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Notations

CAPITAL LETTERS

mMmmoopm®e»>2>>P>P>>

mmm

T
Q

cross-sectional area; area of plan of building; floor area; corner point
area of lower flange

cross-sectional area of beam

cross-sectional area of column

cross-sectional area of diagonal bar in cross-bracing
cross-sectional area of horizontal bar in cross-bracing

area of upper flange

area of web

area of closed cross-section defined by the middle line of the walls
plan breadth of the building (in direction y); constant of integration
local bending stiffness for sandwich model

global bending stiffness for sandwich model

centre of vertical load/mass; centroid; constant of integration
constant of integration

modulus of elasticity; constant of integration

modulus of elasticity of columns; modulus of elasticity of concrete
modulus of elasticity of diagonal barsin cross-bracing

modulus of elasticity of horizontal barsin cross-bracing

modulus of elasticity of steel

modulus of elasticity of shear wall

concentrated load (on top floor level); resultant of horizontal 1oad
critical concentrated load (on top floor level)

critical load for pure torsional buckling (for concentrated top load)
full-height (global) bending critical load (for concentrated top load)
full-height (local) bending critical load (for concentrated top |oad)
Saint-Venant torsional critical load (for concentrated top |oad)
warping torsional critical load (for concentrated top load)

modulus of elasticity in shear

Saint-Venant torsional stiffness

effective Saint-Venant torsional stiffness

height of building/framework/coupled shear walls; horizontal force
second moment of area

auxiliary constant

auxiliary constant

second moment of area of beam

second moment of area of column
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It sum of local and global second moments of area

lg global second moment of area of the columns of the framework
lgw  global warping torsional constant

lo polar second moment of area

Ix, ly second moments of areawith respect to centroidal axes x and y
Ixy product of inertia with respect to axes x and y

lw second moment of area of wall

[y warping (bending torsional) constant

J Saint-Venant torsional constant

J supplementary Saint-Venant torsional constant

K shear stiffness of framework; shear critical load

K shear stiffness/shear critical load of coupled shear walls

K,  full-height global shear stiffness; global shear critical load

Ky,  full-height global shear stiffness/shear critical 1oad of coupled shear walls
Ke local shear stiffness related to the columns; local shear critical 1oad
Kg  shear stiffness representing the effect of the diagonal barsin cross-bracing
Ke  effective shear stiffness

Kn  shear stiffness representing the effect of the horizontal barsin cross-bracing
L width of structure; plan length of building (in direction x)

M bending moment

M; concentrated mass at the ith floor level

M, torsiona moment

N total applied uniformly distributed vertical load; normal force
Ne  critical load

Nex  critical load for sway buckling in direction x

Nory  critical load for sway buckling in direction 'y

Nor,g  critical load for pure torsional buckling

Nt local bending critical load of framework

Nh homogeneous solution

Ng  full-height global bending critical load

N full-height local bending critical load

Np particular solution

N: Saint-Venant torsiona critical load

N,  local bending critical load of shear wall

Ny,  coupled sway-torsiona critical load

N,  warping torsiona critical load

N(2) total vertical load at z

@] shear centre

Q uniformly distributed floor load per square metre

S lateral stiffness; shear stiffness for sandwich model

S torsional stiffness

SMALL LETTERS

length of wall section; stiffnessratio
stiffness ratio for a system of bracing units
local bending stiffness ratio

, a1, &, coefficientsfor cubic equation

oo
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b length of wall section; stiffnessratio

b stiffness ratio for a system of bracing units

b shear stiffnessratio

b,  width of diagonal strip for infill

bo, by, b, coefficients for cubic equation

c length of wall section

G global bending stiffnessratio

Cy stability coefficient/critical load factor

d length of wall section; length of diagonal; depth of beam; deflection
dasce  maximum deflection recommended by ASCE
dz length of elementary section

e location of shear centre; distance of upper flange from centroid

€ distance of lower flange from centroid (with bracing cores)

f frequency; auxiliary constant; number of frames and coupled shear walls
fy lateral frequency associated with local bending stiffness

fr lateral frequency of framework

fq lateral frequency associated with global bending stiffness
fs lateral frequency associated with the effective shear stiffness
fe lateral frequency associated with the “original” shear stiffness
fw lateral frequency of shear wall/core

fy lateral frequency in direction x

fy lateral frequency in directiony

fyp  coupled lateral-torsional frequency

fo frequency of pure torsional vibration

g gravity acceleration

h height of storey; length of wall section

different storey height between ground floor and first floor
i summation index for columns/bracing units

ip radius of gyration

] summation index

k non-dimensional parameter

ks non-dimensional parameter for stability analysis

kg non-dimensional torsion parameter for frequency analysis
I width of bay

I distance between shear wall sections

m number of shear walls/cores/wall sections; mass; length of beam section
m torsional moment share on base unit

m total torsional moment on the bracing system

m, torsional moment

n number of columns/walls; number of storeys

p intensity of uniformly distributed vertical load on beams

q intensity of uniform shear flow; intensity of axial load

o] apportioner

Oo torsional apportioner

01 apportioner for the base unit

r reduction factor for beam stiffness

re mass distribution factor for the frequency analysis

rs load distribution factor for the stability analysis
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Ye

non-dimensional stiffness ratio for bracing unit; effectiveness factor;
distance of connecting beams with partially closed U-core
non-dimensional stiffness ratio for bracing system

width of shear wall section

effectiveness factor for frequency analysis

torsiona effectiveness factor

wall thickness; distance of shear centre and centroid; time; perpendicular
distance of bracing unit from shear centre; distance of column from
centroid of cross-sections with frameworks

thickness of connecting beam with partially closed U-core

wall thickness

wall thickness

wall thickness

horizontal deflection of the shear centrein direction x

maximum horizontal deflection in direction x

horizontal motion

horizontal deflection in directiony

horizontal deflection of the shear centrein directiony

maximum horizontal deflectionin directiony

horizontal deflection caused by torsional moment around the shear centre
intensity of wind load

intensity of wind load on base unit

horizontal coordinate axis; horizontal coordinate

horizontal coordinate axis; coordinate in coordinate system X -y
coordinate of the centroid in the x-y coordinate system of the shear centre
coordinate of the shear centre of the ith bracing unit

location of maximum translation

coordinates of the shear centre of the ith bracing unit in the coordinate
system X-y

coordinate of the shear centre in coordinate system X -y

horizontal coordinate axis; horizontal coordinate

horizontal coordinate axis; coordinate in coordinate system X -y
deflection due to bending deformation

coordinate of the centroid in the x-y coordinate system of the shear centre
coordinate of the shear centre of the ith bracing unit; deflection due to
interaction

location of shear centre

coordinate of the shear centrein coordinate system X -y

deflection due to shear deformation

vertical coordinate axis; vertical coordinate

GREEK LETTERS

eigenvalue; critical load parameter

eigenvalue; critical 1oad parameter for the sandwich model with thin faces
part critical load ratio

part critical load ratio for the sandwich model with thin faces
displacement
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frequency parameter for lateral vibration
frequency parameter for pure torsional vibration
weight per unit volume
stiffness parameter for a single bracing unit
stiffness parameter for a system of bracing units
global critical load ratio
Poisson ratio
, Gy auxiliary constants
circular frequency
rotation
Q4, Q, auxiliary constants
Prax  Maximum rotation
4 auxiliary constant
P mass density per unit volume; cross-sectional constant
T, Iy eccentricity parameters for the three-dimensional analysis
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1

| ntroduction

The book deals with the structural analysis of the bracing systems of multi-storey
building structures and intends to offer useful tools to both researchers and
practicing structural engineers. As a consequence, the material is divided into two
parts: Partl presents the theoretical background and Partll gives worked
examples.

A couple of decades ago approximate methods played a very important and
normally dominant role in the structural design of large structures as often, because
of the lack of computer power, it was not feasible, or practical, or sometimes
possible, to carry out an “exact” analysis of big and complex structures. Then more
and more powerful computers with more and more sophisticated programs started
to become available to wider and wider structural engineering communities. Soon
the debate started with questions like “Do we need old-fashioned approximate
methods?” and “Should we rely on brainless number-crunching machines that
cannot think?” and “Shall we just input all the data, press <Enter> and by
tomorrow the structural analysis is done?’ and “Computers in the design office:
boon or bane” (Smart, 1997). This debate will perhaps go on for along time. But
one thing seems to be certain: simple anaytica methods and closed-form
approximate solutions do and will play an important role in practical structural
engineering and theoretical research (Howson, 2006). Not only because they offer
important independent checking possibilities to help to avoid CAD (Computer
Aided Disaster) (Brohn, 1996) but also because the development and use of such
methods help to understand the complex behaviour of large structures such as
multi-storey buildings. They are also useful tools in developing structural
engineering common sense and afeel for the behaviour of structures.

When multi-storey buildings are investigated, two main avenues are available
for the structural engineer: sophisticated and powerful computer packages can be
used or “conventional” calculations can be made. Perhaps the best way to tackle
the task is to employ both approaches: at the preliminary design stage simple hand
methods can quickly help to establish the main structural dimensions and to point
to efficient bracing system arrangements. More detailed computer-based analyses
can follow. Before the final decision is made, it is essential to check the results of
the computer analysis and recheck the adequacy of the key elements of the bracing
system. Here, again, suitable analytical methods can play avery useful part.

The fact that the methods in the book are all based on continuous models has
another advantage. When the results of afinite element analysis (based on discrete
models) are checked, it is advantageous to use a technique that is based on a
different approach, i.e., on continuous media.

Structural analysis is normally carried out at two levels. The structura
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engineer has to ensure that a) the individual e ements (beams, columns, floor slabs,
etc.) are of adequate size and materia to carry their load and b) the structure as a
whole has adequate stiffness and the bracing system fulfils its main role to provide
sufficient stability to the building.

The book does not deal with individual structural elements. Its aim is to
present simple analyticall methods for the complex global analysis of whole
structural systems in the three main structural engineering areas. Closed-form
solutions will be given for the maximum rotation and deflection, the fundamental
frequency and the critical load of the building, assuming three-dimensional
behaviour.

The continuum method will be used which is based on an equivalent medium
that replaces the whole building. The discreet load and stiffnesses of the building
will be modelled by continuous load and stiffnesses that make it possible to use
analytical tools to produce relatively simple, closed-form solutions to the resulting
differential equations and eigenvalue problems.

It will be assumed that the structures are

e  atleast four storeys high with identical storey heights

. regular in the sense that their characteristics do not vary over the height
sway structures with built-in lower end at ground floor level and free upper
end

and that

e  thefloor slabs have great in-plane and small out-of-plane stiffness
the deformations are small and the material of the structuresis linearly elastic
P-delta effects are negligible.

Structural engineering research and practice often see researchers/structural
designers who have specialized in one area with limited knowledge elsewhere.
Designers are often reluctant to deal with theoretical matters; researchers often
have little practical knowledge (or attitude); those dealing with stress analyses are
sometimes ignorant of stability matters; people engaged in earthquake engineering
may not be very good at the optimisation of bracing systems, etc.

This book offers a unified treatment for the different structures (frameworks,
coupled shear walls, shear walls and cores) and also for the different types of
investigation (deflection, rotation, frequency, stability). The same terminology will
be used throughout, and it will be shown that these seemingly independent areas
(deformations, frequencies, critical loads—or stress, dynamic and stability
analyses) are in fact very closely related. In addition, the global critical load ratio
links them to the performance of the bracing system in a rather spectacular manner.

Numerous approximate methods have been published for structural analyses.
However, it is surprising how few, if any, have been backed up with
comprehensive accuracy anaysis. Here, in this book, dozens/hundreds of bracing
units/systems are used to demonstrate the applicability and accuracy of the
methods presented.

Although real multi-storey buildings seldom develop planer deformation
only, Chapter 2 (dealing with the planar analysis of individual bracing units) is
probably the key chapter of the book in the sense that it introduces all the
characteristic stiffnesses that will be used for the three-dimensional investigations
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of whole systems later on. It is also shown here how the complex behaviour can be
traced back to the local bending, global bending and shear deformation (and their
torsional equivalents) of the bracing system. All the characteristic types of bracing
unit are covered here: sway- and infilled frameworks, frameworks with cross-
bracing, coupled shear walls, shear walls and cores.

Deflections and rotations are the subject of Chapter 3 where the main aim is
to present simple, closed-form solutions for the maximum deflection and rotation
of the building. The investigations spectacularly show the contribution of the two
key (bending and shear) stiffnesses as well as the interaction between them.
Chapter 4 deals with the frequency analysis of buildings. Closed form formulae
and tables make it possible to calculate the lateral and torsional frequencies of the
building. The coupling of the lateral and torsional modes can be taken into account
by a simple summation formula or, if a more accurate result is needed, by
calculating the smallest root of a cubic equation. The often neglected but very
important area of stability is covered in Chapter 5. In using critical load factors,
simple (Euler-like) formulae are presented for the lateral and torsiona critical
loads. The combined sway-torsional critical l1oad is obtained as the smallest root of
a cubic equation. Chapters 2, 3, 4 and 5 end with a demonstration of the accuracy
of the method(s) presented in the chapter.

Chapter 6 introduces the global critical load ratio which is a useful tool for
monitoring the “health” of the bracing system and indicates if the bracing systemis
adequate or more rigorous (second-order) analysis is needed. The global critical
load ratio can also be used to assess different bracing system arrangements in
minutes in order to chose the most economic one. The results of a comprehensive
exampleillustrate the practical use of the global critical load ratio.

Part Il presents sixteen examples worked out to the smallest details, with
step-by-step instructions. The examples range from the deflection or frequency or
stability analysis of individual bracing units to the complex deflection and
frequency and stability analyses of bracing systems, considering both planar and
spatia behaviour. Although most of the formulae in the book are of the back-of-
the-envelope type, due to the complexity of global three-dimensiona analyses,
some of the calculations may still seem to be rather cumbersome to carry out by
hand. It is very rare, however, that a structural engineer today would wish to do
actual hand-calculations, however simple they may be. Convenient spreadsheets
and calculation worksheets make it possible to do the structural anaysis and
document its result at the same time in minutes. All the methods presented in the
book are suitable for this type of application; in fact the worksheet version of al
the sixteen worked examples has been prepared and made available for download.
These one-to-eight page long worksheets cover a very wide range of practical
application and can aso be used as templates for other similar structura
engineering situations.



Part |: Theory

The widespread availability of powerful computers and sophisticated programs
makes it possible to analyze even very large and complex structures with relatively
little effort. This is very welcome. There is, however, a certain degree of danger
that the structural engineer, in accepting the help of the computer, may get carried
away and rely on the computer to a greater extent than would be desirable and pay
less attention to the behaviour of the structure. It may be tempting to become
complacent.

If the structural engineer’'s knowledge about the behaviour of complex
structures is limited, then the temptation is even greater to accept the computer’s
solution to the structural engineering problem that has been fed to the computer.
Thisis where “Part |: Theory” can be helpful. The continuum model of the multi-
storey building is used repeatedly. The continuous medium approach makes it
possible to handle complex structural engineering problems in a relatively simple
way and to identify the key stiffness and geometrical characteristics that have a
dominant role in shaping the behaviour of the structure.

In order for the accuracy analyses in Chapters 2, 3, 4 and 5 to correspond to
the theoretical assumption that “the floor slabs have great in-plane and small out-
of-plane stiffness’ the floor slabs of the buildings are modelled using sets of bars
interconnecting the vertical bracing units. The bars have very great cross-sectional
areas and pinned ends. The shear walls are modelled by bar elements (cantilevers).
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Individual bracing units:
frames, (coupled) shear walls and cores

The bracing system of a multi-storey building is normally made up from different
units: frameworks, shear walls, coupled shear walls and cores. They all contribute
to the overall resistance of the system, but their contributions can be very different
both in weight and in nature, so it is essential for the designer to know their
behaviour in order that optimum bracing system can be produced.

Frameworks play a very important role in the structural analysis as they have
all the three basic stiffness characterigtics, i.e., they have local bending stiffness,
global bending stiffness and shear stiffness. Their importance is underlined by the
fact that the analysis of whole structures (consisting of frameworks, shear walls,
coupled shear walls and cores) can often be traced back to the investigation of a
single framework and its equivalent column. It is therefore advantageous to start
the investigation with the analysis of frameworks.

2.1 DEFLECTION ANALYSISOF SWAY-FRAMESUNDER
HORIZONTAL LOAD

The behaviour of frameworks under lateral load is complex, mainly because they
develop both bending and shear deformations. Due to the complexity of the
problem, designers and researchers have made considerable efforts to develop
approximate techniques and methods. Perhaps the best and most widespread
method is the continuum method which is based on an equivalent medium that
replaces the framework. It is difficult to pinpoint exactly who developed the first
continuum model but the method probably surfaced in the 1940s. In her excellent
paper, Chitty (1947) investigated parallel beams interconnected by cross bars,
subjected to uniform lateral load, and established the governing differential
equation of the problem. In a following paper she applied the method to tall
buildings under horizontal load, however, she neglected the axial deformations of
the columns (Chitty and Wan, 1948). Scientists from all over the world followed,
many of them apparently unaware of the previous efforts, who created and
sometimes reinvented and later further developed continuum models (Csonka,
1950; Beck, 1956; Rosman, 1960; MacLeod, 1971; Despeyroux, 1972; Stafford
Smith et al., 1981; Hoenderkamp and Stafford Smith, 1984; Coull, 1990). Perhaps
the most comprehensive treatment of building structures under horizontal load is
given by Stafford Smith and Coull (1991). The continuum model has also been
applied successfully to the stability and dynamic analyses of buildings (Danay et
al., 1975; Rosman, 1981; Rutenberg, 1975; Kollar, 1986; Hegediis and Kollar,
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1999; Zalka, 2000; Potzta and Kollar, 2003).

The procedure presented in the following will result in a very simple and
expressive formula for the deflection, identifying three distinctive parts: bending
mode, shear mode and their interaction.

In addition to the general assumptions listed in the Introduction, it will also
be assumed that the structures are subjected to uniformly distributed lateral l1oad.

2.1.1 Basic behaviour; lateral deflection

In line with, and using the terminology established in the theory of sandwich
structures (Plantema, 1961; Allen, 1969; Hegediis and Kollar, 1999; Zaka, 2000),
the behaviour of aframework may be characterised by three types of stiffness and
the corresponding deflection types. The three types are: shear, globa bending
when the structure as a whole unit is considered and the bending of the unit occurs
through the axial deformation of the columns, and local bending when the full-
height bending of the individua columns of the framework is considered
(Figure 2.1). From now on, these characteristics will be used, not only for the
lateral deflection analysis in this Section but also for the rotation analysis later on
aswell asfor the stability and frequency analysesin later chapters.

7777
) b) 0
Figure 2.1 Characteristic deformations. a) shear, b) global bending, c) local bending.

For the deflection analysis, consider first the one-bay framework under
horizontal load w, shown in Figure 2.2/a. In the usual manner with the continuum
method, first the beams are cut at the vertical line of contraflexure. The resulting
lack of continuity is compensated for by a shear flow of intensity g (Figure 2.2/b).
It is assumed that there are “enough” beams so that they can be considered a
continuous connecting medium between the columns. (As arule, the technique can
safely be applied to structures of at least four-storey height.) The shear flow is then
transferred to the columns (Figure 2.2/c) in the form of normal forces (N) and
bending moments (NI; and NI,). Finally, after setting up a differential equation
responsible for the lack of continuity in the following sections [c.f. Equation (2.9)],
an equivalent column will be created as the continuum model for the problem
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(Figure 2.2/d). The origin of the coordinate system is placed at and fixed to the top
of the column.

If the beams are cut, relative vertical displacements develop along the line of
contraflexure. Three different actions will cause displacement and they will now be
considered, one by one, asif they occurred separately from each other.

The relative displacement due to the bending of the columns (Figure 2.3/a) is

The displacement is positive when the end of the beam-section belonging to
the left column moves downward and the other upward.

w N K Nll N|2
E CT Tah 1™ o
E h 1 o’ Y
% L L /‘D CL
= Tah 1 L
£ h 1 Gl
5 N N (LN
g fah 1% o’
E h |H ﬂ‘) CL El
£ I N 1 L
S Ac " th WD CL K
E Icl |c2 h /‘D CL Elg
- . iy GV
= Tah 74) (’b
E h 1 L
5/777 Veced A? ;i 777 777 /1; g?"\;'

@ @ 44

| Iy P 1 2
— UALEAL S
a) b) c) d)

Figure 2.2 The continuum model. ) original frame, b) discontinuity along contraflexure line with shear
force gh, c) the two columns with continuous forces, d) the equivalent column.

The axial deformation of the columns (Figure 2.3/b), due to the normal forces

originating from the shear forces in the connecting beams, also contributes to the
overall relative displacement

H
--1f1,1
A, = E(A;1+Ab2J»ENdZ

where

V4
N :quz
0
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is the normal force causing axial deformation in the columns, q is the intensity of
the shear flow, Ay and Ay, are the cross-sectional areas of the columns, H is the
height of the structure and E is the modulus of elasticity.

P4

I
NN CN N NN NN N N
>

N

a) b)

Figure 2.3 Vertical displacement at contraflexure point. a) due to the deflection of the columns, b) due
to the axial deformation of the columns.

Due to the bending of the beams (Figure 2.4), the shear force at contraflexure
also develops relative displacement. Assuming that the point of contraflexure is at
mid-bay, this relative displacement is

| 3
qh() 3 2 2
x 2 g~h al ql
A = _2 = - = - == 21
3 3El,  12BI, 12El, K, @1
Ih

where |, is the second moment of area of the beams, h is the storey height, | is the
bay and

_12El,

K
T

(2.2)

is defined as the stiffness of the beams (distributed over the height).

Equation (2.1) only holds when the beams have horizontal tangent to the
columns at the noda points, i.e., when the columns are considered infinitely stiff
(dashed line in Figure 2.4). This may be the case with coupled shear walls where
the wall sections are often much stiffer than the connecting beams and can prevent
the rotation of the beams at nodal points. However, this is not the case with
frameworks where the columns develop double curvature bending between the
beams (solid line in Figure 2.4). It follows that, due to the flexibility of the
columns, in the case of frameworks, Equation (2.1) should be amended as the
vertical displacement A3 increases:
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2 2
Ay =- I =-ql? 1,1
12El, 12El, Ky K.

Ih h?

where the stiffness of the columns (distributed over the height) is defined as

12El
K== c (2.3)

In the above equations | is the second moment of area of the columns.

7L

h X
I s - iA; A

ah*

h

74
L v
7 7]

Figure 2.4 Vertical displacement at contraflexure point due to the bending of the beam.

The shear stiffness of the framework (distributed over the height) can now be
defined as

-1

K

K=| L+ l] —ky—Re —ky (24)
Ky Kg Ky, + K,

In Equation (2.4) the term

r=_Re (2.5)
Kp + K.

is also introduced. In relation to K, it can be considered as a reduction factor. This
reduction factor will play an important role later on.

Replacing K;, in Equation (2.1) with K, the actual relative displacement of the
framework, when the bending of both the beams and the columns is considered,
emerges as
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The above formulae are “exact” if the point of contraflexure is at mid-bay,
i.e, if the structure is symmetric. However, their accuracy is considered adequate
in most practical cases when the cross-sections of the columns are different. (When
the stiffnesses of the columns are very different, e.g., the framework connects to a
shear wall, a more accurate approach is needed. Formulae for such cases are given,
e.g., in Stafford Smith and Coull, 1991.)

The above three relative displacements would develop if the beams are cut.
However, the beams of the actual structure are not cut and therefore the sum of the
relative displacements must equal zero for the real structure:

97 1(1 1

— E[Abl+AEJJ.Ndz—O (2.6)
With

N'=q (2.7)

and introducing

= A+ Aglf = A (28)

as the global second moment of area of the framework and after differentiating and
some rearrangement, Equation (2.6) can be rewritten and the condition for
continuity along the line of contraflexure assumes the form

| |
y'-—N"+——N=0 (2.9)
K El,

The bending of the two columns is considered next, based on the classical
relationship for bending:

y'El =-M

Because of the connecting beams, the two columns, with their combined
second moments of area, are forced to assume the same deflection shape. The
external moments (from the horizontal load) are now supplemented by the
moments caused by the shear forces along the line of contraflexure (Figure 2.2/b,c)
as

0
YE(lg+le)=-M-(;+ |2)J-qd2
z
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Introducing the sum of the second moments of area of the columns
lc=lg+le (2.10)

asthelocal second moment of area of the framework, and making use of

0
jqdz:—N

z
and with NI, + NI, = N(I; + 1) = NI, the equation can be rewritten as
y'El, =-M +IN (2.12)

The governing differential equation of deflection is obtained by combining
Equations (2.9) and (2.11). Normal force N is obtained from Equation (2.11) as

N =Yl M)

Substituting this and its second derivative for N and N" in Equation (2.9) and
some rearrangement lead to

y"" — K + K yI’ = 1 K M — M n (2.12)
El, Elg El | El,

Before the solution of the problem is produced, a small modification has to
be made. Detailed theoretical investigations (Hegediis and Kollar, 1999) show and
accuracy analyses (Zaka and Armer, 1992) demonstrate that in the above
continuum model the bending stiffness of the columns is somewhat
overrepresented. (For low-rise frameworks this overrepresentation may lead to
unconservative results of up to 16%.) This overrepresentation can easily be
corrected by introducing reduction factor r defined by Equation (2.5) in such away
that the second moment of area of the columns of the framework is adjusted by
factor r:

I =1r (2.13)

Accordingly, from this point on, this modified second moment of areawill be
used and

El = Elr

will be defined as the local bending stiffness of the structure.
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In order to shorten the formulae, the following—mostly temporary—
notation will be used:

a:L' b=—, K:,la+b:\/E,
EIg El
I +1.r
sz=1+228t0 o L _ToTlc a_ _ 1o (2.14)
b I I atb I+l

Using the above notation and with M=wz/2, the short version of
Equation (2.12) is

2

mnr 2., W | az
-KYy'=—| —-1 2.15
y Y' 5 [ > J (2.15)

This is the governing differential equation of the framework that has now
been replaced by a single cantilever with the corresponding local bending stiffness
El, global bending stiffness Elg and shear stiffness K (Figure 2.2/d).

The deflection of the framework can be obtained in two ways. One
possibility is to solve Equation (2.15) directly. Alternatively, the solution can be
produced in two steps: first, the solution for the normal force is obtained then,
using the formula for the normal force, the deflection is determined. Another
aspect of the solution is the choice and placement of coordinate system. Although
the actual result of the problem obviously does not depend on the solution process
and the choice and placement of the coordinate system, the structure and
complexity of the solution do. After solving the differential equation in the two
different ways indicated above and using different coordinate systems, it turned out
that the simplest result can be produced when the two-step approach is applied and
when the coordinate system whose origin is fixed to the top of the equivaent
column is used (Figure 2.2/d). The main steps of this procedure will now be
presented.

In combining Equations (2.9) and (2.11), and with M = wZ%/2 and notation
(2.14), the governing second order differential equation for the normal force
emerges as

_bwz?
2l

N”-k°N =

(2.16)

Two boundary conditions accompany this differential equation. The first
condition expresses the fact that the normal force at the top must assume zero:

N(0)=0

The second condition is obtained using Equations (2.6) and (2.7). At the
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bottom of the structure the tangent to the columns (') is zero and the third termin
Equation (2.6) also vanishes; hence

N’(H)=0
The solution to differential equation (2.16) is sought in the form of
N=Np+N,
where
N;, = Asinhxz+ Bcosh kz
is the homogeneous solution and
N, =Cz*+Dz+E

isaparticular solution of the inhomogeneous problem.

In substituting Np and its second derivative for Nand N” in Equation (2.16),
constants C, D and E are determined by setting the coefficients of the powers of
function z equal of the two sides. With the values of C, D and E now available,
combining the homogeneous and particular solutions, and using the two boundary
conditions, the normal force is obtained as

N = Wb [ sinhaH sinhaz _ Hsinh/a_cosh/a+z2 1
Ik?\ k%coshwH  kcoshwH k2 2 K2

With the above equation of the normal force, Equation (2.11) can now be
used to determine the deflection. After substituting for N, Equation (2.11) assumes
the form:

2% K 2 k*coshaH «° cosh kH K4

,,_ﬂ(bzz b 7 bsnhaHsinhaz _bHsinhaz _bcoshwz
El

J (2.17)

The boundary conditions for the equation express that there is no deflection
at the top of the structure (as the origin of the coordinate system is fixed to the top)
and that the tangent to the columnsis vertical at the bottom (Figure 2.2/d):

y(0)=0
and

y'(H)=0
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Integrating Equation (2.17) once and using the above boundary condition,
then integrating again and using the other boundary condition give the formula of
the deflection which, after lengthy rearrangement and returning to the original
structural engineering notation, can be rearranged into a much simpler, meaningful
and “user-friendly” form:

or
Y=Yt Ys— Vi (2.19)
where
Yo = ?Wf[HTBZ—;—:] (2.20)
o= 2\/\:; (2.21)
and
- }szs(cow(Hcgi;T sinth_lj 2.22)

are the three key components of deflection: the bending and the shear deflections
as well as the interaction between them.
In Equations (2.18) and (2.20)

g =1+l =1+l (2.23)

represents the sum of the local and the global second moments of area of the
columns.
Maximum deflection develops at z=H:

(2.24)

wH* wH? WwEl (1+4H sinhkH
ymax:y(H): + ( _1\J

8El, 2Ks? K2s°\ coshiH

or

Ymax = Y(H) = Yo (H) + ys(H) = yi(H) (2.25)
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where
wH* wH 2 WEI (1+&H sinhxH
H) = , H =, (H) = -1 2.26
Yo(H) = ge = Ys(H) =5 5 wi(H) Kzsa[ o j (2.26)
are the three characteristic parts of the top deflection.
" NI Y
:
g h w
g h |H 2
= lb1 lb2 I, lon1 R = o
% Ac,l Ac,z Ac,i Ac,n § K
E Ic,l Ic,2 Ic,i Ic,n h E EIQ
: E
E 7777 777 777 7777 7777 >< AY 73’77
@® @ @® ™ 4
! Iy ¥ I2 y I ¥ lha £
a b)

Figure 2.5 Multi-storey, multi-bay sway-frame and its equivalent column.

2.1.2 Multi-storey, multi-bay frameworks
Although the formulae in the previous section were derived for one-bay structures,

their validity can be extended to cover multi-bay structures (Figure 2.5) as well.
The shear stiffness for the whole structure is obtained using

K = Kyt = Ky —e (2.27)
Ky + K¢

where the two contributors to the shear stiffness are

12El,;
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and

N 12El,
Ke= hzcy' (2.29)

i=1

and the reduction factor is

¢ (2.30)

where n is the number of columns.
For the local bending stiffness (EI = El.r), the sum of the second moments of
area of the columns should be produced (and multiplied by reduction factor r)

EIDNN (2.31)

1

where the summation goes from i =1 to i =n. When the cross-sections of the
columns of the framework are identical (as is often the case), the second moment
of area of the columnsis simply multiplied by nand r (the reduction factor).

For the global bending stiffness (Elg), the formula

Iy = Zn: A 12 (2.32)
1

should be used, where A; is the cross-sectional area of the ith column and t; is the
distance of the ith column from the centroid of the cross-sections. It should be
noted, however, that Equation (2.32) represents an approximation and its use for
multi-bay frameworks may lead to dlightly unconservative estimates for the
deflection in the region of 0—3% for four-bay structures and up to 6% for ten-bay
structures (Kollar, 1986).

2.1.3 Discussion

The evaluation of Equations (2.18) and (2.24) using the deflection data of 117
individual frameworks ranging in height from 4 to 80 storeys (c.f. Section 2.1.4:
Accuracy) leads to the following observations:

a) The effect of interaction between the bending and shear modes is always
beneficial as it reduces the deflection. The range of the reduction of the top
deflection with the 117 frameworks was between 0% and 64%. Ignoring the
effect of interaction leads to a very simple albeit conservative solution [with
the first two termsin Equation (2.24)].

b) The effect of interaction significantly becomes smaller as the height of the
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structures increases. For structures of height over 20 storeys, the reduction
dropped below 20%. — Typical deflection shapes are shown in Figure 2.6.
c) Theeffect of interaction is roughly constant over the height of the structure.

z/H
Yi Yo y Yi ¥b y Yi Yb y Yo ¥

Wl 1] [T T
° Il /
/
/

|
o i |
05 Ay | /) |
o / |
04 / / //
3 ‘\ / YotYs A / YotYs / ; /
orl \ 1/ /

0
-05 0 05 1 15 0 02505075 1 0 025050751 0 025 0507 1
YlYmax YlYmax YlYimax YlYmax
a) 4 storeys b) 10 storeys C) 22 storeys d) 80 storeys

Figure 2.6 Typica deflection shapes with components y, (bending), ys (shear), y; (interaction) and the
overall deflection y for the 4-, 10-, 22- and 80-storey framework F1 shown in Figure 2.7/a.

To conclude the investigation of the behaviour of frameworks under lateral
load, some special, sometimes theoretical, cases will now be considered.

a) Multi-bay, low-rise frameworks tend to develop predominantly shear-type
overall deflection when the effect of the local and globa bending may be
negligible.

This case is characterised by 1g >> |, and consequently, a — 0, b — c. Governing
differential equation (2.15) cannot be used directly because of singularity but, after
some rearrangement, Equation (2.12) can, which then simplifiesto

W

K

where K [K,. This differential equation, together with the boundary conditions
y(0) =0 and y'(0) = 0, lead to the deflection and the top deflection as

2

Wz
y(2) = 2K (2.33)
and
Ymax = Y(H) = wH® (2.34)

2K
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The characteristic deflection shape is shown in Figure 2.1/a.
b)  The connecting beams have no or negligible bending stiffness.

This case is characterized by K, =0. Consequently, the shear stiffness of the
structure becomes zero (K = 0), which leads to a=0, b =0 and x = 0. Governing
differential equation (2.15) simplifiesto

Jrrr - - ﬂ
El

and the solutions for the deflection and the top deflection are

w(H32z Z*
=W nz z 235
¥(2) El c( 6 24J ( )
and
wH*
Ymax = Y(H) = = (2.36)
C

where El; is the sum of the bending stiffnesses of the columns. This case is
identified in Figure 2.1/c as one of the three characteristic types of behaviour of the
framework, when the columns are linked by beams that can only pass on axial
(horizontal) forces but no moments to the columns.

c) Thestructureisrelatively slender (with great height/width ratio).

The structure develops predominantly (global) bending deformation. The second
and third terms in Equations (2.18) and (2.24) tend to be by orders of magnitude
smaller than the first term, and the solutions for the deflection and the top
deflection effectively become

w(H3%z 2
y(2) = ?(T - Z_J (2.37)
f
and
wH 4
Ymax = Y(H) = SEl (2.38)
f

where ls = I.r + lq. Thiscaseisillustrated in Figure 2.1/b.
d) The columnsdo not undergo axial deformations.

This case is characterised by A — o, lg » », a=0, ¥*=b and s=1. The
governing differential equation, Equation (2.15), simplifiesto
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W
Iln_b m— _ T
y y El

The solutions of this equation for the deflection and the top deflection are

2 _ .
y(Z):WZ _ WEI (coshk(H -2) +kH smh/(z_1 (2:39)
2K K? coshiH
and
wH?  WEl {1+ &H sinh kH
= v(H) = _ - 2.40
Ymax = Y(H) 2K KZ[ coh K j (2.40)

It is interesting to note that the above two formulae can be originated from
Equations (2.18) and (2.24) by, in addition to setting s= 1, dropping the first term
which is associated with the bending deformation of the structure. It follows that
when the columns do not develop axial deformations the structure cannot—at least
not directly—"utilise” its bending stiffness. (The bending stiffness does enter the
picture, but indirectly, through the last term that is responsible for the interaction
between the bending and shear modes.)

2.1.4 Accuracy

It is essential to examine the range of validity and accuracy for any respectable
approximate method. To this end, a comprehensive validation exercise was carried
out to check the accuracy of the formulae derived for the deflection. The results
obtained using the approximate formulae were compared to the results of the Finite
Element solution. The AXIS VM finite element package (Axis, 2003) was used for
the comparison, whose results were considered “ exact”.

The top deflection of thirteen individua frameworks (F1 to F13 in
Figure 2.7) was calculated. The height of the frameworks varied between 4 and 80
storeysin eight steps (4, 10, 16, 22, 28, 34, 40, 60 and 80 storeys), creating 117 test
Cases.

The bays of the one-, two- and three-bay reinforced concrete rigid frames
were 6 m and the storey height was 3 m (F1 to F10 in Figure 2.7/ato 2.7/j). The
rectangular cross-sections of the columns and beams are given in Figure 2.7/a to
2.7/j. With the one-, two- and three-bay steel braced frames (F11 to F13 in
Figure 2.7/k to 2.7/m), both the bays and the storey height were 3 m. The cross-
sections of the columns for the three braced frames were 305x305UC137.

The cross-sections of the beams and braces are given in Figure 2.7/k to
2.7/m. The moduli of elasticity for the concrete and steel frameworks were
E. = 25 kN/mm? and Es = 200 kN/mm?, respectively.

The cross-sections of the beams, columns and braces were chosen in such a
way that the structures covered a wide range of stiffnesses and even represented
extreme special cases.
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Figure 2.7 Frameworks (with parameter b=K/EIl) for the accuracy analysis.

—
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Even the highly theoretical case of a framework with beams with a depth of
100 m in Figure 2.7/i was included to model “pure” shear deformation. The
deflected shapes represented predominant bending, mixed shear and bending, and
predominant shear deformation. The summary of the accuracy analysis is given in
Table 2.1 where “error” means the difference between the “exact” (FE) solution
and the continuum solution by Equation (2.24), related to the “exact” solution.

Table 2.1 Accuracy of Equation (2.24) for the maximum deflection.

Rangeof  Averageabsolute  Maximum

Method error (%) error (%) error (%)
Continuum solution
[Equation (2.24)] —St09 14 °

In addition to the data given in Table 2.1, it is also important to see how the
error varies as the height of the structure changes. Figure 2.8 shows the error as a
function of height for the thirteen frameworks.

error [%)]

number of storeys

Figure 2.8 Accuracy of Equation (2.24) for maximum deflection for frameworks of different height.

The results summarised in Table 2.1 and shown in Figure 2.8 demonstrate the
performance of the method. It can be stated that for practical purposes the
continuum solution can be considered accurate enough: The error range of the
method was between —5% (unconservative) and 9% (conservative). In the 117
cases, the average difference between the results of the continuum method and
those of the finite element solution was 1.4%.
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2.2FREQUENCY ANALYSISOF RIGID SWAY-FRAMES

Because of the complexity of the problem, a number of attempts have been made
to develop approximate methods for the dynamic analysis of frameworks.
Goldberg (1973) presented several simple methods for the calculation of the
fundamental frequency of (uncoupled) lateral and pure torsiona vibration. The
effect of the axial deformation of the vertical elements was taken into account by a
correction factor in his methods. The continuous connection method enabled the
development of more rigorous analysis (Rosman, 1973; Coull, 1975; Koll&r, 1992).
However, most approximate methods are either till too complicated for design
office use or restrict the scope of analysis or neglect one or more important
characteristics. Another important factor in connection with the availability of
good and reliable approximate methods is the fact that their accuracy has not been
satisfactorily investigated. In two excellent publications, Ellis (1980) and Jeary and
Ellis (1981) reported on accuracy matters in a comprehensive manner and their
findings indicated that some widely used approximate methods were of
unacceptable accuracy. The method to be presented here is not only simple and
gives a clear picture of the behaviour of the structure, but its accuracy has also
been comprehensively investigated.

In addition to the general assumptions made in Chapter 1, it will be assumed
that the mass of the structuresis concentrated at floor levels.

2.2.1 Fundamental frequency

As in the previous section, the multi-storey, multi-bay framework is characterised
by its characteristic stiffnesses and the corresponding three characteristic
deformations (Figure 2.1). The fundamental frequency for lateral vibration is
determined using the three types of stiffness and the related vibration modes and
frequencies. The three types are: shear, the bending of the framework as a whole
unit (=global bending) and the full-height bending of the individual columns of the
framework (=local bending). The deflected shape of the framework can be
composed of the three deformation types and, in a similar manner, the frequency of
the framework can be produced using the three “part” frequencies which are linked
to the corresponding stiffnesses. These stiffnesses (K, Elg and El) are given in
Section 2.1.2.

Vibration in shear (Figure 2.1/a) is defined by the shear stiffness of the
framework. Based on the classica formula of a cantilever with uniformly
distributed mass and shear stiffness (Vértes, 1985), the fundamental frequency of
the framework due to shear deformation can be calculated from

2
2 1 riK

S (2.41)

where mis the mass density per unit length of the structure, K is the shear stiffness
calculated using Equations (2.27), (2.28), (2.29) and (2.30) and H is the height.
Mass distribution factor r; is introduced into the formula to allow for the fact that
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the mass of the structure is concentrated at floor levels (M; in Figure 2.10/b) and is
not uniformly distributed over the height (as assumed for the derivation of the
classical formula). This phenomenon can easily be taken into account by the
application of the Dunkerley theorem (Zalka, 2000). Values for r; are given in
Figure 2.9 for frameworks up to twenty storeys high. Table 4.1 can be used for
more accurate values and/or for higher frameworks.

1.00 + -

I

n

Figure 2.9 Mass distribution factor ry as afunction of n (the number of storeys).

The full-height bending vibration of the framework as awhole unit represents
pure bending type deformation (Figure 2.1/b). In this case, the columns act as
longitudinal fibres (in tension and compression) and the role of the beams is to
transfer shear so as to make the columns work together in this fashion. The
bending stiffness associated with this bending deformation is the global bending
stiffness (Elg) defined by Equation (2.32). The fundamental frequency that belongs
to this global bending deformation is obtained using Timoshenko's (1928) classical
formula, which is amended with factor r, as

(2o 0.313r7El, (242)
9 H*m
Although frameworks are routinely associated with shear type deformation,

reality is somewhat more complicated. As Figure 2.6 demonstrates, and the

application of any FE package can confirm, as a function of height, a framework
with the same (beam/column) stiffness characteristics may assume different types
of deformation. Low frameworks tend to show a predominantly shear type
vibration mode, in the case of medium-rise frameworks the vibration shape can be

a mixture of bending and shear type deformations, and tall, “slender” structures

normally vibrate in a predominantly bending mode. The reason for this type of

behaviour lies in the fact that there is an interaction between sway in shear and in
global bending. Low and/or wide (multi-bay) frameworks tend to undergo shear
deformation while as the height of the framework increases, the effect of the axial
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deformation of the columns becomes more and more important. The axial
deformation of the columns can be interpreted as a “compromising” factor, as far
as the shear stiffness is concerned. Because of the lengthening and shortening of
the columns, there is less and less “scope” for the structure to develop shear
deformation. As indeed is the case with narrow and very tall frameworks; very
often they do not show any shear deformation at all.

This phenomenon can be easily taken into account by introducing the
effective shear stiffness as follows. In applying the Foppl-Papkovich theorem
(Tarnai, 1999) to the squares of the frequencies of an individual framework, related
to the vibration mode in shear (subscript: s') and the vibration mode in full-height
global bending (subscript: g)

1
f2

1
=7
fg

+

—_
VLN| =

the reduction in the value of the shear stiffness of the framework can be expressed
as

f2 rZK
p2=gzo - L Ti%e (2.43)
f@+fy (4H)" m
where K, is the effective shear stiffness, according to
K, = s?K (2.44)

and

fZ K

— [¢] — e
S¢ = =, —= 2.45
f V 2+ fg2 \V K (2.49)

is the effectiveness factor.

Finally, the framework may develop bending vibration in a different manner.
The full-height bending vibration of the individual columns of the framework—
also called local bending vibration—also represents pure bending type deformation
(Fig. Lc). The characterigtic stiffness is defined by El given by Equation (2.31).
With the columns of the framework built in at ground floor level, the fundamental
frequency which is associated with the local bending stiffness is again obtained
using Timoshenko’ s formulafor cantilevers under uniformly distributed mass:

, _ 0313r7El

== (2.46)
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The framework can now be characterised by itslocal bending stiffness and its
effective shear stiffness (and the related frequencies). It follows that the complex
behaviour of a framework in lateral vibration can now be analysed by using an
equivalent column with stiffnesses El and K, (Figure 2.10/c).
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Figure 2.10 Multi-storey, multi-bay sway-frame and the origination of its equivalent column.

The governing differential equation of the equivalent column is obtained by
examining the equilibrium of its elementary section. Thisleadsto

rZElu"" - r2Ku" +mi=0

where primes and dots mark differentiation by z and t (time), respectively. After
seeking the solution in a product form, separating the variables and eliminating the
time dependent functions, the above governing differential equation results in the
boundary value problem

rZElu" - rfK uy- w’mu, = 0 (2.47)

If the origin of the coordinate system is at the lower built-in end of the
equivalent column, the boundary conditions are as follows:

u(0)=0

w(0)=0
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u'(H)=0

and
Elu"(H) - Kuj(H) = 0

In Equation (2.47) w isthe circular frequency and u; defines lateral motions.
With the notation

2;7/7 Ell’f2
w=—17L
H2 V| m

and the non-dimensional parameter

_ Ke
CZH \/; (2.48)

and using trigonometric and hyperbolic functions, the solution is obtained after
some rearrangement as

2 2
£2= [ﬁ - %J £2 4+ £2 (2.49)

Values for frequency parameter # (the eigenvalue of the problem) are given
in Figure 2.11 as a function of parameter k for 0 <k < 10. Table 4.2 can also be
used if a more accurate value of # or a wider range of k is needed. Values of
parameter » for the second and third frequencies are tabulated in (Zalka, 2000).

Before this solution is used for the lateral vibration analysis, however, asmall
modification has to be made. The first term in Equation (2.49) stands for the
bending contribution of the individual columns and it also represents the increase
of the lateral frequency of the framework, due to the interaction between the
bending and shear modes. However, because of the fact that the effectiveness of
the shear stiffnessis normally smaller than 100% [c.f. Equation (2.45) wheres <1
holds], these two contributions have to be separated and the effectiveness factor
should be applied to the part which is responsible for the interaction. When this
amendment is made, the formulafor the lateral vibration assumes the form

2 2
f:\/fb2+fsz+[ n__k —1Jsffb2 (2.50)

0313 5

In the right-hand side of the above equation, the first two terms stand for the
lateral frequency associated with bending and shear deformations, respectively,
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while the third term represents the effect of the interaction between the bending
and shear modes.
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Figure 2.11 Frequency parameter 5 as afunction of non-dimensional parameter k.

2.2.2 Discussion

The evaluation of Equation (2.50) using the values of the fundamental frequencies
of 117 frameworks ranging in height from 4 to 80 storeys (c.f. Section 2.2.3:
Accuracy) leads to the following observations:

a) Asis the case with frameworks subjected to horizontal load, the interaction
between the bending and shear modes is aways beneficia. Bearing in mind
that (#%0.313 — k%5) > 1 dways holds, the evaluation of the third term in
Equation (2.50) demonstrates that the effect of the interaction increases the
value of the lateral frequency of the framework. According to the data given
in Table 4.2, the maximum increase is 62%, at k = 3.2.

b) The effect of interaction significantly becomes smaller as the height of the
framework increases. For structures of height over 20 storeys, the increase
dropped below 20% in the test cases.

2.2.3 Accuracy

A comprehensive accuracy analysis was carried out to check the accuracy of
Equation (2.50) for the fundamenta frequency of multi-storey frameworks. The
frameworks used for the accuracy analysis were the same used in Section 2.1.4 for
the accuracy analysis of Equation (2.24) for the maximum deflection. Details of
the frameworks are given in Figure 2.7 in Section 2.1.4. The fundamental
frequency of the thirteen frameworks (F1 to F13 in Figure 2.7)—each of 4-, 10-,



28 Multi-storey Buildings

16-, 22-, 28-, 34-, 40-, 60- and 80-storey height—was calculated and compared to
the Finite Element solution. The AXIS VM finite element package (AXIS, 2003)
was used for the comparison, whose results were considered “exact”. The error of
the continuum solution was defined as the difference between the “exact” and the
approximate solutions, related to the “exact” solution. When the frequency given
by Equation (2.50) was smaller than the “exact” one, it was considered
conservative (and the “error” was defined positive).

Table 2.2 Accuracy of Equation (2.50) for the fundamental frequency.

Rangeof  Averageabsolute = Maximum

Method error (%) error (%) error (%)

Continuum solution
[Equation (2.50)] —3to8 15 8

The bays of the one-, two- and three-bay sway-frames were 6 metres (F1 to
F10 in Figure 2.7) and 3 metres (F11 to F13) and the storey height was 3 metres
for all structures. The cross-sections of the beams and columns were chosen in
such a way that the structures covered a wide range of stiffnesses. The deflected
shapes represented predominant bending, mixed shear and bending, and
predominant shear deformation. The results are summarised in Table 2.2.
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Figure 2.12 Accuracy of Equation (2.50) for the fundamental frequency as afunction of height.

The results given in Table 2.2 and shown in Figure 2.12 as a function of
height demonstrate the excellent performance of Equation (2.50). In the 117 cases,
the average difference between the results of the continuum method and those of
the finite element solution was 1.5%. The maximum error of Equation (2.50) was
8%.
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23 STABILITY ANALYSISOF RIGID SWAY-FRAMES

If the dynamic analysis of complex bar structures is said to be complex, then the
stability analysis certainly presents an even greater challenge as numerical
difficulties may further aggravate the situation in the course of the solution of the
eigenvalue problem. The determination of the critical load of even a small
framework may be a formidable task using conventional methods. It would be
impossible to list al the approximate methods that are worth mentioning as the
field has been more than well cultivated and it would be unjust to chose one or
two.

The method to be presented here is of genera validity. It is certainly very
simple and probably the most accurate one, as it will be demonstrated in
Section 2.3.2.

2.3.1 Critical load

In addition to the general assumptions made in Chapter 1, it will be assumed that

a) the frameworks are subjected to uniformly distributed vertical load at storey
levels (Figure 2.13)
b) thecritica load defines the bifurcation point

The best way, perhaps, towards a ssimple and till accurate solution is the
application of the continuum method. If the structure is considered a continuous
medium, as shown in the previous sections, the analysis can be carried out in a
relatively simple way. In doing so, a closed-form solution can be produced for the
critical load, which can then directly be used in practical structural design (see
Chapter 6 on the globa critical load ratio).

Investigating sandwich columns, Hegediis and Kollar (1984) derived the
governing differential equation of a sandwich column with thick faces as

BO—SB'¢ (Bo+B)¢"+ N(z)[B—SO¢"—¢j =0

where ¢ is the rotation of the normal to the cross-section of the sandwich column,
N(2) is the axia load and By, B, and S are the globa bending, loca bending and
shear stiffnesses of the sandwich column. For a sandwich column with a free upper
end and a fixed lower end and using a coordinate system whose origin is fixed at
the upper end, the boundary conditions are

$(H)=9¢"(H)=0
and
¢'(0)=¢"(0)=0

Hegediis and Kollar (1984 and 1999) solved the above differential equation
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for different load cases. The solution for the uniformly distributed axial load [when
N(2) = gzholds and q isthe intensity of the load] assumes the form

By + B

Ne =aH =¢

where coefficient ¢; is obtained using a table as a function of B, /(By + B)) and
SH?(B, + By).

Table 2.3 Vauesfor coefficient c;.

|
KH? I +1

E(I+1g)rs

g

0 0.0010005 001 005 01 02 03 04 05 06 07 08 1

0.00 0.000 0.00780.039 0.078 0.392 0.784 1.567 2.351 3.135 3.918 4.702 5.486 6.269 7.837
0.05 0.0500.099 0.161 0.211 0.535 0.928 1.712 2.496 3.279 4.062 4.844 5.626 6.405 7.837
0.1 0.1000.171 0.255 0.320 0.668 1.064 1.850 2.632 3.414 4.195 4.974 5.750 6.519 7.837
0.2 0.2000.304 0.412 0.500 0.904 1.314 2.102 2.882 3.658 4.432 5.219 5.957 6.698 7.837
0.5 0.5000.665 0.815 0.933 1.465 1.917 2.717 3.486 4.238 5.025 5.691 6.378 7.015 7.837
1 1.0001.222 1.403 1.536 2.142 2.642 3.449 4.185 4.887 5.551 6.179 6.757 7.265 7.837
2 2.0002.289 2.483 2.574 3.094 3.589 4.366 5.026 5.618 6.178 6.679 7.111 7.473 7.837
5 4.211 4.364 4.475 4.524 4.858 5.057 5.637 6.117 6.532 6.892 7.202 7.458 7.655 7.837
10 5.5975.600 5.626 5.655 5.861 6.080 6.457 6.773 7.052 7.279 7.466 7.620 7.736 7.837
20 6.5706.572 6.584 6.599 6.706 6.828 7.045 7.230 7.388 7.522 7.632 7.719 7.783 7.837
50 7.2877.288 7.292 7.298 7.344 7.395 7.485 7.574 7.641 7.700 7.749 7.787 7.815 7.837
100 7.5547.555 7.557 7.560 7.583 7.609 7.657 7.700 7.736 7.767 7.792 7.812 7.826 7.837
o0 7.8377.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837

With some modification, the above simple formula can also be used for
determining the global critical load of multi-storey, multi-bay frameworks. First,
the dtiffnesses that correspond to those of the sandwich column should be
identified. This procedure is presented in the following, with most of the
characteristics shown in Figure 2.13, using the terminology common in structural
engineering. The stiffnesses are very similar to those introduced in Section 2.1.

The shear stiffness of aframework (K) is composed using two parts. The first
part is associated with the beams of the framework as

n-1
_ N 12El,
K, = Elli—h (2.52)
i=

where
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E isthemodulus of easticity

lp; isthe second moment of area of theith beam
h  isthe storey height

l; is the width of theith bay

n is the number of columns
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Figure 2.13 Origination of the equivalent column for the stability analysis.

The second part of the shear stiffness is associated with the columns and the
local sway of the framework between two storeys:

n 2
Bl
K=Y L 5e (2.53)

where |I; is the second moment of area of the ith column. With the two
components, the shear stiffness of the framework assumes the form

K = Kyf = Ky—e (2.54)
Ky + Ko

where the reduction factor r is aso introduced as

r=_ Ke (2.55)
Ky, + K.
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Note the similarity to—and the difference from—the shear stiffness that was
used for the deflection and frequency analyses in Section 2.1 and Section 2.2,
respectively. For more detailed explanation regarding the components of the shear
stiffness, see Chapter 5 where the stability analysis of whole systemsis carried out.

The globa bending stiffness (Elg) is associated with the full-height bending
of the framework when the columns act as longitudinal fibres of a solid body in
bending. It is calculated in the same way asin Section 2.1, with

lg= > At (2.56)

1

where A;; is the cross-sectional area of the ith column and t; is the distance of the
ith column from the centroid of the cross-sections.

The local bending stiffness (El) of the framework is associated with the full-
height bending of the individual columns. Again, it is obtained in the same way as
in Section 2.1, with

| = rZ|c,i (2.57)

1

where |, is the second moment of area of the ith column and r is the reduction
factor [Equation (2.55)].

Having identified the stiffnesses for the use of the sandwich solution above,
the way the framework is loaded should now be considered. The sandwich solution
was produced for a cantilever subjected to a uniformly distributed axial load. The
load of multi-storey frameworks, however, is not uniformly distributed over the
height but it consists of floor loads (Figure2.13/a). When the framework is
modelled for the continuum method by an equivalent column, the floor load can be
considered as a system of concentrated forces at floor levels (Figure 2.13/b). This
load system can then be distributed over the height of the column (Figure 2.13/c).
This procedure represents an approximation and this approximation is
unconservative as the distribution of the load occurs downwards at each storey and
the centroid of the load also moves downwards. The lower the framework, the
greater the approximation. For a four-storey structure, for example, this
approximation can lead to a critica load that is up to 40% greater than the exact
one, therefore this phenomenon cannot be ignored.

This unfavourable phenomenon, however, can easily be taken into account by
using Dunkerley’s summation theorem (Zaka, 2000) and introducing a load
distribution factor into the formula of the critical load. Accordingly, based on the
sandwich solution, the critical load of the framework can be produced as

E(l +|g)rS

Ng =qH =¢ H2

(2.58)

where El is the loca bending stiffness, Elg is the global bending stiffness and rg is
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the load distribution factor whose values are given in Figure 2.14. Based on the

Hegediis-Kollar solution (1984 and 1999), values for the critical load factor c; are
given in Table 2.3 asafunction of

T, (2.59)
and
2
__KH® (2.60)
E(I +1g)r

where K isthe shear stiffness.
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Figure 2.14 Load distribution factor rs as a function of n (number of storeys).

Values for rg are given in Figure 2.14 for frameworks up to twenty storeys
high. Table 5.1 can be used for more accurate values and/or for higher frameworks.

When the framework is very wide and/or the effect of the local second
moment of area of the columnsisvery small [i.e., when ratio (2.59) is very small],
an even simpler method, to be presented in Section 2.4.1, can be used for the
determination of the critical load.

2.3.2 Accuracy

A comprehensive accuracy anaysis was carried out to check the accuracy of
Equation (2.58) for the critical load of multi-storey frameworks. The frameworks
used for the accuracy analysis were the same used in Section 2.1.4 for the accuracy
analysis of Equation (2.24) for the maximum deflection and of Equation (2.50) in
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Section 2.2.1 for the fundamental frequency. Details of the frameworks are given
in Figure 2.7 in Section 2.1.4. The critical load of the thirteen frameworks (F1 to
F13 in Figure 2.7) was calculated and compared to the Finite Element solution.
The height of the frameworks varied from 4 storeys to 80 storeys in eight steps
resulting in 117 test cases. The AXIS VM finite element package (AXIS, 2003)
was used for the comparison, whose results were considered “exact”. The error of
the continuum solution was defined as the difference between the “exact” and the
approximate solutions, related to the “exact” solution. The bays of the frameworks
were 6 and 3 metres; 6 metres for the one-, two- and three-bay concrete sway-
frames (F1 to F10 in Figure 2.7) and 3 metres for the sted braced frames (F11 to
F13). The storey height was 3 metres for all structures.

Table 2.4 Accuracy of Equation (2.58) for the stahility analysis.

Rangeof  Averageabsolute Maximum

Method error (%) error (%) error (%)

Continuum solution

[Equation (2.58)] —8tol7 31 17

The cross-sections of the beams and columns were chosen in such away that
the structures covered awide range of stiffnesses. The deflected shapes represented
predominant bending, mixed shear and bending, and predominant shear
deformation. The results are summarised in Table 2.4.

error [%)]

number of storeys

Figure 2.15 Accuracy of Equation (2.58) for the critical load for frameworks of different height.
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In addition to the data given in Table 2.4, it is also important to see how the
error varies as the height of the framework changes. Figure 2.15 shows the error as
a function of height for the thirteen frameworks. In Figure 2.15 and Table 2.4
positive error represents conservative critical 1oad.

The results summarised in Table2.4 and Figure2.15 demonstrate the
performance of the method. It can be stated that for practica purposes the
continuum solution can be considered accurate enough: The error range of the
method was between —8% (unconservative) and 17% (conservative). In 116 cases,
the average difference between the results of the continuum method and the finite
element solution was 3.1%. (It should be noted that the 4-storey framework F12
did not develop globa sway buckling and its critical load was omitted from the
accuracy analysis as—in line with the basic assumptions—only sway-frames were
considered.)

24 OTHER TYPESOF FRAMEWORK

The investigations in the previous sections centred on rigid sway-frames. However,
the methods can also be used for the deflection, frequency and stability analyses of
other types of framework, sometimes with some modification, if the three
characteristic stiffnesses (local and globa bending and shear) are known. In some
cases, a solution even simpler than the one presented in Section 2.3.1, can be used.
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Figure 2.16 Framework with cross-bracing. a) basic characteristics, b) equivalent column with
concentrated load at floor levels, ¢) equivaent column with uniformly distributed load.
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2.4.1 Frameworkswith cross-bracing

With multi-storey frameworks with cross-bracing (Figure 2.16/a), their local
bending stiffness is calculated directly as the sum of the bending stiffnesses of the
columns [Equation (2.31)], but with r =1, i.e.,, El = El.. The calculation of the
global bending stiffness Elg isidentical to that of the rigid frames, i.e., according to
Equation (2.32).

Their behaviour in shear is somewhat different from that of unbraced frames
and depends on the arrangement of the bracing. Formulae for different bracing
arrangements are given in Table 2.6.

Table 2.5 Critical load parameter as as afunction of parameter fs.

Bs as Bs as B as Bs as

00 1.0000 22 03711 42 02135 17 0.05722
0.3 10000 23 03579 43  0.2090 18 0.05413
04 09972 24 03457 44  0.2047 19 0.05135
05 09325 25 03342 45  0.2006 20 0.04884
06 08663 26 03235 50 01824 25 0.03926
07 08051 27 03134 55 01672 30 0.03282
08 07501 28 03039 60 01543 35 0.02819
09 07011 29 02950 65 01433 40 0.02471
10 06575 30 0286 70  0.1337 45 0.02199
11 0618 31 02787 75 01253 50 0.01981
12 05838 32 02711 80 01179 55 0.01803
13 05526 33 02640 85 0.1114 60 0.01654
14 05243 34 02572 90  0.1055 65 0.01527

15 04988 35 0.2508 10 0.09544 70 0.01419
16 04755 36 02447 11 0.08713 80 0.01243
17 04543 37 0.2389 12 0.08015 90 0.01105
18 04349 38 02333 13 0.07420 100 0.00995
19 04170 39 0.2280 14 0.06908 200 0.00499
20 04005 40 0.2230 15 0.06462 300 0.00333
21 0382 41 02181 16 0.06069 >300 Vg

Regarding stability analysis, the procedure presented in Section 2.3.1 for the
stability analysis of rigid frameworks can till be used but an even simpler method
is available. Of the three characteristic stiffnhess contributors (local bending, global
bending and shear), the effect of the local bending stiffness tends to become very
small compared to that of the other two stiffnesses. If this contribution is therefore
neglected, then a very simple model can be used for the anaysis. This smple
model (Figure 2.16/c) is the equivalent sandwich column with thin faces
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(Zalka, 1999). The analysis of the equilibrium of an elementary section of the
column leads to the differential equation

T Zq 3q nr q n r —
1-=2 |- =y"+—— +y)=0
y ( Kj Y rSElg(zy y)

where critical load intensity g is the eigenvalue of the problem.
The boundary conditions are

y(0) =0, y'(H )(1—%) =0

I T I 2 Ir
YO Y(©=0,  y(0-1y(0=0
and the solution for the critical load is obtained as
Ng = aK (2.61)

where K isthe shear stiffness of the framework.
Critical load parameter a5 is given in Figure2.17 and in Table25 as a
function of part critical load ratio 5, defined by

K
Bs = N_g (2.62)
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Figure 2.17 Critical load parameter a5 as afunction of parameter fs.



38 Multi-storey Buildings

Table 2.6 Shear stiffness K for different cross-bracing arrangements.
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In eguation (2.62) Ny is the part critical load characterizing the full-height
global buckling of the framework as awhole:

_ 7.837rEl
Ng = —hz (2.63)
where |g is the globa bending second moment of area defined by Equation (2.32)
and ris the load distribution factor whose values are given in Figure (2.14) and in
Table5.1.

As Equations (2.61) and (2.62) show, the value of the critical load depends
on the two part critical loads K and Ny and its value increases as the value of the
shear critical load (K) and that of the global bending critical load (Ng) increase.
However, it is important to know how these part critical loads compare and
influence the value of the critical load. Based on the Foppl-Papkovich summation
theorem (Tarnai, 1999), Figure 2.18 demonstrates that the most efficient case
arises when the two part critical loads are equal (Figure 2.18/c). In this case, the
critica load of the framework is maximum and its value increases in direct
proportion with the increase of the part critical loads, i.e., doubling the part critical
loads leads to a critical load which is twice as much as the origina critical load.
Figure 2.18 also demonstrates that, for unequal part critical loads, there is no point
in increasing the greater part critical load as the overal critical load is always
governed by the value of the smaller part critical load (Figures 2.18/a and 2.18/b).

K Ny K Ny

Ner Ner Ner

a b) 0

Figure 2.18 The effect of the relative values of the part critical loads on the critical load.
a) K>> Ng, b) Ng>> K, ¢) K = Ng.

2.4.2 Frameworkson pinned support

Frameworks on pinned supports (Figure 2.19/a) have full-height columns that,
because of the pinned support, would not be stable by themselves and therefore the
critical load that would belong to their local bending stiffness is zero. It follows
that the sandwich model with thin faces (used in the previous section) can be used
again to produce a simple and good estimate of the globa critical load of the
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framework.
The critical load is obtained using

N, = aK (2.64)

where K isthe shear stiffness of the framework.
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Figure 2.19 Frameworks on pinned support. @) geometrical characteristics, b) local sway at ground
floor level.

The shear stiffness originates from two sources. The global part of the shear
stiffness (K,,) depends on the stiffness of the beams and its value is not affected by
the type of support of the columns so it is defined by Equation (2.52) as with
frameworks on fixed support. The other component of the shear stiffness depends
on the columns of the framework and the local sway of the framework between
two storeys. With frameworks on pinned supports, the most vulnerable level is
ground floor level (Figure 2.19/b) and the local shear stiffness is associated with
sway buckling between ground floor and first floor level (Zalka and Armer, 1992).
The local shear stiffnessis therefore defined by

n -2 n .2
T°El; T°El;

Ke=2. @ 2 4h? (269

j=1 j=1

With this local shear stiffness, the shear stiffness of the framework on pinned
support is given by Equation (2.54). Critical load parameter as in Equation (2.64)
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is again given in Figure2.17 and in Table 2.5 as a function of part critical load
ratio [ defined by Equation (2.62), where the value of Ny does not depend on the
type of support of the framework; therefore Equation (2.63) can be used.

2.4.3 Framewor ks with columns of different height at ground floor level

If the framework has columns that are of different height at ground floor level—
normally higher than those above—then the corresponding equations can be used if
the value of the local shear stiffhess is determined according to the greater storey
height, i.e. Equations (2.53) or (2.65) should be used but with storey height h'
(Figure 2.20) instead of h.
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Figure 2.20 Frameworks with ground floor columns of different height. a) on fixed support, b) on
pinned support.

2.4.4 Infilled frameworks

Frameworks filled with masonry walls (Figure 2.21/8) have increased resistance to
lateral movement. Theoretical investigations (Polyakov, 1956; Madan et al., 1997,
Mainstone and Weeks, 1972) and experimental evidence (Mainstone and Weeks,
1972; Riddington and Stafford Smith, 1977) show that the complex behaviour of
the composite structure can be handled in arelatively simple way. The contribution
of the masonry infill panel to the response of the infilled framework can be
modelled by replacing the panel with two equivalent struts: one in tension and the
other in compression. The tensile strength of masonry is negligible and can
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therefore be safely neglected, leading to the model shown in Figure 2.21/b. As for
the diagonal in compression, the cross-section is

A =th, (2.66)

where

t is the thickness of the masonry wall
b, istheeffective width of the diagona strip (Figure 2.21/c)

Experimental evidence shows that the value of the effective width variesin a
relatively wide range (Mainstone and Weeks, 1972; Riddington and Stafford
Smith, 1977; Achyutha et al., 1994): 0.10 < b,/d < 0.40, with d being the length of
the diagonal strut. Design charts have been made available offering values for the
effective width, as a function of stiffness parameters and panel proportions
(Stafford Smith, 1966; Stafford Smith and Carter, 1969). Alternatively, the value
of the effective width can be approximated by

b,, = 0.15d (2.67)

which normally leadsto a conservative estimate.

-~
-

yd

a)

Figure 2.21 Model for infilled framework.

This leads to a framework with single bracing as a possible model for the
structural analysis (Figure 2.21/d), whose shear stiffness, based on the first
equation in Table 2.6, is composed of two parts, depending on the diagonals (Kq)
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and the horizontal beams (K), as

-1 -1
K:(LJ,LJ :[ e , | J (2.68)
Ky K AE4hI?  AEjh

where

Ey isthemodulus of elasticity of the masonry wall
En isthe modulus of elasticity of the beams
A, isthecross-sectional areaof the beams

Equation (2.68) stands for single-bay infilled frameworks. For multi-bay
frameworks, the shear stiffnessis obtained by adding up the shear stiffnesses of the
bays:

K=YK (2.69)

where n isthe number of columns and K; refers to the shear stiffness of the ith bay.

By definition, K is aso the shear critical load of the framework and has a
very important contribution to the overall performance of the framework.

The critical load is then obtained using Equation (2.61) with K and Ny as
described in Section 2.4.1.

Asfor increasing the values of the part critical loads K and Ng, the following
rules apply. The value of the shear stiffness depends on two parts: the shear
stiffness of the diagonal struts—the first term between the brackets in
Equation (2.68)—and the shear tiffness of the beams of the framework (the
second term). The bigger Ky and K, the bigger the overal shear stiffness K. The
shear stiffness is optimized when Ky and K, are equal. (What was said about the
part critical loads in Section 2.4.1—uwith regard to K and Ng—is also valid here for
[\ and Kh)

The value of Ky is directly proportional to the cross-sectional area Aq and the
modulus of eagticity Ey of the diagonals. As for the geometry of the structure,
maximum shear stiffness associated with the diagonalsis achieved (Figure 2.22) at

Iﬂ =0.708

where h isthe height of the storeys and | is the bay of the framework.

The situation is simpler with the second part of the shear stiffness Ky, which
reflects the contribution of the beams. Its value is in direct proportion to the cross-
sectional area A, and the modulus of elasticity Ey, of the beams and the height of
the storeys and in inverse proportion to the length of the beams.

Finally, the vaue of the global bending critical load Ng can be increased in
different ways: by increasing the cross-sectional area and the modulus of elasticity
of the columns and, most importantly, by increasing the distance between the
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columns.
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Figure 2.22 Optimum geometrical arrangement for part shear stiffness Ky associated with the diagonals.

25COUPLED SHEAR WALLS

Coupled shear walls can be treated as special frameworks if two phenomena are
taken into account. Coupled shear walls normally have relatively wide columns
and beams with relatively great depth (Figure 2.23). Consequently, the straight-line
section of the beams has to be considered when the relative displacement at the
contraflexure point (43) and consequently the formula for the shear stiffness are
derived—see Section 2.1.1 for details. The shear deformation of the beams also has
to be taken into account.

gh+
Lo
ghv
St I S
L L L L
7 7 7 7

Figure 2.23 Vertica displacement A3 at contraflexure point due to the bending of the connecting beam.

These amendments can be made in a relatively smple way (Zaka and
Armer, 1992) and the resulting relative displacement at the contraflexure point of
the beams (Figure 2.23) is obtained as

*

gl
A, =-
7K
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where
* *  * * K
K'=Kgr™ = K, ——¢ (2.70)
Kb"'Kc
and
* 2 * 2
K;:6Elb((l +5)7+( +5y) ) (2.72)

|*3h[1+12 gE'b J
I2GA,

for one bay, where

G isthe modulus of elasticity in shear of the beams

A, isthe cross-sectiona area of the beams

s, S arethewidth of the wall sections of the coupled shear walls

p is a constant depending on the shape of the cross-section of the beams
(p = 1.2 for rectangular cross-sections)

h isthe storey height

*

I is the distance between the two wall sections (Figure 2.23)

It follows that all the formulae for the latera deflection, fundamental
frequency and the critical load can be used if, according to Equation (2.70), K, and
r are replaced by K;, and r” for coupled shear walls. For multi-bay coupled shear
walls the shear stiffnesses of the bays should be added up using Equation (2.69),
where n is now the number of walls.

26 SHEAR WALLS

In the case of shear walls, the situation is very simple as they can be considered
(very) simple frameworks. Of the three characteristic stiffnesses only their bending
stiffness El should be considered that corresponds to the local bending stiffness of
a framework. (Their resistance to globa bending and shear—using frame-
terminology—can be considered infinitely great.) The well-known formulae for the
deflection, maximum deflection, the fundamental frequency and the critical load
are asfollows.

Deflection:

w(H3z 7 wH*

- wihz z d = y(H) = 272
y(2) EI[ 5 24J an Ymax = Y(H) oE] (272

where w is the intensity of the uniformly distributed horizontal load and z is
mesasured from ground floor level.
Fundamental freguency:
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0.56r; |El
57 \m (2.73)

where m is the mass density per unit length of the shear wall and r; is the mass
distribution factor according to Figure 2.9 and Table 4.1.
Critical load:

_ 7.837Elr,

:qH H2

(2.74)

cr

wherersisthe load distribution factor givenin Figure 2.14 and in Table 5.1.

2.7 CORES

Shear walls are often built together to create three dimensiona units. Prime
example is the U-shaped elevator core but many different shapes exist in building
structures. The second moments of area of a reinforced concrete core are normally
large and a small number of cores are often sufficient to provide the building with
the necessary stiffness to resist lateral loading. In the two principal directions they
act as shear walls and, knowing the second moments of area, Equations (2.72),
(2.73) and (2.74) can be readily used to calculate the deflection, the maximum top
deflection, the fundamental frequency and the critical load of acore.

As opposed to shear walls (and frameworks), however, cores are three-
dimensional structures and they aso have torsional resistance which may
congtitute a significant part of the overall torsional resistance of the building. In
the case of the five-storey building investigated in detail in Section 12.2, for
example, the torsional resistance of the building is solely provided by a single
U-core.

2.7.1 Torsional stiffness characteristics

As far as torsional behaviour is concerned, in view of their dimensions (height of
core, thickness of the wall sections of the cross-section of the core), cores can be
considered thin-walled columns and their torsional resistance originates from two
sources: the pure (Saint-Venant) torsiona stiffness (GJ) and the warping torsional
stiffness (El ).

For cores of open cross-section (Figure 2.24/a), the Saint-Venant torsional
constant is obtained from

J= %IZ:: ht? (2.75)

where
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h,  isthelength of theith wall section
t; is the thickness of theith wall section
m isthe number of wall sections

e P—— S -
t.
: hy A | t; h
L L
a) b)

Figure 2.24 Cores of thin-walled wall sections. a) open cross-section, b) closed cross-section.

On the rare occasion when the core has a closed cross-section (or its openings
are so small that they can be ignored), Bredt's formula should be used:

3= 4 (2.76)

m

h
2y
i=1 !

where A, is the area enclosed by the mean centre lines of the wall sections
(Figure 2.24/b) and again:

h,  isthelength of theith wall section
t; is the thickness of theith wall section
m isthe number of wall sections

The relationship between Young's modulus and the modulus of elasticity in
shear is
E
21+v)

.77

where v is the Poisson ratio.

Warping torsion is associated with the bending of the wall sections of the
core—c.f. Section 3.2.1—but the determination of the stiffness associated with it is
much more complicated than with pure torsion (Vlasov, 1961; Zbirohowski-
Koscia; 1967, Kollbrunner and Basler, 1969). No simple procedure of genera
validity is available for the calculation of the warping constant (l,,) but closed form
solutions exist for several cross-sections. Some of these formulae are collected in
Table 2.7 where, in addition to the warping constant, formulae for the pure
torsional constant and the location of the shear centre are also presented for the
most commonly used cores. Tables 2.8 and 2.9 cover more complex (or
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unsymmetric) cases.
Table2.7 Torsiona characteristics for common bracing cores of simple cross-section.
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Typica bracing cores are shown in Figure 2.25 where the warping stiffness
of the first four cores (Figure 2.25/a) is so small that it can safely be ignored for
practical calculations.
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I e
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Figure 2.25 Cores. a) with |, = 0, b) with considerable |,

Table 2.8 Cross-sectional characteristics for TT-sections.
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Table 2.8 Continued. Cross-sectional characteristics for TT-sections.
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Table 2.9 Cross-sectional characteristics for 0-sections.

++ 4

iy

A=A; +2A+ A, with

t3

A ZUbHE), A TLh-2-2), A Zt(bry)

1 t t
e=—| Ah+A (h-2+21)|, e*h-e
A[A%‘ A5 2]

1 2 2 _I3y2 L
—| At +ALS+2 h— +Ae +Ae +2 +=
12[ it + At + 2Ay( )J A %(2 27

2
= A Ao e2agl DA, 1 =0

ejz

ejz



Individual Bracing Units 51

Table 2.9 Continued. Cross-sectional characteristics for O-sections.
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U-cores are perhaps the most commonly used types (for elevator and service
shafts) but they are in most cases partially closed at storey levels by floor slabs or
beams (Figure 2.26). The effect of the connecting elements can always be safely
ignored but their contribution is normally significant and the structural engineer
may wish to take it into consideration for economic reasons. The connecting
elements restrain the core section from warping and increase its torsiona stiffness.
Vlasov's (1961) investigations show that the phenomenon can be taken into
account by amending the governing differential equation of torsion [Equation
(2.84), to be discussed later on] in the form of

El ¢ -G +J)g"=m, (2.78)
where
J= 4—'05 (2.79)
1°G , 1.2 '
12El, A

represents the effect of the connecting beams and J is defined by Equation (2.76).
In the above equation

Ao isthe area enclosed by the mean centre lines of the wall sections
(Figure 2.26/b)

bandh arethelengths of the wall sections of the U-core

I is the span of the connecting beams

S isthe vertical distance of the connecting beams (storey height in
most cases)

E isthe modulus of elasticity of connecting beam

G isthe modulus of elasticity in shear of connecting beam

and
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A =tyd and l, =2

are the area and the second moment of area of the cross-section of the connecting
beams with t, and d being the thickness and depth of the connecting beams.

If the amended torsional stiffness (J+J ) is used, then all the formulae
originating from the governing differential equation (2.84) and given in this
Section later on can be used for the determination of the rotation, fundamental
frequency and critical load of the partially closed core.
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Figure 2.26 Partially closed U-core.

Numerical investigations show that when the depth of the connecting beam
(d) is relatively great, Equation (2.79) tends to overestimate the effect of the
connecting beams and may result in avalue for the torsional stiffnessthat is greater
than that of an entirely closed section—which is clearly impossible. In such cases,
the approximation

_ 4h%p?
=21 1 on (2:80)
—t—t+—
tW tW tf

may be used where the equivalent thickness is determined using

£, = %tb (2.81)

where, again, d is the depth of the connecting beams and s is the vertical distance
of the connecting beams.
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2.7.2 Deflection and rotation under uniformly distributed horizontal load
When the horizontal load passes through the shear centre axis, Equations (2.72)

can be applied, using the relevant second moment of area, for the determination of
the deflection and maximum deflection of the core:

w, (H3z 27 w,H*
uz) == —-— and U, =u(H)== 2.82
(2) Ely( 6 24] max = U(H) 8El, (2.82)

4

_w, (H% 7 _ _wH
v(z) = —=| ——-—— and Voo, =V(H) = 2.83
2) El,| 6 24 max = V(H) 8El (2.83)

When the torsional behaviour of a core subjected to uniformly distributed
torsional moment is investigated (Figure 2.27), the governing differential equation
assumes the form

El 4™ -GJg" =m, (2.84)

with the boundary conditions

$0)=0,  $(©=0 (2.85)
and
¢"(H)=0, El,¢"'(H)-GJ¢'(H)=0 (2.86)
7 4
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Figure 2.27 Bracing corefor the torsional analysis, subjected to uniformly distributed torsional moment.
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The solution can be expressed in closed form:

2
&( )—— H coshkz+ksinh(k—E)—ksinhk—1
GJ coshk H
+2(H —é) cosh k} (2.87)
where
k=H | S (2.88)
El,

isthe torsion parameter.
Maximum rotation develops at the top:

coshk -1 tanhk 1) (2.89)

B = HH) = GJ (kzcoshk kK 2

Two specia cases will now be considered. In most practical cases the effect
of the Saint-Venant torsiona stiffness (GJ) is small compared to the effect of the
warping stiffness (El,) and

k<<1

holds. In such cases, keeping in mind that GJ/El,~ 0 holds, the governing
differential equation of the torsional problem simplifiesto

and the formula for the maximum rotation is obtained as

4
P = 9(H) = L2 2%0)

When the core has no warping stiffness (Figure 2.25/a), the above solutions
cannot be used as the denominator in Equations (2.88) and (2.90) vanishes. In such
cases the original governing differential equation simplifiesto

me M
SRS
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whose solution resultsin

2
m,H

Prax = $(H) = 2GJ

(2.91)

for the maximum rotation.

2.7.3 Critical load

When the stability of a core is investigated, three things have to be considered:
lateral buckling in the two principal directions and pure torsional buckling. For
lateral buckling, Equation (2.74) given for shear walls can be used and the critical
loads in the principal directions can be calculated from

7.837El r 7.837El,r
of X = T}’S and Ncr,y = TXS (292)
A 2 ﬁ
{
{
{
i GJ
'
4
{
4
74 L
2w

Figure 2.28 Bracing core for the analysis of pure torsional buckling.
The situation with pure torsional buckling is more complicated. It is
advantageous for the origin of the coordinate system to be placed at and attached to

the upper free end of the core (Figure 2.28). The governing differentia equation in
this coordinate system assumes the form

rEl @™ + [(N(z)ig -GJ )¢] =0
with the boundary conditions

$0)=0, ¢"(0)=0



56 Multi-storey Buildings

and
¢'(H)=0, El,¢"(H)-GI¢'(H)=0

where

PR a— (2.93)

is the radius of gyration of the cross-section of the core, r, is the load distribution
factor (Figure 2.14 or Table 5.1) and N(2) = gz
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Figure 2.29 Critical load parameter « as afunction of parameter K.

The solution of the above governing differential equation gives the critical
load for pure torsional buckling as

ar El
Ncr,¢= -zs 2w
|pH

(2.94)

where « is the critical load factor. Its function is shown in Figure 2.29 and its
values are given in Table 2.10 as afunction of

_H GJ

k
I r.El,

ks =

(2.95)
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It is important to point out that when Equation (2.94) is used for the stability
analysis of a building braced by a single core, then the radius of gyration refers to
the layout of the building (rather than to the cross-section of the core).

When the warping stiffness of the core is zero, Equations (2.94) and (2.95)
cannot be used. Instead,

GJ
NCI’,¢ = > (296)

p

should be used. It isinteresting to note that in this case the value of the critical load
does not depend on the height of the structure.

It should be noted here that cores normally behave in a true three-
dimensional fashion and the above three critical oads can only be considered basic
critical loads. The basic critical 10ads (N x, Nery @nd Ner,p) may, and normally will,
combine during buckling resulting in the global critical load of the core. This
combination is very important as the actual critical load of the core is always
smaller than (or equal to) the smallest one of the three basic critical loads. For the
coupling of the basic critical loads, see Chapter 5 that deals with three-dimensiona
behaviour.

Table 2.10 Critical load parameter o as afunction of parameter k.

Ks a Ks a Ks a Ks a
0.00 7.837 1.3 12.72 2.8 28.03 50 2984.7
0.01 7.838 14 13.47 29 29.30 60 4209.3
0.05 7.845 15 14.27 3.0 30.59 70 5640.9
0.10 7.867 1.6 15.11 4.0 44.69 80 7278.1
0.20 7.957 1.7 15.99 5.0 60.75 90 9120.7

030 8107 18 1691 6.0 78.80 100 11168
040 8316 19 1787 7.0 98.94 200 42864
050 8583 20 1887 8.0 121.2 300 94863
060 8909 21 1991 9.0 145.7 400 167093
070 9201 22 2098 10 172.4 500 259498
080 9730 23 2208 15 338.6 1000 1023750
090 1022 24 2321 20 558.6 2000 4059499
100 1077 25 2438 25 831.8 3000 9101926
110 1137 26 2557 30 1157.8 4000 16149383
120 1202 27 26.79 40 1967.1 >4000 k52
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2.7.4 Fundamental frequency

When the vibration of the core is investigated, the frequencies for the lateral
vibration can again be readily obtained using the solution given for shear walls:

. _oser, [E, ] . _0s6r, [El, 0 g7
T THZ I m o YU HZ Um 297

where mis the mass density per unit length of the material of the core and r; is the
mass distribution factor by Figure 2.9 or Table 4.1.

The analysis of pure torsiona vibration is carried out by investigating the
equilibrium of an elementary section of the core (Figure2.30). Its governing
differential equation emerges as

rPEl @™ ~17GI¢" +mi>p=0

where primes and dots mark differentiation by z and t (time). After seeking the
solution in a product form, separating the variables and eliminating the time
dependent functions, the above governing differential equation leads to the
boundary value problem

rPEl @1 = 17GI¢} - wmiZ g =0

Z A
A
GJ
H m El )
i p
®
* Ve >

Figure 2.30 Bracing core for the analysis of pure torsional vibration.

This differential equation is identical to Equation (2.47) in structure, has the
same boundary conditions, and so the solution to Equation (2.47) can be used if the
stiffness characteristics in Equation (2.47) are replaced with those in the above
equation. In doing so, the formula for the pure torsiona frequency is obtained as
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s [El,

H 2
|pH m

fy= (2.99)

where values for # are given in Figure 2.11 and in Table 4.2 as a function of k
[Equation (2.88)]:

k=H ﬂ
El,
Equation (2.98) for the fundamental frequency of pure torsional vibration

cannot be used for cores with zero warping stiffness. For such cores the
fundamental frequency for pure torsion is calculated from

f¢: 1_ ‘/E (2.99)
4H|p m

It isimportant to point out that when Equations (2.98) and (2.99) are used for
the frequency analysis of a building braced by a single core, then the radius of
gyration refers to the layout of the building (rather than to the cross-section of the
core).

As with the stability investigation of the core, it should be noted here that
cores normally behave in a true three-dimensional fashion and the above three
fundamental frequencies (fy, fy and f,) can only be considered basic fundamental
frequencies and they normally combine during vibration resulting in the
fundamental frequency of the core. This combination is very important as the
fundamental frequency of the core is dways smaller than (or equal to) the smallest
one of the three basic frequencies. For the coupling of the basic modes see
Chapter 4 that deals with three-dimensional behaviour.




3

Deflection and rotation analysis of
buildings under horizontal load

Based on the deflection analysis of a single framework, the characteristic unit of a
bracing system, whole structures braced by frameworks, coupled shear walls, shear
walls and cores will now be investigated. The task is made more complicated than
with a simple unit as, in addition to the interaction among the elements of a
framework, interaction aso occurs among the bracing units themselves.
Approximate methods have been developed for the investigation of bracing
systems under horizontal load (Pearce and Matthews, 1971; Dowrick, 1976;
Schueller, 1977; Irwin, 1984; Stafford-Smith and Coull, 1991; Coull and Wahab,
1993) but they often have restrictive assumptions and their accuracy and reliability
have not been comprehensively investigated. Sporadic checks indicate that in
certain cases they lead to unconservative estimates of unacceptable magnitude (up
to 70%).

A building under horizontal load can, and normally will, develop lateral
deflection in two planes and rotation. One of the most important pieces of
information regarding the building as a whole unit is its maximum deflection and
the aim of this chapter is to offer arelatively simple solution for the top deflection
as well as for the rotation of the building. The solutions to be presented in this
chapter are not only simple but their structure is such that they show how the
different stiffness characteristics influence the deflection and rotation of the
building. The summary of a comprehensive accuracy anaysis involving 279
structures of different height and stiffness characteristics, with both reinforced
concrete and sted bracing units, demonstrates the accuracy and reliability of the
methods.

It will be shown that the deflection of the building is defined by three
distinctive parts: bending deflection, shear deflection and the interaction between
the bending and shear modes. It is demonstrated that the interaction is always
beneficial as it reduces the deflection of the structure. Similar conclusions are
made regarding the rotation of the building.

3.1LATERAL DEFLECTION ANALYSISOF BUILDINGSUNDER
HORIZONTAL LOAD

Consider a system of frameworks and coupled shear walls (i =1, ..., f), subjected
to a uniformly distributed lateral 1oad of intensity w, shown in Figure 3.1. (Shear
walls and cores will be incorporated into the system later on.) Unlike in Section
2.1, for the following derivation let I; and |; denote the bays of the frameworks and
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the sums of the second moments of area of the columns of the units, respectively.
Although the bracing units act independently from each other, the connecting floor
slabs make them deflect together assuming the same deflection shape. Each unit
takes horizontal load and bending moment according to its stiffness

W =qw and M; =gM (3.1

where factor ¢ is an apportioner that is responsible for distributing the total load
among the bracing units.
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Figure3.1 A systemof f bracing units.

Each unit may have three stiffnesses (El, Elg and K, as defined in Section
2.1.2) and all three influence its behaviour. The best way to take into account the
combined effect of the stiffnesses is to consider the deflection of the unit.
Accordingly, the “governing” stiffness of each unit is defined as

1
Yi

where y; is the top deflection of the ith unit, calculated using Equation (2.24) in
Section 2.1.1. With the above unit-stiffness, the apportioners are calculated from

(3.3)

N
o O

The summation in Equation (3.3) covers all the bracing units—see remark
above Equation (3.15). During deflection, the columns and the beams of the
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frameworks assume their bending deformation and the columns develop their axial
deformation, utilising their individual bending and axial stiffnesses. Consequently,
Equation (2.9) holds for each framework. Because of the identical deflection
shapes, in the equations expressing continuity along the lines of contraflexure of
the frameworks, the function of deflection is the same for each framework (y; =y)
while the other characteristics are unit-specific:

y”—l—iNi”+ I'i N; =0 (34)

i g,

In order to determine normal force N; for substitution in the above equation,
the bending/deflection of the frameworks is considered next. Based on
Equation (2.11), the bending of the frameworks is defined by

y"EIi = _Mi + IiNi (35)

Rearranging Equation (3.5) and making use of Equation (3.1) result in the
normal forces as

N; = (Yl +aM) (36)

Substituting for N; in Equation (3.6) leads to the following differential
equation for theith unit of the system:

n 1 T " 1 T
y ‘?(y E|i+qiM) "'?(y E|i+qiM):O (3.7)
i gii

Making use of the fact that the floor slabs make the bracing units assume the
same deflection, asingle differential equation can be obtained for the whole system
by adding up the above equations from i = 1 to i =f. Using the first, second and
last bracing units for clarity, the differential equation for the whole system assumes
the form:

El El
fyy[ﬂi ]y[E'E' ]

K, K, K, Ely Elg,  Elg,
YT TS [ T B UL S | (3.9)
K, K, K, Ely Elg,  El,,

The equation can be written in a more genera form if one of the units is
considered the “base unit” (with El, K and Elg) and the stiffness characteristics of
the others are expressed by those of the base unit. Let Unit 1 be the base unit.
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Introducing the notation
El, = El K;=K Elg =Elg o
El, = aEl K, =K Elg, =cElg O, = 4G

(3.9)

El'y =a;,El Kt =bs4K Elgr =Ci1Elyg Qi =8¢0

and after some rearrangement Equation (3.8) turnsinto

y”"ﬂ 1+ﬁ+...+ﬁ —y"i 1+ﬁ+...+ﬁ+ fﬂ
K b; 4 Elg o} Ci El

:Mi 1+ﬁ+...+£ _M”i 1+ﬁ +_af 1
Elgl & Cia K by by

which, after re-introducing a and b from Equation (2.14) and with M = wZ%/2, can
be rearranged as:

X

2 c
Za—E -1 (3.10)

Itis easily seen that the above equation isin the form of

552
o _ —2 " az
=——-1 3.11
yooey El ( 2 ] 31D

and therefore it is, in structure, identical to Equation (2.15). It follows that the
solution of Equation (2.15) for a single bracing unit can be generalized and used
for the determination of the deflection of a system of frameworks and coupled

shear walls (Zaka, 2009):

4 — 2 —g S
[H z z }_ wz®© WEI [cosh/((H z)+EHsmth_1j (312)

V“‘Ef—s 2 ke Ko coshiH
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where w = qyw isthewind load on the base unit, and

gk=+va+b and §:1+% (3.13)
Maximum deflection develops at z=H:
WH* WH2 WEl (1+&H sinhkH
=y(H)= + - -1 3.14
Ymax = Y(H) 8El; 2Ks?2 K2§3( coshkH j (319

Stiffnesses El, K and Elg are those of the “base unit” (and I+ =1 + Ig).

The derivation presented above assumed a system of f rigid frames with El, K
and Elg. For coupled shear walls, stiffnesses El, K™ and Elg are used. [See Equation
(2.70) for K'.] The bracing system may also contain braced frames, infilled frames,
shear walls and cores.

Braced frames and infilled frames should be handled in a similar way,
keeping in mind the following small differences. Their shear stiffness K should be
determined according to the different types of bracing. Ready-to-use formulae are
given in Table 2.6. Equations (2.68) and (2.69) can be used for infilled frames.
When the bending stiffness of braced and infilled frames is calculated, their local
bending stiffness is calculated directly as the sum of the bending stiffnesses of the
columns, withr =1, i.e,, El = El.. The calculation of the global bending stiffness
Elgisidentica to that of therigid frames, i.e., according to Equation (2.32).

Assume now that the system also contains m shear walls and cores. The
situation is different (and much simpler) with shear walls and cores. They only
have bending stiffness El (the torsional stiffness of the cores is irrelevant for the
time being), which corresponds to the local bending stiffness of rigid frames. In
terms of frame-behaviour, their resistance against shear deflection and global
bending deflection is considered infinitely great and they do not participate in
“normal” frame-type interaction. This has two important consegquences:

a)  When the apportioner of the base unit q; is established, the shear walls and
cores are also included when the total stiffness of the bracing system (£S) is
caculated, i.e, i =f+m in Equation (3.3). When the deflection of a shear
wall/core is calculated (for determining its characteristic stiffness §), only its
bending stiffnessis considered, i.e.,

wH*
8EI

(3.15)

w(H3z 2
6 24

y(Z):E ___] and Ymax =y(H):

b)  When a shear wall/core is incorporated into a bracing system, it is assumed
that their shear and global bending stiffnesses are infinitely great in the sense
frame terminology interprets these stiffnesses. It follows that they would not
appear in Equation (3.10) where f stands for the number of frameworks.

With the above considerations, parameters @ and b for a system of frames
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and shear walls/cores are determined as follows:

1+Z:i
Q:L%C" 6:£—_, W = Wy
El la Bl Za
91+ Zi 1+ Zi
i=1 h i=1 Q
_ . Elgis
with & :—Eérl . b :—KK'+1 ¢ = Elg" : (3.16)
1 1 g1

where f isthe number of frameworks and coupled shear walls.

The above derivation and formulae spectacularly demonstrate how
complicated and delicate the interaction among the stiffness characteristics of the
bracing units is. As a rule, it is certainly not possible to create an equivaent
structure for the analysis by simply adding up the corresponding stiffnesses (El,
Ely and K) as is widely circulated in the literature. Simple addition of the
stiffnesses might work in some cases, but only in some special cases (e.g. when the
bracing system only consists of a single framework and one or more shear walls),
and in the mgjority of other casesit leads to highly unreliable resuilts.

A key element of the procedure is the “base’ unit. Choosing a “base”’ unit
makes it possible to reduce the problem of f + m bracing units to the problem of a
single unit. In other words, choosing a base unit is equivalent to incorporating the
bracing elements into a single equivalent column. This equivalent column is based
on the “base unit” (with its load share wq;) but (through Xa/b; and Xa/c) the
effects of interaction among the bracing units are also taken into consideration.

Theoreticaly, it is not important which unit is chosen as base unit.
Practically, however, the choice of a base unit isimportant as it has an “influence”
on how “quickly” (height-wise) the continuum model works. With a “good”
choice, the method works perfectly well even for low-rise (say, four-storey)
structures. On the other hand, with a “worse” choice, the method may not be
accurate enough for low-rise structures. Luckily, there is aways a “good” choice
and, after the determination of the stiffness characteristics of the bracing units
(which are needed anyway), an extremely simple answer can be given to the
question “How to choose the ‘base unit’?” The derivation in the previous section is
based on the bending analysis of the system. The resulting formulae for the
deflection consist of three parts: the bending part, the shear part and the interaction
part. The more shear-sensitive a unit, the more important the interaction part is. As
the derivation is based on bending analysis, a base unit as different from the
bending-dominant case as possible should be chosen in order to offer the biggest
“scope” for interaction. It follows that the rule for choosing the base unit is this:

The bracing unit with the highest b=K/EIl value must be chosen as the base unit.

Asthe ratio K/EIl has no meaning with shear walls and cores, a shear wall or
core cannot be a base unit.

If the structure is under horizontal load whose distribution is not uniform (but
triangular, for example), the method can still be used. In such cases, the first and



66 Multi-storey Buildings

second terms in Equations (3.12) and (3.14) should be replaced by the closed-form
solutions of the relevant load cases, available from textbooks. As an
approximation, the third term responsible for the interaction may remain
unchanged. As the effect of interaction is of secondary nature, this approximation
is considered acceptable for most structural engineering purposes.

3.2TORSIONAL ANALYSISOF BUILDINGSUNDER HORIZONTAL
LOAD

The torsiona analysis of multi-storey building structures braced by frameworks,
(coupled) shear walls and cores, subjected to lateral load represents a formidable
task. The main difficulty is caused by the fact that the different bracing units with
different deflection shapes interact with each other, and this time in a three-
dimensiona manner.

Because of the complexity of the torsional behaviour, not many authors deal
with the problem. Considerable efforts have been made regarding the torsional
behaviour of individua structural elements (Council..., 1978; Seaburg and Carter,
2003) but the global torsional behaviour of whole structural systems is a less
cultivated area. There are some excellent publications that offer relatively simple
solution for the global torsional problem (Council..., 1978; Irwin, 1984; Schueller,
1990; Coull and Wahab, 1993; Hoenderkamp, 1995; Nadjai and Johnson, 1998;
Howson and Rafezy, 2002) but they are either still too complicated or of limited
applicability and neither of them is backed up with a comprehensive accuracy
analysis.

To handle this three-dimensional problem in a simple way seems to be
hopeless using conventiona tools. However, by relying on an analogy between
bending and torsion, a relatively simple solution can be produced (Zaka, 2010).
The aim of this section is threefold:

a) toestablish anew model for the analysis using the bending-torsion analogy

b) to produce a smple closed-form solution for the rotation of the building that
clearly shows the contribution of the different stiffness characteristics to the
torsional resistance

c) to show how this new method can be used for the determination of the
maximum deflection of multi-storey asymmetrical building structures

It will be demonstrated that the torsional behaviour is defined by three
distinctive phenomena: warping torsion, Saint-Venant torsion and the interaction
between the two basic modes. It will be seen that the interaction between the
warping and Saint-Venant types of torsion is always beneficial asit always reduces
the rotation of the system.

3.2.1 Torsional behaviour and basic characteristics

As with thin-walled bars, multi-storey building structures react to torsion by
utilizing their torsional resistance. As with thin-walled bars, the torsional resistance
of multi-storey buildings originates from two sources. The warping stiffness is
associated with the in-plane bending stiffness of the individual bracing units,
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which is “activated” by their moment arm (perpendicular distance) measured from
the shear centre of the bracing system. This phenomenon is best demonstrated by
the torsiona behaviour of a single I-column on afixed base and with a free upper
end, whose warping stiffness El, is calculated by multiplying the (in-plane)
bending stiffness of its flanges and the square of the perpendicular distance of the
flanges from the shear centre of the column (Figure 3.2/a):

2 3 12 3.2
h to® h tb°h

El, = El —|2=E—=—2=E
“ f'a“ge(zj 12 4 24

where E is the modulus of elasticity of the material of the column. Point O marks
the shear centre of the cross-section and axis z passing through the shear centre is
the axis of rotation.

M M

a) b)

Figure 3.2 Rotation of an I-column on afixed base. @) with solid flanges, b) with flanges with openings.
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The Saint-Venant torsional stiffness of the bracing system is associated with
the in-plane shear stiffness of the bracing units, which is “activated” by its moment
arm (perpendicular distance) measured from the shear centre of the bracing system.
For its demonstration and using the same I-column as above, assume that the
flanges are pierced with big openings of rectangular shape (they are in fact
frames). The Saint-Venant torsional stiffness (GJ) is calculated by multiplying the
shear stiffness of the flanges (i.e. the frames) and the square of the perpendicular
distance of the flanges from the shear centre of the column (Figure 3.2/b):

o (hY
(GJ)—ZK(EJ - Kh®

where K is the shear stiffness of the flanges. It is easy to see that in building
structures the floor slabs of the building (with their great in-plane stiffness) play
the role of the web of the I-column in making the bracing elements (the flanges)
work together.

It follows that the bending and shear stiffnesses of the individual bracing
units as well as the distance of the bracing units from the shear centre of the
building are the key playersin the torsional behaviour.

According to Section 2.1, in the case of aframework (the most characteristic
bracing unit) the characteristic stiffnesses are the local and global bending
stiffnesses [El and Elg by Equations (2.31) and (2.32)] and the shear stiffness as
given by Equation (2.27).

In addition to the stiffnesses of the bracing units, their distance from the shear
centre is also needed. The location of the shear centre is defined as the centre of
stiffnesses of the bracing units. The stiffness of each bracing unit is defined by
Equation (3.2) asthe reciprocal of the top (in-plane) deflection of the unit.

With the stiffnesses of the units, the calculation of the location of the shear
centreis carried out in the co-ordinate system X -y whose origin lies in the upper
left corner of the plan of the building and whose axes are aligned with the sides of
the building (Figure 3.3):

f+m f+m

B lesyiz - ;Sx,iyi

X0 = —Fim and Yo =~ (3.17)

Zl: Sy, Zl: Sy,

where

.y, arethe perpendicular distances of theith bracing unit from y and X
is the number of frameworks and coupled shear walls

m is the number of shear walls and cores

S, S,i arethe“governing” stiffnesses by Equation (3.2) in directionsx and y

—+ Xl

For the calculation of the location of the shear centre, only the in-plane
stiffness of the frameworks and shear walls needs to be taken into account. Once
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the location of the shear centre is determined, coordinate system X-y has
fulfilled its role and a new coordinate system x —vy is established with its origin in
the shear centre (Figure 3.3).

Itiseasily seen that Equations (3.17) simplify to

f f+m

Zly,iyi

%, = and o=t (3.18)

f+m

+m
i%
1
f+m
2% 2.
1 1

when the units of the bracing system only have bending stiffness (and no or
negligible shear tiffness) as is the case with shear walls/cores and the task of
establishing the location of the shear centre simplifies considerably.
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Figure 3.3 Plan arrangement of the bracing system of frameworks for the torsiona analysis.

3.2.2 Torsional analysis

Knowing the stiffness characteristics of the individual bracing units as well as their
perpendicular distance from the shear centre, it is now possible to carry out the
torsional analysis of the bracing system of the building. The torsional analysis is
based on an analogy well-known in the stress analysis of thin-walled structures in
bending and torsion (Kollbrunner and Basler, 1969; Vlasov, 1961). According to
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the analogy, trandations, bending moments and shear forces correspond to
rotation, warping moments and torsional moments, respectively. It follows from
the analogy that the results of the deflection analysis of a system of frameworks,
(coupled) shear walls and cores can be used for the torsiona analysis if the
characteristic stiffnesses of the deflection analysis are “matched” with stiffnesses
that characterise the torsional problem.

Stiffness El is the local bending stiffness of the base unit with the deflection
analysis. The corresponding stiffness with the torsional analysis is the local
warping torsional stiffness

El, = EIt? (3.19)

wheret is the perpendicular distance of the unit from the shear centre (Figure 3.3).
Stiffness Elyg is the globa bending stiffness with the deflection anaysis. The
corresponding stiffness now is the global warping torsiond stiffness

Elg, = El 4t (3.20)

Stiffness K is the shear iffness with the deflection analysis. The
corresponding stiffness here is the Saint-Venant torsional stiffness

(GJ) = Kt? (3.21)

With the above analogous characteristics the governing differential equation
of torsion assumes the form

— (=2
nrr —2 n m az
-K =—|—-1 3.22
¢ ¢ Elw( > j (3.22)

The solution of the differential equation is given by

_ m H3z 2 mz?

#(2) = ot =

E(l,+1g)| 6 24 2GJ)s

~ mElzais(coshK(H -2)+kH smth_lj (323)
(GJ)°s coshkH
Maximum rotation develops at z = H:
—1 4 —1 2 — .

4 = mH ,_MmH - mElz,A,3 (l+?|—| sinhkH _1j (3.24)

BE(l,+14,) 2(GJ)S® (GJ)S coshkH

Instead of the lateral load on the base unit (W) in Equations (3.12), (3.14)
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and (3.16), Equations (3.22), (3.23) and (3.24) contain the torsional moment
m that the base unit takes of the total torsional moment. Its value is determined as
follows.

Each of the bracing units takes torsional moment according to their torsional
gtiffness. The torsiona stiffness of theith unit is defined as

t?

yi(H)

S, =St = (3.25)

where t; is the perpendicular distance of the ith bracing unit from the shear centre
and yi(H) is the (in-plane) top deflection of the ith unit. Thus, the torsional
apportioner related to the base unit assumes the form

P (3.26)

where S, isthetorsiona stiffness of the base unit as

t2
S, =
y(H)

=128 (3.27)

and f + mis the total number of bracing units (with f frames/coupled shear walls
and m shear walls/cores). The torsional moment the base unit takesis therefore

m=maq, =Wx.d, (3.28)
where
m = wx, (3.29)

isthe total torsional moment on the bracing system.

Equivalents of coefficients K and S in Equations (3.12), (3.13) and (3.14)
aso have to be established for use in Equations (3.23) and (3.24). Careful
investigation of Equations (3.13) and (3.16) shows that if the torsional equivalents
—stiffnessX (moment-arm)” —are substituted for the relevant stiffnesses, the
moment-arms drop out of the formulae. It follows that the coefficients defined by
Equations (3.13) and (3.16) remain unchanged and could be used for the torsional
analysis as well. It should be pointed out here that when these coefficients are
determined, f refers to the number of frameworks and coupled shear walls that are
effective against torsion, i.e. to those whose line of action do not pass through the
shear centre.

The evaluation of Equations (3.23) and (3.24) using the rotational data of 126
bracing systems ranging in height from 4 to 80 storeys (c.f. Section 3.4: Accuracy)
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leads to the following observations:

a) Thetorsiona behaviour of the building can be separated into three distinctive
parts. The bending stiffness of the individual bracing units (activated through
rotation around the shear centre) is associated with warping torsion—first
term in Equation (3.24). The shear stiffness of the bracing units (activated
through rotation around the shear centre) results in pure, Saint-Venant-type
torsion—second term in Equation (3.24). Because of the different (“bending-
type” and “shear-type”) rotation shapes (Figure 3.2), there is an interaction
between the two modes, defined by the third term in Equation (3.24). Figure
3.4 shows the characteristic types of rotation of a 40-storey building braced
by frameworks.

b) The effect of interaction between the warping and Saint-Venant modes
(Figure 3.4/c) is always beneficial asit reduces the rotation of the structure.

c) The effect of interaction significantly becomes smaller as the height of the
structures increases.

d) For a structure of given height, the effect of interaction is roughly constant
over the height of the structure (Figure 3.4/c).

To conclude the investigation of the torsional behaviour, some special cases
will now be considered as their analysis leads to extremely simple solutions in
many practical cases.

Case A: The horizontal elements of the bracing system (including the connecting
beams in the frameworks and the floor dabs) have negligibly small bending
stiffness.

This case is characterized by K, — 0 (for the frameworks). Consequently,
the shear stiffness of the system tends to zero (K - 0), whichleadsto a — 0 and
b - 0 and k¥ - 0. Governing differential equation (3.22) simplifiesto

e _ rT][
¢ El,

and the solutions for the rotation and top rotation assume the form

#( )——(%-%J (3.30)
and
4
P = (H) = G- (33

where El,, isthe local warping stiffnesses. This caseisidentified in Figure 3.4/a.
The use of Equations (3.30) and (3.31) should be considered when the shear

stiffness of the bracing units is very small and/or when the bracing system consists

of shear walls/cores only. It should be noted that in this case m, is the total
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torsional moment and 1,, represents the sum of the warping stiffnesses of the shear
walls/cores. Thereis no need for abase unit in this case.
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Figure 3.4 Typical rotation shapes. a) warping, b) Saint-Venant, ) interaction, d) combined.

Case B: Bracing systems comprising multi-bay, low-rise frameworks tend to
develop predominantly Saint-Venant-type rotation and the effect of the warping
stiffness becomes insignificant. _

This case is characterised by a - 0 and b - o and governing differential
equation (3.22) cannot be used directly. However, after some rearrangement, the
original derivation leadsto

5

¢_G

~
[

)

where (GJ) =Kyt2. This differential equation, together with the boundary
conditions ¢(0) = 0 and ¢'(0) = 0, lead to the rotation and the top rotation as

_ mZ
o(2) = 2(GJ) (3.32)

and

mH 2

2G) (3.33)

Prax = P(H) =

The characteristic rotation shape is shown in (Figure 3.4/b). It is certainly
worth considering the use of Equations (3.32) and (3.33) when the building is
relatively low and the bracing system only consists of (mainly multi-bay)
frameworks.
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Case C: The structure is relatively slender (with great height/width ratio). The
structure develops predominantly (global) warping rotation. The second and third
terms in Equations (3.23) and (3.24) tend to be by orders of magnitude smaller
than the first term and the solutions for the rotation and the top rotation effectively
become

_ m H%z 2*
#2)= E(Iw+|gw)( 6 ﬁ} (339
and
_ _ mH?
Prax = P(H) = m (3.395)

This case is illustrated in Figure 3.4/a. It is interesting to note that both
Case A and Case C are characterised by warping-type rotation.

3.3MAXIMUM DEFLECTION
Multi-storey buildings under horizontal load never develop torsion only. When the

bracing system of the building is doubly symmetric, the shear centre of the bracing
system (O) and the centre of the plan of the building (C) coincide (Figure 3.5/a).

Figure 3.5 Plan arrangement. a) symmetric, b) asymmetric.

Under horizontal load—represented by its resultant F in Figure 3.5—the
building develops lateral displacement and no rotation occurs. Equation (3.14)
gives the maximum deflection of the building.

When the building is asymmetric, the shear centre of the bracing system and
the centroid of the plan of the building do not coincide (Figure 3.5/b). The external
load passing through the centroid causes two things: lateral displacement in the
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direction of the load and rotation around the shear centre (Figure 3.6).

At " 30
A A

M=Fx,
N Xe F TF Xmax
i Xmax
a) b) C)

Figure 3.6 Displacements. &) v: maximum displacement, b) v,: displacement dueto force F,
C) v, displacement due to torsional moment M.

The behaviour of the building is best analysed by transferring the load to the
shear centre. This procedure results in a horizontal load passing through the shear
centre and a torsional moment M = Fx., where x; is the distance between the shear
centre and the centroid. Force F develops lateral displacements only (v, in
Figure 3.6/b) and torsional moment M develops rotation (¢) around the shear
centre (Figure 3.6/c), which causes additional displacement (v,). At any given
location the total displacement is obtained by adding up the two components:

V=V, +Vy

The maximum displacement of the building develops at the top at a corner of
the plan of the building (point A in Figure 3.6) and, making use of the angle of
rotation, is obtained from

Vinax = V(H) = Vo + @Xpna (3.36)

where X 1S the distance of the corner point (where maximum deflection occurs)
from the shear centre. The first term (v,) on the right-hand side in the above
equation can be obtained using Equation (3.14) and the angle of rotation is
determined by Equation (3.24).

3.4 ACCURACY

The results obtained using the approximate formulae derived in this chapter were
compared to the results of the Finite Element solution. The AXIS VM finite
element package (Axis, 2003) was used for the comparison, whose results were
considered “exact”. The “error” of the method was defined as the difference
between the “exact” and approximate results, related to the “exact” solution.
Positive error meant conservative estimates.
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Figure 3.7 Shear wallsfor the accuracy analysis (with thickness/width in metres).

The frameworks used in Sections 2.1.4 for checking the accuracy of the
methods for individual frameworks (Figure 2.7) were used again. The bays of the
one-, two- and three-bay reinforced concrete rigid frames were 6 m and the storey
height was 3 m. The rectangular cross-sections of the beams and columns (in
metres) are given in Figure 2.7 for frameworks F1 ... F10. The modulus of
elasticity for these frameworks was E = 25 kN/mm?. Frameworks F11, F12 and
F13 were one-, two- and three-bay steel braced frames whose bays and storey
height were 3 m. The cross-sections of the columns for the three braced frames
were 305x305UC137; the cross-sections of the beams and braces are given in
Figure 2.7/k to 2.7/m. The modulus of elasticity for the steel frameworks was
Es = 200 kKN/mm?.

The thirteen frameworks (Figure 2.7) were supplemented by three shear walls
(W1, W2 and W3 in Figure 3.7) and seventeen two-dimensional bracing systems
were created:

F1+F7+F13, F1+F7+F13+W2, F2+F3, F2+F3+W1, F5+F6+F8, F5+F6+F8+W2,
F2+F3+F5+F6, F3+F6+F9, F3+F6+F9+W3, F2+F5+F9+F10, F2+F3+F5+F6+W2,
FI+F2+F3+FA+F5+F6+F7+F8,  FI+F2+F3+FA+F5+F6+F7+F8+W3,  F5+F11,
F5+F11+W3, F6+F12 and F6+F12+W3.

The base unit in each system is underlined; the b-value of each frameis given
in Figure 2.7 The combination of the bracing units was determined in such a way
that the widest possible range of stiffness could be covered in the most varied way.

First, the results of a comprehensive accuracy analysis regarding the formula
for maximum deflection [Equation (3.14)] is given here.

The height of the structures in the seventeen systems varied from 4 to 80
storeys in eight steps, leading to 153 test cases. The structures were subjected to a
uniformly distributed horizontal load of w=10kN/m. The top deflection of the
153 test systems was calculated using Equation (3.14) and then compared to the
Finite Element solution.

The summary of the results (range of error, average absolute error and
maximum error) is given in Table 3.1. In addition to the data given in Table 3.1, it
is also important to see how the error varies as the height of the building changes.
Figure 3.8 shows the error as a function of height. The results summarised in

https://engineersreferencebookspdf.com
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Table 3.1 and Figure 3.8 demonstrate the performance of the continuum solution.

error [%)]

number of storeys

Figure 3.8 Accuracy of Equation (3.14) for the lateral deflection as afunction of height.

It can be stated that for practical purposes the method can be considered
conservative: The error range of the method was between —2% (unconservative)
and 21% (conservative). In the 153 cases, the average difference between the

results of the analytical method and the finite element solution was around 6%
(conservative).

Table 3.1 Accuracy of Equation (3.14) for the lateral deflection.

Method Rangeof  Averageabsolute = Maximum
error (%) error (%) error (%)

Continuum solution
[Equation (3.14)] 21021 6.0 21

The accuracy of Equation (3.24) derived for the maximum rotation was also
investigated.

Frameworks F1, F3, F5, F6, F7 and F10 shown in Figure 2.7 were chosen
and supplemented with shear walls W1, W3, W4 and W5 (Figure 3.7) and with a
U-core. The wall sections for the U-core were h=4.0 and b =4.0 with a wall
thickness of t = 0.3. Fourteen bracing systems were created (Figure 3.9).

Again, the height of the structures varied between 4 and 80 storeys in eight
steps (4, 10, 16, 22, 28, 34, 40, 60 and 80 storeys), creating 126 test cases. The
stiffness characteristics and the arrangements of the bracing units were chosen in
such away that the structures covered awide range of stiffnesses.

The top rotation of the fourteen bracing systems under uniformly distributed
torsional load was calculated and the error of the method (the difference between
the continuum and the “exact” solutions, related to the “exact” solution) was
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determined. Again, the error was defined positive if it represented conservative

approximation.
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Figure 3.9 Fourteen bracing systems for the torsional analysis.
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The torsional shapes represented predominant warping-type, mixed warping-
type and Saint-Venant type, and predominant Saint-Venant type deformation. The
summary of the results (range of error, average absolute error and maximum error)
isgiven Table 3.2.

Table 3.2 Accuracy of Equation (3.24) for maximum rotation.

Rangeof  Averageabsolute  Maximum

Method error (%) error (%) error (%)

Continuum solution

[Equation (3.24)] 0to25 9.0 25

The results summarized in Table 3.2 demonstrate the performance of the
method. It should be emphasized that the method produced conservative estimates
in every test case. The error range of the method was between 0% and 25%. In the
126 cases, the average difference between the results of the proposed analytical
method and the finite element solution was around 9%. Figure 3.10 shows the error
as afunction of height.

25 -

error [%]

-10 4
15 4
4 10 16 2 28 34 40 60 80

number of storeys

Figure 3.10 Accuracy of Equation (3.24) for the maximum rotation as afunction of height.

It is interesting to note that the magnitude of the error does not decrease as
the height of the structures increases, as is normally the case with continuum
models of multi-storey structures. The reason for this peculiar phenomenon
probably lies with the computer modelling of the floor slabs (see page 4): athough
the pinned bars represent the great in-plane and small out-of-plane stiffness of the
floors reasonably well, with their great cross-sectional area they somewhat restrict
the warping deformation, effectively increasing the torsional resistance of the
bracing system. This increase in not present in the continuum model; thus the more
conservative results for the higher structures where the effect of the warping
stiffnessis dominant.
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Frequency analysis of buildings

A great number of methods have been developed for the dynamic analysis of
individual frameworks, coupled shear walls and shear walls. Fewer methods are
available to dea with a system of these bracing elements. This follows from the
fact that the interaction among the elements (beams/lintels and columns/walls) of a
single framework or coupled shear walls is complex enough but then the bracing
units interact with one another not only in planar behaviour but normally also in a
three-dimensional fashion. This is why the available analytical methods make one
or more simplifying assumptions regarding the characteristic stiffnesses of the
bracing units or the geometry of the building.

Based on drift calculations and assuming a doubly symmetric structural
arrangement, Goldberg (1973) presented several simple methods for the
calculation of the fundamental frequency of (uncoupled) lateral vibration and pure
torsional vibration. The effect of the axial deformation of the vertical elements was
taken into account by a correction factor in his method. The continuous connection
method enabled more rigorous analyses (Coull, 1975; Rosman, 1973 and 1981,
Kollar, 1992). Using a single-storey torsiona anaogy, Glick et al. (1979)
developed a matrix-based solution for buildings having uncoupled stiffness
matrixes. A simple procedure with design tables was made available for
asymmetrical buildings developing predominantly bending deformation (Zalka,
2000). Ng and Kuang (2000) presented a simple method for the triply coupled
vibration of asymmetric wall-frame structures. However, their method is only
applicable to buildings whose vertical bracing elements develop no or negligible
axia deformation.

In taking into consideration all the characteristic stiffnesses of the bracing
frameworks, shear walls and cores, as well as the interaction among the elements
of the bracing structures and among the bracing units themselves (Zalka, 2001), the
aim of this chapter is to introduce a simple analytical method for the calculation of
the natural freguencies of regular multi-storey buildings braced by a system of
frameworks, (coupled) shear walls and cores.

In addition to the general assumptions made in Chapter 1, it is aso assumed
for the analysis that the mass of the building is uniformly distributed over the
floors of the building and that the location of the shear centre only depends on
geometrical characteristics.

The equivalent column approach shall be used for the analysis. The
equivalent mass and stiffnesses shall be established first, considering deformations
due to bending, shear, the lengthening and shortening of the vertical elements and
torsion. Closed-form solutions shall then be given for lateral, pure torsional and
coupled vibration.
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The method is simple and accurate enough to be used both at the concept
design stage and for final analysis. It can also be useful to verify the results of the
FE method, where the time consuming procedure of handling al the data can
aways be a source of error.

A multi-storey building may develop lateral vibrations in the two principal
directions and torsional vibration around its vertical shear centre axis. All the three
corresponding frequencies have to be calculated before their coupling can be
considered. The investigation here starts with the lateral vibration of the bracing
system, which can be based on the vibration analysis of a single framework
presented in Section 2.2.

4.1 LATERAL VIBRATION OF A SYSTEM OF FRAMEWORKS,
(COUPLED) SHEAR WALLSAND CORES

Consider a system of frames and coupled shear walls (i = 1...f) and shear walls and
cores (k=1..m) shown in Figure 4.1/a. Based on the analysis of a single
framework in Section 2.2.1, the whole bracing system can be characterised by the
shear stiffness of the frameworks and coupled shear walls, the globa bending
stiffness of the frameworks and coupled shear walls and the local bending stiffness
of theindividual columns/wall sections, shear walls and cores.

Edg Edg: K Ede Edgi K* Eulw 12
o NN
h
AT
h
AT
h
Ol - H m
h
. 4 El
h Ke
O Av
h
beecd 7777 777 -~ N~ 7”7—}’,
a) b)

Figure 4.1 Modél for the lateral vibration analysis. @) bracing system consisting of frames, coupled
shear walls, shear walls and cores, b) equivalent column.

By combining the individual bracing elements, linked by the floor dabs, to
form a single cantilever, an equivalent system can be established with shear
stiffness K, global bending stiffness Elg and local bending stiffness EI. The shear
stiffness and the global bending stiffness are not independent of each other and can
be incorporated into an effective shear stiffness, leading to a single equivalent
column with effective shear dtiffness K, and bending stiffness El. These

https://engineersreferencebookspdf.com
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characteristics shall be established as follows.

The shear stiffness of the system originates from the shear stiffnesses of the
frameworks and coupled shear walls. Based on Equation (2.27), the “original”
shear stiffness of the ith framework is

Kej (4.1)

K=K.r=K, ———
i b,i'i b,i Kb,i + Kc,i

where the two contributors to the shear stiffness are

G 12E | |

Kb,i = ZT (42)
j=1 j
and
N 12E | .
Kej =D =" (4.3)
=1
where

E. isthemodulus of elagticity of the columns of the frameworks

E, isthemodulus of elasticity of the beams of the frameworks

lcj  isthe second moments of area of the jth column of the ith framework
Ibj isthe second moments of area of the jth beam of the ith framework

h isthe storey height

lj isthe jth bay of the ith framework

n is the number of columns of the ith framework

Factor r; isintroduced as a reduction factor:

AL (4.4)

I Kpj + Ke;

Thetotal “original” shear stiffnessof f bracing frameworksis
K=Yk, (4.5)

[If coupled shear walls are also included in the system, their shear stiffnessis
determined using Equation (2.70).]

The square of the frequency of shear vibration associated with the “original”
shear stiffness of the ith unit is

2
riK;
2 L (4.6)

T any
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where mis the mass density per unit length [kg/m].
For regular multi-storey buildings, the mass density per unit length is
calculated using

m= pA 4.7)

where A is the plan area of the building and

p:

Q@ <

is the mass density per unit volume. Constant g is the gravity acceleration, with
g=9.81 m/s?, and y [KN/m?] is the weight per unit volume of the building.

Factor r; is included in Equation (4.6). It is responsible for taking into
account the fact that the mass of the original structures is concentrated at floor
levels and is not uniformly distributed over the height (as assumed for the model
used for the origina derivation, shown in Figure 4.1/b). Values for r; are given in
Table4.1.

Table 4.1 Mass distribution factor r; asafunction of n (the number of storeys).

n 1 2 3 4 5 6 7 8 9 10 11
r 0.493 0.653 0.770 0.812 0.842 0.863 0.879 0.892 0.902 0.911  0.918
n 12 13 14 15 16 18 20 25 30 50 >50
ri 0.924 0.929 0.934 0.938 0.941 0.947 0.952 0.961 0.967 0.980 4/n/(n+2.06)

The full-height global bending vibration of the ith framework or coupled
shear walls as a whole unit represents pure bending type vibration. The square of
the fundamental frequency that is associated with thisvibration is

0.313r2E.| .
f2 =—— 1ol 48
gi Hom (4.8)

where g is the global second moment of area of the cross-sections of the columns:
lgi = ZAc,jtiz (4.9)

with

A:; the cross-sectional areaof thejth column
t; the distance of the jth column from the centroid of the cross-sections

According to the dynamic analysis carried out in Section 2.2.1, there is an
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interaction between the shear and globa bending modes that reduces the
effectiveness of the shear stiffness. The factor of effectiveness for the ith unit can
be calculated using the two relevant frequencies as

_ g

T g2 2
fgi+ fai

2

s, (4.10)

and using the effectiveness factor, the effective shear stiffness for the whole system
is obtained as

f
Ke= D stiK, (4.12)
1

Using the “original” and the effective shear stiffnesses, the effectiveness for
the whole system is obtained as

K
St (4.12)

The actual lateral frequency of the system which is associated with shear
deformation can now be determined using the effective shear stiffness:

o_ 1 rfKe
°(4H)2 m

(4.13)

If higher frequencies are needed, the factor 4 in Equation (4.13) should be
replaced by 4/3 and 4/5, respectively, for the calculation of the second and third
frequencies.

When the lateral frequency that is associated with the local bending
deformation is considered, the bending stiffnesses of the columns of the
frameworks and coupled shear walls, the shear walls and the cores have to be taken
into consideration:

f m
El = Eclc + Ewlw = Eczlc,iri + Elelw,k (4-14)
1 1

In Equation (4.14)

E, isthemodulus of elagticity of the shear walls/cores

lci isthe sum of the second moments of area of the columns of theith
framework

ri isthe reduction factor for the ith framework [Equation (4.4)]

lwx isthe second moment of area of the kth shear wall/core
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When the system has mixed bracing units—both frameworks and shear
walls/cores—the contribution of the columns of the frameworks [first term in
Equation (4.14)] is normally very small compared to that of the shear walls/cores
and can safely be ignored.

With the above bending stiffness, the lateral frequency of the system in
bending is obtained from

0.313r( _ m 0.313r2El
2_§2, 2 _ f _ f
fp =+ fy -W[Eczl:h:,iri + szl“'w,kJ-W (4.15)

where

fe  fundamental frequency of the frameworks/coupled shear walls
fo  fundamental frequency of the shear walls/cores

If higher frequencies are needed, the factor 0.313 in Equation (4.15) should
be replaced by 12.3 and 96.4, respectively, for the calculation of the second and
third frequencies.

In Equations (4.14) and (4.15), the bending stiffness of the columns of the
frameworks and coupled shear walls is adjusted by combination factor r;.
Theoretical investigations (Hegediis and Kollar, 1999) demonstrate that this
adjustment is necessary to prevent the over-representation of the second moments
of area of the columns in the equivalent column where they are also represented in
Ke [through K—c.f. Equations (4.3) and (4.11)].

The whole system is now modelled by a single equivalent column with
bending stiffness El and effective shear stiffness K, (Figure 4.1/b). The governing
differential equation of the equivalent column is obtained by examining the
equilibrium of its elementary section. Thisleadsto

F2EIU™ = r 2K u” + mii = 0

where primes and dots mark differentiation by z and t (time). After seeking the
solution in a product form, separating the variables and eliminating the time
dependent functions, this equation results in the boundary value problem
2 mr 2 17 2 —
reElu - riKuf—wmuy, =0 (4.16)
where w isthe circular frequency and u; defines lateral motions.
If the origin of the coordinate system is at the lower built-in end of the
equivalent column (Figure 4.1/b), the boundary conditions are as follows:
u(0)=0
u;(0)=0

u'(H)=0
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and
Elu"(H) - K.y (H)=0

Governing differential equation (4.16) isidentical in form to Equation (2.47).
As the boundary conditions are also identical, the solution to Equation (2.47) in
Section 2.2.1 can be used, bearing in mind that the stiffnesses now refer to the
whole system of bracing units (not to an individual framework). With the notation

Elr?
w:2m7 f
H2\| m

and the non-dimensional parameter

— Ke
k=H \/; (4.17)

the solution emerges as

2 k2
a :{0213_? fos s

Table 4.2 Frequency parameters ; and #, as afunction of k and k.

kork, norn, kork, norn, kork, norn, kork, norsn, kork, »orn,
000 0559 45 1465 95 2680 145 3913 20 5278
0.10 05606 5.0 158 100 2803 150 4.036 30 7.769
050 05851 55 1706 105 2926 155 4160 40 10.26
100 06542 6.0 1827 110 3049 160 4284 50 1276
150 0.7511 65 1949 115 3172 165 4408 60 15.26
200 08628 70 2070 120 3295 170 4532 70 17.76
250 09809 75 2192 125 3418 175 4656 80 20.26
300 11014 80 2313 130 3542 180 4781 90 2276
350 12226 85 2435 135 3665 185 4905 100 25.26

k
400 13437 90 2558 140 3789 190 5.029 >100 Eor%

The above equation needs some modification as the first term in the right
hand side contains both the bending part of the vibration of the system and also the
effect of the interaction between the bending and shear vibrations. Proceeding asin
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Section 2.2.1 and separating the two parts, then applying the effectiveness factor to
the part that is responsible for the interaction, and assuming a bracing system in the
y-z plane (as in Figure 4.1), the formula for the fundamental frequency is obtained
as

2 2 /72 k? 2
fo= [f2+f2+| 2L -2 —1|sf 4.18
y b s [0.313 5 Js‘ b (4.18)

where f,, f,, k and s are calculated by taking into account the bracing elements in
the relevant direction, i.e. in direction y. In replacing subscript y with x and
considering the bracing elements in direction x, Equation (4.18) can aso be used
for the calculation of the lateral frequency in direction x.

Values for frequency parameter 5 are given in Table 4.2 as a function of
parameter k. Vaues of parameter » for the second and third frequencies are
tabulated in (Zalka, 2000).

It isinteresting to note that when the global bending stiffness is incorporated
into the (original) shear stiffness resulting in a (smaller) effective shear stiffness
for the frequency analysis, then the equivalent column can be created simply by
adding up the effective shear stiffnesses and the local bending stiffnesses,
respectively, of the individual bracing units. This simple approach does not work
in the case of the deflection and rotation analyses of systems. This is the reason
why in Chapter 3 a “base unit” was created (with its load share) for the deflection
and rotation analyses and the effects of the other bracing units were taken into
account through additional stiffness parameters (a;, bj, ¢).

4.2 PURE TORSIONAL VIBRATION

Although the torsional vibration problem is more complex than that of lateral
vibration, a solution may be obtained in a relatively simple way, due to an analogy
between the three-dimensional torsiona problem and the two-dimensiona lateral
vibration problem (discussed in the previous section). This analogy is well known
in the stress analysis of thin-walled structures in bending and torsion (Vlasov,
1961; Kollbrunner and Bader, 1969). According to the analogy, trandations,
bending moments and shear forces correspond to rotations, warping moments and
torsional moments, respectively. It will be demonstrated in the following that the
analogy can be extended to the lateral vibration of an elastically supported
cantilever (discussed in the previous section) and the pure torsiona vibration of a
cantilever of thin-walled cross-section (to be investigated in this section).

The model which is used for the pure torsional vibration analysis of the
building is an equivalent cantilever of thin-walled, open cross-section which
replaces the bracing system of the building for the torsional analysis (Figure 4.2).
This equivalent cantilever is situated in the shear centre and has effective Saint-
Venant torsional stiffness (GJ)e and warping torsional stiffness El,, (Figure 4.3).
The governing differential equation of the cantilever (whose lumped masses M; at
floor levels are replaced by uniformly distributed mass m over the height) is
obtained by examining the equilibrium of its elementary section as
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2 e 2 w2

where primes and dots mark differentiation by zand t (time).

After seeking the solution in a product form, separating the variables and
eliminating the time dependent functions, this equation results in the boundary
value problem

rPEl @1 = 1£(GJ) @)~ w’i5mg, =0 (4.19)

where o is the circular frequency, ip is the radius of gyration and ¢; defines
rotational motions.

x|
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Yk t Equivalent cantilever
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X L X« ik=123.f+m
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<

Figure 4.2 Typical layout with the equivalent column of open, thin-walled cross-section.

Asthe origin of the coordinate systemis fixed at the bottom of the equivalent
column (Figure 4.3), the boundary conditions are

$,(0)=0
#(0)=0
#i(H)=0
El,7"(H) - (GI)o#i(H) = 0

Eigenvalue problem (4.19) is clearly analogous with the one defined by the
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governing differential equation (4.16) and its boundary conditions. Bending
stiffness El and the elastic support defined by the effective shear stiffness K, in
Equation (4.16) correspond to warping stiffness El,, and effective Saint-Venant
torsional stiffness (GJ)e, divided by i3 in Equation (4.19), respectively.

As the derivation of Equation (4.19) demonstrates (Zalka, 1994), the radius
of gyration is related to the distribution of the mass of the building. For regular
multi-storey buildings of rectangular plan-shape and subjected to a uniformly
distributed mass at floor levels, the radius of gyration is obtained from

2 2
ip= LB,
12

(4.20)

where L and B are the plan length and breadth of the building and t is the distance
between the geometrical centre of the plan of the building and the shear centre of
the bracing system (Figure 4.2). For arbitrary plan-shapes and/or other types of
mass distribution, formulae for the radius of gyration are available elsewhere
(Kollér, 1999; Zalka, 2000). It is important to note that the value of ip depends on
the geometrical characteristics of the plan of the building, rather than the stiffness
characteristics of the bracing system.

2 Az
Mn 7=
M; (Ge (GJ)e
El, Henh m } El,
p ip
M,
M,
> A~ Ve amn
y y
a) b)

Figure 4.3 Equivalent column with: &) lumped masses M;, b) uniformly distributed mass m.

Once the corresponding stiffnesses are established, the solution to Equation
(4.16) can be used and converted to represent the solution of Equation (4.19).

The effective Saint-Venant torsional stiffness of the system may come from
two sources: the Saint-Venant torsional stiffness of the shear walls and cores and
from the effective shear stiffness of the frameworks as

f

(63)e= Y 63+ D (K 2 + (Ke)y ) (4.21)
1

1
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where
Ji is the Saint-Venant constant of the kth wall/core
G isthe modulus of elasticity in shear of the walls/cores

(Kei)w (Kej)y arethe effective shear stiffnesses of ith framework/coupled
shear wallsin directions x and vy, respectively

Xi, Vi are the perpendicular distances of the ith framework/coupled
shear walls from the shear centre in directions x and y,
respectively

If the bracing system consists of frameworks, (coupled) shear walls and cores
of open cross-section, the first term in Equation (4.21) is normally negligible
compared to the contribution of the frameworks.

The warping stiffness of the system may originate from three sources: the
own warping stiffness of the cores, the bending stiffness of the walls and cores and
the bending stiffness of the columns of the frameworks/wall sections of the
coupled shear walls:

m
Elw = EWZ(I wk +(|w,k)xy|§ + (Iw,k)yxlf)
1

f

+ ECZ((Ic,iri)xyiz+(|c,iri)yxi2) (4.22)

1

where

Lok is the warping constant of the kth wall/core

En(lwix Ex(lwi)y are the bending stiffnesses of the kth wall/core in directions x
and y, respectively

Ec(l¢iri)x Ec(l¢iri)y are the bending stiffnesses of the columns/wall sections of
the ith framework in directions x and y, respectively

Xk Yk are the perpendicular distances of the kth wall/core from the
shear centre in directions x and y, respectively

X, Vi are the perpendicular distances of the ith framework/coupled
shear walls from the shear centre in directions x and y,
respectively

The warping stiffness of a waell-balanced bracing system is normally
dominated by the contribution of the shear walls and cores (if their perpendicular
distance from the shear centre is great enough). The contribution of the cores
through their own warping stiffness [first term in Equation (4.22)] tends to be
much smaller and the effect of the columns of the frames (last two terms) is
generaly negligible.

To fecilitate the easy calculation of the warping constant 1, closed-form
formulae for cross-sections widely used for bracing cores are given in Tables 2.7,
2.8 and 2.9. More formulae are available in (Zalka, 2000). For bracing elements of
special (irregular) cross-sections where no closed-form solution is available, the
excellent computer program PROSEC (1994) can be used, whose accuracy has
been established and proved to be within the range required for structural
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engineering calculations.

With the above stiffnesses, and making use of the analogy, the fundamental
frequency for pure torsional vibration is obtained in the same manner as
Equation (4.18):

,72 K2
fo= 2+ ft2+(w¢13—€¢—1]s¢fj (4.23)

where the pure torsional frequency associated with the warping torsional stiffness
is obtained from

0.313r2El
f2=_"""1"0 4.24
“ i2Hm (4-249)

and the formula for the pure torsiona frequency associated with the Saint-Venant
torsional stiffnessis

(2 PG

t = m (4.25)

The effectiveness of the Saint-Venant torsional stiffness is expressed by the
factor

_ /(GJ)e
Sp = ﬁ (4.26)

where the “original” Saint-Venant torsional stiffnessis

f

63)=> 63+ Y (K2 + (<), ) (4.27)
1

1

Values of vibration parameter #, are given in Table 4.2 as a function of
torsion parameter k,:

_ v |(G&d)e
ky=H S (4.29)

w

Values for the second and third frequencies are given in (Zalka, 2000).
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43 COUPLED LATERAL-TORSIONAL VIBRATION

When the shear centre of the bracing system and the centre of the mass coincide
(e.g. doubly symmetric arrangement), the three basic frequencies f,, f, and f, are
independent of each other and the smallest one is the fundamental frequency of the
building.

When the system is not doubly symmetric and the shear centre does not
coincide with the centre of the mass of the building, two things have to be
considered. First, for the calculation of the frequency of pure torsional vibration,
the location of the shear centre has to be determined. (The value of the lateral
frequencies is not affected.) Second, the question of interaction among the basic
modes has to be addressed.

For bracing systems developing predominantly bending deformation, the
location of the shear centre is calculated using the bending stiffness of the bracing
elements [Equations (3.18)]. However, with bracing systems having frameworks
and coupled shear walls as well, the shear deformation of some of the bracing
elements may be of considerable magnitude (in addition to their bending
deformation). The behaviour of such systems is complex (and the location of the
shear centre may even vary over the height). No exact solution is available for this
case but, as a good approximation, the formulae given below can be used to
determine the location of the shear centre.

As the lateral frequency of a bracing unit reflects both its bending and shear
stiffnesses, the location of the shear centre is calculated using the latera
frequencies (f, and fy) of the bracing units:

f+m f+m

nym fo.y.

o = e (4.29)

> >

where X, and y; are the perpendicular distances of the frameworks/coupled shear
walls, shear walls and cores from axes y and X, respectively (Figure 4.2). Any
suitable method can be used for the calculation of the lateral freguencies in
Equation (4.29), including Equation (4.18) given in Section 4.1. The repeated
application of the Southwell formula (1922) and the Foppl-Papkovich formula
(Tarnai, 1999) offers another very simple alternative for the calculation of the
fundamental lateral frequencies. According to this approach, a lower bound to the
lateral frequency of abracing unit is obtained from the summation formula

9 s (4.30)

where fg, fy and f, relate to the bracing unit. Their values are given by Equations
(2.41), (2.42) and (2.46) in Section 2.2.1.
Knowing the location of the shear centre, the Saint-Venant and warping
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torsional stiffnesses can be calculated in the coordinate system whose origin isin
the shear centre (Figure 4.2) using Equations (4.21) and (4.22) and the frequency
of puretorsiona vibration is obtained from Equation (4.23).

Assuming unsymmetric bracing system arrangement, interaction occurs
among the two lateral and pure torsional modes. There are two possibilities to take
into account the effect of interaction: “exactly” or approximately. The “exact”
method automatically covers all the three coupling possibilities (triple-, double and
no-coupling) with an error range of 0-2%. This method is given first.

When the basic frequencies f,, fy and f, are known, their coupling can be
taken into account in asimple way by using the cubic equation

(+2+a,(t9 +af2-a9=0 (4.31)

whose smallest root yields the combined lateral-torsional frequency of the
building. The coefficients in the above cubic equation are

f2£257 MR MR
L=

aO:

1-15-1; 1-17-1]

AR T R MR R

a, = (4.32)
2 1-15-1;
where 7, and 7y are eccentricity parameters:
=22 ad r,=2 (4.33)

In Equations (4.33) ip is given by Equation (4.20) and x. and y. are the
coordinates of the geometrical centre (Figure 4.2):

L B _
X =5"% and Ye = E_ Yo (4.34)

2
If aquick solution is needed or a cubic equation solver is not available or if
one of the basic frequencies is much smaller than the others, the following
approximate method based on the Féppl-Papkovich theorem (Tarnai, 1999) may be
used.
For unsymmetric bracing systems when the centroid of the mass of the
building does not lie on either principal axis of the bracing system, triple coupling

occurs and the resulting fundamenta frequency is obtained using the reciprocal
summation
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1 1 1 1
PR
£2£2 f2 f]
as
1
2
f=(%+f—12+%J (4.35)
X y @

If the arrangement of the bracing system is monosymmetric and the centroid
of the mass of the building lies on one of the principal axes of the bracing system
(say, axis x), then two things may happen. Vibration may develop in direction x
(defined by f,) or vibration in direction y (fy) couples with pure torsional vibration
around axis z (f,). The frequency of this coupled vibration is obtained from

1 1)¢2
fp = (? + ?J (4.36)
y @

The fundamental frequency of the building is the smaller one of f, and fy,,
i.e:

f =Minl f,, f, (4.37)

If the arrangement of the bracing system is doubly symmetric and the
centroid of the mass of the building coincides with the shear centre of the bracing
system, then no coupling occurs and the fundamental frequency of the building is
the smallest one of f,, fy and f,, i.e.:

f =Minl f, f,, f, (4.38)

The vaue of the coupled frequency of the building is basically depends on
two factors: the values of the basic frequencies (f,, fy and f,) and the eccentricities
of the bracing system (z, and zy). The great disadvantage of using the summation
equations for determining the coupled frequency may be that they totally ignore
the eccentricity of the system. If the system has relatively small eccentricity, then
the summation equations tend to result in very conservative estimates.

The natural frequencies of buildings are also affected by other factors, such
as foundation flexibility, reduced stiffness due to cracking, damping, etc. The
treatment of such “secondary” effects is outside the scope of this book; more
detailed information is available elsewhere (Barkan, 1962; Rosman, 1973; Fintel,
1974; Ellis, 1986).
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44 ACCURACY

The reliability of the continuum method has already been demonstrated in Section
2.2.3 when the accuracy of Equation (2.50) was investigated. As Equations (4.18)
and (4.23) are originated from Equation (2.50), it is not expected that the accuracy
analysis to be presented here would lead to conclusions that are very different from
those in Section 2.2.3. Indeed, the results are similar.

Table 4.3 Accuracy of Equation (4.18) for the fundamental frequency.

Method Rangeof  Averageabsolute  Maximum
error (%) error (%) error (%)

Continuum solution

[Equation (4.18)] -6t05 2.1 6

As Equations (4.18) and (4.23) are analogous in structure, and identical at
theoretical level, the accuracy of Equation (4.18) was investigated only. Using
eight of the frameworks shown in Figure 2.7 in Section 2.1.4 (F1 to F8) and
supplementing them with four shear walls (WO to W3 in Figure 3.7), eight planar
systems were created (Figure 4.5). The height of the structures in the eight systems
varied from 4 to 80 storeys in eight steps creating 72 bracing systems. The lateral
frequency of the 72 bracing systems was calculated and compared to the Finite
Element solution. The AXIS VM finite element package (AXIS, 2003) was used
for the comparison, whose results were considered “ exact”.
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Figure 4.4 Accuracy of Equation (4.18) for the fundamental frequency for bracing systems of different
heights.
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Figure 4.5 Bracing systems for the accuracy anaysis. a) F1-W1: frame-shear wall, b) F2-W1: frame
with high column/beam stiffness ratio—shear wall, ¢) F2-WO0: frame with high column/beam stiffness
ratio—slender shear wall, d) F3-W1: frame with high beam/column stiffness ratio-shear wall, €) F4-W3:
coupled shear walls-wide shear wall, f) F4-W1: coupled shear walls-shear wall, g) F1-F7-W1: one- and
two-bay frames with a shear wall, h) F8-F5-W2-F6: one-, two- and three-bay frames with a shear wall.

https://engineersreferencebookspdf.com
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The bays of the one-, two- and three-bay frameworks were 6 m and the storey
height was 3 m. The cross-sections of the beams and columns were chosen in such
away that the structures covered awide range of stiffnesses.

The deflected shapes represented predominant bending, mixed shear and
bending, and predominant shear deformation. The “error” was defined as the
difference between the “exact” (FE) and the continuum solutions, related to the
“exact” solution. When the frequency given by Equation (4.18) was smaller than
the “exact” one, it was considered conservative (and the “error” was defined
positive).

The results are given in Table 4.3. The variation of the error over the height
of the systemsis shown in Figure 4.4.

The results summarised in Table 4.3 and Figure 4.4 demonstrate the excellent
performance of Equation (4.18). In the 72 cases, the average difference between
the results of the continuum solution and the finite element solution was around
2%. The maximum error of Equation (4.18) was 6%.
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Stability analysis of buildings

The stability of a building can, and should be, assessed by looking at the stability
of its individual elements as well as examining its stability as a whole. National
codes have detailed instructions for the first case but the buckling analysis of
whole structures is not so well regulated and therefore this chapter intends to
address the second case. The designer basically has two possibilities to tackle
whole building behaviour in either using finite element packages or relying on
analytical methods. The analytical approach is used here.

A great number of methods have been developed for the stress analysis of
individual frameworks, coupled shear walls and shear walls. Fewer methods are
available to deal with a system of these bracing units. The availability of methods
for the stability analysis of a system of frameworks, coupled shear walls and shear
walls is even more limited. This follows from the fact that the interaction among
the elements (beams/lintels and columns/walls) of a single framework or coupled
shear walls is complex enough but then the bracing units interact with one another
not only in planar behaviour but normally also in a three-dimensional fashion. This
iswhy the available analytical methods make one or more simplifying assumptions
regarding the characteristic stiffnesses of the bracing units, the geometry of the
building, or loading.

In using an equivalent Timoshenko-beam, Goschy (1970) developed asimple
hand-method for the stability analysis of buildings under top-level load. Goldberg
(1973) concentrated on plane buckling and presented two simple approximate
formulae which can be used in the two extreme cases when the building develops
pure shear mode or pure bending mode buckling. The interaction of the two modes
is taken into account by applying the Foppl-Papkovich summation formula to the
flexural and shear mode critical loads. Using the continuum approach (Gluck and
Gellert, 1971; Rosman, 1974), Stafford Smith and Coull (1991) presented a more
rigorous analysis for the sway and pure torsional buckling analysis of doubly
symmetric multi-storey buildings whose vertical elements develop no or negligible
axial deformations. Based on the top tranglation of the building (obtained from a
plane frame analysis) and assuming a straight line deflection shape, MacLeod and
Marshall (1983) derived a simple formulafor the sway critical load of buildings. In
using simple closed-form solutions for the critical loads of the individua bracing
frames and coupled shear walls, Southwell’s summation theorem resultsin a lower
bound for the sway critical load of multi-storey buildings (Zalkaand Armer, 1992).
Even when the critical loads of the individual bracing units are not available, the
repeated application of summation formulae leads to conservative estimates of the
critical load in a simple manner (Kollar, 1999). In replacing the bracing units of a
building with sandwich columns with thick faces, Hegediis and Kollar (1999)
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developed a simple method for calculating the critical load of multi-storey
buildings with bracing shear walls and frameworks in an arbitrary arrangement,
subjected to concentrated top load. All these methods restrict the scope of anaysis
in one way or another and none were backed up with a comprehensive accuracy
analysis.

In taking into consideration all the characteristic stiffnesses of the bracing
frameworks and shear walls as well as the interaction among the elements of the
bracing structures and among the bracing units themselves (Zalka, 2002), the aim
of this chapter is to introduce a simple analytical method for the calculation of the
critical load of buildings braced by a system of frameworks, (coupled) shear walls
and cores.

In addition to the general assumptions made in Chapter 1, it is aso assumed
for the analysis that the load of the building is uniformly distributed over the floors
and that the location of the shear centre only depends on geometrical
characteristics. The critical load of the structures defines the bifurcation point.

The procedure for establishing the method for the determination of the
critical load of the building will be very similar to the way the method for the
calculation of the fundamenta frequency was developed in the previous chapter.
First, the basic stiffness characteristics will be established for the analysis. The
effective shear stiffness will be introduced, which, as in the previous chapter,
makes it possible to create an equivalent column by the simple summation of the
relevant stiffnesses. Second, based on the equivalent column, the eigenvalue
problems characterising the sway buckling and pure torsional buckling problems
will be set up and solved. Third, the coupling of the basic (sway and pure torsional)
modes will be taken into account. Finally, a comprehensive accuracy analysis will
demonstrate the reliability of the method.

5.1 SWAY BUCKLING OF A SYSTEM OF FRAMEWORKS, (COUPLED)
SHEAR WALLSAND CORES

Consider a system of frameworks and coupled shear walls (i = 1...f) and shear
walls and cores (k = 1...m), shown in Figure 5.1. The whole bracing system can be
characterised by the shear stiffness of the frameworks and coupled shear walls, the
global bending stiffness of the frameworks and coupled shear walls and the local
bending stiffness of the individual columns/wall sections, shear walls and cores.
They are the key characteristics of the equivalent cantilever that will replace the
whole system, enabling arelatively simple analysis.

The shear stiffness of the equivalent column shall be determined first. The
“original” shear stiffness consists of two parts. The global shear stiffness of the ith
framework corresponds to the globa (full-height) shear resistance of the
framework and it is associated with the beams of the framework, assuming that the
beams are continuously distributed over the height of the framework, resulting in
full-height shear deformation (Figure 5.2/a). It is defined as

L12E, 1,
Kpi = Z;‘I]—h] (5.2
J:
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where
= isthe modulus of elasticity of the beams of the framework
b, is the second moments of area of the jth beam of the ith framework

h isthe storey height
lj isthe jth bay of theith framework

n is the number of columns of the ith framework
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Figure 5.1 A system of frameworks and (coupled) shear walls for the lateral stability analysis.

However, the beams are not distributed continuously over the height of the
framework and only contribute to the shear resistance at floor levels. Between two
floor levels, it is the responsibility of the storey-height columns to resist sway
locally. It follows that the local shear stiffness is associated with the storey-height
shear resistance of the structure (Figure 5.2/b) and —assuming fixed supports—is
defined as

n 2
TEl

Ke=2—ot (5.2)

j=1

where

E. is the modulus of easticity of the columns of the framework
le; is the second moments of area of the jth column of the ith framework

Note that z°El/h? is the critical load of a column (with stiffness El) of height
h, with two built-in ends when the latera movement of the upper end is not
restricted. The fact that the local part of the shear stiffness is linked to the storey-
height buckling makes it possible to handle frameworks with non-uniform storeys
and also frameworks on pinned supports—see Sections 2.4.2 and 2.4.3.

Using the above two components, the shear stiffness of the ith framework is
obtained using the Foppl-Papkovich theorem in the form of

https://engineersreferencebookspdf.com
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1 1 1
_=
Ki Kpi  Kgj
as
K.
Ki = Kpjifi = Kp; — (53
Kpj + Kej

where factor r; isintroduced (for later use) as a reduction factor:

=—0l (5.4)

a b) 0)

Figure 5.2 Shear deformation. a) global (full-height) component, b) local (storey-height) component,
c) actual shear deformation.

The total shear stiffnessof f bracing frameworksis
f
K= Z K, (5.5)

The deformation that is associated with this “original” shear stiffness is
shown in Figures 2.1/a and 5.2/c. Equation (5.5) also defines the “original” shear
critical load of a system of f frameworks. It is called “original”, as during buckling
the system also develops bending type deformations. In fact, the system develops
two types of bending deformation, of which the globa bending deformation
(Figure 2.1/b) is worth paying attention to now, as it interacts with the above
“original” shear deformation and tends to erode the original shear resistance of the
system. [If coupled shear walls are also included in the system, then Equation
(2.71) should be used for the calculation of the global shear stiffness, instead of
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Equation (5.1).]
Global bending deflection is resisted by the global second moment of area of
the cross-sections of the columns. Its value for the ith framework is given by

n

lgi = Z'A\:,jtjz (5.6)

=1

just likein previous chapters. In Equation (5.6)

Acj isthe cross-sectional area of the jth column of the framework
t is the distance of the jth column from the centroid of the cross-sections

With the global second moment of area, the global bending critical load of
the ith framework is

7.837rE,l .
. :% (5.7)

where H is the height of the framework and r is the same load distribution factor
that was used earlier to allow for the fact that the load of the structure is not
uniformly distributed over the height but consists of concentrated forces at floor
levels (Figure 5.4). Values for rs are given in Figure 2.14 for structures up to
twenty storeys high; alternatively, if the structure is higher or more precise values
are needed, Table 5.1 can be used.

Table5.1 Load distribution factor rs as a function of n (the number of storeys).

n 1 2 3 4 5 6 7 8 9 10 11

s 0.315 0.528 0.654 0.716 0.759 0.791 0.815 0.834 0.850 0.863 0.874

n 12 13 14 15 16 18 20 25 30 50 >50

s 0.883 0.891 0.898 0.904 0.910 0.919 0.926 0.940 0.950 0.969 n/(n+1.588)

=

-

During buckling there is an interaction between the shear mode and the
global bending mode. This interaction is detrimental as the resulting critical load is
smaller than either the shear or the global bending critical load. This phenomenon
can be taken into account using the Foppl-Papkovich theorem

g,

and the role of global bending can be interpreted as an eroding effect which leads
to areduced shear stiffness. In doing so, this shear stiffnessis expressed as

=K —Ng,i =

Kei i K, + Ny, Kis (5.8)
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where Ke; is defined as the effective shear stiffness of the ith framework and

§=_lai (5.9)
Ki + Nyg;

is the effectiveness factor related to the shear stiffness of the ith framework.
It follows that the effective shear stiffness of the whole system (and of the
equivalent column) is

Ke= D Kis (5.10)

1

and the effectiveness factor for the whole system is

s=—¢ 5.11
m (5.11)

where K isthe “original” shear stiffness [Equation (5.5)].

The other characteristic stiffness of the system (and of the equivalent
column) is the local bending stiffness. As all the columns of the frameworks, wall
sections of the coupled shear walls, the shear walls and the cores have bending
stiffness and all these structural items are made to work together by the floor slabs
(and the beams of the frameworks), the total bending stiffness of the system is
obtained by adding up the local bending stiffness of the vertical structural units:

f m
El = Eglo+ Eylw =B Il +Ey Dl (5.12)
1 1

where

E. is the modulus of elasticity of the shear walls/cores
L, is the second moment of area of the ith shear wall/core

When the system has mixed bracing units—both frameworks and shear
walls/cores—the contribution of the columns of the frameworks [first term in
Equation (5.12)] is normally very small compared to that of the shear walls/cores
and can safely be ignored.

In Equation (5.12), the bending stiffness of the columns of the frameworks
are adjusted by combination factor r;. Theoretical and numerical investigations
(Hegediis and Kollér, 1999; Zaka and Armer, 1992) demonstrate that this
adjustment is necessary to prevent the over-representation of the second moments
of area of the columns in the equivalent column where they are also represented in
the shear stiffness.

With the above bending stiffness—that is identical to the one used for the
frequency analysis—the local bending critical load of the system of frameworks
and shear walls/cores can now be presented as
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f m
N =Ny +Nw:ZNf,iri +ZNw,i
1 1

7837r 7837r El
[E Z|C,r|+EWZ|W,] 20 (5.13)

With N, and K¢ (the shear critical load), an approximation of the critical load
of the system can already be given. According to the Southwell theorem, the two
part critical loads simply have to be added up:

N, =N, +K, (5.14)

The beauty of this formula is that it is extremely simple and also it is
conservative. However, it does not take into account the interaction between the
(local) bending and shear modes.

This interaction can now be taken into account as the equivalent column of
the bracing system (Figure 5.1/b) is now established with bending stiffness El and
effective shear stiffness K.. The governing differential equation of the equivalent
column is obtained by examining the equilibrium of an elementary section of the
column. Thisleads to the eigenvalue problem

LEly™ +[(N(2) - K,)y] =0 (5.15)

where N(2) = gz is the vertical load at z. The origin of the coordinate system is
placed at and fixed to the top of the equivalent column, so the boundary conditions
are asfollows:

y(0)=0

y(H)=0

y“(0) =0
and

y"(H)=0

This kind of eigenvalue problem can be solved relatively easily using the
generalized power series method (Zalka and Armer, 1992). After introducing the
critical load parameter

a=—L (5.16)
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and the part critical load ratio

f=—2 (5.17)

some rearrangement and the application of the power series method, the solution
for the sway buckling of the equivalent column is obtained as
Ncr = (a_IB)NI + Ke

Values of critical load parameter o are given in Table 5.2 as afunction of part
critical load ratio f5.

Table 5.2 Critical load parameters o and a,, as afunction of part critical load ratios # and f3,..

porp, aora, porp, oaore, porp, aora, pforp, a or a,
0.0000 1.0000 0.05 1.1487 2 5.624 80 106.44
0.0005 1.0015 006 11782 3 7.427 90 118.38
0.001 10030 0.07 12075 4 9.100 100 130.25
0.002 10060 0.08 1.2367 5 10.697 200 246.24
0.003 10090 0.09 1.2659 6 12.241 300 359.51
7
8
9

0.004 10120 0.10 1.2949 13.749 400 471.29
0005 10150 020 15798 15.227 500 582.06
0006 10180 030 1.8556 16.682 1000 1127.5
0.007 10210 040 21226 10 18.118 2000 2199.1
0.008 10240 050 23817 20 31.820 5000 5360.5
0009 10270 0.60 26333 30 44.862 10000 10567
0.010 10300 070 2.8780 40 57545 100000 102579
0020 10598 080 3.1163 50 69.991 1000000 1011864
0.030 1.089%6 090 3.3488 60 82.265 2000000 2018802
0040 11192 100 3.5758 70 94.405 >2000000 4 or g,

Before this solution is used for the sway buckling analysis of the whole
bracing system, however, a small modification hasto be made. The first termin the
above equation stands for the bending contribution of the individual columns/wall
sections, shear walls and cores in the system and it also represents the increase of
the critical load of the system, due to the interaction between the bracing units in
bending and the bracing units in shear. However, because of the fact that the
effectiveness of the shear stiffness is normally smaller than 100% [c.f. Equation
(5.11) where s<1 holds], these two contributions have to be separated and the
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effectiveness factor should be applied to the part which is due to the interaction.
The formulafor the sway critical load then emerges as

Ner = Nj+Ke + (a-B-DsN, (5.18)

In the right-hand side of the above equation, the first two terms stand for the
bending and shear critical loads of the system—compare Equation (5.18) and the
approximate solution represented by Equation (5.14)—while the third term
represents the effect of the interaction between the bending and shear
deformations. As is the case with systems subjected to horizontal load (MacL eod,
1971), the interaction is beneficial. Bearing in mind that (« — f — 1) > 1 aways
holds, the evaluation of the third term demonstrates that the effect of the
interaction increases the critical load of the system. The evaluation of the data in
Table 5.2 shows that the maximum increase is 87%, at = 2.1.

The method can also be used when the building is subjected to a concentrated
force on top of the building—e.g., a swimming pool on the top floor. In such a case
N, and Ng in the relevant formulae are to be replaced by the corresponding Euler
critical loads. It is interesting to note that the interaction in this load case does not
increase the value of the critical load; the value of the term in brackets in Equation
(5.18) becomes zero and Equation (5.14)—with the Euler critical loads—becomes
the exact solution. See Section 5.5 for details.

A building may develop sway buckling in the two principal directions and
both critical loads have to be calculated. These critical loads are obtained using
Equation (5.18) where N, K¢,  and s are calculated by taking into account the
bracing elementsin the relevant principal directions, say, inxandy.

5.2 SWAY BUCKLING: SPECIAL BRACING SYSTEMS

The following—idealised—special cases of bracing systems are worth considering
(where the term “framework” refers to frameworks and coupled shear walls and
the term “wall” covers both shear walls and cores).

5.2.1 Bracing systems consisting of shear walls only

In this special case, there is no shear stiffnessin the senseiit is used in this chapter.
This trandatesto K=0, =0 and a =1. As Nr = 0 in Equation (5.13), Equation
(5.18) simplifiesto

_ 1.837rE, I,

v (5.19)

Ncr = NI = NW

which is the standard solution for the sway buckling of a bracing system in pure
bending.
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5.2.2 Bracing systems consisting of frameworks only

Equations (5.13) and (5.18) hold with E,l,, = O; everything else is unchanged.

If, furthermore, the beam/column stiffness ratio is very high, then the formula
for the critical load further simplifies. In this specia case, K, >> K, and Ng~ o
hold. Consequently, ri =0, K= K, 5~ 1, Ke= K. and s= 1. Thisleadsto

f f n ﬂzEclc,j
Ng = ch,i = z ZT (5.20)
1 1

showing that the building loses stability through storey-high sway (shear failure
from the point of view of the whole building), which is resisted by the stiffness of
the columns. Equation (5.20) can also be used for checking stability when there is
aloss of gtiffness at a particular storey, making that storey vulnerable to local shear
buckling (Zalka, 2000).

5.2.3 Bracing systems consisting of shear walls and framewor kswith very high
beam/column stiffnessratio

Three sub-cases are worth considering.

First, assume that the axia deformations of the columns are negligible. The
practical case that belongs here is the case of low-rise buildings. In this special
case, Ky >> K. and Ny~ « hold. Consequently, r;= 0, K= K¢, s~ 1, Ke= K, and
s= 1 f=KJN,>0and a > 1. Thisleadsto

7.837E, | I

Ncr:(a_ﬁ)NW-'-KC:m\IW:a H2

(5.21)

showing that the critical load is based on the bending critical load of the shear
walls and cores. This value is increased (through o > 1) due to the interaction
between the bracing elements in shear (frameworks with tiff beams) and the
bracing elements in bending (walls and cores). The shear stiffhess is characterised
by the weakest link (i.e. by the stiffness of the columns).

Second, assume that the axial deformations of the columns are not negligible.
The practical case that belongs here is the case of medium-rise buildings. In this
case, Kp>>K, and Ng#o hold. Consequently, ri=0, K=K, s§<1,
Kem YKcis <Kcands< 1l f=sKJ/N,>0anda > 1 Thisresultsin

7.837E,1 1
2

Ng =N +sKe+(a-B-DsN, =[s(a-B-1)+1+ j] (522)

As[s(a—p—-1) +1+ ] >1 aways holds, due to the supporting effect of the
shear stiffness of the frameworks, the overall critical load is again greater than that
of the shear walls/cores. However, the magnitude of the increase in this case is
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more difficult to estimate as, in addition to the effect of the columns as in the
previous case, it also depends on the “eroding” effect of the axial deformations of
the columns (through parameter s).

Third, assume that the axia deformations of the columns are very great. The
practical case that belongs here is the case of mediunvhigh-rise buildings with
columns of relatively small cross-section. In this specia case, K, >> K. and Ng= 0
hold. Consequently, ri=0, K=K, §=0, Ke~0 and s~0. =0 and o = 1. This
resultsin

_ 7.837E, |\

Ng =[s(a-pB)+1-s|N, =N, H2

(5.23)

Due to the excessive axial deformation of the columns, all the shear capacity
of the frameworks is eroded and the shear walls and cores act as individual bracing
elementsin bending—c.f. Section 5.2.1 and Equation (5.19).

5.2.4 Bracing systems consisting of shear walls and framewor ks with very high
column/beam stiffnessratio

Again, three characteristic cases can be distinguished.

First, assume that the axia deformations of the columns are negligible.
Practical case: low/medium-rise buildings.

In this special case, K << K. and Ng = « hold. Consequently, r;= 1, K= K,
s=1 Ke=Kyands= 1. S~ KyN,>0and a > 1. Thisleadsto

7.8371y(El .+ E,l )
H 2

Ng =(@-B)N, +K, =a(N; +N,)=a (5.24)

showing that the critical load is based on the bending critical load of the columns,
shear walls and cores; this value is presumably slightly increased (through o > 1)
due to the interaction between the bracing elements in shear (frameworks) and the
bracing elements in bending (walls and cores). The shear stiffness is characterised
by the weakest link, i.e., by the stiffness of the beams.

Second, assume that axial deformations of the columns are not negligible.
Practical case: low/medium-rise buildings.

In this case, K, << K, and Ng # o hold. Consequently, ri= 1, K=Ky, §<1,
Ke=YKpis <Kpands< 1. f=sKy/N >0anda > 1. Thisresultsin

7.8371y(El .+ E,l\)

N =[s(a-B-1)+1+ ] H2

(5.25)

As[s(a —p—1) + 1+ f] > 1 always holds, due to the supporting effect of the
shear stiffness of the frameworks, the overall critical load is greater than that of the
shear walls/cores. However, the magnitude of the increase in this case is more
difficult to estimate as, in addition to the effect of the columns as in the previous
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case, it also depends on the “eroding” effect of the axia deformations of the
columns (through parameter s). The stiffness of the columns (Edl.) is in most
practical cases negligible compared to the stiffness of the shear walls and cores
(Bulw)-

Third, assume that the axial deformations of the columns are very great.
Practical case: high-rise buildings with frameworks of great global slenderness.

In this specia case, K, << K. and Ng~ 0 hold. Consequently, ri =1, K=Ky,
§=0,Ke=0ands~=0.f~0and a= 1. Thisresultsin

7.837r(E I, + E,ly)

Ng =[s(a-p)+1-s](N¢ +Ny) = H2

(5.26)

Due to the excessive axial deformation of the columns, all the shear capacity
of the frameworks is eroded and the shear walls and cores work as individual
bracing elements in bending. The stiffness of the columns (El.) is in most
practical cases negligible compared to the stiffness of the shear walls and cores

(Ewlw).

5.3 PURE TORSIONAL BUCKLING

Although the torsional buckling problem is more complex than that of sway
buckling, the solution is obtained in a relatively simple way, due to an analogy
between the three-dimensional torsional problem and the two-dimensional sway
buckling problem (discussed in the previous section). This analogy is well known
in the stress analysis of thin-walled structures in bending and torsion (Vlasov,
1961; Kollbrunner and Basler, 1969). (The same analogy was used in Chapter 4 for
the analysis of pure torsional vibration.) According to the analogy, translations,
bending moments and shear forces correspond to rotations, warping moments and
torsional moments, respectively. It will be demonstrated in the following that the
analogy can be extended to the sway buckling of an elastically supported cantilever
(discussed in the previous section) and the pure torsional buckling of a cantilever
of thin-walled cross-section (to be investigated in this section).

The model which is used for the pure torsiona buckling analysis of the
building is an equivalent cantilever of thin-walled, open cross-section which
replaces the bracing system of the building for the torsional analysis (Figure 5.3).
This equivalent column is situated in the shear centre and has effective Saint-
Venant torsiona stiffness (GJ). and warping torsional stiffness El,,. The governing
differential equation of the cantilever is obtained by examining the equilibrium of
its elementary section as

r

rE'w'"' [[N(z) (S) Jqﬁ} =0 (5.27)
|

p p

where N(2) isthe vertical load at zand ip is the radius of gyration.
If the origin of the coordinate system is placed and fixed to the cross-section
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at the top of the equivalent column (Figure 5.4/d), the boundary conditions are:

#(0)=0

#'(H)=0

¢"(0)=0

#"(H)=0

This eigenvalue problem is clearly analogous with the one defined by the

governing differential equation (5.15) and its boundary conditions. Bending
stiffness El and the elastic support defined by the effective shear stiffness K, in

Equation (5.15) correspond to warping stiffness El,, and effective Saint-Venant
torsional stiffness (GJ)e, divided by i3 in Equation (5.27), respectively.

ol
x|

@ Vi yo

Yk t Equivalent cantilever

Yk *C T B

Xo Xc

i,k=123.f+m

Figure 5.3 Typical layout with the equivalent column of open, thin-walled cross-section in the shear
centre.

As the derivation of an equation identical in structure to Equation (5.27)
demonstrates (Zalka and Armer, 1992), the radius of gyration is related to the
vertical load of the building. For regular multi-storey buildings of rectangular plan-
shape that are subjected to a uniformly distributed load on the floors, the radius of
gyration is obtained from
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2 2
ip= L'+B" e
12

(5.29)

where L and B are the plan length and breadth of the building and t is the distance
between the geometrical centre of the plan of the building and the shear centre of
the bracing system (Figure 5.3). [For arbitrary plan-shapes and/or other types of
load distribution, formulae for the radius of gyration are available elsewhere
(Kollér, 1999; Zalka, 2000).] It isimportant to note that the value of i, depends on
the geometrical characteristics of the plan of the building, rather than the stiffness
characteristics of the bracing system.

Once the corresponding stiffnesses are established, the solution to
Equation (5.15) can be used and converted to represent the solution of Equation
(5.27). The effective Saint-Venant torsional stiffness of the system may come from
two sources: the Saint-Venant torsional stiffness of the shear walls and cores and
from the effective shear stiffness of the frameworks as

m f
(62 = > 63+ Y ((Ke) 2+ (Ke)y ) (5.29)
1 1
where
Jk isthe Saint-Venant constant of the kth wall/core
G isthe modulus of elasticity in shear of the walls/cores

(Kei)x (Kej)y arethe effective shear stiffnesses of the ith framework/coupled
shear wallsin directions x and y, respectively

Xi, ¥i are the perpendicular distances of the ith framework/coupled
shear walls from the shear centre in directions x and y,
respectively

If the bracing system consists of frameworks, (coupled) shear walls and cores
of open cross-section, the first term in Equation (5.29) is normally negligible
compared to the contribution of the frameworks.

The warping stiffness of the system may originate from three sources. the
own warping stiffness of the cores, the bending stiffness of the walls and the
bending stiffness of the columns of the frameworks/wall sections of the coupled
shear walls:

m
Elw = EWZ(I wk +(|w,k)xy|3 + (Iw,k)yxlf)
1

f

+ EcZ(('c,iri)xyiz+(|c,iri)yxi2) (5.30)

1

where
lwk is the warping constant of the kth wall/core
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En(lwi)sw Ex(lwk)y arethe bending stiffnesses of the kth wall/corein directions
x and y, respectively

Ec(lciri)x Ec(l¢;ri)y are the bending stiffnesses of the columns/wall sections of
the ith framework in directions x and y, respectively

Xk Yk are the perpendicular distances of the kth wall/core from the
shear centre in directions x and y, respectively

X, Vi are the perpendicular distances of the ith framework/coupled
shear walls from the shear centre in directions x and y,
respectively

The warping stiffness of a well-balanced bracing system is normally
dominated by the contribution of the shear walls and cores (if their perpendicular
distance from the shear centre is great enough). The contribution of the cores
through their own warping stiffness [first term in Equation (5.30)] tends to be
much smaller and the effect of the columns of the frames (last two terms) is
generaly negligible.

To facilitate the easy calculation of the warping constant 1, closed-form
formulae for cross-sections widely used for bracing cores are given in Tables 2.7,
2.8 and 2.9. More formulae are available in (Zalka, 2000). For bracing elements of
special (irregular) cross-sections where no closed-form solution is available, the
excellent computer program PROSEC (1994) can be used, whose accuracy has
been established and proved to be within the range required for structura
engineering calculations.

With the above stiffhesses, and making use of the analogy, the critical load of
pure torsional buckling is obtained in the same manner as with Equation (5.18):

Nerg = Ng + N+ (a; - B, ~DsyN,, (5.31)

where the warping torsional critical load of the system is

N, = 7'8.3;7r35|” (5.32)
|pH
and the Saint-Venant torsiona critical load is
N; = % (5.33)

'p

It is interesting to note that the value of the Saint-Venant torsional critical
load does not depend on the height of the building.

The effectiveness of the Saint-Venant torsional stiffness is expressed by the
factor

_ (@),
AT

(5.34)

where the “origina” Saint-Venant torsiona stiffnessis
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f

63)= 363+ D (K. + (), ) (5.35)
1

1

Values for the critical load parameter o, are given in Table 5.2 as a function
of parameter S,

B, = % (5.36)

w

In making use of the analogy, specia cases can be investigated in the same
manner asin Section 5.2.

In the specia case when the bracing system only consists of a single bracing
unit with no warping stiffness—e.g. a closed or partially closed U-core—the above
procedure cannot be used as the denominator in Equation (5.36) vanishes. This
case is covered in Section 2.7.3 which deals with the stability of a single core.
Section 12.2 also deals with this case in great detail.

5.4 COMBINED SWAY-TORSIONAL BUCKLING

When the shear centre of the bracing system and the centre of the vertical load
coincide, the three basic critical 10ads N x, Nery and Ner,, are independent of each
other and the smallest oneis the overall critical load of the building.

When the system is not doubly symmetric and the shear centre does not
coincide with the geometrical centre of the building, two things have to be
considered. First, for the calculation of the critical load of pure torsional buckling,
the location of the shear centre has to be determined. (The value of the sway
buckling critical loads is not affected.) Second, as sway buckling in the two
principal directions combines with pure torsional buckling (Figure 5.4/d), the
question of interaction among the three basic modes has to be addressed.

For bracing systems developing bending deformation only, the location of the
shear centre is calculated using the bending stiffness of the bracing units. However,
with bracing systems having frameworks and coupled shear walls as well, the shear
deformation of the bracing units may be of considerable magnitude (in addition to
their bending deformation). The behaviour of such systems is complex (and the
location of the shear centre may even vary over the height). No exact solution is
available for this case but, as a good approximation, the formulae given below can
be used to determine the location of the shear centre.

As the critical load of a bracing unit reflects both its bending and shear
stiffnesses, the location of the shear centre is calculated using the critical loads of
the bracing units:

f+m f+m
ZNy,iii sz,iyi
o= Yo (5.37)

ZNy,i sz,i
1
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where X, and y; arethe perpendicular distances of the bracing units from axes y
and X and f and m are the number of frameworks/coupled shear walls and shear
walls/cores, respectively (Figure 5.3). Any suitable method can be used for the
calculation of the critical loads in Equations (5.37), including Equation (5.18)
given in Section 5.1—c.f. special cases discussed in Sections 5.2.

When the bracing system consists of shear walls (and cores) only,
Equations (5.37) for the location of the shear centre simplify and the shear centre
coordinates can be determined using

zlx,iz Zly,i)_/i
1

TR Yo =——— (5.38)
z I X,i
1 1

YO:

2l

Equations (5.38) can aso be used for the frequency and deflection
calculations for systems that only have bending stiffness.

AT QKNI -
e |
0O . . . X el || I
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Figure 5.4 Sway-torsional buckling. a) layout, b) equivalent column with its stiffness characteristics
and load at floor levels, ¢) equivalent column with its uniformly distributed load, d) model for the
analysis.

When the location of the shear centre is known, the Saint-Venant and
warping torsiona stiffnesses can be calculated in the coordinate system whose
origin isin the shear centre using Equations (5.29) and (5.30) and the critical load
of puretorsiona buckling is obtained from Equation (5.31).

Assuming unsymmetric bracing system arrangement, interaction occurs
among the two lateral and pure torsional modes. The situation is very similar to
that of the frequency analysis. Accordingly, there are two possibilities to take into
account the effect of interaction: exactly or approximately. The exact method
automatically covers all the three coupling possibilities (triple-, double and no-
coupling). This method is given first.
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The critical load is obtained by solving the cubic equation

(N)%+Db,(N)?+ BN -y =0 (5.39)

whose smallest root yields the combined global critical load of the building. In the
case of buildings subjected to uniformly distributed floor load, Equation (5.39) is
exact, asfar asthe effect of the coupling of the three modesis concerned.

The coefficients in the above cubic equation are

by = N, chr chr ¢ b, = Ner xNery + Ncr’¢2Ncr’: +Ner sNer y ,
1- r - r 1-75 -7y
b, = Ner, Tt Ner,y yly ~ N_cr}xz_ Nery = Norg (5.40)
x ‘y
where 7, and zy are eccentricity parameters:
=2 ad r,=2 (5.41)

i

Radius of gyration ip is given by Equation (5.28) and x. and y, are the
coordinates of the geometrical centre:

x=o-% ad  y=o-y, (5.42)

2 2

If aquick solution is needed or a cubic equation solver is not available or if
one of the basic critical loads is much smaller than the others, the Foppl-Papkovich
theorem (Tarnai, 1999) offers a simple albeit approximate solution.

If the bracing system is unsymmetric and the centroid of the vertical load of
the building does not lie on either principal axis of the bracing system, triple
coupling occurs and an approximation of the resulting combined critical load is
obtained using the reciprocal summation as

-1
R A — (5.43)
Ncr,x Ncr,y Ncr,¢

If the arrangement of the bracing system is monosymmetric and the centroid
of the vertical load of the building lies on one of the principal axes of the bracing
system (say, axis X), then two things may happen. Sway buckling may develop in
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direction x (defined by Ng,) or buckling in direction y (Nery) couples with pure
torsional buckling (Ner,). The critical load of this coupled buckling is obtained
from

-1
Nyp=| 2+t (5.44)
Ncr,y Ncr,¢

The global critical load of the building is the smaller one of N x and Ny, i.e.:

Ner = Min! N ., Ny (5.45)

If the arrangement of the bracing system is doubly symmetric and the
centroid of the vertical load of the building coincides with the shear centre of the
bracing system, then no coupling occurs and the global critical load of the building
isthe smallest one of N x, Nory @nd Ner g, i€

Ngr = Min! Ny 4, Ner s Ny g (5.46)

Simplicity and the fact that the above Foppl-Papkovich equations are always
conservative may justify the use of the approximate solutions. However, their
application may lead to rather uneconomic structural solutions as they cannot take
into consideration the degree of eccentricity of the bracing system. The
(conservative) error of Equation (5.43) can be as much as 67%.

When the global critical load of the system is calculated, the global critical
load ratio can be used to assess the effectiveness of the bracing system. It aso
indicates whether or not a more sophisticated second order analysis needs to be
carried out. The application of the global critical load ratio is discussed in the next
chapter and it is only mentioned here that the greater the global critical load ratio,
the greater the level of safety against buckling.

5.5 CONCENTRATED TOP LOAD

In certain cases, concentrated load on top of the building may need to be
considered. A panorama restaurant, a swimming pool or a water tank may
represent some extra load that is not covered by the uniformly distributed floor
load, considered to be the same at each floor level over the height of the building.
The critical load for the concentrated top case can be determined relatively easily
using (and amending) the equations presented in the previous sections for the
uniformly distributed load case.

The critical concentrated load for sway buckling, based on Equation (5.18),
assumes the form

Foe =R +Kg (5.47)

where F; is the local bending critical load and K. is the effective shear stiffness for
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concentrated top load case. The effective shear stiffness is determined as

-1
K, = [% " i] (5.48)

where Fq is the globa bending critical load. Note that for the part critical loads F,
and Fg, the corresponding Euler critical loads should be used:

2
T°El
L (5.49)
and
F _ 7Bl (5.50)
9 4H?2 '

To calculate the sway critical loads in directions x and y (Fer x and Fy), the
relevant bracing units (with their stiffnesses) should be used.
For puretorsional buckling, Equation (5.31) leads to

I:cr,gzﬁ = Fa) + Ft (5.51)

where the warping torsional critical load of the system is

2
T El
F & 5.52
¢ aHE] (552
where the warping torsional stiffnessis given by Equation (5.30).
The Saint-Venant torsional critical load is obtained from
- (G_~21)e (5.53)

'p

The effective Saint-Venant torsional stiffness (GJ)e in Equation (5.53)
consists of two parts, as seen in Equation (5.29). The first term is identical to the
first term in Equation (5.29). However, the second term (that depends on the
contribution of the frameworks) is calculated using K according to Equation
(5.48).

It is interesting to note that when the load is concentrated on top of the
building, there is no interaction (that would increase the critical load) between the
bending and shear modes.

Once the basic critical loads F, 4, Fery and Fer, are available, the coupling of
the basic modes is taken into account exactly as with Ngx, Nery and Ner, iN
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Section 5.4 above, i.e. applying Equations (5.39), (5.40), (5.41) and (5.42) for the
exact analysis or Equations (5.43), (5.44), (5.45) and (5.46) for the approximate
analysis, using the Euler basic critical loads.

5.6 ACCURACY

A comprehensive accuracy analysis was carried out to check the accuracy of the
method. As the key element of the method is the calculation of the critical load of
sway buckling of a system of frameworks, (coupled) shear walls and cores, the
analysis centred on checking the accuracy of Equation (5.18). The sway critica
load of 72 bracing systems was calculated and compared to the Finite Element
solution. The AXIS VM finite element package (AXIS, 2003) was used for the
comparison, whose results were considered “exact”. The “error” was defined as the
difference between the results obtained using Equation (5.18) and from the FE
analysis, related to the “exact” solution. Positive error meant conservative
estimates.

The test structures were identical to those used for the accuracy analysis of
the method presented in Chapter 4 for the frequency analysis of buildings. Eight
frameworks/coupled shear walls (F1 to F8 in Figure 2.7) and four shear walls (WO,
W1, W2 and W3 in Figure 3.7) were used as bracing units. Using these bracing
units, eight bracing systems were created (Figure 4.5) to cover a wide range of
stiffness characteristics, representing buildings developing predominantly bending
deformation, a mixture of bending and shear deformations and predominantly
shear deformation. The height of the buildings varied between 4 and 80 storeysin
eight steps, creating 72 test cases. The bays of the frameworks were 6 m and the
storey height was 3 m.

Table 5.3 Accuracy of approximate methods for the sway-critical load of buildings.

Method Rangeof Average absolute Maximum

error (%) error (%) error (%)
(Sggl‘gra’“fgng‘;‘;rm“' 2 1to 44 24 44
(Sggtlgv ;gif?nrwrgrlfliggz) -3to34 16 34
e Sl Ao m i
%%Legégn%ﬂﬂ;?;rnullgss) “4to-64 17 64
Continuum solution 1510 19 6 19

[Equation (5.18)]

The summary of the results is given in the last row in Table 5.3. The
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performance of the method over the height of the structuresis shown in Figure 5.5.
The results summarised in Table 5.3 and shown in Figure 5.5 demonstrate the
genera performance of Equation (5.18). In the 72 cases, the average difference
between the results of the continuum solution and the finite element solution was
around 6%. The maximum error of Equation (5.18) was 19%.
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error [%]

number of storeys

Figure 5.5 Accuracy of Equation (5.18) for the critical load of bracing systems of different height.

The results are not as good as those obtained in the case of the frequency
analysis. They may even be considered disappointing. However, a comparison with
other approximate methods mentioned in the introduction (given in the first four
rows in Table 5.3) puts them in perspective. (It is well-known in structural
engineering research that some complex stability problems are notoriously difficult
to solve as the structural engineering modelling difficulties often combine with ill-
conditioned mathematical problems.)
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Theglobal critical load ratio

Stahility problems concerning multi-storey buildings can be investigated on two
levels. An element-based “local” analysis can be carried out, step by step, aimed at
certain key structural members. Codes of practice normally follow this avenue and
have detailed instructions for the analysis. This approach makesit possible to carry
out the analysis in a relatively simple way but has disadvantages. It leaves the
designer with the task of identifying all the key members and it cannot address the
full-height, three-dimensional global behaviour of the multi-storey building. The
“local” approach may aso lead to uneconomic solutions as the elements of the
whole structure tend to work together and, with the local approach, the possibility
to take into account the effects of interaction is normally limited to the
neighbouring members only.

The other approach is the global approach. The concept of the global critical
load ratio has been around for some time. Around but not in use. Or at least not in
use to such an extent as it should have been. As the results of an illustrative
example given in this chapter will demonstrate, the global critical load ratio is far
more than a stability parameter: It is a generic characteristic with which the
designer can monitor the overall performance of the whole bracing system. It also
links the three important areas of anaysis. the stress, stability and dynamic
analyses. The way the structure responds to the loads—in two or three-dimensional
manner—is automatically taken into account and made clear to the designer.

Around the middle of the last century Chwalla (1959) emphasized the
importance of the global approach and recommended the introduction of a “global
factor”. Halldorsson and Wang (1968) suggested that a “general safety factor”
should be used for building structures, and its importance was comparable to that
of the “overturning factor” used in the design of dams. Dowrick (1976) drew
attention to the importance of the overall stability of structures. Dealing with plane
structures Stevens (1983) linked theory and practice and underlined the importance
of the critical load in the design of frameworks. The idea of a global safety factor
also surfaced in connection with the structural design of large structures (Zalka and
Armer, 1992). MacLeod and Zalka (1996) and MacL eod (2005) advocated the use
of the critical load ratio emphasizing its ability to handle torsional behaviour in a
relatively simple way. The importance of torsional behaviour cannot be
overemphasized, especially considering the fact that up to the emergence of the
personal computer, relatively little attention had been paid to the three-dimensional
behaviour of complex structures in university textbooks and in national and
international codes of practice.

However, the situation seems to be changing. More and more powerful
computers, sophisticated software packages and advanced guidelines on modelling
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complex structures (MacLeod, 1990 and 2005) make it easier to carry out true
three-dimensional analyses. The global approach and methods developed with the
global aspect in mind have also been emerging in structural designer handbooks
and in codes of practice themselves (EN 1992, 2004; EN 1993, 2004; Martin and
Purkiss, 2008). Applying the globa approach, the structural engineer can rely on
two types of technique: full-blown, abeit time consuming, analyses can be
performed using advanced computer modelling, or quick, less accurate, but more
descriptive investigations may be carried out that use specialized but simpler
models (Howson, 2006) like those presented in this book.

Depending on which direction the situation is looked at from, the global
critical load ratio can be defined in two ways. First, it can be defined as

N
(6.1
Ncr
where
N = LBQn (6.2

isthetotal vertical load of the regular multi-storey building with

Ner global elastic critical load for buildings subjected to uniformly
distributed floor load

L,B  planlength and breadth of the building

Q intensity of the uniformly distributed floor load

n number of storeys

Practicing structural engineers may prefer the reciprocal definition when the
global critical load ratio is the ratio of the global elastic critical load and the total
vertical load:

= No (6.3)

asit carries a practical meaning that is easy to relate to the safety of the structure.
Somewhat confusingly, codes of practice use both definitions. In this book,
from now on, the reciprocal definition [Equation (6.3)] will be used.
When there is significant extra load at top floor level (e.g., a swimming
pool), its detrimental effect cannot be ignored. For such cases Equation (6.3) can
be amended and the global critical load ratio can be obtained using

(6.4)

where
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F is the extra concentrated load at top floor level
Fo isthe critical load for the concentrated top load case

The global critical load can be determined carrying out a full-blown second
order analysis using a computer program or by approximate analytical solutions
e.g., the ones presented in Chapter 5.

The global critical load ratio can be used in different ways. Codes of practice
normally concentrate on its use as an indicator whether or not second order
analysisis needed. If the condition

21210 (6.5)

is satisfied, then the suitability of the bracing systemis proved and the vertical 1oad
bearing elements can be considered as braced (by the bracing system) and
neglecting the second-order effects (due to sway and torsion) may result in a
maximum 10% error.

If condition (6.5) is not satisfied, the stability of the building may still be
acceptable but it must be demonstrated using a second-order analysis. However,
thereisawarning here: it is widely accepted in practical structural engineering that
the absolute minimum for a critical load ratio is four.

Another simple use of the global critical load ratio may be as a global safety
factor: the greater the value of the global critical load ratio, the greater the safety of
the multi-storey building against buckling.

The global critical load ratio can also be used as a performance indicator. As
its value is calculated using the basic (sway and pure torsional) critical loads and
taking into account the coupling of the basic modes, any weakness either in the
bending/shear and torsional stiffnesses or in the geometrical arrangement of the
bracing units (on which the detrimental coupling depends) is picked up
automatically. As it happens, any weakness detected during the course of the
stability analysis leads to unfavourable behaviour when the fundamental frequency
and the maximum deflection of the building are calculated. This is demonstrated
below when the structural performance of a building is monitored using the global
critical load ratio.

The case study concentrates on a 10-storey building whose detailed global
analysis is presented in Section 12.1 and only the main results are summarised
here. The plan length of the building is 15 metres and the breadth is 9 metres,
resulting in aplan areaof 135 m? (Figure 6.1).

@ ® @ ® ® @
C O[—>>< C Or— Clo—m
y @ - @ - y @
\q \q y \q
a) b) 0)

Figure 6.1 Ten-storey building braced by four bracing units. 8) Case 1, b) Case 2, c) Case 3.
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Four bracing units are available for making the building stable enough: two
steel frameworks with cross-bracing and two reinforced concrete shear walls. Their
location and orientation inside the layout are arbitrary. Three different
arrangements are considered. Three analyses are carried out for each arrangement:
for the deflection analysis it is assumed that the building is subjected to a
uniformly distributed wind load of intensity g = 17 kN/m, making 50° with axis x.
The uniformly distributed floor load for the globa stability analysis is
Q=10kN/m% The weight per unit volume for the determination of the
fundamental frequency of the building is assumed to be y = 3kN/m®. In the three
cases, the following characteristics are determined:

Pmax maximum rotation of the building (in degrees) at top level [9]
Omax maximum deflection of the building (in metres) at top level [m]
Oma/dasce  ratio of the maximum and recommended deflection

f fundamental frequency of the building [HZ]

Ner global critical load of the building [MN]

A global critical load ratio of the building

The main results are collected in Table 6.1.

Case 1 is an arrangement that is obviously unacceptable (Figure 6.1/a) and
the fact is spectacularly picked up by the global critical load ratio which (being
smaller than 1.0) shows the unstable nature of the system. In line with the very
small critical load ratio, the calculated maximum deflection is huge, the
fundamental frequency and the critical loads are very small. The fatal weakness of
the system is the lack of sufficient bracing in direction x. In addition, the torsional
resistance of the structure is far from optimum.

Table 6.1 The global critical load ratio as a performance indicator.

Casel Case 2 Case 3
Pmax [0] n/a 1.0 0
O [M] 5.65 0.313 0.060
d
5 = 94 5.2 1.0
ASCE
f[HZ] 0.039 0.213 0.468
Ng [MN] 15 416 211.4
A 0.1 31 15.7

By rotating the two frameworks by 90 degrees, the bracing system of Case 2
addresses the main problem with the previous arrangement and provides the
building with sufficient bracing in direction x (Figure 6.1/b). The results clearly
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show the improvement. The global critical load ratio defines a theoretically stable
structure (albeit the margin is not considered sufficient enough in structural
engineering practice); the maximum deflection is much smaller and the
fundamental frequency and the critical load are much greater. However, as the
detailsin Section 12.1 show, the torsional resistance is relatively small. Thisis due
to the fact that the perpendicular distance of the two shear walls from the shear
centre is zero.

By exchanging bracing units 1 and 3 for Case C (without changing their
orientation), the shear centre of the system moves to the geometrical centre of the
building without changing the value of the latera stiffness in directions x and y
(Figure 6.1/c). The hugely beneficial consequence of the ateration is that all four
bracing units can now contribute to the torsional resistance of the system as al four
units now “have” perpendicular distance from the shear centre. In addition, as the
bracing units are now placed along the sides of the layout and the farthest from the
shear centre, their torsion arms are the longest and their efficiency is the greatest
against torsion. The results reflect the beneficial change in the arrangement. The
system is not only stable but the globa critical load ratio now exceeds the
recommended value (1 = 15.7 > 10). The maximum deflection of the building is
much smaller than with the previous arrangement and now it does not exceed the
recommended value (H/500). The value of the fundamental frequency has also
increased.

The results in Table 6.1 (together with the details of the calculations given in
Section 12.1) and the results of dozens of other examples show that the global
critical load ratio is a reliable and sengtive indicator regarding the overall
performance of the structural system. It may be advantageous to determine the
value of the globa critica load ratio for different arrangements and the
arrangement that belongs to the greatest value is normally the best arrangement
also when the maximum deflection and the fundamental frequency of the building
are calculated. However, the global critical load ratio should not be too big—
compared to 10—asit could easily lead to uneconomic structura arrangements.



Part ||
Practical application:
wor ked examples

The equations in Part | were derived and presented in the order that the theoretical
background demanded. However, for practical structural engineering applications,
when the equations have to be applied to rea structures, their order can be, and
often is, different from the theoretical order. The worked examples here in Part Il
reflect this fact and show the best order the equations should be used to produce
the maximum rotation and deflection, the fundamental frequency and the global
critical load of individual bracing units and whole structural systems.

The demonstrative examples are worked out to the smallest details for the
sake of completeness. The same calculations in most cases can be considerably
simplified and the amount of work can be spectacularly reduced as in structural
engineering practice some of the stiffness characteristics are normally neglected as
their value is small compared to the dominant ones. These circumstances are
mentioned in the theoretical part at the relevant formulae. In addition, once
determined, some of the characteristics can be reused repeatedly.

Although the methods and formulae are ssmple—some easily fal into the
back-of-the-envelope category—some may still look too cumbersome for hand
calculations. However, there is no need for hand calculations as all the procedures
can easily be worked into handy worksheets. The worksheet version of each
worked example has been prepared and the files are available for download.
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I ndividual bracing units

Five worked examples are given here for the deflection, frequency and stability
analyses of individual bracing units. The calculations are based on the material
presented in Chapter 2, and the numbers of the equations used will be given on the
right-hand sidein curly brackets.

71 THE MAXIMUM DEFLECTION OF A THIRTY-FOUR STOREY
FRAMEWORK

Determine the maximum deflection of framework F6, used for the accuracy
analysisin Section 2.1.4 (Figure 2.7/f), using the eguations given in Sections 2.1.1
and 2.1.2. The thirty-four storey structure is subjected to a uniformly distributed
wind load of intensity w=5.0kN/m (Figure 7.1). The modulus of elasticity is
E = 25[10° kN/m?. The cross-sections of the columns and beams are 0.4 m/0.4 m
and 0.4 m/0.7 m, respectively, where the first number stands for the width
(perpendicular to the plane of the structure) and the second number is the depth
(in-plane size of the member). The three bays are identical at 6.0 m and the storey
height is3.0 m.
The part of the shear stiffness which is associated with the beamsis

n-1 6 3
12El,;
K, = z bi _ ,212 (2500° [0.4[0.7 = 571667 kN {2.28}

& |h 12603
i=1

The part of the shear stiffness which is associated with the columnsis

K= = 284444 kN {2.29}

- 12El _ 1202500° 0.4
— h?2 2@

The above two parts define reduction factor r as

K. 284444
(=

" Ky +K, 571667 +284444

=0.33225 {2.30}

The shear stiffness of the framework can now be determined:
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K = K.r = K,— e = 571667[0.33225 = 189936 kN
TR, K,

{227}

For the local bending stiffness (EI=El.r), the sum of the second moments of
area of the columns should be produced (and multiplied by reduction factor r). As
the bays of the framework are identical, the second moment of area of one column

issimply multiplied by nand r (the reduction factor):

n 4
I =1 1, =033225(4 1‘; = 0.0028352m"
1

OO OO

=
=
= £
— [a}
= o
= 0
H 04/04
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= (92}
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= 1
- T
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Figure 7.1 Three-bay, thirty-four storey framework F6 for the deflection analysis.

{231}
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The globa second moment of areais
n
ly = Z A t? = 0.4[0.4(9% + 3 + 3 +9°) = 28.8m* {2.32}
1
The total second moment of areafor the bending stiffnessis

lg=1+lg=lr+l, (2BBOM* {2.23}

Parameters s, kK and kH are also needed for the calculation of the maximum
deflection:

I.r 0.0028352

S=1+-C =1+——"22 =1 000098=1.0 {214}
Iy 2838
K=+bs = |~ :\/ %89936 =1637 and &H=167 {214}
El V25010° 0.0028352

With the above auxiliary quantities, the maximum top deflection of the
framework can now be calculated:

{2.24}

_ _wH* wH? WwEl (1+&H sinhaH
ymax_y(H)_ + -

8EI, 2Ks? K2s°( coshiH

__ 5m02*  5002° 5(25010° [ﬂ).0028352(1+167sinh167_ 1)
8[25M10°28.8 2[189936 189936 cosh167

Ymax = 0.094+0.137-0.002=0.229 m
The “exact” (FEM) solution (Axis, 2003) is
Ymax (FEM) =0.238 m

The continuum solution is conservative and the difference between the
continuum and FEM solutionsis 3.8%.

As indicated in Section 2.1.3, the effect of interaction tends to be negligible
for frameworks over 20 storeys high and indeed, the third term responsible for the
interaction is very small compared to the first and second terms (responsible for the
bending and shear deflection) and can safely be ignored, leading to a very simple
back-of-the-envelope calculation involving the first two terms only.
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7.2 THE FUNDAMENTAL FREQUENCY OF A FORTY-STOREY
FRAMEWORK

Determine the fundamental frequency of framework F5 used for the accuracy
analysis in Section 2.2.3, shown in Figure 7.2, using the equations given in
Sections 2.1.2, 2.2.1 and 4.1. The forty-storey structure is subjected to a mass of
m = 0.8495 kg/m. The modulus of elasticity is E=2510°kN/m%. The cross-
sections of the columns and beams are 0.4 m/0.7 m and 0.4 m/0.4 m, respectively,
where the first number stands for the width (perpendicular to the plane of the
structure) and the second number is the depth (in-plane size of the member). The
two bays are identical at 6.0 m and the storey height is3.0 m.

OO C)

IS
(@}
N
i
0.4/0.7 3
g
1
0.4/0.4 5
<
1
T
7777 N
I=6m I=6m
L L )
71 71 l
= = =
tt=6 ;=6
4\/ 1 3 Av

Figure 7.2 Two-bay, forty-storey framework F5 for the frequency analysis.

The part of the shear stiffness which is associated with the beams is
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n-1 6 4
12El .
K, = 2 bi - p1225H0°0A4" _2pqqq )N {2.28}

| 1263
i=1

The part of the shear stiffness which is associated with the columnsis

n

_ Z 12El; _ ,12[25[10° 0.4[0.7°
2 1203

=1143333kN {2.29}

c
i=1

The above two parts define reduction factor r as

oo Ke 1143333
Ky +K, 71111+1143333

=0.9414 {2.30}

The“original” shear stiffness of the framework can now be determined:

K=Kgr=K Ke _ 71111[0.9414 = 66947 kN {2.27}
b b Ky + K,

With the above shear stiffness, the square of the fundamental frequency of
the framework due to shear deformation can be calculated as

»_ 1 TrfK _ 097522 (66947
* (4H)? m  (41120)%([0.8495

= 0.3253H7 {2.41}

where mass distribution factor r; was obtained using Table 4.1

r =\/ d =\/ O _ o752 {Table 4.1}
n+2.06 40+ 2.06

The global second moment of areais

n
lg= > At} =04[0.7(6° +6°) =20.16m" {232}
1

The square of the fundamental frequency that belongs to this global second
moment of areaiis

,_ 0313r7Ely _ 0.313[0.9752° (25(10° [20.16

f
g H*m 120 [0.8495

= 0.8517 HZ? {2.42}
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The effectiveness factor shows the extent the globa bending deformation
erodes the shear stiffness:

f2 0.8517
s = g = : =4/0.7236 = 0.8507 245
"TVt3+ 12 Vo3253+08517 (245

With the effectiveness factor, the effective shear stiffnessis

K, = s?K = 0.7236[66947 = 48443kN {2.44}

The square of the fundamental frequency that belongs to the effective shear
stiffness can now be cal culated:

2o 1 rPKe 1 0.97522 (48443

SE—= = > =0.2354HZ {243}
(4H)> m  (401200>  0.8495

For the local bending stiffness (EI=El.r), the sum of the second moments of
area of the columns should be produced (and multiplied by reduction factor r). As
the bays of the framework are identical, the second moment of area of one column
issimply multiplied by nand r (the reduction factor):

n 3
I =r) I =0941413 4107

1

=0.0323m* {2.31}

The fundamental frequency which is associated with the local bending
stiffnessis defined by

(2 0.313r7El _ 0.313M0.9752° (2510° [0.0323
2= =

- - = 0.00136 HZ? {2.46)
H*m 120° [0.8495

As afunction of the non-dimensional parameter

k=H [Re=qp0 | B3 _pq49 {2.48)
El 25[10° [0.0323

the frequency parameter is obtained using Table 4.2 as

n=5278+ 119975218 50y =7617 {Table 4.2}

30.0-20.0

Finally, the fundamental frequency is
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2 2 /72 k? 2
f= [f2+52+ K st 2.50
R T  fp {2.50}
2 2
- \/ 0.00136+ 0.2354 + [ 76631173 - 29':9 —1}0.8507 [0.00136 = 0.500 Hz

The“exact” (FEM) solution (Axis, 2003) is
f (FEM) = 0.503Hz

The difference between the continuum and FEM solutionsis 0.6%.

7.3THE CRITICAL LOAD OF A SEVEN-BAY, TWELVE-STOREY
FRAMEWORK

Determine the critical load of the large framework FFSH1 shown in Figure 7.3,
using the equations given in Sections 2.3.1 and 5.1. The seven-bay, twelve-storey
structure is subjected to uniformly distributed load on the beams. The modulus of
elasticity is E = 29010° kN/m?. The cross-sections of the columns and beams are
0.4 m/0.4 m and 0.4 m/0.5 m, respectively, where the first number stands for the
width (perpendicular to the plane of the structure) and the second number is the
depth (in-plane size of the member). The seven bays are identical at 6.0 m and the
storey height is2.9 m.

The shear stiffness of a framework is composed using two parts. The first
part is associated with the beams of the framework:

n-1 6 3
12El, ;
b= bi - 71229U0° DALY _ soraasn {2.52}

— |.h 12[6[2.9
i=1

The second part of the shear stiffnessis associated with the columns:

" 772El 2 6 0.4
Ke=> " Eo _g/T*[29010° (0.4

= et 580832kN {253}

i=1

With the two components, the shear stiffnessis

K = Kyr = Ky — & =583333— 20082 __ _ 51040 kN {2.54}
Ky + K, 583333+ 580832

where the reduction factor r is
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r=—Ke o 580832 _ g9 {2.55}
Ky +K, 583333+580832

The global second moment of areais

n
lg= > Ayt? =04[0.4(21° +15° + 9 + 3)2 = 241.92m" {2.56}
1

The local second moment of area of the framework, amended by r, making
use of the fact that the eight columns have the same cross-section, is

n 4
=) 1= 0.499[8%=
1

0.008516 m* {2.57}

Load distribution factor r is obtained from Table 5.1 asrs = 0.883.
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Figure 7.3 Seven-bay, twelve-storey framework FFSH1 for the stability analysis.
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Parameter c; is needed for the calculation of the critical load. Its value is
obtained from Table 2.3 as afunction of

| __ 0008516 _ hoooss2 {2.59}
| + Ig 0.008516+ 241.92
and
2 2
KH = 2? 1040r34.8 =0.0569 {2.60}
E(l + Ig)rs 290" [241.9285[0.883

With the relevant values from Table 2.3

0.000 0.001
0.05 0.050 0.099
0.10 0.100 0.171

parameter ¢, is obtained either as an “intelligent guess’, ¢; = 0.057, for example,
based on {2.60}, or after three interpolations

1 0050+ %0.0000352 = 0.0517248

2. 0.100+ %0.0000352 =0.1024992

3 =0.0517248+ 0.1024992 - 0.0517248
0.10-0.05

(0.0569 - 0.05) = 0.05873

The critical load of the framework can now be calcul ated:

2910° [241.9285(0.883
34.8°

cr

E(l +1,)r,
(—29)520.05873

=3004MN {258}

The“exact” (FEM) solution (Axis, 2003) is

N, (FEM) = 300.0 MN

The difference between the continuum and FEM solutionsis negligible.

It is mentioned in Section 2.3.1 that when the local second moment of area of
the columns/shear wall sections is small compared to the global second moment of
area, then an even simpler method, presented in Section 2.4.1, can be used for the
determination of the critical load. This is the case now, as ratio {2.59} above is
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very small, so the method in Section 2.4.1 can safely be used.
The global bending part critical load is

N = (B37TElgls _ 7.837[29110°(241.92(0.883
o H?2 34.87

= 40089 MN {2.63}

As afunction of the shear critical load and the global bending critical 1oad

K 291.04
= =202 0.007 2.62
Ps 40089 {262

the critical load parameter is obtained from Table 2.5 as

a,=10 {Table 2.5}
and the critical load is
Ng = aK =1.0[291=291MN {2.61}

The difference between the continuum and FEM solutions now is 3%.

74 THE CRITICAL LOAD OF AN EIGHT-STOREY FRAMEWORK
WITH CROSS-BRACING

Determine the critical load of framework SR-X shown in Figure 7.4. The one-bay,
eight-storey structure is subjected to uniformly distributed load on the beams. The
modulus of elasticity for the beams, columns and cross-bracing is
E = 200010° kN/m?. The framework represents a bracing unit of the Cardington
Steel Building which was constructed in 1993 at the Building Research
Establishment’s Large Building Test Facility in Cardington (Armer and Moore,
1994) and its geometrical characteristics are given in Table 7.1. The size of the bay
and the storey height are both 3.0 m.

The critical load can be determined by using the methods presented in
Section 2.3.1 and Section 2.4.1. The procedure given in Section 2.4.1 will be used
here.

The shear stiffness of the structureis

RE P
_ - _ (Table 2.6}
AENZ AEN
4.243° 3 -
- et N 3| =215005KN
3750103 2010° BF 573010 3 (2010° (3

The globa second moment of areais
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n
Iy = Z A t? =1.74[107% 1.5% (2 = 0.0783m* {2.32}
1

Table 7.1 Cross-sectional characteristics for framework SR-X.

Characteristics Columns Beams Diagonals
Cross-section 305x305UC137  356x171x45UB  250/15
Area[m?] 1.74110° 5.7310° 3.7510°
Second moment of area[m*] 3.281110* 1.207010* 1.95310°

H=8h=8-3=24m

77 7777 K

3m

$t

Figure 7.4 Eight-storey framework SR-X with cross-bracing.

Load distribution factor rg is obtained from Table 5.1 as rs=0.834. The
global bending critical load is

N = 7.837rEl, _ 7.837 [0.834[210° [0.0783

=177699 kN 2.63
9 H? 242 {263
Asafunction of
Bs :L:@:Lﬂ {2.62}
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the critical load parameter is obtained from Table 2.5 as

a, = 0.5838—%(,83 -1.2)= 0581 {Table 2.5}

Finally, the critical load of the framework is

Ng = a,K =0.581215.295=125.1MN {2.61}
The “exact” (FEM) solution (Axis, 2003) is

N (FEM) =126.9 MN

The continuum solution is conservative and the difference between the
continuum and FEM solutionsis 1.4%.

75THE CRITICAL LOAD OF EIGHTEEN-STOREY COUPLED SHEAR
WALLS

Determine the critical load of coupled shear walls CSWSH3 shown in Figure 7.5,
using the eguations given in Sections 2.3.1, 2.4 and 2.5. The structure is eighteen-
storey high and consists of three shear walls that are connected by beams at every
floor level. The story height is h=3.0 m and the total height of the structure is
H =54.0 m. The wall thicknessis t = 0.20 m and the cross-section of the beamsis
0.2 m/1.5m. The cross-sectional area and the second moment area of the beams
are A,=0.3m? and |, =0.05625 m*, respectively. The modulus of elasticity of
the structure is E=30000 MN/m?%. The modulus of elasticity in shear is
G = 12500 MN/m?.

Taking into consideration that the two sets of beams are of identica
characteristics, the part of the shear stiffness of the coupled shear walls that is
associated with the beamsiis

K. = 6E'b((|I +5)%+ (1 +Sz)2)(n_1) - {2.71} and {2.69}
|;3h(1+12 ’;E'b J
;°GA,

*
1

_ 60300° E(D.05625((2 +2)2+(2+ 3)2)

2 141212 [B10* [0.05625
2211.2510% 0.3

2=13204MN

The part of shear stiffness that depends on the wall sectionsis
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Figure 7.5 Eighteen-storey coupled shear walls CSWSH3.
With the two components, the shear stiffnessis

K = Kyf = Ky—Re_— =13004— 27— gae4 MN {254}
Ky + K, 13204 + 23577

where the reduction factor r is
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= Ke 2T _en {255}
K,+K. 13204+ 23577

The globa second moment of areais

n
lg= Y At} =02020(5° 2=162m" {2.56}
1

The local second moment of area of the coupled shear walls, amended by r,
is

n 3
ENNE 0.641%[224-33) = 0.4594 m"* (257}
1

Load distribution factor r is obtained from Table 5.1 asrs = 0.919.

Parameter c; is needed for the calculation of the critical load. Its value is
obtained from Table 2.3 as a function of

| __ 04594 _ o7 {2.59)
L+1g 0.4594+16.2
and
2 2
KH® _ 845 5374 {260}
E(I+1g)r, 3C10°(16.2+04594)0.919

With the relevant values from Table 2.3

0.01 0.05
50 7.298 7.344
100 7.560 7.583

parameter ¢, is obtained either as an “intelligent guess’, based on the four
“surrounding” values above as ¢; = 7.3, for example, or after three interpolations as

1. 7.298+ w(0.02758— 0.01) =7.318
0.05-0.01

2 7.56+M(O.02758— 0.01) =7.570
0.05-0.01

3 ¢ =7318+ 23185374 500)=7.337
00-50
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The critical load of the coupled shear walls can now be calculated:

=7.337 e =1156 MN {2.58}

cr

E(l +1g)r 3010 [16.6594 0.919
2

The“exact” (FEM) solution (Axis, 2003) is:
N, =1207 MN

The continuum solution is conservative and the difference between the
continuum and FEM solutionsis 4.2%.

It is mentioned in Section 2.3.1 that when the local second moment of area of
the columns/shear wall sections is small compared to the global second moment of
area, then an even simpler method, presented in Section 2.4.1, can be used for the
determination of the critical load. This is the case now, as ratio {2.59} above is
very small, so the method in Section 2.4.1 can safely be used.

The global bending part critical load is

N o [8STElgl, _ 7.83703110° 16.62(0.919

R EE e =12004MN {2.63}

As afunction of the shear critical load and the global bending critical 1oad

/Bs =— =~ =705 {262}

the critical load parameter is obtained from Table 2.5

a, =0.1253+ m(?.s— 7.05) = 0.1329 {Table 2.5}

75-7.0
and the critical load of the structure emerges as

Ng = a,K =0.1329[8464 = 1125 MN {2.61}

The difference between the continuum and FEM solutions is now 6.8%.
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The maximum rotation and deflection of
buildings under horizontal load

Two worked examples are given here for the calculation of the maximum
deflection and rotation of buildings under horizontal load, braced by frameworks,
shear walls and cores. The calculations are based on the material presented in
Chapters 2 and 3, and the numbers of the equations used will be given on the right-
hand side in curly brackets.

8.1 THE MAXIMUM DEFLECTION OF A SIXTEEN-STOREY
SYMMETRIC CROSS-WALL SYSTEM BUILDING

Calculate the top deflection of the sixteen-storey building whose layout is shown in
Figure 8.1, subjected to a uniformly distributed lateral load of intensity
w* = 1.3333 kN/m? in direction y. The building is braced by two two-bay concrete
frameworks (F5), two two-bay steel frameworks with cross-bracing (F11) and two
concrete shear walls (W3) in direction y. The same bracing units were used in
Chapter 2 for the accuracy analysis of single bracing units (Figure 2.7). The storey
heightish =3 m. The “exact” (FEM) computer analysis resulted in yia = 56.3 mm
and this result is to be checked. The stiffness of the four shear walls lying in
direction x is so small in direction y that—in line with structural engineering
practice—their contribution isignored.

1F5 =F11 w3 w3 sF11 1F5 12m

W3 w3

30m
1, “

Figure 8.1 Layout of symmetric building for the deflection analysis.
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In making use of symmetry, it is enough to consider half of the structure. The
horizontal load on half of the structure is

w=1.3333[15=20kN/m

Because of the symmetric arrangement, the rotation of the building is zero.

The bracing system for half of the structure consists of framework F11,
framework F5 and shear wall W3 (Figure 8.2). The calculation consists of two
parts: first, the three individual bracing units will be considered, based on the
relevant sections in Sections 2.1 and 2.6, then, having identified the base unit, the
top deflection of the building will be determined using the equations given in

Section 3.1.

356x171x45UB

15/250
305x305xUC137

0.4/0.4
0.4/0.7
777 77 7
6m  6m
b) F5

0.2/6.71

H=48m

c) W3

Figure 8.2 Bracing units for the sixteen-storey building.

8.1.1 Individual bracing units

The stiffness characteristics of the three different bracing units are determined first.

Bracing Unit 1: F11

The modulus of elasticity for the two-bay steel framework with cross-bracing is
E = 2010° kN/m?. General data for the columns, beams and diagonals are given in

Figure 8.2/aand in Table 8.1.

The shear stiffness of the structureis

d3

K:(n—l)(

-1
+ =
A E4hI? AhEth

{Table 2.6} & {2.69}
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3
_ 2[ 4.243 N 3

-1
= 430590 kN
0.00375[2[10° (3(3° 0.00573(210° [:BJ

Table 8.1 Cross-sectional characteristics for framework F11.

Characteristics Columns Beams Diagonals
Cross-section 305x305UC137 356x171x45UB 15/250
Area[m?] 0.0174 0.00573 0.00375
Second moment of area[m*] 0.0003281 0.0001207 0.00001953

The global second moment of areais
n
lg= > A7 =0.0174(F 2=0.3132m" {232}
1

The local second moment of area (with r = 1, because of the cross-bracing) is
n

I =1 I¢; =0.0003281(3= 0.0009843m" {231}
1

The total second moment of area for the bending stiffnessis

I+ =1+1,=0.3132+0.0009843= 0.3142 m* {2.23}

Auxiliary parameters a, b, s, Kk and «H are also needed for the calculation of
the deflection:

a= K = B0 _n06eg7 p= Ko 43050 o603
El 2108 0.0009843

I + 0.0009843

s=1+—=1
g 0.3132

=1.00314 [0 {2.14}

Kk =+/a+b=40.00687+21873=1.4813 and kH=711

With the above auxiliary quantities, the maximum top deflection of the
framework can now be calculated:
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{2.24}

wH* wWH? WEl (1+4H sinhaH
ymax:y(H): + - ( _1)

8El; 2Ks?® K323\ coshaH

__ 2om8* 20(a8® _20r2010° E(D.OOO9843(1+ 71.1sinh71.1 1)
8[2M10°[0.3142 2[430590 4305907 cosh71.1

Ymax = 0.2112+0.0535-0.0015=0.263m

The stiffness of Bracing Unit 1 is:

§=—=———=380= {3.2}

Bracing Unit 2: F5

The modulus of elasticity for the two-bay concrete framework is E = 25010° kN/m.
General data for the columns and beams are given in Figure 8.2/b.
The part of the shear stiffness which is associated with the beams is

=2 = 71111kN {2.28}

_ ”iua bi _ 12[25M10° [0.4*
b Lh 12063

i=1
The part of the shear stiffness which is associated with the columnsis

K = 2“112E| ci _ o1225010° [0.4[0.7
¢ e 1208

=1143333kN {2.29)
i=1

The above two parts define reduction factor r as

Ke _ 1143333

r= =
Ky +K, 71111+1143333

= 0.9414 {2.30}

The shear stiffness of the framework can now be determined:

K=Ky—Fe =71111— 1143838 _ge0a7kn {227}
Ky + Ky 71111+1143333

For the local bending stiffness (EI=El.r), the sum of the second moments of
area of the columns should be produced (and multiplied by reduction factor r). As
the bays of the framework are identical, the second moment of area of one column
issimply multiplied by n and r (the reduction factor):
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n 3
I =r) I =0941413 AL0.7

1

=0.03229 m* {2.31}

The global second moment of areais
n
lg= D A,t? =040.76° 2=20.16m" {232}
1

Thetotal second moment of area for the bending stiffnessis

I =1+1g=1r+1,=0.03229+20.16= 20.1923m" {2.23}

Auxiliary parameters a, b, s, Kk and «kH are also needed for the calculation of
the deflection:

= Ko OO _gooose8, b== 8097 _gogp
El, 2510°(20.16 El  2510°[0.03229
s=14 - =14+908229 1 5016 110 (214
| 20.16

g

K =+/a+b =4/0.0001328+ 0.0829 = 0.2882 and  «H=13.83

With the above auxiliary quantities, the maximum top deflection of the
framework can now be calculated:

{2.24}

yo = y(H)= wH®  wH? _ wEl (1+KHsinh/<H _1j
e 8El; 2Ks® KZ2s®| coshaH

_ 20(28"* , 208> 2002510° [(D.03229(1+ 13.83snh13.83 1}
8(25(10°[20.1923 2[66947 66947 cosh13.83

Ymax = 0.0263+ 0.3441-0.0462 = 0.3242m

The stiffness of Bracing Unit 2 is:

5=t -1 _300L {32
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Bracing Unit 3: W3

The modulus of easticity for the concrete shear wall is E = 25M10° kN/m?. Its
geometrical characteristics are given in Figure 8.2/c. The maximum deflection of

the shear wall is

4 4
= y(H) = ‘g:l = 20%82[6 3 =01054m (272}
8@5M10° — "=
Its stiffnessis
1 1 1
= = __=9485— 3.2
S Yoax  0.1054 m {32}

8.1.2 Base unit. Maximum deflection

As the shear wall cannot be a base unit and the b-value of framework F11 is
greater then the b-value of framework F5 (2.1873 > 0.0829), the base unit is
framework F11 with El = El4, Elg = Elg1 and K = Kj.

The apportioner for the base unit is

. R 3.8 = 0.232 {33}
S+S,+S, 38+300+9485

The load on the base unit is

W, = gyw = 0.232[20 = 4.64 kN/m (3.1

The following stiffness ratios and coefficients are needed:

o = Elp _ 2500°0.03229 _ = Kz = 66947 e
"B, 200°0.0009843 K, 430590
_Ely, 25M10°[20.16 - 8,046 (316}

Bl 201003132

f-1

145 % 1+ 41
) C;
a= RN 4:;’0590 8.046 _ (000379
Elg a; 200°03132,, 41
e 0.1555

!
=
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p=K T - 4305% 2 -015%
El a, 2010°[0.0009843,, 41
W2 0.1555
j=1 "
s=1+2 214+ 200087 _, 5504 rmio
b 0.1599

K=+4a+b =40.000379+0.1599 = 0.40, kH =0.4048=19.22 {3.13}

The maximum deflection of the building at H = 48 m can now be determined:

(3.14}

wH® WH? _WEl (1+RHsinh/?H _1j

=vy(H) =
Ymax = Y(H) 8El; 2Ks? K?%*| coshikH

__ 464m8"  464[48° _4.64[2(10°(0.0009843(1+192sinh1922 _,
82110°M.3142 2430590 4305907 cosh19.2

Ymax = 0.049+ 0.012-0.000=0.061m =61 mm

The continuum solution is conservative. The difference between the
continuum and FEM solutionsis 8.3%.

8.2THE MAXIMUM DEFLECTION OF A TWENTY-EIGHT STOREY
ASYMMETRIC BUILDING BRACED BY FRAMEWORKS, SHEAR
WALLSAND A CORE

Calculate the top rotation and deflection of the twenty-eight storey building whose
layout is shown in Figure 8.3, subjected to a uniformly distributed lateral load of
intensity w* = 1.0 kN/m? in direction y. The size of the layout isgiven by L =24 m
and B =12 m. The building is braced by two one-bay frameworks (F1), one two-
bay framework (F5), two shear walls (W4) and a U-core (U). The modulus of
elasticity of the concrete bracing units is 25M10° kN/m?. The storey height is
h =3 m. The FE computer analysis resulted in Yy = 404 mm and this result is to
be checked. The bracing units are numbered as shown in Figure 8.3. General data
for the bracing units are given in Figure 8.4.

Following the establishment of the stiffnesses of the units, the maximum
deflection of the building is calculated in two parts. The deflection of the shear
centre axis is determined first, then the additiona deflection due to the rotation
around the shear centreis added.
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8.2.1 Individual bracing units
The stiffness characteristics of the four different bracing units are determined first.

Bracing Unit 1 (identical to Bracing Unit 6): F1

Both the width and the depth of both the beams and the columns are 0.4 m/0.4 m
(Figure 8.4/a).

w
INENNNENNNENNNNNNNNNNENNNNN NN NNNNENNNN N NN NN RN NN -
+— | — >
(3):wa
om Yo=t;=ty=6m
s+ ) ¢ 2 .
6m xcﬂi ts=t;=6m
(5):wa
- | I ——
6m | 6m | 6m | 6m
A A 7
o=t =1341 $,=4886 |
\
L=24m
v Yo vY
Figure 8.3 Layout for the deflection analysis.
The part of the shear stiffnesswhich is associated with the beamsis
n-1 6 4
12El
b=y — - 122007047 _ aoeng N {2.28}
~ |h 12063
The part of the shear stiffness which is associated with the columnsis
0 12El 6 4
0=y —5C - pRREBAC DA om0 kN {2.29}

= 1218

The above two parts define reduction factor r as
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K 142222

= C__ = =0. {2.30}
Ky + K, 35556+142222
The shear stiffness of the framework can now be determined:
K=K, Ke = 35556 0.8 = 28445kN {2.27}
Kb + c

For the local bending stiffness (EI=El.r), the sum of the second moments of
area of the columns should be produced (and multiplied by reduction factor r):

n 4
_ _ 47 4
| = rzl: l; =0.82 Ta 0.00341333m {2.31}
The global second moment of areais
n
ly= Z A t? =040.403° 2=288m" {2.32}

1

Thetotal second moment of area for the bending stiffnessis

Iy =1+14,=0.00341333+2.88 = 2.8834 m* {2.23}

Auxiliary parameters a, b, s, Kk and «kH are also needed for the calculation of
the deflection:

a= < = % = 0.000395, b=+ = 628445 =0.33334
Ely 25(0°(2.88 El  25[10° 0.00341333
s=1+ 1 =14 20031 5515 o
| 2.88

g

Kk =+a+b =40.000395+0.33334 = 05777 and kH=48.53 {2.14}

With the above auxiliary quantities, the maximum top deflection of
framework F1 can now be calculated:

(2.24)

wH* wH? WEl (1+&HsinhxH
ymax:y(H): + ( _]J:

8El, 2Ks? K253\ coshaH
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__ 24[B4" | 24(B4° 24[25[10°[0.003413(1+48535inh48.53 _,
8(25(10°(2.8834 2[28445 28445 cosh48.53

Ve = 2.072+2.977-0.120 = 4.929 m

The stiffness of Bracing Unit 1 (and Bracing Unit 6) is:

§=§=——=— =02020L {32}
Vi 4929 m
0.4/04 0.4/0.4 0.3/6.0 0.3/4.15

—

£
0.4/0.7 %
0.4/0.4 T
777 777 Yedd 777 777 -~
6 6m , 6m 6.0m 0.15,h=4
F—F St * # H——+
a F1 b) F5 o w4 d) U-core

Figure 8.4 Bracing units for the twenty-eight storey building.

Bracing Unit 2: F5

The width and the depth of the beams and the columns are 0.4m/0.4m and

0.4m/0.7 m (Figure 8.4/b).
The part of the shear stiffness which is associated with the beams is

_ G 12El,; 1202500° 0.4%
0= 2.

=2 = 71111kN {2.28}

L |h 120603
i=1

The part of the shear stiffness which is associated with the columnsis

~ Z“: 12El; _ ,12[25[10° 0.4[0.7°
o 1208

c
i=1

The above two parts define reduction factor r as

=1143333kN {2.29}
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K. 1143333
r=

" Kp+K, 71111+1143333

=0.9414 {2.30}

The shear stiffness of the framework can now be determined:

K=K, Ke _ 71111ﬂ = 66947 kN {2.27}
Kp + K, 71111+1143333

For the local bending stiffness (EI=El.r), the sum of the second moments of
area of the columns should be produced (and multiplied by reduction factor r). As
the bays of the framework are identical, the second moment of area of one column
issimply multiplied by nand r (the reduction factor):

n 3
I =r) I =0941413 AL0.7

1

=0.03229 m* {2.31}

The globa second moment of areais
n
lg = Z A it? = 0.4[0.7(6° (2= 20.16m" {232}
1

The total second moment of areafor the bending stiffnessis

[f =1+1g=1r+14=003229+20.16= 20.1923m" {2.23}

Auxiliary parameters a, b, s, kK and «kH are also needed for the calculation of
the deflection:

= K o OO _gooon308, b=—=— M7 _gogog
El, 2500°20.16 El  25010° [0.03229
s=1+ I'_ —1+ 0'03229 =1.0016 CTI0

Kk =+a+b =40.0001328+0.0829 =0.2882 and kH=24.21 {2.14}

With the above auxiliary quantities, the maximum top deflection of the
framework can now be calculated:

wH®  wH?  wEl [1+KH sinh xH _1j_

2.24
8El; 2Ks® KZ2s*\ coshiH {224

Ymax = Y(H) =
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_ 24184" , 24[84>  24[25[10° 0.03229 (1+ 24.21sinh24.21 1}
8[25[10°[20.1923 266947 66947 cosh24.21

Ymax = 0.2959+1.2648-0.1003=1.460m

The stiffness of Bracing Unit 2 is:

5,2:—:—:0.6849E {3.2}

Bracing Unit 3 (identical to Bracing Unit 5): W4

The thickness and the width of the shear wall are 0.3m and 6.0 m (Figure 8.4/c).
The maximum deflection of the shear wall is

wH* _ 24m4*

Ymax = Y(H) = +=1.106m {272}
8Bl o e s 030
12
Its stiffnessis
1 1 1
=~ =——_=0904— 32
> Ymex  1.106 m (32

Bracing Unit 4: U-core

The dimensions for the core aree b=40m, h=40m and t=t,=03m
(Figure 8.4/d). Its stiffness characteristics are calculated using Table 2.7:
Thetorsional constant:

3
:é(zm? +btd) :%(2m.o+ 4.0) = 0.108 m* {Table 2.7}
The warping constant:

_teh%® 3h+2t,b  0.32° 32 33+23

© = =18.29m° {Table 2.7}
12 6t;h+t,b 12 624+4
Location of shear centre;
3t h? 2
o=t _ 3% _1714m {Table 2.7}

T 6t;h+tb 6@+4
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Second moment of areawith respect to local axis x:

| =11.245m*

_4154.3° 3.853.7°
X 12 12

The maximum deflection of the corein directiony is

wH* 2484*
= y(H) = = =0.531m 2.76
Ymac = Y(H) 8El, 8[2510°M11.245 {276
Its stiffnessis
S, = Y < {3.2
Ymax 0531 m

Thetotal horizontal load in direction y is transferred to the shear centre in the
form of aforce and atorque. The force results in the uniform tranglation v, of the
building while the torque develops rotation ¢ around the shear centre, which then
causes additional tranglations v, as shown in Figure 8.5. The uniform trandlation is
determined first.

8.2.2 Deflection of the shear centre axis

To balance the horizontal load in direction y, Bracing Unit 2 (F5) and Bracing
Unit 4 (U) offer resistance. The contribution of the other four units, being effective
in the perpendicular direction, is negligible and is ignored. In using the relevant
stiffnesses calculated above, the location of the shear centre (Figure 8.3) from the
left-hand side of the layout is

f+m
> sx
%o = i

Zl)s

where h, isthe size of the flange of the U-core.
Because of symmetry, the location of the shear centre in the vertical direction
is known without any calculation as

_ Sy(L-h,-e) _1.88324.0-4.0-1.714)
S, +5, 0.6849 +1.883

=1341m {317}

¥, =6.0m {317}

Of the two participating bracing units, Unit 2 (F5) is the base unit (as the
U-core cannot be a base unit).
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The apportioner for the base unit is

G2 = 0089 5564 {33
S,+S, 0.6849+1.883
and the load on the base unit is
W, = wd, = 0.2667 24 = 6.40kN/m {3.1}

Auxiliary parameters a, b, s, k and xH are needed for the calculation of the
deflection:

K 66947

a=— = . =0.0001328 {3.16}
El, 25010°[20.16
b= LS f :&1: 0.083
El 25110° [0.03229
s=1+ 221400001828 ) 516 10 {3.13}
b 0.083
K=+ya+b =4/0.0001328+0.083=0.288 and «H=24.22 {3.13}
lW
— T I — | h—
® @ ® @
Xe
® ® ® ® i
I n I A
J( VA ————
Vo B
------------------------------------------------- L Xo L
7 7
a) uniform translation b) rotation around the shear centre

Figure 8.5 Deflection of building. @) uniform part, b) due to rotation around the shear centre.

With the above auxiliary quantities, the maximum top deflection of the shear
centre axis can now be calculated (Figure 8.5/a):
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(3.14}

4 =2 . .
vozy(H):WH +WH _ WEI (1+/?Hsmh/?H _1j

8El; 2Ks* K%\ coshikH

_ 6.484" , 64 B4°  6.4[25[10° (0.03229 (1+ 24.225inh24.22 1)
8M25M10°[20.1923 2066947 66947° cosh24.22

Vv, =0.079+0.337-0.027 = 0.389 m

8.2.3 Rotation around the shear centre. Maximum deflection

Rotation around the shear centre causes additional translations and the left-hand
corner of the building will develop the greatest deflection. The distance between
the shear centre and the centroid of the layout (Figure 8.3) is

X, = %, —% =13.41—2i2'0 =1.41m

and the torsional moment per unit length thereforeis

kNm
m =wx, =2401.41= 33.84T {3.29}

All six bracing units (F1+F5+W4+U+W5+F1) take part in resisting torsion
and to determine the rotation of the building, the perpendicular distances of the
bracing units from the shear centre are needed. In the coordinate system whose
origin is in the shear centre and whose axes are paralel with the sides of the
building (Figure 8.3), these are:

t =Y,=60m t,= X%, =13.41m ty= Y, =6.0m
t4:L_i0_h4_e:4.876m t5:B—)_/O:6.Om tGZB—)_/OZG.Om

Of the frameworks, potential base units, Unit 1 (F1) is the base unit (as its b-
valueis greater than that of Unit 2: 0.33 > 0.08).

The rotational stiffnesses are needed to establish the moment share on the
base unit:

S,1 =17S, = 6°[0.2029=7.304m, S, =t3S, =13.41° [0.6849 =123.2m {3.25}

S, =t3S; =6%[0.904=3254m, S,,=t;S, =4.876°[1.883=44.77m {3.25}
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Sys =125 =62M.904=3254m, S, =t2S, = 62[0.2029=7.304m

The torsional apportioner related to the base unit (F1) is

Q= S, _ 7.304
@ fm 7.304+123.2+32.54+44.77+32.54+7.304

w,i
i=1

and, with the apportioner, the torsional moment share on the base unit is

i = ma, = 33.84[0.0295= O.998kNTm

The torsional stiffness characteristics of the base unit are:

El,, = EIt? = 25[10° [0.00341333[6° = 3.072[10° kNm*
El g, = El ;t* = 25010° [(2.88[6” = 259210° kNm"*
E(l, +14,) = (3.072+2592)10° = 2595[10° kNm"

(GJ) = Kt? = 2844562 = 1.02410° kNm?
The following stiffness ratios and coefficients are needed:

_El, _ 003220 _, K,

=—22="227, a,=—2=——1"222_1

El,, 288 El, 0.00341333
El
bz—&—%:l.o, CZ__93_@_ 0
K, 28445 El,, 288
f-1
1+5 4 14 946
gz =i 28445 70 - 000022

l
-1, ~ 6
Blg ,ya 2500°(2887, 946
s 2.353

{3.25}

=0.0295 {3.26}

{3.28)

{3.19}

{3.20}

{3.21}

{3.16}
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LS ff_l - 628445 3 _01661
El a; 25010°[0.00341333,, 946
1+ b 2.353
j=1 "
5214+ 2214200022 _ ) 5513 10
b 0.1661

K =va+b =/0.00022+0.1661 = 0408, &H =0.408[84=3426 {3.13}

The maximum rotation of the building at H = 84 m can now be determined:

mH 4 mH?2 mMEl , (1+&H sinhkH
B = H(H) = - = -

8E(I,+1y,) 2(GJ)s2 (GJ)?s°\ coshiH lj{3'24}

_ 0998(84*  0.998[847 _0.998[3.072m06[1+ 34.26sinh34.26 j
8[2595M10° 201.024010°  (1.02410°)? cosh 34.26

=0.00239+ 0.00344 - 0.00010 = 0.00573 rad

This rotation causes additional deflection, in proportion to the distance from
the shear centre. Maximum deflection develops at the left-hand side of the building
(Figure 8.5/b), where this deflection is added to the uniform deflection, resulting in
the overall maximum deflection of the building as

Vimax = Vo Vg =V + #%, = 0.389+0.00573[13.41 = 0.466 m

The continuum solution for the maximum deflection of the building is
conservative. The difference between continuum and FEM solutionsis 15.3%.
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The fundamental frequency of buildings

Two worked examples are presented in this chapter for the calculation of the
fundamental frequency of buildings under uniformly distributed mass over the
floors, braced by frameworks and shear walls. The calculations are based on the
material presented in Chapter 4, and the numbers of the eguations used will be
given on theright-hand side in curly brackets.

9.1 THIRTY-STOREY DOUBLY SYMMETRIC BUILDING BRACED BY
SHEAR WALLSAND FRAMEWORKS

Calculate the fundamental frequency of the thirty-storey reinforced concrete
building (Figure 9.1) subjected to uniformly distributed mass over the floors. The
modulus of elasticity is E = 25000 MN/m?, the modulus of elasticity in shear is
G = 10400 MN/m?, the storey height is h = 3 m and the total height of the building
is H=90m. The thickness of the shear walls is 0.35m. The weight per unit
volume of the building is assumed to bey = 2.5 kN/m°,

Before the whole system of four frameworks and four shear walls is
investigated, it is advantageous to establish the basic characteristics of the two
types of bracing unit.

9.1.1 Individual bracing units

Bracing Unit 1 (framework, identical to Bracing Units 2, 5 and 6 — Figure 9.2/a)

The cross-sections of the columns and beams of the four identical frameworks are
0.35/0.35 and 0.35/0.50 (metres), respectively.
The shear stiffness that is associated with the beams of the framework is

L 12E, 1y P ’
o= S 2k 122500 DIDED s {4.2)

= 12(503

The shear stiffness that is associated with the columns of the framework is

= =125052kN {4.3}

~ ilZECI ¢j _,12[(25[10°[0.35*
ot h2 T 123

j=1
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The combination of the two part shear stiffnesses gives the “origina” shear

stiffness of the framework:

K
K,= Kbl—c‘1 = 145833ﬂ =67323kN
" Kp1tKey 145833+ 125052
where the reduction factor
K
R=—ol = 125052 _ 4616
Ko+ Ky 145833+125052
is introduced.
, 25 | 5 , 25 |
\ 7 7 1
-~ u @ u -~
3
| 5
+ @
o=C
4 Wy 3 - @) @@=
-~
] 5
i ®
— | | | | | -
L 5m L 5m L
7 7 \

Figure 9.1 Layout of thirty-storey building for the frequency analysis.

(4.1}

{44}

Mass distribution factor r¢ is obtained from Table 4.1 as a function of the

number of storeys:

re =0.967

The mass density per unit length is calculated using Equation (4.7):

m=pA=2 1B =-221000= 2548 kg/m
g 9.81

{Table4.1}

{4.7}
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The square of the fundamental frequency associated with the “original” shear
stiffness of Bracing Unit 1is

2 1 r?K, 0967267323

fo, = = = 0.01906 HZ 46
17 (4H)2 m  (4090)2[25.48 (48}

The globa second moment of area of the cross-sections of the columnsiis:
n
— 2 _ 2 — 4
|g,1—z'°t,jtj =0.35[0.35(%° [2=6.125m {4.9}
j=1

The sguare of the fundamental frequency that is associated with the global
full-height bending vibration of the framework is

0.313r7E,| 2 6
fgzl - ; clgl _ 0.313[(|).96Z1 [(2500° [6.125 — 0.0268HZ {48}
' H"m 90" [25.48
0.35/0.50 0.35/4.0
0.35/0.35 H=90m
777 77 bezd S
5m  5m 40m
a) Units1,2,5& 6 b) Units3,4,7& 8

Figure 9.2 Bracing units for the building.

There is an interaction between the “original” shear and globa bending
modes that reduces the effectiveness of the shear stiffness. The factor of
effectiveness can be calculated using the squares of the two relevant frequencies as

fZ
$2,=—9 = 00268 _ 5844 {4.10}

T fg+ 14, 0.0268+0.01906
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Bracing Unit 3 (shear wall, identical to Bracing Units 4, 7 and 8 — Figure 9.2/b)
The size of the shear wall is 4.0 metres with a thickness of 0.35 m. It only has
bending stiffness which will directly be incorporated into the lateral model.

9.1.2 Lateral vibration in direction y (Bracing Units 1, 2, 3and 4)

Because of double symmetry, the behaviour (and the fundamental frequency of
lateral vibration) of the building isidentical in directionsx and y.

The effective shear stiffness for the whole system (that contains two
frameworks) is obtained as

f
Ke= Y sf; K; = 05844 (67323(2 = 78687 kN {4.11}
1

The“original” shear stiffness:

f
K = K; = 67323(2 = 134646 kN {45}
i=1

The effectiveness factor for the lateral system can now be established:

s :1/& :1/ 78687 _ ) 7644 {4.12}
K V134646

The square of the frequency that belongs to the effective shear stiffnessis:

o_ 1 riK. _ 09672 (78687
> (4H)> m  (4[90)°(25.48

= 0.02228HZ* {4.13}

The bending stiffness for the system (Bracing Units 1, 2, 3and 4) is:

f m
Bl = Eglo+Eyly =B D loili +Ey D lwi = {4.14}
1 1

4 3
0.35 @Jz = 93362195 kNm?

=25[10°%| —>=-0.4616+
12

The square of the lateral frequency that is associated with this bending
gtiffnessis
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2 0.313r2El _ 0.313[0.967° (93362195
b H%m 90* [25.48

=0.01635H7 {4.15}

With the non-dimensional parameter

k=H [Ke _go | 7867 )63 {417}
El 93362195

the frequency parameter is obtained from Table 4.2 as

17=0.9809 + % (k - 2.50) =1.0081 {Table 4.2}

The lateral frequency of the system can now be calcul ated:

2 2, /72 kz
fu="f,=[f +fs (0313 = Jsf fb = {4.18}
2 2
= J0.01635+ 0.02228 + [% - 2'6513 - 1}0.7644 [0.01635 = 0.223Hz

9.1.3 Puretorsional vibration (with all bracing units participating)

The calculation is made fairly simple by the fact that the system is doubly
symmetric and the location of the shear centre and the location of the bracing units
in relation to the shear centre are readily known.

Theradius of gyrationis

2 2 2 2
iszLIZB +2 = \/10 *10° _ /1667 =4.08m {4.20}

The“original” Saint-Venant torsional stiffnessis

m f
(G)= ZG‘]k +Z((Ki)x yi+ (Ki)yxiz)
1

1

= 4&150.353 [4.0010.4010° + 46732352 = 9110433KNm? {427}

The effective shear stiffnessis
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f

(GJ)e = Zm:GJk +Z((Ke,i)x yo + (Ke,i)yxiz)
1

1

=4 91:30.353 [4.0010.4[10° + 4[0.5844 [67323[5% = 6312480 KNm?  {4.21}

The effectiveness factor is the ratio of the effective and “origina” shear
stiffnesses:

=0.8324 {4.26}

o = [(Ge _ \/6312489
"V (GJ) V9110433

The warping stiffness of the system originates from the bending stiffness of
the four shear walls and the bending stiffness of the columns of the four
frameworks (with the own warping stiffness of the bracing units being zero):

m

f
Elw = EWZ(I w,k + (Iw,k)x yl? + (Iw,k)yxlf)-" ECZ((IC,i ri)x Yi2 +(|c,i ri)yxiz)
1

1

3 4
=25 mo{%4 2.5% + %0.4616 @ [52J =1168109768 kNm* {4.22}

The sguare of the pure torsional frequency associated with the warping
stiffnessis

(o 0.313r7El,, _ 0.313[0.967% [1168[10°
“ iZH*m 16.67 90" [25.48

=0.01227 HZ* {4.24}

and the formula for the pure torsional frequency associated with the Saint-Venant
gtiffnessis

(o T#(GY)e _ 0967°63110°
' 16i2H?m  16[16.67[907 [25.48

=0.1072 HZ {4.25}

With the non-dimensional parameter

6
kp=H [(Ee - g0 [0SO _ g5 (4,28}
El, 1168010°

the torsional frequency parameter is obtained using Table 4.2 as
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Ny =1.949+ %(6 615-6.5) = 1.977 {Table 4.2}

The pure torsional frequency can now be determined:

Ny ks
fo= [f2+f2+ f2 4.23
¢ w ot {0.313 5 J%’ {423
2 2
Jo 01227+ 0.1072 + [109;173 6. 6515 —1}0.8324 [0.01227 = 0.384 Hz

Because of the doubly symmetric arrangement of the bracing system, there is
no coupling among the two lateral and pure torsional modes and the fundamental
frequency of the building is the smallest one of the three “basic” frequencies:

f =Min f,, f,, f, =0.223 Hz {4.38}

9.2 SIX-STOREY ASYMMETRIC BUILDING BRACED BY SHEAR
WALLSAND INFILLED FRAMEWORKS

Calculate the fundamental frequency of the six-storey building whose layout is
shown in Figure 9.3, subjected to uniformly distributed mass over the floors. The
building is braced by two reinforced concrete shear walls and two infilled
frameworks. The thickness of both the reinforced concrete elements and the
masonry infill is 0.3 m. The depths of the columns and the beams are 0.5 m and
0.3 m, respectively. The modulus of elasticity is E = 30000 MN/m? for the shear
walls and the frameworks and E4 = 3000 MN/m? for the masonry The modulus of
elasticity in shear for the shear walls is G = 12500 MN/m?. The storey height is
h=3 m and the total height of the building is H=18 m. The weight per unit
volume of the building is assumed to bey = 2.5 kN/m°.

The basic geometrical and stiffness characteristics are collected in the first
five columnsin Table 9.1. Datain the last two columns can only be calculated after
the location of the shear centre is determined in Section 9.2.3.

The mass density per unit length is calculated using Equation (4.7):

m=pA=2 1B =22 24M12=73.4kg/m (47}
g 9.81

Mass distribution factor r; is obtained from Table 4.1 as a function of the
number of storeys:

r =0.863 {Table 4.1}
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9.2.1 Lateral vibration in direction x

There are only the two shear walls (and no frameworks) that effectively contribute
to the lateral stiffness of the building and the corresponding frequency is

0. 313r _ 0.313[0.863° (B0’ [2.275
f2=f2= f = = 2.065HZ2{4.15
b= w WZ ik = 18* (734 (a5}
and
= \/2.065 =1.437 Hz
L L=24m
| y 8
n 1
7 i
(3 % X
s 2@, @
4
,%fé C | | yc X
B=12m . 0
X
H34 4L
%o
y y

Figure 9.3 Layout of six-storey building.

9.2.2 Lateral vibration in direction y

The two infilled frameworks are modelled by replacing the masonry panels with
diagonal struts of cross-sectional area

A, = 0.150t

where t is the thickness of the masonry wall and 0.15d is the effective width of the
masonry infill (b, in Figure 9.4/8). Equation (2.68) can now be used to determine
the shear gtiffness of Unit 1.
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’E Y
K; = >+
AEShZ  AEh

5 4 -
= o - = 229787kN {2.68)
0.3[0.15[5(310° (342 0.09(3[10" 3
d=5
A, E
h=3
% EdAd
1=4 |
ST F——HF
3 b)

Figure 9.4 Modelling of masonry infill.

Thetotal “origina” shear stiffness of the system is

f
K =) K; = 2[229787 = 459574kN {45}
i=1

Table 9.1 Basic characteristics of the bracing units.

Bracing

Unit X Yi Ix, lyi J X=%-% Yi=¥i~Y
1 24.00 0.00625 4.0
2 16.00 0.00625 -4.0
3 0.0 1.6 0.036 -3.56
4 12.0 0.675 0.027 8.44
z 0.0125 2.275 0.063

The frequency that belongs to the original shear stiffness of Unit 1is

2 1 r?K; 08632229787

2 = = 0.4498 HZ? 4.6
17 (4H)2 m  (4018)2(73.4 (48}

The globa second moment of area of the cross-sections of the columns



Fundamental Freguency 167

n
lg1= Y At =030502° 2=12m" {4.9}
j=1

is needed for the calculation of the corresponding frequency:

o _ 0.313r/El; _ 0.313M0.863” (31107 1.2

=1.0891HZ 4.8
91 H*m 18* 734 {48

With the above part frequencies the effectiveness factor of Unit 1 can be
determined

, _ f& 1080
Sf,l_ 2 2 =
f2,+ 12, 1.0891+0.4498

=0.7077 {4.10}

with which the effective shear stiffness of the whole systemis
2
Ke= ZS?J K; =0.7077 229787 [2 = 325241 kN {4.11}
1

The effectiveness factor of the whole systemis

s = ‘/ﬁ = ,/325241 =0.8412 {4.12}
K V459574

The frequency that belongs to the effective shear stiffnessis

.1 TrfK. 0863 325241
ST (4H)2 m (41872734

= 0.6366 HZ {4.13}

Thelocal bending stiffness of the frameworks
El = 3010’ [0.0125 = 375000 kNm? {4.14}

is needed for the determination of the other component of the frequency:

0.313r2El _ 0.313[0.863° [375000
H*m 18* (734

f2 = 0.011345H7 {4.15}

With the non-dimensional parameter
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k=H ‘/ﬁ =18, 325241 _ 16 76 {417}
El 375000

the frequency parameter is obtained using Table 4.2 as

n=4.408+ &4";08(16.76 -16.5) = 4.472 {Table 4.2}

17-16.

The lateral frequency in direction y can now be determined:

2 2 /72 k2 2
f,= |fr+fo+ -——-1|s f 4,18
y b s (0.313 5 Jsf b { }
2 2
= \/ 0.011345+ 0.6366 + [%437123 - 16';6 - 1J0.8412 [0.011345 = 0.844 Hz

9.2.3 Puretorsional vibration

The calculation starts with the determination of the shear centre. The basic
geometrical and stiffness characteristics of the four bracing units are collected in
Table9.1.

Compared to the two identical Bracing Units 1 and 2, Units 3 and 4 have
negligible stiffness with regard to axis x, and so the shear centre is in the middle of
the two frameworks in direction x:

X, =20m

In direction y, the position of the shear centre is in proportion to the
stiffnesses of the two shear walls:

m
Z I Y, yi
n _ 0625012
dL 2.275
2.y
1

When the location of the shear centre is known, the data can be entered into
the last two columns in Table 9.1 and the radius of gyration of the plan area of the
building can be determined, using the distance of the shear centre and the centroid,
as

Yo =

=3.56m {3.18}
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=% io=2—24—20=—8m {4.34}
yc:g—yo-%—%e 2.44m {4.34}

Theradius of gyrationis

o [12+B?  , (2474122 s _
|p_\/ ot _\/T 82 +2.44% =129.95=11.4m {4.20}

The torsional stiffness characteristics are calculated using the stiffnesses and
the perpendicular distances of the bracing units from the shear centre (ly;, lyi, Ji, %
andy; in Table 9.1).

The*“original” Saint-Venant torsional stiffnessis
2 2
(GI) =Y GJ + D (K;),x? =0.063(1.25010 +
1 1

+ 2297874 [2 = 787500+ 7353184 = 8140684 kNm’ {4.27}

The effective Saint-Venant torsional stiffness is obtained using the (identical)
effectiveness factors of the two frameworks:

2 2
(GI)e =D G+ D (Kei)yX' =0.06311.25010" +
1 1
+229787[0.7077 (42 [2 = 787500+ 5203848 = 5991348kNm?  {4.21}

With the origina and effective Saint-Venant torsional stiffnesses, the
effectiveness factor is expressed as

Sy = J (G)e J SL348 _ , e579 {4.26}

(GJ) ~ \'8140684

When the warping stiffness of the system is considered, only the contribution
of the shear wallsis taken into account as that of the columns of the frameworksis
negligible:

m
El, = EZ(I wi)x V£ = 30107 (1.6[3.56° + 0.675[8.44%) =
1
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= 2.050810° kNm* {4.22}

The square of the frequency for pure torsional vibration that is associated
with the effective Saint-Venant stiffnessis

(2 r?(GJ). _ 0.863% (5991348

= = = 0.09024 HZ? 4.25
' 1612H’m  1611.4°(18° (734 (42}

and the square of the pure torsional frequency associated with the warping stiffness
is calculated as

(2o 0.313r7El,, _ 0.313M.863" [2.0508[10°

°"iZq'm | n4f08'msa 04774 HZ {424
With the non-dimensional parameter
ks =H \/ (EJZG = 18\/% =0.9729 {4.28}
the vibration parameter is obtained using Table 4.2:
11, = 0.5851+ %8':851(0.9729— 0.5) = 0.650 {Table4.2}

Finally, the frequency of pure torsional vibration is

2
Ty k¢ 2
fo= [T5+ 12 f 4.23
\/ ! (o 313 5 Lt {4.23
2 2
= J 0.4774+0.09024 + (g'gia - 0'97529 - 1}0.8579 [0.4774 = 0.796 Hz

9.2.4 Coupling of the basic frequencies

As the centroid of the layout does not lie on either of the principal axes, triple
coupling of the basic modes occurs. Using the squares of the basic frequenciesf,, fy
and f, and the eccentricity parameters
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r,=%=59_07018 ad r,=Y=2%-024 {4.33)
i, 114 i, 114

the smallest root of the cubic equation
(2+a,(t9 +af2-a9=0 {4.31}
is the fundamental frequency of the building. With

_ A7) 14377 0.844% [0.796°
1-rf-1; 1-0.7018*-0.214

= 20188 {4.32}

_ fffy2+f¢2ff+ f;fy2

1-15-15

3

_ 1.437% [0.8447 +0.796° [1.437° + 0.7967 [0.8442

— = 6.998
1-0.7018? - 0.214

IR MR R M M
a, =

1-15-15

_ 14377 [0.7018° + 0.844% [0.214° - 1.437% - 0.844% - 0.796°
1-0.0277% - 0.0617°

=-5115

the fundamental frequency is

f =0.626 Hz

The approximate formula [Equation {4.35} ] would result in

1
_ 1
: 1
f= i2+i2+i2 :( 1 _+ L _+ 1 2) ?-0537Hz {435}
212 1 14372 08442 0.79

for the fundamental frequency. This is good approximation, which can be expected
as the eccentricity of the system isfairly great.
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The global critical load of buildings

Two worked examples are given here for the calculation of the global critical load
and global critical load ratio of buildings under uniformly distributed floor load,
braced by frameworks, shear walls and cores. The calculations are based on the
material presented in Chapters 2 and 5, and the numbers of the equations used will
be given on the right-hand side in curly brackets.

10.1 THIRTY-STOREY DOUBLY SYMMETRIC BUILDING BRACED BY
SHEAR WALLSAND FRAMEWORKS

Calculate the critical load and the critical load ratio of the thirty-storey building
whose layout is shown in Figure 10.1, subjected to uniformly distributed vertical
floor load of intensity Q=80kN/m?’ The modulus of elasticity is
E = 25000 MN/m?, the modulus of elasticity in shear is G = 10400 MN/m, the
storey height ish =3 m and the total height of the buildingisH =90 m.

= 5.0 = 5.0

25 ,4,=25| 4,=25 25
7 7

n n n ke
3
5 — —f ts=5 Columns:
L (7) 0.35m(0.35m
7=25 Beams:
Oo=cC 0.35m[0.50m
4 o w3 - @) @ Shear walls
tg=2.5 0.35m4.0m
+
5 ] — t5 = 5
3 ®
| | | ] -
L
/I

Figure 10.1 Layout of thirty-storey building for the stability analysis.
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10.1.1 Individual bracing units

Before the whole system of four frameworks and four shear wallsis investigated, it
is advantageous to establish the basic characteristics of the two types of bracing
unit. (The building is identical to the one used in Section 9.1 for the frequency
analysis.)

Bracing Unit 1 (framework, identical to Bracing Units 2, 5 and 6 — Figure 9.2/a)

The cross-sections of the columns and beams of the four identical frameworks are
0.35/0.35 and 0.35/0.50 (metres), respectively.
The shear stiffness that is associated with the beams of the framework is

n112E, |, - 3 N
iy _,1202500° .350050° _, \c ooy (5.1}

I;h 12(503

j=1
The shear stiffness that is associated with the columns of the framework is

N 72E.l, - 2 3 .35
Kcl:z c'c,j :3” |25|j.0 [0)35

= o L0285KkN {5.2}

The combination of the two part shear stiffnesses gives the “original” shear
stiffness of the framework:

K
Ky =Ky — = 1458310285 _ghayn {5.3}
T Kpr+ Kea 145.83+102.85
where
K
1 __ 10285 _ 456 {5.4}

r = =
YUKptKg,  145.83+102.85

is the reduction factor.
Load distribution factor r is obtained from Table 5.1 as a function of the
number of storeys:

r,=0.95 {Table5.1}

The globa second moment of area of the cross-sections of the columnsiis:

n
lg1= Y A, jtf =0.350.35(5° 2= 6.125m" {5.6}
=1
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With the global second moment of area, the global bending critical load of
the framework is

_ 7.837rEclgy _ 7.8370.9525010° (6,125

= o~ =140.75MN {5.7}

Because of the different buckling shape of the shear and global bending
modes, there is an interaction between the two modes and the original shear
stiffnessis reduced by the effectiveness factor

N
§=—291 = 4075 _ 700 {5.9}
K;+Ng; 60.31+140.75

Bracing Unit 3 (shear wall, identical to Bracing Units 4, 7 and 8 — Figure 9.2/b)

The size of the shear wall is 4.0 metres with a thickness of 0.35 m. It only has
bending stiffness which will directly be incorporated into the lateral model.

10.1.2 Sway buckling in directionsx and y
Because of double symmetry, the behaviour (and the critica load of lateral

buckling) of the building isidentical in directionsx and y.
The total shear stiffness of thetwo frameworksis

f
K= Z K, = 60.31[2=120.62 MN {5.5}
i=1

The effective shear stiffness for the whole system (that contains two
frameworks) is obtained as

f
Ke= Y Ki§ = 60.3120.7 = 8443MN {5.10}
1

and the effectiveness factor for the whole systemis

s=—e= 9" _07 {5.11}
K 120.62

The total bending stiffness of the system is obtained by adding up the local
bending stiffness of the vertical structural units:
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f m
El = Eglo+ Eyly = B ) Il +Ey Y L, {5.12}
1 1
4 3
=25 mo{ofs 0.4136+ %Jz = 93359 MN

With the above bending stiffness, the local bending critical load of the system
can now be presented as

7.837r,El _ 7.837[0.95[93359

N, =— S —_ = =85.81MN 5.13
With the stiffness ratio
Ko _84.43
=—&=—_"_—~=0.9839 5.1
A N, 8581 {517

the critical load parameter can be obtained from Table 5.2 as

a=33488+ 52128733488 5a09_0.0)= 3539 {Table 5.2}

1.0-09

The sway critical load (that is identical in directions x and y) can now be
determined as

Ncr,x = Ncr,y = NI + Ke + (a—ﬂ—l)SN| {5.18}
=85.81+84.43+(3.539-0.9839-1)0.7 [85.81

=85.81+84.43+93.41= 263.65MN

The effect of interaction between the bending and shear modes is
considerable: the third term (93.41)—responsible for the interaction—amounts to
35.4% of the total critical load.

10.1.3 Puretorsional buckling

Theradius of gyration is needed for the torsional analysis:

2 2 2 2
iszLIZB +t2 = \/10 *10” _ 1667 =4.08m {5.28}
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The “original” Saint-Venant torsiona stiffness is made up from two parts as
both the four shear walls and the shear stiffness of the four frameworks have a
contribution

m f
(GJ)= ZGJk +Z((Ki)x yi+ (Ki)yxiz)
1 1

3
= 4%10.4 [10° + 4[60.31(5° = 8409 MNm? {5.35}

In a similar manner, the effective Saint-Venant torsional stiffness of the
system comes from two sources. the Saint-Venant torsional stiffness of the shear
walls and the effective shear stiffness of the frameworks:

m f
(6902 Y 63+ Y (Kev2 + (Ke)y )
1 1

410.35°

=4 10.4010° + 4[60.310.7 (52 = 6600 MNm? {5.29

The Saint-Venant torsional critical load that belongs to the effective Saint-
Venant torsiona stiffnessis

N, = —=’e = 2= =395 9 MN {5.33}

The effectiveness of the Saint-Venant torsional stiffness is expressed by the
factor

=(G)e 8600 _, 7049 {5.34}

There are no cores in the bracing system so the warping stiffness originates
from two sources: the bending stiffness of the four shear walls and the bending
stiffness of the columns of the four frameworks:

f

Bl = B Y (L) ¥+ (i) 2+ B S (i) 2 + (i) )
1

1

0.3502.0° )
12 '

0.35*
+

52 > 0.4136[52J4:1.168|106MNm4 {5.30}

=25 Elo?’(
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The contribution of the columns of the frameworks (second term) is very

small (0.1%) and can safely be ignored in Equation {5.30} .
The warping torsional critical load of the systemis

_ 7.837rEl, _ 7.837[0.95(1.16810°

N = 6440 MN 5.32
¢ iH? 16.67 907 (532
With parameter
ng,:&:@:amg {5.36}
N, 64.40

the critical load parameter o, is given in Table 5.2 as afunction of parameter £,

o, 12241+ 31971228 6 148 60) = 1246 (Table5.2}

7.0-6.0
The critical load of puretorsional buckling is now obtained as:
Ng g =Ny + Ny + (a5 = B DN, {5.31}
= 64.4+395.9+ (12.46 - 6.148-1)0.7849 64.4 =

=64.4+395.9+268.5=729 MN

The effect of interaction between the warping torsional and Saint-Venant
torsional modes is considerable: the third term (268.5)—responsible for the
interaction—amounts to 36.8% of the total torsional critical load.

10.1.4 Theglobal critical load and critical load ratio of the building

Because of double symmetry, there is no coupling among the three basic modes
(Ner x» Nery @nd Ner,) and the global critical l1oad of the building is the smallest one
of thethree:

Ng = Ng = 263.65MN

Assuming a uniformly distributed floor load of Q = 8 KN/m?, the total vertical
load on the building is

N = nLBQ = 30[10(10(0.008 = 24 MN (6.2}

and the global critical load ratio is
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/1=—=2—L'1=11>1o {6.3} and {6.5}

indicating an adequate bracing system.

10.2 SIX-STOREY ASYMMETRIC BUILDING BRACED BY A CORE AND
AN INFILLED FRAMEWORK

The six-storey building in London has undergone refurbishment during which
some bracing walls have been removed resulting in some reduction in stiffness.
The task is to investigate the structural adequacy of the building.

Figure 10.2 shows a simplified typical floor layout. The lateral and torsional
stiffness of the building is provided by a reinforced concrete U-core and a four-bay
infilled framework. The wall thickness of the coreist = 0.15 m. The location of the
U-core (defined by its shear centre) is given in Table 10.1. The cross-sections of
the beams and columns of the framework are 0.3m/0.3m and 0.3 m/0.5m,
respectively. The four bays are identical at | = 3.75 m. The modulus of elasticity is
E = 20000 MN/m?, the modulus of elasticity in shear is G = 8333 MN/m? for the
concrete structures. The modulus of elasticity is Eg = 3000 MN/m? for the masonry
infill whose thickness is t=0.3m. A ratio of b,/d=0.30 is assumed for the
effective width of the infill when the equivalent diagonal strut is established.

The storey height is h=3.417m and the total height of the building is
H=20.5m.

The global critical load and critical load ratio will be determined to show if
the building has adequate tiffness. The intensity of the vertical floor load is
assumed to be Q = 10.0 kN/m?.

L=40.5m

F ¥
® X
74 n n [ ] >
, 43.75=150 B
1 Yo
(0] X
Yo
= t -C o
B=22m 0,
a (2
<2
©
1l Lt =0.15
L e 7
i " b=54
Xo Xe L
%l
vy vy

Figure 10.2 Layout of six-storey building for the stability analysis.
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As a function of the number of storeys, the load distribution factor for the
six-storey building is

r,=0.791 {Table5.1}

Before the whole building is investigated, the basic characteristics of the two
bracing units are determined.

10.2.1 Individual bracing units

Bracing Unit 1 (infilled framework)
With b,,/d = 0.30, the effective cross-sectional area of the diagonal is

A, = th,, = t[0.3[d = 0.3[0.305.073 = 0.4566 M {2.66}

and with four identical bays, the shear stiffness of Unit 1 is

RE R
K, = S+ {2.68}
AE;n2  AELh
5073 3.75 *
= : S+ s =1542.5MN
0.4566[3000[3.417[B3.752 0.09[2[10* [3.417

With the cross-sections of the columns of the four-bay framework, the global
second moment of areais

n
lgs= z A, jt2 = 0.300.5(7.5° +3.75)2 =21.09 m’ {5.6}
=1

The global bending critical load of the framework is

_ 7.837rEcly,  7.837M0.7912010° [21.09

= = 6221.9 MN 5.7
ol H?2 20.52 S

Asafunction of part critical load ratio S, defined by

=—1 =222 -0248 2.62
A Ny, 62219 (262

critical load parameter asis obtained from Table 2.5 as
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a,=1.0 {Table2.5}
and the critical load of theinfilled frameis
Ny, = a;K; =1542.5MN {2.61}
The sum of the second moments of area of the five columns will also be
needed later on:

3
0.3[0.5" _ 0.0156 m*

ly1=5

Table 10.1 Basic characteristics of the bracing units.

Bracin - - < = - =
e A N N A R R e A
1 3300 0 0 00156 24.9 92
2 810 12011 1529 1712 00217 8141 0 2811

Bracing Unit 2 (U-core)
The torsional stiffness characteristics of the U-core can be calculated using the
Equations given in Table 2.7. The warping constant, the Saint-Venant constant and

the location of its shear centre are

t.h®? 3t h+2t b 3 15,42
_t ¢ Wb _ 0.15(6.925° (5.4” 3(6.925+254 _ o,/ 5

©7 12 eth+tb 12 606.925+5.4
3
. %(m? +bid) =215 [659254’ 54) _ 0.0217 m (Table 2.7}
3t;h? 2
- S 3925 _soeam {Table2.7}

e= = =
6t h+t b 606.925+54

The basic characteristics are tabulated in Table 10.1 where the last two
columns are only completed after the location of the shear centre is established
below.
The critical loads of the core in the two principal directions are:

7.837El 1 X
= TESTELSs 7837200 Q720701 _ gy (202}
: H 205
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and
4
N, = 7.837I§| xfs _ 7.837(200 El25.29 0.791 — 4511 MN (2,92}
' H 20.5
The coordinates of the shear centre can now be calcul ated:
f+m
2Ny
Yy
4511[8.1+0
X, =1 = =8.10m 5.3
%= 4511+0 {537
2Ny,
1
f+m

Z N X,i yi
_ 5 _ 5051M12.011+0

= = =9.20m 5.3
Yo = —iom 5051+1542.5 {531

10.2.2 Sway buckling in directionsx and y

There is an interaction in direction x between the core and the infilled frame. The
original shear stiffness of the system originates from the infilled frame:

f
K=Y K =K, =15425MN {5.5}
i=1

The globa bending critical load of the framework (calculated above in
Section 10.2.1) and the original shear stiffness define the effectiveness factor as

N
gzt - 6219 gy, (59}
Ki+Ng, 15425+62219

and the effective shear stiffnessis
f
Ke = Z Kis = K;5, =1542.5[0.8014 = 1236 MN {5.10}
1

With the bending stiffness coming from the columns of the framework and
the core (Table 10.1)
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El =E.l.+Ey,l, = 2[10%(0.0156 +17.12) = 342712 MNm?
the bending critical load is

_ 7.837r,El _ 7.837[D.7910342712

Ny = . = 5055 MN
H 205

Asafunction of theratio of the part critical loads

the critical load factor is obtained from Table 5.2;

a=15708+ 28071578 54502y =17
0.3-0.2

The critical load in direction xis
Ncr,x = NI + Ke + (O’—ﬁ—l)SN|
=5055+1236+ (1.7 - 0.2445-1)0.8014 [5055

=5055+1236+1845= 8136 MN

{5.12}

{5.13}

{5.17}

{Table 5.2}

{5.18}

The effect of interaction between the bending and shear modes (1845 MN)

now amounts to 23% of the total critical load.

The situation in direction y is much simpler as the infilled frame only has
negligible stiffness perpendicular to its plane that is safely ignored compared to the

stiffness of the core. The critical load henceis

Nery = Ny, = 4511MN

10.2.3 Puretorsional buckling

With the coordinates of the geometrical centre

L 405
=—-X =——=-81=1215m
X 2 % 2
and
yo=2-y, %—9.2:1.8m

{2.92}

{5.42}
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the radius of gyration of the ground plan is

2 2 2 2
= |EFBT e [A05TH227 o 1524182 =181m {5.28}
P 12 12

The “original” Saint-Venant torsional stiffness consists of two parts: the own
contribution of the core and that of the infilled frame:

f

69)= Y163+ (K2 + (K0, 3F)= Ga, + Ky {5.35)
1 1

= 8333[0.0217 +1542.5[9.2? = 130738 MNm?

The contribution of the core—first term—is only 0.13% and can safely be
ignored.

The effective Saint-Venant torsional stiffness is obtained by replacing the
original shear stiffness with the effective one above:

f

(GJ)e = ieak * Z((Kenxyf +(Kg)y )= GI, + K2 {5.29}
1 1

= 8333[0.0217 +1236[9.2% = 104796 MNm?

The effectiveness factor is

Sy =2 =—""2-08016 {5.34
(GJ) ~ 130738

The warping stiffness of the system originates from three sources: the own
warping stiffness of the core, the bending stiffness of the core and the bending
stiffness of the columns of the framework:

m f
Bl = B (s * (i Y+ () X+ B D (i) {5.30)
1

1

= 2[10%(81.41+17.12[2.811% + 0.0156 [9.2%) = 4.36 10° MNm"

The contribution of the columns—last term—is only 0.6% and therefore can
safely be ignored.

Using the effective Saint-Venant torsional stiffness and warping torsional
stiffness, the two part critical loads can how be determined. The warping torsional
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critical load of the systemis

_ 7.837rEl,, _ 7.837[0.791(4.36[10°

N, = if,H > 1822022 =196.3MN {5.32}
and the Saint-Venant torsional critical load is
N, :%:%:mg.wm (533}
Theratio of the two part critical 10ads
s, :%:%:163 {536}

is needed for getting the critical load factor. Its valueis obtained from Table 5.2 as

o, =3.5758+ 2024735738 1 631 )= 4866 (Table5.2)
20-10

The critical load of puretorsional buckling can now be calculated:
NCI’,¢ = Nw+Nt+(a¢_ﬂ¢_l)S¢Nw {531}
=196.3+319.9+ (4.866-1.63-1)0.8016[196.3

=196.3+319.9+351.8=868 MN

The effect of interaction between the warping torsional and Saint-Venant
torsional modes is considerable: the third term (351.8 MN)—responsible for the
interaction—amounts to 40.5% of the total torsional critical load.

10.2.4 Theglobal critical load and critical load ratio of the building
The centroid of the layout does not lie on either of the principal axes and therefore
thereisatriple coupling of the basic critical 1oads Ng x, Nery and Ner,». The effect of

coupling is aways detrimental and its magnitude (partly) depends on the
eccentricity of the system:

7,=%="""-0671 and =Ye = >° _ 0994 {5.41)
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Once the part critical loads and the eccentricity parameters are available, the
critical load is obtained by solving the cubic equation

(N)3+b,(N)*+bBN-b, =0 {5.39}
In the above equation the coefficients are

NerxNer yN
=X Sy 9P - 8136%511[868 5 =5.9010° {5.40}
1-72-72  1-0671%-0.0094

bo

N

b1 - cr,chr,y + Ncr,¢Ncr,x + Ncr,¢Ncr,y

1-15-15

_ 813614511+ 8688136+ 8684511

> - =8.88110’
1-0.671° - 0.0994

2 2
b, = Ncr,xTx + Ncr,yTy - Ncr,x - Ncr,y - Ncr,¢
, =

1-17-1]

_ 8136[0.671% + 4511(0.0994% - 8136 - 4511 868 _
= . . = -18166
1-0.6712 - 0.0994

The smallest root of the cubic equation is the globa critical load of the
building:

Ny =791MN

(A simpler, faster, albeit approximate way of obtaining the combined critical
load is using the Foppl-Papkovich formula

-1
Ny =11 41 {5.43)
Ncr,x Ncr,y Ncr,¢

which gives N;; = 668 MN.)
Assuming a uniformly distributed floor load of Q=10kN/m? the total
vertical load on the building is

N = nLBQ = 6[20.522[0.01= 53.46 MN (6.2}
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and the global critical load ratio (using the exact figure) is

indicating an adequate bracing system.

{6.3} and {6.5}



11

Global structural analysis of a twenty-two
storey building

Individual types of analysis have been carried out so far. However, the structural
engineer is normally responsible for the building as a whole, not only for certain
units or individual aspects of its behaviour. Before the building is constructed, all
areas relating to structural behaviour have to be looked at. This chapter shows how
such global analysisis carried out using areal building. The investigation normally
starts with the stability analysis and then moves on to determine the fundamental
frequency of the building. The maximum deflection of the building under
horizontal load concludes the global analysis. Many stiffness characteristics
needed for the individual investigations are identical, and they only have to be
established once and then can be reused. Hence the resulting global analysis
covering the three different areas requires much less work than three individual
analyses separately.

The case study is based on and uses a simplified version of the structure of
the Sheffield Arts Tower, seen on the cover of the book. The twenty-three storey
structure is braced by four reinforced concrete cores and four perimeter frames.
The perimeter frames are replaced by 16 bulky columns on ground floor level
making this region much stiffer than the superstructure. The simplified static
model of the twenty-two storey superstructure is the subject of the analysis, whose
layout is shown in Figure 11.1. The basic data of the superstructure is given below.

Size of ground plan: L = 36.0 mand B =20.0 m.

Storey height: h = 3 m. Number of storeys: 22. Height of structure: 66 m.
Modulus of elasticity: E = 23-10° MN/m’.

Shear modulus: G = 9.583-10° MN/m?.

Cross-sections of both the beams and the columns of the frames: 0.4m/0.4m.

In addition to the eight bracing units, concrete columns are also part of the
vertical load carrying system but their contribution to the lateral and torsional
stiffness is small compared to that of the bracing units and is therefore ignored for
the calculation. It is assumed for the analysis that the cores only develop bending
deformation.

The weight per unit volume of the building (for the dynamic analysis) is
assumed to be y = 3kN/m°. A vertical load of Q = 10 kN/m? is considered for the
stability analysis and for the determination of the global critical load ratio. When
the structure is subjected to lateral load and the top rotation and deflection are
calculated, a uniformly distributed horizontal load of intensity 1.3 kN/m? is
considered in direction y, which resultsin awind load of wy = 46.8 kN/m.
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It will be seen that—as far as stiffnesses are concerned—the building is
almost doubly symmetric and the eccentricity of the bracing system (see distance
OC in Figure 11.1) plays a very little role in the behaviour of the structure.
Nevertheless, for the sake of completeness, a comprehensive and full global
analysis will be carried out. The numbers of the Equations used for the calculations
(derived in Part I) will be given on the right-hand side in curly brackets. The
investigation starts with the stability analysis.

L=36m

+ * <
oF . 5
@
_ ® ® @ | P
I [| o) L—I _l ] X
@ 'C,—I _| @ ** | gs0m
9.
y y

Figure 11.1 Typical layout of superstructure above ground floor level.

11.1 THE CRITICAL LOAD

The load distribution factor is obtained from Table 5.1 as a function of the number
of storeys:

= n _ 22 _
° n+1588 22+1.588

0.933 {Table5.1}

Before the structural analysis is carried out, the basic characteristics of the
individual bracing units are given in the next section.

11.1.1 Individual bracing units

Bracing Unit 1 (framework, identical to Bracing Unit 3)

The cross-sections of the columns and beams of the framework are 0.40/0.40
(metres). With twelve bays and a bay-size of | =3 m, the shear stiffness that is
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associated with the beams of the framework is

n119E, I, - ¢ .40
gz > bl = 1p12ZA0 040 _ ggngy {51}

= 1233

The shear stiffness that is associated with the columns of the framework is

N 72E,l, . 7% 2310° .40
_ g - AU _
Kep = E v 13 o = 699499 kN {5.2}

j=1

The combination of the two part shear stiffnesses gives the “origina” shear
stiffness of the framework:

K
K; =K, 1—"'1 = 785067w = 369908kN {5.3}
" Kp1+Ke 785067 + 699499
where the reduction factor
K
n el - 69949 _ _ 471 {5.4}

) KpatKea 785067 + 699499

is used.
The local second moment of area of the cross-sections of the columns is a
simple sum of the second moments of areas of the individual columns (amended

by r):

n 4
=1 1 =0.47103 1‘; = 0.01306 m"* {257}
1

The globa second moment of area of the cross-sections of the columnsiis:
n
lg1= ) At =047 (187 +15° +12° + 97 + 67 + 3°) = 262.08m" {56}
=1

The framework is very wide and the local effect of the columns is very small
and the ratio defined by Equation (2.59) is also very small. In such cases the
simpler method presented in Section 2.4.1 can be used for the determination of the
critical load.

With the global second moment of area, the global bending critical load of
the framework is
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_ 7837rE |, _ 7.837(0.933(23010° [262.08

=10118248kN  {2.63}

gl H?2 662
With
Bs = L = M =0.0365 {2.62}
Ny, 10118248

critical load parameter asis obtained using Figure 2.17 as
a;=10 {Figure 2.17}
and the critical load of the framework is
N 1 = asK; =1.00369.9 = 369.9 MN {2.61}
The effectiveness factor is

5 = Ng; _ 10118
Ky+Ng; 369.9+10118

=0.9647 {5.9

Bracing Unit 2 (framework, identical to Bracing Unit 4)

The cross-sections of the columns and beams of the framework are 0.40/0.40
(metres). With seven bays and a bay-size of | = 2.85 m, the shear stiffness that is
associated with the beams of the framework is

_ ”le 12Eply; _ 12 23010° [0.40*
b2 I;h 12[2.8503

= 482058kN (5.1}
=1

The shear stiffness that is associated with the columns of the framework is

LBl o (23010° 0.40°
Kep=D —51=8 ———— = 430461kN {5.2}
< h 1203

The combination of the two part shear stiffnesses gives the “original” shear
stiffness of the framework:

K
Ky=Ky,— 2 = ago0s8— 230461 _ oozanoin (5.3}
2Kpa+Kes 482058+ 430461

where the reduction factor
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K
Iy, = c2 40461 0 {5.4}
Kpo+Kep 482058+ 430461
is introduced.

The local second moment of area of the cross-sections of the columns is a
simple sum of the second moments of areas of the individua columns (amended

by r):

44

o 0.008055m* {2.57}

n

I,=1) Ig; =04728
1

The globa second moment of area of the cross-sections of the columnsiis:

n
lg2 = Z A, t? = 0.4% [2(9.975" + 7.125% + 4.275° +1.425°) =5458 m* {5.6}
=1

The framework is very wide and the local effect of the columnsis very small
and the ratio defined by Equation (2.59) is also very small. In such cases the
simpler method presented in Section 2.4.1 can be used for the determination of the
critical load.

With the global second moment of area, the global bending critical load of
the framework is

_ 7837rE ] g, _ 7.8370.933(23110° (54.58

=2107196kN  {2.63}

92" H2 662
With
ﬁszﬁzmzo,ﬂ {2.62}
Ng, 2107196

critical load parameter a;is obtained using Figure 2.17 as
a, =10 {Figure2.17}
and the critical load of the framework is

Ng 2 = 0K, =1.00227.4 = 227.4MN {2.61}

The effectiveness factor is

Ny - 2107.2
SZ — [¢] —

= = =0.9026 {5.9}
Ko+ Ny, 227.4+2107.2
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Bracing Units 5, 6, 7 and 8

The basic geometric characteristics of the four U-cores (a, b, c, d, h, t;, t; and t3)
aregivenin Table 11.1. Thelast column in Table 11.1 contains the location of the
shear centre of the cores, in relation to their centroid, according to the relevant
formula in Table 2.8. The rest of the formulae in Table 2.8 enable the
determination of the bending and torsional characteristics of the cores. These data,
as well as the location of the coresin the X—Yy coordinate system (Figure 11.1)
are collected in Table 11.2. The critical loads of the cores in directions x and y (Ny
and Ny) are calculated using Equations (2.92) with the corresponding second
moment of area of the core. Table 11.2 also contains the relevant data related to the
four frameworks.

Table 11.1 Cross-sectional characteristics for the bracing cores.

Bracin
core | b
5 0.15 5.0 015 200 25 0.3 -2.85
0.15 53 015 090 25 0.3 -2.20
0.80 39 080 0.15 16 0.3 -1.07
0.15 53 015 200 34 0.3 -3.74

c d h ti=t=t3 Yo

0 N O

With the coordinates (X and y; in the second and third columns in
Table 11.2 refer to the shear centre of the cores) and the critical loads (ninth and
tenth columnsin Table 11.2) of the bracing units, the location of the shear centre of
the bracing system can now be cal culated:

X = = {5371

227.4(36+0) +193.812.59 +142.2[12.49 + 50.1[23.16 + 386.1[23.12

=18.329 m
1227.0
and
f+m
z Nx,i yi
Vo=—fim—— = {5.37}

Z Nx,i
1

_ 369.9(0+ 20) + 605.1[8.9+ 655.7[9.05+ 390.7[9.05+ 841.4(9.15
3232.7

=9.265m
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A new x-y coordinate system is now established whose O origin is in the
shear centre (Figure 11.1). The location of the bracing units has to be determined
in this coordinate system using

X =% ~Xo

and Yi=Vi ¥

These new coordinates are given in the last two columnsin Table 11.2.

Table 11.2 Basic characteristics of the bracing units.

B0 %W 3, KNG N Xy,

1 18.00 0.00 - 0.013 - - 3699 - 369.9 -0.329 -9.265
2 36.00 10.0 0.008 - - - 2274 2274 - 17.67 0.735
3 18.00 200 - 0.013 - - 3699 - 369.9 -0.329 10.74
4 0.00 10.0 0.008 - - - 2274 2274 - -18.33 0.735
5 1259 8.90 15.685.0210.126 694 - 193.8 605.1 -5.74 -0.365
6 12.49 9.05 16.993.6850.109 255 - 142.2 655.7 -5.84 -0.215
7 23.16 9.05 10.121.2990.090 3.2 - 50.1 390.7 4.83 -0.215
8 23.12 9.15 21.8010.000.1451409 - 386.1 8414 4.79 -0.115
> 64.61 20.03 0.470 239.0 1227.03232.7

11.1.2 Sway buckling in direction y

The participating bracing unitsin direction y are Units 2, 4, 5, 6, 7 and 8.
The original shear gtiffness originates from the two frameworks (Units 2

and 4):

f
K=Y K=K, +K,=2[227.4= 454 8MN

i=1

{55}

With the effectiveness factors of Unit 2 and 4 [Equation {5.9} in the previous
Section], the effective shear stiffnessis

f
Ke =Y Kis = 2[227.4[0.9026 = 410502 MN
1

The effectiveness factor for the whole system is

{5.10}

{5.11}
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The bending stiffness of the systemis

m

f
El = Ec|c+Ew|w: Eczlc,iri +szlw,i
1 1

4
=23 503(8% 047202+ 64.59} = 1.48610° MNm? {5.12}

where the first term stands for the contribution of the columns of the frameworks.
It amounts to 0.02% and can safely be neglected. The second term represents the
four cores, according to the fourth column in Table 11.2.

The local bending critical 1oad can now be cal cul ated:

6
N, = 7.8?_17;SEI _ 7.837[(1).9225[.48&10 = 2494 MN {5.13}

Using the part critical load ratio
f=—2=——=0.1646 {5.17}

the critical load parameter is obtained from Table 5.2

a=1.2949+ %(0.1@4@‘— 0.1) =1.479 {Table5.2}

and the sway critical load in directiony is

Ny =N+ Ko+ (a—B-1)sN,
= 2494 + 410.5+ (1.479 - 0.1646 - 1)0.9026 (2494 = 3612 MN {5.18}

The third term represents the effect of the interaction between the bending
and shear modes and it amounts to 19.6% of the total critical load.

11.1.3 Sway buckling in direction x

The participating bracing unitsin direction x are Units 1, 3, 5, 6, 7 and 8.
The origina shear stiffness originates from the two frameworks (Units 1
and 3):

f
K=Y K; =K, +Ky=20369.9=739.8MN {5.5}
i=1
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With the effectiveness factors of Units 1 and 3 [Equation {5.9} at Unit 1 in
Section 11.1.1], the effective shear stiffnessis

f
Ko=) Kis =2369.910.9647 = 713.7 MN {5.10}
1

The effectiveness factor for the whole system is
s=—8=—"—""=0.9647 {5.11}

The bending stiffness of the system is

m

f
El = Ec|c+Ew|w: Eczlc,iri +sz|w,i
1 1

4
= 23&03(13 1‘; 0.47102+ 20.01] = 4,60710° MNm? {5.12}

where the first term stands for the contribution of the columns of the frameworks.
It amounts to 0.13% and can safely be neglected. The second term represents the
four cores, according to the fifth column in Table 11.2.

The local bending critical 1oad can now be cal cul ated:

_ 7.837r,El _ 7.8370.933[4.60710°

N, = =773.3MN 5.13
| H 2 662 { }
Using the part critical load ratio

ﬁ:ﬁ:yzogzg {517}

the critical load parameter is obtained from Table 5.2 as

a=33483+ w (0.923-0.9) = 3.40 (Table5.2)

and the sway critical load in direction x is
Ncr,x = NI + Ke + (O’—ﬁ—l)SN|

=773.3+713.7+(3.4-0.923-1)0.9647 [173.3= 2589 MN {5.18}
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The third term represents the effect of the interaction between the bending
and shear modes and it amounts to 42.6% of thetotal critical load.

11.1.4 Puretorsional buckling

With the coordinates of the centroid in the coordinate system x-y (Figure 11.1)

X =%—io =3—26—18.329=0.329m {542}
and
Y, = g— Vo = %— 9.265=0.735m {5.42)

the distance between the shear centre and the centroid is

t=x2+y2 =+/0.329° +0.735% = 0.805m

With the above data, the radius of gyration is

2 2 2 2
ip:JL +B +t2:\/M+o.8052:11.91m {5.28)
12 12

The “original” Saint-Venant torsiona stiffness consists of two parts. In
addition to the Saint-Venant torsional stiffness of the individual bracing cores,
those units that have shear stiffness (i.e. the frameworks) also contribute:

f

(63)= Y63+ D (K. + (), ) {5.35)
1

1
= 9583[0.47 + 369.9(9.265° +10.74%) + 227.4(17.67% +18.33%) = 226328 MNm?

The first term represents the “own” contribution of the cores and it amounts
to 2% of the total Saint-Venant torsional stiffness.

The rea (effective) Saint-Venant stiffness is aways smaler than the
“original” one as the effect of the frameworks is limited by their effectiveness
factor:

m f
69)e =D 63+ D (Ka)y 2 + (Kep) 2=
1 1
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= 9583[0.47 + 369.9[0.9647(9.2652 +10.74%) + 227.4[0.9026(17.67> +18.33?)

= 209344 MNm? {5.29}

The effectiveness of the Saint-Venant torsional stiffhess for the whole system
can now be determined:

s¢:%=wzo,gz5 {5.34}
(GJ) ~ 226328

The warping stiffness of the system comes from three sources: the own
warping stiffness of the cores, the bending stiffness of the walls and the bending
stiffness of the columns of the frameworks [Equation (5.30)]. When the first two
items exist, the contribution of the third is normally negligible. This is the case
now and the third source is neglected below. In addition, in this special case, the
vertical distance between the shear centre of the cores and the shear centre of the
systemis very small (last column in Table 11.2) and the contribution of the second
moment of area of the cores with respect to axis x is also ignored. Hence, the
warping stiffnessis calculated as:

Elw:EWZ(Iw,k+(|w,k)xy|3+(lw,k)yxlf) {5-30}
1

=2310° ((239 +(15.68(5.74° +16.99[5.84° +10.12[4.83% + 21.8 m.792))
= 47640874 MNm*

The first term represents the “own” contribution of the cores and it amounts
to 11.5% of the total warping torsional stiffness.

With the above tiffnesses, the part torsional critical loads can now be
determined.

The warping torsional critical load of the systemis

_ 1.837r,El , _ 7.837[0.933[47640874

N =563.8 MN 5.32
@ i2H? 11.91° (662 {532
and the Saint-Venant torsiona critical load is
Nt:%:MﬂMGMN {5.33}
iz 1191

Asafunction of the ratio of the above part critical loads
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By=—t="""=2618 {5.36}

the critical load parameter is obtained from Table 5.2:

a, =5.624+ W(z.m— 2.0)=6.738 {Table5.2}

Finally, the critical load of pure torsional buckling is
Ncr,¢ = Nw + Nt + (0’¢ _IB¢ _1)S¢Nw
=563.8+1476+ (6.738- 2.618-1)0.925[%63.8 = 3667 MN {5.31}

The third term represents the effect of the interaction between the Saint-
Venant and warping torsional modes. It amounts to a considerable 44% of the total
torsional critical load.

11.1.5 Coupling of the basic critical loads: the global critical load of the
building

The centroid of the layout does not coincide with the shear centre so there is a
coupling of basic critical loads N x, Nery and Ner,. AS the centroid does not even
lie on one of the principal axes, this coupling is atriple one. Any coupling reduces
the value of the critical load so, theoretically, the effect of coupling must be taken
into account. Eccentricity parameters 7, and zy are needed for the exact calculation
of the coupling of the critical loads:

r,=—~+=—-=00276 and 7,=-%=——=00617 {5.41}

With the eccentricity parameters, the smallest root of the cubic equation

(N)*+Db,(N)?+bN -y =0 {5.39}

isthe critical load, where

- Ncr,chr,chr,¢ — 2589[3612[3667

=3.44510'° 5.40
1-1f-1;  1-00276°-0.0617 (540

Ncr,chr,y + Ncr,¢Ncr,x + Ncr,¢Ncr,y

b, = {5.40}

1-15-1;
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_ 2589[3612 + 3667 [2592 + 3667 [3612

5 > =3.225M10’
1-0.0276° - 0.0617

bz — NCI’,X

2 2
o+ Ncr,yT - Ncr,x - Ncr,y -N

a9 - _9ggg7 {5.40}

1-15-15
Thecritical load (the smallest root of the above cubic equation) is
Ng = 2567 MN

As the very small values of eccentricity parameters z, and 7y indicated, the
coupling of the basic modes only had a small effect on the global critical load: the
reduction (from 2589 MN to 2567 MN) is less than 1%.

The approximate formula [Equation {5.43} ] would result in

-1 1
Ny =) 4+t 4 1 :[1+1+1j:1069MN
Nox Ney Nog 2589 3612 3667

for the critical load. It is a very conservative value, due to the fact that the
eccentricity of the systemisvery small.

11.1.6 Theglobal critical load ratio

Assuming a uniformly distributed vertical floor load of Q = 10 kN/m?, the total
vertical load on the building is

N = LBQn = 36[20[0.01[22 =158.4 MN {6.2}

The global critical load ratio is therefore

:&:ﬁ:mz {6.3}
N 1584
indicating a satisfactory bracing system.
The condition
A210 {6.5}

is satisfied, so any vertical load bearing element can be considered as braced (by
the bracing system) and the second-order effects (due to sway and torsion) can be
neglected.
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11.2 THE FUNDAMENTAL FREQUENCY

The mass distribution factor is obtained from Table 4.1 as a function of the number
of storeys:

r :\/ n :\/ 22 _ 0956 {Table 4.1}
n+206 \22+206

With y = 3.0, the mass density per unit length for the building is

m:pA:ﬁ:%: 220.2 kg/m {4.7}

11.2.1 Individual bracing units

The basic shear and bending stiffness characteristics of the two different
frameworks are determined in this section for later use. The diffness
characteristics of the four cores will be incorporated into the continuum model
directly.

Bracing Unit 1 (framework, identical to Bracing Unit 3)

The shear stiffness that is associated with the beams of the framework is
unchanged [or, if astability analysis had not been carried out, given by (4.2)]:

=12 = 785067 kN {5.1} or {4.2}

~ "Z‘%‘leblb, j 12[23010° [0.40*
bt I;h 12[3(3

j=1
The shear stiffness that is associated with the columns of the framework is

~ Z”: 12l _ 1312 (23110° .40
h2 T 12

o1 = 850489 kN {43}

=1

The combination of the two part shear stiffnesses gives the “origina” shear
stiffness of the framework:

K
Ky =Ky, ——ot = 785067— 220989 _ 4neo35KN {4.1}
T Kpp+ Koy 785067 + 850489
where
K
n 1 __ 80489 ;5 {4.4}

 Kpi+Kg, 785067 +850489



Global Sructural Analysis 201

is the reduction factor.
The square of the frequency associated with the “original” shear stiffness of
Unit 1is

> _ 1 r7K; _0956° 408235
S1T4H)2 m | (4086)2[220.2

= 0.0243HZ° {4.6}

The global second moment of area of the cross-sections of the columns is
unchanged [or, if astability analysis had not been carried out, given by (4.9)]:

z A t? =042 [2(18% +152+122 + 92 + 62 + 3?) = 26208 m* {49}

The sguare of the frequency associated with the global full-height bending
vibration of the framework is

(2 0.313r7Eclg _ 0.313[0.956% [23[10° [262.08

= = 0.4127HZ 48
o1 H%m 66 220.2 {48

The factor of effectiveness for thefirst bracing unit is

> . fa oz
f

st =— =0.9444 {4.10}
T f2 412, 04127+0.0243

Bracing Unit 2 (framework, identical to Bracing Unit 4)

The shear stiffness that is associated with the beams of the framework is
unchanged [or, if astability analysis had not been carried out, given by (4.2)]:

G 12E |, ¢ m.40"
by = ) — 2 - 7120230071040 _ \arn58kN {5.1} or {4.2}

—~ |.h 12[2.8503
j=1 I

The shear stiffness that is associated with the columns of the framework is

2“112ECI ci _gl2 [23010° [0.40*

= 523378 kN 43
1213 {43

=t

The combination of the two part shear stiffnesses gives the “original” shear
stiffness of the framework:

K
K, = Ky, ——22 — = 482058 23378 _ 550034 kN {4.1}

? Ko+ Kep 482058+ 523378
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where the reduction factor

_ Ke, 523378
Ko+ K, 482058+523378

r, =0.5205 (4.4}

isused.
The sguare of the frequency associated with the “original” shear stiffness of
Unit 2is

» _ 1 r{K, _0056° (250934
27 4H)2 m  (4066)% [220.2

=0.01494 HZ? {4.6}

The globa second moment of area of the cross-sections of the columns is
unchanged [or, if astability analysis had not been carried out, given by (4.9)]:

n
lg2 = Z A jtf =047 [2(9.975% +7.125% + 4.275° +1.425%) =54.58 m* {4.9}
=1

The sguare of the frequency associated with the global full-height bending
vibration of the framework is

o 0.313r7E |y, _ 0.313[0.956% (23[10° (54.58

=0.08595 HZ? 4.8
9.2 H*m 66* [220.2 {48

The factor of effectiveness for Bracing Unit 2 is

_f& 008595
f2,+ 12, 0.08595+0.01494

2
St,2

=0.8519 {4.10}

11.2.2 Lateral vibration in direction y

The participating bracing unitsin direction y are Units 2, 4, 5, 6, 7 and 8.
The origina shear gtiffness originates from the two frameworks (Units 2
and 4):

f
K ="K = K, + K, = 2[250934 = 501868 kN {45}
i=1

With the effectiveness factors of Unit 2 and 4 [{4.10} above], the effective
shear gtiffnessis
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f
Ke= z K;s? = 2[250934[0.8519 = 427541 kN {4.11}
1
The effectiveness factor for the whole system is

s = ‘/ﬁ = ,/427541 =0.923 {412}
K 501868

The square of the frequency which is associated with shear deformation can
now be determined using the effective shear stiffness:

2
reK 2
2= 1 s——=2= 0.956 2@'27541:0.02546 HZ? {4.13}
(4H)2 m  (4[66)2[220.2

With El aready available from the stability analysis, the square of the
frequency of the system in bending is obtained from

(2o 0.313r7El _ 0.313[0.956° 1.486[10°
" Hm 66* (220.2

=0.1017 HZ {4.15}
With the non-dimensional parameter

k= H‘/& = 66 /LS‘”g =1.1195 {417}
El 1.486010

the frequency parameter is obtained from Table 4.2 as

n=06542+ W(LMQS—D =0.677 {Table 4.2}

The lateral frequency of the building in directiony is

2 2 '72 k? 2
fo=[fo+fo+ -——-1|sf 4.18
yTy b s [0.313 5 Js' b {4.18}
2 2
= \/0.1017+ 0.02546 + (06637173 - 1'1]!;395 —lj0.923|1|).1017 =0.384Hz

The third term covers the effect of the interaction between the bending and
shear modes and represents a 13.6% increase in the value of the lateral frequency.
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11.2.3 Lateral vibration in direction x
The participating bracing unitsin direction x are Units 1, 3, 5, 6, 7 and 8.

The origina shear stiffness originates from the two frameworks (Units 1
and 3):

f
K ="K = K, +K, = 2[408235= 816470 kN {45}
i=1

With the effectiveness factors of Unit 1 and 3 [{4.10} in Section 11.2.1], the
effective shear stiffnessis
f
Ke = Z K;s? = 2[408235[0.9444 = 771074 kN {4.11}
1
The effectiveness factor for the whole system is

s = ,/ﬁ = | 171074 _ 4 9718 {412}
K V816470

The square of the frequency which is associated with shear deformation can
now be determined using the effective shear stiffness:

21 r?K. _ 0.9562 (771074
(4H)> m  (4066)? [220.2

S

= 0.0459 HZ* {4.13}

With using bending stiffness EI from the stability analysis, the square of the
frequency of the system in bending is obtained from

,_ 0313r7El _ 0.313[0.956 [4.607 [10°

f =0.0315HZ 4.15
b H“*m 66° [220.2 {415

With the non-dimensional parameter

k:H,/&:ee /M:Z_m {417}
El 4.607010

the frequency parameter is obtained from Table 4.2 as

5=09809+ 11014709809 555 1 020 {Table 4.2}
30-25
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The lateral frequency of the building in direction x is

2 2, ’72 k2
fo= §2+ f £2 418
X b S 0. 313 5 Sf b { }
2 2
0.0315+0.0459+ | 2929 _ 27" _ 110 9718(0.0315 = 0.325 Hz
0313 5

The third term covers the effect of the interaction between the bending and
shear modes and represents a 26.9% increase in the value of the lateral frequency.
11.2.4 Puretorsional vibration
All the bracing units participate in torsional vibration.

The effective Saint-Venant torsional stiffness of the system comes from the
Saint-Venant torsional stiffness of the cores and the effective shear stiffness of the
frameworks:

f

(GJ), = iGJk + Z((Ke’i ) Y7+ (Kg; )y>q2)= 9.58310° [0.47 + {4.21}
1 1

+408235[0.9444(9.265% +10.74%) + 250934 [0.8519(17.67° +18.33%)

= 220.610° kKNm?

The original Saint-Venant torsional stiffnessis

f

m
63)= 363, + 3 (K2 + (Kp), ) {4.21)
1 1
= 9.583[10° [0.47 + 408235(9.265° +10.74%) + 250934(17.67 +18.33%)

= 249.3[10°kKNm?

The effectiveness of the Saint-V enant torsiona stiffnessis

(GY)e _ [2206
S = ,/0.8849 = 0.9407 4.26
» "\ (GI) \2493 {426}
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The square of the pure torsional frequency associated with the Saint-Venant
torsional stiffnessis

(o T7(GY)e _ 09567(220600°
' 1612H?m  16011.91% (667 [220.2

= 0.0926 HZ {4.25}

With the value of El,, aready available from the stability analysis, the square
of the pure torsional frequency associated with the warping torsional stiffnessis

(2 O3137El, _ 0313[0.956° 4.764(10"°
¢ iHm 11.91% (66" [220.2

=0.0230 HZ {4.24}

Asafunction of torsion parameter

6
ky=H %:66 M:4_49 (4.28)
El, \ 4.764110°

the frequency parameter is obtained from Table 4.2:

Ny =1.3437+ L1465-1.3437 ) 49— 4.0) = 1.463 {Table4.2}
45-40

With the above part frequencies and stiffness characteristics, the fundamental
frequency for puretorsiona vibrationis

m ks
fo= [f2+f2+| 22 "% _1|s {2 4.23
4 w ot (0.313 5 ]5” @ {4.23
2 2
= J 0.023+0.0926 + {1(')436133 _A4 1]0.9407 [0.023 = 0.393HZ

The interaction between the Saint-Venant and warping torsional modes—
third term—amounts to a 25.3% increase in the value of the torsional frequency.

11.2.5 Coupling of the basic frequencies. the fundamental frequency of the
building

As the centroid of the layout does not coincide with the shear centre, the coupling
of the basic frequencies has to be considered. Using the values of the basic
frequencies f,, fy and f,—or rather their squares—and the eccentricity parameters z,
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and zy, the smallest root of the cubic equation
(12 +ay(r2)+a2-29=0 {4.31}
isthe fundamental frequency of the building. With

_ 12171 0.3847 0.3257 0.393°

= = =0.00242 4.32
1-17-1; 1-0.0276”-0.0617 (432

fEf7+ o824 6717

a =
! 1-15-15
_ 0.3847 [0.3257 +0.393% [0.384 + 0.393° [0.3257 _ 0.0549
1-0.02762 - 0.06172 '
22+ f2r2 - f2- 12— 17
a, =

1-15 -1

_0.3842 [0.02767 + 0.325° [0.0617% - 0.3847 - 0.325% - 0.393°

- - . = -0.4089
1- 0.0276° - 0.0617

the fundamental frequency is

f =0.303Hz

The interaction among the basic modes results in a 6.7% reduction in the
value of the fundamental frequency. This relatively small amount is due to the fact
that the eccentricity of the bracing system is very small.

The approximate formula [Equation {4.35} ] would result in

1
= 1
: !
f=| 2ol L :( t 1.1 2j ?20210Hz {435}
Y 03842 0325 0.393

X

for the fundamental frequency. Thisis a very conservative value, again, due to the
fact that the eccentricity of the system isvery small.
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11.3MAXIMUM DEFLECTION OF THE BUILDING

The building is subjected to a uniformly distributed horizontal load of intensity
1.3 kN/m? in direction y, which results in a wind load of wy = 46.8 kN/m. Due to
this load, the top of the building undergoes a uniform transation (defined by the
tranglation of the shear centre) and an “uneven” trandation (due to the rotation of
the building around the shear centre). Accordingly, the maximum translation is
determined in two steps.

11.3.1 Deflection of the shear centre axis

The participating bracing units in direction y are Units 2, 4, 5, 6, 7 and 8. The
stiffnesses of these units are needed first.

Bracing Unit 2 (identical to Bracing Unit 4)

Stiffness characteristics K, Ig and | calculated earlier for the frequency analysis can
be used here for establishing the following auxiliary quantities needed for the
calculation of the top deflection of the framework:

a=——=—"2"2"__ -00002 {2.14}

K _ 250934

El  2300°[0.008055

0.0002
1.3544

s=1+2 =1+ CTI0

K=+a+b=1164, kH =1.164[66 = 76.8

Iy =1+14=0.008055+54.58 = 54.59 m* {2.23}

With the above auxiliary quantities, the top deflection of the framework is

_wH*  wH?  wEl (1+KHsinhKH j_ 46.8[66* 46.8[66°
Y, + -1 +

C8El, 2K K23\ coshaH  823M0° (3459 2[250934

_ 46.823010° E(D.008055(1+ 76.8sinh(76.8)

; 1|=0.4842m {2.24}
250934 cosh(76.8)

and the stiffness of Units2 and 4 is
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Sy =Sy == e - 2065 {32}

The top deflections of Units5, 6, 7 and 8 in direction y are

_wH* 46866

= = =0.3078m 2.83
Ys = 8El . 8M[@23Mm0°m5.68 {283
4 4
Yoz wH_ - 40880 _ 4 o841m {2.83}
8El, 8[23010°16.99
wH 4 46.8[66"
y; = = 5 =0.4769m {2.83}
8El, 82310°[0.12
wH* 46.8(66*
= = =0.2214m {2.83}

e T 8El,  82310° 218

and the corresponding stiffnesses are

=~ =_ = =3249—, = _—=_—_— __=3520— 3.2
=5y ys 0.3078 m Y 0.2841 m {32
gy:i:L:2097i, %y:i:;:4517i {32}

y; 0.4769 m yg 02214 m

The sum of the stiffnessesis

< 1
>'s,=17513—
i=1 m

Bracing Unit 2 is the base unit (as there are only two—identical—
frameworks in the system). The apportioner related to Unit 2 is
=== =0.1179 (3.3}
and the load share on the Base Unit (Bracing Unit 2) is

W = W, 0, = 46.8[0.1179 = 5,518 kN/m {3.16}
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With
El, Kq Elga
a = =1, =—==1 and =—=1 3.16
R by K G El, { }
f-1
1+ &
i C.
= K :i i 252934 1+1:0.0002
Elyg 1+ a; 23M0°[»4.581+1
j=1 bi
L S 250934 2 s
=T 6 -
El 1+ a; 23[10°[.0080551+1
j=1 bi
s=1+2 21420002 _; 50015 0 (313}
b 1.35
K=+a+b =+0.0002+1.35=1.162, KH =1.162[66 = 76.7

the top deflection of the shear centre axisis

_WH* . WH?  WEI [1+7H sinhxkH _1j _ 5518[66* .\ 5.518[66°

Vo = 8EI 2 1,223 - 6
¢ 2Ks° K-“s coshkH 8[23M10° %4.59 2[250934

_ 5.518(23010° m.oososs( 1+76.7SiNh(76.7) _

> 1{=0.0571m {3.14}
250934 cosh(76.7)

The second part of the maximum deflection of the building comes from the
rotation of the building around the shear centre, which causes additional deflection,
in this case, at the right-hand size of the building. This additional deflection can be
very great in many practical cases. However, in this particular case, because of the
closeness of the centroid and the shear centre (x. = 0.329 m, calculated in Section
11.1.4), structural engineering common sense says that this additional deflection is
very small and is probably negligible. For the sake of completeness, however, the
calculation of this additional deflection is presented in the following.
Therotation of the building around the shear centreis determined first.
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11.3.2 Rotation around the shear centre axis
The torsional moment that causes this rotation is

m = W, X, =46.8[0.329 =15.4 kNm/m {3.29}

The participating bracing units are Units 1, 2, 3, 4, 5, 6, 7 and 8. The missing
stiffness characteristics are calculated first.

Bracing Unit 1 (identical to Bracing Unit 3)

Stiffness characteristics K, Ig and | calculated earlier for the frequency analysis can
be used here for establishing the following auxiliary quantities needed for the
calculation of the top deflection of the framework:

a=f o202 _ 400068 {214}
El,  23010°(262.08

b=t = A2 g a5q;, s=1+ 2 =1, 0000068 o,
El ~ 23010°0.01306 b~ 13501

k=a+b=1166, KH =1.166(66 = 76.9

It =1 +1,=001306+262.08= 262.09 m’* {2.23)

With the above auxiliary quantities, the top deflection of the framework is

_wH*  wH?  wEl [1+KHsinhKH j_ 46.8[66" 46.8[66°
X + -1 +

TBElI, 2Ks? K2\ coshaH T 8[23010°(262.00 2408235
6 .
_ 46.8(2310 [(2.01306 1+76.95nh(76.9) _ 1) _ 1 2617m (2.24)
408235 cosh(76.9)
and the stiffness of Units1 and 3is
1 1 1
=S, =—=—— _=3821"— 3.2
=i = S x, 0.2617 m {32

The stiffnesses of the four cores in direction x are also needed. Based on their
maximum deflection in direction x

_wH* _ 46.806"

= . =0.9612m {2.82}
8El, 8[23[10° (5.021
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_wH® _ 46.8[66"

= =1.3097m 2.82
*°8EI, ~ 823110° 3685 (282
4 4
x, = WH " _ 46'8566 =3.7239m (2.82)
8El, 8[23M0°[1.296
4 4
xg=wH_ _ 46'8566 =0.4826m (2.82)
8El, 8[23M10°[10.00
the corresponding stiffnesses are
SSX :i:;:1_040i, %X :i:#:07635i {32}
X5 0.9612 m Xg 1.3097 m
S7X :i:#:02685i, SBX :i:;:ZOYZi {32}
X7 3.7239 m xg  0.4826 m

Using the lateral stiffnesses and the distances of the bracing units from the
shear centre, it is now possible to determine the torsional stiffnesses:

Suix = Y2S, = 9.265% [3.821= 328.00m {3.25}
Suoy = X5S,, =17.67° [.065=644.75m {3.25}
Suax = ¥3Ss, =10.74% [3.821 = 440.74 m {3.25}
Spay = X4Syy =18.33° [2.065=693.82m {3.25}
Susx = XeSs, = 5.74°[1.040=34.27 m {3.25}
Susy = ¥2Ssy = 0.365” [3.249=0.43m {3.25}
Suex = X6Ss, = 5.84% [0.7635=26.04m {3.25}
Suey = YaSsy =0.2157[352=0.16m {3.25}

Sy7x = X5S;, = 4.832 [0.2685=6.26m {3.25}
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Su7y = ¥2S;, =0.215° [2.097 = 0.10m
Suex = XoSsy = 4.79%[2.072= 47.54m
Say = Y4Ssy = 0.115° [.517 = 0.06 m

The sum of the torsional stiffnessesis

12
DS, = 222217
i=1

{3.25}

{3.25}

{3.25}

Bracing Unit 1 is the base unit as it has a (dlightly) greater b-value than

Bracing Unit 2.
The apportioner related to Unit 1 is

Soa

f+m

328,00
222217

Wi
i=1

1 = =0.1476

and the moment share on Unit 1 is
M = M,; = WXy, = 46.8[0.329[0.1476 = 2.2726 KNm/m
The stiffness characteristics of the base unit are:
El,, = Ely? = 23[10° [0.01306[9.265° = 25.785[10° kNm*
Elg, = El 4y = 23010° [262.08[9.265” = 517431110° kNm*
(GJ) = Ky? = 408235[9.265° = 35.04[10° kNm?

With stiffnessratios @aand b from Equations { 3.16}

f-1

a:
1+ ) 141+ 0008055 262.08
g= K GG 408235 0.01306 54.58
f-1 6
Elg 1+ 23[10° [262.08 1 , 1, 0-008055 408235

0.01306 250934

o
|

{3.26}

{3.28}

{3.19)

{3.20}

{321}

=0.000134
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- K f 408235 4
b=— = =1.3567
Bl Ga 2310°[0.01306 4, ¢, 0008055408235,
W2 0.01306 250934
j=1 i
and

s=1+ 22149000134 _ 4 501 1o (313}

b 1.3567
Kk=+a+b =+1357 =1.165 and KkH =769 {3.13}

the maximum rotation of the building is

4 2 — + .
b mH L _mH _mEIw(l KH sinhkH _1j

C8E(l,+lg,) 2K,52 K28°\  coshkH

_ 2.2726[66" . 2.2726(66°  2.2726[25.85(10° ( 1+ 76.9sinh(76.9) 1
8[51745710° 2[35.04010°  (35.04[10°)2 cosh(76.9)

= 0.0000104 + 0.0001413- 0.0000036 = 0.0001481 rad {3.24}

11.3.3 The maximum deflection of the building

The maximum deflection occurs at the right-hand corner of the building where the
uniform translation and the additional tranglation due to the rotation of the building
add up as:

Vinax = V(H) =V, + #X e = 0.0571+0.0001481[17.67 =

= 0.0571+ 0.0026 = 0.0597 m {3.36}

As structural engineering common sense indicated, the additional deflection
due to the rotation of the building around the shear centre is small—4.3% of the
total—compared to the uniform translation. Thisis due to the fact that the distance
between the shear centre and the centroid of the layout is very short.

The recommended maximum deflection of the building is

Vasgce = % =0.132m
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Theglobal critical load ratio:
a performanceindicator

Chapter 6 introduced the global critical load ratio as the ratio of the global critical
load to the total vertical load of the building. Through two sets of comprehensive
series of worked examples involving different bracing system arrangements of the
same building, it is shown in this chapter how the global critical load ratio is
calculated in different situations. In addition, it is also shown here that the global
critical load ratio is more than a simple ratio of two quantities; it also gives a
strong indication regarding the performance of the structure. The greater the global
critical load ratio, the better the performance of the bracing system, as far as the
maximum top deflection, the fundamental frequency and the stability of the
building are concerned.

The numbers of the equations used for the calculations are given in curly
brackets on the right-hand side.

12.1 TEN-STOREY BUILDING BRACED BY TWO REINFORCED
CONCRETE SHEAR WALLSAND TWO STEEL FRAMEWORKS

A ten-storey building with a storey height of h=3m will be considered for the
case study. The length and breadth of the building are L =15 m and B=9 m. Two
steel braced frameworks and two reinforced concrete shear walls are available for
providing the building with sufficient stability. The modulus of elasticity for the
columns, beams and diagonals of the steel frameworks is E = 2:10° MN/m?. The
modulus of elasticity and the modulus of elasticity in shear for the reinforced
concrete shear wals are E=2510°MN/m? and G =10.42:10° MN/m?,
respectively. In addition to the four bracing units, concrete columns are also part of
the vertical load carrying system but their contribution to the lateral and torsional
stiffness is small compared to that of the bracing units and is therefore ignored for
the calculation. It is assumed for the analysis that the shear walls only develop
bending deformation.

Assume that the arrangement of the bracing unitsis up to the designer. Three
different arrangements will be examined in order to show how the critical load
ratio is able to monitor the performance of the bracing system and to find an
optimum solution. The weight per unit volume of the building (for the dynamic
analysis) is y=3kN/m®. A vertica floor load intensity of Q=10kN/m? is
considered for the stability analysis and for the determination of the global critical
load ratio. When the structures are subjected to lateral load and the top rotation and
deflection are calculated, a uniformly distributed horizontal load of intensity
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g=17.0kN/m is considered, whose resultant makes 50° with axis x. The load
components of thiswind load are

g, = —17[¢0s50° = -10.9 kN/m

and

g, =-1708in50" = ~13.0kN/m

representing a total horizontal load with a resultant of F=510kN, whose

components are
F, =-327kN and F, =-390kN
356x171x45UB 0.25/3
15/250 7
Z
v
H=30m
305x305xUC137
77 7 A
3m 3m
0k =k

a) Steel braced frame

b) Reinforced concrete shear wall

Figure 12.1 Bracing units for the ten-storey building.

The basic characteristics of the bracing units are summarised in Table 12.1.

Table 12.1 Cross-sectional characteristics for the bracing units.

o Steel framework with double cross-bracing

Characteristics - Shear wall
Columns Beams Diagonals

Cross-section | 305x305UC137 | 356x171x45UB | 15/250 0.25mx3m
A[m? 1.741072 5.73010° 3.7510° | 0.75
Iy [mf] 3.28110* 1.207110* 1.953M10° | 0.5625
I, [m?] - - - 3.90610°
J [mY - - - 1.5625-10°°

12.1.1 Thecritical load of theindividual bracing units

Before the three different arrangements are investigated, the critical load of the
shear wall and of the framework with double cross-bracing is calculated. For both
structures, the load distribution factor is obtained from Table 5.1 as

r, = 0.863 {Table 5.1}
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Shear wall
The critical load of the shear wall is

_ 7.837EIr, _ 7.837[25010° [0.5625[0.863
H?2 307

N =105.7 MN (274

cr

Framework with double cross-bracing

The procedure for the calculation of the critical load of the braced frame is
presented in Section 2.4.1. The shear stiffness of the framework is needed first:

hi? 30

K = 2A By — = 2[8.75103 2110° =530.2 MN Table 2.6
Afays 4.2433 ¢ )
The globa second moment of area
n
ly = Z A t? =1.741072[1.5% (2= 0.0783m" {232}

1

is needed for the full-height global bending buckling of the framework. This
critical load is

_ 7:837rEly _ 7.837[D.863(2(10°(7.83(10™

N, = =117.7 MN 2.63
With
K 5302
= — =245 2.62
Ps N, 117.7 {262

the critical load parameter is obtained from Table 2.5 as
a, =0.2006 {Table2.5}
and the critical load of the framework is
Ng = a.K = 0.2006[530.2 =106.4 MN {2.61}
The effectiveness of the shear stiffnessis given by

oo Ng _ 177
K+N, 530.2+117.7

=0.1817 (5.9}
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12.1.2 Case 1: an unacceptable bracing system arrangement

The bracing arrangement shown in Figure 12.2 is deliberately chosen as one
obviously not appropriate for a ten-storey building. Nevertheless, it is included in
the investigation as it illustrates spectacularly how the critical load ratio pinpoints
the weakness(es) of the bracing system.

With the critical loads of the individual bracing units now available, the first
step is to establish the location of the shear centre. Because of symmetry, only
direction x requires calculation:

ZNin
" _20106.4[7.5+20105.705

X = =11.24m, Vy, =45m {53
%o = T 2[106.4+20105.7 Yo {537

" X
3
@H ® Vo= 45
C. o 3 |B=9m
X
@H L @ 3
X, = 11.24 )
75 75
%, = 3.74
7%
L=15m \q

<l

Figure 12.2 Case 1: An unacceptable bracing arrangement.

12.1.2.1 Sability analysis

The three basic (sway in directions x and y and pure torsional) critical loads will be
calculated then the coupling of the modes will be considered.

Directiony
The effective shear stiffness of the system (with two frameworks) is

f
Ke= Y Kis =2[530.2[0.1817 =192.7 MN {5.10}
1

The effectiveness factor for the whole system is
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s=—e=_—"20 -01817 {5.11}

The total bending stiffness of the system is obtained by adding up the local
bending stiffness of the vertical structura units:

El = Bl + E,l,, = (203.281010 (2110° + 0.562525(10° ) 2

= 28387 MNm? {5.12}

The contribution of the four columns (first term) is less than 1%.
The local bending critical load of the system is

_ 7.837rEl _ 7.837[0.863[28387

N, = =213.3MN 5.13

! H2 302 (513}

With

Ke _ 1927

=—&="" =090 51

o N, 2133 {317
the critical load parameter is

a =3.3448 {Table5.2}

Thecritical load in direction y is now obtained as
Ncr,y =N +Ke+(a-B-DsN, {5.18}
=213.3+192.7 +(3.3448-0.9-1)0.1817[213.3= 462.2 MN

The effect of the interaction between the bending and shear modes (third
term) amountsto 12.1%.

Direction x
No bracing is provided for latera stability in direction x and only the shear walls

(normally ignored in the direction perpendicular to their plane) offer nominal
resistance:

_ 7.837Elrs _7.837 [25010° [2[0.0039060.863

Noro =2 30°

=15MN (274

Before pure torsional buckling can be investigated, the distance between the
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shear centre and the centroid of the layout is needed:

t=xc=%—io=1—25—11.24=—3.74m {5.42}

Pure torsional buckling
Theradius of gyration is needed first:

. [12+B?  ,  [152+9? 2 _ _
|p_\/ o +t _\/ 5 +3.74%2 =/39.49 =6.28 m {5.28}

The “original” Saint-Venant torsional stiffness originates from the shear
walls and the frameworks as

f

(63)= )63+ D (K. + (), 2) {5.35)
1

1

= 2[10.4210°% [0.015625+ 2530.2[3.74? = 15158 MN

The contribution of the own Saint-Venant stiffness of the shear walls (first
term) isvery little: 2.1%.
The effective Saint-Venant torsional stiffnessis

m f
(63)e= Y 63+ D (K 2+ (Ke)y ) {5.29)
1 1

= 2[10.42110° [0.015625 + 2 $30.2[0.1817 [3.74? = 3021MNm?

The Saint-Venant torsional critical load that is associated with this stiffnessis

N =258 =~ =650 MN {5.33}

Sy =~ ——e == 20,1993 {5.34
(GJ) 15158

The warping torsional stiffness of the system originates from the two shear
walls and the columns of the frameworks. In neglecting the contribution of the
columns, itis
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m
Elw = EWZ((IW,k)X ylf + (lw,k)yxlf)
1
= 25000(0.5625[3.76° [2 = 397620 MNm®* {5.30}
The warping torsional critical load of the systemis

_ 1.837rEl, _ 7.837[0.863[397620

N =75.7MN 5.32
¢ itH? 39.49030° (532
With
N; _ 76.50
=t="22=2101 5.36
Po=N, =757 {539

the critical load parameter is obtained from Table (5.2) as

ay, =3.5758+ waOl— 1.0) = 3.596 {Table5.2}

-1.0
and the critical load for pure torsional buckling is
Ng g = Ny + Ny +(a; = B DN, {5.31}
=75.7+76.5+(3.596-1.01-1)0.1993(75.7 =176.1MN

The effect of the interaction between the Saint-Venant and warping torsional
modes (third term) is 13.6%.
With the three basic modes, their coupling must be considered.

Mode coupling

The arrangement of the bracing system is monosymmetric and the centroid of the
vertical load of the building lies on axis x. Two things may happen. Sway buckling
may develop in direction x (defined by N ) or buckling in direction y (Nery)
couples with pure torsional buckling (Nu,s). The critica load of this coupled
buckling is obtained approximately as

-1 1
Nyg = CHIFUNE S R G N I P {5.44}
Ney Neg 4622 176.1

cr,y

The critical load of the building isthe smaller one of N x and Ny, i.€.:

Ngr = Min! N, Ny =L5MN {5.45}

o,
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The total load on the building is

N =LBQn=15910.0100=13.5MN {6.2}

and the global critical load ratio is
A=—"C =—"1=011 {6.3}
showing atotally unacceptable, unstable bracing system.

12.1.2.2 Frequency analysis

As with the stability analysis, the three basic (lateral in directions x and y and pure
torsional) frequencies will be calculated then the coupling of the modes will be
considered. (For practical reasons, instead of the basic frequencies themselves,
their squares will be used.)

Mass distribution factor rs is obtained from Table 4.1 as a function of the
number of storeys as

ri =0.911 {Table4.1}

The mass density per unit length is needed for each basic frequency:

m=pA=Y a=_2 15m=41.28Kkgm (47}
g 9.81

The above value is related to the whole building. Nevertheless, it can also be
used for the calculation of the frequencies of the individual bracing units as,
eventually, the frequency values of the individual bracing units will be used for the
determination of the fundamental frequency of the whole building.

Before the whole system is investigated, it is useful to determine the
effectiveness factor for the framework (which is different from the effectiveness
factor relating to stability). To this end, the frequencies that belong to both the
original shear stiffness and the global bending stiffness are needed. These are:

2.1 K _0911° (530200
(4H)> m  (4[30)221.28

S

=0.7402 HZ {4.6}

and

=0.1217 HZ {4.8}

(2 0.313r{El, _ 0.313m.911? 2110° [7.8371072
9 H*m 30* 21.28

The effectiveness factor is now obtained as
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f 2
o - 01217 _ (1412 {4.10}
t2+ 12 01217+0.7402

sf

The lateral frequencies can now be investigated.

Directiony
With the total bending stiffness of the system [{5.12} in the beginning of Section
12.1.2], the lateral frequency of the system in bending is obtained from

0.313r2El 2 3
sz _ d tE 0.313[@.911 (28387110 = 0.2205H7 {4.15}
H"m 30" [41.28
The total effective shear stiffnessis
f
Ke= ZS?J K; = 0.1412[530200(2 = 149728 kN {4.11}
1

and the effectiveness factor for the systemis

s; = /& = }% =0.3758 {4.12}
K 2[%30200

The lateral frequency which is associated with shear deformation can now be
determined using the effective shear stiffness:

2 2
reK
f2= 1 ~——2= 0.911 ?49728:0.2090 HZ? {4.13}
(4H)> m  (4030)2[@1.28

With the non-dimensional parameter

coh [Ke g0 [19978__, g (417
El 28387110

the frequency parameter is obtained as

0.9809-0.8628

(2.179-2.0) = 0.905 {Table 4.2}
25-20

n=0.8628+

and the lateral frequency in directionyis

2 2
fy:\/fb2+f52+[ n__k 1Jsffb2 {4.18}

0313 5
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2 2
- \/ 0.2205+0.2090 + (% - % - 1}0.3758 [0.2205 = 0,696 Hz

Direction x
Aswith the stability analysis, the system is very weak in direction x and the lateral
frequency is determined by the small stiffness of the shear walls perpendicular to
their plane. (This stiffness is normally neglected in practical structural engineering
calculations.)

The lateral frequency is

0.56r [El 6
= ¢ |Ely _0560.911 \/ 25[10° [2[0.003906 _ 00039Hz {273}
H? m 302 41.28

Puretorsional vibration

The “original” Saint-Venant torsiona stiffness originates from the shear walls and
the frameworks. Its value is now identical for both the stability and the frequency
analyses

f

(63)= Y63+ D (K. + (), ) {5.35) or {427}
1

1

= 2[10.4210° [0.015625+ 2 [530.2[3.74% = 15158 MNm?

With the effectiveness factor of the frameworks for the frequency anaysis
[see {4.10} above], the effective Saint-Venant torsional stiffness of the systemis

f

(63)e= Y 63+ Y (Ke 2 + (Ke)y ) {421
1

1

= 2[10.42110° [0.015625 + 2[530.2[0.1412[3.74? = 2420 MNm?

The effectiveness of the Saint-Venant torsiona stiffness is expressed by the
factor

Sp= % = \/ﬂ =0.3996 {4.26}
(GJ) 15158

The warping torsional stiffness of the system is again identical for both the
stability and the frequency analyses. In neglecting the contribution of the columns
again, itis
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m

Bl = B (i)Y + (i) ) {422} or {5.30)
1

= 25000[0.5625(3.76° [2 = 397620 MNm*

With the radius of gyration from the stability analysis, the two contributors to
the pure torsional frequency can now be produced:

0.313r2El 2 8
2203 2 o _ 0313M0.911 EIB.Q?GZELO - 00782 HZ (4.24)
i2H*m 39.49030% [41.28
and
2
r(GJ 2 3
(22 £(GJ)e _ 0.911°[2420010 - 0.0856HZ (4.25)

' T 16i2H%m  16[39.49[30% [41.28

With torsion parameter

ky = H G . 30, 2420 _ 53 {4.28}
El, 397620

the vibration parameter can now be obtained using Table 4.2:

0.9809 - 0.8628

(2.34-2.0)=0.943 {Table4.2}
5-2.0

1, = 0.8628+

The frequency for pure torsiona vibration is

s ks
f,= T2+ 12 ¢ __70 _1|g,f2 423
\/ [o 313 5 ]5” {4.23
2 2
J 0.0782+0.0856 + (%934133 2'3:' - 1}0.3996 [0.0782 = 0.433Hz

Coupling of the vibration modes
Pure torsional vibration and lateral vibration in direction y combine. The value of
the combined frequency can be approximated as

1
= 1
1,172 ( 1 1 j_z
fg =|—+—| = +——| *=0368Hz {4.36
v [ff ff} 0.6967 0.4337 }
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As the frequency of lateral vibration in direction x is (much) smaller, the
fundamental frequency of the building isthis smaller value:

f =0.039 Hz {273}

12.1.2.3 Maximum deflection

Based on the results in the previous two sections, it can be safely stated that the
building is much more vulnerable in direction x and, as an approximation, only
direction x is considered. Compared to the shear walls, the two frameworks offer
negligible resistance and—in line with structural engineering common practice—
their contribution isignored.

The maximum deflection of the building is calculated as

4 4
_aHT 10980 -565m (272
8El, 8[25010°(2(3.906(10

In summary, the bracing system is clearly unacceptable: the maximum
deflection is far too great, the fundamental frequency is very small and, above al,
the building is not stable. The inadequacy of the system is clearly indicated by the
value of the critical load ratio (A = 0.11). For atheoretically stable bracing system,
this value must be greater than 1.0 and, preferably, it should be greater than 10.0.

The main weakness of the bracing system lies in the lack of bracing in
direction x. To improve the performance of the building, the two frameworks are
rotated by 90 degrees and are moved to the left-hand side of the building to create
amore balanced arrangement (Figure 12.3).

12.1.3 Case 2: a more balanced bracing system arrangement

The arrangement shown in Figure 12.3 remedies a fatal problem with Case 1,
namely, this time the system has considerable stiffness in direction x as well. It
remains to be seen if the improvement is great enough to result in an adequate
bracing system.

12.1.3.1 Sability analysis

The three basic (sway in directions x and y and pure torsional) critical loads will be
calculated then the coupling of the modes will be considered.

Directiony
Buckling in direction y is resisted by the two shear walls. The corresponding
critical load is

Ng v =2005.7=211.4MN {2.74 in Section 12.1.1}

cr,y
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Direction x
Buckling in direction x is resisted by the two frameworks. The corresponding
critical load is

N x = 2[106.4 = 212.8 MN {2.61in Section 12.1.1}
o i
B @ X
3
® V., =45
B=9m 3 .C o) X
3
= @ @
%, = 15.0
75 | t=%=75
|
L=15m
\q

<
<

Figure 12.3 Case 2: A more balanced bracing arrangement.

Pure torsional buckling
Because of the symmetric arrangement of the two shear walls and of the two
frameworks, the location of the shear centreis readily available:

X, =15.0m Yo =4.5m

Theradius of gyrationis

2 2 2 2
i :\/L IzB 12 :\/151;9 +752 =/8L.75=9.04m {5.28}

In addition to the own Saint-Venant torsional stiffness of the shear walls,
only the two frameworks contribute to the torsional resistance (as the shear walls
has zero perpendicular distance from the shear centre).

The“origina” Saint-Venant torsional stiffness of the systemiis

f

63)= > 63+ Y (K2 + (), ) {5.35)
1

1



228 Multi-storey Buildings
= 2[10.4210° [0.015625+ 2$30.2 [4.5% = 21799 MNm?

The contribution of the shear walls (first term) isonly 1.5%.
With the effectiveness factor [{5.9} in Section 12.1.1] the effective Saint-
Venant torsional stiffnessis

m f
(62)= Y 63+ Y (Ke 2 + (Ke)y ) {5.29)
1 1

= 2[10.4210° [0.015625+ 2 (530.2[0.1817 [4.5% = 4227 MNm?

As the contribution of the columns of the frameworks is negligible and the
perpendicular distance of the shear walls from the shear centre is zero, the warping
torsional stiffnessis

El, [0 {5.30}

and the critical load for pure torsional buckling is defined by the Saint-Venant
torsional critical load as

Ngp = Ny =<8 = 2227 _ g5 7y {531} & {5.33}

As the arrangement of the bracing system is monosymmetric and the centroid
of the vertical load of the building lies on axis x, buckling in direction y (Ncry)
couples with pure torsional buckling (Ner). The critical load of this combined
buckling is obtained from

-1 1
Nyg = CH =( L +ij = 41.5MN {5.44}
Ney Neg 2114 517

The critical load of the building is the smaller one of N x and Ny, i.€e.:
Ng = Min! Ng ., Ny; =41L5MN {5.45}

With the total vertical load on the building (N = 13.5MN), the global critical
load ratio is now

A= Na =319 _39q {6.3}

indicating a stable building and a big improvement on Case 1, as far as stability is
concerned. The situation regarding the fundamental frequency and the maximum
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deflection of the building will be looked at in the next two sections.
The above values of the basic critical loads indicate that the stability of the
systemislimited by the relatively small value of pure torsional buckling.

12.1.3.2 Frequency analysis

The three basic (sway in directions x and y and pure torsional) frequencies will be
calculated then the coupling of the modes will be considered. The behaviour of the
building is very similar to that with the stability analysis.

Directiony
Vibration in direction y is resisted by the two shear walls. The corresponding
lateral frequency is

f

0.56r °
_056r; [El, _ 0560911 \/ BOC°ROES _ o et (273

T m 302 41.28

Direction x

Vibration in direction x is resisted by the two frameworks of identical
characteristics. The effectiveness factor is needed first. With the squares of the two
participating frequencies

2 2
reK
2= 1 = 0.911 ?30200:0.7402 HZ? {4.6}
(4H)> m  (4[30)°[@1.28

and

(2 0.313r7Ely _ 0.313[0.911° 2010° 7.83(10 2

=0.1217 HZ? 4.8
g H*m 30* @1.28 {48

the effectiveness factor assumes the value

. 2 01217

s} = = =0.1412 410
T7 2+ 12 0.1217+0.7402 1410}

and the combined effective shear stiffness of Unit 1 and Unit 2 is
f
Ke= ZS?J K; =0.1412[%30.2[2 = 149.728 MN {4.11}
1

The lateral frequency which is associated with shear deformation can now be
determined using the effective shear stiffness:
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2 2
reK
f2= 1 S t= 0.911 ?49728:0.2090 HZ {4.13}
(4H)2 m  (4030)2[21.28

Using the “original” and the effective shear stiffnesses, the effectiveness for
the whole system is obtained as

s = ,/ﬁ = ,/% = 0.3758 {412}
K V23302

The local bending stiffness of the two frameworksis
El = E |, = 2(2010° [2[3.28110*) = 262480 kNm? {4.14}

With the above bending stiffness, the lateral frequency of the system in
bending is

(2 _ O313r7El _ 0.313[0.911° (262480

= 0.00204 HZ? 4.15
b H%m 30%[21.28 {415

With the non-dimensional parameter

k=H ‘/& =30, 149728 _ 55 66 {417}
El 262480

the frequency parameter is obtained using Table 4.2 as

n=5278+ %05278(22.66 - 20.0) =5.942 {Table4.2}

Finally, the frequency for lateral vibration in direction x is

2 2 ’72 k? 2
fo= [fr+fo+ -——-1|sf 4.18
X R = S Tp { }
2 2
= \/ 0.00204 + 0.209 + [569:123 - 22'566 - 1}0.3758 [0.00204 = 0.467Hz

Puretorsional vibration
The situation is similar to the stability analysis in that only the two frameworks
contribute to the resistance against torsional vibration. The “original” Saint-Venant
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torsional stiffnessis
m f
(63)= Y 63+ D (K)ey2 + (K)y ) {421
1 1

= 210.4210° [0.015625 + 2[530.2[4.5% = 21799 MNm?

(that can also be taken from the stability analysis), and the effective Saint-Venant
torsional stiffness[using {4.11} above] is

f

(63)e= Y 63+ D (Ken) 2 + (Ke)y ) {421
1

1

= 2[10.42[10° [0.015625+ 149.728[4.5° = 3358 MNN?

As with the stability analysis, the contribution of the columns of the
frameworks is negligible and the perpendicular distance of the shear walls from the
shear centre is zero, so the warping torsional stiffnessis

El, (O {4.22}

The frequency for pure torsional vibration simplifiesto

:
fp=fi=—— | (GJ), __ 0911 ,/3358000 =0.2395Hz {4.23& 4.25}
4iHV m 490430V 41.28

Assuming uniform mass distribution, the centroid of the mass lies on axis X,
and therefore lateral vibration in direction y couples with pure torsional vibration.
The resulting coupled vibration is obtained as

1
= 1
1. 1]°2 1 1 )2
fop =| —S+—| = + =0.213Hz 4.36
v [fyz f;] (0.4682 0.23952j (430

This combined frequency is smaller than f,=0.469, so the fundamental
frequency of the building is

f =Min f,, f,, =0.213Hz {4.37}

It is clear from the above values that resistance to torsion is relatively small.
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12.1.3.3 Maximum deflection

The two components of the wind load will be treated separately. When wind load
in direction x is considered, the arrangement is symmetric and the wind is resisted
by two identical frameworks. It is enough to work with half of the structure (one
framework) and half of the load:

w, = 1(17 [¢0s50°) = 5.46 KN/m
2

With auxiliary quantities

a=K - 5530'2 - =0.033857, b=K - - 5302 =404
El, 2010°[7.83M10 El  2010°203.281010

s:1+%:1+% =1.00838 [10, «H =H+a+b=60.6 {2.14}

l; =1+1,=2[3.281[107 +7.830102 = 0.079 m* {2.23}

the maximum deflection is

Xmax = Y(H) =

4 2 :
wH +WH _ WEI (1+/<H sinhxH _1) (2.24)

8El; 2Ks* K?%s*\ coshaH

__ 54630°  546(30° 546[2(10°(2(3.281(10 * 1+ 60.65nh60.6 _
8[2(10° .079 20530200 530200 cosh60.6

=0.0350+0.0046 - 0.00015= 0.0395 m

When the component of the wind in direction y is considered (wy = 13 kN/m),
the maximum deflection is obtained in two steps. First, the deflection of the shear
centre has to be determined, caused by the wind load acting through the shear
centre, then the additional deflection due to the rotation of the building around the
shear centre has to be added.

In the first case the load is resisted by the two shear walls and the maximum
deflectionis

_ 13030*
8[25M10° [2[0.5625

=0.0468m {272}

(o]

In addition to this uniform deflection, the torsional moment

m=w,y X, =17[3in50°[7.5 = 97.67 KNm/m {3.28}
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develops rotation around the shear centre, which leads to additional deflection. The
torsional moment is balanced by the torsional resistance of the two frameworks.
(The two shear walls have zero perpendicular distance from the shear centre so

they cannot take part.)
The global warping torsiona stiffness of the frameworksis

Ely, = El ;t* = 2[10° [7.83(10 (4.5 [2 = 634230 MNm" {3.20}
The Saint-Venant torsional stiffness of the frameworksis
(GJ) = Kt? =530.2[2.5% [2 = 21473.1MNm? {3.21}

The local warping torsiona stiffness of the frameworks is negligible and is
therefore ignored so the warping torsional stiffness of the systemis
El, O {3.19}

With the above torsional stiffnesses, the rotation of the building around the
shear centre can how be determined:

Prax = #(H) =

mH 4 .\ mH 2 _ mEl, (1+RHsinhRH ‘1J
BE(l,+1q,) 2(GJ)s? (GJ)?s°\  coshikH

97.67 30" , 97.67 [30°

= =0.0156+0.0020=0.0176rad  {3.24}
8[634230000 2[21473100

The maximum displacement of the building develops at the top at the left-
hand side corner of the plan of the building (point “A* in Figure 12.3) and, making
use of the angle of rotation, is obtained from

Vinax = V(H) = Vo + #X e = 0.0468+ 0.017615= 0.311m {3.36}

where X IS the distance of the corner point (where maximum deflection occurs)
from the shear centre. It is clear from Equation {3.36} that the overwhelming
majority of the maximum deflection of the building is caused by the rotation of the
system.

The maximum deflection in the wind direction is

e =+/0.0468° +0.3112 = 0.315m

As the increase in the value of the critical load ratio indicated, the
performance of “Case 2" improved drastically, compared to “Case 1": the critical
load and the fundamental frequency increased considerably and the maximum
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deflection decreased. However, further improvements are possible as the next
section will demonstrate.

12.1.4 Case 3: an effective bracing system arrangement

As the results in the previous section show, the efficiency of “Case 2" was limited
mainly because of its relatively poor performance in torsion. It is therefore the
torsional resistance of the system that isimproved in this section by rearranging the
bracing units again in such a way that Bracing Units 1 and 3 are exchanged
(Figure12.4). The resulting bracing system is doubly symmetric, still has
considerable lateral stiffnessin both principa directions and its torsional resistance
is increased by the fact that all four bracing units now have “torsion arms’ (i.e.
perpendicular distances from the shear centre).

12.1.4.1 Sability analysis

The three basic (sway in directions x and y and pure torsional) critical loads will be
calculated then the coupling of the modes will be considered.

3 — > X
3
® Yo =45
_ 1 (@]
B=9m 3 c %
3 @
| @
X =75 75
L=15m

Figure 12.4 Case 3: A doubly symmetric arrangement.

Directiony
Buckling in direction y is resisted by the two shear walls. The corresponding
critical load isidentical to that of “Case 2":

Ng,y =2005.7=211.4MN {2.74 in Section 12.1.1}

Direction x
Buckling in direction x is resisted by the two frameworks. The corresponding
critical load is again identical to that of “Case 2":
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Ng x =2006.4=212.8 MN {2.61in Section 12.1.1}

Pure torsional buckling
Because of the doubly symmetric arrangement of the two shear walls and of the
two frameworks, the location of the shear centre isreadily available:

%, =7.5m, ¥, =45m

Theradius of gyrationis

o 1P+B% ,  [152+9% _ _
|p_\/ 5 +t _\/ 5 =/255=505m {5.28}

The “original” and effective Saint-Venant torsiona stiffnesses of the two
frameworks are identical to that of “Case 2" (Section 12.1.3):

(GJ) = 2[10.42110° [0.015625 + 2[530.2 [4.5% = 21799 MNm? {5.35}
and
(GJ), = 2[10.4210° [0.015625 + 2[530.2 [0.1817 [4.5? = 4227 MNm? {5.29}

The effectiveness of the Saint-Venant torsional stiffness is expressed by the
factor

_(GJ), _ 4227 _

§ =2l = 220194 {5.34
(GJ) 21799

With the contribution of the shear walls, the warping torsional stiffnessis:
m
E|w=EWZ(Iw,k+(|w,k)xylf+(lw,k)yxf) {5-30}
1

= 25[10° [0.5625(7.5° [2 = 1582031 MNm?*
With the part critical loads

_ 7.837rEl,, _ 7.837[0.863(1582031

N
i2H? 25.5[30

= 466.2 MN {5.32}

w

and
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N, =%:£257:165'8MN {5.33}

py =t 21058 ans {5.36}
N,  466.2
from Table 5.2 as
o, = 18556+ 2222071890 3556 0.3)= 200 (Table5.2}
04-03

The critical load for pure torsional buckling is
Nerg = Ng + N+ (a5 = B, ~DsyN,, {5.31}
= 466.2 +165.8+ (2.0- 0.3556 -1)0.194 [466.2 = 690.3MN

As the arrangement of the bracing system is doubly symmetric and the
centroid of the vertical load of the building coincides with the shear centre of the
bracing system, the critical load of the building is the smallest one of the three
basic critical loads:

Ng = Min Ny o, Ngp oy Ne g = 2114MN {5.46}

With the total vertical load on the building (N = 13.5MN), the global critical
load ratio is now

A== =0l 2167210 {63} and {6.5}

indicating a stable building and a big improvement on “Case 2”. Its value also
exceeds the recommended value. The situation regarding the fundamental
frequency and the maximum deflection of the building will be looked at in the next
two sections.

12.1.4.2 Freguency analysis

The three basic frequencies will be determined and then their coupling will be
considered.

Lateral vibration
The dituation is similar to that with the stability analysis in that the lateral
frequencies are unchanged (i.e. identical to those of “ Case 2”):
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f, =0.467 Hz {Section 12.1.3}
f, =0.468 Hz {Section 12.1.3}

Puretorsional vibration
The “original” Saint-Venant torsional stiffnessis

m f
(63)= Y 63+ D (K)o y2 + (K)y ) {427}
1 1

= 2[10.4210°% [0.015625+ 2[530.2 [4.5% = 21799 MNm?

(that can also be taken from the stability analysis), and the effective Saint-Venant
torsional stiffness [using {4.11} above] is

m f
(63)e= Y 63+ D (K 2 + (Ke)y ) {421
1 1

= 2[10.42110° [0.015625+ 149.728(4.57 = 3358 MNNY?

The effectiveness of the Saint-Venant torsional stiffness is expressed by the
factor

sy = \/(G‘])e \/ﬁ_osgz {4.26}
(GJ) V21799

With the contribution of the two shear walls, the warping torsional stiffness
is:

= szm:(lw,k+(|w,k)xy|§+(lw,k)yxlf) {4-22}
1

= 25[10° [0.5625[7.5% [2 = 1582031 MNm*

(which can aso be taken from the stability analysis).
The two contributors to the pure torsional frequency are:

(2 0.313r7El,, _ 0.313M.911%[1.58210°

= = = 0.482HZ* 4.24
“ i2H'm 255030 41.28 (424

and
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(2 r?(GJ). _ 0.9112 (3358000

A =0.184 HZ? {4.25}

" 1612H?m  16[25.5(30° (4128

With torsion parameter

ky = H (Glle _ 5| 338 _ 135 {4.28}
El, 1582031

the frequency parameter is obtained using Table 4.2:

Ny = 0.6542+ %(1.382—1.0) =0.728 {Table 4.2}

The frequency for pure torsional vibration can now be determined:

,72 k2
fo= [f2+ 2+ F"’B—%’—l $fa (4.23)

2 2
= /0.482+0.184 + 0728 13827 1]0.392[0.482 = 0.851Hz
0.313 5

As the arrangement of the bracing system is doubly symmetric and the
centroid of the mass of the building coincides with the shear centre of the bracing
system, no coupling occurs and the fundamental frequency of the building is the
smallest one of f,, fy and f,,i.e.:

f =Min! f,, f,, f, =0467Hz {4.38)

12.1.4.3 Maximum deflection

The wind load in direction y is resisted by the two shear walls in a symmetric
arrangement and the corresponding deflection is

_qH*_ 130080°
8El, 8[25M0°2[0.5625

=0.0468m {272}

When wind load in direction x is considered, the arrangement is also
symmetric and the wind is resisted by two identical frameworks. The situation is
identical to that discussed in detail in Section 12.1.3 with “Case 2" and the
corresponding deflection is
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Xmax = 0.0395m {2.24 in Section 12.1.3}

The maximum deflection in the wind direction is

d,p =+/0.04682 +0.03952 = 0.0612m

The two weaknesses of the original bracing arrangement have been
eliminated in two steps: the problem of the practically non-existent lateral stiffness
was addressed with “Case 2" and then the still poor torsional behaviour was
improved with “Case 3". The change in the value of the global critical load ratio
spectacularly shows its usefulness in monitoring the efficiency of the bracing
system.

12.2 FIVE-STOREY BUILDING BRACED BY A SINGLE CORE

Kollar's (1977) classic five-storey building was first used to show how a single
core is best used to be effective against torsional buckling. The worked example
here will demonstrate that, in addition to stability, the global critical load ratio also
“handles’ frequencies, rotations and deflections and identifies efficient and
inefficient bracing system arrangements.

The vertical load of the building is carried by columns but their lateral and
torsional stiffness is very small and is therefore ignored is the calculations. It is
assumed that the lateral and torsional stiffness of the building is provided by a
U-core (Figure 12.5/b). The basic geometrical, stiffness and loading characteristics
are asfollows:

Sizeof ground plan: L=26 m,B=14m

Storey height: h = 3.0 m, number of storeys. 5

Height of building: H=15m

Modulus of elasticity: E = 23000 MN/m?

Modulus of elasticity in shear: G = 9580 MN/m?

Floor load (for the stability analysis): Q = 8 kN/m?

Wind load (for the deflection analysis): w = 1.0 kN/m? in direction y

Weight per unit volume of the building (for the frequency analysis):
y = 3.0kN/m®

The load distribution factor for the stability analysisis
ry =0.759 {Table5.1}
and the mass distribution factor for the frequency analysisis

r. =0.842 {Table 4.1}

As the size of the building and of the sole bracing unit is given, the structural
performance of the building is governed by the location of the core. Two locations
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will be considered with and without taking into consideration the possibility that
the open U-core can partially be closed. This resultsin four cases. In the four cases
the maximum rotation and the maximum deflection, the fundamental frequency,
the global critical load and the global critical load ratio of the building will be
determined.

The equations related to U-cores given in Tables 2.7 and 2.8 are used for
determining the stiffness characteristics of the U-core.

12.2.1 Layout A: open corein theright-hand side of the layout

The bracing core isfirst placed in the lower right-hand corner of the layout in such
a way that the shear centre of the core is in the middle of size B of the building
(Figure 12.5/a). The geometrical and stiffness characteristics of this case are
collected in thefirst row in Table 12.2.

L L=26m L
i i
Wi, [T T O. 1
-+ y X =
97 2607 | _ e=14
r Yo=7.0 | —— ] —
= C. ! ! -
B=14 0 v | h=32
M ==
124 ltz=02 1
! 11.0 i
X=11. b=2.6
I e %
Xo= Xmax= 24.0
y y
a) b)
Figure 12.5 Kollar' s building. @) Layout A, b) bracing core.
Table 12.2 Geometrical and stiffness characteristics.
Layout Iy ly J lo X, Yo Xe Ve ip

“A” | 2045 | 2466 | 0.024 | 251 | 240 | 7.00 | 11.0 | 0.00 | 13.92
“B” | 2.045 | 2466 | 0.024 | 251 | 13.0 | 7.00 00 | 0.00 | 852
“C" | 2479 | 2599 | 1450 | 0.00 | 240 | 870 | 11.0 | 1.70 | 14.00
“D" | 2479 | 2599 | 1.450 | 0.00 | 13.0 | 7.00 00 | 0.00 | 852

12.2.1.1 Maximum rotation and deflection

The w = 1 kN/m? wind load intensity represents awy = Lw = 26.0 kN/m wind load
per unit height in direction y. The total torsional moment is
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m, = w, X, = 26[11= 286 kNm/m {3.29}

With torsion parameter

k=H |2 - 15\/ 9580(0.024 _ , 047 {2.88}
El, 23000[2.51

the maximum rotation of the building can be calculated as

B = P(H) =

2 _
élj [coshk 1 tanhk+1j (2:89)

Klcoshk Kk 2

2 —_—
_ 2865[5 COSI;(O.947) 1 tanh(0.947) N 1) 0.02335 rad
9.58[10° [0.024 | 0.947 cosh(0.947) 0.947 2

Maximum deflection develops at the left-hand side of the building at
Xmax = 24.0. It consists of two parts. The top layout of the building undergoes a
uniform trandation of

=0.0035m {2.83}

Vo =V(H) = wH* = 26015
° 8El,  8[23M10°[2.045

The rotation around the shear centre causes additional deflection and the total
maximum deflection is calculated as

Vi = V(H) =V, + @x_ = 0.0035+0.02335(24
= 0.0035+ 0.5604 = 0.564 m {3.36}

Asthe recommended maximum deflection is

\Y)
ASCE T 500 500

the bracing of the building is clearly unacceptable.

12.2.1.2 Fundamental frequency
The mass density per unit length for the building is

m=pA=? A= > 26M4=1113kgm (47
g 9.81
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The lateral frequenciesin directions x and y are calculated using the formulae
given for cores but with the above mass density (which relates to the whole
building):

O 56r /EI / 6
f 056[0842 2310 [2.466 —150Hz {297
111.3
0 56r f / 6
t |Elx _0O. 56[(|) 842 23El;)11|:§ 045 _ —136Hz {297}

The frequency of pure torsional vibration of the building is obtained using the
formula given for a single core but with the radius gyration that relates to the
whole layout area as the mass is distributed over the whole floor area of the
building:

2 2 2 2 2 2
ip:\/l‘ +B +t2 :\/L *B +x2 :\/26;14+112 =13.92m {4.20}
12 12 12

and

With using the torsion parameter calculated earlier, the frequency parameter
for pure torsiona vibration is obtained from Table 4.2:

7, = 05851+ 2024270585 (51765 = 0,647 (Table 4.2}

1.0-05

and the pure torsional frequency is

r 6
_ 1l ] / |w 0.647[0).84212 2310 251 _ 01051 (2.8)
iH 13.92015 111.3

The centroid of the layout lies on axis x of the coordinate system whose
origin is the shear centre of the core—which now is the whole bracing system—
and therefore there is a coupling of lateral vibration in direction y and pure
torsional vibration. One of the frequencies (f,) is much smaller than the other. In
such casesit is favourable to use the approximate formulae for taking into account
the effect of coupling as they offer a very simple solution with good accuracy.
Hence

1

1 1 Y2
==+ = | *=0124Hz 4.36
(1.362 o.1252j (436}
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This frequency is smaller than that of lateral vibration in direction X, so the
fundamental frequency of the building is

f =Min f,, f,, =0.124Hz {437}

This is a very small value considering other buildings of similar size and
mass.

12.2.1.3 Global critical load and critical load ratio

The critical load for sway buckling in direction x is calculated using the relevant
second moment of area of the core:

_ 7.837El,ry _ 7.837[23010° [2.466[D.759
crx = H 2 - 152

=1499 MN {2.92}

In asimilar way, the sway buckling load in directiony is

_ 7.837El r, _ 7.837[23010° [2.045[0.759
oz 152

N =1244MN {2.92}

The critical load of pure torsiona buckling is obtained using the formula
given for a single core but with the radius gyration that relates to the whole layout
area as the load is distributed over the whole floor area of the building. The radius
of gyrationis

2 2 2 2 2 2
ip:\/L +B +t2:\/L +B +x§:\/M+112:13.92m {5.28)
12 12 12

The non-dimensional parameter

ke = H

S

Gl _e \/ 9580(0.024  _ . noe (2.95)
r.El, 0.759[23000[2.51

is also needed as the critical load parameter « is obtained as a function of kg

a= 10.77+%(1.086—1.0) =11.286 {Table2.10}

The critical load for pure torsional buckling is now obtained as

3
_arEl, _11286(0.750(2300° 251 _ o0 (208

N. =
P22 13.922 (152
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When the coupling of the basic critical loads is considered, the situation is
similar to that of vibration. There is a coupling of sway buckling in direction y and
pure torsional buckling. One of the critical loads (Ner,s) is much smaller than the
other one and the relevant summation formulais used:

-1 1
Nyp=| 2+ :(i+ij =112 MN {5.44)
Ney, Negg) (1244 113

This critical load is smaller than that of sway buckling in direction x, so the
critical load of the building is

Ng = Minl N Nys =11.2MN {5.45}

cr,Xx?
The total vertical load on the fivefloorsis

N = LBQn = 2614 [0.008[% = 14.56 MN {6.2}

and the global critical load ratio
A=—"C=—""—=-08 {6.3}

reveals an unstable building.

The bracing of the building is totally unacceptable and the examination of the
relevant figures related to the top deflection, fundamental frequency and stability
points to a weak torsiona performance. The torsional resistance of the building is
small, for two reasons. One, the torsional stiffness of the core is small and two, the
distance between the centroid of the layout and the shear centreis great.

In the following section an attempt is made to remedy the situation by
moving the core to amore favourable position.

12.2.2 Layout B: open corein the centre of the layout

The bracing core is moved to the centre in such a way that its shear centre and the
centroid of the layout coincide (Figure 12.6).

The geometrical and stiffness characteristics of this case are collected in the
second row in Table 12.2 in the previous section.

12.2.2.1 Maximum rotation and deflection

As the resultant of the wind load passes through the shear centre, there is no
rotation around the shear centre:

$=0 {2.89}
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It also follows that the deflection of the building is entirely made up from the
uniform part of the deflection. This was calculated in the previous case so the top
deflection of the building is readily available as

Vina = Vo + @X 1 = 00035+ 0= 0.0035m {3.36}
] L=26m )
! 1
Wy
i NIRNRRI AR RN AR AR A AN AR R RR R AN AR RN RRAAND] X +
8.4 Yo=7.0
C=0 x |B=14
h=3.2 r-l 7.0
2.4] | il
%,=13.0 130
y y

Figure 12.6 Kollar' s building. Layout B: bracing core in the centre.

12.2.2.2 Fundamental frequency

By moving the core to the centre, the values of the lateral vibration in the principal
directions do not change and the results obtained in the previous section hold:

_056r; [El, _
fy = TERR =150Hz {2.97}

and

0.56r; |El
f, = X =1.36Hz 29
v T2 = {2.97}

The situation is different when the torsional behaviour is considered. The
distance between the shear centre and the centroid of the mass is now reduced to
zero and this fact alters the value of the radius of gyration:

2 2 2 2
i =[BT |20 gsom (4.20}
P 12

12
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The freguency parameter is unchanged at 7, = 0.647 and the pure torsiona
frequency is

r 6
_ 7l ] El, _ 0.647[0).8242 2300° (251 _ 0205 Hz (2.8)
i,HZ\'m 852015 111.3

Asthe centroid and the shear centre coincide, there is no coupling among the
two lateral and pure torsional vibrations and the fundamental frequency is the
smallest one of the three:

f =Min f,, f,, f, =0.205Hz {4.38}
12.2.2.3 Global critical load and critical load ratio

The situation concerning stability is very similar to that of vibration. The sway
critical loads are unchanged from the previous case at

7.837E1 1,

Nog = = > =149 MN (2,92}
and

Ny 78?;_7|i 1244 MN (2.92}

but, due to the change in the value of the radius of gyration, the value of pure
torsional buckling changes. With a = 11.286, determined in the previous case, the
puretorsional critical load is

3
Ny p = TsElo _ 11286 7SORIACREL_ 5 5 (2.00
7 i 8.522 115

Asthereisno coupling, thisis also the global critical load of the building:

Ng = Min N, Ner s Nor g = Ngg = 30.3MN {5.46}

To sum it up, everything has improved compared to the previous case: the
maximum deflection decreased enormously, the fundamental frequency increased
and the critical load aso increased nearly three-fold. The global critical load ratio
reflects these favourable changes:
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A=—0 =" =-21 {6.3}

However, although the building is now theoretically stable, the value of the
globa critical load ratio is far from the recommended vaue of A=10
[Equation (6.5)].

As mentioned above in connection with Layout A, the poor torsional
performance of the building was caused by the small torsional stiffness of the core
and the relatively great distance between the centroid of the layout and the shear
centre.

The situation has improved by moving the core to the centre but the
improvement is not big enough. In the following section another attempt is made to
remedy the original situation by increasing the torsional stiffness of the core (while
leaving the core at its original position).

12.2.3 Layout C: partially closed corein theright-hand side of the layout

In practical situations it is normally possible and feasible to close the U-core
partially. It is done in this case by adding small lip-sections and connecting the
wall sections at the opening by beams at floor levels (Figure 12.7/b). The thickness
and the depth of the connecting beams are t, = 0.20 m and d = 0.65 m. The distance
of the connecting beamsis equal to the storey height: s=3 m.

Due to this alteration, the value of the second moments of area of the core
slightly changes. The value of the warping constant dramatically decreases and, as
a conservative estimate, it is ignored in the following calculation. The lips add a
little to the value of the original Saint-Venant torsional constant:

1 0.2°
J= —Zhiti?’ =% (2[3.1+2.6+20.4) = 0.026m" {2.75}
34 3

Because of the partia closure, however, the value of the Saint-Venant
torsional constant drastically increases. This increase is calculated according to
Vlasov (1961) as

2 2 2
J=— 4% = 5 431726 =1.424m* {2.79}
I°sG_, 1.2Is 18°[(3(9580  , 1.2(1.8[3
12El, A, 12[23000[0.004577  0.13
where

A, =t,d =0.2[0.65= 0.13 m?

and
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3 3
lp = ,d” _ 020065 _ 0.004577 m*

are the cross-sectional area and the second moment of area of the connecting
beams.
The value of the total Saint-Venant constant is

J+J=0026+1424=145m"

Because of the partial closure, the location of the shear centre of the core aso
changes. It isamove “backwards’, definitely towards the centre of the core, but its
exact value is very difficult to establish. Using an equivalent thickness of

th = E0.2 0104 m {2.81}
S 3.0

t, =
the computer program PROSEC (1994) gives
e=0.30m

for the location of the shear centre (Figure 12.7/b). The geometrical and stiffness
characteristics related to Layout C are collected in the third row of Table 12.2 in
Section 12.2.1.

L L=26m L
i \
Wy
. RRIRR AR ARRRARRRRRN AR AR AR AR RRNRN A AT ARI - b=2.6
g X
97  26/07| —
r Yo=8.70 o i e=0.30
B=14 C. 14 O Ty=170 i h=3.1
31 r] Tk 402§
| 25 - -
%=110 | 04 =18 04
Xo= Xmax= 24.0
y y
a) b)

Figure 12.7 Kollar' s building. a) Layout C, b) Partially closed core.
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12.2.3.1 Maximum rotation and deflection

The situation is similar to the one with Layout A. Maximum deflection develops at
the left-hand side of the building at Xn. = 24.0. It consists of two parts. The
building undergoes a uniform deflection of

wy H* 4
Vo =V(H)=—L—= 26 %5 =0.0029 m {2.83}
8El, 8[23M0°2.479
The rotation around the shear centre
2 2
mH”_ 28605 _ 60030 (2,91}

=d(H) = =
Pima = (H) 2GJ  209.58M10°1.45

causes the second part of the deflection with a “torsion arm” of X = 24.0. The
total deflectionis

Vimax = V(H) =V, + @X 15 = 0.0029+ 0.00232 24
=0.0029+ 0.0557 = 0.059 m {3.36}

The recommended maximum deflection of the building is

\"
ASCE T 500 500

12.2.3.2 Fundamental frequency

The three basic frequencies are needed first.
The latera frequenciesin directions x and y are calculated using the formulae
given for cores but with the mass density which relates to the whole building:

0.56r; [El 6
g, = 250 [El, 05610842 [2800°2509 _ oo (297)
H? V' m 15 1113

and

0.56r 6
[, = i |El, _056[0.842 /23&0 2479 _ 1 o1, (207
H?2 m 152 111.3

Theradius of gyrationis
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2 2 2 2
3 :\/L +B” 2 :\/Mufu.mz =14.0m {420}
12 12

The frequency of pure torsional vibration of the building is obtained using the
formula given for a single core (with GJ only) but with the radius gyration that
relates to the whole layout area as the mass is distributed over the whole floor area
of the building:

6
P {2.99)
4Hi, V'm 405040\ 1113

Thereisatriple coupling and, as one of the basic frequenciesis much smaller
than the others, its effect can be approximated with good accuracy using the Foppl-
Papkovich formula:

1
= 1
: 1
A :[ L 1. 1 2] ?=0302Hz {435)
Y 15367 1507 0.421

X
12.2.3.3 Global critical load and critical load ratio

The critical load for sway buckling in direction x is calculated using the relevant
second moment of area of the core:

_ 7.837El 1y _ 7.837[23010° (2.599(0.759

T = =1580 MN {2.92}

In asimilar way, the sway buckling load in directiony is

_ 7.837El, 1, _ 7.837[23[10°[2.479[0.759

Nory = H?2 152

=1507 MN {2.92}

Torsion is resisted by the Saint-Venant torsional stiffness and the critical load
of puretorsional bucklingis

Ny g =— = =70.9MN {2.96}

Because of the triple coupling, this critical load is reduced and the global
critical load of the building is



Critical Load Ratio 251

-1 1
Ny =ty 1 :( 1,1, 1) =649MN {543}
Nox Nay Nog 1580 1507 709

The global critical load ratio
Az—a =22 g {6.3}

shows a stable structure but the recommended margin is not yet achieved. (The
maximum deflection also exceeds the recommended value.) However, the situation
can further be improved.

12.2.4 Layout D: partially closed corein the centre of the layout

In combining the previous two actions, the partialy closed core is now moved to
the centre in such away that its shear centre and the centroid of the layout coincide
(Figure 12.8).

The geometrical and stiffness characteristics of this case are collected in the
fourth row in Table 12.2 in Section 12.2.1.

12.2.4.1 Maximum rotation and deflection

As the resultant of the wind load passes through the shear centre, there is no
rotation around the shear centre:

$=0 {2.89)

It also follows that the deflection of the building is entirely made up from the
uniform part of the deflection. This was calculated in the previous case so the top
deflection of the building is readily available as

Vinax = Vo + @ Xy = 0.0029+ 0.0 = 0.0029m {3.36}

12.2.4.2 Fundamental frequency

By moving the core to the centre, the values of the lateral vibration do not change
and the results obtained in the previous section hold:

_0s56ry [EI,
fy = IR =1.536Hz {2.97}

and
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0.56r; |El
f, = X =150Hz 2.9
v T2 \/ m {297}
L L=26m L
1 1
Wy
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Figure 12.8 Kollar's building. Layout D: partially closed corein the centre.

The situation is different when the torsional behaviour is considered. The
distance between the shear centre and the centroid of the mass is now reduced to
zero and this fact aters the value of the radius of gyration:

2 2 2 2
ip:JL +B +tzz\/_26 14 0=852m {4.20}
12 12

The pure torsional frequency is

6
P R YET {2.99}
4Hi, V'm 40552\ 1113

Asthe centroid and the shear centre coincide, there is no coupling among the
two lateral and pure torsional vibrations and the fundamental frequency is the
smallest of the three:

f =Min! f,, f,, f, =0.691Hz {4.38}

12.2.4.3 Global critical load and critical load ratio

The situation concerning stability is very similar to that of vibration. The sway
critical loads are unchanged from the previous case at
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7.837El 1
ax = ——5——=1580MN {2.92}

and
Ny =%=1507 MN (2,92}

but, due to the change in the value of the radius of gyration, the value of pure
torsional buckling changes:

== e T 19IMN {2.96}

Asthereis no coupling, this, being the smallest one of the three basic critical
loads, is also the global critical load of the building:

Ng = Min N, Nerys Ner g = N =191MN {5.46}

To sum it up, everything has improved compared to the previous case: the

maximum deflection decreased enormously, the fundamental frequency increased
and the critical load aso increased nearly three-fold. The global critical load ratio

reflects these favourable changes:

“Ne _ 191 45 {63}

The results of the four arrangements are collected in Table 12.3.

Table 12.3 Kollar’ s building: a summary.

maximum maximum  fundamenta  global global critical
Layout rotation deflection frequency critical load load ratio
[°] [mm] [HZ] [MN] [-]
“A” 13 564 0.124 112 0.8
“B” 0 35 0.205 30.3 21
“C’ 0.13 59 0.391 64.9 45

“‘D” 0 29 0.691 191 13




Appendix:

List of worksheets

The following sixteen downloadable Mathcad worksheets accompany the book and
can be downloaded at www.crcpress.com/product/isbn/9780415595735. The
worksheets cover the worked examples in Chapters 7, 8, 9, 10, 11 and 12. Mathcad
Plus 6.0 (MathSoft, 1995) was used for producing the Filenamemcd files.
According to support staff at Adept Scientific in June 2011, al versions (6.0 and
higher) of Mathcad can open these Mathcad 6.0 files and will update them for
ongoing use.

7_1DeflectionF6.med (Maximum deflection of 34-storey frame F6)

The worksheet cal culates the maximum deflection of athree-bay sway frame under
uniformly distributed horizontal load. In modifying the input data (modulus of
elagticity, number/size of bays, number of storeys, storey height, size of the cross-
sections of the columns/beams, intensity of the horizontal load), the maximum
deflection of any multi-storey framework on fixed supports can be determined at
once. The worksheet also produces the deflection shape of the structure.

7_2FrequencyF5.mcd (Fundamental frequency of 40-storey frame F5)

The worksheet calculates the fundamental frequency of a two-bay sway frame
subjected to uniformly distributed mass on floor levels. In modifying the input data
(modulus of elasticity, number/size of bays, number of storeys, storey height, size
of the cross-sections of the columns/beams, magnitude of mass), the fundamental
frequency of any multi-storey framework on fixed supports can be determined at
once.

7_3StabFFSH1.mcd (Critical load of 7-bay, 12-storey framework FFSH1)

The worksheet calculates the global critical load and global critical load ratio of a
seven-bay sway frame subjected to uniformly distributed vertical load on floor
levels. In modifying the input data (modulus of elasticity, number/size of bays,
number of storeys, storey height, size of the cross-sections of the columns/beams,
intensity of vertical load), the global critical load and global critical load ratio of
any multi-storey framework on fixed supports can be determined at once.

7_4StabSRX.mcd (Critical load of 8-storey framework SR-X with cross-bracing)
The worksheet calculates the global critical load of a single-bay framework with
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cross-bracing subjected to uniformly distributed vertical load on floor levels. In
modifying the input data (modulus of elasticity, number/size of bays, number of
storeys, storey height, size of the cross-sections of the columns/beams/diagonals,
type of cross-bracing), the global critical load of any multi-storey framework with
cross-bracing can be determined at once.

7 5StabCSWSH3.mcd (Critical load of 18-storey, 2-bay coupled shear walls
CSWSH3)

The worksheet calculates the global critical load of the eighteen storey, two-bay
coupled shear walls subjected to uniformly distributed vertical load on floor levels.
In modifying the input data (modulus of easticity, number/size of bays, number of
storeys, storey height, size of the cross-sections of the wall-sections/beams), the
global critical load of any multi-storey, multi-bay coupled shear walls can be
determined at once. When modifying the input data, attention should be paid to the
calculation of the shear stiffness (K, and K) as the structure in the worked example
haswall sections of different size.

8 1De€fIBuildF5F11W3.mcd (Maximum deflection of 16-storey symmetric cross
wall building 2F11+2F5+2W3)

The worksheet calculates the maximum deflection of a sixteen-storey symmetric
building braced by two two-bay frameworks with cross-bracing, two two-bay sway
frames and two shear walls, under uniformly distributed horizontal load. In
modifying the input data (modulus of elasticity, number/size of bays, number of
storeys, storey height, size of the cross-sections of the columns/beams/diagonals,
size of shear wall, intensity of the horizontal load), and adding any number of new
bracing units, the maximum deflection of any symmetric planar system of
frameworks, coupled shear walls and shear walls can be determined at once.

8 2DefIBuildF1IF5W4U.med (Maximum deflection of 28-storey building braced
by 2F1+F5+2W4+U)

The worksheet calculates the deflection of and the rotation around the shear centre
axis, then the maximum deflection of a twenty-eight storey building braced by two
one-bay frameworks, one two-bay sway framework, two shear walls and one U-
core, under uniformly distributed horizontal load. In modifying the input data
(modulus of elasticity, number/size of bays, number of storeys, storey height, size
of the cross-sections of the columns/beams, size of shear wall, size of U-core, size
of layout, location of bracing units, intensity of the horizontal load), and adding
any number of new bracing units, the maximum deflection of any system of
frameworks, coupled shear walls, shear walls and cores can be determined at once.

9 _1FreqSymmBuild.mcd (Fundamental frequency of doubly symmetric building)
The worksheet calculates the fundamental frequency of a thirty-storey doubly
symmetric building braced by four two-bay frameworks and four shear walls. In
modifying the input data (modulus of elasticity, number/size of bays, number of
storeys, storey height, size of the cross-sections of the columng/beams, size of
shear walls, size of layout, magnitude of mass), and adding new bracing unitsin a
doubly symmetric arrangement, the fundamental frequency of any doubly
symmetric building can be determined at once.



256 Multi-storey Buildings

9 2FregBuild.mcd (Fundamental frequency of 6-storey asymmetric building)

The worksheet calculates the fundamental frequency of a six-storey building
braced by two infilled frameworks and two shear walls, vibrating in a three-
dimensiona manner. In modifying the input data (modulus of elasticity,
number/size of bays, number of storeys, storey height, size of the cross-sections of
the columnsg/beams, characteristics of the infill, size of shear walls, size of layout,
location of bracing units, magnitude of mass), and adding any number of new
bracing units, the fundamental frequency of any asymmetric building can be
determined at once.

10_1StabSymmBuild.mcd (Stability of 30-storey doubly symmetric building)

The worksheet calculates the global critical load and the global critical load ratio of
a thirty-storey doubly symmetric building braced by four two-bay frameworks and
four shear walls. In modifying the input data (modulus of elasticity, number/size of
bays, number of storeys, storey height, size of the cross-sections of the
columns/beams, size of shear walls, size of layout, intensity of vertical load on
floor levels), and adding any number of new bracing units in a doubly symmetric
arrangement, the critical load of any doubly symmetric building can be determined
at once.

10 _2StabBuild.mcd (Stability of 6-storey Premier House)

The worksheet calculates the global critical load and the global critical load ratio of
a six-storey asymmetric building braced by an infilled framework and a U-core,
developing three-dimensional sway-torsional buckling. In modifying the input data
(modulus of elasticity, characteristics of the infill, number/size of bays, number of
storeys, storey height, size of the cross-sections of the columng/beams, size of U-
core, size of layout, intensity of vertical load on floor levels), and adding any
number of new bracing units, the global critical load and the global critical 1oad
ratio of any building can be determined at once.

11 Sheffield.mcd (Globa structural analysis of 22-storey building braced by 4
cores and 4 frames)

The worksheet presents a comprehensive, global, three-dimensiona structural
analysis. It calculates the global critical load, the global critical load ratio, the
fundamental frequency and the maximum rotation and deflection of the building.
In modifying the input data (modulus of elasticity, number/size of bays, number of
storeys, storey height, size of the cross-sections of the columns/beams, size of U-
cores, size of layout, location of bracing units, intensity of vertical load on floor
levels, intensity of horizontal load, magnitude of mass), and adding any number of
new bracing units, the comprehensive analysis can be repeated for any multi-storey
building in minutes.

12 1GlobalCasel.mcd; 12 1GlobalCase2.mcd; 12 1Global Case3.mcd

The three worksheets carry out a comprehensive global structural analysis of the
same building. In the three cases the bracing system consists of the same bracing
units (two one-bay steel frameworks with double bracing and two shear walls) but
their arrangement is different. The global critical load, the fundamental frequency
and the maximum rotation and deflection of the ten-storey building are calcul ated.
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The global critical load ratio is used as a performance indicator to characterize the
overall behaviour of the building. The worksheets can be used as templates for the
global structural analysis of similar buildings.

12 2GlobaKollar.med (Kollar's 5-storey building)

The worksheet carries out four comprehensive global structural analyses. The five-
storey building is the same, the bracing system—a single U-core—is nearly the
same: in two cases it is open and in the other two cases it is partidly closed. The
other difference is the location of the core. The maximum rotation and deflection,
the fundamental frequency, global critical load and the global critical load ratio are
determined. The global critical load ratio is used as a performance indicator to
characterize the overall behaviour and structural suitability of the building.
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