative to the variable v2.)

Based on the preceding discussion, one has the following form for Rmn(v):

R2n,2n(v) 
 R2n(v) ¼
v2
1 � v2

� �
v2
3 � v2

� � � � � v2
2n�1 � v2

� �
1� v2

1v
2ð Þ 1� v2

2v
2ð Þ � � � 1� v2

2n�1v
2ð Þ (2:115)

R2nþ1,2n(v) 
 R2nþ1(v) ¼ v
v2
2 � v2

� �
v2
4 � v2

� � � � � v2
2n � v2

� �
1� v2

2v
2ð Þ 1� v2

4v
2ð Þ � � � 1� v2

2nv
2ð Þ (2:116)

The first is clearly an even rational function and latter odd. The problem now is to find the location of the
pole and zero factors such that equiripple behavior is achieved in the passband. The even case is
illustrated in Figure 2.21 for n¼ 2. Notice that the upper limit of the passband frequency interval has
been taken for convenience to be equal to

ffiffiffi
k

p
; hence, the lower limit of the stopband frequency interval is

1=
ffiffiffi
k

p
. Thus,

k ¼ vp

vs
(2:117)

* There can be degeneracy in the general approximation problem, but the constraints of the problem being discussed here
preclude this from occurring.

R2n(ω)

ω2

ω3ω0

ω1
–ε

ε

1
ωp

1
ω3

1
ω1

1
ε

1
ε

1

=

ω

–

n = 2

ωp = √k

1
√k

FIGURE 2.21 Typical plot of an even-order Chebyshev rational function.
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is a measure of the sharpness of the transition band rolloff and is always less than unity. The closer it is to
one, the sharper the rolloff. It is an arbitrarily specified parameter in the design. Notice that equiripple
behavior in the passband implies equiripple behavior in the stopband—in the latter, the approximation is
to the constant whose value is infinity and the minimum value (which corresponds to a maximum
value of gain) is 1=e, while the maximum deviation from zero in the passband is e. The zeros are all in the
passband and are mirrored in poles, or infinite values, in the stopband. The notation v0 and v2 for
the passband frequencies of maximum error has been introduced. In general, their indices will be even for
even approximations and odd for odd approximations.
A sketch for the odd case would differ only in that the plot would go through the origin, that is, the

origin would be a zero rather than a point of maximum error. Notice that the resulting filter will have
finite gain unlike the Butterworth or Chebyshev, which continue to rolloff toward zero as v becomes
infinitely large. As noted in the figure, the approximating functions are called the Chebyshev rational
functions.
The procedure [9] now is quite analogous to the Chebyshev polynomial approximation, though rather

more complicated. One looks for a continuous periodic waveform that possess the desired equiripple
behavior. Since the Jacobian elliptic functions are generalizations of the more ordinary sinusoids, it is
only natural that they be investigated with an eye toward solving the problem under attack. With that in
mind, some of the more salient properties will now be reviewed.
Consider the function

I(f, k) ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 (f)

p (2:118)

which is plotted for two values of k in Figure 2.22. If k¼�1, the peak value is infinite; in this case,
I(f, k)¼ sec(f). For smaller values of k the peak value depends upon k with smaller values of k resulting
lower peak values. The peaks occur at odd multiples of p=2. Note that I(f, k) has the constant value one
for k¼ 0. Figure 2.23 shows the running integral of I(f, k) for k2¼ 0.99 and for k2¼ 0. For k2¼ 0 the
curve is a straight line (shown dashed); or other values of k2, it deviates from a straight line by an amount
that depends upon the size of k2. Observe that the running integral has been plotted over one full period
of I(k, f), that is, from 0 to p. The running integral is given in analytical form by

φ (rad)

I(φ
, k

)

10

8

6

4

2

0 0 π/2 π 3π/2 2π

k2 = 0.99

φ (rad)

k2 = 0.95

10

8

6

4

2

0 0 π/2 π 3π/2 2π

FIGURE 2.22 Plot of I(f, k).
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u(f, k) ¼
ðf
0

I(a, k)da ¼
ðf
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 (a)

p da (2:119)

The quantity K, shown by the lowest dashed horizontal line in Figure 2.23, is the integral of I(f, k) from
0 to p=2; that is, it is the area beneath the I(f, k) curve in Figure 2.22 from 0 to p=2. Thus, it is the area
beneath the curve to the left of the first vertical dashed line in that figure. It is given by

u
p

2
, k

 �
¼

ðp=2
0

I(a, k)da ¼
ðp=2
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 (a)

p da ¼ K (2:120)

and is referred to as the complete elliptic integral of the first kind.
The sine generalization sought can now be defined. Since the running integral u(f, k) is monotonic, it

can be inverted and thereby solved for f in terms of u; for each value of u there corresponds a unique
value of f. The elliptic sine function is defined to be the ordinary sine function of f:

sn(u, k) ¼ sin (f, k) (2:121)

Now, inspection of Figure 2.23 shows that, as f progresses from 0 to 2p, u(f, k) increases from 0 to 4K;
since angles are unique only to within multiples of 2p, therefore, it is clear that sn(u, k) is periodic with
period 4K. Hence, K is a quarter-period of the elliptic sine function.
The integral in Equation 2.119 cannot be evaluated in closed form; thus, there is not a simple, compact

expression for the required inverse. Therefore, the elliptic sine function can only be tabulated in
numerical form or computer using numerical techniques. It is shown for k2¼ 0.99 in Figure 2.24 and
compared with a conventional sine function having the same period (4K).

2K

K

0
0 π/2 πφ

u(φ, k)

FIGURE 2.23 Running integral of I normalized to K.

1

0

–1

0 uK 2K 3K 4K

sin(2πu/4K)

sn(u, K) K2 = 0.99

FIGURE 2.24 Plots of the elliptic and ordinary sine functions.
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Recall, now, the objective of exploring the preceding generalization of the sinusoid: one is looking for
a transformation that will convert the characteristic function given by Equations 2.115 and 2.116
into equivalent waveforms having the equiripple property. As one might suspect (since so much time
has been spent on developing it), the elliptic sine function is precisely the transformation desired.
The crucial aspect of showing this is the application of a fundamental property of sn(u, k), known as
an additional formula:

sn(uþ a, k)sn(u� a, k) ¼ sn2(u, k)� sn2(a, k)
1� k2sn2(u, k)sn2(a, k)

(2:122)

The right-hand side of this identity has the same form as one factor in Equations 2.115 and 2.116, that is
of one zero factor coupled with its corresponding pole factor. This suggests the transformation

v ¼
ffiffiffi
k

p
sn(u, k) (2:123)

The passband zeros then are given by

vi ¼
ffiffiffi
k

p
sn(ui, k) (2:124)

and the factors mentioned previously map into

v2
i � v2

1� v2
i v

2
¼ k sn2 ui, kð Þ � sn2(u, k)½ �

1� k2sn2 ui, kð Þsn2(u, k) ¼ ksn uþ uið Þsn u� uið Þ (2:125)

For specificity, the even-order case will be discussed henceforth. The odd-order case is the same if minor
notational modifications are made. Thus, one sees that

R2n(v) ¼ P
i¼1,3,...,2n�1

v2
i � v2

1� v2
i v

2
¼ P

i¼1,3,...,2n�1
ksn uþ uið Þsn u� uið Þ (2:126)

The ui are to be chosen. Before doing this, it helps to simplify the preceding expression by defining
u�i¼�ui and reindexing. Calling the resulting function G(u), one has

G(u) ¼
Yi¼1,3,...,2n�1

i¼�1,�3,...,�(2n�1)

ksn uþ uið Þ (2:127)

Refer now to Figure 2.24. Each of the sn functions is periodic with period 4K and is completely defined by
its values over one quarter-period [0, K]. Suppose that one defines

ui ¼ i
K
2n

(2:128)

Figure 2.25 shows the resulting transformation corresponding to Equations 2.123 and 2.124. As u
progresses from �K to þK, v increases from � ffiffiffi

k
p

toþ ffiffiffi
k

p
as desired. Furthermore, because of the

symmetry of sn(u), the set {ui} forms an additive group—adding K=2n to the index of any ui results in
another ui in the set. This means that G(u) in Equation 2.127 is periodic with period K=2n. Thus, as v
increases from � ffiffiffi

k
p

toþ ffiffiffi
k

p
,R2n(v) achieves 2nþ 2 extrema, that is, positive and negative peak values.

But this is sufficient for R2n(v) to be the Chebyshev rational function of best approximation.
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The symmetry of the zero distribution around the peak value of sn(u), that is, around u¼K, reveals
that the peak values of R2n(v) occur between the zeros; that is, recalling that in Figure 2.21 the peak
values have been defined by the symbols vi for even i, one has

vi ¼
ffiffiffi
k

p
sn

iK
2n

	 

; i ¼ 0, 1, 2, . . . , 2n (2:129)

where the odd indices correspond to the zeros and the even ones to the peak values. Note that i¼ 0
corresponds to v¼ 0 and i¼ 2n to v ¼ ffiffiffi

k
p

. This permits one to compute the minimax error:

e ¼ R2n(0)j j ¼ v1v3 � � �v2n�1ð Þ2 (2:130)

As pointed out previously, the analysis for odd-order filters proceeds quite analogously. The only
difference lies in the computation of e. In this case, R2nþ1(0)¼ 0; thus, v¼ 0 is a zero—not a point
of maximum deviation. One can, however, note that the quantity e2 � R2

2nþ1(v) has double zeros at
the frequencies of maximum deviation (except at v ¼ v2nþ1 ¼

ffiffiffi
k

p
) and the same denominator as

R2
2nþ1(v). Hence,

e2 � R2
2nþ1(v) ¼

v2
1 � v2

� �2
v2
3 � v2

� �2� � � v2
2nþ1 � v2

� �
1� v2

2v
2ð Þ2 1� v2

4v
2ð Þ2� � � 1� v2

2nv
2ð Þ2 (2:131)

Notice here that v2nþ1 ¼
ffiffiffi
k

p
. Since R2nþ1(0)¼ 0, one can evaluate this expression at v¼ 0 to get

e ¼ v1v3 � � �v2n�1ð Þ2
ffiffiffi
k

p
(2:132)

Note that one uses the zero frequencies in the even-order case and the frequencies of maximum deviation
in the odd-order case.
As an example, suppose that the object is to design an elliptic filter of order n¼ 2. Further, suppose

that the passband ripple cutoff frequency is to be 0.95. Then, one has

vp ¼
ffiffiffi
k

p
¼ 0:95 (2:133)

The quarter period of the elliptic sine function is

K ¼ 2:9083 (2:134)

ωi

K 2K uK2K
0

√k

–√k

ω = √ksn(u)

iK
2n

ui =

FIGURE 2.25 Elliptic sine transformation.
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Evaluating the zeros and points of maximum deviation of the Chebyshev rational function numerically
using Equation 2.129, one obtains the values shown in Table 2.4. Thus, the required elliptic rational
function is

R4(v) ¼ 0:3508� v2ð Þ 0:8746� v2ð Þ
1� 0:3508v2ð Þ 1� 0:8746v2ð Þ (2:135)

Finally, the maximum error is given by Equation 2.130:

e ¼ v1v2ð Þ2 ¼ (0:5923� 0:9352)2 ¼ 0:3078 (2:136)

Figure 2.26 shows the resulting gain plot. Observe the transmission zero at v¼ 1=0.9352¼ 1.069,
corresponding to the pole of the Chebyshev rational function located at the inverse of the largest
passband zero. Also, as anticipated, the minimum gain in the passband is

Ap ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ (0:3078)2

p ¼ 0:9558 (2:137)

and the maximum stopband gain is

As ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

e2

q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

(0:3078)2

q ¼ 0:2942 (2:138)

Perhaps a summary of the various filter types is in order at this point. The elliptic filter has more
flexibility than the Butterworth or the Chebyshev because one can adjust its transition band rolloff
independently of the passband ripple. However, as the sharpness of this rolloff increases, as a more
detailed analysis shows, the stopband gain increases and the passband ripple increases. Thus, if these

TABLE 2.4 Zeros of Elliptic Rational
Functions

i vi

0 0.0000

1 0.5923

2 0.8588

3 0.9352

4 0.9500

1

0.5

0
0 1 2 3 4 ω 5

A(ω) =
√1 + R2

4(ω)
1

FIGURE 2.26 Gain plot for the example elliptic filter.
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parameters are to be independently specified—as is often the desired approach—one must allow the
order of the filter to float freely. In this case, the design becomes a bit more involved. The reader is
referred to Ref. [10], which presents a simple curve for use in determining the required order. It proceeds
from the result that the filter order is the integer greater than or equal to the following ratio:

n � f (M)
f (V)

(2:139)

where

f (x) ¼
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x�2

p �
K(1=x)

(2:140)

Lin [10] presents a curve of this function f (x). K is the complete elliptic integral given in Equation 2.120.
The parameters M and V are defined by

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 10�0:1As

1� 10�0:1Ap

r
(2:141)

and

V ¼ 1=k (2:142)

Of course, there is still the problem of factorization. That is, now that the appropriate Chebyshev rational
function is known, one must find the corresponding G(s) transfer function of the filter. The overall design
process is explained in some detail in Ref. [11], which develops a numerically efficient algorithm for
directly computing the parameters of the transfer function.
The Butterworth and Chebyshev filters are of the all-pole variety, and this means that the synthesis of

such filters is simpler than is the realization of elliptic filters, which requires the realization of transmis-
sion zeros on the finite jv axis.
Finally, a word about phase (or group delay). Table 2.5 shows a rank ordering of the filters in terms of

both gain and phase performance. As one can see, the phase behavior is inverse to the gain performance.
Thus, the elliptic filter offers the very best standard approximation to be ideal lpp ‘‘brickwall’’ gain
behavior, but its group delay deviates considerably from a constant. On the other end of the spectrum,
one notes that the Bessel–Thompson filters offers excellent phase performance, but a quite high order is
required to achieve a reasonable gain characteristic.
If both excellent phase and gain performance are absolutely necessary, two approaches are possible.

One either uses computer optimization techniques to simultaneously approximate gain and phase, or one
uses one of the filters described in this section followed by an allpass filter, one having unity gain over
the frequency range of interest, but whose phase can be designed to have the inverse characteristic to the
filter providing the desired gain. This process is known as phase compensation.

TABLE 2.5 A Rank Ordering of the Filters in Terms
of Both Gain and Phase Performance

Filter Type Gain Rolloff Phase Linear

Bessel Worst Best

Butterworth Poor Better

Chebyshev Better Poor

Elliptic Best Worst
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3.1 Low-Pass Prototype

As discussed in Chapter 2, conventional approximation techniques (Butterworth, Chebyshev, Elliptic,
Bessel, etc.) lead to a normalized transfer function denoted low-pass prototype (LPP). The LPP is
characterized by a passband frequency VP¼ 1.0 rad=s, a maximum passband ripple AP (or Amax), a
minimum stopband attenuation As (orAmin), and a stopband frequencyVs.Ap andAs are usually specified
in decibels. Tolerance bounds (also called box constraints) for the magnitude response of an LPP are
illustrated in Figure 3.1a. The ratio Vs=Vp is called the selectivity factor and it has a value Vs for an LPP
filter. The passband and stopband edge frequencies are defined as the maximum frequency with the
maximum passband attenuationAp and the minimum frequency with the minimum stopband attenuation
As, respectively. The passband ripple and the minimum passband attenuation are expressed by

AP ¼ 20 log
K

H vPð Þ
����

����, As ¼ 20 log
K

H vsð Þ
����

���� (3:1)

where K is the maximum value of the magnitude response in the passband (usually unity). Figure 3.1b
shows the magnitude response of a Chebyshev LPP transfer function with specifications Ap¼ 2 dB,
As¼ 45 dB, and Vs¼ 1.6.

Transformation of transfer function. Low-pass, high-pass, bandpass, and band-reject transfer functions
(denoted in what follows LP, HP, BP, and BR, respectively) can be derived from an LPP transfer function
through a transformation of the complex frequency variable. For convenience, the transfer function of
the LPP is expressed in terms of the complex frequency variable s, where s¼ uþ jV while the transfer
functions obtained through the frequency transformation (low-pass, high-pass, bandpass, or band-reject)
are expressed in terms of the transformed complex frequency variable p¼sþ jv.

3-1

https://engineersreferencebookspdf.com



The approximation of an LP, HP, BP, or BR transfer function with passband ripple (s) Ap and
stopband attenuation (s) As involves three steps:

1. Determination of the stopband edge frequency or selectivity factor Vs of an LPP, which can be
transformed into the desired LP, HP, BP, or BR filter.

2. Approximation of an LPP transfer function TLPP(s) with selectivity factor Vs and with same
passband ripple and stopband attenuation Ap and As are the desired LP, HP, BP, or BR filter,
respectively

3. Transformation of the LPP transfer function TLPP(s) into the desired transfer function (LP, HP, BP,
or BR) T(p) through a frequency transformation of the form

s ¼ f (p) (3:2)

Transformation of a network with LPPmagnitude response into a low-pass, high-pass, bandpass, or band-
rejection network can be done directly on the elements of the network. This procedure is denoted network
transformation. It is very convenient in practice because element values for double terminated lossless
ladder networks with LPP specifications have been extensively tabulated for some common values of Ap,
As, and Vs. Also, a host of personal computer programs have become available in recent years that allow
one to determine the component values of LPP ladder networks for arbitrary valuesAp,As, andVs. In what
follows we study the frequency transformation s¼ f(p) for each specific type of filter response (LP, HP, BP,
and BR). We show how to calculate the selectivity factor of the equivalent LPP based on box constraint
specifications for each type of filter. We then show howmapping of the imaginary frequency axis from s to
p leads to LP, HP, BP, or BR magnitude responses. We analyze how poles and zeros are mapped from the
s-plane to the p-plane for each transformation and finally we show the element transformations required to
directly transform LPP networks into any of the filter types addressed previously.

3.2 Frequency and Impedance Scaling

3.2.1 Frequency Scaling

The simplest frequency transformation is a scaling operation expressed by

s ¼ p
vo

(3:3)

where vo is a frequency scaling parameter. This transformation is denoted frequency scaling and it
allows one to obtain a low-pass transfer function with a nonunity passband frequency edge from an LPP
transfer function.

(a) (b)

|H
(jΩ

)| Ap

As

(2 dB)

1 Ω

|H
(jΩ

)|

1 Ω

0.794
1

Frequency

FIGURE 3.1 (a) Tolerance bounds for magnitude response of low-pass prototype and (b) Chebyshev LPP response.
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Transformation of poles and zeros of transfer function. Consider an LPP factorized transfer function
TLPP(s) with n poles sp1, sp2, . . . , spn and m zeros sz1, sz2, . . . , szm

TLPP(s) ¼ K
1� s=sz1ð Þ 1� s=sz2ð Þ � � � 1� s=szmð Þ
1� s=sp1
� �

1� s=sp2
� � � � � 1� s=spn

� � (3:4)

Using Equation 3.3, this transfer function becomes

TLP(p) ¼ K
1� p=pz1ð Þ 1� p=pz2ð Þ � � � 1� p=pzmð Þ
1� p=pp1
� �

1� p=pp2
� � � � � 1� p=ppn

� � (3:5)

where poles and zeros (szi and spj) of the LPP transfer function PLPP(s) become simply poles and zeros in
TLP(p), which are related to those of TLPP(s) by the scaling factor vo:

ppi ¼ vospi, pzj ¼ voszj (3:6)

To determine the magnitude (or frequency) response of the LP filter we evaluate the magnitude of the
transfer function on the imaginary axis (for s¼ jV). The magnitude response of the transformed transfer
function TLP(jv)j j preserves a low-pass characteristic as illustrated in Figure 3.2. The frequency range
from 0 to1 in the V-axis is mapped to the range 0 to1 in the v-axis. A frequency and its mirror image
in the negative axis �V is mapped to frequencies v¼�voV with the same magnitude response:
TLPP(jV)j j ¼ TLP(jvoV)j j. The passband and stopband edge frequencies VP¼ 1 rad=s and Vs of the
LPP are mapped into passband and stopband edge frequencies vp¼vo and vs¼voVs, respectively.
From this, it can be seen that for given low-pass filter specifications vs, vp the equivalent LPP is
determined based on the relation Vs¼vs=vp, while the frequency scaling parameter vo corresponds to
the passband edge frequency of the desired LP.

LP network transformation. Capacitors and inductors are the only elements that are frequency dependent
and that can be affected by a change of frequency variable. Capacitors and inductors in an LPP network
have impedances zc¼ 1=scn and z1¼ s1n, respectively. Using Equation 3.3 these become Zc(p)¼ 1=pC and
ZL(p)¼ pL, where C¼ cn=vo and L¼ ln=vo. The LPP to LP frequency transformation is performed
directly on the network by simply dividing the values of all capacitors and inductors by the frequency
scaling factor vo. This is illustrated in Figure 3.3a. The transformation expressed by Equation 3.3 can be
applied to any type of filter and it has the effect of scaling the frequency axis without changing the shape
of its magnitude response. This is illustrated in Figure 3.3, where the elements of an LPP with Ap¼ 2 dB,
As¼ 45 dB, and selectivity Vs¼ 1.6 rad=s are scaled (Figure 3.3b) to transform the network into an LP
network with passband and stopband edge frequencies vp¼ 2p 10 krad=s and vs¼ 2p 16 krad=s (or
fp¼ 10 kHz and fs¼ 16 kHz), respectively.

|HLPP(jΩ)| |HLP(jω)|

LPP LP

Ωs ωo ωωoΩsΩ

1 2 3 1́ 2́ 3́

4́
1

4

FIGURE 3.2 Derivation of low-pass response from a low-pass prototype by frequency scaling.

Frequency Transformations 3-3

https://engineersreferencebookspdf.com



3.2.2 Impedance Scaling

Dimensionless transfer functions defined by ratios of voltages (Vout=Vin) or currents (Iout=Iin) remain
unchanged if all impedances of a network are scaled by a common scaling factor ‘‘a.’’ On the other hand,
transfer functions of the transresistance type (Vout=Iin) or of the transconductance type (Iout=Vin) are simply
modified by the impedance scaling factor a and 1=a, respectively. If we denote a normalized impedance by zn,
then the impedance scaling operation leads to an impedance Z¼ azn. When applied to resistors (rn),
capacitors (cn), inductors (ln), transconductance gain coefficients (gn), and transresistance gain coefficients
(rn) result in the following relations for the elements (R, C, L, g, and r) of the impedance scaled network.

R ¼ arn
L ¼ aln

C ¼ 1
a
cn

g ¼ 1
a
gn

r ¼ arn

(3:7)

Dimensionless voltage-gain and current-gain coefficients are not affected by impedance scaling. Tech-
nologies for fabrication of microelectronic circuits (CMOS, bipolar, BiCMOS monolithic integrated
circuits, thin-film and thick-film hybrid circuits) only allow elements values and time constants (or
pole and zero frequencies) within certain practical ranges. Frequency and impedance scaling are very
useful to scale normalized responses and network elements resulting from standard approximation
procedures to values within the range achievable by the implementation technology. This is illustrated
in the following example.

Example 3.1

The amplifier of Figure 3.4. is characterized by a one-pole low-pass voltage transfer function given by
H(s)¼ Vout=Vin¼ K(1þs=vp), where K¼ gmrLr1=(r1þ r2), and vp¼ 1=rLCL. Perform frequency and imped-
ance scaling so that the circuit pole takes a value vp¼ 2p310 Mrad=s (or fP¼ 10 MHz) and resistance,

(a)

1.0 0.9071

2.8521 3.8467 3.7151 0.2242

0.9393 0.6964

Vin

Vout

+
–

(b)

Vout

Vin
+
–

1.0 14.437 × 10–6 14.949 × 10–6 11.084 × 10–6

45.393 × 10–6 61.222 × 10–6 59.128 × 10–6
0.2242

FIGURE 3.3 (a) Low-pass prototype ladder network and (b) LP network with passband frequency fp¼ 10 kHZ
derived from (a).
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capacitance, and transconductance gain values are in the range of kV, pF, and mA=V, which are
appropriate for the implementation of the circuit as an integrated circuit in CMOS technology.

Solution

The required location of the pole and range of values for the circuit elements can be achieved using
frequency and impedance scaling factors vo¼ 2p3 107 and a¼ 104, respectively. These result in
R1¼ ar1¼ 10 kV, R2¼ ar2¼ 10 kV, g¼ gm=a¼ 1000 mA=V, RL¼ arL¼ 10 kV, and CL¼ cL=avo¼ 1.59 pF.

3.3 Low-Pass to High-Pass Transformation

The LPP to high-pass transformation is defined by

s ¼ v2
o

p
(3:8)

Using this substitution in the LPP transfer function (Equation 3.4), it becomes

THP(P) ¼ K
pn�m p� pz1ð Þ p� pz2ð Þ � � � p� pzmð Þ

p� pp1
� �

p� pp2
� � � � � p� ppn

� � (3:9)

where the poles and zeros of Equation 3.8 are given by

pzi ¼ v2
o

szi
for i 2 1, 2, . . . ,mf g

ppj ¼ v2
o

spj
for j 2 1, 2, . . . , nf g

(3:10)

It can be seen that zeros and poles of THP(p) are reciprocal to those of TLPP(s) and scaled by the factor
vo
2. THP(p) has n�m zeros at s¼ 0, which can be considered to originate from n�m zeros at 1 in

TLPP(s).
Let us consider now the transformation of the imaginary axis in s to the imaginary axis in p. For s¼ jV,

p takes the form p¼ jv where

v ¼ �v2
o

V
(3:11)

From Equation 3.11, it can be seen that positive frequencies in the LPP transform to reciprocal and scaled
frequencies of the HP filter. Specifically, the frequency range from 0 to 1 in V maps to the frequency
range �1 to 0 in v, while the range �1 to 0 in V maps to 0 to 1 in v. The passband edge frequency

Vin Vi
+
–

r2 = 1

r1 = 1
+

–
gmVi
gm = 10

rL = 1 cL = 1
Vout

+

–

FIGURE 3.4 Normalized transconductance amplifier.
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(Vp¼�1) and the stopband edge frequency�Vs of the LPP is mapped to vp ¼ �v2
o and vs ¼ �v2

o=Vs

in the high-pass response. This is illustrated in Figure 3.5.
The procedure to obtain the specifications of the equivalent LPP given specifications vp and vs for a

HP circuit can be outlined as follows:

1. Calculate the selectivity factor of the LPP according to Vs¼vp=vs.
2. Approximate an LPP transfer function TLPP(s) with the selectivity Vs and the passband ripple and

stopband attenuation of the desired high-pass response.
3. Perform an LPP to HP transformation either by direct substitution p ¼ v2

o=s in TLPP(s) or by
transforming poles and zeros of TLPP(s) using Equation 3.10.

Network transformation. Consider a capacitor cn and an inductor ln in an LPP network. They have
impedances zc(s)¼ 1=scn, z1(s)¼ sln, respectively. Using Equation 3.8, these become impedances ZL(p)¼
pL and Zc¼ 1=pC in the high-pass network, where L¼ 1=v2

o cn and C¼ 1=v2
o ln. It can be seen that an

LPP to HP transformation can be done directly on an LPP network by replacing capacitors by inductors
and inductors by capacitors. For illustration, Figure 3.6 shows a high-pass network with a passband edge
frequency vp¼ 2p 20 Mrad=s or ( fp¼ 20 MHz) derived from the LPP network shown in Figure 3.6a.

|H(jΩ)| |HHP(jω)|

1 Ω

HPLPP

Ωs ωs ωp ω

1 2 3 1' 2'

4'

3'

4

Frequency (rad/s) Frequency (kHz)

FIGURE 3.5 Transformation of a low-pass into a high-pass response.

ln

cn

LPLPP
(a)

(b)

8.772 × 10–9

2.79 × 10–9 2.069 × 10–9 2.142 × 10–9 0.2242

8.472 × 10–9 11.426 × 10–91.0

Vin

+

–
Vout

+

–

1
ωo

2In

1
ωo

2cn

FIGURE 3.6 (a) LPP to high-pass network element transformations and (b) high-pass network derived from LPP of
Figure 3.3a.
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3.4 Low-Pass to Bandpass Transformation

If the LPP transfer function is expressed now as a rational function

HLPP(s) ¼ K
b0 þ b1sþ b2s2 þ � � � þ bmsm
a0 þ a1sþ a2s2 þ � � � þ ansn

(3:12)

then through the substitution

s ¼ 1
BW

p2 þ v2
o

p
(3:13)

HLPP(s) transformed into a bandpass transfer function HBP(p) with the form

HBP(P) ¼ K 0Pn�m 1þ B1pþ B2p2 þ � � � þ B2p2m�2 þ B1p2m�1 þ p2m

1þ A1pþ A2p2 þ � � � þ A2p2m�2 þ A1p2m�1 þ p2m
(3:14)

From Equation 3.14, it can be seen that the bandpass transfer function has twice as many poles and zeros
as the LPP transfer function. In addition it has n�m zeros at the origin. The coefficients of the
numerator and denominator polynomials are symmetric and are a function of the coefficients of HLPP(s).
In order to obtain poles and zeros of the bandpass transfer function from the poles and zeros of

TLPP(p), three points must be considered.
First, a real pole (or zero) sp¼�up of HLPP(s) maps into a complex conjugate pair with frequency vo

and Q (or selectivity) factor in HBP(p), where Dq¼vo=(UpBW).*
Second, a pair of complex conjugate pole (or zeros) of HLPP(s) with frequency Vo and pole-quality

factor q denoted by (Vo, q) is mapped into two pairs of complex conjugate poles (or zeros) (vo1, Q) and
(vo2, Q), where the following relations apply:

vo1 ¼ voM

vo2 ¼ vo

M

Q ¼ a
c

M þ 1
M

� � (3:15a)

and the definitions

a ¼ vo

BW

b ¼ Vo

2a

c ¼ Vo

q

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2ð Þ2� c

(2a)2

r
þ

ffiffiffiffiffi
2b

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2 � c

2V2
oþ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2ð Þ2� c

(2a)2

rsvuut
(3:15b)

apply.

* A complex conjugate pole pair can be expressed as sp, Sp*¼ up� jvp¼vc e
�ju¼ (vc, Q), where the pole quality factor Q is

given by Q¼ 1
2 cos u and vc¼ (G2

p þv2
p)

1
2, u¼ tg�1 vp

Gp
.
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Narrow-band approximation. If the condition BW=vo � 1 is satisfied, then following simple transform-
ations known as the narrow band approximation* can be used to map directly poles (or zeros) from the
s-plane to the p-plane

pp � BW
2

sp þ jvo, pz � BW
2

sz þ jvo (3:16)

These approximations are valid only if the transformed poles and zeros are in the vicinity of jvo, that is, if
sp � vo

�� ��=vo � 1.
Third, in order to obtain poles and zeros of the bandpass transfer function, mapping of complex zeros

on the imaginary V axis (s2, sx* ¼ �jVz) takes place using the same mapping relations discussed next.

Mapping of imaginary frequency axis. Consider a frequency s¼ jV and its mirror image s¼�jV in the
LPP. Using Equation 3.13, these two frequencies are mapped into four frequencies: �v1 and �v2, where
v1 and v2 are given by

v2 ¼ V
BW
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
o þ V

BW
2

� �2
s

v1 ¼ �V
BW
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
o þ V

BW
2

� �2
s (3:17)

From Equation 3.17, the following relations can be derived:

v2 � v1 ¼ BWV

v1v2 ¼ v2
o

(3:18)

It can be seen that with the LPP to bandpass transformation frequencies are mapped into bandwidths.
A frequencyV and itsmirror image�V aremapped into twopairs of frequency points that havev0 as center
of geometry. The interval from 0 to1 in the positiveV axis maps into two intervals in the v axis: the first
from vo toþ1 on the positive v axis and the second from�vo to 0 to in the negative v axis. The interval
�1 to 0 on the negativeV axis maps into two intervals: from�1 to�vo in the negativev axis and from 0
tovo in the positivev axis. TheLPPpassband and stopband edge frequenciesVp¼�1 andþVs aremapped
into passband edge frequencies vp1, vp2, and into stopband edge frequencies vs1, vs2 that satisfy

vp2 � vp1 ¼ BW

vs2 � vs1 ¼ BWVs
(3:19)

and

vp1vp2 ¼ vs1vs2 ¼ v2
o (3:20)

Figure 3.7 shows mapping of frequency points 1, 2, 3, and 4 in theV axis to points 10, 20, 30, and 40 and 100,
200, 300, 400 in the v axis of the bandpass response.
If the bandpass filter specifications do not satisfy Equation 3.20 (which is usually the case), then either

one of the stopband frequencies or one of the passband frequencies has to be redefined so that they
become symmetric w.r.t. vo and an equivalent LPP filter can be specified. For given passband and

* L.P. Huelsman, An algorithm for the low-pass to bandpass transformation, IEEE Trans. Education, EH, 72, March 1968.
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stopband specifications vp1, vp2, vs1, vs2, Ap, As, the procedure to determine Vs for an equivalent LPP is
as follows:

1. Calculate first the parameter vo in terms of the passband frequencies according to vo ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vp1vp2

p
.

2. Make the stopband frequencies geometrically symmetric with respect to vo determined in step 1 by
redefining either vs1 or vs2 so that one of these frequencies becomes more constrained.* If
vs2 < v2

o=vs2, then assign vs1 the new value: vs1 ¼ <v2
o=vs1. Otherwise assign vs2 the new

value vs2 ¼ v2
o=vs1.

3. Calculate a selectivity factor of the LPP based on the redefined stopband frequency according to
Vs ¼ (vs2 � vs1)=(vp2 � vp1). This expression follows directly from Equations 3.19 and 3.20.

4. Calculate now the parameter vo in terms of the stopband frequencies, according to vo ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
vs1vs2

p
.

5. Symmetrize the passband frequencies w.r.t. the value of vo determined in step 4 by constraining
either vp1 or vp2. If vp1 > v2

o=vp2, then assign vp1 the new value: vp1 > v2
o=vp2. Otherwise assign

vp2 the new value vp2 > v2
o=vp1.

6. Calculate the selectivity factor based on the new set of passband frequencies using the same
expression as in step 3.

7. Select from step 3 or step 6 the maximum selectivity factor Vs and determine the transformation
parameters vo and BW from the values calculated in steps 1–3 or in 4–6, whichever sequence leads
to the maximum Vs, which leads to the lowest order n for TLPP(s) and with this to the least
expensive filter implementation.

Example 3.2

Consider the following nonsymmetric specifications for a bandpass filter: vs1¼ 2p 9, vs2¼ 2p 17,
vp1¼ 2p 10, and vp1¼ 2p 14.4 (all frequencies specified in krad=s). Application of the above procedure
leads to a new value for the upper stopband frequency vs2¼ 16 and from this to the following
parameters: BW¼ 2p (14.4 �10)¼ 2p 4.4, v2

o v2
o ¼ 2p 9 2p 16¼ 2p 10 2p 14.4¼ (2p)2 144, and

Vs¼ 16� 9=(14.4� 10)¼ 1.59.

Bandpass network transformation. Consider now the transformation of capacitors and inductors in an
LPP filter. An inductor in the LPP network has an impedance zI(s)¼ sln. This becomes an impedance
zs(p)¼ pLsþ 1=pCs, where Ls¼ ln=BW and Cs¼BW=lnv2

ov
2
o. Now consider a capacitor cn in the LPP

with admittance Yc(s)¼ scn. Using the transformation (Equation 3.12), this becomes an admittance
Yp(p)¼ pCpþ 1=pLp, where Cp¼ cn=BW and Lp¼BW=cnv2

o. This indicates that to transform an LPP
network into a bandpass network, inductors in the LPP network are replaced by the series connection of

|H
LP

P(
jΩ

)|

|H
BP

(jω
)|

1 ΩΩs

1 2 3

ωs1 ωs2ωp1 ωp2ωo ω
4

1̋2˝3˝

4˝

BWΩs

BW

1' 2' 3'

4'

FIGURE 3.7 Low-pass to bandpass transformation.

* The term ‘‘constraint specifications’’ is used here in the sense of redefining either a stopband frequency or a passband
frequency so that one of the transition bands becomes narrower, which corresponds to tighter design specifications.
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an inductor with value Ls and a capacitor with value Cs and capacitors in the LPP are replaced by the
parallel combination of a capacitor Cp and inductor Lp. This is illustrated in Figure 3.8. As with other
transformations, resistors remain unchanged since they are not frequency dependent.

Example 3.3

Consider the LPP network shown in Figure 3.3a with specifications Ap¼ 2 dB, As¼ 45 dB, and Vs¼ 1.6.
Derive a bandpass network using the parameters calculated in Example 3.2: v2

o ¼ (2p)2 144, BW¼
2p 4.4 krad=s.

Solution

Straightforward application of the relations shown in Figure 3.8a leads to the network of Figure 3.8b.

3.5 Low-Pass to Band-Reject Transformation
This transformation is characterized by

S ¼ BW
p

p2 þ v2
o

(3:21)

and it can be best visualized as a sequence of two transformations through the intermediate complex
frequency variables s0 ¼ u0 þ jV0 3 1. A normalized LPP to high-pass transformations

s ¼ 1
s0

(3:22)

Vin

+

–

32.82×10–6 5.36×10–6 33.974×10–6 5.177×10–6 25.2×10–6 6.982×10–6

1.705×10–6 1.264×10–6 1.309×10–6

134.4×10–6129.1×10–6103.2×10–6

1.0

Vout

+

–0.2242

ln

cn

In
BW

cn/BW

BW
ωo

2cn
BPLP(a)

(b)

FIGURE 3.8 (a) LPP to bandpass network element transformations and (b) bandpass network derived from LPP
network of Figure 3.3a.
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followed by a bandpass transformation applied to s0

s0 ¼ 1
BW

p2 þ v2
o

p
(3:23)

Mapping of the imaginary v axis to the V axis through this sequence of transformations leads to a band-
rejection response in v; frequency points 1, 2, 3, 4 have been singled out to better illustrate the
transformation. Figure 3.9a shows the magnitude response of the LPP, Figure 3.9b shows the high-pass
response obtained through Equation 3.22. This intermediate response is a normalized high-pass response
with a passband extending from V0

p ¼ 1 to 1 and a stopband extending from 0 to V0
s ¼ 1=Vs. Figure

3.9c shows the magnitude response obtained by applying Equation 3.23 to the variable s0. The frequency
range from V0 ¼ 0 to 1 in Figure 3.9b is mapped into the range from vo to 1 and from �vo to 0. The
frequency range from �1 to 0 in V0 is mapped into the ranges from 0 to vo and from �1 to �vo in v

as indicated in Figure 3.9c. It can be seen that the bandpass transformation applied to a normalized high-
pass response creates two passbands with ripple Ap from v¼ 0 to vp1 and from vp2 to1 and a stopband
with attenuation As from vs1 to vs2. The following conditions are satisfied:

vs1vs2 ¼ vp1vp2 ¼ v2
o

vs2 � vs1 ¼ BWV0
s ¼ BW=Vs

vp2 � vp1 ¼ BW

(3:24)

|HLPP(jΩ)|

1 ΩΩs

1 2 3

4
(a)

|HHP(j)|

123

1(b) Ωś Ω΄

HP

4

|HBR(jω)|

ωs1 ωs2ωp1 ωp2 ω

1́ 2΄ 3΄ 1́2˝3˝

4́ 4̋
(c)

FIGURE 3.9 Low-pass to band-reject transformation: (a) Low-pass response, (b) normalized high-pass response,
and (c) band-reject response derived from (a) and (b).
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From Equation 3.24, if vs1, vs2, vp1, vp2 as well as Ap and As are specified for a band-rejection filter, then
the selectivity factor of the equivalent LPP is calculated according to Vs¼ (vp2�vp1)=(vs2�vs1).
Similar to the case of bandpass filters, the band-rejection specifications must be made symmetric with
respect to vo so that an equivalent LPP can be specified. This is done following a similar procedure as for
the bandpass transformation by constraining either one of the passband frequencies or one of the
stopband frequencies so that the response becomes geometrically symmetric with respect to vo. The
option leading to the largest selectivity factor (that corresponds in general to the least expensive network
implementation) is then selected. In this case constraining design specifications refers to either increase
vp1 or vs2 or to decrease vp2 or vs1.

Example 3.4

Make following band-rejection filter specifications symmetric so that an equivalent LPP with the lowest
Vs can be found: vs1¼ 2p 10, vs2¼ 2p 14.4, vp1¼ 2p 9, vp2¼ 2p 17.

Solution

Defining vo in terms of the passband frequencies the upper stopband frequency acquires the new value
vs2¼ 2p 15.3 and the selectivity factor Vs¼ 1.509 is obtained. If vo is defined in terms of the stopband
frequencies the upper passband frequency is assigned the new value vp2¼ 2p 16 and the selectivity
factor Vs¼ 1.59 is obtained. Therefore, the second option with Vs¼ 1.59 corresponds to the largest
selectivity factor and the following transformation parameters result: BW¼vp2�vp1¼ 2p(16–9)¼ 2p 7,
vo
2¼vp1 vp1¼ (2p)2 144 is made.

Transformation of poles and zeros of the LPP transfer function. To determine the poles and zeros of the
band-rejection transfer function HBR(p) starting from those of HLPP(s), again a sequence of two
transformations is required: poles and zeros of the LPP (denoted sp1, sp2, . . . , spn and sz1, sz2, . . . , szn)
are transformed into poles and zeros of HHP(s0) s0p1, s

0
p2, . . . , s

0
z1, s

0
z2, . . . , s

0
zm, which are reciprocal to

those of the LPP. The high-pass also acquires n�m zeros at the origin as explained in Sections 3.3
and 3.2. The transformations described in Section 3.4 are then applied to the high-pass poles zeros
s0p1, s

0
p2, . . . , s

0
z1, s

0
z2, . . . , s

0
zm.

Band-rejection network transformation. Using the transformation (Equation 3.21), an inductor in the LPP
network with admittance y1(s)¼ 1=sln becomes an admittance Yp(p)¼ pCpþ 1=pLp, where Cp¼ 1=BW ln
and Lp¼BW ln=v2

o. A capacitor cn in the LPP with impedance zc(s)¼ 1=scn becomes with Equation 3.20 an
impedance Zs(p)¼ pLsþ 1=pCs, where Ls¼ 1=cnBW and Cs¼ cnBW=v2

o. To transform an LPP network
into a bandpass network, capacitors in the LPP network are replaced by a series connection of an inductor
with value Ls and a capacitor with value Cs, while inductors in the LPP are replaced by the parallel
combination of a capacitor Cp and inductor Lp. This is illustrated in Figure 3.10a.

Example 3.5

Consider the LPP network shown in Figure 3.3a. It corresponds to the specifications: Ap¼ 2 dB, As¼ 45
dB, andVs¼ 1.6. Transform it into a bandpass network using the following parameters from Example 3.4:
v2
o ¼ (2p)2 144, BW¼ 2p 7 Mrad=s (units for vo are microradians per second).

Solution

The circuit of Figure 3.10b is obtained applying the transformations indicated in Figure 3.10a.
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(b)

7.018×10–9 7.266×10–9 5.388×10–9

Vin

+

–

1.0
25.06×10–9 24.2×10–9 32.65×10–9

22.06×10–9

7.972×10–9 5.911×10–9 6.120×10–9 2.2242
29.76×10–9 28.74×10–9 Vout

+

–

ln

cn

BWIn
ωo

2

cnBW
ωo

2

BRLP(a)

1
cnBW

1
BWIn

FIGURE 3.10 (a) LPP to band-reject transformations of network elements and (b) band-reject network derived
from LPP of Figure 3.3a.
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4.1 Introduction

Using sensitivity one can evaluate the change in a filter performance characteristic (bandpass, Q-factor)
or in a filter function (input impedance, transfer function) resulting from a change in a nominal value of
one or more of the filter components. Hence, sensitivities and based on them sensitivity measures are
used to compare different realizations of electric filters that meet the same specifications. Sensitivities can
also be used to estimate the spread of the performance characteristic caused by the spread of the element
values. In the design of filters, one is interested both in choosing realizations that have low sensitivities
and in minimizing the sensitivities. This allows use of components with wider tolerances for a given
variation or a given spread of the filter characteristic or function.

4.2 Definitions of Sensitivity

Let y be the filter performance characteristic and x be the value of the parameter of a filter element that is
causing the characteristic change. The relative sensitivity is defined as follows:
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S y
x (y, x) ¼

qy
qx

x
y
¼ qy=y

qx=x
¼ q( ln y)

q( ln x)
(4:1)

It is usually used to establish the approximate relationship between the relative changes dy¼Dy=y and
dx¼Dx=x. Here, Dy and Dx are absolute changes. The interpretation of relative changes dy and dx
depends on the problem at hand. If these relative changes are small, one writes that

dy � S y
x (y, x)dx (4:2)

(This relationship assumes that S y
x is different from zero. If S y

x ¼ 0, the relative changes dy and dxmay be
independent. This happens, for example, in the passband of doubly terminated LC networks [see below],
where the passband attenuation always increases independently on the sign in the variation of a reactance
element.) The argument in the parentheses of Equation 4.2, when does not involve any ambiguity, will
usually be omitted, i.e., we will write simply S y

x . Some simple properties of the sensitivity determined by
Equation 4.1 can be established by differentiation only. They are summarized in Table 4.1 [1].
One can also define two semirelative sensitivities

Sx(y, x) ¼ x
qy
qx

¼ qy
qx=x

¼ qy
q( ln x)

(4:3)

which is here frequently denoted by Sx(y), and

Sy(y, x) ¼ 1
y
qy
qx

¼ qy=y
qx

¼ q( ln y)
qx

(4:4)

which is also denoted by Sy(x). Both these sensitivities can be used in a way similar to Equation 4.2 to
establish the approximate relationships between one relative and one absolute change. Finally, the
absolute sensitivity S(y, x) is simply a partial derivative of y with respect to x, i.e., it can be used to
establish the relationship between absolute changes. The variable x represents the value for any com-
ponent of the filter. The set of values for all the components will be denoted as x ¼ xif g, where
i ¼ 1, 2, . . . , n.

TABLE 4.1 Properties of the Relative Sensitivity

Property Number Relation Property Number Relation

1 Skyx ¼ Sykx ¼ Syx 10 Sy1=y2x ¼ Sy1x � Sy2x
2 Sxx ¼ Skxx ¼ Skxkx ¼ 1 11 Syx1 ¼ Syx2S

x2
x1

3 Sy1=x ¼ S1=yx ¼ �Syx 12a Syx ¼ Sjyjx þ j arg ySarg yx

4 Sy1y2x ¼ Sy1x þ Sy2x 13a Sarg yx ¼ 1
arg y Im Syx

5 SP
n
i¼1yi

x ¼Pn
i¼1 S

yi
x 14a Sjyjx ¼ Re Syx

6 Sy
n

x ¼ nSyx 15 Syþz
x ¼ 1

yþz ySyx þ zSzx
� �

7 Sx
n

x ¼ nSkx
n

x ¼ n 16
S

Pn

y¼1
yi

x ¼
Pn

i¼1
yiS

yi
xPn

i¼1
yi

8 Syxn ¼ 1
n S

y
x 17 Sln yx ¼ 1

ln y S
y
x

9 Syxn ¼ Sxkxn ¼ 1
n

a In this relation, y is a complex quantity and x is a real quantity.
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4.3 Function Sensitivity to One Variable

Let the chosen quantity y be the filter function F(s, x). When it does not involve any ambiguity, this
function will be denoted as F(s). The element x is a passive or active element in the circuit realization of
the function. The function sensitivity is defined as

SF(s, x)x ¼ qF(s, x)
qx

x
F(s, x)

(4:5)

Under condition of sinusoidal steady state, when s ¼ jv, the function F( jv, x) can be represented as

F( jv, x) ¼ jF( jv, x)je j arg F( jv,x) ¼ e�a(v, x)þjb(v,x) (4:6)

and using the left-hand part of Equation 4.6, one finds that

SF( jv,x)x ¼ Re SF( jv,x)x þ j Im SF( jv,x)x ¼ SjF( jv,x)jx þ j
q arg F( jv, x)

qx=x
(4:7)

as follows from property 12 of Table 4.1. Thus, the real part of the function sensitivity gives the relative
change in the magnitude response, and the imaginary part gives the change in the phase response, both
with respect to a normalized element change. If one determines dF ¼ [F( jv, x)� F( jv, x0)]=F( jv, x0)
and dx ¼ (x � x0)=x0, where x0 is the initial value of the element and the deflection Dx ¼ x � x0 is small,
then Equation 4.5 is used to write

dF � SF(s, x)x dx (4:8)

And if one determines djFj ¼ [jF( jv, x)� F( jv, x0)j]=jF( jv, x0)j, then using Equation 4.7, one obtains

djFj � Re SF(s, x)x dx (4:9)

These calculations assume that the sensitivity is also calculated at x ¼ x0.
A frequently used alternate form of Equation 4.7 is obtained by using the attenuation function

a(v, x) ¼ ln 1
jF( jv, x)j
� �

¼ � ln jF( jv, x)j and the phase function b(v, x) ¼ arg F( jv, x) defined by the
right-hand part of Equation 4.6 (this interpretation is usually used when F(s) is the filter transfer function
T(s)). In terms of these, Equation 4.7 may be rewritten as

SF( jv,x)x ¼ � qa(v, x)
qx=x

þ j
qb(v, x)
qx=x

¼ �Sx[a(v), x]þ jSx[b(v), x] (4:10)

From Equations 4.7 and 4.10 one concludes that SjF( jv,x)jx ¼ �Sx[a(v), x]. Besides, using Equations 4.7
and 4.10 one can write that

D arg F( jv, x) ¼ Db(v, x) � Im SF( jv,x)x dx ¼ Sx[b(v), x]dx (4:11)

where D arg F( jv, x) ¼ arg F( jv, x)� arg F( jv, x0).
Usually the filter function is a ratio of two polynomials N(s) and D(s), i.e.,

F(s) ¼ N(s)
D(s)

(4:12)
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Then, assuming that the coefficients of N(s) and D(s) depend on the element x, and using Equation 4.1,
one derives the following form of Equation 4.5:

SF(s)x ¼ x
qN(s)=qx
N(s)

� qD(s)=qx
D(s)

� �
(4:13)

which is sometimes more convenient.

4.4 Coefficient Sensitivity

In general, a network function F(s) for any active or passive lumped network is a ratio of polynomials
having the form

F(s) ¼ N(s)
D(s)

¼ a0 þ a1sþ a2s2 þ � � � þ amsm

d0 þ d1sþ d2s2 þ � � � þ dnsn
(4:14)

Here the coefficients ai and di are real and can be functions of an arbitrary filter element x. For such an
element x one may define the relative coefficient sensitivities as follows:

Saix ¼ qai
qx

x
ai
, Sdix ¼ qdi

qx
x
di

(4:15)

or the semirelative coefficient sensitivities (they are even more useful):

Sx(ai) ¼ x
qai
qx

, Sx(di) ¼ x
qdi
qx

(4:16)

The coefficient sensitivities defined in this way are related to the function sensitivity introduced in
Section 4.3. Indeed, using Equations 4.13 and 4.16 one easily obtains that

SF(s)x ¼
Pm

i¼0 sx(ai)s
i

N(s)
�
Pn

i¼0 sx(di)s
i

D(s)

� �
(4:17)

or, in terms of relative sensitivities, that

SF(s)x ¼
Pm

i¼0 s
ai
x ais

i

N(s)
�
Pn

i¼0 s
di
x dis

i

D(s)

� �
(4:18)

The manner in which the filter function depends on any element x is a bilinear dependence [2]. Thus,
Equation 4.14 may also be written in the form

F(s) ¼ N(s)
D(s)

¼ N1(s)þ xN2(s)
D1(s)þ xD2(s)

(4:19)

where N1(s),N2(s),D1(s), and D2(s) are polynomials with real coefficients that are not functions of the
filter element x. This is true whether x is chosen to be the value of a passive resistor or capacitor, the gain
of some amplifier or controlled source, etc. Only for filters with ideal transformers, ideal gyrators, and
ideal negative impedance converters, the filter functions are the biquadratic functions of the ideal element
parameters [2].
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Because of the bilinear dependence property, there are only two ways in which a coefficient, say, ai may
depend on network element. The first of these has the form ai ¼ kx, in which case Saix ¼ 1 and
Sx(ai) ¼ kx; the second possible dependence for a coefficient ai (or di) is ai ¼ k0 þ k1x, in which case
Saix ¼ k1x=(k0 þ k1x) and Sx(ai) ¼ k1x: In this latter situation one has two cases: (1) the parities of the
term are the same, and thus the magnitude of Saix is less than one and (2) the terms have opposite parities,
in which case the magnitude of Saix is greater than one. In the last case the relative sensitivity Saix can have
an infinite value, as a result of dividing by zero. In this case, a more meaningful measure of the change
would be to use the semirelative coefficient sensitivity Sx(ai).

4.5 Root Sensitivities

A filter function can also be represented as

F(s) ¼ amP
m
i¼0(s� zi)

dnP
n
i¼0(s� pi)

(4:20)

where zi are zeros and pi are poles. If F(s) is also a function of the filter element x, the location of these
poles and zeros will depend on this element. This dependence is described by the semirelative root
sensitivities

Sx(zi) ¼ x
qzi
qx

, Sx(pi) ¼ x
qpi
qx

(4:21)

We will give calculation of the pole sensitivities only (they are used more frequently, to verify the
stability) calculating the absolute change Dpi for a given dx, the calculation of zeros follows the same
pattern. Assume that pi is a simple pole of F(s), then

D(pi) ¼ D1(pi)þ xD2(pi) ¼ 0 (4:22)

When the parameter x becomes x þ Dx, the pole moves to the point pi þ Dpi. Substituting these values in
Equation 4.22 one obtains that

D1 pi þ Dpið Þ þ (x þ Dx)D2 pi þ Dpið Þ ¼ 0 (4:23)

If one uses Taylor’s expansions D1 pi þ Dpið Þ ¼ D1(pi)þ qD1(s)=qs½ � js¼pi
Dpi þ � � � and D2 pi þ Dpið Þ ¼

D2(pi)þ qD2(s)=qs½ � js¼pi
Dpi þ � � � and substitutes them in Equation 4.23, keeping the terms of the first

order of smallness, one obtains that

Dpi
Dx

¼ �D2 pið Þ
D0 pið Þ (4:24)

where D 0 pið Þ ¼ qD(s)
qs

� � ����
s¼pi

. This result allows calculation of the pole sensitivity, which becomes

Sx(pi) ¼ x
qpi
qx

¼ �x
D2 pið Þ
D 0 pið Þ (4:25)

One can write that D1(s) ¼ b0 þ b1sþ b2s2 þ � � � and D2(s) ¼ c0 þ c1sþ c2s2 þ � � �. Then, taking
into consideration Equation 4.19, one can write that D(s) ¼ d0 þ d1sþ d2s2 þ � � � ¼ b0 þ xc0ð Þþ
b1 þ xc1ð Þsþ b2 þ xc2ð Þs2 þ � � �. Differentiating this result, one obtains that D2(s) ¼ c0 þ c1sþ
c2s2 þ � � � ¼ qd0=qx þ qd1=qxð Þsþ qd2=qxð Þs2 þ � � � ¼ (1=x) Sx d0ð Þ þ Sx d1ð Þsþ Sx d2ð Þs2 þ � � �½ �. From
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the other side, D0(s) ¼ qD(s)
qs ¼ d1 þ 2d2sþ 3d3s2 þ � � �. Calculating the two last expressions at s ¼ pi and

substituting them in Equation 4.25, one obtains that

Sx pið Þ ¼ �
Pn

j¼0 p
j
isx dj
� �

Pn�1
j¼0 ( jþ 1)djþ1p

j
i

¼ �
Pn

j¼0 djp
j
is
dj
xPn�1

j¼0 ( jþ 1)djþ1p
j
i

(4:26)

The result (Equation 4.26) produces the pole sensitivity without representation of poles via coefficients of
D(s) (which is not possible if n > 4). It is convenient even for polynomials of low degree [3].
If pi is a multiple root then the derivative D0 pið Þ ¼ 0 and Sx pið Þ ¼ 1. But this does not mean that the

variation dx causes infinitely large change of the pole location. This variation splits the multiple root into
a group of simple roots. The location of these roots can be calculated in the following way. The roots are
always satisfying the equation D1(s)þ (x þ Dx)D2(s) ¼ 0, i.e., the equation D(s)þ DxD2(s) ¼ 0. One can
rewrite the last equation as

1þ dx
xD2(s)
D(s)

� �
¼ 0 (4:27)

where dx ¼ Dx=x as usual. The function G(s) ¼ xD2(s)
D(s)

h i
can be represented as a sum of simple ratios.

If the roots of D(s) (i.e., the poles of F(s)) are simple, then

G(s) ¼
Xn
j¼1

Kip

s� pi
þ K0p (4:28)

where
K0p ¼ G(1)
Kip ¼ s� pið ÞG(s)js¼pi

In the vicinity of s ¼ pi, Equation 4.27 can be substituted by

lims!pi [1þ dxG(s)] ¼ 1þ dx
Kip

s� pi
(4:29)

Equating the right-hand side of Equation 4.29 to zero and substituting s ¼ pi þ Dpi in this equation, one
obtains that when Dx ! 0, the pole sensitivity can be calculated as

Sx pið Þ ¼ qpi
qx=x

¼ �Kip (4:30)

If a pole of G(s) is not simple, but multiple, with multiplicity of k, then the limit form of Equation 4.28
will be

1þ dx
K (1)
ip

s� pi
þ K (2)

ip

s� pið Þ2 þ � � � þ K (k)
ip

s� pið Þk
" #

¼ 0 (4:31)

If now s ¼ pi þ Dpi is substituted in Equation 4.31 and only the largest term is kept, one finds that

Dpi ¼ �dxK (k)
ip

h i1=k
(4:32)

Hence, these new simple roots of D(s) are equiangularly spaced on a circle around pi.
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Similar calculations with similar results can be obtained for the zeros zi of the function F(s). They,
together with the calculation for poles, allow one to establish the relationship between relative sensitivity
of F(s) and the sensitivities of its zeros and poles. Indeed, taking into consideration Equation 4.19, the
result (Equation 4.13) can be rewritten as

SF(s)x ¼ xN2(s)
N(s)

� xD2(s)
D(s)

¼ H(s)� G(s) (4:33)

Expanding both H(s) and G(s) into sums of simple ratios, one obtains

SF(s)x ¼
Xn
i¼1

Sx(pi)
s� pi

�
Xm
i¼1

Sx(zi)
s� zi

þ K0z � K0p (4:34)

Here, K0z ¼ H(1), K0p ¼ G(1), and it is assumed that both zeros and poles of F(s) are simple. Finally, a
useful modification is obtained for the case when a coefficient dk in the polynomial D(s) ¼ d0 þ
d1sþ d2s2 þ � � � is considered as a variable parameter. If dk is substituted by dk þ Ddk, the polynomial
D(s) becomes D(s)þ Ddksk. For this case the function G(s) ¼ (ddksk)=D(s) and one can write that

1þ Ddksk

D(s)
¼ 1þ Ddksk

(s� pi)D0(s)
(4:35)

Here D0(s) ¼ qD(s)=qs and it can be assumed that pi is a simple root of D(s). Hence, in the vicinity of
s ¼ pi þ Dpi, the value of Dpi can be obtained from the equation

1þ Ddkpki
DpiD0(pi)

¼ 0 (4:36)

From Equation 4.36, one finds that

Dpi
Ddk

¼ � pki
D0(pi)

(4:37)

and, if necessary, the pole-coefficient sensitivity

Sdk (pi) ¼
qpi

qdk=dk
¼ �dk

pki
D0(pi)

(4:38)

4.6 Statistical Model for One Variable

Assume that x is the value of a filter element. This x differs from the average value �x in a way that cannot
be controlled by the filter designer. This situation can be modeled by considering x as a random variable.
Its statistical distribution depends on the manufacturing process. An approximate calculation is sufficient
in most practical cases. If F(s, x) is a filter function that depends on x, then the variation F(s, x) around
the average value �x can be approximated by

F(s, x) � F(s, �x)þ (x � �x)
qF(s, x)
qx

jx¼�x (4:39)
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The statistical interpretation of Equation 4.29 follows. Due to its dependence on the random variable, it
becomes a random variable as well. The values �x, F(s, �x) ¼ �F(s), and qF(s, x)=qx calculated at x ¼ �x are
constants. The last constant can be denoted as qF(s, �x)=qx. Instead of x and F(s, x) it is preferable to use
their relative deviations from the average values, namely dx ¼ (x � �x)=�x and dF(s) ¼ (F � �F)=�F. Then
one obtains from Equation 4.39 that

dF(s) ¼ �x
F(s, �x)

qF(s, �x)
qx

� �
dx ¼ SF(s,�x)x dx (4:40)

Hence, in the first-order approximation the random variables dF(s) and dx are proportional, and the
proportionality factor is the same sensitivity of F(s, x) with respect to x calculated at the average point �x.
Thus, on the jv axis the average and the variance of dF( jv) and dx are related by

mdF � SF(s,�x)x mdx (4:41)

and

s2
dF ¼ E

F( jv, x)� F( jv, �x)
F( jv, �x)

����
����
2

( )
� jSF( jv,�x)j2s2

dx (4:42)

where E ¼ {} means the expected value. Here, mdx is the average value of dx, mdF is the average value of
dF, and s2

dx and s2
dF are the dispersions of these values. If the deviation dx is bound by the modulus Mdx ,

i.e., the probability distribution is concentrated in the interval [�Mdx ,Mdx], then the deviation dF is
bound in the first approximation by

jdFj � MdF � jSF( jv,�x)x jMdx (4:43)

Normally, the probability distribution of x should be centered around the average value �x, so that it can
be assumed mdx ¼ 0. This implies that mdF ¼ 0 as well.
It is not difficult to see that Equations 4.8 and 4.40 are different by interpretation of dx and dF

(since these were deflections from the nominal point, it was tacitly assumed that we were dealing with
one sample of the filter, here they are random) and the point of calculation of sensitivity. The
interpretation with a random variable is possible for Equation 4.9 as well. One has to determine
djFj ¼ [jF( jv, x)j � jF( jv, �x)j]=jF( jv, �x)j, then using Equation 4.9 one can write

mdjFj � Re SF(s,�x)x mdx (4:44)

and

s2
djFj � Re SF( jv,�x)x

� �2
s2
dx (4:45)

The result (Equation 4.11) can also be interpreted for random variables and allows one to calculate the
average and the variance of the change in the filter function argument (which is hardly ever done in filter
design).

4.7 Multiparameter Sensitivities and Sensitivity Measures

The multiparameter sensitivities (sometimes [4] they are called sensitivity indices) appear as an effort to
introduce generalized functions that represent the influence of all filter elements. They can be used for
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comparison of different designs and should be minimized in the design process. The sensitivity measures
appear as numbers (they are functionals of the parameter sensitivities) that should be minimized in the
design.
First of all, the definition of function sensitivity given in Equation 4.5 is readily extended to deter-

mine the effect on the filter function of variation of more than one component. In this case
F(s, x1, x2, . . . , xn) ¼ F(s, x) and one may write that

dF(s, x)
F(s, x)

¼ d[ln F(s, x)] ¼
Xn
i¼1

SF(s,x)xi

dxi
xi

(4:46)

where n is the number of components being considered. Here SF(s, x)xi ¼ xiqF(s, x)½ �= F(s, x)qxi½ �. From this
result one directly (substituting s ¼ jv and separating real and imaginary parts) obtains that

djF( jv, x)j
jF( jv, x)j ¼

Xn
i¼1

Re SF( jv,x)xi

dxi
xi

(4:47)

and

d arg F( j,v) ¼
Xn
i¼1

Im SF( jv,x)xi

dxi
xi

(4:48)

The results (Equations 4.47 and 4.48) are used to evaluate the deviations of the magnitude and phase
values of a given filter realization from their nominal values when the circuit elements have prescribed
normalized deviations dxi ¼ xi � xi0ð Þ=xi0 (i ¼ 1, 2, � � � n). One can introduce a column vector of nor-
malized deviation dx1dx2 � � � dxn½ �t, where t means transpose and a sensitivity row vector

SF(s,x)x ¼ SF(s,x)x1 SF(s,x)x2 � � � SF(s,x)xn

h i
(4:49)

Then defining dF(s, x) ¼ F(s, x)� F s, x0ð Þ½ �=F s, x0ð Þ, one can use Equation 4.46 to write

dF(s, x) � SF(s,x)x dx (4:50)

which is analogous to Equation 4.8. As was mentioned before, the calculation of the filter function
magnitude change is traditionally considered of primary importance in filter design. Introducing
djF(s, x)j ¼ [jF( jv, x)j � jF jv, x0ð Þj]=jF( jv, x0)j and using Equation 4.47 one writes

djF( jv, x)j � Re SF( jv,x)x

	 

dx (4:51)

where the row vector

Re SF( jv,x)x

	 
 ¼ Re SF( jv,x)x1 Re SF( jv,x)x2 � � �Re SF( jv,x)xn

h i
(4:52)

is used. This vector is determined by the function F(s, x) and its derivatives calculated at x ¼ x0. To
characterize and compare the vectors of this type, one can introduce different vector measures that are
called sensitivity indices. The most frequently used ones are the average sensitivity index

c(F) ¼
Xn
i¼1

Re SF( jv,x)xi (4:53)
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then the worst-case sensitivity index

v(F) ¼
Xn
i¼1

Re SF( jv,x)xi

�� �� (4:54)

(sometimes it is called worst-case magnitude sensitivity), and, finally, the quadratic sensitivity index

r(F) ¼
Xn
i¼1

Re SF( jv,x)xi

� �2" #1=2
(4:55)

These sensitivity indices can be considered as multiparameter sensitivities.
If we let the individual nominal values of n elements be given as xi0, then we may define a tolerance

constant ei (positive number) by the requirement that

xi0(1� ei) � xi � xi0(1� ei) (4:56)

Then we may define a worst-case measure of sensitivity

MW ¼
ðv2

v1

Xn
i¼1

Re SF( jv,x)xi

�� ��ei
 !

dv (4:57)

The goal of the filter design should be the search for the set of tolerance constants yielding the least
expensive in the production filter. This is a difficult problem, and at the design stage it can be modeled by
the minimization of the chosen sensitivity measure. In the design based on the worst-case measure of
sensitivity, the usual approach [2] is to choose the tolerance constants in such a way that the contribu-
tions Re SF( jv,x)xi

�� ��ei are approximately equal, i.e., the elements with lower sensitivities get wider tolerance
constants.
For any values of the filter elements xi satisfying Equation 4.56, the magnitude characteristic will lie

within the definite bounds that are apart from the nominal characteristic by the distance less than
eimaxv(F). If the tolerance constants are all equal to «, then the maximum deviation from the nominal
characteristic (when x ¼ x0) is thus given as ev(F). And the worst-case measure of sensitivity becomes,
for this case

MW ¼ e
ðv2

v1

v(F)dv (4:58)

Considering the imaginary parts of the sensitivity row vector one can introduce corresponding sensitivity
indices and similar sensitivity measures for the filter function phase.
The element tolerances obtained using the worst-case sensitivity index and measures are extremely

tight and this set of elements is frequently unfeasible. Besides, with given tolerances, the set of elements
producing the worst-case sensitivity is never obtained in practice. A more feasible set of tolerances is
obtained when one uses the sum of the squares of the individual functions. One may define a quadratic
measure of sensitivity as

MQ ¼
ðv2

v1

Xn
i¼1

Re SF( jv,x)xi

� �2
e2i

" #
dv (4:59)
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In the design using the sensitivity measure given by Equation 4.59 one also tries to get the tolerances so
that the contributions of each term

�
Re SF( jv,x)xi

�2
e2i are approximately equal in the considered bandwidth.

Again, if the tolerances are equal, then this expression is simplified to

MQ ¼ e2
ðv2

v1

r2(F)dv (4:60)

which is useful for comparison of different filters.
As one can see, the multivariable sensitivities appear as a result of certain operations with the

sensitivity row vector components. Additional multivariable sensitivities could be introduced, for
example, the sum of magnitudes of vector components, the sum of their squares, etc. The multivariable
sensitivities and the measures considered above represent the most frequently used filter design in the
context of filter characteristic variations.
The case of random variables can also be generalized so that imprecisions of the values of several

elements are simultaneously considered. Around the nominal value �x ¼ [�xi] (i ¼ 1, 2, � � � n) the function
F(s, �x) can be approximated as

F(s, x) � F(s, �x)þ
Xn
i¼1

x � �xið Þ qF(s, x)
qxi

(4:61)

And from this approximation one obtains

dF(s, x) �
Xn
i¼1

SF(s,x)xi dxi (4:62)

Here, dF(s, x) ¼ F(s, x)� F(s, x)½ �=F(s, x) and dxi ¼ xi � �xið Þ=�xi (i ¼ 1, 2, � � � n). This result can be
rewritten as

dF(s, x) � SF(s,x)x dx (4:63)

and is completely analogous to Equation 4.50. It is different in interpretation only. The components of

the column vector dx1dx2 � � � dxn½ �t are the random variables now and the components of the row vector

SF(s,x)x ¼ SF(s,x)x1 SF(s,x)x2 � � � SF(s,x)xn

h i
are calculated at the point x ¼ �x.

This interpretation allow us to obtain from Equation 4.63 that on the jv axis

mdF ¼
Xn
i¼1

SF( jv,x)xi mi (4:64)

Here, mi is the average of dxi. If all mi are equal, i.e., mi ¼ mx (i ¼ 1, 2, � � � n), one can introduce the
average sensitivity index

c(F) ¼
Xn
i¼1

SF( jv,x)xi (4:65)

Using Equation 4.65, the average value can be calculated as mdF ¼ mxc(F). If, in addition, the deviation
of dxi is bound by Mi, then
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MdF �
Xn
i¼1

SF( jv,x)xi

�� ��Mi (4:66)

If the elements of a filter have the same precision, which means that all Mi are equal, it is reasonable to
introduce the worst-case sensitivity index

v(F) ¼
Xn
i¼1

SF( jv,x)xi

�� �� (4:67)

so that when all Mi are equal to Mx , MdF ¼ Mxv(F). Finally, one can calculate s2
dF ¼ E{[dF( jv, x)]*

dF( jv, x) } (here * means complex conjugate) or

s2
dF ¼ E SF( jv,x)x dx

� �
* SF( jv,x)x dx
� �� �

(4:68)

To take into consideration possible correlation between the components dxi one can do the following.
The value of SF( jv,x)x dx

� �
is a scalar. Then

SF( jv,x)x dx
� � ¼ SF( jv,x)x dx

� �t¼ (dx)t SF( jv,x)x

� �t
(4:69)

Substituting this result into Equation 4.68 one obtains that

s2
dF ¼ E SF( jv,x)x

� �
*(dx)*(dx)t SF( jv,x)xi

� �t �
(4:70)

But the components of dx are real, i.e., (dx)* ¼ dx and the result of multiplication in the curly brackets of
Equation 4.70 is a square n3 n matrix. Then E{ (dx)*(dx)t} is also a square matrix

[P] ¼

s2
x1 rx1x2 � � � rx1xn

rx2x1 s2
x2 � � � rx2xn

..

. ..
. . .

. ..
.

rxnx1 � � � � � � s2
xn

2
6664

3
7775 (4:71)

the diagonal elements of which are variances of dxi and off-diagonal terms are nonnormalized correlation
coefficients. Then, Equation 4.70 can be rewritten as

s2
dF ¼ SF( jv,x)x

� �
*[P] SF( jv,x)x

� �t
(4:72)

which is sometimes [4] called the propagation-of-variance formula. In the absence of correlation between
the variations dxi the matrix [P] has the diagonal terms only and Equation 4.72 becomes

s2
dF ¼

Xn
i¼1

SF( jv,x)xi

�� ��2s2
xi (4:73)

If all s2
xi are equal to s2

x one can introduce a quadratic sensitivity index

r(F) ¼
Xn
i¼1

SF( jv,x)xi

�� ��2" #1=2
(4:74)
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and in this case s2
dF ¼ r2(F)s2

x (the value r
2(F) is sometimes called Schoeffler multivariable sensitivity).

One can also introduce two sensitivity measures, namely, the worst-case sensitivity measure

MW ¼
ðv2

v1

�Xn
i¼1

Re SF( jv,x)xi

�� ��mi

�
dv (4:75)

and the quadratic sensitivity measure

MQ ¼
ðv2

v1

SF( jv,x)x

� �
*[P] SF( jv,x)x

� �t
dv (4:76)

which, when the correlation between the elements of dx is absent, becomes

MQ ¼
ðv2

v1

Xn
i¼1

SF( jv,x)xi

�� ��2s2
i

" #
dv (4:77)

Here, for simplicity the notation si ¼ sxi is used.
The sensitivity indices and sensitivity measures introduced for the case when dx is a random vector are

cumulative; they take into consideration the variation of the amplitude and phase of the filter function.
For this reason some authors prefer to use the indices as they are defined in Equations 4.65, 4.67, and 4.74
and the measures as they are defined by Equations 4.75 and 4.77 for the deterministic cases as well (the
deterministic case does not assume any correlation between the variations dxi), with the corresponding
substitution of mi by ei and s2

i by e
2
i . From the other side, one can take Equation 4.51 and use it for the

case of random vector dx considering, for example, the variation djF( jv, x)j as a random variable and
calculating mdjFj and s

2
djFj, which will be characteristics of this variable. In this case one can use the results

(Equations 4.75, 4.77, etc.) substituting SF(s,x)xi by Re SF(s,x)xi . These possibilities are responsible for many
formulations of multiparameter sensitivities that represent different measures of the vector SF(s,x)x . In the
design based, for example, on Equations 4.75 and 4.77, one determines the required s2

dF using the reject
probability [2] depending on the ratio of edF=sdF . Here, edF is the tolerance of jdF( jv, x)j and in many
cases one takes edF=sdF ¼ 2:5 which gives the reject probability of 0.01. Then, one determines the
dispersion s2

i so that the contributions of each term in Equation 4.77 are equal. Finally, using the
probability function that describes the distribution of dxi within the tolerance borders one finds these
borders (if, for example, the selected element has evenly distributed values �ei � dxi � ei, then
ei ¼

ffiffiffi
3

p
si; for Gaussian distribution one frequently accepts ei ¼ 2:5si).

The preliminary calculation of the coefficient sensitivities is useful for finding the sensitivity
measures. If, for example, one calculates a multivariable statistical measure of sensitivity then one can
consider that

F( jv, x) ¼ a0 þ a1( jv)þ � � � þ am( jv)
m

d0 þ d( jv)þ � � � þ dn( jv)
n ¼ F( jv, a, d, x) (4:78)

where
a ¼ a0 a1 � � � am½ �t
d ¼ d0 d1 � � � dn½ �t
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Then, the components SF( jv,x)xi defined earlier can be rewritten as

SF( jv,x)xi ¼ xi
F( jv, x)

qat

qxi
raF( jv, x)þ qdt

qxi
rdF( jv, x)

� �

¼ 1
F( jv, x)

Xm
j¼0

qF( jv, x)
qaj

Sxi (aj)þ
Xn
j¼0

qF( jv, x)
qdj

Sxi (dj)

" #
(4:79)

where

raF( jv, x) ¼ qF( jv, x)=qa0 qF( jv, x)=qa1 � � � qF( jv, x)=qam½ �t

and

rdF( jv, x) ¼ qF( jv, x)=qd0 qF( jv, x)=qd1 � � � qF( jv, x)=qdn½ �t

For a given transfer function, the components of the vectorsraF( jv, x) andrdF( jv, x) are independent
of the form of the realization or the values of the elements and can be calculated in advance. If we now
define a matrix k� (mþ 1) C1 as

C1 ¼
Sx1 a0ð Þ Sx1 a1ð Þ � � � Sx1 amð Þ

..

. ..
. . .

. ..
.

Sxk a0ð Þ Sxk a1ð Þ � � � Sxk amð Þ

2
64

3
75 (4:80)

and k� (nþ 1) matrix C2 as

C2 ¼
Sx1 d0ð Þ Sx1 d1ð Þ � � � Sx1 dnð Þ

..

. ..
. . .

. ..
.

Sxk d0ð Þ Sxk d1ð Þ � � � Sxk dnð Þ

2
64

3
75 (4:81)

then one can rewrite

SF( jv,x)x

	 
t¼ SF( jv,x)x1 SF( jv,x)x2 � � � SF( jv,x)xk

h it
¼ C1

raF( jv, x)
F( jv, x)

þ C2
rdF( jv, x)
F( jv, x)

(4:82)

Then, the multiparameter sensitivity measure can be written as

MQ¼
ðv2

v1

raF
F

� �*t
Ct
1PC1

raF
F

� �
þ rdF

F

� �*t
Ct
2PC2

rdF
F

� ��
dvþ

ðv2

v1

2Re
raF
F

� �*t
Ct
1PC2

rdF
F

� �" #
dv

2
4

(4:83)

and this definition of statistical multiparameter sensitivity measure may be directly applied to a given
network realization. In a similar fashion, the matrices of unnormalized coefficient sensitivities can be
used with other multiparameter sensitivity measures.
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4.8 Sensitivity Invariants

When one is talking about sensitivity invariants [5–7], it is assumed that for a filter function F(s, x) there
exists the relationship

Xn
i¼1

SF(s,x)xi ¼ k (4:84)

where
x ¼ x1x2 � � � xn½ �t, as usual,
k is a constant

These relationships are useful to check the sensitivity calculations. In the cases considered below, this
constant can have one of three possible values, namely, 1, 0, and �1, and the sensitivity invariants are
obtained from the homogeneity of some of the filter functions.
The function F(s, x) is called homogeneous of order k with respect to the vector x if and only if it

satisfies the relationship

F(s,lx) ¼ lkF(s, x) (4:85)

where l is an arbitrary scalar. For the homogeneous function F(s, x) the sensitivities are related by
Equation 4.84. Indeed, if one takes the logarithm of both sides of Equation 4.85, one obtains

ln F(s, lx) ¼ k ln lþ ln F(s, x) (4:86)

Taking the derivative of both sides of Equation 4.86 with respect to l one obtains that

1
F(s,lx)

Xn
i¼1

qF(s, lx)
q lxið Þ xi

" #
¼ K

l
(4:87)

Substituting l¼ 1 in Equation 4.87 gives Equation 4.84.
Let the filter be a passive RLC circuit that includes r resistors, l inductors, and c capacitors, so that

r þ l þ c ¼ n and x ¼ R1R2 � � �RrL1L2 � � � LlD1D2 � � �Dc½ �, where Di ¼ 1=Ci. One of the frequently used
operations is the impedance scaling. If the scaling operation is applied to a port impedance or a
transimpedance of the filter, i.e., F(s, x) ¼ Z(s, x), then

Z(s,lx) ¼ lZ(s, x) (4:88)

Equation 4.88 is identical to Equation 4.85, with k¼ 1. Then, one can write that

Xr
i¼1

SZ(s,x)Ri
þ
Xl
i¼1

SZ(s,x)Li þ
Xc
i¼1

SZ(s,x)Di
¼ 1 (4:89)

Considering that Di ¼ 1=Ci and SZ(s,x)Ci
¼ �SZ(s,x)Di

(see Table 4.1), this result can be rewritten as

Xr
i¼1

SZ(s,x)Ri
þ
Xl
i¼1

SZ(s,x)Li �
Xc
i¼1

SZ(s,x)Ci
¼ 1 (4:90)
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If the same scaling operation is applied to a port admittance or a transadmittance of the filter, i.e.,
F(s, x) ¼ Y(s, x), then,

Y(s, lx) ¼ l�1Y(s, x) (4:91)

But Equation 4.91 is identical to Equation 4.85, with k¼�1. Then,

Xr
i¼1

SY(s,x)Ri
þ
Xl
i¼1

SY(s,x)Li �
Xc
i¼1

SY(s,x)Ci
¼ �1 (4:92)

Finally, the transfer functions (voltage or current) do not depend on the scaling operation, i.e., if
F(s, x) ¼ T(s, x), hence,

T(s,lx) ¼ T(s, x) (4:93)

which is identical to Equation 4.85, with k¼ 0. Then,

Xr
i¼1

ST(s,x)Ri
þ
Xl
i¼1

ST(s,x)Li �
Xc
i¼1

ST(s,x)Ci
¼ 0 (4:94)

Additional sensitivity invariants can be obtained using the relation SF(s,x)xi ¼ �SZ(s,x)1=xi
and using Gi ¼ 1=Ri

and Gi ¼ 1=Li.
Another group of sensitivity invariants is obtained using the frequency scaling operation. The

following relationship is held for a filter function:

F s,Ri,lLi,lCið Þ ¼ F ls,Ri, Li,Cið Þ (4:95)

Taking the logarithm of both parts, then differentiating both sides with respect to l and substituting
l¼ 1 in both sides gives

Xl
i¼1

SF(s,x)Li þ
Xc
i¼1

SF(s,x)Ci
¼ SF(s,x)s (4:96)

Substituting s ¼ jv in Equation 4.96 and dividing the real and imaginary parts, one obtains

Re
Xl
i¼1

SF( jv,x)Li þ Re
Xc
i¼1

SF( jv,x)Ci
¼ v

q ln jT(v)j
qv

¼ � qa(v)
qv

(4:97)

and

Im
Xl
i¼1

SF( jv,x)Li þ Im
Xc
i¼1

SF( jv,x)Ci
¼ v

q argT(v)
qv

(4:98)

The results (Equations 4.97 and 4.98) show that in an RLC filter, when all inductors and capacitors
(but not resistors) are subjected to the same relative change, then the resulting change in the magnitude
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characteristic does not depend on the circuit realization and is determined by the slope of the
magnitude characteristic at a chosen frequency. A similar statement is valid for the phase characteristic.
The sensitivity invariants for passive RC circuits can be obtained from the corresponding invariants for

passive RLC circuits omitting the terms for sensitivities to the inductor variations. The results can be
summarized the following way. For a passive RC circuit

Xr
i¼1

SF(s,x)Ri
�
Xc
i¼1

SF(s,x)Ci
¼ k (4:99)

where k¼ 1 if F(s, x) is an input impedance or transimpedance function, then k¼ 0 if F(s, x) is a voltage-
or current-transfer function, and k¼�1 if F(s, x) is an input admittance or transconductance function.
Application of the frequency scaling gives the result

Xc
i¼1

SF(s,x)Ci
¼ SF(s,x)s (4:100)

and combination of Equations 4.99 and 4.100 gives

Xr
i¼1

SF(s,x)Ri
¼ SF(s,x)s þ k (4:101)

and

Xr
i¼1

SF(s,x)Ri
þ
Xc
i¼1

SF(s,x)Ci
¼ 2SF(s,x)s þ k (4:102)

Considering real and imaginary parts of Equations 4.100 through 4.102, one can obtain the results that
determine the limitations imposed on the sensitivity sums by the function F( jv, x) when resistors and=or
capacitors are subjected to the same relative change.
Finally, if the filter is not passive, then the vector of parameters

x ¼ R1R2 � � �RrL1L2 � � � LlC1C2 � � �CcRT1RT2 � � �RTa

GT1GT2 � � �GTbAn1An2 � � �AnpAi1Ai2 � � �Aiq

� �
includes the components of transresistors RTk,

transconductances GTk, voltage amplifiers Ank, and current amplifiers Aik. Applying the impedance
scaling one can obtain the sensitivity invariant

Xr
i¼1

SF(s,x)Ri
þ
Xl
i¼1

SF(s,x)Li �
Xc
i¼1

SF(s,x)Ci
þ
Xa
i¼1

SF(s,x)RTi
�
Xb
i¼1

SF(s,x)GTi
¼ k (4:103)

where
k¼ 1 if F(s, x) is an impedance function
k¼ 0 if F(s, x) is a transfer function
k¼�1 if F(s, x) is an admittance function

The frequency scaling will give the same result as Equation 4.96.
The pole (or zero) sensitivities are also related by some invariant relationships. Indeed, the impedance

scaling provides the result

Sensitivity and Selectivity 4-17

https://engineersreferencebookspdf.com



pk lRi, lLi,
Ci

l

� �
¼ pk Ri, Li,Cið Þ (4:104)

Taking the derivative of both sides of Equation 4.104 with respect to l and substituting l¼ 1, one obtains
that for an arbitrary RLC circuit

Xr
i¼1

SRi pkð Þ þ
Xl
i¼1

SLi pkð Þ �
Xc
i¼1

SCi pkð Þ ¼ 0 (4:105)

This is the relationship between semirelative sensitivities. If pk 6¼ 0 one can divide both sides of Equation
4.105 by pk and obtain similar invariants for relative sensitivities. The frequency scaling gives

pk Ri,
Li
l
,
Ci

l

� �
¼ lpk Ri, Li,Cið Þ (4:106)

and from Equation 4.106 one obtains, for relative sensitivities only, that

Xl
i¼1

SpkLi þ
Xc
i¼1

SpkCi
¼ �1 (4:107)

The pole sensitivity invariants for passive RC circuits are obtained from Equations 4.106 and 4.107,
omitting the terms corresponding to the inductor sensitivities.

4.9 Sensitivity Bounds

For some classes of filters, the worst-case magnitude sensitivity index may be shown to have a lower
bound [8]. Such a bound, for example, exists for filters whose passive elements are limited to resistors,
capacitors, and ideal transformers, and whose active elements are limited to gyrators characterized by two
gyration resistances (realized as a series connection of transresistance amplifiers and considered as
different for sensitivity calculations), current-controlled current sources (CCCSs), voltage-controlled
voltage sources (VCVSs), voltage-controlled current sources (VCCSs), and current-controlled voltage
sources (CCVSs). Using the sensitivity invariants, it is easy to show that for such a class of networks for
any dimensionless transfer function T(s)

Xn
i¼1

ST(s)xi ¼ 2ST(s)s (4:108)

where the xi are taken to include only the passive elements of resistors and capacitors and the active
elements of CCVSs and gyrators (if the gyrators are realized as parallel connection of transconductance
amplifiers, the corresponding terms should be taken with the negative sign). Substituting s ¼ jv in
Equation 4.108 and equating real parts, one obtains that

Xn
i¼1

SjT( jv)jxi ¼ 2SjT( jv)jjv (4:109)

Applying Equation 4.54 to the above equations, one obtains for the worst-case magnitude sensitivity index

v(T)�
Xn
i¼1

SjT( jv)jxi

�� �� � Xn
i¼1

SjT( jv)j
�����

������ 2SjT( jv)j
�� �� (4:110)
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Taking the first and the last terms of this expression, one may define a lower bound LBv(T) of the worst-
case magnitude sensitivity index as

LBv(T) ¼ 2SjT( jv)jjv

��� ��� (4:111)

This lower bound is a function only of the transfer function T(s) and is independent on the particular
synthesis technique (as soon as the above-mentioned restrictions are satisfied) used to realize this transfer
function. A similar lower bound may be derived (taking the imaginary parts of Equation 4.108) for worst-
case phase sensitivity; but it is impossible to find the design path by which one will arrive at the circuit
realizing this minimal bound.

4.10 Remarks on the Sensitivity Applications

The components of active RC filters have inaccuracies and parasitic components that distort the filter
characteristics. The most important imperfections are the following:

1. Values of the resistors and capacitors and the values of transconductances (the gyrators can be
considered usually as parallel connection of two transconductance amplifiers) are different from
their nominal values. The evaluation of these effects is done using the worst-case or (more
frequently) quadratic multiparameter sensitivity index, and multiparameter sensitivity measures
and the tolerances are chosen so that the contributions of the passive elements’ variations in the
sensitivity measure are equal.

2. Operational amplifiers have finite gain and this gain is frequency dependent. The effect
of finite gain is evaluated using a semirelative sensitivity of the filter function with respect to
variation 1=A, where A is the operational amplifier gain. The semirelative sensitivity is

�SF(s)
1
A

� �
¼ � qF(s)

F(s)q 1
A

� �	 
 ¼ A2

F(s)

� �
qF(s)
qA

� �
¼ ASF(s)A

which is called the gain-sensitivity product. In many cases, SF(s)A ! 0 when A ! 1, whereas
S1=A[F(s) ] has a limit that is different from zero. The frequency dependence is difficult to take into
consideration [1]. Only in case of cascade realization, as shown below, one can evaluate the effect
of this frequency dependence using the sensitivity of Q-factor.

3. Temperature dependence and aging of the passive elements and operational amplifiers can be
determined. The influence of temperature, aging, and other environmental factors on the values of
the elements can be determined by a dependence of the probability distributions for these param-
eters. For example, if u is temperature, one has to estimate mx(u) and sx(u) before the calculation of
sensitivity measures. Normally, at the nominal temperature u0 the average value mx(u0) ¼ 0 and
sx(u0) depends on the nominal precision of the elements. When the temperature changes, mx(u)
increases or decreases depending on the temperature coefficients of the elements, whereas sx(u)
usually increases for any temperature variation.

4.11 Sensitivity Computations Using the Adjoint Network

The determination of the sensitivities defined in the previous sections may pose difficult computational
problems. Finding the network function with the elements expressed in literal form is usually tedious and
error prone and the difficulty of such a determination increases rapidly with the number of elements.
Calculating the partial derivatives, which is themost important part of the sensitivity computation, provides
additional tedium and increases the possibility of error still more. Thus, in general, it is advantageous to use
digital computer methods to compute sensitivities. The most obvious method for doing this is to use one of
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the many available computer-aided design programs (e.g., SPICE) to make an analysis of the network with
nominal element values, and then repeat the analysis after having perturbed the value of one of the elements.
This is not a desirable procedure, since it requires a large number of analyses. It can be justified if the
network has some a priori known critical elements for which the analyses should be done.

The crucial part of sensitivity computation is, as was mentioned above, the calculation of network
function derivatives with respect to element variations. To simplify this part of the calculation, the
concept of adjoint network [9] is used. This method requires only two analyses to provide all the
sensitivities of a given network immitance function.
If N and bN are linear time invariant networks, then they are said to be adjoint (to each other) if the

following hold. The two networks have the same topology and ordering of branches; thus their incidence
matrices [10] are equal, namely A ¼ bA. If excitation with the unit current (unit voltage) at an arbitrary
port j (port l) of network N yields a voltage (current) at an arbitrary port k (port m) of N, excitation with
the unit current (unit voltage) at port k (port m) of network bN will yield the same voltage (current) as
the above in port j (port l) of bN (see Figure 4.1).
Figure4.1 also showshow the adjointnetwork shouldbe constructed, as follows. (a)All resistance capacitive

and inductance branches and transformers in N are associated, respectively, with resistance, capacitive, and
inductance branches and transformers in bN. (b)All gyrators inNwith gyration resistance rbecomegyrators inbN with gyration resistance �r. (c) All VCVSs in N become CCCSs in bN with controlling and controlled
branches reversing roles, and with the voltage amplification factor Av becoming the current amplification
factor�Ai. (d) All CCCSs inN becomeVCVSs in bNwith controlling and controlled branches reversing roles,
and with the current amplification factor Ai becoming the voltage amplification factor �Av . (e) All VCCCs
and CCVSs have their controlling and controlled branches inN reversed in bN.
Thus, the Tellegen theorem [9] applies to the branch voltage and current variables of these two

networks. If we let V be the vector of branch voltages and I be the vector of branch currents (using capital
letters implies that the quantities are functions of the complex variable s), then

VtÎ ¼ ÎtV ¼ bVtI ¼ ItV ¼ 0 (4:112)

If in both circuits all independent sources have been removed to form n external ports (as illustrated in
Figure 4.2), then one can divide the variables in both circuits into two groups so that

It ¼ ItpI
t
b

h i
Vt ¼ Vt

pV
t
b

h i
Ît ¼ ÎtpÎ

t
b

h i bVt ¼ bVt
p
bVt
b

h i (4:113)

n:1
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FIGURE 4.1 The components of a network (a) and its adjoint (b).
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The first are the vector of port variables Vp and Ip in
N and bVp and Îp, correspondingly, in bN. These
variables will define n-port open-circuit impedance
matrices Zoc and bZoc or n-port short-circuit admit-
tance matrices Ysc and bYsc via the relationships

Vp ¼ �ZocIp bVp ¼ �bZocÎp

Ip ¼ �YscVp Îp ¼ �bYscbVp

(4:114)

Then, the rest of the variables will be nonport vari-
ables (including the variables of dependent source
branches) Vb and Ib for N and bVb and Îb for bN.
These variables may define branch impedance matri-
ces Zb and bZb and branch admittance matrices Yb

and bYb by the relationships

Vb ¼ ZbIb bVb ¼ bZbÎb

Ib ¼ YbVb Îb ¼ bYbbVb

(4:115)

If the branch impedance and branch admittance matrices do not exist, a hybrid matrix may be used to
relate the branch variables. For N, this may be put in the form

Vb1

Ib2

� �
¼ H11 H12

H21 H22

� �
Ib1
Vb2

� �
(4:116)

Similarly, for bN one may write

bVb1

Îb2

" #
¼ bH11 bH12bH21 bH22

" #
Îb1bVb2

" #
(4:117)

For the adjoint networks, the branch impedance and branch admittance matrices (if they exist) are
transposed, namely

Zt
b ¼ bZb Yt

b ¼ bYb (4:118)

and, if a hybrid representation is used, the matrices are connected by the relationship

Ht
11 �Ht

21

�Ht
12 Ht

22

� �
¼ bH11 bH12bH21 bH22

" #
(4:119)

As a result of these relationships, if no controlled sources are present in two networks, they are identical.
In the general case it may be shown that

Zt
oc ¼ bZoc Yt

sc ¼ bYsc (4:120)

The application of adjoint circuits for sensitivity calculations requires that, first of all, using the port
variables as independent ones, one finds the branch variables, and this is done for both circuits. Assume,

Ip1

+
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+
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+

–

Vp1

Ip2

Vp2

N

(a) (b)

N

Vp1
ˆ

Vp2
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Ip2
ˆ

FIGURE 4.2 Separation of port variables in the net-
work (a) and its adjoint (b).
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for example, that the branch impedance matrices exist. Then, using unity-valued excitation currents as
the components of Ip and Îp one has, first, to find Ib and Îb. Now, in the original network let the elements
be perturbed. The resulting vector of currents may thus be written as Iþ DI and the resulting vector of
voltages as Vþ DV. From Kirchhoff’s current law, we have A(Iþ DI) ¼ 0, and since AI ¼ 0 one also
has ADI ¼ 0. Thus, DI ¼ DIp þ DVb may be substituted in any of the relations in Equation 4.112. By
similar reasoning one can conclude that it is possible as well to substitute the perturbation vector
DV ¼ DVp þ DVb instead of V in these relations. Making these substitutions, one obtains

bVt
pDIp þ bVt

bDIp ¼ 0

ItpDVp þ ÎtbDVb ¼ 0
(4:121)

Subtracting these two equations, one has

bVt
pDIp � ItpDVp þ bVt

bDIp � ÎtbDVb ¼ 0 (4:122)

To a first-order approximation, we have

DVp ¼ �D ZocIp
� � � �DZocIp � ZocDIp

DVb ¼ �D ZbIbð Þ � �DZbIb � ZbDIb
(4:123)

Substituting Equation 4.123 into Equation 4.122 and taking into consideration that bVt
p ¼ �ÎtpbZt

oc ¼
�ÎtpZoc and that bVt

b ¼ ÎtbZb, one can simplify the result (Equation 4.122) to

ÎtpDZocIp ¼ ÎtbDZbIb (4:124)

Equation 4.124 clearly shows that if all currents in the original network and its adjoint are known, one
can easily calculate the absolute sensitivities S Zij,Zb

� � � DZij=DZb, which can be used for calculation of
the corresponding relative sensitivities. Here, Zij is an element of the n-port open circuit impedance
matrix. Then, if necessary, these sensitivities can be used for evaluation of the transfer function sensitivity
or the sensitivities of other functions derived via the n-port open circuit impedance matrix.
Usually, the transfer function calculation can be easily reduced to the calculation of a particular Zij. In

this case one can choose Îj ¼ 1, Îk ¼ 0 (for all k 6¼ j) as an excitation in the adjoint network. Then,
Equation 4.124 becomes

DZij ¼ ÎtbDZbIb (4:125)

where Ib and Îb are the branch currents in N and bN corresponding to the indicated excitation. The
relations for other types of matrices are obtained in the same manner.

4.12 General Methods of Reducing Sensitivity

It is very desirable from the start of the realization procedure to concentrate on circuits that give lower
sensitivity in comparison to other circuits. The practice of active filter realization allows formulation of
some general suggestions ensuring that filter realizations will have low sensitivities to component
variations.
It is possible to transfer the problem of lower sensitivity at the approximation stage, i.e., before

any realization. It is obvious that a low-order transfer function T(s) that just satisfies the specifications
will require tighter tolerances in comparison to a higher order transfer function that easily satisfies
the specifications. Figure 4.3 shows an example of such an approach for a low-pass filter. Hence,
increasing the order of approximation and introducing a redundancy one achieves a set of wider element
tolerances.
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Usually the most critical region where it is difficult to satisfy the specifications is the edge of the
passband. Two approaches can be used to find the function that will have less sensitivity in this frequency
region. One way is to introduce predistortion in the transfer function specifications. This is also shown in
Figure 4.3. The transfer function should satisfy the predistorted (tapered) specifications. It can be
obtained directly if the numerical packages solving the approximation problem are available. One can
also take a standard table higher order transfer function satisfying the modified specifications and then
modify it to more uniformly use the tapered specifications (this allows the increase of the component
tolerances even more).
Another way [11] is to preserve the initial transfer function specifications and to use transfer functions

with a limited value of the maximum Q of the transfer function poles. In Ref. [11] one can find such
transfer functions corresponding to the Cauer approximation. The nonstandard LC circuits correspond-
ing to these approaches cannot be tabulated and simulated; hence, neither of them is widely used. In
addition, they imply the cascaded (building-block) realization that intrinsically has worse sensitivity than
the realizations using simulation of doubly terminated lossless matched filters.

4.13 Cascaded Realization of Active Filters

The cascaded (building-block) realization is based on the assumption that the transfer function will have
low sensitivity if the realization provides tight control of the transfer function poles and zeros. The
relationship between the element value and the transfer function poles and zeros can be established
relatively easily if the transfer function is not more complicated than biquadratic (i.e., the ratio of two
second-order polynomials). It is difficult (or even impossible) to establish such correspondence if, say, the
denominator polynomial degree is higher than two. For a high-degree polynomial, a small variation in
the polynomial coefficient can result in a large or undesirable migration of the root (it can move to the
right-half plane). This justifies the cascaded approach: one hopes to have a low sensitivity of the transfer
function under realization if one chooses a method allowing tight control of the poles’ and zeros’
locations; hence, cascade realization with T(s) ¼ T1(s)T2(s) � � �Ti(s) � � �Tk(s). Also, if one chooses for

as min

ap max

ωp ωs ω

(a)
(b)
(c)

At
te

nu
at
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(ω

)

Standard
specs

Predistorted
specs

FIGURE 4.3 Attenuation requirements, their predistortion, and attenuation of different realizations: (a) attenu-
ation of a standard circuit of a higher order; (b) attenuation of the nonstandard circuit; and (c) passband attenuation
in the stages of cascade realization.
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realization of each function Ti(s) the method of lowest sensitivity (discussed below), then it will be
possible to obtain the largest element tolerances.
If the realization by cascade connection is chosen it is still a choice of optimum factorization of the

transfer function T(s) into low-order factors. This optimum depends on the filter application, the chosen
method of the factor realization, and the transfer function itself. It is recommended [1] that, for
realization of lower sensitivity, the poles and zeros in the partial functions Ti(s) are located as far apart
as possible. This statement is not always true and such a choice of poles and zeros in Ti(s) is in
contradiction with the requirement of high dynamic range of the stage. In general, CAD methods should
be used.
The methods that are most popular for the realization of the partial transfer functions are mostly

limited by the filters providing the output voltage at the output of an operational amplifier. The state–
space relations satisfy this requirement and provide the direct realizations of the polynomial coefficients.
It is not occasionally that such an approach is used by a series of manufacturers. This is not the best
method from the sensitivity point of view; the methods of realization using gyrators usually give better
results [3]. But the cascade realization of gyrator filters require buffers between the blocks, and is better to
use this approach if the filter is not realized in cascade form. Other realization methods [1] are also
occasionally used, mostly because of their simplicity.
If the transfer function is realized in a cascade form and T(s) ¼ T1(s)T2(s) � � �Ti(s) � � �Tk(s), the

element x is located only in one stage. If this is the stage realizing Ti(s), then

ST(s)x ¼ STi(s)
x (4:126)

Assume that this Ti(s) has the form

Ti(s) ¼ K
s2 þ vz

Qz

� �
þ v2

z

s2 þ vp

Qp

� �
þ v2

p

(4:127)

Then one can write

STi(s)
x ¼ STi(s)

K SKx þ STi(s)
vz

Svz
x þ STi(s)

1=Qz
S1=Qz
x þ STi(s)

vp
S
vp
x þ STi(s)

1=Qp
S
1=Qp
x (4:128)

The second multiplier in each term of this sum depends on the stage realization method. In the first

term STi(s)
K ¼ 1, the first multipliers in other terms depend on Q-factors of zeros and poles. It is enough

to consider the influence of the terms related to the poles. One can notice that STi(s)
1=Qp

S
1=Qp
x ¼

STi(s) Ti(s), 1
Qp

h i
Sx 1

Qp
, x

� �
, then, calculating STi(s) Ti(s), 1

Qp

h i
(the calculation of the semirelative sensitivity

is done for convenience of graphic representation) and STi(s)
vp

, one obtains

STi(s) Ti(s),
1
Qp

� �
¼ 1

Ti(s)
qTi(s)

q 1
Qp

� � ¼ � 1�
s
vp

�þ � vp

s

�þ � 1
Qp

� (4:129)

and

STi(s)
vp

¼ vp

Ti(s)
qTi(s)
qvp

¼ �
�

1
Qp

�þ 2
� vp

s

�
�

s
vp

�þ � vp

s

�þ � 1
Qp

� (4:130)
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Introducing the normalized frequency V ¼ v
vp
� vp

v

� �
, one can find that

Re STi(s) Ti(s),
1
Qp

� �
¼ �

1
Qp

V2 þ � 1
Qp

�2 (4:131)

Im STi(s) Ti(s),
1
Qp

� �
¼ � V

V2 þ � 1
Qp

�2 (4:132)

Re STi(s)
vp

¼
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 4

p
�V2 � � 1

Qp

�2
V2 þ � 1

Qp

�2 (4:133)

Im STi(s)
vp

¼
�

1
Qp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 4

p
V2 þ � 1

Qp

�2 (4:134)

Figure 4.4 shows the graphs of these four functions. They allow the following conclusions [4]. The
functions reach high values in the vicinity of V ¼ 0, i.e., when v � vp. This means that in the filter
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FIGURE 4.4 Stage sensitivities: (a) real and (b) imaginary parts of the Q-factor sensitivity; (c) real and (d)
imaginary parts of the pole frequency sensitivity.

Sensitivity and Selectivity 4-25

https://engineersreferencebookspdf.com



passband, especially if the poles and zeros are sufficiently divided (which is the condition of
optimal cascading), one can neglect the contribution of zeros in modification of the transfer function
Ti(s). When Qp becomes higher, this vicinity of v � vp with a rapid change of the sensitivity functions

becomes relatively smaller in the case of Re STi(s) Ti(s), 1
Qp

h i
(Figure 4.4a) and Im STi(s)

vp
(Figure 4.4d)

and not so small in the case of Im STi(s) Ti(s), 1
Qp

h i
(Figure 4.4b) and Re STi(s)

vp
(Figure 4.4c). Normally,

the second multipliers in the terms of the sum in Equation 4.128 are all real; this means that the

function Re STi(s)
vp

is the most important one in estimation of the sensitivity to variations of passive

elements. In many realization methods [1,3] one obtains that vp / (R1R2C1C2)
�1=2. This implies that

S
vp

R1
¼ S

vp

R2
¼ S

vp

C1
¼ S

vp

C2
¼ �1=2. Thus, finally, the function Re STi(s)

vp
(which can be called the main

passive sensitivity term) will determine the maximum realizable Qp for given tolerances of passive
elements (or for the elements that are simulated as passive elements).
If a stage is realized using, for example, a state–space approach, it includes operational amplifiers. The

stage is usually designed assuming ideal operational amplifiers, then the realization errors are analyzed
considering that the operational amplifiers can be described by a model

A(s) ¼ A0

1þ s
v0

� � ¼ GBW
sþ v0

(4:135)

where
A0 is the dc gain, is the amplifier bandwidth
GBW ¼ A0v0 is the gain-bandwidth product

If the stage transfer function is derived anew, with amplifiers described by the model equation (Equation
4.135), then Ti(s) will no longer be a biquadratic. It will be a ratio of two higher degree polynomials, and
the error analysis becomes very complicated [1]. To do an approximate analysis, one can pretend that the
amplifier gain is simply a real constant A. Then, the transfer function Ti(s) will preserve its biquadratic
appearance, and the term 1=Qp will be possible to represent as

1
Qp

¼ 1
Q
þ k
A

(4:136)

The first term in Equation 4.136 is determined by the ratio of passive elements, the second term (k is the
design constant) can be considered as an absolute change D(1=Qp), which on the jv axis becomes

D
1
Qp

� �
� k

A( jv)
¼ 1

A0
þ j

kv
GBW

� j
kv

GBW
(4:137)

Then, in calculation of djTij ¼ Re STi(s)
K , the function Im STi(s)

vp
becomes important (it can be called the

main active sensitivity term) and the product
	
Im STi(s)

vp

�
kv

GBW

�

allows evaluation of the limitations on the

Q-factor caused by the stage operational amplifiers.
The relationships given next are useful for any arbitrary realization, but pertain more to the cascade

realization, where one can better control the pole’s location when the circuit parameters are changing. If
the filter transfer function is represented as

T(s) ¼ amP
m
i¼1(s� zi)

dnP
n
i¼1(s� pi)

(4:138)
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then taking the logarithm of Equation 4.138 and its derivatives gives

dT(s)
T(s)

¼ d am=dnð Þ
am=dn

�
Xm
i¼1

dzi
s� zi

þ
Xn
i¼1

dpi
s� pi

(4:139)

Multiplying both sides of Equation 4.139 by x and expressing the differentials via partial derivatives one
obtains

ST(s)x ¼ Sam=dnx �
Xm
i¼1

Sx(zi)
s� zi

þ
Xn
i¼1

Sx(pi)
s� pi

(4:140)

In the vicinity of the pole pi ¼ �si þ jvi, the sensitivity is determined by the term Sx(pi)=(s� pi).
Besides Sx(pi) ¼ �Sx(si)þ jSx(vi) and on the jv axis in this region one has

Sx(pi)
jv� pi

¼ � Sx(si)si � Sx(vi)(v� vi)

s2
i þ (v� vi)

2 þ j
Sx(vi)si þ Sx(si)(v� vi)

s2
i þ (v� vi)

2 (4:141)

Hence, when v ¼ vi

SjT( jv)jx � � Sx(si)si � Sx(vi)(v� vi)

s2
i þ (v� vi)

2 (4:142)

and

Sx[argT( jv)] � Sx(vi)si þ Sx(si)(v� vi)

s2
i þ (v� vi)

2 (4:143)

Usually Equations 4.142 and 4.143 are considered at the point v� vi, where SjT( jv)jx ¼ �Sx(si)=si and
Sx[argT( jv)] ¼ Sx(vi)=si. The frequent conclusion that follows is that the pole’s movement toward the
jv axis is more dangerous (it introduces transfer function magnitude change) than the movement parallel
to the jv axis. But it is not difficult to see that in the immediate vicinity of this point, at v ¼ vi 	 si, one
has SjT( jv)jx ¼ [�Sx(si)	 Sx(vi)]=(2si) and Sx[argT( jv)] ¼ [Sx(vi)	 jSx(si)]=(2si); i.e., one has to
reduce both components of the pole movement. If care is taken to get Sx(si) ¼ 0, then, indeed,
SjT( jv)jx ¼ 0 at v ¼ vi, but at v ¼ vi þ si (closer to the edge of the passband) SjT( jv)jx ¼ [Sx(vi)=si]
and this can result in an essential djT( jv)j.

Finally, some additional relationships between different sensitivities can be obtained from the defin-

ition of Qp ¼ vp=(2si) ¼
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
i þ v2

i

p 

=(2si) � vi=(2si). One can find that

Sx(vp) ¼ Sx(si)
2Qp

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4Q2
p

 !vuut Sx(vi) (4:144)

and

Sx(Qp) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Q2

p � 1
q

Sx(vi)� (4Q2
p � 1)Sx(si)

vp
(4:145)

for semirelative sensitivities. From this basic definition of the Q-factor, one can also derive the
relationships
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S
Qp
x ¼ Ssi

x

4Q2
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4Q2
p

 !vuut Svi
x (4:146)

and

S
Qp
x � Svi

x � Ssi
x (4:147)

involving relative sensitivities. Another group of results can be obtained considering relative sensitivity of
the pole pi ¼ �si þ jvi. For example, one can find that

S
Qp
x ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Q2

p � 1
q

Im Spix ¼ x
v2
p

vi

si

� �
si

qvi

qx
� vi

qsi

qx

� �
(4:148)

If
qvi

qx
¼ 0 and

qsi

qx
¼ constant, then

S
Qp
x � kQp (4:149)

which shows that in this case, S
Qp
x increases proportionally to the Q-factor independently of the cause of

this high sensitivity.

4.14 Simulation of Doubly Terminated Matched Lossless Filters

By cascading the first- and second-order sections (occasionally a third-order section is realized in odd-
order filters instead of the cascade connection of a first- and a second-order section) any high-order
transfer function T(s) can be realized. In practice, however, the resulting circuit is difficult to fabricate for
high-order and=or highly selective filters. The transfer function of such filters usually contains a pair of
complex–conjugate poles very close to the jv axis. The sensitivity of this section that realizes high-Q poles
is high and the element tolerances for this section can be very tight. The section can be unacceptable for
fabrication.
For filters that have such high-Q transfer function poles, other design techniques are often used. The

most successful and widely used of these alternative strategies are based on simulating the low-sensitivity
transfer function of a doubly-terminated lossless (reactance) two-port.
Assume that the two-port shown in Figure 4.5 is lossless and the transfer function T(s) ¼ V2(s)=E(s) is

realized. Considering power relations, one can show [12] that for steady-state sinusoidal operation the
equation

jr( jv)j2 þ 4R1

R2
jT( jv)j2 ¼ 1 (4:150)

R1

R2 V2E

+

–

+

–

Z

Lossless
two-port

FIGURE 4.5 Lossless two-port with resistive loadings.
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is valid for this circuit. Here, r( jv) ¼ R1 � Z( jv)½ �= R1 þ Z( jv)½ � is the reflection coefficient and Z(jv) is
the input impedance of the loaded two-port. In many cases, the filter requirements are formulated for the
transducer function:

H(s) ¼
ffiffiffiffiffiffiffiffi
R2

4R1

r
E(s)
V2(s)

¼
ffiffiffiffiffiffiffiffi
R2

4R1

r
1

T(s)
(4:151)

For this function

lnH( jv) ¼ a(v)þ jw(v) ¼ � ln jT( jv)j þ ln [
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(R2=4R1)

p
]� j argT( jv) (4:152)

Here, a(v) is attenuation (it is different from the previously used only by the value of ln [
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(R2=4R1)

p
] )

and w(v) ¼ �b(v) ¼ � argT( jv) is phase. The impedance Z( jv) satisfies the condition ReZ( jv) � 0
(as for any passive circuit input impedance), which means that jr( jv)j2 < 1. Then, as it follows from
Equation 4.150 H( jv)j j2 � 1 and a(v) � 0.

When a filter is designed using a(v), the attenuation is optimized so that it is zero in one or more
passband points (Figure 4.3 shows, for example, the attenuation characteristics with two zeros in the
passband). Then the attenuation partial derivative with respect to the value of each of the two-port
elements is equal to zero at the attenuation zeros. Indeed, let xi be any element of the two-port and
qa=qxi be the partial derivative of a(v, xi) with respect to that element. Suppose that xi does not have its
nominal value and differs from it by a small Dxi variation. Expanding a(v, xi) in the Taylor series one
obtains that

a(v, xi þ Dxi) ffi a(v, xi)þ Dxi
qa(v, xi)

qxi
(4:153)

If vk is an attenuation zero, then a(vk, xi) ¼ 0; but, as was mentioned before, a(v) � 0, and from
Equation 4.153, one obtains that at the point v ¼ vk one has

Dxi
qa(vk, xi)

qxi
� 0 (4:154)

Now, the variation Dxi was of unspecified sign. Therefore, Equation 4.154 can only be satisfied with
equality sign, which means that qa(vk , xi)

qxi
¼ 0.

This result is called the Fettweis-Orchard theorem [4] and it explains why the preference is always given
to the filter realized as a nondissipative two-port between resistive terminations or to the simulation of
such a filter if the filter should be realized as an active circuit. First, considering the real parts of Equation
4.152, one obtains that

qa v, xið Þ
qxi

¼ Sxi [a(v)] ¼ � xi
jT( jv)j

qjT( jv)j
qxi

¼ �SjT( jv)jxi (4:155)

when xi is any element inside the two-port. Hence, the points where a(v) ¼ 0 and, simultaneously,
qa v, xið Þ

qxi
¼ 0 are the points of zero sensitivity not only for attenuation but for transfer function magnitude

as well (as a result of Equation 4.155 and this discussion, one cannot use at these points the relationships
djT( jv)j � SjT( jv)jxi dxi; the relative change djT( jv)j is always negative and different from zero with dxi of
unspecified sign). Moreover, if a is small, qa=qxi will also remain small [13], which means that the
sensitivities are small in the whole passband. If xi ¼ R1 or xi ¼ R2, one obtains from Equation 4.152 that
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R1
qa v,R1ð Þ

qR1
¼ �SjT( jv)jR1

� 1
2

(4:156)

and

R2
qa v,R2ð Þ

qR2
¼ �SjT( jv)jR2

þ 1
2

(4:157)

The derivatives qa
qRi

(i ¼ 1, 2) are also zero at the points where a ¼ 0 and they are small when a remains
small [13]. This means that in the passband SjT( jv)jR1

� �1=2 and SjT( jv)jR2
� 1=2. Thus, jT( jv)j will share

the zero sensitivity of a with respect to all the elements inside the two-port, but due to the terms 	1=2 in
Equations 4.156 and 4.157 a change either in R1 or R2 will produce a frequency-independent shift (which
can usually be tolerated) in jT( jv)j in addition to the small effects proportional to qa

qRi
. This is the basis of

the low sensitivity of conventional LC-ladder filters and of those active, switched-capacitor, or digital
filters that are based on LC filter model. This is valid with the condition that the transfer functions of the
active filter and LC prototype are the same and the parameters of the two filters enter their respective
transfer functions the same way.
The Fettweis-Orchard theorem explains why the filtering characteristics sought are those with the

maximum number of attenuation zeros (for a given order of the transfer function T(s)). It also helps to
understand why it is difficult to design a filter that simultaneously meets the requirements of a and w(v)
(or to jT( jv)j and b(v)); the degrees of freedom used for optimizing w(v) will not be available to attain
the maximum number of attenuation zeros. It also explains why a cascade realization is more sensitive
than the realization based on LC lossless model. Indeed, assume that, say, one of the characteristics of
Figure 4.3 is realized by two cascaded sections (with the attenuation of each section shown by the dash-
and-dotted line) with each actual section realized in doubly terminated matched lossless form. Each such
section of the cascaded filter will be matched at one frequency and the sensitivities to the elements that
are in unmatched sections will be different from zero. In addition, the attenuation ripple in each section is
usually much larger than the total ripple, and the derivative qa

qxi
, which is, in the first approximation,

proportional to the attenuation ripple, will not be small. Indeed, practice shows [4] that there is, in fact, a
substantial increase in sensitivity in the factored realization.

4.15 Sensitivity of Active RC Filters

The required component tolerances are very important factors determining the cost of filters. They are
especially important with integrated realizations (where the tolerances are usually higher than in discrete
technology). Also, the active filter realizations commonly require tighter tolerances than LC realizations.
Yet two classes of active RC filters have tolerances comparable with those of passive LC filters. These are
analog-computer and gyrator filters that simulate doubly terminated passive LC filters. The tolerance
comparison [4] shows the tolerance advantages (sometimes by an order of magnitude) of the doubly
terminated lossless structure as compared to any cascade realization. These are the only methods that are
now used [14] for high-order high-Q sharp cutoff filters with tight tolerances. For less demanding
requirements, cascaded realizations could be used. The main advantages that are put forth in this case are
the ease of design and simplicity of tuning. But even here the tolerance comparison [4] shows that the
stages have better tolerances if they are realized using gyrators and computer simulation methods.

4.16 Errors in Sensitivity Comparisons

In conclusion we briefly outline some common errors in sensitivity comparison. More detailed treatment
can be found in Ref. [4].
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1. Calculating the wrong sensitivities. The calculated sensitivities should have as close a relation to the
filter specification as possible. In general, for a filter specified in the frequency domain, the
sensitivities of amplitude and phase should be calculated along the jv axis. Sensitivities of poles,
zeros, Q’s, resonant frequencies, etc. should be carefully interpreted in the context of their
connection with amplitude and phase sensitivities.

2. Sensitivities of optimized designs. The optimization should use a criterion as closely related as
possible to filter specifications. The use of a criterion that is not closely related to the filter specifica-
tions (e.g., pole sensitivity) can lead to valid conclusions if thefilters being compareddiffer by anorder
of magnitude in sensitivity [4]. A sensitivity comparison is valid only if all the circuits have been
optimized using the criterion on which they will be compared. The optimized circuit should not be
compared with a nonoptimized one. Another error is to optimize one part of the transfer function
(usually the denominator) and forgetting about the modifying effect of the numerator.

3. Comparing the incomparable. A frequent error occurs when comparing sensitivities with respect to
different types of elements. In general, different types of elements can be realized with different
tolerances, and the comparison is valid only if sensitivities are weighted proportionally. Besides,
there are basic differences in variability between circuit parameters with physical dimensions and
those without. The latter are often determined in the circuit as the ratio of dimensional quantities
(as a result, the tolerance of the ratio will be about double the tolerances of the two-dimensional
quantities determining them). In integrated technologies the dimensioned quantities usually have
worse tolerances but better matching and tracking ability, especially with temperature. Hence, any
conclusion involving sensitivities to different types of components, in addition, is technologically
dependent.

4. Correlations between component values. The correlations between components are neglected
when they are essential (this is usually done for simplification of the statistical analysis). From
the other side, an unwarranted correlation is introduced when it does not exist. This is a frequent
case where the realization involves cancellation of terms that are equal when the elements have
their nominal values (e.g., a cancellation of a pole of one section of a filter by a zero of another
section, cancellation of a positive conductance by a negative conductance).

5. Incomplete analysis. Very often, only sensitivities to variations of a single component (usually an
amplifier gain) are considered. This is satisfactory only if it is the most critical component, which is
seldom the case. Another form of incomplete analysis is to calculate only one coordinate of a
complex sensitivity measure (SQx is calculated while Sv0

x is ignored). Also, frequency-dependent
sensitivities are calculated and compared at one discrete frequency instead of being calculated in
frequency intervals.

6. First-order differential sensitivities are the most commonly calculated. But the fact is that qy
qx ¼ 0

implies that the variation of y with x is quadratic at the point considered. A consequence of this is
that zero sensitivities do not imply infinitely wide tolerances for the components in question.
Similarly, infinite sensitivities do not imply infinitely narrow tolerances. Infinite values arise if the
nominal value of y is zero, and the finite variations of x will almost always give finite variations of y.
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and Positive-Real
Functions
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In this chapter on passive filters, we deal with the design of one-port networks composed exclusively of
passive elements such as resistors R, inductors L, capacitors C, and coupled inductors M. The one-ports
are specified by their driving-point immittances, impedances, or admittances. Our basic problem is that
given an immittance function, is it possible to find a one-port composed only of R, L, C, and M elements
called the RLCM one-port network that realizes the given immittance function? This is known as the
realizability problem, and its complete solution was first given by Brune [1].
Consider a linear RLCM one-port network of Figure 5.1 excited by a voltage source V1(s). For our

purposes, we assume that there are b branches and the branch corresponding to the voltage source V1(s)
is numbered branch 1 and all other branches are numbered from 2 to b. The Laplace transformed
Kirchhoff current law equation can be written as

AI sð Þ ¼ 0 (5:1)

where
A is the basis incidence matrix
I(s) is the branch-current vector of the network

If Vn(s) is the nodal voltage vector, then the branch-voltage vector V(s) can be expressed in terms of
Vn(s) by

V sð Þ ¼ A0Vn sð Þ (5:2)

where the prime denotes the matrix transpose. Taking the complex conjugate of Equation 5.1 in
conjunction with Equation 5.2 gives

V0 sð ÞI sð Þ ¼ V0
n sð ÞAI sð Þ ¼ V0

n sð Þ0 ¼ 0 (5:3)
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or

Xb
k¼1

Vk sð ÞIk sð Þ ¼ 0 (5:4)

where Vk(s) and Ik(s) are the branch voltages and the branch currents, respectively.
From Figure 5.1, the driving-point impedance of the one-port is defined to be the ratio of V1(s)

to �I1(s), or

Z sð Þ � V1 sð Þ
�I1 sð Þ ¼

V1 sð ÞI1 sð Þ
�I1 sð ÞI1 sð Þ ¼ �V1 sð ÞI1 sð Þ

I1 sð Þj j2 (5:5)

Equation 5.4 can be rewritten as

�V1 sð ÞI1 sð Þ ¼
Xb
k¼2

Vk sð ÞIk sð Þ (5:6)

Substituting this in Equation 5.5 yields

Z sð Þ ¼ 1

I1 sð Þj j2
Xb
k¼2

Vk sð ÞIk sð Þ (5:7)

Likewise, the dual relation of the input admittance

Y sð Þ � �I1 sð Þ
V1 sð Þ ¼ 1

V1 sð Þj j2
Xb
k¼2

Vk sð ÞIk sð Þ (5:8)

holds.
We know consider individual types of elements inside the one-port. For a resistive branch k of

resistance Rk, we have

Vk sð Þ ¼ RkIk sð Þ (5:9)

For a capacitive branch of capacitance C,

Vk sð Þ ¼ 1
sCk

Ik sð Þ (5:10)

I1(s)

V1(s)

R

L

C

M

+

–

Z(s) = 1
Y(s)

FIGURE 5.1 General linear RLCM one-port network.
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Finally, for an inductive branch of self-inductance Lk and mutual inductances Mkj,

Vk sð Þ ¼ sLkIk sð Þ þ
X

all j, j 6¼k

sMkjIj sð Þ (5:11)

Substituting these in Equation 5.7 and grouping the summation as sums of all resistors R, all capacitors C,
and all inductors LM, we obtain

Z sð Þ ¼ 1

I1 sð Þj j2
X
R

Rk Ik sð Þj j2 þ
X
C

1
sCk

Ik sð Þj j2þ
X
LM

sLk Ik sð Þj j2þ
X

all j, j 6¼k

sMkjIj sð ÞIk sð Þ
0
@

1
A

2
4

3
5

¼ 1

I1 sð Þj j2 F0 sð Þ þ 1
s
V0 sð Þ þ sM0 sð Þ

� �
(5:12)

where

F0 sð Þ �
X
R

Rk Ik sð Þj j2� 0 (5:13a)

V0 sð Þ �
X
C

1
Ck

Ik sð Þj j2� 0 (5:13b)

M0 sð Þ �
X
LM

Lk Ik sð Þj j2þ
X

all j, j 6¼k

MkjIj sð ÞIk sð Þ
0
@

1
A (5:13c)

These quantities are closely related to the average power and stored energies of the one-port under
steady-state sinusoidal conditions. The average power dissipated in the resistors is

Pave ¼ 1
2

X
R

Rk Ik jvð Þj j2 ¼ 1
2
F0 jvð Þ (5:14)

showing that F0(jv) represents twice the average power dissipated in the resistors of the one-port. The
average electric energy stored in the capacitors is

EC ¼ 1
4v2

X
C

1
Ck

Ik jvð Þj j2¼ 1
4v2

V0 jvð Þ (5:15)

Thus, V0(jv) denotes 4v
2 times the average electric energy stored in the capacitors. Similarly, the average

magnetic energy stored in the inductors is

EM ¼ 1
4

X
LM

Lk Ik jvð Þj j2þ
X

all q, q6¼k

MkqIq jvð ÞIk jvð Þ
2
4

3
5¼ 1

4
M0 jvð Þ (5:16)

indicating that M0(jv) represents four times the average magnetic energy stored in the inductors.
Therefore, all the three quantities F0(jv), V0(jv), and M0(jv) are real and nonnegative, and Equation

5.12 can be rewritten as

Z sð Þ ¼ 1

I1 sð Þj j2 F0 þ 1
s
V0 þ sM0

� �
(5:17)
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Likewise, the dual result for Y(s) is found to be

Y sð Þ ¼ 1

V1 sð Þj j2 F0 þ 1
s
V0 þ sM0

� �
(5:18)

Now, we set s¼sþ jv and compute the real part and imaginary part of Z(s) and obtain

Re Z sð Þ ¼ 1

I1 sð Þj j2 F0 þ s

s2 þ v2
V0 þ sM0

� �
(5:19)

Im Z sð Þ ¼ v

I1 sð Þj j2 M0 � 1
s2 þ v2

V0

� �
(5:20)

where
Re stands for ‘‘real part of’’
Im for ‘‘imaginary part of’’

These equations are valid irrespective of the value of s, except at the zeros of I1(s). They are extremely
important in that many analytic properties of passive impedances can be obtained from them. The
following is one of such consequences:

THEOREM 5.1

If Z(s) is the driving-point impedance of a linear, passive, lumped, reciprocal, and time-invariant one-port
network N, then

1. Whenever s� 0, Re Z(s)� 0.
2. If N contains no resistors, then

s> 0 implies Re Z(s)> 0
s¼ 0 implies Re Z(s)¼ 0
s< 0 implies Re Z(s)< 0

3. If N contains no capacitors, then
v> 0 implies Im Z(s)> 0
v¼ 0 implies Im Z(s)¼ 0
v< 0 implies Im Z(s)< 0

4. If N contains no self- and mutual-inductors, then
v> 0 implies Im Z(s)< 0
v¼ 0 implies Im Z(s)¼ 0
v< 0 implies Im Z(s)> 0

Similar results can be stated for the admittance function Y(s) simply by replacing Z(s), Re Z(s), and Im Z(s)
by Y(s), Re Y(s), and Im Y(s), respectively.
The theorem states that the driving-point impedance Z(s) of a passive LMC, RLM, or RC one-port

network maps different regions of the complex-frequency s-plane into various regions of the Z-plane.
Now, we assert that the driving-point immittance of a passive one-port is a positive-real function, and
every positive-real function can be realized as the input immittance of an RLCM one-port network.
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Definition 5.1: Positive-real function. A positive-real function F(s), abbreviated as a PR function, is
an analytic function of the complex variable s¼sþ jv satisfying the following three conditions:

1. F(s) is analytic in the open RHS (right-half of the s-plane), i.e., s> 0.
2. F sð Þ ¼ F sð Þ for all s in the open RHS.
3. Re F(s)� 0 whenever Re s� 0.

The concept of a positive-real function, as well as many of its properties, is credited to Otto Brune [1].
Our objective is to show that positive realness is a necessary and sufficient condition for a passive one-
port immittance. The above definition holds for both rational and transcendental functions. A rational
function is defined as a ratio of two polynomials. Network functions associated with any linear lumped
system, with which we deal exclusively in this section, are rational. In the case of rational functions, not
all three conditions in the definition are independent. For example, the analyticity requirement is implied
by the other two. The second condition is equivalent to stating the F(s) is real when s is real, and for a
rational F(s) it is always satisfied if all the coefficients of the polynomial are real.
Some important properties of a positive-real function can be stated as follows:

1. If F1(s) and F2(s) are positive real, so is F1[F2(s)].
2. If F(s) is positive real, so are 1=F(s) and F(1=s).
3. A positive-real function is devoid of poles and zeros in the open RHS.
4. If a positive-real function has any poles or zeros on the jv-axis (0 and1 included), such poles and

zeros must be simple. At a simple pole on the jv-axis, the residue is real positive.

Property 1 states that a positive-real function of a positive-real function is itself positive real, and
property 2 shows that the reciprocal of a positive-real function is positive real. The real significance of
the positive-real functions is its use in the characterization of the passive one-port immittances. This
characterization is one of the most penetrating results in network theory, and is stated as

THEOREM 5.2

A real rational function is the driving-point immittance of a linear, passive, lumped, reciprocal, and
time-invariant one-port network if and only if it is positive real.

The necessity of the theorem follows directly from Equation 5.19. The sufficiency was first established
by Brune in 1930 by showing that any given positive-real rational function can be realized as the input
immittance of a passive one-port network using only the passive elements such as resistors, capacitors,
and self- and mutual inductors. A formal constructive proof will be presented in the following section.

Example 5.1

Consider the passive one-port of Figure 5.2, the driving-point impedance of which is found to be

Z sð Þ ¼ 3s2 þ sþ 2
2s2 þ sþ 3

(5:21)

To verify that the function Z(s) is positive real, we compute its real part by substituting s¼sþ jv and
obtain
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Re Z sð Þ ¼ Re Z sþ jvð Þ ¼ Re
3 sþ jvð Þ2þ sþ jvð Þ þ 2

2 sþ jvð Þ2þ sþ jvð Þ þ 3

¼ 6 v2 � 1ð Þ2þ 12v2sþ 5v2 þ 6s3 þ 5s2 þ 14sþ 5ð Þs
2s2 � 2v2 þ sþ 3ð Þ2þv2 4sþ 1ð Þ2 � 0, s � 0 (5:22)

This, in conjunction with the facts that Z(s) is analytic in the open RHS and that all the coefficients of
Z(s) are real, shows that Z(s) is positive real.
Observe that if the function Z(s) is of high order, the task of ascertaining its positive realness is difficult

if condition 3 of Definition 5.1 is employed for checking. Hence, it is desirable to have alternate but much
simpler conditions for testing. For this reason, we introduce the following equivalent conditions that are
relatively easy to apply:

THEOREM 5.3

A rational function F(s) is positive real if and only if the following conditions are satisfied:

1. F(s) is real when s is real.
2. F(s) has no poles in the open RHS.
3. Poles of F(s) on the jv-axis, if they exist, are simple, and residues evaluated at these poles are real

and positive.
4. Re F(jv)� 0 for all v, except at the poles.

PROOF: From the definition of a PR function, we see immediately that all the conditions are necessary.
To prove sufficiency, we expand F(s) in a partial fraction as

F sð Þ ¼ k1sþ k0
s
þ
X
x

kx
sþ jvx

þ kx
s� jvx

� �" #
þ F1 sð Þ

¼ k1sþ k0
s
þ
X
x

2kxs
s2 þ v2

x

 !
þ F1 sð Þ (5:23)

where k1, k0, and kx are residues evaluated at the jv-axis poles j1, 0, and �jvx, respectively, and are real
and positive. F1(s) is the function formed by the terms corresponding to the open LHS (left-half of the
s-plane) poles of F(s), and therefore is analytic in the RHS and the entire jv-axis including the point at
infinity. For such a function, the minimum value of the real part throughout the region where the
function is analytic lies on the boundary, namely, the jv-axis. (See, for example, Churchill [2]. This shows

Z(S)

3 H 4/3 H

2/3 Ω

0.5 F

2 H

FIGURE 5.2 A passive one-port network.
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that the minimum value of Re F1(s) for all Re s� 0 occurs on the jv-axis; but according to Equation 5.23,
this value is nonnegative:

Re F1 jvð Þ ¼ Re F jvð Þ � 0 (5:24)

Thus, the real part of F1(s) is nonnegative everywhere in the closed RHS or

Re F1 sð Þ � 0 for Re s � 0 (5:25)

This, together with the fact that F1(s) is real whenever s is real, shows that F1(s) is positive real.
Since each term inside the parentheses of Equation 5.23 is positive real, and since the sum of two or

more positive-real functions is positive real, F(s) is positive real. This completes the proof of the theorem.
In testing for positive realness, we may eliminate some functions from consideration by inspection

because they violate certain simple necessary conditions. For example, a function cannot be PR if it has a
pole or zero in the open RHS. Another simple test is that the highest powers of s in numerator and
denominator not differ by more than unity, because a PR function can have at most a simple pole or zero
at the origin or infinity, both of which lie on the jv-axis.

A Hurwitz polynomial is a polynomial devoid of zeros in the open RHS. Thus, it may have zeros on the
jv-axis. To distinguish such a polynomial from the one that has zeros neither in the open RHS nor on
the jv-axis, the latter is referred to as a strictly Hurwitz polynomial. For computational purposes,
Theorem 5.3 can be reformulated and put in a much more convenient form.

THEOREM 5.4

A rational function represented in the form

F sð Þ ¼ P sð Þ
Q sð Þ ¼

m1 sð Þ þ n1 sð Þ
m2 sð Þ þ n2 sð Þ (5:26)

where m1(s), m2(s), and n1(s), n2(s) are the even and odd parts of the polynomials P(s) and Q(s),
respectively, is positive real if and only if the following conditions are satisfied:

1. F(s) is real when s is real.
2. P(s)þQ(s) is strictly Hurwitz.
3. m1(jv)m2(jv)� n1(jv)n2(jv)� 0 for all v.

A real polynomial is strictly Hurwitz if and only if the continued-fraction expansion of the ratio of the
even part to the odd part or the odd part to the even part of the polynomial yields only real and positive
coefficients, and does not terminate prematurely. For P(s)þQ(s) to be strictly Hurwitz, it is necessary
and sufficient that the continued-fraction expansion

m1 sð Þ þm2 sð Þ
n1 sð Þ þ n2 sð Þ
� ��1

¼ a1sþ 1

a2sþ 1
. .
.

þ 1
aks

(5:27)

yields only real and positive a’s, and does not terminate prematurely, i.e., k must equal the degree
m1(s)þm2(s) or n1(s)þ n2(s), whichever is larger. It can be shown that the third condition of the
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theorem is satisfied if and only if its left-hand-side polynomial does not have real positive roots of odd
multiplicity. This may be determined by factoring it or by the use of the Sturm’s theorem, which can be
found in most texts on elementary theory of equations. We illustrate the above procedure by the
following examples.

Example 5.2

Test the following function to see if it is PR:

F sð Þ ¼ 2s4 þ 4s3 þ 5s2 þ 5sþ 2
s3 þ s2 þ sþ 1

(5:28)

For illustrative purposes, we follow the three steps outlined in the theorem, as follows:

F sð Þ ¼ 2s4 þ 4s3 þ 5s2 þ 5sþ 2
s3 þ s2 þ sþ 1

¼ P sð Þ
Q sð Þ ¼

m1 sð Þ þ n1 sð Þ
m2 sð Þ þ n2 sð Þ (5:29)

where

m1 sð Þ ¼ 2s4 þ 5s2 þ 2, n1 sð Þ ¼ 4s3 þ 5s (5:30a)

m2 sð Þ ¼ s2 þ 1, n2 sð Þ ¼ s3 þ s (5:30b)

Condition 1 is clearly satisfied. To test condition 2, we perform the Hurwitz test, which gives

m1 sð Þ þm2 sð Þ
n1 sð Þ þ n2 sð Þ ¼ 2s4 þ 6s2 þ 3

5s3 þ 6s
¼ 2

5
sþ 1

25
18 sþ

1

324
165 sþ

1
33
54 s

(5:31)

Since all the coefficients are real and positive and since the continued-fraction expansion does not
terminate prematurely, the polynomial P(s)þQ(s) is strictly Hurwitz. Thus, condition 2 is satisfied.
To test condition 3, we compute

m1 jvð Þm2 jvð Þ � n1 jvð Þn2 jvð Þ ¼ 2v6 � 2v4 � 2v2 þ 2

¼ 2 v2 þ 1
� �

v2 � 1
� �2� 0 (5:32)

which is nonnegative for all v, or, equivalently, which does not possess any real positive roots of odd
multiplicity. Therefore F(s) is positive real.
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6.1 Introduction

In this chapter, we demonstrate that any rational positive-real function can be realized as the input
immittance of a passive one-port network terminated in a resistor, thereby also proving the sufficiency of
Theorem 5.2.
Consider the even part

Ev Z(s) ¼ r(s)¼ 1
2
[Z(s)þ Z(�s)] (6:1)

of a given rational positive-real impedance Z(s). As in Equation 5.26, we first separate the numerator and
denominator polynomials of Z(s) into even and odd parts, and write

Z(s)¼ m1 þ n1
m2 þ n2

(6:2)

Then, we have

r(s)¼ m1m2 � n1n2
m2

2 þ n22
(6:3)

showing that if s0 is a zero or pole of r(s), so is �s0. Thus, the zeros and poles of r(s) possess quadrantal
symmetry with respect to both the real and imaginary axes. They may appear in pairs on the real axis, in
pairs on the jv-axis, or in the form of sets of quadruplets in the complex-frequency plane. Furthermore,
for a positive-real Z(s), the jv-axis zeros of r( jv) are required to be of even multiplicity in order that Re Z
( jv)¼ r( jv) never be negative.
Suppose that we can extract from Z(s) a set of open-circuit impedance parameters zij(s) characterizing

a component two-port network, as depicted in Figure 6.1, which produces one pair of real axis zeros, one
pair of jv-axis zeros, or one set of quadruplet of zeros of r(s), and leaves a rational positive-real
impedance Z1(s) of lower degree, the even part of which r1(s) is devoid of these zeros but contains all
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other zeros of r(s). After a finite q steps, we arrive at a rational positive-real impedance Zq(s), the even
part rq(s) of which is devoid of zeros in the entire complex-frequency plane, meaning that its even part
must be a nonnegative constant c:

rq(s) ¼ 1
2

Zq(s)þ Zq(�s)
� � ¼ c (6:4)

Therefore, Zq(s) is expressible as the sum of a reactance function* ZLC(s) and a resistance c:

Zq(s) ¼ ZLC(s)þ c (6:5)

which can be realized as the input impedance of a lossless two-port network terminated in a c-ohm
resistor, as shown in Figure 6.2.
To motivate our discussion, we first present a theorem credited to Richards [1,2], which is intimately

tied up with the famous Bott–Duffin technique [3].

THEOREM 6.1

Let Z(s) be a positive-real function that is neither of the form Ls nor 1=Cs. Let k be an arbitrary positive-
real constant. Then, the Richards function

W(s) ¼ kZ(s)� sZ(k)
kZ(k)� sZ(s)

(6:6)

is also positive real.

The degree of a rational function is defined as the sum of the degrees of its relatively prime numerator
and denominator polynomials. Thus, the Richards function W(s) is also rational, the degree of which is

zij(s) Z1(s)

FIGURE 6.1 Two-port network terminated in Z1(s).

ZLC (s)

c Ω

FIGURE 6.2 Two-port network terminated in a resistor.

* A formal definition will be given in Chapter 7.
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not greater than that of Z(s). It was first pointed out by Richards that if k can be chosen so that the even
part of Z(s) vanishes at k, then the degree of W(s) is at least two less than that of Z(s). Let

s0 ¼ s0 þ jv0 (6:7)

be a point in the closed RHS. Then, according to the preceding theorem, the function

W
_

1(s) ¼ s0Z(s)� sZ s0ð Þ
s0Z s0ð Þ � sZ(s)

(6:8)

is positive real if s0 is positive real; and the function

W1(s) ¼ Z s0ð ÞW_ 1 �s0ð Þ�s0W
_

1(s)� sW
_

1 �s0ð Þ
�s0W

_

1 �s0ð Þ � sW
_

1(s)
(6:9)

is positive real if s0 is a positive-real constant and W
_

1(s) is a positive-real function. Substituting Equation
6.8 in Equation 6.9 yields

W1(s) ¼ D1(s)Z(s)� B1(s)
�C1(s)Z(s)þ A1(s)

(6:10)

where

A1(s) ¼ q4s
2 þ s0j j2 (6:11a)

B1(s) ¼ q2s (6:11b)

C1(s) ¼ q3s (6:11c)

D1(s) ¼ q1s
2 þ s0j j2 (6:11d)

q1 ¼ R0=s0 � X0=v0

R0=s0 þ X0=v0
(6:12a)

q2 ¼ 2 Z0j j2
R0=s0 þ X0=v0

(6:12b)

q3 ¼ 2
R0=s0 � X0=v0

(6:12c)

q4 ¼ R0=s0 þ X0=v0

R0=s0 � X0=v0
¼ 1

q1
(6:12d)

in which

Z s0ð Þ ¼ R0 þ jX0 � Z0 (6:13)

In the case v0¼ 0, then X0=v0 must be replaced by Z0(s0):

X0

v0
! Z0 s0ð Þ ¼ dZ(s)

ds

����
s¼s0

(6:14a)

For s¼ 0 and R0¼ 0, R0=s0 is replaced by X0(v0):

R0

s0
! X0 v0ð Þ ¼ dZ(s)

ds

����
s¼jv0

(6:14b)
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Definition 6.1: Index set

For a given positive-real function Z(s), let s0 be any point in the open RHS or any finite nonzero point on the
jv-axis where Z(s) is analytic. Then, the set of four real numbers q1, q2, q3, and q4, as defined in Equations
6.12 through 6.14, is called the index set assigned to the point s0 by the positive-real function Z(s).
We illustrate this concept by the following example.

Example 6.1

Determine the index set assigned to the point s0¼ 0.4551þ j1.099 by the positive-real function

Z(s) ¼ s2 þ sþ 1
s2 þ sþ 2

(6:15)

From definition and Equation 6.15, we have

s0 ¼ 0:4551þ j1:099 ¼ s0 þ jv0 (6:16a)

Z s0ð Þ ¼ Z(0:4551þ j1:099)

¼ 0:7770þ j0:3218 ¼ 0:8410ej22:5
�

¼ R0 þ jX0 � Z0 (6:16b)

Z0j j2¼ 0:7073 (6:17)

obtaining from Equation 6.12

q1 ¼ 0:707, q2 ¼ 0:707, q3 ¼ 1:414, q4 ¼ 1:414 (6:18)

With these preliminaries, we now state the following theorem, which forms the cornerstone of the method
of cascade synthesis of a rational positive-real impedance according to the Darlington theory [4].

THEOREM 6.2

Let Z(s) be a positive-real function, which is neither of the form Ls nor 1=Cs, L and C being real
nonnegative constants. Let s0¼s0þ jv0 be a finite nonzero point in the closed RHS where Z(s) is analytic,
then the function

W1(s) ¼ D1(s)Z(s)� B1(s)
�C1(s)Z(s)þ A1(s)

(6:19)

is positive real; where A1, B1, C1, and D1 are defined in Equation 6.11 and {q1, q2, q3, q4} is the index set
assigned to the point s0 by Z(s). Furthermore, W1(s) possesses the following attributes:

(1) If Z(s) is rational, W1(s) is rational, the degree of which is not greater than that of Z(s), or

degree W1(s) � degree Z(s) (6:20)

(2) If Z(s) rational and if s0 is a zero of its even part r(s), then

degree W1(s) � degree Z(s)� 4, v0 6¼ 0 (6:21a)
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degree W1(s) � degree Z(s)� 2, v0 ¼ 0 (6:21b)

(3) If s0¼s0 > 0 is a real zero of r(s) of at least multiplicity 2 and if Z(s) is rational, then

degree W1(s) � degree Z(s)� 4 (6:22)

We remark that since Z(s) is positive real, all the points in the open RHS are admissible. Any point on the
jv-axis, exclusive of the origin and infinity, where Z(s) is analytic is admissible as s0.

We are now in a position to show that any positive-real function can be realized as the input
impedance of a lossless one-port network terminated in a resistor. Our starting point is Equation 6.19,
which after solving Z(s) in terms of W1(s) yields

Z(s) ¼ A1(s)W1(s)þ B1(s)
C1(s)W1(s)þ D1(s)

(6:23)

It can be shown that Z(s) can be realized as the input impedance of a two-port network N1, which is
characterized by its transmission matrix

T1(s) ¼
A1(s) B1(s)

C1(s) D1(s)

� �
(6:24)

terminated inW1(s), as depicted in Figure 6.3. To see this, we first compute the corresponding impedance
matrix Z1(s) of N1 from T1(s) and obtain

Z1(s) ¼
z11(s) z12(s)

z21(s) z22(s)

� �
¼ 1

C1(s)

A1(s) A1(s)D1(s)� B1(s)C1(s)

1 D1(s)

� �
(6:25)

The input impedance Z11(s) of N1 with the output port terminating in W1(s) is found to be

Z11(s) ¼ z11(s)� z12(s)z21(s)
z22(s)þW1(s)

¼ A1(s)W1(s)þ B1(s)
C1(s)W1(s)þ D1(s)

¼ Z(s) (6:26)

The determinant of the transmission matrix T1(s) is computed as

detT1(s) ¼ A1(s)D1(s)� B1(s)C1(s) ¼ s4 þ 2 v2
0 � s2

0

� �
s2 þ s0j j4 (6:27)

Observe that det T1(s) depends only upon the point s0 and not on Z(s), and that the input
impedance Z11(s) remains unaltered if each element of T1(s) is multiplied or divided by a nonzero

Z11(s) = Z (s) W1(s)N1

FIGURE 6.3 Two-port network N1 terminated in the impedance W1(s).
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finite quality. To complete the realization, we must now demonstrate that the two-port network N1

is physically realizable.

6.2 Type-E Section

Consider the lossless nonreciprocal two-port network of Figure 6.4 known as the type-E section. Our
objective is to show that this two-port realizes N1. To this end, we first compute its impedance matrix
ZE(s) as

ZE(s) ¼
L1(s)þ 1=Cs Msþ 1=Csþ z

Msþ 1=Cs� z L2sþ 1=Cs

� �
(6:28)

where M2¼ L1L2, the determinant of which is given by

det ZE(s) ¼ L1 þ L2 � 2M þ z2C
C

(6:29)

a constant independent of s due to perfect coupling. From the impedance matrix ZE(s), its corresponding
transmission matrix TE(s) is found to be

TE(s) ¼ 1
MCs2 � zCsþ 1

L1Cs2 þ 1 L1 þ L2 � 2M þ z2C
� �

s

Cs L2Cs2 þ 1

" #
(6:30)

To show that the type-E section realizes N1, we divide each element of T1(s) of Equation 6.24 by s0j j2
(MCs2� zCsþ 1). This manipulation will not affect the input impedance Z(s) but it will result in a
transmission matrix having the form of TE(s). Comparing this new matrix with Equation 6.30 in
conjunction with Equation 6.11 yields the following identifications:

L1C ¼ q4
s0j j2 (6:31a)

L1 þ L2 � 2M þ z2C ¼ q2
s0j j2 (6:31b)

L1 L2

NE

C

M

ξ

FIGURE 6.4 Type-E section.
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C ¼ q3
s0j j2 (6:31c)

L2C ¼ q1
s0j j2 (6:31d)

Solving these for the element values of the type-E section, we obtain

L1 ¼ q4
q3

¼ 1
q1q3

, L2 ¼ q1
q3

(6:32a)

C ¼ q3
s0j j2 , M ¼ 1

q3
, z ¼ � 2s0

q3
(6:32b)

Since the elements of the index set assigned to the point s0 by Z(s) are positive and finited for all admissible
points s0 in the closed RHS except at those admissible points s0¼ jv0 on the jv-axis where R0 6¼ 0, all the
elements in Equation 6.32 are physical. But at those admissible points s0¼ jv0 where R0 6¼ 0, R0=s0

becomes infinity and q1¼ q4¼ 1 and q2¼ q3¼ 0. Under this situation,W1(s)¼Z(s) and the corresponding
two-port network N1 degenerates into a pair of wires.

Appealing to Theorem 6.2 shows that if s0 is chosen to be a complex open RHS zero of the even part
r(s) of Z(s), the type-E section is capable of extracting a set of quadrantal zeros of r(s) and leads to at least
a four-degree reduction. For zeros of r(s) on the jv-axis or the s-axis, the type-E section degenerates into
other types of sections, as follows:

Case 1. s0¼s0> 0. Then, we have z¼ 0 and

L1 ¼ q4
q3

¼ 1
q1q3

, L2 ¼ q1
q3

, C ¼ q3
s2
0
, M ¼ � 1

q3
< 0 (6:33)

The type-E section degenerates to the Darlington type-C section, as shown in Figure 6.5.

Case 2. s0¼ jv0 and R0¼ 0. In this case, we replace R0=s0 by X0(v0) and the gyrator in the type-E section
can be avoided because z¼ 0. The type-E section degenerates into the Brune section of Figure 6.6, the
element values of which are given by

L1 ¼ q4
q3

¼ 1
q1q3

¼ v0X0 v0ð Þ þ X0

2v0
(6:34a)

L2 ¼ q1
q3

¼ v0X0 v0ð Þ � X0½ �2
2v0 v0X0 v0ð Þ þ X0½ � (6:34b)

L1 L2

NC

C

M < 0

FIGURE 6.5 Darlington type-C section.
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C ¼ q3
s0j j2 ¼

2
v0 v0X0 v0ð Þ � X0½ � (6:34c)

M ¼ 1
q3

¼ v0X0 v0ð Þ � X0

2v0
> 0 (6:34d)

In particular, if X0¼ 0 or Z( jv0)¼ 0, the Brune section degenerates into the two-port network of
Figure 6.7 with element values

L ¼ 1
2
X0 v0ð Þ, C ¼ 2

v2
0X0 v0ð Þ (6:35)

As v0 approaches zeros, this degenerate Brune section goes into the type-A section of Figure 6.8 with

L ¼ 1
2
Z0(0) (6:36)

When v0 approaches infinity, the degenerate Brune section collapses into the type-B section of Figure 6.9
with

2
C
¼ lim

s!1 sZ(s) (6:37)

L1 L2

NB

C

M > 0

FIGURE 6.6 Brune section.

L

C

FIGURE 6.7 Degenerate Brune section.
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Case 3. s0¼ jv0 and R0 6¼ 0. In this case, R0=s0 is infinity and

q1 ¼ q4 ¼ 1, q2 ¼ q3 ¼ 0 (6:38)

The type-E section degenerates into a pair of wires.
Therefore, the Brune section is capable of extracting any jv-axis zero of the even part of a positive-real

impedance, and leads to at least a four-degree reduction if jv0 is nonzero and finite, a two-degree
reduction otherwise. The latter corresponds to the type-A or type-B section.

Example 6.2

Consider the positive-real impedance

Z(s) ¼ 8s2 þ 9sþ 10
2s2 þ 4sþ 4

(6:39)

The zeros of its even part r(s) are found from the polynomial

m1m2 � n1n2 ¼ 16 s4 þ s2 þ 2:5
� �

(6:40)

obtaining

s0 ¼ s0 þ jv0 ¼ 0:735þ j1:020 (6:41a)

Z s0ð Þ � R0 þ jX0 ¼ 2:633þ j0:4279 ¼ 2:667ej9:23 � Z0 (6:41b)

The elements of the index set assigned to s0 by Z(s) are computed as

q1 ¼ 0:7904, q2 ¼ 3:556, q3 ¼ 0:6323, q4 ¼ 1:265 (6:42)

NA

L

FIGURE 6.8 Type-A section.

NB

C

FIGURE 6.9 Type-B section.
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Substituting these in Equation 6.32 yields the element values of the type-E section as shown in
Figure 6.10.

L1 ¼ 2 H, L2 ¼ 1:25 H, C ¼ 0:40 F (6:43a)

M ¼ 1:58 H, z ¼ �2:32 V (6:43b)

The terminating impedance W1(s) is a resistance of value

W1(s) ¼ Z(0) ¼ 2:5 V (6:44)

as shown in Figure 6.10.

6.3 Richards Section

In this part, we show that any positive real zero s0¼s0 of the even part r(s) of a positive-real impedance
Z(s), in addition to being realized by the reciprocal Darlington type-C section, can also be realized by a
nonreciprocal section called the Richards section of Figure 6.11.
Let Z(s) be a rational positive-real function. Then according to Theorem 6.1, for any positive real s0,

the function

W1(s) ¼ Z s0ð Þs0Z(s)� sZ s0ð Þ
s0Z s0ð Þ � sZ(s)

(6:45)

is also rational and positive real, the degree of which is not greater than that of Z(s). As pointed out by
Richards [1], if s0 is a zero of r(s), then

degree W1(s) � degree Z(s)� 2 (6:46)

Inverting Equation 6.45 for Z(s) yields

Z(s) ¼ s0W1(s)þ sZ s0ð Þ
sW1(s)=Z s0ð Þ þ s0

(6:47)

NE

L1 = 2.0 H L2 = 1.25 H

C = 0.4 F

M = 1.58 H

ζ = ±2.32 Ω

W
1 (s) = 2.5 Ω

FIGURE 6.10 Realization of the impedance function of (6.39).
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This impedance can be realized by the Richards section terminated in the impedance W1(s) as indicated
in Figure 6.12 with the element values

C ¼ 1
s0Z s0ð Þ , z ¼ �Z s0ð Þ (6:48)

6.4 Darlington Type-D Section

In the foregoing, we have demonstrated that the lossless two-port network N1 can be realized by the
lossless nonreciprocal type-E section, which degenerates into the classical type-A, type-B, type-C, and
the Brune sections when the even part zero s0 of the positive-real impedance is restricted to the jv-axis
or the positive s-axis. In the present section, we show that N1 can also be realized by a lossless reciprocal
two-port network by the application of Theorem 6.1 twice.
Let s0 be a zero of the even part r(s) of a rational positive-real impedance Z(s). By Theorem 6.2, the

functionW1(s) of Equation 6.19 is also rational positive real, and its degree is at least four or two less that
that of Z(s), depending on whether v0 6¼ 0 or v0¼ 0. Now, apply Theorem 6.2 to W1(s) at the same
point s0. Then, the function

W2(s) ¼ D2(s)W1(s)� B2(S)
�C2(s)W1(s)þ A2(s)

(6:49)

NR

ζ

C

FIGURE 6.11 Richards section.

ζ

C

NR

W1(s)

FIGURE 6.12 Realization of Z(s) by Richards section.
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is rational positive real, the degree of which cannot exceed that ofW1(s), being at least two or four degrees
less than that of Z(s), where

A2(s) ¼ p4s
2 þ s0j j2 (6:50a)

B2(s) ¼ p2s (6:50b)

C2(s) ¼ p3s (6:50c)

D2(s) ¼ p1s
2 þ s0j j2 (6:50d)

and {p1, p2, p3, p4} is the index set assigned to the point s0 by the positive-real function W1(s). Solving for
W1(s) in Equation 6.49 gives

W1(s) ¼ A2(s)W2(s)þ B2(s)
C2(s)W2(s)þ D2(s)

(6:51)

which can be realized as the input impedance of a two-port network N2 characterized by the transmission
matrix

T2(s) ¼
A2(s) B2(s)

C2(s) D2(s)

� �
(6:52)

terminated in W2(s), as depicted in Figure 6.13.
Consider the cascade connection of the two-port N1 of Figure 6.3 and N2 of Figure 6.13 terminated in

W2(s), as shown in Figure 6.14. The transmission matrix T(s) of the overall two-port network N is simply
the product of the transmission matrices of the individual two-ports:

T(s) ¼ T1(s)T2(s) (6:53)

W1(s) W2(s)N2

FIGURE 6.13 Realization of the impedance function W1(s).

Z(s) N2N1

N

W1(s)

W2(s)

FIGURE 6.14 Cascade connection of two-port networks N1 and N2.
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the determinant of which is found to be

det T(s) ¼ det T1(s)½ � det T2(s)½ � ¼ s4 þ 2 v2
0 � s2

0

� �
s2 þ s0j j4� �2

(6:54)

Thus, when N is terminated inW2(s), the input impedance of Figure 6.14 is Z(s). This impedance remains
unaltered if each element of T1(s) is divided by a nonzero finite quantity. For our purposes, we stipulate
that the two-port N1 be characterized by the transmission matrix

T
_

1(s) ¼ 1
D(s)

T1(s) (6:55)

where

D(s) ¼ s4 þ 2 v2
0 � s2

0

� �
s2 þ s0j j4 (6:56)

Using this matrix T
_

1(s) for N1, the transmission matrix T
_

1(s) of the overall two-port network N becomes

T
_
(s) ¼ 1

D(s)
T1(s)T2(s) � 1

D(s)

A(s) B(s)

C(s) D(s)

� �

¼ 1
D(s)

p4q4s4 þ s0j j4 p2q4 þ p1q2ð Þs3
þ p4 þ q4ð Þ s0j j2þp3q2
� �

s2 þ p2 þ q2ð Þ s0j j2s
p4q3 þ p3q1ð Þs3 p1q1s4 þ s0j j4þ p1 þ q1ð Þ s0j j2�
þ p3 þ q3ð Þ s0j j2s þp2q3�s2

2
66664

3
77775 (6:57)

The corresponding impedance matrix Z(s) of the overall two-port network is found to be

Z(s) ¼ 1
C(s)

A(s) D(s)

D(s) D(s)

� �
(6:58)

showing that N is reciprocal because Z(s) is symmetric.
Now consider the reciprocal lossless Darlington type-D section ND of Figure 6.15 with two perfectly

coupled transformers

L1L2 ¼ M2
1 , L3L4 ¼ M2

2 (6:59)

L1 L2

L3 L4C1

C2

M1

M2

ND

FIGURE 6.15 Darlington type-D section ND.
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The impedance matrix ZD(s) of ND is found to be

ZD(s) ¼
L1sþ 1

C2s
þ s=C1

s2 þ v2
a

M1sþ 1
C2s

þ v2
aM2s

s2 þ v2
a

M1sþ 1
C2s

þ v2
aM2s

s2 þ v2
a

L2sþ 1
C2s

þ v2
aL4s

s2 þ v2
a

2
6664

3
7775 (6:60)

where va
2¼ 1=C1L3.

Setting ZD(s)¼Z(s) in conjunction with Equation 6.57 and after considerable algebraic manipulations,
we can make the following identifications:

L1 ¼ p4q4
p4q3 þ p3q1

(6:61a)

L2 ¼ p1q1
p4q3 þ p3q1

¼ M2
1

L1
(6:61b)

M1 ¼ 1
p4q3 þ p3q1

¼ ffiffiffiffiffiffiffiffiffi
L1L2

p
(6:61c)

C2 ¼ p3 þ q3
s0j j2 (6:61d)

v2
a ¼ v2

1 ¼
s0j j2 p3 þ q3ð Þ
p4q3 þ p3q1

(6:61e)

M2 ¼ �v4
1 � 2 v2

0 � s2
0

� �
v2
1 þ s0j j4

v4
1 p4q3 þ p3q1ð Þ

¼ � p23q
2
3 W1 s0ð Þ þ Z s0ð Þq1
�� ��2

s0j j2 p4q3 þ p3q1ð Þ p3 þ q3ð Þ2 � 0 (6:61f)

L4 ¼
p1 þ q1ð Þ s0j j2þp2q3

� �
v2
1 � p1q1v4

1 � s0j j4
v4
1 p4q3 þ p3q1ð Þ ¼ � q3M2

p3
(6:61g)

L3 ¼ M2
2

L4
¼ � p3M2

q3
(6:61h)

C1 ¼ 1
v2
1L3

¼ � q3
v2
1p3M2

(6:61i)

Thus, all the element values except M2 are nonnegative, and the lossless reciprocal Darlington type-D
section is equivalent to the two type-E sections in cascade.

Example 6.3

Consider the positive-real impedance

Z(s) ¼ 6s2 þ 5sþ 6
2s2 þ 4sþ 4

(6:62)

the even part of which has a zero at

s0 ¼ s0 þ jv0 ¼ 0:61139þ j1:02005 (6:63)
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The elements of the index set assigned to s0 by Z(s) are given by

q1 ¼ 0:70711, q2 ¼ 1:76784, q3 ¼ 0:94283, q4 ¼ 1:41421 (6:64)

The terminating impedance W1(s) is determined to be

W1(s) ¼ W1(0) ¼ Z(0) ¼ 1:5 V (6:65)

The elements of the index set assigned to the point s0 by W1(s) are found to be

p1 ¼ 1, p2 ¼ 1:83417, p3 ¼ 0:81519, p4 ¼ 1 (6:66)

Substituting these in Equation 6.61 yields the desired element values of the type-D section, as follows:

L1 ¼ p4q4
p4q3 þ p3q1

¼ 0:93086 H (6:67a)

L2 ¼ p1q1
p4q3 þ p3q1

¼ 0:46543 H (6:67b)

M1 ¼ 1
p3q3 þ p3q1

¼ 0:65822 H (6:67c)

C2 ¼ p3 þ q3
s0j j2 ¼ 1:24303 F (6:67d)

v2
1 ¼

s20
�� �� p3 þ q3ð Þ
p4q3 þ p3q1

¼ 1:63656 (6:67e)

M2 ¼ �v4
1 � 2 v2

0 � s2
0

� �
v2
1 þ s0j j4

v4
1 p4q3 þ p3q1ð Þ ¼ �0:61350 H (6:67f)

L4 ¼ � q3M2

p3
¼ 0:70956 H (6:67g)

ND

L2 = 0.465 HL1 = 0.931 H

L4 = 0.710 HC1 = 1.152 F

C2 = 1.243 F

M2 = –0.614 H

M1 = 0.658 H

L 3
 =

 0.
53

1 H 1.5 Ω

FIGURE 6.16 Darlington type-D section terminated in a resistor.
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L3 ¼ M2
2

L4
¼ � p3M2

q3
¼ 0:53044 H (6:67h)

C1 ¼ 1
v2
1L3

¼ � q3
v2
1p3M2

¼ 1:15193 F (6:67i)

The complete network together with its termination is presented in Figure 6.16.
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7.1 Introduction

In Chapter 6, we showed that any positive-real function can be realized as the input immittance
of a passive one-port network, which is describable as a lossless two-port network terminated in a
resistor. Therefore, insofar as the input immittance is concerned, any passive network is equivalent
to one containing at most one resistor. In this section, we consider the synthesis of a one-port
network composed only of self and mutual inductors and capacitors called the LCM one-port, or a
one-port composed only of resistors and capacitors called the RC one-port.

7.2 LCM One-Port Networks

Consider the input impedance Z(s) of an LCM one-port network written in the form

Z(s) ¼ m1 þ n1
m2 þ n2

(7:1)

the even part of which is given by

r(s) ¼ m1m2 � n1n2
m2

2 � n22
(7:2)

Since the one-port is lossless, we have

r( jv) ¼ Re Z( jv) ¼ 0 for all v (7:3)

To make Re Z( jv)¼ 0, there are three nontrivial ways: (1) m1¼ 0 and n2¼ 0, (2) m2¼ 0 and n1¼ 0, and
(3) m1m2� n1n2¼ 0. The first possibility leads Z(s) to n1=m2, the second to m1=n2. For the third
possibility, we require that m1m2¼ n1n2 or

m1 þ n1ð Þm2 ¼ m2 þ n2ð Þn1 (7:4)
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which is equivalent to

Z(s) ¼ m1 þ n1
m2 þ n2

¼ n1
m2

(7:5)

Therefore, the driving-point immittance of a lossless network is always the quotient of even to odd or odd
to even polynomials. Its zeros and poles must occur in quadrantal symmetry, being symmetric with
respect to both axes. As a result, they are simple and purely imaginary from stability considerations, or
Z(s) can be explicitly written as

Z(s) ¼ H
s2 þ v2

z1

� �
s2 þ v2

z2

� �
s2 þ v2

z3

� � � � �
s s2 þ v2

p1

� �
s2 þ v2

p2

� �
. . .

(7:6)

where vz1� 0. This equation can be expanded in partial fraction as

Z(s) ¼ Hsþ K0

s
þ
Xn
i¼1

2Kis
s2 þ v2

i
(7:7)

where vpi¼vi, and the residues H, K0, and Ki are all real and positive.
Substituting s¼ jv and writing Z( jv)¼Re Z( jv)þ j Im Z( jv) results in an odd function known as the

reactance function X(v):

X(v) ¼ Im Z( jv) ¼ Hv� K0

v
þ
Xn
i¼1

2Kiv

�v2 þ v2
i

(7:8)

Taking the derivatives on both sides yields

dX(v)
dv

¼ H þ K0

v2
þ
Xn
i¼1

2Ki v
2 þ v2

i

� �
�v2 þ v2

ið Þ2 (7:9)

Since every factor in this equation is positive for all positive and negative values of v, we conclude that

dX(v)
dv

> 0 for�1 < v < 1 (7:10)

It states that the slope of the reactance function versus frequency curve is always positive, as depicted in
Figure 7.1. Consequently, the poles and zeros of Z(s) alternate along the jv-axis. This is known as the
separation property for reactance function credited to Foster [1]. Because of this, the pole and zero
frequencies of Equation 7.6 are related by

0 � vz1 < vp1 < vz2 < vp2 < � � � (7:11)

We now consider the realization of Z(s). If each term on the right-hand side of Equation 7.7 can be
identified as the input impedance of the LC one-port, the series connection of these one-ports would
yield the desired realization. The first term is the impedance of an inductor of inductance H, and the
second term corresponds to a capacitor of capacitance 1=K0. Each of the remaining term can be realized
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as a parallel combination of an inductor of inductance 2Ki=v
2
i and a capacitor of capacitance 1=2Ki. The

resulting realization is shown in Figure 7.2 known as the first Foster canonical form. Likewise, if we
consider the admittance function Y(s)¼ 1=Z(s) and expanded it in partial fraction, we obtain

Y(s) ¼ ~Hsþ
~K0

s
þ
Xn
i¼1

2~Kis
s2 þ v2

i
(7:12)

which can be realized by the one-port of Figure 7.3 known as the second Foster canonical form. The term
canonical form refers to a network containing the minimum number of elements to meet given
specifications.

ω0

(a)

X(ω)

(b)

ω0

X(ω)

FIGURE 7.1 Plots of reactance function X(v) versus v. (a) The origin is a zero. (b) The origin is a pole.

H 1/K0

1/2K1 1/2Kn

2K1/ω2
1 2Kn/ω2

n

FIGURE 7.2 First Foster canonical form.

1/K0

2K1/ω2
1 2Kn/ω2

n

1/2K1 1/2Kn

H~

~

~

~

~

~

FIGURE 7.3 Second Foster canonical form.
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We summarize the preceding results by stating the following theorem:

THEOREM 7.1

A real rational function is the input immittance function of an LCM one-port network if and only if all of
its zeros and poles are simple, lie on the jv-axis, and alternate with each other.
In addition to the two Foster canonical forms, there is another synthesis procedure, that gives rise to

one-ports known as the Cauer canonical form [2]. Let us expand, Z(s) in a continued fraction

Z(s) ¼ m(s)
n(s)

¼ L1sþ 1

C2sþ 1

L3sþ 1

C4sþ 1

. .
.

(7:13)

where m(s) is assumed to be of higher degree than n(s). Otherwise, we expand Y(s)¼ 1=Z(s) instead of
Z(s). Equation 7.13 can be realized as the input impedance of the LC ladder network of Figure 7.4 and is
known as the first Cauer canonical form.
Suppose now that we rearrange the numerator and denominator polynomials m(s) and n(s) in

ascending order of s, and expand the resulting function in a continued fraction. Such an expansion yields

Z(s) ¼ m(s)
n(s)

¼ a0 þ a2s2 þ � � � þ ak�2sk�2 þ aksk

b1sþ b3s3 þ � � � þ bk�1sk�1

¼ 1
C1s

þ 1
1
L2s

þ 1
1
C3s

þ 1
1
L4s

þ 1

. .
.

(7:14)

which can be realized by the LC ladder of Figure 7.5 known as the second Cauer canonical form.

L1 L3 L5

C2 C4 C6

FIGURE 7.4 First Cauer canonical form.

C1 C3 C5

L2 L4 L6

FIGURE 7.5 Second Cauer canonical form.
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Example 7.1

Consider the reactance function

Z(s) ¼ s s2 þ 4ð Þ s2 þ 36ð Þ
s2 þ 1ð Þ s2 þ 25ð Þ s2 þ 81ð Þ (7:15)

For the first Foster canonical form, we expand Z(s) in a partial fraction

Z(s) ¼ 7s=128
s2 þ 1

þ 11s=64
s2 þ 25

þ 99s=128
s2 þ 81

(7:16)

and obtain the one-port network of Figure 7.6.
For the second Foster canonical form, we expand Y(s)¼ 1=Z(s) in a partial fraction

Y(s) ¼ sþ 225=16
s

þ 4851s=128
s2 þ 4

þ 1925s=128
s2 þ 36

(7:17)

and obtain the one-port network of Figure 7.7.
For the Cauer canonical form, we expand the function in a continued fraction

Z(s) ¼ 1

sþ 1

0:015sþ 1

6:48sþ 1

8:28� 10�3sþ 1

12:88sþ 1
0:048s

(7:18)

and obtain the one-port network of Figure 7.8.

7/128 H

128/7 F 128/99 F64/11 F

11/1600 H 11/1152 H

FIGURE 7.6 First Foster canonical form.

16/225 H

128/4851 H

4851/512 F

128/1925 H

1925/4608 F

1 F

FIGURE 7.7 Second Foster canonical form.
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For the second Cauer canonical form, we rearrange the polynomials in ascending order of s, then
expand the resulting function in a continued fraction, and obtain

Z(s) ¼ 1
14:06
s

þ 1
0:092
s

þ 1
49:84
s

þ 1
0:66
s

þ 1
192:26

s
þ 1
0:248
s

(7:19)

The desired LC ladder is shown in Figure 7.9.

7.3 RC One-Port Networks

In this part, we exploit the properties of impedance functions of the RC one-ports from the known
properties of the LCM one-ports of Section 7.2.
From a given RC one-portNRC, we construct an LC one-portNLC by replacing each resistor of resistance

Ri by an inductor of inductance Li¼Ri. Suppose that we use loop analysis for both NRC and NLC, and
choose the same set of loop currents. In addition, assume that the voltage source at the input port is
traversed only by loop current A. Then the input impedance ZLC(s) of NLC is determined by the equation

ZLC(s) ¼
~D(s)
~D11(s)

(7:20)

where
~D is the loop determinant
~D11 is the cofactor corresponding to loop current 1 in NLC

0.015 H 0.048 H8.28 mH

1F 6.48 F 12.88 F

FIGURE 7.8 First Cauer canonical form.

0.071 H 0.02 H 5.2 mH

1.52 F10.87 F 4.03 F

FIGURE 7.9 Second Cauer canonical form.
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Similarly, the input impedance ZRC(s) of NRC can be written as

ZRC(s) ¼ D(s)
D11(s)

(7:21)

where D is the loop determinant and D11 is the cofactor corresponding to loop current 1 in NRC. It is not
difficult to see that these loop determinants and cofactors are related by

D(s) ¼
~D(p)
pr

�����
p2¼s

(7:22a)

D11(s) ¼
~D11(p)
pr�1

�����
p2¼s

(7:22b)

where r is the order of the loop determinants ~D and D. Combining Equations 7.20 through 7.22 yields

ZRC(s) ¼ 1
p
ZLC(p)

� �
p2¼s

(7:23)

This relation allows us to deduce the properties of RC networks from those of the LC networks.
Substituting Equations 7.6 and 7.7 in Equation 7.23, we obtain the general forms of the RC impedance
function as

ZRC(s) ¼ H
sþ sz1ð Þ sþ sz2ð Þ sþ sz3ð Þ � � �

s sþ sp1
� �

sþ sp2
� � � � � ¼ H þ K0

s
þ
Xn
i¼1

K̂i

sþ si
(7:24)

where szj ¼ v2
zj, spi ¼ v2

pi, si ¼ v2
i and K̂i ¼ 2Ki, and from Equation 7.11

0 � sz1 < sp1 < sz2 < sp2 < � � � (7:25)

Thus, the zeros and poles of an RC impedance alternate along the nonpositive real axis. This property
turns out also to be sufficient to characterize the RC impedances.

THEOREM 7.2

A real rational function is the driving-point impedance of an RC one-port network if and only if all the
poles and zeros are simple, lie on the nonpositive real axis, and alternate with each other, the first critical
frequency (pole or zero) being a pole.
The slope of ZRC(s) is found from Equation 7.24 to be

dZRC(s)
ds

¼ �K0

s2
�
Xn
i¼1

K̂i

sþ sið Þ2 (7:26)

which is negative for all values of s, since K0, and k̂i are positive. Thus, we have

dZRC(s)
ds

< 0 (7:27)
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A plot of ZRC(s) as a function of s is shown in Figure 7.10. Since no poles and zeros exist along the
positive real axis, we have

ZRC(1) � ZRC(0) (7:28)

We now proceed to the realization of the RC one-port networks. Suppose that we are given ZRC(s) as in
Equation 7.24. By analogy to the LC case, this impedance can be realized by the one-port network of
Figure 7.11 called the first Foster canonical form for the RC impedance.
To obtain the second Foster canonical form, we expand YRC(s)=s in a partial fraction, where YRC(s)¼

1=ZRC(s), and then multiply the resulting equation by s. The reason is that a direct partial-fraction
expansion of YRC(s) will result in negative residues. Proceeding in this way, we obtain

YRC(s) ¼ K0 þ K1sþ
Xn
i¼1

Kis
sþ si

(7:29)

yielding the one-port network of Figure 7.12.
As before, in addition to the two Foster forms, RC ladder realizations are also possible. Following the

LC case, we perform a continued-fraction expansion of ZRC(s) and obtain

ZRC (∞)

ZRC (σ)

ZRC (0)

0 σ

FIGURE 7.10 Plot of ZRC(s) as a function of s.

1/K0H
K  1/σ1
ˆ K  n/σn

ˆ

1/K  1ˆ 1/K  nˆ

FIGURE 7.11 First Foster Canonical Form.
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ZRC(s) ¼ R1 þ 1

C2sþ 1

R3 þ 1

C4sþ 1

. .
.

(7:30)

This expansion can be realized by the ladder network of Figure 7.13 known as the first Cauer canonical
form for RC impedance. If we rearrange the terms of ZRC(s) so that the numerator and denominator
polynomials appear in ascending order of s, the resulting continued-fraction expansion takes the
general form

ZRC(s) ¼ 1
C1s

þ 1
1
R2

þ 1
1
C3s

þ 1
1
R4

þ 1
1
C5s

þ 1

. .
.

(7:31)

yielding the second Cauer canonical form of Figure 7.14.

1/K0 K∞

1/K1 1/Kn

K1/σ1 Kn/σn

FIGURE 7.12 Second Foster canonical form.

R1 R3 R5

C2 C4 C6

FIGURE 7.13 First Cauer canonical form.

C1 C3 C5

R2 R4 R6

FIGURE 7.14 Second Cauer canonical form.
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Example 7.2

Consider the impedance function

Z(s) ¼ s2 þ 12sþ 35
s2 þ 10sþ 24

(7:32)

To obtain the first Foster canonical form, we expand Z(s) in partial fraction as

Z(s) ¼ 1þ 3=2
sþ 4

þ 1=2
sþ 6

(7:33)

and obtain the one-port of Figure 7.15.
For the second Foster canonical form, the proper function to expand is Y(s)=s, yielding

Y(s) ¼ 24
35

þ s=10
sþ 5

þ 3s=14
sþ 7

(7:34)

The corresponding realization is shown in Figure 7.16.
For the first Cauer canonical form, we expand Z(s) in a continued fraction as

Z(s) ¼ 1þ 1
s
2
þ 1
4
9
þ 1
27s
2

þ 1
1
72

(7:35)

3/8 Ω 1/12 Ω
1 Ω

2/3 F 2 F

FIGURE 7.15 First Foster canonical form.

10 Ω 14/3 Ω

35/24 Ω

1/50 F 3/98 F

FIGURE 7.16 Second Foster canonical form.
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which can be realized by the ladder of Figure 7.17. To obtain the second Cauer canonical form, we
rearrange the numerator and denominator polynomials in ascending order of s, and then expand in a
continued fraction

Z(s) ¼ 35þ 12sþ s2

24þ 10sþ s2
¼ 1

0:69þ 1
19:76
s

þ 1

0:306þ 1
692:91

s
þ 1
8:36� 10�3

(7:36)

yielding the ladder of Figure 7.18.
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1 Ω 4/9 Ω 1/72 Ω

1/2 F 27/2 F

FIGURE 7.17 First Cauer canonical form.

0.051 F 1443.19 μF

1.46 Ω 3.27 Ω 119.67 Ω

FIGURE 7.18 Second Cauer canonical form.
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8.1 Introduction

In two-port synthesis, specifications are often given in terms of the transfer functions such as the transfer
voltage ratio, transfer current ratio, transfer impedance, or transfer admittance. The actual realization,
however, is accomplished by means of the y- or z-parameters. Figure 8.1 shows a two-port network
driven by a voltage source with output terminating in an impedance Z2(s). It is straightforward to
show that the transfer voltage ratio function G12(s) can be expressed in terms of its y-parameters yij(s) or
z-parameters zij(s) by the equation

G12(s) ¼ V2

V1
¼ �y21

y22 þ Y2
(8:1)

where Y2(s)¼ 1=Z2(s). When the output is open-circuited, Equation 8.1 becomes

G12(s) ¼ V2

V1
¼ �y21

y22
¼ z21

z11
(8:2)

Likewise, the transfer current ratio a12(s) can be expressed as

a12(s) ¼ � I2
I1
¼ z21

z22 þ Z2
(8:3)

The zeros of transmission of a two-port network are defined as the frequencies at which the two-port
results in zero output for a finite input. They play an important role in ladder development. There are
many ways of producing zeros of transmission. One possibility to prevent the input signal from reaching
the output is by shorting together all transmission paths or by opening all transmission paths by means of
a series or parallel resonance. Another possibility is that signals transmitted by different paths cancel at
the output.
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Observe from Equations 8.1 and 8.2 that zero output, V2¼ 0, implies a zero for each of these functions.
Therefore, zeros of transmission are zeros of �y21 or z21 provided y21 and y22 or z21 and z11 have the
same poles. For the ladder network, the transmission can be interrupted only by the short circuit in a
shunt arm or an open circuit in a series arm. The short circuit of a shunt arm corresponds to the
pole frequencies of its admittances, whereas the open circuit of a series arm corresponds to
the pole frequencies of its impedances. Therefore, the zeros of transmission of a ladder network can be
identified directly with the zeros of the impedances of the shunt arms and the poles of the impedances of
the series arms. For the LC ladder, all zeros of transmission lie on the jv-axis, and for the RC ladder they
are on the nonpositive real axis of the complex-frequency s-plane.

8.2 LC Ladder

For LC ladders, the conditions imposed on�y21 and y22 or z21 and z22 are that the driving-point functions
y22 and z22 be positive real with poles and zeros interlaced on the jv-axis. The transfer functions�y21 and
z21, assuming to have the same poles as y22 or z22, must have all of its zeros on the jv-axis. However,
these zeros need not be interlaced with the poles and they may not be simple. Our strategy in realization is
that of carrying out the driving-point synthesis of y22 or z22, using Cauer ladder development method,
in such a way that the zeros of transmission are realized at the same time. The procedure consists of two
steps: a zero-shifting step and a zero-producing step, as described below.

Zero shifting by partial removal. Consider an impedance of Equation 7.6, the partial-fraction expansion of
which is given in Equation 7.7. The first term on the right-hand side of Equation 7.7 is due to
the contribution of the pole at the infinity. If this term Hs is subtracted from Z(s), the resulting function
Z(s)�Hs is devoid of the pole at the infinity. We say that the pole at infinity has been removed
completely. Instead of complete removal of this pole, suppose that we subtract a fraction of the terms
Hs from Z(s) by introducing a constant kp such that

Z1(s) ¼ Z(s)� kpHs, kp < 1 (8:4)

We say that the pole at infinity has been partially removed or weakened. The function Z1(s) that results
from the partial removal of the pole at infinity still possesses the pole at infinity. Since all the zeros of
Z1(s) are again located on the jv-axis, these zeros are found by substituting s¼ jv in Equation 8.4,

X1(v) ¼ X(v)� kpHv (8:5)

where Z1(jv)¼ jX1(v). The zeros of X1(v) are values of v satisfying the equation

X(v) ¼ kpHv (8:6)

Solutions to this equation are found graphically from the intersections of the curves X(v) and kpHv, as
depicted in Figure 8.2. Observe that all the zeros in the resulting function are shifted toward the pole

I1 I2

V1 V1 V2N Z2(s)

+

–

+

–

+

–

FIGURE 8.1 Terminated two-port network.
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being weakened. The amount of shift of the zeros from their original positions depends on the value of kp
and the proximity of a zero to the pole being weakened.
We next consider the term K0=s in Equation 7.7 due to the pole at the origin. The partial removal of

this pole is equivalent to the operation

Z2(s) ¼ Z(s)� kp
K0

s
(8:7)

As before, the zeros of Z2(s) are defined by the intersections of the curves X(v) and �kp(K0=v) with v,

X(v) ¼ �kp
K0

v
(8:8)

as illustrated in Figure 8.3. Observe again that the zeros are shifted toward the pole being weakened,
which is at the origin.
Finally, for the finite nonzero poles, the corresponding factors take the general form 2Kis=(s

2þv2
i ).

The partial removal of this pair of complex conjugate poles results in the new function

Z3(s) ¼ Z(s)� kp
2Kis

s2 þ v2
i
, kp < 1 (8:9)

The zeros of this function are defined by the intersections of the plots of X(v) and �kp(2Kiv=(v
2�v2

i ))
with v,

X(v) ¼ �kp
2Kiv

v2 � v2
i
, kp < 1 (8:10)

as illustrated in Figure 8.4.
Our conclusion is that the partial removal of a pole shifts the zeros toward that pole. The amount of

shift depends on the value of kp and the proximity of a zero to that pole, but in no case can a zero be
shifted beyond an adjacent pole.

X(ω)X(ω)X(ω)
Hω

kP Hω

Zero
shift

Zero
shift

ω0

FIGURE 8.2 Zero shifting by weakening the pole at the infinity.

Two-Part Synthesis by Ladder Development 8-3



Zero producing by complete pole removal. After a zero of transmission has been shifted to a
desired location by the partial removal of an appropriate pole, the realization of this zero of transmission
is accomplished by the complete removal of the pole of the reciprocal function corresponding to
the shifted zero. For the LC ladder two-ports, a series combination of an inductor L and a capacitor
C produces a zero at its resonant frequency v ¼ 1

ffiffiffiffiffiffi
LC

p�
and this network is used in the shunt arm in

the ladder to produce the desired zero of transmission. Likewise, the parallel connection of L and C yields

X(ω) X(ω)

–kPK0 /ω

Zero
shift

Zero
shift

ω0
X(ω)

–K0 /ω

FIGURE 8.3 Zero shifting by weakening the pole at the origin.

X(ω) X(ω)

Zero
shift

Zero
shift

X(ω)

Zero
shift

–kP2Kiω/(ω2 – ω2
i )

ωωi0

FIGURE 8.4 Zero shifting by weakening a finite nonzero pole.
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an infinite impedance at its resonant frequency, and is used in the series arm of the ladder. They are shown
in Figure 8.5.

Example 8.1

We wish to design a lossless two-port network terminated in a 100-V resistor to meet the specifications
for the transfer voltage-ratio function

G12(s) ¼ V2
V1

¼ K
s2 þ 4

s3 þ 4s2 þ 9sþ 4
(8:11)

within a multiplicative constant.

Since magnitude scaling does not affect the voltage transfer ratio, without loss of generality, we first
assume that the terminating resistor is 1V. Equation 8.11 can be rewritten as

G12(s) ¼ K

s2 þ 4
s s2 þ 9ð Þ

4 s2 þ 1ð Þ
s s2 þ 9ð Þ þ 1

¼ �y21
y22 þ Y2

¼ �y21
y22 þ 1

(8:12)

We can make the following identifications:

�y21(s) ¼ K
s2 þ 4

s s2 þ 9ð Þ , y22(s) ¼ 4
s2 þ 1

s s2 þ 9ð Þ (8:13)

Both functions have the same poles at s¼ 0 and s ¼ � j3 and the zeros of transmission of the ladder are
located at s¼�j2 and s¼1. These poles and zeros are shown in Figure 8.6. To realize the zero of
transmission at s¼1, we remove the pole of z1(s)¼ 1=y22(s) at s¼1.

z1(s) ¼ 1
y22(s)

¼ s s2 þ 9ð Þ
4 s2 þ 1ð Þ ¼

2s
s2 þ 1

þ s
4

(8:14)

After subtracting the term s=4 corresponding to an inductor of inductance 1=4 H shown in Figure 8.7
from z1(s), the remaining impedance z2(s) is found to be

z2(s) ¼ 2s
s2 þ 1

(8:15)

L2

L1

C1

C2

FIGURE 8.5 Zero producing sections in a ladder network.
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To realize the zero of transmission at s¼�j2, we partially weaken the pole of the admittance

y2(s) � 1
z2(s)

¼ s2 þ 1
2s

(8:16)

at s¼1 in order to shift the zero at s¼�j to s¼�j2, or

y3(� j2) ¼ y2(s)� kp
1
2
s

����
s¼�j2

¼ �4þ 1
�j2� 2

� kp
1
2
j2 ¼ 0 (8:17)

yielding kp¼ 3=4. The new function becomes

y3(s) ¼ s2 þ 1
2s

� 3
8
s ¼ s2 þ 4

8s
(8:18)

after the removal of a shunt capacitor of capacitance 3=8 F, as shown in Figure 8.7. The factor (s2þ 4) in
the numerator was anticipated because our objective was to produce a zero in the driving-point
admittance y3(s) at s¼�j2. To realize this zero, we consider the reciprocal function z3(s)¼ 1=y3(s) by
complete removal of its pole at s¼�j2. This yields a parallel connection of L¼ 2 H and C¼ 1=8 F shown
in Figure 8.7. The final realization is obtained by magnitude-scaling by a factor of 100. The realized
constant K is found from the network to be K¼ 1.

–y21

y22

y2

y3
z3

z2

z1

0 1 2 3 ∞

FIGURE 8.6 Poles and zeros of LC immittances.

2 H

1/8 F

3/8 F

1/4 H
2

1́ 2́

1

1 Ω

FIGURE 8.7 LC ladder realization of the transfer voltage ratio (Equation 8.11).
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8.3 RC Ladder

We now consider the realization of RC ladder with prescribed �y21(s) and y22(s) or z21(s) and z22(s).
Following the LC case, the zero shifting for the RC driving-point functions is accomplished by one or any
combination of the following three operations:

1. Partial removal of a constant Z(1) from Z(s)
2. Partial removal of a constant Y(0) from Y(s)
3. Partial removal of a pole from Z(s) or Y(s)

The first operation permits a series resistance to be removed so that the resulting impedance is still
positive real and possesses a desired zero of transmission:

Z1(s) ¼ Z(s)� kpZ(1), kp � 1 (8:19)

the zeros of which occur at those values of s satisfying

Z(s) ¼ kpZ(1), kp � 1 (8:20)

Observe that from Figure 8.8 all zeros are shifted toward s¼s¼�1 by the partial removal of Z(1)
because the slope is negative for the RC impedances.
The second operation corresponds to the removal of a shunt resistance, and the remaining admittance

Y1(s) ¼ Y(s)� kpY(0), kp � 1 (8:21)

is still positive real, the zeros of which occur at those values of s satisfying

Y(s) ¼ kpY(0), kp � 1 (8:22)

Observe from Figure 8.9 that these zeros again are shifted toward s¼ 0 in relation to those of Y(s).
Finally, the partial removal of a pole of Z(s) results in a parallel connection of a resistor and a capacitor,

and the remaining impedance becomes

Z2(s) ¼ Z(s)� kp
Ki

sþ si
, kp < 1 (8:23)

Z(σ) Z(σ) Z(σ)

Zero shiftZero shift Zero shift

Z(σ)

Z(∞)

σ

Z(0)

0

kpZ(∞)

FIGURE 8.8 Zero shifting by the partial removal of Z(1).
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the zeros of which occur at those values of s satisfying

Z(s) ¼ kp
Ki

sþ si
, kp < 1 (8:24)

As indicated in Figure 8.10, these zeros are again shifted toward the pole at s¼�si being partially
weakened.
Therefore, the partial removal of a constant or a pole shifts the zeros of the remaining function toward

the quantity being weakened. The amount of shift depends on the value of kp and the proximity of a zero
to that quantity. Once a zero is shifted to an appropriate location, its realization is accomplished by the
complete removal of the pole of the reciprocal function corresponding to the shifted zero.

Example 8.2

We wish to realize the transfer impedance

Z12(s) ¼ K
s(sþ 1)

2s2 þ 18sþ 34
(8:25)

of an RC two-port network terminated in a 1V resistor.

From Equation 8.3, the transfer impedance can be written as

Z12(s) ¼ V2

I1
¼ �I2 � 1

I1
¼ �I2

I1
¼ z21

z22 þ 1
¼

K
s(sþ 1)

(sþ 2)(sþ 5)
(sþ 3)(sþ 8)
(sþ 2)(sþ 5)

þ 1
(8:26)

Y(σ) Y(σ) Y(σ)

Zero shiftZero shift
Zero
shift

Y(σ)

Y(∞)

σ

Y(0)

0

kpY(0)

FIGURE 8.9 Zero shifting by partial removal of Y(0).
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identifying

z21(s) ¼ K
s(sþ 1)

(sþ 2)(sþ 5)
, z22(s) ¼ (sþ 3)(sþ 8)

(sþ 2)(sþ 5)
(8:27)

The zeros of transmission are located at s¼ 0 and s¼�1. Suppose that we wish to realize these zeros in
the order of�1 and 0. For this we consider the reciprocal function y1(s)¼ 1=z22(s), the zeros. and poles of
which are shown in Figure 8.11. Clearly, the zero at s¼�2 can be shifted to s¼�1 by partial removal
of the constant y1(0)¼ 5=12,

y2(�1) ¼ y1(�1)� kpy1(0) ¼ 0 (8:28)

Z(σ) Z(σ) Z(σ)

Z(σ)

σ

Z(0)

kpKi /(σ+σi)

Z(∞)

–σi

Zero shiftZero shift

Zero shift
0

FIGURE 8.10 Zero shifting by partial removal of a pole of an RC impedance.

z21

z22

z2

z3
y3
y4

z4

y2

y1

–1–2–3–4–5–6–7–8

FIGURE 8.11 Zeros and poles of RC immittances.
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obtaining kp¼ 24=35 and

y2(s) ¼ y1(s)� 24
35

y1(0) ¼ (sþ 1)(5sþ 22)
7 s2 þ 11sþ 24ð Þ (8:29)

This admittance has a zero at s¼�1, as expected. The partially removed constant kpy1(0) corresponds to
a shunt resistor of resistance 3.5V. To realize the zero of transmission at s¼�1, we consider the
reciprocal function z2(s)¼ 1=y2(s) by the complete removal of its pole at s¼�1. The remaining
impedance z3(s) becomes

z3(s) ¼ z2(s)�
98
17

sþ 1
¼ 7

5
� sþ 100

17

sþ 22
5

(8:30)

The removed pole corresponds to a parallel connection of a resistor of resistance 98=17V and a capacitor
of capacitance 17=98 F, as illustrated in Figure 8.12.
For the zero of transmission at s¼ 0, we consider the reciprocal function y3(s)¼ 1=z3(s). The zero of

y3(s) at s¼�22=5 can be shifted to 0 by partial removal of the constant y3(0)¼ 187=350, or

y4(0) ¼ y3(0)� kpy3(0) ¼ 0 (8:31)

yielding kp¼ 1. The remaining admittance y4(s) becomes

y4(s) ¼ y3(s)� y3(0) ¼
9
50 s

sþ 100
17

(8:32)

showing a zero at the origin, as anticipated. This zero is realized by the complete removal of the pole at
the origin of its reciprocal z4(s)¼ 1=y4(s), yielding

z5(s) ¼ z4(s)� 32:68
s

¼ 5:56 (8:33)

The complete realization is presented in Figure 8.12, from which the constant K is found to be K¼ 1.

8.4 Parallel or Series Ladders

The zeros of transmission of the LC ladders are restricted to the jv-axis and those of the RC ladders to the
negative real axis of the s-plane. For complex zeros of transmission such as those needed for certain
phase-correction applications, they cannot be realized by a single LC or RC ladder because there is only a
single transmission path from the input to the output. The use of parallel or series ladders, on the other

0.031 F

0.173 F

2

1.87 Ω 3.5 Ω 1 Ω5.56 Ω

1

1́ 2΄

5.765 Ω

FIGURE 8.12 RC ladder realization of the transfer impedance Z12(s).
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hand, provides a conduit for multiple path signal transmission, so that the signals arriving at the output
through the various paths may cancel one another, resulting in the zero output for a finite input.
Therefore, they are capable of producing complex zeros of transmission. This structure was first
suggested by Guillemin [1].
Figure 8.13 is the parallel connection of the ladder networks Na and Nb. The y-parameters yij of the

composite two-port N can be expressed in terms of those y0ija and y
0
ijb of the component two-ports Na and

Nb by the equation

yij ¼ y0ija þ y0ijb, i, j ¼ 1, 2 (8:34)

Thus, to realize �y21(s) and y22(s), we may separate them into pairs like �y021a, y
0
22a and �y021b, y

0
22b

realize an individual pair as an LC or RC ladder. Then connect these individual ladders in parallel to
realize �y21(s) and y22(s). In order for the procedure to succeed, we must resolve the following problem.
Recall than in the Cauer development of LC and RC ladders, �y21(s) is realized only within the
multiplicative constant k. Thus, the transfer admittances realized by the component two-ports actually
will be �kay0 21aand �kb y021b. The sum of these two functions will not result in the desired �ky21 unless
k¼ ka¼ kb. To circumvent this difficulty, we introduce an additional degree of freedom by adjusting the
admittance level of the a-ladder Na by a factor ba and the b-ladder Nb by bb. Then the functions of the
resulting realizations become

�y021a ¼ �bakay21a, y022a ¼ bay22a (8:35a)

�y021b ¼ �bbkby21b, y022b ¼ bby22b (8:35b)

where yij¼ yijaþ yijb, i, j¼ 1, 2. Substituting these in Equation 8.34 gives

y21 ¼ bakay21a þ bbkby21b (8:36a)

y22 ¼ bay22a þ bby22b (8:36b)

Our objective is to choose ba and bb to satisfy the above equations, once kaand kb are known. One way to
meet these requirements is to let y022a and y022b have the same zeros and poles as y22 but different scale
factors such that y022a ¼ bay22 and y022b ¼ bby22, obtaining from Equation 8.36b

Nα

Nβ

N

FIGURE 8.13 Parallel connection of two ladder networks.
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ba þ bb ¼ 1 (8:37)

Since we can only realize y21 within a multiplicative constant, we replace y21 by ky21 in Equation 8.36a,
and set

baka ¼ bbkb ¼ k (8:38)

These two equations can be solved to yield the desired scale factors ba and bb.
In general, for m ladders in parallel, we require

b1 þ b2 þ � � � þ bm ¼ 1 (8:39a)

b1k1 ¼ b2k2 ¼ � � � ¼ bmkm ¼ k (8:39b)

where
bi is the admittance scale factor for the ith ladder
ki is the realized multiplicative constant of the transfer admittance of the ith ladder

Once ki are known, these m simultaneous equations can be solved for the m unknowns bi, and
the admittance level of each ladder can be scaled accordingly. The scaled ladders are connected in
parallel to realize the �y21(s) specifications within the multiplicative constant k, and the y22(s) specifi-
cations exactly.
Similar results are obtained by using the z-parameters zij(s) and the series connection of the compon-

ent two-port networks, the details of which are omitted. However, a design example will be presented
below.

Example 8.3

We wish to realize an RC two-port network to meet the following specifications:

�y21(s) ¼ k
s2 þ 1

(sþ 5)(sþ 9)
(8:40a)

y22(s) ¼ (sþ 3)(sþ 7)
(sþ 5)(sþ 9)

(8:40b)

Since the zeros of transmission are located at s¼�j1, they cannot be realized by a single RC ladder. For
our purposes, we choose the y-parameters of the component two-ports as

�y21a(s) ¼ ka
s2

(sþ 5)(sþ 9)
, y22a(s) ¼ y22(s) (8:41a)

�y21b(s) ¼ kb
(sþ 5)(sþ 9)

, y22b(s) ¼ y22(s) (8:41b)

For the a-ladder, since the zeros of transmission are all at the origin, they can be realized by the second
Cauer canonical form shown in Figure 8.14 with ka¼ 0.043. For the b-ladder, since the zeros of
transmission are all at the infinity, they can be realized by the first Cauer canonical form of Figure
8.15 with kb¼ 21.
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Our next task is to adjust the admittance level of the individual ladders so that when they are
connected in parallel, the y22(s) specifications are realized exactly, and the �y21(s) specifications are
realized to within a multiplicative constant k. Appealing to Equations 8.37 and 8.38, we have

ba þ bb ¼ 1 (8:42a)

0:043ba ¼ 21bb ¼ k (8:42b)

yielding

ba ¼ 0:998 ffi 1, bb ¼ 2:043� 10�3 (8:43)

We now adjust the admittance level of the b-ladder by a factor bb¼ 2.0433 10�3, leaving the a-ladder
intact. The final realization is achieved by the parallel connection of the a-ladder and the resulting
b-ladder shown in Figure 8.16. The realized multiplicative constant for the overall transfer admittance
�y21(s) is found to be k¼ 0.043.

Example 8.4

We wish to realize the open-circuit transfer voltage ratio

G12(s) ¼ z21(s)
z11(s)

¼ k
s2 � 2sþ 10
s2 þ 8sþ 15

(8:44)

by an RC two-port network.

2

2.14 Ω2.04 Ω

1

1́ 2΄

23.26 Ω 0.00614 F 0.08 F

FIGURE 8.14 RC a-ladder realization.

21

1́ 2΄

4/3 F 1/4 F

3/21Ω 1 Ω 1 Ω

FIGURE 8.15 RC b-ladder realization.
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First, we multiply the numerator and denominator of G12(s) by the factor (sþ 2) to yield

G12(s) ¼ z21(s)
z11(s)

¼ k
s3 þ 6sþ 20

(sþ 2)(sþ 3)(sþ 5)
(8:45)

and then divide by (sþ 1)(sþ 2.5)(sþ 4) in order to make the following identifications:

z21(s) ¼ k
s3 þ 6sþ 20

(sþ 1)(sþ 2:5)(sþ 4)
(8:46a)

z11(s) ¼ (sþ 2)(sþ 3)(sþ 5)
(sþ 1)(sþ 2:5)(sþ 4)

(8:46b)

We next decompose the pairs into three pairs as follows:

z21a(s) ¼ ka
s3

(sþ 1)(sþ 2:5)(sþ 4)
, z11a(s) ¼ z11(s) (8:47a)

z21b(s) ¼ kb
6s

(sþ 1)(sþ 2:5)(sþ 4)
, z11b(s) ¼ z11(s) (8:47b)

z21g(s) ¼ kg
20

(sþ 1)(sþ 2:5)(sþ 4)
, z11g(s) ¼ z11(s) (8:47c)

1. The a-ladder. Since all the zeros of transmission are located at the origin, it can be realized by the
second Cauer canonical form of Figure 8.17 with ka¼ 1.

2. The b-ladder. Since one of the zeros of transmission is located at the origin, and two others at the
infinity, the first half of theb-ladder can be realized as the secondCauer canonical formand the second
half of the b-ladder by the first Cauer canonical forms as illustrated in Figure 8.18 with kb¼ 0.0117.

3. The g-ladder. Since all of its zeros of transmission are located at the infinity, it can be realized by
the first Cauer canonical form of Figure 8.19 with kg¼ 0.0145.

21

1΄ 2΄

23.26 Ω

2.14 Ω
2.04 Ω

0.00614 F 0.08 F

69.9 Ω 489.5 Ω 489.4 Ω

0.0027 F 0.00051 F

FIGURE 8.16 Parallel RC ladder realization of �y21(s) and y22(s).
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We next adjust the admittance level of the ladders so that when they are connected in parallel, the desired
specifications are realized. From Equation 8.39 we require that

ba þ bb þ bg ¼ 1 (8:48a)

baka ¼ bbkb ¼ bgkg ¼ k (8:48b)

These equations can be solved to yield

ba ¼ 0:0064, bb ¼ 0:552, bg ¼ 0:4416 (8:49)

with k¼ 0.0064. The final two-port network is shown in Figure 8.20.

21

1΄ 2΄

3 Ω 1.74 Ω 11.56 Ω 184.3 Ω

0.206 F 0.026 F 0.0017 F

FIGURE 8.17 a-Ladder.

1

1́

2

2΄

3 Ω

1.5 Ω 0.23 Ω

0.012 Ω30.8 F1.32 F

0.206 F

FIGURE 8.18 b-Ladder.

1́ 2΄

1 Ω 1.47 Ω 0.5 Ω

0.4 F 0.85 F 13.6 F 0.029 Ω

1 2

FIGURE 8.19 g-Ladder.
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1 2

0.0192 Ω 0.011 Ω 0.074 Ω 1.18 Ω

32.19 F 4.06 F

1.66 Ω 2.39 F 55.8 F

0.83 Ω 0.13 Ω

0.0066 Ω

0.44 Ω 0.65 Ω 0.22 Ω

0.013 Ω0.91 F 1.92 F 30.8 F

1:1

1:1

1:1

0.37 F

0.27 F

1́ 2́

FIGURE 8.20 RC two-port realization of the open-circuit voltage ratio G12(s).
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9.1 Introduction

In the design of communication systems, it is frequently required to synthesize a coupling network that
will transform a given frequency-dependent load impedance into another specified one. We refer to this
operation as impedance matching or equalization, and the resulting coupling network as a matching
network or equalizer.
Refer to the network configuration of Figure 9.1 where the source is represented either by its Thévenin

equivalent or by its Norton equivalent. Our objective here is to design a lossless two-port network or
equalizer N, which when inserted between a resistive source and a resistive load will yield a preassigned
transducer power-gain characteristic over the entire sinusoidal frequency spectrum. Explicit formulas for
the design of Butterworth and Chebyshev LC ladder networks will be given. The more complicated
situation where the load is frequency dependent will be discussed in Chapter 10.
In the networks of Figure 9.1, let Z11(s) and Z22(s) be the impedances looking into the input and output

ports when the output and input ports are terminated in z2(s) and z1(s), respectively. The input and
output reflection coefficients are defined by

r11(s) ¼
Z11(s)� z1(�s)
Z11(s)þ z1(s)

(9:1a)

r22(s) ¼
Z22(s)� z2(�s)
Z22(s)þ z2(s)

(9:1b)

respectively. We now demonstrate that the transducer power gain G(v2) defined as the ratio of average
power delivered to the load to the maximum available average power at the source is given by

G v2
� � ¼ 1� r11( jv)j j2 � r21( jv)j j2 (9:2)

where r21(s) is known as the transmission coefficient. To prove this, we first compute

1� r11(s)r11(�s) ¼ 4r1(s)R11(s)
Z11(s)þ z1(s)½ � Z11(�s)þ z1(�s)½ � (9:3)
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where

r1(s) ¼ Ev z1(s) ¼ 1
2
z1(s)þ z1(�s)½ � (9:4a)

R11(s) ¼ Ev Z11(s) ¼ 1
2
Z11(s)þ Z11(�s)½ � (9:4b)

are the even parts of z1(s) and Z11(s), respectively. Thus, the impedance facing the voltage source Vg

is given by

Vg(s)

I1(s)
¼ Z11(s)þ z1(s) (9:5)

On the jv-axis, Equation 9.3 reduces to

1� r11( jv)j j2¼ 4r1( jv)R11( jv)

Z11( jv)þ z1( jv)j j2 ¼
I1( jv)j j2R11( jv)

Vg( jv)
�� ��2=4r1( jv) (9:6)

The power input to the network of Figure 9.1a under sinusoidal steady state is

Pin ¼ I1( jv)j j2R11( jv) (9:7)

while the power output to the load is

Pout ¼ I2( jv)j j2r2( jv) (9:8)

where

r2(s) ¼ Ev z2(s) ¼ 1
2
z2(s)þ z2(�s)½ � (9:9)

z1

I1 I2

V1 V2 z2

Z22Z11

Vg

Lossless
equalizer

N
+

–

+

–

+

–

(a)

I1 I2

z2

Z11 Z22

Lossless
equalizer

N

(b)

+

–

+

–

+

–
V1 V2z1Ig =

Vg
z1

FIGURE 9.1 General broadband matching configuration. (a) The Thévenin equivalent. (b) The Norton equivalent.
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is the even part of z2(s). Since the two-port N is lossless, the power input must be equal to power
output or

I1( jv)j j2R11( jv) ¼ I2( jv)j j2r2( jv) (9:10)

The maximum average power that the source combination is capable of delivering to the network occurs
when the input port is conjugately matched or Z11( jv)¼�z1( jv). Under this condition, the maximum
available average power from the source combination is

Pava ¼
Vg( jv)
�� ��2
4r1( jv)

(9:11)

Substituting Equations 9.8 and 9.11 in Equation 9.6 yields

1� r11( jv)j j2¼ I2( jv)j j2r2( jv)
Vg( jv)
�� ��2=4r1( jv) ¼

Pout
Pava

¼ G v2
� �

(9:12)

Using Equation 9.2 shows that

r11( jv)j j2 þ r21( jv)j j2¼ 1 (9:13)

or

r11( jv)j j2 ¼ 1� average power to load
average power available

¼ average power available� average power to load
average power available

¼ ‘‘average reflected’’ power
average power available

(9:14)

r21( jv)j j2 ¼ average power to load
average power available

(9:15)

Therefore, the magnitude squared of the reflection coefficient jr11( jv)j2 denotes the fraction of the
maximum available average power that is reflected back to the source, and the magnitude squared of the
transmission coefficient jr21( jv)j2 represents the fraction of the maximum available average power that
is transmitted to the load from the source. In fact, their names are suggested by these interpretations. We
remark that since the transducer power gain G is a function of v2, it is written as G(v2) to emphasize this.

We next express the transmission coefficient in terms of other specifications. From Equation 9.12,
we have

r21[ jv]j j2¼ 4r1( jv)r2( jv)
I2( jv)
Vg( jv)

����
����
2

(9:16)

Substituting Vg( jv)¼ z1( jv)Ig( jv) in Equation 9.16 gives

r21( jv)j j2¼ 4r1( jv)r2( jv)

z1( jv)j j2
I2( jv)
Ig( jv)

����
����
2

(9:17)
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In terms of the transfer voltage ratio and transfer impedance, we apply the relation V2( jv)¼�I2( jv)
z2( jv) and obtain

r21( jv)j j2 ¼ 4r1( jv)r2( jv)

z2( jv)j j2
V2( jv)
Vg( jv)

����
����
2

(9:18)

r21( jv)j j2 ¼ 4r1( jv)r2( jv)

z1( jv)z2( jv)j j2
V2( jv)
Ig( jv)

����
����
2

(9:19)

Similarly, we can derive a relation between the output reflection coefficient r22( jv) and the transmission
coefficient r12( jv) magnitude squared as

r12( jv)j j2 �1� r22( jv)j j2 (9:20)

In fact, for the lossless reciprocal two-port network N we have

r21( jv)j j2 ¼ r12( jv)j j2 ¼1� r11( jv)j j2 ¼1� r22( jv)j j2 (9:21)

9.2 Double-Terminated Butterworth Networks

In this part, we show how to design a lossless two-port network operating between a resistive generator
with internal resistance R1 and a resistive load with resistance R2 to yield the nth-order Butterworth
transducer power-gain characteristic

G v2
� � ¼ r21( jv)j j2 ¼ Kn

1þ v=vcð Þ2n (9:22)

Since for a passive network G(v2) is bounded between 0 and 1, the DC gain Kn is restricted by

0 � Kn � 1 (9:23)

Substituting Equation 9.22 in Equation 9.12 yields the squared magnitude of the input reflection
coefficient as

r11( jv)j j2 ¼ 1� G v2
� � ¼ 1� r21( jv)j j2 ¼ 1� Kn þ v=vcð Þ2n

1þ v=vcð Þ2n (9:24)

or

r11( jv)r11(�jv) ¼ a2n 1þ v=avcð Þ2n
1þ v=vcð Þ2n (9:25)

where

a ¼ 1� Knð Þ1=2n (9:26)
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Appealing to analytic continuation by substituting v by �js results in

r11(s)r11(�s) ¼ a2n 1þ (�1)nx2n

1þ (�1)ny2n
(9:27)

where

y ¼ s
vc

, x ¼ y
a

(9:28)

To obtain the input reflection coefficient r11(s) from r11(s) r11(�s), we need to assign the zeros and
poles of Equation 9.27. Since r11(s) is devoid of poles in the closed RHS, we must assign all the LHS poles
to r11(s). The zeros of r11(s), however, may lie in the RHS, so that in general a number of different
numerators are possible. For our purposes, we choose only the LHS zeros for r11(s). Define a minimum-
phase reflection coefficient to be one that is devoid of zeros in the open RHS. Then, the minimum-phase
solution of Equation 9.27 can be written as

r11(s) ¼ �an q(x)
q(y)

(9:29)

where q(x) is the Hurwitz polynomial with unity leading coefficient formed by the LHS roots of the
equation 1þ (�1)nx2n¼ 0. From Equation 9.1a, the input impedance is found to be

Z11(s) ¼ R1
1þ r11(s)
1� r11(s)

(9:30)

Combining this with Equation 9.29 yields

Z11(s) ¼ R1
q(y)� anq(x)
q(y)� anq(x)

(9:31)

If both R1 and R2 are specified, then the DC gain Kn cannot be chosen independently. In fact, by
substituting s¼ 0 in Equation 9.31 and assuming that Kn 6¼ 0 we obtain

R2

R1
¼ 1þ an

1� an

� ��1

(9:32)

where the� signs are determined, respectively, according to R2�R1 and R2�R1. Therefore, if any two of
the three quantities R1, R2, and Kn are specified, the third one is fixed.

We now show that the input impedance Z11(s) can be realized by an LC ladder terminated in a resistor.
In fact, explicit formulas for their element values will be given, thereby reducing the design problem to
simple arithmetic. Depending upon the choice of the plus and minus signs in Equation 9.32, two cases are
distinguished.

Case 1. r11(0)� 0. With the choice of the plus sign, the input impedance becomes

Z11(s) ¼ R1
q(y)þ anq(x)
q(y)� anq(x)

(9:33)
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which can be expanded in a continued fraction about infinity, as in the first Cauer canonical form, and
results in an LC ladder terminated in a resistor:

Z11(s) ¼ L1sþ 1

C2Sþ 1

L3sþ 1

. .
. þ 1

W

(9:34)

whereW is a constant representing either a resistance or conductance. Depending upon whether n is odd
or even, the LC ladder has the configuration of Figure 9.2. The element values can be computed by the
following recurrence formulas:

L1 ¼ 2R1 sinp=2n
(1� a)vc

(9:35)

L2m�1C2m ¼ 4 sin g4m�3 sing4m�1

v2
c 1� 2a cos g4m�2 þ a2ð Þ (9:36a)

L2mþ1C2m ¼ 4 sin g4m�1 sing4mþ1

v2
c 1� 2a cos g4m þ a2ð Þ (9:36b)

for m ¼ 1, 2, . . . , n=2d e, the largest integer not greater than n=2; where

gm ¼ mp

2n
(9:37)

L1

L1

L3

L3

Ln–2 Ln

C2 C4 Cn–1

R1

R2

R2

Vg
– 

+

Ln–1Ln–3

C2 C4 Cn–2 Cn

R1

Vg

– 

+

(a) n odd

(b) n even

FIGURE 9.2 Butterworth LC ladder networks for r11(0)� 0.
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The values of the final elements can also be calculated directly by

Ln ¼ 2R2 sinp=2n
(1þ a)vc

, n odd (9:38a)

Cn ¼ 2 sinp=2n
R2(1þ a)vc

, n even (9:38b)

A complete derivation of these formulas was first given by Bossé [1]. Hence we can calculate the element
values starting from either the first or the last element. When R1¼R2, formulas Equation 9.36 reduce to

L2m�1 ¼ 2R1 sing4m�3

vc
(9:39a)

C2m ¼ 2 sing4m�1

R1vc
(9:39b)

Example 9.1

Given

R1 ¼ 70 V, R2 ¼ 200 V, vc ¼ 105 rad=s, n ¼ 4 (9:40)

obtain a Butterworth LC ladder to meet these specifications.

Since R2>R1, we choose the plus sign in Equation 9.32 and obtain r11(0)� 0, a¼ 0.833, and
gm¼ 22.5m. Thus, from Equations 9.35 and 9.36 the element values are found to be

L1 ¼ 2	 70 sin 22:5


(1� 0:833)	 105
¼ 3:2081 mH (9:41a)

C2 ¼ 4 sin 22:5
 sin 67:5


L1 1:6939� 1:666 cos 45
ð Þ 	 1010
¼ 0:085456 mF (9:41b)

L3 ¼ 4 sin 67:5
 sin 112:5


C2 1:6939� 1:666 cos 90
ð Þ 	 1010
¼ 2:3587 mH (9:41c)

C4 ¼ 4 sin 112:5
 sin 157:5


L3 1:6939� 1:666 cos 135
ð Þ 	 1010
¼ 0:020877 mF (9:41d)

Alternatively, C4 can be computed directly from Equation 9.39b as

C4 ¼ 2 sin 22:5


200	 (1þ 0:833)	 105
¼ 0:020877 mF (9:42)

The ladder network together with its termination is presented in Figure 9.3. This network possesses the
fourth-order Butterworth transducer power-gain response with a DC gain

K4 ¼ 1� a8 ¼ 0:7682 (9:43)
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Case 2. r11(0)< 0. With the choice of the minus sign, the input impedance can be expanded in a
continued fraction as

1
Z11(s)

¼ C1sþ 1

L2sþ 1

C3sþ 1

. .
. þ 1

W

(9:44)

which can be realized by the LC ladder networks of Figure 9.4, depending on whether W is even or odd,
where W is the terminating resistance or conductance. Formulas for the element values are similar to

Vg

– 

+

70 Ω

200 Ω0.085 μF 0.021 μF

2.36 mH3.21 mH

FIGURE 9.3 Fourth-order Butterworth LC ladder network.

Ln–2 Ln

Cn–1 R2

L2 L4

C1 C3

R1

Vg
– 

+

(a) n even

L2 L4 Ln–3 Ln–1

C1 C3 CnCn–2

R1

Vg

– 

+

(b) n odd

R2

FIGURE 9.4 Butterworth LC ladder networks for r11(0)< 0.
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those given in Equations 9.35 through 9.39 except that the roles of C’s and L’s are interchanged and
R1 and R2 are replaced by their reciprocals.

C1 ¼ 2 sinp=2n
R1(1� a)vc

(9:45a)

C2m�1L2m ¼ 4 sing4m�3 sin g4m�1

v2
c 1� 2a cos g4m�2 þ a2ð Þ (9:45b)

C2mþ1L2m ¼ 4 sing4m�1 sin g4mþ1

v2
c 1� 2a cos g4m þ a2ð Þ (9:45c)

for m ¼ 1, 2, . . . , n=2d e. The values of the final elements can also be calculated directly by

Cn ¼ 2 sinp=2n
R2(1þ a)vc

, n odd (9:46a)

Ln ¼ 2R2 sinp=2n
(1þ a)vc

, n even (9:46b)

9.3 Double-Terminated Chebyshev Networks

Now, we consider the problem of synthesizing an LC ladder which when connected between a resistive
source of internal resistance R1 and a resistive load of resistance R2 will yield a preassigned Chebyshev
transducer power-gain characteristic

G v2
� � ¼ r21( jv)j j2¼ Kn

1þ e2C2
n v=vcð Þ (9:47)

with Kn bounded between 0 and 1. Following Equation 9.24, the squared magnitude of the input
reflection coefficient can be written as

r11( jv)j j2¼ 1� G(v2) ¼ 1� r21( jv)j j2¼ 1� Kn þ e2C2
n v=vcð Þ

1þ e2C2
n v=vcð Þ (9:48)

Appealing to analytic continuation, we obtain

r11(s)r11(�s) ¼ 1� Knð Þ 1þ ê2C2
n(�jy)

1þ e2C2
n(�jy)

(9:49)

where

ê ¼ effiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Kn

p (9:50)

As in the Butterworth case, we assign LHS poles to r11(s) and the minimum-phase solution of Equation
9.49 becomes

r11(s) ¼ � p̂(y)
p(y)

(9:51)
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where p(y) and p̂(y) are the Hurwitz polynomials with unity leading coefficient formed by the LHS roots
of the equations 1þ e2C2

n(�jy) ¼ 0 and 1þ ê2C2
n(�jy) ¼ 0, respectively. From Equation 9.1a, the input

impedance of the LC ladder when the output port is terminated in R2 is found to be

Z11(s) ¼ R1
p(y)� p̂(y)
p(y)� p̂(y)

(9:52)

A relationship among the quantities R1, R2, and Kn is given by

R2

R1
¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Kn
p

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Kn

p
� ��1

, n odd (9:53a)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2 � Kn

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2 � Kn

p
� ��1

, n even (9:53b)

where the� signs are determined, respectively, according to R2�R1 and R2�R1. Therefore, if n is odd
and the DC gain is specified, the ratio of the terminating resistances is fixed by Equation 9.53a. On the
other hand, if n is even and the peak-to-peak ripple in the passband and Kn or the DC gain is specified,
the ratio of the resistances is given by Equation 9.53b.
We now show that the input impedance Z11(s) can be realized by an LC ladder terminated in a resistor.

Again, explicit formulas for their element values will be given, thereby reducing the design problem to
simple arithmetic. Depending upon the choice of the plus and minus signs in Equation 9.51, two cases are
distinguished.

Case 1. r11(0)� 0. With the choice of the plus sign, the input impedance becomes

Z11(s) ¼ R1
p(y)þ p̂(y)
p(y)� p̂(y)

(9:54)

which can be expanded in a continued fraction as in Equation 9.34. Depending on whether n is odd or
even, the corresponding LC ladder network has the configurations of Figure 9.2. The element values can
be computed by the following recurrence formulas:

L1 ¼ 2R1 sinp=2n
sinh a� sinh âð Þ _vc

(9:55)

L2m�1C2m ¼ 4 sin g4m�3 sing4m�1

v2
c f2m�1 sinh a, sinh âð Þ (9:56a)

L2mþ1C2m ¼ 4 sin g4m�1 sing4mþ1

v2
c f2m sinh a, sinh âð Þ (9:56b)

for m ¼ 1, 2, . . . , n=2d e, where

gm ¼ mp

2n
(9:57a)

â ¼ 1
n
sinh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Kn

p
e

� �
(9:57b)

fm(u, v) ¼ u2 þ v2 þ sin2 g2m � 2uv cos g2m (9:57c)
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In addition, the values of the last elements can also be computed directly by the equations

Ln ¼ 2R2 sinp=2n
sinh aþ sinh âð Þvc

, n odd (9:58a)

Cn ¼ 2 sinp=2n
R2 sinh aþ sinh âð Þvc

, n even (9:58b)

A formal proof of these formulas was first given by Takahasi [2]. Hence, we can calculate the element
values starting from either the first or the last element.

Example 9.2

Given

R1 ¼ 150 V, R2 ¼ 470 V, vc ¼ 108p rad=s, n ¼ 4 (9:59)

find a Chebyshev LC ladder network to meet these specifications with peak-to-peak ripple in the
passband not exceeding 1.5 dB.

Since R1 and R2 are both specified, the minimum passband gain Gmin is fixed by Equation 9.53b as

Gmin � Kn

1þ e2
¼ 1�

470
150

� 1

470
150

þ 1

0
B@

1
CA
2

¼ 0:7336 (9:60)

For the 1.5 dB ripple in the passband, the corresponding ripple factor is given by

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100:15 � 1

p
¼ 0:64229 (9:61)

obtaining K4¼ 1.036, which is too large for the network to be physically realizable. Thus, let K4¼ 1, the
maximum permissible value, and the corresponding ripple factor becomes

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Gmin
� 1

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

0:7336
� 1

r
¼ 0:6026 or 1:345 dB � 1:5 dB (9:62)

We next compute the quantities

gm ¼ mp

2n
¼ 22:5m (9:63a)

a ¼ 1
4
sinh�1 1

0:6026
¼ 0:32, â ¼ 0 (9:63b)

fm( sinh 0:32, 0) ¼ sinh2 0:32þ sin2 g2m ¼ 0:1059þ sin2 g2m (9:63c)

Appealing to formulas Equations 9.55 and 9.56, the element values are calculated as follows:

L1 ¼ 2	 150 sin 22:5


( sinh 0:32� sinh 0)	 108p
¼ 1:123 mH (9:64a)
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C2 ¼ 4 sin 22:5
 sin 67:5


L11016p2 sinh2 0:32þ sin2 45

� � ¼ 21:062 pF (9:64b)

L3 ¼ 4 sin 67:5
 sin 112:5


C21016p2 sinh2 0:32þ sin2 90

� � ¼ 1:485 mH (9:64c)

C4 ¼ 4 sin 112:5
 sin 157:5


L31016p2 sinh2 0:32þ sin2 135

� � ¼ 15:924 pF (9:64d)

Alternatively, the last capacitance can also be computed directly from Equation 9.58b as

C4 ¼ 2 sin 22:5


470	 ( sinh 0:32þ sinh 0)	 108p
¼ 15:925 pF (9:65)

The LC ladder together with its terminations is presented in Figure 9.5.

Case 2. r11(0)< 0. With the choice of the minus sign in Equation 9.51, the input impedance, aside from
the constant R1, becomes the reciprocal of Equation 9.54

Z11(s) ¼ R1
p(y)� p̂(y)
p(y)þ p̂(y)

(9:66)

and can be expanded in a continued fraction as that shown in Equation 9.44. Depending on whether n is
even or odd, the LC ladder network has the configurations of Figure 9.4. Formulas for the element values
are similar to those given in Equations 9.55 through 9.58 except that the roles of C’s and L’s are
interchanged and R1 and R2 are replaced by their reciprocals:

C1 ¼ 2 sinp=2n
R1 sinh a� sinh âð Þvc

(9:67a)

C2m�1L2m ¼ 4 sin g4m�3 sing4m�1

v2
c f2m�1 sinh a, sinh âð Þ (9:67b)

C2mþ1L2m ¼ 4 sin g4m�1 sing4mþ1

v2
c f2m sinh a, sinh âð Þ (9:67c)

V
– 

+

150 Ω
21.062 pF 15.92 pF

1.123 μH 1.485 μH

470 Ω

FIGURE 9.5 Fourth-order Chebyshev LC ladder network for r11(0)� 0.
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for m ¼ 1, 2, . . . , n=2d e, where gm and fm(sinh a, sinh â) are defined in Equation 9.57. In addition, the
values of the last elements can also be computed directly by the formulas

Cn ¼ 2 sinp=2n
R2 sinh aþ sinh âð Þvc

, n odd (9:68a)

Ln ¼ 2R2 sinp=2n
sinh aþ sinh âð Þvc

, n even (9:68b)
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10.1 Introduction

Refer to the network configuration of Figure 10.1 where the source is represented either by its Thévenin
equivalent or by its Norton equivalent. The load impedance z2(s) is assumed to be strictly passive over a
frequency band of interest, because the matching problem cannot be meaningfully defined if the load is
purely reactive. Our objective is to design an ‘‘optimum’’ lossless two-port network or equalizer N to
match out the load impedance z2(s) to the resistive source impedance z1(s)¼R1, and to achieve a
preassigned transducer power-gain characteristic G(v2) over the entire sinusoidal frequency spectrum.
As stated in Chapter 9, the output reflection coefficient is given by

r22(s) ¼
Z22(s)� z2(�s)
Z22(s)þ z2(s)

(10:1)

where Z22(s) is the impedance looking into the output port when the input port is terminated in
the source resistance R1. As shown in Chapter 9, the transducer power gain G(v2) is related to the
transmission and reflection coefficients by the equation

G(v2) ¼ r21(jv)j j2 ¼ r12(jv)j j2 ¼ 1� r11(jv)j j2 ¼ 1� r22(jv)j j2 (10:2)

Recall that in computing r11(s) from r11(s)r11(�s) we assign all of the LHS poles of r11(s)r11(�s) to r11(s)
because with resistive load z2(s)¼R2, r11(s) is devoid of poles in the RHS. For the complex load, the poles
of r22(s) include those of z2(�s), which may lie in the open RHS. As a result, the assignment of poles of
r22(s)r22(�s) is not unique. Furthermore, the nonanalyticity of r22(s) leaves much to be desired in
terms of our ability to manipulate. For these reasons, we consider the normalized reflection coefficient
defined by

r(s) ¼ A(s)r22(s) ¼ A(s)
Z22(s)� z2(�s)
Z22(s)þ z2(s)

(10:3)
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where

A(s) ¼
Yq
i¼1

s� si
sþ si

, Re si > 0 (10:4)

is the real all-pass function defined by the open RHS poles si (i¼ 1, 2, . . . , q) of z2(�s). An all-pass
function is a function whose zeros are all located in the open RHS and whose poles are located at the LHS
mirror image of the zeros. Therefore, it is analytic in the closed RHS and such that

A(s)A(�s) ¼ 1 (10:5)

On the jv-axis, the magnitude of A(jv) is unity, being flat for all sinusoidal frequencies, and we have

jr(jv)j ¼ A(jv)r22(jv)j j ¼ r22(jv)j j (10:6)

and Equation 10.2 becomes

G(v2) ¼ 1� jr(jv)j2 (10:7)

This equation together with the normalized reflection coefficient r(s) of Equation 10.3 forms the
cornerstone of Youla’s theory of broadband matching [1].

10.2 Basic Coefficient Constraints

In Chapter 8, we define the zeros of transmission for a terminate two-port network as the frequencies at
which a zero output results for a finite input. We extend this concept by defining the zeros of
transmission for a one-port impedance.

Definition 10.1: Zero of transmission. For a given impedance z2(s), a closed RHS zero of
multiplicity k of the function

w(s) � r2(s)
z2(s)

(10:8)

where r2(s) is the even part of z2(s), is called a zero of transmission of order k of z2(s).

I1 I2

z1(s) = R1
z2(s)

Z22(s)

Vg

V1 V2
Lossless
equalizer

N

+

–

+

–
+

–

FIGURE 10.1 Schematic of broadband matching.
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The reason for this name is that if we realize the impedance z2(s) as the input impedance of a lossless
two-port network terminated in a 1�V resistor, the magnitude squared of the transfer impedance
function Z12(jv) between the 1�V resistor and the input equals the real part of the input impedance,

Z12(jv)j j2 ¼ Re z2(jv) ¼ r2(jv) (10:9)

After appealing to analytic continuation by substituting v by �js, the zeros of r2(s) are seen to be the
zeros of transmission of the lossless two-port.
Consider, for example, the RC impedance z2(s) of Figure 10.2,

z2(s) ¼ R1 þ R2

R2Csþ 1
(10:10)

the even part of which is given by

r2(s) ¼ 1
2
z2(s)þ z2(�s)½ � ¼ R1 þ R2 � R1R2

2C
2s2

1� R2
2C2s2

(10:11)

obtaining

w(s) ¼ r2(s)
z2(s)

¼ R2Cs2 � R1 þ R2ð Þ=R1R2C
R2Cs� 1ð Þ sþ R1 þ R2ð Þ=R1R2C½ � (10:12)

Thus, the impedance z2(s) has a zero of transmission of order 1 located at

s ¼ s0 ¼ 1
R2C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

R1

r
(10:13)

For our purposes, the zeros of transmission are divided into four mutually exclusive classes.

Definition 10.2: Classification of zeros of transmission. Let s0¼s0þ jv0 be a zero of transmission of
an impedance z2(s). Then s0 belongs to one of the following four mutually exclusive classes depending
on s0 and z2(s0), as follows:

Class I: s0> 0, which includes all the open RHS zeros of transmission.
Class II: s0¼ 0 and z2(v0)¼ 0.

R2

R1

C

FIGURE 10.2 RC one-port network.
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Class III: s0¼ 0 and 0< z2(jv0)j j < 1.
Class IV: s0¼ 0 and z2(jv0)j j ¼ 1.

For the impedance z2(s) of Equation 10.10, its zero of transmission given in Equation 10.13 belongs to
Class I of order 1. If z2(s) is the load of the network of Figure 10.1, it imposes the basic constraints on the
normalized reflection coefficient r(s). These constraints are important in that they are necessary and
sufficient for r(s) to be physically realizable, and are most conveniently formulated in terms of the
coefficients of the Laurent series expansions of the following quantities about a zero of transmission
s0¼s0þ jv0 of order k of z2(s):

r(s) ¼ r0 þ r1(s� s0)þ r2(s� s0)
2 þ � � � ¼

X1
m¼0

rm(s� s0)
m (10:14a)

A(s) ¼ A0 þ A1(s� s0)þ A2(s� s0)
2 þ � � � ¼

X1
m¼0

Am(s� s0)
m (10:14b)

F(s) � 2r2(s)A(s) ¼ F0 þ F1(s� s0)þ F2(s� s0)
2 þ � � � ¼

X1
m¼0

Fm(s� s0)
m (10:14c)

We remark that the expansions of the Laurent type can be found by any method because it is unique,
and the resulting expansion is the Laurent series expansion. For the zero of transmission at infinity,
the expansions take the form

r(s) ¼ r0 þ
r1
s
þ r2

s2
þ r3

s3
þ � � � ¼

X1
m¼0

rm
sm

(10:15a)

A(s) ¼ A0 þ A1

s
þ A2

s2
þ A3

s3
þ � � � ¼

X1
m¼0

Am

sm
(10:15b)

F(s) ¼ F0 þ F1
s
þ F2

s2
þ F3

s3
þ � � � ¼

X1
m¼0

Fm
sm

(10:15c)

In fact, they can be obtained by means of the binomial expansion formula

(sþ c)n ¼ sn þ nsn�1cþ n(n� 1)
2!

sn�2c2 þ � � � (10:16)

which is valid for all values of n if j s j> j c j, and is valid only for nonnegative integers n if j s j � j c j.

Example 10.1

Assume that the network of Figure 10.1 is terminated in the passive impedance

z2(s) ¼ s
s2 þ 2sþ 1

(10:17)

and possesses the transducer power-gain characteristic

G v2
� � ¼ Kv2

v4 � v2 þ 1
, 0 � K � 1 (10:18)
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We first compute the even part

r2(s) ¼ 1
2
z2(s)þ z2(�s)½ � ¼ �2s2

(s2 þ 2sþ 1)(s2 � 2sþ 1)
(10:19)

of z2(s), and obtain the function

w(s) ¼ r2(s)
z2(s)

¼ �2s
s2 � 2sþ 1

(10:20)

showing that z2(s) possesses two Class II zeros of transmission at s¼ 0 and 1. Since the pole of z2(�s) is
located at s¼ 1 of order 2, the all-pass function A(s) takes the form

A(s) ¼ s2 � 2sþ 1
s2 þ 2sþ 1

(10:21)

The other required functions are found to be

F(s) ¼ 2A(s)r2(s) ¼ � 4s2

(s2 þ 2sþ 1)2
(10:22)

r(s)r(�s) ¼ 1� G(�s2) ¼ s4 þ (1þ K )s2 þ 1
s4 þ s2 þ 1

(10:23)

The minimum-phase solution of Equation 10.23 is determined as

� r̂(s) ¼ s2 þ ffiffiffiffiffiffiffiffiffiffiffi
1� K

p
sþ 1

s2 þ sþ 1
(10:24)

Now, we expand the functions A(s), F(s), and r̂(s) in Laurent series about the zeros of transmission at the
origin and at infinity, and obtain

A(s) ¼ 1� 4sþ � � � ¼ 1� 4
s
þ � � � (10:25)

F(s) ¼ 0þ 0� 4s2 þ � � � ¼ 0þ 0� 4
s2
þ � � � (10:26)

� r̂(s) ¼ 1þ (
ffiffiffiffiffiffiffiffiffiffiffi
1� K

p
� 1)sþ � � � ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffi
1� K

p � 1
s

þ � � � (10:27)

In both expansions, we can make the following identifications:

A0 ¼ 1, F0 ¼ 0, r0 ¼ 1 (10:28a)

A1 ¼ �4, F1 ¼ 0, r1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� K

p
� 1 (10:28b)

F2 ¼ �4 (10:28c)

10.2.1 Basic Coefficient Constraints on r(S)

The basic constraints imposed on the normalized reflection coefficient r(s) by a load impedance z2(s) are
most succinctly expressed in terms of the coefficients of the Laurent series expansions (Equation 10.14) of
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the functions r(s), A(s), and F(s) about each zero of transmission s0¼s0þ jv0. Depending on the
classification of the zero of transmission, one of the following four sets of coefficient conditions must
be satisfied:

Class I: For x¼ 0, 1, 2, . . . , k� 1

Ax ¼ rx (10:29a)

Class II: Ax¼ rx for x¼ 0, 1, 2, . . . , k� 1, and

Ak � rk
Fkþ1

� 0 (10:29b)

Class III: Ax¼ rx for x¼ 0, 1, 2, . . . , k� 2, k� 2, and

Ak�1 � rk�1

Fk
� 0 (10:29c)

Class IV: Ax¼ rx for x¼ 0, 1, 2, . . . , k� 1, and

Fk�1

Ak � rk
� a�1, the residue of z2(s) evaluated at the poles ¼ jv0 (10:29d)

To determine the normalized reflection coefficient r (s) from a preassigned transducer power-gain
characteristic G(v2), we appeal to Equation 10.7 and analytic continuation by replacing v by –js
and obtain

r(s)r(�s) ¼ 1� G(�s2) (10:30)

Since the zeros and poles of r(s)r(�s) must appear in quadrantal symmetry, being symmetric with
respect to both the real and imaginary axes of the s-plane, and since r(s) is analytic in the closed RHS, the
open LHS poles of r(s)r(�s) belong to r(s) whereas those in the open RHS belong to r(�s). For a lumped
system, r(s) is devoid of poles on the jv-axis. For the zeros, no unique ways are available to assign them.
The only requirement is that the complex–conjugate pair of zeros must be assigned together. However,
if we specify that r(s) be made a minimum-phase function, then all the open LHS zeros of r(s)r(�s) are
assigned to r(s). The jv-axis zeros of r(s)r(�s) are of even multiplicity, and thus they are divided equally
between r(s) and r(�s). Therefore, r(s) is uniquely determined by the zeros and poles of r(s)r(�s) only
if r(s) is required to be minimum-phase.

Let r̂(s) be the minimum-phase solution of Equation 10.30. Then, any solution of the form

r(s) ¼ �h(s)r̂(s) (10:31)

is admissible, where �h(s) is an arbitrary real all-pass function possessing the property that

h(s)h(�s) ¼ 1 (10:32)

The significance of these coefficient constraints is that they are both necessary and sufficient for the
physical realizability of r(s), and is summarized in the following theorem. The proof of this result can be
found in Ref. [2].
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THEOREM 10.1

Given a strictly passive impedance z2(s), the function defined by the equation

Z22(s) � F(s)
A(s)� r(s)

� z2(s) (10:33)

is positive real if and only if jr(jv)j � 1 for all v and the coefficient conditions Equation 10.29 are satisfied.
The function Z22(s) defined in Equation 10.33 is actually the back-end impedance of a desired

equalizer. To see this, we solve for Z22(s) in Equation 10.3 and obtain

Z22(s) ¼ A(s) z2(s)þ z2(�s)½ �
A(s)� r(s)

� z2(s) ¼ F(s)
A(s)� r(s)

� z2(s) (10:34)

which is guaranteed to be positive real by Theorem 10.1. This impedance can be realized as the input
impedance of a lossless two-port network terminated in a resistor. The removal of this resistor gives the
desired matching network. An ideal transformer may be needed at the input port to compensate for
the actual level of the generator resistance R1.

Example 10.2

Design a lossless matching network to equalize the load impedance

z2(s) ¼ s
s2 þ 2sþ 1

(10:35)

to a resistive generator of internal resistance of 0.5 V and to achieve the transducer power-gain
characteristic

G v2
� � ¼ Kv2

v4 � v2 þ 1
, 0 � K � 1 (10:36)

From Example 10.1, the load possesses two Class II zeros of transmission of order 1 at s¼ 0 and s¼1.
The coefficients of the Laurent series expansions of the functions A(s), F(s), and r(s) about the zeros of
transmission at s¼ 0 and s¼1 were computed in Example 10.1 as

A0 ¼ 1, F0 ¼ 0, r0 ¼ 1 (10:37a)

A1 ¼ �4, F1 ¼ 0, r1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� K

p
� 1 (10:37b)

F2 ¼ �4 (10:37c)

The coefficient constraints (Equation 10.29b) for the Class II zeros of transmission of order 1 become

A0 ¼ r0,
A1 � r1

F2
� 0 (10:38)

Clearly, the first condition is always satisfied. To meet the second requirement, we set

�4� ffiffiffiffiffiffiffiffiffiffiffi
1� K

p � 1
� �
�4

� 0 (10:39)

or 0� K� 1, showing that the maximum realizable K is 1. For our purposes, set K¼ 1 and choose the plus
sign in Equation 10.24. From Equation 10.34, the equalizer back-end impedance is computed as
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Z22(s) ¼ F(s)
A(s)� r̂(s)

� z2(s) ¼
�4s2

s2þ2sþ1ð Þ2
s2�2sþ1
s2þ2sþ1 � s2þ1

s2þsþ1

� s
s2 þ 2sþ 1

¼ s
3s2 þ 2sþ 3

(10:40)

This impedance can be realized as the input impedance of the parallel connection of an inductor
L¼ 1=3 H, a capacitor C¼ 3F, and a resistor R¼ 0.5 V. The resulting equalizer together with the load is
presented in Figure 10.3.

10.3 Design Procedure

We now outline an eight-step procedure for the design of an optimum lossless matching network that
equalizes a frequency-dependent load impedance z2(s) to a resistive generator of internal resistance R1

and achieves a preassigned transducer power-gain characteristic G(v2) over the entire sinusoidal
frequency spectrum.

Step 1. From a preassigned transducer power-gain characteristic G(v2), verify that G(v2) is an
even rational real function and satisfies the inequality

0 � G v2
� � � 1 for all v (10:41)

The gain level is usually not specified to allow some flexibility.

Step 2. From a prescribed strictly passive load impedance z2(s), compute

r2(s) � Ev z2(s) ¼ 1
2
[z2(s)þ z2(�s)] (10:42)

A(s) ¼
Yq
i¼1

s� si
sþ si

, Re si > 0 (10:43)

where si (i¼ 1, 2, . . . , q) are the open RHS poles of z2(�s), and

F(s) ¼ 2A(s)r2(s) (10:44)

Step 3. Determine the locations and the orders of the zeros of transmission of z2(s), which are
defined as the closed RHS zeros of the function

Vg

0.5 Ω

0.5 Ω3 F 1 H 1/3 H 1 F 

Z22(s)

+

–

FIGURE 10.3 Equalizer having transducer power-gain characteristics Equation 10.36.
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w(s) ¼ r2(s)
z2(s)

(10:45)

and divide them into respective classes according to Definition 10.2.

Step 4. Perform the unique factorization of the function

r̂(s)r̂(�s) ¼ 1� G �s2
� �

(10:46)

in which the numerator of the minimum-phase solution r̂(s) is a Hurwitz polynomial and the
denominator r̂(s) is a strictly Hurwitz polynomial.

Step 5. Obtain the Laurent series expansions of the functions A(s), F(s), and r̂(s) about each zero of
transmission s0 of z2(s), as follows:

A(s) ¼
X1
m¼0

Am s� s0ð Þm (10:47a)

F(s) ¼
X1
m¼0

Fm s� s0ð Þm (10:47b)

r̂(s) ¼
X1
m¼0

rm s� s0ð Þm (10:47c)

They may be obtained by any available methods.

Step 6. According to the classes of zeros of transmission, list the basic constraints (Equation 10.29)
imposed on the coefficients of Equation 10.47. The gain level is ascertained from these
constraints. If not all the constraints are satisfied, consider the more general solution

r(s) ¼ �h(s)r̂(s) (10:48)

where �h(s) is an arbitrary real all-pass function. Then repeat Step 5 for r(s), starting with lower-
order �h(s). If the constraints still cannot be satisfied, modify the preassigned transducer power-
gain characteristics G(v2). Otherwise, no match exists.

Step 7. Having successfully carried out Step 6, the equalizer back-end impedance is determined by
the equation

Z22(s) � F(s)
A(s)� r(s)

� z2(s) (10:49)

where r(s) may be r̂(s) and Z22(s) is guaranteed to be positive real.

Step 8. Realize Z22(s) as the input impedance of a lossless two-port network terminated in a
resistor. An ideal transformer may be required at the input port to compensate for the actual
level of the generator resistance R1. This completes the design of an equalizer.

Example 10.3

Design a lossless matching network to equalize the RLC load as shown in Figure 10.4 to a resistive
generator and to achieve the fifth-order Butterworth transducer power-gain characteristic with a
maximal DC gain. The cutoff frequency is 108 rad=s.
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To simplify the computation, we magnitude-scale the network by a factor of 10�2 and frequency-scale
it by a factor of 10�8. Thus, s denotes the normalized complex frequency and v the normalized real
frequency. The load impedance becomes

z2(s) ¼ s2 þ sþ 1
sþ 1

(10:50)

We now follow the eight steps outlined below to design a lossless equalizer to meet the desired
specifications.

Step 1. The fifth-order Butterworth transducer power-gain characteristic is given by

G v2
� � ¼ K5

1þ v10
, 0 � K5 � 1 (10:51)

Our objective is to maximize the DC gain K5.

Step 2. From the load impedance z2(s), we compute the functions

r2(s) ¼ 1
2
z2(s)þ z2(�s)½ � ¼ 1

1� s2
(10:52)

A(s) ¼ s� 1
sþ 1

(10:53)

where s¼ 1 is the open RHS pole of z2(�s), and

F(s) ¼ 2A(s)r2(s) ¼ �2

(sþ 1)2
(10:54)

Step 3. The zeros of transmission z2(s) are defined by the closed RHS zero of the function.

w(s) ¼ r2(s)
z2(s)

¼ 1
s2 þ sþ 1ð Þ(1� s)

(10:55)

indicating that s¼1 is a Class IV zero of transmission of order 3.

Step 4. Substituting Equation 10.51 in Equation 10.46 with �js replacing v gives

r(s)r(�s) ¼ 1� G(�s2) ¼ 1� K5
1� s10

¼ a10 1� x10

1� s10
(10:56)

Vg

100 Ω

R1

100 pF

G

ωc ω0

1 μH

FIGURE 10.4 Broadband matching of an RLC load to a resistive generator.
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where

a ¼ (1� K5)
1=10, x ¼ s

a
(10:57)

The minimum-phase solution of Equation 10.56 is found to be

r̂(s) ¼ s5 þ 3:23607as4 þ 5:23607a2s3 þ 5:23607a3s2 þ 3:23607a4sþ a5

s5 þ 3:23607s4 þ 5:23607s3 þ 5:23607s2 þ 3:23607sþ 1
(10:58)

The maximum attainable DC gain will be ascertained later from the coefficient conditions.

Step 5. The Laurent series expansions of the functions A(s), F(s), and r̂(s) about the zero of
transmission s0¼1 of z2(s) are obtained as follows:

A(s) ¼ s� 1
sþ 1

¼ 1� 2
s
þ 2
s2
� 2
s3
þ � � � (10:59a)

F(s) ¼ �2

(sþ 1)2
¼ 0þ 0� 2

s2
þ 4
s3
þ � � � (10:59b)

r̂(s) ¼ 1þ 3:23607(a� 1)
s

þ 5:23607(a� 1)2

s2

þ 5:23607(a3 � 3:23607a2 þ 3:23607a� 1)
s3

þ � � � (10:59c)

Step 6. For a Class IV zero of transmission of order 3, the coefficient conditions are, from Equation
10.29d with k¼ 3,

Am ¼ rm , m ¼ 0, 1, 2 (10:60a)

F2
A3 � r3

� a�1(1) ¼ 1 (10:60b)

where a�1(1) is the residue of z2(s) evaluated at the pole s¼1, which is also the zero of
transmission of z2(s). Substituting the coefficients of Equation 10.59 in Equation 10.60 yields the
constraints imposed on K5 as

A0 ¼ 1 ¼ r0 (10:61a)

A1 ¼ �2 ¼ r1 ¼ 3:23607(a� 1) (10:61b)

A2 ¼ 2 ¼ r2 ¼ 5:23607(a� 1)2 (10:61c)

yielding a¼ 0.3819664, and

F2
A3 � p3

¼ �2
�2� 5:23607(a3 � 3:23607a2 þ 3:23607a� 1)

� a�1(1) ¼ 1
(10:62)

This inequality is satisfied for a¼ 0.3819664. Hence, we choose a¼ 0.3819664 and obtain from
Equation 10.57 the maximum realizable DC gain K5 as

K5 ¼ 1� a10 ¼ 0:99993 (10:63)
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With this value of K5, the minimum-phase reflection coefficient becomes

p̂(s) ¼ s5 þ 1:23607s4 þ 0:76393s3 þ 0:2918s2 þ 0:068884sþ 0:0081307
s5 þ 3:23607s4 þ 5:23607s3 þ 5:23607s2 þ 3:23607sþ 1

(10:64)

Step 7. The equalizer back-end impedance is determined by

Z22(s) � F(s)
A(s)� r̂(s)

� z2(s) ¼
�2

(sþ 1)2

s� 1
sþ 1 � r̂(s)

� s2 þ sþ 1
sþ 1

¼ 0:94427s4 þ 2:1115s3 þ 2:6312s2 þ 2:1591sþ 0:9919
1:0557s3 þ 2:3607s2 þ 2:3131sþ 1:0081

(10:65)

Step 8. Expanding Z22(s) in a continued fraction results in

Z22(s) ¼ 0:894sþ 1

1:88sþ 1
1:25sþ 1

0:455sþ 1
0:984

(10:66)

which can be identified as an LC ladder network terminated in a resistor. Denormalizing the
element values with regard to magnitude-scaling by a factor of 100 and frequency-scaling by a
factor 108 gives the final design of the equalizer of Figure 10.5.

Example 10.4

Design a lossless equalizer to match the load

z2(s) ¼ s2 þ 9sþ 8
s2 þ 2sþ 2

(10:67)

to a resistive generator and to achieve the largest flat transducer power gain over the entire sinusoidal
frequency spectrum.

Step 1. For truly-flat transducer power gain, let

G v2
� � ¼ K , 0 � K � 1 (10:68)

Vg

100 Ω

Z22(s)

100 pF

1 μH
0.894 μH1.25 μH

188 pF45.5 pF

98.4 Ω

+

–

FIGURE 10.5 Fifth-order Butterworth broadband matching equalizer.
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Step 2. The following functions are computed from z2(s):

r2(s)
s2 � 4ð Þ2

s2 þ 2sþ 2ð Þ s2 � 2sþ 2ð Þ (10:69a)

A(s) ¼ s2 � 2sþ 2
s2 þ 2sþ 2

(10:69b)

F(s) ¼ 2 s4 � 8s2 þ 16ð Þ
s2 þ 2sþ 2ð Þ2 (10:69c)

Step 3. Since

w(s) ¼ r2(s)
z2(s)

¼ s2 � 4ð Þ2
s2 � 2sþ 2ð Þ s2 þ 9sþ 8ð Þ (10:70)

the load impedance z2(s) possesses a Class I zero of transmission of order 2 at s¼ 2.

Step 4. Substituting Equation 10.68 in Equation 10.46 yields

r(s)r(�s) ¼ 1� K (10:71a)

the minimum-phase solution of which is found to be

r̂(s) ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
1� K

p
(10:71b)

Step 5. For a Class I zero of transmission of order 2, the coefficient conditions (Equation 10.29a) become

A(2) ¼ r̂(2) (10:72a)

A1 ¼ dA(s)
ds

����
s¼2

¼ r1 ¼
dr(s)
ds

����
s¼2

(10:72b)

The Laurent series expansions of the functions A(s), F(s), and r̂(s) about the zero of transmission at
s¼ 2 are not needed.

Step 6. Substituting Equations 10.69b and 10.71b in Equation 10.72 gives

A0 ¼ A(2) ¼ 0:2 ¼ r0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
1� K

p
(10:73a)

A1 ¼ dA(s)
ds

����
s¼2

¼ 0:08 6¼ r1 ¼ 0 (10:73b)

Since the coefficient conditions cannot all be satisfiedwithout the insertion of a real all-pass function, let

r(s) ¼ h(s)r̂(s) ¼ s� s1

sþ s1
r̂(s) (10:74)

Using this r(s) in Equation 10.72 results in the new constraints.

A0 ¼ 0:2 ¼ r0 ¼ � 2� s1

2þ s1

ffiffiffiffiffiffiffiffiffiffiffi
1� K

p
(10:75a)

A1 ¼ 0:08 ¼ r1 ¼ � 2s1

ffiffiffiffiffiffiffiffiffiffiffi
1� K

p

(2þ s1)
2 (10:75b)
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which can be combined to yield

s2
1 þ 5s1 � 4 ¼ 0 (10:76)

obtaining s1¼ 0.70156 or �5.7016. Choosing s1¼ 0.70156 and the plus sign for r(s), the
maximum permissible flat transducer power gain is found to be

Kmax ¼ 0:82684 (10:77)

Step 7. The equalizer back-end impedance is determined as

Z22(s) � F(s)
A(s)� r(s)

� z2(s) ¼ 1:4161sþ 0:8192
0:58388sþ 0:49675

(10:78)

Step 8. The positive-real impedance Z22(s) can be realized as the input impedance of a lossless two-
port network terminated in a resistor. The overall network is presented in Figure 10.6.

10.4 Explicit Formulas for the RLC Load

In many practical cases, the source can usually be represented by an ideal voltage source in series with a
pure resistor, which may be the Thévenin equivalent of some other network, and the load is composed of
the parallel combination of a resistor and a capacitor and then in series with an inductor, as shown in
Figure 10.7, which may include the parasitic effects of a physical device. The problem is to match out this
load and source over a preassigned frequency band to within a given tolerance, and to achieve a
prescribed transducer power-gain characteristic G(v2). In the case that G(v2) is of Butterworth or
Chebyshev type of response, explicit formulas for the design of such optimum matching networks for
any RLC load of the type shown in Figure 10.7 are available, thereby avoiding the necessity of applying
the coefficient constraints and solving the nonlinear equations for selecting the optimum design
parameters. As a result, we reduce the design of these equalizers to simple arithmetic.

10.4.1 Butterworth Networks

Refer to Figure 10.7. We wish to match out the load impedance

z2(s) ¼ Lsþ R
RCsþ 1

(10:79)

Vg

Z22(s)

1.577 F

1.65 Ω

+

–

z2(s)
1.062 H 1.562 H

M = 1.288 H

FIGURE 10.6 Lossless equalizer having a truly flat transducer power gain.
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to a resistive generator and to achieve the nth-order Butterworth transducer power-gain characteristic

G v2
� � ¼ Kn

1þ v=vcð Þ2n , 0 � Kn � 1 (10:80)

with maximum attainable DC gain Kn, where vc is the 3 dB bandwidth or the radian cutoff frequency.
The even part r2(s) of z2(s) is found to be

r2(s) ¼ �R
R2C2s2 � 1

(10:81)

Since z2(�s) has an open RHS pole at s¼ 1=RC, the all-pass real function defined by this pole is given by

A(s) ¼ s� 1=RC
sþ 1=RC

¼ RCs� 1
RCsþ 1

(10:82)

yielding

F(s) ¼ 2A(s)r2(s) ¼ �2R

(RCsþ 1)2
(10:83)

We next replace v by �js in Equation 10.80 and substitute the resulting equation in Equation 10.46 to
obtain

r(s)r(�s) ¼ a2n 1þ (�1)nx2n

1þ (�1)ny2n
(10:84)

where

y ¼ s
vc

, x ¼ y
a

(10:85a)

a ¼ 1� Knð Þ1=2n (10:85b)

As previously shown in Equation 9.29, the minimum-phase solution r̂(s) of Equation 10.84 is found to be

r̂(s) ¼ an q(x)
q(y)

(10:86)

Vg

Z22(s)

+

–

R1

C R

L

Lossless equalizer

N

FIGURE 10.7 Broadband matching of an RLC load to a resistive source.
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For our purposes, we consider the more general solution

r(s) ¼ �h(s)r̂(s) (10:87)

where �h(s) is an arbitrary first-order real all-pass function of the form

h(s) ¼ s� s1

sþ s1
, s1 � 0 (10:88)

Since the load impedance z2(s) possesses a Class IV zero of transmission at infinity of order 3, the
coefficient constraints become

Am ¼ rm, m ¼ 0, 1, 2 (10:89a)

La � F2
A3 � r3

� L (10:89b)

After substituting the coefficients F2, A3, and r3 from the Laurent series expansions of F(s), A(s), and r(s)
in Equation 10.89b, Equation 10.89a can all be satisfied by requiring that the DC gain be

Kn ¼ 1� 1� 2(1� RCs1) sing1
RCvc

� �2n
(10:90)

where gm is defined in Equation 9.37, and after considerable mathematical manipulations the constraint
(Equation 10.89b) becomes

La ¼ 4R sing1 sing3
(1� RCs1) RCv2

c a2 � 2a cosg2 þ 1ð Þ þ 4s1 sin g1 sin g3
� 	 � L (10:91)

The details of these derivations can be found in Ref. [3]. Thus, with Kn as specified in Equation 10.90, a
match is possible if and only if the series inductance L does not exceed a critical inductance La. To show
that any RLC load can be matched, we must demonstrate that there exists a nonnegative real s1 such that
La can be made at least as large as the given inductance L and satisfies the constraint (Equation 10.90)
with 0�Kn� 1. To this end, four cases are distinguished. Let

La1 ¼ R2Cvc sing3
(RCvc � sin g1)

2 þ cos2 g1
� 	

vc sing1
> 0 (10:92)

La2 ¼ 8R sin2 g1 sing3
(RCvc � sin g3)

2 þ 1þ 4 sin2 g1ð Þ sing1 sing3
� 	

vc
> 0 (10:93)

Case 1. RCvc� 2 sin g1 and La1� L. Under this situation, s1¼ 0 and the maximum attainable Kn

is given by Equation 10.90. The equalizer back-end impedance Z22(s) can be expanded in a
continued fraction as

Z22(s) ¼ La1 � Lð Þsþ 1

C2sþ 1
L3sþ 1

. .
. þ 1

W

(10:94)
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where
W is a constant representing either a resistance or a conductance, and

L1 ¼ La1 (10:95a)

C2mL2m�1 ¼ 4 sin g4m�1 sin g4mþ1

v2
c 1� 2a cos g4m þ a2ð Þ , m � 1

2
(n� 1) (10:95b)

C2mL2mþ1 ¼ 4 sin g4mþ1 sin g4mþ3

v2
c 1� 2a cos g4mþ2 þ a2
� � , m <

1
2
(n� 1) (10:95c)

wherem ¼ 1, 2, . . . , 1
2 (n� 1)

 �

, n > 1. In addition, the final reactive element can also be computed
directly by the formulas

Cn�1 ¼ 2(1þ an) sin g1
R(1� an)(1þ a)vc

, n odd (10:96a)

Ln�1 ¼ 2R(1� an) sin g1
(1þ an)(1þ a)vc

, n even (10:96b)

Equation 10.94 can be identified as an LC ladder terminated in a resistor, as depicted in Figure
10.8. The terminating resistance is determined by

R22 ¼ R
1� an

1þ an
(10:97)

R22

R22

Cn–1 Cn–3 C2

La1–LL3Ln–2

N

Ln–1 Ln–3 L3 La1−L

Cn–2 C2C4

N

(a) n odd

(b) n even

FIGURE 10.8 nth-order Butterworth ladder network N.
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Case 2. RCvc� 2 sin g1 and La1< L. Under this situation, s1 is nonzero and can be determined by
the formula

s1 ¼ 1
RC

1þ 2
ffiffiffi
p

p
sinh

w

3
� 2RCvc sin2 g1 þ sin g3

3 sing1

� 
(10:98)

where

p ¼ (RCvc � 2 sin g1)
2 sing3

9 sing1
> 0 (10:99a)

w ¼ 2RCvc sin2 g1 þ sin g3ð Þ
54 sin3 g1

3(RCvc � 2 sing1)
2 sin g1 sin g3

�
þ 2RCvc sin

2 g1 þ sin g3
� �2i� R2C sing3

2L sing1
(10:99b)

w ¼ sinh�1 w

(
ffiffiffi
p

p
)3

(10:99c)

Using this value of s1, the DC gain Kn is computed by Equation 10.90.

Case 3. RCvc< 2 sin g1 and La2� L. Then, we have

Kn ¼ 1 (10:100a)

s1 ¼ 1
RC

1� RCvc

2 sing1

� 
> 0 (10:100b)

Case 4. RCvc< 2 sing1 and La2< L. Then the desired value of s1 can be computed by Equation
10.98. Using this value of s1, the DC gain Kn is computed by Equation 10.90.

Example 10.5

Let

R ¼ 100V, C ¼ 100 pF, L ¼ 0:5mF (10:101a)

n ¼ 6, vc ¼ 108 rad=s (10:101b)

From Equation 10.92, we first compute

La1 ¼ 100 sin 45	

[(1� sin 15	)2 þ cos2 15	]
 108 sin 15	
¼ 1:84304mH (10:102)

Since La1> L and

RCvc ¼ 1 > 2 sin 15	 ¼ 0:517638 (10:103)

Case 1 applies and the matching network can be realized as an LC ladder terminating in a resistor as
shown in Figure 10.8b. With s1¼ 0, the maximum attainable DC gain K6 is from Equation 10.90
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K6 ¼ 1� 1� 2 sin 15	

RCvc

� 12

¼ 0:999841 (10:104)

giving from Equation 10.85b

a ¼ 1� K6ð Þ1=12¼ 0:482362 (10:105)

Applying Equation 10.95 yields the element values of the LC ladder network, as follows:

L1 ¼ La1 ¼ 1:84304mH (10:106a)

C2 ¼ 4 sin 45	 sin 75	

1:84304
 10�6 
 1016 1� 2
 0:482362 cos 60	 þ 0:4823622ð Þ
¼ 197:566 pF (10:106b)

L3 ¼ 4 sin 75	 sin 105	

197:566
 10�12 
 1016 1� 2
 0:482362 cos 90	 þ 0:4823622ð Þ
¼ 1:53245mH (10:106c)

C4 ¼ 4 sin 105	 sin 135	

1:53245
 10�6 
 1016 1� 2
 0:482362 cos 120	 þ 0:4823622ð Þ
¼ 103:951 pF (10:106d)

L5 ¼ 4 sin 135	 sin 165	

103:951
 10�12 
 1016 1� 2
 0:482362 cos 150	 þ 0:4823622ð Þ
¼ 0:34051mH (10:106e)

The last reactive elements L5 can also be calculated directly from Equation 10.96b as

L5 ¼ 2
 100 1� 0:4823626ð Þ sin 15	
1þ 0:4823626ð Þ 1þ 0:482362ð Þ108 ¼ 0:34051mH (10:107)

Finally, the terminating resistance is determined from Equation 10.97 as

R22 ¼ 100
1� 0:4823626

1þ 0:4823626
¼ 97:512V (10:108)

The matching network together with its terminations is presented in Figure 10.9. We remark that for
computational accuracy we retain five significant figures in all the calculations. In practice, one or two
significant digits are sufficient, as indicated in the figure.

Example 10.6

Let

R ¼ 100V, C ¼ 50 pF, L ¼ 0:5mF (10:109a)

n ¼ 5, vc ¼ 108 rad=s (10:109b)

Since

RCvc ¼ 0:5 < 2 sin 18	 ¼ 0:618 (10:110)
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and from Equation 10.93,

La2 ¼ 1:401mH > L ¼ 0:5mH (10:111)

Case 3 applies, and we have K5¼ 1 and from Equation 10.100b

s1 ¼ 0:381966
 108 (10:112)

The normalized reflection coefficient is found to be

r(y) ¼ (y � 0:381966)y5

(y þ 0:381966) y5 þ 3:23607y4 þ 5:23607y3 þ 5:23607y2 þ 3:23607y þ 1ð Þ (10:113)

where y¼ s=108. Finally, we compute the equalizer back-end impedance as

Z22(s)
100

¼ F(y)
A(y)� r(y)

� z2(y)

¼
�2

(0:5 yþ1)2

0:5 y�1
0:5 yþ1 � r(s)

� 0:5 y � 1
0:5 y þ 1

¼ 2:573 y5 þ 4:1631 y4 þ 5:177 y3 þ 4:2136 y2 þ 2:045 y þ 0:38197
2:8541 y4 þ 4:618 y3 þ 4:118 y2 þ 2:045 y þ 0:38197

¼ 0:9015 y þ 1

1:949 y þ 1

1:821 y þ 1

0:8002 y þ 1
1:005 y þ 0:3822
0:9944 y þ 0:3822

(10:114)

The final matching network together with its terminations is presented in Figure 10.10.

Example 10.7

Let

R ¼ 100 V, C ¼ 50 pF, L ¼ 3 mF (10:115a)

n ¼ 4, vc ¼ 108 rad=s (10:115b)

Z22(s)

Vg

0.341 μH 1.53 μH 1.34 μH

0.5  μH

10
0 Ω97

.5 
Ω

+

–

104 pF 198 pF 100 pF

N

FIGURE 10.9 Sixth-order Butterworth matching network.
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Since

RCvc ¼ 0:5 < 2 sin 22:5	 ¼ 0:76537 (10:116)

and from Equation 10.93

La2 ¼ 1:462 mH < L ¼ 3 mH (10:117)

Case 4 applies, and from Equation 10.98

s1 ¼ 1:63129
 108 (10:118)

where Equation 10.99

p ¼ 0:0188898, w ¼ 0:2304, w ¼ 5:17894 (10:119)

From Equation 10.90, the maximum attainable DC gain is obtained as

K4 ¼ 1� 1� 2(1� 100
 50
 10�12 
 1:63129
 108) sin 22:5	

100
 50
 10�12 
 108

� �8
¼ 0:929525 (10:120)

giving from Equation 10.85b

a ¼ (1� K4)
1=8 ¼ 0:717802 (10:121)

Finally, the normalized reflection coefficient r(s) is obtained as

r(s) ¼ (y � 1:63129)(y4 þ 1:87571 y3 þ 1:75913 y2 þ 0:966439 y þ 0:265471)
(y þ 1:63129)(y4 þ 2:61313 y3 þ 3:41421 y2 þ 2:61313 y þ 1)

(10:122)

Z22(s)

Vg

1.31 μH 1.82 μH

10
0 Ω10

0 Ω

+

–

80 pF

N

195 pF 50 pF

0.902 μH

0.5 μH

1.31 μH 1.32 μH

522 pF

FIGURE 10.10 Fifth-order Butterworth matching network.
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where y¼ s=108. Finally, we compute the equalizer back-end impedance as

Z22(s)
100

¼ F(y)
A(y)� r(y)

� z2(y) ¼
�2

(0:5 yþ1)2

0:5 y�1
0:5 yþ1 � r(s)

� 0:5 y � 1
0:5 y þ 1

¼ 3:3333 y4 þ 7:4814 y3 þ 8:6261 y2 þ 5:9748 y þ 2:0642
1:3333 y3 þ 2:9926 y2 þ 2:9195 y þ 1:1982

¼ 2:5 y þ 1

1:0046 y þ 1

1:5691 y þ 1
1:0991 y þ 2:0642
0:84591 y þ 1:1982

(10:123)

The final matching network together with its terminations is presented in Figure 10.11.

10.4.2 Chebyshev Networks

Refer again to Figure 10.7. We wish to match out the load impedance

z2(s) ¼ Lsþ R
RCsþ 1

(10:124)

to a resistive generator and to achieve the nth-order Chebyshev transducer power-gain characteristic

G(v2) ¼ Kn

1þ e2C2
n(v=vc)

, 0 � Kn � 1 (10:125)

with maximum attainable constant Kn. Following Equation 10.84, we obtain

r(s)r(�s) ¼ (1� Kn)
1þ ê2C2

n(� jy)
1þ e2C2

n(� jy)
(10:126)

where y¼ s=vc and

ê ¼ effiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Kn

p (10:127)

Z22(s)

Vg

0.491 μH 1.57 μH

10
0 Ω17

2 Ω

+

–

80 pF 100 pF

2.5 μH

3 μH

50 pF
0.565 μH 0.426 μH

76.6 pF

N

FIGURE 10.11 Fourth-order Butterworth matching network.
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As in Equation 10.86, let r̂(s) be the minimum-phase solution of Equation 10.126. For our purposes, we
consider the more general solution

r(s) ¼ �h(s)r̂(s) (10:128)

where �h(s) is an arbitrary first-order real all-pass function of the form

h(s) ¼ s� s1

sþ s1
, s1 � 0 (10:129)

Since the load impedance z2(s) possesses a Class IV zero of transmission at infinity of order 3, the
coefficient constraints become

Am ¼ rm, m ¼ 0, 1, 2 (10:130a)

F2
A3 � r3

� L (10:130b)

After substituting the coefficients F2, A3, and r3 from the Laurent series expansions of F(s), A(s), and r(s)
in Equation 10.130a, they lead to the constraints on the constant Kn as

Kn ¼ 1� e2 sinh2 n sinh�1 sinh a� 2(1� RCs1) sin g1
RCvc

� �� �
(10:131)

where gm is defined in Equation 9.37, and

a ¼ 1
n
sinh�1 1

e
(10:132)

To apply the constraint (Equation 10.130b), we rewrite it as

Lb � F2
A3 � r3

� L (10:133)

After substituting the coefficients F2, A3, and r3 from the Laurent series expansions of F(s), A(s), and r(s)
in Equation 10.133 and after considerable mathematical manipulations, we obtain

Lb ¼ 4R sin g1 sing3
(1� RCs1) RCv2

c f1( sin a, sinh â)þ 4s1 sin g1 sin g3
� 	 � L (10:134)

where

â ¼ 1
n
sinh�1 1

ê
¼ 1

n
sinh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Kn

p
e

(10:135)

fm(x,y) ¼ x2 þ y2 � 2xy cosg2m þ sin2 g2m,

m ¼ 1, 2, . . . ,
1
2
n

� �
(10:136)
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The details of these derivations can be found in Ref. [3]. Thus, with Kn as specified in Equation 10.131, a
match is possible if and only if the series inductance L does not exceed a critical inductance Lb. To show
that any RLC load can be matched, we must demonstrate that there exists a nonnegative real s1 such that
Lb can be made at least as large as the given inductance L and satisfies the constraint (Equation 10.131)
with 0�Kn� 1. To this end, four cases are distinguished. Let

Lb1 ¼ R2Cvc sin g3
1� RCvc sinh a sing1ð Þ2þR2C2v2

c cosh
2 a cos2 g1

� 	
vc sin g1

> 0 (10:137)

Lb2 ¼ 8R sin2 g1 sin g3
RCvc sinh a� sing3ð Þ2þ 1þ 4 sin2 g1ð Þ sing1 sing3 þ R2C2v2

c sin
2 g2

� 	
vc sinh a

> 0 (10:138)

Observe that both Lb1 and Lb2 are positive.

Case 1. RCvc sinh a� 2 sin g1 and Lb1� L. Under this situation, s1¼ 0 and the maximum
attainable Kn is given by

Kn ¼ 1� e2 sinh2 n sinh�1 sinh a� 2 sin g1
RCvc

� � �
(10:139)

The equalizer back-end impedance Z22(s) can be expanded in a continued fraction as in
Equation 10.94 with Lb1 replacing La1 and realized by the LC ladders Figure 10.8 with

L1 ¼ Lb1 (10:140a)

C2mL2m�1 ¼ 4 sin g4m�1 sing4mþ1

v2
c f2m(sinh a, sinh â)

, m <
1
2
(n� 1) (10:140b)

C2mL2mþ1 ¼ 4 sin g4mþ1 sing4mþ3

v2
c f2mþ1(sinh a, sinh â)

, m <
1
2
(n� 1) (10:140c)

where m ¼ 1, 2, . . . , 1
2 (n� 1)

 �

, n > 1. In addition, the final reactive element can also be
computed directly by the formulas

Cn�1 ¼ 2(sinh naþ sinh nâ) sin g1
Rvc(sinh aþ sinh â)( sinh na� sinh nâ)

, n odd (10:141a)

Ln�1 ¼ 2R(cosh na� cosh nâ) sing1
vc(sinh aþ sinh â)(cosh naþ cosh nâ)

, n even (10:141b)

The terminating resistance is determined by

R22 ¼ R
sinh na� sinh nâ
sinh naþ sinh nâ

, n odd (10:142a)

R22 ¼ R
cosh na� cosh nâ
cosh naþ cosh nâ

, n even (10:142b)

Case 2. RCvc sinh a� 2 sin g1 and Lb1< L. Under this situation, s1 is nonzero and can be
determined by the formula
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s1 ¼ 1
RC

1þ 2
ffiffiffi
q

p
sinh

w

3
� 2RCvc sin2 g1 sinh aþ sing3

3 sing1

� 
(10:143)

where

q ¼ RCvc sinh a� 2 sin g1ð Þ2 sing3 þ 3R2C2v2
c sin g1 cos

2 g1
9 sing1

> 0 (10:144a)

z ¼ 2RCvc sin2 g1 sinh aþ sing3ð Þ
54 sin3 g1



�
3 RCvc sinh a� 2 sing1ð Þ2 sin g1 sin g3

þ 2:25R2C2v2
c sin

2 g2 þ 2RCvc sin
2 g1 sinh aþ sin g3

� �2�

� R2C sin g3
2L sing1

(10:144b)

w ¼ sinh�1 zffiffiffi
q

p� �3 (10:144c)

Using this value of s1, the constant Kn is computed by Equation 10.131.
Case 3. RCvc sinh a< 2 sin g1 and Lb2� L. Then, we have

Kn ¼ 1 (10:145a)

s1 ¼ 1
RC

1� RCvc sinh a
2 sin g1

� 
> 0 (10:145b)

Case 4. RCvc sinh a< 2 sin g1 and Lb2< L. Then the desired value of s1 can be computed by
formula given by Equation 10.143. Using this value of s1, the constant Kn is computed
by Equation 10.131.

Example 10.8

Let

R ¼ 100V, C ¼ 500 pF, L ¼ 0:5mF (10:146a)

n ¼ 6, e ¼ 0:50885(1 dB ripple), vc ¼ 108 rad=s (10:146b)

From Equation 10.137, we first compute

Lb1 ¼ 500 sin 45	

1� 5 sinh 0:237996 sin 15	ð Þ2 þ 25 cosh2 0:237996 cos2 15	
h i

108 sin 15	

¼ 0:54323mH (10:147)

Since Lb1> L and

RCvc sinh a ¼ 5 sinh 0:237996 ¼ 1:20125 > 2 sin 15	 ¼ 0:517638 (10:148)
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Case 1 applies and the matching network can be realized as an LC ladder terminating in a resistor as
shown in Figure 10.8. With s1¼ 0, the maximum attainable DC gain K6 is from Equation 10.131

K6 ¼ 1� 0:508852 sinh2 6 sinh�1 sinh 0:237996� 2 sin 15	

5

� � �
¼ 0:78462 (10:149)

giving from Equations 10.127 and 10.135

ê ¼ 0:50885ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:78462

p ¼ 1:0964 (10:150a)

â ¼ 1
6
sinh�1 1

1:0964
¼ 0:13630 (10:150b)

Applying formulas given by Equation 10.140 yields the element values of the LC ladder network, as
follows:

L1 ¼ Lb1 ¼ 0:54323mH, C2 ¼ 634 pF, L3 ¼ 0:547mH (10:151a)

C4 ¼ 581 pF, L5 ¼ 0:329mH (10:151b)

The last reactive element L5 can be calculated directly from Equation 10.141b as

L5 ¼ 2
 100[ cosh (6
 0:237996)� cosh (6
 0:13630)] sin 15	

108( sinh 0:237996þ sinh 0:13630)[ cosh (6
 0:237996)þ cosh (6
 0:13630)]
¼ 0:328603mH (10:152)

Finally, the terminating resistance is determined from Equation 10.142b as

R22 ¼ 100
cosh (6
 0:237996)� cosh (6
 0:13630)
cosh (6
 0:237996)þ cosh (6
 0:13630)

¼ 23:93062V (10:153)

The matching network together with its terminations is presented in Figure 10.12. We remark that for
computational accuracy we retain five significant figures in all the calculations. In practice, one or two
significant digits are sufficient, as indicated in the figure.

Z22(s)

Vg

0.329 μH 0.547 μH

10
0 Ω23

.9 
Ω

+

–

0.0432 μH

0.5 μH

N

581 pF 634 pF
500 pF

FIGURE 10.12 Sixth-order Chebyshev matching network.
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Example 10.9

Let

R ¼ 100V, C ¼ 500 pF, L ¼ 1mH (10:154a)

n ¼ 5, e ¼ 0:50885 (1 dB ripple), vc ¼ 108 rad=s (10:154b)

From Equation 10.137, we first compute

Lb1 ¼ 0:52755mH (10:155)

Since Lb1< L and

RCvc sinh a ¼ 5 sinh 0:28560 ¼ 1:44747 > 2 sin 18	 ¼ 0:61803 (10:156)

Case 2 applies. From Equation 10.144, we obtain

q ¼ 7:73769, z ¼ 7:84729, w ¼ 0:356959 (10:157)

Substituting these in Equation 10.143 gives

s1 ¼ 0:0985305
 108 (10:158)

From Equation 10.131, the maximum attainable constant K5 is found to be

K5 ¼ 0:509206 (10:159)

The rest of the calculations proceed exactly as in the previous example, and the details are omitted.

Example 10.10

Let

R ¼ 100V, C ¼ 100 pF, L ¼ 0:5mF (10:160a)

n ¼ 5, e ¼ 0:76478 (2 dB ripple), vc ¼ 108 rad=s (10:160b)

We first compute

a ¼ 1
5
sinh�1 1

e
¼ 0:2166104 (10:161)

and from Equation 10.138

Lb2 ¼ 2:72234mH (10:162)

Since Lb2� L and

RCvc sinh a ¼ sinh 0:2166104 ¼ 0:218308 < 2 sin 18	 ¼ 0:618034 (10:163)
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Case 3 applies. Then K5¼ 1 and from Equation 10.145b

s1 ¼ 1
10�8

1� sinh 0:2166104
2 sin 18	

� 
¼ 0:64677
 108 (10:164)

For K5¼ 1, Equation 10.126 degenerates into

r(y)r(�y) ¼ e2C2
5 (� jy)

1þ e2C2
5 (� jy)

(10:165)

where y¼ s=108, the minimum-phase solution of which is found to be

r̂(y) ¼ y5 þ 1:25 y3 þ 0:3125 y
y5 þ 0:706461 y4 þ 1:49954 y3 þ 0:693477 y2 þ 0:459349 y þ 0:0817225

(10:166)

A more general solution is given by

r(y) ¼ y � 0:64677
 108

y þ 0:64677
 108
r̂(y) (10:167)

Finally, we compute the equalizer back-end impedance as

Z22(y)
100

¼ F(y)
A(y)� r(y)

� z2(y)

¼
�2

(yþ1)2

y�1
yþ1 � r(x)

� 0:5y � 1
y þ 1

¼ 1:63267 y5 þ 0:576709 y4 þ 2:15208 y3 þ 0:533447 y2 þ 0:554503 y þ 0:0528557
0:734663 y4 þ 0:259505 y3 þ 0:639438 y2 þ 0:123844 y þ 0:0528557

¼ 2:222 y þ 1

1:005 y þ 1

3:651 y þ 1

0:8204 y þ 1
0:2441 y þ 0:05286
0:02736 y þ 0:05286

(10:168)

The final matching network together with its terminations is presented in Figure 10.13.

Z22(s)

Vg

1.16 μH 3.65 μH

10
0 Ω10

0 Ω

+

–

0.388 μH

2.22 μH

206 pF

3.46 μH

82 pF 100 pF
100 pF

0.5 μH

FIGURE 10.13 Fifth-order Chebyshev matching network.
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Example 10.11

Let

R ¼ 100V, C ¼ 100 pF, L ¼ 3mF (10:169a)

n ¼ 4, e ¼ 0:76478 (2 dB ripple), vc ¼ 108 rad=s (10:169b)

We first compute

a ¼ 1
4
sinh�1 1

0:76478
¼ 0:27076 (10:170)

and from Equation 10.138

Lb2 ¼ 2:66312mH (10:171)

Since Lb2< L and

RCvc sinh a ¼ sinh 0:27076 ¼ 0:27408 < 2 sin 22:5	 ¼ 0:765367 (10:172)

Case 4 applies. From Equation 10.144, we obtain

q ¼ 0:349261, z ¼ 0:390434, w ¼ 1:39406 (10:173)

Substituting these in Equation 10.143 gives

s1 ¼ 0:694564
 108 (10:174)

obtaining from Equations 10.127 and 10.131

K4 ¼ 0:984668, ê ¼ 6:17635 (10:175)

From Equation 10.126,

r(y)r(�y) ¼ 1� K4ð Þ 1þ ê2C2
4 (�jy)

1þ e2C2
4 (�jy)

(10:176)

where y¼ s=108, the minimum-phase solution of which is found to be

r̂(y) ¼ y4 þ 0:105343 y3 þ 1:00555 y2 þ 0:0682693 y þ 0:126628
y4 þ 0:716215 y3 þ 1:25648 y2 þ 0:516798 y þ 0:205765

(10:177)

A more general solution is given by

r(y) ¼ y � 0:694564
 108

y þ 0:694564
 108
r̂(s) (10:178)
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Finally, we compute the equalizer back-end impedance as

Z22(y)
100

¼ F(y)
A(y)� r(y)

� z2(y) ¼
�2

(yþ1)2

y�1
yþ1 � r(s)

� 3y2 þ 3y þ 1
y þ 1

¼ 0:780486 y2 þ 0:320604 y þ 0:23087
0:666665 y3 þ 0:273851 y2 þ 0:413057 y þ 0:0549659

¼ 1

0:8542 y þ 1

3:616 y þ 1
0:1219 y þ 0:2309
0:2159 y þ 0:05497

(10:179)

The final matching network together with its terminations is presented in Figure 10.14.
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FIGURE 10.14 A fourth-order Chebyshev matching network.
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11.1 Introduction

Active filters consist of only amplifiers, resistors, and capacitors. Complex roots are achieved by the use of
feedback eliminating the need for inductors. The gain of the amplifier can be finite or infinite (an op-
amp). This section describes active filters using low-gain or finite-gain amplifiers. Filter design equations
and examples will be given along with the performance limits of low-gain amplifier filters.

11.2 First- and Second-Order Transfer Functions

Before discussing the characteristics and the synthesis of filters, it is important to understand the transfer
functions of first- and second-order filters. Later we will explain the implementations of these filters and
show how to construct higher order filters from first- and second-order sections. The transfer functions
of most first- and second-order filters are examined in the following.

11.2.1 First-Order Transfer Functions

A standard form of the transfer function of a first-order low-pass filter is

TLP(s) ¼ TLP( j0)vo

sþ vo
(11:1)
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where
TLP( j0) is the value of TLP(s) at dc
vo is the pole frequency

It is common practice to normalize both the magnitude and frequency. Normalizing Equation 11.1 yields

TLPn snð Þ ¼ TLP snvoð Þ
TLP( j0)j j ¼

1
sn þ 1

(11:2)

where sn¼ s=vo and amplitude has been normalized as

TLPn(s) ¼ TLP(s)
TLP( j0)j j (11:3)

The equivalent normalized forms of a first-order high-pass filter are

THP(s) ¼ THP( j1)s
sþ vo

(11:4)

and

THPn snð Þ ¼ THP snvoð Þ
THP( j1)j j ¼

sn
sn þ 1

(11:5)

where THP( j1)¼THP(s) j at v¼1. The normalized magnitude responses of these functions are shown
in Figure 11.1.

11.2.2 Second-Order Transfer Functions

The standard form of a second-order low-pass filter is given as

TLP(s) ¼ TLP( j0)v2
o

s2 þ vo
Q

� �
sþ v2

o

(11:6)

where
TLP( j0) is the value of TLP(s) at dc
vo is the pole frequency
Q is the pole Q or the pole quality factor

–5

–10

–15

–20
0.1 1 10

0

Normalized frequency
0.1 1 10

Normalized frequency

N
or

m
. m

ag
ni

tu
de

 (d
B)

–5

–10

–15

–20

0

N
or

m
. m

ag
ni

tu
de

 (d
B)

(a) (b)

FIGURE 11.1 Normalized magnitude response of (a) first-order low-pass and (b) first-order high-pass filters.
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The damping factor z, which may be better known to the reader, is given as

z ¼ 1
2Q

(11:7)

The poles of the transfer function of Equation 11.7 are

p1, p2 ¼ �vo

2Q
� j

vo

2Q

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Q2 � 1

p
(11:8)

Normalization of Equation 11.6 in both amplitude and frequency gives

TLPn snð Þ ¼ TLP snvoð Þ
TLP( j0)j j ¼

1
s2n þ sn

Q þ 1
(11:9)

where sn¼ s=vo. The standard second-order, high-pass and bandpass transfer functions are

THP(s) ¼ THP( j1)s2

s2 þ vo
Q

� �
sþ v2

o

(11:10)

and

TBP(s) ¼
TBP jvoð Þ vo

Q

� �
s

s2 þ vo
Q

� �
sþ v2

o

(11:11)

where TBP( jvo)¼TBP(s) at s¼ jv¼ jvo. The poles of the second-order high-pass and bandpass transfer
functions are given by Equation 11.8.
We can normalize these equations as we did for TLP(s) to get

THPn snð Þ ¼ THP snvoð Þ
THP( j1)j j ¼

s2n
s2n þ sn

Q þ 1
(11:12)

TBPn snð Þ ¼ TBP snvoð Þ
TBP jvoð Þj j ¼

sn
Q

s2n þ sn
Q þ 1

(11:13)

where

THPn(s) ¼ THP(s)
THP( j1)j j (11:14)

and

TBPn(s) ¼ TBP(s)
TBP jvoð Þj j (11:15)

Two other types of second-order transfer function filters that we have not covered here are the bandstop
and the all-pass. These transfer functions have the same poles as the previous ones. However, the zeros of
the bandstop transfer function are on the jv axis while the zeros of the all-pass transfer function are
quadratically symmetric to the poles (they are mirror images of the poles in the right-half plane). Both of
these transfer functions can be implemented by a second-order biquadratic transfer function whose
transfer function is given as
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TBQ(s) ¼
K s2 � vz

Qz

� �
sþ v2

z

h i
s2 þ vp

Qp

� �
sþ v2

p

(11:16)

where
K is a constant
vz is the zero frequency
Qz the zero Q
vp is the pole frequency
Qp the pole Q

11.2.3 Frequency Response (Magnitude and Phase)

The magnitude and phase response of the normalized second-order low-pass transfer function is shown
in Figure 11.2, where Q is a parameter. In this figure we see that Q influences the frequency response near
vo. If Q is greater than 0.707, then the normalized magnitude response has a peak value of

Tn vn(max )½ �j j ¼ Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=4Q2ð Þp (11:17)
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FIGURE 11.2 (a) Normalized magnitude and (b) phase response of the standard second-order low-pass transfer
function with Q as a parameter.
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at a frequency of

vn(max ) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2Q2

r
(11:18)

If the transfer function is multiplied by �1, the phase shift is shifted vertically by �1808.
The magnitude and phase response of the normalized second-order high-pass transfer function is

shown in Figure 11.3. For Q greater than 0.707 the peak value of the normalized magnitude response is as

vn(max ) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2Q2

q (11:19)

The normalized frequency response of the standard second-order bandpass transfer function is shown in
Figure 11.4. The slopes of the normalized magnitude curves at frequencies much greater or much less
than vo are �20 dB=decade rather than �40 dB=decade of the second-order high and low-pass transfer
functions. This difference is because one pole is causing the high-frequency roll-off while the other pole is
causing the low-frequency roll-off. The peak of the magnitude occurs at v¼vo or vn¼ 1.
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FIGURE 11.3 (a) Normalized magnitude and (b) phase response of the standard second-order high-pass transfer
function with Q as a parameter.
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11.2.4 Tuning Active Filters

A general tuning procedure for most second-order active filters is outlined below. This method is
illustrated for adjusting the magnitude of the frequency response of a low-pass filter. The filter param-
eters are assumed to be the pole frequency fo, the pole Q, and the gain T( j0).

1. The component(s) which set(s) the parameter fo is (are) tuned by adjusting the magnitude of the
filter response to be T( j0)=10 or T( j0) (dB) �20 dB at 10fo.

2. The component(s) that set(s) the parameter T( j0) is (are) tuned by adjusting the magnitude to
T( j0) at fo=10.

3. The component(s) that set(s) the parameter Q is (are) tuned by adjusting the magnitude of the
peak (if there is one) to the value given by Figure 11.2. If there is no peaking, then adjust so that the
magnitude at fo is correct (i.e., �3 dB for Q¼ 0.707).

The tuning procedure should follow in the order of steps 1 through 3 and may be repeated if necessary.
One could also use the phase shift to help in the tuning of the filter. The concept of the above tuning
procedure is easily adaptable to other types of second-order filters.

11.3 First-Order Filter Realizations

A first-order filter has only one pole and zero. For stability, the pole must be on the negative real axis but
the zero may be on the negative or positive real axis. A single-amplifier low-gain realization of a first-
order low-pass filter is shown in Figure 11.5a. The transfer function for this filter is
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FIGURE 11.4 (a) Normalized magnitude and (b) phase response of the standard second-order bandpass transfer
function with Q as a parameter.
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T(s) ¼ V2(s)
V1(s)

¼ K=RC
sþ 1=RC

¼ Kvo

sþ vo
¼ TLP(0)vo

sþ vo
(11:20)

The low-frequency (v � vo) gain magnitude and polarity are set by K.
First-order high-pass filters can also be realized in a single-amplifier low-gain circuit (see

Figure 11.5b). The transfer function for this filter is given in Equation 11.4, and in this case
THP( j1)¼K. Both low-pass and high-pass magnitude responses are shown in Figure 11.1. Note that
the first-order filters exhibit no peaking and the frequency-dependent part of the magnitude response
approaches �20 dB=decade.

11.4 Second-Order Positive-Gain Filters

Practical realizations for second-order filters using positive gain amplifiers are presented here. These
filters are easy to design and have been extensively used in many applications. The first realization is a
low-pass Sallen and Key filter and is shown in Figure 11.6 [8].
The transfer function of Figure 11.6 is

V2(s)
V1(s)

¼
K

R1R3C2C4

s2 þ s 1
R3C4

þ 1
R1C2

þ 1
R3C2

� K
R3C4

� �
þ 1

R1R3C2C4

(11:21)

Equating this transfer function with the standard form of a second-order low-pass filter given in
Equation 11.6 gives

vo ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1R3C2C4

p (11:22)

1
Q
¼

ffiffiffiffiffiffiffiffiffiffi
R3C4

R1C2

r
þ

ffiffiffiffiffiffiffiffiffiffi
R1C4

R3C2

r
þ (1� K)

ffiffiffiffiffiffiffiffiffiffi
R1C2

R3C4

r
(11:23)
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+
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FIGURE 11.5 (a) Low-pass and (b) high-pass first-order filters.
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FIGURE 11.6 Low-pass Sallen and Key filter.
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and

TLP( j0) ¼ K (11:24)

These three equations have five unknowns, giving the designer some freedom in selecting component
values. Two examples showing different techniques for defining these values of the circuit in Figure 11.6
are given below.

Example 11.1

An equal-resistance equal-capacitance low-pass filter. For this example, R¼ R1¼ R3 and C¼ C2¼ C4.
A Butterworth low-pass filter characteristic is needed with vo¼ 6283 rad=s (1 kHz) and Q¼ 0.7071.
With these constraints,

vo ¼ 1
RC

1
Q
¼ 3� K (11:25)

and RC¼ 159 ms, TLP( j0)¼ K¼ 1.586. Selecting C¼ 0.1 mF yields R¼ 1.59 kV.

Example 11.2

A unity-gain low-pass filter. For this example let K¼ 1. Therefore, Equation 11.23 becomes

1
Q
¼

ffiffiffiffiffiffiffiffiffi
R3C4
R1C2

r
þ

ffiffiffiffiffiffiffiffiffi
R1C4
R3C2

r
¼

ffiffiffiffiffi
C4
C2

r ffiffiffiffiffi
R3
R1

r
þ

ffiffiffiffiffi
R1
R3

r� �
(11:26)

The desired transfer function, with the complex frequency normalized by a factor of 104 rad=s, is

V2(s)
V1(s)

¼ 0:988
s2 þ 0:179sþ 0:988

¼ TLP( j0)v2
o

s2 þ vo
Q sþ v2

o
(11:27)

and vo¼ 0.994 rad=s, Q¼ 5.553. To obtain a real-valued resistor ratio, pick

C4
C2

� 1
4Q2

¼ 0:00811 (11:28)

or C4=C2¼ 0.001 in this case. Equation 11.26 yields two solutions for the ratio R3=R1, 30.3977 and 0.0329.
From Equation 11.22 with vo¼ 9.94 krad=s, R1C2¼ 577 ms. If C2 is selected as 0.1 mF, then C4¼ 100 pF,
R1¼ 5.77 kV, and R3¼ 175.4 kV.

A Sallen and Key bandpass circuit is shown in Figure 11.7, and its voltage transfer function is

V2(s)
V1(s)

¼
sK
R1C5

s2 þ s 1
R1C5

þ 1
R2C5

þ 1
R4C5

þ 1
R4C3

� K
R2C5

� �
þ 1

R4C3C5

1
R1
þ 1

R2

� � (11:29)

Equating this transfer function to that of Equation 11.11 results in

vo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R1

R2

R1R4C3C5

s
(11:30)
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1
Q
¼

1þ R1
R2
(1� K)

h i ffiffiffiffiffiffiffi
R4C3
R1C5

q
þ

ffiffiffiffiffiffiffi
R1C3
R4C5

q
þ

ffiffiffiffiffiffiffi
R1C5
R4C3

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffi
R1
R2

qr (11:31)

and

TBP( j0) ¼
K

R1C5

1
R1C5

þ 1
R2C5

þ 1
R4C5

þ 1
R4C3

þ K
R2C5

(11:32)

These three equations contain six unknowns. A common constraint is to set K¼ 2, requiring the gain
block to have two equal-valued resistors connected around an op-amp.

Example 11.3

An equal-capacitance gain-of-2 bandpass filter. Design a bandpass filter with vn¼ 1 and Q¼ 2. Arbitrarily
select C3¼ C5¼ 1 F and K¼ 2. If R1 is selected to be 1 V, then Equations 11.11, 11.29, and 11.30 give

v2
o ¼ 1þ R1

R2

� �
1
R4

¼ 1 (11:33)

and

vo

Q
¼ 1� 1

R2
þ 2
R4

¼ 1
2

(11:34)

Solving these equations gives R2¼ 0.7403 V and R4¼ 2.3508 V. Practical values are achieved after
frequency and impedance denormalizations are made.

The high-pass filter, the third type of filter to be discussed, is shown in Figure 11.8. Its transfer
function is

V2(s)
V1(s)

¼ s2K

s2 þ s 1
R2C1

þ 1
R4C3

þ 1
R4C1

� K
R2C1

� �
þ 1

R2R4C1C3

(11:35)

Equating Equation 11.35 to Equation 11.10 results in

vo ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2R4C1C3

p (11:36)
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C5 V2

+

–
V1

+

–

R2
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K
C3

FIGURE 11.7 Bandpass Sallen and Key filter.
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1
Q
¼

ffiffiffiffiffiffiffiffiffiffi
R4C3

R2C1

r
þ

ffiffiffiffiffiffiffiffiffiffi
R2C1

R4C3

r
þ

ffiffiffiffiffiffiffiffiffiffi
R2C3

R4C1

r
� K

ffiffiffiffiffiffiffiffiffiffi
R4C3

R2C1

r
(11:37)

and

THP( j1) ¼ K (11:38)

The design procedure using these equations is similar to that for the low-pass and bandpass filters.
The last type of second-order filter in this section is the notch filter, shown in Figure 11.9. The general

transfer function for the notch filter is

V2(s)
V1(s)

¼ TN( j0)
s2 þ v2

z

s2 þ vp

Qp
sþ v2

p

(11:39)

where
vp and vz are the pole and zero frequencies (vo), respectively
Qp is the pole Q

V1
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–

V2

+

–

R2

R4

C3C1

K

FIGURE 11.8 High-pass Sallen and Key filter.
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FIGURE 11.9 Notch filters derived from center-loaded twin-T networks: (a) vz�vp and (b) vz<vp. (From Sedra,
A. S. and Brackett, P. O., Filter Theory and Design: Active and Passive, Matrix, Portland, OR, 1978. With permission.)
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For the circuit of Figure 11.9a,

TN( j0) ¼ v2
z

v2
p
, R2C4 ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ a

p
vp

(11:40)

and

R2 ¼ (1þ a)R1 ¼ 2R3 ¼ aR4, C4 ¼ v2
z

v2
p
C1 ¼ C2 þ C1 ¼ C5

2
(11:41)

For the circuit of Figure 11.9b.

TN( j0) ¼ 1, R2C4 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ a

p
vp

(11:42)

and

R4 ¼ (1þ a)
v2
z

v2
p
R1 ¼ (1þ a) R1 þ R2ð Þ ¼ aR3 ¼ 2R5, C1 ¼ C2 ¼ C3

2
(11:43)

The Q for both notch circuits is

Q ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ a

p
a

(11:44)

so a is a helpful design parameter for these circuits. For typical values of Q, say 0.5, 1, and 5, the
corresponding values of a are 4.828, 1.618, and 0.2210, respectively.

11.5 Second-Order Biquadratic Filters

Next, second-order biquadratic functions will be described. These functions are general realizations of the
second-order transfer function. Filters implementing biquadratic functions, often referred to as biquads,
are found in many signal processing applications.

11.5.1 Biquadratic Transfer Function

The general form of the second-order biquadratic transfer function is

T(s) ¼ H
s2 þ b1sþ b0
s2 þ a1sþ a0

¼ H
s2 þ vz

Qz
sþ v2

z

s2 þ vp

Qp
sþ v2

p

(11:45)

with the pole locations given by Equation 11.8 and the zero locations by

z1, z2 ¼ � vz

2Qz
� jvz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4Q2
z

s
(11:46)

where Qp and Qz are the pole and zero Q, respectively. Filters capable of implementing this voltage
transfer function are called biquads since both the numerator and denominator of their transfer functions
contain biquadratic expressions. The zeros described by the numerator of Equation 11.45 strongly
influence the magnitude response of the biquadratic transfer function and determine the filter type
(low-pass, high-pass, etc.).

Low-Gain Active Filters 11-11



The notch filter form of the biquadratic transfer function is

TNF(s) ¼ H
s2 þ v2

z

s2 þ vp

Qp
sþ v2

p

(11:47)

with zeros located at s¼�jvz. Attenuation of high or low frequencies is determined by selection of vz

relative to vp. The low-pass notch filter (LPN) requires vz>vp, shown in Figure 11.10a and the high-
pass notch filter (HPN) requires vp>vz, shown in Figure 11.10b.

An all-pass filter implemented using the biquadratic transfer function has the general form

TAP(s) ¼ H
s2 � vz

Qz
sþ v2

z

s2 þ vp

Qp
sþ v2

p

(11:48)

The all-pass magnitude response is independent of frequency; i.e., its magnitude is constant. The all-pass
filter finds use in shaping the phase response of a system. To accomplish this, the all-pass has right-half
plane zeros that are mirror images around the imaginary axis of left-half plane poles.

11.5.2 Biquad Implementations

A single-amplifier low-gain realization [4] of the biquadratic transfer function with transmission zeros
on the jv axis is shown in Figure 11.11. Zeros are generated by the circuit’s input ‘‘twin-T’’ RC network.
This filter is well suited for implementing elliptic functions. Its transfer function has the form

T(s) ¼ H
s2 þ v2

z

s2 þ vp

Qp
sþ v2

p

¼ H
s2 þ b2o

s2 þ a1sþ a2o
(11:49)

Notch biquad with
ωz > ωp

Notch biquad with
ωp > ωz(b)(a)
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FIGURE 11.10 Frequency response of second-order notch filters. (a) vz>vp and (b) vp>vz.
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Ώ s and F́ s

a a/m

m

m

m

Y

K

a(m + 1)

1 + m

1+ +

– ––

FIGURE 11.11 Low-gain realization for biquadratic network functions. (From Huelsman, L. P. and Allen, P. E.,
Introduction to the Theory and Design of Active Filters, McGraw-Hill, New York, 1980. With permission.)
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The selection of element Y(s) in the filter circuit can be a resistor or capacitor. If the condition vp>vz is
desired, Y¼ 1=R is chosen. For this choice the resulting transfer function has the form

T(s) ¼ V2(s)
V1(s)

¼ K s2 þ 1=a2ð Þ
s2 þ (mþ 1=a)[1=Rþ (2� K)=m]sþ [1þ (mþ 1)=R]=a2

(11:50)

where, K, m, and a are defined in Figure 11.11. The design parameter m is used to control the spread of
circuit element values. The design equations for this filter resulting from equating Equation 11.49 and
11.50 are

a ¼ 1ffiffiffiffiffi
bo

p (11:51)

R ¼ mþ 1
ao=bo � 1

(11:52)

K ¼ 2þ m
mþ 1

ao
bo

� 1� a1ffiffiffiffiffi
bo

p
� �

(11:53)

and

H ¼ K (11:54)

If the condition vz>vp is desired, then Y¼ s(aC) is chosen. This choice has the following transfer
function:

V2(s)
V1(s)

¼
K s2 þ 1=a2ð Þ
(mþ 1)C þ 1

s2 þ (mþ 1)[C þ (2� K)=m]
a[(mþ 1)C þ 1]

� �
sþ 1

a2[(mþ 1)C þ 1]

(11:55)

The design equations follow from equating Equations 11.49 and 11.55 to get

a ¼ 1ffiffiffiffiffi
bo

p (11:56)

C ¼ bo=ao � 1
mþ 1

(11:57)

K ¼ 2þ m
mþ 1

bo
ao

� 1� a1
ffiffiffiffiffi
bo

p
ao

� �
(11:58)

and

H ¼ ao
bo

K (11:59)

As before, the factor m is chosen arbitrarily to control the spread of element values.
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Example 11.4

A low-pass elliptic filter. It is desired to realize the elliptic voltage transfer function given as

V2(s)
V1(s)

¼ H s2 þ 2:235990ð Þ
s2 þ 0:641131sþ 1:235820

This transfer function will have a 1 dB ripple in the passband, and at least 6 dB of attenuation for all
frequencies greater than 1.2 rad=s [12]. Obviously, the second choice described above applies. From
Equations 11.56 through 11.59, with m¼ 0.2, we find that a¼ 0.66875, C¼ 0.67443, K¼ 2.0056, and
H¼ 1.1085.

Biquadratic transfer functions can also be implemented using the two-amplifier low-gain configuration
in Figure 11.12 [5]. When zeros located off the jv axis are desired, the design equations for the two-
amplifier low-gain configuration are simpler than those required by the single-amplifier low-gain
configuration. Also note that the required gain blocks of �1 andþ 2 are readily implemented using
operational amplifiers. The transfer function for this configuration is

V2(s)
V1(s)

¼ 2 Y1 � Y2ð Þ
Y3 � Y4

(11:60)

The values of the admittances are determined by separately dividing the numerator and denominator by
sþ c, where c is a convenient value greater than zero. Partial fraction expansion results in expressions that
can be implemented using RC networks. From the partial fraction expansion of the numerator divided
by sþ c, the pole residue at s¼�c is

kb ¼ H c2 � cb1 þ boð Þ
�c

(11:61)

Depending on c, b1, and bo, the quality kb can be positive or negative. If positive, Y1 is

Y1 ¼ Hs
2
þHbo

2c
þ 1
2=kb þ 2c=kbs

(11:62)

with Y2¼ 0, removing the inverting gain amplifier from the circuit. The RC network used to realize Y1

when kb is positive is shown in Figure 11.13a. If kb is negative, Y1 and Y2 become

Y1 ¼ Hs
2
þ Hbo

2c
and Y2 ¼ 1

2= kbj j þ 2c= kbj js (11:63)

V1 V2

+

–

+

–

Y2

Y1 Y1 + Y2 + Y4

Y3

–1 2

FIGURE 11.12 Two-amplifier low-gain biquad configuration.
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Realizations for Y1 and Y2 for this case are shown in Figure 11.13b. In determining Y3 and Y4, the partial
fraction expansion of the denominator divided by sþ c yields a pole residue at s¼�c,

ka ¼ c2 � ca1 þ ao
�c

(11:64)

If ka is positive, then Y4¼ 0 and Y3 is

Y3 ¼ sþ ao
c
þ 1
1=ka þ c=kas

(11:65)

The realization of Y3 is shown in Figure 11.14a. For a negative ka, Y3 and Y4 become

Y3 ¼ sþ ao
c

(11:66)

and

Y4 ¼ 1
1= kaj j þ c= kaj js (11:67)

RC network realizations for Y3 and Y4 are shown in Figure 11.14b.

Example 11.5

An all-pass function [5]. It is desired to use the configuration of Figure 11.12 to realize the following
all-pass function:

V2(s)
V1(s)

¼ s2 � 4sþ 4
s2 þ 4sþ 4

Y1
H
2

2c
Hbo

2
kb

kb
2c

kb > 0(a)

Y1 H
2

2c
Hbo

Y2

2
|kb|

|kb|
2c

kb < 0(b)

FIGURE 11.13 Realizations for (a) Y1(s) and (b) Y2(s) in Figure 11.12.

Y3 Y3 Y4

1
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|ka|
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1
ka

ka
c

c
ao

c
ao

1 1

ka > 0(a) ka < 0(b)

FIGURE 11.14 Realizations for (a) Y3(s) and (b) Y4(s) in Figure 11.12.
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The choice of c ¼ þ 2 will simplify the network. For this choice the numerator partial-fraction expansion is

s2 ¼ 4sþ 4
sþ 2

¼ sþ 2� 8s
sþ 2

Hence Y1(s)¼ (sþ 2)=2 and Y2(s)¼ 4s=(sþ 2). The denominator partial-fraction expansion is

s2 þ 4sþ 4
sþ 2

¼ sþ 2

Thus, Y3(s)¼ (sþ 2)þ [4s=(sþ 2)] and Y4(s)¼ 0.

11.6 Higher Order Filters

Many applications require filters of order greater than two. One way to realize these filters is simply to
cascade second-order filters to implement the higher order filter. If the order is odd, then one first-order
(or third-order) section will be required. The advantage of the cascade approach is that it builds on the
precious techniques described in this section. The desired high-order transfer function of the filter T(s)
will be broken into second-order functions Tk(s) so that

T(s) ¼ T1(s)T2(s)T3(s) � � �Tn=2(s) (11:68)

Since the output impedance of the second-order sections is low, the sections can be cascaded without
significant interaction.
If T(s) is an odd-order function then a first-order passive network (like those shown in Figure 11.15)

can be added to the cascade of second-order functions. Both of the sections shown have nonzero output
impedances, so it is advisable to use them only in the last stage of a cascade filter. Alternatively, Figure
11.5 could be used.
Several considerations should be taken into account when cascading second-order sections together.

Dynamic range is one of these considerations. To maximize the dynamic range of the filter, the peak gain
of each of the individual transfer functions should be equal to the maximum gain of the overall transfer
function [10].
To maximize the signal-to-noise of the cascade filter, the magnitude curve in the passband of each of

the individual transfer functions should be flat when possible. Otherwise, signals with frequencies in a
minimum gain region of an individual transfer function will have a lower signal-to-noise ratio than other
signals [10]. Another consideration is minimum noise which is achieved by placing high gain stages first.
Designing a higher order filter as a cascade of second-order sections allows the designer many options.

For instance, a fourth-order bandpass filter could result from the cascade of two second-order bandpass
sections or one second-order low-pass and a second-order high-pass. Since the bandpass section is the
easiest of the three types to tune [10] it might be selected instead of the low-pass–high-pass combination.

V1 Vo

+

–

+

–
C

R

(a)

V1 Vo

+

–

+

–

C

R

(b)

FIGURE 11.15 First-order filter sections: (a) low-pass and (b) high-pass.
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Other guidelines for the cascade of second-order sections include putting the low-pass or bandpass
sections at the input of the cascade in order to decrease the high-frequency content of the signal, which
could avoid slewing in following sections. Using a bandpass or high-pass section at the output of the
cascade can reduce dc offsets or low-frequency ripple.
One option that is now available is to use CAD tools in the design of filters. When high-order filters are

needed, CAD tools can save the designer time. The examples that are worked later in this section require
the use of filter tables interspersed with calculations. A CAD tool such as MicroSim Filter Designer [6]
can hasten this process since it eliminates the need to refer to tables. The designer can also compare filters
of different orders and different approximation methods (Butterworth, Chebyshev, etc.) to determine
which one is the most practical for a specific application. The Filter Designer is able to design using the
cascade method as discussed in this section, and after proposing a circuit it can generate a netlist so that a
program such as SPICE can simulate the filter along with additional circuitry, if necessary.
The Filter Designer allows the user to specify a filter with either a passband=stopband description,

center frequency=bandwidth description, or a combination of filter order and type (low-pass, high-pass,
etc.). Then an approximation type is chosen, with Butterworth, Chebyshev, inverse Chebyshev, Bessel,
and elliptic types available. A Bode plot, pole-zero plot, step or impulse response plot of the transfer
function can be inspected. The designer can then select a specific circuit that will be used to realize the
filter. The Sallen and Key low-pass and high-pass stages and the biquad multiloop feedback (Figure 11.16)
stages are included. The s-coefficients of the filter can also be displayed.
The Filter Designer allows modifications to the specifications, s-coefficients, or actual components of

the circuit in order to examine their effect on the transfer function. There is also a rounding function that
will round components to 1%, 5%, or 10% values for resistors and 5% for capacitors and then recompute
the transfer function based on these new component values. Finally, the package offers a resize function
that will rescale components without changing the transfer function.

Example 11.6

A fifth-order low-pass filter. Design a low-pass filter using the Chebyshev approximation with a 1 dB
equiripple passband, a 500 Hz passband, 45 dB attenuation at 1 kHz, and a gain of 10. Using a
nomograph for Chebyshev magnitude functions, the order of this function is found to be five [5].
Using this information and a chart of quadratic factors of 1.0 dB equal-ripple magnitude low-pass
functions, the transfer function is found to be

T snð Þ ¼ 0:9883K1
s2n þ 0:1789sn þ 0:9883

� 0:4293K2
s2n þ 0:4684sn þ 0:4293

� 0:2895K3
sn þ 0:2895

R1

R3

R8 R4 R5 R6

R7

R2
C2

C1

Finite gain
amplifier

+

–

+

+

–

–

V1 V2

FIGURE 11.16 Biquad multiloop feedback stage.
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Denormalizing the frequency with sn¼ s=500(2p) gives

T1(s) ¼ 9, 751, 000K1

s2 þ 562sþ 9, 751, 000ð Þ
T2(s) ¼ 4, 240, 000K2

s2 þ 1470sþ 4, 240, 000ð Þ

and

T3(s) ¼ 909K3

sþ 909

Stages 1 and 2 will be Sallen and Key low-pass filters with R¼ 10 kV. Following the guidelines given
above, stage 1 will have the gain of 10 and successive stages will have unity gain. Using Equation 11.23 for
stage 1 (R2¼R4¼R),

1
Q
¼ 2

ffiffiffiffiffi
C4

C2

r
þ (1� K)

ffiffiffiffiffi
C2

C4

r
¼ 0:1800

So C4¼ 4.696C2. Substituting this into Equation 11.22,

vn ¼ 1
2:167RC2

¼ 3123 rad=s

Thus, C2¼ 14.8 nF and C4¼ 69.4 mF. Analysis for stage 2 with K2¼ 1 yields C2¼ 0.135 mF and
C4¼ 17.4 nF. Stage 3 is simply an RC low-pass section with R¼ 10 kV and C¼ 0.110 mF. The schematic
for this filter is shown in Figure 11.17.

Example 11.7

A fourth-order bandpass filter. Design a bandpass filter centered at 4 kHz with a 1 kHz bandwidth. The
time delay of the filter should be 0.5 ms (with less than 5% error at the center frequency).

The group of filters with constant time delays are called Thomson filters. For this design, begin with a
low-pass filter with the normalized bandwidth of 1=4 kHz, or 0.25. Consulting a table for delay error in
Thomson filter [5] shows that a fourth-order filter is needed. From tables for Thomson filters, the
quadratic factors for the fourth-order low-pass filter give the overall transfer function

TLP snð Þ ¼ 1

s2n þ 4:208sn þ 11:488
	 


s2n þ 5:792sn þ 9:140
	 


+

–

10k 10k 10k 10k 10k

0.110u17.4n69.4n

14.8n 0.136u

K K

V1

+

–

V2

FIGURE 11.17 Fifth-order low-pass filter.
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To convert TLP(sn) to a bandpass function TBP(sn), the transformation

sn ¼ vR

BW
s2bn þ 1
sbn

¼ 4
s2bn þ 1
sbn

is used, giving

TBPn(s) ¼ s4=256
s4 þ 1:05s3 þ 2:72s2 þ 1:05sþ 1ð Þ s4 þ 1:45s3 þ 2:57s2 þ 1:45sþ 1ð Þ

vR and BW are the geometric center frequency and bandwidth of the bandpass filter. The polynomials in
the denominator of the expression are difficult to factor, so an alternate method can be used to find the
poles of the normalized bandpass function. Each pole pIn of the normalized low-pass transfer function
generates two poles in the normalized bandpass transfer function [5–10] given by

pbn ¼ BW p1n
2vR

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BW p1n
2vR

� �2

�1

s
(11:69)

Using Equation 11.69 with each of the poles of TLP(sn) gives the following pairs of poles (which are also
given in tables for Thomson filters):

pb1n ¼ �0:1777� j0:6919 pb2n ¼ �0:3483� j1:356

pb3n ¼ �0:3202� j0:8310 pb4n ¼ �0:4038� j1:0478

Note that each low-pass pole does not generate a conjugate pair, but when taken together, the bandpass
poles generated by the low-pass poles will be conjugates. The unnormalized transfer functions generated
by the normalized bandpass poles are

TBP1(s) ¼ 6283s
s2 þ 8932sþ 322:3� 106ð Þ

TBP2(s) ¼ 6283s
s2 þ 1751sþ 1238� 106ð Þ

TBP3(s) ¼ 6283s
s2 þ 16100sþ 501:0� 106ð Þ

and

TBP4(s) ¼ 6283s
s2 þ 20300sþ 796:5� 106ð Þ

The overall transfer function realized by these four intermediate transfer functions could also be grouped
into two low-pass stages followed by two high-pass stages, however, this example will use four bandpass
filters. Using the equal-capacitance gain of two-design strategy for the Sallen and Key bandpass stage,

v2
n ¼ 1þ R1

R2

� �
1

R1R4C2
(11:70)

1
Q
¼ 1� R1

R2

� � ffiffiffiffiffi
R4

R1

r
þ 2

ffiffiffiffiffi
R1

R4

r� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

R1 þ R2

r
(11:71)
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and

Ho ¼
K
R1

1
R1

þ 1
R2

þ 2
R4

� K
R2

0
BB@

1
CCA (11:72)

Making the further assignment R2¼R1 simplifies the equations to

v2
n ¼ 2

R1R4C2
,

1
Q
¼ 2

ffiffiffiffiffi
R1

R4

r
, and Ho ¼ 2Q2

Selecting C¼ 1 nF gives the component values shown in Figure 11.18, the schematic diagram for the
fourth-order bandpass filter. While the gain of the filter is greater than unity, the output can be
attenuated if unity gain is desired.

Example 11.8

A sixth-order high-pass filter. Design a Butterworth high-pass filter with a �3 dB frequency of 100 kHz and
a stopband attenuation of 30 dB at 55 kHz. A nomograph for Butterworth (maximally flat) functions
indicates that this filter must have an order of at least six. A table for quadratic factors of Butterworth
functions [5] gives

T snð Þ ¼ K1
s2n þ 0:518sn þ 1
	 
 K2

s2n þ 1:414sn þ 1
	 
 K3

s2n þ 1:932sn þ 1
	 


Using snH¼ 1=sn for low-pass to high-pass transformation and sn¼ s=2p3 105 to denormalize the
frequency,

T1(s) ¼ s2K1

s2 þ 325, 500sþ 394:8� 109

T2(s) ¼ s2K2

s2 þ 888, 600sþ 394:8� s109
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–

V1

+

–

V2

+

–

V2

+

–

V3

79.00k 79.00k 57.11k 57.11k
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224.0k 28.28k
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farads

44.68k
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FIGURE 11.18 Fourth-order bandpass filter. (a) Stages 1 and 2 and (b) stages 3 and 4.
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and

T3(s) ¼ s2K3

s2 þ 1, 214, 000sþ 394:8� 109

The Sallen and Key high-pass filter can be used to implement all three of these stages. Picking a constant
R, constant C design style with vn¼ 105 rad=s gives R¼ 10 kV and C¼ 1 nF for each stage. Equation
11.23 then simplifies to

1
Q

¼ 3� K

for each stage. Thus K1¼ 2.482, K2¼ 1.586, and K3¼ 1.068, and the resulting high-pass filter is shown in
Figure 11.19.

Example 11.9

A fifth-order low-pass filter. Design a low-pass filter with an elliptic characteristic such that it has a 1 dB
ripple in the passband (which is 500 Hz) and 65 dB attenuation at 1 kHz. From a nomograph for elliptic
magnitude functions, the required order of this filter is five. A chart for a fifth-order elliptic filter with 1 dB
passband ripple gives

T snð Þ ¼ H s2n þ 4:365
	 


s2n þ 10:568
	 


sn þ 0:3126ð Þ s2n þ 0:4647sn þ 0:4719
	 


s2n þ 0:1552sn þ 0:9919
	 


This transfer function can be realized with two notch filters like Figure 11.9a and a first-order low-pass
section. Denormalizing the frequency with sn¼ s=1000p gives

T1(s) ¼ H1 s2 þ 43, 080, 000ð Þ
s2 þ 1, 460sþ 4, 657, 000

T2(s) ¼ H2 s2 þ 104, 300, 000ð Þ
s2 þ 487:6sþ 9, 790, 000

and

T3(s) ¼ 982:1
sþ 982:1

For the first stage, use Equations 11.40 and 11.44, H1¼ 0.1081, and a¼ 0.9429. Setting C1¼ 1 nF and
applying Equations 11.40 and 11.41,

1n 1n 1n 1n 1n 1n

10k 10k 10k

10k10k10k

+

–

V1

+

–

V2

K = 2.482 K = 1.586 K = 1.068

FIGURE 11.19 A sixth-order high-pass filter (all component values are V or F).
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C1 ¼ 1 nF, C4 ¼ 9:25 nF, C2 ¼ 8:25 nF, C5 ¼ 18:5 nF
R2 ¼ 69:8 kV, R1 ¼ 35:9 kV, R3 ¼ 34:9 kV, R1 ¼ 74:1 kV

Similarly, in the second stage H2¼ 0.0939, a¼ 0.1684, and

C1 ¼ 1 nF, C4 ¼ 10:7 nF, C2 ¼ 9:65 nF, C5 ¼ 21:4 nF
R2 ¼ 32:3 kV, R1 ¼ 27:6 kV, R3 ¼ 16:1 kV, R4 ¼ 192 kV

The third stage can be a simple RC low-pass with C¼ 10 nF and R¼ 101 kV. The resulting cascade filter
is shown in Figure 11.20.
These examples illustrate both the use of the Filter Designer and the method of cascading first- and

second-order stages to achieve higher order filters.

11.7 Influence of Nonidealities

Effective filter design requires an understanding of how circuit nonidealities influence performance.
Important nonidealities to consider include passive component tolerance (i.e., resistor and capacitor
accuracy), amplifier gain accuracy, finite amplifier gain-bandwidth, amplifier slew rate, and noise.

11.7.1 Sensitivity Analysis

Classical sensitivity functions [5] are valuable tools for analyzing the influence of nonidealities on filter
performance. The sensitivity function, sx

Y [2], by definition, describes the change in a performance
characteristic of interest, say y, due to the change in nominal value of some element x,

Syx ¼
@y
@x

� �
x
y
¼ @y=y

@y=x
¼ @(ln y)

@(ln x)
(11:73)

The mathematical properties of the sensitivity function are given in Table 11.1 [5] for convenient
reference.
A valuable result of the sensitivity function is that it enables us to estimate the percentage change in a

performance characteristic due to variation in passive circuit elements from their nominal values.
Consider, for example, a low-pass filter’s cutoff frequency vo, which is a function of R1, R2, C1, and
C2. Using sensitivity functions, the percentage change in vo is estimated as [3]

Dvo

vo
	 Svo

R1

DR1

R1

� �
þ Svo

R2

DR2

R2

� �
þ Svo

C1

DC1

C1

� �
þ Svo

C2

DC2

C2

� �
(11:74)
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9.65n 192k
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FIGURE 11.20 Fifth-order low-pass filter (all component values are V or F).
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Not that the quantity Dvo=vo represents a small differential change in the cutoff frequency vo. When
considering the root locus of a filter design, the change in pole location due to a change in gain K, for
example, could be described by [3]

Sp1K ¼ @so

@K

� �
þ j

@vo

@K
K
vo

� �
(11:75)

where the pole p1¼soþ jvo. Furthermore, the filter transfer function’s magnitude and phase sensitivity
is defined by [3]

ST( jv)x ¼ S T( jv)j j
x þ Su( jv)x ¼ Re ST( jv)x þ 1

u(v)
Im ST( jv)x (11:76)

and

ST( jv)x ¼ x
T( jv)j j

@

@x
T( jv)j j þ jx

@u(v)
@x

(11:77)

where T( jv)¼ jT( jv)jexp[ju(v)]. The interested reader is directed to Ref. [5, Chapter 3] for a detailed
discussion of sensitivity.

11.7.2 Gain-Bandwidth

Now let us consider some of the amplifier nonidealities that influence the performance of our low-gain
amplifier filter realizations. There are two amplifier implementations of interest each using an operational
amplifier. They are the noninverting configuration and the inverting configuration shown in Figure 11.21.
The noninverting amplifier is described by

K ¼ V2

V1
¼ Ad(s)

1þ Ad(s)=Ko
(11:78)

TABLE 11.1 Properties of Sensitivity Function

Skyx ¼ Sykx ¼ Syx Sy1=y2x ¼ Sy1x � Sy2x

Sxx ¼ Skxx ¼ Skxkx ¼ 1 Syx1 ¼ Syx2S
y2
x1

Sy1=x ¼ S1=yx ¼ �Syx Syx ¼ Sjyjx þ j arg ySarg yx

Sy1y2x ¼ Sy1x þ Sy2x Sarg yx ¼ 1
arg y Im Syx(*)

S
Qn

i¼1
yi

x ¼ Pn
i¼1

Syix Sjyjx ¼ Re Syx(*)

Sy
n

x ¼ nSyx Syþx
x ¼ 1

yþz ySyx þ zSzx
	 


Sx
n

x ¼ Skx
n

x ¼ n S
Pn

i¼1
yi

x ¼
Pn

i¼1
yiS

yi
xPn

i¼1
yi

Syxn ¼ 1
n S

y
x S1n y

x ¼ 1
1n y S

y
x

Sxxn ¼ Sxkxn ¼ 1
n

Source: Huelsman, L.P. and Allen, P.E., Introduction
to the Theory and Design of Active Filters, McGraw-Hill,
New York, 1980.
Note: Relations denoted by ‘‘(*)’’ use y to indicate a

complex quantity and x to indicate a real quantity.
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where
Ko¼ 1þRB=RA is the ideal gain
Ad(s) is the operational amplifier’s differential gain

Using the dominant-pole model for the op-amp,

Ad(s) ¼ GB
sþ va

¼ Aova

sþ va
(11:79)

where
Ao is the dc gain
va is the dominant pole
GB is the gain-bandwidth product of the op-amp

Inserting Equation 11.79 into Equation 11.78 gives

K ¼ GB
sþ va 1þ Ao=Koð Þ 	

GB
sþ GB=Ko

(11:80)

The approximation of the K expression is valid provided Ao
Ko. The magnitude and phase of Equation
11.80 are

K( jv)j j ¼ GBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ GB=Koð Þ2

q (11:81)

and

arg [K( jv)] ¼ � tan�1 v

GB
Ko

� �
(11:82)

Note that for v>GB=Ko, Equations 11.81 and 11.82 may be approximated by

K( jv)j j 	 Ko (11:83)

and

arg [K( jv)] 	 � v

GB
Ko (11:84)
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FIGURE 11.21 (a) Noninverting amplifier and (b) inverting amplifier.
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The phase expression (Equation 11.84) describes the phase lag introduced to an active filter realization by
the op-amp’s finite gain-bandwidth product. To illustrate the importance of taking this into account,
consider a positive-gain filter with Ko¼ 3 and operation frequency v¼GB=30 [5]. According to
Equation 11.84, a phase lag of 5.738 is introduced to the filter by the op-amp. Such phase lag might
significantly impair the performance of some filter realizations.
The inverting amplifier of Figure 11.21b is described by

K ¼ V2

V1
¼ �Ad(s) RB= RA þ RBð Þ½ �

1þ Ad(s) RA= RA þ RBð Þ½ � (11:85)

Inserting Equation 11.79 into Equation 11.85 gives

K ¼ � RB= RA þ RBð Þ½ �GB
sþ va 1þ AoRA= RA þ RBð Þ½ � 	

� RB= RA þ RBð Þ½ �GB
sþ GB RA= RA þ RBð Þ½ � (11:86)

where as before the approximation is valid if Ao 
 (RAþRB)=RA. The magnitude and phase expressions
for Equation 11.86 are

K( jv)j j ¼ GBRB= RA þ RBð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ GBRA= RA þ RBð Þ½ �2

q (11:87)

and

arg [K( jv)] ¼ p� tan�1 v

GB
1þ RB

RA

� �� �
(11:88)

If v<GB RA=(RAþRB), then Equations 11.87 and 11.88 are approximated by

K( jv)j j 	 RB

RA
(11:89)

and

arg [K( jv)] 	 p� v

GB
1þ RB

RA

� �� �
(11:90)

An important limitation of the inverting configuration is its bandwidth [5], compared to that of the
noninverting configuration, when small values of gain K are desired. Take, for example, the case where a
unity-gain amplifier is needed. Using the amplifier of Figure 11.21a, the resistor values would be RB¼ 0
and RA¼1. From Equation 11.80 we see that this places a pole at s¼�GB. Using the amplifier of Figure
11.21b, the resistors would be selected such that RB¼RA. From Equation 11.86 we see that a pole located
at s¼�GB=2 results. Hence, for unity-gain realizations, the inverting configuration has half the band-
width of the noninverting case. However, for higher gains, as the ratio RB=RA becomes large, both
configurations yield a pole location that approaches s¼�(GB)RA=RB.

When using the inverting configuration described above to implement a negative-gain realization, the
input impedance to the amplifier is approximately RA. RA must then be carefully selected to avoid
loading the RC network. Another problem is related to maintaining low phase lag when a high Q is
desired [5]. A Q of 10 requires that the ratio RB=RA be approximately 900. However, to avoid a phase lag
of 68, Equation 11.90 indicates that for Q¼ 10 the maximum filter design frequency cannot exceed
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approximately GB=8500. If GB¼ 1 MHz, say if the 741 op-amp is being used, then the filter cannot
function properly above a frequency of about 100 Hz.
We have seen that a practical amplifier implementation contributes a pole to the gain K of a filter due

to the op-amp’s finite gain-bandwidth product GB. This means that an active filter’s transfer function
will have an additional pole that is attributed to the amplifier. The poles then of an active filter will be
influenced by this additional pole. Consider the positive-gain amplifier used in the Sallen–Key low-pass
filter (Figure 11.6). The filter’s ideal transfer function is expressed in Equation 11.21. For the equal R,
equal C case (R1¼R3, C2¼C4) we have RB¼RA[2� (1=Q)]. By inserting Equation 11.80 into Equation
11.21, the transfer function becomes [3]

T snð Þ ¼ V2

V1
¼ GBn

s3n þ s2n 3þ GBn
1�1

Q

� �
þ sn 1þ GBn

3Q�1

� �
þ GBn

3�1
Q

(11:91)

where the normalized terms are defined by sn¼ s=vo and GBn=vo. The manner in which the poles of
Equation 11.91 are influenced by the amplifier’s finite gain-bandwidth product is illustrated in Figure
11.22a. This plot is the upper left-half sn plane. The solid lines correspond to constant values of Q and the
circles correspond to discrete values of GBn, which were the same for each Q. For Q¼ 0.5 the GBn values
are labeled. Note that the GBn¼1 case shown is the ideal case where amplifier GB is infinite. The poles
shift toward the origin as vo approaches a value near GB. Furthermore, for large design values of Q, i.e.,
greater than 3, the actual Q value will decrease as vo approaches GB.
As another example, consider the Sallen–Key low-pass again but for the case where positive unity-gain

and equal resistance (R1¼R3) are desired. When the amplifier’s gain-bandwidth product is taken into
account, the filter’s transfer function becomes [3]

T(s) ¼ V2

V1
¼ GBn

s3n þ s2n 2Qþ 1
Q þ GBn

� �
þ sn 1þ GBn

Q

� �
þ GBn

(11:92)

where again sn¼ s=vo and GBn¼GB=vo. The poles of Equation 11.92 are shown in Figure 11.22b. The
plots are similar but the Figure 11.22b) plot constant GBn values for the range of Q shown are closer
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FIGURE 11.22 Effect of GB on the poles of the Sallen–Key second-order low-pass case. (a) Equal R, equal C case
and (b) unity gain, equal R case.
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together than the Figure 11.22a plot. This means that the poles of the unity-gain, equal R design are less
sensitive to amplifier gain-bandwidth product than the equal R, equal C case. The influence GB has on
Sallen–Key low-pass filter parameters is summarized in Table 11.2.

11.7.3 Slew Rate

Slew rate is another operational amplifier parameter that warrants consideration in active filter design.
When a filter signal level is large and=or the frequency is high, op-amp slew rate (SR) limitations can
affect the small-signal behavior of amplifiers used in low-gain filter realizations. The amplifier’s ampli-
tude and phase response can be distorted by large-signal amplitudes. An analysis of slew rate induced
distortion is presented in Ref. [1]. For the inverting amplifier (Figure 11.21b), slewing increases the
small-signal phase lag. This distortion is described by Ref. [5]

arg [K( jv)] ¼ p� tan�1 v=GB 1þ RB=RAð Þð Þ
N(A)

� �
(11:93)

where
N(A) is a describing function
A is the peak amplitude of the sinusoidal voltage input to the amplifier

N(A)¼ 1 while the op-amp is not slewing, yielding the same phase lag described by Equation 11.88.
However, for conditions where slewing is present, N(A) becomes less than 1. Under such conditions the
filter may become unstable. Refer to Ref. [1] and Ref. [5, Chapter 4, Section 6] for a detailed discussion of
slew rate distortion.
Selecting an operational amplifier with higher slew rate can reduce large-signal distortion. Given the

choice of FET input or BJT input op-amps, FET input op-amps tend to have higher slew rates and higher
input signal thresholds before slewing occurs. When selecting an amplifier for a filter it is important to
remember that slewing occurs when the magnitude of the output signal slope exceeds SR and when the
input level exceeds a given voltage threshold. Often the slew rate of a filter’s amplifier sets the final limit
of performance that can be attained in a given active filter realization at high frequencies.

11.7.4 Noise

The noise performance of a given filter design will ultimately determine the circuit’s signal-to-noise ratio
and dynamic range [7]. For these reasons, a strong understanding of noise analysis is required
for effective filter design. In this section noise analysis of the noninverting and inverting op-amp

TABLE 11.2 Summary of Finite GB on Filter Parameters

Sallen–Key Low-Pass Realizations

Equal R, equal C
v0(actual) 	 vo(design) 1� 1

2 3� 1
Q

� �2
vo
GB

� �

Q(actual) 	 Q(design) 1� 1
2 3� 1

Q

� �2
vo
GB

� �

GB � 45 1� 1
3Q

� �2
v0*

Unity-gain, equal R v0(actual) 	 vo(design) 1� voQ
GB

	 

Q(actual) 	 Q(design) 1þ voQ

GB

	 

GB � 10v0*

‘‘*’’ denotes the condition for Dvo=vo¼DQ=Q� 10%, i.e., for vo and Q to change
less than 10% [3].
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configurations are discussed for the implementation of the gain block K. An example noise analysis is
illustrated for a simple filter design.
Proceeding with noise analysis, consider the four noise sources associated with operational amplifier.

Shown in Figure 11.23, En1 and En2 represent the op-amp’s voltage noise referred to the negative and
positive inputs, respectively, and In1 and In2 represent the op-amp’s current noise referred to the negative
and positive inputs, respectively. En1 and En2 are related to En, from an op-amp manufacture’s data sheet,
through the relationship

En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
n1 þ E2

n2

q
V=

ffiffiffiffiffiffi
Hz

ph i
(11:94)

In is also usually reported in an op-amp manufacturer’s data sheet. The value given for In is used for In1
and In2.

In ¼ In1 ¼ In2 A=
ffiffiffiffiffiffi
Hz

ph i
(11:95)

The analysis of the filter noise performance begins with the identification of all noise sources, which
include the op-amp noise sources and all resistor thermal noise (Et ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ktRDf

p
where 4kT is approxi-

mately 1.653 10�20 V2=V; Hz at room temperature and Df is the noise bandwidth). To begin the
analysis, uncorrelated independent signal generators can be substituted for each noise source, voltage
sources for noise voltage sources, and current sources for current noise sources. By applying superpos-
ition and using the rms value of the result, the noise contribution of each element to the total output
noise Eno can be determined. Only squared rms values can be summed to determine Eno

2 . The resultant
expression then for Eno

2 should never involve subtraction of noise sources, only addition. Sources of noise
in a circuit always add to the total noise at the circuit’s output. The total noise referred to the input Eni is
simply Eno divided by the circuit’s transfer function gain. Capacitors ideally only influence noise
performance through their effect on the circuit’s transfer function. That is, the transfer gain seen by a
noise source to the circuit’s output can be influenced by capacitors depending on the circuit. As a result,
of course, a circuit’s noise performance can be a strong function of frequency.
Consider again the noninverting op-amp configuration, which can be used to implement positive K.

The circuit is shown in Figure 11.24a with appropriate noise sources included. Resistor Rs has been
included to represent the driving source’s (V1) output resistance. The simplified circuit lumps together
the amplifier’s noise sources into Ena, shown in Figure 11.24b. Ena is described by Equation 11.96. The
circuit in Figure 11.24b can be used in place of the positive gain block K to simplify the noise analysis of a
larger circuit. Rs obviously will be determined by the circuit seen looking back from the amplifier’s input:

En2

En1

In2

In1
Vout

+

–

Vin
+

–

+

–

FIGURE 11.23 Operational amplifier noise model with four noise sources.
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E2
na ¼ E2

n þ
RA

RA þ RB

� �2

E2
tB

	 
þ RB

RA þ RB

� �2

E2
tA

	 
þ I2n1 RAkRBð Þ2 (11:96)

The inverting op-amp configuration for implementing a negative gain is shown in Figure 11.25a with
noise sources included. Here again, the op-amp’s noise sources can be lumped together and referred
to the input as noise source Enb shown in Figure 11.25b. For simplicity, Rs has been lumped together
with RA.

Enb is described by Equation 11.97. The simplified circuit in Figure 11.25b is convenient for simplifying
the noise analysis of larger circuit that uses a negative gain block.

E2
nb ¼ 1þ RA

RB

� �2

E2
n

	 
þ RA

RB

� �2

E2
tB

	 

(11:97)

Example 11.10

First-order low-pass filter noise analysis. Noise analysis of a low-pass filter with noninverting midband gain
of 6 dB and �20 dB=decade gain roll-off after a 20 kHz cutoff frequency is desired. Recall from Section
11.3 that vo¼ RC. Let us designate R1 for R and C2 for C. To obtain vo¼ 2p(20 kHz), commercially
available component values R1¼ 16.9 kV and C2¼ 470 pF (such as a 1% metal-film resistor for R1 and a
ceramic capacitor for C2) can be used. Implement K with the noninverting op-amp configuration and use
Figure 11.24b as a starting point of the noise analysis. The midband gain of 6 dB can be achieved by
selecting RA¼ RB. For this example let RA¼ RB¼ 10.0 kV, also available in 1% metal film. Including the
thermal noise source for R1, the circuit shown in Figure 11.26 results.

From this circuit we can easily derive the output noise of the low-pass filter.

E2
no ¼ K2 E2

na þ
Z2

R1 þ Z2



2

E2
t1

	 
þ R1 Z2kj j2 I2n
	 
" #

(11:98)
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FIGURE 11.24 (a) Noninverting op-amp configuration with noise sources and (b) simplified noninverting amp-
lifier circuit with noise sources.
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where
Z2¼ 1=sC2, the impedance of the capacitor
Ena is defined by Equation 11.96

The commercial op-amp OP-27 can be used to implement K and thus determines the values of En and In.
For OP-27, En ¼ 3 nV=

ffiffiffiffiffiffi
Hz

p
and In ¼ 0:4 pA=

ffiffiffiffiffiffi
Hz

p
. A comparison of the hand analysis to a PSpice

simulation of this low-pass filter is shown in Figure 11.27. The frequency dependence of K was not
included in the hand analysis since the filter required a low midband gain of two and low cutoff
frequency relative to the OP-27’s 8 MHz gain-bandwidth product. The simulated frequency response
is shown in Figure 11.28. The computer simulation did include a complete model for the OP-27.
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In1
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+
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RB EtB
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FIGURE 11.25 (a) Inverting op-amp configuration with noise sources and (b) simplified inverting amplifier circuit
with noise sources.
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FIGURE 11.26 Positive gain first-order low-pass filter with noise sources.
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As indicated by Figure 11.27, the output noise predicted by Equation 11.98 agrees well with the
simulation. Analyzing the noise contribution of each circuit element to the filter’s total output noise can
provide insight for improving the design. To this end, Table 11.3 was generated for this filter.
Note that at 1 kHz R1 is the dominant source of noise. A smaller value of R1 could be chosen at the

expense of increasing C2. Care must be taken in doing so because changing C2 also changes the gain
multiplier for In and R1’s noise source, as described in Equation 11.98. The noise bandwidth, using a
single-pole response approximation, is 20 kHz (p=2)¼ 31.4 kHz. Hence, Eni ¼ 20:2 nV=

ffiffiffiffiffiffi
Hz

p	 

. (31.4

kHz)1=2¼ 3.58 mV. To achieve then a signal-to-noise ratio of 10, the input signal level must be 35.8 mV.
This would be more difficult to attain if 741 op-amp has been used, with its En ¼ 20:2 nV=

ffiffiffiffiffiffi
Hz

p
, rather

than the OP-27.

50 nV

10 nV
1.0 MHz100 Hz 100 KHz1.0 KHz 10 KHz

Frequency

Hand analysis

Simulation output noise voltage

V (output noise) V(100)

FIGURE 11.27 Comparison of calculated output noise with simulation.
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FIGURE 11.28 Simulated low-pass filter frequency response. The cursors indicate a �3 dB frequency of 20 kHz.
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Often in signal processing circuits several stages are cascaded to shape the response of the system. In
doing so, the noise contributed by each stage is an important consideration. Placement of each stage
within the cascade ultimately determines the Eni of the entire cascade. The minimum Eni is achieved by
placing the highest gain first. By doing so the noise of all the following stages is divided by the single
largest gain stage of the entire cascade. This comes, however, at the sacrifice of dynamic range. With the
highest gain first in the cascade, each following stage has a larger input signal than in the case where
the highest gain stage is last or somewhere between first and last in the cascade. Dynamic range is lost
since there is a finite limit in the input signal level to any circuit before distortion results.

11.8 Summary

This chapter has examined active filters using low-gain amplifiers. These filters are capable of realizing
any second-order transfer function. Higher order transfer functions are realized using cascaded first- and
second-order stages. The nonideal behavior of finite gain-bandwidth, slew rate, and noise was examined.
More information on this category of filters can be found in the references.
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TABLE 11.3 Noise Contributions of Each Circuit Element at 1 kHz

Noise Source Noise Value Gain Multiplier Output Noise Contribution Input Noise Contribution

En 3 nV=
ffiffiffiffiffiffi
Hz

p
2 6 nV=

ffiffiffiffiffiffi
Hz

p
3 nV=

ffiffiffiffiffiffi
Hz

p

In 0:4 pA=
ffiffiffiffiffiffi
Hz

p
35.2 k 14:1 nV=

ffiffiffiffiffiffi
Hz

p
7:04 nV=

ffiffiffiffiffiffi
Hz

p

RA 12:65 nV=
ffiffiffiffiffiffi
Hz

p
1 12:65 nV=

ffiffiffiffiffiffi
Hz

p
6:325 nV=

ffiffiffiffiffiffi
Hz

p

RB 12:65 nV=
ffiffiffiffiffiffi
Hz

p
1 12:65 nV=

ffiffiffiffiffiffi
Hz

p
6:325 nV=

ffiffiffiffiffiffi
Hz

p

R1 16:4 nV=
ffiffiffiffiffiffi
Hz

p
1.998 32:8 nV=

ffiffiffiffiffiffi
Hz

p
16:4 nV=

ffiffiffiffiffiffi
Hz

p

Total noise contributions 40:4 nV=
ffiffiffiffiffiffi
Hz

p
20:2 nV=

ffiffiffiffiffiffi
Hz

p
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12.1 Introduction

In this section we will consider the design of second-order sections that incorporate a single operational
amplifier. Such designs are based upon one of the earliest approaches to RC active filter synthesis, which
has proven to be a fundamentally sound technique for over 30 years. Furthermore, this basic topology has
formed the basis for designs as technology has evolved from discrete component assemblies to mono-
lithic realizations. Hence, the circuits presented here truly represent reliable well-tested building blocks
for sections of modest selectivity.

12.2 General Structure for Single-Amplifier Filters

The general structure of Figure 12.1 forms the basis for the development of infinite-gain single-amplifier
configurations. Simple circuit analysis may be invoked to obtain the open-circuit voltage transfer
function. For the passive network

I1 ¼ y11V1 þ y12V2 þ y13V3 (12:1)

I2 ¼ y21V1 þ y22V2 þ y23V3 (12:2)

I3 ¼ y31V1 þ y32V2 þ y33V3 (12:3)
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For the amplifier, ideal except for finite gain A

V3 ¼ �AV2 (12:4)

Noting that I2¼ 0, the above equations reduce to the following expression for the voltage transfer
function:

V3

V1
¼ �y31

y32 þ y33
A

(12:5)

As A ! 1, which we can expect at low frequencies, the above expression reduces to the more familiar

V3

V1
¼ � y31

y32
(12:6)

Theoretically, a wide range of transfer characteristics can be realized by appropriate synthesis of the
passive network [1]. However, it is not advisable to extend synthesis beyond second-order functions for
structures containing only one operational amplifier due to the ensuing problems of sensitivity and
tuning. Furthermore, notch functions require double-element replacements [2] or parallel ladder
arrangements [3], which are nontrivial to design, and whose performance is inferior to that resulting
from other topologies such as those discussed in Chapters 13 and 14.
While formal synthesis techniques could be used to meet particular requirements, the most common

approach is to use a double-ladder realization of the passive network, as shown in Figure 12.2. This
arrangement, commonly referred to as the multiple-loop feedback (MFB) structure, is described by the
following voltage transfer ratio:

V3

V1
¼ �Y1Y3

Y5(Y1 þ Y2 þ Y3 þ Y4)þ Y3Y4
(12:7)

I1 I2

I3

V2 V3
V1

1 2

3

Passive
network –

+

FIGURE 12.1 General infinite-gain single-amplifier structure.

–

+
Y2V1

Y1 Y3
Y5Y4

V3

FIGURE 12.2 General double ladder multiple-feedback network.
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This negative feedback arrangement yields highly stable realizations. The basic all-pole (low-pass,
bandpass, high-pass) functions can be realized by single-element replacements for the admittances
Y1, . . . , Y5, as described in the following section.

12.3 All-Pole Realizations of the MFB Structure

12.3.1 Low-Pass Structure

The general form of the second-order all-pole low-pass structure is described by the following
transfer ratio:

V3

V1
¼ H

s2 þ vps
Qp

þ v2
p

(12:8)

By comparing the above requirement with Equation 12.7 it is clear that both Y1 and Y3 must represent
conductances. Furthermore, by reviewing the requirements for the denominator, Y5 and Y2 must be
capacitors, while Y4 is a conductance.

12.3.2 High-Pass Structure

The general form of the second-order all-pole high-pass transfer function is

V3

V1
¼ Hs2

s2 þ vps
Qp

þ v2
p

(12:9)

With reference to Equation 12.7, it is seen that both Y1 and Y3 must represent capacitors. There is a need
for a third capacitor (Y4¼ sC4) to yield the s2 term in the denominator function. The remaining two
elements, Y2 and Y5, represent conductances.

12.3.3 Bandpass Structure

The general form of the second-order all-pole bandpass transfer function is

V3

V1
¼ Hs

s2 þ vps
QP

þ v2
p

(12:10)

Two solutions exist since Y1 and Y3 can be either capacitive or conductive. Choosing Y1¼G1 and
Y3¼ sC3 yields Y4¼ sC4 and Y2, Y5 are both conductances.

The general forms of the above realizations are summarized in Table 12.1 [4].

12.4 MFB All-Pole Designs

MFB designs are typically reserved for sections having a pole-Q of 10 or less. One of the reasons for this
constraint is the reliance upon component ratios for achieving Q. This can be illustrated by consideration
of the low-pass structure for which

V3

V1
¼ �G1G3

s2C2C5 þ sC5(G1 þ G3 þ G4)þ G3G4
(12:11)
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By comparison with Equation 12.8,

Qp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2C5G3G4

p
C5 G1 þ G3 þ G4ð Þ

or, in terms of component ratios:

Qp ¼
ffiffiffiffiffi
C2

pffiffiffiffiffi
C5

p 1
G1ffiffiffiffiffiffiffiffi
G3G4

p þ
ffiffiffiffi
G3
G4

q
þ

ffiffiffiffi
G4
G3

q
0
B@

1
CA (12:12)

Hence, high Qp can only be achieved by means of high component spreads. In general terms, a Qp of
value n requires a component spread proportional to n2.

Filter design is effected by means of coefficient matching. Thus, for the low-pass case, comparison of
like coefficients in Equation 12.8 and the transfer ratio in Table 12.1 yields

G1G3 ¼ H (12:13)

TABLE 12.1 MFB All-Pole Realizations

Filter Type Network Voltage Transfer Function

Low-pass

G4

G1

G3
C5 

C2

–
+

–G1G3
s2C2C5 + sC5(G1 + G3 + G4) + G3G4

High-pass

C4 C3
G5

G2

C1

–
+

–s2C1C3
s2C3C4 + sG5(C1 + C3 + C4) + G2G5

Bandpass
C3

G5

G2

C4

G1

–
+

–sG1C3
s2C3C4 + sG5(C3 + C4) + G5(G1 + G2)
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C2C5 ¼ 1 (12:14)

C5(G1 þ G3 þ G4) ¼ vp

Qp
(12:15)

G3G4 ¼ v2
p (12:16)

These equations do not yield an equal-capacitor solution but can be solved for equal-resistor pairs.
Hence, if G1¼G3,

G1 ¼ G3 ¼
ffiffiffiffi
H

p
(From Equation 12:13)

G4 ¼
v2
pffiffiffiffi
H

p (From Equation 12:16)

Then,

C5 ¼ vp

ffiffiffiffi
H

p

Qp 2H þ v2
p

� � ¼ 1
C2

An alternative solution for which G3¼G4 is shown in Table 12.2, together with equal-capacitor designs
for the bandpass and high-pass cases.
The conditions [4] for maximum Qp in the bandpass realization require C3¼C4 and G1¼G2¼ nG5,

where n is a real number. This yields a maximum Qp of
ffiffiffiffiffiffiffiffi
n=2

p
, and requires that H¼vpQp.

Example 12.1

Using the cascade approach, design a four-pole Butterworth bandpass filter having a Q of 5, a center
frequency of 1.5 kHz, and midband gain of 20 dB. Assume that only 6800 pF capacitors are available.

Solution

The low-pass prototype is the second-order Butterworth characteristic having a dc gain of 10 (i.e., 20 dB).
Thus,

T (s) ¼ 10

s2 þ ffiffiffi
2

p
sþ 1

(i)

TABLE 12.2 Element Values for the MFB All-Pole Realizations

Element (Table 12.1) Low-pass Bandpass High-Pass

Y1 G1 ¼ H
vp

G1 ¼ H C1 ¼ H

Y2 C2 ¼
Qp 2v2

p þH
� �

v2
p

G2 ¼ 2vpQp � H G2 ¼ vp(2þH)Qp

Y3 G3 ¼ vp C3 ¼ 1 C3 ¼ 1

Y4 G4 ¼ G3 C4 ¼ C3 C4 ¼ C3

Y5 C5 ¼
v2
p

Qp 2v2
p þH

� � G5 ¼ vp

2Qp
G5 ¼ vp

Qp(2þ H)
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The low-pass-to-bandpass frequency transformation for a Q of 5 entails replacing s in (i) by 5(sþ 1=s).
This yields the following bandpass function for realization:

Vo
Vi

¼ 0:4s2

s4 þ 0:28284s3 þ 2:04s2 þ 0:28284sþ 1

¼ �sH1

s2 þ 0:15142sþ 1:15218ð Þ �
�sH2

s2 þ 0:13142sþ 0:86792ð Þ
(section 1) (section 2)

(ii)

Q1 ¼ Q2 ¼ 7:089

vp1 ¼ 1:0734; vp2 ¼ 0:9316

As expected, the Q-factors of the cascaded sections are equal in the transformed bandpass characteristic.
However, the order of cascade is still important. So as to reduce the noise output of the filter, it is
necessary to apportion most of the gain to section 1 of the cascade. Section 2 then filters out the noise
without introducing excessive passband gain. In the calculation that follows, it is important to note that
the peak gain of a bandpass section is given by HQ=vp.
Since the overall peak gain of the cascade is to be 10, let this also be the peak gain of section 1. Hence,

H1Q1

vp1
¼ 6:6041H1 ¼ 10

giving H1¼ 1.514.
Furthermore, from (ii)

H1H2 ¼ 0:4

so that H2¼ 0.264.

The design of each bandpass section proceeds by coefficient matching, conveniently simplified by
Table 12.2. Setting C3¼C4¼ 1 F, the normalized resistor values for section 1 may be determined as

R1 ¼ 0:661 V; R2 ¼ 0:073 V; R5 ¼ 13:208V

The impedance denormalization factor is determined as

zn ¼ 1012

2p� 1500� 6800
¼ 15,603

Thus, the final component values for section 1 are

C1 ¼ C2 ¼ 6800 pF

R1 ¼ 10:2 kV

R2 ¼ 1:13 kV

R5 ¼ 205 kV

9>=
>; Standard 1% values

Note the large spread in resistance values (R5=R2 ’ 4Q2) and the fact that this circuit is only suitable for
low-Q realizations. It should also be noted that the amplifier open-loop gain at vp must be much greater
than 4Q2 if it is not to cause significant differences between the design and measured values of Q.

The component values for section 2 are determined in an identical fashion.
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Example 12.2

Design the MFB bandpass filter characterized in Example 12.1 as a high-pass=low-pass cascade of
second-order sections. Use the design equations of Table 12.2 and, where possible, set capacitors
equal to 5600 pF. It is suggested that you use the same impedance denormalization factor in each
stage. Select the nearest preferred 1% resistor values.

Solution

Since the peak gain of the overall cascade is to be 10, let this also be the gain of stage 1 (this solution
yields the best noise performance). The peak gain of the low-pass section is given by

H1Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=2Q2

p ¼ 7:16H1 ¼ 10 \ H1 ¼ 1:397

The overall transfer function (from Example 12.1) is

Vo

Vi
¼ 0:4s2

s4 þ 0:2824s3 þ 2:04s2 þ 0:2824sþ 1

\ H1H2 ¼ 0:4 so that H2 ¼ 0:286

Thus, assuming a low-pass=high-pass cascade, we have

Vo

Vi
¼ 1:397

s2 þ 0:15145þ 1:1522
� 0:286s2

s2 þ 0:1314sþ 0:8679

section 1 section 2

Design the low-pass section (section 1) using Table 12.2 to yield

G1 ¼ H1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:15218

p ¼ 1:301, so that R1 ¼ 0:7684V

C2 ¼
2v2

p þH1

� �
v2
p

Qp ¼ 22:77 F

G3 ¼ vp ¼ 1:0733, so that R3 ¼ 0:9316V ¼ R4

C5 ¼ 1=C2 ¼ 0:0439 F

Now, design the high-pass section (section 2) to yield

C0
1 ¼ 0:286 F

G0
2 ¼ vp 2þ H2ð ÞQ ¼ 15:099, so that R0

2 ¼ 0:0662V

C0
3 ¼ C0

4 ¼ 1 F

G0
5 ¼

vp

Qp(2þ H)
¼ 0:0574, so that R0

5 ¼ 17:397V

To obtain as many 5600 pF capacitors as possible, the two sections should be denormalized separately.
However, in this example, a single impedance denormalization will be used. Setting C0

3 ¼ C0
4 ¼ 5600 pF

yields zn¼ 18,947.
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This leads to the following component values:

Low-Pass Stage High-Pass Stage

R1¼ 2.204 kV (2.21 kV) C0
1 ¼ 1602 pF

C2¼ 0.128 mF R0
2 ¼ 1.254 kV (1.24 kV)

R3¼ 17.651 kV (17.8 kV)¼R4 C0
3 ¼ C0

4 ¼ 5600 pF

C5¼ 246 pF R0
5 ¼ 329:62 kV (332 kV)

Note: 1% values in parentheses.

12.5 Practical Considerations in the Design of MFB Filters

Sensitivity, the effects of finite amplifier gain, and tuning are all of importance in practical designs. The
following discussion is based upon the bandpass case.

12.5.1 Sensitivity

Taking account of finite amplifier gain A, but assuming Rin¼1 and Ro¼ 0 for the amplifier, the
bandpass transfer function becomes

V3

V1
¼ �sG1=C4 1þ 1

A

� �
s2 þ s G5(C3 þC4)

C3C4
þ G1 þG2

C4(1þA)

n o
þ G5(G1 þG2)

C3C4

n o (12:17)

which is identical to the expression in Table 12.1 if A¼1.
Assuming a maximum Q design,

Q ¼ Qp

1þ 2Q2
p

(1þA)

(12:18)

where
Qp is the desired selectively
Q is the actual Q-factor in the presence of finite amplifier gain

If A � 2Q� 1, the classical Q-sensitivity may be derived as

SQA ¼ 2Q2

A
(12:19)

which is uncomfortably high. By contrast, the passive sensitivities are relatively low:

SQC3,C4
¼ 0; SQG5

¼ �0:5; SQG1,G2
¼ 0:25

while the vp sensitivities are all� 0.5.

12.5.2 Effect of Finite Amplifier Gain

The effect of finite amplifier gain can be further illustrated by plotting Equation 12.18 for various
Q-factors, and for two commercial operational amplifiers. Assuming a single-pole roll-off model, the
frequency dependence of open-loop gain for m A741 and LF351 amplifiers is as follows:
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Gain

Frequency (Hz) mA741 LF351

10 1.33 105 3.163 105

100 104 3.163 104

1,000 103 3.163 103

10,000 102 3.163 102

Figure 12.3 shows the rather dramatic fall-off in actual Q as frequency increases (and hence gain
decreases). Thus, for designs of modest Q (note that A� 2Q� 1), a very high quality amplifier is needed
if the center frequency is more than a few kilohertz. For example, the LF351 with a unity gain frequency
of 4 MHz will yield 6% error in Q at a frequency of only 1 kHz.

12.5.3 Tuning

Limited functional tuning of the bandpass section is possible. For example, the midband (peak) gain

Ko ¼ G1C3

G5(C3 þ G4)
(12:20)

may be adjusted by means of either G1 or G5.
Subsequent adjustment of either Qp or vp is possible via G2. In view of the discussion above, it is most

likely that adjustment ofQp will be desired. However, since the expressions forQp andvp are so similar, any
adjustment of Qp is likely to require an iterative procedure to ensure that vp does not change undesirably.

A more desirable functional tuning result is obtained in circumstances where it is necessary to preserve
a constant bandwidth, i.e., in a spectrum analyzer. Since
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FIGURE 12.3 Effect of finite amplifier gain on the design Q for MFB bandpass realizations using two commercial
operational amplifiers.
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vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G5(G1 þ G2)=C3C4

p
(12:21)

and bandwidth, B, is

B ¼ vp

Qp
¼ G5(C3 þ C4) (12:22)

adjustment of G2 will allow for a frequency sweep without affecting Ko or B.
An alternative to functional tuning may be found by adopting deterministic [5] or automatic [6]

tuning procedures. These are particularly applicable to hybrid microelectronic or monolithic realizations.

12.6 Modified Multiple-Loop Feedback Structure

In negative feedback topologies such as the MFB, ‘‘high’’ values of Qp are obtained at the expense of large
spreads in element values. By contrast, in positive feedback topologies such as those attributed to Sallen
and Key, Qp is enhanced by subtracting a term from the s1 (damping) coefficient in the denominator. The
two techniques are combined in the MMFB (Deliyannis) arrangement [7] of Figure 12.4.
Analysis of the circuit yields the bandpass transfer function as

Vo

Vi
¼ �sC3G1(1þ k)

s2C3C4 þ s G5(C3 þ C4)� kC3G1f g þ G1G5
(12:23)

where k¼Gb=Ga, and the Q-enhancement term ‘‘�kC3G1’’ signifies the presence of positive feedback.
This latter term is also evident in the expression for Qp:

Qp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
G1=G5

p
ffiffiffiffi
C4
C3

q
þ

ffiffiffiffi
C3
C4

q
� k G1

G5

ffiffiffiffi
C1
C2

qn o (12:24)

C4

C3

G1

G5

Ga

Gb VoVi

–

+

FIGURE 12.4 MMFB structure.
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The design process consists of matching coefficients in Equation 12.23 with those of the standard
bandpass expression of Equation 12.10. The design steps have been conveniently summarized by
Huelsman [8] for the equal-capacitor solution and the following procedure is essentially the same as
that described by him.

Example 12.3

Design a second-order bandpass filter with a center frequency of 1 kHz, a pole-Q of 8, and a maximum
resistance spread of 50. Assume that the only available capacitors are of value 6800 pF.

1. The above constraint suggests an equal-valued capacitor solution. Thus, set C3¼ C4¼ C.
2. Determine the resistance ratio parameter no that would be required if there were no positive

feedback. From Section 12.4, no¼ 4Q2
p ¼ 256.

3. Select the desired ratio n (where n is greater than 1 but less than 256) and use it to determine the
amount of positive feedback k. From Equation 12.24,

Qp ¼
ffiffiffi
n

p
2� kn

so that

k ¼ 1ffiffiffi
n

p 2ffiffiffi
n

p � 1
Qp

� �

Since n¼ 50 and Qp¼ 8, k¼ 0.0316.
4. A convenient value may now be selected for RB. If RB¼ 110 kV, then RA¼ RB (0.0316)¼ 3.48 kV.
5. Since, from Equation 12.23,

vp ¼
ffiffiffiffiffiffiffiffiffiffi
G1G5

C3C4

r

and G1=G5¼ n, we may determine G5 as

G5 ¼ vpCffiffiffi
n

p

Since C¼ 6800 pF, n¼ 50, and G5¼ 1=R5:

R5 ¼
ffiffiffiffiffi
50

p

2p103 � 6:8� 10�9
¼ 165:5 kV

Hence R1¼ R5=n¼ 3.31 kV.
6. Using 1% preferred resistor values we have

RB ¼ 110 kV; RA ¼ 3:16 kV

R5 ¼ 165 kV; R1 ¼ 3:48 kV

Judicious use of positive feedback in the Deliyannis circuit can yield bandpass filters with Q values
as high as 15–20 at modest center frequencies. A more detailed discussion of the optimization of
this structure may be found elsewhere [9].
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12.7 Biquadratic MMFB Structure

A generalization of the MMFB arrangement, yielding a fully biquadratic transfer ratio is shown in
Figure 12.5. If the gain functions K1, K2, K3 are realized by resistive potential dividers, the circuit reduces
to the more familiar Friend biquad of Figure 12.6, for which

Vo

Vi
¼ cs2 þ dsþ e

s2 þ asþ b
(12:25)

where

K1 ¼ R5

R4 þ R5
; K2 ¼ RD

Rc þ RD
; K3 ¼ R7

R6 þ R7

R1 ¼ R4R5

R4 þ R5
; RA ¼ RcRD

Rc þ RD
; R3 ¼ R6R7

R6 þ R7

(12:26)

This structure is capable of yielding a full range of biquads of modest pole Q, including notch functions
derived as elliptic characteristics of low modular angle. It was used extensively in the Bell System, where
the benefits of large-scale manufacture were possible. Using the standard tantalum thin film process, and
deterministic tuning by means of laser trimming, quite exacting realizations were possible [10].

C1

C2 R2

R1
R3

RA

RB

K1Vi K3Vi K2Vi

Vo

–
+

+
–

+
–

+
–

FIGURE 12.5 Generalization of the MMFB circuit.

R4

R6

Rc

R2

R5 R7 RD

C1

C2

RB

Vi
Vo

–
+

FIGURE 12.6 Friend biquad.
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The structure is less suited to discrete component realizations. However, design is possible by coefficient
matching. The reader is referred to an excellent step-by-step procedure developed by Huelsman [11].

12.8 Conclusions

The multiple-feedback structure is one of the most basic active filter building blocks. It is extremely
reliable when used to realize low-Q (<10), low frequency (up to 15 kHz) second-order sections of the
low-pass, bandpass, and high-pass forms. Stability is ensured by the negative feedback topology, though
component spreads are proportional to Q2.

The disadvantage of larger component spread may be reduced by the judicious use of positive
feedback. This approach may be extended to yield the widely used Friend biquad, which allows the
realization of notch and other approximations requiring a pair of imaginary zeros.
All networks described in this section readily lend themselves to the cascade method for realizing

higher-order filters.
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13.1 Introduction

The step from single-amplifier to multiple-amplifier biquadratic filter sections provides several benefits.
The most important benefits are as follows:

. Reduced passive element spread, i.e., the ratio between the largest and the smallest values of
resistors and=or capacitors can be reduced compared to the single-amplifier case.

. The required amplifier gains in some circuits grow linearly or less with the Q-factor of the complex
pole pairs.

. Multiple-amplifier biquads often provide lower sensitivities to both passive and active components.

. Most of the multiple-amplifier biquads are more universal filter structures realizing the general
biquadratic transfer function.

. Most of the filter parameters such as pole and zero Q-factors, pole and zero frequencies, and the
gain factor of the transfer function can be tuned independently.

. Designing multiple-amplifier filters, often the values of the capacitors can be chosen freely. The
filter parameters are then determined by resistors, which is less costly than by capacitors.

On the other hand, these benefits must be paid for by increased space requirements and increased power
dissipation. However, today there are low-cost and low-power integrated-circuit op-amps available with
up to four op-amps on one chip. Therefore, size and power dissipation are often no longer the main
problem.
In the following, we will first consider biquadratic filter sections and dual-amplifier twin-T biquads.

Both circuit families are directly derived from single-amplifier circuits. Next we will derive filter circuits
having a quite different origin: filters that are derived from the generalized impedance converter (GIC)
and filters derived from state-variable representation of linear systems on the analog computer. Finally,
we will briefly consider filter circuits based on first-order all-pass sections.
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13.2 Biquads with Decoupled Time Constants

One of the simplest methods for improving the performance of a biquad is demonstrated in Figure 13.1.
Figure 13.1a shows a well-known Sallen and Key bandpass circuit [1], which offers moderate pole

sensitivities with respect to the passive elements. It can easily be shown that this circuit has the following
transfer voltage ratio:

H(s) ¼ Vo

Vi
¼ �K � sT2

s2T1T2(1þ K)þ s T12 þ T1 þ T2ð Þ þ 1
(13:1)

with the amplifier gain K and the time constants T1¼R1C1, T2¼R2C2, and T12¼R1C2. The gain
requirement is more than 4Qp

2� 1 with Qp being the Q-factor of the pole pair. This relationship limits
the circuit to low or medium-Q applications.
If we insert another amplifier between the two RC networks R1C1 and R2C2, we obtain the biquad in

Figure 13.1b [2,3], which possesses a transfer voltage ratio

H(s) ¼ Vo

Vi
¼ K1K2 � sT2

s2T1T2 1� K1K2ð Þ þ s T1 þ T2ð Þ þ 1
(13:2)

Here the product K1K2 of the gain factors plays the role of the gain �K in Figure 13.1a. One of the gain
factors must be positive, the other negative. A comparison of Equations 13.1 and 13.2 shows that after
isolating both RC networks the ‘‘cross time constant’’ T12 disappears. The two time constants T1 and T2
are decoupled. From this change we can derive two benefits. Both factors K1 and K2 require only a gain of
approximately 2Qp and, as will be shown later, this circuit can be designed with zero Q-sensitivity.

Next, we generalize the structure in Figure 13.1b by replacing the passive elements by general
admittances; see Figure 13.2. In this circuit, the two subnetworks Y1a, Y1b and Y2a, Y2b are decoupled.

C1

C2R1

R2Vi Vo

+

–

+

–

(a)

–K

C1

C2R1

R2Vi

+
Vo

+

– –

(b)

K1 K2

FIGURE 13.1 (a) Sallen and Key bandpass filter and (b) dual-amplifier bandpass filter with decoupled time
constants.

Vi

+

–
Vo

+

–

Y1b

Y1a Y2a

Y2b

K2K1

FIGURE 13.2 General biquad with decoupled networks.
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By a simple analysis we obtain the transfer voltage ratio of the general circuit in Figure 13.2:

H(s) ¼ Vo

Vi
¼ K1K2Y1aY2a

Y2a þ Y2bð Þ Y1a þ Y1bð Þ � K1K2Y1bY2a
(13:3)

By prespecifying the types of passive elements in Figure 13.2 and Equation 13.3, respectively, we next will
derive a low-pass, a bandpass, and high-pass filter section.
With the prespecified elements Y1a¼G1, Y1b¼ sC1, Y2a¼G2, and Y2b¼ sC2 we obtain from Equation

13.3 the low-pass transfer function:

HLP(s) ¼ Vo

Vi
¼ K1K2G1G2

s2C1C2 þ s G1C2 þ G2C1 1� K1K2ð Þ½ � þ G1G2

¼ K1K2

s2T1T2 þ s T2 þ T1 1� K1K2ð Þ½ � þ 1
(13:4)

If we predefine K1¼K2¼ 1 we simply get voltage followers in the filter circuit and additionally a simple
design procedure resulting in a low-sensitivity filter section. Figure 13.3 shows the low-pass filter section
with two op-amps and four passive elements.
For K1¼K2¼ 1 we will have dc gain H0¼ 1, a pole frequency

vp ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
T1T2

p
(13:5)

and a Q-factor

Qp ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
T2=T1

p
(13:6)

Thus, designing the filter section, from the predefined parameters vp and Qp we determine the time
constants

T2 ¼ Qp

vp
, T1 ¼ 1

Qpvp
(13:7)

Finally, we choose the values of the capacitors and calculate the resistors from the time constants.
From Equations 13.5 and 13.6, we can immediately read the pole sensitivities:

S
vp

R1
¼ S

vp

C1
¼ S

vp

R2
¼ S

vp

C2
¼ � 1

2
(13:8)

S
Qp

R1
¼ S

Qp

C1
¼ �S

Qp

R2
¼ �S

Qp

C2
¼ � 1

2
(13:9)

R2
R1 C1

C2Vi

+

Vo

+

– –

+
–

+
–

FIGURE 13.3 Dual op-amp low-pass filter section.
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This result is comparable with the pole sensitivities of passive second-order RLC networks.
Next we will develop a high-pass filter section by prespecifying Y1a¼ sC1, Y1b¼G1, Y2a¼ sC2, and

Y2b¼G2 resulting in a transfer voltage ratio:

HHP(s) ¼ Vo

Vi
¼ s2K1K2C1C2

s2C1C2 þ s G2C1 þ G1C2 1� K1K2ð Þ½ � þ G1G2

¼ s2K1K2T1T2

s2T1T2 þ s T1 þ T2 1� K1K2ð Þ½ � þ 1
(13:10)

The only difference of this transfer function compared with the low-pass transfer function in Equation
13.4 is the high-pass term (with s2) in the numerator and the fact that the time constants T1 and T2 are
interchanged in the denominator polynomial. Thus we can transfer the results in Equation 13.5 through
13.9 to the high-pass filter by only replacing the index 1 by 2 and vice versa. Figure 13.4 shows the high-
pass filter section.
The bandpass filter circuit mentioned at the beginning of this section is defined by the following types

of elements: Y1a¼G1, Y1b¼ sC1, Y2a¼ sC2, and Y2b¼G2. Its transfer function is written in Equation 13.2.
The bandpass design is somewhat different from that of the low-pass and the high-pass filters described
above. If we set the design values

G1 ¼ G2 ¼ 1, C1 ¼ C2 ¼ 1
2Qp

(13:11)

and

�K1K2 ¼ 4Q2
p � 1 (13:12)

we obtain a special design where all passive Q-sensitivities are zero and all other sensitivities are very
low [2,3]:

S
Qp

R1
¼ S

Qp

C1
¼ S

Qp

R2
¼ S

Qp

C2
¼ 0 (13:13)

S
vp

R1
¼ S

vp

C1
¼ S

vp

R2
¼ S

vp

C2
¼ � 1

2
(13:14)

S
Qp

K1
¼ S

Qp

K2
¼ �K1K2

2 1� K1K2ð Þ <
1
2

(13:15)

S
vp

K1
¼ S

vp

K2
¼ � 1

2
1� 1

4Q2
p

 !
(13:16)
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FIGURE 13.4 Dual op-amp high-pass filter section.
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Figure 13.5 shows the bandpass filter section realized with two op-amps. In this circuit K1 is a
noninverting and K2 an inverting amplifier. The resistor R2 of the passive network R2, C2 is realized by
the input resistor of the inverting amplifier.

13.3 Dual-Amplifier Twin-T Biquads

Twin-T feedback networks are easily tunable and provide relatively favorable sensitivity properties. In
active filters, a twin-T network is connected between the input and the output of an inverting amplifier. It
has been shown [4] that the sensitivity to the active element can be substantially reduced when a
symmetrical feedback network is used, i.e., when the dc gain of the feedback network is equal to the
high-frequency gain.
In a single-amplifier twin-T biquad, the output port of the feedback network is loaded by the input

resistance of the inverting amplifier. As a consequence, the feedback network is no longer symmetrical.
Here again we can significantly improve the behavior of the twin-T biquad by introducing a second
amplifier: inserting a voltage follower between the twin-T network and the inverting amplifier maintains
the symmetry of the feedback network. Figure 13.6 shows the corresponding dual-amp twin-T resonator*
with the usually chosen passive element relations.
From the resonator in Figure 31.6 several filter circuits can be derived by inserting the input voltage

source in one of the grounded branches and by taking one of the two amplifier outputs as output terminal

R2R1

C1

Vi Vo

+

–

+

–

+
– +

–
C2

K2 R2

R
R(K1 – 1)

FIGURE 13.5 Dual op-amp bandpass filter section.

RR R1

R0

C C

2CR
2

+
–

+
–

FIGURE 13.6 Dual-amp twin-T resonator.

* A resonator is a circuit without input and output terminals that only serves to show the feedback mechanism.
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of the filter section. The voltage transfer ratios of all these circuits will have different numerator
polynomials but the same denominator polynomial. As an example, Figure 31.7 shows a band-rejection
filter derived from the dual-amp twin-T resonator in Figure 13.6.
The voltage transfer ratio of the band-rejection filter in Figure 13.7 can be calculated to be

HBR(s) ¼ Vo

Vi
¼ s2T2 þ 1

s2T2 þ s4T=K þ 1
(13:17)

with the time constant T¼RC and the gain K¼ (R0þR1)=R1 of the series connection of the two op-amp
circuits. Designing this filter, we determine the time constant T from the notch frequency vz or pole
frequency vp, respectively,

T ¼ 1
vz

¼ 1
vp

(13:18)

and the amplifier gain from the Q-factor:

K ¼ 4 � Qp (13:19)

In Ref. [4], it is shown that the filter has favorably low gain-sensitivity products.
In order to obtain further filter variants, in Ref. [4] a complementary circuit is derived from the

resonator in Figure 13.6; see Figure 13.8.
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FIGURE 13.7 Dual-amp twin-T band-rejection filter.
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FIGURE 13.8 Complementary circuit of the resonator in Figure 13.6.
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This resonator is especially useful for deriving filter sections with frequently applied transfer functions.
In Figures 13.9 through 13.13 some of these filter sections are depicted. Their voltage transfer ratios are
given by

H(s) ¼ Vo

Vi
¼ N(s)

s2T2 þ s4T=K þ 1
(13:20)

The band-rejection filter in Figure 13.9 has a numerator polynomial N(S)¼ s2T2þ 1. The filter section
in Figure 13.10 is low-pass with a numerator N(s)¼ 1, the filter section in Figure 13.11 is high-pass
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FIGURE 13.9 Twin-T band-rejection filter.
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FIGURE 13.10 Twin-T low-pass filter.
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FIGURE 13.11 Twin-T high-pass filter.
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with N(s)¼ s2T2. The design of these sections is exactly the same as that of the filter in Figure 13.7. It also
provides the same pole sensitivities.
The two structures in Figure 13.12 and 13.13 are particularly suitable for realizing elliptical filter

sections (also called Cauer filters). The Cauer low-pass filter section in Figure 13.12 has a numerator
polynomial:

N(s) ¼ s2R2CC1 þ 1, C1 þ C2 ¼ C (13:21)

In this circuit, the first capacitor C is split into a parallel connection of two capacitors C1 and C2, where C2

is grounded. The zeros are on the jv axis at positions �jvz with vz ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2CC1

p
. The notch frequency

vz is greater than the pole frequency vp. Designing the filter section, we determine the parameters T and
K as described above. The splitting ratio of the input capacitor is determined by the poles and zeros:

C2

C1
¼ v2

z

v2
p
� 1 (13:22)
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FIGURE 13.12 Twin-T Cauer low-pass filter section.
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FIGURE 13.13 Twin-T Cauer high-pass filter section.
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Finally, in Figure 13.13 we have a Cauer high-pass filter section with a numerator polynomial:

N(s) ¼ s2RR1C
2 þ 1, R1kR2 ¼ R (13:23)

Here the zero frequency vz is less than the pole frequency vp. As in the low-pass case, the splitting ratio
of the input resistors is determined by these two frequencies:

R1

R2
¼ v2

p

v2
z
� 1 (13:24)

The circuit in Figure 13.6 is actually of third order. By matching the passive components, as shown in
Figure 13.6, we obtain a second-order transfer function. The question may arise as to what happens if we
have a small mismatch due to the tolerances of practical components. In this case, a third pole and a third
zero appear on the negative real axis of the s-plane. They do not cancel each other exactly, but
approximately. In general, the existence of the third pole and the third zero does not affect the frequency
response of the filter significantly. However, there is a second effect due to a small mismatch of passive
components that is more severe: the position of the pole pair desired by design is changed. This change
can be estimated by the pole sensitivities with respect to the passive elements [4].

13.4 GIC-Derived Dual-Amplifier Biquads

In this section, we consider a class of biquadratic building blocks with two op-amps that are derived from
the generalized impedance converter (GIC). A catalog of such building blocks realizing a wide variety of
network functions, including elliptic and all-pass ones, was published by Fliege [5].
Figure 13.14b shows the general filter structure, which is based on the resonator with two nullors in

Figure 13.14a. Each nullor consists of one nullator and one norator and constitutes a model for the ideal
op-amp. Combining the norator between the node between the admittances Y2 and Y3 and ground and
the nullator across Y4 and Y6 yields the op-amp m1 in Figure 13.14b. It can readily be verified that the
voltage transfer ratio of the circuit in Figure 13.14b with mi¼1, i¼ 1, 2 is given by

H(s) ¼ Vo

Vi
¼ Y6b Y2Y4 þ Y1aY4ð Þ þ Y1b Y3Y5 � Y6aY4ð Þ

Y1Y3Y5 þ Y2Y4Y6
(13:25)

Y1 Y2 Y3 Y4 Y5 Y6

(a)

+

–

(b)

Y4
Y5 Y3

Y2

Y1aY1b

Ii Io

VoVi

Y6aY6b

+

–

μ1

μ2

+
–

+
–

FIGURE 13.14 Resonator with (a) two nullors and (b) the corresponding general dual-amplifier filter structure.
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with

Y1 ¼ Y1a þ Y1b, Y6 ¼ Y6a þ Y6b (13:26)

If we choose the node between Y4 and Y5 as the output of the building block we will obtain a similar
transfer function. We only have to interchange the admittances Y1 by Y6, Y2 by Y5, and Y3 by Y4.

First, we will derive a second-order low-pass building block from the general structure and we will take
this low-pass filter as a prototype for the whole circuit family to explain their advantageous character-
istics. If we choose the passive elements of the building block as Y1a¼G1, Y1b¼ 0, Y2¼G2, Y3¼ sC3,
Y4¼G4, Y5¼G5þ sC5, Y6a¼ 0, and Y6b¼G6 we obtain the low-pass building block in Figure 13.15. Its
voltage transfer ratio reads

HLP(s) ¼ Vo

Vi
¼ G6G4 G2 þ G1ð Þ

s2C3C5G1 þ sC3G5G1 þ G2G4G6

¼ H0 �
v2
p

s2 þ svp=Qp þ v2
p

(13:27)

with dc gain

H0 ¼ 1þ a21

a21
(13:28)

pole frequency

vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a21

T34T56

r
(13:29)

and Q-factor

Qp ¼ vp � T55 (13:30)
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FIGURE 13.15 Second-order low-pass building block. (a) The circuitry. (b) The pole locations.
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Here, the time constants are defined as

Tmv ¼ Cm

Gv
(13:31)

and the conductance ratios as

amv ¼ Gm

Gv
(13:32)

Figure 13.15b shows the location of the finite poles and zeros in the s-plane.
In the following, we predefine G1¼G2, i.e., a21¼ 1, and T34¼T56¼T. This provides optimum pole

sensitivities with respect to the passive elements and with respect to the gain-bandwidth products of the
operational amplifiers. Hence, the gain factor H0 always has the value 2.

Based on these parameter restrictions, we can establish an easy design procedure. First, we can choose
the capacitors C3¼C5¼C. Then, given the pole parameters vp and Qp, we determine the two resistors

R4 ¼ R6 ¼ R ¼ 1
vp � C (13:33)

and from Equation 13.30 the resistor

R5 ¼ Qp � R (13:34)

There are three key features that make these dual-amplifier biquads particularly favorable for practical
applications.

. Biquad building blocks have a low spread of elements. The resistors R1¼R2 can be chosen freely.
The same holds for the two capacitors C3¼C5. The frequency-determining resistors R4¼R6 have
equal values, too. There is only the Q-determining resistor R5, which differs by a factor of Qp.

. Relative sensitivities of the gain and the pole parameters with respect to the passive elements are of
the same order of magnitude as in case of a second-order passive RLC network; see Equation 13.35.

. Impact of the op-amp gain and gain-bandwidth product on the pole parameter is extremely low.

A sensitivity analysis of the biquad circuit in Figure 13.15 gives the following results:

SH0
R1

¼ �SH0
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¼ � 1
2
s

S
vp
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¼ �S

vp
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¼ �S

vp

C3
¼ �S

vp

R4
¼ �S

vp

C5
¼ �S

vp

R6
¼ 1

2

S
Qp

R1
¼ �S

Qp

R2
¼ �S

Qp

C3
¼ �S

Qp

R4
¼ þS

Qp

C5
¼ �S

Qp

R6
¼ 1

2

S
Qp

R5
¼ 1:

(13:35)

In most practical applications, we can describe the op-amp dynamics by a one-pole model:

m(s) ¼ m0

1þ s=vcð Þ ¼
1

1=m0ð Þ þ s=vTð Þ (13:36)

with the dc gain m0, the 3-dB cutoff frequency vc, and the gain-bandwidth product vT¼ m0vc¼ 1=TT.

Multiple-Amplifier Biquads 13-11



If the circuit elements are chosen properly, e.g., choosing network parameters a21¼ 1 and
T34¼T56¼T¼ 1=vp, an analysis of the impact of the parameters m0i and TTi¼ 1=vTi of the two
op-amps mi, i¼ 1, 2, on the pole parameters of the transfer function yields

Dvp

vp
� 1

m01
� 1
m02

� TT1 þ TT2

T
(13:37)

DQp

Qp
� �2Qp

1
m01

þ 1
m02

þ TT1 � TT2

T

� �
(13:38)

In case of high pole frequencies the impact of the dc gains m01 and m02 can be neglected against that of the
gain-bandwidth products. From Equation 13.37, after some intermediate steps, we obtain

vp þ Dvp � 1
T þ TT1 þ TT2

(13:39)

In case of an ideal op-amp we have vP¼ 1=T. The nonideal op-amp causes a pole frequency change Dvp

due to the time constants TTi. The frequency determining time constant T of the passive network is
increased by the two time constants TTi of the op-amps, which are reciprocals of the gain-bandwidth
products vTi.

The most interesting result is the Q-factor change in Equation 13.38. If the frequency responses of the
two op-amps are matched, as is usually the case with dual packages, the impact of the two gain-
bandwidth products cancels out. Thus, we have nearly no Q enhancement at higher pole frequencies.
To make the GIC-derived biquad almost independent of op-amp parameters, the above-mentioned

conditions (a21¼ 1, T34¼T56) must be met by the passive elements. In a more general view, this result
holds for the whole family of GIC-derived building blocks. Each of these building blocks has two
frequency-determining time constants and one resistive voltage divider (G1 and G2 or G3 and G4). In
any case, to obtain independence of op-amp parameters we have to choose equal time constants and a
voltage divider with equal resistors. If the time constants or the resistors, respectively, do not match
exactly, the independence of op-amp parameters remains nearly unchanged.
Next we will derive a bandpass building block from the general biquad in Figure 13.14b. If we choose

the passive elements as Y1a¼G1, Y1b¼ 0, Y2¼G2, Y3¼G3, Y4¼ sC4, Y5¼G5, Y6a¼ sC6, and Y6b¼G6,
we obtain the bandpass building block in Figure 13.16, which has a voltage transfer ratio:

HBP(s) ¼ Vo

Vi
¼ G6 sC4G2 þ sC4G1ð Þ

s2C4C6G2 þ sC4G2G6 þ G1G3G5

¼ H0 � s
s2 þ svp=Qp þ v2

p
(13:40)

with pole frequency

vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12= T43T65ð Þ

p
(13:41)

Q-factor

Qp ¼ vp � T66 (13:42)

and midband gain

H0Qp ¼ 1þ a12ð Þ (13:43)
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The filter design is similar to that of the low-pass building block. First we choose the two resistors R1¼R2
and the two capacitors C4¼C6¼C. Then, from the pole frequency vp we determine the two resistors:

R3 ¼ R5 ¼ R ¼ 1
vp � C (13:44)

and from the Q-factor Qp the resistor

R6 ¼ Qp � R (13:45)

The pole sensitivities with respect to the passive elements and the relationship between the gain and the
gain-bandwidth product of the op-amps are the same as in case of the low-pass filters. It should be
mentioned that the maximum of the magnitude response jH(jv)j occurs at v¼vp and has exactly the
value 2, independent of the Q-factor and the time constants of the circuit*; see Equation 13.43.
We can derive a high-pass building block by choosing the following elements: Y1a¼G1, Y1b¼ 0,

Y2¼G2, Y3¼G3, Y4¼ sC4, Y5¼G5, Y6a¼G6, and Y6b¼ sC6; see Figure 13.17.
This filter circuit has a voltage transfer ratio

HHP(s) ¼ Vo

Vi
¼ sC6 sC4G2 þ sC4G1ð Þ

s2C4C6G2 þ sC4G2G6 þ G1G3G5

¼ 1þ a12ð Þ � s2

s2 þ svp=Qp þ v2
p

(13:46)

with vp as in Equation 13.41 and Qp as in Equation 13.42.
The design of the high-pass building block in Figure 13.17 is identical to that of the bandpass described

above. Both building blocks also have the same pole sensitivities and the same impact of the op-amps on
the pole parameters.
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FIGURE 13.16 Second-order bandpass building block. (a) The circuitry. (b) The pole and zero locations.

* Only assuming a12¼ 1.
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If we feed the input signal not only through the capacitor C6, but additionally through the element G1,
and if we set again a12¼ 1 we obtain the all-pass building block in Figure 13.18.
Its voltage transfer ratio reads

HAP(s) ¼ Vo

Vi
¼ s2C6C4G2 � sC4G1G6 þ G1G3G5

s2C4C6G2 þ sC4G2G6 þ G1G3G5

¼
s2 � s

T66
þ 1
T43T65

s2 þ s
T66

þ 1
T43T65

(13:47)

The all-pass building block is designed exactly as the high-pass or bandpass circuit.
From the all-pass building block, we can derive a second-order notch filter by adding a conductor G6b

in parallel with the capacitor G6; see Figure 13.19.
The circuit in Figure 13.19 has the general voltage transfer ratio

H(s) ¼ Vo

Vi
¼ sC6C4G2 þ sC4 G2G6b � G1G6að Þ þ G1G3G5

s2C4C6G2 þ sC4G2G6 þ G1G3G5
(13:48)

with G6¼G6aþG6b. By setting G2G6b¼G1G6a (normally G1¼G2 and G6a¼G6b) we obtain a second-
order notch filter with a voltage transfer ratio:

H(s) ¼
s2 þ a12

T43T65

s2 þ s
T66

þ a12

T43T65

(13:49)

where a12¼ 1 if G1¼G2.
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FIGURE 13.17 Second-order high-pass building block. (a) The circuitry. (b) The pole and zero locations.
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Finally we will derive two second-order elliptic or Cauer-type building blocks from the general dual-
amplifier structure in Figure 13.14b. To get a Cauer low-pass building block we take Y1a¼G1, Y1b¼C1,
Y2¼G2, Y3¼G3, Y4¼G4, Y5¼ sC5, Y6a¼ 0, and Y6b¼G6; see Figure 13.20.
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FIGURE 13.18 Second-order all-pass building block. (a) The circuitry. (b) The pole and zero locations.
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FIGURE 13.19 Notch filter building block. (a) The circuitry. (b) The pole and zero locations.
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This filter circuit has a voltage transfer ratio

H(s) ¼ Vo

Vi
¼ s2C1G3C5 þ G6 G2G4 þ G1G4ð Þ

s2C1G3C5 þ sG1G3C5 þ G2G4G6

¼
s2 þ a43 1þ a12ð Þ

T12T56

s2 þ s
T11

þ a43

T12T56

¼ s2 þ v2
z

s2 þ svp=Qp þ v2
p

(13:50)

The magnitude vz of the zeros is always greater than the magnitude vp of the poles. Additionally, without
any matching of elements, the real part of the zeros is always zero.
The design can proceed in the following steps. First we predefine a43¼ 1 and choose due to practical

considerations the values of the resistors R3¼R4. We also select the two capacitors C1 and C5. Then,
comparing the first coefficient in the denominator of H(s) in Equation 13.50, namely, T11¼Qp=vp with
T11¼C1R1, we determine the resistor

R1 ¼ Qp

vpC1
(13:51)

Further, comparing the last coefficients in the numerator and denominator yields

v2
z

v2
p
¼ 1þ a12 (13:52)
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FIGURE 13.20 Second-order Cauer low-pass building block. (a) The circuitry. (b) The pole and zero locations.
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With a12¼R2=R1 we can solve Equation 13.52 for

R2 ¼ R1 � v2
z

v2
p
� 1

 !
(13:53)

Finally, from v2
p ¼ 1=(T12T56) we can determine the resistor

R6 ¼ 1
v2
pC1C5R2

(13:54)

In order to get the three resistors R1, R2, and R6 in the same order of magnitude it might be advisable to
predefine different values for the capacitors C1 and C5.

A Cauer high-pass building block is depicted in Figure 13.21. Its voltage transfer ratio reads

H(s) ¼ Vo

Vi
¼ s2C2G4C6 þ G1 G3G5 � G6G4ð Þ

s2C2G4C6 þ sG6G4C2 þ G1G3G5

¼
s2 þ a34 � a65

T21T65

s2 þ s
1
T11

þ a43

T12T56

¼ s2 þ v2
z

s2 þ svp=Qp þ v2
p

(13:55)
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+
–
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σ

jω

FIGURE 13.21 Second-order Cauer high-pass building block. (a) The circuitry. (b) The pole and zero locations.
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The design of this building block is similar to that of the low-pass circuit. First we choose the resistors
R3¼R4 and the capacitors C2 and C6 and then, with predefined parameters Qp, vp, and vz, we determine
the remaining three resistors:

R6 ¼ Qp

vpC6
(13:56)

R5 ¼ R6 � 1� v2
z

v2
p

 !
(13:57)

R1 ¼ 1
v2
pC6C2R5

(13:58)

13.5 GIC-Derived Three-Amplifier Biquads

In order to get more flexibility for realizing arbitrary second-order transfer functions and to obtain less
resistor spread for realizing a given pole-Q, we can extend the resonator in Figure 13.14a to a resonator
with three nullors; see Figure 13.22.
There are two different biquads known from the

literature that are based on the resonator in Fig-
ure 13.22. The first one is proposed by Mikhael and
Bhattacharyya [6] and is shown in Figure 13.23.
This filter circuit requires a small resistor spread

to realize high pole-Q. The zeros of the transfer
function are formed with a resistive feed-forward
network providing a flexible design with arbitrary
numerator coefficients. The voltage transfer ratio
V3=Vi is

H3(s) ¼ V3

Vi
¼ N3(s)

D(s)
(13:59)

Y2

Y1

Y3

Y4

Y5

Y6

Y7

Y8

Y9

FIGURE 13.22 Resonator with three nullors.
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R1 R4 R3 R6 R5R2

R9

R10R8

V1 V2 C2

V3

Vi

–
+

–
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–
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FIGURE 13.23 Mikhael–Bhattacharyya biquad.
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with

N3(s) ¼ s2C1C2G1G9 þ sC2 G7G8G3 þ G8G2G3 � G8G1G4ð Þ
þ G9G7G10G5 þ G9G10G2G5 � G9G10G4G6ð Þ (13:60)

and

D(s) ¼ s2C1C2 G1G9 þ G2G9ð Þ þ sC2 G7G8G3 þ G7G8G4ð Þ
þ G9G7G10G5 þ G9G10G7G6ð Þ (13:61)

The two other output nodes lead to similar transfer expressions.
The second biquad, which is based on the resonator in Figure 13.22, was proposed by Padukone et al.

[7] and is depicted in Figure 13.24. Assuming ideal op-amps and choosing V3 as output voltage, we
obtain the following transfer function:

H3(s) ¼ V3

Vi
¼ N3(s)

D(s)
(13:62)

with

N3(s) ¼ s2 C2C3 G2G6 � G1G3ð Þ þ C1C2G1G8½ �
þ s C1G2G5G9 � C3G2G5G7 þ C2G1G4G8½ � þ G2G4G5G9ð Þ (13:63)

and

D(s) ¼ s2 C1 þ C3ð ÞC2G2G6 þ sC2G1G4 G3 þ G8ð Þ
þ G2G4G5 G7 þ G9ð Þ (13:64)

It has been shown [7] that the pole sensitivities to all passive components are not greater than unity. The
filter section has the main advantage of being particularly insensitive to gain-bandwidth variations even
when the op-amps are mismatched.

R1

R2 R4 C2

R6 R5

R8 R3 R7 R9C3C1

V1 V2
V3

Vi

+
– +

–
+
–

FIGURE 13.24 Padukone–Mulawka–Ghausi biquad.
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13.6 State-Variable-Based Biquads

A frequently-used multiple-amplifier biquad is the circuit proposed by Kerwin et al. [8]. This filter circuit
has extreme flexibility, good performance, and low sensitivities to the passive components. The filter is
based on analog computer structures [9], which are derived from the state-variable representation of
linear continuous systems. Therefore, these filters are also referred to as state-variable filters.
Figure 13.25a shows the basic analog computer structure consisting of one summing amplifier and two

integrators. We assume both integrators to have the same transfer function –1=(sT ), where T is called the
integrator time constant. Analyzing this structure yields

V1 ¼ �K1 � V3 þ K2 � Vi þ K3 � V2 (13:65)

V2 ¼ � 1
sT

� V1 (13:66)

V3 ¼ � 1
sT

� V2 (13:67)

which results in

HHP(s) ¼ V1

Vi
¼ s2T2K2

s2T2 þ sTK3 þ K1
(13:68)

Using Equation 13.66, we can immediately derive the voltage transfer ratio V2=Vi from Equation 13.68:

HBP(s) ¼ V2

Vi
¼ �sTK2

s2T2 þ sTK3 þ K1
(13:69)

Finally, with Equation 13.67 we obtain from Equation 13.69

HLP(s) ¼ V3

Vi
¼ K2

s2T2 þ sTK3 þ K1
(13:70)

Vi
V1 V2 V3

(a)
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R2 R3

R R

R0 C C

Vi

V1

V2

V3

(b)

1
sT

– 1
sT

–
–K1

K2
K3

–
+ –

+ –
+

FIGURE 13.25 (a) Second-order analog computer structure and (b) state-variable filter section proposed by
Kerwin, Huelsman, and Newcomb.
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Thus, the structure in Figure 13.25a simultaneously realizes a high-pass filter, a bandpass filter, and a
low-pass filter. The corresponding filter circuit proposed by Kerwin, Huelsman, and Newcomb is
depicted in Figure 13.25b. The integrators consist of one op-amp, one resistor R, and one capacitor C.
The time constant is given by T¼RC. The three gain factors of the summing amplifier are determined by
the four resistors R0�R3:

K1 ¼ R0

R1
(13:71)

K2 ¼ R3

R2 þ R3
1þ R0

R1

� �
(13:72)

K3 ¼ R2

R2 þ R3
1þ R0

R1

� �
(13:73)

Obviously, the integrator time constant T plays the role of a reciprocal normalization frequency. Thus, if
we refer the frequency variable s to 1=T, we obtain from Equation 13.70 the normalized low-pass transfer
function:

HLP(s) ¼ V3

Vi
¼ K2

s2 þ sK3 þ K1
(13:74)

Given the normalized pole frequency vp and the pole Q-factor Qp, we can design the filter section by
equating

K1 ¼ v2
p (13:75)

and

K3 ¼ vp

Qp
(13:76)

Then K2 is fixed by the dc gain of the transfer function:

K2 ¼ H0 (13:77)

The state-variable filter circuit can be extended to a general biquad by adding an output amplifier that
sums the three voltages V1, V2, and V3. Figure 13.26a shows a state-variable filter with an output amplifier
summing the voltages V1, V2, and V3 of the circuit in Figure 13.25b. This biquad has been proposed also
by Kerwin et al. [8]. As alternative circuits, the amplifiers in Figure 13.26b and c can be used. Figure
13.26b shows an output amplifier that realizes the following sum:

Vo ¼ a1V1 þ a2V2 þ a3V3 (13:78)

with

a1 ¼ �R10

R11
, a2 ¼ R14

R12 þ R14
1þ R10

R11 R13k
� �

, a3 ¼ �R10

R13
(13:79)
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If we solve Equations 13.68 through 13.70 for the three output voltages and substitute them in Equation
13.79 with normalized variables s we obtain

H(s) ¼ Vo

Vi
¼ �K2

a1j js2 þ a2j jsþ a3j j
D(s)

(13:80)

All numerator coefficients have the same sign. Therefore, the zeros of the transfer function are in the left-
s-half plane. If we set a2¼ 0, i.e., if we delete the voltage divider R12, R14 and ground the noninverting
input terminal of the op-amp, we obtain zeros on the jv axis.
When designing the biquad, R14 and R10 may be used to scale the impedance level of the two resistive

subnetworks. Then from the three numerator coefficients or from the overall gain constant of the transfer
function, the zero frequency vz, and the zero Q-factor Qz we can easily determine the remaining resistors
R11, R12, and R13.

The output amplifier in Figure 13.26c has three inverting inputs. Summing the voltages V1, V2, and V3

leads to a numerator polynomial where the sign of the middle coefficient is different from the sign of the
other two. Thus, the zeros are in the right-s-half plane. Again, we can delete the resistor R12 to realize zero
on the jv axis.
A second state-variable biquad circuit proposed by Tow and Thomas [10–12] yields similar perform-

ance to that of the Kerwin–Huelsman–Newcomb circuit. It uses a feedback loop with one damped
integrator, one integrator, and one inverting amplifier; see Figure 13.27a. Figure 13.27b shows the Tow–
Thomas circuit with three op-amps.
The damped integrator has a transfer function

V1

V3
¼ �1

sT þ a

����
Vi¼0

(13:81)
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FIGURE 13.26 (a) State-variable filter with output amplifier, (b) output amplifier with inverting and noninverting
inputs, and (c) output amplifier with three inverting inputs.
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with T¼RC and a¼R=RQ. The inverting amplifier has a gain

V3

V2
¼ �R0

R1
¼ �K0 (13:82)

An analysis of the circuit in Figure 13.27b with Vi being the input voltage and V3 the output voltage yields
a transfer function

HLP(s) ¼ V3

V i
¼ �K0a2

s2T2 þ sTKQ þ K0
(13:83)

with

K0 ¼ R0

R1
, a2 ¼ R

R2
, KQ ¼ R

RQ
(13:84)

For the design of the filter, the integrator time constant T serves as a reciprocal normalization frequency.
Then, from the predefined normalized pole frequency we can determine the resistor ratio K0, from the
pole Q-factor the ratio KQ, and from the dc gain of the filter section the ratio a2. Choosing convenient
values for C and R0, we finally determine the resistors R, R1, RQ, and R2 from the parameters T, K0, KQ,
and a2, respectively.

The filter circuit in Figure 13.26 requires an additional op-amp to realize a transfer function with a
general second-degree numerator polynomial. An alternative method is to feed fractions of the input
signal forward into the input of each op-amp. This is realized in the multiple-input Tow–Thomas biquad
[10]; see Figure 13.28. The transfer function of this circuit can be calculated to be

H(s) ¼ Vo

Vi
¼ � s2T2a4 þ sT KQa4 � K0a3ð Þ þ K0 a2 � KQa3ð Þ½ �

s2T2 þ sTKQ þ K0
(13:85)
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FIGURE 13.27 (a) Principle and (b) three op-amp realization of Tow–Thomas filter.
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with K0, a2, and KQ as defined in Equation 13.84 and

a3 ¼ R
R3

, a4 ¼ R0

R4
(13:86)

Thus, arbitrary numerator coefficients can be predescribed. In particular, if we choose a3¼a4¼ 0 we
obtain the low-pass filter circuit in Figure 13.27b and the transfer function in Equation 13.83.
When the state-variable filters described above are used to realize high-Q filter functions, the Q

practically obtained is usually higher than that desired in the design. This effect is called Q enhancement
and is caused by the phase lag introduced by the nonideal op-amps. One way to solve this problem is to
use integrators with phase compensation.
Figure 13.29 shows a noninverting integrator with an additional op-amp for phase lag compensation.

A detailed description of this circuit can be found in Ref. [13]. Putting this noninverting integrator
together with an inverting integrator in a feedback loop results in a resonator with a Q-factor that is
almost independent of the gain-bandwidth product of the op-amps. Thus, nearly no Q enhancement
occurs.
Exactly this feedback loop is used in the Åkerberg–Mossberg biquad [14]; see Figure 13.30. In this

circuit, a noninverting integrator with phase lag compensation together with an inverting damped
integrator is connected as a feedback loop. More details about this filter section can be found in Refs.
[4,13,14].
Finally, let us consider the general biquad proposed by Berka and Herpy [15]; see Figure 13.31. This

biquad is also based on a state-variable representation and requires a second-order differentiator and a
damped integrator. One of the main advantages of this circuit is extremely low sensitivities. A detailed
description of the filter circuit and its design can be found in Ref. [4].
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FIGURE 13.28 Generalized Tow–Thomas biquad.

R1

R1

R

C
–
+

+
–

FIGURE 13.29 Noninverting integrator using an additional op-amp to compensate for phase lag.
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13.7 All-Pass-Based Biquads

Finally, we will briefly consider two circuits that are based on first-order all-pass sections. Figure 13.32
shows the classical filter circuit introduced by Tarmy and Ghausi [16].
In this circuit, amplifiers with differential inputs and differential outputs are used. In the feedback

loop, two all-pass sections with voltage transfer ratios

Hi(s) ¼ sTi � 1
sTi þ 1

(13:87)

Ti¼RiCi, i¼ 1, 2, and one inverting amplifier are cascaded. The overall transfer function is

H(s) ¼ Vo

Vi
¼ a1

s2T1T2 � s T1 þ T2ð Þ þ 1
s2T1T2 þ sa2 T1 þ T2ð Þ þ 1

(13:88)
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FIGURE 13.30 Åkerberg–Mossberg biquad.
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FIGURE 13.31 Berka–Herpy biquad.
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FIGURE 13.32 Tarmy–Ghausi circuit.
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with

a1 ¼ K1K3K4

1þ K2K3K4
, a2 ¼ 1� K2K3K4

1þ K2K3K4
(13:89)

The main advantages of the Tarmy–Ghausi circuit are its low sensitivities to the gain-bandwidth products
of the op-amps and thus its favorable performance at high pole frequencies and high pole Q-factors.
Most of the popular low-cost op-amps are not configured for differential output operations. This

problem is bypassed by a circuit proposed by Moschytz [17]; see Figure 13.33.
The circuit in Figure 13.33 is also based on first-order all-pass sections. But the all-pass circuits are

realized by means of only single-ended op-amps. Therefore, this circuit is more convenient for practical
realizations.

13.8 Summary

In this chapter, we have shown that a lot of different multiple-amplifier biquads are known from the
literature. Hence, a design engineer who aims to realize a high-performance active filter is in the favorable
situation to find a rich variety of alternative circuits and design methods. On the other hand, this variety
is also confusing and the design engineer may need assistance in deciding among all these circuits and
methods. Unfortunately, the multiple-amplifier biquads mentioned in this chapter cannot be classified in
a simple way. Therefore, only a rough guidance can be given. In a practical case, it is advisable to compare
two or three solutions next to the predefined demands by a thorough analysis and then to find the final
solution.
The biquads with decoupled time constants offer some of the benefits mentioned at the beginning of

this section at low costs, namely, small passive element spread and low sensitivities. The dual-amplifier
twin-T biquads and the GIC-derived dual-amplifier biquads offer a trade-off between costs and per-
formance. The twin-T biquads are particularly suitable for the design of elliptic filters. The special merits
of the GIC-derived biquads are the small number of passive components and the independence of the
op-amp parameters. Thus, this biquad represents a robust filter solution for many different applications.
Additionally, these filters can be easily designed.
The GIC-derived three-amplifier biquads and the state-variable-based filters offer additional flexibility

with respect to an independent choice and an independent tuning of the filter parameters. Typically,
these circuits are used in applications with switched parameters, e.g., filters with switched cutoff
frequencies. This flexibility is paid for by a higher number of op-amps and passive components. It
should be mentioned that the original state-variable circuits, i.e., two integrators in a loop, are rather
sensitive to the phase lag introduced by the nonideal op-amps. This is always a problem when
simultaneously high-frequency and high-Q performance shall be achieved. In such applications, biquads
with compensated phase lag should be applied, e.g., the biquads proposed by Åkerberg and Mossberg,
Berka and Herpy, or Tarmy and Ghausi.
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FIGURE 13.33 Tarmy–Ghausi circuit modified by Moschytz.
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14.1 Introduction

Current generalized immittance convertors (CGICs) have been used to realize high-performance active
biquads with 2 OAs, 3 OAs, or n OAs per sections [1,5].

In this chapter two- and three-amplifier biquads are presented that are based on CGICs.
Although several biquads have been reported, the ones presented here have proved to be clearly superior

* Wasfy B. Mikhael, ‘‘Chapter 9: Biquad II,’’ in RC Active Filter Design Handbook, Stephenson, New York: Wiley, 1985.
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to single-amplifier biquads. This is because the design carried out [1] was constrained by stringent
performance criteria satisfying important properties and features such as stability, versatility, insensitivity
to component tolerances and drift, low dependence on the op-amp (OA) frequency limitations, finite
gain, tunability, small spread in component values, and minimum total capacitance.
In addition, the performance of the CGIC-based biquads presented here are comparable to multiple

OA biquads. On the other hand, the 3-OA CGIC biquad is shown to yield additional performance
improvements over the 2-OA CGIC biquad. Also, the CGIC biquads use the OAs in the differential
mode.
In the following discussion the generalized structure of the 2-OA and 3-OA CGIC biquads are

presented. Illustrative examples of the element identification to realize the most commonly used biquads
are tabulated. Stability and sensitivity properties are discussed. A design procedure for each biquad
is described that minimizes the active sensitivities while maintaining the filter’s stability. Several second-
order design examples are given. A sixth-order Chebyshev LPF and a sixth-order elliptic BPF are
designed using the design values and tuning procedure suggested. The excellent performance of the
resulting realizations is experimentally verified. A universal 2-OA GIC hybrid implementation using
thick film is also described. 2-OA CGIC biquadratic active filter realizations for extended high-frequency
applications employing the composite operational amplifiers technique [2,3] are given.

14.2 Biquadratic Structure Using the Antoniou
CGIC (2-OA CGIC Biquad)

Consider the network of Figure 14.1, which is simply Antoniou’s CGIC [4], with two new ports created
across 3-G and 4-G. This is represented symbolically in Figure 14.2.
A new configuration is now obtained, as shown in Figure 14.3. A synthesis procedure is now described

that uses this configuration. The transfer functions between the input and output terminals 2, 3, and 4,
assuming ideal OAs are readily obtained as

V3

V1
¼ T1 ¼ {Y5 þ h(s)[Y7(1þ Y6=Y2)� Y5Y8=Y2]} D(s)= (14:1a)

V4

Vi
¼ T2 ¼ [Y5(1þ Y8=Y4)� Y6Y7=Y4 þ h(s)Y7] D(s)= (14:1b)

V2

Vi
¼ T3 ¼ [Y5 þ h(s)Y7] D(s)= (14:1c)

Y1 Y3

Y4Y2

V4
V3

V2V1

I2I1

A1 A2

C

3
4

21

+

–

+

–

FIGURE 14.1 Antoniou’s CGIC with additional ports 3G and 4G.
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where

h(s) ¼ Y2Y3=Y1Y4

D(s) ¼ (Y5 þ Y6)þ h(s)(Y7 þ Y8)
(14:1d)

The conversion function h(s) and the admittances Y5–Y8 can be selected in many different ways, and it is
clear that any stable second-order transfer function with any desired zero and pole locations can be
realized.
Letting

Yi ¼ sCi þ Gi (14:2)

where i¼ 1–4, we have from Equation 14.1

V1 V2

V3

V4

1
2

3

4

1
h(s)

FIGURE 14.2 Symbolic representation of the CGIC in Figure 14.1.
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FIGURE 14.3 Basic configuration.
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h(s) ¼ (sC2 þ G2)(sC3 þ G3)
(sC1 þ G1)(sC4 þ G4)

(14:3)

Clearly, by omitting one or more conductances and=or capacitances, a number of specific conversion
functions can be generated.

14.3 Realization of the Most Commonly Used Biquad
Functions Using the 2-OA CGIC

The most frequently used second-order transfer functions have already been described in Chapter 11.
Realizations of these functions are given in Table 14.1. The LP, HP, BP, and BS sections are produced by
choosing h(s) in a simple manner such as K1s, K2s

2, K3sþK4s
2 or their reciprocals. Circuits 3, 4, and 7 can

be regarded as realizations of simple RLC networks [4,5]. Second-order AP sections can be obtained from
circuits 11 and 12 of Table 14.1.
Figures 14.1 and 14.2 and Table 14.1 show that, with the exception of circuit 10, the response is

obtained from the output of an OA. Owing to the low output resistance of the amplifier, any number of
sections can be cascaded without using isolation amplifiers.

14.4 Stability during Activation and Sensitivity Using
the 2-OA CGIC Biquad

14.4.1 Stability Properties

It has been shown [6] that some networks using CGICs can be conditionally stable, that is, a circuit can
lock in an unstable mode during activation ( just after switching on the power supply). For amplifiers
with a finite open loop gain A, the circuit of Figure 14.3 gives

Vk

Vi
¼ Nk(s)

D(s)

where k¼ 2, 3, 4 and

D(s) ¼ M1Y1 þM2Y3

þ (1þM1)(1þM2)[Y1=A1 þ Y3=A2 þ Y1=A1A2 þ Y3=A1A2] (14:4)

M1 ¼ Y5 þ Y6

Y2

M2 ¼ Y7 þ Y8

Y4

It can be easily shown that for the circuit in Figure 14.3 low-frequency unstable modes cannot arise
during activation. This is due to the absence of differences and changes of sign in the denominator
coefficients. Thus any combination of OA gains that occur during transients and power supply switching
does not result in saturation or low-frequency instability before reaching the steady state [7].

14.4.2 Sensitivity Analysis

The pole Q-factor Qp, the undamped frequency of oscillation vp, the notch frequency vn, and the
multiplier constants HBS, HLP, HHP, and HBP, as well as Qz, vz, and HAP, have been previously defined in
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Chapter 7. The sensitivity of a quantity x with respect to variations in an element e is denoted by Sxe . For
ideal amplifiers, the use of Table 14.1 leads to

0 � Sxe � 1 (14:5)

where
x represents any one of these H, v, or Q qualities
e represents any capacitance or conductance

14.5 Design and Tuning Procedure of the 2-OA CGIC Biquad

A design procedure is now described. Table 14.1 shows that there are several degrees of freedom in the
choice of element values. These may be used to minimize S

Qp

A or the spread of element values. By using
minimum sensitivity (to the OA parameters) constraints in circuits 1, 3, 7, 10, and 12, possible sets
of element values for LP, HP, BP, BS, and AP sections have been obtained, as shown in Table 14.2.
In addition, this choice of elements guarantees stable operation with real OA’s. It is seen that the notch
frequency vn, the undamped frequency of oscillation vp, and Q-factor Qp can be easily adjusted by
sequentially trimming three distinct resistors. A tuning sequence is also given in Table 14.2.
It is to be noted from Table 14.2 for the design of the BS sections, that

v2
n ¼

vpGs

Cs
(14:6)

where

G5 þ G6 ¼ G1, C7 þ C8 þ C, and vp ¼ G
C

TABLE 14.2 Design Values and Tuning Procedure

Circuit Number Transfer Function
Tuning Sequence

(from Table 14.1) Design Values Realized vo vp Qp

1 G1 ¼ G4 ¼ G5 ¼ G8 ¼ G, G3 ¼ G=Qp,
C2 ¼ C3 ¼ C, where C ¼ G

vp

T2 ¼ 2v2
p

D(s)

— G8 G3

3 G1 ¼ G2 ¼ G4 ¼ G6 ¼ G, G8 ¼ G=Qp,
C8 ¼ 0, C3 ¼ C7 ¼ C, where C ¼ G

vp

T1 ¼ 2s2
D(s) — G4 G8

7 G1 ¼ G2 ¼ G4 ¼ G6 ¼ G, G7 ¼ G=Qp,
G8 ¼ 0, C3 ¼ C8 ¼ C, where C ¼ G

vp

T1 ¼
�
2vp
Qp

�
s

D(s) — G2 G7

10 G1 ¼ G2 ¼ G4 ¼ G5 þ G6 ¼ G, G8 ¼ G=Qp,
C3 ¼ C7 þ C8 ¼ C, where vp ¼ G

C
and v2

n ¼ vp
G5
C7

T3 ¼ C7
C

s2þv2
nð Þ

D(s) G2 G6 G8

12 G1 ¼ G2 ¼ G4 ¼ G5 ¼ G, G6 ¼ 0,
C3 ¼ C7 ¼ C, C8 ¼ G=Qp, where vp ¼ G

C

T1 ¼ D(�s)
D(s) G4 G8

Note: D(s) ¼ s2 þ (vp=Qp)sþ v2
p.
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Hence

w2
n

w2
p
¼ G5

G
� C
C7

(14:7)

where

G5

G
is always � 1 and

C
C7

is always � 1

It is seen from Equation 14.7 that for vn�vp, C8 can be set to zero (C7¼C), and only two capacitors
per section are used. For vn>vp, three capacitors are required. In all cases, regardless of the choice of
C7 and C8, the total capacitance per section is equal to 2C.
In most applications where notch sections are used, vn=vp is close to unity and care should be taken

when choosing G5 and C7 in Equation 14.7. A suitable choice of G5, G6, G7, and C8 values may be
obtained by letting

G5

G
¼ 1

K
and

C
C7

¼ 2

Thus K is approximately equal to 2 (K< 2 for vn>vp and K> 2 for vn�vp). The suggested choice
yields a capacitor spread of 2 and both R5 and R6 are approximately equal to 2R.

14.6 Design Examples Using the 2-OA CGIC Biquad

Example 14.1

Design a second-order Butterworth (Qp¼ 0.707) LP filter having a cutoff frequency fp¼ 20,000=2p Hz.

Procedure

1. Circuit 1 in Table 14.2 realizes an LPF. The design equations are also given in Table 14.2.
2. First we choose an appropriate value for C, say 10 nF. Thus C¼C2¼C3¼ 10 nF.
3. Now, R ¼ 1

Cvp
¼ 1

20,000�10�8

Therefore, R¼ 5 kV
4. Consequently, R¼R1¼R4¼R5¼R8¼ 5 kV and R3¼RQp¼ 3.535 kV.
5. The circuit is shown in Figure 14.4a. It is noted that the low-frequency gain of the LP filter HLP is 2.

A simple procedure can be followed to scale HLP by a factor x less than unity, that is, effectively
multiplying the transfer function realized by x. This is done by replacing the resistance R5 by two
resistors RA, and RB (in series with the input Vin) in the manner shown in Figure 14.4b, where

R5 ¼ R ¼ 5 kV

¼ RA k RB

The desired gain and scale factor x¼RB=(RAþRB). Thus for x ¼ 1
2, resulting in a dc gain of the LP filter

of unity, the choice of resistors RA and RB is RA¼RB¼ 10 kV.

The Current Generalized Immittance Converter Biquads 14-7



If functional tuning of the filter is desired, the tuning sequence of circuit 1 in Table 14.2 can be
followed. First, vp is adjusted by applying a sinusoidal input at the desired vp frequency. Then RB is
tuned until vp realized equals the desired value. This can be detected by monitoring the phase angle of
the output relative to the input. When the proper vp is reached, the output lags the input by 908.
Next, to adjust the Qp, the filter gain Hdc of the LPF at a frequency much lower than vp is determined.
Then an input at vp is applied. R3 is adjusted until the gain of the LPF at vP is QP desired Hdc.

Example 14.2

Design a second-order BP filter with Qp¼ 10 and fp¼ 10,000=2p Hz.

Procedure

1. Circuit 7 in Table 14.2 realizes a BP filter. The design equations are also given in Table 14.2.
2. First we choose a suitable value for C, say 10 nF.
3. Thus C3¼C8¼C¼ 10 nF.
4. Hence R¼ (1=Cvp)¼ 10 kV. Consequently, R¼R1¼R2¼R4, R6¼ 10 kV, and R7¼RQp¼ 100 kV.
5. The circuit is shown in Figure 14.5. The gain at resonance, that is, at v¼vp, is equal to 2. To scale

the gain by a factor x less than 2, the resistor R7 is split into two resistors in a manner similar to that
in Figure 14.4b and explained in Example 14.1.

Again, if functional tuning is desired, the sequence in Table 14.2 can be followed.

R1 = 5 kΩ

C3 = 10 nF

C2 = 10 nF R4 = 5 kΩ

R5 = 5 kΩ

3.535 kΩ

Vin
Vo

+

–

+

–

+

–

R3

R8 = 5 kΩ

1 21

3
4

(a)

Vin
+

–

1

(b)

RA

RR

FIGURE 14.4 (a) Second-order Butterworth LPF design example and (b) controlling the gain factor of the LPF.
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Example 14.3

Design a second-order HP filter with Qp¼ 1 and fp¼ 10,000=2p Hz.

Procedure

1. Circuit 3 in Table 14.2 realizes an HP filter.
2. Let us choose C3¼C7¼C¼ 5 nF. Hence R can be computed as R ¼ 1

vpC
¼ 1

10,000 � 50 � 10�9

Therefore, R¼ 20 kV.
3. Consequently, R1¼R2¼R4¼R6¼R¼ 20 kV and R8¼RQ¼ 20 kV.
4. The realization is shown in Figure 14.6. The gain at high-frequency HHP is equal to 2.

14.7 Practical High-Order Design Examples Using
the 2-OA CGIC Biquad

Using Table 14.2, 1% metal-film resistors, 2% polystyrene capacitors and m A741 OA’s, a sixth-order
Chebyshev LP filter, and a sixth-order elliptic BP filter were designed and constructed. The LP filter has a

Vin

Vout

R1 = 10 kΩ C3 = 10 nF

C8 = 10 nF

R4 = 10 kΩ

+

++

–

––

R1 = 100 kΩ
R6 = 10 kΩ

R2 = 10 kΩ

FIGURE 14.5 Design of a second-order BPF.

R1 = 20 kΩ

R6 = 20 kΩ

R4 = 20 kΩ

R8 = 20 kΩ

R2 = 20 kΩ

C3 = 5 nF

C7 = 5 nF

Vin
+

–

Vout

+

–

+

–

FIGURE 14.6 Design of a second-order HPF.
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maximum passband attenuation of 1.0 dB; bandwidth¼ 3979 Hz. The BP filter has the following
specifications:

Center frequency¼ 1500 Hz
Passband¼ 60 Hz
Maximum passband attenuation¼ 0.3 dB
Minimum stopband attenuation outside the frequency range 1408 ! 1595 Hz¼ 38 dB

14.7.1 Low-Pass Filter

The realization uses cascaded section of type 1, in Table 14.2, as shown in Figure 14.7a. The measured
frequency response (input level¼ 50 mV), shown in Figure 14.7b and c, agrees with the theoretical
response. The effect of dc-supply variations is illustrated in Figure 14.7d. The deviation in the passband
ripple is about 0.1 dB for supply voltage in the range 5–15 V. The effect of temperature variations is
illustrated in Figure 14.7e, which shows the frequency response at �108C (right-hand curve), 208C, and
708C (left-hand curve). The last peak has been displaced horizontally by 42 Hz, which corresponds to a

(a)

R1

R1

R1
R1

C1

C1

R2

R2

R2
R3

C3

C3

R3

R3

R3

R2

C2

C2

–
+

–
+

–
+

–
+

–
+

–
+

Vin Vout

5.707 10.968 16.01

(b)

(d)

(c)

(e)

FIGURE 14.7 (a) Realization of the sixth-order Chebyshev low-pass filter. Frequency responses: (b) logarithmic
gain scale and linear frequency scale; (c) linear gain and frequency scales; (d) for supply voltages �5 V (lower curve)
and �15 V, input level¼ 0.05 V; (e) at temperatures �108C (right-hand curve), 208C, and 708C (left-hand curve).
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change of 133 ppm=8C. The frequency displacement is due to passive element variations and is within the
predicted value.

14.7.2 Bandpass Filter

The realization uses cascaded sections of the types 7 and 10, in Table 14.2, and is shown in
Figure 14.8a. The measured frequency response is shown in Figure 14.8b and c, and it is in agreement
with the theoretical response. Figure 14.8d shows the frequency response for supply voltages of 7.5 V
(lower curve) and 15 V; the input is 0.3 V. The passband ripple remains less than 0.39 dB and the
deviation in the stopband is negligible. Figure 14.8e and f illustrate the effect of temperature variations.
The passband ripple remains less than 0.35 dB in the temperature range �108C to 708C. A center
frequency displacement of 15 Hz has been measured that corresponds to a change of 125 ppm=8C.

14.8 Universal 2-OA CGIC Biquad

Study of Table 14.2 suggests that several circuits may be combined to form a universal biquad. This can
be achieved on a single substrate using thick-film technology.
Upon examining the element identification and design values in Table 14.2 it is easy to see that one

common thick-film substrate can be made to realize circuits 1, 3, 7, and 10 in Table 14.2 (other circuits
from Table 14.1 can be included if desired) with no duplication in OAs and chip capacitors and minimal
duplication in resistors. The superposition of circuits 1, 3, 7, and 10 is shown in Figure 14.9. The
following items should be noted.

1. Each resistor having the same subscript represents one resistor only and needs to appear once in a
given biquad realization and thus once on the substrate. As an example, for RJ¼RQp, only one RJ
is needed with connection to several nodes. The unwanted connections may be opened during the
trimming process according to the type of circuit required.

2. Three capacitor pads are needed; they are marked 1, 2, and 3 in Figure 14.9. To obtain capacitor 4,
either capacitor 2 or 3 connections are made common with capacitor 4 terminals. The capacitor
pad terminals are available on the external terminals of the substrate.* The chip capacitors are
reflow-soldered in the appropriate locations based on the circuit realized.

A dual CGIC universal biquad implemented using thick-film resistors, chip NPO capacitors, and one
quad OA is shown in Figure 14.10. Note that this hybrid array is capable of realizing gyrators and
simulating inductors and super capacitors. Sample results are given in Figure 14.11 for realizing different
biquadratic functions using this implementation.

14.9 3-OA CGIC Biquadratic Structure

Consider the circuit shown in Figure 14.12 where the output can be taken to be V1, V2, or V3. Assuming
ideal OAs, the transfer functions between the input and output terminals 1, 2, and 3 can be readily
obtained as

V1=Vi ¼ T1

¼ Y11Y12[Y1(1þ Y4=Y9)� Y2Y3=Y9]f
þ (Y12Y3Y7Y8)=Y9 þ [(1þ Y4=Y9)Y5 � Y3Y6=Y9]Y7Y10g=D(s) (14:8a)

* This can readily be understood by examining the different realizations to be obtained from this layout.
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FIGURE 14.8 (a) Realization of the sixth-order elliptic bandpass filter. Frequency responses of bandpass filter:
(b) logarithmic gain and linear frequency scales; (c) linear gain and frequency scales; (d) for supply voltages of�7.5 V
(lower curve) and �15 V, input level of 0.3 V; (e) at temperatures of 108C (right-hand curve), 208C, and 708C (left-
handed curve); and (f) expanded passband of Figure 14.8e.
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V2=Vi ¼ T2

¼ Y11Y12Y1 þ Y12[Y1Y6 þ (Y3Y7Y8)=Y9 � Y5Y6]f
þ [Y3Y6 � Y4Y5](Y7Y8Y12)=Y9Y11 þ Y5Y7Y10g=D(s) (14:8b)

V3=Vi ¼ T3

¼ Y1Y11Y12 þ Y12[(1þ Y2=Y7)Y3 � Y1Y4=Y7]Y8=Y9f
þ [(1þ Y2=Y7)Y5 � Y1Y6=Y7]Y7Y10gD(s) (14:8c)

R

R

C

C

C

C

RJ = R 1
2

2

3

3

4

4

RQp = RJ

RQp = RJ

RJ = R1

R = Rk RQp = RJ
RJ = R

RJ = R
5

6 7

Vin

Out

Out

Out

+

–

+

–

9

1

FIGURE 14.9 Superposition of circuits 1, 3, 7, and 10 from Table 14.2. Note: Out¼ output terminals.

FIGURE 14.10 Dual CGIC universal biquad implemented using thick-film resistors; chip NPO capacitors and one
quad OA.
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FIGURE 14.12 3-OA CGIC biquad.
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where

D(s) ¼ Y11Y12(Y1 þ Y2)þ Y12(Y3 þ Y4)Y7Y8=Y9 þ (Y5 þ Y6)Y7Y10 (14:9)

The admittances Y1–Y12 can be selected in many ways and any stable second-order transfer function can
be realized. For the purposes of this chapter, Y1–Y10 are taken to be purely conductive, while Y11 and Y12

are purely capacitive, that is,

Y1 � Y10 ¼ G1 � G10

Y11 ¼ sC1, Y12 ¼ sC2
(14:10)

Any rational and stable transfer function can be expressed as a product of second-order transfer
functions of the form

T(s) ¼ a2s2 þ a1sþ a0
b2s2 þ b1sþ b0

(14:11)

where a1¼ a2¼ 0, a0¼ a1¼ 0, a0¼ a2¼ 0, or a1¼ 0, for an LP, HP, BP, or N section, respectively. These
section can be realized by choosing the Gi’s (i¼ 1–10) properly in Equation 14.8. By comparing
Equations 14.8 through 14.11, circuits 1–4 in Table 14.3 can be obtained.
All-pass transfer functions can be realized by setting a2¼ b2, a1¼�b1, a0¼ b0; these can be obtained

from circuit 5 of Table 14.3.
It can be easily shown that this biquad possesses similar excellent low sensitivity properties and

stability during activation as those of the 2-OA CGIC biquad, given in Section 14.4.

14.10 Design and Tuning Procedure of the 3-OA CGIC Biquad

Several degrees of freedom exist in choosing element values, as shown in Table 14.3. These are used to
satisfy the constraints of the given design, namely, those of low sensitivity, reduced dependence on the

TABLE 14.3 Element Identification for Realizing the Most Commonly Used Transfer Functions

Circuits Number G1 G2 G3 G4 G5 G6 Transfer Function Remarks

1 0 0 a

T3 ¼
�
1þ G2

G7

�
G5G7G10
C1C2

s2G2 þ s G4G7G8
C1G9

þ (G5 þG6)G7G10
C1C2

LP

2 a 0 0 T1 ¼
s2G1

�
1þ G4

G9

�
s2(G1 þ G2)þ s G4G7G8

C1G9
þ G6G7G10

C1C2

HP

3 0 a 0 T3 ¼
s
�
1þ G2

G7

�
G3G7G8
C1G9

s2G2 þ s (G3 þG4)G7G8
C1G9

þ G6G7G10
C1C2

BP

4 a 0 a T1 ¼ G1

�
1þ G4

G9

�
s2 þ G5G7G10

C1C2G1

s2(G1 þ G2)þ s G4G7G8
C1G9

þ (G5 þG6)G7G10
C1C2

N

5 a 0 0 T3 ¼
s2G1 � s G1G4G8

C1G9
þ
�
1þ G2

G7

�
G5G7G10
C1C2

s2(G1 þ G2)þ s G4G7G8
C1G9

þ G5G7G10
C1C2

Nonminimum
phaseb

Notes: Y7�Y10¼G7�G10 always.
Y11� sC1, Y12¼ sC2.

a These elements can be set to zero.
b For all-pass G2¼ 0, G7¼G1.
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OA finite gain and bandwidth, and low element-spread design, in circuits 1–5 in Table 14.3. Using these
constraints, a possible design for LP, HP, BP, AP, and N sections is obtained, as indicated in Table 14.4.
It is seen that Qp, vp, vn, Qz, and vz, can be independently adjusted by trimming at most three resistors.
A trimming sequence is also given in Table 14.4.

14.11 Practical Sixth-Order Elliptic BP Filter Design
Using the 3-OA CGIC Biquad

The sixth-order elliptic bandpass filter specified in Section 14.7 was designed using the 3-OA CGIC
biquad and similar components to those in Section 14.7.
The realization shown in Figure 14.13a uses cascaded sections of the types 3 and 4 in Table 14.4.

The element design values are also given in Figure 14.13a. The measured frequency response is shown
in Figure 14.13b and c; it is in agreement with the theoretical response. Figure 14.13d shows the frequency
response for supply voltages of�7.5 V (lower curve), and�15 V (upper curve); the input voltage is 0.3 V.
The passband ripple remains less than 0.34 dB and the deviation in the stopband is negligible. Figure
14.13e and f illustrate the effect of temperature variations. The passband ripple remains less than 0.5 dB in
the temperature range from �108C (right-hand curve) to 708C (left-hand curve). A center frequency
displacement of 9 Hz has been measured, which corresponds to a change of 75 ppm=8C.
These results illustrate the additional performance improvements compared with the results in Section

14.7 using the 2-OA CGIC biquad.

TABLE 14.4 Design Values and Tuning Procedures

Circuit
Number

Transfer
Function Realized

Tuning Sequence

Design Values vn vp Qp Qz

1 R2 ¼ R, R4 ¼ RQ1=2
p ,

R5 ¼ 2R (aHLP),=

R6 ¼ R [a(1�HLP 2)], HLP < 2==

T3 ¼ HLP

v2
p

D(s)
— R5 R4 —

2 R1 ¼ R
�
1þ �Q1=2

p

�
HHP,=

R2 ¼ R
�
1þ �Q1=2

p
�
1þ �Q1=2

p �HHP

h i
,

R4 ¼ RQ1=2
p , R6 ¼ R=a,

HHP < 1þ �Q1=2
p

T1 ¼ HHP
s2

D(s)
— R6 R4 —

3 R2 ¼ R, R3 ¼ 2RQ1=2
p HBP,

R4 ¼ RQ1=2
p 1� HBP 2,==

R6 ¼ R a,�HBP < 2=

T3 ¼ HBP

svp

Qp

D(s)
— R6 R3 —

4 R1 ¼ R
�
1þ �Q1=2

p

�
HN,=

R2 ¼ 1 (G� G1),=

R4 ¼ R�Q1=2
p , R6 ¼ 1 (aG� G5),=

R5 ¼ Rv2
p

�
1þ �Q1=2

p

��
aHNv

2
n

� �
,

HN <
�
1þ �Q1=2

p
�
,

HN ¼< v2
p

�
1þ �Q1=2

p
��

v2
n for vn > vp

T1 ¼ HN
s2 þ v2

n

� �
D(s)

R5 R6 R4 —

5 For all-pass: R1 ¼ R,
R4 ¼ RQ1=2

p R5 ¼ R a, R1 ¼ R7,=

R2 ¼ 1, HAP ¼ 1

T1 ¼ HAP

s2 � vz
Qz
sþ v2

z

D(s)
R5 R4

Notes: D(s) ¼ s2 þ (vp=Qp)sþ v2
p, a ¼ 2Q1=2

p =
�
1þ Q1=2

p
�
.

C1 ¼ C2 ¼ C ¼ 1=(vpR), R10 ¼ aR, R8 ¼ RQ1=2
p , R7 ¼ R8 ¼ R.
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Section
No

1

2

3

R1

∞

8.939

4.309

R2

2

2.576

3.732

R3

11.396

∞

∞

R4

∞

17.273

17.273

R5

∞

4.592

2.611

R6

1.175

1.426

1.948

R7

2

2

2

R8

11.396

17.273

17.273

R9

2

2

2

R10

3.403

3.585

3.585

C1

53.052

51.917

54.211

C2

53.052

51.917

54.211

(a) Resistors in kilo ohms and capacitors in nanofarads

(b) (c)

(d) (e)

(f)

FIGURE 14.13 (a) Sixth-order elliptic bandpass filter. Resistors in kiloohms and capacitors in nanofarads. (b)–(f)
Frequency response using 3-OA CGIC. (b) Logarithmic gain and linear frequency scales; (c) linear gain
and frequency scales; (d) frequency response for supply voltages of �7.5 V (lower curve) and �15 V, input level
of 0.3 V; (e) frequency response; and (f) at temperatures of �108C (right-hand curve), and 208C and 708C
(left-hand curve).
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14.12 Composite GIC Biquad: 2 C 2-OA CGIC

To obtain the composite CGIC biquad [3], each single OA in the original 2-OACGIC biquad is replaced by
a composite amplifier each constructed using two regular OAs [2] and denoted C2OA. All possible
combinations of the four C2OA structures in Ref. [3] were used to replace the twoOAs in the CIC network.
Although several useful combinations were obtained, it was found that the best combination is shown in
Figure 14.14, where A1 is replaced by C2OA-4 and A2 is replaced by C2OA-3 in the CGIC of Figure 14.1.

Computer simulation plots and experimental results of Figure 14.15 show clearly the con-
siderable improvements of the new CGIC filter responses over those of a 2-OA CGIC implemented
using regular OAs.

FIGURE 14.14 Practical BP filter realization of the composite GIC using C2OA-4 and C2OA-3.

0.5700E06 0.5900E06 0.6100E06 0.6300E06 0.6500E06 0.6700E06

0.5700E06 0.5900E06 0.6100E06 0.6300E06 0.6500E06 0.6700E06
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3.445
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–0.4177

6.021

4.733

3.445

2.158

0.8700
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Qp = 10

Qp = 20

Qp = 40

α1 = 1.5,
α2 = 9.5

α1 = 0 .15, α2 = 9.5

α1 = 1, α2 = 9.5

(a)

FIGURE 14.15 (a) Computer plots of the composite GIC BP filter frequency responses of Figure 14.14 for
f0¼ 100 kHz and Qp¼ 10, 20, 40.
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Similar improvements in inductance simulation applications, employing the 2C2-OA CGIC, have
been reported.

14.13 Summary

Two configurations have been presented for the synthesis of RC-active networks. These have been used to
design a number of universal second-order sections such as low-pass, high-pass, bandpass, and bandstop
sections. By using these sections, most of the practical filter specifications can be realized. Each section
employs a CGIC, which can be implemented by using 2 OAs in the 2-OA CGIC biquad and 3 OAs in the
3-OA CGIC design. The sensitivities of Qp, vp, Qz, vz, and also the multiplier constant of the realization,
have been found to be low with respect to the passive- and active-element variations. A simple functional
tuning sequence in which only resistors are adjusted has been described. With the exception of one of the
notch sections using the 2-OA CGIC, of all the circuits considered, the output can be located at an OA
output. Consequently, these sections can be cascaded without the need for isolating amplifiers. Although
exact matching of the gain bandwidth products of the OAs in the CGIC biquad is not essential, optimum
results are obtained when they are matched within practical ranges. This is achieved easily by using
dual or quad OAs. Also, the choice of the element values for optimum performance is also given. The
additional performance improvements using the 3-OA CGICiquads are illustrated experimentally. Useful
operating frequencies extension employing the composite operational amplifier technique in the 2-OA
CGIC biquad is also given.
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15.1 Introduction

With the realization of second-order filters discussed in the previous chapters of this section, we will now
treat methods for practical filter implementations of order higher than two. Specifically, we will
investigate how to realize efficiently, with low sensitivities to component tolerances, the input-to-output
voltage transfer function

H(s) ¼ Vout

Vin
¼ N(s)

D(s)
¼ amsm þ am�1sm�1 þ � � � þ a1sþ a0

sn þ bn�1sn�1 þ � � � þ b1sþ b0
(15:1)

where n�m and n> 2. The sensitivity behavior of high-order filter realizations shows that, in general,
it is not advisable to realize the transfer function H(s) in the so-called direct form [5, Chapter 3] (see
also Chapter 5). By direct form we mean an implementation of Equation 15.1 that uses only one or
maybe two active devices, such as operational amplifiers (op-amps) or operational transconductance
amplifiers (OTAs), embedded in a high-order passive RC network. Although it is possible in principle to
realize Equation 15.1 in direct form, the resulting circuits are normally so sensitive to component
tolerances as to be impractical. Since the direct form for the realization of high-order functions is
ruled out, in this section we present those methods that result in designs of practical manufacturable
active filters with acceptably low sensitivity, the cascade approach, the multiple-loop feedback topology,
and ladder simulations. Both cascade and multiple-loop feedback techniques are modular, with active
biquads used as the fundamental building blocks. The ladder simulation method seeks active realizations
that inherit the low passband sensitivity properties of passive doubly terminated LC ladder filters
(see Chapter 9).
In the cascade approach, a high-order function H(s) is factored into low (first or second) order

subnetworks, which are realized as discussed in the previous chapters of this section and connected in
cascade such that their product implements the prescribed function H(s). The method is widely
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employed in industry; it is well understood, very easy to design, and efficient in its use of active devices. It
uses a modular approach and results in filters that, for the most part, show satisfactory performance in
practice. The main advantage of cascade filters is their generality, i.e., any arbitrary stable transfer
function can be realized as a cascade circuit, and tuning is very easy because each biquad is responsible
for the realization of only one pole pair (and zero pair): the realizations of the individual critical
frequencies of the filter are decoupled from each other. The disadvantage of this decoupling is that for
filters of high order, say n> 8, with stringent requirements and tight tolerances, the passband sensitivity
of cascade designs to component variations is often found to remain still too sensitive. In these cases, the
following approaches lead to more reliable circuits.
The multiple-loop feedback or coupled-biquad methods also split the high-order transfer function into

second-order subnetworks. These are interconnected in some type of feedback configuration that
introduces coupling chosen to reduce the transfer function sensitivities. The multiple-loop feedback
approach retains the modularity of cascade designs but at the same time yields high-order filter
realizations with noticeably better passband sensitivities. Of the numerous topologies that have been
proposed in the literature, see, e.g., Ref. [5, Chapter 6], we discuss only the follow-the-leader feedback
(FLF) and the LF (leapfrog) methods. Both are particularly well suited for all-pole characteristics but can
be extended to realizations of general high-order transfer functions. Although based on coupling of
biquads in a feedback configuration, the LF procedure is actually derived from an LC ladder simulation
and will, therefore, be treated as part of that method.
As the name implies, the ladder simulation approach uses an active circuit to simulate the behavior of

doubly terminated LC ladders in an attempt to inherit their excellent low passband-sensitivity properties.
The methods fall into two groups. One is based on element replacement or substitution, where the
inductors are simulated via electronic circuits whose input impedance is inductive over the necessary
frequency range; the resulting active ‘‘components’’ are then inserted into the LC filter topology. The
second group may be labeled operational simulation of the LC ladder, where the active circuit is
configured to realize the internal operation, i.e., the equations, of the LC prototype. Active filters
simulating the structure or the behavior of LC ladders have been found to have the lowest passband
sensitivities among active filters and, consequently, to be the most appropriate if filter requirements
are stringent. They can draw on the wealth of information available for lossless filters, e.g., Refs.
[5, Chapter 2], [9, Chapter 13], [7] that can be used directly in the design of active ladder simulations.
A disadvantage of this design method is that a passive LC prototype must, of course, exist* before an
active simulation can be attempted.

15.2 Cascade Realizations

Without loss of generality we may assume in our discussion of active filters that the polynomials N(s) and
D(s) of Equation 15.1 are even, i.e., both n and m are even. An odd function can always be factored into
the product of an even function and a first-order function, where the latter can easily be realized by a
passive RC network and can be appended to the high-order active filter as an additional section. Thus, we
can factor Equation 15.1 into the product of second-order pole-zero pairs, so that the high-order transfer
function H(s) is factored into the product of the second-order functions

Ti(s) ¼ ki
a2is2 þ a1isþ a0i

s2 þ sv0i=Qi þ v2
0i
¼ kiti(s) (15:2)

* The realizability conditions for passive LC filters are more restrictive than those for active RC filters; specifically, the
numerator N(s) of Equation 16.1 must be strictly even or odd so that only jv-axis transmission zeros can be realized.
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such that

H(s) ¼
Yn=2
i¼1

Ti(s) ¼
Yn=2
i¼1

ki
a2is2 þ a1isþ a0i

s2 þ sv0i=Qi þ v2
0i
¼

Yn=2
i¼1

kiti(s) (15:3)

In Equation 15.2, v0i is the pole frequency and Qi the pole quality factor; the coefficients a2i, a1i, and a0i

determine the type of second-order function Ti(s) that can be realized by an appropriate choice of biquad
from the literature, e.g., Refs. [5, Chapter 5], [9, Chapters 4 and 5] (see also Chapters 12 through 14). The
transfer functions Ti(s) of the individual biquads are scaled by a suitably defined gain constant ki, e.g.,
such that the leading coefficient in the numerator of the gain-scaled transfer function ti(s) is unity or such
that jti(jv)j ¼ 1 at some desired frequency. If we assume now that the output impedances of the biquads
are small compared to their input impedances, all second-order blocks can be connected in cascade as in
Figure 15.1 without causing mutual interactions due to loading. The product of the biquadratic functions
is then realized as required by Equation 15.3.
The process is straightforward and leads to many possibilities for cascading the identified circuit

blocks, but several questions must still be answered:

1. Which pair of zeros of Equation 15.1 should be assigned to which pole-pair when the biquadratic
functions Ti(s) are formed? Since we have n=2 pole pairs and n=2 zero pairs (counting zeros at 0
and at 1) we can select from (n=2)! possible pole-zero pairings.

2. In which order should the biquads be cascaded? For n=2 biquads, we have (n=2)! possible ways of
section ordering.

3. How should the gain constants ki in Equation 15.2 be chosen to determine the signal level for each
biquad? In other words, what is the optimum gain assignment?

Because the total prescribed transfer function H(s) is simply the product of Ti(s), the choices in 1, 2, and 3
are quite arbitrary as far as H(s) is concerned. However, they determine significantly the dynamic range,*
i.e., the distance between the maximum possible undistorted signal (limited by the active devices) and the
noise floor, because the maximum and minimum signal levels throughout the cascade filter depend on
the pole-zero pairings, cascading sequence, and gain assignment.
There exist well-developed techniques and algorithms for answering the questions of pole-zero pairing,

section ordering, and gain assignment exactly [3, Chapter 1], [5, Chapter 6]; they rely heavily on
computer routines and are too lengthy to be treated in this chapter. We will only give a few rules-
of-thumb, which are based on the intuitive observation that in the passband the magnitude of each
biquad should vary as little as possible. This keeps signal levels as equal as possible versus frequency and
avoids in-band attenuation and the need for subsequent amplification that will at the same time raise the
noise floor and thereby further limit the dynamic range. Note also that in-band signal amplification may
overdrive the amplifier stages and cause distortion. The simple rules below provide generally adequate
designs.

Vout
Tn/2

Voi
Ti

Vo2Vo1
T2T1

Vin

FIGURE 15.1 Cascade realization of an nth-order transfer function; n is assumed even.

* Pole-zero pairing also affects to some extent the sensitivity performance, but the effect usually is not very strong and will
not be discussed in this chapter. For a detailed treatment see Ref. [3].
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1. Assign each zero or zero-pair to the closest pole-pair.
2. Sequence the sections in the order of increasing values of Qi, i.e., Q1<Q2 < � � �< Qn=2, so that the

section with the flattest transfer function magnitude comes first, the next flattest one follows, and
so on. If the position of any section is predetermined,* use the sequencing rule for the remaining
sections.

After performing steps (1) and (2), assign the gain-scaling constants ki such that the maximum output
signals of all sections in the cascade are the same, i.e.,

max Voi(jv)j j ¼ max Vo,n=2(jv)
�� �� ¼ max Vout(jv)j j i ¼ 1, . . . , n=2� 1 (15:4)

This can be done readily with the help of a network analysis routine or simulator, such as SPICE, by
computing the output signals at each biquad: using the notation, from Equation 15.3,

H(s) ¼
Yn=2
i¼1

Ti(s) ¼
Yn=2
i¼1

kiti(s) ¼
Yn=2
i¼1

ki
Yn=2
i¼1

ti(s) (15:5)

and

Hi(s) ¼
Yi
j¼1

Tj(s) ¼
Yi
j¼1

kjtj(s) ¼
Yi
j¼1

kj
Yi
j¼1

tj(s) (15:6)

we label the total prescribed gain constant

K ¼
Yn=2
i¼1

ki (15:7)

such that

max
Yn=2
i¼1

ti(jv)

�����
����� ¼ Mn=2 (15:8a)

is some given value. Further, let us denote the maxima of the intermediate gain-scaled transfer functions
by Mi, i.e.,

max
Yi
k¼1

tk(jv)

�����
����� ¼ Mi i ¼ 1, . . . , n=2� 1 (15:8b)

then we obtain [5, Chapter 6]

k1 ¼ K
Mn=2

M1
and kj ¼

Mj�1

Mj
j ¼ 2, . . . , n=2 (15:9)

* Such as, e.g., placing a lowpass at the input may be preferred to avoid unnecessary high-frequency signals from entering the
filter.
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Choosing the gain constants as in Equation 15.9 guarantees that the same maximum voltage appears at
all biquad outputs to assure that the largest possible signal can be processed without distortion.
To illustrate the process, let us realize the sixth-order transfer function

H(s) ¼ 0:7560s3

(s2 þ 0:5704sþ 1)(s2 þ 0:4216sþ 2:9224)(s2 þ 0:1443sþ 0:3422)
(15:10)

where the frequency parameter s is normalized with respect to vn¼ 130,590 s�1. It defines a sixth-order
bandpass filter with a 1 dB equiripple passband in 12 kHz� f� 36 kHz and at least 25 dB attenuation in
f� 4.8 kHz and f� 72 kHz [5, Chapter 1]. H(s) can be factored into the product of

T1(s) ¼ k1t1(s) ¼ k1s
s2 þ 0:5704sþ 1

with

Q1 ¼
ffiffiffi
1

p

0:5704
� 1:75 (15:11a)

T2(s) ¼ k2t2(s) ¼ k2s
s2 þ 0:4216sþ 2:9224

with

Q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2:9224

p

0:4216
� 4:06 (15:11b)

T3(s) ¼ k3t3(s) ¼ k3s
s2 þ 0:1443sþ 0:3422

with

Q3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:3422

p

0:1443
� 4:06 (15:11c)

which are cascaded in the order of increasing values of Q, i.e., T1T2T3. We can compute readily the
maximum values at the output of the sections in the cascade asM1¼ jt1jmax� 1.75,M2¼ jt1t2jmax� 1.92,
and M3¼ jt1t2t3jmax� 1.32 to yield by Equation 15.9

k1 ¼ 0:7560
1:32
1:75

� 0:57 k2 ¼ 1:75
1:92

� 0:91 k3 ¼ 1:92
1:32

� 1:45 (15:12)

Let us build the sections with the Åckerberg–Mossberg circuit [9, Chapter 4.4] shown in Figure 15.2. It
realizes

Vo

Vi
¼ � kv2

0

s2 þ sv0=Qþ v2
0

with v0 ¼ 1
RC

(15:13)

RR

R

R

R/k 

Q R C

C

+
–

+
–

+
–

Vi

Vo

FIGURE 15.2 Åckerberg–Mossberg bandpass circuit.
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We obtain readily from Equations 15.11 through 15.13 the following (rounded) component values:

for T1: R ¼ 1:5 kV QR ¼ 2:7 kV R=k ¼ 2:7 kV

for T2: R ¼ 0:9 kV QR ¼ 3:6 kV R=k ¼ 1:7 kV

for T3: R ¼ 2:6 kV QR ¼ 10 kV R=k ¼ 1 kV

The three sections are then interconnected in cascade in the order T1T2T3.

15.3 Multiple-Loop Feedback Realizations

These topologies are also based on biquad building blocks, which are then embedded, as the name
implies, into multiple-loop resistive feedback configurations. The resulting coupling between sections is
selected such that transfer function sensitivities are reduced below those of cascade circuits. It has been
shown that the sensitivity behavior of the different available configurations is comparable. We shall,
therefore, concentrate our discussion only on the FLF and, as part of the ladder simulation techniques, on
the leapfrog (LF) topologies, which have the advantage of being relatively easy to derive without any
sacrifice in performance. Our derivation will reflect the fact that both configurations* are particularly
convenient for geometrically symmetrical bandpass functions and that the LF topology is obtained from a
direct simulation of an LC lowpass ladder.

15.3.1 Follow-the-Leader Feedback Topology

The FLF topology consists of a cascade of biquads whose outputs are fed back into a summer at the
filter’s input. At the same time, the biquad outputs may be fed forward into a second summer at
the filter’s output to permit an easy realization of arbitrary transmission zeros. The actual implementa-
tion of the summers and the feedback factors is shown in Figure 15.3; if there are n noninteracting
biquads, the order of the realized transfer function H(s) is 2n. Assuming that the two summer op-amps
are ideal, routine analysis yields

�V0 ¼ RF0

Rin
Vin þ

Xn
i¼1

RF0

RFi
Vi ¼ aVin þ

Xn
i¼1

FiVi (15:14)

Vin

V0

V1 V2 Vi Vn

Vout

Rin RF0

Ro0
Ro1

Ro2

Roi Ron

RA–
+

A

–
+

A

RF1
RF 2

RFn
RFi

T1

T1 T2 Ti Tn

FIGURE 15.3 FLF circuit built from second-order sections Ti(s) and a feedback network consisting of an op-amp
summer with resistors RFi. Also shown is an output summer with resistors Roi to facilitate the realization of arbitrary
transmission zeros.

* As are all other multiple-loop feedback circuits.
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where we defined a¼RF0=Rin and the feedback factors Fi¼RF0=RFi. Similarly, we find for the output
summer

Vout ¼ �
Xn
i¼0

KiVi ¼ �
Xn
i¼0

RA

Roi
Vi (15:15)

from which the definition of the resistor ratios Ki is apparent. Any of the parameters Fi and Ki may, of
course, be reduced to zero by replacing the corresponding resistor, RFi or Roi, respectively, by an open
circuit. Finally, the internal voltages Vi can be computed from

Vi ¼ V0

Yi
j¼1

Tj(s) i ¼ 1, . . . , n (15:16)

so that with Equation 15.14

H0(s) ¼ V0

Vin
¼ � a

1þPn
k¼1 Fk

Qk
j¼1 Tj(s)

h i (15:17)

which with Equation 15.16 yields

Hi(s) ¼ Vi

Vin
¼ �Ni(s)

D(s)
¼ � a

Qi
j¼1 Tj(s)

1þPn
k¼1 Fk

Qk
j¼1 Tj(s)

h i i ¼ 1, . . . , n (15:18)

Note that

Hn(s) ¼ Vn

Vin
¼ �Nn(s)

D(s)
¼ � a

Qn
j¼1 Tj(s)

1þPn
k¼1 Fk

Qk
j¼1 Tj(s)

h i (15:19)

is the transfer function of the FLF network without the output summer, i.e., with Roi¼1 for all i.
By Equation 15.19, the transmission zeros of Hn(s) are set by the zeros of Tj(s), i.e., by the feedforward

path, whereas the poles of Hn(s) are determined by the feedback network and involve both the poles and
zeros of the biquads Tj(s) and the feedback factors Fk. Typically, an FLF network is designed with second-
order bandpass biquads

Ti(s) ¼ Ai
s=Qi

s2 þ s=Qi þ 1
¼ Aiti(s) (15:20)

so that Hn(s) has all transmission zeros at the origin, i.e., it is an all-pole bandpass function. Note that in
Equation 15.20 the frequency parameter s is normalized to the pole frequency v0 (v0i¼v0 for all i is
assumed), and Qi and Ai are the section’s pole quality factor and midband gain, respectively. Designing
an FLF network with arbitrary zeros requires second-order sections with finite transmission zeros, which
leads to quite difficult design procedures. It is much simpler to use Equation 15.15 with Equation 15.18
to yield
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H(s) ¼ Vout

Vin
¼ N2n(s)

D2n(s)
¼ a

K0 þ
Pn

k¼1 Kk
Qk

j¼1 Tj(s)
h i

1þPn
k¼1 Fk

Qk
j¼1 Tj(s)

h i (15:21)

which realizes the transfer function of the complete circuit in Figure 15.3 with an arbitrary numerator
polynomial N2n(s), even for second-order bandpass functions Ti(s) as in Equation 15.20. It is a ratio of
two polynomials whose roots can be set by an appropriate choice of the functions Ti(s), the parameters Ki

for the transmission zeros, and the feedback factors Fi for the poles.
We illustrate the design procedure by considering a specific case. For n¼ 3, Equation 15.21

becomes

H(s) ¼ a
K0 þ K1T1 þ K2T1T2 þ K3T1T2T3

1þ F1T1 þ F2T1T2 þ F3T1T2T3
(15:22)

Next we transform the bandpass functions Ti(s) in Equation 15.20 into lowpass functions by the lowpass-
to-bandpass transformation (see Chapter 3)

p ¼ Q
s2 þ 1

s
(15:23)

where
Q¼v0 =B is the ‘‘quality factor’’ of the high-order bandpass with bandcenter v0 and bandwidth B
p is the normalized lowpass frequency

This step transforms the bandpass functions (Equation 15.20) with all identical pole frequencies v0 into
the first-order lowpass functions

TiLP(p) ¼ AiQ=Qi

pþ Q=Qi
¼ qi

pþ qi
(15:24)

where
qi¼Q=Qi

Ai is the dc gain of the lowpass section

Applying Equation 15.23 to the prescribed function H(s) of order 2n in Equation 15.22 converts it into a
prototype lowpass function HLP(p) of order n. Substituting Equation 15.24 into the numerator and
denominator expressions of that function, of order n¼ 3 in our case, shows that the zeros and poles,
respectively, are determined by

N3(p) ¼ aK0

Y3
j¼1

(pþ qj)þ
X2
j¼1

kj
Y3
i¼jþ1

(pþ qi)

" #
þ k3 (15:25a)

and

D3(p) ¼
Y3
j¼1

(pþ qj)þ
X2
k¼1

fk
Y3
i¼kþ1

(pþ qi)

" #
þ f3 (15:25b)
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where we introduced the abbreviations

fi ¼ Fi
Yi
j¼1

Ajqj and ki ¼ aKi

Yi
j¼1

Ajqj (15:26)

To realize the prescribed third-order function

HLP(p) ¼ Vo

Vi
¼ a3p3 þ a2p2 þ a1pþ a0

p3 þ b2p2 þ b1pþ b0
(15:27)

we compare coefficients between Equations 15.25 and 15.27. For the denominator terms we obtain

b2 ¼ q1 þ q2 þ q3 þ f1
b1 ¼ q1q2 þ q1q3 þ q2q3 þ f1(q2 þ q3)þ f2
b0 ¼ q1q2q3 þ f1q2q3 þ f2q3 þ f3

These are three equations in six unknowns, fi and qi, i¼ 1, . . . , 3, which can be written more conveniently
in matrix form:

1 0 0
q2 þ q3 1 0
q2q3 q3 1

0
@

1
A f1

f2
f3

0
@

1
A ¼

b2 � (q1 þ q2 þ q3)
b1 � (q1q2 þ q1q3 þ q2q3)

b0 � q1q2q3

0
@

1
A (15:28)

The transmission zeros are found via an identical process: the unknown parameters ki are computed
from an equation of the form (Equation 15.28) with fi replaced by ki=(aK0) and bi replaced by ai=a3,
i¼ 1, . . . , 3. Also, K0¼ a3=a.

The unknown parameters fi can be solved from the matrix expression (Equation 15.28). It is a set of
linear equations whose coefficients are functions of the prescribed coefficients bi and of the numbers qi
which for given Q are determined by the quality factors Qi of the second-order sections Ti(s). Thus, the Qi

are free parameters that may be selected to satisfy any criteria that may lead to a better-working circuit.
The free design parameters may be chosen, for example, to reduce a circuit’s sensitivity to element
variations. This leads to a multiparameter (i.e., the n Qi-values) optimization problem whose solution
requires the availability of the appropriate computer algorithms. If such software is not available, specific
values of Qi can be chosen. The design becomes particularly simple if all the Qi-factors are equal, a choice
that has the additional practical advantage of resulting in all identical second-order building blocks,
Ti(s)¼T(s). For this reason, this approach has been referred to as the ‘‘Primary Resonator Block’’ (PRB)
technique. The passband sensitivity performance of PRB circuits is almost as good as that of fully
optimized FLF structures. The relevant equations are derived in the following:
With qi¼ q for all i we find from Equation 15.28

1 0 0
2q 1 0
q2 q 1

0
@

1
A f1

f2
f3

0
@

1
A ¼

b2 � 3q
b1 � 3q2

b0 � q3

0
@

1
A (15:29)

It shows that

F1A1q ¼ f1 ¼ b2 � 3q

F2A1A2q
2 ¼ f2 ¼ b1 � 3q2 � 2q f1

F3A1A2A3q
3 ¼ f3 ¼ b0 � q3 � q2f1 � q f2

(15:30)
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The system (Equation 15.30) represents three equations for the four unknowns, q, fi, i¼ 1, . . . , 3,
(in general, one obtains n equations for nþ 1 unknowns) so that one parameter, q, can still be used
for optimization purposes. This single degree of freedom is often eliminated by choosing

q ¼ bn�1

nbn
(15:31a)

i.e., q¼ b2=3 in our example, which means f1¼ 0. The remaining feedback factors can then be computed
recursively from Equation 15.30. The systematic nature of the equations makes it apparent how to
proceed for n> 3. As a matter of fact, it is not difficult to show that, with f1¼ 0, in general

f2 ¼ bn�2 � n(n� 1)
2!

q2bn (15:31b)

fi ¼ bn�i � qi

(n� i)!
n!
i!
bn þ

Xi�1

j¼1

fj
qj

(n� j)!
(i� j)!

" #
i ¼ 3, . . . , n (15:31c)

Note that bn usually equals unity. As mentioned earlier, equations of identical form, with fi replaced by
ki=(aK0) and bi by ai=an with K0¼ an=a, are used to determine the summing coefficients Ki of the output
summer, which establishes the transmission zeros. Thus, given a geometrically symmetrical bandpass
function with center frequency v0, quality factor Q, and bandwidth B, Equation 15.31 can be used to
calculate the parameter q and all feedback and summing coefficients required for a PRB design. All
second-order bandpass sections, Equation 15.20, are tuned to the same pole-frequency, v¼v0, and have
the same pole quality factor, Qp¼Q=q, where Q¼v0=B.
As discussed, the design procedure computes only the products fi and ki; the actual values of Fi, Ki, and

Ai are not uniquely determined. As a matter of fact, the gain constants Ai are free parameters that are
selected to maximize the circuit’s dynamic range in much the same way as for cascade designs.* With a
few simple approximations, it can be shown [5, Chapter 6] that the appropriate choice of gain constants
in the FLF circuit is

Ai �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ (Qi=Q)

2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q�2

i

q
i ¼ 1, . . . , n (15:32a)

The same equation holds for the PRB case where Qi¼Qp for all i so that

Ai ¼ A �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ (Qp=Q)

2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q�2

p
(15:32b)

The following example demonstrates the complete FLF (PRB) design process.
Let us illustrate the multiple-loop feedback procedure by realizing again the bandpass function (Equa-

tion 15.10), but now as an FLF (PRB) circuit. The previous data specify that the bandpass function
should be converted into a prototype lowpass function with bandcenter v0=(2p) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 � 36p

kHz and
bandwidth B=(2p)¼ (36� 12) kHz by the transformation Equation 15.23,

p ¼ Q
s2 þ 1

s
¼ v0

B
s2 þ 1

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
12:36

p

36� 12
s2 þ 1

s
¼ 0:866

s2 þ 1
s

(15:33)

* For practical FLF (PRB) designs, this step of scaling the signal levels is very important because an inadvertently poor choice
of gain constants can result in very large internal signals and, consequently, very poor dynamic range.
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where s is normalized by v0 as before. Substituting Equation 15.33 into Equation 15.10 results in

HLP(s) ¼ 0:491
p3 þ 0:984p2 þ 1:236pþ 0:491

(15:34)

which corresponds to Equation 15.27 with ai¼ 0, i¼ 1, 2, 3. To realize this function, we need three first-
order lowpass sections of the form (Equation 15.24), i.e.,

TLP(p) ¼ A
q

pþ q
(15:35)

where A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=q2

p
from Equation 15.32b. We proceed with Equation 15.31a to choose

q¼ 0.984=3¼ 0.328, so that A¼ 3.209. With these numbers, we can apply Equation 15.33 to Equation
15.35 to obtain the second-order bandpass that must be realized:

TBP(p) ¼ 3:209
0:328

0:866 s2þ1
s þ 0:328

¼ 1:2153s
s2 þ 0:379sþ 1

(15:36)

The feedback resistors we obtain by Equation 15.30:

1:052F1 ¼ f1 ¼ 0 ! F1 ¼ 0

1:108F2 ¼ f2 ¼ b1 � 3q2 ¼ 0:913 ! F2 ¼ 0:777

1:166F3 ¼ f3 ¼ b0 � q3 � qf2 ¼ 0:371 ! F3 ¼ 0:318

(15:37)

Choosing, e.g., RF0¼ 10 kV results in RFi¼RF0=Fi, that is, RF1¼1, RF2¼ 12.9 kV, and RF3¼ 31.5 kV.
Also, RF0 =Rin¼a¼ 0.491 (Aq)�3¼ 0.421 ! Rin¼ 23.7 kV.

There remains the choice of second-order bandpass sections. Notice from Equation 15.19 that the
sections must have positive, i.e., noninverting, gain to keep the feedback loops stable. We choose GIC
(general impedance converter) sections [5, Chapter 4], [9, Chapter 4.5], one of which is shown explicitly
in Figure 15.4. They realize

T(s) ¼ Vo

Vi
¼

1þ G3
G2

� �
G1
C s

s2 þ G1
C sþ G

C

� �2 G3
G2

¼ K v0
Q s

s2 þ v0
Q sþ v2

0
(15:38)

Rin
RF0

RF2

RF3

R1 R1 R2

R3

+

+

–

–
+
–

R C
C

T

T

TVi
Vo

FIGURE 15.4 PRB topology with three identical GIC bandpass sections. The circuit for one section is shown
explicitly, as is the input summer with the feedback resistors.
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Comparing Equation 15.38 with Equation 15.36, choosing R3¼ 5 kV, C¼ 2 nF, and remembering that s
is normalized with respect to v0¼ 130,590 s�1 results in the rounded values

R ¼ 5:5 kV R1 ¼ 10 kV R2 ¼ 10 kV

15.3.2 Leapfrog Topology

The LF configuration is pictured in Figure 15.5. Each of the boxes labeled Ti realizes a second-order
transfer function. The feedback loops always comprise two sections; thus, inverting and noninverting
sections must alternate to keep the loop gains negative and the loops stable. If the circuit is derived from a
resistively terminated lossless ladder filter as is normally the case, T1 and Tn are lossy and all the internal
sections are lossless. A lossless block implies a function Ti with infinite Q, which may not be stable by
itself, but the overall feedback connection guarantees stability.
An LF circuit can be derived from the configuration in Figure 15.5 by direct analysis with, e.g.,

bandpass transfer functions as in Equation 15.20 assumed for the blocks Ti. Comparing the resulting
equation with that of a prescribed filter yields expressions that permit determining all circuit parameters
in a similar way as for FLF filters [1]. Because the topology is identical to that derived from a signal-flow
graph representation of an LC ladder filter, we do not consider the details of the LF approach here, but
instead proceed directly to the ladder simulation techniques.

15.4 Ladder Simulations

Although transfer functions of LC ladders are more restrictive than those realizable by cascade circuits
(see footnote in Section 15.2), lossless ladder filters designed for maximum power transfer have received
considerable attention in the active filter literature because of their significant advantage of having the
lowest possible sensitivities to component tolerances in the passband. Indeed, the majority of high-order
active filters with demanding specifications are being designed as simulated LC ladders. Many active
circuit structures have been developed, which simulate the performance of passive LC ladders and inherit
their good sensitivity performance. The ladder simulations can be classified into two main groups:
operational simulation and element substitution. Starting from an existing LC prototype ladder, the
operational simulation models the internal operation of the ladder by simulating the circuit equations,
i.e., Kirchhoff’s voltage and current laws and the I–V relationships of the ladder arms. Fundamentally,
this procedure simulates the signal-flow graph (SFG) of the ladder where all voltages and all currents
are considered signals, which are integrated on the inductors and capacitors, respectively. The SFG
method is developed in Section 15.4.1. The element substitution procedure replaces all inductors or
inductive branches by active networks whose input impedance is inductive over the frequency range of
interest. A practical approach to this method is presented in Section 15.4.3. For more detailed discussions
of these important and practical procedures, we refer the reader to a modern text on active filters, such
as Refs. [5,6,9] and, for approaches using operational transconductance amplifiers, to Section 16.3.

in T1 –T2 –Ti –Tn
out+ + ++

FIGURE 15.5 Leapfrog topology.
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15.4.1 Signal-Flow Graph Methods

To derive the SFG method, consider the ladder structure in Figure 15.6, whose branches may contain
arbitrary combinations of capacitors and inductors. In general, resistors are permitted to allow for lossy
components. Labeling the combination of elements in the series arms as admittances Yi, i¼ 2, 4, and
those in the shunt branches as impedances Zj, j¼ 1, 3, 5, we can readily analyze the ladder by writing
Kirchhoff’s laws and the I–V relationships for the ladder arms as follows:

Ii ¼ Gi(Vi � V1) V1 ¼ Z1I1 ¼ Z1(Ii � I2)

I2 ¼ Y2V2 ¼ Y2(V1 � V3) V3 ¼ Z3I3 ¼ Z3(I2 � I4)

I4 ¼ Y4V4 ¼ Y4(V3 � V5) V5 ¼ Vo ¼ Z5I5 ¼ Z5(I4 � I6) I6 ¼ GoVo

(15:39)

In the active simulation of this circuit, all currents and voltages are to be represented as voltage signals.
To reflect this in the expressions, we use a resistive scaling factor R as shown in one of these equations as
an example:

V3 ¼ Z3

R
I3R ¼ Z3

R
(I2R� I4R) (15:40)

and introduce the notation

IkR ¼ ik Vk ¼ vk GiR ¼ gi Zk=R ¼ zk YkR ¼ yk (15:41)

The lower-case symbols are used to represent the scaled quantities; notice that zk and yk are dimensionless
voltage transfer functions, also called transmittances, and that both ik and vk are voltages. We shall retain
the symbol ik to remind ourselves of the origin of that signal as a current in the original ladder. Equation
15.39 then takes on the form

ii ¼ gi vi þ (�v1)½ � �v1 ¼ �z1 i1 ¼ �z1 ii þ (�i2)½ �
�i2 ¼ y2(�v2) ¼ y2 (�v1)þ v3½ � v3 ¼ �z3(�i3) ¼ �z3 (�i2)þ i4½ �

i4 ¼ y4 v4 ¼ y4 v3 þ (�v5)½ � �v5 ¼ �vo ¼ �z5i5 ¼ �z5 i4 þ (�i6)½ � �i6 ¼ go(�vo)

(15:42)

where we have made all the transmittances zi inverting and assigned signs to the signals in a consistent
fashion, such that only signal addition is required in the circuit to be derived from these equations. We
made this choice because addition can be performed at op-amp summing nodes with no additional
circuitry (see below), whereas subtraction would require either differential amplifiers or inverters. The
price to be paid for this convenience is that in some cases the overall transfer function suffers a sign
inversion (a 1808 phase shift), which is of no consequence in most cases. The signal-flow block diagram

Gi Ii

+ +

I2
Y2 Y4 I6

I5

I4

I3V2
I1

Z1V1

Vi
V3 Z3 Z5 G0

V0

V4

V4

FIGURE 15.6 Ladder network.
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implementing Equation 15.42 is shown in Figure 15.7. As is customary, all voltage signals are drawn at
the bottom of the diagram, and those derived from currents at the top. We observe that the circuit
consists of a number of interconnected loops of two transmittances each and that all loop-gains are
negative as required for stability. Notice that redrawing this figure in the form of Figure 15.5 results in an
identical configuration, i.e., as mentioned earlier, the leapfrog method is derived from a ladder simulation
technique.
To determine how the transmittances are to be implemented, we need to know which elements are in

the ladder arms. Consider first the simple case of an all-pole lowpass ladder where Zi¼ 1=(sCi) and
Yj¼ 1=(sLj), i.e., zi¼ 1=(sCiR) and yi¼ 1=(sLi=R) (see Figure 15.11). Evidently then, for this case all
transmittances are integrators. Suitable circuits are shown in Figure 15.8 where for each integrator we
have used two inputs in anticipation of the final realization, which has to sum two signals as indicated in
Figure 15.7. The circuits realize

Vo ¼ �G1V1 þ G2V2

sC þ G3
(15:43)

where the plus sign is valid for the series transmittances yi(s) in Figure 15.8b and the minus sign for the
shunt transmittances zi(s)* in Figure 15.8a. G3 is zero if the integration is lossless as required in an
internal branch of the ladder; in the two end branches, G3 is used to implement the source and load
resistors of the ladder.

ii

gi

Vi

go

–i2

V3–V1 –V5 –V0

–z1 y2 –z3 –z5y4

i4 –i6+

+ + +

+ +

FIGURE 15.7 Signal-flow graph block diagram realizing Equation 15.42.

r
r

VoVo

(b)(a)

V1 V1

V2 V2

R2

R1 R1 –

–

+

+

–
+

R2

C C

R3
R3

FIGURE 15.8 (a) Inverting lossy Miller integrator; (b) noninverting lossy phase-lead integrator.

* These two circuits are good candidates for building two-integrator loops as required in Figure 15.7 because the op-amp in
the Miller integrator causes a phase lag, whereas the op-amps in the noninverting integrator cause a phase lead of the same
magnitude. In the loop, these two phase shifts just cancel and cause no errors in circuit performance. Notice that the
Åckerberg–Mossberg biquad in Figure 15.2 is also constructed as a loop of these two integrators.
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The next question to be answered is what circuitry will realize more general ladder arms which may
contain both series and parallel LC elements, and resistors to handle the source or load terminations
(or losses if required). Such general series and shunt branches are shown at the bottom of Figures 15.9
and 15.10, respectively, where we have labeled the capacitors in the passive network as ‘‘Ĉ’’ to be able to
distinguish them from the capacitors in the active circuit (labeled C without circumflex). We have chosen
the signs of the relevant voltages and currents in Figures 15.9 and 15.10 appropriately to obtain

Rk
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Vo1
Vo2

Vo3

V1 L4

Vi2

–V2

Ri1

LoL1

Vi1

R3 R2

R0

Rc2
Rc3
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r

r

r
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+
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–
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ˆ
ˆ

FIGURE 15.9 Active realization of a series ladder branch (plus sign in Equation 15.46).
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FIGURE 15.10 Active realization of a shunt ladder branch minus sign in Equation 15.46.
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noninverting transmittances y(s) for the series arms and inverting transmittances z(s) for the shunt arms
as requested in Figure 15.7. Recall that this choice permits the flowgraph to be realized with only
summing functions. For easy reference, the active RC circuits realizing these branches are shown directly
above the passive LC arms [5, Chapter 6], [9, Chapter 15].

The passive series branch in Figure 15.9 realizes the current Io

IoRp ¼ þY(s)Rp(aV1 þ bV2)

¼ þ 1
Rk=Rp þ sL1=Rp þ 1

sĈ2Rp
þ 1

sĈ3Rpþ 1
sL4=Rp

(aV1 þ bV2) (15:44a)

which was converted into a voltage through multiplication with a scaling resistor Rp (p stands for passive;
Rp is the resistor used to scale the passive circuit). Also, we have multiplied the input signals by two
constants, a and b, in anticipation of future scaling possibilities in the active circuit. Using, as before,
lower-case symbols for the normalized variables, we obtain for the series branch

io ¼ þy(s)(av1 þ bv2) ¼ þ 1
rk þ sl1 þ 1

sc2
þ 1

sc3þ 1
sl4

(av1 þ bv2) (15:44b)

In an analogous fashion we find for the voltage Vo in the passive shunt branch in Figure 15.10, after
impedance-level scaling with Rp and signal-level scaling with a and b, the expression

Vo ¼ �Z(s)
Rp

(aI1Rp þ bI2Rp)

¼ � 1

GkRp þ sĈ1Rp þ 1
sL2=Rp

þ 1
sL3=Rpþ 1

sĈ4Rp

(aI1Rp þ bI2Rp) (15:45a)

which with lower-case notation gives

vo ¼ �z(s)(ai1 þ bi2) ¼ � 1
gk þ sc1 þ 1

sl2
þ 1

sl3þ 1
sc4

(ai1 þ bi2) (15:45b)

Turning now to the active RC branches in Figures 15.9 and 15.10, elementary analysis of the two circuits,
assuming ideal op-amps,* results in

Vo ¼ � RaGi1Vi1 þ RaGi2Vi2

RaG0 þ sC1Ra þ RaG2
sC2Rc2

þ RaG3

sC3Rc3þG4Rc3
sC4Rc4

(15:46)

where we used a normalizing resistor Ra (a stands for active; Ra is the resistor used to scale the active
circuit). In Equation 15.46 the plus sign is valid for the series arm, Figure 15.9, and the minus sign for the
shunt arm, Figure 15.10.

* Using a more realistic op-amp model, A(s)�vt=s, one can show [5, Chapter 6] that Equation 16.46 to a first-
order approximation is multiplied by (1þ jv=vt)� exp(jv=vt) for the series arm (plus sign in Equation 16.46) and by
(1 – jv=vt)� exp(–jv=vt) for the shunt arm [minus sign in Equation 16.46]. Thus, in the loop gains determined by the
product of an inverting and a noninverting branch, op-amp effects cancel to a first order, justifying the assumption of
ideal op-amps. See footnote in Section 15.4.1.
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Notice that Equation 15.46 is of the same form as Equations 15.44 and 15.45 so that we can
compare the expressions term-by-term to obtain the component values required for the active circuit
(s) to realize the prescribed passive ladder arms. Thus, we find for the series branch, Figure 15.9, by
comparing coefficients between Equations 15.46 and 15.44a, and assuming all equal capacitors C in the
active circuit:

Ri1 ¼ Ra

a
Ri2 ¼ Ra

b
R0 ¼ RaRp

Rk
C ¼ L1

RaRp

Rc2R2 ¼ Ĉ2

C
RaRp Rc3R3 ¼ Ĉ3

C
RaRp Rc4R4 ¼ L4Ĉ3

C2

(15:47a)

In an identical fashion we obtain from Equations 15.46 and 15.45a for the components of the shunt arm

Ri1 ¼ Ra

a
Ri2 ¼ Ra

b
R0 ¼ Rk

Ra

Rp
C ¼ Ĉ1

Rp

Ra

Rc2R2 ¼ L2
C

Ra

Rp
Rc3R3 ¼ L3

C
Ra

Rp
Rc4R4 ¼ L3Ĉ4

C2

(15:47b)

The scaling resistors Ra and Rp are chosen to obtain convenient element values. Note that each of the last
three equations for both circuits determines only the product of two resistors. This leaves three degrees of
freedom that are normally chosen to maximize dynamic range by equalizing the maximum signal levels
at all op-amp outputs. We provide some discussion of these matters in Section 15.4.2.
We have displayed the active and passive branches in Figures 15.9 and 15.10 together to illustrate the

one-to-one correspondence of the circuits. For example, if we wish to design an all-pole lowpass filter,
such as the one in Figure 15.11, where the internal series arms consist of a single inductor and each
internal shunt arm of a single capacitor, the corresponding active realizations reduce to those of Figure
15.8b and a, respectively, with R3¼1. For the end branches, Rs in series with L1 and Rl in parallel with
Ĉ4, we obtain the circuits in Figure 15.8b and a, respectively, with R3 finite to account for the source and
load resistors. The remaining branches in the active circuits are absent. Assembling the resulting circuits
as prescribed in Figure 15.7 leads to the active SFG filter in Figure 15.12, where we have for convenience
chosen all identical capacitors, C, and have multiplied the input by an arbitrary constant K because the
active circuit may realize a gain scaling factor. The component values are computed from a set of
equations similar to Equation 15.47. To show in some detail how they are arrived at, we derive the
equations for each integrator in Figure 15.12 and compare them with the corresponding arm in the
passive ladder. Recalling that signals with lower-case symbols in the active circuit are voltages, we obtain

G1RaVin þ G2Ra(�v2)
sCRa þ G3Ra

! KVin � V2

sL1=Rp þ Rs=Rp
(15:48a)

G4Rai1 þ G5Ra(�i3)
sCRa

! I1 � I3
sĈ2Rp

(15:48b)

l1 l3

L3L1Rs

RIC4C2

V4V2

VoutVin

+
+
–

ˆ ˆ

FIGURE 15.11 Fourth-order all-pole lowpass ladder.
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G6Ra(�v2)þ G7RaVout

sCRa
! �V2 þ V4

sL3=Rp
(15:48c)

G8Ra(�i3)
sCRa þ G9Ra

! �i3
sĈ4Rp þ Rp=Rl

(15:48d)

where we used scaling resistors for the active (Ra) and the passive (Rp) circuits as before. Choosing a
convenient value for C in the active circuit and equating the time constants and the dc gains in Equation
15.48a results in the following expressions:

R3 ¼ L1
C

1
Rs

R1 ¼ R3
Rs

KRp
R2 ¼ R3

Rs

Rp
(15:49a)

Similarly,

R4 ¼ R5 ¼ Ĉ2

C
R6 ¼ R7 ¼ L3

C
1
Rp

R8 ¼ Ĉ4

C
R9 ¼ Ĉ4

C
Rl ¼ Rl

Rp
R8 (15:49b)

15.4.2 Maximization of the Dynamic Range

The remaining task in a signal-flow graph simulation of an LC ladder is that of voltage-level scaling for
dynamic range maximization. As in cascade design, we need to achieve that all op-amps in 0�v�1 see
the same maximum signal level so that no op-amp becomes overdriven sooner than any other one. It may
be accomplished by noting that a scale factor can be inserted into any signal line in a signal-flow graph as
long as the loop gains are not changed. Such signal-level scaling will not affect the transfer function except
for an overall gain factor. The procedure can be illustrated in the flow diagram in Figure 15.7. If we
simplify the circuit by combining the self-loops at input and output and employ the scale factors a, b, g,
d and their inverses to the loops in Figure 15.7, we obtain the modified flow diagram in Figure 15.13.
Simple analysis shows that the transfer function has not changed except for a multiplication by the factor
abgd, which is canceled by the multiplier (abgd)�1 at the input. To understand how the scale factors are

R8

R9

VoutK Vin

R5 3R4i1 –i

r

r

r

r

R2

R3

R6
–V2 R7R1

C
C

CC

+– +–
+–

+ –+ –

+ –

FIGURE 15.12 Active realization of the ladder in Figure 15.11.
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computed, assume that in Figure 15.7, i.e., before scaling, the maximum of ji4( jv)j is a times as large as
the maximum of jvo( jv)j, where a may be less than or larger than unity. Since

�vo ¼ �z5
1þ z5go

i4

the maxima can be equalized, i.e., the level of vo can be increased by a, if we apply a gain scale factor a as
indicated in Figure 15.13. To keep the loop gain unchanged, a second scale factor a�1 is inserted as
shown. Continuing, if in Figure 15.7 max jv3( jv)j is b times as large as max ji4( jv)j, we raise the level of
ji4j by a gain factor b and correct the loop gain by a second factor b�1 as shown in Figure 15.13. In a
similar fashion we obtain the maxima of the remaining voltages and apply the appropriate scale factors
g, d, g�1, and d�1 in Figure 15.13.

It is easy to determine the relevant maxima needed for calculating the gain factors. Recall that the node
voltages vi, v1, i2, v3, i4, and v5¼ vo in the signal-flow graph of Figure 15.13 correspond directly to the
actual currents and voltages in the original ladder, Figure 15.6, and that their maxima in 0�v�1 can
be evaluated readily with any network analysis program. For the circuit in Figure 15.13, the scale factors
that ensure that the currents (normalized by Rp) in all series ladder arms and the voltages in all shunt
ladder arms have the same maxima are then obtained as

a ¼ max i4j j
max voj j b ¼ max v3j j

max i4j j g ¼ max i2j j
max v3j j d ¼ max v1j j

max i2j j (15:50)

The procedure thus far takes care of ladders with only one element in each branch, such as all-pole
lowpass filters (Figure 15.11). In the more general case, we must also equalize the maxima of the
magnitudes of Vo1, Vo2, and Vo3 at the internal op-amp outputs in Figures 15.9 and 15.10. This is
achieved easily if we remember that the ‘‘external’’ voltage maxima of jVi1j, jVi2j, and jVoj are already
equalized by the previous steps leading to Equation 15.50, and that in the passive series branch Vo1

represents the voltage on Ĉ2, Vo2 stands for the voltage on Ĉ3, and Vo3 corresponds to the current (times
Rp) through the inductor L4. After finding the maxima of these signals with the help of a network analysis
program and computing the scale factors

m1 ¼ max Vo1j j
max Voj j m2 ¼ max Vo2j j

max Voj j m3 ¼ max Vo3j j
max Voj j (15:51)

we can equalize all internal branch voltages of the series arm (Figure 15.9) by modifying the design
Equations 15.47a as follows [5, Chapter 6]:

vi gi

1+z5 go

+ +

++(αβγδ)–1 γδ–1

δ γ–1 α–1

β–1
–i2

–z5

i4

–v0v3

–z3y2 y41+z1 gi

–z1

–v1
β

α

FIGURE 15.13 Using scale factor for signal-level equalization.
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Ri1 ¼ Ra

a
Ri2 ¼ Ra

b
R0 ¼ RaRp

Rk
C ¼ L1

RaRp

m1Rc2
R2

m1
¼ Ĉ2

C
RaRp m2Rc3

R3

m2
¼ Ĉ3

C
RaRp

m3

m2
Rc4

R4

m3=m2
¼ L4Ĉ3

C2

(15:52)

A possible choice for the element values given by products is

m1Rc2 ¼ R2

m1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĉ2

C
RaRp

s
m2Rc3 ¼ R3

m2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĉ3

C
RaRp

s

m3

m2
Rc4 ¼ m2

m3
R4 ¼

ffiffiffiffiffiffiffiffiffiffi
L4Ĉ3

p
C

(15:53a)

In the passive shunt branch, Vo1 and Vo2 represent the currents (times Rp) through the inductors L2 and
L3, respectively, and Vo3 stands for the voltage across Ĉ4. In an identical fashion we obtain then with
Equation 15.50 from Equation 15.47b for the components of the shunt arm

Ri1 ¼ Ra

a
Ri2 ¼ Ra

b
R0 ¼ Rk

Ra

Rp
C ¼ Ĉ1

Rp

Ra

m1Rc2 ¼ R2

m1
¼

ffiffiffiffiffiffiffiffiffiffiffi
L2
C

Ra

Rp

s
m2Rc3 ¼ R3

m2
¼

ffiffiffiffiffiffiffiffiffiffiffi
L3
C

Ra

Rp

s

m3

m2
Rc4 ¼ m2

m3
R4 ¼

ffiffiffiffiffiffiffiffiffiffi
L3Ĉ4

C

s (15:53b)

Next we present an example [2], [5, Chapter 6] in which the reader may follow the different steps
discussed.
To simulate the fourth-order elliptic lowpass ladder filter in Figure 15.14a by the signal-flow graph

technique, we first reduce the loop count by a source transformation. The resulting circuit, after

5.534 μF

32.74 μF

Rl/RpL4/Rp

I4Rp
L2/Rp

C1Rp C3Rp

C2Rp
I2RpV1

Vi

V3

Vo

44.18 μF
0.333 Ω

1Ω

(a)

(b)

13.09 μH

12.22 μH

++

Rp

Rs
Rs
Rp

ˆ

ˆˆ

FIGURE 15.14 (a) Fourth-order elliptic LC lowpass ladder; (b) the circuit after source transformation and
impedance scaling.
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impedance scaling, is shown in Figure 15.14b. To use signal-level scaling for optimizing the dynamic
range, the relevant maxima of the LC ladder currents and voltages are needed. Table 15.1 lists the relevant
data obtained with the help of network analysis software. From these numbers we find

a ¼ max v3j j
max i4Rp

�� �� ¼ 0:69
0:866

¼ 0:797 b ¼ max i2Rp

�� ��
max v3j j ¼ 1:125

0:690
¼ 1:630

g ¼ max v1j j
max i2Rp

�� �� ¼ 0:699
1:125

¼ 0:621

(15:54)

For ease of reference, the signal-flow graph with scaling factors is shown in Figure 15.15. Let Rp¼ 1 V.
Note that the input signal voltage iin¼RpVi=Rs has been multiplied by a factor K to permit realizing an
arbitrary signal gain. If the desired gain is unity, and since the dc gain in the passive LC ladder equals

Vo

Vi
¼ Rl

Rs þ Rl
¼ 0:333

1:333
¼ 0:25

we need to choose K¼ 1=0.25¼ 4. Thus, the input signal ii is multiplied by

K
abg

¼ 4
0:797 � 1:630 � 0:621 ¼ 4:958 (15:55)

The transmittances are defined as

z1 ¼ 1

sĈ1Rp þ GsRp
y2 ¼ 1

1
sĈ2RpþRp=(sLp)

z3 ¼ 1

sĈ3
y4 ¼ 1

sL4=Rp þ Rl=Rp

(15:56)

TABLE 15.1 Voltage and Current Maxima for Figure 15.14a

Voltage or Current Maximum of Voltage or Current

Voltage across Ĉ1 0.699 V

Current through L2 1.550 A

Voltage across Ĉ2 1.262 V

Current through L1kĈ2 1.125 A

Voltage across Ĉ2 0.690 V

Current through L4 0.866 A

–z1 –z3y2 y4

Vout

—V1 V3

iin –i2

K
αβγ

1/γ

1/β

1/αβ

αγ

+ +

+

FIGURE 15.15 Signal-flow graph for the filter in Figure 15.14.
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With the numbers in Equations 15.54 and 15.55 we obtain from the signal-flow graph

�v1 ¼ �z1 4:958iin � 1
0:621

i2

� 	
�i2 ¼ y2 �0:621v1 þ 1

1:630
v3

� 	

v3 ¼ �z3 �1:630i2 þ 1
0:797

vout

� 	
vout ¼ y40:792v3

(15:57)

The reader is encouraged to verify from Equations 15.56 and 15.57 and Figures 15.9 and 15.10 that the
active SFG realization of the ladder is as shown in Figure 15.16. For instance, the circuitry between the
nodes v1, v3, and i2 implements the parallel LC series branch to realize the finite transmission zero,
obtained from Figure 15.9 by setting the components G0, C1, G2, Gc2, and C2 to zero. The element values
in the active circuit are now determined readily by comparing the circuit equations for the active circuit,

�v1 ¼ �G1Ra1iin þ G2Ra1(�i2)
sCRa1 þ G8Ra1

�i2 ¼ G5Ra2(�v1)þ G6Ra2v3
G9Ra2

sCR10þG12R10
sCR11

v3 ¼ �G3Ra3(�i2)þ G4Ra3vo
sCRa3

vo ¼ G7Ra4v3
sCRa4 þ G13Ra4

(15:58)

to Equation 15.57 and using Equation 15.56.* Comparing the coefficients results in

G1Ra1 ¼ 4:958 G2Ra1 ¼ 1
0:621

G5Ra2 ¼ 0:621 G6Ra2 ¼ 1
1:630

G3Ra3 ¼ 1:630 G4Ra3 ¼ 1
0:797

G7Ra4 ¼ 0:797

Further,

Ĉ1Rp ¼ CRa1 Ĉ2Rp ¼ C
R9R10

Ra2
Ĉ3Rp ¼ CRa3

L4
Rp

¼ CRa4

Thus, with Rp¼ 1 V and choosing C¼ 5 nF,

R8

R9

iin

R5

R4

–v1

–i2

–Vo
Vo3

Vo2

vo

v3

r

r

r

r

R2 R3

R6 R7

R1

R13

R10R12

R11

C C

C
C

C

+– +–

+–

+–
+ –

+ –

+ –

+ –

FIGURE 15.16 Active realization of the circuit in Figure 15.14.

* Observe that for greater flexibility we permitted a different scaling resistor Rai, i¼ 1, . . . , 4, in each branch.
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Ra1 ¼ Ĉ1

C
Rp ¼ 6:55 kV Ra3 ¼ Ĉ3

C
Rp ¼ 8:84 kV Ra4 ¼ L4

CRp
¼ 2:44 kV

Ra2 is undetermined; choosing Ra2¼ 5 kV leads to the feed-in resistors for each branch

R1 ¼ Ra1

4:958
¼ 0:800 kV R2 ¼ 0:621Ra1 ¼ 4:07 kV R3 ¼ Ra3

1:630
¼ 5:42 kV

R4 ¼ 0:797 Ra3 ¼ 7:05 kV R5 ¼ Ra2

0:621
¼ 8:05 kV

R6 ¼ 1:630 Ra3 ¼ 8:15 kV R7 ¼ Ra4

0:797
¼ 3:06 kV

The remaining components are determined from the equations

R8 ¼ Rs
Ra1

Rp
¼ 6:55 kV R13 ¼ Ra4Rp

Rl
¼ 7:33 kV

and

R9R10 ¼ RpRa2
Ĉ2

C
¼ (2:35 kV)2 R11R12 ¼ L2

C
R9R10

Ra2Rp
¼ (1:70 kV)2

Since only the products of these resistors are given, we select their values uniquely for dynamic range
maximization. According to Equation 15.51 we compute from Table 15.1

m2 ¼ max vc2j j
max i2j j ¼ 1:262

1:125
¼ 1:12 and m3 ¼ max iL2j j

max i2j j ¼
1:550
1:125

¼ 1:38

to yield from Equation 15.53a:

R9 ¼ m2 2:35 kV ¼ 2:64 kV R10 ¼ 2:35 kV
m2

¼ 2:10 kV

R11 ¼ m2

m3
1:70 kV ¼ 1:38 kV R12 ¼ m3

m2
1:70 kV ¼ 2:09 kV

15.4.3 Element Substitution

LC ladders are known to yield low-sensitivity filters with excellent performance, but high-quality
inductors cannot be implemented in microelectronic form. An appealing solution to the filter design
problem is, therefore, to retain the ladder structure and to simulate the behavior of the inductors by
circuits consisting of resistors, capacitors, and op-amps. A proven technique uses impedance converters,
electronic circuits whose input impedance is proportional to frequency when loaded by the appropriate
element at the output. The best-known impedance converter is the gyrator, a two-port circuit whose
input impedance is inversely proportional to the load impedance, i.e.,

Zin(s) ¼ r2

ZL(s)
(15:59)

The parameter r is called the gyration resistance. Clearly, when the load is a capacitor, ZL(s)¼ 1=(sC),
Zin(s)¼ sr2C is the impedance of an inductor of value L¼ r2C. Gyrators are very easy to realize with
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transconductors (voltage-to-current converters) and are widely used in transconductance-C filters; see
Section 16.3. However, no high-quality gyrators with good performance beyond the audio range have
been designed to date with op-amps. If op-amps are to be used, a different kind of impedance converter is
employed, one that converts a load resistor RL into an inductive impedance, such that

Zin(s) ¼ (sk)RL (15:60)

A good circuit that performs this function is Antoniou’s general impedance converter (GIC) shown in
Figure 15.17a. The circuit, with elements slightly rearranged, was encountered in Figure 15.4, where we
used the GIC to realize a second-order bandpass function. The circuit is readily analyzed if we recall that
the voltage measured between the op-amp input terminals and the currents flowing into the op-amp
input terminals are zero. Thus, we obtain from Figure 15.17a the set of equations

Vo ¼ Vi
I4
sC

¼ I3R I2R ¼ I1R1 I2 ¼ I3 Ii ¼ I1 I4 ¼ Io (15:61)

These equations indicate that the terminal behavior of the general impedance converter is described by

Vo ¼ Vi Io ¼ sCR1Li ¼ skIi (15:62)

that is

Vi

Ii
¼ Zin(s) ¼ sk

Vo

lo
¼ sk ZL(s) (15:63)

Notice that the input impedance is inductive as prescribed by Equation 15.60 if the load is a resistor.*
Figure 15.17b also shows the circuit symbol we will use for the GIC in the following to keep the circuit
diagrams simple. This impedance converter and its function of converting a resistive load into an
inductive input impedance is the basis for Gorski-Popiel’s embedding technique [5, Chapter 6], [9,
Chapter 14.4], which permits replacing the inductors in an LC filter by resistors.

R1 R

RIi
Ii Io

Vi Vo

Vo

Vo = Vi Io = sk Ii

sk : 1

k  = CR1

Vi

(a) (b)

I2

I3 I4 IoI1

A

C

A

1 2 21+ –

+–

FIGURE 15.17 General impedance converter: (a) circuit; (b) symbolic representation.

* To optimize the performance of the GIC, i.e., to make it optimally independent of the finite gain-bandwidth product of the
op-amps, the GIC elements should be chosen as follows: For an arbitrary load ZL(s) one chooses vcC¼ 1=*ZL(jvc)*.
vc is some critical frequency, normally chosen at the upper passband corner. If the load is resistive, ZL¼RL, select
C¼ 1=(vcRL) [6].
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15.4.3.1 Inductor Replacement: Gorski-Popiel’s Method

To understand the behavior of the circuit in Figure 15.18, recall from Equation 15.62 that the voltages at
terminals 1 and 2 of the GICs are the same. Then, by superposition the typical input current Ioi into the
resistive network R can be written as

Ioi ¼ 1
Ri1

V1 þ 1
Ri2

V2 þ � � � þ 1
Rin

Vn ¼
Xn
j¼1

1
Rij

Vj i ¼ 1, . . . , n (15:64)

where the parameters Rij are given by the resistors and the configuration of R. Using the current
relationship Ioi¼ skIi of the impedance converters in Equation 15.64 results in

Ii ¼
Xn
j¼1

1
skRij

Vj i ¼ 1, . . . , n (15:65)

which makes the combined network consisting of the n GICs and the network R look purely inductive,
i.e., each resistor Rr in the network R appears replaced by an inductor of value

Lr ¼ skRr ¼ sCR1Rr (15:66)

Examples of this process are contained in Figure 15.19. Figure 15.19a and b illustrate the conventional
realizations of a grounded and a floating inductor requiring one and two converters, respectively. This is

Resistive

V1
1

1

1

2

2

2In

I2

I1
sk : 1

sk : 1

sk : 1
Ion

Io2

Io1

V2

Vn
R

FIGURE 15.18 Simulation of an inductance network.

(a) (b) (c) (d)

sk : 1sk : 1sk : 1sk : 1 1 : sk1 : sk1 : sk

FIGURE 15.19 Elementary inductance networks and their GIC-R equivalents: (a) grounded inductor (b) floating
inductor (c) inductive T (d) inductive P.
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completely analogous to the use of gyrators, where a grounded inductor requires one gyrator, but a
floating inductor is realized with two gyrators connected back-to-back. Figure 15.19c and d show how the
process is extended to complete inductive subnetworks: the GICs are used to isolate the subnetworks
from the remainder of the circuit; there is no need to convert each inductor separately. The method is
further illustrated with the filter in Figure 15.20. The LC ladder is designed to specifications by use of the
appropriate design tables [4,7] or filter design software [8]. In the resulting ladder, the inductive
subnetworks are separated as shown in Figure 15.20a by the five dashed cuts. The cuts are repaired by
inserting GICs with conversion factor k and the correct orientation (output, terminal 2 in Figure 15.17,
toward the inductors). Note that all GICs must have the same conversion factor k. Finally, the inductors
Li are replaced by resistors of value Li=k as shown in Figure 15.20b. A numerical example will illustrate
the design steps:

Assume we wish to implement a sixth-order bandpass filter with the following specifications:
Maximally flat passband with�3 dB attenuation in 900 Hz� f� 1200 Hz
Transmission zero at fz¼ 1582.5 Hz; source and load resistors R¼ 3 kV

Using the appropriate software or tables, the LC filter in Figure 15.21a is found with element values in
kiloohm, megahertz, and nanofarad. Figure 15.21b shows the circuit redrawn to help identify the
inductive subnetwork and the locations of the cuts. Note that only three impedance converters are
used rather than six (two each for the two floating inductors and one each for the grounded ones), if a
direct conversion of the individual inductors had been attempted.
For the final active realization, we assumed a conversion parameter k¼CR1¼ 30 ms. Finally, to design

the GICs we compute the impedances seen into the nodes where the GICs see the (now) resistive
subnetworks. Using analysis software to compute jVi=Iij at these nodes, we find

for GICa, jZaj � 18 kV, and for GICb and GICc,jZbj � jZcj � 4:7 kV

so that with vc¼ 2p � 1.2 kHz and k¼ 30 ms the design elements are

Ca ¼ 1
vc zaj j � 7:4 nF R1a ¼ k

Ca
� 4 kV Cb ¼ Cc � 28 nF Rb ¼ Rc � 1 kV

To complete the design, we choose the resistors R in Figure 15.17a as R¼ 1 kV.
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FIGURE 15.20 LC ladder realization with GICs: (a) a choice of cuts; (b) the cuts replaced by GICs.
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15.5 Summary

In this chapter, we discussed the more practical techniques for the design of active filters of order higher
than two: cascade design, multiple-loop feedback approaches, and methods that simulate the behavior of
LC ladder filters. We pointed out that direct realization methods are impractical because they result in
high sensitivities to component values. In many applications, a cascade design leads to satisfactory
results. The practical advantages of cascade circuits are modularity, ease of design, flexibility, very simple
tuning procedures, and economical use of op-amps with as few as one op-amp per pole pair. Also, we
pointed out again that an arbitrary transfer function can be realized with the cascade design method, i.e.,
no restrictions are placed on the permitted locations of poles and zeros.
For challenging filter requirements, the cascade topologies may still be too sensitive to parameter

changes. In those cases the designer can use the FLF configuration or, for best performance, a ladder
simulation, provided that a passive prototype ladder exists. FLF circuits retain the advantage of modu-
larity, but if optimal performance is desired, computer-aided optimization routines must generally be
used to adjust the available free design parameters. However, excellent performance with very simple
design procedures, no optimization, and high modularity can be obtained by use of the primary-
resonator-block (PRB) method, where all biquad building blocks are identical.
From the point of view of minimum passband sensitivity to component tolerances, the best active

filters are obtained by simulating LC ladders. If the prescribed transfer characteristic can at all be realized
as a passive LC ladder, the designer can make use of the wealth of available information about the design
of such circuits, and simple procedures are available for ‘‘translating’’ the passive LC circuit into its active
counterpart. We may either take the passive circuit and replace the inductors by active networks, or we
imitate the mathematical behavior of the whole LC circuit by realizing the integrating action of inductors
and capacitors via active RC integrators. Both approaches result in active circuits of high quality; a
disadvantage is that more op-amps may be required than in cascade or FLF methods. This drawback is
offset, however, by the fact that the sensitivities to component tolerances are very nearly as low as those of
the originating ladder.
An alternative method for the active realization of a passive LC ladder is obtained by scaling each

impedance of the passive circuit by 1=(ks) (Bruton’s transformation) [5, Chapter 6], [9, Chapter 14.5].
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FIGURE 15.21 Sixth-order LC bandpass filter and active realization using impedance converters. (a) The LC filter
with element values in kiloohm, megahertz, and nanoforad. (b) The circuit redrawn to help identify the inductive
subnetwork and the locations of the cuts. (c) The final active realization using a conversion parameter
k ¼ CRi ¼ 30ms:
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This impedance transformation converts resistors into capacitors, inductors into resistors, and capacitors
into ‘‘frequency-dependent negative resistors (FDNRs),’’ which can readily be realized with Antoniou’s
GIC circuit. The procedure is especially useful for passive prototype circuits that have only grounded
capacitors because capacitors are converted to FDNRs and floating FDNRs are very difficult to imple-
ment in practice. The method results in biasing difficulties for active elements, and because the entire
ladder must be transformed, the active circuit no longer contains source and load resistors. If these two
components are prescribed and must be maintained as in the original passive circuit, additional buffers
are required. The method was not discussed in this text because it shows no advantages over the Gorski-
Popiel procedure.
An important practical aspect is the limited dynamic range of active filters, restricted by noise and by

the finite linear signal swing of op-amps. Dynamic range maximization should be addressed whenever
possible. Apart from designing low-noise circuits, the procedures always proceed to equalize the op-amp
output voltages by exploiting available free gain constants or impedance scaling factors. It is a disadvan-
tage of the element substitution method that no general dynamic range scaling method appears to be
available.
The methods discussed in this chapter dealt with the design of filters in discrete form, that is, separate

passive components and operational or transconductance amplifiers are assembled on, e.g., a printed
circuit board to make up the desired filter. Chapter 16 addresses modifications in the design approach
that lead to filters realizable in fully integrated form.
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16.1 Introduction

All modern signal-processing systems include various types of electrical filters that the designer has to
realize in an appropriate technology. The literature contains many well-defined filter design techniques
[1–3], and computer programs are available, which help the designer find the appropriate transfer
function that describes the required filter characteristics mathematically. The reader may also refer to
Section I in this book and the other chapters of this section (Section II).
Once the filter’s transfer function is obtained, implementation methods must be found that are

compatible with the technology selected for the design of the total system. In some situations, consid-
erations of power consumption, frequency range, signal level, or production numbers may dictate discrete
(passive or active) filter realizations. Often, however, as much as possible of the total system must be fully
integrated in microelectronic form, so that the filters can be implemented in the same technology.
Often, digital (Section III) or sampled-data (Chapter 18) implementations are suitable for realizing

the filter requirements. However, in modern communications applications, the required frequency range
is so high that digital or sampled-data circuitry is inappropriate or too expensive so that continuous-time
(c-t) filters are necessary. In addition, filters in many signal-processing situations must interface with
the ‘‘real world,’’ where the input and output signals take on continuous values as functions of the
continuous variable time, i.e., they are c-t signals. In these situations c-t antialiasing and reconstruction
filters are often required. Because the performance of the total filter system is of relevance and not
just the performance of the intrinsic filter, the designer may have to consider if it might not be preferable
to implement the entire system in the c-t domain rather than as a digital or sampled-data system.
At least at low frequencies the latter methods have the advantages of very high accuracy, better signal-
to-noise ratio, and little or no parameter drifts, but they entail a number of problems connected with
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analog-to-digital (A=D) and digital-to-analog (D=A) conversion (see Chapter 10 of Analog and VLSI
Circuits), sample-and-hold, switching, antialiasing, and reconstruction circuitry.

Traditionally, c-t filters were implemented as discrete designs. Well-understood procedures exist for
deriving passive LC filters (Section I) from a given transfer function with prescribed complex natural
frequencies, e.g., [1, Chapter 2], [2], [3, Chapter 13]. To date no practical methods exist for building high-
quality, i.e., low-loss, inductors on an integrated circuit (IC) chip.* The required complex natural
frequencies must, therefore, be realized by using gain, i.e., as we saw earlier in this section, by embedding
an operational amplifier (op-amp; see Chapter 16 of Fundamentals of Circuits and Filters) in an RC
feedback network [1,3]. Since op-amps, resistors, and capacitors can be implemented on an integrated
circuit, it appears that with active RC networks the problem of monolithic filter design is solved in
principle: all active devices and any necessary capacitors and resistors can be integrated together on one
silicon chip. Although this conclusion is correct, the designer needs to consider four other factors that
are important in integrated c-t filter design and perhaps are not immediately obvious.
The first item concerns the most important design task for achieving commercially practical designs:

integrated filters must be electronically tunable, preferably by an automatic tuning scheme. Because of its
importance, we shall devote a separate section, Section 16.4, to this topic. The second item deals with the
economics of practical implementations of active filters: in discrete designs, the cost of components and
stocking them usually necessitate designing the filter with a minimum number of active devices. One,
two, or possibly three op-amps per pole pair are used and the smallest number of different (if possible, all
identical) capacitors. In integrated realizations, capacitors are determined by processing mask dimensions
and the number of different capacitor values is unimportant, as long as the element spread is not
excessive. Further, active devices frequently occupy less chip area than passive elements so that it is
often preferable to use active elements instead of passive ones.y Also, the designer should remember that
in IC technology it is not easy to generate accurate absolute component values, but that ratios of
like components, such as capacitor ratios, can be realized very precisely. The third observation pertains
to the fact that filters usually have to share an integrated circuit with other, possibly switched or digital,
systems so that the ac ground lines (power supply and ground wires) are likely to contain switching
transients and generally are noisy. Measuring the analog signals relative to ac ground, therefore, may
result in designs with poor signal-to-noise ratio and low power-supply rejection. The situation is
remedied in practice by building continuous-time filters in fully differential, balanced form, where the
signals are referred to each other as V¼V þ�V� as shown in Figure 16.4b through d. An additional
advantage of this arrangement is that the signal range is doubled (for an added 6 dB of signal-to-noise
ratio) and that the even-order harmonics in the nonlinear operation of the active devices cancel. All filters
in this chapter are understood, therefore, to be designed in fully differential form. Finally, we point out
that communication circuitry is often required to operate at hundreds of megahertz or higher, where
op-amp–based active RC filters will not function because of the op-amps’ limited bandwidth.
Today, c-t filters integrated in bipolar, CMOS, or BiCMOS technology are no longer academic curiosities

but a commercial reality (see Ref. [5] for some recent advances in the field). In the following we discuss the
main methods that have proven to be reliable. First, we presentMOSFET-C filters, whose design methods
resemble most closely the standard active RC procedures discussed in Chapters 11–14; they can, therefore,
be most readily understood by the reader without requiring further background. Next, we introduce the
transconductance-C (also referred to as gm-C) technique, which is currently the predominant method for

* Spiral inductors of a few nanohenry or microhenry in size, however, can be used at gigahertz frequencies. Typically, they
are extremely lossy, with quality factors of the order of only 10. Since such low values of Q are unacceptable for the design
of high-quality selective filters, the inductor losses must be reduced. This is accomplished by placing a simulated negative
resistor (Figure 16.17c) in series or parallel with the inductor. Similarly, since the spiral inductor itself cannot be tuned,
variable current-shunting circuitry is employed to change the effective inductor value; see Ref. [4].

y However, keeping the number of active devices small remains important because active devices consume power and
generate noise.
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c-t integrated filters. Designs based on transconductors lead to filters for the higher operating frequencies
that are important for modern communication systems.

16.2 MOSFET-C Filters

As mentioned in the introduction, the MOSFET-C method follows standard op-amp–based active filter
techniques [6], which, as we saw in previous chapters, rely heavily on the availability of integrators and
summers. The only difference is that the method replaces the resistors used in the conventional active RC
integrating and summing circuitry by MOSFET devices (Figure 16.1) based in the triode (ohmic) region
(VC�VT>VD, see Section 1.2 of Analog and VLSI Circuits). Defining the source (VS), drain (VD),
gate (VC), and substrate (VB) voltages as shown in Figure 16.1, the resulting nonlinear drain current
I becomes

I ¼ W
L
mCox (VC � VT)(VD � VS)þ a2 V2

D � V2
S

� �þ a3 V3
D � V3

S

� �þ � � �� �
¼ W

L
mCox(VC � VT)

� �
(VD � VS)þ b2 V2

D � V2
S

� �þ b3 V3
D � V3

S

� �þ � � � (16:1)

where
W and L are the channel width and length, respectively
m is the effective mobility
Cox is the gate capacitance per unit area
VT is the threshold voltage of the device

The term in brackets is a tunable conductor,

G(VC) ¼ W
L
mCox(VC � Vt) (16:2)

where the gate voltage VC is used for control or tuning. Thus, the drain current of a MOSFET in the
triode region is proportional to the drain-to-source voltage, but contains nonlinear second- and higher
order terms. Third- and higher order terms can be shown to be small and will be neglected in the
following. Now consider placing two of these MOS conductances in parallel as shown in Figure 16.2a.
Note that the two devices are driven in balanced form byþV1 and �V1 at one pair of terminals and that
the other terminals are at the same voltage V. Applying these conditions to Equation 16.1 results in

I1 ¼ G(VC)(þ V1 � V)þ b2 (þ V1)
2 � V2

� �
(16:3a)

I2 ¼ G(VC)(� V1 � V)þ b2 (� V1)
2 � V2

� �
(16:3b)

Consequently, apart from the neglected high-order odd
terms, the difference current I1� I2 is perfectly linear in
the applied signal voltage V1:

I1 � I2 ¼ 2G(VC)V1 (16:4)

Thus, in the MOSFET-C method, the even-order non-
linearities can be shown to be eliminated by carefully
balanced circuit design, where all signals are measured

VB

VD

VC

VS

I

FIGURE 16.1 MOS transistor biased in the tri-
ode region.
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strictly differentially [6]. Note that the expression for I1� I2 in Equation 16.4 is the same as that for the
linear resistive equivalent circuit in Figure 16.2b. This means that the MOSFET circuit in Figure 16.2a
can be substituted for a pair of resistors in any appropriate active RC circuit; appropriate means that the
resistor pair is driven by balanced signals at one end and that the voltages at the other two terminals are
the same (in practice, usually virtual ground). In addition to these conditions, the substitution is valid if
the MOSFETs are operated in the triode region and if v1(t) and v(t) are safely within the range jVC � V*B j.
Of course, in practice there remains some small distortion due to mismatches and the neglected odd-
order terms. Odd-order nonlinearities are usually small enough to be negligible. Typically, the remaining
nonlinearities, arising from odd harmonics, device mismatch, and body effects, are found to be of the
order of 0.1% for 1 V signals.
In Section 16.2.1, we discuss the MOSFET-C integrator that is the fundamental building block used in

all MOSFET-C active filter designs. The integrator will initially be used to construct first- and second-
order MOSFET-C sections from which higher order filters can be assembled by the cascade method
(Section 16.2.2). In Section 16.2.3, we show how simulated LC ladder filters are designed by use of
integrators.

16.2.1 Basic Building Blocks

Substituting MOSFETs for resistors in an active RC prototype works correctly if the active RC circuit is of
a form where all resistors come in balanced pairs, with one end of the resistor pair voltage-driven and the
two other terminals seeing the same voltage (see Figure 16.2a). Active RC circuits do not normally satisfy
these conditions, but many can readily be converted into that form if a balanced symmetrical op-amp as
pictured in Figure 16.3 is available. It is important to note that this structure is not simply a differential
op-amp, but that the input and output voltages are symmetrical with respect to a ground reference. Using
a balanced op-amp, the conversion of many active RC prototypes into balanced form proceeds simply by
taking the single-ended circuits and mirroring them at ground as shown below.
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VC(a) (b)

VB

+V1 +V1
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V
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–V1
–V1V

I1 I1
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V

FIGURE 16.2 (a) Balanced linear MOSFET conductance; (b) equivalent resistor circuit.
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FIGURE 16.3 Balanced operational amplifier configuration realizing Vout¼�AVin.
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16.2.1.1 Integrators

Mirroring the active RC integrator structure in Figure 16.4a at ground and using the balanced op-amp in
Figure 16.3 leads to the balanced integrator in Figure 16.4b. Note that the two resistors are connected in
the configuration prescribed in Figure 16.2 with V¼ 0 (virtual ground) so that they may be replaced by
the MOSFET equivalent in Figure 16.4c. Analysis of the circuit in the time domain results in

�vout ¼ vþ � 1
C

ðt
�1

i2(t)dt; þvout ¼ v� � 1
C

ðt
�1

i1(t)dt (16:5a)

vout � (�vout) ¼ v� � vþ � 1
C

ðt
�1

i1(t)� i2(t)½ �dt (16:5b)

2vout ¼ 0� 1
C

ðt
�1

2G(VC)v1(t)dt ¼ � 1
C

ðt
�1

2v1(t)
R(VC)

dt (16:5c)

or, after simplifying and using the Laplace transform, in the frequency domain,

vout ¼ � 1
CR(VC)

ðt
�1

v1(t)dt ! Vout(s) ¼ � 1
sCR(VC)

V1(s) (16:5d)

We see that the MOSFET-C integrator realizes exactly the same transfer function as the active RC
prototype and that the integration time constant CR(VC) is tunable by the control voltage VC that is
applied to all gates. Note that the circuit in Figure 16.4c is not a differential integrator. To build a
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FIGURE 16.4 (a) Active RC integrator; (b) fully balanced equivalent; (c) MOSFET-C equivalent; and (d) differential
MOSFET-C integrator.
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differential integrator, one must connect a second pair of balanced resistors (MOSFETs) with inputs �V2

andþV2 as in Figure 16.4d to yield

vout ¼ � 1
C

ðt
�1

v1(t)
R1

� v2(t)
R2

� �
dt ! Vout(s) ¼ � 1

sC
V1(s)
R1

� V2(s)
R2

� �
(16:6)

The same principle can also be used to build programmable integrators and, therefore, programmable
filters: consider in Figure 16.4d the terminals for V1 and �V2 connected, i.e., V1¼�V2. The two resistors
are then connected in parallel to give a resistive path G1þG2, and the two resistor values can be
controlled by different gate voltages VC1 and VC2. Similarly, additional balanced MOSFET-resistor
paths may be connected from V1 or other signals to the integrator inputs (summing nodes). These
paths can be turned on or off by an appropriate choice of gate voltages, so that transfer functions with
different parameters (such as gains, quality factors, or pole-frequencies) or even transfer functions of
different types (such as bandpass, low-pass, etc.) are obtainable.
If better linearity is required than is obtainable with the two-transistor MOSFET circuit in Figure 16.4c

that replaces each resistor in the balanced active RC structure by one MOSFET, a four-MOSFET cross-
coupled modification for each resistor pair can be used instead [7, paper 2-B.7]. The configuration is
illustrated in Figure 16.5. The current difference can be shown to equal

DI ¼ I1 � I2 ¼ K(VC1 � VC2)[V1 � (�V1)] (16:7)

that is, DI is proportional to the product of the difference of the input signals and the difference of the
applied gate voltages VCi, i¼ 1, 2. This indicates that one may interchange the input and gate-control
voltages and reduce the drive requirements of the previous op-amp stage because no resistive current
flows, only the small gate-capacitor current flows with the input applied at the control gates (now at
�V1). The price paid for this advantage is that the requirements on the control voltage source become
more difficult and may necessitate an appropriate common-mode voltage on the signal lines.
Additional resistive or capacitive inputs may, of course, be used to design more general lossy

integrators as illustrated in Figure 16.6. By writing the node equation at the summing node, this circuit
may be analyzed to realize
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Vc2

Vc2
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–Vout

+
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FIGURE 16.5 Integrator using a four-MOSFET configuration for greater linearity.
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Vo ¼ � 1
sCF þ GF

(GVa þ sCVb) (16:8)

where the conductors are implemented in Figure 16.6b as

R(VC) ¼ 1
mCox(W=L)(VC � VT)

; RF(VC) ¼ 1
mCox(WF LF)(VC � VT)=

(16:9)

as was derived in Equation 16.2. The controlling gate voltages VC for the two resistors R and RF may, in
general, be different so that the resistor values may be tuned (or turned on or off) independently.
With lossy and lossless MOSFET-C integrators available, we can obtain not only first- and second-

order filters as shown in Section 16.2.1.2, but also simulations of LC ladders in much the same way as was
done in Chapter 15 for active RC circuits. We discuss this procedure in some detail in Section 16.2.3.

16.2.1.2 First- and Second-Order Sections

Based on the principle of balancing a single-ended structure, appropriate* standard classical active RC
filters from the literature can be converted into balanced form and resistors can be replaced by
MOSFETs. As an illustration, consider the single-ended prototype (Tow–Thomas) biquad in Figure
16.7a. As is typical for second-order active RC filter sections (see Chapter 13), the circuit is a two-
integrator loop consisting of inverting lossy and lossless integrators (in addition to an inverter to keep the
loop gain negative for stability reasons). The realized transfer function is not important to our discussion,
but we point out that all resistors are voltage-driven (by the signal source or by an op-amp) and at their
other ends all resistors are connected to an op-amp input, i.e., they are at virtual ground. Thus, this
circuit satisfies our earlier condition for conversion to a MOSFET-C structure. Figure 16.7b shows the
balanced active RC equivalent that is necessary to eliminate the nonlinear performance. Replacing the
resistors by MOSFETs biased in the triode region leads to the final MOSFET-C version in Figure 16.7c.
The W=L ratios are chosen appropriately to realize the prescribed resistor values

Gi ¼ Wi

Li
mCox(VC � VT) (16:10)

with excellent resistor matching given by aspect ratios
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FIGURE 16.6 (a) Lossy integrator with capacitive feed-in branch; (b) MOSFET-C equivalent.

* All resistors must be voltage-driven from one side and see the same voltage, usually virtual ground, on the other.
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Gi

Gk
¼ (W=L)i

(W L)k=
(16:11)

The voltage-variable resistors given by Equation 16.10 permit loss and time constants to be electronically
tuned. Note that the inverter in the original circuit is not needed in Figure 16.7b and c because inversion
in the differential topology is obtained by crossing wires.
The circuit may be made programmable by connecting additional MOSFET resistors with appropriate

W=L ratios in parallel with the fundamental ones shown in Figure 16.7c and then switching them on or
off as required by the desired values of the filter coefficients.

The above method indicates how first- or second-order sections can be obtained by choosing
any suitable configuration from the active RC filter literature [1, Chapter 5], [3, Chapters 4 and 5] and
converting it to balanced MOSFET-C form. Next we show a couple of entirely general first- and second-
order sections that can be developed from the integrator in Figure 16.6b. The resulting circuits are
shown in Figure 16.8 [7, paper 2-A.2]. If we combine the inputs Va¼Vb¼Vi of the integrator in
Figure 16.6b and add two further cross-coupled feed-in capacitors, we obtain the first-order circuit
in Figure 16.8a. Writing the node equation at the (inverting or noninverting)* op-amp input results in
the transfer function

T1(s) ¼ Vo

Vi
¼ s(C1 � C2)þ G1

sCF þ G2
(16:12)

Note that this first-order circuit can realize zeros anywhere on the real axis. Similarly, if we combine two
such integrators in a loop, with the individual signal paths and signs selected to assure negative feedback,
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FIGURE 16.7 (a) Active RC prototype (Tow–Thomas biquad) for conversion into a MOSFET-C structure; (b) fully
balanced version of the biquad with resistors; and (c) fully balanced version of the biquad with MOSFETs.

* Because the circuit is completely symmetrical, it is only necessary to derive the equations for one side, e.g., for Vo; the
expressions for the other side, i.e., �Vo, are the same.
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we obtain the general second-order section in Figure 16.8b. Writing again the node equations at the
op-amp input nodes leads to the transfer function

T2(s) ¼ Vo

Vi
¼ s2C2C3 þ s(C1 � C5)G3 þ G1G3

s2C2C4 þ sC2G4 þ G2G3
(16:13)

Observe that this circuit can realize zeros anywhere in the s-plane, depending on the choice of element
values. Consequently, the sections in Figure 16.8 can be used to implement arbitrary high-order transfer
functions in a cascade topology. Specifically, for the indicated choice of elements the general biquad
function in Equation 16.13 realizes the different transfer functions in Table 16.1.

16.2.2 Cascade Realizations

The realization of high-order transfer functions as a connection of low-order sections, including the
cascade, multiple-loop feedback, and coupled-biquad approaches, is identical to that discussed for discrete
active RC filters. The difference lies only in the implementation of the sections in fully integrated form.
We do not repeat the process here but only discuss the most prevalent method, cascade design, in
terms of an example and encourage the reader to refer to the earlier discussion in Chapter 15 for details.
To repeat briefly, if a high-order function

H(s) ¼ Vout

Vin
¼ N(s)

D(s)
¼ amsm þ am�1sm�1 þ � � � þ a1sþ a0

sn þ bn�1sn�1 þ � � � þ b1sþ b0
(16:14)

(a)

G1

C1

C1

G2

G1 G2

CF

CF

C2

C2

Vi

−Vi

−Vo

Vo

−
−+
+

(b)

Vi

G1

C1
G2 C3

G3

G3

C3

G4

C4

C4

G4

C5
C2

C5 C2

C1 G2

G1

−Vi

−
−+
+ −

−+
+

−Vo

Vo

FIGURE 16.8 General (a) first- and (b) second-order MOSFET-C sections. The MOSFETs are labeled by the
conductance values they are to implement.

TABLE 16.1 Functions Realizable with Figure 16.8b

Function Choice of Elements

Bandpass G1¼C3¼ 0; C5¼ 0
if noninverting, C1¼ 0 if inverting

Low-pass C1¼C3¼C5¼ 0

High-pass C1¼C5¼G1¼ 0

Notch C1¼C5

All-pass (C1�C5)G3¼�C2G4
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with m� n and n> 2 is given, it is factored into second-order sections (and one first-order section if
n is odd),

H(s) ¼
Yn=2
i¼1

Ti(s) ¼
Yn=2
i¼1

ki
a2is2 þ a1isþ a0i
s2 þ sv0i=Qi þ v2

0i
¼

Yn=2
i¼1

kiti(s) (16:15)

where each of the second-order functions

Ti(s) ¼ Voi

Voi�1
¼ ki

a2is2 þ a1isþ a0i
s2 þ sv0i=Qi þ v2

0i
¼ kiti(s) (16:16)

is implemented as a suitable biquad with specified pole quality factor Qi and pole frequency v0i, such as
the one in Figure 16.8b realizing Equation 16.13. As was explained in Chapter 15, ki is a suitable gain
constant, chosen to equalize the signal levels in order to optimize the dynamic range, and ti(s) is a gain-
scaled transfer function. Note that in writing Equation 16.15 we assumed that n is even. Figure 16.9
shows the general (single-ended) structure of the filter.
To provide an example, assume we wish to realize a delay of tD¼ 0.187 ms via a fifth-order Bessel

approximation, but with a transmission zero at f=fn¼ 4.67 to improve the attenuation in the stopband.*
The transfer function is found to be

H5(s) ¼ 43:3315(s2 þ 21:809)
(sþ 3:6467)(s2 þ 6:7040sþ 14:2729)(s2 þ 4:6494sþ 18:1563)

(16:17)

The normalizing frequency is fn¼ 1=(2ptD)¼ 850 kHz [1, Chapter 1], [3, Chapter 10]. Let us choose a
cascade implementation with the circuits in Figure 16.8. Factoring Equation 16.17 leads to the first-order
and the two second-order functions on the left-hand side of Equation 16.18 to be realized by the
functions on the right, which are obtained from Equations 16.12 and 16.13:

T1(s) ¼ 3:6467
sþ 3:6467

! T1(s) ¼ Vo1

Vin
¼ G1

sCF þ G2
(16:18a)

T2(s) ¼ 14:2729
s2 þ 6:7040sþ 14:2729

! T2(s) ¼ Vo2

Vo1
¼ G1G3

s2C2C4 þ sC2G4 þ G2G3
(16:18b)

T3(s) ¼ 0:8325(s2 þ 21:809)
s2 þ 4:6494sþ 18:1563

! T3(s) ¼ Vo3

Vo2
¼ s2C2C3 þ G1G3

s2C2C4 þ sC2G4 þ G2G3
(16:18c)

The components of the first- and second-order filters in Figure 16.8 are to be determined from these
equations. The gain constants in the function were chosen to result in unity gain at dc. Comparing
coefficients, we find with vn¼ 1=tD� 2p. 850 krad s�1� 5.341 Mrad s�1:

Vin T1
Vo1 Vo2 Voi Vout

T2 Ti Tn/2

FIGURE 16.9 Cascade realization of an nth-order transfer function.

* Note that transmission zeros on the jv-axis can be added [3, Chapter 10.8] to a linear-phase network, such as a Bessel filter,
without changing the phase because a zero factor, (v2

z � v2), is a purely real number on the jv-axis.
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From Equation 16.18a

G1 ¼ G2 ¼ 3:6467vnCF (16:19a)

Choosing CF¼ 2 pF gives G1¼G2¼ 38.952 mS; also C1¼C2¼ 0.
From Equation 16.18b

G1G3 ¼ G2G3 ¼ 14:2729v2
nC2C4; G4 ¼ 6:7040vnC4 (16:19b)

Choosing C2¼C4¼ 2 pF results in G1¼G2¼G3¼ 40.354 mS and G4¼ 71.6 mS; also, C1¼C3¼C5¼ 0.
From Equation 16.18c, G1G3¼ 0.83253 21.809vn

2C2C4¼ 18.1563vn
2C2C4;

G2G3 ¼ 18:1563v2
nC2C4; G4 ¼ 4:6494vnC4; C3 ¼ 0:8325C4 (16:19c)

Choosing C2¼ 2 pF and C4¼ 10 pF yields C3¼ 8.325 pF, G1¼G2¼G3¼ 101.77 mS and G4¼ 248.32 mS;
also, C1¼C5¼ 0. The remaining task is to convert the resistors into MOSFET devices. Assume the
process provides transistors with mCox¼ 120 mA=V2 and VT¼ 0.9 V. For the choice of VC¼ 2 V, the
aspect ratios are then calculated from the above conductance values and from Equation 16.10 via

Wi

Li
¼ Gi(VC)

mCox(VC � VT)
¼ Gi(VC)

120 mA=V2 � 1:1V
¼ Gi=mS

132
(16:20)

For instance, in the first-order section we find W1=L1¼W2=L2¼ 38.952=132¼ 1=3.389. The resulting
circuit is shown in Figure 16.10.

16.2.3 Ladder Simulations

Using MOSFET-C integrators, the ladder simulation method for the MOSFET-C approach is entirely
analogous to the active RC procedures discussed earlier in this book (see Chapter 15). The process is
illustrated by a step-by-step generic example, which should guide the reader when implementing a
specific design.

G2

G1

G1

G2

G2

G1

CF

CF

C2

C2

G3

G3

G4

G4

C4

C4

G1

C2

G1

C3 G2

G3

G3 C4

G4

G2C3

G4

C4 −Vo

Vo

C2Vi

−Vi

− −

−−+ +

−
−+

+ −
−+

+ −
−+

+++

G1

G2

FIGURE 16.10 Circuit to realize the filter described by Equation 16.17. Note that for easy reference we have kept
the subscripts on the elements in each section the same as in Figure 16.8.
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Assume a fifth-order elliptic low-pass filter with the transfer function

Hell(s) ¼
s2 þ v2

1

� �
s2 þ v2

2

� �
(sþ a)(s2 þ bsþ c)(s2 þ dsþ e)

(16:21)

is prescribed, which with the help of readily available ladder synthesis software is realized by the LC
ladder structure in Figure 16.11 with known component values. A plot of such a function is shown in
Figure 16.12. The two transmission zeros f1 and f2 in the figure are obtained when L2, C2, and L4, C4,
respectively, resonate. The LC active simulation proceeds by deriving the signal-flow graph equations
[1, Chapter 6], [3, Chapter 15] or by writing the loop and node equations of the ladder along with the V–I
relationships describing the functions of the elements:

I1 ¼ Vi � V1

R
, IL2 ¼ V1 � V3

sL2
, IL4 ¼ V3 � V5

sL4
(16:22a)

V1 ¼ I1 � IL2 þ sC2(V1 � V3)½ �
sC1

(16:22b)

V3 ¼ IL2 � IL4 þ sC2(V1 � V3)� sC4(V3 � V5)
sC1

(16:22c)

V5 ¼ Vo ¼ IL4 þ sC4(V3 � V5)
sC5 þ G

(16:22d)

R V1

I1
IL2 IL4L2 L4

C1 C3

Vi

C2

V3

C4

V5

C5

Vo

R

FIGURE 16.11 Fifth-order elliptic LC low-pass filter.
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FIGURE 16.12 Transfer function magnitude of a fifth-order elliptic low-pass function.
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We recognize that these equations represent integrations of voltages into currents and currents into
voltages. We also note that the currents through the capacitors C2 and C4 can be taken care of efficiently
without resorting to integration: by connecting C2 and C4 directly to the voltage nodes V1, V3, and V3, V5,
respectively, they conduct the currents as prescribed in Equation 16.22b through d. Next we reformat
Equation 16.22a through d by eliminating I1 from Equation 16.22a and b and rewriting Equation 16.22b
through d such that V1, V3, and V5, respectively, appear only on the left-hand side. The result is the new
set of equations

IL2 ¼ V1 � V3

sL2
; IL4 ¼ V3 � V5

sL4
(16:23a)

V1 ¼ ViG� IL2 þ sC2V3

s(C1 þ C2)þ G
(16:23b)

V3 ¼ IL2 � IL4 þ sC2V1 þ sC4V5

s(C2 þ C3 þ C4)
(16:23c)

V5 ¼ Vo ¼ IL4 þ sC4V3

s(C4 þ C5)þ G
(16:23d)

Recall that all signals in the MOSFET-C circuit are voltages, which in turn produce currents summed at
the op-amp inputs, and that the integration constant must be time rather than capacitance. This is
achieved by scaling the equations by a resistor R. We illustrate the process on Equation 16.23a and b:

IL4 ¼ V3 � V5

sL4
! IL4

G
¼ GV3 � GV5

s(L4G)G
(16:24a)

V1 ¼ ViG� IL2 þ sC2V3

s(C1 þ C2)þ G
! V1 ¼ ViG� (IL2=G)Gþ sC2V3

s(C1 þ C2)þ G
(16:24b)

Notice that L4G
2 has the unit of farad, i.e., it is a capacitor that, however, in Figures 16.13 and 16.14

will be labeled L4 (and L2, respectively) to help keep track of its origin. Similarly, IL2=G and IL4=G will
be labeled VI2 and VI4, respectively. The integrators can now be realized as in Figure 16.6b and then
interconnected as the equations prescribe. Figure 16.13 illustrates the process for Equation 16.24.
The MOSFET-C implementation of all appropriately scaled equations (Equation 16.23) leads to the
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(a) (b)
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+
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+

+
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FIGURE 16.13 MOSFET-C implementation of (a) Equation 16.24a and (b) Equation 16.24b. All MOSFETs realize
the value G.
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fifth-order elliptic filter shown in Figure 16.14. As given in Equation 16.10, the aspect ratio of each
MOSFET and the control voltage VC are adjusted to realize the corresponding resistor values of the
standard active RC implementation and all MOSFET gates are controlled by the same VC for tuning
purposes. Arrays of MOSFETs controlled by different values of VC can be used to achieve program-
mable filter coefficients.
An often cited advantage of the MOSFET-C technique is the reduced sensitivity to parasitic capacitors,

whereas the gm-C approach discussed next must carefully account for parasitics by predistortion. Note
from Figures 16.6b, 16.8, 16.10, and 16.14 that all capacitors and the MOSFET resistors are connected to
voltage-driven nodes or to virtual ground so that parasitic capacitors to ground are of no consequence as
long as amplifiers with sufficiently high gain and wide bandwidth are used. Fortunately, such amplifiers
are being developed [7, paper 2-B.5] so that MOSFET-C circuits promise to become increasingly
attractive in the future.

16.3 gm-C Filters

At the time of this writing, the dominant active device used in the design of integrated continuous-time
filters is the transconductor (gm) or the operational transconductance amplifier (OTA) [8, Chapter 5],
[3, Chapter 16]. Both names, gm-C filters and OTA-C filters, are used in the literature; we will use the
term gm-C filter in this text. The main reasons for this prevalence appear to be the simple systematic
design methods for gm-C filters and, especially, the higher range of frequencies over which gm-based
filters can operate. Also, OTAs often have simpler circuitry (fewer elements) than op-amps. A transcon-
ductor is a voltage-to-current converter described by

Iout ¼ gm(s)Vin (16:25)

where gm(s) is the frequency-dependent transconductance parameter with units of ampere=volt or
siemens, abbreviated S. Typical values for gm are tens to hundreds of microsiemens in CMOS and
up to millisiemens in bipolar technology. A simplified small-signal equivalent circuit is shown in
Figure 16.15. The dashed components in Figure 16.15 are parasitics that in an ideal OTA should be
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FIGURE 16.14 Operational simulation of the LC ladder of Figure 16.11 with MOSFET-C integrators; Ca¼C1þC2,
Cb¼C2þC3þC4, Cc¼C4þC5.
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zero but that in practice must be accounted for. For common designs in CMOS technology, the input
conductance gi is zero; the input and output capacitances, ci and co, are typically of the order of 0.05 pF or
less and the output resistance ro¼ 1=go is in the range of 50 kV to 1 MV. The bandwidth of well-designed
transconductors is so large that gm in many cases can be regarded as constant, gm(s)¼ gm0, but for critical
applications in high-frequency designs the transconductance pole and the resulting phase errors must be
considered. A good model for these situations is

gm(s) � gm0e
�st � gm0

1þ st
� gm0(1� st) (16:26)

where f¼ 1=(2pt) is the pole location (typically at several 100 MHz to 10 GHz) and the phase error
Df ¼ �vt is considered small, i.e., vt	 1. The three different approximations in Equation 16.26 for
representing the frequency dependence are equivalent; the pole is used most often, the zero frequently
results in simpler equations and algebra, and the phase may give better insight into the behavior of
feedback loops.
The most commonly used circuit symbols are shown in Figure 16.16. Note that OTA designs with

multiple differential inputs as in Figure 16.16c are readily available. They often lead to simpler filter
designs with less silicon area and power consumption because only the OTA input stages must be
duplicated, whereas the remaining parts of the OTA, such as output and common-mode feedback
circuitry, can be shared. Essentially, if two OTAs with the same gm value in a filter have a common
output node (a frequent situation), the two OTAs can be merged into the circuit of Figure 16.16c, thus
saving circuitry and power.
Filter design methods discussed in this section use only OTAs and capacitors: OTAs to provide gain

and capacitors to provide integration. To establish time constants, resistors may also be required, but
their function can be obtained from OTAs: ‘‘resistors’’ of value 1=gm can be simulated by connecting
the OTA output to its input with the polarities shown in Figure 16.17a and b. Inverting one pair of

V +

(V +–V –)gm
Ci

C0
gi

I0

I0

g0

V –

FIGURE 16.15 Small-signal equivalent circuit.
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FIGURE 16.16 OTA symbols (a) differential input–single-ended output: Io¼ gm(V
þ � V�); (b) fully differential;

and (c) with multiple inputs: Io¼ gm [(V1
þ�V1

�)þ (V2
þ�V2

�)].
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terminals results in a negative resistor as in Figure 16.17c.* Since transconductors and capacitors can
be used to build all components necessary for designing the filters, they are called transconductance-C
or gm-C filters. We discuss the remaining ‘‘composite’’ building blocks, integrators and gyratorsy

subsequently in Section 16.3.1.
In this section we will not go into the electronic circuit design methods for OTAs, but refer the

reader to the literature, which contains a great number of useful transconductance designs in all current
technologies. References [5,7] contain numerous papers that discuss practical transconductance circuits.
The most popular designs currently use CMOS, but bipolar and BiCMOS are also widely employed, and
GaAs has been proposed for applications at the highest frequencies or under unusually severe environ-
mental conditions. Since transconductors are almost always used in open loop without local feedback,
their input stages must handle the full amplitude of the signal to be processed. Typically, the OTA input
stage is a differential pair with quite limited signal swing before nonlinearities become unacceptable.
Thus, much design expertise has gone into developing linearization schemes for transconductance
circuits. They have resulted in designs that can handle signals of the order of volts with nonlinearities
of a fraction of 1%. Apart from simple source-degeneration techniques, the most commonly employed
approaches use variations of the principle of taking the difference between the drain currents of two MOS
devices in the saturation region but driven differentially, so that the difference current is linear in Vgs:

Iþd ¼ k(Vgs � VT)
2 ¼ k V2

gs þ V2
T � 2VgsVT

� 	
I�d ¼ k(� Vgs � VT)

2 ¼ k V2
gs þ V2

T þ 2VgsVT

� 	
DId ¼ Iþd � I�d ¼ �4VgsVT

(16:27)

Another approach reasons that the most linear (trans)conductance behavior should be obtainable from
the current through a resistor. Thus, operating an MOS device in the resistive (triode) region,

Id ¼ k (Vgs � VT)Vds � 0:5V2
ds

� �
and taking the derivative with respect to Vgs for constant Vds¼VDS results in a perfectly linear
transconductance,

V
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I

–
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gm
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V 
+

V 
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–+

+
gm
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V–

I

I

– –

+ +
gm

FIGURE 16.17 Simulated resistors: (a) positive single-ended of value V=I¼ 1=gm; (b) positive differential resistor of
value (V þ�V�)=I¼ 1=gm; and (c) negative differential resistor �1=gm.

* Such ‘‘negative resistors’’ are often used to cancel losses, for example to increase the dc gain of transconductors or the
quality factors of filter stages. Specifically, a negative resistor can be employed to increase the quality factor of the inductor
in Figures 16.21 and 16.22.

y A gyrator is a two-port circuit whose input impedance is inversely proportional to the load impedance: Zin(s)¼ r2=Zload(s).
If Zload¼ 1=(sC), the input is inductive, Zin(s)¼ sr2C¼ sL. r is called the gyration resistance (see the discussion to follow).
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gm ¼ dId
dVgs

¼ kVDS (16:28)

that furthermore can be adjusted (tuned) by varying a dc bias voltage (VDS) as long as VDS stays small
enough for the transistor to remain in the triode region. The circuitry surrounding the triode-region
MOS device must assure that VDS remains constant and independent of the signal.

As mentioned, the literature contains numerous practical CMOS, bipolar, or biCMOS transconduc-
tance designs that require low power supply voltages (�1.5 V, or 0 to 3 V, or even less for low-power
applications), and have acceptable signal swing (of the order of volts), with low nonlinearities (as low as a
small fraction of 1%) and wide bandwidth (up to several hundred megahertz and even into the gigahertz
range). Two further aspects of OTA design should be stressed at this point. First, since gm-C filters often
contain many transconductors, the designer ought to strive for simple OTA circuitry. It saves silicon real
estate and at the same time often results in better frequency performance because of reduced parasitics at
internal nodes. We point out though that there exists a trade-off between simple circuitry and large
voltage swing: a wide linear signal range always requires special linearizing circuit techniques and,
therefore, additional components. The second issue pertains to tuning. We mentioned earlier that
continuous-time filters always require tuning steps to eliminate the effects of fabrication tolerances and
component drifts. In IC technologies this implies that the circuit components must be electronically
adjustable. Since (MOS) capacitors are generally fixed,* all tuning must be handled via the transconduc-
tance cells by changing one or more bias points. Usually two adjustments are needed: the magnitude of
gm must be varied to permit tuning the frequency parameters set by gm=C-ratios and, as explained later,
the phase Df must be varied to permit tuning the filters’ quality factors. We discuss tuning methods in
some detail in Section 16.4.
In the Section 16.3.1 we introduce the central building blocks from which gm-C filters are constructed,

the integrator and the gyrator. Just as we saw in the discussion of MOSFET-C circuits and in the earlier
treatment of active RC filters, integrators are fundamental to the development of active filter structures,
both for second-order sections and cascade designs, as well as for higher order LC ladder simulations.
Gyrators along with capacitors are used to replace inductors in passive RLC filters so that many passive
filter structures, such as LC ladders, can be directly translated into gm-C form.

16.3.1 Basic Building Blocks

16.3.1.1 Integrators

Integrators are obtained readily by loading an OTA with a floating or a grounded capacitor as shown in
Figure 16.18. Observe that the simpler technology of grounded capacitors requires four times the
capacitor value and silicon area. Ideally, the integrator realizes the transfer function

Vo

Vi
¼ � gm

sC
(16:29a)

but notice that the function is sensitive to unavoidable parasitic capacitors as well as to the OTA output
conductance go. Observe from Figure 16.19 that the output conductance is in parallel with the integrating
capacitor C, and that the output capacitances Co from the positive and negative output nodes of the OTA
circuitry to ground add to the value of C. Furthermore, the designer should bear in mind that in IC
technology floating capacitors have a substantial parasitic capacitance Cs (about 10% of the value of C)
from the bottom plate to the substrate, i.e., to ac ground. To maintain symmetry, the designer may wish

* To implement small values of variable capacitor, MOS transistors connected as varactors can be used. The capacitor can be
varied, e.g., via substrate bias.
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to split the integrating capacitor into two halves connected such that the parasitic bottom plate capacitors
0.5Cs appear at the two OTA outputs. The situation is illustrated in Figure 16.19. Taking the parasitics
into consideration, evidently, the integrator realizes

Vo

Vi
¼ � gm

sCint þ go






s¼jv

¼ � gm
jvCint(1� j Qint)=

(16:29b)

that is, it becomes lossy with a finite integrator quality factor

Qint ¼ vCint

go
(16:30a)

and an effective integrating capacitor equal to

Cint ¼ C þ 1
2

Cs

2
þ Co

� �
(16:30b)

To maintain the correct integration constant as nominally designed, the circuit capacitor C should be
predistorted to reflect the parasitics appearing at the integration nodes. The parasitics should
be estimated as best as possible, for example, from a layout process file, and their values subtracted
from the nominal value of C in the final layout. If grounded capacitors are used as in Figure 16.18b, the
bottom plate should, of course, be connected to ground so that the substrate capacitances are connected
between ground and the power supply. Thus, they are shorted out for the signals and play no role.
Observe that the presence of parasitic capacitors tends to limit the high-frequency performance of these
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FIGURE 16.18 Integrator. The integrator capacitor may be floating (a) or grounded (b). Note that the grounded-
capacitor realization requires four times the area.
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FIGURE 16.19 Parasitic capacitors associated with a gm-C integrator.
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filters because high-frequency filters require large time constants, gm=C, i.e., small capacitors.* The
smallest capacitor C, however, must obviously be larger than the sum of all parasitics connected at the
integrator output nodes to be able to absorb these parasitics.y Because the values of the parasitic
capacitors can generally only be estimated, one typically chooses C to be three to five times larger than
the expected parasitics to maintain some predictability in the design. The reader will notice that
integrators with grounded capacitors, Figure 16.18b, have a small advantage in high-frequency circuits
where parasitic capacitors become large relative to C. Because of the problem with parasitic capacitors, an
alternative ‘‘gm-C–op-amp’’ integrator is also used. It employs an op-amp to minimize their effects for
the price of a second active device, increased noise, silicon area, and power consumption. Figure 16.20a
shows the configuration. Notice that now the parasitic capacitors play no role because they are connected
between ground and virtual ground (the op-amp inputs) so that they are never charged. A more careful
analysis shows that the integrator realizes

Vo

Vi
¼ gm

sC
1

1þ 1
A(s) 1þ Cp

C

� 	 � gm
sC

1

1þ s
vt

1þ Cp

C

� 	 (16:31)

where Cp¼ 0.5(Coþ 2Cs) represents the total parasitic capacitance at each of the op-amp input terminals.
Evidently, the integrator has acquired a parasitic pole at

s ¼ �vt
C

C þ Cp
(16:32)

where we have modeled the amplifier gain as A(s)�vt=s. The high-frequency performance is now
limited by the op-amp behavior. It has been shown, though, that a low-gain wideband amplifier,
essentially a second OTA with dc gain gm=go, can be used for this application. Nevertheless, the second
active device introduces parasitic poles (and zeros) whose effects must be carefully evaluated in practice.
The dominant pole introduced by the op-amp may be canceled nominally by an rC phase lead as shown
in Figure 16.20b. The circuit realizes
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FIGURE 16.20 (a) gm-C–op-amp integrator; (b) nominal correction for phase errors.

* Increasing gm is generally not a satisfactory solution because it also increases the parasitics.
y Obviously, the highest operating frequencies are obtained for C¼ 0, that is, when a parasitic capacitor Cp is used as the
integrating capacitor C. In that case, operating frequencies in the gigahertz range can be realized: gm=C� 2 p3 1 GHz for
gm¼ 100 mS and Cp� 15 fF. Naturally, because of the uncertainty in the design values, an automatic tuning scheme is
unavoidable.
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Vo

Vi
¼ gm

sC
1þ sCr

1� v
vt
vCpr þ s

vt
1þ Cp

C

� 	 � gm
sC

1þ sCr

1þ s
vt

1þ Cp

C

� 	 (16:33)

so that r should be chosen as

r ¼ 1
vtC

1þ Cp

C

� �
(16:34)

to cancel the pole. The small resistor r may be a MOSFET in the triode region as indicated in Figure
16.20b so that r(VC) becomes variable for any necessary fine adjustments. Notice that the cancellation is
only nominal because Equation 16.34 can never be satisfied exactly because of the uncertain values of vt

and Cp.

16.3.1.2 Gyrators

A gyrator is defined by the equations

Ii ¼ 1
r
Vo; Io ¼ � 1

r
Vi (16:35a)

where r is the so-called gyration resistance and the currents are defined as positive when flowing into the
gyrator. Thus, the input impedance Zin(s) is inversely proportional to the load impedance Zload(s):

Zin(s) ¼ Vi

Ii
¼ r2

�Io
Vo

¼ r2
1

Zload(s)
(16:35b)

If a gyrator is loaded by a capacitor, Zload(s)¼ 1=(sC), the input impedance is proportional to frequency,
i.e., it behaves like an inductor of value r2C:

Zin(s) ¼ sr2C ¼ sL (16:36)

Equation 16.35a indicates that a gyrator can be interpreted as a connection of an inverting and a
noninverting transconductor of value gm¼ 1=r as shown in Figure 16.21a. This fact makes it very easy
to build excellent gyrators with OTAs (see Figure 16.21b and c), whereas it has been found quite
difficult to obtain good gyrators with op-amps. An exception is Antoniou’s general impedance
converter (GIC) [1, Chapter 5], [3, Chapter 14.1]. However, it is useful only at relatively moderate
frequencies (up to about 5%–10% of the op-amp’s gain-bandwidth product);* also, the circuit contains
resistors that are not voltage-driven and, therefore, cannot readily be translated into a MOSFET-C
equivalent as was discussed previously. The availability of good gyrators provides us with a convenient
method for building high-frequency integrated gm-C ladder filters, which is based on inductor-replacement
to be discussed in Section 16.3.3.1.
Notice that the comments made earlier about the effects of parasitic capacitors also apply to inductor

simulation: the parasitic input and output capacitors of the OTAs and the bottom-plate-to-substrate
capacitances (Figure 16.19) add to the capacitor used to set the value of the simulated inductor.
For instance, using the same notation as in Figure 16.19, the effective capacitor in Figure 16.21b equals

* As stated, Antoniou’s GIC is really an impedance converter, not a gyrator (see Equation 15.63 and Figure 15.17). The GIC
converts a load resistor into an inductive input impedance, rather than inverting a capacitor as described in Equation
16.35b.
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Ceff ¼ C þ 1
2

Cs

2
þ Ci þ Co

� �
(16:37)

where Ci is the parasitic capacitance at the input terminals of the OTA, see Figure 16.15, and C is
assumed to be split as in Figure 16.19. Note also that a parasitic capacitor of value Cin¼CiþCo is
measured across the inductor of Figure 16.21b so that the inductor

Leff ¼ Ceff

g2m
(16:38)

has a self-resonance frequency*

v0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
LeffCin

p (16:39)

Finally, to complete the inductor model, recall that the OTAs have finite differential output con-
ductances,y go (see Figure 16.15), which appear across the input and load terminals of the gyrator in
Figure 16.21b. Consequently, the full inductive admittance realized by Figure 16.21b equals

YL(s) ¼ go þ sCin þ g2m
sCeff þ go

(16:40)

to yield the equivalent circuit in Figure 16.22 for the inductor L. The designer should keep this circuit in
mind when using this method to develop a filter.
Evidently, the realized quality factor of the inductor equals QL¼vCeff=go. This means OTAs with large

output resistance ro¼ 1=go are needed for high-quality inductor simulations.
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FIGURE 16.21 (a) Controlled-source realization of capacitively loaded gyrator to realize a grounded inductor;
(b) differential gm-C implementation; and (c) a floating inductor requires two gyrators.

* With modern submicron CMOS processes, the self-resonance frequency of electronic inductors can be as high as a few
gigahertz with quality factors in the range of a few 100. See Ref. [9].

y As was mentioned, the input conductances can normally be neglected.
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Next we discuss first- and second-order gm-C sections used as building blocks for the cascade approach
to high-order filter design. As was the case for the MOSFET-Cmethod, we will see that gm-C sections are
constructed by interconnecting integrators.

16.3.1.3 First- and Second-Order Sections

Consider the integrator in Figure 16.18a; we make it lossy by loading it with the resistor in Figure 16.17b.
Let the input signals also be fed through capacitors into the integrator output nodes as shown in Figure
16.23. The circuit is readily analyzed by writing Kirchhoff’s current law at the output node to yield

Vo

Vi
¼ � sC1 þ gm1

s(C1 þ C)þ gm2
(16:41)

The circuit may realize any desired first-order function by choosing the appropriate values for the
transconductances and the capacitors. For example, a low-pass can be obtained by setting C1¼ 0; a high-
pass results from gm1¼ 0 and possibly C¼ 0; and C¼ 0 and gm1¼�gm2 results in an all-pass function.

A second-order block can be designed by interconnecting two integrators in a variety of feedback
configurations. To keep the method more transparent, we show one such possibility in Figure 16.24 with
single-ended outputs. A differential structure is obtained by mirroring the circuit at ground and
duplicating the appropriate components as was demonstrated in connection with Figure 16.4. Let us
disregard for now the dashed OTA with inputs Va and Vb and apply an input signal Vi; writing the node
equations for Figure 16.24 we obtain

gm3(Vi � V2)þ gm4(V1 � V3) ¼ 0; sC1V1 ¼ �gm1V3; sC2V2 ¼ �gm2V1 (16:42)

By eliminating two of the three voltages V1, V2, or V3 from these equations, we obtain the bandpass,
low-pass, and high-pass functions, respectively,

YL(s)
ZL(s)

1 1
g2

m

g2
m

Cin

L = 
Ceff

go go

FIGURE 16.22 Passive equivalent circuit for the grounded inductor simulated in Figure 16.21b.
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FIGURE 16.23 First-order gm-C section.
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V1

Vi
¼ HBP(s) ¼ �sC2gm1gm3

s2C1C2gm4 þ sC2gm1gm4 þ gm1gm2gm3
(16:43a)

V2

Vi
¼ HLP(s) ¼ gm1gm2gm3

s2C1C2gm4 þ sC2gm1gm4 þ gm1gm2gm3
(16:43b)

V3

Vi
¼ HHP(s) ¼ s2C1C2gm3

s2C1C2gm4 þ sC2gm1gm4 þ gm1gm2gm3
(16:43c)

In any electrical network, one can generate different numerator polynomials, i.e., different transmission
zeros, without disturbing the poles, i.e., the system polynomial, by applying an input voltage to any node
that is lifted off ground, or by sending an input current into any floating node. The second of
these possibilities is illustrated in Figure 16.24 in dashed form where a current gm(Vb�Va) is sent into
Node 3. We leave the analysis to the reader. We demonstrate the first possibility by applying Vi to
the noninverting terminals of OTA1 and OTA2, which are grounded in Figure 16.24. The reader may
show by routine analysis that lifting these two nodes off ground and then applying Vi to both of them (in
addition to the original input) results in the complete biquadratic transfer function

V3

Vi
¼ s2C1C2gm3 þ sgm1(C2gm4 � C1gm3)þ gm1gm2gm3

s2C1C2gm4 þ sC2gm1gm4 þ gm1gm2gm3
(16:44)

with which, for example, a notch filter may be realized by setting C2gm4¼C1gm3.
A great variety of second-order sections can be found in the literature, e.g., [3, Chapter 16.3]. Many are

designed for specific transfer functions rather than the general circuit in Figure 16.24, and are often
simpler and contain fewer OTAs. Readers are well advised to scan the available literature for the best
circuit for their applications.

16.3.2 Cascade Realizations

Apart from modularity and simple design methods, the main advantage of the cascade approach is its
generality: a cascade structure can realize a transfer function with arbitrary zero locations, whereas
simulations of lossless LC ladders discussed below are restricted to jv-axis transmission zeros. Imple-
menting a prescribed transfer function by the cascade method with gm-C integrated filters follows the
same principles that were discussed in Chapter 15 for discrete active RC filters and leads to the filter
structure in Figure 16.9. The difference lies only in the final realization of the sections in monolithic form.
We demonstrate the principle with the example of a high-frequency filter for the read=write channel of a
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FIGURE 16.24 General biquadratic gm-C section.
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magnetic disk storage system,* where the most critical specification is constant delay, i.e., linear phase.
To this end, let us discuss the design of a seventh-order cascade low-pass with a constant
delay approximated in the Chebyshev (equiripple) sense. The specifications call for a delay variation of
maximally 1 ns over the passband and a bandwidth fc¼ 10 MHz. The transfer function to be imple-
mented is

H7(s) ¼
K0 s2 � s2

z

� �
(sþ s) s2 þ sv1=Q1 þ v2

1ð Þ s2 þ sv2=Q2 þ v2
2ð Þ s2 þ sv3=Q3 þ v2

3ð Þ (16:45)

with the required parameters given in Table 16.2. The purpose of the symmetrical pair of zeros at �sz is
magnitude equalization to effect a gain boost for pulse slimming. Note that these zeros do not affect the
phase or the delay because the factor (v2þsz

2) is real on the jv-axis. The fully differential second-order
circuit chosen for the low-pass sections is shown in Figure 16.25a. Simple analysis shows that it realizes
the function

HLP(s) ¼ VLP

Vi
¼ gm1gm2

s2C1C2 þ sC1gm2 þ gm1gm2
¼ v2

0

s2 þ sv0=Q0 þ v2
0

(16:46)

where

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gm1gm2

C1C2

r
(16:47a)

* A similar commercially successful design in bipolar technology is discussed in Ref. [12].

TABLE 16.2 Filter Parameters for Equation 16.45

Pole Frequency
(Normalized to 107 s�1)

Pole Quality Factor
(Normalized to 107 s�1) Zero

Biquad 1 v1¼ 1.14762 Q1¼ 0.68110 sz¼ 0.95

Biquad 2 v2¼ 1.71796 Q2¼ 1.11409

Biquad 3 v3¼ 2.31740 Q3¼ 2.02290

Section 4 s¼ 0.86133 —

2C1 2C2

2C1 2C2

Vi gm1 gm2
gm2 gm1 Vo+

+ +
– –

+ +
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+
+

+
+–
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2C22C1

Vogm1 gm2 gm1gm2

K
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(a) (b)

FIGURE 16.25 (a) Second-order low-pass gm-C section; (b) an equalizer section.
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and

Q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
gm1C2

gm2C1

s
(16:47b)

are the pole frequency and pole quality factor, respectively. There remains the question of how to obtain
the two real transmission zeros at �sz. For this purpose we recall that the zeros of a transfer function can
be changed without destroying the poles by feeding the input signal or a fraction thereof into any
of the ground nodes lifted off ground. For the situation at hand this can be accomplished by lifting
the capacitors 2C2 in the low-pass off ground and feeding KVi with the appropriate polarity into the
terminals so generated. Figure 16.25b shows the resulting circuit, which may be analyzed to yield
the transfer function

Vo

Vi
¼ �Ks2C1C2 þ gm1gm2

s2C1C2 þ sC1gm2 þ gm1gm2
(16:48)

with the zero at sz¼�v0K
�1=2. Observe that the two transconductors labeled gm1 and gm2, respectively,

have common output terminals; they can, therefore, be merged into one double-input transconductor
each as discussed in connection with Figure 16.16c. Further, we need the circuit in Figure 16.23 with
C1¼ 0 to realize a first-order section, a lossy integrator with the function

Vo

Vi
¼ � gm1

sC þ gm2
(16:49)

Finally, we must determine the component values. To this end we compute from Equations 16.47 and
16.49 the relationships

C1 ¼ gm
viQi

¼ 12:5
viQi

pF; C2 ¼ gm
Qi

vi
¼ 12:5

Qi

vi
pF;

C ¼ gm
s

¼ 12:5
s

pF; K ¼ v1

sz

� �2 (16:50)

where we used that vi in Table 16.2 was normalized by a factor 107 s�1 and we assumed for simplicity that
all OTAs have the same transconductance values,* gm1¼ gm2¼ gm¼ 125mS. Lastly, to illustrate the need to
account for parasitics, we observe that in Figure 16.25 the capacitor C1 is paralleled by 2Co and 1Ci, and the
capacitor C2 by 2Co and 3Ci. The third input capacitor in parallel with C2 is arrived at by the fact that each
biquadmust drive the next biquad in the cascade connection and there sees an OTA input. The capacitor C
in Figure 16.23 is in parallel with 2Co and 1Ci. To arrive at numerical values we will assume Co¼ 0.09 pF
and Ci¼ 0.04 pF. Consequently, the capacitor values are obtained from Equation 16.50 as

C1 ¼ 12:5
viQi

pF� 0:22 pF; C2 ¼ 12:5
Qi

vi
pF� 0:3 pF; C ¼ 12:5

s
pF� 0:22 pF (16:51)

Table 16.3 contains the computed capacitor values and Figure 16.26 shows the final cascade block
diagram with the equalizer section leading and the first-order low-pass at the end. The two control

* This assumption is for convenience of design and layout because it permits a given transconductance cell to be used
throughout the circuit. However, using different transconductance values in different sections has the advantage that
capacitor values may be equalized, since by Equation 17.50 the capacitors are proportional to gm.
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blocks are necessary to be able to tune the filter electronically: the gain K is varied via the Equalizer
control block to set the position of the zeros and thereby the amount of gain boost, i.e., pulse slimming.
Electronic tuning of the frequency parameter gm=C is accomplished via adjusting the bias currents of the
OTAs by the block labeled Bias fc control. Thereby uncontrollable changes in the value gm=C due to
process variations or temperature can be accounted for. Details of such a control scheme are discussed in
Section 16.4.

16.3.3 Ladder Simulations

As mentioned earlier, the main reason for using the popular LC ladder simulation method for
filter design is the generally lower passband sensitivity of this topology to component tolerances
[1, Chapter 3], [3, Chapter 13], see also Chapter 7. As before, the procedures are, in principle, identical
to those discussed in connection with discrete circuits and are best illustrated with the help of a generic
example. Let us consider again the classical ladder structure in Figure 16.11, which realizes the fifth-order
elliptic low-pass characteristic Equation 16.21 and is described by Equation 16.22. Two methods are
available to simulate the ladder. The first and most intuitive method replaces the inductors L2 and L4 by
capacitively loaded gyrators (Figure 16.21). The second method recognizes that the inductors and the
grounded capacitors in Figure 16.11 perform the function of integration. This signal-flow graph method
is completely analogous to the process discussed earlier in Chapter 15 and for MOSFET-C filters, and will
be presented in Section 16.3.3.2. We point out here that the element replacement and the signal-flow
graph methods lead to the same circuitry [3, Chapter 16.4] so that either method can be used at the
designer’s convenience.

16.3.3.1 Element Replacement Methods

Replacing the inductors L2 and L4 in Figure 16.11 by capacitively loaded gyrators and using differential
balanced circuitry leads to the circuit in Figure 16.27a. It is obtained by first converting the voltage source
to a current source (Norton transformation), which also converts the series source resistor R into a
shunt resistor. The first OTA in Figure 16.27a performs the source transformation, the second OTA is
the grounded resistor. Since the two inductors are floating, the implementation of each requires
two gyrators, i.e., four OTAs (see Figure 16.21c). Note that all OTAs are identical, and that all

TABLE 16.3 Component Values of the Cascade Filter for Equation 16.45

Section i¼ 1 i¼ 2 i¼ 3 i¼ 4

C1i 15.77 pF 6.31 pF 2.45 pF —

C2i 7.12 pF 7.81 pF 10.61 pF —

C — — — 14.29 pF

K 1.459 — — —

Biquad 1
equalizer

Equalizer
control

Bias
fc control

Biquad 2 Biquad 3
Section

4 VoVi

FIGURE 16.26 Structure of the seventh-order low-pass filter including control circuitry.
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capacitors except C2 and C4 could be grounded; for example, instead of connecting C1 between nodes A
and B in Figure 16.27a, capacitors of value 2C1 could be connected from both nodes A and B to ground.
Comparing the active circuit with the LC prototype readily identifies both structure* and components.
The element values are obtained directly from the prototype LC ladder, e.g., from published tables, such
as Ref. [2], or from appropriate synthesis software. Labeling for the moment the normalized components
in the prototype LC ladder by the subscript n, i.e., Rn, Ci,n, and Li,n, the transformation into the real
component values with units of [F] and [H] is achieved by the following equations:

R ¼ Rn

gm
; Ci ¼ Ci,n

gm
vc

; Li ¼ Li,n
1

gmvc
¼ CLi

g2m
! CLi ¼ Li,n

gm
vc

(16:52)

where
gm is the transconductance value chosen by the designer
vc is the normalizing frequency (usually the specified passband corner frequency)
Rn is in most prototype designs normalized to Rn¼ 1

Naturally, as discussed earlier, all capacitor values must be predistorted to account for the parasitic
capacitors appearing at the capacitor nodes. For example, note that CL2 is paralleled by two OTA input
and two OTA output capacitors, and for symmetrical layout (Figure 16.19), by 0.25Cs. We see that the
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FIGURE 16.27 (a) Transconductor-C simulation by the element replacement method of the fifth-order elliptic low-
pass ladder in Figure 16.11, including source and load resistors. All gm-cells are identical. Note that the floating
inductors require two gyrators for implementation. (b) The circuit with dual-input OTAs.

* The number of floating capacitors is of course doubled because of the balanced differential structure of the active
implementation.
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element replacement method is a very straightforward design process; it has been found to work very well
in practice.
Figure 16.27b shows the same circuit but realized with dual-input OTAs (Figure 16.16c). As was

pointed out earlier, this merging of OTAs can always be used when two (or more) OTAs share a common
output node. It results in simplified circuitry, and possibly reduced power consumption and chip area. In
such cases, only the linearized input stages of the OTA must be duplicated, but bias, output, and
common-mode rejection circuitry can be shared. Observe also that the input voltage is applied to
both inputs of the first dual-input OTA in Figure 16.27b, thereby doubling its value of gm. This multiplies
the transfer function by a factor of two and eliminates the 6 dB loss inherent in the LC ladder (see
Figure 16.12).
A small example will show the design process. For an antialiasing application we need to realize a

third-order elliptic low-pass filter with fc¼ 10 MHz bandwidth, 0.5 dB passband ripple, 17.5 MHz
stopband edge, and 23 dB stopband attenuation. It leads to the transfer function [2]

H(s) ¼ 0:28163(s2 þ 3:2236)
(sþ 0:7732)(s2 þ 0:5016sþ 1:1742)

(16:53)

and the normalized element values Rn¼ 1, C1n¼C3n¼ 1.293, C2n¼ 0.3705, and L2n¼ 0.8373. The
topology is as in Figure 16.11 with C4n¼ L4n¼C5n¼ 0. Figure 16.28 shows the active circuit. Observe
that we have realized each of the floating capacitors Cj as 0.5Cjþ 0.5Cj, j¼ 1, 2, 3, L2, with inverted
bottom-plate connections. This design choice preserves symmetry in the balanced differential layout by
placing the unavoidable substrate capacitors of value� 0.13 (0.5CL2) at each of the upper and lower
nodes of CL2 and �0.13 (0.5Ckþ 0.5C2) at the upper and lower nodes of Ck, k¼ 1, 3. Choosing the value
of transconductance as gm� 180 mS, using Equation 16.51, vc¼ 2p3 103 106 s�1, and observing the
necessary predistortion for the differential parasitic OTA input and output capacitors, Ci¼ 0.03 pF and
Co¼ 0.08 pF, respectively, and for the bottom-plate capacitors Cs assumed to be 10% of the correspond-
ing circuit capacitor value, results in

C1 ¼ C1n
gm
vc

� 3Co � 2Ci � 0:1
1
2

C2 þ C1

2

� �
¼ 3:191 pF

C2 ¼ C2n
gm
vc

¼ 1:061 pF

C3 ¼ C3n
gm
vc

� 2(Co þ Ci)� 0:1
C2

2
þ C3

4

� �
¼ 3:268 pF

CL2 ¼ L2n
gm
vc

� 2(Co þ Ci)� 0:1
CL

4
¼ 2:120 pF

(16:54)
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FIGURE 16.28 Realization of the third-order elliptic low-pass ladder of Equation 16.53. The capacitor values
indicated refer to each of the pair of capacitors.
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Notice that in a ladder structure all parasitic capacitors can be absorbed in the circuit capacitors.
Consequently, no new parasitic poles or zeros are created that might destroy the transfer function
shape. This is a further important advantage of the ladder-simulation method for gm-C filters.

16.3.3.2 Signal-Flow Graph Methods

As we have seen earlier, the signal-flow graph (SFG) or operational-simulation method takes the circuit
equations describing the ladder (Kirchhoff’s laws and the I–V relationships for the elements) and realizes
them directly via summers (for Kirchhoff’s laws) and integrators (for inductors and grounded capaci-
tors). The procedure was detailed in connection with Equations 16.22 through 16.24. Recall that Equation
16.23 represents integrations of voltages into currents and currents into voltages. As was the case for the
op-amp–based active RC filters in Chapter 15 and the MOSFET-C design, all signals in the SFG gm-C
circuit are voltages. They are summed at the OTA inputs, then are multiplied by gm to produce an
output current that is integrated by a capacitor to produce a voltage as input for the OTA of the next
stage. To reflect these facts in the relevant equations, we scale Equation 16.23 analogously to Equation
16.24 to obtain

IL2
gm

¼ gm(V1 � V3)
s(L2ngm)gm

;
IL4
gm

¼ gm(V3 � V5)
s(L4ngm)gm

(16:55a)

V1 ¼ gmVi � (Il2=gm)gm þ sC2nV3

s(C1n þ C2n)þ gm
(16:55b)

V3 ¼ (IL2=gm)gm � (IL4=gm)gm þ sC2nV1 þ sC4nV5

s(C2n þ C3n þ C4n)
(16:55c)

V5 ¼ Vo ¼ (IL4=gm)gm þ sC4nV3

s(C4n þ C5n)þ gm
(16:55d)

The scaling factor in this case is the design transconductance gm. Note that Li gm
2 in Equation 16.55a has

units of capacitance and that source and load resistors in Equations 16.55b and d have the value 1=gm.
Implementing these equations with lossless or lossy, as appropriate, integrators in fully differential
form results in the circuit in Figure 16.29, where we used a signal notation similar to that in Figure 16.14
and chose all integrating capacitors grounded. Starting from a normalized LC prototype, the actual
component values are obtained again via Equation 16.52. Note that the OTA at the input performs
the voltage-to-current conversion (Vi to I1) and that the last OTA both here and in Figure 16.27
implements the load resistor. The second OTA in Figure 16.27, realizing the source resistor, is saved in
Figure 16.29 by sending the current I1 directly into the integrating node (the capacitor C1), as suggested
by Equation 16.55b.* Also observe that circuit complexity in Figure 16.29 was kept low by resorting to
OTAs with dual inputs. We note again that all transconductors in Figures 16.27through 16.29 are
identicaly so that a single optimized gm-cell (an analog gate) can be used throughout the filter chip
for an especially simple IC design process, analogous to that of a gate array. The inherent 6 dB loss of the
LC ladder can also be eliminated, if desired, by lifting the two grounded inputs of the second OTA in
Figure 16.29 off ground and connecting them to the input voltage �Vi =2 as indicated by the dashed
connections.

* Had we used this ‘‘resistor,’’ the current into the integration node would have been realized as gmVi¼ gmVi3 (1=gm)3 gm,
clearly a redundant method.

y This can generally be achieved in gm-C ladder simulations; the only exception occurs for those LC ladders that require
unequal terminating resistors, such as even-order Chebyshev filters; in that case, one of the transconductors will also be
different.
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As a simple design example, consider again the realization of the third-order elliptic low-pass filter
described by Equation 16.53. The nominal LC elements were given earlier; the circuit is described by
Equation 16.55 with C4n¼C5n¼ L4n¼ 0, i.e.,

IL2
gm

¼ gm(V1 � V3)
s(L2ngm)gm

(16:56a)

V1 ¼ 2gmVi � (IL2=gm)gm þ sC2nV3

s(C1n þ C2n)þ gm
(16:56b)

V3 ¼ Vo ¼ (IL2=gm)gm þ sC2nV1

s(C2n þ C3n)þ gm
(16:56c)

which leads to the circuit in Figure 16.30a, as the reader may readily verify. Note the connection of the
input, which realizes the term 2gmVi in Equation 16.56b and eliminates the 6 dB loss as mentioned
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FIGURE 16.29 Signal-flow graph gm-C realization of a fifth-order elliptic low-pass function. The circuit is an active
simulation of the LC-ladder in Figure 16.11, including source and load resistors. All gm-cells are identical.
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earlier. We observe again that the capacitors must be predistorted to account for parasitics as was
discussed in connection with Equation 16.54; specifically, labeling as before the differential OTA input
and output capacitors as Ci and Co, respectively, we find

C1 � C1, nominal � 2Co � 2Ci; CL2 � CL2, nominal � Co � 2Ci; C3 � C3, nominal � Co � 2Ci

Figure 16.30b shows the experimental performance of the circuit fabricated in 2-mm CMOS technology
with design-automation software that uses the OTAs from a design library as ‘‘analog gates,’’ and
automatically lays out the chip and predistorts the capacitors according to the process file. The
transconductance value used is gm� 180 mS, and the capacitors are approximately the same as
the ones for the example in Figure 16.28. We will see in Section 16.5 that apart from differences due
to layout parasitics, it is no coincidence that the element values are essentially the same as before. Notice
that the filter meets all design specifications. The lower trace is the thermal noise at �70 dB below the
signal; the measured total harmonic distortion was THD< 1% for a 2-Vp-p input signal at 3 MHz.

16.4 Tuning

To obtain accurate filter performance with frequency-parameters set by RC products or C=gm ratios,
accurate absolute values of components are required. These must be realized by the IC process and
maintained during operation. Although IC processing is very reliable in realizing accurate ratios of
like components on a chip, the processing tolerances of absolute values must be expected to be of the
order of 20%–50% or more. Component tolerances of this magnitude are generally far too large for an
untuned filter to perform within specifications. Consequently, filters must be tuned to their desired
performance by adjusting element values. Clearly, in fully integrated filters, where all components are on
a silicon chip, tuning must be performed electronically by some suitably designed automatic control
circuitry that is part of the total continuous-time filter system. Tuning implies measuring filter perform-
ance, comparing it with a known standard, calculating the errors, and applying a correction to the system
to reduce the errors. An accurate reference frequency, e.g., a system clock (VREF in Figure 16.31), is usually
used as a convenient standard. From the filter’s response to the signal at this known frequency, errors are
detected and the appropriate correction signals, typically dc bias voltages, are applied via the control
circuitry [1, Chapter 7], [3, Chapter 16.5]. Reference [7, pt. 6] contains many papers showing practical
approaches to specific tuning problems.
Figure 16.31 shows a block diagram of this so-called Master–Slave architecture that is followed by most

currently proposed designs. The Master–Slave system is used because the reference signal, VREF, cannot
be applied to the Main Filter simultaneously with the main signal, Vin, because of undesirable interactions
(intermodulation) between Vin and VREF. The approach is based on the premise that the filter must
operate continuously, i.e., that Vin cannot be switched off occasionally to permit tuning in a signal-free

VREF

Vin Vout
Main filter (slave)

f-control
voltage

Frequency
control Master

Q-control
voltage

Q
control

FIGURE 16.31 Block diagram of Master–Slave control system for integrated c-t filters.
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environment. Therefore, VREF is applied to a circuit, the ‘‘Master’’ filter, that is carefully designed to
model the relevant behavior of the ‘‘Slave.’’ Master–Slave design and layout require great care to avoid
serious matching, noise, and crosstalk problems.
Figure 16.31 should help the reader understand the principle of the operation without having to

consider the actual circuitry that is very implementation-specific, see Ref. [7, pt. 6] for design examples.
The Main Filter (the ‘‘Slave’’) performs the required signal processing. Since the Master is designed to
model the Slave, the behaviors of Master and Slave are assumed to match and track. Tuning is then
accomplished by applying the generated correction or control signal simultaneously to both Master and
Slave. The system contains a Frequency-Control block that detects frequency-parameter errors in the
Master’s response to the reference signal and generates a frequency-control voltage that is applied to the
Master in a closed-loop control scheme such that any detected errors are minimized.* Since the Master is
designed to be an accurate model of the Slave, their errors, too, can be assumed to match and track.
Consequently, when the frequency-control voltage is applied at the appropriate locations to the Slave, it
can be expected to correct any frequency errors in the main filter.
The purpose of the additional block in Figure 16.31, labeled Q-Control, is to tune the shape of the

transfer characteristic. Once the frequency parameters are correct as tuned by the f-control loop, the
transfer function shape is determined only by the quality factors Qi of the poles and zeros. Q, as a ratio of
two frequencies, is a dimensionless number and as such is determined by a ratio of like components
(resistor, capacitor, and=or gm-ratio; see e.g., Equation 16.47b). At fairly low frequencies and moderate
values of Q, the quality factor is realizable quite accurately in an IC design. For high-frequency, high-Q
designs, however, Q is found to be a very sensitive function of parasitic elements and phase shifts so that
it is unreasonable to expect Q to turn out correctly without tuning. Therefore, including for generality a
Q-Control blocky permits automatic tuning of the transfer function shape by a scheme that is completely
analogous to the f-control method, as illustrated in Figure 16.31.
With few exceptions, all currently proposed automatic tuning schemes follow the Master–Slave

approach. A different concept proposed in Ref. [11] uses adaptive techniques to tune all poles and
zeros of a filter function for improved tuning accuracy. Although the Master–Slave and the adaptive
techniques work well, generally, the necessary circuitry has been found to be too large, noisy, and power
hungry for many practical applications. Thus, alternative choices use a simple post-fabrication trim stepz

to eliminate the large fabrication tolerances, possibly together with careful design to make the electronic
devices (OTAs) independent of temperature variations [12,13].
We also point out that at the highest frequencies, higher than, say, 100 MHz, circuit capacitors to

realize the prescribed frequency parameters, gm=C, become very small (C� 0.15 pF at 100 MHz and
gm¼ 100 mS). Filter behavior is then essentially determined by parasitics, and matching required between
Master and Slave circuitry is unreliable. In that case, a form of direct tuning [7, paper 6.4] must be used,
where the main filter is tuned during time periods when the signal is absent. The system is essentially as
depicted in Figure 16.31, except that the Master is absent and VREF is applied to the main filter. When
tuning is complete (taking a few milliseconds), VREF is turned off, Vin is again applied to the filter, and the
generated dc control signals are held on a capacitor until the next tuning update.

* In the designs reported to date, frequency-control blocks built around some type of phase-locked loop scheme, using a
multiplier or an EXOR gate as phase detector, have been found most successful, but magnitude-locking approaches similar
to those employed for Q control have also been used. A largely digital approach to frequency and Q tuning is discussed in
Ref. [10].

y Because magnitude errors can be shown in many cases to be proportional to errors in quality factor, the QControl block is
normally implemented around an amplitude-locking scheme, where the filter’s magnitude response at a given frequency is
locked to a known reference level.

z For example, an on-chip laser-trimmed resistor or an external resistor set to determine the bias for OTAs. It works for
applications with very low quality factors or where no component drifts are expected during operation.
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16.5 Discussion and Conclusions

In this chapter we discussed one of the fastest growing research and development areas in the topic of
continuous-time filters, the field of fully integrated filters. Growing pressures to reduce costs and size, and
improve reliability lead to increasingly larger parts of electronic systems being placed onto integrated
circuits, a trend that c-t filters need to follow. As might have been expected, in most respects the methods
for IC c-t filter design are identical to well-known active RC techniques, and follow directly the well-
understood and proven standard active RC biquad-cascade or ladder-simulation methodologies. The
difference lies in the final implementation, which the designer may adapt to any IC process and power
supply level appropriate for the implementation of the system. Signal-to-noise ratios of the order of
65–80 dB and better, and distortion levels of less than 0.5% at signal levels of 1 V are obtainable. The two
most prominent design approaches are the MOSFET-C and the gm-Cmethods, both of which lead to easy
and systematic designs and result in filters that have proven themselves in practice. At the time of this
writing, gm-C filters appear to have the edge in high-frequency performance: with OTA bandwidths
reaching gigahertz frequencies even for CMOS technology, c-t filters can be designed readily for
applications in the range of several hundred megahertz, i.e., to about 40%–60% of the active-device
bandwidth. A second important difference that requires the designer’s attention is that the IC filter must
be automatically tunable. This implies electronically variable components, OTAs or MOSFET ‘‘resistors,’’
in the filter and some automatic control scheme for detecting errors and providing adjustments. Only
area- and power-efficient designs, and simple low-noise circuitry for such tuning schemes will be
acceptable and guarantee the ultimate commercial success of integrated filters. At the present time,
many approaches have been proposed that the reader may modify or adapt to his=her system [7].
We point out again that the cascade design is the more general procedure because it permits the

realization of arbitrary transmission zeros anywhere in the complex s-plane, as required, for example, in
gain or phase equalizers. Lossless ladders, on the other hand, are more restrictive because their
transmission zeros are constrained to lie on the jv axis, but they have lower passband sensitivities to
component tolerances than cascade filters. Since good gyrators are readily available for gm-C filters—in
contrast to MOSFET-C designs—two competing implementation methods appear to suggest themselves
in the gmC approach: the signal-flow graph and the element-substitution methods. As mentioned, there is
in fact no discernible difference between the two methods; indeed, they lead to the same structures.
For instance, the reader may readily verify that apart from a minor wiring change at the inputs, the
circuits in Figures 16.27b and 16.29 are identical, as are the ones in Figures 16.28 (after redrawing it
for dual-input OTAs) and 16.30. The wiring change is illustrated in Figure 16.32. Figure 16.32a shows
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FIGURE 16.32 Excerpt from Figure 16.28 (a) to illustrate alternative wiring and (b) at the filter input 0.
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the input section of Figure 16.29 (wired for 0-dB dc gain) and the wiring in Figure 16.32b is that of Figure
16.27b. Notice that both circuits realize

(sC1 þ gm)V1 ¼ 2gmVi � gmVI2 (16:57)

The designer, therefore, may choose a ladder method based on his=her familiarity with the procedure,
available tables, or prototype designs; the final circuits are the same.
A further item merits reemphasizing at this point: As the reader may verify from the examples

presented, gm-C ladder structures generally have at all circuit nodes a design capacitor that can be
used to absorb parasitics by predistortion as was discussed earlier. It may be preferable, therefore, to
avoid the gm-C–op-amp integrator of Figure 16.20 with its increased noise level, power consumption,
and with its associated parasitic poles (and zeros) and use parasitics-absorption as we have done in our
examples. This method will not introduce any new parasitic critical frequencies into the filter and result
in lower distortion of the transfer function shape and easier tuning. As we mentioned earlier, this feature
is a substantial advantage of gm-C ladder filters.
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17.1 Introduction

The need to have monolithic high-performance analog filters motivated circuit designers in the late
1970s to investigate alternatives to conventional active-RC filters. A practical alternative appeared in the
form of switched-capacitor (SC) filters [1–3]. The original idea was to replace a resistor by an SC
simulating the resistor. Thus, this equivalent resistor could be implemented with a capacitor and two
switches operating with two-clock phases. SC filters consist of switches, capacitors, and op-amps. They
are characterized by difference equations in contrast to differential equations for continuous-time
filters. Simultaneously, the mathematical operator to handle sample-data systems such as SC circuits
is the z-transform, while the Laplace transform is used for continuous-time circuits. Several key
properties of SC circuits have made them very popular in industrial environments:
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1. Time constants (RC products) from active-RC filters become capacitor ratios multiplied by the
clock period T. That is

RC ) C
CR

T ¼ C
CRfc

where fc is the clock frequency used to drive the SC equivalent resistor.
2. Reduced silicon area, since the equivalent of large resistors can be simulated using small-size

capacitors. Furthermore, positive and=or negative equivalent resistors can be easily implemented
with SC techniques.

3. Above expression can be realized in real applications with a good accuracy of nearly 0.1%.
4. Typically, the load of an SC circuit is mainly capacitive; therefore the required op-amps do not

require a low-impedance output stage. This allows the use of unbuffered cascode operational
transconductance amplifiers, which is especially useful in high-speed applications.

5. SC filters can be implemented in digital circuit process technologies; metal–metal capacitors are
quite often used in deep submicron technologies. Thus, useful mixed-mode signal circuits can be
economically realized.

6. SC design technique has matured. In the audio range, SC design techniques have become the
dominant design approach. Many circuits in communication applications and data converters use
SC implementations.

In what follows, we will discuss basic building blocks involved in low- and high-order filters. Limitations
and practical design considerations will be presented. Furthermore, due to the industrial push for lower
power supply voltages, a brief discussion on low-voltage circuit design is included.

17.2 Basic Building Blocks

The basic building blocks involved in SC circuits are voltage gain amplifiers, integrators, second-order
filters, and nonoverlapping clock generators. A key building block is the integrator. By means of a two-
integrator loop a second-order (biquadratic) filter can be realized. Furthermore, a cascade connection of
biquadratic filters yields higher order filters.

17.2.1 Voltage Gain Amplifiers

The gain amplifier is a basic building block in SC circuits. Both the peak gain of a second-order filter
and the link between the resonators in a ladder filter are controlled by voltage amplifier stages rather
than by integrators. Many other applications such as pipeline data converters require voltage gain
stages as well. A voltage amplifier can be implemented by using two capacitors and an operational
amplifier, as shown in Figure 17.1a. Ideally, the gain of this amplifier is given by �CS=Ci. This topology
is compact, versatile, and time continuous. Although this gain amplifier is quite simple, several second-
order effects present in the op-amp make its design more complex. A major drawback of this topology
is the lack of dc feedback.
For dc, the capacitors behave as open circuits; hence the operating point of the operational amplifier

is not stabilized by the integrating capacitor Ci. In addition, the leakage current present at the input of the
op-amp is integrated by the integrating capacitor, whose voltage eventually saturates the circuit.
The leakage current Ileak in SCs circuits is a result of the diodes associated with the bottom plate of the
capacitors and the switches (drain and source junctions). The leakage current is typically about
1 nA=cm2. Analysis of Figure 17.1a considering the leakage current Ileak present at the inverting terminal
of the amplifier yields
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vo(t) ¼ vo(to)� CS

Ci
Vi(t)� Ileak

Ci
(t � to) (17:1)

Note that the dc output voltage is defined by the input signal and the initial conditions at t� to. The
leakage current present at the input of the op-amp is integrated by Ci and eventually saturates the circuit.
To overcome this drawback, an SC resistor can be added as shown in Figure 17.1b. f1 and f2 are two
nonoverlapping clock phases with nearly 50% duty cycle. The SC resistor gives a dc path for the leakage
current but reduces further the low-frequency gain. A detailed analysis of this topology shows that the dc
output voltage is equal to �IleakT=Cp, with Cp the parasitic capacitor associated with the feedback path.
Employing charge conservation analysis method for SC networks, it can also be shown that the z-domain
transfer function of this topology is

H(z) ¼ Vo(z)
Vi(z)

¼ �CS

Ci

1� z�1

1� 1� Cp

Ci

� �
z�1

(17:2)

with z¼ ej2pfT. For low frequencies, z� 1, the magnitude of the transfer function is very small, and only
for high frequencies, z��1, the circuit behaves as an inverting voltage amplifier.

An offset free voltage amplifier is shown in Figure 17.2. During the clock phase f2, the output voltage
is equal to the op-amp offset voltage and it is
sampled by both the integrating and sampling
capacitors. Because of the sampling of the offset
voltage during the previous clock phase, during the
integrating clock phase the charge injected by the
sampling capacitor is equal to CSVi, and the charge
extracted from the integrating capacitor becomes
equal to CiVo if the offset voltage of the amplifier is
the same in both clock phases. In this case, the
offset voltage does not affect the charge recombin-
ation, and the z-domain transfer function during
the clock phase f1 becomes

H(z) ¼ �CS

Ci
(17:3)

Equation 17.3 shows that ideally this topology is
insensitive to the op-amp offset voltage, and does
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FIGURE 17.1 Voltage amplifiers. (a) Without dc feedback and (b) with dc feedback.
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FIGURE 17.2 Voltage amplifier available during the
f1 clock phase.
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not have any low-frequency limitation. The topology
behaves as an inverting amplifier if the clock phases
shown in Figure 17.2 are used. A noninverting amplifier
is obtained if the clock phases associated with the sampling
capacitor are interchanged.
Because during f2 the op-amp output is short

circuited with the inverting input, this topology presents
two drawbacks. First, the amplifier output is only available
during the clock phase f1. This limitation could be
important in complex applications wherein the output
of the amplifier is required during both clock phases.
The second disadvantage of this topology is the large
excursion of the op-amp output voltage. During the first
clock phase, the op-amp output voltage is equal to the
offset voltage and in the next clock phase this voltage is
equal to �(CS=Ci)Vi. Hence an op-amp with large slew
rate may be required; this may demand significant amount
of power since the load capacitor is driving during this
phase too.
Another interesting topology is shown in Figure 17.3. During f2, the op-amp output voltage is equal

to the previous voltage plus the op-amp offset voltage plus Vo=AV, where AV is the open-loop dc gain
of the op-amp. In this clock phase, both capacitors Ci and CS are charged to the voltage at the inverting
terminal of the op-amp. This voltage is approximately equal to the op-amp offset voltage plus Vo=AV.
During the next clock phase, the sampling capacitor is charged to CS(Vi�V�), but because it was
precharged to �CSV�, the injected charge to Ci is equal to CSVi. As a result of this charge cancellation,
the op-amp output voltage is equal to �(CS=Ci)Vi. Therefore, this topology has low sensitivity to the
op-amp offset voltage and to the op-amp dc gain. A minor drawback of this topology is that the op-amp
stays in open loop during the nonoverlapping clock phase transition times. This fact produces spikes
during these time intervals. A solution for this is to connect a small capacitor between the op-amp output
and the left-hand plate of CS.

17.2.2 First-Order Blocks

The standard stray-insensitive integrators are shown in Figure 17.4. Note that in sampled data
systems both input and output signals can be sampled at different clock periods. This yields
different transfer functions; this property increases the flexibility of the architecture when used in
complex systems. We will assume a two-phase nonoverlapping clock: an odd clock phase f1 and an
even clock phase f2.
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For the noninverting integrator the following transfer functions are often used

Hoo(z) ¼ Vo
o (z)

Vo
in(z)

¼ Apz�1

1� z�1
¼ Ap

z � 1
(17:4a)

Hoe(z) ¼ Ve
o(z)

Vo
in(z)

¼ Apz�1=2

1� z�1
¼ Apz1=2

z � 1
(17:4b)

where Hxy stands for the output defined at phase x while the input is sampled during phase y. For the
inverting integrator

Hoe(z) ¼ Vo
o (z)

Vo
in(z)

¼ � An

1� z�1
¼ � Anz

z � 1
(17:5a)

Hoe(z) ¼ Ve
o(z)

Vo
in(z)

¼ �Anz�1=2

1� z�1
¼ �Anz1=2

z � 1
(17:5b)

where z�1 represents a unit delay. A crude demonstration showing the integration nature of these SC
integrators [1,8] in the s-domain is to consider high-sampling rate, that is, a clock frequency ( fc¼ 1=T)
much higher than the operating signal frequencies. Let us consider Equation 17.4a, and assuming high-
sampling rate (vT� 1) we can write a mapping from the z- to the s-domain:

z ¼ e j2pfT ¼ esT ffi 1þ sT (17:6)

H(s) ¼ Ap

z � 1

����
zffi1þsT

ffi 1
(T=Ap)s

(17:7)

where s (¼j2pf ) is the complex frequency variable. This last expression corresponds to a continuous-
time noninverting integrator with a time constant of T=Ap¼ 1=fcAp, that is, a capacitance ratio times the
clock period.
In many applications the capacitor ratios associated with the integrators are very large, thus the total

capacitance becomes excessive. This is particularly critical for biquadratic filters with high Q, where the
ratio between the largest and smallest capacitance is proportional to the quality factor Q. A suitable

inverting SC integrator for high-Q applications
[11,13] is shown in Figure 17.5; the corresponding
transfer function during f2 is

Hoe(z) ¼ Ve
o(z)

Vo
in(z)

¼ � C1C3

C2(C2 þ C3)
z�1=2

1� z�1

� �
(17:8)

This integrator is comparable in performance to the
conventional of Figure 17.3, in terms of stray sensi-
tivity and finite gain error. Note from Equation 17.8
that the transfer function is only defined during f2.
During f1, the circuit behaves as a voltage amplifier
plus the initial conditions of the previous clock
phase, and in the following clock phase the same

+

–

φ2

φ1 C1

φ1

φ2 C3

C2

ve
o

φ2vo
in

FIGURE 17.5 A SC integrator with reduced capaci-
tance spread.
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amount of charge is extracted but the inte-
grating capacitor is reduced due to the
switches connected to C1, thus relatively
high-slew-rate op-amps could be required.
A serious drawback could be the increased
offset in comparison with the standard SC
integrators. However, in typical two integra-
tor loop filters, the other integrator can be
chosen to be offset and low dc gain compen-
sated as shown in Figure 17.6.
The SC integrator performs the integration

during f1 by means of CS and CF and the
hold capacitor CH stores the offset voltage. The voltage across CH

compensates the offset voltage and the dc gain error of the
op-amp. Note that the SC integrator of Figure 17.6 can operate
as a noninverting integrator if the clocking in parenthesis is
employed. CM provides a time-continuous feedback around the
op-amp. The transfer function for infinite op-amp gain is

Hoo(z) ¼ Vo
o (z)

Vo
in(z)

¼ � CS

CF

1
1� z�1

� �
(17:9)

Next we discuss a general form of a first-order building block
(see Figure 17.7). Observe that some switches can be shared. The
output voltage during f1 can be expressed as

Vo
o ¼ �C1

CF
Ve
i1 �

C2

CF

1
1� z�1

� �
Vo
i2 þ

C3

CF

z�1=2

1� z�1

� �
Ve
i3 (17:10)

Observe that the capacitor C3 and switches can be considered as the implementation of a negative resistor
leading to a noninverting amplifier. Also note that Vo

i2 could be Ve
o, this connection would make the

integrator a lossy one. In that case Equation 17.10 can be written as

Vo
o

1þ C2
CF

� �
z � 1

z � 1
¼ �C1

CF
Ve
i1 þ

C3

CF

z1=2

z � 1
Ve
i3 , for Vo

i2 ¼ Vo
o (17:11)

The building block of Figure 17.7 is the basis of higher order filters.

17.2.3 Switched-Capacitor Biquadratic Sections

The circuit shown in Figure 17.8 can implement any pair of poles and zeros in the z-domain. For
CA¼CB¼ 1 we can write

Hee(z) ¼ Ve
o(z)

Ve
in(z)

¼ � (C5 þ C6)z2 þ (C1C2 � C5 � 2C6)z þ C6

z2 þ (C2C3 þ C2C4 � 2)z þ (1� C2C4)
(17:12)
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FIGURE 17.6 Offset and gain compensated integrator.
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FIGURE 17.7 General form of a first-
order building block.
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Simple design equations for a particular type of filter follows:

Low-pass case: C5 ¼ C6 ¼ 0 (17:13a)

High-pass case: C1 ¼ C5 ¼ 0 (17:13b)

Bandpass case: C1 ¼ C6 ¼ 0 (17:13c)

Comparing the coefficients of the denominator of Equation 17.12 with the general z-domain expression
z2� (2r cos u)zþ r2 of a second-order system, we can obtain the following expressions:

C2C4 ¼ 1� r2 (17:14a)

C2C3 ¼ 1� 2r cos uþ r2 (17:14b)

Note that in this expression it has been assumed that the filter poles are complex conjugate located at
z¼ re�jvodT. vod and Q are the poles frequency and the filter’s quality factor, respectively. For equal
voltage levels at the two integrator outputs, and assuming Q greater than 3, and high-sampling rate
(u¼vodT� 1) we can write

C2 ¼ C3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 � 2r cos u

p
ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rð Þ2 þ ru2

q
ffi u ¼ vodT (17:14c)

C4 ¼ 1� r2

C2
ffi 1

Q
(17:14d)

where cos(u) ffi 1� u2=2 and r ffi 1. The capacitance spread for high-sampling rate and high-Q unity DC
gain low-pass filter can be expressed as

Cmax

Cmin
¼ max

1
C2

,
1
C4

� 	
¼ max

1
vodT

,Q

� 	
(17:15)

In some particular cases this capacitance spread becomes prohibited large. For such cases the SC
integrators shown in Figures 17.5 and 17.6 can be used to replace the conventional building blocks.
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FIGURE 17.8 A SC biquadratic section [Martin-Sedra].
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This combination yields the SC biquadratic section shown in Figure 17.9. This structure, besides offering
a reduction of the total capacitance, also yields a reduction of the offset voltage of the op-amps. Note that
the capacitors CH does not play an important role in the design, and can be chosen to have a small value.
The design equations for the zeros are similar to Equation 17.13a through c. For the poles, comparing
with z2� (2r cos u)zþ r2 and the analysis of Figure 17.9, we can write

C2C3

CA þ CB
¼ 1þ r2 � 2r cos u (17:16a)

C0
AC2C4

CA1CACB
¼ 1� r2 (17:16b)

where CA1¼C0
A þ C00

A. Simple design equations can be obtained assuming high-sampling rate, large Q,
and C2¼C3¼C4¼C0

A ¼Ch¼ 1; then

CA þ CB ffi 1
vodT

(17:17a)

C00
A ffi QvodT � 1 (17:17b)

Another common situation is the use of SC filters at high frequencies; in such cases a structure with
minimum gain-bandwidth product (GB¼vu) requirements is desirable. This structure is shown in
Figure 17.10 and is often referred to as a decoupled structure. It is worthwhile to mention that two SC
architectures can have ideally the same transfer function; however, with real op-amps their frequency
(and time) response differs significantly. A rule of thumb to reduce the GB effects in SC filters is to
minimize the direct connections between the output of one op-amp to the input of another op-amp. It is
desirable to transfer the output of an op-amp to a grounded capacitor, and in the next clock phase,
transfer the capacitor charge into the op-amp input. If required, the connection to the next op-amp has to
be done during the hold phase of the previous op-amp. If the connection is done during the charge
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FIGURE 17.9 An improved capacitance area SC biquadratic section.

17-8 Passive, Active, and Digital Filters



injection phase, the output of the first integrator is a ramp (step response of the integrator), and
the settling time for the next integrator increases further. More discussion on vu effects is given in
Section 17.3.
If the input signal is sampled during f2 and held during f1, the ideal transfer function is given by

Hee(z) ¼ Ve
o(z)

Ve
i (z)

¼ � A4

1þ A6

� � z2 � z A4þA5�A1A2
A4

� �
þ A5

A4

z2 � z 2þA6þA7�A2A3
1þA6

� �
þ 1þA7

1þA6

0
@

1
A (17:18)

Analysis of this equation yields the following expressions:

r2 ¼ 1þ A7

1þ A6
(17:19a)

2r cos u ¼ 2þ A6 þ A7 � A2A3

1þ A6
(17:19b)

The capacitor A7C
0
0 can be used as a design trade-off parameter to optimize the biquad performance.

A simple set of design equations follows:

A6 ¼ (1þ A7)� r2

r2
(17:20a)

A2 ¼ A3 ¼ (1þ A7)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 � 2r cos u

r2

r
(17:20b)

Under high-sampling rate and high-Q conditions, the following expressions can be obtained:

vo ffi fc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2A3

1þ A6

r
(17:21a)
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FIGURE 17.10 A decoupled SC biquadratic section.
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and

Q ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2A3(1þ A6)

A6 � A7

s
(17:21b)

A trade-off between Q-sensitivity and total capacitance is given by A6 and A7.

17.3 Effects of the Op-Amp Finite Parameters

17.3.1 Finite Op-Amp DC Gain Effects

The effect of finite op-amp dc voltage gain Ao in a lossless SC integrator is to transform a lossless
integrator into a lossy one. This brings degradation in the transfer function both in magnitude and phase.
Typically, the magnitude deviation due to the integrator amplitude variation is not critical. By contrast,
the phase deviation from the ideal integrator has a very important influence on the overall performance.
When the real SC integrators are used to build a two-integrator biquadratic filter, it can be proved that
the actual quality factor becomes

QA ¼ 1
1
Q þ 2

Ao

ffi 1� 2Q
Ao

� �
Q (17:22)

where Q and A0 are the desired filter’s quality factor and op-amp dc gain, respectively. The actual
frequency of the poles suffers small deviations as well

voA ¼ Ao

1þ Ao
vo (17:23)

From this equation we can conclude that the vo deviations are negligible if Ao> 100. However, the Q
deviations can be significant depending on the Q and Ao values, e.g., Qerror is given by �2Q=Ao, which is
more critical for high-Q applications.

17.3.2 Finite Op-Amp Gain-Bandwidth Product Effects

The op-amp bandwidth is very critical for high-frequency applications. The analysis is carried out when
the op-amp voltage gain is modeled with one dominant pole, i.e.,

Av(s) ¼ Ao

1þ s=vp
¼ Aovp

sþ vp
¼ vu

sþ vp
ffi vu

s
(17:24)

where
Ao is the dc gain
vu is approximately the unity-gain bandwidth (GB)
vp is the op-amp bandwidth

The analysis taking into account Av(s) is rather cumbersome since the op-amp input–output character-
ization is a continuous-time system modeled by a first-order differential equation, and the rest of the SC
circuit is characterized by discrete-time systems modeled by difference equations. It can be shown that
the step response of a single SC circuit with an op-amp gain modeled by Equation 17.24 due to step
inputs applied at t¼ t1 is

Vo(t � t1) ¼ Vo(t1)e
�(t�t1)avu þ Vod{1� e�(t�t1)avu } (17:25)

17-10 Passive, Active, and Digital Filters



where
Vo(t1) and Vod are the initial and the final output voltages, respectively
a is a topology dependent voltage divider, 0<a� 1, given by the following expression:

a ¼
P

CfP
i Ci

(17:26)

where
Cf sum consists of all feedback capacitors connected directly between the op-amp output and the
inverting input terminal

Ci sum comprises the capacitors connected to the negative op-amp terminal

Note that avu should be maximized for fast settling time. For the common case the SC circuit is driven
by 50% duty cycle clock phases, the integrating time is close to T=2, hence the figure of merit to be
maximized is aTvu=2. The output voltage will settle to its final value within an error of 0.67% after five
equivalent time constants, hence a rule of thumb yielding reduced GB product effects requires

aTvu

2
> 5 (17:27a)

or

fu >
1:6
a

fs (17:27b)

For the multiple op-amp case the basic concept prevails. For a two-clock phase SC filters the system can
be described by anM3Mmatrix A for each clock-phase, whereM is the number of op-amps in the filter
architecture. For a fixed clock frequency, fc¼ 1=T, there are two components to be optimized: a and vu.
effects biquadratic SC filter presented in the previous section (Figure 17.10) has the property that matrix
A has been optimized. For illustration on how to determine the A matrix of an SC filter, let us consider
the filter depicted in Figure 17.10; for each clock phases matrix A is given by

Ajw1
¼

1
1þA1þA3

0

0 1


 �
(17:28)

Ajw2
¼

1 A2
1þA2þA4þA5þA6þA7

0 1þA8
1þA2þA4þA5þA6þA7

" #
(17:29)

Thus, the designer should use the extra degrees of freedom to maximize the diagonal entries of A during
all phases. Thus, the worst case for any entry of A determines the minimum value of v. Another design
consideration could be to maximize vu. This last consideration should be carefully addressed since very
large vu values besides extra power consumption can cause excessive phase margin degradation or
excessive noise if the capacitors are reduced. Therefore, a judiciously trade-off must be used in choosing
the vu of each op-amp in the filter topology.

17.4 Noise and Clock Feedthrough

The lower range of signals that can be processed by the electronic devices is limited by several unwanted
signals that appear at the output of the circuit. The RMS values of these electrical signals determine the
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system noise level, and it represents the lowest limit for the incoming signals to be processed. In most of
the cases the circuit cannot properly detect input signals smaller than the noise level.
The most critical noise sources are those due to (1) the employed elements (transistors, diodes,

resistors, etc); (2) the noise induced by the clocks; (3) the harmonic distortion components generated
due to the intrinsic nonlinear characteristics of the devices; and (4) the noise induced by the surrounding
circuitry. In this section, types (1), (2), and (3) are considered. Using fully differential structures can
further reduce the noise generated by the surrounding circuitry and coupled to the output of the SC
circuit. These structures are partially treated in Section 17.5 but excellent references can be found in the
literature [2,4,6,9,13].

17.4.1 Noise due to the Op-Amp

In an MOS transistor, the noise is generated by different mechanisms but there are two dominant noise
sources: channel thermal noise and 1=f or flicker noise. A discussion of the nature of these noise sources
follows.

17.4.2 Thermal Noise

The flow of the carriers due to the drain-source voltage takes places on the source-drain channel, mostly
like in a typical resistor. Therefore, due to the random flow of the carriers, thermal noise is generated. For
an MOS transistor biased in the linear region the spectral density of the thermal noise is approximately
given by [1–4,12]

V2
eqth ¼ 4kTRon (17:30)

where Ron, k, and T are the drain-source resistance of the transistor, the Boltzmann constant, and the
temperature (in Kelvin degrees), respectively. In saturation region, the gate-referred spectral noise density
can be calculated by the same expression but with Ron equal to d=gm, being gm the small-signal
transconductance of the transistor and d a fitting parameter usually in the range of 0.7–1.

17.4.3 1=f Noise

This type of noise is mainly due to the imperfections in the silicon–silicon oxide interface. The
surface states and the traps in this interface randomly interfere with the charges flowing through
the channel; hence the generated noise is strongly dependent of the technology. The 1=f noise (or flicker
noise) is inversely proportional to the gate area because at larger areas more traps and surface states are
present and some averaging occurs. The spectral density of the gate referred 1=f noise is commonly
characterized as

V2
eq1=f ¼

kF
WLf

(17:31)

where the product WL, f, and kF are the gate area of the transistor, the frequency in hertz, and the flicker
constant, respectively. The spectral noise density of the MOS transistor is composed by both components,
therefore the input referred spectral noise density of a transistor operated in its saturation region
becomes

V2
eq ¼

4dkT
gm

þ kF
WLf

(17:32)
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17.4.4 Op-Amp Noise Contributions

In an op-amp, the output referred noise density is composed by the noise contribution of all transistors;
hence the noise level is function of the op-amp architecture. A typical unbuffered folded cascode op-amp
(folded cascode OTA) is shown in Figure 17.11. For the computation of the noise level, the contribution of
each transistor has to be evaluated. Obtaining the OTA output current generated by the gate-referred noise
of all the transistors can do this. For instance, the spectral density of the output-referred noise current due
toM1 is straightforwardly determined because the gate-referred noise is at the input of the OTA, leading to

i201 ¼ G2
mV

2
eq1 (17:33)

where
Gm (equal to gm1 at low frequencies) is the OTA transconductance
V2
eq1 is the input (gate) referred noise density of M1

Similarly, the contributions of M2 and M5 to the spectral density of the output referred noise current are
given by

i2o2 ¼ g2m2v
2
eq2

i2o5 ¼ g2m5v
2
eq5

(17:34)

Usually the noise contributions of transistors M3 and M4 at medium frequencies are very small in
comparison to the other components; this is a nice property of the cascode transistors. This is because
their noise drain currents, due to the source degeneration implicit in the cascode transistors, are
determined by the equivalent conductance associated with their sources instead of those by their
transconductance. Since in a saturated MOS transistor the equivalent conductance is much smaller
than the transistor transconductance, this noise drain current contribution can be neglected at low and
medium frequencies; this is however not the case at very high frequencies where the parasitic capacitors
play an important role. The noise contribution of M6 is mainly common-mode noise evenly split in the
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FIGURE 17.11 A folded cascode operational transconductance amplifier.
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two arms by transistor M1, therefore it is ideally canceled at the OTA output due to the current
subtraction. At low frequencies, the spectral density of the total output referred noise current can be
approximately calculated as

i2o ¼ 2 g2m1V
2
eq1 þ g2m2v

2
eq2 þ g2m5v

2
eq5

� �
(17:35)

The factor 2 is the result of the pair of transistors M1, M2, and M5. From this equation, the OTA
input referred noise density is obtained by dividing the output noise current by the square of Gm¼ gm1,
yielding

v2OTAin ¼ 2v2eq1 1þ g2m2v
2
eq2 þ g2m5v

2
eq5

g2m1v
2
eq1

 !
(17:36)

According to this result, if gm1 is larger than gm2 and gm5, the OTA input referred noise density is mainly
determined by the OTA input stage. In that case and using Equation 17.32 and 17.36 yields

v2OTAin ffi 2v2eq1 ¼
2kF

W1L1f
þ 8dkT

gm1
¼ v2eq=f 1 þ 4kTReqth (17:37)

where the factor 2 has been included in veq1=f and Reqth. In Equation 17.37, v2eq1=f is the equivalent 1=f
noise density and Reqth is the equivalent resistance for noise, equal to 2 d=gm1.

17.4.5 Noise in a Switched-Capacitor Integrator

In an SC lossless integrator, the output referred noise density component due to the OTA is frequency
limited by the GB product of the OTA. In order to avoid misunderstandings, in this section fu (the unity-
gain frequency of the OTA in hertz) is used instead of vu (in radians per second). Since fu must be higher
than the clock frequency, high-frequency noise is folded back into the integrator baseband. In the case of
the SC integrator and assuming that the flicker noise is not folded back, the output referred spectral noise
density becomes

V2
oeq1 ¼ v2eq1=f þ 4KTReqth 1þ 2fu

fc

� �� �
j1þH(z)j2 (17:38)

where the folding factor is equal to fu=fc, fc is the clock frequency and H(z) is the z-domain transfer
function of the integrator. The factor 2fu=fc is the result of both positive and negative folding. Typically,
the frequency range of the signal to be processed is around and below the unity-gain frequency of the
integrator, therefore jH(z)j> 1 and Equation 17.38 can be approximated as

V2
oeq1 ¼ v2eq1=f þ 4kTReqth 1þ 2fu

fc

� �� �
jH(z)j2 (17:39)

17.4.6 Noise due to the Switches

In SC networks, the switches are implemented with single or complementary MOS transistors. These
transistors are biased in the cutoff and ohmic region for open and close operations, respectively. In cutoff
region, the drain-source resistance of the MOS transistor is very high, then the noise contribution of the
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switch is confined to very low frequencies and it can be considered as dc offset. When the switch is in
the on state, the transistor is biased in linear region and its spectral noise distribution is characterized
by Equation 17.30. This noise contribution is the most fundamental limit for the signal-to-noise
ratio of SC networks. The effects of these noise sources are better appreciated if an SC integrator is
considered.
Let us consider the SC integrator of Figure 17.12 and assume that f1 ¼ f0

1 and f2 ¼ f0
2. The spectral

noise density of the f1-driven switches are low-pass filtered by the on resistance of the switches Ron
and the sampling capacitor Cs. The cutoff frequency of this continuous-time filter is given by
fon¼ 1=(2pRonCs). Typically, fon is higher than the clock frequency, therefore, the high-frequency noise
is folded back into the baseband of the integrator when the SC integrator samples it. Taking into account
the folding effects, the spectral noise density component of the switch-capacitor combination becomes

v2eq2 ¼ 4kTRon 1þ 2fon
fc

� �
(17:40)

with Ron the switch resistance. Considering that the noise bandwidth is given by 2pfon¼ 1=RonCS, then
the integrated noise level yields:

v2eq---integrated ¼
kT
CS

1þ 2fon
fc

� �
(17:41)

For the noise induced by the f2 driven switches, the situation is slightly different, but for practical
purposes the same equation is used. According to Equation 17.41, the integrated noise power is inversely
proportional to CS. Therefore, for low-noise applications it is desirable to design the integrators with large
capacitors. However, the costs for the noise reduction are larger silicon area and higher power consump-
tion. This last result is because the slew rate of the OTA is inversely proportional to the load capacitance
and in order to maintain the specifications it is necessary to increase the current drive capability of the
OTA. Clearly, there is a trade-off between noise level, silicon area, and power consumption.

17.4.7 Clock Feedthrough

Another factor that limits the accuracy of SC networks is the charge induced by the clocking of the
switches. These charges are induced by the gate-source capacitance, the gate-drain capacitance, and
the charge stored in the channel. Furthermore, some of these charges are input signal dependent
and introduce distortion in the circuit. Although these errors cannot be canceled, there are some
techniques that reduce these effects.
The analysis of the clock feedthrough is not straightforward because it depends on the order of the

clock phases, the relative delay of the clock phases, as well as the speed of the clock transition [13]. For
instance, let us consider in Figure 17.12 the case when f1 goes down before f0

1. This situation is shown in
Figure 17.13a.
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FIGURE 17.12 Typical switched-capacitor lossless integrator.
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While Cp1 is connected between two low-impedance nodes, Cp2 is connected between f1, a low-
impedance node, and vx. For f1> viþVT the transistor is on and the current injected by Cp2 is absorbed
by the drain-source resistance; then vx remains at a voltage equal to vi. When the transistor is turned off,
f1< viþVT, charge conservation at node vx leads to

vx ¼ vi þ Cp2

CS þ Cp2
(VSS� vi � VT) (17:42)

where VSS is the low level of f1 and f2. During the next clock phase, the charge of CS is injected to Ci.
Thus, Cp2 induces a charge error proportional to viCp2=(CSþCp2). In addition, an offset voltage propor-
tional to VSS – VT is also generated. Because the threshold voltage VT is a nonlinear function of vi, an
additional error in the transfer function and harmonic distortion components appear at the output of the
integrator. The same effect occurs when the clock phases f2 and f0

2 have a similar sequence.
Let us consider the case when f0

1 is opened before f1; the situation is shown in the Figure 17.13b.
Before the transistors turn off, vx¼ vi and vy¼ 0. When the transistor is turned off, f1< viþVT, the
charge is recombined between CS, Cp2, and Cp3. After the charge redistribution, the charge injected into
Cp3 is approximately given by

DQCp3 ¼
Cp2Cp3

Cp2 þ Cp3
(VSS� vi � VT) (17:43)

Notice that the current feedthrough generated by Cp2 flows through both capacitors CS and Cp3, hence
DQCp3

¼ �DQCs
. During the next clock phase, both capacitors CS and Cp3 transfer the ideal charge

CSviþDQCs
and DQCp3

, making the clock feedthrough induced error close to zero. The conclusion is that
if the clock phase f0

1 is a bit delayed than f1 the clock-induced error is further reduced. This is also true
for the clock phases f2 and f0

2.
In Figure 17.12, the right-hand switch also introduces clock feedthrough, but unlike the clock

feedthrough previously analyzed, this is input signal independent. When the clock phase f2 goes
down, the gate-source overlap capacitor extracts from the summing node the following charge:

DQ ¼ CGS(VSS� VT) (17:44)

In this case, VT does not introduce distortion because vy is almost at zero voltage for both clock phases.
The main effect of this charge is to introduce an offset voltage. The same analysis reveals that the
bottom right-hand switch introduces similar offset voltage. From the previous analysis it can be seen
that using minimum transistors dimension can reduce the clock feedthrough. This implies minimum
parasitic capacitors and minimum induced charge from the channel. If possible, the clock phases
should be arranged for minimum clock feedthrough. The use of extra dummy switches driven by the
complementary clock phase may alleviate the clock feedthrough issue, but its effectiveness must be
carefully evaluated by postlayout simulations.
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FIGURE 17.13 Charge induced due to the clocks. (a) If f1 goes down before f
0
1 and (b) If f

0
1 goes down before f1.
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17.4.8 Channel Mobile Charge

Charge injection also occurs due to the mobile charge in the channel. If the transistor is biased in linear
region, the channel mobile charge can be approximated by

Qch ¼ CGS(VGS � VT) (17:45)

where CGC is the gate-channel capacitor; see Figure 17.14.
When the switch is turned off this charge is released and part of it goes to the sampling capacitor.

Fortunately, the previously discussed early clock phase technique for the reduction of clock feedthrough
also reduces the effects of the channel mobile charge injection. The mobile charge injected to the
sampling capacitor is a function of several parameters, e.g., input signal, falling rate of the clock, overlap
capacitors, gate capacitor, threshold voltage, integrating capacitor, and the supply voltages.
The effects of the channel mobile charges are severe when the f1-driven transistor is opened before the

f0
1-driven transistor. In this case, the situation is similar to that shown in Figure 17.13a, in which one

terminal of CS is still grounded. While f1 is higher than viþVT the channel resistance is small and vi
absorbs most of the channel-released charge. For f1< viþVT, the channel resistance increases further
and a substantial amount of charge released by the channel will flow through CS, introducing a charge
error. If the clock phases are arranged as shown in Figure 17.13b, most of the charge released by the
channel returns back to vi. The main reason is because the equivalent capacitor seen at the right-hand
side of the transistor is nearly equal to Cp3, if Cp2 is neglected, making this a high-impedance node.
Because this parasitic capacitor is smaller than the sampling capacitor, a small amount of extracted
(or injected) charge will produce a huge variation on vy, see Figure 17.13b, pushing back most of the
mobile charges. Equation 17.45 shows that the mobile charge is a function of VGS (¼Vclock�Vin for the
sampling switch), hence the part of the charge injected into the sampling capacitor is signal dependent.
This issue can be alleviated if the clock is correlated with the incoming signal such that VGS is
maintained constant using charge pumps circuits; the technique proposed in Ref. [14] implements this
concept.

17.4.9 Dynamic Range

The dynamic range is defined as the ratio of the maximum signal that the circuit can drive without
significant distortion to the noise level. The maximum distortion tolerated by the circuit depends on the
application, but �60 dB is commonly used. Since the linearity of the capacitor is good enough and if the
harmonic distortion components introduced by the OTA input stage are small, the major limitation for

FIGURE 17.14 Cross section of the MOS transistor showing the mobile charge.
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the linearity is determined by the output stage of the OTA. For the folded cascode OTA of Figure 17.11
this limit is

vomax ffi VR2 þ VTP3 (17:46)

If the reference voltage VR2 is maximized, Equation 17.46 yields

Vomax ffi VDD � 2VDSATP (17:47)

A similar expression can be obtained for the lowest limit. Assuming a symmetrical single-side output
stage, from Equation 17.47, the maximum rms value of the OTA output voltage is given by

voRMS ffi VDD � 2VDSATPffiffiffi
2

p (17:48)

If the in-band noise, integrated up to v¼ 1=RintCI, is considered and if the most important term
of Equation 17.41 is retained, the dynamic range of the single-ended SC integrator becomes

DR ffi (VDD � 2VDSATP)ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT=CS

p ¼ (VDD � 2VDSATP)

2
ffiffiffiffiffiffi
kT

p
ffiffiffiffiffi
CS

p
(17:49a)

For this equation, the alias effects have been neglected and only the noise contribution of the switches
driven by f1 and f2 are considered. At room temperature, this equation is reduced to the following
expression:

DR ffi 7:9� 109
ffiffiffiffiffi
CS

p
(VDD � 2VDSATP) (17:49b)

According to this result, the dynamic range of the SC integrator is reduced when the power supplies
are scaled down and minimum capacitors are employed. Clearly, there is a trade-off between power
consumption, silicon area, and dynamic range. As an example, for the case of CS¼ 1.0 pF and supply
voltages of �1.5 V and VDSATP¼ 0.25 V, the dynamic range of a single integrator is around 78 dB.
For low-frequency applications, however, the dynamic range is lower due to the low-frequency flicker
noise component. This is a very optimistic result since neither the op-amp noise not aliasing effects nor
other noise sources were considered.

17.5 Design Considerations for Low-Voltage
Switched-Capacitor Circuits

For the typical digital supply voltages, 0�5 V, SCs achieve dynamic ranges of the order of 80–100 dB.
As long as the power supplies are reduced, the swing of the signal decreases and the switch resistance
increases further. Both effects reduce the dynamic range of the SC networks. A discussion of these topics
follows.

17.5.1 Low-Voltage Operational Amplifiers

The design techniques for low-voltage low-power amplifiers for SC circuits have been addressed by
several authors [4,7–9,11–13]. The implementation of op-amps for low-voltage applications does
not seem to be a fundamental limitation as long as the transistor threshold voltage is smaller than
(VDD�VSS)=2. This limitation will become clear in the design example presented in this section.
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The design of the operational amplifier is strongly dependent on the application. For high-frequency
circuits, the folded cascode op-amp is suitable, but the cascode transistors limit the swing of the signals at
the output stage. If large output voltage swing is needed, complementary stages are desirable. To illustrate
the design trade-offs involved in the design of a low-voltage OTA, let us consider the folded cascode OTA
of Figure 17.11. For low-voltage applications and small signals, the transistors have to be biased with very
low VDSAT (¼VGS�VT).

For the case of supply voltages limited to �0.75 V and VT ¼ 0.5 V, VDSAT1þVDSAT6 must be lower
than 0.25 V, otherwise the transistor M6 goes to the triode region. For large signals, however, the
variations of the input signal produce variations at the source voltage of M1. It is well known
that linear range of the differential pair is of the order of �1.4 VDSAT1. Hence, if the noninverting
input of the OTA is connected to the common-mode level VCM, for proper operation of the OTA input
stage (see Figure 17.11) it is desirable to satisfy

VCM � VT � VSS > 1:4VDSAT1 þ VDSAT6 (17:50)

It has to be taken into account that the threshold voltage of M1 increases if an N-well process is used,
due to the body effects. In critical applications, PMOS transistors fabricated in a different well with
their source tied to their own well can be used. Equation 17.50 shows that it is beneficial to select a
proper common-mode level VCM to extend the linear range of the amplifier input stage, especially for
low-voltage applications.
The dimensioning of the transistors and the bias conditions are directly related to the application. For

instance, if the SC integrator must slew 1 V into 4 ms and the load capacitor is of the order of 10 pF,
the OTA output current must be equal to or higher than 2.5 mA. Typically, for the folded cascode
OTA the dc current of both output and input stages are the same. Therefore, the bias current for M1, M3,
M4, and M5 can be equal to 2.5 mA. The bias current for M2 and M6 is 5 mA. If VGS1�VT1 is fixed at
100 mV the dimensions of M1 can be computed according to the required small signal transconductance.
Similarly, the dimension of the other transistors can be calculated, most of them designed to maximize
the output swing and dc gain. A very important issue in the design of low-voltage amplifiers is the
reference voltage. In the folded cascode of Figure 17.11, the values of the reference voltages VR1 and VR2

must be optimized for maximum output swing. OTA design techniques are fully covered in Refs. [11]
and [13].

17.5.2 Analog Switches

For low-voltage applications, the highest voltage that can be processed is limited by the analog
switches rather than by the op-amps. For a single NMOS transistor, the switch resistance is approxi-
mately given by

RDS ¼ 1

mnCOX
W
L (VGS � VT)

(17:51)

where mn and COX are technological parameters. According to Equation 17.51, the switch resistance
increases further when VGS approaches to VT. This effect is shown in Figure 17.15 for the case
VDD ¼ �VSS ¼ 0.75 V and VT ¼ 0.5 V. From this figure, the switch resistance is higher than 300 kV
for input signals of 0.2 V. However, for a drain-source voltage higher than VGS�VT the transistor
saturates and does not behave as a switch anymore. This limitation clearly reduces further the dynamic
range of the SC circuits.
A solution for this drawback is to generate the clocks from higher voltage supplies. A simplified

diagram of a voltage doubler is depicted in Figure 17.16a. During the clock phase f1, the capacitor C1 is
charged to VDD and during the next clock phase its negative plate is connected to VDD. Hence, at the
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beginning of f2, the voltage at the top plate of C1 is equal to 2VDD � VSS. After several clock
cycles, if CLOAD is not further discharged, the charge is recombined leading to an output voltage equal
to 2VDD – VSS. A practical implementation for an N-well process is shown in Figure 17.16b.

In this circuit, the transistors M1, M2, M3, and M4 behave as the switches S1, S2, S3, and S4 respectively,
of Figure 17.16a. While for M1 and M2 the normal clocks are used, special clock phases are generated for
M3 and M4 because they drive higher voltages. The circuit operates as follows.
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FIGURE 17.15 Typical switch resistance for an NMOS transistor.
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FIGURE 17.16 Voltage doubler. (a) Simplified diagram and (b) transistor level diagram.
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During f1, M8 is opened because f2
0 is high. The voltage at node vy is higher than VDD because the

capacitors C3 and Cp were charged to VDD during the previous clock phase f2 and, when f1 goes up,
charge is injected to the node through the capacitor C3. Since vy is higher than VDD, M7 is turned on. The
bottom plate of C2 is connected to VSS by M6 and C2 is charged to VDD�VSS.

During f2, the refresh clock phase, the bottom plate of C1 is connected to VDD by the PMOS
transistor M2. Note that if an NMOS transistor is employed, the voltage at the bottom plate of C1 is
equal to VDD�VT, resulting in lower output voltage. During f2 if C1 is not discharged, the voltage at its
top plate is 2VDD – VSS. The voltage at node vx becomes close to 3VDD�2VSS volts, turning M3 on and
enabling the charge recombination of C1 and CLOAD. As a result, after several clock periods, the output
voltage vo becomes equal to 2VDD�VSS. To avoid discharges the gate of M4 is connected to the bottom
plate of C2. Thus, M4 is turned off during the refresh phase. An efficient solution using boosted clock
switches is described in Ref. [14]. Another technique using switched op-amps, described in Ref. [15],
have been also successfully used.

17.6 Fully Differential Filters

An important issue when designing a high-frequency filter is the proper selection of the clock phases for
the switches. It is desirable that the input to each integrator is as close as possible to a step function, and to
minimize the loading capacitors during the integration clock phase. Making the OTAs to perform the hold
and integrate functions at alternate phases ensure this. Unfortunately this approach cannot be imple-
mented in the conventional single-ended topologies unless an additional inverter is added to the loop. Two
backward integrators with a half-delay in each and by crossing the outputs of the fully differential
integrators in order to have an odd number of inversions in the loops is one of the best configurations
for high-frequency applications as depicted in Figure 17.17. The first op-ampmay process the information
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FIGURE 17.17 Fully decoupled, fully differential biquadratic filter.
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during f1 and hold it during f2 while the second op-amp do the same functions during the complemen-
tary clock phases. In general, having the differential outputs available makes the system more flexible and
gives several advantages while designing high-performance analog signal processors.
Fully differential amplifiers are widely used technique to reduce the effect of charge injection,

clock feedthrough, and better rejection to common-mode signals such as substrate and power
supply noise and an improved dynamic range when compared to single-ended circuits. As long as the
noise present at the output of the amplifier is present in both outputs of the amplifier with the
same amplitude and same phase, it will be rejected by the differential nature of the following stage.
In addition, an additional loop that operates on the common-mode signals presents low output
impedance for these signals, it fix the operating point of the differential outputs at the desired level
and further minimizes the common-mode output fluctuations up to the unity-gain frequency of the loop.
Their disadvantage comes from the fact that they require a common-mode feedback (CMFB) circuit.
The fully differential version of the folded cascode amplifier is depicted in Figure 17.18a. It requires the

same amount of power as the single-ended version shown in Figure 17.11. Since the current mirror
present in the single-ended amplifier for the conversion of the fully differential current of the differential
pair into single-ended output is eliminated, the fully differential amplifier has a single internal pole
located at the source terminal of M3. Since several parasitic poles and phantom zeros are eliminated,
the fully differential amplifier has inherently better phase margin than its single-ended counterpart. The
circuit is fully symmetric and any noise injected through M0 is evenly split by the differential pair and will
appear at the two outputs as a pure common-mode signal. The common-mode noise present at the
transistors M1 is further attenuated by the small sensitivity of the differential pair to common-mode
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FIGURE 17.18 (a) Fully differential folded cascode amplifier and (b) switched-capacitor based CMFB circuit.
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signals; the small common-mode current resulting at the drain of M1 will be reflected at the output as a
common-mode signal. Similarly, any VDD noise generates a current noise through M2 that appears as a
common-mode noise at both outputs of the amplifier; notice that to minimize these components VB3

must be further attached to VDD. VSS noise generates current that appears at the output as common-
mode noise, as well thanks to the differential nature of the topology. The gate voltage of transistors M5 is
used to accommodate the control of the CMFB loop; VB3 can also be used for that purpose.
The CMFB is a block that extracts the common-mode signal present at both outputs and compares its

dc value with a reference voltage in a loop with enough gain for the common-mode signals. If the loop
has enough gain, the error between the detected common-mode signal and the reference voltage is
minimized forcing the common-mode output signals (DC operating point of each amplifier output)
to be at the reference level. Several CMFB circuits have been proposed in the literature [4,11,12] but for
SC applications it has been preferred to use SC-based CMFB (SC–CMFB) circuits [4] since they do
not consume significant power and have better linearity when compared to their continuous-time
counterpart. The CMFB circuits consist of a common-mode voltage detector (output is proportional
to voutþ þ vout�

2 and a circuit that generates the common-mode error after comparing the common-mode
output voltage and a proper and stable reference voltage. The efficient SC detector, shown in
Figure 17.18b, uses two SC resistors (CC and switches) that detect the common-mode output voltage
and compare it with VO-DC [4,9,13]. Using conventional charge redistribution analysis and ignoring the
effect of CC, the voltage at node VCMFB during f1 is given by

VCMFB ¼ voutþ þ vout�
2

� VO�DC

� �
þ Vref (17:52)

The circuit makes the comparison of the common-mode output voltage and the desired output DC
level VO-DC. A remarkable advantage of this circuit is that in addition to the desired comparison, it
translates the ideal voltage Vref needed at the gate of M5 to generate the DC current in transistors M5.
In steady state,VCMFB will be very close toVref. Equation 17.52 is also valid for the common-mode noise; in
the absence of noise in Vref and VO-DC, the common-mode output noise is compared with zero and for
the frequencies where the CMFB loop is high, it is suppressed, thanks to the feedback. Hence it is desirable
not only to have large low-frequency gain but wide-band CMFB loop to reject high-frequency noise as well.
Since the SC resistors and the parasitic capacitors generate a relatively low-frequency pole at VCMFB

node, the capacitors CS are added to introduce a compensating zero that helps with the stabilization of
the CMFB loop. One of the drawbacks of this topology is that the common detector loads significantly the
output of the amplifier, reducing its unity-gain frequency and slew rate. The value of CS is typically one-
quarter to one-tenth of CC. To prevent significant offset voltages due to charge injection from the switches,
CS is commonly chosen to be greater than 200 fF. Therefore, the capacitive loading on the amplifier due to
the CMFB can go from 1 pF to 2 pF in most designs. As demonstrated in Ref. [16] this SC–CMFB suffers of
poor rejection to the supply noise used as reference for the common-mode loop. This can be partially
alleviated by combining passive common-mode detector and active signal comparator at the expenses of
additional power consumption or using continuous-time CMFB systems.

17.7 Design Examples

17.7.1 Biquadratic Filter

In this section, a second-order bandpass filter (BPF) is designed. The specifications for this biquad are

Center frequency 1.6 kHz
Quality factor 16
Peak gain 10 dB
Clock frequency 8 KHz
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A transfer function in the z-domain that realizes this filter is given by the following expression:

H(z) ¼ 0:1953(z � 1)z
z2 þ 0:5455z þ 0:9229

(17:53)

The equivalent H(s) is obtained and then mapped into the z-domain using the LDI transformation. This
transfer function can be implemented by using the biquads presented in Section 17.2. For the biquad of
Figure 17.10, and employing A1¼A4¼A7¼ 0, the circuit behaves as a BPF. Equating the terms of
Equation 17.53 with the terms of Equation 17.19, the following equations are obtained:

A6 ¼ 1
0:9229

� 1

A5 ¼ 0:1953
0:9229

A2A3 ¼ 2þ A6 � 0:5455
0:9229

(17:54)

Solving these equations, the following values are obtained: A6¼ 0.0835, A5¼ 0.2116, and A2A3¼ 1.4924.
A typical design procedure employs A2¼ 1. For this case, after node scaling the total capacitance is of the
order of 32 unit capacitances. The frequency response of the filters is shown in Figure 17.19.

17.7.2 Sixth-Order Bandpass Ladder Filter

In this section, the design procedure for a sixth-order BPF based on an RLC prototype is considered. The
ladder filters are very attractive because of their low passband sensitivity to tolerances in the filter
components. Let us consider the following specifications:

Center frequency 100 kHz
Bandwidth 2.5 kHz
Passband ripple <0.5 dB
Clock frequency 2 MHz

The design starts with an RLC low-pass prototype, see Figure 17.20.
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FIGURE 17.19 Frequency response of the second-order bandpass filter.
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The values of the components for a prototype with 1 rad=s passband frequency can be obtained
from tables or computed from well-known expressions. For this example, the passive components are
R1¼ 1 V, C1¼ 1.5963 F, and L2¼ 1.0967 H. Using the low-pass to bandpass transformation, the
capacitor C1 is transformed into a parallel of a capacitor and an inductor. The values of the resulting
components are

C0
1 ¼

C1

BW

L01 ¼
1

v2
0C0

(17:55)

where vo and BW are the center frequency in radians per second and the filter bandwidth in radians
per second, respectively. The inductor L2 is transformed in a series of an inductor and a capacitor whose
values become

L02 ¼
L2
BW

C0
2 ¼

1
v2
0L

0
2

(17:56)

The bandpass prototype is shown in Figure 17.20b. Before making the denormalizations it is desirable to
transform the passive prototype to an active implementation. The grounded LC tank circuit can be
simulated by the RC active implementation shown in Figure 17.21.
The value of the simulated inductance is

L01 ¼ R2
1C

0
1 (17:57)
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FIGURE 17.20 RLC prototypes. (a) Third-order low-pass filter and (b) sixth-order bandpass filter.
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FIGURE 17.21 RC active implementation of a grounded LC tank circuit.
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It is important to note that the output of the active-RC circuit is a low-impedance node. Therefore,
the inverting input of the op-amps must be used for current injection. Similarly, the circuit shown in
Figure 17.22 can simulate a floating resonator. Obviously, this is an expensive implementation but
typically several active elements can be shared in the final design. Using typical circuit analysis techniques
it can be shown that i12 for the passive LC tank is related to the components by the following expression:

i12 ¼ sC0
2

1þ s2L02C0
2
(vo1 � vo2) (17:58)

and for the active implementation

i12 ¼
R2
RQ
CQ

� �
s

1þ s2R2
2C

2
2
(vo1 � vo2) (17:59)

Comparing Equations 17.57 and 17.58, the active and passive implementations are equivalents if the
following constraints are satisfied:

C0
2 ¼

R2

RQ
CQ (17:60)

L02C
0
2 ¼ R2

2C
2
2 (17:61)

Obviously, the resistors R2 can be replaced by SC equivalents. Using these building blocks, the
implementation of the sixth-order BPF is straightforward. The sixth-order SC BPF is shown in
Figure 17.23. The implementation of the L01C

0
1 tank circuit is straightforward from Figure 17.21. The

resonant frequency of the SC resonator is determined by the capacitors uC1. The node voltage vo1 is taken
at the output of the first op-amp. The input resistor is implemented by the capacitor CR and its associated
switches. In Figure 17.23, the resonator associated with vo3 and vo4 and the capacitors CQ implement the
L02C

0
2 floating tank circuit. The final step of the design is to compute the values of the components. A

simplified design follows, but more detailed procedures are presented in Refs. [1,2,6].
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FIGURE 17.22 RC active implementation of a floating LC tank circuit.
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The loops of the SC filter implementation are of
the lossless discrete integrator (LDI) type and the resis-
tors are of the serial type. Hence, if an LDI prewarping
scheme is used the analog center frequency of the filter
should be mapped to the desired value, mainly for
high-Q filters wherein the interaction between reson-
ators is very small. Since the resistors are not LDI, a
distortion in the quality factor of the filter sections
occurs, thus increasing the passband ripple. The LDI
transformation relates the analog and discrete frequen-
cies by the following expression [1,6]:

vanalog ¼ 2fc sin
vdiscrete

2fc

� �
(17:62)

Applying the LDI transformation to the center fre-
quency of the filter, the predistorted center frequency
is equal to 99,056 kHz. Using this prewarped frequency
and Equations 17.54 through 17.61, the following
component values are obtained:

R1 ¼ 1 V

C0
1 ¼ 1:01623� 10�4 F

L01 ¼ 2:51316� 10�8 H

C0
2 ¼ 3:65803� 10�8 F

L02 ¼ 6:98181� 10�5 H

In addition, the continuous-time and SC resistors are
approximately related by the following expression:

Ceq ffi 1
fcRcont

(17:63)

In the SC filter, the transconductor 1=RQ is implemen-
ted by CQ=C1R. Hence, the final values of the capaci-
tors are

CR¼ 0.0738 pF
C1¼ 15.000 pF
uC1¼ 4.6900 pF
CQ¼ 0.2833 pF

While the filter center frequency of this design is accurate, the passband ripple is increased to around
0.8 dB instead of 0.5 dB. This is because the resistors used in the terminals of the filter are not
implemented as LDI resistors. However, this effect can be partially corrected adjusting the resonant
frequency of the second loop. If uC1 is equal to 4.685 pF for the second resonator, the ripple is decreased
to around 0.55 dB. The results for this case are shown in Figure 17.24.
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17.7.3 Programmable Switched-Capacitor Filter

In most of the programmable filters, the important parameters are the resonant frequencies, the pole-
quality factor, and sometimes, the peak gain. Thus, programmable low-pass, bandpass, high-pass, and
bump equalizers are typically designed. Nevertheless, in some applications it is more important to control
the gain at the frequency bands instead of that at the resonant frequency, the quality factor, or the peak
gain. A typical approach for the implementation of these systems is to employ a parallel of a low-pass,
bandpass, and a high-pass filter with programmable peak gain. For a second-order system, the imple-
mentation of this approach needs at least six operational amplifiers, three capacitor banks, and the
implementation of six poles. Therefore, the number of switches, the power dissipation, and the silicon
area needed for these structures are considerable. Another approach follows in this section.
In order to independently control the low-, medium-, and high-frequency bands it is required to

realize the following transfer function:

H(s) ¼ K1s2 þ K2BWsþ K3v
2
o

s2 þ BWsþ v2
o

(17:64)

where BW and vo are the bandwidth and the frequency of the poles, respectively. The control of
the frequency bands is carried out by the parameters K1, K2, and K3. From Equation 17.64 it is clear
that the dc gain and the high-frequency gain are equal to K3 and K1, respectively. A disadvantage of
this expression is the lack of good control in the medium frequencies. If K1 is equal to K3, the filter
gain at the resonant frequency depends on K2. However, for the general case it is affected by the
parameters K1 and K3. In addition, the shape of the transfer function is not well behaved for moderate-
and high-Q applications. The behavior of the transfer function is improved if the following equation is
employed:

H(s) ¼ K1
s2 þ K2K3BWsþ K3v

2
o

s2 þ K1BWsþ K1v2
o

� �
(17:65)

For low and high frequencies the behavior of this equation is similar to that of Equation 17.64. At
medium frequencies the behavior of the transfer function is better controlled by the parameter K2 than
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FIGURE 17.24 Frequency response for the sixth-order bandpass filter.
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for the case of Equation 17.64. For the medium-frequency band, the gain is related to the product K2K3

instead of the absolute value of K2. Therefore, the effect of parameter K2 on the transfer function is
related to K3.

A block diagram representation of Equation 17.65 is presented in Figure 17.25. In this figure, the filter
bandwidth BW is equal to vo=Q, with Q equal to the quality factor of the filter. The control parameters
are the gain factors K1, K2, and K3. The implementation of this block diagram can be carried out by using
various techniques, e.g., OTA-C, MOSFET-C, or SC. An SC implementation is shown in Figure 17.26.
For high-sampling rate 2pfc 	 vo, the capacitors uCI are related with the pole frequency by the equation
u¼voT. The capacitor banks control the gain of the three frequency bands. For the computation of the
total capacitance, the capacitors can be associated in the following groups: the first group (K3C1, C1),
second group (uC2, K2C2=Q, C2), and third group (uC3=Q, uC3, C3=K1, C3).

The versatility of the topology is shown in Figure 17.27. For these results, the following design
parameters have been employed: clock frequency¼ 128 kHz, vo¼ 6.2832 * 350 rad=s, and Q¼ 0.5.
For Figure 17.26, the parameter K3 is equal to 10, fixing the low-frequency gain at 20 dB. The
medium-frequency band is controlled by the parameter K2, which corresponds to the values 0.5
(attenuation of 6 dB), 1 (0 dB attenuation), and 2 (gain of 6 dB). The high-frequency gain is controlled
by the parameter K1, which corresponds to the values 1, 2.5, 5, and 10, giving a high-frequency gain of 0,
8, 14, and 20 dB, respectively.
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FIGURE 17.25 A flow diagram representation of Equation 17.65.
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17.7.4 Switched-Capacitor Filters with Reduced Area

Most of the high-performance filters, sigma–delta modulators, and data converters are based on SC
techniques [11,13]. Several architectures for narrow-band applications have been reported; many of them
use several paths to relax the OTA specifications. In this approach two biquadratic filters connected in
parallel running at fs=2 each but acting in complementary clock phases lead to filters working at twice the
clock speed. Gain-compensated single-stage OTAs and double sampling techniques are also available for
the design of efficient narrow-band (highly selective) filters.
For high-Q filters, the scenario is even more complex because large capacitive spreads (proportional

to Q) are required. Area efficient high-Q filters require special design strategies such as judiciously use of
partial positive feedback and use of slower clocks in critical filter building blocks. The use of slower clocks
allows us to reduce the capacitive spread as well. The resistance of an SC resistor driven by periodic
clocks is approximately given by T=C (¼1=fsC). If the signal is sampled once every N-periods, the
equivalent resistance increases by a factor of N [17]. The basic idea of this approach is shown in
Figure 17.28 for the case N¼ 4; the frequency of the clock phases f11 and f22 is fs=4. Each time A2C0

is activated, small amount of charge is taken by the capacitor controlling the losses of the lossy integrator.
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If this technique is used for high-Q applications (A2 � 1), those losses generate some spurious tones as
well, but usually they are very small [17–18]. This approach results in lower capacitance spread without
sacrificing sensitivity of critical filter parameters to component variations. The combination of several
design techniques results in significant reduction in the total capacitance savings both silicon area and
power consumption [18]. As a consequence of the use of slower clocks, additional alias components
appear at integer multiples of fs=N that may limit the filter’s performance and increase the requirements
on the antialias filter that precedes the SC network. It is critical to estimate the amount of alias
components when using these techniques.

17.7.5 Spectrum Analyzer Using Switched-Capacitor Techniques

The growth in complexity and number of functions that can be integrated on a single chip have increased
rapidly in the last years, making the testing a difficult task. Even though the majority of these systems are
mainly digital, the analog section is always an important part of such mixed-mode architectures. Testing
in analog circuits faces many problems; e.g., sweeping frequency and amplitude, measurement of
magnitudes, and phase for a number of frequencies. Spectrum and network analyzers are routinely
used for the characterization of mixed-mode systems. A cheap on-chip spectrum analyzer has been
developed in Ref. [19]. Due to the flexibility of SC techniques, a gracious synchronization is ensured
between the frequency of the input stimuli fin and the center frequency of the circuits that perform the
measurements, controlled by clocks f1 and f2.

A conceptual schematic diagram of the base-band SC network analyzer is shown in Figure 17.29.
It consists of a digital frequency synthesizer, an SC sinewave generator, two VGAs, an SC BPF, and an
analog-to-digital converter. The frequency synthesizer generates the master clock used as the sinusoidal
generator sampling frequency as well as the nonoverlapping clock phases for the SC blocks. The sinewave
generator, based on SC techniques, delivers a sinusoidal signal with a frequency of 1=16 of the master clock
frequency. The amplitude of the signal coming from the sinusoidal generator is adjustable to provide the
proper level to the stimuli. The output of the device under test (DUT) is bandpass filtered and conditioned
by the second VGA to accommodate it to the proper input range of the ADC. The narrowband SC filter is a
key building block of the spectrum-vector analyzer, its function is twofold: one, it can be centered at the
center frequency f0 to obtain the DUT transfer function; second, to select the proper frequency component
( f0, 2f0, 3f0,) for harmonic distortion characterization. The main advantage of this system is its inherent
synchronization between the sinewave input signal and center frequency of the BPF.
The sinewave generator is based on SC circuits, with an oscillating frequency equal to fs=16, where fs is

the clock frequency generated by the digital frequency synthesizer. Figure 17.30 shows the schematic
diagram of a flexible sinewave generator using an SC circuit. It consists of a programmable gain amplifier
whose preset gain stages correspond to the values of an ideal sampled and held sinewave. The SC circuit
has four different gain stages, which generate a sinusoidal output with 16 steps per period generated
from four capacitors and two reference voltages. The switch PZ sets the zero of the sinusoidal waveform.
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FIGURE 17.29 On-chip spectrum=vector analyzer block diagram using switched-capacitor techniques.

Switched-Capacitor Filters 17-31



The switches PA1 through PD1 are closed sequentially with each clock cycle to generate the first quarter-
period of the sinusoidal waveform. Once the maximum value is obtained, the switches close in the
opposite direction (from PD1 to PA1) in order to generate the second quarter-period. In the second zero
crossing, Pcontrol switches from Vref to�Vref so the lower half of the signal is generated. The capacitors are
weighted such that the ideal values of a discrete sinewave signal are generated. The advantage of this
implementation against direct digital synthesizers lies in the simplicity of the digital logic required
to generate the required clock phases, resulting in a very compact implementation. The reset switch
PZ also eliminates the accumulation of offset voltages. Since the peak value of the discrete sinewave signal
is determined by Vref, making it programmable allows obtaining an amplitude programmable sinewave
generator. A modification of the structure allows generating the sinewave signal using a single
reference voltage. Figure 17.31 shows the sinewave generator output for three different reference voltages:
�200 mV, �100 mV, and �50 mV. The oscillating frequency is 1 kHz, and the clock frequency is
16 MHz. The measured HD3 of this block is in the order of �51 dB for an input signal of 200 mVpeak.

17.7.6 Programmable Switched-Capacitor Oscillator

Sinewave oscillators are essential parts in many electronic systems and in a host of applications.
Integrating the oscillator with the other circuit blocks on a single chip makes it easy and reliable to
implement several applications including built-in testing. Among the various types of oscillator, a
BPF-based oscillator is an attractive and practical implementation due to its many advantages such as
the programmability of the oscillation frequency by means of changing the center frequency ( f0) of the
BPF, and the fact that the oscillation amplitude can be controlled with the help of a comparator. In base-
band applications, BPF can be implemented with conventional SC design techniques that are preferred
because of its accuracy, simple implementation, and reduced sensitivity to process and temperature
variations. A block diagram of a BPF-based SC oscillator is shown in Figure 17.32 [20].
For highly linear oscillator, conventional approaches to minimize the frequency harmonics of the SC

BPF-based oscillator requires a high-quality-factor (Q-factor) BPF, which involves high capacitor spread
and, hence, leads to large silicon area. Also, improving the linearity by increasing Q-factor is not that
efficient considering the fact that the nth-order harmonic distortion (HDn) can be approximated as
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1=(n2Q), where Q is a Q-factor of BPF in second-order BPF-based oscillator. If HD3 of �60 dB is needed,
then the required Q-factor becomes more than 100 that may not be practical for an IC realization.

The linearity can be significantly improved without requiring a high-Q-factor BPF if a technique
based on nonlinear shaping of the frequency spectrum is used. For this purpose, a comparator must
exhibit multilevel outputs. The four-level square wave with a certain condition (as depicted for f(t) in
Figure 17.33) rejects the third-order harmonic component. Implementation of a multilevel comparator

FIGURE 17.31 Measured output signal of the sinewave generator.
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Vcomp

Vout

Vout
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FIGURE 17.32 Block diagram of conventional BPF-based SC oscillator.
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can be explained as adding finite-impulse-response (FIR) filter to a conventional comparator as shown in
Figure 17.33. In this figure, fs(t) is an output of a conventional comparator and f(t) is an output of FIR
filter. A transfer function of an FIR filter in discrete-time domain, assuming that T=8 is one sampling
period, can be expressed

H(z) ¼ F(z)
Fs(z)

¼ kffiffiffi
2

p z(1þ ffiffiffi
2

p
z�1 þ z�2) (17:66)

Equation 17.66 shows zeros at z¼ 0, e�j3p=4. Note that z¼ e�j3p=4 corresponds to the third-order
harmonic frequency since 8=T is used for a sampling frequency. FIR filter can be easily embedded into
SC BPF with the minimum cost, because BPF readily has an adder and a multiplier at its input. Figure
17.34 shows the BPF with the embedded FIR filter. In Figure 17.34, C4

0 should be
ffiffiffi
2

p
C4 for the

cancellation of third-order harmonic, and all other capacitors should be determined by the requirements
as of a conventional BPF.
The SC BPF-based oscillator was fabricated using CMOS 0.35 mm technology. BPF has a center

frequency of f0¼ 10 MHz, a Q-factor of 10, and a master clock frequency of fC¼ 80 MHz. The measured
frequency spectrums for both oscillators are shown in Figure 17.35. Over�54 dB of HD3 for the SC BPF-
based with FIR filter is achieved, which is 20 dB smaller than the conventional oscillator. HD3
improvement of the proposed oscillator is mainly determined by the accuracy of the multiplying factor
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FIGURE 17.33 Conceptual diagram of a four-level quasi-sinusoidal wave generator.
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(
ffiffiffi
2

p
in this case). In practical implementation, the ratio of 4:3 (¼1.33) can be used for approximation offfiffiffi

2
p

(¼1.4142), which limits the amount of harmonic cancellation. The implementation of the FIR filter
requires minimum additional area (10% of the total area).
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18.1 Properties of FIR Filters

M.H. Er

18.1.1 Linear Phase Property

The finite-impulse response (FIR) filter is characterized by a unit-sample response that has a finite
duration. One of the advantages of FIR filters compared to their infinite-impulse response (IIR)
counterparts is that FIR filters can be designed with exactly linear phase. Linear phase response is
important for applications where phase distortion due to n onlinear phase can degrade performance,
such as in data transmission and television applications.
A FIR causal filter can be characterized by the transfer function [1]

H(z) ¼
XN�1

n¼0

h(nT)z�n (18:1)

where
h(nT) is the impulse response of the filter
N is the filter length
T is the sampling interval

18-1



Using the relationship that

H(z) ¼ Y(z)
X(z)

(18:2)

the difference equation of a FIR filter can be obtained by taking the inverse Z-transform of Equation 18.1,
that is

y(iT) ¼
XN�1

n¼0

h(nT)X(iT � nT) (18:3)

which says that the current output of a FIR causal filter is the weighted sum of the current and past
inputs. The weighting coefficients are given by the impulse response of the filter.
From Equation 18.1, the frequency response can be obtained by replacing z¼ e jvT as

H(e jvT ) ¼
XN�1

n¼0

h(nT)e�jvnT ¼ M(v)e jf(v) (18:4)

where M(v) and f(v) are the magnitude and phase responses, respectively, defined as

M(v) ¼ H(e jvT )
�� �� (18:5a)

f(v) ¼ arg H(e jvT ) (18:5b)

The phase delay and group (time) delay functions of a filter are defined as

tp ¼ �f(v)
v

(18:6)

and

tg ¼ � df(v)
dv

(18:7)

respectively. Filters for which tp and tg are independent of frequency are referred to as constant time
delay or linear phase filters. Hence, the phase response of a linear phase filter is given by

f(v) ¼ �tv, �p < v < p (18:8)

where t is a constant phase delay in samples.
From Equations 18.4, 18.5b and 18.8, the phase response can be expressed as

f(v) ¼ �tv ¼ tan�1 �PN�1
n¼0 h(nT) sin (vnT)PN�1

n¼0 h(nT) cos (vnT)
(18:9)
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Consequently,

tan (vt) ¼
PN�1

n¼0 h(nT) sin (vnT)PN�1
n¼0 h(nT) cos (vnT)

(18:10)

Using the definition tan(vt)¼ sin(vt)=cos(vt), Equation 18.10 can be reexpressed as

XN�1

n¼0

h(nT) sin (vt� vnT) ¼ 0 (18:11)

It can be shown [1] that a solution to Equation 18.11 is given by

t ¼ (N � 1)T
2

(18:12)

and

h(nT) ¼ h[(N � 1� n)T], 0 � n � N � 1 (18:13)

Hence, FIR filters can be designed to have constant phase and group delays if the conditions of Equations
18.12 and 18.13 are satisfied. The symmetry property of Equation 18.13 can also lead to efficient filter
realizations.
In applications where only constant group delay is needed, the phase response can have the form

f(v) ¼ f0 � tv (18:14)

where f0 is a constant. With f0¼�p=2, it can be shown [1] that the impulse response is of the form

h(nT) ¼ �h[(N � 1� n)T], 0 � n � N � 1 (18:15)

In this case, the impulse response exhibits antisymmetrical property.

18.1.2 Frequency Response of Linear Phase FIR Filters

The frequency response of a causal linear phase FIR filter can be simplified to some simple forms using
Equations 18.13 and 18.15 and the values of N as follows:

(1) Symmetric impulse response and N¼ odd. In this case,

H(e jvT ) ¼
X(N�3)=2

n¼0

h(nT)e�jvnT þ h
(N � 1)T

2

� �
e�jv(N�1)T=2 þ

XN�1

n¼(Nþ1)=2

h(nT)e�jvnT (18:16)

Using Equation 18.13, letting m¼N� 1� n and changing the limits of summation, and finally letting
m¼ n, the last summation in Equation 18.16 can be reexpressed as

XN�1

n¼(Nþ1)=2

h(nT)e�jvnT ¼
X(N�3)=2

n¼0

h(nT)e�jv(N�1�n)T (18:17)
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Substituting Equation 18.17 into Equation 18.16, one obtains

H(e jvT) ¼
X(N�3)=2

n¼0

h(nT) e�jvnT þ e�jv(N�1�n)T
� �þ h

(N � 1)T
2

� �
e�jv(N�1)T=2 (18:18)

Factoring e�jv(N�1)T=2 in Equation 18.18 and letting k¼ (N� 1)=2� n, Equation 18.18 can be reex-
pressed as

H(e jvT) ¼ e�jv(N�1)T=2
X(N�1)=2

k¼1

h
N � 1
2

� k

� �
T

� �
(e jvkT þ e�jvkT)þ h

(N � 1)T
2

� �( )
(18:19)

Using the property that e juþ e�ju¼ 2 cos u, Equation 18.19 can be simplified to the form

H(e jvT) ¼ e�jv(N�1)T=2
X(N�1)2

k¼1

2h
N � 1
2

� k

� �
T

� �
cos (vkT)þ h

(N � 1)T
2

� �( )
(18:20)

Letting a(o)¼ h[(N� 1)T=2] and a(k)¼ 2h[((N� 1)=2� k)T], Equation 18.20 can be simplified
further to

H(e jvT ) ¼ e�jv(N�1)T=2
X(N�1)=2

k¼0

a(k) cos (vkT)

" #
(18:21)

(2) Symmetric impulse response and N¼ even. For this case, the frequency response takes the form

H(e jvT) ¼ e�jv(N�1)T=2
XN=2�1

k¼0

2h(kT) cos v
N
2
� k� 1

2

� �
T

� �( )
(18:22)

Letting b(k)¼ 2h[N=2� k)T], k¼ 1, 2, . . . , N=2, Equation 18.22 can be expressed as

H(e jvT) ¼ e�jv(N�1)T=2
XN=2

k¼1

b(k) cos v k� 1
2

� �
T

� �( )
(18:23)

An interesting feature of this frequency response is that H(e jvT) is always equal to zero for v¼p,
independent of b(k). This implies that high-pass filter characteristics cannot be realized with this type
of filter.

(3) Antisymmetric impulse response and N¼ odd. For this case, the derivation of the frequency response
is the same as that in (1) except that the cosine summations are replaced by the sine summations
multiplied by j because of Equation 18.15. Hence, the frequency response is given by

H(e jvT ) ¼ je�jv(N�1)T=2
X(N�1)=2

k¼1

2h
N � 1
2

� k

� �
T

� �
sin (vkT)þ h

(N � 1)T
2

� �( )
(18:24)

It should be noted that for odd values of N, Equation 18.15 requires that h[(N� 1)T=2]¼ 0. Letting
c(k)¼ 2h[((N� 1)=2� k)T], k¼ 1, 2, . . . , (N� 1)=2, Equation 18.24 becomes
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H(e jvT ) ¼ je�jv(N�1)T=2
X(N�1)=2

k¼1

c(k) sin (vkT)

( )
(18:25)

A notable feature of this frequency response is that at frequencies v¼ 0 and v¼p, the frequency
response is always zero, independent of c(k).

(4) Antisymmetric impulse response and N¼ even. For this case, the frequency response is the same as
that in (2) except the cosine summations become sine summations multiplied by j as follows:

H(e jvT ) ¼ je�jv(N�1)T=2
XN=2�1

k¼0

2h(kT) sin v
N
2
� k� 1

2

� �
T

� �( )
(18:26)

Letting d(k)¼ 2h[N=2� k)T], k¼ 1, 2, . . . , N=2, Equation 18.26 becomes

H(e jvT ) ¼ je�jv(N�1)T=2
XN=2

k¼1

d(k) sin v k� 1
2

� �
T

� �( )
(18:27)

In this case, the frequency response is zero at v¼ 0, independent of d(k).
In summary, the frequency responses of the four possible types of FIR filters with linear phase are

given in Table 18.1.

18.1.3 Locations of Zeros of Linear Phase FIR Filters

The symmetric and antisymmetric conditions of the impulse response given by Equations 18.13 and
18.15 impose certain constraints on the zeros of the transfer function H(z) [2]. For the case where N is an
odd value, H(z) can be written as

H(z) ¼ z�(N�1)=2
X(N�1)=2

k¼0

a(k)
2

(zk � z�k) (18:28)

where the� sign corresponds to symmetry and antisymmetry in the impulse response respectively, and
a(o) and a(k) are defined in Table 18.1.

TABLE 18.1 Frequency Response of Linear Phase FIR Filters

h(nT) N H(eivT)

Symmetrical Odd e�jv(N�1)T=2 P(N�1)=2

k¼0
a(k) cos (vkT)

Even e�jv(N�1)T=2 PN=2

k¼1
b(k) cos v k� 1

2

	 

T

� �

Antisymmetrical Odd je�jv(N�1)T=2
P(N�1)=2

k¼1
c(k) sin (vkT)

Even je�jv(N�1)T=2 PN=2

k¼1
d(k) sin v k� 1

2

	 

T

� �

Where a(o) ¼ h (N�1)T
2

� �
, a(k) ¼ c(k) ¼ 2h N�1

2 � k
	 


T
� �

, b(k) ¼ d(k) ¼ 2h N
2 � k

	 

T

� �
.
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Substituting z�1 for z in Equation 18.28, one obtains

H(z�1) ¼ z(N�1)=2
X(N�1)=2

k¼0

a(k)
2

(z�k � zk) (18:29)

It follows from Equations 18.28 and 18.29 that

H(z�1) ¼ �z(N�1)H(z) (18:30)

Equation 18.30 shows that H(z) and H(z�1) are identical to within a delay of (N� 1) samples and a
multiplier of �1. Thus, the zeros of H(z�1) are identical to the zeros of H(z). Therefore, if zi¼ rie

jfi is a
zero of H(z), then zi

�1¼ (1=ri)e
�jfi must also be a zero of H(z). This has the following implications on

the zero locations:

1. If ri¼ 1 and fi¼ 0 or p, then the zeros lie at either z¼þ1 or z¼� 1. In these cases, the zero is its
own complex conjugate.

2. If ri¼ 1 and fi 6¼ 0 or p, then the zeros of H(z) that are on the unit circle are also zeros of H(z�1)
that are on the unit circle. Hence, the zeros occur in complex conjugate pairs on the unit circle.

3. If ri 6¼ 1 and fi¼ 0 or p, then the zeros are real and occur in reciprocal pairs on the unit circle.
4. If ri 6¼ 1 and fi 6¼ 0 or p, then the zeros occur in quadruplets with complex conjugate reciprocal

pairs off the unit circle.

Figure 18.1 shows the possible types of zeros for linear phase FIR filters.

18.2 Windowing Techniques

M.H. Er

Windowing is one of the earliest techniques for designing FIR filters [3,4]. The technique is simple
because the filter coefficients can be obtained in closed form without the need for solving complex
optimization problems as in some other sophisticated FIR design techniques. Hence, the design time is
very short and the technique remains an attractive tool for FIR filter design.

Im
Z2

Z1 Z3

1
Z*

4

1
Z4

1
Z3

Z*
4

Z*
2

Z4

Re

FIGURE 18.1 Typical zero positions of linear phase filters.
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To understand the windowing technique, first
consider the process of obtaining a finite-length
impulse response by truncating an infinite-
duration impulse response sequence. Suppose
Hd(e

jvT) is an ideal desired low-pass response
with cutoff frequency vc. As the frequency
response of an FIR filter is a periodic function,
it can be expressed as a Fourier series as

Hd(e
jvT ) ¼

X1
n¼�1

hd(nT)e
�jvnT (18:31)

where

hd(nT) ¼ T
2p

ðp=T
�p=T

Hd(e
jvT )e jvnTdv (18:32)

In general, Hd(e
jvT) is piecewise constant with a certain passband and stopband and with discontinuities

at the boundaries between bands. Hence, the impulse sequence hd(nT) is of infinite duration. For
example, for the ideal low-pass response shown in Figure 18.2, the corresponding impulse response
sequence is given by

hd(nT) ¼ vcT
p

sinvcnT
vcnT

� �
, �1 � n � 1 (18:33)

It is clear that Equation 18.33 is a noncausal IIR filter. Also it is unstable and therefore unrealizable.

The rectangular window. One way to obtain a finite-duration causal impulse response is to simply
truncate hd(nT) and introduce sufficient delay to obtain a causal impulse response, i.e., define

h(nT) ¼ h0d(nT) 0 � n � N � 1
0 elsewhere

�
(18:34)

where h0d(nT) is a delay version of hd(nT).
This can be represented as the product of the desired impulse response and a finite-duration window

wr(nT), i.e.,

h(nT) ¼ h0d(nT)wr(nT) (18:35)

where wr(nT) is the rectangular window function defined as

wr(nT) ¼ 1 0 � n � N � 1
0 elsewhere

n
(18:36)

Let u¼vT and using the fact that multiplication of two discrete-time sequences corresponds to a
convolution of their Fourier transforms. Hence,

1

0
0 ωc

ω
π

H
d(e

jω
)

FIGURE 18.2 An ideal low-pass filter specification.
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H(e jv) ¼ 1
2p

ðp
�p

H0
d(e

ju)Wr(e
j(v�u))du (18:37)

where Wr(e
ju) is the spectrum of the rectangular window.

Since the two functions in the integral are periodic, a circular convolution results and the limits of
integration are taken over one period. Thus the frequency response H(e jv) will be a ‘‘smeared’’ version of
the desired response H0

d(e
jv) and the discontinuities in the desired frequency response become transition

bands of H(e jv). To understand this, it is instructive to examine the frequency response for the causal
rectangular window, that is,

Wr(e
jvT ) ¼

XN�1

n¼0

e�jvnT

¼ e�jv(N�1)T=2 sin (vNT=2)
sin (vT=2)

(18:38)

The spectrum Wr(e
jvT) for N¼ 31 is shown in Figure 18.3. The spectrum Wr(e

jvT) has two features that
are worth noting, the mainlobe width and the sidelobe amplitude. The mainlobe width is defined as
the distance between the two points closest to v¼ 0, where Wr(e

jvT) is zero. For a rectangular window,
the mainlobe width is equal to 4p=N. The maximum sidelobe amplitude for Wr(e

jvT) is equal to
approximately �13 dB relative to the maximum value at v¼ 0.

Figure 18.4 shows the log–magnitude response of applying a 31-point rectangular window to approxi-
mate an ideal low-pass filter with a cutoff frequency equal to p=4. It can be seen that the sharp transition
in the ideal response at v¼vc has been converted into a gradual transition. Also, in the passband a series
of overshoots and undershoots occur, and in the stopband, where the desired response is zero, the FIR
filter has a nonzero response. These are the results of the convolution between Wr(e

jvT) and Hd(e
jvT).

The mainlobe of Wr(e
jvT) causes the smearing of the desired response and the sidelobes of Wr(e

jvT)
appear as overshoots and undershoots to the desired response. It is interesting to note that there will
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FIGURE 18.3 Fourier transform of the rectangular window.
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always be oscillations in the function H(e jvT) in the vicinity of the steep transitions in H0
d(e

jvT), no
matter how large the value of N as shown in Figure 18.5 for N¼ 61. This result is known as the Gibbs
phenomenon [2] in the theory of Fourier series.
To reduce the oscillations in H(e jvT), other window functions having spectra exhibiting smaller

sidelobes must be used. To understand how the form of windows should be selected, it is observed
that the sidelobes of the rectangular window represent the high-frequency components and are due to the
sharp transitions from one to zero at the edges of the window. Therefore, the amplitudes of these
sidelobes can be reduced by replacing the sharp transitions by more gradual ones. Some of the most
frequently used window functions are described below.
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FIGURE 18.4 Magnitude response of low-pass FIR filter design using a 31-point rectangular window.
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FIGURE 18.5 Magnitude response of low-pass FIR filter design using a 61-point rectangular window.
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The Bartlett window. The Bartlett window, also known as the triangular window, is defined as

wt(nT) ¼
2n

N�1 0 � n � N�1
2

2� 2n
N�1

N�1
2 � n � N � 1

0 elsewhere

8><
>: (18:39)

The spectrum Wt(e
jvT) is shown in Figure 18.6. As expected, the sidelobe level is smaller than that of the

rectangular window, being reduced from �13 to �25 dB relative to the maximum. However, the
mainlobe width is now 8p=N, twice that of the rectangular window. Hence, there is a trade-off between
mainlobe width and sidelobe level.
Figure 18.7 illustrates the FIR low-pass magnitude response obtained by using the Bartlett window.

Comparing Figure 18.7 to Figure 18.4, it is observed that the Bartlett window produces a smoother
magnitude response.

The Hanning window. The Hanning window, also known as the raised-cosine window, is given by

wc(nT) ¼
1
2 1� cos 2pn

N�1

	 
� �
0 � n � N � 1

0 elsewhere

�
(18:40)

The amplitude spectrum of this window is shown in Figure 18.8 for N¼ 31. The magnitude of the first
sidelobe level is �31 dB, down with respect to the peak value at v¼ 0. Comparing to the triangular
window, there is an improvement of 6 dB. Since the mainlobe widths of both windows are the same, the
Hanning window is preferred over the triangular one.
The amplitude response of the FIR low-pass filter with vc¼p=4 produced by applying the Hanning

window with N¼ 31 is shown in Figure 18.9. The largest peak in the stopband is now reduced to �44 dB
relative to the passband level.
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FIGURE 18.6 Fourier transform of the Bartlett window.
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The Hamming window. The Hamming window is given by

wh(nT) ¼ 0:54� 0:46 cos 2pn
N�1

	 

0 � n � N � 1

0 elsewhere

�
(18:41)

Figure 18.10 shows the amplitude spectrum of the Hamming window, The magnitude of the highest
sidelobe is about �41 dB, a reduction of 10 dB relative to the Hanning window. This reduction is
achieved at the expense of higher sidelobes at the higher frequencies.

0

–5

–20

–10

–15

–25

–35

–30

–40

–45
0 10.5 1.5 2.5 3.52 3

Frequency (rad)

Am
pl

itu
de

 re
sp

on
se

 (d
B)

FIGURE 18.7 Magnitude response of low-pass FIR filter design using a 31-point Bartlett window.
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FIGURE 18.8 Fourier transform of the Hanning window.
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Figure 18.11 illustrates the amplitude response of the FIR low-pass filter with vc¼p=4 obtained by
applying the Hamming window for N¼ 31. The first sidelobe peak is�51 dB, a�7 dB improvement with
respect to that using the Hanning window. However, it is noted that as frequency increases, the stopband
attenuation does not increase as much as that produced by using the Hanning window.

The Blackman window. The Blackman window is given by

wb(nT) ¼ 0:42� 0:5 cos 2pn
N�1

	 
þ 0:08 cos 4pn
N�1

	 

0 � n � N � 1

0 elsewhere

�
(18:42)
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FIGURE 18.9 Magnitude response of low-pass FIR filter design using a 31-point Hanning window.

0

–20

–40

–60

–80

–100

–120
0 10.5 1.5 2.5 3.52 3

Frequency (rad)

Am
pl

itu
de

 sp
ec

tru
m

 (d
B)

FIGURE 18.10 Fourier transform of the Hamming window.
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The amplitude response of the Blackman window is shown in Figure 18.12. It can be seen that it has the
highest sidelobe level, down�57 dB from the mainlobe peak. However, the mainlobe width has increased
to 12p=N.

The amplitude response of the FIR low-pass filter obtainedwhen applying the Blackman window is shown
in Figure 18.13. The minimum attenuation in the stopband is about �74 dB, but it occurs for v>p=2.

The Kaiser window. For the foregoing windows, the width of the mainlobe is inversely proportional to N.
However, the minimum stopband attenuation is independent of the window length and is a function of
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FIGURE 18.11 Magnitude response of low-pass FIR filter design using a 31-point Hamming window.
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FIGURE 18.12 Fourier transform of the Blackman window.
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the selected window. Hence, to meet a desired stopband attenuation, the designer is forced to select a
window that meets the design specifications. It is worth noting that windows with low sidelobe levels
have broader mainlobe widths, hence requiring an increase in the order of the filter N to achieve the
desired transition width.
In 1974, Kaiser [4] introduced a new window, now known as the Kaiser window, based on discrete-

time approximations of the prolate spheroidal wave functions. This window has a variable parameter b,
which can be varied to control the sidelobe level with respect to the mainlobe peak. As in other windows,
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FIGURE 18.13 Magnitude response of low-pass FIR filter design using a 31-point Blackman window.
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FIGURE 18.14 Magnitude responses of low-pass FIR filter design using a 31-point Kaiser window with b¼ 1 (solid
line), b¼ 6 (dash line), and b¼ 10 (dotted line).
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the mainlobe width can be adjusted by changing the length of the window, which in turn adjusts the
transition width of the filter. Therefore, FIR filters can be efficiently designed using the Kaiser window.

The Kaiser windows are defined by

wk(nT) ¼
I0 2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

N�1� n
N�1ð Þ2

q �
I0(b)

0 � n � N � 1

0 elsewhere

8<
: (18:43)

where I0(x) is the modified zeroth-order Bessel function of the first kind. Kaiser has shown that these
windows are nearly optimum in the sense of having the largest energy in the mainlobe for a given peak
sidelobe amplitude.
To give an impression of the results that can be obtained by using Kaiser windows, Figure 18.14 shows

the amplitude responses of an FIR low-pass filter design with N¼ 31 and vc¼p=4 and with b¼ 1, b¼ 6,
and b¼ 10. As the value of b increases, the stopband attenuation of the low-pass filter increases and the
transition band widens. Proper choice of N then leads to the final design.
The windows discussed above are compared in terms of their mainlobe width and the maximum

sidelobe level in Table 18.2.
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18.3 Design of FIR Filters by Optimization

Andreas Antoniou

18.3.1 Equiripple FIR Filters

The design of FIR filters can be accomplished either through noniterative or iterative methods. Non-
iterative methods entail the use of a small set of closed-form formulas and are, as a consequence, simple
to apply. A frequently used method of this class is through the use of the Fourier series in conjunction

TABLE 18.2 Spectral Properties of N-Point Windows

Window
Mainlobe
Width

Peak Amplitude
of Sidelobe (dB)

Rectangular 4p=N �13

Bartlett 8p=N �25

Hanning 8p=N �31

Hamming 8p=N �41

Blackman 12p=N �57
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with window functions. Iterative methods are based on the application of optimization techniques.
These are characterized by a substantial increase in the computational complexity, but often lead to
designs that are optimal in some respect.
This section deals with an iterative method for the design of FIR filters known as the weighted-

Chebyshev method. In this approach, an error function is formulated for the desired filter in terms of a
linear combination of cosine functions and is then minimized by using a very efficient multivariable
optimization algorithm known as the Remez exchange algorithm. When convergence is achieved, the
error function becomes equiripple, as in other Chebyshev solutions. The amplitude of the error in
different frequency bands of interest is controlled by applying weighting to the error function.
The weighted-Chebyshev method is very flexible and can be used to obtain optimal solutions for most

types of FIR filters, e.g., digital differentiators, Hilbert transformers, and low-pass, high-pass, bandpass,
bandstop, and multiband filters with piecewise-constant amplitude responses. Furthermore, it can be
used to design filters with arbitrary amplitude responses. Consequently, it is widely used. In common
with other optimization methods, the weighted-Chebyshev method requires a large amount of compu-
tation; however, as the cost of computation is becoming progressively cheaper with time, this disadvan-
tage is not a serious one.
The underlying principles of the weighted-Chebyshev method were proposed during the early 1970s

[1–3] and a series of developments soon after [4–8] led to the well-known computer program of
McClellan et al. [9]. Some more recent enhancements to the method are reported in Refs. [10,11].
A detailed treatment of the subject can be found in Ref. [12].

18.3.2 Problem Formulation

An FIR filter with a symmetrical impulse response and odd length N can be represented by the transfer
function

H(z) ¼
XN�1

n¼0

h(nT)z�n

If we assume a sampling rate vs¼ 2p, we have T¼ 2p=vs¼ 1 s, and hence the frequency response of the
filter can be expressed as

H(e jvT) ¼ e�jcvPc(v)

where

Pc(v) ¼
Xc

k¼0

ak cos kv (18:44)

with

a0 ¼ h(c)

ak ¼ 2h(c� k) for k ¼ 1, 2, . . . , c

c ¼ (N � 1) 2=

For a desired frequency response e�jcvD(v) and a specified weighting function W(v), an error function
E(v) can be constructed as

E(v) ¼ W(v) D(v)� Pc(v)½ � (18:45)
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If it were possible to minimize the magnitude of the above error such that

E(v)j j � dp

with respect to some compact subset of the frequency interval [0, p], say V, a filter would be obtained
in which

E0(v)j j ¼ D(v)� Pc(v)j j � dp

W(v)j j for v 2 V (18:46)

In an equiripple filter, the magnitude of the error oscillates uniformly between zero and some maximum
in each passband and stopband. In a low-pass equiripple filter, the amplitude response assumes the form
depicted in Figure 18.15, where dp and da are the amplitudes of the passband and stopband ripples, and
vp and va are the passband and stopband edges, respectively. Hence, we require

D(v) ¼ 1 for 0 � v � vp

0 for va � v � p

�

with

E0(v)j j � dp for 0 � v � vp

da for va � v � p

�
(18:47)

Therefore, from Equations 18.46 and 18.47 we deduce

W(v) ¼ 1 for 0 � v � vp

dp=da for va � v � p

(

Similarly, for high-pass filters, we obtain

D(v) ¼ 0 for 0 � v � va

1 for vp � v � p

(

ω

ωaωp

δa

1 − δp  

1.0 

1 + δp 

G
ain

 

FIGURE 18.15 Amplitude response of equiripple low-pass filter. (Reproduced from Antoniou, A. Digital Filters:
Analysis, Design, and Applications, McGraw-Hill, New York, 1993. With permission.)
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and

W(v) ¼ dp=da for 0 � v � va

1 for vp � v � p

(

Bandpass and bandstop filters. The above formulation can be easily extended to other types of filters.
For bandpass filters, we have

D(v) ¼
0 for 0 � v � va1

1 for vp1 � v � vp2

0 for va2 � v � p

8><
>:

and

W(v) ¼
dp=da for 0 � v � va1

1 for vp1 � v � vp2

dp=da for va2 � v � p

8><
>:

where dp and da are the amplitudes of the passband and stopband ripples, respectively, vp1 and vp2 are
the passband edges, and va1 and va2 are the stopband edges, as depicted in Figure 18.16. On the other
hand, for bandstop filters

D(v) ¼
1 for 0 � v � vp1

0 for va1 � v � va2

1 for vp2 � v � p

8><
>:

and

W(v) ¼
1 for 0 � v � vp1

dp=da for va1 � v � va2

1 for vp2 � v � p

8><
>:

π
ωp2 ωa2ωa1 ωp1

ω

δa

 
1.0 

1 + δp

1 – δp
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FIGURE 18.16 Amplitude response of equiripple bandpass filter. (Reproduced from Antoniou, A. Digital Filters:
Analysis, Design, and Applications, McGraw-Hill, New York, 1993. With permission.)
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The alternation theorem. An effective approach for the design of equiripple filters is to solve the minimax
problem

minimize
x

n
max
v

jE(v)j
o

(18:48)

where

x ¼ a0 a1 � � � ac½ �T

is a column vector whose elements are the coefficients of the transfer function of the filter, which happen
to be the values of the impulse response. The solution of this problem exists by virtue of the so-called
alternation theorem [13], which is as follows.

THEOREM 18.1

If Pc(v) is a linear combination of r¼ cþ 1 cosine functions of the form

Pc(v) ¼
Xc

k¼0

ak cos kv

then a necessary and sufficient condition that Pc(v) be the unique, best, weighted-Chebyshev approxima-
tion to a continuous function D(v) on V, where V is a compact subset of the frequency interval [0, p], is
that the weighted error function E(v) exhibit at least rþ 1 extremal frequencies in V, i.e., there must exist
at least rþ 1 points v̂ in V such that

v̂0 < v̂1 < � � � < v̂r

E(v̂i) ¼ �E(v̂iþ1) for i ¼ 0, 1, . . . , r � 1

and

E(v̂i)j j ¼ max
v2V

E(v)j j for i ¼ 0, 1, . . . , r

From the alternation theorem and Equation 18.45 we can write

E(v̂i) ¼ W(v̂i)[D(v̂i)� Pc(v̂i)] ¼ (�1)id (18:49)

for i¼ 0, 1, . . . , r, where d is a constant. This system of equations can be put in matrix form as

1 cos v̂0 cos 2v̂0 � � � cos cv̂0
1

W(v̂0)

1 cos v̂1 cos 2v̂1 � � � cos cv̂1
�1

W(v̂1)

..

. ..
. ..

. ..
. ..

. ..
.

1 cos v̂r cos 2v̂r � � � cos cv̂r
(�1)r

W(v̂r)

2
66664

3
77775

a0
a1
..
.

ac
d

2
666664

3
777775 ¼

D(v̂0)
D(v̂1)

..

.

D(v̂r)

2
6664

3
7775 (18:50)

If the extremal frequencies (or extremals for short) were known, coefficients ak and, in turn, the
frequency response of the filter could be computed using Equation 18.44. The solution of this system
exists since the above (r þ1)3 (r þ1) matrix is nonsingular [13].
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18.3.2.1 Remez Exchange Algorithm

The Remez exchange algorithm is an iterative multivariable algorithm, which is naturally suited for the
solution of the minimax problem stated in Equation 18.48. It is based on the second optimization method
of Remez [14] and involves the following basic steps.

ALGORITHM 18.1: Basic Remez Exchange Algorithm

1. Initialize extremals v̂0, v̂1, . . . , v̂r ensuring that an extremal is assigned at each band edge.
2. Locate the frequencies

˘

v0,

˘

v1, . . . ,

˘

vr at which jE(v)j is maximum and jE(

˘

vi)j � d. These
frequencies are potential extremals for the next iteration.

3. Compute the convergence parameter

Q ¼
max E(

˘

vi)
��� ����min E(

˘

vi)
��� ���

max E(

˘

vi)
��� ���

where i¼ 0, 1, . . . , r.
4. Reject r� r superfluous potential extremals

˘

vi according to an appropriate rejection criterion and
renumber the remaining

˘

vi sequentially; then set v̂i¼

˘

vi for i¼ 0, 1, . . . , r.
5. If Q> e, where e is a convergence tolerance (say e¼ 0.01), repeat from step 2; otherwise continue

to step 6.
6. Compute Pc(v) using the last set of extremals; then deduce h(n), the impulse response of the

required filter, and stop.

The amount of computation required by the algorithm tends to depend quite heavily on the initialization
scheme used in step 1, on the search method used for the location of the maxima of the error function in
step 2, and on the criterion used to reject superfluous frequencies

˘

vi in step 4.

Initialization of extremals. The simplest scheme for the initialization of extremals v̂i for i¼ 0, 1, . . . , r is to
assume that they are uniformly spaced in the frequency bands of interest. If there are J distinct bands in
the required filter of widths B1, B2, . . . , BJ and extremals are to be located at the left-hand and right-hand
band edges of each band, the sum of these bandwidths should be divided into rþ 1� J intervals. Thus the
average interval between adjacent extremals is

W0 ¼ 1
r þ 1� J

XJ

j¼1

Bj

Since the quantities Bj=W0 need not be integers, the use ofW0 for the generation of the extremals will almost
always result in a fractional interval in each band. This problem can be avoided by rounding the number of
intervals Bj=W0 to the nearest integer and then readjusting the frequency interval for the corresponding band
accordingly. This can be achieved by letting the number of intervals in bands j and J be

mj ¼ Int
Bj

W0
þ 0:5

� �
for j ¼ 1, 2, . . . , J � 1

and

mJ ¼ r �
XJ�1

j¼1

(mj þ 1)
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respectively, and then recalculating the frequency intervals for the various bands as

Wj ¼ Bj

mj
for j ¼ 1, 2, . . . , J

A more sophisticated initialization scheme, which was found to give good results, is described
in Ref. [15].

Location of maxima of the error function. The frequencies,

˘

vi, which must include maxima at band edges
if jE(

˘

vi j � jdj, can be located by simply evaluating jE(v)j over a dense set of frequencies. A reasonable
number of frequency points that yield sufficient accuracy in the determination of the frequencies

˘

vi are
8(Nþ 1). This corresponds to about 16 frequency points per ripple of jE(v)j. A suitable frequency
interval for the jth band is wj¼Wj=S with S¼ 16.

The above exhaustive search can be implemented in terms of Algorithm 18.2 below, where vLj and vRj

are the left-hand and right-hand edges in band j; Wj is the interval between adjacent extremals and mj is
the number of intervalsWj in band j; wj is the interval between successive samples of jE(v)j in intervalWj

and S is the number of intervals wj in each intervalWj; Nj is the total number of intervals wj in band j; and
J is the number of bands.

ALGORITHM 18.2: Exhaustive Step-by-Step Search

1. Set Nj¼mjS, wj¼Bj=Nj, and e¼ 0.
2. For each of bands 1, 2, . . . , j, . . . , J do the following. For each of frequencies v1j¼vLj, v2j¼vLjþ

vj, . . . , vij¼vLJþ (i� 1)vj, . . . , v(Njþ1)j¼vRj, set v̂e¼vij and e¼ eþ 1 provided that jE(vij)j � jdj
and one of the following conditions holds:
(a) Case vij¼vLj: if jE(vij)j is maximum at vij¼vLj (i.e., jE(vLj)j> jE(vLjþ e)j)
(b) CasevLj<vij<vRj: if jE(v)j is maximum atv¼vij (i.e., jE(vij�vj)j< jE(vij)j> jE(vijþvj)j)
(c) Case vij¼vRj: if jE(vij)j is maximum at vij¼vRj (i.e., jE(vRj)j> jE(vRj� e)j)

The parameter e in steps 2(a) and 2(c) is a small positive constant and a value 10�2wj yields satisfactory
results.
In practice, jE(v)j is maximum at an interior left-hand band edge* if its first derivative at the band

edge is negative, and a mirror-image situation applies at an interior right-hand band edge. In such cases,
jE(v)j has a zero immediately to the right or left of the band edge and the inequality in step 2(a) or 2(c)
may sometimes fail to identify a maximum. However, the problem can be avoided by using the inequality
jE(vLj� e)j> jE(vLj)j in step 2(a) and jE(vRj)j< jE(vRjþ e)j in step 2(c) for interior band edges.

In rare circumstances, a maximum of jE(v)jmay occur between a band edge and the first sample point.
Such a maximum may be missed by Algorithm 18.2, but the problem can be easily identified since the
number of potential extremals will then be less than the minimum. The remedy is to check the number of
potential extremals at the end of each iteration and if it is found to be less than rþ 1, the density of sample
points, i.e., S is doubled and the iteration is repeated. If the problem persists, the process is repeated until
the required number of potential extremals is obtained. If a value of S equal to or less than 256 does not
resolve the problem, the loss of potential extremals is most likely due to some other reason.
An important precaution in the implementation of the preceding search method is to ensure that

extremals belong to the dense set of frequency points to avoid numerical ill-conditioning in the
computation of E(v) (see Equations 18.49 and 18.51). In addition, the condition jE(vij)j � jdj should

* An interior band edge is one in the range 0<v <p, i.e., not at v¼ 0 or p.
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be replaced by jE(vij)j> jdj – e1, where e1 is a small positive constant, say 10�6, to ensure that no maxima
are missed owing to roundoff errors.
The search method is very reliable and its use in Algorithm 18.1 leads to a robust algorithm since the

entire frequency axis is searched using a dense set of frequency points. Its disadvantage is that it requires
a considerable amount of computation and is, therefore, inefficient.
A more efficient version of Algorithm 18.2 is obtained by maintaining all the interior band edges as

extremals throughout the optimization independently of the behavior of the error function at the band
edges. However, the algorithm obtained tends to be somewhat less robust, i.e., it tends to fail more
frequently than Algorithm 18.2.

Computation of jE(v)jand Pc(v). In steps 2 and 6 of the basic Remez algorithm (Algorithm 18.1), jE(v)j
and Pc(v) need to be evaluated. This can be done by determining coefficients ak by inverting the matrix
in Equation 18.50. However, this approach is inefficient and may be subject to numerical ill-conditioning,
in particular, if d is small and N is large. An alternative and more efficient approach is to deduce d

analytically and then interpolate Pc(v) on the r frequency points using the barycentric form of the
Lagrange interpolation formula. The necessary formulation is as follows.
Parameter d can be deduced as

d ¼
Pr

k¼0 akD(v̂k)Pr
k¼0

(�1)kak
W(v̂k)

and Pc(v) is given by

Pc(v) ¼
Ck for v ¼ v̂0, v̂1, . . . , v̂r�1Pr�1

k¼0

bkCk
x�xkPr�1

k¼0

bk
x�xk

otherwise

8><
>: (18:51)

where

ak ¼
Yr

i¼0,i6¼k

1
xk � xi

Ck ¼ D(v̂k)� (�1)k
d

W(v̂k)

bk ¼
Yr�1

i¼0,i6¼k

1
xk � xi

with

x ¼ cosv and xi ¼ cos v̂i for i ¼ 0, 1, 2, . . . , r

In step 2 of the Remez algorithm, jE(v)j often needs to be evaluated at a frequency that was an extremal
during the previous iteration. For these cases, the magnitude of the error function is simply jdj according
to Equation 18.49, and need not be evaluated. This would reduce the amount of computation to some
extent.
An alternative formulation that simplifies the implementation of the Remez exchange algorithm can be

found in Ref. [12].
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Rejection of superfluous potential extremals. The solution of Equation 18.50 can be obtained only if
precisely rþ 1 extremals are available. By differentiating E(v), one can show that in a filter with one
frequency band of interest (e.g., a digital differentiator) the number of maxima in jE(v)j (potential
extremals in step 2 of Algorithm 18.1) can be as high as rþ 1. In the weighted-Chebyshev method, band
edges at which jE(v)j is maximum or jE(v)j � jdj are treated as potential extremals (see Algorithm 18.2).
Therefore, whenever the number of frequency bands is increased by one, the number of potential
extremals is increased by 2, i.e., for a filter with J bands there can be as many as rþ 2J� 1 frequencies˘

vi and a maximum of 2J� 2 superfluous

˘

vi may occur. This problem is overcome by rejecting r� r of the
potential extremals

˘

vi, if r> r, in step 4 of the algorithm.
A simple rejection scheme is to reject the r� r frequencies

˘

vi that yield the lowest jE(

˘

vi)j and then
renumber the remaining

˘

vi from 0 to r [8]. This strategy is based on the well-known fact that the
magnitude of the error in a given band is inversely related to the density of extremals in that band, i.e., a
low density of extremals results in a large error and a high density results in a small error. Conversely,
a low band error is indicative of a high density of extremals, and rejecting superfluous

˘

vi in such a band is
the appropriate course of action.
A problem with the scheme just described is that whenever a frequency remains an extremal in two

successive iterations, jE(v)j assumes the value of jdj in the second iteration by virtue of Equation 18.49.
In practice, there are almost always several frequencies that remain extremals from one iteration to
the next, and the value of jE(v)j at these frequencies will be the same. Consequently, the rejection
of potential extremals on the basis of the magnitude of the error can become arbitrary and may lead to
the rejection of potential extremals in bands where the density of extremals is low. This tends
to increase the number of iterations, and it may even prevent the algorithm from converging on
occasion. This problem can to some extent be alleviated by rejecting only potential extremals that are
not band edges.
An alternative rejection scheme based on the aforementioned strategy, which gives excellent results for

two-band and three-band filters, involves ranking the frequency bands in the order of lowest average
band error, dropping the band with the highest average error from the list, and then rejecting potential
extremals, one per band, in a cyclic manner starting with the band with the lowest average error [11].
The steps involved are as follows.

ALGORITHM 18.3: Rejection of Superfluous Potential Externals

1. Compute the average band errors

Ej ¼ 1
vj

X
v̂i2Vj

E(

˘

vi)
��� ��� for j ¼ 1, 2, . . . , J

where Vj is the set of potential externals in band j given by

Vj ¼

˘

vj :vLj �

˘

vj � vRj

n o

vj is the number of potential externals in band j, and J is the number of bands.
2. Rank the J bands in the order of lowest average error and let l1, l2, . . . , lJ be the ranked list obtained,

i.e., l1 and lJ are the bands with the lowest and highest average errors, respectively.
3. Reject one

˘

vi in each of bands l1, l2, . . . , lJ�1, l1, l2, . . . , l1 until r� r superfluous

˘

vi are rejected.
In each case, reject the

˘

vi, other than a band edge, that yields the lowest jE(

˘

vi)j in the band.
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For example, if J¼ 3, r� r¼ 3, and the average errors for bands 1, 2, and 3 are, respectively, 0.05, 0.08,
and 0.02, then

˘

vi are rejected in bands 3, 1, and 3. Note that potential extremals are not rejected in band 2,
which is the band of highest average error.

Computation of impulse response. The impulse response in step 6 of Algorithm 18.1 can be determined by
noting that function Pc(v) is the frequency response of a noncausal version of the required filter. The
impulse response of this filter, represented by h0(n) for �c� n� c, can be determined by computing
Pc(kV) for k¼ 0, 1, 2, . . . , c, whereV¼ 2p=N, and then using the inverse discrete Fourier transform. It can
be shown that

h0(n) ¼ h0(�n) ¼ 1
N

Pc(0)þ
Xc

k¼1

2Pc(kV) cos
2pkn
N

� �" #

for n¼ 0, 1, 2, . . . , c. Therefore, the impulse response of the required causal filter is given by

h(n) ¼ h0(n� c)

for n¼ 0, 1, 2, . . . , N� 1.

18.3.2.2 Improved Search Methods

For a filter of length N, with the number of intervals wj in each internalWj equal to S, the exhaustive step-
by-step search described (Algorithm 18.2) requires about S3 (Nþ 1)=2 function evaluations, where each
function evaluation entails N� 1 additions, (Nþ 1)=2 multiplications, and (Nþ 1)=2 divisions (see
Equation 18.51).
A Remez optimization usually requires 4 to 8 iterations for low-pass or high-pass filters, 4 to 10

iterations for bandpass filters, and 4 to 12 iterations for bandstop filters. Further, if prescribed specifi-
cations are to be achieved and the appropriate value of N is unknown, typically two to four Remez
optimizations have to be performed.* Thus, if N¼ 101, S¼ 16, number of Remez optimizations¼ 4,
iterations per optimization¼ 6, the design would entail 24 iterations, 19,200 function evaluations,
1.923 106 additions, 0.9793 106 multiplications, and 0.9793 106 divisions. This is in addition to the
computation required for the evaluation of d and coefficients ak, Ck, and bk once per iteration. In effect,
the amount of computation required to complete a design is quite substantial.
The bulk of the computation in Algorithm 18.2 is carried out to locate the maxima of jE(v)j and the

large amount of computation is a consequence of the exhaustive character of the search. Therefore, any
attempt to reduce the computational complexity of the Remez exchange algorithm must of necessity
involve a more efficient search for the maxima of jE(v)j.
The error function in the weighted-Chebyshev method is well behaved in practice, and is normally

unimodal between successive zeros, as can be seen in Figures 18.15 and 18.16. Hence, the maxima of
jE(v)j can be located through more sophisticated search methods that utilize gradient information. Two
such methods are the so-called selective step-by-step search and cubic-interpolation search reported in
Refs. [10,11]. Collectively, the two search methods can reduce the amount of computation to about one-
fifth the amount required by the exhaustive search.

Selective step-by-step search. The underlying principle in the development of the selective step-by-step
search is that normally there is strict alternation between the maxima and the zeros of jE(v)j. In a given
iteration, the maxima of jE(v)j are either old maxima from the previous iteration that have moved or
new maxima introduced at band edges. New interior maxima may also arise, in theory, but such
occurrences are quite rare in practice.

* See Section 18.3.2.3.
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The selective step-by-step search involves three distinct parts as follows:

(1) Maxima that correspond to previous maxima are located by searching in the neighborhoods of the
most recent set of extremals in a step-by-step fashion using the first derivative of jE(v)j. If the first
derivative is positive at an extremal, the search is carried out to the right of the extremal; otherwise,
the search is carried out to the left of the extremal.

(2) New maxima at band edges can be located by noting the circumstances under which new maxima
can arise. These are as follows:
a. To the right of v¼ 0 (first band), if there is an extremal and jE(v)j has a minimum at v¼ 0
b. To the left of v¼p (last band), if there is an extremal and jE(v)j has a minimum at v¼p

c. At v¼ 0, if there is no extremal at v¼ 0
d. At v¼p, if there is no extremal at v¼p

e. To the right of an interior left-hand edge
f. To the left of an interior right-hand edge
g. At v¼vLj, if there is no extremal at v¼vLj

h. At v¼vRj, if there is no extremal at v¼vRj

(3) New interior maxima, which cannot be located by the checks in (1) and (2) can be found by noting
the presence of large gaps in the set of potential extremals identified in (1) and (2). If the difference
between two consecutive potential extremals exceeds 1.5 to 2 times the initial interval between
extremals (i.e., Wj), then the interval is checked for additional maxima.

If a selective step-by-step search based on the above principles is used in Algorithm 18.1, then at the start
of the optimization the distance between a typical extremal v̂i and the nearby maximum point

˘

vi will be
less than half the period of the corresponding ripple of jE(v)j, owing to the relative symmetry of
the ripples of the error function. In effect, during the first iteration less than half of the combined
width of the different bands needs to be searched. Thus the number of function evaluations required
would be reduced from about 16 to less than 8 per extremal in practice. This will reduce the number of
function evaluations bymore than 50% relative to that required by the exhaustive search of Algorithm 18.1
without degrading the accuracy of the optimization in any way. As the optimization progresses and the
solution is approached, extremal v̂i and maximum point

˘

vi tend to coincide and, therefore, the cumulative
length of the frequency range that has to be searched is progressively reduced, thereby resulting in further
economies in the number of function evaluations. In the last iteration, only two or three function
evaluations are needed (including derivatives) per ripple. As a result, the total number of function
evaluations can be reduced by 65%–70% relative to that required by the exhaustive search [10,11].

Cubic-interpolation search. The maxima in item (1) of the above method can also be found through the
use of one stage of polynomial interpolation. Either quadratic or cubic interpolation can be used. In
these methods, a polynomial approximation is obtained for the magnitude of the error function in the
neighborhood of a given extremal and the location of the maximum is determined by finding the point at
which the first derivative is zero. Although cubic interpolation entails a more complicated formulation
than quadratic interpolation, it leads to improved accuracy, which tends to translate into improved
efficiency.
Several choices are possible in setting up a cubic-interpolation search for the problem at hand. One

that was found to work well in practice entails evaluating jE(v)j at three frequency points and its
derivative at one point. Choosing the extremal itself as one of the points reduces the computation further
since the value of jE(v)j is known to be jdj from the previous iteration. Thus this scheme entails three
function evaluations per extremal.
The computational complexity of the cubic-interpolation search described remains constant from

iteration to iteration since the number of function evaluations required to perform an interpolation is
constant. At the start of the optimization, the cubic-interpolation search is more efficient than the
selective step-by-step search. However, as the solution is approached the number of function evaluations
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required by the selective search is progressively reduced, as was stated earlier, and at some point the
selective search becomes more efficient. A prudent strategy under the circumstances is to use the cubic-
interpolation search at the start of the optimization and switch over to the selective step-by-step search
when some suitable criterion is satisfied. Extensive experimentation has shown that computational
advantage can be gained by using the cubic-interpolation search if parameter Q (see Algorithm 18.1) is
greater than about 0.65 and the selective search otherwise. The use of the cubic-interpolation search
along with the selective step-by-step search of the preceding section can reduce the number of function
evaluations by 70%–85% relative to that required by the exhaustive search [10,11].
More information, including the necessary formulation as well as a practical and efficient implemen-

tation of the Remez exchange algorithm in terms of the above search methods, can be found in Ref. [12].

Example 18.1

The Remez algorithm was used with (1) the exhaustive search, (2) the selective step-by-step search, and
(3) the selective search in conjunction with the cubic-interpolation search to design an FIR equiripple
high-pass filter satisfying the following specifications:

Filter length N: 23
Passband edge vp: 2.0 rad=s
Stopband edge va: 1.0 rad=s
Ratio dp=da: 15.0
Sampling frequency vs: 2p rad=s

The progress of the design is illustrated in Table 18.3. As can be seen, the exhaustive and selective
search methods required six iterations each, whereas the selective search in conjunction with
cubic interpolation required seven iterations. However, the number of function evaluations (evaluations
of Pc(v) using Equation 18.51 plus evaluations of its first or second derivative) decreased from 1013 in
the first method to 350 in the second method to 259 in the third method. In the Remez algorithm,
approximately 80%–90% of the computational effort involves function evaluations. In effect,
relative to that required by the exhaustive search, the use of the selective step-by-step search
reduced the amount of computation by about 65.4%, and the use of the selective step-by-step search
in conjunction with the cubic-interpolation search reduced the amount of computation by
about 74.4%.
The three methods resulted in approximately the same impulse responses, as can be seen in Table

18.4, and the passband ripple and minimum stopband attenuation obtained in each case were 0.043 and
75.7 dB, respectively. The amplitude response of the filter is illustrated in Figure 18.17.

TABLE 18.3 Progress in Design of High-Pass Filter (Example 18.1)

Iteration
Number

Exhaustive Search Selective Search
Selective Search with
Cubic Interpolation

Q FEs Q FEs Q FEs

1 0.9912 169 0.9912 93 0.9912 66

2 0.9207 168 0.9207 86 0.9406 44

3 0.9480 169 0.9480 55 0.8830 42˘

v32 rejected

4 0.7249 169 0.7249 62 0.6952 31

5 0.0923 169 0.0923 31 0.1417 31

6 0.0017 169 0.0017 23 0.0102 23

7 — — — — 0.0000 22

Total FE’s 1013 350 259
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TABLE 18.4 Impulse Response of High-Pass Filter (Example 18.1)

n

h0(n)¼ h0(�n)

Exhaustive or
Selective Search

Selective Search with
Cubic Interpolation

0 5.0349543 10�1 5.0350773 10�1

1 �3.1235383 10�1 �3.1235353 10�1

2 �3.0857313 10�3 �3.0978293 10�3

3 8.9329143 10�2 8.9329113 10�2

4 2.0532353 10�3 2.0635643 10�3

5 �3.8981183 10�2 �3.8981773 10�2

6 �8.4673753 10�4 �8.5400793 10�4

7 1.6608003 10�2 1.6608583 10�2

8 5.4015853 10�5 5.8920083 10�5

9 �6.1004653 10�3 �6.1019793 10�3

10 7.2984113 10�4 7.2811923 10�4

11 9.2756543 10�4 9.2854823 10�4
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FIGURE 18.17 Amplitude response of equiripple high-pass filter (Example 18.1): (a) baseband and (b) passband.
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Example 18.2

In this example, the Remez algorithm was used with (1) the exhaustive search, (2) the selective step-by-
step search, and (3) the selective step-by-step search in conjunction with the cubic-interpolation search
to design an FIR equiripple bandstop filter satisfying the following specifications:

Filter length N: 29
Lower passband edge vp1: 0.8 rad=s
Upper passband edge vp2: 2.1 rad=s
Lower stopband edge va1: 1.1 rad=s
Upper stopband edge va2: 1.8 rad=s
Ratio dp1=da: 5.0
Ratio dp1=dp2: 2.0
Sampling frequency vs: 2p rad=s

The progress of the design is illustrated in Table 18.5. In this example, each of the three methods
required four iterations. The number of function evaluations decreased from 804 in the first
method to 190 in the second method to 131 in the third method. In effect, the use of the selective
step-by-step search reduced the amount of computation by about 76.4%, and the use of the

TABLE 18.5 Progress in Design of Bandstop Filter (Example 18.2)

Iteration
Number

Exhaustive Search Selective Search
Selective Search with
Cubic Interpolation

Q FEs Q FEs Q FEs

1 0.6836 201 0.6836 79 0.6940 36

2 0.3138 201 0.3138 51 0.2378 36

3 0.0804 201 0.0804 34 0.0675 32

4 0.0000 201 0.0000 26 0.0007 27

Total FE’s 804 190 131

TABLE 18.6 Impulse Response of Bandstop Filter (Example 18.2)

h0(n)¼ h0(�n)

n
Exhaustive or
Selective Search

Selective Search with
Cubic Interpolation

0 6.6566293 10�1 6.6564783 10�1

1 �4.1873273 10�2 �4.1865103 10�2

2 2.6353703 10�1 2.6352973 10�1

3 8.0055213 10�2 8.0053073 10�2

4 �1.1312843 10�1 �1.1310563 10�1

5 �3.6916453 10�2 �3.6919323 10�2

6 �9.9140853 10�4 �1.0136213 10�3

7 �3.0189173 10�2 �3.0170173 10�2

8 2.9317763 10�2 2.9300063 10�2

9 5.0224903 10�2 5.0224503 10�2

10 �9.7159883 10�3 �9.6873453 10�3

11 �2.5507903 10�2 �2.5535433 10�2

12 �4.0232653 10�4 �3.8270293 10�4

13 �3.4107413 10�2 �3.4120073 10�2

14 �1.4219393 10�2 �1.4241893 10�2
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selective step-by-step search in conjunction with the cubic-interpolation search reduced the amount of
computation by about 83.7%, relative to that required by the exhaustive search.
The three methods resulted in approximately the same impulse responses, as can be seen in Table 18.6.

The amplitude response of the filter is illustrated in Figure 18.18; the passband ripples obtained for the two
passbands were 1.78 and 0.89 dB, respectively, and the minimum stopband attenuation was 33.79 dB.
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FIGURE 18.18 Amplitude response of equiripple bandstop filter (Example 18.2): (a) baseband, (b) lower passband,
and (c) upper passband.
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18.3.2.3 Prescribed Specifications

Given a filter length N, a set of passband and stopband edges, and a ratio dp=da, an FIR filter with
approximately piecewise-constant amplitude-response specifications can be readily designed. While the
filter obtained will have passband and stopband edges at the correct locations and the ratio dp=da will be
as required, the amplitudes of the passband and stopband ripples are highly unlikely to be precisely as
specified. An acceptable design can be obtained by predicting the value of N on the basis of the required
specifications and then designing filters for increasing or decreasing values of N until the lowest value of
N that satisfies the specifications is found.
A reasonably accurate empirical formula for the prediction of N for the case of low-pass and high-pass

filters, due to Hermann et al. [16], is

N ¼ Int
(D� FB2)

B
þ 1:5

� �
(18:52)

where

B ¼ va � vp

�� ��=2p
D ¼ 0:005309( log dp)

2 þ 0:07114 log dp � 0:4761
� �

log da

� 0:00266( log dp)
2 þ 0:5941 log dp þ 0:4278

� �
F ¼ 0:51244( log dp � log da)þ 11:012

Interestingly this formula can also be used to predict the filter length in the design of bandpass, bandstop,
and multiband filters in general. In these filters, a value of N is computed for each transition band
between a passband and stopband or a stopband and passband using Equation 18.52 and the largest value
of N so obtained is taken to be the predicted filter length. Prescribed specifications can be achieved by
using the following design algorithm.

ALGORITHM 18.4: Design of Filters Satisfying Prescribed Specifications

1. Compute N using Equation 18.52; if N is even, set N¼Nþ 1.
2. Design a filter of length N and determine the minimum value of d, say �d.
A. If �d> dp, then do the following:

i. Set N¼Nþ 2, design a filter of length N, and find �d.
ii. If �d� dp, then go to step 3; else, go to step 2(A)(i).

B. If �d< dp, then do the following:
i. Set N¼N� 2, design a filter of length N, and find �d.
ii. If �d> dp then go to step 4; else, go to step 2(B)(i).

3. Use the last set of extremals and the corresponding value of N to obtain the impulse response of the
required filter and stop.

4. Use the last but one set of extremals and the corresponding value of N to obtain the impulse
response of the required filter and stop.

Example 18.3

Algorithm 18.4 was used to design an FIR equiripple bandpass filter that would satisfy the following
specifications:
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Odd filter length
Maximum passband ripple Ap: 0.5 dB
Minimum stopband attenuation Aa1: 50.0 dB
Minimum stopband attenuation Aa2: 30.0 dB
Lower passband edge vp1: 1.2 rad=s
Upper passband edge vp2: 1.8 rad=s
Lower stopband edge va1: 0.9 rad=s
Upper stopband edge va2: 2.1 rad=s
Sampling frequency vs: 2p rad=s

The progress of the design is illustrated in Table 18.7. As can be seen, a filter of length 41 was initially
predicted, which was found to have a passband ripple of 0.47 dB, a minimum stopband attenuation of
50.4 in the lower stopband, and 30.4 dB in the upper stopband, i.e., the required specifications were
satisfied. Then a filter length of 39 was tried and found to violate the specifications. Hence the first
design is the required filter. The impulse response is given in Table 18.8. The corresponding amplitude
response is depicted in Figure 18.19.

18.3.2.4 Generalization

There are four types of constant-delay FIR filters. The impulse response can be symmetrical or anti-
symmetrical, and the filter length can be odd or even. In the preceding sections, we considered the design
of filters with symmetrical impulse response and odd length. In this section, we show that the Remez
algorithm can also be applied for the design of other types of filters.

Antisymmetrical impulse response and odd filter length. Assuming that vs¼ 2p, the frequency response of
an FIR filter with antisymmetrical impulse and odd length can be expressed as

H(e jvT) ¼ e�jcvjP0
c(v)

TABLE 18.7 Progress in Design of Bandpass Filter (Example 18.3)

n Iterations FEs Ap, dB Aa1, dB Aa2, dB

41 8 550 0.47 50.4 30.4

39 7 527 0.67 47.5 27.5

TABLE 18.8 Impulse Response of Bandpass Filter (Example 18.3)

n h0(n)¼ h0(�n) n h0(n)¼ h0(�n)

0 2.7616663 10�1 11 2.7268163 10�2

1 1.6602243 10�2 12 �2.6638593 10�2

2 �2.3892353 10�1 13 �1.3182523 10�2

3 �3.6895013 10�2 14 6.3129443 10�3

4 1.4730383 10�1 15 �5.8209763 10�3

5 2.9288523 10�2 16 5.8279573 10�3

6 �4.7705523 10�2 17 1.5286583 10�2

7 �2.0081313 10�3 18 �8.2887083 10�3

8 �1.8750823 10�2 19 �1.6169043 10�2

9 �2.2629653 10�2 20 1.0927283 10�2

10 3.8609903 10�2 — —
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where

Pc
0(v) ¼

Xc

k¼1

ak sin kv

ak ¼ 2h(c� k) for k ¼ 1, 2, . . . , c

c ¼ (N � 1) 2=

(18:53)

A filter with a desired frequency response e�jcv jD(v) can be designed by constructing the error function

E(v) ¼ W(v) D(v)� Pc
0(v)½ � (18:54)

and then minimizing jE(v)j with respect to some compact subset of the frequency interval [0, p]. From
Equation 18.53, Pc0(v) can be expressed as [6]

Pc
0(v) ¼ (sinv) Pc�1(v) (18:55)

where

Pc�1(v) ¼
Xc�1

k¼0

~ck cos kv

Amplitude response
5
0

–5
–10
–15
–20
–25
–30
–35
–40
–45
–50
–55
–60
–65

0.4
0.35

0.3
0.25

0.2
0.15

0.1
0.05

0
–0.05

–0.1
–0.15

–0.2
–0.25

–0.3
–0.35

–0.4

(b)

(a)

1.2 1.25 1.35 1.45 1.55 1.65 1.751.3 1.4 1.5 1.6 1.7 1.8

0 1 2 3

G
ain

 (d
B)

G
ain

 (d
B)

Frequency (rad/s)

Amplitude response

Frequency (rad/s)

FIGURE 18.19 Amplitude response of equiripple bandpass filter (Example 18.3): (a) baseband and (b) passband.
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and

a1 ¼ ~c0 � 1
2
~c2

ak ¼ 1
2
(~ck�1 � ~ckþ1) for k ¼ 2, 3, . . . , c� 2

ac�1 ¼ 1
2
~cc�2

ac ¼ 1
2
~cc�1

Hence Equation 18.54 can be put in the form

E(v) ¼ ~W(v)[~D(v)� ~P(v)] (18:56)

where

~W(v) ¼ Q(v)W(v)

~D(v) ¼ D(v)=Q(v)

~P(v) ¼ Pc�1(v)

Q(v) ¼ sinv

Evidently, Equation 18.56 is of the same form as Equation 18.45, and upon proceeding as in Section
18.3.2, one can obtain the system of equations

1 cos v̂0 cos 2v̂0 � � � cos (c� 1)v̂0
1

~W(v̂0)

1 cos v̂1 cos 2v̂1 � � � cos (c� 1)v̂1
�1

~W(v̂1)

..

. ..
. ..

. ..
. ..

.

1 cos v̂r cos 2v̂r � � � cos (c� 1)v̂r
(�1)r

~W(v̂r)

2
66664

3
77775

a0
a1
..
.

ac�1

d

2
666664

3
777775 ¼

~D(v̂0)
~D(v̂1)
..
.

~D(v̂r)

2
6664

3
7775

where r¼ c is the number of cosine functions in Pc�1(v). The above system is the same as that in
Equation 18.50 except that the number of extremals has been reduced from c þ 2 to c þ 1; therefore, the
application of the Remez algorithm follows the methodology detailed in Sections 18.3.2 and 18.3.2.1
formulation and the Remez exchange algorithm.
The use of Algorithm 18.1 yields the optimum Pc�1(v) and from Equation 18.55, the cosine function

P0
c(v) can be formed. Now jP0

c(v) is the frequency response of a noncausal version of the required filter.
The impulse response of this filter can be obtained as

h0(n) ¼ �h0(�n) ¼ � 1
N

Xc

k¼1

2P0
c(kV) sin

2pkn
N

� �" #

for n¼ 0, 1, 2, . . . , c, where V¼ 2p=N, by using the inverse discrete Fourier transform. The impulse
response of the corresponding causal filter is given by

h(n) ¼ h0(n� c)

for n¼ 0, 1, 2, . . . , N� 1.
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The Remez algorithm can also be applied for the design of filters with symmetrical or antisymmetrical
impulse response and even N. However, these filters are used less frequently. The reader is referred to
Refs. [6,12] for more details.

18.3.2.5 Digital Differentiators

The Remez algorithm can be easily applied for the design of equiripple digital differentiators. The ideal
frequency response of a causal differentiator is of the form e�jcv jD(v) where

D(v) ¼ v for 0 < vj j<p (18:57)

and

c ¼ (N � 1)=2

Since the frequency response is antisymmetrical, differentiators can be designed in terms of filters with
antisymmetrical impulse response of either odd or even length.

Problem formulation. Assuming odd filter length, Equations 18.54 and 18.57 give the error function

E(v) ¼ W(v) v� P0
c(v)

� �
for 0 < v � vp

where vp is the required bandwidth. Equiripple absolute or relative error may be required, depending on
the application at hand. Hence, W(v) can be chosen to be either unity or 1=v. In the latter case, which is
the more meaningful of the two in practice, E(v) can be expressed as

E(v) ¼ 1� 1
v
P0
c(v) for 0 < v � vp

and from Equation 18.55

E(v) ¼ 1� sinv
v

Pc�1(v) for 0 < v � vp (18:58)

Therefore, the error function can be expressed as in Equation 18.56 with

~W(v) ¼ 1
~D(v)

¼ sinv
v

~P(v) ¼ Pc�1(v)

Prescribed specifications. A digital differentiator is fully specified by the constraint

E(v)j j � dp for 0 < v � vp

where
dp is the maximum passband error
vp is the bandwidth of the differentiator

The differentiator length N that will just satisfy the required specifications is not normally known a priori
and, although it may be determined on a hit-or-miss basis, a large number of designs may need to be
carried out. In filters with approximately piecewise-constant amplitude responses, N can be predicted
using the empirical formula of Equation 18.52. In the case of differentiators, N can be predicted by noting
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a useful property of digital differentiators. If d and d1 are the maximum passband errors in differentiators
of lengths N and N1, respectively, then the quantity ln(d=d1) is approximately linear with respect to
N�N1 for a wide range of values of N1 and vp. Assuming linearity, we can show that [17]

N ¼ N1 þ ln (d=d1)
ln (d2=d1)

(N2 � N1) (18:59)

where d2 is the maximum passband error in a differentiator of length N2.
By designing two low-order differentiators, a fairly accurate prediction of the required value of N can

be obtained by using Equation 18.59. Once a filter order is predicted a series of differentiators can be
designed with increasing or decreasing N until a design that just satisfies the specifications is obtained.

Example 18.4

The selective step-by-step search with cubic interpolation was used in Algorithm 18.4 to design a digital
differentiator that should satisfy the following specifications:

Odd differentiator length
Bandwidth vp: 2.75 rad=s
Maximum passband ripple dp: 1.03 10�5

Sampling frequency vs: 2p rad=s

The progress of the design is illustrated in Table 18.9. First, differentiators of lengths 21 and 23 were
designed and the required N to satisfy the specifications was predicted to be 55 using Equation 18.59.
This differentiator length was found to satisfy the specifications, and a design for length 53 was then
carried out. The second design was found to violate the specifications and hence the first design is the
required differentiator. The impulse response of this differentiator is given in Table 18.10. The amplitude
response and passband relative error of the differentiator are plotted in Figure 18.20a and b.

18.3.2.6 Arbitrary Amplitude Responses

Very frequently FIR filters are required whose amplitude responses cannot be described by analytical
functions. For example, in the design of two-dimensional filters through the singular-value decomposition
[18,19], the required two-dimensional filter is obtained by designing a set of one-dimensional digital filters
whose amplitude responses turn out to have arbitrary shapes. In these applications, the desired amplitude
responseD(v) is specified in terms of a table that lists a prescribed set of frequencies and the corresponding
values of the required filter gain. Filters of this class can be readily designed by employing some
interpolation scheme that can be used to evaluate D(v) and its first derivative with respect to v at any v.
A suitable scheme is to fit a set of third-order polynomials to the prescribed amplitude response.

18.3.2.7 Multiband Filters

The algorithms presented in the previous sections can also be used to design multiband filters. While
there is no theoretical upper limit on the number of bands, in practice, the design tends to become
more and more difficult as the number of bands is increased. The reason is that the difference between
the number of possible maxima in the error function and the number of extremals increases linearly

TABLE 18.9 Progress in Design of Digital Differentiator
(Example 18.4)

N Iterations FE’s dp

21 4 145 1.0753 10�2

23 4 162 6.9503 10�3

55 7 815 8.3093 10�6

53 7 757 1.2503 10�5
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FIGURE 18.20 Design of digital differentiator (Example 18.4): (a) amplitude response and (b) passband relative error.

TABLE 18.10 Impulse Response of Digital Differentiator (Example 18.4)

n h(n)¼�h0(�n) n h0(n)¼�h0(�n)

0 0.0 14 1.7622683 10�2

1 �9.9334163 10�1 15 �1.3130973 10�2

2 4.8680363 10�1 16 9.6152953 10�3

3 �3.1383533 10�1 17 �6.9025183 10�3

4 2.2454413 10�1 18 4.8440903 10�3

5 �1.6902523 10�1 19 �3.3122353 10�3

6 1.3069183 10�1 20 2.1975023 10�3

7 �1.0246313 10�1 21 �1.4070643 10�3

8 8.0810833 10�2 22 8.6326703 10�4

9 �6.3774263 10�2 23 �5.0231683 10�4

10 5.0167083 10�2 24 2.7293673 10�4

11 �3.9217823 10�2 25 �1.3497903 10�4

12 3.0391373 10�2 26 5.8591283 10�5

13 �2.3294393 10�2 27 �1.6345353 10�5
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with the number of bands, e.g., if the number of bands is 8, then the difference is 14. As a consequence,
the number of potential extremals that need to be rejected is large and the available rejection techniques
become inefficient. The end result is that the number of iterations is increased quite significantly, and
convergence is slow and sometimes impossible.
In mathematical terms, the above difficulty is attributed to the fact that, in the weighted-Chebyshev

methods considered here, the approximating polynomial becomes seriously underdetermined if the
number of bands exceeds three. The problem can be overcome by using the generalized Remez method
described in Ref. [15]. This approach was found to yield better results for filters with more than four or
five bands.
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18.4 Design of Computationally Efficient FIR Filters
Using Periodic Subfilters as Building Blocks

Tapio Saramäki

For many digital signal processing applications, FIR filters are preferred over their IIR counterparts as the
former can be designed with exactly linear phase and they are free of stability problems and limit cycle
oscillations. The major drawback of FIR filters is that they require, especially in applications demanding
narrow transition bands, considerably more arithmetic operations and hardware components than do
comparable IIR filters. Ignoring the correction term for very low-order filters, the minimum order of an
optimum linear-phase low-pass FIR filter can be approximated [1] by

N � F(dp, ds)=(vs � vp) (18:60a)

where

F(dp, ds) ¼ 2p 0:005309( log10 dp)
2 þ 0:07114 log10 dp � 0:4761

� �
log10 ds

� 2p 0:00266( log10 dp)
2 þ 0:5941 log10 dp þ 0:4278

� �
(18:60b)

Here, vp and vs are the passband and stopband edge angles, whereas dp and ds are the passband and
stopband ripple magnitudes. From the above estimate, it is seen that as the transition bandwidth vs�vp

is made smaller, the required filter order increases inversely proportionally to it. Since the direct-form
implementation exploiting the coefficient symmetry requires approximately N=2 multipliers, this kind of
implementation becomes very costly if the transition bandwidth is small.
The cost of implementation of a narrow transition-band FIR filter can be significantly reduced by

using multiplier-efficient realizations, fast convolution algorithms, or multirate filtering. This section
considers those multiplier-efficient realizations that use as basic building blocks the transfer functions
obtained by replacing each unit delay in a conventional transfer function by multiple delays. We
concentrate on the synthesis techniques described in Refs. [2–4,6,8–10].

18.4.1 Frequency-Response Masking Approach

A very elegant approach to significantly reducing the implementation cost of an FIR filter has been
proposed by Lim [3]. In this approach, the overall transfer function is constructed as

H(z) ¼ F(zL)G1(z)þ z�LNF=2 � F(zL)
h i

G2(z) (18:61a)

where

F(zL) ¼
XNF

n¼0

f (n)z�nL, f (NF � n) ¼ f (n) (18:61b)

G1(z) ¼ z�M1
XN1

n¼0

g1(n)z
�n, g1(N1 � n) ¼ g1(n) (18:61c)
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and

G2(z) ¼ z�M2
XN2

n¼0

g2(n)z
�n, g2(N2 � n) ¼ g2(n) (18:61d)

Here, NF is even, whereas both N1 and N2 are either even or odd. For N1�N2, M1¼ 0 and
M2¼ (N1�N2)=2, whereas for N1<N2, M1¼ (N2�N1)=2 and M2¼ 0. These selections guarantee that
the delays of both of the terms of H(z) are equal. An efficient implementation for the overall filter is
depicted in Figure 18.21, where the delay term z�LNF=2 is shared with F(zL). Also,G1(z) andG2(z) can share
their delays if a transposed direct-form implementation (exploiting the coefficient symmetry) is used.
The frequency response of the overall filter can be written as

H(e jv) ¼ H(v)e�j(LNFþmax [N1,N2])v 2= (18:62)

where H(v) denotes the zero-phase frequency response of H(z) and can be expressed as

H(v) ¼ H1(v)þH2(v) (18:63a)

where

H1(v) ¼ F(Lv)G1(v) (18:63b)

and

H2(v) ¼ [1� F(Lv)]G2(v) (18:63c)

with

F(v) ¼ f (NF=2)þ 2
XNF=2

n¼1

f (NF=2� n) cos nv (18:63d)

F(zL)

z−LNF/2

z−L

z−L

z−L

z−L
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+
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+
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+
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2 f ( )NF
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FIGURE 18.21 Efficient implementation for a filter synthesized using the frequency-response masking approach.
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and

Gk(v) ¼
gk(Nk=2)þ 2

PNk=2

n¼1
gk(Nk=2� n) cos nv Nk even

2
P(Nk�1)=2

n¼0
gk[(Nk � 1)=2� n] cos [(nþ 1=2)v] Nk odd

8>>><
>>>:

(18:63e)

for k¼ 1, 2.
The efficiency as well as the synthesis of H(z) are based on the properties of the pair of transfer

functions F(zL) and z�LNF=2� F(zL), which can be generated from the pair of prototype transfer functions

F(z) ¼
XNF

n¼0

f (n)z�n (18:64)

and z�NF=2� F(z) by replacing z�1 by z�L, that is, by substituting for each unit delay L unit delays. The
order of the resulting filters is increased to LNF, but since only every Lth impulse response value is
nonzero, the filter complexity (number of adders and multipliers) remains the same. The above prototype
pair forms a complementary filter pair since their zero-phase frequency responses, F(v) and 1� F(v)
with F(v) given by Equation 18.63d, add up to unity. Figure 18.22a illustrates the relations
between these responses in the case where F(z) and z�NF=2� F(z) is a low-pass–high-pass filter pair
with edges at u and f.

The substitution z�L ! z�1 preserves the complementary property resulting in the periodic responses
F(Lv) and 1� F(Lv), which are frequency-axis compressed versions of the prototype responses such that
the interval [0, Lp] is shrunk onto [0, p] (see Figure 18.22b). Since the periodicity of the prototype
responses is 2p, the periodicity of the resulting responses is 2p=L and they contain several passband and
stopband regions in the interval [0, p].

For a low-pass filter H(z), one of the transition bands provided by F(zL) or z�LNF=2� F(zL) is used as
that of the overall filter. In the first case, denoted by Case A, the edges are given by (Figure 18.23)

1
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0

πφθ

π
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ω

1 − F(ω)F(ω)

φ − θ
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φ − θ
L

2(π − φ)
L

2θ
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0 θ
L

φ
L

π
L

2π
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3π
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4π
L

5π
L

1−F(Lω)F(Lω)

(a)

(b)

FIGURE 18.22 Generation of a complementary periodic filter pair by starting with a low-pass–high-pass comple-
mentary pair. (a) Prototype filter responses F(v) and 1� F(v). (b) Periodic responses F(Lv) and 1� F(Lv) for L¼ 6.
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vp ¼ (2lpþ u)=L and vs ¼ (2lpþ f)=L (18:65)

where l is a fixed integer, and in the second case, referred to as Case B, by (Figure 18.24)

vp ¼ (2lp� f)=L and vs ¼ (2lp� u)=L (18:66)

The widths of these transition bands are (f� u)=L, which is only 1=Lth of that of the prototype filters.
Since the filter order is roughly inversely proportional to the transition bandwidth, this means that the
arithmetic complexity of the periodic transfer functions to provide one of the transition bands is only
1=Lth of that of a conventional nonperiodic filter. Note that the orders of both the periodic filters and the
corresponding nonperiodic filters are approximately the same, but the conventional filter does not
contain zero-valued impulse response samples.
In order to exploit the attractive properties of the periodic transfer functions, the two low-order

masking filters G1(z) and G2(z) are designed such that the subresponses H1(v) and H2(v) as given by
Equations 18.63b and c approximate in the passband F(Lv) and 1� F(Lv), respectively, so that their sum
approximates unity, as is desired. In the filter stopband, the role of the masking filters is to attenuate the
extra unwanted passbands and transition bands of the periodic responses. In Case A, this is achieved by
selecting the edges of G1(z) and G2(z) as (see Figure 18.23)

v(G1)
p ¼ vp ¼ [2lpþ u]=L and v(G1)

s ¼ 2(l þ 1)p� f½ �=L (18:67a)

v(G2)
p ¼ [2lp� u]=L and v(G2)

s ¼ vs ¼ [2lpþ f]=L (18:67b)

Since F(Lv)� 0 on [vs, vs
(G1)],the stopband region of G1(z) can start at v¼vs

(G1), instead of v¼vs.
Similarly, since H1(v)� F(Lv)� 1 and [1� F(Lv)]� 0 on [vp

(G2), vp], the passband region of G2(z) can
start at v¼vp

(G2), instead of v¼vp.
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L
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FIGURE 18.23 Case A design of a low-pass filter using the frequency-response masking technique.
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For Case B designs, the required edges of the two masking filters, G1(z) and G2(z) are (see Figure 18.24)

v(G1)
p ¼ [2(l � 1)pþ f]=L and v(G1)

s ¼ vs ¼ [2lp� u]=L (18:68a)

v(G2)
p ¼ vp ¼ [2lp� f]=L and v(G2)

s ¼ [2lpþ u]=L (18:68b)

The effects of the ripples of the subresponses on the ripples of the overall response H(v) have been
studied carefully in Ref. [3]. Based on these observations, the design of H(z) with passband and stopband
ripples of dp and ds can be accomplished for both Case A and Case B in the following two steps:

1. Design Gk(z) for k¼ 1, 2 using either the Remez algorithm or linear programming such that Gk(v)
approximates unity on [0, vp

(Gk)] with tolerance 0.85dp� � � 0.9dp and zero on [vs
(Gk), p] with

tolerance 0.85ds� � � 0.9ds.
2. Design F(Lv) such that the overall response H(v) approximates unity on

V(F)
p ¼

v(G2)
p , vp

h i
¼ [2lp� u]=L, [2lpþ u]=L½ � for Case A

v(G1)
p , vp

h i
¼ [2(l � 1)pþ f]=L, [2lp� f]=L½ � for Case B

8><
>: (18:69a)

with tolerance dp and approximates zero on

V(F)
s ¼

vs, v(G1)
s

� � ¼ [[2lpþ f]=L, [2(l þ 1)p� f]=L] for Case A

vs, v(G2)
s

� � ¼ [[2lp� u]=L, [2lpþ u]=L] for Case B

(
(18:69b)

with tolerance ds.
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FIGURE 18.24 Case B design of a low-pass filter using the frequency-response masking technique.
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The design of F(Lv) can be performed conveniently using linear programming [3]. Another, compu-
tationally more efficient, alternative is to use the Remez algorithm [10]. Its use is based on the fact that

EH(v)j j � 1 for v 2 V(F)
p [V(F)

s (18:70a)

where

EH(v) ¼ WH(v)[H(v)� DH(v)] (18:70b)

is satisfied when F(v) is designed such that the maximum absolute value of the error function given in
Table 18.11 becomes less than or equal to unity on [0, u] [ [f, p].
For step 2 of the above algorithm, DH(v)¼ 1 and WH(v)¼ 1=dp on Vp

(F), whereas DH(v)¼ 0 and
WH(v)¼ 1=ds on Vs

(F), giving for k¼ 1, 2

DH[hk(v)] ¼
1 for v 2 [0, u]

0 for v 2 [f, p]

�
and WH[hk(v)] ¼

1=dp for v 2 [0, u]

1=ds for v 2 [f, p]

�
(18:71a)

for Case A and

DH[hk(v)] ¼
1 for v 2 [0, u]

0 for v 2 [f, p]

�
and WH[hk(v)] ¼

1=ds for v 2 [0, u]

1=dp for v 2 [f, p]

�
(18:71b)

for Case B. Even though the resulting error function looks very complicated, it is straightforward to use
the subroutines EFF andWATE in the Remez algorithm described in Ref. [5] for optimally designing F(z).
The order of G1(z) can be considerably reduced by allowing larger ripples on those regions of G1(z)

where F(Lv) has one of its stopbands. As a rule of thumb, the ripples on these regions can be selected to
be 10 times larger [3]. Similarly, the order G2(z) can be decreased by allowing (ten times) larger ripples on
those regions where F(Lv) has one of its passbands.

TABLE 18.11 Error Function for Designing F(v) Using the Remez
Algorithm

EF (v)¼WF (v) [F(v)�DF (v)],

where

DF(v)¼ [u(v)þ l(v)]=2, WF(v)¼ 2=[u(v)� l(v)]

with

u(v)¼min(C1(v)þc1(v), C2(v)þc2(v))

l(v)¼max(C1(v)�c1(v), C2(v)�c2(v))

Ck(v) ¼ DH[hk(v)]� G2[hk(v)]
G1[hk(v)]� G2[hk(v)]

, k ¼ 1, 2

ck(v) ¼
1=WH[hk(v)]

G1[hk(v)]� G2[hk(v)]j j , k ¼ 1, 2

and

h1(v) ¼ (2lpþ v)=L, h2(v) ¼ (2lp� v)=L for v 2 [0, u]

[2(l þ 1)p� v]=L for v 2 [f, p]

�
for Case A and

h1(v) ¼ (2lp� v)=L, h2(v) ¼ (2lpþ v)=L for v 2 [0, u]

[2(l � 1)pþ v]=L for v 2 [f, p]

�
for Case B
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In practical filter synthesis problems, vp and vs are given and l, L, u, and f must be determined.
To ensure that Equation 18.65 yields a desired solution with 0� u<f�p, it is required that (see
Figure 18.23)

2lp
L

� vp and vs � (2l þ 1)p
L

(18:72a)

for some positive integer l, giving

l ¼ bLvp=(2p)c, u ¼ Lvp � 2lp, and f ¼ Lvs � 2lp (18:72b)

where bxc stands for the largest integer that is smaller than or equal to x. Similarly, to ensure that
Equation 18.66 yields a desired solution with 0� u<f�p, it is required that (see Figure 18.23)

(2l � 1)p
L

� vp and vs � 2lp
L

(18:73a)

for some positive integer l, giving

l ¼ dLvs=(2p)e, u ¼ 2lp� Lvs, and f ¼ 2lp� Lvp (18:73b)

where bxc stands for the smallest integer that is larger than or equal to x. For any set of vp, vs, and L,
either Equation 18.72b or Equation 18.73b (not both) will yield the desired u and f, provided that L is
not too large. If u¼ 0 or f¼p, then the resulting specifications for F(v) are meaningless and the
corresponding value of L cannot be used.

The remaining problem is to determine L to minimize the number of multipliers, which is NP=2þ 1þ
1b(N1þ 2)=2cþ b(N2þ 2)=2c or NFþN1þN2þ 3 depending on whether the symmetries in the filter
coefficients are exploited or not. Hence, in both cases, a good measure of the filter complexity is the sum
of the orders of the subfilters. Instead of determining the actual minimum filter orders for various values
of L, the computational workload can be significantly reduced based on the use of the estimation formula
given by Equations 18.60a and b. Since the widths of transition bands of F(z), G1(z), and G2(z) are f� u,
(2p�f� u)=L and (fþ u)=L, respectively, good estimates for the corresponding filter orders are

NF � F(dp, ds)

f� u
, N1 � LF(dp, ds)

2p� f� u
, and N2 � LF(dp, ds)

fþ u
(18:74)

For the optimum nonperiodic direct-form design, the transition bandwidth is vs�vp¼ (f� u)=L,
giving

Nopt � LF(dp, ds)

f� u
(18:75)

The sum of the subfilter orders can be expressed in terms of Nopt as follows:

Nove ¼ Nopt
1
L
þ f� u

2p� f� u
þ f� u

fþ u

� �
(18:76)

The smallest values of Nove are typically obtained at those values of L for which uþf�p and,
correspondingly, 2p� u�f�p. In this case, N1�N2 and Equation 18.76 reduces, after substituting
f� u¼ L(vs�vp), to
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Nove ¼ Nopt
1
L
þ 2L(vs � vp)=p

� �
(18:77)

At these values of L, NF decreases and N1�N2 increases inversely proportionally to L with the minimum
of Nove given by

Nove ¼ 2Nopt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(vs � vp)

p

r
(18:78)

taking place at

Lopt ¼ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(vs � vp)

p

r
(18:79)

If for L¼ Lopt, uþf is not approximately equal to p, then L minimizing the filter complexity can be
found in the near vicinity of Lopt. The following example illustrates the use of the above estimation
formulas.

Example 18.1

Consider the specifications: vp¼ 0.4p, vs¼ 0.402p, dp¼ 0.01, and ds¼ 0.001. For the optimum conven-
tional direct-form design, Nopt¼ 2541, requiring 1271 multipliers when the coefficient symmetry is
exploited. Equation 18.79 gives Lopt¼ 16. Table 18.12 shows, for the admissible values of L in the vicinity
of this value, l, u, f, the estimated orders for the subfilters, and the sum of the subfilter orders as well as
whether the overall filter is a Case A or Case B design. For NF, the minimum even order larger than or
equal to the estimated order is used, whereas N2 is forced to be even (odd) if N1 is even (odd).
Also with the estimated filter orders of Table 18.12, L¼ 16 gives the best result. The actual filter orders

are NF¼ 162, N1¼ 70, N2¼ 98. The responses of the subfilters as well as that of the overall design are
depicted in Figure 18.25. The overall number of multipliers and adders for this design are 168 and 330,
respectively, which are 13 percent of those required by an equivalent conventional direct-form design
(1271 and 2541). The overall filter order is 2690, which is only 6 percent higher than that of the direct-
form design (2541).

TABLE 18.12 Estimated Filter Orders for the Admissible Values of L in the Vicinity of Lopt¼ 16

L Case l u f NF N1 N2 NFþN1þN2

8 B 2 0.784p 0.8p 318 98 26 442

9 B 2 0.382p 0.4p 282 38 58 378

11 A 2 0.4p 0.422p 232 47 69 348

12 A 2 0.8p 0.824p 212 162 38 412

13 B 3 0.774p 0.8p 196 155 43 394

14 B 3 0.372p 0.4p 182 58 92 332

16 A 3 0.4p 0.432p 160 70 98 328

17 A 3 0.8p 0.834p 150 236 54 440

18 B 4 0.764p 0.8p 142 210 58 410

19 B 4 0.362p 0.4p 134 78 128 340

21 A 4 0.4p 0.442p 122 92 128 342

22 A 4 0.8p 0.844p 116 314 68 498
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18.4.2 Multistage Frequency-Response Masking Approach

If the order of F(z) is too high, its complexity can be reduced by implementing it using the frequency-
response masking technique. Extending this to an arbitrary number of stages results in the multistage
frequency-response masking approach [3,4], where H(z) is generated iteratively as

H(z) 	 F(0)(z) ¼ F(1)(zL1 )G(1)
1 (z)þ z�L1N

(1)
F =2 � F(1)(zL1 )

h i
G(1)
2 (z) (18:80a)

F(1)(z) ¼ F(2)(zL2 )G(2)
1 (z)þ z�L2N

(2)
F =2 � F(2)(zL2 )

h i
G(2)
2 (z) (18:80b)

..

.

F(R�1)(z) ¼ F(R) zLR
	 


G(R)
1 (z)þ z�LRN

(R)
F =2 � F(R) zLR

	 
h i
G(R)
2 (z) (18:80c)
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FIGURE 18.25 Amplitude responses for a filter synthesized using the frequency-response masking approach. (a)
Periodic response F(Lv). (b) Responses G1(v) (solid line) and G2(v) (dashed line). (c) Overall response.

18-46 Passive, Active, and Digital Filters



Here, the G1
(r)(z)’s and G2

(r)(z)’s for r¼ 1, 2, . . . , R as well as F (R)(z) are the filters to be designed.
For implementation purposes, H(z) can be expressed in the form shown in Table 18.13. Figure 18.26
shows an efficient implementation for a three-stage filter, where the delay terms z�M3, z�m2, and z�m1,
can be shared with F(3)(ẑL3). In order to obtain a desired overall solution, the orders of the G1

(r)(z)’s and
G2
(r)(z)’s for r¼ 2, 3, . . . , R, denoted by N1

(r) and N2
(r) in Table 18.13, have to be even.

Given the filter specifications and the Lr’s for r¼ 1, 2, . . . , R, the G1
(r)(z)’s and G2

(r)(z)’s as well as F(R)(z)
can be synthesized in the following steps:

1. Set r¼ 1, L¼ L1, and

DH(v) ¼ 1 for v 2 [0, vp]
0 for v 2 [vs, p]

�
, WH(v) ¼ 1=dp for v 2 [0, vp]

1=ds for v 2 [vs, p]

�
(18:81)
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FIGURE 18.26 An implementation for a filter synthesized using the three-stage frequency-response masking
approach.

TABLE 18.13 Implementation Form for the Transfer Function
in the Multistage Frequency-Response Masking Approach

H(z) 	 F(0)(zL̂0 ) ¼ F(1)(zL̂1 )G(1)
1 (zL̂0 )þ [z�M1 � F(1)(zL̂1 )]G(1)

2 (zL̂0 )

F(1)(zL̂1 ) ¼ F(2)(zL̂2 )G(2)
1 (zL̂1 )þ [z�M2 � F(2)(zL̂2 )]G(2)

2 (zL̂1 )

..

.

F(R�1)(zL̂R�1 ) ¼ F(R)(zL̂R )G(R)
1 (zL̂R�1 )þ [z�MR � F(R)(zL̂R )]G(R)

2 (zL̂R�1 ),

where

L̂0 ¼ 1, L̂r ¼
Qr
k¼1

Lk, r ¼ 1, 2, � � � , R

MR ¼ L̂RN
(R)
F =2, MR�r ¼ MR�rþ1 þmR�r , r ¼ 1, 2, � � � , R� 1

mR�r ¼ L̂R�r max N(R�rþ1)
1 , N(R�rþ1)

2

n o
=2, r ¼ 1, 2, � � � , R� 1

N(R)
F is the order of F(R)(z)

N(r)
1 andN(r)

2 are the orders of G(r)
1 (z) and G(r)

2 (z), respectively
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2. Determine whether F (r� 1)(z) is a Case A or Case B design as well as u, f, and l for F (r)(z)
according to Equation 18.72b or Equation 18.73b. Also, determine vp

(Gk) and vs
(Gk) for k¼ 1, 2

from Equations 18.67a and b or Equations 18.68a and b.
3. Design Gk

(r)(z) for k¼ 1, 2, using either the Remez algorithm or linear programming, in such a
way that

max
v2 0, v

(Gk )
p

� �
[ v

(Gk )
s , p

� � WH(v) G(r)
k (v)� DH(v)

h i��� ��� � 0:9 (18:82)

4. Determine WF(v) and DF(v) from Table 18.11.
5. If r¼R, then go to the next step. Otherwise, set r¼ rþ 1, L¼ Lr,WH(v)¼WF(v), DH(v)¼DF(v),

vp¼ u, vs¼f, and go to step 2.
6. Design F(R)(z), using either the Remez algorithm or linear programming, in such a way that

max
v2[0,u][[f,p]

WF(v) F
(R)(v)� DF(v)

� ��� �� � 1 (18:83)

In the above algorithm, G1
(1)(z) and G2

(1)(z) are determined like in the one-stage frequency-response
masking technique. The remaining filter part as given by Equation 18.80b has then to be designed such
that the maximum absolute value of the error function given in Table 18.11 becomes less than or equal to
unity on [0, u] [ [f, p]. Using the substitutions vp¼ u and vs¼f, the synthesis problem for F(1)(z)
becomes the same as for the overall filter with the only exception that the desired function DF(v) and the
weighting function WF(v) are not constants in the passband and stopband regions. Therefore, the
following G1

(r)(z)’s and G(r)
2 (z)’s can be designed in the same manner. Finally, F(R)(z) is determined at

step 6 like F(z) in one-stage designs.
Given the filter specifications, the remaining problem is to select R as well as the Lr’s to minimize the

filter complexity. This problem has been considered in Ref. [4]. Assuming that for all the selected Lr’s,
uþf�p, the sum of the estimated orders of F(R)(z) and the G(r)

1 (z)’s and G(r)
2 (z)’s becomes

Nove(R) ¼ 1

�YR
r¼1

Lr þ [2(vs � vp)=p]
XR
r¼1

Lr

" #
Nopt (18:84)

The minimum of Nove(R) taking place at

L1 ¼ L2 ¼ � � � ¼ LR ¼ Lopt(R) ¼ 2(vs � vp)

p

� ��1=(Rþ1)

(18:85)

is

Nove(R) ¼ (Rþ 1)
(2vs � vp)

p

� �R=(Rþ1)

Nopt (18:86)

The derivation of the above formula is based on the assumption that the orders of all the G(r)
1 (z)’s and

G(r)
2 (z)’s for r¼ 1, 2, . . . , R are equal, which is seldom true. Therefore, in order to minimize the overall

filter complexity, the values of the Lr’s should be varied in the vicinity of Lopt(R). Given vp, vs, and R,
good values for the Lr’s can be obtained by the following procedure:

1. Set r¼ 1.
2. Determine L¼ Lopt(R þ1� r) from Equation 18.85.
3. For values of ~Lr in the vicinity of L determine u(~Lr) and f(~Lr).
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4. If r¼R, then go to step 7. Otherwise, go to the next step.
5. Determine Lr¼ ~Lr minimizing

(Rþ 1� r)
2[f(~Lr)� u(~Lr)]

p

� �(R�r)=(Rþ1�r)

þf(~Lr)� u(~Lr)

u(~Lr)þ f(~Lr)
þ f(~Lr)� u(~Lr)

2p� u(~Lr)� f(~Lr)
(18:87)

6. Set r¼ rþ 1, vp¼ u(Lr), vs¼f(Lr), and go to step 2.
7. Determine LR ¼ ~Lr minimizing

1
~LR

þ f(~LR)� u(~LR)

u(~LR)þ f(~LR)
þ f(~LR)� u(~LR)

2p� u(~LR)� f(~LR)
(18:88)

At the first step in this procedure, L1 is determined to minimize the estimated overall complexity ofG1
(1)(z),

G2
(1)(z), and the remaining F1

(1)(z), which is given by Equation 18.87 as a fraction of Nopt. Compared to
Equation 18.76 for the one-stage design, 1=~Lr is replaced in Equation 18.87 by the first term. This term
estimates the complexity of F1

(1)(z) based on the use of Equation 18.86 with vp¼ u(~Lr) and vs¼f(~Lr) and
the fact that it is an R� 1 stage design. Also, L2 is redetermined based on the same assumptions and the
process is continued in the same manner. Finally, LR is determined to minimize the sum of the estimated
orders of G1

(R)(z), G2
(R)(z), and F (R)(z) like in the one-stage design (cf. Equation 18.76).

Example 18.2

Consider the specifications of Example 18.1. For a two-stage design, the above procedure gives
L1¼ L2¼ 6. For these values, F(0)(z)þH(z) and F(1)(z) are Case A designs (l¼ 1) with u¼ 0.4p and
f¼ 0.412p; and u¼ 0.4p and f¼ 0.472p, respectively. The minimum orders of G1

(1)(z), G2
(1)(z), G1

(2)(z),
G2
(2)(z), and F(2)(z) are 26, 40, 28, 36, and 74, respectively. Comparedwith the conventional direct-form FIR filter

of order 2541, the number of multipliers and adders required by this design (107 and 204) are only 8 percent
at the expense of a 15 percent increase in the overall filter order (to 2920). For a three-stage design, we get
L1¼ L2¼ L3¼ 4. In this case, F(0)(z), F(1)(z), and F(2)(z) are Case B designs (l¼ 1) with u¼ 0.392p and f¼ 0.4p;
u¼ 0.4p and f¼ 0.432p; and u¼ 0.272p and f¼ 0.4p, respectively. The minimum orders of G1

(1)(z), G2
(1)(z),

G1
(2)(z), G2

(2)(z), G1
(3)(z), G2

(3)(z), and F(3)(z) are 16, 28, 18, 24, 16, 32, and 40, respectively. The number of multipliers
and adders (94 and 174) are only 7 percent of those required by the direct-form equivalent at the expense of
a 26 percent increase in the overall filter order (to 3196). The amplitude responses of the resulting two-stage
and three-stage designs are depicted in Figure 18.27.

18.4.3 Design of Narrowband Filters

Another general approach for designing multiplier-efficient FIR filters has been proposed by Jing and
Fam [2]. This design technique is based on iteratively using the fact that there exist efficient implemen-
tation forms for filters with vs<p=2 and for filters with vp>p=2. A filter with vs<p=2 is called a
narrowband filter while that with vp>p=2 is called a wideband filter. This section considers the design of
narrowband filters, whereas Section 18.4.4 is devoted to the design of wideband filters. Finally, these
techniques are combined, resulting in the Jing–Fam approach.
When the stopband edge of H(z) is less than p=2, the first transition band of F(zL) can be used as that

of H(z) (Figure 18.28), that is,

vp ¼ u L and vs ¼ f L== (18:89)
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FIGURE 18.27 Amplitude responses for filters synthesized using the multistage frequency-response masking
approach. (a) Two-stage filter. (b) Three-stage filter.
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In this case, the overall transfer function can be written in the following simplified form [6,8]:

H(z) ¼ F(zL)G(z) (18:90)

where the orders of both F(z) and G(z) can be freely selected to be either even or odd. As shown in Figure
18.28, the role of G(z) is to provide the desired attenuation on those regions where F(zL) has extra
unwanted passband and transition band regions, that is, on

Vs(L,vs) ¼
[bL=2c
k¼1

k
2p
L

� vs, min k
2p
L

þ vs,p

� �� �
(18:91)

There exist two ways of designing the subfilters F(zL) and G(z). In the first case, they are determined, by
means of the Remez algorithm, to satisfy

1� d(F)p � F(v) � 1þ d(F)p for v 2 [0, Lvp] (18:92a)

�ds � F(v) � ds for v 2 [Lvs, p] (18:92b)

1� d(G)p � G(v) � 1þ d(G)p for v 2 [0, vp] (18:92c)

�ds � G(v) � ds for v 2 Vs(L, vs) (18:92d)

where

d(G)p þ d(F)p ¼ dp (18:92e)

The ripples dp
(F) and dp

(G) can be selected, e.g., to be half the overall ripple dp. In the above specifications,
both F(zL) and G(z) have [0, vp] as a passband region.

Another approach, leading to a considerable reduction in the order of G(z), is to design simultaneously
F(v) to satisfy

1� dp � F(v)G(v L) � 1þ dp for v 2 [0, Lvp]
�

(18:93a)

�ds � F(v)G(v L) � ds for v 2 [Lvs, p]= (18:93b)

and G(v) to satisfy

G(0) ¼ 1 (18:94a)

�dsjleF(Lv)G(v) � ds for v 2 Vs(L, vs) (18:94b)

The desired overall solution can be obtained by iteratively determining, by means of the Remez
algorithm, F(z) to meet the criteria of Equations 18.93a and b and G(z) to meet the criteria of Equations
18.94a and b. Typically, only three to five designs of both of the subfilters are required to arrive at a
solution that does not change if further iterations are used. For more details, see Ref. [8] or [10]. Figure
18.29 shows typical responses for G(z) and F(zL) and for the overall optimized design. As seen in this
figure, G(z) has all its zeros on the unit circle concentrating on providing the desired attenuation for the
overall response onVs(L, vs), whereas F(z

L) makes the overall response equiripple in the passband and in
the stopband portion [vs, p=L].
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For the order of F(z), a good estimate is

NF � F(dp, ds)=L

vs � vp
(18:95)

so that it is 1=Lth of that of an optimum conventional nonperiodic filter meeting the given overall criteria.
The order of G(z), in turn, can be estimated accurately by [10]

NG ¼ cos h�1(1=ds)
1

X vp, 2pL � vpþ2vs

3

 �þ L=2

X Lvp

2 , p� L(vpþ2vs)
6

 �
2
4

3
5 (18:96a)

where

X(v1, v2) ¼ cos h�1 (2 cosv1 � cosv2 þ 1)=(1þ cosv2)½ � (18:96b)

The minimization of the number of multipliers, [(NFþ 2)=2]þ [(NGþ 2)=2], with respect to L can be
performed conveniently by evaluating the sum of the above estimated orders for the admissible values of L,
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FIGURE 18.29 Typical amplitude responses for a filter of the form H(z)¼ F(zL)G(z). L¼ 8, vp¼ 0.025p,
vs¼ 0.05p, dp¼ 0.01, and ds¼ 0.001. (a) F(zL) of order 26 in zL. (b) G(z) of order 19. (c) Overall filter.
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2 � L < p=vs. The upper limit is a consequence of the fact that the stopband edge angle of F(z), f¼ Lvs,
must be less than p. The following example illustrates the minimization of the filter complexity.

Example 18.3

The narrowband specifications are vp¼ 0.025p, vs¼ 0.05p, dp¼ 0.01, and ds¼ 0.001. Figure 18.30a
shows the estimated NF, NG, and NFþNG as functions of L, whereas Figure 18.30b shows the correspond-
ing actual minimum orders. It is seen that the estimated orders are so close to the actual ones that the
minimization of the filter complexity can be accomplished based on the use of the above estimation
formulas. It is also observed that NFþNG is a unimodal function of L. With the estimates, L¼ 8 gives the
best result. The estimated orders are NF¼ 25 and NG¼ 19, whereas the actual orders are NF¼ 26 and
NG¼ 19. The amplitude responses for the subfilters and for the overall filter are depicted in Figure 18.29.
This design requires 24 multipliers and 45 adders. The minimum order of a conventional direct-form
design is 216, requiring 109 multipliers and 216 adders. The price paid for these 80% reductions in the
filter complexity is a 5 percent increase in the overall filter order (from 216 to 227).
In the cases where L can be factored into the product

L ¼
YR
r¼1

Lr (18:97)

where the Lr’s are integers, further savings in the filter complexity can be achieved by designing G(z) in
the following multistage form [8]:

G(z) ¼ G1(z)G2(z
L1 )G3(z

L1L2 ) � � �GR(z
L1L2 ���LR�1 ) (18:98)

Another alternative to reduce the number of adders and multipliers is to use special structures for
implementing G(z) [8–10].

18.4.4 Design of Wideband Filters

The synthesis of a wideband filter H(z) can be converted into the design of a narrowband filter based
on the following fact. If Ĥ(z) of even order 2M is a low-pass design with the following edges and ripples:
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FIGURE 18.30 Estimated and actual subfilter orders as well as the sum of the subfilter orders vs. L in a typical
narrowband case.
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v̂p ¼ p� vs, v̂s ¼ p� vp, d̂p ¼ ds, d̂s ¼ dp (18:99)

then

H(z) ¼ z�M � (�1)MĤ(�z) (18:100)

is a low-pass filter having the passband and stopband edge angles at vp and vs and the passband and
stopband ripples of dp and ds. Hence, if vp and vs of H(z) are larger than p=2, then v̂p and v̂s of Ĥ(z) are
smaller than p=2 [10]. This enables us to design Ĥ(z) in the form

Ĥ(z) ¼ F(zL)G(z) (18:101)

using the techniques of Section 18.4.3, yielding

H(z) ¼ z�M � (�1)MF (�z)L
� �

G(�z) (18:102a)

where

M ¼ (LNF þ NG) 2= (18:102b)

is half the order of F(zL)G(z). For implementation purposes, H(z) is expressed as

H(z) ¼ z�M � F̂(zL)Ĝ(z), F̂(zL) ¼ (�1)MF[(�z)L], Ĝ(z) ¼ G(�z) (18:103)

An implementation of this transfer function is shown in Figure 18.31, where the delay term z�M can be
shared with F̂(zL). To avoid half-sample delays, the order of F̂(zL)Ĝ(z) has to be even.

Example 18.4

The wideband specifications are vp¼ 0.95p, vs¼ 0.975p, dp¼ 0.001, and ds¼ 0.01. From Equation 18.99,
the specifications of Ĥ(z) become vp¼ 0.025p, v̂5¼ 0.05p, d̂p¼ 0.01, and d̂s¼ 0.001. These are the
narrowband specifications of Example 18.3. The desired wideband design is thus obtained by using the
subfilters F(zL) and G(z) of Figure 18.29 (L¼ 8, NF¼ 26, and NG¼ 19). However, the overall order is odd
(227). A solution with even order is achieved by increasing the order of G(z) by one (NG¼ 20). Figure
18.32 shows the amplitude response of the resulting filter, requiring 25 multipliers, 46 adders, and 228
delay elements. The corresponding numbers for a conventional direct-form equivalent of order 216 are
109, 216, and 216, respectively.

z−M

F̂(zL) Ĝ(z)

OutIn −

+
+

FIGURE 18.31 Implementation for a wideband filter in the form H(z)¼ z�M� (�1)MF[(�zL)G(�z). F̂(zL)¼
(�1)M � F[(�z)L] and Ĝ(z)¼G(�z).
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18.4.5 Generalized Designs

The Jing–Fam approach [2] is based on iteratively using the facts that a narrowband filter can be
implemented effectively as H(z)¼ F(zL)G(z) and a wideband filter in the form of Equations 18.102a
and b. In this approach, a narrowband filter is generated [9] as

H(z) 	 Ĥ1(z) ¼ G1(z)F1(z
L1 ) (18:104a)

where

F1(z) ¼ z�M1 � (�1)M1Ĥ2(�z) Ĥ2(z) ¼ G2(z)F2(z
L2 ) (18:104b)

F2(z) ¼ z�M2 � (�1)M2Ĥ3(�z) Ĥ3(z) ¼ G3(z)F3(z
L3 )

..

. (18:104c)

FR�2(z) ¼ z�MR�2 � (�1)MR�2ĤR�1(�z) ĤR�1(z) ¼ GR�1(z)FR�1(z
LR�1 ) 18:104d)

FR�1(z) ¼ z�MR�1 � (�1)MR�1ĤR(�z) ĤR(z) ¼ GR(z) (18:104e)

withMr for r¼ 1, 2, . . . , R� 1 being half the order of Ĥrþ1(z). Here, the basic idea is to convert iteratively
the design of the narrowband overall filter into the designs of narrowband transfer function Ĥr(z) for
r¼ 2, 3, . . . , R until the transition bandwidth of the remaining ~Hr(z)¼GR(z) becomes large enough and,
correspondingly, its complexity (the number of multipliers) is low enough. The desired conversion is
performed by properly selecting the Lr’s and designing the lower-order filters Gr(z) for r¼ 1, 2, . . . , R� 1.
In order to determine the conditions for the Lr’s as well as the design criteria for the Gr(z)’s, we

consider the rth iteration, where

Ĥr(z) ¼ Gr(z)Fr(z
Lr ) (18:105a)

with

Fr(z) ¼ z�Mr � (�1)Mr Ĥrþ1(�z) (18:105b)
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FIGURE 18.32 Amplitude response for a wideband filter implemented as shown in Figure 18.38.
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Let the ripples of Ĥr(z) be d̂
(r)
p and d̂(r)s and the edges be located at vp

(r) < p=2 and vs
(r) < p=2. Since Fr(z)

is implemented in the form of Equation 18.105b, it cannot alone take care of shaping the passband
response of Ĥr(z). Therefore, the simultaneous criteria for Gr(z) and Fr(z) are stated according to
Equations 18.92a through e so that the passband and stopband regions of Gr(z) are, respectively,
[0,v(r)

p ] and VsLrv(r)
s ) with Vs(L, vs) given by Equation 18.91. Lr has to be determined such that the

edges of Fr(z), L(r)rvp and L(r)rvs, become larger than p=2 and, correspondingly, the edges of Ĥrþ1(z),
v(rþ1)
p ¼ p� L(r)rvs and v(rþ1)

s ¼ p� L(r)rvp, become less than p=2.
In the case of the specifications of Equations 18.92a through e, the stopband ripple of Gr(z), denoted

for later use by d(r)s , and that of Fr(z) are equal to d̂
(r)
s , whereas the sum of the passband ripples is equal to

d̂(r)p . Denoting by d̂(r)p the passband ripple selected for Gr(z), the corresponding ripple of Fr(z) is d̂
(r)
p � d(r)p .

Since Fr(z) and Ĥ(rþ1)(z) interchange the ripples, the ripple requirements for Ĥrþ1(z) are d̂(rþ1)
p ¼ d̂(r)s

and d̂(rþ1)
s ¼ d̂(r)p � d(r)p .

The criteria for the Gr(z)’s for r¼ 1, 2, . . . , R can thus be stated as

1� d(r)p � Gr(v) � 1þ d(r)p for v 2 [0, v(r)
p ] (18:106a)

�d(r)s � Gr(v) � d(r)s for v 2 V(r)
s (18:106b)

where

V(r)
s ¼

SbLr=2c
k¼1

k 2p
Lr
� v(r)

s , min k 2p
Lr
þ v(r)

s , p
 �h i

for r < R

v(R)
s , p

� �
for r ¼ R

8><
>: (18:106c)

Here, the v(r)
p ’s and v(r)

s ’s for R¼ 2, 3, . . . , R are determined iteratively as

v(r)
p ¼ p� Lr�1v

(r�1)
s , v(r)

s ¼ p� Lr�1v
(r�1)
p (18:106d)

where v(1)
p ¼ vp and v(1)

s ¼ vs are the edges of the overall design, and the d(r)s ’s as

d(r)s ¼
dp �

Pr�1

k¼1
k odd

d(k)p for r even

ds �
Pr�1

k¼2
k even

d(k)p for r odd

8>>>><
>>>>:

(18:106e)

where dp and ds are the ripple values of the overall filter and d(r)p is the passband ripple selected for Gr(z).
In order for the overall filter to meet the given ripple requirements, d(R)s and the d(r)p ’s have to satisfy for
R even

XR
k¼2
k even

d(k)p ¼ ds, d(R)s þ
XR�1

k¼1
k odd

d(k)p ¼ dp (18:107a)

or for R odd

XR
k¼1
k odd

d(k)p ¼ dp, d(R)s þ
XR�1

k¼2
k even

d(k)p ¼ ds (18:107b)
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In the above, the Lr’s have to be determined such that the v(r)
s ’s for r<R become smaller than p=2. It is

also desired that for the last filter stage GR(z), v(R)
s is smaller than p=2.

If 2p=Lr � v(r)
s < p=2 for r<R or v(R)

s < p=2, then the arithmetic complexity of Gr(z) can be reduced
by designing it, using the techniques of previous sections, in the form

Gr(z) ¼ G(1)
r (zKr )G(2)

r (z) (18:108)

It is preferred to design the subfilters of Gr(z) in such a way that the passband shaping is done entirely by
G(1)
r (zKr ). The number of multipliers in the Gr(z)’s for r¼ 1, 2, . . . , R� 1 can be reduced by the

experimentally observed fact that the overall filter still meets the given criteria when the stopband
regions of these filters are decreased by using in Equation 18.106c the substitution

2v(r)
s þ v(r)

p

 �
=3 7! v(r)

s (18:109)

After some manipulations, H(z) as given by Equation 18.104a through e and Equation 18.106 can be
rewritten in the explicit form shown in Table 18.14. If Gr(z) is a single-stage design, then G(1)

r (zKr )þ 1.
In order to obtain the desired overall solution, the overall order of Gr(z) for r� 2, denoted by Nr in
Table 18.14, has to be even. Realizations for the overall transfer function are given in Figure 18.33,
where

mr ¼ M̂r � M̂rþ1 ¼ 1
2
L̂rNr , r ¼ 2, 3, . . . , R� 1, mR ¼ M̂R (18:110)

The structure of Figure 18.33b is preferred since the delay terms z�mr can be shared with HR
(1) (zKRL̂R) or,

if this filter stage is not present, with HR
(2)(zKRL̂R). This is because the overall order of this filter stage is

usually larger than the sum of the mr’s.
If the edges vp and vs of the overall filter are larger than p=2, then we set H(z)þ F1(z) in Equation

18.104a. In this case, d(1)p þ 0, L1 þ 1, and G1(z),, v(1)
p and v(1)

s are absent. Furthermore, v(2)
p ¼ p� vs,

and v(2)
s ¼ p� vp, and H1(z) is absent in Figure 18.33 and in Table 18.14.

TABLE 18.14 Explicit Form for the Transfer Function in the Jing–Fam Approach

H(z) ¼ H1(z
L̂1 ) I2z

�M̂2 þ H2(z
L̂2 ) I3z

�M̂3 þ H3(z
L̂3 ) � � �ð Þ

hn
IR�1z

�M̂R�1 þHR�1(z
L̂R�1 ) IRz

�M̂R þHR(z
L̂R )

h in o
. . .

�i
g,

where

Hr(zL̂r ) ¼ H(1)
r (zKr L̂r )H(2)

r (zL̂r )

H(1)
r (z) ¼ G(1)

r J (1)r z
	 


, H(2)
r (z) ¼ SrG(2)

r J (2)r z
	 


S1 ¼ 1, Sr ¼ �(� 1)M̂r=L̂r , r ¼ 2, 3, . . . , R

J (2)1 ¼ 1, J(2)2 ¼ �1, J(2)r ¼ � J (2)r�1

h iLr�1

, r ¼ 3, 4, . . . , R

J (1)r ¼ J (2)r

� �Kr

L̂1 ¼ 1, L̂r ¼
Qr�1

k¼1
Lk, r ¼ 2, 3, . . . , R

M̂R ¼ 1
2 L̂RNR, M̂R�r ¼ M̂R�rþ1 þ 1

2 L̂R�rNR�r, r ¼ 1, 2, . . . , R� 2

I2 ¼ 1, Ir ¼ J (2)r�1

h iM̂r=L̂r�1

, r ¼ 3, 4, . . . , R

Nr ¼ KrN(1)
r þ N(2)

r

N(1)
r and N(2)

r are the orders of G(1)
r (z) and G(2)

r (z), respectively
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The remaining problem is to select R, the Lr’s, the Kr’s, and the ripple values such that the filter
complexity is minimized. The following example illustrates this.

Example 18.5

Consider the specifications of Example 18.1, that is, vp¼ 0.4p, vs¼ 0.402p, dp¼ 0.01, and ds¼ 0.001. In
this case, the only alternative is to select L1¼ 2. The resulting passband and stopband regions for G1(z)
are (the substitution of Equation 18.109 is used)

V(1)
p ¼ [0, 0:4p] and V(1)

s ¼ [0:5987p, p]

For Ĥ2(z), the edges become v(2)
p ¼ p� L1vs ¼ 0:196p and v(2)

s ¼ p� L1vp ¼ 0:2p. For L2, there are
two alternatives to make the edges of Ĥ3(z), v(3)

p ¼ p� L(2)2vs and v(3)
s ¼ p� L(2)2vp , less than p=2. These

are L2¼ 3 and L2¼ 4. For R¼ 5 stages, there are the following four alternatives to make all the v(r)
s ’s

smaller than p=2:

L1 ¼ 2, L2 ¼ 4, L3 ¼ 3, L4 ¼ 2

L1 ¼ 2, L2 ¼ 4, L3 ¼ 4, L4 ¼ 4

L1 ¼ 2, L2 ¼ 3, L3 ¼ 2, L4 ¼ 4

L1 ¼ 2, L2 ¼ 3, L3 ¼ 2, L4 ¼ 3

Among these alternatives, the first one results in an overall filter with the minimum complexity. In this
case, the edges of Ĥ3(z), Ĥ4(z), and Ĥ5(z)þG5(z) become as shown in Table 18.15. The corresponding
passband and stopband regions for G2(z), G3(z), G4(z), and G5(z) are

H1(zL̂1) H2(zL̂2) H3(zL̂3) HR(zL̂R)

HR(zL̂R) H3(zL̂3) H2(zL̂2) H1(zL̂1)

Hr
(2)(zL̂r)

Hr(zL̂r)

Hr
(1)(zKrL̂r)

In

In

In

I2 I3

+ + +

+ + +

+

+

I4 IR

IR I4 I3 I2

z−m3

z−m3

z−mR

z−mR

z−m2

z−m2

Out

Out

Out

(a)

(b)

(c)

FIGURE 18.33 Implementations for a filter synthesized using the Jing–Fam approach. (a) Basic structure.
(b) Transposed structure. (c) Structure for the subfilter Hr(z


Lr).
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V(2)
p ¼ [0, 0:196p], V(2)

s ¼ [0:3013p, 0:6987p] [ [0:8013p, p]

V(3)
p ¼ [0, 0:2p], V(3)

s ¼ [0:4560p, 0:8773p]

V(4)
p ¼ [0, 0:352p], V(4)

s ¼ [0:616p, p]

V(5)
p ¼ [0, 0:2p], V(5)

s ¼ [0:296p, p]

What remains is to determine the ripple requirements. From Equation 18.107b, it follows for R¼ 5,
d(1)p þ d(3)p þ d(5)p ¼ dp and d(2)p þ d(4)p þ d(6)p ¼ ds. By simply selecting the ripple values in these summa-
tions to be equal, the required ripples for the Gr(z)’s become as shown in Table 18.15.
The first and fourth subfilter are single-stage filters since their stopband edges are larger than p=2,

whereas the remaining three filters are two-stage designs. The parameters describing the overall filter are
shown in Table 18.15, whereas Figure 18.34a depicts the response of this filter. The number of multipliers
and the order of this design are 78 and 4875, whereas the corresponding numbers for the direct-form
equivalent are 1271 and 2541. The number of multipliers required by the proposed design is thus only
6 percent of that of the direct-form filter. Since the complexity of H5(z

L̂5) is similar to those of the earlier
filter stages, R¼ 5 is a good selection in this example.
The overall filter order as well as the number of multipliers can be decreased by selecting smaller

ripple values for the first stages, thereby allowing larger ripples for the last stages. Proper selections for
the ripple requirements and filter orders are shown in Table 18.16. The first four filters have been
optimized such that their passband variations are minimized. The first criteria are met by a half-band filter
of order 34, having the passband and stopband edges at 0.4013p and 0.5987p. Since every second
impulse response coefficient of this filter is zero-valued except for the central coefficient with an easily

TABLE 18.15 Data for a Filter Designed Using the Jing–Fam Approach

r¼ 1 r¼ 2 r¼ 3 r¼ 4 r¼ 5

vp(r) 0.4p 0.196p 0.2p 0.352p 0.2p

vs(r) 0.402p 0.2p 0.216p 0.4p 0.296p

dp(r) 1
3 � 10�2 1

3 � 10�3 1
3 � 10�2 1

3 � 10�3 1
3 � 10�2

ds(r) 10�3 2
3 � 10�2 2

3 � 10�3 1
3 � 10�2 1

3 � 10�3

Lr 2 4 3 2 —

Kr — 3 2 — 3

Nr
(1) — 20 11 — 22

Nr
(2) 31 10 8 26 14

Nr 31 70 30 26 80

L̂r 1 2 8 24 48

Jr
(1) — �1 1 — �1

Jr
(2) 1 �1 �1 1 �1

M̂r — 2422 2352 2232 1920

Ir — 1 1 �1 1

Sr 1 1 �1 1 �1

mr — 70 120 312 1920

TABLE 18.16 Data for Another Filter Designed Using the Jing–Fam Approach

dp(r) 7.33 10�4 7.13 10�5 3.53 10�4 12.13 10�5 89.23 10�4

ds(r) 10�3 92.73 10�4 92.93 10�5 89.23 10�4 80.83 10�5

Kr — 3 2 — 2

Nr
(1) — 22 13 — 27

Nr
(2) 34 10 8 24 6
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implementable value of 1=2, this filter requires only nine multipliers. For the last stage, K5 is reduced to
2 to decrease the overall filter order. The order of the resulting overall filter [see Figure 18.34b] is 3914,
which is 54 percent higher than that of the direct-form equivalent. The number of multipliers is
reduced to 70.
The Jing–Fam approach cannot be applied directly for synthesizing filters whose edges are very close

to p=2. This problem can, however, be overcome by slightly changing the sampling rate or, if this is not
possible, by shifting the edges by a factor 3=2 by using decimation by this factor at the filter input and
interpolation by the same factor at the filter output [2]. One attractive feature of the Jing–Fam approach
is that it can be combined with multirate filtering to reduce the filter complexity even further [7].
When comparing the above designs with the filters synthesized using the multistage frequency-

response masking technique (Example 18.2), it is observed that the above designs require slightly fewer
multipliers at the expense of an increased overall filter order. Both of these general approaches are
applicable to those specifications that are not very narrowband or very wideband. For most
very narrowband and wideband cases, filters synthesized in the simplified forms H(z)¼ F(zL)G(z) and
H(z)¼ z�M – (�1)MF[(�z)L]G(�z), respectively, give the best results (see Examples 18.3 and 18.4).
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19.1 Properties of IIR Filters

Sawasd Tantaratana

19.1.1 System Function and Impulse Response

A digital filter with impulse response having infinite length (i.e., its values outside a finite interval cannot
all be zero) is termed infinite impulse response (IIR) filter. The most important class of IIR filters can be
described by the difference equation

y(n)¼ b0x(n)þ b1x(n� 1)þ � � � þ bMx(n�M)

� a1y(n� 1)� a2y(n� 2)� � � � � aNy(n� N) (19:1)

where
x(n) is the input
y(n) is the output of the filter
fa1, a2, . . . , aNg and fb0, b1, . . . , bMg are constant coefficients

We assume that aN 6¼ 0. The impulse response is the output of the system when it is driven by a unit
impulse at n ¼ 0, with the system being initially at rest, i.e., the output being zero prior to applying the
input. We denote the impulse response by h(n). With x(0) ¼ 1, x(n) ¼ 0 for n 6¼ 0, and y(n) ¼ 0 for
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n < 0, we can compute h(n), n � 0, from Equation 19.1 in a recursive manner. Taking the z-transform of
Equation 19.1, we obtain the system function

H(z) ¼ Y(z)
X(z)

¼ b0 þ b1z�1 þ � � � þ bMz�M

1þ a1z�1 þ � � � þ aNz�N
(19:2)

where N is the order of the filter. The system function and the impulse response are related through the
z-transform and its inverse, i.e.,

H(z) ¼
X1

n¼�1
h(n)z�1 h(n) ¼ 1

2pj

þ
C

H(z)zn�1dz (19:3)

where C is a closed counterclockwise contour in the region of convergence. See Chapter 5 of Fundamentals
of Circuits and Filters for a discussion of z-transform. We assume that M � N . Otherwise, the system
function can be written as

H(z) ¼ c0 þ c1z
�1 þ � � � þ cM�Nz

�(M�N)
�

]þ b00 þ b01z
�1 þ � � � þ b0Mz

�M

1þ a1z�1 þ � � � þ aNz�N

� �
(19:4)

which is a finite impulse response (FIR) filter in parallel with an IIR filter, or as

H(z) ¼ c00 þ c01z
�1 þ � � � þ c0M�Nz

�(M�N)
� � b000 þ b001z

�1 þ � � � þ b00Mz
�M

1þ a1z�1 þ � � � þ aNz�N

� �
(19:5)

which is an FIR filter in cascade with an IIR filter. FIR filters are covered in Chapter 18. This chapter
covers IIR filters.

For ease of implementation, it is desirable that the coefficients fa1, a2, . . . , aNg and fb0, b1, . . . , bMg be
real numbers (as opposed to complex numbers), which is another assumption that we make, unless
specified otherwise.

19.1.2 Causality (Physical Realizability)

A causal (physically realizable) filter is one whose output value does not depend on the future input values.
A noncausal filter cannot be realized in real time since some future inputs are needed in computing the
current output value. The difference equation in Equation 19.1 can represent a causal system or a noncausal
system. If the output y(n) is calculated, for an increasing value of n, from x(n), x(n� 1), . . . , x(n�M),
y(n� 1), . . . , y(n� N), according to the right-hand side of Equation 19.1 then the difference equation
represents a causal system. On the other hand, we can rewrite Equation 19.1 as

y(n� N) ¼ 1
aN

[b0x(n)þ b1x(n� 1)þ � � � þ bMx(n�M)

� y(n)� a1y(n� 1)� � � � � aN�1y(n� N þ 1)] (19:6)

If the system calculates y(n� N), for a decreasing due of n, using the right-hand side of Equation 19.6,
then the system is noncausal since y(n� N) depends on x(n), . . . , x(n�M), which are future input
values. We shall assume that the IIR filter represented by Equation 19.1 is causal. It follows from this
assumption that h(n) ¼ 0 for n < 0 and that the convergence region of H(z) is of the form: jzj > r0,
where r0, is a nonnegative constant.
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Noncausal filters are useful in practical application where the output need not be calculated in real
time or where the variable n does not represent time, such as in image processing where n is a spatial
variable. Generally, a noncausal filter can be modified to be causal by adding sufficient delay at the
output.

19.1.3 Poles and Zeros

Rewriting Equation 19.2 we have

H(z) ¼ zN�M b0zM þ b1zM�1 þ � � � þ bM�1z þ bM
zN þ a1zN�1 þ � � � þ aN�1z�N

(19:7)

Assuming b0, bM 6¼ 0, then there are N poles given by the roots of the denominator polynomial and M
zeros given by the roots of the numerator polynomial. In addition, there are N �M zeros at the origin on
the complex plane. The locations of the poles and zeros can be plotted on the complex z plane. Denoting
the poles by p1, p2, . . . , pN , and the nonzero zeros by q1, q2, . . . , qM , we can write

H(z) ¼ b0z
N�M (z � q1)(z � q2) � � � (z � qM)

(z � p1)(z � p2) � � � (z � pN)
(19:8)

Since we assume that the coefficients fa1, a2, . . . , aNg and fb0, b1, . . . , bMg are each complex-valued
pole (i.e., pole off the real axis on the z plane), there must be another pole that is the complex conjugate of
the first. Similarly, complex-valued zeros must exist in complex–conjugate pairs. The combination
of a complex–conjugate pole pair (or zero pair) yields a second-order polynomial with real coefficients.
Real-valued pole (or zero) can appear single in Equation 19.8.
It is clear fromEquation 19.8 that knowing all the pole and zero locations, we canwrite the system function

to within a constant factor. Since the constant factor is only a gain, which can be adjusted as desired,
specifying the locations of the poles and zeros essentially specifies the system function of the IIR filter.

19.1.4 Stability

A causal IIR filter is stable (in the sense that a bounded input gives rise to a bounded output) if all the
poles lie inside the unit circle. If there are one or more simple poles on the unit circle (and all the others
lie inside the unit circle), then the filter is marginally stable, giving a sustained oscillation. If there are
multiple poles (more than one pole at the same location) on the unit circle or if there is at least one pole
outside the unit circle, a slight input will give rise to an output with increasing magnitude. For most
practical filters, all the poles are designed to lie inside the unit circle. In some special systems (such as
oscillators), poles are placed on the unit circle to obtain the desired result.
Given the system function in the form of Equation 19.2 or Equation 19.7, the stability can be verified

by finding all the poles of the filters and checking to see if all of them are inside the unit circle. Equivalently,
stability can be verified directly from the coefficients faig, using the Schür-Cohn algorithm [1]. For
a second-order system, if the coefficient a1, and a2, lie inside the triangle in Figure 19.1, then the system
is stable.

19.1.5 Frequency Response

The frequency response of the IIR filter is the due of the system function evaluated on the unit circle
on the complex plane, i.e., with z ¼ ej2pf , where f varies from 0 to 1, or from �1=2 to 1=2. The variable f
represents the digital frequency. For simplicity, we write H( f ) for H(z)jz¼exp(j2pf ). Therefore,
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H( f ) ¼ b0e
j2p(M�N)f (e

j2pf � q1)(ej2pf � q2) � � � (ej2pf � qM)
(ej2pf � p1)(ej2pf � p2) � � � (ej2pf � pN )

(19:9)

H( f ) is generally a complex function of f, consisting of the real part HR( f ) and the imaginary part HI( f ).
It can also be expressed in terms of the magnitude jH( f )j and the phase u( f )

H( f ) ¼ HR( f )þ jHI( f ) ¼ jH( f )jeju( f ) (19:10)

From Equation 19.9 we see that the magnitude response jH( f )j equals the product of the magnitudes of
the individual factors in the numerator, divided by the product of the magnitudes of the individual
factors in the denominator. The magnitude square can be written as

jH( f )j2 ¼ H( f )H*( f ) ¼ [HR( f )]
2 þ [HI( f )]

2 (19:11)

Since H*( f ) ¼ H*(1=z*)jz¼exp (j2pf ) and H*(1=z*) ¼ H(z�1) when all the coefficients of H(z) are real, we
have

jH( f )j2 ¼ H(z) � H(z�1)jz¼exp(j2pf ) (19:12)

Using Equation 19.12, the magnitude square can be put in the form

jH( f )j2 ¼
PM

k¼0
~bk cos (2pkf )PN

k¼0 ~ak cos (2pkf )
(19:13)

where the coefficients are given by

~b0 ¼
XM
j¼0

b2j ~bk ¼ 2
XM
j¼k

bjbj�k k ¼ 1, . . . ,M

~a0 ¼
XN
j¼0

a2j ~ak ¼ 2
XN
j¼k

ajaj�k k ¼ 1, . . . ,N

(19:14)

with the understanding that a0 ¼ 1. Given f~b0, ~b1, . . . , ~bMg we can find fb0, b1, . . . , bMg and vice versa.
Similarly, f~a1, ~a2, . . . , ~aNg and fa1, a2, . . . , aNg can be computed from each other. The form in Equation
19.13 is useful in computer-aided design of IIR filters using linear programming [2].

FIGURE 19.1 Region for the coefficients a1 and a2 that yield a stable second-order IIR filter.
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We see from Equation 19.9 that the phase response u( f ) equals the sum of the phases of the individual
factors in the numerator minus the sum of the phases of the individual factors in the denominator.
The phase can be written in terms of the real and imaginary parts of H( f ) as

u( f ) ¼ arctan
HI( f )
HR( f )

� �
(19:15)

A filter having linear phase in a frequency band (e.g., in the passband) means that there is no phase
distortion in that band.
The group delay is defined as

t( f ) ¼ � 1
2p

d
df

u( f ) (19:16)

The group delay corresponds to the delay, from the input to the output, of the envelope of a narrowband
signal [3]. A linear phase gives rise to a constant group delay. Nonlinearity in the phase appears as
deviation of the group delay from a constant value.
The magnitude response of IIR filter does not change, except for a constant factor, if a zero is replaced

by the reciprocal of its complex conjugate, i.e., if (z � q) is replaced with (z � 1=q*). This can be seen as
follows. Letting ~H(z) be the system function without the factor (z � q), we have

jH( f )j2 ¼ H(z)H*(1=z*)jz¼exp(j2pf )

¼ Ĥ(z)Ĥ*(1=z*)
(z � q)(z�1 � q*)

(z � 1=q*)(z�1 � 1=q)

����
z¼exp(2jpf )

¼ jqj2

Similarly, replacing the pole at p with a pole at 1=p* will not alter the magnitude of the response except
for a constant factor. This property is useful in changing an unstable IIR filter to a stable one without
altering the magnitude response.
Compared to an FIR filter, an IIR filter requires a much lower order to achieve the same requirement of

the magnitude response. However, the phase of a stable casual IIR filter cannot be made linear. This is the
major reason not to use an IIR filter in applications where linear phase is essential. Nevertheless, using
phase compensation such as allpass filters (see Section 19.1.8), the phase of an IIR filter can be adjusted
close to linear. This process increases the order of the overall system, however. Note that if causality is not
required, then a linear-phase IIR filter can be obtained using a time-reversal filter [2].

19.1.6 Realizations

A realization of an IIR filter according to Equation 19.1 is shown in Figure 19.2a, which is called Direct
Form I. By rearranging the structure, we can obtain Direct Form II, as shown in Figure 19.2b. Through
transposition, we can obtain Transposed Direct Form I and Transposed Direct Form II as shown in
Figure 19.2c and d.
The system function can be put in the form

H(z) ¼
YK
i¼1

bi0 þ bi1z�1 þ bi2z�2

1þ ai1z�1 þ ai2z�2
(19:17)
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by factoring the numerators and denominators into second-order factors, or in the form

H(z) ¼ bN
aN

þ
XK
i¼1

bi0 þ bi1z�1

1þ ai1z�1 þ ai2z�2
(19:18)

by partial fraction expansion. The value of K is N=2 when N is even and is (N þ 1)=2 when N is odd.
When N is odd, one of ai2 must be zero, as well as one of bi2, in Equation 19.17 and one of bi1 in Equation
19.18. All the coefficients in Equations 19.17 and 19.18 are real numbers. According to Equation 19.17,
the IIR filter can be realized by K second-order IIR filters in cascade, as shown in Figure 19.3a. According
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FIGURE 19.2 Direct form realizations of IIR filters.
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to Equation 19.18, the IIR filter is realized by K second-order IIR filters and one scaler (i.e., bN=aN ) in
parallel, as depicted in Figure 19.3b. Each second-order subsystem can use any of the structures given
in Figure 19.2.
There are many other realizations for IIR filters, such as state-space structures [4], wave structures, and

lattice structures (Section 19.3).
Actual implementation of IIR filters requires that the signals and the coefficients be represented in a

finite number of bits (or digits). Quantization of the coefficients to a finite number of bits essentially
changes the filter coefficients, hence the frequency response changes. Coefficient quantization of a stable
IIR filter may yield an unstable filter. For example, consider a second-order IIR filter with a1 ¼ 1:26 and
a2 ¼ 0:3, which correspond to pole locations of �0:9413 and �0:3187, respectively. Suppose that we
quantize these coefficients to two bits after the decimal point, yielding a quantized a1 of 1.01 in binary or

x(n)

x(n)

y(n)

y(n)

z–1 z–1 z–1
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z–1 z–1
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(a)

(b)

Cascade form
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FIGURE 19.3 Cascade (a) and parallel (b) realizations of IIR filters.
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1.25 and a quantized a2 of 0.01 in binary or 0.25. This pair corresponds to pole locations at �1:0 and
�0:25, respectively. Since one pole is on the unit circle, the IIR filter with quantized coefficients produces
an oscillation. In this example, the quantization is equivalent to moving a point inside the triangle in
Figure 19.1 to a point on the edge of the triangle. Different realizations are affected differently by
coefficient quantization. Chapter 20 investigates coefficient quantization and roundoff noise in detail.

19.1.7 Minimum Phase

An IIR filter is a minimum-phase filter if all the zeros and poles are inside the unit circle. A minimum-
phase filter introduces the smallest group delay among all filters that have the same magnitude response.
A minimum-phase IIR filter can be constructed from a nonminimum-phase filter by replacing each zero
(or pole) outside the unit circle with a zero (or pole) that is the reciprocal of its complex conjugate, as
illustrated in Figure 19.4. This process moves all zeros and poles outside the unit circle to the inside.
The magnitude response does not change, except for a constant factor, which is easily adjusted.
Given an IIR filter H(z) with input x(n) and output y(n), the inverse filter 1=H(z) can reconstruct x(n)
from y(n) by feeding y(n) to the input of 1=H(z). Assuming that both the filter and the inverse filter are
causal, both of them can be stable only if H(z) is a minimum-phase filter.

19.1.8 Allpass Filters

An allpass filter has a magnitude response of unity (or constant). An Nth-order IIR allpass filter with real
coefficients has a system function given by

H(z) ¼ z�N D(z)
D(z�1)

¼ z�N aNzN þ � � � þ a2z2 þ a1z þ 1
1þ a1z�1 þ a2z�2 þ � � � þ aNz�N

(19:19)

¼ z�N (1� p1z)(1� p2z) � � � (1� pNz)
(1� p1z�1)(1� p2z�1) � � � (1� pNz�1)

(19:20)

Since H(z)(z�1) ¼ 1, it follows that jH( f )j2 ¼ 1. The factor z�N is included so that the filter is causal.
Equation 19.20 implies that zeros and poles come in reciprocal pairs: if there is a pole at z ¼ p, then there
is a zero at z ¼ 1=p, as illustrated in Figure 19.5.
Since the coefficients are real, poles and zeros off the real axis must exist in quadruplets: poles at p and

p* and zeros at 1=p and 1=p*, where jpj < 1 for stability. For poles and zeros on the real axis, they exist in
reciprocal pairs: pole at p and zero at 1=p, where p is real and jpj < 1 for stability. Since the numerator
and the denominator in (19.19) share the same set of coefficients, we need only N multiplications in

Imaginary Imaginary

1/p

1/p*

p*

p

Real Real
11

FIGURE 19.4 Changing a zero location to obtain a minimum-phase filter.
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realizing an Nth-order allpass filter. The system function in Equation 19.19 can be written as the product
(or sum) of first- and second-order allpass filters. The system function and the phase response of a first-
order allpass filter is given by

H(z) ¼ a1z þ 1
z þ a1

(19:21)

u( f ) ¼ arctan
(a21 � 1) sin (v)

2a1 þ (a21 þ 1) cos (v)

� �
(19:22)

where v ¼ 2pf . For a second-order allpass filter, these are

H(z) ¼ a2z2 þ a1z þ 1
z2 þ a1z þ a2

(19:23)

u( f ) ¼ arctan
2a1(a2 � 1) sin (v)þ (a22 � 1) sin (2v)

2a2 þ a21 þ 2a1(a2 þ 1) cos (v)þ (a22 þ 1) cos (2v)

� �
(19:24)

The group delay t( f ) of an allpass filter is always � 0. The output signal energy of an allpass filter is the
same as the input signal energy, i.e.,

P1
n¼�1 jy(n)j2 ¼ P1

n¼�1 jx(n)j2, which means that the allpass filter
is a lossless system. Note that if we attempt to find a minimum-phase filter from a stable allpass filter, by
moving all the zeros inside the unit circle, all poles and zeros would cancel out, yielding the trivial filter
with a system function of unity.
A more general form of Equation 19.19, allowing the coefficients to be complex, is Nth-order allpass

filer with system function

H(z) ¼ z�N D*(z*)
D(z�1)

¼ z�N aN*þ � � � þ a2* z2 þ a1*z þ 1
1þ a1z�1 þ a2z�2 þ � � � þ aNz�N

(19:25)

¼ z�N (1� p1*z)(1� p2* z) � � � (1� pN* z)
(1� p1z�1)(1� p2z�1) � � � (1� pNz�1)

(19:26)

Therefore, for a pole at z ¼ p there is a zero at z ¼ 1=p*, i.e., poles and zeros exist in reciprocal–
conjugate pairs.
Allpass filters have been used as building blocks for various applications [5]. Particularly, an allpass

filter can be designed to approximate a desired phase response. Therefore, an allpass filter in cascade with
an IIR filter can be used to compensate the nonlinear phase of the IIR filter. Such a cascade filter has

Imaginary

p
1/p*

1/p

Reciprocal pair

Real1

p*

FIGURE 19.5 Pole-zero reciprocal pair in an allpass IIR filter.
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system function of the form H(z) ¼ HIIR(z)Hap(z), where HIIR(z) is an IIR filter satisfying some
magnitude response and Hap(z) is an allpass filter that compensates for the nonlinearity of the phase
response of HIIR(z). Allpass filters in parallel connection can be used to approximate a desired magnitude
response. For this, the system function is in the form H(z) ¼ PK

i¼1 ciHap,i(z), where Hap,i(z) is an allpass
filter and ci is a coefficient. A block diagram is shown in Figure 19.6.
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19.2 Design of IIR Filters

Sawasd Tantaratana, Chalie Charoenlarpnopparut,
and Phakphoom Boonyanant

19.2.1 Introduction

A filter is generally designed to satisfy a frequency response specification. IIR filter design normally
focuses on satisfying a magnitude response specification. If the phase response is essential, it is usually
satisfied by a phase compensation filter, such as an allpass filter (see Section 19.1.8). We will adopt a
magnitude specification that is normalized so that the maximum magnitude is 1. The magnitude square
in the passband must be at least 1=(1þ e2) and at most 1; while it must be no larger than d2 in the
stopband, where e and d are normally small. The passband edge is denoted by fp and the stopband
edge by fs. Figure 19.7a shows such a specification for a low-pass filter (LPF). The region between the
passband and the stopband is the transition band. There is no constraint on the response in the transition
band. Another specification that is often used is shown in Figure 19.7b using d1, and d2, to specify the
acceptable magnitude. Given d1, and d2, they can be converted to e and d using e ¼ 2d0:51 =(1� d1) and
d ¼ d2=(1þ d1). The magnitude is often specified in decibels, which is 20 log10 jH( f )j. Specifications for
other types of filters (high-pass, bandpass, and bandstop) are similar.

Hap,K(z)

Hap,1(z)
C1

CK

y(n)x(n)

FIGURE 19.6 Block diagram of an IIR filter, using allpass filters.
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We can classify various IIR filter design methods into three categories: the design using analog
prototype filter, the design using digital frequency transformation, and computer-aided design. In the
first category, an analog filter is designed to the (analog) specification and the analog filter transfer
function is transformed to digital system function using some kind of transformation. The second
category assumes that a digital LPF can be designed. The desired digital filter is obtained from the digital
LPF by a digital frequency transformation. The last category uses some algorithm to choose the coefficients
so that the response is as close (in some sense) as possible to the desired filter. Design methods in the first
two categories are simple to do, requiring only a handheld calculator. Computer-aided design requires
some computer programming, but it can be used to design nonstandard filters.

19.2.2 Analog Filters

Here, we describe four basic types of analog LPFs that can be used as prototype for designing IIR filters.
For each type, we give the transfer function, its magnitude response, and the order N needed to satisfy the
(analog) specification. We will use Ha(s) for the transfer function of an analog filter, where s is the
variable in the Laplace transform. Each of these filters have all its poles on the left-half s plane, so that it is
stable. We will use the variable l to represent the analog frequency in radians=second. The frequency
response Ha(l) is the transfer function evaluated at s ¼ jl. The analog LPF specification is given by

(1þ e2)�1 � jHa(l)j2 � 1 for 0 � (l=2p) � (lp=2p)

0 � jHa(l)j2 � d2 for (ls=2p) � (l=2p) � 1 (19:27)

where lp and ls are the passband edge and stopband edge, respectively. The specification is sketched in
Figure 19.8.

19.2.2.1 Butterworth Filters

The transfer function of an Nth-order Butterworth filter is given by

Ha(s) ¼

QN=2

i¼1

1
(s=lc)

2�2Re(si)(s=lc)þ1
N ¼ even

1
(s=lc)þ1

Q(N�1)=2

i¼1

1
(s=lc)

2�Re(si)(s=lc)þ1
N ¼ odd

8>>><
>>>:

(19:28)

1
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Passband Stopband
Transition band

δ2 δ2
2

FIGURE 19.7 Specifications for a digital LPF. (a) Specification using e and d; (b) specification using d1 and d2.
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where lp � lc � ls and si ¼ expfj[1þ (2i� 1)=N]p=2g. The magnitude response square is

jHa(l)j2 ¼ 1

1þ (l=lc)
2N (19:29)

Figure 19.9 shows the magnitude response jHa(l)j, with lc ¼ 1. Note that a Butterworth filter is an all-
pole (no zero) filter, with the poles being at s ¼ lcsi and s ¼ lcsi*, i ¼ 1, . . . ,N=2 if N is even or
i ¼ 1, . . . , (N � 1)=2 if N is odd, where x* denotes the complex conjugate of x. When N is odd, there
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|H(λ)|2

FIGURE 19.8 Specification for an analog LPF.
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FIGURE 19.9 Magnitude responses of Butterworth filters.
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is another pole at s ¼ �lc. All N poles are on the left-half s plane, located on the circle with radius lc.
Therefore, the filter in Equation 19.28 is stable.
To satisfy the specification in Equation 19.27, the filter order can be calculated from

N ¼ integer � log [e=(d�2 � 1)1=2]
log [lp=ls]

(19:30)

The value of lc can be chosen as any value in the following range:

lpe�1=N � lc � ls(d
�2 � 1)�1=(2N) (19:31)

If we choose lc ¼ lpe�1=N , then the magnitude response square passes through 1=(1þ e2) at l ¼ lp. If
we choose lc ¼ ls(d

�2 � 1)�1=(2N), then the magnitude response square passes through d2 at l ¼ ls.
If lc is between these two values, then the magnitude square will be �1=(1þ e2) at l ¼ lp and � d2

at l ¼ ls.
For the sake of convenience, the transfer function of the Nth-order Butterworth filter with lc ¼ 1 can

be found by

Ha(s) ¼ 1
BN (s)

where BN (s) is the normalized Butterworth polynomial of order N shown in Table 19.1. For other values
of l0c, the transfer function can be computed similarly by analog–analog frequency transformation, i.e.,
replacing s in Ha(s) with s=l0c.

19.2.2.2 Chebyshev Filters (Type-I Chebyshev Filters)

A Chebyshev filter is also an all-pole filter. The Nth-order Chebyshev filter has a transfer function
given by

Ha(s) ¼ C
YN
i¼1

1
(s� pi)

(19:32)

TABLE 19.1 Factorized, Normalized, Butterworth Polynomial BN (s)

N BN (s)

1 (sþ 1)

2 (s2 þ ffiffiffi
2

p
sþ 1)

3 (sþ 1)(s2 þ sþ 1)

4 (s2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ffiffiffi

2
pp

sþ 1)(s2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffi

2
pp

sþ 1)

5 (sþ 1) s2 þ
ffiffi
5

p �1
2

� 	
sþ 1

� 	
s2 þ

ffiffi
5

p þ1
2

� 	
sþ 1

� 	
6 s2 þ

ffiffi
3

p �1ffiffi
2

p
� 	

sþ 1
� 	

(s2 þ ffiffiffi
2

p
sþ 1) s2 þ

ffiffi
3

p þ1ffiffi
2

p
� 	

sþ 1
� 	

7 (sþ 1)(s2 þ 0:4450sþ 1)(s2 þ 1:2470sþ 1)(s2 þ 1:8019sþ 1)

8 (s2 þ 0:3902sþ 1)(s2 þ 1:1111sþ 1)(s2 þ 1:6629sþ 1)(s2 þ 1:9616sþ 1)

9 (sþ 1)2(s2 þ 0:3473sþ 1)(s2 þ 1:5321sþ 1)(s2 þ 1:8794sþ 1)

10 (s2 þ 0:3219sþ 1)(s2 þ 0:9080sþ 1)(s2 þ 1:4142sþ 1)(s2 þ 1:7820sþ 1)(s2 þ 1:9754sþ 1)
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where

C ¼
�QN

i¼1
pi N is odd

(1þ e2)�1=2 QN
i¼1

pi N is even

8>>><
>>>:

(19:33)

pi ¼ �lp sinh (f) sin
2i� 1
2N

p


 �
þ jlp cosh (f) cos

2i� 1
2N

p


 �
(19:34)

f ¼ 1
N

ln
1þ (1þ e2)1=2

e

" #
(19:35)

The value of C normalizes the magnitude so that the maximum magnitude is 1. Note that C is always a
positive constant. The poles are on the left-half s plane, lying on an ellipse centered at the origin with a
minor radius of lp sinh (f) and major radius of lp cosh (f). Except for one pole when N is odd, all the
poles have a complex–conjugate pair. Specifically, pi ¼ pN�iþ1* , i ¼ 1, 2, � � � ,N=2 or (N � 1)=2. Combin-
ing each complex–conjugate pair in Equation 19.32 yields a second-order factor with real coefficients.
The magnitude response can be computed from Equations 19.33 through 19.35 with s ¼ jl. Its square
can also be written as

jHa(l)j2 ¼ 1
1þ e2T2

N (l=lp)
(19:36)

where TN (x) is the Nth degree Chebyshev polynomial of the first kind, which is shown in Table 19.2 and
also given recursively by

T0(x) ¼ 1 T1(x) ¼ x

Tnþ1(x) ¼ 2xTn(x)� Tn�1(x) n � 1
(19:37)

Notice that T2
N (�1) ¼ 1. Therefore, we have from Equation 19.36 that the magnitude square passes

through 1=(1þ e2) at l ¼ lp, i.e., jHa(lp)j2 ¼ 1=(1þ e2). Note also that TN (0) ¼ (�1)N=2 for even N
and it is 0 for odd N. Therefore, jHa(0)j2 equals 1=(1þ e2) for even N and it equals 1 for odd N. Figure
19.10 shows some examples of magnitude response square.

TABLE 19.2 Coefficients of Chebyshev Polynomials
Tn(x) of the First Kind, of Order n, in Ascending
Powers of Variable x

n Coefficients of Tn(x)

1 0, 1

2 �1, 0, 2

3 0, �3, 0, 4

4 1, 0, �8, 0, 8

5 0, 5, 0, �20, 0, 16

6 �1, 0, 18, 0, �48, 0, 32

7 0, �7, 0, 56, 0, �112, 0, 64

8 1, 0, �32, 0, 160, 0, �256, 0, 128

9 0, 9, 0, �120, 0, 432, 0, �576, 0, 256

10 �1, 0, 50, 0, �400, 0, 1120, 0, �1280, 0, 512
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The filter order required to satisfy the specification in Equation 19.27 is

N � cosh�1 [(d�2 � 1)1=2=e]

cosh�1 (ls=lp)

¼ logf[(d�2 � 1)1=2=e]þ [(d�2 � 1)=e2 � 1]1=2g
logf(ls=lp)þ [(ls=lp)

2 � 1]1=2g (19:38)

which can be computed knowing e, d, lp, and ls.
Table 19.3 shows the normalized Chebyshev polynomials CN (s) for different values of N and

passband ripples. The transfer function of a unity dc gain, unity cutoff frequency Chebyshev Type-I
filter is given by

Ha(s) ¼ 1
CN(s)

19.2.2.3 Inverse Chebyshev Filters (Type-II Chebyshev Filters)

Notice from Figure 19.10 that the Chebyshev filter has magnitude response containing equiripples in the
passband. The equiripples can be arranged to go inside the stopband, for which case we obtain inverse
Chebyshev filters. The magnitude response square of the inverse Chebyshev filter is
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FIGURE 19.10 Magnitude responses of Chebyshev filters.
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jHa(l)j2 ¼ 1

1þ (d�2�1)
T2
N (ls=l)

(19:39)

Since T2
N (�1) ¼ 1, Equation 19.39 gives jHa(ls)j2 ¼ d2. Figure 19.11 depicts some examples of Equation

19.38. Note that jHa(1)j equals 0 if N is odd and it equals d if N is even.
The transfer function giving rise to Equation 19.39 is given by

Ha(s) ¼
C
QN
i¼1

(s�qi)
(s�pi)

N ¼ even

C
(s�p(Nþ1)=2)

QN
i¼1,i 6¼(Nþ1)=2

(s�qi)
(s�pi)

N ¼ odd

8>>><
>>>:

(19:40)

where

C ¼

QN
i¼1

pi
qi

N is even

�p(Nþ1)=2
QN

i¼1,i6¼(Nþ1)=2

pi
qi

N is odd

8>>>><
>>>>:

(19:41)

pi ¼ ls

a2
i þ b2

i

(ai � jbi) qi ¼ j
ls

cos 2i�1
2N p

�  (19:42)

f ¼ 1
N

cosh�1 (d�1) ¼ 1
N

ln [d�1 þ (d�2 � 1)1=2] (19:43)

TABLE 19.3 Normalized Chebyshev Polynomials CN (s) for Passband
Ripple ¼ 0:5, 1, and 3 dB

N CN (s) for Passband Ripple 0.5 dB

1 0:3493sþ 1

2 0:6595s2 þ 0:9403sþ 1

3 1:3972s3 þ 1:7506s2 þ 2:1446sþ 1

4 2:6382s4 þ 3:1589s3 þ 4:5294s2 þ 2:7053sþ 1

5 5:589s5 þ 6:5530s4 þ 10:8279s3 þ 7:3192s2 þ 4:2058sþ 1

6 10:5527s6 þ 12:2324s5 þ 22:9188s4 þ 16:7763s3 þ 12:3663s2 þ 4:5626sþ 1

N CN (s) for Passband Ripple 1 dB

1 0:5088sþ 1

2 0:9070s2 þ 0:9957sþ 1

3 2:0354s3 þ 2:0117s2 þ 2:5206sþ 1

4 3:6281s4 þ 3:4569s3 þ 5:2750s2 þ 2:6943sþ 1

5 8:1416s5 þ 7:6272s4 þ 13:7496s3 þ 7:9331s2 þ 4:7265sþ 1

6 14:5123s6 þ 13:4711s5 þ 28:0208s4 þ 17:4459s3 þ 13:6321s2 þ 4:4565sþ 1

N CN (s) for Passband Ripple 3 dB

1 0:9976sþ 1

2 1:4125s2 þ 0:9109sþ 1

3 3:9905s3 þ 2:3833s2 þ 3:7046sþ 1

4 5:6501s4 þ 3:2860s3 þ 6:6057s2 þ 2:287sþ 1

5 15:9621s5 þ 9:1702s4 þ 22:5867s3 þ 8:7622s2 þ 6:5120sþ 1

6 22:6005s6 þ 12:8981s5 þ 37:5813s4 þ 15:6082s3 þ 15:8000s2 þ 3:6936sþ 1
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Note that the zeros are on the imaginary axis on the s plane. The filter order N required to
satisfy the specification in Equation 19.27 is the same as the order for the Chebyshev filter, given by
Equation 19.38.
Another form for the inverse Chebyshev filter has magnitude response square given by

jHa(l)j2 ¼ 1

1þ e2 T2
N (ls=lp)
T2
N (ls=l)

(19:44)

which passes through 1=(1þ e2) at l ¼ lp. For further details of this form see Ref. [1].

19.2.2.4 Elliptic Filters (Cauer Filters)

Elliptic filters have equiripples in both the passband and the stopband. We summarize the
magnitude response and the transfer function of an elliptic filter as follows. Detail of derivation can be
found in Refs. [2,3].
The magnitude response square is given by

jHa(l)j2 ¼ 1
1þ e2R2

N(l)
(19:45)
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FIGURE 19.11 Magnitude responses of inverse Chebyshev filters.
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where RN(l) is the Chebyshev rational function given by

RN(l) ¼
(d�2�1)1=4

e1=2 l
Q(N�1)=2

i¼1

l2�lrsn2
2iK(lr)

N , lr½ �
l2lrsn2

2iK(lr)
N ,lr½ ��1

N ¼ odd

(d�2�1)1=4

e1=2 l
Q(N�1)=2

i¼1

l2�lrsn2
(2i�1)K(lr)

N , lr½ �
l2lrsn2

(2i�1(lr )
N , lr½ ��1

N ¼ even

8>>><
>>>:

(19:46)

Here, lr ¼ lp=ls,K(t) is the complete elliptic integral of the first kind given by

K(t) ¼
ðp=2
0

du

(1� t2 sin2 u)1=2
¼

ð1
0

dx

[(1� x2)(1� t2x2)]1=2
(19:47)

The Jacobian elliptic sine function sn[u, t] is defined as

sn[u, t] ¼ sinf if u ¼
ðf
0

du

(1� t2 sin2 u)1=2
(19:48)

The integral

F(f, t) ¼
ðf
0

du

(1� t2 sin2 u)1=2
¼

ðsinf
0

dx

[(1� x2)(1� t2x2)]1=2
(19:49)

is called the elliptic integral of the first kind. Note that K(t) ¼ F(p=2, t).
The transfer function corresponding to the magnitude response in Equation 19.45 is

Ha(s) ¼
C

(sþp0)

Q(N�1)=2

i¼1

(s2þBi)
(s2þAi1sþAi2)

N odd

C
QN=2

i¼1

(s2þBi)
(s2þAi1sþAi2)

N even

8>>><
>>>:

(19:50)

C ¼
p0

Q(N�1)=2

i¼1

Ai2
Bi

N odd

1
(1þe2)1=2

QN=2

i¼1

Ai2
Bi

N even

8>>><
>>>:

(19:51)

The pole p0 and the coefficients Bi,Ai1 are calculated as follows:

lr ¼ lp

ls
lc ¼

ffiffiffiffiffiffiffiffiffi
lpls

p
a ¼ 0:5

1� (1� l2r )
1=4

1þ (1� l2r )
1=4

(19:52)

b ¼ e�pK[(1�l2r )
1=2]=K(lr) � aþ 2a5 þ 15a9 þ 150a13 (19:53)

g ¼ 1
2N

ln
(1þ e2)1=2 þ 1

(1þ e2)1=2 � 1

" #
(19:54)

s ¼ 2b1=4 Q1
k¼0 (�1)kbk(kþ1) sinh [(2kþ 1)g]

1þ 2
Q1

k¼1 (�1)kbk2 cosh [2kg]

�����
����� (19:55)
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z ¼ (1þ lrs
2) 1þ s2

lr


 �
h ¼ i N odd

i� 0:5 N even

n
(19:56)

ci ¼
2b1=4 P1

k¼0 (�1)kbk(kþ1) sin [(2kþ 1)ph=N]

1þ 2
P1

k¼1 (�1)kbk2 cos [2kph=N]
(19:57)

mi ¼ (1� lrc
2
i ) 1� c2

i

lr


 �� �1=2
(19:58)

p0 ¼ lcs Bi ¼ l2c
c2
i

Ai1 ¼ 2lcsmi

1þ s2c2
i

Ai2 ¼ l2c
s2m2

i þ zc2
i

1þ s2c2
i

� �2 (19:59)

The infinite summations above converge very quickly, so that only a few terms are needed in actual
calculation. A simple program can be written to compute the values in Equations 19.52 through 19.59.
The filter order required to satisfy Equation 19.27 is calculated from

N � 1
log (b)

log
e2

16(s�2 � 1)

� �
(19:60)

where b is given by Equation 19.53. An example of the magnitude response is plotted in Figure 19.12.
We see that there are ripples in both the passband and the stopband.

19.2.2.5 Comparison

In comparing the filters given above, the Butterworth filter requires the highest order and the elliptic filter
requires the smallest order to satisfy the same passband and stopband specifications. The Butterworth
filter and the inverse Chebyshev filter have nicer (closer to linear) phase characteristics in the passband
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FIGURE 19.12 Magnitude response of elliptic filter.
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than Chebyshev and elliptic filters. The magnitude responses of the Butterworth and Chebyshev
filters decrease monotonically in the stopband to zero, which reduces the aliasing caused by some
analog-to-digital transformation.

19.2.3 Design Using Analog Prototype Filters

In this subsection, we consider designing IIR filters using analog prototype filters. This method is suitable
for designing the standard types of filters: low-pass filter (LPF), high-pass filter (HPF), bandpass filter
(BPF), and bandstop filter (BSF). The basic idea is to transform the digital specification to analog
specification, design an analog flter, and then transform the analog filter transfer function to digital
filter system function. Several types of transformation have been studied.
The design steps are outlined in Figure 19.13. Given the desired magnitude response jHx( f )j of digital

LPF, HPF, BPF, or BSF, it is transformed to analog magnitude specification (of the corresponding
type: LPF, HPF, BPF, or BSF) jHx

a (l)j. The analog magnitude specification is then transformed to analog
LPF magnitude specification jHa(l)j. We then design an analog prototype filter as discussed in Section
19.2.2, obtaining analog LPF transfer function Ha(s). Next, the analog LPF transfer function is trans-
formed to analog transfer function Hx

a (s) of the desired type (LPF, HPF, BPF, or BSF), followed by a
transformation to digital filter system function Hx(z). By combining the appropriate steps, we can obtain
transformations to go directly from jHx( f )j to jHa(l)j and directly fromHa(s) to H(z), as indicated by the
dotted lines in Figure 19.13. Note that for designing digital LPF, the middle steps involving jHx

a (l)j and
Hx

a (s) are not applicable.

19.2.3.1 Transformations

There are several types of transformations. They arise from approximating continuous-time signals and
systems by discrete-time signals and system. Table 19.4 shows several transformations, with their
advantages and disadvantages. The constant T is the sampling interval. The resulting mapping is
used for transforming Ha(s) to H(z). For example, in the backward difference approximation we obtain
H(z) by replacing the variable s with (1� z�1)=T in Ha(s), i.e., H(z) ¼ Ha(s)js¼1�z�1=T . The bilinear

Digital

X = LP, HP, BP, or BS

Transform to
digital filter

Hx(z)

Transform to
analog filter

Ha
x (s)

Design analog
LPF
Ha(s)

Analog LPF
specification

|Ha(λ)|

Analog
specification

|Ha
x(λ)|

Digital
specification

|Hx( f )|

Analog

FIGURE 19.13 Diagram outlining the steps involved in designing IIR filter using analog prototype filter.
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transformation is the best all-around method, followed by the impulse invariant method. Therefore, we
describe these two transformations in more detail.

19.2.3.1.1 Bilinear Transformations

Using this transformation, the analog filter is converted to digital filter by replacing s in the analog filter
transfer function with (2=T)(1� z�1)=(1þ z�1), i.e.,

H(z) ¼ Ha(s)js¼(2=T)(1�z�1)=(1þz�1) (19:61)

From the mapping, we can show as follows that the imaginary axis on the s plane is mapped to the unit
circle on the z plane. Letting s ¼ jl, we have

z ¼ 2=Tð )þ s
2=Tð )� s

¼ 2=Tð )þ jl
2=Tð )� jl

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=Tð )2 þ lð )2

q
ej arctan (l=(2=T))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=Tð )2 þ lð )2
q

ej arctan (�l=(2=T))
(19:62)

which is the unit circle on the z plane as l goes from �1 to 1. Writing z ¼ ej2pf in Equation 19.62, we
obtain the relation between the analog frequency l and the digital frequency f:

f ¼ 1
p
arctan

lT
2


 �
l ¼ 2

T
tan (pf ) (19:63)

which is plotted in Figure 19.14. Equation 19.63 is used for converting digital specification to
analog specification, i.e., ls ¼ (2=T) tan (pfs) and lp ¼ (2=T) tan (pfp). In a complete design process,
starting from the digital specification and ending at the digital filter system function, as outlined in Figure
19.13, the sampling interval T is canceled out in the process. Hence, it has no effect and any convenient
value (such as 1 or 2) can be used.

19.2.3.1.2 Impulse Invariance Method

This method approximates the analog filter impulse response ha(t) by its samples separated by T seconds.
The result is the impulse response h(n) of the digital filter, i.e., h(n) ¼ ha(nT). From this relation, it can
be shown that

0.5

f

0.0

0
λ (rad/s)

–0.5

FIGURE 19.14 Relation between l and f for bilinear transformation.
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H( f ) ¼ 1
T

X1
k¼�1

Ha(l)

�����
l¼2p( fþk)=T

¼ 1
T

X1
k¼�1

Ha 2p
f þ k
T


 �
(19:64)

The analog and digital frequencies are related by

f ¼ lT
p

, jf j � 0:5 (19:65)

From Equation 19.64, the digital filter frequency response is the sum of shifted versions of the analog
filter frequency response. There is aliasing if Ha(l) is not zero for jl=2pj > 1=(2T). Therefore, the
analog filter used in this method should have a frequency response that goes to zero quickly as l goes to1.
Because of the aliasing, this method cannot be used for designing a HPF. Writing the analog filter transfer
function in the form

Ha(s) ¼
XN
i¼1

bi
s� pið )

(19:66)

it follows that the analog impulse response is given by ha(t) ¼
PN

i¼1 bie
Pit and the digital filter can be

obtained as

H(z) ¼
X1
n¼0

h(n)z�n ¼
X1
n¼0

h(nT)z�n

¼
XN
i¼1

bi
X1
n¼0

(epiTz�1)n ¼
XN
i¼1

bi
1� epiTz�1

(19:67)

Therefore, an analog filter transfer function Ha(s) ¼
PN

i¼1 bi=(s� pi) gets transformed to a digital
filter system function H(z) ¼ PN

i¼1 bi=(1� epiTz�1), as shown in Table 19.4. Similar to the bilinear
transformation, in a complete design process the choice of T has no effect (except for the final magnitude
scaling factor).

19.2.3.2 Low-Pass Filters

We give one example in designing an LPF using the impulse invariant method and one example using the
bilinear transformation. In this example, suppose that we wish to design a digital filter using an analog
Butterworth prototype filter. The digital filter specification is

20 log jH( f )j � �2 dB for 0 � f � 0:11

20 log jH( f )j � �10 dB for 0:2 � f � 0:5

where the log is of base 10. Therefore, we have e ¼ 0:7648, d ¼ 0:3162, fp ¼ 0:11, and fs ¼ 0:2. Let us use
the impulse invariant method. Therefore, the analog passband edge and stopband edge are lp ¼ 0:22p=T
and ls ¼ 0:4p=T , respectively. We use the same ripple requirements: e ¼ 0:7648 and d ¼ 0:3162. Using
these values, a Butterworth filter order is calculated from Equation 19.30, yielding N � 2:3. So, we choose
N ¼ 3. With lc ¼ lpe�1=N ¼ 0:2406p=T , we find the analog filter transfer function to be

Ha(s) ¼ l3c
sþ lcð ) s2 þ lcsþ l2c

�
)

¼ lc
1

sþ lc
þ �0:5� j0:5=

ffiffiffi
3

p

sþ 0:5 1� j
ffiffiffi
3

p�
)lc

þ �0:5þ j0:5=
ffiffiffi
3

p

sþ 0:5(1þ j
ffiffiffi
3

p
)lc

" #

¼ 0:7559
T

1
sþ 0:7559=T

þ �0:5� j0:5=
ffiffiffi
3

p

sþ 0:3779(1� j
ffiffiffi
3

p
)=T

þ �0:5þ j0:5=
ffiffiffi
3

p

sþ 0:3779(1þ j
ffiffiffi
3

p
)=T

� �
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Using Equations 19.66 and 19.67 we obtain the digital filter system function:

H(z) ¼ 0:7559
T

1
1� e�0:7559z�1

þ �0:5� j0:5=
ffiffiffi
3

p

1� e�0:3779(1�j
ffiffi
3

p
)z�1

þ �0:5þ j0:5=
ffiffiffi
3

p

1� e�0:3779(1�j
ffiffi
3

p
)z�1

� �

¼ 0:7559
T

1
1� 0:4696z�1

� 1� 0:7846z�1

1� 1:0873z�1 þ 0:4696z�2

� �

Due to aliasing, the maximum value of the resulting magnitude response (which is at f ¼ 0 or z ¼ 1) is
no longer equal to 1, although the analog filter has maximum magnitude (at l ¼ 0 or s ¼ 0) of 1. Note
that the choice of T affects only the scaling factor, which is only a constant gain factor. If we adjust the
system function so that the maximum magnitude is 1, that is, jH( f )j ¼ 1, we have

H(z) ¼ 0:7565
T

1
1� 0:4696z�1

� 1� 0:7846z�1

1� 1:0873z�1 þ 0:4696z�2

� �

The magnitude response in decibels and the phase response in degrees are plotted in Figure 19.15. From
the result, jH( f )j ¼ �1:97 dB at f ¼ 0:11 and jH( f )j ¼ �13:42 dB at f ¼ 0:2; both satisfy the
desired specification. The aliasing in this example is small enough that the resulting response still meets
the specification. It is possible that the aliasing is large enough that the designed filter does not
meet the specification. To compensate for the unknown aliasing, we may want to use smaller e and d in
designing the analog prototype filter.
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FIGURE 19.15 Frequency response of the LPF designed using impulse invariant method.
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In this next example, we demonstrate the design method using bilinear transformation, with an analog
elliptic prototype filter. Let the desired filter specification be

jH( f )j2 � 0:8 (or � 0:97 dB) for 0 � f � 0:1125

jH( f )j2 � 2:5	 10�5 (or �46:02 dB) for 0:15 � f � 0:5

which means e ¼ 0:5, d ¼ 0:005, fp ¼ 0:1125, and fs ¼ 0:15. For bilinear transformation, we calculate the
analog passband and stopband edges as lp ¼ (2=T) tan (pfp) ¼ 0:7378=T and ls ¼ (2=T) tan (pfs) ¼
1:0190=T , respectively. Therefore, lp=ls ¼ 0:7240. From Equation 19.60, we obtain the order N � 4:8.
So, we use N ¼ 5. The analog elliptic filter transfer function is calculated from Equations 19.50 through
19.59 to be

Ha(s) ¼
7:8726	 10�3 sT

2

�
)2 þ 0:6006

� �
sT
2

�
)2 þ 0:2782

� �
sT
2

�
)þ 0:1311

� �
sT
2

�
)2 þ 0:1689 sT

2

�
)þ 0:0739

� �
sT
2

�
)2 � 0:0457 sT

2

�
)þ 0:1358

� �
To convert to digital filter system function, we replace s with (2=T)(1� z�1)=(1þ z�1). Equivalently,
we replace sT=2 with (1� z�1)=(1þ z�1), yielding

H(z) ¼ 1:0511	 10�2(1þ z�1)(1� 0:4991Z�1 þ z�2)(1� 1:1294z�1 þ z�2)
(1� 0:7682z�1)(1� 1:4903z�1 þ 0:7282z�2)(1� 1:5855z�1 þ 1:0838z�2)

Note that the choice of T has no effect on the resulting system function. The magnitude response in
decibels and the phase response are plotted in Figure 19.16, which satisfies the desired magnitude
specification. Note the equiripples in both the passband and the stopband.
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FIGURE 19.16 Frequency response of the LPF designed using bilinear transformation.
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19.2.3.3 High-Pass Filters

As mentioned above, the impulse invariant method is not suitable for HPFs due to aliasing. Therefore, we
only discuss the bilinear transformation. In addition to the procedure used with designing an LPF,
we need to transform the analog high-pass specification to analog low-pass specification and transform
the resulting analog LPF to analog HPF. There is a simple transformation for this job: replacing s in the
analog LPF transfer function with 1=s. In terms of the frequency, jl becomes 1=jl ¼ j(�1=l), i.e., a
low frequency is changed to a (negative) high frequency. Therefore, an analog LPF becomes an analog
HPF. When combined with the bilinear transformation, this process gives the transformation

s ¼ T
2
(1þ z�1)
(1� z�1)

or z ¼ sþ (T=2)
s� (T=2)

(19:68)

Writing s ¼ jl, we can show that z ¼ expfj[2 arctan (2l=T)� p]g. With z ¼ exp (j2pf ), we have

l ¼ T
2
tan [p( f þ 0:5)] (19:69)

To write f in terms of l, we can show that, after adjusting the range of f to [�1=2, 1=2],

f ¼ � 1
2 þ 1

p arctan (2l=T) l > 0

þ 1
2 þ 1

p arctan (2l=T) l < 0

(
(19:70)

Equations 19.69 and 19.70 give the relation between the digital frequency and the analog frequency,
corresponding to the transformation in Equation 19.68. This relation is plotted in Figure 19.17, from
which we see that a low digital frequency corresponds to a high analog frequency and vice versa.
We can summarize the design steps as follows. Given a digital HPF specification as in Figure 19.18, it is

converted to an analog LPF specification using Equation 19.70 to obtain the passband and stopband
edges lp and ls, from fp and fs, respectively. With lp, ls, e, and d, we design the low-pass analog
prototype filter. Let the transfer function be Ha(s). This transfer function is then converted to digital HPF
system function by replacing s with (T=2)(1þ z�1)=(1� z�1).

Note that this corresponds to the procedure in Figure 19.13, with the bypass of the ‘‘analog specifi-
cation’’ block and the ‘‘transform to analog filter’’ block, as indicated by the dotted lines in Figure 19.13.

0.5
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0.0

0
λ (rad/s)

–0.5

FIGURE 19.17 The relation for designing an HPF.

IIR Filters 19-27



As an example, consider designing a digital HPF with the following specification:

jHHP( f )j2 � 0:8 (or � 0:97 dB) for 0:4 � f � 0:5

jHHP( f )j2 � 2:5	 10�5 (or �46:02 dB) for 0 � f � 0:3

Since T does not affect the result, we let T ¼ 2 for convenience. We calculate the analog LPF passband and
stopband edges as lp ¼ tan [p(0:5þ fp)] ¼ �0:3249 rad=s and ls ¼ tan [p(0:5þ fs)] ¼ �0:7265 rad=s.
Since the magnitude response is in symmetry with respect to l ¼ 0, we use lp ¼ 0:3249 rad=s and
ls ¼ 0:7265 rad=s. Therefore, ls=lp ¼ 2:2361. Suppose that we choose the inverse Chebyshev filter as
the analog prototype filter. From Equation 19.37, we obtain the order N � 4:6. So, we use N ¼ 5. From
Equation 19.40, the low-pass analog inverse Chebyshev filter transfer function is

Ha(s) ¼ 1:8160	 10�2(s2 þ 0:5835)(s2 þ 1:5276)
(sþ 0:4822)(s2 þ 0:6772sþ 0:2018)(s2 � 0:2131sþ 0:1663)

To convert to digital filter system function, we replace s with (1þ z�1)=(1� z�1), yielding

HHP(s) ¼ 1:8160	 10�2(1� z�1)(1þ 0:5261z�1 þ z�2)(1� 0:4175z�1 þ z�2)
(1þ 0:3493z�1)(1þ 0:8498z�1 þ 0:2792z�2)(1þ 1:2088z�1 þ 0:6910z�2)

The magnitude response and the phase response are plotted in Figure 19.19.

19.2.3.4 Bandpass Filters

A magnitude response specification for a digital BPF is depicted in Figure 19.20a. Note that there are two
passband edges (fp1 and fp2) and two stopband edges ( fs1 and fs2). For the bilinear transformation
s ¼ (2=T)(1� z�1)=(1� z�1) we can transform the digital BPF specification to an analog BPF specifi-
cation by letting

|HHP( f )|2

Stopband Passband

0.5
0

1

1/(1 + ε2)

δ2

f
fs fp

Transition band

FIGURE 19.18 Digital HPF specification.
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lp1 ¼ 2T tan (pfp1) lp2 ¼ 2T tan (pfp2)

ls1 ¼ 2T tan (pfs1) ls2 ¼ 2T tan (pfs2)
(19:71)

and keeping the same e and d.
Now, we need a transformation between an analog BPF and an analog LPF. To distinguish between the

variable s and l for the two filters, let us use s0 and l0 for the analog LPF and s and l for the analog BPF,
respectively. A transformation for converting an analog LPF to an analog BPF is given by
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FIGURE 19.19 Frequency response of the HPF designed using bilinear transformation.
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FIGURE 19.20 Magnitude specifications for digital BPF and BSF: (a) digital BPF specification and (b) digital BSF
specification.
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s0 ¼ s2 þ l20
Ws

or l0 ¼ l2 � l20
Wl

(19:72)

where

W ¼ lp2 � lp1 and l20 ¼ lp1lp2 (19:73)

Figure 19.21 depicts an example of the relation between l and l0. Note that lp1 and lp2 get mapped to
l0 ¼ �1 and þ1, respectively. Therefore, the analog LPF has a passband edge of 1. The values of ls1 and
ls2 get mapped to l0s1 ¼ �j(l2s1 � l20)=(Wls1)j and l0s2 ¼ j(l2s2 � l20)=(Wls2)j. However, these two
values may not be negative of each other. Since the analog LPF must have a symmetric magnitude
response, we must use the more stringent of the two stopband edges, i.e., the smaller of jl0s1j and jl0s2j.
Letting

l0s ¼ minfjl0s1j, jl0s2jg ¼ min
l2s1 � l20
Wls1

����
����, l2s2 � l20

Wls2

����
����

� �
(19:74)

we now have the analog LPF specification. Therefore, a prototype analog LPF can be designed.
The design process can be summarized as follows. First, the desired digital BPF magnitude specifica-

tion is converted to an analog BPF magnitude specification using Equation 19.71. Then the analog BPF
specification is converted to an analog LPF specification using l0s calculated from Equation 19.74 and
l0p ¼ 1. Next, a prototype analog LPF is designed with the values of e, d,l0p ¼ 1, yielding an analog LPF
transfer function Ha(s0). The LPF transfer function is converted to an analog BPF transfer function
HHP

a (s), using the transformation (from s0 to s) given in Equation 19.72. Finally, the analog BPF transfer
function is converted to a digital BPF transfer function HBP(z) using the bilinear transformation
s ¼ (2=T)(1� z�1)=(1þ z�1). As before, the value of T does not affect the result.
For example, let the desired digital BPF have the following specification:

jHBP( f )j2 � 0:8 (�0:97 dB) for 0:25 � f � 0:3

� 2:5	 10�5 (�46:02 dB) for 0 � f � 0:2 and 0:35 � f � 0:5

�

which means e¼ 0:5,d¼ 0:005, fp1 ¼ 0:25, fp2 ¼ 0:3, fs1 ¼ 0:2, and fs2 ¼ 0:35. Let T ¼ 2 for convenience.
Using l ¼ tan(pf ), we obtain the analog BPF passband and stopband edges as lp1 ¼ tan(pfp1) ¼ 1:0 rad=s,
lp2 ¼ tan(pfp2) ¼ 1:3764 rad=s, ls1 ¼ tan(pfs1) ¼ 0:7265 rad=s, and ls2 ¼ tan(pfs2) ¼ 1:9626 rad=s.
Therefore, l20 ¼ 1:3764 andW ¼ 0:3764. So, we have l0s ¼ minf3:1030,3,3509g ¼ 3:1030 rad=s. Suppose

BP frequency

LP frequency

1
0
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–λp2 –λp1 λp1 λp2

FIGURE 19.21 Relation between l and l0 for bandpass-to-low-pass conversion.
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that we use the elliptic LPF as an analog prototype filter. With e ¼ 0:5, d ¼ 0:005, l0p ¼ 1, and
l0s ¼ 3:1030 rad=s, we need an elliptic filter of order N ¼ 3. The low-pass analog elliptic filter transfer
function is

Ha(s
0) ¼ 4:1129	 10�2(s02 þ 12:6640)

(s0 þ 0:5174)(s02 þ 0:763s0 þ 1:0067)

Replacing s0 with (s2 þ 1:3764)=(0:3764s) yields the analog BPF transfer function

HBP
a (s) ¼ 1:5480	 10�2s(s4 þ 4:5467s2 þ 1:8944)

(s2 þ 0:1947sþ 1:3764)(s4 þ 0:1793s3 þ 2:8953s2 þ 0:2467sþ 1:8944)

Note that an Nth-order LPF becomes a 2Nth-order BPF. To convert to digital filter system function, we
replace s with (1� z�1)=(1þ z�1), yielding

HBP(z) ¼ 7:2077	 10�3(1� z�2)	 (1þ 0:4807z�1 þ 1:1117z�2 þ 0:4807z�3 þ z�4)
(1þ 0:2928z�1 þ 0:8485z�2)	 (1þ 0:5973z�1 þ 1:8623z�2 þ 0:5539z�3 þ 0:8629z�4)

The magnitude and phase responses are plotted in Figure 19.22.
Note that for the transformation in Equation 19.72, we can also let W ¼ ls2 � ls1 and l20 ¼ ls1ls2,

instead of Equation 19.73. Such a choice will give l0s ¼ 1. The passband edge for the prototype LPF is
now calculated from l0p ¼ minfj(l2p1 � l20)=(Wlp1)j jl2p2 � l20)=(Wlp2)jg.
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FIGURE 19.22 Frequency response of the designed digital BPF.
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19.2.3.5 Bandstop Filters

A digital BSF specification is depicted in Figure 19.20b. As in the case of the BPF there are two passband
edges (fp1 and fp2) and two stopband edges (fs1 and fs2). A transformation from analog BSF to analog LPF
is given by

s0 ¼ Ws

s2 þ l20
or l0 ¼ Wl

l20 � l2
(19:75)

where W and l20 are given by Equation 19.73. Note that the expression for s in Equation 19.75 is the
reciprocal of that in Equation 19.72. The relation between the LPF frequency l0 and the BSF frequency l
is depicted in Figure 19.23. The passband edges lp1 and lp2 get mapped to l0 ¼ 1 and �1, respectively.
The values of ls1 and ls2 get mapped to l0s1 ¼ Wls1=(l20 � l2s1) and l0s2 ¼ Wls2=(l20 � l2s2). Therefore,
the passband edge and stopband edge of the prototype analog LPF are 1 and l0s, respectively, where

l0s ¼ minfjl0s1j, jl0s2jg ¼ min
Ws1l

l20 � l2s1

����
����, Wls2

l20 � l2s2

����
����

� �
(19:76)

The design process for the BSF can follow the same process as the design for the BPF, except that we use
Equations 19.75 and 19.76 instead of Equations 19.62 and 19.64.
Similar to the case of the BPF, we can also let W ¼ ls2 � ls1 and l20 ¼ ls1ls2 instead of Equation

19.73, for the transformation in Equation 19.75. The stopband edge and the passband edge for the
prototype LPF are now l0s ¼ 1 and l0p ¼ minfjWlp1=(l20 � l2p1)j, jWlp2=(l20 � l2p2)jg.

19.2.4 Design Using Digital Frequency Transformations

This method assumes that we can design a digital LPF. The desired filter is then obtained from the digital
LPF by transforming the digital LPF in the z domain. Let us denote the z variable for the digital LPF by z0

and that for the desired digital filter by z. Similarly, we use f 0 for the digital frequency of the digital LPF
and f for the frequency of the desired digital filter. Suppose that the digital LPF has system function H(z0)
and the desired digital filter has system function Hx(z), where x stands for LP, HP, BP, or BS. The system
function Hx(z) is obtained from H(z0) by replacing z0 with an appropriate function of z. The LPF H(z0)
can be designed using the method discussed in the Section 19.2.3, or by some other means. The
specification for the digital LPF is obtained from the specification of the desired digital filter through
the relation between f 0 and f. The relation depends on the specific transformation. Note that the
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FIGURE 19.23 Relation between l and l0 for bandstop-to-lowpass conversion.
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difference between the method in this section and the method described above is that the transformation
between the desired type of filter and the LPF is in the digital domain (the z domain) for the current
method whereas it is in the analog domain (the s domain) in the previous method. Figure 19.24 shows the
design process using digital frequency transformation. The advantage of the current method is that in
designing a desired digital HPF, BPF, or BSF, we design a digital LPF, which can make use of the impulse
invariant method, in addition to the bilinear transformation. This is not the case for the method
discussed previously, due to excessive aliasing.

19.2.4.1 Low-Pass Filters

We can transform a digital LPF to a digital LPF using the transformation

z0 ¼ z þ a

1þ az
jaj < 1 (19:77)

With z ¼ exp(j2pf ) and z0 ¼ exp(j2pf 0), we can show that the digital frequencies are related by

f 0 ¼ 1
2p

arctan
(1� a2) sin 2pf

2aþ (1þ a2) cos 2pf

� �
(19:78)

The relation given by Equation 19.78 is plotted in Figure 19.25a. If a ¼ 0, then z0 ¼ z and f 0 ¼ f ,
which is the trivial case. When s 6¼ 0, there is frequency warping introduced by the transformation. After
choosing a, we can transform the desired digital LPF specification to another digital LPF specification,
i.e., calculate f 0p and f 0s from fp and fs. With fp, fs, e, and d, a digital LPF can then be designed to satisfy the
specification. The resulting system function is then transformed to the desired LPF using Equation 19.77.
This method may yield a filter of lower or higher order (due to the frequency warping) compared to the
case that there is no digital frequency transformation (a ¼ 0).
As an alternative to specifying a, we can specify f 0p, which, together with fp, specifies the value of a,

according to Equation 19.68. With the value of a, we can calculate f 0s from fs. We can also exchange the
role of the passband edge with the stopband edge, i.e., we specify f 0s and compute a from the values of f 0s
and fs. With a, f 0p can be determined from fp.

19.2.4.2 High-Pass Filters

We can transform a digital LPF to a digital HPF using the transformation

z0 ¼ � z þ a

1þ az
jaj < 1 (19:79)

Digital Analog
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|H( f΄)|

Digital
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digital filter
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H(ź )
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Design analog

LPF
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Analog LPF
specification

|Ha(λ)|

FIGURE 19.24 Design process using digital frequency transformation.
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With z ¼ exp(j2pf ) and z0 ¼ exp(j2pf 0), we obtain the relation between the two digital frequencies:

f 0 ¼ 1
2p

arctan
�(1� a2) sin 2pf

�2a� (1þ a2) cos 2pf

� �
(19:80)

The relation is plotted in Figure 19.25b. If a ¼ 0, then z0 ¼ �z and f 0 ¼ f þ 0:5. The design process
proceeds as follows. After choosing the value of a, the desired digital HPF specification is transformed to
the digital LPF specification, using the relation in Equation 19.80. Using the resulting values of f 0p and f 0s ,
together with the ripple specifications (e and d), a digital LPF is designed to satisfy the specification. The
resulting LPF system function H(z0) is then transformed to the desired HPF by substituting z0 with
�(z þ a)=(1þ az), given by Equation 19.79. Similar to the case of the LPF, we can specify f 0p (instead
of a) and calculate the required value of a from f 0p and fp.

19.2.4.3 Bandpass Filters

To transform a digital LPF to a digital BPF using the transformation

z0 ¼ � 1þ 2ak
kþ1 z þ k�1

kþ1 z
2

k�1
kþ1 þ 2ak

kþ1 z þ z2
jaj < 1, k > 0 (19:81)

This implies the following relation between the two digital frequencies:

f 0 ¼ 1
2p

arctan
(1� b)f2a sin 2pf þ (1þ b) sin 4pf g

�a2 � 2b� 2a(1þ b) cos 2pf � (b2 þ 1) cos 4pf

� �
(19:82)

where a ¼ 2ak=(kþ 1) and b ¼ (k� 1)=(kþ 1). An example of Equation 19.82 is plotted in Figure
19.26. If a ¼ 0, the curve would be odd symmetric with respect to f ¼ 0:25. The design process is similar
to the case of the HPF, except that there are now two passband edges, f 0pi and jf 0p2j, and two stopband
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FIGURE 19.25 Frequency relation for digital frequency transformations: (a) lowpass to lowpass and (b) lowpass to
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edges, f 0s1 and jf 0p2j, for the digital LPF to satisfy (see Figure 19.25). To satisfy both sets, we let
f 0p ¼ maxff 0p1, jf 0p2jg and f 0s ¼ minffs1, jf 0s2jg be the passband and stopband edges for the digital LPF filter.
If we specify f 0p, then together with fp1 and fp2, they determine the values of a and k:

a ¼ cos[p( fp2 þ fp1)]

cos[p( fp2 � fp1)]
k ¼ cot[p( fp2 � fp1)] tan(pf

0
p) (19:83)

With the values of a and k, we calculate the values of f 0s1 and f 0s2, from Equation 19.82 and let
f 0s ¼ min {f 0s1, jf 0s2j}. Thus we have f 0p, f

0
s , e, and d as the digital LPF specification. After a digital LPF

is designed to satisfy this specification, it is converted to digital BPF by the transformation in Equa-
tion 19.81.

19.2.4.4 Bandstop Filters

To transform a digital LPF to a digital BSF, we can use

z0 ¼ 1þ 2ak
kþ1 z þ k�1

kþ1 z
2

k�1
kþ1 þ 2ak

kþ1 z þ z2
jaj < 1, k > 0 (19:84)

The corresponding relation between the two digital frequencies is

f 0 ¼ 1
2p

arctan � (1� b)f2a sin 2pf þ (1þ b) sin 4pf g
a2 þ 2bþ 2a(1þ b) cos 2pf þ (b2 þ 1) cos 4pf

� �
(19:85)

where a ¼ 2ak=(kþ 1) and b ¼ (k� 1)=(kþ 1). An example is plotted in Figure 19.27. The design
process is the same as described in Section 19.2.4.3.
When f 0pi is specified, together with fp1 and fp2, the values of a and k can be calculated from

a ¼ cos [p( fp2 þ fp1)]

cos [p( fp2 � fp1)]
k ¼ tan [p( fp2 � fp1)] tan (pf

0
p) (19:86)

With these values, we calculate the values of f 0s1 and f 0s2 from Equation 19.85. Letting f 0s ¼ min {f 0s1, jf 0s2j},
we have f 0p, f

0
s , e, and d, which constitute the digital LPF specification. A digital LPF is then designed and

converted to digital BSF by the transformation in Equation 19.84.
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FIGURE 19.26 Frequency relation for BP to LP digital frequency transformation.
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19.2.5 Computer-Aided Design

The general idea is to use an algorithm to search for coefficients such that the resulting response
(magnitude and=or phase) is ‘‘close’’ to the desired response. The ‘‘closeness’’ is in some well-defined
sense. The advantage of such method is that it can be used to design nonstandard filters such as multiband
filters, phase equalizers, differentiators, etc. However, it requires a computer program to execute the
algorithm. In addition, it usually cannot directly determine the filter order such that the passband
and stopband ripples are within the desired ranges. The order is usually determined through several trials.
A large number of procedures have been studied for designing IIR filter in literatures. They can be

classified into two categories. One is the indirect approach [2] which can be divided into two steps. First,
an FIR filter that meets the required specifications is designed. Then, a lower order IIR filter is obtained,
which maintains the original magnitude and phase specifications by applying model reduction tech-
niques. The other is the direct approach in which IIR filters are directly designed to meet the frequency
response specification using the least square criterion or Chebyshev (minimax) criterion. Several tech-
niques are employed to achieve this propose. We review some of them in this section.

19.2.5.1 Least Squares (L2-Norm) Criterion

Consider the transfer function of an IIR filter given as

H(z) ¼ Y(z)
X(z)

¼ b0 þ b1z�1 þ � � � þ bMz�M

1þ a1z�1 þ � � � þ aNz�N
(19:87)

where X(z) and Y(z) are the denominator and numerator polynomials, respectively. We wish to design
the frequency response H(ejv) such that it optimally approximates the desired frequency response D(ejv).
The filter coefficients can be found by minimizing the weighted square error

E(v) ¼
ð
W2(v)jD(ejv)� H(ejv)j2dv (19:88)

where W(v) denotes a nonnegative weighting function, which is zero in the transition band. The
weighted least squares (WLS) method has been successfully applied to design an FIR filter [1] where
its coefficients are obtained from a well-known least squares solution. However, for IIR filter design,
the WLS criterion in Equation 19.88 is no longer a quadratic form of the filter coefficients. Therefore,
nonlinear optimization techniques with some stability constraints are required to solve the cost function
(Equation 19.88). However, the global minimum of E(v) may not be guaranteed. We will leave
the stability issue for the last part of this section.
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FIGURE 19.27 Frequency relation for BS to LP digital frequency transformation.
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To avoid the complexity of using nonlinear optimization techniques, the iterative procedure replaces
the cost function as

Ek(v) ¼
ð
j«k(v)j2dv

¼
ð

W2(v)

jXk�1(ejv)j2
jD(ejv)Xk(e

jv)� Yk(e
jv)j2dv (19:89)

where Xk(ejv) and Yk(ejv) are polynomials to be determined in the kth iteration. Several methods have
been proposed to solve this problem in the literature and we present a few of them here.

19.2.5.1.1 Adaptive Weighted Least Squares

The adaptive WLS method for IIR filter design can be formulated from the error function Ek(v) in
Equation 19.89

Ek(v) ¼ W(v)
Xk�1(ejv)

[D(ejv)Xk(e
jv)� Yk(e

jv)] (19:90)

By defining the following vectors

c0 ¼ e�jv � � � e�jvN
� �T

c1 ¼ 1 e�jv � � � e�jvM
� �T

ak ¼ a(k)1 � � � a(k)N

h iT
bk ¼ b(k)0 � � � b(k)M

h iT
the error function can be represented in matrix form as

Ek(v) ¼ W(v)
1þ cT0 (v)ak�1

[D(ejv)þ D(ejv)cT0 (v)ak � cT1 (v)bk] (19:91)

where Xk(ejv) ¼ 1þ cT0 (v)ak and Yk(ejv) ¼ cT1 (v)bk. Note that the superscript T denotes the transpos-
ition operation. Furthermore, if the above error function is evaluated on a dense frequency grid, the
following vector equation can be formed

ek ¼ Wk(d� Cxk) (19:92)

where

ek ¼ «k(e
jv1 ) «k(e

jv2 ) � � ��
]T

Wk ¼ diag Wk(v1)Wk(v2) � � �½ ]

d ¼ D(ejv1 ) D(ejv2 ) � � ��
]

C ¼
�e�jv1D(ejv1 ) � � � �e�jNv1D(ejv1 ) 1 e�jv1 � � � e�jMv1

�e�jv2D(ejv2 ) � � � �e�jNv2D(ejv2 ) 1 e�jv2 � � � e�jMv2

..

. ..
. ..

. ..
. ..

. ..
. ..

.

2
664

3
775

xk ¼
ak
bk

� �
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Here, the weighting function Ŵk(v) is defined as

Ŵk(v) ¼ W(v)
jXk�1(ejv)j (19:93)

The cost function in Equation 19.89 can be approximated as

Ek(v) ¼ ke(v)k22 � eHk ek (19:94)

where superscript ( � )H denotes the conjugate transpose operation. Minimizing the cost function Ek(v)
leads to the well-known least squares solution,

xk ¼ [Re(CH)WkRe(C)þ Im(CH)WkIm(C)]�1[Re(CH)WkRe(d)þ Im(CH)WkIm(d)] (19:95)

Once the filter coefficients are obtained, some weight updating procedures [1] are then applied to
achieve the equiripple filter response.

19.2.5.1.2 Quadratic Programming

Using the same cost function in Equation 19.89, the problem can be formulated in a standard quadratic
programming form as

E ¼ xTkHkxk þ xTkpk þ constant (19:96)

where

xk ¼ ak
bk

� �
, Hk ¼ H11 H12

HT
12 H22

� �
, and pk ¼

p1
p2

� �

with

H11 ¼
ð
Ŵk(v)jD(ejv)j2(c0cH0 )dv

H12 ¼
ð
Ŵk(v)Re(D(e

jv)(c0c
H
1 ))dv

H22 ¼
ð
Ŵk(v)(c1c

H
1 )dv

p1 ¼
ð
Ŵk(v)jD(ejv)j2 Re(c0)dv

p2 ¼ �
ð
Ŵk(v)Re(D(e

jv)c1)dv

Ŵk(v) ¼ W2(v)

jXk�1(ejv)j2

The stability and amplitude requirements are taken care of by imposing linear inequality constraints
[4]. Filter coefficients can be found by minimizing the cost function (Equation 19.96) using standard
quadratic programming tools.
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19.2.5.1.3 Eigenfilter

The eigenfilter approach was proposed in Ref. [5] for designing linear-phase FIR filters. The goal is to
express the cost function (Equation 19.89) in form of

E ¼ hTPh (19:97)

where
h is a vector containing the unknown filter coefficients matrix
P is symmetric, real, and positive-definite

If h has unit norm, i.e., hTh ¼ 1, to avoid trivial solution, then the optimal h which minimizes the cost
function E is simply the eigenvector corresponding to the minimum eigenvalue of P. The eigenfilter
method can also be applied to design IIR filter. The problem may be formulated in two ways.

1. Time-domain approach
In this method, the objective error function is formulated in time domain as

e(n) ¼
XN
k¼0

a(k)h1(n� k)�
XM
k¼0

b(k)d(n� k) (19:98)

where h1(n) is the impulse response of a target transfer function H(z) ¼ H1(z)þ H1(z�1). The
filter H1(z) is stable and causal so that a noncausal implementation of the system is necessary.
With some mathematical manipulation, the error function (Equation 19.98) can be expressed in
the standard form of Equation 19.97. Therefore, the IIR filter coefficients a(n) and b(n) can be
found. This method can also be extended to design 2-D IIR filters. However, to achieve good
approximation in filter design, computation must be performed on matrices of very large size.

2. Frequency-domain approach
In this approach, the error function in Equation 19.90 is used to formulate the problem in another
way as

e(v) ¼ W(v)hTc (19:99)

where

c ¼ [D(ejv) D(ejv)e�jv � � �D(ejv)e�jvN � 1� e�jv � � � e�jvM]T

h ¼ [a0 a1 � � � aN b0 b1 � � � bM]T
(19:100)

Consequently, the cost function in Equation 19.89 can be expressed as

E ¼
ð
hTc*cThW(v)dv ¼ hTPh, v 2 V (19:101)

where
superscript * denotes the conjugation operation
V is the frequency region of interest

the matrix

P ¼
ð
c*cTW(v)dv (19:102)

is a symmetric, real, positive-definite matrix.
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By subjecting h to the usual unit norm condition hTh ¼ 1, the optimum filter coefficients that
minimize the cost function are the elements of the eigenvector of the matrix P corresponding to the
minimum eigenvalue. The eigenfilter method can solve constrained filter design problem. How-
ever, to obtain equiripple filters, a weight adaptive procedure is needed.

19.2.5.2 Weighted Chebyshev (L1-Norm) Criterion

An IIR filter can also be formulated on weighted Chebyshev criterion. Filter coefficients are chosen such
that its weighted Chebyshev (minimax) error between desired and actual frequency response is minim-
ized. The iterative cost function in Equation 19.89 is now evaluated on Chebyshev criterion as

E ¼ max
v2V

W(v)
jXk�1(ejv)j jD(e

jv)Xk(e
jv)� Yk(e

jv)j

¼ max
v2V

Wk(v)jD(ejv)þ xTk sj (19:103)

where

s ¼ [D(ejv)c0 � c1]
T

xk is the coefficient vector previously defined in Equation 19.92.
The solution of the minimax problem in Equation 19.103 can be found by solving the following

equivalent linear programming problem

min
xk

ek (19:104)

subject to

Wk(v)jD(ejv)þ xTk sj � ek (19:105)

With a stability constraint, the above linear programming problem can be arranged in standard form
of linear programming technique and solved using off-the-shelf linear programming software.

19.2.6 Stability Issues

An IIR filter can be unstable if there are some poles outside the unit circle. However, in case that the
phase response is not important in the design, an unstable IIR filter obtained from a design algorithm can
be stabilized by conjugate reciprocal substitution of the unstable factor without changing its amplitude.
If, however, phase response is a part of design specification, some other techniques must be used. There
are four major approaches that can be applied for filter stabilization when optimization techniques
previously described are used. The following is a summary. More details and references can be found
in Ref. [6].

1. First approach is proposed by Deczky [3]. In this method, a standard gradient-based optimization
is modified so that the searching trajectory is only inside the border of stability. However, the
algorithm has high computation complexity. A standard optimization tool cannot be used.

2. In the second approach, the target frequency response is chosen such that the desired filter is
stable as in Ref. [7]. The target filter is restricted and may be too difficult to obtain filter
stabilization.
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3. Third approach is to impose constraints on the denominator X(z) of the filter transfer function. A
stable IIR filter is achieved by imposing the real part of X(z) to be nonnegative. However, using
these methods, some optimal solution that is excluded from the constraints may not be found.

4. Fourth approach is to transform a transfer function such that its optimum solution always lies in
the stable area [6]. However, this method leads to a very complicated cost function that requires
nonlinear optimization methods.
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19.3 Lattice Digital Filters

Yong Ching Lim

19.3.1 Lattice Filters

There are several families of lattice structures for the implementation of IIR filters. Two of the most
commonly encountered families are the tapped numerator structure shown in Figure 19.28 [3] and the
injected numerator structure shown in Figure 19.29 [3]. It should be noted that not all the taps and
injectors of the filters are nontrivial. For example, if li ¼ 0 for all i, the structure of Figure 19.28
simplifies to that of Figure 19.30 [1]. If fi ¼ 0 for i > 0, the structure of Figure 19.29 reduces to that of
Figure 19.31. For both families, the denominator of the filter’s transfer function is synthesized using a
lattice network. The transfer function’s numerator of the tapped numerator structure is realized by a

Y(z)
φ0

φ1 φ2 φN

X(z)

–k1

k1

–k2

k2

–kN

λNλ2λ1

kN

z–1 z–1

FIGURE 19.28 General structure of a tapped numerator lattice filter.
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weighted sum of the signals tapped from N þ 1 appropriate points of the lattice. For the injected
numerator structure, the transfer function’s numerator is realized by weighting and injecting the input
into N þ 1 appropriate points on the lattice. The lattice itself may appear in several forms as shown in
Figure 19.32 [1]. Figure 19.33 shows the structure of a third-order injected numerator filter synthesized
using the one-multiplier lattice of Figure 19.32b.

19.3.2 Evaluation of the Reflection Coefficients kn [2]

The nth reflection coefficient kn for both families of filters may be evaluated as follows: Let the transfer
function of the filter H(z) be given by

H(z) ¼ B(z)
A(z)

(19:106)

Y(z)

φ0 φ1 φN–1

X(Z)

–k1

k1

–kN–1 –kN

kN–1

θ1 θN–1θ0

kN

Z–1 Z–1

FIGURE 19.29 General structure of an injected numerator lattice filter.
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FIGURE 19.30 Structure of a tapped numerator lattice filter with li¼ 0 for all i.
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FIGURE 19.31 Structure of an injected lattice filter with fi¼ 0 for i > 0.
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where

B(z) ¼
XN
n¼0

bnz
�n (19:107)

A(z) ¼ 1þ
XN
n¼1

anz
�n (19:108)

Define

DN(z) ¼ A(z) (19:109)

Dn�1(z) ¼ Dn(z)� knz�nDn z�1ð Þ
1� k2n

(19:110)

¼ 1þ
Xn�1

r¼1

dn�1(r)z
�r (19:111)
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n
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n

(a)

(b) (c)

(d) (e)

FIGURE 19.32 (a) Two-multiplier lattice; (b) and (c) one-multiplier lattice; (d) three-multiplier lattice; and
(e) four-multiplier lattice.
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FIGURE 19.33 Third-order one-multiplier injected numerator lattice filter.
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The algorithm for computing kn for all n runs as follows:

1. Set n ¼ N.
2. Compute Dn(z).
3. kn ¼ dn(n).
4. Decrement n.
5. If n ¼ 0, stop; otherwise, go to 2.

19.3.3 Evaluation of the Tap Gains wn and ln [3]

For the tapped numerator filters, wn and ln may be computed as follows:
Define

GN (z) ¼ B(z) (19:112)

Gn�1(z) ¼ Gn(z)� lnDn(z)� cnz
�nDn z�1

� 
(19:113)

¼
Xn�1

r¼0

gn�1(r)z
�r (19:114)

The algorithm for computing wn and ln for all n runs as follows:

1. Set n ¼ N.
2. Compute Gn(z).

Set either cn ¼ 0, ln ¼ 0, or ln ¼ 0.
If cn ¼ 0, ln ¼ gn(n)=kn.
If ln ¼ 0, cn ¼ gn(n).

3. Decrement n.
4. If n ¼ �1, stop; otherwise, go to 2.

19.3.4 Evaluation of the Injector Gains un and fn [3]

For the injected numerator filters, un and fn may be computed as follows:
Define

L00(z) ¼
1 0

0 1

" #
(19:115)

Lnm(z) ¼
1 knz�1

kn z�1

" #
Ln�1
m (z), n > m (19:116)

¼
Pn
m(z) Qn

m(z)

Rn
m(z) Snm(z)

" #
(19:117)

Pn
m(z) ¼ 1þ

Xn�m�1

r¼1

pnm(r)z
�r (19:118)

Qn
m(z) ¼

Xn�m

r¼1

qnm(r)z
�r (19:119)

JN�1 ¼ B(z)þ f0Q
N
0 (z) (19:120)

19-44 Passive, Active, and Digital Filters



Jn�1(z) ¼ Jn(z)þ fN�nQ
N
N�n(z)� uN�n�1P

N
N�n�1(z) (19:121)

¼
Xn�1

r¼0

jn�1(r)z
�r (19:122)

The algorithm for computing un and fn for all n runs as follows:

1. f0 ¼ �bN=qN0 (N).
Set n ¼ 0.

2. Increment n.
Compute JN�n(z).
Set either fn ¼ 0 or un�1 ¼ 0.
If fn ¼ 0, un�1 ¼ jN�n(N � n)=pNn�1(N � n)
If un�1 ¼ 0, fn ¼ �jN�n(N � n)=qNn (N � n)

3. If n ¼ N � 1 go to 4; otherwise, go to 2.
4. uN � 1 ¼ j0(0). Stop.
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Practical digital filters must be implemented with finite precision numbers and arithmetic. As a result,
both the filter coefficients and the filter input and output signals are in discrete form. This leads to four
types of finite wordlength effects.
Discretization (quantization) of the filter coefficients has the effect of perturbing the location of the

filter poles and zeros. As a result, the actual filter response differs slightly from the ideal response. This
deterministic frequency response error is referred to as coefficient quantization error.
The use of finite precision arithmetic makes it necessary to quantize filter calculations by rounding or

truncation. Roundoff noise is that error in the filter output that results from rounding or truncation
calculations within the filter. As the name implies, this error looks like low-level noise at the filter output.
Quantization of the filter calculations also renders the filter slightly nonlinear. For large signals this

nonlinearity is negligible and roundoff noise is the major concern. However, for recursive filters with a
zero or constant input, this nonlinearity can cause spurious oscillations called limit cycles.
With fixed-point arithmetic it is possible for filter calculations to overflow. The term overflow oscilla-

tion, sometimes also called adder overflow limit cycle, refers to a high-level oscillation that can exist in an
otherwise stable filter due to the nonlinearity associated with the overflow of internal filter calculations.
In this chapter, we examine each of these finite wordlength effects. Both fixed-point and floating-point

number representations are considered.

20.1 Number Representation

In digital signal processing, (Bþ 1)-bit fixed-point numbers are usually represented as two’s-complement
signed fractions in the format
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b0 � b�1b�2 � � � b�B

The number represented is then

X ¼ �b0 þ b�12
�1 þ b�22

�2 þ � � � þ b�B2
�B (20:1)

where b0 is the sign bit and the number range is �1�X< 1. The advantage of this representation is that
the product of two numbers in the range from �1 to 1 is another number in the same range.
Floating-point numbers are represented as

X ¼ (�1)sm2c (20:2)

where
s is the sign bit
m is the mantissa
c is the characteristic or exponent

To make the representation of a number unique, the mantissa is normalized so that 0.5�m< 1.
Although floating-point numbers are always represented in the form of Equation 20.2, the way in

which this representation is actually stored in a machine may differ. Since m� 0.5, it is not necessary to
store the 2�1-weight bit of m, which is always set. Therefore, in practice numbers are usually stored as

X ¼ (�1)s(0:5þ f )2c (20:3)

where f is an unsigned fraction, 0� f< 0.5.
Most floating-point processors now use the IEEE Standard 754 32-bit floating-point format for storing

numbers. According to this standard, the exponent is stored as an unsigned integer p where

p ¼ cþ 126 (20:4)

Therefore, a number is stored as

X ¼ (�1)s(0:5þ f )2p�126 (20:5)

where s is the sign bit, f is a 23-b unsigned fraction in the range 0� f< 0.5, and p is an 8-b unsigned
integer in the range 0� p� 255. The total number of bits is 1þ 23þ 8¼ 32. For example, in IEEE format
3=4 is written (�1)0 (0.5þ 0.25)20 so s¼ 0, p¼ 126, and f¼ 0.25. The value X¼ 0 is a unique case and is
represented by all bits zero (i.e., s¼ 0, f¼ 0, and p¼ 0). Although the 2�1-weight mantissa bit is not
actually stored, it does exist so the mantissa has 24 b plus a sign bit.

20.2 Fixed-Point Quantization Errors

In fixed-point arithmetic, a multiply doubles the number of significant bits. For example, the product
of the two 5-b numbers 0.0011 and 0.1001 is the 10-b number 00.00011011. The extra bit to the left of
the decimal point can be discarded without introducing any error. However, the least significant four
of the remaining bits must ultimately be discarded by some form of quantization so that the result can
be stored to 5 b for use in other calculations. In the example above this results in 0.0010 (quantization
by rounding) or 0.0001 (quantization by truncating). When a sum of products calculation is performed,
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the quantization can be performed either after each multiply or after all products have been summed with
double-length precision.
We will examine three types of fixed-point quantization—rounding, truncation, and magnitude

truncation. If X is an exact value then the rounded value will be denoted Qr(X), the truncated value
Qt(X), and the magnitude truncated value Qmt(X). If the quantized value has B bits to the right of
the decimal point, the quantization step size is

D ¼ 2�B (20:6)

Since rounding selects the quantized value nearest the unquantized value, it gives a value which is never
more than �D=2 away from the exact value. If we denote the rounding error by

er ¼ Qr(X)� X (20:7)

then

�D

2
� er � D

2
(20:8)

Truncation simply discards the low-order bits giving a quantized value that is always less than or equal to
the exact value so

�D < et � 0 (20:9)

Magnitude truncation chooses the nearest quantized value that has a magnitude less than or equal to the
exact value so

�D < emt < D (20:10)

The error resulting from quantization can be modeled as a random variable uniformly distributed over
the appropriate error range. Therefore, calculations with roundoff error can be considered error-free
calculations that have been corrupted by additive white noise. The mean of this noise for rounding is

mer ¼ E{er} ¼ 1
D

ðD=2
�D=2

er der ¼ 0 (20:11)

where E{ } represents the operation of taking the expected value of a random variable. Similarly, the
variance of the noise for rounding is

s2
er ¼ E{(er �mer )

2} ¼ 1
D

ðD=2
�D=2

(er �mer )
2 der ¼ D2

12
(20:12)

Likewise, for truncation,

met ¼ E{et} ¼ �D

2

s2
et ¼ E{(et �met )

2} ¼ D2

12

(20:13)
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and, for magnitude truncation

memt ¼ E{emt} ¼ 0

s2
emt

¼ E{(emt �memt )
2} ¼ D2

3

(20:14)

20.3 Floating-Point Quantization Errors

With floating-point arithmetic it is necessary to quantize after both multiplications and additions. The
addition quantization arises because, prior to addition, the mantissa of the smaller number in the sum is
shifted right until the exponent of both numbers is the same. In general, this gives a sum mantissa that
is too long and so must be quantized.
We will assume that quantization in floating-point arithmetic is performed by rounding. Because of

the exponent in floating-point arithmetic, it is the relative error that is important. The relative error is
defined as

er ¼ Qr(X)� X
X

¼ er
X

(20:15)

Since X¼ (�1)sm2c, Qr(X)¼ (�1)s Qr(m)2c and

er ¼ Qr(m)�m
m

¼ e
m

(20:16)

If the quantized mantissa has B bits to the right of the decimal point, jerj<D=2 where, as before, D¼ 2�B.
Therefore, since 0.5�m< 1,

erj j < D (20:17)

If we assume that e is uniformly distributed over the range from �D=2 to D=2 and m is uniformly
distributed over 0.5 to 1,

mer ¼ E
e
m

n o
¼ 0

s2
er ¼ E

e
m

� �2
� �

¼ 2
D

ð1
1=2

ðD=2
�D=2

e2

m2
de dm

¼ D2

6
¼ (0:167)2�2B (20:18)

In practice, the distribution of m is not exactly uniform. Actual measurements of roundoff noise in
Ref. [1] suggested that

s2
er � 0:23D2 (20:19)

while a detailed theoretical and experimental analysis in Ref. [2] determined

s2
er � 0:18D2 (20:20)
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From Equation 20.15 we can represent a quantized floating-point value in terms of the unquantized value
and the random variable er using

Qr(X) ¼ X(1þ er) (20:21)

Therefore, the finite-precision product X1X2 and the sum X1þX2 can be written

fl(X1X2) ¼ X1X2(1þ er) (20:22)

and

fl(X1 þ X2) ¼ (X1 þ X2)(1þ er) (20:23)

where er is zero-mean with the variance of Equation 20.20.

20.4 Roundoff Noise

To determine the roundoff noise at the output of a digital filter we will assume that the noise due to a
quantization is stationary, white, and uncorrelated with the filter input, output, and internal variables.
This assumption is good if the filter input changes from sample to sample in a sufficiently complex
manner. It is not valid for zero or constant inputs for which the effects of rounding are analyzed from a
limit cycle perspective.
To satisfy the assumption of a sufficiently complex input, roundoff noise in digital filters is often

calculated for the case of a zero-mean white noise filter input signal x(n) of variance s2
x. This simplifies

calculation of the output roundoff noise because expected values of the form E{x(n)x(n� k)} are zero for
k 6¼ 0 and give s2

x when k¼ 0. This approach to analysis has been found to give estimates of the output
roundoff noise that are close to the noise actually observed for other input signals.
Another assumption that will be made in calculating roundoff noise is that the product of two

quantization errors is zero. To justify this assumption, consider the case of a 16-b fixed-point processor.
In this case a quantization error is of the order 2�15, while the product of two quantization errors is of the
order 2�30, which is negligible by comparison.
If a linear system with impulse response g(n) is excited by white noise with mean mx and variance s2

x,
the output is noise of mean [3, pp. 788–790]

my ¼ mx

X1
n¼�1

g(n) (20:24)

and variance

s2
y ¼ s2

x

X1
n¼�1

g2(n) (20:25)

Therefore, if g(n) is the impulse response from the point where a roundoff takes place to the filter output,
the contribution of that roundoff to the variance (mean-square value) of the output roundoff noise is
given by Equation 20.25 with s2

x replaced with the variance of the roundoff. If there is more than one
source of roundoff error in the filter, it is assumed that the errors are uncorrelated so the output noise
variance is simply the sum of the contributions from each source.

Finite Wordlength Effects 20-5



20.4.1 Roundoff Noise in FIR Filters

The simplest case to analyze is a finite impulse response (FIR) filter realized via the convolution
summation

y(n) ¼
XN�1

k¼0

h(k)x(n� k) (20:26)

When fixed-point arithmetic is used and quantization is performed after each multiply, the result of the
N multiplies is N-times the quantization noise of a single multiply. For example, rounding after each
multiply gives, from Equations 20.6 and 20.12, an output noise variance of

s2
o ¼ N

2�2B

12
(20:27)

Virtually all digital signal processor integrated circuits contain one or more double-length accumulator
registers which permit the sum-of-products in Equation 20.26 to be accumulated without quantization.
In this case only a single quantization is necessary following the summation and

s2
o ¼

2�2B

12
(20:28)

For the floating-point roundoff noise case we will consider Equation 20.26 for N¼ 4 and then generalize
the result to other values of N. The finite-precision output can be written as the exact output plus an error
term e(n). Thus,

y(n)þ e(n) ¼ h(0)x(n)[1þ e1(n)]½ �fð
þ h(1)x(n� 1)[1þ e2(n)] [1þ e3(n)]

þ h(2)x(n� 2)[1þ e4(n)]g{1þ e5(n)}

þ h(3)x(n� 3)[1þ e6(n)])[1þ e7(n)] (20:29)

In Equation 20.29, e1(n) represents the error in the first product, e2(n) the error in the second product,
e3(n) the error in the first addition, etc. Notice that it has been assumed that the products are summed in
the order implied by the summation of Equation 20.26.
Expanding Equation 20.29, ignoring products of error terms, and recognizing y(n) gives

e(n) ¼ h(0)x(n)[e1(n)þ e3(n)þ e5(n)þ e7(n)]

þ h(1)x(n� 1)[e2(n)þ e3(n)þ e5(n)þ e7(n)]

þ h(2)x(n� 2)[e4(n)þ e5(n)þ e7(n)]

þ h(3)x(n� 3)[e6(n)þ e7(n)] (20:30)

Assuming that the input is white noise of variance sx
2 so that E{x(n)x(n� k)} is zero for k 6¼ 0, and

assuming that the errors are uncorrelated,

E{e2(n)} ¼ [4h2(0)þ 4h2(1)þ 3h2(2)þ 2h2(3)]s2
xs

2
er (20:31)
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In general, for any N,

s2
o ¼ E{e2(n)} ¼ Nh2(0)þ

XN�1

k¼1

(N þ 1� k)h2(k)

" #
s2
xs

2
er (20:32)

Notice that if the order of summation of the product terms in the convolution summation is changed,
then the order in which the h(k)’s appear in Equation 20.32 changes. If the order is changed so that the
h(k) with smallest magnitude is first, followed by the next smallest, etc., then the roundoff noise variance
is minimized. However, performing the convolution summation in nonsequential order greatly compli-
cates data indexing and so may not be worth the reduction obtained in roundoff noise.

20.4.2 Roundoff Noise in Fixed-Point IIR Filters

To determine the roundoff noise of a fixed-point infinite impulse response (IIR) filter realization,
consider a causal first-order filter with impulse response

h(n) ¼ anu(n) (20:33)

realized by the difference equation

y(n) ¼ ay(n� 1)þ x(n) (20:34)

Due to roundoff error, the output actually obtained is

ŷ(n) ¼ Q{ay(n� 1)þ x(n)} ¼ ay(n� 1)þ x(n)þ e(n) (20:35)

where e(n) is a random roundoff noise sequence. Since e(n) is injected at the same point as the input, it
propagates through a system with impulse response h(n). Therefore, for fixed-point arithmetic with
rounding, the output roundoff noise variance from Equations 20.6, 20.12, 20.25, and 20.33 is

s2
o ¼

D2

12

X1
n¼�1

h2(n) ¼ D2

12

X1
n¼0

a2n ¼ 2�2B

12
1

1� a2
(20:36)

With fixed-point arithmetic there is the possibility of overflow following addition. To avoid overflow it is
necessary to restrict the input signal amplitude. This can be accomplished by either placing a scaling
multiplier at the filter input or by simply limiting the maximum input signal amplitude. Consider the
case of the first-order filter of Equation 20.34. The transfer function of this filter is

H(e jv) ¼ Y(e jv)
X(e jv)

¼ 1
e jv � a

(20:37)

so

H(e jv)
�� ��2¼ 1

1þ a2 � 2a cos (v)
(20:38)

and

H(e jv)
�� ��

max¼
1

1� jaj (20:39)
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The peak gain of the filter is 1=(1� jaj) so limiting input signal amplitudes to jx (n)j � 1� jaj will make
overflows unlikely.
An expression for the output roundoff noise-to-signal ratio can easily be obtained for the case where

the filter input is white noise, uniformly distributed over the interval from �(1� jaj) to (1� jaj) [4,5].
In this case

s2
x ¼

1
2(1� aj j)

ð1� aj j

�(1�jaj)

x2dx ¼ 1
3
(1� aj j)2 (20:40)

so, from Equation 20.25,

s2
y ¼

1
3
(1� aj j)2
1� a2

(20:41)

Combining Equations 20.36 and 20.41 then gives

s2
o

s2
y
¼ 2�2B

12
1

1� a2

� �
3

1� a2

(1� aj j)2
� �

¼ 2�2B

12
3

(1� aj j)2 (20:42)

Notice that the noise-to-signal ratio increases without bound as jaj ! 1.
Similar results can be obtained for the case of the causal second-order filter realized by the difference

equation

y(n) ¼ 2r cos (u)y(n� 1)� r2y(n� 2)þ x(n) (20:43)

This filter has complex–conjugate poles at re�ju and impulse response

h(n) ¼ 1
sin (u)

rn sin [(nþ 1)u] u(n) (20:44)

Due to roundoff error, the output actually obtained is

ŷ(n) ¼ 2r cos (u)y(n� 1)� r2y(n� 2)þ x(n)þ e(n) (20:45)

There are two noise sources contributing to e(n) if quantization is performed after each multiply, and
there is one noise source if quantization is performed after summation. Since

X1
n¼�1

h2(n) ¼ 1þ r2

1� r2
1

(1þ r2)2 � 4r2 cos2 (u)
(20:46)

the output roundoff noise is

s2
o ¼ v

2�2B

12
1þ r2

1� r2
1

(1þ r2)2 � 4r2 cos2 (u)
(20:47)

where v¼ 1 for quantization after summation, and v¼ 2 for quantization after each multiply.
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To obtain an output noise-to-signal ratio we note that

H(e jv) ¼ 1
1� 2r cos (u)e�jv þ r2e�j2v

(20:48)

and, using the approach of [6],

H(e jv)
�� ��2

max
¼ 1

4r2 sat 1þ r2
2r cos (u)

	 
� 1þ r2
2r cos (u)

� �2þ 1� r2
2r sin (u)

� �2n o (20:49)

where

sat(m) ¼
1 m > 1
m �1 � m � 1
�1 m < �1

(
(20:50)

Following the same approach as for the first-order case then gives

s2
o

s2
y
¼ v

2�2B

12
1þ r2

1� r2
3

(1þ r2)2 � 4r2 cos2 (u)

	 1

4r2 sat 1þ r2
2r cos (u)

	 
� 1þ r2
2r cos (u)

� �2þ 1� r2
2r sin (u)

� �2n o (20:51)

Figure 20.1 is a contour plot showing the noise-to-signal ratio of Equation 20.51 for v¼ 1 in units of
the noise variance of a single quantization 2�2B=12. The plot is symmetrical about u¼ 908, so only the
range from 08 to 908 is shown. Notice that as r ! 1, the roundoff noise increases without bound. Also
notice that the noise increases as u ! 08.
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FIGURE 20.1 Normalized fixed-point roundoff noise variance.
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It is possible to design state-space filter realizations that minimize fixed-point roundoff noise [7–10].
Depending on the transfer function being realized, these structures may provide a roundoff noise level
that is orders-of-magnitude lower than for a nonoptimal realization. The price paid for this reduction in
roundoff noise is an increase in the number of computations required to implement the filter. For an
Nth-order filter the increase is from roughly 2N multiplies for a direct form realization to roughly
(Nþ 1)2 for an optimal realization. However, if the filter is realized by the parallel or cascade connection
of first- and second-order optimal subfilters, the increase is only to about 4N multiplies. Furthermore,
near-optimal realizations exist that increase the number of multiplies to only about 3N [10].

20.4.3 Roundoff Noise in Floating-Point IIR Filters

For floating-point arithmetic it is first necessary to determine the injected noise variance of each
quantization. For the first-order filter this is done by writing the computed output as

y(n)þ e(n) ¼ [ay(n� 1)(1þ e1(n))þ x(n)](1þ e2(n)) (20:52)

where
e1(n) represents the error due to the multiplication
e2(n) represents the error due to the addition

Neglecting the product of errors, Equation 20.52 becomes

y(n)þ e(n) � ay(n� 1)þ x(n)þ ay(n� 1)e1(n)

þ ay(n� 1)e2(n)þ x(n)e2(n) (20:53)

Comparing Equations 20.34 and 20.53, it is clear that

e(n) ¼ ay(n� 1)e1(n)þ ay(n� 1)e2(n)þ x(n)e2(n) (20:54)

Taking the expected value of e2(n) to obtain the injected noise variance then gives

E{e2(n)} ¼ a2E{y2(n� 1)}E e21(n)
 �þ a2E{y2(n� 1)}E e22(n)

 �
þ E{x2(n)}E e22(n)

 �þ E{x(n)y(n� 1)}E e22(n)
 �

(20:55)

To carry this further it is necessary to know something about the input. If we assume the input is zero-
mean white noise with variance s2

x , then E{x2(n)}¼s2
x and the input is uncorrelated with past values of

the output so E{x(n)y(n� 1)}¼ 0 giving

E{e2(n)} ¼ 2a2s2
ys

2
er þ s2

xs
2
er (20:56)

and

s2
o ¼ 2a2s2

ys
2
er þ s2

xs
2
er

� � X1
n¼�1

h2(n)

¼ 2a2s2
y þ s2

x

1� a2
s2
er (20:57)
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However,

s2
y ¼ s2

x

X1
n¼�1

h2(n) ¼ s2
x

1� a2
(20:58)

s2
o ¼

1þ a2

(1� a2)2
s2
ers

2
x ¼

1þ a2

1� a2
s2
ers

2
y (20:59)

and the output roundoff noise-to-signal ratio is

s2
o

s2
y
¼ 1þ a2

1� a2
s2
er (20:60)

Similar results can be obtained for the second-order filter of Equation 20.43 by writing

y(n)þ e(n) ¼ [2r cos (u)y(n� 1)(1þ e1(n))� r2y(n� 2)(1þ e2(n))]
	
	 [1þ e3(n)]þ x(n))(1þ e4(n)Þ (20:61)

Expanding with the same assumptions as before gives

e(n) � 2r cos (u)y(n� 1)[e1(n)þ e3(n)þ e4(n)]

� r2y(n� 2)[e2(n)þ e3(n)þ e4(n)]þ x(n)e4(n) (20:62)

and

E{e2(n)} ¼ 4r2 cos2 (u)s2
ys

2
er þ r2s2

y3s
2
er

þ s2
xs

2
er � 8r3 cos (u)s2

erE{y(n� 1)y(n� 2)} (20:63)

However,

E{y(n� 1)y(n� 2)}

¼ E{2r cos (u)y(n� 2)� r2y(n� 3)þ x(n� 1)]y(n� 2)}

¼ 2r cos (u)E{y2(n� 2)}� r2E{y(n� 2)y(n� 3)}

¼ 2r cos (u)E{y2(n� 2)}� r2E{y(n� 1)y(n� 2)}

¼ 2r cos (u)
1þ r2

s2
y (20:64)

so

E{e2(n)} ¼ s2
ers

2
x þ 3r4 þ 12r2 cos2(u)� 16r4 cos2(u)

1þ r2

� �
s2
ers

2
y (20:65)

and

s2
o ¼ E(n)

X1
n¼�1

h2(n)

¼ j s2
ers

2
x þ 3r4 þ 12r2 cos2(u)� 16r4 cos2(u)

1þ r2

� �
s2
ers

2
y

� �
(20:66)
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where from Equation 20.46,

j ¼
X1

n¼�1
h2(n) ¼ 1þ r2

1� r2
1

(1þ r2)2 � 4r2 cos2(u)
(20:67)

Since s2
y ¼ js2

x , the output roundoff noise-to-signal ratio is then

s2
o

s2
y
¼ j 1þ j 3r4 þ 12r2 cos2(u)� 16r4 cos2(u)

1þ r2

� �� �
s2
er (20:68)

Figure 20.2 is a contour plot showing the noise-to-signal ratio of Equation 20.68 in units of the noise
variance of a single quantization s2

er . The plot is symmetrical about u¼ 908, so only the range from 08 to
908 is shown. Notice the similarity of this plot to that of Figure 20.1 for the fixed-point case. It has been
observed that filter structures generally have very similar fixed-point and floating-point roundoff
characteristics [2]. Therefore, the techniques of [7–10], which were developed for the fixed-point case,
can also be used to design low-noise floating-point filter realizations. Furthermore, since it is not
necessary to scale the floating-point realization, the low-noise realizations need not require significantly
more computation than the direct form realization.

20.5 Limit Cycles

A limit cycle, sometimes referred to as a multiplier roundoff limit cycle, is a low-level oscillation that can
exist in an otherwise stable filter as a result of the nonlinearity associated with rounding (or truncating)
internal filter calculations [11]. Limit cycles require recursion to exist and do not occur in nonrecursive
FIR filters.
As an example of a limit cycle, consider the second-order filter realized by

y(n) ¼ Qr
7
8
y(n� 1)� 5

8
y(n� 2)þ x(n)

� �
(20:69)
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FIGURE 20.2 Normalized floating-point roundoff noise variance.
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where Qr{ } represents quantization by rounding. This is a stable filter with poles at 0.4375� j0.6585.
Consider the implementation of this filter with 4-b (3 b and a sign bit) two’s complement fixed-point
arithmetic, zero initial conditions (y(�1)¼ y(�2)¼ 0), and an input sequence x(n) ¼ 3

8 d(n), where d(n)
is the unit impulse or unit sample. The following sequence is obtained:

y(0) ¼ Qr
3
8

� �
¼ 3

8

y(1) ¼ Qr
21
64

� �
¼ 3

8

y(2) ¼ Qr
3
32

� �
¼ 1

8

y(3) ¼ Qr � 1
8

� �
¼ � 1

8

y(4) ¼ Qr � 3
16

� �
¼ � 1

8

y(5) ¼ Qr � 1
32

� �
¼ 0

y(6) ¼ Qr
5
64

� �
¼ 1

8

y(7) ¼ Qr
7
64

� �
¼ 1

8

y(8) ¼ Qr
1
32

� �
¼ 0

y(9) ¼ Qr � 5
64

� �
¼ � 1

8

y(10) ¼ Qr � 7
64

� �
¼ � 1

8

y(10) ¼ Qr � 1
32

� �
¼ 0

y(12) ¼ Qr
5
64

� �
¼ 1

8

..

.

(20:70)

Notice that while the input is zero except for the first sample, the output oscillates with amplitude 1=8 and
period 6.
Limit cycles are primarily of concern in fixed-point recursive filters. As long as floating-point filters are

realized as the parallel or cascade connection of first- and second-order subfilters, limit cycles will
generally not be a problem since limit cycles are practically not observable in first- and second-order
systems implemented with 32-b floating-point arithmetic [12]. It has been shown that such systems must
have an extremely small margin of stability for limit cycles to exist at anything other than underflow
levels, which are at an amplitude of less than 10�38 [12].

There are at least three ways of dealing with limit cycles when fixed-point arithmetic is used. One is to
determine a bound on the maximum limit cycle amplitude, expressed as an integral number of
quantization steps [13]. It is then possible to choose a word length that makes the limit cycle amplitude
acceptably low. Alternately, limit cycles can be prevented by randomly rounding calculations up or down
[14]. However, this approach is complicated to implement. The third approach is to properly choose the
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filter realization structure and then quantize the filter calculations using magnitude truncation [15,16].
This approach has the disadvantage of producing more roundoff noise than truncation or rounding [see
Equations 20.12 through 20.14].

20.6 Overflow Oscillations

With fixed-point arithmetic it is possible for filter calculations to overflow. This happens when two
numbers of the same sign add to give a value having magnitude greater than one. Since numbers with
magnitude greater than one are not representable, the result overflows. For example, the two’s comple-
ment numbers 0.101 (5=8) and 0.100 (4=8) add to give 1.001 which is the two’s complement represen-
tation of �7=8.
The overflow characteristic of two’s complement arithmetic can be represented as R{} where

R{X} ¼
X � 2 X � 1
X �1 � X < �1
X þ 2 X < �1

(
(20:71)

For the example just considered, R{9=8}¼�7=8.
An overflow oscillation, sometimes also referred to as an adder overflow limit cycle, is a high-level

oscillation that can exist in an otherwise stable fixed-point filter due to the gross nonlinearity associated
with the overflow of internal filter calculations [17]. Like limit cycles, overflow oscillations require
recursion to exist and do not occur in nonrecursive FIR filters. Overflow oscillations also do not occur
with floating-point arithmetic due to the virtual impossibility of overflow.
As an example of an overflow oscillation, once again consider the filter of Equation 20.69 with 4-b

fixed-point two’s complement arithmetic and with the two’s complement overflow characteristic of
Equation 20.71:

y(n) ¼ Qr R
7
8
y(n� 1)� 5

8
y(n� 2)þ x(n)

� �� �
(20:72)

In this case we apply the input

x(n) ¼ � 3
4
d(n)� 5

8
d(n� 1)

¼ � 3
4
, � 5

8
, 0, 0, . . .

� �
(20:73)

giving the output sequence

y(0) ¼ Qr R � 3
4

� �� �
¼ Qr � 3

4

� �
¼ � 3

4

y(1) ¼ Qr R � 41
32

� �� �
¼ Qr

23
32

� �
¼ 3

4

y(2) ¼ Qr R
9
8

� �� �
¼ Qr � 7

8

� �
¼ � 7

8

y(3) ¼ Qr R � 79
64

� �� �
¼ Qr

49
64

� �
¼ 3

4
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y(4) ¼ Qr R
77
64

� �� �
¼ Qr � 51

64

� �
¼ � 3

4

y(5) ¼ Qr R � 9
8

� �� �
¼ Qr

7
8

� �
¼ 7

8

y(6) ¼ Qr R
79
64

� �� �
¼ Qr

�49
64

� �
¼ � 3

4

y(7) ¼ Qr R � 77
64

� �� �
¼ Qr

51
64

� �
¼ 3

4

y(8) ¼ Qr R
9
8

� �� �
¼ Qr � 7

8

� �
¼ � 7

8

..

.

(20:74)

This is a large-scale oscillation with nearly full-scale amplitude.
There are several ways to prevent overflow oscillations in fixed-point filter realizations. The most

obvious is to scale the filter calculations so as to render overflow impossible. However, this may
unacceptably restrict the filter dynamic range. Another method is to force completed sums-of-products
to saturate at �1, rather than overflowing [18,19]. It is important to saturate only the completed sum,
since intermediate overflows in two’s complement arithmetic do not affect the accuracy of the final result.
Most fixed-point digital signal processors provide for automatic saturation of completed sums if
their saturation arithmetic feature is enabled. Yet another way to avoid overflow oscillations is to use a
filter structure for which any internal filter transient is guaranteed to decay to zero [20]. Such structures
are desirable anyway, since they tend to have low roundoff noise and be insensitive to coefficient
quantization [21].

20.7 Coefficient Quantization Error

Each filter structure has its own finite, generally nonuniform grids of realizable pole and zero locations
when the filter coefficients are quantized to a finite word length. In general the pole and zero
locations desired in a filter do not correspond exactly to the realizable locations. The error in filter
performance (usually measured in terms of a frequency response error) resulting from the placement of
the poles and zeros at the nonideal but realizable locations is referred to as coefficient quantization error.
Consider the second-order filter with complex–conjugate poles

l ¼ re�ju

¼ lr � jli
¼ r cos(u)� jr sin(u) (20:75)

and transfer function

H(z) ¼ 1
1� 2r cos(u)z�1 þ r2z�2

(20:76)

realized by the difference equation

y(n) ¼ 2r cos(u)y(n� 1)� r2y(n� 2)þ x(n) (20:77)

Figure 20.3 from Ref. [5] shows that quantizing the difference equation coefficients results in a nonuni-
form grid of realizable pole locations in the z plane. The grid is defined by the intersection of vertical lines
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corresponding to quantization of 2lr and concen-
tric circles corresponding to quantization of �r2.
The sparseness of realizable pole locations near
z¼�1 will result in a large coefficient quantiza-
tion error for poles in this region.
Figure 20.4 gives an alternative structure to

Equation 20.77 for realizing the transfer function
of Equation 20.76. Notice that quantizing the
coefficients of this structure corresponds to quant-
izing lr and li. As shown in Figure 20.5 from Ref.
[5], this results in a uniform grid of realizable pole
locations. Therefore, large coefficient quantization
errors are avoided for all pole locations.
It is well established that filter structures with

low roundoff noise tend to be robust to coefficient
quantization, and vice versa [22–24]. For this
reason, the uniform grid structure of Figure 20.4
is also popular because of its low roundoff noise.
Likewise, the low-noise realizations of Ref. [7–10]
can be expected to be relatively insensitive to
coefficient quantization, and digital wave filters
and lattice filters that are derived from low-sensitivity analog structures tend to have not only low
coefficient sensitivity, but also low roundoff noise [25,26].
It is well known that in a high-order polynomial with clustered roots, the root location is a very

sensitive function of the polynomial coefficients. Therefore, filter poles and zeros can be much more
accurately controlled if higher order filters are realized by breaking them up into the parallel or cascade
connection of first- and second-order subfilters. One exception to this rule is the case of linear-phase

0.25 0.50 0.75 1.00
Re z

0

Im
 z

j1.00

j0.75

j0.50

j0.25

Realizable pole positions

Unit circle

FIGURE 20.3 Realizable pole locations for the difference Equation of 20.76.
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FIGURE 20.4 Alternate realization structure.
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FIR filters in which the symmetry of the polynomial coefficients and the spacing of the filter zeros around
the unit circle usually permits an acceptable direct realization using the convolution summation.
Given a filter structure it is necessary to assign the ideal pole and zero locations to the realizable

locations. This is generally done by simply rounding or truncating the filter coefficients to the available
number of bits, or by assigning the ideal pole and zero locations to the nearest realizable locations.
A more complicated alternative is to consider the original filter design problem as a problem in discrete
optimization, and choose the realizable pole and zero locations that give the best approximation to the
desired filter response [27–30].

20.8 Realization Considerations

Linear-phase FIR digital filters can generally be implemented with acceptable coefficient quantization
sensitivity using the direct convolution sum method. When implemented in this way on a digital signal
processor, fixed-point arithmetic is not only acceptable but may actually be preferable to floating-point
arithmetic. Virtually all fixed-point digital signal processors accumulate a sum of products in a double-
length accumulator. This means that only a single quantization is necessary to compute an output.
Floating-point arithmetic, on the other hand, requires a quantization after every multiply and after every
add in the convolution summation. With 32-b floating-point arithmetic these quantizations introduce a
small enough error to be insignificant for many applications.
When realizing IIR filters, either a parallel or cascade connection of first- and second-order subfilters is

almost always preferable to a high-order direct-form realization. With the availability of very low-cost
floating-point digital signal processors, like the Texas Instruments TMS320C32, it is highly recom-
mended that floating-point arithmetic be used for IIR filters. Floating-point arithmetic simultaneously
eliminates most concerns regarding scaling, limit cycles, and overflow oscillations. Regardless of the
arithmetic employed, a low roundoff noise structure should be used for the second-order sections.
Good choices are given in Refs. [2,10]. Recall that realizations with low fixed-point roundoff noise also
have low floating-point roundoff noise. The use of a low roundoff noise structure for the second-order
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sections also tends to give a realization with low coefficient quantization sensitivity. First-order sections
are not as critical in determining the roundoff noise and coefficient sensitivity of a realization, and so can
generally be implemented with a simple direct form structure.
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21.1 Introduction

Digital implementations of filters are preferred over analog realizations for many reasons. Improvements
in VLSI technology have enabled digital filters to be used in an increasing number of application
domains.
There are a variety of methods that can be used to implement digital filters. In this chapter we focus on

the use of traditional VLSI digital logic families such as CMOS, rather than more exotic approaches. The
vast majority of implementations encountered in practice make use of traditional technologies because
the performance and cost characteristics of these approaches are so favorable.
Digital filter implementations can be classified into several categories based on the architectural

approach used: general purpose, special purpose, and programmable logic implementations. The choice
of a particular approach should be based upon the flexibility and performance required by a particular
application. General-purpose architectures possess a great deal of flexibility, but are somewhat limited in
performance, being best suited for relatively low sampling frequencies, usually under 10 MHz. Special-
purpose architectures are capable of much higher performance, with sampling frequencies as high as
1 GHz, but are often only configurable for one application domain. Programmable logic implementations
lie somewhere between these extremes, providing both flexibility and reasonably high performance, with
sampling rates as high as 200 MHz.
Digital filtering implementations have been strongly influenced by evolution of VLSI technology. The

regular computational structures encountered in filters are well suited for VLSI implementation. This
regularity often translates into efficient parallelism and pipelining. Further, the small set of computational
structures required in digital filtering makes automatic synthesis of special-purpose and programmable
logic designs feasible. The design automation of digital filter implementation is relatively simple
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compared to the general design synthesis problem. For this reason, digital filters are often the test case for
evaluating new device and computer-aided design technologies.

21.2 General-Purpose Processors

General-purpose digital signal processors are by far the most commonly used method for digital filter
implementation, particularly at audio bandwidths. These systems possess architectures well suited to
digital filtering, as well as other digital signal processing (DSP) algorithms.

21.2.1 Historical Perspective

General-purpose digital signal processors trace their lineage back to the microprocessors of the early
1980s. The generic microprocessors of that period were ill suited for the implementation of DSP
algorithms, due to the lack of hardware support for numerical algorithms of significant complexity in
those architectures. The primary requirement for DSP implementation was identified to be hardware
support for multiplication, due to the large number of multiply-accumulate (MAC) operations in DSP
algorithms and their large contribution to computational delays. The earliest widely available single chip
general-purpose DSP implementation was from AT&T, which evolved into the AT&T DSP20 family.
Products such as the Texas Instruments TMS32010 and NEC 7720 soon followed this. The early DSP
chips exhibited several shortcomings, such as difficult programming paradigms, awkward architectures
for many applications, and limited numerical precision. Many of these difficulties were imposed by the
limits of the VLSI technology of the time, and some by inexperience in this particular application area.
Despite these shortcomings, however, the early processors were well suited to the implementation of
digital filter algorithms, because digital filtering was identified as one of the target areas for these
architectures. This match between architecture and algorithms continues to be exhibited in current
general-purpose DSP chips.

21.2.2 Current Processors

There are a variety of general-purpose digital signal processors currently commercially available. We will
look at several of the most common architectural families in detail, although this discussion will not be
comprehensive by any means. The processors are best classified into two categories, fixed-point proces-
sors and floating-point processors. In both cases, these architectures are commonly (although not
exclusively) based on a single arithmetic unit shared among all computations, which leads to constraints
on the sampling rates that may be attained.
Fixed-point processors exhibit extremely high performance in terms of maximum throughput as

compared to their floating-point counterparts. In addition, fixed-point processors are typically inexpen-
sive as compared to floating-point options, due to the smaller integrated circuit die area occupied by
fixed-point processing blocks. A major difficulty encountered in implementing filters on fixed-point
processors is that overflow and underflow need to be prevented by careful attention to scaling, and
round-off effects may be significant.
Floating-point processors, on the other hand, are significantly easier to program, particularly in the

case of complex algorithms, at the cost of lower performance and larger die area. Given the regular
structure of most digital filtering algorithms and computer-aided design support for filters based on
limited precision arithmetic, fixed-point implementations may be the more cost effective option for this
type of algorithm. Because of the prevalence of both types of general-purpose processor, examples of each
will be examined in detail.
Two widely used floating-point processor families will be studied, although there are many contenders

in this field. These families are the Texas Instruments family of floating-point DSPs, in particular the
TI TMS320C3x (TI, 1992) family, and the Analog Devices ADSP-21020 family (Schweber, 1993). More
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recent examples of the TI family are the TMS320C67x DSP chips (TI, 2006a), and more recent Analog
Devices parts are the ADSP-2116x SHARC chips (Analog Devices, 2006).
The architecture of the TI TMS320C30 is illustrated in Figure 21.1. The floating-point word size used

by this processor was 32 bits. The most prominent feature of this chip was the floating-point arithmetic
unit, which contains a floating-point multiplier and adder. This unit was highly pipelined to support high
throughput, at the cost of latency; when data is input to the multiplier, for example, the results will not
appear on the output from that unit until several clock cycles later. Other features included a separate
integer unit for control calculations, and significant amounts (2k words) of SRAM for data and on-chip
instruction memory. On-chip ROM (4k words) was also optionally provided in order to eliminate the
need for an external boot ROM in some applications. This chip also included a 64-word instruction cache
to allow its use with lower speed memories. The modified Harvard architecture, that is, the separate data
and instruction buses, provided for concurrent instruction and data word transfers within one cycle time.
The TMS320C30 offered instruction cycle times as low as 60 ns. A code segment which implements
portions of an finite impulse response (FIR) filter on this device was

RPTS RC
MPYF3 *AR0þþ(1),*AR1þþ(1)%,R0

jj ADDF3 R0,R2,R2
ADDF R0,R2,R0

where the MPYF3 instruction performs a pipelined multiply operation in parallel with data and
coefficient pointer increments. The ADDF3 instruction is performed in parallel with the MPYF3
instruction, as denoted by the ‘‘jj’’ symbol. Because these operations are in parallel, only one instruction
cycle per tap is required. An FIR filter tap was benchmarked at 60 ns on this chip. Similarly, a typical
biquad infinite impulse response (IIR) filter code segment was

MPYF3 *AR0,*AR1,R0
MPYF3 *þþAR0(1),*AR1––(1)%,R1
MPYF3 *þþAR0(1),*AR1,R0

Program and
data RAM 

Program
cache ROM

Data data bus

Program data bus
Data address

Program address

I/O
ports

Timer

Peripheral
bus 

Multiply

Accumulate

Arithmetic logic
unit (ALU) Shifts

DMA
controller 

FIGURE 21.1 Texas Instruments TMS320C30 architecture.
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jj ADDF3 R0,R2,R2
MPYF3 *þþAR0(1),*AR1––(1)%,R0

jj ADDF3 R0,R2,R2
MPYF3 *þþAR0(1),R2,R2

jj STF R2,*AR1þþ(1)%
ADDF R0,R2
ADDF R1,R2,R0

where the MPYF3 and ADDF3 instructions implement the primary filter arithmetic and memory pointer
modification operations in parallel, as in the previous example. The biquad IIR benchmark on this
processor was 300 ns. More recent members of the TI floating-point family such as the TMS320C6727
support two parallel FIR filter taps at 2.86 ns and two IIR biquad sections at 106 ns.
Another floating-point chip worthy of note is the Analog Devices ADSP-21020 series. The architecture

of the ADSP-21020 chip is shown in Figure 21.2. This chip can be seen to share a number of features with
the TMS320C3x family, that is, a 32 bit by 32 bit floating-point MAC unit (not pipelined), modified
Harvard architecture, and 16 words of on-chip memory. In this case, the scratchpad memory was
organized into register files, much like a general-purpose RISC architecture register set. The memory
capacity of this device was significantly smaller than that of its competitors. As in the case of the
TMS320C3x, on the other hand, an instruction cache (32 words) was also provided. The cycle time for
the ADSP-21020 was 40 ns. An N tap FIR filter code segment illustrates the operation of this device,

i0¼coef;
f9¼0.0;
f1¼0; f4¼dm(i0,m0); f5¼pm(i8,m8);
lcntr¼N, DO bottom until lce;

bottom: f1¼f1þf9; f9¼f4*f5; f4¼dm(i0,m0); f5¼pm(i8,m8);
f1¼f1þf9;

Register file Timer

Program sequencer

Instruction cacheData address
generators 

DAG2DAG1

Arithmetic units

ALU Multiplier Shifter

Program address

Program data
Data memory address

Data memory data

FIGURE 21.2 Analog devices ADSP-21020 architecture.
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where the ‘‘*’’ and ‘‘þ’’ instructions perform the MAC operations, and the dm() and pm() instructions
perform the memory address update operations in parallel. An FIR filter tap thus executed in one
instruction per tap on the ADSP-21020, or in 40 ns. An IIR filter biquad section required 200 ns on this
chip. More recent members of this family such as the ADSP-21367 support FIR filter taps at 3 ns and IIR
biquad sections at 60 ns. Note that while the assembly language for the Analog Devices chip was
significantly different from that of the Texas Instruments chip, the architectural similarities are striking.
Two families of fixed-point digital signal processors will also be examined and compared. These are

the Texas Instruments TMS320C5x family (TI, 1993) and the Motorola DSP56000 series of devices
(Motorola, 1989). More recent examples of the TI family are the TMS320C62x DSP chips (TI, 2006b) and
more recent Motorola parts are the DSP56300 series of chips (Motorola, 2007).
The Texas Instruments TMS320C5x series devices were high performance digital signal processors

derived from the original TI DSP chip, the TMS32010, and its successor, the TMS320C2x. The
architecture of the TMS320C50 is shown in Figure 21.3. This chip was based on the Harvard architecture,
that is, separate data and instruction buses. This additional bandwidth between processing elements
supported rapid concurrent transfers of data and instructions. This chip used a 16 bit by 16 bit fixed-
point multiplier and a 32-bit accumulator, and up to 10k words on-chip scratchpad RAM. This
architecture supported instruction rates of 50 ns. An FIR filter code segment is shown below, where
the primary filter tap operations were performed by the MACD instruction,

RPTK N
MACD *-,COEFFP

This exhibits a general similarity with that for the TI floating-point chips, in particular a single
instruction cycle per tap, although in this case a single instruction was executed as opposed to two
parallel instructions on the TMS320C3x. The memory addressing scheme was also significantly different.
An FIR filter on the TMS320C5x could thus be implemented in 25 ns per tap. An Nth-order IIR filter
code segment is show below, where the MACD and AC instructions performed the primary multiplication
operations,

Multiply
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RAM ROM

Program data bus
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Data data bus

Program address
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ports

Timer

Peripheral
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Accumulate

ALU Shifts

FIGURE 21.3 Texas Instruments TMS320C50 architecture.
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ZPR
LACC *,15,AR1
RPT #(N�2)
AC COEFFB,*�
APAC
SACH *,1
ADRK N�1
RPTZ #(N-1)
MACD COEFFA,*�
LTA *,AR2
SACH *,1

A single IIR biquad section could be performed in 250 ns on this chip. More recent members of the TI
family such as the TMS320C6203C support two parallel FIR filter taps at 3.33 ns speeds and IIR biquad
sections at 66.6 ns.
The Motorola 56001 series was a fixed-point architecture with 24-bit word size, as opposed to the

smaller word sizes in most fixed-point DSP chips. The architecture of the 56001 is depicted in Figure
21.4. This chip shared many of the same features as other DSP chips, that is, Harvard architecture,
on-chip scratchpad memory (512 words), and hardware MAC support, in this case 24 bit by 24 bit
operators which form a 56 bit result. The instruction cycle time of the Motorola 56001 was 97.5 ns.
An FIR filter implemented on the 56001 might use the code segment shown below,

MOVE #AADDR, R0
MOVE #BADDRþn, R4
NOP

Program
 RAM

X data
RAMROM

Global data bus

Y data bus
Prorgram data bus

X data bus

I/O
ports

Multiply

Accumulate

ALU

Accumulate

Y address bus
Prorgram address bus

X address bus

Y data
 RAM

Bus
switch

Address
generation

FIGURE 21.4 Motorola 56001 architecture.

21-6 Passive, Active, and Digital Filters



CLR A X:(R0)þ,X0 Y:(R4)�,Y0
REP #N
MAC X0,Y0,A X:(R0)þ,X0 Y:(R4)�,Y0
RND A

where the MAC instruction retrieves data from the appropriate registers, loads it into the multiplier, and
leaves the result in the accumulator. The 56001 could perform FIR filtering at a rate of one instruction per
tap, or 97.5 ns per tap. An IIR filter code segment used the MAC instruction, as well as several others to set
up the registers for the arithmetic unit, as shown below.

OR #$08,MR
RND A X:(R0)�,X0 Y:(R4)þ,Y0
MAC �Y0,X0,A X:(R0)�,X1 Y:(R4)þ,Y0
MAC �Y0,X1,A X1,X:(R0)þ Y:(R4)þ,Y0
MAC Y0,X0,A A,X:(R0) Y:(R4),Y0
MAC Y0,X1,A 1
MOVE A,X:OUTPUT

The 56001 could compute a second-order IIR biquad in seven instruction cycles, or 682.5 ns. More
recent members of this family such as the DSP56L307 support FIR filter taps at an asymptotic speed of
6.25 ns and IIR biquad sections at 56.25 ns.
From these examples, it can be seen that general-purpose DSP processors possess many common

features which make them well suited for digital filtering. The hardware MAC unit, Harvard architecture,
and on-chip memory are consistent characteristics of these devices. The major shortcoming of such
architectures for digital filtering is the necessity to multiplex a single arithmetic unit (or very small
number of ALUs), which implies that sampling rates above 1=NT are not possible, where N is the number
of atomic operations (e.g., FIR filter taps) and T is the time to complete those operations.

21.2.3 Future Directions

Several trends have become apparent as VLSI technology has improved. One trend of note is the
increasing use of parallelism, both on-chip and between chips. The support for multiprocessor
communications in the TI TMS320C80 provides an avenue for direct parallel implementation of
algorithms. Architectures based upon multiple fixed-point DSP processors on a single chip have also
been fielded.
Another trend has been the development of better programming interfaces for the general-purpose

chips. In particular, high level language compilers have improved to the point where they provide for
reasonably good performance for complex algorithms, although still not superior to that obtained by
manual assembly language programming.
This trend is being accelerated by an initiative called GNURadio (GNU Radio, 2007), which is making

it easier to implement all types of digital filters purely in software in order to enable creation of software
radios. GNURadio provides signal processing blocks implemented in Cþþ that are connected together
to form a complete communications system. The advantage of this software implementation is that it is
generally hardware independent and can run on any general-purpose processor, opening up the world of
digital implementations to anyone with a PC. The added flexibility comes at a loss of efficiency. Due to
the generalized nature of the hardware independent system, the computations will not be implemented as
efficiently as they would be if written in assembly for a specific processor. An IIR filter code segment from
the GNURadio project is shown below:
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acc¼d_fftaps[0] * input;
for (i¼1; i<n; i þþ)
acc þ¼ (d_fftaps[i] * d_prev_input[latestþi]

þ d_fbtaps[i] * d_prev_output[latestþi]);

This Cþþ code segment from the GNURadio library implement a direct form 1 IIR filter where fftaps
are the feed-forward taps and fbtaps are the feed-back taps. To use the GNURadio software for practical
signal analysis, some sort of analog to digital apparatus is required. This can be as simple as a standard
PC sound card or as complex as the universal software radio peripheral (USRP), which is sold by
the maintainers of the GNURadio project as an RF front end that contains an onboard field program-
mable gate arrays (FPGA) and several optional daughter boards for the frequency band of interest
(USRP, 2007).
Another trend that is worthy of note is the development of low-power DSP implementations. These

devices are targeted at the wireless personal communications system (PCS) marketplace, where min-
imum power usage is critical. The developments in this area have been particularly striking, given the
strong dependence of power consumption on clock frequency, which is usually high in DSP implemen-
tations. Through a combination of careful circuit design, power supply voltage reductions, and architec-
tural innovations, extremely low power implementations have been realized.
A final trend is related to the progress of general-purpose processors relative to DSP chips. The

evolution of general-purpose DSP implementations may have come full circle, as general-purpose
processors such as the Intel Pentium family and digital equipment company (DEC) Alpha family possess
on-chip floating-point multiplication units, as well as memory bandwidths equaling or exceeding that of
the DSP chips. These features are reflected in the performance of these chips on standard benchmarks
(Stewart et al., 1992), in which the DEC Alpha outperforms the fastest DSP engines. Similar results were
obtained from the Pentium upon the implementation of the MMX capabilities; even older Pentium
chipsets outperform most floating-point and fixed-point DSP chips (BTDI, 2000).
These trends, particularly multiple processor parallelism and general-purpose ease of programming,

are illustrated by the Cell Broadband Engine Architecture developed via a joint effort between Sony,
Toshiba, and IBM (IBM, 2007). The Cell combines a standard Power architecture core with streamlined
coprocessing components, with the first major use of the Cell being in Sony’s Playstation 3 console. It was
designed to bridge the gap between general-purpose processors and more specialized high-performance
processors. The architecture consists of a main processor called the power processing element (PPE),
eight coprocessors called the synergistic processing elements (SPEs), and a high-bandwidth bus connect-
ing all of these elements. The PPE is able to run a conventional operating system because of its Power
Architecture core, and has control over the eight SPEs allowing high performance and mathematically
intensive tasks to be achieved.

21.3 Special-Purpose Implementations

The tremendous growth in the capabilities of VLSI technology and the corresponding decrease in the
fabrication costs have lead to the wide availability advent of application-specific integrated circuits
(ASICs). These devices are tailored to a particular application or domain of applications in order to
provide the highest possible performance at low per-unit costs.
Although it is difficult to generalize, special-purpose implementations share some common features.

The first is the high degree of parallelism in these designs. For example, a typical special-purpose FIR
filter implementation will contain tens or hundreds of MAC units, each of which executes a filter tap
operation at the same time. This is in contrast to most general-purpose architectures, in which a single
MAC unit is shared. Another common feature is extensive pipelining between arithmetic operators; this
leads to high sampling rates and high throughput, at some cost in latency. Finally, these implementations
are often lacking in flexibility, being designed for specific application domains. The number of filter taps
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may be fixed, or the filter coefficients themselves may be fixed. In almost all instances, these implemen-
tations are based on fixed-point arithmetic.
Because the implementation cost of multiplication operations is so large compared to other operations,

significant research effort has been expended on developing fast and efficient multiplier architectures, as
well as digital filter design techniques that can be used to reduce the number of multiplications. A large
number of multiplier architectures have been developed, ranging from bit-serial structures to bit and
word level pipelined array designs (Ma and Taylor, 1990). The most appropriate architecture is a
function of the application requirements, as various area versus speed options are available. The other
major research direction is the minimization of multiplication operations. In this case, multiplications are
eliminated by conscientious structuring of the realization, as in linear phase filters, circumvented by use
of alternate number systems such as the residue number system (RNS), or simplified to a limited number
of shift-and-add operations. The later option has been used successfully in a large number of both FIR
and IIR realizations, some of which will be discussed below.
Historically, bit-serial implementations of digital filters have been of some interest to researchers and

practitioners in the early days of VLSI because of the relatively high cost of silicon area devoted to both
devices and routing (Denyer and Renshaw, 1985). Even in primitive technologies, bit-serial implemen-
tations could exploit the natural parallelism in digital filtering algorithms.

As clock rates have risen, and silicon area has become more economical, parallel implementations have
become themost effective way of implementing high-performance digital filters. The concept of the systolic
array has strongly influenced the implementation of both FIR and IIR filters (Kung, 1988). Systolic arrays
are characterized by spatial and temporal locality, that is, algorithms and processing elements should be
structured to minimize interconnection distances between nodes and to provide at least a single delay
element between nodes. Interconnection distances need to be kept to a minimum to reduce delays
associated with signal routing, which is becoming the dominant limiting factor in VLSI systems. Imposing
pipeline delays between nodes minimizes computational delay paths and leads to high throughput.
These characteristic features of special-purpose digital filter designs will be illustrated by examples of

FIR and IIR filter implementations. It should be noted that it is increasingly difficult to identify ASICs
that only perform digital filtering; as VLSI capabilities increase, this functionality is more typically
embedded with other functions in very application-focused devices.

21.3.1 FIR Filter Examples

FIR filters may be implemented in a number of ways, depending on application requirements. The
primary factors that must be considered are the filter length, sampling rate, and area, which determine
the amount of parallelism that can be applied. Once the degree of parallelism and pipelining are
determined, the appropriate general filter structure can be determined.
A typical high-performance FIR filter implementation (Khoo et al., 1993) provided sampling rates of

180 MHz for 32 linear phase taps. This chip used canonical signed digit (CSD) coefficients. This
representation is based on a number system in which the digits take the values (�1, 0, 1). A filter tap
can be implemented with a small number of these digits, and hence that tap requires a small number of
shift-and-add operations. Each coefficient was implemented based on two bit shift-and-add units, as
depicted in Figure 21.5. Delay elements are bypassed during configuration to allow realization of
coefficients with additional bits. This chip also made use of extensive pipelining, carry-save addition,
and advanced single-phase clocking techniques to provide high throughput.
In part due to the highly structured nature of FIR filtering algorithms, automatic design tools have

been used to successfully implement high-performance FIR filters similar to that just presented. These
methods often integrate the filter and architectural design into a unified process which can effectively
utilize silicon area to provide the desired performance.
At the other extreme of performance was the Motorola 56200 FIR filter chip (Motorola, 1988)

(Figure 21.6). This chip, although quite old, represents an approach to the custom implementation of
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long (several hundred taps) FIR filters. In this case, a single processing element was multiplexed among all
of the filter taps, similar in concept to the approach used in general-purpose DSP processors. Due to the
regularity of the filter structure, extensive pipelining in the arithmetic unit could be used to support a large
number of taps at audio rates. This chip could be used to realize a 256 tap FIR filter at sampling rates up to
19 kHz, with higher performance for shorter filters. Longer filters could be implemented using cascaded
processors.
A comparison of implementations (Hartley et al., 1989; Hatamian and Rao, 1990; Khoo et al., 1993;

Laskowski and Samueli 1992; Ruetz, 1989; Yassa et al., 1987; Yoshino et al., 1990) illustrates the range of
design and performance options. This is illustrated in Table 21.1, where the ‘‘score’’ is calculated

FIGURE 21.5 Custom FIR filter architecture for 180 MHz sampling rates.

TABLE 21.1 FIR Filter ASIC Comparison

Design Taps Area (mm2) Rate (MHz) Technology (mm) Score

Khoo 93 32 20.1 180.0 1.2 495.2

Laskowski 92 43 40.95 150.0 1.2 139.3

Yoshino 90 64 48.65 100.0 0.8 33.68

Ruetz 89 64 225.0 22.0 1.5 21.12

Yassa 87 16 17.65 30.0 (est.) 1.25 53.12

Hartley 89 4 25.8 (est.) 37.0 1.25 11.20

Hatamian 90 40 22.0 100.0 0.9 132.5

Data RAM
256 by 16

Coefficient
RAM

256 by 24
Address

generation

Arithmetic unit

Multiply
Accumulate

Output

Input

FIGURE 21.6 Motorola 56200 architecture.
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according to the sampling rate multiplied by the number of taps per unit area, with normalization for the
particular technology used. This simplistic comparison does not consider differences in word length or
coefficient codings, but it does provide some insight into the results of the various design approaches. A
significant number of other digital FIR filtering chips exist, both research prototypes and commercial
products; this exposition only outlines some of the architectural options.

21.3.2 IIR Filter Examples

Custom IIR filter implementations are also most commonly based on parallel architectures, although
there are somewhat fewer custom realizations of IIR filters than FIR filters. A significant difficulty in the
implementation of high performance IIR filters in the need for feedback in the computation of an IIR
filter section. This limits the throughput that can be attained to at least one MAC cycle in a straightfor-
ward realization. Another difficulty is the numerical stability of IIR filters with short coefficients, which
makes aggressive quantization of coefficients less promising.
In order to address the difficulties with throughput limitation due to feedback, structures based on

systolic concepts have been developed. Although the feedback problem imposes a severe constraint on
the implementation, use of bit and word level systolic structures which pipeline data most significant
digit first can minimize the impact of this restriction (Woods et al., 1990). Using these techniques, and
a Signed Binary Number Representation (SBNR) similar to a CSD code, first-order sections with
sampling rates of 15 MHz were demonstrated in a 1.5 mm standard cell process in an area of 21.8 mm2.
This particular design used fairly large coefficient and data words, however, at 12 bits and 11 bits,
respectively.
The numerical stability problem has been addressed through a variety of techniques. One of these is

based on minimizing limited precision effects by manipulation of traditional canonical filter structures
and clever partitioning of arithmetic operations. A more recent and general approach is based on
modeling the digital implementations of filters after their analog counterparts; these classes of filters
are known as wave digital filters (WDFs) (Fettweis, 1986). WDFs exhibit good passband ripple and
stopband attenuation, with high tolerance to limited wordlength effects. Because of the latter property,
efficient implementations based on short word sizes are feasible. A WDF design for a second-order
section in custom 1.5 mm CMOS based on a restricted coefficient set akin to CSD supported 10 MHz
sampling rates in an area of 12.9 mm2 (Wicks and Summerfield, 1993).

21.3.3 Future Trends

The future trends in digital filter implementation appear to be a fairly straightforward function of the
increasing capability of VLSI devices. In particular, more taps and filter sections per chip and higher
sampling rates are becoming achievable. Related to these trends are higher degrees of on-chip parallelism.
Further, programmability is more reasonable as density and speed margins increase, although there is
still a high cost in area and performance. Finally, special-purpose implementations show extraordinary
promise in the area of low power systems, where custom circuit design techniques and application-
specific architectural features can be combined to best advantage.

21.4 Programmable Logic Implementations

The rapid evolution of VLSI technology has enabled the development of several high-density program-
mable logic architectures. There are several novel features that make these devices of interest beyond their
traditional field-of-state machine implementation. In particular, the density of the largest of these devices
is over 12,000,000 gates (Xilinx, 2007), which encompasses the level of complexity found in the majority
of ASICs (although some ASICs are significantly more complex). This level of complexity is sufficient to
support many designs that would traditionally need to be implemented as ASICs. The speed of
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programmable logic devices (PLDs) and FPGAs is quite reasonable, with toggle rates on the order of
550 MHz (Xilinx, 2007). While this is not as great as custom implementations, it does allow many
applications to be realized in this new technology.
One of the most significant features of FPGA implementations is the capability for in-system

reprogrammability in many FPGA families. Unlike traditional field programmable parts based on
anti-fuse technology and which can only be programmed once, many of the new architectures are
based on memory technology. This means that entirely new computational architectures can be imple-
mented simply by reprogramming the logic functions and interconnection routing on the chip. Ongoing
research efforts have been directed toward using FPGAs as generalized coprocessors for supercomputing
and signal processing applications.
The implications of programmable device technology for filter implementation are significant. These

devices provide an enormous amount of flexibility, which can be used in the implementation of a variety
of novel architectures on a single chip. This is particularly useful for rapid prototyping of digital filtering
algorithms, where several high-performance designs can be evaluated in a target environment on the
same hardware platform. Further, complex adaptive systems based on this technology and which use a
variety of signal processing and digital filter techniques are becoming increasingly popular in a variety of
applications.
Because many of the programmable logic architectures are based on SRAM technology, the density of

these devices can be expected to grow in parallel with the RAM growth curve, that is, at approximately
60% per year. Further, since these devices may be used for a large variety of applications, they have
become high-volume commodity parts, and hence prices are relatively low compared to more specialized
and low-volume DSP chips. This implies that new DSP systems that were not previously technically and
economically feasible to implement in this technology are now feasible.
One of the extra costs of this approach, as opposed to the full custom strategy, is the need for support

chips. Several chips are typically needed, including memory to store the programmable device configur-
ation, as well as logic to control the downloading of the program. These issues are generally outweighed
by the flexibility provided by programmable solutions.
We will next examine the implementation of several FIR and IIR digital filtering architectures based

on FPGAs.

21.4.1 FIR Filter Implementations

Several approaches to the FPGA implementation of FIR filters can be taken. Due to the flexibility of these
parts, switching from one architecture to the next only requires reprogramming the device, subject to
constraints on I=O pin locations. Two fundamental strategies for realizing FIR filters will be illustrated
here, one which is suited to relatively short filters (or longer filters cascaded across several chips)
operating at high rates, and another which is suited for longer filters at lower rates.

A high-performance FIR filter example (Evans, 1993), illustrated in Figure 21.7, was based on the
observation that since the entire device is reprogrammable, architectures in which filter coefficient
multiplications are implemented as ‘‘hardwired’’ shifts can be easily reconfigured depending on the
desired filter response. In this example, each of the coefficients was represented in a CSD code with a
limited number of nontrivial (e.g., nonzero) bits, which allowed each tap to be implemented as a small
number of shift-and-add operations. A filter tap could be implemented in two columns of logic blocks
on a Xilinx 3100-series FPGA (Xilinx, 1993), where the two columns of full adders and associated
delays implement a tap based on CSD coefficients with two nontrivial bits. With this architecture, up to
11 taps could be implemented on a single Xilinx XC3195 FPGA at sampling rates of above 40 MHz.
Longer filters could be implemented by a cascade of FPGA devices.
An FIR filter architecture for longer filters was based upon implementation of several traditional MAC

units on one chip, as shown in Figure 21.8. Each of these MAC units could then be shared among a large
number of filter tap computations, much as the single MAC unit in the Motorola 56200 was multiplexed.

21-12 Passive, Active, and Digital Filters



Since four multipliers could be implemented in the Xilinx 4000-series, the inherent parallelism of FIR
filters can be exploited to support sampling rates of up to 1.25 MHz for 32 taps in that technology.

21.4.2 IIR Filter Implementations

As in the case of FIR filters, IIR filters can be implemented using a ‘‘hardwired’’ architecture suited to
high performance, or a more traditional approach based on general MAC units. In the case of IIR filters,
however, the hardwired implementation is significantly more desirable than the alternate approach due
to the difficulty in rescheduling multiplexed processing elements in a system with feedback.
An architecture which is reconfigured to implement different filters will generally provide both high-

performance and good area efficiency. An example of such a system is shown in Figure 21.9, in which two
IIR biquad sections were implemented on a single FPGA using a traditional canonical filter structure
(Chou et al., 1993). Each of the columns realized a shift-and-add for one nontrivial bit of a coefficient,
where the shaded blocks also contained delay registers. This implementation yielded sampling rates of
better than 10 MHz for typical coefficients.
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A more traditional approach to the realization of IIR filters using MAC units is also possible, but may
be less efficient. The general architecture is similar to that of the FIR filter in Figure 21.8, with slight
modifications to the routing between arithmetic units and support for scaling necessary in an IIR biquad
section.

21.4.3 Future Trends

Because of the rapid advances in FPGA technology, higher performance digital filtering may in fact
be possible with programmable logic than with typical custom ASIC approaches (Moeller, 1999). In
addition, there are a wide variety of DSP core functions being offered by FPGA manufacturers (Xilinx,
2000) which will further accelerate this revolution in DSP implementation.
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Further Information

The publication IEEE Transactions on Circuits and Systems—II: Analog and Digital Signal Processing
frequently contains articles on the VLSI implementation of digital filters as well as design methods for
efficient implementation. The IEEE Transactions on Signal Processing often includes articles in these
areas as well. Articles in the IEEE Journal on Solid State Circuits, the IEEE Transactions on VLSI Systems,
and the IEE Electronics Letters regularly cover particular implementations of digital filters.
The conference proceedings for the IEEE International Symposium on Circuits and Systems and the

IEEE International Conference on Acoustics, Speech, and Signal Processing also contain a wealth of
information on digital filter implementation.
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The textbook VLSI Array Processors by S. Y. Kung discusses the concept of systolic arrays at length.
The textbook Software Radio: A Modern Approach to Radio Engineering by Jeffrey Reed covers issues
engineers must understand in order to utilize DSP in software radio subsystems. The textbook Digital
Signal Processing with Field Programmable Gate Arrays by Uwe Meyer-Baese discusses how FPGA
implementations are revolutionizing digital signal processing and covers implementations of FIR and
IIR filters along with several other DSP processing systems on FPGAs.

21-16 Passive, Active, and Digital Filters



22
Two-Dimensional

FIR Filters

Rashid Ansari
University of Illinois at Chicago

A. Enis Cetin
Bilkent University

22.1 Introduction ............................................................................ 22-1
22.2 Preliminary Design Considerations................................... 22-2

Filter Specifications and Approximation Criteria . Zero-Phase
FIR Filters and Symmetry Considerations . Guidelines
on the Use of the Design Techniques

22.3 General Design Methods for Arbitrary
Specifications........................................................................... 22-6
Design of 2-D FIR Filters by Windowing . Frequency
Sampling and Linear Programming-Based Method . FIR
Filters Optimal in Lp Norm . Iterative Method
for Approximate Minimax Design

22.4 Special Design Procedure for Restricted Classes .......... 22-16
Separable 2-D FIR Filter Design . Frequency Transformation
Method . Design Using Nonrectangular Transformations
and Sampling Rate Conversions

22.5 2-D FIR Filter Implementation ........................................ 22-24
22.6 Two-Dimensional Filter Banks......................................... 22-25
Acknowledgments............................................................................ 22-26
References .......................................................................................... 22-27
Further Information........................................................................ 22-29

22.1 Introduction

In this chapter, methods of designing two-dimensional (2-D) finite-extent impulse response (FIR)
discrete-time filters are described. 2-D FIR filters offer the advantages of phase linearity and guaranteed
stability, which makes them attractive in applications. Over the years an extensive array of techniques for
designing 2-D FIR filters has been accumulated [14,23,30]. These techniques can be conveniently
classified into the two categories of general and specialized designs. Techniques in the category of general
design are intended for approximation of arbitrary desired frequency responses usually with no struc-
tural constraints on the filter. These techniques include approaches such as windowing of the ideal
impulse response (IIR) [22] or the use of suitable optimality criteria possibly implemented with iterative
algorithms. On the other hand, techniques in the category of special design are applicable to restricted
classes of filters, either due to the nature of the response being approximated or due to imposition of
structural constraints on the filter used in the design. The specialized designs are a consequence of the
observation that commonly used filters have characteristic underlying features that can be exploited to
simplify the problem of design and implementation. The stopbands and passbands of filters encountered
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in practice are often defined by straight-line, circular, or elliptical boundaries. Specialized design
methodologies have been developed for handling these cases and they are typically based on techniques
such as the transformation of one-dimensional (1-D) filters or the rotation and translation of separable
filter responses. If the desired response possesses symmetries, then the symmetries imply relationships
among the filter coefficients, which are exploited in both the design and the implementation of the filters.
In some design problems it may be advantageous to impose structural constraints in the form of parallel
and cascade connections.
The material in this chapter is organized as follows. A preliminary discussion of characteristics of 2-D

FIR filters and issues relevant to the design methods appears in Section 22.2. Following this, methods of
general and special FIR filter design are described in Sections 22.3 and 22.4, respectively. Several
examples of design illustrating the procedure are also presented. Issues in 2-D FIR filter implementation
are briefly discussed in Section 22.5. Finally, two-dimensional filter banks are briefly discussed in Section
22.6, and a list of sources for further information is provided.

22.2 Preliminary Design Considerations

In any 2-D filter design there is a choice between FIR and IIR filters, and their relative merits are briefly
examined next. 2-D FIR filters offer certain advantages over 2-D IIR filters as a result of which FIR filters
have found widespread use in applications such as image and video processing. One key attribute of an FIR
filter is that it can be designed with strictly linear passband phase, and it can be implemented with small
delays without the need to reverse the signal array during processing. A 2-D FIR filter impulse response
has only a finite number of nonzero samples which guarantee stability. On the other hand, stability is
difficult to test in the case of 2-D IIR filters due to the absence of a 2-D counterpart of the fundamental
theorem of algebra, and a 2-D polynomial is almost never factorizable. If a 2-D FIR filter is implemented
nonrecursively with finite precision, then it does not exhibit limit cycle oscillations. Arithmetic quantiza-
tion noise and coefficient quantization effects in FIR filter implementation are usually very low. A key
disadvantage of FIR filters is that they typically have higher computational complexity than IIR filters for
meeting the same magnitude specifications, especially in cases where the specifications are stringent.
The term 2-D FIR filter refers to a linear shift-invariant system whose input–output relation is

represented by a convolution [14]

y(n1, n2) ¼
X

(k1,k2)2

X
I

h(k1, k2)x(n1 � k1, n2 � k2), (22:1)

where
x(n1, n2) and y(n1, n2) are the input and the output sequences, respectively
h(n1, n2) is the impulse response sequence
I is the support of the impulse response sequence

FIR filters have compact support, meaning that only a finite number of coefficients are nonzero.
This makes the impulse response sequence of FIR filters absolutely summable, thereby ensuring filter
stability. Usually the filter support, I, is chosen to be a rectangular region centered at the origin, e.g.,
I¼ {(n1, n2): –N1� n1�N1, –N2� n2�N2}. However, there are some important cases where it is more
advantageous to select a nonrectangular region as the filter support [32].
Once the extent of the impulse response support is determined, the sequence h(n1, n2) should be

chosen in order to meet given filter specifications under suitable approximation criteria. These aspects
are elaborated in Section 22.2.1. This is followed by a discussion of phase linearity and filter response
symmetry considerations and then some guidelines on using the design methods are provided (Sections
22.2.2 and 22.2.3).
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22.2.1 Filter Specifications and Approximation Criteria

The problem of designing a 2-D FIR filter consists of determining the impulse response sequence,
h(n1, n2), or its system function, H(z1, z2), in order to satisfy given requirements on the filter response.
The filter requirements are usually specified in the frequency domain, and only this case is considered
here. The frequency response,* H(v1,v2), corresponding to the impulse response h(n1, n2), with a
support, I, is expressed as

H(v1,v2) ¼
X

(n1,n2)2I
h(n1, n2)e

�j(n1v1þn2v2): (22:2)

Note that H(v1, v2)¼H(v1þ 2p, v2)¼H(v1, v2þ 2p) for all (v1, v2). In other words, H(v1, v2) is a
periodic function with a period 2p in both v1 and v2. This implies that by defining H(v1, v2) in the
region {�p<v1�p, �p<v2�p}, the frequency response of the filter for all (v1, v2) is determined.

For 2-D FIR filters the specifications are usually given in terms of the magnitude response, jH(v1, v2)j.
Attention in this chapter is confined to the case of a two-level magnitude design, where the desired
magnitude levels are either 1.0 (in the passband) or 0.0 (in the stopband). Some of the procedures can be
easily modified to accommodate multilevel magnitude specifications, as, for instance, in a case that
requires the magnitude to increase linearly with distance from the origin in the frequency domain.
Consider the design of a 2-D FIR low-pass filter whose specifications are shown in Figure 22.1. The

magnitude of the low-pass filter ideally takes the value 1.0 in the passband region, Fp, which is centered
around the origin, (v1, v2)¼ (0, 0), and 0.0 in the stopband region, Fs. As a magnitude discontinuity is
not possible with a finite filter support, I, it is necessary to interpose a transition region, Ft, between Fp
and Fs. Also, magnitude bounds jH(v1,v2)� 1j � dp in the passband and jH(v1,v2)j � ds in the
stopband are specified, where the parameters dp and ds are positive real numbers, typically much less
than 1.0. The frequency response H(v1,v2) is assumed to be real. Consequently, the low-pass filter is
specified in the frequency domain by the regions, Fp, Fs, and the tolerance parameters, dp and ds.

A variety of stopband and passband shapes can
be specified in a similar manner.

In order to meet given specifications, an
adequate filter order (defined here to be the num-
ber of nonzero impulse response samples) needs to
be determined. If the specifications are stringent,
with tight tolerance parameters and small transi-
tion regions, then the filter support region, I, must
be large. In other words, there is a trade-off
between the filter support region, I, and the fre-
quency domain specifications. In the general case
the filter order is not known a priori, and may be
determined either through an iterative process or
using estimation rules if available. If the filter order
is given, then in order to determine an optimum
solution to the design problem, an appropriate
optimality criterion is needed. Commonly used
criteria in 2-D filter design are minimization of
the Lp norm, p finite, of the approximation error,
or the L1 norm. If desired, a maximal flatness
requirement at desired frequencies can be imposed
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FIGURE 22.1 Frequency response specifications for a
2D low-pass filter (jH(v1, v2)� 1j � dp for (v1, v2) 2 Fp
and jH(v1, v2)j � ds for (v1, v2) 2 Fs).

* Here v1¼ 2pf1 and v2¼ 2pf2 are the horizontal and vertical angular frequencies, respectively.
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[24]. It should be noted that if the specifications are given in terms of the tolerance bounds on magnitude,
as described above, then the use of L1 criterion is appropriate. However, the use of other criteria such as
a weighted L2 norm can serve to arrive at an almost minimax solution [2,10].

22.2.2 Zero-Phase FIR Filters and Symmetry Considerations

Phase linearity is important in many filtering applications. As in the 1-D case, a number of conditions for
phase linearity can be obtained depending on the nature of symmetry. But the discussion here is limited
to the case of ‘‘zero phase’’ design, with a purely real frequency response. A salient feature of 2-D FIR
filters is that realizable FIR filters, which have purely real frequency responses, are easily designed. The
term ‘‘zero phase’’ is somewhat misleading in the sense that the frequency response may be negative at
some frequencies. The term should be understood in the sense of ‘‘zero phase in passband’’ because the
passband frequency response is within a small deviation of the value 1.0. The frequency response may
assume negative values in the stopband region where phase linearity is immaterial. In frequency domain,
the zero-phase or real frequency response condition corresponds to

H(v1,v2) ¼ H*(v1,v2), (22:3)

where H*(v1,v2) denotes the complex conjugate of H(v1,v2). The condition Equation 22.3 is
equivalent to

h(n1, n2) ¼ h*(�n1,�n2) (22:4)

in the spatial-domain. Making a common practical assumption that h(n1, n2) is real, the above condition
reduces to

h(n1, n2) ¼ h(�n1,�n2), (22:5)

implying a region of support with the above symmetry about the origin.
Henceforth, only the design of zero-phase FIR filters is considered. With h(n1, n2) real, and satisfying

Equation 22.5, the frequency response, H(v1, v2), is expressed as

H(v1,v2) ¼ h(0, 0)þ
X

(n1, n2)2I1
h(n1, n2)e

�j(v1n1þv2n2) þ
X

(n1, n2)2I2
h(n1, n2)e

�j(v1n1þv2n2)

¼ h(0, 0)þ
X

(n1, n2)2I1
2h(n1, n2) cos (v1n1 þ v2n2), (22:6)

where I1 and I2 are disjoint regions such that I1[ I2[ {(0,0)}¼ I, and if (n1, n2) 2 I1, then
(�n1,�n2) 2 I2.

In order to understand the importance of phase linearity in image processing, consider an example
that illustrates the effect of nonlinear-phase filters on images. In Figure 22.2a, an image that is corrupted
by white Gaussian noise is shown. This image is filtered with a nonlinear-phase low-pass filter and the
resultant image is shown in Figure 22.2b. It is observed that edges and textured regions are severely
distorted in Figure 22.2b. This is due to the fact that the spatial alignment of frequency components that
define an edge in the original is altered by the phase nonlinearity. The same image is also filtered with a
zero-phase low-pass filter, H(v1, v2), which has the same magnitude characteristics as the nonlinear-
phase filter. The resulting image is shown in Figure 22.2c. It is seen that the edges are perceptually
preserved in Figure 22.2c, although blurred due to the low-pass nature of the filter. In this example, a
separable zero-phase low-pass filter, H(v1, v2)¼H1(v1) H1(v2), is used, where H1(v) is a 1-D Lagrange
filter with a cutoff p=2. In spatial domain h(n1, n2)¼ h1(n1) h1(n2) where h1(n)¼ { . . . , 0, �1=32, 0, 9=32,
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1=2, 9=32, 0, �1=32, 0, . . . } is the impulse response of the seventh-order symmetric (zero-phase) 1-D
Lagrange filter. The nonlinear-phase filter is a cascade of the above zero-phase filter with an allpass filter.
In some filter design problems, symmetries in frequency domain specifications can be exploited by

imposing restrictions on the filter coefficients and the shape of the support region for the impulse
response. A variety of symmetries that can be exploited is extensively studied in Refs. [3,32,44,45]. For
example, a condition often encountered in practice is the symmetry with respect to each of the two
frequency axes. In this case, the frequency response of a zero-phase filter satisfies

H(v1,v2) ¼ H(�v1,v2) ¼ H(v1,�v2): (22:7)

This yields an impulse response that is symmetric with respect to the n1 and n2 axes, i.e.,

h(n1, n2) ¼ h(�n1, n2) ¼ h(n1,�n2): (22:8)

By imposing symmetry conditions, one reduces the number of independently varying filter coefficients
that must be determined in the design. This can be exploited in reducing both the computational
complexity of the filter design and the number of arithmetic operations required in the implementation.
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FIGURE 22.2 (a) Original image of 6963 576 pixels; (b) nonlinear-phase low-pass filtered image; and (c) zero-
phase low-pass filtered image.
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22.2.3 Guidelines on the Use of the Design Techniques

The design techniques described in this chapter are classified into the two categories of general and
specialized designs. The user should use the techniques of general design in cases requiring approxima-
tion of arbitrary desired frequency responses, usually with no structural constraints on the filter. The
specialized designs are recommended in cases where filters exhibit certain underlying features that can be
exploited to simplify the problem of design and implementation.
In the category of general design, four methods are described. Of these, the windowing procedure is

quick and simple. It is useful in situations where implementation efficiency is not critical, especially in
single-use applications. The second procedure is based on linear programming, and is suitable for design
problems where equiripple solutions are desired to meet frequency domain specifications. The remaining
two procedures may also be used for meeting frequency domain specifications, and lead to nearly
equiripple solution. The third procedure provides solutions for Lp approximations. The fourth procedure
is an iterative procedure that is easy to implement, and is convenient in situations where additional
constraints are to be placed on the filter.
In the category of specialized design described here, the solutions are derived from 1-D filters. These often

lead to computationally efficient implementation, and are recommended in situations where low implemen-
tation complexity is critical, and the filter characteristics possess features that can be exploited in the design.
An important practical class of filters is one where specifications can be decomposed into a set of separable
filter designs requiring essentially the design of suitable 1-D filters. Here the separable design procedure
should be used. Another class of filters is one where the passbands and stopbands are characterized by
circular, elliptical, or special straight-line boundaries. In this case a frequency transformation method called
the McClellan transformation procedure proves effective. The desired 2-D filter constant-magnitude con-
tours are defined by a proper choice of parameters in a transformation of variables applied to a 1-D zero-
phase filter. Finally, in some cases filter specifications are characterized by ideal frequency responses in which
passbands and stopbands are separated by straight-line boundaries that are not suitable for applying the
McClellan transformation procedure. In this case the design may be carried out by nonrectangular trans-
formations and sampling grid conversions. The importance of this design method stems from the imple-
mentation efficiency that results from a generalized notion of separable processing.

22.3 General Design Methods for Arbitrary Specifications

Some general methods of meeting arbitrary specifications are now described. These are typically based on
extending techniques of 1-D design. However, there are important differences. The Parks–McClellan
procedure for minimax approximation based on the alternation theorem does not find a direct extension.
This is because the set of cosine functions used in the 2-D approximation does not satisfy the Haar
condition on the domain of interest [25], and the Chebyshev approximation does not have a unique
solution. However, techniques that employ exchange algorithms have been developed for the 2-D case
[20,25,36].
Here we consider four procedures in some detail. The first technique is based on windowing. It is

simple, but not optimum for Chebyshev approximation. The second technique is based on frequency
sampling, and this can be used to arrive at equiripple solutions using linear programming. Finally, two
techniques for arriving iteratively at a nearly equiripple solution are described. The first of these is based
on Lp approximations using nonlinear optimization. The second is based on the use of alternating
projections in the sample and the frequency domains.

22.3.1 Design of 2-D FIR Filters by Windowing

This design method is basically an extension of the window-based 1-D FIR filter design to the case of 2-
D filters. An IIR sequence, which is usually an infinite-extent sequence, is suitably windowed to make the
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support finite. 1-D FIR filter design by windowing and classes of 1-D windows are described in detail
in Section 22.2.
Let hid(n1, n2) and Hid(v1, v2) be the impulse and frequency responses of the ideal filter, respectively.

The impulse response of the required 2-D filter, h(n1, n2), is obtained as a product of the IIR sequence
and a suitable 2-D window sequence which has a finite-extent support, I, that is,

h(n1, n2) ¼
hid(n1, n2)w(n1, n2), (n1, n2) 2 I,

0, otherwise,

�
(22:9)

where w(n1, n2) is the window sequence. The resultant frequency response, H(v1,v2), is a smoothed
version of the ideal frequency response as H(v1,v2) is related to the Hid(v1,v2) via the periodic
convolution, that is,

H(v1,v2) ¼ 1
4p2

ðp
�p

ðp
�p

Hid(V1,V2)W(v1�V1,v2�V2)dV1dV2, (22:10)

where W(v1, v2) is the frequency response of the window sequence, w(n1, n2).
As in the 1-D case, a 2-D window sequence, w(n1, n2), should satisfy three requirements:

1. It must have a finite-extent support, I.
2. Its discrete-space Fourier transform should in some sense approximate the 2-D impulse function,

d(v1, v2).
3. It should be real, with a zero-phase discrete-space Fourier transform.

Usually 2-D windows are derived from 1-D windows. Three methods of constructing windows are briefly
examined. One method consists of obtaining a separable window from two 1-D windows, that is,

wr(n1, n2) ¼ w1(n1)w2(n2), (22:11)

where w1(n) and w2(n) are the 1-D windows. Thus, the support of the resultant 2-D window, wr(n1, n2),
is a rectangular region. The frequency response of the 2-D window is also separable, i.e., Wr(v1, v2)¼
W1(v1) W2(v2).

The second method of constructing a window, due to Huang [22], consists of sampling the surface
generated by rotating a 1-D continuous-time window, w(t), as follows:

wc(n1, n2) ¼ w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n22

q� �
, (22:12)

where w(t)¼ 0, t�N. The impulse response support is I ¼ n1, n2:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n22

p
< N

n o
. Note that the 2-

D Fourier transform of the wc(n1, n2) is not equal to the circularly rotated version of the Fourier
transform of w(t).

Finally, in the third method, proposed by Yu and Mitra [53], the window is constructed by using a 1-D
to 2-D transformation belonging to a class called the McClellan transformations [33]. These transform-
ations are discussed in greater detail in Section 22.4. Here we consider a special case of the transform that
produces approximately circular contours in the 2-D frequency domain. Briefly, the discrete-space
frequency transform of the 2-D window sequence obtained with a McClellan transformation applied
to a 1-D window is given by
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T(v1,v2) ¼
XN
n¼�N

w(n)e�jvn

����
cos (v)¼0:5 cos (v1)þ0:5 cos (v2)þ0:5 cos (v1) cos (v2)�0:5

¼ w(0)þ 2
XN
n¼1

w(n) cos (nv)

����
cos (v)¼0:5 cos (v1)þ0:5 cos (v2)þ0:5 cos (v1) cos (v2)�0:5

¼
XN
n¼0

b(n) cosn (v)

����
cos (v)¼0:5 cos (v1)þ0:5 cos (v2)þ0:5 cos (v1) cos (v2)�0:5

(22:13)

where w(n) is an arbitrary symmetric 1-D window of duration 2Nþ 1 centered at the origin, and the
coefficients, b(n), are obtained from w(n) via Chebyshev polynomials [33]. After some algebraic manipu-
lations it can be shown that

T(v1,v2) ¼
XN

n1¼�N

XN
n2¼�N

wt(n1, n2)e
�j(n1v1þn2v2), (22:14)

where wt(n1, n2) is a zero-phase 2-D window of size (2Nþ 1)3 (2Nþ 1) obtained by using the McClellan
transformation.
The construction of 2-D windows using the above three methods is now examined. In the case of

windows obtained by the separable and the McClellan transformation approaches, the 1-D prototype is a
Hamming window,

wh(n) ¼
0:54þ 0:46 cos (pn=N), jnj < N ,

0, otherwise:

(
(22:15)

In the second case wc(n1, n2) ¼ 0:54þ 0:46 cos (p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n22

p
=N). By selecting w1(n)¼w2(n)¼wh(n)

in Equation 22.11 we get a 2-D window, wr(n1, n2), of support I¼ {jn1j<N, jn2j<N} which is
a square-shaped symmetric region centered at the origin. For N¼ 6 the region of support, I,
contains 113 11¼ 121 points. Figure 22.3a shows the frequency response of this window. A second
window is designed by using Equation 22.12, i.e., wc(n1, n2) ¼ wh(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n22

p
). For N¼ 6 the frequency

response of this filter is shown in Figure 22.3b. The region of support is almost circular and it
contains 113 points. From these examples, it is seen that the 2-D windows may not behave as well as
1-D windows. Speake and Mersereau [46] compared these two methods and observed that the main-lobe
width and the highest attenuation level of the side-lobes of the 2-D windows differ from their 1-D
prototypes.
Let us construct a 2-D window by the McClellan transformation with a 1-D Hamming window of

order 13 (N¼ 6) as the prototype. The frequency response of the 2-D window, wt(n1, n2), is shown in
Figure 22.3c. The frequency response of this window is almost circularly symmetric and it preserves the
features of its 1-D prototype.
Consider the design of a circularly symmetric low-pass filter. The ideal frequency response for (v1,v2)2

[�p, p]3 [�p, p] is given by

Hid(v1,v2) ¼ 1,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

2

p
� vc,

0, otherwise,

(
(22:16)
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whose impulse response is given by

hid(n1, n2) ¼
vc J1 vc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n22

p� �
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n22

p , (22:17)

where
J1(�) is the first-order Bessel function of the first kind
vc is the cutoff frequency

The frequency response of the 2-D FIR filter obtained with a rectangular window of size 23 5þ 1 by
23 5þ 1 is shown in Figure 22.4a. Note the Gibbs-phenomenon type ripples at the passband edges.

1

0

0.8
0.6
0.4

4

0.2

2

–2
0

– 4 –4 –2
0 2

4

ω2 ω1 ω2
(a)

M
ag

ni
tu

de

2
–2

0
–4 –4 –2 0 2 4

ω1(b)

M
ag

ni
tu

de

1

4
0

0.5

ω1

2
–2

0
–4 –4 –2 0 2 4

ω2(c)

M
ag

ni
tu

de

1

4
0

0.5

FIGURE 22.3 Frequency responses of the (a) separable, (b) Huang, and (c) McClellan 2D windows generated from
a Hamming window of order 13 (N¼ 6).
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FIGURE 22.4 Frequency responses of the 2D filters designed with (a) a rectangular window and (b) a separable
window of Figure 22.3a.
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In Figure 22.4b the separable window of Figure 22.3a, derived from a Hamming window, is used to
design the 2-D filter. Note that this 2-D filter has smaller ripples at the passband edges.
In windowing methods, it is often assumed that Hid(v1,v2) is given. However, if the specifications are

given as described in Section 22.2, then a proper Hid(v1,v2) should be constructed. The ideal magnitudes
are either 1.0 (in passband) or 0.0 (in stopband). However, there is a need to define a cutoff boundary,
which lies within the transition band. This can be accomplished by using a suitable notion of ‘‘midway’’
cutoff between the transition boundaries. In practical cases where transition boundaries are given in
terms of straight-line segments or smooth curves such as circles and ellipses, the construction of
‘‘midway’’ cutoff boundary is relatively straightforward. The IIR, hid(n1, n2), is computed from the
desired frequency response, Hid(v1,v2), either analytically (if possible), or by using the discrete Fourier
transform (DFT). In the latter case the desired response, Hid(v1,v2), is first sampled on a rectangular grid
in the Fourier domain, then an inverse DFT computation is carried out via a 2-D fast Fourier transform
(FFT) algorithm to obtain an approximation to the sequence hid(n1, n2). The resulting sequence is an
aliased version of the IIR. Therefore, a sufficiently dense grid should be used in order to reduce the effects
of aliasing.
In practice, several trials may be needed to design the final filter satisfying bounds both in the

passbands and stopbands. The filter support is adjusted to obtain the smallest order to meet given
requirements.
Filter design with windowing is a simple approach that is suitable for applications where a quick and

nonoptimal design is needed. Additional information on windowing can be found in Refs. [26,46].

22.3.2 Frequency Sampling and Linear Programming-Based Method

This method is based on the application of the sampling theorem in the frequency domain. Consider
the design of a 2-D filter with impulse response support of N13N2 samples. The frequency response
of the filter can be obtained from a conveniently chosen set of its samples on an N13N2 grid. For
example, the DFT of the impulse response can be used to interpolate the response for the entire region
[0, 2p]3 [0, 2p]. The filter design then becomes a problem of choosing an appropriate set of DFT
coefficients [21].
One choice of DFT coefficients consists of the ideal frequency response values, assuming a suitable

cutoff. However, the resultant filters usually exhibit large magnitude deviations away from the DFT
sample locations in the filter passbands and stopbands. The approximation error can be reduced by
allowing the DFT values in the transition band to vary, and choosing them to minimize the deviation of
the magnitude from the desired values. Another option is to allow all the DFT values to vary, and pick the
optimal set of values for minimum error. The use of DFT-based interpolation allows for a computation-
ally efficient implementation. The implementation cost of the method basically consists of a 2-D array
product and inverse discrete Fourier transform (IDFT) computation, with appropriate addition.
Let us consider the set S � Z2 that defines the equispaced frequency locations 2k1p

N1
, 2k2pN2

� �
:

S ¼ {(k1, k2): k1 ¼ 0, 1, . . . ,N1, k2 ¼ 0, 1, . . . ,N2}: (22:18)

The DFT values can be expressed as

HDFT[k1, k2] ¼ jH(v1,v2)j(v1,v2)¼ 2k1p
N1

, 2k2pN2

	 
, (k1, k2) 2 S: (22:19)

The filter coefficients, h(n1, n2), are found by using an IDFT computation

h(n1, n2) ¼ 1
N1N2

XN1�1

k1¼0

XN2�1

k2¼0

HDFT[k1, k2]e
j 2p

N1
k1n1þ2p

N2
k2n2

	 

, (n1, n2) 2 S: (22:20)
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If Equation 22.20 is substituted in the expression for frequency response

H(v1,v2) ¼
XN1�1

n1¼0

XN2�1

n2¼0

h(n1, n2)e
�j(v1n1þv2n2), (22:21)

we arrive at the interpolation formula

H(v1,v2) ¼
XN1�1

k1¼0

XN2�1

k2¼0

HDFT[k1, k2]Ak1k2 (v1,v2), (22:22)

where

Ak1k2 (v1,v2) ¼ 1
N1N2

1� e�jN1v1

1� e�j(v1�2pk1=N1)

� �
1� e�jN2v2

1� e�j(v2�2pk2=N2)

� �
: (22:23)

Equation 22.22 serves as the basis of the frequency sampling design. As mentioned before, if the HDFT are
chosen directly according to the ideal response, then the magnitude deviations are usually large. To
reduce the ripples, one option is to express the set S as the disjoint union of two sets St and Sc, where St
contains indices corresponding to the transition band Ft, and Sc contains indices corresponding to the
care-bands, i.e., the union of the passbands and stopbands, Fp[ Fs. The expression for frequency
response in Equation 22.22 can be split into two summations, one over St and the other over Sc

H(v1,v2) ¼
X
St

HDFT[k1, k2]Ak1k2 (v1,v2)þ
X
Sc

HDFT[k1, k2]Ak1k2 (v1,v2), (22:24)

where the first term on the right-hand side is optimized. The design equations can be put in the form

1� ad � H(v1,v2) � 1þ ad, (v1,v2) 2 Fp (22:25)

and

�d � H(v1,v2) � d, (v1,v2) 2 Fs, (22:26)

where
d is the peak approximation error in the stopband
ad is the peak approximation error in the passband, where a is any positive constant defining the
relative weights of the deviations

The problem is readily cast as a linear programming problem with a sufficiently dense grid of points.
For equiripple design, all the DFT values HDFT over St and Sc are allowed to vary. Following is an

example of this design.

Example 22.1

The magnitude response for the approximation of a circularly symmetric response is shown in
Figure 22.5. Here the passband is the interior of the circle R1¼p=3 and the stopband is the exterior
of the circle R2¼ 2p=3. With N1¼N2¼ 9, the passband ripple is 0.08 dB and the minimum stopband
attenuation is 32.5 dB.

22.3.3 FIR Filters Optimal in Lp Norm

A criterion different from the minimax criterion is briefly examined. Let us define the error at the
frequency pair (v1,v2) as follows:

E(v1,v2) ¼ H(v1,v2)�Hid(v1,v2): (22:27)
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One design approach is to minimize the Lp norm of the error

ep ¼ 1
4p2

ðp
�p

ðp
�p

E(v1,v2)j jp dv1dv2

0
@

1
A

1
p

: (22:28)

Filter coefficients are selected by a suitable algorithm. For p¼ 2 Parseval’s relation implies that

e22 ¼
X1

n1¼�1

X1
n2¼�1

[h(n1, n2)� hid(n1, n2)]
2: (22:29)

By minimizing Equation 22.29 with respect to the filter coefficients, h(n1, n2), which are nonzero only in a
finite-extent region, I, one gets

h(n1, n2) ¼
hid(n1, n2), (n1, n2) 2 I,

0, otherwise,

�
(22:30)

which is the filter designed by using a straightforward rectangular window. Due to the Gibbs phenom-
enon it may have large variations at the edges of passband and stopband regions. A suitable weighting
function can be used to reduce the ripple [2], and an approximately equiripple solution can be obtained.
For the general case of p 6¼ 2 [32], the minimization of Equation 22.28 is a nonlinear optimization

problem. The integral in Equation 22.28 is discretized and minimized by using an iterative nonlinear
optimization technique. The solution for p¼ 2 is easy to obtain using linear equations. This serves as an
excellent initial estimate for the coefficients in the case of larger values of p. As p increases, the solution
becomes approximately equiripple. The error term, E(v1, v2), in Equation 22.28 is nonuniformly
weighted in passbands and stopbands, with larger weight given close to band-edges where deviations
are typically larger.

R1 = 1.5π/4.5

Amplitude response

Log magnitude response

R2 = 3π/4.5
N1 = N2 = 9

In-band ripple = 0.08
Peak attenuation = 32.5 dB

FIGURE 22.5 Frequency response of the circularly symmetric filter obtained by using the frequency sampling
method. (From Hu, J.V. and Rabiner, L.R., IEEE Trans. Audio Electroacoust., 20, 249, 1972. With permission.
� 1972 IEEE.)
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22.3.4 Iterative Method for Approximate Minimax Design

We now consider a simple procedure based on alternating projections in the sample and frequency
domains, which leads to an approximately equiripple response. In this method, the zero-phase FIR filter
design problem is formulated to alternately satisfy the frequency domain constraints on the magnitude
response bounds and spatial domain constraints on the impulse response support [1,11,12]. The
algorithm is iterative and each iteration requires two 2-D FFT computations.
As pointed out in Section 22.2, 2-D FIR filter specifications are given as requirements on the

magnitude response of the filter. It is desirable that the frequency response, H(v1,v2), of the zero-
phase FIR filter be within prescribed upper and lower bounds in its passbands and stopbands. Let us
specify bounds on the frequency response H(v1,v2) of the minimax FIR filter, h(n1, n2), as follows:

Hid(v1,v2)� Ed(v1,v2) � H(v1,v2) � Hid(v1,v2)þ Ed(v1,v2) v1,v2 2 R, (22:31)

where
Hid(v1,v2) is the ideal filter response
Ed(v1,v2) is a positive function of (v1,v2) which may take different values in different passbands
and stopbands

R is a region defined in Equation 22.28 consisting of passbands and stopbands of the filter (note
that H(v1,v2) is real for a zero-phase filter)

Usually, Ed(v1,v2) is chosen constant in a passband or a stopband. Inequality equation (Equation 22.31)
is the frequency domain constraint of the iterative filter design method.

In spatial domain the filter must have a finite-extent support, I, which is symmetric region around the
origin. The spatial domain constraint requires that the filter coefficients must be equal to zero outside
the region, I.
The iterative method begins with an arbitrary finite-extent, real sequence h0(n1, n2) that is symmetric

(h0(n1, n2)¼ h0(�n1, n2)). Each iteration consists of making successive imposition of spatial and fre-
quency domain constraints onto the current iterate. The kth iteration consists of the following steps:

. Compute the Fourier transform of the kth iterate hk(n1, n2) on a suitable grid of frequencies by
using a 2-D FFT algorithm.

. Impose the frequency domain constraint as follows:

Gk(v1,v2) ¼
Hid(v1,v2)þ Ed(v1,v2) if Hk(v1,v2) > Hid(v1,v2)þ Ed(v1,v2),
Hid(v1,v2)� Ed(v1,v2) if Hk(v1,v2) < Hid(v1,v2)� Ed(v1,v2),
Hk(v1,v2) otherwise:

8<
: (22:32)

. Compute the inverse Fourier transform of Gk(v1,v2).

. Zero out gk(n1, n2) outside the region I to obtain hkþ1.

The flow diagram of this method is shown in Figure 22.6. It can be proven that the algorithm converges
for all symmetric input sequences. This method requires the specification of the bounds or equivalently,
Ed(v1,v2), and the filter support, I. In 2-D filter design, filter order estimates for prescribed frequency
domain specifications are not available. Therefore, successive reduction of bounds is used. If the
specifications are too tight, then the algorithm does not converge. In such cases one can either
progressively enlarge the filter support region, or relax the bounds on the ideal frequency response.
The size of the 2-D FFT must be chosen sufficiently large. The passband and stopband edges are very

important for the convergence of the algorithm. These edges must be represented accurately on the
frequency grid of the FFT algorithm.
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The shape of the filter support is very important in any 2-D filter design method. The support should
be chosen to exploit the symmetries in the desired frequency response. For example, diamond-shaped
supports show a clear advantage over the commonly assumed rectangular regions in designing diamond
filters or 908 fan filters [4,17].
Since there are efficient FFT routines, 2-D FIR filters with large orders can be designed by using this

procedure.

Example 22.2

Let us consider the design of a circularly symmetric low-pass filter. Maximum allowable deviation is
dp¼ ds¼ 0.05 in both passband and the stopband. The passband and stopband cutoff boundaries have
radii of 0.43 p and 0.63 p, respectively. This means that the functions Ed(v1,v2)¼ 0.05 in the passband
and the stopband. In the transition band the frequency response is conveniently bounded by the lower
bound of the stopband and the upper bound of the passband. The filter support is a square-shaped
173 17 region. The frequency response of this filter is shown in Figure 22.7.

Example 22.3

Let us now consider an example in which we observe the importance of filter support. We design a fan
filter whose specifications are shown in Figure 22.8. Maximum allowable deviation is dp¼ ds¼ 0.1 in
both passband and the stopband. If one uses a 73 7 square-shaped support which has 49 points, then it
cannot meet the design specifications. However, a diamond-shaped support,

Increment k

Initial filter
h0(n)

hk(n)

hk(n) =

h  k(n)

h  k(n)

0 if n Є I

Hk(w)

Hk(w)

Impose time domain
support

Inverse Fourier transform
via FFT

 Fourier transform
via FFT

Impose bounds in 
Fourier domain
(Equation 22.32)

if n Є I

ˆ
ˆ

ˆ

FIGURE 22.6 Flow diagram of the iterative filter design algorithm.
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Id ¼ {�5 � n1 þ n2 � 5} \ {�5 � n1 � n2 � 5}, (22:33)

together with the restriction that (‘‘de’’ for diamond-support with some eliminated samples)

Ide ¼ Id \ {n1 þ n2 ¼ odd or n1 ¼ n2 ¼ 0} (22:34)

produces a filter satisfying the bounds. The filter support region, Ide, contains 37 points. The resultant
frequency response is shown in Figure 22.8.
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FIGURE 22.7 (a) Frequency response and (b) contour plot of the low-pass filter of Example 22.1.
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22.4 Special Design Procedure for Restricted Classes

Many cases of practical importance typically require filters belonging to restricted classes. The stopbands
and passbands of these filters are often defined by straight-line, circular, or elliptical boundaries. In these
cases, specialized procedures lead to efficient design and low-cost implementation. The filters in
these cases are derived from 1-D prototypes.

22.4.1 Separable 2-D FIR Filter Design

The design of 2-D FIR filters composed of 1-D building blocks is briefly discussed. In cases where the
specifications are given in terms of multiple passbands in the shapes of rectangles with sides parallel to
the frequency axes, the design problem can be decomposed into multiple designs. The resulting filter is a
parallel connection of component filters that are themselves separable filters. The separable structure was
encountered earlier in the construction of 2-D windows from 1-D windows in Section 22.3. The design
approach is essentially the same. We will confine the discussion to cascade structures, which is a simple
and very important practical case.
The frequency response of the 2-D separable FIR filter is expressed as

H(v1,v2) ¼ H1(v1)H2(v2), (22:35)

where H1(v) and H2(v) are frequency responses of two 1-D zero-phase FIR filters of durations N1 and
N2. The corresponding 2-D filter is also a zero-phase FIR filter with N3M coefficients, and its impulse
response is given by

h(n1, n2) ¼ h1(n1)h2(n2), (22:36)

where h1(n) and the h2(n) are the impulse responses of the 1-D FIR filters.
If the ideal frequency response can be expressed in a separable cascade form as in Equation 22.35, then

the design problem is reduced to the case of appropriate 1-D filter designs. A simple but important
example is the design of a 2-D low-pass filter with a symmetric square-shaped passband, PB¼ {(v1,
v2): jv1j<vc, jv2j<vc}. Such a low-pass filter can be designed from a single 1-D FIR filter with a cutoff
frequency of vc by using Equation 22.36. A low-pass filter constructed this way is used in Figure 22.2c.

ω2

ω1

–0.5
4

3
2

1
0

–1
–2

–3
–4–4

–2
0

2

0
0.5

1

1.5

4

M
ag

ni
tu

de
(b)(a)

–π

ω1

ω2

π

π–π
0.0

0.0

0.0

1.0

Ft
Fs

Ft

Fs

FIGURE 22.8 (a) Specifications and (b) perspective frequency response of the fan filter designed in Example 22.2.
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The frequency response of this 2-D filter whose 1-D prototypes are seventh-order Lagrange filters is
shown in Figure 22.9.
This design method is also used in designing 2-D filter banks which are utilized in subband coding of

images and video signals [49,51,52]. The design of 2-D filter banks is discussed in Section 22.6.

22.4.2 Frequency Transformation Method

In this method a 2-D zero-phase FIR filter is designed from a 1-D zero-phase filter by a clever
substitution of variables. The design procedure was first proposed by McClellan [33] and the frequency
transformation is usually called the McClellan transformation [14,35,37,38].
Let H1(v) be the frequency response of a 1-D zero-phase filter with 2Nþ 1 coefficients. The key idea of

this method is to find a suitable transformation v¼G(v1,v2) such that the 2-D frequency response,
H(v1, v2), which is given by

H(v1,v2) ¼ jH1(v)jv¼G(v1,v2) (22:37)

approximates the desired frequency response, Hid(v1, v2).
Since the 1-D filter is a zero-phase filter, its frequency response is real, and it can be written as follows:

H1(v) ¼ h1(0)þ
XN
n¼1

2h1(n) cos (vn), (22:38)

where the term cos(vn) can be expressed as a function of cos(v) by using the nth-order Chebyshev
polynomial, Tn,* i.e.,

cos (vn) ¼ Tn[ cos (v)]: (22:39)
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FIGURE 22.9 Frequency response of the separable low-pass filter H(v1, v2)¼H1(v1)H1(v2) where H1(v) is a
seventh-order Lagrange filter.

* Chebyshev polynomials are recursively defined as follows: T0(x)¼ 1, T1(x)¼ x, and Tn(x)¼ 2xTn�1(x)�Tn�2(x).
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Using Equation 22.39, the 1-D frequency response can be written as

H1(v) ¼
XN
n¼0

2b(n)[cos (v)]n, (22:40)

where the coefficients, b(n), are related to the filter coefficients, h(n).
In this design method the key step is to substitute a transformation function, F(v1,v2), for cos(v) in

Equation 22.40. In other words, the 2-D frequency response, H(v1, v2), is obtained as follows:

H(v1,v2) ¼ H1(v)jcos (v)¼F(v1,v2)

¼
XN
n¼0

2b(n)[F(v1,v2)]
n: (22:41)

The function, F(v1,v2), is called the McClellan transformation.
The frequency response, H(v1,v2), of the 2-D FIR filter is determined by two free functions, the 1-D

prototype frequency response, H1(v), and the transformation, F(v1,v2). In order to have H(v1,v2) be
the frequency response of an FIR filter, the transformation, F(v1,v2), must itself be the frequency
response of a 2-D FIR filter. McClellan proposed F(v1,v2) to be the frequency response of a 33 3
zero-phase filter in Ref. [33]. In this case the transformation, F(v1,v2), can be written as follows:

F(v1,v2) ¼ Aþ B cos (v1)þ C cos (v2)þ D cos (v1 � v2)þ E cos (v1 þ v2), (22:42)

where the real parameters, A, B, C, D, and E, are related to the coefficients of the 33 3 zero-phase FIR
filter. For A¼�(1=2), B¼C¼ (1=2), D¼E¼ (1=4), the contour plot of the transformation, F(v1,v2), is
shown in Figure 22.10. Note that in this case the contours are approximately circularly symmetric around
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FIGURE 22.10 Contour plot of the McClellan transformation, F(v1, v2)¼ 0.5 cos(v1)þ 0.5 cos(v2)þ 0.5 cos(v1)
cos(v2)� 0.5.
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the origin. It can be seen that the deviation from the circularity, expressed as a fraction of the radius,
decreases with the radius. In other words, the distortion from a circular response is larger for large radii.
It is observed from Figure 22.10 that, with the above choice of parameters, A, B, C, D, and E, the
transformation is bounded (jF(v1,v2)j � 1), which implies that H(v1,v2) can take only the values that
are taken by the 1-D prototype filter, H1(v). Since jcos(v)j � 1, the transformation, F(v1,v2), which
replaces cos(v) in Equation 22.41 must also take values between 1 and �1. If a particular transformation
does not obey these bounds, then it can be scaled such that the scaled transformation satisfies the bounds.
If the transformation, F(v1,v2), is real (it is real in Equation 22.42) then the 2-D filter, H(v1,v2), will

also be real or, in other words, it will be a zero-phase filter. Furthermore, it can be shown that the 2-D
filter, H(v1,v2), is an FIR filter with a support containing (2M1Nþ 1)3 (2M2Nþ 1) coefficients, if the
transformation, F(v1,v2), is an FIR filter with (2M1þ 1)3 (2M2þ 1) coefficients, and the order of the 1-
D prototype filter is 2Nþ 1. In (19.42) M1¼M2¼ 1. As it can be intuitively guessed, one can design a 2-
D approximately circularly symmetric low-pass (high-pass) (bandpass) filter with the above McClellan
transformation by choosing the 1-D prototype filter, H1(v), a low-pass (high-pass) (bandpass) filter.
We will present some examples to demonstrate the effectiveness of the McClellan transformation.

Example 22.4

2-D window design by transformations [53]: In this example we design 2-D windows by using the
McClellan transformation. Actually, we briefly mentioned this technique in Section 22.3. The 1-D
prototype filter is chosen as an arbitrary 1-D symmetric window centered at the origin. Let w(n) be
the 1-D window of size 2Nþ 1, and W(v) ¼ PN

n¼�N w(n) exp (� jvn) be its frequency response. The
transformation, F(v1,v2), is chosen as in Equation 22.42 with the parameters A¼�(1=2), B¼ C¼ (1=2),
D¼ E¼ (1=4), of Figure 22.10. This transformation, F(v1,v2), can be shown to be equal to

F(v1,v2) ¼ 0:5 cos (v1)þ 0:5 cos (v2)þ 0:5 cos (v1) cos (v2)� 0:5: (22:43)

The frequency response of the McClellan window, Ht(v1,v2), is given by

Ht(v1,v2) ¼ W(v)jcos (v)¼F(v1,v2): (22:44)

The resultant 2-D zero-phase window, wt(n1, n2), is centered at the origin and of size (2Nþ 1)3 (2Nþ 1)
because M1¼M2¼ 1. The window coefficients can be computed either by using the inverse Chebyshev
relation,* or by using the inverse Fourier transform of Equation 22.44. The frequency response of a 2-D
window constructed from a 1-D Hamming window of order 13 is shown in Figure 22.3c. The size of the
window is 133 13.

Example 22.5

Let us consider the design of a circularly symmetric low-pass filter and a bandpass filter by using the
transformation of Equation 22.43. In this case, if one starts with a 1-D low-pass (bandpass) filter as
the prototype filter, then the resulting 2-D filter will be a 2-D circularly symmetric low-pass (bandpass)
filter due to the almost circularly symmetric nature of the transformation. In this example, the Lagrange
filter of order 7 considered in Section 22.2 is used as the prototype. The prototype 1-D bandpass filter of
order 15 is designed by using the Parks–McClellan algorithm [41]. Frequency response and contour plots
of the low-pass and bandpass filters are shown in Figures 22.11 and 22.12, respectively.

* 1¼T0(x), x¼T1(x)�T0(x), x
2¼ (t0(x)þT2(x)), x

3¼ (3T1(x)þT3(x)) etc.
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It is seen from the above examples that filters designed by the transformation method appear to have
better frequency responses than those designed by the windowing or frequency sampling methods. In
other words, one can control the 2-D frequency response by controlling the frequency response of the 1-
D prototype filter and choosing a suitable 2-D transformation. Furthermore, in some special cases it was
shown that minimax optimal filters can be designed by the transformation method [20].
We have considered specific cases of the special transformations given by Equation 22.42. By varying

the parameters in Equation 22.42 or expanding the transformation to include additional terms, a wider
class of contours can be approximated. Ideally, the frequency transformation approach requires the
simultaneous optimal selection of the transformation, F(v1,v2), and the 1-D prototype filter H1(v) to
approximate a desired 2-D frequency response. This can be posed as a nonlinear optimization problem.
However, a suboptimal two-stage design by separately choosing F(v1,v2) and H1(v) works well in
practice. The transformation F(v1,v2) should approximate 1(�1) in the passband (stopband) of the
desired filter. The contour produced by the transformation corresponding to the 1-D passband (stop-
band) edge frequency, vp(vs), should ideally map to the given passband (stopband) boundary in the 2-D
specifications. However, this cannot be achieved in general given the small number of variable param-
eters in the transformation. The parameters are therefore selected to minimize a suitable norm of the
error between actual and ideal (constant) values of the transformation over the boundaries.
Various transformations and design considerations are described in Refs. [37,38,40,42,43]. The use of

this transformation in exact reconstruction filter bank design was proposed in Ref. [7].
Filters designed by the transformation method can be implemented in a computationally efficient

manner [14,30]. The key idea is to implement Equation 22.41 instead of implementing the filter by using
the direct convolution sum. By implementing the transformation, F(v1,v2), which is an FIR filter of low-
order, in a modular structure realizing Equation 22.41 is more advantageous than ordinary convolution
sum [14,34].
In the case of circular passband design, it was observed that for low-order transformation, the

transformation contours exhibit large deviations from circularity. A simple artifice to overcome this
problem in approximating wideband responses is to use decimation of a 2-D narrowband filter impulse
response [18]. The solution consists of transforming the specifications to an appropriate narrowband
design, where the deviation from circularity is smaller. The narrow passband can be expanded by
decimation while essentially preserving the circularity of the passband.

22.4.3 Design Using Nonrectangular Transformations
and Sampling Rate Conversions

In some filter specifications the desired responses are characterized by ideal frequency responses in which
passbands and stopbands are separated by straight-line boundaries that are not necessarily parallel to the
frequency axes. Examples of these are the various kinds of fan filters [4,15,17,27] and diamond-shaped
filters [6,48]. Other shapes with straight-line boundaries are also approximated [8,9,13,28,29,50]. Several
design methods applicable in such cases have been developed and these methods are usually based on
transformations related to concepts of sampling rate conversions. Often alternate frequency domain
interpretations are used to explain the design manipulations. A detailed treatment of these methods is
beyond the scope of this chapter. However some key ideas are described and a specific case of a diamond
filter is used to illustrate the methods. The importance of these design methods stems from the
implementation efficiency that results from a generalized notion of separable processing.

In the family of methods considered here, manipulations of a separable 2-D response using a
combination of several steps are carried out. In the general case of designing filters with straight-line
boundaries, it is difficult to describe a systematic procedure. However, in a given design problem, an
appropriate set of steps in the design is suggested by the nature of the desired response.
Some underlying ideas can be understood by examining the problem of obtaining a filter with a

parallelogram-shaped passband region. The sides of the parallelogram are assumed to be tilted with
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respect to the frequency axes. One approach to solving this problem is to perform the following series of
manipulations on a separable prototype filter with a rectangular passband. The prototype filter impulse
response is upsampled on a nonrectangular grid. The upsampling is done by an integer factor greater
than one and it is defined by a nondiagonal nonsingular integer matrix [39]. The upsampling produces a
parallelogram by a rotation and compression of the frequency response of the prototype filter together
with a change in the periodicity. The matrix elements are chosen to produce the desired orientation in
the resulting response. Depending on the desired response, cascading to eliminate unwanted portions of
the passband in the frequency response, along with possible shifts and additions, may be used. The
nonrectangular upsampling is then followed by a rectangular decimation of the sequence to expand
the passband out to the desired size. In some cases, the operations of the upsampling transformation
and decimation can be combined by the use of nonrectangular decimation of impulse response
samples. Results using such procedures produce efficient filter structures that are implemented with
essentially 1-D techniques but where the orientations of processing are not parallel to the sample
coordinates.
Consider the case of a diamond filter design shown in Figure 22.13. Note that the filter in Figure 22.13

can be obtained from the filter in Figure 22.14a by a transformation of variables. If Fa(z1, z2) is the
transfer function of the filter approximating the response in Figure 22.14a, then the diamond filter
transfer function D(z1, z2) given by

D(z1, z2) ¼ Fa z
1
2
1z

1
2
2, z

�1
2

1 z
1
2
2

� �
(22:45)

will approximate the response in Figure 22.1a. The response in Figure 22.2a can be expressed as the sum
of the two responses shown in Figure 22.2b and c. We observe that if Fb(z1, z2) is the transfer function of
the filter approximating the response in Figure 22.2b then

Fc(z1, z2) ¼ Fb(�z1,�z2) (22:46)

will approximate the response in Figure 22.14c. This is
due to the fact that negating the arguments shifts the
(periodic) frequency response of Fb by (p, p). The
response in Figure 22.14b can be expressed as the prod-
uct of two ideal 1-D low-pass filters, one horizontal and
one vertical, which have the response shown in Figure
22.14d. This 1-D frequency response can be approxi-
mated by a half-band filter. Such an approximation will
produce a response in which the transition band
straddles both sides of the cutoff frequency boundaries
in Figure 22.14a. If we wish to constrain the transition
band to lie within the boundaries of the diamond-
shaped region in Figure 22.13a, then we should choose
a 1-D filter whose stopband interval is (p=2, p). LetH(z)
be the transfer function of the prototype 1-D low-pass
filter approximating the response in Figure 22.14d with
a suitably chosen transition boundary. The transfer
function H(z) can be expressed as

H(z) ¼ T1(z
2)þ zT2(z

2): (22:47)
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FIGURE 22.13 Ideal frequency response of a
diamond filter.
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The transfer function Fa is given by

Fa(z1, z2) ¼ H(z1)H(z2)þH(�z1)H(�z2): (22:48)

Combining Equations 22.45, 22.47, and 22.48 we get

D(z1, z2) ¼ 2T1(z1, z2)T1 z�1
1 z2

	 
þ 2z2T2(z1, z2)T2 z�1
1 z2

	 

: (22:49)

As mentioned before, H(z) can be chosen to be a half-band filter with

T1(z
2) ¼ 0:5: (22:50)

The filter T2 can be either FIR or IIR. It should be noted that the result can also be obtained as a
nonrectangular downsampling, by a factor of 2, of the impulse response of the filter Fb(�z1,�z2).

Another approach that utilizes multirate concepts is based on a novel idea of applying frequency
masking in the 2-D case [31].
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obtaining a diamond filter.
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22.5 2-D FIR Filter Implementation

The straightforward way to implement 2-D FIR filters is to evaluate the convolution sum given in Equation
22.1. Let us assume that the FIR filter has L nonzero coefficients in its region of support I. In order to get an
output sample, Lmultiplications and L additions need to be performed. The number of arithmetic operations
can be reduced by taking advantage of the symmetry of the filter coefficients, that is, h(n1, n2)¼ h(�n1,�n2).
For example, let the filter support be a rectangular region, I¼ {n1¼�N1, . . . , 0, 1, . . . , N1, n2¼�N2, . . . ,
0, 1, . . . , N2}. In this case,

y(n1, n2) ¼
XN1

k1¼�N1

XN2

k2¼1

[h(k1, k2)x(n1 � k1, n2 � k2)þ x(n1 þ k1, n2 þ k2)]

þ h(0, 0)x(n1, n2)þ
XN1

k1¼1

h1(k1, 0)[x(n1 � k1, n2)þ x(n1 þ k1, n2)], (22:51)

which requires approximately half of the multiplications required in the direct implementation
equation 22.1.
Any 2-D FIR filter can also be implemented by using an FFT algorithm. This is the direct generaliza-

tion of 1-D FFT-based implementation [14,30]. The number of arithmetic operations may be less than
the space domain implementation in some cases.
Some 2-D filters have special structures that can be exploited during implementation. As we pointed

out in Section 22.4, 2-D filters designed by McClellan-type transformations can be implemented in an
efficient manner [14,34,35] by building a network whose basic module is the transformation function
which is usually a low order 2-D FIR filter.

2-D FIR filters that have separable system responses can be implemented in a cascade structure. In
general, an arbitrary 2-D polynomial cannot be factored into subpolynomials due to the absence of a
counterpart of fundamental theorem of algebra in two or higher dimensions (whereas in 1-D any
polynomial can be factored into polynomials of lower orders). Since separable 2-D filters are constructed
from 1-D polynomials, they can be factored and implemented in a cascade form. Let us consider Equation
22.35 whereH(x1, x2)¼H1(x2)H2(x2) which corresponds to h(n1, n2)¼ h1(n1) h2(n2) in space domain. Let
us assume that orders of the 1-D filters h1(n) and h2(n) are 2N1þ 1 and 2N2þ 1, respectively. In this case
the 2-D filter, h(n1, n2), has the same rectangular support, I, as in Equation 22.51. Therefore,

y(n1, n2) ¼
XN2

k2¼�N2

h2(k2)
XN1

k1¼�N1

h(k1)x(n1 � k1, n2 � k2): (22:52)

The 2-D filtering operation in Equation 22.52 is equivalent to a two-stage 1-D filtering in which the
input image, x(n1, n2), is first filtered horizontally line by line by h1(n), then the resulting output is
filtered vertically column by column by h2(n). In order to produce an output sample, the direct
implementation requires (2N1þ 1)3 (2N2þ 1) multiplications, whereas the separable implementation
requires (2N1þ 1)þ (2N2þ 1) multiplications, which is computationally much more efficient than the
direct form realization. This is achieved at the expense of memory space (separable implementation
needs a buffer to store the results of first stage during the implementation). By taking advantage of the
symmetric nature of h1 and h2, the number of multiplications can be further reduced.

Filter design methods by imposing structural constraints like cascade, parallel, and other forms are
proposed by several researchers including Refs. [16,47]. These filters can be efficiently implemented
because of their special structures. Unfortunately, the design procedure requires nonlinear optimization
techniques which may be very complicated.
With advances in VLSI technology, the implementation of 2-D FIR filters using high-speed digital

signal processors is becoming increasingly common in complex image processing systems.
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22.6 Two-Dimensional Filter Banks

2-D subband decomposition of signals using filter banks (that implement a 2-D wavelet transform) find
applications in a wide range of tasks including image and video coding, restoration, denoising, and signal
analysis. For example, in recently finalized JPEG-2000 image coding standard an image is first processed
by a 2-D filter bank. Data compression is then carried out in the subband domain. In this section we
briefly discuss the case of four-channel separable filter banks. Chapter 24 provides a detailed description
of 1-D filter banks.
In most cases, 2-D filter banks are constructed in a separable form with the use of the filters of 1-D

filter banks, i.e., as a product of two 1-D filters [49,52]. We confine our attention to a 2-D four-channel
filter bank obtained from a 1-D two-channel filter bank. Let h0 and h1 denote the analysis filters of a 1-D
two-channel filter bank. The four analysis filters of the separable 2-D filter bank are given by

hi,j(n1, n2) ¼ hi(n1)hj(n2), i, j ¼ 0, 1: (22:53)

The filters h0 and h1 can be either FIR or IIR. If they are FIR (IIR), then the 2-D filters, hi,j, are also FIR
(IIR). Frequency responses of these four filters, Hi,j(v1, v2), i,j¼ 0, 1, are given by

Hi, j(v1,v2) ¼ Hi(v1)Hj(v2), i, j ¼ 0, 1, (22:54)

where H0(v1) and H1(v2) are the frequency responses of the 1-D low-pass (approximating an ideal cutoff
frequency at p=2) and high-pass filters of a 1-D subband filter bank, respectively [51]. Any 1-D filter bank
described in Chapter 24 can be used in Equation 22.53 to design 2-D filter banks. Feature-rich structures
for 1-D filter banks are described in Ref. [6].
The 2-D signal is decomposed by partitioning its frequency domain support into four rectangular

regions of equal areas. The ideal passband regions of the filters,Hi,j(v1, v2), are shown in Figure 22.15. For
example, the ideal passband ofH0,0(v1,v2) is the square region [�p=2,p=2]3 [�p=2,p=2]. The 2-D filter

bank is shown in Figure 22.16.
Corresponding 2-D synthesis filters are also

constructed in a separable manner from the
synthesis filters of the 1-D filter bank. If the
1-D filter bank has the perfect reconstruction
(PR) property, then the 2-D filter bank also has
the PR property. Subband decomposition filter
banks (or filter banks implementing the 2-D
wavelet transform) consist of analysis and syn-
thesis filters, upsamplers, and downsamplers as
discussed in Chapter 24. In the separable 2-D
filter bank, downsampling is carried out both
horizontally and vertically as follows:

x0(n1, n2) ¼ xa(2n1, 2n2): (22:55)

Here we consider the input 2-D signal xa to be
an image. The downsampled image x0 is a
quarter-size version of xa. Only one sample out
of four is retained in the downsampling oper-
ation described in Equation 22.55. The upsam-
pling operation is the dual of the downsampling

–π
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π

π

ω2

ω1

H10

H11

H00

H01

FIGURE 22.15 Ideal passband regions of the separable
filters of a rectangular filter bank.
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operation. In other words, a zero valued sample is inserted in upsampling corresponding to the location of
each dropped sample during downsampling.
The implementation of the above filter bank can be carried out separably in a computationally efficient

manner as described in Chapter 24 and Refs. [49,52]. The input image is first processed horizontally row
by row by a 1-D filter bank with filters, h0 and h1. After the input signal is horizontally filtered with the 1-
D two-channel filter bank, the signal in each channel is downsampled row-wise to yield two images. Each
image is then filtered and downsampled vertically by the filter bank. As a result, four quarter-size
subimages, xi, i¼ 0, 1, 2, 3, are obtained. These images are the same as the images obtained by direct
implementation of the analysis filter bank shown in Figure 22.16. The synthesis filter bank is also
implemented in a separable manner.
Nonseparable 2-D filter banks [14] are not as computationally efficient as separable filter banks as

discussed in Section 22.5.
In two or higher dimensions, downsampling and upsampling are not restricted to the rectangular grid,

but can be carried out in a variety of ways. One example of this is quincunx downsampling where the
downsampled image xq is related to the input image xa as follows:

xq(n1, n2) ¼ xa(n1 þ n2, n2 � n1): (22:56)

In this case only the samples for which n1þ n2 is even are retained in the output. Filter banks
employing quincunx and other downsampling strategies are described in Refs. [6,8,9,19,50,52] and in
Chapter 25. Filter banks that employ quincunx downsampling have only two channels and the frequency
support is partitioned in a diamond-shaped manner as shown in Figure 22.13. Filters of a quincunx
filter bank which have diamond-shaped passbands and stopbands can be designed from a 1-D
subband decomposition filter bank using the transformation method described in Equations 22.45
through 22.48. Chapter 25 provides a detailed discussion of the theory and applications of directional
filter banks.
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23.1 Introduction

A linear 2-D IIR digital filter can be characterized by its transfer function

H(z1, z2) ¼ N(z1, z2)
D(z1, z2)

¼
PN2

i¼0

PM2
j¼0 aijz

�i
1 z�j

2PN1
i¼0

PM1
j¼0 bijz

�i
1 z�j

2

(23:1)

where the sampling period Ti¼ 2p=vsi for i¼ 1, 2 with vsi and the sampling frequencies aij and bij are
real numbers known as the coefficients of the filter. Without loss of generality we can assume
M1¼M2¼N1¼N2¼M and T1¼T2¼T. Designing a 2-D filter is to calculate the filter coefficients
aij and bij in such a way that the amplitude response and=or the phase response (group delay) of the
designed filter approximates to some ideal responses while maintaining the stability of the designed filter.
The latter requires that

D(z1, z2) 6¼ 0 for zij j � 1, i ¼ 1, 2 (23:2)

The amplitude response of the 2-D filter is expressed as

M(v1,v2) ¼ H(e jv1T, e jv2T)
�� �� (23:3)
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the phase response as

f(v1,v2) ¼ argH(e jv1T, e jv2T ) (23:4)

and the two group delay functions as

ti(v1,v2) ¼ df(v1,v2)
dvi

, i ¼ 1, 2 (23:5)

Equation 23.1 is the general form of transfer functions of the nonseparable numerator and denominator
2-D IIR filters. It can involve two subclasses, namely, the separable product transfer function

H(z1, z2) ¼ H1(z1)H2(z2)

¼
PN2

i¼0 a1iz
�i
1

PM2
j¼0 a2iz

�j
2PN1

i¼0 b1iz
�i
1

PM1
j¼0 b2iz

�j
2

(23:6)

and the separable denominator, nonseparable numerator transfer function given by

H(z1, z2) ¼
PN2

i¼0

PM2
j¼0 aijz

�i
1 z�j

2PN1
i¼0 b1iz

�i
1

PM1
j¼0 b2jz

�j
2

(23:7)

The stability constraints for the above two transfer functions are the same as those for the individual two
1-D cases. These are easy to check and correspondingly the transfer function is easy to stabilize if the
designed filter is found to be unstable. Therefore, in the design of the above two classes, in order to reduce
the stability problem to that of the 1-D case, the denominator of the 2-D transfer function is chosen to
have two 1-D polynomials in z1 and z2 variables in cascade. However, in the general formulation of
nonseparable numerator and denominator filters, this oversimplification is removed. The filters of this
type are generally designed either through transformation of 1-D filters, or through optimization
approaches, as is discussed in the following.

23.2 Transformation Techniques

23.2.1 Analog Filter Transformations

In the design of 1-D analog filters, a group of analog filter transformations of the form s¼ g(s0) is
usually applied to normalized continuous low-pass transfer functions like those obtained by using the
Bessel, Butterworth, Chebyshev, and elliptic approximations. These transformations can be used to
design low-pass, high-pass, bandpass, or bandstop filters satisfying piecewise-constant amplitude
response specifications. Through the application of the bilinear transformation, corresponding 1-D
digital filters can be designed, and since 2-D digital filters can be designed in terms of 1-D filters, these
transformations are of considerable importance in the design of 2-D digital filters as well. In the 2-D
cases, the transformations have a form of

s ¼ g(s1, s2) (23:8)

As a preamble, in this section two groups of transformations of interest in the design of 2-D digital filters
are introduced, which essentially produce 2-D continuous transfer functions from 1-D ones.
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23.2.1.1 Rotated Filter

The first group of transformations, suggested by Shanks, Treitel, and Justice [1], are of the form

g1(s1, s2) ¼ �s1 sinbþ s2 cosb (23:9a)

g2(s1, s2) ¼ s1 cosbþ s2 sinb (23:9b)

They map 1-D into 2-D filters with arbitrary directionality in a 2-D frequency response plane. These
filters are called rotated filters because they are obtained by rotating 1-D filters.

If H(s) is a 1-D continuous transfer function, then a corresponding 2-D continuous transfer function
can be generated as

HD1(s1, s2) ¼ H(s)
���
s¼g1(s1,s2)

(23:10a)

HD2(s1, s2) ¼ H(s)
���
s¼g2(s1,s2)

(23:10b)

by replacing the s in H(s) with g1(s1, s2) and g2(s1, s2), respectively.
It is easy to show [2] that a transformation of g1(s1, s2) or g2(s1, s2) will give rise to a contour in the

amplitude response of the 2-D analog filter that is a straight line rotated by an angle b with respect to
the s1 or s2 axis, respectively. Figure 23.1 illustrates an example of 1-D to 2-D analog transformation by
(23.10a) for b¼ 08 and b¼ 458.

The rotated filters are of special importance in the design of circularly symmetric filters, as will be
discussed in Section 23.4.

23.2.1.2 Transformation Using a Two-Variable Reactance Function

The second group of transformations is based on the use of a two-variable reactance function. One of the
transformations was suggested by Ahmadi, Constantinides, and King [3,4]. This is given by

g3(s1, s2) ¼ a1s1 þ a2s2
1þ bs1s2

(23:11)

where a1, a2, and b are all positive constants.
Let us consider a 2-D filter designed by using a 1-D analog low-pass filter with cutoff frequency Vc.

Equation 23.11 results in

V2 ¼ Vc � a1V1

a2 � bVcV1
(23:12)

The mapping ofV¼Vc onto the (V1,V2) plane for various values of b is depicted in Figure 23.2 [5]. The
cutoff frequencies along the V1 and V2 axes can be adjusted by simply varying a1 and a2. On the other
hand, the convexity of the boundary can be adjusted by varying b. We note that b must be greater than
zero to preserve stability. Also, it should be noted that g3(s1, s2) becomes a low-pass to bandpass
transformation along s1¼ s2, and therefore the designed filter will behave like a bandstop filter along
V1¼V2. This problem can be overcome by using a guard filter of any order.

King and Kayran [6] have extended the above technique by using a higher order reactance function of
the form
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FIGURE 23.1 1D to 2D analog filter transformation. (a) Amplitude response of 1D analog filter. (b) Contour plot
of 2D filter, b¼ 08. (c) Contour plot of 2D filter, b¼ 458. (d) Contour plot of 2D filter, b¼ 458, after applying double
bilinear transformation.
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g4(s1, s2) ¼ a1s1 þ a2s2
1þ b1 s21 þ s22ð Þ þ b2s1s2

(23:13)

and they proved that the stability of g4(s1, s2) is ensured if

b1 > 0 (23:14)

and

b1 >
b22
4
� b21 > 0 (23:15)

However, it is necessary as earlier to include a guard filter, which may have the simple form of

G(z1, z2) ¼ (1þ z1)(1þ z2)
(d1 þ z1)(d2 þ z2)

(23:16)

in order to remove the high-pass regions along all radii except the coordinate axes.
Then, through an optimization procedure, the coefficients of g4(s1, s2) and G(z1, z2) are calculated

subject to the constraints of Equations 23.14 and 23.15, so that the cutoff frequency of the 1-D filter is
mapped into a desired cutoff boundary in the (V1, V2) plane.

23.2.2 Spectral Transformations

Spectral transformation is another kind of important transformation in the design of both 1-D and 2-D
IIR filters. In this section, three groups of spectral transformations are discussed. Among them, the
linear transformations map frequency axes onto frequency axes in the (V1, V2) plane, the complex
transformation is of wide applications to the design of fan filters, and the Constantinides transformations
transform a discrete function into another discrete function and through which any transformation of a
low-pass filter to another low-pass, high-pass, bandpass, or bandstop filter becomes possible.

23.2.2.1 Linear Transformations

Consider a group of linear transformations that map frequency axes onto themselves in the (V1, V2)
plane. There are eight possible such transformations [7,8] and they have the algebraic structure of a finite
group under the operation of multiplication [2]; each transformation can be expressed as

v1

v2

� �
:¼ D(T)

v1

v2

� �
(23:17)

where D(T) is a 23 2 unitary matrix representing transformation Td. The eight transformations and
their effect on the frequency response of the digital filter are as follows with a multiplication table being
illustrated in Table 23.1 [2].

1. Identity (I):

D(I) ¼ 1 0
0 1

� �

2. Reflection about the v1 axis (rv1):

D(rv1) ¼ 1 0
0 �1

� �
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3. Reflection about the v2 axis (rv2):

D(rv2) ¼ �1 0
0 1

� �

4. Reflection about the (rc1):

D(rc1) ¼ 0 1
1 0

� �

5. Reflection about the (rc2):

D(rc2) ¼ 0 �1
�1 0

� �

6. Counterclockwise rotation by 908 (R4):

D(R4) ¼ 0 �1
1 0

� �

7. Counterclockwise rotation by 1808 (R2
4):

D R2
4

� � ¼ �1 0
0 �1

� �

8. Counterclockwise rotation by 2708 (R3
4):

D R3
4

� � ¼ 0 1
�1 0

� �

In the above symbolic representation, c1 and c2 represent axes that are rotated by 458 in the counter-
clockwise sense relative to the v1 and v2 axes, respectively, and Rk denotes rotation by 3608=k in the
counterclockwise sense. These transformations could equivalently be defined in the (z1, z2) domain by
complex conjugating and=or interchanging the complex variables z1 and z2 in the filter transfer function.

An important property of the group is that each transformation distributes over a product of functions
of v1 and v2, that is,

TABLE 23.1 Multiplication Table of Group

I rv1 rv2 rc1 rc2 R4 R2
4 R3

4

I I rv1 rv2 rc1 rc2 R4 R2
4 R3

4

rv1 rv1 I R2
4 R3

4 R4 rc2 rv2 rc1

rv2 rv2 R2
4 I R4 R3

4 rc1 rv1 rc2

rc1 rc1 R4 R3
4 I R2

4 rv1 rc2 rv2

rc2 rc2 R3
4 R4 R2

4 I rv2 rc1 rv1

R4 R4 rc1 rc2 rv2 rv1 R2
4 R3

4 I

R2
4 R2

4 rv2 rv1 rc2 rc1 R3
4 I R4

R3
4 R3

4 rc2 rc1 rv1 rv2 I R4 R2
4
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Td

YK
i¼1

Fi(v1,v2)

" #
¼
YK
i¼1

Td Fi(v1,v2)½ � (23:18)

where T d represents any of the eight transformation operators. The validity of this property follows the
definition of the transformations [8].
In the (z1, z2) domain, if H(z1, z2) represents a causal filter with impulse response h(n1, n2), then the

filter represented by H(z1
�1, z2

�1)will have an impulse response h(�n1, �n2), and is therefore, noncausal,
since h(�n1, �n2) 6¼ 0 for n1< 0, n2< 0. Such a filter can be implemented in terms of causal transfer
function H(z1, z2), i.e., by rotating the n1 and n2 axes of the input signal by 1808, processing the rotated
signal by the causal filter, and then rotating the axes of the output signal by 1808, as illustrated in Figure
23.3b.
Noncausal filters can be used for the realization of zero-phase filters by cascading K pairs of filters

whose transfer functions are Hi(z1, z2) and H(z1
�1, z2

�1) for i¼ 1, 2, . . . , K, as depicted in Figure 23.3c.

23.2.2.2 Complex Transformation and 2-D Fan Filters

Complex Transformation. A complex transformation is of the form [9]

z ¼ efza1=b1
1 za2=b1

2 (23:19)

by which a 2-D filter H(z1, z2) can be derived from 1-D filter H1(z). The corresponding frequency
transformation of Equation 23.19 is

exp( jv) ! exp j fþ v1
a1

b1
þ v2

a2

b2

� �	 

(23:20)

or

v ! fþ v1
a1

b1
þ v2

a2

b2
(23:21)

There are three major effects of transformation Equation 23.20 on the resulting filter:

1. Frequency shifting along the v1 axis. The frequency response of the resulting filter will be shifted
by f along the v1 axis.

2. Rotation of the frequency response. The angle of rotation is

H(z1
–1, z2

–1)

(a)
x(n1, n2) y(n1, n2)

H1(z1
–1, z2

–1) HK(z1
–1, z2

–1)H1(z1, z2) HK(z1, z2)
(c)

…

H(z1, z2)TR4
2 TR4

2

(b)
x(n1, n2) y(n1, n2)y0(n1, n2)x0(n1, n2)

FIGURE 23.3 Design of zero-phase filters: (a) noncausal filter; (b) equivalent causal implementation; (c) cascade
zero-phase filter.
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u ¼ arctan
a2

b2

� �
(23:22)

Since the original filter is 1-D and a function of z1, the angle of rotation will be defined by the
fractional power of z2.

3. Scaling the frequency response along the v1 axis. The fractional power of z1 will scale the frequency
response by a factor b1=a1. However, the periodicity of the frequency response will be (a1=b1)2p
instead of 2p. Other effects may also be specified [9].

The complex transformation is of importance in the design of fan filters. By using a prototype lowpass
filter with a cutoff frequency at vc¼p=2, and the transformation Equation 23.19, one obtains the shifted,
scaled, and rotated characteristics in the frequency domain. We denote the transformed filter by

H z1, z2;
a1

b1
,
a2

b2

� �
¼ H1(z)

����
z¼efza1=b11 za2=b22

(23:23)

In general, the filter coefficients in function H will be complex and the variables z1 and z2 will have
rational noninteger powers. However, appropriate combinations of transformed filters will remove both
of these difficulties, as will be shown in the following.

Symmetric Fan Filters. An ideal symmetric fan filter has the specification of

Hf 1(e
jv1T, e jv2T ) ¼ 1 for v1j j � v2j j

0 otherwise

	
(23:24)

We introduce transfer function Ĥ1(z1, z2), Ĥ2(z1, z2), Ĥ3(z1, z2), and Ĥ4(z1, z2), of four filters generated by
Equation 23.23 with (a1=b1, a1=b2)¼ (1=2, 1=2), (�1=2, 1=2), (1=2,�1=2), and (�1=2,�1=2), respect-
ively, and f¼p=2. The responses of the transformed filters, Ĥ1(z1, z2), i¼ 1, 2, 3, 4, can be found in
Figure 23.4 together with the prototype filter.

0

–π–π 0 +π

+π

0

–π
–π 0 +π

+π

0

–π
–π 0 +π

+π

0

–π
–π 0

+π

0

–π
–π 0 +π

+π

+π

FIGURE 23.4 Basic building blocks of symmetric fan filters.
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In this design procedure, the filters in Figure 23.4 will be used as the basic building blocks for a fan
filter specified by Equation 23.24. One can construct the following filter characteristics:

G11(z1, z2) ¼ Ĥ1(z1, z2)Ĥ1* z�1
1 , z�1

2

� �
Ĥ2(z1, z2)Ĥ2* z�1

1 , z�1
2

� �
þ Ĥ3(z1, z2)Ĥ3* z�1

1 , z�1
2

� �
Ĥ4(z1, z2)Ĥ4* z�1

1 , z�1
2

� �
(23:25a)

G22(z1, z2) ¼ Ĥ1(z1, z2)Ĥ1* z�1
1 , z�1

2

� �
Ĥ3(z1, z2)Ĥ3* z�1

1 , z�1
2

� �
þ Ĥ2(z1, z2)Ĥ2* z�1

1 , z�1
2

� �
Ĥ4(z1, z2)Ĥ4* z�1

1 , z�1
2

� �
(23:25b)

which are shown in Figure 23.5.

Quadrant Fan Filters. The frequency characteristic of a quadrant fan filter is specified as

Hf 2(e
jv1T , e jv2T ) ¼ 1 for v1v2 � 0

0 otherwise

n
(23:26)

We consider the same ideal prototype filter. Then the transformed filters Ĥ14(z1, z2), Ĥ12(z1, z2),
Ĥ23(z1, z2), and Ĥ34(z1, z2), are obtained via Equation 23.23 with (a1=b1, a2=b2) equal to (1, 0), (0, 1),
(�1, 0), and (0, �1), respectively, and f¼p=2. The subscripts on Ĥ refer to quadrants to which the low-
pass filter characteristics have been shifted. Figure 23.6 illustrates the amplitude responses of these
transformed filters together with the prototype.
The filters in Figure 23.6 will be used as the basic building blocks for fan filters specified by Equation

23.26. In a similar manner to Equations 23.25a and b, the filter characteristics G13(z1, z2) and G23(z1, z2)
can be constructed as follows:

G13(z1, z2) ¼ Ĥ12(z1, z2)Ĥ12* z�1
1 , z�1

2

� �
Ĥ14(z1, z2)Ĥ14* z�1

1 , z�1
2

� �
þ Ĥ23(z1, z2)Ĥ23* z�1

1 , z�1
2

� �
Ĥ34(z1, z2)Ĥ34* z�1

1 , z�1
2

� �
(23:27a)

G24(z1, z2) ¼ Ĥ12(z1, z2)Ĥ12* z�1
1 , z�1

2

� �
Ĥ23(z1, z2)Ĥ23* z�1

1 , z�1
2

� �
þ Ĥ14(z1, z2)Ĥ14* z�1

1 , z�1
2

� �
Ĥ34(z1, z2)Ĥ34* z�1

1 , z�1
2

� �
(23:27b)

whose amplitude responses are depicted in Figure 23.7.

23.2.2.3 Constantinides Transformations

The so-called Constantinides [10,19] are of importance in the design of 1-D digital filters, and are of
the form

0

–π
–π 0 +π

+π

0

–π
–π 0 +π

+π

FIGURE 23.5 Amplitude characteristics of G11(z1, z2) and G22(z1, z2).
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z ¼ f (�z) ¼ ejlp
Ym
t¼1

�z � at*
1� at�z

(23:28)

where
l and m are integers
a*t is the complex conjugate of at

Pendergrass, Mitra, and Jury [11] showed that, in the decision of 2-D IIR filters, this group of
transformations is as useful as in 1-D cases. By choosing the parameters l, m, and at in Equation 23.28
properly, a set of four specific transformations can be obtained that can be used to transform a low-pass
transfer function into a corresponding low-pass, high-pass, bandpass, or a bandstop transfer function.
These transformations are summarized in Table 23.2, where subscript i is included to facilitate the
application of the transformation to 2-D discrete transfer functions.
Let Vi and vi for i¼ 1, 2 be the frequency variables in the original and transformed transfer function,

respectively. Suppose HL(z1, z2) is a low-pass transfer function with respect to zi, if each of z1 and z2 is

0

–π
–π 0 +π

+π

0

–π
–π 0 +π

+π

0

–π
–π 0 +π

+π

0

–π
–π 0 +π

+π

0

–π
–π 0 +π

+π

FIGURE 23.6 Basic building blocks for quadrant fan filter design.
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+π

0

–π
–π 0 +π

+π

FIGURE 23.7 Two quadrant pass filters.
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transformed to be low-pass, bandpass, or high-pass, then a number of different 2-D filter combinations
can be achieved. As an example, some of the possible amplitude responses are illustrated in Figure 23.8a
through f [2].

23.3 Design of Separable Product Filters

A 2-D IIR filter is characterized by a separable product transfer function of the form

H(z1, z2) ¼ H1(z1)H2(z2) (23:29)

ω2

ω1

(a)
ω2

ω1

(f )

ω2

ω1

(e)

ω2

ω1

(d)

ω2

ω1

(c)

ω2

ω1

(b)

FIGURE 23.8 Application of Constantinides transformations to 2D IIR filters. (a) Circularly symmetric low-pass
filter. (b) LP to LP for z1 and z2. (c) LP to HP for z1 and z2. (d) LP to BP for z1 and z2. (e) LP to HP for z1 and LP to LP
for z2. (f) LP to BP for z1 and LP to LP for z2.

TABLE 23.2 Constantinides Transformations

Type Transformation Parameters

LP to LP
zi ¼ �zi � ai

1� ai�zi
ai ¼

sin (Vpi � vpi)Ti=2
� �

sin (Vpi þ vpi)Ti=2
� �

LP to HP zi ¼ �zi � ai

1� ai�zi
ai ¼

cos (Vpi � vpi)Ti=2
� �

cos (Vpi þ vpi)Ti=2
� �

LP to BP zi ¼ �
�z2i �

2aiki
ki þ 1

�zi þ ki � 1
ki þ 1

1� 2aiki
ki þ 1

�zi þ ki � 1
ki þ 1

�z2i

ai ¼
cos (vp2i þ vp1i)Ti=2
� �

cos (vp2i þ vp1i)Ti=2
� �

ki ¼ tan
VpiTi

2
cot

(vp2i � vp1i)Ti

2

LP to BS zi ¼ �
�z2i �

2ai

1þ ki
�zi þ 1� ki

1þ ki

1� 2ai

1þ ki
�zi þ 1� ki

1þ ki
�z2i

ai ¼
cos (vp2i � vp1i)Ti=2
� �

cos (vp2i þ vp1i)Ti=2
� �

ki ¼ tan
VpiTi

2
tan

(vp2i � vp1i)Ti

2
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if its passband or stopband is of the shape of a rectangular domain. The design of such a class of filters
can be accomplished by using the method proposed by Hirano and Aggarwal [12]. The method can be
used to design filters with quadrantal or half-plane symmetry.

23.3.1 Design of Quadrantally Symmetric Filters

A 2-D filter is said to be quadrantally symmetric if its amplitude response satisfies the equality

H(z1, z2)j j ¼ H z1*, z1*ð Þj j ¼ H z1*, z2ð Þj j ¼ H z1, z1*ð Þj j (23:30)

Consider two 1-D bandpass filters specified by two transfer functions H1(z) and H2(z), respectively, and
let z¼ z1 in the first one and z¼ z2 in the second. If their frequency responses can be expressed by

H1(e
jv1T1 )

�� �� ¼ 1 v12 � v1 < v13

0 0 � v1 < v11 or v14 � v1 < 1
	

(23:31a)

and

���H2(e
jv2T2 )

��� ¼ 1 v22 � v2 < v23

0 0 � v2 < v21 or v24 � v2 � 1
	

(23:31b)

respectively, and since

���H(e jv1T1 , e jv2T2 )
��� ¼ H1(e

jv1T1 )
H2(e

jv2T2 )
��� ���

Equations 23.31a and b give

���H(e jv1T1 , e jv2T2 )
��� ¼ 1 v12 � v1 < v13 and v22 � v2 < v23

0 otherwise

	

Evidently, the 2-D filter obtained will pass frequency components that are in both passband of H1(z1) and
H2(z2); that is, the passband H1(z1, z2) will be a rectangle with sides v13�v12 and v23�v22. On the
other hand, frequency components that are in the stopband of either the first filter or the second filter
will be rejected. Hence, the stopband of H(z1, z2) consists
of the domain obtained by combining the stopbands of
the two filters.
By a similar method, if each of the two filters is allowed

to be a low-pass, bandpass, or high-pass 1-D filter, then
nine different rectangular passbands can be achieved, as
illustrated in Figure 23.9. The cascade arrangement of any
two of those filters may be referred to as a generalized
bandpass filter [12].
Another typical simple characteristic is specified

by giving the rectangular stopband region, which is referred
to as the rectangular stop filter. Also, there are nine possible
types of such a filter which are complementary to that of the
generalized bandpass filter shown in Figure 23.9 (i.e., con-
sidering the shadowed region as the stopband). This kind of
bandstop filter can be realized in the form of

H(z1, z2) ¼ HA(z1)HA(z2)� ejkp H1(z1)H2(z2)½ �2 (23:32)

ω2

ω1

FIGURE 23.9 Idealized amplitude response of
generalized bandpass filter.
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where H1(z1)H2(z2) is a generalized bandpass filter described above, and HA(z1) and HA(z2) are allpass 1-
D filters [13] whose poles are poles of H1(z1) and H2(z2), respectively. Equation 23.32 can be referred to
as a generalized bandstop filter.
Extending the principles discussed above, if a 2-D filter is constructed by cascading K 2-D filters with

passbands Pi, stopbands Si, and transfer function Hi(z1, z2), the overall transfer function is obtained as

H(z1, z2) ¼
Yk
i¼1

Hi(zi, z2)

and the passband P and stopband S of the cascaded 2-D filter are defined by

P ¼
\

Pi and S ¼
[K
i¼1

Si

that is, the only frequency components not to be rejected will be those that will be passed by each and
every filter in the cascade arrangement.
On the other hand, if a 2-D filter is constructed by connecting K 2-D filters in parallel, then

H(z1, z2) ¼
XK
i¼1

Hi(z1, z2)

Assuming that all the parallel filters have the same phase shift, and the passband Pi¼ 1 of the various
filters are not overlapping, then the passband and stopband of the parallel arrangement is given by

P ¼
[K
i¼1

Pi and S ¼
\

Si

Parallel IIR filters are more difficult to design than cascade ones, due to the requirement that the phase
shifts of the various parallel filters be equal. However, if all the data to be filtered are available at the start
of the processing, zero-phase filters can be used.
By combining parallel and cascade subfilters, 2-D IIR filters whose passbands or stopbands are

combinations of rectangular regions can be designed, as illustrated by the following example.

Example 23.1

Design a 2-D IIR filter whose passband is the area between two overlapping rectangles, as depicted in
Figure 23.10a.

Solution

1. Construct a first 2-D low-pass filter with rectangular passband (v12, v22) by using 1-D low-pass
filters, as shown in Figure 23.10a.

2. Construct a second 2-D low-pass filter with rectangular passband (v11, v21) by 1-D low-pass filters.
Then using Equation 23.32 to construct a 2-D high-pass filter with rectangular stopband (v11, v21),
as shown in Figure 23.10c.

3. Cascade the first 2-D low-pass filter with the 2-D high-pass filter to obtain the required filter. The
amplitude response of a practically designed 2-D filter is in Figure 23.10d.
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23.3.2 Design of Half-Plane Symmetric Filters

A 2-D filter is said to be half-plane symmetric if its amplitude response satisfies

��H(z1, z2)
�� ¼ ��H z1*, z2*ð Þ�� (23:33)

but

H(z1, z2)j j 6¼ H z1*, z2ð Þj j 6¼ H z1, z2*ð Þj j (23:34)

that is, half-plane symmetry does not imply quadrantal symmetry.
The design of those filters can be accomplished by cascading two quadrant pass filters derived

previously in Section 23.2.2.2 with quadrantally symmetric filters, as is demonstrated in Example 23.2.

Example 23.2

Design a 2-D half-plane symmetric filter whose passband is defined in Figure 23.11a.

Solution

1. Follow the steps 1 to 3 in Example 23.1 to construct a 2-D bandpass filter with the passband being
the area between two overlapping rectangles, as shown in Figure 23.10a.

ω2

ω22

ω21

ω11

ω1

ω12

ω2

ω22

ω1

ω12

ω2

ω21

ω11

(a) (c)

ω1

1
0.8
0.6
0.4
0.2

0
1

0.5
0

–0.5
–1 –1 –0.5 0

0.5 1

(b) (d)

FIGURE 23.10 Amplitude response for the filter of Example 23.1: (a) specified response; (b) response of the 2D
low-pass filter; (c) response of the 2D high-pass filter; (d) 3D plot of the amplitude response of a real 2D IIR filter.
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2. Construct a two quadrant (first and third quadrants) pass filter as depicted in Figure 23.7a.
3. Cascade the 2-D bandpass filter with the two quadrant pass filters to obtain the required filter.

The amplitude response of a practically designed filter is shown in Figure 23.11b.

23.3.3 Design of Filters Satisfying Prescribed Specifications

The problem of designing filters that satisfy prescribed specifications to a large extent has been solved for
the case of 1-D filters, and by extending the available methods, 2-D IIR filters satisfying prescribed
specifications can also be designed.

Assume that we are to design a 2-D low-pass filter with the following specification:

H(v1,v2)j j ¼ 1� Dp for 0 � vij j � vpi

Da for vai � vij j � vsi 2, i ¼ 1, 2=

	
(23:35)

wherevpi andvai, i¼ 1, 2 are passband and stopband edges along thev1 andv2 axes, respectively. The two
1-D filters that are cascaded to form a 2-D one are specified byvpi,vai, dpi, and dai (i¼ 1, 2) as the passband
edge, stopband edge, passband ripple, and stopband loss, respectively. From Equation 23.29 we have

max {M(v1,v2)} ¼ max {M1(v1)}max {M2(v2)}

and

min {M(v1,v2)} ¼ min {M1(v1)}min {M2(v2)}

Hence the derived 2-D filter will satisfy the specifications of Equation 23.35 if the following constraints
are satisfied

(1þ dp1)(1þ dp2) � 1þ Dp (23:36)

(1� dp1)(1� dp2) � 1� Dp (23:37)

(1þ dp1)da2 � Da (23:38)

(1þ dp2)da1 � Da (23:39)

da1da2 � Da (23:40)
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FIGURE 23.11 Amplitude response for the filter of Example 23.2: (a) specified response; (b) 3D plot of the
amplitude response of a real 2D IIR filter.
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Constraints 23.36 and 23.37 can be expressed respectively in the alternative form

dp1 þ dp2 þ dp1dp2 � Dp (23:41)

and

dp1 þ dp2 � dp1dp2 � Dp (23:42)

Hence if Equation 23.41 is satisfied, Equation 23.42 is also satisfied. Similarly, Constraints 23.38 through
23.40 will be satisfied if

max {(1þ dp1)da2, (1þ dp2)da1} � Da (23:43)

since (1þ dp1) >> da1 and (1þ dp2) >> da2. Now if we assume that dp1¼ dp2¼ dp and da1¼ da2¼ da,
then we can assign

dp ¼ (1þ Dp)1=2 � 1 (23:44)

and

da ¼ Da

(1þ Dp)1=2
(23:45)

so as to satisfy Constraints 23.36 through 23.40. And since Dp � 1, we have

dp � Dp
2

(23:46)

da � Da (23:47)

Consequently, if the maximum allowable passband and stopband errors Dp and Da are specified, the
maximum passband ripple Ap and the maximum stopband attenuation Aa and dB for the two 1-D filters
can be determined as

Ap ¼ 20 log
1

1� dp
¼ 20 log

2
2� Dp

(23:48)

and

Aa ¼ 20 log
1
dp

¼ 20 log
1
Da

(23:49)

Finally, if the passband and stopband edgesvpi andvai are also specified, theminimumorder and the transfer
function of each of the two 1-D filters can readily be obtained using any of the approaches of the previous
sections. Similar treatments for bandpass, bandstop, and high-pass filters can be carried out.

Example 23.3 [12]

Design a zero-phase filter whose amplitude response is specified in Figure 23.12a, with Ap¼ 3 dB,
Aa¼ 20 dB.
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Solution

1. Decomposition: Because there are no contiguous passbands between the characteristics of the
first and third quadrants and that of the second and fourth quadrants, in the first step of design,
the required 2-D filter can be decomposed into two subfilters H13(z1, z2) and H24(z1, z2), which
represent the characteristics of the first and third quadrants and that of the second and fourth
quadrants, respectively. By connecting H13(z1, z2) and H24(z1, z2), in parallel, the required charac-
teristics of the 2-D filter specified in Figure 23.12a can then be realized.

H(z1, z2) ¼ H13(z1, z2)þ H24(z1, z2)

(a) Decomposition of H13(z1, z2): To accomplish the design of H13(z1, z2), further decompositions
should be made. The characteristics of the first and third quadrants can be realized by
cascading three subfilters, i.e., a two quadrant filter G13(z1, z2) [as shown in Figure 23.7a],
a low-pass filter HL(z1, z2) [as shown in Figure 23.12b], and a rectangular stop filter HS(z1, z2)
[as shown in Figure 23.12c],

H13(z1, z2) ¼ G13(z1, z2)HL(z1, z2)HS(z1, z2)

furthermore, the rectangular stop filter HS(z1, z2) can be designed by allpass filter HA(z1, z2)
and low-pass filter HSL(z1, z2), using Equation 23.32
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FIGURE 23.12 Amplitude responses of the filters in Example 23.3: (a) the given characteristics; (b) rectangular pass
subfilter; (c) rectangular step subfilter; (d) final configuration of the 2D filter; (e) 3D plot of the amplitude response of
the resulting 2D filter.
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HS(z1, z2) ¼ HA(z1, z2)� [HSL(z1, z2)]
2

(b) Decomposition of H24(z1, z2): Similarly, H24(z1, z2) can be decomposed into the cascade of a
two quadrant filter G24(z1, z2) [as is shown in Figure 23.7b], and a bandpass filter HB(z1, z2)
which can be realized by using two 1-D bandpass filters for both directions.

H24(z1, z2) ¼ G24(z1, z2)HB(z1, z2)

The final configuration of the desired filter H(z1, z2) is illustrated in Figure 23.12d, with the
final transfer function being of the form

H(z1, z2) ¼ H13(z1, z2)þ H24(z1, z2)� H13(z1, z2)H24(z1, z2)

where the purpose of the term H13(z1, z2)H24(z1, z2), is to remove the overlap that may be
created by adding H13(z1, z2) and H24(z1, z2).

(2) Design of all the subfilters: At this point, the problem is to derive the two quadrant subfilters
G13(z1, z2) and G24(z1, z2), the low-pass subfilters HL(z1, z2) and HSL(z1, z2), the allpass subfilter
HA(z1, z2), and the bandstop filter HB(z1, z2).
Note the symmetry of the given characteristics, the identical 1-D sections can be used to
develop all the above 2-D subfilters, and the given specifications can easily be combined into
the designs of all the 1-D sections.

(3) By connecting all the 2-D subfilters in cascade or parallel as specified in Figure 23.12d, the
required 2-D filter is obtained. The 3-D plot of the amplitude response of the final resulting 2-
D filter is depicted in Figure 23.12e.

23.4 Design of Circularly Symmetric Filters

23.4.1 Design of LP Filters

As mentioned in Section 23.2.1, rotated filters can be used to design circularly symmetric filters. Costa and
Venetsanopoulos [14] and Goodman [15] proposed two methods of this class, based on transforming an
analog transfer function or a discrete one by rotated filter transformation, respectively. The two methods
lead to filters that are, theoretically, unstable but by using an alternative transformation suggested by
Mendonca et al. [16], this problem can be eliminated.

23.4.1.1 Design Based on 1-D Analog Transfer Function

Costa and Venetsanopoulos [14] proposed a method to design circularly symmetric filters. In their method,
a set of 2-D analog transfer functions is first obtained by applying the rotated filter transformation in
Equation 23.9a for several different values of the rotation angle b to a 1-D analog low-pass transfer
function. A set of 2-D discrete low-pass functions are then deduced through the application of the bilinear
transformation. The design is completed by cascading the set of 2-D digital filters obtained. The steps
involved are as follows.

Step 1. Obtain a stable 1-D analog low-pass transfer function

HAl(s) ¼ Ns
Ds

¼ K0

QM
i¼1 (s� zai)QN
i¼1 (s� pai)

(23:50)

where
zai and pai for i¼ 1, 2, . . . , are the zeros and poles of HA1(s), respectively
K0 is a multiplier constant
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Step 2. Let bk for k¼ 1, 2, . . . , K be a set of rotation angles defined by

bk ¼
2k� 1
2K

þ 1

� �
p for even K

k� 1
K

þ 1

� �
p for even K

8>>><
>>>:

(23:51)

Step 3. Apply the transformation of Equation 23.9a to obtain a 2-D analog transfer function as

jHA2k(s1, s2) ¼ HAl(s)js¼�s1 sinbkþs2 cosbk
(23:52)

for each rotation angle bk identified in Step 2.

Step 4. Apply the double bilinear transformation to HA2k(s1, s2) to obtain

HD2k(z1, z2) ¼ HA2k(s1, s2)j jsi¼2(zi�1)=Ti(ziþ1), i ¼ 1, 2 (23:53)

Assuming that T1¼T2¼T, Equations 23.50 and 23.53 yield

HD2k(z1, z2) ¼ K1

YM0

i¼1

H2i(z1, z2) (23:54)

where

H2i(z1, z2) ¼ a11i þ a21iz1 þ a12iz2 þ a22iz1z2
b11i þ b21iz1 þ b12iz2 þ b22iz1z2

(23:55)

K1 ¼ K0
T
2

� �N�M

(23:56)

a11i ¼ � cosbk þ sinbk �
Tzai
2

a21i ¼ � cos bk � sin bk �
Tzai
2

for 1 � i � M

a12i ¼ cosbk þ sin bk �
Tzai
2

a22i ¼ cos bk � sin bk �
Tzai
2

a11i ¼ a12i ¼ a21i ¼ a22i ¼ 1 for M � i � M0

(23:57a)

b11i ¼ � cosbk þ sin bk �
Tpai
2

b21i ¼ � cos bk � sin bk �
Tpai
2

for 1 � i � N

b12i ¼ cos bk þ sin bk �
Tpai
2

b22i ¼ cos bk � sin bk �
Tpai
2

b11i ¼ b12i ¼ b21i ¼ b22i ¼ 1 for N � i � M0

(23:57b)
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and

M0 ¼ max (M,N)

Step 5. Cascade the filters obtained in Step 4 to yield an overall transfer function

H(z1, z2) ¼
YK
k¼1

HD2k(z1, z2)

It is easy to find that, at point (z1, z2)¼ (�1, �1), both the numerator and denominator polynomials of
H2i(z1, z2) assume the value of zero. And thus each H2i(z1, z2) has nonessential singularity of the second
kind on the unit bicircle

U2 ¼ {(z1, z2): z1j j ¼ 1, z2j j ¼ 1}

The nonessential singularity of each H2i(z1, z2) can be eliminated and, furthermore, each subfilter can be
stabilized by letting

b012i ¼ b12i þ eb11i (23:58a)

b022i ¼ b22i þ eb21i (23:58b)

where e is a small positive constant. With this modification, the denominator polynomial of each
H2i(z1, z2) is no longer zero and, furthermore, the stability of the subfilter can be guaranteed if

Re(pai) < 0 (23:59)

and

270	 < bk < 360	 (23:60)

As can be seen in Equation 23.51, half of the rotation angles are in the range 1808<bk< 2708 and
according to the preceding stable conditions they yield unstable subfilters. However, the problem can
easily be overcome by using rotation angles in the range given by Equation 23.60 and the rotating
the transfer function of the subfilter by �908 using linear transformations described in Section 23.2.1.
For example, an effective rotation angle bk¼ 2258 is achieved by rotating the input data by 908,
filtering using a subfilter rotated by 3158, and then rotating the output data by �908, as shown in
Figure 23.13.

H225°(z1, z2)

(a)

x(n1, n2) y(n1, n2)

H315°(z1, z2)TR4 TR4
3

(b)
x(n1, n2) y(n1, n2)y0(n1, n2)x0(n1, n2)

FIGURE 23.13 Realization of subfilter for rotation angle in the range 1808<bk< 2708. (a) An effective rotation
angle bk¼ 2258 achieved by rotating the input by 908. (b) Filtering using a subfilter rotated by 3158, and then rotating
the output data by –908.
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In addition, a 2-D zero-phase filter can be designed by cascading subfilters for rotation angles pþbk

for k¼ 1, 2, . . . , N. The resulting transfer function is given by

H(z1, z2) ¼
YK
k¼1

HD2k(z1, z2)HD2k(z1, z2)

where the noncausal sections can be realized as illustrated in Figure 23.3.

23.4.1.2 Design Based on 1-D Discrete Transfer Function

The method proposed by Goodman [15] is based on the 1-D discrete transfer function transformation.
In the method, a 1-D discrete transfer is first obtained by applying the bilinear transformation to a 1-D
analog transfer function. Then, through the application of an allpass transformation that rotates the
contours of the amplitude of the 1-D discrete transfer function, a corresponding 2-D transfer function is
obtained. The steps involved are as follows.

Step 1. Obtain a stable 1-D analog low-pass transfer function HA1(s) of the form given by Equation
23.50.

Step 2. Apply the bilinear transformation to HA1(s) to obtain

HD1(z) ¼ HAl(s)js¼2(z�1) T(zþ1)= (23:61)

Step 3. Let bk for k¼ 1, 2, . . . , K be a set of rotation angles given by Equation 23.51.
Step 4. Apply the allpass transformation defined by

z ¼ fk(z1, z2) ¼ 1þ ckz1 þ dkz2 þ ekz1z2
ek þ dkz1 þ ckz2 þ z1z2

(23:62)

where

ck ¼ 1þ sinbk þ cosbk

1� sin bk þ cosbk
(23:63a)

dk ¼ 1� sin bk � cos bk

1� sinbk þ cosbk
(23:63b)

ek ¼ 1þ sinbk � cosbk

1� sinbk þ cosbk
(23:63c)

to obtain the 2-D discrete transfer function

HD2k(z1, z2) ¼ HD1(z)
���
z¼fk(z1,z2)

(23:64)

for k¼ 1, 2, . . . , K. The procedure yields the 2-D transfer function of Equation 23.64, as can be easily
demonstrated, and by cascading the rotated subfilters HD2k(z1, z2) the design can be completed.
The method of Goodman is equivalent to that of Costa and Venetsanopoulos and consequently, the

resulting filter is subject to the same stability problem due to the nonessential singularity of the second
kind at point (z1, z2)¼ (�1, �1). To achieve a stable design, Goodman suggested that the transfer
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function HD2k(z1, z2) for k¼ 1, 2, . . . , K be obtained directly by minimizing an appropriate objective
function subject to the constraints

ck þ dk � ek � 1� e

ck � dk þ ek � 1� e

�ck þ dk þ ek � 1� e

�ck � dk � ek � 1� e

through an optimization procedure. If e is a small positive constant, the preceding constraints consti-
tute necessary and sufficient conditions for stability and, therefore, such an approach will yield a
stable filter.

23.4.1.3 Elimination of Nonessential Singularities

To eliminate the nonessential singularities in the preceding two methods, Mendonca et al. [16] suggested
a new transformation of the form

s ¼ g5(s1, s2) ¼ cosbks1 þ sinbks2
1þ cs1s2

(23:65)

by combining the transformations in Equations 23.9a and 23.11 to replace the transformation Equation
23.9a. If we ensure that

cosbk > 0, sinbk > 0, and c > 0

then the application of this transformation followed by the application of the double bilinear trans-
formation yields stable 2-D digital filters that are free of nonessential singularities of the second kind.
If, in addition

c ¼ 1
v2
max

then local-type preservation can be achieved on the set V2 given by

V2 ¼ {(v1,v2): v1 � 0, v2 � 0, v1v2 � vmax}

and if vmax ! 1, then a global-type preservation can be approached as closely as desired.
By using the transformation of Equation 23.65 instead of that in Equation 23.9a in the method of Costa

and Venetsanopoulos, the transfer function of Equation 23.54 becomes

HD2k(z1, z2) ¼ K1PD2(z1, z2)

YM0

i¼1

a11i þ a21iz1 þ a12iz2 þ a22iz1z2
b11i þ b21iz1 þ b12iz2 þ b22iz1z2

(23:66)

where

K1 ¼ K0
T
2

� �N�M

(23:67a)

PD2(z1, z2) ¼ 1þ 4c
T2

þ 1� 4c
T2

� �
z1 þ 1� 4c

T2

� �
z2 þ 1þ 4c

T2

� �
z1z2

� �N�M

(23:67b)
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and

a11i ¼ � cosbk � sinbk �
T
2
þ 2c

T

� �
zai

a21i ¼ cosbk � sinbk �
T
2
þ 2c

T

� �
zai for 1 � i � M

a12i ¼ � cosbk þ sinbk �
T
2
� 2c

T

� �
zai

a22i ¼ cosbk þ sinbk �
T
2
þ 2c

T

� �
zai

a11i ¼ a21i ¼ a12i ¼ a22i ¼ 1 for M � i � M0

b11i ¼ � cosbk � sinbk �
T
2
þ 2c

T

� �
pai

b21i ¼ cosbk � sinbk �
T
2
� 2c

T

� �
pai for 1 � i � N

b12i ¼ � cosbk þ sinbk �
T
2
� 2c

T

� �
pai

b22i ¼ cosbk þ sinbk �
T
2
� 2c

T

� �
pai

b11i ¼ b21i ¼ b12i ¼ b22i ¼ 1 for N � i � M0

M0 ¼ max (M,N)

An equivalent design can be obtained by applying the allpass transformation of Equation 23.62 in
Goodman’s method with

ck ¼ 1þ cosbk � sinbk � 4c=T2

1� cosbk � sinbk þ 4c=T2

dk ¼ 1� cosbk þ sinbk � 4c=T2

1� cosbk � sinbk þ 4c=T2

ck ¼ 1þ cosbk þ sinbk þ 4c=T2

1� cosbk � sinbk þ 4c=T2

23.4.2 Realization of HP, BP, and BS Filters

Consider two zero-phase rotated subfilters that were obtained from a 1-D analog high-pass transfer
function using rotating angles �b1 and b1, where 08<b1< 908. The idealized contour plots of the two
subfilters are shown in Figure 23.14a and b. If these two subfilters are cascaded, the amplitude response of
the combination is obtained by multiplying the amplitude responses of the subfilters at corresponding
points. The idealized contour plot of the composite filter is thus obtained as illustrated in Figure 23.14c.
As can be seen, the contour plot does not represent the amplitude response of a 2-D circularly symmetric
high-pass filter, and, therefore, the design of high-pass filters cannot readily be achieved by simply
cascading rotated subfilters as in the case of low-pass filters. However, the design of these filters can be
accomplished through the use of a combination of cascade and parallel subfilters [16].
If the above rotated subfilters are connected in parallel, we obtain a composite filter whose contour plot

is shown in Figure 23.14d. By subtracting the output of the cascade filter from the output of the parallel
filter, we achieve an overall filter whose contour plot is depicted in Figure 23.14e. Evidently, this plot
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resembles the idealized contour plot of a 2-D circularly symmetric high-pass filter, and, in effect,
following this method a filter configuration is available for the design of high-pass filters.

The transfer function of the 2-D high-pass filter is then given by

Ĥ1 ¼ H1 ¼ Hb1 þ H�b1�Hb1H�b1 (23:68)

where

Hb1 ¼ H1(z1, z2)H1(z
�1
1 , z�1

2 )

and

H�b1 ¼ H1 z1, z
�1
2

� �
H1 z�1

1 , z2
� �

represent zero-phase subfilters rotated by angle b1 and �b1, respectively.
The above approach can be extended to two or more rotation angles in order to improve the degree of

circularity. For N rotation angles, ĤN is given by the recursive relation

ĤN ¼ ĤN�1 þ HN � ĤN�1HN (23:69)

where

HN ¼ HbN þ H�bN �HbNH�bN

and ĤN�1 can be obtained from HN�1 and ĤN�2. The configuration obtained is illustrated in Figure 23.15,
where the realization of ĤN�1 is of the same as that of ĤN.
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FIGURE 23.14 Derivation of 2D high-pass filter. (a) Contour plot of subfilter rotated by �b1. (b) Contour plot of
subfilter rotated by b1. (c) Contour plot of subfilters in (a) and (b) connected in cascade. (d) Contour plot of subfilters
in (a) and (b) connected in parallel. (e) Contour plot obtained by subtracting the amplitude response in (c) from
that of (d).
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As can be seen in Figure 23.15, the complexity of the high-pass configuration tends to increase rapidly
with the number of rotations, and consequently, the number of rotations should be kept to a minimum.
It should also be mentioned that the coefficients of the rotated filters must be properly adjusted, by using
Equation 23.65, to ensure that the zero-phase is approximated. However, the use of this transformation
leads to another problem: the 2-D digital transfer function obtained has spurious zeros at the Nyquist
points. These zeros are due to the fact that the transformation in Equation 23.65 does not have type
preservation in the neighborhoods of the Nyquist points but their presence does not appear to be of
serious concern.
With the availability of circularly symmetric low-pass and high-pass filters, bandpass and bandstop

filters with circularly symmetric amplitude responses can be readily obtained. A bandpass filter can be
obtained by connecting a low-pass filter and a high-pass filter with overlapping passbands in cascade,
whereas a bandstop filter can be realized by connecting a low-pass filter and a high-pass filter with
overlapping passbands in parallel.

23.4.3 Design of Filters Satisfying Prescribed Specifications

A similar approach to that described in Section 23.3.3 can be used for the design of circularly symmetric
filters satisfying prescribed specifications. Assume that the maximum=minimum passband and the
maximum stopband gain of the 2-D filter are (1�Dp) and Da, respectively, if K rotated filter sections
are cascaded where half of the rotations are in the range of 1808–2708 and the other half are in the range
2708–3608. Then, we can assign the passband ripple dp and the stopband loss da to be [2]

dp ¼ Dp
K

(23:70)

and

da ¼ Da2=K (23:71)

The lower (or upper) bound of the passband gain would be achieved if all the rotated sections were to
have minimum (or maximum) passband gains at the same frequency point. Although it is possible for all
the rotated sections to have minimum (or maximum) gains at the origin of the (v1, v2) plane, the gains
are unlikely to be maximum (or minimum) together at some other frequency point and, in effect, the
preceding estimate for dp is low. A more realistic value for dp is

dp ¼ 2Dp
K

(23:72)

If Dp and Da are prescribed, then the passband ripple and minimum stopband attenuation of the analog
filter can be obtained from Equations 23.72 and 23.71 as

Ap ¼ 20 log
K

K � 2Dp

� �
(23:73)

HN–1

–1

H
–

N × + +

FIGURE 23.15 2D high-pass filter configuration.
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and

Aa ¼ 40
K

log
1
Da

� �
(23:74)

If the passband Vp and stopband Va are also prescribed, the minimum order and the transfer function of
the analog filter can be determined using the method in preceding sections.

Example 23.4

Using the method of Costa and Venetsanopoulos, design a circularly symmetric low-pass filter satisfying
the following specifications:

vs1 ¼ vs2 ¼ 2p rad=s

vp ¼ 0:4p rad=s, va ¼ 0:6p rad=s

dp ¼ da ¼ 0:1

Solution

The filter satisfying prescribed specifications can be designed through the following steps:

1. Select a prototype of approximation and suitably select the number of rotations K.
2. Calculate rotation angles by Equation 23.51.
3. Determine Ap and Aa from dp and da, respectively, using Equations 23.73 and 23.74. Calculate the

prewarped Vp and Va, from vp and va, respectively.
4. Use above calculated specifications to obtain the prewarped 1-D analog transfer function.
5. Apply the transformations of Equations 23.52, 23.53, 23.57, and 23.58 to obtain K rotated

subfilters.
6. Cascade all the rotated subfilters.

The 3-D plot of the amplitude response of the resulting filter is shown in Figure 23.16, where K¼ 10.

23.5 Design of 2-D IIR Filters by Optimization

In the preceding sections, several methods for the solution of approximation problems in 2-D IIR filters
have been described. These methods lead to a complete description of the transfer function in closed
form, either in terms of its zeros and poles or its coefficients. They are, as a consequence, very efficient
and lead to very precise designs. Their main advantage is that they are applicable only for the design of
filters with piecewise-constant amplitude responses. In the following sections, the optimization methods
for the design of 2-D IIR filters are considered. In these methods, a discrete transfer function is assumed
and an error function is formulated on the basis of some desired amplitude and=or phase response. These
methods are iterative and, as a result, they usually involve a large amount of computation. However,
unlike the closed-form methods, they are suitable for the design of filters having arbitrary amplitude or
phase responses.
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23.5.1 Design by Least pth Optimization

The least pth optimization method has been used quite extensively in the past in a variety of applications.
In this approach, an objective function in the form of a sum of elemental error functions, each raised to
the pth power, is first formulated and is then minimized using any one of the available unconstrained
optimization methods [17].
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FIGURE 23.16 Amplitude response of a circularly symmetric filter in Example 23.4. (a) Subfilter for rotation angle
of 2438. (b) Subfilters for rotation angles of 1898, 2078, 2258, 2438, and 2618 in cascade. (c) Subfilters for
rotation angles of 2798, 2978, 3158, 3338, and 3518 in cascade. (d) All 10 subfilters in cascade. (e) 3D plot of the
amplitude response of the resulting 2D low-pass filter.
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23.5.1.1 Problem Formulation

Consider the transfer function

H(z1, z2) ¼ H0

YK
k¼1

Nk(z1, z2)
Dk(z1, z2)

¼ H0

YK
k¼1

PL1k
l¼0

PM1k
m¼0 a

(k)
lm z�1

1 z�m
2PL2k

l¼0

PM2k
m¼0 b

(k)
lm z�1

1 z�m
2

(23:75)

whereNk(z1, z2) andDk(z1, z2) are polynomials of order equal to or less than 2 andH0 is a constant, and let

x ¼ [aT bT H0]
T (23:76)

where

a ¼ a(1)10 a(1)20 . . . a(1)L11M11
a(2)10 a(2)20 . . . a(2)L12M12

. . . a(K)L1KM1K

h iT

and

b ¼ b(1)10 b(1)20 . . . b(1)L11M11
b(2)10 a(2)20 . . . b(2)L12M12

. . . b(K)L2KM2K

h iT

are row vectors whose elements are the coefficients of Nk(z1, z2) and Dk(z1, z2), respectively. An objective
function can be defined in terms of the Lp norm of E(x) as

J(x) ¼ Lp ¼kE(x)kp¼
XK
i¼1

Emn(x)j jp
" #1=p

(23:77)

where p is an even positive integer

Emn(x) ¼ M(m,n)�M1(m, n) (23:78)

and

M(m, n) ¼ H(e jv1mT1 , e jv2nT2 )
�� ��, m ¼ 1, . . . ,M, n ¼ 1, . . . ,N

are samples of the amplitude response of the filter at a set of frequency pairs (v1m, v2n) (m¼ 1, . . . , M,
n¼ 1, . . . , N) with

v1m ¼ vs1(m� 1)
2(M � 1)

and v2n ¼ vs2(n� 1)
2(N � 1)

M1(m, n) represents the desired amplitude response at frequencies (v1m, v2n).
Several special cases of the Lp norm are of particular interest. The L1 norm, namely

L1 ¼
XK
i¼1

���Emn(x)
���
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is the sum of the magnitudes of the elements of E(x); the L2 norm given by

L2 ¼
XK
i¼1

Emn(x)j j2
" #1=2

is the well-known Euclidean norm; and L2
2 is the sum of the squares of the elements of E(x). In the case

where p ! 1 and

EM(x) ¼ max
m, n

{Emn(x)} 6¼ 0

we can write

L1 ¼ lim
p!1

XK
k¼1

Emn(x)j jp
( )1=p

¼ EM(x) ¼ lim
p!1

XK
k¼1

Emn(x)
EM(x)

����
����
p

( )1=p

¼ EM(x) (23:79)

The design task at hand amounts to finding a parameter vector x that minimizes the least pth objective
function J(x) defined in Equation 23.77. If J(x) is defined in terms of L2

2, a least-squares solution is
obtained; if the L1 norm is used, a so-called minimax solution is obtained, since in this case the largest
element in E(x) is minimized.

23.5.1.2 Quasi-Newton Algorithms

The design problem described above can be solved by using any one of the standard unconstrained
optimization algorithms. A class of such algorithms that has been found to be very versatile, efficient, and
robust is the class of quasi-Newton algorithms [17–19]. These are based on the principle that the minimum
point x* of a quadratic convex function J(x) of N variables can be obtained by applying the correction

d ¼ �H�1g

to an arbitrary point x, that is

x* ¼ x þ d

where vector

g ¼ rJ(x) ¼ @J
@x1

,
@J
@x2

, . . . ,
@J
@xN

� �T

and N3N matrix

H ¼

@2J(x)
@x21

@2J(x)
@x1@x2

. . .
@2J(x)
@x1@xN

@2J(x)
@x2@x1

@2J(x)
@x22

. . .
@2J(x)
@x2@xN

� � � � � � � � � � � �
@2J(x)
@xN@x1

@2J(x)
@xN@x2

. . .
@2J(x)
@x2N

���������������

���������������
are the gradient vector and Hessian matrix of J(x) at point x, respectively.

Two-Dimensional IIR Filters 23-29



The basic quasi-Newton algorithm as applied to the 2-D IIR filter design problem is as follows [20].

ALGORITHM 1: Basic Quasi-Newton Algorithm

Step 1. Input x0 and e. Set S0¼ IN, where IN is the N3N unity matrix and N is the dimension of x,
and set k¼ 0. Compute g0¼�J(x0).

Step 2. Set dk¼�Sk gk and find ak, the value of a that minimizes J(xkþadk), using a line search.
Step 3. Set dk¼akdk and xkþ 1¼ xkþ dk.
Step 4. If kdKk< e, then output x*¼ xkþ 1, J(x*)¼ J(xkþ 1) and stop, else go to step 5.
Step 5. Compute gkþ1¼ J(xkþ1) and set gk¼ gkþ1� gk.
Step 6. Compute Skþ1¼ SkþCk, where Ck is a suitable matrix correction.
Step 7. Check Skþ1 for positive definiteness and if it is found to be nonpositive definite force it to

become positive definite.
Step 8. Set k¼ kþ 1 and go to step 2.

The correction matrix Ck required in step 6 can be computed by using either the Davidon–Fletcher–
Powell (DFP) formula

Ck ¼ dkd
T
k

gTk gk

Skgkg
T
k S

gTk Skgk
(23:80)

or the Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula

Ck ¼ 1þ gTk Skgk
dTkdk

 !
dkd

T
k

gTkdk
� dkgTk Sk þ Skgkd

T
k

gTkdk
(23:81)

Algorithm 1 eliminates the need to calculate the second derivatives of the objective function; in addition,
the matrix inversion is unnecessary. However, matrices S1, S2, . . . , Sk need to be checked for positive
definiteness and may need to be manipulated. This can be easily done in practice by diagonalizing Skþ1

and then replacing any nonpositive diagonal elements with corresponding positive ones. However,
this would increase the computational burden quite significantly. The amount of computation required
to complete a design is usually very large, due with the large numbers in 2-D digital filters and the
large number of sample points needed to construct the objective function. Generally, the computational
load can often be reduced by starting with an approximate design based on some closed-form solution.
For example, the design of circularly or elliptical symmetric filters may start with filters that have square
or rectangular passbands and stopbands.

Example 23.5 [20]

Design a circularly symmetric low-pass filter of order (2, 2) with vp1¼vp2¼ 0.08p rad=s and
va1¼va2¼ 0.12p rad=s, assuming that vs1¼vs2¼ 2p rad=s.

Solution

1. Construct the ideal discrete amplitude response of the filter

MI(m, n) ¼
1 for v2

1m þ v2
2n

� � � 0:008p
0:5 for 0:08p � v2

1m þ v2
2n

� � � 0:12p
0 otherwise

(
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where

{v1m} ¼ {v2n} ¼ 0, 0:02p, 0:04p, 0:2p, 0:4p, 0:6p, 0:8p,p

2. To reduce the amount of computation, a 1-D low-pass filter with passband edge vp¼ 0.08p and
stopband edge va¼ 0.1p is first obtained with the 1-D transfer function being

H1(z) ¼ 0:11024
1� 1:64382z�1 þ z�2

1� 1:79353z�1 þ 0:84098z�2

and then a 2-D transfer function with a square passband is obtained as

H(z1, z2) ¼ H1(z1)H1(z2)

3. Construct the objective function of Equation 23.77, using algorithm 1 to minimize the objective
function J(x). After 20 more iterations the algorithm converges to

H(z1, z2) ¼ 0:00895


1 z�1
1 z�2

1

� � 1:0 �1:62151 0:99994

�1:62151 2:6370 �1:62129

0:99994 �1:62129 1:00203

�������
�������

1

z�1
2

z�2
2

�������
�������

1 z�1
1 z�2

1

� � 1:0 �1:78813 0:82930

�1:78813 3:20640 �1:49271

0:82930 �1:49271 0:69823

�������
�������

1

z�1
2

z�2
2

�������
�������

The amplitude response of the final optimal filter is depicted in Figure 23.17.

23.5.1.3 Minimax Algorithms

Least pth Minimax Algorithm. When a objective function is formulated in terms of the Lp norm of the
error function and then minimizing J(x) for increasing values of p, such an objective function can be
obtained as

1
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FIGURE 23.17 Amplitude response of the 2D optimal filter in Example 23.5.
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J(x) ¼ EM(x)
Xm
i¼1

E(x,v1i,v2i)
EM(x)

����
����
p

( )1=p

(23:82)

where

EM(x) ¼ max
1�i�m

{Ei(x)} ¼ max
1�i�m

{Ei(x,v1i,v2i)} (23:83)

A minimax algorithm based on J(x) is as follows [21].

ALGORITHM 2: Least-pth Minimax Algorithm

Step 1. Input x0 and e. Set k¼ 1, p¼ 1, m¼ 2, E0¼ 1099.
Step 2. Initialize frequencies v1i, v2i for i¼ 1, 2, . . . , m.
Step 3. Using point xk�1 as initial point, minimize J(x) with respect to x to obtain xk. Set Ek¼E(xk).
Step 4. If jEk�1�Ekj< e, then output x*¼ xk and Ek and stop. Else, set p¼mp, k¼ kþ 1 and go

to step 3.

The minimization in step 3 can be carried out using algorithm 1 or any other unconstrained optimization
algorithms.

Charalambous Minimax Algorithm. The preceding algorithm gives excellent results except that it
requires a considerable amount of computation. An alternative and much more efficient algorithm is the
minimax algorithm proposed by Charalambous and Antoniou [22,23]. This algorithm is based on
principles developed by Charalambous [24] and involves the minimization of the objective function
J(x, z, l), defined by

J(x, z, l) ¼
X
i2I1

1
2
li[Ji(x, z)]

2 þ
X
i2I2

1
2
[Ji(x, z)]

2 (23:84)

where z and li for i¼ 1, 2, . . . , m are constants,

Ji(x, z) ¼ Ei(x)� z

I1 ¼ {i: Ji(x, z) > 0 and li > 0}

and

I2 ¼ {i: Ji(x, z) > 0 and li > 0}

The factor 1=2 in Equation 23.84 is included for the purpose of simplifying the gradient that is given by

rJ(x, z,l) ¼
X
i2I1

liJi(x, z)rJi(x, z)þ
X
i2I2

Ji(x, z)rJi(x, z) (23:85)

It can be shown that, if

1. The second-order sufficient conditions for a minimum hold at x*,
2. li¼ li*, i¼ 1, 2, . . . , m, where li* are the minimax multipliers corresponding to a minimum

optimum solution x*, and
3. E(x*)� j is sufficiently small then x* is a strong local minimum point of J(x, j, l).
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Condition 1 is usually satisfied in practice. Therefore, a local minimum point x* can be found by forcing
li to approach li* (i¼ 1, 2, . . . , m) and making E(x*)� j sufficiently small. These two constraints can be
simultaneously satisfied by applying the following algorithm.

ALGORITHM 3: Charalambous Minimax Algorithm

Step 1. Set j¼ 0 and li¼ 1 for i¼ 1, 2, . . . , m. Initialize x.
Step 2. Minimize function J(x,j, l) to obtain x.
Step 3. Set

S ¼
X
i2I1

liji(x, j)þ
X
i2I2

Ji(x, j)

and update li and j as

li ¼
liJi(x, j)=S if Ji(x, j) � 0, li � 0

Ji(x, j)=S if Ji(x, j) � 0, l ¼ 0

0 if Ji(x, j) < 0

8>><
>>:

j ¼
Xm
i¼1

liEi(x)

Step 4. Stop if

EM(x)� j

EM(x)
� e

otherwise go to step 2.

The parameter e is a prescribed termination tolerance. When the algorithm converges, conditions 2 and 3
are satisfied and x¼ x*. The unconstrained optimization in step 2 can be accomplished by applying a
quasi-Newton algorithm.

Example 23.6 [23]

Design a 2-D circularly symmetric filter with the same specifications as in Example 23.5, using algorithm 3.

Solution

1. Construct the ideal discrete amplitude response of the filter. Since the passband and stopband
contours are circles, the sample points can be placed on arcs of a set of circles centered at the
origin. Five circles with radii

r1 ¼ 0:3vp , r2 ¼ 0:6vp , r3 ¼ 0:8vp , r4 ¼ 0:9vp , and r5 ¼ vp

are placed in the passband and five circles with radii

r6¼va , r7¼vaþ0:1(p�va), r8¼vaþ0:2(p�va), r9¼vaþ0:55(p�va), and r10¼p

are placed in the stopband.
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For circularly symmetric filters, the amplitude is uniquely specified by the amplitude response in
the sector [08, 458]. Therefore, six equally spaced points on each circle described above between
08 and 458 are chosen. These points plus the origin (v1, v2)¼ (0,0) form a set of 61 sample points.

2. Select the 2-D transfer function. Because a circularly symmetric filter has a transfer function with
separable denominator [24], we can select the transfer function to be of the form

H(z1, z2) ¼ H0(z1, z2)
�1 


Yk
k¼1

z1z2 þ z�1
1 z�1

2 þ ak z1 þ z�1
1 þ z2 þ z�1

2

� �þ z�1
1 z2 þ z1z�1

2 þ bk
1þ ckz�1

1 þ dkz�2
1ð Þ 1þ ckz�1

2 þ dkz�2
2ð Þ (23:86)

with parameter H0 fixed as H0¼ (0.06582)2, K¼ 1, e¼ 0.01.
3. Starting from

a(0)1 ¼ �1:514, b(0)1 ¼ (a(0)1 )2, c(0)1 ¼ �1:784, d(0)1 ¼ 0:8166

and algorithm 3 yields the solution

a1* ¼ 1:96493, b1* ¼ �10:9934, c1* ¼ �1:61564, d1* ¼ 0:66781

EM(x) ¼ 0:37995

The 3-D plot of the amplitude response of the resulting filter is illustrated in Figure 23.18.

23.5.2 Design by Singular-Value Decomposition

As will be seen, an important merit of the design methods of 2-D IIR filters based on singular-value
decomposition (SVD) is that the required 2-D filter is decomposed into a set of 1-D digital subfilters,
which are much easier to design by optimization than the original 2-D filters.

23.5.2.1 Problem Formulation

In a quadrantally symmetric filter, H(z1, z2) has a separable denominator [25]. Therefore, it can be
expressed as

H(z1, z2) ¼
XK
i¼1

fi(z1)gi(z2) (23:87)
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FIGURE 23.18 3D plot of the amplitude response of the filter in Example 23.6.
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In effect, a quadrantally symmetric filter can always be realized using a set of K parallel sections where the
ith section is a separable subfilter characterized by the transfer function fi(z1) gi(z2).
Consider the desired amplitude response sample of 2-D filter H(z1, z2), we form a 2-D amplitude

specification matrix A as

A ¼
a11 a12 � � � a1L
a21 a22 � � � a2L
..
. ..

. ..
.

aM1 aM1 � � � aML

��������

��������
(23:88)

where {aml} is a desired amplitude response sampled at frequencies (v1l, v2m)¼ (pml=Ti, pnm=T2), with

ml ¼
l � 1
L� 1

, nm ¼ m� 1
M � 1

for 1 � l � L, 1 � m � M

that is,

aml ¼ H e jpm1 , e jpnm
� ��� ��

If the matrix A can be decomposed into the form of

A ¼
Xr
i¼1

FiGi (23:89)

then, by using the column vectors Fi and row vectors Gi, we can construct matrices

F ¼ [F1 F2 � � � Fr] (23:90)

G ¼ [G1 G2 � � � Gr]
T (23:91)

If all elements of F and G are nonnegative then they can be regarded as the amplitude specifications
matrices of an r-input=1-output 1-D filter F(z1) and a 1-input=r-output 1-D filter G(z2),

F(z1) ¼ [f1(z1), f2(z1), . . . , fr(z1)] (23:92)

G(z2) ¼ [g1(z2), g2(z2), . . . , gr(z2)]
T (23:93)

Therefore, the 2-D filter of Equation 23.87 can be approximated by

H(z1, z2) ¼ F(z1)G(z2) (23:94)

In this section, two design procedures are described that can be applied to the design of 2-D IIR filters
whose amplitude responses are quadrantally symmetric.

23.5.2.2 Method of Antoniou and Lu

Antoniou and Lu proposed a method of 2-D IIR filter based on the SVD of the amplitude response
matrix A [26]. The SVD of matrix A gives [27]

A ¼
Xr
i¼1

siuiv
T
i ¼

Xr
i¼1

f ig
T
i (23:95)
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where si are the singular values of A such that s1�s2� � � � �sr� 0 is the rank of A, ui, and vi are
the ith eigenvector of AAT and ATA, respectively, fi¼si

1=2ui, gi¼si
1=2vi, and {Fi: 1� i� r} and

{gi: 1� i� r} are sets of orthogonal L-dimensional and M-dimensional vectors, respectively.
An important property of the SVD can be stated as

A�
XK
i¼1

Fig
T
i

 ¼ min
�f, �g

A�
XK
i¼1

Fig
T
i

 for 1 � K � r (23:96)

where fi 2 RL, gi 2 RM

To design a 2-D IIR filter by SVD, two steps are involved, namely

Step 1. Design of the main section.
Step 2. Design of the error correction sections as will be detailed below.

Design of the Main Section. Note that Equation 23.95 can be written as

A ¼ f1g
T
1 þ e1 (23:97)

where e1 ¼ Sg
i Fig

T
i . And since all the elements of A are nonnegative, if follows that all elements of f1

and g1 are nonnegative.
On comparing Equation 23.97 with Equation 23.95 and assuming that K¼ 1 and that f1, g1 are

sampled versions of the desired amplitude responses for the 1-D filters characterized by f1(z1) and g1(z2),
respectively, a 2-D filter can be designed through the following procedures:

1. Design 1-D filters F1 and G1 characterized by f1(z1) and g1(z2).
2. Connect filters F1 and G1 in cascade, i.e.,

H1(z1, z2) ¼ f1(z1)g1(z2)

Step 1 above can be carried out by using an optimization algorithm such as the quasi-Newton algorithm
or the minimax algorithm.
Since f1(z1)g1(z2) corresponds to the largest singular value s1, the subfilter characterized by f1(z1) g1(z2)

is said to be the main section of the 2-D filter.

Design of the Error Correction Sections. The approximation error of H1(z1, z2) can be reduced by realizing
more of the terms in Equation 23.95 by means of parallel filter sections. From Equation 23.97, we can write

A ¼ f1g
T
1 þ f2g

T
2 þ e21 (23:98)

Since f2 and l2 may have some negative components, a careful treatment in Equation 23.98 is necessary.
Let f�

2 and g�2 be the absolute values of the most negative components of f2 and g2, respectively. If

ef ¼ [1 1 � � � 1]T 2 RL and eg ¼ [1 1 � � � 1]T 2 RM

then all components of

f2p ¼ f2 þf�
2 «f and g2p ¼ g2 þ g�

2 «g

are nonnegative. If it is possible to design 1-D linear-phase or zero-phase filters characterized by f1(z1),
g1(z2), f2p(z1), and g2p(z2), such that
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f1(e
jpmi ) ¼ f1(e

jpmi )
�� ��e ja1mi

g1(e
jpvm) ¼ g1(e

jpvm )
�� ��e ja2vm

and

f2p(e
jpmi ) ¼ f2p(e

jpmi )
�� ��e ja1mi

g2p(e
jpvm) ¼ g2p(e

jpvm )
�� ��e ja2vm

for 1 � l � L, � m � M, where

f1(e
jpm1 )

�� �� � f1l

g1(e
jpvm )

�� �� � g1m

f2p(e
jpml )

�� �� � f2lp

g2p(e
jpvm )

�� �� � g2mp

In above f1l, f2lp, glm, g2mp represent the lth component of f1, f2p and mth component of g1 and g2p,
respectively. a1 and a2 are constants that are equal to zero if zero-phase filters are to be designed. Let

a1 ¼ �pn1, a2 ¼ �pn2 with integers n1, n2 � 0 (23:99)

and define

f2(z1) ¼ f2p(z1)� f�
2 z

�n1
1 (23:100)

g2(z2) ¼ g2p(z2)� g�2 z
�n2
2 (23:101)

It follows that

f2(e
jpml ) ¼ f2p(e

jpml )� f�
2

� �
e�jpn1ml � f2le

�jpmln1

g2(e
jpvm) ¼ g2p(e

jpvm )� g�2
� �

e�jpn2vm � g2me
�jpgmn2

Furthermore, if we form

H2(z1, z2) ¼ f1(z1)g1(z2)þ f2(z1)g2(z2) (23:102)

then

����H2(e
jpml , e jpvm )

���� ¼
����f1(e jpml )g1(e

jpvm )þ f2(e
jpml )g2(e

jpvm )

����
� f1lg1m þ f2lg2mj j

(23:103)

Follow this procedure, K–1 correction sections characterized by k2(z1)g2(x2), . . . , g2(x1)g1(x2) can be
obtained, and Hk(z1, z2) can be formed as

Hk(z1, z2) ¼
XK
i¼1

fi(zi)gi(z2) (23:104)
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and from Equation 23.96 we have

A� ��Hk(e
jpml , e jpvm )

�� �
A�

XK
i¼1

f ig
T
i


�
eK ¼ min

�fi , �gi


XK
i¼1

�fi�gi
T
 (23:105)

In effect, a 2-D filter consisting of K sections is obtained whose amplitude response is a minimal mean-
square-error approximation to the desired amplitude response.
The method leads to an asymptotically stable 2-D filter, provided that all 1-D subfilters employed are

stable. The general configuration of the 2-D filter obtained is illustrated in Figure 23.19, where the various
1-D subfilters may be either linear-phase or zero-phase filters.
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×

–φk
–

×

–γk
–

++

×

–φ2
–

×

–γk
–

++

+

fk(z1) fk(z1
–1) gk(z2) gk(z2

–1)

f2(z1) f2(z1
–1) g2(z2) g2(z2

–1)

f1(z1) f1(z1–1) g1(z2) g1(z2
–1)

(a)

×

–φk
–

×

–γk
–

++

×

–φ2
–

×

–γk
–

++

+

fk(z1)

z1
–n1

z1
–n1

z2
–n2

z2
–n2

gk(z2)

f2(z1) g2(z2)

f1(z1) g1(z2)

FIGURE 23.19 Configurations of 2D IIR filter by SVD. (a) General structure of 2D filter. (b) Structure using zero-
phase IIR filters.
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If linear-phase subfilters are to be used, the equalities in Equation 23.99 must be satisfied. This implies
that the subfilters must have constant group delays. If zero-phase subfilters are employed, where fi(z1)
and fi(z

�1
1 ),and gi(z2) and gi(z�1

2 )contribute equally to the amplitude response of the 2-D filter. The design
can be accomplished by assuming that the desired amplitude responses for subfilters Fi, Gi are fi

1=2, gi
1=2,

for i¼ 1, 2, k, . . . , K, respectively.

Error Compensation Procedure. When the main section and correction sections are designed by an
optimization procedure as described above, approximation errors inevitably occur that will accumulate
and manifest themselves as the overall error. The accumulation of error can be reduced by the following
compensation procedure.
When filters F1 and G1 are designed, the approximation error matrix E1 can be calculated as

E1 ¼ A� f1(e
jpml )g1(e

jpnm) (23:106)

and then perform SVD on E1 to obtain

E1 ¼ S22f22g
T
22 þ � � � þ Sr2f r2g

T
r2 (23:107)

Data f22 and g22 can be used to deduce filters f2(z1) and g2(z2). Thus, the first correction section can be
designed. Next, form the error matrix E2 as

E2 ¼ E1 � S22f2(e
jpml )g2(e

jpvm ) (23:108)

and then perform SVD on E2 to obtain

E2 ¼ S33 f33 gT33 þ � � � þ Sr3 f r3 g
T
r3 (23:109)

and use data f33 and g33 to design the second correction section. The procedure is continued until the
norm of the error matrix becomes sufficiently small that a satisfactory approximation to the desired
amplitude response is reached.
Design of 1-D filters by using optimization can sometimes yield unstable filters. This problem can be

eliminated by replacing poles outside the unit circle of the z plane by their reciprocals and simultaneously
adjusting the multiplier constant to compensate for the change in gain [19].

Example 23.7 [26]

Design a circularly symmetric, zero-phase 2-D filter specified by

H v1,v2ð Þj j ¼ 1 for v2
1 þ v2

2

� �1=2
< 0:35p

0 for v2
1 þ v2

2

� �1=2 � 0:65 p

(

assuming that vs1¼vs2¼ 2p.

Solution

1. Construct a sampled amplitude response matrix. By taking L¼M¼ 21 and assuming that the
amplitude response varies linearly with the radius in the transition band, the amplitude response
matrix can be obtained as
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A ¼ A1 0
0 0

����
����
21
21

where

A ¼

1 1 1 1 1 1 1 1 1 0:75 0:5 0:25
1 1 1 1 1 1 1 1 0:75 0:5 0:25 0
1 1 1 1 1 1 1 1 0:75 0:5 0:25 0
1 1 1 1 1 1 1 0:75 0:5 0:25 0 0
1 1 1 1 1 1 1 0:75 0:5 0:25 0 0
1 1 1 1 1 1 1 0:75 0:5 0:25 0 0
1 1 1 1 1 0:75 0:5 0:25 0 0 0 0
1 1 1 0:75 0:75 0:5 0:25 0 0 0 0 0
1 0:75 0:75 0:5 0:5 0:25 0 0 0 0 0 0

0:75 0:5 0:5 0:25 0:25 0 0 0 0 0 0 0
0:5 0:25 0:25 0 0 0 0 0 0 0 0 0
0:25 0 0 0 0 0 0 0 0 0 0 0

������������������������

������������������������
The ideal amplitude response of the filter is illustrated in Figure 23.20a.

2. Perform SVD to matrix A to obtain the amplitude response of the main section of the 2-D filter. It
is worth noting that when a circularly symmetric 2-D filter is required, matrix A is symmetric and,
therefore, Equation 23.95 becomes
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FIGURE 23.20 Amplitude responses of (a) the ideal circularly symmetric 2D filter; (b) the main section; (c) the
main section plus the first correction; (d) the main section plus the first and second correction sections.
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A ¼
Xr
i¼1

Sifif
T
i (23:110)

where S1¼ 1 and Si¼�1 or �1, for 2� i� r. This implies that each parallel section requires only
one 1-D subfilter to be designed. As a consequence the design work is reduced by 50%.
When vector f1 is obtained, by selecting a fourth-order approximation and after optimization,

the transfer function of the main section f1(z) is obtained.
3. Design the correction sections. Successively perform SVD to the error E1 and E2, and apply the

preceding design technique; the transfer functions of the first and second correction sections can
be obtained.
The transfer function of the main section and the first and second correction sections are

listed in Table 23.3. And the amplitude responses of (1) the main section, (2) the main section plus
the first correction, and (3) the main section plus the first and second correction sections are
depicted in Figure 23.20b through d.

23.5.2.3 Method of Deng and Kawamata

In decomposing 2-D amplitude specifications into 1-D ones, the conventional SVD cannot avoid the
problem that the 1-D amplitude specifications that result are often negative. Since negative values cannot
be viewed as amplitude response, the problem of 1-D digital filter design becomes intricate. Deng and
Kawamata [28] proposed a procedure that guarantees all the decomposition results to be always
nonnegative and thus simplifies the design of correction sections.
The method decomposes the matrix A into the form

A ¼
Xr
i¼1

SiFiGi (23:111)

where all the elements of Fi and Gi are nonnegative and the decomposition error

E ¼ k A�
Xr
i¼1

SiFiGi k (23:112)

is sufficiently small, and Si¼ 1 or �1 for i¼ 1, 2, . . . , r.
The design procedure can be desired as follows.

Step 1. Let A0
1 ¼ A,A�

1 ¼ 0, and perform the SVD on Aþ
1 as

Aþ
1 ¼

Xri
i¼1

s1iu1iv1i � Fþ1 G
þ
1 (23:113)

TABLE 23.3 Design Based on Fourth-Order Subfilters (Example 23.7)

The main section
f1(z) ¼ 0:1255

(z2 þ 0:7239z þ 1) (z2 þ 1:6343z þ 1)
(z2 þ 0:1367z þ 1) (z2 � 0:5328z þ 0:2278)

The first correction section f2(z) ¼ 0:6098
(z2 þ 1:1618z þ 0:1661) (z2 þ 0:8367z þ 0:9958)

(z2 þ 0:9953z) (z2 þ 0:5124z þ 0:32)

S2 ¼ �1,f�
2 ¼ 0:6266

The second correction section f3(z) ¼ 0:4630
(z2 þ 1:5381z þ 0:4456) (z2 � 1:397z þ 1:1191)
(z2 þ 2:0408z � 1) (z2 � 0:7092z þ 0:6961)

S3 ¼ þ1,f�
3 ¼ 0:2764
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where s1i is the ith singular value of A1
þ(s11 � s12 � � � � � s1r1) and Fþ1 ¼ u11s

1=2
11 ,Gþ

1 ¼ u11s
1=2
11 .

Let

F1 ¼ Fþ1 , G1 ¼ Gþ
1 , and S1 ¼ 1 (23:114)

all the elements of F1 and G1 are nonnegative.
Step 2. Calculate the approximation error matrixA2 and decompose it into the sum of Aþ

2 and A�
2 as

A2 ¼ A� S1F1G1 ¼ Aþ
2 þ A�

2 (23:115)

where

Aþ
2 (m, n) ¼ A2(m, n) if A2(m, n) � 0

0 otherwise

	
(23:116)

and

A�
2 (m, n) ¼ A2(m, n) if A2(m, n) � 0

0 otherwise

n
(23:117)

To determine S2 and F2 and G2 for approximating A2 as accurately as possible, the following three
steps are involved.

1. Perform the SVD on A1
2 and approximate it as

Aþ
2 ¼

Xr2
i¼1

s2iu2iv2i � Fþ2 G
þ
2 (23:118)

where Fþ2 ¼ u21s
1=2
21 ,Gþ

2 ¼ s
1=2
21 v21: All the elements of F12 and G1

2 and G* are nonnegative. If
F2 ¼ Fþ2 ,G2 ¼ Gþ

2 , and S2¼ 1, the approximation error is

Eþ
2 ¼ k A�

X2
i¼1

SiFiGi k (23:119)

2. Perform the SVD on �A�
2 and approximate it as

�A�
2 ¼

Xr2�
i¼1

s2i�u2i�v2i� � F�2 G
�
2 (23:120)

where F�2 ¼ u21�s
1=2
21�,G

�
2 ¼ s

1=2
21�v21�, and r2� is the rank of A�

2 . All the elements of F2
� and

G2
� are nonnegative. If F2 ¼ F�2 ,G2 ¼ G�

2 , and S2¼ 1, the approximation error E2
� is

E�
2 ¼ kA�

X2
i¼1

SiFiGi k (23:121)

3. According to the results from steps 1 and 2, the optimal vectors F2 and G2 for approximating A
are determined as

F2 ¼ Fþ2 , G2 ¼ Gþ
2 , S2 ¼ 1 if Eþ

2 � E�
2

F2 ¼ F�2 , G2 ¼ G�
2 , S2 ¼ �1 if Eþ

2 � E�
2
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Successively decomposing the approximation error matrices Aj (j¼ 3, 4, . . . , r) in the same way
above described, a good approximation of matrix A can be obtained as in Equation 23.111.

Step 3. With the matrix A being decomposed into nonnegative vectors, the 1-D subfilters are
designed through an optimization procedure, and a 2-D filter can then be readily realized, as
shown in Figure 23.21.

It is noted that, in addition to SVD based methods as described in this section, design method based on
other decomposition is also possible [29].

23.5.3 Design Based on Two-Variable Network Theory

Ramamoorthy and Bruton proposed a design method of 2-D IIR filters that always guarantees the
stability of a filter and that involves the application of two-variable (2-V) strictly Hurwitz polynomials
[30]. A 2 V polynomial b(s1, s2) is said to be strictly Hurwitz if

b(s1, s2) 6¼ 0 for Re{s1} � 0 and Re{s2} � 0 (23:122)

In their method, a family of 2-V strictly Hurwitz polynomials is obtained by applying network theory
[31,32] to the frequency-independent, 2-V lossless network illustrated in Figure 23.22. The network has

f1(z1) g1(z2)S1 +

f2(z1) g2(z2)S2

fr(z1) gr(z2)

F(z1) G(z2)

Sr

FIGURE 23.21 2D filter realization based on iterative SVD.

Nr ports

1/s1

1/s2
Yin(s1, s2, yk1)

N1 ports

Frequency-independent
lossless (1+N1+N2+Nr)-port network N2 ports

FIGURE 23.22 A (1þN1þN2þNr)-port 2-V lossless network.
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1þN1þN2þNr ports and N1 and N2 are terminated in unit capacitors in complex variables s1 and s2,
respectively, and Nr is terminated in unit resistors. Since the network is lossless and frequency inde-
pendent, its admittance matrix Y is a real and skew-symmetric matrix given by

Y ¼

0 y12 y12 � � � y1N
�y12 0 y23 � � � y2N
�y13 �y23 0 � � � y3N

..

. ..
. ..

. ..
.

�y1N �y2N �y3N � � � 0

�������������

�������������
¼ Y11 Y12

�YT
12 Y22

����
���� N ¼ 1þ N1 þ N2 þ Nr (23:123)

If we define

Nr N1 N2

Y22(s1, s2, ykl) ¼ Y22 þ diag {1 � � � 1 s1 � � � s1 s2 � � � s2}
(23:124)

and

D(s1, s2, ykl) ¼ det [C22(s1, s2, ykl)] (23:125)

where diag(1 � � � 1 s1 � � � s1 s2 � � � s2) represents a diagonal matrix in which each of the first Nr elements is
unity, each of the next N1 elements is s1, and each of the last N2, elements is s2. Then, from the network
theory, the input admittance at port 1 is given by

Yin(s1, s2, ykl) ¼ Y12adj [Y22(s1, s2, ykl)]YT
12

det [Y22(s1, s2, ykl)]

¼ p(s1, s2, ykl)
D(s1, s2, ykl)

(23:126)

where D(s1, s2, ykl) is defined by Equation 23.125 and is a strictly Hurwitz polynomial for any set of real
values of the (N� 1) (N� 2)=2 independent parameters {ykl: 1< k< l�N}. Table 23.4 lists polynomial
D(s1, s2, ykl) for Nr¼ 1 (N1, N2)¼ (2, 1) and (N1, N2)¼ (2, 2) [30].

Having obtained the parameterized strictly Hurwitz polynomial D(s1, s2, ykl) the design procedure of a
2-D IIR filter can be summarized as follows.

TABLE 23.4 2-V Strictly Hurwitz Polynomials

N1 N2 N D(s1, s2, ykl)

1 1 4 s1s2 þ y224s1 þ y223s2 þ y234

2 1 5 s21s2 þ y225s
2
1 þ y223

� �
y223 þ y224
� �

s1s2 þ y235 þ y245
� �

s1 þ y234s2

þ (y23y46 � y24y35 þ y25y34)
2

2 2 6 s21s
2
2 þ y223 þ y224

� �
s1s

2
2 þ y225 þ y226

� �
s21s2 þ y256s

2
1 þ y234s

2
2

þ y235 þ y236 � y245 þ y246
� �

s1s2 þ y234s2 þ (y23y56 � y25y36 þ y26y35)
2�

þ (y24y56 � y25y46 þ y26y45)
2�s1 þ (y23y45 � y24y35 þ y25y34)

2�
þ (y23y46 � y24y36 þ y26y34)

2�s2 þ (y34y56 � y35y46 þ y36y45)
2
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Step 1. Construct a parameterized analog transfer function of the 2-D IIR filter, by using the
Hurwitz polynomial D(s1, s2, ykl)

H(s1, s2, ykl , aij) ¼ p(s1, s2)
D(s1, s2, ykl)

(23:127)

where

p(s1, s2) ¼
XN1

i¼1

XN2

j¼1

aijs
i
1s

j
2

is an arbitrary 2-V polynomial in s1 and s2 with degree in each variable not greater than the
corresponding degree of the denominator.

Step 2. Perform the double bilinear transformation to the parameterized analog transfer function
obtained in step 1.

H(z1, z2, ykl, aij) ¼ p(s1, s2)
D(s1, s2, ykl)

jsi¼2(zi�1)=Ti(ziþ1), i¼1, 2 (23:128)

Step 3. Construct an objective function according to the given design specifications and the
parameterized discrete transfer function obtained in step 2.

J(x) ¼
X
n1

X
n2

[M(n1, n2)�MI(n1, n2)]
p (23:129)

where p is an even positive, M(n1, n2) and MI(n1, n2) are the actual and desired amplitude
responses, respectively, of the required filter at frequencies (v1n1, v1n2), and x is the vector
consisting of parameters {ykl: 1< k< l�N} and {aij, 0� i�N1, 0� j�N2}.

Step 4. Apply an optimization algorithm to find the optimal vector x that minimizes the objective
function and substitute the resulting x into Equation 23.128 to obtain the required transfer function
H(z1, z2).

Example 23.8 [33]

By using the preceding approach, design a 2-D circularly symmetric low-pass filter of order (5, 5) with
vp¼ 0.2p, assuming that vs1¼vs2¼ 1.2p.

Solution

1. Construct the desired amplitude response of the desired filter

MI(v1n1 ,v2n2 ) ¼ 1 for v2
1n1 þ v2

2n2

� �
� 0:2p

0 otherwise

(

where

v1n1 ¼ 0:01pn2 for 0 � n1 � 20
0:01pn1 for 21 � n1 � 24
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and

v2n2 ¼ v1(24�n2) for 0 � n2 � 24

2. Construct the 2-D analog transfer function and perform double bilinear transformation to obtain
the discrete transfer function. The analog transfer function at hand is assumed to be an all-pole
transfer function of the form

H(s1, s2, x) ¼ 1
D(s1, s2, ykl)

Therefore, the corresponding discrete transfer function can be written as

H(z1, z2, x) ¼ A(z1 þ 1)5 (z2 þ 1)5P5
i¼0

P5
j¼0

bij zi1z
j
2

(23:130)

TABLE 23.5 Coefficients of Transfer Function in Equation 23.130
[A¼ 0.28627,bij: 0� i� 5, 0� j� 5]

0.0652 �0.6450 3.3632 �4.8317 0.3218 �0.1645

�0.7930 7.8851 �25.871 23.838 3.4048 3.4667

4.2941 �28.734 61.551 �29.302 �13.249 �25.519

�6.3054 28.707 �33.487 �7.2275 �22.705 83.011

0.7907 1.4820 �7.4214 �33.313 136.76 �128.43

�0.4134 6.0739 �36.029 101.47 140.20 78.428
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FIGURE 23.23 Amplitude response of circularly symmetric low-pass filter of Example 23.8.
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where

X5
i¼0

X5
j¼0

bijz
i
1z

j
2 ¼ (z1 þ 1)5(z2 þ 1)5D(s1, s2, ykl)jsi¼(zi�1 ziþ1), i¼1, 2=

contains (N� 1)(N� 2)=2¼ 36 parameters.
3. Optimization: A conventional quasi-Newton algorithm has been applied to minimize the object-

ive function in Equation 23.129 with p¼ 2. The resulting coefficients are listed in Table 23.5. The
amplitude response of the resulting filter is depicted in Figure 23.23.
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24.1 Introduction: Why Use Filter Banks?

An important class of digital filter system is the multirate filter bank. In this chapter we shall only be
considering the one-dimensional (1-D) type of filter bank, as might be applied to typical signals that
evolve with time, such as audio waveforms and communications signals.
The reason that filter banks are important is that we can often achieve useful functionality by

separating signals into various different frequency bands and applying different processing to each

24-1



band. Typical examples of this are the widely used MP3 digital audio compression systems. In order to
achieve a low coded data file size for digital music tracks, the MP3 coding standard specifies that the
audio signal should be split into many frequency bands and that separate adaptive quantization should be
applied to each band. The quantization is designed to take maximum advantage of the noise masking
properties of the human auditory system, such that frequency bands containing substantial audio energy
are quantized quite coarsely (because the quantizing noise gets masked by the signal here), whereas bands
with low levels of audio are quantized more finely (since the masking is only effective at frequencies close
to those containing most of the audio energy).
Filter banks can operate with filtered outputs being sampled at the same rate as the input signal.

However, with many filters operating in parallel, this can lead to an unacceptably large amount of
output data being generated. It is therefore sensible to subsample the outputs of the filters in a filter
bank so that the total output data rate from all the filters is similar to that of the input. Such filters
are called multirate filters, and the complete system is a multirate filter bank. When signals are
subsampled, aliasing can occur and cause degradation of signal quality, but, with careful design, aliasing
effects can be eliminated in multirate filter banks as long as the total output data rate is no less than the
input rate. Multirate filters can be implemented with much less computational cost than the equivalent
full rate filters, and, in the case of compression systems, they generate much less data to be coded by
the adaptive quantizers.
An alternative way to view the advantages of filter banks is that, with careful design, they can

encourage signal sparsity, i.e., most of the energy of an input signal can be concentrated in a small
proportion of the output samples from the filter bank. Sparsity has been shown to be a key element in
successfully performing many signal processing tasks, such as compression, denoising, signal separation,
and other enhancement techniques. Sparsity can be achieved if, at any given time, the input signal can be
well approximated by a weighted sum of the impulse responses from just a few of the filters in the filter
bank. This occurs when the filters are matched to typical components of the signal.
Digital filter banks have been actively studied since the 1960s. However their use achieved a consid-

erable boost with the development of wavelet theory in the 1980s. The theory of wavelet transforms was
developed principally by French and Belgian mathematicians, notably A. Grossman, J. Morlet, Y. Meyer,
I. Daubechies, and S. Mallat, and efficient implementation of the wavelet transform is usually achieved
with multirate filter banks. The two topics are now firmly linked and are of great importance for signal
analysis and compression.
The discrete wavelet transform (DWT) may be used to analyze a wide variety of signals, particularly

those that combine long low-frequency events with much shorter high-frequency events (e.g., transi-
ents). It has perhaps achieved its greatest success with images. Although these are two-dimensional
(2-D) signals, the 1-D filters considered in this chapter are still highly relevant since 2-D wavelet
transforms are usually achieved using separable 1-D processing along the rows and then down the
columns of the image (or vice versa).
In this chapter we shall be introducing some of the basic ideas behind 1-D filter banks, and then will

concentrate much of our coverage on the 2-band multirate filter bank, which is the workhorse of the
DWT. In the final sections we shall extend the discussion to M-band (M > 2) filter banks and also to
Hilbert pairs of filter banks, which lead to the dual-tree complex wavelet transform.
Most of the following discussions in this chapter will assume that the filters are finite-impulse-response

(FIR) filters and that all samples of the input signal are available in the memory of the signal processing
hardware. Hence causality of the filters is not an issue and filter taps corresponding to negative delays
(positive powers of z in the z-transform) pose no implementation problems. In this situation, the most
natural way to design filters is for zero overall delay (the zero-phase condition).
If these assumptions are not valid (e.g., in the case of a continuously evolving audio signal), then

appropriate delays can usually be inserted so that the filters are still implementable. Only in the case of
recursive infinite-impulse-response (IIR) filters is the causality issue a real potential problem; and so
more care is required on this issue in Section 24.7. Elsewhere we shall ignore problems of causality.
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24.2 2-Band Filter Bank

A simple analysis filter bank with just two bands is shown in Figure 24.1a. It comprises two filters H0 and
H1 which split the input signal X into its lower and higher frequency components, respectively. If X is
sampled at a rate of fs Hz, then its frequency spectrum can occupy the range 0 to 1

2 fS, while still satisfying
Nyquist’s rule; and so H0 will normally be designed to pass frequencies from 0 to 1

4 fS, and H1 from 1
4 fS

to 1
2 fS. Hence, H0 will be a low-pass filter and H1 will be high-pass.
Let us initially consider the simplest practical form of 2-band filter bank in which H0 and H1 are both

2-tap FIR filters with coefficient vectors h0 ¼ [ 1ffiffi
2

p , 1ffiffi
2

p ] and h1 ¼ [ 1ffiffi
2

p , �1ffiffi
2

p ] (corresponding to the well-
known Haar wavelet basis). Hence the filter outputs may be expressed as

y0(n) ¼ 1ffiffiffi
2

p x(n� 1)þ 1ffiffiffi
2

p x(n)

y1(n) ¼ 1ffiffiffi
2

p x(n� 1)� 1ffiffiffi
2

p x(n)

(24:1)

As z-transforms, Equation 24.1 becomes

Y0(z) ¼ H0(z)X(z) where H0(z) ¼ 1ffiffiffi
2

p (z�1 þ 1)

Y1(z) ¼ H1(z)X(z) where H1(z) ¼ 1ffiffiffi
2

p (z�1 � 1)

(24:2)

(By substituting z ¼ e jv, the reader may check that these filters are indeed low-pass and high-pass,
respectively. We shall later extend the filters to be more complicated.)
In practice, y0(n) and y1(n) are only calculated at alternate (say even) values of n so that the total

number of samples in vectors y0 and y1 is the same as in the input vector x. This is shown by the 2:1
downsamplers on the right in Figure 24.1a.
It is straightforward to invert Equation 24.1 to obtain the two samples of x back from the filter output

samples, as follows:

x(n� 1) ¼ 1ffiffiffi
2

p y0(n)þ 1ffiffiffi
2

p y1(n)

x(n) ¼ 1ffiffiffi
2

p y0(n)� 1ffiffiffi
2

p y1(n)

for n even: (24:3)

x(n)
X(z)

H1(z) y1(n)

Y1(z)
(a)

H0(z) y0(n)

y1(n)

y0(n)

Y0(z)

n even
2 G1(z)

Ŷ1(z)
(b)

2 G0(z)

Ŷ0(z)

+
x̂(n)

X̂(z)

2

2

FIGURE 24.1 Two-band filter banks for analysis (a) and reconstruction (b).
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Assuming that the missing samples of y0 and y1 are zero at odd values of n, we may combine the
equations in Equation 24.3 into a single expression for x(n), valid for all n:

x(n) ¼ 1ffiffiffi
2

p [y0(nþ 1)þ y0(n)]þ 1ffiffiffi
2

p [y1(nþ 1)� y1(n)] (24:4)

or as z-transforms

X(z) ¼ G0(z)Y0(z)þ G1(z)Y1(z) (24:5)

where

G0(z) ¼ 1ffiffiffi
2

p (z þ 1) and G1(z) ¼ 1ffiffiffi
2

p (z � 1) (24:6)

Note that the factors of 1ffiffi
2

p in the coefficients of the H and G filters are chosen to ensure that the l2-norm
(energy) of each vector of filter coefficients is unity, so that total energy is preserved from the X-domain
to the Y-domain and vice versa.

In Equation 24.5 the signals Y0(z) and Y1(z) are not really the same as Y0(z) and Y1(z) in Equation 24.2
because those in Equation 24.2 have not had alternate samples set to zero. Also, in Equation 24.5 X(z) is
the reconstructed output whereas in Equation 24.2 it is the input signal.
To avoid confusion we shall use X̂, Ŷ0, and Ŷ1 for the signals in Equation 24.5, so it becomes

X̂(z) ¼ G0(z)Ŷ0(z)þ G1(z)Ŷ1(z) (24:7)

We may show this reconstruction operation as upsampling followed by two filters, as in Figure 24.1b,
forming a 2-band reconstruction filter bank.
If Ŷ0 and Ŷ1 are not the same as Y0 and Y1, it is important to know how they do relate to each other.
Now

ŷ0(n) ¼ y0(n) for n even, ŷ0(n) ¼ 0 for n odd (24:8)

Therefore its z-transform, Ŷ0(z), is a polynomial in z, comprising only the terms in even powers of z from
Y0(z). This may be written as

Ŷ0(z) ¼
X
even n

y0(n)z
�n ¼

X
all n

1
2
[y0(n)z

�n þ y0(n)(�z)�n] ¼ 1
2
[Y0(z)þ Y0(�z)] (24:9)

Similarly

Ŷ1(z) ¼ 1
2
[Y1(z)þ Y1(�z)] (24:10)

This is our general model for downsampling by two, followed by upsampling by two as defined in
Equation 24.8.
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Substituting Equations 24.9 and 24.10 into Equation 24.7 and then using Equation 24.2, we get

X̂(z) ¼ 1
2
G0(z)[Y0(z)þ Y0(�z)]þ 1

2
G1(z)[Y1(z)þ Y1(�z)]

¼ 1
2
G0(z)H0(z)X(z)þ 1

2
G0(z)H0(�z)X(�z)

þ 1
2
G1(z)H1(z)X(z)þ 1

2
G1(z)H1(�z)X(�z)

¼ 1
2
X(z)[G0(z)H0(z)þ G1(z)H1(z)]

þ 1
2
X(�z)[G0(z)H0(�z)þ G1(z)H1(�z)] (24:11)

This result will be used in Section 24.6.

24.3 Multirate Filtering

In order to be able to calculate the characteristics of more complicated configurations, for example,
comprising cascaded filter banks such as used for wavelet transforms, it is necessary to derive some key
results for multirate filter systems.

24.3.1 Multirate Filtering Theorem

To calculate the impulse and frequency responses for a multistage filter network with downsampling=
upsampling between stages, we derive an important theorem for multirate filters.

THEOREM 24.1

The downsample–filter–upsample operation of Figure 24.2a is equivalent to either the filter–downsample–
upsample operation of Figure 24.2b or the downsample–upsample–filter operation of Figure 24.2c, if the filter
is changed from H(z) to H(z2).

PROOF: Expressing the convolution and downþ upsampling of Figure 24.2a in full:

ŷ(n) ¼
X
i

x(n� 2i)h(i) for n even

¼ 0 for n odd (24:12)

x(n)
X(z)

H(z)

(a)

ŷ(n)

Ŷ (z)

x(n)

X(z)
H (z2)

H(z2)

y(n)

Y(z)
(b)

or

ŷ(n)

Ŷ (z)

x(n)
X(z)

x̂(n)
X̂(z)

(c)

ŷ(n)
Ŷ (z)

2

2

2

2

2 2

FIGURE 24.2 Multirate filtering (a). This figure shows the result of shifting a filter ahead of a downsampling
operation (b) or after an upsampling operation (c).
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Taking z-transforms

Ŷ(z) ¼
X
n

ŷ(n)z�n ¼
X
even n

X
i

x(n� 2i)h(i)z�n (24:13)

Reversing the order of summation and letting m ¼ n� 2i:

Ŷ(z) ¼
X
i

h(i)
X
even m

x(m)z�mz�2i

¼
X
i

h(i)z�2i
X
even m

x(m)z�m

¼ H(z2)
1
2
[X(z)þ X(�z)] (24:14)

¼ 1
2
[H(z2)X(z)þH((�z)2)X(�z)] since (�z)2 ¼ z2

¼ 1
2
[Y(z)þ Y(�z)] where Y(z) ¼ H(z2)X(z) (24:15)

Equation 24.15 describes the operations of Figure 24.2b. Hence the first result is proved. The result
from Equation 24.14 gives

Ŷ(z) ¼ H(z2)
1
2
[X(z)þ X(�z)] ¼ H(z2)X̂(z) (24:16)

This shows that the filter H(z2) may be placed after the downþ upsampler as in Figure 24.2c, which
proves the second result.

24.3.2 General Results for M:1 Subsampling

The results above may be extended to the case of M:1 down and upsampling as follows:

. H(z) becomes H(zM) if shifted ahead of an M:1 downsampler or following an M:1 upsampler.
(These two results are known as the Noble identities.)

. M:1 downþ upsampling of a signal X(z) produces

X̂(z) ¼ 1
M

XM�1

m¼0

X(ze j2pm=M) (24:17)

These results will now be used to analyze binary filter trees.

24.4 Binary Filter Trees

For applications such as signal compression, the purpose of the 2-band filter bank is to compress most of
the signal energy into the samples representing the low-frequency half of the signal band. Hence 50%
of the filter-bank output samples (the low-pass half ) may well contain 90% or more of the signal energy
(if it is a signal with dominant low-frequency components such as an image or audio signal).
We may achieve greater compression if the low band is further split into two. This may be repeated

a number of times to give the binary filter tree. An example with four levels of decomposition is shown
in Figure 24.3.
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For an N-sample input vector x, sampled at a frequency fs, the sizes and bandwidths of the signals of
the 4-level filter tree are

Signal No. of Samples Approximate Pass Band

x N 0 ! 1
2 fs

y1 N=2 1
4 ! 1

2 fs
y01 N=4 1

8 ! 1
4 fs

y001 N=8 1
16 ! 1

8 fs
y0001 N=16 1

32 ! 1
16 fs

y0000 N=16 0 ! 1
32 fs

Because of the downsampling by 2 at each level, the total number of output samples equals N,
regardless of the number of levels in the tree; so the process is nonredundant.
The H0 filter is normally designed to be a low-pass filter with a passband from 0 to approximately 1

4 of
the input sampling frequency for that stage; and H1 is a high-pass (bandpass) filter with a pass band
approximately from 1

4 to
1
2 of the input sampling frequency.

When formed into a 4-level tree, the filter outputs have the approximate pass bands given in the above
table. The final output y0000 is a low-pass signal, while the other outputs are all bandpass signals, each
covering a band of approximately one octave.
An inverse tree, mirroring Figure 24.3, may be constructed using filters G0 and G1 instead of H0 and

H1, as shown for just one level in Figure 24.1b. If the PR conditions of Equations 24.40 and 24.41 are
satisfied, then the output of each level will be identical to the input of the equivalent level in Figure 24.3,
and the final output will be a PR of the input signal.

24.4.1 Transformation of the Filter Tree

Using the result of Equation 24.15, Figure 24.3 can be redrawn as in Figure 24.4 with all down-
samplers moved to the outputs. (Note Figure 24.4 requires much more computation than Figure 24.3,

x
H1(z)

H0(z)

y1

y0

H1(z)

H0(z)

y01

y00

H1(z)
H1(z)

H0(z)
H0(z)

y001

y000

y0001

y0000

2

2
2

2
2

2
2

2

FIGURE 24.3 Extension of the 2-band filter bank into a binary filter tree.H0 andH1 are low-pass and high-pass filters.

x
H1(z) y1

H0(z)
H1(z2) y01

H0(z2)
H1(z4)

H0(z4)

y001

H1(z8) y0001

H0(z8) y0000

2
4

8
16

16

FIGURE 24.4 Binary filter tree, transformed so that all downsampling operations occur at the outputs.
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but is a useful analysis aid.) We can now calculate the transfer function to each output (before the
downsamplers) as

H01(z) ¼ H0(z)H1(z
2)

H001(z) ¼ H0(z)H0(z
2)H1(z

4)

H0001(z) ¼ H0(z)H0(z
2)H0(z

4)H1(z
8)

H0000(z) ¼ H0(z)H0(z
2)H0(z

4)H0(z
8)

(24:18)

In general the transfer functions to the two outputs at level k of the tree are given by

Hk,1 ¼
Yk�2

i¼0

H0(z
2i )

 !
H1(z

2k�1
) and Hk,0 ¼

Yk�1

i¼0

H0(z
2i ) (24:19)

For the Haar filters of Equation 24.2, the transfer functions to the outputs of the 4-level tree become

H01(z) ¼ 1
2
[(z�3 þ z�2)� (z�1 þ 1)]

H001(z) ¼ 1

2
ffiffiffi
2

p [(z�7 þ z�6 þ z�5 þ z�4)� (z�3 þ z�2 þ z�1 þ 1)]

H0001(z) ¼ 1
4
[(z�15 þ z�14 þ z�13 þ z�12 þ z�11 þ z�10 þ z�9 þ z�8)

� (z�7 þ z�6 þ z�5 þ z�4 þ z�3 þ z�2 þ z�1 þ 1)]

H0000(z) ¼ 1
4
(z�15 þ z�14 þ z�13 þ z�12 þ z�11 þ z�10 þ z�9 þ z�8

þ z�7 þ z�6 þ z�5 þ z�4 þ z�3 þ z�2 þ z�1 þ 1)

(24:20)

These transfer functions are illustrated in Figure 24.5, simply by interpreting the coefficients of the
z-transform polynomials as samples of the corresponding impulse responses; and by substituting
z ¼ e j2pf =fs into the transfer functions and evaluating their magnitudes as a function of frequency, f, to
obtain the frequency responses.

24.5 Wavelets and Scaling Functions

The process of creating the outputs y1 to y0000 from x in Figure 24.3 is known as the DWT; and the
reconstruction process is the inverse DWT [1—3]. The term wavelet refers to the impulse response of the
cascade of filters which leads to a given bandpass output.

Since the frequency responses of the bandpass bands are scaled down by 2:1 at each level
(see Figure 24.5), their impulse responses become longer by the same factor at each level, but their shapes
remain very similar. The basic impulse response wave shape is almost independent of scale and is known as
the mother wavelet. The impulse response to a low-pass outputHk,0 is called the scaling function at level k.
Figure 24.5 shows these effects using the impulse responses and frequency responses for the five

outputs of the 4-level tree of Haar filters, based on the z-transforms given in Equation 24.20. Notice the
abrupt transitions in the midddle and at the ends of the Haar wavelets. These result in noticeable
blocking artifacts in decompressed images and other signal types. For this reason we are interested in
developing a more general theory of wavelets, with improved impulse and frequency responses.
There are several forms of the wavelet transform but the focus here will be on the form that is related to

the 2-band filter bank. This form, which is the most popular in applications, is known as the DWT.
Unless otherwise stated, it is assumed that the coefficients of all low-pass filters are scaled such that they
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sum to the value
ffiffiffi
2

p
, i.e., the DC frequency response is H0(e j0) ¼ H0(1) ¼

P
n h0(n) ¼

ffiffiffi
2

p
. (This scaling

has the effect of making the DWT tend to be an energy preserving transformation.)
Central to the principle of the DWT are the two-scale equations that link the discrete time filters of the

filter bank to continuous time functions known as the scaling function and the mother wavelet. These
equations exist both for the analysis side of the filter bank and for the synthesis side:

1. Analysis side equations:

~f(t) ¼ ffiffiffi
2

p X
k

h0(k)~f(2t � k) (24:21)

~c(t) ¼ ffiffiffi
2

p X
k

h1(k)~f(2t � k) (24:22)

where ~f(t) and ~c(t) are the analysis scaling function and mother wavelet, respectively. The
coefficients of filters H0(z) and H1(z) are h0(k) and h1(k):
i.e.,

H0(z) ¼
X
k

h0(k)z
�k and H1(z) ¼

X
k

h1(k)z
�k (24:23)

2. Synthesis side equations:

f(t) ¼ ffiffiffi
2

p X
k

g0(k)f(2t � k) (24:24)
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FIGURE 24.5 Impulse responses and frequency responses of the 4-level tree of Haar filters.
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c(t) ¼ ffiffiffi
2

p X
k

g1(k)f(2t � k) (24:25)

where f(t) and c(t) are the synthesis scaling function and mother wavelet, respectively.
The coefficients of filters G0(z) and G1(z) are g0(k) and g1(k):
i.e.,

G0(z) ¼
X
k

g0(k)z
�k and G1(z) ¼

X
k

g1(k)z
�k (24:26)

Note that the scaling functions (~f(t) or f(t)) are effectively the result of a cascade of low-pass filters
(H0 or G0) across very many progressively finer scales. The mother wavelets (~c(t) or c(t)) are the result
of cascading H1 or G1 at the coarsest scale, with very many low-pass filters at finer scales.

In the Fourier domain on the analysis side, this gives the infinite product formulae, achieved by
transforming Equations 24.21 and 24.22 as follows:

~F(v) ¼ ffiffiffi
2

p X
k

h0(k)
ð1

�1

~f(2t � k)e�jvt dt

¼ ffiffiffi
2

p X
k

h0(k)
ð1

�1

~f(t)e�jvt=2e�jvk=2 dt
2

if t ¼ 2t � k

¼ 1ffiffiffi
2

p H0(e
jv=2)~F(v=2)

¼ 1ffiffiffi
2

p H0(e
jv=2)

1ffiffiffi
2

p H0(e
jv=4)~F(v=4)

..

.

¼
Y1
k¼1

1ffiffiffi
2

p H0 e jv=2
k

� �� �
~F(0) (24:27)

Similarly

~C(v) ¼ 1ffiffiffi
2

p H1(e
jv=2)~F(v=2)

¼ 1ffiffiffi
2

p H1(e
jv=2)

Y1
k¼2

1ffiffiffi
2

p H0 e jv=2
k

� �� �
~F(0) (24:28)

where ~F(v) and ~C(v) are the Fourier transforms of ~f(t) and ~c(t), respectively.
The above equations explicitly define the analysis scaling function and mother wavelet in terms of the

analysis filters. Similar infinite product formulae exist linking the synthesis scaling function and wavelet
to the synthesis filters.
Equations 24.27 and 24.28 are reminiscient of the equivalent transfer functions defined in Equation

24.19 for the binary filter tree. The relationships can be made more precise as follows. The transfer
functions (repeated here for convenience) for the k level tree are

Hk,0(z) �
Yk�1

i¼0

H0(z
2i ) ¼

X
n

hk,0(n)z
�n (24:29)
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Hk,1(z) � H1(z
2k�1

)
Yk�2

i¼0

H0(z
2i ) ¼

X
n

hk,1(n)z
�n (24:30)

where hk,0(n) and hk,1(n) are the coefficients of Hk,0(z) and Hk,1(z).
From the coefficients of the equivalent filters, we construct the following piecewise constant functions:

~f(k)(t) � 2k=2hk,0(n),
n
2k

� t <
nþ 1
2k

(24:31)

~c(k)(t) � 2k=2hk,1(n),
n
2k

� t <
nþ 1
2k

(24:32)

Each coefficient defines a rectangular pulse of width 2�k, and both ~f(k)(t) and ~c(k)(t) are made up of
sequences of such pulses. The width of the pulse is halved with each increase in tree level (scale) k but
the 2k=2 amplitude normalization ensures that the total energy of each function remains constant. When
the number of levels k tends to infinity, the scaling function and mother wavelet are obtained:

~f(t) ¼ lim
k!1

~f(k)(t) and ~c(t) ¼ lim
k!1

~c(k)(t) (24:33)

i.e., the shape of the scaling function and wavelet are the shape of the impulse response of equivalent
filters of the binary tree as k ! 1. In practice, the shape of the scaling function and wavelet is obtained
quite accurately after k ’ 6 levels. Similar relationships exist on the synthesis side.
The discussion above involving infinite products assumes convergence but this is not always guaran-

teed. The filters must be properly designed to ensure convergence. One condition that is necessary for
convergence is

H0(e
jp) ¼ H0(�1) ¼ 0 and G0(e

jp) ¼ G0(�1) ¼ 0 (24:34)

i.e., the low-pass filter responses must vanish at the aliasing (half-sampling) frequency. This means that
(1þ z�1) must be a factor of both H0(z) and G0(z).

A simple degree-1 factor, i.e., (1þ z�1), may not necessarily guarantee convergence; and even if
convergence is achieved, the resultant scaling and wavelet functions may not be smooth. In general,
higher order factors are usually imposed on the low-pass filters, such that

H0(z) ¼ 2�LH (1þ z�1)LHRH(z) (24:35)

G0(z) ¼ 2�LG (1þ z�1)LGRG(z) (24:36)

where RH(z) and RG(z) are the remainder factors of H0(z) and G0(z), respectively.
The orders LH and LG determine the numbers of vanishing moments (VM) of the corresponding

wavelet function, such that

ðþ1

�1
tn~c(t)dt ¼ 0 for n ¼ 0, . . . , LH � 1 (24:37)

ðþ1

�1
tnc(t)dt ¼ 0 for n ¼ 0, . . . , LG � 1 (24:38)

In general the higher the number of VM, the smoother will be the scaling and wavelet functions.
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24.6 Good FIR Filters and Wavelets

24.6.1 Perfect Reconstruction Condition

One of the most important requirements for most filter banks is to be able to reconstruct perfectly the
input signal X(z) at the reconstruction filter bank output X̂(z) (see Figure 24.1).
We now wish to find the constraints on arbitrary filters, fH0,H1,G0,G1g, such that perfect recon-

struction (PR) occurs.
Repeating the result from Equation 24.11, the input–output relationship for the pair of filter banks in

Figure 24.1 is

X̂(z) ¼ 1
2
X(z)[G0(z)H0(z)þ G1(z)H1(z)]

þ 1
2
X(�z)[G0(z)H0(�z)þ G1(z)H1(�z)] (24:39)

If we require X̂(z) � X(z)—the PR condition—then

G0(z)H0(z)þ G1(z)H1(z) � 2 (24:40)

and

G0(z)H0(�z)þ G1(z)H1(�z) � 0 (24:41)

Equation 24.41 is known as the antialiasing condition because the term in X(�z) in Equation 24.39 is the
unwanted aliasing term caused by the 2 : 1 downsampling of y0 and y1.

It is straightforward to show that the expressions for fH0,H1,G0,G1g, given in Equations 24.2 and 24.6
for the filters based on the Haar wavelet basis, satisfy Equations 24.40 and 24.41. They are the simplest set
of filters which do.

24.6.2 Good Filters=Wavelets

Our main aim now is to search for better filters which result in wavelets and scaling functions that are
smoother than the Haar functions (i.e., which avoid the discontinuities evident in the waveforms of
Figure 24.5).
We start our search with the two PR identities, Equations 24.40 and 24.41.
The usual way of satisfying the antialiasing condition Equation 24.41, while permitting H0 and G0 to

have low-pass responses (passband where Re[z] > 0) and H1 and G1 to have high-pass responses
(passband where Re[z] < 0), is with the following relations in which k must be an odd integer:

H1(z) ¼ z�kG0(�z) and G1(z) ¼ zkH0(�z) (24:42)

Hence:

G0(z)H0(�z)þ G1(z)H1(�z) ¼ G0(z)H0(�z)þ zkH0(�z)(�z)�kG0(z)

¼ G0(z)H0(�z)þ (�1)�kH0(�z)G0(z)

� 0 if k is odd (24:43)

and so Equation 24.41 is satisfied, as required.
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Now we define the low-pass product filter:

P(z) ¼ H0(z)G0(z) (24:44)

and substitute relations in Equation 24.42 into Equation 24.40 to get

G0(z)H0(z)þ G1(z)H1(z) ¼ G0(z)H0(z)þ H0(�z)G0(�z)

¼ P(z)þ P(�z) � 2 (24:45)

Hence satisfying Equation 24.40 requires that all P(z) terms in even powers of z be zero, except the z0

term which must be 1. However the P(z) terms in odd powers of z may take any desired values since
they cancel out in Equation 24.45. If P is low-pass, this type of filter is often known as a halfband filter
since P(e jv)þ P(e j(vþp)) ¼ a constant, and so the bandwidth of P must be half of the input bandwidth.
A further commonly applied constraint on P(z) is that it should be zero phase,* in order to minimize

the magnitude of any distortions due to samples from the high-pass filters being suppressed (perhaps as a
result of quantization or denoising). Hence P(z) should be of the form:

P(z) ¼ � � � þ p5z
5 þ p3z

3 þ p1z þ 1þ p1z
�1 þ p3z

�3 þ p5z
�5 þ � � � (24:46)

The design of a set of PR filters H0,H1 and G0,G1 can now be summarized as

1. Choose a set of coefficients p1, p3, p5 � � � to give a zero-phase low-pass product filter P(z) with
desirable characteristics. (This is nontrivial and is discussed below.)

2. Factorize P(z) into H0(z) and G0(z), preferably so that the two filters have similar low-pass
frequency responses.

3. Calculate H1(z) and G1(z) from Equation 24.42.

It can help to simplify the tasks of choosing P(z) and factorizing it if, based on the zero-phase
requirement, we transform P(z) into Pt(Z) such that

P(z) ¼ Pt(Z) ¼ 1þ pt,1Z þ pt,3Z
3 þ pt,5Z

5 þ � � � where Z ¼ 1
2
(z þ z�1) (24:47)

To calculate the frequency response of P(z) ¼ Pt(Z), let z ¼ e jvTs .
Therefore

; Z ¼ 1
2
(e jvTs þ e�jvTs ) ¼ cos (vTs) (24:48)

This is a purely real function of v, varying from 1 at v ¼ 0 to �1 at vTs ¼ p (half the sampling
frequency). Hence we may substitute cos (vTs) for Z in Pt(Z) to obtain its frequency response directly.

24.6.3 Some Simple Filters=Wavelets (Haar and LeGall)

As discussed in Section 24.5, in order to achieve smooth wavelets after many levels of the binary tree,
the low-pass filters H0(z) and G0(z) must both have a number of zeros at half the sampling frequency
(at z ¼ �1). These will also be zeros of P(z), and so Pt(Z) will have zeros at Z ¼ �1 (each of which will
correspond to a pair of zeros at z ¼ �1).

* See the end of Section 24.1 for a discussion of causality assumptions related to this.
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The simplest case is a single zero at Z ¼ �1, so that Pt(Z) ¼ 1þ Z.

; P(z) ¼ 1
2
(z þ 2þ z�1) ¼ 1

2
(z þ 1)(1þ z�1) ¼ G0(z)H0(z)

which gives the familiar Haar filters.
As we have seen in Figure 24.5, the Haar wavelets have significant discontinuities so we need to

add more zeros at Z ¼ �1. However to maintain PR, we must also ensure that all terms in even powers of
Z in Pt(Z) are zero, so the next more complicated Pt must be third-order and of the form

Pt(Z) ¼ (1þ Z)2(1þ aZ) ¼ 1þ (2þ a)Z þ (1þ 2a)Z2 þ aZ3

¼ 1þ 3
2
Z � 1

2
Z3 if a ¼ � 1

2
to suppress the term in Z2 (24:49)

Allocating the factors of Pt such that (1þ Z) gives H0 and (1þ Z)(1þ aZ) gives G0:

H0(z) ¼ 1
2
(z þ 2þ z�1)

G0(z) ¼ 1
8
(z þ 2þ z�1)(�z þ 4� z�1)

¼ 1
8
(�z2 þ 2z þ 6þ 2z�1 � z�2) (24:50)

Using Equation 24.42 with k ¼ 1, the corresponding high-pass filters then become

G1(z) ¼ zH0(�z) ¼ 1
2
z(�z þ 2� z�1)

H1(z) ¼ z�1G0(�z) ¼ 1
8
z�1(�z2 � 2z þ 6� 2z�1�z�2)

(24:51)

This is often known as the LeGall 3,5-tap filter set, since it was first published in the context of 2-band
filter banks by Didier LeGall in 1988.
The wavelets of the LeGall 3,5-tap filters, H0 and H1 above, and their frequency responses are shown in

Figure 24.6. The scaling function (bottom left) converges to a pure triangular pulse and the wavelets are
the superposition of two triangular pulses of opposing polarity.
The triangular scaling function produces linear interpolation between consecutive lowband coefficients

and also causes the wavelets to be linear interpolations of the coefficients of the H1 filter,
�1,�2,þ6,�2,�1 (scaled appropriately).

These wavelets have quite desirable properties for signal compression (note the absence of waveform
discontinuities and the much lower sidelobes of the frequency responses), and they are one of the
simplest useful wavelet types. Unfortunately there is one drawback—the inverse wavelets are not very
good. These are formed from the LeGall 5,3-tap filter pair, G0 and G1 above, whose wavelets and
frequency responses are shown in Figure 24.7
The main problem here is that the wavelets do not converge after many levels to a smooth function

and hence the frequency responses have large unwanted sidelobes. For example, the jaggedness of the
scaling function and wavelets causes highly visible coding artifacts if these filters are used for recon-
struction of a compressed image.
However the allocation of the factors of Pt(Z) to H0 and G0 is a free design choice, so we may swap

the factors (and hence swap G and H) from the choice made in Equation 24.50 in order that the
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FIGURE 24.6 Impulse responses and frequency responses of the 4-level tree of LeGall 3,5-tap filters.
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FIGURE 24.7 Impulse responses and frequency responses of the 4-level tree of LeGall 5,3-tap filters.

1-D Multirate Filter Banks 24-15



smoother 3,5-tap filters become G0, G1 and are used for reconstruction. It turns out that this leads to a
good low-complexity solution for image compression and that the jaggedness of the analysis filters is
not critical.
Unbalance between analysis and reconstruction filters=wavelets is nevertheless often regarded as being

undesirable, particularly as it prevents the filtering process from being represented as an orthonormal
transformation of the input signal and hence from preserving energy through the filter bank.
An unbalanced PR filter system is often termed a biorthogonal filter bank.
We now consider ways to reduce this unbalance.

24.6.4 Filters with Balanced H and G Frequency Responses
(but Nonlinear Phase Responses)—Daubechies Wavelets

In the above analysis, we used the factorization of Pt(Z) to give us H0 and G0. This always gives
unbalanced factors if terms of Pt in even powers of Z are zero, since Pt(Z) must then be of odd-order.

However, each of these factors in Z may itself be factorized into a pair of factors in z, since

(az þ 1)(1þ az�1) ¼ az þ (1þ a2)þ az�1

¼ (1þ a2)þ 2aZ if Z ¼ 1
2
(z þ z�1)

¼ (1þ a2)(1þ bZ) where b ¼ 2a
1þ a2

(24:52)

For each factor of Pt(Z), we may allocate one of its z subfactors to H0(z) and the other to G0(z). Where
roots of Pt(Z) are complex, the subfactors must be allocated in conjugate pairs so that H0 and G0 remain
purely real.
Since the subfactors occur in reciprocal pairs (roots at z ¼ a and a�1 for any given b, as shown above),

we find that

G0(z) ¼ H0(z
�1) (24:53)

This means that the impulse response of G0 is the time-reverse of that of H0.
Therefore, using the substitution z ¼ e jvTs , their frequency responses are related by

G0(e
jvTs ) ¼ H0(e

�jvTs ) (24:54)

Hence, if H0 and G0 are real functions of z, the magnitudes of their frequency responses are the same, and
their phases are opposite. It may be shown that this is sufficient to obtain orthogonal wavelet basis
functions and scaling functions, but unfortunately the separate filters can no longer be zero (or linear)
phase, apart from the unique case of the Haar wavelet. When the filters satisfy Equation 24.53, in addition
to Equations 24.42 and 24.45, the filter bank is known as a conjugate quadrature filter bank (CQF).
The well-known Daubechies wavelets may be generated in this way, if we include the added constraint

that the maximum number of zeros of Pt(Z) are placed at Z ¼ �1 (producing pairs of zeros of
P(z) at z ¼ �1), consistent with terms in even powers of Z in Pt(Z) being zero.

If Pt(Z) is of order 2K � 1, then it may have K zeros at Z ¼ �1 such that

Pt(Z) ¼ (1þ Z)KRt(Z) (24:55)

where Rt(Z) is of order K � 1 and its K � 1 roots may be chosen such that terms of Pt(Z) in the K � 1
even powers of Z are zero.
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Equation 24.49 is the K ¼ 2 solution to Equation 24.55.
In this case, Rt(Z) ¼ 1� 1

2Z, so b ¼ � 1
2 and, from Equation 24.52, the factors of R(z) are

R(z) ¼ (az þ 1)(1þ az�1)
1þ a2

where a ¼ �2� ffiffiffi
3

p

since a must be a solution of 1þ a2 ¼ 2a=b.
Also

(1þ Z)2 ¼ 1
2
(z þ 1)2

1
2
(1þ z�1)2

Hence

H0(z) ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p (1þ z�1)2 (1þ az�1)

¼ 0:4830þ 0:8365z�1 þ 0:2241z�2 � 0:1294z�3 (24:56)

and G0(z) is the time-reverse of this (replacing z�1 by z). Therefore

H1(z) ¼ z�3G0(�z) ¼ z�3H0(�z�1)

¼ 0:1294þ 0:2241z�1 � 0:8365z�2 þ 0:4830z�3 (24:57)

The wavelets and frequency responses for these 4-tap filters are shown in Figure 24.8. It is clear that
the wavelets and scaling function are no longer linear phase (symmetric about a central point) and
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FIGURE 24.8 Impulse responses and frequency responses of the 4-level tree of Daubechies 4-tap filters.
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are less smooth than those for the LeGall 3,5-tap filters. The frequency responses also show worse
sidelobes. The G0, G1 filters give the time-reverse of these wavelets and identical frequency (magnitude)
responses.
Higher order Daubechies filters achieve smoother wavelets but they still suffer from nonlinear phase.

This tends to result in more visible image coding artefacts than linear phase filters, which distribute any
artefacts equally on either side of sharp edges in the image.
When there is more than one root of the residual polynomial Rt(Z), the designer may choose how the

factors, (1þ az) or (1þ az�1), for each root are distributed to H0(z) and G0(z). While the distribution
may be chosen to give maximum-phase or minimum-phase H0 and G0 filters, it is usual to attempt the
distribution so as to approximate linear phase more closely. Depending on the choice of product filter
order 2K � 1, different levels of approximation to linear phase become possible.
A fairly good approximation to linear phase, often known as the Daubechies symlet, is obtained for the

case when K ¼ 4. This gives four zeros of Pt(Z) at Z ¼ �1 (and hence four pairs of zeros of P(z) at
z ¼ �1, which can be shared equally between H0(z) and G0(z)). The remainder polynomial Rt(Z) is then
third order. When converted back to being a function of z, the product filter is given by

P(z) ¼ H0(z)G0(z) ¼ z�4

2048
(z þ 1)8R(z)

where R(z) ¼ 5z3 � 40z2 þ 131z � 208þ 131z�1 � 40z�2 þ 5z�3
(24:58)

R(z) has real zeros at 0.3289 and 3.0407, and complex zeros at 0:2841� 0:2432j and 2:0311� 1:7390j.
To get the closest approximation to linear phase, we group the smaller conjugate pair with the larger
real zero, and combine these with four of the zeros at z ¼ �1 to obtain H0(z), while the remaining
zeros of P(z) give G0(z) (or vice versa). H0 and G0 are then both seventh-order polynomials (8-tap filters).
The impulse and frequency responses of the wavelets and scaling functions from these filters are shown
in Figure 24.9, from which we see the somewhat improved symmetry of the waveforms about their
highest point (hence the name symlet), as compared with the 4-tap waveforms in Figure 24.8, as well as
their greater smoothness and lower sidelobes in the frequency domain.
A useful way to obtain equations of the form of Equation 24.55, for arbitrary odd order N � 2K � 1 of

the transformed product filter Pt(z), is to use the Bernstein polynomial [4,5]:

BN (x;a) ¼
X(N�1)=2

i¼0

(1� ai)
N
i

� �
xi(1� x)N�i þ

XN
i¼(Nþ1)=2

aN�i
N
i

� �
xi(1� x)N�i (24:59)

where a ¼ [a0 a1 . . . a(N�1)=2]
T.

This polynomial has the property that, for any choice of x and a

BN (x;a)þ BN(1� x;a) ¼ 1 (24:60)

For PR, from Equations 24.45 and 24.47, it is required that

Pt(Z)þ Pt(�Z) ¼ 2 (24:61)

Hence, if we let Pt(Z) ¼ 2BN (x;a), where x ¼ (1� Z)=2 so that x goes from 0 to 1 asZ goes fromþ1 to�1,
then Pt(�Z) ¼ 2BN (1� x;a) and, from Equation 24.60, Pt(Z) will satisfy the above PR condition
(Equation 24.61) for any choice of a.
To obtain K zeros of Pt(Z) at Z ¼ �1, we require BN (x;a) to have K zeros at x ¼ 1, which may be

easily obtained by setting ai ¼ 0 for i ¼ 0 . . .K � 1, as long as N � 2K � 1.

24-18 Passive, Active, and Digital Filters



When N ¼ 2K � 1, we have the maximum number of zeros at Z ¼ �1 for a given N, as assumed
above for the cases K ¼ 2 and K ¼ 4. Then are then no further degrees of freedom available to the
designer. We shall see below that, in some situations, at least one additional degree of freedom can be
very helpful, and this is achieved when N ¼ 2K þ 1 and the free parameter is aK . More degrees of
freedom may be achieved by increasing N in steps of two while keeping K constant.

24.6.5 Filters with Linear Phase and Nearly Balanced Frequency Responses

We have seen how to create filters with balanced frequency responses and an approximation to linear
phase. Now we consider filters with exact linear phase and approximately balanced frequency responses.
Linear phase filters allow an elegant technique, known as symmetric extension, to be used at the outer

edges of finite datasets such as images, where wavelet filters would otherwise require the size of the
transformed data to be increased to allow for convolution with the filters. Symmetric extension assumes
that the data is reflected by mirrors at each endpoint or edge. For images in 2-D, an infinitely tesselated
plane of reflected images is generated. Reflections avoid unwanted edge discontinuities. If the filters are
linear phase, then the resulting DWT coefficients also form reflections at the endpoints and no increase
in size of the transformed data is necessary to accommodate convolution effects.
To ensure that the filters H0,H1 and G0,G1 are linear phase, the factors in Zmust be allocated to H0 or

G0 as a whole and not be split, as was done for the Daubechies filters. In this way, the symmetry between
z and z�1 is preserved in all filters. Perfect balance of frequency responses between H0 and G0 is then not
possible, if PR is preserved.
A popular linear-phase option, which works very well for image coding and is part of the JPEG 2000

standard, is a linear phase factorization of the same P(z) product filter, used for the 8-tap Daubechies
symlet and given in Equation 24.58. This factorization still distributes the eight zeros at z ¼ �1 equally
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FIGURE 24.9 Impulse responses and frequency responses of the 4-level tree of Daubechies 8-tap symlet filters.
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between H0 and G0; but, to get linear phase and keep the filter coefficients purely real, it is necessary to
allocate the two real zeros of R(z) to one filter (say G0) and the four complex zeros of R(z) to the other
filter (H0). Linear phase is obtained because the zeros are in reciprocal pairs, and real coefficients are
obtained because the complex zeros are also in conjugate pairs. The resulting 7-tap and 9-tap filters are
known as the Daubechies biorthogonal 7,9-tap wavelet filters (and also known as Antonini filters) [6].
These 7,9-tap and 9,7-tap wavelets and scaling functions are shown in Figures 24.10 and 24.11.
The 7-tap filter from this pair tends to be somewhat smoother than the 9-tap one, and so is normally

chosen for the reconstruction low-pass filter G0 (and hence also generates the analysis high-pass filter H1,
Equation 24.42). In compression applications, where many higher frequency wavelet coefficients are set
to zero, this tends to result in a smoother reconstructed signal. It may be seen that the smoother
waveforms, with lower sidelobes in the frequency domain, occur in Figure 24.10 while the less smooth
option is in Figure 24.11.
We have found a factorization of Pt(Z) which achieves a much closer balance of the responses, by

reducing K the number of zeros at Z ¼ �1. This is

Pt(Z) ¼ (1þ Z)(1þ aZ þ bZ2)(1þ Z)(1þ cZ) (24:62)

This is a fifth order polynomial, and if the terms in Z2 and Z4 are to be zero, there are two constraints on
the three unknowns [a, b, c] so that one of them (say c) may be regarded as a free parameter. These
constraints require that

a ¼ � (1þ 2c)2

2(1þ c)2
and b ¼ c(1þ 2c)

2(1þ c)2
(24:63)
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FIGURE 24.10 Impulse responses and frequency responses of the 4-level tree of Daubechies 7,9-tap filters.
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cmay then be adjusted to give maximum similarity between the left and right pairs of factors in Equation
24.62 as Z varies from 1 to �1 (i.e., as vTs varies from 0 to p).

It turns out that c ¼ � 2
7 gives good similarity and when substituted into Equations 24.62 and

24.63 gives

Pt(Z) ¼ 1
50

(1þ Z)(50� 9Z � 6Z2)
1
7
(1þ Z)(7� 2Z)

¼ 1
50

(50þ 41Z � 15Z2 � 6Z3)
1
7
(7þ 5Z � 2Z2) (24:64)

We get G0(z) and H0(z) by substituting Z ¼ 1
2 (z þ z�1) into these two polynomial factors. This results in

5,7-tap filters whose wavelets and frequency responses are shown in Figure 24.12.
The near balance of the analysis and reconstruction responses may be seen from Figure 24.13 which

shows the alternative 7,5-tap versions (i.e., with H and G swapped). It is quite difficult to spot the minor
differences between these figures and it makes little difference which way round the filters are allocated.

These filters may also be obtained using the Bernstein polynomial method of equation (Equation
24.59), using N ¼ 5, K ¼ 2, and aK as the free parameter. The value which corresponds to c ¼ � 2

7 is
a2 ¼ 477

1750 ¼ 0:2726.

24.6.6 Smoother Wavelets

In all of the above designs we have used the substitution Z ¼ 1
2 (z þ z�1). However other substitutions

may be used to create improved wavelets. To preserve PR, the substitution should contain only
odd powers of z (so that odd powers of Z produce only odd powers of z); and to produce zero phase,
the coefficients of the substitution should be symmetric about z0.
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FIGURE 24.11 Impulse responses and frequency responses of the 4-level tree of Daubechies 9,7-tap filters.
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FIGURE 24.12 Impulse responses and frequency responses of the 4-level tree of near-balanced 5,7-tap filters.
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FIGURE 24.13 Impulse responses and frequency responses of the 4-level tree of near-balanced 7,5-tap filters.
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A substitution, which can give much greater flatness near z ¼ �1 while still satisfying Z ¼ �1 when
z ¼ �1, is

Z ¼ pz3 þ (12 � p)(z þ z�1)þ pz�3 (24:65)

Z then becomes the following function of frequency when z ¼ e jvTs :

Z ¼ (1� 2p) cos (vTs)þ 2p cos (3vTs) (24:66)

Maximal flatness is achieved near vTs ¼ 0 and p, when p ¼ � 1
16. This is equivalent to more zeros at

z ¼ �1 for each (Z þ 1) factor than when Z ¼ 1
2 (z þ z�1) is used. A high degree of flatness (with some

ripple) and sharper transition bands is obtained if p ¼ � 3
32 instead.

The second order factor of Pt(Z) in Equation 24.64 now produces terms from z6 to z�6 and the third-
order factor produces terms from z9 to z�9. Hence the filters become 13- and 19-tap filters, although two
taps of each are zero and the outer two taps of the 19-tap filter are very small (�10�4).

Figure 24.14 shows the wavelets and frequency responses of the 13,19-tap filters, obtained by
substituting Equation 24.65 into Equation 24.64 with P¼�3=32. Note the smoother wavelets and scaling
function and the much lower sidelobes in the frequency responses from these higher order filters.
Figure 24.15 demonstrates that the near-balanced properties of Equation 24.64 are preserved in the

higher order filters.
There are many other types of wavelets with varying features and complexities, but we have found the

examples given to be near optimum for applications such as image compression.

24.7 IIR Filter Banks

In general, for a given frequency response specification (e.g., transition bandwidth, stopband ripple magni-
tude), an IIR filter can achieve that specification with a lower computational complexity (e.g., number of
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multiplies per output sample) compared to an FIR filter. This is the potential advantage of IIR filter
banks but the disadvantage is that their design and their implementation are usually more complicated.
The main issue that needs to be considered when using IIR filters is stability. The well-known criterion
for stability is that the poles of the IIR transfer function must lie inside the unit circle. This criterion,
however, assumes that the IIR filter is implemented using a difference equation in the forward
time direction, i.e., causal filtering. In some situations, in which the data is fully stored in memory and
may therefore be processed backward as well as forward, anticausal filtering is feasible too. With
anticausal filtering the poles need to be outside the unit circle for stability. There are therefore two
types of IIR filter banks:

1. Causal stable IIR filter banks: used in situations where only causal filtering is allowed. Examples are
real-time applications such as speech processing and echo-cancellation. All filters must then have
poles inside the unit circle.

2. Noncausal IIR filter banks: used in situations which can allow off-line processing or when the
signal is finite in duration (e.g., still images). Suppose an IIR filter F(z) has poles both inside and
outside the unit circle. The filter may be factored into a product of its minimum and maximum-
phase components:

F(z) ¼ Fmin(z)Fmax(z) (24:67)

where the poles of Fmin(z) are inside the unit circle, and those of Fmax(z) are outside it. The filtering
consists of two stages, in which causal filtering is first performed forward to implement Fmin(z) and
anticausal filtering is then performed backward to implement Fmax(z).

Just as in FIR filter banks, the scaling functions and wavelets corresponding to IIR filter banks can be
defined through the two-scale equation and infinite product formula. The main difference in the IIR case
is that the corresponding continuous functions have support width that is infinite, i.e., the function
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duration is infinite. For the causal stable case the function extends to positive infinity and for the
noncausal case the function extends to infinity in both directions.
A versatile building block for IIR filters is the all-pass filter a(z) which has the following two properties:

1
a(z)

¼ a(z�1) and ja(e jv)j ¼ 1 (24:68)

The all-pass filter a(z) can be considered a generalization of the unit delay z�1 since je�jvj ¼ ja(e jv)j ¼ 1,
i.e., both have the same magnitude response. The unit delay has a linear phase response but the all-pass
filter can have a variety of phase responses. A wide family of IIR filters can be obtained by various
interconnections of all-pass filters [7–9]. The simplest interconnection (described below) can give a large
class of useful IIR filter banks.

24.7.1 All-Pass Filter Design Methods

Consider analysis filters obtained by the weighted sum and difference of two all-pass filters, a0 and a1:

H0(z) ¼ 1ffiffiffi
2

p [a0(z)þ a1(z)]

H1(z) ¼ 1ffiffiffi
2

p [a0(z)� a1(z)]
(24:69)

This can be considered an extension of the FIR Haar filter pair in Equation 24.2 to IIR filters. The terms 1
and z�1 (simple all-pass) have been replaced with a0 and a1, general all-pass filters. The Haar filters are
quadrature mirror versions of each other. If the two all-pass filters are chosen to be of the form
a0(z) ¼ A0(z2), a1(z) ¼ z�1A1(z2), then the analysis filters, given by

H0(z) ¼ 1ffiffiffi
2

p A0(z
2)þ z�1A1(z

2)
	 


H1(z) ¼ 1ffiffiffi
2

p A0(z
2)� z�1A1(z

2)
	 
 (24:70)

will have the quadrature mirror characteristics:

jH1(e
jv)j ¼ jH0(e

j(p�v))j, i.e., be mirrored about v ¼ p

2
(24:71)

This means that if H0(e jv) has a low-pass frequency response, H1(e jv) will automatically have a high-pass
response.
How should the all-pass filters be designed so that H0(e jv) is a good low-pass filter with half of the full

bandwidth?
By denoting the phase response of the all-pass filters as f0(v) ¼ ffA0(e jv) and f1(v) ¼ ffA1(e jv), the

magnitude response of the low-pass filter can be written as

jH0(e
jv)j ¼ 1ffiffiffi

2
p e jf0(2v) þ e j(f1(2v)�v)
�� ��

¼ 1ffiffiffi
2

p e jf0(2v)
�� �� 1þ e j(f1(2v)�f0(2v)�v)

�� ��
¼ 1ffiffiffi

2
p 1þ e j(u(2v)�v)
�� �� where u(v) � f1(v)� f0(v) (24:72)
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The term e j(u(2v)�v) can be considered a frequency dependent phasor that is added to the constant
phasor 1. If the two phasors add constructively (i.e., if e j(u(2v)�v) 
 1), then H0(e jv)j j 
 ffiffiffi

2
p

; and if the
two phasors add destructively (i.e., if e j(u(2v)�v) 
 �1), then H0(e jv)j j 
 0. Therefore the ideal criterion
for the phase is

u(2v)� v ¼ 0, 0 < v < p=2
�p, p=2 < v < p

�
(24:73)

What about the synthesis filters?
For the Haar filters, the synthesis filters were obtained from the analysis filters by replacing z�1 with

z as shown in Equation 24.6, i.e., a reciprocal term is used. The situation now with all-pass filters (instead
of delays) is, however, more complicated and there are two cases to consider:

1. No reciprocals are used and the synthesis filters are chosen as

G0(z) ¼ 1ffiffiffi
2

p A0(z
2)þ z�1A1(z

2)
	 


G1(z) ¼ � 1ffiffiffi
2

p A0(z
2)� z�1A1(z

2)
	 
 (24:74)

and are essentially the same as the analysis filters (apart from a sign change for G1). Aliasing
cancellation is achieved (because G0(z)H0(�z)þ G1(z)H1(�z) ¼ 0), but not PR. The transfer
function between the input and output of the entire filter bank, i.e., the reconstruction function,
is given from Equation 24.11 by

T(z) � X̂(z)
X(z)

¼ 1
2
[G0(z)H0(z)þ G1(z)H1(z)] ¼ z�1A0(z

2)A1(z
2) (24:75)

which is an all-pass function. If phase-distortion can be tolerated, e.g., for speech, then this
may be acceptable as it stands. Alternatively some postfiltering to equalize the phase of T(z) may
be needed.
If the poles of A0(z) and A1(z) are inside the unit circle then the whole filter bank is causal stable.

2. If the synthesis filters are instead chosen as

G0(z) ¼ 1ffiffiffi
2

p 1
A0(z2)

þ z
1

A1(z2)

� 
¼ 1ffiffiffi

2
p A0(z

�2)þ zA1(z
�2)

	 


G1(z) ¼ 1ffiffiffi
2

p 1
A0(z2)

� z
1

A1(z2)

� 
¼ 1ffiffiffi

2
p A0(z

�2)� zA1(z
�2)

	 
 (24:76)

then PR is achieved, i.e., T(z) ¼ 1. However, the filter bank then becomes noncausal as the
inversion of the all-pass filters causes poles that were originally inside the unit circle now to be
outside the unit circle.

24.7.2 Transformation-Based Design Methods

The frequency transformation technique, described in Section 24.6 for FIR filter banks, can also be used
to construct IIR filter banks [10].
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Recall that in the transformation technique, given the prototype linear phase low-pass filters, Ht(Z)
and Ft(Z), the following transformation is applied:

Z ¼ M(z) (24:77)

whereM(z) ¼ pz3 þ 1
2 � p
�

)(z þ z�1)þ pz�3 (from Equation 24.65) and p ¼ 0 or � 3
32 depending on the

desired complexity=smoothness required. It is necessary that the transformation is of the form
M(z) � zT(z2) (i.e., it must have terms in only odd powers of z).
Hence the transformation function M(z) for the FIR case is an FIR filter that is related to a halfband

filter,* HHB(z) � 1
2[1þM(z)]. IIR filter banks can be obtained by using an IIR transformation function

instead of an FIR function and this is equivalent to using an IIR halfband filter. The transformation
function should ideally approximate þ1 in the passband and �1 in the stopband, i.e.,

M(e jv) ¼ e jvT(e j2v) 
 þ1, 0 < v < p=2
�1, p=2 < v < p

�
(24:78)

Therefore a straightforward choice is for M(z) to be an all-pass filter approximating the following ideal
phase condition:

fideal(v) ¼ 0, 0 < v < p=2
�p, p=2 < v < p

�
(24:79)

If the poles of M(z) are inside the unit circle then the IIR filter bank is causal stable. Furthermore, PR is
achieved.
A simple example for M(z) is given by

M(z) ¼ z
k1 þ z�2

1þ k1z�2

k2 þ z�2

1þ k2z�2
(24:80)

with k1 ¼ �0:0991 and k2 ¼ 0:5426 and the phase response is shown in Figure 24.16.
In Equation 24.49, we saw that a simple Ht(Z) and Ft(Z) are given by

Ht(Z) ¼ (1þ Z)

Ft(Z) ¼ 1
2
(1þ Z)(2� Z)

(24:81)

Using an all-pass filter for Z ¼ M(z) in Equation 24.81 will however result in a 4 dB overshoot (bump) in
the frequency response of the filter F0(z) ¼ Ft(M(z)). With a more general filter for M(z) (non all-pass)
the overshoot can be reduced but the design becomes more complicated.
Alternatively, a different set of prototype filters may lead to a lower overshoot. The following set of

prototype filters from the product filter in Equation 24.64:

Ht(Z) ¼ 1
7
(1þ Z)(7� 2Z)

Ft(Z) ¼ 1
50
(1þ Z)(50� 9Z � 6Z2)

(24:82)

* Halfband filters are defined as filters that satisfy HHB(z)þHHB(�z) ¼ 1. The even index coefficients are zero except for the
center (zero index) coefficient, which is one half.
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with an all-pass M(z) will lead to IIR filters with overshoots of 0.68 dB and 1.90 dB, respectively. Using
these prototypes with the transformation in Equation 24.80 gives low-pass filters with magnitude
responses shown in Figure 24.17.

24.8 Polyphase Representations and the Lifting Scheme

The polyphase representation is an important tool in multirate systems, from both theoretical and
application perspectives. Multirate systems are (periodically) linear time-varying systems due to the
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FIGURE 24.16 Phase response of IIR all-pass transformation in Equation 24.80.
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FIGURE 24.17 Magnitude responses of causal stable IIR filter bank given by Equation 24.82 with the transform-
ation of Equation 24.80.
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presence of downsamplers and upsamplers. The polyphase decomposition allows a multirate system to be
represented as a sum of linear time-invariant systems, thus simplifying its analysis and design [9,11,12].
The form of the representation depends on the downsampling=upsampling factor M, but the discussion
here will focus on the simplest case of M ¼ 2 which is relevant for 2-band filter-banks. Unless otherwise
stated, all filters are assumed to be FIR in this section.

24.8.1 Basic Polyphase Concepts

The basic idea of an M ¼ 2 polyphase representation is to separate the coefficients of a filter or a
sequence into even-indexed and odd-indexed coefficients:

H(z) ¼
X
n

h(2n)z�2n þ
X
n

h(2nþ 1)z�2n�1 (24:83)

By defining the polyphase components as

E0(z) �
X
n

h(2n)z�n and E1(z) �
X
n

h(2nþ 1)z�n (24:84)

the filter function H(z) can be written as

H(z) ¼ E0(z
2)þ z�1E1(z

2) (24:85)

The separation of H(z) into E0(z) and E1(z) is known as the polyphase decomposition of the filter.
The decomposition in Equation 24.85 is known as a type 1 decomposition. An alternative is the type 2
decomposition defined as

H(z) ¼ z�1R0(z
2)þ R1(z

2) ¼ z�1 R0(z
2)þ zR1(z

2)
	 


(24:86)

The polyphase components of both types are related as follows:

R0(z) ¼ E1(z) R1(z) ¼ E0(z)

i.e., type 2 is a permutation of type 1.
By applying the type 1 polyphase decomposition to the 2-band analysis filter bank of Figure 24.1a, the

following is obtained:

H0(z)

H1(z)

� 
¼ E0,0(z2) E0,1(z2)

E1,0(z2) E1,1(z2)

� 
1

z�1

� 
(24:87)

The matrix

E(z) � E0,0(z) E0,1(z)

E1,0(z) E1,1(z)

� 

is known as the analysis polyphase matrix of the filter bank. The first row contains the polyphase
components of the low-pass analysis filter H0, and the second row those of the high-pass filter H1.
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For the synthesis filters, the type 2 polyphase decomposition is applied:

G0(z) G1(z)½ ] ¼ [z�1 1]
R0,0(z2) R1,0(z2)
R0,1(z2) R1,1(z2)

� 
(24:88)

and the synthesis polyphase matrix is defined as

R(z) � R0,0(z) R1,0(z)
R0,1(z) R1,1(z)

� 

The first column contains the polyphase components of the low-pass synthesis filter G0, and the second
column those of the high-pass filter G1.

Now suppose the input signal is decomposed as

X(z) ¼ X0(z
2)þ zX1(z

2)

which is similar to the type 2 polyphase decomposition except for absence of the delay z�1 (compare with
Equation 24.86). The output of the analysis filter bank can then be written compactly as

Y0(z)
Y1(z)

� 
¼ E0,0(z) E0,1(z)

E1,0(z) E1,1(z)

� 
X0(z)
X1(z)

� 
¼ E(z)

X0(z)
X1(z)

� 
(24:89)

By using a type 2 polyphase decomposition of the output signal

X̂(z) ¼ z�1X̂0(z
2)þ X̂1(z

2)

the output of the synthesis filter bank can be written compactly as

X̂0(z)
X̂1(z)

� 
¼ R0,0(z) R1,0(z)

R0,1(z) R1,1(z)

� 
Y0(z)
Y1(z)

� 
¼ R(z)

Y0(z)
Y1(z)

� 
(24:90)

Equations 24.89 and 24.90 are the equivalent time-invariant representation of the multirate filter bank.
Figure 24.18 shows the equivalent representation of the filter bank in polyphase form. The combination
of the delay chain and downsampler on the analysis side provides a polyphase decomposition of the input
signal. The combination of the upsamplers, delay chain, and adder on the synthesis side provides a
reconstruction of the output signal from the polyphase components. The polyphase filter bank is
operating at the lower sampling rate of the system and is thus more efficient than the original filter bank.

Combining Equations 24.89 and 24.90 gives the polyphase form of the input=output relationship of the
entire filter bank:

z–1 z–1

2

2

E(z) R(z)

2

2 +

FIGURE 24.18 Polyphase form of filter bank.
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X̂0(z)
X̂1(z)

� 
¼ R(z)E(z)

X0(z)
X1(z)

� 

The total system polyphase matrix is defined as

P(z) � R(z)E(z)

and if

P(z) ¼ R(z)E(z) ¼ I (24:91)

then

X̂0(z)
X̂1(z)

� 
¼ X0(z)

X1(z)

� 

Therefore

X̂(z) ¼ z�1X0(z
2)þ X1(z

2) ¼ z�1 X0(z
2)þ zX1(z

2)
	 
 ¼ z�1X(z)

and PR (with one sample delay) is achieved. This is a convenient alternative formulation for PR to that
given in Equations 24.40 and 24.41.
Equation 24.91 provides a concise condition for PR and the result is useful in the theoretical study and

formulation of design techniques for filter banks. Conceptually, if synthesis filter bank is chosen such that

R(z) ¼ E�1(z) ¼ adj(E(z))
det(E(z))

(24:92)

where adj(�) and det(�) denote the adjoint and determinant of the matrix, respectively, then PR is assured.
However, in general, this would lead to IIR synthesis filters which may be unstable (poles outside the unit
circle) due to the presence of det (E(z)) in the denominator. Therefore to ensure that all filters are FIR in
the filter bank, it is required that

det(E(z)) ¼ czK (24:93)

where c is a nonzero constant and K an integer.
An important property of determinants is that

if A ¼ A1A2 then det(A) ¼ det(A1)det(A2)

Therefore, a straightforward way to build polyphase matrices satisfying Equation 24.93 is through a
cascade (product) of simpler matrices that satisfy Equation 24.93, i.e.,

E(z) ¼ E1(z)E2(z) � � �EL(z) (24:94)

where

det(Ei(z)) ¼ ciz
Ki i ¼ 1, . . . , L
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The cascade of polyphase matrices is the essence of virtually all design techniques of filter banks that are
polyphase based.

24.8.2 Orthogonal Lattice Structures

This type of structure is also known as the lossless or paraunitary structure [13,14]. The polyphase matrix
is given by

E(z) ¼ RLD(z)RL�1 � � �D(z)R0 ¼ RL

YL�1

i¼0

[D(z)Ri] (24:95)

where

D(z) � 1 0
0 z�1

� 
and Ri � cos ui sin ui

� sin ui cos ui

� 

and u0 . . . uL�1 are the L free parameters that define the filters. In the design process, these parameters are
optimized with respect to some criterion, e.g., minimizing the stopband energy of the low-pass filter,
which is given by

J ¼
ðp
vs

jH0(e
jv)j2dv

where vs is the stopband edge. The matrices Ri are also known as rotation matrices and are orthogonal,
i.e., RiRT

i ¼ RT
i Ri ¼ I (where T denotes transpose).

Since D(z)DT(z�1) ¼ DT(z�1)D(z) ¼ I, the polyphase matrix satisfies

E(z)ET(z�1) ¼ ET(z�1)E(z) ¼ I

Therefore the synthesis polyphase matrix can be obtained as

R(z) ¼ ET(z�1) ¼ RT
0D(z�1) � � �RT

L�1 � � �D(z�1)RT
L

The structure for such filter banks is shown in Figure 24.19

24.8.3 Linear Phase Structures

There are two types of structure that lead to linear phase filters [15,16]:

1. Type A: where all filters in the bank have even length. The low-pass analysis filter coefficients are
symmetric, while the synthesis coefficients are antisymmetric.
The polyphase matrix is given by

E(z) ¼ 1 1
1 �1

� 
D(z)SL�1 � � �D(z)S0 ¼ 1 1

1 �1

� YL�1

i¼0

[D(z)Si] (24:96)
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where

D(z) � 1 0
0 z�1

� 
and Si � 1 ai

ai 1

� 

and ai 6¼ 0 are the free parameters that define the filters. The structure here is similar to the
orthogonal lattice structure except for a sign change in one of the element of Si.

2. Type B: where all filters in the bank have odd length. All filter coefficients are then symmetric.
The polyphase matrix is given by

E(z) ¼
YL
i¼1

Bi(z) (24:97)

where

Bi(z) ¼ 1þ z�1 ai

1þ biz
�1 þ z�2 ai(1þ z�1)

� 

and ai 6¼ 0,bi 6¼ 2 are the free parameters that define the filters.
This structure can be used to implement all of the linear-phase odd-length wavelet filter banks

discussed in Sections 24.6.3, 24.6.5, and 24.6.6, such as the (5,3), (7,5), (9,7), and (19,13)-tap filters
and their inverses.

24.8.4 Lifting Scheme

The basic idea behind lifting [17–19] is simple:

Whatever change was performed to the signal by some process of addition can be undone by the
equivalent process of subtraction.

Analysis side
c1

s1

–s1

c0

s0

–s0

c0 c1

Synthesis side

cL

cL

sL

–sL

Z–1

Z–1

c0

–s0 Z–1

s0

2

2

2

2 +c0c1

s1

c1

Z
Sk = sin θkck = cos θk

–s1

cL

cL

sL

–sL

FIGURE 24.19 Orthogonal lattice structure.
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This idea ties in nicely with the concept of PR where the synthesis filter bank is supposed to
undo whatever processing was done by the analysis filter bank. There are two attractive features of lifting:
(1) the construction of filter banks, because PR can be guaranteed at every step of the design stage and (2)
the implementation of filter banks, because computational efficiency gains of up to 2:1 are possible when
compared with separate filters for each band of the filter bank. The former aspect will be considered first.

24.8.4.1 Construction of Filter Banks

The basic building block in lifting is called the lifting step and is related to concept of elementary matrices
which is fundamental in matrix analysis. Elementary matrices can be used to perform elementary
operations on an arbitrary matrix by either the pre- or post-multiplication of the former with the latter.
In the context of filter banks, the arbitrary matrix is the analysis or synthesis polyphase matrix (which is a
matrix of Laurent series*). There are three types of elementary matrices (operations) but the type that is
relevant in lifting is the one that performs the addition to the elements of a certain row (or column) of a
multiple (factor) of the elements of another row (or column). For the analysis polyphase matrix there two
types of lifting step:

1. Primal lifting: with elementary matrix given by

1 p(z)
0 1

� 

where p(z) is an arbitrary FIR factor. Premultipication by this matrix will change the first row of an
arbitrary matrix.

2. Dual lifting: with elementary matrix given by

1 0
d(z) 1

� 

where d(z) is an arbitrary FIR factor. Premultipication by this matrix will change the second row of
an arbitrary matrix.

Note that both of these lifting matrices have determinants of unity.
Now suppose that there is an existing set of analysis filters with corresponding polyphase

matrix E0(z); i.e.,

H0
0 (z)

H0
1 (z)

� 
¼ E0(z2)

1

z�1

� 
¼ E0

0,0(z
2) E0

0,1(z
2)

E0
1,0(z

2) E0
1,1(z

2)

" #
1

z�1

� 
(24:98)

1. If the primal lifting is applied to E0(z)

Ep(z) � 1 p(z)
0 1

� 
E0(z) (24:99)

then the new set of analysis filters becomes

Hp
0 (z) ¼ H0

0 (z)þ H0
1 (z)p(z

2) and Hp
1 (z) ¼ H0

1 (z)

i.e., the low-pass filter is changed but the high-pass is unchanged.

* Like polynomials but with both positive and negative powers of z.
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2. If the dual lifting is applied to E0(z)

Ed(z) � 1 0
d(z) 1

� 
E0(z) (24:100)

then the new set of analysis filters becomes

Hd
0 (z) ¼ H0

0 (z) and Hd
1 (z) ¼ H0

1 (z)þ H0
0 (z)d(z

2)

i.e., the high-pass filter is changed but the low-pass is unchanged.

Since the determinant of the lifting matrix is equal to one, the new polyphase matrix, Ep(z) or Ed(z), will
satisfy the PR condition (Equation 24.93) if the original matrix E0(z) also satisfies the condition.
Starting with the trivial polyphase matrix E0(z) ¼ I (identity), alternate primal and dual lifting can be

used to construct a whole range of PR filter banks:

E(z) ¼
K0 0

0 K1

" #
1 0

dM(z) 1

" #
1 pM(z)

0 1

" #
� � �

1 0

d1(z) 1

" #
1 p1(z)

0 1

" #

¼
K0 0

0 K1

" #Y1
i¼M

1 0

di(z) 1

" #
1 pi(z)

0 1

" #
(24:101)

The factors K0 and K1 are for normalizing the gains of the low-pass and high-pass filters, respectively.
Now consider the synthesis filter banks. First note that the inverse of the lifting step matrix can be

easily obtained by negating the sign of the arbitrary factors, p(z) or d(z), since

1 p(z)
0 1

� �1

¼ 1 �p(z)
0 1

� 

and

1 0
d(z) 1

� �1

¼ 1 0
�d(z) 1

� 

Suppose the initial synthesis polyphase matrix of the analysis and synthesis banks, E0(z) and R0(z),
satisfy the PR condition:

E0(z)R0(z) ¼ I

If the equation above is pre- and post-multiplied, respectively, by the primal and inverse primal lifting
matrix, then

1 p(z)

0 1

� 
E0(z)

� �
R0(z)

1 �p(z)

0 1

� � �
¼ 1 p(z)

0 1

� 
1 �p(z)

0 1

� 
¼ I

) Ep(z)Rp(z) ¼ I (24:102)

where Ep(z) is the new analysis polyphase matrix by primal lifting as in Equation 24.99 and Rp(z) is the
new synthesis polyphase matrix by inverse primal lifting:
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Rp(z) � R0(z)
1 �p(z)
0 1

� 
(24:103)

With the combination of the primal=inverse-primal lifting, PR is preserved and this can also been easily
seen in the structure in Figure 24.20: whatever was added in the analysis side has been exactly subtracted
in the synthesis side.
Wherever the dual lifting is applied in the analysis side, as in Equation 24.100, then the inverse dual

lifting should be applied in synthesis side:

Rd(z) � R0(z)
1 0

�d(z) 1

� 
(24:104)

with the corresponding structure shown in Figure 24.21. Therefore, if the analysis polyphase matrix is as
shown in Equation 24.101, the corresponding synthesis polyphase matrix is given by

R(z) ¼
1 �p1(z)

0 1

" #
1 0

�d1(z) 1

" #
� � �

1 �pM(z)

0 1

" #
1 0

�dM(z) 1

" #
1=K0 0

0 1=K1

" #

¼
YM
i¼1

1 �pi(z)

0 1

" #
1 0

�di(z) 1

" #
�

1=K0 0

0 1=K1

" #
(24:105)
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FIGURE 24.20 Primal lifting.
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FIGURE 24.21 Dual lifting.

24-36 Passive, Active, and Digital Filters



24.8.4.2 Implementation of Filter Banks

The lifting scheme is also useful for the efficient implementation of filter banks. The analysis or synthesis
polyphase matrix of a PR filter bank can be factorized into a product of lifting matrices. The factorization
can be achieved through the use of the Euclidean algorithm for Laurent series which is described next.
Given two Laurent series:

a(z) ¼
XMa

n¼�La

a(n)z�n and b(z) ¼
XMb

n¼�Lb

b(n)z�n

with degrees ja(z)j and jb(z)j defined as

ja(z)j ¼ Ma þ La and jb(z)j ¼ Mb þ Lb

The degree of a Laurent series in z is the length of the equivalent FIR filter minus one.
Without loss of generality, we assume ja(z)j � jb(z)j. Dividing a(z) by b(z) will yield a quotient q(z)

and remainder r(z), such that

a(z) ¼ b(z)q(z)þ r(z) where jq(z)j ¼ ja(z)j � jb(z)j and jr(z)j < jb(z)j (24:106)

In Matlab, this operation may be performed using the function [q, r] ¼ deconv(a, b).
Unlike the case of regular polynomials (with only positive powers of z), the quotient and remainder in

Equation 24.106 are not unique and there is some freedom in choosing q(z), depending on how r(z) is
aligned within the range of the indices of a(z). This means that in the following algorithm, there are
multiple valid factorizations of a given pair of filter polynomials. The Matlab function, deconv(�), chooses
to align r(z) with the right-hand end of a(z), assuming row vectors are used for the polynomial
coefficients.
The Euclidean algorithm iteratively performs the division process on two Laurent series, a(z) and b(z),

as follows:

aiþ1(z) biþ1(z)½ ] ¼ ai(z) bi(z)½ ]
0 1
1 �qi(z)

� 
(24:107)

starting with a0(z) ¼ a(z) and b0(z) ¼ b(z). At each iteration, iþ 1, the higher degree series ai is divided
by the lower degree series bi and the remainder is recorded as biþ1 for the next iteration, while bi becomes
aiþ1. The process continues until iteration n when the remainder bn becomes zero. The whole process can
be expressed as

an(z) 0½ ] ¼ a(z) b(z)½ ]
Yn
i¼1

0 1
1 �qi(z)

� 
(24:108)

where an(z) is the greatest common factor (gcf) of a(z) and b(z), i.e., an(z) ¼ gcf(a(z), b(z)).
Inverting the terms in the product gives

a(z) b(z)½ ] ¼ an(z) 0½ ]
Y1
i¼n

qi(z) 1

1 0

" #

¼ an(z) 0½ ]
Y1
i¼n=2

q2i(z) 1

1 0

" #
q2i�1(z) 1

1 0

" #
(24:109)
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where n is assumed to be even and the product is grouped into pairs of even and odd terms. If n is odd, it
is increased by 1 and we set qn(z) ¼ 0.
Each term in the product can be expressed in two forms that involve a primal or a dual lifting matrix

qi(z) 1
1 0

� 
¼ 1 qi(z)

0 1

� 
0 1
1 0

� 
¼ 0 1

1 0

� 
1 0

qi(z) 1

� 

Using the first form for even terms in Equation 24.109 and the second form for odd terms gives

a(z) b(z)½ ] ¼ an(z) 0½ ]
Y1
i¼n=2

1 q2i(z)
0 1

� 
1 0

q2i�1(z) 1

� 
(24:110)

For the special case when gcf(a(z), b(z)) is a constant (i.e., there is no common factor), the following
factorization in terms of lifting steps exists:

a(z) b(z)½ ] ¼ K 0½ ]
Y1
i¼n=2

1 q2i(z)
0 1

� 
1 0

q2i�1(z) 1

� 
(24:111)

Now suppose there is an analysis polyphase matrix, given by

E(z) � E0,0(z) E0,1(z)

E1,0(z) E1,1(z)

� 

and satisfying

det (E(z)) � E0,0(z)E1,1(z)� E0,1(z)E1,0(z) ¼ 1 (24:112)

i.e., Equation 24.93 with c ¼ 1 and K ¼ 0 (no delay).* Equation 24.112 implies that gcf (E0,0(z), E0,1(z)) is
a constant or else the determinant cannot be constant.
Using the Euclidean algorithm described above with a(z) ¼ E0,0(z) and b(z) ¼ E0,1(z) gives

E0,0(z) E0,1(z)½ ] ¼ K 0½ ]
Y1
i¼n=2

1 q2i(z)
0 1

� 
1 0

q2i�1(z) 1

� 

Form the following matrix

E0(z) ¼ E0,0(z) E0,1(z)

E0
1,0(z) E0

1,1(z)

" #
¼ K 0

0 1=K

�  Y1
i¼n=2

1 q2i(z)

0 1

� 
1 0

q2i�1(z) 1

� 

The matrix E0(z) has unit determinant (det (E0(z)) ¼ 1), i.e. PR, and the corresponding low-pass filter
is the same as that in matrix E(z) under consideration. As explained earlier, the dual lifting (Equation
24.100) can be used to change the high-pass filter while leaving the low-pass filter unchanged. Therefore

* There is no loss of generality here as any general matrix satisfying Equation 24.93 can be made into a matrix with unit
determinant by muliplying the first (second) row with z�K=c. This is equivalent to the introducing a scaling factor of 1=c
and the delay z�2K in the low-pass (high-pass) filter which does not significantly change its filtering properties.
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by applying an appropriate dual lifting step, E0(z) can be changed to any valid E(z) which produces
PR, using

E(z) ¼ 1 0

d(z) 1

� 
E0(z)

¼ 1 0

d(z) 1

� 
K 0

0 1=K

�  Y1
i¼n=2

1 q2i(z)

0 1

� 
1 0

q2i�1(z) 1

� 

¼ K 0

0 1=K

� 
1 0

K2d(z) 1

�  Y1
i¼n=2

1 q2i(z)

0 1

� 
1 0

q2i�1(z) 1

� 
(24:113)

Note that, if necessary, the scaling matrix can also be factorized into a sequence of lifting steps (but this is
not usually helpful computationally):

K 0
0 1=K

� 
¼ 1 K � K2

0 1

� 
1 0

�1=K 1

� 
1 K � 1
0 1

� 
1 0
1 1

� 
(24:114)

Therefore it can be concluded that every perfect reconstructing polyphase matrix can be factorized into a
sequence of lifting steps.

Example 24.1

The analysis polyphase matrix corresponding to the Haar wavelet filters and its factorization is given by

E(z) ¼
1
2

1
2

�1
2

1
2

" #
¼

1
2 0

0 1

� 
1 0

�1
2 1

� 
1 1

0 1

� 

which consist of one primal lift, one dual lift, and one scaling.

Example 24.2

The analysis polyphase matrix corresponding to the LeGall 3=5 filters and its factorization is given by

E(z) ¼
1
2

1
4(1þ z)

�1
4(1þ z�1) 3

4 � 1
8(z

�1 þ z)

" #
¼

1
2 0

0 1

� 
1 0

�1
4(1þ z�1) 1

� 
1 1

2(1þ z)

0 1

� 

which consist of one primal lift, one dual lift, and one scaling.

24.9 Nonlinear Filter Banks

In general it is difficult to achieve PR if the linear filters H0, H1, G0, and G1 are replaced with nonlinear
filters. Furthermore, there is no generic framework which can be used to analyze the properties of
filter banks with nonlinear filters. The lifting scheme described earlier, which works in the polyphase
domain, however provides a convenient way to generalize linear filter banks to nonlinear ones. If the
primal (dual) lifting filter p(z)(d(z)), which is linear, is replaced with a nonlinear filter, PR will still be
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maintained as can be easily seen in signal flow graph in Figures 24.22 and 24.23. Note that since
the filter is nonlinear, the z-transform transfer function cannot (in general) be defined for the filter.
The symbols NP(�) (ND(�)) are used instead to denote the primal (dual) nonlinear operator on the signal
in the time domain.
A particularly important type of nonlinear filter is the combination of a linear filter and a quantizer

[20], such as

NP(x01(n)) ¼
X
k

p(k)x01(n� k)þ 1
2

$ %

ND(x10(n)) ¼
X
k

d(k)x10(n� k)þ 1
2

$ %

where bxc denotes the largest integer that is no bigger than x, i.e., the floor operation, and p(k) (d(k)) are
the coefficients of the linear primal (dual) filter. If the inputs (x00(n), x

0
1(n)) are integer valued, then the

outputs with the primal lifting are given by

x0
0(n) x0

1(n)
+ +

y0
0(n) y0

1(n)

y1
1(n)y1

0(n)x1
1(n)x1

0(n)

NP(x1
0(n)) –NP(y1

0(n))

Inverse liftPrimal lift

FIGURE 24.22 Nonlinear primal lifting.

+ +

ND(x1
0(n)) –ND(y1

0(n))

x0
0(n) x0

1(n) y0
0(n) y0

1(n)

y1
1(n)y1

0(n)x1
1(n)x1

0(n)

Inverse liftDual lift

FIGURE 24.23 Nonlinear dual lifting.
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x10(n) ¼ x00(n)þ
X
k

p(k)x01(n� k)þ 1
2

$ %

x11(n) ¼ x01(n)

will also be integer valued as the final addition operation involves integers. The same applies with the
dual lifting and any combinations of primal and dual liftings. Any linear lifting-based filter bank can
therefore be converted into a filter bank that maps integer inputs to integer outputs by using the floor
operation to the outputs of the lifting filters and the transform is known as an integer wavelet transform
(IWT). The IWT shares most properties of the parent (nonquantized) transform, as long as the floor
operations do not contribute a significant level of distortion to the processed signals. This transform is
particularly useful for implementing lossless compression schemes, since it retains its PR properties
despite the rounding distortions of each primal or dual filter.
Some other nonlinear filters that can be useful in lifting stages are

Median filters (or more general order-statistic filters), which can provide robustness to noise and outliers
in the data

Motion-compensated prediction filters, which can be used to improve the performance of video com-
pression systems that employ wavelets along the time axis as well as in the two spatial directions.

24.10 M-Band Filter Banks

The 2-band filter bank can be generalized to an arbitrary number of channel as shown in Figure 24.24.
The input signal is ideally split into M nonoverlapping contiguous frequency subbands with equal
bandwidth. Since there is a factor of M reduction in the bandwidth, downsampling by a factor of M
can be applied to preserve the data rate.M-band filter banks are most conveniently analyzed by using the
polyphase representation [3,9,12].
The type 1 polyphase decomposition of the analysis filters is given by

Hi(z) ¼ Ei,0(z
M)þ z�1Ei,1(z

M)þ � � � þ z�(M�1)Ei,M�1(z
M) (24:115)

H0(z)

H1(z)

HM–1(z)

M M

M

M

M

M

G0(z)

G1(z)

GM–1(z) +

+

FIGURE 24.24 M-band filter bank.
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for i ¼ 0, . . . ,M � 1; and the corresponding analysis polyphase matrix of size M �M is

E(z) ¼
E0,0(z) E0,1(z) . . . E0,M�1(z)
E1,0(z) E1,1(z) . . . E1,M�1(z)

..

. ..
. . .

. ..
.

EM�1,0(z) EM�1,1(z) . . . EM�1,M�1(z)

2
6664

3
7775 (24:116)

The type 2 polyphase decomposition of the synthesis filters is given by

Gi(z) ¼ z�(M�1)Ri,0(z
M)þ z�(M�2)Ri,1(z

M)þ � � � þ Ri,M�1(z
M) (24:117)

for i ¼ 0, . . . ,M � 1; and the corresponding synthesis polyphase matrix of size M �M is

R(z) ¼
R0,0(z) R1,0(z) . . . RM�1,0(z)
R0,1(z) R1,1(z) . . . R1,M�1(z)

..

. ..
. . .

. ..
.

R0,M�1(z) R1,M�1(z) . . . RM�1,M�1(z)

2
6664

3
7775 (24:118)

Figure 24.25 shows the equivalent representation of the M-band filter bank in polyphase form. Just as in
the 2-band case, the total polyphase matrix is defined to be P(z) � R(z)E(z) and the condition for PR is

P(z) ¼ R(z)E(z) ¼ I (24:119)

For an FIR filter bank it is required that

det(E(z)) ¼ czK (24:120)

where c is a nonzero constant and K an integer.
As in the 2-band case, a product (cascade) of matrices satisfying Equation 24.120 will give a matrix that

also satisfies Equation 24.120. Lifting can also be defined in the M-band setting but instead of just the

M M

M
M

MM

+

+

Z–1

Z–1
Z–1

Z–1

R(z)E(z)

FIGURE 24.25 Polyphase form of the M-band filter bank.

24-42 Passive, Active, and Digital Filters



primal and dual liftings, there are in general M(M � 1) types of lifting as there is a choice M bands that
can be used to modify the signal in the other M � 1 bands.
Special types of M-band filter banks are

1. Discrete fourier transform (DFT). Although the DFT is usually considered a transform that works
on a block of data, it can also be viewed as anM-band filter bank. The analysis polyphase matrix in
this case is the DFT matrix with elements given by

Ei,k(z) ¼ 1ffiffiffiffiffi
M

p Wik
M where WM ¼ exp � j2p

M

� �
for i, k ¼ 0 . . .M � 1 (24:121)

2. Discrete cosine transform (DCT). This can also be viewed as an M-band filter bank. The analysis
polyphase matrix in this case is the DCT matrix with elements given by

E0,k(z) ¼ 1ffiffiffiffiffi
M

p for k ¼ 0 . . .M � 1

Ei,k(z) ¼
ffiffiffiffiffi
2
M

r
cos

(2kþ 1)ip
2M

� �
for

i ¼ 1 . . .M � 1

k ¼ 0 . . .M � 1

� (24:122)

3. Cosine modulated filter bank. The idea here is to design a single prototype low-pass filter for the
low-pass subband and to use modulation on the prototype filter to obtain the other filters in
the filter bank. The analysis=synthesis filter coefficients are given by

hi(n) ¼ gi(n) ¼ p(n)

ffiffiffiffiffi
2
M

r
cos

(2iþ 1)(2nþM þ 1)p
4M

� �
for i ¼ 0 . . .M � 1 (24:123)

The prototype filter is p(n) and if it is of length 2M and satisfies

p(n) ¼ p(2M � n) and p2(n)þ p2(nþM) ¼ 1 (24:124)

then PR is achieved.

24.11 Hilbert Pairs of Filter Banks (the Dual Tree)

In this final section on 1-D multirate filter banks, we return to the case of the 2-band system, formed into
a wavelet tree of filters, as shown in Figure 24.3. While the wavelet transform, implemented in this form,
has been found to be remarkably effective as a tool for signal compression (coding) algorithms, it suffers
from a rather serious drawback when used as a signal analysis tool. This problem is known as shift
dependence, or a lack of shift invariance. It is caused by the 2:1 downsampling operations, shown in
Figure 24.3, and manifests itself as aliased signal components which are generated by the downsamplers
at each stage of the filter tree.

Although these aliased components do indeed cancel each other out when all the subbands are
recombined in the reconstruction filter tree of the inverse wavelet transform (provided that the anti-
aliasing condition of Equation 24.41 is satisfied), the aliased components are still very significant in the
wavelet coefficients (subband outputs) themselves and tend to result in poor performance if the wavelet
transform is used as a front-end for more complicated tasks such as signal classification and recognition,
or for denoising.
One way to eliminate the aliasing distortion in each subband and obtain shift invariance is to use the

modified filter tree of Figure 24.4, but without any of the downsamplers. This is known as the à trous
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algorithm of Mallat [21]. However, for a K-level tree, it results in (K þ 1) times as many wavelet
coefficients being generated and also requires a similar increase in computation load to implement the
filters, when compared with the standard nonredundant tree of Figure 24.3 (shown for K ¼ 4). These
factors become significantly worse for higher-dimensional signals such as images or 3-D datasets.
We now consider a more efficient alternative to the à trous algorithm.

24.11.1 Dual-Tree Wavelet Transform

The dual-tree wavelet transform [22] achieves approximate shift invariance with only 2:1 redundancy of
coefficients and twofold increase in computation load, relative to the nonredundant tree. It simply
employs a second tree of wavelet filters in parallel with the first tree, as shown in Figure 24.26.
The key to obtaining shift invariance from the dual-tree structure lies in designing the relative filter

delays at each stage, such that the low-pass filter outputs in tree b are effectively sampled at
points midway between the sampling points of the equivalent filters in tree a. This requires a delay
difference between the a and b low-pass filters of 1 sample period at tree level 1, and of 1

2 sample period
at subsequent levels (because at these later levels half of the required delay has already been provided
by earlier stages). At level 1 we can use any standard orthogonal or biorthogonal wavelet filters
and produce the required delay shift trivially by insertion or deletion of unit delays. However, at
subsequent levels, the 1

2 sample delay difference is more difficult to achieve. In Ref. [23], Selesnick
showed that these low-pass delay constraints produce a Hilbert pair relationship between the wavelet
bases for the two trees. This leads naturally to the interpretation of the outputs from trees a and b as the
real and imaginary parts, respectively, of complex wavelet coefficients. The two filter banks are then
known as a Hilbert pair.
The �1

2 sample delay difference between filters H0a(z) and H0b(z) is difficult to express in the time
domain as the filters are discrete, but it can be easily expressed in the frequency domain as

H0b(e
jv) ’ H0a(e

jv)e�jv=2 (24:125)
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FIGURE 24.26 Dual-tree complex wavelet transform over three levels. The numbers in brackets indicate the delay
of each filter (q ¼ one quarter of a sample).
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The approximation is necessary here assuming finite-order filters are being used. Solutions are possible if
the phase responses are exact and the magnitude responses are approximate, or if the magnitude
responses are exact and the phase responses are approximate. In the former case, odd-length and
even-length linear-phase filters can be used for H0a and H0b, but better overall characteristics can usually
be achieved with the latter case, which allows both filter banks to be CQFs, satisfying Equations 24.42,
24.45, and 24.53.
By convention, we select tree b to lag relative to tree a, so the polarity of the final exponent term in

Equation 24.125 is selected to be negative.

24.11.2 Common-Factor Dual-Tree Filter Design

Selesnick [24] proposed a method of satisfying Equation 24.125 by letting

H0a(z) ¼ F(z)D(z) and H0b(z) ¼ F(z)z�LD(z�1) (24:126)

where

A(z) ¼ z�LD(z�1)
D(z)

(24:127)

is an all pass filter, with group delay designed to approximate the required 1
2 sample delay difference.

Hence we require that

A(e jv) ’ e�jv=2 (24:128)

Once D(z) has been selected to satisfy Equations 24.127 and 24.128, we can design F(z) such that
both H0a and H0b result in CQFs. This is possible because the product filter P(z) is the same in both
cases, since

Pa(z) ¼ H0a(z)H0a(z
�1)

¼ F(z)F(z�1)D(z)D(z�1)

¼ H0b(z)H0b(z
�1) ¼ Pb(z) (24:129)

Hence F(z) can be designed to contain the required number of zeros at z ¼ �1 (to give the desired
number of VM) and a factor R(z) of sufficient order to eliminate all the nonzero even powers of z in P(z).
This is very similar to the method of choosing R(z) used in Section 24.6.4.
There is a straightforward way to select D(z) of a given order L using Thiran’s filter:

D(z) ¼ 1þ
XL
n¼1

L
n

� � Yn�1

k¼0

t� Lþ k
tþ 1þ k

" #
(�z)�n (24:130)

where t ¼ 0:5 to get ffA(e jv) ’ v=2. A range of filters designed with this method are given in Ref. [24].
The one disadvantage of this method of designing a Hilbert pair of filter banks is that the resulting

complex basis functions will not be linear phase (i.e., conjugate-symmetric about their midpoint). To
achieve this, F(z) must be linear phase, which requires a biorthogonal factorization of P(z) instead of the
orthogonal CQF factorization, assumed above. The penalty then is that the reconstruction wavelets will
differ from the analysis wavelets.
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24.11.3 Q-Shift Dual-Tree Filter Design

A suitable way to employ CQFs and to obtain linear phase complex basis functions from the dual tree was
proposed in Ref. [25]. The key here is to make the tree b filters equal to the time-reverse of the tree a
filters. Hence

H0b(z) ¼ z�LH0a(z
�1) (24:131)

The integer delay L is normally chosen so that H0a and H0b cover the same range of z indices.
The filters have real coefficients, so Equation 24.131 automatically ensures that

jH0b(e
jv)j ¼ jH0a(e

jv)j and ffH0b(e
jv) ¼ �Lv� ffH0a(e

jv)

It is also required, from Equation 24.125 (11.1), that ffH0b(e jv)� ffH0a(e jv) ’ � v
2, thus giving

ffH0a(e
jv) ’ � Lv

2
þ v

4
and ffH0b(e

jv) ’ � Lv
2

� v

4
(24:132)

This shows that H0a and H0b must have delays that approximate �1
4 of a sample period relative to the

midpoint of the filters at L=2 sample periods. Hence this type of 2-band filter system is called a Q-shift
(quarter-shift) filter pair. A neat way to visualize the delay property of the Q-shift pair is shown in Figure
24.27, in which the filter taps of the two filters are interleaved to form a single smooth low-pass filter of
even length and with symmetric filter coefficients (linear phase), given by

HL2(z) ¼ H0a(z
2)þ zH0b(z

2) (24:133)

The sample rate of the new filter HL2 is double that of H0a and H0b and its delay is therefore (L� 1
2)

sample periods. (In Figure 24.27, L ¼ 1.)
As well as possessing the approximate Q-shift delay property, H0a and H0b must also satisfy the usual

2-band filter bank constraints of no aliasing and PR. Additionally it is advantageous in many emerging
applications of complex wavelets that the Q-shift filters should be orthogonal (i.e., be CQFs) to make the
transform a tight frame which conserves energy from the signal in the transform domain. This has
the further advantage that the same filters (and their time-reverses) can be used in the forward and
inverse transforms, as well as in the two trees a and b. Finally it is usually highly desirable that the filters
have good smoothness properties when iterated over scale.

−15 −10 −5 0 5 10 15
−0.2

0

0.2

0.4

0.6

FIGURE 24.27 Impulse response of HL2(z) for n ¼ 6. The H0a and H0b filters have 2n ¼ 12 taps each, shown as
circles and crosses, respectively.

24-46 Passive, Active, and Digital Filters



Two main design approaches have emerged to meet all of these constraints for Q-shift filter pairs:

Zero-forcing methods with search for good delay properties: The Daubechies orthonormal filters, described
in Section 24.6.4, have the maximal number of zeros in the filters H0 and G0 at z ¼ �1 and there are no
further degrees of freedom. These are not able to produce filter pairs with good approximations to Q-shift
delays. However the Bernstein method of equation (Equation 24.59) can produce much better approx-
imations if N ¼ 2K þ 1, which allows one degree of freedom (the parameter aK ) that can be adjusted to
optimize the Q-shift delays.
In Ref. [5], all even-length CQFs were evaluated from length 4 to 22. It was found that good

approximations to the required Q-shift delay could be obtained for CQF lengths of 8, 12, 18, and 22.
The optimal values of aK in each case were found to be 0.0460, 0.1827, 0.2405, and 0.0245, respectively.

However, despite its good delay properties, the length-8 CQF, with 3 zeros at z ¼ �1, was much less
smooth than the longer filters, with 5, 8, and 10 zeros at z ¼ �1, respectively. Figure 24.28 shows the
impulse and frequency responses at level-4 of the DT-CWT, using length-12 Q-shift CQFs, designed with
this method. Designs for other filter lengths are shown in Ref. [5]. In all the results of this section, the
standard Daubechies 7,9-tap (Antonini) filters were used at level 1 of the dual tree (see Figure 24.10).
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FIGURE 24.28 Impulse and frequency responses at level-4 of the DT-CWT, using length-12 Q-shift CQFs,
designed with the zero-forcing method of Ref. [5]. In the impulse responses the two darker curves show the real
and imaginary parts of the impulse responses, and the light gray curves show their magnitudes.
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Iterative energy minimization methods: The other main design approach for Q-shift filter pairs has been
presented in Ref. [26]. The aim is to design the filter H0a(z) (and hence also its time-reverse H0b(z)) such
that it satisfies the standard CQF conditions and also gives a smooth low-pass filter when formed into
HL2(z) using Equation 24.133, which automatically produces the approximate 1

4-sample (Q-shift) delay
property if HL2 is smooth enough.

In Ref. [26] it is shown that the PR property of CQFs can be obtained if the product filter
HL2(z)HL2(z�1) has the property that the term in z0 is unity and all terms in z4k (k integer) are zero.
Smoothness of the filter HL2(z) can be formulated as a need for all components of its spectrum to be
approximately zero above about one-sixth of its sample rate (v > p=3). So the ideal design conditions for
the length 4n symmetric low-pass filter HL2 have now been reduced to

1. Zero amplitude for all the terms of HL2(z)HL2(z�1) in z4k except the term in z0, which must be
unity

2. Zero (or near-zero) amplitude of HL2(e jv) for the stopband, p3 � v � p

Condition 1 is a set of quadratic constraints on the elements of the filter tap vector hL2, while condition 2
is a set of linear constraints on hL2, evaluated at a sufficiently fine set of frequencies covering the
stopband. Together they form an overdetermined set of equations for the 2n unknowns that form one-
half of the symmetric vector hL2 (where 2n is the length of filters H0a and H0b). If the constraints were all
linear, the least mean square (LMS) error solution could be found in the standard way using the pseudo-
inverse of the matrix which defines the equations.
To deal with the quadratic constraints, the problem is linearized using an iterative solution. If hL2 at

iteration i is given by hi ¼ hi�1 þ Dhi, then, since convolution (*) is commutative,

hi*hi ¼ (hi�1 þ Dhi)*(hi�1 þ Dhi)

¼ hi�1*(hi�1 þ 2Dhi)þ Dhi*Dhi (24:134)

If the incremental update Dhi is assumed to become small as i increases, the final term can be neglected
and the convolution be expressed as a linear function of Dhi.

Hence the design problem can now be expressed as

Solve for Dhi such that: C(hi�1 þ 2Dhi) ¼ [ 0 . . . 0 1 ]T (24:135)

F(hi�1 þ Dhi) ’ [ 0 . . . 0 ]T (24:136)

where
C is a matrix which calculates every fourth term in the convolution with hi�1

F is a matrix which evaluates the Fourier transform at M discrete frequencies v from p
3 to p

(typically M ’ 8n to ensure that all sidelobe maxima and minima are captured reasonably
accurately)

Note that only one side of the convolution is needed in C, since the result is symmetric about the central
term. Also, the columns of C and F can be combined in pairs so that only the first half of the symmetric
Dhi need be solved for.
In typical applications of complex wavelets, it is often more important to ensure high accuracy in

the PR condition than to produce highly smooth wavelets. This is why Equation 24.135 is shown as an
equality while Equation 24.136 is only an approximation. Within an iterative LMS framework, high
accuracy solutions to some equations can be produced by scaling these up by a factor, bi, which is
progressively increased with i. Hence the optimization may now be expressed as the iterative LMS
solution of
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2biC

F

" #
Dhi ¼

bi(c� C hi�1)

�F hi�1

" #
(24:137)

hi ¼ hi�1 þ Dhi (24:138)

where c ¼ [0 . . . 01]T. Typically one may choose bi ¼ 2i, and iterate over about 20 iterations, so that
reconstruction errors become of the order of 2�20 ’ 10�6 of smoothness errors. There are two further
refinements to this method, described in Ref. [26], which allow for transition band effects and can insert
predefined zeros (e.g., VM) in the filters.
Figures 24.29 and 24.30 show some typical scaling functions and wavelets designed using the above

method for filter lengths of 14 and 24, respectively. Note the high degree of smoothness that is achievable
if the length of the filters is increased to 24. The frequency responses in Figures 24.28 through 24.30, with
vertical scales in decibels, clearly show the much lower sidelobe levels and greater ability to reject negative
frequencies, obtainable with longer filters. Many other intermediate results are possible with this energy
minimization design method, and the method works satisfactorily for filter lengths up to 50 or more,
which can be useful if sharp transition bands and=or very low sidelobe levels are required, such as for
high-quality audio applications.
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FIGURE 24.29 Impulse and frequency responses at level-4 of the DT-CWT, using length-14 Q-shift CQFs,
designed with the energy minimization method of Kingsbury, N. G., Design of Q-shift complex wavelets for image
processing using frequency domain energy minimization. In Proc. IEEE Int. Conf. Image Processing, Barcelona,
September 2003, pp. 1013–1016.
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Earlier papers on the dual-tree method [25,27] proposed some more heuristic methods for designing
Q-shift filters. Most notable of these results are a very simple length-6 filter with fair performance and a
length-14 filter with generally good performance (similar to Figure 24.29).

24.11.4 Metrics for Shift Dependence of a Filter Bank

Probably the most important feature of Hilbert pairs of wavelets, in addition to those of normal wavelet
decompositions, is their approximate shift invariance or, expressed another way, their low level of shift
dependence. This is discussed in detail in Ref. [27] and here we summarize the main technique from that
paper for measuring shift dependence.
In order to examine the shift invariant properties of the dual tree, consider what happens when we

choose to retain the coefficients of just one type (wavelet or scaling function) from just one level of the
dual tree of Figure 24.26. For example, we might choose to retain only the level-3 wavelet coefficients
y001a and y001b, and set all others to zero. If the signal x̂, reconstructed from just these coefficients, is free
of aliasing then we define the transform to be shift invariant at that level. This is because absence of
aliasing implies that a given subband has a unique z-transfer function and so its impulse response is
linear and time (shift) invariant. In this context we define a subband as comprising all coefficients from
both trees at a given level and of a given type (either wavelet or scaling function).

Figure 24.31 shows the simplified analysis and reconstruction parts of the dual tree when coefficients
of just one type and level are retained. All downsampling and upsampling operations are moved to the
outputs of the analysis filter banks and the inputs of the reconstruction filter banks, respectively, using the
transformation of Figure 24.4 on both trees, and the cascaded filter transfer functions are combined.
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FIGURE 24.30 Impulse and frequency responses at level-4 of the DT-CWT, using length-24 Q-shift CQFs,
designed with the energy minimization method of Kingsbury, N. G., Design of Q-shift complex wavelets for image
processing using frequency domain energy minimization. In Proc. IEEE Int. Conf. Image Processing, Barcelona,
September 2003, pp. 1013–1016.
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M ¼ 2m is the total down=upsampling factor. For example if y001a and y001b from Figure 24.26 are the
only sets of retained coefficients, then the subsampling factor M ¼ 8, and A(z) ¼ H0

0a(z)H0a(z2)H1a(z4),
the transfer function from x to y001a. The transfer function B(z) (from x to y001b) is obtained similarly
using H...b(z); as are the inverse functions C(z) and D(z) from G...a(z) and G...b(z), respectively.
It is a standard result of multirate analysis that a signal U(z), which is downsampled by M and then

upsampled by the same factor (by insertion of zeros), becomes 1
M

PM�1
k¼0 U(Wkz), where W ¼ e j2p=M .

Applying this result to Figure 24.31 gives

X̂(z) ¼ X̂a(z)þ X̂b(z) ¼ 1
M

XM�1

k¼0

X(Wkz) A(Wkz)C(z)þ B(Wkz)D(z)
	 


(24:139)

The aliasing terms in this summation correspond to those for which k 6¼ 0, because only the term in X(z)
(when k ¼ 0 and Wk ¼ 1) corresponds to a linear time (shift) invariant response. For shift invariance,
the aliasing terms must be negligible, so we must design A(Wkz)C(z) and B(Wkz)D(z) either to be very
small or to cancel each other when k 6¼ 0. Now Wk introduces a frequency shift equal to kfs=M to the
filters A and B (where fs is the input sampling frequency), so for larger values of k the shifted and
unshifted filters have negligible passband overlap and it is quite easy to design the functions B(Wkz)D(z)
and A(Wkz)C(z) to be very small over all frequencies, z ¼ e ju. But at small values of k (especially
k ¼ �1) this becomes virtually impossible due to the significant width of the transition bands of short-
support filters. In these cases it is necessary to design for cancellation when the two trees are combined,
and this is what is achieved by the half-sample delay difference strategy outlined above.
A useful way of quantifying the shift dependence of a transform is to examine Equation 24.139 and

determine the ratio of the total energy of the unwanted aliasing transfer functions (the terms with k 6¼ 0)
to the energy of the wanted transfer function (when k ¼ 0), as given by the aliasing energy ratio:

Ra ¼
PM�1

k¼1 EfA(Wkz)C(z)þ B(Wkz)D(z)g
EfA(z)C(z)þ B(z)D(z)g (24:140)

where EfU(z)g calculates the energy,
P

r jurj2, of the impulse response of a z-transfer function,
U(z) ¼Pr urz

�r . Note that EfU(z)g may alternatively be calculated as the integral of the squared
magnitude of the frequency response, 1

2p

Ð p
�p jU(e ju)j2du from Parseval’s theorem. Since Ra is an energy

ratio, it is convenient to measure it in decibels.
In Table 3 of Ref. [27], values of Ra are given for various single-tree and dual-tree filter combinations.

It is shown that Ra is typically only �3:5 dB for a single-tree DWT, whereas it may be improved to
approximately�31 dB with 18-tap Q-shift filters in the dual-tree complex wavelet transform (DT-CWT).
Longer filters can reduce the aliasing energy much further if needed, while shorter filters tend to produce
more aliasing energy and hence somewhat greater shift dependence.
Other metrics for shift dependence of filter-bank transforms can be based on the amount of

shift-dependent variation in the impulse or step responses of the transform, as illustrated in Figure 8

Tree a

X(z)

A(z) C(z)

D(z)B(z)
Tree b

M

M

M

M

+
Xa(z)ˆ

Xb(z)ˆ
X(z)ˆ

FIGURE 24.31 Basic configuration of the dual tree if either wavelet or scaling-function coefficients from just level
m are retained (M ¼ 2m).
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of Ref. [27], part of which is reproduced here in Figure 24.32. Good transforms have responses that are
visually almost identical (Figure 24.32a), whereas poor transforms (e.g., the DWT) have dramatically
fluctuating responses (Figure 24.32b).
In this relatively short discussion of dual-tree=Hilbert pair ideas, we have not discussed the important

extension of these ideas to two- and three-dimensional datasets, in which a second and very important
advantage of the complex nature of the wavelet coefficients lies in their ability to produce strongly
directionally selective wavelets while still retaining the computational advantages of separable filtering
[22]. In addition, extension of the dual-tree ideas to M-band filter banks has been achieved by Chaux
et al. [28], making even greater directional selectivity possible in two and three dimensions.
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25.1 Introduction

Directional filter banks (DFBs), which were introduced by Bamberger in 1989 [1–3], are digital analysis–
synthesis filter banks that allow an image to be represented as a collection of subbands. In the analysis
section, filters succeeded by downsampling matrix operators decompose an image into a set of subbands.
In the synthesis section, these subbands are upsampled via a complementary set of matrix operators, then
filtered and merged to reconstruct the original image. Such a description is strikingly reminiscent of a
conventional 2-D analysis–synthesis filter bank. The distinguishing feature is that the DFB subbands
embody angular information (a different angle for each subband), as opposed to the traditional low-,
mid-, and high-frequency information. The directional subbands in the DFB are maximally decimated so
that the total number of pixels in the full set of subbands is equal to the number of pixels in the original
image. Thus, the subbands are nonredundant or, equivalently stated, they form a critically sampled
representation.
The DFB has the property that it can achieve exact reconstruction. That is, if the constituent filters are

properly designed, the output of the synthesis section can reconstruct the original image from the
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decimated subbands exactly. This property is important in applications where modifications are
performed in the subband domain for the purpose of enhancing image quality in synthesis. In addition,
DFBs are very efficient from a computational perspective and are typically designed for implementation
in a separable two-hand filter bank tree structure. This is a noteworthy characteristic as it enables the
DFB to have arithmetic complexity comparable to (though a little higher than) the popular 2-D
transforms, like discrete Fourier transforms (DFTs) and discrete cosine transforms (DCTs).
DFBs are attractive for many image-processing applications that can benefit from directional analysis

such as noise reduction, edge sharpening, feature enhancement, compression, object recognition, and
texture synthesis, to mention a few. Furthermore, DFBs are also attractive from a visual information-
processing perspective. Research has shown that the first layer of cells in the human visual cortex
responds to different orientations and scales. Consequently, DFBs can model in an approximate way
the human visual system. All of these reasons have motivated much of the study and interest in
directional analysis–synthesis systems in recent years.
Since the introduction of the DFB in 1989, there have been a number of extensions and variations that

have been considered, such as relaxation of the maximum decimation condition (leading to directional
pyramids), multidimensional extensions of the DFB, nonseparable implementations, and mixed low-,
mid-, high-frequency angular decompositions [4–7]. To avoid confusion among these variations, we will
refer to the original DFB as the Bamberger DFB (BDFB) in our subsequent discussion and use the term
DFB to refer more generically to the broad class of directional decompositions.

25.2 Basic Theory of 2-D Multirate Systems

To set the foundation for the later discussion on the DFB, we start by reviewing the basic concepts of
2-D multirate filter banks. The reader seeking a more comprehensive treatment on the subject is referred
to Refs. [8,9].
First, we assume that the digital input signal x[n0, n1] is a sampled version of a continuous time signal

xa(t0, t1) such that

x[n0, n1] ¼ xa(n0T0, n1T1),

where T0 and T1 are the sampling periods. In matrix notation,* this equates to x[n] ¼ xa(Vn) where

n ¼ n0
n1

� �
, V ¼ T0 0

0 T1

� �
:

More generally, V can be any nonsingular real matrix, which implies that there are an infinite number of
ways to sample a 2-D signal. Each sampling matrix gives rise to a different sampling geometry or lattice
in the 2-D plane. The ‘‘lattice’’ generated by the sampling matrix V is the set of all points t, which implies
that t ¼ Vn, where n 2 N (the set of all integer vectors). The lattice associated with V is denoted as LAT
(V). Such a lattice corresponds to all the ‘‘integer’’ linear combinations of the columns of V, which can be
written as V ¼ [v0jv1]. It should be noted that the relationship between V and LAT(V) is not one-to-one.
Hence different sampling matrices can give rise to the same lattice, a fact that will be useful in later
discussion.
An important component of multirate 2-D systems is the unimodular matrix. An integer matrix E

is unimodular if and only if its inverse is an integer matrix, or equivalently if jdetEj ¼ 1. A couple of
useful unimodular matrix properties are summarized in the following theorem [8]:

* Boldface capital letters denote matrices and boldface lowercase letters denote vectors.
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THEOREM 25.1

Let V be a 2� 2 real nonsingular matrix generating a lattice LAT(V).

1. Let V̂ ¼ VE, where E is a 2� 2 unimodular matrix. Then LAT(V) ¼ LAT(VE) ¼ LAT(V̂).
2. Let V̂ also be a basis for LAT(V). Then there exists a unimodular matrix E such that V̂ ¼ VE.

Note that LAT(V) ¼ LAT(V̂) does not imply xa(Vn) ¼ xa(V̂n). Although the lattice points are the same
for both matrices, they do not occur in the same order, i.e., the samples of xa(Vn) are rearranged samples
of xa(V̂n). This property is useful and was employed in Ref. [3] as a ‘‘change-of-variables’’ procedure to
simplify the DFB design.
To illustrate the idea of lattice resampling with unimodular matrices, consider the lattice generated by

the matrix

V ¼ 1 1
�1 1

� �
¼ [v0jv1]: (25:1)

It generates what is known as the quincunx lattice, shown in Figure 25.1a, where the heavy dark dots
correspond to elements of LAT(V). The geometry of the lattice is established by vectors v0 and v1. A set
of trivial unimodular matrices can be obtained by choosing variations of the matrices

�1 0
0 �1

� �
and

0 �1
�1 0

� �
: (25:2)

Resampling with these matrices, we can produce rotations and reflections of any lattice. In particular,
there are eight variations=permutations of the quincunx sampling matrix.
Another useful type of unimodular matrix is

E ¼ 1 1
0 1

� �
: (25:3)
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FIGURE 25.1 Examples of 2-D lattices. (a) Lattice generated by sampling with a quincunx matrix. (b) Lattice
generated by resampling a quincunx matrix with a unimodular matrix. Note that the sample density of the lattice is
same in both figures, but the geometry of the lattice is different.
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It generates the sampling matrix

V̂ ¼ VE ¼ 1 2
�1 0

� �
, (25:4)

whose lattice is illustrated in Figure 25.1. It is easy to see that LAT(V) ¼ LAT(V̂), but the geometry
imposed by v̂0 and v̂1 is different than that of V, i.e., the samples in the lattice have been permuted or
reindexed. In the frequency domain, the reindexing of the lattice induces skewings and rotations in the
frequency domain of the 2-D signal but does not alter the sample density.
The fundamental parallepiped of V, denoted by FPD(V), is defined by

FPD(V) ¼ Set of all points Vx with x 2 [0,1)2
� �

: (25:5)

Graphically, this is represented by the parallelogram formed by the sampling vectors v0 and v1, as shown
in Figure 25.2 for V and V̂.

25.2.1 2-D Decimation and Interpolation

As in the 1-D case, decimation is performed by filtering (to reduce aliasing) followed by downsampling.
Here, the downsampling is performed with a resampling matrix M. Keep in mind that a 2-D resampling
matrix does not only alter the sampling rate, but it also introduces a geometric modification to the
sampling lattice, as illustrated in the previous figures. Thus a 2-D downsampler is implemented by

y[n] ¼ x[Mn], (25:6)

where M is a 2� 2 nonsingular integer matrix. The signal y[n] retains only those samples of x[n] that
reside on LAT(M). The dark dots in Figure 25.3a illustrate this point for the case of quincunx resampling.
The dark samples of x[n] are the ones retained by resampling with the quincunx matrix Q defined as

Q ¼ 1 �1
1 1

� �
¼ [v0jv1]: (25:7)

Figure 25.3b illustrates how the samples are rearranged over the (n0, n1) plane. For this quincunx
downsampling, the samples experience a clockwise rotation of 458. For 2-D resampling matrices, the
decimation ratio is the determinant of the matrix. Thus for the quincunx resampling case above,
the decimation ratio is jdetQj ¼ 2, as is evident from Figure 25.3.
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t1
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(a) (b)
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1
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1 −1 21

FIGURE 25.2 Fundamental parallepipeds for (a) the quincunx lattice and (b) the resampled quincunx lattice.
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To show that this property is true in general, consider the set

N (M) ¼ fSet of integer vectors in FPD(M)g ¼ fSet of integers of the form Mx, x 2 [0,1)2g:

It is easy to see that the cardinality of the set J(M) is jN (M)j ¼ j detMj. For instance, if we consider
quincunx downsampling, then

N (Q) ¼ 0
0

� �
,
1
0

� �� �
¼ fk0, k1g: (25:8)

The vectors ki are known as coset vectors.
Assuming the signal x(t) has been sampled with V ¼ I (i.e., a rectangular uniform grid over the

2-D plane), then any other sublattice LAT(M) obtained by downsampling LAT(I) is known as a sublattice
of I. For matrix M, we can obtain J(M) distinct, nonoverlapping sublattices from I, expressed as

xi[n] ¼ x(Mnþ ki): (25:9)

Each sublattice is also known as a coset of LAT(M). Figure 25.3a shows graphically that there are two
sublattices, x0[n] and x1[n] for the quincunx matrix Q. From a multirate systems perspective, cosets are
the equivalent of polyphase components.

25.2.2 Alias-Free 2-D Decimation

In the 1-D case, an antialiasing filter is generally applied to the signal prior to downsampling. For
decimation by a factor of M, the filter has an ideal cutoff frequency of p=M, where M is the decimation
ratio. In two dimensions there is an analogous cutoff frequency requirement but also a prescribed region
of support determined by the geometry of LAT(M), where M is the downsampling matrix.
Let X(v) be the 2-D DTFT of x[n], which is 2p-periodic in v over the 2-D frequency plane with

v ¼ [v0v1]
T. For convenience, with abuse of notation, X(v) will be used in place of X(ejv0 , ejv1 ).

The region of support for an antialiasing filter needed to ideally downsample by M is given by [8]

v ¼ pM�Tx þ 2pm, x 2 [�1,1)2, m 2 N : (25:10)

4

3

2

1

(b)(a)

−2

−1

2
n0

n0

n1n1

4321

1

m y

da c

q wk

oc

e

yxw

b

uvu

tsrqp

n

i i

lk om

jhgf

e

a g s

FIGURE 25.3 Downsampling with a quincunx matrix. (a) Original position of samples in the 2-D plane; samples in
bold are retained by the downsampling operation. (b) Resulting data after quincunx downsampling with matrix Q in
Equation 25.7.
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The term ‘‘2pm’’ represents the periodicity of the antialias region of support, while the term ‘‘pM�Tx’’
corresponds to the fundamental frequency cell (or region of support) that is periodically replicated over
the frequency plane. If

M ¼ m00 m01

m10 m11

� �
, (25:11)

the frequency cell can be expressed as

�p � m00v0 þm10v1 < p \ �p � m01v0 þm11v1 < p: (25:12)

It is also illuminating to examine the 2-D decimator in the frequency domain. The key here is
understanding the 2-D downsampling process. Suppose a signal X(v) is downsampled with the
matrix M. The frequency-domain expression for the downsampled signal Y(v) in terms of X(v) is
(analogous to the 1-D case)

Y(v) ¼ 1
J(M)

X
k2N (MT )

X(M�T(v� 2pk)), (25:13)

where X(M�Tv) is a ‘‘stretched’’ version of X(v). For the case of the signal X(v) shown in Figure 25.4a
that undergoes quincunx downsampling, we have

Y(v) ¼ 1
2
X(Q�Tv)þ 1

2
X(Q�T(v� 2pk1)), (25:14)

where k1 ¼ [1 0]T is the second coset vector of Q. Figure 25.4b shows the result after the downsampling
operation. In this case, from Equation 25.10, the support for the term X(Q�Tv) is v ¼ px þ 2pQTm,

3π2ππ−π−2π−3π

X(ω) X(Q−Tω − 2πk1)X(Q−Tω) 
−3π

−2π

−π

 π

2π

3π

3π2π π−2π−3π

 (a)

ω1

 (b)

ω0

ω1

ω0

−3π

−2π

−π

π

2π

3π

−π

FIGURE 25.4 Effect of downsampling by Q. (a) Diamond band limited signal. (b) The diamond region is stretched
by a factor of two and rotated by 458 covering the full unit cell. The empty regions in (a) are covered by
X(Q�T(v� 2pk1)).
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which corresponds to the full [�p,p)2 support periodically replicated with periodicity matrix 2pQT.
Hence the frequency support of X(v) has been stretched by a factor of 2 and rotated by 45�. The
complementary regions are filled by the term X(Q�T(v� 2pk1)).

25.2.3 Effect of Unimodular Matrices in the Frequency Domain

Previously, we used the unimodular matrix E from Equation 25.3 to modify LAT(V). Similar properties
follow for the case of resampling a discrete signal using unimodular matrices. For instance, we can
modify the quincunx lattice generated by Q using E such that LAT(QE) contains the same points as
LAT(Q) but with a different sample ordering. From Equation 25.12 the frequency support for a signal
lying over LAT(QE) is given by

�p � v0 � v1 < p \ �p

2
� v0 <

p

2
: (25:15)

This represents a skewing of the frequency cell associated with LAT(Q).

25.2.4 2-D Upsamplers and Interpolators

Complementary to the decimation operation is the interpolation operation, which is composed of an
upsampler followed by an anti-imaging filter. For a 2-D signal x[n], the upsampling operation with
matrix M generates the signal

y[n] ¼ x(M�1n) if n 2 LAT(M),
0 otherwise.

�
(25:16)

This means that a matrix M with J(M) coset vectors maps all the samples of x[n] to the sublattice
produced by k0, while the remaining sublattices are populated by zeros.

The frequency domain expression for the interpolator is

Y(v) ¼ X(MTv), (25:17)

which implies Y(v) has a periodicity matrix 2pM�T, and there are jdet Mj compressed images of X(v) in
the [�p,p]2 frequency cell. Decimators and interpolators are the basic elements of multirate systems and
will be used extensively in the discussions that follow.

25.3 2-D Maximally Decimated Filter Banks

A more general condition than Equation 25.10 to derive the support of the antialias filter is

v ¼ cþ pM�Tx þ 2pm, x 2 [�1,1)2, m 2 N , (25:18)

where c is some arbitrary constant vector. This implies there are an infinite number of possible
antialiasing filter support regions for sampling matrix M. There are, however, a few choices of c that
are of more practical importance as our intuition can suggest.
Going back to the 1-D case, an M-channel maximally decimated filter bank requires having M

nonoverlapping (ideal) filters with bandwidth p
M, so that the range [�p,p) is completely covered by

the M channels. This concept can be generalized to two dimensions by finding the nonoverlapping
regions whose union covers the frequency cell [�p,p)2. Such regions are obtained by choosing

c ¼ 2pM�Tk, k 2 N (MT) (25:19)
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in Equation 25.18. It is easy to show that for each of the J(M) coset vectors ki, there is a different
nonoverlapping frequency region. From the filter bank perspective, each of these regions can be used as
the frequency-domain region for a subband whose information can be extracted with the properly
designed subband filter. This concept is illustrated next with a couple of examples.

25.3.1 Diamond and Fan Filter Banks

Two popular 2-D filter banks are the diamond and fan filter banks (FFBs) shown in Figure 25.5. They
form the building blocks for a broad class of directional decompositions, which we will discuss later. The
diamond filter has a passband as shown in Figure 25.5a in the [�p,p)2 region. These filters can provide
alias-free decimation for the quincunx resampling matrix Q. Using the corresponding coset vectors
(Equation 25.8) in Equations 25.18 and 25.19, we obtain the support regions

V0: �p � v0 � v1 < p \ �p � v0 þ v1 < p,

V1: p � v0 � v1 < 3p \ �p � v0 þ v1 < p:
(25:20)

Related to the diamond filter is the fan filter which has the passband shown in Figure 25.5b. It is identical
to the diamond filter except that it is frequency shifted (either in v0 or v1) by p. We can show that fan
support is a valid antialias passband for the quincunx matrix by finding the vector c that satisfies
Equation 25.18. If we let

c0 ¼ p
0

� �
, c1 ¼ 0

p

� �
,

we get the two fundamental complementary fan-shaped regions for F0(v) and F1(v):

V0: 0 � v0 � v1 < 2p \ 0 � v0 þ v1 < 2p,

V1: �2p � v0 � v1 < 0 \ 0 � v0 þ v1 < 2p:
(25:21)

Again, the diamond filter bank and the FFB play a crucial role in the construction of DFBs.
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FIGURE 25.5 Block diagram for the diamond and FFBs showing the ideal support for the 2-D filters.
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25.4 Bamberger Directional Filter Bank

In this chapter, we present the theory of the DFB introduced in Refs. [2,3]. The BDFB splits the
frequency cell [�p,p)2 into an even number of wedge-shaped regions as shown in Figure 25.6. The
BDFB employs a tree-structured 2-D filter bank that diagrammatically is analogous to a 1-D tree-
structured filter bank.

Using this approach, Bamberger introduced BDFBs with different numbers of subbands such as 6, 10,
18, and more [2]. However, the BDFBs that have received most attention over the years are the uniform
N-stage tree structure filter banks that generate M ¼ 2N subbands. Given the extensive number
of applications in which M ¼ 2N BDFBs are employed, we focus on this case in the reminder of
this chapter.
The BDFB is implemented with a small set of well-defined building blocks, each with low computa-

tional complexity. Without loss of generality, we present the BDFB for the M ¼ 8(N ¼ 3) case, which
achieves the frequency plane partitioning shown in Figure 25.6d. The extension to 16 bands, 32
bands, and higher follows by a straightforward extension of the tree structure. The block diagram
for an eight-band BDFB analysis stage is shown in Figure 25.7. The primary building block is the two-
channel FFB.
The third stage of the BDFB includes additional resampling matrices Ui and Bi, which are unimodular.

The matrices Ui resample the four subbands from the second stage to remap their frequency support to a
fan-shaped region. This allows the use of the FFB on all stages. The function of the Bi matrices is to adjust
the sampling lattice of the resulting subbands so they have a rectangular geometry (i.e., the overall
sampling matrix is diagonal with a downsampling rate of M). The use of Ui matrices was introduced by
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FIGURE 25.6 Frequency band partitions achieved by the BDFB. (a) Two-band. (b) Four-band. (c) Six-band.
(d) Eight-band.
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Park et al. [10] as a way to achieve a more geometrically accurate subband representation. According to
the selection rules developed in Ref. [10], we have chosen the following matrix values for Ui:

U1 ¼ 1 �1
0 1

� �
, U2 ¼ �1 1

0 1

� �
, U3 ¼ 0 1

�1 1

� �
, U4 ¼ 1 0

�1 1

� �
: (25:22)

Similarly, the values for the Bi matrices are given by

B1 ¼ B2 ¼
�1 1

0 �1

� �
, B3 ¼ B4 ¼

�1 �1

0 1

� �
,

B5 ¼ B6 ¼
1 1

�1 0

� �
, B7 ¼ B8 ¼

�1 1

�1 0

� �
:

(25:23)

A detailed stage-by-stage analysis of the BDFB structure is presented in Refs. [2,11]. Here, we analyze the
BDFB by collapsing the tree structure into the M-channel parallel structure shown in Figure 25.8. Using
the multirate identity that states ‘‘downsampling by M followed by H(v) is equivalent to H(MTv)
followed by downsampling by M,’’ it is possible to migrate all the filters in the tree structure to the left
and the downsampling operations to the right of the tree structure. For instance, for an eight-band BDFB,
the overall analysis filters are given by

G‘(v) ¼ Fj(v)Fk(Q
T
1v)Fm(U

T
i Q

T
2Q

T
1v), (25:24)

where
j, k,m 2 f0, 1g
i 2 f1, 2, 3, 4g
‘ ¼ 1, 2, . . . , 8

Looking at the tree structure as a binary tree, we have ‘ ¼ jþ 2kþ 4mþ 1. The multiplication of the
three frequency responses in Equation 25.24 results in the filters G‘(v) with the wedge-shaped passbands

Stage 3

FFB

FFB

FFB

FFB

FFB

FFB

FFB

U1

U2

U3

U4

Stage 1 Stage 2

B1

B2

B3

B4

B5

B6

B7

B8

FIGURE 25.7 Implementation of an eight-band BDFB using a tree structure with FFBs and backsampling matrices.
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shown in Figure 25.6d. As an illustration, Figure 25.9 shows graphically how the cascade of filters
depicted in Equation 25.24 produces a wedge-shaped passband. The fan-shaped support for F0(v) and
F1(v) is rotated, skewed, or scaled according to the resampling operations indicated by Equation 25.24.
Analogous operations can be implemented to generate the remaining wedge filters.
Viewing the analysis tree structure as a parallel form structure, the eight-band BDFB has overall

downsampling matrices given by

D‘ ¼ Q1Q2UiQ3Bi, (25:25)

for ‘ ¼ 1, 2, . . . , 8 and i ¼ d‘2e. This implies that D2i�1 ¼ D2i. It is easy to show that D‘ is diagonal with
one of the following values:

C1 ¼ 2 0
0 4

� �
and C2 ¼ 4 0

0 2

� �
: (25:26)
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FIGURE 25.8 Parallel implementation of a maximally decimated eight-band DFB. Note that jdet (Di)j ¼ 8:
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FIGURE 25.9 Illustration of the synthesis of wedge passband for an eight-band DFB. The wedge support is
obtained by taking the product of the frequency responses as described by Equation 25.24.
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We can conclude three things from the above result:

1. Decimation ratio for all channels is jdet(C1)j ¼ jdet(C2)j ¼ 8, giving us a maximally decimated
system as expected.

2. Since the D‘ matrices are diagonal, the corresponding sampling grids and fundamental parallepi-
peds are rectangular. We should note that this is a consequence of the judicious selection of the
unimodular matrices Ui and Bi. Having the data lie on a rectangular lattice makes further
processing easier.

3. Half of the bands (‘ ¼ 1, 2, 3, 4) are subsampled by two in the horizontal direction and by four in
the vertical direction. The remaining bands (‘ ¼ 5, 6, 7, 8) have the opposite structure.

For brevity we focussed on the analysis stage of the BDFB in our discussion. However, it should be noted
that the same multirate concepts can be applied to the synthesis stage in an analogous manner.
The generation of BDFBs with 16, 32 , . . . , 2N subbands is achieved by replicating the third stage in

Figure 25.7. For an N-stage BDFB, the subbands will have an overall downsampling matrix given by

C1 ¼ 2 0
0 2N�1

� �
or C2 ¼ 2N�1 0

0 2

� �
:

In summary, we have shown how to construct directional filters using multirate operations and FFBs as
building blocks. In Section 25.5, we show how to design the FFB filters, F0(v) and F1(v).

25.5 Design of 2-D Two-Channel Fan Filter Banks

Filter banks are usually designed to either satisfy aliasing-cancelation (AC) or perfect-reconstruction
(PR) constraints in addition to the usual frequency response specifications. For the 2-D case, a commonly
used approach for filter bank design is to derive separable filters from a 1-D systems. The typical
consequence of separable filter banks is rectangular tilings of the frequency plane. Implementations of
multidimensional filter banks for nonrectangular filters have been reported in the literature
[8,9,12–15,58,59]. However, the resulting filters are, in general, nonseparable and require a high order
to achieve good frequency selectivity. A more efficient approach is to use low-complexity FFBs. FFBs can
be designed using the change-of-variable method, which involves a 1-D to 2-D mapping. Similar to
separable implementations, we can take advantage of well-known 1-D filter bank design techniques. The
resulting filter banks have efficient polyphase implementations that only require separable filtering
operations.

25.5.1 FFB Design Using 1-D Quadrature Mirror Filters

Thus far, the BDFB theory has been developed using filters with ideal frequency responses. In practice,
one designs the FFB filters to meet either AC or PR constraints while approximating good passband
characteristics. Designing 2-D filter banks with diamond, fan, and other 2-D geometries has been studied
by several authors [9,15–17,59,60] where different alias-free and PR 2-D filter banks have been proposed.
Bamberger’s approach [2] was different in that he presented a design method for FIR PR nonseparable
systems using McClellan transformations. In addition, he generalized the change-of-variables scheme
introduced by Ansari [18] to produce Quadrature Mirror Filter (QMF) finite impulse response (FIR)
and infinite impulse response (IIR) implementations, which provides an efficient polyphase implemen-
tation. A drawback of this scheme is that the FIR implementations are not PR. More recently, Rosiles and
Smith [19,20] reported the use of the ladder-based filter banks [16,17] to implement the BDFB with FIR
PR filters. Ladder networks also have an efficient implementation and consequently are attractive. In this
section, we discuss the QMF and ladder structure implementation of the FFB.
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The development that follows starts with the design of 2-D diamond filter banks. This system consists
of two filters H0(v0,v1) and H1(v0,v1) with complementary diamond passband=stopband regions, as
shown in Figure 25.5. Fan-shaped filters are obtained by a modulation operation, which in the frequency
domain is expressed by F0(v0,v1) ¼ H0(v0 � p,v1) and F1(v0,v1) ¼ H1(v0 � p,v1).
The change-of-variables design method [2,18] requires the availability of a 2-D filter C0(v0,v1) with

checker board geometry and the complementary filter C1(v0,v1). The required passbands and stopbands
are shown in Figure 25.10. To achieve the desired filter geometries, the sampling matrix M with the
corresponding FPD is used to apply the following change of variables in the frequency domain

v0
0

v0
1

� �
¼ QT

jdet(Q)j
v0

v1

� �
: (25:27)

For the case of diamond (and fan) filters, the quincunx matrix Q provides the appropriate mapping,
which simplifies to v0

0 ¼ (v0 þ v1)=2 and v0
1 ¼ (v1 � v0)=2. In the z-domain, we can express the

change of variables as*

z0 ! z
1
2
0z

1
2
1 and z1 ! z

� 1
2

0 z
1
2
1: (25:28)

We should note that this scheme is general and works for other sampling matrices. The effect of the
change of variables is to scale, rotate, and skew the passband regions of C0(v0,v1) and C1(v0,v1) to
obtain the desired geometries.
To design an FFB with an efficient implementation, select a pair of 1-D prototypes that satisfy the

QMF relationship

H0(z) ¼ H1(�z): (25:29)

It is well known that the polyphase representation for these filters is

H0(z) ¼ E0(z
2)þ z�1E1(z

2),

H1(z) ¼ E0(z
2)� z�1E1(z

2):
(25:30)

* In this chapter z0 and z1 are used to denote the 2-D z-transform complex variables.
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FIGURE 25.10 Ideal checkerboard magnitude responses needed for the generation of the FFB using 1-D QMFs.
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It is easy to see that the checker board filters from Figure 25.10 can be designed from the 1-D prototypes
using separable filtering operations. In the z-domain this is expressed as

C0(z0, z1) ¼ H0(z0)H0(z1)þ H0(�z0)H0(�z1) ¼ 2[E0(z
2
0 , z

2
1)þ z�1

0 z�1
1 E1(z

2
0, z

2
1)],

C1(z0, z1) ¼ H0(z0)H1(z1)þ H0(�z0)H1(�z1) ¼ 2[E0(z
2
0 , z

2
1)� z�1

0 z�1
1 E1(z

2
0, z

2
1)]:

(25:31)

The 2-D polyphase filters are defined as

E0(z0, z1) ¼ E0(z0)E0(z1),

E1(z0, z1) ¼ E1(z0)E1(z1):
(25:32)

Finally, the diamond filters are obtained by applying the change of variables in Equation 25.28 to
C0(z0, z1) and C1(z0, z1). This step produces the geometric transformation on the checkerboard support
to obtain the desired diamond support filters. In the frequency domain, we have

H0(v) ¼ E0(Q
Tv)þ e�jvTk1E1(Q

Tv),

H1(v) ¼ E0(Q
Tv)� e�jvTk1E1(Q

Tv),
(25:33)

where Q is the quincunx matrix and k1 ¼ [1 0]T. These expressions are similar to those of Equation
25.30 for the 1-D case, implying that the filters are implementable in the polyphase domain. Moreover,
the 2-D polyphase components are separable, providing a 2-D structure with low computational
complexity. The resulting two-channel analysis structure is shown in Figure 25.11. The corresponding
synthesis stage is analogous.
For the 1-D prototype H0(z), one can use the Johnston QMFs [21], which are aliasing-free but not PR.

Another choice is to use the IIR linear phase filters proposed by Smith and Eddins in Ref. [22]. These
filters have the form

H0(z) ¼ b0 þ b1z�1 þ b2z�2 þ b2z�3 þ b1z�4 þ b0z�5

a0 þ a1z�2 þ a0z�4
(25:34)

and can achieve exact reconstruction. The IIR filters are noncausal, but can be used for the case of finite
length signals (like images), using forward and backward difference equations. Moreover, the implemen-
tation is very efficient, requiring only 5.1 multiplies and 5.6 adds per output sample, while achieving
similar passband characteristics to that of the 32 tap Johnston QMF.
To construct fan filters, we apply the change of variables z0 ! �z0 in H0(z0, z1) and H1(z0, z1) to

induce a shift by p along the v0-axis. Thus ‘‘off-the-shelf ’’ QMFs can be used to generate high-quality

X(z0, z1)

z0
−1

Q

Q

E0(z0)E0(z1)

E1(z0)E1(z1)

Y0(z0, z1)

Y1(z0, z1)
−1

FIGURE 25.11 Efficient polyphase domain implementation of diamond filter bank. The filtering operations are
separable.
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fan filters. Similarly these QMFs can be applied in successive stages as discussed previously to produce
directional filters. To illustrate this point, four directional filters are shown in Figure 25.12. These filters
were designed using the Johnston 32D QMF, and are the constituent filters of the eight-band BDFB. Such
filter banks can be used to decompose images, an example of which is shown in Figure 25.13.
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FIGURE 25.12 Examples of magnitude responses of the actual wedge filters constructed with the Johnston 32D FIR
filters.

(continued)

Directional Filter Banks 25-15



25.5.2 BDFB Design Using Ladder Structures

Ladder structures (also known as lifting schemes [23]) are flexible structures for implementing filter
banks and discrete wavelet transforms. The construction of wavelets is achieved by cascading simple
filtering elements successively in ladder steps. The PR property is imposed structurally without the
explicit need to meet the conditions used in the early PR filter bank design methodology. The construc-
tion of biorthogonal systems using ladder networks has been reported in various articles [23–25].
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Additionally, ladder structures allow straightforward implementation of nonlinear filter banks like
integer-to-integer wavelet transforms [26], and adaptation to irregular sampling grids [27].
In this section, ladder structures are used as the framework for the design of digital fan-shaped filters.

These structures have been explored for 2-D and multidimensional filter bank implementations
[16,17,24,25,28], where the design method involves transforming a 1-D filter to a 2-D filter with a simple
mapping. This 1-D to 2-D mapping was introduced by Kim and Ansari [61] and Phoong et al. [16] in the
context of a two-stage ladder structure and was extended to a three-stage structure by Ansari et al. [17].
The three-stage design was shown to improve the control of filter frequency responses.
To begin, consider the 1-D case. The 1-D system is designed by constructing the analysis polyphase

matrix as the product of ladder steps given by

E(z) ¼ 1 0
�p2b2(z) 1

� �
1 zp1b1(z)
0 1=(1þ p)

� �
p0 0

�pb0(z) 1

� �
, (25:35)

which generates the analysis filters

H0(z) ¼ p0 þ p1zb1(z
2)A(�z) and H1(z) ¼ A(�z)� p2H0(z)b2(z

2), (25:36)

where

A(z) ¼ (1þ zb0(z
2))

1þ p
(25:37)

and the constants p0, p1, p2 are given by p0 ¼ p1 ¼ (1þ p)=2 and p2 ¼ (1� p)=(1þ p).
This 1-D filter bank structure is illustrated graphically in Figure 25.14. The inherent structure

associated with ladder filters implies that the filter bank is biorthogonal and consequently the relationship
between the analysis and synthesis filters is given by

G0(z) ¼ �z�1H1(�z), G1(z) ¼ z�1H0(�z), (25:38)

where
H0(z) and H1(z) are the analysis filters
G0(z) and G1(z) are the synthesis filters

Maximally-decimated subbandsTest image

FIGURE 25.13 Example of an eight-band BDFB using a test image with localized directional structure.
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It is easy to show that H0(z) and G0(z) are halfband filters. In order to obtain ideal lowpass filters, the
following condition for the bi(z) functions must be met

bi(e
j2v) ¼ ej(�2Nþ1)v for 0 � v � p=2,

�ej(�2Nþ1)v for p=2 < v � p,

�
(25:39)

which implies bi(e
jv) has allpass behavior. An FIR solution that approximates Equation 25.39 is obtained

by designing an even length, linear phase function with a magnitude response optimized to approximate
unity. This is a very simple requirement that can be satisfied with widely available filter design
algorithms. It is possible to design the bi(z) filters separately or to choose the same function by making
b(z) ¼ b1(z) ¼ b2(z) ¼ b3(z), which significantly simplifies the design procedure. We note that H0(z)
and H1(z) inherit the linear phase property of b(z). Analysis filters obtained by approximating bi(z)
using the Parks–McClellan algorithm with L ¼ 8 are shown in Figure 25.16a. Additionally, these design
constraints can be met by IIR designs, however here we focus on the FIR case [16].
Maximally flat 1-D ladder filters can be obtained using the closed-form Lagrange formula

vk ¼ (� 1)N�k�1 Q2N
i¼0 (N þ 1=2� i)

2(N � k)!(N � 1þ k)!(2k� 1)
, (25:40)

where
N ¼ L=2 is the half length of b(z)
bN�k ¼ bNþk�1 ¼ vk for k ¼ 1, 2, . . . ,N

The maximally flat design method is relevant for the generation of regular biorthogonal wavelets.
For our purposes, the most attractive feature of ladder structures is the implementation of 2-D FFBs

using a simple 1-D to 2-D change of variables. This transformation reported in Ref. [16] is applied to the
entries of E(z) expressed in terms of lifting steps. First, the 1-D transfer function b(z) is replaced with the

2

2

2

2
(1 + p)

1/(1+p)

X(z)

z–1

–pβ0(z)

p0

p1zβ1(z) –p2β2(z)

p2β2(z) –p1zβ1(z) pβ0(z)

1/p0 z–1

X̂(z)

FIGURE 25.14 Analysis–synthesis ladder structure with three ladder steps, as proposed in Ref. [17].
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separable 2-D transfer function b(z0)b(z1). Then, the 1-D delays z�1 are replaced with the 2-D delays
z�1
0 z�1

1 . The resulting 2-D filters H0(z0, z1) and H1(z0, z1) have diamond-shaped support. In order to
obtain the fan-shaped filters F0(z0, z1) and F1(z0, z1) the diamond filters are modulated by p letting
z0 ! �z0. Following this procedure, the three-stage ladder structure from Figure 25.14 is transformed to
the 2-D structure in Figure 25.15. The 2-D fan filter responses jF0(z0, z1)j and jF1(z0, z1)j obtained with
this transformation are presented in Figure 25.16 using the same b(z) function for all ladder stages.
An important property of this FFB implementation is its low computational complexity. The filtering

operations can be implemented in the polyphase domain and only involve separable operations. Moreover
since b(z) is even length with linear phase, the number of multiplies per output is half the length of b(z).
As in Section 25.5.1, the tree-structured BDFB from Figure 25.7 can be realized as a three-stage

ladder FFB. The biorthogonal property is preserved by the 1-D to 2-D mapping and the resulting
BDFBs have the attractive properties that (1) PR is achieved for FIR systems, (2) the filtering is separable
in the polyphase domain and hence is efficient, (3) the 2-D filter quality can be controlled by a single
function, (4) any 1-D filter design technique can be employed to generate b(z), and (5) any set of
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Q
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Q
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+
–

p0 p1

+
+
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+
–

FIGURE 25.15 Ladder structure for the implementation of a 2-D two-channel biorthogonal analysis filter bank.
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biorthogonal wavelet filters can be used to implement the BDFB by factoring them into ladder steps and
applying the 1-D to 2-D mapping.

25.6 Undecimated Directional Filter Bank

In many applications like pattern recognition and image enhancement, shift invariance is considered
an important property. To achieve shift invariance the subbands cannot be maximally decimated.
In the case of the 2-D discrete wavelet transform (DWT), shift invariance is achieved by removing the
downsampling operations from the filter bank structure. This is the so-called undecimated DWT. It can
be shown that PR can still be preserved under conditions of partial decimation and in the complete
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FIGURE 25.16 (continued) (b) and (c) Corresponding 2-D fan shaped filters.
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absence of decimation [29]. While the undecimated representation is shift invariant, the coefficients are
not decorrelated anymore. Thus, there is a trade-off.
For a number of applications it is desirable to have an undecimated version of the BDFB. A shift-

invariant BDFB can be obtained from Figure 25.8 by removing the downsampling matrices D‘ and using
the filters G‘(v) as defined by Equation 25.24. This undecimated BDFB has a high computational cost
since the filters are nonseparable and, in order to achieve good frequency selectivity, filters generally need
to have order of 120� 120 or higher. Although frequency domain implementations are possible, the
boundary effects are more difficult to control.
Fortunately, there are ways to address efficiency. The BDFB tree structure from Figure 25.7 can be

modified to obtain an UDFB. The derivation of the UDFB is explained in detail in Refs. [20,30]. The
UDFB is obtained from the BDFB through the use of multirate identities and results in a modified tree
structure. To illustrate this, the UDFB tree structure for the eight-band case is shown in Figure 25.19. In
this case two building blocks are needed, the undecimated FFB (UFFB) and an undecimated checker-
board filter bank (UCFB). The UCFB is a two-channel structure with the complementary passbands and
stopbands as shown in Figure 25.17.
For additional efficiency the UFFB can be implemented in a ladder structures as shown in Figure 25.18

where

Q ¼ �1 1
1 1

� �
:

The UCFB is obtained from the UFFB structure by simply removing the resampling operations in Figure
25.18. This relationship has been described in Ref. [18] where fan filters are derived from checkerboard

ω1 ω1

ω0 ω0

FIGURE 25.17 Ideal magnitude responses for the two-channel UCFB.
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FIGURE 25.18 Ladder structure implementation for the UFFB.
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filters by a change-of-variables transformation. Finally, the filtering operations in Figure 25.18 remain
separable and the bi(z) functions are changed to bi(z

2), which implies that each function has been
upsampled by a factor of 2. As a result, low computational complexity of the BDFB is retained in the
undecimated case.
The overall UDFB tree structure is shown in Figure 25.19. Similar to the maximally decimated case, it

is possible to generate a 2N-band UDFB by cascading UFFB and UCFB structures. The eight-band UDFB
is implemented with a UFFB in the first stage and UCFBs in the remaining stages. UFFBs could be used
in the third stage, but UCFBs are more efficient. As before, the third stage requires the use of unimodular
resampling matrices Ui. A possible set of matrices is given by

U1 ¼ 1 1
0 1

� �
, U2 ¼ 1 �1

0 1

� �
, U3 ¼ 1 0

1 1

� �
, U4 ¼ 1 0

�1 1

� �
:

Finally, the matrices Bi are used in order to reestablish a rectangular sampling geometry. In this case
Bi ¼ U�1

i . An example of an eight-band UDFB decomposition is shown in Figure 25.20. Note that all the
subbands have the same size and that the decomposition is shift invariant.

25.7 Bamberger Pyramids

Other image decompositions like the 2-D DWT, the steerable pyramid [31], the complex-valued wavelet
transform [32], and 2-D Gabor representations [33,34] separate information across different resolutions
as well as directions. This multiresolution (MR) process could be an implicit part of the decomposition
(e.g., the DWT), or could be implemented as a separate structure (e.g., the steerable pyramid [31]). In the
latter case, we say that the decomposition is polar-separable, implying that a radial frequency decom-
position (i.e., a pyramid) is performed independently of the angular decomposition.
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FIGURE 25.19 Implementation of an eight-band UDFB using a tree structure with UFFBs and UCFBs.
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Given that many problems of interest in image processing and image analysis require MR directional
analysis, extending the theory of the BDFB to polar-separable representations is desirable. As it turns out
polar-separable versions of the BDFB and UDFB can be constructed and are straightforward to derive.
Different types of radial pyramids can be considered [30], but here we focus on a couple of examples

associated with the BDFB. The simplest Bamberger pyramid consists of a ‘‘lowpass–highpass’’ decom-
position. The image is first filtered with a lowpass filter Lvc (z0, z1) with cutoff frequency vc. A high
frequency component is obtained by subtracting the filtered version from the original image. The
resulting high frequency channel is decomposed into directional subbands using the BDFB or the
UDFB, depending on the application.
Another straightforward Bamberger pyramid can be formed by combining a J-level Laplacian pyramid

with the BDFB [4,30]. The analysis structure is presented in Figure 25.21. At the high- and mid-
frequency levels the subbands can be processed with the BDFB. If required, the UDFB can be used in

FIGURE 25.20 Example of an eight-band UDFB decomposition.
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FIGURE 25.21 Bamberger pyramid using the Laplacian pyramid structure combined with the BDFB.
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place of the BDFB. More generally the directional decomposition can be designed independently at each
resolution. For instance, the number of subbands and the order of the bi(z) filters can be chosen
independently. Since the polar components of Bamberger pyramids are invertible, it is easy to see that
the overall system is PR.
For the maximally decimated case, the Laplacian-BDFB structure increases the data by approximately

a factor of 43. For the cases where the UDFB is used, the increase in data is significantly larger. For the case
where all radial bands are decomposed into an N-band UDFB, the data increase is given by a factor of 4N3 .
Where shift invariance is needed at all resolutions and orientations, we can remove all downsampling
operations from the Laplacian pyramid and modify the lowpass kernels resulting in H0(z2

j

0 , z
2j
1 ) and

G0(z2
j

0 , z
2j
1 ) at each resolution level, where j ¼ 0, 1, . . . , J � 1. When combined with the BDFB, the

resulting Bamberger pyramid is overcomplete by a factor of J. If the UDFB is used, the data increases
by a factor of N(J � 1)þ 1.
A comparison of the frequency plane partitioning obtained with the Bamberger pyramids described

above and the traditional separable 2-D DWT (and its undecimated version) is shown in Figure 25.22.
The 2-D DWT has limited angular sensitivity (mixed-diagonal, horizontal, and vertical directions), while
Bamberger pyramids can have 2N directional subbands.

25.8 Applications

The BDFB has proven to be a useful tool for different problems in image processing and analysis. In this
section, we present a summary of different applications reported in the literature. Detailed development
and discussion is out of the scope of this work and can be obtained from the references.

25.8.1 Texture Analysis and Segmentation

Texture is an important characteristic present in many images that often contains useful information,
which can be exploited in analysis applications. Multichannel methods are among the best in exploiting
texture information and include Gabor decompositions, DCTs, DSTs, wavelets, wavelet packets, and
dual-tree complex wavelets [35–37]. Decompositions based on the BDFB provide some of the best results
for texture classification and segmentation reported in the literature [5,19,30,38,39].
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FIGURE 25.22 Comparison of the frequency plane partitioning of the 2-D separable DWT (a) and the proposed
directional pyramids (b).
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Texture information is distributed across different scales and orientations according to the structural
and statistical properties of the image and thus useful texture components can often be separated with a
multichannel transform. A simple way to obtain a texture characterization is to measure the subband
energies and form a feature vector f. Such feature vectors can be used in combination with a classifier or
clustering algorithm for recognition or segmentation.
In texture classification the objective is to assign an unknown texture sample to a particular class

within a set of known texture classes. The Bayes minimum distance classifier has been used extensively in
texture classification [29,35,38,40,41]. This classifier is a supervised scheme that requires the estimation
of the mean feature vector and feature covariance matrix for each class. The BDFB was evaluated for
texture classification using the Brodatz data set [42] and the methodology described in Ref. [35]. BDFB-
based classifiers provide some of the best results for this data set, achieving 99.62% correct classification
using 10 features [30,38]. The BDFB results are comparable to the tree-structured wavelet transform and
discrete sine transform reported as the best performers in Ref. [35].
In practice, classification systems have to deal with geometrical distortions like rotation. For this

problem, rotation-invariant features can be attractive. Multichannel decompositions that split the
frequency plane into directionally selective channels can achieve rotation invariance using a DFT-
encoding step [39,43,44]. In this approach, a feature vector f is formed from the set of directional
subbands at each resolution. Then, a DFT is computed for the features at each resolution separately. The
resulting DFT coefficients are grouped in a vector F. A rigid texture rotation is encoded in f as a circular
shift which in F is encoded as a complex exponential factor. A rotation-invariant feature set is obtained
by taking the magnitude of F and discarding half of its components.

For instance, in Ref. [38] a Bamberger pyramid is used as the front end of a rotation-invariant
classification system. The pyramid consists of an undecimated J-level Laplacian pyramid and an
N-band BDFB which achieve the frequency plane partitioning shown in Figure 25.22b. A rotation-
invariant feature set is obtained after applying DFT encoding to each pyramid resolution separately.
Using the Bayes distance classifier, the system was tested with the data set introduced by Haley and
Manjunath [41], which consists of 13 texture classes, each scanned at rotations of 0�, 30�, 60�, 90�, 120�,
and 150�. The BDFB-based system obtained correct classification rates of 96.96% with 15 features. These
results compare favorably with those reported by Haley and Manjunath [41] using a class of 2-D analytic
Gabor wavelets; in their system they achieve 96.8% correct classification using a feature vector with 204
components.
Multichannel schemes have also been applied to texture segmentation. In this case a feature vector is

used for each pixel in order to capture the local rather than global texture cues. A generic segmentation
system is presented in Figure 25.23. The nonlinear operations are used as limiters that control the
presence of outliers. For each spatial location (n, m) the local energy is estimated across all subbands. A
weighted sum of squared coefficients is typically used in this step, usually composed of a squaring
operation followed by a Gaussian smoothing operator. The local energy estimates are then grouped to
form feature vectors. In the final step, a classifier is used to produce a segmentation map that assigns a
label to each (n, m) location. Bamberger pyramids are well suited for this purpose [19,30]. A segmen-
tation example is presented in Figure 25.24 that corresponds to an undecimated Bamberger pyramid with
a redundancy factor of JN where J ¼ 4 and N ¼ 8. The learning vector quantization (LVQ) algorithm
from Kohonen [45] was selected as the classifier following the work in Ref. [36]. The segmentation error

ClassifierNonlinearityFilter bank
x (no, n1)

Local
energy

estimation
Normalizing
nonlinearity

sk(i, j) ek(i, j)

S(i, j)

FIGURE 25.23 Classical segmentation system based on multichannel filtering.
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for this example is 4.67%. A comparative study [30] showed that on average Bamberger pyramids provide
the best performance compared to other multichannel decompositions like the DCT, DWT, undecimated
uniform filter banks [36], and the DT-CWT [37].

25.8.2 Image Denoising Using Bamberger Pyramids

Denoising is a popular application in which wavelets have been employed. The goal in denoising is to
enhance the quality of an image that has been contaminated by additive noise, often assumed to be
Gaussian white noise. The basic wavelet denoising procedure consists of first decomposing the noisy
image into subbands, after which each subband is processed by a subband-specific nonlinearity. In the
last step, the processed subbands are recombined in a synthesis transform to reconstruct a noise

(b)(a)

(c)

FIGURE 25.24 Example of texture segmentation using Bamberger pyramids. (a) Five texture mixture. (b) Segmen-
tation map identifying the five texture classes. (c) Segmentation error, localized mainly along the texture boundaries.
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suppressed version of the noisy original. Since the forward and inverse transforms amount to an identity
system, it is evident that the noise suppression can be directly attributed to the nonlinear operations
performed on the subbands.
Typically, the nonlinearity is a shrinking or coring operation which takes a subband coefficient and

modifies its magnitude. Small coefficients tend to be suppressed and large coefficients maintain their
values. A commonly used operator for images is soft thresholding, whereby a subband coefficient
x(n0, n1) is modified to x̂(n0, n1) ¼ sgn(x(n0, n1))(jx(n0, n1)j � T) when the coefficient magnitude is
greater than T, and the coefficient is set to zero otherwise. The value of the threshold is set explicitly
within each subband or adapted individually to each coefficient based on some criterion, such as energy
or statistical characteristics [46,47].
This approach was first explored with maximally decimated filter banks and later with undecimated

transforms. It turns out that better results are generally achieved with undecimated (shift-invariant)
decompositions.
Since the Bamberger pyramid, whose decomposition is shown in Figure 25.22, provides both radial

and angular subband resolution, one might imagine that it would perform well in a denoising application
[47,48]. In fact such is the case as shown by the comparisons in Figure 25.25. Bamberger pyramids can
provide better directional selectivity across resolutions along with shift invariance when the UDFB is
used. Shown in Figure 25.25c is the denoising result for an undecimated Bamberger pyramid with
frequency plane partitioning similar to the Steerable pyramid [31]. The midband pyramid levels in this
particular system are decomposed with an eight-band UDFB.
For threshold selection, the spatially adaptive wavelet thresholding (SAWT) algorithm [46] was used,

where a threshold is computed for each subband coefficient using local statistics under a Bayesian
framework.

(a) (c)(b)

FIGURE 25.25 Denoising results using Lenna (a) Image with additive white Gaussian noise with s ¼ 22:5. (b)
Denoised image using the UDWT. (c) Denoised image using Bamberger pyramids.
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Also considered is a similar system using the undecimated DWT (UDWT) instead of the UDFB. The
denoised image from the DWT system is shown in Figure 25.25b. Both the DWT and DFB systems have
good performance as can be seen in contrast to the original image with visible additive noise shown in
Figure 25.25a. Both UDWTs and DFBs are good choices for denoising applications.

25.8.3 Fingerprint Enhancement and Recognition

The analysis of fingerprint images can be a challenging problem. The obvious goal is to identify a
fingerprint image as belonging to a particular individual from among a huge set of candidates. DFBs can
play a role in the recognition process. Park et al. [49] proposed a new image-based fingerprint matching
method that is robust to diverse rotations and translations of an input fingerprint. This scheme does not
require minutiae extraction, as is the typical approach. Rather, the scheme of Park represents the
fingerprint in terms of directional energies. The area within a certain radius around a reference point
is used as a region of interest (ROI) for feature extraction. Fingerprint features are then extracted from
the ROI using the BDFB. More specifically, the ROI for each subband is divided into blocks and
directional energy values are calculated for each block. Only the blocks with dominant energy are
retained, while the rest of the directional energies are set to zero, which effectively treats them as
noise. As part of the matching process, rotational and translational alignments between the input and
template are performed through a normalized Euclidean distance. Experimental results reported by Park
et al. [49] demonstrate that the proposed DFB method has comparable verification accuracy to the other
leading techniques while having faster processing speed and greater robustness to positional variation.

25.8.4 Iris Recognition

Another biometric identification system that has received attention in recent years uses iris patterns. The
physiological characteristics of the iris provides a biometric difficult to modify or reproduce by synthetic
methods. The work pioneered by Daugman [50] generates an iris code based on localized energy
measurements of the iris texture using 2-D multiscale directional Gabor filters. As is well known the
implementation of Gabor filter banks is computationally expensive and the frequency selectivity is
limited. The BDFB has been explored as an alternative to Gabor filter banks. Helen Sulochana and
Selvan [51] reported on a system that produces a feature vector from the BDFB subbands by dividing
each subband into 9� 9 blocks and calculating the energy from each block. The energies are then
thresholded to form a binary iris signature. The BDFB-based system has similar performance to the
leading systems, but is less complex and faster.

25.8.5 Finite-Field DFBs

BDFBs can also be applied to binary images using binary arithmetic. An important property of the ladder
structure is that it allows for a straightforward implementation of nonlinear filter banks with PR. Since
ladder steps are added in the analysis and subtracted in lock step in the synthesis, exact reconstruction is
preserved regardless of the kind of ladder step operation being performed. Consequently nonlinear
operations can be accommodated, such as quantization, rounding, rank order filtering, and so on. For
instance, true integer-to-integer wavelet transforms are possible by adding rounding operations after each
filtering step.
Since FFBs can be realized with ladder structures, nonlinear BDFBs can be constructed. A particular

case of interest is processing bilevel or binary images with binary arithmetic. Randolph and Smith [52]
reported on a binary BDFB that produces directional subbands that are also binary. To achieve binary
valued subbands, a threshold is applied after filtering by b(Z0)b(Z1) in the two-stage ladder FFB. The
threshold maps negative values to zero and positive values to one. All remaining operations in the ladder
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structure are implemented using modulo-two arithmetic. An example of the output for a two-channel
binary BDFB is shown in Figure 25.26 for a binary version of the image in Figure 25.13.
The binary BDFB has been explored in the context of printed character enhancement and character

recognition. Specifically, it has been applied to rotation and scale-invariant character recognition [53]
and enhancement of low-resolution documents [54,55].

25.8.6 Velocity Selective Filter Banks

Motion analysis is a critical element in video compression, object tracking, computer vision, and situation
analysis. Popular approaches for analyzing motion have included optical flow and block matching
techniques. An alternative, explored more recently, has been the use of velocity tuning filters where
motion is determined by looking at the spatiotemporal distribution of energy along planes in the 3-D
frequency domain. As objects move, they trace a trajectory in time captured by their spatial displacement
from frame to frame. In Ref. [56], object trajectories have been extracted using a 3-D continuous wavelet
transform (CWT). This transform can be tuned to find motion using spatial translation, temporal
translation, scale, velocity magnitude, and velocity orientation. Such flexibility comes with a high
computational cost. However, velocity selective filter banks (VSFB) have been reported in Refs. [11,57]
that provide an attractive alternative to the oversampled CWT. The implementation boils down to a 3-D
generalization of the BDFB which requires the use of full-rate or undecimated subbands. The VSFB is
spatiotemporally separable meaning that the BDFB is computed for each individual frame and then
subbands along a specific orientation across different frames are grouped and processed temporally using
the BDFB. The VSFB produces 3-D wedges as depicted in Figure 25.27a. This wedge captures motion for
objects moving along the directions over the fixed velocities captured by the temporal aperture of the
wedge. The CWT is capable of additionally separating information across scales as shown in Figure
25.27b. Compared to the CWT, the VSFB is constrained to the speed and position resolutions deter-
mined by the number of directional subbands. On the other hand, its computational complexity is an
order of magnitude lower than the CWT.

(a) (b)

FIGURE 25.26 Output of a two-channel binary BDFB. The subbands are binary valued.
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25.9 Closing Remarks

DFBs have many properties that are both interesting and important. They can provide decompositions
with a wide variety of angular resolutions, the filters can be designed to have good passband character-
istics, and they can be designed to have exact reconstruction. Furthermore, DFBs can accommodate a
range of decimation factors for the subbands, from maximally decimated to undecimated. This flexibility
can be important in applications where either a compact representation is desirable, like image com-
pression, or applications where shift invariance is deemed important, as is the case with image denoising.
This chapter is not intended as a comprehensive review of directional transforms, but rather an

overview of the basic multidimensional theory, the DFB tree structure, the design and efficient imple-
mentation of the filter bank, and some applications that have been considered. The interested reader
seeking a more comprehensive discussion of this material is directed to the references provided at the end
of this chapter.
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26.1 Introduction

Linear methods that satisfied the principle of superposition dominate current signal processing theory
and practice. Linear signal processing is founded in the rich theory of linear systems, and in many
applications linear signal processing methods prove to be optimal. Moreover, linear methods are
inherently simple to implement, with their low computational cost, perhaps the dominant reason for
their widespread use in practice. While linear methods will continue to play a leading role in signal
processing applications, nonlinear methods are emerging as viable alternative solutions.
The rapid emergence of nonlinear signal processing algorithms is motivated by the growth of increas-

ingly challenging applications, for instance in the areas of multimedia processing and communications.
Such applications require the use of increasingly sophisticated signal processing algorithms. The growth of
challenging applications is coupled with continual gains in digital signal processing hardware, in terms
of speed, size, and cost. These gains enable the practical deployment of more sophisticated and compu-
tationally intensive algorithms. Thus, nonlinear algorithms and filtering methods are being developed and
employed to address an increasing share of theoretical problems and practical applications.
A disadvantage of nonlinear approaches is that, unlike their linear counterparts, nonlinear methods

lack a unified and universal set of tools for analysis and design. The lack of unifying theory has led to the
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development of hundreds of nonlinear signal processing algorithms. These algorithms range from
theoretically derived broad filter classes, such as polynomial and rank–order based methods [1–9], to
boutique methods tailored to specific applications. Thus the dynamic growth of nonlinear methods and
lack of unifying theory makes covering the entirety of such operators in a single chapter impossible. Still,
large classes of nonlinear filtering algorithms can be derived and studied through fundamentals that are
well founded.
The fundamental approach adopted in this chapter is that realized through the coupling of statistical

signal modeling with optimal estimation-based filter development. This general approach leads to a
number of well-established filtering families, with the specific filtering scheme realized depending on the
estimation methodology adopted and the particular signal model deployed. Particularly amenable to filter
development is the maximum likelihood estimation (M-estimation) approach. Originally developed in
the theory of robust statistics [10], M-estimation provides a framework for the development of statistical
process location estimators, which, when employed with sliding observation windows, naturally extend to
statistical filtering algorithms.
The characteristics of a derived family of filtering operators depend not only on the estimation

methodology upon which the family is founded, but also on the statistical model employed to charac-
terize a sequence of observations. The most commonly employed statistical models are those based on the
Gaussian distribution. Utilization of the Gaussian distribution is well founded in many cases, for instance
due to the central limit theorem, and leads to computationally simple linear operations that are optimal
for the assumed environment. There are many applications, however, in which the underlying processes
are decidedly non-Gaussian. Included in this broad array of applications are important problems in
wireless communications, teletrafic, networking, hydrology, geology, economics, and imaging [11–15].
The element common to these applications, and numerous others, is that the underlying processes
tend to produce more large magnitude observations, often referred to as outliers or impulses, than is
predicted by Gaussian models. The outlier magnitude and frequency of occurrence predicted by a model
is governed by the decay rate of the distribution tail. Thus, many natural sequences of interest are
governed by distributions that have heavier tails (e.g., lower tail decay rates) than that exhibited by
the Gaussian distribution. Modeling such sequences as Gaussian processes leads not only to a poor
statistical fit, but also to the utilization of linear operators that suffer serious degradation in the presence
of outliers.
Couplings, an estimation (filtering) methodology with a statistical model appropriate for the observed

sequence, significantly improves performance. This is particularly true in heavy tailed environments. As
an illustrative example, consider the restoration of an image corrupted by (heavy tailed) salt and pepper
noise. Typical sources of salt and pepper include flecks of dust on the lens or inside the camera, or, in
digital cameras, faulty CCD elements. Figure 26.1 shows a sample corrupted image, the results of two-
dimensional linear and nonlinear filtering, and the true underlying (desired) image. It is clear that the
linear filter, unable to exploit the characteristics of the corrupting noise, provides an unacceptable result.
On the other hand, the nonlinear filter, utilizing the statistics of the image, provides a very good result.
The nonlinear filtering utilized in this example is the median, which is derived to be optimal for certain
heavy tailed processes. This appropriate statistical modeling results in performance that is far superior to
linear processing, which is inherently based on the processing of light tailed samples.
To formally address the processing of heavy tailed sequences, this chapter first considers sequences of

samples drawn from the generalizes Gaussian distribution (GGD). This family generalizes the Gaussian
distribution by incorporating a parameter that controls the rate of exponential tail decay. Setting this
parameter to 2 yields the standard Gaussian distribution, while for values less than two the GGD tails
decay slower than in the standard Gaussian case, resulting in heavier tailed distributions. Of particular
interest is the first order exponential decay case, which yields the double exponential, or Laplacian,
distribution. The Gaussian and Laplacian GGD special cases warrant particular attention due to their
theoretical underpinnings, widespread use, and resulting classes of operators when deployed in an
M-estimation framework. Specifically, it is shown here that M-estimation of Gaussian distributed
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observations samples leads to traditional linear filtering, while the same framework leads to median
filtering for Laplacian distributed samples. Thus as linear filters are optimal for Gaussian processes, the
median filter and its weighted generalizations are optimal for Laplacian processes. Median type filters are
more robust than linear filters and operate more efficiently in impulsive environments, characteristics
that result directly from the heavy tailed characteristic of the Laplacian distribution.
Although the Laplacian distribution has a lower rate of tail decay than the Gaussian distribution,

extremely impulsive processes are not well modeled as Laplacian. The GGD family, in fact, is limited in
its ability to appropriately model extremely impulsive sequences due to the constraint that, while
incorporating freedom in the detail decay rate, the tail decay rate is, nonetheless, restricted to be
exponential. Appropriate modeling of such sequences is of critical importance, as a wide variety of
extremely impulsive processes are observed in practice. Many such sequences arise as the superposition
of numerous independent effects. Examples of which include radar clutter, formed as the sum of many
signal reflections from irregular surfaces, the received sum of multiuser transmitted signals observed at a
detector in a communications problem, the many impulses caused by the contact of rotating machinery
parts in electromechanical systems, and atmospheric noise resulting from the superposition of lightning-
based electrical discharges around the globe.

(a) (b)

(c) (d)

FIGURE 26.1 The original figure depicted in (a) is corrupted with transmission noise, the result of which is given in
(b). The received image is then processed with (c) linear (mean) and (d) nonlinear (median) filters.
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The superposition nature of many observed heavy tailed processes has led to the utilization of a-Stable
distributions as signal models for such processes [16–19]. Indeed, the family of a-Stable distributions can
be justified by the Generalized Central Limit Theorem [19–25]. Moreover, the distribution family (other
than the Gaussian limiting case) possesses algebraic tales, making a-Stable modeling of heavy tailed
processes more accurate than exponential tailed GGD family modeling. Although an accurate model for
many heavy tailed processes, the utility of the a-Stable family is limited by the fact that only a single heavy
tailed distribution in the family possesses a closed form, namely the Cauchy distribution. Thus heavy-tail
focused theories andmethods derived from thea-Stable family are limited, and based on a single distribution.

To overcome the drawbacks associated with GGD and a-Stable based approaches, we present
methods derived froma robust extension toM-estimation referred to asLM-estimation. TheLM-estimation
formulation yields operators that are significantly more robust than traditional (GGD)M-estimation based
methods.Moreover,LM-estimation is statistically related to, andderives its optimality from, the generalized
Cauchy density (GCD). Utilization of GCD derived methods is particularly advantageous in that (1) the
GCD is a family of distributions possessing algebraic tail decay rates and that (2) they have closed form
expressions. Thus like the a-Stable family, the GCD is an appropriate model for extremely impulsive
phenomena. But in contrast to the a-Stable family (and like the GGD), the GCD is a broad family of
distributions that can be represented in closed form, therebypresenting a framework fromwhich estimation
and filtering procedures can be derived. Thus the GCD combines the advantages of the a-Stable and
GGD families (accurate heavy tailed modeling and closed form expressions), while eliminating their
respective disadvantages.
Much like the Gaussian and Laplacian distributions represent special cases of importance within the

GGD, the GCD possesses several special cases that are worthy of thorough investigation. Specifically, we
cover in depth the Cauchy and Meridian distribution special cases of the GCD. These distributions are
coupled with the LM-estimation framework and shown to yield the Myriad and Meridian filtering
operations [26–29]. These filtering classes are proven and shown to be significantly more robust than
traditional linear, and even median, filtering. Additionally, they contain a free parameter that controls the
level of robustness. This degree of freedom allows for a wide array of filtering characteristics including
limiting cases that converge to traditional filtering algorithms. Specifically, the (least robust) limiting case
of the Myriad filter is the traditional linear filter, while the median filter is the (least robust) limiting
case of the Meridian filter. This illustrates the broad range of filtering characteristics exhibited by GCD-
based methods and justifies their in-depth coverage within this chapter.

The remainder of the chapter is organized as follows. Section 26.2 introduces M-estimation and
couples this approach with the GGD signal modeling. Particular attention is given to the Gaussian
and Laplacian distribution special cases and the resulting linear and median filtering operations. The
LM-estimation robust extension to M-estimation is covered in Section 26.3. The link between the GCD
family and LM-estimation is covered along with in-depth coverage of the Myriad and Meridian special
cases. Coverage includes an analysis of the filtering objective functions, limiting special cases, evaluations
of properties and characteristics, as well as the presentation of optimization procedures. Applications
and numerical examples illustrating and contrasting the capabilities of covered filtering methods are
presented in Section 26.4. Specifically considered applications are basedband communications, recently
emerging powerline communications, and highpass filtering. Finally, conclusions are drawn and future
research directions noted in Section 26.5.

26.2 M-Estimation

To address the filtering problem, we begin by formally developing the M-estimation framework and the
commonly employed GGD statistical model. This development allows the problem to be rigorously
addressed, but also presents an intuitive approach from which filtering algorithms can be derived and
understood. It is shown that combining the GGD statistical model and a special case of M-estimation
referred to as maximum likelihood estimation (ML), results in simple norms that, among other
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applications, can be used to define filtering structures. The norms are distribution specific, and we
consider in depth the Gaussian and Laplacian special cases of the GGD showing that the resulting norms
are the commonly utilized L2 and L1 metrics, respectively. Moreover, the Gaussian distribution and L2
metric directly lead to the class of linear filters, while the Laplacian and L1 metric correspond to the
family of median filters. The difference in norm and filtering characteristics is directly dependent on the
distribution tail decay rates, with those derived from the heavier detailed Laplacian distribution being
more robust than those derived from light tailed Gaussian distribution.

26.2.1 Generalized Gaussian Density and Maximum Likelihood Estimation

Perhaps the most fundamental form of estimation is the problem of location estimation. While funda-
mentally simple, location estimation is easily extended to the filtering problem through utilization
of a sliding observation window. To develop location estimation based filtering operations, we first
consider the slightly more general problem of ML estimation, which was developed as a special case of
M-estimation within the theory of robust statistics [10,30].

To establish the estimation and filtering operators, consider a set of observations (input samples),
fx(i) : i ¼ 1, 2, . . . ,Ng, formed from a signal s(i; u), with and underlying parameter of interest u,
corrupted by additive noise, i.e.,

x(i) ¼ s(i; u)þ n(i), (26:1)

where n(i) represents the additive noise samples that are distributed as n(i) � fn(�). The assumed model
is quite general, as is the M-estimation formulation for the underlying parameter of interest, which is
stated in the following definition.

Definition 26.1: Given the set of observations fx(i; u): i ¼ 1, 2, . . . ,Ng, the M-estimate of u is
given by

ûM ¼ argmin
u

XN
i¼1

r(x(i)� s(i; u)), (26:2)

where r(�) is defined as the cost function of the M-estimate.
Note that the cost function can take on many forms, and can be tailored to a particular signal model or

application. One particularly simple single model is to assume that the observation samples are statis-
tically independent. Coupling this assumption with a cost function tied directly to the statistics of the
observed samples, namely r(u) ¼ �logffn(u)g, yields the class of ML estimators. Maximum likelihood
estimators have received broad attention, and have been applied across a large array of sample distribu-
tions and to a vast number of applications.
The effectiveness of ML estimation depends on the statistical model employed in the cost function, and

how well this model represents the observation sequence. The most commonly employed statistical
model is the Gaussian distribution, which in its generalized density form is expressed as

fGGD(u) ¼ b

2aG(1=b)
exp � juj

a

� �b
( )

, (26:3)

where G(�) is the gamma function. The parameter a determines the width of the density peak (standard
deviation), while b controls the tail decay rate. Generally, a is referred to as the scale parameter while b is
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called the shape parameter. The GGD can be used to model a broad range of noise processes. Moreover,
taking the n(i) terms in Equation 26.1 to be independent, identically distributed (i.i.d.) GGD samples
yields a particularly simple form for the ML estimate of u. That is, Equation 26.2 reduces to a compact,
intuitive expression, which is given in the following theorem.

THEOREM 26.1

Consider the set of observations fx(i) : i ¼ 1, 2, . . . ,Ng corrupted by i.i.d. GGD distributed noise. The ML
estimate of u is the solution to the following minimization problem:

û ¼ argmin
u

XN
i¼1

jx(i)� s(i; u)jb: (26:4)

This result is obtained by letting r(u) ¼ � logffGGD(u)g and substituting the result into theM-estimation
expression, Equation 26.2. To appreciate this result, it is instructive to consider the range of distributions
within the GGD. An intuitive appreciation of the distribution family can be obtained through the
examination of two special cases, namely the Gaussian and Laplacian distributions. The Gaussian
distribution is realized for b ¼ 2. For all b < 2 cases, the resulting distributions are heavier detailed
than the Gaussian distribution. This is illustrated in Figure 26.2, which shows that density function for
several values of b including the Laplacian distribution special case (b ¼ 1). The figure clearly illustrates
the relationship between b and the distribution tail decay rate—decreasing b increases the tail heaviness
and vice versa.
A review of the ML estimate in the GGD case, Equation 26.4, makes clear that the distribution tail

decay rate directly affects the estimate. Namely, the tail decay rate defines a norm under which the
estimate is formulated. Thus, the GGD corresponds directly to norms of the form r(u) ¼ jujb, where

u

f G
G

D(
u)
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FIGURE 26.2 Generalized Gaussian density function for a ¼ 1 and b 2 f2,1,0:5g. Note that the b ¼ 2 and b ¼ 1
cases correspond to the Gaussian and Laplacian distributions, respectively, and that the rate of the tail decay is
proportional to b.

26-6 Passive, Active, and Digital Filters



b 2 [0, 2]. The special cases b ¼ 2, b ¼ 1, and b < 1 thus reduce to least-squares, least-absolute
deviations, and fractional lower order moment formulations. These norms are widely applied in a
range of applications including curve fitting, segmentation, filtering, and the vast majority of optimiza-
tion problems. The behavior of the Lb norms, as they are sometimes referred to, is illustrated in Figure
26.3. Of note is the influence outliers have on the norms. In the b ¼ 2 (Gaussian=L2) case, the effect of
outliers is squared, while outliers have a linear effect in the b ¼ 1 (Laplacian=L1) case and even less
influence in the fractional lower order moment case. That is to say that as b decreases, the error norms
become more robust, behavior directly linked to the prevalence of outliers in GCD distributions with
small b values.
Having established the GGD family of distributions, ML estimation for the additive noise model, and

the norms that arise from the GGD–ML coupling, these tools can now be applied to the development of
filtering algorithms for specific distribution cases.

26.2.2 Gaussian Statistics: Linear Filtering

To directly address the filtering problem, the observed signal model in Equation 26.1 is simplified to be a
direct location function of u. This yields observation samples of the form

x(i) ¼ uþ n(i) (26:5)

and reduces the M-estimation expression to simply

ûM ¼ argmin
u

XN
i¼1

r(x(i)� u): (26:6)

This simplified observation model and estimation structure yields standard operations when combined
with commonly utilized distribution models. Consider first the case in which the n(i) observation noise
samples are Gaussian distributed,
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FIGURE 26.3 GCD derived r(u) ¼ jujb norms for b 2 f2,1,0:5g. Note that the b ¼ 2,1; and 0.5 cases correspond
to the squared, absolute deviation, and fractional lower order moment formulations, respectively, and that the norm
robustness is inversely proportional to b.
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f (u) ¼ 1
2s2

exp � juj2
2s2

� �� �
: (26:7)

The following theorem addresses this case and shows that the resulting filter is a simple linear operator.

THEOREM 26.2

Consider a set of N independent samples fx(i) : i ¼ 1, 2, . . . ,Ng each obeying the Gaussian distribution
with location u and variance s2. The ML estimate of location is given by

û ¼ argmin
u

XN
i¼1

(x(i)� u)2
" #

¼ 1
N

XN
i¼1

x(i) ¼ meanfx(i) : i ¼ 1, 2, . . . ,Ng: (26:8)

This result follows from steps similar to those utilized in Section 26.2.1. The expression in Equation 26.8
shows clearly that the optimization criteria in this case reduces to the L2 norm. Moreover, the resulting
expression can be interpreted as a mean filtering structure, y ¼ 1=N

PN
i¼1 x(i), where y denotes the filter

output. Windowing of the observation sequence can be used to form sliding observation sets, yielding an
indexed output y(i) and making the filtering operation explicit.
Although the results of the previous theorem can be interpreted as yielding a filtering operation, the

realized operation is somewhat limited in that it does not utilize weights to control the characteristics of the
filter. This is a direct result of the somewhat restrictive i.i.d. assumption imposed in the theorem.
Fortunately, the identically distributed constraint can be relaxed. This results in a more general signal
model and yields a more traditional linear filtering structure that incorporates sample weighting.

THEOREM 26.3

Consider a set of N independent samples fx(i) : i ¼ 1, 2, . . . ,Ng each obeying the Gaussian distribution
with common location u and (possibly) different variances s2(i). The ML estimate of location is given by

û ¼ argmin
u

XN
i¼1

1
s2(i)

(x(i)� u)2
" #

¼
PN

i¼1 h(i)x(i)PN
i¼1 h(i)

¼D mean fh(i) � x(i) : i ¼ 1, 2, . . . ,Ng, (26:9)

where hi ¼ 1=s2(i) > 0.
This is simply a linear filtering structure, y ¼PN

i¼1
~h(i)x(i), where the ~h(i) ¼ h(i)=

PN
i¼1 h(i) terms are

the normalized filter weights. As derived in this development, the weights are inversely proportional to
individual sample variances. This is an intuitive result, as samples with high variability will be given small
weight and have minimal influence on the result. The positivity constraint, however, restricts the
resulting operators to the class of smoothers. In practice, this constraint is relaxed enabling the resulting
class of linear finite impulse response (FIR) filters to employ both positive and negative weights that
provide a wide array of spectral characteristics.

26.2.3 Laplacian Statistics: Median Filtering

The ML-based filter development can be extended to any distribution within the GGD, or, in fact, any
valid distribution. Although not all distributions yield compact filtering expressions, specific special cases
do correspond to simple, effective filtering structures. To derive such a structure that is more robust to
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sample outliers than the Gaussian distribution optimal linear filter, consider the heavier tailed Laplacian
distribution (b ¼ 1) special case of the GGD,

f (u) ¼ 1
2s

exp � juj
s

� �� �
: (26:10)

The following theorem shows that the median filter is the optimal operator for Laplacian distributed
samples.

THEOREM 26.4

Consider a set of N independent samples fx(i) : i ¼ 1, 2, . . . ,Ng each obeying the Laplacian distribution
with common location u and variance s2. The ML estimate of location is given by

û ¼ argmin
u

XN
i¼1

jx(i)� uj
" #

¼ medianfx(i) : i ¼ 1, 2, . . . ,Ng: (26:11)

The arguments utilized previously, with the appropriate distribution substitution, prove the result.
The expression in Equation 26.11 shows that, in this case, the optimization criteria reduces to the
more robust L1 norm. Moreover, the resulting expression is simply a median filter structure, y ¼
medianfx(i) : i ¼ 1, 2, . . . ,Ng, where y denotes the filter output. This operation is clearly nonlinear as
the output is formed by sorting the observation samples and taking the middle, or median, value as
the output.*
Similarly to the mean filtering case, the median filtering operation can be generalized to admit weights.

The theoretical motivation for this generalization is, like in the previous case, the relaxation of the
identically distributed constraint placed on the observation samples in the above theorem.

THEOREM 26.5

Consider a set of N independent samples fx(i) : i ¼ 1, 2, . . . ,Ng each obeying the Laplacian distribution
with common location u and (possibly) different variances s2(i). The ML estimate of location is given by

û ¼ argmin
u

XN
i¼1

1
s2(i)

jx(i)� uj
" #

¼ medianfh(i) � x(i) : i ¼ 1, 2, . . . ,Ng: (26:12)

where hi ¼ 1=s2(i) > 0 and � is the replication operator defined as h(i) � x(i) ¼ x(i), x(i), . . . , x(i)
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{h(i)times

.
The weighting operation in this case is achieved through repetition, rather than the scaling employed

in the linear filter. But like the linear case, sample weights are inversely proportional to the sample
variances, indicating again that samples with large variability contribute less to the determination of the
output than well behaved (smaller variance) samples. This magnitude relationship between a sample’s
weight and its influence holds even for the relaxed case of positive and negative weights. This relaxation
on the weights employs sign coupling and enables a broader range of filtering characteristics to be
realized by weighted median (WM) filters [31]:

y ¼ medianfjh(i)j � sgn h(i)ð Þx(i) : i ¼ 1, 2, . . . ,Ng, (26:13)

* For cases in which the number of observation samples is an even number, the median value is set as the average of the two
central samples in the ordered set.
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where

sgn(x) ¼
1 if x > 0,
0 if x ¼ 0,
�1 if x < 0:

8<
: (26:14)

Considerable analysis is available in the literature on the detail preservation and outliers rejection
characteristics of WM filters [8,31–36].
To contrast the performance of linear and WM filters, consider the simple problem of running

(constant) location estimation from noisy measurements. Figure 26.4 shows such an example for two
noise processes, Laplacian and a-Stable distributed samples. The Laplacian distribution is within the
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FIGURE 26.4 Constant signal corrupted with (a) Laplacian and (b) a-Stable noise (a ¼ 0:5) processed with mean
and median filters.
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GGD family, and as such the linear and WM filters perform well in this case, with the Laplacian noise
optimal WM returning the best performance. The a-Stable distribution, however, has significantly
heavier tails and both linear and WM filters breakdown in this environment. This indicates that
GGD-based methods are not well suited to extremely impulsive environments, and that more sophisti-
cated methods for addressing samples characterized by very heavy (algebraic) tailed distributions must be
developed and employed.

26.3 LM-Estimation

Many contemporary applications contain samples with very heavy tailed statistics including the afore-
mentioned powerline communications, economic forecasting, network traffic processing, and biological
signal processing problems [15,37–44]. The GGD family of distributions, while representing a broad class
of statistics with varying tail parameters, is, nevertheless, restricted to distributions with an exponential
rate of tail decay. Distributions with exponential rates of tail decay are generally considered light tailed,
and do not accurately model the prevalence or magnitude of outliers in true heavy-tailed processes. Such
processes are often modeled utilizing the a-Stable family of distributions [16–19]. While a-Stable
distributions do possess tails with algebraic decay rates, and are thus appropriate models for impulsive
sequences, the distribution lacks a full-family closed form expression and it is therefore not easily coupled
with estimation techniques such as ML.
To overcome the drawbacks of GGD and a-Stable-based techniques, we derive a generalization of the

M-estimation framework that exhibits a spectrum of optimality characteristics including greater robust-
ness. This generalization is referred to as LM-estimation, the general form of which is given in the
following definition.

Definition 26.2: Given the set of independent observations fx(i) : i ¼ 1, 2, . . . ,Ng formed as
x(i) ¼ s(i; u)þ n(i), the LM-estimate of u is defined as

ûLM ¼ argmin
u

XN
i¼1

logfdþ r(x(i)� s(i; u))g, (26:15)

where d > 0 and r(�) are the robustness parameter and cost function, respectively.
In the following, we show that LM-estimation is statistically related to the GCD. The GCD family

consists of algebraic detailed distributions with closed form expressions, and is therefore an appropriate
model for heavy tailed sequences and a family from which estimation and filtering techniques can be
derived. We consider GCD and LM-estimation based filters, focusing on the Cauchy and Meridian
distribution special cases and their resulting filter structures. Properties of the filters are detailed along
with optimization procedures. While the GGD-based results are well established and reported in
numerous works, the LM-estimation and GCD material presented represents the newest developments
in this area, and as such proofs for many results are included.

26.3.1 Generalized Cauchy Density and Maximum Likelihood Estimation

As the previous section covering GGD-based methods shows, the robustness of error norms, estimation
techniques, andfiltering algorithms derived froma density is directly related to the density tail decay rate. The
robustness of LM-estimation derives from its statistical relation to the GCD. The GCD function is defined by

fGCD(u) ¼ lG(2=l)

2[G(1=l)]2
n

(nl þ jujl)2=l : (26:16)

As in the GGD case, n is referred to as the scale parameter while l is called the shape parameter.
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The Generalized Cauchy distribution was first proposed by Rider in 1957 [45], and ‘‘rediscovered’’
under a different parametrization by Miller and Thomas in 1972 [14]. Distributions within the GCD
family have algebraically decaying tails and are thus appropriate models of impulsive sequences. Indeed,
the GCD is used in several studies of impulsive radio noise [14,46,47]. Of note within the GCD family are
two special cases, namely the Cauchy and Meridian distributions that are realized for l ¼ 2 and l ¼ 1,
respectively [8,28,29]. The GCD is depicted in Figure 26.5a for the l 2 f2,1, 0:5g cases, all with n ¼ 1.
The slow rate of GCD tail decay, which is inversely proportional to l, is clearly seen in the figure. To
make plain the difference in GGD and GCD tail decay rates, Figure 26.5b plots enlargements of tail
sections from distributions in each family.
The utility of a heavy-tailed distribution family defined by closed forum expressions is that it can

readily be applied in ML estimation, as detailed for the GCD in the following theorem.

−5 0 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

u

f G
CD

(u
)

(a)

λ = 2
λ = 1
λ = 0.5

0
(b)

2 4 6 8 1010–4

10–3

10–2

10–1

100

u

f(
u)

β = 2
β = 1
λ = 2
λ = 1

FIGURE 26.5 (a) GCD function for n ¼ 1 and l 2 f2,1,0,5g; and (b) enlarged tail function for select GGD and
GCD distributions.

26-12 Passive, Active, and Digital Filters



THEOREM 26.6

Consider the set of observations fx(i) : i ¼ 1, 2, . . . ,Ng corrupted by i.i.d. GCD distributed noise. The ML
estimate of u is the solution to the following minimization problem:

û ¼ argmin
u

XN
i¼1

logfnl þ jx(i)� s(i; u)jlg: (26:17)

Proof: The ML estimate is defined by

û ¼ argmax
u

YN
i¼1

fx(x(i)): (26:18)

Substituting the GCD expression and denoting C(l) ¼ lG(2=l)=(2[G(1=l)]2) yields

û ¼ argmax
u

YN
i¼1

C(l)
n

(nl þ jx(i)� s(i; u)jl)2=l : (26:19)

Taking the natural logf�g and noting that C(l) and n are constant with respect to the maximization
of u gives

û ¼ argmax
u

XN
i¼1

� 2
l
logfnl þ jx(i)� s(i; u)jlg: (26:20)

Finally, noting that maximizing g(u) is equivalent of minimizing �g(u), and that 2=l is constant with
respect to u, gives the desired result.
This theorem shows that the ML estimate for GCD distributed samples is simply a special case of

LM estimation. Comparing Equations 26.15 and 26.17 shows the equivalence holds for r(�) ¼ j � jl
and d ¼ nl. Thus LM estimation is a more general framework, but one that derives its optimality from
GCD–ML estimation. Moreover, M-estimation is a (least robust) limiting case of LM-estimation, as is
shown in the following proposition. This theorem utilizes the somewhat simplified case of location
estimation (i.e., s(i; u) ¼ u), which we again consider from this point forward as it is most directly related
to filter development.

PROPOSITION 26.1

The LM-estimator reduces to an M-estimator as d tends to infinity, i.e.,

lim
d!1

ûLM ¼ argmin
u

XN
i¼1

r(x(i)� u) (26:21)

with cost function r(�).
Proof: Utilizing the properties of arg min and log functions, we have the following equalities

lim
d!1

ûLM ¼ lim
d!1

argmin
u

XN
i¼1

logfdþ r(x(i)� u)g (26:22)
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¼ lim
d!1

argmin
u

XN
i¼1

log 1þ r(x(i)� u)
d

� �
þ logfdg (26:23)

¼ lim
d!1

argmin
u

XN
i¼1

log 1þ r(x(i)� u)
d

� �
(26:24)

¼ lim
d!1

argmin
u

XN
i¼1

d log 1þ r(x(i)� u)
d

� �
(26:25)

¼ lim
d!1

argmin
u

XN
i¼1

log 1þ r(x(i)� u)
d

� �d

: (26:26)

Applying the fact that

lim
d!1

log 1þ u
d

n od

¼ u (26:27)

yields the desired result.

The fact thatM estimation is a limiting case of LM estimation indicates that the latter is a more general
family of estimators and that methods derived under this framework are, consequently, more general and
subsume those emanating from M estimation. Thus, LM estimation based methods are inherently more
efficient than (or at least equally efficient to) M estimation based methods. It should also be recalled that
in the LM estimation definition, Equation 26.15, d is referred to as the robustness parameter. Thus the
above shows equality between LM and M estimation at the robustness limit. It is easy to see that this is
the least robust limit of LM estimation. To make this plain, consider the error norm defined by the GCD
in case of Equation 26.15, which can be expressed in simplified form as

r(u) ¼ log 1þ jujl
d

( )d

: (26:28)

Figure 26.6 plots this norm, showing the effects of varying d and l. The impact of d on robustness is clear,
justifying the naming of this parameter and indicating that the d ! 1 case is indeed the least robust
case. Also evident is the greater robustness of GCD norms over their GGD counterparts, with equality
occurring at the limit point (up to a scaling factor). Having established LM estimation and the related
GCD norms, these tools are now employed to develop filtering algorithms that arise from the consid-
eration of specific distribution cases, namely the Cauchy and Meridian distributions.

26.3.2 Running Myriad Smoothers: Myriad Filtering

Consider first the Cauchy distribution special case (l ¼ 2). The following theorem sets the sample
myriad as the optimal estimate of location for samples obeying this distribution.

THEOREM 26.7

Consider a set of N independent samples fx(i) : i ¼ 1, 2, . . . ,Ng each obeying the Cauchy distribution with
common location u and scale g. The ML estimate of location, or sample myriad, is given by

û ¼ argmin
u

XN
i¼1

logfg2 þ (x(i)� u)2g
" #

¼ myriadfx(i) : i ¼ 1, 2, . . . ,N ; gg, (26:29)

where g is the linearity parameter.
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Note the slight change in notation, g replacing n, which we employ to be consistent with the literature
[26–28]. Also, the reference to g as the linearity parameter is made clear in subsequent properties. An
appreciation of the myriad operator is obtained through an investigation of the cost function defining the
operator. Thus, let Q(u) denote the objective function minimized in Equation 26.29, i.e.,

Q(u)¼D
XN
i¼1

logfg2 þ (x(i)� u)2g: (26:30)

The following proposition brings together a few key properties of the myriad cost function. The
properties are illustrated by Figure 26.7, which shows the form of a typical objective function.
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PROPOSITION 26.2

Let x[i] signify the order statistics (samples sorted in increasing order of amplitude) of the input samples
fx(i) : i ¼ 1, 2, . . . ,Ng, with the smallest x[1] and the largest x[N]. The following statements hold:

(1) Objective function Q(u) has a finite number (at most N) of local extrema.
(2) Myriad is one of the local minima of Q(u):Q0(u) ¼ 0.
(3) Q0(u) > 0 [Q(u) strictly increasing] for u > x[N],Q0(u) < 0 and [Q(u) strictly decreasing] for

u < x[1].
(4) All the local extrema of Q(u) lie within the range [x[1], x[N]] of the input samples.
(5) Myriad is in the range of input samples: x[1] � û � x[N].

Note that, unlike the mean or median, the definition of the myriad involves the free-tunable parameter g.
Importantly, Proposition 26.1 shows that in the limit of this parameter (or equivalently d) LM-estimation
converges to M-estimation. A particularly interesting realization of this general result holds for the
myriad case. Namely, the myriad converges to the mean in the limiting case, as formally defined in
the following.

COROLLARY 26.1

Given a set of samples fx(i): i ¼ 1, 2, . . . ,Ng, the sample myriad û converges to the sample mean as g
tends to infinity. That is,

lim
g!1 û ¼ 1

N

XN
i¼1

x(i): (26:31)

The fact that an infinite value of g converts the nonlinear myriad operation to the linear sample average
illustrates why g is aptly named the linearity parameter: the larger the value of g, the closer the behavior

x[1] x[7]

Q(
θ)

FIGURE 26.7 Typical sketch of the objective function minimized by the myriad operator (for g ¼ 0:5 and
randomly generated N ¼ 7 samples).
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of the myriad is to the (linear) mean estimator. As g is decreased, the myriad becomes more robust. In
the limit, when g tends to zero, the estimator treats every observation as a possible outlier, assigning more
credibility to the most repeated observation values. This ‘‘mode-type’’ characteristic is reflected in the
name mode–myriad given this limiting case.

COROLLARY 26.2

Given a set of samples fx(i) : i ¼ 1, 2, . . . ,Ng, the sample myriad û converges to a mode–type estimator as
g ! 0. That is,

lim
g!0

û ¼ arg min
x(j)2M

YN
i¼1, x(i)6¼x(j)

jx(i)� x(j)j
2
4

3
5, (26:32)

where M is the set of most repeated values.
The linearity parameter also allows the meridian filter to address three special cases of the a-Stable

distribution family. Those three cases are (1) a ¼ 1, which yields the Cauchy distribution for which the
myriad is optimal, (2) a ¼ 2, which yields the Gaussian distribution under which optimal filtering is
realized by letting g ! 1, and (3) a ! 0, in which case the distribution is extremely impulsive and
g ¼ 0 yields the optimal results. These three optimality points have been complemented with a simple
empirical formula relating g to the characteristic exponent (a) and dispersion parameter (k) of an
a-Stable asymmetric distribution,

g(a) ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
a

2� a

r
k1=a, (26:33)

which is plotted in Figure 26.8.
Having established the myriad filter, the role of

the linearity parameter, and two limiting cases (sam-
ple mean and mode–myriad), we present three myr-
iad filter properties that are of importance in signal
processing, namely, no under-shoot=overshoot, shift
and sign invariance, and unbiasedness. To simplify
the notation in the properties, the myriad output

is written compactly as û(x) ¼ myriadfx(i) : i ¼
1, 2, . . . ,N ;gg, where x¼D [x(1), x(2), . . . , x(N)]T .

PROPERTY 26.1 (No Undershoot=
Overshoot)

The output of the myriad estimator operating on
samples fx(i) : i ¼ 1, 2, . . . ,Ng is always bounded by

x[1] � û(x) � x[N]: (26:34)
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PROPERTY 26.2 (Shift and Sign Invariance)

Consider the observation set fx(i) : i ¼ 1, 2, . . . ,Ng and let z(i) ¼ x(i)þ b. Then,

(1) û(z) ¼ û(x)þ b;
(2) û(z) ¼ �û(�z).

PROPERTY 26.3 (Unbiasedness)

Given a set of samples fx(i) : i ¼ 1, 2, . . . ,Ng that are independent and symmetrically distributed around
a symmetry center c, û(x) is also symmetrically distributed around c. In particular, if Efû(x)g exists, then
Efû(x)g ¼ c.
The shift invariance and unbiasedness of the myriad filter show that the operator can be applied

without concerns to an overall change in location (e.g., a shift in the mean luminance of an image) and
that the operator preserves the mean. The undershoot=overshoot property shows that the myriad can be
applied without concerns of introducing amplifying artifacts, such as ringing effects.
While the myriad filter offers increased robustness over GGD-based methods and possesses several

properties of importance, the equal treatment of samples within the observation set limits the filter, as
defined above, to a single operation. Weighting of samples provides a much broader range of filtering
operations. This is theoretically justified in a fashion analogous to that utilized in the generalizations of
the mean and median operators. Specifically, the following theorem shows that considering samples with
a common location but varying scale factors leads to the weighted myriad operator.

THEOREM 26.8

Consider a set of N independent samples fx(i) : i ¼ 1, 2, . . . ,Ng each obeying the Cauchy distribution with
common location u and (possibly) varying scale factors s(i) ¼ g=

ffiffiffiffiffiffiffiffi
w(i)

p
[8,28]. The ML estimate of

location, or weighted myriad, is given by,

û ¼ argmin
b

XN
i¼1

logfg2 þ w(i)(x(i)� b)2g
" #

¼ myriadfw(i) � x(i) : i ¼ 1, 2, . . . ,N ; gg, (26:35)

where � denotes the weighting operation in the minimization problem.
As in the weighted linear and median filter cases, the weight applied to a sample in the myriad filter is

inversely proportional to the sample’s variability. This not only minimizes the effect of unreliable samples
(those with large scale), but can also be used to exploit correlations between samples. This is the case, for
instance, when a sliding window is employed and higher weights are assigned to samples at spatial
locations that are most highly correlated with the desired output, e.g., samples further away in time and
less correlated are given smaller weight. Weighting thus allows myriad filters to take on a wide array of
characteristics and to be tuned to the needs of specific applications. Moreover, the properties detailed
above for the unweighted myriad filter also hold in the weighted case. The properties are not restated for
the weighted case since they are identical. We do, however, formally state corollaries governing the
behavior of the weighted myriad operator at the limiting cases of the linearity parameter.
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COROLLARY 26.3

Given a set of samples fx(i): i ¼ 1, 2, . . . ,Ng and corresponding (positive) weights fw(i): i ¼ 1, 2, . . . ,Ng,
the weighted myriad û converges to a normalized linear estimate as g tends to infinity. That is,

lim
g!1 û ¼

PN
i¼1 w(i)x(i)PN

i¼1 w(i)
: (26:36)

COROLLARY 26.4

Given a set of samples fx(i) : i ¼ 1, 2, . . . ,Ng and corresponding (positive) weights fw(i): i ¼ 1, 2, . . . ,Ng,
the weighted myriad û converges to a weighted mode-type estimate as g tends to 0. That is,

lim
g!0

û ¼ arg min
x(j)2M

1
w(j)

� �r=2 YN
i¼1, x(i)6¼x(j)

jx(i)� x(j)j
2
4

3
5, (26:37)

where M is the set of most repeated values and r is the number of times a member of M is repeated in
the sample.
The linearity parameter again controls the behavior of the weighted myriad, ranging between a

normalized linear operator, in the least robust limit, and a weighted mode operator, in the most robust
limit. Thus weighted myriad filters are more general than linear filters, including the latter as a special
case. But unlike linear filters, or even median-based filters, the output of the weighted myriad is not
available in explicit form. Computation of the output is therefore nontrivial, requiring minimization of
the weighted myriad objective function, Q(u). Fortunately, Q(u) has a number of characteristics that can
be exploited to construct fast iterative methods for computing the objective function minimum.
Recall that the weighted myriad is given by

û ¼ argmin
u

Q(u)

¼ argmin
u

XN
i¼1

log 1þ x(i)� u

s(i)

� �2
" #

, (26:38)

where the change in notation, s(i) ¼ g=
ffiffiffiffiffiffiffiffi
w(i)

p
, introduced in Theorem 26.8 is employed. As the output is

a local minima of Q(u), these points can be identified by determining Q0(û), which, after some
manipulations, can be written as

Q0(u) ¼ 2
XN
i¼1

u�x(i)
s(i)2

� 	
1þ x(i)�u

s(i)

� 	2 : (26:39)

Defining c(y)¼D 2v
1þv2, the following equation is obtained for the local extrema of Q(u):

Q0(u) ¼ �
XN
i¼1

1
s(i)

� c x(i)� u

s(i)

� �
¼ 0: (26:40)
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By introducing the positive functions

h(i; u)¼D 1

s(i)2
� w x(i)� u

s(i)

� �
> 0, (26:41)

for i ¼ 1, 2, . . . ,N , where w(v)¼D c(v)
v ¼ 2

1þv2, the local extrema of Q(u) in Equation 26.40 can be
formulated as

Q0(u) ¼ �
XN
i¼1

h(i; u) � (x(i)� u) ¼ 0: (26:42)

This formulation implies that the sum of weighted deviations of the samples is zero, with the (positive)
weights themselves being functions of u. This property, in turn, leads to a simple fixed point iterative
procedure for computing the myriad weights.
To develop the fixed point algorithm, note that Equation 26.42 can be written as

u ¼
PN

i¼1 h(i; u) � x(i)PN
i¼1 h(i; u)

, (26:43)

which is a weighted mean of the input samples, x(i). Since the weights h(i; u) are always positive, the
right-hand side of Equation 26.43 is in [x[1], x[N]], confirming that all the local extrema lie within the
range of the input samples. By defining the mapping

T(u)¼D
PN

i¼1 h(i; u) � x(i)PN
i¼1 h(i; u)

, (26:44)

the local extrema of Q(u), or the roots of Q0(u), are seen to be the fixed points of T(�):

u* ¼ T(u*): (26:45)

The following fixed point iteration results in an efficient algorithm to compute these fixed points:

umþ1¼DT(um) ¼
PN

i¼1 h(i; um) � x(i)PN
i¼1 h(i; um)

: (26:46)

In the classical literature, this is also called the method of successive approximation for the solution of the
equation u ¼ T(u). This method is proven to converge to a fixed point of T( � ), indicating that

lim
m!1

um ¼ u* ¼ T(u*): (26:47)

The speed of convergence depends on the initial value u0. A simple approach to initializing the algorithm
is to set û0 equal to the input sample x(i) that yields the smallest cost P(x(i)), where log (P(u))¼D Q(u),
i.e., P(u) ¼QN

i¼1 g2 þ w(i)(x(i)� u)2

 �

. The fixed point weighted myriad optimization can now be
summarized as follows.
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Fixed point weighted myriad search

Step 1: Select the initial point û0 among the values of the input samples:

û0 ¼ argmin
x(i)

P(x(i)):

Step 2: Using û0 as the initial value, perform L iterations of the fixed point recursion
umþ1 ¼ T(um), the full expression of which is given in Equation 26.46. The final value of
these iterations is then chosen as the weighted myriad output, û ¼ T (L)(û0).

This algorithm is compactly written as

û ¼ T(L) argmin
x(i)

P(x(i))

 !
: (26:48)

Note that for the special case L ¼ 0, no fixed point iterations are performed and the above algorithm
computes the selection weighted myriad.

26.3.3 Running Meridian Smoothers: Meridian Filtering

Having established the myriad as the optimal filtering operation that arises from the location estimation
problem in Cauchy distributed samples, we consider a second special case of the GCD, namely the
Meridian distribution. This special case (l ¼ 1) has even heavier tails than the Cauchy distribution, and
is an appropriate model for the most impulsive sequences seen in practice. As the Cauchy and Meridian
distributions fall within the GCD, the development for the Meridian is similar to that for the Cauchy and
so many proofs with similar steps are omitted.

THEOREM 26.9

Consider a set of N independent samples fx(i) : i ¼ 1, 2, . . . ,Ng each obeying the Myriad distribution with
common location u and scale d. The ML estimate of location, or sample meridian, is given by

û ¼ argmin
u

XN
i¼1

logfdþ jx(i)� ujg
" #

¼ meridianfx(i) : i ¼ 1, 2, . . . ,N ; dg, (26:49)

where d is referred to as the medianity parameter.
As in all previous cases, the performance of the meridian filter is directly related to the defining

objective function. Properties describing the objective function are given in the following proposition.
The properties described therein are illustrated in Figure 26.9, which plots an example of the objective
function, Q(u), that results from a set of typical observation samples in the N ¼ 7 case.

PROPOSITION 26.3

Let

Q(u)¼D
XN
i¼1

logfdþ jx(i)� ujg: (26:50)
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The following statements hold:

(1) Q0(u) > 0 (Q(u) is strictly increasing) for u > x[N], and Q0(u) < 0 (Q(u) is strictly decreasing) for
u < x[1].

(2) All local extrema of Q(u) lie within the range of input samples, [x[1], x[N]].
(3) Objective function Q(u) has a finite number of local minima (at most equal to the number of input

samples, N).
(4) Meridian û is one of the local minima of Q(u), i.e., one of the input samples.

The meridian estimator output is hence the input sample that yields the smallest Q(u) function value. The
selective nature of the meridian estimator, shared with the median estimator, facilitates the filter output
computation which is formulated as

û ¼ argmin
u2x

XN
i¼1

logfdþ jx(i)� ujg: (26:51)

The behavior of the meridian operator is markedly dependent on the value of d, which is referred to as
the medianity parameter. As the name suggests, we show in the following that the sample meridian is
equivalent to the sample median for large values of d, whereas the estimator acquires the form of the
sample mode for small d.

COROLLARY 26.5

Given a set of samples fx(i): i ¼ 1, 2, . . . ,Ng, the sample meridian û converges to the sample median as
d ! 1. That is,

lim
d!1

û ¼ lim
d!1

meridianfx(i) : i ¼ 1, 2, . . . ,N ; dg ¼ medianfx(i): i ¼ 1, 2, . . . ,Ng: (26:52)

x(1) x(7)

Q(
θ)

FIGURE 26.9 Typical plot of the objective function minimized by the meridian operator (for d ¼ 0:5 and randomly
generated N¼ 7 samples). (From Aysal, T. C. and Barner, K. E., IEEE Trans. Signal Process., 55, 3949, 2007. With
permission.)
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Thus the family of meridian estimators subsumes the sample median as a limiting case. This simple fact
makes the meridian filter class inherently more efficient than (or at least equally efficient to) median
filters over all noise distribution including the Laplacian. The opposite limiting case, which results in the
mode–meridian operator, is addressed in the following.

COROLLARY 26.6

Given a set of samples fx(i) : i ¼ 1, 2, . . . ,Ng, the sample meridian û converges to a mode–type estimator
as d ! 0. That is,

lim
d!0

û ¼ argmin
x(j)2M

YN
i¼1, x(i) 6¼x(j)

jx(i)� x(j)j
2
4

3
5, (26:53)

where M is the set of most repeated values.
Thus the myriad and meridian operators converge to a common mode operator as their lineari-

ty=medianity parameters go to 0.
Since all the operators covered in this chapter belong to the class of M-estimators [10], many robust

statistics tools are available for evaluating their robustness [10,48]. M-estimators are formulated by a set
of implicit functions, where r( � ) is an arbitrary objective function. Assuming that c(x) ¼ @(r(x))=@x
exists, the M-estimator is obtained by solving

XN
i¼1

c(x(i)� u) ¼ 0, (26:54)

where c( � ) is proportional to the so-called influence function. The influence function of an estimator is
important in that it determines the effect of contamination on the estimator.
To further characterize M-estimates, it is useful to list the desirable features of a robust influence

function [10,48]:

. B-robustness. An estimator is B-robust if the supremum of the absolute value of the influence
function is finite.

. Rejection Point. The rejection point defined as the distance from the center of the influence
function to the point where the influence function becomes negligible, should be finite. The
rejection point measures whether the estimator rejects outliers and, if so, at what distance.

The influence functions for the sample mean, median, myriad, and meridian can be shown to be

c(x) ¼ 2x, (26:55)

c(x) ¼ sgn(x), (26:56)

c(x) ¼ 2x
g2 þ x2

, (26:57)

c(x) ¼ sgn(x)
dþ jxj , (26:58)

respectively. Figure 26.10 plots each of these for comparison. Since the influence function of the mean
is unbounded, a gross error in the observations leads to severe distortion in the estimate. The mean is
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clearly not B-robust and its rejection point is infinite. On the other hand, a similar gross error has a
limited effect on the median estimate.
While the median is B-robust, its rejection point, like the mean, is not finite. Thus the median estimate

is always affected by outliers. The myriad estimate is clearly B-robust and the effect of the errors decreases
as the error increases. The meridian estimate is also B-robust, and, in addition, its rejection point is
smaller than that of myriad. This indicates that the operators can be ordered from least to most robust as:
linear, median, myriad, and meridian.
In addition to desirable influence function characteristics, the meridian possesses the following

properties important in signal processing applications.

PROPERTY 26.4

Given a set of samples fx(i) : i ¼ 1, 2, . . . ,Ng, let d < 1. Then the meridian output is such that

lim
x(N)!�1

û(x(1), x(2), . . . , x(N)) ¼ û(x(1), x(2), . . . , x(N � 1)): (26:59)

According to Property 26.4, large errors are efficiently eliminated by a meridian estimator with a finite
medianity parameter. Note that this is not the case for the median estimate, as large positive or negative
values can always shift the output. In robust statistics, M-estimators satisfying the outlier rejection
property are called redescending. It can be proven that a necessary and sufficient condition for an
M-estimator to be redescending is that limx!�1 q=qx(r(x)) ¼ 0. Note that this condition holds for
meridian and myriad operators, whereas it does not for the mean and median. The meridian also
possesses the same no undershoot=overshoot, shift and sign invariance, and unbiasedness properties as
the myriad.

x

ψ(
x)

−10 −5 0 5 10
−1.5

−1
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0.5

1

1.5
Mean
Median
Myriad
Meridian

FIGURE 26.10 Influence functions for (solid:) the sample mean, (dashed:) the sample median, (dotted:) the sample
myriad, and (dash–dotted:) the sample meridian. (From Aysal, T. C. and Barner, K. E., IEEE Trans. Signal Process.,
55, 3949, 2007. With permission.)
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PROPERTY 26.5 (No Undershoot=Overshoot)

The output of the meridian estimator operating on samples fx(i) : i ¼ 1, 2, . . . ,Ng is always bounded by

x[1] � û(x) � x[N]: (26:60)

PROPERTY 26.6 (Shift and Sign Invariance)

Consider the observation set fx(i) : i ¼ 1, 2, . . . ,Ng and let z(i) ¼ x(i)þ b. Then,

(1) û(z) ¼ û(x)þ b;
(2) û(z) ¼ �û(�z).

PROPERTY 26.7 (Unbiasedness)

Given a set of samples fx(i) : i ¼ 1, 2, . . . ,Ng that are independent and symmetrically distributed around
a symmetry center c, û(x) is also symmetrically distributed around c. In particular, if Efû(x)g exists, then
Efû(x)g ¼ c.
The meridian characteristics can be broadened through the introduction of weights. The weighted

meridian possesses the same properties as the unweighted version and converges to the expected special
cases in the limit of the medianity parameter. The weighted case is formally defined and the limiting cases
stated, but the properties are omitted due to their direct similarity to the previous formulations.

THEOREM 26.10

Consider a set of N independent samples fx(i) : i ¼ 1, 2, . . . ,Ng each obeying the Meridian distribution
with common location u and (possibly) varying scale parameters v(i) ¼ d=w(i). The ML estimate of
location, or weighted meridian, is given by

û ¼ argmin
b

XN
i¼1

logfdþ w(i)jx(i)� ujg
" #

¼ meridianfw(i) ? x(i) : i ¼ 1, 2, . . . ,Ng, (26:61)

where ? denotes the weighting operation in the minimization problem.

COROLLARY 26.7

Given a set of samples fx(i) : i ¼ 1, 2, . . . ,Ng and corresponding (positive) weights fw(i): i ¼ 1, 2, . . . ,Ng,
the weighted meridian û converges to the weighted median as d ! 1. That is,

lim
d!1

û ¼ lim
d!1

meridianfw(i) ? x(i) : i ¼ 1, 2, . . . ,N ;dg ¼ medianfw(i) � x(i) : i ¼ 1, 2, . . . ,Ng: (26:62)
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COROLLARY 26.8

Given a set of samples fx(i) : i ¼ 1, 2, . . . ,Ng and corresponding (positive) weights fw(i) : i ¼
1, 2, . . . ,Ng, the weighted meridian û converges to one of the most repeated values in the sample set as
d ! 0. That is,

lim
d!0

û ¼ argmin
xj2M

1
w(j)

� �r YN
i¼1, x(i) 6¼x(j)

jx(i)� x(j)j
2
4

3
5, (26:63)

where M is the set of most repeated values and r is the number of times a member of M is repeated in the
sample set.
Table 26.1 summarizes the M-estimators and filters covered in this chapter. The GGD derived

operators, for b ¼ 2 and b ¼ 1 are reported on table rows 1, 2 and 5, 6, while the GCD optimal
operators, for l ¼ 2 and l ¼ 1, are reported on rows 3, 4 and 7, 8. This table brings together and
contrast the objective functions for the GGD-based linear and median filters and the GCD-based myriad
and meridian filters.

26.3.4 Introduction of Real-Valued Weights and Optimization

The coverage to this point has enforced the positivity constraint that arises naturally in each of the
operators’ estimation-based development. Only in the median case is the sign coupling approach utilized
to allow the introduction of real-valued (positive and negative) weights. See Equations 26.13 and 26.14.
For convenience, Equation 26.13 is repeated here:

û ¼ argmin
u

XN
i¼1

jh(i)j � jsgn h(i)ð Þx(i)� uj
" #

¼ medianfjh(i)j � sgn h(i)ð Þx(i)jNi¼1g: (26:64)

TABLE 26.1 M-Estimator and M-Smoother (Weighted M-Estimator) Objective Functions
and Outputs for Various Filter Families

Smoother Cost Function Filter Output

Mean
PN

i¼1 (x(i)� u)2 Meanfx(i): i ¼ 1, 2, . . . ,Ng

Median
PN

i¼1 jx(i)� uj Medianfx(i): i ¼ 1, 2, . . . ,Ng

Myriad
PN

i¼1 logfg2 þ (x(i)� u)2g Myriadfx(i): i ¼ 1, 2, . . . ,N ; gg

Meridian
PN

i¼1 logfdþ jx(i)� ujg Meridianfx(i): i ¼ 1, 2, . . . ,N ; dg

Weighted mean
PN

i¼1 w(i)(x(i)� u)2 Meanfw(i) � x(i): i ¼ 1, 2, . . . ,Ng

Weighted median
PN

i¼1 w(i)jx(i)� uj Medianfw(i)}x(i): i ¼ 1, 2, . . . ,Ng

Weighted myriad
PN

i¼1 logfg2 þ w(i)(x(i)� u)2g Myriadfw(i) � x(i): i ¼ 1, 2, . . . ,N ; gg

Weighted meridian
PN

i¼1 logfdþ w(i)jx(i)� ujg Meridianfw(i) ? x(i): i ¼ 1, 2, . . . ,N ; dg
Source: Aysal, T. C. and Barner, K. E., IEEE Trans. Signal Process., 55, 3949, 2007. With permission.
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The most general cases of the myriad and meridian are, by direct analogy, given by

û ¼ argmin
u

XN
i¼1

logfg2 þ jh(i)j � (sgn h(i)ð Þx(i)� u)2g
" #

¼ myriadfjh(i)j � sgn h(i)ð Þx(i)jNi¼1g (26:65)

and

û ¼ argmin
u

XN
i¼1

logfdþ jh(i)j � jsgn h(i)ð Þx(i)� ujg
" #

¼ meridianfjh(i)j ? sgn h(i)ð Þx(i)jNi¼1g, (26:66)

respectively. Under this formulation, the operators are no longer restricted to be smoothers and can,
therefore, be set to exhibit a wide range of frequency-selective filtering operations, including bandpass
and highpass filtering.

Also of importance is that the filter weights can be optimized. This is most easily done through a
training process, typically under the mean absolute error (MAE). For instance, using a steepest descent
approach yields a relatively simple weight update for the myriad case,

h(i; nþ 1) ¼ h(i; n)� me(n)
g2sgn h(i)ð Þ û� sgn h(i)ð Þx(i)
 �

g2 þ jh(i)j � û� sgn h(i)ð Þx(i)
 �2� 	2
2
64

3
75, (26:67)

where e(n) is simply the error between the filter output and the desired signal and m is the iteration
step size.
It is important to note that the optimal filtering action is independent of the choice of g; the filter only

depends on the value of w=(g2). Note that similar updates can be derived for the median and meridian
filters—all are analagous to the LMS update for the linear filter.
For cases in which no training sequence is available, there are simple, suboptimal approaches to setting

the operator parameters. Recall that the myriad has the linearization free parameter (g), while the
meridian has medianization free parameter (d). These parameters control the robustness of the operators.
Numerous optimization techniques exist for linear and median filters. Thus one approach to setting the
filter parameters is to design weights for the simpler linear or median filter that address the problem at
hand, then decrease the free parameter value to achieve the desired level of additional robustness. This is
referred to as myriadization in the myriad case and meridianization in the meridian case. This approach
allows the rich set of design tools in the more traditional filtering domains to be applied to the newer,
more robust operators.

26.4 Applications of Robust Nonlinear Estimators=Filters

The covered filtering methods are evaluated in two communications problems, standard baseband
communications and power line communications, as well as an illustrative frequency selective filtering
problem. In each of these applications, an underlying desired signal is to be extracted. Complicating the
extraction is additive noise. While many different noise distributions can be investigated and justified by
various problem physics, we avoid direct use of either GGD or GCD densities. Employing, for instance,
Gaussian noise will yield the obvious result of linear filtering providing the best performance, while the
myriad filter is clearly optimal for applications in which the noise is Cauchy distributed. The presentation
of such obvious results provides little information or insight into the characteristics of the individual
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algorithms. Rather, results are presented for the commonly utilized a-Stable density family. This provides
a fairer comparison and illustrates the performance of the filters operating on a widely used heavy-tailed
distribution, but one that shares only tail order with the GCD.
Utilization of a-Stable distributed samples, like Gaussian distributed samples, is very appealing for the

modeling of real-life phenomena because they constitute the only variables that can be described as the
superposition of many small independent and identically distributed effects [15]. The class of symmetric
a-Stable distributions is usually described by its characteristic function:

f(v) ¼ exp (�kjvja): (26:68)

The parameter k, which is commonly called the dispersion, is a positive constant related to the scale of the
distribution and k1=a is the scale parameter of the distribution. In order for Equation 26.68 to define a
characteristic function, the value of a must be restricted to the interval [0, 2]. Importantly, a determines
the impulsiveness, or tail heaviness, of the distribution, where smaller values of a indicate increased levels
of impulsiveness. The limit a ¼ 2 case corresponds to the zero-mean Gaussian distribution with variance
2k. All other values of a correspond to impulsive distributions with infinite variance and algebraic tail
behavior [15]. Indeed, a-Stable distributions are successfully utilized to model impulsive environments
accross a wide array of applications [8,12,15,23,28,31,34,46,49].

26.4.1 Baseband Communications

Consider first the baseband communication model given in Figure 26.11 [50]. Suppose that A (real) is
to be communicated over the channel. Denote s(t) as the combined impulse response of the transmitter
and channel, and take the pulse As(t) to be corrupted by additive white noise. The received pulse is then
given by

r(t) ¼ As(t)þ n(t), (26:69)

which, after sampling at rate 1=T, corresponds to the sequence

r(kT) ¼ As(kT)þ n(kT): (26:70)

Taking the common case assumption that s(kT) 6¼ 0 only for k an integer, the communications goal is to
estimate A using the samples As(kT)þ n(kT), k ¼ 1, 2, . . . ,K .
The formulated problem is well known to be optimally addressed through matched filtering.

Moreover, each of the covered filters can be formulated in matched form. Thus to compare the
performances of the matched linear, median, myriad, and meridian filters, 10,000 Gaussian distributed
fA(i) : i ¼ 1, 2, . . . , 10,000g parameters are generated, sent through the baseband communication chan-
nel, sampled with K ¼ 21, and filtered with each of the matched filters to obtain the estimates
fÂ(i) : i ¼ 1, 2, . . . , 10,000g. The corrupting channel noise is a-Stable distributed with a ¼ 0:4. The

Source Transmitter + Sampler Estimator

n(t)

A As(t) r(t) r(kt) Â

FIGURE 26.11 Baseband communication model: s(t) denotes the combined impulse response of the transmitter
and the channel, and As(t) is corrupted by additive white noise n(t).
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pulse carrying the symbol is taken to be rectangular. The mean absolute and squared errors of the
matched filter outputs are tabulated in Table 26.2. The tabulated results show that the linear filter
completely breaks down in the presence of the heavy tailed corruption. The median is significantly more
robust, but still suffers from its inability to completely discount outliers. The myriad and meridian
operators, both derived for such algebraic tailed environments, provide significantly better results than
the GGD-based methods. The noise parameter utilized in this example, a ¼ 0:4, results in extremely
impulsive corruption, which is why the best performance is provided by the most robust operator
covered, the matched meridian filter.

26.4.2 Power Line Communications

Consider next the problem of power line communications (PLCs). The use of existing power lines for
transmitting data and voice has received considerable interest in recent years [51–54]. The advantages of
PLCs are obvious due to the ubiquity of power lines and power outlets. The potential of power lines to
deliver broadband services, such as fast Internet access, telephone, fax services, and home networking is
emerging in new communications industry technology. However, there remain considerable challenges
for PLCs, such as communications channels that are hampered by the presence of large amplitude noise
superimposed on top of traditional white Gaussian noise. The overall interference is appropriately
modeled as an algebraic tailed process, with a-Stable (a 	 1) often chosen as the parent distribution [51].
To compare the various filtering algorithms, consider a PLC problem in which there are a set of voltage

levels, V ¼ f�2,�1, 0, 1, 2g unknown at the receiver.* A signal randomly composed of these voltage
levels, an example of which is shown in Figure 26.12a, is transmitted through a powerline. The observed
signal is given in Figure 26.12b, where the noise is modeled as a-Stable distributed with a ¼ 1:25. Note
that this results in corruption that is somewhat less impulsive than in the previously considered example.
The observed powerline signal is processed with mean, median, myriad, and meridian filters, each
utilizing window length N ¼ 9, the results of which are given in Figures 26.12c through, respectively.
Inspection of the figures shows that the mean is vulnerable to impulsive noise even when a is relatively

large. The median, myriad, and meridian, in contrast, all perform relatively well. The fact that the median
performs well in this example indicates that the noise impulsivity is reasonably close to the GGD
Laplacian distribution special case. The meridian is, perhaps, overly robust for the level of corruption
observed in this example, but still performs nearly as well as the myriad and median. This example shows
that the myriad and meridian give up little in terms of performance in relatively light tailed environments
while, as the previous example shows, offering considerably better performance in the presence of truly
heavy tailed observations.

26.4.3 Highpass Filtering of a Multitone Signal

As a final example, consider the problem of preserving a high-frequency tone while removing all low
frequency terms. This requires highpass filtering, which employs both positive and negative weights
within the filter window. Such a problem demonstrates not only the utilization of positive and negative

TABLE 26.2 Matched Linear, Median, Myriad and Meridian Filters Output MAEs and MSEs

Performance Criteria Matched Linear Matched Median Matched Myriad Matched Meridian

MAE 5:9215
 103 0.2080 0.1605 0.1121

MSE 3:2949
 107 0.1687 0.0520 0.0380

Source: Aysal, T. C. and Barner, K. E., IEEE Trans. Signal Process., 55, 3949, 2007. With permission.

* In the case where the signal alphabet is known at the receiver, the linear, median, myriad, and meridian estimators are
readily extended to detectors.
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weights, but also the ability of robust nonlinear filters to perform frequency selectivity that is traditionally
accomplished through linear filtering. Figure 26.13a depicts a two-tone signal with normalized frequen-
cies 0.02 and 0.4Hz. The signal is 1000 samples long, although a cropped version of the original signal
f0,200g is shown for presentation purposes. Figure 26.13b shows the multitone signal filtered by a 40-tap
linear FIR filter designed by the MATLAB fir1 command with a normalized cutoff frequency of 0.3Hz.
The myriad and median filter weights are optimized in this case utilizing the adaptive methods detailed in
the previous section.* Noting that the median filter is a limiting case of the meridian filter, the meridian
filter weights are set equal to those of the median.
The clean multitone input signal is corrupted by additive a-Stable noise with a ¼ 0:4 to form a

corrupted observation from which the single high frequency tone must be extracted, Figure 26.13c. The
noisy multitone signal is processed by the linear, median, myriad, and meridian filters with the results
given in Figures 26.13d through g, respectively. Similarly to the first example, the observation signal in
this case contains very heavy tailed outliers. These outliers cause the linear filter to, once again, break
down. Each of the nonlinear filters, in contrast, offers more robust processing, with the outputs more
closely reflecting the range and frequency content of the desired signal. The increasing robustness of
the operators is again apparent, with the myriad being more robust to outliers than the median and the
meridian being the most robust. It should be noted that the nonlinear filters not only minimize the
influence of outliers, but their flexible weighted structures are able to effectively pass desired frequency
content while rejecting content outside the desired frequency band. The ability to simultaneously reject
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FIGURE 26.12 Power line communications signal enhancement: (a) transmitted signal, (b) observed signal
corrupted by a ¼ 1:25 noise, output of the (c) mean [2:5388]f8:6216g, (d) median [2:4267]f7:4393g, (e) myriad
[2:4385]f7:4993g; and (f) meridian filters [2:4256]f7:4412g, where [ � ] and f�g denotes the mean absolute and
squared error for the corresponding filtering structure.

* The clean multitone signal and the desired high-frequency signal are utilized as the input and desired signals, respectively.
For more detail see Refs. [28,29,31].
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outliers and perform frequency selectivity enables the nonlinear median, myriad, and meridian filters to
be deployed in a wide range of applications, including those previously dominated by, but not necessarily
well addressed by, linear filtering.

26.5 Concluding Remarks and Future Directions

The development and application of nonlinear filters is necessitated by the complexity and challenging
environments of many contemporary problems. In this chapter we have taken a fundamental approach to
filter development, considering operators from the first principles of location estimation. This develop-
ment focused on two important broad classes of distributions, generalized Gaussian and generalized
Cauchy distribution families. Within the GGD family, particular focus was placed on the Gaussian and
Laplacian distribution special cases and their resulting linear andmedian filtering operations. It was shown
that while the GGD family constitutes a broad array of distributions with varying tail parameters,
distributions within the family are not capable of accuratelymodeling themost impulsive and environment
seen in practice due to the constraint that GGD density tail decay rates be exponential. The consequence
of this tail decay rate constraint is that the linear and median filters deriving their optimality from the
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FIGURE 26.13 High frequency–selection filtering in impulsive noise: (a) clean two-tone input signal, (b) (desired)
highpass component of the input signal (processed with lowpass FIR filter), (c) two-tone signal corrupted with stable
noise (a ¼ 0:4), noisy two-tone input signal processed with (d) linear, (e) median, (f) myriad, and (g) meridian filters.
(From Aysal, T. C. and Barner, K. E., IEEE Trans. Signal Process., 55, 3949, 2007. With permission.)
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GGD are not effective in the processing of very impulsive sequences. The GCD family, in contrast,
consists of distributions with algebraic tail decay rates that do accurately modeled these most demanding
impulsive environments. Within this family we again focus on two special cases, the Cauchy and
Meridian distributions and their resulting myriad and meridian filtering operations. As these filters
are derived from heavy tailed distributions, they are well suited for applications dominated by very
impulsive statistics.
Properties and optimization procedures are presented for each of the filters covered. In particular, we

show that the operators can be ordered in terms of their robustness, from least to most robust, as linear,
median, myriad, and meridian. Moreover, myriad filters contain linear filters as special cases, while
meridian filters contain median operators as special cases. Thus the myriad and meridian operators
are inherently more efficient than their traditional (subset) counterparts. Simulations presented in
communications and frequency selective filtering applications show and contrast the performances of
the filters in applications with varying levels of heavy tailed statistics. As expected, linear operators
breakdown in these environments while the robust, nonlinear operators yield desirable results.
Although the presentation in this chapter ranges from theoretical development through properties,

optimization, and applications, the coverage is, in fact, simply an overview of one segment within the
broad array of nonlinear filtering algorithms. To probe further, the interested reader is referred to the
cited articles, as well as numerous other works in this area. Additionally, there are many other areas of
research in nonlinear methods that are under active investigation. Research areas of importance include
(1) order-statistic based signal processing, (2) mathematical morphology, (3) higher order statistics and
polynomial methods, (4) radial basis function and kernel methods, and (5) emerging nonlinear methods.
Researchers and practitioners interested in the broader field of nonlinear signal processing are encour-
aged to see the many good books, monographs, and research papers covering these, and other, areas in
nonlinear signal processing.
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Denoising is one of the fundamental problems in digital image processing and can be defined as the
removal of noise from observed image data, for example in broadcast and surveillance as well as in
medical imaging applications. Often performed as a preprocessing step prior to any analysis or modeling
of the images, denoising improves the image quality thus reducing the effects of noise on the output of
any subsequent operations. Let f(r) denote some original image data corrupted by additive white
Gaussian noise n(r), resulting in observed image data g(r), where r denotes the n-dimensional coordin-
ates of the image data, and n 2 f2, 3, 4g. For n ¼ 2, r usually represents the horizontal and vertical
coordinates (often denoted by x and y), whereas for n ¼ 4 for instance in case of real-time capture of
three-dimensional (3-D) images (such as fMRI image data), r may be composed of the three spatial
coordinates (x, y, and z) and a time coordinate. Corruption of the original image data can, therefore, be
expressed in the following form,

* Parts of this chapter have appeared in the Proceedings of Baiona SPC’2003, ICIP’2004, and WIAMIS’2004, and ICIP’2005.
Much of the material in Section 27.2 appears in Yao’s PhD thesis, submitted to the University of Warwick in October 2007,
and is in preparation for submission to a journal.
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g(r) f̃  (r)

g(r) ¼ f (r)þ n(r) (27:1)

where n ¼ N (0, s2) denotes uncorrelated, zero-mean, Gaussian noise with a standard deviation of s.
The addition of white Gaussian noise often takes place at the imaging side, for instance due to the finite
exposure time of the imaging devices, thermal noise in the CCD arrays, quantization noise, or a
combination of some or all of these. The problem of image denoising can be stated as follows.

PROBLEM STATEMENT:

Given the observed image data g(r) and our knowledge about the noise process n(r) being the white
Gaussian noise with the level of noise being unknown, find an approximation ~f (r) of the original
image data such that the following criterion of total distortion

X
r2V

k f (r)� ~f (r)k2 (27:2)

is minimized, where V � Rn is the set of all coordinates for the image data.

It is evident from the above problem statement that denoising is an inverse problem as well as an
ill-posed one, since the objective here is to find a mapping F: g(r)7!~f (r) which minimizes the sum of
squared errors between f(r) and ~f (r), without having any prior knowledge of f(r).

27.1 Filtering for Image Denoising

Denoising methods proposed in the literature can be categorized into two main classes: spatial
(or spatiotemporal) and transform domain. Spatial or spatiotemporal denoising methods modify
the intensity of the observed image data elements by applying a linear filter (e.g., averaging or Gaussian
smoothing) or nonlinear (median filtering, edge-preserving filter such as Kuwahara filter or anisotropic
diffusion) filtering operation on intensity values of the observed image data. Denoising methods that
operate in the transform domain aim to amend the transform coefficients in such a way that prominent
features of the original image are retained or highlighted and noise-related coefficients or noisy com-
ponents of the transform coefficients are suppressed. The modification of transform coefficients can
also be done in a linear, for example, multiplication or convolution, or nonlinear, thresholding or
manipulation of coefficients using a nonlinear function such as tanh(�), fashion.

Linear filters in both spatial and transform domains usually face the dilemma that although they can
be computationally inexpensive, they often result in smoothing (also known as blurring) of important
features, such as edges in images.
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Nonlinear filters, on the other hand, aim at preserving image features that are crucial to the fidelity of
reconstructed image data. Furthermore, nonlinear filtering in the transform domain offers the added
advantage that it can faithfully reconstruct as well as highlight prominent image features, provided
an appropriate transform for representing the image data is employed. Assuming the representation
is sparse, filtering can be performed by simply thresholding the transform coefficients. The overall
mapping function F(g) can then be defined as follows:

F(g) ¼ ~f ¼ G�1(T fG(g)g), (27:3)

where
G and G�1, respectively, denote the forward and inverse transforms
T f�g denotes the thresholding operation

The denoising function F is a nonlinear filter, even when a unitary transform G is employed, due to the
presence of the thresholding operator T , which is a highly nonlinear operator.

27.1.1 Nonlinear Filtering in the Transform Domain

The use of multiresolution image representations in the restoration of noisy images dates back to the
late 1980s [1], in which a statistical estimator based on a simple quadtree image model was used
in smoothing images corrupted by additive Gaussian noise. For image denoising, the transform G in
Equation 27.3 ought to be chosen such that it is an appropriate representation of the most prominent
spatial or spatiotemporal features present in g(r) with the help of basis functions with suitable shape
and localization. An additional advantage of the transform-based approach to filtering is that it allows
one to extract important features for analysis purposes; for example, curvilinear features in still images,
moving edges in video sequences, tissue interfaces in medical images, or fault surfaces in seismic
images.
But what criteria should one use to choose an appropriate transform? Sparsity of a representation

is widely believed to be one of the criteria used to judge its effectiveness for a particular type of feature.
A representation can be regarded as being efficient if its basis functions resemble closely the type of
feature being sought in the image data, thus resulting in its sparse representation. It is believed
that during the millenia of evolution, the external visual stimuli of complex natural scenarios have
influenced the human visual system (HVS), so that cells in the primary visual cortex can respond to
certain important spatiotemporal features. Hubel and Wiesel [2] first showed that biological visual
systems in mammals actually analyze images along dimensions such as orientation, scale, and frequency.
More recently, it was shown by Olshausen and Field [3,4] that the sparse components generated by
image-dependent linear transformation known as independent component analysis (ICA) resemble
simple-cell receptive fields. This matches the hypothesis that the HVS captures essential information
with a minimum number of excited neurons, which can be understood as a biological form of sparse
representation.

27.1.2 Transform: Separable or Nonseparable?

The ordinary separable wavelet transform offers most of the desiderata that a suitable representation
mimicking the HVS is required to satisfy multiresolution, sparse, localized. However, the fact that it is
computed separably, i.e., on rows and columns in 2-D, for instance, implies that its basis functions
are simply tensor products of 1-D wavelet basis functions along the rows and columns, resulting
in capturing edges along only three orientations in 2-D: horizontal, vertical, and diagonal. Since the
separable 2-D wavelet basis functions can only capture features of three possible orientations, the ordinary
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wavelet transform results in a nonsparse representation of edges in other directions. This limited orienta-
tion selectivity can be a severe limitation in applications where detection, coding, or denoising where
reconstruction of strong directional features is important. In higher dimensions also, separability seriously
limits the ability of wavelets to efficiently represent higher dimensional features (such as lines in images or
planes in 3-D image volumes). To overcome this limitation, several nonseparable geometric wavelets
(mostly in 2-D) have been proposed in the last decade or so. These are commonly referred to as theX-lets in
the literature, such as ridgelets [5], curvelets [6,7], wedgelets [8], beamlets [9], contourlets [10,11], brushlets
[12], and arclets [13].

27.1.3 Transform: Fixed or Adaptive?

Most of the nonseparable X-lets mentioned above employ fixed basis functions. Some researchers
believe that since the type of features that would excite the retinal neurons is fixed, it also suggests
that the HVS is more likely a representation with a fixed basis rather than an adaptive one like the ICA.
However, in some cases, image-dependent adaptive bases have been shown to be superior in terms of
their ability to represent prominent image features, particularly when the representation is not over-
complete.* They offer the advantage of compactly representing the image features using basis functions
that are adapted to the contents of the image data. In summary, while the fixed transform idea is
appealing in terms of its computational complexity and in its comparison to the HVS, the adaptive
transform may be better suited in some cases due to its adaptability but may be prohibitively expensive
computation-wise.

27.1.4 Chapter Organization

In this chapter, we describe three wavelet-like representations employed to filter noisy 2-D and 3-D
image data:

. Polar cosine transform (PCT) is a nonseparable 2-D transform designed to capture two of the most
important features in 2-D images: curvilinear edges and texture. The development of PCT is
motivated by the fact that natural images contain not only piecewise smooth regions separated by
edges, but also regions with strong textural characteristics. Two constructions of PCT, one using
Radon transform and another using DCT and DST in a butterfly fashion, are described in Section
27.2. The former PCT construction can also be tailored to be image-dependent such that it can be
adapted to both directional linear features as well as directional textures in a unified manner
according to the ‘‘image ¼ edgeþ texture’’ model.

. Planelets are nonseparable 3-D basis functions, resembling planar wave functions and having
compact support in space–time as well as spatiotemporal frequency. Locally planar structures can
be found in many 3-D applications, including video sequences, where they represent sweeping
luminance edges, and medical volume data, where they represent the interfaces between different
tissue types, for example. Planelets can be regarded as an extension of the complex wavelet bases
[14] which have been increasing in popularity in recent years. Because transformation to the new
basis is efficient computationally, the overall denoising algorithm is highly efficient. The represen-
tation is translation invariant, offers good directional selectivity, and can be computed efficiently.
The success of the approach is demonstrated using noisy video sequence and a noisy human knee
MR image volume.

* An overcomplete representation is one that employs more basis functions than are required for an exact reconstruction of
the original image data.
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. Adaptive 3-D wavelet packet (A3-DWP) representation, which is separable but uses basis functions
that are adapted to the contents of a given 3-D image data, a video sequence, or an image volume.
The A3-DWP representation is optimal in terms of compactly representing local, in both space and
time, spatiotemporal frequencies in the given image data. In order to reduce the effects of Gibbs
phenomenon in the restored image data, translation dependence is removed by averaging the
restored instances of the shifted data in all three directions.

27.2 Polar Cosine Transform

It is widely recognized that natural images consist of piecewise smooth regions separated by edges as well
as textured regions. While various different models for curved edges exist, including some of the X-lets
mentioned in Section 27.1, texture representation has faced difficulties due to lack of a single widely
accepted mathematical definition of texture patterns that can be found in images. There are, however,
certain assumptions that can be made for most natural textures:

. Oriented. Many spatial textures have a prominent direction, for example wood patterns and
seismograms, or a combination of several such components.

. Periodic. The texture tends to repeat certain basic elements at a given frequency and tends to repeat
itself with a degree of affine invariance.

. Localized. In natural images, the textures are usually confined within a particular region. In other
words, they are spatially localized.

Over the years, several wave packet bases such as local cosines [15,16], wavelet packets [17,18], and
brushlets [19] have been proposed as suitable representations for oscillatory textures. However, they
either lack orientation selectivity, or their spatial-frequency localization is not satisfactory. Moreover, due
to the Uncertainty Principle, a sparse representation for both singularities and periodic oscillations in a
fixed basis is a fundamental dilemma [20]. The resort is to find an image-dependent adaptive basis which
can accommodate both directional linear features as well as directional textures in a unified manner
according to the ‘‘image¼ edgeþ texture’’ model.

27.2.1 Continuous Transform

A prototypical oriented texture pattern can be seen as a higher dimensional function which has a
waveform constant along a fixed direction. Such functions are usually referred to as ‘‘planar waves’’ or
‘‘ridge functions’’ in approximation related literature [21]. Formally, a ridge function is a multivariate
function of the form c(~j �~u) where c(�) is a univariate function usually referred to as the ridge profile,
with spatial coordinate vector~j 2 Rd and~u 2 Sd�1. This means~u is on the unit sphere Sd�1 in dimension
d > 1 and indicates the orientation.
In order to model oriented texture, a real-to-complex ridge profile c:R ! C can be defined as

cv(j) ¼ eivj: (27:4)

which is basically the 1-D Fourier basis function, and the corresponding multivariate ridge function by
definition is

cv(~j �~u) ¼ eiv(
~j�~u): (27:5)
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The ridge function gives a complex trigonometric oscillatory constant along the direction ~u. Taking
the inner product of it with a function f (~j) gives

f̂ (v,~u) ¼ h f (~j), cv(~j �~u)i ¼
ð
f (~j)e�iv(~j�~u)d~j: (27:6)

This is exactly the d-dimensional Fourier transform expressed in polar coordinate form, or just simply
polar Fourier transform. The conversion to Cartesian coordinates can be done by separating the radial
frequency into a frequency vector:

~v ¼ v~u: (27:7)

With a slight rearrangement of Equation 27.6, the equivalence becomes obvious:

f̂ (v,~u) ¼
ð
f (~j)e�i~j�(v~u) d~j ¼

ð
f (~j)e�i~j�~v d~j ¼ f̂ (~v): (27:8)

Meanwhile, the definition for the continuous Radon transform in d-dimensions is

Rf (t,~u) ¼
ð
f (~j)d(~j �~u� t)d~j: (27:9)

The relationship between the Radon transform and the polar Fourier transform is stated as the Fourier
Slice Theorem [22]:

THEOREM 27.1 (Fourier Slice Theorem)

The 1-D Fourier transform with respect to t of the projection Rf (t,~u) is equal to a central slice, at a given
orientation~u, of the higher dimensional Fourier transform of the function f (~j), that is,

dRf(t, ~u) ¼ f̂ (v, ~u): (27:10)

If some boundary condition is to be posed at each polar orientation, instead of being defined on R, the
Radon sliceR~u f (t) is assumed to be an even functionR~u f (t) ¼ R~u f (�t), then its Fourier transform can
be written as follows:

dRf(t,~u) ¼
ffiffiffiffi
2
p

r ðþ1

0

Rf (t,~u) cos (vt)dt: (27:11)

It is noted that only the real cosine part remains in the above equation due to the even boundary
assumption on the slices. This is equivalent to a cosine tranform with ridge-type basis functions
defined as

cC
v(~j �~u) ¼

ffiffiffiffi
2
p

r
cos (v~j �~u): (27:12)
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In the same way by assuming Ruf (t) ¼ �Ruf (�t), the sine counterpart is

cS
v(~j �~u) ¼

ffiffiffiffi
2
p

r
sin (v~j �~u): (27:13)

Correspondingly, the continuous polar cosine and sine transform are denoted, respectively, as

Cf (v,~u) ¼ h f (~j), cC
v(~j �~u)i ¼

ffiffiffiffi
2
p

r ðþ1

0

f (~j) cos (v~j �~u)d~j (27:14)

and

Sf (v,~u) ¼ h f (~j), cS
v(~j �~u)i ¼

ffiffiffiffi
2
p

r ðþ1

0

f (~j) sin (v~j �~u)d~j: (27:15)

These two transforms, along with the polar Fourier transform, can be regarded as a family of Polar
Trigonometric Transforms. In the context of image processing, the PCT is the transform of interest in this
work, due to its better approximation convergence properties attributed to the even boundary extension
[23]. Since it is essentially the Fourier transform, the completeness of the transform makes the transform
operator C unitary which means C�1 ¼ C*. Since the transform is real, the operator is self-conjugate,
making the inverse transform exactly the same as the forward transform:

C�1 ¼ C: (27:16)

The same also holds for the continuous polar sine transform and its inverse.

27.2.2 Discrete Transform

The continuous PCT essentially replaces the polar Fourier transform’s complex basis with a real cosine
sinusoid as the ridge function, by assuming the projected Radon slice is even. In a discrete case, the
Fourier-related transforms that operate on a function over a finite domain can be thought of as implicitly
defining an extension of that function outside the domain. The discrete Fourier transform (DFT) implies
a periodic extension of the original function. A discrete cosine transform (DCT), like the continuous
cosine transform, implies an even extension of the original function.
However, when the transform is to operate on finite, discrete sequences, two issues arise that are not

relevant in case of the continuous cosine transform. First, one has to specify whether the function is even or
odd at both the left and right boundaries of the domain. Second, one has to specify around what point the
function is even or odd. These issues result in several different versions of DCTs, a full list of which along
with corresponding DSTs is given in Table 27.1. For a discrete polar cosine transform, any of the DCTs can
be adopted to form the basis ridge function. In particular, the so-called DCT-II is widely used in many
applications such as the famed JPEG compression [24] due to its even boundary extensions on both ends,
which gives better approximation convergence. The 1-D DCT-II function is defined by the ridge profile:

ck[n] ¼ cos
p

N
nþ 1

2

� �
k

� �
: (27:17)

where
N is the possible number of frequencies as well as the length of the Radon projection slice
k ¼ 0, 1, . . . , N � 1 is the frequency index

Nonlinear Filtering for Image Denoising 27-7



In the context of image processing, the discussion of discretization of the PCT will be further restricted to
the 2-D case, which means the unit orientation vector becomes

~u ¼ cos u
sin u

� �
: (27:18)

With~j ¼ [j1, j2], the discrete cosine ridge function is

ck[j1 cos uþ j2 sin u] ¼ cos
p

N
j1 cos uþ j2 sin uþ

1
2

� �
k

� �
: (27:19)

Then the discrete polar cosine transform on an M �M 2-D image f [~j] can be defined as

Cf [k, u] ¼ f [~j], ck[j1 cos uþ j2 sin u]
D E

¼
XM�1

j1¼0

XM�1

j2¼0

f j1, j2] cos
p

N
j1 cos uþ j2 sin uþ

1
2

�� �
k

� �
: (27:20)

The inverse transform for DCT-II is the DCT-III transform. The corresponding cosine ridge function
for the inverse transform is

c�1
k [j1 cos uþ j2 sin u] ¼ lk cos

p

N
j1 cos uþ j2 sin uþ

1
2

� �
kþ 1

2

� �� �
, (27:21)

where

lk ¼ 1=2 if k ¼ 0,
1 if k 6¼ 0,

�

and the discrete inverse polar cosine transform operator C�1 is given by

C�1f [k, u] ¼ h f [~j], ck[j1 cos uþ j2 sin u]i

¼
XM�1

j1¼0

XM�1

j2¼0

f [j1, j2]lk cos
p

N
j1 cos uþ j2 sin uþ

1
2

� �
kþ 1

2

� �� �
: (27:22)

TABLE 27.1 List of DCTs and DSTs

DCT-I 1
2 (x0 þ (�1)kxN�1)þ

PN�2
n¼1 xn cos p

N�1 nk
� 	

DCT-II
PN�1

n¼0 xn cos p
N (nþ 1

2 )k
� 	

DCT-III 1
2 x0 þ

PN�1
n¼1 xn cos p

N n kþ 1
2


 �� 	
DCT-IV

PN�1
n¼0 xn cos p

N nþ 1
2


 �
kþ 1

2


 �� 	
DST-I

PN�1
n¼0 xn sin p

Nþ1 (nþ 1)(kþ 1)
h i

DST-II
PN�1

n¼0 xn sin p
N nþ 1

2


 �
(kþ 1)

� 	
DST-III

PN�2
n¼0 xn sin p

N (nþ 1) kþ 1
2


 �� 	
DST-IV

PN�1
n¼0 xn sin p

N nþ 1
2


 �
kþ 1

2


 �� 	
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27.2.3 Radon-Based Digital Implementation

Equations 27.10 and 27.11 suggest that the discrete PCT can be implemented by a Radon transform, that
is, taking the 1-D DCT on Radon slices:

Cf [k, u] ¼
XN�1

t¼0

Rf [t, u] cos
p

N
t þ 1

2

� �
k

� �
: (27:23)

As the Fourier Slice Theorem shows, the Radon transform can be implemented by taking the central
slice in the Fourier spectrum and then performing a 1-D inverse Fourier transform on it. Applying DCT
on the Radon slices, we can obtain the discrete PCT.
This gives a means for a digital implementation of the discrete polar cosine transform. For the Radon

transform, various ways to implement it in a discrete fashion have been attempted, among which the
Fast Slant Stack [25] was chosen, which is based on a pseudo-polar Fast Fourier Transform (FFT) [26].
According to Ref. [25], the transform is computationally efficient, algebraically exact, geometrically
faithful, and its inversion is numerically stable.
With the implementation described above, the PCT basis vectors for an 8� 8 image block can be seen in

Figure 27.1. The basis vectors are indexed by frequency k and orientation u. As a result of the Cartesian-
to-polar conversion in the frequency domain, the low-frequency basis vectors are clearly being over-sampled,
resulting in a redundant frame where the number of coefficients is four times the original data size.

27.2.4 Butterfly-Based Digital Implementation

The above digital implementation of the PCT based on the Radon transform is akin to the digital ridgelet
transform [27]. Such a Radon-based approach is flexible in constructing various directional ridge-type
transforms, but it suffers from several drawbacks of the underlying Radon transform. First is the high
computational requirement both for the forward and inverse transforms. The forward transform includes
a pseudo-polar Fourier transform, 1-D inverse Fourier transforms on polar slices, and forward cosine

FIGURE 27.1 8� 8 discrete polar cosine basis vectors.
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transforms. The inverse Fast Slant Stack uses an iterative algorithm in the reconstruction to minimize
numerical instability. Secondly, the redundancy factor could be an issue in some applications. While it
seems implausible to construct a digital ridgelet transform without invoking the Radon transform, it does
not necessarily hold true for the PCT. A possible construction of such directional real trigonometric
transform in the context of modulated lapped transforms was discussed in Ref. [28]. The same
construction is adopted here in implementing a digital PCT.
It can be observed from Table 27.1 that the DCT-IV and DST-IV share the same function parameters.

In 2-D, Cartesian separable basis functions can be formed by the tensor product of 1-D bases:

cC
k1,k2 [j1, j2] ¼ cos

p

N
j1 þ

1
2

� �
k1 þ 1

2

� �� �
cos

p

N
j2 þ

1
2

� �
k2 þ 1

2

� �� �
: (27:24)

cS
k1,k2 [j1, j2] ¼ sin

p

N
j1 þ

1
2

� �
k1 þ 1

2

� �� �
sin

p

N
j2 þ

1
2

� �
k2 þ 1

2

� �� �
: (27:25)

By setting A ¼ p
N (j1 þ 1

2 )(k1 þ 1
2 ) and B ¼ p

N (j2 þ 1
2 )(k2 þ 1

2 ), the expression is simplified as follows:

cC
k1,k2 [j1, j2]� cS

k1,k2 [j1, j2] ¼ cosA cosB� sinA sinB

¼ cos [Aþ B]

¼ cos
p

N
j1 þ

1
2

� �
k1 þ 1

2

� �
þ j2 þ

1
2

� �
k2 þ 1

2

� �� �� �

¼ cos
p

N
j1k1 þ j2k2 þ

1
2
(j1 þ j2 þ k1 þ k2 þ 1)

� �� �
: (27:26)

Therefore the difference between the 2-D basis functions of DCT-IV and DST-IV at given frequencies
can be reduced into a cosine component. Furthermore, since k1 ¼ k cos u, k2 ¼ k sin u, where
k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k21 þ k22
p

is the polar frequency index and u ¼ arctan (k2=k1), Equation 27.26 can be rewritten in
the polar cosine form:

c
x
k, u[j1, j2] ¼ cC

k cos u,k sin u[j1, j2]� cS
k cos u,k sin u[j1, j2]

¼ cos
p

N
(j1 cos uþ j2 sin u)kþ

1
2
(j1 þ j2 þ k cos uþ k sin uþ 1)

� �� �
: (27:27)

However, it should be noted that compared with the PCT-II defined in Equation 27.20, although the
basis vectors do not represent a strict form of ridge functions, they are directional and can be arranged
in polar form. The above is set for the case when k1 ¼ 0, . . . , N � 1 and k2 ¼ 0, . . . , N � 1. For
negative frequencies, it is clear that

c
x
k1,�k2�1[j1,j2] ¼ cC

k1�k2�1[j1, j2]� cS
k1,�k2�1[j1, j2]

¼ cosA cos [�B]� sinA sin [�B]
¼ cosA cosBþ sinA sinB

¼ cC
k1,k2 [j1, j2]þ cS

k1,k2 [j1, j2]: (27:28)

This suggests that for�k2 � 1 ¼ �1, . . . ,�N , the basis function is just the sum of DCT-IV and DST-IV.
In the same way, it is not difficult to see that when k1 ¼ �1, . . . ,�N and k2 ¼ �N , . . . ,N � 1, which is
the basis functions for the lower half-plane of the frequency spectrum:

c
x
k1, k2

[j1, j2] ¼ c
x
�k1�1,�k2�1[j1, j2]: (27:29)
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Thus the corresponding transform domain exhibits the same Hermite symmetry as the Fourier trans-
form, with basis functions very close to the FFT’s basis functions. As a result, the transform

x f [k1, k2] ¼ h f [j1, j2], cx
k1,k2

[j1, j2]i (27:30)

is only twice redundant, by removing a half-plane of the spectrum and can be efficiently implemented by
a butterfly computation. A schematic illustration of the transform can be seen in Figure 27.2. For the sake
of convenience, this particular digital implementation will be referred to as PCT-X. A complete basis for
size 8� 8 is shown in Figure 27.3.
It is observed that the PCT-X is closely related to the Fourier transform itself, despite the new

transform being real. The expansion of PCT-X, therefore, can be expected to have similarities with the
Fourier magnitude spectrum.

DCT-IV

DST-IV

+

–

Forward transform

Inverse transform

DCT-IV–

+ DST-IV

+ 1
2/

FIGURE 27.2 Forward PCT-X transform and the inverse transform.

FIGURE 27.3 8� 8 discrete polar cosine basis vectors.
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In Figure 27.4, a comparison between the PCT-X spectrum and the Fourier spectrum is made.
A reptile texutre patch is chosen as the test data and the two transforms yield very similar magnitude
responses. However, the histograms suggest that the coefficients of the PCT-X expansion are sparser
than those of the Fourier transform, attributed to the symmetric boundary extension of the underlying
DCT-IV and DST-IV.

27.2.5 Nonlinear Approximation

As previously mentioned in Section 27.2, with the difficulty in mathematically formulating texture, it
is hard to approach the nonlinear approximation problem quantitatively. The theoretical study of the
transform in the context of computational harmonic analysis is beyond the scope of this thesis,
where the main concern is on examining its effectiveness in providing sparsity in the transformed
expansion. The approach taken here is more empirical, where the nonlinear approximation results are
presented in the form of output from numerical experiments.
Two digital PCT implementations were selected for nonlinear approximation experiments: the Radon-

based PCT with DCT-II as ridge profile (PCT-II) and the butterfly PCT-X implementation as
shown in Figure 27.2. They are compared with three other transforms: the FFT; the DCT-II, which is
a Cartesian separable real-to-real implementation of FFT; and the fast curvelet transform (FCT) which
is implemented by wrapping of specially selected subbands of Fourier samples [29].
Two different image patches are tested for nonlinear approximation. The first one contains a portion

of a fingerprint image, which consists of repeated curved ridges. The second one is a simple straight line.
The purpose of including such a linear singularity is that although it is not ideal to be represented by an
oscillatory basis, it would be still worth comparing with other trigonometric transforms. All the patches
are sized 256� 256, cropped from the original 512� 512 images. They are prewhitened by taking the
highpass subband Laplacian pyramid.
The nonlinear approximation results are represented in Figures 27.5 and 27.6 as PSNR curves.

The PSNR values are plotted against the top percentage of coefficients, from 2% to 50%. The percentage

Fourier magnitude

PCT-X magnitude
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Magnitude histogram

FIGURE 27.4 Spectrum comparison between the PCT-X and the Fourier transform.
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instead of the number of coefficients is used due to the fact that different transforms yield different
number of coefficients. For the sake of convenience, a table of percentages and the corresponding
retained numbers of coefficients for different transforms are listed in Table 27.2. It is observed that
for the textured image fp, the PCTs outperform the other candidates consistently. With fewer coeffi-
cients, the PCT-X’s PSNR is usually close to the PCT-II, occasionally outperforms it (on fp). This is due
to the fact that PCT-II’s reconstruction is less stable with fewer coefficients while PCT-X’s inverse
transform is exact. However, the goodness of DCT-II’s even symmetric boundaries eventually yields
better PSNR with relatively more coefficients involved. While low PSNR performances are to be expected
from the trigonometric transforms, it is also reassuring that the two PCTs give better PSNR than the
DCT and FFT.
Figure 27.7 shows the reconstructions from the top 2% coefficients of these four transforms on fp.

The reconstruction from FCT looks artificial, due to its inability to capture directional harmonics of
the image, an oscillatory pattern has to be described as several directional singularities. The DCT
reconstruction, while being closer to the original, does not highlight the oriented patterns as well as

fp original

PCT-II PCT-X

FCT

DCT FFT

FIGURE 27.5 Nonlinear approximation PSNR curves for fp.
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the PCTs. The results from FFT and PCTs are very similar, while the PCTs give slightly better
reconstructions with the directional regularities on the fingerprint ridges, particularly by PCT-X.
Another example is the line in Figure 27.8. The percentage of coefficients is kept as little as 0.1%. It is

not surprising that the FCT restores the line faithfully even at such a low ratio. The reconstructions
from the four Fourier-type bases (DCT, FFT, and the two PCTs) all exhibit the ‘‘ghosting’’ artifacts
sometimes referred to as the Gibbs phenomenon, due to suppressing too many high frequency

Line original

PCT-II PCT-X

FCT

DCT FFT

FIGURE 27.6 Nonlinear approximation PSNR curves for line.

TABLE 27.2 Percentage versus Number of Retained Coefficients
for Different Transforms

Percentage (%) FCT DCT FFT PCT-II PCT-X

0.1 185 66 66 262 132

2 3700 1311 1311 5243 2622

15 27748 9830 9830 39322 19660

100 184985 65536 65536 262144 131072
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FIGURE 27.7 Illustrative results for nonlinear approximation on fp.
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FIGURE 27.8 Illustrative results for nonlinear approximation on line.
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coefficients. The DCT shows the ghosting artifact on two different orientations, the FFT has two ghost
lines appearing on the reconstruction. The PCT-II, on the other hand, due to the boundary extension
being assumed on the Radon slices, shows only one significant ghost line. The ghosting artifact is further
reduced in PCT-X’s reconstruction.

27.2.6 Polar Cosine Packets

As previously discussed, the Radon transform can reduce the PCT into a matter of performing the cosine
transform on Radon slices. This also makes it possible to analyze directional features other than
sinusoidal ridges. This is achieved by taking the transform in separate spatial windows. Local trigono-
metric bases proposed by Coifman and Meyer [30] and by Malvar [31] use smooth window functions to
split the signal and to fold overlapping parts back into the original pieces so that the orthogonality is
preserved. This treatment can avoid the discontinuity artifacts caused by a rectangular window, while
introducing no redundancy.
The local cosine basis is composed of basis functions of the form

wp,k(t) ¼ wp(t)

ffiffiffiffiffiffiffi
2
jIpj

s
cos p kþ 1

2

� �
t � cp
jIpj

� �
: (27:31)

The Cosine-VI basis is used and modulated by a window function wp(t) which lies on an interval
[ap�1, ap] with cp ¼ ap þ ap�1



)=2, and jIpj ¼ cpþ1 � cp being the length of the window, with the

overlapping part included. With a careful choice of the window (see Ref. [15]), the set fapg � R forms
a partition of unity and the local cosine basis associated to such partition is said to form a library of
orthonormal bases usually referred to as the cosine packets.
The polar cosine packets can be implemented by placing the 1-D cosine packets on the Radon slices;

the operator is denoted as

Pf [p, k, u] ¼ hRf [t, u],wp,k[t]i: (27:32)

Unfortunately, due to its implementation, it is not possible to construct similar polar cosine packets with
the PCT-X.

27.2.7 Best Basis Selection

The arbitrary choice over the library of local trigonometric bases over a compact interval U is of an
extremely large range. To seek a feasible ‘‘best basis,’’ the library of cosine packets is reduced to only
taking dyadically partitioned decomposition of U only. This organization is depicted schematically in
Figure 27.9. Then I00 is a cosine basis on the entire U and Ip,s will correspond to the local cosine basis over
interval p of the 2s intervals at level s of the tree. The best basis can be found by induction on s.

Let Bp,s denote the cosine basis vectors corresponding to interval Ip,s, and Ap,s be the best basis. For
s ¼ 0, the best basis Ap,0 ¼ Bp,0, otherwise

Ap,sþ1 ¼ Bp,sþ1 if M(Bp,sþ1x) < M(A2p,sx)þM(A2pþ1,sx),
A2p,s � A2pþ1,s otherwise.

�
(27:33)
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where
� denotes a concatenation operation
M(�) is a certain cost function

The resulting best basis is optimal relative to the cost function M, which means different choices
of the cost function reflecting certain criterion can result in different selections of the best basis. Such
an approach is called ‘‘entropy-based best basis selection.’’ For a complete treatment on the subject,
see Ref. [32].
The best basis can be sought with the local cosine basis on the Radon slices. The resulting transform is

called the polar cosine packet transform (PCPT), while the choice of the cost functionM depends on the
application.

27.2.8 Multiscale Polar Cosine Transform

It was recognized, as early as in 1978 [33], that, for an image representation to be useful, the transform
should be well spatially localized. More importantly, the transform should be multiscale, in order to
capture patterns of interest at different scales. While the PCT is able to provide a sparse expansion for
directional patterns with good frequency resolution, putting it into a multiresolution, spatially localized
manner is required. The result is a new wavelet-type transform called the multiscale polar cosine
transform (MPCT), which is discussed in the following sections.

27.2.8.1 Construction of MPCT

A prototypical multiscale polar cosine function has the form

Ck,~u,s,~h(
~j) ¼ w

~j�~h

s

 !
ck

(~j�~h) �~u
s

 !
: (27:34)

where
k,~u,~h, and s denote the frequency, orientation, location, and scale parameters of the function,
respectively

w(�) is the smooth window function chosen along with the sampling interval to ensure invertibility
of the discrete form of the transform

Effectively the transform can be viewed as a stack of windowed polar cosine transforms at a range
of scales, with different block sizes for windowing. The coarser the scale s is, the larger the window
becomes. The digital implementation of such a multiscale lapped transform requires two operators: a

FIGURE 27.9 Binary tree of the localization of partitioned intervals.
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level operator which decomposes the signal into different scales, and a local operator which handles the
decomposition locally within a block—in this case could be either the PCT operator C or the Polar cosine
packet operator P, which gives us the multiscale polar cosine packet transform (MPCPT).

A desirable level operator should have the following two properties:

1. Operator should be able to separate the signal into different frequency subbands.
2. Decomposed subbands should be isotropic, which then can be exploited well by the high-frequency

resolution and the directional selectivity of the PCT.

A reasonable choice of the level operator is the Laplacian pyramid [34]. As in Chapter 3, for a particular
level xs of subband, it is computed as

xs(~h) ¼ (I� Gs,sþ1Gsþ1,s)x
0
s: (27:35)

where
I is the identity operator
x0s is the Gaussian lowpass pyramid representation of x(~h)

x0s(~h) ¼
Xs�1

l¼0

Glþ1,lx(~h): (27:36)

Gs,sþ1,Gsþ1,s are the raising and lowering operators associated with transitions between levels in
the Gaussian pyramid, as defined previously in Chapter 3

Due to the dyadic decimation, the pyramid is known to have some 33% extra redundancy in 2-D, which
is acceptable for general use in many image processing tasks. This also allows us to use a constant window
size over different scales, which is equivalent to a dyadic increment of the window size.

27.2.8.2 Basis Functions and Frequency Tiling

The basis functions of the MPCT are 2-D cosine ridges with certain frequency, orientation confined to
certain spatial location and scale. Several MPCT basis functions are shown in both spatial and frequency
domains in Figure 27.10. These are three members of the MPCT basis at increasing scales on a 256� 256
grid. Every function oscillates coherently in a preferred direction and frequency and confined by a

Continuous case Discrete case

FIGURE 27.10 Basis functions at different scales and their frequency responses.
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cosine-squared window. In the frequency domain, the Fourier transform of these functions is well-localized
as well, exhibiting two symmetric blobs at an orientation perpendicular to that of the spatial functions.
The size of the frequency blob increases with the scale, while the spatial window size decreases dyadically.
Figure 27.11 schematically demonstrates how the frequency plane is partitioned by the MPCT

decomposition, both in continuous and discrete cases. It is clear that the polar orientation resolutions
at different scales are the same and each of the subbands from the level operator is partitioned into equal
number of boxes.

27.2.9 Relationship with Other Transforms

The construction of the MPCT presented here follows a long legacy in both harmonic analysis and image
processing, and is directly connected with many other transforms proposed in the literature.

27.2.9.1 Multiresolution Fourier Transform

The multiresolution Fourier transform (MFT) is a windowed Fourier transform at different resolutions
and the digital implementation is usually done by a similar lapped block transform like the MPCT with a

s = 1, spatial domain s = 1, frequency domain

s = 2, spatial domain s = 2, frequency domain

s = 3, spatial domain s = 3, frequency domain

FIGURE 27.11 Frequency tilings of the MPCT.
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local FFT operator. Due to the close relationship between PCT and FFT, the MPCT can also be seen as a
real version of the MFT, and the assumption of polar symmetric boundary extension increases the
sparsity of the transformed coefficients. Unlike the conventional 2-D DCT, which is constructed by
tensor product of the 1-D transform, the local operator PCT of MPCT is a true polar transform,
combining the merits of both FFT and DCT into one setting.

27.2.9.2 Ridgelets and Curvelets

The first digital curvelet transform, the so-called curvelet-99 implementation proposed in Ref. [7] also
adopts a multiscale lapped block transform approach. The level operator used in that specific transform
was an undecimated á trous wavelet transform. While the redundancy is useful in the denoising task,
substituting it with a less redundant operator like the Laplacian pyramid would still retain the curvelet
notion. The local operator is the digital ridgelet transform which is a 1-D wavelet transform on Fast Slant
Stack Radon slices. Therefore, the essential difference between the curvelet-99 transform and the MPCT
transform is just the 1-D transform performed on Radon slices: one being the wavelet and another being
the cosine transform.
In Ref. [35], implementations of possible digital ridgelet packets were discussed. One of these uses a

basis on the Radon domain from a wavelet packet or cosine packet dictionary. This coincides with the
polar cosine packets discussed before, which can be used to deal with features like both ridgelet and polar
cosine basis functions.
It is clear that the Fourier Slice Theorem is the fundamental tool in implementing the Radon

transform, and it links the curvelets, polar cosine, and Fourier transforms. The relationship between
these multiscale lapped transforms can be illustrated schematically as in Figure 27.12.

27.2.9.3 Brushlets and Wave Atoms

The brushlets, proposed by Meyer and Coifman [19], partition the Fourier frequency plane by local
cosine windowing, achieving basis functions of directional oscillating patterns localized in orientation,
frequency, location, and scale. However, due to the nature of frequency implementation and the choice
of the window, the basis functions are not well localized in space, with significant spreads. The recently
introduced 2-D wave atoms frame [36] as implemented by using the Villemoes wavelet packets [37] in
the frequency domain. The resulting basis functions are much like brushlets, but with only two bumps in
the spatial domain.
The MPCT’s basis functions are in essence same as the brushlets and wave atoms, but the trans-

form is implemented by spatial windowing instead of frequency windowing. The MPCT and these
two transforms are spatial-frequency duals of the same idea, like wavelet packets and the local trigono-
metric bases.

MFT (polar) 1D FFT

Multiscale polar 
cosine transform

Local radon
transform

1D DWT

1D DCT

Curvelet

FIGURE 27.12 Relationships between MFT, local radon, curvelet, and MPCT.
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27.2.10 Image Denoising in the PCT Domain

In order to demonstrate the effectiveness of the MPCT transform, the transform is applied to the task of
noise removal in 2-D by thresholding the transformed coefficients.
The MPCT implementation used in the denoising has the following configuration:

1. Level of decomposition, or the total number of scales is set to J ¼ 5.
2. Local window is 16� 16, modulated with a squared cosine.
3. Windows are overlapped by 50%.
4. Threshold for each scale is computed as

T s ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logM2

p
s

1:23 J�s
(27:37)

with a set to a ¼ 0:08 for the MPCT and a ¼ 0:062 for the MPCPT. In the above equation, s is the
standard deviation of the noise. The best basis is computed according to the cost function [38]:

M( f , T s) ¼
XN
i¼1

F jh f ,ck[i]ij2

 �

, (27:38)

where

F(u) ¼ u� s2 if u � T 2
s ,

s2 if u > T 2
s .

(
(27:39)

27.2.11 Denoising Results

The potential of nonlinear filtering in the PCT domain is demonstrated here for two standard images:
barbara which contains some directional and nondirectional periodic textures and lena which can be
regarded as one of the ‘‘curvelet-friendly’’ images, since it mainly consists of linear singularities at
different scales. These images are given in Figure 27.13.
It can be seen from the denoising results in Figures 27.14 and 27.15 that the wave atoms approach

produces unpleasant artifacts on lena, due to the fact that its basis functions are not well localized

Barbara Lena

FIGURE 27.13 Two standard images for denoising experiments.
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Curvelets, 17.64 dB Wave atoms, 19.22 dB

MPCT–X, 18.75 dB MPCPT, 18.85 dB

FIGURE 27.14 Comparative denoising results on detailed 10 dB barbara.

Curvelet, 23.10 dB Wave atom, 23.21 dB

MPCT-X, 22.88 dB MPCPT, 24.26 dB

FIGURE 27.15 Comparative denoising results on detailed 15 dB lena.
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in space and due to its inability to model edges well. The curvelet transform, MPCT, and MPCPT are all
constructed by block-based local transforms on top of the Laplacian pyramid. The MPCT
gives consistently better numerical results than curvelets, as well as well-matched visual results. Although
the underlying local operator has an oscillatory pattern instead of anisotropic ridge forms, the overlap-
ping blocks effectively compensate for the drawback in edge areas by confining the oscillations locally. In
textural regions, the MPCT shows significant gains over the curvelets. The MPCT packet denoising, as
expected, combines the merits of both curvelet transform and the MPCTs into one setting.
The difference in the numerical results between the MPCT-II and MPCT-X is compatible with the

nonlinear approximation results in Section 27.2.5. The MPCT-X generally performs better with heavier
noise, and MPCT-II can outperform MPCT-X by a significant margin when there is less noise. However,
visually, the two implementation do not differ significantly. Overall, the MPCPT can be regarded as the
winner for its better visual quality as well as numerical error measures.

27.3 Planelets

We now turn our attention to planelets, a special-purpose nonseparable representation for 3-D
image data.

27.3.1 Introduction

As mentioned earlier in this chapter, locally planar structures, such as moving edges or interfaces
between volumes, convey most of the information in 3-D image data. Preservation of such features
requires a basis in which they are sparsely represented. An obvious choice might, therefore, seem to be
the Fourier basis, since a planar surface in a volume corresponds to a line in the Fourier domain.
Of course, this misses the key epithet: local; all image data show only local planarity, with curvature a
significant feature at larger scales.
Planelets are designed specifically to efficiently represent planar singularities in 3-D image data.

Extraction of such planar features may be useful in various applications, such as video denoising,
video coding, geometry estimation [39], and tracking of objects in video sequences. Planelet represen-
tation offers translation invariance, good orientation-selectivity, localization in both space and time,
invertibility, and efficient computation. The planelet basis has a combination of scaling, locality,
and directional characteristics which are well matched to the locally planar surfaces of interest in
applications.
Planelets can be regarded as a modification of the complex wavelet bases proposed in Refs. [40,41]. The

computational complexity of a planelet transform is O(n), where n is the number of points in analysis
window. The computational complexity of planelet denoising is essentially equivalent to a windowed
Fourier transform (WFT) and it does not require any motion estimation. In its current form, the
representation provides a nonorthogonal basis and is redundant by less than 14%.

27.3.2 Continuous Planelet Transform

A prototypical planelet basis function in 1-D is of the following form:

fj,v,a(x) ¼ win
x � j

a

� �
exp �j

v(x � j)
a

� �
, (27:40)

where j,v, and a are, respectively, the location, frequency, and scale parameters of the function. The
function win(�) is a window function, chosen alongwith the sampling interval to ensure invertibility
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of the discrete form of the transform. In 2-D, the planelet basis can be regarded as a modification of the
complex wavelet bases proposed in Refs. [40,41], which show both translation invariance and directional
selectivity, and may be used as an alternative to the ridgelet representation. In 3-D, the basis comprises
of the set of Cartesian products over j,v at each scale a. That the continuous transform defined by
Wilson et al. [40] is invertible follows directly from the observation that it is simply the MFT [40].

27.3.3 Discrete Planelet Transform

The discrete form, however, is significantly different from that described in Ref. [40]. The discrete
planelet transform (DPT) is a combination of two well-known image transforms: the Laplacian pyramid
[42] and the WFT. In some ways, it is similar to the octave band Gabor representation proposed in
Ref. [43], but avoids some of the more unpleasant numerical properties of the Gabor functions. The DPT
of a video sequence x, in vector form, at scale m is given by

X̂m ¼ F n(I � Gm,mþ1Gmþ1,m)xm, (27:41)

where
X̂m denotes the DPT at scale m
F n is the WFT operator with window size n� n� n
I is the identity operator
xm is the Gaussian pyramid representation of x at level m

xm ¼
Ym�1

0

Glþ1, lx (27:42)

Gm,mþ1,Gmþ1,m are the raising and lowering operators associated with transitions between levels in
the Gaussian pyramid

Invertibility follows directly from Equations 27.41 and 27.42.

THEOREM 27.2

The representation defined by Equation 27.41 is invertible.

Proof: First we note that the WFT operator F n has an inverse, which can be denoted by F�1
n . Second,

we know from Burt and Adelson that the Laplacian pyramid is invertible, since, trivially,

xm ¼ xm � Gm,mþ1xmþ1 þ Gm,mþ1xmþ1 (27:43)

and the proof is completed by induction on m.

Importantly, although both the pyramid and WFT operators are Cartesian separable, the closeness
of the Burt and Adelson filter to a Gaussian function gives the pyramid virtually isotropic behavior,
which can be exploited well by the high-frequency resolution of a Fourier basis. The planelet basis
functions resemble planar structures and have compact support in both space–time and spatiotemporal
frequency.
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27.3.4 Denoising Algorithm

The denoising algorithm works in three steps: forward DPT, adaptive thresholding, and inverse DPT.
The coefficients of D forward DPT of the image volume are computed using the algorithm outlined in
Section 27.3.3. Since the presence of additive Gaussian white noise means that almost all the DPT
coefficients are affected by it, soft thresholding would reduce the contribution of noise to the restored
image volume. Based on the assumption that the coefficients relatively small in magnitude at each
resolution (i.e., below a certain threshold) are most probably due to the noise variation, coefficients with
magnitude above a certain threshold are kept while the remaining ones are discarded. The inverse DPT,
therefore, provides an estimation of the original uncorrupted image volume.
The choice of threshold is crucial to the performance of this type of transform domain denoising.

Donoho and Johnstone [44] have shown that an adaptive threshold u given by

u ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log n

p
(27:44)

is an asymptotically optimal choice for threshold value when denoising a 1-D noisy signal, where
n denotes the number of samples in the signal and s is standard deviation of the additive Gaussian
white noise. Our experiments showed that using an adaptive threshold for coefficients at different
resolutions gives better denoising results as compared to using same threshold value for trans-
form coefficients at all resolutions. We use threshold value ui for coefficients at level i of the pyramid
as given by

ui ¼ L(s)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log ni

p
, (27:45)

where
ni denotes the number of pixels at level i of the pyramid
L(s) is a suitably chosen function of s

The following expression for L(s) was empirically chosen for our experiments:

L(s) ¼ a log10 sþ b, (27:46)

where a, b 2 < and b ¼ 2a.

27.3.5 Planar Feature Extraction

Planelets provide an ideal tool for representing local planes in a video sequence (or an image volume,
in general) due to their ability to localize planar surfaces which correspond to lines in the Fourier
domain. The presence of planar surface in a local analysis window can be inferred by computing
the eigenvalues of the local inertia tensor in the window and analysing them. The parameters
for orientation of the local planar surface and translation from center of the window can also be
estimated by analyzing the most significant coefficients in the locality. Consider a video sequence
synthesized by moving the center of a circle on a sinusoidal wave in the time direction. Nonlinear
approximations of this sequence using only 0.07% of the wavelet and planelet coefficients are shown
in Figures 27.16a and b, respectively. It is clear from this example that the planelet approximation of a
video sequence containing locally planar surfaces can result in a smaller approximation error as
compared to that using wavelets. Planelets, therefore, can also be used for a piecewise planar
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approximation of a video sequence. Moreover, the approximation can be made to be adaptive to the
local scale of the planar surfaces.

27.4 3-D Wavelet Packets

The case for thresholding in spatiotemporal wavelet domain is supported by the fact that certain errors in
motion estimation can be overcome by including the temporal direction in the realm of wavelet domain.
Recent attempts to solve the video restoration problem have included combined spatial and temporal
wavelet denoising [45], and the use of thresholding in nonseparable transform domains, such as oriented
3-D ridgelets [46] and 3-D complex wavelets [47].
Although wavelet shrinkage performs significantly better than most other commonly used denoising

methods, visual quality of the restored video can sometimes suffer from ringing type of artifacts, valleys
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FIGURE 27.16 Nonlinear approximation of a video sequence containing a moving circle using (a) wavelets and
(b) planelets.
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around the edges, due to the Gibbs phenomenon. The shift-variant nature of the wavelet transform
worsens the effect of the Gibbs phenomenon, resulting in unpleasant artifacts. Translation invariant (TI)
wavelet denoising of Coifman and Donoho [48] was developed to counter such artifacts by averaging out
the translation dependence. Another feature of wavelet denoising is that it imposes a fixed dyadic wavelet
basis on all types of input signals. Not only can the use of dyadic wavelets result in a blurred
reconstruction, it can also limit the analysis of a locally occurring phenomenon in the spatiotemporal
frequency domain. The solution to this problem lies in the use of basis functions which are well localized
in spatiotemporal frequency as well as in space and time.

27.4.1 Adaptive 3-D WP Transform

The ability of wavelet packets to capture locally occurring frequency phenomena in a signal has led to
their successful application to many problems including image coding [49,50]. The fundamental idea is
to relax the restricted decomposition of only the lowpass subband and allow the exploration of all
frequency bands up to the maximum depth. The discrete wavelet packet transform (DWPT) of a 1-D
signal x of length N can be computed as follows:

w2n,d,l ¼
X
k

gk�2lwn,d�1,k l ¼ 0, 1, . . . ,N2�d � 1,

w2nþ1,d,l ¼
X
k

hk�2lwn, d�1,k l ¼ 0, 1, . . . ,N2�d � 1,

w0,0,l ¼ xl l ¼ 0, 1, . . . ,N � 1,

where d ¼ 1, 2, . . . , J � 1 is the scale index, with J ¼ log2 N , n and l, respectively, denote the frequency
and position indices, fhng and fgng correspond to the lowpass and highpass filters, respectively, for a
two-channel filter bank and the transform is invertible if appropriate dual filters f~hng, f~gng are used on
the synthesis side. These equations can be used to compute full wavelet packet (FWP) tree of the signal
decomposition. However, this implies that a large number of combinations of basis functions is now
available to completely represent the signal. A tree-prunning approach such as Ref. [51] can be used to
efficiently select the best basis with respect to a cost function.
The 3-D DWPT can be computed by applying above equations separably in all three directions to

get the FWP decomposition up to the coarsest resolution of subbands. The best basis can be selected in
O(N log N) time, where N denotes the number of samples (frame resolution times the number of frames)
in the video sequence. Given the goal here is to capture the significant spatiotemporal frequency
phenomena in a video sequence, we used the Coifman–Wickerhauser entropy [51] as a cost function
to select the best basis.

27.4.2 Restoration Algorithm

The effect of the Gibbs phenomenon can be weakened by averaging the restored signal over a range of
circular shifts [48]. For this reason, we apply soft threhsolding to the 3-D wavelet packet coefficients of
the shifted (in all three directions) noisy video sequence. A modified BayesShrink [52] method is used to
compute the optimal value of threshold adaptively for each subband. Threshold ub for a subband of
length N in an L-level WP decomposition is given by
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ub ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logN=L

p s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max s2

b � s2, 0



)
q

0
B@

1
CA,

where
s2
b is the subband variance

s2 is the noise variance

If s2 is not known, a robust median estimate for noise standard deviation ŝ is obtained as follows:

ŝ ¼ EfŜg, ŝi ¼ Median(jYij)
0:6745

,

where ŝi 2 Ŝ,Yi 2 fYg, set of all HHH bands in the decomposition tree, and the mean E is taken only
on the smaller half of the sorted Ŝ excluding the smallest value.

27.5 Discussion and Conclusion

The denoising algorithms presented in Sections 27.3.4 and 27.4.2 were tested against a number of
other algorithms for restoration of several standard video sequences, three of which are included
here: Miss America, Hall, and Football, all at a resolution of 1283. The video sequences were corrupted
with additive white Gaussian noise, with the SNR of the noisy sequences being 0, 5, 10, and 15 dB.
Table 27.3 gives denoising results in terms of SNR for these noisy sequences using the following
algorithms: TI hard thresholding in 3-D wavelet domain (TIW3-D) 3-D wavelet packet (WP3-D) with
BayesShrink [52], both non-TI and TI 3-D wavelet packet (TIWP3-D) with the modified form of

TABLE 27.3 SNR Results for Three Standard Video Sequences

Denoising Algorithm (Transform þ Thresholding)

Video Noise TIW3D WP3D WP3D TIWP3D Planelet
Sequence (dB) Hard Bayes Proposed Proposed SURE

0 17.9 17.2 17.4 18.9 17.3

5 19.5 19.0 19.3 20.7 19.6

Miss America 10 21.5 21.1 21.5 23.0 21.5

15 23.9 23.1 23.8 25.2 23.5

0 14.7 14.8 15.0 16.7 14.8

5 16.6 17.2 17.3 18.9 17.2

Hall 10 19.0 19.5 19.8 21.3 19.5

15 21.7 22.1 22.5 24.1 21.8

0 11.9 11.9 12.0 12.8 12.1

5 13.1 12.9 13.3 14.3 13.2

Football 10 15.0 13.9 15.2 16.9 14.7

15 18.0 15.3 17.9 20.0 16.6
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BayesShrink described in Section 27.4.2, and nonseparable planelet [53] domain thresholding using
SUREShrink [54] method. Comparative SNR curves for individual frames for two of the test sequences
are provided in Figure 27.17. For all our experiments, the proposed algorithm produces by far the best
results in terms of both overall and individual SNR. Some of the frames of the test sequences restored
by our algorithm and TIW3-D-Hard, a 3-D realization of the algorithm in Ref. [48], are shown in
Figure 27.18. While TIW3-D restores clean and smooth version of the original frames, some of the
details are restored by TIWP3-D.
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FIGURE 27.17 Frame-by-frame comparative results (a) Miss America and (b) Football.
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For comparison purposes, computational complexity for each of the algorithms considered is also
provided in Table 27.4. It is clear from this table that the planelet algorithm of Ref. [53] is the least
computationally expensive, whereas the TI implementations of 3-D wavelet and 3-D WP are towards
the more expensive side with TIWP3-D being the most expensive due to the additional one-off cost of
best basis selection.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIGURE 27.18 Denoising results for three standard video sequences. Frame# 90 of Miss America: (a) Original, (b)
Noisy (SNR ¼ 0 dB), (c) TIW3D-Hard (SNR ¼ 17:9 dB), and (d) TIWP3D (SNR ¼ 18:9 dB); Frame# 106 of Hall:
(e) Original, (f ) Noisy (SNR ¼ 10 dB), (g) TIW3D-Hard (SNR ¼ 19:0 dB), and (h) TIWP3D (SNR ¼ 21:3 dB);
Frame# 60 of Football: (i) Original, (j) Noisy (SNR ¼ 5 dB), (k) TIW3D-Hard (SNR ¼ 13:1 dB), and (l) TIWP3D
(SNR ¼ 14:3 dB).

TABLE 27.4 Computational Complexity
of the Tested Algorithms

Algorithm Complexity

TIW3D Hard O(N þ l3N)

WP3D Bayes O(N logN)

WP3D Proposed O(N logN)

TIWP3D Proposed O(N logN þ l3N)

Planelet SURE O(n)

Note: N and n, respectively, denote sequence
size and the planelet window size, and l denotes
length of the wavelet filter.
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In conclusion, planelets are an efficient representation tool for 3-D functions with planar singular-
ities. Such singularities are commonly found in video sequences in the form of moving luminance
edges. A piecewise planar approximation of a video sequence can be obtained by using a very small
fraction of transform coefficients in the planelet domain. The ability of planelets to extract planar
features from a video sequence makes them an attractive tool for analysis in various applications. It is
worth noting that while being the least expensive, the planelet method [53] produces SNR results which
are still comparable to those of TIW3-D-Hard. These results also suggest that the localization of
spatiotemporal frequency, achieved by TIWP3-D, is a desirable feature of the domain in which video
sequences are represented.

References

1. S. Clippingdale and R. Wilson. Least squares image restoration based on a multiresolution model.
In Proceedings ICASSP-89, Glasgow, U.K., 1989.

2. D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture in
the cat’s visual cortex. Journal of Physiology, 160:106–154, 1962.

3. B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properities by learning a
sparse code for natural images. Nature, 381:607–609, 1996.

4. B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed
by V1? Vision Research, 37:3311–3325, 1997.

5. E. J. Candés. Ridgelets: Theory and applications. PhD thesis, Department of Statistics, Stanford,
University, Stanford, CA, 1998.

6. E. J. Candés and D. L. Donoho. Curvelets—A suprisingly effective non-adaptive representation
for objects with edges. In C. Rabut, A. Cohen, and L. L. Schumaker, editors, Curves and Surfaces,
pp. 105–120. Vanderbilt University Press, Nashville, TN, 2000.

7. J. Starck, E. J. Candés, and D. L. Donoho. The curvelet transform for image denoising. IEEE
Transactions on Image Processing, 11(6):670–684, June 2002.

8. D. Donoho. Wedgelets: Nearly-minimax estimation of edges. Annals of Statistics, 27:353–382, 1999.
9. D. L. Donoho and X. Huo. Beamlets and multiscale image analysis, Multiscale and Multiresolution

Methods: Theory and Applications, 20:149–196, 2002.
10. M. N. Do and M. Vetterli. Contourlet. In G. V. Welland, editor, Beyond Wavelets. Academic Press,

New York, 2003.
11. M. N. Do and M. Vetterli. The contourlet transform: An efficient directional multiresolution image

representation. IEEE Transactions Image Processing, 14(12):2091–2106, December 2005.
12. F. G. Meyer and R. R. Coifman. Brushlets: A tool for directional image analysis and image

compression. Applied and Computational Harmonic Analysis, 4(2):147–187, 1997.
13. P. Pongpiyapaiboon. Development of efficient algorithms for geometrical representation based on

arclet decomposition. Master’s thesis, Technische Universität München, Germany, 2005.
14. N. G. Kingsbury. Image processing with complex wavelets. Philosophical Transactions of the Royal

Society London, A(357):2543–2560, September 1999.
15. P. Auscher, G. Weiss, and M. V. Wickerhauser. Local sine and cosine bases of Coifman and Meyer

and the construction of smooth wavelets. In C. K. Chui, editor, Wavelets: A Tutorial in Theory and
Applications, pp. 237–256. Academic Press, San Diego, 1992.

16. G. Aharoni, R. Coifman A. Averbuch, and M. Israeli. Local cosine transform—A method for
the reduction of the blocking effect in JPEG. Journal of Mathematical Imaging and Vision, 3:7–38,
1993.

17. R. R. Coifman and Y. Meyer. Orthonormal wave packet bases. Technical report, Department of
Mathematics, Yale University, New Haven, 1990.

18. K. Ramchandran and M. Vetterli. Best wavelet packet bases in a rate distortion sense. IEEE
Transactions on Image Processing, 2(2):160–175, April 1993.

Nonlinear Filtering for Image Denoising 27-31



19. F. G. Meyer and R. R. Coifman. Brushlets: Steerable wavelet packets. In J. Stoeckler and G. V.
Welland, editors, Beyond Wavelets, pp. 1–25. Academic Press Inc., New York, 2001.

20. R. Wilson and G. H. Granlund. The uncertainty principle in image processing. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 6(11):758–767, 1984.

21. A. Pinkus. Approximating by ridge functions. In A. Le Mehaute, C. Rabut, and L. L. Schumaker,
editors, Surface Filling and Multiresolution Methods, pp. 279–292, Vanderbilt University Press,
Nashville, TN, 1997.

22. R. N. Bracewell. Numerical transforms. Science, 248:697–704, 1990.
23. N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform. IEEE Transactions on Computers,

100(23):90–93, January 1974.
24. G. K. Wallace. The JPEG still picture compression standard. Consumer, Electronics, IEEE Transac-

tions, 38(1):30–44, April 1992.
25. A. Averbuch, R. Coifman, D. L. Donoho, and M. Israeli. Fast slant stack: A notion of Radon

transform for data in a Cartesian grid which is rapidly computible, algebraically exact, geometrically
faithful and invertible. To appear in SIAM Scientific Computing.

26. A. Averbuch, R. Coifman, D. Donoho, M. Israeli, and J. Walden. The pseudopolar FFT and its
applications. Technical report, University of Yale, New Haven, CI 1999. YaleU=DCS=RR-1178.

27. E. J. Candés and D. L. Donoho. Ridgelets: A key to higher-dimensional intermittency? Philosophical
Transactions of the Royal Society of London A, 357(1760): 2495–2509, 1999.

28. T. Aach and D. Kunz. A lapped directional transform for spectral image analysis and its application
to restoration and enhancement. Signal Processing, 80:2347–2364, 2000.

29. E. J. Candés, L. Demanet, D. Donoho, and L. Ying. Fast discrete curvelet transforms. Technical
report, California Institute of Technology Pasadena, CA, July 2006.

30. R.R. Coifman and Y. Meyer. Remarques sur l’analyse de Fourier à fenêtre. Comptes Rendus de
I’Academie des Sciences, Série 1, Mathematique, 312(3):259–261, 1991.

31. H. S. Malvar. Lapped transforms for efficient transform=subband coding. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 38:969–978, 1990.

32. R. R. Coifman and M. V. Wickerhauser. Entropy-based algorithms for best basis selection. IEEE
Transactions on Information Theory, 38(2):713–718, 1992.

33. G. H. Granlund. In search of a general picture processing operator. Computer Graphics and Image
Processing, 8:155–173, 1978.

34. P. J. Burt and E. H. Adelson. The Laplacian pyramid as a compact image code. IEEE Transactions on
Communications, 31:532–540, 1983.

35. A. G. Flesia, H. Hel-Or, A. Averbuch, E. J. Candés, R. R. Coifman, and D. L. Donoho. Digital
implementation of ridgelet packets. In G. Welland, editor, Beyond Wavelets, pp. 31–60. Academic
Press, New York, September 2003.

36. L. Demanet and L. Ying. Wave atoms and sparsity of oscillatory patterns. Applied Computational
Harmonic Analysis, 23(3):368–387, 2007.

37. L. Villemoes. Wavelet packets with uniform time–frequency localization. Comptes-Rendus Mathe-
matique, 335(10):793–796, 2002.

38. H. Krim, D. Tucker, S. Mallat, and D. Donoho. On denoising and best signal representation. IEEE
Transactions on Information Theory, 45(7):2225–2238, November 1999.

39. A. Bhalerao and R. Wilson. A Fourier approach to 3-D local feature estimation from volume data. In
Proceedings British Machine Vision Conference, Manchester, U.K., 2001.

40. R. G. Wilson, A. D. Calway, and E. R. S. Pearson. A generalized wavelet transform for Fourier
analysis: The multiresolution Fourier transform and its applications to image and audio signal
analysis. IEEE Transancation on Information Theory, 38(2):674–690, March 1992.

41. N. Kingsbury. Image processing with complex wavelets. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 357(1760): 2543–2560, 1999.

27-32 Passive, Active, and Digital Filters



42. P. J. Burt and E. H. Adelson. The Laplacian pyramid as a compact image code. IEEE Transactions on
Communications, 31:532–540, 1983.

43. M. Porat and Y. Y. Zeevi. The generalized Gabor scheme of image representation in biological and
machine vision. IEEE Transactions on PAMI, 10:452–468, 1988.

44. D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation via wavelet shrinkage. Biometrika, 31:425–
455, 1994.

45. A. Pizurica, V. Zlokolika, and W. Philips. Combined wavelet domain and temporal video denoising.
In Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance
(AVSS), July 2003.

46. P. Carre, D. Helbert, and E. Andres. 3-D fast ridgelet transform. In Proceedings of the IEEE
International Conference on Image Processing (ICIP), September 2003.

47. I. W. Selesnick and K. Y. Li. Video denoising using 2-D and 3-D dual-tree complex wavelet
transforms. In Proceedings SPIE Wavelets X, August 2003.

48. R. R. Coifman and D. L. Donoho. Translation-invariant denoising. InWavelets and Statistics. Lecture
Notes in Statistics, 1995.

49. F. G. Meyer, A. Z. Averbuch, and J.-O. Strömberg. Fast adaptive wavelet packet image compression.
IEEE Transactions on Image Processing, 9:792–800, May 2000.

50. N. M. Rajpoot, R. G. Wilson, F. G. Meyer, and R. R. Coifman. Adaptive wavelet packet basis selection
for zerotree image coding. IEEE Transactions on Image Processing, 12(12):1460–1472, December
2003.

51. R. R. Coifman and M. V. Wickerhauser. Entropy-based algorithms for best basis selection. IEEE
Transactions on Information Theory, 38(2):713–718, March 1992.

52. G. Chang, B. Yu, and M. Vetterli. Adaptive wavelet thresholding for image denoising and compres-
sion. IEEE Transactions on Image Processing, 9(9):1532–1546, September 2000.

53. N. M. Rajpoot, R. G. Wilson, and Z. Yao. Planelets: A new analysis tool for planar feature extraction.
In Proceedings of the 5th International Workshop on Image Analysis for Multimedia Interactive
Services (WIAMIS), April 2004.

54. M. Jansen. Noise Reduction by Wavelet Thresholding. Springer-Verlag, New York, 2001.

Nonlinear Filtering for Image Denoising 27-33





28
Video Demosaicking

Filters

Bahadir K. Gunturk
Louisiana State University

Yucel Altunbasak
Georgia Institute of Technology

28.1 Introduction ............................................................................ 28-1
28.2 Imaging Model ....................................................................... 28-2
28.3 Demosaicking Methods........................................................ 28-4

Single-Channel Interpolation . Constant-Hue-Based
Interpolation . Edge-Directed Interpolation . Using Gradients
as Correction Terms . Frequency-Domain Approach .

Homogeneity-Directed Interpolation . Projections
onto Convex Sets Approach . Spectral Response Modeling

28.4 Demosaicking of Video and Super-Resolution
Reconstruction...................................................................... 28-16

28.5 Related Research Problems................................................ 28-18
28.6 Evaluation of Demosaicking Algorithms ....................... 28-19
28.7 Conclusions and Future Directions................................. 28-20
Acknowledgments............................................................................ 28-20
References .......................................................................................... 28-20

28.1 Introduction

Consumer-level digital cameras were introduced in mid-1990s; in about a decade, the digital camera
market has grown rapidly to exceed film camera sales. Today, there are point-and-shoot cameras with
more than 8 million pixels; professional digital single lens reflex (SLR) cameras with more than 12
million pixels are available; resolution, light sensitivity, and dynamic range of the sensors have been
improved significantly. Image quality of digital cameras has become comparable to that of film cameras.
During an image capture process, a digital camera performs a significant amount of processing to

produce a viewable image. This processing includes auto focus, white balance adjustment, color inter-
polation, color correction, compression, and more. A very important part of the imaging pipeline is color
filter array interpolation or demosaicking.
To produce a high-quality color image, there should be at least three color samples at each pixel

location. One approach is to use beam-splitters along the optical path to project the image onto three
separate sensors as illustrated in Figure 28.1. Using a color filter in front of each sensor, three full-channel
color images are obtained. This is a costly approach as it requires three sensors and these sensors should
be aligned precisely. A more convenient approach is to put a color filter array (CFA) in front of the sensor
to capture one color component at a pixel and then interpolate the missing two color components.
Because of the mosaic pattern of the CFA, this interpolation process is known as demosaicking.
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A variety of patterns exist for the color filter array. Some of these patterns are illustrated in Figure 28.2.
Among these, the most common array is the Bayer color filter array. The Bayer array measures the green
image on a quincunx grid and the red and blue images on rectangular grids. The green image is measured
at a higher sampling rate because the peak sensitivity of the human visual system lies in the medium
wavelengths, corresponding to the green portion of the spectrum (see Figure 28.3). Although this chapter
discusses the demosaicking problem with reference to the Bayer CFA, the discussions and algorithms can
in general be extended to other patterns.
The simplest solution to the demosaicking problem is to apply a standard image interpolation

technique to each channel separately. However, this neglects the correlation among color channels and
results in visible artifacts. For example, in Figure 28.4, Bayer sampling is applied on a full-color image and
later bicubic interpolation is applied on each channel. The resulting image suffers from color artifacts.
This result motivates the need to find a specialized algorithm for the demosaicking problem. There have
been many algorithms published on this topic; this chapter surveys the main approaches.

28.2 Imaging Model

Most demosaicking algorithms model the imaging process as subsampling from a full-color image to a
mosaicked data. This is a sufficient model when the goal is only to estimate the missing color samples.
(When the goal is to obtain a higher resolution image, then the modulation transfer function of the
camera should also be taken into account.)

Scene

Lens

(a)

Beam-splitter

Filter

Sensor

(b)
Scene

Lens

CFA

Sensor

FIGURE 28.1 Illustration of optical paths for multichip and single-chip digital cameras.

FIGURE 28.2 Several CFA designs are illustrated. From left to right: (a) This is the most commonly used CFA
pattern: the Bayer CFA pattern. It consists of red, green, and blue samples. It leads to very good color reproduction
performance. (b) This is the Bayer pattern with subtractive primaries: yellow, magenta, and cyan. The color filters
have high transmittance values; therefore, good performance in low-light conditions is expected. (c) This pattern uses
red, green, blue, and emerald. It is recently used in some Sony cameras. (d) This is a pattern commonly used in video
cameras; it consists of yellow, magenta, cyan, and green. (e) This pattern consists of yellow, cyan, and green filters,
and unfiltered pixels. The unfiltered pixels improve light sensitivity. (f) This is a pattern that is introduced very
recently by Kodak. It has red, green, blue, and unfiltered pixels.
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According to this model, a full-color channel S, where S ¼ R for red, S ¼ G for green, and S ¼ B for
blue, is converted to a mosaicked observation z according to a CFA sampling pattern:

z ¼
X

S¼R,G,B

zS ¼
X

S¼R,G,B

MSS, (28:1)

where
zR, zG, zB are the subsampled color channels
mask MS takes a color sample at a pixel according to the CFA pattern

0
400

(a)
450 500 550 600 650 700

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Re
lat

ive
 re

sp
on

se

Wavelength (nm)

Photopic
Scotopic

0
400

(b)
450 500 550 600 650 700

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wavelength (nm)

Re
lat

ive
 re

sp
on

se

B

G

RIR cut filter

FIGURE 28.3 (a) Luminous efficiency of human visual system. Photopic response is the luminance response of the
cone receptors. Scotopic response is the luminance response of the rod receptors, that is, response in low-light
conditions. (b) Typical color filter responses in a digital camera.
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For example, at a red pixel location, [MR,MG,MB] is [1, 0, 0].
In Ref. [1], the masks are explicitly written for a Bayer CFA in terms of cosine functions:

zR(i, j) ¼ MR(i, j)R(i, j) ¼ 1
4
(1� cospi)(1þ cospj)R(i, j),

zG(i, j) ¼ MG(i, j)G(i, j) ¼ 1
2
(1þ cospi cospj)G(i, j),

zB(i, j) ¼ MB(i, j)B(i, j) ¼ 1
4
(1þ cospi)(1� cospj)B(i, j),

(28:2)

where (i, j) indicate the pixel coordinates, starting with (0, 0). Figure 28.5 illustrates the CFA image z and
the sampled components zR, zG, and zB.

28.3 Demosaicking Methods

28.3.1 Single-Channel Interpolation

Single-channel interpolation methods treat each channel separately without utilizing any interchannel
correlation. Standard image interpolation techniques, such as bilinear interpolation, bicubic interpola-
tion, spline interpolation, and adaptive methods (e.g., edge-directed interpolation) are applied to each
color channel individually. These methods, in general, do not perform as well as the methods that use
interchannel correlation.
Among these methods, bilinear interpolation is commonly used as a part of other demosaicking

methods. Figure 28.6 provides the linear filters used to perform bilinear interpolation.

(a) (b)

FIGURE 28.4 Bicubic interpolation used for color filter array interpolation results in numerous artifacts.
(a) Original image and (b) bicubic interpolation.

= + +

FIGURE 28.5 The mosaicked image z and the sampled components zR, zG, and zB for the Bayer pattern.
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28.3.2 Constant-Hue-Based
Interpolation

One commonly used assumption in demosaicking
is that the hue (color ratios or differences) within
an object in an image is constant. Although this
is a simplification of image formation, it is a rea-
sonable assumption within small neighborhoods
of an image. This perfect interchannel correlation
assumption is formulated such that the color ratios

or differences within small neighborhoods are constant. This prevents abrupt changes in color intensities,
and has been extensively used for the interpolation of the chrominance (red and blue) channels [2–6]. This
approach is called the constant-hue-based interpolation approach.
As a first step, these algorithms interpolate the luminance (green) channel, which is typically done

using bilinear or edge-directed interpolation. The chrominance (red and blue) channels are then
estimated from the interpolated ‘‘red hue’’ (red-to-green ratio) and ‘‘blue hue’’ (blue-to-green ratio).
To be more explicit, the interpolated ‘‘red hue’’ and ‘‘blue hue’’ values are multiplied by the green value
to determine the missing red and blue values at a particular pixel location. The hues can be interpolated
with any method (bilinear, bicubic, edge-directed, etc.).
As mentioned, instead of interpolating the color ratios, it is also possible to interpolate the color

differences or the logarithm of the color ratios. This is illustrated in Figure 28.7.
It is also possible to update all color channels iteratively. That is, the green channel is interpolated first.

The red=blue channels are interpolated using constant-hue-based interpolation. The green channel is
then updated using the interpolated red=blue channels; and so on [7].
The constant difference idea is sometimes combined with median filtering and used as a postproces-

sing step to reduce color artifacts [5,8,9]. For example, in Ref. [9], the interpolated color channels are
updated as follows:

G0(i, j) ¼
R(i, j)�median

(i, j)
(R� G)

� �
þ B(i, j)�median

(i, j)
(B� G)

� �
2

,

R0(i, j) ¼ G0(i, j)þmedian
(i, j)

(R� G),

B0(i, j) ¼ G0(i, j)þmedian
(i, j)

(B� G),

(28:3)

0

0

0

0
(a) (b)

1/4 1/4 1/4

1/4 1/4
1/2 1/2

1/2

1/2
1–1/4 1/4

1/4
1

FIGURE 28.6 Filters for bilinear interpolation. (a) Fil-
ter applied on zG to obtain the green channel and (b)
filter applied on zR=zB to obtain the red=blue channels.

Red

Green Interpolate

Interpolate Interpolated
red

FIGURE 28.7 Constant-hue-based interpolation is illustrated for the interpolation of red channel. (From
Gunturk, B. K., et al., IEEE Signal Process. Mag., 22, 44, 2005. With permission.)
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where median(i, j)(�) returns the median within a small neighborhood of (i, j). In Ref. [8], red and blue
channels are updated first as given in the above equation, followed by the green channel update. This
procedure is repeated several times.

28.3.3 Edge-Directed Interpolation

Although nonadaptive algorithms can provide satisfactory results in smooth regions of an image, they
usually fail in textured regions and edges. Edge-directed interpolation is an adaptive approach, where
edge detection is performed for each pixel in question, and interpolation is done along the edges rather
than across them.
In the demosaicking problem, edge-directed interpolation is first applied to the green channel, which is

sampled more densely and therefore is less likely to be aliased. Red and blue channel interpolations
follow, based on the edge directions found for the green channel. A simple way of performing edge
detection is to compare the absolute difference among the neighboring pixels [10]. Referring to Figure
28.8, horizontal and vertical gradients at a missing green location can be calculated from the horizontally
and vertically adjacent green pixels. If the horizontal gradient is larger than the vertical gradient,
suggesting a possible edge in the horizontal direction, interpolation is performed along the vertical
direction. If the vertical gradient is larger than the horizontal gradient, interpolation is performed only in
the horizontal direction. When the horizontal and vertical gradients are equal, the green value is obtained
by averaging its four neighbors. It is also possible to compare the gradients against a predetermined
threshold value [10].
The edge-directed interpolation approach in Ref. [10] can be modified by using larger regions (around

the pixel in question) with more complex predictors and by exploiting the texture similarity in different
color channels. In Ref. [4], the red and blue channels (in the 5� 5 neighborhood of the missing pixel) are
used instead of the green channel to determine the gradients. In order to determine the horizontal and
vertical gradients at a blue (red) sample, second-order derivatives of blue (red) values are computed in
the corresponding direction. This algorithm is illustrated
in Figure 28.9.
Once the missing samples of the green channel are

computed, the red and blue channels are interpolated. A
typical approach for the red=blue interpolation is con-
stant-hue-based interpolation, which was explained in
Section 28.3.2.
In the algorithms explained so far, the edge direction

is determined first, and then the missing sample is
estimated by interpolating along the edge. This is a
‘‘hard’’ decision process. Instead, the likelihood of an
edge in a certain direction can be found, and the inter-
polation can be done based on the edge likelihoods. Such

ΔH = |G2 – G4| // horizontal gradient

if ΔH > ΔV,
G3 = (G1 + G5)/2

else if ΔH < V,
G3 = (G2 + G4)/2

else
G3 = (G1 + G5 + G2 + G4)/4

1
2 3

5
4

ΔV = |G1–G5| // vertical gradient

FIGURE 28.8 Edge-directed interpolation in
Ref. [10] is illustrated.G1,G2,G4, andG5 are mea-
sured green values; G3 is the estimated green value
at pixel 3. (From Gunturk, B. K., et al., IEEE Signal
Process. Mag., 22, 44, 2005. With permission.)

1 
2 

3 4 5 6 7 
8 
9 

ΔH = |(R3 + R7)/2 – R5| // horizontal gradient

if ΔH > ΔV,
G5 = (G2 + G8)/2

else if ΔH < V,

else
G5 = (G4 + G6)/2

G5 = (G2 + G8 + G4 + G6)/4

ΔV = |(R1 + R9)/2 – R5| // vertical gradient

FIGURE 28.9 Edge-directed interpolation in Ref. [4] is illustrated for estimating the green (G) value at pixel 5. The
red (R) values are used to determine the edge direction. When the missing green pixel is at a blue pixel, the blue values
are used to determine the edge direction. (From Gunturk, B. K., et al., IEEE Signal Process. Mag., 22, 44, 2005. With
permission.)
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G
dR

i – 1

dR
i + 1

i + 1ii – 1

Object 1 Object 2

dS
i  = S(i + 1) − S(i − 1)

1

1 + ( dS  
i  )2

Define:

• Interpolate the green at the missing locations:
eR

i−1G(i − 1) + eR
i+1G(i + 1)G(i) =

R(i − 1)
G(i − 1)

R(i + 1)
G(i + 1)R(i) = G(i)

+

• Repeat for three times:
• Interpolate the red using the ratio rule:

• Correct the green to fit the ratio rule:

eS
i  =

eR
i–1 + eR

i+1

eG
i − 1 eG

i + 1

eG
i − 1 + eG

i + 1

G(i − 1)
R(i − 1)

G(i + 1)
R(i + 1)G(i) = R(i)

+eR
i −1 eR

i + 1

eR
i − 1 + eR

i + 1

FIGURE 28.10 Reference [6] is illustrated for a one-dimensional signal. S is a generic symbol for red (R) and green
(G). dSi is the gradient for channel S at location i; and eSi is the corresponding edge indicator.

an algorithm is presented in Ref. [6]. The algorithm defines edge indicators in several directions as
measures of edge likelihood in those directions, and determines a missing pixel intensity as a weighted
sum of its neighbors. If the likelihood of an edge crossing in a particular direction is high, the edge
indicator returns a small value, which results in less contribution from the neighboring pixel of that
direction. The algorithm for one-dimensional signals is illustrated in Figure 28.10. The green channel is
interpolated first; the red and blue channels are interpolated from the red=green and blue=green ratios.
The color channels are then updated iteratively to obey the color-ratio rule. The extension to two-
dimensional images is given in Ref. [6].
A similar algorithm is proposed in Ref. [9], where edge indicators are determined in a 7� 7 window

for the green and a 5� 5 window for the red=blue channels. In this case, the edge indicator function is
based on the L1 norm (absolute difference) as opposed to the L2 norm of Ref. [6]. In Ref. [11], gradients
are filtered adaptively using local means and variances before deciding edge directions. Based on the edge
directions, interpolation is done horizontally, vertically, or bidirectionally. This edge direction selection
procedure is illustrated in Figure 28.11.

28.3.4 Using Gradients as Correction Terms

Linear interpolation methods have much less computational complexity compared to nonlinear methods,
but do not perform as well. When interchannel correlation is included in the linear interpolation, much
better performance can be achieved. Recently, the authors of Ref. [12] demonstrated that gradients in one
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channel can improve the interpolation performance in another one; and it can be put in a linear
interpolation framework: Suppose, the green value at a red location will be estimated by adding the
gradient of the red channel to an initial estimate:

Ĝ(i, j) ¼ Ĝbilinear(i, j)þ aDR(i, j), (28:4)

where
Ĝbilinear(i, j) is the initial estimate obtained through bilinear interpolation
a is a scale factor that controls the amount of correction

DR(i, j) is the gradient of the red channel defined as follows:

DR(i, j) ¼ R(i, j)� 1
4

X
(m, n)¼ (0,�2), (0, 2),

(�2, 0), (2, 0)

� �R(iþm, jþ n): (28:5)

Similarly, the red pixel values at green and blue locations can be estimated using green and blue gradients:

R̂(i, j) ¼ R̂bilinear(i, j)þ bDG(i, j) (28:6)

and

R̂(i, j) ¼ R̂bilinear(i, j)þ gDB(i, j): (28:7)

Specific green and blue gradient definitions are given in Ref. [12]. (Similar equations can be written for
the green pixels at blue locations and for the blue pixels at green and red locations.) To determine
appropriate values for the gain parameters a,b,g, Ref. [12] uses training images to find the least squares
estimates for the gain parameters. These gain parameters are then approximated by integer multiples of

i – 2 i – 1 i i + 1 i + 2

Calculate horizontal gradients
ΔH(i) = 2(G(i + 1) − G(i − 1)) + (R(i + 2) − R(i − 2))

Calculate mean and variance of horizontal gradients
1
3

i+1

j = i−1

1
3

i+1

j = i−1
Σ    (ΔH( j ) − μj)

2

Filter the horizontal gradients

(μi+1− μi−1)ΔH*(i) = μi−1+

Repeat the same procedure to obtain vertical gradients ΔV* (i)
If  ΔH*(i) < α  ΔV*(i) , then interpolate horizontally
Else if  ΔV*(i) <α ΔH*(i) , then interpolate vertically
Else interpolate bidirectionally

μi = Σ    ΔH( j )

σ2
i  =

σ2
i−1

σ2
i−1 + σ2

i+1

FIGURE 28.11 Reference [11] is illustrated. Gradients are calculated, and then adaptively filtered. The interpolation
direction at a pixel is selected based on the relative magnitude of filtered gradients. a is a number in the range [0–1].
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small powers of 1=2. The final results are a ¼ 1=2, b ¼ 5=8, and g ¼ 3=4. The equivalent linear FIR filter
coefficients for each interpolation case are shown in Figure 28.12.
It is possible to incorporate edge-directed interpolation idea to this approach. Reference [13] presents

such an algorithm. The gradient terms are added in either horizontal or vertical directions. The direction
is chosen adaptively based on edge direction estimates. (Historically earlier than Ref. [12], Ref. [13] does
not use training to obtain the optimal coefficients.) Figure 28.13 illustrates this algorithm.

28.3.5 Frequency-Domain Approach

There are two observations that are important for the demosaicking problem. The first is that for natural
images, there is a high correlation among the red, green, and blue channels. All three channels are very
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FIGURE 28.12 Filters (From Malvar, H. S., et al., Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing,
Montreal, Canada, 3, 485–488, 2004. With permission.)
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likely to have the same texture and edge locations. (Because of the similar edge content, we expect this
interchannel correlation to be even higher when it is measured between the high-frequency components
of the channels [14].) The second observation is that digital cameras often use a CFA in which the
luminance (green) channel is sampled at a higher rate than the chrominance (red and blue) channels.
Therefore, the green channel is less likely to be aliased, and details are preserved better in the green
channel than in the red and blue channels. This is illustrated in Figure 28.14.

28.3.5.1 Alias Canceling Interpolation

In Ref. [15], it is assumed that the high-frequency contents of green and red=blue channels are identical;
therefore, high-frequency content of the green image is used to remove aliasing in the red and blue
images. First, the red and blue images are interpolated with a rectangular low-pass filter according to the
rectangular sampling grid. This fills in the missing values in the grid, but allows aliasing distortions into
the red and blue output images. These output images are also the missing high-frequency components
needed to produce a sharp image. However, because the green image is sampled at a higher rate, the high-
frequency information can be taken from the green image to improve an initial interpolation of the red
and blue images. A horizontal high-pass filter and a vertical high-pass filter are applied to the green
image. This provides the high-frequency information that the low sampling rate of the red and blue
images cannot preserve. Aliasing occurs when high-frequency components are shifted into the low-
frequency portion of the spectrum, so if the outputs of the high-pass filters are modulated into the
low-frequency regions, an estimate of the aliasing in the red and blue images can be found. This estimate
is used to reduce the aliasing in the red and blue images, as illustrated in Figure 28.15. This method relies
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3 4 5 6 7
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ΔH = |G4 – G6| + | –R3 + 2 × R5 – R7 |  // horizontal gradient

if ΔH > ΔV,
G5 = (G2 + G8)/2 + (–R1 + 2 × R5 – R9)/4

else if ΔH < V,

else
G5 = (G4 + G6)/2 + (–R3 + 2 × R5 – R7)/4

G5 = (G2 + G8 + G4 + G6)/4 + (–R1 – R3 – R7 – R9 + 4 × R5)/8

ΔV = |G2 – G8| + | –R1 + 2 × R5 – R9 | // vertical gradient

FIGURE 28.13 Graphical illustration. (From Gunturk, B. K., et al., IEEE Signal Process. Mag., 22, 44, 2005. With
permission.)

1/2 1/2 1/2

1/2 1/2

–1/2

–1/2–1/2–1/2

–1/2–1/2

1/2

v V V

u u U

FIGURE 28.14 Frequency domain analysis of CFA sampling. (a) Suppose this is the frequency spectrum of the red,
green, and blue channels; (b) frequency spectrum of the sampled green channel; and (c) frequency spectrum of the
red=blue channels. Note that while there is no aliasing for the green channel, red and blue channels are aliased.
The green channel can be fully recovered with a low-pass filter whose pass-band is outlined in the middle figure.
For the red=blue channels, such a low-pass filtering operation cannot eliminate the aliasing.
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on the assumption that the high-frequency information in the red, green, and blue images is identical.
If this assumption does not hold, the addition of the green information into the red and blue images can
add unwanted distortions. This method also makes the assumption that the input image is band-limited
within the diamond-shaped Nyquist region of the green quincunx sampling grid (the region outlined in
Figure 28.14). When this assumption fails, the aliasing artifacts are enhanced instead of reduced because
the green image also contains aliasing. This system is composed entirely of linear filters, making it
efficient to implement.

28.3.5.2 Frequency-Domain Filtering

In Ref. [1], the CFA-sampled image is reorganized into newly defined luminance and chrominance
components. Analyzing the CFA sampling in Fourier domain, filters that recover these components are
designed. The derivation is as follows. Using Equation 28.2, the mosaicked image can be written as

z(i, j) ¼ zR(i, j)þ zG(i, j)þ zB(i, j)

¼ 1
4 (R(i, j)þ 2G(i, j)þ B(i, j))

þ 1
4 (B(i, j)� R(i, j))( cospi� cospj)

þ 1
4 (�R(i, j)þ 2G(i, j)� B(i, j)) cospi cospj: (28:8)

5. Subtract the aliasing estimate from the red
image.

1. Low-pass filter the sampled red image.

3. Add the green high-frequency components to 
the red image.

4. Modulate the green high-frequency components
to estimate aliasing in the red image.

2. Isolate the high-frequency components in the
green image.

FIGURE 28.15 An illustration of Ref. [15] by John Glotzbach. High-frequency information from the green image is
modulated and used to cancel aliasing in the red image. (From Gunturk, B. K., et al., IEEE Signal Process. Mag., 22, 44,
2005. With permission.)
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In this equation, L(i, j) ¼ (1=4)[R(i, j)þ 2G(i, j)þ B(i, j)] is defined as the luminance component, and
C1(i, j) ¼ (1=4)[B(i, j)� R(i, j)] and C2(i, j) ¼ (1=4)[�R(i, j)þ 2G(i, j)� B(i, j)] as the chrominance com-
ponents. With these definitions, Equation 28.8 becomes

z(i, j) ¼ L(i, j)þ C1(i, j) ( cospi� cospj)þ C2(i, j) cosp : cospj, (28:9)

where

L
C1

C2

2
4

3
5 ¼

1=4 1=2 1=4
�1=4 0 1=4
�1=4 1=2 �1=4

2
4

3
5 R

G
B

2
4

3
5: (28:10)

When the Fourier transform of Equation 28.9 is taken, the luminance component stays in the baseband,
the C1 component will be modulated at frequencies (0.5, 0) and (0, 0.5), and the C2 component will be
modulated at frequency (0.5, 0.5). This is illustrated in Figure 28.16. By designing appropriate filters, the
luminance and chrominance components can be recovered. Using the inverse of the matrix given in
Equation 28.10, the red=green=blue values are obtained. Figure 28.16 also shows the filter to recover the
luminance component.
An extension of this approach is given in Ref. [16], where it is noticed that the C1 component suffers

from spectral overlap, and the overlap often occurs in only one of the (horizontal=vertical) directions.
Therefore, a weighted sum of the horizontally and vertically filtered C1 components is taken, where the
weight is less for the one with least crosstalk.
Reference [17] gives another extension of Ref. [1]. This time adaptive filtering is applied on the

luminance component. The luminance values at green locations are estimated using a filter similar to
the one in Ref. [1]; while the values at red=blue locations are estimated as a weighted sum of neighboring
luminance values, where the weights are selected according to the horizontal and vertical gradients (edge
indicators).

28.3.6 Homogeneity-Directed Interpolation

Instead of choosing the interpolation direction based on edge indicators, Ref. [8] uses local homogeneity
as an indicator. The homogeneity-directed interpolation imposes the similarity of the luminance and
chrominance values within small neighborhoods, and it leads to very good perceptual results. The
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of the mosaicked image is taken. The red line outlines the passband of the filter. The radii r1 and r2 are design
parameters, whose values are determined empirically. Middle and Right: Fourier domain and spatial domain
representations of the filter used in Ref. [1].
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underlying idea is to interpolate color channel horizontally and vertically, and to pick up either the
horizontally interpolated pixel values or the vertically interpolated pixel values at every pixel location
based on the homogeneity.
Reference [8] defines the homogeneity as follows. Suppose that R(i, j), G(i, j), B(i, j) are the values in

the RGB space, and L(i, j), a(i, j), b(i, j) are the corresponding luminance and chrominance values
in the CIELab space. Three neighbor sets of (i, j) are defined. The first one is the set of pixel locations
that are close in space:

ND(i, j) ¼ (m, n) j (m� i)2 þ (n� j)2
� �1=2� eD

n o
: (28:11)

The other two neighbor sets are the sets of pixel locations with similar luminance and chrominance
values:

NL(i, j) ¼ f(m, n) j jL(m, n)� L(i, j)j � eLg (28:12)

and

NC(i, j) ¼ (m, n) j [a(m, n)� a(i, j)]2 þ [b(m, n)� b(i, j)]2
� 	1=2� eC

n o
: (28:13)

Then the homogeneity is defined as

H(i, j) ¼ size[ND(i, j) \ NL(i, j) \ NC(i, j)]
size[ND(i, j)]

: (28:14)

Referring to Figure 28.17, the algorithm works as follows. The RGB data is first interpolated horizontally
and vertically. (The green channel is interpolated using red and blue data as correction terms, as in Ref.
[13]. The red and blue channels are interpolated from the interpolated red–green difference and blue–
green difference as shown in Figure 28.7.) The interpolated images are then converted to the CIELab
space. The homogeneity maps for horizontally and vertically interpolated images are found. The
homogeneity maps are smoothed with a 3� 3 averaging filter. At each pixel, either the horizontally or
the vertically interpolated color values are taken depending on which has the largest homogeneity.
In Ref. [8], the neighborhood parameter eD is kept constant, while eL and eC are determined

adaptively at each pixel such that they reflect typical variations among pixels of the same object. This

Horizontal
interpolation

of G

Vertical
 interpolation 

of G 

Interpolation
of 

R and B  

Interpolation 
of 

R and B 

Calculate
horizontal

homogeneity 

Calculate
vertical

homogeneity 

X 
A 

B 
Y

Z
If X >=Y

Z = A
Else

Z = B

FIGURE 28.17 Block diagram of the homogeneity-directed interpolation (From Hirakawa, K. and Parks, T. W.,
IEEE Trans. Image Process., 14, 360, 2005. With permission.)
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is achieved by analyzing the four nearest neighbors of the pixel in question. eL at location (i, j) is
calculated as follows:

eLH(i, j) ¼ maxfjL(i�1, j)� L(i, j)j, jL(iþ 1, j)� L(i, j)jg,
eLV (i, j) ¼ maxfjL(i, j�1)� L(i, j)j, jL(i, jþ 1)� L(i, j)jg,
eL(i, j) ¼ minfeLH(i, j), eLV (i, j)g,

(28:15)

where the first two equations give the maximum variations in horizontal and vertical directions, and the
last equation picks up the minimum of these, by which the maximum variation within the object is
determined. eC is determined similarly.

28.3.7 Projections onto Convex Sets Approach

The algorithm presented in Ref. [15] proposes to decompose the green channel into its frequency
components and then add the high-frequency components of the green channel to the low-pass filtered
red and blue channels. This is based on the observation that the high-frequency components of the red,
blue, and green channels are similar and the fact that the green channel is less likely to be aliased. One
problem with this approach is that the high-frequency components of the red, green, and blue channels
may not be identical. Therefore, replacement of the high-frequency components of the red and blue
channels with those of the green channel may not work well. Reference [14] proposes an algorithm that
ensures data consistency at the cost of higher computational complexity. The algorithm defines two
constraint sets, one ensuring that the restored images are consistent with the measured data and the other
imposing similar high-frequency components in the color channels, and reconstructs the color channels
using the projections onto convex sets (POCS) technique.

28.3.7.1 Constraint Sets

The first constraint set guarantees that the restored color channels are consistent with (are identical to)
the color samples captured by the digital camera.
The second constraint set is a result of the high interchannel correlation. Reference [14] shows that color

channels have very similar detail (high-frequency) subbands. This information would not be enough to
define constraint sets if all channels lost the same amount of information in sampling. However, the red
and blue channels lose more information (details) than the green channel when captured with a color
filter array. Therefore, it is reasonable to define constraint sets on the red and blue channels that force their
high-frequency components to be similar to the high-frequency components of the green channel. The
similarity is imposed such that the detail coefficients are within a fixed proximity.

28.3.7.2 Alternating Projections Algorithm

The block diagram of the POCS algorithm is given in Figure 28.18. The projection onto the observation
constraint set inserts the observed data into their corresponding locations in the current image. This
is illustrated in Figure 28.19. The projection operation onto the detail constraint set is illustrated in

Initial
interpolation

Projection
onto detail

constraint set

Projection onto
observation

constraint set
Final

estimate

Iterate

Observed
date

FIGURE 28.18 Block diagram of the algorithm given in Ref. [14]. Red=green=blue channels are interpolated first.
The red=blue channels are then updated by iteratively projecting on the detail and observation constraint sets.
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Figure 28.20. By alternately applying these two projections onto the initial red and blue channel
estimates, these channels are enhanced.

28.3.8 Spectral Response Modeling

The last group of methods models the image formation process and formulates the demosaicking
problem based on this model. To understand this approach, we first need to understand the imaging
process. The image acquisition process is usually modeled as a linear process between the light radiance
arriving at the camera and the pixel intensities produced by the sensors. An image sensor has a specific
spectral response LS(l), which is a function of the spectral wavelength l, and a spatial response hS(x, y),
which results from optical blur and the spatial integration at each sensor site. (Typical spectral sensor
sensitivities are illustrated in Figure 28.3. The l space is typically modeled as a 7–11 dimensional space.)
The imaging process can be formulated as

FIGURE 28.19 Projection onto observation constraint set (FromGunturk, B.K., Altunbasak, Y. andMersereau, R.M.,
IEEE Trans. Image Process., 11, 997, 2002. With permission.)
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FIGURE 28.20 Projection onto detail constraint set [14]. h0 and h1 are the low-pass and high-pass analysis filters.
g0 and g1 are the corresponding synthesis filters.
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S(x, y) ¼
ððð

LS(l)hS(x � u, y � v)r(u, v, l)du dv dlþ NS(x, y), (28:16)

where
S(x, y) is the pixel value at spatial location (x, y)
r(x, y,l) is the incident radiance
NS(x, y) is the additive noise that is a result of thermal=quantum effects and quantization

There are couple of assumptions in this formulation: (1) the input–output relation is assumed to be
linear; (2) the spatial blur hS(x, y) is assumed to be space-invariant and independent of wavelength; and
(3) only the additive noise is considered. These assumptions are reasonable for practical purposes.
Since we are dealing with digital data, we need to have the discrete version of Equation 28.16

S(i, j) ¼
X
l

X
m, n

LS(l)hS(i�m, j� n)r(m, n, l)þ NS(i, j): (28:17)

The color filters sample the signal S(i, j) to produce a mosaicked data z(i, j) as given in Equation 28.21.
Therefore, the observation model is a linear system, which can be written in the compact form

z ¼ HrþN, (28:18)

where
r, z, and N are the stacked forms of r(m, n, l), z(i, j), and CFA-sampled NS(i, j), respectively
H is the matrix that includes the combined effects of optical blur, sensor blur, spectral response,
and CFA sampling

In Refs. [18–20] the minimum mean square error (MMSE) solution of Equation 28.18 is given:

rMMSE ¼ E rzT
� �

E zzT
� �� 	�1

z, (28:19)

where E[�] is the expectation operation. In Ref. [20], the point spread function (PSF) is taken as an
impulse function; and r is represented as a weighted sum of spectral basis functions to reduce the
dimensionality of the problem. (Later, Ref. [21] extended Ref. [20] to include the PSF in the reconstruc-
tion.) In Ref. [19], adaptive reconstruction and ways to reduce computational complexity are discussed.
Reference [18] constructs a FIR filter based on a wide sense stationary assumption.

28.4 Demosaicking of Video and Super-Resolution
Reconstruction

When there are multiple images, it is possible to estimate the missing samples than in the case of a single
image. Even if a color sample does not exist in an image as a result of Bayer sampling, that particular
sample could have been captured in another frame (due to motion). By warping all captured samples
onto the common frame to be demosaicked, a better estimate of a missing sample can be obtained.
Figure 28.21 illustrates this multiframe interpolation idea. In the figure, red channels of three Bayer-

sampled images are shown. The grid locations with ‘‘triangles,’’ ‘‘circles,’’ and ‘‘squares’’ show the red
samples in these images.We would like to estimate themissing samples in themiddle image. The other two
images are warped onto themiddle image. The estimation problem now becomes an interpolation problem
from a set of nonuniformly sampled data. Taking the weighted of these samples, where the weights are
inversely proportional with the distance to the pixel in question, the missing sample can be estimated.
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This idea can be combined with the other demosaicking ideas, such as constant-hue-based inter-
polation, to formulate a solution. When these multiple frame are available, we can now talk about a
spatiotemporal neighborhood instead of a spatial neighborhood of a pixel.
It is also possible to obtain subpixel resolution by combining multiple images. This is known as super-

resolution reconstruction, and it was recently applied to CFA sampled color images. The imagingmodel for
super-resolution reconstruction starts with a high-resolution image: Let xS be a color channel of a high-
resolution image, where a channel can be red (xR), green (xG), or blue (xB). The ith observation, S(i), is
obtained from this high-resolution image through spatial warping, blurring, and downsampling operations:

S(i) ¼ DCW(i)xS, for S ¼ R,G,B, and i ¼ 1, 2, . . . , K , (28:20)

where
K is the number of input images
W(i) is the warping operation (to account for the relative motion between observations)
C is the convolution operation (to account for the point spread function of the camera)
D is the downsampling operation (to account for the spatial sampling of the sensor)

The full-color image (R(i),G(i),B(i)) is then converted to a mosaicked observation z(i) according to a CFA
sampling pattern:

z(i) ¼
X

S¼R,G,B

MSy
(i)
S (28:21)

as we explained earlier. Then, the super-resolution problem becomes estimation of the high-resolution
image xS, S ¼ R,G,B, from low-resolution mosaicked data z(i), i ¼ 1, 2, . . . , K . A typical flowchart of
super-resolution reconstruction is illustrated in Figure 28.22.

I

II

FIGURE 28.21 I: Input images are warped onto reference frame. II: Weighted average of samples are taken to find
values on the reference sampling grid.
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In Ref. [22], data fidelity and regularization terms are combined to produce high-resolution images. The
data fidelity term is based on a cost function that consists of the the sumof residual differences between actual
observations andhigh-resolution imageprojected onto observations (simulated observations). Regularization
functions are added to this cost function to eliminate color artifacts and preserve edge structures. These
additional constraints are defined as luminance, chrominance, and orientation regularization [22]. A similar
algorithm is presented inRef. [23]. Reference [24] extends thePOCSalgorithmof Ref. [14] tomultiple frames,
where observation constraint set is obtained through bilateral filtering of samples.

28.5 Related Research Problems

In this chapter, we have covered some of the basic demosaicking approaches. There are various others,
such as the Bayesian estimation based [25,26] and the neural network based [27]. There are also research
problems that are related to the CFA sampling, some of which are listed below:

Denoising: Denoising becomes critical in a digital camera pipeline, especially for images captured in low-
light conditions and with high ISO speed. Although standard denoising algorithms can be combined with
standard demosaicking algorithms, denoising and demosaicking can be done jointly. Reference [28]
proposes such a joint technique based on the total least squares denoising method. The technique reports
superior image quality compared to sequential applications of standard denoising and demosaicking
algorithms.

Compression: Compression is the last process in a digital camera pipeline. Typically, demosaicking is
done on raw CFA data to obtain full-color images, which are later compressed with a compression
algorithm, such as the JPEG for still images or the MPEG for videos. The image=video compression
algorithms generally decompose images into luminance and chrominance channels and then down-
samples chrominance channels to achieve higher compression rates. Because of this downsampling, it
seems redundant to do demosaicking before compression. Compression could be done on CFA data; and
demosaicking could be added to the end of the decoding processing. Recent studies [29,30] show that,
with this alternative processing chain, higher image quality can be achieved at low compression rates.
Also, the processing cost is reduced at the camera side.
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FIGURE 28.22 Typical super-resolution reconstruction algorithm is illustrated. The algorithm starts with a high-
resolution image estimate. Simulated observations are obtained by forward imaging operations, including the CFA
sampling. The residuals are computed on Bayer pattern samples for each channel, and then back-projected. The notation
in the figure is as follows.W(i): Spatial warping onto ith observation, C: Convolution with the PSF,D: Downsampling by
the resolution enhancement factor, U: Upsampling by zero insertion,W(i)

b : Back-warping to the reference grid.
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Camera identification and forgery detection: Due to the demosaicking process, pixels in a digital image are
correlated; since different cameras use different demosaicking algorithms, the correlation among the
pixels can be used to identify the camera or to detect image forgeries, such as cropping and pasting a
region from one image to another [31,32].

Optimal spectral sensitivity functions: Selection of the spectral sensitivity functions is an important part of
the digital camera design. The Bayer RGB CFA is known for its superior color reproduction; while the
CMYG CFA has better signal-to-noise ratio performance in low-light conditions. Methods for designing
optimal spectral sensitivities for color reproduction have been studied earlier [33]. Recently, importance
of spectral sensitivities on demosaicking [34] and design of optimal sensitivities for both color and spatial
reproduction [35] are discussed.

28.6 Evaluation of Demosaicking Algorithms

Since raw CFA data is not available for most digital cameras, demosaicking methods have been compared
based on simulations: Full color images are sampled according to a CFA pattern; the original and the
restored images are later compared quantitatively. (This neglects many of the processes in the camera
pipeline, most importantly, optical low-pass filtering. Therefore, simulation results may be misleading;

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

FIGURE 28.23 Result images for example lighthouse image. (a) Original image, (b) bilinear interpolation, (c) edge-
directed interpolation in Ref. [10], (d) constant hue-based interpolation in Ref. [3], (e) weighted sum in Ref. [6],
(f ) second-order gradients as correction terms in Ref. [13], (g) Bayesian approach in Ref. [25], (h) homogeneity-directed
in Ref. [8], (i) pattern matching (Chang) in Ref. [39], (j) Alias cancellation in Ref. [15], and (k) POCS in Ref. [14].
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the demosaicking algorithms should be tested on raw data; different cameras may have different
demosaicking algorithms working best for them.) Two commonly used quantitative measures for
evaluating demosaicking algorithms are mean square error and peak signal-to-noise ratio. Euclidean
distances in the perceptually uniform CIELab and CIELuv spaces and the s-CIELab [36] are better
measures considering the human visual perception.
For the demosaicking algorithms, the Kodak color image database [37] has become a standard test

image set. Many algorithms evaluate their performances using these images, enabling comparison among
different algorithms. Figure 28.23 provides a visual comparison of several demosaicking algorithms
available in 2005 [38]. Recent papers present improvement over these methods.
In addition to the restoration performance, computational complexity is also an important factor for

demosaicking algorithms due to the limited resources of a digital camera. The trade-off between the
image quality and computational time should be considered in designing the camera pipeline.

28.7 Conclusions and Future Directions

As the sensor technology and processing power of digital cameras advance, the image quality of digital
still and video cameras will continue to improve. Eventually, the image quality of consumer level digital
cameras will catch and exceed the quality of film cameras. Digital video cameras will be able to produce
images with the quality of digital still cameras.
Although the manufacturers are able to fit more and more pixels in a fixed size chip, higher pixel count

does always not correspond to higher image quality. As the dimensions of the photosensitive region of a
pixel decrease, the dynamic range and noise performance of the sensor decreases. The solution is therefore
to produce larger size sensor chips and to increase the fill ratio (photosensitive region area=pixel area).
There is also research to develop alternative sensor technologies. For example, a recent technology

exploits the absorption characteristics of silicon to eliminate CFA and increase resolution. The blue portion
of the light is absorbed at the surface of a silicon, while the red portion penetrates deeper. By putting
detectors at various depths, color information can be extracted without the need of a CFA. However, for
such a sensor, the color components are convoluted, the color reproduction and noise performance could
be problematic. Another approach is to placemicrogratings above pixels. Thesemicrogratings diffract light
according their spectral content, and detectors capture different spectral information.
Although these technologies look promising, single-chip image capture, and therefore, demosaicking

seem to remain essential for some time. Soon HDTVs will become widespread, and higher image quality
from digital video cameras will be expected. Some of the demosaicking algorithms that we explained in
this article cannot be included in a camera due to the limited resources. However, the computational
power of cameras will increase, and advanced image processing algorithms will be utilized in digital
cameras. The research on the inter-channel correlation can also help in modeling and restoration of
multi-frame and hyper-spectral data.
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Index

A

Active filters
cascaded realization

CAD methods, 4-24
operational amplifier, 4-26
polynomial coefficient, 4-23
Q-factor, 4-26–4-28
stages, 4-25–4-26

cascade realization, 1-23–1-24
first-order RC network, 1-25
inductorless filter, 1-23
Thévenin equivalent circuit, 1-24
transfer function, 1-24–1-25

Active RC prototype, see
Tow–Thomas biquad

Adaptive 3-D wavelet packet
transform, 27-27

Åkerberg–Mossberg biquad,
13-24–13-25

Alias-free 2-D decimation
antialiasing filter, 25-5
frequency cell, 25-6
periodicity matrix, 25-6–25-7
quincunx downsampling, 25-6

Allpass filters, 1-19
block diagram, 19-10
cascade filter, 19-9–19-10
magnitude response, 19-8
phase response, 19-9
pole-zero reciprocal pair,

19-8–19-9
All-pole filter, see Chebyshev filters
Analog filter characteristics

allpass filters, 1-19
amplitude and delay distortion,

1-16–1-17
applications, 1-1–1-2

components, classification, 1-2
design process

approximation step,
1-21–1-22

implementation, 1-23
realization step and

imperfections, 1-22
discrete- and continuous-time

signal, 1-2
ideal and practical filters,

1-15–1-16
Laplace transform, 1-3–1-4
minimum-phase filters

amplitude response, 1-18
phase response, 1-18–1-19
zero-pole plots, 1-17–1-18

nonminimum-phase transfer
functions, 1-20–1-21

realization
active filters, 1-23–1-25
biquads, 1-25–1-26
passive RLC filters, 1-23

section types
allpass section, 1-28–1-29
bandpass section, 1-27–1-28
high-pass section, 1-27
low-pass section, 1-26
notch section, 1-28

time-domain response
impulse and step responses,

1-8
inversion formula, 1-6–1-7
overshoot, delay time, and

rise time, 1-8–1-10
partial-fraction, 1-7

transfer function
convolution integral, 1-4–1-5

definition, 1-4
methods, network analysis,

1-5–1-6
stable and causal network,

1-6
Analog prototype filters

bandpass filter
bandpass-to-low-pass

conversion, 19-30
frequency response, 19-31
LPF to BPF transformation,

19-29–19-30
magnitude response

specification,
19-28–19-29

specification, 19-30–19-31
transfer function, 19-31

bandstop filter, 19-32
design steps, 19-20
high-pass filter

analog and digital frequency,
19-27

frequency response,
19-28–19-29

inverse Chebyshev filter
transfer function, 19-28

LPF to HPF transformation,
19-27

specification, 19-27–19-28
low-pass filter

bilinear transformation,
19-26

impulse invariant method,
19-24–19-25

transformation
bilinear transformation,

19-23
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impulse invariance method,
19-23–19-24

types, 19-20–19-22
Antisymmetrical impulse response,

odd filter length
error function, 18-32
frequency response, 18-31–18-32
problem formulation, 18-33
Remez algorithm, 18-34

Antoniou CGIC biquad, see 2-OA
CGIC biquad

Application-specific integrated
circuit (ASIC)

programmable logic
implementation, 21-11

special-purpose implementation,
21-8, 21-10

Approximation
approximation problem, 2-1–2-2
bandpass filter specifications,

2-7
Bessel–Thompson LPP

approximation
gain and group delay

characteristics, 2-22–2-23
loss function, 2-19
MFD and MFM

approximation, 2-21
rational function, 2-20
recursion formula, 2-22
third-order Bessel filter,

2-22–2-23
Butterworth LPP approximation

definition, 2-8
Feldtkeller’s equation, 2-9
gain and characteristic

function, 2-8–2-9
G(s)G(�s) poles, 2-10–2-11
loss function, 2-8–2-9
maximally flat magnitude

(MFM) approximation,
2-9–2-10

second- and third-order
Butterworth transfer
function, 2-11

Chebyshev LPP approximation
complex number, 2-14
elliptic approximation,

2-23–2-24
equiripple behavior, 2-13
frequency response, 2-14
G(s)G(�s) poles, 2-15–2-17
minimax error criterion, 2-12
pole location, 2-17–2-18

polynomial behavior,
2-12–2-13

ripple parameter, 2-14, 2-17
elliptic approximation

Chebyshev rational function,
2-26–2-27

elliptic and ordinary sine
function, 2-28–2-29

elliptic rational functions,
2-31

filter rank ordering, 2-32
gain and characteristic

functions, 2-24
gain plot, 2-31
Jacobian elliptic functions,

2-27
minimax error, 2-30–2-31
phase compensation, 2-32
rational approximation, 2-25
running integral, 2-27–2-28
sine transformation,

2-29–2-30
Weierstrass theorem, 2-23,

2-25–2-26
filter types, 2-3–2-5

B

Bamberger pyramids
2-D separable DWT, 25-24
image denoising, 25-26–25-28
Laplacian pyramid structure,

25-23–25-24
lowpass–highpass

decomposition, 25-23
multiresolution (MR) process,

25-22
polar-separable representation,

25-22–25-23
texture analysis and

segmentation,
25-25–25-26

Bandpass filters (BPF)
analog prototype filters

bandpass-to-low-pass
conversion, 19-30

frequency response, 19-31
LPF to BPF transformation,

19-29–19-30
magnitude response

specification,
19-28–19-29

specification, 19-30–19-31
transfer function, 19-31

approximation, 2-7
digital frequency transformation,

19-34–19-35
Sallen and Key filter, 11-8–11-9

Bandstop filters (BSF)
analog prototype filters, 19-32
digital frequency transformation,

19-35–19-36
Bartlett window

low-pass magnitude response,
18-10–18-11

spectrum, 18-10
Baseband communication,

26-28–26-29
Bayes minimum distance classifier,

25-25
Berka–Herpy biquad, 13-24–13-25
Bessel–Thompson low-pass

prototype (LPP)
approximation

gain and group delay
characteristics, 2-22–2-23

loss function, 2-19
MFD and MFM approximation,

2-21
rational function, 2-20
recursion formula, 2-22
third-order Bessel filter,

2-22–2-23
Bilinear transformation

analog filter transformation,
23-2, 23-4

1-D analog transfer function,
23-18–23-19

1-D discrete transfer function,
23-21

nonessential singularity, 23-22
Biorthogonal filter bank, 24-16
Biquad multiloop feedback, 11-17
Biquadratic filter, 17-23–17-24
Blackman window

amplitude spectrum, 18-13
expression, 18-12
magnitude response,

18-13–18-14
Broadband matching network

design
Butterworth networks

all-pass function,
10-15–10-16

Butterworth transducer
power-gain, 10-15

equalizer back-end
impedance, 10-16–10-17

IN-2 Index



final reactive element, 10-17
LC ladder network,

10-17–10-18
load impedance, 10-14
minimum-phase solution,

10-15
Chebyshev networks

all-pass function, 10-23
equalizer back-end

impedance, 10-24
Laurent series expansion,

10-23
RCvc sinh a<2 sin g1 and

Lb1�L, 10-25
RCvc sinh a<2 sin g1 and

Lb1<L, 10-25
RCvc sinh a�2 sin g1 and

Lb1<L, 10-24–10-25
RCvc sinh a�2 sin g1 and

Lb1�L, 10-24
transducer power-gain, 10-22

coefficient constraints
normalized reflection

coefficient, 10-5–10-6
passive impedance,

10-7–10-8
zero of transmission,

10-2–10-4
design procedure, 10-8–10-9
network configuration,

10-1–10-2
transmission and reflection

coefficients, 10-1–10-2
Brune section

positive-real impedance,
6-9–6-10

two-port network, 6-8
type-A and type-B section,

6-8–6-9
type-E section, 6-7–6-8

Butterworth filters
factorized and normalized

Butterworth polynomials,
19-13

magnitude response square,
19-12–19-13

transfer function, 19-11–19-12
Butterworth low-pass prototype

(LPP) approximation
definition, 2-8
Feldtkeller’s equation, 2-9
gain and characteristic function,

2-8–2-9
G(s)G(�s) poles, 2-10–2-11

loss function, 2-8–2-9
maximally flat magnitude

(MFM) approximation,
2-9–2-10

second- and third-order
butterworth transfer
function, 2-11

Butterworth networks
broadband matching network

design
all-pass function,

10-15–10-16
Butterworth transducer

power-gain, 10-15
equalizer back-end

impedance, 10-16–10-17
final reactive element, 10-17
LC ladder network,

10-17–10-18
load impedance, 10-14
minimum-phase solution,

10-15
resistively terminated network

design
element values, 9-6–9-7
input impedance, 9-5
input reflection coefficient,

9-4–9-5
LC ladder, 9-6
minimum-phase

solution, 9-5
recurrence formula, 9-6
transducer power gain, 9-4

C

Cauer canonical form
LCM one-port network, 7-4
RC one-port network, 7-9

Cauer filters, see Elliptic filters
CCCS, see Current-controlled

current sources
CCVS, see Current-controlled

voltage sources
Cell Broadband Engine

Architecture, 21-8
CGIC, see Current generalized

immittance convertors
Chebyshev filters

magnitude response square,
19-14–19-15

normalized Chebyshev
polynomials,
19-15–19-16

polynomial coefficients, 19-14
transfer function, 19-13–19-14

Chebyshev low-pass prototype
(LPP) approximation

complex number, 2-14
elliptic approximation,

2-23–2-24
equiripple behavior, 2-13
frequency response, 2-14
G(s)G(�s) poles, 2-15–2-17
minimax error criterion, 2-12
pole location, 2-17–2-18
polynomial behavior, 2-12–2-13
ripple parameter, 2-14, 2-17

Chebyshev networks
broadband matching network

design
all-pass function, 10-23
equalizer back-end

impedance, 10-24
Laurent series expansion,

10-23
RCvc sinh a<2 sin g1 and

Lb1�L, 10-25
RCvc sinh a<2 sin g1 and

Lb1<L, 10-25
RCvc sinh a�2 sin g1 and

Lb1<L, 10-24–10-25
RCvc sinh a�2 sin g1 and

Lb1�L, 10-24
transducer power-gain,

10-22
resistively terminated network

design
element values, 9-10–9-11
input impedance, 9-10
input reflection coefficient,

9-9
minimum-phase solution,

9-9–9-10
transducer power-gain, 9-9

Circularly symmetric 2-D IIR filter
HP, BP, and BS filter realization

configuration, 23-24–23-25
Nyquist point, 23-25
subfilter contour plot,

23-23–23-24
LP filter

1-D analog transfer function,
23-18–23-21

1-D discrete transfer
function, 23-21–23-22

nonessential singularity
elimination, 23-22–23-23
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prescribed specification,
23-25–23-26

Coefficient sensitivity, 4-4–4-5
Color filter array (CFA)

Bayer pattern, 28-4
bicubic interpolation, 28-2, 28-4
designs, 28-2
mosaic pattern, 28-1
sampling

compression, 28-18
Fourier domain, 28-11
luminance channel, 28-10
optimal spectral sensitivity

function, 28-19
super-resolution

reconstruction,
28-17–28-18

Common-mode feedback (CMFB)
circuit, 17-22–17-23

Conjugate quadrature filter bank
(CQF), 24-16

Continuous-time integrated filters
gm-C filters

cascade realization,
16-23–16-26

circuit symbols, 16-15
difference current, 16-16
first- and second-order

sections, 16-22–16-23
gyrators, 16-20–16-22
integrators, 16-17–16-20
ladder simulation,

16-26–16-31
MOS device, 16-16
resistors, 16-15–16-16
small-signal equivalent

circuit, 16-14–16-15
transconductance designs,

16-16–16-17
MOSFET-C method

balanced linear MOSFET
conductance, 16-3–16-4

cascade realization,
16-9–16-11

equivalent resistor circuit,
16-4

first- and second-order
sections, 16-7–16-9

integrator, 16-5–16-7
ladder simulation,

16-11–16-14
nonlinear drain current, 16-3

tuning process, 16-31–16-32
Continuous-time signal, 1-2

Cosine modulated filter bank, 24-43
Current-controlled current sources

(CCCS), 4-18
Current-controlled voltage sources

(CCVS), 4-18
Current generalized immittance

converter (CGIC)
biquads

Antoniou CGIC (2-OA CGIC
biquad)

composite GIC biquad,
14-18, 14-19

configuration, 14-2–14-3
design and tuning procedure,

14-6–14-7
3G and 4G ports, 14-2
realization, 14-4–14-5
second-order transfer

function, 14-3–14-4
sensitivity analysis,

14-4, 14-6
stability properties, 14-4
universal biquad, 14-11,

14-13–14-14
3-OA CGIC biquad

design and tuning procedure,
14-15–14-16

sixth-order elliptic BP filter
design, 14-16–14-17

structure, 14-11,
14-14–14-15

Curvelet-99 transform, 27-20

D

Darlington type-D section
cascade connection, 6-12–6-13
impedance matrix, 6-13–6-14
positive-real impedance,

6-11–6-12
transmission matrix, 6-12–6-13

Daubechies wavelets
Bernstein polynomial, 24-18
conjugate quadrature filter bank

(CQF), 24-16
Daubechies 8-tap symlet filters,

24-18–24-19
impulse and frequency

responses, 24-16–24-18
Pt(Z) factorization, 24-16

Device under test (DUT), 17-31
DFT, see Discrete Fourier transform
Diamond filters, 22-22–22-23,

25-8, 25-14

Difference equation, 20-15–20-16
Digital differentiators, 18-34–18-35
Directional filter banks (DFBs)

Bamberger directional filter bank
(BDFB)

analysis filter, 25-10
analysis tree structure, 25-11
downsampling matrix,

25-11–25-12
eight-band BDFB analysis,

25-9–25-10
frequency band partition,

25-9
M-channel parallel structure,

25-10–25-11
wedge-shaped passband,

25-10–25-11
Bamberger pyramids

2-D separable DWT, 25-24
Laplacian pyramid structure,

25-23–25-24
lowpass–highpass

decomposition, 25-23
multiresolution (MR)

process, 25-22
polar-separable

representation,
25-22–25-23

2-D maximally decimated filter
bank, 25-7–25-8

2-D multirate system
alias-free 2-D decimation,

25-5–25-7
continuous time signal, 25-2
2-D decimation and

interpolation, 25-4–25-5
2-D unimodular matrix, 25-7
2-D upsampler and

interpolator, 25-7
fundamental parallepiped,

25-4
quincunx lattice, 25-3–25-4

2-D two-channel fan filter bank
BDFB design, ladder

structure, 25-16–25-20
FFB design, 1-D quadrature

mirror filter (QMF),
25-12–25-16

fingerprint enhancement and
recognition, 25-28

finite-field DFB, 25-28–25-29
image denoising

additive white Gaussian noise
and UDWT, 25-27–25-28
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Bamberger pyramid, 25-27
Gaussian white noise, 25-26
wavelet denoising procedure,

25-26–25-27
iris recognition, 25-28
texture analysis and

segmentation
Bamberger pyramid,

25-25–25-26
classification system, 25-25
multichannel method,

25-24–25-25
undecimated directional filter

bank (UDFB)
decomposition, 25-22–25-23
implementation,

25-21–25-22
shift invariance, 25-20–25-21
UCFB and UFFB,

25-21–25-22
undecimated discrete wavelet

transform (UDWT),
25-20

unimodular resampling
matrix, 25-22

velocity selective filter bank
(VSFB), 25-29–25-30

Discrete cosine transform (DCT),
24-43

Discrete Fourier transform (DFT),
22-10, 24-43

Discrete-space Fourier
transform, 22-7

Discrete-time signal, 1-2
Discrete wavelet packet transform

(DWPT), 27-27
Discrete wavelet transform (DWT),

24-8–24-9
1-D multirate filter banks

2-band filter bank
analysis, 24-3
downsampling and

upsampling, 24-4–24-5
output expression, 24-3
reconstruction operation,

24-3–24-4
binary filter trees

decomposition levels,
24-6–24-7

size and bandwidth, 24-7
transformation, 24-7–24-8

discrete wavelet transform
(DWT), 24-2

FIR filters and wavelets

antialiasing condition, 24-12
biorthogonal filter bank,

24-16
Daubechies wavelets,

24-16–24-19
high-pass filter, 24-14
LeGall 3,5-tap filter,

24-14–24-15
linear interpolation, 24-14
linear phase and balanced

frequency response,
24-19–24-21

low-pass product filter,
24-13

number of zeros,
24-13–24-14

perfect reconstruction
condition, 24-12

smoother wavelet,
24-21–24-24

Hilbert pairs
à trous algorithm,

24-43–24-44
common-factor dual-tree

filter design, 24-45
dual-tree wavelet transform,

24-44–24-45
metrics for shift dependence,

24-50–24-52
Q-shift dual-tree filter design,

24-46–24-50
shift dependence and shift

invariance, 24-43
IIR filter

all-pass filter design,
24-25–24-26

causal and anticausal
filtering, 24-24

transformation-based design,
24-26–24-28

types, 24-24
lifting scheme

construction, 24-34–24-36
implementation,

24-37–24-39
M-band filter bank

lifting, 24-42–24-43
type 1 polyphase

decomposition,
24-41–24-42

type 2 polyphase
decomposition, 24-42

types, 24-43
multirate filtering, 24-5–24-6

nonlinear filter bank,
24-40–24-41

polyphase representation
analysis and synthesis

outputs, 24-30
decomposition, 24-29–24-30
even- and odd-indexed

coefficients, 24-29
linear phase structure,

24-32–24-33
orthogonal lattice structure,

24-32
total system polyphase

matrix, 24-31–24-32
signal sparsity, 24-2
wavelets and scaling functions

analysis side equation, 24-9
convergence condition, 24-11
equivalent transfer function,

24-10–24-11
Fourier domain, 24-10
impulse and frequency

responses, 24-8–24-9
piecewise constant function,

24-11
synthesis side equation,

24-9–24-10
vanishing moments (VM),

24-11
Dual-amplifier twin-T biquads

band-rejection filter, 13-6–13-7
Cauer low-pass and high-pass

filter, 13-8–13-9
high-pass filter, 13-7–13-8
low-pass filter, 13-7
twin-T resonator, 13-5–13-6
voltage transfer ratios, 13-7

3-D wavelet packets
adaptive transform, 27-27
restoration algorithm,

27-27–27-28
thresholding, 27-26
wavelet denoising, 27-26–27-27

DWPT, see Discrete wavelet packet
transform

E

Elliptic approximation
Chebyshev rational function,

2-26–2-27
elliptic and ordinary sine

function, 2-28–2-29
elliptic rational functions, 2-31
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filter rank ordering, 2-32
gain and characteristic functions,

2-24
gain plot, 2-31
Jacobian elliptic functions, 2-27
minimax error, 2-30–2-31
phase compensation, 2-32
rational approximation, 2-25
running integral, 2-27–2-28
sine transformation, 2-29–2-30
Weierstrass theorem, 2-23,

2-25–2-26
Elliptic filters

elliptic integral, 19-18
equiripples, 19-17
magnitude response square,

19-17, 19-19
pole and coefficient calculation,

19-18–19-19
rational function, 19-18

Equiripple FIR filters, 18-15–18-16
alternation theorem, 18-19
amplitude response,

18-17–18-18
antisymmetrical impulse

response and odd filter
length

error function, 18-32
frequency response,

18-31–18-32
problem formulation,

18-33
Remez algorithm, 18-34

arbitrary amplitude response,
18-35

cubic-interpolation search
method, 18-25–18-26

digital differentiators,
18-34–18-35

error function, 18-16–18-17
frequency response, 18-16
multiband filter, 18-35, 18-37
noniterative=iterative methods,

18-15–18-16
piecewise-constant

amplitude-response
specification, 18-30

Remez exchange algorithm
exhaustive step-by-step

search, 18-21–18-23
extremal initialization,

18-20–18-21
iterative multivariable

algorithm, 18-20

maxima of error function,
18-21

superfluous potential
external rejection,
18-23–18-24

selective step-by-step search
method, 18-24–18-25

transfer function, 18-16
weighted-Chebyshev method,

18-16

F

Fan filter banks (FFBs), 25-8
Fast Fourier transform (FFT)

approximate minimax FIR filter,
22-13–22-14

window-based 2-D FIR filter
design, 22-10

FDNR, see Frequency-dependent
negative resistors

Field programmable gate array
(FPGA)

GNURadio, 21-8
programmable logic

implementation
FIR filter, 21-12–21-13
IIR filter, 21-13–21-14

Filter noise analysis, 11-27–11-29
Fingerprint enhancement and

recognition, 25-28
Finite-impulse response (FIR) filters

code segment
ADSP-21020 architecture,

21-4–21-5
Motorola 56001 architecture,

21-6–21-7
TMS320C30 architecture,

21-3
TMS320C50 architecture,

21-5
2-D filter implementation,

22-24
equiripple FIR filters

alternation theorem, 18-19
amplitude response,

18-17–18-18
antisymmetrical impulse

response and odd filter
length, 18-31–18-34

arbitrary amplitude response,
18-35

cubic-interpolation search
method, 18-25–18-26

digital differentiators,
18-34–18-35

error function, 18-16–18-17
frequency response, 18-16
multiband filter, 18-35, 18-37
noniterative=iterative

methods, 18-15–18-16
piecewise-constant

amplitude-response
specification, 18-30

Remez exchange algorithm,
18-20–18-24

selective step-by-step search
method, 18-24–18-25

transfer function, 18-16
weighted-Chebyshev

method, 18-16
filter banks, 22-25–22-26
frequency response

antisymmetric impulse
response and N¼ even,
18-5

antisymmetric impulse
response and N¼ odd,
18-4–18-5

masking approach,
18-38–18-45

symmetric impulse response
and N¼ even, 18-4

symmetric impulse response
and N¼ odd, 18-3–18-4

linear phase property
difference equation, 18-2
impulse response, 18-3
phase and group delay

functions, 18-2
phase response, 18-2–18-3
transfer function, 18-1–18-2

Lp norm, 22-11-22-12
multistage frequency-response

masking approach
complexity minimization,

18-48–18-49
implementation form,

18-47
synthesis, 18-47–18-48
three-stage filter, 18-47
transfer function,

18-46–18-47
narrowband filter design

amplitude response,
18-51–18-52

Jing–Fam approach, 18-49,
18-55, 18-57–18-58
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multiplier, minimization,
18-52–18-53

order of F(z) and G(z), 18-52
passband and stopband

ripples, 18-56
single-stage design, 18-57
subfilter design, 18-51
synthesis, 18-50–18-51,

18-57–18-58
transfer function, 18-49,

18-51, 18-55–18-56
narrow transition band, 18-38
nonlinear-phase low-pass filter,

22-4–22-5
programmable logic

implementation,
21-12–21-13

roundoff noise, 20-6–20-7
separable filter design,

22-16–22-17
special-purpose implementation

ASIC comparison,
21-10–21-11

Motorola 56200 architecture,
21-9–21-10

parallelism and pipelining,
21-9

180 MHz sampling rate,
21-9–21-10

wavelets
antialiasing condition, 24-12
biorthogonal filter bank,

24-16
Daubechies wavelets,

24-16–24-19
high-pass filter, 24-14
LeGall 3,5-tap filter,

24-14–24-15
linear interpolation, 24-14
linear phase and balanced

frequency response,
24-19–24-21

low-pass product filter, 24-13
number of zeros,

24-13–24-14
perfect reconstruction

condition, 24-12
smoother wavelet,

24-21–24-24
wideband filter design,

18-53–18-54
window-based filter design,

22-6–22-10
windowing techniques

Bartlett window, 18-10
Blackman window,

18-12–18-14
filter coefficient, 18-6
Hamming window,

18-11–18-12
Hanning window,

18-10–18-12
ideal low-pass filter response,

18-7
Kaiser window, 18-13–18-15
rectangular window,

18-7–18-9
zero locations, 18-5–18-6
zero-phase filters, 22-4–22-5

Finite wordlength effects
coefficient quantization error

alternate realization
structure, 20-16–20-17

clustered root, 20-16
definition, 20-15
grid, 20-15–20-16
realizable pole locations,

20-16–20-17
transfer function, 20-15

fixed-point quantization error
sum of products, 20-2–20-3
types, 20-3–20-4

floating-point quantization
error, 20-4–20-5

limit cycles
definition, 20-12
filter realization structure,

20-14
implementation sequence,

20-13
second-order filter,

20-12–20-13
number representation,

20-1–20-2
overflow oscillations,

20-14–20-15
realization, 20-17–20-18
roundoff noise

FIR filter, 20-6–20-7
fixed-point IIR filter,

20-7–20-10
floating-point IIR filter,

20-10–20-12
zero-mean white noise filter,

20-5
First-order RC network, 1-25
Fixed-point processors, 21-2
FLF, see Follow-the-leader feedback

Floating-point processors,
21-2

Follow-the-leader feedback (FLF)
topology

feedback resistors, 15-11
first-order lowpass functions,

15-8
GIC bandpass sections,

15-11–15-12
lowpass-to-bandpass

transformation, 15-8
matrix expression, 15-9
primary resonator block (PRB)

design process,
15-10–15-11

second-order bandpass biquads,
15-7

summer and feedback factor
implementation,
15-6–15-7

Foster canonical form
LCM one-port network, 7-3
RC one-port network, 7-8–7-10

Fourier slice theorem, 27-6–27-7
Fourier transform

analog filter, 1-16–1-17
Bartlett window, 18-10
Blackman window, 18-13
Hamming window, 18-11–18-12
Hanning window, 18-10–18-11
Rectangular window, 18-7–18-8

FPGA, see Field programmable gate
array

Frequency-dependent negative
resistors (FDNR), 15-27

Frequency-domain analysis
graphical construction

amplitude and phase
responses, 1-13

frequency response
evaluation, 1-13–1-14

gain and phase shift, 1-13
transfer function, 1-12–1-13

loss function, 1-14–1-15
sinusoidal response, 1-11–1-12

Frequency-response masking
approach

complementary periodic filter
pair, 18-40

error function, 18-43
F(Lv) design, 18-43
filter synthesis problem, 18-44
low-pass filter design,

18-40–18-42
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passband and stopband ripples,
18-42

prototype transfer function,
18-40

subfilter order, 18-44–18-45
transfer function, 18-38–18-39
transition bandwidth, 18-44
zero-phase frequency response,

18-39–18-40
Frequency sampling, 22-10–22-11
Frequency transformations

bandpass transformation
imaginary frequency axis,

3-8–3-9
narrow-band approximation,

3-8
network transformation,

3-9–3-10
passband and stopband

specifications, 3-8–3-9
rational function, 3-7

band-reject transformation
characterization, 3-10–3-11
frequency responses, 3-11
LPP transfer function,

3-12
network transformation,

3-12–3-13
frequency scaling

LP network transformation,
3-3–3-4

LPP transfer function,
3-2–3-3

high-pass transformation,
3-5–3-6

impedance scaling, 3-4
low-pass prototype, 3-1–3-2

Friend biquad, 12-12–12-13
Function sensitivity, 4-3–4-4

G

Gain-bandwidth
noninverting and inverting

amplifier, 11-23–11-25
Sallen–Key second-order

low-pass filter,
11-26–11-27

transfer function, 11-26
Generalized impedance converter

(GIC)
dual-amplifier biquads

all-pass building block,
13-14–13-15

bandpass building block,
13-12–13-13

Cauer high-pass building
block, 13-17–13-18

Cauer low-pass building
block, 13-15–13-16

high-pass building block,
13-13–13-14

low-pass building block,
13-10

notch filter building block,
13-14–13-15

resonator, 13-9
time constant and

conductance ratio,
13-11

transfer function, 13-12
voltage transfer ratio,

13-9–13-10
three-amplifier biquads,

13-18–13-19
gm-C filters

cascade realization
capacitor values,

16-25–16-26
filter parameters, 16-24
low-pass filter structure,

16-25–16-26
low-pass gm-C section,

16-24–16-25
circuit symbols, 16-15
difference current, 16-16
gyrators

definition, 16-20
inductive admittance, 16-21
inverting and noninverting

transconductor,
16-20–16-21

passive equivalent circuit,
16-21–16-22

integrators
floating=grounded capacitor,

16-17–16-18
gm-C–op amp integrator,

16-19
nominal correction, phase

errors, 16-19–16-20
parasitic capacitors,

16-18–16-19
quality factor, 16-18
transfer function, 16-17

ladder simulations
element replacement

methods, 16-26–16-29

signal-flow graph methods,
16-29–16-31

MOS device, 16-16
resistors, 16-15–16-16
small-signal equivalent circuit,

16-14–16-15
transconductor, 16-14

GNURadio, 21-7–21-8
Gorski-Popiel’s method

inductance networks,
15-25–15-26

LC ladder realization, 15-26
sixth-order LC bandpass filter,

15-26–15-27
Graphical construction,

frequency-domain
analysis

amplitude and phase responses,
1-13

frequency response evaluation,
1-13–1-14

gain and phase shift, 1-13
transfer function, 1-12–1-13

Group delay function, 2-20–2-21
Gyration resistance, 20

H

Haar filters
all-pass filter, 24-25–24-26
4-level tree, 24-8–24-9

Half-plane symmetric filter, 23-14
Hamming window

amplitude spectrum,
18-11–18-12

2-D FIR filter design, 22-8–22-9
magnitude response,

18-12–18-13
Hanning window

amplitude spectrum,
18-10–18-11

expression, 18-10
magnitude response, 18-10,

18-12
High-order filters

cascade realization
Åckerberg–Mossberg circuit,

15-5–15-6
biquadratic function,

15-3
intermediate gain-scaled

transfer functions, 15-4
nth-order transfer function,

15-2–15-3
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sixth-order transfer function,
15-5

ladder simulations
dynamic range

maximization,
15-18–15-23

element substitution,
15-23–15-27

signal-flow graph methods,
15-13–15-18

low-gain active filter,
11-16–11-17

multiple-loop feedback
realizations

feedback resistors, 15-11
first-order lowpass functions,

15-8
GIC bandpass sections,

15-11–15-12
leapfrog topology, 15-12
lowpass-to-bandpass

transformation, 15-8
matrix expression, 15-9
primary resonator block

(PRB) design process,
15-10–15-11

second-order bandpass
biquads, 15-7

summer and feedback factor
implementation,
15-6–15-7

High-pass filters (HPF)
analog prototype filters

analog and digital frequency,
19-27

frequency response,
19-28–19-29

inverse Chebyshev filter
transfer function, 19-28

LPF to HPF transformation,
19-27

specification, 19-27–19-28
configuration, 23-24–23-25
derivation, 23-23–23-24
digital frequency transformation,

19-33–19-34
1-D multirate filter banks, 24-14
Nyquist point, 23-25
Sallen and Key filter, 11-9–11-10
transfer function, 23-23–23-24

Hilbert pairs
à trous algorithm, 24-43–24-44
common-factor dual-tree filter

design, 24-45

dual-tree wavelet transform,
24-44–24-45

metrics, shift dependence
aliasing energy ratio, 24-51
analysis and reconstruction,

24-50–24-51
dual-tree complex wavelet

transform (DT-CWT),
24-51–24-52

shift invariance and shift
dependence, 24-50

Q-shift dual-tree filter design
impulse response, 24-46
iterative energy minimization

method, 24-48–24-49
zero-forcing method, 24-47

shift dependence and shift
invariance, 24-43

HPF, see High-pass filters
Hurwitz polynomials, 5-7–5-8, 9-10

I

Image denoising, 25-26–25-28
Impulse response, 1-8
Independent component analysis

(ICA), 27-3
Infinite impulse response (IIR)

filters
allpass filter

block diagram, 19-10
cascade filter, 19-9–19-10
magnitude response,

19-8
phase response, 19-9
pole-zero reciprocal pair,

19-8–19-9
analog low-pass filter (LPF)

Butterworth filter,
19-11–19-13

Chebyshev filter,
19-13–19-16

elliptic filter, 19-17–19-19
inverse Chebyshev filter,

19-15–19-17
specification, 19-11

analog prototype filters
bandpass filter, 19-28–19-31
bandstop filter, 19-32
design steps, 19-20
high-pass filter, 19-27–19-29
low-pass filter, 19-24–19-26
transformation, 19-20–19-24

causality, 19-2–19-3

code segment
Motorola 56001 architecture,

21-7
TMS320C30 architecture,

21-3–21-4
TMS320C50 architecture,

21-5–21-6
computer-aided design

least squares (L2-norm)
criterion, 19-36–19-40

weighted Chebyshev
(L1-norm) criterion,
19-40

digital frequency transformation
bandpass filter, 19-34–19-35
bandstop filter, 19-35–19-36
design process, 19-32–19-33
high-pass filter, 19-33–19-34
low-pass filter, 19-33

digital LPF specification,
19-11–19-12

direct form realizations
cascade second-order filter,

19-6
coefficient quantization,

19-7–19-8
parallel second-order filter,

19-7
system function, 19-5–19-6

1-D multirate filter banks
all-pass filter design,

24-25–24-26
causal and anticausal

filtering, 24-24
transformation-based design

magnitude response,
24-28
phase response,
24-27–24-28
prototype linear phase
low-pass filter, 24-27

types, 24-24
fixed-point IIR filter

first-order filter, 20-7
limit cycle, 20-13
normalized fixed-point

roundoff noise variance,
20-9

quantization, noise source,
20-8

roundoff noise-to-signal
ratio, 20-8–20-9

second-order filter,
20-8–20-9
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state-space filter realization,
20-10

transfer function, 20-7–20-8
floating-point IIR filter

first-order filter, 20-10–20-11
limit cycle, 20-13
normalized floating-point

roundoff noise variance,
20-12

roundoff noise-to-signal
ratio, 20-11–20-12

second-order filter,
20-11–20-12

zero-mean white noise, 20-10
frequency response

complex function, 19-3–19-4
group delay, 19-5
magnitude square, 19-4
phase response, 19-5

lattice digital filters
injected numerator structure,

19-41–19-42
injector gains, 19-44–19-45
reflection coefficient,

19-42–19-44
tap gains, 19-44
tapped numerator structure,

19-41–19-42
third-order one-multiplier

injected numerator filter,
19-42–19-43

minimum phase filter, 19-8
poles and zeros, 19-3
programmable logic

implementation,
21-13–21-14

special-purpose implementation,
21-11

stability
optimization techniques,

19-40–19-41
second-order system,

19-3–19-4
system function and impulse

response, 19-1–19-2
Inverse Chebyshev filters,

19-15–19-17
Iris recognition, 25-28
Iterative filter design algorithm,

22-13–22-14

J

Jing–Fam approach, 18-49, 18-55,
18-57–18-58

K

Kaiser window
definition, 18-15
magnitude response,

18-14–18-15
prolate spheroidal wave

function, 18-14
spectral properties, 18-15
stopband attenuation,

18-13–18-14
Kirchhoff current law equation, 5-1

L

Ladder simulations
dynamic range maximization

active circuit, 15-22–15-23
feed-in resistors, 15-23
fourth-order elliptic lowpass

ladder filter, 15-20–15-21
passive series branch,

15-19–15-20
passive shunt branch, 15-20
signal-level scaling,

15-18–15-19
transmittance, 15-21
voltage and current maxima,

15-21
element replacement methods

circuit capacitor value,
16–28–16-29

component values,
16-27

dual-input OTA,
16-27–16-28

third-order elliptic low-pass
ladder, 16–28–16-29

transconductor-C
simulation, 16-26–16-27

transfer function, 16–28
element substitution

Antoniou’s general
impedance converter
(GIC), 15-24

Gorski-Popiel’s method,
inductor replacement,
15-25–15-27

impedance converter,
15-23–15-24

MOSFET-C method
elliptic LC low-pass filter,

16-12
implementation,

16-13–16-14

transfer function magnitude,
16-12

V–I relationship,
16-12–16-13

signal-flow graph methods
block diagram, 15-13–15-14
fourth-order all-pole lowpass

ladder, 15-17–15-18
impedance- and signal-level

scaling, 15-16
inverting lossy Miller

integrator, 15-14
ladder structure, 15-13
noninverting lossy

phase-lead integrator,
15-14

series and shunt ladder
branch, 15-15–15-16

signal-flow graph (SFG)
methods

fifth-order elliptic low-pass
function, 16–29–16-30

third-order elliptic low-pass
filter, 16–30–16-31

Ladder structures
analysis–synthesis ladder

structure, 25-17–25-18
biorthogonal property,

25-19–25-20
closed-form Lagrange formula,

25-18
digital fan-shaped filter, 25-17
magnitude response,

25-18–25-19
regular biorthogonal wavelet

generation, 25-18
two-channel biorthogonal

analysis filter bank, 25-19
wavelet construction, 25-16

Laplace transform
analog filter characteristics,

1-3–1-4
analog IIR filter, 19-11

Laplacian statistics
filtering structure, 26-8–26-9
location estimation, 26-9–26-10
a-stable distributed samples,

26-10–26-11
weighted median (WM) filter,

26-9
Lattice digital filters

injected numerator structure,
19-41–19-42

injector gains, 19-44–19-45
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reflection coefficient,
19-42–19-44

tap gains, 19-44
tapped numerator structure,

19-41–19-42
third-order one-multiplier

injected numerator filter,
19-42–19-43

LC ladder
zero-producing step, 8-4–8-5
zero-shifting step, 8-2–8-4

LCM one-port network
admittance function, 7-3
driving-point immittance, 7-2
first and second Cauer canonical

form, 7-4
first and second Foster canonical

form, 7-3
input impedance, 7-1
reactance function, 7-2–7-3,

7-5–7-6
Leapfrog topology, 15-12
Learning vector quantization (LVQ)

algorithm, 25-25
Least squares (L2-norm) criterion

adaptive weighted least square
(WLS), 19-37–19-38

eigenfilter approach,
19-39–19-40

quadratic programming, 19-38
transfer function, IIR filter,

19-36
weighted square error,

19-36–19-37
LeGall 3,5-tap filter, 24-14–24-15
Lifting schemes; see also Ladder

structures
construction

analysis polyphase matrix
types, 24-34–24-35

elementary matrix,
24-34

perfect reconstruction (PR)
filter bank, 24-35

synthesis polyphase matrix,
24-35–24-36

implementation
division process,

24-37–24-38
dual lifting, 24-38–24-39
Matlab function, 24-37
scaling matrix, 24-39

Linear filtering, 26-7–26-8
Linear programming, 22-10–22-11

Linear shift-invariant system, 22-2
LM-estimation

definition, 26-11
generalized Cauchy density,

26-11–26-14
arg min and log functions,

26-13–26-14
error norm, 26-14–26-15
GCD function, 26-11–26-12
heavy-tailed distribution,

26-12
impulsive sequence, 26-12
minimization problem, 26-13

real-valued weights and
optimization,
26-26–26-27

running meridian smoothers,
26-21–26-26

medianity parameter,
26-21–26-22

meridian estimator, 26-22
mode–type estimator, d!0,

26-23–26-24
properties, 26-25
sample median, d!1,

26-22–26-23
sample meridian, 26-21
weighted meridian,

26-25–26-26
running myriad smoothers,

26-14–26-21
fixed point weighted myriad

search, 26-21
linearity parameter,

26-14–26-15
minimization problem, 26-18
mode–type estimator, g!0,

26-17
normalized linear estimation,

g!1, 26-19
no undershoot=overshoot,

26-17
objective function,

26-15–26-16
sample mean, g!1,

26-16–26-17
sample myriad, 26-14
shift and sign invariance,

26-18
unbiasedness, 26-18
weighted mode-type

estimation, g!0,
26-19–26-20

weighted myriad, 26-18

Low-gain active filters
first-order filter realizations,

11-6–11-7
first-order transfer functions,

11-1–11-2
frequency response, 11-4–11-5,

11-6, 11-7
higher order filters, 11-16–11-17
nonideality influence

gain-bandwidth,
11-23–11-27

noise analysis, 11-27–11-29
sensitivity analysis,

11-22–11-23
slew rate, 11-27

second-order biquadratic filters
biquadratic transfer function,

11-11–11-12
RC network realization,

11-14–11-15
single-amplifier low-gain

realization, 11-12–11-13
two-amplifier low-gain

biquad configuration,
11-14

second-order positive-gain filter
bandpass circuit, 11-8–11-9
high-pass filter, 11-9–11-10
low-pass filter, 11-6–11-8
notch filter circuits,

11-10–11-11
second-order transfer functions

biquadratic transfer function,
11-3–11-4

high-pass and bandpass
transfer functions, 11-3

low-pass filter, 11-2
tuning active filters, 11-6

Low-pass filters (LPF)
analog prototype filters

bilinear transformation,
19-26

impulse invariant method,
19-24–19-25

1-D analog transfer function
2-D zero-phase filter,

23-21
rotation angle, 23-20–23-21
subfilter stability and

realization, 23-20
1-D discrete transfer function,

23-21–23-22
digital frequency transformation,

19-33
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nonessential singularity
elimination, 23-22–23-23

Sallen and Key filter, 11-6–11-8
Low-pass transfer function

bandpass transformation
bandpass network

transformation, 3-9–3-10
bandpass transfer function,

3-7
imaginary frequency axis, 3-8
narrow-band approximation,

3-8
passband and stopband

specifications, 3-8–3-9
band-reject transformation

band-rejection network
transformation,
3-12–3-13

LPP transfer function,
3-12

transformation responses,
3-11–3-12

high-pass transformation
frequency range, 3-5–3-6
HP circuit, 3-6
imaginary axis, 3-5
network transformation, 3-6

LPF, see Low-pass filters

M

Magnitude truncation, 3
Maximally flat magnitude (MFM),

2-9–2-10
Maximum likelihood estimation

generalized Cauchy density
arg min and log functions,

26-13–26-14
error norm, 26-14–26-15
GCD function, 26-11–26-12
heavy-tailed distribution,

26-12
impulsive sequence, 26-12
minimization problem,

26-13
generalized Gaussian density

additive noise, 26-5
definition, 26-5–26-6
minimization problem,

26-6–26-7
M-band filter bank

lifting, 24-42–24-43
type 1 polyphase decomposition,

24-41–24-42

type 2 polyphase decomposition,
24-42

types, 24-43
McClellan transformation

Chebyshev polynomial, 22-17
frequency response, 22-17–22-21
nonlinear optimization problem,

22-21
window-based 2-D FIR filter

design, 22-7–22-8
zero-phase filter, 22-17

M-estimation
filtering structure, 26-5
Gaussian statistics, linear

filtering, 26-7–26-8
generalized Gaussian density,

26-5–26-7
additive noise, 26-5
definition, 26-5–26-6
minimization problem,

26-6–26-7
Laplacian statistics

filtering structure, 26-8–26-9
location estimation,

26-9–26-10
median filtering, 26-8–26-11
a-stable distributed samples,

26-10–26-11
weighted median (WM)

filter, 26-9
MFM, see Maximally flat magnitude
Mikhael–Bhattacharyya biquad,

13-18
Minimal mean-square-error

approximation, 23-38
Minimax algorithm

Charalambous minimax
algorithm, 23-32–23-33

objective function, 23-31–23-32
Minimum-phase filters, 1-17–1-19
MOSFET-C method

balanced linear MOSFET
conductance, 16-3–16-4

balanced symmetrical op amp,
16-4

cascade realization
aspect ratios, 16-11
gain constant, 16-10–16-11
high-order function,

16-9–16-10
nth-order transfer function,

16-10
equivalent resistor circuit, 16-4
first- and second-order sections

Tow–Thomas biquad,
16-7–16-8

transfer function, 16-8–16-9
integrators

active RC integrator, 16-5
differential MOSFET-C

integrator, 16-5–16-6
equivalent circuit, 16-5
four-MOSFET configuration,

16-6
lossy integrator, 16-6–16-7

ladder simulations
elliptic LC low-pass filter,

16-12
implementation,

16-13–16-14
transfer function magnitude,

16-12
V–I relationship,

16-12–16-13
MOS transistor, 16-3

Mother wavelet, 24-8–24-11
Multiband filter, 18-35, 18-37
Multiple-amplifier biquads

all-pass-based biquads,
13-25–13-26

decoupled time constants
dual-amplifier bandpass

filter, 13-2
dual op-amp bandpass filter

section, 13-4–13-5
dual op-amp high-pass filter

section, 13-4
dual op-amp low-pass filter

section, 13-3
Sallen and Key bandpass

circuit, 13-2
transfer voltage ratio, 13-2,

13-4
dual-amplifier twin-T biquads

twin-T band-rejection filter,
13-6–13-7

twin-T Cauer low-pass and
high-pass filter,
13-8–13-9

twin-T high-pass filter,
13-7–13-8

twin-T low-pass filter, 13-7
twin-T resonator, 13-5–13-6
voltage transfer ratios, 13-7

GIC-derived dual-amplifier
biquads

all-pass building block,
13-14–13-15
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bandpass building block,
13-12–13-13

Cauer high-pass building
block, 13-17–13-18

Cauer low-pass building
block, 13-15–13-16

high-pass building block,
13-13–13-14

low-pass building block,
13-10

notch filter building block,
13-14–13-15

resonator, 13-9
time constant and

conductance ratio, 13-11
transfer function, 13-12
voltage transfer ratio,

13-9–13-10
GIC-derived three-amplifier

biquads, 13-18–13-19
single- to multiple-amplifier

biquadratic filter, 13-1
state-variable-based biquads

Åkerberg–Mossberg biquad,
13-24–13-25

analog computer structure,
13-20–13-21

Berka–Herpy biquad,
13-24–13-25

low-pass transfer function,
13-21

noninverting integrator,
13-24

op-amp realization,
Tow–Thomas filter,
13-22–13-23

output amplifier,
13-21–13-22

Tow–Thomas biquad,
13-23–13-24

Multiple-feedback (MFB) filters
all-pole designs

equal-capacitor design,
12-5

low-pass structure,
12-3–12-4

realization, 12-3–12-5
transfer ratio, 12-4–12-5

design
finite amplifier gain effects,

12-8–12-9
sensitivity, 12-8
tuning function, 12-9–12-10

MMFB structure

bandpass transfer function,
12-10–12-11

biquadratic structure,
12-12–12-13

N

Narrowband filter
amplitude response,

18-51–18-52
Jing–Fam approach, 18-49,

18-55, 18-57–18-58
multiplier, minimization,

18-52–18-53
order of F(z) and G(z), 18-52
passband and stopband ripples,

18-56
single-stage design, 18-57
subfilter design, 18-51
synthesis, 18-50–18-51,

18-57–18-58
transfer function, 18-49, 18-51,

18-55–18-56
NMOS transistor, switch resistance,

17-19–17-20
Nondiagonal nonsingular integer

matrix, 22-22
Nonlinear filtering

image denoising
adaptive transform, 27-27
best basis selection,

27-16–27-17
brushlets and wave atoms,

27-20, 27-22
butterfly-based digital

implementation,
27-9–27-12

continuous planelet
transform, 27-23–27-24

continuous transform,
27-5–27-7

definition, 27-1
denoising algorithm,

27-25
discrete planelet transform

(DPT), 27-24
discrete transform,

27-7–27-8
fixed=adaptive transform,

27-4
image data corruption,

27-1–27-2
inverse problem, 27-2
mapping function, 27-3

multiresolution Fourier
transform, 27-19–27-20

multiscale polar cosine
transform, 27-17–27-19,
27-22

nonlinear approximation,
27-12–27-16

planar feature extraction,
27-25–27-26

polar cosine packets, 27-16
radon-based digital

implementation,
27-9

restoration algorithm,
27-27–27-28

ridgelet and curvelet
transform, 27-20, 27-22

separable=nonseparable
transform, 27-3–27-4

spatiotemporal denoising
method, 27-2

standard images, 27-21
standard video sequences,

27-28–27-31
texture representation, 27-5
thresholding, 27-26
transform domain, 27-3
wavelet denoising,

27-26–27-27
statistical signal models

additive noise extraction,
26-27

baseband communication,
26-28–26-29

corrupted image sample,
26-2–26-3

definition, LM-estimation,
26-11

filtering structure, 26-5
Gaussian statistics, linear

filtering, 26-7–26-8
generalized Cauchy density,

26-11–26-14
generalized Gaussian density,

26-5–26-7
highpass filtering,

26-29–26-31
Laplacian statistics, median

filtering, 26-8–26-11
optimal estimation-based

filter development,
26-2

power line communications
(PLCs), 26-29–26-30
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real-valued weights and
optimization,
26-26–26-27

running meridian smoothers,
26-21–26-26

running myriad smoothers,
26-14–26-21

signal processing,
26-1–26-2

symmetric a-stable
distributions, 26-28

Nonlinear-phase low-pass filter,
22-4–22-5

Nonminimum-phase transfer
functions, 1-20–1-21

Norton equivalent, 9-1–9-2
Nyquist points, 23-25

O

On-chip spectrum=vector analyzer,
17-31

2-Opamp (OA) CGIC biquad
composite GIC biquad, 14-18,

14-19
configuration, 14-2–14-3
design

second-order BP filter,
14-8–14-9

second-order Butterworth
LPF, 14-7–14-8

second-order HP filter, 14-9
sixth-order Chebyshev

low-pass filter,
14-10–14-11

sixth-order elliptic bandpass
filter, 14-11–14-12

and tuning procedure,
14-6–14-7

3G and 4G ports, 14-2
realization, 14-4–14-5
second-order transfer function,

14-3–14-4
sensitivity analysis, 14-4,

14-6
stability properties, 14-4
universal biquad, 14-11,

14-13–14-14
3-Opamp (OA) CGIC biquad

design and tuning procedure,
14-15–14-16

sixth-order elliptic BP filter
design, 14-16–14-17

structure, 14-11, 14-14–14-15

Operational transconductance
amplifier (OTA) filters,
see gm-C filters

P

Padukone–Mulawka–Ghausi
biquad, 13-19

Parallel=series ladders
Cauer canonical form, 8-14–8-15
open-circuit voltage ratio,

8-15–8-16
RC a- and b-ladder, 8-12–8-13
realization, 8-13–8-14
scale factors, 8-12
transfer admittance level,

8-13–8-14
two ladder networks, 8-11

Parks–McClellan algorithm, 25-18
Passive cascade synthesis

Darlington type-D Section
cascade connection, 6-12
impedance matrix, 6-13–6-14
positive-real impedance,

6-11–6-12
transmission matrix,

6-12–6-13
index set, 6-4
Richards section, 6-10–6-11
two-port network, 6-1–6-2
type-E section

Brune section, 6-7–6-9
Darlington type-C section,

6-7
impedance and transmission

matrix, 6-6–6-7
Passive immittances, one-port

network
average electric and magnetic

energy, 5-3
driving-point impedance, 5-2,

5-4
Hurwitz polynomial, 5-7–5-8
Kirchhoff current law equation,

5-1
positive-real function, 5-4–5-5
real rational function, 5-5–5-6
resistive, capacitive and

inductive branch,
5-2–5-3

RLCM one-port network,
5-1–5-2

Sturm’s theorem, 5-8
Passive RLC filters, 1-23

PLCs, see Power line
communications

Polar cosine transform
best basis selection,

27-16–27-17
brushlets and wave atoms, 27-20,

27-22
butterfly-based digital

implementation
Cartesian separable basis

function, 27-10–27-11
forward and inverse

transforms, 27-9–27-10
Fourier magnitude spectrum,

27-11–27-12
frequency spectrum, 27-10

continuous transform
Fourier slice theorem,

27-6–27-7
polar Fourier transform, 27-6
Radon transform, 27-6
real-to-complex ridge profile,

27-5
ridge function, 27-5–27-6

discrete transform, 27-7–27-8
multiresolution Fourier

transform, 27-19–27-20
multiscale polar cosine

transform
basis functions and

frequency tiling,
27-18–27-19

construction, 27-17–27-18
denoising results, 27-22

nonlinear approximation
ghosting artifact, 27-14,

27-16
image patches, 27-12
PSNR curves, 27-12–27-14
reconstructions, 27-12,

27-14–27-15
polar cosine packets, 27-16
radon-based digital

implementation, 27-9
ridgelet and curvelet transforms,

27-20, 27-22
standard images, 27-21
texture representation, 27-5

Polar Fourier transform,
27-6–27-7

Polar trigonometric transforms,
27-7

Polynomial filter, 2-11
Positive-real function, 5-4–5-5
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Power line communications (PLCs),
26-29–26-30

Primary resonator block (PRB),
15-10–15-11

Programmable switched-capacitor
filter

block diagram representation,
17-29

topology versatility,
17-29–17-30

transfer function, 17-28–17-29
Programmable switched-capacitor

oscillator
BPF-based SC oscillator,

17-32–17-33
finite-impulse-response (FIR)

filter, 17-34
four-level quasi-sinusoidal wave

generator, 17-33–17-34
high-quality-factor (Q-factor),

17-32–17-33
linearity, 17-33
measured frequency spectrum,

17-34–17-35
sinewave oscillator, 17-32

Q

Q factors, see Quality factors
Quadrant fan filter, 23-9–23-10
Quadrature mirror filter (QMF),

25-12–25-16
Quality factors, 1-26
Quantization error

coefficient quantization error
alternate realization

structure, 20-16–20-17
clustered root, 20-16
definition, 20-15
grid, 20-15–20-16
realizable pole locations,

20-16–20-17
transfer function,

20-15
fixed-point quantization error

sum of products, 20-2–20-3
types, 20-3–20-4

floating-point quantization
error, 20-4–20-5

Quasi-Newton algorithm,
23-29–23-30

Quincunx sampling matrix
diamond and fan filter banks,

25-8

nonsingular real matrix,
25-3–25-5

quadrature mirror filter (QMF),
25-13–25-14

R

Raised-cosine window, see Hanning
window

Rational function, 5-6–5-8
RC one-port networks

continued-fraction expansion,
7-8–7-9

first and second Cauer canonical
form, 7-9

first and second Foster canonical
form, 7-8–7-10

input impedance, 7-6–7-7
RC impedance function, 7-7

Reactance function, 7-2–7-3,
7-5–7-6

Rectangular window
causal and desired impulse

response, 18-7
definition, 18-7
2-D FIR filter design, 22-9
log–magnitude response,

18-8–18-9
spectrum, 18-8

Relative coefficient sensitivity, 4-4
Relative sensitivity, 4-1–4-2
Remez exchange algorithm

exhaustive step-by-step search,
18-21–18-23

extremal initialization,
18-20–18-21

iterative multivariable algorithm,
18-20

maxima of error function, 18-21
superfluous potential external

rejection, 18-23–18-24
Resistively terminated network

design
Butterworth networks

element values, 9-6–9-7
input impedance, 9-5
input reflection coefficient,

9-4–9-5
LC ladder, 9-6
minimum-phase solution,

9-5
recurrence formula, 9-6
transducer power gain, 9-4

Chebyshev networks

element values, 9-10–9-11
input impedance, 9-10
input reflection coefficient,

9-9
minimum-phase solution,

9-9–9-10
transducer power-gain, 9-9

input and output reflection
coefficients, 9-1

maximum average power, 9-3
Norton equivalent, 9-1–9-2
sinusoidal steady state, 9-2
Thévenin equivalent, 9-1–9-2
transfer voltage ratio and

impedance, 9-4
Richards function

arbitrary positivereal constant,
6-2–6-3

real nonnegative constant
impedance matrix, 6-5–6-6
index set, 6-4
transmission matrix, 6-5

RLC load formulas
Butterworth networks

all-pass function,
10-15–10-16

Butterworth transducer
power-gain, 10-15

equalizer back-end
impedance, 10-16–10-17

final reactive element, 10-17
LC ladder network,

10-17–10-18
load impedance, 10-14
minimum-phase solution,

10-15
Chebyshev networks

all-pass function, 10-23
equalizer back-end

impedance, 10-24
Laurent series expansion,

10-23
RCvc sinh a<2 sin g1 and

Lb1�L, 10-25
RCvc sinh a<2 sin g1 and

Lb1<L, 10-25
RCvc sinh a�2 sin g1 and

Lb1<L, 10-24–10-25
RCvc sinh a�2 sin g1 and

Lb1�L, 10-24
transducer power-gain, 10-22

RLCM one-port network, 5-1–5-2
Robust nonlinear estimators=filters

additive noise extraction, 26-27
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baseband communication,
26-28–26-29

highpass filtering, 26-29–26-31
power line communications

(PLCs), 26-29–26-30
symmetric a-stable distributions,

26-28
Root sensitivity

pole sensitivity, 4-5–4-7
semirelative root sensitivities,

4-5
Rotation-invariant classification

system, 25-25

S

Sallen and Key filter
bandpass circuit, 11-8–11-9,

13-2
high-pass filter, 11-9–11-10
low-pass filter, 11-6–11-8

Second-order filters
biquadratic filters

biquadratic transfer function,
11-11–11-12

RC network realization,
11-14–11-15

single-amplifier low-gain
realization, 11-12–11-13

two-amplifier low-gain
biquad configuration,
11-14

Butterworth LPF, 14-7–14-8
positive-gain filter

bandpass circuit, 11-8–11-9
high-pass filter, 11-9–11-10
low-pass filter, 11-6–11-8
notch filter circuits,

11-10–11-11
Semirelative coefficient sensitivity,

4-4–4-5
Sensivity and selectivity

active RC filters, 4-19, 4-30
bounds, 4-18–4-19
cascaded realization, active filters

CAD methods, 4-24
operational amplifier, 4-26
polynomial coefficient,

4-23
Q-factor, 4-26–4-28
stages, 4-25–4-26

coefficient sensitivity, 4-4–4-5
comparative errors, 4-30–4-31
computations, adjoint network

branch impedance and
branch admittance
matrices, 4-21–4-22

port variable separation, 4-21
Tellegen theorem, 4-20
transfer function calculation,

4-22
definition, 4-1–4-2
doubly terminated matched

lossless filters
Fettweis-Orchard theorem,

4-29–4-30
high-Q transfer function

poles, 4-28
steady-state sinusoidal

operation, 4-28–4-29
transducer function, 4-29

function sensitivity, 4-3–4-4
invariants

filter function, 4-16
frequency scaling, 4-17–4-18
homogeneous function,

4-15
impedance scaling, 4-17
passive RC circuits, 4-17
scaling operation, 4-15–4-16

limitations, 4-19
multiparameter sensitivities and

sensitivity measures
average sensitivity index, 4-9,

4-11
multivariable statistical

measure, 4-14
quadratic sensitivity index,

4-10, 4-12–4-13
sensitivity row vector,

4-9–4-10
worst-case sensitivity index,

4-10, 4-12–4-13
reduction methods, 4-22–4-23
root sensitivities

pole sensitivity, 4-5–4-7
semirelative root sensitivities,

4-5
statistical model, 4-7–4-8

Separable product filters
half-plane symmetric filter,

23-14
prescribed specification,

23-15–23-16
quadrantally symmetric filter,

23-12–23-13
transfer function, 23-11–23-12

Sinewave generator, 17-31–17-33

Single-amplifier multiple-feedback
filters

all-pole designs
equal-capacitor design, 12-5
low-pass structure,

12-3–12-4
transfer ratio, 12-4–12-5

design
finite amplifier gain effects,

12-8–12-9
sensitivity, 12-8
tuning function, 12-9–12-10

modified multiple-loop feedback
(MMFB) structure

bandpass transfer function,
12-10–12-11

biquadratic structure,
12-12–12-13

structures
all-pole realization,

12-3–12-5
double ladder

multiple-feedback
network, 12-2–12-3

infinite-gain single-amplifier
structure, 12-1–12-2

voltage transfer function,
12-2

Singular-value decomposition
(SVD)

Antoniou and Lu method
amplitude response matrix,

23-35–23-36
error compensation

procedure, 23-39
error correction section,

23-36–23-39
Deng and Kawamata method

design procedure,
23-41–23-43

2-D filter realization, 23-43
matrix decomposition,

23-41
problem formulation,

23-34–23-35
Sinusoidal response

Nth-order analog filter, 1-11
steady-state sinusoidal response,

1-11–1-12
Sixth-order Chebyshev low-pass

filter, 14-10–14-11
Sixth-order elliptic BP filter

2-OA CGIC biquad,
14-11–14-12
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3-OA CGIC biquad,
14-16–14-17

Slew rate, 11-27
Spatially adaptive wavelet

thresholding (SAWT)
algorithm, 25-27

Spectral transformation
complex transformation,

23-7–23-8
Constantinides transformation

application, 23-11
1-D digital filter design,

23-9–23-10
2-D discrete transfer

function, 23-10
low-pass transfer function,

23-10–23-11
linear transformation

algebraic structure, 23-5
frequency response,

multiplication table,
23-5–23-6

product of functions,
23-6–23-7

zero-phase filter, 23-7
quadrant fan filter, 23-9–23-10
symmetric fan filter, 23-8–23-9

Standard video sequences
computational complexity, 27-30
piecewise planar approximation,

27-31
SNR results, 27-28–27-29

Step response, 1-8
SVD, see Singular-value

decomposition
Switched-capacitor filters

analog switches, 17-19–17-21
biquadratic filter, 17-23–17-24
channel mobile charge, 17-17
clock feedthrough, 17-15–17-16
continuous-time filter,

17-1
dynamic range, 17-17–17-18
first-order blocks

offset and gain compensated
integrator, 17-6

reduced capacitance spread,
17-5–17-6

standard stray-insensitive
integrator, 17-4–17-5

transfer function, 17-5
fully differential filter

charge redistribution
analysis, 17-23

folded cascode amplifier and
CMFB circuit,
17-22–17-23

hold and integrate functions,
17-21

single-ended amplifier, 17-22
low-voltage operational

amplifiers, 17-18–17-19
noise

1=f noise, 17-12
op-amp noise contribution,

17-13–17-14
switched-capacitor

integrator, 17-14
switches, 17-14–17-15
thermal noise, 17-12

op-amp finite parameters,
17-10–17-11

programmable filter
block diagram

representation, 17-29
topology versatility,

17-29–17-30
transfer function,

17-28–17-29
programmable oscillator

BPF-based SC oscillator,
17-32–17-33

finite-impulse-response
(FIR) filter, 17-34

four-level quasi-sinusoidal
wave generator,
17-33–17-34

high-quality-factor
(Q-factor), 17-32–17-33

linearity, 17-33
measured frequency

spectrum, 17-34–17-35
sinewave oscillator, 17-32

properties, 17-1–17-2
reduced area, 17-30–17-31
sixth-order bandpass ladder filter

floating LC tank circuit,
17-26

frequency response,
17-27–17-28

grounded LC tank circuit,
17-25

lossless discrete integrator
(LDI) transformation,
17-27

passive LC tank, 17-26
RC active implementation,

17-25–17-26

RLC low-pass prototype,
17-24–17-25

spectrum analyzer, 17-31–17-33
switched-capacitor biquadratic

section
capacitance spread,

17-7–17-8
decoupled structure.,

17-8–17-9
high-sampling rate and

high-Q condition,
17-9–17-10

ideal transfer function, 17-9
Q-sensitivity and total

capacitance, 17-10
z-domain, 17-6–17-7

voltage gain amplifiers
clock phase, 17-3–17-4
leakage current, 17-2–17-3
open-loop dc gain, 17-4
z-domain transfer function,

17-3

T

Tarmy–Ghausi circuit, 13-25–13-26
Texas Instruments

ADSP-21020 chip architecture,
21-4–21-5

Motorola 56001 architecture,
21-6–21-7

TMS320C30 architecture,
21-3–21-4

TMS320C50 architecture,
21-5

TMS320C80 chip, 21-7
Texture analysis and segmentation

Bamberger pyramid,
25-25–25-26

classification system, 25-25
multichannel method,

25-24–25-25
Thévenin’s theorem, 1-24
Third-order Butterworth transfer

function, 2-11
Time-shifting theorem, 1-17
Tow–Thomas biquad, 16-7–16-8
Translation invariant (TI) wavelet

denoising, 27-27
Transmission coefficient, 9-1–9-4
Two-channel undecimated

checkerboard filter bank
(UCFB), 25-21–25-22

Two-dimensional FIR filters
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arbitrary specification
Chebyshev approximation,

22-6
frequency sampling and

linear programming,
22-10–22-11

iterative method,
approximate minimax
design, 22-13–22-14

Lp norm, 22-11–22-12
window-based filter design,

22-6–22-10
filter banks, 22-25–22-26
frequency transformation

method
Chebyshev polynomial,

22-17
frequency response,

22-17–22-21
nonlinear optimization

problem, 22-21
zero-phase filter, 12-17

implementation, 22-24
nonrectangular transformations

and sampling rate
conversions

diamond filter transfer
function, 22-22–22-23

half-band filter, 22-23
parallelogram-shaped

passband region, 22-21,
22-22

prototype filter impulse
response, 22-22

straight-line boundaries,
22-21

upsampling transformation
and decimation,
22-22

preliminary design
considerations

design techniques, 22-6
filter specification and

approximation criteria,
22-3–22-4

linear shift-invariant system,
22-2

zero-phase FIR filter and
symmetry consideration,
22-4–22-5

separable filter design,
22-16–22-17

Two-dimensional IIR filters
analog filter transformation

piecewise-constant
amplitude response
specification, 23-2

rotated filter, 23-3
two-variable reactance

function, 23-3–23-5
discrete transfer function,

23-26
HP, BP, and BS filter realization

configuration, 23-24–23-25
Nyquist point, 23-25
subfilter contour plot,

23-23–23-24
least pth optimization

elemental error function,
23-27

minimax algorithm,
23-31–23-33

problem formulation,
23-28–23-29

quasi-Newton algorithm,
23-29–23-30

linear digital filter
amplitude and phase

response, 23-1–23-2
group delay function, 23-2
transfer function, 23-1–23-2

lowpass (LP) filter
1-D analog transfer function,

23-18–23-21
1-D discrete transfer

function, 23-21–23-22
nonessential singularity

elimination, 23-22–23-23
separable product filter design

half-plane symmetric filter,
23-14

prescribed specification,
23-15–23-16

quadrantally symmetric
filter, 23-12–23-13

transfer function,
23-11–23-12

singular-value decomposition
(SVD)

Antoniou and Lu method,
23-35–23-39

Deng and Kawamata
method, 23-41–23-43

problem formulation,
23-34–23-35

spectral transformation
complex transformation,

23-7–23-8

Constantinides
transformation,
23-9–23-11

linear transformation,
23-5–23-7

quadrant fan filter,
23-9–23-10

symmetric fan filter,
23-8–23-9

two-variable network theory
design procedure,

23-44–23-45
input admittance, 23-44
(1þN1þN2þNr)-port 2-V

lossless network,
23-43–23-44

skew-symmetric matrix,
23-44

Two dimensional (2-D) two-channel
fan filter bank

BDFB design, ladder structure
analysis–synthesis ladder

structure, 25-17–25-18
biorthogonal property,

25-19–25-20
closed-form Lagrange

formula, 25-18
digital fan-shaped filter,

25-17
magnitude response,

25-18–25-19
regular biorthogonal wavelet

generation, 25-18
two-channel biorthogonal

analysis filter bank, 25-19
wavelet construction, 25-16

FFB design, 1-D quadrature
mirror filter (QMF)

change-of-variables scheme,
25-12–25-13

checkerboard magnitude
response, 25-13–25-14

2-D polyphase filter, 25-14
FIR PR filter, 25-12
four directional filter,

25-15–25-16
image decomposition, 25-15,

25-17
polyphase representation,

25-13
two-channel analysis

structure, 25-14
Two-port synthesis

LC ladder
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zero-producing step, 8-4–8-5
zero-shifting step, 8-2–8-4

parallel=series ladders
Cauer canonical form,

8-14–8-15
open-circuit voltage ratio,

8-15–8-16
RC a- and b-ladder,

8-12–8-13
realization, 8-13–8-14
scale factors, 8-12
transfer admittance level,

8-13
two ladder networks, 8-11

RC ladder, 8-7–8-9
sigan transmission, 8-1–8-2
transfer current and voltage

ratio, 8-1
Type-E section

Brune section
positive-real impedance,

6-9–6-10
two-port network, 6-8
type-A and type-B section,

6-8–6-9
Darlington type-C section, 6-7
impedance and transmission

matrix, 6-6
Type-I Chebyshev filters, see

Chebyshev filters
Type-II Chebyshev filters, see

Inverse Chebyshev filters

U

Undecimated á trous wavelet
transform, 27-20

Undecimated checkerboard filter
bank (UCFB),
25-21–25-22

Undecimated discrete wavelet
transform (UDWT),
25-20, 25-27–25-28

Undecimated fan filter bank
(UFFB), 25-21–25-22

V

VCCS, see Voltage-controlled
current sources

VCVS, see Voltage-controlled
voltage sources

Video demosaicking filters
bicubic interpolation, 28-2, 28-4

camera identification and
forgery detection, 28-19

compression, 28-18
constant-hue-based

interpolation, 28-5–28-6
demosaicking definition, 28-1
denoising, 28-18
digital camera, 28-1
edge-directed interpolation

direction selection,
28-7–28-8

edge indicator, 28-7
green channel, 28-6–28-7
hard decision process, 28-6

evaluation, 28-19–28-20
frequency-domain approach

alias canceling interpolation,
28-10–28-11

filtering, 28-11–28-12
high correlation, 28-9–28-10
luminance channel sampling,

28-10
gradients

gain parameter, 28-8–28-9
graphical illustration,

28-9–28-10
green and blue gradients,

28-8
linear FIR filter coefficients,

28-9
linear interpolation,

28-7–28-8
red channel, 28-8

homogeneity-directed
interpolation

block diagram, 28-13
definition, 28-13
luminance and chrominance

values, 28-12–28-13
neighborhood parameter,

28-13–28-14
human visual system,

28-2–28-3
imaging model

cosine function, 28-4
full-color channel, 28-3
subsampling, 28-2

optimal spectral sensitivity
function, 28-19

projections onto convex sets
(POCS) technique,
28-14–28-15

single-channel interpolation
method, 28-4

spectral response modeling,
28-15–28-16

super-resolution reconstruction
Bayer sampling, 28-16
CFA sampling pattern, 28-17
high-resolution image,

28-17–28-18
missing sample estimation,

28-16
multiframe interpolation,

28-16–82-17
regularization function,

28-18
VLSI implementation, digital filters

architectural approach, 21-1
computational structure, 21-1
design automation, 21-1–21-2
general-purpose processor

ADSP-21020 chip
architecture, 21-4–21-5

digital equipment company
(DEC) Alpha family, 21-8

fixed- and floating-point
processor, 21-2

GNURadio, 21-7–21-8
historical perspective, 21-2
Intel Pentium family, 21-8
Motorola 56001 architecture,

21-6–21-7
TMS320C30 architecture,

21-3–21-4
TMS320C50 architecture,

21-5
TMS320C80 chip, 21-7
wireless personal

communications system
(PCS), 21-8

programmable logic
implementation

application-specific
integrated circuit (ASIC),
21-11

field programmable gate
array (FPGA), 21-12

FIR filter, 21-12–21-13
IIR filter, 21-13–21-14

special-purpose implementation
bit-serial implementation,

21-9
extensive pipelining, 21-8
FIR filter, 21-9–21-11
IIR filter, 21-11
multiplier architecture, 21-9
parallelism, 21-8

Index IN-19



Voltage-controlled current sources
(VCCS), 4-18

Voltage-controlled voltage sources
(VCVS), 4-18

Voltage doubler, 17-19–17-21
Voltage gain amplifiers

clock phase, 17-3–17-4
leakage current, 17-2–17-3
open-loop dc gain, 17-4
z-domain transfer function, 17-3

Voltage transfer function, 1-24
2-V strictly Hurwitz polynomial,

23-43–23-45

W

Weierstrass theorem, 2-25–2-26
Weighted Chebyshev (L1-norm)

criterion, 19-40

Weighted median (WM) filter,
26-9

Wideband filter, 18-53–18-54
Window-based filter design

cutoff boundary, 22-9
Hamming window, 22-8–22-9
IIR sequence, 22-6–22-7
impulse and frequency responses

circularly symmetric
low-pass filter,
22-8–22-9

2-D filter, 22-9–22-10
ideal filter, 22-7

McClellan transformation,
22-7–22-8

rectangular window, 22-9
separable window, 22-7,

22-9–22-10
surface sampling, 22-7

Z

Zero-mean white noise filter,
20-5

Zero of transmission
binomial expansion formula,

10-4
classification, 10-3–10-4
definition, 10-2
input impedance, 10-3
Laurent series expansion,

10-4
Zero-phase filter

causal and noncausal filters,
23-7

1-D analog transfer function,
23-21

singular-value decomposition,
23-38–23-39

IN-20 Index
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