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CAPITAL LETTERS  
 
A   cross-sectional area; area of plan of building; floor area; corner point 
Aa   area of lower flange 
Ab   cross-sectional area of beam 
Ac   cross-sectional area of column 
Ad   cross-sectional area of diagonal bar in cross-bracing 
Ah   cross-sectional area of horizontal bar in cross-bracing 
Af   area of upper flange 
Ag   area of web 
Ao   area of closed cross-section defined by the middle line of the walls 
B   plan breadth of the building (in direction y); constant of integration 
Bl   local bending stiffness for sandwich model 
Bo   global bending stiffness for sandwich model 
C   centre of vertical load/mass; centroid; constant of integration 
D   constant of integration 
E   modulus of elasticity; constant of integration 
Ec   modulus of elasticity of columns; modulus of elasticity of concrete 
Ed   modulus of elasticity of diagonal bars in cross-bracing 
Eh   modulus of elasticity of horizontal bars in cross-bracing 
Es   modulus of elasticity of steel 
Ew   modulus of elasticity of shear wall 
F    concentrated load (on top floor level); resultant of horizontal load 
Fcr   critical concentrated load (on top floor level) 
Fcr,ϕ   critical load for pure torsional buckling (for concentrated top load) 
Fg   full-height (global) bending critical load (for concentrated top load) 
Fl   full-height (local) bending critical load (for concentrated top load) 
Ft   Saint-Venant torsional critical load (for concentrated top load) 
Fω   warping torsional critical load (for concentrated top load) 
G   modulus of elasticity in shear 
(GJ)   Saint-Venant torsional stiffness  
(GJ)e   effective Saint-Venant torsional stiffness  
H   height of building/framework/coupled shear walls; horizontal force 
I   second moment of area 
Iag   auxiliary constant 
Iωg   auxiliary constant 
Ib   second moment of area of beam 
Ic   second moment of area of column 
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If   sum of local and global second moments of area  
Ig   global second moment of area of the columns of the framework 
Igω   global warping torsional constant 
Io   polar second moment of area 
Ix, Iy   second moments of area with respect to centroidal axes x and y 
Ixy   product of inertia with respect to axes x and y 
Iw   second moment of area of wall  
Iω   warping (bending torsional) constant 
J   Saint-Venant torsional constant 
J    supplementary Saint-Venant torsional constant 
K   shear stiffness of framework; shear critical load 
K*   shear stiffness/shear critical load of coupled shear walls 
Kb   full-height global shear stiffness; global shear critical load 

*
bK    full-height global shear stiffness/shear critical load of coupled shear walls  

Kc   local shear stiffness related to the columns; local shear critical load 
Kd   shear stiffness representing the effect of the diagonal bars in cross-bracing 
Ke   effective shear stiffness 
Kh   shear stiffness representing the effect of the horizontal bars in cross-bracing 
L    width of structure; plan length of building (in direction x) 
M   bending moment 
Mi   concentrated mass at the ith floor level 
Mt   torsional moment 
N    total applied uniformly distributed vertical load; normal force 
Ncr   critical load  
Ncr,x   critical load for sway buckling in direction x 
Ncr,y   critical load for sway buckling in direction y 
Ncr,ϕ   critical load for pure torsional buckling 
Nf   local bending critical load of framework 
Nh   homogeneous solution 
Ng   full-height global bending critical load 
Nl   full-height local bending critical load 
Np   particular solution 
Nt   Saint-Venant torsional critical load 
Nw   local bending critical load of shear wall 
Nyφ   coupled sway-torsional critical load 
Nω   warping torsional critical load 
N(z)   total vertical load at z 
O   shear centre 
Q    uniformly distributed floor load per square metre 
S   lateral stiffness; shear stiffness for sandwich model 
Sω   torsional stiffness 
 
SMALL LETTERS 
 
a   length of wall section; stiffness ratio 
a    stiffness ratio for a system of bracing units 
ai   local bending stiffness ratio 
a0, a1, a2 coefficients for cubic equation 
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b   length of wall section; stiffness ratio 
b    stiffness ratio for a system of bracing units 
bi   shear stiffness ratio 
bw   width of diagonal strip for infill 
b0, b1, b2 coefficients for cubic equation 
c   length of wall section 
ci   global bending stiffness ratio 
c1    stability coefficient/critical load factor 
d   length of wall section; length of diagonal; depth of beam; deflection 
dASCE   maximum deflection recommended by ASCE 
dz   length of elementary section 
e    location of shear centre; distance of upper flange from centroid 
e*    distance of lower flange from centroid (with bracing cores) 
f   frequency; auxiliary constant; number of frames and coupled shear walls 
fb   lateral frequency associated with local bending stiffness 
ff   lateral frequency of framework 
fg   lateral frequency associated with global bending stiffness 
fs   lateral frequency associated with the effective shear stiffness 
fs’   lateral frequency associated with the “original” shear stiffness 
fw   lateral frequency of shear wall/core 
fx   lateral frequency in direction x 
fy   lateral frequency in direction y 
fyϕ   coupled lateral-torsional frequency 
fϕ   frequency of pure torsional vibration 
g    gravity acceleration 
h    height of storey; length of wall section 
h*   different storey height between ground floor and first floor 
i    summation index for columns/bracing units 
ip   radius of gyration 
j    summation index  
k    non-dimensional parameter  
ks   non-dimensional parameter for stability analysis 
kϕ   non-dimensional torsion parameter for frequency analysis 
l    width of bay 
l*   distance between shear wall sections 
m   number of shear walls/cores/wall sections; mass; length of beam section 
m    torsional moment share on base unit 
mt   total torsional moment on the bracing system 
mz   torsional moment  
n    number of columns/walls; number of storeys 
p    intensity of uniformly distributed vertical load on beams 
q   intensity of uniform shear flow; intensity of axial load  
qi   apportioner 
qω   torsional apportioner 
q1   apportioner for the base unit 
r    reduction factor for beam stiffness 
rf   mass distribution factor for the frequency analysis 
rs   load distribution factor for the stability analysis 
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s    non-dimensional stiffness ratio for bracing unit; effectiveness factor;  
   distance of connecting beams with partially closed U-core 
s    non-dimensional stiffness ratio for bracing system 
si   width of shear wall section 
sf    effectiveness factor for frequency analysis 
sφ    torsional effectiveness factor 
t    wall thickness; distance of shear centre and centroid; time; perpendicular  
   distance of bracing unit from shear centre; distance of column from 
   centroid of cross-sections with frameworks 
tb   thickness of connecting beam with partially closed U-core 
tf   wall thickness 
ti   wall thickness 
tw   wall thickness 
u    horizontal deflection of the shear centre in direction x 
umax   maximum horizontal deflection in direction x 
u1   horizontal motion  
v    horizontal deflection in direction y 
vo    horizontal deflection of the shear centre in direction y 
vmax   maximum horizontal deflection in direction y 
vφ    horizontal deflection caused by torsional moment around the shear centre 
w   intensity of wind load 
w    intensity of wind load on base unit 
x   horizontal coordinate axis; horizontal coordinate 
x     horizontal coordinate axis; coordinate in coordinate system yx −  
xc   coordinate of the centroid in the x-y coordinate system of the shear centre 
xi   coordinate of the shear centre of the ith bracing unit  
xmax   location of maximum translation 

ii yx ,    coordinates of the shear centre of the ith bracing unit in the coordinate 
    system yx −  

ox    coordinate of the shear centre in coordinate system yx −  
y   horizontal coordinate axis; horizontal coordinate 
y    horizontal coordinate axis; coordinate in coordinate system yx −  
yb   deflection due to bending deformation 
yc   coordinate of the centroid in the x-y coordinate system of the shear centre 
yi   coordinate of the shear centre of the ith bracing unit; deflection due to 
   interaction  
yo   location of shear centre  

oy    coordinate of the shear centre in coordinate system yx −  
ys   deflection due to shear deformation 
z   vertical coordinate axis; vertical coordinate 
 
GREEK LETTERS 
 
α    eigenvalue; critical load parameter 
αs   eigenvalue; critical load parameter for the sandwich model with thin faces 
β   part critical load ratio 
βs   part critical load ratio for the sandwich model with thin faces 
∆   displacement 
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η    frequency parameter for lateral vibration 
ηφ    frequency parameter for pure torsional vibration 
γ   weight per unit volume 
κ   stiffness parameter for a single bracing unit 
κ    stiffness parameter for a system of bracing units 
λ   global critical load ratio 
ν    Poisson ratio 
ω1, ω2  auxiliary constants 
ω   circular frequency 
ϕ   rotation 
Ω1, Ω2  auxiliary constants 
ϕmax   maximum rotation 
Ψ   auxiliary constant 
ρ    mass density per unit volume; cross-sectional constant 
τx, τy   eccentricity parameters for the three-dimensional analysis 
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1 
 

Introduction 

 

 
The book deals with the structural analysis of the bracing systems of multi-storey 
building structures and intends to offer useful tools to both researchers and 
practicing structural engineers. As a consequence, the material is divided into two 
parts: Part I presents the theoretical background and Part II gives worked 
examples.  
 A couple of decades ago approximate methods played a very important and 
normally dominant role in the structural design of large structures as often, because 
of the lack of computer power, it was not feasible, or practical, or sometimes 
possible, to carry out an “exact” analysis of big and complex structures. Then more 
and more powerful computers with more and more sophisticated programs started 
to become available to wider and wider structural engineering communities. Soon 
the debate started with questions like “Do we need old-fashioned approximate 
methods?” and “Should we rely on brainless number-crunching machines that 
cannot think?” and “Shall we just input all the data, press <Enter> and by 
tomorrow the structural analysis is done?” and “Computers in the design office: 
boon or bane” (Smart, 1997). This debate will perhaps go on for a long time. But 
one thing seems to be certain: simple analytical methods and closed-form 
approximate solutions do and will play an important role in practical structural 
engineering and theoretical research (Howson, 2006). Not only because they offer 
important independent checking possibilities to help to avoid CAD (Computer 
Aided Disaster) (Brohn, 1996) but also because the development and use of such 
methods help to understand the complex behaviour of large structures such as 
multi-storey buildings. They are also useful tools in developing structural 
engineering common sense and a feel for the behaviour of structures.  
 When multi-storey buildings are investigated, two main avenues are available 
for the structural engineer: sophisticated and powerful computer packages can be 
used or “conventional” calculations can be made. Perhaps the best way to tackle 
the task is to employ both approaches: at the preliminary design stage simple hand 
methods can quickly help to establish the main structural dimensions and to point 
to efficient bracing system arrangements. More detailed computer-based analyses 
can follow. Before the final decision is made, it is essential to check the results of 
the computer analysis and recheck the adequacy of the key elements of the bracing 
system. Here, again, suitable analytical methods can play a very useful part. 
 The fact that the methods in the book are all based on continuous models has 
another advantage. When the results of a finite element analysis (based on discrete 
models) are checked, it is advantageous to use a technique that is based on a 
different approach, i.e., on continuous media.  
 Structural analysis is normally carried out at two levels. The structural 
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engineer has to ensure that a) the individual elements (beams, columns, floor slabs, 
etc.) are of adequate size and material to carry their load and b) the structure as a 
whole has adequate stiffness and the bracing system fulfils its main role to provide 
sufficient stability to the building. 
 The book does not deal with individual structural elements. Its aim is to 
present simple analytical methods for the complex global analysis of whole 
structural systems in the three main structural engineering areas. Closed-form 
solutions will be given for the maximum rotation and deflection, the fundamental 
frequency and the critical load of the building, assuming three-dimensional 
behaviour.  
 The continuum method will be used which is based on an equivalent medium 
that replaces the whole building. The discreet load and stiffnesses of the building 
will be modelled by continuous load and stiffnesses that make it possible to use 
analytical tools to produce relatively simple, closed-form solutions to the resulting 
differential equations and eigenvalue problems.  
 It will be assumed that the structures are 

• at least four storeys high with identical storey heights 
• regular in the sense that their characteristics do not vary over the height 
• sway structures with built-in lower end at ground floor level and free upper 

end 

and that 

• the floor slabs have great in-plane and small out-of-plane stiffness 
• the deformations are small and the material of the structures is linearly elastic 
• P-delta effects are negligible. 

 Structural engineering research and practice often see researchers/structural 
designers who have specialized in one area with limited knowledge elsewhere. 
Designers are often reluctant to deal with theoretical matters; researchers often 
have little practical knowledge (or attitude); those dealing with stress analyses are 
sometimes ignorant of stability matters; people engaged in earthquake engineering 
may not be very good at the optimisation of bracing systems, etc.  
 This book offers a unified treatment for the different structures (frameworks, 
coupled shear walls, shear walls and cores) and also for the different types of 
investigation (deflection, rotation, frequency, stability). The same terminology will 
be used throughout, and it will be shown that these seemingly independent areas 
(deformations, frequencies, critical loads—or stress, dynamic and stability 
analyses) are in fact very closely related. In addition, the global critical load ratio 
links them to the performance of the bracing system in a rather spectacular manner. 
 Numerous approximate methods have been published for structural analyses. 
However, it is surprising how few, if any, have been backed up with 
comprehensive accuracy analysis. Here, in this book, dozens/hundreds of bracing 
units/systems are used to demonstrate the applicability and accuracy of the 
methods presented. 
 Although real multi-storey buildings seldom develop planer deformation 
only, Chapter 2 (dealing with the planar analysis of individual bracing units) is 
probably the key chapter of the book in the sense that it introduces all the 
characteristic stiffnesses that will be used for the three-dimensional investigations 
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of whole systems later on. It is also shown here how the complex behaviour can be 
traced back to the local bending, global bending and shear deformation (and their 
torsional equivalents) of the bracing system. All the characteristic types of bracing 
unit are covered here: sway- and infilled frameworks, frameworks with cross-
bracing, coupled shear walls, shear walls and cores.  
 Deflections and rotations are the subject of Chapter 3 where the main aim is 
to present simple, closed-form solutions for the maximum deflection and rotation 
of the building. The investigations spectacularly show the contribution of the two 
key (bending and shear) stiffnesses as well as the interaction between them. 
Chapter 4 deals with the frequency analysis of buildings. Closed form formulae 
and tables make it possible to calculate the lateral and torsional frequencies of the 
building. The coupling of the lateral and torsional modes can be taken into account 
by a simple summation formula or, if a more accurate result is needed, by 
calculating the smallest root of a cubic equation. The often neglected but very 
important area of stability is covered in Chapter 5. In using critical load factors, 
simple (Euler-like) formulae are presented for the lateral and torsional critical 
loads. The combined sway-torsional critical load is obtained as the smallest root of 
a cubic equation. Chapters 2, 3, 4 and 5 end with a demonstration of the accuracy 
of the method(s) presented in the chapter. 
 Chapter 6 introduces the global critical load ratio which is a useful tool for 
monitoring the “health” of the bracing system and indicates if the bracing system is 
adequate or more rigorous (second-order) analysis is needed. The global critical 
load ratio can also be used to assess different bracing system arrangements in 
minutes in order to chose the most economic one. The results of a comprehensive 
example illustrate the practical use of the global critical load ratio. 
 Part II presents sixteen examples worked out to the smallest details, with 
step-by-step instructions. The examples range from the deflection or frequency or 
stability analysis of individual bracing units to the complex deflection and 
frequency and stability analyses of bracing systems, considering both planar and 
spatial behaviour. Although most of the formulae in the book are of the back-of-
the-envelope type, due to the complexity of global three-dimensional analyses, 
some of the calculations may still seem to be rather cumbersome to carry out by 
hand. It is very rare, however, that a structural engineer today would wish to do 
actual hand-calculations, however simple they may be. Convenient spreadsheets 
and calculation worksheets make it possible to do the structural analysis and 
document its result at the same time in minutes. All the methods presented in the 
book are suitable for this type of application; in fact the worksheet version of all 
the sixteen worked examples has been prepared and made available for download. 
These one-to-eight page long worksheets cover a very wide range of practical 
application and can also be used as templates for other similar structural 
engineering situations.  
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Part I: Theory 
 
 
 
 
 
 
 
 
The widespread availability of powerful computers and sophisticated programs 
makes it possible to analyze even very large and complex structures with relatively 
little effort. This is very welcome. There is, however, a certain degree of danger 
that the structural engineer, in accepting the help of the computer, may get carried 
away and rely on the computer to a greater extent than would be desirable and pay 
less attention to the behaviour of the structure. It may be tempting to become 
complacent.  
 If the structural engineer’s knowledge about the behaviour of complex 
structures is limited, then the temptation is even greater to accept the computer’s 
solution to the structural engineering problem that has been fed to the computer. 
This is where “Part I: Theory” can be helpful. The continuum model of the multi-
storey building is used repeatedly. The continuous medium approach makes it 
possible to handle complex structural engineering problems in a relatively simple 
way and to identify the key stiffness and geometrical characteristics that have a 
dominant role in shaping the behaviour of the structure.  
 In order for the accuracy analyses in Chapters 2, 3, 4 and 5 to correspond to 
the theoretical assumption that “the floor slabs have great in-plane and small out-
of-plane stiffness” the floor slabs of the buildings are modelled using sets of bars 
interconnecting the vertical bracing units. The bars have very great cross-sectional 
areas and pinned ends. The shear walls are modelled by bar elements (cantilevers). 
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Individual bracing units: 

frames, (coupled) shear walls and cores 

 

 
The bracing system of a multi-storey building is normally made up from different 
units: frameworks, shear walls, coupled shear walls and cores. They all contribute 
to the overall resistance of the system, but their contributions can be very different 
both in weight and in nature, so it is essential for the designer to know their 
behaviour in order that optimum bracing system can be produced. 
 Frameworks play a very important role in the structural analysis as they have 
all the three basic stiffness characteristics, i.e., they have local bending stiffness, 
global bending stiffness and shear stiffness. Their importance is underlined by the 
fact that the analysis of whole structures (consisting of frameworks, shear walls, 
coupled shear walls and cores) can often be traced back to the investigation of a 
single framework and its equivalent column. It is therefore advantageous to start 
the investigation with the analysis of frameworks. 

2.1 DEFLECTION ANALYSIS OF SWAY-FRAMES UNDER 
HORIZONTAL LOAD 

The behaviour of frameworks under lateral load is complex, mainly because they 
develop both bending and shear deformations. Due to the complexity of the 
problem, designers and researchers have made considerable efforts to develop 
approximate techniques and methods. Perhaps the best and most widespread 
method is the continuum method which is based on an equivalent medium that 
replaces the framework. It is difficult to pinpoint exactly who developed the first 
continuum model but the method probably surfaced in the 1940s. In her excellent 
paper, Chitty (1947) investigated parallel beams interconnected by cross bars, 
subjected to uniform lateral load, and established the governing differential 
equation of the problem. In a following paper she applied the method to tall 
buildings under horizontal load, however, she neglected the axial deformations of 
the columns (Chitty and Wan, 1948). Scientists from all over the world followed, 
many of them apparently unaware of the previous efforts, who created and 
sometimes reinvented and later further developed continuum models (Csonka, 
1950; Beck, 1956; Rosman, 1960; MacLeod, 1971; Despeyroux, 1972; Stafford 
Smith et al., 1981; Hoenderkamp and Stafford Smith, 1984; Coull, 1990). Perhaps 
the most comprehensive treatment of building structures under horizontal load is 
given by Stafford Smith and Coull (1991). The continuum model has also been 
applied successfully to the stability and dynamic analyses of buildings (Danay et 
al., 1975; Rosman, 1981; Rutenberg, 1975; Kollár, 1986; Hegedűs and Kollár, 
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1999; Zalka, 2000; Potzta and Kollár, 2003).  
 The procedure presented in the following will result in a very simple and 
expressive formula for the deflection, identifying three distinctive parts: bending 
mode, shear mode and their interaction. 
 In addition to the general assumptions listed in the Introduction, it will also 
be assumed that the structures are subjected to uniformly distributed lateral load. 

2.1.1 Basic behaviour; lateral deflection 

In line with, and using the terminology established in the theory of sandwich 
structures (Plantema, 1961; Allen, 1969; Hegedűs and Kollár, 1999; Zalka, 2000), 
the behaviour of a framework may be characterised by three types of stiffness and 
the corresponding deflection types. The three types are: shear, global bending 
when the structure as a whole unit is considered and the bending of the unit occurs 
through the axial deformation of the columns, and local bending when the full-
height bending of the individual columns of the framework is considered 
(Figure 2.1). From now on, these characteristics will be used, not only for the 
lateral deflection analysis in this Section but also for the rotation analysis later on 
as well as for the stability and frequency analyses in later chapters.   

c) b) a) 

 
Figure 2.1 Characteristic deformations. a) shear, b) global bending, c) local bending. 

 
 For the deflection analysis, consider first the one-bay framework under 
horizontal load w, shown in Figure 2.2/a. In the usual manner with the continuum 
method, first the beams are cut at the vertical line of contraflexure. The resulting 
lack of continuity is compensated for by a shear flow of intensity q (Figure 2.2/b). 
It is assumed that there are “enough” beams so that they can be considered a 
continuous connecting medium between the columns. (As a rule, the technique can 
safely be applied to structures of at least four-storey height.) The shear flow is then 
transferred to the columns (Figure 2.2/c) in the form of normal forces (N) and 
bending moments (Nl1 and Nl2). Finally, after setting up a differential equation 
responsible for the lack of continuity in the following sections [c.f. Equation (2.9)], 
an equivalent column will be created as the continuum model for the problem 
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(Figure 2.2/d). The origin of the coordinate system is placed at and fixed to the top 
of the column.  
 If the beams are cut, relative vertical displacements develop along the line of 
contraflexure. Three different actions will cause displacement and they will now be 
considered, one by one, as if they occurred separately from each other.  
 The relative displacement due to the bending of the columns (Figure 2.3/a) is 

      yl ′=∆1  

 The displacement is positive when the end of the beam-section belonging to 
the left column moves downward and the other upward. 

 

h 

l 

h 

h 

h 

h 

1 2 

a) b) c) d) 

N 

w 

l2 l1 l2 l1 

qh 

 z 

 y 

N 

qh 

qh 

qh 

qh 

Ac1 

Ic1 
Ac2 
Ic2 

Ib 

Nl1 Nl2 

H EI 

K 

EIg 

 
Figure 2.2 The continuum model. a) original frame, b) discontinuity along contraflexure line with shear 

force qh, c) the two columns with continuous forces, d) the equivalent column. 
 
 The axial deformation of the columns (Figure 2.3/b), due to the normal forces 
originating from the shear forces in the connecting beams, also contributes to the 
overall relative displacement 

      ∫







+−=∆

H

zcc

Ndz
AAE 21

2
111

   

where 

      ∫=

z

qdzN
0
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is the normal force causing axial deformation in the columns, q is the intensity of 
the shear flow, Ac1 and Ac2 are the cross-sectional areas of the columns, H is the 
height of the structure and E is the modulus of elasticity. 

l l 

h 

h 

 y 

∆1 ∆2 

a) b) 

 Ac1  Ac2 

 y 

N N 

 
Figure 2.3 Vertical displacement at contraflexure point. a) due to the deflection of the columns, b) due 

to the axial deformation of the columns. 
 
 Due to the bending of the beams (Figure 2.4), the shear force at contraflexure 
also develops relative displacement. Assuming that the point of contraflexure is at 
mid-bay, this relative displacement is 

      
bbbb K

ql

lh

EI
ql

EI

hql

EI

l
qh 223

3

*
3 12123

2
2 −=−=−=










−=∆  (2.1) 

where Ib is the second moment of area of the beams, h is the storey height, l is the 
bay and  

      
lh

EI
K b

b
12

=   (2.2) 

is defined as the stiffness of the beams (distributed over the height).  
 Equation (2.1) only holds when the beams have horizontal tangent to the 
columns at the nodal points, i.e., when the columns are considered infinitely stiff 
(dashed line in Figure 2.4). This may be the case with coupled shear walls where 
the wall sections are often much stiffer than the connecting beams and can prevent 
the rotation of the beams at nodal points. However, this is not the case with 
frameworks where the columns develop double curvature bending between the 
beams (solid line in Figure 2.4). It follows that, due to the flexibility of the 
columns, in the case of frameworks, Equation (2.1) should be amended as the 
vertical displacement *

3∆  increases:  
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      







+−=



















+−=∆
cbcb KK

ql

h

EI
ql

lh

EI
ql 11

1212
2

2

22

3   

where the stiffness of the columns (distributed over the height) is defined as  

      
2

12

h

EI
K c

c =   (2.3) 

 In the above equations Ic is the second moment of area of the columns. 

l 

qh 

qh 

h 

h 

∆3 ∆3 
* 

 
Figure 2.4 Vertical displacement at contraflexure point due to the bending of the beam. 

 
 The shear stiffness of the framework (distributed over the height) can now be 
defined as  

      rK
KK

K
K

KK
K b

cb

c
b

cb

=
+

=







+=

−1
11

 (2.4) 

 In Equation (2.4) the term 

      
cb

c

KK

K
r

+
=   (2.5) 

is also introduced. In relation to Kb, it can be considered as a reduction factor. This 
reduction factor will play an important role later on. 
 Replacing Kb in Equation (2.1) with K, the actual relative displacement of the 
framework, when the bending of both the beams and the columns is considered, 
emerges as 

      
K

ql2

3 −=∆    
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 The above formulae are “exact” if the point of contraflexure is at mid-bay, 
i.e., if the structure is symmetric. However, their accuracy is considered adequate 
in most practical cases when the cross-sections of the columns are different. (When 
the stiffnesses of the columns are very different, e.g., the framework connects to a 
shear wall, a more accurate approach is needed. Formulae for such cases are given, 
e.g., in Stafford Smith and Coull, 1991.) 
 The above three relative displacements would develop if the beams are cut. 
However, the beams of the actual structure are not cut and therefore the sum of the 
relative displacements must equal zero for the real structure: 

      ∫ =







+−−′

H

zcc

Ndz
AAEK

ql
yl 0

111

21

2

  (2.6) 

 With 

      qN =′   (2.7) 

and introducing  

      2

21

212
22

2
11 l

AA

AA
lAlAI

cc

cc
ccg

+
=+=   (2.8) 

as the global second moment of area of the framework and after differentiating and 
some rearrangement, Equation (2.6) can be rewritten and the condition for 
continuity along the line of contraflexure assumes the form 

      0=+′′−′′ N
EI

l
N

K

l
y

g

  (2.9) 

 The bending of the two columns is considered next, based on the classical 
relationship for bending:  

      MEIy −=′′    

 Because of the connecting beams, the two columns, with their combined 
second moments of area, are forced to assume the same deflection shape. The 
external moments (from the horizontal load) are now supplemented by the 
moments caused by the shear forces along the line of contraflexure (Figure 2.2/b,c) 
as  

      ∫+−−=+′′

0

2121 )()(
z

cc qdzllMIIEy  
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 Introducing the sum of the second moments of area of the columns 

      21 ccc III +=   (2.10) 

as the local second moment of area of the framework, and making use of  

      ∫ −=

0

z

Nqdz    

and with Nl1 + Nl2 = N(l1 + l2) = Nl, the equation can be rewritten as 

      lNMEIy c +−=′′   (2.11) 

 The governing differential equation of deflection is obtained by combining 
Equations (2.9) and (2.11). Normal force N is obtained from Equation (2.11) as 

      )(
1

MEIy
l

N c +′′=    

 Substituting this and its second derivative for N and N ′′ in Equation (2.9) and 
some rearrangement lead to 

      













′′−=′′














+−′′′′ MM

EI

K

EI
y

EI

K

EI

K
y

gcgc

1
 (2.12) 

 Before the solution of the problem is produced, a small modification has to 
be made. Detailed theoretical investigations (Hegedűs and Kollár, 1999) show and 
accuracy analyses (Zalka and Armer, 1992) demonstrate that in the above 
continuum model the bending stiffness of the columns is somewhat 
overrepresented. (For low-rise frameworks this overrepresentation may lead to 
unconservative results of up to 16%.) This overrepresentation can easily be 
corrected by introducing reduction factor r defined by Equation (2.5) in such a way 
that the second moment of area of the columns of the framework is adjusted by 
factor r:  

      rII c=   (2.13) 

 Accordingly, from this point on, this modified second moment of area will be 
used and 

      rEIEI c=    

will be defined as the local bending stiffness of the structure. 
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 In order to shorten the formulae, the following––mostly temporary–– 
notation will be used: 

      bsba
EI

K
b

EI

K
a

g

=+=== κ,, ,  

      
gc

c

g

cg

g

c

IrI

rI

ba

a

I

rII

I

rI

b

ba

b

a
s

+
=

+

+
=+=

+
=+= ,11  (2.14) 

 Using the above notation and with M = wz2/2, the short version of 
Equation (2.12) is  

      









−=′′−′′′′ 1

2

2
2 az

EI

w
yy κ   (2.15) 

 This is the governing differential equation of the framework that has now 
been replaced by a single cantilever with the corresponding local bending stiffness 
EI, global bending stiffness EIg and shear stiffness K (Figure 2.2/d). 
 The deflection of the framework can be obtained in two ways. One  
possibility is to solve Equation (2.15) directly. Alternatively, the solution can be 
produced in two steps: first, the solution for the normal force is obtained then, 
using the formula for the normal force, the deflection is determined. Another  
aspect of the solution is the choice and placement of coordinate system. Although 
the actual result of the problem obviously does not depend on the solution process 
and the choice and placement of the coordinate system, the structure and 
complexity of the solution do. After solving the differential equation in the two 
different ways indicated above and using different coordinate systems, it turned out 
that the simplest result can be produced when the two-step approach is applied and 
when the coordinate system whose origin is fixed to the top of the equivalent 
column is used (Figure 2.2/d). The main steps of this procedure will now be 
presented.  
 In combining Equations (2.9) and (2.11), and with M = wz2/2 and notation 
(2.14), the governing second order differential equation for the normal force 
emerges as  

      
l

bwz
NN

2

2
2 −=−′′ κ   (2.16) 

 Two boundary conditions accompany this differential equation. The first 
condition expresses the fact that the normal force at the top must assume zero:  

      0)0( =N  

 The second condition is obtained using Equations (2.6) and (2.7). At the 
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bottom of the structure the tangent to the columns )( y′ is zero and the third term in 
Equation (2.6) also vanishes; hence 

      0)( =′ HN    

 The solution to differential equation (2.16) is sought in the form of  

      ph NNN +=    

where  

      zBzANh κκ coshsinh +=  

is the homogeneous solution and  

      EDzCzN p ++= 2  

is a particular solution of the inhomogeneous problem. 
 In substituting Np and its second derivative for N and N ′′  in Equation (2.16), 
constants C, D and E are determined by setting the coefficients of the powers of 
function z equal of the two sides. With the values of C, D and E now available, 
combining the homogeneous and particular solutions, and using the two boundary 
conditions, the normal force is obtained as 

      









++−−=

2

2

222

1

2

cosh

cosh

sinh

cosh

sinhsinh

κκ

κ

κκ

κ

κκ

κκ

κ

zz

H

zH

H

zH

l

wb
N  

 With the above equation of the normal force, Equation (2.11) can now be 
used to determine the deflection. After substituting for N, Equation (2.11) assumes 
the form: 

      









−−+−+=′′

434

2

42

2 cosh

cosh

sinh

cosh

sinhsinh

22 κ

κ

κκ

κ

κκ

κκ

κκ

zb

H

zbH

H

zHbzbbz

EI

w
y  (2.17) 

 The boundary conditions for the equation express that there is no deflection 
at the top of the structure (as the origin of the coordinate system is fixed to the top) 
and that the tangent to the columns is vertical at the bottom (Figure 2.2/d): 

      0)0( =y  

and 

      0)( =′ Hy  
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 Integrating Equation (2.17) once and using the above boundary condition, 
then integrating again and using the other boundary condition give the formula of 
the deflection which, after lengthy rearrangement and returning to the original 
structural engineering notation, can be rearranged into a much simpler, meaningful 
and “user-friendly” form: 

      







−

+−
−+










−= 1

cosh

sinh)(cosh

2246 322

243

H

zHzH

sK

wEI

Ks

wzzzH

EI

w
y

f κ

κκκ
 (2.18) 

or 

      isb yyyy −+=   (2.19) 

where 

      









−=

246

43 zzH

EI

w
y

f
b   (2.20) 

      
2

2

2Ks

wz
ys =   (2.21) 

and 

      







−

+−
= 1

cosh

sinh)(cosh
32 H

zHzH

sK

wEI
yi

κ

κκκ
 (2.22) 

are the three key components of deflection: the bending and the shear deflections 
as well as the interaction between them. 
 In Equations (2.18) and (2.20) 

      gcgf IrIIII +=+=   (2.23) 

represents the sum of the local and the global second moments of area of the 
columns. 
 Maximum deflection develops at z = H: 

      







−

+
−+== 1

cosh

sinh1

28
)(

322

24

max H

HH

sK

wEI

Ks

wH

EI

wH
Hyy

f κ

κκ
 (2.24) 

or 

      )()()()(max HyHyHyHyy isb −+==  (2.25) 
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where 

      







−

+
=== 1

cosh

sinh1
)(,

2
)(,

8
)(

322

24

H

HH

sK

wEI
Hy
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wH
Hy

EI

wH
Hy is

f
b

κ

κκ
 (2.26) 

are the three characteristic parts of the top deflection. 
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Figure 2.5 Multi-storey, multi-bay sway-frame and its equivalent column. 

2.1.2 Multi-storey, multi-bay frameworks 

Although the formulae in the previous section were derived for one-bay structures, 
their validity can be extended to cover multi-bay structures (Figure 2.5) as well. 
 The shear stiffness for the whole structure is obtained using 

      
cb

c
bb KK

K
KrKK

+
==   (2.27) 

where the two contributors to the shear stiffness are 

      ∑
−

=

=
1

1

,12n

i i

ib
b hl

EI
K   (2.28) 
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and 

      ∑
=

=
n

i

ic
c

h

EI
K

1
2

,12
  (2.29) 

and the reduction factor is 

      
cb

c

KK

K
r

+
=   (2.30) 

where n is the number of columns. 
 For the local bending stiffness (EI = EIc r), the sum of the second moments of 
area of the columns should be produced (and multiplied by reduction factor r) 

      ∑=
n

icIrI
1

,   (2.31) 

where the summation goes from i = 1 to i = n. When the cross-sections of the 
columns of the framework are identical (as is often the case), the second moment 
of area of the columns is simply multiplied by n and r (the reduction factor).  
 For the global bending stiffness (EIg), the formula  

      ∑=
n

iicg tAI
1

2
,   (2.32) 

should be used, where Ac,i is the cross-sectional area of the ith column and ti is the 
distance of the ith column from the centroid of the cross-sections. It should be 
noted, however, that Equation (2.32) represents an approximation and its use for 
multi-bay frameworks may lead to slightly unconservative estimates for the 
deflection in the region of 0–3% for four-bay structures and up to 6% for ten-bay 
structures (Kollár, 1986). 

2.1.3 Discussion 

The evaluation of Equations (2.18) and (2.24) using the deflection data of 117 
individual frameworks ranging in height from 4 to 80 storeys (c.f. Section 2.1.4: 
Accuracy) leads to the following observations: 

a) The effect of interaction between the bending and shear modes is always 
beneficial as it reduces the deflection. The range of the reduction of the top 
deflection with the 117 frameworks was between 0% and 64%. Ignoring the 
effect of interaction leads to a very simple albeit conservative solution [with 
the first two terms in Equation (2.24)]. 

b) The effect of interaction significantly becomes smaller as the height of the 
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structures increases. For structures of height over 20 storeys, the reduction 
dropped below 20%. –– Typical deflection shapes are shown in Figure 2.6. 

c)  The effect of interaction is roughly constant over the height of the structure.  
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Figure 2.6 Typical deflection shapes with components yb (bending), ys (shear), yi (interaction) and the 
overall deflection y for the 4-, 10-, 22- and 80-storey framework F1 shown in Figure 2.7/a. 

 
 To conclude the investigation of the behaviour of frameworks under lateral 
load, some special, sometimes theoretical, cases will now be considered. 

a)  Multi-bay, low-rise frameworks tend to develop predominantly shear-type 
overall deflection when the effect of the local and global bending may be 
negligible.  

This case is characterised by Ig >> Ic, and consequently, a → 0, b → ∞. Governing 
differential equation (2.15) cannot be used directly because of singularity but, after 
some rearrangement, Equation (2.12) can, which then simplifies to  

      
K

w
y =′′    

where K ≅ Kb. This differential equation, together with the boundary conditions 
y(0) = 0 and y’(0) = 0, lead to the deflection and the top deflection as 

      
K

wz
zy

2
)(

2

=   (2.33) 

and 

      
K

wH
Hyy

2
)(

2

max ==   (2.34) 
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 The characteristic deflection shape is shown in Figure 2.1/a. 

b)  The connecting beams have no or negligible bending stiffness. 

This case is characterized by Kb = 0. Consequently, the shear stiffness of the 
structure becomes zero (K = 0), which leads to a = 0, b = 0 and κ = 0. Governing 
differential equation (2.15) simplifies to  

      
EI

w
y −=′′′′    

and the solutions for the deflection and the top deflection are  

      
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and 

      
cEI

wH
Hyy

8
)(

4

max ==   (2.36) 

where EIc is the sum of the bending stiffnesses of the columns. This case is 
identified in Figure 2.1/c as one of the three characteristic types of behaviour of the 
framework, when the columns are linked by beams that can only pass on axial 
(horizontal) forces but no moments to the columns. 

c)  The structure is relatively slender (with great height/width ratio).  

The structure develops predominantly (global) bending deformation. The second 
and third terms in Equations (2.18) and (2.24) tend to be by orders of magnitude 
smaller than the first term, and the solutions for the deflection and the top 
deflection effectively become  
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and 
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max ==   (2.38) 

where If = Ic r + Ig. This case is illustrated in Figure 2.1/b. 

d)  The columns do not undergo axial deformations.  

This case is characterised by Ac,i → ∞, Ig → ∞, a = 0, κ2 = b and s = 1. The 
governing differential equation, Equation (2.15), simplifies to  
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 The solutions of this equation for the deflection and the top deflection are  
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and  
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 It is interesting to note that the above two formulae can be originated from 
Equations (2.18) and (2.24) by, in addition to setting s = 1, dropping the first term 
which is associated with the bending deformation of the structure. It follows that 
when the columns do not develop axial deformations the structure cannot––at least 
not directly––“utilise” its bending stiffness. (The bending stiffness does enter the 
picture, but indirectly, through the last term that is responsible for the interaction 
between the bending and shear modes.)  

2.1.4 Accuracy 

It is essential to examine the range of validity and accuracy for any respectable 
approximate method. To this end, a comprehensive validation exercise was carried 
out to check the accuracy of the formulae derived for the deflection. The results 
obtained using the approximate formulae were compared to the results of the Finite 
Element solution. The AXIS VM finite element package (Axis, 2003) was used for 
the comparison, whose results were considered “exact”.  
 The top deflection of thirteen individual frameworks (F1 to F13 in 
Figure 2.7) was calculated. The height of the frameworks varied between 4 and 80 
storeys in eight steps (4, 10, 16, 22, 28, 34, 40, 60 and 80 storeys), creating 117 test 
cases.  
 The bays of the one-, two- and three-bay reinforced concrete rigid frames 
were 6 m and the storey height was 3 m (F1 to F10 in Figure 2.7/a to 2.7/j). The 
rectangular cross-sections of the columns and beams are given in Figure 2.7/a to 
2.7/j. With the one-, two- and three-bay steel braced frames (F11 to F13 in 
Figure 2.7/k to 2.7/m), both the bays and the storey height were 3 m. The cross-
sections of the columns for the three braced frames were 305x305UC137. 
 The cross-sections of the beams and braces are given in Figure 2.7/k to 
2.7/m. The moduli of elasticity for the concrete and steel frameworks were 
Ec = 25 kN/mm2 and Es = 200 kN/mm2, respectively. 
 The cross-sections of the beams, columns and braces were chosen in such a 
way that the structures covered a wide range of stiffnesses and even represented 
extreme special cases. 
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a) F1 (b=0.3) 

0.4/0.4 

0.4/0.4 

b) F2 (b=0.02) 

0.4/0.4 

0.4/1.0 

d) F4 (b=0.3) 

0.4/1.0 

0.4/1.0 

c) F3 (b=5) 

0.4/1.0 

0.4/0.4 

0.4/0.7 

0.4/0.4 

g) F7 (b=0.4) 

0.4/0.4 

0.4/0.7 

0.4/0.4 

e) F5 (b=0.08) f) F6 (b=3) 

0.4/0.4 

 

0.4/0.4 
0.4/100 

h) F8 (b=0.04) 

0.2/2 

0.2/1 0.4/0.4 

0.4/2.0 

i) F9 (b=5·106) j) F10 (b=0.02) 
 

l) F12 (b=6) m) F13 (b=5) 

356x171x45UB 406x178x74UB 

l5/250 30/500 

k) F11 (b=2) 

30/150 

356x171x45UB 

 
Figure 2.7 Frameworks (with parameter b=K/EI) for the accuracy analysis. 
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 Even the highly theoretical case of a framework with beams with a depth of 
100 m in Figure 2.7/i was included to model “pure” shear deformation. The 
deflected shapes represented predominant bending, mixed shear and bending, and 
predominant shear deformation. The summary of the accuracy analysis is given in 
Table 2.1 where “error” means the difference between the “exact” (FE) solution 
and the continuum solution by Equation (2.24), related to the “exact” solution. 

Table 2.1 Accuracy of Equation (2.24) for the maximum deflection. 

Method Range of 
error (%) 

Average absolute 
error (%) 

Maximum 
error (%) 

Continuum solution 
[Equation (2.24)] –5 to 9 1.4 9 

 
 In addition to the data given in Table 2.1, it is also important to see how the 
error varies as the height of the structure changes. Figure 2.8 shows the error as a 
function of height for the thirteen frameworks. 
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Figure 2.8 Accuracy of Equation (2.24) for maximum deflection for frameworks of different height. 

 
 The results summarised in Table 2.1 and shown in Figure 2.8 demonstrate the 
performance of the method. It can be stated that for practical purposes the 
continuum solution can be considered accurate enough: The error range of the 
method was between –5% (unconservative) and 9% (conservative). In the 117 
cases, the average difference between the results of the continuum method and 
those of the finite element solution was 1.4%. 
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2.2 FREQUENCY ANALYSIS OF RIGID SWAY-FRAMES 

Because of the complexity of the problem, a number of attempts have been made 
to develop approximate methods for the dynamic analysis of frameworks. 
Goldberg (1973) presented several simple methods for the calculation of the 
fundamental frequency of (uncoupled) lateral and pure torsional vibration. The 
effect of the axial deformation of the vertical elements was taken into account by a 
correction factor in his methods. The continuous connection method enabled the 
development of more rigorous analysis (Rosman, 1973; Coull, 1975; Kollár, 1992). 
However, most approximate methods are either still too complicated for design 
office use or restrict the scope of analysis or neglect one or more important 
characteristics. Another important factor in connection with the availability of 
good and reliable approximate methods is the fact that their accuracy has not been 
satisfactorily investigated. In two excellent publications, Ellis (1980) and Jeary and 
Ellis (1981) reported on accuracy matters in a comprehensive manner and their 
findings indicated that some widely used approximate methods were of 
unacceptable accuracy. The method to be presented here is not only simple and 
gives a clear picture of the behaviour of the structure, but its accuracy has also 
been comprehensively investigated. 
 In addition to the general assumptions made in Chapter 1, it will be assumed 
that the mass of the structures is concentrated at floor levels. 

2.2.1 Fundamental frequency 

As in the previous section, the multi-storey, multi-bay framework is characterised 
by its characteristic stiffnesses and the corresponding three characteristic 
deformations (Figure 2.1). The fundamental frequency for lateral vibration is 
determined using the three types of stiffness and the related vibration modes and 
frequencies. The three types are: shear, the bending of the framework as a whole 
unit (=global bending) and the full-height bending of the individual columns of the 
framework (=local bending). The deflected shape of the framework can be 
composed of the three deformation types and, in a similar manner, the frequency of 
the framework can be produced using the three “part” frequencies which are linked 
to the corresponding stiffnesses. These stiffnesses (K, EIg and EI) are given in 
Section 2.1.2. 
 Vibration in shear (Figure 2.1/a) is defined by the shear stiffness of the 
framework. Based on the classical formula of a cantilever with uniformly 
distributed mass and shear stiffness (Vértes, 1985), the fundamental frequency of 
the framework due to shear deformation can be calculated from 

      
m

Kr

H
f f
s

2

2
2

)4(

1
=′   (2.41) 

where m is the mass density per unit length of the structure, K is the shear stiffness 
calculated using Equations (2.27), (2.28), (2.29) and (2.30) and H is the height. 
Mass distribution factor rf is introduced into the formula to allow for the fact that 
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the mass of the structure is concentrated at floor levels (Mi in Figure 2.10/b) and is 
not uniformly distributed over the height (as assumed for the derivation of the 
classical formula). This phenomenon can easily be taken into account by the 
application of the Dunkerley theorem (Zalka, 2000). Values for rf are given in 
Figure 2.9 for frameworks up to twenty storeys high. Table 4.1 can be used for 
more accurate values and/or for higher frameworks. 
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Figure 2.9 Mass distribution factor rf  as a function of n (the number of storeys). 

  
 The full-height bending vibration of the framework as a whole unit represents 
pure bending type deformation (Figure 2.1/b). In this case, the columns act as 
longitudinal fibres (in tension and compression) and the role of the beams is to 
transfer shear so as to make the columns work together in this fashion. The 
bending stiffness associated with this bending deformation is the global bending 
stiffness (EIg) defined by Equation (2.32). The fundamental frequency that belongs 
to this global bending deformation is obtained using Timoshenko’s (1928) classical 
formula, which is amended with factor rf , as 

      
mH

EIr
f gf

g 4

2
2 313.0

=   (2.42) 

 Although frameworks are routinely associated with shear type deformation, 
reality is somewhat more complicated. As Figure 2.6 demonstrates, and the 
application of any FE package can confirm, as a function of height, a framework 
with the same (beam/column) stiffness characteristics may assume different types 
of deformation. Low frameworks tend to show a predominantly shear type 
vibration mode, in the case of medium-rise frameworks the vibration shape can be 
a mixture of bending and shear type deformations, and tall, “slender” structures 
normally vibrate in a predominantly bending mode. The reason for this type of 
behaviour lies in the fact that there is an interaction between sway in shear and in 
global bending. Low and/or wide (multi-bay) frameworks tend to undergo shear 
deformation while as the height of the framework increases, the effect of the axial 
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deformation of the columns becomes more and more important. The axial 
deformation of the columns can be interpreted as a “compromising” factor, as far 
as the shear stiffness is concerned. Because of the lengthening and shortening of 
the columns, there is less and less “scope” for the structure to develop shear 
deformation. As indeed is the case with narrow and very tall frameworks; very 
often they do not show any shear deformation at all. 
 This phenomenon can be easily taken into account by introducing the 
effective shear stiffness as follows. In applying the Föppl-Papkovich theorem 
(Tarnai, 1999) to the squares of the frequencies of an individual framework, related 
to the vibration mode in shear (subscript: s’ ) and the vibration mode in full-height 
global bending (subscript: g) 
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the reduction in the value of the shear stiffness of the framework can be expressed 
as 
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where Ke is the effective shear stiffness, according to 

      KsK fe
2=   (2.44) 

and 
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is the effectiveness factor. 
 Finally, the framework may develop bending vibration in a different manner. 
The full-height bending vibration of the individual columns of the framework––
also called local bending vibration––also represents pure bending type deformation 
(Fig. 1/c). The characteristic stiffness is defined by EI given by Equation (2.31). 
With the columns of the framework built in at ground floor level, the fundamental 
frequency which is associated with the local bending stiffness is again obtained 
using Timoshenko’s formula for cantilevers under uniformly distributed mass: 
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 The framework can now be characterised by its local bending stiffness and its 
effective shear stiffness (and the related frequencies). It follows that the complex 
behaviour of a framework in lateral vibration can now be analysed by using an 
equivalent column with stiffnesses EI and Ke (Figure 2.10/c). 
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Figure 2.10 Multi-storey, multi-bay sway-frame and the origination of its equivalent column. 

 
 The governing differential equation of the equivalent column is obtained by 
examining the equilibrium of its elementary section. This leads to  

      022 =+′′−′′′′ umuKruEIr eff &&    

where primes and dots mark differentiation by z and t (time), respectively. After 
seeking the solution in a product form, separating the variables and eliminating the 
time dependent functions, the above governing differential equation results in the 
boundary value problem  

      01
2

1
2

1
2 =−′′−′′′′ muuKruEIr eff ω   (2.47) 

 If the origin of the coordinate system is at the lower built-in end of the 
equivalent column, the boundary conditions are as follows: 

      0)0(1 =u    

      0)0(1 =′u    
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      0)(1 =′′ Hu    

and 

      0)()( 11 =′−′′′ HuKHuEI e    

 In Equation (2.47) ω is the circular frequency and u1 defines lateral motions. 
With the notation 
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and the non-dimensional parameter 
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and using trigonometric and hyperbolic functions, the solution is obtained after 
some rearrangement as  
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 Values for frequency parameter η (the eigenvalue of the problem) are given 
in Figure 2.11 as a function of parameter k for 0 ≤ k ≤ 10. Table 4.2 can also be 
used if a more accurate value of η or a wider range of k is needed. Values of 
parameter η for the second and third frequencies are tabulated in (Zalka, 2000). 
 Before this solution is used for the lateral vibration analysis, however, a small 
modification has to be made. The first term in Equation (2.49) stands for the 
bending contribution of the individual columns and it also represents the increase 
of the lateral frequency of the framework, due to the interaction between the 
bending and shear modes. However, because of the fact that the effectiveness of 
the shear stiffness is normally smaller than 100% [c.f. Equation (2.45) where sf ≤ 1 
holds], these two contributions have to be separated and the effectiveness factor 
should be applied to the part which is responsible for the interaction. When this 
amendment is made, the formula for the lateral vibration assumes the form 
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 In the right-hand side of the above equation, the first two terms stand for the 
lateral frequency associated with bending and shear deformations, respectively, 

https://engineersreferencebookspdf.com



Individual Bracing Units   27 

 

while the third term represents the effect of the interaction between the bending 
and shear modes.  
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Figure 2.11 Frequency parameter η as a function of non-dimensional parameter k. 

2.2.2 Discussion 

The evaluation of Equation (2.50) using the values of the fundamental frequencies 
of 117 frameworks ranging in height from 4 to 80 storeys (c.f. Section 2.2.3: 
Accuracy) leads to the following observations: 

a) As is the case with frameworks subjected to horizontal load, the interaction 
between the bending and shear modes is always beneficial. Bearing in mind 
that (η2/0.313 – k2/5) ≥ 1 always holds, the evaluation of the third term in 
Equation (2.50) demonstrates that the effect of the interaction increases the 
value of the lateral frequency of the framework. According to the data given 
in Table 4.2, the maximum increase is 62%, at k = 3.2. 

b) The effect of interaction significantly becomes smaller as the height of the 
framework increases. For structures of height over 20 storeys, the increase 
dropped below 20% in the test cases. 

2.2.3 Accuracy 

A comprehensive accuracy analysis was carried out to check the accuracy of 
Equation (2.50) for the fundamental frequency of multi-storey frameworks. The 
frameworks used for the accuracy analysis were the same used in Section 2.1.4 for 
the accuracy analysis of Equation (2.24) for the maximum deflection. Details of 
the frameworks are given in Figure 2.7 in Section 2.1.4. The fundamental 
frequency of the thirteen frameworks (F1 to F13 in Figure 2.7)––each of 4-, 10-, 
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16-, 22-, 28-, 34-, 40-, 60- and 80-storey height––was calculated and compared to 
the Finite Element solution. The AXIS VM finite element package (AXIS, 2003) 
was used for the comparison, whose results were considered “exact”. The error of 
the continuum solution was defined as the difference between the “exact” and the 
approximate solutions, related to the “exact” solution. When the frequency given 
by Equation (2.50) was smaller than the “exact” one, it was considered 
conservative (and the “error” was defined positive).  

Table 2.2 Accuracy of Equation (2.50) for the fundamental frequency. 

Method Range of 
error (%) 

Average absolute 
error (%) 

Maximum 
error (%) 

Continuum solution 
[Equation (2.50)] –3 to 8 1.5 8 

 
 The bays of the one-, two- and three-bay sway-frames were 6 metres (F1 to 
F10 in Figure 2.7) and 3 metres (F11 to F13) and the storey height was 3 metres 
for all structures. The cross-sections of the beams and columns were chosen in 
such a way that the structures covered a wide range of stiffnesses. The deflected 
shapes represented predominant bending, mixed shear and bending, and 
predominant shear deformation. The results are summarised in Table 2.2. 
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Figure 2.12 Accuracy of Equation (2.50) for the fundamental frequency as a function of height. 
  
 The results given in Table 2.2 and shown in Figure 2.12 as a function of 
height demonstrate the excellent performance of Equation (2.50). In the 117 cases, 
the average difference between the results of the continuum method and those of 
the finite element solution was 1.5%. The maximum error of Equation (2.50) was 
8%.  
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2.3 STABILITY ANALYSIS OF RIGID SWAY-FRAMES  

If the dynamic analysis of complex bar structures is said to be complex, then the 
stability analysis certainly presents an even greater challenge as numerical 
difficulties may further aggravate the situation in the course of the solution of the 
eigenvalue problem. The determination of the critical load of even a small 
framework may be a formidable task using conventional methods. It would be 
impossible to list all the approximate methods that are worth mentioning as the 
field has been more than well cultivated and it would be unjust to chose one or 
two.  
 The method to be presented here is of general validity. It is certainly very 
simple and probably the most accurate one, as it will be demonstrated in 
Section 2.3.2. 

2.3.1 Critical load 

In addition to the general assumptions made in Chapter 1, it will be assumed that  

a) the frameworks are subjected to uniformly distributed vertical load at storey 
levels (Figure 2.13) 

b) the critical load defines the bifurcation point 

 The best way, perhaps, towards a simple and still accurate solution is the 
application of the continuum method. If the structure is considered a continuous 
medium, as shown in the previous sections, the analysis can be carried out in a 
relatively simple way. In doing so, a closed-form solution can be produced for the 
critical load, which can then directly be used in practical structural design (see 
Chapter 6 on the global critical load ratio).  
 Investigating sandwich columns, Hegedűs and Kollár (1984) derived the 
governing differential equation of a sandwich column with thick faces as 

      0)()( 0
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0 =
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where φ is the rotation of the normal to the cross-section of the sandwich column, 
N(z) is the axial load and B0, Bl and S are the global bending, local bending and 
shear stiffnesses of the sandwich column. For a sandwich column with a free upper 
end and a fixed lower end and using a coordinate system whose origin is fixed at 
the upper end, the boundary conditions are 

      0)()( =′′= HH ϕϕ    

and 

      0)0()0( =′′′=′ ϕϕ    

 Hegedűs and Kollár (1984 and 1999) solved the above differential equation 

https://engineersreferencebookspdf.com



30   Multi-storey Buildings 

 

for different load cases. The solution for the uniformly distributed axial load [when 
N(z) = qz holds and q is the intensity of the load] assumes the form  

      
2

0
1

H

BB
cqHN l

cr
+

==   (2.51) 

where coefficient c1 is obtained using a table as a function of Bl /(B0 + Bl) and 
SH2/(B0 + Bl). 

Table 2.3 Values for coefficient c1. 
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0 0.001 0.005 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1 

0.00 0.000 0.0078 0.039 0.078 0.392 0.784 1.567 2.351 3.135 3.918 4.702 5.486 6.269 7.837 

0.05 0.050 0.099 0.161 0.211 0.535 0.928 1.712 2.496 3.279 4.062 4.844 5.626 6.405 7.837 

0.1 0.100 0.171 0.255 0.320 0.668 1.064 1.850 2.632 3.414 4.195 4.974 5.750 6.519 7.837 

0.2 0.200 0.304 0.412 0.500 0.904 1.314 2.102 2.882 3.658 4.432 5.219 5.957 6.698 7.837 

0.5 0.500 0.665 0.815 0.933 1.465 1.917 2.717 3.486 4.238 5.025 5.691 6.378 7.015 7.837 

1 1.000 1.222 1.403 1.536 2.142 2.642 3.449 4.185 4.887 5.551 6.179 6.757 7.265 7.837 

2 2.000 2.289 2.483 2.574 3.094 3.589 4.366 5.026 5.618 6.178 6.679 7.111 7.473 7.837 

5 4.211 4.364 4.475 4.524 4.858 5.057 5.637 6.117 6.532 6.892 7.202 7.458 7.655 7.837 

10 5.597 5.600 5.626 5.655 5.861 6.080 6.457 6.773 7.052 7.279 7.466 7.620 7.736 7.837 

20 6.570 6.572 6.584 6.599 6.706 6.828 7.045 7.230 7.388 7.522 7.632 7.719 7.783 7.837 

50 7.287 7.288 7.292 7.298 7.344 7.395 7.485 7.574 7.641 7.700 7.749 7.787 7.815 7.837 

100 7.554 7.555 7.557 7.560 7.583 7.609 7.657 7.700 7.736 7.767 7.792 7.812 7.826 7.837 

∞ 7.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837 

 
 With some modification, the above simple formula can also be used for 
determining the global critical load of multi-storey, multi-bay frameworks. First, 
the stiffnesses that correspond to those of the sandwich column should be 
identified. This procedure is presented in the following, with most of the 
characteristics shown in Figure 2.13, using the terminology common in structural 
engineering. The stiffnesses are very similar to those introduced in Section 2.1. 
 The shear stiffness of a framework (K) is composed using two parts. The first 
part is associated with the beams of the framework as 

      ∑
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where 
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 E    is the modulus of elasticity 
 Ib,i   is the second moment of area of the ith beam 
 h    is the storey height 
 li    is the width of the ith bay  
 n    is the number of columns  
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Figure 2.13 Origination of the equivalent column for the stability analysis. 

 
 The second part of the shear stiffness is associated with the columns and the 
local sway of the framework between two storeys: 

      ∑
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  (2.53) 

where Ic,i is the second moment of area of the ith column. With the two 
components, the shear stiffness of the framework assumes the form 

      
cb

c
bb KK

K
KrKK

+
==   (2.54) 

where the reduction factor r is also introduced as 
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 Note the similarity to––and the difference from––the shear stiffness that was 
used for the deflection and frequency analyses in Section 2.1 and Section 2.2, 
respectively. For more detailed explanation regarding the components of the shear 
stiffness, see Chapter 5 where the stability analysis of whole systems is carried out. 
 The global bending stiffness (EIg) is associated with the full-height bending 
of the framework when the columns act as longitudinal fibres of a solid body in 
bending. It is calculated in the same way as in Section 2.1, with 

      ∑=
n

iicg tAI
1

2
,   (2.56) 

where Ac,i is the cross-sectional area of the ith column and ti is the distance of the 
ith column from the centroid of the cross-sections. 
 The local bending stiffness (EI) of the framework is associated with the full-
height bending of the individual columns. Again, it is obtained in the same way as 
in Section 2.1, with  

      ∑=
n

icIrI
1

,   (2.57) 

where Ic,i is the second moment of area of the ith column and r is the reduction 
factor [Equation (2.55)].  
 Having identified the stiffnesses for the use of the sandwich solution above, 
the way the framework is loaded should now be considered. The sandwich solution 
was produced for a cantilever subjected to a uniformly distributed axial load. The 
load of multi-storey frameworks, however, is not uniformly distributed over the 
height but it consists of floor loads (Figure 2.13/a). When the framework is 
modelled for the continuum method by an equivalent column, the floor load can be 
considered as a system of concentrated forces at floor levels (Figure 2.13/b). This 
load system can then be distributed over the height of the column (Figure 2.13/c). 
This procedure represents an approximation and this approximation is 
unconservative as the distribution of the load occurs downwards at each storey and 
the centroid of the load also moves downwards. The lower the framework, the 
greater the approximation. For a four-storey structure, for example, this 
approximation can lead to a critical load that is up to 40% greater than the exact 
one, therefore this phenomenon cannot be ignored.  
 This unfavourable phenomenon, however, can easily be taken into account by 
using Dunkerley’s summation theorem (Zalka, 2000) and introducing a load 
distribution factor into the formula of the critical load. Accordingly, based on the 
sandwich solution, the critical load of the framework can be produced as 

      
21
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H
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+
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where EI is the local bending stiffness, EIg is the global bending stiffness and rs is 
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the load distribution factor whose values are given in Figure 2.14. Based on the 
Hegedűs-Kollár solution (1984 and 1999), values for the critical load factor c1 are 
given in Table 2.3 as a function of  

      
gII

I

+
  (2.59) 

and 

      
sg rIIE
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)(

2

+
  (2.60) 

where K is the shear stiffness. 
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Figure 2.14 Load distribution factor rs as a function of n (number of storeys). 

 
 Values for rs are given in Figure 2.14 for frameworks up to twenty storeys 
high. Table 5.1 can be used for more accurate values and/or for higher frameworks. 
 When the framework is very wide and/or the effect of the local second 
moment of area of the columns is very small [i.e., when ratio (2.59) is very small], 
an even simpler method, to be presented in Section 2.4.1, can be used for the 
determination of the critical load. 

2.3.2 Accuracy 

A comprehensive accuracy analysis was carried out to check the accuracy of 
Equation (2.58) for the critical load of multi-storey frameworks. The frameworks 
used for the accuracy analysis were the same used in Section 2.1.4 for the accuracy 
analysis of Equation (2.24) for the maximum deflection and of Equation (2.50) in 
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Section 2.2.1 for the fundamental frequency. Details of the frameworks are given 
in Figure 2.7 in Section 2.1.4. The critical load of the thirteen frameworks (F1 to 
F13 in Figure 2.7) was calculated and compared to the Finite Element solution. 
The height of the frameworks varied from 4 storeys to 80 storeys in eight steps 
resulting in 117 test cases. The AXIS VM finite element package (AXIS, 2003) 
was used for the comparison, whose results were considered “exact”. The error of 
the continuum solution was defined as the difference between the “exact” and the 
approximate solutions, related to the “exact” solution. The bays of the frameworks 
were 6 and 3 metres; 6 metres for the one-, two- and three-bay concrete sway-
frames (F1 to F10 in Figure 2.7) and 3 metres for the steel braced frames (F11 to 
F13). The storey height was 3 metres for all structures.  
 

Table 2.4 Accuracy of Equation (2.58) for the stability analysis. 

Method Range of 
error (%) 

Average absolute 
error (%) 

Maximum 
error (%) 

Continuum solution 
[Equation (2.58)] –8 to 17 3.1 17 

 
 The cross-sections of the beams and columns were chosen in such a way that 
the structures covered a wide range of stiffnesses. The deflected shapes represented 
predominant bending, mixed shear and bending, and predominant shear 
deformation. The results are summarised in Table 2.4. 
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Figure 2.15 Accuracy of Equation (2.58) for the critical load for frameworks of different height. 
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 In addition to the data given in Table 2.4, it is also important to see how the 
error varies as the height of the framework changes. Figure 2.15 shows the error as 
a function of height for the thirteen frameworks. In Figure 2.15 and Table 2.4 
positive error represents conservative critical load. 
 The results summarised in Table 2.4 and Figure 2.15 demonstrate the 
performance of the method. It can be stated that for practical purposes the 
continuum solution can be considered accurate enough: The error range of the 
method was between –8% (unconservative) and 17% (conservative). In 116 cases, 
the average difference between the results of the continuum method and the finite 
element solution was 3.1%. (It should be noted that the 4-storey framework F12 
did not develop global sway buckling and its critical load was omitted from the 
accuracy analysis as––in line with the basic assumptions––only sway-frames were 
considered.)  

2.4 OTHER TYPES OF FRAMEWORK 

The investigations in the previous sections centred on rigid sway-frames. However, 
the methods can also be used for the deflection, frequency and stability analyses of 
other types of framework, sometimes with some modification, if the three 
characteristic stiffnesses (local and global bending and shear) are known. In some 
cases, a solution even simpler than the one presented in Section 2.3.1, can be used. 

c) 

z 

 y 

  K 
 E Ig 

h 

h 

h 

h 

h 

H 

 q 

b) 

 F1 

 F2 

 F3 

 Fi 

 Fn 

l1 
1 2 

a) 

 p 

l2 

Ac,1 

Ic,1 
Ac,2 
Ic,2 

 Ah,1 

li 

 i n 

 Ah,2 

Ac,i 
Ic,i 

 Ac,n 
 Ic,n 

 Ah,i 

 p 

 p 

 p 

L 

 p 

 Ad,1  Ad,2  Ad,i 

 
 

Figure 2.16 Framework with cross-bracing. a) basic characteristics, b) equivalent column with 
concentrated load at floor levels, c) equivalent column with uniformly distributed load. 
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2.4.1 Frameworks with cross-bracing 

With multi-storey frameworks with cross-bracing (Figure 2.16/a), their local 
bending stiffness is calculated directly as the sum of the bending stiffnesses of the 
columns [Equation (2.31)], but with r = 1, i.e., EI = EIc. The calculation of the 
global bending stiffness EIg is identical to that of the rigid frames, i.e., according to 
Equation (2.32).  
 Their behaviour in shear is somewhat different from that of unbraced frames 
and depends on the arrangement of the bracing. Formulae for different bracing 
arrangements are given in Table 2.6. 
 

Table 2.5 Critical load parameter αs as a function of parameter βs. 

βs αs βs αs βs αs βs αs 

0.0 1.0000 2.2 0.3711 4.2 0.2135 17 0.05722 

0.3 1.0000 2.3 0.3579 4.3 0.2090 18 0.05413 

0.4 0.9972 2.4 0.3457 4.4 0.2047 19 0.05135 

0.5 0.9325 2.5 0.3342 4.5 0.2006 20 0.04884 

0.6 0.8663 2.6 0.3235 5.0 0.1824 25 0.03926 

0.7 0.8051 2.7 0.3134 5.5 0.1672 30 0.03282 

0.8 0.7501 2.8 0.3039 6.0 0.1543 35 0.02819 

0.9 0.7011 2.9 0.2950 6.5 0.1433 40 0.02471 

1.0 0.6575 3.0 0.2866 7.0 0.1337 45 0.02199 

1.1 0.6186 3.1 0.2787 7.5 0.1253 50 0.01981 

1.2 0.5838 3.2 0.2711 8.0 0.1179 55 0.01803 

1.3 0.5526 3.3 0.2640 8.5 0.1114 60 0.01654 

1.4 0.5243 3.4 0.2572 9.0 0.1055 65 0.01527 

1.5 0.4988 3.5 0.2508 10 0.09544 70 0.01419 

1.6 0.4755 3.6 0.2447 11 0.08713 80 0.01243 

1.7 0.4543 3.7 0.2389 12 0.08015 90 0.01105 

1.8 0.4349 3.8 0.2333 13 0.07420 100 0.00995 

1.9 0.4170 3.9 0.2280 14 0.06908 200 0.00499 

2.0 0.4005 4.0 0.2230 15 0.06462 300 0.00333 

2.1 0.3852 4.1 0.2181 16 0.06069 >300 1/βs 

 
 Regarding stability analysis, the procedure presented in Section 2.3.1 for the 
stability analysis of rigid frameworks can still be used but an even simpler method 
is available. Of the three characteristic stiffness contributors (local bending, global 
bending and shear), the effect of the local bending stiffness tends to become very 
small compared to that of the other two stiffnesses. If this contribution is therefore 
neglected, then a very simple model can be used for the analysis. This simple 
model (Figure 2.16/c) is the equivalent sandwich column with thin faces 
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(Zalka, 1999). The analysis of the equilibrium of an elementary section of the 
column leads to the differential equation 
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where critical load intensity q is the eigenvalue of the problem. 
 The boundary conditions are 
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and the solution for the critical load is obtained as 

      KN scr α=   (2.61) 

where K is the shear stiffness of the framework.  
 Critical load parameter αs is given in Figure 2.17 and in Table 2.5 as a 
function of part critical load ratio βs, defined by 

      
g

s N

K
=β   (2.62) 
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Figure 2.17 Critical load parameter αs as a function of parameter βs. 
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Table 2.6 Shear stiffness K for different cross-bracing arrangements. 
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 In equation (2.62) Ng is the part critical load characterizing the full-height 
global buckling of the framework as a whole: 

      
2

837.7

H

EIr
N gs

g =   (2.63) 

where Ig is the global bending second moment of area defined by Equation (2.32) 
and rs is the load distribution factor whose values are given in Figure (2.14) and in 
Table 5.1. 
 As Equations (2.61) and (2.62) show, the value of the critical load depends 
on the two part critical loads K and Ng and its value increases as the value of the 
shear critical load (K) and that of the global bending critical load (Ng) increase. 
However, it is important to know how these part critical loads compare and 
influence the value of the critical load. Based on the Föppl-Papkovich summation 
theorem (Tarnai, 1999), Figure 2.18 demonstrates that the most efficient case 
arises when the two part critical loads are equal (Figure 2.18/c). In this case, the 
critical load of the framework is maximum and its value increases in direct 
proportion with the increase of the part critical loads, i.e., doubling the part critical 
loads leads to a critical load which is twice as much as the original critical load. 
Figure 2.18 also demonstrates that, for unequal part critical loads, there is no point 
in increasing the greater part critical load as the overall critical load is always 
governed by the value of the smaller part critical load (Figures 2.18/a and 2.18/b). 

Ncr 

Ng 

K 

K 

Ng Ng K 

Ncr Ncr 

a) b) c) 

 
Figure 2.18 The effect of the relative values of the part critical loads on the critical load.  

a) K >> Ng, b) Ng >> K, c) K = Ng. 

2.4.2 Frameworks on pinned support 

Frameworks on pinned supports (Figure 2.19/a) have full-height columns that, 
because of the pinned support, would not be stable by themselves and therefore the 
critical load that would belong to their local bending stiffness is zero. It follows 
that the sandwich model with thin faces (used in the previous section) can be used 
again to produce a simple and good estimate of the global critical load of the 
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framework.  
 The critical load is obtained using 

      KN scr α=   (2.64) 

where K is the shear stiffness of the framework.  
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Figure 2.19 Frameworks on pinned support. a) geometrical characteristics, b) local sway at ground 

floor level. 

 
 The shear stiffness originates from two sources. The global part of the shear 
stiffness (Kb) depends on the stiffness of the beams and its value is not affected by 
the type of support of the columns so it is defined by Equation (2.52) as with 
frameworks on fixed support. The other component of the shear stiffness depends 
on the columns of the framework and the local sway of the framework between 
two storeys. With frameworks on pinned supports, the most vulnerable level is 
ground floor level (Figure 2.19/b) and the local shear stiffness is associated with 
sway buckling between ground floor and first floor level (Zalka and Armer, 1992). 
The local shear stiffness is therefore defined by 
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 With this local shear stiffness, the shear stiffness of the framework on pinned 
support is given by Equation (2.54). Critical load parameter αs in Equation (2.64) 
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is again given in Figure 2.17 and in Table 2.5 as a function of part critical load 
ratio βs, defined by Equation (2.62), where the value of Ng does not depend on the 
type of support of the framework; therefore Equation (2.63) can be used.  

2.4.3 Frameworks with columns of different height at ground floor level 

If the framework has columns that are of different height at ground floor level—
normally higher than those above—then the corresponding equations can be used if 
the value of the local shear stiffness is determined according to the greater storey 
height, i.e. Equations (2.53) or (2.65) should be used but with storey height h* 
(Figure 2.20) instead of h. 
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Figure 2.20 Frameworks with ground floor columns of different height. a) on fixed support, b) on 

pinned support. 

2.4.4 Infilled frameworks 

Frameworks filled with masonry walls (Figure 2.21/a) have increased resistance to 
lateral movement. Theoretical investigations (Polyakov, 1956; Madan et al., 1997; 
Mainstone and Weeks, 1972) and experimental evidence (Mainstone and Weeks, 
1972; Riddington and Stafford Smith, 1977) show that the complex behaviour of 
the composite structure can be handled in a relatively simple way. The contribution 
of the masonry infill panel to the response of the infilled framework can be 
modelled by replacing the panel with two equivalent struts: one in tension and the 
other in compression. The tensile strength of masonry is negligible and can 
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therefore be safely neglected, leading to the model shown in Figure 2.21/b. As for 
the diagonal in compression, the cross-section is 

      wd tbA =   (2.66) 

where 

 t      is the thickness of the masonry wall 
 bw   is the effective width of the diagonal strip (Figure 2.21/c)  

 Experimental evidence shows that the value of the effective width varies in a 
relatively wide range (Mainstone and Weeks, 1972; Riddington and Stafford 
Smith, 1977; Achyutha et al., 1994): 0.10 ≤ bw/d ≤ 0.40, with d being the length of 
the diagonal strut. Design charts have been made available offering values for the 
effective width, as a function of stiffness parameters and panel proportions 
(Stafford Smith, 1966; Stafford Smith and Carter, 1969). Alternatively, the value 
of the effective width can be approximated by 

      dbw 15.0=   (2.67) 

which normally leads to a conservative estimate.  
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 d 

 
Figure 2.21 Model for infilled framework. 

 
 This leads to a framework with single bracing as a possible model for the 
structural analysis (Figure 2.21/d), whose shear stiffness, based on the first 
equation in Table 2.6, is composed of two parts, depending on the diagonals (Kd) 
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and the horizontal beams (Kh), as 
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 (2.68) 

where 

 Ed   is the modulus of elasticity of the masonry wall 
 Eh   is the modulus of elasticity of the beams 
 Ah   is the cross-sectional area of the beams  

 Equation (2.68) stands for single-bay infilled frameworks. For multi-bay 
frameworks, the shear stiffness is obtained by adding up the shear stiffnesses of the 
bays: 

      ∑
−
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iKK   (2.69) 

where n is the number of columns and Ki refers to the shear stiffness of the ith bay. 
 By definition, K is also the shear critical load of the framework and has a 
very important contribution to the overall performance of the framework.  
 The critical load is then obtained using Equation (2.61) with K and Ng as 
described in Section 2.4.1. 
 As for increasing the values of the part critical loads K and Ng, the following 
rules apply. The value of the shear stiffness depends on two parts: the shear 
stiffness of the diagonal struts—the first term between the brackets in 
Equation (2.68)—and the shear stiffness of the beams of the framework (the 
second term). The bigger Kd and Kh, the bigger the overall shear stiffness K. The 
shear stiffness is optimized when Kd and Kh are equal. (What was said about the 
part critical loads in Section 2.4.1—with regard to K and Ng—is also valid here for 
Kd and Kh.) 
 The value of Kd is directly proportional to the cross-sectional area Ad and the 
modulus of elasticity Ed of the diagonals. As for the geometry of the structure, 
maximum shear stiffness associated with the diagonals is achieved (Figure 2.22) at 

      708.0=
l

h
 

where h is the height of the storeys and l is the bay of the framework. 
 The situation is simpler with the second part of the shear stiffness Kh which 
reflects the contribution of the beams. Its value is in direct proportion to the cross-
sectional area Ah and the modulus of elasticity Eh of the beams and the height of 
the storeys and in inverse proportion to the length of the beams.  
 Finally, the value of the global bending critical load Ng can be increased in 
different ways: by increasing the cross-sectional area and the modulus of elasticity 
of the columns and, most importantly, by increasing the distance between the 

https://engineersreferencebookspdf.com



44   Multi-storey Buildings 

 

columns.  
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Figure 2.22 Optimum geometrical arrangement for part shear stiffness Kd associated with the diagonals. 

2.5 COUPLED SHEAR WALLS  

Coupled shear walls can be treated as special frameworks if two phenomena are 
taken into account. Coupled shear walls normally have relatively wide columns 
and beams with relatively great depth (Figure 2.23). Consequently, the straight-line 
section of the beams has to be considered when the relative displacement at the 
contraflexure point (∆3) and consequently the formula for the shear stiffness are 
derived––see Section 2.1.1 for details. The shear deformation of the beams also has 
to be taken into account.  

qh 

qh 

∆3 

s1 l* s2 

 
Figure 2.23 Vertical displacement ∆3 at contraflexure point due to the bending of the connecting beam. 

 
 These amendments can be made in a relatively simple way (Zalka and 
Armer, 1992) and the resulting relative displacement at the contraflexure point of 
the beams (Figure 2.23) is obtained as 
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for one bay, where 

 G    is the modulus of elasticity in shear of the beams 
 Ab    is the cross-sectional area of the beams 
 s1, s2   are the width of the wall sections of the coupled shear walls 
 ρ     is a constant depending on the shape of the cross-section of the beams 
       ( ρ = 1.2 for rectangular cross-sections) 
 h     is the storey height 
 l*     is the distance between the two wall sections (Figure 2.23) 

 It follows that all the formulae for the lateral deflection, fundamental 
frequency and the critical load can be used if, according to Equation (2.70), Kb and 
r are replaced by *

bK  and r* for coupled shear walls. For multi-bay coupled shear 
walls the shear stiffnesses of the bays should be added up using Equation (2.69), 
where n is now the number of walls. 

2.6 SHEAR WALLS 

In the case of shear walls, the situation is very simple as they can be considered 
(very) simple frameworks. Of the three characteristic stiffnesses only their bending 
stiffness EI should be considered that corresponds to the local bending stiffness of 
a framework. (Their resistance to global bending and shear—using frame-
terminology—can be considered infinitely great.) The well-known formulae for the 
deflection, maximum deflection, the fundamental frequency and the critical load 
are as follows. 
 Deflection: 
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where w is the intensity of the uniformly distributed horizontal load and z is 
measured from ground floor level. 
 Fundamental frequency: 
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m

EI

H

r
f

f

2

56.0
=   (2.73) 

where m is the mass density per unit length of the shear wall and rf is the mass 
distribution factor according to Figure 2.9 and Table 4.1. 
 Critical load: 

      
2

837.7

H

EIr
qHN s

cr ==   (2.74) 

where rs is the load distribution factor given in Figure 2.14 and in Table 5.1. 

2.7 CORES 

Shear walls are often built together to create three dimensional units. Prime 
example is the U-shaped elevator core but many different shapes exist in building 
structures. The second moments of area of a reinforced concrete core are normally 
large and a small number of cores are often sufficient to provide the building with 
the necessary stiffness to resist lateral loading. In the two principal directions they 
act as shear walls and, knowing the second moments of area, Equations (2.72), 
(2.73) and (2.74) can be readily used to calculate the deflection, the maximum top 
deflection, the fundamental frequency and the critical load of a core.  
 As opposed to shear walls (and frameworks), however, cores are three-
dimensional structures and they also have torsional resistance which may  
constitute a significant part of the overall torsional resistance of the building.  In 
the case of the five-storey building investigated in detail in Section 12.2, for 
example, the torsional resistance of the building is solely provided by a single 
U-core. 

2.7.1 Torsional stiffness characteristics 

As far as torsional behaviour is concerned, in view of their dimensions (height of 
core, thickness of the wall sections of the cross-section of the core), cores can be 
considered thin-walled columns and their torsional resistance originates from two 
sources: the pure (Saint-Venant) torsional stiffness (GJ) and the warping torsional 
stiffness (EIω). 
 For cores of open cross-section (Figure 2.24/a), the Saint-Venant torsional 
constant is obtained from 

      ∑
=

=
m

i

iithJ
1

3

3

1
  (2.75) 

where  
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 hi   is the length of the ith wall section 
 ti    is the thickness of the ith wall section 
 m    is the number of wall sections 

hi ti Ao hi 
ti 

a) b) 
 

Figure 2.24 Cores of thin-walled wall sections. a) open cross-section, b) closed cross-section. 
 
 On the rare occasion when the core has a closed cross-section (or its openings 
are so small that they can be ignored), Bredt’s formula should be used:  

      

∑
=

=
m

i i

i

o

t

h

A
J

1

24
  (2.76) 

where Ao is the area enclosed by the mean centre lines of the wall sections 
(Figure 2.24/b) and again: 

 hi   is the length of the ith wall section 
 ti    is the thickness of the ith wall section 
 m    is the number of wall sections  

 The relationship between Young’s modulus and the modulus of elasticity in 
shear is 

      
)1(2 ν+

=
E

G   (2.77) 

where ν is the Poisson ratio. 
 Warping torsion is associated with the bending of the wall sections of the 
core––c.f. Section 3.2.1––but the determination of the stiffness associated with it is 
much more complicated than with pure torsion (Vlasov, 1961; Zbirohowski-
Koscia; 1967, Kollbrunner and Basler, 1969). No simple procedure of general 
validity is available for the calculation of the warping constant (Iω) but closed form 
solutions exist for several cross-sections. Some of these formulae are collected in 
Table 2.7 where, in addition to the warping constant, formulae for the pure 
torsional constant and the location of the shear centre are also presented for the 
most commonly used cores. Tables 2.8 and 2.9 cover more complex (or 
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unsymmetric) cases. 
 

Table 2.7 Torsional characteristics for common bracing cores of simple cross-section. 
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 Typical bracing cores are shown in Figure 2.25 where the warping stiffness 
of the first four cores (Figure 2.25/a) is so small that it can safely be ignored for 
practical calculations. 
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a) 

b) 

 
Figure 2.25 Cores. a) with Iω ≈ 0, b) with considerable Iω.  

 
 

Table 2.8 Cross-sectional characteristics for TT-sections. 
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Table 2.8 Continued. Cross-sectional characteristics for TT-sections. 
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Table 2.9 Cross-sectional characteristics for -sections. 
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Table 2.9 Continued. Cross-sectional characteristics for -sections. 
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 U-cores are perhaps the most commonly used types (for elevator and service 
shafts) but they are in most cases partially closed at storey levels by floor slabs or 
beams (Figure 2.26). The effect of the connecting elements can always be safely 
ignored but their contribution is normally significant and the structural engineer 
may wish to take it into consideration for economic reasons. The connecting 
elements restrain the core section from warping and increase its torsional stiffness. 
Vlasov’s (1961) investigations show that the phenomenon can be taken into 
account by amending the governing differential equation of torsion [Equation 
(2.84), to be discussed later on] in the form of  

      zmJJGEI =′′+−′′′′ ϕϕω )(   (2.78) 

where  
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4
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2
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=    (2.79) 

represents the effect of the connecting beams and J is defined by Equation (2.76). 
In the above equation 

 Ao       is the area enclosed by the mean centre lines of the wall sections 
          (Figure 2.26/b) 
 b and h    are the lengths of the wall sections of the U-core 
 l        is the span of the connecting beams 
 s        is the vertical distance of the connecting beams (storey height in 
          most cases) 
 E       is the modulus of elasticity of connecting beam 
 G       is the modulus of elasticity in shear of connecting beam 
 
and  
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      dtA bb =          and         
12

3dt
I b

b =  

are the area and the second moment of area of the cross-section of the connecting 
beams with tb and d being the thickness and depth of the connecting beams. 
 If the amended torsional stiffness ( JJ + ) is used, then all the formulae 
originating from the governing differential equation (2.84) and given in this 
Section later on can be used for the determination of the rotation, fundamental 
frequency and critical load of the partially closed core. 
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Figure 2.26 Partially closed U-core.  

 
 Numerical investigations show that when the depth of the connecting beam 
(d ) is relatively great, Equation (2.79) tends to overestimate the effect of the 
connecting beams and may result in a value for the torsional stiffness that is greater 
than that of an entirely closed section—which is clearly impossible. In such cases, 
the approximation 

      

fww t

h

t

l

t

lb
bh

J
22

4

*

22

++
−

=   (2.80) 

may be used where the equivalent thickness is determined using  

      bw t
s

d
t =*   (2.81) 

where, again, d is the depth of the connecting beams and s is the vertical distance 
of the connecting beams. 
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2.7.2 Deflection and rotation under uniformly distributed horizontal load 

When the horizontal load passes through the shear centre axis, Equations (2.72) 
can be applied, using the relevant second moment of area, for the determination of 
the deflection and maximum deflection of the core: 
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 When the torsional behaviour of a core subjected to uniformly distributed 
torsional moment is investigated (Figure 2.27), the governing differential equation 
assumes the form 

      zmGJEI =′′−′′′′ ϕϕω   (2.84) 

with the boundary conditions 

      0)0( =ϕ ,           0)0( =′ϕ   (2.85) 

and 

      0)( =′′ Hϕ ,       0)()( =′−′′′ HGJHEI ϕϕω  (2.86) 
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Figure 2.27 Bracing core for the torsional analysis, subjected to uniformly distributed torsional moment. 

https://engineersreferencebookspdf.com



54   Multi-storey Buildings 

 

 The solution can be expressed in closed form: 
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where 

      
ωEI

GJ
Hk =   (2.88) 

is the torsion parameter. 
 Maximum rotation develops at the top: 
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 Two special cases will now be considered. In most practical cases the effect 
of the Saint-Venant torsional stiffness (GJ) is small compared to the effect of the 
warping stiffness (EIω) and 

      1<<k    

holds. In such cases, keeping in mind that GJ/EIω ≈ 0 holds, the governing 
differential equation of the torsional problem simplifies to 

      
ω

ϕ
EI

mz=′′′′    

and the formula for the maximum rotation is obtained as 
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 When the core has no warping stiffness (Figure 2.25/a), the above solutions 
cannot be used as the denominator in Equations (2.88) and (2.90) vanishes. In such 
cases the original governing differential equation simplifies to 

      
GJ

mz−=′′ϕ    
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whose solution results in 
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H z

2
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2

max == ϕϕ   (2.91) 

for the maximum rotation. 

2.7.3 Critical load 

When the stability of a core is investigated, three things have to be considered: 
lateral buckling in the two principal directions and pure torsional buckling. For 
lateral buckling, Equation (2.74) given for shear walls can be used and the critical 
loads in the principal directions can be calculated from  
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Figure 2.28 Bracing core for the analysis of pure torsional buckling. 

 
 The situation with pure torsional buckling is more complicated. It is 
advantageous for the origin of the coordinate system to be placed at and attached to 
the upper free end of the core (Figure 2.28). The governing differential equation in 
this coordinate system assumes the form 

      ( )[ ] 0)( 2 =
′

′−+′′′′ ϕϕω GJizNEIr ps    

with the boundary conditions 

      0)0( =ϕ ,       0)0( =′′ϕ    
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and 

      0)( =′ Hϕ ,       0)()( =′−′′′ HGJHEI ϕϕω   

where 
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i yx
p

+
=   (2.93) 

is the radius of gyration of the cross-section of the core, rs is the load distribution 
factor (Figure 2.14 or Table 5.1) and N(z) = qz.  
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Figure 2.29 Critical load parameter α as a function of parameter ks. 

 
 The solution of the above governing differential equation gives the critical 
load for pure torsional buckling as 
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α
=   (2.94) 

where α is the critical load factor. Its function is shown in Figure 2.29 and its 
values are given in Table 2.10 as a function of  
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 It is important to point out that when Equation (2.94) is used for the stability 
analysis of a building braced by a single core, then the radius of gyration refers to 
the layout of the building (rather than to the cross-section of the core). 
 When the warping stiffness of the core is zero, Equations (2.94) and (2.95) 
cannot be used. Instead, 

      
2,
p

cr
i

GJ
N =ϕ   (2.96) 

should be used. It is interesting to note that in this case the value of the critical load 
does not depend on the height of the structure. 
 It should be noted here that cores normally behave in a true three-
dimensional fashion and the above three critical loads can only be considered basic 
critical loads. The basic critical loads (Ncr,x, Ncr,y and Ncr,φ) may, and normally will, 
combine during buckling resulting in the global critical load of the core. This 
combination is very important as the actual critical load of the core is always 
smaller than (or equal to) the smallest one of the three basic critical loads. For the 
coupling of the basic critical loads, see Chapter 5 that deals with three-dimensional 
behaviour. 
 

Table 2.10 Critical load parameter α as a function of parameter ks. 
 

ks α ks α ks α ks α 

0.00 7.837 1.3 12.72 2.8 28.03 50 2984.7 

0.01 7.838 1.4 13.47 2.9 29.30 60 4209.3 

0.05 7.845 1.5 14.27 3.0 30.59 70 5640.9 

0.10 7.867 1.6 15.11 4.0 44.69 80 7278.1 

0.20 7.957 1.7 15.99 5.0 60.75 90 9120.7 

0.30 8.107 1.8 16.91 6.0 78.80 100 11168 

0.40 8.316 1.9 17.87 7.0 98.94 200 42864 

0.50 8.583 2.0 18.87 8.0 121.2 300 94863 

0.60 8.909 2.1 19.91 9.0 145.7 400 167093 

0.70 9.291 2.2 20.98 10 172.4 500 259498 

0.80 9.730 2.3 22.08 15 338.6 1000 1023750 

0.90 10.22 2.4 23.21 20 558.6 2000 4059499 

1.00 10.77 2.5 24.38 25 831.8 3000 9101926 

1.10 11.37 2.6 25.57 30 1157.8 4000 16149383 

1.20 12.02 2.7 26.79 40 1967.1 >4000 2
sk  
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2.7.4 Fundamental frequency 

When the vibration of the core is investigated, the frequencies for the lateral 
vibration can again be readily obtained using the solution given for shear walls: 
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where m is the mass density per unit length of the material of the core and rf is the 
mass distribution factor by Figure 2.9 or Table 4.1. 
 The analysis of pure torsional vibration is carried out by investigating the 
equilibrium of an elementary section of the core (Figure 2.30). Its governing 
differential equation emerges as  

      0222 =+′′−′′′′ ϕϕϕω &&pff miGJrEIr    

where primes and dots mark differentiation by z and t (time). After seeking the 
solution in a product form, separating the variables and eliminating the time 
dependent functions, the above governing differential equation leads to the 
boundary value problem 
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Figure 2.30 Bracing core for the analysis of pure torsional vibration. 

 
 This differential equation is identical to Equation (2.47) in structure, has the 
same boundary conditions, and so the solution to Equation (2.47) can be used if the 
stiffness characteristics in Equation (2.47) are replaced with those in the above 
equation. In doing so, the formula for the pure torsional frequency is obtained as 
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where values for η are given in Figure 2.11 and in Table 4.2 as a function of k 
[Equation (2.88)]: 

      
ωEI
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Hk =  

 Equation (2.98) for the fundamental frequency of pure torsional vibration 
cannot be used for cores with zero warping stiffness. For such cores the 
fundamental frequency for pure torsion is calculated from 
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1
=ϕ   (2.99) 

 It is important to point out that when Equations (2.98) and (2.99) are used for 
the frequency analysis of a building braced by a single core, then the radius of 
gyration refers to the layout of the building (rather than to the cross-section of the 
core). 
 As with the stability investigation of the core, it should be noted here that 
cores normally behave in a true three-dimensional fashion and the above three 
fundamental frequencies ( fx, fy and fφ) can only be considered basic fundamental 
frequencies and they normally combine during vibration resulting in the 
fundamental frequency of the core. This combination is very important as the 
fundamental frequency of the core is always smaller than (or equal to) the smallest 
one of the three basic frequencies. For the coupling of the basic modes see 
Chapter 4 that deals with three-dimensional behaviour. 
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3 
 

Deflection and rotation analysis of 

buildings under horizontal load 

 

 
Based on the deflection analysis of a single framework, the characteristic unit of a 
bracing system, whole structures braced by frameworks, coupled shear walls, shear 
walls and cores will now be investigated. The task is made more complicated than 
with a simple unit as, in addition to the interaction among the elements of a 
framework, interaction also occurs among the bracing units themselves. 
Approximate methods have been developed for the investigation of bracing 
systems under horizontal load (Pearce and Matthews, 1971; Dowrick, 1976; 
Schueller, 1977; Irwin, 1984; Stafford-Smith and Coull, 1991; Coull and Wahab, 
1993) but they often have restrictive assumptions and their accuracy and reliability 
have not been comprehensively investigated. Sporadic checks indicate that in 
certain cases they lead to unconservative estimates of unacceptable magnitude (up 
to 70%).  
 A building under horizontal load can, and normally will, develop lateral 
deflection in two planes and rotation. One of the most important pieces of 
information regarding the building as a whole unit is its maximum deflection and 
the aim of this chapter is to offer a relatively simple solution for the top deflection 
as well as for the rotation of the building. The solutions to be presented in this 
chapter are not only simple but their structure is such that they show how the 
different stiffness characteristics influence the deflection and rotation of the 
building. The summary of a comprehensive accuracy analysis involving 279 
structures of different height and stiffness characteristics, with both reinforced 
concrete and steel bracing units, demonstrates the accuracy and reliability of the 
methods. 
 It will be shown that the deflection of the building is defined by three 
distinctive parts: bending deflection, shear deflection and the interaction between 
the bending and shear modes. It is demonstrated that the interaction is always 
beneficial as it reduces the deflection of the structure. Similar conclusions are 
made regarding the rotation of the building. 

3.1 LATERAL DEFLECTION ANALYSIS OF BUILDINGS UNDER 
HORIZONTAL LOAD 

Consider a system of frameworks and coupled shear walls (i = 1, …, f ), subjected 
to a uniformly distributed lateral load of intensity w, shown in Figure 3.1. (Shear 
walls and cores will be incorporated into the system later on.) Unlike in Section 
2.1, for the following derivation let li and Ii denote the bays of the frameworks and 
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the sums of the second moments of area of the columns of the units, respectively. 
Although the bracing units act independently from each other, the connecting floor 
slabs make them deflect together assuming the same deflection shape. Each unit 
takes horizontal load and bending moment according to its stiffness 

      wqw ii =         and        MqM ii =   (3.1) 

where factor qi is an apportioner that is responsible for distributing the total load 
among the bracing units.  

l1 

EI1, K1, EIg1 

l2 

EI2, K2, Ig2 

w 

l3 

EI3, K3, EIg3 EIf, Kf, EIg,f 

lf 

H 

 
Figure 3.1 A system of  f  bracing units. 

 
 Each unit may have three stiffnesses (EI, EIg and K, as defined in Section 
2.1.2) and all three influence its behaviour. The best way to take into account the 
combined effect of the stiffnesses is to consider the deflection of the unit. 
Accordingly, the “governing” stiffness of each unit is defined as 

      
i

i y
S

1
=   (3.2) 

where yi is the top deflection of the ith unit, calculated using Equation (2.24) in 
Section 2.1.1. With the above unit-stiffness, the apportioners are calculated from 

      
∑

=
i

i
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S

S
q   (3.3) 

 The summation in Equation (3.3) covers all the bracing units—see remark 
above Equation (3.15). During deflection, the columns and the beams of the 
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frameworks assume their bending deformation and the columns develop their axial 
deformation, utilising their individual bending and axial stiffnesses. Consequently, 
Equation (2.9) holds for each framework. Because of the identical deflection 
shapes, in the equations expressing continuity along the lines of contraflexure of 
the frameworks, the function of deflection is the same for each framework ( yi ≡ y) 
while the other characteristics are unit-specific: 
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 In order to determine normal force Ni for substitution in the above equation, 
the bending/deflection of the frameworks is considered next. Based on 
Equation (2.11), the bending of the frameworks is defined by  

      iiii NlMEIy +−=′′   (3.5) 

 Rearranging Equation (3.5) and making use of Equation (3.1) result in the 
normal forces as 
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 Substituting for Ni in Equation (3.6) leads to the following differential 
equation for the ith unit of the system: 
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 Making use of the fact that the floor slabs make the bracing units assume the 
same deflection, a single differential equation can be obtained for the whole system 
by adding up the above equations from i = 1 to i = f. Using the first, second and 
last bracing units for clarity, the differential equation for the whole system assumes 
the form: 
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 The equation can be written in a more general form if one of the units is 
considered the “base unit” (with EI, K and EIg) and the stiffness characteristics of 
the others are expressed by those of the base unit. Let Unit 1 be the base unit. 
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 Introducing the notation  
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and after some rearrangement Equation (3.8) turns into  
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which, after re-introducing a and b from Equation (2.14) and with M = wz2/2, can 
be rearranged as:  
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 It is easily seen that the above equation is in the form of 
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and therefore it is, in structure, identical to Equation (2.15). It follows that the 
solution of Equation (2.15) for a single bracing unit can be generalized and used 
for the determination of the deflection of a system of frameworks and coupled 
shear walls (Zalka, 2009):  
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where wqw 1=  is the wind load on the base unit, and 

      ba +=κ                    and                    
b

a
s +=1  (3.13) 

 Maximum deflection develops at z=H: 

      







−

+
−+== 1

cosh

sinh1

28
)(

322

24

max H

HH

sK

EIw

sK

Hw

EI

Hw
Hyy

f κ

κκ
 (3.14) 

 Stiffnesses EI, K and EIg are those of the “base unit” (and If = I + Ig). 
 The derivation presented above assumed a system of f rigid frames with EI, K 
and EIg. For coupled shear walls, stiffnesses EI, K* and EIg are used. [See Equation 
(2.70) for K*.] The bracing system may also contain braced frames, infilled frames, 
shear walls and cores.  
 Braced frames and infilled frames should be handled in a similar way, 
keeping in mind the following small differences. Their shear stiffness K should be 
determined according to the different types of bracing. Ready-to-use formulae are 
given in Table 2.6. Equations (2.68) and (2.69) can be used for infilled frames. 
When the bending stiffness of braced and infilled frames is calculated, their local 
bending stiffness is calculated directly as the sum of the bending stiffnesses of the 
columns, with r = 1, i.e., EI = EIc. The calculation of the global bending stiffness 
EIg is identical to that of the rigid frames, i.e., according to Equation (2.32). 
 Assume now that the system also contains m shear walls and cores. The 
situation is different (and much simpler) with shear walls and cores. They only 
have bending stiffness EI (the torsional stiffness of the cores is irrelevant for the 
time being), which corresponds to the local bending stiffness of rigid frames. In 
terms of frame-behaviour, their resistance against shear deflection and global 
bending deflection is considered infinitely great and they do not participate in 
“normal” frame-type interaction. This has two important consequences:  

a) When the apportioner of the base unit q1 is established, the shear walls and 
cores are also included when the total stiffness of the bracing system (ΣSi) is 
calculated, i.e., i = f + m in Equation (3.3). When the deflection of a shear 
wall/core is calculated (for determining its characteristic stiffness Si), only its 
bending stiffness is considered, i.e., 
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b) When a shear wall/core is incorporated into a bracing system, it is assumed 
that their shear and global bending stiffnesses are infinitely great in the sense 
frame terminology interprets these stiffnesses. It follows that they would not 
appear in Equation (3.10) where f stands for the number of frameworks. 

 With the above considerations, parameters a  and b  for a system of frames 
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and shear walls/cores are determined as follows: 
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where f   is the number of frameworks and coupled shear walls.  
 The above derivation and formulae spectacularly demonstrate how 
complicated and delicate the interaction among the stiffness characteristics of the 
bracing units is. As a rule, it is certainly not possible to create an equivalent 
structure for the analysis by simply adding up the corresponding stiffnesses (EI, 
EIg and K ) as is widely circulated in the literature. Simple addition of the 
stiffnesses might work in some cases, but only in some special cases (e.g. when the 
bracing system only consists of a single framework and one or more shear walls), 
and in the majority of other cases it leads to highly unreliable results. 
 A key element of the procedure is the “base” unit. Choosing a “base” unit 
makes it possible to reduce the problem of f + m bracing units to the problem of a 
single unit. In other words, choosing a base unit is equivalent to incorporating the 
bracing elements into a single equivalent column. This equivalent column is based 
on the “base unit” (with its load share wq1) but (through Σai/bi and Σai/ci) the 
effects of interaction among the bracing units are also taken into consideration.  
 Theoretically, it is not important which unit is chosen as base unit. 
Practically, however, the choice of a base unit is important as it has an “influence” 
on how “quickly” (height-wise) the continuum model works. With a “good” 
choice, the method works perfectly well even for low-rise (say, four-storey) 
structures. On the other hand, with a “worse” choice, the method may not be 
accurate enough for low-rise structures. Luckily, there is always a “good” choice 
and, after the determination of the stiffness characteristics of the bracing units 
(which are needed anyway), an extremely simple answer can be given to the 
question “How to choose the ‘base unit’?” The derivation in the previous section is 
based on the bending analysis of the system. The resulting formulae for the 
deflection consist of three parts: the bending part, the shear part and the interaction 
part. The more shear-sensitive a unit, the more important the interaction part is. As 
the derivation is based on bending analysis, a base unit as different from the 
bending-dominant case as possible should be chosen in order to offer the biggest 
“scope” for interaction. It follows that the rule for choosing the base unit is this: 

The bracing unit with the highest b=K/EI value must be chosen as the base unit. 

 As the ratio K/EI has no meaning with shear walls and cores, a shear wall or 
core cannot be a base unit. 
 If the structure is under horizontal load whose distribution is not uniform (but 
triangular, for example), the method can still be used. In such cases, the first and 
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second terms in Equations (3.12) and (3.14) should be replaced by the closed-form 
solutions of the relevant load cases, available from textbooks. As an 
approximation, the third term responsible for the interaction may remain 
unchanged. As the effect of interaction is of secondary nature, this approximation 
is considered acceptable for most structural engineering purposes.  

3.2 TORSIONAL ANALYSIS OF BUILDINGS UNDER HORIZONTAL 
LOAD 

The torsional analysis of multi-storey building structures braced by frameworks, 
(coupled) shear walls and cores, subjected to lateral load represents a formidable 
task. The main difficulty is caused by the fact that the different bracing units with 
different deflection shapes interact with each other, and this time in a three-
dimensional manner.  
 Because of the complexity of the torsional behaviour, not many authors deal 
with the problem. Considerable efforts have been made regarding the torsional 
behaviour of individual structural elements (Council..., 1978; Seaburg and Carter, 
2003) but the global torsional behaviour of whole structural systems is a less 
cultivated area. There are some excellent publications that offer relatively simple 
solution for the global torsional problem (Council..., 1978; Irwin, 1984; Schueller, 
1990; Coull and Wahab, 1993; Hoenderkamp, 1995; Nadjai and Johnson, 1998; 
Howson and Rafezy, 2002) but they are either still too complicated or of limited 
applicability and neither of them is backed up with a comprehensive accuracy 
analysis. 
 To handle this three-dimensional problem in a simple way seems to be 
hopeless using conventional tools. However, by relying on an analogy between 
bending and torsion, a relatively simple solution can be produced (Zalka, 2010). 
The aim of this section is threefold:  

a) to establish a new model for the analysis using the bending-torsion analogy 
b) to produce a simple closed-form solution for the rotation of the building that 

clearly shows the contribution of the different stiffness characteristics to the 
torsional resistance 

c) to show how this new method can be used for the determination of the 
maximum deflection of multi-storey asymmetrical building structures 

 It will be demonstrated that the torsional behaviour is defined by three 
distinctive phenomena: warping torsion, Saint-Venant torsion and the interaction 
between the two basic modes. It will be seen that the interaction between the 
warping and Saint-Venant types of torsion is always beneficial as it always reduces 
the rotation of the system. 

3.2.1 Torsional behaviour and basic characteristics 

As with thin-walled bars, multi-storey building structures react to torsion by 
utilizing their torsional resistance. As with thin-walled bars, the torsional resistance 
of multi-storey buildings originates from two sources. The warping stiffness is 
associated with the in-plane bending stiffness of the individual bracing units, 
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which is “activated” by their moment arm (perpendicular distance) measured from 
the shear centre of the bracing system. This phenomenon is best demonstrated by 
the torsional behaviour of a single I-column on a fixed base and with a free upper 
end, whose warping stiffness EIω is calculated by multiplying the (in-plane) 
bending stiffness of its flanges and the square of the perpendicular distance of the 
flanges from the shear centre of the column (Figure 3.2/a): 
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where E is the modulus of elasticity of the material of the column. Point O marks 
the shear centre of the cross-section and axis z passing through the shear centre is 
the axis of rotation. 
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Figure 3.2 Rotation of an I-column on a fixed base. a) with solid flanges, b) with flanges with openings. 
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 The Saint-Venant torsional stiffness of the bracing system is associated with 
the in-plane shear stiffness of the bracing units, which is “activated” by its moment 
arm (perpendicular distance) measured from the shear centre of the bracing system. 
For its demonstration and using the same I-column as above, assume that the 
flanges are pierced with big openings of rectangular shape (they are in fact 
frames). The Saint-Venant torsional stiffness (GJ) is calculated by multiplying the 
shear stiffness of the flanges (i.e. the frames) and the square of the perpendicular 
distance of the flanges from the shear centre of the column (Figure 3.2/b): 
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where K is the shear stiffness of the flanges. It is easy to see that in building 
structures the floor slabs of the building (with their great in-plane stiffness) play 
the role of the web of the I-column in making the bracing elements (the flanges) 
work together. 
 It follows that the bending and shear stiffnesses of the individual bracing 
units as well as the distance of the bracing units from the shear centre of the 
building are the key players in the torsional behaviour. 
 According to Section 2.1, in the case of a framework (the most characteristic 
bracing unit) the characteristic stiffnesses are the local and global bending 
stiffnesses [EI and EIg by Equations (2.31) and (2.32)] and the shear stiffness as 
given by Equation (2.27).  
 In addition to the stiffnesses of the bracing units, their distance from the shear 
centre is also needed. The location of the shear centre is defined as the centre of 
stiffnesses of the bracing units. The stiffness of each bracing unit is defined by 
Equation (3.2) as the reciprocal of the top (in-plane) deflection of the unit. 
 With the stiffnesses of the units, the calculation of the location of the shear 
centre is carried out in the co-ordinate system yx −  whose origin lies in the upper 
left corner of the plan of the building and whose axes are aligned with the sides of 
the building (Figure 3.3): 
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 (3.17) 

where 

 ii yx ,    are the perpendicular distances of the ith bracing unit from y  and x  
 f       is the number of frameworks and coupled shear walls 
 m      is the number of shear walls and cores 
 Sx,i, Sy,i  are the “governing” stiffnesses by Equation (3.2) in directions x and y 

 For the calculation of the location of the shear centre, only the in-plane 
stiffness of the frameworks and shear walls needs to be taken into account. Once 
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the location of the shear centre is determined, coordinate system yx −  has 
fulfilled its role and a new coordinate system x – y is established with its origin in 
the shear centre (Figure 3.3). 
 It is easily seen that Equations (3.17) simplify to 

      

∑

∑
+

+

=
mf

ix

mf

iix

o

I

xI

x

1
,

1
,

               and               

∑

∑
+

+

=
mf

iy

mf

iiy

o

I

yI

y

1
,

1
,

 (3.18) 

when the units of the bracing system only have bending stiffness (and no or 
negligible shear stiffness) as is the case with shear walls/cores and the task of 
establishing the location of the shear centre simplifies considerably. 
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Figure 3.3 Plan arrangement of the bracing system of frameworks for the torsional analysis. 

3.2.2 Torsional analysis 

Knowing the stiffness characteristics of the individual bracing units as well as their 
perpendicular distance from the shear centre, it is now possible to carry out the 
torsional analysis of the bracing system of the building. The torsional analysis is 
based on an analogy well-known in the stress analysis of thin-walled structures in 
bending and torsion (Kollbrunner and Basler, 1969; Vlasov, 1961). According to 
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the analogy, translations, bending moments and shear forces correspond to 
rotation, warping moments and torsional moments, respectively. It follows from 
the analogy that the results of the deflection analysis of a system of frameworks, 
(coupled) shear walls and cores can be used for the torsional analysis if the 
characteristic stiffnesses of the deflection analysis are “matched” with stiffnesses 
that characterise the torsional problem. 
 Stiffness EI is the local bending stiffness of the base unit with the deflection 
analysis. The corresponding stiffness with the torsional analysis is the local 
warping torsional stiffness  

      2EItEI =ω   (3.19) 

where t is the perpendicular distance of the unit from the shear centre (Figure 3.3). 
 Stiffness EIg is the global bending stiffness with the deflection analysis. The 
corresponding stiffness now is the global warping torsional stiffness  

      2tEIEI gg =ω   (3.20) 

 Stiffness K is the shear stiffness with the deflection analysis. The 
corresponding stiffness here is the Saint-Venant torsional stiffness  

      2)( KtGJ =   (3.21) 

 With the above analogous characteristics the governing differential equation 
of torsion assumes the form  
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 The solution of the differential equation is given by 
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 Maximum rotation develops at z = H: 
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 Instead of the lateral load on the base unit ( w ) in Equations (3.12), (3.14) 
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and (3.16), Equations (3.22), (3.23) and (3.24) contain the torsional moment       
m  that the base unit takes of the total torsional moment. Its value is determined as 
follows. 
 Each of the bracing units takes torsional moment according to their torsional 
stiffness. The torsional stiffness of the ith unit is defined as  
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where ti is the perpendicular distance of the ith bracing unit from the shear centre 
and yi(H) is the (in-plane) top deflection of the ith unit. Thus, the torsional 
apportioner related to the base unit assumes the form  
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where Sω is the torsional stiffness of the base unit as 
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and f + m is the total number of bracing units (with f frames/coupled shear walls 
and m shear walls/cores). The torsional moment the base unit takes is therefore 

      ωω qwxqmm ct ==   (3.28) 

where 

      ct wxm =   (3.29) 

is the total torsional moment on the bracing system. 
 Equivalents of coefficients κ  and s  in Equations (3.12), (3.13) and (3.14) 
also have to be established for use in Equations (3.23) and (3.24). Careful 
investigation of Equations (3.13) and (3.16) shows that if the torsional equivalents 
––stiffness× (moment-arm)2 ––are substituted for the relevant stiffnesses, the 
moment-arms drop out of the formulae. It follows that the coefficients defined by 
Equations (3.13) and (3.16) remain unchanged and could be used for the torsional 
analysis as well. It should be pointed out here that when these coefficients are 
determined, f refers to the number of frameworks and coupled shear walls that are 
effective against torsion, i.e. to those whose line of action do not pass through the 
shear centre. 
 The evaluation of Equations (3.23) and (3.24) using the rotational data of 126 
bracing systems ranging in height from 4 to 80 storeys (c.f. Section 3.4: Accuracy) 
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leads to the following observations: 

a) The torsional behaviour of the building can be separated into three distinctive 
parts. The bending stiffness of the individual bracing units (activated through 
rotation around the shear centre) is associated with warping torsion––first 
term in Equation (3.24). The shear stiffness of the bracing units (activated 
through rotation around the shear centre) results in pure, Saint-Venant-type 
torsion––second term in Equation (3.24). Because of the different (“bending-
type” and “shear-type”) rotation shapes (Figure 3.2), there is an interaction 
between the two modes, defined by the third term in Equation (3.24). Figure 
3.4 shows the characteristic types of rotation of a 40-storey building braced 
by frameworks. 

b) The effect of interaction between the warping and Saint-Venant modes 
(Figure 3.4/c) is always beneficial as it reduces the rotation of the structure.  

c) The effect of interaction significantly becomes smaller as the height of the 
structures increases. 

d) For a structure of given height, the effect of interaction is roughly constant 
over the height of the structure (Figure 3.4/c).  

 To conclude the investigation of the torsional behaviour, some special cases 
will now be considered as their analysis leads to extremely simple solutions in 
many practical cases.  

Case A: The horizontal elements of the bracing system (including the connecting 
beams in the frameworks and the floor slabs) have negligibly small bending 
stiffness. 
 This case is characterized by 0→bK  (for the frameworks). Consequently, 
the shear stiffness of the system tends to zero ( 0→K ), which leads to 0→a  and 

0→b  and 0→κ . Governing differential equation (3.22) simplifies to   

      
ω

ϕ
EI

mt=′′′′    

and the solutions for the rotation and top rotation assume the form 

      

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and 

      
ω

ϕϕ
EI

Hm
H t

8
)(

4

max ==   (3.31) 

where EIω is the local warping stiffnesses. This case is identified in Figure 3.4/a. 
 The use of Equations (3.30) and (3.31) should be considered when the shear 
stiffness of the bracing units is very small and/or when the bracing system consists 
of shear walls/cores only. It should be noted that in this case mt is the total 
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torsional moment and  Iω  represents the sum of the warping stiffnesses of the shear 
walls/cores. There is no need for a base unit in this case. 
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Figure 3.4 Typical rotation shapes. a) warping, b) Saint-Venant, c) interaction, d) combined. 

 
Case B: Bracing systems comprising multi-bay, low-rise frameworks tend to 
develop predominantly Saint-Venant-type rotation and the effect of the warping 
stiffness becomes insignificant.  
 This case is characterised by 0→a  and ∞→b  and governing differential 
equation (3.22) cannot be used directly. However, after some rearrangement, the 
original derivation leads to  

      
)(GJ

m
=′′ϕ    

where (GJ ) = Kbt
2. This differential equation, together with the boundary 

conditions φ(0) = 0 and φ'(0) = 0, lead to the rotation and the top rotation as 

      
)(2

)(
2

GJ

zm
z =ϕ   (3.32) 

and 

      
)(2

)(
2

max GJ

Hm
H == ϕϕ   (3.33) 

 The characteristic rotation shape is shown in (Figure 3.4/b). It is certainly 
worth considering the use of Equations (3.32) and (3.33) when the building is 
relatively low and the bracing system only consists of (mainly multi-bay) 
frameworks. 
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Case C: The structure is relatively slender (with great height/width ratio). The 
structure develops predominantly (global) warping rotation. The second and third 
terms in Equations (3.23) and (3.24) tend to be by orders of magnitude smaller 
than the first term and the solutions for the rotation and the top rotation effectively 
become  

      







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−
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IIE
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==   (3.35) 

 This case is illustrated in Figure 3.4/a. It is interesting to note that both 
Case A and Case C are characterised by warping-type rotation. 

3.3 MAXIMUM DEFLECTION  

Multi-storey buildings under horizontal load never develop torsion only. When the 
bracing system of the building is doubly symmetric, the shear centre of the bracing 
system (O) and the centre of the plan of the building (C) coincide (Figure 3.5/a).  

a) b)  

O O C 

C 

F F 

xc 

 
Figure 3.5 Plan arrangement. a) symmetric, b) asymmetric. 

  
 Under horizontal load––represented by its resultant F in Figure 3.5––the 
building develops lateral displacement and no rotation occurs. Equation (3.14) 
gives the maximum deflection of the building.  
 When the building is asymmetric, the shear centre of the bracing system and 
the centroid of the plan of the building do not coincide (Figure 3.5/b). The external 
load passing through the centroid causes two things: lateral displacement in the 
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direction of the load and rotation around the shear centre (Figure 3.6).  

O C 

F 

M=Fxc 

v 

= + 

O 

F 

O 

vo vφ A 
A A 

xc 

b) c) a) 

xmax 

 φ 

xmax 

 
Figure 3.6 Displacements. a) v: maximum displacement, b) vo: displacement due to force F,  

c) vφ: displacement due to torsional moment M. 

 
 The behaviour of the building is best analysed by transferring the load to the 
shear centre. This procedure results in a horizontal load passing through the shear 
centre and a torsional moment M = Fxc, where xc is the distance between the shear 
centre and the centroid. Force F develops lateral displacements only (vo in 
Figure 3.6/b) and torsional moment M develops rotation (φ) around the shear 
centre (Figure 3.6/c), which causes additional displacement (vφ). At any given 
location the total displacement is obtained by adding up the two components: 

      ϕvvv o +=    

 The maximum displacement of the building develops at the top at a corner of 
the plan of the building (point A in Figure 3.6) and, making use of the angle of 
rotation, is obtained from  

      maxmax )( xvHvv o ϕ+==   (3.36) 

where xmax is the distance of the corner point (where maximum deflection occurs) 
from the shear centre. The first term (vo) on the right-hand side in the above 
equation can be obtained using Equation (3.14) and the angle of rotation is 
determined by Equation (3.24).  

3.4 ACCURACY 

The results obtained using the approximate formulae derived in this chapter were 
compared to the results of the Finite Element solution. The AXIS VM finite 
element package (Axis, 2003) was used for the comparison, whose results were 
considered “exact”. The “error” of the method was defined as the difference 
between the “exact” and approximate results, related to the “exact” solution. 
Positive error meant conservative estimates.  
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Figure 3.7 Shear walls for the accuracy analysis (with thickness/width in metres). 

 
 The frameworks used in Sections 2.1.4 for checking the accuracy of the 
methods for individual frameworks (Figure 2.7) were used again. The bays of the 
one-, two- and three-bay reinforced concrete rigid frames were 6 m and the storey 
height was 3 m. The rectangular cross-sections of the beams and columns (in 
metres) are given in Figure 2.7 for frameworks F1 ... F10. The modulus of 
elasticity for these frameworks was E = 25 kN/mm2. Frameworks F11, F12 and 
F13 were one-, two- and three-bay steel braced frames whose bays and storey 
height were 3 m. The cross-sections of the columns for the three braced frames 
were 305x305UC137; the cross-sections of the beams and braces are given in 
Figure 2.7/k to 2.7/m. The modulus of elasticity for the steel frameworks was 
Es = 200 kN/mm2. 
 The thirteen frameworks (Figure 2.7) were supplemented by three shear walls 
(W1, W2 and W3 in Figure 3.7) and seventeen two-dimensional bracing systems 
were created: 

F1+F7+F13, F1+F7+F13+W2, F2+F3, F2+F3+W1, F5+F6+F8, F5+F6+F8+W2, 
F2+F3+F5+F6, F3+F6+F9, F3+F6+F9+W3, F2+F5+F9+F10, F2+F3+F5+F6+W2, 
F1+F2+F3+F4+F5+F6+F7+F8, F1+F2+F3+F4+F5+F6+F7+F8+W3, F5+F11, 
F5+F11+W3, F6+F12 and F6+F12+W3.  

 The base unit in each system is underlined; the b-value of each frame is given 
in Figure 2.7 The combination of the bracing units was determined in such a way 
that the widest possible range of stiffness could be covered in the most varied way. 
 First, the results of a comprehensive accuracy analysis regarding the formula 
for maximum deflection [Equation (3.14)] is given here. 
 The height of the structures in the seventeen systems varied from 4 to 80 
storeys in eight steps, leading to 153 test cases. The structures were subjected to a 
uniformly distributed horizontal load of w = 10 kN/m. The top deflection of the 
153 test systems was calculated using Equation (3.14) and then compared to the 
Finite Element solution. 
 The summary of the results (range of error, average absolute error and 
maximum error) is given in Table 3.1. In addition to the data given in Table 3.1, it 
is also important to see how the error varies as the height of the building changes. 
Figure 3.8 shows the error as a function of height. The results summarised in 
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Table 3.1 and Figure 3.8 demonstrate the performance of the continuum solution. 
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Figure 3.8 Accuracy of Equation (3.14) for the lateral deflection as a function of height. 

 
  It can be stated that for practical purposes the method can be considered 
conservative: The error range of the method was between –2% (unconservative) 
and 21% (conservative). In the 153 cases, the average difference between the 
results of the analytical method and the finite element solution was around 6% 
(conservative).  

Table 3.1 Accuracy of Equation (3.14) for the lateral deflection. 

Method Range of 
error (%) 

Average absolute 
error (%) 

Maximum 
error (%) 

Continuum solution 
[Equation (3.14)] -2 to 21 6.0 21 

 
 
 The accuracy of Equation (3.24) derived for the maximum rotation was also 
investigated.  
 Frameworks F1, F3, F5, F6, F7 and F10 shown in Figure 2.7 were chosen 
and supplemented with shear walls W1, W3, W4 and W5 (Figure 3.7) and with a 
U-core. The wall sections for the U-core were h = 4.0 and b = 4.0 with a wall 
thickness of t = 0.3. Fourteen bracing systems were created (Figure 3.9). 
 Again, the height of the structures varied between 4 and 80 storeys in eight 
steps (4, 10, 16, 22, 28, 34, 40, 60 and 80 storeys), creating 126 test cases. The 
stiffness characteristics and the arrangements of the bracing units were chosen in 
such a way that the structures covered a wide range of stiffnesses.  
 The top rotation of the fourteen bracing systems under uniformly distributed 
torsional load was calculated and the error of the method (the difference between 
the continuum and the “exact” solutions, related to the “exact” solution) was 
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determined. Again, the error was defined positive if it represented conservative 
approximation. 
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Figure 3.9 Fourteen bracing systems for the torsional analysis. 
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 The torsional shapes represented predominant warping-type, mixed warping-
type and Saint-Venant type, and predominant Saint-Venant type deformation. The 
summary of the results (range of error, average absolute error and maximum error) 
is given Table 3.2.  

Table 3.2 Accuracy of Equation (3.24) for maximum rotation. 

Method Range of 
error (%) 

Average absolute 
error (%) 

Maximum 
error (%) 

Continuum solution 
[Equation (3.24)] 0 to 25 9.0 25 

 
 The results summarized in Table 3.2 demonstrate the performance of the 
method. It should be emphasized that the method produced conservative estimates 
in every test case. The error range of the method was between 0% and 25%. In the 
126 cases, the average difference between the results of the proposed analytical 
method and the finite element solution was around 9%. Figure 3.10 shows the error 
as a function of height. 
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Figure 3.10 Accuracy of Equation (3.24) for the maximum rotation as a function of height. 
 
 It is interesting to note that the magnitude of the error does not decrease as 
the height of the structures increases, as is normally the case with continuum 
models of multi-storey structures. The reason for this peculiar phenomenon 
probably lies with the computer modelling of the floor slabs (see page 4): although 
the pinned bars represent the great in-plane and small out-of-plane stiffness of the 
floors reasonably well, with their great cross-sectional area they somewhat restrict 
the warping deformation, effectively increasing the torsional resistance of the 
bracing system. This increase in not present in the continuum model; thus the more 
conservative results for the higher structures where the effect of the warping 
stiffness is dominant.  
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Frequency analysis of buildings 

 

 
A great number of methods have been developed for the dynamic analysis of 
individual frameworks, coupled shear walls and shear walls. Fewer methods are 
available to deal with a system of these bracing elements. This follows from the 
fact that the interaction among the elements (beams/lintels and columns/walls) of a 
single framework or coupled shear walls is complex enough but then the bracing 
units interact with one another not only in planar behaviour but normally also in a 
three-dimensional fashion. This is why the available analytical methods make one 
or more simplifying assumptions regarding the characteristic stiffnesses of the 
bracing units or the geometry of the building.  
 Based on drift calculations and assuming a doubly symmetric structural 
arrangement, Goldberg (1973) presented several simple methods for the 
calculation of the fundamental frequency of (uncoupled) lateral vibration and pure 
torsional vibration. The effect of the axial deformation of the vertical elements was 
taken into account by a correction factor in his method. The continuous connection 
method enabled more rigorous analyses (Coull, 1975; Rosman, 1973 and 1981; 
Kollár, 1992). Using a single-storey torsional analogy, Glück et al. (1979) 
developed a matrix-based solution for buildings having uncoupled stiffness 
matrixes. A simple procedure with design tables was made available for 
asymmetrical buildings developing predominantly bending deformation (Zalka, 
2000). Ng and Kuang (2000) presented a simple method for the triply coupled 
vibration of asymmetric wall-frame structures. However, their method is only 
applicable to buildings whose vertical bracing elements develop no or negligible 
axial deformation.  
 In taking into consideration all the characteristic stiffnesses of the bracing 
frameworks, shear walls and cores, as well as the interaction among the elements 
of the bracing structures and among the bracing units themselves (Zalka, 2001), the 
aim of this chapter is to introduce a simple analytical method for the calculation of 
the natural frequencies of regular multi-storey buildings braced by a system of 
frameworks, (coupled) shear walls and cores. 
 In addition to the general assumptions made in Chapter 1, it is also assumed 
for the analysis that the mass of the building is uniformly distributed over the 
floors of the building and that the location of the shear centre only depends on 
geometrical characteristics. 
 The equivalent column approach shall be used for the analysis. The 
equivalent mass and stiffnesses shall be established first, considering deformations 
due to bending, shear, the lengthening and shortening of the vertical elements and 
torsion. Closed-form solutions shall then be given for lateral, pure torsional and 
coupled vibration. 
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 The method is simple and accurate enough to be used both at the concept 
design stage and for final analysis. It can also be useful to verify the results of the 
FE method, where the time consuming procedure of handling all the data can 
always be a source of error.  
 A multi-storey building may develop lateral vibrations in the two principal 
directions and torsional vibration around its vertical shear centre axis. All the three 
corresponding frequencies have to be calculated before their coupling can be 
considered. The investigation here starts with the lateral vibration of the bracing 
system, which can be based on the vibration analysis of a single framework 
presented in Section 2.2.  

4.1 LATERAL VIBRATION OF A SYSTEM OF FRAMEWORKS, 
(COUPLED) SHEAR WALLS AND CORES 

Consider a system of frames and coupled shear walls (i = 1...f ) and shear walls and 
cores (k = 1...m) shown in Figure 4.1/a. Based on the analysis of a single 
framework in Section 2.2.1, the whole bracing system can be characterised by the 
shear stiffness of the frameworks and coupled shear walls, the global bending 
stiffness of the frameworks and coupled shear walls and the local bending stiffness 
of the individual columns/wall sections, shear walls and cores.  

a) b) 

 EI 
Ke 

EwIw EcIc; EcIg; K EcIc; EcIg; K* 

h 

h 

h 

h 

h 

H m 

h 

z 

 y 

 
Figure 4.1 Model for the lateral vibration analysis. a) bracing system consisting of frames, coupled 

shear walls, shear walls and cores, b) equivalent column. 
 

 By combining the individual bracing elements, linked by the floor slabs, to 
form a single cantilever, an equivalent system can be established with shear 
stiffness K, global bending stiffness EIg and local bending stiffness EI. The shear 
stiffness and the global bending stiffness are not independent of each other and can 
be incorporated into an effective shear stiffness, leading to a single equivalent 
column with effective shear stiffness Ke and bending stiffness EI. These 
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characteristics shall be established as follows. 
 The shear stiffness of the system originates from the shear stiffnesses of the 
frameworks and coupled shear walls. Based on Equation (2.27), the “original” 
shear stiffness of the ith framework is 
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where the two contributors to the shear stiffness are 
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where 

      Ec   is the modulus of elasticity of the columns of the frameworks  
      Eb    is the modulus of elasticity of the beams of the frameworks 
      Ic,j    is the second moments of area of the jth column of the ith framework 
      Ib,j    is the second moments of area of the jth beam of the ith framework 
      h     is the storey height 
      lj      is the jth bay of the ith framework 
      n     is the number of columns of the ith framework 

 Factor ri is introduced as a reduction factor: 
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 The total “original” shear stiffness of  f   bracing frameworks is 
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 [If coupled shear walls are also included in the system, their shear stiffness is 
determined using Equation (2.70).]  
 The square of the frequency of shear vibration associated with the “original” 
shear stiffness of the ith unit is  
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where m is the mass density per unit length [kg/m].  
 For regular multi-storey buildings, the mass density per unit length is 
calculated using 

      Am ρ=   (4.7) 

where A is the plan area of the building and 

      
g

γ
ρ =   

is the mass density per unit volume. Constant g is the gravity acceleration, with 
g = 9.81 m/s2, and γ [kN/m3] is the weight per unit volume of the building. 
 Factor rf  is included in Equation (4.6). It is responsible for taking into 
account the fact that the mass of the original structures is concentrated at floor 
levels and is not uniformly distributed over the height (as assumed for the model 
used for the original derivation, shown in Figure 4.1/b). Values for rf  are given in 
Table 4.1. 

Table 4.1 Mass distribution factor rf  as a function of n (the number of storeys). 

n 1 2 3 4 5 6 7 8 9 10 11 

rf 0.493 0.653 0.770 0.812 0.842 0.863 0.879 0.892 0.902 0.911 0.918 

n 12 13 14 15 16 18 20 25 30 50 >50 

rf 0.924 0.929 0.934 0.938 0.941 0.947 0.952 0.961 0.967 0.980 )06.2/( +nn  

 
 The full-height global bending vibration of the ith framework or coupled 
shear walls as a whole unit represents pure bending type vibration. The square of 
the fundamental frequency that is associated with this vibration is  
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where Ig is the global second moment of area of the cross-sections of the columns: 
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with 

      Ac,j   the cross-sectional area of the jth column  
      tj      the distance of the jth column from the centroid of the cross-sections 

 According to the dynamic analysis carried out in Section 2.2.1, there is an 
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interaction between the shear and global bending modes that reduces the 
effectiveness of the shear stiffness. The factor of effectiveness for the ith unit can 
be calculated using the two relevant frequencies as 
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and using the effectiveness factor, the effective shear stiffness for the whole system 
is obtained as 
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 Using the “original” and the effective shear stiffnesses, the effectiveness for 
the whole system is obtained as 
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 The actual lateral frequency of the system which is associated with shear 
deformation can now be determined using the effective shear stiffness: 
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 If higher frequencies are needed, the factor 4 in Equation (4.13) should be 
replaced by 4/3 and 4/5, respectively, for the calculation of the second and third 
frequencies. 
 When the lateral frequency that is associated with the local bending 
deformation is considered, the bending stiffnesses of the columns of the 
frameworks and coupled shear walls, the shear walls and the cores have to be taken 
into consideration:  
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 In Equation (4.14) 

      Ew   is the modulus of elasticity of the shear walls/cores 
      Ic,i    is the sum of the second moments of area of the columns of the ith  
           framework 
      ri      is the reduction factor for the ith framework [Equation (4.4)] 
      Iw,k   is the second moment of area of the kth shear wall/core 
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 When the system has mixed bracing units—both frameworks and shear 
walls/cores—the contribution of the columns of the frameworks [first term in 
Equation (4.14)] is normally very small compared to that of the shear walls/cores 
and can safely be ignored. 
 With the above bending stiffness, the lateral frequency of the system in 
bending is obtained from 
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where 

      ff    fundamental frequency of the frameworks/coupled shear walls 
      fw    fundamental frequency of the shear walls/cores 

 If higher frequencies are needed, the factor 0.313 in Equation (4.15) should 
be replaced by 12.3 and 96.4, respectively, for the calculation of the second and 
third frequencies. 
 In Equations (4.14) and (4.15), the bending stiffness of the columns of the 
frameworks and coupled shear walls is adjusted by combination factor ri. 
Theoretical investigations (Hegedűs and Kollár, 1999) demonstrate that this 
adjustment is necessary to prevent the over-representation of the second moments 
of area of the columns in the equivalent column where they are also represented in 
Ke [through Kc—c.f. Equations (4.3) and (4.11)]. 
 The whole system is now modelled by a single equivalent column with 
bending stiffness EI and effective shear stiffness Ke (Figure 4.1/b). The governing 
differential equation of the equivalent column is obtained by examining the 
equilibrium of its elementary section. This leads to 

      022 =+′′−′′′′ umuKruEIr eff &&    

where primes and dots mark differentiation by z and t (time). After seeking the 
solution in a product form, separating the variables and eliminating the time 
dependent functions, this equation results in the boundary value problem 

      01
2

1
2

1
2 =−′′−′′′′ muuKruEIr eff ω   (4.16) 

where ω is the circular frequency and u1 defines lateral motions.  
 If the origin of the coordinate system is at the lower built-in end of the 
equivalent column (Figure 4.1/b), the boundary conditions are as follows: 

      0)0(1 =u    

      0)0(1 =′u    

      0)(1 =′′ Hu    
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and 

      0)()( 11 =′−′′′ HuKHuEI e    

 Governing differential equation (4.16) is identical in form to Equation (2.47). 
As the boundary conditions are also identical, the solution to Equation (2.47) in 
Section 2.2.1 can be used, bearing in mind that the stiffnesses now refer to the 
whole system of bracing units (not to an individual framework). With the notation  

      
m

EIr

H

f
2

2

2πη
ω =    

and the non-dimensional parameter 

      
EI

K
Hk e=   (4.17) 

the solution emerges as 
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Table 4.2 Frequency parameters η and ηφ as a function of k and kφ. 

k or kφ η or ηφ k or kφ η or ηφ k or kφ η or ηφ k or kφ η or ηφ k or kφ η or ηφ 

0.00 0.5596 4.5 1.465 9.5 2.680 14.5 3.913 20 5.278 

0.10 0.5606 5.0 1.586 10.0 2.803 15.0 4.036 30 7.769 

0.50 0.5851 5.5 1.706 10.5 2.926 15.5 4.160 40 10.26 

1.00 0.6542 6.0 1.827 11.0 3.049 16.0 4.284 50 12.76 

1.50 0.7511 6.5 1.949 11.5 3.172 16.5 4.408 60 15.26 

2.00 0.8628 7.0 2.070 12.0 3.295 17.0 4.532 70 17.76 

2.50 0.9809 7.5 2.192 12.5 3.418 17.5 4.656 80 20.26 

3.00 1.1014 8.0 2.313 13.0 3.542 18.0 4.781 90 22.76 

3.50 1.2226 8.5 2.435 13.5 3.665 18.5 4.905 100 25.26 

4.00 1.3437 9.0 2.558 14.0 3.789 19.0 5.029 >100 
4

k
or

4
ϕk

 

  
 The above equation needs some modification as the first term in the right 
hand side contains both the bending part of the vibration of the system and also the 
effect of the interaction between the bending and shear vibrations. Proceeding as in 
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Section 2.2.1 and separating the two parts, then applying the effectiveness factor to 
the part that is responsible for the interaction, and assuming a bracing system in the 
y-z plane (as in Figure 4.1), the formula for the fundamental frequency is obtained 
as 

      2
22

22 1
5313.0 bfsby fs

k
fff 










−−++=

η
 (4.18) 

where fb, fs, k and sf are calculated by taking into account the bracing elements in 
the relevant direction, i.e. in direction y. In replacing subscript y with x and 
considering the bracing elements in direction x, Equation (4.18) can also be used 
for the calculation of the lateral frequency in direction x. 
 Values for frequency parameter η are given in Table 4.2 as a function of 
parameter k. Values of parameter η for the second and third frequencies are 
tabulated in (Zalka, 2000). 
 It is interesting to note that when the global bending stiffness is incorporated 
into the (original) shear stiffness resulting in a (smaller) effective shear stiffness 
for the frequency analysis, then the equivalent column can be created simply by 
adding up the effective shear stiffnesses and the local bending stiffnesses, 
respectively, of the individual bracing units. This simple approach does not work 
in the case of the deflection and rotation analyses of systems. This is the reason 
why in Chapter 3 a “base unit” was created (with its load share) for the deflection 
and rotation analyses and the effects of the other bracing units were taken into 
account through additional stiffness parameters (ai, bi, ci). 

4.2 PURE TORSIONAL VIBRATION 

Although the torsional vibration problem is more complex than that of lateral 
vibration, a solution may be obtained in a relatively simple way, due to an analogy 
between the three-dimensional torsional problem and the two-dimensional lateral 
vibration problem (discussed in the previous section). This analogy is well known 
in the stress analysis of thin-walled structures in bending and torsion (Vlasov, 
1961; Kollbrunner and Basler, 1969). According to the analogy, translations, 
bending moments and shear forces correspond to rotations, warping moments and 
torsional moments, respectively. It will be demonstrated in the following that the 
analogy can be extended to the lateral vibration of an elastically supported 
cantilever (discussed in the previous section) and the pure torsional vibration of a 
cantilever of thin-walled cross-section (to be investigated in this section).  
 The model which is used for the pure torsional vibration analysis of the 
building is an equivalent cantilever of thin-walled, open cross-section which 
replaces the bracing system of the building for the torsional analysis (Figure 4.2). 
This equivalent cantilever is situated in the shear centre and has effective Saint-
Venant torsional stiffness (GJ)e and warping torsional stiffness EIω (Figure 4.3). 
The governing differential equation of the cantilever (whose lumped masses Mi at 
floor levels are replaced by uniformly distributed mass m over the height) is 
obtained by examining the equilibrium of its elementary section as 
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      0)( 222 =+′′−′′′′ ϕϕϕω &&miGJrEIr peff    

where primes and dots mark differentiation by z and t (time).  
 After seeking the solution in a product form, separating the variables and 
eliminating the time dependent functions, this equation results in the boundary 
value problem  

      0)( 1
22

1
2

1
2 =−′′−′′′′ ϕωϕϕω miGJrEIr peff  (4.19) 

where ω is the circular frequency, ip is the radius of gyration and φ1 defines 
rotational motions.  
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Figure 4.2 Typical layout with the equivalent column of open, thin-walled cross-section. 

 
 As the origin of the coordinate system is fixed at the bottom of the equivalent 
column (Figure 4.3), the boundary conditions are 

      0)0(1 =ϕ    

      0)0(1 =′ϕ    

      0)(1 =′′ Hϕ    

      0)()()( 11 =′−′′′ HGJHEI eϕϕω    

 Eigenvalue problem (4.19) is clearly analogous with the one defined by the 
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governing differential equation (4.16) and its boundary conditions. Bending 
stiffness EI and the elastic support defined by the effective shear stiffness Ke in 
Equation (4.16) correspond to warping stiffness EIω and effective Saint-Venant 
torsional stiffness (GJ)e, divided by 2

pi  in Equation (4.19), respectively.  
 As the derivation of Equation (4.19) demonstrates (Zalka, 1994), the radius 
of gyration is related to the distribution of the mass of the building. For regular 
multi-storey buildings of rectangular plan-shape and subjected to a uniformly 
distributed mass at floor levels, the radius of gyration is obtained from 

      2
22

12
t

BL
ip +

+
=   (4.20) 

where L and B are the plan length and breadth of the building and t is the distance 
between the geometrical centre of the plan of the building and the shear centre of 
the bracing system (Figure 4.2). For arbitrary plan-shapes and/or other types of 
mass distribution, formulae for the radius of gyration are available elsewhere 
(Kollár, 1999; Zalka, 2000). It is important to note that the value of ip depends on 
the geometrical characteristics of the plan of the building, rather than the stiffness 
characteristics of the bracing system. 

b) a) 
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Figure 4.3 Equivalent column with: a) lumped masses Mi, b) uniformly distributed mass m. 

 
 Once the corresponding stiffnesses are established, the solution to Equation 
(4.16) can be used and converted to represent the solution of Equation (4.19).  
 The effective Saint-Venant torsional stiffness of the system may come from 
two sources: the Saint-Venant torsional stiffness of the shear walls and cores and 
from the effective shear stiffness of the frameworks as  

      ( )∑∑ ++=
f

iyieixie

m

ke xKyKGJGJ
1

2
,

2
,

1

)()()(  (4.21) 
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where 

      Jk           is the Saint-Venant constant of the kth wall/core 
      G           is the modulus of elasticity in shear of the walls/cores 
      (Ke,i)x, (Ke,i)y  are the effective shear stiffnesses of ith framework/coupled 
                 shear walls in directions x and y, respectively 
      xi, yi        are the perpendicular distances of the ith framework/coupled  
           shear walls from the shear centre in directions x and y,  
           respectively 

 If the bracing system consists of frameworks, (coupled) shear walls and cores 
of open cross-section, the first term in Equation (4.21) is normally negligible 
compared to the contribution of the frameworks. 
 The warping stiffness of the system may originate from three sources: the 
own warping stiffness of the cores, the bending stiffness of the walls and cores and 
the bending stiffness of the columns of the frameworks/wall sections of the 
coupled shear walls:  

      ( )∑ ++=
m

kykwkxkwkw xIyIIEEI
1

2
,

2
,, )()(ωω   

                                             + ( )∑ +

f

iyiicixiicc xrIyrIE
1

2
,

2
, )()(  (4.22) 

where 

      Iω,k         is the warping constant of the kth wall/core 
      Ew(Iw,k)x, Ew(Iw,k)y are the bending stiffnesses of the kth wall/core in directions x  
                 and y, respectively 
      Ec(Ic,iri)x, Ec(Ic,iri)y are the bending stiffnesses of the columns/wall sections of  
                 the ith framework in directions x and y, respectively 
      xk, yk        are the perpendicular distances of the kth wall/core from the 
                 shear centre in directions x and y, respectively 
      xi, yi        are the perpendicular distances of the ith framework/coupled  
                 shear walls from the shear centre in directions x and y,  
                 respectively 

 The warping stiffness of a well-balanced bracing system is normally 
dominated by the contribution of the shear walls and cores (if their perpendicular 
distance from the shear centre is great enough). The contribution of the cores 
through their own warping stiffness [first term in Equation (4.22)] tends to be 
much smaller and the effect of the columns of the frames (last two terms) is 
generally negligible. 
 To facilitate the easy calculation of the warping constant Iω , closed-form 
formulae for cross-sections widely used for bracing cores are given in Tables 2.7, 
2.8 and 2.9. More formulae are available in (Zalka, 2000). For bracing elements of 
special (irregular) cross-sections where no closed-form solution is available, the 
excellent computer program PROSEC (1994) can be used, whose accuracy has 
been established and proved to be within the range required for structural 
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engineering calculations.  
 With the above stiffnesses, and making use of the analogy, the fundamental 
frequency for pure torsional vibration is obtained in the same manner as 
Equation (4.18):  
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where the pure torsional frequency associated with the warping torsional stiffness 
is obtained from 
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and the formula for the pure torsional frequency associated with the Saint-Venant 
torsional stiffness is 
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 The effectiveness of the Saint-Venant torsional stiffness is expressed by the 
factor 
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GJ

GJ
s e=ϕ   (4.26) 

where the “original” Saint-Venant torsional stiffness is 
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 Values of vibration parameter ηφ are given in Table 4.2 as a function of 
torsion parameter kφ: 

      
ω

ϕ EI

GJ
Hk e)(

=   (4.28) 

 Values for the second and third frequencies are given in (Zalka, 2000). 
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4.3 COUPLED LATERAL-TORSIONAL VIBRATION 

When the shear centre of the bracing system and the centre of the mass coincide 
(e.g. doubly symmetric arrangement), the three basic frequencies fx, fy and fφ are 
independent of each other and the smallest one is the fundamental frequency of the 
building.  
 When the system is not doubly symmetric and the shear centre does not 
coincide with the centre of the mass of the building, two things have to be 
considered. First, for the calculation of the frequency of pure torsional vibration, 
the location of the shear centre has to be determined. (The value of the lateral 
frequencies is not affected.) Second, the question of interaction among the basic 
modes has to be addressed. 
 For bracing systems developing predominantly bending deformation, the 
location of the shear centre is calculated using the bending stiffness of the bracing 
elements [Equations (3.18)]. However, with bracing systems having frameworks 
and coupled shear walls as well, the shear deformation of some of the bracing 
elements may be of considerable magnitude (in addition to their bending 
deformation). The behaviour of such systems is complex (and the location of the 
shear centre may even vary over the height). No exact solution is available for this 
case but, as a good approximation, the formulae given below can be used to 
determine the location of the shear centre.  
 As the lateral frequency of a bracing unit reflects both its bending and shear 
stiffnesses, the location of the shear centre is calculated using the lateral 
frequencies (fx and fy) of the bracing units:   
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  (4.29) 

where ix  and iy  are the perpendicular distances of the frameworks/coupled shear 
walls, shear walls and cores from axes y  and x , respectively (Figure 4.2). Any 
suitable method can be used for the calculation of the lateral frequencies in 
Equation (4.29), including Equation (4.18) given in Section 4.1. The repeated 
application of the Southwell formula (1922) and the Föppl-Papkovich formula 
(Tarnai, 1999) offers another very simple alternative for the calculation of the 
fundamental lateral frequencies. According to this approach, a lower bound to the 
lateral frequency of a bracing unit is obtained from the summation formula 
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where fs’, fg and fb relate to the bracing unit. Their values are given by Equations 
(2.41), (2.42) and (2.46) in Section 2.2.1.  
 Knowing the location of the shear centre, the Saint-Venant and warping 
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torsional stiffnesses can be calculated in the coordinate system whose origin is in 
the shear centre (Figure 4.2) using Equations (4.21) and (4.22) and the frequency 
of pure torsional vibration is obtained from Equation (4.23).  
 Assuming unsymmetric bracing system arrangement, interaction occurs 
among the two lateral and pure torsional modes. There are two possibilities to take 
into account the effect of interaction: “exactly” or approximately. The “exact” 
method automatically covers all the three coupling possibilities (triple-, double and 
no-coupling) with an error range of 0-2%. This method is given first.  
 When the basic frequencies fx, fy and fφ are known, their coupling can be 
taken into account in a simple way by using the cubic equation   

      ( ) ( ) 00
2

1
22

2
32 =−++ afafaf   (4.31) 

whose smallest root yields the combined lateral-torsional frequency of the 
building. The coefficients in the above cubic equation are   
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where τx and τy are eccentricity parameters: 
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 In Equations (4.33) ip is given by Equation (4.20) and xc and yc are the 
coordinates of the geometrical centre (Figure 4.2): 

      oc x
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x −=
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2

  (4.34) 

 If a quick solution is needed or a cubic equation solver is not available or if 
one of the basic frequencies is much smaller than the others, the following 
approximate method based on the Föppl-Papkovich theorem (Tarnai, 1999) may be 
used.  
 For unsymmetric bracing systems when the centroid of the mass of the 
building does not lie on either principal axis of the bracing system, triple coupling 
occurs and the resulting fundamental frequency is obtained using the reciprocal 
summation 
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 If the arrangement of the bracing system is monosymmetric and the centroid 
of the mass of the building lies on one of the principal axes of the bracing system 
(say, axis x), then two things may happen. Vibration may develop in direction x 
(defined by fx) or vibration in direction y ( fy) couples with pure torsional vibration 
around axis z ( fφ). The frequency of this coupled vibration is obtained from 
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 The fundamental frequency of the building is the smaller one of  fx and fyφ, 
i.e.: 

      ϕyx fff ,!Min=   (4.37) 

 If the arrangement of the bracing system is doubly symmetric and the 
centroid of the mass of the building coincides with the shear centre of the bracing 
system, then no coupling occurs and the fundamental frequency of the building is 
the smallest one of  fx,  fy  and  fφ, i.e.: 

      ϕffff yx ,,!Min=   (4.38) 

 The value of the coupled frequency of the building is basically depends on 
two factors: the values of the basic frequencies ( fx, fy and  fφ ) and the eccentricities 
of the bracing system (τx and τy). The great disadvantage of using the summation 
equations for determining the coupled frequency may be that they totally ignore 
the eccentricity of the system. If the system has relatively small eccentricity, then 
the summation equations tend to result in very conservative estimates.  
 The natural frequencies of buildings are also affected by other factors, such 
as foundation flexibility, reduced stiffness due to cracking, damping, etc. The 
treatment of such “secondary” effects is outside the scope of this book; more 
detailed information is available elsewhere (Barkan, 1962; Rosman, 1973; Fintel, 
1974; Ellis, 1986).  
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4.4 ACCURACY 

The reliability of the continuum method has already been demonstrated in Section 
2.2.3 when the accuracy of Equation (2.50) was investigated. As Equations (4.18) 
and (4.23) are originated from Equation (2.50), it is not expected that the accuracy 
analysis to be presented here would lead to conclusions that are very different from 
those in Section 2.2.3. Indeed, the results are similar. 
 

Table 4.3 Accuracy of Equation (4.18) for the fundamental frequency. 

Method Range of 
error (%) 

Average absolute 
error (%) 

Maximum 
error (%) 

Continuum solution 
[Equation (4.18)] -6 to 5 2.1 6 

 
 As Equations (4.18) and (4.23) are analogous in structure, and identical at 
theoretical level, the accuracy of Equation (4.18) was investigated only. Using 
eight of the frameworks shown in Figure 2.7 in Section 2.1.4 (F1 to F8) and 
supplementing them with four shear walls (W0 to W3 in Figure 3.7), eight planar 
systems were created (Figure 4.5). The height of the structures in the eight systems 
varied from 4 to 80 storeys in eight steps creating 72 bracing systems. The lateral 
frequency of the 72 bracing systems was calculated and compared to the Finite 
Element solution. The AXIS VM finite element package (AXIS, 2003) was used 
for the comparison, whose results were considered “exact”. 
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Figure 4.4 Accuracy of Equation (4.18) for the fundamental frequency for bracing systems of different 
heights. 
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Figure 4.5 Bracing systems for the accuracy analysis. a) F1-W1: frame–shear wall, b) F2-W1: frame 
with high column/beam stiffness ratio–shear wall, c) F2-W0: frame with high column/beam stiffness 
ratio–slender shear wall, d) F3-W1: frame with high beam/column stiffness ratio-shear wall, e) F4-W3: 
coupled shear walls–wide shear wall, f) F4-W1: coupled shear walls–shear wall, g) F1-F7-W1: one- and 
two-bay frames with a shear wall, h) F8-F5-W2-F6: one-, two- and three-bay frames with a shear wall. 
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 The bays of the one-, two- and three-bay frameworks were 6 m and the storey 
height was 3 m. The cross-sections of the beams and columns were chosen in such 
a way that the structures covered a wide range of stiffnesses. 
 The deflected shapes represented predominant bending, mixed shear and 
bending, and predominant shear deformation. The “error” was defined as the 
difference between the “exact” (FE) and the continuum solutions, related to the 
“exact” solution. When the frequency given by Equation (4.18) was smaller than 
the “exact” one, it was considered conservative (and the “error” was defined 
positive).  
 The results are given in Table 4.3. The variation of the error over the height 
of the systems is shown in Figure 4.4. 
 The results summarised in Table 4.3 and Figure 4.4 demonstrate the excellent 
performance of Equation (4.18). In the 72 cases, the average difference between 
the results of the continuum solution and the finite element solution was around 
2%. The maximum error of Equation (4.18) was 6%. 
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Stability analysis of buildings 

 

 
The stability of a building can, and should be, assessed by looking at the stability 
of its individual elements as well as examining its stability as a whole. National 
codes have detailed instructions for the first case but the buckling analysis of 
whole structures is not so well regulated and therefore this chapter intends to 
address the second case. The designer basically has two possibilities to tackle 
whole building behaviour in either using finite element packages or relying on 
analytical methods. The analytical approach is used here. 
 A great number of methods have been developed for the stress analysis of 
individual frameworks, coupled shear walls and shear walls. Fewer methods are 
available to deal with a system of these bracing units. The availability of methods 
for the stability analysis of a system of frameworks, coupled shear walls and shear 
walls is even more limited. This follows from the fact that the interaction among 
the elements (beams/lintels and columns/walls) of a single framework or coupled 
shear walls is complex enough but then the bracing units interact with one another 
not only in planar behaviour but normally also in a three-dimensional fashion. This 
is why the available analytical methods make one or more simplifying assumptions 
regarding the characteristic stiffnesses of the bracing units, the geometry of the 
building, or loading.  
 In using an equivalent Timoshenko-beam, Goschy (1970) developed a simple 
hand-method for the stability analysis of buildings under top-level load. Goldberg 
(1973) concentrated on plane buckling and presented two simple approximate 
formulae which can be used in the two extreme cases when the building develops 
pure shear mode or pure bending mode buckling. The interaction of the two modes 
is taken into account by applying the Föppl-Papkovich summation formula to the 
flexural and shear mode critical loads. Using the continuum approach (Gluck and 
Gellert, 1971; Rosman, 1974), Stafford Smith and Coull (1991) presented a more 
rigorous analysis for the sway and pure torsional buckling analysis of doubly 
symmetric multi-storey buildings whose vertical elements develop no or negligible 
axial deformations. Based on the top translation of the building (obtained from a 
plane frame analysis) and assuming a straight line deflection shape, MacLeod and 
Marshall (1983) derived a simple formula for the sway critical load of buildings. In 
using simple closed-form solutions for the critical loads of the individual bracing 
frames and coupled shear walls, Southwell’s summation theorem results in a lower 
bound for the sway critical load of multi-storey buildings (Zalka and Armer, 1992). 
Even when the critical loads of the individual bracing units are not available, the 
repeated application of summation formulae leads to conservative estimates of the 
critical load in a simple manner (Kollár, 1999). In replacing the bracing units of a 
building with sandwich columns with thick faces, Hegedűs and Kollár (1999) 
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developed a simple method for calculating the critical load of multi-storey 
buildings with bracing shear walls and frameworks in an arbitrary arrangement, 
subjected to concentrated top load. All these methods restrict the scope of analysis 
in one way or another and none were backed up with a comprehensive accuracy 
analysis. 
 In taking into consideration all the characteristic stiffnesses of the bracing 
frameworks and shear walls as well as the interaction among the elements of the 
bracing structures and among the bracing units themselves (Zalka, 2002), the aim 
of this chapter is to introduce a simple analytical method for the calculation of the 
critical load of buildings braced by a system of frameworks, (coupled) shear walls 
and cores.  
 In addition to the general assumptions made in Chapter 1, it is also assumed 
for the analysis that the load of the building is uniformly distributed over the floors 
and that the location of the shear centre only depends on geometrical 
characteristics. The critical load of the structures defines the bifurcation point.  
 The procedure for establishing the method for the determination of the 
critical load of the building will be very similar to the way the method for the 
calculation of the fundamental frequency was developed in the previous chapter. 
First, the basic stiffness characteristics will be established for the analysis. The 
effective shear stiffness will be introduced, which, as in the previous chapter, 
makes it possible to create an equivalent column by the simple summation of the 
relevant stiffnesses. Second, based on the equivalent column, the eigenvalue 
problems characterising the sway buckling and pure torsional buckling problems 
will be set up and solved. Third, the coupling of the basic (sway and pure torsional) 
modes will be taken into account. Finally, a comprehensive accuracy analysis will 
demonstrate the reliability of the method. 

5.1 SWAY BUCKLING OF A SYSTEM OF FRAMEWORKS, (COUPLED) 
SHEAR WALLS AND CORES 

Consider a system of frameworks and coupled shear walls (i = 1...f ) and shear 
walls and cores (k = 1...m), shown in Figure 5.1. The whole bracing system can be 
characterised by the shear stiffness of the frameworks and coupled shear walls, the 
global bending stiffness of the frameworks and coupled shear walls and the local 
bending stiffness of the individual columns/wall sections, shear walls and cores. 
They are the key characteristics of the equivalent cantilever that will replace the 
whole system, enabling a relatively simple analysis.  
 The shear stiffness of the equivalent column shall be determined first. The 
“original” shear stiffness consists of two parts. The global shear stiffness of the ith 
framework corresponds to the global (full-height) shear resistance of the 
framework and it is associated with the beams of the framework, assuming that the 
beams are continuously distributed over the height of the framework, resulting in 
full-height shear deformation (Figure 5.2/a). It is defined as  
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where  

      Eb     is the modulus of elasticity of the beams of the framework 
      Ib,j     is the second moments of area of the jth beam of the ith framework 
      h      is the storey height 
      lj       is the jth bay of the ith framework 
      n      is the number of columns of the ith framework 

a) b) 

EI 
Ke 

EwIw EcIc; EcIg; K EcIc; EcIg; K* EcIc; EcIg; K 

q 

 y 

 z 

 
Figure 5.1 A system of frameworks and (coupled) shear walls for the lateral stability analysis. 

 However, the beams are not distributed continuously over the height of the 
framework and only contribute to the shear resistance at floor levels. Between two 
floor levels, it is the responsibility of the storey-height columns to resist sway 
locally. It follows that the local shear stiffness is associated with the storey-height 
shear resistance of the structure (Figure 5.2/b) and —assuming fixed supports—is 
defined as  
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where 

      Ec    is the modulus of elasticity of the columns of the framework  
      Ic,j     is the second moments of area of the jth column of the ith framework 

 Note that π2EI/h2 is the critical load of a column (with stiffness EI) of height 
h, with two built-in ends when the lateral movement of the upper end is not 
restricted. The fact that the local part of the shear stiffness is linked to the storey-
height buckling makes it possible to handle frameworks with non-uniform storeys 
and also frameworks on pinned supports—see Sections 2.4.2 and 2.4.3. 
 Using the above two components, the shear stiffness of the ith framework is 
obtained using the Föppl-Papkovich theorem in the form of  
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where factor ri is introduced (for later use) as a reduction factor: 
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Figure 5.2 Shear deformation. a) global (full-height) component, b) local (storey-height) component, 

c) actual shear deformation. 
 
 The total shear stiffness of  f   bracing frameworks is 

      ∑
=

=
f

i

iKK
1

  (5.5) 

 The deformation that is associated with this “original” shear stiffness is 
shown in Figures 2.1/a and 5.2/c. Equation (5.5) also defines the “original” shear 
critical load of a system of f frameworks. It is called “original”, as during buckling 
the system also develops bending type deformations. In fact, the system develops 
two types of bending deformation, of which the global bending deformation 
(Figure 2.1/b) is worth paying attention to now, as it interacts with the above 
“original” shear deformation and tends to erode the original shear resistance of the 
system. [If coupled shear walls are also included in the system, then Equation 
(2.71) should be used for the calculation of the global shear stiffness, instead of 
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Equation (5.1).] 
 Global bending deflection is resisted by the global second moment of area of 
the cross-sections of the columns. Its value for the ith framework is given by 

      ∑
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1

2
,,   (5.6) 

just like in previous chapters. In Equation (5.6) 

      Ac,j    is the cross-sectional area of the jth column of the framework 
      tj       is the distance of the jth column from the centroid of the cross-sections 

 With the global second moment of area, the global bending critical load of 
the ith framework is 
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,
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where H is the height of the framework and rs is the same load distribution factor 
that was used earlier to allow for the fact that the load of the structure is not 
uniformly distributed over the height but consists of concentrated forces at floor 
levels (Figure 5.4). Values for rs are given in Figure 2.14 for structures up to 
twenty storeys high; alternatively, if the structure is higher or more precise values 
are needed, Table 5.1 can be used.  

Table 5.1 Load distribution factor rs as a function of n (the number of storeys). 

n 1 2 3 4 5 6 7 8 9 10 11 

rs 0.315 0.528 0.654 0.716 0.759 0.791 0.815 0.834 0.850 0.863 0.874 

n 12 13 14 15 16 18 20 25 30 50 >50 

rs 0.883 0.891 0.898 0.904 0.910 0.919 0.926 0.940 0.950 0.969 n/(n+1.588) 
 
 During buckling there is an interaction between the shear mode and the 
global bending mode. This interaction is detrimental as the resulting critical load is 
smaller than either the shear or the global bending critical load. This phenomenon 
can be taken into account using the Föppl-Papkovich theorem 

      
igiie NKK ,,

111
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and the role of global bending can be interpreted as an eroding effect which leads 
to a reduced shear stiffness. In doing so, this shear stiffness is expressed as  
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where Ke,i is defined as the effective shear stiffness of the ith framework and 
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is the effectiveness factor related to the shear stiffness of the ith framework. 
 It follows that the effective shear stiffness of the whole system (and of the 
equivalent column) is  
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f

iie sKK
1

  (5.10) 

and the effectiveness factor for the whole system is 

      
K

K
s e=   (5.11) 

where K is the “original” shear stiffness [Equation (5.5)]. 
 The other characteristic stiffness of the system (and of the equivalent 
column) is the local bending stiffness. As all the columns of the frameworks, wall 
sections of the coupled shear walls, the shear walls and the cores have bending 
stiffness and all these structural items are made to work together by the floor slabs 
(and the beams of the frameworks), the total bending stiffness of the system is 
obtained by adding up the local bending stiffness of the vertical structural units: 
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where 

      Ew     is the modulus of elasticity of the shear walls/cores 
      Iw,i    is the second moment of area of the ith shear wall/core 

 When the system has mixed bracing units—both frameworks and shear 
walls/cores—the contribution of the columns of the frameworks [first term in 
Equation (5.12)] is normally very small compared to that of the shear walls/cores 
and can safely be ignored. 
 In Equation (5.12), the bending stiffness of the columns of the frameworks 
are adjusted by combination factor ri. Theoretical and numerical investigations 
(Hegedűs and Kollár, 1999; Zalka and Armer, 1992) demonstrate that this 
adjustment is necessary to prevent the over-representation of the second moments 
of area of the columns in the equivalent column where they are also represented in 
the shear stiffness.  
 With the above bending stiffness—that is identical to the one used for the 
frequency analysis—the local bending critical load of the system of frameworks 
and shear walls/cores can now be presented as  

https://engineersreferencebookspdf.com



104   Multi-storey Buildings 

 

      ∑∑ +=+=
m

iw

f

iifwfl NrNNNN
1

,
1

,   

                             
2

1
,

1
,2

837.7837.7

H

EIr
IErIE

H

r s
m

iww

f

iicc
s =














+= ∑∑   (5.13) 

 With Nl and Ke (the shear critical load), an approximation of the critical load 
of the system can already be given. According to the Southwell theorem, the two 
part critical loads simply have to be added up: 

      elcr KNN +=   (5.14) 

 The beauty of this formula is that it is extremely simple and also it is 
conservative. However, it does not take into account the interaction between the 
(local) bending and shear modes.  
 This interaction can now be taken into account as the equivalent column of 
the bracing system (Figure 5.1/b) is now established with bending stiffness EI and 
effective shear stiffness Ke. The governing differential equation of the equivalent 
column is obtained by examining the equilibrium of an elementary section of the 
column. This leads to the eigenvalue problem  

      ( )[ ] 0)( =
′′−+′′′′ yKzNyEIr es   (5.15) 

where N(z) = qz is the vertical load at z. The origin of the coordinate system is 
placed at and fixed to the top of the equivalent column, so the boundary conditions 
are as follows: 

      0)0( =y    

      0)( =′ Hy    

      0)0( =′′y    

and 

      0)( =′′′ Hy   

 This kind of eigenvalue problem can be solved relatively easily using the 
generalized power series method (Zalka and Armer, 1992). After introducing the 
critical load parameter 
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N
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and the part critical load ratio 

      
l

e

N

K
=β   (5.17) 

some rearrangement and the application of the power series method, the solution 
for the sway buckling of the equivalent column is obtained as 

      elcr KNN +−= )( βα    

 Values of critical load parameter α are given in Table 5.2 as a function of part 
critical load ratio β.  
 

Table 5.2 Critical load parameters α and αφ as a function of part critical load ratios β and βφ. 

β or βφ α or αφ β or βφ α or αφ β or βφ α or αφ β or βφ α or αφ 

0.0000 1.0000 0.05 1.1487 2 5.624 80 106.44 

0.0005 1.0015 0.06 1.1782 3 7.427 90 118.38 

0.001 1.0030 0.07 1.2075 4 9.100 100 130.25 

0.002 1.0060 0.08 1.2367 5 10.697 200 246.24 

0.003 1.0090 0.09 1.2659 6 12.241 300 359.51 

0.004 1.0120 0.10 1.2949 7 13.749 400 471.29 

0.005 1.0150 0.20 1.5798 8 15.227 500 582.06 

0.006 1.0180 0.30 1.8556 9 16.682 1000 1127.5 

0.007 1.0210 0.40 2.1226 10 18.118 2000 2199.1 

0.008 1.0240 0.50 2.3817 20 31.820 5000 5360.5 

0.009 1.0270 0.60 2.6333 30 44.862 10000 10567 

0.010 1.0300 0.70 2.8780 40 57.545 100000 102579 

0.020 1.0598 0.80 3.1163 50 69.991 1000000 1011864 

0.030 1.0896 0.90 3.3488 60 82.265 2000000 2018802 

0.040 1.1192 1.00 3.5758 70 94.405 >2000000 β  or  βφ 

 
 Before this solution is used for the sway buckling analysis of the whole 
bracing system, however, a small modification has to be made. The first term in the 
above equation stands for the bending contribution of the individual columns/wall 
sections, shear walls and cores in the system and it also represents the increase of 
the critical load of the system, due to the interaction between the bracing units in 
bending and the bracing units in shear. However, because of the fact that the 
effectiveness of the shear stiffness is normally smaller than 100% [c.f. Equation 
(5.11) where s ≤ 1 holds], these two contributions have to be separated and the 
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effectiveness factor should be applied to the part which is due to the interaction. 
The formula for the sway critical load then emerges as 

      lelcr sNKNN )1( −−++= βα   (5.18) 

 In the right-hand side of the above equation, the first two terms stand for the 
bending and shear critical loads of the system—compare Equation (5.18) and the 
approximate solution represented by Equation (5.14)—while the third term 
represents the effect of the interaction between the bending and shear 
deformations. As is the case with systems subjected to horizontal load (MacLeod, 
1971), the interaction is beneficial. Bearing in mind that (α – β – 1) ≥ 1 always 
holds, the evaluation of the third term demonstrates that the effect of the 
interaction increases the critical load of the system. The evaluation of the data in 
Table 5.2 shows that the maximum increase is 87%, at β = 2.1.  
 The method can also be used when the building is subjected to a concentrated 
force on top of the building—e.g., a swimming pool on the top floor. In such a case 
Nl and Ng in the relevant formulae are to be replaced by the corresponding Euler 
critical loads. It is interesting to note that the interaction in this load case does not 
increase the value of the critical load; the value of the term in brackets in Equation 
(5.18) becomes zero and Equation (5.14)—with the Euler critical loads—becomes 
the exact solution. See Section 5.5 for details. 
 A building may develop sway buckling in the two principal directions and 
both critical loads have to be calculated. These critical loads are obtained using 
Equation (5.18) where Nl, Ke, β and s are calculated by taking into account the 
bracing elements in the relevant principal directions, say, in x and y. 

5.2 SWAY BUCKLING: SPECIAL BRACING SYSTEMS 

The following—idealised—special cases of bracing systems are worth considering 
(where the term “framework” refers to frameworks and coupled shear walls and 
the term “wall” covers both shear walls and cores).  

5.2.1 Bracing systems consisting of shear walls only 

In this special case, there is no shear stiffness in the sense it is used in this chapter. 
This translates to K = 0, β = 0 and α = 1. As Nf = 0 in Equation (5.13), Equation 
(5.18) simplifies to 
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which is the standard solution for the sway buckling of a bracing system in pure 
bending. 
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5.2.2 Bracing systems consisting of frameworks only 

Equations (5.13) and (5.18) hold with EwIw = 0; everything else is unchanged.  
 If, furthermore, the beam/column stiffness ratio is very high, then the formula 
for the critical load further simplifies. In this special case, Kb >> Kc and Ng ≈ ∞ 
hold. Consequently, ri ≈ 0, K ≈ Kc , si ≈ 1, Ke ≈ Kc and s ≈ 1. This leads to 
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showing that the building loses stability through storey-high sway (shear failure 
from the point of view of the whole building), which is resisted by the stiffness of 
the columns. Equation (5.20) can also be used for checking stability when there is 
a loss of stiffness at a particular storey, making that storey vulnerable to local shear 
buckling (Zalka, 2000).  

5.2.3 Bracing systems consisting of shear walls and frameworks with very high 
beam/column stiffness ratio 

Three sub-cases are worth considering.  
 First, assume that the axial deformations of the columns are negligible. The 
practical case that belongs here is the case of low-rise buildings. In this special 
case, Kb >> Kc and Ng ≈ ∞ hold. Consequently, ri ≈ 0, K ≈ Kc , si ≈ 1, Ke ≈ Kc and 
s ≈ 1. β ≈ Kc/Nw > 0 and α > 1. This leads to 
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showing that the critical load is based on the bending critical load of the shear 
walls and cores. This value is increased (through α > 1) due to the interaction 
between the bracing elements in shear (frameworks with stiff beams) and the 
bracing elements in bending (walls and cores). The shear stiffness is characterised 
by the weakest link (i.e. by the stiffness of the columns).  
 Second, assume that the axial deformations of the columns are not negligible. 
The practical case that belongs here is the case of medium-rise buildings. In this 
case, Kb >> Kc and Ng ≠ ∞ hold. Consequently, ri ≈ 0, K ≈ Kc, si < 1, 
Ke ≈ ∑Kc,isi < Kc and s < 1.  β ≈ sKc/Nw > 0 and α > 1. This results in 
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 As [s(α – β – 1) + 1 + β] > 1 always holds, due to the supporting effect of the 
shear stiffness of the frameworks, the overall critical load is again greater than that 
of the shear walls/cores. However, the magnitude of the increase in this case is 
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more difficult to estimate as, in addition to the effect of the columns as in the 
previous case, it also depends on the “eroding” effect of the axial deformations of 
the columns (through parameter s).  
 Third, assume that the axial deformations of the columns are very great. The 
practical case that belongs here is the case of medium/high-rise buildings with 
columns of relatively small cross-section. In this special case, Kb >> Kc and Ng ≈ 0 
hold. Consequently, ri ≈ 0, K ≈ Kc, si ≈ 0, Ke ≈ 0 and s ≈ 0. β ≈ 0 and α ≈ 1. This 
results in 
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 Due to the excessive axial deformation of the columns, all the shear capacity 
of the frameworks is eroded and the shear walls and cores act as individual bracing 
elements in bending—c.f. Section 5.2.1 and Equation (5.19).  

5.2.4 Bracing systems consisting of shear walls and frameworks with very high 
column/beam stiffness ratio 

Again, three characteristic cases can be distinguished.  
 First, assume that the axial deformations of the columns are negligible. 
Practical case: low/medium-rise buildings. 
 In this special case, Kb << Kc and Ng ≈ ∞ hold. Consequently, ri ≈ 1, K ≈ Kb , 
si ≈ 1, Ke ≈ Kb and s ≈ 1. β ≈ Kb/Nl > 0 and α > 1. This leads to  
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showing that the critical load is based on the bending critical load of the columns, 
shear walls and cores; this value is presumably slightly increased (through α > 1) 
due to the interaction between the bracing elements in shear (frameworks) and the 
bracing elements in bending (walls and cores). The shear stiffness is characterised 
by the weakest link, i.e., by the stiffness of the beams.  
 Second, assume that axial deformations of the columns are not negligible. 
Practical case: low/medium-rise buildings.  
 In this case, Kb << Kc and Ng ≠ ∞ hold. Consequently, ri ≈ 1, K ≈ Kb, si < 1, 
Ke ≈ ∑Kb,isi < Kb and s < 1. β ≈ sKb/Nl > 0 and α > 1. This results in  
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 As [s(α – β – 1) + 1 + β] > 1 always holds, due to the supporting effect of the 
shear stiffness of the frameworks, the overall critical load is greater than that of the 
shear walls/cores. However, the magnitude of the increase in this case is more 
difficult to estimate as, in addition to the effect of the columns as in the previous 
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case, it also depends on the “eroding” effect of the axial deformations of the 
columns (through parameter s). The stiffness of the columns (EcIc) is in most 
practical cases negligible compared to the stiffness of the shear walls and cores 
(EwIw). 
 Third, assume that the axial deformations of the columns are very great. 
Practical case: high-rise buildings with frameworks of great global slenderness. 
 In this special case, Kb << Kc and Ng ≈ 0 hold. Consequently, ri ≈ 1, K ≈ Kb, 
si ≈ 0, Ke ≈ 0 and s ≈ 0. β ≈ 0 and α ≈ 1. This results in 
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 Due to the excessive axial deformation of the columns, all the shear capacity 
of the frameworks is eroded and the shear walls and cores work as individual 
bracing elements in bending. The stiffness of the columns (EcIc ) is in most 
practical cases negligible compared to the stiffness of the shear walls and cores 
(EwIw). 

5.3 PURE TORSIONAL BUCKLING 

Although the torsional buckling problem is more complex than that of sway 
buckling, the solution is obtained in a relatively simple way, due to an analogy 
between the three-dimensional torsional problem and the two-dimensional sway 
buckling problem (discussed in the previous section). This analogy is well known 
in the stress analysis of thin-walled structures in bending and torsion (Vlasov, 
1961; Kollbrunner and Basler, 1969). (The same analogy was used in Chapter 4 for 
the analysis of pure torsional vibration.) According to the analogy, translations, 
bending moments and shear forces correspond to rotations, warping moments and 
torsional moments, respectively. It will be demonstrated in the following that the 
analogy can be extended to the sway buckling of an elastically supported cantilever 
(discussed in the previous section) and the pure torsional buckling of a cantilever 
of thin-walled cross-section (to be investigated in this section).  
 The model which is used for the pure torsional buckling analysis of the 
building is an equivalent cantilever of thin-walled, open cross-section which 
replaces the bracing system of the building for the torsional analysis (Figure 5.3). 
This equivalent column is situated in the shear centre and has effective Saint-
Venant torsional stiffness (GJ)e and warping torsional stiffness EIω. The governing 
differential equation of the cantilever is obtained by examining the equilibrium of 
its elementary section as 
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where N(z) is the vertical load at z and ip is the radius of gyration. 
 If the origin of the coordinate system is placed and fixed to the cross-section 
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at the top of the equivalent column (Figure 5.4/d), the boundary conditions are: 

      0)0( =ϕ    

      0)( =′ Hϕ    

      0)0( =′′ϕ    

      0)( =′′′ Hϕ    

 This eigenvalue problem is clearly analogous with the one defined by the 
governing differential equation (5.15) and its boundary conditions. Bending 
stiffness EI and the elastic support defined by the effective shear stiffness Ke in 
Equation (5.15) correspond to warping stiffness EIω and effective Saint-Venant 
torsional stiffness (GJ)e, divided by 2

pi  in Equation (5.27), respectively. 
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Figure 5.3 Typical layout with the equivalent column of open, thin-walled cross-section in the shear 

centre. 

 
 As the derivation of an equation identical in structure to Equation (5.27) 
demonstrates (Zalka and Armer, 1992), the radius of gyration is related to the 
vertical load of the building. For regular multi-storey buildings of rectangular plan-
shape that are subjected to a uniformly distributed load on the floors, the radius of 
gyration is obtained from 
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where L and B are the plan length and breadth of the building and t is the distance 
between the geometrical centre of the plan of the building and the shear centre of 
the bracing system (Figure 5.3). [For arbitrary plan-shapes and/or other types of 
load distribution, formulae for the radius of gyration are available elsewhere 
(Kollár, 1999; Zalka, 2000).] It is important to note that the value of ip depends on 
the geometrical characteristics of the plan of the building, rather than the stiffness 
characteristics of the bracing system. 
 Once the corresponding stiffnesses are established, the solution to 
Equation (5.15) can be used and converted to represent the solution of Equation 
(5.27). The effective Saint-Venant torsional stiffness of the system may come from 
two sources: the Saint-Venant torsional stiffness of the shear walls and cores and 
from the effective shear stiffness of the frameworks as  
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where 

      Jk           is the Saint-Venant constant of the kth wall/core 
      G           is the modulus of elasticity in shear of the walls/cores 
      (Ke,i)x, (Ke,i)y  are the effective shear stiffnesses of the ith framework/coupled  
                 shear walls in directions x and y, respectively 
      xi, yi        are the perpendicular distances of the ith framework/coupled  
                 shear walls from the shear centre in directions x and y,  
                 respectively 

 If the bracing system consists of frameworks, (coupled) shear walls and cores 
of open cross-section, the first term in Equation (5.29) is normally negligible 
compared to the contribution of the frameworks. 
 The warping stiffness of the system may originate from three sources: the 
own warping stiffness of the cores, the bending stiffness of the walls and the 
bending stiffness of the columns of the frameworks/wall sections of the coupled 
shear walls:  

      ( )∑ ++=
m

kykwkxkwkw xIyIIEEI
1

2
,

2
,, )()(ωω   

                                             + ( )∑ +

f

iyiicixiicc xrIyrIE
1

2
,

2
, )()(  (5.30) 

where 

      Iω,k            is the warping constant of the kth wall/core 
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      Ew(Iw,k)x, Ew(Iw,k)y  are the bending stiffnesses of the kth wall/core in directions 
           x and y, respectively 
      Ec(Ic,iri)x, Ec(Ic,iri)y are the bending stiffnesses of the columns/wall sections of  
                    the ith framework in directions x and y, respectively 
      xk, yk          are the perpendicular distances of the kth wall/core from the  
                    shear centre in directions x and y, respectively 
      xi, yi           are the perpendicular distances of the ith framework/coupled  
                    shear walls from the shear centre in directions x and y,  
                    respectively 

 The warping stiffness of a well-balanced bracing system is normally 
dominated by the contribution of the shear walls and cores (if their perpendicular 
distance from the shear centre is great enough). The contribution of the cores 
through their own warping stiffness [first term in Equation (5.30)] tends to be 
much smaller and the effect of the columns of the frames (last two terms) is 
generally negligible. 
 To facilitate the easy calculation of the warping constant Iω , closed-form 
formulae for cross-sections widely used for bracing cores are given in Tables 2.7, 
2.8 and 2.9. More formulae are available in (Zalka, 2000). For bracing elements of 
special (irregular) cross-sections where no closed-form solution is available, the 
excellent computer program PROSEC (1994) can be used, whose accuracy has 
been established and proved to be within the range required for structural 
engineering calculations.  
 With the above stiffnesses, and making use of the analogy, the critical load of 
pure torsional buckling is obtained in the same manner as with Equation (5.18): 

      ωϕϕϕωϕ βα NsNNN tcr )1(, −−++=  (5.31) 

where the warping torsional critical load of the system is 
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and the Saint-Venant torsional critical load is 
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 It is interesting to note that the value of the Saint-Venant torsional critical 
load does not depend on the height of the building. 
 The effectiveness of the Saint-Venant torsional stiffness is expressed by the 
factor 
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where the “original” Saint-Venant torsional stiffness is 
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 Values for the critical load parameter αφ are given in Table 5.2 as a function 
of parameter βφ: 

      
ω

ϕβ
N

N t=   (5.36) 

 In making use of the analogy, special cases can be investigated in the same 
manner as in Section 5.2. 
 In the special case when the bracing system only consists of a single bracing 
unit with no warping stiffness—e.g. a closed or partially closed U-core—the above 
procedure cannot be used as the denominator in Equation (5.36) vanishes. This 
case is covered in Section 2.7.3 which deals with the stability of a single core. 
Section 12.2 also deals with this case in great detail. 

5.4 COMBINED SWAY-TORSIONAL BUCKLING 

When the shear centre of the bracing system and the centre of the vertical load 
coincide, the three basic critical loads Ncr,x, Ncr,y and Ncr,φ are independent of each 
other and the smallest one is the overall critical load of the building.  
 When the system is not doubly symmetric and the shear centre does not 
coincide with the geometrical centre of the building, two things have to be 
considered. First, for the calculation of the critical load of pure torsional buckling, 
the location of the shear centre has to be determined. (The value of the sway 
buckling critical loads is not affected.) Second, as sway buckling in the two 
principal directions combines with pure torsional buckling (Figure 5.4/d), the 
question of interaction among the three basic modes has to be addressed. 
 For bracing systems developing bending deformation only, the location of the 
shear centre is calculated using the bending stiffness of the bracing units. However, 
with bracing systems having frameworks and coupled shear walls as well, the shear 
deformation of the bracing units may be of considerable magnitude (in addition to 
their bending deformation). The behaviour of such systems is complex (and the 
location of the shear centre may even vary over the height). No exact solution is 
available for this case but, as a good approximation, the formulae given below can 
be used to determine the location of the shear centre.  
 As the critical load of a bracing unit reflects both its bending and shear 
stiffnesses, the location of the shear centre is calculated using the critical loads of 
the bracing units: 
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where ix  and iy  are the perpendicular distances of the bracing units from axes y  
and x  and f and m are the number of frameworks/coupled shear walls and shear 
walls/cores, respectively (Figure 5.3). Any suitable method can be used for the 
calculation of the critical loads in Equations (5.37), including Equation (5.18) 
given in Section 5.1—c.f. special cases discussed in Sections 5.2.  
 When the bracing system consists of shear walls (and cores) only, 
Equations (5.37) for the location of the shear centre simplify and the shear centre 
coordinates can be determined using  
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 (5.38) 

 Equations (5.38) can also be used for the frequency and deflection 
calculations for systems that only have bending stiffness. 
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Figure 5.4 Sway-torsional buckling. a) layout, b) equivalent column with its stiffness characteristics 

and load at floor levels, c) equivalent column with its uniformly distributed load, d) model for the 
analysis. 

 
 When the location of the shear centre is known, the Saint-Venant and 
warping torsional stiffnesses can be calculated in the coordinate system whose 
origin is in the shear centre using Equations (5.29) and (5.30) and the critical load 
of pure torsional buckling is obtained from Equation (5.31).  
 Assuming unsymmetric bracing system arrangement, interaction occurs 
among the two lateral and pure torsional modes. The situation is very similar to 
that of the frequency analysis. Accordingly, there are two possibilities to take into 
account the effect of interaction: exactly or approximately. The exact method 
automatically covers all the three coupling possibilities (triple-, double and no-
coupling). This method is given first. 
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 The critical load is obtained by solving the cubic equation 

      ( ) ( ) 001
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=−++ bNbNbN   (5.39) 

whose smallest root yields the combined global critical load of the building. In the 
case of buildings subjected to uniformly distributed floor load, Equation (5.39) is 
exact, as far as the effect of the coupling of the three modes is concerned. 
 The coefficients in the above cubic equation are 

      
22

,,,
0

1 yx

crycrxcr NNN
b

ττ

ϕ

−−
= ,         

22
,,,,,,

1
1 yx

ycrcrxcrcrycrxcr NNNNNN
b

ττ

ϕϕ

−−

++
= ,   

 
22

,,,
2

,
2

,
2

1 yx

crycrxcryycrxxcr NNNNN
b

ττ

ττ ϕ

−−

−−−+
=  (5.40) 

where τx and τy are eccentricity parameters: 
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 Radius of gyration ip is given by Equation (5.28) and xc and yc are the 
coordinates of the geometrical centre: 
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 If a quick solution is needed or a cubic equation solver is not available or if 
one of the basic critical loads is much smaller than the others, the Föppl-Papkovich 
theorem (Tarnai, 1999) offers a simple albeit approximate solution.  
 If the bracing system is unsymmetric and the centroid of the vertical load of 
the building does not lie on either principal axis of the bracing system, triple 
coupling occurs and an approximation of the resulting combined critical load is 
obtained using the reciprocal summation as 
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 If the arrangement of the bracing system is monosymmetric and the centroid 
of the vertical load of the building lies on one of the principal axes of the bracing 
system (say, axis x), then two things may happen. Sway buckling may develop in 
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direction x (defined by Ncr,x) or buckling in direction y (Ncr,y) couples with pure 
torsional buckling (Ncr,φ). The critical load of this coupled buckling is obtained 
from 
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 The global critical load of the building is the smaller one of Ncr,x and Nyφ, i.e.: 

      ϕyxcrcr NNN ,!Min ,=   (5.45) 

 If the arrangement of the bracing system is doubly symmetric and the 
centroid of the vertical load of the building coincides with the shear centre of the 
bracing system, then no coupling occurs and the global critical load of the building 
is the smallest one of Ncr,x, Ncr,y and Ncr,φ, i.e.: 

      ϕ,,, ,,!Min crycrxcrcr NNNN =   (5.46) 

 Simplicity and the fact that the above Föppl-Papkovich equations are always 
conservative may justify the use of the approximate solutions. However, their 
application may lead to rather uneconomic structural solutions as they cannot take 
into consideration the degree of eccentricity of the bracing system. The 
(conservative) error of Equation (5.43) can be as much as 67%.  
 When the global critical load of the system is calculated, the global critical 
load ratio can be used to assess the effectiveness of the bracing system. It also 
indicates whether or not a more sophisticated second order analysis needs to be 
carried out. The application of the global critical load ratio is discussed in the next 
chapter and it is only mentioned here that the greater the global critical load ratio, 
the greater the level of safety against buckling. 

5.5 CONCENTRATED TOP LOAD 

In certain cases, concentrated load on top of the building may need to be 
considered. A panorama restaurant, a swimming pool or a water tank may 
represent some extra load that is not covered by the uniformly distributed floor 
load, considered to be the same at each floor level over the height of the building. 
The critical load for the concentrated top case can be determined relatively easily 
using (and amending) the equations presented in the previous sections for the 
uniformly distributed load case.  
 The critical concentrated load for sway buckling, based on Equation (5.18), 
assumes the form 

      elcr KFF +=   (5.47) 

where Fl is the local bending critical load and Ke is the effective shear stiffness for 
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concentrated top load case. The effective shear stiffness is determined as 
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where Fg is the global bending critical load. Note that for the part critical loads Fl 
and Fg, the corresponding Euler critical loads should be used: 
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 To calculate the sway critical loads in directions x and y (Fcr,x and Fcr,y), the 
relevant bracing units (with their stiffnesses) should be used. 
 For pure torsional buckling, Equation (5.31) leads to 

      tcr FFF += ωϕ,   (5.51) 

where the warping torsional critical load of the system is 
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where the warping torsional stiffness is given by Equation (5.30). 
 The Saint-Venant torsional critical load is obtained from 
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 The effective Saint-Venant torsional stiffness (GJ)e in Equation (5.53) 
consists of two parts, as seen in Equation (5.29). The first term is identical to the 
first term in Equation (5.29). However, the second term (that depends on the 
contribution of the frameworks) is calculated using Ke according to Equation 
(5.48).  
 It is interesting to note that when the load is concentrated on top of the 
building, there is no interaction (that would increase the critical load) between the 
bending and shear modes.  
 Once the basic critical loads Fcr,x, Fcr,y and Fcr,φ are available, the coupling of 
the basic modes is taken into account exactly as with Ncr,x, Ncr,y and Ncr,φ in 
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Section 5.4 above, i.e. applying Equations (5.39), (5.40), (5.41) and (5.42) for the 
exact analysis or Equations (5.43), (5.44), (5.45) and (5.46) for the approximate 
analysis, using the Euler basic critical loads. 

5.6 ACCURACY 

A comprehensive accuracy analysis was carried out to check the accuracy of the 
method. As the key element of the method is the calculation of the critical load of 
sway buckling of a system of frameworks, (coupled) shear walls and cores, the 
analysis centred on checking the accuracy of Equation (5.18). The sway critical 
load of 72 bracing systems was calculated and compared to the Finite Element 
solution. The AXIS VM finite element package (AXIS, 2003) was used for the 
comparison, whose results were considered “exact”. The “error” was defined as the 
difference between the results obtained using Equation (5.18) and from the FE 
analysis, related to the “exact” solution. Positive error meant conservative 
estimates.  
 The test structures were identical to those used for the accuracy analysis of 
the method presented in Chapter 4 for the frequency analysis of buildings. Eight 
frameworks/coupled shear walls (F1 to F8 in Figure 2.7) and four shear walls (W0, 
W1, W2 and W3 in Figure 3.7) were used as bracing units. Using these bracing 
units, eight bracing systems were created (Figure 4.5) to cover a wide range of 
stiffness characteristics, representing buildings developing predominantly bending 
deformation, a mixture of bending and shear deformations and predominantly 
shear deformation. The height of the buildings varied between 4 and 80 storeys in 
eight steps, creating 72 test cases. The bays of the frameworks were 6 m and the 
storey height was 3 m. 

 
Table 5.3 Accuracy of approximate methods for the sway-critical load of buildings. 

Method Range of 
error (%) 

Average absolute 
error (%) 

Maximum 
error (%) 

Summation formulae  
(Kollár, 1999) 1 to 44 24 44 

Southwell’s formula  
(Zalka and Armer, 1992) -3 to 34 16 34 

Stafford Smith – Coull formula 
(Stafford Smith and Coull, 1991) -1 to -1596 231 1596 

MacLeod-Marshall formula 
(MacLeod and Marshall, 1983) -4 to -64 17 64 

Continuum solution 
[Equation (5.18)] -15 to 19 6 19 

 
 The summary of the results is given in the last row in Table 5.3. The 
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performance of the method over the height of the structures is shown in Figure 5.5. 
The results summarised in Table 5.3 and shown in Figure 5.5 demonstrate the 
general performance of Equation (5.18). In the 72 cases, the average difference 
between the results of the continuum solution and the finite element solution was 
around 6%. The maximum error of Equation (5.18) was 19%.  
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Figure 5.5 Accuracy of Equation (5.18) for the critical load of bracing systems of different height. 

 
 The results are not as good as those obtained in the case of the frequency 
analysis. They may even be considered disappointing. However, a comparison with 
other approximate methods mentioned in the introduction (given in the first four 
rows in Table 5.3) puts them in perspective. (It is well-known in structural 
engineering research that some complex stability problems are notoriously difficult 
to solve as the structural engineering modelling difficulties often combine with ill-
conditioned mathematical problems.) 
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The global critical load ratio 

 

 
Stability problems concerning multi-storey buildings can be investigated on two 
levels. An element-based “local” analysis can be carried out, step by step, aimed at 
certain key structural members. Codes of practice normally follow this avenue and 
have detailed instructions for the analysis. This approach makes it possible to carry 
out the analysis in a relatively simple way but has disadvantages. It leaves the 
designer with the task of identifying all the key members and it cannot address the 
full-height, three-dimensional global behaviour of the multi-storey building. The 
“local” approach may also lead to uneconomic solutions as the elements of the 
whole structure tend to work together and, with the local approach, the possibility 
to take into account the effects of interaction is normally limited to the 
neighbouring members only. 
 The other approach is the global approach. The concept of the global critical 
load ratio has been around for some time. Around but not in use. Or at least not in 
use to such an extent as it should have been. As the results of an illustrative 
example given in this chapter will demonstrate, the global critical load ratio is far 
more than a stability parameter: It is a generic characteristic with which the 
designer can monitor the overall performance of the whole bracing system. It also 
links the three important areas of analysis: the stress, stability and dynamic 
analyses. The way the structure responds to the loads—in two or three-dimensional 
manner—is automatically taken into account and made clear to the designer. 
 Around the middle of the last century Chwalla (1959) emphasized the 
importance of the global approach and recommended the introduction of a “global 
factor”. Halldorsson and Wang (1968) suggested that a “general safety factor” 
should be used for building structures, and its importance was comparable to that 
of the “overturning factor” used in the design of dams. Dowrick (1976) drew 
attention to the importance of the overall stability of structures. Dealing with plane 
structures Stevens (1983) linked theory and practice and underlined the importance 
of the critical load in the design of frameworks. The idea of a global safety factor 
also surfaced in connection with the structural design of large structures (Zalka and 
Armer, 1992). MacLeod and Zalka (1996) and MacLeod (2005) advocated the use 
of the critical load ratio emphasizing its ability to handle torsional behaviour in a 
relatively simple way. The importance of torsional behaviour cannot be 
overemphasized, especially considering the fact that up to the emergence of the 
personal computer, relatively little attention had been paid to the three-dimensional 
behaviour of complex structures in university textbooks and in national and 
international codes of practice.  
 However, the situation seems to be changing. More and more powerful 
computers, sophisticated software packages and advanced guidelines on modelling 
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complex structures (MacLeod, 1990 and 2005) make it easier to carry out true 
three-dimensional analyses. The global approach and methods developed with the 
global aspect in mind have also been emerging in structural designer handbooks 
and in codes of practice themselves (EN 1992, 2004; EN 1993, 2004; Martin and 
Purkiss, 2008). Applying the global approach, the structural engineer can rely on 
two types of technique: full-blown, albeit time consuming, analyses can be 
performed using advanced computer modelling, or quick, less accurate, but more 
descriptive investigations may be carried out that use specialized but simpler 
models (Howson, 2006) like those presented in this book. 
 Depending on which direction the situation is looked at from, the global 
critical load ratio can be defined in two ways. First, it can be defined as 

      
crN

N
  (6.1) 

where 

      LBQnN =   (6.2) 

is the total vertical load of the regular multi-storey building with  

 Ncr    global elastic critical load for buildings subjected to uniformly 
        distributed floor load 
 L, B    plan length and breadth of the building 
 Q     intensity of the uniformly distributed floor load 
 n      number of storeys 

 Practicing structural engineers may prefer the reciprocal definition when the 
global critical load ratio is the ratio of the global elastic critical load and the total 
vertical load: 

      
N

Ncr=λ   (6.3) 

as it carries a practical meaning that is easy to relate to the safety of the structure. 
 Somewhat confusingly, codes of practice use both definitions. In this book, 
from now on, the reciprocal definition [Equation (6.3)] will be used. 
 When there is significant extra load at top floor level (e.g., a swimming 
pool), its detrimental effect cannot be ignored. For such cases Equation (6.3) can 
be amended and the global critical load ratio can be obtained using  
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N
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where  
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 F      is the extra concentrated load at top floor level 
 Fcr    is the critical load for the concentrated top load case 

 The global critical load can be determined carrying out a full-blown second 
order analysis using a computer program or by approximate analytical solutions 
e.g., the ones presented in Chapter 5.  
 The global critical load ratio can be used in different ways. Codes of practice 
normally concentrate on its use as an indicator whether or not second order 
analysis is needed. If the condition 

      10≥λ   (6.5) 

is satisfied, then the suitability of the bracing system is proved and the vertical load 
bearing elements can be considered as braced (by the bracing system) and 
neglecting the second-order effects (due to sway and torsion) may result in a 
maximum 10% error.  
 If condition (6.5) is not satisfied, the stability of the building may still be 
acceptable but it must be demonstrated using a second-order analysis. However, 
there is a warning here: it is widely accepted in practical structural engineering that 
the absolute minimum for a critical load ratio is four. 
 Another simple use of the global critical load ratio may be as a global safety 
factor: the greater the value of the global critical load ratio, the greater the safety of 
the multi-storey building against buckling.  
 The global critical load ratio can also be used as a performance indicator. As 
its value is calculated using the basic (sway and pure torsional) critical loads and 
taking into account the coupling of the basic modes, any weakness either in the 
bending/shear and torsional stiffnesses or in the geometrical arrangement of the 
bracing units (on which the detrimental coupling depends) is picked up 
automatically. As it happens, any weakness detected during the course of the 
stability analysis leads to unfavourable behaviour when the fundamental frequency 
and the maximum deflection of the building are calculated. This is demonstrated 
below when the structural performance of a building is monitored using the global 
critical load ratio.  
 The case study concentrates on a 10-storey building whose detailed global 
analysis is presented in Section 12.1 and only the main results are summarised 
here. The plan length of the building is 15 metres and the breadth is 9 metres, 
resulting in a plan area of 135 m2 (Figure 6.1).  
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Figure 6.1 Ten-storey building braced by four bracing units. a) Case 1, b) Case 2, c) Case 3. 
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 Four bracing units are available for making the building stable enough: two 
steel frameworks with cross-bracing and two reinforced concrete shear walls. Their 
location and orientation inside the layout are arbitrary. Three different 
arrangements are considered. Three analyses are carried out for each arrangement: 
for the deflection analysis it is assumed that the building is subjected to a 
uniformly distributed wind load of intensity q = 17 kN/m, making 50º with axis x. 
The uniformly distributed floor load for the global stability analysis is 
Q = 10 kN/m2. The weight per unit volume for the determination of the 
fundamental frequency of the building is assumed to be γ = 3 kN/m3. In the three 
cases, the following characteristics are determined: 

 φmax       maximum rotation of the building (in degrees) at top level [º] 
 dmax       maximum deflection of the building (in metres) at top level [m] 
 dmax/dASCE  ratio of the maximum and recommended deflection 
 f         fundamental frequency of the building [Hz] 
 Ncr       global critical load of the building [MN] 
 λ         global critical load ratio of the building 

 The main results are collected in Table 6.1. 
 Case 1 is an arrangement that is obviously unacceptable (Figure 6.1/a) and 
the fact is spectacularly picked up by the global critical load ratio which (being 
smaller than 1.0) shows the unstable nature of the system. In line with the very 
small critical load ratio, the calculated maximum deflection is huge, the 
fundamental frequency and the critical loads are very small. The fatal weakness of 
the system is the lack of sufficient bracing in direction x. In addition, the torsional 
resistance of the structure is far from optimum. 
 

Table 6.1 The global critical load ratio as a performance indicator. 

 Case 1 Case 2 Case 3 

φmax [ º ] n/a 1.0 0 

dmax [m] 5.65  0.313 0.060 

ASCE

max

d
d

 94  5.2 1.0 

f [Hz] 0.039  0.213 0.468 

Ncr [MN] 1.5  41.6 211.4 

λ 0.1  3.1 15.7 

 
 By rotating the two frameworks by 90 degrees, the bracing system of Case 2 
addresses the main problem with the previous arrangement and provides the 
building with sufficient bracing in direction x (Figure 6.1/b). The results clearly 

https://engineersreferencebookspdf.com



124   Multi-storey Buildings 

 

show the improvement. The global critical load ratio defines a theoretically stable 
structure (albeit the margin is not considered sufficient enough in structural 
engineering practice); the maximum deflection is much smaller and the 
fundamental frequency and the critical load are much greater. However, as the 
details in Section 12.1 show, the torsional resistance is relatively small. This is due 
to the fact that the perpendicular distance of the two shear walls from the shear 
centre is zero. 
 By exchanging bracing units 1 and 3 for Case C (without changing their 
orientation), the shear centre of the system moves to the geometrical centre of the 
building without changing the value of the lateral stiffness in directions x and y 
(Figure 6.1/c). The hugely beneficial consequence of the alteration is that all four 
bracing units can now contribute to the torsional resistance of the system as all four 
units now “have” perpendicular distance from the shear centre. In addition, as the 
bracing units are now placed along the sides of the layout and the farthest from the 
shear centre, their torsion arms are the longest and their efficiency is the greatest 
against torsion. The results reflect the beneficial change in the arrangement. The 
system is not only stable but the global critical load ratio now exceeds the 
recommended value (λ = 15.7 > 10). The maximum deflection of the building is 
much smaller than with the previous arrangement and now it does not exceed the 
recommended value (H/500). The value of the fundamental frequency has also 
increased.  
 The results in Table 6.1 (together with the details of the calculations given in 
Section 12.1) and the results of dozens of other examples show that the global 
critical load ratio is a reliable and sensitive indicator regarding the overall 
performance of the structural system. It may be advantageous to determine the 
value of the global critical load ratio for different arrangements and the 
arrangement that belongs to the greatest value is normally the best arrangement 
also when the maximum deflection and the fundamental frequency of the building 
are calculated. However, the global critical load ratio should not be too big—
compared to 10—as it could easily lead to uneconomic structural arrangements. 
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Part II 

Practical application: 

worked examples 
 
 
 
 
 
 
 
The equations in Part I were derived and presented in the order that the theoretical 
background demanded. However, for practical structural engineering applications, 
when the equations have to be applied to real structures, their order can be, and 
often is, different from the theoretical order. The worked examples here in Part II 
reflect this fact and show the best order the equations should be used to produce 
the maximum rotation and deflection, the fundamental frequency and the global 
critical load of individual bracing units and whole structural systems. 
 The demonstrative examples are worked out to the smallest details for the 
sake of completeness. The same calculations in most cases can be considerably 
simplified and the amount of work can be spectacularly reduced as in structural 
engineering practice some of the stiffness characteristics are normally neglected as 
their value is small compared to the dominant ones. These circumstances are 
mentioned in the theoretical part at the relevant formulae. In addition, once 
determined, some of the characteristics can be reused repeatedly. 
 Although the methods and formulae are simple—some easily fall into the 
back-of-the-envelope category—some may still look too cumbersome for hand 
calculations. However, there is no need for hand calculations as all the procedures 
can easily be worked into handy worksheets. The worksheet version of each 
worked example has been prepared and the files are available for download. 
 

https://engineersreferencebookspdf.com



 

 

7 
 

Individual bracing units 

 

 
Five worked examples are given here for the deflection, frequency and stability 
analyses of individual bracing units. The calculations are based on the material 
presented in Chapter 2, and the numbers of the equations used will be given on the 
right-hand side in curly brackets.  

7.1 THE MAXIMUM DEFLECTION OF A THIRTY-FOUR STOREY 
FRAMEWORK 

Determine the maximum deflection of framework F6, used for the accuracy 
analysis in Section 2.1.4 (Figure 2.7/f), using the equations given in Sections 2.1.1 
and 2.1.2. The thirty-four storey structure is subjected to a uniformly distributed 
wind load of intensity w = 5.0 kN/m (Figure 7.1). The modulus of elasticity is 
E = 25⋅106 kN/m2. The cross-sections of the columns and beams are 0.4 m/0.4 m 
and 0.4 m/0.7 m, respectively, where the first number stands for the width 
(perpendicular to the plane of the structure) and the second number is the depth 
(in-plane size of the member). The three bays are identical at 6.0 m and the storey 
height is 3.0 m. 
 The part of the shear stiffness which is associated with the beams is 
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 The part of the shear stiffness which is associated with the columns is 
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 The above two parts define reduction factor r as 
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 The shear stiffness of the framework can now be determined: 
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 For the local bending stiffness (EI=EIc r), the sum of the second moments of 
area of the columns should be produced (and multiplied by reduction factor r). As 
the bays of the framework are identical, the second moment of area of one column 
is simply multiplied by n and r (the reduction factor):  
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Figure 7.1 Three-bay, thirty-four storey framework F6 for the deflection analysis. 
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 The global second moment of area is 

      8.28)9339(4.04.0 2222

1

2
, =+++⋅==∑

n

iicg tAI m4 {2.32} 

 The total second moment of area for the bending stiffness is 

      80.28≅+=+= gcgf IrIIII m4  {2.23} 

 Parameters s, κ  and κH are also needed for the calculation of the maximum 
deflection: 
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 With the above auxiliary quantities, the maximum top deflection of the 
framework can now be calculated: 
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      229.0002.0137.0094.0max =−+=y m 

 The “exact” (FEM) solution (Axis, 2003) is 

      238.0)FEM(max =y m 

 The continuum solution is conservative and the difference between the 
continuum and FEM solutions is 3.8%. 
 As indicated in Section 2.1.3, the effect of interaction tends to be negligible 
for frameworks over 20 storeys high and indeed, the third term responsible for the 
interaction is very small compared to the first and second terms (responsible for the 
bending and shear deflection) and can safely be ignored, leading to a very simple 
back-of-the-envelope calculation involving the first two terms only. 
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7.2 THE FUNDAMENTAL FREQUENCY OF A FORTY-STOREY 
FRAMEWORK 

Determine the fundamental frequency of framework F5 used for the accuracy 
analysis in Section 2.2.3, shown in Figure 7.2, using the equations given in 
Sections 2.1.2, 2.2.1 and 4.1. The forty-storey structure is subjected to a mass of 
m = 0.8495 kg/m. The modulus of elasticity is E = 25⋅106 kN/m2. The cross-
sections of the columns and beams are 0.4 m/0.7 m and 0.4 m/0.4 m, respectively, 
where the first number stands for the width (perpendicular to the plane of the 
structure) and the second number is the depth (in-plane size of the member). The 
two bays are identical at 6.0 m and the storey height is 3.0 m. 
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Figure 7.2 Two-bay, forty-storey framework F5 for the frequency analysis. 

 
 The part of the shear stiffness which is associated with the beams is 
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 The part of the shear stiffness which is associated with the columns is 
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 The above two parts define reduction factor r as 
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 The “original” shear stiffness of the framework can now be determined: 
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 With the above shear stiffness, the square of the fundamental frequency of 
the framework due to shear deformation can be calculated as 
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where mass distribution factor  rf  was obtained using Table 4.1: 
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 The global second moment of area is 
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 The square of the fundamental frequency that belongs to this global second 
moment of area is 
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 The effectiveness factor shows the extent the global bending deformation 
erodes the shear stiffness: 
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 With the effectiveness factor, the effective shear stiffness is 
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 The square of the fundamental frequency that belongs to the effective shear 
stiffness can now be calculated: 
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 For the local bending stiffness (EI=EIc r), the sum of the second moments of 
area of the columns should be produced (and multiplied by reduction factor r). As 
the bays of the framework are identical, the second moment of area of one column 
is simply multiplied by n and r (the reduction factor):  
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 The fundamental frequency which is associated with the local bending 
stiffness is defined by 
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 As a function of the non-dimensional parameter 
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the frequency parameter is obtained using Table 4.2 as  
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 Finally, the fundamental frequency is  
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 The “exact” (FEM) solution (Axis, 2003) is 

      503.0)FEM( =f Hz 

 The difference between the continuum and FEM solutions is 0.6%. 

7.3 THE CRITICAL LOAD OF A SEVEN-BAY, TWELVE-STOREY 
FRAMEWORK  

Determine the critical load of the large framework FFSH1 shown in Figure 7.3, 
using the equations given in Sections 2.3.1 and 5.1. The seven-bay, twelve-storey 
structure is subjected to uniformly distributed load on the beams. The modulus of 
elasticity is E = 29⋅106 kN/m2. The cross-sections of the columns and beams are 
0.4 m/0.4 m and 0.4 m/0.5 m, respectively, where the first number stands for the 
width (perpendicular to the plane of the structure) and the second number is the 
depth (in-plane size of the member). The seven bays are identical at 6.0 m and the 
storey height is 2.9 m. 
 The shear stiffness of a framework is composed using two parts. The first 
part is associated with the beams of the framework: 
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 The second part of the shear stiffness is associated with the columns: 
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 With the two components, the shear stiffness is 
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where the reduction factor r is  
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 The global second moment of area is 
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 The local second moment of area of the framework, amended by r, making 
use of the fact that the eight columns have the same cross-section, is 
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 Load distribution factor rs is obtained from Table 5.1 as rs = 0.883.  
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Figure 7.3 Seven-bay, twelve-storey framework FFSH1 for the stability analysis. 
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 Parameter c1 is needed for the calculation of the critical load. Its value is 
obtained from Table 2.3 as a function of 
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 With the relevant values from Table 2.3  
 

 0.000 0.001 
0.05 0.050 0.099 
0.10 0.100 0.171 

 
parameter c1 is obtained either as an “intelligent guess”, c1 = 0.057, for example, 
based on {2.60}, or after three interpolations  
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 The critical load of the framework can now be calculated: 
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 The “exact” (FEM) solution (Axis, 2003) is 

      0.300)FEM( =crN MN 

 The difference between the continuum and FEM solutions is negligible. 
 It is mentioned in Section 2.3.1 that when the local second moment of area of 
the columns/shear wall sections is small compared to the global second moment of 
area, then an even simpler method, presented in Section 2.4.1, can be used for the 
determination of the critical load. This is the case now, as ratio {2.59} above is 
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very small, so the method in Section 2.4.1 can safely be used.  
 The global bending part critical load is 
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 As a function of the shear critical load and the global bending critical load   
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the critical load parameter is obtained from Table 2.5 as 

      0.1=sα   {Table 2.5} 

and the critical load is  

      2912910.1 =⋅== KN scr α MN   {2.61} 

 The difference between the continuum and FEM solutions now is 3%. 

7.4 THE CRITICAL LOAD OF AN EIGHT-STOREY FRAMEWORK 
WITH CROSS-BRACING 

Determine the critical load of framework SR-X shown in Figure 7.4. The one-bay, 
eight-storey structure is subjected to uniformly distributed load on the beams. The 
modulus of elasticity for the beams, columns and cross-bracing is 
E = 200⋅106 kN/m2. The framework represents a bracing unit of the Cardington 
Steel Building which was constructed in 1993 at the Building Research 
Establishment’s Large Building Test Facility in Cardington (Armer and Moore, 
1994) and its geometrical characteristics are given in Table 7.1. The size of the bay 
and the storey height are both 3.0 m. 
 The critical load can be determined by using the methods presented in 
Section 2.3.1 and Section 2.4.1. The procedure given in Section 2.4.1 will be used 
here. 
 The shear stiffness of the structure is 
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 The global second moment of area is 
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Table 7.1 Cross-sectional characteristics for framework SR-X. 

Characteristics Columns Beams  Diagonals 

Cross-section 305×305UC137 356×171×45UB 250/15 

Area [m2] 1.74⋅10-2 5.73⋅10-3 3.75⋅10-3 

Second moment of area [m4] 3.281⋅10-4 1.207⋅10-4 1.953⋅10-5 

H = 8h = 8·3 = 24 m 

 3 m 

 
Figure 7.4 Eight-storey framework SR-X with cross-bracing. 

 
 Load distribution factor rs is obtained from Table 5.1 as rs = 0.834. The 
global bending critical load is 
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 As a function of  
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the critical load parameter is obtained from Table 2.5 as 
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 Finally, the critical load of the framework is 

      1.125295.215581.0 =⋅== KN scr α MN {2.61} 

 The “exact” (FEM) solution (Axis, 2003) is 

      9.126)FEM( =crN MN 

 The continuum solution is conservative and the difference between the 
continuum and FEM solutions is 1.4%. 

7.5 THE CRITICAL LOAD OF EIGHTEEN-STOREY COUPLED SHEAR 
WALLS 

Determine the critical load of coupled shear walls CSWSH3 shown in Figure 7.5, 
using the equations given in Sections 2.3.1, 2.4 and 2.5. The structure is eighteen-
storey high and consists of three shear walls that are connected by beams at every 
floor level. The story height is h = 3.0 m and the total height of the structure is 
H = 54.0 m. The wall thickness is t = 0.20 m and the cross-section of the beams is 
0.2 m/1.5 m. The cross-sectional area and the second moment area of the beams 
are Ab = 0.3 m2 and Ib = 0.05625 m4, respectively. The modulus of elasticity of   
the structure is E = 30000 MN/m2. The modulus of elasticity in shear is 
G = 12500 MN/m2.  
 Taking into consideration that the two sets of beams are of identical 
characteristics, the part of the shear stiffness of the coupled shear walls that is 
associated with the beams is 
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 The part of shear stiffness that depends on the wall sections is 
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Figure 7.5 Eighteen-storey coupled shear walls CSWSH3. 

 
 With the two components, the shear stiffness is 

      8464
2357713204

23577
13204 =

+
=

+
==

cb

c
bb KK

K
KrKK MN {2.54} 

where the reduction factor r is  
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 The global second moment of area is 
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 The local second moment of area of the coupled shear walls, amended by r, 
is  
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 Load distribution factor rs is obtained from Table 5.1 as rs = 0.919.  
 Parameter c1 is needed for the calculation of the critical load. Its value is 
obtained from Table 2.3 as a function of 
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 With the relevant values from Table 2.3  
 

 0.01 0.05 
50 7.298 7.344 
100 7.560 7.583 

 
parameter c1 is obtained either as an “intelligent guess”, based on the four 
“surrounding” values above as c1 = 7.3, for example, or after three interpolations as 
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 The critical load of the coupled shear walls can now be calculated: 
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  The “exact” (FEM) solution (Axis, 2003) is: 

      1207=crN MN 

 The continuum solution is conservative and the difference between the 
continuum and FEM solutions is 4.2%. 
 It is mentioned in Section 2.3.1 that when the local second moment of area of 
the columns/shear wall sections is small compared to the global second moment of 
area, then an even simpler method, presented in Section 2.4.1, can be used for the 
determination of the critical load. This is the case now, as ratio {2.59} above is 
very small, so the method in Section 2.4.1 can safely be used.  
 The global bending part critical load is 
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 As a function of the shear critical load and the global bending critical load  
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β   {2.62} 

the critical load parameter is obtained from Table 2.5 

      1329.0)05.75.7(
0.75.7

1253.01337.0
1253.0 =−

−

−
+=sα  {Table 2.5} 

and the critical load of the structure emerges as  

      112584641329.0 =⋅== KN scr α MN  {2.61} 

 The difference between the continuum and FEM solutions is now 6.8%. 
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8 
 

The maximum rotation and deflection of 

buildings under horizontal load 

 

 
Two worked examples are given here for the calculation of the maximum 
deflection and rotation of buildings under horizontal load, braced by frameworks, 
shear walls and cores. The calculations are based on the material presented in 
Chapters 2 and 3, and the numbers of the equations used will be given on the right-
hand side in curly brackets.  

8.1 THE MAXIMUM DEFLECTION OF A SIXTEEN-STOREY 
SYMMETRIC CROSS-WALL SYSTEM BUILDING 

Calculate the top deflection of the sixteen-storey building whose layout is shown in 
Figure 8.1, subjected to a uniformly distributed lateral load of intensity 
w* = 1.3333 kN/m2 in direction y. The building is braced by two two-bay concrete 
frameworks (F5), two two-bay steel frameworks with cross-bracing (F11) and two 
concrete shear walls (W3) in direction y. The same bracing units were used in 
Chapter 2 for the accuracy analysis of single bracing units (Figure 2.7). The storey 
height is h = 3 m. The “exact” (FEM) computer analysis resulted in ymax = 56.3 mm 
and this result is to be checked. The stiffness of the four shear walls lying in 
direction x is so small in direction y that—in line with structural engineering 
practice—their contribution is ignored.  

12 m F5 

30 m 

 x 

F11 F5 F11 

W3 

W3 

W3 

W3 

W3 

W3 

 y 

w 

 
Figure 8.1 Layout of symmetric building for the deflection analysis. 
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 In making use of symmetry, it is enough to consider half of the structure. The 
horizontal load on half of the structure is 

      20153333.1 =⋅=w kN/m 

 Because of the symmetric arrangement, the rotation of the building is zero. 
 The bracing system for half of the structure consists of framework F11, 
framework F5 and shear wall W3 (Figure 8.2). The calculation consists of two 
parts: first, the three individual bracing units will be considered, based on the 
relevant sections in Sections 2.1 and 2.6, then, having identified the base unit, the 
top deflection of the building will be determined using the equations given in 
Section 3.1. 

a) F11 

15/250 

356x171x45UB 

0.4/0.7 

0.4/0.4 

b) F5 

0.2/6.71 

c) W3 

305x305xUC137 

H = 48 m 

6 m     6 m   3      3 6.71 m 

 
Figure 8.2 Bracing units for the sixteen-storey building. 

8.1.1 Individual bracing units 

The stiffness characteristics of the three different bracing units are determined first. 

Bracing Unit 1: F11 

The modulus of elasticity for the two-bay steel framework with cross-bracing is 
E = 2⋅108 kN/m2. General data for the columns, beams and diagonals are given in 
Figure 8.2/a and in Table 8.1. 
 The shear stiffness of the structure is 

      =









+−=

−1

2

3

)1(
hEA

l

hlEA

d
nK

hhdd

  {Table 2.6} & {2.69} 
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           430590
310200573.0

3

3310200375.0

243.4
2

1

828

3

=










⋅⋅⋅
+

⋅⋅⋅⋅
=

−

kN  

Table 8.1 Cross-sectional characteristics for framework F11. 

Characteristics Columns Beams  Diagonals 

Cross-section 305×305UC137 356×171×45UB 15/250 

Area [m2] 0.0174 0.00573 0.00375 

Second moment of area [m4] 0.0003281 0.0001207 0.00001953 

 
 The global second moment of area is 

      3132.0230174.0 2

1

2
, =⋅⋅==∑

n

iicg tAI m4 {2.32} 

 The local second moment of area (with r = 1, because of the cross-bracing) is 

      0009843.030003281.0
1

, =⋅== ∑
n

icIrI m4 {2.31} 

 The total second moment of area for the bending stiffness is 

      3142.00009843.03132.0 =+=+= gf III m4 {2.23} 

 Auxiliary parameters a, b, s, κ  and κH are also needed for the calculation of 
the deflection: 

      00687.0
3132.0102

430590
8

=
⋅⋅

==
gEI

K
a ,      1873.2

0009843.0102

430590
8

=
⋅⋅

==
EI

K
b  

      0.100314.1
3132.0

0009843.0
11 ≅=+=+=

gI

I
s  {2.14} 

      4813.11873.200687.0 =+=+= baκ       and      κH=71.1 

 With the above auxiliary quantities, the maximum top deflection of the 
framework can now be calculated: 
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      
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⋅
= 1

1.71cosh
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      263.00015.00535.02112.0max =−+=y m 

 The stiffness of Bracing Unit 1 is: 

      
m

1
80.3

263.0

11

max
1 ===

y
S   {3.2} 

Bracing Unit 2: F5 

The modulus of elasticity for the two-bay concrete framework is E = 25⋅106 kN/m2. 
General data for the columns and beams are given in Figure 8.2/b.  
 The part of the shear stiffness which is associated with the beams is 

      71111
3612

4.0102512
2

12 461

1

, =
⋅⋅

⋅⋅⋅
==∑

−

=
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i i

ib
b hl

EI
K kN {2.28} 

 The part of the shear stiffness which is associated with the columns is 

      1143333
312

7.04.0102512
3

12
2
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⋅

⋅⋅⋅⋅
==∑

=
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i
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c
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EI
K kN {2.29} 

 The above two parts define reduction factor r as 

      9414.0
114333371111

1143333
=

+
=

+
=

cb

c

KK

K
r  {2.30} 

 The shear stiffness of the framework can now be determined: 

      66947
114333371111

1143333
71111 =

+
=

+
=

cb

c
b KK

K
KK kN {2.27} 

 For the local bending stiffness (EI=EIc r), the sum of the second moments of 
area of the columns should be produced (and multiplied by reduction factor r). As 
the bays of the framework are identical, the second moment of area of one column 
is simply multiplied by n and r (the reduction factor):  
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      03229.0
12

7.04.0
39414.0
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icIrI m4 {2.31} 

 The global second moment of area is 

      16.20267.04.0 2

1

2
, =⋅⋅⋅==∑

n

iicg tAI m4 {2.32} 

 The total second moment of area for the bending stiffness is 

      1923.2016.2003229.0 =+=+=+= gcgf IrIIII m4 {2.23} 

 Auxiliary parameters a, b, s, κ  and κH are also needed for the calculation of 
the deflection: 

      0001328.0
16.201025

66947
6

=
⋅⋅

==
gEI

K
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03229.01025

66947
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      0.10016.1
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11 ≅=+=+=

gI

I
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      2882.00829.00001328.0 =+=+= baκ        and       κH=13.83 

 With the above auxiliary quantities, the maximum top deflection of the 
framework can now be calculated: 

      
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= 1
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      3242.00462.03441.00263.0max =−+=y m 

 The stiffness of Bracing Unit 2 is: 

      
m

1
09.3

3242.0

11

max
2 ===

y
S   {3.2} 
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Bracing Unit 3: W3 

The modulus of elasticity for the concrete shear wall is E = 25⋅106 kN/m2. Its 
geometrical characteristics are given in Figure 8.2/c. The maximum deflection of 
the shear wall is 

      1054.0

12
71.62.0

10258

4820

8
)(

3
6

44

max =
⋅
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⋅
===

EI
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Hyy m {2.72} 

 Its stiffness is 

      
m

1
485.9

1054.0

11

max
3 ===

y
S   {3.2} 

8.1.2 Base unit. Maximum deflection 

As the shear wall cannot be a base unit and the b-value of framework F11 is 
greater then the b-value of framework F5 (2.1873 > 0.0829), the base unit is 
framework F11 with EI = EI1, EIg = EIg,1 and K = K1. 
 The apportioner for the base unit is 

      232.0
485.909.38.3

8.3

321

1
1 =

++
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++
=

SSS

S
q   {3.3} 

 The load on the base unit is 

      64.420232.011 =⋅== wqw  kN/m  {3.1} 

 The following stiffness ratios and coefficients are needed: 
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      0.10024.1
1599.0
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b

a
s  

      40.01599.0000379.0 =+=+= baκ ,      22.194840.0 =⋅=Hκ  {3.13} 

 The maximum deflection of the building at H = 48 m can now be determined: 

      







−

+
−+== 1

cosh

sinh1

28
)(

322

24

max H

HH

sK

EIw

sK

Hw

EI

Hw
Hyy

f κ

κκ
 {3.14} 

 







−

+⋅⋅⋅
−

⋅

⋅
+

⋅⋅⋅

⋅
= 1

22.19cosh

22.19sinh22.191

430590

0009843.010264.4

4305902

4864.4

3142.01028

4864.4
2

82

8

4

 

      061.0000.0012.0049.0max =−+=y m = 61 mm 

 The continuum solution is conservative. The difference between the 
continuum and FEM solutions is 8.3%. 

8.2 THE MAXIMUM DEFLECTION OF A TWENTY-EIGHT STOREY 
ASYMMETRIC BUILDING BRACED BY FRAMEWORKS, SHEAR 
WALLS AND A CORE 

Calculate the top rotation and deflection of the twenty-eight storey building whose 
layout is shown in Figure 8.3, subjected to a uniformly distributed lateral load of 
intensity w* = 1.0 kN/m2 in direction y. The size of the layout is given by L = 24 m 
and B = 12 m. The building is braced by two one-bay frameworks (F1), one two-
bay framework (F5), two shear walls (W4) and a U-core (U). The modulus of 
elasticity of the concrete bracing units is 25⋅106 kN/m2. The storey height is 
h = 3 m. The FE computer analysis resulted in ymax = 404 mm and this result is to 
be checked. The bracing units are numbered as shown in Figure 8.3. General data 
for the bracing units are given in Figure 8.4. 
 Following the establishment of the stiffnesses of the units, the maximum 
deflection of the building is calculated in two parts. The deflection of the shear 
centre axis is determined first, then the additional deflection due to the rotation 
around the shear centre is added.  
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8.2.1 Individual bracing units 

The stiffness characteristics of the four different bracing units are determined first. 

Bracing Unit 1 (identical to Bracing Unit 6): F1 

Both the width and the depth of both the beams and the columns are 0.4 m/0.4 m 
(Figure 8.4/a).  

6 m 

6 m 

6 m 

 yo = t1 = t3 = 6 m 

x 

x 

t5 = t6 = 6 m 

6 m 6 m 6 m 

 yo  y 

xo = t2 = 13.41    t4 = 4.886 

1   : F1 

O 

6   : F1 

2   : F5 

3   : W4 

5   : W4 

4   : U C 

xc = 1.41 e = 1.714     h = 4.0 

w 

O4 
B 

L = 24 m 

 
Figure 8.3 Layout for the deflection analysis. 

 
 The part of the shear stiffness which is associated with the beams is 
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 The part of the shear stiffness which is associated with the columns is 
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 The above two parts define reduction factor r as 
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 The shear stiffness of the framework can now be determined: 

      284458.035556 =⋅=
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=
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c
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K
KK kN {2.27} 

 For the local bending stiffness (EI=EIc r), the sum of the second moments of 
area of the columns should be produced (and multiplied by reduction factor r):  

      00341333.0
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 The global second moment of area is 
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 The total second moment of area for the bending stiffness is 

      8834.288.200341333.0 =+=+= gf III m4 {2.23} 

 Auxiliary parameters a, b, s, κ  and κH are also needed for the calculation of 
the deflection: 
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      5777.033334.0000395.0 =+=+= baκ       and     κH=48.53 {2.14} 

 With the above auxiliary quantities, the maximum top deflection of 
framework F1 can now be calculated: 
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 The stiffness of Bracing Unit 1 (and Bracing Unit 6) is: 
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a) F1 

0.4/0.4 

0.4/0.7 

0.4/0.4 

b) F5 

0.3/6.0 

c) W4 

0.4/0.4 H
 =

 8
4  

m
 

6 m        6 m  6 6.0 m 

0.3/4.15 

d) U-core 

h = 4 0.15 

 
Figure 8.4 Bracing units for the twenty-eight storey building. 

Bracing Unit 2: F5 

The width and the depth of the beams and the columns are 0.4 m/0.4 m and 
0.4 m/0.7 m (Figure 8.4/b).  
 The part of the shear stiffness which is associated with the beams is 
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 The part of the shear stiffness which is associated with the columns is 
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 The above two parts define reduction factor r as 
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 The shear stiffness of the framework can now be determined: 
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 For the local bending stiffness (EI=EIc r), the sum of the second moments of 
area of the columns should be produced (and multiplied by reduction factor r). As 
the bays of the framework are identical, the second moment of area of one column 
is simply multiplied by n and r (the reduction factor):  
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 The global second moment of area is 
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 The total second moment of area for the bending stiffness is 

      1923.2016.2003229.0 =+=+=+= gcgf IrIIII m4 {2.23} 

 Auxiliary parameters a, b, s, κ  and κH are also needed for the calculation of 
the deflection: 
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      2882.00829.00001328.0 =+=+= baκ       and     κH=24.21 {2.14} 

 With the above auxiliary quantities, the maximum top deflection of the 
framework can now be calculated: 
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 The stiffness of Bracing Unit 2 is: 
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Bracing Unit 3 (identical to Bracing Unit 5): W4 

The thickness and the width of the shear wall are 0.3 m and 6.0 m (Figure 8.4/c). 
The maximum deflection of the shear wall is 
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 Its stiffness is 
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Bracing Unit 4: U-core 

The dimensions for the core are: b = 4.0 m, h = 4.0 m and tf = tw = 0.3 m 
(Figure 8.4/d). Its stiffness characteristics are calculated using Table 2.7: 
 The torsional constant: 
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3

1 3
33 =+⋅=+= wf bthtJ m4  {Table 2.7} 

 The warping constant: 
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 Location of shear centre: 
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 Second moment of area with respect to local axis x: 
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 The maximum deflection of the core in direction y is 
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 Its stiffness is 
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 The total horizontal load in direction y is transferred to the shear centre in the 
form of a force and a torque. The force results in the uniform translation vo of the 
building while the torque develops rotation ϕ  around the shear centre, which then 
causes additional translations vφ as shown in Figure 8.5. The uniform translation is 
determined first.  

8.2.2 Deflection of the shear centre axis 

To balance the horizontal load in direction y, Bracing Unit 2 (F5) and Bracing 
Unit 4 (U) offer resistance. The contribution of the other four units, being effective 
in the perpendicular direction, is negligible and is ignored. In using the relevant 
stiffnesses calculated above, the location of the shear centre (Figure 8.3) from the 
left-hand side of the layout is 
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where h4 is the size of the flange of the U-core. 
 Because of symmetry, the location of the shear centre in the vertical direction 
is known without any calculation as  

      0.6=oy m   {3.17} 

 Of the two participating bracing units, Unit 2 (F5) is the base unit (as the    
U-core cannot be a base unit).  
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 The apportioner for the base unit is 

      2667.0
883.16849.0

6849.0

42

2
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+
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+
=

SS

S
q  {3.3} 

and the load on the base unit is 

      40.6242667.022 =⋅== wqw kN/m   {3.1} 

 Auxiliary parameters a, b, s, κ  and κH are needed for the calculation of the 
deflection: 
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a
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      288.0083.00001328.0 =+=+= baκ       and     κH=24.22 {3.13} 
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b) rotation around the shear centre 

 

Figure 8.5 Deflection of building. a) uniform part, b) due to rotation around the shear centre. 

 
 With the above auxiliary quantities, the maximum top deflection of the shear 
centre axis can now be calculated (Figure 8.5/a): 
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      389.0027.0337.0079.0 =−+=ov m 

8.2.3 Rotation around the shear centre. Maximum deflection 

Rotation around the shear centre causes additional translations and the left-hand 
corner of the building will develop the greatest deflection. The distance between 
the shear centre and the centroid of the layout (Figure 8.3) is 

      41.1
2

0.24
41.13

2
=−=−=

L
xx oc m 

and the torsional moment per unit length therefore is 

      
m

kNm
84.3341.124 =⋅== ct wxm   {3.29} 

 All six bracing units (F1+F5+W4+U+W5+F1) take part in resisting torsion 
and to determine the rotation of the building, the perpendicular distances of the 
bracing units from the shear centre are needed. In the coordinate system whose 
origin is in the shear centre and whose axes are parallel with the sides of the 
building (Figure 8.3), these are: 

      0.61 == oyt m                             41.132 == oxt m             0.63 == oyt m 

      876.444 =−−−= ehxLt o m       0.65 =−= oyBt m          0.66 =−= oyBt m 

 Of the frameworks, potential base units, Unit 1 (F1) is the base unit (as its b-
value is greater than that of Unit 2: 0.33 > 0.08). 
 The rotational stiffnesses are needed to establish the moment share on the 
base unit: 

m304.72029.062
1

2
11, =⋅== StSω , m2.1236849.041.13 2

2
2
22, =⋅== StSω  {3.25} 
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2
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2
66, =⋅== StSω  {3.25} 

 The torsional apportioner related to the base unit (F1) is 
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and, with the apportioner, the torsional moment share on the base unit is 

      
m

kNm
998.00295.084.33 =⋅== ωqmm t  {3.28} 

 The torsional stiffness characteristics of the base unit are: 

      6262 10072.3600341333.01025 ⋅=⋅⋅⋅== EItEIω kNm4 {3.19} 

      6262 102592688.21025 ⋅=⋅⋅⋅== tEIEI ggω kNm4 {3.20} 

      66 10259510)2592072.3()( ⋅=+=+ ωω gIIE kNm4  
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 The following stiffness ratios and coefficients are needed: 

      46.9
00341333.0

03229.0

1

2
1 ===

EI

EI
a ,         353.2

28445

66947

1

2
1 ===

K

K
b   

      0.7
88.2

16.20

1,

2,
1 ===

g

g

EI

EI
c ,                  0.1

00341333.0

00341333.0

1

3
2 ===

EI

EI
a  {3.16} 

      0.1
28445

28445

1

3
2 ===

K

K
b ,                     0.1

88.2

88.2

1,

3,
2 ===

g

g

EI

EI
c  

      00022.0
1

353.2

46.9
1

1
0.7

46.9
1

88.21025

28445

1

1

61

1

1

1
=

++

++

⋅⋅
=

+

+

=

∑

∑
−

=

−

=

f

j j

j

f

j j

j

g

b

a

c

a

EI

K
a   

https://engineersreferencebookspdf.com



Maximum Rotation and Deflection   157 

 

      1661.0
1

353.2

46.9
1

3

00341333.01025

28445

1
61

1

=

++⋅⋅
=

+

=

∑
−

=

f

j j

j

b

a

f

EI

K
b  

      0.10013.1
1661.0

00022.0
11 ≅=+=+=

b

a
s  

      408.01661.000022.0 =+=+= baκ ,      26.3484408.0 =⋅=Hκ  {3.13} 

 The maximum rotation of the building at H = 84 m can now be determined: 
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            00573.000010.000344.000239.0 =−+= rad  

 This rotation causes additional deflection, in proportion to the distance from 
the shear centre. Maximum deflection develops at the left-hand side of the building 
(Figure 8.5/b), where this deflection is added to the uniform deflection, resulting in 
the overall maximum deflection of the building as 

      466.041.1300573.0389.0max =⋅+=+=+= ooo xvvvv ϕϕ m 

 The continuum solution for the maximum deflection of the building is 
conservative. The difference between continuum and FEM solutions is 15.3%. 
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The fundamental frequency of buildings 

 

 
Two worked examples are presented in this chapter for the calculation of the 
fundamental frequency of buildings under uniformly distributed mass over the 
floors, braced by frameworks and shear walls. The calculations are based on the 
material presented in Chapter 4, and the numbers of the equations used will be 
given on the right-hand side in curly brackets.  

9.1 THIRTY-STOREY DOUBLY SYMMETRIC BUILDING BRACED BY 
SHEAR WALLS AND FRAMEWORKS 

Calculate the fundamental frequency of the thirty-storey reinforced concrete 
building (Figure 9.1) subjected to uniformly distributed mass over the floors. The 
modulus of elasticity is E = 25000 MN/m2, the modulus of elasticity in shear is 
G = 10400 MN/m2, the storey height is h = 3 m and the total height of the building 
is H = 90 m. The thickness of the shear walls is 0.35 m. The weight per unit 
volume of the building is assumed to be γ = 2.5 kN/m3. 
 Before the whole system of four frameworks and four shear walls is 
investigated, it is advantageous to establish the basic characteristics of the two 
types of bracing unit.  

9.1.1 Individual bracing units 

Bracing Unit 1 (framework, identical to Bracing Units 2, 5 and 6 – Figure 9.2/a) 

The cross-sections of the columns and beams of the four identical frameworks are 
0.35/0.35 and 0.35/0.50 (metres), respectively. 
 The shear stiffness that is associated with the beams of the framework is 

      145833
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 The shear stiffness that is associated with the columns of the framework is 
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 The combination of the two part shear stiffnesses gives the “original” shear 
stiffness of the framework: 

      67323
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c
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where the reduction factor  
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Figure 9.1 Layout of thirty-storey building for the frequency analysis. 

 
 Mass distribution factor rf is obtained from Table 4.1 as a function of the 
number of storeys: 

      967.0=fr   {Table 4.1} 

 The mass density per unit length is calculated using Equation (4.7): 

      48.251010
81.9

5.2
=⋅=== LB

g
Am

γ
ρ kg/m {4.7} 
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 The square of the fundamental frequency associated with the “original” shear 
stiffness of Bracing Unit 1 is  
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 The global second moment of area of the cross-sections of the columns is: 
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 The square of the fundamental frequency that is associated with the global 
full-height bending vibration of the framework is  
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Figure 9.2 Bracing units for the building. 

 
 There is an interaction between the “original” shear and global bending 
modes that reduces the effectiveness of the shear stiffness. The factor of 
effectiveness can be calculated using the squares of the two relevant frequencies as 

      5844.0
01906.00268.0

0268.0
2

1,
2

1,

2
1,2

1, =
+

=
+

=
′sg

g
f

ff

f
s  {4.10} 

https://engineersreferencebookspdf.com



Fundamental Frequency   161 

 

Bracing Unit 3 (shear wall, identical to Bracing Units 4, 7 and 8 – Figure 9.2/b) 

The size of the shear wall is 4.0 metres with a thickness of 0.35 m. It only has 
bending stiffness which will directly be incorporated into the lateral model. 

9.1.2 Lateral vibration in direction y (Bracing Units 1, 2, 3 and 4) 

Because of double symmetry, the behaviour (and the fundamental frequency of 
lateral vibration) of the building is identical in directions x and y. 
 The effective shear stiffness for the whole system (that contains two 
frameworks) is obtained as 

      786872673235844.0
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f

iife KsK kN {4.11} 

 The “original” shear stiffness: 
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 The effectiveness factor for the lateral system can now be established: 
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 The square of the frequency that belongs to the effective shear stiffness is: 
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 The bending stiffness for the system (Bracing Units 1, 2, 3 and 4) is: 
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 The square of the lateral frequency that is associated with this bending 
stiffness is 
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 With the non-dimensional parameter 
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the frequency parameter is obtained from Table 4.2 as 
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 The lateral frequency of the system can now be calculated: 
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9.1.3 Pure torsional vibration (with all bracing units participating)  

The calculation is made fairly simple by the fact that the system is doubly 
symmetric and the location of the shear centre and the location of the bracing units 
in relation to the shear centre are readily known. 
 The radius of gyration is  
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 The “original” Saint-Venant torsional stiffness is 
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 The effective shear stiffness is 
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 The effectiveness factor is the ratio of the effective and “original” shear 
stiffnesses: 
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 The warping stiffness of the system originates from the bending stiffness of 
the four shear walls and the bending stiffness of the columns of the four 
frameworks (with the own warping stiffness of the bracing units being zero):  
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 The square of the pure torsional frequency associated with the warping 
stiffness is  
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and the formula for the pure torsional frequency associated with the Saint-Venant 
stiffness is 
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 With the non-dimensional parameter 
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the torsional frequency parameter is obtained using Table 4.2 as 
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 The pure torsional frequency can now be determined: 

      2
22

22 1
5313.0 ωϕ
ϕϕ

ωϕ

η
fs

k
fff t 













−−++=   {4.23} 

           384.001227.08324.01
5

615.6

313.0

977.1
1072.001227.0

22

=⋅









−−++= Hz 

 Because of the doubly symmetric arrangement of the bracing system, there is 
no coupling among the two lateral and pure torsional modes and the fundamental 
frequency of the building is the smallest one of the three “basic” frequencies: 

      223.0,,Min == ϕffff yx  Hz  {4.38} 

9.2 SIX-STOREY ASYMMETRIC BUILDING BRACED BY SHEAR 
WALLS AND INFILLED FRAMEWORKS 

Calculate the fundamental frequency of the six-storey building whose layout is 
shown in Figure 9.3, subjected to uniformly distributed mass over the floors. The 
building is braced by two reinforced concrete shear walls and two infilled 
frameworks. The thickness of both the reinforced concrete elements and the 
masonry infill is 0.3 m. The depths of the columns and the beams are 0.5 m and 
0.3 m, respectively. The modulus of elasticity is E = 30000 MN/m2 for the shear 
walls and the frameworks and Ed = 3000 MN/m2 for the masonry. The modulus of 
elasticity in shear for the shear walls is G = 12500 MN/m2. The storey height is 
h = 3 m and the total height of the building is H = 18 m. The weight per unit 
volume of the building is assumed to be γ = 2.5 kN/m3. 
 The basic geometrical and stiffness characteristics are collected in the first 
five columns in Table 9.1. Data in the last two columns can only be calculated after 
the location of the shear centre is determined in Section 9.2.3. 
 The mass density per unit length is calculated using Equation (4.7): 

      4.731224
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g
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ρ kg/m {4.7} 

 Mass distribution factor rf is obtained from Table 4.1 as a function of the 
number of storeys: 

      863.0=fr   {Table 4.1} 
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9.2.1 Lateral vibration in direction x 

There are only the two shear walls (and no frameworks) that effectively contribute 
to the lateral stiffness of the building and the corresponding frequency is 
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Figure 9.3 Layout of six-storey building. 

9.2.2 Lateral vibration in direction y 

The two infilled frameworks are modelled by replacing the masonry panels with 
diagonal struts of cross-sectional area 

            dtAd 15.0=    

where t is the thickness of the masonry wall and 0.15d is the effective width of the 
masonry infill (bw in Figure 9.4/a). Equation (2.68) can now be used to determine 
the shear stiffness of Unit 1: 
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Figure 9.4 Modelling of masonry infill. 

 
 The total “original” shear stiffness of the system is 
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Table 9.1 Basic characteristics of the bracing units. 

Bracing 
Unit ix  iy  Ix,i Iy,i J oii xxx −=  oii yyy −=  

1 24.00  0.00625    4.0  

2 16.00  0.00625   -4.0  

3  0.0  1.6    0.036  -3.56 

4  12.0  0.675 0.027   8.44 

Σ   0.0125  2.275 0.063   

 
 The frequency that belongs to the original shear stiffness of Unit 1 is 
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 The global second moment of area of the cross-sections of the columns 
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is needed for the calculation of the corresponding frequency: 

      0891.1
4.7318

2.1103863.0313.0313.0
4

72

4
1,

2
2

1, =
⋅

⋅⋅⋅⋅
==

mH

EIr
f gf

g Hz2 {4.8} 

 With the above part frequencies the effectiveness factor of Unit 1 can be 
determined 
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with which the effective shear stiffness of the whole system is 

      32524122297877077.0
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 The effectiveness factor of the whole system is 
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 The frequency that belongs to the effective shear stiffness is 
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 The local bending stiffness of the frameworks  

      3750000125.0103 7 =⋅⋅=EI kNm2   {4.14} 

is needed for the determination of the other component of the frequency: 
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 With the non-dimensional parameter 
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the frequency parameter is obtained using Table 4.2 as 
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 The lateral frequency in direction y can now be determined: 
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9.2.3 Pure torsional vibration 

The calculation starts with the determination of the shear centre. The basic 
geometrical and stiffness characteristics of the four bracing units are collected in 
Table 9.1. 
 Compared to the two identical Bracing Units 1 and 2, Units 3 and 4 have 
negligible stiffness with regard to axis x, and so the shear centre is in the middle of 
the two frameworks in direction x: 

      20=ox m 

 In direction y, the position of the shear centre is in proportion to the 
stiffnesses of the two shear walls: 

      56.3
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 When the location of the shear centre is known, the data can be entered into 
the last two columns in Table 9.1 and the radius of gyration of the plan area of the 
building can be determined, using the distance of the shear centre and the centroid, 
as 
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 The radius of gyration is 
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 The torsional stiffness characteristics are calculated using the stiffnesses and 
the perpendicular distances of the bracing units from the shear centre (Ix,i, Iy,i, Ji, xi 
and yi in Table 9.1). 
 The “original” Saint-Venant torsional stiffness is 

      +⋅⋅=+= ∑∑ 7
2

1

2
2
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1025.1063.0)()( iyik xKGJGJ   

               8140684735318478750024229787 2 =+=⋅⋅+ kNm2   {4.27} 

 The effective Saint-Venant torsional stiffness is obtained using the (identical) 
effectiveness factors of the two frameworks: 
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 With the original and effective Saint-Venant torsional stiffnesses, the 
effectiveness factor is expressed as 

      8579.0
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 When the warping stiffness of the system is considered, only the contribution 
of the shear walls is taken into account as that of the columns of the frameworks is 
negligible:  
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                            9100508.2 ⋅= kNm4  {4.22} 

 The square of the frequency for pure torsional vibration that is associated 
with the effective Saint-Venant stiffness is 
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and the square of the pure torsional frequency associated with the warping stiffness 
is calculated as 
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 With the non-dimensional parameter 
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the vibration parameter is obtained using Table 4.2: 

      650.0)5.09729.0(
5.00.1

5851.06542.0
5851.0 =−

−

−
+=ϕη  {Table 4.2} 

 Finally, the frequency of pure torsional vibration is  
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9.2.4 Coupling of the basic frequencies 

As the centroid of the layout does not lie on either of the principal axes, triple 
coupling of the basic modes occurs. Using the squares of the basic frequencies fx, fy 
and fφ and the eccentricity parameters  
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the smallest root of the cubic equation  
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is the fundamental frequency of the building. With 
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the fundamental frequency is 

      626.0=f Hz  

 The approximate formula [Equation {4.35}] would result in  
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for the fundamental frequency. This is good approximation, which can be expected 
as the eccentricity of the system is fairly great. 
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10 
 

The global critical load of buildings 

 

 
Two worked examples are given here for the calculation of the global critical load 
and global critical load ratio of buildings under uniformly distributed floor load, 
braced by frameworks, shear walls and cores. The calculations are based on the 
material presented in Chapters 2 and 5, and the numbers of the equations used will 
be given on the right-hand side in curly brackets.  

10.1 THIRTY-STOREY DOUBLY SYMMETRIC BUILDING BRACED BY 
SHEAR WALLS AND FRAMEWORKS 

Calculate the critical load and the critical load ratio of the thirty-storey building 
whose layout is shown in Figure 10.1, subjected to uniformly distributed vertical 
floor load of intensity Q = 8.0 kN/m2. The modulus of elasticity is 
E = 25000 MN/m2, the modulus of elasticity in shear is G = 10400 MN/m2, the 
storey height is h = 3 m and the total height of the building is H = 90 m.  

3 
O = C 

5 m 5 m 

2.5 2.5 

3 

4 

3 

 t6 = 5 

1 2 4 

8 

5 

6 

7 
Columns:  
       0.35m⋅0.35m 
Beams:  
       0.35m⋅0.50m 
Shear walls:  
       0.35m⋅4.0m 

5 

5  t5 = 5 

 t7 = 2.5 

 t8 = 2.5 

 t3 = 2.5  t4 = 2.5 

t2= 5.0 t1= 5.0 

 
Figure 10.1 Layout of thirty-storey building for the stability analysis. 
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10.1.1 Individual bracing units 

Before the whole system of four frameworks and four shear walls is investigated, it 
is advantageous to establish the basic characteristics of the two types of bracing 
unit. (The building is identical to the one used in Section 9.1 for the frequency 
analysis.) 

Bracing Unit 1 (framework, identical to Bracing Units 2, 5 and 6 – Figure 9.2/a) 

The cross-sections of the columns and beams of the four identical frameworks are 
0.35/0.35 and 0.35/0.50 (metres), respectively. 
 The shear stiffness that is associated with the beams of the framework is 

      83.145
3512

50.035.0102512
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12 331
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,
1, =

⋅⋅
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jbb
b hl

IE
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 The shear stiffness that is associated with the columns of the framework is 

      85.102
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 The combination of the two part shear stiffnesses gives the “original” shear 
stiffness of the framework: 

      31.60
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c
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where  

      4136.0
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1,
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+
=
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c

KK

K
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is the reduction factor. 
 Load distribution factor rs is obtained from Table 5.1 as a function of the 
number of storeys: 

      95.0=sr   {Table 5.1} 

 The global second moment of area of the cross-sections of the columns is: 

      125.62535.035.0 2

1

2
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 With the global second moment of area, the global bending critical load of 
the framework is 

      75.140
90

125.6102595.0837.7837.7
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==
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IEr
N gcs

g MN {5.7} 

 Because of the different buckling shape of the shear and global bending 
modes, there is an interaction between the two modes and the original shear 
stiffness is reduced by the effectiveness factor 

      700.0
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N
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Bracing Unit 3 (shear wall, identical to Bracing Units 4, 7 and 8 – Figure 9.2/b) 

The size of the shear wall is 4.0 metres with a thickness of 0.35 m. It only has 
bending stiffness which will directly be incorporated into the lateral model. 

10.1.2 Sway buckling in directions x and y 

Because of double symmetry, the behaviour (and the critical load of lateral 
buckling) of the building is identical in directions x and y. 
 The total shear stiffness of the two  frameworks is 

      62.120231.60
1

=⋅==∑
=

f

i

iKK MN  {5.5} 

 The effective shear stiffness for the whole system (that contains two 
frameworks) is obtained as 

      43.847.0231.60
1

=⋅⋅==∑
f

iie sKK MN {5.10} 

and the effectiveness factor for the whole system is 

      7.0
62.120

43.84
===

K

K
s e   {5.11} 

 The total bending stiffness of the system is obtained by adding up the local 
bending stiffness of the vertical structural units: 
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 With the above bending stiffness, the local bending critical load of the system 
can now be presented as  

      81.85
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9335995.0837.7837.7
22

=
⋅⋅

==
H

EIr
N s

l MN {5.13} 

 With the stiffness ratio 

      9839.0
81.85

43.84
===

l

e

N

K
β   {5.17} 

the critical load parameter can be obtained from Table 5.2 as 

      539.3)9.09839.0(
9.00.1

3488.35758.3
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−
+=α  {Table 5.2} 

 The sway critical load (that is identical in directions x and y) can now be 
determined as 

      lelycrxcr sNKNNN )1(,, −−++== βα  {5.18} 

               81.857.0)19839.0539.3(43.8481.85 ⋅−−++=  

               65.26341.9343.8481.85 =++= MN 

 The effect of interaction between the bending and shear modes is 
considerable: the third term (93.41)—responsible for the interaction—amounts to 
35.4% of the total critical load. 

10.1.3 Pure torsional buckling  

The radius of gyration is needed for the torsional analysis:  
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 The “original” Saint-Venant torsional stiffness is made up from two parts as 
both the four shear walls and the shear stiffness of the four frameworks have a 
contribution 
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 In a similar manner, the effective Saint-Venant torsional stiffness of the 
system comes from two sources: the Saint-Venant torsional stiffness of the shear 
walls and the effective shear stiffness of the frameworks:  
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 The Saint-Venant torsional critical load that belongs to the effective Saint-
Venant torsional stiffness is 
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 The effectiveness of the Saint-Venant torsional stiffness is expressed by the 
factor 
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 There are no cores in the bracing system so the warping stiffness originates 
from two sources: the bending stiffness of the four shear walls and the bending 
stiffness of the columns of the four frameworks:  
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 The contribution of the columns of the frameworks (second term) is very 
small (0.1%) and can safely be ignored in Equation {5.30}. 
 The warping torsional critical load of the system is 

      40.64
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10168.195.0837.7837.7
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 With parameter  

      148.6
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===

ω
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N
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the critical load parameter αφ is given in Table 5.2 as a function of parameter βφ: 

      46.12)0.6148.6(
0.60.7

241.12749.13
241.12 =−

−

−
+=ϕα  {Table 5.2} 

 The critical load of pure torsional buckling is now obtained as: 

      ωϕϕϕωϕ βα NsNNN tcr )1(, −−++=  {5.31} 

                =⋅−−++= 4.647849.0)1148.646.12(9.3954.64  

                7295.2689.3954.64 =++= MN 

 The effect of interaction between the warping torsional and Saint-Venant 
torsional modes is considerable: the third term (268.5)—responsible for the 
interaction—amounts to 36.8% of the total torsional critical load. 

10.1.4 The global critical load and critical load ratio of the building 

Because of double symmetry, there is no coupling among the three basic modes 
(Ncr,x, Ncr,y and Ncr,φ) and the global critical load of the building is the smallest one 
of the three: 

      65.263, == xcrcr NN MN 

 Assuming a uniformly distributed floor load of Q = 8 kN/m2, the total vertical 
load on the building is  

      24008.0101030 =⋅⋅⋅== nLBQN MN {6.2} 

and the global critical load ratio is  
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      1011
24

65.263
>===

N

Ncrλ   {6.3} and {6.5} 

indicating an adequate bracing system. 

10.2 SIX-STOREY ASYMMETRIC BUILDING BRACED BY A CORE AND 
AN INFILLED FRAMEWORK 

The six-storey building in London has undergone refurbishment during which 
some bracing walls have been removed resulting in some reduction in stiffness. 
The task is to investigate the structural adequacy of the building.  
 Figure 10.2 shows a simplified typical floor layout. The lateral and torsional 
stiffness of the building is provided by a reinforced concrete U-core and a four-bay 
infilled framework. The wall thickness of the core is t = 0.15 m. The location of the 
U-core (defined by its shear centre) is given in Table 10.1. The cross-sections of 
the beams and columns of the framework are 0.3 m/0.3 m and 0.3 m/0.5 m, 
respectively. The four bays are identical at l = 3.75 m. The modulus of elasticity is 
E = 20000 MN/m2, the modulus of elasticity in shear is G = 8333 MN/m2 for the 
concrete structures. The modulus of elasticity is Ed = 3000 MN/m2 for the masonry 
infill whose thickness is t = 0.3 m. A ratio of bw/d = 0.30 is assumed for the 
effective width of the infill when the equivalent diagonal strut is established.  
 The storey height is h = 3.417 m and the total height of the building is 
H = 20.5 m.  
 The global critical load and critical load ratio will be determined to show if 
the building has adequate stiffness. The intensity of the vertical floor load is 
assumed to be Q = 10.0 kN/m2. 
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Figure 10.2 Layout of six-storey building for the stability analysis. 
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 As a function of the number of storeys, the load distribution factor for the 
six-storey building is 

      791.0=sr   {Table 5.1} 

 Before the whole building is investigated, the basic characteristics of the two 
bracing units are determined. 

10.2.1 Individual bracing units 

Bracing Unit 1 (infilled framework) 

With bw/d = 0.30, the effective cross-sectional area of the diagonal is  

      4566.0073.53.03.03.0 =⋅⋅=⋅⋅== dttbA wd m2 {2.66} 

and with four identical bays, the shear stiffness of Unit 1 is 
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 With the cross-sections of the columns of the four-bay framework, the global 
second moment of area is  
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 The global bending critical load of the framework is 
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 As a function of part critical load ratio βs, defined by 
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critical load parameter αs is obtained from Table 2.5 as 
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      0.1=sα   {Table 2.5} 

and the critical load of the infilled frame is 

      5.154211, == KN sx α MN  {2.61} 

 The sum of the second moments of area of the five columns will also be 
needed later on: 

      0156.0
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Table 10.1 Basic characteristics of the bracing units. 

Bracing 
Unit ix  iy  Ix,i Iy,i J Iω oii xxx −=  

 
oii yyy −=  

1 33.00 0 0 0.0156   24.9  -9.2 

2  8.10 12.011 15.29 17.12 0.0217 81.41 0  2.811 

 

Bracing Unit 2 (U-core) 

The torsional stiffness characteristics of the U-core can be calculated using the 
Equations given in Table 2.7. The warping constant, the Saint-Venant constant and 
the location of its shear centre are 
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 The basic characteristics are tabulated in Table 10.1 where the last two 
columns are only completed after the location of the shear centre is established 
below. 
 The critical loads of the core in the two principal directions are: 
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and 
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 The coordinates of the shear centre can now be calculated: 
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10.2.2 Sway buckling in directions x and y 

There is an interaction in direction x between the core and the infilled frame. The 
original shear stiffness of the system originates from the infilled frame: 

      5.15421
1

===∑
=

KKK
f

i

i MN  {5.5} 

 The global bending critical load of the framework (calculated above in 
Section 10.2.1) and the original shear stiffness define the effectiveness factor as 

      8014.0
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and the effective shear stiffness is 

      12368014.05.154211
1

=⋅===∑ sKsKK
f

iie MN {5.10} 

 With the bending stiffness coming from the columns of the framework and 
the core (Table 10.1) 

https://engineersreferencebookspdf.com



182   Multi-storey Buildings 

 

      342712)12.170156.0(102 4 =+⋅=+= wwcc IEIEEI MNm2 {5.12} 

the bending critical load is 

      5055
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342712791.0837.7837.7
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 As a function of the ratio of the part critical loads 
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the critical load factor is obtained from Table 5.2: 

      7.1)2.02445.0(
2.03.0

5798.18556.1
5798.1 =−

−

−
+=α  {Table 5.2} 

 The critical load in direction x is 

      lelxcr sNKNN )1(, −−++= βα   {5.18} 

               50558014.0)12445.07.1(12365055 ⋅−−++=  

               8136184512365055 =++= MN 

 The effect of interaction between the bending and shear modes (1845 MN) 
now amounts to 23% of the total critical load. 
 The situation in direction y is much simpler as the infilled frame only has 
negligible stiffness perpendicular to its plane that is safely ignored compared to the 
stiffness of the core. The critical load hence is 

      45112,, == yycr NN MN  {2.92} 

10.2.3 Pure torsional buckling 

With the coordinates of the geometrical centre 

      15.121.8
2

5.40

2
=−=−= oc x

L
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and 
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the radius of gyration of the ground plan is 
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 The “original” Saint-Venant torsional stiffness consists of two parts: the own 
contribution of the core and that of the infilled frame:  

      ( ) 2
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k +=++= ∑∑  {5.35} 

              1307382.95.15420217.08333 2 =⋅+⋅= MNm2  

 The contribution of the core—first term—is only 0.13% and can safely be 
ignored. 
 The effective Saint-Venant torsional stiffness is obtained by replacing the 
original shear stiffness with the effective one above: 
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                1047962.912360217.08333 2 =⋅+⋅= MNm2  

 The effectiveness factor is 

      8016.0
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 The warping stiffness of the system originates from three sources: the own 
warping stiffness of the core, the bending stiffness of the core and the bending 
stiffness of the columns of the framework:  
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             6224 1036.4)2.90156.0811.212.1741.81(102 ⋅=⋅+⋅+⋅= MNm4  

 The contribution of the columns—last term—is only 0.6% and therefore can 
safely be ignored. 
 Using the effective Saint-Venant torsional stiffness and warping torsional 
stiffness, the two part critical loads can now be determined. The warping torsional 
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critical load of the system is 

      3.196
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and the Saint-Venant torsional critical load is 

      9.319
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 The ratio of the two part critical loads 

      63.1
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===

ω
ϕβ

N

N t   {5.36} 

is needed for getting the critical load factor. Its value is obtained from Table 5.2 as 

      866.4)0.163.1(
0.10.2

5758.3624.5
5758.3 =−

−

−
+=ϕα  {Table 5.2} 

 The critical load of pure torsional buckling can now be calculated: 

      ωϕϕϕωϕ βα NsNNN tcr )1(, −−++=  {5.31} 

               3.1968016.0)163.1866.4(9.3193.196 ⋅−−++=   

               8688.3519.3193.196 =++= MN  

 The effect of interaction between the warping torsional and Saint-Venant 
torsional modes is considerable: the third term (351.8 MN)—responsible for the 
interaction—amounts to 40.5% of the total torsional critical load. 

10.2.4 The global critical load and critical load ratio of the building  

The centroid of the layout does not lie on either of the principal axes and therefore 
there is a triple coupling of the basic critical loads Ncr,x, Ncr,y and Ncr,φ. The effect of 
coupling is always detrimental and its magnitude (partly) depends on the 
eccentricity of the system: 

      671.0
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 Once the part critical loads and the eccentricity parameters are available, the 
critical load is obtained by solving the cubic equation 

      ( ) ( ) 001
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2
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=−++ bNbNbN   {5.39} 

 In the above equation the coefficients are  
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 The smallest root of the cubic equation is the global critical load of the 
building: 

      791=crN MN 

 (A simpler, faster, albeit approximate way of obtaining the combined critical 
load is using the Föppl-Papkovich formula 
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
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cr NNN
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which gives Ncr = 668 MN.) 
 Assuming a uniformly distributed floor load of Q = 10 kN/m2, the total 
vertical load on the building is  

      46.5301.0225.406 =⋅⋅⋅== nLBQN MN {6.2} 
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and the global critical load ratio (using the exact figure) is  

      108.14
46.53

791
>===

N

Ncrλ   {6.3} and {6.5} 

indicating an adequate bracing system. 
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Global structural analysis of a twenty-two 

storey building 

 

 
Individual types of analysis have been carried out so far. However, the structural 
engineer is normally responsible for the building as a whole, not only for certain 
units or individual aspects of its behaviour. Before the building is constructed, all 
areas relating to structural behaviour have to be looked at. This chapter shows how 
such global analysis is carried out using a real building. The investigation normally 
starts with the stability analysis and then moves on to determine the fundamental 
frequency of the building. The maximum deflection of the building under 
horizontal load concludes the global analysis. Many stiffness characteristics 
needed for the individual investigations are identical, and they only have to be 
established once and then can be reused. Hence the resulting global analysis 
covering the three different areas requires much less work than three individual 
analyses separately.  
 The case study is based on and uses a simplified version of the structure of 
the Sheffield Arts Tower, seen on the cover of the book. The twenty-three storey 
structure is braced by four reinforced concrete cores and four perimeter frames. 
The perimeter frames are replaced by 16 bulky columns on ground floor level 
making this region much stiffer than the superstructure. The simplified static 
model of the twenty-two storey superstructure is the subject of the analysis, whose 
layout is shown in Figure 11.1. The basic data of the superstructure is given below. 

 Size of ground plan: L = 36.0 m and B = 20.0 m. 
 Storey height: h = 3 m. Number of storeys: 22. Height of structure: 66 m. 
 Modulus of elasticity: E = 23·103 MN/m2.  
 Shear modulus: G = 9.583·103 MN/m2. 
 Cross-sections of both the beams and the columns of the frames: 0.4 m/0.4 m.  

 In addition to the eight bracing units, concrete columns are also part of the 
vertical load carrying system but their contribution to the lateral and torsional 
stiffness is small compared to that of the bracing units and is therefore ignored for 
the calculation. It is assumed for the analysis that the cores only develop bending 
deformation. 
 The weight per unit volume of the building (for the dynamic analysis) is 
assumed to be γ = 3 kN/m3. A vertical load of Q = 10 kN/m2 is considered for the 
stability analysis and for the determination of the global critical load ratio. When 
the structure is subjected to lateral load and the top rotation and deflection are 
calculated, a uniformly distributed horizontal load of intensity 1.3 kN/m2 is 
considered in direction y, which results in a wind load of wy = 46.8 kN/m. 
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 It will be seen that—as far as stiffnesses are concerned—the building is 
almost doubly symmetric and the eccentricity of the bracing system (see distance 
OC in Figure 11.1) plays a very little role in the behaviour of the structure. 
Nevertheless, for the sake of completeness, a comprehensive and full global 
analysis will be carried out. The numbers of the Equations used for the calculations 
(derived in Part I) will be given on the right-hand side in curly brackets. The 
investigation starts with the stability analysis.  

 
Figure 11.1 Typical layout of superstructure above ground floor level. 

11.1 THE CRITICAL LOAD 

The load distribution factor is obtained from Table 5.1 as a function of the number 
of storeys: 

      933.0
588.122

22

588.1
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+
=

+
=

n

n
rs   {Table 5.1} 

 Before the structural analysis is carried out, the basic characteristics of the 
individual bracing units are given in the next section. 

11.1.1 Individual bracing units 

Bracing Unit 1 (framework, identical to Bracing Unit 3) 

The cross-sections of the columns and beams of the framework are 0.40/0.40 
(metres). With twelve bays and a bay-size of l = 3 m, the shear stiffness that is 
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associated with the beams of the framework is 
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 The shear stiffness that is associated with the columns of the framework is 
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 The combination of the two part shear stiffnesses gives the “original” shear 
stiffness of the framework: 
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where the reduction factor  
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is used. 
 The local second moment of area of the cross-sections of the columns is a 
simple sum of the second moments of areas of the individual columns (amended 
by r):  
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13471.0
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 The global second moment of area of the cross-sections of the columns is: 
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 The framework is very wide and the local effect of the columns is very small 
and the ratio defined by Equation (2.59) is also very small. In such cases the 
simpler method presented in Section 2.4.1 can be used for the determination of the 
critical load.  
 With the global second moment of area, the global bending critical load of 
the framework is 
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 With  
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critical load parameter αs is obtained using Figure 2.17 as 

      0.1=sα   {Figure 2.17} 

and the critical load of the framework is 

      9.3699.3690.111, =⋅== KN scr α MN  {2.61} 

 The effectiveness factor is 
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Bracing Unit 2 (framework, identical to Bracing Unit 4) 

The cross-sections of the columns and beams of the framework are 0.40/0.40 
(metres). With seven bays and a bay-size of l = 2.85 m, the shear stiffness that is 
associated with the beams of the framework is 
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 The shear stiffness that is associated with the columns of the framework is 
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 The combination of the two part shear stiffnesses gives the “original” shear 
stiffness of the framework: 
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where the reduction factor  
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is introduced. 
 The local second moment of area of the cross-sections of the columns is a 
simple sum of the second moments of areas of the individual columns (amended 
by r): 
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 The global second moment of area of the cross-sections of the columns is: 
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 The framework is very wide and the local effect of the columns is very small 
and the ratio defined by Equation (2.59) is also very small. In such cases the 
simpler method presented in Section 2.4.1 can be used for the determination of the 
critical load. 
 With the global second moment of area, the global bending critical load of 
the framework is 
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critical load parameter αs is obtained using Figure 2.17 as 

      0.1=sα   {Figure 2.17} 

and the critical load of the framework is 

      4.2274.2270.122, =⋅== KN scr α MN  {2.61} 

 The effectiveness factor is 
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Bracing Units 5, 6, 7 and 8 

The basic geometric characteristics of the four U-cores (a, b, c, d, h, t1, t2 and t3) 
are given in Table 11.1. The last column in Table 11.1 contains the location of the 
shear centre of the cores, in relation to their centroid, according to the relevant 
formula in Table 2.8. The rest of the formulae in Table 2.8 enable the 
determination of the bending and torsional characteristics of the cores. These data, 
as well as the location of the cores in the yx −  coordinate system (Figure 11.1) 
are collected in Table 11.2. The critical loads of the cores in directions x and y (Nx 
and Ny) are calculated using Equations (2.92) with the corresponding second 
moment of area of the core. Table 11.2 also contains the relevant data related to the 
four frameworks.  

Table 11.1 Cross-sectional characteristics for the bracing cores. 

Bracing 
core a b c d   h   t1=t2=t3 yo 

5 0.15 5.0 0.15 2.00 2.5 0.3 -2.85 

6 0.15 5.3 0.15 0.90 2.5 0.3 -2.20 

7 0.80 3.9 0.80 0.15 1.6 0.3 -1.07 

8 0.15 5.3 0.15 2.00 3.4 0.3 -3.74 

 
 With the coordinates ( ix  and iy  in the second and third columns in 
Table 11.2 refer to the shear centre of the cores) and the critical loads (ninth and 
tenth columns in Table 11.2) of the bracing units, the location of the shear centre of 
the bracing system can now be calculated: 
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 A new x-y coordinate system is now established whose O origin is in the 
shear centre (Figure 11.1). The location of the bracing units has to be determined 
in this coordinate system using 

      oii xxx −=          and         oii yyy −=  

 These new coordinates are given in the last two columns in Table 11.2. 

Table 11.2 Basic characteristics of the bracing units. 

Bracing 
unit ix  iy  Ix Iy J Iω K Nx   Ny   xi yi 

1 18.00 0.00 - 0.013 - - 369.9 - 369.9 -0.329 -9.265 

2 36.00 10.0 0.008 - - - 227.4 227.4 -  17.67  0.735 

3 18.00 20.0 - 0.013 - - 369.9 - 369.9 -0.329 10.74 

4  0.00 10.0 0.008 - - - 227.4 227.4 - -18.33  0.735 

5 12.59 8.90 15.68 5.021 0.126  69.4 - 193.8 605.1 -5.74 -0.365 

6 12.49 9.05 16.99 3.685 0.109  25.5 - 142.2 655.7 -5.84 -0.215 

7 23.16 9.05 10.12 1.299 0.090   3.2 -  50.1 390.7  4.83 -0.215 

8 23.12 9.15 21.80 10.00 0.145 140.9 - 386.1 841.4  4.79 -0.115 

Σ   64.61 20.03 0.470 239.0  1227.0 3232.7   

11.1.2 Sway buckling in direction y 

The participating bracing units in direction y are Units 2, 4, 5, 6, 7 and 8. 
 The original shear stiffness originates from the two frameworks (Units 2 
and 4):  

      8.4544.227242
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=⋅=+==∑
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KKKK
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i MN {5.5} 

 With the effectiveness factors of Unit 2 and 4 [Equation {5.9} in the previous 
Section], the effective shear stiffness is  

      502.4109026.04.2272
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 The effectiveness factor for the whole system is 
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 The bending stiffness of the system is 
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where the first term stands for the contribution of the columns of the frameworks. 
It amounts to 0.02% and can safely be neglected. The second term represents the 
four cores, according to the fourth column in Table 11.2.  
 The local bending critical load can now be calculated: 
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 Using the part critical load ratio  
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the critical load parameter is obtained from Table 5.2 

      479.1)1.01646.0(
1.02.0

2949.15798.1
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+=α  {Table 5.2} 

and the sway critical load in direction y is 

      lelycr sNKNN )1(, −−++= βα    

               361224949026.0)11646.0479.1(5.4102494 =⋅−−++= MN  {5.18} 

 The third term represents the effect of the interaction between the bending 
and shear modes and it amounts to 19.6% of the total critical load. 

11.1.3 Sway buckling in direction x 

The participating bracing units in direction x are Units 1, 3, 5, 6, 7 and 8. 
 The original shear stiffness originates from the two frameworks (Units 1 
and 3):  
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 With the effectiveness factors of Units 1 and 3 [Equation {5.9} at Unit 1 in 
Section 11.1.1], the effective shear stiffness is  

      7.7139647.09.3692
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=⋅⋅==∑
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iie sKK MN {5.10} 

 The effectiveness factor for the whole system is 
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 The bending stiffness of the system is 
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where the first term stands for the contribution of the columns of the frameworks. 
It amounts to 0.13% and can safely be neglected. The second term represents the 
four cores, according to the fifth column in Table 11.2. 
 The local bending critical load can now be calculated: 

      3.773
66

10607.4933.0837.7837.7
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 Using the part critical load ratio 
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K
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the critical load parameter is obtained from Table 5.2 as 

      40.3)9.0923.0(
9.00.1

3488.35758.3
3488.3 =−

−

−
+=α  {Table 5.2} 

and the sway critical load in direction x is 

      lelxcr sNKNN )1(, −−++= βα    

               25893.7739647.0)1923.04.3(7.7133.773 =⋅−−++= MN  {5.18} 
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 The third term represents the effect of the interaction between the bending 
and shear modes and it amounts to 42.6% of the total critical load. 

11.1.4 Pure torsional buckling 

With the coordinates of the centroid in the coordinate system x-y (Figure 11.1)  

      329.0329.18
2

36

2
=−=−= oc x

L
x m   {5.42} 

and  

      735.0265.9
2

20

2
=−=−= oc y

B
y m   {5.42} 

the distance between the shear centre and the centroid is 

      805.0735.0329.0 2222 =+=+= cc yxt m 

 With the above data, the radius of gyration is 

      91.11805.0
12

2036
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2
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2
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= t
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ip m {5.28} 

 The “original” Saint-Venant torsional stiffness consists of two parts. In 
addition to the Saint-Venant torsional stiffness of the individual bracing cores, 
those units that have shear stiffness (i.e. the frameworks) also contribute: 
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f

iyiixi

m

k xKyKGJGJ
1

22
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)()()(  {5.35} 

     226328)33.1867.17(4.227)74.10265.9(9.36947.09583 2222 =++++⋅= MNm2 

 The first term represents the “own” contribution of the cores and it amounts 
to 2% of the total Saint-Venant torsional stiffness.  
 The real (effective) Saint-Venant stiffness is always smaller than the 
“original” one as the effect of the frameworks is limited by their effectiveness 
factor: 
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      )33.1867.17(9026.04.227)74.10265.9(9647.09.36947.09583 2222 +⋅++⋅+⋅=  

            209344= MNm2  {5.29} 

 The effectiveness of the Saint-Venant torsional stiffness for the whole system 
can now be determined: 

      925.0
226328

209344

)(

)(
===

GJ

GJ
s e
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 The warping stiffness of the system comes from three sources: the own 
warping stiffness of the cores, the bending stiffness of the walls and the bending 
stiffness of the columns of the frameworks [Equation (5.30)]. When the first two 
items exist, the contribution of the third is normally negligible. This is the case 
now and the third source is neglected below. In addition, in this special case, the 
vertical distance between the shear centre of the cores and the shear centre of the 
system is very small (last column in Table 11.2) and the contribution of the second 
moment of area of the cores with respect to axis x is also ignored. Hence, the 
warping stiffness is calculated as:  

      ( )∑ ++=
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kykwkxkwkw xIyIIEEI
1

2
,

2
,, )()(ωω  {5.30} 

             ( ))79.48.2183.412.1084.599.1674.568.15(239(1023 22223 ⋅+⋅+⋅+⋅+⋅=  

             47640874= MNm4  

 The first term represents the “own” contribution of the cores and it amounts 
to 11.5% of the total warping torsional stiffness.  
 With the above stiffnesses, the part torsional critical loads can now be 
determined. 
 The warping torsional critical load of the system is 

      8.563
6691.11

47640874933.0837.7837.7
2222
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and the Saint-Venant torsional critical load is 

      1476
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e
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 As a function of the ratio of the above part critical loads 
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      618.2
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1476
===

ω
ϕβ

N

N t   {5.36} 

the critical load parameter is obtained from Table 5.2: 

      738.6)0.2618.2(
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624.5427.7
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−
+=ϕα  {Table 5.2} 

 Finally, the critical load of pure torsional buckling is  

      ωϕϕϕωϕ βα NsNNN tcr )1(, −−++=   

               36678.563925.0)1618.2738.6(14768.563 =⋅−−++= MN  {5.31} 

 The third term represents the effect of the interaction between the Saint-
Venant and warping torsional modes. It amounts to a considerable 44% of the total 
torsional critical load. 

11.1.5 Coupling of the basic critical loads: the global critical load of the 
building 

The centroid of the layout does not coincide with the shear centre so there is a 
coupling of basic critical loads Ncr,x, Ncr,y and Ncr,φ. As the centroid does not even 
lie on one of the principal axes, this coupling is a triple one. Any coupling reduces 
the value of the critical load so, theoretically, the effect of coupling must be taken 
into account. Eccentricity parameters τx and τy are needed for the exact calculation 
of the coupling of the critical loads: 
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 With the eccentricity parameters, the smallest root of the cubic equation  

      ( ) ( ) 001
2

2
3

=−++ bNbNbN   {5.39} 

is the critical load, where 
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 The critical load (the smallest root of the above cubic equation) is 

      2567=crN MN 

 As the very small values of eccentricity parameters τx and τy indicated, the 
coupling of the basic modes only had a small effect on the global critical load: the 
reduction (from 2589 MN to 2567 MN) is less than 1%. 
 The approximate formula [Equation {5.43}] would result in  

      1069
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1
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ϕcrycrxcr
cr NNN

N MN  

for the critical load. It is a very conservative value, due to the fact that the 
eccentricity of the system is very small. 

11.1.6 The global critical load ratio 

Assuming a uniformly distributed vertical floor load of Q = 10 kN/m2, the total 
vertical load on the building is 

      4.1582201.02036 =⋅⋅⋅== LBQnN MN {6.2} 

 The global critical load ratio is therefore 

      2.16
4.158

2567
===

N

Ncrλ   {6.3} 

indicating a satisfactory bracing system.  
 The condition 

      10≥λ   {6.5} 

is satisfied, so any vertical load bearing element can be considered as braced (by 
the bracing system) and the second-order effects (due to sway and torsion) can be 
neglected.  
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11.2 THE FUNDAMENTAL FREQUENCY 

The mass distribution factor is obtained from Table 4.1 as a function of the number 
of storeys: 

      956.0
06.222

22

06.2
=

+
=

+
=

n

n
rf  {Table 4.1} 

 With γ = 3.0, the mass density per unit length for the building is 

      2.220
81.9

20363
=

⋅⋅
===

g

A
Am

γ
ρ kg/m  {4.7} 

11.2.1 Individual bracing units 

The basic shear and bending stiffness characteristics of the two different 
frameworks are determined in this section for later use. The stiffness 
characteristics of the four cores will be incorporated into the continuum model 
directly. 

Bracing Unit 1 (framework, identical to Bracing Unit 3) 

The shear stiffness that is associated with the beams of the framework is 
unchanged [or, if a stability analysis had not been carried out, given by (4.2)]: 

      785067
3312

40.0102312
12

12 461

1

,
1, =

⋅⋅

⋅⋅⋅
==∑

−

=

n

j j

jbb
b hl

IE
K kN {5.1} or {4.2} 

 The shear stiffness that is associated with the columns of the framework is 
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 The combination of the two part shear stiffnesses gives the “original” shear 
stiffness of the framework: 
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where  
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is the reduction factor. 
 The square of the frequency associated with the “original” shear stiffness of 
Unit 1 is  

      0243.0
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 The global second moment of area of the cross-sections of the columns is 
unchanged [or, if a stability analysis had not been carried out, given by (4.9)]: 
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 The square of the frequency associated with the global full-height bending 
vibration of the framework is  
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 The factor of effectiveness for the first bracing unit is 
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Bracing Unit 2 (framework, identical to Bracing Unit 4) 

The shear stiffness that is associated with the beams of the framework is 
unchanged [or, if a stability analysis had not been carried out, given by (4.2)]: 
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 The shear stiffness that is associated with the columns of the framework is 
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 The combination of the two part shear stiffnesses gives the “original” shear 
stiffness of the framework: 
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where the reduction factor  
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is used. 
 The square of the frequency associated with the “original” shear stiffness of 
Unit 2 is  
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 The global second moment of area of the cross-sections of the columns is 
unchanged [or, if a stability analysis had not been carried out, given by (4.9)]: 
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 The square of the frequency associated with the global full-height bending 
vibration of the framework is  
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 The factor of effectiveness for Bracing Unit 2 is 
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11.2.2 Lateral vibration in direction y  

The participating bracing units in direction y are Units 2, 4, 5, 6, 7 and 8. 
 The original shear stiffness originates from the two frameworks (Units 2 
and 4):  

      501868250934242
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KKKK
f

i
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 With the effectiveness factors of Unit 2 and 4 [{4.10} above], the effective 
shear stiffness is  
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 The effectiveness factor for the whole system is 
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 The square of the frequency which is associated with shear deformation can 
now be determined using the effective shear stiffness: 
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 With EI already available from the stability analysis, the square of the 
frequency of the system in bending is obtained from 
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 With the non-dimensional parameter 
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the frequency parameter is obtained from Table 4.2 as 
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 The lateral frequency of the building in direction y is 
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 The third term covers the effect of the interaction between the bending and 
shear modes and represents a 13.6% increase in the value of the lateral frequency. 
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11.2.3 Lateral vibration in direction x  

The participating bracing units in direction x are Units 1, 3, 5, 6, 7 and 8. 
 The original shear stiffness originates from the two frameworks (Units 1 
and 3):  

      816470408235242
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 With the effectiveness factors of Unit 1 and 3 [{4.10} in Section 11.2.1], the 
effective shear stiffness is  
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 The effectiveness factor for the whole system is 
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 The square of the frequency which is associated with shear deformation can 
now be determined using the effective shear stiffness: 
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 With using bending stiffness EI from the stability analysis, the square of the 
frequency of the system in bending is obtained from 
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the frequency parameter is obtained from Table 4.2 as 
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 The lateral frequency of the building in direction x is 
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 The third term covers the effect of the interaction between the bending and 
shear modes and represents a 26.9% increase in the value of the lateral frequency. 

11.2.4 Pure torsional vibration 

All the bracing units participate in torsional vibration. 
 The effective Saint-Venant torsional stiffness of the system comes from the 
Saint-Venant torsional stiffness of the cores and the effective shear stiffness of the 
frameworks: 
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 The original Saint-Venant torsional stiffness is 
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 The effectiveness of the Saint-Venant torsional stiffness is  
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 The square of the pure torsional frequency associated with the Saint-Venant 
torsional stiffness is  
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 With the value of EIω already available from the stability analysis, the square 
of the pure torsional frequency associated with the warping torsional stiffness is 

      0230.0
2.2206691.11

10764.4956.0313.0313.0
42

102

42

2
2 =

⋅⋅

⋅⋅⋅
==

mHi

EIr
f

p

f ω
ω Hz2 {4.24} 

 As a function of torsion parameter 
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the frequency parameter is obtained from Table 4.2: 
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 With the above part frequencies and stiffness characteristics, the fundamental 
frequency for pure torsional vibration is  
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 The interaction between the Saint-Venant and warping torsional modes—
third term—amounts to a 25.3% increase in the value of the torsional frequency. 

11.2.5 Coupling of the basic frequencies: the fundamental frequency of the 
building 

As the centroid of the layout does not coincide with the shear centre, the coupling 
of the basic frequencies has to be considered. Using the values of the basic 
frequencies fx, fy and fφ—or rather their squares—and the eccentricity parameters τx 
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and τy, the smallest root of the cubic equation  
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is the fundamental frequency of the building. With 
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the fundamental frequency is 

      303.0=f Hz  

 The interaction among the basic modes results in a 6.7% reduction in the 
value of the fundamental frequency. This relatively small amount is due to the fact 
that the eccentricity of the bracing system is very small. 
 The approximate formula [Equation {4.35}] would result in  
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for the fundamental frequency. This is a very conservative value, again, due to the 
fact that the eccentricity of the system is very small. 
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11.3 MAXIMUM DEFLECTION OF THE BUILDING 

The building is subjected to a uniformly distributed horizontal load of intensity 
1.3 kN/m2 in direction y, which results in a wind load of wy = 46.8 kN/m. Due to 
this load, the top of the building undergoes a uniform translation (defined by the 
translation of the shear centre) and an “uneven” translation (due to the rotation of 
the building around the shear centre). Accordingly, the maximum translation is 
determined in two steps. 

11.3.1 Deflection of the shear centre axis 

The participating bracing units in direction y are Units 2, 4, 5, 6, 7 and 8. The 
stiffnesses of these units are needed first. 

Bracing Unit 2 (identical to Bracing Unit 4) 

Stiffness characteristics K, Ig and I calculated earlier for the frequency analysis can 
be used here for establishing the following auxiliary quantities needed for the 
calculation of the top deflection of the framework: 
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 With the above auxiliary quantities, the top deflection of the framework is 
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and the stiffness of Units 2 and 4 is 
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 The top deflections of Units 5, 6, 7 and 8 in direction y are 
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and the corresponding stiffnesses are 
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 The sum of the stiffnesses is 

      
m
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6

1
, =∑

=i

yiS  

 Bracing Unit 2 is the base unit (as there are only two—identical—
frameworks in the system). The apportioner related to Unit 2 is 
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and the load share on the Base Unit (Bracing Unit 2) is 

      518.51179.08.462 =⋅== qww y  kN/m {3.16} 
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 With 
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the top deflection of the shear centre axis is 
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The second part of the maximum deflection of the building comes from the 
rotation of the building around the shear centre, which causes additional deflection, 
in this case, at the right-hand size of the building. This additional deflection can be 
very great in many practical cases. However, in this particular case, because of the 
closeness of the centroid and the shear centre (xc = 0.329 m, calculated in Section 
11.1.4), structural engineering common sense says that this additional deflection is 
very small and is probably negligible. For the sake of completeness, however, the 
calculation of this additional deflection is presented in the following. 
 The rotation of the building around the shear centre is determined first. 
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11.3.2 Rotation around the shear centre axis 

The torsional moment that causes this rotation is 

      4.15329.08.46 =⋅== cyt xwm kNm/m  {3.29} 

 The participating bracing units are Units 1, 2, 3, 4, 5, 6, 7 and 8. The missing 
stiffness characteristics are calculated first. 

Bracing Unit 1 (identical to Bracing Unit 3) 

Stiffness characteristics K, Ig and I calculated earlier for the frequency analysis can 
be used here for establishing the following auxiliary quantities needed for the 
calculation of the top deflection of the framework: 
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 With the above auxiliary quantities, the top deflection of the framework is 
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and the stiffness of Units 1 and 3 is 
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 The stiffnesses of the four cores in direction x are also needed. Based on their 
maximum deflection in direction x 

      9612.0
021.510238

668.46

8 6

44

5 =
⋅⋅⋅

⋅
==

yEI

wH
x m  {2.82} 

https://engineersreferencebookspdf.com



212   Multi-storey Buildings 

 

      3097.1
685.310238

668.46

8 6

44

6 =
⋅⋅⋅

⋅
==

yEI

wH
x m  {2.82} 

      7239.3
296.110238

668.46

8 6

44

7 =
⋅⋅⋅

⋅
==

yEI

wH
x m  {2.82} 

      4826.0
00.1010238

668.46

8 6

44

8 =
⋅⋅⋅

⋅
==

yEI

wH
x m  {2.82} 

the corresponding stiffnesses are 
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 Using the lateral stiffnesses and the distances of the bracing units from the 
shear centre, it is now possible to determine the torsional stiffnesses: 
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 The sum of the torsional stiffnesses is 
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 Bracing Unit 1 is the base unit as it has a (slightly) greater b-value than 
Bracing Unit 2. 
 The apportioner related to Unit 1 is 
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and the moment share on Unit 1 is 

      2726.21476.0329.08.461,1, =⋅⋅=== ωω qwxqmm ct kNm/m {3.28} 

 The stiffness characteristics of the base unit are: 
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the maximum rotation of the building is 
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11.3.3 The maximum deflection of the building 

The maximum deflection occurs at the right-hand corner of the building where the 
uniform translation and the additional translation due to the rotation of the building 
add up as: 

      =⋅+=+== 67.170001481.00571.0)( maxmax xvHvv o ϕ  

                                               0597.00026.00571.0 =+= m  {3.36} 

 As structural engineering common sense indicated, the additional deflection 
due to the rotation of the building around the shear centre is small—4.3% of the 
total—compared to the uniform translation. This is due to the fact that the distance 
between the shear centre and the centroid of the layout is very short. 
 The recommended maximum deflection of the building is 

      132.0
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12 
 

The global critical load ratio: 

a performance indicator 

 

 
Chapter 6 introduced the global critical load ratio as the ratio of the global critical 
load to the total vertical load of the building. Through two sets of comprehensive 
series of worked examples involving different bracing system arrangements of the 
same building, it is shown in this chapter how the global critical load ratio is 
calculated in different situations. In addition, it is also shown here that the global 
critical load ratio is more than a simple ratio of two quantities; it also gives a 
strong indication regarding the performance of the structure. The greater the global 
critical load ratio, the better the performance of the bracing system, as far as the 
maximum top deflection, the fundamental frequency and the stability of the 
building are concerned.  
 The numbers of the equations used for the calculations are given in curly 
brackets on the right-hand side.  

12.1 TEN-STOREY BUILDING BRACED BY TWO REINFORCED 
CONCRETE SHEAR WALLS AND TWO STEEL FRAMEWORKS  

A ten-storey building with a storey height of h = 3 m will be considered for the 
case study. The length and breadth of the building are L = 15 m and B = 9 m. Two 
steel braced frameworks and two reinforced concrete shear walls are available for 
providing the building with sufficient stability. The modulus of elasticity for the 
columns, beams and diagonals of the steel frameworks is E = 2·105 MN/m2. The 
modulus of elasticity and the modulus of elasticity in shear for the reinforced 
concrete shear walls are E = 25·103 MN/m2 and G = 10.42·103 MN/m2, 
respectively. In addition to the four bracing units, concrete columns are also part of 
the vertical load carrying system but their contribution to the lateral and torsional 
stiffness is small compared to that of the bracing units and is therefore ignored for 
the calculation. It is assumed for the analysis that the shear walls only develop 
bending deformation. 
 Assume that the arrangement of the bracing units is up to the designer. Three 
different arrangements will be examined in order to show how the critical load 
ratio is able to monitor the performance of the bracing system and to find an 
optimum solution. The weight per unit volume of the building (for the dynamic 
analysis) is γ = 3 kN/m3. A vertical floor load intensity of Q = 10 kN/m2 is 
considered for the stability analysis and for the determination of the global critical 
load ratio. When the structures are subjected to lateral load and the top rotation and 
deflection are calculated, a uniformly distributed horizontal load of intensity 
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q = 17.0 kN/m is considered, whose resultant makes 50° with axis x. The load 
components of this wind load are 

      9.1050cos17 −=⋅−= o

xq kN/m        and          0.1350sin17 −=⋅−= o

yq kN/m 

representing a total horizontal load with a resultant of F = 510 kN, whose 
components are 

      327−=xF kN                    and                    390−=yF kN 

a) Steel braced frame 

15/250 

356x171x45UB 0.25/3 

b) Reinforced concrete shear wall 

305x305xUC137 

H = 30 m 

 3 m 3 m 

 
Figure 12.1 Bracing units for the ten-storey building. 

 
 The basic characteristics of the bracing units are summarised in Table 12.1. 
 

Table 12.1 Cross-sectional characteristics for the bracing units. 

Steel framework with double cross-bracing 
Characteristics 

Columns Beams  Diagonals 
Shear wall 

Cross-section 305×305UC137 356×171×45UB 15/250 0.25 m×3 m 
A [m2] 1.74⋅10-2 5.73⋅10-3 3.75⋅10-3 0.75 
I1 [m

4] 3.281⋅10-4 1.207⋅10-4 1.953⋅10-5 0.5625 
I2 [m

4] - - - 3.906·10-3 
J  [m4] - - - 1.5625·10-2 

12.1.1 The critical load of the individual bracing units 

Before the three different arrangements are investigated, the critical load of the 
shear wall and of the framework with double cross-bracing is calculated. For both 
structures, the load distribution factor is obtained from Table 5.1 as 

      863.0=sr   {Table 5.1} 
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Shear wall 

The critical load of the shear wall is 

      7.105
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863.05625.01025837.7837.7
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N s

cr MN {2.74} 

Framework with double cross-bracing 

The procedure for the calculation of the critical load of the braced frame is 
presented in Section 2.4.1. The shear stiffness of the framework is needed first: 

      2.530
243.4
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1021075.322
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 The global second moment of area  

      0783.025.11074.1 22

1

2
, =⋅⋅⋅== −∑

n

iicg tAI m4 {2.32} 

is needed for the full-height global bending buckling of the framework. This 
critical load is 

      7.117
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2
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 With  

      5.4
7.117
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===

g
s N

K
β   {2.62} 

the critical load parameter is obtained from Table 2.5 as 

      2006.0=sα   {Table 2.5} 

and the critical load of the framework is 

      4.1062.5302006.0 =⋅== KN scr α  MN {2.61} 

 The effectiveness of the shear stiffness is given by 

      1817.0
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7.117
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=

+
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N
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12.1.2 Case 1: an unacceptable bracing system arrangement 

The bracing arrangement shown in Figure 12.2 is deliberately chosen as one 
obviously not appropriate for a ten-storey building. Nevertheless, it is included in 
the investigation as it illustrates spectacularly how the critical load ratio pinpoints 
the weakness(es) of the bracing system.  
 With the critical loads of the individual bracing units now available, the first 
step is to establish the location of the shear centre. Because of symmetry, only 
direction x requires calculation: 

      24.11
7.10524.1062

157.10525.74.1062

1
,

1
,
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⋅+⋅
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==
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iy

mf

iiy
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xN

x m,     5.4=oy m {5.37} 

 xc = 3.74 

 xo = 11.24 

3 3 

L = 15 m 

 x 

 y 4 

1 

2 

C O 3 

3 

B = 9 m 

 7.5  7.5 

 x 

 y 

 yo = 4.5 

 q 

 
Figure 12.2 Case 1: An unacceptable bracing arrangement. 

12.1.2.1 Stability analysis 

The three basic (sway in directions x and y and pure torsional) critical loads will be 
calculated then the coupling of the modes will be considered.  

Direction y 
The effective shear stiffness of the system (with two frameworks) is 

      7.1921817.02.5302
1

=⋅⋅==∑
f

iie sKK MN {5.10} 

 The effectiveness factor for the whole system is 
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 The total bending stiffness of the system is obtained by adding up the local 
bending stiffness of the vertical structural units: 

      ( )210255625.010210281.32 354 ⋅⋅+⋅⋅⋅⋅=+= −
wwcc IEIEEI   

                                   28387= MNm2   {5.12} 

 The contribution of the four columns (first term) is less than 1%. 
 The local bending critical load of the system is 

      3.213
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 With 

      90.0
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the critical load parameter is 

      3448.3=α   {Table 5.2} 

 The critical load in direction y is now obtained as 

      lelycr sNKNN )1(, −−++= βα   {5.18} 

                2.4623.2131817.0)19.03448.3(7.1923.213 =⋅−−++= MN 

 The effect of the interaction between the bending and shear modes (third 
term) amounts to 12.1%. 

Direction x 
No bracing is provided for lateral stability in direction x and only the shear walls 
(normally ignored in the direction perpendicular to their plane) offer nominal 
resistance:  

      5.1
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863.0003906.021025837.7837.7
2
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 Before pure torsional buckling can be investigated, the distance between the 
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shear centre and the centroid of the layout is needed: 

      74.324.11
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Pure torsional buckling 
The radius of gyration is needed first: 
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 The “original” Saint-Venant torsional stiffness originates from the shear 
walls and the frameworks as 
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               1515874.32.5302015625.01042.102 23 =⋅⋅+⋅⋅⋅= MN 

 The contribution of the own Saint-Venant stiffness of the shear walls (first 
term) is very little: 2.1%. 
 The effective Saint-Venant torsional stiffness is 

      ( )∑∑ ++=
f

iyieixie

m

ke xKyKGJGJ
1

2
,

2
,

1

)()()(  {5.29} 

                 302174.31817.02.5302015625.01042.102 23 =⋅⋅⋅+⋅⋅⋅= MNm2 

 The Saint-Venant torsional critical load that is associated with this stiffness is  

      50.76
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 The effectiveness factor is 
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 The warping torsional stiffness of the system originates from the two shear 
walls and the columns of the frameworks. In neglecting the contribution of the 
columns, it is 
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 The warping torsional critical load of the system is 
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ω
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N
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the critical load parameter is obtained from Table (5.2) as 

      596.3)0.101.1(
0.10.2

5758.3624.5
5758.3 =−

−

−
+=ϕα  {Table 5.2} 

and the critical load for pure torsional buckling is 

      ωϕϕϕωϕ βα NsNNN tcr )1(, −−++=  {5.31} 

                1.1767.751993.0)101.1596.3(5.767.75 =⋅−−++= MN 

 The effect of the interaction between the Saint-Venant and warping torsional 
modes (third term) is 13.6%. 
 With the three basic modes, their coupling must be considered. 

Mode coupling 
The arrangement of the bracing system is monosymmetric and the centroid of the 
vertical load of the building lies on axis x. Two things may happen. Sway buckling 
may develop in direction x (defined by Ncr,x) or buckling in direction y (Ncr,y) 
couples with pure torsional buckling (Ncr,φ). The critical load of this coupled 
buckling is obtained approximately as  

      5.127
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 The critical load of the building is the smaller one of Ncr,x and Nyφ, i.e.: 

      5.1,!Min , == ϕyxcrcr NNN MN  {5.45} 
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 The total load on the building is 

      5.131001.0915 =⋅⋅⋅== LBQnN MN {6.2} 

and the global critical load ratio is 

      11.0
5.13

5.1
===

N

Ncrλ   {6.3} 

showing a totally unacceptable, unstable bracing system. 

12.1.2.2 Frequency analysis 

As with the stability analysis, the three basic (lateral in directions x and y and pure 
torsional) frequencies will be calculated then the coupling of the modes will be 
considered. (For practical reasons, instead of the basic frequencies themselves, 
their squares will be used.) 
 Mass distribution factor rf is obtained from Table 4.1 as a function of the 
number of storeys as 

      911.0=fr   {Table 4.1} 

 The mass density per unit length is needed for each basic frequency:  

      28.41915
81.9

3
=⋅=== A

g
Am

γ
ρ kg/m {4.7} 

 The above value is related to the whole building. Nevertheless, it can also be 
used for the calculation of the frequencies of the individual bracing units as, 
eventually, the frequency values of the individual bracing units will be used for the 
determination of the fundamental frequency of the whole building. 
 Before the whole system is investigated, it is useful to determine the 
effectiveness factor for the framework (which is different from the effectiveness 
factor relating to stability). To this end, the frequencies that belong to both the 
original shear stiffness and the global bending stiffness are needed. These are: 

      7402.0
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and 
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 The effectiveness factor is now obtained as 
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 The lateral frequencies can now be investigated. 

Direction y 
With the total bending stiffness of the system [{5.12} in the beginning of Section 
12.1.2], the lateral frequency of the system in bending is obtained from 

      2205.0
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 The total effective shear stiffness is 
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and the effectiveness factor for the system is 
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K
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 The lateral frequency which is associated with shear deformation can now be 
determined using the effective shear stiffness: 
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 With the non-dimensional parameter 
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the frequency parameter is obtained as 

      905.0)0.2179.2(
0.25.2
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8628.0 =−
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−
+=η  {Table 4.2} 

and the lateral frequency in direction y is 
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            696.02205.03758.01
5
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−−++= Hz 

 
Direction x 
As with the stability analysis, the system is very weak in direction x and the lateral 
frequency is determined by the small stiffness of the shear walls perpendicular to 
their plane. (This stiffness is normally neglected in practical structural engineering 
calculations.) 
 The lateral frequency is 

      0039.0
28.41

003906.021025

30

911.056.056.0 6
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f yf
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Pure torsional vibration 
The “original” Saint-Venant torsional stiffness originates from the shear walls and 
the frameworks. Its value is now identical for both the stability and the frequency 
analyses 

      ( )∑∑ ++=
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iyiixi
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k xKyKGJGJ
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)()()(  {5.35} or {4.27} 

               1515874.32.5302015625.01042.102 23 =⋅⋅+⋅⋅⋅= MNm2 

 With the effectiveness factor of the frameworks for the frequency analysis 
[see {4.10} above], the effective Saint-Venant torsional stiffness of the system is 

      ( )∑∑ ++=
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                 242074.31412.02.5302015625.01042.102 23 =⋅⋅⋅+⋅⋅⋅= MNm2 

 The effectiveness of the Saint-Venant torsional stiffness is expressed by the 
factor 

      3996.0
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2420
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GJ
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 The warping torsional stiffness of the system is again identical for both the 
stability and the frequency analyses. In neglecting the contribution of the columns 
again, it is 
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               397620276.35625.025000 2 =⋅⋅⋅= MNm4  

 With the radius of gyration from the stability analysis, the two contributors to 
the pure torsional frequency can now be produced: 
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 With torsion parameter 
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the vibration parameter can now be obtained using Table 4.2: 
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 The frequency for pure torsional vibration is 
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Coupling of the vibration modes 
Pure torsional vibration and lateral vibration in direction y combine. The value of 
the combined frequency can be approximated as 
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 As the frequency of lateral vibration in direction x is (much) smaller, the 
fundamental frequency of the building is this smaller value: 

      039.0=xf Hz  {2.73} 

12.1.2.3 Maximum deflection 

Based on the results in the previous two sections, it can be safely stated that the 
building is much more vulnerable in direction x and, as an approximation, only 
direction x is considered. Compared to the shear walls, the two frameworks offer 
negligible resistance and—in line with structural engineering common practice—
their contribution is ignored. 
 The maximum deflection of the building is calculated as 

      65.5
10906.3210258

309.10

8
)(
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max =
⋅⋅⋅⋅⋅

⋅
===

−
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EI
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Hxx m {2.72} 

 In summary, the bracing system is clearly unacceptable: the maximum 
deflection is far too great, the fundamental frequency is very small and, above all, 
the building is not stable. The inadequacy of the system is clearly indicated by the 
value of the critical load ratio (λ = 0.11). For a theoretically stable bracing system, 
this value must be greater than 1.0 and, preferably, it should be greater than 10.0. 
 The main weakness of the bracing system lies in the lack of bracing in 
direction x. To improve the performance of the building, the two frameworks are 
rotated by 90 degrees and are moved to the left-hand side of the building to create 
a more balanced arrangement (Figure 12.3). 

12.1.3 Case 2: a more balanced bracing system arrangement 

The arrangement shown in Figure 12.3 remedies a fatal problem with Case 1, 
namely, this time the system has considerable stiffness in direction x as well. It 
remains to be seen if the improvement is great enough to result in an adequate 
bracing system. 

12.1.3.1 Stability analysis 

The three basic (sway in directions x and y and pure torsional) critical loads will be 
calculated then the coupling of the modes will be considered.  

Direction y 
Buckling in direction y is resisted by the two shear walls. The corresponding 
critical load is 

      4.2117.1052, =⋅=ycrN MN  {2.74 in Section 12.1.1} 
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Direction x 
Buckling in direction x is resisted by the two frameworks. The corresponding 
critical load is 

      8.2124.1062, =⋅=xcrN MN  {2.61 in Section 12.1.1} 

 xo = 15.0 

 y 

 t = xc = 7.5 

3 3 

L = 15 m 

 x 

4 

1 

2 

C O 3 

3 

B = 9 m 

 7.5 

 x 

 y 

 yo = 4.5 

 q 

“A” 

 
Figure 12.3 Case 2: A more balanced bracing arrangement. 

 
Pure torsional buckling 
Because of the symmetric arrangement of the two shear walls and of the two 
frameworks, the location of the shear centre is readily available: 

      0.15=ox m           5.4=oy m   

 The radius of gyration is 

      04.975.815.7
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 In addition to the own Saint-Venant torsional stiffness of the shear walls, 
only the two frameworks contribute to the torsional resistance (as the shear walls 
has zero perpendicular distance from the shear centre).  
 The “original” Saint-Venant torsional stiffness of the system is 
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              217995.42.5302015625.01042.102 23 =⋅⋅+⋅⋅⋅= MNm2 

 The contribution of the shear walls (first term) is only 1.5%. 
 With the effectiveness factor [{5.9} in Section 12.1.1] the effective Saint-
Venant torsional stiffness is 
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                42275.41817.02.5302015625.01042.102 23 =⋅⋅⋅+⋅⋅⋅= MNm2 

 As the contribution of the columns of the frameworks is negligible and the 
perpendicular distance of the shear walls from the shear centre is zero, the warping 
torsional stiffness is 

      0≅ωEI   {5.30} 

and the critical load for pure torsional buckling is defined by the Saint-Venant 
torsional critical load as 

      7.51
75.81

4227)(
2, ====
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e
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i

GJ
NN ϕ MN {5.31} & {5.33} 

 As the arrangement of the bracing system is monosymmetric and the centroid 
of the vertical load of the building lies on axis x, buckling in direction y (Ncr,y) 
couples with pure torsional buckling (Ncr,φ). The critical load of this combined 
buckling is obtained from 
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 The critical load of the building is the smaller one of Ncr,x and Nyφ, i.e.: 

      5.41,!Min , == ϕyxcrcr NNN MN  {5.45} 

 With the total vertical load on the building (N = 13.5MN), the global critical 
load ratio is now 

      1.3
5.13

5.41
===

N

Ncrλ   {6.3} 

indicating a stable building and a big improvement on Case 1, as far as stability is 
concerned. The situation regarding the fundamental frequency and the maximum 
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deflection of the building will be looked at in the next two sections. 
 The above values of the basic critical loads indicate that the stability of the 
system is limited by the relatively small value of pure torsional buckling. 

12.1.3.2 Frequency analysis 

The three basic (sway in directions x and y and pure torsional) frequencies will be 
calculated then the coupling of the modes will be considered. The behaviour of the 
building is very similar to that with the stability analysis. 

Direction y 
Vibration in direction y is resisted by the two shear walls. The corresponding 
lateral frequency is 

      468.0
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5625.021025
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Direction x 
Vibration in direction x is resisted by the two frameworks of identical 
characteristics. The effectiveness factor is needed first. With the squares of the two 
participating frequencies 
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the effectiveness factor assumes the value 
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and the combined effective shear stiffness of Unit 1 and Unit 2 is 

      728.14922.5301412.0
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2
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 The lateral frequency which is associated with shear deformation can now be 
determined using the effective shear stiffness: 
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 Using the “original” and the effective shear stiffnesses, the effectiveness for 
the whole system is obtained as 
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 The local bending stiffness of the two frameworks is  
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 With the above bending stiffness, the lateral frequency of the system in 
bending is 
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 With the non-dimensional parameter 
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the frequency parameter is obtained using Table 4.2 as 
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 Finally, the frequency for lateral vibration in direction x is 
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Pure torsional vibration 
The situation is similar to the stability analysis in that only the two frameworks 
contribute to the resistance against torsional vibration. The “original” Saint-Venant 
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torsional stiffness is  
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               217995.42.5302015625.01042.102 23 =⋅⋅+⋅⋅⋅= MNm2 

(that can also be taken from the stability analysis), and the effective Saint-Venant 
torsional stiffness [using {4.11} above] is  

      ( )∑∑ ++=
f

iyieixie

m

ke xKyKGJGJ
1

2
,

2
,

1

)()()(  {4.21} 

                 33585.4728.149015625.01042.102 23 =⋅+⋅⋅⋅= MNm2 

 As with the stability analysis, the contribution of the columns of the 
frameworks is negligible and the perpendicular distance of the shear walls from the 
shear centre is zero, so the warping torsional stiffness is 

      0≅ωEI    {4.22} 

 The frequency for pure torsional vibration simplifies to 
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 Assuming uniform mass distribution, the centroid of the mass lies on axis x, 
and therefore lateral vibration in direction y couples with pure torsional vibration. 
The resulting coupled vibration is obtained as 
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 This combined frequency is smaller than fx = 0.469, so the fundamental 
frequency of the building is 

      213.0,!Min == ϕyx fff Hz  {4.37} 

 It is clear from the above values that resistance to torsion is relatively small. 
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12.1.3.3 Maximum deflection 

The two components of the wind load will be treated separately. When wind load 
in direction x is considered, the arrangement is symmetric and the wind is resisted 
by two identical frameworks. It is enough to work with half of the structure (one 
framework) and half of the load: 

      46.5)50cos17(
2

1
=⋅= o
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the maximum deflection is 
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 When the component of the wind in direction y is considered (wy = 13 kN/m), 
the maximum deflection is obtained in two steps. First, the deflection of the shear 
centre has to be determined, caused by the wind load acting through the shear 
centre, then the additional deflection due to the rotation of the building around the 
shear centre has to be added. 
 In the first case the load is resisted by the two shear walls and the maximum 
deflection is 

      0468.0
5625.0210258

3013
6

4

=
⋅⋅⋅⋅

⋅
=ov m  {2.72} 

 In addition to this uniform deflection, the torsional moment 

      67.975.750sin17 =⋅°⋅== cy xwm kNm/m {3.28} 
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develops rotation around the shear centre, which leads to additional deflection. The 
torsional moment is balanced by the torsional resistance of the two frameworks. 
(The two shear walls have zero perpendicular distance from the shear centre so 
they cannot take part.) 
 The global warping torsional stiffness of the frameworks is 

      63423025.41083.7102 2252 =⋅⋅⋅⋅⋅== −tEIEI ggω MNm4 {3.20} 

 The Saint-Venant torsional stiffness of the frameworks is 

      1.2147325.42.530)( 22 =⋅⋅== KtGJ MNm2 {3.21} 

 The local warping torsional stiffness of the frameworks is negligible and is 
therefore ignored so the warping torsional stiffness of the system is 

      0≅ωEI   {3.19} 

 With the above torsional stiffnesses, the rotation of the building around the 
shear centre can now be determined: 
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 The maximum displacement of the building develops at the top at the left-
hand side corner of the plan of the building (point “A“ in Figure 12.3) and, making 
use of the angle of rotation, is obtained from  

      311.0150176.00468.0)( maxmax =⋅+=+== xvHvv o ϕ m {3.36} 

where xmax is the distance of the corner point (where maximum deflection occurs) 
from the shear centre. It is clear from Equation {3.36} that the overwhelming 
majority of the maximum deflection of the building is caused by the rotation of the 
system. 
 The maximum deflection in the wind direction is 

      315.0311.00468.0 22
max =+=d m 

 As the increase in the value of the critical load ratio indicated, the 
performance of “Case 2” improved drastically, compared to “Case 1”: the critical 
load and the fundamental frequency increased considerably and the maximum 
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deflection decreased. However, further improvements are possible as the next 
section will demonstrate. 

12.1.4 Case 3: an effective bracing system arrangement 

As the results in the previous section show, the efficiency of “Case 2” was limited 
mainly because of its relatively poor performance in torsion. It is therefore the 
torsional resistance of the system that is improved in this section by rearranging the 
bracing units again in such a way that Bracing Units 1 and 3 are exchanged 
(Figure 12.4). The resulting bracing system is doubly symmetric, still has 
considerable lateral stiffness in both principal directions and its torsional resistance 
is increased by the fact that all four bracing units now have “torsion arms” (i.e. 
perpendicular distances from the shear centre). 

12.1.4.1 Stability analysis 

The three basic (sway in directions x and y and pure torsional) critical loads will be 
calculated then the coupling of the modes will be considered.  

 xo = 7.5 

 y 

 7.5 

3 3 

L = 15 m 

 x 

4 

1 

2 

C 
O 

3 

3 

B = 9 m 

 x 

 y 

 yo = 4.5 

 q 

 
Figure 12.4 Case 3: A doubly symmetric arrangement. 

 
Direction y 
Buckling in direction y is resisted by the two shear walls. The corresponding 
critical load is identical to that of “Case 2”: 

      4.2117.1052, =⋅=ycrN MN  {2.74 in Section 12.1.1} 

Direction x 
Buckling in direction x is resisted by the two frameworks. The corresponding 
critical load is again identical to that of  “Case 2”: 
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      8.2124.1062, =⋅=xcrN MN  {2.61 in Section 12.1.1} 

Pure torsional buckling 
Because of the doubly symmetric arrangement of the two shear walls and of the 
two frameworks, the location of the shear centre is readily available: 

      5.7=ox m,             5.4=oy m   

 The radius of gyration is 

      05.55.25
12

915

12

22
2

22

==
+

=+
+

= t
BL

ip m {5.28} 

 The “original” and effective Saint-Venant torsional stiffnesses of the two 
frameworks are identical to that of “Case 2” (Section 12.1.3):  

      217995.42.5302015625.01042.102)( 23 =⋅⋅+⋅⋅⋅=GJ MNm2 {5.35} 

and 

      42275.41817.02.5302015625.01042.102)( 23 =⋅⋅⋅+⋅⋅⋅=eGJ MNm2 {5.29} 

 The effectiveness of the Saint-Venant torsional stiffness is expressed by the 
factor 

      194.0
21799

4227

)(

)(
===

GJ

GJ
s e
ϕ   {5.34} 

 With the contribution of the shear walls, the warping torsional stiffness is: 

      ( )∑ ++=
m

kykwkxkwkw xIyIIEEI
1

2
,

2
,, )()(ωω  {5.30} 

             158203125.75625.01025 23 =⋅⋅⋅⋅= MNm4 

 With the part critical loads 

      2.466
305.25

1582031863.0837.7837.7
222

=
⋅

⋅⋅
==

Hi

EIr
N

p

s ω
ω MN {5.32} 

and  
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      8.165
5.25

4227)(
2

===
p

e
t

i

GJ
N MN  {5.33} 

the critical load parameter can be obtained as a function of  

      3556.0
2.466

8.165
===

ω
ϕβ

N

N t   {5.36} 

from Table 5.2 as 

      00.2)3.03556.0(
3.04.0

8556.11226.2
8556.1 =−

−

−
+=ϕα  {Table 5.2} 

 The critical load for pure torsional buckling is 

      ωϕϕϕωϕ βα NsNNN tcr )1(, −−++=  {5.31} 

               3.6902.466194.0)13556.00.2(8.1652.466 =⋅−−++= MN 

 As the arrangement of the bracing system is doubly symmetric and the 
centroid of the vertical load of the building coincides with the shear centre of the 
bracing system, the critical load of the building is the smallest one of the three 
basic critical loads: 

      4.211,,!Min ,,, == ϕcrycrxcrcr NNNN MN {5.46} 

 With the total vertical load on the building (N = 13.5MN), the global critical 
load ratio is now 

      107.15
5.13

4.211
>===

N

Ncrλ   {6.3} and {6.5} 

indicating a stable building and a big improvement on “Case 2”. Its value also 
exceeds the recommended value. The situation regarding the fundamental 
frequency and the maximum deflection of the building will be looked at in the next 
two sections. 

12.1.4.2 Frequency analysis 

The three basic frequencies will be determined and then their coupling will be 
considered. 

Lateral vibration 
The situation is similar to that with the stability analysis in that the lateral 
frequencies are unchanged (i.e. identical to those of “Case 2”): 
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      467.0=xf Hz  {Section 12.1.3} 

      468.0=yf Hz  {Section 12.1.3} 

Pure torsional vibration 
The “original” Saint-Venant torsional stiffness is  

      ( )∑∑ ++=
f

iyiixi

m

k xKyKGJGJ
1

22

1

)()()(  {4.27} 

              217995.42.5302015625.01042.102 23 =⋅⋅+⋅⋅⋅= MNm2 

(that can also be taken from the stability analysis), and the effective Saint-Venant 
torsional stiffness [using {4.11} above] is  

      ( )∑∑ ++=
f

iyieixie

m

ke xKyKGJGJ
1

2
,

2
,

1

)()()(  {4.21} 

                33585.4728.149015625.01042.102 23 =⋅+⋅⋅⋅= MNm2 

 The effectiveness of the Saint-Venant torsional stiffness is expressed by the 
factor 

      392.0
21799

3358

)(

)(
===

GJ

GJ
s e
ϕ   {4.26} 

 With the contribution of the two shear walls, the warping torsional stiffness 
is:  

      ( )∑ ++=
m

kykwkxkwkw xIyIIEEI
1

2
,

2
,, )()(ωω  {4.22} 

              158203125.75625.01025 23 =⋅⋅⋅⋅= MNm4 

(which can also be taken from the stability analysis). 
 The two contributors to the pure torsional frequency are: 

      482.0
28.41305.25

10582.1911.0313.0313.0
4

92

42

2
2 =

⋅⋅

⋅⋅⋅
==

mHi

EIr
f

p

f ω
ω Hz2 {4.24} 

and  
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      184.0
28.41305.2516

3358000911.0

16

)(
2

2

22

2
2 =

⋅⋅⋅

⋅
==

mHi

GJr
f

p

ef
t Hz2 {4.25} 

 With torsion parameter 

      382.1
1582031

3358
30

)(
===

ω
ϕ EI

GJ
Hk e  {4.28} 

the frequency parameter is obtained using Table 4.2: 

      728.0)0.1382.1(
0.15.1

6542.07511.0
6542.0 =−

−

−
+=ϕη   {Table 4.2} 

 The frequency for pure torsional vibration can now be determined: 

      2
22

22 1
5313.0 ωϕ
ϕϕ

ωϕ

η
fs

k
fff t 








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


−−++=   (4.23) 

           851.0482.0392.01
5

382.1

313.0

728.0
184.0482.0

22

=⋅









−−++= Hz 

 As the arrangement of the bracing system is doubly symmetric and the 
centroid of the mass of the building coincides with the shear centre of the bracing 
system, no coupling occurs and the fundamental frequency of the building is the 
smallest one of  fx,  fy  and  fφ, i.e.: 

      467.0,,!Min == ϕffff yx Hz  {4.38} 

12.1.4.3 Maximum deflection 

The wind load in direction y is resisted by the two shear walls in a symmetric 
arrangement and the corresponding deflection is 

      0468.0
5625.0210258

300.13

8
)(

6

44

max =
⋅⋅⋅⋅

⋅
===

x

y

EI

Hq
Hxy m {2.72} 

 When wind load in direction x is considered, the arrangement is also 
symmetric and the wind is resisted by two identical frameworks. The situation is 
identical to that discussed in detail in Section 12.1.3 with “Case 2” and the 
corresponding deflection is 
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      0395.0max =x m   {2.24 in Section 12.1.3} 

 The maximum deflection in the wind direction is 

      0612.00395.00468.0 22
max =+=d m  

 The two weaknesses of the original bracing arrangement have been 
eliminated in two steps: the problem of the practically non-existent lateral stiffness 
was addressed with “Case 2” and then the still poor torsional behaviour was 
improved with “Case 3”. The change in the value of the global critical load ratio 
spectacularly shows its usefulness in monitoring the efficiency of the bracing 
system. 

12.2 FIVE-STOREY BUILDING BRACED BY A SINGLE CORE 

Kollár’s (1977) classic five-storey building was first used to show how a single 
core is best used to be effective against torsional buckling. The worked example 
here will demonstrate that, in addition to stability, the global critical load ratio also 
“handles” frequencies, rotations and deflections and identifies efficient and 
inefficient bracing system arrangements.  
 The vertical load of the building is carried by columns but their lateral and 
torsional stiffness is very small and is therefore ignored is the calculations. It is 
assumed that the lateral and torsional stiffness of the building is provided by a 
U-core (Figure 12.5/b). The basic geometrical, stiffness and loading characteristics 
are as follows: 

 Size of ground plan: L = 26 m, B = 14 m 
 Storey height: h = 3.0 m, number of storeys: 5 
 Height of building: H = 15 m 
 Modulus of elasticity: E = 23000 MN/m2 
 Modulus of elasticity in shear: G = 9580 MN/m2 
 Floor load (for the stability analysis): Q = 8 kN/m2 

 Wind load (for the deflection analysis): w = 1.0 kN/m2 in direction y 
 Weight per unit volume of the building (for the frequency analysis):  
     γ = 3.0 kN/m3 

The load distribution factor for the stability analysis is 

      759.0=sr   {Table 5.1} 

and the mass distribution factor for the frequency analysis is 

      842.0=fr   {Table 4.1} 

As the size of the building and of the sole bracing unit is given, the structural 
performance of the building is governed by the location of the core. Two locations 
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will be considered with and without taking into consideration the possibility that 
the open U-core can partially be closed. This results in four cases. In the four cases 
the maximum rotation and the maximum deflection, the fundamental frequency, 
the global critical load and the global critical load ratio of the building will be 
determined. 
 The equations related to U-cores given in Tables 2.7 and 2.8 are used for 
determining the stiffness characteristics of the U-core. 

12.2.1 Layout A: open core in the right-hand side of the layout 

The bracing core is first placed in the lower right-hand corner of the layout in such 
a way that the shear centre of the core is in the middle of size B of the building 
(Figure 12.5/a). The geometrical and stiffness characteristics of this case are 
collected in the first row in Table 12.2. 

 xc = 11.0 

 xo = xmax = 24.0 

L = 26 m 

 x 

 y 

C O B = 14 

 x 

 y 

0.7 2.6 9.7 
 yo = 7.0 

1.4 
3.2 

2.4 

h = 3.2 

e = 1.4
O 

 b=2.6 

 t=0.2 

 a)   b)  

wy 

 
Figure 12.5 Kollár’s building. a) Layout A, b) bracing core. 

 
 

Table 12.2 Geometrical and stiffness characteristics. 

Layout Ix Iy J Iω ox  oy  xc yc ip 

“A” 2.045 2.466 0.024 2.51 24.0 7.00 11.0 0.00 13.92 
“B” 2.045 2.466 0.024 2.51 13.0 7.00  0.0 0.00  8.52 
“C” 2.479 2.599 1.450 0.00 24.0 8.70 11.0 1.70 14.00 
“D” 2.479 2.599 1.450 0.00 13.0 7.00  0.0 0.00  8.52 

12.2.1.1 Maximum rotation and deflection 

The w = 1 kN/m2 wind load intensity represents a wy = Lw = 26.0 kN/m wind load 
per unit height in direction y. The total torsional moment is 
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      2861126 =⋅== cyt xwm kNm/m  {3.29} 

 With torsion parameter 

      947.0
51.223000

024.09580
15 =

⋅

⋅
==

ωEI

GJ
Hk  {2.88} 

the maximum rotation of the building can be calculated as 

      




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
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==
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H zϕϕ  {2.89} 

               02335.0
2

1
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)947.0tanh(

)947.0cosh(947.0

1)947.0cosh(

024.01058.9

15286
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
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




+−

−

⋅⋅

⋅
= rad  

 Maximum deflection develops at the left-hand side of the building at 
xmax = 24.0. It consists of two parts. The top layout of the building undergoes a 
uniform translation of  

      0035.0
045.210238

1526

8
)(

6

44

=
⋅⋅⋅

⋅
===

x

y
o EI

Hw
Hvv m {2.83} 

 The rotation around the shear centre causes additional deflection and the total 
maximum deflection is calculated as 

      2402335.00035.0)( maxmax ⋅+=+== xvHvv o ϕ   

                                               564.05604.00035.0 =+= m {3.36} 

 As the recommended maximum deflection is   

      030.0
500

15

500ASCE ===
H

v m 

the bracing of the building is clearly unacceptable. 

12.2.1.2 Fundamental frequency 

The mass density per unit length for the building is  

      3.1111426
81.9

3
=⋅=== A

g
Am

γ
ρ kg/m {4.7} 
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 The lateral frequencies in directions x and y are calculated using the formulae 
given for cores but with the above mass density (which relates to the whole 
building): 

      50.1
3.111

466.21023

15

842.056.056.0 6

22
=

⋅⋅⋅
==

m

EI

H

r
f yf

x Hz  {2.97} 

and 

      36.1
3.111

045.21023

15

842.056.056.0 6

22
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EI

H

r
f xf

y Hz {2.97} 

 The frequency of pure torsional vibration of the building is obtained using the 
formula given for a single core but with the radius gyration that relates to the 
whole layout area as the mass is distributed over the whole floor area of the 
building:  

      92.1311
12

1426

1212
2

22
2

22
2

22

=+
+

=+
+

=+
+

= cp x
BL

t
BL

i m {4.20} 

 With using the torsion parameter calculated earlier, the frequency parameter 
for pure torsional vibration is obtained from Table 4.2: 

      647.0)5.0947.0(
5.00.1

5851.06542.0
5851.0 =−

−

−
+=ϕη  {Table 4.2} 

and the pure torsional frequency is 

      125.0
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51.21023
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 The centroid of the layout lies on axis x of the coordinate system whose 
origin is the shear centre of the core—which now is the whole bracing system—
and therefore there is a coupling of lateral vibration in direction y and pure 
torsional vibration. One of the frequencies (fφ) is much smaller than the other. In 
such cases it is favourable to use the approximate formulae for taking into account 
the effect of coupling as they offer a very simple solution with good accuracy. 
Hence 

      124.0
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 This frequency is smaller than that of lateral vibration in direction x, so the 
fundamental frequency of the building is  

      124.0,!Min == ϕyx fff Hz  {4.37} 

 This is a very small value considering other buildings of similar size and 
mass. 

12.2.1.3 Global critical load and critical load ratio 

The critical load for sway buckling in direction x is calculated using the relevant 
second moment of area of the core: 

      1499
15

759.0466.21023837.7837.7
2
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2, =
⋅⋅⋅⋅

==
H

rEI
N sy

xcr MN {2.92} 

 In a similar way, the sway buckling load in direction y is 

      1244
15

759.0045.21023837.7837.7
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==
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ycr MN {2.92} 

 The critical load of pure torsional buckling is obtained using the formula 
given for a single core but with the radius gyration that relates to the whole layout 
area as the load is distributed over the whole floor area of the building. The radius 
of gyration is 

      92.1311
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1426

1212
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=+
+
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+

= cp x
BL

t
BL

i m {5.28} 

 The non-dimensional parameter  

      086.1
51.223000759.0

024.09580
15 =

⋅⋅

⋅
==

ωEIr

GJ
Hk

s
s  {2.95} 

is also needed as the critical load parameter α is obtained as a function of ks: 

      286.11)0.1086.1(
0.11.1

77.1037.11
77.10 =−

−

−
+=α   {Table 2.10} 

 The critical load for pure torsional buckling is now obtained as 

      3.11
1592.13

51.21023759.0286.11
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 When the coupling of the basic critical loads is considered, the situation is 
similar to that of vibration. There is a coupling of sway buckling in direction y and 
pure torsional buckling. One of the critical loads (Ncr,φ) is much smaller than the 
other one and the relevant summation formula is used: 

      2.11
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1

1244
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 This critical load is smaller than that of sway buckling in direction x, so the 
critical load of the building is  

      2.11,!Min , == ϕyxcrcr NNN MN   {5.45} 

 The total vertical load on the five floors is 

      56.145008.01426 =⋅⋅⋅== LBQnN MN {6.2} 

and the global critical load ratio  

      8.0
56.14

2.11
===

N

Ncrλ   {6.3} 

reveals an unstable building. 
 The bracing of the building is totally unacceptable and the examination of the 
relevant figures related to the top deflection, fundamental frequency and stability 
points to a weak torsional performance. The torsional resistance of the building is 
small, for two reasons. One, the torsional stiffness of the core is small and two, the 
distance between the centroid of the layout and the shear centre is great. 
 In the following section an attempt is made to remedy the situation by 
moving the core to a more favourable position. 

12.2.2 Layout B: open core in the centre of the layout  

The bracing core is moved to the centre in such a way that its shear centre and the 
centroid of the layout coincide (Figure 12.6). 
 The geometrical and stiffness characteristics of this case are collected in the 
second row in Table 12.2 in the previous section. 

12.2.2.1 Maximum rotation and deflection 

As the resultant of the wind load passes through the shear centre, there is no 
rotation around the shear centre: 

      0=ϕ   {2.89} 
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 It also follows that the deflection of the building is entirely made up from the 
uniform part of the deflection. This was calculated in the previous case so the top 
deflection of the building is readily available as 

      0035.000035.0maxmax =+=+= xvv o ϕ m {3.36} 

L = 26 m 

C ≡ O B = 14 

 x 

 y 

 x 

 y 

 yo = 7.0 

7.0 

 xo = 13.0 13.0 

wy 

8.4 

 h = 3.2 

2.4 

 
Figure 12.6 Kollár’s building. Layout B: bracing core in the centre. 

12.2.2.2 Fundamental frequency 

By moving the core to the centre, the values of the lateral vibration in the principal 
directions do not change and the results obtained in the previous section hold:  

      50.1
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r
f yf
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and  
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r
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 The situation is different when the torsional behaviour is considered. The 
distance between the shear centre and the centroid of the mass is now reduced to 
zero and this fact alters the value of the radius of gyration: 

      52.80
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 The frequency parameter is unchanged at ηφ = 0.647 and the pure torsional 
frequency is 

      205.0
3.111

51.21023
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842.0647.0 6
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 As the centroid and the shear centre coincide, there is no coupling among the 
two lateral and pure torsional vibrations and the fundamental frequency is the 
smallest one of the three: 

      205.0,,!Min == ϕffff yx Hz  {4.38} 

12.2.2.3 Global critical load and critical load ratio 

The situation concerning stability is very similar to that of vibration. The sway 
critical loads are unchanged from the previous case at  

      1499
837.7

2, ==
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rEI
N sy

xcr MN  {2.92} 

and  

      1244
837.7

2, ==
H

rEI
N sx

ycr MN  {2.92} 

but, due to the change in the value of the radius of gyration, the value of pure 
torsional buckling changes. With α = 11.286, determined in the previous case, the 
pure torsional critical load is 

      3.30
1552.8

51.21023759.0286.11
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 As there is no coupling, this is also the global critical load of the building: 

      3.30,,!Min ,,,, === ϕϕ crcrycrxcrcr NNNNN MN {5.46} 

 To sum it up, everything has improved compared to the previous case: the 
maximum deflection decreased enormously, the fundamental frequency increased 
and the critical load also increased nearly three-fold. The global critical load ratio 
reflects these favourable changes:  
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      1.2
56.14
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===

N

Ncrλ   {6.3} 

 However, although the building is now theoretically stable, the value of the 
global critical load ratio is far from the recommended value of λ = 10 
[Equation (6.5)]. 
 As mentioned above in connection with Layout A, the poor torsional 
performance of the building was caused by the small torsional stiffness of the core 
and the relatively great distance between the centroid of the layout and the shear 
centre. 
 The situation has improved by moving the core to the centre but the 
improvement is not big enough. In the following section another attempt is made to 
remedy the original situation by increasing the torsional stiffness of the core (while 
leaving the core at its original position). 

12.2.3 Layout C: partially closed core in the right-hand side of the layout 

In practical situations it is normally possible and feasible to close the U-core 
partially. It is done in this case by adding small lip-sections and connecting the 
wall sections at the opening by beams at floor levels (Figure 12.7/b). The thickness 
and the depth of the connecting beams are tb = 0.20 m and d = 0.65 m. The distance 
of the connecting beams is equal to the storey height: s = 3 m. 
 Due to this alteration, the value of the second moments of area of the core 
slightly changes. The value of the warping constant dramatically decreases and, as 
a conservative estimate, it is ignored in the following calculation. The lips add a 
little to the value of the original Saint-Venant torsional constant: 
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 Because of the partial closure, however, the value of the Saint-Venant 
torsional constant drastically increases. This increase is calculated according to 
Vlasov (1961) as  
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where 

      13.065.02.0 =⋅== dtA bb m2  

and 
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      004577.0
12

65.02.0

12

33

=
⋅

==
dt

I b
b m4 

are the cross-sectional area and the second moment of area of the connecting 
beams. 
 The value of the total Saint-Venant constant is 

      45.1424.1026.0 =+=+ JJ m4 

 Because of the partial closure, the location of the shear centre of the core also 
changes. It is a move “backwards”, definitely towards the centre of the core, but its 
exact value is very difficult to establish. Using an equivalent thickness of  

      04.02.0
0.3

65.0* ≅== bw t
s

d
t m  {2.81} 

the computer program PROSEC (1994) gives 

      e = 0.30 m  

for the location of the shear centre (Figure 12.7/b). The geometrical and stiffness 
characteristics related to Layout C are collected in the third row of Table 12.2 in 
Section 12.2.1. 
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Figure 12.7 Kollár’s building. a) Layout C, b) Partially closed core. 
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12.2.3.1 Maximum rotation and deflection 

The situation is similar to the one with Layout A. Maximum deflection develops at 
the left-hand side of the building at xmax = 24.0. It consists of two parts. The 
building undergoes a uniform deflection of  

      0029.0
479.210238

1526

8
)(

6

44

=
⋅⋅⋅

⋅
===

x

y
o EI

Hw
Hvv m {2.83} 

 The rotation around the shear centre  

      00232.0
45.11058.92

15286

2
)(

6

22

max =
⋅⋅⋅

⋅
===

GJ

Hm
H zϕϕ  {2.91} 

causes the second part of the deflection with a “torsion arm” of xmax = 24.0. The 
total deflection is  

      2400232.00029.0)( maxmax ⋅+=+== xvHvv o ϕ   

                                               059.00557.00029.0 =+= m {3.36} 

 The recommended maximum deflection of the building is 

      030.0
500

15

500ASCE ===
H

v m 

12.2.3.2 Fundamental frequency 

The three basic frequencies are needed first. 
 The lateral frequencies in directions x and y are calculated using the formulae 
given for cores but with the mass density which relates to the whole building: 

      536.1
3.111

599.21023
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22
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and 
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f xf

y Hz {2.97} 

 The radius of gyration is 
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 The frequency of pure torsional vibration of the building is obtained using the 
formula given for a single core (with GJ only) but with the radius gyration that 
relates to the whole layout area as the mass is distributed over the whole floor area 
of the building:  

      421.0
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 There is a triple coupling and, as one of the basic frequencies is much smaller 
than the others, its effect can be approximated with good accuracy using the Föppl-
Papkovich formula:  
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12.2.3.3 Global critical load and critical load ratio 

The critical load for sway buckling in direction x is calculated using the relevant 
second moment of area of the core: 

      1580
15

759.0599.21023837.7837.7
2
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==
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rEI
N sy

xcr MN {2.92} 

 In a similar way, the sway buckling load in direction y is 

      1507
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759.0479.21023837.7837.7
2
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 Torsion is resisted by the Saint-Venant torsional stiffness and the critical load 
of pure torsional buckling is  

      9.70
0.14

45.19580
22, =

⋅
==

p
cr

i

GJ
N ϕ MN  {2.96} 

 Because of the triple coupling, this critical load is reduced and the global 
critical load of the building is 
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 The global critical load ratio 

      5.4
56.14

9.64
===

N

Ncrλ   {6.3} 

shows a stable structure but the recommended margin is not yet achieved. (The 
maximum deflection also exceeds the recommended value.) However, the situation 
can further be improved.  

12.2.4 Layout D: partially closed core in the centre of the layout 

In combining the previous two actions, the partially closed core is now moved to 
the centre in such a way that its shear centre and the centroid of the layout coincide 
(Figure 12.8). 
 The geometrical and stiffness characteristics of this case are collected in the 
fourth row in Table 12.2 in Section 12.2.1. 

12.2.4.1 Maximum rotation and deflection 

As the resultant of the wind load passes through the shear centre, there is no 
rotation around the shear centre: 

      0=ϕ   {2.89} 

 It also follows that the deflection of the building is entirely made up from the 
uniform part of the deflection. This was calculated in the previous case so the top 
deflection of the building is readily available as 

      0029.00.00029.0maxmax =+=+= xvv o ϕ m {3.36} 

12.2.4.2 Fundamental frequency 

By moving the core to the centre, the values of the lateral vibration do not change 
and the results obtained in the previous section hold:  

      536.1
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r
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and  
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Figure 12.8 Kollár’s building. Layout D: partially closed core in the centre. 

 
 The situation is different when the torsional behaviour is considered. The 
distance between the shear centre and the centroid of the mass is now reduced to 
zero and this fact alters the value of the radius of gyration: 
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 The pure torsional frequency is 

      691.0
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 As the centroid and the shear centre coincide, there is no coupling among the 
two lateral and pure torsional vibrations and the fundamental frequency is the 
smallest of the three: 

      691.0,,!Min == ϕffff yx Hz  {4.38} 

12.2.4.3 Global critical load and critical load ratio 

The situation concerning stability is very similar to that of vibration. The sway 
critical loads are unchanged from the previous case at  
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and  

      1507
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H

rEI
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but, due to the change in the value of the radius of gyration, the value of pure 
torsional buckling changes: 

      191
52.8

45.19580
22, =

⋅
==

p
cr

i

GJ
N ϕ MN  {2.96} 

 As there is no coupling, this, being the smallest one of the three basic critical 
loads, is also the global critical load of the building: 

      191,,!Min ,,,, === ϕϕ crcrycrxcrcr NNNNN MN {5.46} 

 To sum it up, everything has improved compared to the previous case: the 
maximum deflection decreased enormously, the fundamental frequency increased 
and the critical load also increased nearly three-fold. The global critical load ratio 
reflects these favourable changes:  

      13
56.14

191
===

N

Ncrλ   {6.3} 

 The results of the four arrangements are collected in Table 12.3. 

Table 12.3 Kollár’s building: a summary. 

 
Layout 
 

maximum 
rotation 

[ ° ] 

maximum 
deflection 

[mm] 

fundamental 
frequency 

[Hz] 

global 
critical load 

[MN] 

global critical 
load ratio 

[-] 

“A” 1.3 564 0.124 11.2 0.8 

“B” 0 3.5 0.205 30.3 2.1 

“C” 0.13 59 0.391 64.9 4.5 

“D” 0 2.9 0.691 191 13 
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Appendix: 

 

List of worksheets 

 

 
The following sixteen downloadable Mathcad worksheets accompany the book and 
can be downloaded at www.crcpress.com/product/isbn/9780415595735. The 
worksheets cover the worked examples in Chapters 7, 8, 9, 10, 11 and 12. Mathcad 
Plus 6.0 (MathSoft, 1995) was used for producing the Filename.mcd files. 
According to support staff at Adept Scientific in June 2011, all versions (6.0 and 
higher) of Mathcad can open these Mathcad 6.0 files and will update them for 
ongoing use.  

7_1DeflectionF6.mcd (Maximum deflection of 34-storey frame F6) 
The worksheet calculates the maximum deflection of a three-bay sway frame under 
uniformly distributed horizontal load. In modifying the input data (modulus of 
elasticity, number/size of bays, number of storeys, storey height, size of the cross-
sections of the columns/beams, intensity of the horizontal load), the maximum 
deflection of any multi-storey framework on fixed supports can be determined at 
once. The worksheet also produces the deflection shape of the structure. 

7_2FrequencyF5.mcd (Fundamental frequency of 40-storey frame F5) 
The worksheet calculates the fundamental frequency of a two-bay sway frame 
subjected to uniformly distributed mass on floor levels. In modifying the input data 
(modulus of elasticity, number/size of bays, number of storeys, storey height, size 
of the cross-sections of the columns/beams, magnitude of mass), the fundamental 
frequency of any multi-storey framework on fixed supports can be determined at 
once. 

7_3StabFFSH1.mcd (Critical load of 7-bay, 12-storey framework FFSH1) 
The worksheet calculates the global critical load and global critical load ratio of a 
seven-bay sway frame subjected to uniformly distributed vertical load on floor 
levels. In modifying the input data (modulus of elasticity, number/size of bays, 
number of storeys, storey height, size of the cross-sections of the columns/beams, 
intensity of vertical load), the global critical load and global critical load ratio of 
any multi-storey framework on fixed supports can be determined at once. 

7_4StabSRX.mcd (Critical load of 8-storey framework SR-X with cross-bracing) 
The worksheet calculates the global critical load of a single-bay framework with 
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cross-bracing subjected to uniformly distributed vertical load on floor levels. In 
modifying the input data (modulus of elasticity, number/size of bays, number of 
storeys, storey height, size of the cross-sections of the columns/beams/diagonals, 
type of cross-bracing), the global critical load of any multi-storey framework with 
cross-bracing can be determined at once. 

7_5StabCSWSH3.mcd (Critical load of 18-storey, 2-bay coupled shear walls 
CSWSH3) 
The worksheet calculates the global critical load of the eighteen storey, two-bay 
coupled shear walls subjected to uniformly distributed vertical load on floor levels. 
In modifying the input data (modulus of elasticity, number/size of bays, number of 
storeys, storey height, size of the cross-sections of the wall-sections/beams), the 
global critical load of any multi-storey, multi-bay coupled shear walls can be 
determined at once. When modifying the input data, attention should be paid to the 
calculation of the shear stiffness (Kb and Kc) as the structure in the worked example 
has wall sections of different size.  

8_1DeflBuildF5F11W3.mcd (Maximum deflection of 16-storey symmetric cross 
wall building 2F11+2F5+2W3) 
The worksheet calculates the maximum deflection of a sixteen-storey symmetric 
building braced by two two-bay frameworks with cross-bracing, two two-bay sway 
frames and two shear walls, under uniformly distributed horizontal load. In 
modifying the input data (modulus of elasticity, number/size of bays, number of 
storeys, storey height, size of the cross-sections of the columns/beams/diagonals, 
size of shear wall, intensity of the horizontal load), and adding any number of new 
bracing units, the maximum deflection of any symmetric planar system of 
frameworks, coupled shear walls and shear walls can be determined at once.  

8_2DeflBuildF1F5W4U.mcd (Maximum deflection of 28-storey building braced 
by 2F1+F5+2W4+U) 
The worksheet calculates the deflection of and the rotation around the shear centre 
axis, then the maximum deflection of a twenty-eight storey building braced by two 
one-bay frameworks, one two-bay sway framework, two shear walls and one U-
core, under uniformly distributed horizontal load. In modifying the input data 
(modulus of elasticity, number/size of bays, number of storeys, storey height, size 
of the cross-sections of the columns/beams, size of shear wall, size of U-core, size 
of layout, location of bracing units, intensity of the horizontal load), and adding 
any number of new bracing units, the maximum deflection of any system of 
frameworks, coupled shear walls, shear walls and cores can be determined at once.  

9_1FreqSymmBuild.mcd (Fundamental frequency of doubly symmetric building) 
The worksheet calculates the fundamental frequency of a thirty-storey doubly 
symmetric building braced by four two-bay frameworks and four shear walls. In 
modifying the input data (modulus of elasticity, number/size of bays, number of 
storeys, storey height, size of the cross-sections of the columns/beams, size of 
shear walls, size of layout, magnitude of mass), and adding new bracing units in a 
doubly symmetric arrangement, the fundamental frequency of any doubly 
symmetric building can be determined at once.  
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9_2FreqBuild.mcd (Fundamental frequency of 6-storey asymmetric building) 
The worksheet calculates the fundamental frequency of a six-storey building 
braced by two infilled frameworks and two shear walls, vibrating in a three-
dimensional manner. In modifying the input data (modulus of elasticity, 
number/size of bays, number of storeys, storey height, size of the cross-sections of 
the columns/beams, characteristics of the infill, size of shear walls, size of layout, 
location of bracing units, magnitude of mass), and adding any number of new 
bracing units, the fundamental frequency of any asymmetric building can be 
determined at once.  

10_1StabSymmBuild.mcd (Stability of 30-storey doubly symmetric building) 
The worksheet calculates the global critical load and the global critical load ratio of 
a thirty-storey doubly symmetric building braced by four two-bay frameworks and 
four shear walls. In modifying the input data (modulus of elasticity, number/size of 
bays, number of storeys, storey height, size of the cross-sections of the 
columns/beams, size of shear walls, size of layout, intensity of vertical load on 
floor levels), and adding any number of new bracing units in a doubly symmetric 
arrangement, the critical load of any doubly symmetric building can be determined 
at once.  

10_2StabBuild.mcd (Stability of 6-storey Premier House) 
The worksheet calculates the global critical load and the global critical load ratio of 
a six-storey asymmetric building braced by an infilled framework and a U-core, 
developing three-dimensional sway-torsional buckling. In modifying the input data 
(modulus of elasticity, characteristics of the infill, number/size of bays, number of 
storeys, storey height, size of the cross-sections of the columns/beams, size of U-
core, size of layout, intensity of vertical load on floor levels), and adding any 
number of new bracing units, the global critical load and the global critical load 
ratio of any building can be determined at once.  

11_Sheffield.mcd (Global structural analysis of 22-storey building braced by 4 
cores and 4 frames) 
The worksheet presents a comprehensive, global, three-dimensional structural 
analysis. It calculates the global critical load, the global critical load ratio, the 
fundamental frequency and the maximum rotation and deflection of the building. 
In modifying the input data (modulus of elasticity, number/size of bays, number of 
storeys, storey height, size of the cross-sections of the columns/beams, size of U-
cores, size of layout, location of bracing units, intensity of vertical load on floor 
levels, intensity of horizontal load, magnitude of mass), and adding any number of 
new bracing units, the comprehensive analysis can be repeated for any multi-storey 
building in minutes.  

12_1GlobalCase1.mcd;  12_1GlobalCase2.mcd;  12_1GlobalCase3.mcd  
The three worksheets carry out a comprehensive global structural analysis of the 
same building. In the three cases the bracing system consists of the same bracing 
units (two one-bay steel frameworks with double bracing and two shear walls) but 
their arrangement is different. The global critical load, the fundamental frequency 
and the maximum rotation and deflection of the ten-storey building are calculated. 
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The global critical load ratio is used as a performance indicator to characterize the 
overall behaviour of the building. The worksheets can be used as templates for the 
global structural analysis of similar buildings. 

12_2GlobalKollar.mcd (Kollár’s 5-storey building)  
The worksheet carries out four comprehensive global structural analyses. The five-
storey building is the same, the bracing system—a single U-core—is nearly the 
same: in two cases it is open and in the other two cases it is partially closed. The 
other difference is the location of the core. The maximum rotation and deflection, 
the fundamental frequency, global critical load and the global critical load ratio are 
determined. The global critical load ratio is used as a performance indicator to 
characterize the overall behaviour and structural suitability of the building.  
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