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Temperature Conversion Formulas T(°C) � �
5
9

�[T(°F) � 32] � T(K) � 273.15

T(K) � �
5
9

�[T(°F) � 32] � 273.15 � T(°C) � 273.15

T(°F) � �
9
5

�T(°C) � 32 � �
9
5

�T(K) � 459.67

CONVERSIONS BETWEEN U.S. CUSTOMARY UNITS AND SI UNITS (Continued)

Times conversion factor
U.S. Customary unit

Accurate Practical
Equals SI unit

Moment of inertia (area)
inch to fourth power in.4 416,231 416,000 millimeter to fourth

power mm4

inch to fourth power in.4 0.416231 � 10�6 0.416 � 10�6 meter to fourth power m4

Moment of inertia (mass)
slug foot squared slug-ft2 1.35582 1.36 kilogram meter squared kg·m2

Power
foot-pound per second ft-lb/s 1.35582 1.36 watt (J/s or N·m/s) W
foot-pound per minute ft-lb/min 0.0225970 0.0226 watt W
horsepower (550 ft-lb/s) hp 745.701 746 watt W

Pressure; stress
pound per square foot psf 47.8803 47.9 pascal (N/m2) Pa
pound per square inch psi 6894.76 6890 pascal Pa
kip per square foot ksf 47.8803 47.9 kilopascal kPa
kip per square inch ksi 6.89476 6.89 megapascal MPa

Section modulus
inch to third power in.3 16,387.1 16,400 millimeter to third power mm3

inch to third power in.3 16.3871 � 10�6 16.4 � 10�6 meter to third power m3

Velocity (linear)
foot per second ft/s 0.3048* 0.305 meter per second m/s
inch per second in./s 0.0254* 0.0254 meter per second m/s
mile per hour mph 0.44704* 0.447 meter per second m/s
mile per hour mph 1.609344* 1.61 kilometer per hour km/h

Volume
cubic foot ft3 0.0283168 0.0283 cubic meter m3

cubic inch in.3 16.3871 � 10�6 16.4 � 10�6 cubic meter m3

cubic inch in.3 16.3871 16.4 cubic centimeter (cc) cm3

gallon (231 in.3) gal. 3.78541 3.79 liter L
gallon (231 in.3) gal. 0.00378541 0.00379 cubic meter m3

*An asterisk denotes an exact conversion factor 
Note: To convert from SI units to USCS units, divide by the conversion factor
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Preface to the SI Edition

xiii

This edition of Structural Analysis has been adapted to incorporate the Interna-
tional System of Units (Le Système International d’Unités or SI) throughout the
book. Amit Prashant wishes to acknowledge the contributions made by his col-
leagues, Arindam Dey, and Kaustubh Dasgupta to this SI Edition.

Le Système International d’Unités

The United States Customary System (USCS) of units uses FPS (foot-pound-
second) units (also called English or Imperial units). SI units are primarily the
units of the MKS (meter-kilogram-second) system. However, CGS (centimeter-
gram-second) units are often accepted as SI units, especially in textbooks.

Using SI Units in this Book

In this book, we have used both MKS and CGS units. USCS units or FPS units
used in the US Edition of the book have been converted to SI units throughout
the text and problems. However, in case of data sourced from handbooks, gov-
ernment standards, and product manuals, it is not only extremely di‰cult to
convert all values to SI, it also encroaches upon the intellectual property of the
source. Also, some quantities such as the ASTM grain size number and Jominy
distances are generally computed in FPS units and would lose their relevance if
converted to SI. Some data in figures, tables, examples, and references, there-
fore, remains in FPS units. For readers unfamiliar with the relationship between
the FPS and the SI systems, conversion tables have been provided inside the
front and back covers of the book.

To solve problems that require the use of sourced data, the sourced values can
be converted from FPS units to SI units just before they are to be used in a calcu-
lation. To obtain standardized quantities and manufacturers’ data in SI units, the
readers may contact the appropriate government agencies or authorities in their
countries/regions.

Instructor Resources

A Printed Instructor’s Solution Manual in SI units is available on request. An
electronic version of the Instructor’s Solutions Manual, and PowerPoint slides of
the figures from the SI text are available through www.cengage.com/engineering.

The readers’ feedback on this SI Edition will be highly appreciated and will
help us improve subsequent editions.

The Publishers
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Preface

The objective of this book is to develop an understanding of the basic
principles of structural analysis. Emphasizing the intuitive classical ap-
proach, Structural Analysis covers the analysis of statically determinate
and indeterminate beams, trusses, and rigid frames. It also presents an
introduction to the matrix analysis of structures.

The book is divided into three parts. Part One presents a general
introduction to the subject of structural engineering. It includes a chap-
ter devoted entirely to the topic of loads because attention to this im-
portant topic is generally lacking in many civil engineering curricula.
Part Two, consisting of Chapters 3 through 10, covers the analysis of
statically determinate beams, trusses, and rigid frames. The chapters on
deflections (Chapters 6 and 7) are placed before those on influence lines
(Chapters 8 and 9), so that influence lines for deflections can be included
in the latter chapters. This part also contains a chapter on the analysis
of symmetric structures (Chapter 10). Part Three of the book, Chapters
11 through 18, covers the analysis of statically indeterminate structures.
The format of the book is flexible to enable instructors to emphasize
topics that are consistent with the goals of the course.

Each chapter of the book begins with an introductory section de-
fining its objective and ends with a summary section outlining its salient
features. An important general feature of the book is the inclusion of
step-by-step procedures for analysis to enable students to make an easier
transition from theory to problem solving. Numerous solved examples
are provided to illustrate the application of the fundamental concepts.

A computer program for analyzing plane framed structures is
available on the publisher’s website www.cengage.com/engineering.
This interactive software can be used to simulate a variety of structural
and loading configurations and to determine cause versus e¤ect rela-
tionships between loading and various structural parameters, thereby
enhancing the students’ understanding of the behavior of structures.
The software shows deflected shapes of structures to enhance students’

xiv
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understanding of structural response due to various types of loadings. It
can also include the e¤ects of support settlements, temperature changes,
and fabrication errors in the analysis. A solutions manual, containing
complete solutions to over 600 text exercises, is also available for the
instructor.

A NOTE ON THE REVISED EDITION

In this fourth edition, while the major features of the third editon have
been retained, over 15 percent of the problems from the previous edition
have been replaced with new ones. The chapter on loads has been revised
to meet the provisions of the ASCE 7-05 Standard, and the treatment of
the structures with internal hinges has been expanded in Chapter 3. The
computer software has been upgraded to make it compatible with the
latest versions of Microsoft Windows. Finally, most of the photographs
have been replaced with new ones, and the page layout of the book has
been redesigned to enhance clarity.
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1
Introduction to
Structural Analysis
1.1 Historical Background
1.2 Role of Structural Analysis in Structural Engineering Projects
1.3 Classification of Structures
1.4 Analytical Models

Summary

3

Structural analysis is the prediction of the performance of a given struc-

ture under prescribed loads and/or other external e¤ects, such as support

movements and temperature changes. The performance characteristics
commonly of interest in the design of structures are (1) stresses or stress
resultants, such as axial forces, shear forces, and bending moments; (2)
deflections; and (3) support reactions. Thus, the analysis of a structure
usually involves determination of these quantities as caused by a given
loading condition. The objective of this text is to present the methods
for the analysis of structures in static equilibrium.

This chapter provides a general introduction to the subject of struc-
tural analysis. We first give a brief historical background, including
names of people whose work is important in the field. Then we discuss
the role of structural analysis in structural engineering projects. We de-
scribe the five common types of structures: tension and compression
structures, trusses, and shear and bending structures. Finally, we con-
sider the development of the simplified models of real structures for the
purpose of analysis.

Marina City District, Chicago
Hisham Ibrahim / Photographer’s Choice RF /Getty Images
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1.1 HISTORICAL BACKGROUND

Since the dawn of history, structural engineering has been an essential
part of human endeavor. However, it was not until about the middle of
the seventeenth century that engineers began applying the knowledge
of mechanics (mathematics and science) in designing structures. Earlier
engineering structures were designed by trial and error and by using rules
of thumb based on past experience. The fact that some of the mag-
nificent structures from earlier eras, such as Egyptian pyramids (about
3000 b.c.), Greek temples (500–200 b.c.), Roman coliseums and aque-
ducts (200 b.c.–a.d. 200), and Gothic cathedrals (a.d. 1000–1500), still
stand today is a testimonial to the ingenuity of their builders (Fig. 1.1).

Galileo Galilei (1564–1642) is generally considered to be the origi-
nator of the theory of structures. In his book entitled Two New Sciences,
which was published in 1638, Galileo analyzed the failure of some sim-
ple structures, including cantilever beams. Although Galileo’s predic-
tions of strengths of beams were only approximate, his work laid the
foundation for future developments in the theory of structures and

FIG. 1.1 The Cathedral of Notre Dame
in Paris Was Completed in the
Thirteenth Century
Ritu Manoj Jethani / Shutterstock
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ushered in a new era of structural engineering, in which the analytical
principles of mechanics and strength of materials would have a major
influence on the design of structures.

Following Galileo’s pioneering work, the knowledge of structural
mechanics advanced at a rapid pace in the second half of the seven-
teenth century and into the eighteenth century. Among the notable in-
vestigators of that period were Robert Hooke (1635–1703), who devel-
oped the law of linear relationships between the force and deformation
of materials (Hooke’s law); Sir Isaac Newton (1642–1727), who formu-
lated the laws of motion and developed calculus; John Bernoulli (1667–
1748), who formulated the principle of virtual work; Leonhard Euler
(1707–1783), who developed the theory of buckling of columns; and C.
A. de Coulomb (1736–1806), who presented the analysis of bending of
elastic beams.

In 1826 L. M. Navier (1785–1836) published a treatise on elastic
behavior of structures, which is considered to be the first textbook on
the modern theory of strength of materials. The development of struc-
tural mechanics continued at a tremendous pace throughout the rest of
the nineteenth century and into the first half of the twentieth, when most
of the classical methods for the analysis of structures described in this
text were developed. The important contributors of this period included
B. P. Clapeyron (1799–1864), who formulated the three-moment equa-
tion for the analysis of continuous beams; J. C. Maxwell (1831–1879),
who presented the method of consistent deformations and the law of
reciprocal deflections; Otto Mohr (1835–1918), who developed the con-
jugate-beam method for calculation of deflections and Mohr’s circles
of stress and strain; Alberto Castigliano (1847–1884), who formulated
the theorem of least work; C. E. Greene (1842–1903), who developed
the moment-area method; H. Müller-Breslau (1851–1925), who pre-
sented a principle for constructing influence lines; G. A. Maney (1888–
1947), who developed the slope-deflection method, which is considered
to be the precursor of the matrix sti¤ness method; and Hardy Cross
(1885–1959), who developed the moment-distribution method in 1924.
The moment-distribution method provided engineers with a simple iter-
ative procedure for analyzing highly statically indeterminate structures.
This method, which was the most widely used by structural engineers
during the period from about 1930 to 1970, contributed significantly to
their understanding of the behavior of statically indeterminate frames.
Many structures designed during that period, such as high-rise buildings,
would not have been possible without the availability of the moment-
distribution method.

The availability of computers in the 1950s revolutionized structural
analysis. Because the computer could solve large systems of simulta-
neous equations, analyses that took days and sometimes weeks in the
precomputer era could now be performed in seconds. The development
of the current computer-oriented methods of structural analysis can be
attributed to, among others, J. H. Argyris, R. W. Clough, S. Kelsey,

SECTION 1.1 Historical Background 5
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R. K. Livesley, H. C. Martin, M. T. Turner, E. L. Wilson, and O. C.
Zienkiewicz.

1.2 ROLE OF STRUCTURAL ANALYSIS IN STRUCTURAL ENGINEERING PROJECTS

Structural engineering is the science and art of planning, designing, and

constructing safe and economical structures that will serve their intended

purposes. Structural analysis is an integral part of any structural engi-
neering project, its function being the prediction of the performance of
the proposed structure. A flowchart showing the various phases of a
typical structural engineering project is presented in Fig. 1.2. As this di-
agram indicates, the process is an iterative one, and it generally consists
of the following steps:

1. Planning Phase The planning phase usually involves the establish-
ment of the functional requirements of the proposed structure, the

FIG. 1.2 Phases of a Typical Structural
Engineering Project
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general layout and dimensions of the structure, consideration of the
possible types of structures (e.g., rigid frame or truss) that may be
feasible and the types of materials to be used (e.g., structural steel
or reinforced concrete). This phase may also involve consideration
of nonstructural factors, such as aesthetics, environmental impact
of the structure, and so on. The outcome of this phase is usually a
structural system that meets the functional requirements and is ex-
pected to be the most economical. This phase is perhaps the most
crucial one of the entire project and requires experience and knowl-
edge of construction practices in addition to a thorough under-
standing of the behavior of structures.

2. Preliminary Structural Design In the preliminary structural design
phase, the sizes of the various members of the structural system se-
lected in the planning phase are estimated based on approximate
analysis, past experience, and code requirements. The member sizes
thus selected are used in the next phase to estimate the weight of the
structure.

3. Estimation of Loads Estimation of loads involves determination of
all the loads that can be expected to act on the structure.

4. Structural Analysis In structural analysis, the values of the loads
are used to carry out an analysis of the structure in order to de-
termine the stresses or stress resultants in the members and the
deflections at various points of the structure.

5. Safety and Serviceability Checks The results of the analysis are used
to determine whether or not the structure satisfies the safety and
serviceability requirements of the design codes. If these requirements
are satisfied, then the design drawings and the construction specifi-
cations are prepared, and the construction phase begins.

6. Revised Structural Design If the code requirements are not sat-
isfied, then the member sizes are revised, and phases 3 through 5
are repeated until all the safety and serviceability requirements are
satisfied.

Except for a discussion of the types of loads that can be expected to
act on structures (Chapter 2), our primary focus in this text will be on
the analysis of structures.

1.3 CLASSIFICATION OF STRUCTURES

As discussed in the preceding section, perhaps the most important deci-
sion made by a structural engineer in implementing an engineering pro-
ject is the selection of the type of structure to be used for supporting or
transmitting loads. Commonly used structures can be classified into five
basic categories, depending on the type of primary stresses that may
develop in their members under major design loads. However, it should

SECTION 1.3 Classification of Structures 7
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be realized that any two or more of the basic structural types described
in the following may be combined in a single structure, such as a build-
ing or a bridge, to meet the structure’s functional requirements.

Tension Structures

The members of tension structures are subjected to pure tension under
the action of external loads. Because the tensile stress is distributed uni-
formly over the cross-sectional areas of members, the material of such
a structure is utilized in the most e‰cient manner. Tension structures
composed of flexible steel cables are frequently employed to support
bridges and long-span roofs. Because of their flexibility, cables have
negligible bending sti¤ness and can develop only tension. Thus, under
external loads, a cable adopts a shape that enables it to support the load
by tensile forces alone. In other words, the shape of a cable changes
as the loads acting on it change. As an example, the shapes that a single
cable may assume under two di¤erent loading conditions are shown in
Fig. 1.3.

Figure 1.4 shows a familiar type of cable structure—the suspension

bridge. In a suspension bridge, the roadway is suspended from two main
cables by means of vertical hangers. The main cables pass over a pair
of towers and are anchored into solid rock or a concrete foundation at
their ends. Because suspension bridges and other cable structures lack
sti¤ness in lateral directions, they are susceptible to wind-induced oscil-
lations (see Fig. 1.5). Bracing or sti¤ening systems are therefore provided
to reduce such oscillations.

Besides cable structures, other examples of tension structures include
vertical rods used as hangers (for example, to support balconies or tanks)
and membrane structures such as tents.

FIG. 1.3
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Compression Structures

Compression structures develop mainly compressive stresses under the
action of external loads. Two common examples of such structures are
columns and arches. Columns are straight members subjected to axially
compressive loads, as shown in Fig. 1.6. When a straight member is
subjected to lateral loads and/or moments in addition to axial loads, it is
called a beam-column.

An arch is a curved structure, with a shape similar to that of an in-
verted cable, as shown in Fig. 1.7. Such structures are frequently used to
support bridges and long-span roofs. Arches develop mainly compres-

FIG. 1.4 Suspension Bridge

FIG. 1.5 Tacoma Narrows Bridge
Oscillating before Its Collapse in 1940
Smithsonian Institution Photo No. 72-787

SECTION 1.3 Classification of Structures 9

https://engineersreferencebookspdf.com



sive stresses when subjected to loads and are usually designed so that
they will develop only compression under a major design loading. How-
ever, because arches are rigid and cannot change their shapes as can
cables, other loading conditions usually produce secondary bending and
shear stresses in these structures, which, if significant, should be con-
sidered in their designs.

Because compression structures are susceptible to buckling or in-
stability, the possibility of such a failure should be considered in their
designs; if necessary, adequate bracing must be provided to avoid such
failures.

Trusses

Trusses are composed of straight members connected at their ends by
hinged connections to form a stable configuration (Fig. 1.8). When the
loads are applied to a truss only at the joints, its members either elon-
gate or shorten. Thus, the members of an ideal truss are always either
in uniform tension or in uniform compression. Real trusses are usually
constructed by connecting members to gusset plates by bolted or welded
connections. Although the rigid joints thus formed cause some bending
in the members of a truss when it is loaded, in most cases such secon-
dary bending stresses are small, and the assumption of hinged
joints yields satisfactory designs.

Trusses, because of their light weight and high strength, are among
the most commonly used types of structures. Such structures are used in
a variety of applications, ranging from supporting roofs of buildings to
serving as support structures in space stations.

Shear Structures

Shear structures, such as reinforced concrete shear walls (Fig. 1.9), are
used in multistory buildings to reduce lateral movements due to wind
loads and earthquake excitations. Shear structures develop mainly in-
plane shear, with relatively small bending stresses under the action of
external loads.

FIG. 1.6 Column

FIG. 1.7 Arch

FIG. 1.8 Plane Truss

FIG. 1.9 Shear Wall
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Bending Structures

Bending structures develop mainly bending stresses under the action of
external loads. In some structures, the shear stresses associated with the
changes in bending moments may also be significant and should be con-
sidered in their designs.

Some of the most commonly used structures, such as beams, rigid
frames, slabs, and plates, can be classified as bending structures. A beam

is a straight member that is loaded perpendicular to its longitudinal axis

(Fig. 1.10). Recall from previous courses on statics and mechanics of

materials that the bending (normal) stress varies linearly over the depth
of a beam from the maximum compressive stress at the fiber farthest
from the neutral axis on the concave side of the bent beam to the max-
imum tensile stress at the outermost fiber on the convex side. For ex-
ample, in the case of a horizontal beam subjected to a vertically down-
ward load, as shown in Fig. 1.10, the bending stress varies from the
maximum compressive stress at the top edge to the maximum tensile
stress at the bottom edge of the beam. To utilize the material of a beam
cross section most e‰ciently under this varying stress distribution, the
cross sections of beams are often I-shaped (see Fig. 1.10), with most of
the material in the top and bottom flanges. The I-shaped cross sections
are most e¤ective in resisting bending moments.

Rigid frames are composed of straight members connected together
either by rigid (moment-resisting) connections or by hinged connections
to form stable configurations. Unlike trusses, which are subjected only
to joint loads, the external loads on frames may be applied on the
members as well as on the joints (see Fig. 1.11). The members of a rigid
frame are, in general, subjected to bending moment, shear, and axial
compression or tension under the action of external loads. However, the
design of horizontal members or beams of rectangular frames is often
governed by bending and shear stresses only, since the axial forces in
such members are usually small.

Frames, like trusses, are among the most commonly used types of
structures. Structural steel and reinforced concrete frames are commonly
used in multistory buildings (Fig. 1.12), bridges, and industrial plants.
Frames are also used as supporting structures in airplanes, ships, aero-
space vehicles, and other aerospace and mechanical applications.

It may be of interest to note that the generic term framed structure is
frequently used to refer to any structure composed of straight members,
including a truss. In that context, this textbook is devoted primarily to
the analysis of plane framed structures.

FIG. 1.10 Beam

FIG. 1.11 Rigid Frame
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1.4 ANALYTICAL MODELS

An analytical model is a simplified representation, or an ideal, of a real
structure for the purpose of analysis. The objective of the model is to
simplify the analysis of a complicated structure. The analytical model
represents, as accurately as practically possible, the behavioral char-
acteristics of the structure of interest to the analyst, while discarding
much of the detail about the members, connections, and so on, that
is expected to have little e¤ect on the desired characteristics. Estab-
lishment of the analytical model is one of the most important steps of the
analysis process; it requires experience and knowledge of design practices
in addition to a thorough understanding of the behavior of structures.
Remember that the structural response predicted from the analysis of the
model is valid only to the extent that the model represents the actual
structure.

Development of the analytical model generally involves consid-
eration of the following factors.

Plane Versus Space Structure

If all the members of a structure as well as the applied loads lie in a
single plane, the structure is called a plane structure. The analysis of
plane, or two-dimensional, structures is considerably simpler than the
analysis of space, or three-dimensional, structures. Fortunately, many

FIG. 1.12 Skeletons of Frame Buildings
Racheal Grazias / Shutterstock
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actual three-dimensional structures can be subdivided into plane struc-
tures for analysis.

As an example, consider the framing system of a bridge shown in
Fig. 1.13(a). The main members of the system, designed to support
vertical loads, are shown by solid lines, whereas the secondary bracing
members, necessary to resist lateral wind loads and to provide stability,
are represented by dashed lines. The deck of the bridge rests on beams
called stringers; these beams are supported by floor beams, which, in
turn, are connected at their ends to the joints on the bottom panels of
the two longitudinal trusses. Thus, the weight of the tra‰c, deck, string-
ers, and floor beams is transmitted by the floor beams to the supporting
trusses at their joints; the trusses, in turn, transmit the load to the foun-
dation. Because this applied loading acts on each truss in its own plane,
the trusses can be treated as plane structures.

As another example, the framing system of a multistory building is
shown in Fig. 1.14(a). At each story, the floor slab rests on floor beams,
which transfer any load applied to the floor, the weight of the slab, and
their own weight to the girders of the supporting rigid frames. This ap-
plied loading acts on each frame in its own plane, so each frame can,
therefore, be analyzed as a plane structure. The loads thus transferred to
each frame are further transmitted from the girders to the columns and
then finally to the foundation.

Although a great majority of actual three-dimensional structural
systems can be subdivided into plane structures for the purpose of
analysis, some structures, such as latticed domes, aerospace structures,
and transmission towers, cannot, due to their shape, arrangement of
members, or applied loading, be subdivided into planar components.
Such structures, called space structures, are analyzed as three-dimen-
sional bodies subjected to three-dimensional force systems.

Line Diagram

The analytical model of the two- or three-dimensional body selected
for analysis is represented by a line diagram. On this diagram, each
member of the structure is represented by a line coinciding with its
centroidal axis. The dimensions of the members and the size of the
connections are not shown on the diagram. The line diagrams of the
bridge truss of Fig. 1.13(a), and the rigid frame of Fig. 1.14(a) are
shown in Figs. 1.13(b) and 1.14(b), respectively. Note that two lines
( * *) are sometimes used in this text to represent members on the line
diagrams. This is done, when necessary, for clarity of presentation; in
such cases, the distance between the lines does not represent the mem-
ber depth.

SECTION 1.4 Analytical Models 13
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Connections

Two types of connections are commonly used to join members of struc-
tures: (1) rigid connections and (2) flexible, or hinged, connections. (A
third type of connection, termed a semirigid connection, although rec-
ognized by structural steel design codes, is not commonly used in prac-
tice and, therefore, is not considered in this text.)

FIG. 1.13 Framing of a Bridge
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A rigid connection or joint prevents relative translations and rota-
tions of the member ends connected to it; that is, all member ends con-
nected to a rigid joint have the same translation and rotation. In other
words, the original angles between the members intersecting at a rigid
joint are maintained after the structure has deformed under the action of
loads. Such joints are, therefore, capable of transmitting forces as well
as moments between the connected members. Rigid joints are usually
represented by points at the intersections of members on the line dia-
gram of the structure, as shown in Fig. 1.14(b).

A hinged connection or joint prevents only relative translations of
member ends connected to it; that is, all member ends connected to a
hinged joint have the same translation but may have di¤erent rotations.
Such joints are thus capable of transmitting forces but not moments be-
tween the connected members. Hinged joints are usually depicted by
small circles at the intersections of members on the line diagram of the
structure, as shown in Fig. 1.13(b).

FIG. 1.14 Framing of a Multistory Building
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The perfectly rigid connections and the perfectly flexible frictionless
hinges used in the analysis are merely idealizations of the actual con-
nections, which are seldom perfectly rigid or perfectly flexible (see Fig.
1.13(c)). However, actual bolted or welded connections are purposely
designed to behave like the idealized cases. For example, the connec-
tions of trusses are designed with the centroidal axes of the members
concurrent at a point, as shown in Fig. 1.13(c), to avoid eccentricities
that may cause bending of members. For such cases, the analysis based
on the idealized connections and supports (described in the following
paragraph) generally yields satisfactory results.

Supports

Supports for plane structures are commonly idealized as either fixed

supports, which do not allow any movement; hinged supports, which can
prevent translation but permit rotation; or roller, or link, supports, which
can prevent translation in only one direction. A more detailed descrip-
tion of the characteristics of these supports is presented in Chapter 3.
The symbols commonly used to represent roller and hinged supports on
line diagrams are shown in Fig. 1.13(b), and the symbol for fixed sup-
ports is depicted in Fig. 1.14(b).

SUMMARY

In this chapter, we learned about structural analysis and its role in struc-
tural engineering. Structural analysis is the prediction of the performance
of a given structure under prescribed loads. Structural engineering has
long been a part of human endeavor, but Galileo is considered to be the
originator of the theory of structures. Following his pioneering work,
many other people have made significant contributions. The availability
of computers has revolutionized structural analysis.

Structural engineering is the science of planning, designing, and
constructing safe, economical structures. Structural analysis is an in-
tegral part of this process.

Structures can be classified into five basic categories, namely, tension
structures (e.g., cables and hangers), compression structures (e.g., col-
umns and arches), trusses, shear structures (e.g., shear walls), and bend-
ing structures (e.g., beams and rigid frames).

An analytical model is a simplified representation of a real structure
for the purpose of analysis. Development of the model generally involves
(1) determination of whether or not the structure can be treated as a
plane structure, (2) construction of the line diagram of the structure, and
(3) idealization of connections and supports.
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Earthquake-Damaged Building
Robert Yager / Stone / Getty Images

The objective of a structural engineer is to design a structure that will
be able to withstand all the loads to which it is subjected while serving its
intended purpose throughout its intended life span. In designing a struc-
ture, an engineer must, therefore, consider all the loads that can
realistically be expected to act on the structure during its planned life span.
The loads that act on common civil engineering structures can be grouped
according to their nature and source into three classes: (1) dead loads due
to the weight of the structural system itself and any other material per-
manently attached to it; (2) live loads, which are movable or moving loads
due to the use of the structure; and (3) environmental loads, which are
caused by environmental e¤ects, such as wind, snow, and earthquakes.

In addition to estimating the magnitudes of the design loads, an
engineer must also consider the possibility that some of these loads
might act simultaneously on the structure. The structure is finally de-
signed so that it will be able to withstand the most unfavorable combi-
nation of loads that is likely to occur in its lifetime.

The minimum design loads and the load combinations for which the
structures must be designed are usually specified in building codes. Building
codes vary from country to country and also, owing to geographical varia-
tions, from region to region within a country. The US national codes pro-
viding guidance on loads for buildings, bridges, and other structures include
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ASCE Standard Minimum Design Loads for Buildings and Other Structures

(ASCE/SEI 7-05) [1],* Manual for Railway Engineering [26], Standard

Specifications for Highway Bridges [36], and International Building Code

[15].
Although the load requirements of most local building codes are

generally based on those of the national codes listed herein, local codes
may contain additional provisions warranted by such regional conditions
as earthquakes, tornadoes, hurricanes, heavy snow, and the like. Local
building codes are usually legal documents enacted to safeguard public
welfare and safety, and the engineer must become thoroughly familiar
with the building code for the area in which the structure is to be built.

The loads described in the codes are usually based on past experi-
ence and study and are the minimum for which the various types of
structures must be designed. However, the engineer must decide if the
structure is to be subjected to any loads in addition to those considered
by the code, and, if so, must design the structure to resist the additional
loads. Remember that the engineer is ultimately responsible for the safe
design of the structure.

The objective of this chapter is to describe the types of loads com-
monly encountered in the design of structures and to introduce the basic
concepts of load estimation. We first describe dead loads and then dis-
cuss live loads for buildings and bridges. We next consider the dynamic
e¤ect, or the impact, of live loads. We describe environmental loads,
including wind loads, snow loads, and earthquake loads. We give a brief
discussion of hydrostatic and soil pressures and thermal e¤ects and
conclude with a discussion about the combinations of loads used for
design purposes.

The material presented herein is mainly based on the ASCE Stand-

ard Minimum Design Loads for Buildings and Other Structures (ASCE/
SEI 7-05), which is commonly referred to as the ASCE 7 Standard and
is perhaps the most widely used standard in practice. Since the intent
here is to familiarize the reader with the general topic of loads on struc-
tures, many of the details have not been included. Needless to say, the
complete provisions of the local building codes or the ASCE 7 Standard †

must be followed in designing structures.

2.1 DEAD LOADS

Dead loads are gravity loads of constant magnitudes and fixed positions
that act permanently on the structure. Such loads consist of the weights
of the structural system itself and of all other material and equipment

*The numbers in brackets refer to items listed in the bibliography.
†Copies of this standard may be purchased from the American Society of Civil Engineers,
1801 Alexander Bell Drive, Reston, Virginia 20191-4400.
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permanently attached to the structural system. For example, the dead
loads for a building structure include the weights of frames, framing and
bracing systems, floors, roofs, ceilings, walls, stairways, heating and air-
conditioning systems, plumbing, electrical systems, and so forth.

The weight of the structure is not known in advance of design and is
usually assumed based on past experience. After the structure has been
analyzed and the member sizes determined, the actual weight is com-
puted by using the member sizes and the unit weights of materials. The
actual weight is then compared to the assumed weight, and the design
is revised if necessary. The unit weights of some common construction
materials are given in Table 2.1. The weights of permanent service
equipment, such as heating and air-conditioning systems, are usually
obtained from the manufacturer.

continued

Example 2.1

The floor system of a building consists of a 15-cm-thick reinforced concrete slab resting on four steel floor beams, which
in turn are supported by two steel girders, as shown in Fig. 2.1(a). The cross-sectional areas of the floor beams and the
girders are 94.8 cm2 and 337.4 cm2, respectively. Determine the dead loads acting on the beams CG and DH and the
girder AD.

TABLE 2.1 UNIT WEIGHTS OF
CONSTRUCTION MATERIALS

Unit Weight

Material kN/m3

Aluminum 25.9

Brick 18.8

Concrete, reinforced 23.6

Structural steel 77.0

Wood 6.3

FIG. 2.1
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Solution
Beam CG As shown in Fig. 2.1(a), the portion of the slab supported by beam CG has a width of 3 m (i.e., half the

distance between beams CG and BF plus half the distance between beams CG and DH) and a length of 8 m. This sur-
face area (8� 3 ¼ 24 m2) supported by beam CG (the shaded rectangular area in Fig. 2.1(a)) is referred to as the trib-

utary area for beam CG.
We use the unit weights of reinforced concrete and structural steel from Table 2.1 to compute the dead load per

meter of length of beam CG as follows:

Concrete slab: ð23:6 kN=m3Þð3 mÞ 15

100

� �
m ¼ 10:62 kN=m

Steel beam: ð77 kN=m3Þ 94:8

10000
m2

� �
¼ 0:73 kN=m

Total load ¼ 11:35 kN=m Ans.

This load is uniformly distributed on the beam, as shown in Fig. 2.1(b). This figure also shows the reactions exerted by
the supporting girders at the ends of the beam. As the beam is symmetrically loaded, the magnitudes of the reactions are
equal to half of the total load acting on the beam:

RC ¼ RG ¼ 1
2 ð11:35 kN=mÞð8 mÞ ¼ 90:8 kN

Note that the magnitudes of these end reactions represent the downward loads being transmitted to the supporting
girders AD and EH at points C and G, respectively.

Beam DH The tributary area for beam DH is 1.5 m wide and 8 m long. The dead load per foot of length of this
beam is computed as follows:

Concrete slab: ð23:6 kN=m3Þð1:5 mÞ 15

100
m

� �
¼ 5:31 kN=m

Steel beam: ðsame as for beam CGÞ ¼ 0:73 kN=m

Total load ¼ 6:04 kN=m Ans.

As shown in Fig. 2.1(c), the end reactions are

RD ¼ RH ¼ 1
2 ð6:04 kN=mÞð8 mÞ ¼ 48:32 kN

Girder AD Because of the symmetry of the framing system and loading, the loads acting on beams BF and AE are
the same as those on beams CG and DH, respectively. The load on girder AD consists of the uniformly distributed load
due to its own weight, which has a magnitude of

ð77 kN=m3Þ 337:4

10000
m2

� �
¼ 2:6 kN=m

and the concentrated loads transmitted to it by the beams at points A, B, C, and D, as shown in Fig. 2.1(d). Ans.
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2.2 LIVE LOADS

Live loads are loads of varying magnitudes and/or positions caused by
the use of the structure. Sometimes, the term live loads is used to refer to
all loads on the structure that are not dead loads, including environ-
mental loads, such as snow loads or wind loads. However, since the
probabilities of occurrence for environmental loads are di¤erent from
those due to the use of structures, the current codes use the term live
loads to refer only to those variable loads caused by the use of the
structure. It is in the latter context that this text uses this term.

The magnitudes of design live loads are usually specified in building
codes. The position of a live load may change, so each member of the
structure must be designed for the position of the load that causes the
maximum stress in that member. Di¤erent members of a structure may
reach their maximum stress levels at di¤erent positions of the given
load. For example, as a truck moves across a truss bridge, the stresses in
the truss members vary as the position of the truck changes. If member A
is subjected to its maximum stress when the truck is at a certain position
x, then another member B may reach its maximum stress level when the
truck is in a di¤erent position y on the bridge. The procedures for de-
termining the position of a live load at which a particular response
characteristic, such as a stress resultant or a deflection, of a structure is
maximum (or minimum) are discussed in subsequent chapters.

Live Loads for Buildings

Live loads for buildings are usually specified as uniformly distributed
surface loads in kilopascals. Minimum floor live loads for some com-
mon types of buildings are given in Table 2.2. For a comprehensive list
of live loads for various types of buildings and for provisions regarding
roof live loads, concentrated loads, and reduction in live loads, the
reader is referred to the ASCE 7 Standard.

TABLE 2.2 MINIMUM FLOOR LIVE LOADS FOR BUILDINGS

Live Load

Occupancy or Use kPa

Hospital patient rooms, residential
dwellings, apartments, hotel guest rooms, school
classrooms

1.92

Library reading rooms, hospital operating rooms
and laboratories

2.87

Dance halls and ballrooms, restaurants, gymnasiums 4.79

Light manufacturing, light storage warehouses,
wholesale stores

6.00

Heavy manufacturing, heavy storage warehouses 11.97

Source: Adapted with permission from ASCE/SEI 7-05, Minimum Design Loads for
Buildings and Other Structures.
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Live Loads for Bridges

Live loads due to vehicular tra‰c on highway bridges are specified by
the American Association of State Highway and Transportation O‰-
cials in the Standard Specifications for Highway Bridges [36], which is
commonly referred to as the AASHTO Specification.

As the heaviest loading on highway bridges is usually caused by
trucks, the AASHTO Specification defines two systems of standard
trucks, H trucks and HS trucks, to represent the vehicular loads for de-
sign purposes.

The H-truck loadings (or H loadings), representing a two-axle truck,
are designated by the letter H, followed by the total weight of the truck
and load in tons (1 ton � 0.9 tonne) and the year in which the loading
was initially specified. For example, the loading H20-44 represents a
code for a two-axle truck weighing 20 tons (18 tonnes) initially instituted
in the 1944 edition of the AASHTO Specification. The axle spacing, axle
loads, and wheel spacing for the H trucks are shown in Fig. 2.2(a).

The HS-truck loadings (or HS loadings) represent a two-axle tractor
truck with a single-axle semitrailer. These loadings are designated by the
letters HS followed by the weight of the corresponding H truck in tons
and the year in which the loading was initially specified. The axle spacing,
axle loads, and wheel spacing for the HS trucks are shown in Fig. 2.2(a).
Note that the spacing between the rear axle of the tractor truck and the axle
of the semitrailer should be varied between 14 ft (4.6 m) and 30 ft (10 m),
and the spacing causing the maximum stress should be used for design.

2 ft2 ft

Curb

Lane
width

10 ft

6 ft

0.8 W0.8 W0.2 W

14 ft to 30 ft14 ft

0.8 W0.2 W

14 ft

W =  weight of the corresponding H truck
 = total weight on the first two axles

W =  total weight of truck and load

HS20-44 8 kH20-44 8 k 32 k 32 k 32 k

(a) Standard Truck Loadings

(b) H20-44 and HS20-44 Lane Loading

HS trucks End viewH trucks

18 k for moment
26 k for shear Concentrated load Uniform load 0.64 k/linear foot of lane

FIG. 2.2 Live Loads for Highway Bridges [1 foot = 0.305 m, 1 k = 4.45 kN]
Source: Taken from the Standard Specifications for Highway Bridges. Copyright 2002. American Association of State

Highway and Transportation Officials, Washington, D.C. Used by permission.
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The particular type of truck loading to be used in design depends on
the anticipated tra‰c on the bridge. The H20-44 and HS20-44 are the
most commonly used loadings; the axle loads for these loadings are
shown in Fig. 2.2(a).

In addition to the aforementioned single-truck loading, which must be
placed to produce the most unfavorable e¤ect on the member being de-
signed, AASHTO specifies that a lane loading, consisting of a uniformly
distributed load combined with a single concentrated load, be considered.
The lane loading represents the e¤ect of a lane of medium-weight vehicles
containing a heavy truck. The lane loading must also be placed on the
structure so that it causes maximum stress in the member under consid-
eration. As an example, the lane loading corresponding to the H20-44 and
HS20-44 truck loadings is shown in Fig. 2.2(b). The type of loading, either
truck loading or lane loading, that causes the maximum stress in a member
should be used for the design of that member. Additional information re-
garding multiple lanes, loadings for continuous spans, reduction in load in-
tensity, and so on, can be found in the AASHTO Specification.

Live loads for railroad bridges are specified by the American Rail-
way Engineering and Maintenance of Way Association (AREMA)
in the Manual for Railway Engineering [26]. These loadings, which are
commonly known as Cooper E loadings, consist of two sets of nine con-
centrated loads, each separated by specified distances, representing the
two locomotives followed by a uniform loading representing the weight
of the freight cars. An example of such a loading, called the E80 load-
ing, is depicted in Fig. 2.3. The design loads for heavier or lighter trains

FIG. 2.3 Live Loads for Railroad Bridges
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can be obtained from this loading by proportionately increasing or de-
creasing the magnitudes of the loads while keeping the same distances
between the concentrated loads. For example, the E40 loading can be
obtained from the E80 loading by simply dividing the magnitudes of the
loads by 2. As in the case of highway bridges considered previously, live
loads on railroad bridges must be placed so that they will cause the most
unfavorable e¤ect on the member under consideration.

2.3 IMPACT

When live loads are applied rapidly to a structure, they cause larger
stresses than those that would be produced if the same loads would have
been applied gradually. The dynamic e¤ect of the load that causes this
increase in stress in the structure is referred to as impact. To account for
the increase in stress due to impact, the live loads expected to cause such a
dynamic e¤ect on structures are increased by certain impact percentages,
or impact factors. The impact percentages and factors, which are usually
based on past experience and/or experimental results, are specified in the
building codes. For example, the ASCE 7 Standard specifies that all ele-
vator loads for buildings be increased by 100% to account for impact.

For highway bridges, the AASHTO Specification gives the ex-
pression for the impact factor as

I ¼ 15

Lþ 38:1
a 0:3

in which L is the length in meters of the portion of the span loaded to
cause the maximum stress in the member under consideration. Similar
empirical expressions for impact factors to be used in designing railroad
bridges are specified in [26].

2.4 WIND LOADS

Wind loads are produced by the flow of wind around the structure. The
magnitudes of wind loads that may act on a structure depend on the
geographical location of the structure, obstructions in its surrounding
terrain, such as nearby buildings, and the geometry and the vibrational
characteristics of the structure itself. Although the procedures described
in the various codes for the estimation of wind loads usually vary in
detail, most of them are based on the same basic relationship between
the wind speed V and the dynamic pressure q induced on a flat surface
normal to the wind flow, which can be obtained by applying Bernoulli’s
principle and is expressed as
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q ¼ 1
2 rV

2 (2.1)

in which r is the mass density of the air. Using the unit weight of air of
12.02 N/m3 for the standard atmosphere (at sea level, with a temper-
ature of 15�c), and expressing the wind speed V in m/s, the dynamic
pressure q in N/m2 is given by

q ¼ 1

2

12:02

9:81

� �
V 2 ¼ 0:613V 2 (2.2)

The wind speed V to be used in the determination of the design
loads on a structure depends on its geographical location and can be
obtained from meteorological data for the region. The ASCE 7

Standard provides a contour map of the basic wind speeds for the
United States (Fig. 2.4). This map, which is based on data collected
at 485 weather stations, gives the 3-second gust speeds in m/s. These
speeds are for open terrain at the heights of 10 m above ground level.
To account for the variation in wind speed with the height and the
surroundings in which a structure is located and to account for the
consequences of the failure of structures, the ASCE 7 Standard

modifies Eq. (2.2) as

qz ¼ 0:613KzKztKdV
2I (2.3)

in which qz is the velocity pressure at height z in N/m2; V is the basic
wind speed in m/s (Fig. 2.4); I is the importance factor; Kz is the velocity
pressure exposure coe‰cient; Kzt is the topographic factor; and Kd is the
wind directionality factor.

The importance factor I accounts for hazard to human life and
damage to property in the event of failure of the structure. The values
of I to be used for estimating wind loads for the various categories of
buildings are listed in Table 2.3.

The velocity pressure exposure coe‰cient, Kz, is given by

Kz ¼
2:01ðz=zgÞ2=a for ð4:6 mÞa za zg

2:01
ð4:6 mÞ

zg

� �2=a

for z < ð4:6 mÞ

8><
>: (2.4)

in which z ¼ height above ground in meters; zg ¼ gradient height in
meters; and a ¼ power law coe‰cient. The constants zg and a de-
pend on the obstructions on the terrain immediately surrounding the
structure. The ASCE 7 Standard classifies the terrains to which the
structures may be exposed into three categories. These three catego-
ries are briefly described in Table 2.4, which also provides the values
of the constants for each of the categories. A more detailed descrip-
tion of the exposure categories can be found in the ASCE 7 Stand-

ard. The topographic factor, Kzt, takes into account the e¤ect of
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TABLE 2.3 CLASSIFICATION OF BUILDINGS FOR ENVIRONMENTAL LOADS

Importance Factor, I

Occupancy or use Category
Wind
loads

Snow
loads

Earthquake
loads

Buildings representing low hazard to human life in the case of
failure, such as agricultural and minor storage facilities

I 0.87 for V a 45 m/s
0.77 for V > 45 m/s

0.8 1.00

All buildings other than those listed in Categories I, III, and IV II 1.00 1.0 1.00

Buildings representing a substantial hazard to human life in the
case of failure, such as: those where more than 300 people
congregate in one area; day-care facilities with capacity
greater than 150; schools with capacity greater than 250;
colleges with capacity greater than 500; hospitals without
emergency treatment or surgery facilities but with
patient capacity greater than 50; jails; power stations and
utilities not essential in an emergency; and buildings
containing hazardous and explosive materials

III 1.15 1.1 1.25

Essential facilities, including hospitals, fire and police
stations, national defense facilities and emergency shelters,
communication centers, power stations, and utilities
required in an emergency

IV 1.15 1.2 1.5

Source: Adapted with permission from ASCE/SEI 7-05, Minimum Design Loads for Buildings and Other Structures. This information is
extracted from ASCE/SEI 7-05; for further information, the complete text of the manual should be referenced.

TABLE 2.4 EXPOSURE CATEGORIES FOR BUILDINGS FOR WIND LOADS

Constants

Exposure Category zg (m) a

Urban and suburban areas with closely spaced
obstructions of the size of single family houses or
larger. This terrain must prevail in the upwind
direction for a distance of at least 792 m or 20
times the building height, whichever is greater

B 365.76 7.0

Applies to all buildings to which exposures B or
D do not apply

C 274.32 9.5

Flat, unobstructed areas and water surfaces
outside hurricane-prone regions. This terrain must
prevail in the upwind direction for a distance of at
least 1,524 m or 20 times the building height,
whichever is greater

D 213.36 11.5

Source: Adapted with permission from ASCE/SEI 7-05, Minimum Design Loads for
Buildings and Other Structures. This information is extracted from ASCE/SEI 7-05; for
further information, the complete text of the manual should be referenced.
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FIG. 2.5 External Pressure Coe‰cients, Cp, for Loads on Main Wind-Force
Resisting Systems for Enclosed or Partially Enclosed Buildings of All Heights
Source: Reproduced with permission from ASCE/SEI 7-05, Minimum Design Loads for Buildings and Other Structures.

This information is extracted from ASCE/SEI 7-05; for further information, the complete text of the manual should be

referenced.
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Wall Pressure Coe‰cients, Cp

Surface L=B Cp Use with

Windward wall All values 0.8 qz

0–1 �0.5
Leeward wall 2 �0.3 qh

b4 �0.2
Side wall All values �0.7 qh

Roof Pressure Coe‰cients, Cp, for use with qh

Windward Leeward

Angle, y (degrees) Angle, y (degrees)

Wind
direction

h=L 10 15 20 25 30 35 45 b60# 10 15 b20

a0.25
�0.7
�0.18

�0.5
0.0*

�0.3
0.2

�0.2
0.3

�0.2
0.3

0.0*
0.4 0.4 0.01y

�0.3 �0.5 �0.6

0.5
�0.9
�0.18

�0.7
�0.18

�0.4
0.0*

�0.3
0.2

�0.2
0.2

�0.2
0.3

0.0*
0.4 0.01y

�0.5 �0.5 �0.6
Normal to
ridge for
yb 10�

b1.0
�1.3**
�0.18

�1.0
�0.18

�0.7
�0.18

�0.5
0.0*

�0.3
0.2

�0.2
0.2

0.0*
0.3 0.01y

�0.7 �0.6 �0.6

Horiz distance from
windward edge

Cp
*Value is provided for interpolation
purposes.

0 to h=2 �0.9, �0.18
a0:5 h=2 to h �0.9, �0.18

h to 2 h �0.5, �0.18
>2 h �0.3, �0.18

**Value can be reduced linearly with area
over which it is applicable as follows.

Area (sq ft)2 Reduction factor
0 to h/2 �1.3**, �0.18

a 100 (9.3 sq m)2 1.0

250 (23.2 sq m) 0.9

Normal to
ridge for

y < 10� and
Parallel to

ridge for all y

b1.0

>h/2 �0.7, �0.18
b 1,000 (92.9 sq m)2 0.8

Notes:
1. Plus and minus signs signify pressures acting toward and away from the surfaces, respectively.
2. Linear interpolation is permitted for values of L=B; h=L; and y other than shown. Interpolation shall only be carried out between values

of the same sign. Where no value of the same sign is given, assume 0.0 for interpolation purposes.
3. Where two values of Cp are listed, this indicates that the windward roof slope is subjected to either positive or negative pressures and the

roof structure shall be designed for both conditions. Interpolation for intermediate ratios of h=L in this case shall only be carried out
between Cp values of like sign.

4. For monoslope roofs, the entire roof surface is either a windward or leeward surface.
5. Notation:

B: Horizontal dimension of building, in feet meters, measured normal to wind direction.
L: Horizontal dimension of building, in feet meters, measured parallel to wind direction.
h: Mean roof height in feet (meters), except that eave height shall be used for ya 10 degrees.
z: Height above ground, in feet meters.
G: Gust e¤ect factor.
qz; qh: Velocity pressure, in per square foot N/m2, evaluated at respective height.
y: Angle of plane of roof from horizontal, in degrees.

6. For mansard roofs, the top horizontal surface and leeward inclined surface shall be treated as leeward surfaces from the table.
7. Except for MWFRS’s at the roof consisting of moment resisting frames, the total horizontal shear shall not be less than that determined

by neglecting wind forces on roof surfaces.
#For roof slopes greater than 80�, use Cp ¼ 0:8.

FIG. 2.5 (contd.)
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increase in wind speed due to abrupt changes in topography, such as
isolated hills and steep cli¤s. For structures located on or near the
tops of such hills, the value of Kzt should be determined using the
procedure specified in the ASCE 7 Standard. For other structures,
Kzt ¼ 1. The wind directionality factor, Kd , takes into account the
reduced probability of maximum winds coming from the direction that
is most unfavorable for the structure. This factor is used only when
wind loads are applied in combination with other types of loads (such
as dead loads, live loads, etc.). For structures subjected to such load
combinations, the values of Kd should be obtained from the ASCE 7

Standard. For structures subjected only to wind loads, Kd ¼ 1.
The external wind pressures to be used for designing the main

framing of structures are given by

pz ¼ qzGCp for windward wall

ph ¼ qhGCp for leeward wall; sidewalls; and roof
(2.5)

in which h ¼ mean roof height above ground; qh ¼ velocity pressure
at height h (evaluated by substituting z ¼ h in Eq. (2.3) ); pz ¼ design
wind pressure at height z above ground; ph ¼ design wind pressure at
mean roof height h; G ¼ gust e¤ect factor; and Cp ¼ external pressure

coe‰cient.
The gust e¤ect factor, G, is used to consider the loading e¤ect of

wind turbulence on the structure. For a rigid structure, whose funda-
mental frequency is greater than or equal to 1 Hz., G ¼ 0:85. For flexi-
ble structures, the value of G should be calculated using the equations
given in the ASCE 7 Standard.

The values of the external pressure coe‰cients, Cp, based on wind
tunnel and full-scale tests, have been provided in the ASCE 7 Standard

for various types of structures. Figure 2.5 shows the coe‰cients specified
for designing the main framing of structures. We can see from this figure
that the external wind pressure varies with height on the windward wall
of the structure but is uniform on the leeward wall and the sidewalls.
Note that the positive pressures act toward the surfaces, whereas the
negative pressures, called suctions, act away from the surfaces of the
structures.

Once the external wind pressures have been established, they are
combined with the internal pressures to obtain the design wind
pressures. With the design wind pressures known, we can determine
the corresponding design loads on members of the structures by
multiplying the pressures by the appropriate tributary areas of the
members.
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Example 2.2

Determine the external wind pressure on the roof of the rigid gabled frame of a nonessential industrial building shown
in Fig. 2.6(a). The structure is located in a suburb of Boston, Massachusetts, where the terrain is representative of ex-
posure B. The wind direction is normal to the ridge of the frame as shown.

Solution
Roof Slope and Mean Roof Height From Fig. 2.6(a), we obtain

tan y ¼ 5

6
¼ 0:833; or y ¼ 39:8�

h ¼ 3:5þ 5:0

2
¼ 6:0

h

L
¼ 6:0

12:0
¼ 0:5

Velocity Pressure at z ¼ h ¼ 6 m From Fig. 2.4, we obtain the basic wind speed for Boston as

V ¼ 49 m=s

From Table 2.3, we can see that the importance factor for wind loads for nonessential buildings (category II) is

I ¼ 1:0

and from Table 2.4, for the exposure category B, we obtain the following values of the constants:

zg ¼ 365:76 m and a ¼ 7:0

By using Eq. (2.4), we determine the velocity pressure exposure coe‰cient:

Kh ¼ 2:01
h

zg

� �2=a

¼ 2:01� 6

365:76

� �2=7

¼ 0:624

continued

FIG. 2.6
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Using Kzt ¼ 1 and Kd ¼ 1, we apply Eq. (2.3) to obtain the velocity pressure at height h as

qh ¼ 0:613KhKzlKdV
2I

¼ 0:613ð0:624Þð1Þð1Þð49Þ2ð1:0Þ
¼ 0:92 kN=m2

External Wind Pressure on Roof For rigid structures, the gust e¤ect factor is

G ¼ 0:85

For y&40� and h=L ¼ 0:5, the values of the external pressure coe‰cients are (Fig. 2.5):

For windward side: Cp ¼ 0:35 and �0:1
For leeward side: Cp ¼ �0:6

Finally, by substituting the values of qh, G, and Cp into Eq. (2.5), we obtain the following wind pressures: for the
windward side,

ph ¼ qhGCp ¼ ð0:92Þð0:85Þð0:35Þ ¼ 0:27 kN=m2 Ans.

and

ph ¼ qhGCp ¼ ð0:92Þð0:85Þð�0:1Þ ¼ �0:08 kN=m2 Ans.

and for the leeward side

ph ¼ qhGCp ¼ ð0:92Þð0:85Þð�0:6Þ ¼ �0:47 kN=m2 Ans.

These wind pressures are applied to the roof of the frame, as shown in Fig. 2.6(b). The two wind pressures (positive
and negative) on the windward side are treated as separate loading conditions, and the structure is designed for both
conditions.

2.5 SNOW LOADS

In many parts of the United States and the world, snow loads must be
considered in designing structures. The design snow load for a structure
is based on the ground snow load for its geographical location, which
can be obtained from building codes or meteorological data for that re-
gion. The ASCE 7 Standard provides contour maps (similar to Fig. 2.4)
of the ground snow loads for various parts of the United States. These
maps, which are based on data collected at 204 weather stations and
over 9000 other locations, give the snow loads (in kN/m2) that have a
2% probability of being exceeded in any given year.

Once the ground snow load has been established, the design snow
load for the roof of the structure is determined by considering such fac-
tors as the structure’s exposure to wind, and its thermal, geometric, and
functional characteristics. In most cases, there is less snow on roofs than
on the ground. The ASCE 7 Standard recommends that the design snow
load for flat roofs be expressed as

pf ¼ 0:7CeCtIpg (2.6)
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in which pf ¼ design flat-roof snow load in kN/m2; pg ¼ ground
snow load in kN/m2; Ce ¼ exposure factor; Ct ¼ thermal factor; and
I ¼ importance factor.

In Eq. (2.6), the numerical factor 0.7, which is referred to as the
basic exposure factor, accounts for the general e¤ect of wind, which is
likely to blow some of the snow o¤ the roofs. The local e¤ects of wind,
which depend on the particular terrain surrounding the structure and
the exposure of its roof, are accounted for by the exposure factor Ce.
The ASCE 7 Standard provides the values of Ce, which range from 0.7
for structures in windy areas with exposed roofs to 1.2 for structures
exposed to little wind.

The thermal factor, Ct, accounts for the fact that there will be more
snow on the roofs of unheated structures than on those of heated ones.
The values of Ct are specified as 1.0 and 1.2 for heated and unheated
structures, respectively. As in the case of wind loads, the importance
factor I in Eq. (2.6) accounts for hazard to human life and damage to
property in the case of failure of the structure. The values of I to be used
for estimating roof snow loads are given in Table 2.3.

The design snow load for a sloped roof is determined by multiplying
the corresponding flat-roof snow load by a slope factor Cs. Thus,

ps ¼ Cs pf (2.7)

in which ps is the design sloped-roof snow load considered to act on the
horizontal projection of the roof surface, and the slope factor Cs is given
by

For warm roofs
ðCt a 1:0Þ

Cs ¼ 1 for 0a y < 30�

Cs ¼ 1� y� 30�

40�
for 30�a ya 70�

Cs ¼ 0 for y > 70�

8>>><
>>>: (2.8)

For cold roofs
ðCt ¼ 1:2Þ

Cs ¼ 1 for 0a y < 45�

Cs ¼ 1� y� 45�

25�
for 45�a ya 70�

Cs ¼ 0 for y > 70�

8>>><
>>>: (2.9)

In Eqs. (2.8) and (2.9), y denotes the slope of the roof from the hori-
zontal, in degrees. These slope factors are based on the considerations
that more snow is likely to slide o¤ of steep roofs, as compared to shal-
low ones, and that more snow is likely to melt and slide o¤ the roofs of
heated structures than those of unheated structures.

The ASCE 7 Standard specifies minimum values of snow loads
for which structures with low-slope roofs must be designed. For such
structures, if Pg a 0.96 kN/m2, then Pf shall not be less than PgI ; if
Pg > 0.96 kN/m2, then Pf shall not be less than 0.96I kN/m2. These
minimum values of Pf apply to monoslope roofs with ya 15�, and
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to hip and gable roofs with y less than the larger of 2.38� and
ð21:3=WÞ þ 0:5, where W is the horizontal distance from the eave to
the ridge in m.

In some structures, the snow load acting on only a part of the
roof may cause higher stresses than when the entire roof is loaded. To
account for such a possibility, the ASCE 7 Standard recommends that
the e¤ect of unbalanced snow loads also be considered in the design
of structures. A detailed description of unbalanced snow load dis-
tributions to be considered in the design of various types of roofs can
be found in the ASCE 7 Standard. For example, for gable roofs with
[larger of 2.38� and ð21:3=WÞ þ 0:5 �a ya 70� and W a 6 m, the
ASCE 7 Standard specifies that the structures be designed to resist an
unbalanced uniform load of magnitude PgI applied to the leeward side
of the roof, with the windward side free of snow.

Example 2.3

Determine the design snow loads for the roof of the gabled frame of an apartment building shown in Fig. 2.7(a). The
building is located in Chicago, Illinois, where the ground snow load is 1.2 kN/m2. Because of several trees near the
structure, assume the exposure factor is Ce ¼ 1.

Solution
Flat-Roof Snow Load

pg ¼ 1:2 kN=m2

Ce ¼ 1

Ct ¼ 1 ðheated structureÞ
I ¼ 1 ðfrom Table 2:3 for nonessential building; category IIÞ

12 m
(a) (b) Balanced Snow Load (c) Unbalanced Snow Load

θ = 35°

W = 6 m 0.74 kN/m2 1.2 kN/m2

Wind

FIG. 2.7
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From Eq. (2.6), the flat-roof snow load is obtained as

pf ¼ 0:7CeCtIpg ¼ 0:7ð1Þð1Þð1Þð1:2Þ
¼ 0:84 kN=m2

From Fig. 2.7(a), we can see that W ¼ 6 m. Thus,

21:3

W
þ 0:5 ¼ 21:3

6
þ 0:5 ¼ 4�

The slope is y ¼ 35�, which is greater than 4�, so the minimum values of pf need not be considered.

Sloped-Roof Snow Load By applying Eq. (2.8), we compute the slope factor as

Cs ¼ 1� y� 30�

40�
¼ 1� 35� � 30�

40�
¼ 0:88

From Eq. (2.7), we determine the design sloped-roof snow load:

ps ¼ Cs pf ¼ 0:88ð0:84Þ ¼ 0:74 kN=m2 Ans.

This load is called the balanced design snow load and is applied to the entire roof of the structure, as shown in
Fig. 2.7(b).

Unbalanced Design Snow Load ¼ PgI ¼ 1:2ð1Þ

¼ 1:2 kN=m2 Ans.

This load is applied only to the leeward side of the roof, as shown in Fig. 2.7(c).

2.6 EARTHQUAKE LOADS

An earthquake is a sudden undulation of a portion of the earth’s surface.
Although the ground surface moves in both horizontal and vertical di-
rections during an earthquake, the magnitude of the vertical component
of ground motion is usually small and does not have a significant e¤ect
on most structures. It is the horizontal component of ground motion
that causes structural damage and that must be considered in designs of
structures located in earthquake-prone areas.

During an earthquake, as the foundation of the structure moves
with the ground, the above-ground portion of the structure, because of
the inertia of its mass, resists the motion, thereby causing the structure
to vibrate in the horizontal direction (Fig. 2.8). These vibrations pro-
duce horizontal shear forces in the structure. For an accurate pre-
diction of the stresses that may develop in a structure in the case of
an earthquake, a dynamic analysis, considering the mass and sti¤ness
characteristics of the structure, must be performed. However, for low- to
medium-height rectangular buildings, most codes employ equivalent
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static forces to design for earthquake resistance. In this empirical ap-
proach, the dynamic e¤ect of the earthquake is approximated by a set of
lateral (horizontal) forces applied to the structure, and static analysis is
performed to evaluate stresses in the structure.

The ASCE 7 Standard permits the use of this equivalent lateral-
force procedure for earthquake design of buildings. According to the
ASCE 7 Standard, the total lateral seismic force that a building is de-
signed to resist is given by the equation

V ¼ CSW (2.10)

in which V ¼ total lateral force or base shear, W ¼ dead load of the
building, and CS ¼ seismic response coe‰cient. The latter is defined by
the equation

CS ¼ SDS

R=I
(2.11)

in which SDS is the design spectral response acceleration in the short
period range; R denotes the response modification factor; and I repre-
sents the importance factor. The ASCE 7 Standard further specifies
upper and lower limits for the values of CS to be used in design.

The design spectral response acceleration (SDS), used in the evalua-
tion of the design base shear, depends on the geographical location of
the structure, and can be obtained using the contour maps provided in
the ASCE 7 Standard. The response modification factor R takes into
consideration the energy-dissipation capacity of the structure; its values
range from 1.25 to 8. For example, for plain unreinforced masonry
shear walls, R ¼ 1:5; whereas, for moment resisting frames, R ¼ 8. The
values of I to be used for estimating earthquake loads are given in
Table 2.3.

The total lateral force V thus obtained is then distributed to the
various floor levels of the building using the formulas provided in the
ASCE 7 Standard. For additional details about this equivalent lateral-

FIG. 2.8 E¤ect of Earthquake on a
Structure
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force procedure, and for limitations on the use of this procedure, the
reader is referred to the ASCE 7 Standard.

2.7 HYDROSTATIC AND SOIL PRESSURES

Structures used to retain water, such as dams and tanks, as well as
coastal structures partially or fully submerged in water must be designed
to resist hydrostatic pressure. Hydrostatic pressure acts normal to the
submerged surface of the structure, with its magnitude varying linearly
with height, as shown in Fig. 2.9. Thus, the pressure at a point located
at a distance h below the surface of the liquid can be expressed as

p ¼ gh (2.12)

in which g ¼ unit weight of the liquid.
Underground structures, basement walls and floors, and retaining

walls must be designed to resist soil pressure. The vertical soil pressure is
given by Eq. (2.12), with g now representing the unit weight of the soil.
The lateral soil pressure depends on the type of soil and is usually con-
siderably smaller than the vertical pressure. For the portions of struc-
tures below the water table, the combined e¤ect of hydrostatic pressure
and soil pressure due to the weight of the soil, reduced for buoyancy,
must be considered.

2.8 THERMAL AND OTHER EFFECTS

Statically indeterminate structures may be subjected to stresses due to
temperature changes, shrinkage of material, fabrication errors, and dif-
ferential settlements of supports. Although these e¤ects are usually not
addressed in building codes, they may cause significant stresses in struc-
tures and should be considered in their designs. The procedures for de-
termining the forces induced in structures due to these e¤ects are con-
sidered in Part III.

2.9 LOAD COMBINATIONS

As stated previously, once the magnitudes of the design loads for a
structure have been estimated, an engineer must consider all loads that
might act simultaneously on the structure at a given time. For example,
it is highly unlikely that an earthquake and the maximum wind loads
will occur simultaneously. Based on past experience and probability
analysis, the ASCE 7 Standard specifies various load combinations to be

FIG. 2.9 Hydrostatic Pressure
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considered when designing structures. It is important to realize that the
structure must be designed to have adequate strength to resist the most
unfavorable of all the load combinations.

In addition to the aforementioned strength or safety requirements, a
structure must also satisfy any serviceability requirements related to its
intended use. For example, a high-rise building may be perfectly safe,
yet unserviceable if it deflects or vibrates excessively due to wind. The
serviceability requirements are specified in building codes for most
common types of structures and are usually concerned with deflections,
vibrations, cracking, corrosion, and fatigue.

SUMMARY

In this chapter, we learned about the loads that act on common civil
engineering structures. These loads can be grouped into three classes: (1)
dead loads, (2) live loads, and (3) environmental loads.

Dead loads have constant magnitudes and fixed positions, and they
act permanently on the structure. Live loads have varying magnitudes
and/or positions and are caused by the use or occupancy of the struc-
ture. Each member of the structure must be designed for that position of
the live load that produces the most unfavorable e¤ect on that member.
For structures subjected to rapidly applied live loads, the dynamic ef-
fect, or the impact, of the loads should be considered in design.

The external wind pressures used for designing the main framing of
structures are given by

pz ¼ qzGCp for windward wall

ph ¼ qhGCp for leeward wall; sidewalls; and roof
(2.5)

where h is the mean roof height, G is the gust e¤ect factor, Cp is the ex-
ternal pressure coe‰cient, and qz is the velocity pressure at height z,
which is expressed in N/m2 as

qz ¼ 0:613KzKztKdV
2I (2.3)

with Kz ¼ velocity pressure exposure coe‰cient, Kzt ¼ topographic fac-
tor, Kd ¼ directionality factor, V ¼ basic wind speed in m/s, and I ¼
importance factor.

The design flat-roof snow load for buildings is given by

pf ¼ 0:7CeCtIpg (2.6)

where pg ¼ ground snow load, Ce ¼ exposure factor, and Ct ¼ thermal
factor. The design sloped-roof snow load is expressed as

ps ¼ Cs pf (2.7)

with Cs ¼ slope factor.
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The total lateral seismic design force for buildings is given by

V ¼ CSW (2.10)

in which CS ¼ seismic response coe‰cient, and W ¼ dead load of the
building.

The magnitude of the hydrostatic pressure at a point located at a
distance h below the surface of the liquid is given by

p ¼ gh (2.12)

in which g ¼ unit weight of the liquid.
The e¤ects of temperature changes, shrinkage of material, fab-

rication errors, and support settlements should be considered in design-
ing statically indeterminate structures. The structure must be designed
to withstand the most unfavorable combination of loads.

PROBLEMS

Section 2.1

2.1 The floor system of an apartment building consists of
a 100-mm-thick reinforced concrete slab resting on three
steel floor beams, which in turn are supported by two steel
girders, as shown in Fig. P2.1. The areas of cross section
of the floor beams and the girders are 11,800 mm2 and
21,100 mm2, respectively. Determine the dead loads acting
on the beam CD and the girder AE.

2.2 Solve Problem 2.1 if a 150-mm-thick brick wall, which
is 2.1 m high and 7.5 m long, bears directly on the top of
beam CD. See Fig. P2.1.

FIG. P2.1, P2.2, P2.5

2.3 The floor system of a gymnasium consists of a 130-mm-thick
concrete slab resting on four steel beams (A ¼ 9;100 mm2)

that, in turn, are supported by two steel girders (A ¼ 25;600
mm2), as shown in Fig. P2.3. Determine the dead loads
acting on beam BF and girder AD.

A D
B C

E F G
H

10 m

3 at 5 m = 15 m

130 mm
concrete
slab

Steel
column

Steel girder (A = 25,600 mm2)
Steel floor beam
(A = 9,100 mm2)

FIG. P2.3, P2.6

2.4 The roof system of an o‰ce building consists of a
100 mm-thick reinforced concrete slab resting on four steel
beams (A ¼ 10;450 mm2), which are supported by two steel
girders (A ¼ 27;700 mm2). The girders, in turn, are sup-
ported by four columns, as shown in Fig. P2.4. Determine
the dead loads acting on the girder AG.
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C

E

G

A

D

F

H

B6 m

3 at 3 m = 9 m

100 mm
concrete slab

Steel
columnSteel girder

(A = 27,700 mm2)

Steel floor beam
(A = 10,450 mm2)

FIG. P2.4, P2.7

Section 2.2

2.5 For the apartment building whose floor system was de-
scribed in Problem 2.1, determine the live loads acting on
the beam CD and the girder AE. See Fig. P2.1.

2.6 For the gymnasium whose floor system was described in
Problem 2.3, determine the live loads acting on beam BF

and girder AD. See Fig. P2.3.

2.7 The roof of the o‰ce building considered in Problem
2.4 is subjected to a live load of 1 kN/m2. Determine the
live loads acting on the beam EF , the girder AG, and the
column A. See Fig. P2.4.

Section 2.4

2.8 Determine the external wind pressure on the roof of the
rigid-gabled frame of an apartment building shown in Fig.
P2.8. The building is located in the Los Angeles area of
California, where the terrain is representative of exposure B.
The wind direction is normal to the ridge as shown.

Wind

10 m

5 m

12 m

FIG. P2.8

2.9 Determine the external wind pressure on the roof of the
rigid-gabled frame of a school building shown in Fig. P2.9.
The structure is located in a suburb of Chicago, Illinois,
where the terrain is representative of exposure B. The wind
direction is normal to the ridge as shown.

Wind

12 m

5 m

12 m

FIG. P2.9, P2.13

2.10 Determine the external wind pressure on the roof of
the rigid-gabled frame of a building for an essential disaster
operation center shown in Fig. P2.10. The building is lo-
cated in Kansas City, Missouri, where the terrain is repre-
sentative of exposure C. The wind direction is normal to the
ridge, as shown in the figure.

2.11 Determine the external wind pressures on the wind-
ward and leeward walls of the building of Problem 2.10. See
Fig. P2.10.

10 m

Plan

Elevation

10 m

4 m
Wind

12 m

FIG. P2.10, P2.11, P2.12

Section 2.5

2.12 Determine the balanced design snow load for the roof
of the disaster operation center building of Problem 2.10.
The ground snow load in Kansas City is 1 kN/m2. Because
of trees near the building, assume the exposure factor is
Ce ¼ 1. See Fig. P2.10.

2.13 Determine the balanced design snow load for the roof
of the school building of Problem 2.9. The ground snow
load in Chicago is 1.2 kN/m2. Assume the exposure factor
is Ce ¼ 1. See Fig. P2.9.
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The objective of this chapter is to review the basic concept of equili-
brium of structures under the action of forces and to develop the analy-
sis of reactions exerted by supports on plane (two-dimensional) struc-
tures subjected to coplanar force systems.

We first review the concept of equilibrium and develop the equa-
tions of equilibrium of structures. Next we discuss the external and in-
ternal forces. We then describe the common types of supports used to
restrict movements of plane structures. Structures can be classified as
externally statically determinate, indeterminate, or unstable. We discuss
how this classification can be made for plane structures. We then develop
a procedure for determining reactions at supports for plane statically
determinate structures. Finally, we define the principle of superposition
and show how to use proportions in the computation of reactions of
simply supported structures.

3.1 EQUILIBRIUM OF STRUCTURES

A structure is considered to be in equilibrium if, initially at rest, it remains

at rest when subjected to a system of forces and couples. If a structure is
in equilibrium, then all its members and parts are also in equilibrium.

Bridge Construction on an

Expressway
Donovan Reese / Photodisc / Getty Images
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In order for a structure to be in equilibrium, all the forces and cou-
ples (including support reactions) acting on it must balance each other,
and there must neither be a resultant force nor a resultant couple acting
on the structure. Recall from statics that for a space (three-dimensional)
structure subjected to three-dimensional systems of forces and couples
(Fig. 3.1), the conditions of zero resultant force and zero resultant cou-
ple can be expressed in a Cartesian ðxyzÞ coordinate system as

P
Fx ¼ 0

P
Fy ¼ 0

P
Fz ¼ 0P

Mx ¼ 0
P

My ¼ 0
P

Mz ¼ 0
(3.1)

These six equations are called the equations of equilibrium of space

structures and are the necessary and su‰cient conditions for equilibrium.
The first three equations ensure that there is no resultant force acting on
the structure, and the last three equations express the fact that there is
no resultant couple acting on the structure.

For a plane structure lying in the xy plane and subjected to a co-
planar system of forces and couples (Fig. 3.2), the necessary and su‰-
cient conditions for equilibrium can be expressed as

P
Fx ¼ 0

P
Fy ¼ 0

P
Mz ¼ 0 (3.2)

These three equations are referred to as the equations of equilibrium of

plane structures. The first two of the three equilibrium equations express,
respectively, that the algebraic sums of the x components and y com-
ponents of all the forces are zero, thereby indicating that the resultant

FIG. 3.1
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force acting on the structure is zero. The third equation indicates that
the algebraic sum of the moments of all the forces about any point in
the plane of the structure and the moments of any couples acting on the
structure is zero, thereby indicating that the resultant couple acting on
the structure is zero. All the equilibrium equations must be satisfied si-
multaneously for the structure to be in equilibrium.

It should be realized that if a structure (e.g., an aerospace vehicle)
initially in motion is subjected to forces that satisfy the equilibrium
equations, it will maintain its motion with a constant velocity, since the
forces cannot accelerate it. Such structures may also be considered to
be in equilibrium. However, the term equilibrium is commonly used to
refer to the state of rest of structures and is used in this context herein.

Alternative Forms of Equations of Equilibrium
of Plane Structures

Although the equilibrium equations as expressed in Eq. (3.2) provide
the most convenient means of analyzing a majority of plane structures,
the analysis of some structures can be expedited by employing one of the
following two alternative forms of the equations of equilibrium:P

Fq ¼ 0
P

MA ¼ 0
P

MB ¼ 0 (3.3)

in which A and B are any two points in the plane of the structure, pro-
vided that the line connecting A and B is not perpendicular to the q axis,
and P

MA ¼ 0
P

MB ¼ 0
P

MC ¼ 0 (3.4)

in which A;B, and C are any points in the plane of the structure, pro-
vided that these three points do not lie on the same straight line.

Concurrent Force Systems

When a structure is in equilibrium under the action of a concurrent
force system—that is, the lines of action of all the forces intersect at a
single point—the moment equilibrium equations are automatically sat-
isfied, and only the force equilibrium equations need to be considered.

FIG. 3.2
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Therefore, for a space structure subjected to a concurrent three-
dimensional force system, the equations of equilibrium areP

Fx ¼ 0
P

Fy ¼ 0
P

Fz ¼ 0 (3.5)

Similarly, for a plane structure subjected to a concurrent coplanar force
system, the equilibrium equations can be expressed asP

Fx ¼ 0
P

Fy ¼ 0 (3.6)

Two-Force and Three-Force Structures

Throughout this text, we will encounter several structures and structural
members that will be in equilibrium under the action of only two, or
three, forces. The analysis of such structures and of structures composed
of such members can be considerably expedited by recalling from statics

the following characteristics of such systems:

1. If a structure is in equilibrium under the action of only two forces,
the forces must be equal, opposite, and collinear.

2. If a structure is in equilibrium under the action of only three forces,
the forces must be either concurrent or parallel.

3.2 EXTERNAL AND INTERNAL FORCES

The forces and couples to which a structure may be subjected can be
classified into two types, external forces and internal forces.

External Forces

External forces are the actions of other bodies on the structure under
consideration. For the purposes of analysis, it is usually convenient to
further classify these forces as applied forces and reaction forces. Applied
forces, usually referred to as loads (e.g., live loads and wind loads), have
a tendency to move the structure and are usually known in the analysis.
Reaction forces, or reactions, are the forces exerted by supports on the
structure and have a tendency to prevent its motion and keep it in equi-
librium. The reactions are usually among the unknowns to be determined
by the analysis. The state of equilibrium or motion of the structure as a
whole is governed solely by the external forces acting on it.

Internal Forces

Internal forces are the forces and couples exerted on a member or por-
tion of the structure by the rest of the structure. These forces develop
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within the structure and hold the various portions of it together. The
internal forces always occur in equal but opposite pairs, because each
member or portion exerts back on the rest of the structure the same
forces acting upon it but in opposite directions, according to Newton’s
third law. Because the internal forces cancel each other, they do not ap-
pear in the equations of equilibrium of the entire structure. The internal
forces are also among the unknowns in the analysis and are determined
by applying the equations of equilibrium to the individual members or
portions of the structure.

3.3 TYPES OF SUPPORTS FOR PLANE STRUCTURES

Supports are used to attach structures to the ground or other bodies,
thereby restricting their movements under the action of applied loads.
The loads tend to move the structures; but supports prevent the move-
ments by exerting opposing forces, or reactions, to neutralize the e¤ects
of loads, thereby keeping the structures in equilibrium. The type of re-
action a support exerts on a structure depends on the type of supporting
device used and the type of movement it prevents. A support that pre-
vents translation of the structure in a particular direction exerts a re-
action force on the structure in that direction. Similarly, a support that
prevents rotation of the structure about a particular axis exerts a re-
action couple on the structure about that axis.

The types of supports commonly used for plane structures are
depicted in Fig. 3.3. These supports are grouped into three categories,
depending on the number of reactions (1, 2, or 3) they exert on the
structures. The figure also gives the types of reactions that these sup-
ports exert, as well as the number of unknowns that the various supports
introduce in the analysis. Figures 3.4 through 3.6 illustrate roller,
rocker, and hinged supports.

3.4 STATIC DETERMINACY, INDETERMINACY, AND INSTABILITY

Internal Stability

A structure is considered to be internally stable, or rigid, if it maintains

its shape and remains a rigid body when detached from the supports.
Conversely, a structure is termed internally unstable (or nonrigid) if it
cannot maintain its shape and may undergo large displacements under
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small disturbances when not supported externally. Some examples of
internally stable structures are shown in Fig. 3.7. Note that each of the
structures shown forms a rigid body, and each can maintain its shape
under loads. Figure 3.8 shows some examples of internally unstable
structures. A careful look at these structures indicates that each struc-
ture is composed of two rigid parts, AB and BC, connected by a hinged
joint B, which cannot prevent the rotation of one part with respect to
the other.

Category Type of support Symbolic representation Reactions Number of unknowns

Roller

1
The reaction force R acts
perpendicular to the supporting
surface and may be directed either
into or away from the structure.
The magnitude of R is the
unknown.

I
Rocker

Link

1
The reaction force R acts in the
direction of the link and may be
directed either into or away from
the structure. The magnitude of R is
the unknown.

II Hinge

2
The reaction force R may act in any
direction. It is usually convenient to
represent R by its rectangular
components, Rx and Ry. The
magnitudes of Rx and Ry are the
two unknowns.

III Fixed

3
The reactions consist of two force
components Rx and Ry and a
couple of moment M. The
magnitudes of Rx, Ry, and M are
the three unknowns.

FIG. 3.3 Types of Supports for Plane Structures
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It should be realized that all physical bodies deform when subjected
to loads; the deformations in most engineering structures under service
conditions are so small that their e¤ect on the equilibrium state of the
structure can be neglected. The term rigid structure as used here implies
that the structure o¤ers significant resistance to its change of shape,
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whereas a nonrigid structure o¤ers negligible resistance to its change of
shape when detached from the supports and would often collapse under
its own weight when not supported externally.

Static Determinacy of Internally Stable Structures

An internally stable structure is considered to be statically determinate

externally if all its support reactions can be determined by solving the

equations of equilibrium. Since a plane internally stable structure can be
treated as a plane rigid body, in order for it to be in equilibrium under a
general system of coplanar loads, it must be supported by at least three
reactions that satisfy the three equations of equilibrium (Eqs. 3.2, 3.3, or
3.4). Also, since there are only three equilibrium equations, they cannot

FIG. 3.7 Examples of Internally Stable Structures

FIG. 3.8 Examples of Internally Unstable Structures
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be used to determine more than three reactions. Thus, a plane structure
that is statically determinate externally must be supported by exactly
three reactions. Some examples of externally statically determinate
plane structures are shown in Fig. 3.9. It should be noted that each of
these structures is supported by three reactions that can be determined
by solving the three equilibrium equations.

FIG. 3.9 Examples of Externally
Statically Determinate Plane Structures
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FIG. 3.10 Examples of Externally
Statically Indeterminate Plane
Structures
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If a structure is supported by more than three reactions, then all
the reactions cannot be determined from the three equations of equili-
brium. Such structures are termed statically indeterminate externally. The
reactions in excess of those necessary for equilibrium are called external

redundants, and the number of external redundants is referred to as the
degree of external indeterminacy. Thus, if a structure has r reactions
ðr > 3Þ, then the degree of external indeterminacy can be written as

ie ¼ r� 3 (3.7)

Figure 3.10 shows some examples of externally statically indeterminate
plane structures.

If a structure is supported by fewer than three support reactions, the
reactions are not su‰cient to prevent all possible movements of the
structure in its plane. Such a structure cannot remain in equilibrium
under a general system of loads and is, therefore, referred to as statically
unstable externally. An example of such a structure is shown in Fig.
3.11. The truss shown in this figure is supported on only two rollers. It
should be obvious that although the two reactions can prevent the truss
from rotating and translating in the vertical direction, they cannot pre-
vent its translation in the horizontal direction. Thus, the truss is not
fully constrained and is statically unstable.

The conditions of static instability, determinacy, and indeterminacy
of plane internally stable structures can be summarized as follows:

r < 3 the structure is statically unstable externally

r ¼ 3 the structure is statically determinate externally

r > 3 the structure is statically indeterminate externally

(3.8)

where r ¼ number of reactions.
It should be realized that the first of three conditions stated in Eq.

(3.8) is both necessary and su‰cient in the sense that if r < 3, the struc-
ture is definitely unstable. However, the remaining two conditions, r ¼ 3
and r > 3, although necessary, are not su‰cient for static determinacy
and indeterminacy, respectively. In other words, a structure may be sup-
ported by a su‰cient number of reactions ðrb 3Þ but may still be un-
stable due to improper arrangement of supports. Such structures are

FIG. 3.11 An Example of Externally
Statically Unstable Plane Structure
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referred to as geometrically unstable externally. The two types of re-
action arrangements that cause geometric instability in plane structures
are shown in Fig. 3.12. The truss in Fig. 3.12(a) is supported by three
parallel reactions. It can be seen from this figure that although there is
a su‰cient number of reactions ðr ¼ 3Þ, all of them are in the vertical
direction, so they cannot prevent translation of the structure in the
horizontal direction. The truss is, therefore, geometrically unstable. The
other type of reaction arrangement that causes geometric instability is
shown in Fig. 3.12(b). In this case, the beam is supported by three
nonparallel reactions. However, since the lines of action of all three re-
action forces are concurrent at the same point, A, they cannot prevent
rotation of the beam about point A. In other words, the moment equili-
brium equation

P
MA ¼ 0 cannot be satisfied for a general system of

coplanar loads applied to the beam. The beam is, therefore, geometri-
cally unstable.

Based on the preceding discussion, we can conclude that in order
for a plane internally stable structure to be geometrically stable ex-
ternally so that it can remain in equilibrium under the action of any arbi-
trary coplanar loads, it must be supported by at least three reactions, all
of which must be neither parallel nor concurrent.

Static Determinacy of Internally Unstable
Structures—Equations of Condition

Consider an internally unstable structure composed of two rigid mem-
bers AB and BC connected by an internal hinge at B, as shown in Fig.
3.13(a). The structure is supported by a roller support at A and a hinged
support at C, which provide three nonparallel nonconcurrent external
reactions. As this figure indicates, these reactions, which would have

FIG. 3.12 Reaction Arrangements
Causing External Geometric Instability
in Plane Structures
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been su‰cient to fully constrain an internally stable or rigid structure,
are not su‰cient for this structure. The structure can, however, be made
externally stable by replacing the roller support at A by a hinged sup-
port to prevent the horizontal movement of end A of the structure.
Thus, as shown in Fig. 3.13(b), the minimum number of external reac-
tions required to fully constrain this structure is four.

Obviously, the three equilibrium equations are not su‰cient to de-
termine the four unknown reactions at the supports for this structure.
However, the presence of the internal hinge at B yields an additional
equation that can be used with the three equilibrium equations to

FIG. 3.13

SECTION 3.4 Static Determinacy, Indeterminacy, and Instability 55

https://engineersreferencebookspdf.com



determine the four unknowns. The additional equation is based on the
condition that an internal hinge cannot transmit moment; that is, the
moments at the ends of the parts of the structure connected to a hinged
joint are zero. Therefore, when an internal hinge is used to connect two
portions of a structure, the algebraic sum of the moments about the
hinge of the loads and reactions acting on each portion of the structure
on either side of the hinge must be zero. Thus, for the structure of Fig.
3.13(b), the presence of the internal hinge at B requires that the alge-
braic sum of moments about B of the loads and reactions acting on the
individual members AB and BC must be zero; that is,

P
MAB

B ¼ 0 andP
MBC

B ¼ 0. Such equations are commonly referred to as the equations

of condition or construction. It is important to realize that these two
equations are not independent. When one of the two equations—for
example,

P
MAB

B ¼ 0—is satisfied along with the moment equilibrium
equation

P
M ¼ 0 for the entire structure, the remaining equationP

MBC
B ¼ 0 is automatically satisfied. Thus, an internal hinge connect-

ing two members or portions of a structure provides one independent
equation of condition. (The structures that contain hinged joints con-
necting more than two members are considered in subsequent chapters.)
Because all four unknown reactions for the structure of Fig. 3.13(b)
can be determined by solving the three equations of equilibrium plus
one equation of condition (

P
MAB

B ¼ 0 or
P

MBC
B ¼ 0), the structure is

considered to be statically determinate externally.
Occasionally, connections are used in structures that permit not

only relative rotations of the member ends but also relative translations
in certain directions of the ends of the connected members. Such con-
nections are modeled as internal roller joints for the purposes of analy-
sis. Figure 3.13(c) shows a structure consisting of two rigid members AB
and BC that are connected by such an internal roller at B. The structure
is internally unstable and requires a minimum of five external support
reactions to be fully constrained against all possible movements under
a general system of coplanar loads. Since an internal roller can transmit
neither moment nor force in the direction parallel to the supporting sur-
face, it provides two equations of condition;P

F AB
x ¼ 0 or

P
F BC
x ¼ 0

and P
MAB

B ¼ 0 or
P

MBC
B ¼ 0

These two equations of condition can be used in conjunction with the
three equilibrium equations to determine the five unknown external
reactions. Thus, the structure of Fig. 3.13(c) is statically determinate
externally.

From the foregoing discussion, we can conclude that if there are ec
equations of condition (one equation for each internal hinge and two
equations for each internal roller) for an internally unstable structure,
which is supported by r external reactions, then if
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r < 3þ ec the structure is statically
unstable externally

r ¼ 3þ ec the structure is statically
determinate externally

r > 3þ ec the structure is statically
indeterminate externally

(3.9)

For an externally indeterminate structure, the degree of external in-
determinacy is expressed as

ie ¼ r� ð3þ ecÞ (3.10)

Alternative Approach An alternative approach that can be used for de-
termining the static instability, determinacy, and indeterminacy of inter-
nally unstable structures is as follows:

1. Count the total number of support reactions, r.
2. Count the total number of internal forces, fi, that can be transmitted

through the internal hinges and the internal rollers of the structure.
Recall that an internal hinge can transmit two force components,
and an internal roller can transmit one force component.

3. Determine the total number of unknowns, rþ fi.
4. Count the number of rigid members or portions, nr, contained in

the structure.
5. Because each of the individual rigid portions or members of the

structure must be in equilibrium under the action of applied loads,
reactions, and/or internal forces, each member must satisfy the
three equations of equilibrium (

P
Fx ¼ 0,

P
Fy ¼ 0, and

P
M ¼ 0).

Thus, the total number of equations available for the entire struc-
ture is 3nr.

6. Determine whether the structure is statically unstable, determinate,
or indeterminate by comparing the total number of unknowns,
rþ fi, to the total number of equations. If

rþ fi < 3nr the structure is statically
unstable externally

rþ fi ¼ 3nr the structure is statically
determinate externally

rþ fi > 3nr the structure is statically
indeterminate externally

(3.11)

For indeterminate structures, the degree of external indeterminacy
is given by

ie ¼ ðrþ fiÞ � 3nr (3.12)
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Applying this alternative procedure to the structure of Fig. 3.13(b),
we can see that for this structure, r ¼ 4, fi ¼ 2, and nr ¼ 2. As the total
number of unknowns ðrþ fi ¼ 6Þ is equal to the total number of equa-
tions ð3nr ¼ 6Þ, the structure is statically determinate externally. Sim-
ilarly, for the structure of Fig. 3.13(c), r ¼ 5, fi ¼ 1, and nr ¼ 2. Since
rþ fi ¼ 3nr, this structure is also statically determinate externally.

The criteria for the static determinacy and indeterminacy as de-
scribed in Eqs. (3.9) and (3.11), although necessary, are not su‰cient
because they cannot account for the possibility of geometric instability.
To avoid geometric instability, the internally unstable structures, like
the internally stable structures considered previously, must be supported
by reactions, all of which are neither parallel nor concurrent. An addi-
tional type of geometric instability that may arise in internally unstable
structures is depicted in Fig. 3.14. For the beam shown, which contains
three internal hinges at B;C, and D, r ¼ 6 and ec ¼ 3 (i.e., r ¼ 3þ ec);
therefore, according to Eq. (3.9), the beam is supported by a su‰cient
number of reactions, and it should be statically determinate. However, it
can be seen from the figure that portion BCD of the beam is unstable
because it cannot support the vertical load P applied to it in its un-
deformed position. Members BC and CD must undergo finite rotations
to develop any resistance to the applied load. Such a type of geometric
instability can be avoided by externally supporting any portion of the
structure that contains three or more internal hinges that are collinear.

Example 3.1

Classify each of the structures shown in Fig. 3.15 as externally unstable, statically determinate, or statically in-
determinate. If the structure is statically indeterminate externally, then determine the degree of external indeterminacy.

Solution
(a) This beam is internally stable with r ¼ 5 > 3. Therefore, it is statically indeterminate externally with the degree

of external indeterminacy of

ie ¼ r� 3 ¼ 5� 3 ¼ 2 Ans.

(b) This beam is internally unstable. It is composed of two rigid members AB and BC connected by an internal
hinge at B. For this beam, r ¼ 6 and ec ¼ 1. Since r > 3þ ec, the structure is statically indeterminate externally with the
degree of external indeterminacy of

ie ¼ r� ð3þ ecÞ ¼ 6� ð3þ 1Þ ¼ 2 Ans.

FIG. 3.14

continued
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FIG. 3.15

Alternative Method fi ¼ 2, nr ¼ 2, rþ fi ¼ 6þ 2 ¼ 8, and 3nr ¼ 3ð2Þ ¼ 6. As rþ fi > 3nr, the beam is statically
indeterminate externally, with

ie ¼ ðrþ fiÞ � 3nr ¼ 8� 6 ¼ 2 Checks

(c) This structure is internally unstable with r ¼ 4 and ec ¼ 2. Since r < 3þ ec, the structure is statically unstable
externally. This can be verified from the figure, which shows that the member BC is not restrained against movement in
the horizontal direction. Ans.

Alternative Method fi ¼ 1, nr ¼ 2, rþ fi ¼ 4þ 1 ¼ 5, and 3nr ¼ 6. Since rþ fi < 3nr, the structure is statically
unstable externally. Checks

(d) This beam is internally unstable with r ¼ 5 and ec ¼ 2. Because r ¼ 3þ ec, the beam is statically determinate
externally. Ans.

Alternative Method fi ¼ 4, nr ¼ 3, rþ fi ¼ 5þ 4 ¼ 9, and 3nr ¼ 3ð3Þ ¼ 9. Because rþ fi ¼ 3nr, the beam is stat-
icaly determinate externally. Checks

continued
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(e) This is an internally unstable structure with r ¼ 6 and ec ¼ 3. Since r ¼ 3þ ec, the structure is statically deter-
minate externally. Ans.

Alternative Method fi ¼ 6, nr ¼ 4, rþ fi ¼ 6þ 6 ¼ 12, and 3nr ¼ 3ð4Þ ¼ 12. Because rþ fi ¼ 3nr, the structure is
statically determinate externally. Checks

(f ) This frame is internally unstable with r ¼ 4 and ec ¼ 1. Since r ¼ 3þ ec, the frame is statically determinate ex-
ternally. Ans.

Alternative Method fi ¼ 2, nr ¼ 2, rþ fi ¼ 4þ 2 ¼ 6, and 3nr ¼ 3ð2Þ ¼ 6. Since rþ fi ¼ 3nr, the frame is stat-
ically determinate externally. Checks

(g) This frame is internally unstable with r ¼ 6 and ec ¼ 3. Since r ¼ 3þ ec, the frame is statically determinate
externally. Ans.

Alternative Method fi ¼ 6, nr ¼ 4, rþ fi ¼ 6þ 6 ¼ 12, and 3nr ¼ 3ð4Þ ¼ 12. Because rþ fi ¼ 3nr, the frame is
statically determinate externally. Checks

3.5 COMPUTATION OF REACTIONS

The following step-by-step procedure can be used to determine the re-
actions of plane statically determinate structures subjected to coplanar
loads.

1. Draw a free-body diagram (FBD) of the structure.
a. Show the structure under consideration detached from its sup-

ports and disconnected from all other bodies to which it may be
connected.

b. Show each known force or couple on the FBD by an arrow in-
dicating its direction and sense. Write the magnitude of each
known force or couple by its arrow.

c. Show the orientation of the mutually perpendicular xy coor-
dinate system to be used in the analysis. It is usually convenient
to orient the x and y axes in the horizontal (positive to the right)
and vertical (positive upward) directions, respectively. However,
if the dimensions of the structure and/or the lines of action of
most of the applied loads are in an inclined direction, selection
of the x (or y) axis in that direction may considerably expedite
the analysis.

d. At each point where the structure has been detached from a
support, show the unknown external reactions being exerted on
the structure. The type of reactions that can be exerted by the
various supports are given in Fig. 3.3. The reaction forces are
represented on the FBD by arrows in the known directions of
their lines of action. The reaction couples are represented by
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curved arrows. The senses of the reactions are not known and
can be arbitrarily assumed. However, it is usually convenient
to assume the senses of the reaction forces in the positive x

and y directions and of reaction couples as counterclockwise.
The actual senses of the reactions will be known after their
magnitudes have been determined by solving the equations of
equilibrium and condition (if any). A positive magnitude for
a reaction will imply that the sense initially assumed was cor-
rect, whereas a negative value of the magnitude will indicate
that the actual sense is opposite to the one assumed on the
FBD. Since the magnitudes of the reactions are not yet known,
they are denoted by appropriate letter symbols on the FBD.

e. To complete the FBD, draw the dimensions of the structure,
showing the locations of all the known and unknown external
forces.

2. Check for static determinacy. Using the procedure described in
Section 3.4, determine whether or not the given structure is stat-
ically determinate externally. If the structure is either statically or
geometrically unstable or indeterminate externally, end the analysis
at this stage.

3. Determine the unknown reactions by applying the equations of
equilibrium and condition (if any) to the entire structure. To avoid
solving simultaneous equations, write the equilibrium and condition
equations so that each equation involves only one unknown. For
some internally unstable structures, it may not be possible to write
equations containing one unknown each. For such structures, the
reactions are determined by solving the equations simultaneously.
The analysis of such internally unstable structures can sometimes
be expedited and the solution of simultaneous equations avoided by
disconnecting the structure into rigid portions and by applying the
equations of equilibrium to the individual portions to determine the
reactions. In such a case, you must construct the free-body diagrams
of the portions of the structure; these diagrams must show, in addi-
tion to any applied loads and support reactions, all the internal
forces being exerted upon that portion at connections. Remember
that the internal forces acting on the adjacent portions of a structure
must have the same magnitudes but opposite senses in accordance
with Newton’s third law.

4. Apply an alternative equilibrium equation that has not been used
before to the entire structure to check the computations. This al-
ternative equation should preferably involve all the reactions that
were determined in the analysis. You may use a moment equili-
brium equation involving a summation of moments about a point
that does not lie on lines of action of reaction forces for this pur-
pose. If the analysis has been carried out correctly, then this alter-
native equilibrium equation must be satisfied.
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Example 3.2

Determine the reactions at the supports for the beam shown in Fig. 3.16(a).

Solution

Free-Body Diagram The free-body diagram of the beam is shown in Fig. 3.16(b). Note that the roller at A exerts
reaction RA in the direction perpendicular to the inclined supporting surface.

Static Determinacy The beam is internally stable and is supported by three reactions, RA;Bx, and By, all of which
are neither parallel nor concurrent. Therefore, the beam is statically determinate.

Support Reactions Since two of the three reactions, namely, Bx and By, are concurrent at B, their moments about B
are zero. Therefore, the equilibrium equation

P
MB ¼ 0, which involves the summation of moments of all the forces

about B, contains only one unknown, RA. Thus,

þ ’
P

MB ¼ 0

� 4

5
RAð6Þ þ 54 sin 60�ð3Þ � 27ð1:5Þ ¼ 0

RA ¼ 20:79 kN

The positive answer for RA indicates that our initial assumption about the sense of this reaction was correct.
Therefore,

RA ¼ 20:79 kN% Ans.

FIG. 3.16

continued
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Next, in order to determine Bx, we apply the equilibrium equation,

þ !P
Fx ¼ 0

3

5
ð20:79Þ � 54 cos 60� þ Bx ¼ 0

Bx ¼ 14:53 kN

Bx ¼ 14:53 kN! Ans.

The only remaining unknown, By, can now be determined by applying the remaining equation of equilibrium:

þ "PFy ¼ 0

4

5
ð20:79Þ � 54 sin 60� þ By � 27 ¼ 0

By ¼ 57:13 kN

By ¼ 57:13 kN " Ans.

In order to avoid having to solve simultaneous equations in the preceding computations, we applied the equili-
brium equations in such a manner that each equation contained only one unknown.

Checking Computations Finally, to check our computations, we apply an alternative equation of equilibrium
(see Fig. 3.16(b)):

þ ’
P

MC ¼ � 4

5
ð20:79Þð7:5Þ þ 54 sin 60�ð4:5Þ � 57:13ð1:5Þ

¼ þ0:009 kN-m Checks

Example 3.3

Determine the reactions at the supports for the beam shown in Fig. 3.17(a).

Solution
Free-Body Diagram See Fig. 3.17(b).

Static Determinacy The beam is internally stable with r ¼ 3. Thus, it is statically determinate.

Support Reactions By applying the three equations of equilibrium, we obtain

þ !P
Fx ¼ 0

Bx ¼ 0 Ans.

continued
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FIG. 3.17

þ "PFy ¼ 0

�15ð6Þ � 160þ By ¼ 0

By ¼ 250 kN

By ¼ 250 kN " Ans.

þ ’
P

MB ¼ 0

�400þ 15ð6Þð3þ 8Þ þ 160ð4Þ þMB ¼ 0

MB ¼ �1230 kN�m
MB ¼ 1230 kN�m @ Ans.

Checking Computations

þ ’
P

MA ¼ �400� 15ð6Þð3Þ � 160ð10Þ þ 250ð14Þ � 1230 ¼ 0 Checks

Example 3.4

Determine the reactions at the support for the frame shown in Fig. 3.18(a).

Solution
Free-Body Diagram The free-body diagram of the frame is shown in Fig. 3.18(b). Note that the trapezoidal loading

distribution has been divided into two simpler, uniform, and triangular, distributions whose areas and centroids are
easier to compute.

continued
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FIG. 3.18

Static Determinacy The frame is internally stable with r ¼ 3. Therefore, it is statically determinate.

Support Reactions By applying the three equations of equilibrium, we obtain

þ !P
Fx ¼ 0

Ax þ 2ð15Þ ¼ 0

Ax ¼ �30 kN

Ax ¼ 30 kN Ans.

þ "PFy ¼ 0

Ay � 2ð9Þ � 1

2
ð3Þð9Þ ¼ 0

Ay ¼ 31:5 kN

Ay ¼ 31:5 kN " Ans.

þ ’
P

MA ¼ 0

MA � ½2ð15Þ� 15

2

� �
� ½2ð9Þ� 9

2

� �
� 1

2
ð3Þð9Þ

� �
2

3
ð9Þ ¼ 0

MA ¼ 387 kN-m

MA ¼ 387 kN-m ’ Ans.

Checking Computations

þ ’
P

MB ¼ �30ð15Þ � 31:5ð9Þ þ 387þ ½2ð15Þ� 15

2

� �

þ ½2ð9Þ� 9

2

� �
þ 1

2
ð3Þð9Þ

� �
9

3

� �
¼ 0 Checks
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Example 3.5

Determine the reactions at the supports for the frame shown in Fig. 3.19(a).

Solution
Free-Body Diagram See Fig. 3.19(b).

Static Determinacy The frame is internally stable with r ¼ 3. Thus, it is statically determinate.

Support Reactions

þ !P
Fx ¼ 0

Ax þ 1

2
ð37Þð5:4Þ � 67 ¼ 0

Ax ¼ �32:9 k

Ax ¼ 32:9 k Ans.

þ ’
P

MA ¼ 0

� 1

2
ð37Þð5:4Þ

� �
5:4

3

� �
� ½22ð5:4Þ�ð2:7Þ þ 67ð3:6Þ þ Byð3:6Þ ¼ 0

By ¼ 72:05 kN

By ¼ 72:05 kN " Ans.

þ "PFy ¼ 0

Ay � 22ð5:4Þ þ 72:05 ¼ 0

Ay ¼ 46:75 kN

Ay ¼ 46:75 kN " Ans.

FIG. 3.19

continued
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Checking Computations

þ ’
P

MC ¼ �32:9ð5:4Þ � 46:75ð5:4Þ þ 1

2
ð37Þð5:4Þ

� �
2

3
ð5:4Þ

þ 22ð5:4Þ 5:4

2

� �
� 67ð1:8Þ � 72:05ð1:8Þ

¼ 0 Checks

Example 3.6

Determine the reactions at the supports for the frame shown in Fig. 3.20(a).

continued
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FIG. 3.20

SECTION 3.5 Computation of Reactions 67

https://engineersreferencebookspdf.com



Solution
Free-Body Diagram See Fig. 3.20(b).

Static Determinacy The frame is internally stable with r ¼ 3. Therefore, it is statically determinate.

Support Reactions

þ !P
Fx ¼ 0

29:2þ 43:8

2

� �
ð7:8Þ 5

13

� �
þ Cx ¼ 0

Cx ¼ �109:5 kN

Cx ¼ 109:5 kN Ans.

þ ’
P

MA ¼ 0

�29:2ð7:8Þð3:9Þ � 1

2
ð14:6Þð7:8Þ 7:8

3

� �
� 222:5ð7:2þ 3:6Þ þ 109:5kNð3Þ þ Cyð14:4Þ ¼ 0

Cy ¼ 216:03 kN

Cy ¼ 216:03 kN " Ans.

þ "PFy ¼ 0

Ay � 29:2þ 43:8

2

� �
ð7:8Þ 12

13

� �
� 222:5þ 216:03 ¼ 0

Ay ¼ 269:27 kN

Ay ¼ 269:27 kN " Ans.

Checking Computations

þ ’
P

MB ¼ �269:27ð7:2Þ þ 29:2ð7:8Þð3:9Þ þ 1

2
ð14:6Þð7:8Þ 2

3

� �
ð7:8Þ � 222:5ð3:6Þ þ 216:03ð7:2Þ

¼ þ0:024 kN-m&0 Checks

Example 3.7

Determine the reactions at the supports for the beam shown in Fig. 3.21(a).

Solution
Free-Body Diagram See Fig. 3.21(b).

Static Determinacy The beam is internally unstable. It is composed of three rigid members, AB;BE, and EF, con-
nected by two internal hinges at B and E. The structure has r ¼ 5 and ec ¼ 2; because r ¼ 3þ ec, the structure is stat-
ically determinate.

continued
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FIG. 3.21

Support Reactions

þ !P
Fx ¼ 0

Ax ¼ 0 Ans.

Next, we apply the equation of condition,
P

MAB
B ¼ 0, which involves the summation of moments about B of all

the forces acting on the portion AB.

þ ’
P

MAB
B ¼ 0

�Ayð20Þ þ ½5ð20Þ�ð10Þ ¼ 0

Ay ¼ 50 kN

Ay ¼ 50 kN " Ans.

Similarly, by applying the equation of condition
P

MEF
E ¼ 0, we determine the reaction Fy as follows:

þ ’
P

MEF
E ¼ 0

�½3ð20Þ�ð10Þ þ Fyð20Þ ¼ 0

Fy ¼ 30 kN

Fy ¼ 30 kN " Ans.

continued
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The remaining two equilibrium equations can now be applied to determine the remaining two unknowns,
Cy and Dy:

þ ’
P

MD ¼ 0

�50ð90Þ þ ½5ð40Þ�ð70Þ � Cyð50Þ þ ½3ð90Þ�ð5Þ þ 30ð40Þ ¼ 0

Cy ¼ 241 kN

Cy ¼ 241 kN " Ans.

It is important to realize that the moment equilibrium equations involve the moments of all the forces acting on the
entire structure, whereas, the moment equations of condition involve only the moments of those forces that act on the
portion of the structure on one side of the internal hinge.

Finally, we compute Dy by using the equilibrium equation,

þ "PFy ¼ 0

50� 5ð40Þ þ 241� 3ð90Þ þDy þ 30 ¼ 0

Dy ¼ 149 kN

Dy ¼ 149 kN " Ans.

Alternative Method The reactions of the beam can be determined alternatively by applying the three equations of
equilibrium to each of the three rigid portions AB, BE, and EF of the beam. The free-body diagrams of these rigid
portions are shown in Fig. 3.21 (c). These diagrams show the internal forces being exerted through the internal hinges at
B and E in addition to the applied loads and support reactions. Note that the internal forces acting at each end B of
portions AB and BE and at each end E of portions BE and EF have the same magnitudes but opposite senses, according
to Newton’s law of action and reaction.

The total number of unknowns (including the internal forces) is nine. Since there are three equilibrium equations
for each of the three rigid portions, the total number of equations available is also nine (r + fi = 3nr = 9). Therefore, all
nine unknowns (reactions plus internal forces) can be determined from the equilibrium equations, and the beam is stat-
ically determinate.

Applying the three equations of equilibrium to portion AB, we obtain the following:

þ ’ �MAB
A ¼ 0 � ½5ð20Þ�ð10Þ þ Byð20Þ ¼ 0 By ¼ 50 kN

þ " �FAB
y ¼ 0 Ay � 5ð20Þ þ 50 ¼ 0 Ay ¼ 50 kN

þ ! �FAB
x ¼ 0 Ax � Bx ¼ 0

Checks

(1)

Next, we consider the equilibrium of portion EF:

þ ! �FEF
x ¼ 0

þ ’ �MEF
F ¼ 0

þ " �FEF
y ¼ 0

�Eyð20Þ þ ½3ð20Þ�ð10Þ ¼ 0

30� 3ð20Þ þ Fy ¼ 0

Ex ¼ 0

Ey ¼ 30 kN

Fy ¼ 30 kN Checks

Considering the equilibrium of portion BE, we write

þ ! �FBE
x ¼ 0 Bx ¼ 0

From Eq. (1), we obtain

Ax ¼ 0 Checks
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þ’�MBE
C ¼ 0 50ð20Þ þ ½5ð20Þ�ð10Þ � ½3ð70Þ�ð35Þ þDyð50Þ � 30ð70Þ ¼ 0

Dy ¼ 149kN Checks

þ " �FBE
y ¼ 0 � 50� 5ð20Þ þ Cy � 3ð70Þ þ 149� 30 ¼ 0

Cy ¼ 241 kN Checks

Example 3.8

Determine the reactions at the supports for the three-hinged arch shown in Fig. 3.22(a).

Solution
Free-Body Diagram See Fig. 3.22(b).

Static Determinacy The arch is internally unstable; it is composed of two rigid portions, AB and BC, connected by
an internal hinge at B. The arch has r ¼ 4 and ec ¼ 1; since r ¼ 3þ ec, it is statically determinate.

Support Reactions

þ ’
P

MC ¼ 0

�Ayð20Þ � ½14:6ð10Þ�ð5Þ þ ½36:5ð20Þ�ð10Þ ¼ 0

Ay ¼ 328:5 kN

Ay ¼ 328:5 kN " Ans.

þ ’
P

MAB
B ¼ 0

Axð10Þ � 328:5ð10Þ þ ½14:6ð10Þ�ð5Þ þ ½36:5ð10Þ�ð5Þ ¼ 0

Ax ¼ 73 kN

Ax ¼ 73 kN! Ans.

FIG. 3.22

continued
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þ !P
Fx ¼ 0

73þ 14:6ð10Þ þ Cx ¼ 0

Cx ¼ �219 kN

Cx ¼ 219 kN Ans.

þ "PFy ¼ 0

328:5� 36:5ð20Þ þ Cy ¼ 0

Cy ¼ 401:5 kN

Cy ¼ 401:5 kN " Ans.

Checking Computations To check our computations, we apply the equilibrium equation
P

MB ¼ 0 for the entire
structure:

þ ’
P

MB ¼ 73ð10Þ � 328:5ð10Þ þ ½14:6ð10Þ�ð5Þ þ ½36:5ð20Þ�ð0Þ
� 219ð10Þ þ 401:5ð10Þ
¼ 0 Checks

Example 3.9

Determine the reactions at the supports for the beam shown in Fig. 3.23(a).

Solution
Free-Body Diagram The free-body diagram of the entire structure is shown in Fig. 3.23(b).

Static Determinacy The beam is internally unstable, with r ¼ 5 and ec ¼ 2. Since r ¼ 3þ ec, the structure is stat-
ically determinate.

Support Reactions Using the free-body diagram of the entire beam shown in Fig. 3.23(b), we determine the
reactions as follows:

þ !P
Fx ¼ 0

Ax ¼ 0 Ans.

þ ’
P

MAC
C ¼ 0

�Ayð67Þ þ 356ð42Þ � Byð25Þ ¼ 0

67Ay þ 25By ¼ 14952 (1)

In order to obtain another equation containing the same two unknowns, Ay and By, we write the second equation of
condition as

þ ’
P

MAD
D ¼ 0

�Ayð117Þ þ 356ð92Þ � Byð75Þ þ ½ð43:8Þð50Þ�ð25Þ ¼ 0

117Ay þ 75By ¼ 87502 (2)
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Solving Eqs. (1) and (2) simultaneously, we obtain

Ay ¼ �507:69 kN and By ¼ 1958:69 kN

Ay ¼ 507:69 kN # Ans.

By ¼ 1958:69 kN " Ans.

The remaining two unknowns, Ey and Fy, are determined from the remaining two equilibrium equations as follows:

þ ’
P

MF ¼ 0

507:69ð184Þ þ 356ð159Þ � 1958:69ð142Þ þ ½43:8ð117Þ�ð58:5Þ � Eyð42Þ ¼ 0

Ey ¼ 4087:47 kN

Ey ¼ 4087:47 kN " Ans.

þ "PFy ¼ 0

�507:69� 356þ 1958:69� 43:8ð117Þ þ 4087:47 kNþ Fy ¼ 0

Fy ¼ �57:87 kN

Fy ¼ 57:87 kN # Ans.

FIG. 3.23
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Alternative Method The reactions of the beam also can be evaluated by applying the three equations of equilibrium
to each of the three rigid portions, AC;CD, and DF , of the beam. The free-body diagrams of these rigid portions are
shown in Fig. 3.23(c). These diagrams show, in addition to the applied loads and support reactions, the internal forces
being exerted through the internal hinges at C and D.

Applying the three equations of equilibrium to the portion CD, we obtain the following:

þ ’
P

MCD
C ¼ 0

�½43:8ð50Þ�ð25Þ þDyð50Þ ¼ 0

Dy ¼ 1095 kN

þ "PF CD
y ¼ 0

Cy � 43:8ð50Þ þ 1095 kN ¼ 0

Cy ¼ 1095 kN

þ !P
F CD
x ¼ 0

Cx þDx ¼ 0 (3)

Next, we consider the equilibrium of portion DF :

þ !P
F DF
x ¼ 0

�Dx ¼ 0 or Dx ¼ 0

From Eq. (3), we obtain Cx ¼ 0

þ ’
P

MDF
F ¼ 0

1095ð67Þ þ ½43:8ð67Þ�ð33:5Þ � Eyð42Þ ¼ 0

Ey ¼ 4087:47 kN Checks

þ "PF DF
y ¼ 0

�1095� 43:8ð67Þ þ 4087:47þ Fy ¼ 0

Fy ¼ �57:87 kN Checks

Considering the equilibrium of portion AC, we write

þ !P
F AC
x ¼ 0

Ax � 0 ¼ 0

Ax ¼ 0 Checks

þ ’
P

MAC
A ¼ 0

�356ð25Þ þ Byð42Þ � 1095ð67Þ ¼ 0

By ¼ 1958:69 kN Checks

þ "PF AC
y ¼ 0

Ay � 356þ 1958:69� 1095 ¼ 0

Ay ¼ �507:69 kN Checks
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Example 3.10

A gable frame is subjected to a wind loading, as shown in Fig. 3.24(a). Determine the reactions at its supports due to the
loading.

Solution
Free-Body Diagram See Fig. 3.24(b).

Static Determinacy The frame is internally unstable, with r ¼ 4 and ec ¼ 1. Since r ¼ 3þ ec, it is statically
determinate.

FIG. 3.24

continued
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Support Reactions

þ ’
P

MC ¼ 0

�Ayð5Þ � ½3:75ð4Þ�ð2Þ � 3

5
ð0:75Þð3:2Þ

� �
ð4þ 1Þ

þ 4

5
ð0:75Þð3:2Þ

� �
ð2:5þ 1:25Þ � 3

5
ð3:3Þð3:2Þ

� �
ð4þ 1Þ

� 4

5
ð3:3Þð3:2Þ

� �
ð1:25Þ � ½2:4ð4Þ�ð2Þ ¼ 0

Ay ¼ �18:153 kN

Ay ¼ 18:153 kN # Ans.

þ ’
P

MAB
B ¼ 0

Axð6Þ þ 18:153ð2:5Þ þ ½3:75ð4Þ�ð2þ 2Þ þ ½0:75ð3:2Þ�ð1:6Þ ¼ 0

Ax ¼ �18:2 kN

Ax ¼ 18:2 kN Ans.

þ !P
Fx ¼ 0

�18:2þ 3:75ð4Þ þ 3

5
ð0:75Þð3:2Þ þ 3

5
ð3:3Þð3:2Þ þ 2:4ð4Þ þ Cx ¼ 0

Cx ¼ �14:176 kN

Cx ¼ 14:176 kN Ans.

þ "PFy ¼ 0

�18:153� 4

5
ð0:75Þð3:2Þ þ 4

5
ð3:3Þð3:2Þ þ Cy ¼ 0

Cy ¼ 11:625 kN

Cy ¼ 11:625 kN " Ans.

Checking Computations

þ ’
P

MB ¼ ð�18:2� 14:176Þð6Þ
þ ð18:153þ 11:625Þð2:5Þ þ ½ð3:75þ 2:4Þð4Þ�ð4Þ
þ ½ð0:75þ 3:3Þð3:2Þ�ð1:6Þ
� 0 Checks

Example 3.11

Determine the reactions at the supports for the frame shown in Fig. 3.25(a).

Solution
Free-Body Diagram See Fig. 3.25(b).

Static Determinacy The frame has r ¼ 4 and ec ¼ 1; since r ¼ 3þ ec, it is statically determinate. continued
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Support Reactions

þ ’
P

MC ¼ 0

Axð3Þ � Ayð12Þ � 111:25ð6Þ þ 43:8ð12Þð6Þ ¼ 0

Ax � 4Ay ¼ �826:2 (1)

þ ’
P

MAB
B ¼ 0

Axð9Þ � Ayð6Þ þ 43:8ð6Þð3Þ ¼ 0

3Ax � 2Ay ¼ �262:8 (2)

9 m

111.25 kN

43.8 kN/m

6 m

6 m 6 m

Hinge

(a)

9 m

111.25 kN

43.8 kN/m

6 m

6 m 6 m

(b)

A Ax

Ay

C

x

yCy

Cx

B

FIG. 3.25

continued
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Solving Eqs. (1) and (2) simultaneously, we obtain Ax ¼ 60:12 kN and Ay ¼ 221:58 kN

Ax ¼ 60:12 kN! Ans.

Ay ¼ 221:58 kN " Ans.

þ !P
Fx ¼ 0

60:12þ 111:25þ Cx ¼ 0

Cx ¼ �171:37 kN

Cx ¼ 171:37 kN Ans.

þ "PFy ¼ 0

221:58� 43:8ð12Þ þ Cy ¼ 0

Cy ¼ 304:02 kN

Cy ¼ 304:02 kN " Ans.

Checking Computations

þ ’
P

MB ¼ 60:12ð9Þ � 221:58ð6Þ � 171:37ð6Þ þ 304:02ð6Þ ¼ 0 Checks

3.6 PRINCIPLE OF SUPERPOSITION

The principle of superposition simply states that on a linear elastic struc-

ture, the combined e¤ect of several loads acting simultaneously is equal

to the algebraic sum of the e¤ects of each load acting individually. For
example, this principle implies, for the beam of Example 3.2, that the
total reactions due to the two loads acting simultaneously could have
been obtained by algebraically summing, or superimposing, the reactions
due to each of the two loads acting individually.

The principle of superposition considerably simplifies the analysis
of structures subjected to di¤erent types of loads acting simultaneously
and is used extensively in structural analysis. The principle is valid for
structures that satisfy the following two conditions: (1) the deformations
of the structure must be so small that the equations of equilibrium can be
based on the undeformed geometry of the structure; and (2) the struc-
ture must be composed of linearly elastic material; that is, the stress-
strain relationship for the structural material must follow Hooke’s law.
The structures that satisfy these two conditions respond linearly to
applied loads and are referred to as linear elastic structures. Engineering
structures are generally designed so that under service loads they un-
dergo small deformations with stresses within the initial linear portions
of the stress-strain curves of their materials. Thus, most common types
of structures under service loads can be classified as linear elastic; there-
fore, the principle of superposition can be used in their analysis. The
principle of superposition is considered valid throughout this text.
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3.7 REACTIONS OF SIMPLY SUPPORTED STRUCTURES USING PROPORTIONS

Consider a simply supported beam subjected to a vertical concentrated
load P, as shown in Fig. 3.26. By applying the moment equilibrium
equations,

P
MB ¼ 0 and

P
MA ¼ 0, we obtain the expressions for the

vertical reactions at supports A and B, respectively, as

Ay ¼ P
b

S

� �
and By ¼ P

a

S

� �
(3.13)

where, as shown in Fig. 3.26, a ¼ distance of the load P from support A
(measured positive to the right); b ¼ distance of P from support B (meas-
ured positive to the left); and S ¼ distance between supports A and B.

The first of the two expressions in Eq. (3.13) indicates that the mag-
nitude of the vertical reaction at A is equal to the magnitude of the load P

times the ratio of the distance of P from support B to the distance be-
tween the supports A and B. Similarly, the second expression in Eq. (3.13)
states that the magnitude of the vertical reaction at B is equal to the
magnitude of P times the ratio of the distance of P from A to the distance
between A and B. These expressions involving proportions, when used in
conjunction with the principle of superposition, make it very convenient
to determine reactions of simply supported structures subjected to series
of concentrated loads, as illustrated by the following example.

FIG. 3.26

Example 3.12

Determine the reactions at the supports for the truss shown in Fig. 3.27(a).

Solution
Free-Body Diagram See Fig. 3.27(b).

Static Determinacy The truss is internally stable with r ¼ 3. Therefore, it is statically determinate.

Support Reactions

þ !P
Fx ¼ 0

Ax ¼ 0 Ans.

continued
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Ay ¼ 66:75
6

4

� �
þ 133:5

5

4
þ 3

4

� �
þ 111:25

2

4

� �
þ 89

1

4
� 1

4

� �
þ 44:5

�2
4

� �
¼ 400:5 kN

Ay ¼ 400:5 kN " Ans.

By ¼ 66:75
�2
4

� �
þ 133:5

�1
4
þ 1

4

� �
þ 111:25

2

4

� �
þ 89

3

4
þ 5

4

� �
þ 44:5

6

4

� �
¼ 267 kN

By ¼ 267 kN " Ans.

Checking Computations

þ "PFy ¼ �66:75� 2ð133:5Þ � 111:25� 2ð89Þ � 44:5þ 400:5þ 267 ¼ 0 Checks

FIG. 3.27

SUMMARY

In this chapter, we have learned that a structure is considered to be
in equilibrium if, initially at rest, it remains at rest when subjected to
a system of forces and couples. The equations of equilibrium of space
structures can be expressed asP

Fx ¼ 0
P

Fy ¼ 0
P

Fz ¼ 0P
Mx ¼ 0

P
My ¼ 0

P
Mz ¼ 0

(3.1)
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For plane structures, the equations of equilibrium are expressed asP
Fx ¼ 0

P
Fy ¼ 0

P
Mz ¼ 0 (3.2)

Two alternative forms of the equilibrium equations for plane structures
are given in Eqs. (3.3) and (3.4).

The common types of supports used for plane structures are sum-
marized in Fig. 3.3. A structure is considered to be internally stable, or
rigid, if it maintains its shape and remains a rigid body when detached
from the supports.

A structure is called statically determinate externally if all of its
support reactions can be determined by solving the equations of equili-
brium and condition. For a plane internally stable structure supported
by r number of reactions, if

r < 3 the structure is statically unstable externally

r ¼ 3 the structure is statically determinate externally (3.8)

r > 3 the structure is statically indeterminate externally

The degree of external indeterminacy is given by

ie ¼ r� 3 (3.7)

For a plane internally unstable structure, which has r number of
external reactions and ec number of equations of condition, if

r < 3þ ec the structure is statically unstable externally

r ¼ 3þ ec the structure is statically determinate externally (3.9)

r > 3þ ec the structure is statically indeterminate externally

The degree of external indeterminacy for such a structure is given by

ie ¼ r� ð3þ ecÞ (3.10)

In order for a plane structure to be geometrically stable, it must be
supported by reactions, all of which are neither parallel nor concurrent.
A procedure for the determination of reactions at supports for plane
structures is presented in Section 3.5.

The principle of superposition states that on a linear elastic struc-
ture, the combined e¤ect of several loads acting simultaneously is equal
to the algebraic sum of the e¤ects of each load acting individually. The
determination of reactions of simply supported structures using propor-
tions is discussed in Section 3.7.
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PROBLEMS

Section 3.4

3.1 through 3.4 Classify each of the structures shown as
externally unstable, statically determinate, or statically inde-

terminate. If the structure is statically indeterminate ex-
ternally, then determine the degree of external indeterminacy.

FIG. P3.1

FIG. P3.2

FIG. P3.3
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FIG. P3.4

Sections 3.5 and 3.7

3.5 through 3.13 Determine the reactions at the supports
for the beam shown.

3 m 6 m 4.5 m

29.2 kN/m

A B

FIG. P3.5

3 m 3 m 6 m

100 kN 20 kN/m

A B

FIG. P3.6

12 m

25 kN/m
B

A

FIG. P3.7

3 m 3 m9 m

21.9 kN/m

A B

FIG. P3.8
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4 m 2 m

70 kN
30 kN/m

A

150 kN – m

FIG. P3.9

2 m 2 m 4 m 3 m

222.5 kN
22 kN/m

A
B

4
3

30°

135.7
kN-m

FIG. P3.10

3 m 3 m6 m

A B

29.2 kN/m

43.8 kN/m

133.5 kN

81.4 kN – m

FIG. P3.11

3 m 5 m 2 m

29.2 kN/m
43.8 kN/m

BA

FIG. P3.12

10 m

30 kN/m

A
B

3
4

FIG. P3.13

3.14 The weight of a car, moving at a constant speed on a
beam bridge, is modeled as a single concentrated load, as
shown in Fig. P3.14. Determine the expressions for the ver-
tical reactions at the supports in terms of the position of
the car as measured by the distance x, and plot the graphs
showing the variations of these reactions as functions of x.

5 m 3 m8 m

A B

x
W = 20 kN

FIG. P3.14

3.15 The weight of a 5-m-long trolley, moving at a constant
speed on a beam bridge, is modeled as a moving uniformly dis-
tributed load, as shown in Fig. P3.15. Determine the expressions
for the vertical reactions at the supports in terms of the position
of the trolley as measured by the distance x, and plot the graphs
showing the variations of these reactions as functions of x.

25 m

A B

x 5 m

w = 10 kN/m

FIG. P3.15
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3.16 through 3.41 Determine the reactions at the supports
for the structures shown.

70 kN

50 kN 50 kN

A B

4 at 6 m = 24 m

5 m

FIG. P3.16

106.8 kN

66.75 kN

106.8 kN 106.8 kN 106.8 kN53.4 kN

6 at 6.1 m = 36.6 m

5 m

A
B

FIG. P3.17

FIG. P3.18

A B

10 m

15 m

200 kN

35 kN/m

FIG. P3.19

A B

12.2 m

6.1 m

6.1 m

133.5 kN

66.75 kN

18.2 kN/m

36.4 kN/m

FIG. P3.20

100 kN

4 m 4 m12 m

A B

5 m

5 m

40 kN/m
20 kN/m

FIG. P3.21
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6 m 3 m

A

B

36.5 kN/m

36.5 kN/m

4.6 m

FIG. P3.22

6 m 6 m 6 m

8 m
20 kN/m

40 kN/m
150 kN

A

B

FIG. P3.23

FIG. P3.24

10 m 6.1 m 6.1 m

133.5 kN
21.9 kN/m

Hinge
A

B

FIG. P3.25

Hinge

4.6 m 4.6 m

1.2 m

1.2 m
111.25 kN

29.2 kN/m

A

B

FIG. P3.26

FIG. P3.27
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20 m 10 m 10 m

30 kN/m

A C
B Hinge

FIG. P3.28

5 m 5 m 5 m6.1 m 5 m

43.8 kN/m

A D
Hinge HingeB C

FIG. P3.29

3 m 3 m 3 m 10 m

12 kN/m

B

A

130 kN 5

12

FIG. P3.30

FIG. P3.31

FIG. P3.32

100 kN

4 m 4 m6 m 6 m

A B

5 m

5 m

40 kN/m 20 kN/m

Hinge

FIG. P3.33

A B

5 m

3 m

3 m

111.25 kN

29.2 kN/m

43.8 kN/m

Hinge

FIG. P3.34
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FIG. P3.35

5 m 5 m5 m5 m

117 kN/m
A C

B HingeHinge

FIG. P3.36

8 m 8 m 8 m 8 m 8 m 5 m

20 kN/m

A
B C DHinge Hinge

FIG. P3.37

FIG. P3.38

12.2 m

267 kN

36.5 kN/m

7.5 m

7.5 m 7.5 m

Hinge

A

B

FIG. P3.39

6.1 m6.1 m

6.1 m

6.1 m

Hinge

Hinge Hinge

133.5 kN

A B

FIG. P3.40

FIG. P3.41
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4
Plane and Space Trusses
4.1 Assumptions for Analysis of Trusses
4.2 Arrangement of Members of Plane Trusses—Internal Stability
4.3 Equations of Condition for Plane Trusses
4.4 Static Determinacy, Indeterminacy, and Instability of Plane Trusses
4.5 Analysis of Plane Trusses by the Method of Joints
4.6 Analysis of Plane Trusses by the Method of Sections
4.7 Analysis of Compound Trusses
4.8 Complex Trusses
4.9 Space Trusses

Summary
Problems

89

A truss is an assemblage of straight members connected at their ends by
flexible connections to form a rigid configuration. Because of their light
weight and high strength, trusses are widely used, and their applications
range from supporting bridges and roofs of buildings (Fig. 4.1) to being
support structures in space stations (Fig. 4.2). Modern trusses are con-
structed by connecting members, which usually consist of structural steel
or aluminum shapes or wood struts, to gusset plates by bolted or welded
connections.

As discussed in Section 1.4, if all the members of a truss and the
applied loads lie in a single plane, the truss is called a plane truss.

Plane trusses are commonly used for supporting decks of bridges
and roofs of buildings. A typical framing system for truss bridges was
described in Section 1.4 (see Fig. 1.13(a)). Figure 4.3 shows a typical
framing system for a roof supported by plane trusses. In this case, two
or more trusses are connected at their joints by beams, termed purlins, to
form a three-dimensional framework. The roof is attached to the pur-
lins, which transmit the roof load (weight of the roof plus any other load
due to snow, wind, etc.) as well as their own weight to the supporting
trusses at the joints. Because this applied loading acts on each truss in
its own plane, the trusses can be treated as plane trusses. Some of the

Truss Bridges
Terry Poche/Shutterstock
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common configurations of bridge and roof trusses, many of which have
been named after their original designers, are shown in Figs. 4.4 and 4.5
(see pp. 92 and 93), respectively.

Although a great majority of trusses can be analyzed as plane
trusses, there are some truss systems, such as transmission towers and
latticed domes (Fig. 4.6), that cannot be treated as plane trusses because

FIG. 4.1 Roof Trusses. Plum High
School. Large Bow Truss and
Supporting Truss for Gymnasium,
Camber Corporation. Web address: http://

www.cambergroup.com/g87.htm

FIG. 4.2 A Segment of the Integrated
Truss Structure which forms the
Backbone of the International Space
Station
Courtesy of National Aeronautics and Space Administration

98_05164
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of their shape, arrangement of members, or applied loading. Such
trusses, which are called space trusses, are analyzed as three-dimensional
bodies subjected to three-dimensional force systems.

The objective of this chapter is to develop the analysis of member
forces of statically determinate plane and space trusses. We begin by
discussing the basic assumptions underlying the analysis presented in
this chapter, and then we consider the number and arrangement of
members needed to form internally stable or rigid plane trusses. As part
of this discussion, we define simple and compound trusses. We also pres-
ent the equations of condition commonly encountered in plane trusses.
We next establish the classification of plane trusses as statically deter-
minate, indeterminate, and unstable and present the procedures for the
analysis of simple plane trusses by the methods of joints and sections.
We conclude with an analysis of compound plane trusses, a brief dis-
cussion of complex trusses, and analysis of space trusses.

4.1 ASSUMPTIONS FOR ANALYSIS OF TRUSSES

The analysis of trusses is usually based on the following simplifying
assumptions:

1. All members are connected only at their ends by frictionless hinges
in plane trusses and by frictionless ball-and-socket joints in space
trusses.

2. All loads and support reactions are applied only at the joints.
3. The centroidal axis of each member coincides with the line con-

necting the centers of the adjacent joints.

FIG. 4.3 Framing of a Roof Supported by Trusses
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FIG. 4.4 Common Bridge Trusses

92 CHAPTER 4 Plane and Space Trusses

https://engineersreferencebookspdf.com



The reason for making these assumptions is to obtain an ideal truss,
whose members are subjected only to axial forces. Since each member
of an ideal truss is connected at its ends by frictionless hinges (assump-
tion 1) with no loads applied between its ends (assumption 2), the

FIG. 4.5 Common Roof Trusses

FIG. 4.6 Geodesic Dome Climatron
Showing Glass-and-Aluminum Geodesie
Design Missouri Botanical Garden,
St. Louis, Missouri
Courtesy Missouri Botanical Garden.
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member would be subjected to only two forces at its ends, as shown in
Fig. 4.7(a). Since the member is in equilibrium, the resultant force and
the resultant couple of the two forces FA and FB must be zero; that is, the
forces must satisfy the three equations of equilibrium. From Fig. 4.7(a),
we can see that in order for the resultant force of the two forces to be
zero (

P
Fx ¼ 0 and

P
Fy ¼ 0), the two forces must be equal in magni-

tude but with opposite senses. For their resultant couple to be also equal
to zero (

P
M ¼ 0), the two forces must be collinear—that is, they must

have the same line of action. Moreover, since the centroidal axis of each
truss member is a straight line coinciding with the line connecting the
centers of the adjacent joints (assumption 3), the member is not sub-
jected to any bending moment or shear force and is either in axial ten-
sion (being elongated, as shown in Fig. 4.7(b)) or in axial compression
(being shortened, as shown in Fig. 4.7(c)). Such member axial forces de-
termined from the analysis of an ideal truss are called the primary forces.

In real trusses, these idealizations are almost never completely real-
ized. As stated previously, real trusses are constructed by connecting
members to gusset plates by welded or bolted connections (Fig. 4.8).
Some members of the truss may even be continuous at the joints. Fur-
thermore, although the external loads are indeed transmitted to the
trusses at joints by means of floor beams, purlins, and so on, the dead
weights of the members are distributed along their lengths. The bending
moments and shear and axial forces caused by these and other devia-
tions from the aforementioned idealized conditions are commonly re-
ferred to as secondary forces. Although secondary forces cannot be
eliminated, they can be substantially reduced in most trusses by using
relatively slender members and by designing connections so that the
centroidal axes of the members meeting at a joint are concurrent at a
point (as shown in Fig. 1.13). The secondary forces in such trusses are

FIG. 4.7

94 CHAPTER 4 Plane and Space Trusses

https://engineersreferencebookspdf.com



small compared to the primary forces and are usually not considered in
their designs. In this chapter, we focus only on primary forces. If large
secondary forces are anticipated, the truss should be analyzed as a rigid
frame using the methods presented in subsequent chapters.

4.2 ARRANGEMENT OF MEMBERS OF PLANE TRUSSES—INTERNAL STABILITY

Based on our discussion in Section 3.4, we can define a plane truss as
internally stable if the number and geometric arrangement of its mem-
bers is such that the truss does not change its shape and remains a rigid
body when detached from the supports. The term internal is used here to
refer to the number and arrangement of members contained within the
truss. The instability due to insu‰cient external supports or due to im-
proper arrangement of external supports is referred to as external.

Basic Truss Element

The simplest internally stable (or rigid) plane truss can be formed by
connecting three members at their ends by hinges to form a triangle, as
shown in Fig. 4.9(a). This triangular truss is called the basic truss ele-

ment. Note that this triangular truss is internally stable in the sense that
it is a rigid body that will not change its shape under loads. In contrast,
a rectangular truss formed by connecting four members at their ends by
hinges, as shown in Fig. 4.9(b), is internally unstable because it will

FIG. 4.8 Truss Bridge with Bolted
Connections Rio Vista Bridge
Courtesy of the State of California, Caltrans, Dist 4,

Photographer John Huseby.

SECTION 4.2 Arrangement of Members of Plane Trusses—Internal Stability 95

https://engineersreferencebookspdf.com



change its shape and collapse when subjected to a general system of co-
planar forces.

Simple Trusses

The basic truss element ABC of Fig. 4.10(a) can be enlarged by attach-
ing two new members, BD and CD, to two of the existing joints B and C

and by connecting them to form a new joint D, as shown in Fig. 4.10(b).
As long as the new joint D does not lie on the straight line passing
through the existing joints B and C, the new enlarged truss will be in-
ternally stable. The truss can be further enlarged by repeating the same
procedure (as shown in Fig. 4.10(c)) as many times as desired. Trusses
constructed by this procedure are called simple trusses. The reader
should examine the trusses depicted in Figs. 4.4 and 4.5 to verify that
each of them, with the exception of the Baltimore truss (Fig. 4.4) and
the Fink truss (Fig. 4.5), is a simple truss. The basic truss element of the
simple trusses is identified as ABC in these figures.

A simple truss is formed by enlarging the basic truss element, which
contains three members and three joints, by adding two additional
members for each additional joint, so the total number of members m in
a simple truss is given by

m ¼ 3þ 2ð j � 3Þ ¼ 2j � 3 (4.1)

in which j ¼ total number of joints (including those attached to the
supports).

FIG. 4.9

FIG. 4.10 Simple Truss
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Compound Trusses

Compound trusses are constructed by connecting two or more simple
trusses to form a single rigid body. To prevent any relative movement
between the simple trusses, each truss must be connected to the other(s)
by means of connections capable of transmitting at least three force
components, all of which are neither parallel nor concurrent. Two ex-
amples of connection arrangements used to form compound trusses are
shown in Fig. 4.11. In Fig. 4.11(a), two simple trusses ABC and DEF are
connected by three members, BD;CD, and BF , which are nonparallel
and nonconcurrent. Another type of connection arrangement is shown
in Fig. 4.11(b). This involves connecting the two simple trusses ABC

and DEF by a common joint C and a member BD. In order for the
compound truss to be internally stable, the common joint C and joints B
and D must not lie on a straight line. The relationship between the total
number of members m and the total number of joints j for an internally
stable compound truss remains the same as for the simple trusses. This
relationship, which is given by Eq. (4.1), can be easily verified for the
compound trusses shown in Fig. 4.11.

Internal Stability

Equation (4.1) expresses the requirement of the minimum number of
members that a plane truss of j joints must contain if it is to be in-
ternally stable. If a plane truss contains m members and j joints, then if

m < 2j � 3 the truss is internally unstable

mb 2j � 3 the truss is internally stable
(4.2)

FIG. 4.11 Compound Trusses
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It is very important to realize that although the foregoing criterion
for internal stability is necessary, it is not su‰cient to ensure internal
stability. A truss must not only contain enough members to satisfy the
mb 2j � 3 condition, but the members must also be properly arranged
to ensure rigidity of the entire truss. Recall from our discussion of sim-
ple and compound trusses that in a stable truss, each joint is connected
to the rest of the structure by at least two nonparallel members, and
each portion of the truss must be connected to the remainder of the truss
by connections capable of transmitting at least three nonparallel and
nonconcurrent force components.

Example 4.1

Classify each of the plane trusses shown in Fig. 4.12 as internally stable or unstable.

Solution
(a) The truss shown in Fig. 4.12(a) contains 20 members and 12 joints. Therefore, m ¼ 20 and

2j � 3 ¼ 2ð12Þ � 3 ¼ 21. Since m is less than 2j � 3, this truss does not have a su‰cient number of members to form a
rigid body; therefore, it is internally unstable. A careful look at the truss shows that it contains two rigid bodies, ABCD
and EFGH, connected by two parallel members, BE and DG. These two horizontal members cannot prevent the rela-
tive displacement in the vertical direction of one rigid part of the truss with respect to the other. Ans.

(b) The truss shown in Fig. 4.12(b) is the same as that of Fig. 4.12(a), except that a diagonal member DE has now
been added to prevent the relative displacement between the two portions ABCD and EFGH. The entire truss now acts
as a single rigid body. Addition of member DE increases the number of members to 21 (while the number of joints re-
mains the same at 12), thereby satisfying the equation m ¼ 2j � 3. The truss is now internally stable. Ans.

(c) Four more diagonals are added to the truss of Fig. 4.12(b) to obtain the truss shown in Fig. 4.12(c), thereby
increasing m to 25, while j remains constant at 12. Because m > 2j � 3, the truss is internally stable. Also, since the
di¤erence m� ð2j � 3Þ ¼ 4, the truss contains four more members than required for internal stability. Ans.

(d) The truss shown in Fig. 4.12(d) is obtained from that of Fig. 4.12(c) by removing two diagonals, BG and DE,
from panel BE, thereby decreasing m to 23; j remains constant at 12. Although m� ð2j � 3Þ ¼ 2—that is, the truss
contains two more members than the minimum required for internal stability—its two rigid portions, ABCD and
EFGH, are not connected properly to form a single rigid body. Therefore, the truss is internally unstable. Ans.

(e) The roof truss shown in Fig. 4.12(e) is internally unstable because m ¼ 26 and j ¼ 15, thereby yielding
m < 2j � 3. This is also clear from the diagram of the truss which shows that the portions ABE and CDE of the truss
can rotate with respect to each other. The di¤erence m� ð2j � 3Þ ¼ �1 indicates that this truss has one less member
than required for internal stability. Ans.

(f ) In Fig. 4.12(f ), a member BC has been added to the truss of Fig. 4.12(e), which prevents the relative movement
of the two portions ABE and CDE, thereby making the truss internally stable. As m has now been increased to 27, it
satisfies the equation m ¼ 2j � 3 for j ¼ 15. Ans.

(g) The tower truss shown in Fig. 4.12(g) has 16 members and 10 joints. Because m < 2j � 3, the truss is internally
unstable. This is also obvious from Fig. 4.12(g), which shows that member BC can rotate with respect to the rest of the

continued
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FIG. 4.12

structure. This rotation can occur because joint C is connected by only one member instead of the two required to com-
pletely constrain a joint of a plane truss. Ans.

(h) In Fig. 4.12(h), a member AC has been added to the truss of Fig. 4.12(g), which makes it internally stable. Here
m ¼ 17 and j ¼ 10, so the equation m ¼ 2j � 3 is satisfied. Ans.
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4.3 EQUATIONS OF CONDITION FOR PLANE TRUSSES

In Section 3.4, we indicated that the types of connections used to con-
nect rigid portions of internally unstable structures provide equations of
condition that, along with the three equilibrium equations, can be used
to determine the reactions needed to constrain such structures fully.

Three types of connection arrangements commonly used to connect
two rigid trusses to form a single (internally unstable) truss are shown in
Fig. 4.13. In Fig. 4.13(a), two rigid trusses, AB and BC, are connected
together by an internal hinge at B. Because an internal hinge cannot
transmit moment, it provides an equation of condition:P

MAB
B ¼ 0 or

P
MBC

B ¼ 0

Another type of connection arrangement is shown in Fig. 4.13(b).
This involves connecting two rigid trusses, AB and CD, by two parallel
members. Since these parallel (horizontal) bars cannot transmit force in
the direction perpendicular to them, this type of connection provides an
equation of condition:P

F AB
y ¼ 0 or

P
F CD
y ¼ 0

A third type of connection arrangement involves connecting two rigid
trusses, AB and CD, by a single link, BC, as shown in Fig. 4.13(c). Since
a link can neither transmit moment nor force in the direction perpen-
dicular to it, it provides two equations of condition:P

F AB
x ¼ 0 or

P
F CD
x ¼ 0

and P
MAB

B ¼ 0 or
P

MCD
C ¼ 0

As we indicated in the previous chapter, these equations of con-
dition can be used with the three equilibrium equations to determine the
unknown reactions of externally statically determinate plane trusses. The
reader should verify that all three trusses shown in Fig. 4.13 are stat-
ically determinate externally.

4.4 STATIC DETERMINACY, INDETERMINACY, AND INSTABILITY OF PLANE TRUSSES

We consider a truss to be statically determinate if the forces in all its

members, as well as all the external reactions, can be determined by using

the equations of equilibrium.
Since the two methods of analysis presented in the following

sections can be used to analyze only statically determinate trusses, it is
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important for the student to be able to recognize statically determinate
trusses before proceeding with the analysis.

Consider a plane truss subjected to external loads P1;P2, and P3, as
shown in Fig. 4.14(a). The free-body diagrams of the five members and
the four joints are shown in Fig. 4.14(b). Each member is subjected to
two axial forces at its ends, which are collinear (with the member cen-
troidal axis) and equal in magnitude but opposite in sense. Note that in
Fig. 4.14(b), all members are assumed to be in tension; that is, the forces
are pulling on the members. The free-body diagrams of the joints show
the same member forces but in opposite directions, in accordance with
Newton’s third law. The analysis of the truss involves the calculation of

FIG. 4.13 Equations of Condition for
Plane Trusses
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the magnitudes of the five member forces, FAB;FAC ;FBC ;FBD, and FCD
(the lines of action of these forces are known), and the three reactions,
Ax;Ay, and By. Therefore, the total number of unknown quantities to be
determined is eight.

Because the entire truss is in equilibrium, each of its joints must also
be in equilibrium. As shown in Fig. 4.14(b), at each joint the internal
and external forces form a coplanar and concurrent force system, which
must satisfy the two equations of equilibrium,

P
Fx ¼ 0 and

P
Fy ¼ 0.

Since the truss contains four joints, the total number of equations avail-
able is 2ð4Þ ¼ 8. These eight joint equilibrium equations can be solved
to calculate the eight unknowns. The plane truss of Fig. 4.14(a) is,
therefore, statically determinate.

FIG. 4.14
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Three equations of equilibrium of the entire truss as a rigid body
could be written and solved for the three unknown reactions (Ax;Ay,
and By). However, these equilibrium equations (as well as the equations
of condition in the case of internally unstable trusses) are not in-

dependent from the joint equilibrium equations and do not contain any
additional information.

Based on the preceding discussion, we can develop the criteria for
the static determinacy, indeterminacy, and instability of general plane
trusses containing m members and j joints and supported by r (number
of ) external reactions. For the analysis, we need to determine m member
forces and r external reactions; that is, we need to calculate a total
of mþ r unknown quantities. Since there are j joints and we can write
two equations of equilibrium (

P
Fx ¼ 0 and

P
Fy ¼ 0) for each joint,

the total number of equilibrium equations available is 2j. If the number
of unknowns ðmþ rÞ for a truss is equal to the number of equilibrium
equations ð2jÞ—that is, mþ r ¼ 2j—all the unknowns can be de-
termined by solving the equations of equilibrium, and the truss is stat-
ically determinate.

If a truss has more unknowns ðmþ rÞ than the available equili-
brium equations ð2jÞ—that is, mþ r > 2j—all the unknowns cannot
be determined by solving the available equations of equilibrium. Such
a truss is called statically indeterminate. Statically indeterminate
trusses have more members and/or external reactions than the mini-
mum required for stability. The excess members and reactions are
called redundants, and the number of excess members and reactions is
referred to as the degree of static indeterminacy, i, which can be ex-
pressed as

i ¼ ðmþ rÞ � 2j (4.3)

If the number of unknowns ðmþ rÞ for a truss is less than the
number of equations of joint equilibrium ð2jÞ—that is, mþ r < 2j—
the truss is called statically unstable. The static instability may be due to
the truss having fewer members than the minimum required for internal
stability or due to an insu‰cient number of external reactions or both.

The conditions of static instability, determinacy, and indeterminacy
of plane trusses can be summarized as follows:

mþ r < 2j statically unstable truss

mþ r ¼ 2j statically determinate truss

mþ r > 2j statically indeterminate truss

(4.4)

The first condition, for the static instability of trusses, is both necessary
and su‰cient in the sense that if m < 2j � r, the truss is definitely stat-
ically unstable. However, the remaining two conditions, for static
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determinacy ðm ¼ 2j � rÞ and indeterminacy ðm > 2j � rÞ, are necessary
but not su‰cient conditions. In other words, these two equations simply
tell us that the number of members and reactions is su‰cient for stabil-
ity. They do not provide any information regarding their arrangement.
A truss may have a su‰cient number of members and external reactions
but may still be unstable due to improper arrangement of members and/
or external supports.

We emphasize that in order for the criteria for static determinacy
and indeterminacy, as given by Eqs. (4.3) and (4.4), to be valid, the truss
must be stable and act as a single rigid body under a general system of
coplanar loads when attached to the supports. Internally stable trusses
must be supported by at least three reactions, all of which must be nei-
ther parallel nor concurrent. If a truss is internally unstable, then it must
be supported by reactions equal in number to at least three plus the
number of equations of condition ð3þ ecÞ, and all the reactions must be
neither parallel nor concurrent. In addition, each joint, member, and
portion of the truss must be constrained against all possible rigid body
movements in the plane of the truss, either by the rest of the truss or by
external supports. If a truss contains a su‰cient number of members,
but they are not properly arranged, the truss is said to have critical form.
For some trusses, it may not be obvious from the drawings whether or
not their members are arranged properly. However, if the member ar-
rangement is improper, it will become evident during the analysis of the
truss. The analysis of such unstable trusses will always lead to incon-
sistent, indeterminate, or infinite results.

Example 4.2

Classify each of the plane trusses shown in Fig. 4.15 as unstable, statically determinate, or statically indeterminate. If
the truss is statically indeterminate, then determine the degree of static indeterminacy.

Solution
(a) The truss shown in Fig. 4.15(a) contains 17 members and 10 joints and is supported by 3 reactions. Thus,

mþ r ¼ 2j. Since the three reactions are neither parallel nor concurrent and the members of the truss are properly ar-
ranged, it is statically determinate. Ans.

(b) For this truss, m ¼ 17, j ¼ 10, and r ¼ 2. Because mþ r < 2j, the truss is unstable. Ans.

(c) For this truss, m ¼ 21, j ¼ 10, and r ¼ 3. Because mþ r > 2j, the truss is statically indeterminate, with the de-
gree of static indeterminacy i ¼ ðmþ rÞ � 2j ¼ 4. It should be obvious from Fig. 4.15(c) that the truss contains four
more members than required for stability. Ans.

(d) This truss has m ¼ 16, j ¼ 10, and r ¼ 3. The truss is unstable, since mþ r < 2j. Ans.

continued
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FIG. 4.15
continued
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(e) This truss is composed of two rigid portions, AB and BC, connected by an internal hinge at B. The truss has
m ¼ 26, j ¼ 15, and r ¼ 4. Thus, mþ r ¼ 2j. The four reactions are neither parallel nor concurrent and the entire truss
is properly constrained, so the truss is statically determinate. Ans.

(f ) For this truss, m ¼ 10, j ¼ 7, and r ¼ 3. Because mþ r < 2j, the truss is unstable. Ans.

(g) In Fig. 4.15(g), a member BC has been added to the truss of Fig. 4.15(f ), which prevents the relative
rotation of the two portions ABE and CDE. Since m has now been increased to 11, with j and r kept con-
stant at 7 and 3, respectively, the equation mþ r ¼ 2j is satisfied. Thus, the truss of Fig. 4.15(g) is statically
determinate. Ans.

(h) The truss of Fig. 4.15(f ) is stabilized by replacing the roller support at D by a hinged support, as shown in Fig.
4.15(h). Thus, the number of reactions has been increased to 4, but m and j remain constant at 10 and 7, respectively.
With mþ r ¼ 2j, the truss is now statically determinate. Ans.

(i) For the tower truss shown in Fig. 4.15(i), m ¼ 16, j ¼ 10, and r ¼ 4. Because mþ r ¼ 2j, the truss is statically
determinate. Ans.

( j) This truss has m ¼ 13, j ¼ 8, and r ¼ 3. Although mþ r ¼ 2j, the truss is unstable, because it contains two
rigid portions ABCD and EFGH connected by three parallel members, BF ;CE, and DH, which cannot prevent the
relative displacement, in the vertical direction, of one rigid part of the truss with respect to the other. Ans.

(k) For the truss shown in Fig. 4.15(k), m ¼ 19, j ¼ 12, and r ¼ 5. Because mþ r ¼ 2j, the truss is statically de-
terminate. Ans.

4.5 ANALYSIS OF PLANE TRUSSES BY THE METHOD OF JOINTS

In the method of joints, the axial forces in the members of a statically

determinate truss are determined by considering the equilibrium of its

joints. Since the entire truss is in equilibrium, each of its joints must
also be in equilibrium. At each joint of the truss, the member forces
and any applied loads and reactions form a coplanar concurrent
force system (see Fig. 4.14), which must satisfy two equilibrium
equations,

P
Fx ¼ 0 and

P
Fy ¼ 0, in order for the joint to be in

equilibrium. These two equilibrium equations must be satisfied at
each joint of the truss. There are only two equations of equilibrium
at a joint, so they cannot be used to determine more than two un-
known forces.

The method of joints consists of selecting a joint with no more than
two unknown forces (which must not be collinear) acting on it and ap-
plying the two equilibrium equations to determine the unknown forces.
The procedure may be repeated until all the desired forces have been
obtained. As we discussed in the preceding section, all the unknown
member forces and the reactions can be determined from the joint equi-
librium equations, but in many trusses it may not be possible to find
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a joint with two or fewer unknowns to start the analysis unless the re-
actions are known beforehand. In such cases, the reactions are com-
puted by using the equations of equilibrium and condition (if any) for
the entire truss before proceeding with the method of joints to determine
member forces.

To illustrate the analysis by this method, consider the truss shown in
Fig. 4.16(a). The truss contains five members, four joints, and three
reactions. Since mþ r ¼ 2j, the truss is statically determinate. The
free-body diagrams of all the members and the joints are given in
Fig. 4.16(b). Because the member forces are not yet known, the sense of
axial forces (tension or compression) in the members has been arbitra-
rily assumed. As shown in Fig. 4.16(b), members AB;BC, and AD are
assumed to be in tension, with axial forces tending to elongate the
members, whereas members BD and CD are assumed to be in com-
pression, with axial forces tending to shorten them. The free-body dia-
grams of the joints show the member forces in directions opposite to
their directions on the member ends in accordance with Newton’s law of
action and reaction. Focusing our attention on the free-body diagram of
joint C, we observe that the tensile force FBC is pulling away on the joint,
whereas the compressive force FCD is pushing toward the joint. This e¤ect
of members in tension pulling on the joints and members in compression
pushing into the joints can be seen on the free-body diagrams of all the
joints shown in Fig. 4.16(b). The free-body diagrams of members are
usually omitted in the analysis and only those of joints are drawn, so it
is important to understand that a tensile member axial force is always

indicated on the joint by an arrow pulling away on the joint, and a com-

pressive member axial force is always indicated by an arrow pushing to-

ward the joint.
The analysis of the truss by the method of joints is started by se-

lecting a joint that has two or fewer unknown forces (which must not be
collinear) acting on it. An examination of the free-body diagrams of
the joints in Fig. 4.16(b) indicates that none of the joints satisfies this
requirement. We therefore compute reactions by applying the three
equilibrium equations to the free body of the entire truss shown in
Fig. 4.16(c), as follows:

þ !P
Fx ¼ 0 Ax � 120 ¼ 0 Ax ¼ 120 kN!

þ ’
P

MC ¼ 0 �Ayð10:5Þ þ 120ð6Þ þ 180ð4:5Þ ¼ 0 Ay ¼ 145:7 kN "
þ "PFy ¼ 0 145:7� 180þ Cy¼ 0 Cy ¼ 34:3 kN "

Having determined the reactions, we can now begin computing
member forces either at joint A, which now has two unknown forces,
FAB and FAD, or at joint C, which also has two unknowns, FBC and FCD.
Let us start with joint A. The free-body diagram of this joint is shown
in Fig. 4.16(d). Although we could use the sines and cosines of the
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angles of inclination of inclined members in writing the joint equilibrium
equations, it is usually more convenient to use the slopes of the in-
clined members instead. The slope of an inclined member is simply
the ratio of the vertical projection of the length of the member
to the horizontal projection of its length. For example, from
Fig. 4.16(a), we can see that member CD of the truss under con-
sideration rises 6 m in the vertical direction over a horizontal dis-
tance of 4.5 m. Therefore, the slope of this member is 6:4.5, or 4:3.
Similarly, we can see that the slope of member AD is 1:1. The
slopes of inclined members thus determined from the dimensions of
the truss are usually depicted on the diagram of the truss by means
of small right-angled triangles drawn on the inclined members, as
shown in Fig. 4.16(a).

Refocusing our attention on the free-body diagram of joint A in
Fig. 4.16(d), we determine the unknowns FAB and FAD by applying the
two equilibrium equations:

þ "PFy ¼ 0 145:7þ 1ffiffiffi
2
p FAD ¼ 0 FAD ¼ �206:1 kN

¼ 206:1 kN ðCÞ

þ !P
Fx ¼ 0 120� 1ffiffiffi

2
p ð206:1Þ þ FAB ¼ 0 FAB ¼ þ25:7 kN

¼ 25:7 kN ðTÞ
Note that the equilibrium equations were applied in such an order so
that each equation contains only one unknown. The negative answer
for FAD indicates that the member AD is in compression instead of in
tension, as initially assumed, whereas the positive answer for FAB in-
dicates that the assumed sense of axial force (tension) in member AB

was correct.
Next, we draw the free-body diagram of joint B, as shown in

Fig. 4.16(e), and determine FBC and FBD as follows:

þ!P
Fx¼0 �25:7þFBC ¼0 FBC¼þ25:7 kN; or FBC¼25:7 kN ðTÞ

þ "PFy ¼ 0 �FBD ¼ 0 FBD ¼ 0

Applying the equilibrium equation
P

Fx ¼ 0 to the free-body
diagram of joint C (Fig. 4.16(f )), we obtain

þ !P
Fx ¼ 0 �25:7þ 3

5
FCD ¼ 0 FCD ¼ þ42:8 kN; or

FCD ¼ 42:8 kN ðCÞ
We have determined all the member forces, so the three re-

maining equilibrium equations,
P

Fy ¼ 0 at joint C and
P

Fx ¼ 0
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and
P

Fy ¼ 0 at joint D, can be used to check our calculations.
Thus, at joint C,

þ "PFy ¼ 34:3� 4

5
ð42:8Þ ¼ 0 Checks

and at joint D (Fig. 4.16(g)),

þ !P
Fx ¼ �120þ 1ffiffiffi

2
p ð206:1Þ � 3

5
ð42:8Þ ¼ 0 Checks

þ "PFy ¼ 1ffiffiffi
2
p ð206:1Þ � 180þ 4

5
ð42:8Þ ¼ 0 Checks

In the preceding paragraphs, the analysis of a truss has been carried
out by drawing a free-body diagram and writing the two equilibrium
equations for each of its joints. However, the analysis of trusses can be
considerably expedited if we can determine some (preferably all) of the
member forces by inspection—that is, without drawing the joint free-
body diagrams and writing the equations of equilibrium. This approach
can be conveniently used for the joints at which at least one of the
two unknown forces is acting in the horizontal or vertical direction.
When both of the unknown forces at a joint have inclined directions, it
usually becomes necessary to draw the free-body diagram of the joint
and determine the unknowns by solving the equilibrium equations si-
multaneously. To illustrate this procedure, consider again the truss
of Fig. 4.16(a). The free-body diagram of the entire truss is shown in
Fig. 4.16(c), which also shows the support reactions computed pre-
viously. Focusing our attention on joint A in this figure, we observe that
in order to satisfy the equilibrium equation

P
Fy ¼ 0 at joint A, the

vertical component of FAD must push downward into the joint with a
magnitude of 145.7 kN to balance the vertically upward reaction of
145.7 kN. The fact that member AD is in compression is indicated on
the diagram of the truss by drawing arrows near joints A and D pushing
into the joints, as shown in Fig. 4.16(c). Because the magnitude of the
vertical component of FAD has been found to be 145.7 kN and since the
slope of member AD is 1:1, the magnitude of the horizontal component
of FAD must also be 145.7 kN; therefore, the magnitude of the resultant
force FAD is FAD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð145:7Þ2 þ ð145:7Þ2

p
¼ 206:1 kN. The components

of FAD, as well as FAD itself are shown on the corresponding sides of a
right-angled triangle drawn on member AD, as shown in Fig. 4.16(c).
With the horizontal component of FAD now known, we observe (from
Fig. 4.16(c)) that in order to satisfy the equilibrium equation

P
Fx ¼ 0

at joint A, the force in member AB ðFABÞ must pull to the right on the
joint with a magnitude of 25.7 kN to balance the horizontal component
of FAD of 145.7 kN acting to the left and the horizontal reaction of
120 kN acting to the right. The magnitude of FAB is now written on
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member AB, and the arrows, pulling away on the joints, are drawn near
joints A and B to indicate that member AB is in tension.

Next, we focus our attention on joint B of the truss. It should be
obvious from Fig. 4.16(c) that in order to satisfy

P
Fy ¼ 0 at B, the

force in member BD must be zero. To satisfy
P

Fx ¼ 0, the force in
member BC must have a magnitude of 25.7 kN, and it must pull to the
right on joint B, indicating tension in member BC. This latest in-
formation is recorded in the diagram of the truss in Fig. 4.16(c). Con-
sidering now the equilibrium of joint C, we can see from the figure that
in order to satisfy

P
Fy ¼ 0, the vertical component of FCD must push

downward into the joint with a magnitude of 34.3 kN to balance the
vertically upward reaction of 34.3 kN. Thus, member CD is in com-
pression. Since the magnitude of the vertical component of FCD is 34.3 kN
and since the slope of member CD is 4:3, the magnitude of the horizontal
component of FCD is equal to ð3=4Þð34:3Þ ¼ 25:7 kN; therefore, the
magnitude of FCD itself is FCD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð25:7Þ2 þ ð34:3Þ2

p
¼ 42:8 kN. Having

determined all the member forces, we check our computations by apply-
ing the equilibrium equations

P
Fx ¼ 0 at joint C and

P
Fx ¼ 0 andP

Fy ¼ 0 at joint D. The horizontal and vertical components of the
member forces are already available in Fig. 4.16(c), so we can easily check
by inspection to find that these equations of equilibrium are indeed
satisfied. We must recognize that all the arrows shown on the diagram of
the truss in Fig. 4.16(c) indicate forces acting at the joints (not at the ends
of the members).

Identification of Zero-Force Members

Because trusses are usually designed to support several di¤erent load-
ing conditions, it is not uncommon to find members with zero forces
in them when a truss is being analyzed for a particular loading con-
dition. Zero-force members are also added to trusses to brace compres-
sion members against buckling and slender tension members against
vibrating. The analysis of trusses can be expedited if we can identify the
zero-force members by inspection. Two common types of member ar-
rangements that result in zero-force members are the following:

1. If only two noncollinear members are connected to a joint that has
no external loads or reactions applied to it, then the force in both
members is zero.

2. If three members, two of which are collinear, are connected to a
joint that has no external loads or reactions applied to it, then the
force in the member that is not collinear is zero.

The first type of arrangement is shown in Fig. 4.17(a). It consists
of two noncollinear members AB and AC connected to a joint A.
Note that no external loads or reactions are applied to the joint. From
this figure we can see that in order to satisfy the equilibrium equationP

Fy ¼ 0, the y component of FAB must be zero; therefore, FAB ¼ 0.
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Because the x component of FAB is zero, the second equilibrium equa-
tion,

P
Fx ¼ 0, can be satisfied only if FAC is also zero.

The second type of arrangement is shown in Fig. 4.17(b), and it
consists of three members, AB;AC, and AD, connected together at a
joint A. Note that two of the three members, AB and AD, are collinear.
We can see from the figure that since there is no external load or re-
action applied to the joint to balance the y component of FAC , the equi-
librium equation

P
Fy ¼ 0 can be satisfied only if FAC is zero.

Example 4.3

Identify all zero-force members in the Fink roof truss subjected to an unbalanced snow load, as shown in Fig. 4.18.

Solution
It can be seen from the figure that at joint B, three members, AB;BC, and BJ, are connected, of which AB and BC are
collinear and BJ is not. Since no external loads are applied at joint B, member BJ is a zero-force member. A similar
reasoning can be used for joint D to identify member DN as a zero-force member. Next, we focus our attention on

continued

FIG. 4.17
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FIG. 4.18

joint J, where four members, AJ;BJ;CJ, and JK , are connected and no external loads are applied. We have already
identified BJ as a zero-force member. Of the three remaining members, AJ and JK are collinear; therefore, CJ must be
a zero-force member. Similarly, at joint N, member CN is identified as a zero-force member; the same type of argu-
ments can be used for joint C to identify member CK as a zero-force member and for joint K to identify member KN as
a zero-force member. Finally, we consider joint N, where four members, CN;DN;EN, and KN, are connected, of
which three members, CN;DN, and KN, have already been identified as zero-force members. No external loads are
applied at joint N, so the force in the remaining member, EN, must also be zero.

Procedure for Analysis

The following step-by-step procedure can be used for the analysis of
statically determinate simple plane trusses by the method of joints.

1. Check the truss for static determinacy, as discussed in the preced-
ing section. If the truss is found to be statically determinate and
stable, proceed to step 2. Otherwise, end the analysis at this stage.
(The analysis of statically indeterminate trusses is considered in Part
Three of this text.)

2. Identify by inspection any zero-force members of the truss.
3. Determine the slopes of the inclined members (except the zero-force

members) of the truss.
4. Draw a free-body diagram of the whole truss, showing all external

loads and reactions. Write zeros by the members that have been
identified as zero-force members.

5. Examine the free-body diagram of the truss to select a joint that has
no more than two unknown forces (which must not be collinear)
acting on it. If such a joint is found, then go directly to the next
step. Otherwise, determine reactions by applying the three equations
of equilibrium and the equations of condition (if any) to the free
body of the whole truss; then select a joint with two or fewer un-
knowns, and go to the next step.
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6. a. Draw a free-body diagram of the selected joint, showing tensile
forces by arrows pulling away from the joint and compressive
forces by arrows pushing into the joint. It is usually convenient
to assume the unknown member forces to be tensile.

b. Determine the unknown forces by applying the two equilib-
rium equations

P
Fx ¼ 0 and

P
Fy ¼ 0. A positive answer for

a member force means that the member is in tension, as initially
assumed, whereas a negative answer indicates that the member
is in compression.

If at least one of the unknown forces acting at the selected
joint is in the horizontal or vertical direction, the unknowns can
be conveniently determined by satisfying the two equilibrium
equations by inspection of the joint on the free-body diagram of
the truss.

7. If all the desired member forces and reactions have been de-
termined, then go to the next step. Otherwise, select another joint
with no more than two unknowns, and return to step 6.

8. If the reactions were determined in step 5 by using the equations of
equilibrium and condition of the whole truss, then apply the re-
maining joint equilibrium equations that have not been utilized so
far to check the calculations. If the reactions were computed by
applying the joint equilibrium equations, then use the equilibrium
equations of the entire truss to check the calculations. If the analysis
has been performed correctly, then these extra equilibrium equations
must be satisfied.

Example 4.4

Determine the force in each member of the Warren truss shown in Fig. 4.19(a) by the method of joints.

Solution
Static Determinacy The truss has 13 members and 8 joints and is supported by 3 reactions. Because mþ r ¼ 2j and

the reactions and the members of the truss are properly arranged, it is statically determinate.

Zero-Force Members It can be seen from Fig. 4.19(a) that at joint G, three members, CG;FG, and GH, are con-
nected, of which FG and GH are collinear and CG is not. Since no external load is applied at joint G, member CG is a
zero-force member.

FCG ¼ 0 Ans.

From the dimensions of the truss, we find that all inclined members have slopes of 3:4, as shown in
Fig. 4.19(a). The free-body diagram of the entire truss is shown in Fig. 4.19(b). As a joint with two or fewer
unknowns—which should not be collinear—cannot be found, we calculate the support reactions. (Although joint
G has only two unknown forces, FFG and FGH , acting on it, these forces are collinear, so they cannot be de-
termined from the joint equilibrium equation,

P
Fx ¼ 0.)

continued
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Reactions By using proportions,

Ay ¼ 100
3

4

� �
þ 125

1

2

� �
þ 50

1

4

� �
¼ 150

P
Fy ¼ 0 Ey ¼ ð100þ 125þ 50Þ � 150 ¼ 125 kNP
Fx ¼ 0 Ax ¼ 0

Joint A Focusing our attention on joint A in Fig. 4.19(b), we observe that in order to satisfy
P

Fy ¼ 0, the vertical
component of FAF must push downward into the joint with a magnitude of 150 kN to balance the upward reaction of
150 kN. The slope of member AF is 3:4, so the magnitude of the horizontal component of FAF is ð4=3Þð150 kNÞ, or
200 kN. Thus, the force in member AF is compressive, with a magnitude of FAF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð200Þ2 þ ð150Þ2

p
¼ 250 kN.

FAF ¼ 250 kN ðCÞ Ans.

With the horizontal component of FAF now known, we can see from the figure that in order for
P

Fx ¼ 0 to be
satisfied, FAB must pull to the right with a magnitude of 200 kN to balance the horizontal component of FAF of 200 kN
acting to the left. Therefore, member AB is in tension with a force of 200 kN.

FAB ¼ 200 kN ðTÞ Ans.

Joint B Next, we consider the equilibrium of joint B. Applying
P

Fx ¼ 0, we obtain FBC .

FBC ¼ 200 kN ðTÞ Ans.

From
P

Fy ¼ 0, we obtain FBF .

FBF ¼ 100 kN ðTÞ Ans.

FIG. 4.19

continued
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Joint F This joint now has two unknowns, FCF and FFG, so they can be determined by applying the equations of
equilibrium as follows. We can see from Fig. 4.19(b) that in order to satisfy

P
Fy ¼ 0, the vertical component of FCF

must pull downward on joint F with a magnitude of 150� 100 ¼ 50 kN. Using the 3:4 slope of member CF , we obtain
the magnitude of the horizontal component as ð4=3Þð50Þ ¼ 66:7 kN and the magnitude of FCF itself as 83.4 kN.

FCF ¼ 83:4 kN ðTÞ Ans.

Considering the equilibrium of joint F in the horizontal direction ðPFx ¼ 0Þ, it should be obvious from Fig.
4.19(b) that FFG must push to the left on the joint with a magnitude of 200þ 66:7 ¼ 266:7 kN.

FFG ¼ 266:7 kN ðCÞ Ans.

Joint G Similarly, by applying
P

Fx ¼ 0, we obtain FGH .

FGH ¼ 266:7 kN ðCÞ Ans.

Note that the second equilibrium equation,
P

Fy ¼ 0, at this joint has already been utilized in the identification of
member CG as a zero-force member.

Joint C By considering equilibrium in the vertical direction,
P

Fy ¼ 0, we observe (from Fig. 4.19(b)) that member
CH should be in tension and that the magnitude of the vertical component of its force must be equal to 125� 50 ¼
75 kN. Therefore, the magnitudes of the horizontal component of FCH and of FCH itself are 100 kN and 125 kN,
respectively, as shown in Fig. 4.19(b).

FCH ¼ 125 kN ðTÞ Ans.

By considering equilibrium in the horizontal direction,
P

Fx ¼ 0, we observe that member CD must be in tension
and that the magnitude of its force should be equal to 200þ 66:7� 100 ¼ 166:7 kN.

FCD ¼ 166:7 kN ðTÞ Ans.

Joint D By applying
P

Fx ¼ 0, we obtain FDE .

FDE ¼ 166:7 kN ðTÞ Ans.

From
P

Fy ¼ 0, we determine FDH .

FDH ¼ 50 kN ðTÞ Ans.

Joint E Considering the vertical components of all the forces acting at joint E, we find that in order to satisfyP
Fy ¼ 0, the vertical component of FEH must push downward into joint E with a magnitude of 125 kN to balance the

upward reaction Ey ¼ 125 kN. The magnitude of the horizontal component of FEH is equal to ð4=3Þð125Þ, or 166.7 kN.
Thus, FEH is a compressive force with a magnitude of 208.5 kN.

FEH ¼ 208:4 kN ðCÞ Ans.

Checking Computations To check our computations, we apply the following remaining joint equilibrium equations
(see Fig. 4.19(b)). At joint E,

þ !P
Fx ¼ �166:7þ 166:7 ¼ 0 Checks

At joint H,

þ !P
Fx ¼ 266:7� 100� 166:7 ¼ 0 Checks

þ "PFy ¼ �75� 50þ 125 ¼ 0 Checks
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Example 4.5

Determine the force in each member of the truss shown in Fig. 4.20(a) by the method of joints.

Solution
Static Determinacy The truss is composed of 7 members and 5 joints and is supported by 3 reactions. Thus,

mþ r ¼ 2j. Since the reactions and the members of the truss are properly arranged, it is statically determinate.
From the dimensions of the truss given in Fig. 4.20(a), we find that all inclined members have slopes of 12:5. Since

joint E has two unknown non-collinear forces, FCE and FDE , acting on it, we can begin the method of joints without
first calculating the support reactions.

Joint E Focusing our attention on joint E in Fig. 4.20(b), we observe that in order to satisfy
P

Fx ¼ 0, the hori-
zontal component of FDE must push to the left into the joint with a magnitude of 25 kN to balance the 25 kN external
load acting to the right. The slope of member DE is 12:5, so the magnitude of the vertical component of FDE is
ð12=5Þð25Þ, or 60 kN. Thus, the force in member DE is compressive, with a magnitude of

FDE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð25Þ2 þ ð60Þ2

q
¼ 65 kN

FDE ¼ 65 kN ðCÞ Ans.

With the vertical component of FDE now known, we can see from the figure that in order for
P

Fy ¼ 0 to be sat-
isfied, FCE must pull downward on joint E with a magnitude of 60� 30 ¼ 30 kN.

FCE ¼ 30 kN ðTÞ Ans.

Joint C Next, we consider the equilibrium of joint C. Applying
P

Fx ¼ 0, we obtain FCD.

FCD ¼ 50 kN ðCÞ Ans.

From
P

Fy ¼ 0, we obtain FAC .

FAC ¼ 30 kN ðTÞ Ans.

Joint D Both of the unknown forces, FAD and FBD, acting at this joint have inclined directions, so we draw the free-
body diagram of this joint as shown in Fig. 4.20(c) and determine the unknowns by solving the equilibrium equations
simultaneously:

þ !P
Fx ¼ 0 50þ 5

13
ð65Þ � 5

13
FAD þ 5

13
FBD ¼ 0

þ "PFy ¼ 0 � 12

13
ð65Þ � 12

13
FAD � 12

13
FBD ¼ 0

Solving these equations simultaneously, we obtain

FAD ¼ 65 kN and FBD ¼ �130 kN

FAD ¼ 65 kN ðTÞ Ans.

FBD ¼ 130 kN ðCÞ Ans.

Joint B (See Fig. 4.20(b).) By considering the equilibrium of joint B in the horizontal direction ðPFx ¼ 0Þ, we
obtain FAB.

FAB ¼ 50 kN ðTÞ Ans.

continued
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Having determined all the member forces, we apply the remaining equilibrium equation ðPFy ¼ 0Þ at joint B to cal-
culate the support reaction By.

By ¼ 120 kN " Ans.

Joint A By applying
P

Fx ¼ 0, we obtain Ax.

Ax ¼ 75 kN Ans.

25 kN

6 m

6 m

5 m

30 kN
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A B
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FIG. 4.20
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From
P

Fy ¼ 0, we obtain Ay.

Ay ¼ 90 kN # Ans.

Checking Computations To check our computations, we consider the equilibrium of the entire truss. Applying the
three equilibrium equations to the free body of the entire truss shown in Fig. 4.20(b), we obtain

þ !P
Fx ¼ 25þ 50� 75 ¼ 0 Checks

þ "PFy ¼ �30� 90þ 120 ¼ 0 Checks

þ ’
P

MB ¼ 30ð5Þ � 25ð12Þ � 50ð6Þ þ 90ð5Þ ¼ 0 Checks

Example 4.6

Determine the force in each member of the three-hinged trussed arch shown in Fig. 4.21(a) by the method of joints.

Solution
Static Determinacy The truss contains 10 members and 7 joints and is supported by 4 reactions. Since mþ r ¼ 2j

and the reactions and the members of the truss are properly arranged, it is statically determinate. Note that since
m < 2j � 3, the truss is not internally stable, and it will not remain a rigid body when it is detached from its supports.
However, when attached to the supports, the truss will maintain its shape and can be treated as a rigid body.

Zero-Force Members It can be seen from Fig. 4.21(a) that at joint C, three members, AC;CE, and CF , are con-
nected, of which members AC and CF are collinear. Since joint C does not have any external load applied to it, the
non-collinear member CE is a zero-force member.

FCE ¼ 0 Ans.

Similar reasoning can be used for joint D to identify member DG as a zero-force member.

FDG ¼ 0 Ans.

The slopes of the non-zero-force inclined members are shown in Fig. 4.21(a). The free-body diagram of the entire
truss is shown in Fig. 4.21(b). The method of joints can be started either at joint E, or at joint G, since both of these
joints have only two unknowns each.

Joint E Beginning with joint E, we observe from Fig. 4.21(b) that in order for
P

Fx ¼ 0 to be satisfied, the force in
member EF must be compressive with a magnitude of 15 kN.

FEF ¼ 15 kN ðCÞ Ans.

Similarly, from
P

Fy ¼ 0, we obtain FAE .

FAE ¼ 10 kN ðCÞ Ans.

Joint G By considering the equilibrium of joint G in the horizontal direction ðPFx ¼ 0Þ, we observe that the force
in member FG is zero.

FFG ¼ 0 Ans.

Similarly, by applying
P

Fy ¼ 0, we obtain FBG.

FBG ¼ 10 kN ðCÞ Ans.

continued
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FIG. 4.21

Joint F Next, we consider joint F . Both of the unknown forces, FCF and FDF , acting at this joint have inclined di-
rections, so we draw the free-body diagram of this joint as shown in Fig. 4.21(c) and determine the unknowns by solving
the equilibrium equations simultaneously:

þ !P
Fx ¼ 0 15� 1ffiffiffi

2
p FCF þ 4

5
FDF ¼ 0

þ "PFy ¼ 0 �20� 1ffiffiffi
2
p FCF � 3

5
FDF ¼ 0

continued
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Solving these equations, we obtain

FDF ¼ �25 kN and FCF ¼ �7:07 kN

FDF ¼ 25 kN ðCÞ Ans.

FCF ¼ 7:07 kN ðCÞ Ans.

Joint C (See Fig. 4.21(b).) In order for joint C to be in equilibrium, the two nonzero collinear forces acting at it
must be equal and opposite.

FAC ¼ 7:07 kN ðCÞ Ans.

Joint D Using a similar reasoning at joint D, we obtain FBD.

FBD ¼ 25 kN ðCÞ Ans.

Joint A Having determined all the member forces, we apply the two equilibrium equations at joint A to calculate
the support reactions, Ax and Ay. By applying

P
Fx ¼ 0, we obtain Ax.

Ax ¼ 5 kN! Ans.

By applying
P

Fy ¼ 0, we find that Ay is equal to 10þ 5 ¼ 15 kN.

Ay ¼ 15 kN " Ans.

Joint B By applying
P

Fx ¼ 0, we obtain Bx.

Bx ¼ 20 kN Ans.

From
P

Fy ¼ 0, we find that By ¼ 15þ 10 ¼ 25 kN.

By ¼ 25 kN " Ans.

Equilibrium Check of Entire Truss Finally, to check our computations, we consider the equilibrium of the entire
truss. Applying the three equations of equilibrium to the free body of the entire truss shown in Fig. 4.21(b), we have

þ !P
Fx ¼ 5þ 15� 20 ¼ 0 Checks

þ "PFy ¼ 15� 10� 20� 10þ 25 ¼ 0 Checks

þ ’
P

MB ¼ 5ð2Þ � 15ð16Þ � 15ð6Þ þ 10ð16Þ þ 20ð8Þ ¼ 0 Checks

4.6 ANALYSIS OF PLANE TRUSSES BY THE METHOD OF SECTIONS

The method of joints, presented in the preceding section, proves to
be very e‰cient when forces in all the members of a truss are to be de-
termined. However, if the forces in only certain members of a truss are
desired, the method of joints may not prove to be e‰cient, because it
may involve calculation of forces in several other members of the truss
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before a joint is reached that can be analyzed for a desired member
force. The method of sections enables us to determine forces in the spe-
cific members of trusses directly, without first calculating many un-
necessary member forces, as may be required by the method of joints.

The method of sections involves cutting the truss into two portions by

passing an imaginary section through the members whose forces are de-

sired. The desired member forces are then determined by considering the

equilibrium of one of the two portions of the truss. Each portion of the
truss is treated as a rigid body in equilibrium, under the action of any
applied loads and reactions and the forces in the members that have
been cut by the section. The unknown member forces are determined by
applying the three equations of equilibrium to one of the two portions of
the truss. There are only three equilibrium equations available, so they
cannot be used to determine more than three unknown forces. Thus,
in general, sections should be chosen that do not pass through more than

three members with unknown forces. In some trusses, the arrangement of
members may be such that by using sections that pass through more
than three members with unknown forces, we can determine one or, at
most, two unknown forces. Such sections are, however, employed in the
analysis of only certain types of trusses (see Example 4.9).

Procedure for Analysis

The following step-by-step procedure can be used for determining the mem-
ber forces of statically determinate plane trusses by the method of sections.

1. Select a section that passes through as many members as possible
whose forces are desired, but not more than three members with
unknown forces. The section should cut the truss into two parts.

2. Although either of the two portions of the truss can be used for
computing the member forces, we should select the portion that will
require the least amount of computational e¤ort in determining the
unknown forces. To avoid the necessity for the calculation of reactions,
if one of the two portions of the truss does not have any reactions act-
ing on it, then select this portion for the analysis of member forces and
go to the next step. If both portions of the truss are attached to external
supports, then calculate reactions by applying the equations of equili-
brium and condition (if any) to the free body of the entire truss. Next,
select the portion of the truss for analysis of member forces that has the
least number of external loads and reactions applied to it.

3. Draw the free-body diagram of the portion of the truss selected,
showing all external loads and reactions applied to it and the forces in
the members that have been cut by the section. The unknown member
forces are usually assumed to be tensile and are, therefore, shown on
the free-body diagram by arrows pulling away from the joints.
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4. Determine the unknown forces by applying the three equations of
equilibrium. To avoid solving simultaneous equations, try to apply
the equilibrium equations in such a manner that each equation in-
volves only one unknown. This can sometimes be achieved by using
the alternative systems of equilibrium equations (

P
Fq ¼ 0,P

MA ¼ 0,
P

MB ¼ 0 or
P

MA ¼ 0,
P

MB ¼ 0,
P

MC ¼ 0) de-
scribed in Section 3.1 instead of the usual two-force summations
and a moment summation (

P
Fx ¼ 0,

P
Fy ¼ 0,

P
M ¼ 0) system

of equations.
5. Apply an alternative equilibrium equation, which was not used to

compute member forces, to check the calculations. This alternative
equation should preferably involve all three member forces de-
termined by the analysis. If the analysis has been performed cor-
rectly, then this alternative equilibrium equation must be satisfied.

Example 4.7

continued

Determine the forces in members CD;DG, and GH of the truss shown in Fig. 4.22(a) by the method of sections.
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FIG. 4.22
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Solution
Section aa As shown in Fig. 4.22(a), a section aa is passed through the three members of interest, CD;DG, and

GH, cutting the truss into two portions, ACGE and DHI . To avoid the calculation of support reactions, we will use the
right-hand portion, DHI , to calculate the member forces.

Member Forces The free-body diagram of the portion DHI of the truss is shown in Fig. 4.22(b). All three unknown
forces FCD;FDG, and FGH , are assumed to be tensile and are indicated by arrows pulling away from the corresponding
joints on the diagram. The slope of the inclined force, FDG, is also shown on the free-body diagram. The desired member
forces are calculated by applying the equilibrium equations as follows (see Fig. 4.22(b)).

þ ’
P

MD ¼ 0 �60ð4Þ þ FGHð3Þ ¼ 0

FGH ¼ 80 kN ðTÞ Ans.

þ "PFy ¼ 0 �120� 60þ 3

5
FDG ¼ 0

FDG ¼ 300 kN ðTÞ Ans.

þ !P
Fx ¼ 0 �80� 4

5
ð300Þ � FCD ¼ 0

FCD ¼ �320 kN

The negative answer for FCD indicates that our initial assumption about this force being tensile was incorrect, and FCD is
actually a compressive force.

FCD ¼ 320 kN ðCÞ Ans.

Checking Computations (See Fig. 4.22(b).)

þ ’
P

MI ¼ 120ð4Þ � ð�320Þ3� 4

5
ð300Þð3Þ � 3

5
ð300Þð4Þ ¼ 0 Checks

Example 4.8

Determine the forces in members CJ and IJ of the truss shown in Fig. 4.23(a) by the method of sections.

Solution
Section aa As shown in Fig. 4.23(a), a section aa is passed through members IJ;CJ, and CD, cutting the truss into

two portions, ACI and DGJ. The left-hand portion, ACI , will be used to analyze the member forces.

Reactions Before proceeding with the calculation of member forces, we need to determine reactions at support A.
By considering the equilibrium of the entire truss (Fig. 4.23(b)), we determine the reactions to be Ax ¼ 0,
Ay ¼ 100 kN ", and Gy ¼ 100 kN ".

continued
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Member Forces The free-body diagram of the portion ACI of the truss is shown in Fig. 4.23(c). The slopes of the
inclined forces, FIJ and FCJ , are obtained from the dimensions of the truss given in Fig. 4.23(a) and are shown on the
free-body diagram. The unknown member forces are determined by applying the equations of equilibrium, as follows.

Because FCJ and FCD pass through point C, by summing moments about C, we obtain an equation containing
only FIJ :

þ ’
P

MC ¼ 0 �100ð8Þ þ 40ð4Þ � 4ffiffiffiffiffi
17
p FIJð5Þ ¼ 0

FIJ ¼ �132 kN

FIG. 4.23

continued
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The negative answer for FIJ indicates that our initial assumption about this force being tensile was incorrect. Force FIJ

is actually a compressive force.

FIJ ¼ 132 kN ðCÞ Ans.

Next, we calculate FCJ by summing moments about point O, which is the point of intersection of the lines of action
of FIJ and FCD. Because the slope of member IJ is 1:4, the distance OC ¼ 4ðICÞ ¼ 4ð5Þ ¼ 20 m (see Fig. 4.23(c)).
Equilibrium of moments about O yields

þ ’
P

MO ¼ 0 100ð12Þ � 40ð16Þ � 40ð20Þ þ 3ffiffiffiffiffi
13
p FCJð20Þ ¼ 0

FCJ ¼ 14:42 kN ðTÞ Ans.

Checking Computations To check our computations, we apply an alternative equation of equilibrium, which in-
volves the two member forces just determined.

þ "PFy ¼ 100� 40� 40� 1ffiffiffiffiffi
17
p ð132Þ þ 3ffiffiffiffiffi

13
p ð14:42Þ ¼ 0 Checks

Example 4.9

FIG. 4.24

Determine the forces in members FJ;HJ, and HK of the K truss shown in Fig. 4.24(a) by the method of sections.
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Solution
From Fig. 4.24(a), we can observe that the horizontal section aa passing through the three members of interest, FJ;HJ,
and HK , also cuts an additional member FI , thereby releasing four unknowns, which cannot be determined by three
equations of equilibrium. Trusses such as the one being considered here with the members arranged in the form of the
letter K can be analyzed by a section curved around the middle joint, like section bb shown in Fig. 4.24(a). To avoid the
calculation of support reactions, we will use the upper portion IKNL of the truss above section bb for analysis. The free-
body diagram of this portion is shown in Fig. 4.24(b). It can be seen that although section bb has cut four members,
FI ; IJ; JK , and HK , forces in members FI and HK can be determined by summing moments about points K and I , re-
spectively, because the lines of action of three of the four unknowns pass through these points. We will, therefore, first
compute FHK by considering section bb and then use section aa to determine FFJ and FHJ .

Section bb Using Fig. 4.24(b), we write

þ ’
P

MI ¼ 0 �25ð8Þ � FHK ð12Þ ¼ 0

FHK ¼ �16:67 kN

FHK ¼ 16:67 kN ðCÞ Ans.

Section aa The free-body diagram of the portion IKNL of the truss above section aa is shown in Fig. 4.24(c). To
determine FHJ , we sum moments about F , which is the point of intersection of the lines of action of FFI and FFJ . Thus,

þ ’
P

MF ¼ 0 �25ð16Þ � 50ð8Þ þ 16:67ð12Þ � 3

5
FHJð8Þ � 4

5
FHJð6Þ ¼ 0

FHJ ¼ �62:5 kN

FHJ ¼ 62:5 kN ðCÞ Ans.

By summing forces in the horizontal direction, we obtain

þ !P
Fx ¼ 0 25þ 50� 3

5
FFJ � 3

5
ð62:5Þ ¼ 0

FFJ ¼ 62:5 kN ðTÞ Ans.

FIG. 4.24 (contd.)
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Checking Computations Finally, to check our calculations, we apply an alternative equilibrium equation, which
involves the three member forces determined by the analysis. Using Fig. 4.24(c), we write

þ ’
P

MI ¼ �25ð8Þ � 4

5
ð62:5Þð6Þ þ 4

5
ð62:5Þð6Þ þ 16:67ð12Þ ¼ 0 Checks

4.7 ANALYSIS OF COMPOUND TRUSSES

Although the method of joints and the method of sections described in
the preceding sections can be used individually for the analysis of com-
pound trusses, the analysis of such trusses can sometimes be expedited
by using a combination of the two methods. For some types of com-
pound trusses, the sequential analysis of joints breaks down when a joint
with two or fewer unknown forces cannot be found. In such a case, the
method of sections is then employed to calculate some of the member
forces, thereby yielding a joint with two or fewer unknowns, from which
the method of joints may be continued. This approach is illustrated by
the following examples.

Example 4.10

Determine the force in each member of the compound truss shown in Fig. 4.25(a).

Solution
Static Determinacy The truss has 11 members and 7 joints and is supported by 3 reactions. Since mþ r ¼ 2j and

the reactions and the members of the truss are properly arranged, it is statically determinate.
The slopes of the inclined members, as determined from the dimensions of the truss, are shown in Fig. 4.25(a).

Reactions The reactions at supports A and B, as computed by applying the three equilibrium equations to the free-
body diagram of the entire truss (Fig. 4.25(b)), are

Ax ¼ 25 kN Ay ¼ 5 kN " By ¼ 35 kN "
Section aa Since a joint with two or fewer unknown forces cannot be found to start the method of joints, we first

calculate FAB by using section aa, as shown in Fig. 4.25(a).
The free-body diagram of the portion of the truss on the left side of section aa is shown in Fig. 4.25(c). We de-

termine FAB by summing moments about point G, the point of intersection of the lines of action of FCG and FDG.

þ ’
P

MG ¼ 0 �25ð8Þ � 5ð4Þ þ 10ð4Þ þ FABð8Þ ¼ 0

FAB ¼ 22:5 kN ðTÞ Ans.
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With FAB now known, the method of joints can be started either at joint A, or at joint B, since both of these joints have
only two unknowns each. We begin with joint A.

Joint A The free-body diagram of joint A is shown in Fig. 4.25(d).

þ !P
Fx ¼ 0 �25þ 22:5þ 1ffiffiffi

5
p FAC þ 3

5
FAD ¼ 0

þ "PFy ¼ 0 5þ 2ffiffiffi
5
p FAC þ 4

5
FAD ¼ 0

Solving these equations simultaneously, we obtain

FAC ¼ �27:95 kN and FAD ¼ 25 kN

FAC ¼ 27:95 kN ðCÞ Ans.

FAD ¼ 25 kN ðTÞ Ans.

Joints C and D Focusing our attention on joints C and D in Fig. 4.25(b), and by satisfying the two equilibrium
equations by inspection at each of these joints, we determine

FCG ¼ 27:95 kN ðCÞ Ans.

FCD ¼ 10 kN ðCÞ Ans.

FDG ¼ 20:62 kN ðTÞ Ans.

Joint G Next, we consider the equilibrium of joint G (see Fig. 4.25(e)).

þ !P
Fx ¼ 0 5þ 1ffiffiffi

5
p ð27:95Þ � 1ffiffiffiffiffi

17
p ð20:62Þ þ 1ffiffiffiffiffi

17
p FEG þ 1ffiffiffi

5
p FFG ¼ 0

þ "PFy ¼ 0 �40þ 2ffiffiffi
5
p ð27:95Þ � 4ffiffiffiffiffi

17
p ð20:62Þ � 4ffiffiffiffiffi

17
p FEG � 2ffiffiffi

5
p FFG ¼ 0

Solving these equations, we obtain

FEG ¼ �20:62 kN and FFG ¼ �16:77 kN

FEG ¼ 20:62 kN ðCÞ Ans.

FFG ¼ 16:77 kN ðCÞ Ans.

Joints E and F Finally, by considering the equilibrium, by inspection, of joints E and F (see Fig. 4.25(b)), we
obtain

FBE ¼ 25 kN ðCÞ Ans.

FEF ¼ 10 kN ðTÞ Ans.

FBF ¼ 16:77 kN ðCÞ Ans.
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FIG. 4.26

Example 4.11

Determine the force in each member of the Fink truss shown in Fig. 4.26(a).

continued

SECTION 4.7 Analysis of Compound Trusses 131

https://engineersreferencebookspdf.com



Solution
The Fink truss shown in Fig. 4.26(a) is a compound truss formed by connecting two simple trusses, ACL and DFL, by a
common joint L and a member CD.

Static Determinacy The truss contains 27 members and 15 joints and is supported by 3 reactions. Because
mþ r ¼ 2j and the reactions and the members of the truss are properly arranged, it is statically determinate.

Reactions The reactions at supports A and F of the truss, as computed by applying the three equations of equili-
brium to the free-body diagram of the entire truss (Fig. 4.26(b)), are

Ax ¼ 0 Ay ¼ 175 kN " Fy ¼ 175 kN "
Joint A The method of joints can now be started at joint A, which has only two unknown forces, FAB and FAI ,

acting on it. By inspection of the forces acting at this joint (see Fig. 4.26(b)), we obtain the following:

FAI ¼ 391:31 kN ðCÞ Ans.

FAB ¼ 350 kN ðTÞ Ans.

Joint I The free-body diagram of joint I is shown in Fig. 4.26(c). Member BI is perpendicular to members AI and
IJ, which are collinear, so the computation of member forces can be simplified by using an x axis in the direction of the
collinear members, as shown in Fig. 4.26(c).

þ -P
Fy ¼ 0 � 2ffiffiffi

5
p ð50Þ � FBI ¼ 0

FBI ¼ �44:72 kN

FBI ¼ 44:72 kN ðCÞ Ans.

þ %P
Fx ¼ 0 391:31� 1ffiffiffi

5
p ð50Þ þ FIJ ¼ 0

FIJ ¼ �368:95 kN

FIJ ¼ 368:95 kN ðCÞ Ans.

Joint B Considering the equilibrium of joint B, we obtain (see Fig. 4.26(b)) the following:

þ "PFy ¼ 0 � 2ffiffiffi
5
p ð44:72Þ þ 4

5
FBJ ¼ 0

FBJ ¼ 50 kN ðTÞ Ans.

þ !P
Fx ¼ 0 �350þ 1ffiffiffi

5
p ð44:72Þ þ 3

5
ð50Þ þ FBC ¼ 0

FBC ¼ 300 kN ðTÞ Ans.

Section aa Since at each of the next two joints, C and J, there are three unknowns (FCD;FCG, and FCJ at joint C
and FCJ ;FGJ , and FJK at joint J), we calculate FCD by using section aa, as shown in Fig. 4.26(a). (If we moved to
joint F and started computing member forces from that end of the truss, we would encounter similar di‰culties at
joints D and N.)

The free-body diagram of the portion of the truss on the left side of section aa is shown in Fig. 4.26(d). We de-
termine FCD by summing moments about point L, the point of intersection of the lines of action of FGL and FKL.
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þ ’
P

ML ¼ 0 �175ð8Þ þ 50ð6Þ þ 50ð4Þ þ 50ð2Þ þ FCDð4Þ ¼ 0

FCD ¼ 200 kN ðTÞ Ans.

Joint C With FCD now known, there are only two unknowns, FCG and FCJ , at joint C. These forces can be de-
termined by applying the two equations of equilibrium to the free body of joint C, as shown in Fig. 4.26(e).

þ "PFy ¼ 0
2ffiffiffi
5
p FCJ þ 4

5
FCG ¼ 0

þ !P
Fx ¼ 0 �300þ 200� 1ffiffiffi

5
p FCJ þ 3

5
FCG ¼ 0

Solving these equations simultaneously, we obtain

FCJ ¼ �89:5 kN and FCG ¼ 100 kN

FCJ ¼ 89:5 kN ðCÞ Ans.

FCG ¼ 100 kN ðTÞ Ans.

Joints J;K, and G Similarly, by successively considering the equilibrium of joints J;K , and G, in that order, we
determine the following:

FJK ¼ 346:6 kN ðCÞ Ans.

FGJ ¼ 50 kN ðTÞ Ans.

FKL ¼ 324:21 kN ðCÞ Ans.

FGK ¼ 44:72 kN ðCÞ Ans.

FGL ¼ 150 kN ðTÞ Ans.

Symmetry Since the geometry of the truss and the applied loading are symmetrical about the center line of the truss
(shown in Fig. 4.26(b)), its member forces will also be symmetrical with respect to the line of symmetry. It is, therefore,
su‰cient to determine member forces in only one-half of the truss. The member forces determined here for the left half
of the truss are shown in Fig. 4.26(b). The forces in the right half can be obtained from the consideration of symmetry;
for example, the force in member MN is equal to that in member JK , and so forth. The reader is urged to verify this by
computing a few member forces in the right half of the truss. Ans.

4.8 COMPLEX TRUSSES

Trusses that can be classified neither as simple trusses nor as compound
trusses are referred to as complex trusses. Two examples of complex
trusses are shown in Fig. 4.27. From an analytical viewpoint, the main
di¤erence between simple or compound trusses and complex trusses
stems from the fact that the methods of joints and sections, as described
previously, cannot be used for the analysis of complex trusses. We can
see from Fig. 4.27 that although the two complex trusses shown are
statically determinate, after the computation of reactions the method of
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joints cannot be applied because we cannot find a joint at which there are
two or fewer unknown member forces. Likewise, the method of sections
cannot be employed, because every section would pass through more than
three members with unknown forces. The member forces in such trusses can
be determined by writing two equilibrium equations in terms of unknown
member forces for each joint of the truss and then solving the system of
2j equations simultaneously. Today, complex trusses are usually analyzed
on computers using the matrix formulation presented in Chapter 18.

4.9 SPACE TRUSSES

Space trusses, because of their shape, arrangement of members, or ap-
plied loading, cannot be subdivided into plane trusses for the purposes
of analysis and must, therefore, be analyzed as three-dimensional struc-
tures subjected to three-dimensional force systems. As stated in Section
4.1, to simplify the analysis of space trusses, it is assumed that the truss
members are connected at their ends by frictionless ball-and-socket
joints, all external loads and reactions are applied only at the joints, and
the centroidal axis of each member coincides with the line connecting the
centers of the adjacent joints. Because of these simplifying assumptions,
the members of space trusses can be treated as axial force members.

The simplest internally stable (or rigid) space truss can be formed by
connecting six members at their ends by four ball-and-socket joints to
form a tetrahedron, as shown in Fig. 4.28(a). This tetrahedron truss may
be considered as the basic space truss element. It should be realized that
this basic space truss is internally stable in the sense that it is a three-
dimensional rigid body that will not change its shape under a general
three-dimensional loading applied at its joints. The basic truss ABCD of
Fig. 4.28(a) can be enlarged by attaching three new members, BE;CE,
and DE, to three of the existing joints B;C, and D, and by connecting
them to form a new joint E, as depicted in Fig. 4.28(b). As long as the
new joint E does not lie in the plane containing the existing joints B;C,

FIG. 4.27 Complex Trusses
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and D, the new enlarged truss will be internally stable. The truss can be
further enlarged by repeating the same procedure (as shown in Fig.
4.28(c)) as many times as desired. Trusses constructed by this procedure
are termed simple space trusses.

A simple space truss is formed by enlarging the basic tetrahedron
element containing six members and four joints by adding three addi-
tional members for each additional joint, so the total number of mem-
bers m in a simple space truss is given by

m ¼ 6þ 3ð j � 4Þ ¼ 3j � 6 (4.5)

in which j ¼ total number of joints (including those attached to the
supports).

Reactions

The types of supports commonly used for space trusses are depicted in
Fig. 4.29. The number and directions of the reaction forces that a sup-
port may exert on the truss depend on the number and directions of the
translations it prevents.

As suggested in Section 3.1, in order for an internally stable
space structure to be in equilibrium under a general system of three-
dimensional forces, it must be supported by at least six reactions that
satisfy the six equations of equilibrium (Eq. (3.1)):P

Fx ¼ 0
P

Fy ¼ 0
P

Fz ¼ 0P
Mx ¼ 0

P
My ¼ 0

P
Mz ¼ 0

Because there are only six equilibrium equations, they cannot be used to
determine more than six reactions. Thus, an internally stable space
structure that is statically determinate externally must be supported by
exactly six reactions. If a space structure is supported by more than

FIG. 4.28 Simple Space Truss
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six reactions, then all the reactions cannot be determined from the six
equilibrium equations, and such a structure is termed statically inde-
terminate externally. Conversely, if a space structure is supported by
fewer than six reactions, the reactions are not su‰cient to prevent all
possible movements of the structure in three-dimensional space, and such
a structure is referred to as statically unstable externally. Thus, if

r < 6 the space structure is statically unstable externally

r ¼ 6 the space structure is statically determinate externally (4.6)

r > 6 the space structure is statically indeterminate externally

where r ¼ number of reactions.
As in the case of plane structures discussed in the previous chapter,

the conditions for static determinacy and indeterminacy, as given in
Eq. (4.6), are necessary but not su‰cient. In order for a space structure
to be geometrically stable externally, the reactions must be properly

Category Type of support Symbolic representation Reactions Number of unknowns

Ball

1
The reaction force Ry acts
perpendicular to the supporting
surface and may be directed either
into or away from the structure.
The magnitude of Ry is the
unknown.

I

Link

1
The reaction force R acts in the
direction of the link and may be
directed either into or away from
the structure. The magnitude of R is
the unknown.

II Roller

2
Two reaction force components Rx

and Ry act in a plane perpendicular
to the direction in which the roller
is free to roll. The magnitudes of Rx

and Ry are the two unknowns.

III Ball and socket

3
The reaction force R may act in any
direction. It is usually represented
by its rectangular components, Rx,
Ry, and Rz. The magnitudes of Rx,
Ry, and Rz are the three unknowns.

FIG. 4.29 Types of Supports for Space Trusses
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arranged so that they can prevent translations in the directions of, as
well as rotations about, each of the three coordinate axes. For example,
if the lines of action of all the reactions of a space structure are either
parallel or intersect a common axis, the structure would be geometri-
cally unstable.

Static Determinacy, Indeterminacy, and Instability

If a space truss contains m members and is supported by r external re-
actions, then for its analysis we need to determine a total of mþ r un-
known forces. Since the truss is in equilibrium, each of its joints must
also be in equilibrium. At each joint, the internal and external forces
form a three-dimensional concurrent force system that must satisfy the
three equations of equilibrium,

P
Fx ¼ 0,

P
Fy ¼ 0, and

P
Fz ¼ 0.

Therefore, if the truss contains j joints, the total number of equilibrium
equations available is 3j. If mþ r ¼ 3j, all the unknowns can be de-
termined by solving the 3j equations of equilibrium, and the truss is
statically determinate.

Space trusses containing more unknowns than the available equili-
brium equations ðmþ r > 3jÞ are statically indeterminate, and those
with fewer unknowns than the equilibrium equations ðmþ r < 3jÞ are
statically unstable. Thus, the conditions of static instability, determinacy,
and indeterminacy of space trusses can be summarized as follows:

mþ r < 3j statically unstable space truss

mþ r ¼ 3j statically determinate space truss (4.7)

mþ r > 3j statically indeterminate space truss

In order for the criteria for static determinacy and indeterminacy, as
given by Eq. (4.7), to be valid, the truss must be stable and act as a sin-
gle rigid body, under a general three-dimensional system of loads, when
attached to the supports.

Analysis of Member Forces

The two methods for analysis of plane trusses discussed in Sections 4.5
and 4.6 can be extended to the analysis of space trusses. The method of

joints essentially remains the same, except that three equilibrium equa-
tions (

P
Fx ¼ 0,

P
Fy ¼ 0, and

P
Fz ¼ 0) must now be satisfied at each

joint of the space truss. Since the three equilibrium equations cannot
be used to determine more than three unknown forces, the analysis is
started at a joint that has a maximum of three unknown forces (which
must not be coplanar) acting on it. The three unknowns are determined
by applying the three equations of equilibrium. We then proceed from
joint to joint, computing three or fewer unknown forces at each sub-
sequent joint, until all the desired forces have been determined.
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Since it is di‰cult to visualize the orientations of inclined members
in three-dimensional space, it is usually convenient to express the rec-
tangular components of forces in such members in terms of the pro-
jections of member lengths in the x; y, and z directions. Consider a
member AB of a space truss, as shown in Fig. 4.30. The projections of
its length LAB in the x; y, and z directions are xAB; yAB, and zAB, re-
spectively, as shown, with

LAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxABÞ2 þ ðyABÞ2 þ ðzABÞ2

q
Because the force FAB acts in the direction of the member, its compo-
nents FxAB;FyAB, and FzAB in the x; y, and z directions, respectively, can
be expressed as

FxAB ¼ FAB
xAB

LAB

� �

FyAB ¼ FAB
yAB

LAB

� �

FzAB ¼ FAB
zAB

LAB

� �
and the resultant force FAB is given by

FAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFxABÞ2 þ ðFyABÞ2 þ ðFzABÞ2

q
The analysis of space trusses can be expedited by identifying the

zero-force members by inspection. Two common types of member ar-
rangements that result in zero-force members are the following:

FIG. 4.30
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1. If all but one of the members connected to a joint lie in a single
plane and no external loads or reactions are applied to the joint,
then the force in the member that is not coplanar is zero.

2. If all but two of the members connected to a joint have zero force
and no external loads or reactions are applied to the joint, then un-
less the two remaining members are collinear, the force in each of
them is also zero.

The first type of arrangement is shown in Fig. 4.31(a). It consists of
four members AB;AC;AD, and AE connected to a joint A. Of these,
AB;AC, and AD lie in the xz plane, whereas member AE does not.
Note that no external loads or reactions are applied to joint A. It should
be obvious that in order to satisfy the equilibrium equation

P
Fy ¼ 0,

the y component of FAE must be zero, and therefore FAE ¼ 0.
The second type of arrangement is shown in Fig. 4.31(b). It consists

of four members AB;AC;AD, and AE connected to a joint A, of which
AD and AE are zero-force members, as shown. Note that no external
loads or reactions are applied to the joint. By choosing the orientation of
the x axis in the direction of member AB, we can see that the equili-
brium equations

P
Fy ¼ 0 and

P
Fz ¼ 0 can be satisfied only if

FAC ¼ 0. Because the x component of FAC is zero, the equationP
Fx ¼ 0 is satisfied only if FAB is also zero.
As in the case of plane trusses, the method of sections can be em-

ployed for determining forces in specific members of space trusses. An
imaginary section is passed through the truss, cutting the members
whose forces are desired. The desired member forces are then calculated
by applying the six equations of equilibrium (Eq. (3.1)) to one of the
two portions of the truss. No more than six unknown forces can be

FIG. 4.31
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determined from the six equilibrium equations, so a section is generally
chosen that does not pass through more than six members with un-
known forces.

Because of the considerable amount of computational e¤ort in-
volved, the analysis of space trusses is performed today on computers.
However, it is important to analyze at least a few relatively small space
trusses manually to gain an understanding of the basic concepts in-
volved in the analysis of such structures.

Example 4.12

Determine the reactions at the supports and the force in each member of the space truss shown in Fig. 4.32(a).

Solution
Static Determinacy The truss contains 9 members and 5 joints and is supported by 6 reactions. Because mþ r ¼ 3j

and the reactions and the members of the truss are properly arranged, it is statically determinate.

Member Projections The projections of the truss members in the x; y, and z directions, as obtained from
Fig. 4.32(a), as well as their lengths computed from these projections, are tabulated in Table 4.1.

Zero-Force Members It can be seen from Fig. 4.32(a) that at joint D, three members, AD;CD, and DE, are con-
nected. Of these members, AD and CD lie in the same ðxzÞ plane, whereas DE does not. Since no external loads or re-
actions are applied at the joint, member DE is a zero-force member.

FDE ¼ 0 Ans.

Having identified DE as a zero-force member, we can see that since the two remaining members AD and CD are
not collinear, they must also be zero-force members.

FAD ¼ 0 Ans.

FCD ¼ 0 Ans.

Reactions See Fig. 4.32(a).

þ .P
Fz ¼ 0

Bz þ 60 ¼ 0

Bz ¼ �60 kN

Bz ¼ 60 kN% Ans.

þ ’
P

My ¼ 0

Bxð2Þ þ 60ð4Þ � 60ð2Þ ¼ 0

Bx ¼ �60 kN

Bx ¼ 60 kN Ans.
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FIG. 4.32
continued
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þ !P
Fx ¼ 0

�60þ Cx ¼ 0

Cx ¼ 60 kN! Ans.

þ ’
P

Mx ¼ 0

�Ayð2Þ � Byð2Þ þ 100ð1Þ þ 60ð4Þ ¼ 0

Ay þ By ¼ 170
(1)

þ "PFy ¼ 0

Ay þ By þ Cy � 100 ¼ 0 (2)

By substituting Eq. (1) into Eq. (2), we obtain

Cy ¼ �70 kN

Cy ¼ 70 kN #
Ans.

þ ’
P

Mz ¼ 0

Byð4Þ � 70ð4Þ � 100ð2Þ ¼ 0

By ¼ 120 kN " Ans.

By substituting By ¼ 120 kN into Eq. (1), we obtain Ay.

Ay ¼ 50 kN " Ans.

Joint A See Fig. 4.32(b).

þ "PFy ¼ 0 50þ yAE

LAE

� �
FAE ¼ 0

TABLE 4.1

Projection

Member x (m) y (m) z (m) Length (m)

AB 4 0 0 4.0

BC 0 0 2 2.0

CD 4 0 0 4.0

AD 0 0 2 2.0

AC 4 0 2 4.47

AE 2 4 1 4.58

BE 2 4 1 4.58

CE 2 4 1 4.58

DE 2 4 1 4.58

continued
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in which the second term on the left-hand side represents the y component of FAE . Substituting the values of y and L for
member AE from Table 4.1, we write

50þ 4

4:58

� �
FAE ¼ 0

FAE ¼ �57:25 kN

FAE ¼ 57:25 kN ðCÞ Ans.

Similarly, we apply the remaining equilibrium equations:

þ .P
Fz ¼ 0 � 2

4:47

� �
FAC þ 1

4:58

� �
ð57:25Þ ¼ 0

FAC ¼ 28:0 kN ðTÞ Ans.

þ !P
Fx ¼ 0 FAB þ 4

4:47

� �
ð28Þ � 2

4:58

� �
ð57:25Þ ¼ 0

FAB ¼ 0 Ans.

Joint B (See Fig. 4.32(c).)

þ !P
Fx ¼ 0 � 2

4:58

� �
FBE � 60 ¼ 0

FBE ¼ �137:4 kN

FBE ¼ 137:4 kN ðCÞ Ans.

þ .P
Fz ¼ 0 �60� FBC þ 1

4:58

� �
ð137:4Þ ¼ 0

FBC ¼ �30 kN

FBC ¼ 30 kN ðCÞ Ans.

As all the unknown forces at joint B have been determined, we will use the remaining equilibrium equation to check our
computations:

þ "PFy ¼ 120� 4

4:58

� �
ð137:4Þ ¼ 0 Checks

Joint C See Fig. 4.32(d).

þ "PFy ¼ 0 �70þ 4

4:58

� �
FCE ¼ 0

FCE ¼ 80:15 kN ðTÞ Ans.

continued
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Checking Computations At joint C (Fig. 4.32(d)),

þ !P
Fx ¼ 60� 2

4:58

� �
ð80:15Þ � 4

4:47

� �
ð28Þ ¼ 0 Checks

þ .P
Fz ¼ �30þ 2

4:47

� �
ð28Þ þ 1

4:58

� �
ð80:15Þ ¼ 0 Checks

At joint E (Fig. 4.32(e)),

þ !P
Fx ¼ 2

4:58
ð57:32� 137:4þ 80:15Þ ¼ 0 Checks

þ "PFy ¼ �100þ 4

4:58

� �
ð57:32þ 137:4� 80:15Þ ¼ 0 Checks

þ .P
Fz ¼ 60� 1

4:58

� �
ð57:32þ 137:4þ 80:15Þ ¼ 0 Checks

SUMMARY

A truss is defined as a structure that is composed of straight mem-
bers connected at their ends by flexible connections to form a rigid
configuration. The analysis of trusses is based on three simplifying
assumptions:

1. All members are connected only at their ends by frictionless hinges
in plane trusses and by frictionless ball-and-socket joints in space
trusses.

2. All loads and reactions are applied only at the joints.
3. The centroidal axis of each member coincides with the line connect-

ing the centers of the adjacent joints. The e¤ect of these assump-
tions is that all the members of the truss can be treated as axial
force members.

A truss is considered to be internally stable if the number and
arrangement of its members is such that it does not change its shape and
remains a rigid body when detached from its supports. The common types
of equations of condition for plane trusses are described in Section 4.3.

A truss is considered to be statically determinate if all of its member
forces and reactions can be determined by using the equations of equili-
brium. If a plane truss contains m members, j joints, and is supported
by r reactions, then if

mþ r < 2j the truss is statically unstable

mþ r ¼ 2j the truss is statically determinate (4.4)

mþ r > 2j the truss is statically indeterminate
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The degree of static indeterminacy is given by

i ¼ ðmþ rÞ � 2j (4.3)

The foregoing conditions for static determinacy and indeterminacy are
necessary but not su‰cient conditions. In order for these criteria to be
valid, the truss must be stable and act as a single rigid body under a
general system of coplanar loads when it is attached to the supports.

To analyze statically determinate plane trusses, we can use the
method of joints, which essentially consists of selecting a joint with no
more than two unknown forces acting on it and applying the two equi-
librium equations to determine the unknown forces. We repeat the pro-
cedure until we obtain all desired forces. This method is most e‰cient
when forces in all or most of the members of a truss are desired.

The method of sections usually proves to be more convenient when
forces in only a few specific members of the truss are desired. This
method essentially involves cutting the truss into two portions by pass-
ing an imaginary section through the members whose forces are desired
and determining the desired forces by applying the three equations of
equilibrium to the free body of one of the two portions of the truss.

The analysis of compound trusses can usually be expedited by using
a combination of the method of joints and the method of sections.
A procedure for the determination of reactions and member forces in
space trusses is also presented.

PROBLEMS

Section 4.4

4.1 through 4.5 Classify each of the plane trusses shown as
unstable, statically determinate, or statically indeterminate.

If the truss is statically indeterminate, then determine the
degree of static indeterminacy.

FIG. P4.1 FIG. P4.2
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FIG. P4.3

FIG. P4.4

FIG. P4.5
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Section 4.5

4.6 through 4.27 Determine the force in each member of
the truss shown by the method of joints.

2.5 m

20 kN 40 kN 40 kN

A B

D

E

C

3 m 3 m

FIG. P4.6

60 kN

120 kN

4 m 4 m

1 m

2 m

A CB

D

FIG. P4.7

4 m

C
B

80 kN

A

D E

3 m 3 m 3 m 3 m

80 kN

60 kN

FIG. P4.8

3 m

100 kN100 kN

35 kN

7 m

D E

C

A B

4 m 4 m3 m3 m

FIG. P4.9

40 kN 50 kN 40 kN

A E

4 at 3 m = 12 m

3 m

B C D

F G H

FIG. P4.10

40 kN 40 kN

A E

4 at 3 m = 12 m

3 m

B C D

F G H

FIG. P4.11
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4 m

4 m

4 m

H

F

D

B

G

E

C

A

60 kN

120 kN

120 kN

3 m

FIG. P4.12

2 m 2 m 2 m 2 m 2 m

3 m

A

E

B C D

30 kN 30 kN 60 kN

30 kN
HGF

FIG. P4.13

3 m

G

40 kN
F

40 kN
E

40 kN
D

60 kN
B C

30 kN

A

H I J K L

6 at 4 m = 24 m

60 kN

FIG. P4.14
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120 kN
C

120 kN
D

200 kN
E

200 kN
F G

200 kN
BA

H I J K L

6 at 5 m = 30 m

5 m

FIG. P4.15

4 m

4 m

10 kN

20 kN
E

C

20 kN

F

D

A

3 m 3 m

B

FIG. P4.16

40 kN 40 kN 40 kN

A B C
D

G

F
E

3 at 5 m = 15 m

5 m

FIG. P4.17

3 m40 kN

3 m

E

D

B
A

C

10 kN

1.25
m

1.25
m

3.5 m

FIG. P4.18

FIG. P4.19
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40 kN

20 kN

2 m 2 m 2 m 2 m
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A C

ED

2 m

2 m

F

FIG. P4.20

50 kN

12 m

120 kN60 kN

C D

60 kN

E

A B

3.5 m3.5 m 5 m 5 m

FIG. P4.21

FIG. P4.22

3 m

3 m

B

D E

C

A

10 kN 20 kN

150 kN 150 kN

1.25
m

1.25
m

FIG. P4.23
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120 kN

2 m

2 m

2 m

2 m
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C D
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FIG. P4.24
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4 m

4 m

4 m

4 m

A

C

B

D

E
F

G
H

JI

12 kN12 kN 12 kN 12 kN 12 kN 12 kN

20 kN
K L M N O P

40 kN

40 kN

40 kN

5 at 3 m = 15 m

FIG. P4.25

FIG. P4.26

3 m

4 at 4 m = 16 m

50 kN

A E

C D

120 kN 120 kN

B

F G

FIG. P4.27

4.28 Determine the force in each member of the truss
supporting a floor deck as shown in Fig. P4.28. The deck
is simply supported on floor beams which, in turn, are con-
nected to the joints of the truss. Thus, the uniformly dis-
tributed loading on the deck is transmitted by the floor
beams as concentrated loads to the top joints of the truss.

FIG. P4.28

4.29 and 4.30 Determine the force in each member of the
roof truss shown. The roof is simply supported on purlins
which, in turn, are attached to the joints of the top chord
of the truss. Thus, the uniformly distributed loading on the
roof is transmitted by the purlins as concentrated loads to
the truss joints.

Problems 151

https://engineersreferencebookspdf.com



FIG. P4.29

FIG. P4.30

Section 4.6

4.31 Determine the forces in the top chord member GH and
the bottom chord member BC of the truss, if h ¼ 3 ft. How
would the forces in these members change if the height h of
the truss was doubled to 6 ft?

FIG. P4.31

4.32 through 4.45 Determine the forces in the members
identified by ‘‘3’’ of the truss shown by the method of
sections.

5 m

G

40 kN
F

40 kN
E

40 kN
D

40 kN
B C

40 kN

A

H I J K L

6 at 5 m = 30 m

FIG. P4.32
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D

30 kN
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60 kN

A

E F G

5 m 5 m 5 m 5 m 5 m 5 m

×

×

×

60 kN

30 kN

FIG. P4.33
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4 at 4 m = 16 m

F G H I J

A B C D E
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60 kN
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×

FIG. P4.34
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FIG. P4.35

FIG. P4.36
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×

FIG. P4.37
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H

I
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FIG. P4.38
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FIG. P4.39
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FIG. P4.40
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FIG. P4.41
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FIG. P4.42
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B
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100 kN

F

FIG. P4.44

FIG. P4.45
Section 4.7

4.46 through 4.50 Determine the force in each member of
the truss shown.

4 m

4 m

4 at 3 m = 12 m

80 kN 60 kN

20 kN

20 kN

A E

B C D

F G H I

J K

FIG. P4.46
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FIG. P4.47
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FIG. P4.48

FIG. P4.49
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G H
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ED

F
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FIG. P4.50

Section 4.9

4.51 through 4.55 Determine the force in each member of
the space truss shown.

FIG. P4.51

FIG. P4.52
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FIG. P4.53
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FIG. P4.54
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FIG. P4.55
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5
Beams and Frames:
Shear and Bending Moment
5.1 Axial Force, Shear, and Bending Moment
5.2 Shear and Bending Moment Diagrams
5.3 Qualitative Deflected Shapes
5.4 Relationships between Loads, Shears, and Bending Moments
5.5 Static Determinacy, Indeterminacy, and Instability of Plane Frames
5.6 Analysis of Plane Frames

Summary
Problems

160

Unlike trusses, considered in the preceding chapter, whose members are
always subjected to only axial forces, the members of rigid frames and
beams may be subjected to shear forces and bending moments as well
as axial forces under the action of external loads. The determination of
these internal forces and moments (stress resultants) is necessary for the
design of such structures. The objective of this chapter is to present the
analysis of internal forces and moments that may develop in beams, and
the members of plane frames, under the action of coplanar systems of
external forces and couples.

We begin by defining the three types of stress resultants—axial
forces, shear forces, and bending moments—that may act on the cross
sections of beams and the members of plane frames. We next discuss
construction of the shear and bending moment diagrams by the method
of sections. We also consider qualitative deflected shapes of beams and
the relationships between loads, shears, and bending moments. In addi-
tion, we develop the procedures for constructing the shear and bending
moment diagrams using these relationships. Finally we present the clas-
sification of plane frames as statically determinate, indeterminate, and
unstable; and the analysis of statically determinate plane frames.

Steel Girders
Lester Lefkowitz/Stone/Getty Images

https://engineersreferencebookspdf.com



5.1 AXIAL FORCE, SHEAR, AND BENDING MOMENT

Internal forces were defined in Section 3.2 as the forces and couples ex-
erted on a portion of the structure by the rest of the structure. Consider,
for example, the simply supported beam shown in Fig. 5.1(a). The free-
body diagram of the entire beam is depicted in Fig. 5.1(b), which shows
the external loads, as well as the reactions Ax and Ay, and By at sup-
ports A and B, respectively. As discussed in Chapter 3, the support re-
actions can be computed by applying the equations of equilibrium to the
free body of the entire beam. In order to determine the internal forces
acting on the cross section of the beam at a point C, we pass an imagi-
nary section cc through C, thereby cutting the beam into two parts, AC
and CB, as shown in Figs. 5.1(c) and 5.1(d). The free-body diagram of
the portion AC (Fig. 5.1(c)) shows, in addition to the external loads and
support reactions acting on the portion AC, the internal forces, Q;S,
and M exerted upon portion AC at C by the removed portion of the
structure. Note that without these internal forces, portion AC is not in
equilibrium. Also, under a general coplanar system of external loads
and reactions, three internal forces (two perpendicular force components
and a couple) are necessary at a section to maintain a portion of the
beam in equilibrium. The two internal force components are usually
oriented in the direction of, and perpendicular to, the centroidal axis
of the beam at the section under consideration, as shown in Fig. 5.1(c).
The internal force Q in the direction of the centroidal axis of the beam is

FIG. 5.1
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called the axial force, and the internal force S in the direction perpen-
dicular to the centroidal axis is referred to as the shear force (or, simply,
shear). The moment M of the internal couple is termed the bending mo-

ment. Recall from mechanics of materials that these internal forces, Q;S,
and M, represent the resultants of the stress distribution acting on the
cross section of the beam.

The free-body diagram of the portion CB of the beam is shown in
Fig. 5.1(d). Note that this diagram shows the same internal forces, Q;S,
and M, but in opposite directions, being exerted upon portion CB at C
by the removed portion AC in accordance with Newton’s third law. The
magnitudes and the correct senses of the internal forces can be de-
termined by simply applying the three equations of equilibrium,P

Fx ¼ 0,
P

Fy ¼ 0, and
P

M ¼ 0, to one of the two portions (AC or
CB) of the beam.

It can be seen from Figs. 5.1(c) and 5.1(d), that in order for the
equilibrium equation

P
Fx ¼ 0 to be satisfied for a portion of the beam,

the internal axial force Q must be equal in magnitude (but opposite
in direction) to the algebraic sum (resultant) of the components in the
direction parallel to the axis of the beam of all the external forces act-
ing on that portion. Since the entire beam is in equilibrium—that is,P

Fx ¼ 0 for the entire beam—the application of
P

Fx ¼ 0 individually
to its two portions will yield the same magnitude of the axial force Q.
Thus, we can state the following:

The internal axial force Q at any section of a beam is equal in magnitude

but opposite in direction to the algebraic sum (resultant) of the components

in the direction parallel to the axis of the beam of all the external loads and

support reactions acting on either side of the section under consideration.

Using similar reasoning, we can define the shear and bending mo-
ment as follows:

The shear S at any section of a beam is equal in magnitude but opposite in

direction to the algebraic sum (resultant) of the components in the direction

perpendicular to the axis of the beam of all the external loads and support

reactions acting on either side of the section under consideration.

The bending moment M at any section of a beam is equal in magnitude

but opposite in direction to the algebraic sum of the moments about (the

centroid of the cross section of the beam at) the section under consideration

of all the external loads and support reactions acting on either side of the

section.

Sign Convention

The sign convention commonly used for the axial forces, shears, and
bending moments is depicted in Fig. 5.2. An important feature of this
sign convention, which is often referred to as the beam convention, is
that it yields the same (positive or negative) results regardless of which
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side of the section is considered for computing the internal forces. The
positive directions of the internal forces acting on the portions of the
member on each side of the section are shown in Fig. 5.2(a).

From a computational viewpoint, however, it is usually more
convenient to express this sign convention in terms of the external loads
and reactions acting on the beam or frame member, as shown in
Fig. 5.2(b) to 5.2(d). As indicated in Fig. 5.2(b), the internal axial force

Q is considered to be positive when the external forces acting on the

member produce tension or have the tendency to pull the member apart at

the section.
As shown in Fig. 5.2(c), the shear S is considered to be positive when

the external forces tend to push the portion of the member on the left of

the section upward with respect to the portion on the right of the section.
It can be seen from this figure that an external force that acts upward on
the left portion or downward on the right portion causes positive shear.
Alternatively, this sign convention for shear can be remembered by re-
alizing that any force that produces clockwise moment about a section
causes positive shear at that section and vice versa.

The positive bending moment is shown in Fig. 5.2(d). The bending

moment M is considered to be positive when the external forces and cou-

ples tend to bend the beam concave upward, causing compression in the

upper fibers and tension in the lower fibers of the beam at the section.
When the left portion is used for computing the bending moment, the
forces acting on the portion that produce clockwise moments about the
section, as well as clockwise couples, cause positive bending moment at
the section. When the right portion is considered, however, the forces

FIG. 5.2 Beam Convention
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producing counterclockwise moments about the section, and counter-
clockwise couples, cause positive bending moment and vice versa.

In our discussion thus far, the beam or frame member has been as-
sumed to be horizontal, but the foregoing sign convention can be used
for inclined and vertical members by employing an xy coordinate sys-
tem, as shown in Fig. 5.2(a). The x axis of the coordinate system is ori-
ented in the direction of the centroidal axis of the member, and the
positive direction of the y axis is chosen so that the coordinate system is
right-handed, with the z axis always pointing out of the plane of the
paper. The sign convention can now be used for an inclined or a vertical
member by considering the positive y direction as the upward direction
and the portion of the member near the origin O as the portion to the
left of the section.

Procedure for Analysis

The procedure for determining internal forces at a specified location on
a beam can be summarized as follows:

1. Compute the support reactions by applying the equations of equili-
brium and condition (if any) to the free body of the entire beam.
(In cantilever beams, this step can be avoided by selecting the free,
or externally unsupported, portion of the beam for analysis; see
Example 5.2.)

2. Pass a section perpendicular to the centroidal axis of the beam at
the point where the internal forces are desired, thereby cutting the
beam into two portions.

3. Although either of the two portions of the beam can be used for
computing internal forces, we should select the portion that will re-
quire the least amount of computational e¤ort, such as the portion
that does not have any reactions acting on it or that has the least
number of external loads and reactions applied to it.

4. Determine the axial force at the section by algebraically summing
the components in the direction parallel to the axis of the beam of
all the external loads and support reactions acting on the selected
portion. According to the sign convention adopted in the preceding
paragraphs, if the portion of the beam to the left of the section is
being used for computing the axial force, then the external forces
acting to the left are considered positive, whereas the external forces
acting to the right are considered to be negative (see Fig. 5.2(b)). If
the right portion is being used for analysis, then the external forces
acting to the right are considered to be positive and vice versa.

5. Determine the shear at the section by algebraically summing the
components in the direction perpendicular to the axis of the beam
of all the external loads and reactions acting on the selected por-
tion. If the left portion of the beam is being used for analysis, then
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the external forces acting upward are considered positive, whereas
the external forces acting downward are considered to be negative
(see Fig. 5.2(c)). If the right portion has been selected for analysis,
then the downward external forces are considered positive and vice
versa.

6. Determine the bending moment at the section by algebraically sum-
ming the moments about the section of all the external forces plus
the moments of any external couples acting on the selected portion.
If the left portion is being used for analysis, then the clockwise mo-
ments are considered to be positive, and the counterclockwise mo-
ments are considered negative (see Fig. 5.2(d)). If the right portion
has been selected for analysis, then the counterclockwise moments
are considered positive and vice versa.

7. To check the calculations, values of some or all of the internal
forces may be computed by using the portion of the beam not uti-
lized in steps 4 through 6. If the analysis has been performed cor-
rectly, then the results based on both left and right portions must be
identical.

Example 5.1

Determine the axial force, shear, and bending moment at point B of the beam shown in Fig. 5.3(a).

FIG. 5.3

continued
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Solution
Reactions Considering the equilibrium of the free body of the entire beam (Fig. 5.3(b)), we write

þ !P
Fx ¼ 0 Ax � 4

5

� �
ð110Þ ¼ 0 Ax ¼ 88 kN!

þ ’
P

Mc ¼ 0 �Ayð12Þ þ 135ð8Þ þ 3

5

� �
ð110Þð4Þ ¼ 0 Ay ¼ 112 kN "

þ "PFy ¼ 0 112� 135� 3

5

� �
ð110Þ þ Cy ¼ 0 Cy ¼ 89 kN "

Section bb A section bb is passed through point B, cutting the beam into two portions, AB and BC

(see Fig. 5.3(b)). The portion AB, which is to the left of the section, is used here to compute the internal forces.

Axial Force Considering the external forces acting to the left as positive, we write

Q ¼ �88 kN Ans.

Shear Considering the external forces acting upward as positive, we write

S ¼ 112� 135 ¼ �23
S ¼ �23 kN Ans.

Bending Moment Considering the clockwise moments of the external forces about B as positive, we write

M ¼ 112ð6Þ � 135ð2Þ ¼ 402

M ¼ 402 kN-m Ans.

Checking Computations To check our calculations, we compute the internal forces using portion BC, which is to
the right of the section under consideration.

By considering the horizontal components of the external forces acting to the right on portion BC as positive,
we obtain

Q ¼ � 4

5

� �
ð110Þ ¼ �88 kN Checks

By considering the external forces acting downward as positive, we obtain

S ¼ �89þ 3

5

� �
ð110Þ ¼ �23 kN Checks

Finally, by considering the counterclockwise moments of the external forces about B as positive, we obtain

M ¼ 89ð6Þ � 3

5

� �
ð110Þð2Þ ¼ 402 kN-m Checks
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Example 5.2

Determine the shear and bending moment at point B of the beam shown in Fig. 5.4.

Solution
Section bb (See Fig. 5.4.) To avoid computing reactions, we select externally unsupported portion BC, which is to

the right of the section bb, for computing the internal forces.

Shear Considering the external forces acting downward as positive, we write

S ¼ þ20ð4Þ ¼ þ80 kN

S ¼ 80 kN Ans.

Note that the 500 kN �m couple does not have any e¤ect on shear.

Bending Moment Considering the counterclockwise moments as positive, we write

M ¼ 500� 20ð4Þð2Þ ¼ 340 kN�m
M ¼ 340 kN�m Ans.

The reader may check the results by summing forces and moments on portion AB of the beam after computing the
reactions at support A.

FIG. 5.4

5.2 SHEAR AND BENDING MOMENT DIAGRAMS

Shear and bending moment diagrams depict the variations of these
quantities along the length of the member. Such diagrams can be con-
structed by using the method of sections described in the preceding sec-
tion. Proceeding from one end of the member to the other (usually
from left to right), sections are passed, after each successive change in
loading, along the length of the member to determine the equations ex-
pressing the shear and bending moment in terms of the distance of the
section from a fixed origin. The values of shear and bending moments
determined from these equations are then plotted as ordinates against
the position with respect to a member end as abscissa to obtain the
shear and bending moment diagrams. This procedure is illustrated by
the following examples.
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Example 5.3

Draw the shear and bending moment diagrams for the beam shown in Fig. 5.5(a).

Solution
Reactions See Fig. 5.5(b).

þ !P
Fx ¼ 0 Ax ¼ 0

þ ’
P

MD ¼ 0

�Ayð9Þ þ 265ð6Þ þ 245þ 30ð6Þð0Þ ¼ 0

Ay ¼ 203:89 kN "
þ "PFy ¼ 0

203:89� 265� 30ð6Þ þDy ¼ 0

Dy ¼ 241:11 kN "

FIG. 5.5

continued
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Shear Diagram To determine the equation for shear in segment AB of the beam, we pass a section aa at a distance
x from support A, as shown in Fig. 5.5(b). Considering the free body to the left of this section, we obtain

S ¼ 203:89 kN for 0 < x < 3 m

As this equation indicates, the shear is constant at 203.89 kN from an infinitesimal distance to the right of point A to an
infinitesimal distance to the left of point B. At point A, the shear increases abruptly from 0 to 203.89 kN, so a vertical
line is drawn from 0 to 203.89 on the shear diagram (Fig. 5.5(c)) at A to indicate this change. This is followed by a
horizontal line from A to B to indicate that the shear remains constant in this segment.

Next, by using section bb (Fig. 5.5(b)), we determine the equation for shear in segment BC as

S ¼ 203:89� 265 ¼ �61:11 kN for 3 m < xa 6 m

The abrupt change in shear from 203.89 kN at an infinitesimal distance to the left of B to �61.11 kN at an infinitesimal
distance to the right of B is shown on the shear diagram (Fig. 5.5(c)) by a vertical line fromþ203.89 to �61.11. A horizontal
line at �61.11 is then drawn from B to C to indicate that the shear remains constant at this value throughout this segment.

To determine the equations for shear in the right half of the beam, it is convenient to use another coordinate, x1,
directed to the left from the end E of the beam, as shown in Fig. 5.5(b). The equations for shear in segments ED and
DC are obtained by considering the free bodies to the right of sections dd and cc, respectively. Thus,

S ¼ 30x1 for 0a x1 < 3 m

and

S ¼ 30x1 � 241:11 for 3 m < x1 a 6 m

These equations indicate that the shear increases linearly from zero at E to þ90 kN at an infinitesimal distance to the
right of D; it then drops abruptly to �151.11 kN at an infinitesimal distance to the left of D; and from there it increases
linearly to �61.11 kN at C. This information is plotted on the shear diagram, as shown in Fig. 5.5(c). Ans.

Bending Moment Diagram Using the same sections and coordinates employed previously for computing shear, we
determine the following equations for bending moment in the four segments of the beam. For segment AB:

M ¼ 203:89x for 0a xa 3 m

For segment BC:

M ¼ 203:89x� 265ðx� 3Þ ¼ �61:11xþ 795 for 3 ma x < 6 m

For segment ED:

M ¼ �30x1 x1

2

� �
¼ �15x2

1 for 0a x1 a 3 m

For segment DC:

M ¼ �15x2
1 þ 241:11ðx1 � 3Þ ¼ �15x2

1 þ 241:11x1 � 723:33 for 3 ma x1 < 6 m

The first two equations, for the left half of the beam, indicate that the bending moment increases linearly from 0 at A to
611.67 kN-m at B; it then decreases linearly to 428.34 kN-m at C, as shown on the bending moment diagram in Fig.
5.5(d). The last two equations for the right half of the beam are quadratic in x1. The values of M computed from these
equations are plotted on the bending moment diagram shown in Fig. 5.5(d). It can be seen that M decreases from 0 at E
to �135 kN-m at D, and it then increases to þ183.33 kN-m at an infinitesimal distance to the right of C. Note that at C,
the bending moment drops abruptly by an amount 428:34� 183:33 ¼ 245 kN-m, which is equal to the magnitude of the
moment of the counterclockwise external couple acting at this point.

continued
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A point at which the bending moment is zero is termed the point of inflection. To determine the location of the
point of inflection F (Fig. 5.5(d)), we set M ¼ 0 in the equation for bending moment in segment DC to obtain

M ¼ �15x2
1 þ 241:11x1 � 723:33 ¼ 0

from which x1 ¼ 3:99 m; that is, point F is located at a distance of 3.99 m from end E, or 12� 3:99 ¼ 8:01 m from
support A of the beam, as shown in Fig. 5.5(d). Ans.

Example 5.4

Draw the shear and bending moment diagrams for the beam shown in Fig. 5.6(a).

Solution
Reactions See Fig. 5.6(b).

þ !P
Fx ¼ 0 Bx ¼ 0

þ ’
P

Mc ¼ 0

1

2

� �
ð9Þð27Þ 9

3

� �
� Byð6Þ ¼ 0 By ¼ 60:75 kN "

þ "PFy ¼ 0

� 1

2

� �
ð9Þð27Þ þ 60:75þ Cy ¼ 0 Cy ¼ 60:75 kN "

Shear Diagram To determine the equations for shear in segments AB and BC of the beam, we pass sections aa and
bb through the beam, as shown in Fig. 5.6(b). Considering the free bodies to the left of these sections and realizing that
the load intensity, wðxÞ, at a point at a distance x from end A is wðxÞ ¼ 27

9

� �
x ¼ 3x kN/m, we obtain the following

equations for shear in segments AB and BC, respectively:

S ¼ � 1

2

� �
ðxÞð3xÞ ¼ � 3x2

2
for 0a x < 3 m

S ¼ � 3x2

2

� �
þ 60:75 for 3 m < x < 9 m

The values of S computed from these equations are plotted to obtain the shear diagram shown in Fig. 5.6(c). The point
D at which the shear is zero is obtained from the equation

S ¼ � 3x2

2

� �
þ 60:75 ¼ 0

from which x ¼ 6:36 m. Ans.

continued
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Bending Moment Diagram Using the same sections employed previously for computing shear, we determine the
following equations for bending moment in segments AB and BC, respectively:

M ¼ � 1

2

� �
ðxÞð3xÞ x

3

� �
¼ � x3

2
for 0a xa 3 m

M ¼ � x3

2

� �
þ 60:75ðx� 3Þ for 3 ma xa 9 m

continued

FIG. 5.6

SECTION 5.2 Shear and Bending Moment Diagrams 171

https://engineersreferencebookspdf.com



The values of M computed from these equations are plotted to obtain the bending moment diagram shown in
Fig. 5.6(d). To locate the point at which the bending moment is maximum, we di¤erentiate the equation for M in
segment BC with respect to x and set the derivative dM=dx equal to zero; that is,

dM

dx
¼ � 3x2

2

� �
þ 60:75 ¼ 0

from which x ¼ 6:36 m. This indicates that the maximum bending moment occurs at the same point at which the shear
is zero. Also, a comparison of the expressions for dM=dx and S in segment BC indicates that the two equations are
identical; that is, the slope of the bending moment diagram at a point is equal to the shear at that point. (This rela-
tionship, which is generally valid, is discussed in detail in a subsequent section.)

Finally, the magnitude of the maximum moment is determined by substituting x ¼ 6:36 m into the equation for M
in segment BC:

Mmax ¼ � ð6:36Þ
3

2

" #
þ 60:75ð6:36� 3Þ ¼ 75:5 kN�m Ans.

5.3 QUALITATIVE DEFLECTED SHAPES

A qualitative deflected shape (elastic curve) of a structure is simply a
rough (usually exaggerated) sketch of the neutral surface of the struc-
ture, in the deformed position, under the action of a given loading con-
dition. Such sketches, which can be constructed without any knowledge
of the numerical values of deflections, provide valuable insights into the
behavior of structures and are often useful in computing the numerical
values of deflections. (Procedures for the quantitative analysis of deflec-
tions are presented in the following chapters.)

According to the sign convention adopted in Section 5.1, a positive
bending moment bends a beam concave upward (or toward the
positive y direction), whereas a negative bending moment bends a beam
concave downward (or toward the negative y direction). Thus, the sign
(positive or negative) of the curvature at any point along the axis of a
beam can be obtained from the bending moment diagram. Using the
signs of curvatures, a qualitative deflected shape (elastic curve) of the
beam, which is consistent with its support conditions, can be easily
sketched (see Fig. 5.7).

For example, consider the beam analyzed in Example 5.3. The beam
and its bending moment diagram are redrawn in Fig. 5.7(a) and (b),
respectively. A qualitative deflected shape of the beam is shown in
Fig. 5.7(c). Because the bending moment is positive in segment AF , the
beam is bent concave upward in this region. Conversely, the bending
moment is negative in segment FE; therefore, in this region, the beam is
bent concave downward. Regarding the support conditions, note that at

172 CHAPTER 5 Beams and Frames: Shear and Bending Moment

https://engineersreferencebookspdf.com



both supports A and D the deflection of the beam is zero, but its slope
(rotation) is not zero at these points.

It is important to realize that a qualitative deflected shape is ap-
proximate, because it is based solely on the signs of curvatures; the nu-
merical values of deflections along the axis of the beam are not known
(except at supports). For example, numerical computations could possi-
bly indicate that the end E of the beam actually deflects upward, instead
of downward as assumed in Fig. 5.7(c).

5.4 RELATIONSHIPS BETWEEN LOADS, SHEARS, AND BENDING MOMENTS

The construction of shear and bending moment diagrams can be con-
siderably expedited by using the basic di¤erential relationships that exist
between the loads, the shears, and the bending moments.

FIG. 5.7
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To derive these relationships, consider a beam subjected to an arbi-
trary loading, as shown in Fig. 5.8(a). All the external loads shown in
this figure are assumed to be acting in their positive directions. As in-
dicated in this figure, the external distributed and concentrated loads
acting upward (in the positive y direction) are considered positive; the
external couples acting clockwise are also considered to be positive and
vice versa. Next, we consider the equilibrium of a di¤erential element of
length dx, isolated from the beam by passing imaginary sections at dis-
tances x and xþ dx from the origin O, as shown in Fig. 5.8(a). The free-
body diagram of the element is shown in Fig. 5.8(b), in which S and M

represent the shear and bending moment, respectively, acting on the left
face of the element (i.e., at distance x from the origin O), and dS and
dM denote the changes in shear and bending moment, respectively, over
the distance dx. As the distance dx is infinitesimally small, the distrib-
uted load w acting on the element can be considered to be uniform of
magnitude wðxÞ. In order for the element to be in equilibrium, the forces
and couples acting on it must satisfy the two equations of equilibrium,P

Fy ¼ 0 and
P

M ¼ 0. The third equilibrium equation,
P

Fx ¼ 0, is
automatically satisfied, since no horizontal forces are acting on the ele-
ment. Applying the equilibrium equation

P
Fy ¼ 0, we obtain

þ "PFy ¼ 0

S þ w dx� ðS þ dSÞ ¼ 0

dS ¼ w dx (5.1)

FIG. 5.8
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Dividing by dx, we write Eq. (5.1) as

dS

dx
¼ w (5.2)

in which dS=dx represents the slope of the shear diagram. Thus, Eq.
(5.2) can be expressed as

slope of shear diagram
at a point

¼ intensity of distributed
load at that point

(5.3)

To determine the change in shear between points A and B along the
axis of the member (see Fig. 5.8(a)), we integrate Eq. (5.1) from A to B

to obtain ðB

A

dS ¼ SB � SA ¼
ðB

A

w dx (5.4)

in which ðSB � SAÞ represents the change in shear between points A

and B and
Ð
B
Aw dx represents the area under the distributed load dia-

gram between points A and B. Thus, Eq. (5.4) can be stated as

change in shear between
points A and B

¼ area under the distributed load
diagram between points A and B

(5.5)

Applying the moment equilibrium equation to the free body of the
beam element shown in Fig. 5.8(b), we write

þ ’
P

Ma ¼ 0 �M þ wðdxÞðdx=2Þ � ðS þ dSÞ dxþ ðM þ dMÞ ¼ 0

By neglecting the terms containing second-order di¤erentials, we obtain

dM ¼ S dx (5.6)

which can also be written as

dM

dx
¼ S (5.7)

in which dM=dx represents the slope of the bending moment diagram.
Thus, Eq. (5.7) can be stated as

slope of bending moment
diagram at a point

¼ shear at that point (5.8)
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To obtain the change in bending moment between points A and B

(see Fig. 5.8(a)), we integrate Eq. (5.6) to obtainðB

A

dM ¼MB �MA ¼
ðB

A

S dx (5.9)

in which ðMB �MAÞ represents the change in bending moment between
points A and B and

Ð B

A
S dx represents the area under the shear diagram

between points A and B. Thus, Eq. (5.9) can be stated as

change in bending moment
between points A and B

¼ area under the shear diagram
between points A and B

(5.10)

Concentrated Loads

The relationships between the loads and shears derived thus far (Eqs.
(5.1) through (5.5)) are not valid at the point of application of concen-
trated loads. As we illustrated in Example 5.3, at such a point the shear
changes abruptly by an amount equal to the magnitude of the concen-
trated load. To verify this relationship, we consider the equilibrium of
a di¤erential element that is isolated from the beam of Fig. 5.8(a) by
passing imaginary sections at infinitesimal distances to the left and to
the right of the point of application C of the concentrated load P. The
free-body diagram of this element is shown in Fig. 5.8(c). Applying the
equilibrium equation

P
Fy ¼ 0, we obtain

þ "PFy ¼ 0

S þ P� ðS þ dSÞ ¼ 0

dS ¼ P (5.11)

which can be stated as

change in shear at the point of
application of a concentrated load

¼ magnitude of
the load

(5.12)

The relationships between the shears and bending moments (Eqs.
(5.6) through (5.10)) derived previously remain valid at the points of ap-
plication of concentrated loads. Note that because of the abrupt change
in the shear diagram at such a point, there will be an abrupt change in
the slope of the bending moment diagram at that point.
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Couples or Concentrated Moments

Although the relationships between the loads and shears derived thus
far (Eqs. (5.1) through (5.5), (5.11), and (5.12)) are valid at the points of
application of couples or concentrated moments, the relationships be-
tween the shears and bending moments as given by Eqs. (5.6) through
(5.10) are not valid at such points. As illustrated in Example 5.3, at the
point of application of a couple, the bending moment changes abruptly
by an amount equal to the magnitude of the moment of the couple. To
derive this relationship, we consider the equilibrium of a di¤erential ele-
ment that is isolated from the beam of Fig. 5.8(a) by passing imaginary
sections at infinitesimal distances to the left and to the right of the point
of application D of the couple M. The free-body diagram of this element
is shown in Fig. 5.8(d). Applying the moment equilibrium equation, we
write

þ ’
P

Ma ¼ 0

�M �M þ ðM þ dMÞ ¼ 0

dM ¼M (5.13)

which can be stated as

change in bending moment at the
point of application of a couple

¼ magnitude of the
moment of the couple

(5.14)

Procedure for Analysis

The following step-by-step procedure can be used for constructing the
shear and bending moment diagrams for beams by applying the foregoing
relationships between the loads, the shears, and the bending moments.

1. Calculate the support reactions.
2. Construct the shear diagram as follows:

a. Determine the shear at the left end of the beam. If no con-
centrated load is applied at this point, the shear is zero at this
point; go to step 2(b). Otherwise, the ordinate of the shear dia-
gram at this point changes abruptly from zero to the magnitude
of the concentrated force. Recall that an upward force causes
the shear to increase, whereas a downward force causes the
shear to decrease.

b. Proceeding from the point at which the shear was computed in
the previous step toward the right along the length of the beam,
identify the next point at which the numerical value of the or-
dinate of the shear diagram is to be determined. Usually, it is
necessary to determine such values only at the ends of the beam
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and at points at which the concentrated forces are applied and
where the load distributions change.

c. Determine the ordinate of the shear diagram at the point se-
lected in step 2(b) (or just to the left of it, if a concentrated load
acts at the point) by adding algebraically the area under the load
diagram between the previous point and the point currently
under consideration to the shear at the previous point (or just to
the right of it, if a concentrated force acts at the point). The
formulas for the areas of common geometric shapes are listed in
Appendix A.

d. Determine the shape of the shear diagram between the previous
point and the point currently under consideration by applying
Eq. (5.3), which states that the slope of the shear diagram at a
point is equal to the load intensity at that point.

e. If no concentrated force is acting at the point under con-
sideration, then proceed to step 2(f ). Otherwise, determine the
ordinate of the shear diagram just to the right of the point by
adding algebraically the magnitude of the concentrated load to
the shear just to the left of the point. Thus, the shear diagram at
this point changes abruptly by an amount equal to the magni-
tude of the concentrated force.

f. If the point under consideration is not located at the right end
of the beam, then return to step 2(b). Otherwise, the shear dia-
gram has been completed. If the analysis has been carried out
correctly, then the value of shear just to the right of the right
end of the beam must be zero, except for the round-o¤ errors.

3. Construct the bending moment diagram as follows:
a. Determine the bending moment at the left end of the beam. If

no couple is applied at this point, the bending moment is zero
at this point; go to step 3(b). Otherwise, the ordinate of the
bending moment diagram at this point changes abruptly from
zero to the magnitude of the moment of the couple. Recall that
a clockwise couple causes the bending moment to increase,
whereas a counterclockwise couple causes the bending moment
to decrease at its point of application.

b. Proceeding from the point at which the bending moment was
computed in the previous step toward the right along the length
of the beam, identify the next point at which the numerical
value of the ordinate of the bending moment diagram is to be
determined. It is usually necessary to determine such values
only at the points where the numerical values of shear were
computed in step 2, where the couples are applied, and where the
maximum and minimum values of bending moment occur. In
addition to the points of application of couples, the maximum
and minimum values of bending moment occur at points where
the shear is zero. At a point of zero shear, if the shear changes
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from positive to the left to negative to the right, the slope of the
bending moment diagram will change from positive to the left
of the point to negative to the right of it; that is, the bending
moment will be maximum at this point. Conversely, at a point
of zero shear, where the shear changes from negative to the left
to positive to the right, the bending moment will be minimum.
For most common loading conditions, such as concentrated
loads and uniformly and linearly distributed loads, the points of
zero shear can be located by considering the geometry of the
shear diagram. However, for some cases of linearly distributed
loads, as well as for nonlinearly distributed loads, it becomes
necessary to locate the points of zero shear by solving the ex-
pressions for shear, as illustrated in Example 5.4.

c. Determine the ordinate of the bending moment diagram at
the point selected in step 3(b) (or just to the left of it, if a
couple acts at the point) by adding algebraically the area
under the shear diagram between the previous point and the
point currently under consideration to the bending moment
at the previous point (or just to the right of it, if a couple
acts at the point).

d. Determine the shape of the bending moment diagram be-
tween the previous point and the point currently under con-
sideration by applying Eq. (5.8), which states that the slope
of the bending moment diagram at a point is equal to the
shear at that point.

e. If no couple is acting at the point under consideration, then
proceed to step 3(f ). Otherwise, determine the ordinate of the
bending moment diagram just to the right of the point by add-
ing algebraically the magnitude of the moment of the couple
to the bending moment just to the left of the point. Thus, the
bending moment diagram at this point changes abruptly by an
amount equal to the magnitude of the moment of the couple.

f. If the point under consideration is not located at the right end
of the beam, then return to step 3(b). Otherwise, the bending
moment diagram has been completed. If the analysis has been
carried out correctly, then the value of bending moment just to
the right of the right end of the beam must be zero, except for
the round-o¤ errors.

The foregoing procedure can be used for constructing the shear and
bending moment diagrams by proceeding from the left end of the beam
to its right end, as is currently the common practice. However, if we
wish to construct these diagrams by proceeding from the right end of the
beam toward the left, the procedure essentially remains the same except
that downward forces must now be considered to cause increase in
shear, counterclockwise couples are now considered to cause increase in
bending moment, and vice versa.
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Example 5.5

Draw the shear and bending moment diagrams and the qualitative deflected shape for the beam shown in Fig. 5.9(a).

FIG. 5.9
continued
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Solution
Reactions (See Fig. 5.9(b).)

þ !P
Fx ¼ 0 Ax ¼ 0

By proportions,

Ay ¼ 55
6

9

� �
þ 135

3

9

� �
¼ 81:67 kN Ay ¼ 81:67 kN "

þ "PFy ¼ 0

81:67� 55� 135þDy ¼ 0

Dy ¼ 108:33 kN Dy ¼ 108:33 kN "
Shear Diagram

Point A Since a positive (upward) concentrated force of 81.67-kN magnitude acts at point A, the shear diagram
increases abruptly from 0 to þ81.67 kN at this point.

Point B The shear just to the left of point B is given by

SB;L ¼ SA;R þ area under the load diagram between just to the right of A to
just to the left of B

in which the subscripts ‘‘;L’’ and ‘‘;R’’ are used to denote ‘‘just to the left’’ and ‘‘just to the right,’’ respectively. As no
load is applied to this segment of the beam,

SB;L ¼ 81:67þ 0 ¼ 81:67 kN

Because a negative (downward) concentrated load of 55 kN magnitude acts at point B, the shear just to the right of B is

SB;R ¼ 81:67� 55 ¼ 26:67 kN

Point C

SC;L ¼ SB;R þ area under the load diagram between just to the right of B to
just to the left of C

SC;L ¼ 26:67þ 0 ¼ 26:67 kN

SC;R ¼ 26:67� 135 ¼ �108:33 kN

Point D SD;L ¼ �108:33þ 0 ¼ �108:33 kN

SD;R ¼ �108:33þ 108:33 ¼ 0 Checks

The numerical values of shear computed at points A;B;C, and D are used to construct the shear diagram as shown
in Fig. 5.9(c). The shape of the diagram between these ordinates has been established by applying Eq. (5.3), which states
that the slope of the shear diagram at a point is equal to the load intensity at that point. Because no load is applied to
the beam between these points, the slope of the shear diagram is zero between these points, and the shear diagram
consists of a series of horizontal lines, as shown in the figure. Note that the shear diagram closes (i.e., returns to zero)
just to the right of the right end D of the beam, indicating that the analysis has been carried out correctly. Ans.

To facilitate the construction of the bending moment diagram, the areas of the various segments of the shear dia-
gram have been computed and are shown in parentheses on the shear diagram (Fig. 5.9(c)).

continued
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Bending Moment Diagram

Point A Because no couple is applied at end A, MA ¼ 0.

Point B MB ¼MA þ area under the shear diagram
between A and B

MB ¼ 0þ 245 ¼ 245 kN-m

Point C MC ¼ 245þ 80 ¼ 325 kN-m

Point D MD ¼ 325� 325 ¼ 0 Checks

The numerical values of bending moment computed at points A;B;C, and D are used to construct the bending
moment diagram shown in Fig. 5.9(d). The shape of the diagram between these ordinates has been established by applying
Eq. (5.8), which states that the slope of the bending moment diagram at a point is equal to the shear at that point. As the
shear between these points is constant, the slope of the bending moment diagram must be constant between these points.
Therefore, the ordinates of the bending moment diagram are connected by straight, sloping lines. In segment AB, the shear
is þ81.67 kN. Therefore, the slope of the bending moment diagram in this segment is 81.67:1, and it is positive—that is,
upward to the right (=). In segment BC, the shear drops to þ26.67 kN; therefore, the slope of the bending moment diagram
reduces to 26.67:1 but remains positive. In segment CD, the shear becomes �108.33; consequently, the slope of the bending
moment diagram becomes negative—that is, downward to the right (n), as shown in Fig. 5.9(d). Note that the maximum
bending moment occurs at point C, where the shear changes from positive to the left to negative to the right. Ans.

Qualitative Deflected Shape A qualitative deflected shape of the beam is shown in Fig. 5.9(e). As the bending mo-
ment is positive over its entire length, the beam bends concave upward, as shown. Ans.

Example 5.6

Draw the shear and bending moment diagrams and the qualitative deflected shape for the beam shown in Fig. 5.10(a).

Solution
Reactions (See Fig. 5.10(b).)

þ !P
Fx ¼ 0 Ax ¼ 0

þ "PFy ¼ 0

Ay � 70 ¼ 0

Ay ¼ 70 kN Ay ¼ 70 kN "
þ ’

P
MA ¼ 0

MA � 70ð6Þ � 200 ¼ 0

MA ¼ 620 kN �m MA ¼ 620 kN�m ’
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70 kN

(a)

(b)

(c) Shear diagram (kN)

(d) Bending moment
 diagram (kN–m)

6 m 4 m
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70 kN

200 kN–m

CBA

CBA

MA = 620 kN–m

x

y

Ay = 70 kN

Zero slope

(420)

70

A B C

Zero slope
Positive slope

–620

–200

C

A

(e) Qualitative Deflected Shape

FIG. 5.10
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Shear Diagram

Point A SA;R ¼ 70 kN

Point B SB;L ¼ 70þ 0 ¼ 70 kN

SB;R ¼ 70� 70 ¼ 0

Point C SC;L ¼ 0þ 0 ¼ 0

SC;R ¼ 0þ 0 ¼ 0 Checks

The numerical values of shear evaluated at points A;B, and C are used to construct the shear diagram as shown in
Fig. 5.10(c). Because no load is applied to the beam between these points, the slope of the shear diagram is zero between
these points. To facilitate the construction of the bending moment diagram, the area of the segment AB of the shear
diagram has been computed and is shown in parentheses on the shear diagram (Fig. 5.10(c)). Ans.

Bending Moment Diagram

Point A Since a negative (counterclockwise) couple of 620 kN�m moment acts at point A, the bending moment
diagram decreases abruptly from 0 to �620 kN�m at this point; that is,

MA;R ¼ �620 kN�m
Point B MB ¼ �620þ 420 ¼ �200 kN�m
Point C MC;L ¼ �200þ 0 ¼ �200 kN�m

MC;R ¼ �200þ 200 ¼ 0 Checks

The bending moment diagram is shown in Fig. 5.10(d). The shape of this diagram between the ordinates just com-
puted is based on the condition that the slope of the bending moment diagram at a point is equal to shear at that point. As
the shear in the segments AB and BC is constant, the slope of the bending moment diagram must be constant in these
segments. Therefore, the ordinates of the bending moment diagram are connected by straight lines. In segment AB, the
shear is positive, and so is the slope of the bending moment diagram in this segment. In segment BC, the shear becomes
zero; consequently, the slope of the bending moment diagram becomes zero, as shown in Fig. 5.10(d). Ans.

Qualitative Deflected Shape A qualitative deflected shape of the beam is shown in Fig. 5.10(e). As the bending
moment is negative over its entire length, the beam bends concave downward, as shown. Ans.

Example 5.7

Draw the shear and bending moment diagrams and the qualitative deflected shape for the beam shown in Fig. 5.11(a).

Solution
Reactions (See Fig. 5.11(b).)

continued
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FIG. 5.11

continued
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þ !P
Fx ¼ 0

Ax � 30 ¼ 0

Ax ¼ 30 kN Ax ¼ 30 kN!
þ ’

P
MD ¼ 0

�Ayð27Þ þ 10ð15Þð19:5Þ � 162þ 40ð6Þ ¼ 0

Ay ¼ 111:22 kN Ay ¼ 111:22 kN "
þ "PFy ¼ 0

111:22� 10ð15Þ � 40þDy ¼ 0

Dy ¼ 78:78 kN Dy ¼ 78:78 kN "
Shear Diagram

Point A SA;R ¼ 111:22 kN

Point B SB ¼ 111:22� 10ð15Þ ¼ �38:78 kN

Point C SC;L ¼ �38:78þ 0 ¼ �38:78 kN

SC;R ¼ �38:78� 40 ¼ �78:78 kN

Point D SD;L ¼ �78:78þ 0 ¼ �78:78 kN

SD;R ¼ �78:78þ 78:78 ¼ 0 Checks

The shear diagram is shown in Fig. 5.11(c). In segment AB, the beam is subjected to a downward (negative)
uniformly distributed load of 10 kN/m. Because the load intensity is constant and negative in segment AB, the shear
diagram in this segment is a straight line with negative slope. No distributed load is applied to the beam in segments BC
and CD, so the shear diagram in these segments consists of horizontal lines, indicating zero slopes. Ans.

The point of zero shear, E, can be located by using the similar triangles forming the shear diagram between A and
B. Thus,

x

111:22
¼ 15

ð111:22þ 38:78Þ
x ¼ 11:12 m

To facilitate the construction of the bending moment diagram, the areas of the various segments of the shear dia-
gram have been computed; they are shown in parentheses on the shear diagram (Fig. 5.11(c)).

Bending Moment Diagram

Point A MA ¼ 0

Point E ME ¼ 0þ 618:38 ¼ 618:38 kN�m
Point B MB;L ¼ 618:38� 75:23 ¼ 543:15 kN�m

MB;R ¼ 543:15þ 162 ¼ 705:15 kN�m
Point C MC ¼ 705:15� 232:68 ¼ 472:47 kN�m
Point D MD ¼ 472:47� 472:68 ¼ �0:21&0 Checks
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The bending moment diagram is shown in Fig. 5.11(d). The shape of this diagram between the ordinates just
computed has been based on the condition that the slope of the bending moment diagram at any point is equal to the
shear at that point. Just to the right of A, the shear is positive, and so is the slope of the bending moment diagram at
this point. As we move to the right from A, the shear decreases linearly (but remains positive), until it becomes zero at
E. Therefore, the slope of the bending moment diagram gradually decreases, or becomes less steep (but remains pos-
itive), as we move to the right from A, until it becomes zero at E. Note that the shear diagram in segment AE is linear,
but the bending moment diagram in this segment is parabolic, or a second-degree curve, because the bending moment
diagram is obtained by integrating the shear diagram (Eq. 5.11). Therefore, the bending moment curve will always be
one degree higher than the corresponding shear curve.

We can see from Fig. 5.11(d) that the bending moment becomes locally maximum at point E, where the shear
changes from positive to the left to negative to the right. As we move to the right from E, the shear becomes negative,
and it decreases linearly between E and B. Accordingly, the slope of the bending moment diagram becomes negative to
the right of E, and it decreases continuously (becomes more steep downward to the right) between E and just to the left
of B. A positive (clockwise) couple acts at B, so the bending moment increases abruptly at this point by an amount
equal to the magnitude of the moment of the couple. The largest value (global maximum) of the bending moment
over the entire length of the beam occurs at just to the right of B. (Note that no abrupt change, or discontinuity, occurs
in the shear diagram at this point.) Finally, as the shear in segments BC and CD is constant and negative, the bending
moment diagram in these segments consists of straight lines with negative slopes. Ans.

Qualitative Deflected Shape See Fig. 5.11(e). Ans.

Example 5.8

Draw the shear and bending moment diagrams and the qualitative deflected shape for the beam shown in Fig. 5.12(a).

Solution
Reactions (See Fig. 5.12(b).)

þ !P
Fx ¼ 0 Bx ¼ 0

þ ’
P

MC ¼ 0

1

2
ð45Þð4Þð7:83� Byð65Þ þ 45ð65Þð3:25Þ � 1

2
ð45Þð2Þð0:67Þ ¼ 0

By ¼ 250:03 kN By ¼ 250:03 kN "
þ "PFy ¼ 0

� 1

2
ð45Þð4Þ þ 250:03� 45ð6:5Þ � 1

2
ð45Þð2Þ þ Cy ¼ 0

Cy ¼ 177:47 kN Cy ¼ 177:47 kN "

continued
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FIG. 5.12

continued
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Shear Diagram

Point A SA ¼ 0

Point B SB;L ¼ 0� 1

2
ð45Þð4Þ ¼ �90 kN

SB;R ¼ �90þ 250:03 ¼ 160:03 kN

Point C SC;L ¼ 160:03� 45ð6:5Þ ¼ �132:47 kN

SC;R ¼ �132:47þ 177:47 ¼ 45 kN

Point D SD ¼ 45� 1

2
ð45Þð2Þ ¼ 0 Checks

The shear diagram is shown in Fig. 5.12(c). The shape of the diagram between the ordinates just computed is ob-
tained by applying the condition that the slope of the shear diagram at any point is equal to the load intensity at that
point. For example, as the load intensity at A is zero, so is the slope of the shear diagram at A. Between A and B, the
load intensity is negative and it decreases linearly from zero at A to �45 kN/m at B. Thus, the slope of the shear dia-
gram is negative in this segment, and it decreases (becomes more steep) continuously from A to just to the left of B. The
rest of the shear diagram is constructed by using similar reasoning. Ans.

The point of zero shear, E, is located by using the similar triangles forming the shear diagram between B and C.
To facilitate the construction of the bending moment diagram, the areas of the various segments of the shear diagram

have been computed and are shown in parentheses on the shear diagram (Fig. 5.12(c)). It should be noted that the areas of
the parabolic spandrels, AB and CD, can be obtained by using the formula for the area of this shape given in Appendix A.

Bending Moment Diagram

Point A MA ¼ 0

Point B MB ¼ 0� 120 ¼ �120 kN-m

Point E ME ¼ �120þ 284:05 ¼ 164:05 kN-m

Point C MC ¼ 164:05� 195:39 ¼ �31:34 kN-m

Point D MD ¼ �31:34þ 31:34 ¼ 0 Checks

The shape of the bending moment diagram between these ordinates is obtained by using the condition that the
slope of the bending moment diagram at any point is equal to the shear at that point. The bending moment diagram
thus constructed is shown in Fig. 5.12(d).

It can be seen from this figure that the maximum negative bending moment occurs at point B, whereas the
maximum positive bending moment, which has the largest absolute value over the entire length of the beam, occurs
at point E. Ans.

To locate the points of inflection, F and G, we set equal to zero the equation for bending moment in segment BC,
in terms of the distance x from the left support point B (Fig. 5.12(b)):

M ¼ � 1

2

� �
ð45Þð4Þð1:33þ xÞ þ 250:03x� 45ðxÞ x

2

� �
¼ 0

or

�22:5x2 þ 160:03x� 119:7 ¼ 0

from which x ¼ 0:85 m and x ¼ 6:263 m from B.
continued
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Qualitative Deflected Shape A qualitative deflected shape of the beam is shown in Fig. 5.12(e). The bending
moment is positive in segment FG, so the beam is bent concave upward in this region. Conversely, since the bending
moment is negative in segments AF and GD, the beam is bent concave downward in these segments. Ans.

Example 5.9

Draw the shear and bending moment diagrams and the qualitative deflected shape for the beam shown in Fig. 5.13(a).

Solution
Reactions (See Fig. 5.13(b).)

þ ’
P

MBD
B ¼ 0

�20ð10Þð5Þ þ Cyð10Þ � 100ð15Þ ¼ 0

Cy ¼ 250 kN Cy ¼ 250 kN "
þ "PFy ¼ 0

Ay � 20ð10Þ þ 250� 100 ¼ 0

Ay ¼ 50 kN Ay ¼ 50 kN "
þ ’

P
MA ¼ 0

MA � 20ð10Þð15Þ þ 250ð20Þ � 100ð25Þ ¼ 0

MA ¼ 500 kN�m MA ¼ 500 kN�m ’

Shear Diagram

Point A SA;R ¼ 50 kN

Point B SB ¼ 50þ 0 ¼ 50 kN

Point C SC;L ¼ 50� 20ð10Þ ¼ �150 kN

SC;R ¼ �150þ 250 ¼ 100 kN

Point D SD;L ¼ 100þ 0 ¼ 100 kN

SD;R ¼ 100� 100 ¼ 0 Checks

The shear diagram is shown in Fig. 5.13(c). Ans.

Bending Moment Diagram

Point A MA;R ¼ �500 kN �m
Point B MB ¼ �500þ 500 ¼ 0

Point E ME ¼ 0þ 62:5 ¼ 62:5 kN�m
Point C MC ¼ 62:5� 562:5 ¼ �500 kN�m
Point D MD ¼ �500þ 500 ¼ 0 Checks
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The bending moment diagram is shown in Fig. 5.13(d). The point of inflection F can be located by setting equal
to zero the equation for bending moment in segment BC, in terms of the distance x1 from the right support point C
(Fig. 5.13(b)):

M ¼ �100ð5þ x1Þ þ 250x1 � 20ðx1Þ x1

2

� �
¼ 0

or

�10x2
1 þ 150x1 � 500 ¼ 0

from which x1 ¼ 5 m and x1 ¼ 10 m from C. Note that the solution x1 ¼ 10 m represents the location of the internal
hinge at B, at which the bending moment is zero. Thus, the point of inflection F is located at a distance of 5 m to the left
of C, as shown in Fig. 5.13(d). Ans.

Qualitative Deflected Shape A qualitative deflected shape of the beam is shown in Fig. 5.13(e). Note that at the
fixed support A, both the deflection and the slope of the beam are zero, whereas at the roller support C, only the de-
flection is zero, but the slope is not. The internal hinge B does not provide any rotational restraint, so the slope at B can
be discontinuous. Ans.

FIG. 5.13
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Example 5.10

Draw the shear and bending moment diagrams and the qualitative deflected shape for the beam shown in Fig. 5.14(a).

Solution
Reactions (See Fig. 5.14(b).)

þ ’
P

MCD
C ¼ 0

Dyð8Þ � 30ð8Þð4Þ ¼ 0

Dy ¼ 120 kN Dy ¼ 120 kN "
þ ’

P
MA ¼ 0

120ð20Þ þ Byð10Þ � 30ð20Þð10Þ ¼ 0

By ¼ 360 kN By ¼ 360 kN "
þ "PFy ¼ 0

Ay � 30ð20Þ þ 360þ 120 ¼ 0

Ay ¼ 120 kN Ay ¼ 120 kN "

Shear Diagram

Point A SA;R ¼ 120 kN

Point B SB;L ¼ 120� 30ð10Þ ¼ �180 kN

SB;R ¼ �180þ 360 ¼ 180 kN

Point D SD;L ¼ 180� 30ð10Þ ¼ �120 kN

SD;R ¼ �120þ 120 ¼ 0 Checks

The shear diagram is shown in Fig. 5.14(c). Ans.
Bending Moment Diagram

Point A MA ¼ 0

Point E ME ¼ 0þ 240 ¼ 240 kN-m

Point B MB ¼ 240� 540 ¼ �300 kN-m

Point F MF ¼ �300þ 540 ¼ 240 kN-m

Point D MD ¼ 240� 240 ¼ 0 Checks

The bending moment diagram is shown in Fig. 5.14(d). Ans.

Qualitative Deflected Shape See Fig. 5.14(e). Ans.
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FIG. 5.14
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Example 5.11

Draw the shear and bending moment diagrams and the qualitative deflected shape for the statically indeterminate beam
shown in Fig. 5.15. The support reactions, determined by using the procedures for the analysis of statically in-
determinate beams (presented in Part Three of this text), are given in Fig. 5.15(a).

Solution
Regardless of whether a beam is statically determinate or indeterminate, once the support reactions have been de-
termined, the procedure for constructing the shear and bending moment diagrams remains the same. The shear and
bending moment diagrams for the given statically indeterminate beam are shown in Fig. 5.15(b) and (c), respectively,
and a qualitative deflected shape of the beam is shown in Fig. 5.15(d).

FIG. 5.15
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5.5 STATIC DETERMINACY, INDETERMINACY, AND INSTABILITY OF PLANE FRAMES

As defined in Section 1.3, rigid frames, usually referred to simply as
frames, are composed of straight members connected either by rigid
(moment-resisting) connections or by hinged connections to form stable
configurations. The members of frames are usually connected by rigid
joints, although hinged connections are sometimes used. A rigid joint
prevents relative translations and rotations of the member ends con-
nected to it, so the joint is capable of transmitting two rectangular force
components and a couple between the connected members. Under the
action of external loads, the members of a frame may be, in general,
subjected to bending moment, shear, and axial tension or compression.

A frame is considered to be statically determinate if the bending

moments, shears, and axial forces in all its members, as well as all the

external reactions, can be determined by using the equations of equili-

brium and condition.
Since the method of analysis presented in the following section can

be used only to analyze statically determinate frames, it is important for
the student to be able to recognize statically determinate frames before
proceeding with the analysis.

Consider a plane frame subjected to an arbitrary loading, as shown
in Fig. 5.16(a). The free-body diagrams of the three members and the
four joints of the frame are shown in Fig. 5.16(b). Each member is sub-
jected to, in addition to the external forces, two internal force compo-
nents and an internal couple at each of its ends. Of course, the correct
senses of the internal forces and couples, which are commonly referred
to as the member end forces, are not known before the analysis and are
chosen arbitrarily. The free-body diagrams of the joints show the same
member end forces but in opposite directions, in accordance with New-
ton’s third law. The analysis of the frame involves the determination of
the magnitudes of the 18 member end forces (six per member), and the
three support reactions, AX ;AY , and DY . Therefore, the total number of
unknown quantities to be determined is 21.

Because the entire frame is in equilibrium, each of its members
and joints must also be in equilibrium. As shown in Fig. 5.16(b), each
member and each joint are subjected to a general coplanar system of
forces and couples, which must satisfy the three equations of equili-
brium,

P
FX ¼ 0,

P
FY ¼ 0, and

P
M ¼ 0. Since the frame contains

three members and four joints (including the two joints connected to
supports), the total number of equations available is 3ð3Þ þ 3ð4Þ ¼ 21.
These 21 equilibrium equations can be solved to calculate the 21 un-
knowns. The member end forces thus obtained can then be used to de-
termine axial forces, shears, and bending moments at various points
along the lengths of members. The frame of Fig. 5.16(a) is, therefore,
statically determinate.
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Three equations of equilibrium of the entire frame as a rigid body
could be written and solved for the three unknown reactions (AX ;AY ,
and DY ). However, these equilibrium equations are not independent
from the member and joint equilibrium equations and do not contain
any additional information.

Based on the foregoing discussion, we can develop the criteria for
the static determinacy, indeterminacy, and instability of general plane
frames containing m members and j joints and supported by r (num-
ber of ) external reactions. For the analysis, we need to determine 6m
member forces and r external reactions; that is, we need to calculate a

FIG. 5.16
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total of 6mþ r unknown quantities. Since there are m members and j

joints and we can write three equations of equilibrium for each mem-
ber and each joint, the number of equilibrium equations available is
3ðmþ jÞ. Furthermore, if a frame contains internal hinges and/or in-
ternal rollers, these internal conditions provide additional equations,
which can be used in conjunction with the equilibrium equations to de-
termine the unknowns. Thus, if there are ec equations of condition for a
frame, the total number of equations (equilibrium equations plus equa-
tions of condition) available is 3ðmþ jÞ þ ec. For a frame, if the number
of unknowns is equal to the number of equations, that is,

6mþ r ¼ 3ðmþ jÞ þ ec

or

3mþ r ¼ 3j þ ec

then all the unknowns can be determined by solving the equations of
equilibrium and condition, and the frame is statically determinate. If
a frame has more unknowns than the available equations—that is,
3mþ r > 3j þ ec—all the unknowns cannot be determined by solving
the available equations, and the frame is called statically indetermi-
nate. Statically indeterminate frames have more members and/or ex-
ternal reactions than the minimum required for stability. The excess
members and reactions are called redundants, and the number of excess
member forces and reactions is referred to as the degree of static in-
determinacy, i, which can be expressed as

i ¼ ð3mþ rÞ � ð3j þ ecÞ (5.15)

For a frame, if the number of unknowns is less than the number of
available equations—that is, 3mþ r < 3j þ ec—the frame is called stat-
ically unstable. The conditions for static instability, determinacy, and
indeterminacy of plane frames can be summarized as follows:

3mþ r < 3j þ ec statically unstable frame

3mþ r ¼ 3j þ ec statically determinate frame

3mþ r > 3j þ ec statically indeterminate frame

(5.16)

In applying Eq. (5.16), the ends of the frame attached to supports as
well as any free ends are treated as joints. The conditions for static de-
terminacy and indeterminacy, as given by Eq. (5.16), are necessary but
not su‰cient conditions. In order for these criteria for static determi-
nacy and indeterminacy to be valid, the arrangement of the members,
support reactions, and internal hinges and rollers (if any) must be such
that the frame will remain geometrically stable under a general system
of coplanar loads.
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The procedure for determining the number of equations of con-
dition remains the same as discussed in Chapter 3. Recall that an in-
ternal hinge provides one equation of condition, and an internal roller
provides two such equations. When several members of a frame are
connected at a hinged joint, the number of equations of condition at
the joint is equal to the number of members meeting at the joint minus
one. For example, consider the hinged joint H of the frame shown in
Fig. 5.17. As a hinge cannot transmit moment, the moments at the ends
H of the three members EH;GH, and HI meeting at the joint must be
zero; that is, MEH

H ¼ 0, MGH
H ¼ 0, and MHI

H ¼ 0. However, these three
equations are not independent in the sense that if any two of these three
equations are satisfied along with the moment equilibrium equation
for the joint H, the remaining equation will automatically be satisfied.
Thus, the hinged joint H provides two independent equations of con-
dition. Using a similar reasoning, it can be shown that an internal roller
joint provides the equations of condition whose number is equal to 2�
(number of members meeting at the joint �1).

Alternative Approach

An alternative approach that can be used for determining the degree
of static indeterminacy of a frame is to cut enough members of the
frame by passing imaginary sections and/or to remove enough supports
to render the structure statically determinate. The total number of in-
ternal and external restraints thus removed equals the degree of static
indeterminacy. As an example, consider the frame shown in Fig. 5.18(a).
The frame can be made statically determinate by passing an imaginary
section through the girder BC, thereby removing three internal restraints
(the axial force Q, the shear S, and the bending moment M ), as shown

FIG. 5.17
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in Fig. 5.18(b). Note that the two cantilever structures thus produced are
both statically determinate and geometrically stable. Because three re-
straints (Q;S, and M) had to be removed from the original statically in-
determinate frame of Fig. 5.18(a) to obtain the statically determinate
frames of Fig. 5.18(b), the degree of static indeterminacy of the original
frame is three. There are many possible choices regarding the restraints
that can be removed from a statically indeterminate structure to render it
statically determinate. For example, the frame of Fig. 5.18(a) could al-
ternatively be rendered statically determinate by disconnecting it from the
fixed support at D, as shown in Fig. 5.18(c). Since three external restraints
or reactions, DX ;DY , and MD, must be removed in this process, the de-
gree of static indeterminacy of the frame is three, as concluded previously.

This alternative approach of establishing the degree of indeter-
minacy (instead of applying Eq. (5.15)) provides the most convenient
means of determining the degrees of static indeterminacy of multistory
building frames. An example of such a frame is shown in Fig. 5.19(a).
The structure can be made statically determinate by passing an imagi-
nary section through each of the girders, as shown in Fig. 5.19(b). Be-
cause each cut removes three restraints, the total number of restraints
that must be removed to render the structure statically determinate is
equal to three times the number of girders in the frame. Thus, the degree
of static indeterminacy of a multistory frame with fixed supports is equal
to three times the number of girders, provided that the frame does not
contain any internal hinges or rollers.

FIG. 5.18
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FIG. 5.19

Example 5.12

Verify that each of the plane frames shown in Fig. 5.20 is statically indeterminate and determine its degree of static indeterminacy.

Solution
See Fig. 5.20(a) through (f ).

FIG. 5.20
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5.6 ANALYSIS OF PLANE FRAMES

The following step-by-step procedure can be used for determining the
member end forces as well as the shears, bending moments, and axial
forces in members of plane statically determinate frames.

1. Check for static determinacy. Using the procedure described in the
preceding section, determine whether or not the given frame is stat-
ically determinate. If the frame is found to be statically determinate
and stable, proceed to step 2. Otherwise, end the analysis at this
stage. (The analysis of statically indeterminate frames is considered
in Part Three of this text.)

2. Determine the support reactions. Draw a free-body diagram of the
entire frame, and determine reactions by applying the equations of
equilibrium and any equations of condition that can be written in
terms of external reactions only (without involving any internal
member forces). For some internally unstable frames, it may not be
possible to express all the necessary equations of condition exclusively
in terms of external reactions; therefore, it may not be possible to de-
termine all the reactions. However, some of the reactions for such
structures can usually be calculated from the available equations.

3. Determine member end forces. It is usually convenient to specify the
directions of the unknown forces at the ends of the members of the
frame by using a common structural (or global) XY coordinate sys-
tem, with the X and Y axes oriented in the horizontal (positive to the
right) and vertical (positive upward) directions, respectively. Draw
free-body diagrams of all the members and joints of the structure.
These free-body diagrams must show, in addition to any external loads
and support reactions, all the internal forces being exerted upon the
member or the joint. Remember that a rigid joint is capable of trans-
mitting two force components and a couple, a hinged joint can trans-
mit two force components, and a roller joint can transmit only one
force component. If there is a hinge at an end of a member, the internal
moment at that end should be set equal to zero. Any load acting at a
joint should be shown on the free-body diagrams of the joint, not at the
ends of the members connected to the joint. The senses of the member
end forces are not known and can be arbitrarily assumed. However, it
is usually convenient to assume the senses of the unknown forces at
member ends in the positive X and Y directions and of the unknown
couples as counterclockwise. The senses of the internal forces and
couples on the free-body diagrams of joints must be in directions op-
posite to those assumed on the member ends in accordance with New-
ton’s third law. Compute the member end forces as follows:

a. Select a member or a joint with three or fewer unknowns.
b. Determine the unknown forces and moments by applying the three

equations of equilibrium (
P

FX ¼ 0,
P

FY ¼ 0, and
P

M ¼ 0)
to the free body of the member or joint selected in step 3(a).
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c. If all the unknown forces, moments, and reactions have been de-
termined, then proceed to step 3(d). Otherwise, return to step 3(a).

d. Since the support reactions were calculated in step 2 by using the
equations of equilibrium and condition of the entire structure,
there should be some equations remaining that have not been uti-
lized so far. The number of leftover equations should be equal to
the number of reactions computed in step 2. Use these remaining
equations to check the calculations. If the analysis has been carried
out correctly, then the remaining equations must be satisfied.

For some types of frames, a member or a joint that has a num-
ber of unknowns less than or equal to the number of equilibrium
equations may not be found to start or continue the analysis. In such
a case, it may be necessary to write equilibrium equations in terms
of unknowns for two or more free bodies and solve the equations
simultaneously to determine the unknown forces and moments.

4. For each member of the frame, construct the shear, bending mo-
ment, and axial force diagrams as follows:

a. Select a member (local) xy coordinate system with origin at
either end of the member and x axis directed along the cen-
troidal axis of the member. The positive direction of the y axis
is chosen so that the coordinate system is right-handed, with
the z axis pointing out of the plane of the paper.

b. Resolve all the external loads, reactions, and end forces acting
on the member into components in the x and y directions (i.e.,
in the directions parallel and perpendicular to the centroidal axis
of the member). Determine the total (resultant) axial force and
shear at each end of the member by algebraically adding the x

components and y components, respectively, of the forces act-
ing at each end of the member.

c. Construct the shear and bending moment diagrams for the mem-
ber by using the procedure described in Section 5.4. The proce-
dure can be applied to nonhorizontal members by considering the
member end at which the origin of the xy coordinate system is
located as the left end of the member (with x axis pointing toward
the right) and the positive y direction as the upward direction.

d. Construct the axial force diagram showing the variation of
axial force along the length of the member. Such a diagram can
be constructed by using the method of sections. Proceeding in
the positive x direction from the member end at which the ori-
gin of the xy coordinate system is located, sections are passed
after each successive change in loading along the length of the
member to determine the equations for the axial force in terms
of x. According to the sign convention adopted in Section 5.1,
the external forces acting in the negative x direction (causing
tension at the section) are considered to be positive. The values
of axial forces determined from these equations are plotted as
ordinates against x to obtain the axial force diagram.
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5. Draw a qualitative deflected shape of the frame. Using the bending
moment diagrams constructed in step 4, draw a qualitative deflected
shape for each member of the frame. The deflected shape of the en-
tire frame is then obtained by connecting the deflected shapes of the
individual members at joints so that the original angles between the
members at the rigid joints are maintained and the support con-
ditions are satisfied. The axial and shear deformations, which are
usually negligibly small as compared to the bending deformations,
are neglected in sketching the deflected shapes of frames.

It should be noted that the bending moment diagrams constructed
by using the procedure described in step 4(c) will always show moments
on the compression sides of the members. For example, at a point along
a vertical member, if the left side of the member is in compression, then
the value of the moment at that point will appear on the left side. Since
the side of the member on which a moment appears indicates the di-
rection of the moment, it is not necessary to use plus and minus signs
on the moment diagrams. When designing reinforced concrete frames,
the moment diagrams are sometimes drawn on the tension sides of the
members to facilitate the placement of steel bars used to reinforce
concrete that is weak in tension. A tension-side moment diagram can
be obtained by simply inverting (i.e., rotating through 180� about the
member’s axis) the corresponding compression-side moment diagram.
Only compression-side moment diagrams are considered in this text.

Example 5.13

Draw the shear, bending moment, and axial force diagrams and the qualitative deflected shape for the frame shown in
Fig. 5.21(a).

Solution
Static Determinacy m ¼ 3, j ¼ 4, r ¼ 3, and ec ¼ 0. Because 3mþ r ¼ 3j þ ec and the frame is geometrically sta-

ble, it is statically determinate.

Reactions Considering the equilibrium of the entire frame (Fig. 5.21(b)), we observe that in order to satisfyP
FX ¼ 0, the reaction component AX must act to the left with a magnitude of 18 k to balance the horizontal load of 80

kN to the right. Thus,

AX ¼ �80 kN AX ¼ 80 kN 
We compute the remaining two reactions by applying the two equilibrium equations as follows:

þ ’
P

MA ¼ 0 �80ð6:5Þ � 30ð10Þð5Þ þDY ð10Þ ¼ 0 DY ¼ 202 kN "
þ "PFY ¼ 0 AY � 30ð10Þ þ 202 ¼ 0 AY ¼ 98 kN "

continued
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FIG. 5.21 continued
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FIG. 5.21 (contd.) continued
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Member End Forces The free-body diagrams of all the members and joints of the frame are shown in Fig. 5.21(c).
We can begin the computation of internal forces either at joint A or at joint D, both of which have only three
unknowns.

Joint A Beginning with joint A, we can see from its free-body diagram that in order to satisfy
P

FX ¼ 0, AAB
X must

act to the right with a magnitude of 80 kN to balance the horizontal reaction of 80 kN to the left. Thus,

AAB
X ¼ �80 kN

Similarly, by applying
P

FY ¼ 0, we obtain

AAB
Y ¼ 98 kN

Member AB With the magnitudes of AAB
X and AAB

Y now known, member AB has three unknowns, BAB
X ;BAB

Y , and
MAB

B , which can be determined by applying
P

FX ¼ 0,
P

FY ¼ 0, and
P

MA ¼ 0. Thus,

BAB
X ¼ 80 kN BAB

Y ¼ �98 kN MAB
B ¼ 520 kN-m

Joint B Proceeding next to joint B and considering its equilibrium, we obtain

BBC
X ¼ 0 BBC

Y ¼ 98 kN MBC
B ¼ �520 kN-m

Member BC Next, considering the equilibrium of member BC, we write

þ !P
FX ¼ 0 CBC

X ¼ 0

þ "PFY ¼ 0 98� 30ð10Þ þ CBC
Y ¼ 0 CBC

Y ¼ 202 kN

þ ’
P

MB ¼ 0 �520� 30ð10Þð5Þ þ 202ð10Þ þMBC
C ¼ 0 MBC

C ¼ 0

Joint C Applying the three equilibrium equations, we obtain

CCD
X ¼ 0 CCD

Y ¼ �202 kN MCD
C ¼ 0

Member CD Applying
P

FX ¼ 0 and
P

FY ¼ 0 in order, we obtain

DCD
X ¼ 0 DCD

Y ¼ 202 kN

Since all unknown forces and moments have been determined, we check our computations by using the third equili-
brium equations for member CD.

þ ’
P

MD ¼ 0 Checks

Joint D (Checking computations)

þ !P
FX ¼ 0 Checks

þ "PFY ¼ 0 202� 202 ¼ 0 Checks

Shear Diagrams The xy coordinate systems selected for the three members of the frame are shown in Fig. 5.21(d),
and the shear diagrams for the members constructed by using the procedure described in Section 5.4 are depicted in
Fig. 5.21(e). Ans.

Bending Moment Diagrams The bending moment diagrams for the three members of the frame are shown in
Fig. 5.21(f ).

continued
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Axial Force Diagrams From the free-body diagram of member AB in Fig. 5.21(d), we observe that the axial
force throughout the length of this member is compressive, with a constant magnitude of 98 kN. Therefore, the
axial force diagram for this member is a straight line parallel to the x axis at a value of �98 kN, as shown in
Fig. 5.21(g). Similarly, it can be seen from Fig. 5.21(d) that the axial forces in members BC and CD are also
constant, with magnitudes of 0 and �202 kN, respectively. The axial force diagrams thus constructed for these
members are shown in Fig. 5.21(g). Ans.

Qualitative Deflected Shape From the bending moment diagrams of the members of the frame (Fig. 5.21(f )), we
observe that the members AB and BC bend concave to the left and concave upward, respectively. As no bending mo-
ment develops in member CD, it does not bend but remains straight. A qualitative deflected shape of the frame obtained
by connecting the deflected shapes of the three members at the joints is shown in Fig. 5.21(h). As this figure indicates,
the deflection of the frame at support A is zero. Due to the horizontal load at B, joint B deflects to the right to B 0. Since
the axial deformations of members are neglected and bending deformations are assumed to be small, joint B deflects
only in the horizontal direction, and joint C deflects by the same amount as joint B; that is, BB 0 ¼ CC 0. Note that the
curvatures of the members are consistent with their bending moment diagrams and that the original 90� angles between
members at the rigid joints B and C have been maintained. Ans.

Example 5.14

Draw the shear, bending moment, and axial force diagrams and the qualitative deflected shape for the frame shown in
Fig. 5.22(a).

Solution
Static Determinacy m ¼ 2, j ¼ 3, r ¼ 3, and ec ¼ 0. Because 3mþ r ¼ 3j þ ec and the frame is geometrically sta-

ble, it is statically determinate.

Reactions (See Fig. 5.22(b).)

þ !P
Fx ¼ 0

�Ax þ 110 ¼ 0 Ax ¼ 110 kN 
þ "PFy ¼ 0

Ay � 25ð5Þ ¼ 0 Ay ¼ 125 kN "
þ ’

P
MA ¼ 0

MA � 110ð3:5Þ � 25ð5Þð2:5Þ ¼ 0 MA ¼ 697:5 kN-m

’

Member End Forces (See Fig. 5.22(c).)

Joint A By applying the equilibrium equations
P

FX ¼ 0,
P

FY ¼ 0, and
P

MA ¼ 0, we obtain

AAB
X ¼ �110 kN AAB

Y ¼ 125 kN MAB
A ¼ 697:5 kN-m

continued
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B C

YBBC
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XBAB

BMAB

YBAB

YBAB

BMAB
XBABB

110

A XAAB

AMAB

YAAB

YAAB

AMAB

XAAB

A

125
(c)

697.5

(a)

3.5 m

5 m

3.5 m

110 kN

(b)

110 kN

110 kN

25 kN/m

25 kN/m

25 kN/m

B C

AX MA

A

AY

X

Y

FIG. 5.22 continued
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312.5

125
125

x

y

B C

25 kN/m

110 kN D

x

312.5
B

A
110y

125
(d)

697.5

697.5

(e) Shear Diagrams (kN)

125

B C

110

B

D

A

B C

312.5

312.5

B

D

A
(f) Bending Moment Diagrams (kN–m)

B C

(g) Axial Force Diagrams (kN)

B

A

D –125

B B' C

C'

A

(h) Qualitative Deflected Shape

FIG. 5.22 (contd.)

Member AB Next, considering the equilibrium of member AB, we write

þ !P
FX ¼ 0 �110þ 110þ BAB

X ¼ 0 BAB
X ¼ 0

þ "PFY ¼ 0 125þ BAB
Y ¼ 0 BAB

Y ¼ �125 kN

þ ’
P

MB ¼ 0 697:5� 110ð3:5Þ þMAB
B ¼ 0 MAB

B ¼ �312:5 kN-m

continued
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Joint B Applying the three equations of equilibrium, we obtain

BBC
X ¼ 0 BBC

Y ¼ 125 kN MBC
B ¼ 312:5 kN-m

Member BC (Checking computations.)

þ !P
FX ¼ 0 Checks

þ "PFY ¼ 0 125� 25ð5Þ ¼ 0 Checks

þ ’
P

MB ¼ 0 312:5� 25ð5Þð2:5Þ ¼ 0 Checks

The member end forces are shown in Fig. 5.22(d).

Shear Diagrams See Fig. 5.22(e). Ans.

Bending Moment Diagrams See Fig. 5.22(f ). Ans.

Axial Force Diagrams See Fig. 5.22(g). Ans.

Qualitative Deflected Shape See Fig. 5.22(h). Ans.

Example 5.15

A gable frame is subjected to a snow loading, as shown in Fig. 5.23(a). Draw the shear, bending moment, and axial
force diagrams and the qualitative deflected shape for the frame.

Solution
Static Determinacy m ¼ 4, j ¼ 5, r ¼ 4, and ec ¼ 1. Because 3mþ r ¼ 3j þ ec and the frame is geometrically sta-

ble, it is statically determinate.

FIG. 5.23
continued
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FIG. 5.23 (contd.) continued
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FIG. 5.23 (contd.)

continued
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FIG. 5.23 (contd.) continued
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Reactions (See Fig. 5.23(b).)

þ ’
P

ME ¼ 0

�AY ð8Þ þ 12ð8Þð4Þ ¼ 0 AY ¼ 48 kN "
þ "PFY ¼ 0

48� 12ð8Þ þ EY ¼ 0 EY ¼ 48 kN "
þ ’

P
MAC

C ¼ 0

AX ð8Þ � 48ð4Þ þ 12ð4Þð2Þ ¼ 0 AX ¼ 12 kN!
þ!P

FX ¼ 0

12þ EX ¼ 0

EX ¼ �12 kN EX ¼ 12 kN 

Member End Forces (See Fig. 5.23(c).)

Joint A By applying the equations of equilibrium
P

FX ¼ 0 and
P

FY ¼ 0, we obtain

AAB
X ¼ 12 kN AAB

Y ¼ 48 kN

Member AB Considering the equilibrium of member AB, we obtain

BAB
X ¼ �12 kN BAB

Y ¼ �48 kN MAB
B ¼ �60 kN�m

Joint B Applying the three equilibrium equations, we obtain

BBC
X ¼ 12 kN BBC

Y ¼ 48 kN MBC
B ¼ 60 kN�m

Member BC

þ !P
FX ¼ 0 CBC

X ¼ �12 kN

þ "PFY ¼ 0

48� 12ð4Þ þ CBC
Y ¼ 0 CBC

Y ¼ 0

þ ’
P

MB ¼ 0

60� 12ð4Þð2Þ þ 12ð3Þ ¼ 0 Checks

Joint C Considering the equilibrium of joint C, we determine

CCD
X ¼ 12 kN CCD

Y ¼ 0

Member CD

þ !P
FX ¼ 0 DCD

X ¼ �12 kN

þ "PFY ¼ 0

�12ð4Þ þDCD
Y ¼ 0 DCD

Y ¼ 48 kN

þ ’
P

MD ¼ 0

�12ð3Þ þ 12ð4Þð2Þ þMCD
D ¼ 0 MCD

D ¼ �60 kN�m
continued
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SUMMARY

In this chapter, we have learned that the internal axial force at any sec-
tion of a member is equal in magnitude, but opposite in direction, to
the algebraic sum of the components in the direction parallel to the axis
of the member of all the external loads and reactions acting on either
side of the section. We consider it to be positive when the external forces

Joint D Applying the three equilibrium equations, we obtain

DDE
X ¼ 12 kN DDE

Y ¼ �48 kN MDE
D ¼ 60 kN�m

Member DE

þ !P
FX ¼ 0 EDE

X ¼ �12 kN

þ "PFY ¼ 0 EDE
Y ¼ 48 kN

þ ’
P

ME ¼ 0

60� 12ð5Þ ¼ 0 Checks

Joint E

þ !P
FX ¼ 0 �12þ 12 ¼ 0 Checks

þ "PFY ¼ 0 48� 48 ¼ 0 Checks

Distributed Loads on Inclined Members BC and CD As the 12-kN/m snow loading is specified per horizontal
meter, it is necessary to resolve it into components parallel and perpendicular to the directions of members BC and CD.
Consider, for example, member BC, as shown in Fig. 5.23(d). The total vertical load acting on this member is (12 kN/
m)(4 m) ¼ 48 kN. Dividing this total vertical load by the length of the member, we obtain the intensity of the vertical
distributed load per meter along the inclined length of the member as 48/5 ¼ 9.6 kN/m. The components of this vertical
distributed load in the directions parallel and perpendicular to the axis of the member are (3/5)(9.6) ¼ 5.76 kN/m and
(4/5)(9.6) ¼ 7.68 kN/m, respectively, as shown in Fig. 5.23(d). The distributed loading for member CD is computed
similarly and is shown in Fig. 5.23(e).

Shear and Bending Moment Diagrams See Fig. 5.23(f ) and (g). Ans.

Axial Force Diagrams The equations for axial force in the members of the frame are:

Member AB Q ¼ �48
Member BC Q ¼ �38:4þ 5:76x

Member CD Q ¼ �9:6� 5:76x

Member DE Q ¼ �48
The axial force diagrams are shown in Fig. 5.23(h). Ans.

Qualitative Deflected Shape See Fig. 5.23(i). Ans.
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tend to produce tension. The shear at any section of a member is equal
in magnitude, but opposite in direction, to the algebraic sum of the
components in the direction perpendicular to the axis of the member of
all the external loads and reactions acting on either side of the section.
We consider it to be positive when the external forces tend to push the
portion of the member on the left of the section upward with respect to
the portion on the right of the section. The bending moment at any sec-
tion of a member is equal in magnitude, but opposite in direction, to the
algebraic sum of the moments about the section of all the external loads
and reactions acting on either side of the section. We consider it to be
positive when the external forces and couples tend to bend the member
concave upward, causing compression in the upper fibers and tension in
the lower fibers at the section.

Shear, bending moment, and axial force diagrams depict the varia-
tions of these quantities along the length of the member. Such diagrams
can be constructed by determining and plotting the equations expressing
these stress resultants in terms of the distance of the section from an end
of the member. The construction of shear and bending moment diagrams
can be considerably expedited by applying the following relationships
that exist between the loads, shears, and bending moments:

slope of shear diagram
at a point

¼ intensity of distributed load
at that point

(5.3)

change in shear between
points A and B

¼
area under the distributed
load diagram between
points A and B

(5.5)

change in shear at the
point of application
of a concentrated load

¼ magnitude of the load (5.12)

slope of bending moment
diagram at a point

¼ shear at that point (5.8)

change in bending moment
between points A and B

¼ area under the shear diagram
between points A and B

(5.10)

change in bending moment
at the point of application
of a couple

¼ magnitude of the moment
of the couple

(5.14)

A frame is considered to be statically determinate if the shears,
bending moments, and axial forces in all its members as well as all the
external reactions can be determined by using the equations of equili-
brium and condition. If a plane frame contains m members and j

joints, is supported by r reactions, and has ec equations of condition,
then if
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3mþ r < 3j þ ec the frame is statically unstable

3mþ r ¼ 3j þ ec the frame is statically determinate (5.16)

3mþ r > 3j þ ec the frame is statically indeterminate

The degree of static indeterminacy is given by

i ¼ ð3mþ rÞ � ð3j þ ecÞ (5.15)

A procedure for the determination of member end forces, shears,
bending moments, and axial forces in the members of plane statically
determinate frames is presented in Section 5.6.

PROBLEMS

Section 5.1

5.1 through 5.11 Determine the axial forces, shears, and
bending moments at points A and B of the structure shown.

5 m 5 m3 m 3 m2 m 2 m

50 kN80 kN60 kN

A B60°

FIG. P5.1

2 m 2 m 2 m 2 m

45 kN22.5 kN

A B

FIG. P5.2

A B

4 m 4 m 4 m 4 m

30°
100 kN

FIG. P5.3

A B

1.5 m 1.5 m 1.5 m 1.5 m

55 kN
95 kN–m

FIG. P5.4

4 m 2 m 2 m3 m 3 m 6 m

BA

75 kN
75 kN

90 kN
80 kN . m 100

 kN . m
4

3 4
3

FIG. P5.5

A B

3 m3 m3 m

90 kN/m

FIG. P5.6

150 kN
25 kN/m

A B

4 m 4 m 4 m
2 m 2 m

100 kN . m

FIG. P5.7

180 kN 180 kN

BA

3 m
1.5 m 1.5 m

3 m 3 m

Hinge

FIG. P5.8
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10 m 5 m 5 m 5 m 5 m

20 kN/m

A BHinge

FIG. P5.9

B

A100 kN

100
kN

30°

6 m

3 m
6 m

3 m

3 m

3 m
100 kN

50 kN

FIG. P5.10

A

B

3
4

45 kN/m

3 m

3 m

3 m

FIG. P5.11

Section 5.2

5.12 through 5.28 Determine the equations for shear
and bending moment for the beam shown. Use the resulting
equations to draw the shear and bending moment diagrams.

FIG. P5.12

A C
B

P

2L
3

L
3

FIG. P5.13

FIG. P5.14

FIG. P5.15

FIG. P5.16

A

B

C
M

2L
3

L
3

FIG. P5.17
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A
B

w

L

FIG. P5.18

FIG. P5.19

1.5 m 3 m

52 kN26 kN

A B C

FIG. P5.20

3 m 3 m 3 m

20 kN20 kN

A D

B C

FIG. P5.21

2 m 2 m 2 m

67 kN

A B C
D

135 kN–m

FIG. P5.22

7 m 7 m

60 kN

A B C

10 kN/m

FIG. P5.23

5 m10 m

A B C

30 kN/m

FIG. P5.24

3 m6 m

BA C
15 kN/m

37.5 kN/m

FIG. P5.25

FIG. P5.26

5 m 10 m

B
CA

20 kN/m

FIG. P5.27

6.5 m 10 m

B
CA

30 kN/m 45 kN/m

FIG. P5.28

Section 5.4

5.29 through 5.51 Draw the shear and bending moment
diagrams and the qualitative deflected shape for the beam
shown.
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5 m 5 m10 m

60 kN100 kN

A D

B C

FIG. P5.29

3 m 3 m

90 kN 135 kN

A
CB

FIG. P5.30

2.5 m 2.5 m 2.5 m 2.5 m

90 kN45 kN 90 kN

EB

C DA

FIG. P5.31

3 m 3 m 3 m 3 m

50 kN

A D

B

50 kN

E

100 kN

C

FIG. P5.32

3 m 3 m 3 m 3 m 3 m

EB

C D

55 kN 55 kN110 kN110 kN

A F

FIG. P5.33

4 m 4 m 4 m

A B C
D

75 kN
200 kN–m

FIG. P5.34

A
B C

D

2 m 1.5 m 3.5 m

135 kN
30 kN/m

FIG. P5.35

3 m 3 m 3 m

270 kN

A D

B C

205 kN–m

FIG. P5.36

6 m 6 m 6 m

75 kN

B DC

25 kN/m

A

FIG. P5.37

8 m 3 m

A
B C

45 kN/m

FIG. P5.38

3 m

A B C D

8 m 3 m

45 kN/m

FIG. P5.39

50 kN

A
B C

D

15 kN/m

6 m 3 m 3 m

150 kN–m

FIG. P5.40
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1.5 m

A B C D

6 m 1.5 m

45 kN/m

45 kN45 kN

FIG. P5.41

5 m 10 m

B C

A

60 kN
12 kN/m

200 kN–m

FIG. P5.42

3 m

A B C D

9 m 3 m

55 kN–m
35 kN

22 kN/m

FIG. P5.43

9 m 3 m

A
B C

35 kN/m

Hinge

FIG. P5.44

115 kN

C
D

B E

10 kN/m

12 m 12 m 9 m 12 m

A

Hinge

FIG. P5.45

4.8 m 4.8 m 4.8 m

22.5 kN

41 kN–m

34 kN/m

HingeA B C D

FIG. P5.46

55 kN
15 kN/m

Hinge

A
B C D

E

9 m 3 m 3 m 3 m

FIG. P5.47

FIG. P5.48

18 kN/m

A
C DB E

F

Hinge Hinge

5 m10 m 5 m10 m 15 m

FIG. P5.49

FIG. P5.50

10 m 5 m 15 m 5 m 10 m

25 kN/m

C D E FBA
Hinge Hinge

FIG. P5.51
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5.52 Draw the shear and bending moment diagrams for the
reinforced concrete footing subjected to the downward col-
umn loading of 1.5 k/ft and the upward soil reaction of
0.5 k/ft, as shown in the figure.

FIG. P5.52

5.53 and 5.54 For the beam shown: (a) determine the
distance a for which the maximum positive and negative
bending moments in the beam are equal; and (b) draw the
corresponding shear and bending moment diagrams for the
beam.

FIG. P5.53

FIG. P5.54

Section 5.5

5.55 and 5.56 Classify each of the plane frames shown
as unstable, statically determinate, or statically in-
determinate. If statically indeterminate, then determine the
degree of static indeterminacy.

FIG. P5.55

FIG. P5.56
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Section 5.6

5.57 through 5.71 Draw the shear, bending moment, and
axial force diagrams and the qualitative deflected shape for
the frame shown.

4.5 m 4.5 m

112 kN

55 kN

B

A

C

3 m

3 m

FIG. P5.57

5 m 5 m

90 kN

B
C

A

25 kN/m 12 m

FIG. P5.58

FIG. P5.59

4 m 4 m 2 m 2 m

135 kN

90 kN

B

A

C

5.5 m

FIG. P5.60

5 m 10 m

10 m

20 kN/m

B
C

A

30 kN/m

FIG. P5.61
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3.5 m

90 kN

A

4
3

B

C

8.5 m

7.5 kN/m

FIG. P5.62

FIG. P5.63

6.5 m

135 kN

36.5 kN/m

B C

A D

4 m

4 m

FIG. P5.64

10 m 5 m

15 kN/m

12 kN/m B

D EC

A

9 m

6 m

FIG. P5.65

FIG. P5.66
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FIG. P5.67

10 m

15 kN/m

C

B

D

A

6 m

75 kN

6 m

Hinge

FIG. P5.68

FIG. P5.69

5 m 5 m

135 kN

30 kN/m

Hinge

BA

C D E

6.5 m

FIG. P5.70

FIG. P5.71

Problems 225

https://engineersreferencebookspdf.com



6
Deflections of Beams:
Geometric Methods
6.1 Differential Equation for Beam Deflection
6.2 Direct Integration Method
6.3 Superposition Method
6.4 Moment-Area Method
6.5 Bending Moment Diagrams by Parts
6.6 Conjugate-Beam Method

Summary
Problems

The John Hancock Building,

Chicago
Joe Mercier/Shutterstock

226

Structures, like all other physical bodies, deform and change shape
when subjected to forces. Other common causes of deformations of
structures include temperature changes and support settlements. If the
deformations disappear and the structure regains its original shape when
the actions causing the deformations are removed, the deformations are
termed elastic deformations. The permanent deformations of structures
are referred to as inelastic, or plastic, deformations. In this text, we will
focus our attention on linear elastic deformations. Such deformations
vary linearly with applied loads (for instance, if the magnitudes of the
loads acting on the structure are doubled, its deformations are also
doubled, and so forth). Recall from Section 3.6 that in order for a struc-
ture to respond linearly to applied loads, it must be composed of linear
elastic material, and it must undergo small deformations. The principle
of superposition is valid for such structures.

For most structures, excessive deformations are undesirable, as
they may impair the structure’s ability to serve its intended purpose.
For example, a high-rise building may be perfectly safe in the sense that
the allowable stresses are not exceeded, yet useless (unoccupied) if it de-
flects excessively due to wind, causing cracks in the walls and windows.
Structures are usually designed so that their deflections under normal
service conditions will not exceed the allowable values specified in build-
ing codes.
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From the foregoing discussion, we can see that the computation of
deflections forms an essential part of structural analysis. Deflection cal-
culations are also required in the determination of the reactions and
stress resultants for statically indeterminate structures, to be considered
in Part Three of this text.

The methods that have been developed for computing deflections
can be broadly classified into two categories, (1) geometric methods and
(2) work-energy methods. As these names imply, geometric methods
are based on a consideration of the geometry of the deflected shapes
of structures, whereas the work-energy methods are based on the basic
principles of work and energy.

In this chapter, we study geometric methods commonly used for
determining the slopes and deflections of statically determinate beams.
We discuss work-energy methods in the following chapter. First, we
derive the di¤erential equation for the deflection of beams; we follow
this derivation with brief reviews of the direct (double) integration and
superposition methods of computing deflections. (We assume here that
the reader is familiar with these methods from a previous course in
mechanics of materials.) Next, we present the moment-area method for
calculating slopes and deflections of beams, the construction of bending
moment diagrams by parts, and finally the conjugate-beam method for
computing slopes and deflections of beams.

6.1 DIFFERENTIAL EQUATION FOR BEAM DEFLECTION

Consider an initially straight elastic beam subjected to an arbitrary
loading acting perpendicular to its centroidal axis and in the plane of
symmetry of its cross section, as shown in Fig. 6.1(a). The neutral sur-
face of the beam in the deformed state is referred to as the elastic curve.
To derive the di¤erential equation defining the elastic curve, we focus
our attention on a di¤erential element dx of the beam. The element in
the deformed position is shown in Fig. 6.1(b). As this figure indicates,
we assume that the plane sections perpendicular to the neutral surface of
the beam before bending remain plane and perpendicular to the neu-
tral surface after bending. The sign convention for bending moment
M remains the same as established in Chapter 5; that is, a positive
bending moment causes compression in the fibers above the neutral
surface (in the positive y direction). Tensile strains and stresses are
considered to be positive. The slope of the elastic curve, y ¼ dy=dx, is
assumed to be so small that y2 is negligible compared to unity; sin yAy

and cos yA1. Note that dy represents the change in slope over the dif-
ferential length dx. It can be seen from Fig. 6.1(b) that the deformation
of an arbitrary fiber ab located at a distance y from the neutral surface
can be expressed as
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dD ¼ a 0b 0 � ab ¼ �2y dy

2

� �
¼ �y dy

Thus, the strain in fiber ab is equal to

e ¼ dD

dx
¼ dD

ds
¼ � y dy

Rdy
¼ � y

R
(6.1)

in which R is the radius of curvature. By substituting the linear stress-
strain relationship e ¼ s=E into Eq. (6.1), we obtain

s ¼ �Ey

R
(6.2)

in which s is the stress in fiber ab and E represents Young’s modulus of
elasticity. Equation (6.2) indicates that the stress varies linearly with the
distance y from the neutral surface, as shown in Fig. 6.1(c). If sc de-
notes the stress at the uppermost fiber located at a distance c from the
neutral surface (Fig. 6.1(c)), then the stress s at a distance y from the
neutral surface can be written as

s ¼ y

c
sc (6.3)

Since the bending moment M is equal to the sum of the moments about
the neutral axis of the forces acting at all the fibers of the beam cross
section, we write

FIG. 6.1
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M ¼
ð
A

�sy dA (6.4)

Substituting Eq. (6.3) into Eq. (6.4), we obtain

M ¼ � sc

c

ð
A

y2 dA ¼ � sc

c
I

or

sc ¼ �Mc

I

Using Eq. (6.3), we obtain

s ¼ �My

I
(6.5)

where I is the moment of inertia of the beam cross section.
Next, by combining Eqs. (6.2) and (6.5), we obtain the moment-

curvature relationship

1

R
¼ M

EI
(6.6)

in which the product EI is commonly referred to as the flexural rigidity

of the beam. To express Eq. (6.6) in Cartesian coordinates, we recall
(from calculus) the relationship

1

R
¼ d 2y=dx2

½1þ ðdy=dxÞ2�3=2
(6.7)

in which y represents the vertical deflection. As stated previously, for
small slopes the square of the slope, ðdy=dxÞ2, is negligible in compar-
ison with unity. Thus, Eq. (6.7) reduces to

1

R
&

d 2y

dx2
(6.8)

By substituting Eq. (6.8) into Eq. (6.6), we obtain the following di¤er-
ential equation for the deflection of beams:

d 2y

dx2
¼ M

EI
(6.9)

This equation is also referred to as the Bernoulli-Euler beam equation.
Because y ¼ dy=dx, Eq. (6.9) can also be expressed as

dy

dx
¼ M

EI
(6.10)
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6.2 DIRECT INTEGRATION METHOD

The direct integration method essentially involves writing the expression
for M=EI (bending moment divided by flexural rigidity of the beam) in
terms of the distance x along the axis of the beam and integrating this
expression successively to obtain equations for the slope and deflection
of the elastic curve. The constants of integration are determined from
the boundary conditions. The direct integration method proves to be
most convenient for computing slopes and deflections of beams for
which M=EI can be expressed as a single continuous function of x over
the entire length of the beam. However, the application of the method to
structures for which the M=EI function is not continuous can become
quite complicated. This problem occurs because each discontinuity, due
to a change in loading and/or the flexural rigidity (EI ), introduces two
additional constants of integration in the analysis, which must be eval-
uated by applying the conditions of continuity of the elastic curve, a
process that can be quite tedious. The di‰culty can, however, be cir-
cumvented, and the analysis can be somewhat simplified by employing
the singularity functions defined in most textbooks on mechanics of

materials.

Example 6.1

Determine the equations for the slope and deflection of the beam shown in Fig. 6.2(a) by the direct integration method.
Also, compute the slope at each end and the deflection at the midspan of the beam. EI is constant.

FIG. 6.2

continued
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Solution
Reactions See Fig. 6.2(b).

þ !P
Fx ¼ 0 Ax ¼ 0

þ ’
P

MB ¼ 0

�AyðLÞ þ wðLÞ L

2

� �
¼ 0 Ay ¼ wL

2
"

þ "PFy ¼ 0

wL

2

� �
� ðwLÞ þ By ¼ 0 By ¼ wL

2
"

Equation for Bending Moment To determine the equation for bending moment for the beam, we pass a
section at a distance x from support A, as shown in Fig. 6.2(b). Considering the free body to the left of this sec-
tion, we obtain

M ¼ wL

2
ðxÞ � ðwxÞ x

2

� �
¼ w

2
ðLx� x2Þ

Equation for M/EI The flexural rigidity, EI , of the beam is constant, so the equation for M=EI can be written as

d 2y

dx2
¼ M

EI
¼ w

2EI
ðLx� x2Þ

Equations for Slope and Deflection The equation for the slope of the elastic curve of the beam can be obtained by
integrating the equation for M=EI as

y ¼ dy

dx
¼ w

2EI

Lx2

2
� x3

3

� �
þ C1

Integrating once more, we obtain the equation for deflection as

y ¼ w

2EI

Lx3

6
� x4

12

� �
þ C1xþ C2

The constants of integration, C1 and C2, are evaluated by applying the following boundary conditions:

At end A; x ¼ 0; y ¼ 0

At end B; x ¼ L; y ¼ 0

By applying the first boundary condition—that is, by setting x ¼ 0 and y ¼ 0 in the equation for y—we obtain
C2 ¼ 0. Next, by using the second boundary condition—that is, by setting x ¼ L and y ¼ 0 in the equation for
y—we obtain

0 ¼ w

2EI

L4

6
� L4

12

� �
þ C1L

from which

C1 ¼ � wL3

24EI

continued
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Thus, the equations for slope and deflection of the beam are

y ¼ w

2EI

Lx2

2
� x3

3
� L3

12

� �
(1) Ans.

y ¼ wx

12EI
Lx2 � x3

2
� L3

2

� �
(2) Ans.

Slopes at Ends A and B By substituting x ¼ 0 and L, respectively, into Eq. (1), we obtain

yA ¼ � wL3

24EI
or yA ¼ wL3

24EI
@ Ans.

yB ¼ wL3

24EI
or yB ¼ wL3

24EI
’ Ans.

Deflection at Midspan By substituting x ¼ L=2 into Eq. (2), we obtain

yC ¼ � 5wL4

384EI
or yC ¼ 5wL4

384EI
# Ans.

Example 6.2

Determine the slope and deflection at point B of the cantilever beam shown in Fig. 6.3(a) by the direct integration method.

Solution
Equation for Bending Moment We pass a section at a distance x from support A, as shown in Fig. 6.3(b). Consid-

ering the free body to the right of this section, we write the equation for bending moment as

M ¼ �67ð6:5� xÞ
Equation for M/EI

d 2y

dx2
¼ M

EI
¼ � 67

EI
ð6:5� xÞ

Equations for Slope and Deflection By integrating the equation for M=EI , we determine the equation for slope as

y ¼ dy

dx
¼ � 67

EI
6:5x� x2

2

� �
þ C1

Integrating once more, we obtain the equation for deflection as

y ¼ � 67

EI
3:25x2 � x3

6

� �
þ C1xþ C2

The constants of integration, C1 and C2, are evaluated by using the boundary conditions that y ¼ 0 at x ¼ 0, and y ¼ 0
at x ¼ 0. By applying the first boundary condition—that is, by setting y ¼ 0 and x ¼ 0 in the equation for y—we obtain

continued
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C1 ¼ 0. Similarly, by applying the second boundary condition—that is, by setting y ¼ 0 and x ¼ 0 in the equation for
y—we obtain C2 ¼ 0. Thus, the equations for slope and deflection of the beam are

y ¼ � 67

EI
6:5x� x2

2

� �

y ¼ � 67

EI
3:25x2 � x3

6

� �

Slope and Deflection at End B By substituting x ¼ 6:5 m, E ¼ 200� 106 kN/m2, and I ¼ 315� 10�6 m4 into the
foregoing equations for slope and deflection, we obtain

yB ¼ �0:0224 rad or yB ¼ 0:0224 rad @ Ans.

yB ¼ �0:0974 m ¼ �97:4 m or yB ¼ 97:4 m # Ans.

6.3 SUPERPOSITION METHOD

When a beam is subjected to several loads, it is usually convenient to
determine slope or deflection caused by the combined e¤ect of loads
by superimposing (algebraically adding) the slopes or deflections due

6.5 m

(a)

(b)

67 kN

BA

B
A

EI = constant
E = 200 GPa
I = 315 × 106 mm4

x

(6.5 – x)

Ay = 67 kN

MA = 435.5 kN-m 67 kN

FIG. 6.3
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to each of the loads acting individually on the beam. The slope and
deflection due to each individual load can be computed by using either
the direct integration method described previously or one of the other
methods discussed in subsequent sections. Also, many structural engi-
neering handbooks (e.g., Manual of Steel Construction published by the
American Institute of Steel Construction) contain deflection formulas for
beams for various types of loads and support conditions, which can be
used for this purpose. Such formulas for slopes and deflections of beams
for some common types of loads and support conditions are given inside
the front cover of this book for convenient reference.

6.4 MOMENT-AREA METHOD

The moment-area method for computing slopes and deflections of beams
was developed by Charles E. Greene in 1873. The method is based on
two theorems, called the moment-area theorems, relating the geometry
of the elastic curve of a beam to its M=EI diagram, which is constructed
by dividing the ordinates of the bending moment diagram by the flexu-
ral rigidity EI . The method utilizes graphical interpretations of integrals
involved in the solution of the deflection di¤erential equation (Eq. (6.9))
in terms of the areas and the moments of areas of the M=EI diagram.
Therefore, it is more convenient to use for beams with loading discon-
tinuities and the variable EI , as compared to the direct integration
method described previously.

To derive the moment-area theorems, consider a beam subjected
to an arbitrary loading as shown in Fig. 6.4. The elastic curve and the
M=EI diagram for the beam are also shown in the figure. Focusing our
attention on a di¤erential element dx of the beam, we recall from the
previous section (Eq. (6.10)) that dy, which represents the change in
slope of the elastic curve over the di¤erential length dx, is given by

dy ¼ M

EI
dx (6.11)

Note that the term ðM=EIÞ dx represents an infinitesimal area under
the M=EI diagram, as shown in Fig. 6.4. To determine the change in
slope between two arbitrary points A and B on the beam, we integrate
Eq. (6.11) from A to B to obtainðB

A

dy ¼
ðB

A

M

EI
dx

or

yBA ¼ yB � yA ¼
ðB

A

M

EI
dx (6.12)
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in which yA and yB are the slopes of the elastic curve at points A and B,
respectively, with respect to the axis of the beam in the undeformed
(horizontal) state, yBA denotes the angle between the tangents to the
elastic curve at A and B, and

Ð B

A
ðM=EIÞ dx represents the area under the

M=EI diagram between points A and B.
Equation (6.12) represents the mathematical expression of the first

moment-area theorem, which can be stated as follows:

The change in slope between the tangents to the elastic curve at any two

points is equal to the area under the M/EI diagram between the two points,

provided that the elastic curve is continuous between the two points.

As noted, this theorem applies only to those portions of the elastic
curve in which there are no discontinuities due to the presence of in-
ternal hinges. In applying the first moment-area theorem, if the area of
the M=EI diagram between any two points is positive, then the angle
from the tangent at the point to the left to the tangent at the point to the
right will be counterclockwise, and this change in slope is considered to
be positive; and vice versa.

Considering again the beam shown in Fig. 6.4, we observe that the
deviation dD between the tangents drawn at the ends of the di¤erential

FIG. 6.4
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element dx on a line perpendicular to the undeformed axis of the beam
from a point B is given by

dD ¼ xðdyÞ (6.13)

where x is the distance from B to the element dx. Substitution of
Eq. (6.11) into Eq. (6.13) yields

dD ¼ M

EI

� �
x dx (6.14)

Note that the term on the right-hand side of Eq. (6.14) represents the
moment of the infinitesimal area corresponding to dx about B. Inte-
grating Eq. (6.14) between any two arbitrary points A and B on the
beam, we obtain ðB

A

dD ¼
ðB

A

M

EI
x dx

or

DBA ¼
ðB

A

M

EI
x dx (6.15)

in which DBA represents the tangential deviation of B from the tangent
at A, which is the deflection of point B in the direction perpendicular
to the undeformed axis of the beam from the tangent at point A, andÐ B

A
ðM=EIÞx dx represents the moment of the area under the M=EI dia-

gram between points A and B about point B.
Equation (6.15) represents the mathematical expression of the sec-

ond moment-area theorem, which can be stated as follows:

The tangential deviation in the direction perpendicular to the undeformed

axis of the beam of a point on the elastic curve from the tangent to the

elastic curve at another point is equal to the moment of the area under the

M/EI diagram between the two points about the point at which the devia-

tion is desired, provided that the elastic curve is continuous between the two

points.

It is important to note the order of the subscripts used for D in
Eq. (6.15). The first subscript denotes the point where the deviation is
determined and about which the moments are evaluated, whereas the
second subscript denotes the point where the tangent to the elastic curve
is drawn. Also, since the distance x in Eq. (6.15) is always taken as
positive, the sign of DBA is the same as that of the area of the M=EI
diagram between A and B. If the area of the M=EI diagram between A

and B is positive, then DBA is also positive, and point B lies above (in
the positive y direction) the tangent to the elastic curve at point A and
vice versa.
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Procedure for Analysis

In order to apply the moment-area theorems to compute the slopes and
deflections of a beam, it is necessary to draw a qualitative deflected
shape of the beam using its bending moment diagram. In this regard,
recall from Section 5.3 that a positive bending moment bends the beam
concave upward, whereas a negative bending moment bends it concave
downward. Also, at a fixed support, both the slope and the deflection of
the beam must be zero; therefore, the tangent to the elastic curve at this
point is in the direction of the undeformed axis, whereas at a hinged or a
roller support, the deflection is zero, but the slope may not be zero. To
facilitate the computation of areas and moments of areas of the M=EI
diagrams, the formulas for the areas and centroids of common geo-
metric shapes are listed in Appendix A.

Instead of adopting a formal sign convention, it is common practice
to use an intuitive approach in solving problems using the moment-
area method. In this approach, the slopes and deflections at the various
points are assumed to be positive in the directions shown on the sketch
of the deflected shape or elastic curve of the structure. Any area of the
M=EI diagram that tends to increase the quantity under consideration
is considered to be positive and vice versa. A positive answer for a slope
or deflection indicates that the sense of that quantity as assumed on the
elastic curve is correct. Conversely, a negative answer indicates that the
correct sense is opposite to that initially assumed on the elastic curve.

In applying the moment-area theorems, it is important to realize
that these theorems in general do not directly provide the slope and de-
flection at a point with respect to the undeformed axis of the beam
(which are usually of practical interest); instead, they provide the slope
and deflection of a point relative to the tangent to the elastic curve at
another point. Therefore, before the slope or deflection at an arbitrary
point on the beam can be computed, a point must be identified where
the slope of the tangent to the elastic curve is either initially known or
can be determined by using the support conditions. Once this reference
tangent has been established, the slope and deflection at any point on
the beam can be computed by applying the moment-area theorems. In
cantilever beams, since the slope of the tangent to the elastic curve at the
fixed support is zero, this tangent can be used as the reference tangent.
In the case of beams for which a tangent with zero slope cannot be
located by inspection, it is usually convenient to use the tangent at one
of the supports as the reference tangent. The slope of this reference tan-
gent can be determined by using the conditions of zero deflections at the
reference support and an adjacent support.

The magnitudes of the slopes and deflections of structures are usu-
ally very small, so from a computational viewpoint it is usually con-
venient to determine the solution in terms of EI and then substitute the
numerical values of E and I at the final stage of the analysis to obtain
the numerical magnitudes of the slopes and deflections. When the
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moment of inertia varies along the length of a beam, it is convenient to
express the moments of inertia of the various segments of the beam in
terms of a single reference moment of inertia, which is then carried sym-
bolically through the analysis.

Example 6.3

Determine the slopes and deflections at points B and C of the cantilever beam shown in Fig. 6.5(a) by the moment-area
method.

Solution
Bending Moment Diagram The bending moment diagram for the beam is shown in Fig. 6.5(b).

M/EI Diagram As indicated in Fig. 6.5(a), the values of the moment of inertia of the segments AB and BC of the
beam are 2.5�109 mm4 and 1.25�109 mm4, respectively. Using I ¼ IBC ¼ 1:25�109 mm4 as the reference moment of
inertia, we express IAB in terms of I as

IAB ¼ 2:5� 109 ¼ 2ð1:25� 109Þ ¼ 2I

which indicates that in order to obtain the M=EI diagram in terms of EI , we must divide the bending moment diagram
for segment AB by 2, as shown in Fig. 6.5(c).

FIG. 6.5

continued
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Elastic Curve The elastic curve for the beam is shown in Fig. 6.5(d). Note that because the M=EI diagram is neg-
ative, the beam bends concave downward. Since the support at A is fixed, the slope at A is zero ðyA ¼ 0Þ; that is, the
tangent to the elastic curve at A is horizontal, as shown in the figure.

Slope at B With the slope at A known, we can determine the slope at B by evaluating the change in slope yBA be-
tween A and B (which is the angle between the tangents to the elastic curve at points A and B, as shown in Fig. 6.5(d)).
According to the first moment-area theorem, yBA ¼ area of the M=EI diagram between A and B. This area can be con-
veniently evaluated by dividing the M=EI diagram into triangular and rectangular parts, as shown in Fig. 6.5(c). Thus,

yBA ¼ 1

EI
ð135Þð5Þ þ 1

2
ð225Þð5Þ

� �
¼ 1237:5 kN-m2

EI

From Fig. 6.5(d), we can see that because the tangent at A is horizontal (in the direction of the undeformed axis of
the beam), the slope at BðyBÞ is equal to the angle yBA between the tangents at A and B; that is,

yB ¼ yBA ¼ 1237:5 kN-m2

EI

Substituting the numerical values of E ¼ 200� 106 kN/m2 and I ¼ 1:25� 10�3 m4, we obtain

yB ¼ 1237:5

ð200� 106Þð1:25� 10�3Þ rad ¼ 0:0049 rad

yB ¼ 0:0049 rad @ Ans.

Deflection at B From Fig. 6.5(d), it can be seen that the deflection of B with respect to the undeformed axis of the
beam is equal to the tangential deviation of B from the tangent at A; that is,

DB ¼ DBA

According to the second moment-area theorem,

DBA ¼ moment of the area of the M=EI diagram between A and B about B

¼ 1

EI
ð135Þð5Þð2:5Þ þ 1

2
ð225Þð5Þ 10

3

� �� �
¼ 3562:5 kN-m3

EI

Therefore,

DB ¼ DBA ¼ 3562:5 kN-m3

EI

¼ 3562:5

ð200� 106Þð1:25� 10�3Þ ¼ 14:25 mm

DB ¼ 14:25 mm # Ans.

Slope at C From Fig. 6.5(d), we can see that

yC ¼ yCA

where

yCA ¼ area of the M=EI diagram between A and C

¼ 1

EI
ð135Þð5Þ þ 1

2
ð225Þð5Þ þ 1

2
ð270Þð3Þ

� �
¼ 1642:5 kN-m2

EI

continued
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Therefore,

yC ¼ yCA ¼ 1642:5 kN-m2

EI

¼ 1642:5

ð200� 106Þð1:25� 10�3Þ ¼ 0:0067 rad

yC ¼ 0:0067 rad @ Ans.

Deflection at C It can be seen from Fig. 6.5(d) that

DC ¼ DCA

where

DCA ¼ moment of the area of the M=EI diagram between A and C about C

¼ 1

EI
ð135Þð5Þð2:5þ 3Þ þ 1

2
ð225Þð5Þ 10

3
þ 3

� �
1

2
ð270Þð3Þð2Þ

� �

¼ 8085 kN-m3

EI

Therefore,

DC ¼ DCA ¼ 8085 kN-m3

EI

¼ 8085

ð200� 106Þð1:25� 10�3Þ ¼ 32 mm

DC ¼ 32 mm # Ans.

Example 6.4

Use the moment-area method to determine the slopes at ends A and D and the deflections at points B and C of the
beam shown in Fig. 6.6(a).

Solution
M/EI Diagram Because EI is constant along the length of the beam, the shape of the M=EI diagram is the same as

that of the bending moment diagram. The M=EI diagram is shown in Fig. 6.6(b).

Elastic Curve The elastic curve for the beam is shown in Fig. 6.6(c).

Slope at A The slope of the elastic curve is not known at any point on the beam, so we will use the tangent at
support A as the reference tangent and determine its slope, yA, from the conditions that the deflections at the support
points A and D are zero. From Fig. 6.6(c), we can see that

continued
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3 m3 m6 m

3 m3 m6 m

L = 12 m
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(c) Elastic Curve

EI = constant
E = 12.5 GPa
I = 1.92 × 1010 mm4
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B
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180 kN
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(b)         Diagram (      )M
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Tangent at D

ΔDA

ΔCD

FIG. 6.6
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yA ¼ DDA

L

in which yA is assumed to be so small that tan yAAyA. To evaluate the tangential deviation DDA, we apply the second
moment-area theorem:

DDA ¼ moment of the area of the M=EI diagram between A and D about D

DDA ¼ 1

EI

�
1

2
ð1080Þð6Þ 6

3
þ 6

� �
þ 1

2
ð270Þð3Þ 6

3
þ 3

� �

þ 810ð3Þð4:5Þ þ 1

2
ð810Þð3Þ 6

3

� ��

¼ 41310 kN-m3

EI

Therefore, the slope at A is

yA ¼ DDA

L
¼ 41310=EI

12
¼ 3442:5 kN-m2

EI

Substituting the numerical values of E and I , we obtain

yA ¼ 3442:5

ð12:5� 106Þð1:92� 10�2Þ ¼ 0:014 rad

yA ¼ 0:014 rad @ Ans.

Slope at D From Fig. 6.6(c), we can see that

yD ¼ yDA � yA

in which, according to the first moment-area theorem,

yDA ¼ area of the M=EI diagram between A and D

¼ 1

EI

1

2
ð1080Þð6Þ þ 1

2
ð270Þð3Þ þ 810ð3Þ þ 1

2
ð810Þð3Þ

� �

¼ 7290 kN-m2

EI

Therefore,

yD ¼ 7290

EI
� 3442:5

EI
¼ 3847:5 kN-m2

EI

yD ¼ 3847:5

ð12:5� 106Þð1:92� 10�2Þ ¼ 0:016 rad

yD ¼ 0:016 rad ’ Ans.

Deflection at B Considering the portion AB of the elastic curve in Fig. 6.6(c), and realizing that yA is so small that
tan yA&yA, we write

yA ¼ DB þ DBA

6

from which

DB ¼ 6yA � DBA continued
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where

DBA ¼ moment of the area of the M=EI diagram between A and B about B

¼ 1

EI

1

2
ð1080Þð6Þ 6

3

� �� �

¼ 6480 kN-m3

EI

Therefore,

DB ¼ 6
3442:5

EI

� �
� 6480

EI
¼ 14175 kN-m3

EI

DB ¼ 14175

ð12:5� 106Þð1:92� 10�2Þ ¼ 59 mm

DB ¼ 59 mm # Ans.

Deflection at C Finally, considering the portion CD of the elastic curve in Fig. 6.6(c) and assuming yD to be small
(so that tan yD&yD), we write

yD ¼ DC þ DCD

3

or

DC ¼ 3yD � DCD

where

DCD ¼ 1

EI

1

2
ð810Þð3Þ 3

3

� �� �
¼ 1215 kN-m3

EI

Therefore,

DC ¼ 3
3847:5

EI

� �
� 1215

EI
¼ 10327:5 kN-m3

EI

DC ¼ 10327:5

ð12:5� 106Þð1:92� 10�2Þ ¼ 43 mm

DC ¼ 43 mm # Ans.

Example 6.5

Determine the maximum deflection for the beam shown in Fig. 6.7(a) by the moment-area method.

Solution
M=EI Diagram The M=EI diagram is shown in Fig. 6.7(b).

Elastic Curve The elastic curve for the beam is shown in Fig. 6.7(c).

continued
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Slope at A The slope of the elastic curve is not known at any point on the beam, so we will use the tangent at
support A as the reference tangent and determine its slope, yA, from the conditions that the deflections at the support
points A and C are zero. From Fig. 6.7(c), we can see that

yA ¼ DCA

15

To evaluate the tangential deviation DCA, we apply the second moment-area theorem:

FIG. 6.7

continued
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DCA ¼ moment of the area of the M=EI diagram between A and C about C

DCA ¼ 1

EI

1

2
ð400Þð10Þ 10

3
þ 5

� �
þ 1

2
ð400Þð5Þ 10

3

� �� �

¼ 20;000 kN�m3

EI

Therefore, the slope at A is

yA ¼ 20;000=EI

15
¼ 1;333:33 kN�m2

EI

Location of the Maximum Deflection If the maximum deflection occurs at point D, located at a distance xm from
the left support A (see Fig. 6.7(c)), then the slope at D must be zero; therefore,

yDA ¼ yA ¼ 1;333:33 kN�m2

EI

which indicates that in order for the slope at D to be zero (i.e., the maximum deflection occurs at D), the area of theM=EI
diagram between A and D must be equal to 1;333:33=EI . We use this condition to determine the location of point D:

yDA ¼ area of the
M

EI
diagram between A and D ¼ 1;333:33

EI

or
1

2

40xm

EI

� �
xm ¼ 1;333:33

EI

from which

xm ¼ 8:16 m

Maximum Deflection From Fig. 6.7(c), we can see that

Dmax ¼ DAD

where

DAD ¼ moment of the area of the M=EI diagram between A and D about A

¼ 1

2

ð40Þð8:16Þ
EI

ð8:16Þ 2

3

� �
ð8:16Þ

¼ 7;244:51 kN�m3

EI

Therefore,

Dmax ¼ 7;244:51 kN�m3

EI

Substituting E ¼ 200 GPa ¼ 200ð106Þ kN/m2 and I ¼ 700ð106Þ mm4 ¼ 700ð10�6Þ m4, we obtain

Dmax ¼ 7;244:51

200ð106Þð700Þð10�6Þ ¼ 0:0517 m

Dmax ¼ 51:7 mm # Ans.
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Example 6.6

Use the moment-area method to determine the slope at point A and the deflection at point C of the beam shown in
Fig. 6.8(a).

Solution
M=EI Diagram The bending moment diagram is shown in Fig. 6.8(b), and the M=EI diagram for a reference

moment of inertia I ¼ 1040� 106 mm4 is shown in Fig. 6.8(c).

Elastic Curve The elastic curve for the beam is shown in Fig. 6.8(d). Note that the elastic curve is discontinuous at
the internal hinge C. Therefore, the moment-area theorems must be applied separately over the portions AC and
CF of the curve on each side of the hinge.

continued
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Slope at D The tangent at support D is selected as the reference tangent. From Fig. 6.8(d), we can see that the
slope of this tangent is given by the relationship

yD ¼ DED

5

where, from the second moment-area theorem,

DED ¼ 1

EI
202:5ð5Þð2:5Þ þ 1

2
ð67:5Þð5Þ 10

3

� �� �
¼ 3093:75 kN-m3

EI

Therefore,

yD ¼ 3093:75

5ðEIÞ ¼
618:75 kN-m2

EI

Deflection at C From Fig. 6.8(d), we can see that

DC ¼ 3yD þ DCD

in which

DCD ¼ 1

2

270

EI

� �
ð3Þ 2ð Þ¼ 810 kN-m3

EI

Therefore,

DC ¼ 3
618:75

EI

� �
þ 810

EI
¼ 2666:25 kN-m3

EI

Substituting the numerical values of E and I , we obtain

DC ¼ 2666:25

ð200� 106Þð1040� 10�6Þ ¼ 12:8 mm

DC ¼ 12:8 mm # Ans.

Slope at A Considering the portion AC of the elastic curve, we can see from Fig. 6.8(d) that

yA ¼ DC þ DCA

6

where

DCA ¼ 1

2

135

EI

� �
ð6Þð3Þ ¼ 1215 kN-m3

EI

Therefore,

yA ¼ 1

6

2666:25

EI
þ 1215

EI

� �
¼ 646:875 kN-m2

EI

yA ¼ 646:875

ð200� 106Þð1040� 10�6Þ ¼ 0:003 rad

yA ¼ 0:003 rad @ Ans.
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6.5 BENDING MOMENT DIAGRAMS BY PARTS

As illustrated in the preceding section, application of the moment-area
method involves computation of the areas and moments of areas of
various portions of the M=EI diagram. It will be shown in the following
section that the conjugate-beam method for determining deflections of
beams also requires computation of these quantities. When a beam is
subjected to di¤erent types of loads, such as a combination of distrib-
uted and concentrated loads, determination of the properties of the re-
sultant M=EI diagram, due to the combined e¤ect of all the loads, can
become a formidable task. This di‰culty can be avoided by constructing

FIG. 6.9
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the bending moment diagram in parts—that is, constructing a separate
bending moment diagram for each of the loads. The ordinates of the
bending moment diagrams thus obtained are then divided by EI to
obtain the M=EI diagrams. These diagrams usually consist of simple
geometric shapes, so their areas and moments of areas can be easily
computed. The required areas and moments of areas of the resultant
M=EI diagram are then obtained by algebraically adding (superimpos-
ing) the corresponding areas and moments of areas, respectively, of the
bending moment diagrams for the individual loads.

Two procedures are commonly used for constructing bending mo-
ment diagrams by parts. The first procedure simply involves applying
each of the loads separately on the beam and constructing the corre-
sponding bending moment diagrams. Consider, for example, a beam
subjected to a combination of a uniformly distributed load and a con-
centrated load, as shown in Fig. 6.9(a). To construct the bending mo-
ment diagram by parts, we apply the two types of loads separately on
the beam, as shown in Fig. 6.9(b) and (c), and draw the corresponding
bending moment diagrams. It is usually convenient to draw the parts
of the bending moment diagram together, as shown in Fig. 6.9(d). Al-
though it is not necessary for the application of the moment-area and
conjugate-beam methods, if so desired, the resultant bending moment
diagram, as shown in Fig. 6.9(a), can be obtained by superimposing the
two parts shown in Fig. 6.9(b) and (c).

An alternative procedure for constructing bending moment dia-
grams by parts consists of selecting a point on the beam (usually a sup-
port point or an end of the beam) at which the beam is assumed to

FIG. 6.10
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be fixed, applying each of the loads and support reactions separately on
this imaginary cantilever beam, and constructing the corresponding
bending moment diagrams. This procedure is commonly referred to as
constructing the bending moment diagram by cantilever parts. To illus-
trate this procedure, consider again the beam examined in Fig. 6.9. The
beam is redrawn in Fig. 6.10(a), which also shows the external loads

FIG. 6.10 (contd.)
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as well as the support reactions determined from the equations of equi-
librium. To construct the bending moment diagram by cantilever parts
with respect to the support point B, we imagine the beam to be a canti-
lever beam with fixed support at point B. Then we apply the two loads
and the reaction at support A separately on this imaginary cantilever
beam, as shown in Fig. 6.10(b)–(d), and draw the corresponding bend-
ing moment diagrams, as shown in these figures. The parts of the bend-
ing moment diagram are often drawn together, as shown in Fig. 6.10(e).
The resultant bending moment diagram, as depicted in Fig. 6.10(a),
can be obtained, if desired, by superimposing the three parts shown
in Fig. 6.10(b)–(d).

Example 6.7

Determine the deflection at point C of the beam shown in Fig. 6.11(a) by the moment-area method.

Solution
M=EI Diagram The bending moment diagram for this beam by cantilever parts with respect to the support point

B was determined in Fig. 6.10. The ordinates of the bending moment diagram are divided by EI to obtain the M=EI
diagram shown in Fig. 6.11(b).

Elastic Curve See Fig. 6.11(c).

Slope at B Selecting the tangent at B as the reference tangent, it can be seen from Fig. 6.11(c) that

yB ¼ DAB

9

By using the M=EI diagram (Fig. 6.11(b)) and the properties of geometric shapes given in Appendix A, we compute

DAB ¼ 1

EI

1

2
ð1050Þð9Þð6Þ � 1

3
ð1215Þð9Þ 3

4

� �
ð9Þ

� �

¼ 3746:25 kN-m3

EI

Therefore,

yB ¼ 3746:25

9EI
¼ 416:25 kN-m2

EI

Deflection at C From Fig. 6.11(c), we can see that

DC ¼ 3yB � DCB

continued
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where

DCB ¼ 1

2

165

EI

� �
ð3Þ 6

3

� �
¼ 495 kN-m3

EI

Therefore,

DC ¼ 3
416:25

EI

� �
� 495

EI
¼ 753:75 kN-m3

EI

Substituting the numerical values of E and I , we obtain

DC ¼ 753:75

ð200� 106Þð830� 10�6Þ ¼ 4:54 mm

DC ¼ 4:54 mm " Ans.

FIG. 6.11
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6.6 CONJUGATE-BEAM METHOD

The conjugate-beam method, developed by Otto Mohr in 1868, gen-
erally provides a more convenient means of computing slopes and de-
flections of beams than the moment-area method. Although the amount
of computational e¤ort required by the two methods is essentially the
same, the conjugate-beam method is preferred by many engineers be-
cause of its systematic sign convention and straightforward application,
which does not require sketching the elastic curve of the structure.

The conjugate-beam method is based on the analogy between the
relationships among load, shear, and bending moment and the relation-
ships among M=EI , slope, and deflection. These two types of relation-
ships were derived in Sections 5.4 and 6.1, respectively, and are repeated
in Table 6.1 for comparison purposes. As this table indicates, the rela-
tionships between M=EI , slope, and deflection have the same form as
that of the relationships between load, shear, and bending moment.
Therefore, the slope and deflection can be determined from M=EI by
the same operations as those performed to compute shear and bending
moment, respectively, from the load. Furthermore, if the M=EI dia-
gram for a beam is applied as the load on a fictitious analogous beam,
then the shear and bending moment at any point on the fictitious beam
will be equal to the slope and deflection, respectively, at the correspond-
ing point on the original real beam. The fictitious beam is referred to as
the conjugate beam, and it is defined as follows:

A conjugate beam corresponding to a real beam is a fictitious beam of the

same length as the real beam, but it is externally supported and internally

connected such that if the conjugate beam is loaded with the M=EI dia-

gram of the real beam, the shear and bending moment at any point on the

conjugate beam are equal, respectively, to the slope and deflection at the

corresponding point on the real beam.

As the foregoing discussion indicates, the conjugate-beam method
essentially involves computing the slopes and deflections of beams by
computing the shears and bending moments in the corresponding con-
jugate beams.

TABLE 6.1

Load–Shear–Bending Moment
Relationships

M=EI–Slope–Deflection
Relationships

dS

dx
¼ w

dy

dx
¼ M

EI

dM

dx
¼ S or

d 2M

dx2
¼ w

dy

dx
¼ y or

d 2y

dx2
¼ M

EI
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Supports for Conjugate Beams

External supports and internal connections for conjugate beams are
determined from the analogous relationships between conjugate beams
and the corresponding real beams; that is, the shear and bending mo-
ment at any point on the conjugate beam must be consistent with the
slope and deflection at that point on the real beam. The conjugate
counterparts of the various types of real supports thus determined are
shown in Fig. 6.12. As this figure indicates, a hinged or a roller support
at an end of the real beam remains the same in the conjugate beam. This
is because at such a support there may be slope, but no deflection, of the
real beam. Therefore, at the corresponding end of the conjugate beam
there must be shear but no bending moment; and a hinged or a roller
support at that end would satisfy these conditions. Since at a fixed sup-
port of the real beam there is neither slope nor deflection, both shear
and bending moment at that end of the conjugate beam must be zero;
therefore, the conjugate of a fixed real support is a free end, as shown in
Fig. 6.12. Conversely, a free end of a real beam becomes a fixed support

Real Beam Conjugate Beam

Type of Support
Slope and
Deflection

Shear and
Bending Moment

Type of Support

Simple end support

or y= 0
D ¼ 0

S= 0
M ¼ 0

Simple end support

or

Fixed support
y ¼ 0
D ¼ 0

S ¼ 0
M ¼ 0

Free end

Free end

y=0 0
D= 0

S= 0
M= 0

Fixed support

Simple interior support

or

y= 0 and
continuous

D ¼ 0

S= 0 and
continuous
M ¼ 0

Internal hinge

Internal hinge
y=0 0 and

discontinuous
D= 0

S= 0 and
discontinuous

M= 0

Simple interior support

FIG. 6.12 Supports for Conjugate Beams
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in the conjugate beam because there may be slope as well as deflection
at that end of the real beam; therefore, the conjugate beam must de-
velop both shear and bending moment at that point. At an interior
support of a real beam there is no deflection, but the slope is continuous
(i.e., there is no abrupt change of slope from one side of the support to
the other), so the corresponding point on the conjugate beam becomes
an internal hinge at which the bending moment is zero and the shear is
continuous. Finally, at an internal hinge in the real beam there may be
deflection as well as discontinuous slope of the real beam. Therefore, the
conjugate beam must have bending moment and abrupt change of shear
at that point. Because an interior support satisfies both of these require-
ments, an internal hinge in the real beam becomes an interior support in
the conjugate beam, as shown in Fig. 6.12.

The conjugates of some common types of (real) beams are depicted
in Fig. 6.13. As Fig. 6.13(a)–(e) indicates, the conjugate beams corre-
sponding to statically determinate real beams are always statically deter-
minate, whereas statically indeterminate beams have unstable conjugate
beams, as shown in Fig. 6.13(f )–(h). However, since these unstable
conjugate beams will be loaded with the M=EI diagrams of statically
indeterminate real beams, which are self-balancing, the unstable con-
jugate beams will be in equilibrium. As the last two examples in Fig. 6.13
illustrate, statically unstable real beams have statically indeterminate
conjugate beams.

Sign Convention

If the positive ordinates of the M=EI diagram are applied to the con-
jugate beam as upward loads (in the positive y direction) and vice versa,
then a positive shear in the conjugate beam denotes a positive (counter-
clockwise) slope of the real beam with respect to the undeformed axis of
the real beam; also, a positive bending moment in the conjugate beam
denotes a positive (upward or in the positive y direction) deflection of
the real beam with respect to the undeformed axis of the real beam and
vice versa.

Procedure for Analysis

The following step-by-step procedure can be used for determining the
slopes and deflections of beams by the conjugate-beam method.

1. Construct the M=EI diagram for the given (real) beam subjected
to the specified (real) loading. If the beam is subjected to a com-
bination of di¤erent types of loads (e.g., concentrated loads and
distributed loads), the analysis can be considerably expedited by
constructing the M=EI diagram by parts, as discussed in the pre-
ceding section.
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FIG. 6.13
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2. Determine the conjugate beam corresponding to the given real
beam. The external supports and internal connections for the con-
jugate beam must be selected so that the shear and bending mo-
ment at any point on the conjugate beam are consistent with the
slope and deflection, respectively, at that point on the real beam.
The conjugates of various types of real supports are given in
Fig. 6.12.

3. Apply the M=EI diagram (from step 1) as the load on the conjugate
beam. The positive ordinates of the M=EI diagram are applied as
upward loads on the conjugate beam and vice versa.

4. Calculate the reactions at the supports of the conjugate beam by
applying the equations of equilibrium and condition (if any).

5. Determine the shears at those points on the conjugate beam where
slopes are desired on the real beam. Determine the bending mo-
ments at those points on the conjugate beam where deflections are
desired on the real beam. The shears and bending moments in con-
jugate beams are considered to be positive or negative in accord-
ance with the beam sign convention (Fig. 5.2).

6. The slope at a point on the real beam with respect to the un-
deformed axis of the real beam is equal to the shear at that point on
the conjugate beam. A positive shear in the conjugate beam denotes
a positive or counterclockwise slope of the real beam and vice versa.

7. The deflection at a point on the real beam with respect to the un-
deformed axis of the real beam is equal to the bending moment at
that point on the conjugate beam. A positive bending moment in
the conjugate beam denotes a positive or upward deflection of the
real beam and vice versa.

Example 6.8

Determine the slopes and deflections at points B and C of the cantilever beam shown in Fig. 6.14(a) by the conjugate-
beam method.

Solution
M=EI Diagram This beam was analyzed in Example 6.3 by the moment-area method. The M=EI diagram for a

reference moment of inertia I ¼ 1:25� 109 mm4 is shown in Fig. 6.14(b).

Conjugate Beam Fig. 6.14(c) shows the conjugate beam, loaded with the M=EI diagram of the real beam. Note
that point A, which is fixed on the real beam, becomes free on the conjugate beam, whereas point C, which is free on the
real beam, becomes fixed on the conjugate beam. Because the M=EI diagram is negative, it is applied as a downward
load on the conjugate beam.

continued
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Slope at B The slope at B on the real beam is equal to the shear at B in the conjugate beam. Using the free body of
the conjugate beam to the left of B and considering the external forces acting upward on the free body as positive, in
accordance with the beam sign convention (see Fig. 5.2), we compute the shear at B in the conjugate beam as

þ " SB ¼ 1

EI
�135ð5Þ � 1

2
ð225Þð5Þ

� �
¼ � 1237:5 kN-m2

EI

Therefore, the slope at B on the real beam is

yB ¼ � 1237:5 kN-m2

EI

Substituting the numerical values of E and I , we obtain

yB ¼ � 1237:5

ð200� 106Þð1:25� 10�3Þ ¼ �0:0049 rad

yB ¼ 0:0049 rad @ Ans.

Deflection at B The deflection at B on the real beam is equal to the bending moment at B in the conjugate beam.
Using the free body of the conjugate beam to the left of B and considering the clockwise moments of the external forces

FIG. 6.14

continued
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about B as positive, in accordance with the beam sign convention (Fig. 5.2), we compute the bending moment at B on
the conjugate beam as

þ @

MB ¼ 1

EI
�135ð5Þð2:5Þ � 1

2
ð225Þð5Þ 10

3

� �� �
¼ � 3562:5 kN-m3

EI

Therefore, the deflection at B on the real beam is

DB ¼ � 3562:5 kN-m3

EI
¼ � 3562:5

ð200� 106Þð1:25� 10�3Þ ¼ �14:25 mm

DB ¼ 14:25 mm # Ans.

Slope at C Using the free body of the conjugate beam to the left of C, we determine the shear at C as

þ " SC ¼ 1

EI
�135ð5Þ � 1

2
ð225Þð5Þ � 1

2
ð270Þð3Þ

� �
¼ � 1642:5 kN-m2

EI

Therefore, the slope at C on the real beam is

yC ¼ � 1642:5 kN-m2

EI
¼ � 1642:5

ð200� 106Þð1:25� 10�3Þ ¼ �0:0067 rad

yC ¼ 0:0067 rad @ Ans.

Deflection at C Considering the free body of the conjugate beam to the left of C, we obtain

þ @

MC ¼ 1

EI
�135ð5Þð2:5Þ � 1

2
ð225Þð5Þð20=3Þ � 1

2
ð270Þð3Þð2Þ

� �

¼ � 8085 kN-m3

EI

Therefore, the deflection at C on the real beam is

DC ¼ � 8085 kN-m3

EI
¼ � 8085

ð200� 106Þð1:25� 10�3Þ ¼ �32 mm

DC ¼ 32 mm # Ans.

Example 6.9

Determine the slope and deflection at point B of the beam shown in Fig. 6.15(a) by the conjugate-beam method.

Solution
M/EI Diagram See Fig. 6.15(b).

Conjugate Beam The conjugate beam, loaded with the M/EI diagram of the real beam, is shown in Fig. 6.15(c).
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Slope at B Considering the free body of the conjugate beam to the left of B, we determine the shear at B as

þ " SB ¼ M

EI
ðLÞ ¼ML

EI

Therefore, the slope at B on the real beam is

yB ¼ML

EI

yB ¼ML

EI
’ Ans.

Deflection at B Using the free body of the conjugate beam to the left of B, we determine the bending moment
at B as

þ @

MB ¼ M

EI
ðLÞ L

2

� �
¼ML2

2EI

L

EI = constant
(a)

A

B

M

BA

M
EI

(b)         DiagramM
EI

L

(c) Conjugate Beam

BA

M
EI

FIG. 6.15

continued
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Therefore, the deflection at B on the real beam is

DB ¼ML2

2EI

DB ¼ML2

2EI
" Ans.

Example 6.10

Use the conjugate-beam method to determine the slopes at ends A and D and the deflections at points B and C of the
beam shown in Fig. 6.16(a).

Solution
M/EI Diagram This beam was analyzed in Example 6.4 by the moment-area method. The M/EI diagram for this

beam is shown in Fig. 6.16(b).

Conjugate Beam Fig. 6.16(c) shows the conjugate beam loaded with the M/EI diagram of the real beam. Points A
and D, which are simple end supports on the real beam, remain the same on the conjugate beam. Because the M/EI

diagram is positive, it is applied as an upward load on the conjugate beam.

Reactions for Conjugate Beam By applying the equations of equilibrium to the free body of the entire conjugate
beam, we obtain the following:

þ ’
P

MD ¼ 0

Ayð40Þ � 1

EI

�
1

2
ð1080Þð6Þ 6

3
þ 6

� �
þ 810ð3Þð4:5Þ

þ 1

2
ð270Þð3Þ 6

3
þ 3

� �
þ 1

2
ð810Þð3Þ 6

3

� ��
¼ 0

Ay ¼ 3442:5 kN-m2

EI

þ "PFy ¼ 0

1

EI

�
�3442:5þ 1

2
ð1080Þð6Þ þ 810ð3Þ þ 1

2
ð270Þð3Þ

þ 1

2
ð810Þð3Þ

�
�Dy ¼ 0

Dy ¼ 3847:5 kN-m2

EI

Slope at A The slope at A on the real beam is equal to the shear just to the right of A in the conjugate beam, which is

þ " SA;R ¼ �Ay ¼ � 3442:5 kN-m2

EI
continued
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FIG. 6.16

Therefore, the slope at A on the real beam is

yA ¼ � 3442:5 kN-m2

EI
¼ � 3442:5

ð12:5� 106Þð1:92� 10�2Þ ¼ �0:014 rad

yA ¼ 0:014 rad @ Ans.

Slope at D The slope at D on the real beam is equal to the shear just to the left of D in the conjugate beam, which is

þ # SD;L ¼ þDy ¼ 3847:5 kN-m2

EI

continued
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Therefore, the slope at D on the real beam is

yD ¼ 3847:5 kN-m2

EI
¼ 3847:5

ð12:5� 106Þð1:92� 10�2Þ ¼ 0:016 rad

yD ¼ 0:016 rad ’ Ans.

Deflection at B The deflection at B on the real beam is equal to the bending moment at B in the conjugate beam.
Using the free body of the conjugate beam to the left of B, we compute

þ @

MB ¼ 1

EI
�3442:5ð6Þ þ 1

2
ð1080Þð6Þ 6

3

� �� �
¼ � 14175 kN-m3

EI

Therefore, the deflection at B on the real beam is

DB ¼ � 14175 kN-m3

EI
¼ � 14175

ð12:5� 106Þð1:92� 10�2Þ ¼ �59 mm

DB ¼ 59 mm # Ans.

Deflection at C The deflection at C on the real beam is equal to the bending moment at C in the conjugate beam.
Using the free body of the conjugate beam to the right of C, we determine

þ ’ MC ¼ 1

EI
�3847:5ð3Þ þ 1

2
ð810Þð3Þ 3

3

� �� �
¼ � 10327:5 kN-m3

EI

Therefore, the deflection at C on the real beam is

DC ¼ � 10327:5 kN-m3

EI
¼ � 10327:5

ð12:5� 106Þð1:92� 10�2Þ ¼ �43 mm

DC ¼ 43 mm # Ans.

Example 6.11

Determine the maximum deflection for the beam shown in Fig. 6.17(a) by the conjugate-beam method.

Solution
M/EI Diagram This beam was previously analyzed in Example 6.5 by the moment-area method. The M/EI dia-

gram for the beam is shown in Fig. 6.17(b).

Conjugate Beam The simply supported conjugate beam, loaded with the M/EI diagram of the real beam, is shown
in Fig. 6.17(c).

Reaction at Support A of the Conjugate Beam By applying the moment equilibrium equation
P

MC ¼ 0 to the free
body of the entire conjugate beam, we determine

continued
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FIG. 6.17

þ ’ MC ¼ 0

Ayð15Þ � 1

EI

1

2
ð400Þð10Þ 10

3
þ 5

� �
þ 1

2
ð400Þð5Þ 10

3

� �� �
¼ 0

Ay ¼ 1;333:33 kN-m2

EI

Location of the Maximum Bending Moment in Conjugate Beam If the maximum bending moment in the conjugate
beam (or the maximum deflection on the real beam) occurs at point D, located at a distance xm from the left support A

continued
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(see Fig. 6.17(c)), then the shear in the conjugate beam at D must be zero. Considering the free body of the conjugate
beam to the left of D, we write

þ " SD ¼ 1

EI
�1;333:33þ 1

2
ð40xmÞðxmÞ

� �
¼ 0

from which

xm ¼ 8:16 m

Maximum Deflection of the Real Beam The maximum deflection of the real beam is equal to the maximum bend-
ing moment in the conjugate beam, which can be determined by considering the free body of the conjugate beam to the
left of D, with xm ¼ 8:16 m. Thus,

þ @

Mmax ¼MD ¼ 1

EI
�1;333:33ð8:16Þ þ 1

2
ð40Þð8:16Þ2 8:16

3

� �� �

¼ � 7;244:51 kN�m3

EI

Therefore, the maximum deflection of the real beam is

Dmax ¼ � 7;244:51 kN�m3

EI
¼ � 7;244:51

ð200Þð700Þ ¼ �0:0517 m ¼ �51:7 mm

Dmax ¼ 51:7 mm # Ans.

Example 6.12

Determine the slope at point A and the deflection at point C of the beam shown in Fig. 6.18(a) by the conjugate-beam
method.

Solution
M/EI Diagram This beam was analyzed in Example 6.6 by the moment-area method. The M/EI diagram for a

reference moment of inertia I ¼ 1040� 106 mm4 is shown in Fig. 6.18(b).

Conjugate Beam Figure 6.18(c) shows the conjugate beam loaded with the M/EI diagram of the real beam. Note
that points D and E, which are simple interior supports on the real beam, become internal hinges on the conjugate
beam; point C, which is an internal hinge on the real beam, becomes a simple interior support on the conjugate beam.
Also note that the positive part of the M/EI diagram is applied as upward loading on the conjugate beam, whereas the
negative part of the M/EI diagram is applied as downward loading.

Reaction at Support A of the Conjugate Beam We determine the reaction Ay of the conjugate beam by applying the
equations of condition as follows:

continued
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FIG. 6.18

þ ’
P

MAD
D ¼ 0

Ayð9Þ � 1

2

135

EI

� �
ð6Þð6Þ þ Cyð3Þ þ 1

2

270

EI

� �
ð3Þ 3

3

� �
¼ 0

or

Cy ¼ �3Ay þ 675

EI (1)

þ ’
P

MAE
E ¼ 0

Ayð14Þ � 1

2

135

EI

� �
ð6Þð11Þ þ Cyð8Þ þ 1

2

270

EI

� �
ð3Þ 3

3
þ 5

� �

þ 202:5

EI
ð5Þð2:5Þ þ 1

2

67:5

EI

� �
ð5Þ 10

3

� �
¼ 0
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or

14Ay þ 8Cy ¼ � 1068:75

EI (2)

Substituting Eq. (1) into Eq. (2) and solving for Ay, we obtain

Ay ¼ 646:875 kN-m2

EI

Slope at A The slope at A on the real beam is equal to the shear just to the right of A in the conjugate beam,
which is

þ " SA;R ¼ �Ay ¼ � 646:875 kN-m2

EI

Therefore, the slope at A on the real beam is

yA ¼ � 646:875

EI
¼ � 646:875

ð200� 106Þð1040� 10�6Þ ¼ �0:003 rad

yA ¼ 0:003 rad @ Ans.

Deflection at C The deflection at C on the real beam is equal to the bending moment at C in the conjugate beam.
Considering the free body of the conjugate beam to the left of C, we obtain

þ @

MC ¼ 1

EI
�646:875ð6Þ þ 1

2
ð135Þð6Þð3Þ

� �
¼ � 2666:25 kN-m3

EI

Therefore, the deflection at C on the real beam is

DC ¼ � 2666:25 kN-m3

EI
¼ � 2666:25

ð200� 106Þð1040� 10�6Þ ¼ �12:8 mm

DC ¼ 12:8 mm # Ans.

Example 6.13

Use the conjugate-beam method to determine the deflection at point C of the beam shown in Fig. 6.19(a).

Solution
M/EI Diagram This beam was previously analyzed in Example 6.7 by the moment-area method. The M/EI dia-

gram by cantilever parts with respect to point B is shown in Fig. 6.19(b).

Conjugate Beam See Fig. 6.19(c).

continued
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FIG. 6.19

Reaction at Support A of the Conjugate Beam

þ ’
P

MAB
B ¼ 0

Ayð9Þ þ 1

EI

1

3
ð1215Þð9Þ 9

4

� �
� 1

2
ð1050Þð9Þ 9

3

� �� �
¼ 0

Ay ¼ 663:75 kN-m2

EI

Deflection at C The deflection at C on the real beam is equal to the bending moment at C in the conjugate beam.
Considering the free body of the conjugate beam to the left of C, we obtain

þ @

MC ¼ 1

EI

�
�663:75ð12Þ � 1

3
ð1215Þð9Þ 9

4
þ 3

� �
þ 1

2
ð1050Þð9Þð6Þ

� 1

2
ð165Þð3Þ 6

3

� ��
¼ 753:75 kN-m3

EI

Therefore, the deflection at C on the real beam is

DC ¼ 753:75 kN-m3

EI
¼ 753:75

ð200� 106Þð830� 10�6Þ ¼ 4:54 mm

DC ¼ 4:54 mm " Ans.
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SUMMARY

In this chapter we have discussed the geometric methods for determin-
ing the slopes and deflections of statically determinate beams. The dif-
ferential equation for the deflection of beams can be expressed as

d 2y

dx2
¼ M

EI
(6.9)

The direct integration method essentially involves writing expression(s)
for M/EI for the beam in terms of x and integrating the expression(s)
successively to obtain equations for the slope and deflection of the elas-
tic curve. The constants of integration are determined from the boun-
dary conditions and the conditions of continuity of the elastic curve. If a
beam is subjected to several loads, the slope or deflection due to the
combined e¤ects of the loads can be determined by algebraically adding
the slopes or deflections due to each of the loads acting individually on
the beam.

The moment-area method is based on two theorems, which can be
mathematically expressed as follows:

First moment-area theorem: yBA ¼
ðB

A

M

EI
dx (6.12)

Second moment-area theorem: DBA ¼
ðB

A

M

EI
x dx (6.15)

Two procedures for constructing bending moment diagrams by parts are
presented in Section 6.5.

A conjugate beam is a fictitious beam of the same length as the
corresponding real beam; but it is externally supported and internally
connected such that, if the conjugate beam is loaded with the M/EI di-
agram of the real beam, the shear and bending moment at any point on
the conjugate beam are equal, respectively, to the slope and deflection at
the corresponding point on the real beam. The conjugate-beam method
essentially involves determining the slopes and deflections of beams by
computing the shears and bending moments in the corresponding con-
jugate beams.

PROBLEMS

Section 6.2

6.1 through 6.6 Determine the equations for slope and
deflection of the beam shown by the direct integration
method. EI ¼ constant.

L

A

B
M

FIG. P6.1
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FIG. P6.2

FIG. P6.3

FIG. P6.4

FIG. P6.5

FIG. P6.6

6.7 and 6.8 Determine the slope and deflection at point B of
the beam shown by the direct integration method.

A
B

4 m

EI = constant
E = 70 GPa
I = 164 (106) mm4

50 kN–m

FIG. P6.7

4 m

A

C
B

2 m

EI = constant
E = 70 GPa
I = 335x106mm4

80 kN–m

FIG. P6.8

Sections 6.4 and 6.5

6.9 through 6.12 Determine the slope and deflection at
point B of the beam shown by the moment-area method.

5 m

90 kN

BA

EI = constant
E = 200 GPa
I = 800 (106) mm4

FIG. P6.9, P6.35

9 m

BA

30 kN/m

EI = constant
E = 200 GPa
I = 1250x106mm4

FIG. P6.10, P6.36

L

a

P

BA

EI = constant

FIG. P6.11, P6.37
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L

a

w

BA

EI = constant

FIG. P6.12, P6.38

6.13 and 6.14 Determine the slope and deflection at point A
of the beam shown by the moment-area method.

FIG. P6.13, P6.39

A

P

E = constant
2II

B
C

2L
3

L
3

FIG. P6.14, P6.40

6.15 through 6.17 Use the moment-area method to de-
termine the slopes and deflections at points B and C of the
beam shown.

100 kN 300 kN–m

A

E = constant = 70 GPa
I = 500 (106) mm4

6 m
2I

3 m
I

B C

FIG. P6.15, P6.41

A
B C

3 m 3 m 3 m

EI = constant
E = 200 GPa
I = 1665x106mm4

270 kN
45 kN/m

FIG. P6.16, P6.42

6 m 3 m 3 m

A B D

C

EI = constant
E = 200 GPa
I = 462 (106) mm4

250 kN

FIG. P6.17, P6.43

6.18 through 6.22 Determine the smallest moment of in-
ertia I required for the beam shown, so that its maximum
deflection does not exceed the limit of 1/360 of the span
length (i.e., Dmax aL=360). Use the moment-area method.

A
CB

L = 10 m
EI = constant
E = 200 GPa

5 m 5 m

300 kN–m
60 kN

FIG. P6.18, P6.44

B

45 kN/m

A

L = 6 m
EI = constant
E = 200 GPa

FIG. P6.19, P6.45
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4 m

12 kN/m

4 m
C

A B

L = 8 m
EI = constant
E = 70 GPa

FIG. P6.20, P6.46

FIG. P6.21, P6.47

FIG. P6.22, P6.48

6.23 through 6.30 Determine the maximum deflection for
the beam shown by the moment-area method.

2.5m 5 m

A C

B

EI = constant
E = 70 GPa
I = 210x106mm4

135 kN

FIG. P6.23, P6.49

15 m
A

B

EI = constant
E = 70 GPa
I = 712 (106) mm4

60 kN–m

FIG. P6.24, P6.50

80 kN

A

E = constant = 200 GPa
I  = 600 (106) mm4

12 m
I

12 m
2I

B
C

FIG. P6.25, P6.51

FIG. P6.26, P6.52

3 m
I

3 m
2I

3 m
I

DA

CB

E = constant = 200 GPa
I = 420x106mm4

270 kN180 kN

FIG. P6.27, P6.53
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FIG. P6.28, P6.54

FIG. P6.29, P6.55

FIG. P6.30, P6.56

6.31 and 6.32 Use the moment-area method to determine
the slope and deflection at point D of the beam shown.

5 m 5 m 5 m

A C

B D

EI = constant
E = 70 GPa
I = 1040x106mm4

155 kN

FIG. P6.31, P6.57

5 m 5 m 4 m

A

B DC

EI = constant
E = 70 GPa
I = 2,340 (106) mm4

180 kN
15 kN/m

FIG. P6.32, P6.58

6.33 and 6.34 Use the moment-area method to determine
the slopes and deflections at points B and D of the beam
shown.

FIG. P6.33, P6.59

FIG. P6.34, P6.60

Section 6.6

6.35 through 6.38 Use the conjugate-beam method to de-
termine the slope and deflection at point B of the beams
shown in Figs. P6.9 through P6.12.

6.39 and 6.40 Determine the slope and deflection at point A
of the beam shown in Figs. P6.13 and P6.14 by the conjugate-
beam method.

6.41 through 6.43 Use the conjugate-beam method to de-
termine the slopes and deflections at points B and C of the
beams shown in Figs. P6.15 through P6.17.

6.44 through 6.48 Using the conjugate-beam method, de-
termine the smallest moments of inertia I required for the
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beams shown in Figs. P6.18 through P6.22, so that the
maximum beam deflection does not exceed the limit of
1/360 of the span length (i.e., Dmax aL=360).

6.49 through 6.56 Determine the maximum deflection for
the beams shown in Figs. P6.23 through P6.30 by the con-
jugate-beam method.

6.57 and 6.58 Use the conjugate-beam method to determine
the slope and deflection at point D of the beam shown in
Figs. P6.31 and P6.32.

6.59 and 6.60 Use the conjugate-beam method to determine
the slopes and deflections at points B and D of the beams
shown in Figs. P6.33 and P6.34.
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7
Deflections of Trusses,
Beams, and Frames:
Work–Energy Methods
7.1 Work
7.2 Principle of Virtual Work
7.3 Deflections of Trusses by the Virtual Work Method
7.4 Deflections of Beams by the Virtual Work Method
7.5 Deflections of Frames by the Virtual Work Method
7.6 Conservation of Energy and Strain Energy
7.7 Castigliano’s Second Theorem
7.8 Betti’s Law and Maxwell’s Law of Reciprocal Deflections

Summary
Problems

275

Interstate 35W Bridge Collapse in

Minnesota (2007)
AP Photo/Pioneer Press, Brandi Jade Thomas

In this chapter, we develop methods for the analysis of deflections of
statically determinate structures by using some basic principles of work
and energy. Work–energy methods are more general than the geometric
methods considered in the previous chapter in the sense that they can
be applied to various types of structures, such as trusses, beams, and
frames. A disadvantage of these methods is that with each application,
only one deflection component, or slope, at one point of the structure
can be computed.

We begin by reviewing the basic concept of work performed by
forces and couples during a deformation of the structure and then dis-
cuss the principle of virtual work. This principle is used to formulate the
method of virtual work for the deflections of trusses, beams, and frames.
We derive the expressions for strain energy of trusses, beams, and
frames and then consider Castigliano’s second theorem for computing
deflections. Finally, we present Betti’s law and Maxwell’s law of recip-
rocal deflections.
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7.1 WORK

The work done by a force acting on a structure is simply defined as the
force times the displacement of its point of application in the direction
of the force. Work is considered to be positive when the force and the
displacement in the direction of the force have the same sense and neg-
ative when the force and the displacement have opposite sense.

Let us consider the work done by a force P during the deformation
of a structure under the action of a system of forces (which includes P),
as shown in Fig. 7.1(a). The magnitude of P may vary as its point of
application displaces from A in the undeformed position of the structure
to A 0 in the final deformed position. The work dW that P performs as
its point of application undergoes an infinitesimal displacement, dD
(Fig. 7.1(a)), can be written as

dW ¼ PðdDÞ
The total work W that the force P performs over the entire dis-

placement D is obtained by integrating the expression of dW as

W ¼
ðD

0

PdD (7.1)

FIG. 7.1
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As Eq. (7.1) indicates, the work is equal to the area under the
force-displacement diagram as shown in Fig. 7.1(b). In this text, we are
focusing our attention on the analysis of linear elastic structures, so an
expression for work of special interest is for the case when the force
varies linearly with displacement from zero to its final value, as shown
in Fig. 7.1(c). The work for such a case is given by the triangular area
under the force-displacement diagram and is expressed as

W ¼ 1

2
PD (7.2)

Another special case of interest is depicted in Fig. 7.1(d). In this
case, the force remains constant at P while its point of application
undergoes a displacement D caused by some other action independent
of P. The work done by the force P in this case is equal to the rec-
tangular area under the force-displacement diagram and is expressed as

W ¼ PD (7.3)

It is important to distinguish between the two expressions for work
as given by Eqs. (7.2) and (7.3). Note that the expression for work for
the case when the force varies linearly with displacement (Eq. 7.2) con-
tains a factor of 1

2 , whereas the expression for work for the case of a
constant force (Eq. 7.3) does not contain this factor. These two ex-
pressions for work will be used subsequently in developing di¤erent
methods for computing deflections of structures.

The expressions for the work of couples are similar in form to those
for the work of forces. The work done by a couple acting on a structure
is defined as the moment of the couple times the angle through which
the couple rotates. The work dW that a couple of moment M performs
through an infinitesimal rotation dy (see Fig. 7.1(a)) is given by

dW ¼MðdyÞ
Therefore, the total work W of a couple with variable moment M over
the entire rotation y can be expressed as

W ¼
ð y

0

M dy (7.4)

When the moment of the couple varies linearly with rotation from zero
to its final value, the work can be expressed as

W ¼ 1

2
My (7.5)

and, if M remains constant during a rotation y, then the work is given
by

W ¼My (7.6)
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7.2 PRINCIPLE OF VIRTUAL WORK

The principle of virtual work, which was introduced by John Bernoulli in
1717, provides a powerful analytical tool for many problems of struc-
tural mechanics. In this section, we study two formulations of this prin-
ciple, namely, the principle of virtual displacements for rigid bodies and
the principle of virtual forces for deformable bodies. The latter for-
mulation is used in the following sections to develop the method of vir-

tual work, which is considered to be one of the most general methods for
determining deflections of structures.

Principle of Virtual Displacements for Rigid Bodies

The principle of virtual displacements for rigid bodies can be stated as
follows:

If a rigid body is in equilibrium under a system of forces and if it is sub-

jected to any small virtual rigid-body displacement, the virtual work done

by the external forces is zero.

The term virtual simply means imaginary, not real. Consider the
beam shown in Fig. 7.2(a). The free-body diagram of the beam is shown
in Fig. 7.2(b), in which Px and Py represent the components of the ex-
ternal load P in the x and y directions, respectively.

Now, suppose that the beam is given an arbitrary small virtual
rigid-body displacement from its initial equilibrium position ABC to
another position A 0B 0C 0, as shown in Fig. 7.2(c). As shown in this figure,
the total virtual rigid-body displacement of the beam can be decom-
posed into translations Dvx and Dvy in the x and y directions, re-
spectively, and a rotation yv about point A. Note that the subscript v is
used here to identify the displacements as virtual quantities. As the
beam undergoes the virtual displacement from position ABC to position
A 0B 0C 0, the forces acting on it perform work, which is called virtual

work. The total virtual work, Wve, performed by the external forces act-
ing on the beam can be expressed as the sum of the virtual work Wvx

and Wvy done during translations in the x and y directions, respectively,
and the virtual work Wvr, done during the rotation; that is,

Wve ¼Wvx þWvy þWvr (7.7)

During the virtual translations Dvx and Dvy of the beam, the virtual
work done by the forces is given by

Wvx ¼ AxDvx � PxDvx ¼ ðAx � PxÞDvx ¼ ð
P

FxÞDvx (7.8)

and

Wvy ¼ AyDvy � PyDvy þ CyDvy ¼ ðAy � Py þ CyÞDvy ¼ ð
P

FyÞDvy (7.9)
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(see Fig. 7.2(c)). The virtual work done by the forces during the small
virtual rotation yv can be expressed as

Wvr ¼ �PyðayvÞ þ CyðLyvÞ ¼ ð�aPy þ LCyÞyv ¼ ð
P

MAÞyv (7.10)

By substituting Eqs. (7.8) through (7.10) into Eq. (7.7), we write the
total virtual work done as

Wve ¼ ð
P

FxÞDvx þ ð
P

FyÞDvy þ ð
P

MAÞyv (7.11)

Because the beam is in equilibrium,
P

Fx ¼ 0,
P

Fy ¼ 0, andP
MA ¼ 0; therefore, Eq. (7.11) becomes

Wve ¼ 0 (7.12)

which is the mathematical statement of the principle of virtual displace-
ments for rigid bodies.

FIG. 7.2

SECTION 7.2 Principle of Virtual Work 279

https://engineersreferencebookspdf.com



Principle of Virtual Forces for Deformable Bodies

The principle of virtual forces for deformable bodies can be stated as
follows:

If a deformable structure is in equilibrium under a virtual system of forces

(and couples) and if it is subjected to any small real deformation consistent

with the support and continuity conditions of the structure, then the virtual

external work done by the virtual external forces (and couples) acting

through the real external displacements (and rotations) is equal to the vir-

tual internal work done by the virtual internal forces (and couples) acting

through the real internal displacements (and rotations).

In this statement, the term virtual is associated with the forces to
indicate that the force system is arbitrary and does not depend on the
action causing the real deformation.

To demonstrate the validity of this principle, consider the two-
member truss shown in Fig. 7.3(a). The truss is in equilibrium under the
action of a virtual external force Pv as shown. The free-body diagram of
joint C of the truss is shown in Fig. 7.3(b). Since joint C is in equili-
brium, the virtual external and internal forces acting on it must satisfy
the following two equilibrium equations:P

Fx ¼ 0 Pv � FvAC cos y1 � FvBC cos y2 ¼ 0P
Fy ¼ 0 �FvAC sin y1 þ FvBC sin y2 ¼ 0

(7.13)

in which FvAC and FvBC represent the virtual internal forces in members
AC and BC, respectively, and y1 and y2 denote, respectively, the angles
of inclination of these members with respect to the horizontal (Fig.
7.3(a)).

Now, let us assume that joint C of the truss is given a small real
displacement, D, to the right from its equilibrium position, as shown in
Fig. 7.3(a). Note that the deformation is consistent with the support

FIG. 7.3
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conditions of the truss; that is, joints A and B, which are attached to
supports, are not displaced. Because the virtual forces acting at joints A
and B do not perform any work, the total virtual work for the truss
ðWvÞ is equal to the algebraic sum of the work of the virtual forces act-
ing at joint C; that is,

Wv ¼ PvD� FvACðD cos y1Þ � FvBCðD cos y2Þ
or

Wv ¼ ðPv � FvAC cos y1 � FvBC cos y2ÞD (7.14)

As indicated by Eq. (7.13), the term in the parentheses on the right-hand
side of Eq. (7.14) is zero; therefore, the total virtual work is Wv ¼ 0.
Thus, Eq. (7.14) can be expressed as

PvD ¼ FvACðD cos y1Þ þ FvBCðD cos y2Þ (7.15)

in which the quantity on the left-hand side represents the virtual external
work ðWveÞ done by the virtual external force, Pv, acting through the
real external displacement, D. Also, realizing that the terms D cos y1 and
D cos y2 are equal to the real internal displacements (elongations) of
members AC and BC, respectively, we can conclude that the right-hand
side of Eq. (7.15) represents the virtual internal work ðWviÞ done by the
virtual internal forces acting through the real internal displacements;
that is

Wve ¼Wvi (7.16)

which is the mathematical statement of the principle of virtual forces for
deformable bodies.

It should be realized that the principle of virtual forces as described
here is applicable regardless of the cause of real deformations; that is,
deformations due to loads, temperature changes, or any other e¤ect can
be determined by the application of the principle. However, the defor-
mations must be small enough so that the virtual forces remain constant
in magnitude and direction while performing the virtual work. Also, al-
though the application of this principle in this text is limited to elastic
structures, the principle is valid regardless of whether the structure is
elastic or not.

The method of virtual work is based on the principle of virtual
forces for deformable bodies as expressed by Eq. (7.16), which can be
rewritten as

virtual external work ¼ virtual internal work (7.17)

or, more specifically, as
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Virtual system

P virtual external force�
real external displacement

� �
¼P virtual internal force�

real internal displacement

� �

Real system (7.18)

in which the terms forces and displacements are used in a general sense
and include moments and rotations, respectively. Note that because the
virtual forces are independent of the actions causing the real deforma-
tion and remain constant during the real deformation, the expressions of
the external and internal virtual work in Eq. (7.18) do not contain the
factor 1/2.

As Eq. (7.18) indicates, the method of virtual work employs
two separate systems: a virtual force system and the real system of loads
(or other e¤ects) that cause the deformation to be determined. To de-
termine the deflection (or slope) at any point of a structure, a virtual
force system is selected so that the desired deflection (or rotation) will be
the only unknown in Eq. (7.18). The explicit expressions of the virtual
work method to be used for computing deflections of trusses, beams,
and frames are developed in the following three sections.

7.3 DEFLECTIONS OF TRUSSES BY THE VIRTUAL WORK METHOD

To develop the expression of the virtual work method that can be used
to determine the deflections of trusses, consider an arbitrary statically
determinate truss, as shown in Fig. 7.4(a). Let us assume that we want
to determine the vertical deflection, D, at joint B of the truss due to the
given external loads P1 and P2. The truss is statically determinate, so the
axial forces in its members can be determined from the method of joints
described previously in Chapter 4. If F represents the axial force in an
arbitrary member j (e.g., member CD in Fig. 7.4(a)) of the truss, then
(from mechanics of materials) the axial deformation, d, of this member is
given by

d ¼ FL

AE
(7.19)

in which L;A, and E denote, respectively, the length, cross-sectional
area, and modulus of elasticity of member j.

To determine the vertical deflection, D, at joint B of the truss, we
select a virtual system consisting of a unit load acting at the joint and
in the direction of the desired deflection, as shown in Fig. 7.4(b). Note
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that the (downward) sense of the unit load in Fig. 7.4(b) is the same as
the assumed sense of the desired deflection D in Fig. 7.4(a). The forces
in the truss members due to the virtual unit load can be determined from
the method of joints. Let Fv denote the virtual force in member j. Next,
we subject the truss with the virtual unit load acting on it (Fig. 7.4(b))
to the deformations of the real loads (Fig. 7.4(a)). The virtual external
work performed by the virtual unit load as it goes through the real de-
flection D is equal to

Wve ¼ 1ðDÞ (7.20)

To determine the virtual internal work, let us focus our attention on
member j (member CD in Fig. 7.4). The virtual internal work done on
member j by the virtual axial force Fv, acting through the real axial de-
formation d, is equal to Fvd. Therefore, the total virtual internal work
done on all the members of the truss can be written as

Wvi ¼
P

FvðdÞ (7.21)

By equating the virtual external work (Eq. (7.20)) to the virtual
internal work (Eq. (7.21)) in accordance with the principle of virtual
forces for deformable bodies, we obtain the following expression for the
method of virtual work for truss deflections:

1ðDÞ ¼P
FvðdÞ (7.22)

When the deformations are caused by external loads, Eq. (7.19) can
be substituted into Eq. (7.22) to obtain

1ðDÞ ¼P
Fv

FL

AE

� �
(7.23)

Because the desired deflection, D, is the only unknown in Eq. (7.23), its
value can be determined by solving this equation.

Temperature Changes and Fabrication Errors

The expression of the virtual work method as given by Eq. (7.22) is
quite general in the sense that it can be used to determine truss de-
flections due to temperature changes, fabrication errors, and any other
e¤ect for which the member axial deformations, d, are either known or
can be evaluated beforehand.

The axial deformation of a truss member j of length L due to a
change in temperature ðDTÞ is given by

d ¼ aðDTÞL (7.24)

FIG. 7.4
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in which a denotes the coe‰cient of thermal expansion of
member j. Substituting Eq. (7.24) into Eq. (7.22), we obtain the follow-
ing expression:

1ðDÞ ¼P
FvaðDTÞL (7.25)

which can be used to compute truss deflections due to the changes in
temperature.

Truss deflections due to fabrication errors can be determined by
simply substituting changes in member lengths due to fabrication errors
for d in Eq. (7.22).

Procedure for Analysis

The following step-by-step procedure can be used to determine the de-
flections of trusses by the virtual work method.

1. Real System If the deflection of the truss to be determined is
caused by external loads, then apply the method of joints and/or the
method of sections to compute the (real) axial forces ðF Þ in all the
members of the truss. In the examples given at the end of this section,
tensile member forces are considered to be positive and vice versa. Sim-
ilarly, increases in temperature and increases in member lengths due to
fabrication errors are considered to be positive and vice versa.

2. Virtual System Remove all the given (real) loads from the truss;
then apply a unit load at the joint where the deflection is desired and in
the direction of the desired deflection to form the virtual force system.
By using the method of joints and/or the method of sections, compute
the virtual axial forces ðFvÞ in all the members of the truss. The sign
convention used for the virtual forces must be the same as that adopted
for the real forces in step 1; that is, if real tensile forces, temperature
increases, or member elongations due to fabrication errors were consid-
ered as positive in step 1, then the virtual tensile forces must also be
considered to be positive and vice versa.

3. The desired deflection of the truss can now be determined by
applying Eq. (7.23) if the deflection is due to external loads, Eq. (7.25) if
the deflection is caused by temperature changes, or Eq. (7.22) in the case
of the deflection due to fabrication errors. The application of these vir-
tual work expressions can be facilitated by arranging the real and virtual
quantities, computed in steps 1 and 2, in a tabular form, as illustrated in
the following examples. A positive answer for the desired deflection
means that the deflection occurs in the same direction as the unit load,
whereas a negative answer indicates that the deflection occurs in the di-
rection opposite to that of the unit load.
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continued

Example 7.1

Determine the horizontal deflection at joint C of the truss shown in Fig. 7.5(a) by the virtual work method.

Solution
Real System The real system consists of the loading given in the problem, as shown in Fig. 7.5(b).

The member axial forces due to the real loads ðFÞ obtained by using the method of joints are also depicted in Fig. 7.5(b).

Virtual System The virtual system consists of a unit (1 kN) load applied in the horizontal direction at joint C, as
shown in Fig. 7.5(c). The member axial forces due to the 1 kN virtual load ðFvÞ are determined by applying the method
of joints. These member forces are also shown in Fig. 7.5(c).

Horizontal Deflection at C, DC To facilitate the computation of the desired deflection, the real and virtual
member forces are tabulated along with the member lengths ðLÞ, as shown in Table 7.1. As the values of the
cross-sectional area, A, and modulus of elasticity, E, are the same for all the members, these are not included in
the table. Note that the same sign convention is used for both real and virtual systems; that is, in both the third
and the fourth columns of the table, tensile forces are entered as positive numbers and compressive forces as
negative numbers. Then, for each member, the quantity FvðFLÞ is computed, and its value is entered in the fifth
column of the table.

The algebraic sum of all of the entries in the fifth column,
P

FvðFLÞ, is then determined, and its value is recorded at the
bottom of the fifth column, as shown. The total virtual internal work done on all of the members of the truss is given by

Wvi ¼ 1

EA

P
FvðFLÞ

continued
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FIG. 7.5 (contd.)

TABLE 7.1

Member L (m) F (kN) Fv (kN) FvðFLÞ (kN2 �m)

AB 1.2 �187.5 �1.25 281.25

AC 4.5 312.5 3.75 5273.44

BC 3.9 �487.5 �3.25 6179.06P
FvðFLÞ ¼ 11733:75

1ðDCÞ ¼ 1

EA

P
FvðFLÞ

ð1 kNÞDC ¼ 11733:75

70ð106Þ 4000ð10�6Þ kN�m

DC ¼ 0:042 m

DC ¼ 42 mm! Ans.

The virtual external work done by the 1 kN load acting through the desired horizontal deflection at C, DC , is

Wve ¼ ð1kNÞDC

Finally, we determine the desired deflection DC by equating the virtual external work to the virtual internal work
and solving the resulting equation for DC as shown in Table 7.1. Note that the positive answer for DC indicates that
joint C deflects to the right, in the direction of the unit load.
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Example 7.2

Determine the horizontal deflection at joint G of the truss shown in Fig. 7.6(a) by the virtual work method.

FIG. 7.6

Solution
Real System The real system consists of the loading given in the problem, as shown in Fig. 7.6(b). The member

axial forces due to the real loads ðFÞ obtained by using the method of joints are also shown in Fig. 7.6(b).

Virtual System The virtual system consists of a unit (1-kN) load applied in the horizontal direction at joint G, as
shown in Fig. 7.6(c). The member axial forces due to the 1 kN virtual load ðFvÞ are also depicted in Fig. 7.6(c).

Horizontal Deflection at G, DG To facilitate the computation of the desired deflection, the real and virtual member
forces are tabulated along with the lengths ðLÞ and the cross-sectional areas ðAÞ of the members, as shown in Table 7.2.
The modulus of elasticity, E, is the same for all the members, so its value is not included in the table. Note that the same
sign convention is used for both real and virtual systems; that is, in both the fourth and the fifth columns of the table,
tensile forces are entered as positive numbers, and compressive forces as negative numbers. Then, for each member the
quantity FvðFL=AÞ is computed, and its value is entered in the sixth column of the table. The algebraic sum of all the
entries in the sixth column,

P
FvðFL=AÞ, is then determined, and its value is recorded at the bottom of the sixth column,

as shown. Finally, the desired deflection DG is determined by applying the virtual work expression (Eq. (7.23)) as shown
in Table 7.2. Note that the positive answer for DG indicates that joint G deflects to the right, in the direction of the unit
load.

continued
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TABLE 7.2

Member L (m) A (m2) F (kN) Fv (kN)
FvðFL=AÞ
(kN2/m)

AB 4 0.003 300 1 400000

CD 4 0.002 0 0 0

EG 4 0.002 �100 0 0

AC 3 0.003 300 1.5 450000

CE 3 0.003 0 0 0

BD 3 0.003 �75 �0.75 56250

DG 3 0.003 �75 �0.75 56250

BC 5 0.002 �375 �1.25 1171875

CG 5 0.002 125 1.25 390625

P
Fv

FL

A

� �
¼ 2525000

1ðDGÞ ¼ 1

E

P
Fv

FL

A

� �

ð1 kNÞDG ¼ 2525000

200ð106Þ
DG ¼ 0:0126 m

DG ¼ 12:6 mm! Ans.

continued

Example 7.3

Determine the horizontal and vertical components of the deflection at joint B of the truss shown in Fig. 7.7(a) by the
virtual work method.

FIG. 7.7
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FIG. 7.7 (contd.)

Solution
Real System The real system and the corresponding member axial forces ðFÞ are shown in Fig. 7.7(b).

Horizontal Deflection at B, DBH The virtual system used for determining the horizontal deflection at B consists of a
1-kN load applied in the horizontal direction at joint B, as shown in Fig. 7.7(c). The member axial forces ðFv1Þ due to this
virtual load are also shown in this figure. The member axial forces due to the real system ðFÞ and this virtual system ðFv1Þ
are then tabulated, and the virtual work expression given by Eq. (7.23) is applied to determine DBH , as shown in Table 7.3.

TABLE 7.3

Member
L
(m)

F
(kN)

Fv1

(kN)
Fv1ðFLÞ
(kN2�m)

Fv2

(kN)
Fv2ðFLÞ
(kN2�m)

AB 4 21 1 84 0.43 36.12

BC 3 21 0 0 0.43 27.09

AD 5.66 �79.2 0 0 �0.61 273.45

BD 4 84 0 0 1 336.00

CD 5 �35 0 0 �0.71 124.25P
FvðFLÞ 84 796.91

1ðDBHÞ ¼ 1

EA

P
Fv1ðFLÞ 1ðDBV Þ ¼ 1

EA

P
Fv2ðFLÞ

ð1 kNÞDBH ¼ 84

200ð106Þð0:0012Þ
kN �m
kN�m ð1 kNÞDBV ¼ 796:91

200ð106Þð0:0012Þ
kN �m
kN�m

DBH ¼ 0:00035 m DBV ¼ 0:00332 m

DBH ¼ 0:35 mm! Ans. DBV ¼ 3:32 mm # Ans.

continued
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Vertical Deflection at B, DBV The virtual system used for determining the vertical deflection at B consists of a 1-kN
load applied in the vertical direction at joint B, as shown in Fig. 7.7(d). The member axial forces ðFv2Þ due to this virtual
load are also shown in this figure. These member forces are tabulated in the sixth column of Table 7.3, and DBV is
computed by applying the virtual work expression (Eq. (7.23)), as shown in the table.

Example 7.4

Determine the vertical deflection at joint C of the truss shown in Fig. 7.8(a) due to a temperature drop of 8�C in members
AB and BC and a temperature increase of 30�C in members AF ;FG;GH, and EH. Use the virtual work method.

Solution
Real System The real system consists of the temperature changes ðDTÞ given in the problem, as shown in Fig. 7.8(b).

Virtual System The virtual system consists of a 1-kN load applied in the vertical direction at joint C, as shown in
Fig. 7.8(c). Note that the virtual axial forces ðFvÞ are computed for only those members that are subjected to temper-
ature changes. Because the temperature changes in the remaining members of the truss are zero, their axial deformations
are zero; therefore, no internal virtual work is done on those members.

FIG. 7.8
continued
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TABLE 7.4

Member L (m) DT (�C) Fv (kN) FvðDTÞL (kN-�C-m)

AB 3 �8 0.667 �16.0
BC 3 �8 0.667 �16.0
AF 3.75 30 �0.833 �93.7
FG 3.75 30 �0.833 �93.7
GH 3.75 30 �0.833 �93.7
EH 3.75 30 �0.833 �93.7P

FvðDTÞL ¼ �406:8

1ðDCÞ ¼ a
P

FvðDTÞL
ð1 kNÞDC ¼ 1:2ð10�5Þð�406:8Þ

DC ¼ �0:00488 m

DC ¼ 4:88 mm " Ans.

Vertical Deflection at C, DC The temperature changes ðDTÞ and the virtual member forces ðFvÞ are tabulated along
with the lengths ðLÞ of the members, in Table 7.4. The coe‰cient of thermal expansion, a, is the same for all the mem-
bers, so its value is not included in the table. The desired deflection DC is determined by applying the virtual work ex-
pression given by Eq. (7.25), as shown in the table. Note that the negative answer for DC indicates that joint C deflects
upward, in the direction opposite to that of the unit load.

Example 7.5

Determine the vertical deflection at joint D of the truss shown in Fig. 7.9(a) if member CF is 15 mm too long and
member EF is 10 mm too short. Use the method of virtual work.

Solution
Real System The real system consists of the changes in the lengths ðdÞ of members CF and EF of the truss, as

shown in Fig. 7.9(b).

Virtual System The virtual system consists of a 1-kN load applied in the vertical direction at joint D, as shown
in Fig. 7.9(c). The necessary virtual forces ðFvÞ in members CF and EF can be easily computed by using the method of
sections.

Vertical Deflection at D, DD The desired deflection is determined by applying the virtual work expression given by
Eq. (7.22), as shown in Table 7.5.

continued
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TABLE 7.5

Member d (mm) Fv (kN) FvðdÞ (kN-mm)

CF 15 �1 �15
EF �10 1 �10P

FvðdÞ ¼ �25

1ðDDÞ ¼
P

FvðdÞ
ð1 kNÞDD ¼ �25 kN-mm

DD ¼ �25 mm

DD ¼ 25 mm " Ans.

FIG. 7.9
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7.4 DEFLECTIONS OF BEAMS BY THE VIRTUAL WORK METHOD

To develop an expression for the virtual work method for determining
the deflections of beams, consider a beam subjected to an arbitrary
loading, as shown in Fig. 7.10(a). Let us assume that the vertical de-
flection, D, at a point B of the beam is desired. To determine this de-
flection, we select a virtual system consisting of a unit load acting at the
point and in the direction of the desired deflection, as shown in Fig.
7.10(b). Now, if we subject the beam with the virtual unit load acting on
it (Fig. 7.10(b)), to the deformations due to the real loads (Fig. 7.10(a)),
the virtual external work performed by the virtual unit load as it goes
through the real deflection D is Wve ¼ 1ðDÞ.

To obtain the virtual internal work, we focus our attention on a
di¤erential element dx of the beam located at a distance x from the left
support A, as shown in Fig. 7.10(a) and (b). Because the beam with the
virtual load (Fig. 7.10(b)) is subjected to the deformation due to the real
loading (Fig. 7.10(a)), the virtual internal bending moment, Mv, acting

FIG. 7.10
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on the element dx performs virtual internal work as it undergoes the real
rotation dy, as shown in Fig. 7.10(c). Thus, the virtual internal work
done on the element dx is given by

dWvi ¼MvðdyÞ (7.26)

Note that because the virtual moment Mv remains constant during the
real rotation dy, Eq. (7.26) does not contain a factor of 1/2. Recall from
Eq. (6.10) that the change of slope dy over the di¤erential length dx can
be expressed as

dy ¼ M

EI
dx (7.27)

in which M ¼ bending moment due to the real loading causing the ro-
tation dy. By substituting Eq. (7.27) into Eq. (7.26), we write

dWvi ¼Mv
M

EI

� �
dx (7.28)

The total virtual internal work done on the entire beam can now be de-
termined by integrating Eq. (7.28) over the length L of the beam as

Wvi ¼
ðL

0

MvM

EI
dx (7.29)

By equating the virtual external work, Wve ¼ 1ðDÞ, to the virtual
internal work (Eq. (7.29)), we obtain the following expression for the
method of virtual work for beam deflections:

1ðDÞ ¼
ðL

0

MvM

EI
dx (7.30)

If we want the slope y at a point C of the beam (Fig. 7.10(a)), then
we use a virtual system consisting of a unit couple acting at the point, as
shown in Fig. 7.10(d). When the beam with the virtual unit couple is
subjected to the deformations due to the real loading, the virtual ex-
ternal work performed by the virtual unit couple, as it undergoes the
real rotation y, is Wve ¼ 1ðyÞ. The expression for the internal virtual
work remains the same as given in Eq. (7.29), except that Mv now de-
notes the bending moment due to the virtual unit couple. By setting
Wve ¼Wvi, we obtain the following expression for the method of virtual
work for beam slopes:

1ðyÞ ¼
ðL

0

MvM

EI
dx (7.31)
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In the derivation of Eq. (7.29) for virtual internal work, we have
neglected the internal work performed by the virtual shear forces act-
ing through the real shear deformations. Therefore, the expressions
of the virtual work method as given by Eqs. (7.30) and (7.31) do not
account for the shear deformations of beams. However, for most
beams (except for very deep beams), shear deformations are so small
as compared to the bending deformations that their e¤ect can be
neglected in the analysis.

Procedure for Analysis

The following step-by-step procedure can be used to determine the
slopes and deflections of beams by the virtual work method.

1. Real System Draw a diagram of the beam showing all the real
(given) loads acting on it.

2. Virtual System Draw a diagram of the beam without the real loads.
If deflection is to be determined, then apply a unit load at the point
and in the direction of the desired deflection. If the slope is to be
calculated, then apply a unit couple at the point on the beam where
the slope is desired.

3. By examining the real and virtual systems and the variation of the
flexural rigidity EI specified along the length of the beam, divide the
beam into segments so that the real and virtual loadings as well as
EI are continuous in each segment.

4. For each segment of the beam, determine an equation expressing
the variation of the bending moment due to real loading ðMÞ along
the length of the segment in terms of a position coordinate x. The
origin for x may be located anywhere on the beam and should be
chosen so that the number of terms in the equation for M is mini-
mum. It is usually convenient to consider the bending moments as
positive or negative in accordance with the beam sign convention

(Fig. 5.2).
5. For each segment of the beam, determine the equation for the

bending moment due to virtual load or couple ðMvÞ using the
same x coordinate that was used for this segment in step 4 to es-
tablish the expression for the real bending moment, M. The sign
convention for the virtual bending moment ðMvÞ must be the same
as that adopted for the real bending moment in step 4.

6. Determine the desired deflection or slope of the beam by applying
the appropriate virtual work expression, Eq. (7.30) or Eq. (7.31). If
the beam has been divided into segments, then the integral on the
right-hand side of Eq. (7.30) or (7.31) can be evaluated by algebrai-
cally adding the integrals for all the segments of the beam.
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Example 7.6

Determine the slope and deflection at point A of the beam shown in Fig. 7.11(a) by the virtual work method.

FIG. 7.11

Solution
Real System See Fig. 7.11(b).

Slope at A, yA The virtual system consists of a unit couple applied at A, as shown in Fig. 7.11(c). From Fig. 7.11(a)
through (c), we can see that there are no discontinuities of the real and virtual loadings or of EI along the length of the
beam. Therefore, there is no need to subdivide the beam into segments. To determine the equation for the bending
moment M due to real loading, we select an x coordinate with its origin at end A of the beam, as shown in Fig. 7.11(b).
By applying the method of sections described in Section 5.2, we determine the equation for M as

0 < x < L M ¼ � 1

2
ðxÞ wx

L

� �
x

3

� �
¼ �wx3

6L

Similarly, the equation for the bending moment Mv1 due to virtual unit moment in terms of the same x coordinate is

0 < x < L Mv1 ¼ 1

To determine the desired slope yA, we apply the virtual work expression given by Eq. (7.31):

1ðyAÞ ¼
ðL

0

Mv1M

EI
dx ¼

ðL

0

1 � wx3

6LEI

� �
dx

yA ¼ � w

6EIL

x4

4

� �L
0

¼ � wL3

24EI
continued
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The negative answer for yA indicates that point A rotates counterclockwise, in the direction opposite to that of the unit
moment.

yA ¼ wL3

24EI

’ Ans.

Deflection at A, DA The virtual system consists of a unit load applied at A, as shown in Fig. 7.11(d). If we use the
same x coordinate as we used for computing yA, then the equation for M remains the same as before, and the equation
for bending moment Mv2 due to virtual unit load (Fig. 7.11(d)) is given by

0 < x < L Mv2 ¼ �1ðxÞ ¼ �x

By applying the virtual work expression given by Eq. (7.30), we determine the desired deflection DA as

1ðDAÞ ¼
ðL

0

Mv2M

EI
dx ¼

ðL

0

ð�xÞ � wx3

6LEI

� �
dx

DA ¼ w

6EIL

x5

5

� �L
0

¼ wL4

30EI

The positive answer for DA indicates that point A deflects downward, in the direction of the unit load.

DA ¼ wL4

30EI
# Ans.

Example 7.7

Determine the slope at point B of the cantilever beam shown in Fig. 7.12(a) by the virtual work method.

Solution
The real and virtual systems are shown in Figs. 7.12(b) and (c), respectively. As shown in these figures, an x coordinate
with its origin at end B of the beam is selected to obtain the bending moment equations. From Fig. 7.12(b), we can see
that the equation for M in terms of the x coordinate is

0 < x < 5 m M ¼ �60x
Similarly, from Fig. 7.12(c), we obtain the equation for Mv to be

0 < x < 5 m Mv ¼ �1
The slope at B can now be computed by applying the virtual work expression given by Eq. (7.31), as follows:

1ðyBÞ ¼
ð L

0

MvM

EI
dx

1ðyBÞ ¼ 1

EI

ð5

0

�1ð�60xÞ dx
continued
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A B

5 m

(a)

EI = constant
E = 70 GPa
I = 600 (106) mm4

60 kN

A B

x
(b) Real System –– M

60 kN

A
B

x
(c) Virtual System –– Mv

1 kN–m

FIG. 7.12

ð1 kN-mÞyB ¼ 750 kN2-m3

EI

Therefore,

yB ¼ 750 kN-m3

EI
¼ 750

70ð106Þ600ð10�6Þ ¼ 0:0179 rad:

The positive answer for yB indicates that point B rotates clockwise, in the direction of the unit moment.

yB ¼ 0:0179 rad: @ Ans.

Example 7.8

Determine the deflection at point D of the beam shown in Fig. 7.13(a) by the virtual work method.

Solution
The real and virtual systems are shown in Fig. 7.13(b) and (c), respectively. It can be seen from Fig. 7.13(a) that the
flexural rigidity EI of the beam changes abruptly at points B and D. Also, Fig. 7.13(b) and (c) indicates that the real
and virtual loadings are discontinuous at points C and D, respectively. Consequently, the variation of the quantity

continued
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ðMvM=EIÞ will be discontinuous at points B;C, and D. Thus, the beam must be divided into four segments,
AB;BC;CD, and DE; in each segment the quantity ðMvM=EIÞ will be continuous and, therefore, can be integrated.

The x coordinates selected for determining the bending moment equations are shown in Fig. 7.13(b) and (c). Note
that in any particular segment of the beam, the same x coordinate must be used to write both equations—that is, the
equation for the real bending moment ðMÞ and the equation for the virtual bending moment ðMvÞ. The equations for M
and Mv for the four segments of the beam, determined by using the method of sections, are tabulated in Table 7.6. The
deflection at D can now be computed by applying the virtual work expression given by Eq. (7.30).

1ðDDÞ ¼
ðL

0

MvM

EI
dx

1ðDDÞ ¼ 1

EI

� ð 3

0

x

4

� �
ð75xÞ dxþ 1

2

ð6

3

x

4

� �
ð75xÞ dx

þ 1

2

ð9

6

x

4

� �
ð�75xþ 900Þ dxþ

ð 3

0

3

4
x

� �
ð75xÞ dx

�

ð1 kNÞDD ¼ 2;193:75 kN2�m3

EI

Therefore,

DD ¼ 2;193:75 kN�m3

EI
¼ 2;193:75

200ð300Þ ¼ 0:0366 m ¼ 36:6 mm

DD ¼ 36:6 mm # Ans.

FIG. 7.13

continued
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TABLE 7.6

x Coordinate

Segment Origin Limits (m)

EI
ðI ¼ 300�
106 mm4Þ

M
(kN�m)

Mv

(kN�m)

AB A 0–3 EI 75x
x

4

BC A 3–6 2EI 75x
x

4

CD A 6–9 2EI 75x� 150ðx� 6Þ x

4

ED E 0–3 EI 75x
3

4
x

Example 7.9

Determine the deflection at point C of the beam shown in Fig. 7.14(a) by the virtual work method.

Solution
This beam was previously analyzed by the moment-area and the conjugate-beam methods in Examples 6.7 and 6.13,
respectively.

FIG. 7.14

continued
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The real and virtual systems for this problem are shown in Fig. 7.14(b) and (c), respectively. The real and virtual
loadings are discontinuous at point B, so the beam is divided into two segments, AB and BC. The x coordinates used for
determining the bending moment equations are shown in Fig. 7.14(b) and (c), and the equations for M and Mv obtained
for each of the two segments of the beam are tabulated in Table 7.7. The deflection at C can now be determined by
applying the virtual work expression given by Eq. (7.30), as follows:

1ðDCÞ ¼
ðL

0

MvM

EI
dx

1ðDCÞ ¼ 1

EI

ð9

0

� x

3

� �
ð115x� x2Þ dxþ

ð3

0

ð�xÞð�60xÞ dx
� �

ð1 kNÞDC ¼ � 8228:75 kN2-m3

EI

Therefore,

DC ¼ � 8228:75 kN2-m3

EI
¼ � 8228:75

200ð106Þ800ð10�6Þ ¼ �0:0514 m

DC ¼ 51:4 mm " Ans.

TABLE 7.7

x Coordinate

Segment Origin Limits (m) M (kN-m) Mv (kN-m)

AB A 0–9 115x� x2 � x

3

CB C 0–3 �60x �x

7.5 DEFLECTIONS OF FRAMES BY THE VIRTUAL WORK METHOD

Application of the virtual work method to determine the slopes and
deflections of frames is similar to that for beams. To determine the
deflection, D, or rotation, y, at a point of a frame, a virtual unit load or
unit couple is applied at that point. When the virtual system is sub-
jected to the deformations of the frame due to real loads, the virtual
external work performed by the unit load or the unit couple is
Wve ¼ 1ðDÞ, or Wve ¼ 1ðyÞ. As portions of the frame may undergo axial
deformations in addition to the bending deformations, the total virtual
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internal work done on the frame is equal to the sum of the internal
virtual work due to bending and that due to axial deformations. As
discussed in the preceding section, when the real and virtual loadings
and the flexural rigidity EI are continuous over a segment of the
frame, the virtual internal work due to bending for that segment can be
obtained by integrating the quantity MvM=EI over the length of the
segment. The virtual internal work due to bending for the entire frame
can then be obtained by summing the work for the individual seg-
ments; that is,

Wvib ¼
Pð

MvM

EI
dx (7.32)

Similarly, if the axial forces F and Fv due to the real and virtual loads,
respectively, and the axial rigidity AE are constant over the length L

of a segment of the frame, then, as discussed in Section 7.3, the virtual
internal work for that segment due to axial deformation is equal to
FvðFL=AEÞ. Thus, the virtual internal work due to axial deformations
for the entire frame can be expressed as

Wvia ¼
P

Fv
FL

AE

� �
(7.33)

By adding Eqs. (7.32) and (7.33), we obtain the total internal
virtual work for the frame due to both bending and axial deforma-
tions as

Wvi ¼
P

Fv

FL

AE

� �
þPð

MvM

EI
dx (7.34)

By equating the virtual external work to the virtual internal work,
we obtain the expressions for the method of virtual work for deflections
and rotations of frames, respectively, as

1ðDÞ ¼P
Fv

FL

AE

� �
þP ð

MvM

EI
dx (7.35)

and

1ðyÞ ¼P
Fv

FL

AE

� �
þPð

MvM

EI
dx (7.36)
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The axial deformations in the members of frames composed of
common engineering materials are generally much smaller than the
bending deformations and are, therefore, usually neglected in the anal-
ysis. In this text, unless stated otherwise, we will neglect the e¤ect of
axial deformations in the analysis of frames. The virtual work expres-
sions considering only the bending deformations of frames can be ob-
tained by simply omitting the first term on the right-hand sides of Eqs.
(7.35) and (7.36), which are thus reduced to

1ðDÞ ¼Pð
MvM

EI
dx (7.37)

and

1ðyÞ ¼Pð
MvM

EI
dx (7.38)

Procedure for Analysis

The following step-by-step procedure can be used to determine the
slopes and deflections of frames by the virtual work method.

1. Real System Determine the internal forces at the ends of the mem-
bers of the frame due to the real loading by using the procedure
described in Section 5.6.

2. Virtual System If the deflection of the frame is to be determined,
then apply a unit load at the point and in the direction of the
desired deflection. If the rotation is to be calculated, then apply a
unit couple at the point on the frame where the rotation is desired.
Determine the member end forces due to the virtual loading.

3. If necessary, divide the members of the frame into segments so that
the real and virtual loads and EI are continuous in each segment.

4. For each segment of the frame, determine an equation express-
ing the variation of the bending moment due to real loading
(M ) along the length of the segment in terms of a position
coordinate x.

5. For each segment of the frame, determine the equation for the
bending moment due to virtual load or couple (Mv) using the same
x coordinate that was used for this segment in step 4 to establish the
expression for the real bending moment, M. Any convenient sign
convention can be used for M and Mv. However, it is important
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that the sign convention be the same for both M and Mv in a par-
ticular segment.

6. If the e¤ect of axial deformations is to be included in the analysis,
then go to step 7. Otherwise, determine the desired deflection or
rotation of the frame by applying the appropriate virtual work ex-
pression, Eq. (7.37) or Eq. (7.38). End the analysis at this stage.

7. If necessary, divide the members of the frame into segments so that
the real and virtual axial forces and AE are constant in each seg-
ment. It is not necessary that these segments be the same as those
used in step 3 for evaluating the virtual internal work due to bend-
ing. It is important, however, that the same sign convention be used
for both the real axial force, F , and the virtual axial force, Fv, in a
particular segment.

8. Determine the desired deflection or rotation of the frame by ap-
plying the appropriate virtual work expression, Eq. (7.35) or
Eq. (7.36).

Example 7.10

Determine the rotation of joint C of the frame shown in Fig. 7.15(a) by the virtual work method.

Solution
The real and virtual systems are shown in Fig. 7.15(b) and (c), respectively. The x coordinates used for determining the
bending moment equations for the three segments of the frame, AB;BC, and CD, are also shown in these figures. The
equations for M and Mv obtained for the three segments are tabulated in Table 7.8. The rotation of joint C of the frame
can now be determined by applying the virtual work expression given by Eq. (7.38).

1ðyCÞ ¼
Pð

MvM

EI
dx

¼ 1

EI

ð12

0

x

12

� �
180x� 20

x2

2

� �
dx

ð1 kN-mÞyC ¼ 4320 kN2-m3

EI

Therefore,

yC ¼ 4320 kN2-m3

EI
¼ 4320

200ð106Þ1000ð10�6Þ ¼ 0:0216 rad

yC ¼ 0:0216 rad @ Ans.

continued
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FIG. 7.15 continued
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FIG. 7.15 (contd.)

TABLE 7.8

x Coordinate

Segment Origin Limits (m) M (kN-m) Mv (kN-m)

AB A 0–4 180x 0

CB C 0–4 720 0

DC D 0–12 180x� 20
x2

2

x

12
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Example 7.11

Use the virtual work method to determine the vertical deflection at joint C of the frame shown in Fig. 7.16(a).

Solution
The real and virtual systems are shown in Figs. 7.16(b) and (c), respectively. The x coordinates used for determining the
bending moment equations for the two members of the frame, AB and BC, are also shown in the figures. The equations
for M and Mv obtained for the two members are tabulated in Table 7.9. The vertical deflection at joint C of the frame
can now be calculated by applying the virtual work expression given by Eq. (7.37):

1ðDCÞ ¼
Pð

MvM

EI
dx

1ðDCÞ ¼ 1

EI

1

2

ð 5

0

ð�4Þð76x� 530Þ dxþ
ð 5

0

� 4

5
x

� �
ð�6x2Þ dx

� �

ð1 kNÞDC ¼ 4;150 kN2�m3

EI

Therefore,

DC ¼ 4;150 kN�m3

EI
¼ 4;150

70ð554Þ ¼ 0:107 m ¼ 107 mm

DC ¼ 107 mm # Ans.

40 kN

5 m 2I

A

B

5 m
I

12 kN/m C

4 m

(a)

3 m

E = constant = 70 GPa
I = 554 (106) mm4

FIG. 7.16

continued
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40 kN

76
A

B

12 kN/m C

530

48

76

76
A 530

48

B

12 kN/m

C

x

48

40 kN

150150

36 60

150

76

48

B

48

150B

x

(b) Real System –– M

A

B

C

4

1

A

1

B

kN

C

x

1

4B

x

1 kN

4
5

3
5

4
5 kN3

5

4

(c) Virtual System –– Mv

4

FIG. 7.16 (contd.) continued
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Example 7.12

Determine the horizontal deflection at joint C of the frame shown in Fig. 7.17(a) including the e¤ect of
axial deformations, by the virtual work method.

Solution
The real and virtual systems are shown in Fig. 7.17(b) and (c), respectively. The x coordinates used for determining the
bending moment equations for the three members of the frame, AB;BC, and CD, are also shown in the figures. The
equations for M and Mv obtained for the three members are tabulated in Table 7.10 along with the axial forces F and Fv

of the members. The horizontal deflection at joint C of the frame can be determined by applying the virtual work ex-
pression given by Eq. (7.35):

1ðDCÞ ¼
P

Fv
FL

AE

� �
þPð

MvM

EI
dx

1ðDCÞ ¼ 1

AE

3

4
ð�52:5Þð4:5Þ þ 1

2
ð55Þð6Þ � 3

4
ð�127:5Þð4:5Þ

� �

þ 1

EI

� ð 4:5

0

x

2
ð�5xÞ dx

þ
ð 6

0

7:5� 3

4
x

� �
ð�22:5þ 52:5x� x2Þ dxþ

ð 4:5

0

x

2
ð55xÞ dx

�

ð1 kÞDC ¼ 418:125 kN2-m

AE
þ 3246:75 kN2-m

EI

continued

TABLE 7.9

x Coordinate

Segment Origin Limits (m)

EI
ðI ¼ 554�
106 mm4Þ

M
(kN�m)

Mv

(kN�m)

AB A 0–5 2EI 76x� 530 �4
CB C 0–5 EI �12 x

2

2
� 4

5
x
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FIG. 7.17 continued
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FIG. 7.17 (contd.)

TABLE 7.10

x Coordinate

Segment Origin Limits (m) M (kN-m) F (kN) Mv (kN-m) Fv (kN)

AB A 0–4.5 �5x �52:5 x

2

3

4

BC B 0–6 �22:5þ 52:5x� x2 �55 7:5� 3

4
x

1

2

DC D 0–4.5 55x �127:5 x

2
� 3

4

continued
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Therefore,

DC ¼ 418:125 kN2-m

AE
þ 3246:75 kN2-m

EI

¼ 418:125

225ð10�4Þ200ð106Þ þ
3246:75

200ð106Þ400ð10�6Þ
¼ 0:000093þ 0:040584

¼ 0:04068 m

DC ¼ 40:68 mm:! Ans.

Note that the magnitude of the axial deformation term is negligibly small as compared to that of the bending
deformation term.

7.6 CONSERVATION OF ENERGY AND STRAIN ENERGY

Before we can develop the next method for computing deflections of
structures, it is necessary to understand the concepts of conservation of
energy and strain energy.

The energy of a structure can be simply defined as its capacity for

doing work. The term strain energy is attributed to the energy that a

structure has because of its deformation. The relationship between the
work and strain energy of a structure is based on the principle of con-

servation of energy, which can be stated as follows:

The work performed on an elastic structure in equilibrium by statically

(gradually) applied external forces is equal to the work done by internal

forces, or the strain energy stored in the structure.

This principle can be mathematically expressed as

We ¼Wi (7.39)

or

We ¼ U (7.40)

In these equations, We and Wi represent the work done by the external
and internal forces, respectively, and U denotes the strain energy of the
structure. The explicit expression for the strain energy of a structure de-
pends on the types of internal forces that can develop in the members of
the structure. Such expressions for the strain energy of trusses, beams,
and frames are derived in the following.
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Strain Energy of Trusses

Consider the arbitrary truss shown in Fig. 7.18. The truss is subjected to
a load P, which increases gradually from zero to its final value, causing
the structure to deform as shown in the figure. Because we are consid-
ering linearly elastic structures, the deflection of the truss D at the point
of application of P increases linearly with the load; therefore, as dis-
cussed in Section 7.1 (see Fig. 7.1(c)), the external work performed by P

during the deformation D can be expressed as

We ¼ 1

2
PD

To develop the expression for internal work or strain energy of the
truss, let us focus our attention on an arbitrary member j (e.g., member
CD in Fig. 7.18) of the truss. If F represents the axial force in this
member due to the external load P, then as discussed in Section 7.3, the
axial deformation of this member is given by d ¼ ðFLÞ=ðAEÞ. Therefore,
internal work or strain energy stored in member j, Uj, is given by

Uj ¼ 1

2
Fd ¼ F 2L

2AE

The strain energy of the entire truss is simply equal to the sum of the
strain energies of all of its members and can be expressed as

U ¼P F 2L

2AE
(7.41)

Note that a factor of 1
2 appears in the expression for strain energy because

the axial force F and the axial deformation d caused by F in each member
of the truss are related by the linear relationship d ¼ ðFLÞ=ðAEÞ.

Strain Energy of Beams

To develop the expression for the strain energy of beams, consider
an arbitrary beam, as shown in Fig. 7.19(a). As the external load P act-
ing on the beam increases gradually from zero to its final value, the in-
ternal bending moment M acting on a di¤erential element dx of the
beam (Fig. 7.19(a) and (b)) also increases gradually from zero to its final
value, while the cross sections of element dx rotate by an angle dy with
respect to each other. The internal work or the strain energy stored in
the element dx is, therefore, given by

dU ¼ 1

2
MðdyÞ (7.42)

FIG. 7.18
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Recalling from Section 7.4 (Eq. (7.27)) that the change in slope, dy, can
be expressed in terms of the bending moment, M, by the relationship
dy ¼ ðM=EIÞ dx, we write Eq. (7.42) as

dU ¼ M 2

2EI
dx (7.43)

The expression for the strain energy of the entire beam can now be ob-
tained by integrating Eq. (7.43) over the length L of the beam:

U ¼
ðL

0

M 2

2EI
dx (7.44)

When the quantity M=EI is not a continuous function of x over the
entire length of the beam, then the beam must be divided into segments
so that M=EI is continuous in each segment. The integral on the right-
hand side of Eq. (7.44) is then evaluated by summing the integrals for all
the segments of the beam. We must realize that Eq. (7.44) is based on
the consideration of bending deformations of beams and does not in-
clude the e¤ect of shear deformations, which, as stated previously, are
negligibly small as compared to the bending deformations for most
beams.

Strain Energy of Frames

The portions of frames may be subjected to axial forces as well as
bending moments, so the total strain energy (U) of frames is expressed

FIG. 7.19
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as the sum of the strain energy due to axial forces (Ua) and the strain
energy due to bending (Ub); that is,

U ¼ Ua þUb (7.45)

If a frame is divided into segments so that the quantity F=AE is
constant over the length L of each segment, then—as shown pre-
viously in the case of trusses—the strain energy stored in each seg-
ment due to the axial force F is equal to ðF 2LÞ=ð2AEÞ. Therefore,
the strain energy due to axial forces for the entire frame can be ex-
pressed as

Ua ¼
P F 2L

2AE
(7.46)

Similarly, if the frame is divided into segments so that the quantity
M=EI is continuous over each segment, then the strain energy stored
in each segment due to bending can be obtained by integrating the
quantity M=EI over the length of the segment (Eq. (7.44)). The strain
energy due to bending for the entire frame is equal to the sum of strain
energies of bending of all the segments of the frame and can be ex-
pressed as

Ub ¼
Pð

M 2

2EI
dx (7.47)

By substituting Eqs. (7.46) and (7.47) into Eq. (7.45), we obtain the fol-
lowing expression for the strain energy of frames due to both the axial
forces and bending:

U ¼P F 2L

2AE
þPð

M 2

2EI
dx (7.48)

As stated previously, the axial deformations of frames are generally
much smaller than the bending deformations and are usually neglected
in the analysis. The strain energy of frames due only to bending is ex-
pressed as

U ¼Pð
M 2

2EI
dx (7.49)
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7.7 CASTIGLIANO’S SECOND THEOREM

In this section, we consider another energy method for determining de-
flections of structures. This method, which can be applied only to lin-
early elastic structures, was initially presented by Alberto Castigliano in
1873 and is commonly known as Castigliano’s second theorem. (Casti-
gliano’s first theorem, which can be used to establish equations of equi-
librium of structures, is not considered in this text.) Castigliano’s second
theorem can be stated as follows:

For linearly elastic structures, the partial derivative of the strain energy

with respect to an applied force (or couple) is equal to the displacement (or

rotation) of the force (or couple) along its line of action.

In mathematical form, this theorem can be stated as:

qU

qPi

¼ Di or
qU

qMi

¼ yi (7.50)

in which U ¼ strain energy; Di ¼ deflection of the point of application
of the force Pi in the direction of Pi; and yi ¼ rotation of the point of
application of the couple Mi in the direction of Mi.

To prove this theorem, consider the beam shown in Fig. 7.20. The
beam is subjected to external loads P1;P2, and P3, which increase grad-
ually from zero to their final values, causing the beam to deflect, as
shown in the figure. The strain energy (U) stored in the beam due to the
external work (We) performed by these forces is given by

U ¼We ¼ 1

2
P1D1 þ 1

2
P2D2 þ 1

2
P3D3 (7.51)

in which D1;D2, and D3 are the deflections of the beam at the points of
application of P1;P2, and P3, respectively, as shown in the figure. As Eq.
(7.51) indicates, the strain energy U is a function of the external loads
and can be expressed as

U ¼ f ðP1;P2;P3Þ (7.52)

Now, assume that the deflection D2 of the beam at the point of ap-
plication of P2 is to be determined. If P2 is increased by an infinitesimal

FIG. 7.20
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amount dP2, then the increase in strain energy of the beam due to the
application of dP2 can be written as

dU ¼ qU

qP2
dP2 (7.53)

and the total strain energy, UT , now stored in the beam is given by

UT ¼ U þ dU ¼ U þ qU

qP2
dP2 (7.54)

The beam is assumed to be composed of linearly elastic material, so
regardless of the sequence in which the loads P1; ðP2 þ dP2Þ, and P3 are
applied, the total strain energy stored in the beam should be the same.

Consider, for example, the sequence in which dP2 is applied to the
beam before the application of P1;P2, and P3. If dD2 is the deflection of
the beam at the point of application of dP2 due to dP2, then the strain
energy stored in the beam is given by ð1=2ÞðdP2ÞðdD2Þ. The loads P1;P2,
and P3 are then applied to the beam, causing the additional deflections
D1;D2, and D3, respectively, at their points of application. Note that
since the beam is linearly elastic, the loads P1;P2, and P3 cause the same
deflections, D1;D2, and D3, respectively, and perform the same amount
of external work on the beam regardless of whether any other load is
acting on the beam or not. The total strain energy stored in the beam
during the application of dP2 followed by P1;P2, and P3 is given by

UT ¼ 1

2
ðdP2ÞðdD2Þ þ dP2ðD2Þ þ 1

2
P1D1 þ 1

2
P2D2 þ 1

2
P3D3 (7.55)

Since dP2 remains constant during the additional deflection, D2, of its
point of application, the term dP2ðD2Þ on the right-hand side of Eq.
(7.55) does not contain the factor 1=2. The term ð1=2ÞðdP2ÞðdD2Þ repre-
sents a small quantity of second order, so it can be neglected, and Eq.
(7.55) can be written as

UT ¼ dP2ðD2Þ þ 1

2
P1D1 þ 1

2
P2D2 þ 1

2
P3D3 (7.56)

By substituting Eq. (7.51) into Eq. (7.56) we obtain

UT ¼ dP2ðD2Þ þU (7.57)

and by equating Eqs. (7.54) and (7.57), we write

U þ qU

qP2
dP2 ¼ dP2ðD2Þ þU

or

qU

qP2
¼ D2

which is the mathematical statement of Castigliano’s second theorem.
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Application to Trusses

To develop the expression of Castigliano’s second theorem, which can
be used to determine the deflections of trusses, we substitute Eq. (7.41)
for the strain energy (U) of trusses into the general expression of Casti-
gliano’s second theorem for deflections as given by Eq. (7.50) to obtain

D ¼ q

qP

P F 2L

2AE
(7.58)

As the partial derivative qF 2=qP ¼ 2FðqF=qPÞ, the expression of Cas-
tigliano’s second theorem for trusses can be written as

D ¼P qF

qP

� �
FL

AE
(7.59)

The foregoing expression is similar in form to the expression of the
method of virtual work for trusses (Eq. (7.23)). As illustrated by the
solved examples at the end of this section, the procedure for computing
deflections by Castigliano’s second theorem is also similar to that of the
virtual work method.

Application to Beams

By substituting Eq. (7.44) for the strain energy (U) of beams into the
general expressions of Castigliano’s second theorem (Eq. (7.50)), we
obtain the following expressions for the deflections and rotations, re-
spectively, of beams:

D ¼ q

qP

ðL

0

M 2

2EI
dx and y ¼ q

qM

ðL

0

M 2

2EI
dx

or

D ¼
ðL

0

qM

qP

� �
M

EI
dx (7.60)

and

y ¼
ðL

0

qM

qM

� �
M

EI
dx (7.61)

318 CHAPTER 7 Deflections of Trusses, Beams, and Frames: Work–Energy Methods

https://engineersreferencebookspdf.com



Application to Frames

Similarly, by substituting Eq. (7.48) for the strain energy (U) of frames
due to the axial forces and bending into the general expressions of Cas-
tigliano’s second theorem (Eq. (7.50)), we obtain the following expres-
sions for the deflections and rotations, respectively, of frames:

D ¼P qF

qP

� �
FL

AE
þPð

qM

qP

� �
M

EI
dx (7.62)

and

y ¼P qF

qM

� �
FL

AE
þPð

qM

qM

� �
M

EI
dx (7.63)

When the e¤ect of axial deformations of the members of frames is ne-
glected in the analysis, Eqs. (7.62) and (7.63) reduce to

D ¼Pð
qM

qP

� �
M

EI
dx (7.64)

and

y ¼Pð
qM

qM

� �
M

EI
dx (7.65)

Procedure for Analysis

As stated previously, the procedure for computing deflections of struc-
tures by Castigliano’s second theorem is similar to that of the virtual
work method. The procedure essentially involves the following steps.

1. If an external load (or couple) is acting on the given structure at the
point and in the direction of the desired deflection (or rotation),
then designate that load (or couple) as the variable P (or M ) and go
to step 2. Otherwise, apply a fictitious load P (or couple M ) at the
point and in the direction of the desired deflection (or rotation).

2. Determine the axial force F and/or the equation(s) for bending
moment MðxÞ in each member of the structure in terms of P (orM ).

3. Di¤erentiate the member axial forces F and/or the bending mo-
ments MðxÞ obtained in step 2 with respect to the variable P (or M )
to compute qF=qP and/or qM=qP (or qF=qM and/or qM=qM ).
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4. Substitute the numerical value of P (or M ) into the expressions of F
and/or MðxÞ and their partial derivatives. If P (or M ) represents a
fictitious load (or couple), its numerical value is zero.

5. Apply the appropriate expression of Castigliano’s second theorem
(Eqs. (7.59) through (7.65)) to determine the desired deflection or
rotation of the structure. A positive answer for the desired de-
flection (or rotation) indicates that the deflection (or rotation) oc-
curs in the same direction as P (or M ) and vice versa.

Example 7.13

Determine the deflection at point C of the beam shown in Fig. 7.21(a) by Castigliano’s second theorem.

Solution
This beam was previously analyzed by the moment-area, the conjugate-beam, and the virtual work methods in Exam-
ples 6.7, 6.13, and 7.9, respectively.

The 60-kN external load is already acting at point C, where the deflection is to be determined, so we designate
this load as the variable P, as shown in Fig. 7.21(b). Next, we compute the reactions of the beam in terms of P. These
are also shown in Fig. 7.21(b). Since the loading is discontinuous at point B, the beam is divided into two segments, AB
and BC. The x coordinates used for determining the equations for the bending moment in the two segments of the beam
are shown in Fig. 7.21(b). The equations for M (in terms of P) obtained for the segments of the beam are tabulated in Table
7.11, along with the partial derivatives of M with respect to P.

FIG. 7.21

continued
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TABLE 7.11

x Coordinate

Segment Origin Limits (m) M (kN-m)

qM

qP
(kN-m/kN)

AB A 0–9 135� P

3

� �
x� x2 � x

3

CB C 0–3 �Px �x

The deflection at C can now be determined by substituting P ¼ 60 kN into the equations for M and qM=qP and by
applying the expression of Castigliano’s second theorem as given by Eq. (7.60):

DC ¼
ðL

0

qM

qP

� �
M

EI

� �
dx

DC ¼ 1

EI

ð 9

0

� x

3

� �
135x� 60x

3
� x2

� �
dxþ

ð3

0

ð�xÞð�60xÞ dx
� �

¼ 1

EI

ð 9

0

� x

3

� �
ð115x� x2Þ dxþ

ð 3

0

ð�xÞð�60xÞ dx
� �

¼ � 8228:25 kN-m3

EI
¼ � 8228:25

200ð106Þ800ð10�6Þ ¼ �0:0514 m

The negative answer for DC indicates that point C deflects upward in the direction opposite to that of P.

DC ¼ 51:4 mm " Ans.

Example 7.14

Use Castigliano’s second theorem to determine the deflection at point B of the beam shown in Fig. 7.22(a).

A B

L

(a)
EI = constant

P

A B

x

(b)

P

FIG. 7.22

continued
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Solution
Using the x coordinate shown in Fig. 7.22(b), we write the equation for the bending moment in the beam as

M ¼ �Px
The partial derivative of M with respect to P is given by

qM

qP
¼ �x

The deflection at B can now be obtained by applying the expression of Castigliano’s second theorem, as given by
Eq. (7.60), as follows:

DB ¼
ðL

0

qM

qP

� �
M

EI

� �
dx

DB ¼
ðL

0

ð�xÞ �Px

EI

� �
dx

¼ P

EI

ðL

0

x2 dx ¼ PL3

3EI

DB ¼ PL3

3EI
# Ans.

Example 7.15

Determine the rotation of joint C of the frame shown in Fig. 7.23(a) by Castigliano’s second theorem.

Solution
This frame was previously analyzed by the virtual work method in Example 7.10.

No external couple is acting at joint C, where the rotation is desired, so we apply a fictitious couple M ð¼ 0Þ at C,
as shown in Fig. 7.23(b). The x coordinates used for determining the bending moment equations for the three segments
of the frame are also shown in Fig. 7.23(b), and the equations for M in terms of M and qM=qM obtained for the three
segments are tabulated in Table 7.12. The rotation of joint C of the frame can now be determined by setting M ¼ 0 in
the equations for M and qM=qM and by applying the expression of Castigliano’s second theorem as given by Eq.
(7.65):

yC ¼
Pð

qM

qM

� �
M

EI
dx

¼
ð 12

0

x

12

� �
180x� 20

x2

2

� �
dx

¼ 4320 kN-m2

EI
¼ 4320

200ð106Þ1000ð10�6Þ ¼ 0:0216 rad

yC ¼ 0:0216 rad @ Ans.

continued

322 CHAPTER 7 Deflections of Trusses, Beams, and Frames: Work–Energy Methods

https://engineersreferencebookspdf.com



FIG. 7.23

TABLE 7.12

x Coordinate

Segment Origin Limits (m) M (kN-m)

qM

qM

kN-m

kN-m

� �

AB A 0–4 180x 0

CB C 0–4 720 0

DC D 0–12 180þM

12

� �
x� 20

x2

2

x

12
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Example 7.16

Use Castigliano’s second theorem to determine the horizontal and vertical components of the deflection at joint B of the
truss shown in Fig. 7.24(a).

FIG. 7.24

Solution
This truss was previously analyzed by the virtual work method in Example 7.3.

TABLE 7.13

For P1 ¼ 0 and P2 ¼ 84 kN

Member
L
(m)

F
(kN)

qF

qP1

(kN/kN)

qF

qP2

(kN/kN)
ðqF=qP1ÞFL
(kN�m)

ðqF=qP2ÞFL
(kN�m)

AB 4 �15þ P1 þ 0:43P2 1 0.43 84.48 36.32

BC 3 �15þ 0:43P2 0 0.43 0 27.24

AD 5.66 �28:28� 0:61P2 0 �0.61 0 274.55

BD 4 P2 0 1 0 336.00

CD 5 25� 0:71P2 0 �0.71 0 122.97

P qF

qP

� �
FL 84.48 797.08

DBH ¼ 1

EA

P qF

qP1

� �
FL DBV ¼ 1

EA

P qF

qP2

� �
FL

¼ 84:48

EA
kN�m ¼ 797:08

EA
kN�m

¼ 84:48

200ð106Þð0:0012Þ ¼ 0:00035 m ¼ 797:08

200ð106Þð0:0012Þ ¼ 0:00332 m

DBH ¼ 0:35 mm! Ans. DBV ¼ 3:32 mm # Ans.

continued
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As shown in Fig. 7.24(b), a fictitious horizontal force P1 ð¼ 0Þ is applied at joint B to determine the horizontal
component of deflection, whereas the 84-kN vertical load is designated as the variable P2 to be used for computing
the vertical component of deflection at joint B. The member axial forces, in terms of P1 and P2, are then determined by
applying the method of joints. These member forces F , along with their partial derivatives with respect to P1 and P2, are
tabulated in Table 7.13. Note that the tensile axial forces are considered as positive and the compressive forces are
negative. Numerical values of P1 ¼ 0 and P2 ¼ 84 kN are then substituted in the equations for F , and the expression of
Castigliano’s second theorem, as given by Eq. (7.59) is applied, as shown in the table, to determine the horizontal and
vertical components of the deflection at joint B of the truss.

7.8 BETTI’S LAW AND MAXWELL’S LAW OF RECIPROCAL DEFLECTIONS

Maxwell’s law of reciprocal deflections, initially developed by James C.
Maxwell in 1864, plays an important role in the analysis of statically
indeterminate structures to be considered in Part Three of this text.
Maxwell’s law will be derived here as a special case of the more general
Betti’s law, which was presented by E. Betti in 1872. Betti’s law can be
stated as follows:

For a linearly elastic structure, the virtual work done by a P system of

forces and couples acting through the deformation caused by a Q system of

forces and couples is equal to the virtual work of the Q system acting

through the deformation due to the P system.

To show the validity of this law, consider the beam shown in Fig. 7.25.
The beam is subjected to two di¤erent systems of forces, P and Q systems,
as shown in Fig. 7.25(a) and (b), respectively. Now, let us assume that we
subject the beam that has the P forces already acting on it (Fig. 7.25(a)) to
the deflections caused by the Q system of forces (Fig. 7.25(b)). The virtual
external work (Wve) done can be written as

Wve ¼ P1DQ1 þ P2DQ2 þ � � � þ PnDQn

or

Wve ¼
Pn
i¼1

PiDQi

By applying the principle of virtual forces for deformable bodies,
Wve ¼Wvi, and using the expression for the virtual internal work done
in beams (Eq. (7.29)), we obtain

Pn
i¼1

PiDQi ¼
ðL

0

MPMQ

EI
dx (7.66)

FIG. 7.25
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Next, we assume that the beam with the Q forces acting on it (Fig.
7.25(b)) is subjected to the deflections caused by the P forces (Fig.
7.25(a)). By equating the virtual external work to the virtual internal
work, we obtain Pm

j¼1
QjDpj ¼

ðL

0

MQMP

EI
dx (7.67)

Noting that the right-hand sides of Eqs. (7.66) and (7.67) are identical,
we equate the left-hand sides to obtain

Pn
i¼1

PiDQi ¼
Pm
j¼1

QjDPj (7.68)

Equation (7.68) represents the mathematical statement of Betti’s law.
Maxwell’s law of reciprocal deflections states that for a linearly

elastic structure, the deflection at a point i due to a unit load applied at a

point j is equal to the deflection at j due to a unit load at i.
In this statement, the terms deflection and load are used in the gen-

eral sense to include rotation and couple, respectively. As mentioned
previously, Maxwell’s law can be considered as a special case of Betti’s
law. To prove Maxwell’s law, consider the beam shown in Fig. 7.26.
The beam is separately subjected to the P and Q systems, consisting of
the unit loads at points i and j, respectively, as shown in Fig. 7.26(a)
and (b). As the figure indicates, fij represents the deflection at i due to
the unit load at j, whereas fji denotes the deflection at j due to the unit
load at i. These deflections per unit load are referred to as flexibility co-

e‰cients. By applying Betti’s law (Eq. (7.68)), we obtain

1ð fijÞ ¼ 1ð fjiÞ
or

fij ¼ fji (7.69)

which is the mathematical statement of Maxwell’s law.
The reciprocal relationship remains valid between the rotations

caused by two unit couples as well as between the deflection and the
rotation caused by a unit couple and a unit force, respectively.

SUMMARY

In this chapter we have learned that the work done by a force P (or
couple M ) during a displacement D (or rotation y) of its point of appli-
cation in the direction of its line of action is given by

W ¼
ðD

0

PdD (7.1)

FIG. 7.26
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or

W ¼
ð y

0

M dy (7.4)

The principle of virtual work for rigid bodies states that if a rigid
body is in equilibrium under a system of forces and if it is subjected to
any small virtual rigid-body displacement, the virtual work done by the
external forces is zero.

The principle of virtual forces for deformable bodies can be mathe-
matically stated as

Wve ¼Wvi (7.16)

in which Wve ¼ virtual external work done by virtual external forces
(and couples) acting through the real external displacements (and rota-
tions) of the structure; and Wvi ¼ virtual internal work done by the
virtual internal forces (and couples) acting through the real internal dis-
placements (and rotations) of the structure.

The method of virtual work for determining the deformations of
structures is based on the principle of virtual forces for deformable
bodies. The method employs two separate systems: (1) a real system of
loads (or other e¤ects) causing the deformation to be determined and (2)
a virtual system consisting of a unit load (or unit couple) applied at the
point and in the direction of the desired deflection (or rotation). The
explicit expressions of the virtual work method to be used to determine
the deflections of trusses, beams, and frames are as follows:

Trusses 1ðDÞ ¼P
Fv

FL

AE

� �
(7.23)

Beams 1ðDÞ ¼
ðL

0

MvM

EI
dx (7.30)

Frames 1ðDÞ ¼P
Fv

FL

AE

� �
þPð

MvM

EI
dx (7.35)

The principle of conservation of energy states that the work per-
formed by statically applied external forces on an elastic structure in
equilibrium is equal to the work done by internal forces or the strain
energy stored in the structure. The expressions for the strain energy of
trusses, beams and frames are

Trusses U ¼P F 2L

2AE
(7.41)

Beams U ¼
ðL

0

M 2

2EI
dx (7.44)

Frames U ¼P F 2L

2AE
þPð

M 2

2EI
dx (7.48)
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Castigliano’s second theorem for linearly elastic structures can be
mathematically expressed as

qU

qPi

¼ Di or
qU

qMi

¼ yi (7.50)

The expressions of Castigliano’s second theorem, which can be used to
determine deflections, are as follows:

Trusses D ¼P qF

qP

� �
FL

AE
(7.59)

Beams D ¼
ðL

0

qM

qP

� �
M

EI
dx (7.60)

Frames D ¼P qF

qP

� �
FL

AE
þPð

qM

qP

� �
M

EI
dx (7.62)

Maxwell’s law of reciprocal deflections states that, for a linearly
elastic structure, the deflection at a point i due to a unit load applied at
a point j is equal to the deflection at j due to a unit load at i.

PROBLEMS

Section 7.3

7.1 through 7.5 Use the virtual work method to determine
the horizontal and vertical components of the deflection at
joint B of the truss shown in Figs. P7.1–P7.5.

4.5 m

100 kN

1.5 m

A

C

B

EA = constant
E = 70 GPa
A = 4000 mm2

FIG. P7.1, P7.45

2 m 4 m

A C

B

100 kN

50 kN

3 m

EA = constant
E = 70 GPa
A = 1,000 mm2

FIG. P7.2, P7.46
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120 kN

4 m

A C

B

3 m

EA = constant
E = 200 GPa
A = 1,500 mm2

FIG. P7.3, P7.47

3 m

4 m 4 m

120 kN

200 kN

A C

B

EA = constant
E = 200 GPa
A = 3000 mm2

FIG. P7.4, P7.48

150 kN

E = 70 GPa

2600 mm2

4000 mm2

4000 mm2

4000 mm2

26
00

 m
m

2

225 k

3 m

A

C

D

B

3 m 3 m

FIG. P7.5, P7.49

7.6 and 7.7 Use the virtual work method to determine the
vertical deflection at joint C of the truss shown in Figs. P7.6
and P7.7.

E = 200 GPa

2600 mm2

20
00

 m
m

2

20
00

 m
m

2

2000 m
m

2 2600 mm 2

2600 mm22600 mm2

4.5 m

A
C

D E

B

6 m 6 m

100 kN100 kN

FIG. P7.6
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FIG. P7.7

7.8 Use the virtual work method to determine the horizon-
tal deflection at joint E of the truss shown in Fig. P7.8.

FIG. P7.8, P7.50

7.9 Use the virtual work method to determine the horizon-
tal deflection at joint H of the truss shown in Fig. P7.9.

FIG. P7.9

7.10 through 7.12 Determine the smallest cross-sectional
area A required for the members of the truss shown, so that
the horizontal deflection at joint D does not exceed 10 mm.
Use the virtual work method.

FIG. P7.10
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FIG. P7.11

FIG. P7.12

7.13 through 7.15 Determine the smallest cross-sectional
area A for the members of the truss shown, so that the ver-
tical deflection at joint B does not exceed 10 mm Use the
method of virtual work.

FIG. P7.13

FIG. P7.14

FIG. P7.15

7.16 Determine the horizontal deflection at joint E of the
truss shown in Fig. P7.16 due to a temperature increase of
50�C in members AC and CE. Use the method of virtual
work.
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A B

DC

E

4 m

4 m

3 m

α = 1.2 (10–5)/°C

FIG. P7.16, P7.18

7.17 Determine the vertical deflection at joint B of the
truss shown in Fig. P7.17 due to a temperature increase
of 40�C in members AB and BC, and a temperature drop of
20�C in members AD, DE, EF , and CF . Use the method of vir-
tual work.

6 m 6 m 6 m 6 m

B
A C

FD

E

α = 1.2 (10–5)/°C

3.5 m

FIG. P7.17, P7.19

7.18 Determine the horizontal deflection at joint E of the
truss shown in Fig. P7.16 if member BC is 18 mm too long
and member CE is 15mm too short. Use the method of
virtual work.

7.19 Determine the vertical deflection at joint B of the truss
shown in Fig. P7.17 if members AB and BE are 15 mm too
short. Use the method of virtual work.

Section 7.4

7.20 and 7.21 Use the virtual work method to determine
the slope and deflection at point B of the beam shown.

10 m

BA

30 kN/m

EI = constant
E = 200 GPa
I = 1200 (106) mm4

FIG. P7.20, P7.51

A
B

4 m

EI = constant
E = 70 GPa
I = 164 (106) mm4

50 kN–m

FIG. P7.21, P7.52

7.22 through 7.25 Use the virtual work method to de-
termine the deflection at point C of the beam shown.

E = constant

A

2I I

B C

P

2L
3

L
3

FIG. P7.22, P7.53

100 kN 300 kN–m

A

E = constant = 70 GPa
I  = 500 (106) mm4

6 m
2I

3 m
I

B C

FIG. P7.23, P7.54
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FIG. P7.24, P7.55

FIG. P7.25, P7.56

7.26 through 7.28 Determine the smallest moment of in-
ertia I required for the beam shown, so that its maximum
deflection does not exceed the limit of 1=360 of the span
length (i.e., Dmax aL=360). Use the method of virtual
work.

A
CB

L = 10 m
EI = constant
E = 200 GPa

5 m 5 m

300 kN–m
60 kN

FIG. P7.26

B

45 kN/m

A

L = 6 m
EI = constant
E = 200 GPa

FIG. P7.27

4 m

12 kN/m

4 m
C

A B

L = 8 m
EI = constant
E = 70 GPa

FIG. P7.28

7.29 and 7.30 Use the virtual work method to determine
the slope and deflection at point D of the beam shown.

5 m 5 m 5 m

A C

B D

EI = constant
E = 70 GPa
I = 1000 (106) mm4

150 kN

FIG. P7.29, P7.57

FIG. P7.30, P7.58

Section 7.5

7.31 and 7.32 Use the virtual work method to determine
the vertical deflection at joint C of the frame shown.
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6 m

4.5 m

A

B C

30 kN/m

EI = constant
E = 200 GPa
I = 800(106)mm4

FIG. P7.31, P7.59

4.5 m

9 m

6 m

A

B

C

4 
kN

/m

6 kN/m

EI = constant
E = 70 GPa
I = 3200 (106)mm4

FIG. P7.32

7.33 Use the virtual work method to determine the hori-
zontal deflection at joint C of the frame shown.

5 m

5 m

A

B

C

25
 k

N
/m

EI = constant
E = 70 GPa
I = 1,030 (106) mm4

FIG. P7.33, P7.60

7.34 Use the virtual work method to determine the rotation
of joint D of the frame shown.

7.35 Use the virtual work method to determine the hori-
zontal deflection at joint E of the frame shown in Fig.
P7.34.

FIG. P7.34, P7.35
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7.36 Use the virtual work method to determine the rotation
of joint B of the frame shown.

7.37 Use the virtual work method to determine the vertical
deflection at joint B of the frame shown in Fig. P7.36.

FIG. P7.36, P7.37

7.38 Use the virtual work method to determine the rotation
of joint D of the frame shown.

A

B I C

D

I

5 m 2 I

3 m

4 m

200 kN

E = constant = 70 GPa
I = 1,290 (106) mm4

FIG. P7.38 and P7.61

7.39 and 7.40 Use the virtual work method to determine
the horizontal deflection at joint C of the frame shown.

FIG. P7.39, P7.62

3 m

B C

D

A

30 kN/m

4.5 m 

9 m

EI = constant
E = 200 GPa   I = 600(106)mm4

FIG. P7.40, P7.63

7.41 and 7.42 Determine the smallest moment of inertia I

required for the members of the frame shown, so that the
horizontal deflection at joint C does not exceed 20 mm Use
the virtual work method.
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FIG. P7.41

FIG. P7.42

7.43 Use the virtual work method to determine the rotation
of joint D of the frame shown.

7.44 Using the method of virtual work, determine the ver-
tical deflection at joint E of the frame shown in Fig. P7.43.

FIG. P7.43, P7.44

Section 7.7

7.45 through 7.49 Use Castigliano’s second theorem to de-
termine the horizontal and vertical components of the de-
flection at joint B of the trusses shown in Figs. P7.1–P7.5.

7.50 Use Castigliano’s second theorem to determine the
horizontal deflection at joint E of the truss shown in Fig.
P7.8.

7.51 and 7.52 Use Castigliano’s second theorem to de-
termine the slope and deflection at point B of the beam
shown in Figs. P7.20 and P7.21.

7.53 through 7.56 Use Castigliano’s second theorem to
determine the deflection at point C of the beams shown in
Figs. P7.22–P7.25.

7.57 and 7.58 Use Castigliano’s second theorem to de-
termine the slope and deflection at point D of the beam
shown in Figs. P7.29 and P7.30.

7.59 Use Castigliano’s second theorem to determine the
vertical deflection at joint C of the frame shown in Fig.
P7.31.

7.60 Use Castigliano’s second theorem to determine the
horizontal deflection at joint C of the frame shown in Fig.
P7.33.

7.61 Use Castigliano’s second theorem to determine the ro-
tation of joint D of the frame shown in Fig. P7.38.

7.62 and 7.63 Use Castigliano’s second theorem to de-
termine the horizontal deflection at joint C of the frames
shown in Figs. P7.39 and P7.40.
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8
Influence Lines
8.1 Influence Lines for Beams and Frames by Equilibrium Method
8.2 Müller-Breslau’s Principle and Qualitative Influence Lines
8.3 Influence Lines for Girders with Floor Systems
8.4 Influence Lines for Trusses
8.5 Influence Lines for Deflections

Summary
Problems

A Bridge Subjected to Variable

Loads Due to Tra‰c
Oliver Strewe/Lonely Planet Images/Getty Images

337

In the previous chapters, we considered the analysis of structures sub-
jected to loads whose positions were fixed on the structures. An example
of such stationary loading is the dead load due to the weight of the
structure itself and of other material and equipment permanently at-
tached to the structure. However, structures generally are also subjected
to loads (such as live loads and environmental loads) whose positions
may vary on the structure. In this chapter, we study the analysis of
statically determinate structures subjected to variable loads.

Consider, as an example, the bridge truss shown in Fig. 8.1. As a
car moves across the bridge, the forces in the members of the truss will
vary with the position x of the car. It should be realized that the forces
in di¤erent truss members will become maximum at di¤erent positions
of the car. For example, if the force in member AB becomes maximum
when the car is at a certain position x ¼ x1, then the force in another
member—for example, member CH—may become maximum when the
car is at a di¤erent position x ¼ x2. The design of each member of the
truss must be based on the maximum force that develops in that mem-
ber as the car moves across the bridge. Therefore, the analysis of the
truss would involve, for each member, determining the position of the
car at which the force in the member becomes maximum and then
computing the value of the maximum member force.
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From the foregoing discussion, we can see that the analysis of struc-
tures for variable loads consists of two steps: (1) determining the posi-
tion(s) of the load(s) at which the response function of interest (e.g., a
reaction, shear or bending moment at a section of a beam, or force in
a truss member) becomes maximum, and (2) computing the maximum
value of the response function.

An important concept used in the analysis of structures subjected
to variable loads is that of the influence lines, initially introduced by
E. Winkler in 1867. An influence line is a graph of a response function of

a structure as a function of the position of a downward unit load moving

across the structure.
We begin this chapter by describing the procedure for construct-

ing influence lines for the reactions, shears, and bending moments of
beams and frames by using the equations of equilibrium. We next dis-
cuss the Müller-Breslau principle and its application for determining in-
fluence lines. We also consider the influence lines for the force response
functions of girders with floor systems and of trusses and, finally, the
influence lines for deflections. The application of influence lines in de-
termining the maximum values of response functions of structures due
to variable loads is considered in the next chapter.

8.1 INFLUENCE LINES FOR BEAMS AND FRAMES BY EQUILIBRIUM METHOD

Consider the simply supported beam shown in Fig. 8.2(a). The beam is
subjected to a downward concentrated load of unit magnitude, which
moves from the left end A of the beam to the right end C. The position
of the unit load is defined by the coordinate x measured from the left
end A of the beam, as shown in the figure. Suppose that we wish to draw
the influence lines for the vertical reactions at supports A and C and the
shear and bending moment at point B, which is located at a distance a

from the left end of the beam, as shown in the figure.

FIG. 8.1

338 CHAPTER 8 Influence Lines

https://engineersreferencebookspdf.com



Influence Lines for Reactions

To develop the influence line for the vertical reaction Ay of the beam, we
determine the expression for Ay in terms of the variable position of the
unit load, x, by applying the equilibrium equation:

þ ’
P

MC ¼ 0

�AyðLÞ þ 1ðL� xÞ ¼ 0

Ay ¼ 1ðL� xÞ
L

¼ 1� x

L
(8.1)

Equation (8.1) indicates that Ay is a linear function of x, with Ay ¼ 1 at
x ¼ 0 and Ay ¼ 0 at x ¼ L.

Equation (8.1) represents the equation of the influence line for Ay,
which is constructed by plotting this equation with Ay as ordinate

FIG. 8.2
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against the position of the unit load, x, as abscissa, as shown in Fig.
8.2(b). Note that this influence line (Fig. 8.2(b)) shows graphically how
the movement of a unit load across the length of the beam influences
the magnitude of the reaction Ay. As this influence line indicates, Ay ¼ 1
when the unit load is located at the left support A of the beam (i.e.,
when x ¼ 0). As the unit load moves from A to C, the magnitude of Ay

decreases linearly until it becomes zero when the unit load reaches the
right support C (i.e., when x ¼ L). It is important to realize that the or-
dinate of the influence line at any position x is equal to the magnitude of
Ay due to a unit load acting at the position x on the beam. For example,
from the influence line for Ay (Fig. 8.2(b)), we can determine that when
a unit load is applied at a distance of 0.25L from the end A of the beam,
the magnitude of the reaction Ay will be 0.75. Similarly, when the unit
load is acting at x ¼ 0:6L, the magnitude of Ay will be 0.4, and so on.

The influence line for the vertical reaction Cy of the beam (Fig.
8.2(a)) can be developed by using the procedure just outlined. To de-
termine the expression for Cy in terms of x, we apply the equilibrium
equation:

þ ’
P

MA ¼ 0

�1ðxÞ þ CyðLÞ ¼ 0

Cy ¼ 1ðxÞ
L
¼ x

L
(8.2)

Equation (8.2) represents the equation of the influence line for Cy, which
is constructed by plotting this equation, as shown in Fig. 8.2(c). It can

FIG. 8.2 (contd.)
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be seen from Fig. 8.2(b) and (c) that the sum of the ordinates of the in-
fluence lines for the reactions Ay and Cy at any position of the unit
load, x, is equal to 1, indicating that the equilibrium equation

P
Fy ¼ 0

is satisfied.

Influence Line for Shear at B

The influence lines for shears and bending moments can be developed
by employing a procedure similar to that used for constructing the in-
fluence lines for reactions. To develop the influence line for the shear
at point B of the beam (Fig. 8.2(d)), we determine the expressions for
SB. It can be seen from Fig. 8.2(d) that when the unit load is located to
the left of point B—that is, on segment AB of the beam (0a x < a)—
the shear at B can be conveniently obtained by using the free body of
the portion BC of the beam that is to the right of B. Considering the
downward external forces and reactions acting on the portion BC as
positive in accordance with the beam sign convention (Section 5.1), we
determine the shear at B as

SB ¼ �Cy 0a x < a

When the unit load is located to the right of point B—that is, on seg-
ment BC of the beam (a < xaL)—it is simpler to determine SB by
using the free body of the portion AB, which is to the left of B. Consid-
ering the upward external forces and reactions acting on the portion AB

as positive, we determine the shear at B as

SB ¼ Ay a < xaL

Thus the equations of the influence line for SB can be written as

SB ¼
�Cy 0a x < a

Ay a < xaL

	
(8.3)

Note that Eq. (8.3) expresses the influence line for SB in terms of the
influence lines for the reactions Ay and Cy. This equation indicates
that the segment of the influence line for SB between points A and B

(0a x < a) can be obtained by multiplying the ordinates of the segment
of the influence line for Cy between A and B by �1. Also, according to
this equation, the segment of the influence line for SB between points B
and C (a < xaL) is the same as the segment of the influence line for Ay

between the same two points. The influence line for SB thus constructed
from the influence lines for Ay and Cy is shown in Fig. 8.2(e). It is usu-
ally more convenient to construct the influence lines for shears and
bending moments (to be discussed subsequently) from the influence lines
for reactions instead of from the equations expressing the shear or bend-
ing moment explicitly in terms of the position of the unit load, x. If de-
sired, such equations for the influence line for SB in terms of x can be
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obtained by simply substituting Eqs. (8.1) and (8.2) into Eq. (8.3); that
is,

SB ¼
�Cy ¼ � x

L
0a x < a

Ay ¼ 1� x

L
a < xaL

8><
>: (8.4)

The influence line for SB (Fig. 8.2(e)) shows that the shear at B is
zero when the unit load is located at the left support A of the beam. As
the unit load moves from A to B, the shear at B decreases linearly until
it becomes �a=L when the unit load reaches just to the left of point B.
As the unit load crosses point B, the shear at B increases abruptly to
1� ða=LÞ. It then decreases linearly as the unit load moves toward C

until it becomes zero when the unit load reaches the right support C.

Influence Line for Bending Moment at B

When the unit load is located to the left of point B (Fig. 8.2(d)), the ex-
pression for the bending moment at B can be conveniently obtained by
using the free body of the portion BC of the beam to the right of B.
Considering the counterclockwise moments of the external forces and
reactions acting on the portion BC as positive in accordance with the
beam sign convention (Section 5.1), we determine the bending moment
at B as

MB ¼ CyðL� aÞ 0a xa a

When the unit load is located to the right of point B, we use the free
body of the portion AB to the left of B to determine MB. Considering
the clockwise moments of the external forces and reactions acting on the
portion AB as positive, we determine the bending moment at B as

MB ¼ AyðaÞ aa xaL

Thus the equations of the influence line for MB can be written as

MB ¼
CyðL� aÞ 0a xa a

AyðaÞ aa xaL

	
(8.5)

Equation (8.5) indicates that the segment of the influence line for MB

between points A and B (0a xa a) can be obtained by multiplying the
ordinates of the segment of the influence line for Cy between A and B

by ðL� aÞ. Also, according to this equation the segment of the influence
line for MB between points B and C (aa xaL) can be obtained by
multiplying the ordinates of the segment of the influence line for Ay be-
tween B and C by a. The influence line for MB thus constructed from
the influence lines for Ay and Cy is shown in Fig. 8.2(f ). The equations
of this influence line in terms of the position of the unit load, x, can be
obtained by substituting Eqs. (8.1) and (8.2) into Eq. (8.5); that is,
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MB ¼
CyðL� aÞ ¼ x

L
ðL� aÞ 0a xa a

AyðaÞ ¼ 1� x

L

� �
a aa xaL

8>><
>>: (8.6)

Although the influence line for MB (Fig. 8.2(f )) resembles, in shape,
the bending moment diagram of the beam for a concentrated load ap-
plied at point B, the influence line for bending moment has an entirely
di¤erent meaning than the bending moment diagram, and it is essential
that we clearly understand the di¤erence between the two. A bending
moment diagram shows how the bending moment varies at all sections
along the length of a member for a loading condition whose position is
fixed on the member, whereas an influence line for bending moment
shows how the bending moment varies at one particular section as a unit
load moves across the length of the member.

Note from Fig. 8.2 that the influence lines for the reactions, shear,
and bending moment of the simply supported beam consist of straight-
line segments. We show in the following section that this is true for the
influence lines for all response functions involving forces and moments
(e.g., reactions, shears, bending moments, and forces in truss members)
for all statically determinate structures. However, influence lines for the
deflections of statically determinate structures (discussed in Section 8.5)
are composed of curved lines.

Procedure for Analysis

The procedure for constructing influence lines for the reactions, shears,
and bending moments of beams and frames by using the equilibrium
method can be summarized as follows:

1. Select an origin from which the position of a moving downward
concentrated unit load will be measured. It is usually convenient to
assume that the unit load moves from the left end of the structure to
the right end, with its position defined by a coordinate x measured
from the left end of the structure.

2. To construct an influence line for a support reaction:
a. Place the unit load at a distance x from the left end of the

structure, and determine the expression for the reaction in terms
of x by applying an equation of equilibrium or condition. If the
structure is composed of two or more rigid parts connected to-
gether by internal hinges and/or rollers, the expression for the
reaction may change as the unit load moves from one rigid part
to the next by crossing an internal hinge or roller. Therefore,
for such structures, when applying the equations of condition
the unit load must be placed successively on each rigid part of
the structure in the path of the unit load, and an expression for
the reaction must be determined for each position of the load.
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b. Once the expression(s) for the reaction for all the positions of
the unit load has been determined, construct the influence line
by plotting the expression(s) with the magnitude of the reaction
as ordinate against the position x of the unit load as abscissa.
A positive ordinate of the influence line indicates that the
unit load applied at that point causes the reaction to act in the
positive direction (i.e., the direction of the reaction initially
used in deriving the equation of the influence line) and vice
versa.

c. Repeat step 2 until all the desired influence lines for reactions
have been determined.

3. It is generally convenient to construct the influence lines for shears
and bending moments by using the influence lines for support reac-
tions. Thus, before proceeding with the construction of an influence
line for shear or bending moment at a point on the structure, make
sure that the influence lines for all the reactions, on either the left or
right side of the point under consideration, are available. Otherwise,
draw the required influence lines for reactions by using the proce-
dure described in the previous step. An influence line for the shear
(or bending moment) at a point on the structure can be constructed
as follows:
a. Place the unit load on the structure at a variable position x to

the left of the point under consideration, and determine the ex-
pression for the shear (or bending moment). If the influence
lines for all the reactions are known, then it is usually con-
venient to use the portion of the structure to the right of the
point for determining the expression for shear (or bending mo-
ment), which will contain terms involving only reactions. The
shear (or bending moment) is considered to be positive or neg-
ative in accordance with the beam sign convention established in
Section 5.1 (see Fig. 5.2).

b. Next, place the unit load to the right of the point under
consideration, and determine the expression for the shear (or
bending moment). If the influence lines for all the reactions are
known, then it is usually convenient to use the portion of the
structure to the left of the point for determining the desired ex-
pression, which will contain terms involving only reactions.

c. If the expressions for the shear (or bending moment) contain
terms involving only reactions, then it is generally simpler to
construct the influence line for shear (or bending moment) by
combining the segments of the reaction influence lines in ac-
cordance with these expressions. Otherwise, substitute the
expressions for the reactions into the expressions for the shear
(or bending moment), and plot the resulting expressions, which
will now be in terms only of x, to obtain the influence line.

d. Repeat step 3 until all the desired influence lines for shears and
bending moments have been determined.
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Example 8.1

continued

Draw the influence lines for the vertical reactions at supports A and C, and the shear and bending moment at point B,
of the simply supported beam shown in Fig. 8.3(a).

Solution
The free-body diagram of the beam is shown in Fig. 8.3(b). This diagram shows the beam subjected to a moving 1-kN
load, whose position is defined by the coordinate x measured from the left end A of the beam. The two vertical re-
actions, Ay and Cy, are assumed to be positive in the upward direction, as indicated on the free-body diagram.

Influence Line for Ay To determine the expression for Ay, we apply the equilibrium equation:

þ ’
P

MC ¼ 0

�Ayð5Þ þ 1ð5� xÞ ¼ 0

Ay ¼ 1ð5� xÞ
5

¼ 1� x

5

The influence line for Ay, which is obtained by plotting this equation, is shown in Fig. 8.3(c). Note that the ordinates of
the influence line are expressed in the units obtained by dividing the units of the response function, Ay, by the units of
the unit load—that is, kN/kN. Ans.

Influence Line for Cy þ ’
P

MA ¼ 0

�1ðxÞ þ Cyð5Þ ¼ 0

Cy ¼ 1ðxÞ
5
¼ x

5

The influence line for Cy, which is obtained by plotting this equation, is shown in Fig. 8.3(d). Ans.

FIG. 8.3
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Influence Line for SB First, we place the unit load at a variable position x to the left of point B—that is, on the segment
AB of the beam—and determine the shear at B by using the free body of the portion BC of the beam, which is to the right of B:

SB ¼ �Cy 0a x < 3 m

Next, the unit load is located to the right of B—that is, on the segment BC of the beam—and we use the free body of
the portion AB, which is to the left of B, to determine SB:

SB ¼ Ay 3 m < xa 5 m

Thus, the equations of the influence line for SB are

SB ¼
�Cy ¼ � x

5
0a x < 3 m

Ay ¼ 1� x

5
3 m < xa 5 m

8><
>:

The influence line for SB is shown in Fig. 8.3(e). Ans.

Influence Line for MB First, we place the unit load at a position x to the left of B and determine the bending mo-
ment at B by using the free body of the portion of the beam to the right of B:

MB ¼ 2Cy 0a xa 3 m

Next, the unit load is located to the right of B, and we use the free body of the portion of the beam to the left of B to
determine MB:

MB ¼ 3Ay 3 ma xa 5 m

Thus the equations of the influence line for MB are

MB ¼
2Cy ¼ 2x

5
0a xa 5 m

3Ay ¼ 3� 3x

5
3 ma xa 5 m

8>><
>>:

The influence line for MB is shown in Fig. 8.3(f ). Ans.

Example 8.2

Draw the influence lines for the vertical reaction and the reaction moment at support A and the shear and bending
moment at point B of the cantilever beam shown in Fig. 8.4(a).

Solution
Influence Line for Ay

þ "PFy ¼ 0

Ay � 1 ¼ 0

Ay ¼ 1

The influence line for Ay is shown in Fig. 8.4(c). Ans.

continued
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Influence Line for MA

þ ’
P

MA ¼ 0

�MA � 1ðxÞ ¼ 0

MA ¼ �1ðxÞ ¼ �x
The influence line for MA, which is obtained by plotting this equation, is shown in Fig. 8.4(d). As all the ordinates of the
influence line are negative, it indicates that the sense of MA for all the positions of the unit load on the beam is actually
counterclockwise, instead of clockwise as initially assumed (see Fig. 8.4(b)) in deriving the equation of the influence line.

Ans.

Influence Line for SB

SB ¼
0 0a x < 3 m

Ay ¼ 1 3 m < xa 8 m

	
The influence line for SB is shown in Fig. 8.4(e). Ans.

Influence Line for MB

MB ¼
0 0a xa 3 m

MA þ 3Ay ¼ �xþ 3ð1Þ ¼ �xþ 3 3 ma xa 8 m

	
The influence line for MB is shown in Fig. 8.4(f ). Ans.

FIG. 8.4
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FIG. 8.5

Example 8.3

Draw the influence lines for the vertical reactions at supports A;C, and E, the shear just to the right of support C, and
the bending moment at point B of the beam shown in Fig. 8.5(a).

Solution
The beam is composed of two rigid parts, AD and DE, connected by an internal hinge at D. To avoid solving simulta-
neous equations in determining the expressions for the reactions, we will apply the equations of equilibrium and con-
dition in such an order that each equation involves only one unknown.

Influence Line for Ey We will apply the equation of condition,
P

MDE
D ¼ 0, to determine the expression for Ey. First,

we place the unit load at a variable position x to the left of the hinge D—that is, on the rigid part AD of the beam—to obtain

þ ’
P

MDE
D ¼ 0

Eyð4Þ ¼ 0

Ey ¼ 0 0a xa 8 m

continued
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Next, the unit load is located to the right of hinge D—that is, on the rigid part DE of the beam—to obtain

þ ’
P

MDE
D ¼ 0

�1ðx� 8Þ þ Eyð4Þ ¼ 0

Ey ¼ 1ðx� 8Þ
4

¼ x

4
� 2 8 ma xa 12 m

Thus, the equations of the influence line for Ey are

Ey ¼
0 0a xa 8 m
x

4
� 2 8 ma xa 12 m

(

The influence line for Ey is shown in Fig. 8.5(c). Ans.

Influence Line for Cy Applying the equilibrium equation:

þ ’
P

MA ¼ 0

�1ðxÞ þ Cyð4Þ þ Eyð12Þ ¼ 0

Cy ¼ x

4
� 3Ey

By substituting the expressions for Ey, we obtain

Cy ¼

x

4
� 0 ¼ x

4
0a xa 8 m

x

4
� 3

x

4
� 2

� �
¼ 6� x

2
8 ma xa 12 m

8>>><
>>>:

The influence line for Cy, which is obtained by plotting these equations, is shown in Fig. 8.5(d). Ans.

Influence Line for Ay

þ "PFy ¼ 0

Ay � 1þ Cy þ Ey ¼ 0

Ay ¼ 1� Cy � Ey

By substituting the expressions for Cy and Ey, we obtain the following equations of the influence line for Ay:

Ay ¼
1� x

4
� 0 ¼ 1� x

4
0a xa 8 m

1� 6� x

2

� �
� x

4
� 2

� �
¼ x

4
� 3 8 ma xa 12 m

8>>><
>>>:

The influence line for Ay is shown in Fig. 8.5(e). Ans.

Influence Line for Shear at Just to the Right of C;SC;R

SC;R ¼
�Ey 0a x < 4 m

1� Ey 4 m < xa 12 m

	
continued
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By substituting the expressions for Ey, we obtain

SC;R ¼

0 0a x < 4 m

1� 0 ¼ 1 4 m < xa 8 m

1� x

4
� 2

� �
¼ 3� x

4
8 ma xa 12 m

8>>>><
>>>>:

The influence line for SC;R is shown in Fig. 8.5(f ). Ans.

Influence Line for MB

MB ¼
2Ay � 1ð2� xÞ 0a xa 2 m

2Ay 2 ma xa 12 m

	
By substituting the expressions for Ay, we obtain

MB ¼

2 1� x

4

� �
� 1ð2� xÞ ¼ x

2
0a xa 2 m

2 1� x

4

� �
¼ 2� x

2
2 ma xa8 m

2
x

4
� 3

� �
¼ x

2
� 6 8 ma xa 12 m

8>>>>>>>>><
>>>>>>>>>:

The influence line for MB is shown in Fig. 8.5(g). Ans.

Example 8.4

A

C DB

4 m

2 m 4 m

(a)

A

C D
B

(b)

x

Ay

1 kN

MA

FIG. 8.6

Draw the influence lines for the vertical reaction and the reaction moment at support A of the frame shown in Fig. 8.6(a).
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1.0

2.0

1.0 1.0

4.0

B C D

(c) Influence Line for Ay (kN/kN)

(d) Influence Line for MA (kN–m/kN)

B
C D

FIG. 8.6 (contd.)

Solution
Influence Line for Ay

þ "PFy ¼ 0

Ay � 1 ¼ 0

Ay ¼ 1

The influence line for Ay is shown in Fig. 8.6(c). Ans.

Influence Line for MA

þ ’
P

MA ¼ 0

MA � 1ðx� 2Þ ¼ 0

MA ¼ x� 2

The influence line for MA is shown in Fig. 8.6(d). Ans.

Example 8.5

Draw the influence lines for the horizontal and vertical reactions at supports A and B and the shear at hinge E of the
three-hinged bridge frame shown in Fig. 8.7(a).

Solution
Influence Line for Ay þ ’

P
MB ¼ 0

�Ayð10Þ þ 1ð15� xÞ ¼ 0

Ay ¼ 1ð15� xÞ
10

¼ 1:5� x

10

The influence line for Ay is shown in Fig. 8.7(c). Ans.

continued
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FIG. 8.7

Influence Line for By

þ "PFy ¼ 0

Ay � 1þ By ¼ 0

By ¼ 1� Ay ¼ 1� 1:5� x

10

� �
¼ x

10
� 0:5

The influence line for By is shown in Fig. 8.7(d). Ans.

Influence Line for Ax We will use the equation of condition
P

MCE
E ¼ 0 to determine the expressions for Ax. First,

we place the unit load to the left of hinge E—that is, on the rigid part CE of the frame—to obtain

þ ’
P

MCE
E ¼ 0

Axð3Þ � Ayð5Þ þ 1ð10� xÞ ¼ 0

Ax ¼ 5

3
Ay � 1

3
ð10� xÞ ¼ 5

3
1:5� x

10

� �
� 1

3
ð10� xÞ

¼ x� 5

6
0a xa 10 m
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Next, the unit load is located to the right of hinge E—that is, on the rigid part EG of the frame—to obtain

þ ’
P

MCE
E ¼ 0

Axð3Þ � Ayð5Þ ¼ 0

Ax ¼ 5

3
Ay ¼ 5

3
1:5� x

10

� �
¼ 15� x

6
10 ma xa 20 m

Thus, the equations of the influence line for Ax are

Ax ¼
x� 5

6
0a xa 10 m

15� x

6
10 ma xa 20 m

8>>><
>>>:

The influence line for Ax is shown in Fig. 8.7(e). Ans.

Influence Line for Bx

þ !P
Fx ¼ 0

Ax � Bx ¼ 0

Bx ¼ Ax

which indicates that the influence line for Bx is the same as that for Ax (Fig. 8.7(e)). Ans.

Influence Line for SE

SE ¼
�By ¼ � x

10
þ 0:5 0a x < 10 m

Ay ¼ 1:5� x

10
10 m < xa 20 m

8><
>:

The influence line for SE is shown in Fig. 8.7(f ). Ans.

8.2 MÜLLER-BRESLAU’S PRINCIPLE AND QUALITATIVE INFLUENCE LINES

The construction of influence lines for the response functions involving
forces and moments can be considerably expedited by applying a pro-
cedure developed by Heinrich Müller-Breslau in 1886. The procedure,
which is commonly known as Müller-Breslau’s principle, can be stated
as follows:

The influence line for a force (or moment) response function is given by the

deflected shape of the released structure obtained by removing the restraint

corresponding to the response function from the original structure and by

giving the released structure a unit displacement (or rotation) at the loca-

tion and in the direction of the response function, so that only the response

function and the unit load perform external work.
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This principle is valid only for the influence lines for response
functions involving forces and moments (e.g., reactions, shears, bending
moments, or forces in truss members), and it does not apply to the in-
fluence lines for deflections.

To prove the validity of Müller-Breslau’s principle, consider the
simply supported beam subjected to a moving unit load, as shown in
Fig. 8.8(a). The influence lines for the vertical reactions at supports A

and C and the shear and bending moment at point B of this beam were
developed in the previous section by applying the equations of equili-

FIG. 8.8
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brium (see Fig. 8.2). Suppose that we now wish to draw the influence
lines for the same four response functions by using Müller-Breslau’s
principle.

To construct the influence line for the vertical reaction Ay, we re-
move the restraint corresponding to Ay by replacing the hinged support
at A by a roller support, which can exert only a horizontal reaction, as
shown in Fig. 8.8(b). Note that point A of the beam is now free to dis-
place in the direction of Ay. Although the restraint corresponding to
Ay has been removed, the reaction Ay still acts on the beam, which re-
mains in equilibrium in the horizontal position (shown by solid lines in
the figure) under the action of the unit load and the reactions Ay and Cy.
Next, point A of the released beam is given a virtual unit displacement,
D ¼ 1, in the positive direction of Ay, causing it to displace, as shown by
the dashed lines in Fig. 8.8(b). Note that the pattern of virtual displace-
ment applied is consistent with the support conditions of the released
beam; that is, points A and C cannot move in the horizontal and verti-
cal directions, respectively. Also, since the original beam is statically
determinate, removal of one restraint from it reduces it to a statically
unstable beam. Thus, the released beam remains straight (i.e., it does
not bend) during the virtual displacement. Since the beam is in equili-
brium, according to the principle of virtual displacements for rigid bod-
ies (Section 7.2), the virtual work done by the real external forces acting
through the virtual external displacements must be zero; that is,

Wve ¼ Ayð1Þ � 1ðyÞ ¼ 0

from which

Ay ¼ y (8.7)

where y represents the displacement of the point of application of the
unit load, as shown in Fig. 8.8(b). Equation (8.7) indicates that the dis-
placement y of the beam at any position x is equal to the magnitude of
Ay due to a unit load acting at the position x on the beam. Thus, the
displacement y at any position x is equal to the ordinate of the influence
line for Ay at that position, as stated by Müller-Breslau’s principle.
Equation (8.7) can be expressed in terms of x by considering the geom-
etry of the deflected shape of the beam. From Fig. 8.8(b), we observe
that the triangles A 0AC and D 0DC are similar. Therefore,

y

ðL� xÞ ¼
1

L
or y ¼ 1� x

L

By substituting this expression into Eq. (8.7), we obtain the equation of
the influence line for Ay in terms of x as

Ay ¼ 1� x

L

which is the same as Eq. (8.1), which was derived by equilibrium con-
sideration.
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The influence line for the vertical reaction Cy is determined in a
similar manner, as shown in Fig. 8.8(c). Note that this influence line is
identical to that constructed previously by equilibrium consideration
(Fig. 8.2(c)).

To construct the influence line for the shear SB at point B of the
beam, we remove the restraint corresponding to SB by cutting the beam
at B, as shown in Fig. 8.8(d). Note that points B of the portions AB

and BC of the released beam are now free to displace vertically relative
to each other. To keep the released beam in equilibrium, we apply at B
the shear forces, SB, and the bending moments, MB, as shown in the
figure. Note that SB and MB are assumed to act in their positive direc-
tions in accordance with the beam sign convention. Next, at B the re-
leased beam is given a virtual unit relative displacement, D ¼ 1, in the
positive direction of SB (Fig. 8.8(d)) by moving the end B of portion AB

downward by D1 and the end B of portion BC upward by D2, so that
D1 þ D2 ¼ D ¼ 1. The values of D1 and D2 depend on the requirement
that the rotations, y, of the two portions AB and BC be the same (i.e.,
the segments AB 0 and B 00C in the displaced position must be parallel to
each other), so that the net work done by the two moments MB is zero,
and only the shear forces SB and the unit load perform work. Applying
the principle of virtual displacements, we write

Wve ¼ SBðD1Þ þ SBðD2Þ �MBðyÞ þMBðyÞ � 1ðyÞ
¼ SBðD1 þ D2Þ � 1ðyÞ
¼ SBðDÞ � 1ðyÞ
¼ SBð1Þ � 1ðyÞ ¼ 0

from which

SB ¼ y

which indicates that the deflected shape of the beam (Fig. 8.8(d)) is the
influence line for SB, as stated by Müller-Breslau’s principle. The values
of the ordinates D1 and D2 can be established from the geometry of the
deflected shape of the beam. From Fig. 8.8(d), we observe that the tri-
angles ABB 0 and BCB 00 are similar. Therefore,

D1

a
¼ D2

L� a
; or D2 ¼ L� a

a

� �
D1 (8.8)

Also,

D1 þ D2 ¼ 1; or D2 ¼ 1� D1 (8.9)

By equating Eqs. (8.8) and (8.9) and solving for D1, we obtain

D1 ¼ a

L

By substituting the expression for D1 into Eq. (8.9), we obtain
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D2 ¼ 1� a

L

These ordinates are the same as determined previously by the equili-
brium method (Fig. 8.2(e)).

To construct the influence line for the bending moment MB, we re-
move the restraint corresponding to MB by inserting a hinge at B, as
shown in Fig. 8.8(e). The portions AB and BC of the released beam are
now free to rotate relative to each other. To keep the released beam in
equilibrium, we apply the moments MB at B, as shown in the figure. The
bending moment is assumed to be positive in accordance with the beam

sign convention. Next, a virtual unit rotation, y ¼ 1, is introduced at B
(Fig. 8.8(e)) by rotating portion AB by y1 counterclockwise and portion
BC by y2 clockwise, so that y1 þ y2 ¼ y ¼ 1. Applying the principle of
virtual displacements, we write

Wve ¼MBðy1Þ þMBðy2Þ � 1ðyÞ
¼MBðy1 þ y2Þ � 1ðyÞ
¼MBðyÞ � 1ðyÞ
¼MBð1Þ � 1ðyÞ ¼ 0

from which

MB ¼ y

which indicates that the deflected shape of the beam (Fig. 8.8(e)) is the
influence line for MB, as stated by Müller-Breslau’s principle. The value
of the ordinate D can be established from the geometry of the deflected
shape of the beam. From Fig. 8.8(e), we can see that

D ¼ ay1 ¼ ðL� aÞy2 (8.10)

or

y1 ¼ L� a

a

� �
y2 (8.11)

Also,

y1 þ y2 ¼ 1; or y1 ¼ 1� y2 (8.12)

By equating Eqs. (8.11) and (8.12) and solving for y2, we obtain

y2 ¼ a

L

By substituting the expression for y2 into Eq. (8.10), we obtain

D ¼ ðL� aÞ a
L
¼ a 1� a

L

� �
which is the same as obtained previously by the equilibrium method
(Fig. 8.2(f )).
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In the preceding section, we stated that the influence lines for the
force and moment response functions of all statically determinate struc-
tures consist of straight-line segments. We can explain this by means of
Müller-Breslau’s principle. In implementing this principle in construct-
ing an influence line, the restraint corresponding to the force or moment
response function of interest needs to be removed from the structure.
In the case of a statically determinate structure, removal of any such
restraint from the structure reduces it to a statically unstable structure,
or a mechanism. When this statically unstable released structure is sub-
jected to the unit displacement (or rotation), no stresses are induced in
the members of the structure, which remain straight and translate and/
or rotate as rigid bodies, thereby forming a deflected shape (and thus
an influence line) that consists of straight-line segments. Because the re-
moval of a force or moment restraint from a statically indeterminate
structure for the purpose of constructing an influence line does not ren-
der it statically unstable, the influence lines for such structures consist of
curved lines.

Qualitative Influence Lines

In many practical applications, it is necessary to determine only the
general shape of the influence lines but not the numerical values of the
ordinates. A diagram showing the general shape of an influence line with-

out the numerical values of its ordinates is called a qualitative influence

line. In contrast, an influence line with the numerical values of its ordi-
nates known is referred to as a quantitative influence line.

Although Müller-Breslau’s principle can be used to determine the
quantitative influence lines as discussed previously, it is more commonly
used to construct qualitative influence lines. The numerical values of
the influence-line ordinates, if desired, are then computed by using the
equilibrium method.

Procedure for Analysis

A procedure for determining the force and moment influence lines for
beams and frames by using the equilibrium method was presented in
Section 8.1. The following alternative procedure, which is based on a
combination of Müller-Breslau’s principle and the equilibrium method,
may considerably expedite the construction of such influence lines.

1. Draw the general shape of the influence line by applying Müller-
Breslau’s principle:
a. From the given structure remove the restraint corresponding to

the response function whose influence line is desired to obtain
the released structure.

b. Apply a small displacement (or rotation) to the released struc-
ture at the location and in the positive direction of the response
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function. Draw a deflected shape of the released structure that
is consistent with the support and continuity conditions of the
released structure to obtain the general shape of the influence
line. (Remember that the influence lines for statically determi-
nate structures consist only of straight-line segments.) If only a
qualitative influence line is desired, then end the analysis at this
stage. Otherwise, proceed to the next step.

2. Determine the numerical values of the influence-line ordinates by
using the equilibrium method and the geometry of the influence line.
a. Place a unit load on the given (i.e., not released) structure at the

location of the response function, and determine the numerical
value of the influence-line ordinate at that location by apply-
ing the equation(s) of equilibrium and/or condition. If the re-
sponse function of interest is a shear, then the unit load must
be placed successively at two locations, just to the left and just
to the right of the point where the shear is desired, and values of
the influence-line ordinates at these locations must be computed.
If the influence-line ordinate at the location of the response
function is zero, then place the unit load at the location of the
maximum or minimum ordinate, and determine the numerical
value of that ordinate by equilibrium consideration.

b. By using the geometry of the influence line, determine the nu-
merical values of all the remaining ordinates where the changes
in slope occur in the influence line.

An advantage of the foregoing procedure is that it enables us to
construct the influence line for any force or moment response function
of interest directly, without having to determine beforehand the influ-
ence lines for other functions, which may or may not be needed. For
example, the construction of influence lines for shears and bending mo-
ments by this procedure does not require the use of influence lines for
reactions. The procedure is illustrated by the following examples. The
reader is also encouraged to check the influence lines developed in Ex-
amples 8.1 through 8.3 by applying this procedure.

Example 8.6

Draw the influence lines for the vertical reactions at supports B and D and the shear and bending moment at point C of
the beam shown in Fig. 8.9(a).

Solution
Influence Line for By To determine the general shape of the influence line for By, we remove the roller support at B

from the given beam (Fig. 8.9(a)) to obtain the released beam shown in Fig. 8.9(b). Next, point B of the released beam is

continued
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given a small displacement, D, in the positive direction of By, and a deflected shape of the beam is drawn, as shown by
the dashed line in the figure. Note that the deflected shape is consistent with the support conditions of the released
structure; that is, the right end of the released beam, which is attached to the hinged support D, does not displace. The
shape of the influence line is the same as the deflected shape of the released structure, as shown in Fig. 8.9(b).

To obtain the numerical value of the influence-line ordinate at B, we place a 1-kN load at point B on the original
beam (Fig. 8.9(b)) and apply an equilibrium equation to obtain By,

þ ’
P

MD ¼ 0 1ð9Þ � Byð9Þ ¼ 0 By ¼ 1 kN

FIG. 8.9
continued
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Thus the value of the influence-line ordinate at B is 1 kN/kN. The value of the ordinate at A can now be
determined from the geometry of the influence line (Fig. 8.9(b)). Observing that the triangles AA 0D and BB 0D are sim-
ilar, we write

AA 0 ¼ 1

9

� �
ð12Þ ¼ 4

3
kN=kN

The influence line for By thus obtained is shown in Fig. 8.9(b). Ans.

Influence Line for Dy The influence line for Dy is constructed in a similar manner and is shown in Fig. 8.9(c). Ans.

Influence Line for SC To determine the general shape of the influence line for the shear at point C, we cut the given
beam at C to obtain the released structure shown in Fig. 8.9(d). Next, the released structure is given a small relative
displacement in the positive direction of SC by moving end C of the portion AC downward by D1 and end C of the
portion CD upward by D2 to obtain the deflected shape shown in Fig. 8.9(d). The shape of the influence line is the same
as the deflected shape of the released structure, as shown in the figure.

FIG. 8.9 (contd.)

continued
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To obtain the numerical values of the influence-line ordinates at C, we place the 1-kN load first just to the left of C
and then just to the right of C, as shown by the solid and dashed arrows, respectively, in Fig. 8.9(d). The reactions By

and Dy are then determined by applying the equilibrium equations:

þ ’
P

MD ¼ 0 �Byð9Þ þ 1ð6Þ ¼ 0 By ¼ 2

3
kN "

þ "PFy ¼ 0
2

3

� �
� 1þDy ¼ 0 Dy ¼ 1

3
kN "

Note that the magnitudes of By and Dy could, alternatively, have been obtained from the influence lines for these re-
actions constructed previously. It can be seen from Fig. 8.9(b) and (c) that the ordinates at C (or just to the left or right
of C ) of the influence lines for By and Dy are indeed 2=3 and 1=3, respectively. When the unit load is at just to the left of
C (see Fig. 8.9(d)), the shear at C is

SC ¼ �Dy ¼ � 1

3
kN

When the unit load is at just to the right of C, the shear at C is

SC ¼ By ¼ 2

3
kN

Thus, the values of the influence-line ordinates at C are �1=3 kN/kN ( just to the left of C), and 2=3 kN/kN ( just to the
right of C), as shown in the figure. The ordinate of the influence line at A can now be obtained from the geometry of the
influence line (Fig. 8.9(d)). Observing that the triangles AA 0B and BCC 0 are similar, we obtain the ordinate at A,
AA 0 ¼ 1=3 kN/kN. The influence line for SC thus obtained is shown in Fig. 8.9(d). Ans.

Influence Line for MC To obtain the general shape of the influence line for the bending moment at C, we insert a
hinge at C in the given beam to obtain the released structure shown in Fig. 8.9(e). Next, a small rotation y, in the pos-
itive direction of MC , is introduced at C in the released structure by rotating the portion AC counterclockwise and the
portion CD clockwise to obtain the deflected shape shown in Fig. 8.9(e). The shape of the influence line is the same as
the deflected shape of the released structure, as shown in the figure.

To obtain the numerical value of the influence-line ordinate at C, we place a 1-kN load at C on the original beam
(Fig. 8.9(e)). By applying, in order, the equilibrium equations

P
MD ¼ 0 and

P
Fy ¼ 0, we compute the reactions By ¼

2=3 kN and Dy ¼ 1=3 kN, after which the bending moment at C is determined as

MC ¼ 2

3

� �
ð3Þ ¼ 2 kN�m

Thus, the value of the influence-line ordinate at C is 2 kN �m/kN. Finally, to complete the influence line, we determine
the ordinate at A by considering the geometry of the influence line. From Fig. 8.9(e), we observe that because the triangles
AA 0B and BCC 0 are similar, the ordinate at A is AA 0 ¼ �2 kN �m/kN. The influence line for MC thus obtained is shown
in Fig. 8.9(e). Ans.

Example 8.7

Draw the influence lines for the vertical reactions at supports A and E, the reaction moment at support A, the shear at
point B, and the bending moment at point D of the beam shown in Fig. 8.10(a).

continued
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Solution
Influence Line for Ay To determine the general shape of the influence line for Ay, we remove the restraint corre-

sponding to Ay by replacing the fixed support at A by a roller guide that prevents the horizontal displacement and ro-
tation at A but not the vertical displacement. Next, point A of the released structure is given a small displacement D,

FIG. 8.10

continued
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FIG. 8.10 (contd.)

and a deflected shape of the beam is drawn as shown in Fig. 8.10(b). Note that the deflected shape is consistent with the
support and continuity conditions of the released structure. The end A of the beam, which is attached to the roller guide,
cannot rotate, so the portion AC must remain horizontal in the displaced configuration. Also, point E is attached to the
roller support; therefore, it cannot displace in the vertical direction. Thus, the portion CF rotates about E, as shown in
the figure. The two rigid portions, AC and CF , of the beam remain straight in the displaced configuration and rotate
relative to each other at the internal hinge at C, which permits such a rotation. The shape of the influence line is the
same as the deflected shape of the released structure, as shown in Fig. 8.10(b).

By recognizing that Ay ¼ 1 kN when a 1-kN load is placed at A, we obtain the value of 1 kN/kN for the influence-
line ordinate at A. The ordinates at points C and F are then determined from the geometry of the influence line. The
influence line for Ay thus obtained is shown in Fig. 8.10(b). Ans.

Influence Line for Ey The roller support at E is removed from the given structure, and a small displacement, D, is
applied at E to obtain the deflected shape shown in Fig. 8.10(c). Because of the fixed support at A, the portion AC of

continued
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the released beam can neither translate nor rotate as a rigid body. The shape of the influence line is the same as the de-
flected shape of the released structure, as shown in the figure.

By realizing that Ey ¼ 1 kN when the 1-kN load is placed at E, we obtain the value of 1 kN/kN for the influence-
line ordinate at E. The ordinate at F is then determined from the geometry of the influence line. The influence line thus
obtained is shown in Fig. 8.10(c). Ans.

Influence Line for MA To remove the restraint corresponding to the reaction moment MA, we replace the fixed
support at A by a hinged support, as shown in Fig. 8.10(d). Next, a small rotation y in the positive (counterclockwise)
direction of MA is introduced at A in the released structure to obtain the deflected shape shown in the figure. The shape
of the influence line is the same as the deflected shape of the released structure.

Because the ordinate of the influence line at A is zero, we determine the ordinate at C by placing the 1-kN load at
C on the original beam (Fig. 8.10(d)). After computing the reaction Ey ¼ 0 by applying the equation of conditionP

MCF
C ¼ 0, we determine the moment at A from the equilibrium equation:

þ ’
P

MA ¼ 0 MA � 1ð2Þ ¼ 0 MA ¼ 2 kN�m

Thus, the value of the influence-line ordinate at C is 2 kN-m/kN. The ordinate at F is then determined by considering
the geometry of the influence line. The influence line thus obtained is shown in Fig. 8.10(d). Ans.

Influence Line for SB To remove the restraint corresponding to the shear at B, we cut the given beam at B to obtain
the released structure shown in Fig. 8.10(e). Next, the released structure is given a small relative displacement, D, to
obtain the deflected shape shown in the figure. Support A is fixed, so portion AB can neither translate nor rotate as a
rigid body. Also, the rigid portions AB and BC must remain parallel to each other in the displaced configuration. The
shape of the influence line is the same as the deflected shape of the released structure, as shown in the figure.

The numerical values of the influence-line ordinates at B are determined by placing the 1-kN load successively just
to the left and just to the right of B (Fig. 8.10(e)) and by computing the shears at B for the two positions of the unit
load. The ordinates at C and F are then determined from the geometry of the influence line. The influence line thus
obtained is shown in Fig. 8.10(e). Ans.

Influence Line for MD An internal hinge is inserted in the given beam at point D, and a small rotation y is applied
at D to obtain the deflected shape shown in Fig. 8.10(f ). The shape of the influence line is the same as the deflected
shape of the released structure, as shown in the figure.

The value of the influence-line ordinate at D is determined by placing the 1-kN load at D and by computing the
bending moment at D for this position of the unit load (Fig. 8.10(f )). The ordinate at F is then determined from the
geometry of the influence line. The influence line thus obtained is shown in Fig. 8.10(f ). Ans.

Example 8.8

Draw the influence lines for the vertical reactions at supports A and C of the beam shown in Fig. 8.11(a).

Solution
Influence Line for Ay To obtain the general shape of the influence line for Ay, the roller support at A is removed

from the given beam, and a small displacement, D, is given at point A of the released beam as shown in Fig. 8.11(b).

continued
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The shape of the influence line is the same as the deflected shape of the released beam, as shown in the figure. By real-
izing that Ay ¼ 1 kN when the 1-kN load is placed at A, we obtain the value of 1 kN/kN for the influence-line ordinate
at A. The influence line thus obtained is shown in Fig. 8.11(b). Ans.

Influence Line for Cy The roller support at C is removed from the given beam, and a small displacement, D, is
applied at C to obtain the deflected shape shown in Fig. 8.11(c). Note that the deflected shape is consistent with the
support conditions of the released beam. The shape of the influence line is the same as the deflected shape of the released
beam, as shown in the figure. By recognizing that Cy ¼ 1 kN when the 1-kN load is placed at C, we obtain the value of
1 kN/kN for the influence-line ordinate at C. The ordinates at B and E are then determined from the geometry of the
influence line. The influence line for Cy thus obtained is shown in Fig. 8.11(c). Ans.

8.3 INFLUENCE LINES FOR GIRDERS WITH FLOOR SYSTEMS

In the previous sections, we considered the influence lines for beams that
were subjected to a moving unit load applied directly to the beams.
In most bridges and buildings, there are some structural members that
are not subjected to live loads directly but to which the live loads are
transmitted via floor framing systems. Typical framing systems used in
bridges and buildings were described in Section 1.4 (Figs. 1.13 and 1.14,
respectively). Another example of the framing system of a bridge is
shown in Fig. 8.12. The deck of the bridge rests on beams called string-

ers, which are supported by floor beams, which, in turn, are supported
by the girders. Thus, any live loads (e.g., the weight of the tra‰c), re-
gardless of where they are located on the deck and whether they are
concentrated or distributed loads, are always transmitted to the girders
as concentrated loads applied at the points where the girders support the
floor beams.

To illustrate the procedure for constructing influence lines for shears
and bending moments in the girders supporting bridge or building floor
systems, consider the simply supported girder shown in Fig. 8.13(a). As
shown, a unit load moves from left to right on the stringers, which are
assumed to be simply supported on the floor beams. The e¤ect of the
unit load is transmitted to the girder at points A through F , at which the
girder supports the floor beams. The points A through F are commonly
referred to as panel points, and the portions of the girder between the
panel points (e.g., AB or BC) are called panels. Figure 8.13(a) shows
the stringers resting on top of the floor beams, which rest on top of the
girder. Although such sketches are used herein to show the manner in
which the load is transmitted from one structural member to the other,
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in actual floor systems, members are seldom supported on top of each
other, as depicted in Fig. 8.13(a). Instead, the stringers and the floor
beams are usually positioned so that their top edges are even with each

FIG. 8.13
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other and are either lower than or at the same level as the top edges of
the girders (see Fig. 8.12).

Influence Lines for Reactions

The equations of the influence lines for the vertical reactions Ay and
Fy can be determined by applying the equilibrium equations (Fig.
8.13(a)):

þ ’
P

MF ¼ 0 �AyðLÞ þ 1ðL� xÞ ¼ 0 Ay ¼ 1� x

L

þ ’
P

MA ¼ 0 �1ðxÞ þ FyðLÞ ¼ 0 Fy ¼ x

L

The influence lines obtained by plotting these equations are shown in
Fig. 8.13(b) and (c). Note that these influence lines are identical to those
for the reactions of a simply supported beam to which the unit load is
applied directly.

Influence Line for Shear in Panel BC

Next, suppose that we wish to construct the influence lines for shears at
points G and H, which are located in the panel BC, as shown in Fig.
8.13(a). When the unit load is located to the left of the panel point B,
the shear at any point within the panel BC (e.g., the points G and H )
can be expressed as

SBC ¼ �Fy ¼ � x

L
0a xa

L

5

Similarly, when the unit load is located to the right of the panel point C,
the shear at any point within the panel BC is given by

SBC ¼ Ay ¼ 1� x

L

2L

5
a xaL

When the unit load is located within the panel BC, as shown in Fig.
8.13(d), the force FB exerted on the girder by the floor beam at B must
be included in the expression for shear in panel BC:

SBC ¼ Ay � FB ¼ 1� x

L

� �
� 2� 5x

L

� �
¼ �1þ 4x

L

L

5
a xa

2L

5
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Thus, the equations of the influence line for SBC can be written as

SBC ¼

�Fy ¼ � x

L
0a xa

L

5

Ay � FB ¼ �1þ 4x

L

L

5
a xa

2L

5

Ay ¼ 1� x

L

2L

5
a xaL

8>>>>>>><
>>>>>>>:

(8.13)

These expressions for shear do not depend on the exact location of a
point within the panel; that is, these expressions remain the same for all
points located within the panel BC. The expressions do not change be-
cause the loads are transmitted to the girder at the panel points only;
therefore, the shear in any panel of the girder remains constant through-

out the length of that panel. Thus for girders with floor systems, the in-
fluence lines for shears are usually constructed for panels rather than for
specific points along the girders. The influence line for the shear in panel
BC, obtained by plotting Eq. (8.13), is shown in Fig. 8.13(e).

Influence Line for Bending Moment at G

The influence line for the bending moment at point G, which is located
in the panel BC (Fig. 8.13(a)), can be constructed by using a similar
procedure. When the unit load is located to the left of the panel point B,
the bending moment at G can be expressed as

MG ¼ FyðL� aÞ ¼ x

L
ðL� aÞ 0a xa

L

5

When the unit load is located to the right of the panel point C, the
bending moment at G is given by

MG ¼ AyðaÞ ¼ 1� x

L

� �
a

2L

5
a xaL

When the unit load is located within the panel BC, as shown in Fig.
8.13(d), the moment of the force FB exerted on the girder by the floor
beam at B, about G, must be included in the expression for bending
moment at G:

MG ¼ AyðaÞ � FB a� L

5

� �
¼ 1� x

L

� �
a� 2� 5x

L

� �
a� L

5

� �

¼ 2L

5
� a� x 1� 4a

L

� �
L

5
a xa

2L

5
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Thus, the equations of the influence line for MG can be written as

MG ¼

FyðL� aÞ ¼ x

L
ðL� aÞ 0a xa

L

5

AyðaÞ � FB a� L

5

� �
¼ 2L

5
� a� x 1� 4a

L

� �
L

5
a xa

2L

5

AyðaÞ ¼ 1� x

L

� �
a

2L

5
a xaL

8>>>>>>>><
>>>>>>>>:

(8.14)

Equation (8.14) indicates that unlike shear, which remains constant
throughout a panel, the expressions for the bending moment depend on
the specific location of the point G within the panel BC. The influence
line for MG, obtained by plotting Eq. (8.14), is shown in Fig. 8.13(f ). It
can be seen from this figure that the influence line for MG, like the in-
fluence line for shear constructed previously (Fig. 8.13(e)), consists of
three straight-line segments, with discontinuities at the ends of the panel
containing the response function under consideration.

Influence Line for Bending Moment at Panel Point C

When the unit load is located to the left of C (Fig. 8.13(a)), the bending
moment at C is given by

MC ¼ Fy

3L

5

� �
¼ x

L

3L

5

� �
¼ 3

5
x 0a xa

2L

5

When the unit load is located to the right of C,

MC ¼ Ay
2L

5

� �
¼ 1� x

L

� �
2L

5
¼ 2

5
ðL� xÞ 2L

5
a xaL

Thus, the equations of the influence line for MC can be written as

MC ¼
Fy

3L

5

� �
¼ 3

5
x 0a xa

2L

5

Ay

2L

5

� �
¼ 2

5
ðL� xÞ 2L

5
a xaL

8>>>><
>>>>:

(8.15)

The influence line obtained by plotting these equations is shown in Fig.
8.13(g). Note that this influence line is identical to that for the bending
moment of a corresponding beam without the floor system.

Procedure for Analysis

As the foregoing example indicates, the influence lines for the girders
supporting floor systems with simply supported stringers consist of
straight-line segments with discontinuities or changes in slopes occurring
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only at the panel points. In the influence lines for shears and for bending
moments at points located within panels, the changes in slope occur at
the panel points at the ends of the panel containing the response func-
tion (Fig. 8.13(e) and (f )), whereas in the influence lines for bending
moments at panel points, the change in slope occurs at the panel point
where the bending moment is evaluated. The influence lines for the
girders can, therefore, be conveniently constructed as follows.

Determine the influence-line ordinates at the support points and
at the panel points where the changes in slope occur by placing a unit
load successively at each of these points and by applying the equilibrium
equations. In the case of an influence line for bending moment at a
panel point of a cantilever girder, the influence-line ordinate at the lo-
cation of the bending moment will be zero. In such a case, it becomes
necessary to determine an additional influence-line ordinate (usually at
the free end of the cantilever girder) that is not zero to complete the in-
fluence line.

If the girder contains internal hinges, its influence lines will be dis-
continuous at the panel points, where such hinges are located. If an in-
ternal hinge is located within a panel, then the discontinuities will occur
at the panel points at the ends of that panel. Determine the influence-
line ordinates at the panel points where discontinuities occur due to the
presence of internal hinges by placing the unit load at these points and
by applying the equations of equilibrium and/or condition.

Complete the influence line by connecting the previously computed
ordinates by straight lines and by determining any remaining ordinates
by using the geometry of the influence line.

Example 8.9

Draw the influence lines for the shear in panel BC and the bending moment at B of the girder with floor system shown
in Fig. 8.14(a).

Solution
Influence Line for SBC To determine the influence line for the shear in panel BC, we place a 1-kN load successively

at the panel points A;B;C, and D. For each position of the unit load, the appropriate support reaction is first de-
termined by proportions, and the shear in panel BC is computed. Thus, when

1 kN is at A; Dy ¼ 0 SBC ¼ 0

1 kN is at B; Dy ¼ 1

3
kN SBC ¼ � 1

3
kN

1 kN is at C; Ay ¼ 1

3
kN SBC ¼ 1

3
kN

1 kN is at D; Ay ¼ 0 SBC ¼ 0

continued
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FIG. 8.14

The influence line for SBC is constructed by plotting these ordinates and by connecting them with straight lines, as
shown in Fig. 8.14(c). Ans.

Influence Line for MB To determine the influence line for the bending moment at panel point B, we place the 1-kN
load successively at the panel points A;B, and D. For each position of the unit load, the bending moment at B is de-
termined as follows: When

1 kN is at A; Dy ¼ 0 MB ¼ 0

1 kN is at B; Ay ¼ 2

3
kN MB ¼ 2

3

� �
6 ¼ 4 kN-m

1 kN is at D; Ay ¼ 0 MB ¼ 0

The influence line for MB thus obtained is shown in Fig. 8.14(d). Ans.
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Example 8.10

Draw the influence lines for the shear in panel CD and the bending moment at D of the girder with floor system shown
in Fig. 8.15(a).

Solution
Influence Line for SCD To determine the influence line for the shear in panel CD, we place a 1-kN load successively

at the panel points B;C;D, and F . For each position of the unit load, the appropriate support reaction is first de-
termined by proportions, and the shear in panel CD is computed. Thus, when

1 kN is at B; Fy ¼ 0 SCD ¼ 0

1 kN is at C; Fy ¼ 1

4
kN SCD ¼ � 1

4
kN

1 kN is at D; By ¼ 2

4
¼ 1

2
kN SCD ¼ 1

2
kN

1 kN is at F ; By ¼ 0 SCD ¼ 0

The influence line for SCD is constructed by plotting these ordinates and by connecting them with straight lines, as
shown in Fig. 8.15(c). The ordinates at the ends A and H of the girder are then determined from the geometry of the
influence line. Ans.

FIG. 8.15

continued
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Influence Line for MD To determine the influence line for the bending moment at panel point D, we place the 1-kN
load successively at the panel points B;D, and F . For each position of the unit load, the bending moment at D is de-
termined as follows: When

1 kN is at B; Fy ¼ 0 MD ¼ 0

1 kN is at D; By ¼ 1

2
kN MD ¼ 1

2

� �
8 ¼ 4 kN�m

1 kN is at F ; By ¼ 0 MD ¼ 0

The influence line for MD thus obtained is shown in Fig. 8.15(d). Ans.

Example 8.11

Draw the influence lines for the reaction at support A, the shear in panel CD, and the bending moment at D of the
girder with floor system shown in Fig. 8.16(a).

Solution
Influence Line for Ay To determine the influence line for the reaction Ay, we place a 1-kN load successively at the

panel points A;B, and C. For each position of the unit load, the magnitude of Ay is computed by applying the equation
of condition

P
MAF

F ¼ 0. Thus, when

FIG. 8.16

continued
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8.4 INFLUENCE LINES FOR TRUSSES

The floor framing systems commonly used to transmit live loads to
trusses are similar to those used for the girders discussed in the preced-
ing section. Figure 8.17 shows a typical floor system of a truss bridge,
described previously in Section 1.4 (Fig. 1.13). The deck of the bridge
rests on stringers that are supported by floor beams, which, in turn, are

1 kN is at A; Ay ¼ 1 kN

1 kN is at B; þ ’
P

MAF
F ¼ 0

�Ayð3Þ þ 1ð1Þ ¼ 0 Ay ¼ 1

3
kN

1 kN is at C; þ ’
P

MAF
F ¼ 0

�Ayð3Þ ¼ 0

Ay ¼ 0

The influence line for Ay thus obtained is shown in Fig. 8.16(c). Ans.

Influence Line for SCD We place the 1-kN load successively at each of the five panel points and determine the
influence-line ordinates as follows. When

1 kN is at A; Ay ¼ 1 kN SCD ¼ 0

1 kN is at B; Ay ¼ 1

3
kN SCD ¼ 1

3

� �
� 1 ¼ � 2

3
kN

1 kN is at C; Ay ¼ 0 SCD ¼ �1 kN

1 kN is at D; Ay ¼ 0 SCD ¼ 0

1 kN is at E; Ay ¼ 0 SCD ¼ 0

The influence line for SCD thus obtained is shown in Fig. 8.16(d). Ans.

Influence Line for MD We place the 1-k load successively at each of the five panel points and determine the influ-
ence-line ordinates as follows. When

1 kN is at A; Ay ¼ 1 kN MD ¼ 0

1 kN is atB; Ay ¼ 1

3
kN MD ¼ 1

3

� �
6� 1ð4Þ ¼ �2 kN�m

1 kN is atC; Ay ¼ 0 MD ¼ �1ð2Þ ¼ �2 kN�m
1 kN is atD; Ay ¼ 0 MD ¼ 0

1 kN is atE; Ay ¼ 0 MD ¼ 0

The influence line for MD is shown in Fig. 8.16(e). Ans.
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connected at their ends to the joints on the bottom chords of the two
longitudinal trusses. Thus, any live loads (e.g., the weight of the tra‰c),
regardless of where they are located on the deck and whether they are
concentrated or distributed loads, are always transmitted to the trusses as
concentrated loads applied at the joints. Live loads are transmitted to the
roof trusses in a similar manner. As in the case of the girder floor systems,
the stringers of the floor systems of trusses are assumed to be simply
supported at their ends on the adjacent floor beams. Thus, the influence
lines for trusses also contain straight-line segments between panel points.

To illustrate the construction of influence lines for trusses, consider
the Pratt bridge truss shown in Fig. 8.18(a). A unit (1-k) load moves
from left to right on the stringers of a floor system attached to the bot-
tom chord AG of the truss. The e¤ect of the unit load is transmitted to
the truss at joints (or panel points) A through G, where the floor beams
are connected to the truss. Suppose that we wish to draw the influence
lines for the vertical reactions at supports A and E and for the axial
forces in members CI ;CD;DI ; IJ, and FL of the truss.

Influence Lines for Reactions

The equations of the influence lines for the vertical reactions, Ay and Ey,
can be determined by applying the equilibrium equations (Fig. 8.18(b)):

þ ’
P

ME ¼ 0 �Ayð12Þ þ 1ð12� xÞ ¼ 0 Ay ¼ 1� x

12

þ ’
P

MA ¼ 0 �1ðxÞ þ Eyð12Þ ¼ 0 Ey ¼ x

12

FIG. 8.17
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FIG. 8.18
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The influence lines obtained by plotting these equations are shown in
Fig. 8.18(c) and (d). Note that these influence lines are identical to those
for the reactions of a corresponding beam to which the unit load is ap-
plied directly.

Influence Line for Force in Vertical Member CI

The expressions for the member force FCI can be determined by passing
an imaginary section aa through the members CD;CI , and HI , as shown
in Fig. 8.18(e), and by applying the equilibrium equation

P
Fy ¼ 0 to

one of the two portions of the truss. It can be seen from Fig. 8.18(e) that
when the 1-kN load is located to the left of joint C—that is, on the
portion AC of the truss—then FCI can be conveniently determined by
considering the equilibrium of the free body of the right portion DG as

þ "PFy ¼ 0 �FCI þ Ey ¼ 0 FCI ¼ Ey 0a xa 6 m

which indicates that the segment of the influence line for FCI between A

and C is identical to the corresponding segment of the influence line for
Ey. When the 1-kN load is located to the right of joint D, it is con-
venient to determine FCI by using the free body of the left portion AC:

þ "PFy ¼ 0 Ay þ FCI ¼ 0 FCI ¼ �Ay 9 ma xa 18 m

which indicates that the segment of the influence line for FCI

between D and G can be obtained by multiplying the corresponding
segment of the influence line for Ay by �1. The segments of the influ-
ence line for FCI between A and C and between D and G thus con-
structed from the influence lines for Ey and Ay, respectively, by using the
preceding expressions are shown in Fig. 8.18(f ). When the 1-kN load is
located between C and D, the part of the load transmitted to the truss
by the floor beam at C, FC ¼ ð9� xÞ=3, must be included in the

FIG. 8.18 (contd.)
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equilibrium equation
P

Fy ¼ 0 for the left portion AC to obtain FCI :

þ "PFy ¼ 0 Ay � 9� x

3

� �
þ FCI ¼ 0

FCI ¼ �Ay þ 9� x

3

� �
6 ma xa 9 m

Thus the influence line for FCI is composed of three straight-line seg-
ments, as shown in Fig. 8.18(f ). Since the member force FCI was as-
sumed to be tensile (Fig. 8.18(e)) in the derivation of the influence-line
equations, a positive ordinate of the influence line indicates that the 1-
kN load applied at that point causes a tensile force in the member CI
and vice versa. Thus, the influence line for FCI (Fig. 8.18(f )) indicates
that member CI will be in tension when the 1-kN load is located be-
tween A and M and between E and G, whereas it will be in compression
when the unit load is placed between M and E.

Influence Line for Force in Bottom Chord Member CD

The expressions for the member force FCD can be determined by con-
sidering the same section aa used for FCI but by applying the moment
equilibrium equation,

P
MI ¼ 0. It can be seen from Fig. 8.18(e) that

when the 1-kN load is located to the left of joint C, then FCD can be
conveniently determined by considering the equilibrium of the free body
of the right portion DG of the truss:

þ ’
P

MI ¼ 0 �FCDð4Þ þ Eyð6Þ ¼ 0

FCD ¼ 1:5Ey 0a xa 6 m

which indicates that the segment of the influence line for FCD between A

and C can be obtained by multiplying the corresponding segment of the
influence line for Ey by 1.5. When the 1-kN load is located to the right
of C, it is convenient to determine FCD by using the free body of the left
portion AC:

þ ’
P

MI ¼ 0 �Ayð6Þ þ FCDð4Þ ¼ 0

FCD ¼ 1:5Ay 6 ma xa 18 m

which indicates that the segment of the influence line for FCD between C

and G can be obtained by multiplying the corresponding segment of the
influence line for Ay by 1.5. The influence line for FCD thus constructed
from the influence lines for Ay and Ey is shown in Fig. 8.18(g).

The influence line for FCD could alternatively have been de-
termined by considering the vertical section bb passing through
the members CD;DI , and IJ, as shown in Fig. 8.18(h), instead of the
inclined section aa.
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Influence Line for Force in Diagonal Member DI

The expressions for FDI can be determined by considering section bb

(Fig. 8.18(h)) and by applying the equilibrium equation
P

Fy ¼ 0 to one
of the two portions of the truss. When the unit load is located to the left
of joint C, application of the equilibrium equation

P
Fy ¼ 0 to the right

portion DG of the truss yields

þ "PFy ¼ 0
4

5
FDI þ Ey ¼ 0

FDI ¼ �1:25Ey 0a xa 6 m

When the 1-kN load is located to the right of joint D, we write

þ "PFy ¼ 0 Ay � 4

5
FDI ¼ 0

FDI ¼ 1:25Ay 9 ma xa 18 m

The segments of the influence line for FDI between A and C and be-
tween D and G thus constructed from the influence lines for Ey and Ay,
respectively, are shown in Fig. 8.18(i). The ordinates at C and D are
then connected by a straight line to complete the influence line for FDI ,
as shown in the figure.

Influence Line for Force in Top Chord Member IJ

By considering section bb (Fig. 8.18(h)), and by placing the unit load
first to the left and then to the right of joint D, we obtain the following
expressions for FIJ :

þ ’
P

MD ¼ 0

FIJð4Þ þ Eyð3Þ ¼ 0

FIJ ¼ �0:75Ey 0a xa 9 m

þ ’
P

MD ¼ 0

�Ayð9Þ � FIJð4Þ ¼ 0

FIJ ¼ �2:25Ay 9 ma xa 18 m

The influence line for FIJ thus obtained is shown in Fig. 8.18( j).

Influence Line for Force in Vertical Member FL

The influence line for FFL can be constructed by considering the equili-
brium of joint F . The free-body diagram of this joint is shown in Fig.
8.18(k). By applying the equilibrium equation

P
Fy ¼ 0 to the free body

of joint F , we determine that FFL is zero when the 1-kN load is located at
joints A through E and at joint G and that FFL ¼ 1 kN when the unit load
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is applied to the joint F . Thus, the influence-line ordinate at F is equal to 1,
whereas the ordinates at A through E and G are zero. The influence line
for FFL, obtained by connecting these ordinates by straight lines, is shown
in Fig. 8.18(1). As this influence line indicates, the force in member FL will
be nonzero only when the unit load is located in the panels EF and FG of
the truss.

Procedure for Analysis

The influence lines for the reactions of trusses can be constructed by us-
ing the same procedure used for the reactions of beams described in
Sections 8.1 and 8.2.

Perhaps the most straightforward procedure for constructing the
influence lines for axial forces in the members of trusses is to apply a
unit load successively at each joint on the loaded chord of the truss and
for each position of the unit load, determine the magnitude of the
member force under consideration by using the method of joints and/or
the method of sections. The influence-line ordinates thus computed are
then connected by straight lines to obtain the desired influence line. This
procedure generally proves to be very time-consuming for constructing
influence lines for most truss members, except for the vertical members
that are connected at an end to two horizontal members (e.g., members
BH;DJ, and FL of the truss shown in Fig. 8.18(a)), whose forces can be
determined by inspection.

The following alternative procedure may considerably expedite the
construction of influence lines for axial forces in members of most com-
mon types of trusses:

1. Draw the influence lines for the reactions of the given truss.
2. By using the method of sections or the method of joints, obtain the

equilibrium equation that will be used to determine the expression(s)
of the member force whose influence line is desired. The desired
member force must be the only unknown in the equilibrium equa-
tion. If such an equilibrium equation cannot be found, then it
becomes necessary to construct the influence lines for the other
member forces that appear in the equation before the desired influ-
ence line can be constructed (see Examples 8.12 and 8.13).

3. If using the method of sections, then apply a unit load to the left of
the left end of the panel through which the section passes, and de-
termine the expression for the member force by applying the equili-
brium equation to the free body of the truss to the right of the section.
Next, apply the unit load to the right of the right end of the sectioned
panel, and determine the member force expression by applying the
equilibrium equation to the free body to the left of the section. Con-
struct the influence line by plotting the member force expressions and
by connecting the ordinates at the ends of the sectioned panel by a
straight line.
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4. When using the method of joints, if the joint being considered is not
located on the loaded chord of the truss, then determine the ex-
pression of the desired member force directly by applying the equa-
tion of equilibrium to the free body of the joint. Otherwise, apply a
unit load at the joint under consideration, and determine the mag-
nitude of the member force by considering the equilibrium of the
joint. Next, determine the expression for the member force for a
position of the unit load outside the panels adjacent to the joint
under consideration. Finally, connect the influence-line segments
and ordinates thus obtained by straight lines to complete the influ-
ence line.

If the member force was initially assumed to be tensile in de-
riving the equations of the influence line, then a positive ordinate of
the influence line indicates that the unit load applied at that point
causes a tensile force in the member and vice versa.

Example 8.12

Draw the influence lines for the forces in members AF ;CF , and CG of the Parker truss shown in Fig. 8.19(a). Live loads
are transmitted to the bottom chord of the truss.

Solution
Influence Lines for Reactions The influence lines for the reactions Ay and Ey (Fig. 8.19(b)), obtained by applying

the equilibrium equations,
P

ME ¼ 0 and
P

MA ¼ 0, respectively, to the free body of the entire truss, are shown in
Fig. 8.19(c) and (d).

Influence Line for FAF The expressions for FAF can be determined by applying the equilibrium equation
P

Fy ¼ 0
to the free-body diagram of joint A shown in Fig. 8.19(e). When the 1-kN load is located at joint A, we write

þ "PFy ¼ 0 Ay � 1þ 3

5
FAF ¼ 0

Because Ay ¼ 1 kN (see Fig. 8.19(c)), we obtain

FAF ¼ 0 for x ¼ 0

When the 1-kN load is located to the right of joint B, we write

þ "PFy ¼ 0 Ay þ 3

5
FAF ¼ 0

FAF ¼ �1:667Ay 4 ma xa 16 m

Thus, the segment of the influence line for FAF between B and E is obtained by multiplying the corresponding segment
of the influence line for Ay by �1:667, as shown in Fig. 8.19(f ). The ordinates at A and B are then connected by a
straight line to complete the influence line as shown in the figure. Ans.
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FIG. 8.19 continued
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Influence Line for FCF The expressions for FCF can be determined by passing a section aa through the members
BC;CF , and FG as shown in Fig. 8.19(b). The free-body diagrams of the two portions of the truss thus obtained are
shown in Fig. 8.19(g). The lines of action of FFG and FBC intersect at point O, so the equilibrium equation

P
MO ¼ 0

will contain only one unknown, namely, FCF . Because the slope of member FG is 1:4, the distance
OB ¼ 4ðFBÞ ¼ 4ð3Þ ¼ 12 m. Thus, the distance OA ¼ OB� AB ¼ 12� 4 ¼ 8 m as shown in Fig. 8.19(g). When the 1-
kN load is located to the left of B, we apply the equilibrium equation

P
MO ¼ 0 to the free body of the right portion

CE of the truss to obtain

þ ’
P

MO ¼ 0

3

5
FCF ð16Þ þ Eyð24Þ ¼ 0

FCF ¼ �2:5Ey 0a xa 4 m

When the 1-kN load is located to the right of C, we consider the equilibrium of the left portion AB to obtain

þ ’
P

MO ¼ 0

Ayð8Þ � 4

5
FCF ð3Þ � 3

5
FCF ð12Þ ¼ 0

FCF ¼ 0:833Ay 8 ma xa 16 m

The segments of the influence line for FCF between A and B and between C and E are constructed by using the influence
lines for Ey and Ay, respectively, in accordance with the preceding expressions. The ordinates at B and C are then con-
nected by a straight line to complete the influence line, as shown in Fig. 8.19(h). Ans.

Influence Line for FCG We will determine the influence line for FCG by considering the equilibrium of joint G. By
applying the equations of equilibrium to the free-body diagram of joint G (Fig. 8.19(i)), we write

þ "PFy ¼ 0

�FCG � 1ffiffiffiffiffi
17
p

� �
FFG � 1ffiffiffiffiffi

17
p

� �
FGH ¼ 0

FCG ¼ � 1ffiffiffiffiffi
17
p

� �
ðFFG þ FGHÞ (1)

þ !P
Fx ¼ 0

� 4ffiffiffiffiffi
17
p

� �
FFG þ 4ffiffiffiffiffi

17
p

� �
FGH ¼ 0

FGH ¼ FFG (2)

By substituting Eq. (2) into Eq. (1), we obtain

FCG ¼ � 2ffiffiffiffiffi
17
p

� �
FFG ¼ �0:485FFG (3)

Note that Eq. (3), which is valid for any position of the unit load, indicates that the influence line for FCG can be ob-
tained by multiplying the influence line for FFG by �0:485. Thus we will first construct the influence line for FFG by us-
ing section aa (Fig. 8.19(g)) and then apply Eq. (3) to obtain the desired influence line for FCG.

It can be seen from Fig. 8.19(g) that when the 1-kN load is located to the left of B, the expression for FFG can be
determined by applying the equilibrium equation

P
MC ¼ 0 to the free body of the right portion CE of the truss. Thus,
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þ ’
P

MC ¼ 0

4ffiffiffiffiffi
17
p

� �
FFGð4Þ þ Eyð8Þ ¼ 0

FFG ¼ �2:062Ey 0a xa 4 m

When the 1-kN load is located to the right of C, we consider the equilibrium of the left portion AB to obtain

þ ’
P

MC ¼ 0

� 1ffiffiffiffiffi
17
p

� �
FFGð20Þ � 4ffiffiffiffiffi

17
p

� �
FFGð15Þ � Ayð40Þ ¼ 0

FFG ¼ �2:062Ay 8 ma xa 16 m

The influence line for FFG, constructed by using the preceding expressions, is shown in Fig. 8.19( j).
The desired influence line for FCG can now be obtained by multiplying the influence line for FFG by �0:485, in ac-

cordance with Eq. (3). The influence line for FCG thus obtained is shown in Fig. 8.19(k). Ans.
The influence line for FCG can also be constructed by considering the section bb shown in Fig. 8.19(b). By summing

moments about the point of intersection of the axes of members BC and GH, we can determine the expressions for FCG

in terms of FCF and Ay or Ey, whose influence lines are known. The influence line for FCG can then be constructed by
plotting these expressions. The reader is encouraged to check the influence line for FCG shown in Fig. 8.19(k) by em-
ploying this alternative approach.

Example 8.13

Draw the influence line for the force in member HL of the K truss shown in Fig. 8.20(a). Live loads are transmitted to
the bottom chord of the truss.

Solution
Influence Lines for Reactions See Fig. 8.20(c) and (d).

Influence Lines for FHL From Fig. 8.20(b), we can observe that any section, such as section aa, passing through the
member HL cuts three or more additional members, thereby releasing four or more unknowns, which cannot be de-
termined by the three equations of equilibrium. We will, therefore, first construct the influence line for FLM by considering
the curved section bb, as shown in Fig. 8.20(b), and then use section aa to determine the desired influence line for FHL.

The free-body diagrams of the two portions of the truss, obtained by passing section bb, are shown in Fig. 8.20(e).
It can be seen that although section bb has cut four members, CD;DH;HM, and LM, the force in member LM can be
determined by summing moments about point D, because the lines of action of three remaining unknowns pass through
this point. When the 1-kN load is located to the left of C, the expression for FLM can be obtained as

þ ’
P

MD ¼ 0

FLMð12Þ þ Eyð8Þ ¼ 0

FLM ¼ �0:667Ey 0a xa 16 m (1)

continued
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FIG. 8.20
continued
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8.5 INFLUENCE LINES FOR DEFLECTIONS

A deflection influence line depicts the variation of a deflection of a
structure as a concentrated load of unit magnitude moves across the
structure. Let us assume that it is desired to construct the influence
line for the vertical deflection at point B of the simply supported
beam shown in Fig. 8.21(a). We can construct the influence line by
placing a unit load successively at arbitrary points to the left and to

When the unit load is located to the right of D, we obtain

þ ’
P

MD ¼ 0

�FLMð12Þ � Ayð24Þ ¼ 0

FLM ¼ �2Ay 24 ma xa 32 m (2)

The influence line for FLM thus obtained is shown in Fig. 8.20(f ).
The desired influence line for FHL can now be constructed by considering section aa. The free-body diagrams of the

two portions of the truss, obtained by passing section aa, are shown in Fig. 8.20(g). When the 1-kN load is located to
the left of C, the expression for FHL can be determined by applying the equilibrium equation

P
MC ¼ 0:

þ ’
P

MC ¼ 0

FLMð12Þ þ 4

5
FHLð6Þ þ 3

5
FHLð8Þ þ Eyð16Þ ¼ 0

FHL ¼ �1:667Ey � 1:25FLM 0a xa 16 m (3)

When the 1-kN load is to the right of D, we obtain

þ ’
P

MC ¼ 0

�Ayð16Þ � FLMð12Þ � 4

5
FHLð12Þ ¼ 0

FHL ¼ �1:667Ay � 1:25FLM 24 ma xa 32 m (4)

To obtain the expressions for FHL in terms of the reactions only, we substitute Eqs. (1) and (2) into Eqs. (3) and (4),
respectively, to obtain

FHL ¼ �0:833Ey 0a xa 16 m (5)

FHL ¼ 0:833Ay 24 ma xa 32 m (6)

The influence line for FHL can now be constructed by using either Eqs. (3) and (4) or Eqs. (5) and (6). The influence line
thus obtained is shown in Fig. 8.20(h). Ans.
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the right of B; determining an expression for the vertical deflection
at B for each position of the unit load by using one of the methods
for computing deflections described in Chapters 6 and 7; and plot-
ting the expressions.

A more e‰cient procedure for constructing the deflection influence
lines can be devised by the application of Maxwell’s law of reciprocal

deflections (Section 7.8). Considering again the beam of Fig. 8.21(a), if
fBX is the vertical deflection at B when the unit load is placed at an
arbitrary point X , then fBX represents the ordinate at X of the influ-
ence line for the vertical deflection at B. Now, suppose that we place
the unit load at B, as shown in Fig. 8.21(b), and compute the vertical
deflection at point X , fXB. According to Maxwell’s law of reciprocal

deflections,

fXB ¼ fBX

which indicates that the deflection at X due to the unit load at B,
fXB, also represents the ordinate at X of the influence line for the
vertical deflection at B. Because the point X was arbitrarily chosen,
we can conclude that the deflected shape (elastic curve) of a struc-

ture due to a unit load applied at a point represents the influence line

for deflection at the point where the unit load is applied. Thus, an
influence line for deflection at a point of a structure can be con-
structed by placing a unit load at the point where the deflection is

FIG. 8.21
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desired; determining the corresponding deflected shape (elastic curve)
of the structure by using one of the methods for computing de-
flections described in Chapters 6 and 7; and plotting the deflected
shape. The procedure is illustrated by the following example.

Example 8.14

Draw the influence line for the vertical deflection at end B of the cantilever beam shown in Fig. 8.22(a).

Solution
To determine the influence line for the vertical deflection at B, we place a 1-kN load at B, as shown in
Fig. 8.22(b), and determine the expression for the deflected shape of the beam by using the conjugate-beam
method described in Section 6.6. The M=EI diagram of the real beam due to the 1-kN load applied at B is
shown in Fig. 8.22(c), and the conjugate beam, loaded with the M=EI diagram of the real beam, is shown in
Fig. 8.22(d). The deflection at an arbitrary point X located at a distance x from A in the real beam is equal to
the bending moment at X in the conjugate beam. From Fig. 8.22(d), we can see that the bending moment at X
in the conjugate beam is given by

MX ¼ 1

EI
�3 1� x

3

� �
x

x

2

� �
� 1

2

� �
3� 3 1� x

3

� �� �
x

2x

3

� �	 


¼ 1

6EI
ðx3 � 9x2Þ

Thus, the deflection at X on the real beam is

fXB ¼ 1

6EI
ðx3 � 9x2Þ

which represents the expression for the deflected shape of the beam due to the 1-kN load at B (Fig. 8.22(b)). By ap-
plying Maxwell’s law of reciprocal deflections, fBX ¼ fXB, we obtain the equation of the influence line for the vertical
deflection at B as

fBX ¼ 1

6EI
ðx3 � 9x2Þ

By substituting the numerical values of E and I , we get

fBX ¼ x3 � 9x2

240;000

The influence line for vertical deflection at B, obtained by plotting the preceding equation, is shown in
Fig. 8.22(e). Ans.
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SUMMARY

In this chapter we have learned that an influence line is a graph of a re-
sponse function of a structure as a function of the position of a down-
ward unit load moving across the structure. The influence lines for the
force and moment response functions of all statically determinate struc-
tures consist of straight-line segments.

The influence line for a reaction can be constructed by placing a
unit load at a variable position x on the structure, applying an
equilibrium equation to determine the expression for the reaction in
terms of x, and plotting the expression. The influence line for shear

FIG. 8.22
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(or bending moment) at a point of a beam can be constructed by
placing a unit load successively to the left and to the right of the
point under consideration, determining the expressions for shear (or
bending moment) for the two positions of the unit load, and plotting
the expressions.

Müller-Breslau’s principle states that the influence line for a
force (or moment) response function is given by the deflected shape
of the released structure obtained by removing the restraint corre-
sponding to the response function from the original structure and by
giving the released structure a unit displacement (or rotation) at the
location and in the direction of the response function, so that only
the response function and the unit load perform external work. This
principle is commonly used to construct qualitative influence lines
(i.e., the general shape of influence lines). The numerical values of
the influence-line ordinates, if desired, are then computed by apply-
ing the equations of equilibrium. Procedures for constructing influ-
ence lines for girders with floor systems and trusses were presented
in Sections 8.3 and 8.4, respectively.

The deflected shape (elastic curve) of a structure, due to a unit load
applied at a point, represents the influence line for deflection at the point
where the unit load is applied.

PROBLEMS

Sections 8.1 and 8.2

8.1 through 8.4 Draw the influence lines for vertical reac-
tions at supports A and C and the shear and bending mo-
ment at point B of the beams shown in Figs. P8.1 through
P8.4.

5 m 5 m

CBA

FIG. P8.1, P8.59

FIG. P8.2, P8.60

3 m 1 m

CBA

FIG. P8.3
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1.6 m 1.6 m 1 m

DCBA

FIG. P8.4, P8.61

8.5 and 8.6 Draw the influence lines for vertical reactions
at supports B and D and the shear and bending moment at
point C of the beams shown in Figs. P8.5 and P8.6.

4 m2 m 4 m

DCBA

FIG. P8.5

5 m 5 m8 m 8 m

EDA B C

FIG. P8.6

8.7 Draw the influence lines for the vertical reactions
at supports A and C, the shear at just to the right of A, and
the bending moment at point B of the beam shown in
Fig. P8.7.

FIG. P8.7

8.8 Draw the influence lines for the shear and bending mo-
ment at point B of the cantilever beam shown in Fig. P8.8.

5 m 5 m

BA
C

FIG. P8.8

8.9 Draw the influence lines for the vertical reaction and
the reaction moment at support A and the shear and bend-
ing moment at point B of the cantilever beam shown in
Fig. P8.9.

3 m 2 m

B CA

FIG. P8.9, P8.58

8.10 Draw the influence lines for the shear and bending
moment at point C and the shears just to the left and just to
the right of support D of the beam shown in Fig. P8.10.

5 m 4 m 4 m3 m6 m

D E FCBA

FIG. P8.10, P8.11

8.11 Draw the influence lines for the shear and bending
moment at point E of the beam shown in Fig. P8.10.

8.12 Draw the influence lines for the shear and bending
moment at point B and the shears just to the left and just to
the right of support C of the beam shown in Fig. P8.12.

FIG. P8.12

8.13 Draw the influence lines for the vertical reactions at
supports A and E and the reaction moment at support E of
the beam shown in Fig. P8.13.

4 m 4 m 4 m 4 m

Hinge

A B C D
E

FIG. P8.13, P8.14, P8.15
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8.14 Draw the influence lines for the shear and bending
moment at point B of the beam shown in Fig. P8.13.

8.15 Draw the influence lines for the shear and bending
moment at point D of the beam shown in Fig. P8.13.

8.16 Draw the influence lines for the vertical reactions at
supports A and E and the shear and bending moment at
point D of the frame shown in Fig. P8.16.

3 m 3 m5 m 5 m

7 m

A

B C D E F

FIG. P8.16

8.17 Draw the influence lines for the vertical reactions at
supports A and B and the shear and bending moment at
point D of the frame shown in Fig. P8.17.

2 m 2 m 2 m

3 m

2 m

A

C D E F

B

FIG. P8.17

8.18 Draw the influence lines for the vertical reaction and
reaction moment at support A and the shear and bending
moment at point C of the frame shown in Fig. P8.18.

FIG. P8.18

8.19 Draw the influence lines for the vertical reactions at
supports A;B, and E and the shear at internal hinge D of
the frame shown in Fig. P8.19.

FIG. P8.19

8.20 Draw the influence lines for the vertical reactions at
supports B;E, and G of the beam shown in Fig. P8.20.

2 m 2 m 2 m 2 m2 m 2 m

D E F GCBA

Hinge

FIG. P8.20, P8.21, P8.22

8.21 Draw the influence lines for the shear and bending
moment at point C and the shear at internal hinge D of the
beam shown in Fig. P8.20.

8.22 Draw the influence lines for the shear and bending
moment at point F of the beam shown in Fig. P8.20.
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8.23 and 8.24 Draw the influence lines for the vertical re-
actions at supports A;C;E, and G of the beams shown in
Figs. P8.23 and P8.24.

4 m 4 m 3 m 3 m6 m 6 m

D E F GCBA
HingeHinge

FIG. P8.23, P8.25

6 m 6 m 6 m 6 m6 m 6 m

D E F GCBA

Hinge Hinge

FIG. P8.24, P8.26

8.25 Draw the influence lines for the shear and bending
moment at point D of the beam shown in Fig. P8.23.

8.26 Draw the influence lines for the shear and bending
moment at point B of the beam shown in Fig. P8.24.

8.27 Draw the influence lines for the vertical reactions at
supports B;D, and G and the reaction moment at support G
of the beam shown in Fig. P8.27.

2 m 3 m 2 m 2 m3 m 2 m

D E F
G

CBA

Hinge Hinge

FIG. P8.27, P8.28

8.28 Draw the influence lines for the shear and bending
moment at point E of the beam shown in Fig. P8.27.

8.29 Draw the influence lines for the reaction moment at
support A and the vertical reactions at supports A;E, and G

of the beam shown in Fig. P8.29.

FIG. P8.29, P8.30

8.30 Draw the influence lines for the shears and bending
moments at points C and F of the beam shown in
Fig. P8.29.

8.31 Draw the influence lines for the reaction moments
and the vertical reactions at supports A and F of the beam
shown in Fig. P8.31.

FIG. P8.31, P8.32

8.32 Draw the influence lines for the shears and bending
moments at points B and E of the beam shown in
Fig. P8.31.

8.33 Draw the influence lines for the vertical reactions at
supports A, and B of the beam shown in Fig. P8.33.

8 m 6 m 4 m 4 m 3 m 3 m 8 m

HingeHinge

D E F G HCBA

FIG. P8.33, P8.34

8.34 Draw the influence lines for the shears and bending
moments at points D and F of the beam shown in
Fig. P8.33.
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8.35 and 8.36 Draw the influence lines for the horizontal
and vertical reactions at supports A and B of the frames
shown in Figs. P8.35 and P8.36.

6 m 6 m

A B

C D E
Hinge

6 m

FIG. P8.35

FIG. P8.36

8.37 Draw the influence lines for the reaction moment at
support A, the vertical reactions at supports A and F , and
the shear and bending moment at point E of the frame
shown in Fig. P8.37.

FIG. P8.37

8.38 Draw the influence lines for the reaction moment at
support A, the vertical reactions at supports A and B, and the
shear at the internal hingeC of the frame shown in Fig. P8.38.

FIG. P8.38

8.39 Draw the influence lines for the vertical reactions at
supports A;B;C, and the shear and bending moment at
point E of the frame shown in Fig. P8.39.

FIG. P8.39

Section 8.3

8.40 Draw the influence lines for the shear in panel CD and
the bending moment at D of the girder with the floor system
shown in Fig. P8.40.

A B C D E

4 panels at 6 m = 24 m

FIG. P8.40
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8.41 Draw the influence lines for the shear in panel DE and
the bending moment at E of the girder with the floor system
shown in Fig. P8.41.

A B C D

7 panels at 6 m = 42 m

E F G H

FIG. P8.41, P8.42

8.42 Draw the influence lines for the shear in panel BC and
the bending moment at F of the girder with the floor system
shown in Fig. P8.41.

8.43 Draw the influence lines for the shear in panel BC and
the bending moment at C of the girder with the floor system
shown in Fig. P8.43.

Fixed support

A B C D

4 panels at 5 m = 20 m

E

FIG. P8.43

8.44 Draw the influence line for the shear in panel CD and
the bending moment at D of the girder with the floor system
shown in Fig. P8.44.

FIG. P8.44

Section 8.4

8.45 through 8.52 Draw the influence lines for the forces in
the members identified by an ‘‘D’’ of the trusses shown in

Figs. P8.45–P8.52. Live loads are transmitted to the bottom
chords of the trusses.

5 m 5 m

5 m

A

B
C

D

×

×

×

FIG. P8.45

4 m

A

B C

E F

D

3 panels at 3 m = 9 m

×

×

×

FIG. P8.46

FIG. P8.47

FIG. P8.48
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FIG. P8.49

FIG. P8.50

FIG. P8.51

FIG. P8.52

8.53 through 8.57 Draw the influence lines for the forces
in the members identified by an ‘‘D’’ of the trusses shown

in Figs. P8.53–P8.57. Live loads are transmitted to the top
chords of the trusses.

FIG. P8.53

FIG. P8.54

FIG. P8.55

FIG. P8.56
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FIG. P8.57

Section 8.5

8.58 Draw the influence line for the vertical deflection at
point B of the cantilever beam of Problem 8.9. EI ¼
constant. See Fig. P8.9.

8.59 and 8.60 Draw the influence line for the vertical de-
flection at point B of the simply supported beams of Prob-
lems 8.1 and 8.2. EI ¼ constant. See Figs. P8.1 and P8.2.

8.61 Draw the influence line for the vertical deflection at
point D of the beam of Problem 8.4. EI ¼ constant. See
Fig. P8.4.
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9
Application of Influence Lines
9.1 Response at a Particular Location Due to a Single Moving Concentrated

Load
9.2 Response at a Particular Location Due to a Uniformly Distributed Live

Load
9.3 Response at a Particular Location Due to a Series of Moving

Concentrated Loads
9.4 Absolute Maximum Response

Summary
Problems

A Highway Bridge Subjected to

Moving Loads
Courtesy of the State of California, Caltrans, Dist 4,

Photographer John Huseby

401

In the preceding chapter, we learned how to construct influence lines
for various response functions of structures. In this chapter, we consider
the application of influence lines in determining the maximum values
of response functions at particular locations in structures due to vari-
able loads. We also discuss the procedures for evaluating the absolute
maximum value of a response function that may occur anywhere in a
structure.

9.1 RESPONSE AT A PARTICULAR LOCATION DUE TO A SINGLE MOVING CONCENTRATED LOAD

As discussed in the preceding chapter, each ordinate of an influence line
gives the value of the response function due to a single concentrated
load of unit magnitude placed on the structure at the location of that
ordinate. Thus, we can state the following.

1. The value of a response function due to any single concentrated
load can be obtained by multiplying the magnitude of the load by
the ordinate of the response function influence line at the position of
the load.
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2. To determine the maximum positive value of a response function
due to a single moving concentrated load, the load must be placed
at the location of the maximum positive ordinate of the response
function influence line, whereas to determine the maximum negative
value of the response function, the load must be placed at the loca-
tion of the maximum negative ordinate of the influence line.

Consider, for example, a beam subjected to a moving concentrated
load of magnitude P, as shown in Fig. 9.1(a). Suppose that we wish to
determine the bending moment at B when the load P is located at a
distance x from the left support A. The influence line for MB, given in
Fig. 9.1(a), has an ordinate y at the position of the load P, indicating
that a unit load placed at the position of P causes a bending moment
MB ¼ y. Because the principle of superposition is valid, the load of
magnitude P must cause a bending moment at B, which is P times as
large as that caused by the load of unit magnitude. Thus, the bending
moment at B due to the load P is MB ¼ Py.

Next, suppose that our objective is to determine the maximum pos-
itive and the maximum negative bending moments at B due to the
load P. From the influence line for MB (Fig. 9.1(a)), we observe that the
maximum positive and the maximum negative influence-line ordinates
occur at points B and D, respectively. Therefore, to obtain the max-
imum positive bending moment at B, we place the load P at point B, as
shown in Fig. 9.1(b), and compute the magnitude of the maximum pos-
itive bending moment as MB ¼ PyB, where yB is the influence-line
ordinate at B (Fig. 9.1(a)). Similarly, to obtain the maximum negative
bending moment at B, we place the load P at point D, as shown in Fig.
9.1(c), and compute the magnitude of the maximum negative bending
moment as MB ¼ �PyD.

FIG. 9.1

Example 9.1

For the beam shown in Fig. 9.2(a), determine the maximum upward reaction at support C due to a 50-kN concentrated
live load.

Solution
Influence Line The influence line for the vertical reaction at support C of this beam was previously constructed in

Example 8.8 and is shown in Fig. 9.2(b). Recall that Cy was assumed to be positive in the upward direction in the con-
struction of this influence line.

Maximum Upward Reaction at C To obtain the maximum positive value of Cy due to the 50-kN concentrated live
load, we place the load at B (Fig. 9.2(c)), where the maximum positive ordinate (1.4 kN/kN) of the influence line occurs. By
multiplying the magnitude of the load by the value of this ordinate, we determine the maximum upward reaction at C as

Cy ¼ 50ðþ1:4Þ ¼ þ70 kN ¼ 70 kN " Ans.
continued
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9.2 RESPONSE AT A PARTICULAR LOCATION DUE TO A UNIFORMLY DISTRIBUTED LIVE LOAD

Influence lines can also be employed to determine the values of response
functions of structures due to distributed loads. Consider, for example, a
beam subjected to a uniformly distributed live load of intensity wl, as
shown in Fig. 9.3(a). Suppose that we wish to determine the bending
moment at B when the load is placed on the beam, from x ¼ a to x ¼ b,
as shown in the figure. The influence line for MB is also given in the
figure. By treating the distributed load applied over a di¤erential length
dx of the beam as a concentrated load of magnitude dP ¼ wl dx, as
shown in the figure, we can express the bending moment at B due to the
load dP as

dMB ¼ dP y ¼ wl dx y (9.1)

4 m 4 m 4 m 4 m10 m
(a)

(b)  Influence Line for Cy (kN/kN)

(c)  Position of 50-kN Load for
Maximum Upward Cy

A F
B

C D

E

Hinge Hinge

A C

B

D E F

Hinge Hinge

50 kN

A B C D

E F

1.4

–0.4

1.0

0

FIG. 9.2
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where y is the influence line ordinate at x, which is the point of appli-
cation of dP, as shown in the figure. To determine the total bending
moment at B due to the distributed load from x ¼ a to x ¼ b, we in-
tegrate Eq. (9.1) between these limits to obtain

MB ¼
ð b

a

wl y dx ¼ wl

ð b

a

y dx (9.2)

in which the integral
Ð b

a
y dx represents the area under the segment of

the influence line, which corresponds to the loaded portion of the beam.
This area is shown as a shaded area on the influence line for MB in
Fig. 9.3(a).

Equation (9.2) also indicates that the bending moment at B will
be maximum positive if the uniformly distributed load is placed over all
those portions of the beam where the influence-line ordinates are pos-
itive and vice versa. From Fig. 9.3(a), we can see that the ordinates of
the influence line for MB are positive between the points A and C and
negative between C and D. Therefore, to obtain the maximum positive
bending moment at B, we place the uniformly distributed load wl from
A to C, as shown in Fig. 9.3(b), and compute the magnitude of the
maximum positive bending moment as

MB ¼ wlðarea under the influence line between A and CÞ

¼ wl
1

2

� �
ð0:75LÞðyBÞ ¼ 0:375wl yBL

Similarly, to obtain the maximum negative bending moment at B, we
place the load from C to D, as shown in Fig. 9.3(c), and compute the
magnitude of the maximum negative bending moment as

MB ¼ wlðarea under the influence line between C and DÞ

¼ wl
1

2

� �
ð0:25LÞð�yDÞ ¼ �0:125wl yDL

Based on the foregoing discussion, we can state the following.

1. The value of a response function due to a uniformly distributed load
applied over a portion of the structure can be obtained by multi-
plying the load intensity by the net area under the corresponding
portion of the response function influence line.

2. To determine the maximum positive (or negative) value of a
response function due to a uniformly distributed live load, the
load must be placed over those portions of the structure where the
ordinates of the response function influence line are positive (or
negative).

FIG. 9.3
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Example 9.2

For the beam shown in Fig. 9.4(a), determine the maximum upward reaction at support C due to a 15-kN/m uniformly
distributed live load.

Solution
Influence Line The influence line for the vertical reaction at support C of this beam was previously constructed in

Example 8.8 and is shown in Fig. 9.4(b). Recall that Cy was assumed to be positive in the upward direction in the con-
struction of this influence line.

Maximum Upward Reaction at C From Fig. 9.4(b), we observe that the ordinates of the influence line for Cy are
positive between points A and D. Therefore, to obtain the maximum positive value of Cy, we place the 15-kN/m uni-
formly distributed live load over the portion AD of the beam, as shown in Fig. 9.4(c). By multiplying the load intensity
by the area under the portion AD of the influence line, we determine the maximum upward reaction at C as

Cy ¼ 15
1

2
ðþ1:4Þð18Þ

� �
¼ þ189 kN ¼ 189 kN " Ans.

4 m 4 m 4 m 4 m10 m
(a)

(b)  Influence Line for Cy (kN/kN)

(c)  Arrangement of 15-kN/m 
Load for Maximum Upward Cy

A F
B

C D

E

Hinge Hinge

A
CB D

E F

Hinge Hinge

A B C D

E F

1.4

–0.4

1.0

0

15 kN/m

FIG. 9.4
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Example 9.3

For the beam shown in Fig. 9.5(a), determine the maximum positive and negative shears and the maximum positive and
negative bending moments at point C due to a concentrated live load of 90 kN, a uniformly distributed live load of
40 kN/m, and a uniformly distributed dead load of 20 kN/m.

Solution
Influence Lines The influence lines for the shear and bending moment at point C of this beam were previously

constructed in Example 8.6 and are shown in Fig. 9.5(b) and (e), respectively.

FIG. 9.5

continued
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Maximum Positive Shear at C To obtain the maximum positive shear at C due to the 90-kN concentrated live
load, we place the load just to the right of C (Fig. 9.5(c)), where the maximum positive ordinate (2/3 kN/kN) of the
influence line for SC occurs. By multiplying the magnitude of the load by the value of this ordinate, we determine the
maximum positive value of SC due to the concentrated live load as

SC ¼ 90
2

3

� �
¼ 60 kN

From Fig. 9.5(b), we observe that the ordinates of the influence line for SC are positive between the points A and B and
between the points C and D. Therefore, to obtain the maximum positive shear at C due to the 40-kN/m uniformly dis-
tributed live load, we place the load over the portions AB and CD of the beam, as shown in Fig. 9.5(c), and compute the
maximum positive value of SC due to this load by multiplying the load intensity by the area under the portions AB and
CD of the influence line. Thus

SC ¼ 40
1

2

� �
ð3Þ 1

3

� �
þ 1

2

� �
ð6Þ 2

3

� �� �
¼ 100 kN

Unlike live loads, the dead loads always act at fixed positions on structures; that is, their positions cannot be varied to
maximize response functions. Therefore, the 20-kN/m uniformly distributed dead load is placed over the entire length of
the beam, as shown in Fig. 9.5(c), and the corresponding shear at C is determined by multiplying the dead-load intensity
by the net area under the entire influence line as

SC ¼ 20
1

2

� �
ð3Þ 1

3

� �
þ 1

2

� �
ð3Þ � 1

3

� �
þ 1

2

� �
ð6Þ 2

3

� �� �
¼ 40 kN

The total maximum positive shear at C can now be obtained by algebraically adding the values of SC determined for
the three types of loads.

Maximum positive SC ¼ 60þ 100þ 40 ¼ 200 kN Ans.

Maximum Negative Shear at C The arrangement of the loads to obtain the maximum negative shear at C is shown
in Fig. 9.5(d). The maximum negative shear at C is given by

Maximum negative SC ¼ 90 � 1

3

� �
þ 40

1

2

� �
ð3Þ � 1

3

� �
þ 20

�
1

2

� �
ð3Þ 1

3

� �

þ 1

2

� �
ð3Þ � 1

3

� �
þ 1

2

� �
ð6Þ 2

3

� ��
¼ �10 kN Ans.

Maximum Positive Bending Moment at C The arrangement of the loads to obtain the maximum positive
bending moment at C is shown in Fig. 9.5(f ). Note that the 90-kN concentrated live load is placed at the location
of the maximum positive ordinate of the influence line for MC (Fig. 9.5(e)); the 40-kN/m uniformly distributed live
load is placed over the portion BD of the beam, where the ordinates of the influence line are positive; whereas the
20-kN/m uniformly distributed dead load is placed over the entire length of the beam. The maximum positive
bending moment at C is given by

continued
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9.3 RESPONSE AT A PARTICULAR LOCATION DUE TO A SERIES OF MOVING CONCENTRATED

LOADS

As discussed in Section 2.2, live loads due to vehicular tra‰c on high-
way and railway bridges are represented by a series of moving con-
centrated loads with specified spacing between the loads (see Figs. 2.2
and 2.3). Influence lines provide a convenient means of analyzing struc-
tures subjected to such moving loads. In this section, we discuss how the
influence line for a response function can be used to determine (1) the
value of the response function for a given position of a series of con-
centrated loads and (2) the maximum value of the response function due
to a series of moving concentrated loads.

Consider, for example, the bridge beam shown in Fig. 9.6. Suppose
that we wish to determine the shear at point B of the beam due to the
wheel loads of an HS20-44 truck when the front axle of the truck is lo-
cated at a distance of 4.88 m from the left support A, as shown in the
figure. The influence line for the shear at B is also shown in the figure.
The distances between the three loads as well as the location of the 17.8-kN
load are known, so the locations of the other two loads can be easily es-
tablished. Although the influence-line ordinates corresponding to the loads
can be obtained by using the properties of the similar triangles formed by
the influence line, it is usually convenient to evaluate such an ordinate by
multiplying the slope of the segment of the influence line where the
load is located by the distance of the load from the point at which the
influence line segment intersects the horizontal axis (i.e., becomes

Maximum positive MC ¼ 90ð2Þþ 40
1

2

� �
ð9Þð2Þ

þ 20
1

2

� �
ð3Þð�2Þ þ 1

2

� �
ð9Þð2Þ

� �
¼ 660 kN�m Ans.

Maximum Negative Bending Moment at C The loading arrangement to obtain the maximum negative bending
moment at C is shown in Fig. 9.5(g). The maximum negative MC is given by

Maximum negative MC ¼ 90ð�2Þþ 40
1

2

� �
ð3Þð�2Þ

þ 20
1

2

� �
ð3Þð�2Þ þ 1

2

� �
ð9Þð2Þ

� �
¼ �180 kN�m Ans.
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zero). The sign (plus or minus) of the ordinate is obtained by in-
spection. For example, the influence-line ordinate corresponding to the
17.8 kN load (Fig. 9.6), can be computed by multiplying the slope
(1:30.5) of the influence-line segment for the portion AB by the dis-
tance (4.88 m) of the load from point A. Thus the ordinate of the in-
fluence line for SB corresponding to the 17.8 kN load equals
�ð1=30:5Þð4:88Þ ¼ �0:16 kN/kN. The ordinates corresponding to the
three loads thus obtained are shown in Fig. 9.6.

It may be recalled that the shear at B due to a single con-
centrated load is given by the product of the magnitude of the load and
the influence-line ordinate at the location of the load. Because super-
position is valid, the total shear at B caused by the three concentrated
loads can be determined by algebraically summing the shears at B due
to the individual loads, that is, by summing the products of the load
magnitudes and the respective influence-line ordinates. Thus

SB ¼ �17:8ð0:16Þ � 71:2ð0:3Þ þ 71:2ð0:3Þ ¼ 4:272 kN

The foregoing procedure can be employed to determine the value of
any force or moment response function of a structure for a given posi-
tion of a series of concentrated loads.

Influence lines can also be used for determining the maximum
values of response functions at particular locations of structures due to
a series of concentrated loads. Consider the beam shown in Fig. 9.7(a),
and suppose that our objective is to determine the maximum positive

FIG. 9.6
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shear at point B due to the series of four concentrated loads shown in
the figure. The influence line for SB is shown in Fig. 9.7(b). Assuming
that the load series moves from right to left on the beam, we can observe
from these figures that as the series moves from the end C of the beam
toward point B, the shear at B increases continuously as the ordinates of

FIG. 9.7
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the influence line under the loads increase. The shear at B reaches a rel-
ative maximum when the first load of the series, the 35.6 kN load,
reaches just to the right of B, where the maximum positive ordinate of
the influence line is located. As the 35.6-kN load crosses point B, the
shear at B decreases abruptly by an amount equal to
�35:6ð0:667þ 0:333Þ ¼ �35:6 kN. With the series of loads continuing to
move toward the left, SB increases again, and it reaches another relative
maximum when the second load of the series, the 44.5 kN load, reaches just
to the right of B, and so on. Because SB becomes a relative maximum
whenever one of the loads of the series reaches the maximum positive
influence-line ordinate, we can conclude that during the movement of
the series of loads across the entire length of the beam, the (absolute)
maximum shear at B occurs when one of the loads of the series is at the
location of the maximum positive ordinate of the influence line for SB.
Since it is not possible to identify by inspection the load that will cause
the maximum positive SB when placed at the maximum influence-line
ordinate, we use a trial-and-error procedure to determine the value of
the maximum positive shear at B. As shown in Fig. 9.7(c), the series of
loads is initially positioned on the beam with its first load, the 35.6 kN
load, placed just to the right of B, where the maximum positive ordi-
nate of the influence line is located. Noting that the slope of the influ-
ence-line segment for the portion BC is 1:30 (Fig. 9.7(b)), we compute
the value of SB for this loading position as

SB ¼ 35:6ð10Þ 1

15

� �
þ 44:5ð8Þ 1

15

� �
þ 66:75ð6:5Þ 1

15

� �
þ 22:25ð4Þ 1

15

� �
¼ 82:32 kN

Next, the entire series of loads is moved to the left by 2 m to place the sec-
ond load of the series, the 44.5 kN load, at the location of the maximum
positive ordinate of the influence line, as shown in Fig. 9.7(d). The shear at
B for this loading position is given by

SB¼�35:6ð3Þ 1

15

� �
þ44:5ð10Þ 1

15

� �
þ66:75ð8:5Þ 1

15

� �
þ22:25ð6Þ 1

15

� �
¼ 69:28 kN

The series of loads is then moved further to the left by 1.5 m to place the
third load of the series, the 66.75 kN load, just to the right of B (Fig.
9.7(e)). The shear at B is now given by

SB¼�35:6ð1:5Þ 1

15

� �
�44:5ð3:5Þ 1

15

� �
þ66:75ð10Þ 1

15

� �
þ22:25ð7:5Þ 1

15

� �
¼ 41:68 kN

Finally, the series is positioned so that its last load, the 22.25 kN load, is
just to the right of B, as shown in Fig. 9.7(f ). Note that the 35.6 kN load
has moved o¤ the span of the beam; therefore, it does not contribute to
the shear at B, which is given by
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SB ¼ �44:5ð1Þ 1

15

� �
� 66:75ð2:5Þ 1

15

� �
þ 22:25ð10Þ 1

15

� �
¼ 0:742 kN

By comparing the values of SB determined for the four loading posi-
tions, we conclude that the maximum positive shear at B occurs for the
first loading position—that is, when the 35.6 kN load is placed just to
the right of B (Fig. 9.7(c)):

Maximum positive SB ¼ 82:32 kN

Procedure for Analysis

The procedure for determining the maximum value of a force or mo-
ment response function at a particular location in a structure due to a
series of moving concentrated loads can be summarized as follows.

1. Construct an influence line for the response function whose max-
imum value is desired, and locate its maximum positive or negative
ordinate, depending on whether the maximum positive or negative
value of the response function is desired. (This ordinate is referred
to simply as the maximum ordinate in the following.)

2. Select the direction (either from right to left or vice versa) in which
the load series will be moved on the structure. If the series is to
move from right to left, then the load at the left end of the series is
considered to be the first load, whereas if the series is to move from
left to right, then the load at the right end is considered to be the
first load. Beginning with the first load, sequentially number (as 1,
2, 3, . . .) all the loads of the series. The position of the entire load
series is referred to by the number of the load, which is placed at the
location of the maximum influence line ordinate; for example, when
the third load of the series is placed at the location of the maximum
influence line ordinate, then the position of the load series is re-
ferred to as the loading position 3, and so on (for an example, see
Fig. 9.7).

3. Position the given series of concentrated loads on the structure, with
the first load of the series at the location of the maximum ordinate
of the influence line. Establish the locations of the rest of the loads
of the series.

4. Evaluate the influence-line ordinates corresponding to the loads of
the series, and determine the value of the response function by alge-
braically summing the products of the load magnitudes and the re-
spective influence-line ordinates. If the value of the response func-
tion determined herein is for the last loading position (with the last
load of the series placed at the location of the maximum influence-
line ordinate), then go to step 6. Otherwise, continue to the next
step.

5. Move the load series in the direction selected in step 2 until the next
load of the series reaches the location of the maximum influence-
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line ordinate. Establish the positions of the rest of the loads of the
series, and return to step 4.

6. By comparing the magnitudes of the response function determined
for all the loading positions considered, obtain the maximum value
of the response function.

If the arrangement of loads is such that all or most of the heavier
loads are located near one of the ends of the series, then the analysis can
be expedited by selecting a direction of movement for the series, so that
the heavier loads will reach the maximum influence-line ordinate before
the lighter loads of the series. For example, a load series in which the
heavier loads are to the left should be moved on the structure from right
to left and vice versa. In such a case, it may not be necessary to examine
all the loading positions obtained by successively placing each load of
the series at the location of the maximum influence-line ordinate. In-
stead, the analysis can be ended when the value of the response function
begins to decrease; that is, if the value of the response function for a
loading position is found to be less than that for the preceding loading
position, then the value of the response function for the preceding load-
ing position is considered to be the maximum value. Although this cri-
terion may also work for series with heavier loads near the middle of the
group, it is not valid for any general series of loads. In general, depend-
ing on the load magnitudes and spacing, and the shape of the influence
line, the value of the response function, after declining for some loading
positions, may start increasing again for subsequent loading positions
and may attain a higher maximum.

Example 9.4

Determine the maximum axial force in member BC of the Warren truss due to the series of four moving concentrated
loads shown in Fig. 9.8(a).

Solution
Influence Line for FBC See Fig. 9.8(b).

Maximum Force in Member BC To determine the maximum value of FBC , we move the load series from right to
left, successively placing each load of the series at point B, where the maximum ordinate of the influence line for FBC is
located (see Fig. 9.8(c) through (f )). The value of FBC is then computed for each loading position as follows.

� For loading position 1 (Fig. 9.8(c)):

FBC ¼ ½71:2ð12Þ þ 142:4ð10Þ þ 35:6ð7Þ þ 142:4ð3Þ� 1

16

� �
¼ 184:68 kN ðTÞ

continued
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� For loading position 2 (Fig. 9.8(d)):

FBC ¼ 71:2ð2Þ 3

16

� �
þ ½142:4ð12Þ þ 35:6ð9Þ þ 142:4ð5Þ� 1

16

� �
¼ 198:03 kN ðTÞ

� For loading position 3 (Fig. 9.8(e)):

FBC ¼ 142:4ð1Þ 3

16

� �
þ ½35:6ð12Þ þ 142:4ð8Þ� 1

16

� �
¼ 124:6 kN ðTÞ

FIG. 9.8 continued
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� For loading position 4 (Fig. 9.8(f )):

FBC ¼ 142:4ð12Þ 1

16

� �
¼ 106:8 ðTÞ

By comparing the values of FBC for the four loading positions, we conclude that the magnitude of the maximum axial
force that develops in member BC is FBC ¼ 198:03 kN tension. This maximum force occurs when the second load of the
series is placed at joint B of the truss, as shown in Fig. 9.8(d).

Maximum FBC ¼ 198:03 kN ðTÞ Ans.

9.4 ABSOLUTE MAXIMUM RESPONSE

Thus far, we have considered the maximum response that may occur at
a particular location in a structure. In this section, we discuss how to
determine the absolute maximum value of a response function that may
occur at any location throughout a structure. Although only simply
supported beams are considered in this section, the concepts presented
herein can be used to develop procedures for the analysis of absolute
maximum responses of other types of structures.

Single Concentrated Load

Consider the simply supported beam shown in Fig. 9.9(a). The influence
lines for the shear and bending moment at an arbitrary section a 0a 0 lo-
cated at a distance a from the left support A are shown in Fig. 9.9(b)

FIG. 9.8 (contd.)

SECTION 9.4 Absolute Maximum Response 415

https://engineersreferencebookspdf.com



and (c), respectively. Recall that these influence lines were initially de-
veloped in Section 8.1 (Fig. 8.2(e) and (f )).

Suppose that we wish to determine the absolute maximum shear in
the beam due to a single moving concentrated load of magnitude P. As
discussed in Section 9.1, the maximum positive shear at the section a 0a 0

is given by the product of the load magnitude, P, and the maximum
positive ordinate, 1� ða=LÞ, of the influence line for shear at section
a 0a 0 (Fig. 9.9(b)). Thus,

maximum positive shear ¼ P 1� a

L

� �
(9.3)

FIG. 9.9
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Similarly, the maximum negative shear at section a 0a 0 is given by

maximum negative shear ¼ �Pa

L
(9.4)

These equations indicate that the maximum positive and maximum
negative shears at a section due to a single moving concentrated load
vary linearly with the distance a of the section from the left support A of
the beam. A plot of Eqs. (9.3) and (9.4), with maximum shear as ordi-
nate, against the location a of the section as abscissa is shown in
Fig. 9.9(d). Such a graph, depicting the variation of the maximum value
of a response function as a function of the location of the section, is re-
ferred to as the envelope of the maximum values of a response function.
An envelope of maximum values of a response function provides a con-
venient means of determining the absolute maximum value of the re-
sponse function as well as its location. It can be seen from the envelope
of maximum shears (Fig. 9.9(d)) that in a simply supported beam sub-
jected to a moving concentrated load P, the absolute maximum shear
develops at sections just inside the supports and has the magnitude of P.

The envelope of maximum bending moments due to a single mov-
ing concentrated load P can be generated in a similar manner. By using
the influence line for bending moment at the arbitrary section a 0a 0 given
in Fig. 9.9(c), we determine the expression for the maximum bending
moment at the section a 0a 0 as

maximum bending moment ¼ Pa 1� a

L

� �
(9.5)

The envelope of maximum bending moments constructed by plotting
Eq. (9.5) is shown in Fig. 9.9(e). It can be seen that the absolute max-
imum bending moment occurs at midspan of the beam and has magni-
tude PL=4.

Uniformly Distributed Load

Next, let us determine the absolute maximum shear and bending mo-
ment in the simply supported beam of Fig. 9.9(a) due to a uniformly
distributed live load of intensity wl. As discussed in Section 9.2, the
maximum positive (or negative) shear at the section a 0a 0 can be obtained
by placing the load over the portion of the beam where the ordinates of
the shear influence line (Fig. 9.9(b)) are positive (or negative), and by
multiplying the load intensity by the area of the influence line under the
loaded portion of the beam. Thus,

maximum positive shear ¼ wl

2L
ðL� aÞ2 (9.6)

maximum negative shear ¼ �wla
2

2L
(9.7)
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The envelope of maximum shears due to a uniformly distributed live
load, constructed by plotting Eqs. (9.6) and (9.7), is shown in Fig. 9.9(f ).
It can be seen that the absolute maximum shear develops at sections just
inside the supports and has magnitude wlL=2.

To determine the expression for the maximum bending moment at
section a 0a 0, we multiply the load intensity, wl, by the area of the bend-
ing moment influence line (Fig. 9.9(c)), to obtain

maximum bending moment ¼ wla

2
ðL� aÞ (9.8)

The envelope of maximum bending moments due to a uniformly dis-
tributed live load, constructed by plotting Eq. (9.8), is shown in Fig.
9.9(g). It can be seen from this envelope that the absolute maximum
bending moment occurs at midspan of the beam and has magnitude
wlL

2=8.

Series of Concentrated Loads

The absolute maximum value of a response function in any structure
subjected to a series of moving concentrated loads or any other live
loading condition can be determined from the envelope of maximum
values of the response function. Such an envelope can be constructed
by evaluating the maximum values of the response function at a number
of points along the length of the structure by using the procedures
described in Sections 9.1 through 9.3, and by plotting the maximum
values. Because of the considerable amount of computational e¤ort in-
volved, except for some simple structures, the analysis of absolute max-
imum response is usually performed using computers. In the following
section, we discuss the direct methods that are commonly employed to
determine the absolute maximum shears and bending moments in sim-
ply supported beams subjected to a series of moving concentrated loads.

As in the case of single concentrated and uniformly distributed
loads, the absolute maximum shear in a simply supported beam due to a
series of moving concentrated loads always occurs at sections just inside
the supports. From the influence line for shear at an arbitrary section
a 0a 0 of a simply supported beam shown in Fig. 9.9(b), we can see that in
order to develop the maximum positive shear at the section, we must
place as many loads of the series as possible on the portion of the beam
for which the influence line is positive and as few loads as possible on
the portion where the influence line is negative. Moreover, as section
a 0a 0 is shifted toward the left support of the beam, the value of the
maximum positive shear will continuously increase, because the length
and the maximum ordinate of the positive portion of the influence line
increase, whereas those of the negative portion decrease. Thus, the
absolute maximum positive shear will occur when the section a 0a 0 is
located just to the right of the left support A. Using a similar reasoning,
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it can be shown that the absolute maximum negative shear occurs at a
section located just to the left of the right support C of the simply sup-
ported beam. Since the location of the absolute maximum shear is
known, the procedure for computing maximum response at a section
due to a series of concentrated loads, developed in Section 9.3, can be
employed to determine the magnitude of the absolute maximum shear.
Because the influence line for shear just inside the left support is identi-
cal to the influence line for reaction at the left support, the latter can be
conveniently used for determining the magnitude of the absolute max-
imum shear.

To determine the location of the absolute maximum bending
moment, consider the simply supported beam subjected to an arbitrary
series of moving concentrated loads P1;P2, and P3, as shown in Fig. 9.10.
The resultant of the loads P1;P2, and P3 is denoted by PR, which is lo-
cated at the distance x from the load P2, as shown in the figure. The
bending moment diagram of the beam consists of straight-line segments
between the load points regardless of the position of the loads, so
the absolute maximum bending moment occurs under one of the loads.
Assuming that the absolute maximum bending moment occurs under
the load P2, our objective is to determine its position x from the mid-
span of the beam, as shown in the figure. By applying the equilibrium
equation

P
MB ¼ 0 and using the resultant PR instead of the individual

loads in the equilibrium equation, we determine the vertical reaction
Ay to be

þ ’
P

MB ¼ 0

�AyðLÞ þ PR

L

2
þ x� x

� �
¼ 0

Ay ¼ PR

1

2
þ x

L
� x

L

� �

Thus the bending moment under the load P2 is given by

M2 ¼ Ay

L

2
þ x

� �
� P1a1

¼ PR
1

2
þ x

L
� x

L

� �
L

2
þ x

� �
� P1a1

¼ PR

L

4
þ x

2
þ xx

L
� x2

L

� �
� P1a1

For M2 to be maximum, its derivative with respect to x must be zero;
that is,

dM2

dx
¼ PR

x

L
� 2x

L

� �
¼ 0

FIG. 9.10
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from which we obtain

x ¼ x

2
(9.9)

Based on Eq. (9.9), we can conclude that in a simply supported beam

subjected to a series of moving concentrated loads, the maximum bending

moment develops under a load when the midspan of the beam is located

halfway between the load and the resultant of all the loads on the beam.
By applying this criterion, a maximum bending moment can be com-
puted for each load acting on the beam. The largest of the maximum
bending moments thus obtained is the absolute maximum bending mo-
ment. However, in general it is not necessary to examine all the loads
acting on the beam, since the absolute maximum bending moment usu-
ally occurs under the load closest to the resultant, provided that it is of
equal or larger magnitude than the next adjacent load. Otherwise, the
maximum bending moments should be computed for the two loads ad-
jacent to the resultant and compared to obtain the absolute maximum
bending moment.

Example 9.5

Determine the absolute maximum bending moment in the simply supported beam due to the wheel loads of the HS20-
44 truck shown in Fig. 9.11(a).

Solution
Resultant of Load Series The magnitude of the resultant is obtained by summing the magnitudes of the loads of the

series. Thus

PR ¼
P

Pi ¼ 17:8þ 71:2þ 71:2 ¼ 160:2 kN

The location of the resultant can be determined by using the condition that the moment of the resultant about a point
equals the sum of the moments of the individual loads about the same point. Thus, by summing moments about the
71.2 kN trailer-wheel load, we obtain

PRðxÞ ¼
P

Pixi

160:2ðxÞ ¼ 17:8ð8:54Þ þ 71:2ð4:27Þ
x ¼ 2:85 m

Absolute Maximum Bending Moment From Fig. 9.11(b), we observe that the second load of the series (the 71.2 kN
rear-wheel load) is located closest to the resultant. Thus the absolute maximum bending moment occurs under the sec-
ond load when the series is positioned on the beam so that the midspan of the beam is located halfway between the load
and the resultant. The resultant is located 1.42 m to the right of the second load (Fig. 9.11(b)), so we position this load
at a distance of 1:42=2 ¼ 0:71 m to the left of the beam midspan, as shown in Fig. 9.11(c). Next we compute the vertical
reaction at A to be

continued
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Ay ¼ 160:2
6:91

15:25

� �
¼ 72:59 kN

Thus the absolute maximum bending moment, which occurs under the second load of the series, is

Absolute maximum bending moment ¼M2 ¼ 72:59ð2:64þ 4:27Þ � 17:8ð4:27Þ
¼ 425:59 kN�m Ans.

SUMMARY

In this chapter we have learned that the value of a response function
due to a single concentrated load can be obtained by multiplying the
magnitude of the load by the ordinate of the response function influence

FIG. 9.11
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line at the position of the load. To determine the maximum positive
(or negative) value of a response function due to a single moving con-
centrated load, the load must be placed at the location of the maximum
positive (or negative) ordinate of the response function influence line.

The value of a response function due to a uniformly distributed load
applied over a portion of the structure can be obtained by multiplying
the load intensity by the net area under the corresponding portion of the
response function influence line. To determine the maximum positive (or
negative) value of a response function due to a uniformly distributed
live load, the load must be placed over those portions of the structure
where the ordinates of the response function influence line are positive
(or negative).

The maximum value of a response function at a particular location
in a structure due to a series of moving concentrated loads can be de-
termined by successively placing each load of the series on the structure
at the location of the maximum ordinate of the response function in-
fluence line, by computing the value of the response function for each
position of the series through algebraically summing the products of the
load magnitudes and the respective influence-line ordinates, and by
comparing the values of the response function thus obtained to de-
termine the maximum value of the response function.

In simply supported beams (a) the absolute maximum shear devel-
ops at sections just inside the supports, (b) the absolute maximum
bending moment due to a single concentrated, or a uniformly dis-
tributed, live load occurs at the beam midspan, and (c) the absolute
maximum bending moment due to a series of moving concentrated
loads occurs under one of the loads near the resultant of the loads when
the midspan of the beam is located halfway between the load and the
resultant.

PROBLEMS

Sections 9.1 and 9.2

9.1 For the beam of Problem 8.4, determine the maximum
negative bending moment at point B due to a 60 kN con-
centrated live load.

9.2 For the beam of Problem 8.4, determine the maximum
upward reaction at support A due to a 42 kN/m uniformly
distributed live load.

9.3 For the beam of Problem 8.4, determine the maximum
negative shear at point B due to a 42 kN/m uniformly dis-
tributed live load.

9.4 For the beam of Problem 8.5, determine the maximum
positive and negative shears and the maximum positive and
negative bending moments at point C due to a concentrated
live load of 100 kN, a uniformly distributed live load of 50
kN/m, and a uniformly distributed dead load of 20 kN/m.

9.5 For the cantilever beam of Problem 8.9, determine the
maximum upward vertical reaction and the maximum
counterclockwise reaction moment at support A due to a
concentrated live load of 100 kN, a uniformly distributed
live load of 28 kN/m, and a uniformly distributed dead load
of 7 kN/m.
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9.6 For the beam of Problem 8.10, determine the maximum
positive and negative shears and the maximum positive and
negative bending moments at point C due to a concentrated
live load of 150 kN, a uniformly distributed live load of 50
kN/m, and a uniformly distributed dead load of 25 kN/m.

9.7 For the beam of Problem 8.23, determine the maximum
positive and negative shears and the maximum positive and
negative bending moments at point D due to a concentrated
live load of 120 kN, a uniformly distributed live load of
42 kN/m, and a uniformly distributed dead load of 14 kN/m.

9.8 For the beam of Problem 8.27, determine the maximum
positive and negative shears and the maximum positive and
negative bending moments at point E due to a concentrated
live load of 160 kN, a uniformly distributed live load of
28 kN/m, and a uniformly distributed dead load of 14 kN/m.

9.9 For the truss of Problem 8.47, determine the max-
imum compressive axial force in member GH due to a
concentrated live load of 120 kN, a uniformly distributed
live load of 28 kN/m, and a uniformly distributed dead
load of 14 kN/m.

9.10 For the truss of Problem 8.50, determine the maximum
tensile axial force in member BE and the maximum com-
pressive axial force in member BF due to a concentrated
live load of 120 kN, a uniformly distributed live load of
40 kN/m, and a uniformly distributed dead load of 20 kN/m.

9.11 For the truss of Problem 8.51, determine the maximum
tensile and compressive axial forces in member DI due to a
concentrated live load of 160 kN, a uniformly distributed
live load of 56 kN/m, and a uniformly distributed dead
load of 28 kN/m.

Section 9.3

9.12 For the beam of Problem 8.2, determine the maximum
positive shear and bending moment at point B due to the
wheel loads of the moving H20-44 truck shown in Fig.
P9.12.

FIG. P9.12, P9.20

9.13 For the beam of Problem 8.1, determine the maximum
positive shear and bending moment at point B due to the

series of three moving concentrated loads shown in Fig.
P9.13.

FIG. P9.13, P9.17, P9.18, P9.22

9.14 For the beam of Problem 8.7, determine the maximum
positive bending moment at point B due to the series of four
moving concentrated loads shown in Fig. P9.14.

FIG. P9.14, P9.16, P9.19, P9.23

9.15 For the beam of Problem 8.23, determine the max-
imum positive bending moment at point D due to the wheel
loads of the moving HS15-44 truck shown in Fig. P9.15.

FIG. P9.15, P9.21

9.16 For the truss of Problem 8.49, determine the maximum
compressive axial force in member GH due to the series of
four moving concentrated loads shown in Fig. P9.14.

9.17 For the truss of Problem 8.53, determine the maximum
tensile axial force in member DI due to the series of three
moving concentrated loads shown in Fig. P9.13.

Section 9.4

9.18 Determine the absolute maximum shear in a 15-m-
long simply supported beam due to the series of three mov-
ing concentrated loads shown in Fig. P9.13.

9.19 Determine the absolute maximum shear in a 6 m-long
simply supported beam due to the series of four moving
concentrated loads shown in Fig. P9.14.
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9.20 Determine the absolute maximum bending moment in
a 12-m-long simply supported beam due to the wheel loads
of the moving H20-44 truck shown in Fig. P9.12.

9.21 Determine the absolute maximum bending moment in
a 15 m-long simply supported beam due to the wheel loads
of the moving HS15-44 truck shown in Fig. P9.15.

9.22 Determine the absolute maximum bending moment in
a 15-m-long simply supported beam due to the series of
three moving concentrated loads shown in Fig. P9.13.

9.23 Determine the absolute maximum bending moment in
a 6 m-long simply supported beam due to the series of four
moving concentrated loads shown in Fig. P9.14.
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10
Analysis of Symmetric
Structures
10.1 Symmetric Structures
10.2 Symmetric and Antisymmetric Components of Loadings
10.3 Behavior of Symmetric Structures under Symmetric and Antisymmetric

Loadings
10.4 Procedure for Analysis of Symmetric Structures

Summary
Problems

425

Taj Mahal, Built in the Seventeenth

Century in Agra, India
Luciano Mortula/Shutterstock

Many structures, because of aesthetic and/or functional considerations,
are arranged in symmetric forms. Provided a symmetric structure is lin-
early elastic, the response (i.e., member forces and deformations) of the
entire structure under any general loading can be obtained from the re-
sponse of one of its portions separated by the axes of symmetry. Thus
only a portion (usually half ) of the symmetric structure needs to be an-
alyzed. In this chapter we discuss how to recognize structural symmetry
and how to utilize it to reduce the computational e¤ort required in the
analysis of symmetric structures.

We first define symmetric structures and then discuss symmetric and
antisymmetric loadings. In this presentation, we develop a procedure for
decomposing a general loading into symmetric and antisymmetric com-
ponents. Next we examine the behavior of symmetric structures under
the symmetric and antisymmetric loadings; finally, we present a step-by-
step procedure for the analysis of symmetric structures.

Although the discussion in this chapter is confined to structures
with a single axis of symmetry, the concepts developed herein can be
extended to the analysis of structures with multiple axes of symmetry.
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10.1 SYMMETRIC STRUCTURES

Reflection

The definition of symmetry can be developed by using the concept of
reflection, or mirror image. Consider a structure located in the xy plane,
as shown in Fig. 10.1(a). The reflection of the structure about the y axis
is obtained by rotating the structure through 180� about the y axis, as
shown in Fig. 10.1(b). It can be seen from Fig. 10.1(a) and (b) that if the
coordinates of a point D of the structure are x1 and y1, then the coor-
dinates of that point on the reflection of the structure about the y axis
become �x1 and y1. The reflection of the structure about the x axis can
be obtained in a similar manner—that is, by rotating the structure
through 180� about the x axis, as shown in Fig. 10.1(c). Note that the
coordinates of point D on the reflection of the structure about the x axis
become x1 and �y1.

Based on the foregoing discussion, we realize that the reflection of
a structure about an arbitrary s axis can be obtained by rotating the
structure through 180� about the s axis. Alternatively, the structure’s
reflection can be obtained by joining the reflections of its various joints

FIG. 10.1
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and/or ends, which are determined by changing the signs of their coor-
dinates in the direction perpendicular to the s axis. To illustrate the lat-
ter approach, consider the truss shown in Fig. 10.2(a). Suppose that
we wish to determine its reflection about the y axis. As shown in Fig.
10.2(b), the reflections of the five joints of the truss are first determined
by changing the signs of the x coordinates of the joints. The reflections
of the joints are then connected by straight lines to obtain the reflection
of the entire truss. Note that the reflection of joint C, which is located
on the y axis, is in the same position as joint C itself.

Symmetric Structures

A plane structure is considered to be symmetric with respect to an axis

of symmetry in its plane if the reflection of the structure about the axis

is identical in geometry, supports, and material properties to the structure

itself.

Some examples of symmetric structures are shown in Fig. 10.3. For each
structure, the axis of symmetry is identified as the s axis. Note that the

FIG. 10.2
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FIG. 10.3 Examples of Symmetric
Structures
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reflection of each structure about its axis of symmetry is identical in ge-
ometry, supports, and material properties to the structure itself.

Although the concept of reflection provides a mathematically
precise means of defining symmetry, it is usually not necessary to draw
the reflection of a structure to determine whether or not the structure
is symmetric. Instead, most symmetric structures can be identified by
inspection—that is, by simply comparing the geometry, supports, and
material properties of the two halves of the structure on each side of the
axis of symmetry. Considering any of the structures of Fig. 10.3, if we
imagine that a half of the structure on either side of the axis of symme-
try is rotated through 180� about the axis of symmetry, it will exactly
overlay the other half of the structure, indicating that the structure is
symmetric.

As stated previously, a structure, in general, is considered to be
symmetric if its geometry, supports, and material properties are sym-
metric with respect to the axis of symmetry. However, when examining

FIG. 10.3 (contd.)
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structural symmetry for the purpose of an analysis, it is necessary to
consider the symmetry of only those structural properties that have an
e¤ect on results of that particular type of analysis. In other words, a
structure can be considered to be symmetric for the purpose of an anal-
ysis if its structural properties that have an e¤ect on the results of the
analysis are symmetric.

Consider, for example, the statically determinate truss subjected to
vertical loads, as shown in Fig. 10.4. We can see from the figure that the
geometry of the truss (i.e., the dimensions of the truss and the arrange-
ment of truss members) and its material and cross-sectional properties
(E and A) are symmetric with respect to the s axis, but the supports
violate symmetry because the hinged support at A can exert both hori-
zontal and vertical reactions, whereas the roller support at C can exert
only a vertical reaction. However, the truss can be considered to be
symmetric when subjected to vertical loads only because under such
loads, the horizontal reaction at the hinged support will be zero
ðAx ¼ 0Þ; therefore, it will not have any e¤ect on the response (e.g.,
member axial forces and deflections) of the truss. This truss cannot be
considered to be symmetric when subjected to any horizontal loads,
however.

FIG. 10.4

Example 10.1

The truss shown in Fig. 10.5(a) is to be analyzed to determine its member axial forces and deflections due to a general
system of loads acting at the joints. Can the truss be considered to be symmetric for such an analysis?

Solution
We can see from Fig. 10.5(b) that the dimensions, the arrangement of members, the material and cross-sectional prop-
erties (E and A), and the supports of the given truss are all symmetric with respect to the vertical s axis passing through
the member CG of the truss. Thus the truss is symmetric with respect to the s axis. Ans.

FIG. 10.5
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Example 10.2

The beam shown in Fig. 10.6(a) is to be analyzed to determine the member end forces and deflections due to the vertical
loading shown. Can the beam be considered to be symmetric for the analysis?

Solution
We can see from Fig. 10.6(b) that the dimensions and properties (E and I ) of the beam are symmetric with respect to
the vertical s axis passing through the mid-point F of the beam, but the supports are not symmetric because the hinged
support at A can develop both horizontal and vertical reactions, whereas the roller supports at B;C, and E can develop
only vertical reactions. However, the beam can be considered to be symmetric under the vertical loads because the
horizontal reaction at A is zero ðAx ¼ 0Þ; therefore, it does not have any e¤ect on the member end forces and deflections
of the beam. Ans.

FIG. 10.6

Example 10.3

The frame shown in Fig. 10.7(a) is to be analyzed to determine its member end forces and deflections due to a general
system of loads. Can the frame be considered to be symmetric?

Solution
From Fig. 10.7(b) we can see that although the frame’s geometry and supports are symmetric with respect to the vertical
s axis passing through the internal hinge D, its moment of inertia (I ) is not symmetric. Since the frame is statically de-
terminate, its member end forces are independent of the material and cross-sectional properties (E; I , and A); therefore,
the frame can be considered to be symmetric for the purpose of analysis of its member forces. However, this frame
cannot be considered to be symmetric for the analysis of deflections, which depend on the moments of inertia of the
members of the frame. Ans.

continued
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10.2 SYMMETRIC AND ANTISYMMETRIC COMPONENTS OF LOADINGS

As discussed in the preceding section for structures, the reflection of a
system of forces (or deflections) about an axis can be obtained by rotat-
ing the force system (or deflections) through 180� about the axis. Con-
sider a system of forces and moments, Fx;Fy, and M, acting at a point A
in the xy plane, as shown in Fig. 10.8(a). The reflections of the force

FIG. 10.7

FIG. 10.8
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system about the y and x axes are shown in Fig. 10.8(b) and (c), respec-
tively. As shown in these figures, the reflections of the counterclockwise
moment M are clockwise. Conversely, the reflections of a clockwise
moment will always be counterclockwise. The reflections of the deflec-
tions Dx and Dy and the rotation y of point A (Fig. 10.8(a)) can be ob-
tained in a similar manner and are also shown in Fig. 10.8(b) and (c).

Symmetric Loadings

A loading is considered to be symmetric with respect to an axis in its plane

if the reflection of the loading about the axis is identical to the loading

itself.

Some examples of symmetric loadings are shown in Fig. 10.9. The re-
flection of each loading about its axis of symmetry is also shown in the
figure for verification. However, it is usually not necessary to draw the
reflections, since most loadings can be identified as symmetric, or not,
by inspection.

FIG. 10.9 Examples of Symmetric Loadings
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Antisymmetric Loadings

A loading is considered to be antisymmetric with respect to an axis in its

plane if the negative of the reflection of the loading about the axis is iden-

tical to the loading itself.

Some examples of antisymmetric loadings are shown in Fig. 10.10. For
each loading case, the reflection and the negative of reflection are also

FIG. 10.9 (contd.)

FIG. 10.10 Examples of Antisymmetric Loadings
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FIG. 10.10 (contd.)
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shown in the figure. The negative of a reflection is obtained by simply
reversing the directions of all the forces and moments on the reflection.
It can be seen from the figure that the negative of reflection of each
loading about its s axis is identical to the loading itself.

Decomposition of a General Loading into Symmetric
and Antisymmetric Components

Any general loading can be decomposed into symmetric and anti-
symmetric components with respect to an axis by applying the following
procedure:

1. Divide the magnitudes of the forces and/or moments of the given
loading by 2 to obtain the half loading.

2. Draw a reflection of the half loading about the specified axis.
3. Determine the symmetric component of the given loading by adding

the half loading to its reflection.
4. Determine the antisymmetric component of the given loading

by subtracting the symmetric loading component from the given
loading.

To illustrate this procedure, consider the unsymmetric loading
shown in Fig. 10.11(a). Suppose that we wish to determine the com-

FIG. 10.11
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ponents of this loading, which are symmetric and antisymmetric with
respect to an arbitrarily located s axis shown in the figure. We first
compute the half loading by dividing the magnitudes of the distributed
and the concentrated loads by 2 (Fig. 10.11(b)). The reflection of this
half loading about the s axis is then drawn, as shown in Fig. 10.11(c).
The symmetric component of the given loading is determined by adding
the half loading (Fig. 10.11(b)) to its reflection (Fig. 10.11(c)). The
symmetric loading component thus obtained is shown in Fig. 10.11(d).
Finally, the antisymmetric component is computed by subtracting the
symmetric component (Fig. 10.11(d)) from the given loading (Fig.
10.11(a)). The antisymmetric loading component thus obtained is shown
in Fig. 10.11(e). Note that the sum of the symmetric and antisymmetric
components is equal to the given loading.

FIG. 10.11 (contd.)

Example 10.4

A Pratt bridge truss is subjected to the loading shown in Fig. 10.12(a). Determine the symmetric and antisymmetric
components of the loading with respect to the axis of symmetry of the truss.

Solution
Symmetric Loading Component The axis of symmetry (s axis) of the truss and the half loading are shown in

Fig. 10.12(b); the reflection of the half loading about the s axis is drawn in Fig. 10.12(c). The symmetric component of
the given loading is determined by adding the half loading (Fig. 10.12(b)) to its reflection (Fig. 10.12(c)), as shown in
Fig. 10.12(d). Ans.

continued
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Antisymmetric Loading Component The antisymmetric component of the loading is obtained by subtracting the
symmetric loading component (Fig. 10.12(d)) from the total loading (Fig. 10.12(a)) and is shown in Fig. 10.12(e).

Ans.
Note that the sum of the symmetric and antisymmetric components is equal to the given loading.

FIG. 10.12

Example 10.5

A beam is subjected to the loading shown in Fig. 10.13(a). Determine the symmetric and antisymmetric components of
the loading with respect to the axis of symmetry of the beam.

FIG. 10.13 continued
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Solution
Symmetric Loading Component The axis of symmetry (s axis) of the beam and the half loading are shown in

Fig. 10.13(b), and the reflection of the half loading about the s axis is drawn in Fig. 10.13(c). The symmetric component
of the given loading is determined by adding the half loading (Fig. 10.13(b)) to its reflection (Fig. 10.13(c)), as shown
in Fig. 10.13(d). Ans.

Antisymmetric Loading Component The antisymmetric component is obtained by subtracting the symmetric com-
ponent (Fig. 10.13(d)) from the total loading (Fig. 10.13(a)) and is shown in Fig. 10.13(e). Ans.

Note that the sum of the symmetric and antisymmetric components is equal to the given loading.

FIG. 10.13 (contd.)

Example 10.6

A four-span continuous beam is subjected to the loading shown in Fig. 10.14(a). Determine the symmetric and anti-
symmetric components of the loading with respect to the axis of symmetry of the beam.

Solution
Symmetric Loading Component The half loading and its reflection are shown in Fig. 10.14(b) and (c), respectively.

The symmetric component of the given loading is obtained by adding the half loading to its reflection, as shown in
Fig. 10.14(d). Ans.

continued
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Antisymmetric Loading Component By subtracting the symmetric component from the total loading (Fig. 10.14(a)),
we determine the antisymmetric component as shown in Fig. 10.14(e). Ans.

7 m 3 m 3 m 3 m

(a) Given Loading

(b) Half Loading

(c) Reflection of Half Loading

3 m 7 m

50 kN 50 kN
20 kN/m 30 kN/m

25 kN 25 kN
10 kN/m 15 kN/m

25 kN 25 kN
15 kN/m 10 kN/m

s

s

s

FIG. 10.14
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Example 10.7

A gable frame is subjected to the loading shown in Fig. 10.15(a). Determine the symmetric and antisymmetric compo-
nents of the loading with respect to the axis of symmetry of the frame.

FIG. 10.15

continued
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Solution
Symmetric Loading Component The half loading and its reflection are shown in Fig. 10.15(b) and (c), respectively.

The symmetric component of the given loading is determined by adding the half loading to its reflection, as shown in
Fig. 10.15(d). Ans.

Antisymmetric Loading Component By subtracting the symmetric component from the total loading (Fig. 10.15(a)),
we obtain the antisymmetric component as shown in Fig. 10.15(e). Ans.

Example 10.8

A two-story frame is subjected to the loading shown in Fig. 10.16(a). Determine the symmetric and antisymmetric
components of the loading with respect to the axis of symmetry of the frame.

Solution
Half Loading and Its Reflection See Fig. 10.16(b) and (c), respectively.

Symmetric Loading Component See Fig. 10.16(d). Ans.

Antisymmetric Loading Component See Fig. 10.16(e). Ans.

10 m

(a) Given Loading

5 m

30 kN/m

15 kN/m

6 m

6 m

25 kN

50 kN

(b) Half Loading

15 kN/m

7.5 kN/m

12.5 kN

25 kN

s s

FIG. 10.16

continued
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10.3 BEHAVIOR OF SYMMETRIC STRUCTURES UNDER SYMMETRIC AND ANTISYMMETRIC

LOADINGS

In the preceding section, we discussed how a general unsymmetric load-
ing can be decomposed into symmetric and antisymmetric components.
In this section, we examine the response characteristics of symmetric
structures under symmetric and antisymmetric loading conditions. The
insight gained into the behavior of symmetric structures will enable us

s

(c) Reflection of Half Loading

15 kN/m

7.5 kN/m

s

(d) Symmetric Loading Component

30 kN/m

15 kN/m

12.5 kN

25 kN

12.5 kN

25 kN

12.5 kN

25 kN

s

(e) Antisymmetric Loading Component

12.5 kN

25 kN

12.5 kN

25 kN

FIG. 10.16 (contd.)
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to develop, in the following section, a general procedure that can con-
siderably expedite the analysis of such structures.

Symmetric Structures Subjected to Symmetric Loadings

When a symmetric structure is subjected to a loading that is symmetric with

respect to the structure’s axis of symmetry, the response of the structure is

also symmetric, with the points of the structure at the axis of symmetry

neither rotating (unless there is a hinge at such a point) nor deflecting per-

pendicular to the axis of symmetry.

Thus, to determine the response (i.e., member forces and deformations)
of the entire structure, we need to analyze only half the structure, on
either side of the axis of symmetry, with symmetric boundary conditions
(i.e., slopes must be either symmetric or zero, and deflections perpen-
dicular to the axis of symmetry must be zero) at the axis. The response
of the remaining half of the structure can then be obtained by reflection.

Consider, for example, a symmetric frame subjected to a loading
that is symmetric with respect to the frame’s axis of symmetry (s axis),
as shown in Fig. 10.17(a). The deflected shape (elastic curve) of the
frame is also shown in the figure. It can be seen that, like the loading,
the deflected shape is symmetric with respect to the axis of symmetry of
the frame. Note that the slope and the horizontal deflection are zero at
point D, where the axis of symmetry intersects the frame, whereas the
vertical deflection at D is not zero. The response of the entire frame can
be determined by analyzing only half the frame, on either side of the
axis of symmetry. The left half of the frame cut by the axis of symmetry

FIG. 10.17
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is shown in Fig. 10.17(b). Note that the symmetric boundary conditions
are imposed on this substructure by supporting it at the end D by a col-
lar type of support (denoted by the symbol in Fig. 10.17(b)),
which prevents the rotation and the horizontal deflection at the axis of
symmetry but cannot prevent the vertical deflection along the axis. Once
the response of the left half of the frame has been determined by analy-
sis, the response of the right half can be obtained from that of the left
half by reflection.

Consider another symmetric frame subjected to symmetric loading,
as shown in Fig. 10.18(a). The left half of the frame with symmetric
boundary conditions is shown in Fig. 10.18(b). As this figure indicates,
the rotation and horizontal deflection at joint E have been restrained.
The hinged joint B is already restrained from moving in the horizontal
direction by the hinged support. Note that on the half of the frame se-
lected for analysis (Fig. 10.18(b)), the magnitude of the concentrated
load P, which acts along the axis of symmetry, has been reduced by half.

FIG. 10.18
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Similarly, the cross-sectional area (A) and the moment of inertia (I ) of
member BE, which is located along the axis of symmetry, have been
halved. Although it is usually considered convenient to reduce by half
both properties A and I of the members along the axis of symmetry, we
must realize that the values of the moments of inertia (I ) of these mem-
bers are not relevant in the analysis, because the members located along
the axis of symmetry will undergo only axial deformations without
bending. Once the response of the left half of the frame (Fig. 10.18(b))
has been determined by analysis, the response of the right half is ob-
tained by reflection.

Symmetric Structures Subjected to Antisymmetric Loadings

When a symmetric structure is subjected to a loading that is antisymmetric

with respect to the structure’s axis of symmetry, the response of the struc-

ture is also antisymmetric, with the points of the structure at the axis of

symmetry not deflecting in the direction of the axis of symmetry.

Thus to determine the response of the entire structure, we need to ana-
lyze only half the structure, on either side of the axis of symmetry, with
antisymmetric boundary conditions (i.e., deflections in the direction of
the axis of symmetry must be zero) at the axis. The response of the re-
maining half is given by the negative of the reflection of the response of
the half structure that is analyzed.

Consider a symmetric frame subjected to a loading that is anti-
symmetric with respect to the frame’s axis of symmetry (s axis), as
shown in Fig. 10.19(a). It can be seen that, like the loading, the deflected
shape of the frame is antisymmetric with respect to the frame’s axis of

FIG. 10.19
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symmetry. Note that the vertical deflection is zero at point D, where the
axis of symmetry intersects the frame, whereas the horizontal deflection
and slope at D are not zero. The response of the entire frame can be
determined by analyzing only half the frame, on either side of the axis of
symmetry. The left half of the frame cut by the axis of symmetry is
shown in Fig. 10.19(b). Note that the antisymmetric boundary con-
ditions are imposed on this substructure by supporting it at end D by a
roller support, which prevents the vertical deflection at the axis of sym-
metry but cannot prevent the horizontal deflection and rotation at D.
Once the response of the left half of the frame has been determined by
analysis, the response of the right half is given by the negative of the
reflection of the response of the left half.

If a structure contains a member along the axis of symmetry, the
properties of the member, I and A, should be reduced by half on the half
structure selected for analysis. Note that the members along the axis of
symmetry cannot undergo any axial deformations, but they can bend.
Thus the axial forces in the members of trusses located along the axis of
symmetry will be zero, and such members may be removed from the
half structure to simplify its analysis. The magnitudes of any loads and
couples acting on the structure at the axis of symmetry should be
halved, on the half of the structure to be analyzed.

Symmetric Structures Subjected to General Loadings

As shown in Section 10.2, any general unsymmetric loading acting
on a symmetric structure can be decomposed into symmetric and anti-
symmetric components with respect to the axis of symmetry of the
structure. The responses of the structure due to the symmetric and
antisymmetric loading components are then determined by analyzing a
half of the structure, with symmetric and antisymmetric boundary
conditions, respectively, as discussed in the preceding paragraphs. The
symmetric and antisymmetric responses thus determined are then su-
perimposed to obtain the total response of the structure due to the
given unsymmetric loading.

10.4 PROCEDURE FOR ANALYSIS OF SYMMETRIC STRUCTURES

The following step-by-step procedure can be used to take advantage of
structural symmetry in the analysis of structures.

1. Check the given structure for symmetry, as discussed in Section
10.1. If the structure is found to be symmetric, then proceed to step
2. Otherwise, end the analysis at this stage.
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2. Select a substructure (half the structure) on either side of the axis of
symmetry for analysis. The cross-sectional areas and moments of
inertia of the members of the substructure, which are located along
the axis of symmetry, should be reduced by half, whereas full values
of these properties should be used for all other members.

3. Decompose the given loading into symmetric and antisymmetric
components with respect to the axis of symmetry of the structure by
using the procedure described in Section 10.2.

4. Determine the response of the structure due to the symmetric load-
ing component as follows:
a. At each joint and end of the substructure, which is located at

the axis of symmetry, apply restraints to prevent rotation and
deflection perpendicular to the axis of symmetry. If there is a
hinge at such a joint or end, then only the deflection, but not
rotation, should be restrained at that joint or end.

b. Apply the symmetric component of loading on the substructure
with the magnitudes of the concentrated loads at the axis of
symmetry reduced by half.

c. Analyze the substructure to determine its response.
d. Obtain the symmetric response of the complete structure by re-

flecting the response of the substructure to the other side of the
axis of symmetry.

5. Determine the response of the structure due to the antisymmetric
loading component as follows:
a. At each joint and end of the substructure located at the axis of

symmetry, apply a restraint to prevent deflection in the direc-
tion of the axis of symmetry. In the case of trusses, the axial
forces in members located along the axis of symmetry will be
zero. Remove such members from the substructure.

b. Apply the antisymmetric component of loading on the sub-
structure with the magnitudes of the loads and couples, applied
at the axis of symmetry, reduced by half.

c. Analyze the substructure to determine its response.
d. Obtain the antisymmetric response of the complete structure by

reflecting the negative of the response of the substructure to the
other side of the axis of symmetry.

6. Determine the total response of the structure due to the given load-
ing by superimposing the symmetric and antisymmetric responses
obtained in steps 4 and 5, respectively.

The foregoing procedure can be applied to statically determinate as
well as indeterminate symmetric structures. It will become obvious in
subsequent chapters that the utilization of structural symmetry consid-
erably reduces the computational e¤ort required in the analysis of stat-
ically indeterminate structures.
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Example 10.9

Determine the force in each member of the Warren truss shown in Fig. 10.20(a).

FIG. 10.20 continued
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Solution
This truss was analyzed in Example 4.4 without taking advantage of its symmetry.

Symmetry This truss is symmetric with respect to the vertical s axis passing through member CG, as shown in
Fig. 10.20(b). The truss is subjected to vertical loads only, so the horizontal reaction at support A is zero ðAx ¼ 0Þ. The
half of the truss to the right of the axis of symmetry, CEHG, will be used for analysis.

Symmetric and Antisymmetric Components of Loading The symmetric and antisymmetric components of the given
loading with respect to the axis of symmetry of the truss are determined by using the procedure described in Section
10.2. These loading components are shown in Fig. 10.20(b) and (c). Note that the sum of the two components is equal
to the total loading given in Fig. 10.20(a).

Member Forces Due to the Symmetric Loading Component The substructure (right half of the truss) with symmetric
boundary conditions is shown in Fig. 10.20(d). Note that the joints C and G, which are located at the axis of symmetry,
are supported by rollers that prevent their movements in the horizontal direction (perpendicular to the s axis). The
symmetric component of loading (Fig. 10.20(b)) is applied to the substructure, with the magnitude of the 30-k con-
centrated load acting along the axis of symmetry reduced by half, as shown in Fig. 10.20(d). The reactions of the sub-
structure are obtained by applying the equilibrium equations:

þ "PFy ¼ 0 �75� 90þ Ey ¼ 0 Ey ¼ 165 kN "
þ ’

P
MC ¼ 0 �Gxð4:5Þ � 90ð6Þ þ 165ð12Þ ¼ 0 Gx ¼ 320 kN!

þ!P
Fx ¼ 0 �Cx þ 320 ¼ 0 Cx ¼ 320 kN 

The axial forces in the members of the substructure are determined by applying the method of joints. These member
forces are also shown in Fig. 10.20(d).

The member axial forces in the left half of the truss can now be obtained by rotating the member forces in the right
half (Fig. 10.20(d)) through 180� about the s axis, as shown in Fig. 10.20(e).

Member Forces Due to the Antisymmetric Loading Component The substructure with antisymmetric boundary
conditions is shown in Fig. 10.20(f ). Note that joints C and G, located at the axis of symmetry, are supported by rollers
to prevent their deflections in the vertical direction. Also, member CG, which is located along the axis of symmetry,
is removed from the substructure, as shown in the figure. (The force in member CG will be zero under antisymmetric
loading.) The antisymmetric component of loading (Fig. 10.20(c)) is applied to the substructure, and its reactions
and member axial forces are computed by applying the equilibrium equations and the method of joints (see Fig.
10.20(f )).

The member axial forces in the left half of the truss are then obtained by reflecting the negatives (i.e., the tensile
forces are changed to compressive forces and vice versa) of the member forces in the right half to the left side of the axis
of symmetry, as shown in Fig. 10.20(g).

Total Member Forces Finally, the total axial forces in members of the truss are obtained by superimposing
the forces due to the symmetric and antisymmetric components of the loading, as given in Fig. 10.20(e) and (g),
respectively. These member forces are shown in Fig. 10.20(h). Ans.
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Example 10.10

Determine the member end forces of the frame shown in Fig. 10.21(a).

Solution
Symmetry The frame is symmetric with respect to the vertical s axis passing through the hinge at D, as shown in

Fig. 10.21(b). The left half of the frame, ACD, will be used for analysis.

Symmetric and Antisymmetric Components of Loading See Fig. 10.21(b) and (c).

continued

FIG. 10.21
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Member Forces Due to the Symmetric Loading Component The substructure with symmetric boundary conditions
is shown in Fig. 10.21(d). The reactions and the member end forces of the substructure, as determined from equilibrium
considerations, are shown in Fig. 10.21(d) and to the left of the s axis in Fig. 10.21(e), respectively. The member end
forces to the right of the s axis are then obtained by reflection (see Fig. 10.21(e)).

Member Forces Due to the Antisymmetric Loading Component The substructure with antisymmetric boundary
conditions is shown in Fig. 10.21(f ). The member forces are determined by analyzing the substructure and by reflecting
the negatives of the computed forces and moments about the axis of symmetry (see Fig. 10.21(g)).

Total Member Forces The total member end forces, obtained by superimposing the member forces due to the
symmetric and antisymmetric components of the loading, are shown in Fig. 10.21(h). Ans.

FIG. 10.21 (contd.)

452 CHAPTER 10 Analysis of Symmetric Structures

https://engineersreferencebookspdf.com



Example 10.11

Determine the substructures for the analysis of the symmetric and antisymmetric responses of the statically in-
determinate beam shown in Fig. 10.22(a).

8 m 8 m 8 m

EI = constant

(a) Given Beam and Loading

4 m 4 m

60 kN
20 kN/m

(b) Symmetric Loading Component

10 kN/m
30 kN 30 kN

10 kN/m

s

4 m 4 m

(c) Antisymmetric Loading Component

10 kN/m
30 kN 30 kN

10 kN/m

s

(d) Substructure for Analysis of Symmetric Response

10 kN/m
30 kN

s

(e) Substructure for Analysis of Antisymmetric Response

10 kN/m
30 kN

s

FIG. 10.22

continued
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Solution
Symmetry The beam is symmetric with respect to the vertical s axis shown in Fig. 10.22(b). The left half of the

beam is selected for analysis.

Symmetric and Antisymmetric Components of Loading See Fig. 10.22(b) and (c).

Substructures The substructures for the analysis of the symmetric and antisymmetric responses are shown in
Fig. 10.22(d) and (e), respectively. Ans.

Example 10.12

Determine the substructures for the analysis of the symmetric and antisymmetric responses of the statically in-
determinate frame shown in Fig. 10.23(a).

FIG. 10.23 continued
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SUMMARY

In this chapter, we have learned that a plane structure is considered to
be symmetric with respect to an axis in its plane if the reflection of the
structure about the axis is identical in geometry, supports, and material
properties to the structure itself.

Solution
Symmetry The frame is symmetric with respect to the vertical s axis shown in Fig. 10.23(b). The left half of the

frame is selected for analysis.

Symmetric and Antisymmetric Components of Loading See Fig. 10.23(b) and (c).

Substructures The substructures for the analysis of the symmetric and antisymmetric responses are shown in
Fig. 10.23(d) and (e), respectively. Ans.

FIG. 10.23 (contd.)
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A loading is considered to be symmetric with respect to an axis in
its plane if the reflection of the loading about the axis is identical to the
loading itself. A loading is considered to be antisymmetric with respect
to an axis in its plane if the negative of the reflection of the loading about
the axis is identical to the loading itself. Any general unsymmetrical
loading can be decomposed into symmetric and antisymmetric compo-
nents with respect to an axis.

When a symmetric structure is subjected to a loading that is sym-
metric with respect to the structure’s axis of symmetry, the response of
the structure is also symmetric. Thus we can obtain the response of the
entire structure by analyzing a half of the structure, on either side of the
axis of symmetry, with symmetric boundary conditions; and by reflect-
ing the computed response about the axis of symmetry.

When a symmetric structure is subjected to a loading that is anti-
symmetric with respect to the structure’s axis of symmetry, the response
of the structure is also antisymmetric. Thus, the response of the entire
structure can be obtained by analyzing a half of the structure, on either
side of the axis of symmetry, with antisymmetric boundary conditions;
and by reflecting the negative of the computed response about the axis
of symmetry.

The response of a symmetric structure due to a general unsymmetric
loading can be obtained by determining the responses of the structure
due to the symmetric and antisymmetric components of the unsym-
metric loading, and by superimposing the two responses.

PROBLEMS

Sections 10.1 and 10.2

10.1 through 10.15 Determine the symmetric and anti-
symmetric components of the loadings shown in Figs.

P10.1–P10.15 with respect to the axis of symmetry of the
structure.

FIG. P10.1, P10.16

3 m

1 m

1 m
A

B

E, A = constant

90 kN

45 kN
C

FIG. P10.2 and P10.17
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50 kN

12 m

120 kN60 kN

C D

60 kN

E

A B

3.5 m3.5 m 5 m 5 m

FIG. P10.3, P10.18

Sections 10.3 and 10.4

10.16 through 10.20 Determine the force in each member
of the trusses shown in Figs. P10.1–P10.5 by utilizing
structural symmetry.

135 kN

C

135 kN

D

225 kN

E

225 kN

F G

225 kN

BA

H I J K L

6 at 6.5 m = 39 m

6.5 m

FIG. P10.4, P10.19

FIG. P10.5, P10.20

10.21 through 10.23 Determine the member end forces of
the frames shown in Figs. P10.6–P10.8 by utilizing struc-
tural symmetry.

FIG. P10.6, P10.21

FIG. P10.7, P10.22
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FIG. P10.8, P10.23

10.24 through 10.30 Determine the substructures for the
analysis of the symmetric and antisymmetric responses of
the structures shown in Figs. P10.9–P10.15.

6 m

E, I = constant

3 m 3 m

B

C
DA

40 kN

FIG. P10.9 and P10.24

45 kN/m

6 m 6 m

E, I = constant

A C
B

FIG. P10.10 and P10.25

8 m
I

8 m
2 I

E = constant

8 m
I

4 m

A

B D EC

60 kN 20 kN/m

FIG. P10.11 and P10.26

4 m 4 m 4 m2 m
E, I = constant

2 m

A F
B D

C E

135 kN
60 kN/m

FIG. P10.12 and P10.27

10 m

4 m

7.5 m 7.5 m

E, I, A = constant

15 kN15 kN

30 kN

10 kN

35 kN

A B

C E

D

FIG. P10.13 and P10.28

FIG. P10.14, P10.29

FIG. P10.15, P10.30
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11
Introduction to Statically
Indeterminate Structures
11.1 Advantages and Disadvantages of Indeterminate Structures
11.2 Analysis of Indeterminate Structures

Summary

461

Sydney Harbour, Australia
Aliciahh/Shutterstock

In Part Two of this text, we considered the analysis of statically deter-
minate structures. In this part (Chapters 11 through 18), we focus our
attention on the analysis of statically indeterminate structures.

As discussed previously, the support reactions and internal forces of
statically determinate structures can be determined from the equations
of equilibrium (including equations of condition, if any). However, since
indeterminate structures have more support reactions and/or members
than required for static stability, the equilibrium equations alone are not
su‰cient for determining the reactions and internal forces of such
structures, and must be supplemented by additional relationships based
on the geometry of deformation of structures.

These additional relationships, which are termed the compatibility

conditions, ensure that the continuity of the displacements is maintained
throughout the structure and that the structure’s various parts fit to-
gether. For example, at a rigid joint the deflections and rotations of all
the members meeting at the joint must be the same. Thus the analysis of
an indeterminate structure involves, in addition to the dimensions and
arrangement of members of the structure, its cross-sectional and mate-
rial properties (such as cross-sectional areas, moments of inertia, moduli
of elasticity, etc.), which in turn, depend on the internal forces of the
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structure. The design of an indeterminate structure is, therefore, carried
out in an iterative manner, whereby the (relative) sizes of the structural
members are initially assumed and used to analyze the structure, and the
internal forces thus obtained are used to revise the member sizes; if the
revised member sizes are not close to those initially assumed, then the
structure is reanalyzed using the latest member sizes. The iteration con-
tinues until the member sizes based on the results of an analysis are close
to those assumed for that analysis.

Despite the foregoing di‰culty in designing indeterminate struc-
tures, a great majority of structures being built today are statically in-
determinate; for example, most modern reinforced concrete buildings
are statically indeterminate. In this chapter, we discuss some of the im-
portant advantages and disadvantages of indeterminate structures as
compared to determinate structures and introduce the fundamental
concepts of the analysis of indeterminate structures.

11.1 ADVANTAGES AND DISADVANTAGES OF INDETERMINATE STRUCTURES

The advantages of statically indeterminate structures over determinate
structures include the following.

1. Smaller Stresses The maximum stresses in statically in-
determinate structures are generally lower than those in comparable de-
terminate structures. Consider, for example, the statically determinate
and indeterminate beams shown in Fig. 11.1(a) and (b), respectively.
The bending moment diagrams for the beams due to a uniformly dis-
tributed load, w, are also shown in the figure. (The procedures for ana-
lyzing indeterminate beams are considered in subsequent chapters.) It
can be seen from the figure that the maximum bending moment—and
consequently the maximum bending stress—in the indeterminate beam
is significantly lower than in the determinate beam.

2. Greater Sti¤nesses Statically indeterminate structures generally
have higher sti¤nesses (i.e., smaller deformations), than those of com-
parable determinate structures. From Fig. 11.1, we observe that the
maximum deflection of the indeterminate beam is only one-fifth that of
the determinate beam.

3. Redundancies Statically indeterminate structures, if properly de-
signed, have the capacity for redistributing loads when certain structural
portions become overstressed or collapse in cases of overloads due to
earthquakes, tornadoes, impact (e.g., gas explosions or vehicle impacts),
and other such events. Indeterminate structures have more members
and/or support reactions than required for static stability, so if a part
(or member or support) of such a structure fails, the entire structure will
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not necessarily collapse, and the loads will be redistributed to the ad-
jacent portions of the structure. Consider, for example, the statically
determinate and indeterminate beams shown in Fig. 11.2(a) and (b), re-
spectively. Suppose that the beams are supporting bridges over a water-
way and that the middle pier, B, is destroyed when a barge accidentally

FIG. 11.1

FIG. 11.2
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rams into it. Because the statically determinate beam is supported by
just the su‰cient number of reactions required for static stability, the
removal of support B will cause the entire structure to collapse, as shown
in Fig. 11.2(a). However, the indeterminate beam (Fig. 11.2(b)) has one
extra reaction in the vertical direction; therefore, the structure will not
necessarily collapse and may remain stable, even after the support B has
failed. Assuming that the beam has been designed to support dead loads
only in case of such an accident, the bridge will be closed to tra‰c until
pier B is repaired and then will be reopened.

The main disadvantages of statically indeterminate structures, over
determinate structures, are the following.

1. Stresses Due to Support Settlements Support settlements do not
cause any stresses in determinate structures; they may, however, induce
significant stresses in indeterminate structures, which should be taken
into account when designing indeterminate structures. Consider the de-
terminate and indeterminate beams shown in Fig. 11.3. It can be seen
from Fig. 11.3(a) that when the support B of the determinate beam
undergoes a small settlement DB, the portions AB and BC of the
beam, which are connected together by an internal hinge at B, move as
rigid bodies without bending—that is, they remain straight. Thus, no
stresses develop in the determinate beam. However, when the con-
tinuous indeterminate beam of Fig. 11.3(b) is subjected to a similar
support settlement, it bends, as shown in the figure; therefore, bending
moments develop in the beam.

2. Stresses Due to Temperature Changes and Fabrication Errors
Like support settlements, these e¤ects do not cause stresses in determi-
nate structures but may induce significant stresses in indeterminate ones.
Consider the determinate and indeterminate beams shown in Fig. 11.4.
It can be seen from Fig. 11.4(a) that when the determinate beam is sub-
jected to a uniform temperature increase DT , it simply elongates, with
the axial deformation given by d ¼ aðDTÞL (Eq. 7.24). No stresses
develop in the determinate beam, since it is free to elongate. How-
ever, when the indeterminate beam of Fig. 11.4(b), which is restrained

FIG. 11.3

464 CHAPTER 11 Introduction to Statically Indeterminate Structures

https://engineersreferencebookspdf.com



from deforming axially by the fixed supports, is subjected to a similar
temperature change, DT , a compressive axial force, F ¼ dðAE=LÞ ¼
aðDTÞAE, develops in the beam, as shown in the figure. The e¤ects of
fabrication errors are similar to those of temperature changes on deter-
minate and indeterminate structures.

11.2 ANALYSIS OF INDETERMINATE STRUCTURES

Fundamental Relationships

Regardless of whether a structure is statically determinate or in-
determinate, its complete analysis requires the use of three types of re-
lationships:

� Equilibrium equations
� Compatibility conditions
� Member force-deformation relations

The equilibrium equations relate the forces acting on the structure (or
its parts), ensuring that the entire structure as well as its parts remain
in equilibrium; the compatibility conditions relate the displacements of
the structure so that its various parts fit together; and the member force-
deformation relations, which involve the material and cross-sectional
properties (E; I , and A) of the members, provide the necessary link be-
tween the forces and displacements of the structure.

In the analysis of statically determinate structures, the equations
of equilibrium are first used to obtain the reactions and the internal
forces of the structure; then the member force-deformation relations and
the compatibility conditions are employed to determine the structure’s
displacements. For example, consider the statically determinate truss

FIG. 11.4
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shown in Fig. 11.5(a). The axial forces in the truss members can be de-
termined by considering the equilibrium of joint A (see Fig. 11.5(b)):

þ !P
Fx ¼ 0 �0:6FAB þ 0:6FAC ¼ 0 FAB ¼ FAC

þ "PFy ¼ 0 2ð0:8FABÞ � 2000 ¼ 0 FAB ¼ FAC ¼ 1250 kN ðTÞ
(11.1)

Similarly, the reactions at the supports B and C can be obtained by
considering the equilibrium of joints B and C, respectively (Fig. 11.5(c)).
To determine the displacement D of joint A of the truss, we first employ
the member force-deformation relationship, d ¼ FðL=AEÞ, to compute
the member axial deformations:

dAB ¼ dAC ¼ 1250
5

90;000

� �
¼ 0:069 m (11.2)

FIG. 11.5
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Then these member axial deformations are related to the joint displace-
ment D by using the compatibility condition (see Fig. 11.5(d)):

dAB ¼ dAC ¼ D sin y ¼ 0:8D (11.3)

in which D is assumed to be small. Note that Eq. (11.3) states the com-
patibility requirement that the vertical displacements of the ends A of
members AB and AC must be equal to the vertical displacement, D, of
joint A. By substituting Eq. (11.2) into Eq. (11.3), we find the displace-
ment of joint A to be

D ¼ 0:069

0:8
¼ 0:086 m ¼ 86 mm (11.4)

The displacement D could also have been computed by employing
the virtual work method formulated in Chapter 7, which automatically
satisfies the member force-deformation relations and the necessary
compatibility conditions.

Indeterminate Structures

In the analysis of statically indeterminate structures, the equilibrium
equations alone are not su‰cient for determining the reactions and in-
ternal forces. Therefore, it becomes necessary to solve the equilibrium
equations in conjunction with the compatibility conditions of the struc-
ture to determine its response. Because the equilibrium equations con-
tain the unknown forces, whereas the compatibility conditions involve
displacements as the unknowns, the member force-deformation relations
are utilized to express either the unknown forces in terms of the un-
known displacements or vice versa. The resulting system of equations
containing only one type of unknowns is then solved for the unknown
forces or displacements, which are then substituted into the fundamental
relationships to determine the remaining response characteristics of the
structure.

Consider, for example, the indeterminate truss shown in Fig.
11.6(a). The truss is obtained by adding a vertical member AD to the
determinate truss of Fig. 11.5(a), considered previously. The free-body
diagram of joint A of the truss is shown in Fig. 11.6(b). The equations of
equilibrium for this joint are given by

þ !P
Fx ¼ 0 FAB ¼ FAC (11.5)

þ "PFy ¼ 0 1:6FAB þ FAD ¼ 2000 (11.6)

Note that the two equilibrium equations are not su‰cient for determin-
ing the three unknown member axial forces. The compatibility condi-
tions are based on the requirement that the vertical displacements of the
ends A of the three members connected to joint A must be equal to the
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vertical displacement D of joint A. The displacement diagram of joint A
is shown in Fig. 11.6(c). Assuming the displacement D to be small, we
write the compatibility conditions as

dAB ¼ dAC ¼ D sin y ¼ 0:8D (11.7)

dAD ¼ D (11.8)

FIG. 11.6
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By substituting Eq. (11.8) into Eq. (11.7), we obtain the desired rela-
tionship between the member axial deformations:

dAB ¼ dAC ¼ 0:8dAD (11.9)

which indicates that the axial deformations of the inclined members AB
and AC are equal to 0.8 times the axial deformation of the vertical
member AD. To express Eq. (11.9) in terms of member axial forces, we
utilize the member force-deformation relations:

dAB ¼ FAB
LAB

EA

� �
¼ FAB

5

90;000

� �
¼ 5:55ð10�5ÞFAB (11.10)

dAC ¼ FAC
LAC

EA

� �
¼ FAC

5

90;000

� �
¼ 5:55ð10�5ÞFAC (11.11)

dAD ¼ FAD
LAD

EA

� �
¼ FAD

3

90;000

� �
¼ 3:33ð10�5ÞFAD (11.12)

Substitution of Eqs. (11.10) through (11.12) into Eq. (11.9) yields

5:55ð10�5ÞFAB ¼ 5:55ð10�5ÞFAC ¼ 0:8ð3:33ð10�5ÞFADÞ
or

FAB ¼ FAC ¼ 0:48FAD (11.13)

Now, we can determine the axial forces in the three members of the
truss by solving Eq. (11.13) simultaneously with the two equilibrium
equations (Eqs. (11.5) and (11.6)). Thus (Fig. 11.6(d)),

FAB ¼ FAC ¼ 543 kN ðTÞ and FAD ¼ 1131:2 kN ðTÞ
The member axial deformations can now be computed by substituting
these values of member axial forces into the member force-deformation
relations (Eqs. (11.10) through (11.12)) to obtain

dAB ¼ dAC ¼ 0:0301 m ¼ 30:1 mm and dAD ¼ 0:0377 m ¼ 37:7 mm

Finally, by substituting the values of member axial deformations into
the compatibility conditions (Eqs. (11.7) and (11.8)), we determine the
displacement of joint A as

D ¼ 0:0377 m ¼ 37:7 mm

Methods of Analysis

Since the mid-1800s, many methods have been developed for analyzing
statically indeterminate structures. These methods can be broadly clas-
sified into two categories, namely, the force (flexibility) methods and the
displacement (sti¤ness) methods, depending on the type of unknowns
(forces or displacements, respectively), involved in the solution of the

SECTION 11.2 Analysis of Indeterminate Structures 469

https://engineersreferencebookspdf.com



governing equations. The force methods, which are presented in Chap-
ters 13 and 14, are generally convenient for analyzing small structures
with a few redundants (i.e., fewer excess members and/or reactions than
required for static stability). These methods are also used to derive the
member force-deformation relations needed to develop the displacement
methods. The displacement methods are considered in Chapters 16
through 18. These methods are more systematic, can be easily im-
plemented on computers, and are, therefore, preferred for the analysis of
large and highly redundant structures.

SUMMARY

In this chapter we have learned that the advantages of statically in-
determinate structures over determinate structures include smaller max-
imum stresses, greater sti¤nesses, and redundancies. Support settle-
ments, temperature changes, and fabrication errors may induce
significant stresses in indeterminate structures, which should be taken
into account when designing such structures.

The analysis of structures involves the use of three fundamental
relationships: equilibrium equations, compatibility conditions, and
member force-deformation relations. In the analysis of indeterminate
structures, the equilibrium equations must be supplemented by the com-
patibility conditions based on the geometry of the deformation of the
structure. The link between the equilibrium equations and the com-
patibility conditions is established by means of the member force-
deformation relations of the structure.

The methods for the analysis of indeterminate structures can be
classified into two categories, namely, the force (flexibility) methods and
the displacement (sti¤ness) methods.
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The analysis of statically indeterminate structures using the force and
displacement methods introduced in the preceding chapter can be con-
sidered as exact in the sense that the compatibility and equilibrium
conditions of the structure are exactly satisfied in such an analysis.
However, the results of such an exact analysis represent the actual
structural response only to the extent that the analytical model of the
structure represents the actual structure. Experimental results have
demonstrated that the response of most common types of structures
under service loads can be reliably predicted by the force and displace-
ment methods, provided an accurate analytical model of the structure is
used in the analysis.

Exact analysis of indeterminate structures involves computation
of deflections and solution of simultaneous equations, so it can be quite
time consuming. Moreover, such an analysis depends on the relative
sizes (cross-sectional areas and/or moments of inertia) of the members
of the structure. Because of these di‰culties associated with the exact
analysis, the preliminary designs of indeterminate structures are often
based on the results of approximate analysis, in which the internal forces
are estimated by making certain assumptions about the deformations
and/or the distribution of forces between the members of structures,
thereby avoiding the necessity of computing deflections.
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Approximate analysis proves to be quite convenient to use in the
planning phase of projects, when several alternative designs of the
structure are usually evaluated for relative economy. The results of ap-
proximate analysis can also be used to estimate the sizes of various
structural members needed to initiate the exact analysis. The prelimi-
nary designs of members are then revised iteratively, using the results of
successive exact analyses, to arrive at their final designs. Furthermore,
approximate analysis is sometimes used to roughly check the results
of exact analysis, which due to its complexity can be prone to errors.
Finally, in recent years, there has been an increased tendency toward
renovating and retrofitting older structures. Many such structures con-
structed prior to 1960, including many high-rise buildings, were de-
signed solely on the basis of approximate analysis, so a knowledge and
understanding of approximate methods used by the original designers is
usually helpful in a renovation undertaking.

Unlike the exact methods, which are general in the sense that they
can be applied to various types of structures subjected to various load-
ing conditions, a specific method is usually required for the approximate
analysis of a particular type of structure for a particular loading. For
example, a di¤erent approximate method must be employed for the
analysis of a rectangular frame under vertical (gravity) loads than for
the analysis of the same frame subjected to lateral loads. Numerous
methods have been developed for approximate analysis of indeterminate
structures. Some of the more common approximate methods pertaining
to rectangular frames are presented in this chapter. These methods can
be expected to yield results within 20% of the exact solutions.

The objectives of this chapter are to consider the approximate
analysis of rectangular building frames as well as to gain an under-
standing of the techniques used in the approximate analysis of struc-
tures in general. We present a general discussion of the simplifying
assumptions necessary for approximate analysis and then consider the
approximate analysis of rectangular frames under vertical (gravity)
loads. Finally, we present the two common methods used for the ap-
proximate analysis of rectangular frames subjected to lateral loads.

12.1 ASSUMPTIONS FOR APPROXIMATE ANALYSIS

As discussed in Chapters 3 through 5, statically indeterminate structures
have more support reactions and/or members than required for static
stability; therefore, all the reactions and internal forces (including any
moments) of such structures cannot be determined from the equations
of equilibrium. The excess reactions and internal forces of an in-
determinate structure are referred to as redundants, and the number of
redundants (i.e., the di¤erence between the total number of unknowns and
the number of equilibrium equations) is termed the degree of indeterminacy
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of the structure. Thus, in order to determine the reactions and internal
forces of an indeterminate structure, the equilibrium equations must be
supplemented by additional equations, whose number must equal the
degree of indeterminacy of the structure. In an approximate analysis,
these additional equations are established by using engineering judg-
ment to make simplifying assumptions about the response of the struc-
ture. The total number of assumptions must be equal to the degree of
indeterminacy of the structure, with each assumption providing an in-
dependent relationship between the unknown reactions and/or internal
forces. The equations based on the simplifying assumptions are then
solved in conjunction with the equilibrium equations of the structure to
determine the approximate values of its reactions and internal forces.

Two types of assumptions are commonly employed in approximate
analysis.

Assumptions about the Location of Points of Inflection

In the first approach, a qualitative deflected shape of the indeterminate
structure is sketched and used to assume the location of the points of
inflection—that is, the points where the curvature of the elastic curve
changes signs, or becomes zero. Since the bending moments must be zero
at the points of inflection, internal hinges are inserted in the in-
determinate structure at the assumed locations of inflection points to
obtain a simplified determinate structure. Each of the internal hinges
provides one equation of condition, so the number of inflection points
assumed should be equal to the degree of indeterminacy of the structure.
Moreover, the inflection points should be selected such that the resulting
determinate structure must be statically and geometrically stable. The
simplified determinate structure thus obtained is then analyzed to de-
termine the approximate values of the reactions and internal forces of
the original indeterminate structure.

Consider, for example, a portal frame subjected to a lateral load P,
as shown in Fig. 12.1(a). As the frame is supported by four reaction
components and since there are only three equilibrium equations, it is
statically indeterminate to the first degree. Therefore, we need to make
one simplifying assumption about the response of the frame. By exam-
ining the deflected shape of the frame sketched in Fig. 12.1(a), we ob-
serve that an inflection point exists near the middle of the girder CD.
Although the exact location of the inflection point depends on the (yet
unknown) properties of the two columns of the frame and can be de-
termined only from an exact analysis, for the purpose of approximate
analysis we can assume that the inflection point is located at the mid-
point of the girder CD. Since the bending moment at an inflection point
must be zero, we insert an internal hinge at the midpoint E of girder CD
to obtain the determinate frame shown in Fig. 12.1(b). The four
reactions of the frame can now be determined by applying the three
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equilibrium equations,
P

FX ¼ 0,
P

FY ¼ 0, and
P

M ¼ 0, and one
equation of condition,

P
MAE

E ¼ 0 or
P

MBE
E ¼ 0, to the determinate

frame (Fig. 12.1(b)):

þ ’
P

MB ¼ 0 AY ðLÞ � Ph ¼ 0 AY ¼ Ph

L
#

þ "PFY ¼ 0 �Ph

L
þ BY ¼ 0 BY ¼ Ph

L
"

FIG. 12.1
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þ ’
P

MBE
E ¼ 0

Ph

L

L

2

� �
� BX ðhÞ ¼ 0 BX ¼ P

2
 

þ!P
FX ¼ 0 P� AX � P

2
¼ 0 AX ¼ P

2
 

By using these approximate reactions, the approximate shear, bending
moment, and axial force diagrams for the frame can be constructed
by considering the equilibrium of its members and joints. The bend-
ing moment diagrams for the members of the frame are shown in
Fig. 12.1(c).

Assumptions about Distribution of Forces among Members
and/or Reactions

Approximate analysis of indeterminate structures is sometimes per-
formed by making assumptions about the distribution of forces among
the members and/or reactions of the structures. The number of such
assumptions required for the analysis of a structure is equal to the de-
gree of indeterminacy of the structure, with each assumption providing
an independent equation relating the unknown member forces and/or
reactions. The equations based on these assumptions are then solved si-
multaneously with the equilibrium equations of the structure to de-
termine its approximate reactions and internal forces. For example, the
portal frame of Fig. 12.1(a) can alternatively be analyzed by assuming
that the horizontal reactions AX and BX are equal; that is, AX ¼ BX . By
solving this equation simultaneously with the three equilibrium equa-
tions of the frame, we obtain the same reactions as previously de-
termined by assuming an inflection point at the midpoint of the girder
CD of the frame.

The two types of assumptions described in this section can either
be used individually or they can be combined with each other and/or
with other types of assumptions based on the engineering judgment of
the structural response to develop methods for approximate analysis of
various types of structures. In the rest of this chapter, we focus our at-
tention on the approximate analysis of rectangular building frames.

12.2 ANALYSIS FOR VERTICAL LOADS

Recall from Section 5.5 that the degree of indeterminacy of a rec-
tangular building frame with fixed supports is equal to three times the

number of girders in the frame provided that the frame does not contain
any internal hinges or rollers. Thus, in an approximate analysis of such
a rigid frame, the total number of assumptions required is equal to three
times the number of girders in the frame.
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A commonly used procedure for approximate analysis of rec-
tangular building frames subjected to vertical (gravity) loads involves
making three assumptions about the behavior of each girder of the
frame. Consider a frame subjected to uniformly distributed loads w, as
shown in Fig. 12.2(a). The free-body diagram of a typical girder DE of
the frame is shown in Fig. 12.2(b). From the deflected shape of the
girder sketched in the figure, we observe that two inflection points exist
near both ends of the girder. These inflection points develop because the
columns and the adjacent girder connected to the ends of girder DE of-
fer partial restraint or resistance against rotation by exerting negative
moments MDE and MED at the girder ends D and E, respectively. Al-
though the exact location of the inflection points depends on the relative
sti¤nesses of the frame members and can be determined only from an
exact analysis, we can establish the regions along the girder in which
these points are located by examining the two extreme conditions of ro-
tational restraint at the girder ends shown in Fig. 12.2(c) and (d). If the
girder ends were free to rotate, as in the case of a simply supported
girder (Fig. 12.2(c)), the zero bending moments—and thus the inflection
points—would occur at the ends. On the other extreme, if the girder
ends were completely fixed against rotation, we can show by the exact
analysis presented in subsequent chapters that the inflection points
would occur at a distance of 0.211L from each end of the girder, as il-
lustrated in Fig. 12.2(d). Therefore, when the girder ends are only par-
tially restrained against rotation (Fig. 12.2(b)), the inflection points must
occur somewhere within a distance of 0.211L from each end. For
the purpose of approximate analysis, it is common practice to assume
that the inflection points are located about halfway between the two
extremes—that is, at a distance of 0.1L from each end of the girder.
Estimating the location of two inflection points involves making two
assumptions about the behavior of the girder. The third assumption is
based on the experience gained from the exact analyses of rectangular
frames subjected to vertical loads only, which indicates that the axial
forces in girders of such frames are usually very small. Thus, in an ap-
proximate analysis, it is reasonable to assume that the girder axial forces
are zero.

To summarize the foregoing discussion, in the approximate analysis
of a rectangular frame subjected to vertical loads the following assump-
tions are made for each girder of the frame:

1. The inflection points are located at one-tenth of the span from each
end of the girder.

2. The girder axial force is zero.

The e¤ect of these simplifying assumptions is that the middle eight-
tenths of the span (0.8L) of each girder can be considered to be simply
supported on the two end portions of the girder, each of which is
of the length equal to one-tenth of the girder span (0.1L), as shown in
Fig. 12.2(e). Note that the girders are now statically determinate, and
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FIG. 12.2
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FIG. 12.2 (contd.)
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their end forces and moments can be determined from statics, as shown
in the figure. It should be realized that by making three assumptions
about the behavior of each girder of the frame, we have made a total
number of assumptions equal to the degree of indeterminacy of the
frame, thereby rendering the entire frame statically determinate, as
shown in Fig. 12.2(f ). Once the girder end forces have been computed,
the end forces of the columns and the support reactions can be de-
termined from equilibrium considerations.

Example 12.1

Draw the approximate shear and bending moment diagrams for the girders of the frame shown in Fig. 12.3(a).

Solution
As the span lengths and loads for the four girders of the frame are the same (Fig. 12.3(a)), the approximate shear and
bending moment diagrams for the girders will also be the same. By applying the assumptions discussed in this section to
any of the girders of the frame, we obtain the statically determinate girder shown in Fig. 12.3(b). Note that the middle
portion of the girder, which has a length of 0:8L ¼ 0:8ð10Þ ¼ 8 m, is simply supported on the two end portions, each of
length 0:1L ¼ 0:1ð10Þ ¼ 1 m

By considering the equilibrium of the simply supported middle portion of the girder, we obtain the vertical re-
actions at the ends of this portion to be 22ð8=2Þ ¼ 88 kN. These forces are then applied in opposite directions
(Newton’s law of action and reaction) to the two end portions, as shown in the figure. The vertical forces (shears) and
moments at the ends of the girder can now be determined by considering the equilibrium of the end portions. By ap-
plying the equations of equilibrium to the left end portion, we write

þ "PFY ¼ 0 SL � 22ð1Þ � 88 ¼ 0 SL ¼ 110 kN "

continued

FIG. 12.3
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þ ’
P

ML ¼ 0 ML � 22ð1Þ 1

2

� �
� 88ð1Þ ¼ 0 ML ¼ 99 kN-m

’

Similarly, by applying the equilibrium equations to the right end portion, we obtain

SR ¼ 110 kN " and MR ¼ 99 kN-m @

By using these approximate values of the girder end forces and moments, we construct the shear and bending moment
diagrams for the girder, as shown in Fig. 12.3(b). Ans.

FIG. 12.3 (contd.)
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12.3 ANALYSIS FOR LATERAL LOADS—PORTAL METHOD

The behavior of rectangular building frames is di¤erent under lateral
(horizontal) loads than under vertical loads, so di¤erent assumptions
must be used in the approximate analysis for lateral loads than were
used in the case of vertical loads considered previously. Two methods
are commonly used for approximate analysis of rectangular frames
subjected to lateral loads. These are (1) the portal method and (2) the
cantilever method. The portal method is described in this section,
whereas the cantilever method is considered in the following section.

The portal method was initially developed by A. Smith in 1915 and
is generally considered to be appropriate for the approximate analysis of
relatively low building frames. Before we consider the analysis of multi-
story, multibay frames by using the portal method, let us examine the
behavior of a portal frame with fixed supports under a lateral load, as
shown in Fig. 12.4(a). The degree of indeterminacy of this frame is
three; therefore, three assumptions must be made for its approximate

FIG. 12.4
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analysis. From the deflected shape of the frame sketched in Fig. 12.4(a),
we observe that an inflection point exists near the middle of each mem-
ber of the frame. Thus, in approximate analysis, it is reasonable to as-
sume that the inflection points are located at the midpoints of the frame
members. Since the bending moments at the inflection points must be
zero, internal hinges are inserted at the midpoints of the three frame
members to obtain the statically determinate frame shown in Fig.
12.4(b). To determine the six reactions, we pass a horizontal section aa

through the hinges E and G, as shown in Fig. 12.4(b), and apply the
equations of equilibrium (and condition, if any) to the three portions of
the frame. Applying the three equilibrium equations and one equation
of condition to the portion ECDG (Fig. 12.4(c)), we compute the forces
at the internal hinges E and G to be

FIG. 12.4 (contd.)
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þ ’
P

MG ¼ 0 EY ðLÞ � P
h

2

� �
¼ 0 EY ¼ Ph

2L
#

þ "PFY ¼ 0 �Ph

2L
þ GY ¼ 0 GY ¼ Ph

2L
"

þ ’
P

MEF
F ¼ 0

Ph

2L

L

2

� �
� EX

h

2

� �
¼ 0 EX ¼ P

2
 

þ!P
FX ¼ 0 P� P

2
� GX ¼ 0 GX ¼ P

2
 

The reactions at supports A and B can now be determined by consider-
ing the equilibrium of portions AE and BG, respectively. For portion
AE (Fig. 12.4(c)):

þ !P
FX ¼ 0 AX ¼ P

2
 

þ "PFY ¼ 0 AY ¼ Ph

2L
#

þ ’
P

MA ¼ 0 �P

2

h

2

� �
þMA ¼ 0 MA ¼ Ph

4

’

Similarly, for portion BG (Fig. 12.4(c)):

þ !P
FX ¼ 0 BX ¼ P

2
 

þ "PFY ¼ 0 BY ¼ Ph

2L
"

þ ’
P

MB ¼ 0 �P

2

h

2

� �
þMB ¼ 0 MB ¼ Ph

4

’

Note that the horizontal reactions at the supports A and B are equal
(i.e., AX ¼ BX ), indicating that the shears in the two columns of the
frame must also be equal to each other. The bending moment diagrams
for the members of the portal frame are shown in Fig. 12.4(d).

To develop the portal method for approximate analysis of frames,
consider the two-story, three-bay building frame shown in Fig. 12.5(a).
The frame contains six girders, so its degree of indeterminacy is
3ð6Þ ¼ 18. From the deflected shape of the frame sketched in Fig.
12.5(a), we observe that the deflection behavior of this frame is similar
to that of the portal frame considered previously (Fig. 12.4(a)), in the
sense that an inflection point exists near the middle of each member of
the frame. In the portal method, it is assumed that these inflection points
are located at the midpoints of the members, and, therefore, an internal
hinge is inserted at the middle of each of the frame members to obtain a
simplified frame, as shown in Fig. 12.5(b). Note that this simplified
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frame is not statically determinate because it is obtained by inserting
only 14 internal hinges (i.e., one hinge in each of the 14 members) into
the original frame, which is indeterminate to the 18th degree. Thus, the
degree of indeterminacy of the simplified frame of Fig. 12.5(b) is

FIG. 12.5
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18� 14 ¼ 4; therefore, four additional assumptions must be made be-
fore an approximate analysis involving only statics can be carried out.
In the portal method, it is further assumed that the frame is composed
of a series of portal frames, as shown in Fig. 12.5(c), with each interior
column of the original multibay frame representing two portal legs. We
showed previously (Fig. 12.4) that when a portal frame with internal
hinges at the midpoints of its members is subjected to a lateral load,
equal shears develop in the two legs of the portal. Since an interior col-
umn of the original multibay frame represents two portal legs, whereas
an exterior column represents only one leg, we can reasonably assume
that the shear in an interior column of a story of the multibay frame is
twice as much as the shear in an exterior column of that story (Fig.
12.5(c)). The foregoing assumption regarding shear distribution between
columns yields one more equation for each story of the frame with
multiple bays than necessary for approximate analysis. For example, for
each story of the frame of Fig. 12.5, this assumption can be used to ex-
press shears in any three of the columns in terms of that in the fourth.
Thus, for the entire frame, this assumption provides a total of six equa-
tions—that is, two equations more than necessary for approximate
analysis. However, as the extra equations are consistent with the rest,
they do not cause any computational di‰culty in the analysis.

From the foregoing discussion, we gather that the assumptions
made in the portal method are as follows:

1. An inflection point is located at the middle of each member of the
frame.

2. On each story of the frame, interior columns carry twice as much
shear as exterior columns.

Procedure for Analysis

The following step-by-step procedure can be used for the approximate
analysis of building frames by the portal method.

1. Draw a sketch of the simplified frame obtained by inserting an in-
ternal hinge at the midpoint of each member of the given frame.

2. Determine column shears. For each story of the frame:
a. Pass a horizontal section through all the columns of the story,

cutting the frame into two portions.
b. Assuming that the shears in interior columns are twice as much

as in exterior columns, determine the column shears by apply-
ing the equation of horizontal equilibrium ðPFX ¼ 0Þ to the
free body of the upper portion of the frame.

3. Draw free-body diagrams of all the members and joints of the
frame, showing the external loads and the column end shears com-
puted in the previous step.

4. Determine column moments. Determine moments at the ends
of each column by applying the equations of condition that the

SECTION 12.3 Analysis for Lateral Loads—Portal Method 485

https://engineersreferencebookspdf.com



bending moment is zero at the column midheight, where an
inflection point (internal hinge) has been assumed. As shown in
Fig. 12.6(a), by applying the equations of condition,

P
MBH

H ¼ 0
and

P
MTH

H ¼ 0, to the free body of a column of height h, we find
that the moments at the two ends of the column are equal in mag-
nitude and have the same sense (i.e., either both end moments are
clockwise or both are counterclockwise). The magnitude of the col-
umn end moments (MC) is equal to the magnitude of the column
shears (SC) times half the column height; that is,

MC ¼ SC

h

2

� �
(12.1)

Determine end moments for all the columns of the frame.
5. Determine girder axial forces, moments, and shears. Proceeding

from the top story of the frame to the bottom, compute axial forces,
moments, and shears at the ends of the girders of each successive
story by starting at the far left joint of the story and working across
to the right, as follows:

FIG. 12.6
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a. Apply the equilibrium equations,
P

FX ¼ 0 and
P

M ¼ 0, to
the free body of the joint under consideration to compute the
axial force and moment, respectively, at the left (adjoining) end
of the girder on the right side of the joint.

b. Considering the free body of the girder, determine the shear at
the girder’s left end by dividing the girder moment by half the
girder length (see Fig. 12.6(b)); that is,

Sg ¼ Mg

ðL=2Þ (12.2)

Equation (12.2) is based on the condition that the bending mo-
ment at the girder midpoint is zero.

c. By applying the equilibrium equations
P

FX ¼ 0,
P

FY ¼ 0,
and

P
M ¼ 0 to the free body of the girder, determine the axial

force, shear, and moment, respectively, at the right end. As
shown in Fig. 12.6(b), the axial forces and shears at the ends of
the girder must be equal but opposite, whereas the two end
moments must be equal to each other in both magnitude and
direction.

d. Select the joint to the right of the girder considered previously,
and repeat steps 5(a) through 5(c) until the axial forces, mo-
ments, and shears in all the girders of the story have been de-
termined. The equilibrium equations

P
FX ¼ 0 and

P
M ¼ 0

for the right end joint have not been utilized so far, so these
equations can be used to check the calculations.

e. Starting at the far left joint of the story below the one consid-
ered previously, repeat steps 5(a) through 5(d) until the axial
forces, moments, and shears in all of the girders of the frame
have been determined.

6. Determine column axial forces. Starting at the top story, apply the
equilibrium equation

P
FY ¼ 0 successively to the free body of

each joint to determine the axial forces in the columns of the story.
Repeat the procedure for each successive story, working from top to
bottom, until the axial forces in all the columns of the frame have
been determined.

7. Realizing that the forces and moments at the lower ends of the
bottom-story columns represent the support reactions, use the three
equilibrium equations of the entire frame to check the calculations.
If the analysis has been performed correctly, then these equilibrium
equations must be satisfied.

In steps 5 and 6 of the foregoing procedure, if we wish to compute
member forces and moments by proceeding from the right end of the
story toward the left, then the term left should be replaced by right and
vice versa.
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Example 12.2

Determine the approximate axial forces, shears, and moments for all the members of the frame shown in Fig. 12.7(a) by
using the portal method.

Solution
Simplified Frame The simplified frame for approximate analysis is obtained by inserting internal hinges at the

midpoints of all the members of the given frame, as shown in Fig. 12.7(b).

Column Shears To compute shears in the columns of the frame, we pass an imaginary section aa through the
columns just above the support level, as shown in Fig. 12.7(b). The free-body diagram of the portion of the frame
above section aa is shown in Fig. 12.7(c). Note that the shear in the interior column BE has been assumed to be twice
as much as in the exterior columns AD and CF . By applying the equilibrium equation

P
FX ¼ 0, we obtain (see

Fig. 12.7(c))

þ !P
FX ¼ 0 60� S � 2S � S ¼ 0 S ¼ 15 kN

Thus, the shear forces at the lower ends of the columns are

SAD ¼ SCF ¼ S ¼ 15 kN SBE ¼ 2S ¼ 30 kN 

Shear forces at the upper ends of the columns are obtained by applying the equilibrium equation
P

FX ¼ 0 to the
free body of each column. For example, from the free-body diagram of column AD shown in Fig. 12.7(d), we observe
that in order to satisfy

P
FX ¼ 0, the shear force at the upper end, SDA, must act to the right with a magnitude of 15 kN

to balance the shear force at the lower end, SAD ¼ 15 kN to the left. Thus, SDA ¼ 15 kN!. Shear forces at the upper
ends of the remaining columns are determined in a similar manner and are shown in Fig. 12.7(e), which depicts the free-
body diagrams of all the members and joints of the frame.

Column Moments With the column shears now known, the column end moments can be computed by multiplying
the column shears by half of the column heights. For example, since column AD (see Fig. 12.7(d)) is 8 m high and has
end shears of 15 kN, its end moments are

MAD ¼MDA ¼ 15
8

2

� �
¼ 60 kN�m ’

Note that the end moments, MAD and MDA, are both counterclockwise—that is, opposite to the clockwise moments of
the 15 kN end shears about the internal hinge at the column midheight. The end moments of the remaining columns of
the frame are computed in a similar manner and are shown in Fig. 12.7(e).

Girder Axial Forces, Moments, and Shears We begin the calculation of girder end actions at the upper left joint
D. The column shear SDA and moment MDA computed previously are applied to the free-body diagram of joint D
in opposite directions according to Newton’s third law, as shown in Fig. 12.7(d). By applying the equilibrium equationP

FX ¼ 0, we obtain the girder axial force QDE ¼ 45 kN on joint D. Note that QDE must act in the opposite
direction—that is, to the right—at end D of girder DE. From the free-body diagram of joint D (Fig. 12.7(d)), we can

continued
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also see that in order to satisfy the moment equilibrium equation, ðPM ¼ 0Þ, the girder end moment MDE must be
equal and opposite to the 60 kN�m column end moment. Thus, MDE ¼ 60 kN�m, with a counterclockwise direction
on joint D but a clockwise direction at the end D of girder DE.

To evaluate the girder shear SDE , we consider the moment equilibrium of the left half of girder DE. From the free-
body diagram of girder DE in Fig. 12.7(d), we can see that the shear force SDE must act downward with a magnitude of
MDE=ðL=2Þ so that it can develop a counterclockwise moment of magnitude, MDE , about the internal hinge to balance
the clockwise end moment, MDE . Thus,

SDE ¼ MDE

ðL=2Þ ¼
60

ð10=2Þ ¼ 12 kN #

The axial force, shear, and moment at the right end E can now be determined by applying the three equilibrium equa-
tions to the free body of girder DE (Fig. 12.7(d)):

þ !P
FX ¼ 0 45�QED ¼ 0 QED ¼ 45 kN 

þ "PFY ¼ 0 �12þ SED ¼ 0 SED ¼ 12 kN "
þ ’

P
MD ¼ 0 �60�MED þ 12ð10Þ ¼ 0 MED ¼ 60 kN�m @

Note that the girder end moments, MDE and MED, are equal in magnitude and have the same direction.
Next, we calculate the end actions for girder EF . We first apply the equilibrium equations

P
FX ¼ 0 and

P
M ¼ 0

to the free body of joint E (Fig. 12.7(e)) to obtain the axial force QEF ¼ 15 kN! and the moment MEF ¼
60 kN�m @ at the left end E of the girder. We then obtain the shear SEF ¼12 kN # by dividing the moment MEF by
half of the girder length, and we apply the three equilibrium equations to the free body of the girder to obtain QFE ¼
15 kN , SFE ¼ 12 kN ", and MFE ¼ 60 kN�m @ at the right end F of the girder (see Fig. 12.7(e)).

Since all the moments and horizontal forces acting at the upper right joint F are now known, we can check the
calculations that have been performed thus far by applying the two equilibrium equations

P
FX ¼ 0 and

P
M ¼ 0 to

the free body of this joint. From the free-body diagram of joint F shown in Fig. 12.7(e), it is obvious that these equili-
brium equations are indeed satisfied.

Column Axial Forces We begin the calculation of column axial forces at the upper left joint D. From the free-body
diagram of this joint shown in Fig. 12.7(d), we observe that the axial force in column AD must be equal and opposite to
the shear in girder DE. Thus, the axial force at the upper end D of column AD is QDA ¼ 12 kN ". By applyingP

FY ¼ 0 to the free body of column AD, we obtain the axial force at the lower end A of the column to be
QAD ¼ 12 kN #. Thus, the column AD is subjected to an axial tensile force of 12 kN. Axial forces for the remaining
columns BE and CF are calculated similarly by considering the equilibrium of joints E and F , respectively. The axial
forces thus obtained are shown in Fig. 12.7(e). Ans.

Reactions The forces and moments at the lower ends of the columns AD;BE, and CF , represent the reactions at
the fixed supports A;B, and C, respectively, as shown in Fig. 12.7(f ). Ans.
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FIG. 12.8

Checking Computations To check our computations, we apply the three equilibrium equations to the free body of
the entire frame (Fig. 12.7(f )):

þ !P
FX ¼ 0 60� 15� 30� 15 ¼ 0 Checks

þ "PFY ¼ 0 �12þ 12 ¼ 0 Checks

þ ’
P

MC ¼ 0 �60ð8Þ þ 12ð20Þ þ 60þ 120þ 60 ¼ 0 Checks

Example 12.3

Determine the approximate axial forces, shears, and moments for all the members of the frame shown in Fig. 12.8(a) by
using the portal method.

Solution
Simplified Frame The simplified frame is obtained by inserting internal hinges at the midpoints of all the members

of the given frame, as shown in Fig. 12.8(b).

Column Shears To compute shears in the columns of the second story of the frame, we pass an imaginary section
aa through the columns DG;EH, and FI just above the floor level, as shown in Fig. 12.8(b). The free-body diagram of
the portion of the frame above section aa is shown in Fig. 12.8(c). Note that the shear in the interior column EH has
been assumed to be twice as much as in the exterior columns DG and FI . By applying the equilibrium equationP

FX ¼ 0, we obtain (Fig. 12.8(c))

þ !P
FX ¼ 0 45� S2 � 2S2 � S2 ¼ 0 S2 ¼ 11:25 kN

continued

492 CHAPTER 12 Approximate Analysis of Rectangular Building Frames

https://engineersreferencebookspdf.com



FIG. 12.8 (contd.) continued
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Thus, the shear forces at the lower ends of the second-story columns are

SDG ¼ SFI ¼ S2 ¼ 11:25 kN SEH ¼ 2S2 ¼ 22:5 kN 
Similarly, by employing section bb (Fig. 12.8(b)), we determine shear forces at the lower ends of the first-story

columns AD;BE, and CF to be (see Fig. 12.8(d)):

SAD ¼ SCF ¼ S1 ¼ 33:75 kN SBE ¼ 2S1 ¼ 67:5 kN 
Shear forces at the upper ends of columns are determined by applying the equilibrium equation

P
FX ¼ 0 to the

free body of each column. For example, from the free-body diagram of column DG shown in Fig. 12.8(e), we can see
that in order to satisfy

P
FX ¼ 0, the shear force at the upper end, SGD, must act to the right with a magnitude of

11.25 kN. Thus SGD ¼ 11:25 kN!. Shear forces at the upper ends of the remaining columns are obtained in a similar
manner and are shown in Fig. 12.8(f ), which depicts the free-body diagrams of all the members and joints of the frame.

Column Moments Knowing column shears, we can now compute the column end moments by multiplying the
column shears by half of the column heights. For example, since column DG (see Fig. 12.8(e)) is 4 m high and has end
shears of 11.25 kN, its end moments are

MDG ¼MGD ¼ 11:25
4 m

2

� �
¼ 22:5 kN�m ’

Note that the end moments, MDG and MGD, are both counterclockwise—that is, opposite to the clockwise moments of
the 11.25 kN end shears about the internal hinge at the column midheight. The end moments of the remaining columns
are computed in a similar manner and are shown in Fig. 12.8(f ).

Girder Axial Forces, Moments, and Shears We begin the computation of girder end actions at the upper left joint G.
The column shear SGD and moment MGD computed previously are applied to the free-body diagram of joint G in op-
posite directions in accordance with Newton’s third law, as shown in Fig. 12.8(e). By summing forces in the horizontal

FIG. 12.8 (contd.)
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direction, we obtain the girder axial force QGH ¼ 33:75 kN on joint G. Note that QGH must act in the opposite di-
rection—that is, to the right—at the end G of girder GH. From the free-body diagram of joint G (Fig. 12.8(e)), we can
also see that in order to satisfy the moment equilibrium ðPM ¼ 0Þ, the girder end moment MGH must be equal and
opposite to the 22.5 kN-m column end moment. Thus MGH ¼ 22:5 kN-m, with a counterclockwise direction on joint G
but a clockwise direction at the end G of girder GH.

To determine the girder shear SGH , we consider the moment equilibrium of the left half of girder GH. From the
free-body diagram of girder GH (Fig. 12.8(e)), we can see that the shear force SGH must act downward with a magni-
tude of MGH=ðL=2Þ so that it can develop a counterclockwise moment of magnitude MGH about the internal hinge to
balance the clockwise end moment MGH . Thus

SGH ¼ MGH

ðL=2Þ ¼
22:5

ð10=2Þ ¼ 4:5 kN #

The axial force, shear, and moment at the right end H can now be computed by applying the three equilibrium equa-
tions to the free body of girder GH (Fig. 12.8(e)). Applying

P
FX ¼ 0, we obtain QHG ¼ 33:75 kN . From

P
FY ¼ 0,

we obtain SHG ¼ 1 k ", and to compute MHG, we apply the equilibrium equation:

þ ’
P

MG ¼ 0 �22:5�MHG þ 4:5ð10Þ ¼ 0 MHG ¼ 22:5 kN-m @

Note that the girder end moments, MGH and MHG, are equal in magnitude and have the same direction.
Next, the end actions for girder HI are computed. The equilibrium equations

P
FX ¼ 0 and

P
M ¼ 0

are first applied to the free body of joint H (Fig. 12.8(f )) to obtain the axial force QHI ¼ 11:25 kN! and the
moment MHI ¼22:5 kN-m @ at the left end H of the girder. The shear SHI ¼ 7:5 kN # is then obtained by dividing
the moment MHI by half the girder length, and the three equilibrium equations are applied to the free body of
the girder to obtain QIH ¼ 11:25 kN , SIH ¼ 7:5 kN ", and MIH ¼ 22:5 kN-m @ at the right end I of the girder
(see Fig. 12.8(f )).

All the moments and horizontal forces acting at the upper right joint I are now known, so we can
check the calculations performed thus far by applying

P
FX ¼ 0 and

P
M ¼ 0 to the free body of this joint.

From the free-body diagram of joint I shown in Fig. 12.8(f ), it is obvious that these equilibrium equations are indeed
satisfied.

The end actions for the first-story girders DE and EF are computed in a similar manner, by starting at the left joint
D and working across to the right. The girder end actions thus obtained are shown in Fig. 12.8(f ).

Column Axial Forces We begin the computation of column axial forces at the upper left joint G. From the
free-body diagram of joint G shown in Fig. 12.8(e), we observe that the axial force in column DG must be equal
and opposite to the shear in girder GH. Thus the axial force at the upper end G of column DG is
QGD ¼ 4:5 kN ". By applying

P
FY ¼ 0 to the free body of column DG, we obtain the axial force at the lower

end of the column to be QDG ¼ 4:5 kN #. Thus, the column DG is subjected to an axial tensile force of 4.5 kN.
Axial forces for the remaining second-story columns, EH and FI , are determined similarly by considering the
equilibrium of joints H and I , respectively; thereafter, the axial forces for the first-story columns, AD;BE, and
CF , are computed from the equilibrium consideration of joints D;E, and F , respectively. The axial forces thus
obtained are shown in Fig. 12.8(f ). Ans.

Reactions The forces and moments at the lower ends of the first-story columns AD;BE, and CF , represent the re-
actions at the fixed supports A;B, and C, respectively, as shown in Fig. 12.8(g). Ans.
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12.4 ANALYSIS FOR LATERAL LOADS—CANTILEVER METHOD

The cantilever method was initially developed by A. C. Wilson in 1908
and is generally considered to be appropriate for the approximate anal-
ysis of relatively tall building frames. The cantilever method is based
on the assumption that under lateral loads, the building frames behave
like cantilever beams, as shown in Fig. 12.9. Recall (from mechanics of

materials) that the axial stress on a cross section of a cantilever beam
subjected to lateral loads varies linearly with the distance from the cen-
troidal axis (neutral surface), so that the longitudinal fibers of the beam
on the concave side of the neutral surface are in compression, whereas
those on the convex side undergo tension. In the cantilever method, the
distribution of axial stress among the columns of a frame at the column
midheights is assumed to be analogous to the axial stress distribution
among the longitudinal fibers of a cantilever beam. In other words, it is
assumed that the axial stress at the midheight of each column is linearly
proportional to the distance of the column from the centroid of the
areas of all the columns on that story. If we further assume that the
cross-sectional areas of all the columns on each story of the frame are
equal, then the axial force in each column will also be linearly propor-
tional to the distance of the column from the centroid of all the columns
on that story. When the lateral loads are acting on the frame toward the
right, as shown in Fig. 12.9, then the columns to the right of the cen-
troidal axis will be in compression, whereas those on the left side will be
in tension and vice versa.

In addition to the foregoing assumption, the cantilever method
makes the same assumption regarding the location of inflection points
as used in the portal method. Thus the assumptions made in the canti-
lever method can be stated as follows:

1. An inflection point is located at the middle of each member of the
frame.FIG. 12.9

Checking Computations To check our computations, we apply the three equilibrium equations to the free body of
the entire frame (Fig. 12.8(g)):

þ !P
FX ¼ 0 45þ 90� 33:75� 67:5� 33:75 ¼ 0 Checks

þ "PFY ¼ 0 �22:875� 17:25þ 43:125 ¼ 0 Checks

þ ’
P

MC ¼ 0

� 45ð9Þ � 90ð5Þ þ 84:375þ 25:875ð16Þ þ 168:75þ 17:25ð6Þ þ 84:375 ¼ 0 Checks
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2. On each story of the frame, the axial forces in columns are linearly
proportional to their distances from the centroid of the cross-
sectional areas of all the columns on that story.

Procedure for Analysis

The following step-by-step procedure can be used for the approximate
analysis of building frames by the cantilever method.

1. Draw a sketch of the simplified frame obtained by inserting an in-
ternal hinge at the midpoint of each member of the given frame.

2. Determine column axial forces. For each story of the frame:
a. Pass a horizontal section through the internal hinges at the col-

umn midheights, cutting the frame into two portions.
b. Draw a free-body diagram of the portion of the frame above

the section. Because the section passes through the columns at
the internal hinges, only internal shears and axial forces (but no
internal moments) act on the free body at the points where the
columns have been cut.

c. Determine the location of the centroid of all the columns on the
story under consideration.

d. Assuming that the axial forces in the columns are proportional
to their distances from the centroid, determine the column
axial forces by applying the moment equilibrium equation,P

M ¼ 0, to the free body of the frame above the section. To
eliminate the unknown column shears from the equilibrium
equation, the moments should be summed about one of the in-
ternal hinges at the column midheights through which the sec-
tion has been passed.

3. Draw free-body diagrams of all the members and joints of the frame
showing the external loads and the column axial forces computed in
the previous step.

4. Determine girder shears and moments. For each story of the frame,
the shears and moments at the ends of girders are computed by
starting at the far left joint and working across to the right (or vice
versa), as follows:
a. Apply the equilibrium equation

P
FY ¼ 0 to the free body of

the joint under consideration to compute the shear at the left
end of the girder that is on the right side of the joint.

b. Considering the free body of the girder, determine the moment
at the girder’s left end by multiplying the girder shear by half
the girder length; that is,

Mg ¼ Sg

L

2

� �
(12.3)
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Equation (12.3) is based on the condition that the bending mo-
ment at the girder midpoint is zero.

c. By applying the equilibrium equations
P

FY ¼ 0 and
P

M ¼ 0
to the free body of the girder, determine the shear and moment,
respectively, at the right end.

d. Select the joint to the right of the girder considered previously,
and repeat steps 4(a) through 4(c) until the shears and moments
in all the girders of the story have been determined. Because the
equilibrium equation

P
FY ¼ 0 for the right end joint has not

been utilized so far, it can be used to check the calculations.
5. Determine column moments and shears. Starting at the top story,

apply the equilibrium equation
P

M ¼ 0 to the free body of each
joint of the story to determine the moment at the upper end of the
column below the joint. Next, for each column of the story, calcu-
late the shear at the upper end of the column by dividing the col-
umn moment by half the column height; that is,

SC ¼ MC

ðh=2Þ (12.4)

Determine the shear and moment at the lower end of the column
by applying the equilibrium equations

P
FX ¼ 0 and

P
M ¼ 0, re-

spectively, to the free body of the column. Repeat the procedure for
each successive story, working from top to bottom, until the mo-
ments and shears in all the columns of the frame have been de-
termined.

6. Determine girder axial forces. For each story of the frame, de-
termine the girder axial forces by starting at the far left joint and
applying the equilibrium equation

P
FX ¼ 0 successively to the free

body of each joint of the story.
7. Realizing that the forces and moments at the lower ends of the

bottom-story columns represent the support reactions, use the three
equilibrium equations of the entire frame to check the calculations.
If the analysis has been performed correctly, then these equilibrium
equations must be satisfied.

Example 12.4

Determine the approximate axial forces, shears, and moments for all the members of the frame shown in Fig. 12.10(a)
by using the cantilever method.

Solution
This frame was analyzed by the portal method in Example 12.3. continued

SECTION 12.4 Analysis for Lateral Loads—Cantilever Method 499

https://engineersreferencebookspdf.com



FIG. 12.10
continued
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Simplified Frame The simplified frame, obtained by inserting internal hinges at midpoints of all the members of the
given frame, is shown in Fig. 12.10(b).

Column Axial Forces To compute axial forces in the columns of the second story of the frame, we pass an imagi-
nary section aa through the internal hinges at the midheights of columns DG;EH, and FI , as shown in Fig. 12.10(b).
The free-body diagram of the portion of the frame above this section is shown in Fig. 12.10(c). Because the section cuts
the columns at the internal hinges, only internal shears and axial forces (but no internal moments) act on the free body
at the points where the columns have been cut. Assuming that the cross-sectional areas of the columns are equal, we
determine the location of the centroid of the three columns from the left column DG by using the relationship

x ¼
P

AxP
A
¼ Að0Þ þ Að10Þ þ Að16Þ

3A
¼ 8:67 m

The lateral loads are acting on the frame to the right, so the axial force in column DG, which is to the left of the cent-
roid, must be tensile, whereas the axial forces in the columns EH and FI , located to the right of the centroid, must be
compressive as shown in Fig. 12.10(c). Also, since the axial forces in the columns are assumed to be linearly propor-
tional to their distances from the centroid, the relationships between them can be established by means of the similar
triangles shown in Fig. 12.10(c); that is,

QEH ¼ 1:33

8:67
QDG ¼ 0:1534QDG (1)

QFI ¼ 7:33

8:67
QDG ¼ 0:8454QDG (2)

By summing moments about the left internal hinge J, we write

þ ’
P

MJ ¼ 0 �45ð2Þ þQEHð10Þ þQFI ð16Þ ¼ 0

Substituting Eqs. (1) and (2) into the preceding equation and solving for QDG, we obtain

�90þ ð0:1534QDGÞð10Þ þ ð0:8454QDGÞð16Þ ¼ 0

QDG ¼ 5:98 kN

FIG. 12.10 (contd.)

continued
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Therefore, from Eqs. (1) and (2),

QEH ¼ 0:1534ð5:98Þ ¼ 0:92 kN

QFI ¼ 0:8454ð5:98Þ ¼ 5:06 kN

The axial forces in the first-story columns can be determined in a similar manner by employing section bb shown in
Fig. 12.10(b). The free-body diagram of the portion of the frame above this section is shown in Fig. 12.10(d). The ar-
rangement of columns for both stories of the frame is the same, so the location of the centroid—as well as the rela-
tionships between the axial forces—of the columns for the two stories are also the same. Thus

QBE ¼ 0:1534QAD (3)

QCF ¼ 0:8454QAD (4)

By summing moments about the internal hinge K, we write

þ ’
P

MK ¼ 0 �45ð6:5Þ � 90ð2:5Þ þQBEð10Þ þQCF ð16Þ ¼ 0

Substituting Eqs. (3) and (4), we obtain

�517:5þ ð0:1534QADÞð10Þ þ ð0:8454QADÞð16Þ ¼ 0

QAD ¼ 34:36 kN

Therefore,

QBE ¼ 5:27 kN

QCF ¼ 29:05 kN

The column axial forces are shown in Fig. 12.10(f ), which depicts the free-body diagrams of all the members and joints
of the frame.

Girder Shears and Moments Knowing column axial forces, the girder shears can now be computed by considering
equilibrium in the vertical direction of the joints. Starting at the upper left joint G, we apply the equilibrium equationP

FY ¼ 0 to the free body of this joint (see Fig. 12.10(e)) to obtain the shear SGH ¼ 5:98 kN # at the left end of girder
GH. The moment at the left end is then determined by multiplying the shear by half the girder length; that is,

MGH ¼ 5:98ð5Þ ¼ 29:9 kN-m @

The shear and moment at the right end, H, can now be computed by applying the equilibrium equations
P

FY ¼ 0 andP
M ¼ 0, respectively, to the free body of girder GH (Fig. 12.10(e)). By applying these equations, we obtain SHG ¼

5:98 kN " and MHG ¼ 29:9 kN-m @. Note that the girder end moments, MGH and MHG, have the same magnitude and
direction.

Next, the end shears and moments for girder HI are computed by considering the equilibrium of joints H and
girder HI (see Fig. 12.10(f )), and the equilibrium equation

P
FY ¼ 0 is applied to the free body of the right joint I to

check the calculations performed thus far.
The shears and moments for the first-story girders DE and EF are computed in a similar manner by starting

at the left joint D and working across to the right. The girder shears and moments thus obtained are shown in
Fig. 12.10(f ).

continued
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SUMMARY

In this chapter, we have learned that in the approximate analysis of
statically indeterminate structures, two types of simplifying assumptions
are commonly employed: (1) assumptions about the location of in-
flection points and (2) assumptions about the distribution of forces
among members and/or reactions. The total number of assumptions re-
quired is equal to the degree of indeterminacy of the structure.

Column Moments and Shears With the girder moments now known, the column moments can be determined by
considering moment equilibrium of joints. Beginning at the second story and applying

P
M ¼ 0 to the free body of

joint G (Fig. 12.10(e)), we obtain the moment at the upper end of column DG to be MGD ¼ 29:9 kN-m

’

. The shear at
the upper end of column DG is then computed by dividing MGD by half the column height; that is,

SGD ¼ 29:9

2
¼ 14:95 kN!

Note that SGD must act to the right, so that it can develop a clockwise moment to balance the counterclockwise end
moment MGD. The shear and moment at the lower end D are then determined by applying the equilibrium equationsP

FX ¼0 and
P

M ¼ 0 to the free body of column DG (see Fig. 12.10(e)). Next, the end moments and shears for col-
umns EH and FI are computed in a similar manner; thereafter, the procedure is repeated to determine the moments and
shears for the first-story columns, AD;BE, and CF (see Fig. 12.10(f )).

Girder Axial Forces We begin the computation of girder axial forces at the upper left joint G. Applying
P

FX ¼ 0
to the free-body diagram of joint G shown in Fig. 12.10(e), we find the axial force in girder GH to be 30.05 kN com-
pression. The axial force for girder HI is determined similarly by considering the equilibrium of joint H, after which the
equilibrium equation

P
FX ¼ 0 is applied to the free body of the right joint I to check the calculations. The axial forces

for the first-story girders DE and EF are then computed from the equilibrium consideration of joints D and E, in order.
The axial forces thus obtained are shown in Fig. 12.10(f ). Ans.

Reactions The forces and moments at the lower ends of the first-story columns AD;BE, and CF represent the re-
actions at the fixed supports A;B, and C, respectively, as shown in Fig. 12.10(g). Ans.

Checking Computations To check our computations, we apply the three equilibrium equations to the free body of
the entire frame (Fig. 12.10(g)):

þ !P
FX ¼ 0 45þ 90� 44:8� 67:43� 22:77 ¼ 0 Checks

þ "PFY ¼ 0 �34:36þ 5:27þ 29:05 ¼ �0:04&0 Checks

þ ’
P

MC ¼ 0

�45ð9Þ � 90ð5Þ þ 112þ 34:36ð16Þ þ 168:575� 5:27ð6Þ þ 56:93 ¼ 0:645&0

Checks
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The approximate analysis of rectangular frames subjected to verti-
cal loads is based on the following assumptions for each girder of the
frame: (1) the inflection points are located at one-tenth of the span from
each end of the girder and (2) the girder axial force is zero.

Two methods commonly used for the approximate analysis of rec-
tangular frames subjected to lateral loads are the portal method and the
cantilever method.

The portal method involves making the assumptions that an in-
flection point is located at the middle of each member and that, on
each story, interior columns carry twice as much shear as exterior
columns.

In the cantilever method, the following assumptions are made about
the behavior of the frame: that an inflection point is located at the mid-
dle of each member and that, on each story, the axial forces in the col-
umns are linearly proportional to their distances from the centroid of
the cross-sectional areas of all the columns on that story.

PROBLEMS

Section 12.2

12.1 through 12.5 Draw the approximate shear and bend-
ing moment diagrams for the girders of the frames shown in
Figs. P12.1 through P12.5.

30 kN/m

A

D

B

E

C

F

6 m 6 m

4 m

FIG. P12.1

15 kN/m

15 kN/m

5 m

A B

C D

E F

5 m

5 m

FIG. P12.2
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FIG. P12.3
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FIG. P12.4

12 m8 m

8 m

8 m
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A

H
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FIG. P12.5

Section 12.3

12.6 through 12.13 Determine the approximate axial forces,
shears, and moments for all the members of the frames
shown in Figs. P12.6 through P12.13 by using the portal
method.

6 m

4 m

4 m

40 kN

60 kN

A B

C

E F

D

FIG. P12.6, P12.14

A B

D E F

C

6 m 6 m

6 m

225 kN

FIG. P12.7, P12.15
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FIG. P12.8, P12.16

FIG. P12.9, P12.17
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A B C

E F
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FIG. P12.10, P12.18

FIG. P12.11, P12.19

FIG. P12.12, P12.20

FIG. P12.13, P12.21

Section 12.4

12.14 through 12.21 Determine the approximate axial
forces, shears, and moments for all the members of the
frames shown in Figs. P12.6 through P12.13 by using the
cantilever method.
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Cantilever Bridge
ª John Lund/CORBIS

In this chapter, we study a general formulation of the force (flexibility)
method called the method of consistent deformations for the analysis of
statically indeterminate structures. The method, which was introduced
by James C. Maxwell in 1864, essentially involves removing enough
restraints from the indeterminate structure to render it statically deter-
minate. This determinate structure, which must be statically stable, is
referred to as the primary structure. The excess restraints removed from
the given indeterminate structure to convert it into the determinate pri-
mary structure are called redundant restraints, and the reactions or
internal forces associated with these restraints are termed redundants.
The redundants are then applied as unknown loads on the primary
structure, and their values are determined by solving the compatibility
equations based on the condition that the deformations of the primary
structure due to the combined e¤ect of the redundants and the given
external loading must be the same as the deformations of the original
indeterminate structure.

Since the independent variables or unknowns in the method of con-
sistent deformations are the redundant forces (and/or moments), which
must be determined before the other response characteristics (e.g., dis-
placements) can be evaluated, the method is classified as a force method.

In this chapter, we first develop the analysis of beams, frames, and
trusses with a single degree of indeterminacy by using the method of
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consistent deformations. We then extend this method to structures with
multiple degrees of indeterminacy. Finally, we consider the analysis for
the e¤ects of support settlements, temperature changes, and fabrication
errors.

13.1 STRUCTURES WITH A SINGLE DEGREE OF INDETERMINACY

To illustrate the basic concept of the method of consistent deformations,
consider the propped cantilever beam subjected to a concentrated
load P, as shown in Fig. 13.1(a). Since the beam is supported by four
support reactions (Ax;Ay;MA, and Cy), the three equations of equilibrium
(
P

Fx ¼ 0,
P

Fy ¼ 0, and
P

M ¼ 0) are not su‰cient for determining
all the reactions. Therefore, the beam is statically indeterminate. The
degree of indeterminacy of the beam is equal to the number of
unknown reactions minus the number of equilibrium equations—that is,
4� 3 ¼ 1—which indicates that the beam has one more, or redundant,
reaction than necessary for static stability. Thus, if we can determine
one of the four reactions by using a compatibility equation based on the
geometry of the deformation of the beam, then the remaining three re-
actions can be obtained from the three equations of equilibrium.

To establish the compatibility equation, we select one of the re-
actions of the beam to be the redundant. Suppose that we select the
vertical reaction Cy exerted by the roller support C to be the redundant.
From Fig. 13.1(a), we can see that if the roller support C is removed
from the beam, it will become determinate while still remaining stat-
ically stable, because the fixed support A alone can prevent it from
translating and/or rotating as a rigid body. Thus, the roller support C is
not necessary for the static stability of the beam, and its reaction Cy can
be designated as the redundant. Note however, that the presence of
support C imposes the compatibility condition on the deflected shape of
the beam that the deflection at C must be zero (Fig. 13.1(a)); that is,

DC ¼ 0 (13.1)

To determine the redundant Cy by using this compatibility condition, we
remove the roller support C from the indeterminate beam to convert it
into the determinate cantilever beam shown in Fig. 13.1(b). This deter-
minate beam is referred to as the primary beam. The redundant Cy is
then applied as an unknown load on the primary beam, along with the
given external load P ¼ 160 kN as shown in Fig. 13.1(b). The redundant
Cy can be determined by using the reasoning that if the value of the un-
known load Cy acting on the primary beam (Fig. 13.1(b)) is to be the
same as that of the reaction Cy exerted on the indeterminate beam by the
roller support C (Fig. 13.1(a)), then the deflection at the free end C of
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the primary beam due to the combined e¤ect of the external load P and
the redundant Cy must be the same as the deflection of the indeterminate
beam at support C. Because the deflection DC at support C of the in-
determinate beam is zero (Eq. 13.1), the deflection at end C of the pri-
mary beam due to the combined e¤ect of the external load P and
the redundant Cy must also be zero. The total deflection DC at end C

of the primary beam due to the combined e¤ect of P and Cy can be
conveniently expressed by superimposing (algebraically adding) the de-
flections due to the external load P and the redundant Cy acting in-
dividually on the beam; that is,

DC ¼ DCO þ DCC (13.2)

in which DCO and DCC represent, respectively, the deflections at the
end C of the primary beam due to the external load P and the re-
dundant Cy, each acting alone on the beam. Note that two subscripts
are used to denote the deflections DCO and DCC of the primary beam.
The first subscript, C, indicates the location of these deflections; the
second subscript, O, is used to indicate that DCO is caused by the given
external loading, whereas the second subscript, C, of DCC implies that it
is due to the redundant Cy. Both of these deflections are considered to
be positive if they occur in the direction of the redundant Cy, which is
assumed to be upward, as shown in Fig. 13.1(b).

Since the redundant Cy is unknown, it is convenient to determine
DCC by first evaluating the deflection at C due to a unit value of the re-
dundant Cy, as shown in Fig. 13.1(d), and then multiplying the deflection
thus obtained by the unknown magnitude of the redundant. Thus,

DCC ¼ fCCCy (13.3)

in which fCC denotes the deflection at point C of the primary beam due
to the unit value of the redundant Cy. It may be recalled from Section
7.8 that fCC , which has units of deflection per unit force, is referred to as
a flexibility coe‰cient. By substituting Eqs. (13.1) and (13.3) into Eq.
(13.2), we obtain the compatibility equation

DC ¼ DCO þ fCCCy ¼ 0 (13.4)

which can be solved to express the redundant Cy in terms of the de-
flections DCO and fCC of the primary beam:

Cy ¼ �DCO

fCC
(13.5)

Equations (13.4) and (13.5) can also be established intuitively by re-
garding the redundant Cy as the force necessary to correct the deflected
shape of the primary structure so that it matches the deflected shape of the
original indeterminate structure. When support C is imagined to be re-
moved from the indeterminate beam of Fig. 13.1(a), the external load P
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causes a downward deflection of DCO at end C, as shown in Fig. 13.1(c).
Since the deflection at C in the original indeterminate beam is zero, the re-
dundant force Cy must be of su‰cient magnitude to push the end C back
into its original position by producing an upward deflection of DCO at end
C of the primary beam. To evaluate the e¤ect of Cy on the beam, we
compute the flexibility coe‰cient fCC , which is the deflection at C due to a
unit value of the redundant (Fig. 13.1(d)). Since superposition is valid, de-
flection is directly proportional to load; that is, if a unit load causes a de-
flection of fCC , then a load ten times as much will cause a deflection of
10fCC . Thus, the upward redundant of magnitude Cy causes an upward
deflection of Cy fCC at end C of the primary beam. Since the upward de-
flection ðCy fCCÞ caused by the redundant Cy must be equal to the down-
ward deflection ðDCOÞ due to the external load P, we write

Cy fCC ¼ �DCO (13.6)

in which both deflections, fCC and DCO, are assumed to be positive up-
ward. Note that Eq. (13.6) is equivalent to Eqs. (13.4) and (13.5) derived
previously.

Since the primary beam is statically determinate, the deflections
DCO and fCC can be computed by either using the methods previously
described in Chapters 6 and 7 or by using the beam-deflection formulas
given inside the front cover of the book. By using the beam-deflection
formulas, we determine the deflection at end C of the primary beam due
to the external load Pð¼ 160 kNÞ to be

DCO ¼

� 5PL3

48EI
¼ � 5ð160Þð5Þ3

48ð210� 106Þð200� 10�6Þ ¼ �0:05 m ¼ �50 mm

(see Fig. 13.1(c)) in which a negative sign has been assigned to the
magnitude of DCO to indicate that the deflection occurs in the downward
direction—that is, in the direction opposite to that of the redundant Cy.
Similarly, the flexibility coe‰cient fCC is evaluated as

fCC ¼ L3

3EI
¼ ð5Þ3

3ð210� 106Þð200� 10�6Þ ¼ 0:001 m ¼ 0:001 m/kN

(see Fig. 13.1(d)). By substituting the expressions or the numerical values
of DCO and fCC into Eq. (13.5), we determine the redundant Cy to be

Cy ¼ � � 5PL3

48EI

� �
3EI

L3

� �
¼ 5

16
P ¼ 50 kN "

The positive answer for Cy indicates that our initial assumption about
the upward direction of Cy was correct.

With the reaction Cy known, the three remaining reactions can now
be determined by applying the three equilibrium equations to the free
body of the indeterminate beam (Fig. 13.1(e)):

512 CHAPTER 13 Method of Consistent Deformations—Force Method

https://engineersreferencebookspdf.com



þ !P
Fx ¼ 0 Ax ¼ 0

þ "PFy ¼ 0 Ay � 160þ 50 ¼ 0 Ay ¼ 110 kN "
þ ’

P
MA ¼ 0 MA � 160ð2:5Þ þ 50ð5Þ ¼ 0 MA ¼ 150 kN-m

’

After the redundant Cy has been computed, the reactions and all
other response characteristics of the beam can also be determined by
employing superposition relationships similar in form to the deflection
superposition relationship expressed in Eq. (13.4). Thus, the reactions
can alternatively be determined by using the superposition relationships
(see Fig. 13.1(a), (c), and (d)):

þ ! Ax ¼ AxO þ AxCðCyÞ ¼ 0

þ " Ay ¼ AyO þ AyCðCyÞ ¼ 160� 1ð50Þ ¼ 110 kN "
þ ’ MA ¼MAO þMACðCyÞ ¼ 400� 5ð50Þ ¼ 150 kN-m

’

Note that the second subscript O is used to denote reactions due to the
external loading only (Fig. 13.1(c)), whereas the second subscript C de-
notes reactions due to a unit value of the redundant Cy (Fig. 13.1(d)).

Similarly, the bending moment diagram for the indeterminate
beam can be obtained by superimposing the bending moment diagram
of the primary beam due to external loading only, on the bending mo-
ment diagram of the primary beam due to a unit value of redundant Cy

multiplied by the value of Cy. The bending moment diagram for the in-
determinate beam thus constructed is shown in Fig. 13.1(f ).

Moment as the Redundant

In the foregoing analysis of the propped cantilever of Fig. 13.1(a),
we arbitrarily selected the vertical reaction at roller support C to be the
redundant. When analyzing a structure by the method of consistent de-

formations, we can choose any support reaction or internal force (or mo-

ment) as the redundant, provided that the removal of the corresponding

restraint from the given indeterminate structure results in a primary

structure that is statically determinate and stable.
Considering again the propped cantilever beam of Fig. 13.1(a),

which is redrawn in Fig. 13.2(a), we can see that the removal of the re-
straint corresponding to the horizontal reaction Ax will render the beam
statically unstable. Therefore, Ax cannot be used as the redundant.
However, either of the two other reactions at support A can be used as
the redundant.

Let us consider the analysis of the beam by using the reaction mo-
ment MA as the redundant. The actual sense of MA is not known and is
arbitrarily assumed to be counterclockwise, as shown in Fig. 13.2(a). To
obtain the primary beam, we remove the restraint against rotation at
end A by replacing the fixed support by a hinged support, as shown in
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Fig. 13.2(b). Note that the simply supported beam thus obtained is stat-
ically determinate and stable. The redundant MA is now treated as an un-
known load on the primary beam, and its magnitude can be determined
from the compatibility condition that the slope at A due to the combined
e¤ect of the external load P and the redundant MA must be zero.

The primary beam is subjected separately to the external load
P ¼ 160 kN and a unit value of the unknown redundant MA, as shown
in Fig. 13.2(b) and (c), respectively. As shown in these figures, yAO rep-
resents the slope at end A due to the external load P, whereas, fAA de-
notes the flexibility coe‰cient—that is, the slope at A due to a unit
value of the redundant MA. Thus the slope at A due to MA equals
yAA ¼ fAAMA. Because the algebraic sum of the slopes at end A due to
the external load P and the redundant MA must be zero, we can express
the compatibility equation as

yAO þ fAAMA ¼ 0 (13.7)

FIG. 13.2
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The slopes yAO and fAA can be easily computed by using the beam-
deflection formulas inside the front cover of the book. Thus

yAO ¼ � PL2

16EI
¼ � 160ð5Þ2

16ð210� 106Þð200� 10�6Þ ¼ �0:006 rad

fAA ¼ L

3EI
¼ 5

3ð210� 106Þð200� 10�6Þ ¼ 0:00004 rad/kN-m

Note that a negative sign has been assigned to the magnitude of yAO,
because this rotation occurs in the clockwise direction—that is, opposite
to the counterclockwise direction assumed for the redundant MA (Fig.
13.2(a)). By substituting the numerical values of yAO and fAA into the
compatibility equation (Eq. 13.7), we write

�0:006þ ð0:00004ÞMA ¼ 0

from which

MA ¼ 0:006

0:00004
¼ 150 kN-m

’

The positive answer implies that the counterclockwise sense initially as-
sumed for MA was correct. Note that the value of the reaction moment
MA ¼ 150 kN-m

’

computed here is identical to that obtained previously
by using the vertical reaction Cy as the redundant (Fig. 13.1). Once
the redundant MA is known, the remaining reactions as well as the other
response characteristics of the beam can be determined either through
equilibrium considerations or by superposition, as discussed previously.

Procedure for Analysis

Based on the foregoing discussion, we can develop the following step-
by-step procedure for the analysis of externally indeterminate structures
with a single degree of indeterminacy.

1. Determine the degree of indeterminacy of the given structure. If
the degree of indeterminacy is greater than 1, and/or if the struc-
ture is internally indeterminate, then end the analysis at this stage.
The analysis of internally indeterminate structures and structures
with multiple degrees of indeterminacy is considered in subsequent
sections.

2. Select one of the support reactions as the redundant. The choice of
redundant is merely a matter of convenience, and any reaction can
be selected as the redundant, provided that the removal of the cor-
responding restraint from the given indeterminate structure results
in a primary structure that is statically determinate and stable. The
sense of the redundant is not known and can be arbitrarily assumed.
The actual sense of the redundant will be known after its magni-
tude has been determined by solving the compatibility equation. A
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positive magnitude for the redundant will imply that the sense ini-
tially assumed was correct, whereas a negative value of the mag-
nitude will indicate that the actual sense is opposite to the one
assumed initially.

3. Remove the restraint corresponding to the redundant from the
given indeterminate structure to obtain the primary determinate
structure.

4. a. Draw a diagram of the primary structure with only the exter-
nal loading applied to it. Sketch a deflected shape of the
structure, and show the deflection (or slope) at the point of
application and in the direction of the redundant by an appro-
priate symbol.

b. Next, draw a diagram of the primary structure with only the
unit value of the redundant applied to it. The unit force (or
moment) must be applied in the positive direction of the re-
dundant. Sketch a deflected shape of the structure, and show by
an appropriate symbol the flexibility coe‰cient representing the
deflection (or slope) at the point of application and in the di-
rection of the redundant. To indicate that the load as well as the
response of the structure is to be multiplied by the redundant,
show the redundant preceded by a multiplication sign (�) next
to the diagram of the structure. The deflection (or slope) at the
location of the redundant due to the unknown redundant equals
the flexibility coe‰cient multiplied by the unknown magnitude
of the redundant.

5. Write the compatibility equation by setting the algebraic sum of the
deflections (or slopes) of the primary structure at the location of the
redundant due to the external loading and the redundant equal to
the given displacement (or rotation) of the redundant support of the
actual indeterminate structure. Since we assume here that supports
are unyielding, the algebraic sum of the deflections due to the ex-
ternal loading and the redundant can be simply set equal to zero to
obtain the compatibility equation. (The case of support movements
is considered in a subsequent section.)

6. Compute the deflections of the primary structure at the location of
the redundant due to the external loading and due to the unit value
of the redundant. A deflection is considered to be positive if it has
the same sense as that assumed for the redundant. The deflections
can be determined by using any of the methods discussed in Chap-
ters 6 and 7. For beams with constant flexural rigidity EI , it is usu-
ally convenient to determine these quantities by using the deflection
formulas given inside the front cover of the book, whereas the de-
flections of trusses and frames can be conveniently computed by
using the method of virtual work.

7. Substitute the values of deflections (or slopes) computed in step
6 into the compatibility equation, and solve for the unknown
redundant.
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8. Determine the remaining support reactions of the indeterminate
structure either by applying the three equilibrium equations to the
free body of the indeterminate structure or by superposition of the
reactions of the primary structure due to the external loading and
due to the redundant.

9. Once the reactions have been evaluated, the other response charac-
teristics (e.g., shear and bending diagram and/or member forces) of
the indeterminate structure can be determined either through equili-
brium considerations or by superposition of the responses of the pri-
mary structure due to the external loading and due to the redundant.

Example 13.1

Determine the reactions and draw the shear and bending moment diagrams for the beam shown in Fig. 13.3(a) by the
method of consistent deformations.

continued

FIG. 13.3
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Solution
Degree of Indeterminacy The beam is supported by four reactions, Ax;Ay;MA, and By (Fig. 13.3(a)); that is, r ¼ 4.

Since there are only three equilibrium equations, the degree of indeterminacy of the beam is equal to r� 3 ¼ 1.

Primary Beam The vertical reaction By at the roller support B is selected to be the redundant. The sense of By is
assumed to be upward, as shown in Fig. 13.3(a). The primary beam obtained by removing the roller support B from the
given indeterminate beam is shown in Fig. 13.3(b). Note that the primary cantilever beam is statically determinate and
stable. Next, the primary beam is subjected separately to the external moment M and a unit value of the unknown re-
dundant By, as shown in Fig. 13.3(b) and (c), respectively. As shown in the figure, DBO denotes the deflection at B due to
the external moment M, whereas fBB denotes the flexibility coe‰cient representing the deflection at B due to the unit
value of the redundant By. Thus, the deflection at B due to the unknown redundant By equals fBBBy.

Compatibility Equation The deflection at support B of the actual indeterminate beam is zero, so the algebraic sum
of the deflections of the primary beam at B due to the external moment M and the redundant By must also be zero.
Thus, the compatibility equation can be written as

DBO þ fBBBy ¼ 0 (1)

Deflections of Primary Beam By using the beam-deflection formulas, we obtain the deflections DBO and fBB to be

DBO ¼ �ML2

2EI
and fBB ¼ L3

3EI

FIG. 13.3 (contd.)
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in which the negative sign for DBO indicates that this deflection occurs in the downward direction—that is, opposite to
the upward direction assumed for the redundant By.

Magnitude of the Redundant By substituting the expressions for DBO and fBB into the compatibility equation
(Eq. (1)), we determine the redundant By as

�ML2

2EI
þ L3

3EI

� �
By ¼ 0 By ¼ 3M

2L
" Ans.

The positive answer for By indicates that our initial assumption about the upward direction of By was correct.

Reactions The remaining reactions of the indeterminate beam can now be determined by superposition of the
reactions of the primary beam due to the external moment M and the redundant By, shown in Fig. 13.3(b) and (c),
respectively:

þ ! Ax ¼ 0 Ax ¼ 0 Ans.

þ " Ay ¼ �1 3M

2L

� �
¼ � 3M

2L
Ay ¼ 3M

2L
# Ans.

þ ’ MA ¼M � L
3M

2L

� �
¼ �M

2
MA ¼M

2
@ Ans.

The reactions are shown in Fig. 13.3(d).

Shear and Bending Moment Diagrams By using the reactions, the shear and bending moment diagrams for the in-
determinate beam are constructed. These diagrams are shown in Fig. 13.3(e). Ans.

Example 13.2

Determine the reactions and draw the shear and bending moment diagrams for the beam shown in Fig. 13.4(a) by the
method of consistent deformations. Select the reaction moment at the fixed support to be the redundant.

Solution
Degree of Indeterminacy The beam is supported by four reactions (Fig. 13.4(a)), so its degree of indeterminacy is

equal to 4� 3 ¼ 1.

Primary Beam The reaction moment MA at the fixed support A is selected to be the redundant. The sense of MA

is assumed to be counterclockwise, as shown in Fig. 13.4(a). To obtain the primary beam, we remove the restraint
against rotation at end A by replacing the fixed support by a hinged support, as shown in Fig. 13.4(b). The primary
simply supported beam is then subjected separately to the external loading and a unit value of the unknown re-
dundant MA, as shown in Fig. 13.4(b) and (c), respectively. As shown in these figures, yAO represents the slope at A
due to the external loading, whereas fAA denotes the flexibility coe‰cient representing the slope at A due to the unit
value of the redundant MA.

continued
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Compatibility Equation By setting the algebraic sum of the slopes of the primary beam at A due to the external
loading and the redundant MA equal to the slope at the fixed support A of the actual indeterminate beam, which is zero,
we write the compatibility equation:

yAO þ fAAMA ¼ 0 (1)

Slopes of Primary Beam From the beam-deflection formulas,

yAO ¼ � 1000 kN-m2

EI
and fAA ¼ 3:33 kN-m2/kN-m

EI

24 kN/m

24 kN/m

10 m

= 120 kN = 120 kN

1 kN-m

1–
10

kN 1–
10

kN

FIG. 13.4

continued

520 CHAPTER 13 Method of Consistent Deformations—Force Method

https://engineersreferencebookspdf.com



Magnitude of the Redundant By substituting the values of yAO and fAA into the compatibility equation (Eq. (1)), we
obtain

� 1000

EI
þ 3:33

EI

� �
MA ¼ 0 MA ¼ 300 kN-m

’

Ans.

Reactions To determine the remaining reactions of the indeterminate beam, we apply the equilibrium equations
(Fig. 13.4(d)):

þ !P
Fx ¼ 0 Ax ¼ 0 Ans.

þ ’ MB ¼ 0 300� Ayð10Þ þ 24ð10Þð5Þ ¼ 0 Ay ¼ 150 kN " Ans.

þ "PFy ¼ 0 150� 24ð10Þ þ By ¼ 0 By ¼ 90 kN " Ans.

Shear and Bending Moment Diagrams See Fig. 13.4(e). Ans.

24 kN-m

Shear diagram (kN)

Bending moment diagram (kN-m)

(d) Support Reactions for Indeterminate Beam

(e) Shear and Bending Moment Diagrams
for Indeterminate Beam

Ax
A

B= 0

MA = 300
kN-m

Ay = 150 kN By = 90 kN

6.25 m

150

A B
C

–90

168.75

300

A

C B

FIG. 13.4 (contd.)

SECTION 13.1 Structures with a Single Degree of Indeterminacy 521

https://engineersreferencebookspdf.com



Example 13.3

Determine the reactions and draw the shear and bending moment diagrams for the two-span continuous beam shown in
Fig. 13.5(a) using the method of consistent deformations.

Solution
Degree of Indeterminacy The beam is supported by four reactions, so its degree of indeterminacy is equal to

4� 3 ¼ 1.

Primary Beam The vertical reaction By at the roller support B is selected to be the redundant, and the primary
beam is obtained by removing the roller support B from the given indeterminate beam, as shown in Fig. 13.5(b). Next,
the primary beam is subjected separately to the external loading and a unit value of the unknown redundant By, as
shown in Fig. 13.5(b) and (c), respectively. As shown in these figures, DBO denotes the deflection at B due to the external
loading, whereas fBB denotes the flexibility coe‰cient representing the deflection at B due to the unit value of the
redundant By.

Compatibility Equation Because the deflection at support B of the actual indeterminate beam is zero, the algebraic
sum of the deflections of the primary beam at B due to the external loading and the redundant By must also be zero.
Thus, the compatibility equation can be written as

DBO þ fBBBy ¼ 0 (1)

Deflections of Primary Beam The flexural rigidity EI of the primary beam is not constant (since the moment of
inertia of the right half of the beam, BD, is twice the moment of inertia of the left half, AB), so we cannot use the for-
mulas given inside the front cover of the book for computing deflections. Therefore, we will use the conjugate-beam
method, discussed in Chapter 6, for determining the deflections of the primary beam.

To determine the deflection DBO due to the external loading, we draw the conjugate beams for the 15-kN/m
uniformly distributed load and the 60-kN concentrated load, as shown in Fig. 13.5(d) and (e), respectively. Recalling
that the deflection at a point on a real beam is equal to the bending moment at that point in the corresponding
conjugate beam, we determine the deflection DBO due to the combined e¤ect of the distributed and concentrated
loads as

EIDBO ¼ �4;218:75ð10Þ þ 2

3

� �
ð10Þð750Þ 30

8

� �� �
þ �718:75ð10Þ þ 1

2

� �
ð10Þð150Þ 10

3

� �� �

DBO ¼ � 28;125 kN�m3

EI

in which the negative sign indicates that the deflection occurs in the downward direction. Note that although the nu-
merical values of E and I are given, it is usually convenient to carry out the analysis in terms of EI . The flexibility co-
e‰cient fBB can be computed similarly by using the conjugate beam shown in Fig. 13.5(f ). Thus

EIfBB ¼ 20:833ð10Þ � 1

2

� �
ð10Þð5Þ 10

3

� �
¼ 125 kN�m3/kN

fBB ¼ 125 kN�m3/kN

EI

continued
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FIG. 13.5

continued
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Magnitude of the Redundant By substituting the values of DBO and fBB into the compatibility equation (Eq. (1)), we
obtain

� 28;125

EI
þ 125

EI

� �
By ¼ 0 By ¼ 225 kN " Ans.

Reactions To determine the remaining reactions of the indeterminate beam, we apply the equilibrium equations
(Fig. 13.5(g)):

þ !P
Fx ¼ 0 Ax ¼ 0 Ans.

þ ’
P

MD ¼ 0 �Ayð20Þ � 225ð10Þ þ 15ð20Þð10Þ þ 60ð5Þ ¼ 0

Ay ¼ 52:5 kN " Ans.

þ "PFy ¼ 0 52:5þ 225� 15ð20Þ � 60þDy ¼ 0

Dy ¼ 82:5 kN " Ans.

Shear and Bending Moment Diagrams See Fig. 13.5(h). Ans.

Example 13.4

Determine the reactions and the force in each member of the truss shown in Fig. 13.6(a) using the method of consistent
deformations.

Solution
Degree of Indeterminacy The truss is indeterminate to the first degree.

Primary Truss The horizontal reaction Dx at the hinged support D is selected to be the redundant. The direction of
Dx is arbitrarily assumed to the right, as shown in Fig. 13.6(a). The primary truss is obtained by removing the restraint
against horizontal displacement at joint D by replacing the hinged support by a roller support, as shown in Fig. 13.6(b).
Next, the primary truss is subjected separately to the external loading and a unit value of the unknown redundant Dx, as
shown in Fig. 13.6(b) and (c), respectively.

Compatibility Equation If DDO denotes the horizontal deflection at joint D of the primary truss due to external
loading and if fDD denotes the flexibility coe‰cient representing the horizontal deflection at D due to the unit value of
the redundant Dx, then the compatibility equation can be written as

DDO þ fDDDx ¼ 0 (1)

Deflections of Primary Truss The deflections DDO and fDD can be evaluated by using the virtual work method.
Recall from Chapter 7 that the virtual work expression for truss deflections is given by (Eq. (7.23))

D ¼PFFvL

AE (2)

continued
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in which F symbolically represents the axial forces in truss members due to the real loading that causes the deflection D,
and Fv represents the axial forces in the truss members due to a virtual unit load acting at the joint and in the direction
of the desired deflection D.

For computing the deflection DDO of the primary truss, the real system consists of the given external loading, as
shown in Fig. 13.6(b). The member axial forces due to this loading are symbolically denoted as FO forces, and their

FIG. 13.6

continued

SECTION 13.1 Structures with a Single Degree of Indeterminacy 525

https://engineersreferencebookspdf.com



numerical values, obtained by the method of joints, are shown in Fig. 13.6(b). The virtual system for DDO consists of a
unit load applied at the location and in the direction of the redundant Dx, which is the same as the system shown in Fig.
13.6(c) (without the multiplier Dx). The member axial forces due to the unit value of the redundant Dx are symbolically
denoted as uD forces, and their numerical values, obtained by the method of joints, are shown in Fig. 13.6(c). Thus, the
virtual work expression for DDO can be written as

DDO ¼
PFOuDL

AE (3)

The FO and uD member forces are then tabulated, and Eq. (3) is applied to determine DDO, as shown in Table
13.1. Thus

DDO ¼ 840;000 kN/m

E

The positive magnitude of DDO indicates that the deflection occurs to the right—that is, in the same direction as that
assumed for the redundant Dx.

For computing the flexibility coe‰cient fDD, both the real and the virtual systems consist of a unit value of the re-
dundant Dx applied to the primary truss, as shown in Fig. 13.6(c) (without the multiplier Dx). Thus, the virtual work
expression for fDD becomes

fDD ¼
P u2DL

AE (4)

Equation (4) is applied to determine fDD, as shown in Table 13.1. Thus,

fDD ¼ 4500ð1/mÞ
E

Magnitude of Redundant By substituting the values of DDO and fDD into the compatibility equation (Eq. (1)), we
determine the redundant Dx to be

5;493:6

E
þ 120

E

� �
Dx ¼ 0

Dx ¼ �186:67 kN

FIG. 13.6 (contd.)
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The negative answer for Dx indicates that our initial assumption about Dx acting to the right was incorrect and that Dx

actually acts to the left.

Dx ¼ 186:67 kN Ans.

Reactions The remaining reactions of the indeterminate truss can now be determined by superposition of the
reactions of the primary truss due to the external loads (Fig. 13.6(b)) and due to the redundant Dx (Fig. 13.6(c)).

Ax ¼ �120� 1ð�186:67Þ ¼ 66:67 kN! Ans.

Ay ¼ 70 kN " Ans.

Dy ¼ 130 kN " Ans.

The reactions are shown in Fig. 13.6(d).

Member Axial Forces The axial forces in the members of the indeterminate truss can be determined by super-
position of the member forces of the primary truss due to the external loads and due to the redundant Dx; that is,

F ¼ FO þ uDDx (5)

The computation of final member forces can be conveniently carried out in a tabular form, as shown in Table 13.1. For
each member, the final force F is computed by algebraically adding the entry in the fourth column ðFOÞ, to the corre-
sponding entry in the fifth column ðuDÞ multiplied by the magnitude of the redundant Dx ¼ �186:67 kN. The value of
the final force thus computed is then recorded in the eighth column, as shown in Table 13.1. The member forces thus
obtained are also shown in Fig. 13.6(d). Ans.

TABLE 13.1

FOuDL

A

u2DL

A
Member

L
(m)

A
(m2)

FO

(kN)
uD

(kN/kN) (kN/m) (1/m)
F ¼ FO þ uDDx

(kN)

AB 6 0.0040 213.33 1 320,000 1500 26.67

BC 6 0.0040 173.33 1 260,000 1500 �13.33
CD 6 0.0040 173.33 1 260,000 1500 �13.33
EF 6 0.0040 �93.33 0 0 0 �93.33
BE 4.5 0.0025 70 0 0 0 70

CF 4.5 0.0025 100 0 0 0 100

AE 7.5 0.0040 �116.67 0 0 0 �116.67
BF 7.5 0.0025 50 0 0 0 50

DF 7.5 0.0040 �216.67 0 0 0 �216.67P
840,000 4500

DDO ¼ 1

E

PFOuDL

A
¼ 840; 000 kN=m

E
fDD ¼ 1

E

P u 2
DL

A
¼ 4500ð1=mÞ

E

Dx ¼ �DDO

fDD

¼ �186:67 kN
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Example 13.5

Determine the reactions and draw the shear and bending moment diagrams for the frame shown in Fig. 13.7(a) by the
method of consistent deformations.

Solution
Degree of Indeterminacy The frame is indeterminate to the first degree.

Primary Frame The horizontal reaction AX at the hinged support A is selected to be the redundant. The primary
frame is obtained by removing the restraint against horizontal displacement at joint A, which is done by replacing
the hinged support by a roller support, as shown in Fig. 13.7(b). Next, the primary frame is subjected separately to the
external loading and a unit value of the unknown redundant AX , as shown in Fig. 13.7(b) and (c), respectively.

Compatibility Equation From Fig. 13.7(a), (b), and (c), we observe that

DAO þ fAAAX ¼ 0 (1)

Deflections of Primary Frame The deflections DAO and fAA of the primary frame will be evaluated by using the
virtual work method discussed in Chapter 7. The virtual work expression for DAO, which represents the horizontal
deflection at joint A of the primary frame due to external loading, can be written as

DAO ¼
Pð

MOmA

EI
dx (2)

in which MO denotes the bending moments due to the (real) external loading (Fig. 13.7(b)) and mA denotes the
bending moments due to a (virtual) unit load at the location and in the direction of the redundant (Fig. 13.7(c)). The
x coordinates used for determining the bending moment equations for members AB and BC of the primary frame
are shown in Fig. 13.7(b) and (c), and the equations for MO and mA are tabulated in Table 13.2. By applying Eq. (2),
we obtain

DAO ¼ 1

EI

ð 9

0

225x� 50

2
x2

� �
�6þ 2

3
x

� �
dx ¼ � 9112:5 kN-m3

EI

For computing the flexibility coe‰cient fAA, both the real and virtual systems consist of a unit value of the re-
dundant AX applied to the primary frame, as shown in Fig. 13.7(c) (without the multiplier AX ). Thus, the virtual work
expression for fAA becomes

fAA ¼
Pð

m2
A

EI
dx (3)

By substituting the equations for mA from Table 13.2, we obtain

fAA ¼ 1

EI

ð 6

0

ð�xÞ2 dxþ
ð9

0

�6þ 2

3
x

� �2

dx

" #
¼ 180 m3

EI

Magnitude of the Redundant By substituting the values of DAO and fAA into the compatibility equation (Eq. (1)),
we determine the redundant AX to be

� 9112:5

EI
þ 180

EI

� �
AX ¼ 0

AX ¼ 50:63 kN! Ans.
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FIG. 13.7
continued
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FIG. 13.7 (contd.)
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13.2 INTERNAL FORCES AND MOMENTS AS REDUNDANTS

Thus far, we have analyzed externally indeterminate structures with a
single degree of indeterminacy by selecting a support reaction as the re-
dundant. The analysis of such structures can also be carried out by
choosing an internal force or moment as the redundant, provided that
the removal of the corresponding internal restraint from the indeterminate
structure results in a primary structure that is statically determinate and
stable.

Consider the two-span continuous beam shown in Fig. 13.8(a). The
beam is indeterminate to the first degree. As discussed in the preceding
section, this beam can be analyzed by treating one of the vertical reactions
as the redundant. However, it is usually more convenient to analyze con-
tinuous beams (especially those with unequal spans) by selecting internal
bending moments as redundants. Let us consider the analysis of the beam
of Fig. 13.8(a) by using the bending moment, MB, at the interior support
B as the redundant. From Fig. 13.8(a), we can see that the slope of the
elastic curve of the indeterminate beam is continuous at B. In other words,
there is no change of slope of the tangents to the elastic curve at just to the
left of B and at just to the right of B; that is, the angle between the tan-
gents is zero. When the restraint corresponding to the redundant bending
moment MB is removed by inserting an internal hinge at B, as shown in
Fig. 13.8(b), a discontinuity develops in the slope of the elastic curve at B,
in the sense that the tangent to the elastic curve at just to the left of B ro-
tates relative to the tangent at just to the right of B. The change of slope
(or the angle) between the two tangents due to the external loads is de-
noted by yBO rel: and can be expressed as

yBO rel: ¼ yBL þ yBR (13.8)

Reactions The remaining reactions and member end forces of the indeterminate frame can now be determined
from equilibrium. The reactions and member end forces thus obtained are shown in Fig. 13.7(d). Ans.

Shear and Bending Moment Diagrams See Fig. 13.7(e). Ans.

TABLE 13.2

x coordinate

Member Origin Limits (m) MO (kN-m) mA (kN-m/kN)

AB A 0–6 0 �1x
BC B 0–9 225x� 50

2
x2 �6þ 2

3
x
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(see Fig. 13.8(b)) in which yBL and yBR denote the slopes at the ends B
of the left and right spans of the beam, respectively, due to the given
external loading.

Since the redundant bending moment MB provides continuity of
slope of the elastic curve at B in the actual indeterminate beam, it must
be of su‰cient magnitude to remove the discontinuity yBO rel: from the
primary beam by bringing the tangents back together. To evaluate the
e¤ect of MB on the primary beam, we determine the flexibility coe‰cient
fBB rel: representing the change of slope (or the angle) between the tan-
gents to the elastic curve at just to the left of B and at just to the right of
B due to a unit value of MB, as shown in Fig. 13.8(c). An internal bend-
ing moment is defined by a pair of equal but opposite couples. Thus, two
opposite couples of unit magnitude must be applied to the primary beam
to determine the flexibility coe‰cient, as shown in Fig. 13.8(c). Note that
the redundant MB is considered to be positive in accordance with the
beam convention—that is, when it causes compression in the upper fibers
and tension in the lower fibers of the beam. From Fig. 13.8(c), we can see
that the flexibility coe‰cient can be expressed as

fBB rel: ¼ fBBL þ fBBR (13.9)

FIG. 13.8 (contd.)
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in which fBBL and fBBR denote the slopes at the ends B of the left and
the right spans of the beam, respectively, due to the unit value of the
redundant MB.

The compatibility equation is based on the requirement that the
slope of the elastic curve of the actual indeterminate beam is continuous
at B; that is, there is no change of slope from just to the left of B to just
to the right of B. Therefore, the algebraic sum of the angles between the
tangents at just to the left and at just to the right of B due to the external
loading and the redundant MB must be zero. Thus,

yBO rel: þ fBB rel:MB ¼ 0 (13.10)

which can be solved for the redundant bending moment MB after the
changes of slopes yBO rel: and fBB rel: have been evaluated.

Since each of the spans of the primary beam can be treated as a
simply supported beam, the slopes at the ends B of the left and the right
spans can be easily computed by using the conjugate-beam method. The
conjugate beams for the external loading are shown in Fig. 13.8(d). Re-
calling that the slope at a point on a real beam is equal to the shear at
that point on the corresponding conjugate beam, we determine the slopes
yBL and yBR at ends B of the left and the right spans, respectively, as

yBL ¼ 189 kN-m2

EI
’ and yBR ¼ 240 kN-m2

EI
@

Thus, from Eq. (13.8), we obtain

yBO rel: ¼ yBL þ yBR ¼ 189þ 240

EI
¼ 429 kN-m2

EI

The flexibility coe‰cient fBB rel: can be computed similarly by using the
conjugate beam for a unit value of the redundant MB shown in Fig.
13.8(e). Thus

fBBL ¼ 2 kN-m2/kN-m

EI
’ and fBBR ¼ 3 kN-m2/kN-m

EI
@

From Eq. (13.9), we obtain

fBB rel: ¼ fBBL þ fBBR ¼ 2þ 3

EI
¼ 5 kN-m2/kN-m

EI

By substituting the values of yBO rel: and fBB rel: into the compatibility
equation (Eq. (13.10)), we determine the magnitude of the redundant
MB as

429

EI
þ 5

EI

� �
MB ¼ 0

or
MB ¼ �85:8 kN-m
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With the redundant MB known, the forces at the ends of the mem-
bers as well as the support reactions can be determined by considering
the equilibrium of the free bodies of the members AB and BC and
joint B, as shown in Fig. 13.8(f ). Note that the negative bending mo-
ment MB is applied at the ends B of members AB and BC so that it
causes tension in the upper fibers and compression in the lower fibers of
the members.

When moments at the ends of the members of a continuous beam
are known, it is usually convenient to construct its bending moment di-
agram in two parts; one for the external loading and another for the
member end moments. This procedure is commonly referred to as con-
structing the bending moment diagram by simple-beam parts, because
each member of the continuous beam is treated as a simply supported
beam, to which the external loads and the end moments are applied
separately and the corresponding bending moment diagrams are drawn.
Such diagrams for the members AB and BC of the continuous beam
under consideration are shown in Fig. 13.8(g). The member bending
moment diagrams can be drawn together, as shown in Fig. 13.8(h), to
obtain the bending moment diagram for the entire continuous beam.

Internally Indeterminate Structures

As the foregoing discussion indicates, structures with a single degree
of indeterminacy that are externally indeterminate can be analyzed by
selecting either a reaction or an internal force or moment as the
redundant. However, if a structure is internally indeterminate but
externally determinate, then only an internal force or moment can be
used as the redundant, because the removal of an external reaction from
such a structure will yield a statically unstable primary structure.

Consider, for example, the truss shown in Fig. 13.9(a). The truss
consists of six members connected together by four joints and is sup-
ported by three reaction components. Thus, as discussed in Section
4.4, the degree of indeterminacy of the truss is equal to ðmþ rÞ � 2j ¼
ð6þ 3Þ � 2ð4Þ ¼ 1. Because the three reactions can be determined from
the three equations of equilibrium of the entire truss, the truss is in-
ternally indeterminate to the first degree; that is, it contains one extra
member than required for internal stability.

To analyze the truss, we must select the axial force in one of its
members to be the redundant. Suppose that we select the force FAD in
the diagonal member AD to be the redundant. The restraint corre-
sponding to FAD is then removed from the truss by cutting member AD
to obtain the primary truss shown in Fig. 13.9(b). Note that since
member AD can no longer sustain a force, the primary truss is statically
determinate. When the primary truss is subjected to the external load P,
it deforms and a gap DADO opens up between the ends of the two por-
tions of member AD, as shown in Fig. 13.9(b). Since no such gap exists
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in the actual indeterminate truss, we conclude that the redundant force
FAD must be of su‰cient magnitude to bring the ends of the two por-
tions of member AD back together to close the gap. To evaluate the ef-
fect of FAD in closing the gap, we subject the primary truss to a unit
value of FAD by applying equal and opposite unit axial loads to the two
portions of member AD, as shown in Fig. 13.9(c). Note that the actual
sense of the redundant FAD is not yet known and is arbitrarily assumed
to be tensile, with the unit axial forces tending to elongate the portions
of member AD, as shown in the figure. The unit value of FAD deforms
the primary truss and causes the ends of the two portions of member
AD to overlap by an amount fAD;AD, as shown in Fig. 13.9(c). Thus, the
overlap in member AD due to the axial force of magnitude FAD equals
fAD;ADFAD.

FIG. 13.9
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Since neither a gap nor an overlap exists in member AD in the actual
indeterminate truss, we can express the compatibility equation as

DADO þ fAD;ADFAD ¼ 0 (13.11)

which can be solved for the redundant axial force FAD after the magni-
tudes of DADO and fAD;AD have been determined.

Note that DADO and fAD;AD are actually relative displacements be-
tween the joints A and D of the primary truss. These displacements can
be conveniently computed using the virtual work method by employing
a virtual system consisting of two unit loads applied with opposite
senses in the direction of member AD at joints A and D, as shown in
Fig. 13.9(d). A comparison of Fig. 13.9(c) and (d) indicates that the
axial forces in the members of the primary truss due to virtual unit
loads (Fig. 13.9(d)) will be the same as the uAD forces due to the unit
axial force in member AD (Fig. 13.9(c)). Thus the truss with a unit axial
force in member AD can be used as the virtual system for computing
the relative displacements. If the member axial forces due to the exter-
nal load P are symbolically denoted as FO forces (Fig. 13.9(b)), then the
virtual work expression for DADO can be written as

DADO ¼
PFOuADL

AE
(13.12)

For computing the flexibility coe‰cient fAD;AD, both the real and the
virtual systems consist of a unit axial force in member AD, as shown in
Fig. 13.9(c). Thus, the virtual work expression for fAD;AD is given by

fAD;AD ¼
P u2ADL

AE
(13.13)

in which the force in the redundant member AD must be included in the
summation to take into account the deformation of this member.

Once the relative displacements DADO and fAD;AD have been eval-
uated, their values are substituted into the compatibility equation
(Eq. (13.11)), which is then solved for the redundant FAD. With the re-
dundant FAD known, the axial forces in the members of the in-
determinate truss can be determined by superposition of the member
forces of the primary truss due to the external load P and due to the re-
dundant FAD; that is,

F ¼ FO þ uADFAD (13.14)

SECTION 13.2 Internal Forces and Moments as Redundants 537

https://engineersreferencebookspdf.com



Example 13.6

Determine the reactions and draw the bending moment diagram for the two-span continuous beam shown in Fig.
13.10(a) by the method of consistent deformations. Select the bending moment at the interior support B to be the
redundant.

Solution
This beam was analyzed in Example 13.3 by selecting the vertical reaction at support B as the redundant.

Primary Beam The primary beam is obtained by removing the restraint corresponding to the redundant bending
moment MB by inserting an internal hinge at B in the given indeterminate beam, as shown in Fig. 13.10(b). Next, the
primary beam is subjected separately to the external loading and a unit value of the redundant MB, as shown in Fig.
13.10(b) and (c), respectively.

continued

FIG. 13.10
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Compatibility Equation See Fig. 13.10(b) and (c):

yBO rel: þ fBB rel:MB ¼ 0 (1)

Slopes of Primary Beam Each of the spans of the primary beam can be treated as a simply supported beam of
constant flexural rigidity EI , so we can use the beam-deflection formulas given inside the front cover of the book for
evaluating the changes of slopes yBO rel: and fBB rel:. From Fig. 13.10(b), we can see that

yBO rel: ¼ yBL þ yBR

in which yBL and yBR are the slopes at the ends B of the left and the right spans of the primary beam, respectively, due
to the external loading. By using the deflection formulas, we obtain

FIG. 13.10 (contd.)

continued
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yBL ¼ 15ð10Þ3
24EI

¼ 625 kN�m2

EI

yBR ¼ 15ð10Þ3
24Eð2IÞ þ

60ð10Þ2
16Eð2IÞ ¼

500 kN�m2

EI

Thus,

yBO rel: ¼ 625

EI
þ 500

EI
¼ 1;125 kN�m2

EI

The flexibility coe‰cient fBB rel: can be computed in a similar manner. From Fig. 13.10(c), we can see that

fBB rel: ¼ fBBL þ fBBR

in which

fBBL ¼ 10

3EI
¼ 3:33 m

EI
and fBBR ¼ 10

3Eð2IÞ ¼
1:67 m

EI

Thus,

fBB rel: ¼ 3:33

EI
þ 1:67

EI
¼ 5 m

EI

Magnitude of the Redundant By substituting the values of yBO rel: and fBB rel: into the compatibility equation
(Eq. (1)), we obtain

1;125

EI
þ 5

EI

� �
MB ¼ 0

MB ¼ �225 kN�m Ans.

Reactions The forces at the ends of the members AB and BD of the continuous beam can now be determined by
applying the equations of equilibrium to the free bodies of the members shown in Fig. 13.10(d). By considering the
equilibrium of member AB, we obtain

Ay ¼ 1

2

� �
ð15Þð10Þ � 225

10

� �
¼ 52:5 kN " Ans.

BAB
y ¼ 1

2

� �
ð15Þð10Þ þ 225

10

� �
¼ 97:5 kN "

Similarly, for member BD,

BBD
y ¼ 1

2

� �
ð15Þð10Þ þ 60

2

� �
þ 225

10

� �
¼ 127:5 kN "

Dy ¼ 1

2

� �
ð15Þð10Þ þ 60

2

� �
� 225

10

� �
¼ 82:5 kN " Ans.

By considering the equilibrium of joint B in the vertical direction, we obtain

By ¼ BAB
y þ BBD

y ¼ 97:5þ 127:5 ¼ 225 kN " Ans.

continued
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Bending Moment Diagram The bending moment diagram for the continuous beam, constructed by simple-
beam parts, is shown in Fig. 13.10(e). The two parts of the diagram due to the external loading and the member
end moments may be superimposed, if so desired, to obtain the resultant bending moment diagram shown in
Example 13.3. Ans.

Example 13.7

Determine the reactions and the force in each member of the truss shown in Fig. 13.11(a) by the method of consistent
deformations.

Solution
Degree of Indeterminacy The truss consists of ten members connected by six joints and is supported by three

reaction components. Thus the degree of indeterminacy of the truss is equal to ðmþ rÞ � 2j ¼ ð10þ 3Þ � 2ð6Þ ¼ 1.
The three reactions can be determined from the three equations of external equilibrium, so the truss is internally in-
determinate to the first degree.

Primary Truss The axial force FCE in the diagonal member CE is selected to be the redundant. The sense of FCE is
arbitrarily assumed to be tensile. The primary truss obtained by removing member CE is shown in Fig. 13.11(b). Next,
the primary truss is subjected separately to the external loading and a unit tensile force in the redundant member CE, as
shown in Fig. 13.11(b) and (c), respectively.

Compatibility Equation The compatibility equation can be expressed as

DCEO þ fCE;CEFCE ¼ 0 (1)

in which DCEO denotes the relative displacement between joints C and E of the primary truss due to the external loads,
and the flexibility coe‰cient fCE;CE denotes the relative displacement between the same joints due to a unit value of the
redundant FCE .

Deflections of Primary Truss The virtual work expression for DCEO can be written as

DCEO ¼
PFOuCEL

AE (2)

in which FO and uCE represent, respectively, the member forces due to the external loads and the unit tensile force in
member CE. The numerical values of these forces are computed by the method of joints (Fig. 13.11(b) and (c)) and are
tabulated in Table 13.3. Equation (2) is then applied as shown in Table 13.3, to obtain

DCEO ¼ � 1860 kN-m

AE

Next, the flexibility coe‰cient fCE;CE is computed by using the virtual work expression (see Table 13.3):

fCE;CE ¼
P u2CEL

AE
¼ 34:56 m

AE

continued
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FIG. 13.11 continued
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Magnitude of the Redundant By substituting the values of DCEO and fCE;CE into the compatibility equation
(Eq. (1)), we determine the redundant FCE to be

� 1860

AE
þ 34:56

AE

� �
FCE ¼ 0

FCE ¼ 53:82 kN ðTÞ Ans.

Reactions See Fig. 13.11(d). Note that the reactions due to the redundant FCE are zero, as shown in
Fig. 13.11(c). Ans.

Member Axial Forces The forces in the remaining members of the indeterminate truss can now be determined by
using the superposition relationship:

F ¼ FO þ uCEFCE

The member forces thus obtained are shown in Table 13.3 and Fig. 13.11(d).

Ans.

TABLE 13.3

Member
L
(m)

FO

(kN)
uCE

(kN/kN)
FOuCEL
(kN-m)

u2CEL
(m)

F ¼ FO þ uCEFCE
(kN)

AB 6 150 0 0 0 150

BC 6 131.25 �0.6 �472.5 2.16 98.95

CD 6 131.25 0 0 0 131.25

EF 6 �150 �0.6 540 2.16 �182.3
BE 8 200 �0.8 �1280 5.12 156.95

CF 8 150 �0.8 �960 5.12 106.95

AE 10 �250 0 0 0 �250
BF 10 31.25 1 312.5 10 85.07

CE 10 0 1 0 10 53.82

DF 10 �218.75 0 0 0 �218.75P �1,860 34.56

DCEO ¼ 1

AE

P
F0uCEL ¼ � 1860 kN-m

AE

fCE;CE ¼ 1

AE

P
u2CEL ¼

34:56 m

AE

FCE ¼ � DCEO

fCE;CE
¼ 53:82 kN ðTÞ
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13.3 STRUCTURES WITH MULTIPLE DEGREES OF INDETERMINACY

The method of consistent deformations developed in the preceding sec-
tions for analyzing structures with a single degree of indeterminacy can
easily be extended to the analysis of structures with multiple degrees of
indeterminacy. Consider, for example, the four-span continuous beam
subjected to a uniformly distributed load w, as shown in Fig. 13.12(a).
The beam is supported by six support reactions; thus its degree of in-
determinacy is equal to 6� 3 ¼ 3. To analyze the beam, we must select
three support reactions as redundants. Suppose that we select the verti-
cal reactions By;Cy, and Dy at the interior supports B;C, and D, re-
spectively, to be the redundants. The roller supports at B;C, and D are
then removed from the given indeterminate beam to obtain the statically
determinate and stable primary beam, as shown in Fig. 13.12(b). The
three redundants are now treated as unknown loads on the primary
beam, and their magnitudes can be determined from the compatibility
conditions that the deflections of the primary beam at the locations
B;C, and D of the redundants due to the combined e¤ect of the known
external load w and the unknown redundants By;Cy, and Dy must be
equal to zero. This is because the deflections of the given indeterminate
beam at the roller supports B;C, and D are zero.

To establish the compatibility equations, we subject the primary
beam separately to the external load w (Fig. 13.12(b)) and a unit value
of each of the redundants By;Cy, and Dy (Fig. 13.12(c), (d), and (e), re-
spectively). As shown in Fig. 13.12(b), the deflections of the primary
beam at points B;C, and D due to the external load w are denoted by
DBO;DCO, and DDO, respectively. Note that the first subscript of a de-
flection D indicates the location of the deflection, whereas the second
subscript, O, is used to indicate that the deflection is due to the external
loading. The flexibility coe‰cients representing the deflections of the
primary beam due to unit values of the redundants are also defined by
using double subscripts, as shown in Fig. 13.12(c) through (e). The first
subscript of a flexibility coe‰cient denotes the location of the deflection,
and the second subscript indicates the location of the unit load causing
the deflection. For example, the flexibility coe‰cient fCB denotes the
deflection at point C of the primary beam due to a unit load at point B
(Fig. 13.12(c)), whereas fBC denotes the deflection at B due to a unit
load at C (Fig. 13.12(d)), and so on. Alternatively, a flexibility co-
e‰cient fij may also be interpreted as the deflection corresponding to a
redundant i due to a unit value of a redundant j; for example, fCB de-
notes the deflection corresponding to the redundant Cy due to a unit
value of the redundant By (Fig. 13.12(c)), fBC denotes the deflection
corresponding to the redundant By due to a unit value of the redundant
Cy, and so on. A deflection or flexibility coe‰cient at the location of a
redundant is considered to be positive if it has the same sense as that
assumed for the redundant.
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Focusing our attention at point B of the primary beam, we see that
the deflection at this point due to the external load is DBO (Fig.
13.12(b)), the deflection due to By is fBBBy (Fig. 13.12(c)), the deflection
due to Cy is fBCCy (Fig. 13.12(d)), and the deflection due to Dy is fBDDy

(Fig. 13.12(e)). Thus, the total deflection at B due to the combined e¤ect
of the external load and all of the redundants is DBO þ fBBBy þ fBCCyþ
fBDDy. Since the deflection of the actual indeterminate beam (Fig.
13.12(a)) at support B is zero, we set the algebraic sum of the deflections
of the primary beam at B equal to zero to obtain the compatibility
equation, DBO þ fBBBy þ fBCCy þ fBDDy ¼ 0. Next, we focus our at-
tention at point C of the primary beam; by algebraically adding the de-
flections at C due to the external load and the redundants and by setting
the sum equal to zero, we obtain the second compatibility equation,
DCO þ fCBBy þ fCCCy þ fCDDy ¼ 0. Similarly, by setting equal to zero
the algebraic sum of the deflections of the primary beam at D due to
the external load and the redundants, we obtain the third compatibility
equation, DDO þ fDBBy þ fDCCy þ fDDDy ¼ 0. The three compatibility
equations thus obtained are

DBO þ fBBBy þ fBCCy þ fBDDy ¼ 0 (13.15)

DCO þ fCBBy þ fCCCy þ fCDDy ¼ 0 (13.16)

DDO þ fDBBy þ fDCCy þ fDDDy ¼ 0 (13.17)

Since the number of compatibility equations is equal to the number
of unknown redundants, these equations can be solved for the re-
dundants. As Eqs. (13.15) through (13.17) indicate, the compatibility
equations of structures with multiple degrees of indeterminacy are, in
general, coupled, in the sense that each equation may contain more than
one unknown redundant. The coupling occurs because the deflection
at the location of a redundant may be caused not just by that par-
ticular redundant (and the external load), but also by some, or all, of
the remaining redundants. Because of such coupling, the compatibility
equations must be solved simultaneously to determine the unknown
redundants.

The primary beam is statically determinate, so its deflections due to
the external loading as well as the flexibility coe‰cients can be evaluated
by using the methods discussed previously in this text. The total number
of deflections (including flexibility coe‰cients) involved in a system of
compatibility equations depends on the degree of indeterminacy of the
structure. From Eqs. (13.15) through (13.17), we can see that for the
beam under consideration, which is indeterminate to the third degree,
the compatibility equations contain a total of 12 deflections (i.e., 3 de-
flections due to the external loading plus 9 flexibility coe‰cients). How-
ever, according to Maxwell’s law of reciprocal deflections (Section 7.8),
fCB ¼ fBC , fDB ¼ fBD, and fDC ¼ fCD. Thus, three of the flexibility co-
e‰cients can be obtained by the application of Maxwell’s law, thereby
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reducing the number of deflections to be computed to 9. Using similar
reasoning, it can be shown that the total number of deflections needed
for the analysis of a structure with the degree of indeterminacy of i

equals ði þ i2Þ, of which ð3i þ i2Þ=2 deflections must be computed,
whereas the remaining can be obtained by the application of Maxwell’s
law of reciprocal deflections.

Once the redundants have been determined by solving the compati-
bility equations, the other response characteristics of the structure can
be evaluated either by equilibrium or by superposition.

Procedure for Analysis

Based on the foregoing discussion, we can develop the following step-
by-step procedure for the analysis of structures by the method of con-
sistent deformations:

1. Determine the degree of indeterminacy of the structure.
2. Select redundant forces and/or moments. The total number of re-

dundants must be equal to the degree of indeterminacy of the
structure. Also, the redundants must be chosen so that the removal
of the corresponding restraints from the given indeterminate struc-
ture results in a primary structure that is statically determinate and
stable. The senses of the redundants are not known and can be ar-
bitrarily assumed. A positive answer for a redundant will imply that
the sense initially assumed for the redundant was correct.

3. Remove the restraints corresponding to the redundants from the
given indeterminate structure to obtain the primary (determinate)
structure.

4. a. Draw a diagram of the primary structure with only the external
loading applied to it. Sketch a deflected shape of the structure,
and show the deflection (or slope) at the point of applica-
tion and in the direction of each redundant by an appropriate
symbol.

b. Next, for each redundant, draw a diagram of the primary
structure with only the unit value of the redundant applied to
it. The unit force (or moment) must be applied in the positive
direction of the redundant. Sketch a deflected shape of the
structure, and show by appropriate symbols the flexibility co-
e‰cients at the locations of all the redundants. To indicate that
the load as well as the structural response is to be multiplied by
the redundant under consideration, show the redundant pre-
ceded by a multiplication sign (�) next to the diagram of the
structure. The deflection (or slope) at the location of any re-
dundant due to the redundant under consideration equals the
flexibility coe‰cient at that location multiplied by the unknown
magnitude of the redundant.
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5. Write a compatibility equation for the location of each redun-
dant by setting the algebraic sum of the deflections (or slopes) of the
primary structure due to the external loading and each of the re-
dundants equal to the known displacement (or rotation) at the cor-
responding location on the actual indeterminate structure. The total
number of compatibility equations thus obtained must be equal to
the number of redundants.

6. Compute the deflections (and the flexibility coe‰cients) involved
in the compatibility equations by using the methods discussed pre-
viously in this text and by the application of Maxwell’s law of re-
ciprocal deflections. A deflection (or flexibility coe‰cient) at the
location of a redundant is considered to be positive if it has the
same sense as that assumed for the redundant.

7. Substitute the values of deflections computed in step 6 into
the compatibility equations, and solve them for the unknown
redundants.

8. Once the redundants have been determined, the other response
characteristics (e.g., reactions, shear and bending moment dia-
grams, and/or member forces) of the indeterminate structure can be
evaluated either through equilibrium considerations or by super-
position of the responses of the primary structure due to the ex-
ternal loading and due to each of the redundants.

Example 13.8

Determine the reactions and draw the shear and bending moment diagrams for the three-span continuous beam shown
in Fig. 13.13(a) using the method of consistent deformations.

Solution
Degree of Indeterminacy i ¼ 2.

Primary Beam The vertical reactions By and Cy at the interior supports B and C, respectively, are selected as the
redundants. The roller supports at B and C are then removed to obtain the primary beam shown in Fig. 13.13(b). Next,
the primary beam is subjected separately to the 30 kN/m external load and the unit values of the redundants By and Cy,
as shown in Fig. 13.13(b), (c), and (d), respectively.

Compatibility Equations Since the deflections of the actual indeterminate beam at supports B and C are zero,
we set equal to zero the algebraic sum of the deflections at points B and C, respectively, of the primary beam due to the
30 kN/m external load and each of the redundants to obtain the compatibility equations:

DBO þ fBBBy þ fBCCy ¼ 0 (1)

DCO þ fCBBy þ fCCCy ¼ 0 (2)

continued
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FIG. 13.13
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Deflections of the Primary Beam By using the beam-deflection formulas, we obtain

DBO ¼ DCO¼ � 35640 kN-m3

EI

fBB ¼ fCC ¼ 96 m3

EI

fCB ¼ 84 m3

EI

By applying Maxwell’s law,

fBC ¼ 84 m3

EI

Magnitudes of the Redundants By substituting the values of the deflections and flexibility coe‰cients of the primary
beam just computed into the compatibility equations (Eqs. (1) and (2)), we obtain

�35640þ 96By þ 84Cy ¼ 0

�35640þ 84By þ 96Cy ¼ 0

FIG. 13.13 (contd.)

continued
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or

96By þ 84Cy ¼ 35640 (1a)

84By þ 96Cy ¼ 35640 (2a)

Solving Eqs. (1a) and (2a) simultaneously for By and Cy, we obtain

By ¼ Cy ¼ 198 kN " Ans.

Reactions The remaining reactions can now be determined by applying the three equations of equilibrium to the
free body of the continuous beam as follows (Fig. 13.13(e)):

þ !P
Fx ¼ 0 Ax ¼ 0 Ans.

þ ’
P

MD ¼ 0 �Ayð18Þ þ 30ð18Þð9Þ � 198ð6þ 12Þ ¼ 0

Ay ¼ 72 kN " Ans.

þ "PFy ¼ 0 72� 30ð18Þ þ 198þ 198þDy ¼ 0

Dy ¼ 72 kN " Ans.

Shear and Bending Moment Diagrams The shear and bending moment diagrams of the beam are shown in
Fig. 13.13(f ). Ans.

The shapes of the shear and bending moment diagrams for continuous beams, in general, are similar to those for
the three-span continuous beam shown in Fig. 13.13(f ). As shown in this figure, negative bending moments generally
develop at the interior supports of continuous beams, whereas the bending moment diagram is usually positive over the
middle portions of the spans. The bending moment at a hinged support at an end of the beam must be zero, and it is
generally negative at a fixed end support. Also, the shape of the bending moment diagram is parabolic for the spans
subjected to uniformly distributed loads, and it consists of linear segments for spans subjected to concentrated loads.
The actual values of the bending moments, of course, depend on the magnitude of the loading as well as on the lengths
and flexural rigidities of the spans of the continuous beam.

Example 13.9

Determine the reactions and draw the shear and bending moment diagrams for the beam shown in Fig. 13.14(a) by the
method of consistent deformations.

Solution
Degree of Indeterminacy i ¼ 2.

Primary Beam The vertical reactions Cy and Ey at the roller supports C and E, respectively, are selected as
the redundants. These supports are then removed to obtain the cantilever primary beam shown in Fig. 13.14(b).
Next, the primary beam is subjected separately to the external loading and the unit values of the redundants Cy and Ey,
as shown in Fig. 13.14(b), (c), and (d), respectively.
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=
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Compatibility Equations See Fig. 13.14(a) through (d).

DCO þ fCCCy þ fCEEy ¼ 0 (1)

DEO þ fECCy þ fEEEy ¼ 0 (2)

Deflections of Primary Beam By using the deflection formulas, we obtain

DCO ¼ � 82;500 kN�m3

EI
DEO ¼ � 230;000 kN�m3

EI

120 kN 120 kN

D
E

B
C

A

Ay = 53.572 kN Cy = 145.714 kN

(e) Support Reactions for Indeterminate Beam

Ey = 40.714 kN

Ax = 0

MA = 128.58 kN-m

A B

D E

C

53.572

79.286

–66.428

Shear diagram (kN)

Bending moment diagram (kN-m)

(f) Shear and Bending Moment Diagrams for
Indeterminate Beam

–40.714

A

B D E

C

139.28

203.57

128.58
192.86

FIG. 13.14 (contd.)
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fCC ¼ 333:333 m3

EI
fEC ¼ 833:333 m3

EI

fEE ¼ 2;666:667 m3

EI

By applying Maxwell’s law,

fCE ¼ 833:333 m3

EI

Magnitudes of the Redundants By substituting the deflections of the primary beam into the compatibility equations,
we obtain

� 82;500þ 333:333Cy þ 833:333Ey ¼ 0

�230;000þ 833:333Cy þ 2;666:667Ey ¼ 0

or

333:333Cy þ 833:333Ey ¼ 82;500 (1a)

833:333Cy þ 2;666:667Ey ¼ 230;000 (2a)

Solving Eqs. (1a) and (2a) simultaneously for Cy and Ey, we obtain

Cy ¼ 145:714 kN " Ey ¼ 40:714 kN " Ans.

Reactions The remaining reactions can now be determined by applying the three equations of equilibrium to the
free body of the indeterminate beam (Fig. 13.14(e)):

þ !P
Fx ¼ 0 Ax ¼ 0 Ans.

þ "PFy ¼ 0 Ay � 120þ 145:714� 120þ 40:714 ¼ 0

Ay ¼ 53:572 kN " Ans.

þ ’
P

MA ¼ 0 MA � 120ð5Þ þ 145:714ð10Þ � 120ð15Þ þ 40:714ð20Þ ¼ 0

MA ¼ 128:58 kN�m ’

Ans.

Shear and Bending Moment Diagrams See Fig. 13.14(f ).

Example 13.10

Determine the moments at the supports of the fixed beam shown in Fig. 13.15(a) by the method of consistent deforma-
tions. Also, draw the bending moment diagram for the beam.

Solution
Degree of Indeterminacy The beam is supported by six support reactions; thus, its degree of indeterminacy is

i ¼ 6� 3 ¼ 3. However, since the beam is subjected only to vertical loading, the horizontal reactions Ax and Cx must be
zero. Therefore, to analyze this beam, we need to select only two of the remaining four reactions as the redundants.
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Primary Beam The moments MA and MC at the fixed supports A and C, respectively, are selected as the re-
dundants. The restraints against rotation at ends A and C of the fixed beam are then removed to obtain the simply
supported primary beam shown in Fig. 13.15(b). Next, the primary beam is subjected separately to the external load P

and the unit values of redundants MA and MC , as shown in Fig. 13.15(b), (c), and (d), respectively.

Compatibility Equations Noting that the slopes of the actual indeterminate beam at the fixed supports A and C

are zero, we write the compatibility equations:

yAO þ fAAMA þ fACMC ¼ 0 (1)

yCO þ fCAMA þ fCCMC ¼ 0 (2)

Slopes of the Primary Beam The slopes at ends A and C of the primary beam due to the external load P and due to
the unit value of each of the redundants obtained by using either the deflection formulas or the conjugate-beam method are

yAO ¼ �PbðL2 � b2Þ
6EIL

yCO ¼ �PaðL2 � a2Þ
6EIL

fAA ¼ fCC ¼ L

3EI

fCA ¼ L

6EI

By applying Maxwell’s law,

fAC ¼ L

6EI

Magnitudes of the Redundants By substituting the expressions for slopes into the compatibility equations (Eqs. (1)
and (2)), we obtain

�PbðL2 � b2Þ
6EIL

þ L

3EI

� �
MA þ L

6EI

� �
MC ¼ 0 (1a)

�PaðL2 � a2Þ
6EIL

þ L

6EI

� �
MA þ L

3EI

� �
MC ¼ 0 (2a)

which can be simplified as

2MA þMC ¼ PbðL2 � b2Þ
L2 (1b)

MA þ 2MC ¼ PaðL2 � a2Þ
L2 (2b)

To solve Eqs. (1b) and (2b) for MA and MC , we multiply Eq. (1b) by 2 and subtract it from Eq. (2b):

MA ¼ � P

3L2
½aðL2 � a2Þ � 2bðL2 � b2Þ�

¼ � P

3L2
½aðL� aÞðLþ aÞ � 2bðL� bÞðLþ bÞ�
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¼ �Pab

3L2
½ðLþ aÞ � 2ðLþ bÞ�

¼ Pab2

L2

MA ¼ Pab2

L2

’

Ans.

By substituting the expression for MA into Eq. (1b) or Eq. (2b) and solving for MC , we obtain the following.

MC ¼ Pa2b

L2
@ Ans.

Bending Moment Diagram The vertical reactions Ay and Cy can now be determined by superposition of the
reactions of the primary beam due to the external load P and due to each of the redundants (Fig. 13.15(b)
through (d)). Thus

Ay ¼ Pb

L
þ 1

L
ðMA �MCÞ ¼ Pb2

L3
ð3aþ bÞ

Cy ¼ Pa

L
� 1

L
ðMA �MCÞ ¼ Pa2

L3
ðaþ 3bÞ

The bending moment diagram of the beam is shown in Fig. 13.15(e). Ans.
The moments at the ends of beams whose ends are fixed against rotation are usually referred to as fixed-end

moments. Such moments play an important role in the analysis of structures by the displacement method, to be
considered in subsequent chapters. As illustrated here, the expressions for fixed-end moments due to various
loading conditions can be conveniently derived by using the method of consistent deformations. The fixed-end-
moment expressions for some common types of loading conditions are given inside the back cover of the book for
convenient reference.

Example 13.11

Determine the reactions and draw the shear and bending moment diagrams for the four-span continuous beam shown in
Fig. 13.16(a) using the method of consistent deformations.

Solution
Symmetry As the beam and the loading are symmetric with respect to the vertical s axis passing through roller

support C (Fig. 13.16(a)), we will analyze only the right half of the beam with symmetric boundary conditions, as
shown in Fig. 13.16(b). The response of the left half of the beam will then be obtained by reflecting the response of the
right half to the other side of the axis of symmetry.
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Degree of Indeterminacy The degree of indeterminacy of the substructure (Fig. 13.16(b)) is 2. Note that, since the
degree of indeterminacy of the complete continuous beam (Fig. 13.16(a)) is three, the utilization of structural symmetry
will reduce the computational e¤ort required in the analysis.

Primary Beam The vertical reactions Dy and Ey at the roller supports D and E, respectively, of the substructure are
selected as the redundants. The roller supports at D and E are then removed to obtain the cantilever primary beam
shown in Fig. 13.16(c).

Compatibility Equations See Fig. 13.16(b) through (e).

DDO þ fDDDy þ fDEEy ¼ 0 (1)

DEO þ fEDDy þ fEEEy ¼ 0 (2)

Deflections of the Primary Beam By using the deflection formulas, we obtain

DDO ¼ � 17wL4

24EI
DEO ¼ � 2wL4

EI

fDD ¼ L3

3EI
fED ¼ 5L3

6EI

fEE ¼ 8L3

3EI

By applying Maxwell’s law,

fDE ¼ 5L3

6EI

Magnitudes of the Redundants By substituting the deflections of the primary beam into the compatibility equations,
we obtain

� 17wL4

24EI
þ L3

3EI

� �
Dy þ 5L3

6EI

� �
Ey ¼ 0 (1a)

� 2wL4

EI
þ 5L3

6EI

� �
Dy þ 8L3

3EI

� �
Ey ¼ 0 (2a)

which can be simplified to

8Dy þ 20Ey ¼ 17wL (1b)

5Dy þ 16Ey ¼ 12wL (2b)

Solving Eqs. (1b) and (2b) simultaneously for Dy and Ey, we obtain

Dy ¼ 8

7
wL " Ey ¼ 11

28
wL " Ans.
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Reactions The remaining reactions of the substructure, obtained by applying the equations of equilibrium,
are shown in Fig. 13.16(f ). The reactions to the left of the s axis are then obtained by reflection, as shown in
Fig. 13.16(g).

Ans.

Shear and Bending Moment Diagrams By using the reactions of the continuous beam, its shear and bending mo-
ment diagrams are constructed. These diagrams are shown in Fig. 13.16(h). Ans.

Example 13.12

Determine the reactions and the force in each member of the truss shown in Fig. 13.17(a) by the method of consistent
deformations.

Solution
Degree of Indeterminacy i ¼ ðmþ rÞ � 2j ¼ ð14þ 4Þ � 2ð8Þ ¼ 2.

Primary Truss The vertical reaction Dy at the roller support D and the axial force FBG in the diagonal member BG
are selected as the redundants. The roller support D and member BG are then removed from the given indeterminate
truss to obtain the primary truss shown in Fig. 13.17(b). The primary truss is subjected separately to the external load-
ing (Fig. 13.17(b)), a unit value of the redundant Dy (Fig. 13.17(c)), and a unit tensile force in the redundant member
BG (Fig. 13.17(d)).

Compatibility Equations The compatibility equations can be expressed as

DDO þ fDDDy þ fD;BGFBG ¼ 0 (1)

DBGO þ fBG;DDy þ fBG;BGFBG ¼ 0 (2)

FIG. 13.17
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in which DDO ¼ vertical deflection at joint D of the primary truss due to the external loading; DBGO ¼ relative dis-
placement between joints B and G due to the external loading; fDD ¼ vertical deflection at joint D due to a unit load at
joint D; fBG;D ¼ relative displacement between joints B and G due to a unit load at joint D; fBG;BG ¼ relative displace-
ment between joints B and G due to a unit tensile force in member BG; and fD;BG ¼ vertical deflection at joint D due to
a unit tensile force in member BG.

Deflections of Primary Truss The virtual work expressions for the preceding deflections are

DDO ¼
PFOuDL

AE
DBGO ¼

PFOuBGL

AE

fDD ¼
P u2DL

AE
fBG;BG ¼

P u2BGL

AE

fBG;D ¼ fD;BG ¼
P uDuBGL

AE

in which FO; uD, and uBG represent the member forces due to the external loading, a unit load at joint D, and a unit
tensile force in member BG, respectively. The numerical values of the member forces, as computed by the method of
joints (Fig. 13.17(b) through (d)), are tabulated in Table 13.4. Note that since the axial rigidity EA is the same for all the
members, only the numerators of the virtual work expressions are evaluated in Table 13.4. Thus

DDO ¼ � 4;472:642 kN�m
AE

DBGO ¼ � 992:819 kN�m
AE

fDD ¼ 48:736 m

AE
fBG;BG ¼ 48:284 m

AE

fBG;D ¼ fD;BG ¼ � 6:773 m

AE

Magnitudes of the Redundants By substituting these deflections and flexibility coe‰cients into the compatibility
equations (Eqs. (1) and (2)), we write

�4;472:642þ 48:736Dy � 6:773FBG ¼ 0 (1a)

�992:819� 6:773Dy þ 48:284FBG ¼ 0 (2a)

Solving Eqs. (1a) and (2a) simultaneously for Dy and FBG, we obtain

Dy ¼ 96:507 kN " FBG ¼ 34:1 kN ðTÞ Ans.

Reactions The remaining reactions of the indeterminate truss can now be determined by superposition of reactions
of the primary truss due to the external loading and due to each of the redundants. The reactions thus obtained are
shown in Fig. 13.17(e). Ans.

Member Axial Forces The forces in the remaining members of the indeterminate truss can be determined by using
the superposition relationship:

F ¼ FO þ uDDy þ uBGFBG

The member forces thus obtained are shown in Table 13.4 and Fig. 13.17(e).

Ans.
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TABLE 13.4

Member
L
(m)

FO

(kN)
uD

(kN/kN)
uBG

(kN/kN)
FOuDL
(kN�m)

FOuBGL
(kN�m)

u2DL
(m)

u2BGL
(m)

uDuBGL
(m)

F ¼ FO þ uDDy

þ uBGFBG (kN)

AB 10 152.5 �0.25 0 �381.25 0 0.625 0 0 128.373

BC 10 152.5 �0.25 �0.707 �381.25 �1,078.175 0.625 5 1.768 104.265

CD 10 77.5 �0.75 0 �581.25 0 5.625 0 0 5.12

DE 10 77.5 �0.75 0 �581.25 0 5.625 0 0 5.12

FG 10 �85 0.5 �0.707 �425 600.95 2.5 5 �3.535 �60.855
GH 10 �85 0.5 0 �425 0 2.5 0 0 �36.747
BF 10 80 0 �0.707 0 �565.60 0 5 0 55.891

CG 10 0 0 �0.707 0 0 0 5 0 �24.109
DH 10 0 �1 0 0 0 10 0 0 �96.507
AF 14.142 �116.673 0.354 0 �584.096 0 1.772 0 0 �82.51
BG 14.142 0 0 1 0 0 0 14.142 0 34.1

CF 14.142 3.536 �0.354 1 �17.702 50.006 1.772 14.142 �5.006 3.473

CH 14.142 109.602 0.354 0 548.697 0 1.772 0 0 143.765

EH 14.142 �109.602 1.061 0 �1,644.541 0 15.92 0 0 �7.208P �4,472.642 �992.819 48.736 48.284 �6.773

Example 13.13

Determine the reactions and draw the shear and bending moment diagrams for the frame shown in Fig. 13.18(a) by the
method of consistent deformations.

Solution
Degree of Indeterminacy i ¼ 2.

Primary Frame The reactions DX and DY at the hinged support D are selected as the redundants. The hinged
support D is then removed to obtain the primary frame shown in Fig. 13.18(b). Next, the primary frame is subjected
separately to the external loading and the unit values of the redundants DX and DY , as shown in Fig. 13.18(b), (c), and
(d), respectively.

Compatibility Equations Noting that the horizontal and vertical deflections of the actual indeterminate frame at the
hinged support D are zero, we write the compatibility equations:
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DDXO þ fDX ;DXDX þ fDX ;DYDY ¼ 0 (1)

DDYO þ fDY ;DXDX þ fDY ;DYDY ¼ 0 (2)

Deflections of Primary Frame The equations for bending moments for the members of the frame due to the external
loading and unit values of the redundants are tabulated in Table 13.5. By applying the virtual work method, we obtain

DDXO ¼
Pð

MOmDX

EI
dx ¼ 44791:7 kN-m3

EI

DDYO ¼
Pð

MOmDY

EI
dx ¼ � 83593:75 kN-m3

EI

fDX ;DX ¼
Pð

m2
DX

EI
dx ¼ 333:33 m3

EI

fDY ;DY ¼
Pð

m2
DY

EI
dx ¼ 833:33 m3

EI

fDX ;DY ¼ fDY ;DX ¼
Pð

mDXmDY

EI
dx ¼ � 375 m3

EI

Magnitudes of the Redundants By substituting these deflections and flexibility coe‰cients into the compatibility
equations, we write

44791:7þ 333:33DX � 375DY ¼ 0 (1a)

� 83593:75� 375DX þ 833:33DY ¼ 0 (2a)

Solving Eqs. (1a) and (2a) simultaneously for DX and DY , we obtain

DX ¼ 52:52 kN DY ¼ 166:13 kN " Ans.

Reactions The remaining reactions and the member end forces of the indeterminate frame can now be
determined by applying the equations of equilibrium. The reactions and member and forces thus obtained are shown
in Fig. 13.18(e). Ans.

Shear and Bending Moment Diagrams See Fig. 13.18(f ). Ans.

TABLE 13.5

x coordinate

Member Origin Limits (m) MO (kN-m) mDX (kN-m/kN) mDY (kN-m/kN)

AB A 0–5 �1;750þ 50x �x 10

CB C 0–10 �15x2 �5 x

DC D 0–5 0 x 0
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13.4 SUPPORT SETTLEMENTS, TEMPERATURE CHANGES, AND FABRICATION ERRORS

Support Settlements

Thus far, we have considered the analysis of structures with unyielding
supports. As discussed in Chapter 11, support movements due to weak
foundations and the like may induce significant stresses in externally in-
determinate structures and must be considered in their designs. Support
settlements, however, do not have any e¤ect on the stress conditions of
structures that are internally indeterminate but externally determinate.
This lack of e¤ect is due to the fact that the settlements cause such
structures to displace and/or rotate as rigid bodies without changing
their shapes. The method of consistent deformations, as developed in
the preceding sections, can be easily modified to include the e¤ect of
support settlements in the analysis.

Consider, for example, a two-span continuous beam subjected to a
uniformly distributed load w, as shown in Fig. 13.19(a). Suppose that
the supports B and C of the beam undergo small settlements DB and DC ,
respectively, as shown in the figure. To analyze the beam, we consider
the vertical reactions By and Cy to be the redundants. The supports B

and C are removed from the indeterminate beam to obtain the primary
beam, which is then subjected separately to the external load w and the
unit values of the redundants By and Cy, as shown in Fig. 13.19(b), (c),
and (d), respectively. By realizing that the deflections of the actual in-
determinate beam at supports B and C are equal to the settlements DB

and DC , respectively, we obtain the compatibility equations

DBO þ fBBBy þ fBCCy ¼ DB (13.18)

DCO þ fCBBy þ fCCCy ¼ DC (13.19)

which can be solved for the redundants By and Cy. Note that the right-
hand sides of the compatibility equations (Eqs. (13.18) and (13.19)) are
no longer equal to zero, as in the case of unyielding supports considered
in the previous sections, but are equal to the prescribed values of settle-
ments at supports B and C, respectively. Once the redundants have been
determined by solving the compatibility equations, the other response
characteristics of the beam can be evaluated either by equilibrium or by
superposition.

Although support settlements are usually specified with respect to
the undeformed position of the indeterminate structure, the magnitudes
of such displacements to be used in the compatibility equations must
be measured from the chord connecting the deformed positions of
the supports of the primary structure to the deformed positions of the
redundant supports. Any such support displacement is considered to be
positive if it has the same sense as that assumed for the redundant.
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In the case of the beam of Fig. 13.19(a), since the end supports A and D

do not undergo any settlement, the chord AD of the primary beam
coincides with the undeformed position of the indeterminate beam;
therefore, the settlements of supports B and C relative to the chord of
the primary beam are equal to the prescribed settlements DB and DC ,
respectively.

Now, suppose that all of the supports of a beam undergo settlement
as shown in Fig. 13.20. If we consider the reactions By and Cy to be the
redundants, then the displacements DBR and DCR of supports B and C,
respectively, relative to the chord of the primary beam should be used in

FIG. 13.19
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the compatibility equations instead of the specified displacements DB

and DC . This is because only the displacements relative to the chord
cause stresses in the beam. In other words, if the supports of the beam
would have settled either by equal amounts or by amounts so that the
deformed positions of all of the supports would lie on a straight line,
then the beam would remain straight without bending, and no stresses
would develop in the beam.

FIG. 13.20

Example 13.14

Determine the reactions and draw the shear and bending moment diagrams for the three-span continuous beam shown
in Fig. 13.21(a) due to the uniformly distributed load and due to the support settlements of 15 mm at B, 37 mm at C,
and 18 mm at D. Use the method of consistent deformations.

Solution
This beam was previously analyzed in Example 13.8 for the 30 kN/m uniformly distributed loading by selecting the vertical
reactions at the interior supports B and C as the redundants. We will use the same primary beam as used previously.

Relative Settlements The specified support settlements are depicted in Fig. 13.21(b) using an exaggerated scale. It
can be seen from this figure that the settlements of supports B and C relative to the chord of the primary beam (which is
the line connecting the displaced positions of supports A and D) are

DBR ¼ �9 mm and DCR ¼ �25 mm

in which the negative signs for the magnitudes of DBR and DCR indicate that these settlements occur in the downward
direction—that is, opposite to the upward direction assumed for the redundants By and Cy.

Compatibility Equations The compatibility equations for the beam remain the same as in Example 13.8, except that
the right-hand sides of the equations must now be set equal to the settlements DBR and DCR. Thus

continued
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DBO þ fBBBy þ fBCCy ¼ DBR (1)

DCO þ fCBBy þ fCCCy ¼ DCR (2)

Deflections of Primary Beam In Example 13.8, the deflections and the flexibility coe‰cients of the beam were ex-
pressed in terms of EI . Since the right-hand sides of the compatibility equations were zero, the EI terms simply canceled

continued
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out of the computations. In the present example, however, because of the presence of support settlements on the right-
hand sides of the compatibility equations, the EI terms cannot be canceled out; therefore, the actual numerical values of
deflections and flexibility coe‰cients must be computed.

DBO ¼ DCO ¼ � 35640 kN-m3

EI
¼ � �35640
ð200ð106Þ3000ð10�6Þ ¼ �0:0594 m

fBB ¼ fCC ¼ 96 m3

EI
¼ 96

ð200ð106Þ3000ð10�6Þ ¼ 0:00016 m

fCB ¼ fBC ¼ 84 m3

EI
¼ 84

ð200ð106Þ3000ð10�6Þ ¼ 0:00014 m

Magnitudes of the Redundants By substituting the numerical values into the compatibility equations, we write

�0:0594þ 0:00016By þ 0:00014Cy ¼ �0:009 (1a)

�0:0594þ 0:00014By þ 0:00016Cy ¼ �0:025 (2a)

By solving Eqs. (1a) and (2a) simultaneously for By and Cy, we obtain

By ¼ 541:3 kN " and Cy ¼ �258:6 kN ¼ 258:6 kN # Ans.

Reactions and Shear and Bending Moment Diagrams The remaining reactions of the continuous beam can now be
determined by equilibrium. The reactions and the shear and bending moment diagrams of the beam are shown in
Fig. 13.21(c). A comparison of these results with those of Example 13.8 (without settlement) indicates that even small
support settlements may have a significant e¤ect on the reactions and the shear and bending moment diagrams of
indeterminate structures. Ans.

Example 13.15

Determine the reactions and draw the shear and bending moment diagrams for the beam shown in Fig. 13.22(a) due to
the loading shown and due to the support settlements of 40 mm at C and 25 mm at E. Use the method of consistent
deformations.

continued
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(b) Support Settlements

A C E

0.04 m 0.025 m

Ay

MA

Ax

Cy

Ey

120 kN

Reactions

120 kN

BA

C E

D

MA = 288 kN.m

Ax = 0

Ay = 80.6 kN Cy = 107.6 kN Ey = 51.8 kN

Shear diagram (kN)

80.6

–39.4 –51.8

68.2

A B C
D E

Bending moment diagram (kN–m)

(c) Support Reactions and Shear and Bending Moment
Diagrams for Indeterminate Beam

A C

B D E

115

259

82

288

FIG. 13.22 (contd.)
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Temperature Changes and Fabrication Errors

Unlike support settlements, which a¤ect only externally indeterminate
structures, temperature changes and fabrication errors may a¤ect the

Solution
This beam was previously analyzed in Example 13.9 for the external loading by selecting the vertical reactions at the
roller supports C and E as the redundants. We will use the same primary beam as used previously.

Support Settlements The specified support settlements are depicted in Fig. 13.22(b), from which it can be seen
that the chord AE of the primary beam coincides with the undeformed position of the indeterminate beam; therefore,
the settlements of supports C and E relative to the chord of the primary beam are equal to the prescribed settlements,
that is

DCR ¼ DC ¼ �0:04 m and DER ¼ DE ¼ �0:025 m

Compatibility Equations

DCO þ fCCCy þ fCEEy ¼ DCR (1)

DEO þ fECCy þ fEEEy ¼ DER (2)

Deflections of Primary Beam From Example 13.9,

DCO ¼ � 82;500 kN �m3

EI
¼ � 82;500

70ð106Þð1;250Þð10�6Þ ¼ �0:943 m

DEO ¼ � 230;000 kN �m3

EI
¼ � 230;000

70ð106Þð1;250Þð10�6Þ ¼ �2:629 m

fCC ¼ 333:333 m3

EI
¼ 333:333

70ð106Þð1;250Þð10�6Þ ¼ 0:00381 m=kN

fEC ¼ fCE ¼ 833:333 m3

EI
¼ 833:333

70ð106Þð1;250Þð10�6Þ ¼ 0:00952 m=kN

fEE ¼ 2;666:667 m3

EI
¼ 2;666:667

70ð106Þð1;250Þð10�6Þ ¼ 0:0305 m=kN

Magnitudes of the Redundants By substituting the numerical values into the compatibility equations, we write

�0:943þ 0:00381Cy þ 0:00952Ey ¼ �0:04 (1a)

�2:629þ 0:00952Cy þ 0:0305Ey ¼ �0:025 (2a)

Solving Eqs. (1a) and (2a) simultaneously for Cy and Ey, we obtain

Cy ¼ 107:6 kN " and Ey ¼ 51:8 kN " Ans.

Reactions and Shear and Bending Moment Diagrams The remaining reactions of the indeterminate beam
can now be determined by equilibrium. The reactions and the shear and bending moment diagrams are shown in
Fig. 13.22(c). Ans.
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stress conditions of externally and/or internally indeterminate struc-
tures. The procedure for the analysis of structures subjected to temper-
ature changes and/or fabrication errors is the same as used previously
for the case of external loads. The only di¤erence is that the primary
structure is now subjected to the prescribed temperature changes and/or
fabrication errors (instead of external loads) to evaluate its deflection at
the locations of redundants due to these e¤ects. The redundants are then
determined by applying the usual compatibility conditions that the de-
flections of the primary structure at the locations of the redundants due
to the combined e¤ect of temperature changes and/or fabrication errors
and the redundants must equal the known deflections at the corre-
sponding locations on the actual indeterminate structure. The procedure
is illustrated by the following example.

Example 13.16

Determine the reactions and the force in each member of the truss shown in Fig. 13.23(a) due to a temperature
increase of 45�C in member AB and a temperature drop of 20�C in member CD. Use the method of consistent
deformations.

Solution
Degree of Indeterminacy i ¼ ðmþ rÞ � 2j ¼ ð6þ 3Þ � 2ð4Þ ¼ 1. The truss is internally indeterminate to the first

degree.

Primary Truss The axial force FAD in the diagonal member AD is selected to be the redundant. The primary truss
obtained by removing member AD is shown in Fig. 13.23(b). Next, the primary truss is subjected separately to the pre-
scribed temperature changes and a 1-kN tensile force in the redundant member AD, as shown in Fig. 13.23(b) and (c),
respectively.

Compatibility Equation The compatibility equation can be expressed as

DADO þ fAD;ADFAD ¼ 0 (1)

in which DADO denotes the relative displacement between joints A and D of the primary truss due to temperature
changes and the flexibility coe‰cient fAD;AD denotes the relative displacement between the same joints due to a unit
value of the redundant FAD.

Deflections of Primary Truss As discussed in Section 7.3, the virtual work expression for DADO can be written as

DADO ¼
P

aðDTÞLuAD
in which the product aðDTÞL equals the axial deformation of a member of the primary truss due to a change in tem-
perature DT , and uAD represents the axial force in the same member due to a 1-kN tensile force in member AD. The
numerical values of these quantities are tabulated in Table 13.6, from which DADO is determined to be

DADO ¼ �1:92 mm

continued
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Next, the flexibility coe‰cient fAD;AD is computed by using the virtual work expression (see Table 13.6)

fAD;AD ¼
P u2ADL

AE
¼ 0:0479 mm

Magnitude of the Redundant By substituting the values of DADO and fAD;AD into the compatibility equation
(Eq. (1)), we obtain

�1:92þ ð0:0479ÞFAD ¼ 0

FAD ¼ 40:084 kN ðTÞ Ans.

continued

FIG. 13.23
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SUMMARY

In this chapter we have discussed a general formulation of the force (flex-
ibility) method of analysis of statically indeterminate structures, called the
method of consistent deformations. The method involves removing
enough restraints from the indeterminate structure to render it statically
determinate. The determinate structure is called the primary structure,
and the reactions or internal forces associated with the excess restraints
removed from the indeterminate structure are termed redundants. The re-
dundants are now treated as unknown loads applied to the primary struc-
ture, and their magnitudes are determined by solving the compatibility
equations based on the condition that the deflections of the primary
structure at the locations (and in the directions) of the redundants, due to
the combined e¤ect of the prescribed external loading and the unknown
redundants, must be equal to the known deflections at the corresponding

Reactions Since the truss is statically determinate externally, its reactions due to the temperature changes are
zero. Ans.

Member Axial Forces The forces in the members of the primary truss due to the temperature changes are zero, so
the forces in the members of the indeterminate truss can be expressed as

F ¼ uADFAD

The member forces thus obtained are shown in Table 13.6 and Fig. 13.23(d).

Ans.

TABLE 13.6

Member
L
(m)

A
(m2)

DT
(�C)

uAD
(kN/kN)

ðDTÞLuAD
(�C �m)

u2ADL=A
(1/m)

F ¼ uADFAD
(kN)

AB 8 0.005 45 �0.8 �288 1,024 �32.067
CD 8 0.005 �20 �0.8 128 1,024 �32.067
AC 6 0.005 0 �0.6 0 432 �24.05
BD 6 0.005 0 �0.6 0 432 �24.05
AD 10 0.003 0 1.0 0 3,333.333 40.084

BC 10 0.003 0 1.0 0 3,333.333 40.084P �160 9,578.667

DADO ¼ a
PðDTÞLuAD ¼ 1:2ð10�5Þð�160Þ ¼ �0:00192 m ¼ �1:92 mm

fAD;AD ¼ 1

E

P u2ADL

A
¼ 9;578:667

200ð106Þ ¼ 47:893ð10�6Þ m=kN ¼ 0:0479 mm=kN

FAD ¼ � DADO

fAD;AD
¼ 40:084 kN ðTÞ
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locations on the original indeterminate structure. Once the redundants
have been determined, the other response characteristics of the in-
determinate structure can be evaluated either through equilibrium consid-
erations or by superposition of the responses of the primary structure due
to the external loading and due to each of the redundants.

PROBLEMS

Section 13.1

13.1 through 13.4 Determine the reactions and draw the
shear and bending moment diagrams for the beams shown
in Figs. P13.1–P13.4 using the method of consistent de-
formations. Select the reaction at the roller support to be
the redundant.

3 m 3 m 3 m

B C

A D

60 kN 100 kN

E = 200 GPa
I = 3,250 (106) mm4

FIG. P13.1, P13.5, P13.49

FIG. P13.2, P13.6

13.5 through 13.8 Determine the reactions and draw the
shear and bending moment diagrams for the beams shown
in Figs. P13.1–P13.4 by using the method of consistent de-
formations. Select the reaction moment at the fixed support
to be the redundant.

FIG. P13.3, P13.7

FIG. P13.4, P13.8

13.9 through 13.12 Determine the reactions and draw the
shear and bending moment diagrams for the beams shown
in Figs. P13.9–P13.12 using the method of consistent de-
formations. Select the reaction at the interior support to be
the redundant.

4 m 4 m 4 m 4 m

B D

A EC

250 kN 250 kN

E = 200 GPa
I  = 600(106) mm4

FIG. P13.9, P13.30, P13.50

FIG. P13.10, P13.31

578 CHAPTER 13 Method of Consistent Deformations—Force Method

https://engineersreferencebookspdf.com



FIG. P13.11, P13.32

A C
B

5 m
2I

3 m
I

50 kN/m

E = 200 GPa
I = 1000(106) mm4

FIG. P13.12, P13.33, P13.51

13.13 through 13.25 Determine the reactions and draw the
shear and bending moment diagrams for the structures
shown in Figs. P13.13–P13.25 using the method of con-
sistent deformations.

FIG. P13.13

3 m

25 kN/m

6 m

BA
C

EI = constant

FIG. P13.14

7 m 7 m

A B C

EI = constant

15 kN/m

FIG. P13.15

FIG. P13.16

FIG. P13.17

FIG. P13.18
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5 m
EI = constant

5 m

10 m 20 kN/m

A

B D

C

150 kN

FIG. P13.19

6 m

4 m

4 m

200 kN

25 kN/m

FIG. P13.20

FIG. P13.21

10 m

EI = constant

50 kN/m

200 kN
C D

BA

5 m

FIG. P13.22

FIG. P13.23
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FIG. P13.24

FIG. P13.25

13.26 through 13.29 Determine the reactions and the force
in each member of the trusses shown in Figs. P13.26–
P13.29 using the method of consistent deformations.

FIG. P13.26

FIG. P13.27, P13.52

FIG. P13.28

FIG. P13.29

Section 13.2

13.30 through 13.33 Solve Problems 13.9 through 13.12 by
selecting the bending moment at the interior support to be
the redundant. See Figs. P13.9–P13.12.
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13.34 through 13.36 Determine the reactions and the force
in each member of the trusses shown in Figs. P13.34–
P13.36 using the method of consistent deformations.

4 m

E = 200 GPa

3 m

100 kN 100 kN

75 kN
(5000 mm 2)

C D

A B

(4000 mm2)

(4
00

0 
m

m
2 )

(4
00

0 
m

m
2 )

(5000 m
m

2 )

(4000 mm2)

FIG. P13.34

50 kN

100 kN

4 m

4 m

3 m
EA = constant

A B

C
D

E

FIG. P13.35

FIG. P13.36

Section 13.3

13.37 through 13.45 Determine the reactions and draw the
shear and bending moment diagrams for the structures
shown in Figs. P13.37–P13.45 using the method of con-
sistent deformations.

8 m 8 m

B
CA

25 kN/m

E = 70 GPa I = 1,300 (106) mm4

FIG. P13.37, P13.53

3 m 3 m 3 m 6 m

EI = constant

E
B C DA

160 kN
30 kN/m15 kN/m

FIG. P13.38
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6 m 4 m 6 m 4 m 4 m 4 m

I I2I

A C

B D F

E
G

120 kN 120 kN 150 kN

E =  200 Gpa
I = 500 (106) mm4

FIG. P13.39, P13.54

FIG. P13.40

FIG. P13.41

FIG. P13.42

FIG. P13.43

FIG. P13.44
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FIG. P13.45

13.46 and 13.47 Determine the reactions and the force in
each member of the trusses shown in Figs. P13.46 and
P13.47 using the method of consistent deformations.

FIG. P13.46

FIG. P13.47

Section 13.4

13.48 Determine the reactions for the beam shown in Fig.
P13.48 due to a small settlement D at the roller support C.

FIG. P13.48

13.49 Solve Problem 13.1 for the loading shown and a set-
tlement of 30 mm at support D. See Fig. P13.1.

13.50 Solve Problem 13.9 for the loading shown in Fig.
P13.9 and a settlement of 30 mm at support C.

13.51 Solve Problem 13.12 for the loading shown in Fig.
P13.12 and the support settlements of 6 mm at A, 16 mm at
B, and 18 mm at C.

13.52 Solve Problem 13.27 for the loading shown in Fig.
P13.27 and the support settlements of 25 mm at A, 50 mm
at C, and 40 mm at D.

13.53 Solve Problem 13.37 for the loading shown in Fig.
P13.37 and the support settlements of 50 mm at B and
25 mm at C.

13.54 Solve Problem 13.39 for the loading shown in Fig.
P13.39 and the support settlements of 10 mm at A, 65 mm
at C, 40 mm at E, and 25 mm at G.

13.55 Determine the reactions and the force in each mem-
ber of the truss shown in Fig. P13.55 due to a temperature
drop of 25�C in members AB;BC, and CD and a temper-
ature increase of 60�C in member EF . Use the method of
consistent deformations.

FIG. P13.55, P13.56
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13.56 Determine the reactions and the force in each mem-
ber of the truss shown in Fig. P13.55 if member EF is 30
mm too short. Use the method of consistent deformations.

13.57 Determine the reactions and the force in each mem-
ber of the truss shown in Fig. P13.57 due to a temperature
increase of 40�c in member AB. Use the method of con-
sistent deformations.

FIG. P13.57
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14
Three-Moment Equation and
the Method of Least Work
14.1 Derivation of Three-Moment Equation
14.2 Application of Three-Moment Equation
14.3 Method of Least Work

Summary
Problems

586

In this chapter, we consider two alternate formulations of the force
(flexibility) method of analysis of statically indeterminate structures:
(1) the three-moment equation and (2) the method of least work.

The three-moment equation, which was initially presented by
Clapeyron in 1857, provides a convenient tool for analyzing continuous
beams. The three-moment equation represents, in a general form, the
compatibility condition that the slope of the elastic curve be continu-
ous at an interior support of the continuous beam. Since the equation
involves three moments—the bending moments at the support under
consideration and at the two adjacent supports—it commonly is re-
ferred to as the three-moment equation. When using this method, the
bending moments at the interior (and any fixed) supports of the con-
tinuous beam are treated as the redundants. The three-moment equation
is then applied at the location of each redundant to obtain a set of
compatibility equations which can be solved for the unknown redundant
moments.

Another formulation of the force method, called the method of least
work, is also discussed in this chapter. This method, which is based on
Castigliano’s second theorem, essentially is similar to the method of
consistent deformations, except that the compatibility equations in the

Continuous Beam Bridges
Peter Albrektsen/Shutterstock
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method of least work are established by minimizing the structure’s strain
energy expressed in terms of the unknown redundants instead of by de-
flection superposition, as in the method of consistent deformations.

We begin this chapter with the derivation of the three-moment
equation for beams with prismatic spans and subjected to external loads
and support settlements. Next, we present a procedure for the applica-
tion of this equation for the analysis of continuous beams. Finally, we
consider the method of least work.

14.1 DERIVATION OF THREE-MOMENT EQUATION

Consider an arbitrary continuous beam subjected to external loads and
support settlements as shown in Fig. 14.1(a). As discussed in the pre-
vious chapter, this beam can be analyzed by the method of consistent
deformations by treating the bending moments at the interior supports
to be the redundants. From Fig. 14.1(a), we can see that the slope of the
elastic curve of the indeterminate beam is continuous at the interior
supports. When the restraints corresponding to the redundant bending
moments are removed by inserting internal hinges at the interior support
points, the primary structure thus obtained consists of a series of simply
supported beams. As shown in Figs. 14.1(b) and (c), respectively, when
this primary structure is subjected to the known external loading and
support settlements, discontinuities develop in the slope of the elastic
curve at the locations of the interior supports. Since the redundant
bending moments provide continuity of the slope of the elastic curve,
these unknown moments are applied as loads on the primary structure
as shown in Fig. 14.1(d), and their magnitudes are determined by solv-
ing the compatibility equations based on the condition that, at each in-
terior support of the primary structure, the slope of the elastic curve,
due to the combined e¤ect of the external loading, support settlements,
and unknown redundants, must be continuous.

The three-moment equation uses the foregoing compatibility con-
dition of slope continuity at an interior support to provide a general re-
lationship between the unknown bending moments at the support where
compatibility is being considered and at the adjacent supports to the left
and to the right, in terms of the loads on the intermediate spans and any
settlements of the three supports.

To derive the three-moment equation, we focus our attention on the
compatibility equation at an interior support c of the continuous beam,
with prismatic spans and a constant modulus of elasticity, shown in
Fig. 14.1(a). As indicated in this figure, the adjacent supports to the left
and to the right of c are identified as l and r, respectively; the subscripts l
and r are used to refer to the loads and properties of the left span, lc, and
the right span, cr, respectively; and the settlements of supports l; c, and
r are denoted by Dl;Dc, and Dr, respectively. The support settlements
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FIG. 14.1
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are considered positive when in the downward direction, as shown in the
figure.

From Fig. 14.1(a), we can see that the slope of the elastic curve of
the indeterminate beam is continuous at c. In other words, there is
no change of slope of the tangents to the elastic curve at just to the left
of c and just to the right of c; that is, the angle between the tangents is
zero. However, when the primary structure, obtained by inserting in-
ternal hinges at the interior support points, is subjected to external
loads, as shown in Fig. 14.1(b), a discontinuity develops in the slope of
the elastic curve at c, in the sense that the tangent to the elastic curve at
just to the left of c rotates relative to the tangent at just to the right of c.
The change of slope (or the angle) between the two tangents due to ex-
ternal loads is denoted by y1 and can be expressed as (see Fig. 14.1(b))

y1 ¼ yl1 þ yr1 (14.1)

in which yl1 and yr1 denote, respectively, the slopes at the ends c of the
spans to the left and to the right of the support c, due to external loads.
Similarly, the slope discontinuity at c in the primary structure, due to
support settlements (Fig. 14.1(c)), can be written as

y2 ¼ yl2 þ yr2 (14.2)

in which yl2 and yr2 represent, respectively, the slopes of the spans to the
left and to the right of c, due to support settlements. Finally, when the
primary structure is loaded with the redundant support bending mo-
ments, as shown in Fig. 14.1(d), the slope discontinuity at c can be
expressed as

y3 ¼ yl3 þ yr3 (14.3)

in which yl3 and yr3 denote, respectively, the slopes at end c of the spans
to the left and to the right of the support c, due to unknown redundant
moments.

The compatibility equation is based on the requirement that the
slope of the elastic curve of the actual indeterminate beam is continuous
at c; that is, there is no change of slope from just to the left of c to just to
the right of c. Therefore, the algebraic sum of the angles between the
tangents at just to the left and at just to the right of c due to the external
loading, support settlements and the redundant bending moments must
be zero. Thus,

y1 þ y2 þ y3 ¼ 0 (14.4)

By substituting Eqs. (14.1) through (14.3) into Eq. (14.4), we obtain

ðyl1 þ yr1Þ þ ðyl2 þ yr2Þ þ ðyl3 þ yr3Þ ¼ 0 (14.5)

Since each span of the primary structure can be treated as a simply
supported beam, the slopes at the ends c of the left and the right spans,
due to the external loads (Fig. 14.1(b)), can be conveniently determined
either by the conjugate-beam method or by using the beam-deflection
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formulas given inside the front cover of the book. By using the de-
flection formulas, we obtain

yl1 ¼
PPlL

2
lklð1� k2

l Þ
6EIl

þ wlL
3
l

24EIl
(14.6a)

yr1 ¼
PPrL

2
r krð1� k2

r Þ
6EIr

þ wrL
3
r

24EIr
(14.6b)

in which the summation signs have been added to the first terms on the
right sides of these equations, so that multiple concentrated loads can be
applied to each span (instead of a single concentrated load as shown
in Figs. 14.1(a) and (b) for simplicity). As continuous beams usually are
loaded with uniformly distributed loads over entire spans and concen-
trated loads, the e¤ects of only these two types of loadings generally are
considered in the three-moment equation. However, the e¤ects of other
types of loads can be included simply by adding the expressions of
slopes due to these loads to the right sides of Eqs. (14.6a) and (14.6b).

The slopes yl2 and yr2, of the left and the right spans, respectively,
due to support settlements, can be obtained directly from the deformed
positions of the spans depicted in Fig. 14.1(c). Since the settlements are
assumed to be small, the slopes can be expressed as

yl2 ¼ Dl � Dc

Ll
yr2 ¼ Dr � Dc

Lr

(14.7)

The slopes at ends c of the left and the right spans, due to redundant
support bending moments, (Fig. 14.1(d)), can be determined conve-
niently by using the beam-deflection formulas. Thus,

yl3 ¼MlLl

6EIl
þMcLl

3EIl
(14.8a)

yr3 ¼McLr

3EIr
þMrLr

6EIr
(14.8b)

in which Ml, Mc and Mr denote the bending moments at supports l, c
and r, respectively. As shown in Fig. 14.1(d), these redundant bending
moments are considered to be positive in accordance with the beam

convention—that is, when causing compression in the upper fibers and
tension in the lower fibers of the beam.

By substituting Eqs. (14.6) through (14.8) into Eq. (14.5), we write
the compatibility equation as

PPlL
2
lklð1� k2

l Þ
6EIl

þ wlL
3
l

24EIl
þPPrL

2
r krð1� k2

r Þ
6EIr

þ wrL
3
r

24EIr
þ Dl � Dc

Ll

þ Dr � Dc

Lr

þMlLl

6EIl
þMcLl

3EIl
þMcLr

3EIr
þMrLr

6EIr
¼ 0

By simplifying the foregoing equation and rearranging it to separate the
terms containing redundant moments from those involving loads and
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support settlements, we obtain the general form of the three-moment

equation:

MlLl

Il
þ 2Mc

Ll

Il
þ Lr

Ir

� �
þMrLr

Ir

¼ �PPlL
2
lkl

Il
ð1� k2

l Þ �
PPrL

2
r kr

Ir
ð1� k2

r Þ �
wlL

3
l

4Il
� wrL

3
r

4Ir

� 6E
Dl � Dc

Ll
þ Dr � Dc

Lr

� �

(14.9)

in which Mc ¼ bending moment at support c where the compatibility is
being considered; Ml, Mr ¼ bending moments at the adjacent supports
to the left and to the right of c, respectively; E ¼ modulus of elasticity;
Ll;Lr ¼ lengths of the spans to the left and to the right of c, re-
spectively; Il; Ir ¼ moments of inertia of the spans to the left and to the
right of c, respectively; Pl;Pr ¼ concentrated loads acting on the left
and the right spans, respectively; kl (or kr) ¼ ratio of the distance of Pl

(or Pr) from the left (or right) support to the span length;
wl;wr ¼ uniformly distributed loads applied to the left and the right
spans, respectively; Dc ¼ settlement of the support c under consid-
eration; and Dl;Dr ¼ settlements of the adjacent supports to the left and
to the right of c, respectively. As noted before, the support bending
moments are considered to be positive in accordance with the beam

convention—that is, when causing compression in the upper fibers and
tension in the lower fibers of the beam. Furthermore, the external
loads and support settlements are considered positive when in the
downward direction, as shown in Fig. 14.1(a).

If the moments of inertia of two adjacent spans of a continuous
beam are equal (i.e., Il ¼ Ir ¼ I ), then the three-moment equation sim-
plifies to

MlLl þ 2McðLl þ LrÞ þMrLr

¼ �PPlL
2
lklð1� k2

l Þ �
P

PrL
2
r krð1� k2

r Þ �
1

4
ðwlL

3
l þ wrL

3
r Þ

� 6EI
Dl � Dc

Ll
þ Dr � Dc

Lr

� �

(14.10)

If both the moments of inertia and the lengths of two adjacent spans
are equal (i.e., Il ¼ Ir ¼ I and Ll ¼ Lr ¼ L), then the three-moment
equation becomes
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Ml þ 4Mc þMr

¼ �PPlLklð1� k2
l Þ �

P
PrLkrð1� k2

r Þ

� L2

4
ðwl þ wrÞ � 6EI

L2
ðDl � 2Dc þ DrÞ

(14.11)

The foregoing three-moment equations are applicable to any three
consecutive supports, l, c and r, of a continuous beam, provided that
there are no discontinuities, such as internal hinges, in the beam between
the left support l and the right support r.

14.2 APPLICATION OF THREE-MOMENT EQUATION

The following step-by-step procedure can be used for analyzing con-
tinuous beams by the three-moment equation.

1. Select the unknown bending moments at all interior supports of the
beam as the redundants.

2. By treating each interior support successively as the intermedi-
ate support c, write a three-moment equation. When writing these
equations, it should be realized that bending moments at the simple
end supports are known. For such a support with a cantilever over-
hang, the bending moment equals that due to the external loads
acting on the cantilever portion about the end support. The total
number of three-moment equations thus obtained must be equal to
the number of redundant support bending moments, which must be
the only unknowns in these equations.

3. Solve the system of three-moment equations for the unknown sup-
port bending moments.

4. Compute the span end shears. For each span of the beam, (a) draw
a free-body diagram showing the external loads and end moments
and (b) apply the equations of equilibrium to calculate the shear
forces at the ends of the span.

5. Determine support reactions by considering the equilibrium of the
support joints of the beam.

6. If so desired, draw shear and bending moment diagrams of the
beam by using the beam sign convention.

Fixed Supports

The three-moment equations, as given by Eqs. (14.9) through (14.11),
were derived to satisfy the compatibility condition of slope continuity at
the interior supports of continuous beams. These equations can, how-
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ever, be used to satisfy the compatibility condition of zero slope at the
fixed end supports of beams. This can be achieved by replacing the fixed
support by an imaginary interior roller support with an adjoining end
span of zero length simply supported at its outer end, as shown in Fig.
14.2. The reaction moment at the actual fixed support is now treated as
the redundant bending moment at the imaginary interior support, and
the three-moment equation when applied to this imaginary support
satisfies the compatibility condition of zero slope of the elastic curve at
the actual fixed support. When analyzing a beam for support settle-
ments, both imaginary supports—that is, the interior roller support and
the outer simple end support—are considered to undergo the same set-
tlement as the actual fixed support.

FIG. 14.2

Example 14.1

Determine the reactions and draw the shear and bending moment diagrams for the beam shown in Fig. 14.3(a) by using
the three-moment equation.

continued

100 kN150 kN

2 m 2 m 2 m

E = constant

(a) Indeterminate Beam

5 m

2I I

A CA

B

50 kN/m

FIG. 14.3
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(b) Span End Moments and Shears

(c) Support Reactions

C

100 kN150 kN
189.32

A
B

B

148.2 162.86

189.32 189.32
B C

189.32 50 kN/m

By = 311.06

Ay = 101.8 By   = 148.2AB By   = 162.86BC Cy = 87.14

150 kN 100 kN
50 kN/m

A

D E B

Ay = 101.8 kN By = 311.06 kN Cy = 87.14 kN

Ax = 0

C
A

A D E F C
B

B F

ED

101.8

162.86

–48.2

–148.2

Shear diagram (k)

Bending moment diagram (kN-m)

(d) Shear and Bending Moment Diagrams

–87.14

1.75m

203.6

107.2
76.25

189.2

FIG. 14.3 (contd.)

continued
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Solution
Redundant The beam has one degree of indeterminacy. The bending moment MB, at the interior support B, is the

redundant.

Three-Moment Equation at Joint B Considering the supports, A, B, and C as l, c, and r, respectively, and sub-
stituting Ll ¼ 6 m, Lr ¼ 5 m, Il ¼ 2I , Ir ¼ I , Pl1 ¼ 150 kN, kl1 ¼ 1=3, Pl2 ¼ 100 kN, kl2 ¼ 2=3, wr ¼ 50 kN/m, and
Pr ¼ wl ¼ Dl ¼ Dc ¼ Dr ¼ 0, into Eq. (14.9), we obtain

MAð6Þ
2I

þ 2MB
6

2I
þ 5

I

� �
þMCð5Þ

I
¼ � 150ð6Þ2ð1=3Þ

2I
½1� ð1=3Þ2�

� 100ð6Þ2ð2=3Þ
2I

½1� ð2=3Þ2� � 50ð5Þ3
4I

Since A and C are simple end supports, we have by inspection

MA ¼MC ¼ 0

Thus, the three-moment equation becomes

16MB ¼ �3029:17
from which we obtain the redundant bending moment to be

MB ¼ �189:32 kN-m Ans.

Span End Shears and Reactions The shears at the ends of the spans AB and BC of the continuous beam can now be
determined by applying the equations of equilibrium to the free bodies of the spans shown in Fig. 14.3(b). Note that the
negative bending moment MB is applied at the ends B of spans AB and BC so that it causes tension in the upper fibers
and compression in the lower fibers of the beam. By considering the equilibrium of span AB, we obtain

þ ’
P

MB ¼ 0 �Ayð6Þ þ 150ð4Þ þ 100ð2Þ � 189:32 ¼ 0

Ay ¼ 101:8 kN " Ans.

þ "PFy ¼ 0 101:8� 150� 100þ BAB
y ¼ 0

BAB
y ¼ 148:2 k "

Similarly, for span BC,

þ ’
P

MC ¼ 0 �BBC
y ð5Þ þ 189:32þ 50ð5Þð2:5Þ ¼ 0

BBC
y ¼ 162:86 k "

þ "PFy ¼ 0 162:86� 50ð5Þ þ Cy ¼ 0

Cy ¼ 87:14 kN " Ans.

By considering the equilibrium of joint B in the vertical direction, we obtain

By ¼ BAB
y þ BBC

y ¼ 148:2þ 162:86 ¼ 311:06 kN " Ans.

The reactions are shown in Fig. 14.3(c).

Shear and Bending Moment Diagrams See Fig. 14.3(d). Ans.
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Example 14.2

Determine the reactions for the continuous beam shown in Fig. 14.4(a) due to the uniformly distributed load and due to
the support settlements of 10 mm at A, 50 mm at B, 20 mm at C, and 40 mm at D. Use the three-moment equation.

continued

30 kN/m

10 m 10 m 10 m

A
B C

D

30 kN/m

A
B C

D

EI = constant

(a) Indeterminate Beam

(b) Span End Moments and Shears

(c) Support Reactions

E = 200 GPa I = 700 (106) mm4

30 kN/m 30 kN/m30 kN/m

Cy = 378.7

Cy    = 195.1CDCy    = 183.6BCBy    = 116.4BCBy    = 161.5ABAy = 138.5 Dy = 104.9

By = 277.9

A
B B C

115.2 115.2 451.2 451.2

115.2 115.2 451.2 451.2

161.5 183.6 195.1116.4

Ax = 0

Ay = 138.5 kN By = 277.9 kN Cy = 378.7 kN Dy = 104.9 kN

B C
C D

FIG. 14.4

Solution
Redundants The bending moments MB and MC , at the interior supports B and C, respectively, are the redundants.

Three-Moment Equation at Joint B By considering the supports A, B, and C as l, c, and r, respectively, and sub-
stituting L ¼ 10 m, E ¼ 200 GPa ¼ 200ð106Þ kN/m2, I ¼ 700ð106Þ mm4 ¼ 700ð10�6Þ m4, wl ¼ wr ¼ 30 kN/m, Dl ¼
DA ¼ 10 mm ¼ 0.01 m, Dc ¼ DB ¼ 50 mm ¼ 0.05 m, Dr ¼ DC ¼ 20 mm ¼ 0.02 m and Pl ¼ Pr ¼ 0, into Eq. (14.11),
we write
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MA þ 4MB þMC ¼ �ð10Þ
2

4
ð30þ 30Þ � 6ð200Þð700Þ

ð10Þ2 ½0:01� 2ð0:05Þ þ 0:02�

Since A is a simple end support, MA ¼ 0. The foregoing equation thus simplifies to
4MB þMC ¼ �912 (1)

Three-Moment Equation at Joint C Similarly, by considering the supports B, C, and D as l, c, and r, respectively,
and by substituting the appropriate numerical values in Eq. (14.11), we obtain

MB þ 4MC þMD ¼ �ð10Þ
2

4
ð30þ 30Þ � 6ð200Þð700Þ

ð10Þ2 ½0:05� 2ð0:02Þ þ 0:04�

Since D is a simple end support, MD ¼ 0. Thus, the foregoing equation becomes

MB þ 4MC ¼ �1;920 (2)

Support Bending Moments Solving Eqs. (1) and (2) simultaneously for MB and MC , we obtain

MB ¼ �115:2 kN�m Ans.

MC ¼ �451:2 kN�m Ans.

Span End Shears and Reactions With the redundants MB and MC known, the span end shears and the support re-
actions can be determined by considering the equilibrium of the free bodies of the spans AB;BC, and CD, and joints B
and C, as shown in Fig. 14.4(b). The reactions are shown in Fig. 14.4(c). Ans.

Example 14.3

Determine the reactions for the continuous beam shown in Fig. 14.5(a) by the three-moment equation.

Solution
Since support A of the beam is fixed, we replace it with an imaginary interior roller support with an adjoining end span
of zero length, as shown in Fig. 14.5(b).

Redundants From Fig. 14.5(b), we can see that the bending moments MA and MB at the supports A and B, re-
spectively, are the redundants.

Three-Moment Equation at Joint A By using Eq. (14.10) for supports A 0, A, and B, we obtain

2MAð0þ 6Þ þMBð6Þ ¼ �225ð6Þ2ð1=2Þ½1� ð1=2Þ2�
or

2MA þMB ¼ �506:25 (1)

continued
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Three-Moment Equation at Joint B Similarly, applying Eq. (14.10) for supports A;B, and C, we write

MAð6Þ þ 2MBð6þ 9Þ þMCð9Þ
¼ �225ð6Þ2ð1=2Þ½1� ð1=2Þ2� � ð1=4Þ30ð9Þ3

continued
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(d) Support Reactions

(c) Span End Moments and Shears
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FIG. 14.5
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14.3 METHOD OF LEAST WORK

In this section, we consider another formulation of the force method
called the method of least work. In this method, the compatibility equa-
tions are established by using Castigliano’s second theorem instead of
by deflection superposition, as in the method of consistent deformations
considered in the previous chapter. With this exception, the two meth-
ods are similar and require essentially the same amount of computa-
tional e¤ort. The method of least work usually proves to be more
convenient for analyzing composite structures that contain both axial
force members and flexural members (e.g., beams supported by cables).
However, the method is not as general as the method of consistent de-
formations in the sense that, in its original form (as presented here), the
method of least work cannot be used for analyzing the e¤ects of support
settlements, temperature changes, and fabrication errors.

To develop the method of least work, let us consider a statically
indeterminate beam with unyielding supports subjected to an external
loading w, as shown in Fig. 14.6. Suppose that we select the vertical re-
action By at the interior support B to be the redundant. By treating the
redundant as an unknown load applied to the beam along with the pre-
scribed loading w, an expression for the strain energy can be written in
terms of the known load w and the unknown redundant By as

U ¼ f ðw;ByÞ (14.12)

Equation (14.12) indicates symbolically that the strain energy for the
beam is expressed as a function of the known external load w and the
unknown redundant By.

According to Castigliano’s second theorem (Section 7.7), the partial
derivative of the strain energy with respect to a force equals the de-
flection of the point of application of the force along its line of action.

FIG. 14.6

The bending moment at end C of the cantilever overhang CD is computed as

MC ¼ �30ð3Þð1:5Þ ¼ �135 kN-m Ans.

By substituting MC ¼ �135 kN-m into the foregoing three-moment equation and simplifying, we obtain

MA þ 5MB ¼ �1215 (2)

Support Bending Moments Solving Eqs. (1) and (2), we obtain

MA ¼ �146:25 kN-m Ans.

MB ¼ �213:75 kN-m Ans.

Span End Shears and Reactions See Figs. 14.5(c) and (d). Ans.
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Since the deflection at the point of application of the redundant By is
zero, by applying Castigliano’s second theorem, we can write

qU

qBy

¼ 0 (14.13)

It should be realized that Eq. (14.13) represents the compatibility equa-
tion in the direction of redundant By, and it can be solved for the
redundant.

As Eq. (14.13) indicates, the first partial derivative of the strain en-
ergy with respect to the redundant must be equal to zero. This implies
that for the value of the redundant that satisfies the equations of equili-
brium and compatibility, the strain energy of the structure is a minimum
or maximum. Since for a linearly elastic structure there is no maximum
value of strain energy, because it can be increased indefinitely by in-
creasing the value of the redundant, we conclude that for the true value
of the redundant the strain energy must be a minimum. This conclusion
is known as the principle of least work:

The magnitudes of the redundants of a statically indeterminate structure must

be such that the strain energy stored in the structure is a minimum (i.e., the

internal work done is the least).

The method of least work, as described here, can be easily extended
to the analysis of structures with multiple degrees of indeterminacy. If a
structure is indeterminate to the nth degree, then n redundants are se-
lected, and the strain energy for the structure is expressed in terms of the
known external loading and the n unknown redundants as

U ¼ f ðw;R1;R2; . . . ;RnÞ (14.14)

in which w represents all the known loads and R1;R2; . . . ;Rn denote the n
redundants. Next, the principle of least work is applied separately for
each redundant by partially di¤erentiating the strain energy expression
(Eq. (14.14)) with respect to each of the redundants and by setting each
partial derivative equal to zero; that is,

qU

qR1
¼ 0

qU

qR2
¼ 0

..

.

qU

qRn

¼ 0

(14.15)

which represents a system of n simultaneous equations in terms of n

redundants and can be solved for the redundants.
The procedure for the analysis of indeterminate structures by the

method of least work is illustrated by the following examples.
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Example 14.4

Determine the reactions for the beam shown in Fig. 14.7 by the method of least work.

Solution
This beam was analyzed in Example 13.2 by the method of consistent deformations.

The beam is supported by four reactions, so its degree of indeterminacy is equal to 1. The vertical reaction By, at
the roller support B, is selected as the redundant. We will evaluate the magnitude of the redundant by minimizing the
strain energy of the beam with respect to By.

As discussed in Section 7.6, the strain energy of a beam subjected only to bending can be expressed as

U ¼
ðL

0

M 2

2EI
dx (1)

According to the principle of least work, the partial derivative of strain energy with respect to By must be zero;
that is,

qU

qBy

¼
ðL

0

qM

qBy

� �
M

EI
dx ¼ 0 (2)

Using the x coordinate shown in Fig. 14.7, we write the equation for bending moment, M, in terms of By, as

M ¼ ByðxÞ � 24x2

2

Next, we partially di¤erentiate the expression for M with respect to By, to obtain

qM

qBy

¼ x

By substituting the expressions for M and qM=qBy into Eq. (2), we write

1

EI

ð10

0

xðByx� 12x2Þ dx
� �

¼ 0

continued

24 kN/m

10 m
EI = constant

Ax

MA

A

Ay

B

By

x

FIG. 14.7
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By integrating, we obtain

333:33By � 30;000 ¼ 0

from which

By ¼ 90 kN " Ans.

To determine the remaining reactions of the indeterminate beam, we apply the equilibrium equations (Fig. 14.7):

þ !P
Fx ¼ 0 Ax ¼ 0 Ans.

þ "PFy ¼ 0 Ay � 24ð10Þ þ 90 ¼ 0 Ay ¼ 150 kN " Ans.

þ ’
P

MA ¼ 0 MA � 24ð10Þð5Þ þ 90ð10Þ ¼ 0 MA ¼ 300 kN-m

’

Ans.

Example 14.5

Determine the reactions for the two-span continuous beam shown in Fig. 14.8 by the method of least work.

Solution
The beam is supported by four reactions, Ax;Ay;By, and Dy. Since there are only three equilibrium equations, the de-
gree of indeterminacy of the beam is equal to 1. Let us select the reaction By to be the redundant. The magnitude of the
redundant will be determined by minimizing the strain energy of the beam with respect to By.

The strain energy of a beam subjected only to bending is expressed as

U ¼
ðL

0

M 2

2EI
dx (1)

According to the principle of least work,

qU

qBy

¼
ðL

0

qM

qBy

� �
M

EI
dx ¼ 0 (2)

Before we can obtain the equations for bending moments, M, we must express the reactions at the supports A and D of
the beam in terms of the redundant By. Applying the three equilibrium equations, we write

þ !P
Fx ¼ 0 Ax ¼ 0 Ans.

continued

FIG. 14.8
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þ ’
P

MD ¼ 0

�Ayð20Þ þ 30ð10Þð15Þ � Byð10Þ þ 80ð5Þ ¼ 0

Ay ¼ 245� 0:5By (3)

þ "PFy ¼ 0

ð245� 0:5ByÞ � 30ð10Þ þ By � 80þDy ¼ 0

Dy ¼ 135� 0:5By (4)

To determine the equations for bending moments, M, the beam is divided into three segments, AB;BC, and CD. The x
coordinates used for determining the equations are shown in Fig. 14.8, and the bending moment equations, in terms of
By, are tabulated in Table 14.1. Next, the derivatives of the bending moments with respect to By are evaluated. These
derivatives are listed in the last column of Table 14.1.

By substituting the expressions for M and qM=qBy into Eq. (2), we write

1

EI

� ð 10

0

ð�0:5xÞð245x� 0:5Byx� 15x2Þ dx

þ
ð 5

0

ð�0:5xÞð135x� 0:5ByxÞ dx

þ
ð 10

5

ð�0:5xÞð55x� 0:5Byxþ 400Þ dx
�
¼ 0

By integrating, we obtain

�40;416:667þ 166:667By ¼ 0

from which

By ¼ 242:5 kN " Ans.

By substituting the value of By into Eqs. (3) and (4), respectively, we determine the vertical reactions at supports A and D.

Ay ¼ 123:75 kN " Ans.

Dy ¼ 13:75 kN " Ans.

TABLE 14.1

x coordinate

Segment Origin Limits (m) M qM=qBy

AB A 0–10 ð245� 0:5ByÞx� 15x2 �0:5x
DC D 0–5 ð135� 0:5ByÞx �0:5x
CB D 5–10 ð135� 0:5ByÞx� 80ðx� 5Þ �0:5x
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Example 14.6

Determine the force in each member of the truss shown in Fig. 14.9(a) by the method of least work.

Solution
The truss contains one more member than necessary for internal stability; therefore, its degree of indeterminacy is equal
to 1. Let us select the force FAD in member AD to be the redundant. We will determine the magnitude of FAD by mini-
mizing the strain energy of the truss with respect to FAD.

As discussed in Section 7.6, the strain energy of a truss can be expressed as

U ¼P F 2L

2AE (1)

According to the principle of least work, the partial derivative of strain energy with respect to FAD must be zero; that is,

qU

qFAD
¼P qF

qFAD

� �
FL

AE
¼ 0 (2)

continued

FIG. 14.9

TABLE 14.2

Member
L
(m) F

qF

qFAD

qF

qFAD

� �
FL

F (kN)

AD 5 FAD 1 5FAD 13.474

BD 3 100� 1:4FAD �1:4 �420þ 5:88FAD 1.136

CD 4.243 �141:42
þ 1:131FAD

1.131 � 680:25
þ 5:427FAD

�13:045

P �1100:25þ 16:307FAD

1

AE

P qF

qFAD

� �
FL ¼ 0

�1100:25þ 16:307FAD ¼ 0

FAD ¼ 67:471 kN ðTÞ
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The axial forces in members BD and CD are expressed in terms of the redundant FAD by considering the equilibrium of
joint D (Fig. 14.9(b)). These member forces F , along with their partial derivatives with respect to FAD, are tabulated
in Table 14.2. To apply Eq. (2), the terms ðqF=qFADÞ FL are computed for the individual members and are added as
shown in Table 14.2. Note that since EA is constant, it is not included in the summation. Equation (2) is then solved, as
shown in Table 14.2, to determine the magnitude of the redundant.

FAD ¼ 67:471 kN ðTÞ Ans.

Finally, the forces in members BD and CD are evaluated by substituting the value of FAD into the expressions for the
member forces given in the third column of Table 14.2.

FBD ¼ 5:541 kN ðTÞ Ans.

FCD ¼ 65:11 kN ðCÞ Ans.

Example 14.7

A beam is supported by a fixed support A and a cable BD, as shown in Fig. 14.10(a). Determine the tension in the cable
by the method of least work.

Solution
We will analyze the structure by considering the tension T in cable BD to be redundant. The magnitude of the re-
dundant will be determined by minimizing the strain energy of the structure with respect to T .

Because the structure contains both axially loaded and flexural members, its total strain energy is expressed as the
sum of the strain energy due to axial forces and the strain energy due to bending; that is,

continued

FIG. 14.10
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SUMMARY

In this chapter, we have studied two formulations of the force (flexi-
bility) method of analysis of statically indeterminate structures, namely,
the three-moment equation and the method of least work.

The three-moment equation represents, in a general form, the com-
patibility condition that the slope of the elastic curve be continuous at
an interior support of the continuous beam. This method, which can be
used for analyzing continuous beams subjected to external loads and
support settlements, involves treating the bending moments at the in-
terior (and any fixed) supports of the beam as the redundants. The
three-moment equation is then applied at the location of each redundant
to obtain a set of compatibility equations which can then be solved for
the redundant bending moments.

The principle of least work states that the magnitudes of the redun-

dants of an indeterminate structure must be such that the strain energy

stored in the structure is a minimum. To analyze an indeterminate struc-
ture by the method of least work, the strain energy of the structure is

U ¼P F 2L

2AE
þPð

M 2

2EI
dx (1)

According to the principle of least work,

qU

qT
¼P qF

qT

� �
FL

AE
þPð

qM

qT

� �
M

EI
dx ¼ 0 (2)

The expressions for the bending moments M and the axial forces F in terms of the redundant T and their derivatives
with respect to T are tabulated in Table 14.3. By substituting these expressions and derivatives into Eq. (2), we write

1

E

"
ð�0:8Þð�0:8TÞð4Þ

8000ð10�6Þ þ 1ðTÞð5Þ
500ð10�6Þ þ

1

200ð10�6Þ
ð6

2

0:6ðx� 2Þð�75xþ 0:6Tx� 1:2TÞ dx
#
¼ 0

T ¼ 172:41 kN Ans.

TABLE 14.3

x coordinate

Segment Origin Limits (m) M F

qM

qT

qF

qT

CB C 0–2 �75x 0 0 0

BA C 2–6 �75xþ 0:6Tðx� 2Þ �0:8T 0:6ðx� 2Þ �0:8
BD — — 0 T 0 1
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first expressed in terms of the redundants. Then the partial derivatives of
the strain energy with respect to each of the redundants are determined
and set equal to zero to obtain a system of simultaneous equations that
can be solved for the redundants. The method of least work cannot
be used for analyzing the e¤ects of support settlements, temperature
changes, and fabrication errors.

PROBLEMS

Section 14.2

14.1 through 14.8 Determine the reactions and draw the
shear and bending moment diagrams for the beams shown in
Figs. P14.1 through P14.8 using the three-moment equation.

FIG. P14.1

A C
B

5 m
2I

3 m
I

50 kN/m

E = 200 GPa
I =1000(106) mm4

FIG. P14.2, P14.9

FIG. P14.3

7 m 7 m

A B C

EI = constant

15 kN/m

FIG. P14.4, P14.11

FIG. P14.5, P14.12

6 m 4 m 6 m 4 m 4 m 4 m

I I2I

A C

B D F

E
G

120 kN 120 kN 150 kN

E =  200 GPa
I = 500 (106) mm4

FIG. P14.6, P14.10

FIG. P14.7
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3 m 3 m 3 m 6 m

EI = constant

E
B C DA

160 kN
30 kN/m15 kN/m

FIG. P14.8

14.9 Solve Problem 14.2 for the loading shown in Fig. P14.2
and the support settlements of 6 mm at A, 16 mm at B,
and 18 mm at C.

14.10 Solve Problem 14.6 for the loading shown in Fig. P14.6
and the support settlements of 10 mm at A, 65 mm at C,
40 mm at E, and 25 mm at G.

Section 14.3

14.11 Solve Problem 14.4 by the method of least work. See
Fig. P14.4.

14.12 Solve Problem 14.5 by the method of least work. See
Fig. P14.5.

14.13 Determine the reactions and the force in each mem-
ber of the truss shown in Fig. P14.13 using the method of
least work.

50 kN

100 kN

4 m

4 m

3 m
EA = constant

A B

C
D

E

FIG. P14.13

14.14 A beam is supported by a fixed support A and a cable
BC, as shown in Fig. P14.14. Determine the tension in the
cable by the method of least work.

FIG. P14.14
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15
Influence Lines for Statically
Indeterminate Structures
15.1 Influence Lines for Beams and Trusses
15.2 Qualitative Influence Lines by Müller-Breslau’s Principle

Summary
Problems

609

In this chapter, we discuss the procedures for constructing influence lines
for statically indeterminate structures. It may be recalled from Chapter 8
that an influence line is a graph of a response function of a structure as

a function of the position of a downward unit load moving across the

structure.
The basic procedure for constructing influence lines for in-

determinate structures is the same as that for determinate structures
considered in Chapter 8. The procedure essentially involves computing
the values of the response function of interest for various positions of a
unit load on the structure and plotting the response function values as
ordinates against the position of the unit load as abscissa to obtain the
influence line. Since the influence lines for forces and moments of deter-
minate structures consist of straight-line segments, such influence lines
were constructed in Chapter 8 by evaluating the ordinates for only a few
positions of the unit load and by connecting them with straight lines.
The influence lines for indeterminate structures, however, are generally
curved lines. (For indeterminate girders with floor systems and trusses
and for other indeterminate structures to which moving loads are trans-
mitted via framing systems, the influence lines usually consist of chords
of curved lines.) Thus the construction of influence lines for in-
determinate structures requires computation of many more ordinates
than necessary in the case of determinate structures.

The Golden Gate Bridge, San

Francisco
Acoi/Shutterstock
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Although any of the methods of analysis of indeterminate structures
presented in Part Three can be used for computing the ordinates of
influence lines, we will use the method of consistent deformations, dis-
cussed in Chapter 13, for such purposes. Once the influence lines for in-
determinate structures have been constructed, they can be used in the
same manner as those for determinate structures discussed in Chapter 9.
In this chapter, the procedure for constructing influence lines for stat-
ically indeterminate beams and trusses is developed, and the application
of Müller-Breslau’s principle for constructing qualitative influence lines
for indeterminate beams and frames is discussed.

15.1 INFLUENCE LINES FOR BEAMS AND TRUSSES

Consider the continuous beam shown in Fig. 15.1(a). Suppose that we
wish to draw the influence line for the vertical reaction at the interior
support B of the beam. The beam is subjected to a downward-moving
concentrated load of unit magnitude, the position of which is defined by
the coordinate x measured from the left end A of the beam, as shown in
the figure.

To develop the influence line for the reaction By, we need to de-
termine the expression for By in terms of the variable position x of the
unit load. Noting that the beam is statically indeterminate to the first
degree, we select the reaction By to be the redundant. The roller support
at B is then removed from the actual indeterminate beam to obtain the
statically determinate primary beam shown in Fig. 15.1(b). Next, the
primary beam is subjected, separately, to the unit load positioned at an
arbitrary point X at a distance x from the left end, and the redundant
By, as shown in Fig. 15.1(b) and (c), respectively. The expression for By

can now be determined by using the compatibility condition that the
deflection of the primary beam at B due to the combined e¤ect of the
external unit load and the unknown redundant By must be equal to
zero. Thus

fBX þ fBBBy ¼ 0

from which

By ¼ � fBX

fBB
(15.1)

in which the flexibility coe‰cient fBX denotes the deflection of the pri-
mary beam at B due to the unit load at X (Fig. 15.1(b)), whereas the
flexibility coe‰cient fBB denotes the deflection at B due to the unit value
of the redundant By (Fig. 15.1(c)).

We can use Eq. (15.1) for constructing the influence line for By by
placing the unit load successively at a number of positions X along the
beam, evaluating fBX for each position of the unit load, and plotting the
values of the ratio �fBX=fBB. However, a more e‰cient procedure canFIG. 15.1
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be devised by applying Maxwell’s law of reciprocal deflections (Section
7.8), according to which the deflection at B due to a unit load at X must
be equal to the deflection at X due to a unit load B; that is, fBX ¼ fXB.
Thus, Eq. (15.1) can be rewritten as

By ¼ � fXB

fBB
(15.2)

which represents the equation of the influence line for By. Note that the
deflections fXB and fBB are considered to be positive when in the up-
ward direction (i.e., in the positive direction of the redundant By) in ac-
cordance with the sign convention adopted for the method of consistent
deformations in Chapter 13.

Equation (15.2) is more convenient to apply than Eq. (15.1) in con-
structing the influence line, because according to Eq. (15.2), the unit
load needs to be placed on the primary beam only at B, and the de-
flections fXB at a number of points X along the beam are to be com-
puted. The influence line can then be constructed by plotting the values
of the ratio �fXB=fBB as ordinates against the distance x, which repre-
sents the position of point X , as abscissa.

The equation of an influence line, when expressed in the form of
Eq. (15.2), shows the validity of Müller-Breslau’s principle for statically
indeterminate structures. It can be seen from Eq. (15.2) for the influence
line for By that since fBB is a constant, the ordinate of the influence line at
any point X is proportional to the deflection fXB of the primary beam
at that point due to the unit load at B. Furthermore, this equation in-
dicates that the influence line for By can be obtained by multiplying the
deflected shape of the primary beam due to the unit load at B by the scaling
factor �1=fBB. Note that this scaling yields a deflected shape, with a unit
displacement at B, as shown in Fig. 15.1(d). The foregoing observation
shows the validity of Müller-Breslau’s principle for indeterminate struc-
tures. Recall from Section 8.2 that, according to this principle, the influence
line for By can be obtained by removing the support B from the original
beam and by giving the released beam a unit displacement in the direction
of By. Also, note from Fig. 15.1(d) that, unlike the case of statically deter-
minate structures considered in Chapter 8, the removal of support B from
the indeterminate beam does not render it statically unstable; therefore, the
influence line for its reaction By is a curved line. Once the influence line for
the redundant By has been determined, the influence lines for the remaining
reactions and the shears and bending moments of the beam can be ob-
tained through equilibrium considerations.

Influence Lines for Structures with Multiple Degrees
of Indeterminacy

The procedure for constructing the influence lines for structures with
multiple degrees of indeterminacy is similar to that for structures with
a single degree of indeterminacy. Consider, for example, the three-span
continuous beam shown in Fig. 15.2(a). Because the beam is statically
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indeterminate to the second degree, we select the reactions By and Cy to
be the redundants. To determine the influence lines for the redundants,
we place a unit load successively at a number of positions X along the
beam; and for each position of the unit load, the ordinates of the influ-
ence lines for By and Cy are evaluated by applying the compatibility
equations (see Fig. 15.2(a) through (d))

fBX þ fBBBy þ fBCCy ¼ 0 (15.3)

fCX þ fCBBy þ fCCCy ¼ 0 (15.4)

Once the influence lines for the redundants have been obtained, the
influence lines for the remaining reactions and the shears and bending
moments of the beam can be determined by statics.

As discussed previously, the analysis can be considerably expedited
by the application of Maxwell’s law of reciprocal deflections, accord-
ing to which fBX ¼ fXB and fCX ¼ fXC . Thus, the unit load needs to be
placed successively only at points B and C, and the deflections fXB and

FIG. 15.2
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fXC at a number of points X along the beam are computed instead of
computing the deflections fBX and fCX at points B and C, respectively,
for each of a number of positions of the unit load.

Procedure for Analysis

The procedure for constructing influence lines for statically indeterminate
structures by the method of consistent deformations can be summarized as
follows:

1. Determine the degree of indeterminacy of the structure and select
redundants.

2. Select a number of points along the length of the structure at which
the numerical values of the ordinates of the influence lines will be
evaluated.

3. To construct the influence lines for the redundants, place a unit load
successively at each of the points selected in step 2; and for each posi-
tion of the unit load, apply the method of consistent deformations to
compute the values of the redundants. Plot the values of the redundants
thus obtained as ordinates against the position of the unit load as ab-
scissa, to construct the influence lines for the redundants. (Evaluation
of the deflections involved in the compatibility equations can be con-
siderably expedited by the application of Maxwell’s law of reciprocal

deflections, as illustrated by Examples 15.1 through 15.3.)
4. Once the influence lines for the redundants have been determined, the

influence lines for the other force and/or moment response functions
of the structure can be obtained through equilibrium considerations.

Example 15.1

Draw the influence lines for the reaction at support B and the bending moment at point C of the beam shown in Fig.
15.3(a).

Solution
The beam has one degree of indeterminacy. We select the vertical reaction By at the roller support B to be the re-
dundant. The ordinates of the influence lines will be computed at 3-m intervals at points A through E, as shown in Fig.
15.3(a).

Influence Line for Redundant By The value of the redundant By for an arbitrary position X of the unit load can be
determined by solving the compatibility equation (see Fig. 15.3(b) and (c))

fBX þ fBBBy ¼ 0

from which

By ¼ � fBX

fBB
(1)

continued
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FIG. 15.3 continued
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(d)  Primary Beam Subjected to Unit Load at D

(e)  Influence Line for By (kN/kN)

A B C D E

A B C D

fBB

fCB

fDB

fAB

E

1 kN

1.5

1.0

0.519

0.148

0

(f)

(g)  Influence Line for MC (kN–m/kN)

By = 1.5

1.56

0.44

0

–1.5

0

E
A

A

B C D E

C D

B

1 kN

FIG. 15.3 (contd.) continued
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Since by Maxwell’s law of reciprocal deflections, fBX ¼ fXB, we place the unit load at B on the primary beam
(Fig. 15.3(d)) and compute the deflections at points A through E by using the beam-deflection formulas given inside the
front cover of the book. Thus,

fBA ¼ fAB ¼ � 364:5 kN�m3=kN

EI

fBB ¼ � 243 kN�m3=kN

EI

fBC ¼ fCB ¼ � 126 kN�m3=kN

EI

fBD ¼ fDB ¼ � 36 kN�m3=kN

EI

fBE ¼ fEB ¼ 0

in which the negative signs indicate that these deflections are in the downward direction. Note that the flexibility co-
e‰cient fBB in Eq. (1) denotes the upward (positive) deflection of the primary beam at B due to the unit value of the
redundant By (Fig. 15.3(c)), whereas the deflection fBB represents the downward (negative) deflection at B due to the
external unit load at B (Fig. 15.3(d)). Thus,

fBB ¼ �fBB ¼ þ
243 kN�m3=kN

EI

The ordinates of the influence line for By can now be evaluated by applying Eq. (1) successively for each position of the
unit load. For example, when the unit load is located at A, the value of By is obtained as

By ¼ � fBA

fBB
¼ 364:5

243
¼ 1:5 kN=kN

The remaining ordinates of the influence line for By are calculated in a similar manner. These ordinates are tabulated in
Table 15.1, and the influence line for By is shown in Fig. 15.3(e). Ans.

Influence Line for MC With the influence line for By known, the ordinates of the influence line for the bending
moment at C can now be evaluated by placing the unit load successively at points A through E on the indeterminate
beam and by using the corresponding values of By computed previously. For example, as depicted in Fig. 15.3(f ), when
the unit load is located at point A, the value of the reaction at B is By ¼ 1:5 kN/kN. By considering the equilibrium of
the free body of the portion of the beam to the left of C, we obtain

MC ¼ �1ð6Þ þ 1:5ð3Þ ¼ �1:5 kN�m=kN

The values of the remaining ordinates of the influence line are calculated in a similar manner. These ordinates are listed
in Table 15.1, and the influence line for MC is shown in Fig. 15.3(g). Ans.

TABLE 15.1

Influence Line Ordinates

Unit Load at By (kN/kN) MC (kN�m/kN)

A 1.5 �1.5
B 1.0 0

C 0.519 1.56

D 0.148 0.44

E 0 0
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Example 15.2

Draw the influence lines for the vertical reactions at the supports and the shear and bending moment at point C of the
two-span continuous beam shown in Fig. 15.4(a).

Solution
The beam is indeterminate to the first degree. We select the vertical reaction Dy at the interior support D as the re-
dundant. The influence line ordinates will be evaluated at 2 m intervals at points A through F shown in Fig. 15.4(a).

Influence Line for Redundant Dy The value of the redundant Dy for an arbitrary position X of the unit load can be
determined by solving the compatibility equation (see Fig. 15.4(b) and (c))

fDX þ fDDDy ¼ 0

from which

Dy ¼ � fDX

fDD
(1)

Since fDX ¼ fXD in accordance with Maxwell’s law, we place the unit load at D on the primary beam (Fig. 15.4(d)) and
compute the deflections at points A through F by using the conjugate-beam method. The conjugate beam is shown in
Fig. 15.4(e), from which we obtain the following:

fDA ¼ fAD ¼ 0

fDB ¼ fBD ¼ � 1

EI
3:44ð2Þ � 1

2
ð2Þð0:4Þ 2

3

� �� �
¼ � 6:613 kN-m3=kN

EI

fDC ¼ fCD ¼ � 1

EI
3:44ð4Þ � 1

2
ð4Þð0:8Þ 4

3

� �� �
¼ � 11:627 kN-m3=kN

EI

fDD ¼ � 1

EI
3:44ð6Þ � 1

2
ð6Þð1:2Þ 6

3

� �� �
¼ � 13:44 kN-m3=kN

EI

fDE ¼ fED ¼ � 1

EI
4:96ð2Þ � 1

2
ð2Þð1:2Þ 2

3

� �� �
¼ � 9:12 kN-m3=kN

EI

fDF ¼ fFD ¼ 0

in which the negative signs indicate that these deflections occur in the downward direction. Note that the flexibility co-
e‰cient fDD in Eq. (1) denotes the upward (positive) deflection of the primary beam at D due to the unit value of the
redundant Dy (Fig. 15.4(c)), whereas the deflection fDD represents the downward (negative) deflection at D due to the
external unit load at D (Fig. 15.4(d)). Thus

fDD ¼ �fDD ¼ þ 13:44 kN-m3=kN

EI

continued
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FIG. 15.4
continued
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FIG. 15.4 (contd.)
continued
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The ordinates of the influence line for Dy can now be computed by applying Eq. (1) successively for each position of the
unit load. For example, when the unit load is located at B, the value of Dy is given by

Dy ¼ � fDB

fDD

¼ 6:613

13:44
¼ 0:492 kN=kN

The remaining ordinates of the influence line for Dy are computed in a similar manner. These ordinates are tabulated in
Table 15.2, and the influence line for Dy is shown in Fig. 15.4(f ). Ans.

Influence Lines for Ay and Fy With the influence line for Dy known, the influence lines for the remaining reactions
can now be determined by applying the equations of equilibrium. For example, for the position of the unit load at point
B as shown in Fig. 15.4(g), the value of the reaction Dy has been found to be 0.492 kN/kN. By applying the equilibrium
equations, we determine the values of the reactions Ay and Fy to be

þ ’
P

MF ¼ 0 �Ayð10Þ þ 1ð8Þ � 0:492ð4Þ ¼ 0

Ay ¼ 0:603 kN=kN "
þ "PFy ¼ 0 0:603� 1þ 0:492þ Fy ¼ 0

Fy ¼ �0:095 kN=kN ¼ 0:095 kN=kN #
The values of the remaining influence line ordinates are computed in a similar manner. These ordinates are listed in
Table 15.2, and the influence lines for Ay and Fy are shown in Fig. 15.4(h) and (i), respectively. Ans.

Influence Lines for SC and MC The ordinates of the influence lines for the shear and bending moment at C can now
be evaluated by placing the unit load successively at points A through F on the indeterminate beam and by using the
corresponding values of the reactions computed previously. For example, as shown in Fig. 15.4(g), when the unit load is
located at point B, the values of the reactions are Ay ¼ 0:603 kN/kN; Dy ¼ 0:492 kN/kN; and Fy ¼ �0:095 kN/kN. By
considering the equilibrium of the free body of the portion of the beam to the left of C, we obtain

SC ¼ 0:603� 1 ¼ �0:397 kN=kN

MC ¼ 0:603ð4Þ � 1ð2Þ ¼ 0:412 kN-m=kN

The values of the remaining ordinates of the influence lines are computed in a similar manner. These ordinates are listed
in Table 15.2, and the influence lines for the shear and bending moment at C are shown in Fig. 15.4( j) and (k),
respectively. Ans.

TABLE 15.2

Influence Line Ordinates

Unit Load at Dy (kN/kN) Ay (kN/kN) Fy (kN/kN) SC (kN/kN) MC (kN-m/kN)

A 0 1.0 0 0 0

B 0.492 0.603 �0.095 �0.397 0.412

C 0.865 0.254 �0.119 �0.746 (left)

0.254 (right)

1.016

D 1.0 0 0 0 0

E 0.679 �0.072 0.393 �0.072 �0.288
F 0 0 1.0 0 0
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Example 15.3

Draw the influence lines for the reactions at supports for the beam shown in Fig. 15.5(a).

Solution
The beam is indeterminate to the second degree. We select the vertical reactions Dy and Gy at the roller supports D and
G, respectively, to be the redundants. The influence line ordinates will be evaluated at 5-m intervals at points A through
G shown in Fig. 15.5(a).

Influence Lines for Redundants Dy and Gy The values of the redundants Dy and Gy for an arbitrary position
X of the unit load can be determined by solving the compatibility equations (see Fig. 15.5(b) through (d)):

fDX þ fDDDy þ fDGGy ¼ 0 (1)

fGX þ fGDDy þ fGGGy ¼ 0 (2)

Since by Maxwell’s law, fDX ¼ fXD, we place the unit load at D on the primary beam (Fig. 15.5(e)) and compute
the deflections at points A through G by using the beam-deflection formulas given inside the front cover of the
book. Thus,

fDA ¼ fAD ¼ 0

fDB ¼ fBD ¼ � 166:667 kN�m3=kN

EI

fDC ¼ fCD ¼ � 583:333 kN�m3=kN

EI

fDD ¼ � 1;125 kN�m3=kN

EI

fDE ¼ fED ¼ � 1;687:5 kN�m3=kN

EI

fDF ¼ fFD ¼ � 2;250 kN�m3=kN

EI

fDG ¼ fGD ¼ � 2;812:5 kN�m3=kN

EI

Similarly, the deflections fGX ¼ fXG are computed by placing the unit load at G (Fig. 15.5(f )):

fGA ¼ fAG ¼ 0

fGB ¼ fBG ¼ � 354:167 kN�m3=kN

EI

fGC ¼ fCG ¼ � 1;333:333 kN�m3=kN

EI

continued
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FIG. 15.5
continued
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fGE ¼ fEG ¼ � 4;666:667 kN�m3=kN

EI

fGF ¼ fFG ¼ � 6;770:833 kN�m3=kN

EI

fGG ¼ � 9;000 kN�m3=kN

EI

In these equations the negative signs indicate that these deflections are in the downward direction.
The upward deflections due to the unit values of the redundants (Fig. 15.5(c) and (d)) are given by

fDD ¼ þ
1;125 kN�m3=kN

EI

fDG ¼ fGD ¼ þ
2;812:5 kN�m3=kN

EI

fGG ¼ þ
9;000 kN�m3=kN

EI

By substituting the numerical values of these flexibility coe‰cients into the compatibility equations (Eqs. (1) and (2))
and solving for Dy and Gy, we obtain

Dy ¼ EI

1;968:75
ð�8fDX þ 2:5fGX Þ (3)

Gy ¼ EI

1;968:75
ð2:5fDX � fGX Þ (4)

The values of the redundants Dy and Gy for each position of the unit load can now be determined by substituting the
corresponding values of the deflections fDX and fGX into Eqs. (3) and (4). For example, the ordinates of the influence
lines for Dy and Gy for the position of the unit load at B can be computed by substituting fDX ¼ fDB ¼ �166:667=EI
and fGX ¼ fGB ¼ �354:167=EI into Eqs. (3) and (4):

Dy ¼ EI

1;968:75
�8 � 166:667

EI

� �
þ 2:5 � 354:167

EI

� �� �
¼ 0:228 kN=kN "

Gy ¼ EI

1;968:75
2:5 � 166:667

EI

� �
þ 354:167

EI

� �
¼ �0:032 kN=kN

¼ 0:032 kN=kN #
The remaining ordinates of the influence lines for the redundants are computed in a similar manner. These ordinates are
tabulated in Table 15.3, and the influence lines for Dy and Gy are shown in Fig. 15.5(g) and (h), respectively. Ans.

Influence Lines for Ay and MA The ordinates of the influence lines for the remaining reactions can now be de-
termined by placing the unit load successively at points A through G on the indeterminate beam and by applying the
equations of equilibrium. For example, for the position of the unit load at B (Fig. 15.5(i)), the values of the reactions Dy

and Gy have been found to be 0.228 kN/kN and �0.032 kN/kN, respectively. By considering the equilibrium of the
beam, we determine the values of the reactions Ay and MA to be as follows:

þ "PFy ¼ 0 Ay � 1þ 0:228� 0:032 ¼ 0

Ay ¼ 0:804 kN=kN "
þ ’

P
MA ¼ 0 MA � 1ð5Þ þ 0:228ð15Þ � 0:032ð30Þ ¼ 0

MA ¼ 2:54 kN�m=kN

’

continued
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The values of the remaining influence line ordinates are computed in a similar manner. These ordinates are listed in
Table 15.3, and the influence lines for Ay and MA are shown in Fig. 15.5( j) and (k), respectively. Ans.

TABLE 15.3

Influence Line Ordinates

Unit Load at Dy (kN/kN) Gy (kN/kN) Ay (kN/kN) MA (kN�m/kN)

A 0 0 1.0 0

B 0.228 �0.032 0.804 2.540

C 0.677 �0.063 0.386 1.735

D 1.0 0 0 0

E 0.931 0.228 �0.159 �0.805
F 0.545 0.582 �0.127 �0.635
G 0 1.0 0 0

Example 15.4

Draw the influence lines for the forces in members BC;BE, and CE of the truss shown in Fig. 15.6(a). Live loads are
transmitted to the top chord of the truss.

Solution
The truss is internally indeterminate to the first degree. We select the axial force FCE in the diagonal member CE to be
the redundant.

Influence Line for Redundant FCE To determine the influence line for FCE, we place a unit load successively at joints B
and C of the truss, and for each position of the unit load, we apply the method of consistent deformations to compute the
value of FCE . The primary truss, obtained by removing member CE, is subjected separately to the unit load at B and C, as
shown in Fig. 15.6(b) and (c), respectively, and a unit tensile force in the redundant member CE, as shown in Fig. 15.6(d).

When the unit load is located at B, the compatibility equation can be expressed as

fCE;B þ fCE;CEFCE ¼ 0

in which fCE;B denotes the relative displacement between joints C and E of the primary truss due to the unit load at B
and fCE;CE denotes the relative displacements between the same joints due to a unit value of the redundant FCE . Ap-
plying the virtual work method (see Fig. 15.6(b) and (d) and Table 15.4), we obtain

fCE;B ¼ 1

E

P uBuCEL

A
¼ � 1004:49

E

fCE;CE ¼ 1

E

P u2CEL

A
¼ 6211:36

E
continued

624 CHAPTER 15 Influence Lines for Statically Indeterminate Structures

https://engineersreferencebookspdf.com



FIG. 15.6

By substituting these numerical values into the compatibility equation, we determine the ordinate of the influence line
for FCE at B to be

FCE ¼ 0:162 kN=kN ðTÞ
Similarly, when the unit load is located at C, the compatibility equation is given by

fCE;C þ fCE;CEFCE ¼ 0 continued
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TABLE 15.4

Member
L
(m)

A
(cm2)

uB
(kN/kN)

uC
(kN/kN)

uCE
(kN/kN)

uBuCEL

A

uCuCEL

A

u2CEL

A

AB 4 38 �0.889 �0.444 0 0 0 0

BC 4 38 �0.444 �0.889 �0.8 373.9 748.63 673.68

CD 4 38 �0.444 �0.889 0 0 0 0

EF 4 38 0.889 0.444 �0.8 �748.63 �373.9 673.68

BE 3 25 �0.667 �0.333 �0.6 480.24 239.8 432.0

CF 3 25 0 �1.0 �0.6 0 720.0 432.0

AE 5 38 1.111 0.555 0 0 0 0

BF 5 25 �0.555 0.555 1.0 �1110 1110 2000

CE 5 25 0 0 1.0 0 0 2000

DF 5 38 0.555 1.111 0 0 0 0P �1004.49 2444.53 6211.36

(see Fig. 15.6(c) and (d) and Table 15.4) in which

fCE;C ¼ 1

E

P uCuCEL

A
¼ 2444:53

E

By substituting the numerical values of fCE;C and fCE;CE into the compatibility equation, we determine the ordinate of
the influence line for FCE at C to be

FCE ¼ �0:393 kN=kN ¼ 0:393 kN=kN ðCÞ
The influence line for FCE is shown in Fig. 15.6(e). Ans.

Influence Lines for FBC and FBE The ordinate at B of the influence line for force in any member of the truss can be
determined by the superposition relationship (see Fig. 15.6(b) and (d) and Table 15.4)

F ¼ uB þ uCEFCE

in which FCE denotes the ordinate at B of the influence line for the redundant FCE . Thus the ordinates at B of the in-
fluence lines for FBC and FBE are

FBC ¼ �0:444þ ð�0:8Þð0:162Þ ¼ �0:575 kN=kN ¼ 0:575 kN=kN ðCÞ
FBE ¼ �0:667þ ð�0:6Þð0:162Þ ¼ �0:764 kN=kN ¼ 0:764 kN=kN ðCÞ

Similarly, the ordinates of the influence lines for FBC and FBE at C can be determined by using the superposition
relationship (see Fig. 15.6(c) and (d) and Table 15.4)

F ¼ uC þ uCEFCE

in which FCE now denotes the ordinate at C of the influence line for the redundant FCE . Thus

FBC ¼ �0:889þ ð�0:8Þð�0:393Þ ¼ �0:575 kN=kN ¼ 0:575 kN=kN ðCÞ
FBE ¼ �0:333þ ð�0:6Þð�0:393Þ ¼ �0:097 kN=kN ¼ 0:097 kN=kN ðCÞ

The influence lines for FBC and FBE are shown in Fig. 15.6(f ) and (g), respectively. Ans.
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15.2 QUALITATIVE INFLUENCE LINES BY MÜLLER-BRESLAU’S PRINCIPLE

In many practical applications, such as when designing continuous
beams or building frames subjected to uniformly distributed live
loads, it is usually su‰cient to draw only the qualitative influence
lines to decide where to place the live loads to maximize the response
functions of interest. As in the case of statically determinate struc-
tures (Section 8.2), Müller-Breslau’s principle provides a convenient
means of establishing qualitative influence lines for indeterminate
structures.

Recall from Section 8.2 that Müller-Breslau’s principle can be
stated as follows:

The influence line for a force (or moment) response function is given by

the deflected shape of the released structure obtained by removing the

restraint corresponding to the response function from the original struc-

ture and by giving the released structure a unit displacement (or rotation)

at the location and in the direction of the response function, so that only

the response function and the unit load perform external work.

The procedure for constructing qualitative influence lines for in-
determinate structures is the same as that for determinate structures
discussed in Section 8.2. The procedure essentially involves: (1) remov-
ing from the given structure the restraint corresponding to the response
function of interest to obtain the released structure; (2) applying a small
displacement (or rotation) to the released structure at the location and
in the positive direction of the response function; and (3) drawing a de-
flected shape of the released structure consistent with its support and
continuity conditions. The influence lines for indeterminate structures
are generally curved lines.

Once a qualitative influence line for a structural response function
has been constructed, it can be used to decide where to place the live
loads to maximize the value of the response function. As discussed in
Section 9.2, the value of a response function due to a uniformly dis-
tributed live load is maximum positive (or negative) when the load is
placed over those portions of the structure where the ordinates of the
response function influence line are positive (or negative). Because the
influence-line ordinates tend to diminish rapidly with distance from
the point of application of the response function, live loads placed more
than three span lengths away from the location of the response function
generally have a negligible e¤ect on the value of the response function.
With the live-load pattern known, an indeterminate analysis of the
structure can be performed to determine the maximum value of the re-
sponse function.
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Example 15.5

Draw qualitative influence lines for the vertical reactions at supports A and B, the bending moment at point B, and the
shear and bending moment at point C of the four-span continuous beam shown in Fig. 15.7(a). Also, show the ar-
rangements of a uniformly distributed downward live load wl to cause the maximum positive reactions at supports A
and B, the maximum negative bending moment at B, the maximum negative shear at C, and the maximum positive
bending moment at C.

Solution
Influence Line for Ay To determine the qualitative influence line for the vertical reaction Ay at support A, we re-

move the vertical restraint at A from the actual beam and give the released beam a small displacement in the positive
direction of Ay. The deflected shape of the released beam thus obtained (Fig. 15.7(b)) represents the general shape of the
influence line (i.e., the qualitative influence line) for Ay. Note that the deflected shape is consistent with the support
conditions of the released beam; that is, points B;D;E, and F of the released beam, which are attached to roller sup-
ports, do not displace. Ans.

To maximize the positive value of Ay, the live load wl is placed over spans AB and DE of the beam, where the
ordinates of the influence line for Ay are positive, as shown in Fig. 15.7(b). Ans.

Influence Line for By The qualitative influence line for By and the live-load arrangement for the maximum positive
value of By are determined in a similar manner and are shown in Fig. 15.7(c). Ans.

Influence Line for MB To determine the qualitative influence line for the bending moment at B, we insert a hinge at
B in the actual beam and give the released beam a small rotation in the positive direction of MB by rotating the portion
to the left of B counterclockwise and the portion to the right of B clockwise, as shown in Fig. 15.7(d). The deflected
shape of the released beam thus obtained represents the qualitative influence line for MB. Ans.

To cause the maximum negative bending moment at B, we place the live load wl over spans AB;BD, and EF of the
beam, where the ordinates of the influence line for MB are negative, as shown in Fig. 15.7(d). Ans.

FIG. 15.7

continued
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FIG. 15.7 (contd.)

continued
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Influence Line for SC The qualitative influence line for SC is determined by cutting the actual beam at C and by
giving the released beam a small relative displacement in the positive direction of SC by moving end C of the left por-
tion of the beam downward and end C of the right portion upward, as shown in Fig. 15.7(e). Ans.

To obtain the maximum negative shear at C, the live load is placed over span DE and the portion BC of the span
BD of the beam, where the ordinates of the influence line for Sc are negative, as shown in Fig. 15.7(e). Ans.

Influence Line for MC The qualitative influence line for the bending moment at C and the live-load arrangement
for the maximum positive value of MC are shown in Fig. 15.7(f ). Ans.

Example 15.6

Draw qualitative influence lines for the bending moment and shear at point A of the building frame shown in
Fig. 15.8(a). Also, show the arrangements of a uniformly distributed downward live load wl that will cause the max-
imum positive bending moment and the maximum negative shear at A.

Solution
Influence Line for MA The qualitative influence line for the bending moment at A is shown in Fig. 15.8(b). Note

that since the members of the frame are connected together by rigid joints, the original angles between the members
intersecting at a joint must be maintained in the deflected shape of the frame. To obtain the maximum positive bending
moment at A, the live load wl is placed over those spans of the frame where the ordinates of the influence line for MA

are positive, as shown in Fig. 15.8(b). This type of live-load pattern is sometimes referred to as a checker-board load

pattern. Ans.

FIG. 15.8

continued
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SUMMARY

In this chapter we have discussed influence lines for statically indeterminate
structures. The procedure for constructing such influence lines by the
method of consistent deformations essentially involves (1) constructing the
influence lines for the redundants by placing a unit load successively at a
number of points along the length of the structure and, for each position of
the unit load, computing the values of the redundants by applying the
method of consistent deformations, and (2) using the influence lines for
the redundants and, by applying the equations of equilibrium, determining
the influence lines for other response functions of the structure.

FIG. 15.8 (contd.)

Influence Line for SA The qualitative influence line for the shear at A and the live-load arrangement for the
maximum negative value of SA are shown in Fig. 15.8(c). Ans.
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Evaluation of the deflections involved in the application of the
method of consistent deformations can be considerably expedited by us-
ing Maxwell’s law of reciprocal deflections. The procedure for construct-
ing qualitative influence lines for indeterminate structures by Müller-
Breslau’s principle is presented in Section 15.2.

PROBLEMS

Section 15.1

15.1 Draw the influence lines for the reactions at the sup-
ports and the shear and bending moment at point B of the
beam shown in Fig. P15.1. Determine the influence line or-
dinates at 3-m intervals. Select the reaction at support C to
be the redundant.

EI = constant

6 m

12 m

A B C

FIG. P15.1, P15.2

15.2 Determine the influence lines for the reactions
at the supports for the beam of Problem 15.1 by select-
ing the moment at support A to be the redundant. See
Fig. P15.1.

15.3 Draw the influence lines for the reaction at support C
and the shear and bending moment at point B of the beam
shown in Fig. P15.3. Determine the influence line ordinates
at 5-ft intervals.

FIG. P15.3

15.4 Draw the influence lines for the reactions at the sup-
ports and the shear and bending moment at point C of the

beam shown in Fig. P15.4. Determine the influence line or-
dinates at 2 m intervals.

FIG. P15.4

15.5 Draw the influence lines for the reactions at the sup-
ports and the shear and bending moment at point C of the
beam shown in Fig. P15.5. Determine the influence line or-
dinates at 4-m intervals.

FIG. P15.5

15.6 Draw the influence lines for the reactions at the sup-
ports and the forces in members BC;CE, and EF of the
truss shown in Fig. P15.6. Live loads are transmitted to the
bottom chord of the truss.

FIG. P15.6
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15.7 Draw the influence lines for the forces in members BC
and CD of the truss shown in Fig. P15.7. Live loads are
transmitted to the top chord of the truss.

FIG. P15.7

15.8 Draw the influence lines for the forces in members
BC;BF , and CF of the truss shown in Fig. P15.8. Live
loads are transmitted to the bottom chord of the truss.

FIG. P15.8

15.9 Draw the influence lines for the reactions at supports B
and D and the shear and bending moment at point C of the
beam shown in Fig. P15.9. Determine the influence line or-
dinates at 1m intervals.

FIG. P15.9

15.10 Draw the influence lines for the reactions at the sup-
ports for the beam shown in Fig. P15.10. Determine the
influence line ordinates at 3-m intervals.

FIG. P15.10

15.11 Draw the influence lines for the reaction at support C
and the forces in members BC;CE, and EF of the truss
shown in Fig. P15.11. Live loads are transmitted to the
bottom chord of the truss.

FIG. P15.11

15.12 Draw the influence lines for the forces in members
BG;CD, and DG of the truss shown in Fig. P15.12. Live
loads are transmitted to the bottom chord of the truss.

FIG. P15.12

Section 15.2

15.13 through 15.15 Draw qualitative influence lines for
the vertical reactions at supports A and B, the bending mo-
ment at point B, and the shear and bending moment at
point C of the beams shown in Figs. P15.13–P15.15. Also,
show the arrangements of a uniformly distributed down-
ward live load wl to cause the maximum upward reactions
at supports A and B, the maximum negative bending mo-
ment at B, the maximum negative shear at C, and the
maximum positive bending moment at C.

A B C

L L LL
2

L
2

FIG. P15.13
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A B C

L LLL
2

L
2

FIG. P15.14

A B C

L LL
2

L
2

FIG. P15.15

15.16 Draw qualitative influence lines for the bending mo-
ment and shear at point A of the building frame shown in
Fig. P15.16. Also, show the arrangements of a uniformly
distributed downward live load wl to cause the maximum
positive bending moment at A, and the maximum negative
shear at A.

FIG. P15.16

15.17 For the building frame shown in Fig. P15.17, de-
termine the arrangements of a uniformly distributed down-
ward live load wl that will cause the maximum negative
bending moment at point A and the maximum positive
bending moment at point B.

FIG. P15.17
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16
Slope-Deflection Method
16.1 Slope-Deflection Equations
16.2 Basic Concept of the Slope-Deflection Method
16.3 Analysis of Continuous Beams
16.4 Analysis of Frames without Sidesway
16.5 Analysis of Frames with Sidesway

Summary
Problems

635

In Chapters 13 and 14, we considered various formulations of the force
(flexibility) method of analysis of statically indeterminate structures.
Recall that in the force method, the unknown redundant forces are de-
termined first by solving the structure’s compatibility equations; then the
other response characteristics of the structure are evaluated by equili-
brium equations or superposition. An alternative approach that can be
used for analyzing indeterminate structures is termed the displacement

(sti¤ness) method. Unlike the force method, in the displacement method
the unknown displacements are determined first by solving the struc-
ture’s equilibrium equations; then the other response characteristics
are evaluated through compatibility considerations and member force-
deformation relations.

In this chapter, we consider a classical formulation of the displace-
ment method, called the slope-deflection method. An alternative classi-
cal formulation, the moment-distribution method, is presented in the next
chapter, followed by an introduction to the modern matrix sti¤ness

method in Chapter 18.
The slope-deflection method for the analysis of indeterminate beams

and frames was introduced by George A. Maney in 1915. The method
takes into account only the bending deformations of structures. Al-
though the slope-deflection method is itself considered to be a useful
tool for analyzing indeterminate beams and frames, an understanding of

Petronas Towers, Kuala Lumpur,

Malaysia
Andrea Seemann/Shutterstock
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the fundamentals of this method provides a valuable introduction to the
matrix sti¤ness method, which forms the basis of most computer soft-
ware currently used for structural analysis.

We first derive the fundamental relationships necessary for the
application of the slope-deflection method and then develop the basic
concept of the slope-deflection method. We consider the application of
the method to the analysis of continuous beams and present the analysis
of the frames in which joint translations are prevented. Finally, we con-
sider the analysis of frames with joint translations.

16.1 SLOPE-DEFLECTION EQUATIONS

When a continuous beam or a frame is subjected to external loads, in-
ternal moments generally develop at the ends of its individual members.

The slope-deflection equations relate the moments at the ends of a member

to the rotations and displacements of its ends and the external loads applied

to the member.

To derive the slope-deflection equations, let us focus our attention on
an arbitrary member AB of the continuous beam shown in Fig. 16.1(a).
When the beam is subjected to external loads and support settlements,
member AB deforms, as shown in the figure, and internal moments
are induced at its ends. The free-body diagram and the elastic curve for
member AB are shown using an exaggerated scale in Fig. 16.1(b). As
indicated in this figure, double-subscript notation is used for member
end moments, with the first subscript identifying the member end at
which the moment acts and the second subscript indicating the other end
of the member. Thus, MAB denotes the moment at end A of member AB,
whereas MBA represents the moment at end B of member AB. Also, as
shown in Fig. 16.1(b), yA and yB denote, respectively, the rotations of
ends A and B of the member with respect to the undeformed (horizontal)
position of the member; D denotes the relative translation between the
two ends of the member in the direction perpendicular to the undeformed
axis of the member; and the angle c denotes the rotation of the mem-
ber’s chord (i.e., the straight line connecting the deformed positions of
the member ends) due to the relative translation D. Since the deforma-
tions are assumed to be small, the chord rotation can be expressed as

c ¼ D

L
(16.1)

The sign convention used in this chapter is as follows:

The member end moments, end rotations, and

chord rotation are positive when counterclockwise.
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FIG. 16.1
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Note that all the moments and rotations are shown in the positive sense
in Fig. 16.1(b).

The slope-deflection equations can be derived by relating the mem-
ber end moments to the end rotations and chord rotation by applying
the second moment-area theorem (Section 6.4). From Fig. 16.1(b), we
can see that

FIG. 16.1 (contd.)
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yA ¼ DBA þ D

L
yB ¼ DAB þ D

L
(16.2)

By substituting D=L ¼ c into the preceding equations, we write

yA � c ¼ DBA

L
yB � c ¼ DAB

L
(16.3)

in which, as shown in Fig. 16.1(b), DBA is the tangential deviation of
end B from the tangent to the elastic curve at end A and DAB is the
tangential deviation of end A from the tangent to the elastic curve at
end B. According to the second moment-area theorem, the expressions
for the tangential deviations DBA and DAB can be obtained by summing
the moments about the ends B and A, respectively, of the area under the
M=EI diagram between the two ends.

The bending moment diagram for the member is constructed in
parts by applying MAB;MBA, and the external loading separately on
the member with simply supported ends. The three simple-beam bending

moment diagrams thus obtained are shown in Fig. 16.1(c). Assuming
that the member is prismatic—that is, EI is constant along the length of
the member—we sum the moments of the area under the M=EI dia-
gram about the ends B and A, respectively, to determine the tangential
deviations:

DBA ¼ 1

EI

MABL

2

� �
2L

3

� �
� MBAL

2

� �
L

3

� �
� gB

� �
or

DBA ¼MABL
2

3EI
�MBAL

2

6EI
� gB

EI
(16.4a)

and

DAB ¼ 1

EI
� MABL

2

� �
L

3

� �
þ MBAL

2

� �
2L

3

� �
þ gA

� �
or

DAB ¼ �MABL
2

6EI
þMBAL

2

3EI
þ gA

EI
(16.4b)

in which gB and gA are the moments about the ends B and A, respec-
tively, of the area under the simple-beam bending moment diagram
due to external loading (ML diagram in Fig. 16.1(c)). The three terms
in Eqs. (16.4a) and (16.4b) represent the tangential deviations due to
MAB;MBA, and the external loading, acting separately on the member
(Fig. 16.1(d)), with a negative term indicating that the corresponding
tangential deviation is in the direction opposite to that shown on the
elastic curve of the member in Fig. 16.1(b).
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By substituting the expressions for DBA and DAB (Eqs. (16.4)) into
Eq. (16.3), we write

yA � c ¼MABL

3EI
�MBAL

6EI
� gB

EIL
(16.5a)

yB � c ¼ �MABL

6EI
þMBAL

3EI
þ gA

EIL
(16.5b)

To express the member end moments in terms of the end rotations, the
chord rotation, and the external loading, we solve Eqs. (16.5a) and
(16.5b) simultaneously for MAB and MBA. Rewriting Eq. (16.5a) as

MBAL

3EI
¼ 2MABL

3EI
� 2gB
EIL
� 2ðyA � cÞ

By substituting this equation into Eq. (16.5b) and solving the resulting
equation for MAB, we obtain

MAB ¼ 2EI

L
ð2yA þ yB � 3cÞ þ 2

L2
ð2gB � gAÞ (16.6a)

and by substituting Eq. (16.6a) into either Eq. (16.5a) or Eq. (16.5b), we
obtain the expression for MBA:

MBA ¼ 2EI

L
ðyA þ 2yB � 3cÞ þ 2

L2
ðgB � 2gAÞ (16.6b)

As Eqs. (16.6) indicate, the moments that develop at the ends of a
member depend on the rotations and translations of the member’s ends
as well as on the external loading applied between the ends.

Now, suppose that the member under consideration, instead of be-
ing a part of a larger structure, was an isolated beam with both its ends
completely fixed against rotations and translations, as shown in Fig.
16.1(e). The moments that would develop at the ends of such a fixed

beam are referred to as fixed-end moments, and their expressions can be
obtained from Eqs. (16.6) by setting yA ¼ yB ¼ c ¼ 0; that is,

FEMAB ¼ 2

L2
ð2gB � gAÞ (16.7a)

FEMBA ¼ 2

L2
ðgB � 2gAÞ (16.7b)

in which FEMAB and FEMBA denote the fixed-end moments due to ex-
ternal loading at the ends A and B, respectively, of the fixed beam AB

(see Fig. 16.1(e)).
By comparing Eqs. (16.6) and (16.7), we find that the second terms

on the right sides of Eqs. (16.6) are equal to the fixed-end moments that
would develop if the ends of the member were fixed against rotations
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and translations. Thus, by substituting Eqs. (16.7) into Eqs. (16.6), we
obtain

MAB ¼ 2EI

L
ð2yA þ yB � 3cÞ þ FEMAB

MBA ¼ 2EI

L
ðyA þ 2yB � 3cÞ þ FEMBA

(16.8a)

(16.8b)

Equations (16.8), which express the moments at the ends of a member in
terms of its end rotations and translations for a specified external load-
ing, are called the slope-deflection equations. These equations are valid
only for prismatic members composed of linearly elastic material and
subjected to small deformations. Also, although the equations take into
account the bending deformations of members, the deformations due to
axial forces and shears are neglected.

From Eqs. (16.8), we observe that the two slope-deflection equa-
tions have the same form and that either one of the equations can be
obtained from the other simply by switching the subscripts A and B.
Thus it is usually convenient to express these equations by the following
single slope-deflection equation:

Mnf ¼ 2EI

L
ð2yn þ yf � 3cÞ þ FEMnf (16.9)

in which the subscript n refers to the near end of the member where the
moment Mnf acts and the subscript f identifies the far (other) end of the
member.

Fixed-End Moments

The expressions for fixed-end moments due to any loading condition
can be derived by using the method of consistent deformations, as dis-
cussed in Chapter 13 (see Example 13.10). However, it is usually more
convenient to determine the fixed-end moment expressions by applying
Eqs. (16.7), which require only the computation of the moments of the
area under the simple-beam bending moment diagram about the ends of
the beam.

To illustrate the application of Eqs. (16.7), consider a fixed beam
subjected to a concentrated load P, as shown in Fig. 16.2(a). The
fixed-end moments of this beam were previously determined in Example
13.10 by the method of consistent deformations. To apply Eqs. (16.7),
we replace the fixed ends of the beam by simple supports and construct
the simple-beam bending moment diagram, as shown in Fig. 16.2(b).
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The moments of the area under the simple-beam bending moment dia-
gram about the ends A and B are given by

gA ¼ 1

2
a

Pab

L

� �
2a

3

� �
þ 1

2
b

Pab

L

� �
aþ b

3

� �

gB ¼ 1

2
a

Pab

L

� �
a

3
þ b

� �
þ 1

2
b

Pab

L

� �
2b

3

� �
By substituting L ¼ aþ b into these equations and simplifying, we
obtain

gA ¼ Pab

6
ð2aþ bÞ gB ¼ Pab

6
ðaþ 2bÞ

By substituting the expressions for gA and gB into Eqs. (16.7), we de-
termine the fixed-end moments to be

FIG. 16.2
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FEMAB ¼ 2

L2

2Pab

6
ðaþ 2bÞ � Pab

6
ð2aþ bÞ

� �
¼ Pab2

L2

’

FEMBA ¼ 2

L2

Pab

6
ðaþ 2bÞ � 2Pab

6
ð2aþ bÞ

� �
¼ �Pa2b

L2

Recall that Eqs. (16.7) are based on the sign convention that the coun-
terclockwise end moments are positive. Thus the negative answer for
FEMBA indicates that its correct sense is clockwise; that is,

FEMBA ¼ Pa2b

L2
@

as shown in Fig. 16.2(c).
The fixed-end moment expressions for some common types of

loading conditions are given inside the back cover of the book for con-
venient reference.

Members with One End Hinged

The slope-deflection equations derived previously (Eqs. (16.8) or Eq.
(16.9)) are based on the condition that the member is rigidly connected
to joints at both ends, so that the member end rotations yA and yB are
equal to the rotations of the adjacent joints. When one of the member’s
ends is connected to the adjacent joint by a hinged connection, the
moment at the hinged end must be zero. The slope-deflection equations
can be easily modified to reflect this condition. With reference to
Fig. 16.1(b), if the end B of member AB is hinged, then the moment at
B must be zero. By substituting MBA ¼ 0 into Eqs. (16.8), we write

MAB ¼ 2EI

L
ð2yA þ yB � 3cÞ þ FEMAB (16.10a)

MBA ¼ 0 ¼ 2EI

L
ðyA þ 2yB � 3cÞ þ FEMBA (16.10b)

Solving Eq. (16.10b) for yB, we obtain

yB ¼ � yA

2
þ 3

2
c� L

4EI
ðFEMBAÞ (16.11)

To eliminate yB from the slope-deflection equations, we substitute Eq.
(16.11) into Eq. (16.10a), thus obtaining the modified slope-deflection

equations for member AB with a hinge at end B:

MAB ¼ 3EI

L
ðyA � cÞ þ FEMAB � FEMBA

2

� �
(16.12a)

MBA ¼ 0 (16.12b)

Similarly, it can be shown that for a member AB with a hinge at
end A, the rotation of the hinged end is given by
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yA ¼ � yB

2
þ 3

2
c� L

4EI
ðFEMABÞ (16.13)

and the modified slope-deflection equations can be expressed as

MBA ¼ 3EI

L
ðyB � cÞ þ FEMBA � FEMAB

2

� �
(16.14a)

MAB ¼ 0 (16.14b)

Because the modified slope-deflection equations given by Eqs.
(16.12) and (16.14) are similar in form, they can be conveniently sum-
marized as

Mrh ¼ 3EI

L
ðyr � cÞ þ FEMrh � FEMhr

2

� �
Mhr ¼ 0

(16.15a)

(16.15b)

in which the subscript r refers to the rigidly connected end of the member
where the moment Mrh acts and the subscript h identifies the hinged end
of the member. The rotation of the hinged end can now be written as

yh ¼ � yr

2
þ 3

2
c� L

4EI
ðFEMhrÞ (16.16)

16.2 BASIC CONCEPT OF THE SLOPE-DEFLECTION METHOD

To illustrate the basic concept of the slope-deflection method, consider
the three-span continuous beam shown in Fig. 16.3(a). Although the

FIG. 16.3
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FIG. 16.3 (contd.)
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structure actually consists of a single continuous beam between the fixed
supports A and D, for the purpose of analysis it is considered to be
composed of three members, AB;BC, and CD, rigidly connected at
joints A;B;C, and D located at the supports of the structure. Note that
the continuous beam has been divided into members and joints, so that
the unknown external reactions act only at the joints.

Degrees of Freedom

With the joint locations now established, we identify the unknown in-
dependent displacements (translations and rotations) of the joints of the
structure. These unknown joint displacements are referred to as the de-

grees of freedom of the structure. From the qualitative deflected shape of
the continuous beam shown in Fig. 16.3(a), we can see that none of its
joints can translate. Furthermore, the fixed joints A and D cannot ro-
tate, whereas joints B and C are free to rotate. Thus the continuous
beam has two degrees of freedom, yB and yC , which represent the un-
known rotations of joints B and C, respectively.

The number of degrees of freedom is sometimes called the degree of
kinematic indeterminacy of the structure. Since the beam of Fig. 16.3(a)
has two degrees of freedom, it is considered to be kinematically in-
determinate to the second degree. A structure without any degrees of
freedom is termed kinematically determinate. In other words, if the dis-
placements of all the joints of a structure are either zero or known, the
structure is considered to be kinematically determinate.

Equations of Equilibrium

The unknown joint rotations are determined by solving the equations of
equilibrium of the joints that are free to rotate. The free-body diagrams
of the members and joints B and C of the continuous beam are shown in
Fig. 16.3(b). In addition to the external loads, each member is subjected
to an internal moment at each of its ends. Since the correct senses of the
member end moments are not yet known, it is assumed that the mo-
ments at the ends of all the members are positive (counterclockwise)
in accordance with the slope-deflection sign convention adopted in the
preceding section. Note that the free-body diagrams of the joints show
the member end moments acting in an opposite (clockwise) direction, in
accordance with Newton’s law of action and reaction.

Because the entire structure is in equilibrium, each of its members
and joints must also be in equilibrium. By applying the moment equili-
brium equations

P
MB ¼ 0 and

P
MC ¼ 0, respectively, to the free

bodies of joints B and C, we obtain the equilibrium equations

MBA þMBC ¼ 0 (16.17a)

MCB þMCD ¼ 0 (16.17b)

646 CHAPTER 16 Slope-Deflection Method

https://engineersreferencebookspdf.com



Slope-Deflection Equations

The foregoing equilibrium equations (Eqs. (16.17)) can be expressed
in terms of the unknown joint rotations, yB and yC , by using slope-
deflection equations that relate member end moments to the unknown
joint rotations. However, before we can write the slope-deflection equa-
tions, we need to compute the fixed-end moments due to the external
loads acting on the members of the continuous beam.

To calculate the fixed-end moments, we apply imaginary clamps
at joints B and C to prevent them from rotating, as shown in Fig.
16.3(c). The fixed-end moments that develop at the ends of the members
of this fully restrained or kinematically determinate structure can easily
be evaluated either by applying Eqs. (16.7) or by using the fixed-end
moment expressions given inside the back cover of the book. By using
the fixed-end moment expressions, we calculate the fixed-end moments
as follows:

For member AB:

FEMAB ¼ wL2

12
¼ 22ð6Þ2

12
¼ 66 kN-m

’

or þ66 kN-m

FEMBA ¼ 66 kN-m @ or �66 kN-m

For member BC:

FEMBC ¼ PL

8
¼ 135ð6Þ

8
¼ 101:25 kN-m

’
or þ101:25 kN-m

FEMCB ¼ 101:25 kN-m @ or �101:25 kN-m

Note that, in accordance with the slope-deflection sign convention, the
counterclockwise fixed-end moments are considered to be positive. Since
no external loads act on member CD, its fixed-end moments are zero;
that is,

FEMCD ¼ FEMDC ¼ 0

The fixed-end moments are shown on the diagram of the restrained
structure in Fig. 16.3(c).

The slope-deflection equations for the three members of the con-
tinuous beam can now be written by using Eq. (16.9). Since none of the
supports of the continuous beam translates, the chord rotations of the
three members are zero (i.e., cAB ¼ cBC ¼ cCD ¼ 0). Also, since sup-
ports A and D are fixed, the rotations yA ¼ yD ¼ 0. By applying Eq.
(16.9) for member AB, with A as the near end and B as the far end, we
obtain the slope-deflection equation

MAB ¼ 2EI

6
ð0þ yB � 0Þ þ 66 ¼ 0:33EIyB þ 66 (16.18a)

Next, by considering B as the near end and A as the far end, we write
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MBA ¼ 2EI

6
ð2yB þ 0� 0Þ � 66 ¼ 0:67EIyB � 66 (16.18b)

Similarly, by applying Eq. (16.9) for member BC, we obtain

MBC ¼ 2EI

6
ð2yB þ yCÞ þ 101:25 ¼ 0:67EIyB þ 0:33EIyC þ 101:25(16.18c)

MCB ¼ 2EI

6
ð2yC þ yBÞ � 101:25 ¼ 0:67EIyC þ 0:33EIyB � 101:25 (16.18d)

and for member CD,

MCD ¼ 2EI

4:5
ð2yCÞ ¼ 0:89EIyC (16.18e)

MDC ¼ 2EI

4:5
ðyCÞ ¼ 0:44EIyC (16.18f )

These slope-deflection equations automatically satisfy the compatibility
conditions of the structure. Since the member ends are rigidly connected
to the adjacent joints, the rotations of member ends are equal to the ro-
tations of the adjacent joints. Thus, the y terms in the slope-deflection
equations (Eqs. (16.18)) represent the rotations of the member ends as
well as those of the joints.

Joint Rotations

To determine the unknown joint rotations yB and yC , we substitute the
slope-deflection equations (Eqs. (16.18)) into the joint equilibrium
equations (Eqs. (16.17)) and solve the resulting system of equations si-
multaneously for yB and yC . Thus by substituting Eqs. (16.18b) and
(16.18c) into Eq. (16.17a), we obtain

ð0:67EIyB � 66Þ þ ð0:67EIyB þ 0:33EIyC þ 101:25Þ ¼ 0

or

1:34EIyB þ 0:33EIyC ¼ �35:25 (16.19a)

and by substituting Eqs. (16.18d) and (16.18e) into Eq. (16.17b), we get

ð0:67EIyC þ 0:33EIyB � 101:25Þ þ 0:89EIyC ¼ 0

or

0:33EIyB þ 1:56EIyC ¼ 101:25 (16.19b)

Solving Eqs. (16.19a) and (16.19b) simultaneously for EIyB and EIyC ,
we obtain

EIyB ¼ �44:41 kN-m2

EIyC ¼ 74:34 kN-m2
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By substituting the numerical values of E ¼ 200 GPa and I ¼ 210� 106

mm4, we determine the rotations of joints B and C to be

yB ¼ �0:0011 rad or 0:0011 rad @

yC ¼ 0:0018 rad

’

Member End Moments

The moments at the ends of the three members of the continuous beam
can now be determined by substituting the numerical values of EIyB
and EIyC into the slope-deflection equations (Eqs. (16.18)). Thus

MAB ¼ 0:33ð�44:41Þ þ 66 ¼ 51:34 kN

’

MBA ¼ 0:67ð�44:41Þ � 66 ¼ �95:75 kN-m or � 95:75 kN-m @

MBC ¼ 0:67ð�44:41Þ þ 0:33ð74:34Þ þ 101:25 ¼ 95:75 kN-m

’

MCB ¼ 0:67ð74:34Þ þ 0:33ð�44:41Þ � 101:25

¼ �66 kN-m or 66 kN-m @

MCD ¼ 0:89ð74:34Þ ¼ 66 kN-m

’

MDC ¼ 0:44ð74:34Þ ¼ 32:71 kN-m

’

Note that a positive answer for an end moment indicates that its sense is
counterclockwise, whereas a negative answer for an end moment implies
a clockwise sense.

To check that the solution of simultaneous equations (Eqs. (16.19))
has been carried out correctly, the numerical values of member end
moments should be substituted into the joint equilibrium equations
(Eqs. (16.17)). If the solution is correct, then the equilibrium equations
should be satisfied.

MBA þMBC ¼ �95:75þ 95:75 ¼ 0 Checks

MCB þMCD ¼ �66þ 66 ¼ 0 Checks

Member End Shears

The member end moments just computed are shown on the free-body
diagrams of the members and joints in Fig. 16.3(d). The shear forces at
the ends of members can now be determined by applying the equations
of equilibrium to the free bodies of the members. Thus, for member AB,

þ ’
P

MB ¼ 0 51:34� SABð6Þ þ 22ð6Þð3Þ � 95:75 ¼ 0

SAB ¼ 58:6 kN "
þ "PFy ¼ 0 58:6� 22ð6Þ þ SBA ¼ 0

SBA ¼ 73:4 kN "
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Similarly, for member BC,

þ ’
P

MC ¼ 0 95:75� SBCð6Þ þ 135ð3Þ � 66 ¼ 0

SBC ¼ 72:46 kN "
þ "PFy ¼ 0 72:46� 135þ SCB ¼ 0

SCB ¼ 62:54 kN "
and for member CD,

þ ’
P

MD ¼ 0 66� SCDð4:5Þ þ 32:71 ¼ 0 SCD ¼ 21:94 kN "
þ "PFy ¼ 0 SDC ¼ 21:94 kN #
The foregoing member end shears can, alternatively, be evaluated

by superposition of end shears due to the external load and each of the
end moments acting separately on the member. For example, the shear
at end A of member AB is given by

SAB ¼ 22ð6Þ
2
þ 51:34

6
� 95:75

6
¼ 58:6 kN "

in which the first term equals the shear due to the 22 kN/m uniformly
distributed load, whereas the second and third terms are the shears due
to the 51.34 kN-m and 95.75 kN-m moments, respectively, at the ends A
and B of the member.

Support Reactions

From the free-body diagram of joint B in Fig. 16.3(d), we can see that
the vertical reaction at the roller support B is equal to the sum of the
shears at ends B of members AB and BC; that is,

By ¼ SBA þ SBC ¼ 73:4þ 72:46 ¼ 145:86 kN "
Similarly, the vertical reaction at the roller support C equals the sum of
the shears at ends C of members BC and CD. Thus

Cy ¼ SCB þ SCD ¼ 62:54þ 21:94 ¼ 84:48 kN "
The reactions at the fixed support A are equal to the shear and moment
at the end A of member AB; that is,

Ay ¼ SAB ¼ 58:6 kN "
MA ¼MAB ¼ 51:34 kN-m

’

Similarly, the reactions at the fixed support D equal the shear and mo-
ment at end D of member CD. Thus

Dy ¼ SDC ¼ 21:94 kN #
MD ¼MDC ¼ 32:71 kN-m

’

The support reactions are shown in Fig. 16.3(e).
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Equilibrium Check

To check our computations of member end shears and support re-
actions, we apply the equations of equilibrium to the free body of the
entire structure. Thus (Fig. 16.3(e)),

þ "PFy ¼ 0

58:6� 22ð6Þ þ 145:86� 135þ 84:48� 21:94 ¼ 0 Checks

þ ’
P

MD ¼ 0

51:34� 58:6ð16:5Þ þ 22ð6Þð13:5Þ � 145:86ð10:5Þ þ 135ð7:5Þ
� 84:48ð4:5Þ þ 32:71 ¼ �0:04&0 Checks

This equilibrium check, as well as the check performed previously on
the solution of simultaneous equations, does not detect any errors in-
volved in the slope-deflection equations. Therefore, the slope-deflection
equations should be developed very carefully and should always be
checked before proceeding with the rest of the analysis.

Shear and Bending Moment Diagrams

With the support reactions known, the shear and bending moment dia-
grams can now be constructed in the usual manner by using the beam

sign convention described in Section 5.1. The shear and bending mo-
ment diagrams thus obtained for the continuous beam are shown in Fig.
16.3(f ) and (g), respectively.

16.3 ANALYSIS OF CONTINUOUS BEAMS

Based on the discussion presented in the preceding section, the procedure
for the analysis of continuous beams by the slope-deflection method can
be summarized as follows:

1. Identify the degrees of freedom of the structure. For continuous
beams, the degrees of freedom consist of the unknown rotations of
the joints.

2. Compute fixed-end moments. For each member of the structure,
evaluate the fixed-end moments due to the external loads by using
the expressions given inside the back cover of the book. The coun-
terclockwise fixed-end moments are considered to be positive.

3. In the case of support settlements, determine the rotations of the
chords of members adjacent to the supports that settle by dividing
the relative translation between the two ends of the member by the
member length ðc ¼ D=LÞ. The chord rotations are measured from
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the undeformed (horizontal) positions of members, with counter-
clockwise rotations considered as positive.

4. Write slope-deflection equations. For each member, apply Eq. (16.9)
to write two slope-deflection equations relating member end mo-
ments to the unknown rotations of the adjacent joints.

5. Write equilibrium equations. For each joint that is free to rotate,
write a moment equilibrium equation,

P
M ¼ 0, in terms of the

moments at the member ends connected to the joint. The total
number of such equilibrium equations must be equal to the number
of degrees of freedom of the structure.

6. Determine the unknown joint rotations. Substitute the slope-
deflection equations into the equilibrium equations, and solve the
resulting system of equations for the unknown joint rotations.

7. Calculate member end moments by substituting the numerical values
of joint rotations determined in step 6 into the slope-deflection
equations. A positive answer for an end moment indicates that its
sense is counterclockwise, whereas a negative answer for an end
moment implies a clockwise sense.

8. To check whether or not the solution of simultaneous equations was
carried out correctly in step 6, substitute the numerical values of
member end moments into the joint equilibrium equations devel-
oped in step 5. If the solution is correct, then the equilibrium equa-
tions should be satisfied.

9. Compute member end shears. For each member, (a) draw a free-
body diagram showing the external loads and end moments and (b)
apply the equations of equilibrium to calculate the shear forces at
the ends of the member.

10. Determine support reactions by considering the equilibrium of the
joints of the structure.

11. To check the calculations of member end shears and support re-
actions, apply the equations of equilibrium to the free body of the
entire structure. If the calculations have been carried out correctly,
then the equilibrium equations should be satisfied.

12. Draw shear and bending moment diagrams of the structure by using
the beam sign convention.

Beams with Simple Supports at Their Ends

Although the foregoing procedure can be used to analyze continuous
beams that are simply supported at one or both ends, the analysis of
such structures can be considerably expedited by using the modified
slope-deflection equations (Eqs. (16.15)) for spans adjacent to the simple
end supports, thereby eliminating the rotations of simple supports from
the analysis (see Example 16.3). However, this simplified approach can
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be used only for those simple end supports at which no external moment
is applied. This is because the modified slope-deflection equations for a
member with one end hinged (Eqs. (16.15)) are based on the condition
that the moment at the hinged end is zero.

Structures with Cantilever Overhangs

Consider a continuous beam with a cantilever overhang, as shown in
Fig. 16.4(a). Since the cantilever portion CD of the beam is statically
determinate in the sense that the shear and moment at its end C can be
obtained by applying the equations of equilibrium (Fig. 16.4(b)), it is
not necessary to include this portion in the analysis. Thus, for the pur-
pose of analysis, the cantilever portion CD can be removed from the
structure, provided that the moment and the force exerted by the can-
tilever on the remaining structure are included in the analysis. The in-
determinate part AC of the structure, which needs to be analyzed, is
shown in Fig. 16.4(c).

FIG. 16.4
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Example 16.1

Determine the reactions and draw the shear and bending moment diagrams for the two-span continuous beam shown in
Fig. 16.5(a) by the slope-deflection method.

Solution
Degrees of Freedom From Fig. 16.5(a), we can see that only joint B of the beam is free to rotate. Thus, the

structure has only one degree of freedom, which is the unknown joint rotation, yB.

Fixed-End Moments By using the fixed-end moment expressions given inside the back cover of the book, we
evaluate the fixed-end moments due to the external loads for each member:

FEMAB ¼ Pab2

L2
¼ 90ð2Þð3Þ2

ð5Þ2 ¼ 64:8 kN-m

’

or þ64:8 kN-m

FEMBA ¼ Pa2b

L2
¼ 90ð2Þ2ð3Þ

ð5Þ2 ¼ 43:2 kN-m @ or �43:2 kN-m

FEMBC ¼ wL2

12
¼ 50ð6Þ2

12
¼ 150 kN-m

’

or þ150 kN-m

FEMCB ¼ 150 kN-m @ or �150 kN-m

Note that in accordance with the slope-deflection sign convention, the counterclockwise fixed-end moments are consid-
ered as positive, whereas the clockwise fixed-end moments are considered to be negative.

Chord Rotations Since no support settlements occur, the chord rotations of both members are zero; that is,
cAB ¼ cBC ¼ 0.

Slope-Deflection Equations To relate the member end moments to the unknown joint rotation, yB, we write
the slope-deflection equations for the two members of the structure by applying Eq. (16.9). Note that since the
supports A and C are fixed, the rotations yA ¼ yC ¼ 0. Thus the slope-deflection equations for member AB can be
expressed as

MAB ¼ 2EI

5
ðyBÞ þ 64:8 ¼ 0:4EIyB þ 64:8 (1)

MBA ¼ 2EI

5
ð2yBÞ � 43:2 ¼ 0:8EIyB � 43:2 (2)

Similarly, by applying Eq. (16.9) for member BC, we obtain the slope-deflection equations

MBC ¼ 2EI

6
ð2yBÞ þ 150 ¼ 0:67EIyB þ 150 (3)

MCB ¼ 2EI

6
ðyBÞ � 150 ¼ 0:33EIyB � 150 (4)

Equilibrium Equation The free-body diagram of joint B is shown in Fig. 16.5(b). Note that the member end
moments, which are assumed to be in a counterclockwise direction on the ends of the members, must be applied
in the (opposite) clockwise direction on the free body of the joint, in accordance with Newton’s third law.

continued
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FIG. 16.5
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By applying the moment equilibrium equation
P

MB ¼ 0 to the free body of joint B, we obtain the equilibrium
equation

MBA þMBC ¼ 0 (5)

Joint Rotation To determine the unknown joint rotation, yB, we substitute the slope-deflection equations (Eqs. (2)
and (3)) into the equilibrium equation (Eq. (5)) to obtain

ð0:8EIyB � 43:2Þ þ ð0:67EIyB þ 150Þ ¼ 0

or
1:47EIyB ¼ �106:8

from which
EIyB ¼ �72:65 kN-m2

Member End Moments The member end moments can now be computed by substituting the numerical value of
EIyB back into the slope-deflection equations (Eqs. (1) through (4)). Thus,

MAB ¼ 0:4ð�72:65Þ þ 64:8 ¼ 35:6 kN-m

’

MBA ¼ 0:8ð�72:65Þ � 43:2 ¼ �101:5 kN-m or 101:5 kN-m @

MBC ¼ 0:67ð�72:65Þ þ 150 ¼ 101:5 kN-m

’

MCB ¼ 0:33ð�72:65Þ � 150 ¼ �174:3 kN-m or 174:3 kN-m @

Note that a positive answer for an end moment indicates that its sense is counterclockwise, whereas a negative answer
for an end moment implies a clockwise sense. Since the end moments MBA and MBC are equal in magnitude but oppo-
site in sense, the equilibrium equation, MBA þMBC ¼ 0, is indeed satisfied.

Member End Shears The member end shears, obtained by considering the equilibrium of each member, are shown
in Fig. 16.5(c).

Support Reactions The reactions at the fixed supports A and C are equal to the forces and moments at the ends of
the members connected to these joints. To determine the reaction at the roller support B, we consider the equilibrium of
the free body of joint B in the vertical direction (see Fig. 16.5(c)), to obtain

By ¼ SBA þ SBC ¼ 49:18þ 137:87 ¼ 187:05 kN "
The support reactions are shown in Fig. 16.5(d). Ans.

Equilibrium Check To check our calculations of member end shears and support reactions, we apply the equations
of equilibrium to the free body of the entire structure. Thus (see Fig. 16.5(d)),

þ "PFy ¼ 0

40:82� 90þ 187:05� 50� 6þ 162:13 ¼ 0 Checks

þ ’
P

MC ¼ 0

35:6� 40:82ð11Þ þ 90ð9Þ � 187:05ð6Þ þ 50ð6Þð3Þ � 174:3 ¼ �0:02&0 Checks

Shear and Bending Moment Diagrams The shear and bending moment diagrams can now be constructed by using
the beam sign convention described in Section 5.1. These diagrams are shown in Fig. 16.5(e) and (f ). Ans.
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Example 16.2

Determine the reactions and draw the shear and bending moment diagrams for the three-span continuous beam shown
in Fig. 16.6(a) by the slope-deflection method.

FIG. 16.6
continued
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Solution
Degrees of Freedom yB and yC

Fixed-End Moments

FEMAB ¼ 27ð6Þ2
30

¼ 32:4 kN-m

’

or þ32:4 kN-m

FEMBA ¼ 27ð6Þ2
20

¼ 48:6 kN-m @ or �48:6 kN-m

FEMBC ¼ 27ð6Þ2
12

¼ 81 kN-m

’

or þ81 kN-m

FEMCB ¼ 81 kN-m @ or �81 kN-m

FEMCD ¼ 27ð6Þ2
20

¼ 48:6 kN-m

’

or þ48:6 kN-m

FEMDC ¼ 27ð6Þ2
30

¼ 32:4 kN-m @ or �32:4 kN-m

continued

FIG. 16.6 (contd.)

658 CHAPTER 16 Slope-Deflection Method

https://engineersreferencebookspdf.com



Slope-Deflection Equations Using Eq. (16.9) for members AB, BC, and CD, we write

MAB ¼ 2EI

6
ðyBÞ þ 32:4 ¼ 0:33EIyB þ 32:4 (1)

MBA ¼ 2EI

6
ð2yBÞ � 48:6 ¼ 0:67EIyB � 48:6 (2)

MBC ¼ 2EI

6
ð2yB þ yCÞ þ 81 ¼ 0:67EIyB þ 0:33EIyC þ 81 (3)

MCB ¼ 2EI

6
ðyB þ 2yCÞ � 81 ¼ 0:33EIyB þ 0:67EIyC � 81 (4)

MCD ¼ 2EI

6
ð2yCÞ þ 48:6 ¼ 0:67EIyC þ 48:6 (5)

MDC ¼ 2EI

6
ðyCÞ � 32:4 ¼ 0:33EIyC � 32:4 (6)

Equilibrium Equations See Fig. 16.6(b).

MBA þMBC ¼ 0 (7)

MCB þMCD ¼ 0 (8)

Joint Rotations By substituting the slope-deflection equations (Eqs. (1) through (6)) into the equilibrium equations
(Eqs. (7) and (8)), we obtain

1:34EIyB þ 0:33EIyC ¼ �32:4 (9)

0:33EIyB þ 1:34EIyC ¼ 32:4 (10)

By solving Eqs. (9) and (10) simultaneously, we determine the values of EIyB and EIyC to be
EIyB ¼ �32:08 kN-m2

EIyC ¼ 32:08 kN-m2

Member End Moments To compute the member end moments, we substitute the numerical values of EIyB and
EIyC back into the slope-deflection equations (Eqs. (1) through (6)) to obtain

MAB ¼ 0:33ð�32:08Þ þ 32:4 ¼ 21:6 kN-m

’

Ans.

MBA ¼ 0:67ð�32:08Þ � 48:6 ¼ �70:2 kN-m or 70:2 kN-m @ Ans.

MBC ¼ 0:67ð�32:08Þ þ 0:33ð32:08Þ þ 81 ¼ 70:2 kN-m

’

Ans.

MCB ¼ 0:33ð�32:08Þ þ 0:67ð32:08Þ � 81

¼ �70:2 kN-m or 70:2 kN-m @ Ans.

MCD ¼ 0:67ð32:08Þ þ 48:6 ¼ 70:2 kN-m

’

Ans.

MDC ¼ 0:33ð32:08Þ � 32:4 ¼ �21:6 kN-m or 21:6 kN-m @ Ans.

Note that the numerical values of MBA;MBC ;MCB, and MCD do satisfy the equilibrium equations (Eqs. (7) and (8)).

Member End Shears and Support Reactions See Fig. 16.6(c) and (d). Ans.

Equilibrium Check The equilibrium equations check.

Shear and Bending Moment Diagrams See Fig. 16.6(e) and (f ). Ans.
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Example 16.3

Determine the member end moments and reactions for the continuous beam shown in Fig. 16.7(a) by the slope-
deflection method.

Solution
This beam was previously analyzed in Example 13.6 by the method of consistent deformations.

FIG. 16.7
continued
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From Fig. 16.7(a), we can see that all three joints of the beam are free to rotate. Thus the beam can be considered
to have three degrees of freedom, yA; yB, and yD, and it can be analyzed by using the usual slope-deflection equations
(Eq. (16.9)) for members rigidly connected at both ends. However, this approach is quite time consuming, since it re-
quires solving three simultaneous equations to determine the three unknown joint rotations.

Since the end supports A and D of the beam are simple supports at which no external moment is applied, the mo-
ments at the end A of member AB and at the end D of member BD must be zero. (This can easily be verified by con-
sidering moment equilibrium of the free bodies of joints A and D shown in Fig. 16.7(b).) Thus the end A of member AB
and the end D of member BD can be considered to be hinged ends, and the modified slope-deflection equations (Eqs.
(16.15)) can be used for these members. Furthermore, since the modified slope-deflection equations do not contain the
rotations of the hinged ends, by using these equations the rotations yA and yD of the simple supports can be eliminated
from the analysis, which will then involve only one unknown joint rotation, yB. It should be noted that once yB has been
evaluated, the values of the rotations yA and yD, if desired, can be computed by using Eq. (16.16). In the following, we
use this simplified approach to analyze the continuous beam.

Degrees of Freedom yB

Fixed-End Moments

FEMAB ¼ 15ð10Þ2
12

¼ 125 kN�m ’

or þ125 kN�m

FEMBA ¼ 125 kN�m @ or �125 kN�m

FEMBD ¼ 60ð10Þ
8
þ 15ð10Þ2

12
¼ 200 kN�m ’

or þ200 kN�m

FEMDB ¼ 200 kN�m @ or �200 kN�m
Slope-Deflection Equations Since both members of the beam have one end hinged, we use Eqs. (16.15) to obtain the

slope-deflection equations for both members. Thus

MAB ¼ 0 Ans.

MBA ¼ 3EI

10
ðyBÞ þ �125� 125

2

� �
¼ 0:3EIyB � 187:5 (1)

MBD ¼ 3Eð2IÞ
10

ðyBÞ þ 200þ 200

2

� �
¼ 0:6EIyB þ 300 (2)

MDB ¼ 0 Ans.

Equilibrium Equation By considering the moment equilibrium of the free body of joint B (Fig. 16.7(b)), we obtain
the equilibrium equation

MBA þMBD ¼ 0 (3)

Joint Rotation To determine the unknown joint rotation yB, we substitute the slope-deflection equations (Eqs. (1)
and (2)) into the equilibrium equation (Eq. (3)) to obtain

ð0:3EIyB � 187:5Þ þ ð0:6EIyB þ 300Þ ¼ 0

or

0:9EIyB ¼ �112:5

continued
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from which

EIyB ¼ �125 kN�m2

Member End Moments The member end moments can now be computed by substituting the numerical value
of EIyB into the slope-deflection equations (Eqs. (1) and (2)). Thus

MBA ¼ 0:3ð�125Þ � 187:5 ¼ �225 kN�m or 225 kN�m @ Ans.

MBD ¼ 0:6ð�125Þ þ 300 ¼ 225 kN�m ’

Ans.

Member End Shears and Support Reactions See Fig. 16.7(c) and (d).

Equilibrium Check See Fig. 16.7(d).

þ "PFy ¼ 0 52:5� 15ð20Þ þ 225� 60þ 82:5 ¼ 0 Checks

þ ’
P

MD ¼ 0

�52:5ð20Þ þ 15ð20Þð10Þ � 225ð10Þ þ 60ð5Þ ¼ 0 Checks

Example 16.4

Determine the member end moments and reactions for the continuous beam shown in Fig. 16.8(a) by the slope-
deflection method.

Solution
Since the moment and shear at end C of the cantilever member CD of the beam can be computed directly by
applying the equations of equilibrium (see Fig. 16.8(b)), it is not necessary to include this member in the analysis.
Thus, only the indeterminate part AC of the beam, shown in Fig. 16.8(c), needs to be analyzed. Note that, as
shown in this figure, the 120-kN �m moment and the 30-kN force exerted at joint C by the cantilever CD must be
included in the analysis.

Degrees of Freedom From Fig. 16.8(c), we can see that joints B and C are free to rotate. Thus, the structure to be
analyzed has two degrees of freedom, which are the unknown joint rotations yB and yC .

Fixed-End Moments

FEMAB ¼ FEMBA ¼ 0

FEMBC ¼ 10ð9Þ2
12

¼ 67:5 kN�m ’

or þ67:5 kN�m

FEMCB ¼ 67:5 kN�m @ or �67:5 kN�m

continued
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FIG. 16.8
continued
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Slope-Deflection Equations By applying Eq. (16.9) to members AB and BC, we write the slope-deflection
equations:

MAB ¼ 2EI

6
ðyBÞ ¼ 0:333EIyB (1)

MBA ¼ 2EI

6
ð2yBÞ ¼ 0:667EIyB (2)

MBC ¼ 2EI

9
ð2yB þ yCÞ þ 67:5 ¼ 0:444EIyB þ 0:222EIyC þ 67:5 (3)

MCB ¼ 2EI

9
ð2yC þ yBÞ � 67:5 ¼ 0:222EIyB þ 0:444EIyC � 67:5 (4)

Equilibrium Equations By considering the moment equilibrium of the free bodies of joints B and C (Fig. 16.8(d)),
we obtain the equilibrium equations

MBA þMBC ¼ 0 (5)

MCB þ 120 ¼ 0 (6)

Joint Rotations Substitution of the slope-deflection equations (Eqs. (2) through (4)) into the equilibrium equations
(Eqs. (5) and (6)) yields

1:111EIyB þ 0:222EIyC ¼ �67:5 (7)

0:222EIyB þ 0:444EIyC ¼ �52:5 (8)

By solving Eqs. (7) and (8) simultaneously, we determine the values of EIyB and EIyC to be

EIyB ¼ �41:25 kN�m2

EIyC ¼ �97:62 kN�m2

Member End Moments The member end moments can now be computed by substituting the numerical values of
EIyB and EIyC into the slope-deflection equations (Eqs. (1) through (4)):

MAB ¼ 0:333ð�41:25Þ ¼ �13:7 kN�m or 13:7 kN�m @ Ans.

MBA ¼ 0:667ð�41:25Þ ¼ �27:5 kN�m or 27:5 kN�m @ Ans.

MBC ¼ 0:444ð�41:25Þ þ 0:222ð�97:62Þ þ 67:5

¼ 27:5 kN�m ’

Ans.

MCB ¼ 0:222ð�41:25Þ þ 0:444ð�97:62Þ � 67:5

¼ �120 kN�m or 120 kN�m @ Ans.

Note that the numerical values of MBA;MBC , and MCB do satisfy the equilibrium equations (Eqs. (5) and (6)).

Member End Shears and Support Reactions See Fig. 16.8(e) and (f ). Ans.

Equilibrium Check The equilibrium equations check.
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Example 16.5

Determine the reactions and draw the shear and bending moment diagrams for the continuous beam shown in
Fig. 16.9(a) due to a settlement of 20 mm at support B. Use the slope-deflection method.

FIG. 16.9

continued
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Solution
Degrees of Freedom yB and yC

Fixed-End Moments Since no external loads act on the beam, the fixed-end moments are zero.

Chord Rotations The specified support settlement is depicted in Fig. 16.9(b), using an exaggerated scale. The
inclined dashed lines in this figure indicate the chords (not the elastic curves) of the members in the deformed positions.
Because the length of member AB is 8 m, the rotation of its chord is

cAB ¼ �
0:02

8
¼ �0:0025

in which the negative sign has been assigned to the value of cAB to indicate that its direction is clockwise, as shown in
Fig. 16.9(b). Similarly, the chord rotation for member BC is

cBC ¼
0:02

8
¼ 0:0025

From Fig. 16.9(b), we can see that

cCD ¼ 0

Slope-Deflection Equations Applying Eq. (16.9) to members AB;BC, and CD, we write

MAB ¼ 2EI

8
ðyB þ 0:0075Þ (1)

MBA ¼ 2EI

8
ð2yB þ 0:0075Þ (2)

continued
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MBC ¼ 2EI

8
ð2yB þ yC � 0:0075Þ (3)

MCB ¼ 2EI

8
ðyB þ 2yC � 0:0075Þ (4)

MCD ¼ 2EI

8
ð2yCÞ (5)

MDC ¼ 2EI

8
ðyCÞ (6)

Equilibrium Equations See Fig. 16.9(c).

MBA þMBC ¼ 0 (7)

MCB þMCD ¼ 0 (8)

Joint Rotations Substitution of the slope-deflection equations (Eqs. (1) through (6)) into the equilibrium equations
(Eqs. (7) and (8)) yields

4yB þ yC ¼ 0 (9)

yB þ 4yC ¼ 0:0075 (10)

By solving Eqs. (9) and (10) simultaneously, we determine

yB ¼ �0:0005 rad

yC ¼ 0:002 rad

Member End Moments To compute the member end moments, we substitute the numerical values of yB; yC ,
and EI ¼ ð70Þð800Þ ¼ 56;000 kN �m2 into the right sides of the slope-deflection equations (Eqs. (1) through (6))
to obtain

MAB ¼ 98 kN �m ’

Ans.

MBA ¼ 91 kN �m ’

Ans.

MBC ¼ �91 kN �m or 91 kN�m @ Ans.

MCB ¼ �56 kN �m or 56 kN�m @ Ans.

MCD ¼ 56 kN �m ’

Ans.

MDC ¼ 28 kN �m ’

Ans.

Member End Shears and Support Reactions See Fig. 16.9(d) and (e). Ans.

Equilibrium Check See Fig. 16.9(e).

þ "PFy ¼ 0 23:63� 42þ 28:87� 10:5 ¼ 0 Checks

þ ’ MA ¼ 0

98� 42ð8Þ þ 28:87ð16Þ � 10:5ð24Þ þ 28 ¼ �0:08&0 Checks

Shear and Bending Moment Diagrams See Fig. 16.9(f ) and (g). Ans.
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Example 16.6

Determine the member end moments and reactions for the three-span continuous beam shown in Fig. 16.10(a) due to
the uniformly distributed load and due to the support settlements of 15 mm at B, 36 mm at C, and 18 mm at D. Use the
slope-deflection method.

Solution
Degrees of Freedom Although all four joints of the beam are free to rotate, we will eliminate the rotations of the

simple supports at the ends A and D from the analysis by using the modified slope-deflection equations for members AB
and CD, respectively. Thus, the analysis will involve only two unknown joint rotations, yB and yC .

Fixed-End Moments

FEMAB ¼ FEMBC ¼ FEMCD ¼ 32ð5Þ2
12

¼ 66:7 kN-m

’

or þ66:7 kN-m

FEMBA ¼ FEMCB ¼ FEMDC ¼ 66:7 kN-m @ or �66:7 kN-m

Chord Rotations The specified support settlements are depicted in Fig. 16.10(b) using an exaggerated scale. The
inclined dashed lines in this figure indicate the chords (not the elastic curves) of the members in the deformed positions.
It can be seen from this figure that since support A does not settle but support B settles by 15 mm the relative settlement
between the two ends of member AB is 15 mm ¼ 0:015 m. Because the length of member AB is 5 m, the rotation of the
chord of member AB is

cAB ¼ �
0:015

5
¼ �0:003

in which the negative sign has been assigned to the value of cAB to indicate that its direction is clockwise, as shown
in Fig. 16.10(b). The chord rotation for member BC can be computed in a similar manner by using the settlement
of supports B and C. From Fig. 16.10(b), we observe that the relative settlement between the ends of member BC is
36 mm� 15 mm ¼ 21 mm ¼ 0:021 m, and so

cBC ¼ �
0:021

5
¼ �0:0042

Similarly, the chord rotation for member CD is

cCD ¼
0:036� 0:018

5
¼ 0:0036

Slope-Deflection Equations

MAB ¼ 0 Ans.

MBA ¼ 3EI

5
ðyB þ 0:003Þ � 100 ¼ 0:6EIyB þ 0:0018EI � 100 (1)

continued
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FIG. 16.10
continued
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MBC ¼ 2EI

5
½2yB þ yC � 3ð�0:0042Þ� þ 66:7

¼ 0:8EIyB þ 0:4EIyC þ 0:00504EI þ 66:7 (2)

MCB ¼ 2EI

5
½2yC þ yB � 3ð�0:0042Þ� � 66:7

¼ 0:4EIyB þ 0:8EIyC þ 0:00504EI � 66:7 (3)

MCD ¼ 3EI

5
ðyC � 0:0036Þ þ 100 ¼ 0:6EIyC � 0:00216EI þ 100 (4)

MDC ¼ 0 Ans.

Equilibrium Equations See Fig. 16.10(c).

MBA þMBC ¼ 0 (5)

MCB þMCD ¼ 0 (6)

Joint Rotations By substituting the slope-deflection equations (Eqs. (1) through (4)) into the equilibrium equations
(Eqs. (5) and (6)), we obtain

1:4EIyB þ 0:4EIyC ¼ �0:00684EI þ 33:3

0:4EIyB þ 1:4EIyC ¼ �0:00288EI � 33:3

Substituting EI ¼ 341000 kN-m2 into the right sides of the above equations yields

1:4EIyB þ 0:4EIyC ¼ �2291:1 (7)

0:4EIyB þ 1:4EIyC ¼ �1015:4 (8)

By solving Eqs. (7) and (8) simultaneously, we determine the values of EIyB and EIyC to be

EIyB ¼ �1562:6 kN-m2

EIyC ¼ �278:8 kN-m2

Member End Moments To compute the member end moments, we substitute the numerical values of EIyB and
EIyC back into the slope-deflection equations (Eqs. (1) through (4)) to obtain

MBA ¼ �423:71 kN-m or 423:71 kN-m @ Ans.

MBC ¼ 423:71 kN-m

’

Ans.

MCB ¼ 803:84 kN-m

’

Ans.

MCD ¼ �803:84 kN-m or 803:84 kN-m @ Ans.

Member End Shears and Support Reactions See Fig. 16.10(d) and (e). Ans.

Equilibrium Check The equilibrium equations check.
Theoretically, the slope-deflection method and the method of consistent deformations should yield identical re-

sults for a given structure.
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Example 16.7

Determine the reactions and draw the shear and bending moment diagrams for the four-span continuous beam shown in
Fig. 16.11(a).

Solution
Because the beam and the loading are symmetric with respect to the vertical s axis passing through roller support C
(Fig. 16.11(a)), the response of the complete beam can be determined by analyzing only the left half, AC, of the beam,
with symmetric boundary conditions as shown in Fig. 16.11(b). Furthermore, from Fig. 16.11(b), we can see that the
one-half of the beam with symmetric boundary conditions is also symmetric with respect to the s 0 axis passing through
roller support B. Therefore, we need to analyze only one-fourth of the beam—that is, the portion AB—with symmetric
boundary conditions, as shown in Fig. 16.11(c).

Since the substructure to be analyzed consists simply of the fixed beam AB (Fig. 16.11(c)), its end moments can be
obtained directly from the fixed-end moment expressions given inside the back cover of the book. Thus

MAB ¼ FEMAB ¼ wL2

12

’

MBA ¼ FEMBA ¼ wL2

12
@

FIG. 16.11

continued
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The shears at the ends of member AB are determined by considering the equilibrium of the member.
The shears and moments at the ends of member BC can now be obtained by reflecting the corresponding

responses of member AB to the right of the s 0 axis, and the member end moments and shears on the right half of
the beam can be determined by reflecting the corresponding responses on the left half to the other side of the s axis.
The member end moments and shears thus obtained are shown in Fig. 16.11(d), and the support reactions are given in
Fig. 16.11(e).

The shear and bending moment diagrams for the beam are shown in Fig. 16.11(f ) and (g), respectively. Ans.
As this example shows, the utilization of structural symmetry can considerably reduce the computational e¤ort

required in the analysis. The beam considered in this example (Fig. 16.11(a)) has three degrees of freedom, yB; yC , and
yD. However, by taking advantage of the structure’s symmetry, we were able to eliminate all the degrees of freedom
from the analysis.

FIG. 16.11 (contd.)
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16.4 ANALYSIS OF FRAMES WITHOUT SIDESWAY

The slope-deflection method can also be used for the analysis of frames.
Since the axial deformations of the members of frames composed of
common engineering materials are generally much smaller than the
bending deformations, the axial deformations of members are neglected
in the analysis, and the members are assumed to be inextensible (i.e.,
they cannot undergo any axial elongation or shortening).

Consider the frame shown in Fig. 16.12(a). A qualitative deflected
shape of the frame for an arbitrary load P is also shown. From the fig-
ure, we can see that the fixed joints A and B can neither rotate nor
translate, whereas joint C, which is located at the hinged support, can
rotate, but it cannot translate. As for joint D, while it is free to rotate, its
translation in any direction is prevented by members AD and CD, which
are assumed to be inextensible. Similarly, joint E is free to rotate, but
since members BE and DE cannot deform axially and since joints B

and D do not translate, joint E also cannot translate. Thus none of the
joints of the frame can translate.

Now suppose that we remove member CD from the frame of Fig.
16.12(a) to obtain the frame shown in Fig. 16.12(b). Since the axial de-
formations of columns AD and BE are neglected, joints D and E cannot
translate in the vertical direction. However, there are no restraints to
prevent these joints from rotating, and displacing in the horizontal di-
rection, as shown in Fig. 16.12(b). Note that since the girder DE is as-
sumed to be inextensible, the horizontal displacements of joints D and E

must be the same.
The lateral displacements of building frames, like that of the frame

of Fig. 16.12(b), are commonly referred to as sidesways and the frames
whose joints undergo translations are termed frames with sidesway,
whereas the frames without joint translations are called frames without

sidesway. In applying the slope-deflection method, it is usually con-
venient to distinguish between the frames without sidesway (i.e., without
unknown joint translations), and those with sidesway. For an arbitrary
plane frame subjected to a general coplanar loading, the number of in-
dependent joint translations—which are commonly referred to as the
sidesway degrees of freedom, ss—can be expressed as

ss ¼ 2j � ½2ð f þ hÞ þ rþm� (16.20)

in which j ¼ number of joints; f ¼ number of fixed supports; h ¼
number of hinged supports; r ¼ number of roller supports; and m ¼
number of (inextensible) members. The foregoing expression is based on
the reasoning that two translations (e.g., in the horizontal and vertical
directions) are needed to specify the deformed position of each free joint
of a plane frame; and that each fixed and hinged support prevents both
translations, each roller support prevents translation in one direction (of
the joint attached to it), and each inextensible member connecting two
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joints prevents one joint translation in its axial direction. The number of
independent joint translations, ss, is then obtained by subtracting from
the total number of possible translations of j free joints the number of
translations restrained by the supports and members of the frame. We
can verify our conclusions about the frames of Figs. 16.12(a) and (b)

FIG. 16.12
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by applying Eq. (16.20). Since the frame of Fig. 16.12(a) consists of
five joints ð j ¼ 5Þ, four members ðm ¼ 4Þ, two fixed supports ð f ¼ 2Þ,
and one hinged support ðh ¼ 1Þ, the application of Eq. (16.20) yields
ss ¼ 2ð5Þ � ½2ð2þ 1Þ þ 4� ¼ 0, which indicates that this frame can be
considered as without sidesway. As for the frame of Fig. 16.12(b), since
it has j ¼ 4, m ¼ 3, and f ¼ 2, the number of its sidesway degrees of
freedom is given by ss ¼ 2ð4Þ � ½2ð2Þ þ 3� ¼ 1, which indicates that the
frame can undergo one independent joint translation. Note that this in-
dependent joint translation is identified as the horizontal displacement D
of joints D and E in Fig. 16.12(b).

It is important to realize that a frame may contain joints that are
free to translate, but it may still be considered for analytical purposes as
one without sidesway under a particular loading condition if no joint
translations occur when the frame is subjected to that loading condi-
tion. An example of such a frame is shown in Fig. 16.12(c). Although
joints D and E of the symmetric frame are free to translate horizontally,
they will not translate when the frame is subjected to a loading that is
symmetric with respect to the structure’s axis of symmetry. Thus this
frame, when subjected to a symmetric loading, can be analyzed as a
frame without sidesway. In the following, we discuss the application of
the slope-deflection method to the analysis of frames without sidesway.
The analysis of frames with sidesway is considered in the next section.

The procedure for the analysis of frames without sidesway is almost
identical to that for the analysis of continuous beams presented in the
preceding section. This similarity occurs because, like the continuous
beams, the degrees of freedom of frames without sidesway consist of
only the unknown joint rotations, with the joint translations being either
zero or known (as in the case of support settlements). However, unlike
the continuous beams, more than two members may be connected to a
joint of a frame, and the equilibrium equation for such a joint would
involve more than two member end moments. The analysis of frames
without sidesway is illustrated by the following examples.

Example 16.8

Determine the member end moments and reactions for the frame shown in Fig. 16.13(a) by the slope-deflection method.

Solution
Degrees of Freedom The joints C;D, and E of the frame are free to rotate. However, we will eliminate the rotation

of the simple support at end E by using the modified slope-deflection equations for member DE. Thus the analysis will
involve only two unknown joint rotations, yC and yD.

continued
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FIG. 16.13
continued
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Fixed-End Moments By using the fixed-end moment expressions given inside the back cover of the book, we obtain

FEMAC ¼ 200� 4

8
¼ 100 kN-m

’

or þ100 kN-m

FEMCA ¼ 100 kN-m @ or �100 kN-m

FEMBD ¼ FEMDB ¼ 0

FEMCD ¼ FEMDE ¼ 50ð6Þ2
12

¼ 150 kN-m

’

or þ150 kN-m

FEMDC ¼ FEMED ¼ 150 kN-m @ or �150 kN-m

Slope-Deflection Equations As indicated in Fig. 16.13(a), the moments of inertia of the columns and the girders of
the frame are 300�106 mm4 and 600�106 mm4, respectively. Using I ¼ Icolumn ¼ 300� 106 mm4 as the reference mo-
ment of inertia, we express Igirder in terms of I as

Igirder ¼ 600� 106 ¼ 2ð300� 106Þ ¼ 2I

Next, we write the slope-deflection equations by applying Eq. (16.9) to members AC;BD, and CD, and Eqs. (16.15) to
member DE. Thus

MAC ¼ 2EI

4
ðyCÞ þ 100 ¼ 0:5EIyC þ 100 (1)

MCA ¼ 2EI

4
ð2yCÞ � 100 ¼ EIyC � 100 (2)

MBD ¼ 2EI

4
ðyDÞ ¼ 0:5EIyD (3)

MDB ¼ 2EI

4
ð2yDÞ ¼ EIyD (4)

MCD ¼ 2Eð2IÞ
6
ð2yC þ yDÞ þ 150 ¼ 1:33EIyC þ 0:67EIyD þ 150 (5)

MDC ¼ 2Eð2IÞ
6
ð2yD þ yCÞ � 150 ¼ 0:67EIyC þ 1:33EIyD � 150 (6)

MDE ¼ 3Eð2IÞ
6
ðyDÞ þ 150þ 150

2

� �
¼ EIyD þ 225 (7)

MED ¼ 0 Ans.

Equilibrium Equations By applying the moment equilibrium equation,
P

M ¼ 0, to the free bodies of joints C and
D (Fig. 16.13(b)), we obtain the equilibrium equations

MCA þMCD ¼ 0 (8)

MDB þMDC þMDE ¼ 0 (9)

continued
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Joint Rotations Substitution of the slope-deflection equations into the equilibrium equations yields

2:33EIyC þ 0:67EIyD ¼ �50 (10)

0:67EIyC þ 3:33EIyD ¼ �75 (11)

By solving Eqs. (10) and (11) simultaneously, we determine the values of EIyC and EIyD to be

EIyC ¼ �15:9 kN-m2

EIyD ¼ �19:32 kN-m2

Member End Moments The member end moments can now be computed by substituting the numerical values of
EIyC and EIyD into the slope-deflection equations (Eqs. (1) through (7)).

MAC ¼ 92 kN-m

’

Ans.

MCA ¼ �115:9 kN-m or 115:9 kN-m @ Ans.

MBD ¼ �9:7 kN-m or 9:7 kN-m @ Ans.

MDB ¼ �19:3 kN-m or 19:3 kN-m @ Ans.

MCD ¼ 115:9 kN-m

’

Ans.

MDC ¼ �186:4 kN-m or 186:4 kN-m @ Ans.

MDE ¼ 205:7 kN-m

’

Ans.

To check that the solution of the simultaneous equations (Eqs. (10) and (11)) has been carried out correctly,
we substitute the numerical values of member end moments back into the equilibrium equations (Eqs. (8) and (9))
to obtain

MCA þMCD ¼ �115:9þ 115:9 ¼ 0 Checks

MDB þMDC þMDE ¼ �19:3� 186:4þ 205:7 ¼ 0 Checks

Member End Shears The member end shears, obtained by considering the equilibrium of each member, are shown
in Fig. 16.13(c).

Member Axial Forces With end shears known, member axial forces can now be evaluated by considering the
equilibrium of joints C and D in order. The axial forces thus obtained are shown in Fig. 16.13(c).

Support Reactions See Fig. 16.13(d). Ans.

Equilibrium Check The equilibrium equations check.
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Example 16.9

Determine the member end moments and reactions for the frame of Example 16.8 due to a settlement of 18 mm at support
B. Use the slope-deflection method.

Solution
The frame is shown in Fig. 16.14(a).

Degrees of Freedom yC and yD are the degrees of freedom.

Chord Rotations Since the axial deformation of member BD is neglected, the 18-mm settlement of support B causes
the joint D to displace downward by the same amount, as shown in Fig. 16.14(b). The inclined dashed lines in this figure
represent the chords (not the elastic curves) of members CD and DE in the deformed positions. The rotation of the
chord of member CD is

cCD ¼ �
0:018

6
¼ �0:003

in which the negative sign has been assigned to the value of cCD to indicate that its sense is clockwise. Similarly, for
member DE,

cDE ¼ 0:003

Slope-Deflection Equations

MAC ¼ 0:5EIyC (1)

MCA ¼ EIyC (2)

MBD ¼ 0:5EIyD (3)

MDB ¼ EIyD (4)

MCD ¼ 2Eð2IÞ
6
½2yC þ yD � 3ð�0:003Þ�

¼ 1:33EIyC þ 0:67EIyD þ 0:006EI (5)

MDC ¼ 2Eð2IÞ
6
½2yD þ yC � 3ð�0:003Þ�

¼ 0:67EIyC þ 1:33EIyD þ 0:006EI (6)

MDE ¼ 3Eð2IÞ
6
ðyD � 0:003Þ ¼ EIyD � 0:003EI (7)

MED ¼ 0 Ans.

Equilibrium Equations See Fig. 16.14(c).

MCA þMCD ¼ 0 (8)

MDB þMDC þMDE ¼ 0 (9)
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FIG. 16.14
continued
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16.5 ANALYSIS OF FRAMES WITH SIDESWAY

A frame, in general, will undergo sidesway if its joints are not restrained
against translation, unless it is a symmetric frame subjected to symmet-
ric loading. To develop the analysis of frames with sidesway, consider
the rectangular frame shown in Fig. 16.15(a). A qualitative deflected
shape of the frame for an arbitrary loading is also shown in the figure
using an exaggerated scale. While the fixed joints A and B of the frame

Joint Rotations By substituting the slope-deflection equations into the equilibrium equations, we obtain

2:33EIyC þ 0:67EIyD ¼ �0:006EI
0:67EIyC þ 3:33EIyD ¼ �0:003EI

Substitution of EI ¼ 6� 104 kN-m2 into the right sides of the preceding equations yields

2:33EIyC þ 0:67EIyD ¼ �360 (10)

0:67EIyC þ 3:33EIyD ¼ �180 (11)

Solving Eqs. (10) and (11) simultaneously, we obtain

EIyC ¼ �147:5 kN-m2

EIyD ¼ �24:38 kN-m2

Member End Moments By substituting the numerical values of EIyC and EIyD into the slope-deflection equations,
we obtain

MAC ¼ �73:75 kN-m or 73:75 kN-m @ Ans.

MCA ¼ �147:5 kN-m or 147:5 kN-m @ Ans.

MBD ¼ �12:19 kN-m or 12:19 kN-m @ Ans.

MDB ¼ �24:38 kN-m or 24:38 kN-m @ Ans.

MCD ¼ 147:5 kN-m

’

Ans.

MDC ¼ 228:75 kN-m
’

Ans.

MDE ¼ �204:38 kN-m or 204:38 kN-m @ Ans.

Back substitution of the numerical values of member end moments into the equilibrium equations (Eqs. (8) and (9))
yields

MCA þMCD ¼ �147:5þ 147:5 ¼ 0 Checks

MDB þMDC þMDE ¼ �24:38þ 228:75� 204:38 ¼ 0 Checks

Member End Shears and Axial Forces See Fig. 16.14(d).

Support Reactions See Fig. 16.14(e).

Equilibrium Check The equilibrium equations check.
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are completely restrained against rotation as well as translation, the
joints C and D are free to rotate and translate. However, since the col-
umns AC and BD are assumed to be inextensible and the deformations
of the frame are assumed to be small, the joints C and D can translate
only in the horizontal direction—that is, in the direction perpendicular
to the columns AC and BD, respectively. Furthermore, since the girder
CD is also assumed to be inextensible, the horizontal displacements
of joints C and D must be the same. Thus the frame has three unknown
joint displacements or degrees of freedom, the rotations yC and yD
of joints C and D, respectively, and the horizontal displacement D of
both joints C and D.

As shown in Fig. 16.15(a), the displacement D of the joints C and D

causes the chords of the columns AC and BD to rotate, and these chord
rotations can be expressed in terms of the unknown displacement D as

FIG. 16.15
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cAC ¼ cBD ¼ �
D

h
(16.21)

in which the negative sign indicates that the chord rotations are clock-
wise. Since joints C and D cannot displace vertically, the chord rotation
of the girder CD is zero; that is, cCD ¼ 0.

To relate the member end moments to the unknown joint displace-
ments, yC ; yD, and D, we write the slope-deflection equations for the
three members of the frame. Thus by applying Eq. (16.9), we obtain

MAC ¼ 2EI

h
yC þ 3D

h

� �
þ FEMAC (16.22a)

MCA ¼ 2EI

h
2yC þ 3D

h

� �
þ FEMCA (16.22b)

MBD ¼ 2EI

h
yD þ 3D

h

� �
(16.22c)

MDB ¼ 2EI

h
2yD þ 3D

h

� �
(16.22d)

MCD ¼ 2EI

L
ð2yC þ yDÞ þ FEMCD (16.22e)

MDC ¼ 2EI

L
ð2yD þ yCÞ þ FEMDC (16.22f )

Note that the foregoing slope-deflection equations contain three un-
knowns, yC ; yD, and D, which must be determined by solving three
independent equations of equilibrium before the values of the member
end moments can be computed. Two of the three equilibrium equations
necessary for the solution of the unknown joint displacements are ob-
tained by considering the moment equilibrium of joints C and D (Fig.
16.15(b)):

MCA þMCD ¼ 0 (16.23a)

MDB þMDC ¼ 0 (16.23b)

The third equilibrium equation, commonly termed the shear equation, is
based on the condition that the sum of all the horizontal forces acting
on the free body of the entire frame must be zero. The free-body dia-
gram of the frame, obtained by passing an imaginary section just above
the support level, is shown in Fig. 16.15(c). By applying the equilibrium
equation

P
FX ¼ 0, we write

P� SAC � SBD ¼ 0 (16.23c)

in which SAC and SBD are the shears at the lower ends of the columns
AC and BD, respectively, as shown in Fig. 16.15(c). To express the third
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equilibrium equation (Eq. (16.23c)) in terms of column end moments,
we consider the equilibrium of the free bodies of the columns AC and
BD shown in Fig. 16.15(d). By summing moments about the top of each
column, we obtain the following:

þ ’
P

MAC
C ¼ 0 MAC � SACðhÞ þ P

h

2

� �
þMCA ¼ 0

SAC ¼MAC þMCA

h
þ P

2
(16.24a)

þ ’
P

MBD
D ¼ 0 MBD þMDB � SBDðhÞ ¼ 0

SBD ¼MBD þMDB

h
(16.24b)

By substituting Eqs. (16.24a) and (16.24b) into Eq. (16.23c), we obtain
the third equilibrium equation in terms of member end moments:

P� MAC þMCA

h
þ P

2

� �
� MBD þMDB

h

� �
¼ 0

which reduces to

MAC þMCA þMBD þMDB � Ph

2
¼ 0 (16.25)

With the three equilibrium equations (Eqs. (16.23a), (16.23b), and
(16.25)) now established, we can proceed with the rest of the analysis in
the usual manner. By substituting the slope-deflection equations (Eqs.
(16.22)) into the equilibrium equations, we obtain the system of equa-
tions that can be solved for the unknown joint displacements yC ; yD,
and D. The joint displacements thus obtained can then be back sub-
stituted into the slope-deflection equations to determine the member end
moments, from which the end shears and axial forces of members and
the support reactions can be computed, as discussed previously.

Frames with Inclined Legs

The analysis of frames with inclined legs is similar to that of the rec-
tangular frames considered previously, except that when frames with
inclined legs are subjected to sidesway, their horizontal members also
undergo chord rotations, which must be included in the analysis. Recall
from our previous discussion that the chord rotations of the horizontal
members of rectangular frames, subjected to sidesway, are zero.

Consider the frame with inclined legs shown in Fig. 16.16(a). In or-
der to analyze this frame by the slope-deflection method, we must relate
the chord rotations of its three members to each other or to an inde-
pendent joint translation. To that end, we subject the joint C of the
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FIG. 16.16
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frame to an arbitrary horizontal displacement D and draw a qualitative
deflected shape of the frame, which is consistent with its support con-
ditions as well as with our assumption that the members of the frame
are inextensible. To draw the deflected shape, which is shown in Fig.
16.16(b), we first imagine that the members BD and CD are dis-
connected at joint D. Since member AC is assumed to be inextensible,
joint C can move only in an arc about point A. Furthermore, since the
translation of joint C is assumed to be small, we can consider the arc to
be a straight line perpendicular to member AC.

Thus, in order to move joint C horizontally by a distance D, we
must displace it in a direction perpendicular to member AC by a dis-
tance CC 0 (Fig. 16.16(b)), so that the horizontal component of CC 0

equals D. Note that although joint C is free to rotate, its rotation is ig-
nored at this stage of the analysis, and the elastic curve AC 0 of member
AC is drawn with the tangent at C 0 parallel to the undeformed direction
of the member. The member CD remains horizontal and translates as a
rigid body into the position C 0D1 with the displacement DD1 equal to
CC 0, as shown in the figure. Since the horizontal member CD is as-
sumed to be inextensible and the translation of joint D is assumed to be
small, the end D of this member can be moved from its deformed posi-
tion D1 only in the vertical direction. Similarly, since member BD is also

FIG. 16.16 (contd.)
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assumed to be inextensible, its end D can be moved only in the direction
perpendicular to the member. Therefore, to obtain the deformed posi-
tion of joint D, we move the end D of member CD from its deformed
position D1 in the vertical direction and the end D of member BD in the
direction perpendicular to BD, until the two ends meet at point D 0,
where they are reconnected to obtain the displaced position D 0 of
joint D. By assuming that joint D does not rotate, we draw the elastic
curves C 0D 0 and BD 0, respectively, of members CD and BD, to com-
plete the deflected shape of the entire frame.

The chord rotation of a member can be obtained by dividing the
relative displacement between the two ends of the member in the direc-
tion perpendicular to the member, by the member’s length. Thus we can
see from Fig. 16.16(b) that the chord rotations of the three members of
the frame are given by

cAC ¼ �
CC 0

L1
cBD ¼ �

DD 0

L2
cCD ¼

D1D
0

L
(16.26)

in which the chord rotations of members AC and BD are considered to
be negative because they are clockwise (Fig. 16.16(c)). The three chord
rotations can be expressed in terms of the joint displacement D by con-
sidering the displacement diagrams of joints C and D, shown in Fig.
16.16(b). Since CC 0 is perpendicular to AC, which is inclined at an angle
b1 with the vertical, CC 0 must make the same angle b1 with the horizon-
tal. Thus, from the displacement diagram of joint C (triangle CC 0C2), we
can see that

CC 0 ¼ D

cos b1
(16.27)

Next, let us consider the displacement diagram of joint D (triangle
DD1D

0). It has been shown previously that DD1 is equal in magnitude
and parallel to CC 0. Therefore,

DD2 ¼ DD1 cos b1 ¼ D

Since DD 0 is perpendicular to member BD, it makes an angle b2 with
the horizontal. Thus, from the displacement diagram of joint D,

DD 0 ¼ DD2

cos b2
¼ D

cos b2
(16.28)

and

D1D
0 ¼ DD1 sin b1 þDD 0 sin b2 ¼

D

cos b1
sin b1 þ

D

cos b2
sin b2

or

D1D
0 ¼ Dðtan b1 þ tan b2Þ (16.29)
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By substituting Eqs. (16.27) through (16.29) into Eq. (16.26), we obtain
the chord rotations of the three members in terms of D:

cAC ¼ �
D

L1 cos b1
(16.30a)

cBD ¼ �
D

L2 cos b2
(16.30b)

cCD ¼
D

L
ðtan b1 þ tan b2Þ (16.30c)

The foregoing expressions of chord rotations can be used to write
the slope-deflection equations, thereby relating member end moments
to the three unknown joint displacements, yC ; yD, and D. As in the case
of the rectangular frames considered previously, the three equilibrium
equations necessary for the solution of the unknown joint displacements
can be established by summing the moments acting on joints C and D

and by summing the horizontal forces acting on the entire frame. How-
ever, for frames with inclined legs, it is usually more convenient to
establish the third equilibrium equation by summing the moments of
all the forces and couples acting on the entire frame about a moment
center O, which is located at the intersection of the longitudinal axes of
the two inclined members, as shown in Fig. 16.16(d). The location of the
moment center O can be determined by using the conditions (see Fig.
16.16(d))

a1 cos b1 ¼ a2 cos b2 (16.31a)

a1 sin b1 þ a2 sin b2 ¼ L (16.31b)

By solving Eqs. (16.31a) and (16.31b) simultaneously for a1 and a2, we
obtain

a1 ¼ L

cos b1ðtan b1 þ tan b2Þ
(16.32a)

a2 ¼ L

cos b2ðtan b1 þ tan b2Þ
(16.32b)

Once the equilibrium equations have been established, the analysis can
be completed in the usual manner, as discussed previously.

Multistory Frames

The foregoing method can be extended to the analysis of multistory
frames subjected to sidesway, as illustrated by Example 16.12. How-
ever, because of the considerable amount of computational e¤ort in-
volved, the analysis of such structures today is performed on computers
using the matrix formulation of the displacement method presented in
Chapter 18.
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Example 16.10

Determine the member end moments and reactions for the frame shown in Fig. 16.17(a) by the slope-deflection method.

Solution
Degrees of Freedom The degrees of freedom are yC ; yD, and D (see Fig. 16.17(b)).

continued

FIG. 16.17
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FIG. 16.17 (contd.)

continued
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Fixed-End Moments By using the fixed-end moment expressions given inside the back cover of the book, we obtain

FEMCD ¼ 40ð3Þð4Þ2
ð7Þ2 ¼ 39:2 kN�m ’

or þ39:2 kN�m

FEMDC ¼ 40ð3Þ2ð4Þ
ð7Þ2 ¼ 29:4 kN�m @ or �29:4 kN�m

FEMAC ¼ FEMCA ¼ FEMBD ¼ FEMDB ¼ 0

Chord Rotations From Fig. 16.17(b), we can see that

cAC ¼ �
D

7
cBD ¼ �

D

5
cCD ¼ 0

Slope-Deflection Equations

MAC ¼ 2EI

7
yC � 3 �D

7

� �� �
¼ 0:286EIyC þ 0:122EID (1)

MCA ¼ 2EI

7
2yC � 3 �D

7

� �� �
¼ 0:571EIyC þ 0:122EID (2)

MBD ¼ 2EI

5
yD � 3 �D

5

� �� �
¼ 0:4EIyD þ 0:24EID (3)

MDB ¼ 2EI

5
2yD � 3 �D

5

� �� �
¼ 0:8EIyD þ 0:24EID (4)

MCD ¼ 2EI

7
ð2yC þ yDÞ þ 39:2 ¼ 0:571EIyC þ 0:286EIyD þ 39:2 (5)

MDC ¼ 2EI

7
ðyC þ 2yDÞ � 29:4 ¼ 0:286EIyC þ 0:571EIyD � 29:4 (6)

Equilibrium Equations By considering the moment equilibrium of joints C and D, we obtain the equilibrium
equations

MCA þMCD ¼ 0 (7)

MDB þMDC ¼ 0 (8)

To establish the third equilibrium equation, we apply the force equilibrium equation
P

FX ¼ 0 to the free body of the
entire frame (Fig. 16.17(c)), to obtain

SAC þ SBD ¼ 0

in which SAC and SBD represent the shears at the lower ends of columns AC and BD, respectively, as shown in
Fig. 16.17(c). To express the column end shears in terms of column end moments, we draw the free-body diagrams
of the two columns (Fig. 16.17(d)) and sum the moments about the top of each column:

SAC ¼MAC þMCA

7
and SBD ¼MBD þMDB

5

continued
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By substituting these equations into the third equilibrium equation, we obtain

MAC þMCA

7
þMBD þMDB

5
¼ 0

which can be rewritten as

5ðMAC þMCAÞ þ 7ðMBD þMDBÞ ¼ 0 (9)

Joint Displacements To determine the unknown joint displacements yC ; yD, and D, we substitute the slope-
deflection equations (Eqs. (1) through (6)) into the equilibrium equations (Eqs. (7) through (9)) to obtain

1:142EIyC þ 0:286EIyD þ 0:122EID ¼ �39:2 (10)

0:286EIyC þ 1:371EIyD þ 0:24EID ¼ 29:4 (11)

4:285EIyC þ 8:4EIyD þ 4:58EID ¼ 0 (12)

Solving Eqs. (10) through (12) simultaneously yields

EIyC ¼ �40:211 kN�m2

EIyD ¼ 34:24 kN�m2

EID ¼ �25:177 kN�m3

Member End Moments By substituting the numerical values of EIyC ;EIyD, and EID into the slope-deflection
equations (Eqs. (1) through (6)), we obtain

MAC ¼ �14:6 kN�m or 14:6 kN�m @ Ans.

MCA ¼ �26 kN�m or 26 kN�m @ Ans.

MBD ¼ 7:7 kN�m ’

Ans.

MDB ¼ 21:3 kN�m ’

Ans.

MCD ¼ 26 kN�m ’

Ans.

MDC ¼ �21:3 kN�m or 21:3 kN�m @ Ans.

To check that the solution of the simultaneous equations (Eqs. (10) through (12)) has been carried out correctly, we
substitute the numerical values of member end moments back into the equilibrium equations (Eqs. (7) through (9)):

MCA þMCD ¼ �26þ 26 ¼ 0 Checks

MDB þMDC ¼ 21:3� 21:3 ¼ 0 Checks

5ðMAC þMCAÞ þ 7ðMBD þMDBÞ ¼ 5ð�14:6� 26Þ þ 7ð7:7þ 21:3Þ ¼ 0 Checks

Member End Shears The member end shears, obtained by considering the equilibrium of each member, are shown
in Fig. 16.17(e).

Member Axial Forces With end shears known, member axial forces can now be evaluated by considering the
equilibrium of joints C and D. The axial forces thus obtained are shown in Fig. 16.17(e).

Support Reactions See Fig. 16.17(f ). Ans.

Equilibrium Check The equilibrium equations check.
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Example 16.11

Determine the member end moments and reactions for the frame shown in Fig. 16.18(a) by the slope-deflection method.

Solution
Degrees of Freedom Degrees of freedom are yC ; yD, and D.

Fixed-End Moments Since no external loads are applied to the members, the fixed-end moments are zero.

continued
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FIG. 16.18 (contd.)
continued
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Chord Rotations From Fig. 16.18(b), we can see that

cAC ¼ �
CC 0

5
¼ �

5

4

� �
D

5
¼ �0:25D

cBD ¼ �
DD 0

4
¼ �D

4
¼ �0:25D

cCD ¼
C 0C1

5
¼

3

4

� �
D

5
¼ 0:15D

continued
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Slope-Deflection Equations

MAC ¼ 2EI

5
½yC � 3ð�0:25DÞ� ¼ 0:4EIyC þ 0:3EID (1)

MCA ¼ 2EI

5
½2yC � 3ð�0:25DÞ� ¼ 0:8EIyC þ 0:3EID (2)

MBD ¼ 2EI

4
½yD � 3ð�0:25DÞ� ¼ 0:5EIyD þ 0:375EID (3)

MDB ¼ 2EI

4
½2yD � 3ð�0:25DÞ� ¼ EIyD þ 0:375EID (4)

MCD ¼ 2EI

5
½2yC þ yD � 3ð0:15DÞ� ¼ 0:8EIyC þ 0:4EIyD � 0:18EID (5)

MDC ¼ 2EI

5
½2yD þ yC � 3ð0:15DÞ� ¼ 0:8EIyD þ 0:4EIyC � 0:18EID (6)

Equilibrium Equations By considering the moment equilibrium of joints C andD, we obtain the equilibrium equations

MCA þMCD ¼ 0 (7)

MDB þMDC ¼ 0 (8)

The third equilibrium equation is established by summing the moments of all the forces and couples acting on the free
body of the entire frame about point O, which is located at the intersection of the longitudinal axes of the two columns,
as shown in Fig. 16.18(c). Thus

þ ’
P

MO ¼ 0 MAC � SACð13:33Þ þMBD � SBDð10:67Þ þ 120ð6:67Þ ¼ 0

in which the shears at the lower ends of the columns can be expressed in terms of column end moments as (see Fig. 16.18(d))

SAC ¼MAC þMCA

5
and SBD ¼MBD þMDB

4

By substituting these expressions into the third equilibrium equation, we obtain

1:67MAC þ 2:67MCA þ 1:67MBD þ 2:67MDB ¼ 800 (9)

Joint Displacements Substitution of the slope-deflection equations (Eqs. (1) through (6)) into the equilibrium
equations (Eqs. (7) through (9)) yields

1:6EIyC þ 0:4EIyD þ 0:12EID ¼ 0 (10)

0:4EIyC þ 1:8EIyD þ 0:195EID ¼ 0 (11)

2:804EIyC þ 3:505EIyD þ 2:93EID ¼ 800 (12)

By solving Eqs. (10) through (12) simultaneously, we determine

EIyC ¼ �16:59 kN-m2

EIyD ¼ �31:73 kN-m2

EID ¼ �326:96 kN-m3

continued
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Member End Moments By substituting the numerical values of EIyC ;EIyD, and EID into the slope-deflection
equations (Eqs. (1) through (6)), we obtain

MAC ¼ 91:7 kN-m

’

Ans.

MCA ¼ 85:1 kN-m

’

Ans.

MBD ¼ 106:7 kN-m

’

Ans.

MDB ¼ 91 kN-m

’

Ans.

MCD ¼ �85:1 kN-m or 85:1 kN-m @ Ans.

MDC ¼ �91 kN-m or 91 kN-m @ Ans.

Back substitution of the numerical values of member end moments into the equilibrium equations yields

MCA þMCD ¼ 85:1� 85:1 ¼ 0 Checks

MDB þMDC ¼ 91� 91 ¼ 0 Checks

1:67MAC þ 2:67MCA þ 1:67MBD þ 2:67MDB ¼ 1:67ð91:7Þ þ 2:67ð85:1Þ
þ 1:67ð106:7Þ þ 2:67ð91Þ

¼ 801:5&800 Checks

Member End Shears and Axial Forces See Fig. 16.18(e).

Support Reactions See Fig. 16.18(f ). Ans.

Equilibrium Check The equilibrium equations check.

Example 16.12

Determine the member end moments, the support reactions, and the horizontal deflection of joint F of the two-story
frame shown in Fig. 16.19(a) by the slope-deflection method.

Solution
Degrees of Freedom From Fig. 16.19(a), we can see that the joints C;D;E, and F of the frame are free to rotate,

and translate in the horizontal direction. As shown in Fig. 16.19(b), the horizontal displacement of the first-story joints
C and D is designated as D1, whereas the horizontal displacement of the second-story joints E and F is expressed as
D1 þ D2, with D2 representing the displacement of the second-story joints relative to the first-story joints. Thus, the
frame has six degrees of freedom—that is, yC ; yD; yE ; yF ;D1, and D2.

Fixed-End Moments The nonzero fixed-end moments are

FEMCD ¼ FEMEF ¼ 200 kN-m

FEMDC ¼ FEMFE ¼ �200 kN-m

continued
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Chord Rotations See Fig. 16.19(b).

cAC ¼ cBD ¼ �
D1

5

cCE ¼ cDF ¼ �
D2

5

cCD ¼ cEF ¼ 0

Slope-Deflection Equations Using Icolumn ¼ I and Igirder ¼ 2I , we write

MAC ¼ 0:4EIyC þ 0:24EID1 (1)

MCA ¼ 0:8EIyC þ 0:24EID1 (2)

MBD ¼ 0:4EIyD þ 0:24EID1 (3)

MDB ¼ 0:8EIyD þ 0:24EID1 (4)

MCE ¼ 0:8EIyC þ 0:4EIyE þ 0:24EID2 (5)

MEC ¼ 0:8EIyE þ 0:4EIyC þ 0:24EID2 (6)

FIG. 16.19

continued
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FIG. 16.19 (contd.)

continued
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MDF ¼ 0:8EIyD þ 0:4EIyF þ 0:24EID2 (7)

MFD ¼ 0:8EIyF þ 0:4EIyD þ 0:24EID2 (8)

MCD ¼ 0:8EIyC þ 0:4EIyD þ 200 (9)

MDC ¼ 0:8EIyD þ 0:4EIyC � 200 (10)

MEF ¼ 0:8EIyE þ 0:4EIyF þ 200 (11)

MFE ¼ 0:8EIyF þ 0:4EIyE � 200 (12)

Equilibrium Equations By considering the moment equilibrium of joints C, D, E, and F , we obtain

MCA þMCD þMCE ¼ 0 (13)

MDB þMDC þMDF ¼ 0 (14)

MEC þMEF ¼ 0 (15)

MFD þMFE ¼ 0 (16)

To establish the remaining two equilibrium equations, we successively pass a horizontal section just above the lower
ends of the columns of each story of the frame and apply the equation of horizontal equilibrium ðPFX ¼ 0Þ to the free
body of the portion of the frame above the section. The free-body diagrams thus obtained are shown in Fig. 16.19(c)
and (d). By applying the equilibrium equation

P
FX ¼ 0 to the top story of the frame (Fig. 16.19(c)), we obtain

SCE þ SDF ¼ 40

Similarly, by applying
P

FX ¼ 0 to the entire frame (Fig. 16.19(d)), we write

SAC þ SBD ¼ 120

By expressing column end shears in terms of column end moments as

SAC ¼MAC þMCA

5
SBD ¼MBD þMDB

5

SCE ¼MCE þMEC

5
SDF ¼MDF þMFD

5

and by substituting these expressions into the force equilibrium equations, we obtain

MCE þMEC þMDF þMFD ¼ 200 (17)

MAC þMCA þMBD þMDB ¼ 600 (18)

Joint Displacements Substitution of the slope-deflection equations (Eqs. (1) through (12)) into the equilibrium
equations (Eqs. (13) through (18)) yields

2:4EIyC þ 0:4EIyD þ 0:4EIyE þ 0:24EID1 þ 0:24EID2 ¼ �200 (19)

0:4EIyC þ 2:4EIyD þ 0:4EIyF þ 0:24EID1 þ 0:24EID2 ¼ 200 (20)

0:4EIyC þ 1:6EIyE þ 0:4EIyF þ 0:24EID2 ¼ �200 (21)

0:4EIyD þ 0:4EIyE þ 1:6EIyF þ 0:24EID2 ¼ 200 (22)

1:2EIyC þ 1:2EIyD þ 1:2EIyE þ 1:2EIyF þ 0:96EID2 ¼ 200 (23)

0:4EIyC þ 0:4EIyD þ 0:32EID1 ¼ 200 (24)

continued
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By solving Eqs. (19) through (24) by the Gauss-Jordan elimination method (Appendix B), we determine

EIyC ¼ �203:25 kN-m2

EIyD ¼ �60:389 kN-m2

EIyE ¼ �197:4 kN-m2

EIyF ¼ 88:31 kN-m2

EID1 ¼ 954:55 kN-m3 or D1 ¼ 18:95 mm!
EID2 ¼ 674:24 kN-m3 or D2 ¼ 13:4 mm!

Thus, the horizontal deflection of joint F of the frame is as follows:

DF ¼ D1 þ D2 ¼ 18:95þ 13:4 ¼ 32:35 mm! Ans.

Member End Moments By substituting the numerical values of the joint displacements into the slope-deflection
equations (Eqs. (1) through (12)), we obtain

MAC ¼ 147:8 kN-m

’

Ans.

MCA ¼ 66:5 kN-m

’

Ans.

MBD ¼ 204:9 kN-m

’

Ans.

MDB ¼ 180:8 kN-m

’

Ans.

MCE ¼ �79:7 kN-m or 79:7 kN-m @ Ans.

MEC ¼ �77:4 kN-m or 77:4 kN-m @ Ans.

MDF ¼ 148:8 kN-m
’

Ans.

MFD ¼ 208:3 kN-m

’

Ans.

MCD ¼ 13:2 kN-m

’

Ans.

MDC ¼ �329:6 kN-m or 329:6 kN-m @ Ans.

MEF ¼ 77:4 kN-m

’

Ans.

MFE ¼ �208:3 kN-m or 208:3 kN-m @ Ans.

Back substitution of the numerical values of member end moments into the equilibrium equations yields

MCA þMCD þMCE ¼ 66:5þ 13:2� 79:7 ¼ 0 Checks

MDB þMDC þMDF ¼ 180:8� 329:6þ 148:8 ¼ 0 Checks

MEC þMEF ¼ �77:4þ 77:4 ¼ 0 Checks

MFD þMFE ¼ 208:3� 208:3 ¼ 0 Checks

MCE þMEC þMDF þMFD ¼ �79:7� 77:4þ 148:8þ 208:3 ¼ 200 Checks

MAC þMCA þMBD þMDB ¼ 147:8þ 66:5þ 204:9þ 180:8 ¼ 600 Checks

Member End Shears and Axial Forces See Fig. 16.19(e).

Support Reactions See Fig. 16.19(f ). Ans.

Equilibrium Check The equilibrium equations check.
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SUMMARY

In this chapter, we have studied a classical formulation of the displace-
ment (sti¤ness) method, called the slope-deflection method, for the anal-
ysis of beams and frames. The method is based on the slope-deflection
equation:

Mnf ¼ 2EI

L
ð2yn þ yf � 3cÞ þ FEMnf (16.9)

which relates the moments at the ends of a member to the rotations and
displacements of its ends and the external loads applied to the member.

The procedure for analysis essentially involves (1) identifying the
unknown joint displacements (degrees of freedom) of the structure; (2)
for each member, writing slope-deflection equations relating member
end moments to the unknown joint displacements; (3) establishing the
equations of equilibrium of the structure in terms of member end mo-
ments; (4) substituting the slope-deflection equations into the equili-
brium equations and solving the resulting system of equations to de-
termine the unknown joint displacements; and (5) computing member
end moments by substituting the values of joint displacements back into
the slope-deflection equations. Once member end moments have been
evaluated, member end shears and axial forces, and support reactions,
can be determined through equilibrium considerations.

PROBLEMS

Section 16.3

16.1 through 16.5 Determine the reactions and draw the
shear and bending moment diagrams for the beams shown
in Figs. P16.1–P16.5 by using the slope-deflection method.

FIG. P16.1

16.6 Solve Problem 16.2 for the loading shown in Fig.
P16.2 and a settlement of 8 mm at support B.

3 m

E = 200 GPa I = 213 (106) mm4

3 m 4 m

B
A C

100 kN

37.5 kN/m
75 kN/m

FIG. P16.2, P16.6
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16.7 Solve Problem 16.4 for the loading shown in Fig. P16.4
and the support settlements of 50 mm at B and 25 mm at C.

FIG. P16.3

8 m 8 m

B
CA

25 kN/m

E = 70 GPa I = 1,300 (106) mm4

FIG. P16.4, P16.7

A C
B

5 m 3 m
I

50 kN/m

E = 200 GPa
I  = 1000 (106) mm4

FIG. P16.5

16.8 through 16.14 Determine the reactions and draw the
shear and bending moment diagrams for the beams shown
in Figs. P16.8–P16.14 by using the slope-deflection method.

37.5 kN/m

5 m4 m
EI = constant

5 m

B C
DA

FIG. P16.8

FIG. P16.9, P16.15

FIG. P16.10

3 m 3 m 3 m 6 m

EI = constant

E
B C DA

160 kN
30 kN/m15 kN/m

FIG. P16.11
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6 m 4 m 6 m 4 m 4 m 4 m

I I2I

A C

B D F

E
G

120 kN 120 kN 150 kN

E =  200 GPa
I = 500 (106) mm4

FIG. P16.12, P16.16

FIG. P16.13

FIG. P16.14

16.15 Solve Problem 16.9 for the loading shown in Fig.
P16.9 and a settlement of 25 mm at support C.

16.16 Solve Problem 16.12 for the loading shown in Fig.
P16.12 and support settlements of 10 mm at A; 65 mm at C;
40 mm at E; and 25 mm at G.

Section 16.4

16.17 through 16.20 Determine the member end moments
and reactions for the frames shown in Figs. P16.17–P16.20
by using the slope-deflection method.

FIG. P16.17, P16.21

FIG. P16.18, P16.22

50 kN/m

D
C E

B

A

2 m

1 m

75 kN

I

4 m 1 m

2I

E = constant

FIG. P16.19
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30 kN/m

C D

A B

10 m

EI = constant

8 m

FIG. P16.20

16.21 Solve Problem 16.17 for the loading shown in Fig.
P16.17 and a settlement of 50 mm at support D.

16.22 Solve Problem 16.18 for the loading shown in Fig.
P16.18 and a settlement of 7mm at support A.

16.23 Determine the member end moments and reactions
for the frame in Fig. P16.23 for the loading shown and the
support settlements of 17mm at A and 25mm at D. Use the
slope-deflection method.

FIG. P16.23

Section 16.5

16.24 through 16.31 Determine the member end moments
and reactions for the frames shown in Figs. P16.24–P16.31
by using the slope-deflection method.

50 kN/m

125 kN

4 m

B
C

A

3 m

EI = constant

FIG. P16.24

FIG. P16.25

10 m

EI = constant

27 kN/m

120 kN
C D

BA

5 m

FIG. P16.26
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FIG. P16.27

FIG. P16.28

FIG. P16.29

FIG. P16.30

FIG. P16.31
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17
Moment-Distribution Method
17.1 Definitions and Terminology
17.2 Basic Concept of the Moment-Distribution Method
17.3 Analysis of Continuous Beams
17.4 Analysis of Frames without Sidesway
17.5 Analysis of Frames with Sidesway

Summary
Problems

707

In this chapter, we consider another classical formulation of the dis-
placement method, the moment-distribution method. Like the slope-
deflection method, the moment-distribution method can be used only
for the analysis of continuous beams and frames, taking into account
their bending deformations only. This method, which was initially de-
veloped by Hardy Cross in 1924, was the most widely used method for
analysis of structures from 1930, when it was first published, through the
1960s. Since the early 1970s, with the increasing availability of com-
puters, the use of the moment-distribution method has declined in favor
of the computer-oriented matrix methods of structural analysis. None-
theless, the moment-distribution method is still preferred by many en-
gineers for analyzing smaller structures, since it provides a better insight
into the behavior of structures. Furthermore, this method may also be
used for preliminary designs as well as for checking the results of com-
puterized analyses.

The main reason for the popularity of the moment-distribution
method in the precomputer era was due to the fact that it does not in-
volve the solution of as many simultaneous equations as required by the
other classical methods. In the analysis of continuous beams and frames
without sidesway, the moment-distribution method completely avoids

The Empire State Building,

New York
Keith Levit/Shutterstock
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the solution of simultaneous equations, whereas in the case of frames
with sidesway, the number of simultaneous equations involved usually
equals the number of independent joint translations.

The moment-distribution method is classified as a displacement
method, and from a theoretical viewpoint, it is very similar to the
slope-deflection method considered in the preceding chapter. How-
ever, unlike the slope-deflection method in which all the structure’s
equilibrium equations are satisfied simultaneously, in the moment-
distribution method the moment equilibrium equations of the joints
are solved iteratively by successively considering the moment equili-
brium at one joint at a time, while the remaining joints of the struc-
ture are assumed to be restrained against displacement.

We first derive the fundamental relations necessary for the applica-
tion of the moment-distribution method and then develop the basic
concept of the method. We next consider the application of the method
to the analysis of continuous beams and frames without sidesway and,
finally, discuss the analysis of frames with sidesway.

17.1 DEFINITIONS AND TERMINOLOGY

Before we can develop the moment-distribution method, it is necessary
to adopt a sign convention and define the various terms used in the
analysis.

Sign Convention

In applying the moment-distribution method, we will adopt the same
sign convention as used previously for the slope-deflection method:

Counterclockwise member end moments
are considered positive.

Since a counterclockwise moment at an end of a member must act in a
clockwise direction on the adjacent joint, the foregoing sign convention
implies that clockwise moments on joints are considered positive.

Member Stiffness

Consider a prismatic beam AB, which is hinged at end A and fixed at
end B, as shown in Fig. 17.1(a). If we apply a moment M at the end A,
the beam rotates by an angle y at the hinged end A and develops a mo-
ment MBA at the fixed end B, as shown in the figure. The relationship
between the applied moment M and the rotation y can be established by
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using the slope-deflection equation derived in Section 16.1. By substituting
Mnf ¼M, yn ¼ y, and yf ¼ c ¼ FEMnf ¼ 0 into the slope-deflection
equation (Eq. (16.9)), we obtain

M ¼ 4EI

L

� �
y (17.1)

The bending sti¤ness, K, of a member is defined as the moment that must

be applied at an end of the member to cause a unit rotation of that end.
Thus, by setting y ¼ 1 rad in Eq. (17.1), we obtain the expression for the
bending sti¤ness of the beam of Fig. 17.1(a) to be

K ¼ 4EI

L
(17.2)

When the modulus of elasticity for all the members of a structure is
the same (i.e., E ¼ constant), it is usually convenient to work with the
relative bending sti¤nesses of members in the analysis. The relative

bending sti¤ness, K, of a member is obtained by dividing its bending sti¤-

ness, K, by 4E. Thus, the relative bending sti¤ness of the beam of Fig.
17.1(a) is given by

K ¼ K

4E
¼ I

L
(17.3)

Now, suppose that the far end B of the beam of Fig. 17.1(a) is
hinged, as shown in Fig. 17.1(b). The relationship between the applied
moment M and the rotation y of the end A of the beam can now be
determined by using the modified slope-deflection equation (Eqs.

FIG. 17.1
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(16.15)) derived in Section 16.1. By substituting Mrh ¼M, yr ¼ y, and
c ¼ FEMrh ¼ FEMhr ¼ 0 into Eq. 16.15(a), we obtain

M ¼ 3EI

L

� �
y (17.4)

By setting y ¼ 1 rad, we obtain the expression for the bending sti¤ness
of the beam of Fig. 17.1(b) to be

K ¼ 3EI

L
(17.5)

A comparison of Eqs. (17.2) and (17.5) indicates that the sti¤ness of the
beam is reduced by 25 percent when the fixed support at B is replaced
by a hinged support. The relative bending sti¤ness of the beam can now
be obtained by dividing its bending sti¤ness by 4E:

K ¼ 3

4

I

L

� �
(17.6)

From Eqs. (17.1) and (17.4), we can see that the relationship be-
tween the applied end moment M and the rotation y of the correspond-
ing end of a member can be summarized as follows:

M ¼
4EI

L

� �
y if far end of member is fixed

3EI

L

� �
y if far end of member is hinged

8>>>><
>>>>:

(17.7)

Similarly, based on Eqs. (17.2) and (17.5), the bending sti¤ness of a
member is given by

K ¼
4EI

L
if far end of member is fixed

3EI

L
if far end of member is hinged

8>>><
>>>: (17.8)

and the relative bending sti¤ness of a member can be expressed as (see
Eqs. (17.3) and (17.6))

K ¼
I

L
if far end of member is fixed

3

4

I

L

� �
if far end of member is hinged

8>>><
>>>:

(17.9)
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Carryover Moment

Let us consider again the hinged-fixed beam of Fig. 17.1(a). When a
moment M is applied at the hinged end A of the beam, a moment MBA

develops at the fixed end B, as shown in the figure. The moment MBA is
termed the carryover moment. To establish the relationship between
the applied moment M and the carryover moment MBA, we write the
slope-deflection equation for MBA by substituting Mnf ¼MBA, yf ¼ y,
and yn ¼ c ¼ FEMnf ¼ 0 into Eq. (16.9):

MBA ¼ 2EI

L

� �
y (17.10)

By substituting y ¼ML=ð4EIÞ from Eq. (17.1) into Eq. (17.10), we
obtain

MBA ¼M

2
(17.11)

As Eq. (17.11) indicates, when a moment of magnitude M is applied at
the hinged end of a beam, one-half of the applied moment is carried over

to the far end, provided that the far end is fixed. Note that the direction
of the carryover moment, MBA, is the same as that of the applied mo-
ment, M.

When the far end of the beam is hinged, as shown in Fig. 17.1(b),
the carryover moment MBA is zero. Thus, we can express the carryover
moment as

MBA ¼
M

2
if far end of member is fixed

0 if far end of member is hinged

8><
>: (17.12)

The ratio of the carryover moment to the applied moment
ðMBA=MÞ is called the carryover factor of the member. It represents the
fraction of the applied moment M that is carried over to the far end of
the member. By dividing Eq. (17.12) by M, we can express the carryover
factor (COF) as

COF ¼
1

2
if far end of member is fixed

0 if far end of member is hinged

8><
>: (17.13)
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Derivation of Member Stiffness and Carryover Moment by
the Moment-Area Method

The foregoing expressions of member bending sti¤ness and carryover
moment can, alternatively, be derived by applying the moment-area
method discussed in Chapter 6.

The hinged-fixed beam of Fig. 17.1(a) is redrawn in Fig. 17.2(a),
which also shows the M=EI diagram of the beam. Because the right end
B of the beam is fixed, the tangent to the elastic curve at B is horizontal,
and it passes through the left end A. Therefore, the tangential deviation
of end A from the tangent at end B is equal to zero (i.e., DAB ¼ 0). Since
according to the second moment-area theorem, this tangential deviation
is equal to the moment of the M=EI diagram between A and B about A,
we can write

DAB ¼ 1

2

M

EI

� �
L

L

3

� �
� 1

2

MBA

EI

� �
L

2L

3

� �
¼ 0

from which

MBA ¼M

2

Note that the preceding expression for carryover moment is identical to
Eq. (17.11), which was derived previously by using the slope-deflection
equations.

With the tangent at B horizontal, the angle y at A equals the change
in slope yBA between A and B. Since, according to the first moment-area
theorem, yBA is equal to the area of the M=EI diagram between A

and B, we write

y ¼ 1

2

M

EI

� �
L� 1

2

MBA

EI

� �
L

By substituting MBA ¼M=2, we obtain

y ¼ L

4EI

� �
M

from which

M ¼ 4EI

L

� �
y

which is the same as Eq. (17.1), derived previously.
The elastic curve and the M=EI diagram for the beam, when its far

end B is hinged, are shown in Fig. 17.2(b). From the elastic curve we
can see that

y ¼ DBA

L

FIG. 17.2
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in which, according to the second moment-area theorem,

DBA ¼ moment of M=EI diagram between A and B about B

¼ 1

2

M

EI

� �
L

2L

3

� �
¼ L2

3EI

� �
M

Therefore,

y ¼ DBA

L
¼ L

3EI

� �
M

from which

M ¼ 3EI

L

� �
y

which is identical to Eq. (17.4), derived previously by using the
slope-deflection equations.

Distribution Factors

When analyzing a structure by the moment-distribution method, an im-
portant question that arises is how to distribute a moment applied at a
joint among the various members connected to that joint. Consider the
three-member frame shown in Fig. 17.3(a), and suppose that a moment
M is applied to the joint B, causing it to rotate by an angle y, as shown
in the figure. To determine what fraction of the applied moment M is
resisted by each of the three members connected to the joint, we draw
free-body diagrams of joint B and of the three members AB;BC, and
BD, as shown in Fig. 17.3(b). By considering the moment equilibrium of
the free body of joint B (i.e.,

P
MB ¼ 0), we write

M þMBA þMBC þMBD ¼ 0

or

M ¼ �ðMBA þMBC þMBDÞ (17.14)

Since members AB;BC, and BD are rigidly connected to joint B, the
rotations of the ends B of these members are the same as that of the
joint. The moments at the ends B of the members can be expressed in
terms of the joint rotation y by applying Eq. (17.7). Noting that the far
ends A and C, respectively, of members AB and BC are fixed, whereas
the far end D of member BD is hinged, we apply Eqs. (17.7) through
(17.9) to each member to obtain

MBA ¼ 4EI1
L1

� �
y ¼ KBAy ¼ 4EKBAy (17.15)

MBC ¼ 4EI2
L2

� �
y ¼ KBCy ¼ 4EKBCy (17.16)
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MBD ¼ 3EI3
L3

� �
y ¼ KBDy ¼ 4EKBDy (17.17)

Substitution of Eqs. (17.15) through (17.17) into the equilibrium equa-
tion (Eq. (17.14)) yields

M ¼ � 4EI1
L1
þ 4EI2

L2
þ 3EI3

L3

� �
y

¼ �ðKBA þ KBC þ KBDÞy ¼ �ð
P

KBÞy (17.18)

in which
P

KB represents the sum of the bending sti¤nesses of all the
members connected to joint B.

The rotational sti¤ness of a joint is defined as the moment required to

cause a unit rotation of the joint. From Eq. (17.18), we can see that the
rotational sti¤ness of a joint is equal to the sum of the bending sti¤-

FIG. 17.3

714 CHAPTER 17 Moment-Distribution Method

https://engineersreferencebookspdf.com



nesses of all the members rigidly connected to the joint. The negative
sign in Eq. (17.18) appears because of the sign convention we have
adopted, according to which the member end moments are considered
positive when in the counterclockwise direction, whereas the moments
acting on the joints are considered positive when they act in the clock-
wise direction.

To express member end moments in terms of the applied mo-
ment M, we first rewrite Eq. (17.18) in terms of the relative bending
sti¤nesses of members as

M ¼ �4EðKBA þ KBC þ KBDÞy ¼ �4Eð
P

KBÞy
from which

y ¼ � M

4E
P

KB

(17.19)

By substituting Eq. (17.19) into Eqs. (17.15) through (17.17), we obtain

MBA ¼ � KBAP
KB

� �
M (17.20)

MBC ¼ � KBCP
KB

� �
M (17.21)

MBD ¼ � KBDP
KB

� �
M (17.22)

From Eqs. (17.20) through (17.22), we can see that the applied moment
M is distributed to the three members in proportion to their relative
bending sti¤nesses. The ratio K=

P
KB for a member is termed the dis-

tribution factor of that member for end B, and it represents the fraction
of the applied moment M that is distributed to end B of the member.
Thus Eqs. (17.20) through (17.22) can be expressed as

MBA ¼ �DFBAM (17.23)

MBC ¼ �DFBCM (17.24)

MBD ¼ �DFBDM (17.25)

in which DFBA ¼ KBA=
P

KB, DFBC ¼ KBC=
P

KB, and DFBD ¼
KBD=

P
KB are the distribution factors for ends B of members AB;BC,

and BD, respectively.
For example, if joint B of the frame of Fig. 17.3(a) is subjected to a

clockwise moment of 150 kN-m (i.e., M ¼ 150 kN-m) and if
L1 ¼ L2 ¼ 4 m, L3 ¼ 6 m, and I1 ¼ I2 ¼ I3 ¼ I , so that

KBA ¼ KBC ¼ I

4
¼ 0:25I

KBD ¼ 3

4

I

6

� �
¼ 0:125I
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then the distribution factors for the ends B of members AB;BC, and BD

are given by

DFBA ¼ KBA

KBA þ KBC þ KBD

¼ 0:25I

ð0:25þ 0:25þ 0:125ÞI ¼ 0:4

DFBC ¼ KBC

KBA þ KBC þ KBD

¼ 0:25I

0:625I
¼ 0:4

DFBD ¼ KBD

KBA þ KBC þ KBD

¼ 0:125I

0:625I
¼ 0:2

These distribution factors indicate that 40 percent of the 150 kN-m mo-
ment applied to joint B is exerted at end B of member AB, 40 percent at
end B of member BC, and the remaining 20 percent at end B of member
BD. Thus, the moments at ends B of the three members are

MBA ¼ �DFBAM ¼ �0:4ð150Þ ¼ �60 kN-m or 60 kN-m @

MBC ¼ �DFBCM ¼ �0:4ð150Þ ¼ �60 kN-m or 60 kN-m @

MBD ¼ �DFBDM ¼ �0:2ð150Þ ¼ �30 kN-m or 30 kN-m @

Based on the foregoing discussion, we can state that, in general, the
distribution factor (DF) for an end of a member that is rigidly con-
nected to the adjacent joint equals the ratio of the relative bending sti¤-
ness of the member to the sum of the relative bending sti¤nesses of all
the members framing into the joint; that is,

DF ¼ KP
K

(17.26)

Furthermore, the moment distributed to (or resisted by) a rigidly con-
nected end of a member equals the distribution factor for that end times
the negative of the moment applied to the adjacent joint.

Fixed-End Moments

The fixed-end moment expressions for some common types of loading
conditions as well as for relative displacements of member ends are
given inside the back cover of the book for convenient reference. In the
moment-distribution method, the e¤ects of joint translations due to sup-
port settlements and sidesway are also taken into account by means of
fixed-end moments.

Consider the fixed beam of Fig. 17.4(a). As shown in this figure, a
small settlement D of the left end A of the beam with respect to the right
end B causes the beam’s chord to rotate counterclockwise by an an-
gle c ¼ D=L. By writing the slope-deflection equations (Eq. (16.9)) for
the two end moments with c ¼ D=L and by setting yA; yB, and fixed-end
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moments FEMAB and FEMBA due to external loading, equal to zero, we
obtain

FEMAB ¼ FEMBA ¼ � 6EID

L2

in which FEMAB and FEMBA now denote the fixed-end moments due to
the relative translation D between the two ends of the beam. Note that
the magnitudes as well as the directions of the two fixed-end moments
are the same. It can be seen from Fig. 17.4(a) that when a relative dis-
placement causes a chord rotation in the counterclockwise direction,
then the two fixed-end moments act in the clockwise (negative) direction
to maintain zero slopes at the two ends of the beam. Conversely, if the
chord rotation due to a relative displacement is clockwise, as shown in
Fig. 17.4(b), then both fixed-end moments act in the counterclockwise
(positive) direction to prevent the ends of the beam from rotating.

17.2 BASIC CONCEPT OF THE MOMENT-DISTRIBUTION METHOD

The moment-distribution method is an iterative procedure, in which it is
initially assumed that all the joints of the structure that are free to rotate
are temporarily restrained against rotation by imaginary clamps applied
to them. External loads and joint translations (if any) are applied to this
hypothetical fixed structure, and fixed-end moments at the ends of its
members are computed. These fixed-end moments generally are not in
equilibrium at those joints of the structure that are actually free to ro-
tate. The conditions of equilibrium at such joints are then satisfied iter-
atively by releasing one joint at a time, with the remaining joints as-
sumed to remain clamped. A joint at which the moments are not in
balance is selected, and its unbalanced moment is evaluated. The joint is
then released by removing the clamp, thereby allowing it to rotate under
the unbalanced moment until the equilibrium state is reached. The
rotation of the joint induces moments at the ends of the members

FIG. 17.4
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connected to it. Such member end moments are referred to as distributed
moments, and their values are determined by multiplying the negative of
the unbalanced joint moment by the distribution factors for the member
ends connected to the joint. The bending of these members due to the
distributed moments causes carryover moments to develop at the far
ends of the members, which can easily be evaluated by using the mem-
ber carryover factors. The joint, which is now in equilibrium, is re-
clamped in its rotated position. Next, another joint with an unbalanced
moment is selected and is released, balanced, and reclamped in the same
manner. The procedure is repeated until the unbalanced moments at all
the joints of the structure are negligibly small. The final member end
moments are obtained by algebraically summing the fixed-end moment
and all the distributed and carryover moments at each member end.
This iterative process of determining member end moments by succes-
sively distributing the unbalanced moment at each joint is called the
moment-distribution process.

With member end moments known, member end shears, member
axial forces, and support reactions can be determined through equili-
brium considerations, as discussed in Chapter 16.

To illustrate the moment-distribution method, consider the three-span
continuous beam shown in Fig. 17.5(a). This structure was previously
analyzed in Section 16.2 by the slope-deflection method. It is usually con-
venient to carry out the moment-distribution analysis in a tabular form, as
shown in Fig. 17.5(a). Note that the table, which is sometimes referred to
as a moment-distribution table, consists of six columns, one for each
member end of the structure. All the computations for a particular mem-
ber end moment are recorded in the column for that member end.

Distribution Factors

The first step in the analysis is to calculate the distribution factors at
those joints of the structure that are free to rotate.

As discussed in Section 17.1 (Eq. (17.26)), the distribution factor for
an end of a member is equal to the relative bending sti¤ness of the
member divided by the sum of the relative bending sti¤nesses of all the
members connected to the joint. From Fig. 17.5(a), we can see that only
joints B and C of the continuous beam are free to rotate. The dis-
tribution factors at joint B are

DFBA ¼ KBA

KBA þ KBC

¼ I=4

2I=4
¼ 0:5

DFBC ¼ KBC

KBA þ KBC

¼ I=4

2I=4
¼ 0:5

Similarly, at joint C,
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FIG. 17.5
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FIG. 17.5 (contd.)
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DFCB ¼ KCB

KCB þ KCD

¼ I=4

ðI=4Þ þ ðI=3Þ ¼ 0:429

DFCD ¼ KCD

KCB þ KCD

¼ I=3

ðI=4Þ þ ðI=3Þ ¼ 0:571

Note that the sum of the distribution factors at each joint must always
equal 1. The distribution factors are recorded in boxes directly beneath
the corresponding member ends on top of the moment-distribution
table, as shown in Fig. 17.5(a).

Fixed-End Moments

Next, by assuming that joints B and C are restrained against rotation by
imaginary clamps applied to them (Fig. 17.5(b)), we calculate the fixed-
end moments that develop at the ends of each member. By using the
fixed-end moment expressions given inside the back cover of the book,
we obtain

FEMAB ¼ 30ð4Þ2
12

¼ 40 kN-m

’

or þ40 kN-m

FEMBA ¼ 40 kN-m @ or �40 kN-m

FEMBC ¼ 120ð4Þ
8
¼ 60 kN-m

’
or þ60 kN-m

FEMCB ¼ 60 kN-m @ or �60 kN-m

FEMCD ¼ FEMDC ¼ 0

Note that in accordance with the moment-distribution sign convention,
the counterclockwise fixed-end moments are considered to be positive.
The fixed-end moments are recorded on the first line of the moment-
distribution table, as shown in Fig. 17.5(a).

Balancing Joint C

Since joints B and C are actually not clamped, we release them, one at a
time. We can release either joint B or joint C; let us begin at joint C.
From Fig. 17.5(b), we can see that there is a �60 kN-m (clockwise)
fixed-end moment at end C of member BC, whereas no moment exists
at end C of member CD. As long as joint C is restrained against rota-
tion by the clamp, the �60 kN-m unbalanced moment is absorbed by
the clamp. However, when the imaginary clamp is removed to release
the joint, the �60 kN-m unbalanced moment acts at the joint, as shown
in Fig. 17.5(c), causing it to rotate in the counterclockwise direction
until it is in equilibrium (Fig. 17.5(d)). The rotation of joint C causes the
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distributed moments, DMCB and DMCD, to develop at ends C of mem-
bers BC and CD, which can be evaluated by multiplying the negative of
the unbalanced moment (i.e., þ60 kN-m) by the distribution factors
DFCB and DFCD, respectively. Thus

DMCB ¼ 0:429ðþ60Þ ¼ þ25:7 kN-m

DMCD ¼ 0:571ðþ60Þ ¼ þ34:3 kN-m

These distributed moments are recorded on line 2 of the moment-
distribution table (Fig. 17.5(a)), and a line is drawn beneath them to
indicate that joint C is now balanced. Note that the sum of the three
moments above the line at joint C is equal to zero (i.e., �60þ 25:7þ
34:3 ¼ 0).

The distributed moment at end C of member BC induces a carry-
over moment at the far end B (Fig. 17.5(d)), which can be determined
by multiplying the distributed moment by the carryover factor of the
member. Since joint B remains clamped, the carryover factor of member
BC is 1

2 (Eq. (17.13)). Thus, the carryover moment at the end B of
member BC is

COMBC ¼ COFCBðDMCBÞ ¼ 1

2
ðþ25:7Þ ¼ þ12:9 kN-m

Similarly, the carryover moment at the end D of member CD is com-
puted as

COMDC ¼ COFCDðDMCDÞ ¼ 1

2
ðþ34:3Þ ¼ þ17:1 kN-m

These carryover moments are recorded on the same line of the moment-
distribution table as the distributed moments, with a horizontal arrow
from each distributed moment to its carryover moment, as shown in
Fig. 17.5(a).

The total member end moments at this point in the analysis are
depicted in Fig. 17.5(e). It can be seen from this figure that joint C is
now in equilibrium, because it is subjected to two equal, but opposite,
moments. Joint B, however, is not in equilibrium, and it needs to be
balanced. Before we release joint B, an imaginary clamp is applied to
joint C in its rotated position, as shown in Fig. 17.5(e).

Balancing Joint B

Joint B is now released. The unbalanced moment at this joint is ob-
tained by summing all the moments acting at the ends B of members
AB and BC, which are rigidly connected to joint B. From the moment-
distribution table (lines 1 and 2), we can see that there is a �40 kN-m
fixed-end moment at end B of member AB, whereas the end B of member
BC is subjected to a þ60 kN-m fixed-end moment and a þ12.9 kN-m
carryover moment. Thus the unbalanced moment at joint B is
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UMB ¼ �40þ 60þ 12:9 ¼ þ32:9 kN-m

This unbalanced moment causes joint B to rotate, as shown in Fig.
17.5(f ), and induces distributed moments at ends B of members AB and
BC. As discussed previously, the distributed moments are evaluated by
multiplying the negative of the unbalanced moment by the distribution
factors:

DMBA ¼ 0:5ð�32:9Þ ¼ �16:5 kN-m

DMBC ¼ 0:5ð�32:9Þ ¼ �16:5 kN-m

These distributed moments are recorded on line 3 of the moment-
distribution table, and a line is drawn beneath them to indicate that
joint B is now balanced. One-half of the distributed moments are then
carried over to the far ends A and C of members AB and BC, re-
spectively, as indicated by horizontal arrows on line 3 of the table. Joint
B is then reclamped in its rotated position.

Balancing Joint C

With joint B now balanced, we can see from the moment-distribution
table (line 3) that, due to the carryover e¤ect, there is a �8.2 kN-m
unbalanced moment at joint C. Recall that the moments above the
horizontal line at joint C were balanced previously. Thus we release
joint C again and distribute the unbalanced moment to ends C of
members BC and CD as (Fig. 17.5(g))

DMCB ¼ 0:429ðþ8:2Þ ¼ þ3:5 kN-m

DMCD ¼ 0:571ðþ8:2Þ ¼ þ4:7 kN-m

These distributed moments are recorded on line 4 of the moment-
distribution table, and one-half of these moments are carried over to the
ends B and D of members BC and CD, respectively, as indicated on the
table. Joint C is then reclamped.

Balancing Joint B

The þ1.8 kN-m unbalanced moment at joint B (line 4 of the mo-
ment-distribution table) is balanced in a similar manner. The distributed
and the carryover moments thus computed are shown on line 5 of the
table. Joint B is then reclamped.

It can be seen from line 5 of the moment-distribution table that the
unbalanced moment at joint C has now been reduced to only �0.5 kN-m.
Another balancing of joint C produces an even smaller unbalanced mo-
ment of þ0.1 kN-m at joint B, as shown on line 6 of the moment-
distribution table. Since the distributed moments induced by this
unbalanced moment are negligibly small, we end the moment-distribution
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process. The final member end moments are obtained by algebraically
summing the entries in each column of the moment-distribution table.
The final moments thus obtained are recorded on line 8 of the table and
are shown on the free-body diagrams of the members in Fig. 17.5(h).
Note that the final moments satisfy the equations of moment equilibrium
at joints B and C.

With the member end moments known, member end shears and
support reactions can now be determined by considering the equilibrium
of the free bodies of the members and joints of the continuous beam, as
discussed in Section 16.2. The shear and bending moment diagrams can
then be constructed in the usual manner by using the beam sign con-

vention (see Fig. 16.3).

Practical Application of the Moment-Distribution Process

In the foregoing discussion, we determined the member end moments by
successively balancing one joint of the structure at a time. Although this
approach provides a clearer insight into the basic concept of the mo-
ment-distribution process, from a practical viewpoint, it is usually more
convenient to use an alternative approach in which all the joints of the
structure that are free to rotate are balanced simultaneously in the same
step. All the carryover moments that are induced at the far ends of the
members are then computed simultaneously in the following step, and
the process of balancing the joints and carrying over moments is re-
peated until the unbalanced moments at the joints are negligibly small.

To illustrate this alternative approach, consider again the three-
span continuous beam of Fig. 17.5(a). The moment-distribution table
used for carrying out the computations is shown in Fig. 17.5(i). The
previously computed distribution factors and fixed-end moments are re-
corded on the top and the first line, respectively, of the table, as shown
in the figure. The moment-distribution process is started by balancing
joints B and C. From line 1 of the moment-distribution table (Fig.
17.5(i)), we can see that the unbalanced moment at joint B is

UMB ¼ �40þ 60 ¼ þ20 kN-m

As discussed previously, the balancing of joint B induces distributed
moments at ends B of the members AB and BC, which can be evaluated
by multiplying the negative of the unbalanced moment by the dis-
tribution factors. Thus,

DMBA ¼ 0:5ð�20Þ ¼ �10 kN-m

DMBC ¼ 0:5ð�20Þ ¼ �10 kN-m

Joint C is then balanced in a similar manner. From line 1 of the
moment-distribution table, we can see that the unbalanced moment at
joint C is

UMC ¼ �60 kN-m
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Thus, the balancing of joint C induces the following distributed mo-
ments at ends C of members BC and CD, respectively:

DMCB ¼ 0:429ðþ60Þ ¼ þ25:7 kN-m

DMCD ¼ 0:571ðþ60Þ ¼ þ34:3 kN-m

The four distributed moments are recorded on line 2 of the moment-
distribution table, and a line is drawn beneath them, across the entire
width of the table, to indicate that all the joints are now balanced.

In the next step of the analysis, the carryover moments that develop
at the far ends of the members are computed by multiplying the dis-
tributed moments by the carryover factors:

COMAB ¼ 1

2
ðDMBAÞ ¼ 1

2
ð�10Þ ¼ �5 kN-m

COMCB ¼ 1

2
ðDMBCÞ ¼ 1

2
ð�10Þ ¼ �5 kN-m

COMBC ¼ 1

2
ðDMCBÞ ¼ 1

2
ðþ25:7Þ ¼ þ12:9 kN-m

COMDC ¼ 1

2
ðDMCDÞ ¼ 1

2
ðþ34:3Þ ¼ þ17:2 kN-m

These carryover moments are recorded on the next line (line 3) of the
moment-distribution table, with an inclined arrow pointing from each
distributed moment to its carryover moment, as shown in Fig. 17.5(i).
We can see from line 3 of the moment-distribution table that, due to
the carryover e¤ect, there are now þ12.9 kN-m and �5 kN-m un-
balanced moments at joints B and C, respectively. Thus these joints are
balanced again, and the distributed moments thus obtained are recorded
on line 4 of the moment-distribution table. One-half of the distributed
moments are then carried over to the far ends of the members (line 5),
and the process is continued until the unbalanced moments are negli-
gibly small. The final member end moments, obtained by algebraically
summing the entries in each column of the moment-distribution table,
are recorded on line 11 of the table (Fig. 17.5(i)). Note that these final
moments are in agreement with those determined previously in Fig.
17.5(a) and in Section 16.2 by the slope-deflection method. The small
di¤erences between the results obtained by di¤erent approaches are due
to the round-o¤ errors.

17.3 ANALYSIS OF CONTINUOUS BEAMS

Based on the discussion presented in the preceding section, the proce-
dure for the analysis of continuous beams by the moment-distribution
method can be summarized as follows:
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1. Calculate distribution factors. At each joint that is free to rotate,
calculate the distribution factor for each of the members rigidly
connected to the joint. The distribution factor for a member end
is computed by dividing the relative bending sti¤ness ðI=LÞ of the
member by the sum of the relative bending sti¤nesses of all the
members rigidly connected to the joint. The sum of all the dis-
tribution factors at a joint must equal 1.

2. Compute fixed-end moments. Assuming that all the free joints are
clamped against rotation, evaluate, for each member, the fixed-end
moments due to the external loads and support settlements (if any)
by using the fixed-end moment expressions given inside the back
cover of the book. The counterclockwise fixed-end moments are
considered to be positive.

3. Balance the moments at all the joints that are free to rotate by ap-
plying the moment-distribution process as follows:
a. At each joint, evaluate the unbalanced moment and distribute

the unbalanced moment to the members connected to the joint.
The distributed moment at each member end rigidly connected
to the joint is obtained by multiplying the negative of the un-
balanced moment by the distribution factor for the member
end.

b. Carry over one-half of each distributed moment to the opposite
(far) end of the member.

c. Repeat steps 3(a) and 3(b) until either all the free joints are
balanced or the unbalanced moments at these joints are negli-
gibly small.

4. Determine the final member end moments by algebraically sum-
ming the fixed-end moment and all the distributed and carryover
moments at each member end. If the moment distribution has been
carried out correctly, then the final moments must satisfy the equa-
tions of moment equilibrium at all the joints of the structure that
are free to rotate.

5. Compute member end shears by considering the equilibrium of the
members of the structure.

6. Determine support reactions by considering the equilibrium of the
joints of the structure.

7. Draw shear and bending moment diagrams by using the beam sign

convention.

Beams with Simple Supports at the Ends

Although the foregoing procedure can be used to analyze continuous
beams that are simply supported at one or both ends, the analysis of
such structures can be considerably simplified by using the reduced rel-
ative bending sti¤nesses, K ¼ 3Ið4LÞ, for spans adjacent to the simple
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end supports, in accordance with Eq. (17.9). When using reduced sti¤-
nesses, the joints at the simple end supports are balanced only once
during the moment-distribution process, after which they are left un-
clamped so that no moments can be carried over to them as the interior
joints of the structure are balanced (see Example 17.3).

Structures with Cantilever Overhangs

Consider a continuous beam with a cantilever overhang, as shown in
Fig. 17.6(a). Since the cantilever portion CD does not contribute to the
rotational sti¤ness of joint C, the distribution factor for its end C is zero
(DFCD ¼ 0). Thus, joint C can be treated as a simple end support in the
analysis. The moment at end C of the cantilever, however, does a¤ect
the unbalanced moment at joint C and must be included along with the
other fixed-end moments in the analysis (Fig. 17.6(b)). Note that the
cantilever portion CD is statically determinate; therefore, the moment at
its end C can be easily evaluated by applying the equation of moment
equilibrium (Fig. 17.6(c)).

FIG. 17.6
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Example 17.1

Determine the member end moments for the two-span continuous beam shown in Fig. 17.7(a) by using the moment-
distribution method.

Solution
This beam was previously analyzed in Example 16.1 by the slope-deflection method.

Distribution Factors Only joint B is free to rotate. The distribution factors at this joint are

DFBA ¼ KBA

KBA þ KBC

¼ I=5

ðI=5Þ þ ðI=6Þ ¼ 0:545

DFBC ¼ KBC

KBA þ KBC

¼ I=6

ðI=5Þ þ ðI=6Þ ¼ 0:455

Note that the sum of the distribution factors at joint B is equal to 1; that is,

DFBA þDFBC ¼ 0:545þ 0:455 ¼ 1 Checks

The distribution factors are recorded in boxes beneath the corresponding member ends on top of the moment-
distribution table, as shown in Fig. 17.7(a).

Fixed-End Moments Assuming that joint B is clamped against rotation, we calculate the fixed-end moments due to
the external loads by using the fixed-end moment expressions given inside the back cover of the book:

continued

FIG. 17.7
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FEMAB ¼ 90ð2Þð3Þ2
ð5Þ2 ¼ 64:8 kN-m

’

or þ64:8 kN-m

FEMBA ¼ 90ð2Þ2ð3Þ
ð5Þ2 ¼ 43:2 kN-m @ or �43:2 kN-m

FEMBC ¼ 50ð6Þ2
12

¼ 150 kN-m

’

or þ150 kN-m

FEMCB ¼ 150 kN-m @ or �150 kN-m

These fixed-end moments are recorded on the first line of the moment-distribution table, as shown in Fig. 17.7(a).

Moment Distribution Since joint B is actually not clamped, we release the joint and determine the unbalanced
moment acting on it by summing the moments at ends B of members AB and BC:

UMB ¼ �43:2þ 150 ¼ þ106:8 kN-m

This unbalanced moment at joint B induces distributed moments at the ends B of members AB and BC, which can be
determined by multiplying the negative of the unbalanced moment by the distribution factors:

DMBA ¼ DFBAð�UMBÞ ¼ 0:545ð�106:8Þ ¼ �58:2 kN-m

DMBC ¼ DFBCð�UMBÞ ¼ 0:455ð�106:8Þ ¼ �48:6 kN-m

These distributed moments are recorded on line 2 of the moment-distribution table, and a line is drawn beneath them to
indicate that joint B is now balanced. The carryover moments at the far ends A and C of members AB and BC, re-
spectively, are then computed as

COMAB ¼ 1

2
ðDMBAÞ ¼ 1

2
ð�58:2Þ ¼ �29:1 kN-m

COMCB ¼ 1

2
ðDMBCÞ ¼ 1

2
ð�48:6Þ ¼ �24:3 kN-m

The carryover moments are recorded on the next line (line 3) of the moment-distribution table, with an inclined arrow
pointing from each distributed moment to its carryover moment, as shown in Fig. 17.7(a).

Joint B is the only joint of the structure that is free to rotate, and because it has been balanced, we end the moment-
distribution process.

Final Moments The final member end moments are obtained by algebraically summing all the moments in each
column of the moment-distribution table. The final moments thus obtained are recorded on the last line of the table in
Fig. 17.7(a). Note that these final moments satisfy the equation of moment equilibrium at joint B. A positive answer for
an end moment indicates that its sense is counterclockwise, whereas a negative answer for an end moment implies a
clockwise sense. The final member end moments are depicted in Fig. 17.7(b). Ans.

The member end shears and support reactions can now be determined by considering the equilibrium of the mem-
bers and joints of the continuous beam, as discussed in Example 16.1. The shear and bending moment diagrams of the
beam were also constructed in Example 16.1.
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Example 17.2

Determine the member end moments for the three-span continuous beam shown in Fig. 17.8(a) by the moment-
distribution method.

Solution
This beam was analyzed previously in Example 16.2 by using the slope-deflection method.

Distribution Factors From Fig. 17.8(a), we can see that joints B and C of the beam are free to rotate. The dis-
tribution factors at joint B are

DFBA ¼ KBA

KBA þ KBC

¼ I=6

ðI=6Þ þ ðI=6Þ ¼ 0:5

DFBC ¼ KBC

KBA þ KBC

¼ I=6

ðI=6Þ þ ðI=6Þ ¼ 0:5

Similarly, at joint C,
continued
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–32.4

+8.1

+2.0

+0.5

+0.1

1. Fixed-end moments
2. Balance joints B and C
3. Carryover
4. Balance joints B and C
5. Carryover
6. Balance joints B and C
7. Carryover
8. Balance joints B and C
9. Carryover
10. Balance joints B and C

Distribution Factors

(a) Continuous-Beam and Moment-Distribution Table

6 m 6 m

27 kN/m

6 m

AEI = constant D
B C

27 kN/m 27 kN/m 27 kN/m

21.7 A B B C C D
70.2 70.2

70.2 70.2
21.7

(b) Final Member End Moments (kN-m)

11. Final moments

FIG. 17.8
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DFCB ¼ KCB

KCB þ KCD

¼ I=6

ðI=6Þ þ ðI=6Þ ¼ 0:5

DFCD ¼ KCD

KCB þ KCD

¼ I=6

ðI=6Þ þ ðI=6Þ ¼ 0:5

Fixed-End Moments

FEMAB ¼ þ 27ð6Þ2
30

¼ þ32:4 kN-m

FEMBA ¼ � 27ð6Þ2
20

¼ �48:6 kN-m

FEMBC ¼ þ 27ð6Þ2
12

¼ þ81 kN-m

FEMCB ¼ �81 kN-m

FEMCD ¼ þ 27ð6Þ2
20

¼ þ48:6 kN-m

FEMDC ¼ � 27ð6Þ2
30

¼ �32:4 kN-m

Moment Distribution After recording the distribution factors and the fixed-end moments in the moment-
distribution table shown in Fig. 17.8(a), we begin the moment-distribution process by balancing joints B and C. The
unbalanced moment at joint B is equal to �48:6þ 81 ¼ þ32:4 kN-m. Thus, the distributed moments at the ends B of
members AB and BC are

DMBA ¼ DFBAð�UMBÞ ¼ 0:5ð�32:4Þ ¼ �16:2 kN-m

DMBC ¼ DFBCð�UMBÞ ¼ 0:5ð�32:4Þ ¼ �16:2 kN-m

Similarly, noting that the unbalanced moment at joint C equals �81þ 48:6 ¼ �32:4 kN-m, we determine the dis-
tributed moments at the ends C of members BC and CD to be

DMCB ¼ DFCBð�UMCÞ ¼ 0:5ðþ32:4Þ ¼ þ16:2 kN-m

DMCD ¼ DFCDð�UMCÞ ¼ 0:5ðþ32:4Þ ¼ þ16:2 kN-m

One-half of these distributed moments are then carried over to the far ends of the members, as shown on the third line
of the moment-distribution table in Fig. 17.8(a). This process is repeated, as shown in the figure, until the unbalanced
moments are negligibly small.

Final Moments The final member end moments, obtained by summing the moments in each column of the
moment-distribution table, are recorded on the last line of the table in Fig. 17.8(a). These moments are depicted in
Fig. 17.8(b). Ans.

The member end shears, support reactions, and shear and bending moment diagrams of the beam were determined
in Example 16.2.
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Example 17.3

Determine the reactions and draw the shear and bending moment diagrams for the two-span continuous beam shown
in Fig. 17.9(a) by using the moment-distribution method.

Solution
Distribution Factors From Fig. 17.9(a), we can see that joints B and C of the continuous beam are free to rotate.

The distribution factors at joint B are

FIG. 17.9
continued
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FIG. 17.9 (contd.)
continued
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DFBA ¼ KBA

KBA þ KBC

¼ 1:5I=10

ð1:5I=10Þ þ ðI=10Þ ¼ 0:6

DFBC ¼ KBC

KBA þ KBC

¼ I=10

ð1:5I=10Þ þ ðI=10Þ ¼ 0:4

Similarly, at joint C,

DFCB ¼ KCB

KCB

¼ 0:1I

0:1I
¼ 1

Fixed-End Moments

FEMAB ¼ þ 80ð10Þ
8
¼ þ100 kN�m

FEMBA ¼ �100 kN�m

FEMBC ¼ þ 40ð10Þ
8
¼ þ50 kN�m

FEMCB ¼ �50 kN�m

Moment Distribution After recording the distribution factors and the fixed-end moments in the moment-
distribution table shown in Fig. 17.9(b), we begin the moment-distribution process by balancing joints B and C. The
unbalanced moment at joint B is equal to �100þ 50 ¼ �50 kN�m. Thus the distributed moments at the ends B of
members AB and BC are

DMBA ¼ DFBAð�UMBÞ ¼ 0:6ðþ50Þ ¼ þ30 kN�m
DMBC ¼ DFBCð�UMBÞ ¼ 0:4ðþ50Þ ¼ þ20 kN�m

Similarly, noting that the unbalanced moment at joint C is �50 kN �m, we determine the distributed moment at
end C of member BC to be

DMCB ¼ DFCBð�UMCÞ ¼ 1ðþ50Þ ¼ þ50 kN�m
One-half of these distributed moments are then carried over to the far ends of the members, as shown on the third line
of the moment-distribution table in Fig. 17.9(b). This process is repeated, as shown in the figure, until the unbalanced
moments are negligibly small.

Final Moments The final member end moments, obtained by summing the moments in each column of the
moment-distribution table, are recorded on the last line of the table in Fig. 17.9(b). Ans.

Alternative Method Because the end support C of the continuous beam is a simple support, the analysis can be
simplified by using the reduced relative bending sti¤ness for member BC, which is adjacent to the simple support C:

KBC ¼ 3

4

I

10

� �

Note that the relative bending sti¤ness of member AB remains the same as before. The distribution factors at joint B are
now given by

continued
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DFBA ¼ KBA

KBA þ KBC

¼ 1:5I=10

ð1:5I=10Þ þ ð3I=40Þ ¼
2

3

DFBC ¼ KBC

KBA þ KBC

¼ 3I=40

ð1:5I=10Þ þ ð3I=40Þ ¼
1

3

At joint C, DFCB ¼ KCB=KCB ¼ 1. These distribution factors, and the fixed-end moments that remain the same as
before, are recorded in the moment-distribution table, as shown in Fig. 17.9(c).

Since we are using the reduced relative bending sti¤ness for member BC, joint C needs to be balanced only once in
the moment-distribution process. Thus joints B and C are balanced and the distributed moments are computed in the
usual manner, as indicated on the second line of the moment-distribution table (Fig. 17.9(c)). However, as shown on the
third line of the table in Fig. 17.9(c), no moment is carried over to end C of member BC. Joint B is balanced once more,
and the moment is carried over to the end A of member AB (lines 4 and 5). Because both joints B and C are now bal-
anced, we can end the moment-distribution process and determine the final moments by summing the moments in each
column of the moment-distribution table. Ans.

Member End Shears The member end shears, obtained by considering the equilibrium of each member, are shown
in Fig. 17.9(d). Ans.

Support Reactions See Fig. 17.9(e). Ans.

Shear and Bending Moment Diagrams See Fig. 17.9(f ) and (g). Ans.

Example 17.4

Determine the member end moments for the continuous beam shown in Fig. 17.10(a) by using the moment-distribution
method.

Solution
This beam was previously analyzed in Example 16.4 by the slope-deflection method.

Distribution Factors Since the cantilever portion CD does not contribute to the rotational sti¤ness of joint C, we
can treat joint C as a simple end support and use the reduced relative bending sti¤ness of member BC in the analysis:

KBA ¼ I

6
and KBC ¼ 3

4

I

9

� �
¼ I

12

At joint B,

DFBA ¼ I=6

ðI=6Þ þ ðI=12Þ ¼
2

3

DFBC ¼ I=12

ðI=6Þ þ ðI=12Þ ¼
1

3

continued
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FIG. 17.10

At joint C,

DFCB ¼ 1

Fixed-End Moments Using the fixed-end moment expressions and Fig. 17.10(b), we obtain

FEMAB ¼ FEMBA ¼ 0

FEMBC ¼ þ67:5 kN �m FEMCB ¼ �67:5 kN�m
FEMCD ¼ þ30ð4Þ ¼ þ120 kN�m

Moment Distribution The moment distribution is carried out as shown on the moment-distribution table in
Fig. 17.10(c).

Final Moments See the moment-distribution table and Fig. 17.10(d). Ans.
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Example 17.5

Determine the member end moments for the continuous beam shown in Fig. 17.11(a) due to a settlement of 20
mm at support B. Use the moment-distribution method.

0.5 0.5

BC CB CD DCAB BA

0.5 0.5

+98

–13.1

–0.8

–0.05

+91.1

–13.1

–0.8

–0.05

–91

–6.6

–0.4

+26.3

+1.6

+0.1

+3.3

+0.2

–56

–6.6

–0.4

+3.3

+0.2

+56 +28

+26.3

+105 +105 –105
+52.5
–105

+52.5

+1.6

+0.1

(c) Moment-Distribution Table

(b) Fixed-End Moments Due to Support Settlement

8 m 8 m

E = 70 GPa

(a) Continuous Beam

I = 800 (106) mm4

8 m

A
B C D

A
D

B

C

0.02 m

DC

28

56BA

91

98 CB

(d) Final Member End Moments (kN–m)

56

91

FIG. 17.11
continued
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Solution
This beam was analyzed previously in Example 16.5 by using the slope-deflection method.

Distribution Factors At joint B,

DFBA ¼ I=8

ðI=8Þ þ ðI=8Þ ¼ 0:5

DFBC ¼ I=8

ðI=8Þ þ ðI=8Þ ¼ 0:5

At joint C,

DFCB ¼ I=8

ðI=8Þ þ ðI=8Þ ¼ 0:5

DFCD ¼ I=8

ðI=8Þ þ ðI=8Þ ¼ 0:5

Fixed-End Moments A qualitative deflected shape of the continuous beam with all joints clamped against rotation
and subjected to the specified support settlement is depicted in Fig. 17.11(b) using an exaggerated scale. It can be
seen from this figure that the relative settlements for the three members are DAB ¼ DBC ¼ 0:02 m, and DCD ¼ 0.

By using the fixed-end moment expressions, we determine the fixed-end moments due to the support settlement
to be

FEMAB ¼ FEMBA ¼ þ 6EID

L2
¼ þ 6ð70Þð800Þð0:02Þ

ð8Þ2 ¼ þ105 kN�m

FEMBC ¼ FEMCB ¼ � 6EID

L2
¼ � 6ð70Þð800Þð0:02Þ

ð8Þ2 ¼ �105 kN�m

FEMCD ¼ FEMDC ¼ 0

Moment Distribution The moment distribution is carried out in the usual manner, as shown on the moment-
distribution table in Fig. 17.11(c).

Final Moments See the moment-distribution table and Fig. 17.11(d). Ans.

Example 17.6

Determine the member end moments for the three-span continuous beam shown in Fig. 17.12(a) due to the uniformly
distributed load and due to the support settlements of 15 mm at B, 36 mm at C, and 18 mm at D. Use the moment-
distribution method.

Solution
This beam was previously analyzed in Example 16.6 by the slope-deflection method.

continued
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FIG. 17.12 continued
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Distribution Factors At joint A,

DFAB ¼ 1

At joint B,

DFBA ¼ 3I=20

ð3I=20Þ þ ðI=5Þ ¼ 0:429

DFBC ¼ I=5

ð3I=20Þ þ ðI=5Þ ¼ 0:571

At joint C,

DFCB ¼ I=5

ð3I=20Þ þ ðI=5Þ ¼ 0:571

DFCD ¼ 3I=5

ð3I=20Þ þ ðI=5Þ ¼ 0:429

At joint D,

DFDC ¼ 1

Fixed-End Moments A qualitative deflected shape of the continuous beam with all joints clamped against rotation
and subjected to the specified support settlements is depicted in Fig. 17.12(b) using an exaggerated scale. It can be
seen from this figure that the relative settlements for the three members are DAB ¼ 15 mm:, DBC ¼36� 15 ¼ 21 mm:,
and DCD ¼ 36� 18 ¼ 18 mm: By using the fixed-end-moment expressions, we determine the fixed-end moments due to
the support settlements to be

FEMAB ¼ FEMBA ¼ þ 6EID

L2
¼ þ 6ð200� 106Þ1705ð10�6Þð0:015Þ

ð5Þ2

¼ þ1;227:2 kN-m

FEMBC ¼ FEMCB ¼ þ 6ð200� 106Þ1705ð10�6Þð0:021Þ
ð5Þ2 ¼ þ1;718:1 kN-m

FEMCD ¼ FEMDC ¼ � 6ð200� 106Þ1705ð10�6Þð0:018Þ
ð5Þ2 ¼ �1;472:7 kN-m

The fixed-end moments due to the 32 kN/m external load are

FEMAB ¼ FEMBC ¼ FEMCD ¼ þ 32ð5Þ2
12

¼ þ66:7 kN-m

FEMBA ¼ FEMCB ¼ FEMDC ¼ �66:7 kN-m

Thus, the total fixed-end moments due to the combined e¤ect of the external load and the support settlements are

continued
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17.4 ANALYSIS OF FRAMES WITHOUT SIDESWAY

The procedure for the analysis of frames without sidesway is similar to
that for the analysis of continuous beams presented in the preceding
section. However, unlike the continuous beams, more than two members
may be connected to a joint of a frame. In such cases, care must be taken
to record the computations in such a manner that mistakes are avoided.
Whereas some engineers like to record the moment-distribution compu-
tations directly on a sketch of the frame, others prefer to use a tabular
format for such purposes. We will use a tabular form for calculations, as
illustrated by the following example.

FEMAB ¼ þ1;293:9 kN-m FEMBA ¼ þ1;160:5 kN-m

FEMBC ¼ þ1;784:8 kN-m FEMCB ¼ þ1;651:4 kN-m

FEMCD ¼ �1;406 kN-m FEMDC ¼ �1;539:4 kN-m

Moment Distribution The moment distribution is carried out in the usual manner, as shown on the moment-
distribution table in Fig. 17.12(c). Note that the joints A and D at the simple end supports are balanced only once and
that no moments are carried over to these joints.

Final Moments See the moment-distribution table and Fig. 17.12(d). Ans.

Example 17.7

Determine the member end moments for the frame shown in Fig. 17.13(a) by using the moment-distribution method.

Solution
This frame was analyzed in Example 16.8 by the slope-deflection method.

Distribution Factors At joint C,

DFCA ¼
300

4

� �
300

4

� �
þ 600

6

� � ¼ 0:429 DFCD ¼
600

6

� �
300

4

� �
þ 600

6

� � ¼ 0:571

DFCA þDFCD ¼ 0:429þ 0:571 ¼ 1 Checks

continued
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FIG. 17.13 continued

742 CHAPTER 17 Moment-Distribution Method

https://engineersreferencebookspdf.com



At joint D,

DFDB ¼
300

4

� �
300

4

� �
þ 600

6

� �
þ3

4

600

6

� � ¼ 0:3

DFDC ¼
600

6

� �
300

4

� �
þ 600

6

� �
þ3

4

600

6

� � ¼ 0:4

DFDE ¼
3

4

600

6

� �
300

4

� �
þ 600

6

� �
þ3

4

600

6

� � ¼ 0:3

DFDB þDFDE þDFDC ¼ 2ð0:3Þ þ 0:4 ¼ 1 Checks

At joint E,

DFED ¼ 1

Fixed-End Moments By using the fixed-end moment expressions, we obtain

FEMAC ¼ þ100 kN-m FEMCA ¼ �100 kN-m

FEMBD ¼ FEMDB ¼ 0

FEMCD ¼ FEMDE ¼ þ150 kN-m FEMDC ¼ FEMED ¼ �150 kN-m

Moment Distribution The moment-distribution process is carried out in tabular form, as shown in Fig.
17.13(b). The table, which is similar in form to those used previously for the analysis of continuous beams, contains
one column for each member end of the structure. Note that the columns for all member ends, which are connected
to the same joint, are grouped together, so that any unbalanced moment at the joint can be conveniently distributed
among the members connected to it. Also, when the columns for two ends of a member cannot be located adjacent
to each other, then an overhead arrow connecting the columns for the member ends may serve as a reminder to
carry over moments from one end of the member to the other. In Fig. 17.13(b), such an arrow is used between the
columns for the ends of member BD. This arrow indicates that a distributed moment at end D of member BD

induces a carryover moment at the far end B. Note, however, that no moment can be carried over from end B to
end D of member BD, because joint B, which is at a fixed support, will not be released during the moment-
distribution process.

The moment distribution is carried out in the same manner as discussed previously for continuous beams. Note
that any unbalanced moment at joint D must be distributed to the ends D of the three members connected to it in ac-
cordance with their distribution factors.

Final Moments The final member end moments are obtained by summing all the moments in each column of
the moment-distribution table. Note that the final moments, which are recorded on the last line of the moment-
distribution table and are depicted in Fig. 17.13(c), satisfy the equations of moment equilibrium at joints C and D

of the frame. Ans.
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17.5 ANALYSIS OF FRAMES WITH SIDESWAY

Thus far, we have considered the analysis of structures in which the
translations of the joints were either zero or known (as in the case of
support settlements). In this section, we apply the moment-distribution
method to analyze frames whose joints may undergo both rotations and
translations that have not been prescribed. As discussed in Section 16.4,
such frames are commonly referred to as frames with sidesway.

Consider, for example, the rectangular frame shown in Fig. 17.14(a).
A qualitative deflected shape of the frame for an arbitrary loading is
also shown in the figure using an exaggerated scale. While the fixed
joints A and B of the frame are completely restrained against rotation as
well as translation, the joints C and D are free to rotate and translate.
However, since the members of the frame are assumed to be inextensible
and the deformations are assumed to be small, the joints C and D dis-
place by the same amount, D, in the horizontal direction only, as shown
in the figure.

FIG. 17.14
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The moment-distribution analysis of such a frame, with sidesway, is
carried out in two parts. In the first part, the sidesway of the frame is
prevented by adding an imaginary roller to the structure, as shown in
Fig. 17.14(b). External loads are then applied to this frame, and member
end moments are computed by applying the moment-distribution proc-
ess in the usual manner. With the member end moments known, the re-
straining force (reaction) R that develops at the imaginary support is
evaluated by applying the equations of equilibrium.

In the second part of the analysis, the frame is subjected to the
force R, which is applied in the opposite direction, as shown in Fig.
17.14(c). The moments that develop at the member ends are deter-
mined and superimposed on the moments computed in the first part
(Fig. 17.14(b)) to obtain the member end moments in the actual frame
(Fig. 17.14(a)). If M;MO, and MR denote, respectively, the member end
moments in the actual frame, the frame with sidesway prevented, and
the frame subjected to R, then we can write (see Fig. 17.14(a), (b),
and (c))

M ¼MO þMR (17.27)

An important question that arises in the second part of the analysis
is how to determine the member end moments MR that develop when
the frame undergoes sidesway under the action of R (Fig. 17.14(c)).
Since the moment-distribution method cannot be used directly to com-
pute the moments due to the known lateral load R, we employ an in-
direct approach in which the frame is subjected to an arbitrary known
joint translation D0 caused by an unknown load Q acting at the location
and in the direction of R, as shown in Fig. 17.14(d). From the known
joint translation, D0, we determine the relative translation between the
ends of each member, and we calculate the member fixed-end moments
in the same manner as done previously in the case of support settle-
ments. The fixed-end moments thus obtained are distributed by the
moment-distribution process to determine the member end moments
MQ caused by the yet-unknown load Q. Once the member end moments
MQ have been determined, the magnitude of Q can be evaluated by the
application of equilibrium equations.

With the load Q and the corresponding moments MQ known, the
desired moments MR due to the lateral load R can now be determined
easily by multiplying MQ by the ratio R=Q; that is,

MR ¼ R

Q

� �
MQ (17.28)

By substituting Eq. (17.28) into Eq. (17.27), we can express the member
end moments in the actual frame (Fig. 17.14(a)) as

M ¼MO þ R

Q

� �
MQ (17.29)

This method of analysis is illustrated by the following examples.
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Example 17.8

Determine the member end moments for the frame shown in Fig. 17.15(a) by using the moment-distribution method.

Solution
This frame was analyzed in Example 16.10 by the slope-deflection method.

Distribution Factors At joint C,

DFCA ¼ DFCD ¼ I=7

2ðI=7Þ ¼ 0:5

FIG. 17.15
continued
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FIG. 17.15 (contd.)

continued
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FIG. 17.15 (contd.)
continued
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FIG. 17.15 (contd.)

At joint D,

DFDC ¼ I=7

ðI=7Þ þ ðI=5Þ ¼ 0:417

DFDB ¼ I=5

ðI=7Þ þ ðI=5Þ ¼ 0:583

DFDC þDFDB ¼ 0:417þ 0:583 ¼ 1 Checks

Part I: Sidesway Prevented In the first part of the analysis, the sidesway of the frame is prevented by adding an
imaginary roller at joint C, as shown in Fig. 17.15(b). Assuming that joints C and D of this frame are clamped against
rotation, we calculate the fixed-end moments due to the external load to be

FEMCD ¼ þ39:2 kN �m FEMDC ¼ �29:4 kN�m
FEMAC ¼ FEMCA ¼ FEMBD ¼ FEMDB ¼ 0

The moment-distribution of these fixed-end moments is then performed, as shown on the moment-distribution table in
Fig. 17.15(c), to determine the member end moments MO in the frame with sidesway prevented.

To evaluate the restraining force R that develops at the imaginary roller support, we first calculate the shears at the
lower ends of the columns AC and BD by considering the moment equilibrium of the free bodies of the columns shown

continued
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in Fig. 17.15(d). Next, by considering the equilibrium of the horizontal forces acting on the entire frame (Fig. 17.15(e)),
we determine the restraining force R to be

þ !P
FX ¼ 0 Rþ 5:14� 7:2 ¼ 0

R ¼ 2:06 kN!

Note that the restraining force acts to the right, indicating that if the roller would not have been in place, the frame
would have swayed to the left.

Part II: Sidesway Permitted Since the actual frame is not supported by a roller at joint C, we neutralize the
e¤ect of the restraining force by applying a lateral load R ¼ 2:06 kN in the opposite direction (i.e., to the left) to
the frame, as shown in Fig. 17.15(f ). As discussed previously, since the moment-distribution method cannot be
used directly to compute member end moments MR due to the lateral load R ¼ 2:06 kN, we use an indirect ap-
proach in which the frame is subjected to an arbitrary known joint translation D0 caused by an unknown load Q

acting at the location and in the direction of R, as shown in Fig. 17.15(g). Assuming that the joints C and D of the
frame are clamped against rotation, as shown in Fig. 17.15(h), the fixed-end moments due to the translation D0 are
given by

FEMAC ¼ FEMCA ¼ � 6EID0

ð7Þ2 ¼ �
6EID0

49

FEMBD ¼ FEMDB ¼ � 6EID0

ð5Þ2 ¼ �
6EID0

25

FEMCD ¼ FEMDC ¼ 0

in which negative signs have been assigned to the fixed-end moments for the columns, because these moments must act
in the clockwise direction, as shown in Fig. 17.15(h).

Instead of arbitrarily assuming a numerical value for D0 to compute the fixed-end moments, it is usually more
convenient to assume a numerical value for one of the fixed-end moments, evaluate D0 from the expression of that fixed-
end moment, and use the value of D0 thus obtained to compute the remaining fixed-end moments. Thus, we arbitrarily
assume the fixed-end moment FEMAC to be �50 kN �m; that is,

FEMAC ¼ FEMCA ¼ � 6EID0

49
¼ �50 kN�m

By solving for D0, we obtain

D0 ¼ 408:33

EI

continued
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By substituting this value of D0 into the expressions for FEMBD and FEMDB, we determine the consistent values of these
moments to be

FEMBD ¼ FEMDB ¼ � 6ð408:33Þ
25

¼ �98 kN�m

The foregoing fixed-end moments are then distributed by the usual moment-distribution process, as shown in
Fig. 17.15(i), to determine the member end moments MQ caused by the yet-unknown load Q.

To evaluate the magnitude of Q that corresponds to these member end moments, we first calculate shears at the
lower ends of the columns by considering their moment equilibrium (Fig. 17.15( j)) and then apply the equation of
equilibrium in the horizontal direction to the entire frame:

þ !P
FX ¼ 0

�Qþ 10:97þ 23:44 ¼ 0

Q ¼ 34:41 kN 

which indicates that the moments MQ computed in Fig. 17.15(i) are caused by a lateral load Q ¼ 34:41 kN. Since the
moments are linearly proportional to the magnitude of the load, the desired moments MR due to the lateral load
R ¼ 2:06 kN must be equal to the moments MQ (Fig. 17.15(i)) multiplied by the ratio R=Q ¼ 2:06=34:41.

Actual Member End Moments The actual member end moments, M, can now be determined by algebraically
summing the member end moments MO computed in Fig. 17.15(c) and 2:06=34:41 times the member end moments
MQ computed in Fig. 17.15(i). Thus

MAC ¼ �12þ 2:06

34:41

� �
ð�42:3Þ ¼ �14:5 kN�m Ans.

MCA ¼ �24þ 2:06

34:41

� �
ð�34:5Þ ¼ �26:1 kN�m Ans.

MCD ¼ 23:9þ 2:06

34:41

� �
ð34:3Þ ¼ 26 kN�m Ans.

MDC ¼ �24þ 2:06

34:41

� �
ð45:4Þ ¼ �21:3 kN�m Ans.

MDB ¼ 24þ 2:06

34:41

� �
ð�45:4Þ ¼ 21:3 kN�m Ans.

MBD ¼ 12þ 2:06

34:41

� �
ð�71:8Þ ¼ 7:7 kN�m Ans.

These moments are depicted in Fig. 17.15(k).
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Example 17.9

Determine the reactions for the nonprismatic beam shown in Fig. 17.16(a) by using the moment-distribution method.

Solution
Since the sti¤ness and carryover relationships derived in Section 17.1 as well as the expressions of fixed-end moments
given inside the back cover of the book are valid only for prismatic members, we will analyze the given nonprismatic
beam as if it were composed of two prismatic members, AB and BC, rigidly connected at joint B. Note that joint B is
free to rotate as well as translate in the vertical direction, as shown in Fig. 17.16(a).

Distribution Factors The distribution factors at joint B are

DFBA ¼ I=10

ðI=10Þ þ ð2I=6Þ ¼ 0:231

DFBC ¼ 2I=6

ðI=10Þ þ ð2I=6Þ ¼ 0:769

Part I: Joint Translation Prevented In this part of the analysis, the translation of joint B is prevented by an imagi-
nary roller, as shown in Fig. 17.16(b). The fixed-end moments due to the external load are

FEMAB ¼ þ150 kN-m FEMBA ¼ �150 kN-m

FEMBC ¼ þ54 kN-m FEMCB ¼ �54 kN-m

The moment distribution of these fixed-end moments is performed, as shown in Fig. 17.16(b), to determine the member
end moments MO. The restraining force R at the imaginary roller support is then evaluated by considering the equili-
brium of members AB and BC and of joint B as shown in Fig. 17.16(c). The restraining force is found to be

R ¼ 159:12 kN "
Part II: Joint Translation Permitted Since the actual beam is not supported by a roller at joint B, we neutralize its

restraining e¤ect by applying a downward load R ¼ 159:12 kN to the beam, as shown in Fig. 17.16(d). To determine
the member end moments MR due to R, we subject the beam to an arbitrary known translation D0, as shown in Fig.
17.16(e). The fixed-end moments due to D0 are given by (see Fig. 17.16(f ))

FEMAB ¼ FEMBA ¼ 6EID0

ð10Þ2 ¼
3EID0

50

FEMBC ¼ FEMCB ¼ � 6Eð2IÞD0
ð6Þ2 ¼ �EID0

3

If we arbitrarily assume that

FEMBC ¼ FEMCB ¼ �EID0

3
¼ �100 kN-m

continued
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FIG. 17.16

continued
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FIG. 17.16 (contd.) continued
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then

EID0 ¼ 300

and, therefore,

FEMAB ¼ FEMBA ¼ 3ð300Þ
50

¼ 18 kN-m

These fixed-end moments are distributed by the moment-distribution process, as shown in Fig. 17.16(g), to de-
termine the member end moments MQ. The load Q at the location and in the direction of R that corresponds to these
moments can now be evaluated by considering equilibrium of members AB and BC and of joint B, as shown in Fig.
17.16(h). The magnitude of Q is found to be

Q ¼ 24 kN #
Thus, the desired moments MR due to the vertical load R ¼ 159:12 kN (Fig. 17.16(d)) must be equal to the moments
MQ (Fig. 17.16(g)) multiplied by the ratio R=Q ¼ 159:12=24 ¼ 6:63.

Actual Member End Moments The actual member end moments, M, can now be determined by algebraically
summing the member end moments MO computed in Fig. 17.16(b) and 6.63 times the member end moments MQ com-
puted in Fig. 17.16(g).

MAB ¼ 161:1þ 6:63ð27:5Þ ¼ 343:4 kN-m Ans.

MBA ¼ �127:8þ 6:63ð36:9Þ ¼ 116:8 kN-m Ans.

MBC ¼ 127:8þ 6:63ð�36:9Þ ¼ �116:8 kN-m Ans.

MCB ¼ �17:1þ 6:63ð�68:5Þ ¼ �471:2 kN-m Ans.

The member end shears obtained by applying equations of equilibrium are shown in Fig. 17.16(i).

Support Reactions See Fig. 17.16( j). Ans.

Equilibrium Check The equilibrium equations check.

Example 17.10

Determine the member end moments and reactions for the frame shown in Fig. 17.17(a) by using the moment-dis-
tribution method.

Solution
Distribution Factors At joint C,

DFCA ¼ DFCD ¼ I=5

2ðI=5Þ ¼ 0:5

continued
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FIG. 17.17
continued
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FIG. 17.17 (contd.)
continued
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At joint D,

DFDC ¼ I=5

ðI=5Þ þ ð3=4ÞðI=3:605Þ ¼ 0:49

DFDB ¼ ð3=4ÞðI=3:605Þ
ðI=5Þ þ ð3=4ÞðI=3:605Þ ¼ 0:51

Member End Moments Due to an Arbitrary Sidesway D0 Since no external loads are applied to the members of the
frame, the member end moments MO in the frame restrained against sidesway will be zero. To determine the member
end moments M due to the 120 kN lateral load, we subject the frame to an arbitrary known horizontal translation D0 at
joint C. Figure 17.17(b) shows a qualitative deflected shape of the frame with all joints clamped against rotation and
subjected to the horizontal displacement D0 at joint C. The procedure for constructing such deflected shapes was
discussed in Section 16.5. Note that, since the frame members are assumed to be inextensible and deformations are as-
sumed to be small, an end of a member can translate only in the direction perpendicular to the member. From this fig-
ure, we can see that the relative translation DAC between the ends of member AC in the direction perpendicular to the
member can be expressed in terms of the joint translation D0 as

DAC ¼ CC 0 ¼ 5

4
D0 ¼ 1:25D0

Similarly, the relative translations for members CD and BD are given by

DCD ¼ D1D
0 ¼ 2

3
D0 þ 3

4
D0 ¼ 1:417D0

DBD ¼ DD 0 ¼
ffiffiffiffiffi
13
p

3
D0 ¼ 1:202D0

The fixed-end moments due to the relative translations are

FEMAC ¼ FEMCA ¼ 6EIð1:25D0Þ
ð5Þ2

FEMCD ¼ FEMDC ¼ � 6EIð1:417D0Þ
ð5Þ2

FEMBD ¼ FEMDB ¼ 6EIð1:202D0Þ
ð3:605Þ2

FIG. 17.17 (contd.)

continued
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in which, as shown in Fig. 17.17(b), the fixed-end moments for members AC and BD are counterclockwise (positive),
whereas those for member CD are clockwise (negative). If we arbitrarily assume that

FEMBD ¼ FEMDB ¼ 6EIð1:202D0Þ
ð3:605Þ2 ¼ 100 kN-m

then

EID0 ¼ 180:2

and, therefore,

FEMAC ¼ FEMCA ¼ 54:1 kN-m

FEMCD ¼ FEMDC ¼ �61:3 kN-m

These fixed-end moments are distributed by the moment-distribution process, as shown in Fig. 17.17(c), to de-
termine the member end moments MQ.

To determine the magnitude of the load Q that corresponds to the member end moments computed in Fig.
17.17(c), we first calculate the shears at the ends of the girder CD by considering the moment equilibrium of the free
body of the girder shown in Fig. 17.17(d). The girder shears (22.32 kN) thus obtained are then applied to the free bodies
of the inclined members AC and BD, as shown in the figure. Next, we apply the equations of moment equilibrium to
members AC and BD to calculate the horizontal forces at the lower ends of these members. The magnitude of Q can
now be determined by considering the equilibrium of horizontal forces acting on the entire frame as (see Fig. 17.17(d))

þ !P
Fx ¼ 0

Q� 44:69� 33:28 ¼ 0

Q ¼ 77:97 kN!

Actual Member End Moments The actual member end moments, M, due to the 120 kN lateral load can now be
evaluated by multiplying the moments MQ computed in Fig. 17.17(c) by the ratio 120=Q ¼ 120=77:97:

MAC ¼ 120

77:97
ð55:3Þ ¼ 85:1 kN-m Ans.

MCA ¼ 120

77:97
ð56:5Þ ¼ 87 kN-m Ans.

MCD ¼ 120

77:97
ð�56:4Þ ¼ �86:8 kN-m Ans.

MDC ¼ 120

77:97
ð�55:2Þ ¼ �85 kN-m Ans.

MDB ¼ 120

77:97
ð55:2Þ ¼ 85 kN-m Ans.

MBD ¼ 0 Ans.

Member End Forces See Fig. 17.17(e).

Support Reactions See Fig. 17.17(f ). Ans.

Equilibrium Check The equilibrium equations check.
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Analysis of Multistory Frames

The foregoing procedure can be extended to the analysis of structures
with multiple degrees of freedom of sidesway. Consider the two-story
rectangular frame shown in Fig. 17.18(a). The moment-distribution
analysis of this frame is carried out in three parts. In the first part, the
sidesway of both floors of the frame is prevented by adding imaginary
rollers at the floor levels, as shown in Fig. 17.18(b). Member end mo-
ments MO that develop in this frame due to the external loads are com-
puted by the moment-distribution process, and the restraining forces R1

and R2 at the imaginary supports are evaluated by applying the equa-
tions of equilibrium. In the second part of the analysis, the lower floor
of the frame is allowed to displace by a known amount D01 while the
sidesway of the upper floor is prevented, as shown in Fig. 17.18(c). The
fixed-end moments caused by this displacement are computed and dis-
tributed to obtain the member end moments MQ1. With the member end

FIG. 17.18
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moments known, the forces Q11 and Q21 at the locations of the roller
supports are determined from the equilibrium equations. Similarly, in
the third part of the analysis, the upper floor of the frame is allowed to
displace by a known amount D02, as shown in Fig. 17.18(d), and the
corresponding member end moments MQ2, and the forces Q12 and Q22,
are evaluated. The member end moments M in the actual frame (Fig.
17.18(a)) are determined by superposition of the moments computed in
the three parts as

M ¼MO þ c1MQ1 þ c2MQ2 (17.30)

in which c1 and c2 are the constants whose values are obtained by solv-
ing the equations of superposition of horizontal forces at the locations
of the imaginary supports. By superimposing the horizontal forces
shown in Fig. 17.18(a) through (d) at joints D and F , respectively, we
obtain

�R1 þ c1Q11 � c2Q12 ¼ 0

�R2 � c1Q21 þ c2Q22 ¼ 0

By solving these equations simultaneously, we obtain the values of the
constants c1 and c2, which are then used in Eq. (17.30) to determine the
desired member end moments, M.

As the foregoing discussion indicates, the analysis of multistory
frames by the moment-distribution method can be quite tedious and
time consuming. Therefore, the analysis of such structures is performed
today on computers using the matrix formulation of the displacement
method presented in Chapter 18.

SUMMARY

In this chapter we have studied a classical formulation of the displace-
ment (sti¤ness) method, called the moment-distribution method, for the
analysis of beams and frames.

The procedure for the analysis of continuous beams and frames
without sidesway essentially involves computing fixed-end moments due
to the external loads by assuming that all the free joints of the struc-
ture are temporarily restrained against rotation and balancing the
moments at free joints by the moment-distribution process. In the
moment-distribution process, at each free joint of the structure, the un-
balanced moment is evaluated and distributed to the member ends con-
nected to it. Carryover moments induced at the far ends of the members
are then computed, and the process of balancing the joints and carrying
over moments is repeated until the unbalanced moments are negligibly
small. The final member end moments are obtained by algebraically
summing the fixed-end moment and all the distributed and carryover
moments at each member end.
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The analysis of frames with a single degree of freedom of sidesway is
carried out in two parts. In the first part, the sidesway is prevented by the
addition of an imaginary roller to the structure. Member end moments
that develop in this restrained frame, due to the external loads, are
computed by the moment-distribution process; and the restraining force
R at the imaginary roller is evaluated by the application of the equations
of equilibrium. In the second part of the analysis, to calculate the mem-
ber moments due to the force R applied in the opposite direction, the
structure is allowed to displace by an arbitrarily assumed known amount;
and the member moments and the corresponding force Q at the location
of R are evaluated as before. The actual member end moments are de-
termined by algebraically summing the moments computed in the first
part and R=Q times the moments computed in the second part.

Once member end moments are known, member end shears, mem-
ber axial forces, and support reactions can be evaluated through equili-
brium considerations.

PROBLEMS

Section 17.3

17.1 through 17.5 Determine the reactions and draw the
shear and bending moment diagrams for the beams shown
in Figs. P17.1–P17.5 by using the moment-distribution
method.

FIG. P17.1

3 m

E = 200 GPa I = 213(106) mm4

3 m 4 m

B
A C

100 kN

37.5 kN/m
75 kN/m

FIG. P17.2, P17.6

FIG. P17.3

8 m 8 m

B
CA

25 kN/m

E = 70 GPa I = 1,300 (106) mm4

FIG. P17.4, P17.7

A C
B

5 m
2I

3 m
I

50 kN/m

E = 200 GPa I = 1000(106) mm4

FIG. P17.5
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17.6 Solve Problem 17.2 for the loading shown in Fig.
P17.2 and a settlement of 13 mm at support B.

17.7 Solve Problem 17.4 for the loading shown in Fig. P17.4
and the support settlements of 50 mm at B and 25 mm at C.

17.8 through 17.14 Determine the reactions and draw the
shear and bending moment diagrams for the beams shown
in Figs. P17.8–P17.14 by using the moment-distribution
method.

37.5 kN/m

5 m4 m
EI = constant

5 m

B C
DA

FIG. P17.8

FIG. P17.9, P17.15

FIG. P17.10

3 m 3 m 3 m 6 m

EI = constant

E
B C DA

160 kN
30 kN/m15 kN/m

FIG. P17.11

6 m 4 m 6 m 4 m 4 m 4 m

I I2I

A C

B D F

E
G

120 kN 120 kN 150 kN

E =  200 GPa I = 500 (106) mm4

FIG. P17.12, P17.16

FIG. P17.13

FIG. P17.14

17.15 Solve Problem 17.9 for the loading shown in Fig.
P17.9 and a settlement of 25 mm at support C.

17.16 Solve Problem 17.12 for the loading shown in
Fig. P17.12 and the support settlements of 10 mm at A,
65 mm at C, 40 mm at E, and 25 mm at G.
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Section 17.4

17.17 through 17.20 Determine the member end moments
and reactions for the frames shown in Figs. P17.17–P17.20
by using the moment-distribution method.

FIG. P17.17, P17.21

FIG. P17.18, P17.22

FIG. P17.19

30 kN/m

C D

A B

10 m

EI = constant

8 m

FIG. P17.20

17.21 Solve Problem 17.17 for the loading shown in Fig.
P17.17 and a settlement of 50 mm at support D.

17.22 Solve Problem 17.18 for the loading shown in Fig.
P17.18 and a settlement of 6 mm at support A.

17.23 Determine the member end moments and reactions
for the frame of Fig. P17.23 for the loading shown in
the figure and the support settlements of 20 mm at A and
30 mm at D. Use the moment-distribution method.

FIG. P17.23

Section 17.5

17.24 through 17.31 Determine the member end moments
and reactions for the frames shown in Figs. P17.24–P17.31
by using the moment-distribution method.
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50 kN/m

125 kN

4 m

B
C

A

3 m

EI = constant

FIG. P17.24

FIG. P17.25

EI = constant

27 kN/m

120 kN
C D

BA

5 m

10 m

FIG. P17.26

FIG. P17.27

FIG. P17.28

FIG. P17.29
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FIG. P17.30

FIG. P17.31
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Introduction to Matrix
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18.1 Analytical Model
18.2 Member Stiffness Relations in Local Coordinates
18.3 Coordinate Transformations
18.4 Member Stiffness Relations in Global Coordinates
18.5 Structure Stiffness Relations
18.6 Procedure for Analysis

Summary
Problems

767

In this text we have focused our attention on the classical methods of
structural analysis. Although a study of classical methods is essential for
developing an understanding of structural behavior and the principles of
structural analysis, the analysis of large structures by using these hand-
calculation methods can be quite time consuming. With the availability
of inexpensive, yet powerful, microcomputers, the analysis of structures
in most design o‰ces is routinely performed today on computers using
software based on matrix methods of structural analysis.

The objective of this chapter is to introduce the reader to the excit-
ing and still-growing field of matrix structural analysis. However, only
the basic concepts of matrix analysis are presented herein. For a more
detailed study, the reader should refer to one of the many textbooks de-
voted entirely to the subject of matrix structural analysis.

Matrix methods do not involve any new fundamental principles;
but the fundamental relationships of equilibrium, compatibility, and
member force-displacement relations are now expressed in the form of
matrix equations, so that the numerical computations can be e‰ciently
performed on a computer. Therefore, familiarity with the basic oper-
ations of matrix algebra is a prerequisite to understanding matrix struc-
tural analysis. A review of the concepts of matrix algebra necessary for
formulating the matrix methods of structural analysis is presented in
Appendix B for the convenience of the reader.

Analytical Model of the

Superstructure of the Anaheim

Arena, California
Courtesy of Thornton-Tomasetti, Inc.
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Although both the flexibility (force) and the sti¤ness (displacement)
methods can be expressed in matrix form, the sti¤ness method is more
systematic and can be more easily implemented on computers. Thus,
most of the commercially available computer programs for structural
analysis are based on the sti¤ness method. In this chapter, we will con-
sider only the matrix sti¤ness (displacement) method of structural anal-
ysis. This method can be used to analyze statically determinate as well
as indeterminate structures.

We begin by discussing the process of preparing an analytical model
of the structure to be analyzed. We also define global and local coor-
dinate systems and explain the concept of degrees of freedom. Next we
derive member force-displacement relations in local coordinates. We
consider the transformation of member end forces and end displace-
ments from local to global coordinates and vice versa, and develop the
member sti¤ness relations in global coordinates. We formulate the sti¤-
ness relations for the entire structure by combining the member sti¤ness
relations and, finally, develop a step-by-step procedure for the analysis
of trusses, continuous beams, and frames by the matrix sti¤ness method.

18.1 ANALYTICAL MODEL

In the matrix sti¤ness method of analysis, the structure is considered to
be an assemblage of straight members connected at their ends to joints.
A member is defined as a part of the structure for which the member force-

displacement relations to be used in the analysis are valid. In other words,
given the displacements of the ends of a member, one should be able
to determine the forces and moments at its ends by using the force-
displacement relations. Such relations for prismatic members will be
derived in the following section. A joint is defined as a structural part of

infinitesimal size to which the member ends are connected. The members
and joints of structures are also referred to as elements and nodes,
respectively.

Before proceeding with the analysis, an analytical model of the
structure must be prepared. The model is represented by a line diagram
of the structure, on which all the joints and members are identified by
numbers. Consider, for example, the frame shown in Fig. 18.1(a). The
analytical model of the frame is shown in Fig. 18.1(b), in which the joint
numbers are enclosed within circles to distinguish them from the mem-
ber numbers, which are enclosed within rectangles. As shown in this
figure, the frame is considered to be composed of four members and five
joints for the purpose of analysis. Note that, since the member force-
displacement relations to be used in the analysis are valid for prismatic
members only, the vertical column of the frame has been subdivided
into two members, each with constant cross-sectional properties (I and
A) along its length.

768 CHAPTER 18 Introduction to Matrix Structural Analysis

https://engineersreferencebookspdf.com



Global and Local Coordinate Systems

In the sti¤ness method, the overall geometry and behavior of the struc-
ture are described with reference to a Cartesian or rectangular global (or
structural) coordinate system. The global coordinate system used in this
chapter is a right-handed XYZ coordinate system, with the plane struc-
ture lying in the XY plane, as shown in Fig. 18.1(b).

Since it is usually convenient to derive the basic force-displacement
relations in terms of the forces and displacements in the directions along
and perpendicular to members, a local (or member) coordinate system is
defined for each member of the structure. The origin of the local xyz
coordinate system for a member may be arbitrarily located at one of the
ends of the member, with the x axis directed along the centroidal axis of

FIG. 18.1
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the member. The positive direction of the y axis is chosen so that the
coordinate system is right-handed, with the local z axis pointing in the
positive direction of the global Z axis. In Fig. 18.1(b), the positive di-
rection of the x axis for each member is indicated by drawing an arrow
along each member on the line diagram of the structure. For example,
this figure indicates that the origin of the local coordinate system for
member 1 is located at its end connected to joint 1, with the x1 axis di-
rected from joint 1 to joint 2. The joint to which the member end with
the origin of the local coordinate system is connected is referred to as
the beginning joint for the member, whereas the joint adjacent to the
opposite end of the member is termed the end joint. For example, in
Fig. 18.1(b), member 1 begins at joint 1 and ends at joint 2, whereas
member 2 begins at joint 2 and ends at joint 3, and so on. Once the local
x axis is defined for a member, the corresponding y axis can be estab-
lished by applying the right-hand rule. The local y axes thus obtained
for the members of the frame under consideration are shown in Fig.
18.1(c). Note that, for each member, if we curl the fingers of our right
hand from the direction of the x axis toward the direction of the corre-
sponding y axis, then our extended thumb points out of the plane of the
page, which is the positive direction of the global Z axis.

Degrees of Freedom

The degrees of freedom of a structure are the independent joint displace-

ments (translations and rotations) that are necessary to specify the de-

formed shape of the structure when subjected to an arbitrary loading.
Consider again the plane frame of Fig. 18.1(a). The deformed shape of
the frame, for an arbitrary loading, is depicted in Fig. 18.1(d) using an
exaggerated scale. Unlike in the case of the classical methods of analysis
considered previously, it is usually not necessary to neglect member ax-
ial deformations when analyzing frames by the matrix sti¤ness method.
From Fig. 18.1(d), we can see that joint 1, which is located at the hinged
support, can rotate, but it cannot translate. Thus joint 1 has only one
degree of freedom, which is designated as d1 in the figure. Since joint 2
of the frame is not attached to a support, three displacements—the
translations d2 and d3 in the X and Y directions, respectively, and the
rotation d4 about the Z axis—are needed to completely specify its de-
formed position 2 0. Thus joint 2 has three degrees of freedom. Similarly,
joints 3 and 4, which are also free joints, have three degrees of freedom
each. Finally, joint 5, which is attached to the fixed support, can neither
translate nor rotate; therefore, it does not have any degrees of freedom.
Thus, the entire frame has a total of ten degrees of freedom. As shown
in Fig. 18.1(d), the joint displacements are defined relative to the global
coordinate system, with joint translations considered as positive when in
the positive directions of the X and Y axes and joint rotations consid-
ered as positive when counterclockwise. Note that all the joint displace-
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ments are shown in the positive sense in Fig. 18.1(d). The joint dis-
placements of the frame can be collectively written in matrix form as

d ¼

d1

d2

..

.

d9

d10

2
6666664

3
7777775

in which d is termed the joint displacement vector of the structure.
When applying the sti¤ness method, it is not necessary to draw the

deformed shape of the structure, as shown in Fig. 18.1(d), to identify
its degrees of freedom. Instead, the degrees of freedom can be directly
specified on the line diagram of the structure by drawing arrows at the
joints, as shown in Fig. 18.1(b). As indicated in this figure, the degrees
of freedom are numbered by starting at the lowest joint number and
proceeding sequentially to the highest joint number. In the case of more
than one degree of freedom at a joint, the translation in the X direction
is numbered first, followed by the translation in the Y direction, and
then the rotation.

In continuous beams subjected to lateral loads, the axial deforma-
tions of members are zero. Therefore, it is not necessary to consider the
joint displacements in the direction of the beam’s centroidal axis in the
analysis. Thus a joint of a plane continuous beam can have up to two
degrees of freedom, namely, a translation perpendicular to the beam’s
centroidal axis and a rotation. For example, the continuous beam of
Fig. 18.2(a) has four degrees of freedom, as shown in Fig. 18.2(b).

Since the joints of trusses are assumed to be frictionless hinges, they
are not subjected to moments; therefore, their rotations are zero. Thus,
when analyzing plane trusses, only two degrees of freedom, namely,
translations in the global X and Y directions, need to be considered for
each joint. For example, the truss of Fig. 18.3(a) has three degrees of
freedom, as shown in Fig. 18.3(b).

FIG. 18.2
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18.2 MEMBER STIFFNESS RELATIONS IN LOCAL COORDINATES

In the matrix sti¤ness method of analysis, the joint displacements of the
structure are determined by solving a system of simultaneous equations,
which is expressed in the form

P ¼ Sd (18.1)

in which d denotes the joint displacement vector, as discussed pre-
viously; P represents the e¤ects of external loads at the joints of the
structure; and S is called the structure sti¤ness matrix. As will be dis-
cussed in Section 18.5, the sti¤ness matrix for the entire structure, S, is
obtained by assembling the sti¤ness matrices for the individual members
of the structure. The sti¤ness matrix for a member is used to express the

forces at the ends of the member as functions of the displacements of the

member’s ends. Note that the terms forces and displacements are used
here in the general sense to include moments and rotations, respectively.
In this section, we derive sti¤ness matrices for the members of plane
frames, continuous beams, and plane trusses in the local coordinate
systems of the members.

Frame Members

To establish the sti¤ness relationships for the members of plane frames,
let us focus our attention on an arbitrary prismatic member m of the
frame shown in Fig. 18.4(a). When the frame is subjected to external
loads, member m deforms and internal forces are induced at its ends.
The undeformed and deformed positions of the member are shown
in Fig. 18.4(b). As indicated in this figure, three displacements—
translations in the x and y directions and rotation about the z axis—are
needed to completely specify the deformed position of each end of the

FIG. 18.3

772 CHAPTER 18 Introduction to Matrix Structural Analysis

https://engineersreferencebookspdf.com



FIG. 18.4

SECTION 18.2 Member Stiffness Relations in Local Coordinates 773

https://engineersreferencebookspdf.com
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member. Thus the member has a total of six end displacements or de-
grees of freedom. As shown in Fig. 18.4(b), the member end displace-
ments are denoted by u1 through u6, and the corresponding member end
forces are denoted by Q1 through Q6. Note that these end displace-
ments and forces are defined relative to the local coordinate system of
the member, with translations and forces considered as positive when in
the positive directions of the local x and y axes, and rotations and mo-
ments considered as positive when counterclockwise. As indicated in
Fig. 18.4(b), the member end displacements and forces are numbered by
beginning at the member end b, where the origin of the local coordinate
system is located, with the translation and force in the x direction num-
bered first, followed by the translation and force in the y direction, and
then the rotation and moment. The displacements and forces at the op-
posite end e of the member are then numbered in the same sequential
order.

Our objective here is to determine the relationships between the
member end forces and end displacements in terms of the external loads
applied to the member. Such relationships can be conveniently estab-
lished by subjecting the member, separately, to each of the six end dis-
placements and external loads, and by expressing the total member end
forces as the algebraic sums of the end forces required to cause the in-
dividual end displacements and the forces caused by the external loads.
Thus, from Fig. 18.4(b) through (i), we can see that

Q1 ¼ k11u1 þ k12u2 þ k13u3 þ k14u4 þ k15u5 þ k16u6 þQf 1 (18.2a)

Q2 ¼ k21u1 þ k22u2 þ k23u3 þ k24u4 þ k25u5 þ k26u6 þQf 2 (18.2b)

Q3 ¼ k31u1 þ k32u2 þ k33u3 þ k34u4 þ k35u5 þ k36u6 þQf 3 (18.2c)

Q4 ¼ k41u1 þ k42u2 þ k43u3 þ k44u4 þ k45u5 þ k46u6 þQf 4 (18.2d)

Q5 ¼ k51u1 þ k52u2 þ k53u3 þ k54u4 þ k55u5 þ k56u6 þQf 5 (18.2e)

Q6 ¼ k61u1 þ k62u2 þ k63u3 þ k64u4 þ k65u5 þ k66u6 þQf 6 (18.2f )

in which kij represents the force at the location and in the direction of Qi

required, along with other end forces, to cause a unit value of the dis-

placement uj while all other end displacements are zero. These forces per
unit displacement are referred to as sti¤ness coe‰cients. Note that a
double-subscript notation is used for sti¤ness coe‰cients, with the first
subscript identifying the force and the second subscript identifying the
displacement. The last terms on the right sides of Eqs. (18.2) represent
the fixed-end forces due to external loads (Fig. 18.4(i)), which can be
determined by using the expressions for fixed-end moments given in-
side the back cover of the book and by applying the equations of
equilibrium.

By using the definition of matrix multiplication, Eqs. (18.2) can be
expressed in matrix form as
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Q1

Q2

Q3

Q4

Q5

Q6

2
666666664

3
777777775
¼

k11 k12 k13 k14 k15 k16

k21 k22 k23 k24 k25 k26

k31 k32 k33 k34 k35 k36

k41 k42 k43 k44 k45 k46

k51 k52 k53 k54 k55 k56

k61 k62 k63 k64 k65 k66

2
666666664

3
777777775

u1

u2

u3

u4

u5

u6

2
666666664

3
777777775
þ

Qf 1

Qf 2

Qf 3

Qf 4

Qf 5

Qf 6

2
666666664

3
777777775

(18.3)

or, symbolically as

Q ¼ kuþQf (18.4)

in which Q and u are the member end force and member end displace-
ment vectors, respectively, in local coordinates; k is called the member

sti¤ness matrix in local coordinates, and Qf is the member fixed-end force

vector in local coordinates.
The sti¤ness coe‰cients, kij, can be evaluated by subjecting the

member, separately, to unit values of each of the six end displacements.
The member end forces required to cause the individual unit displace-
ments are then determined by using the principles of mechanics of ma-
terials and the slope-deflection equations (Chapter 16) and by applying
the equations of equilibrium. The member end forces thus obtained
represent the sti¤ness coe‰cients for the member.

Let us evaluate the sti¤ness coe‰cients corresponding to a unit
value of the displacement u1 at end b of the member, as shown in Fig.
18.4(c). Note that all other displacements of the member are zero. Re-
calling from mechanics of materials that the axial deformation u1 of a
member caused by an axial force Q1 is given by u1 ¼ Q1L=EA, we de-
termine the force k11 that must be applied at end b of the member (Fig.
18.4(c)) to cause a displacement u1 ¼ 1 to be

k11 ¼ EA

L

The axial force k41 at the far end e of the member can now be obtained
by applying the equation of equilibrium:

þ !P
Fx ¼ 0 k11 þ k41 ¼ 0

k41 ¼ �k11 ¼ �EA

L

in which the negative sign indicates that this force acts in the nega-
tive x direction. Since the imposition of end displacement u1 ¼ 1 does
not cause the member to bend, no moments or forces in the y direction
develop at the member ends. Therefore,

k21 ¼ k31 ¼ k51 ¼ k61 ¼ 0

Similarly, the end forces required to cause an axial displacement
u4 ¼ 1 at end e of the member are (Fig. 18.4(f ))
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k14 ¼ �EA

L
k44 ¼ EA

L
k24 ¼ k34 ¼ k54 ¼ k64 ¼ 0

The deformed shape of the beam due to a unit value of displace-
ment u2 while all other displacements are zero is shown in Fig. 18.4(d).
The end moments required (along with end forces in the y direction)
to cause this deflected shape can be determined by using the slope-
deflection equations derived in Section 16.1. By substituting MAB ¼ k32,
MBA ¼ k62, yA ¼ yB ¼ 0, c ¼ �1=L, and FEMAB ¼ FEMBA ¼ 0 into
Eqs. (16.8), we obtain

k32 ¼ k62 ¼ 6EI

L2

The end forces in the y direction can now be obtained by applying the
following equilibrium equations:

þ ’
P

Me ¼ 0 2
6EI

L2

� �
� k22ðLÞ ¼ 0

k22 ¼ 12EI

L3

þ "PFy ¼ 0
12EI

L3
þ k52 ¼ 0

k52 ¼ � 12EI

L3

Since no axial deformations are induced in the member, the axial forces
at the member ends are zero; that is,

k12 ¼ k42 ¼ 0

The member end forces required to cause a displacement u5 ¼ 1
(Fig. 18.4(g)) can be determined in a similar manner:

k15 ¼ k45 ¼ 0 k25 ¼ � 12EI

L3
k35 ¼ k65 ¼ � 6EI

L2
k55 ¼ 12EI

L3

The deformed shape of the member due to a rotation u3 ¼ 1, with
u1 ¼ u2 ¼ u4 ¼ u5 ¼ u6 ¼ 0, is shown in Fig. 18.4(e). By substituting
MAB ¼ k33, MBA ¼ k63, yA ¼ 1, and yB ¼ c ¼ FEMAB ¼ FEMBA ¼ 0
into the slope-deflection equations (Eqs. (16.8)), we obtain the member
end moments to be

k33 ¼ 4EI

L
k63 ¼ 2EI

L

By applying the equations of equilibrium, we determine

k23 ¼ 6EI

L2
k53 ¼ � 6EI

L2
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Proceeding in the same manner, the sti¤ness coe‰cients correspond-
ing to the unit displacement u6 ¼ 1 are found to be (Fig. 18.4(h))

k16 ¼ k46 ¼ 0 k26 ¼ �k56 ¼ 6EI

L2
k36 ¼ 2EI

L
k66 ¼ 4EI

L

Substitution of the foregoing values of the sti¤ness coe‰cients into
Eq. (18.3) yields the following sti¤ness matrix for the members of plane
frames in local coordinates:

k ¼ EI

L3

AL2

I
0 0 �AL2

I
0 0

0 12 6L 0 �12 6L

0 6L 4L2 0 �6L 2L2

�AL2

I
0 0

AL2

I
0 0

0 �12 �6L 0 12 �6L
0 6L 2L2 0 �6L 4L2

2
6666666666664

3
7777777777775

(18.5)

Note that the ith column of the member sti¤ness matrix consists of the
end forces required to cause a unit value of the displacement ui while all
other displacements are zero. For example, the second column of k

consists of the six end forces required to cause the displacement u2 ¼ 1,
as shown in Fig. 18.4(d), and so on. From Eq. (18.5), we can see that the
sti¤ness matrix k is symmetric; that is, kij ¼ kji. It can be shown by us-
ing Betti’s law (Section 7.8) that sti¤ness matrices for linearly elastic
structures are always symmetric.

Continuous Beam Members

Since the axial deformations of the members of continuous beams sub-
jected to lateral loads are zero, we do not need to consider the degrees of
freedom in the direction of the member’s centroidal axis in the analysis.
Thus, only four degrees of freedom need to be considered for the members
of plane continuous beams. The degrees of freedom and the correspond-
ing end forces for a continuous beam member are shown in Fig. 18.5.

FIG. 18.5
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The sti¤ness relations expressed in symbolic or condensed matrix
form in Eq. (18.4) remain valid for continuous beam members. How-
ever, Q; u, and Qf are now 4� 1 vectors, and the member sti¤ness ma-
trix in local coordinates, k, is given by

k ¼ EI

L3

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L
6L 2L2 �6L 4L2

2
6664

3
7775 (18.6)

Note that the foregoing 4� 4 k matrix is obtained by deleting the first
and fourth columns and the first and fourth rows from the correspond-
ing matrix for frame members derived previously (Eq. (18.5)).

Truss Members

A member of a truss is subjected to only axial forces, which can be de-
termined from the displacements of the member’s ends in the direction
of the centroidal axis of the member. Thus only two axial degrees of
freedom need to be considered for the members of plane trusses. The
degrees of freedom and the corresponding end forces for a truss member
are shown in Fig. 18.6.

The sti¤ness relationships for truss members in local coordinates are
expressed as

Q ¼ ku (18.7)

Note that Eq. (18.7) is obtained from Eq. (18.4) by setting Qf ¼ 0. This
is because the members of trusses are not subjected to any external loads
and, therefore, the member fixed-end forces are zero. In Eq. (18.7), Q
and u are 2� 1 vectors consisting of the member end forces and end
displacements, respectively (Fig. 18.6); and k is the member sti¤ness
matrix in local coordinates, which is given by

k ¼ EA

L

1 �1
�1 1

� �
(18.8)

The foregoing sti¤ness matrix for truss members can either be derived
directly by using the procedure discussed previously (see Fig. 18.4(c) and
(f )) or it can be obtained by deleting columns 2, 3, 5, and 6 and rows 2,
3, 5, and 6 from the corresponding matrix for frame members (Eq.
18.5)).

FIG. 18.6
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18.3 COORDINATE TRANSFORMATIONS

When members of a structure are oriented in di¤erent directions, it be-
comes necessary to transform the sti¤ness relations for each member
from the member’s local coordinate system to a common global coor-
dinate system. The member sti¤ness relations in global coordinates thus
obtained are then combined to establish the sti¤ness relations for the
entire structure. In this section, we discuss the transformation of mem-
ber end forces and end displacements from local to global coordinates,
and vice versa, for the members of plane frames, continuous beams, and
plane trusses. Coordinate transformation of the sti¤ness relationships is
considered in the following section.

Frame Members

Consider an arbitrary member m of the frame shown in Fig. 18.7(a).
The orientation of the member with respect to the global XY coordinate
system is defined by an angle y measured counterclockwise from the
positive direction of the global X axis to the positive direction of the
local x axis, as shown in the figure. The sti¤ness relations derived in
the preceding section are valid only for member end forces Q and end
displacements u described with reference to the local xy coordinate sys-
tem of the member, as shown in Fig. 18.7(b).

Now, suppose that the member end forces and end displacements
are specified relative to the global XY coordinate system (Fig. 18.7(c))
and we wish to determine the equivalent system of end forces and end
displacements, in local xy coordinates, that has the same e¤ect on the
member. As shown in Fig. 18.7(c), the member end forces in global co-
ordinates are denoted by F1 through F6, and the corresponding member
end displacements are denoted by v1 through v6. These global member
end forces and end displacements are numbered by beginning at the
member end b, where the origin of the local coordinate system is lo-
cated, with the force and translation in the X direction numbered first,
followed by the force and translation in the Y direction and then the
moment and rotation. The forces and displacements at the opposite
end e of the member are then numbered in the same sequential order.

A comparison of Fig. 18.7(b) and (c) indicates that at the end b of
the member, the local force Q1 must be equal to the algebraic sum of the
components of the global forces F1 and F2 in the direction of the local x
axis. Thus

Q1 ¼ F1 cos yþ F2 sin y (18.9a)

In a similar manner, the local force Q2 equals the algebraic sum of the
components of F1 and F2 in the direction of the local y axis; that is,

Q2 ¼ �F1 sin yþ F2 cos y (18.9b)
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Since the local z axis and the global Z axis are in the same direction—
that is, directed out of the plane of the page—the local end moment Q3

is equal to the global end moment F3. Thus

Q3 ¼ F3 (18.9c)

By using a similar procedure at end e of the member, we express the
local forces in terms of the global forces as

Q4 ¼ F4 cos yþ F5 sin y (18.9d)

Q5 ¼ �F4 sin yþ F5 cos y (18.9e)

Q6 ¼ F6 (18.9f )

Equations (18.9a) through (18.9f ) can be written in matrix form as

Q1

Q2

Q3

Q4

Q5

Q6

2
666666664

3
777777775
¼

cos y sin y 0 0 0 0

�sin y cos y 0 0 0 0

0 0 1 0 0 0

0 0 0 cos y sin y 0

0 0 0 �sin y cos y 0

0 0 0 0 0 1

2
666666664

3
777777775

F1

F2

F3

F4

F5

F6

2
666666664

3
777777775

(18.10)

or symbolically as

Q ¼ TF (18.11)

in which

T ¼

cos y sin y 0 0 0 0

�sin y cos y 0 0 0 0

0 0 1 0 0 0

0 0 0 cos y sin y 0

0 0 0 �sin y cos y 0

0 0 0 0 0 1

2
666666664

3
777777775

(18.12)

is referred to as the transformation matrix. The member’s direction
cosines, necessary for the evaluation of T, can be easily determined by
using the relationships

cos y ¼ Xe � Xb

L
¼ Xe � Xbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXe � XbÞ2 þ ðYe � YbÞ2
q (18.13a)

sin y ¼ Ye � Yb

L
¼ Ye � Ybffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXe � XbÞ2 þ ðYe � YbÞ2
q (18.13b)

in which Xb and Yb represent the global coordinates of the beginning
joint b for the member; Xe and Ye denote the global coordinates of the
end joint e; and L is the length of the member.
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Like end forces, the member end displacements are vectors which
are defined in the same directions as the corresponding forces. There-
fore, the transformation matrix T developed for the case of end forces
(Eq. (18.12)) can also be used to transform member end displacements
from global to local coordinates:

u ¼ Tv (18.14)

Next, we determine the transformations of member end forces and
end displacements from local to global coordinates. From Fig. 18.7(b)
and (c), we observe that at end b of the member, the global force F1

must be equal to the algebraic sum of the components of the local forces
Q1 and Q2 in the direction of the global X axis. Thus

F1 ¼ Q1 cos y�Q2 sin y (18.15a)

Similarly, the global force F2 equals the algebraic sum of the compo-
nents of Q1 and Q2 in the direction of the global Y axis; that is,

F2 ¼ Q1 sin yþQ2 cos y (18.15b)

and, as discussed previously,

F3 ¼ Q3 (18.15c)

Similarly, at end e of the member,

F4 ¼ Q4 cos y�Q5 sin y (18.15d)

F5 ¼ Q4 sin yþQ5 cos y (18.15e)

F6 ¼ Q6 (18.15f )

Equations (18.15a) through (18.15f ) can be expressed in matrix form as

F1

F2

F3

F4

F5

F6

2
666666664

3
777777775
¼

cos y �sin y 0 0 0 0

sin y cos y 0 0 0 0

0 0 1 0 0 0

0 0 0 cos y �sin y 0

0 0 0 sin y cos y 0

0 0 0 0 0 1

2
666666664

3
777777775

Q1

Q2

Q3

Q4

Q5

Q6

2
666666664

3
777777775

(18.16)

A comparison of Eqs. (18.10) and (18.16) indicates that the trans-
formation matrix in Eq. (18.16), which transforms the forces from local
to global coordinates, is the transpose of the transformation matrix T

in Eq. (18.10), which transforms the forces from global to local coordi-
nates. Thus Eq. (18.16) can be written as

F ¼ TTQ (18.17)
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The matrix TT can also define the transformation of member end
displacements from local to global coordinates; that is,

v ¼ TTu (18.18)

Continuous Beam Members

When analyzing continuous beams, the member local coordinates are
oriented so that the positive directions of the local x and y axes are the
same as the positive directions of the global X and Y axes, respectively
(Fig. 18.8). This orientation enables us to avoid coordinate transfor-
mations because the member end forces and end displacements in the
global and local coordinates are the same; that is,

F ¼ Q v ¼ u (18.19)

Truss Members

Consider an arbitrary member m of the truss shown in Fig. 18.9(a). The
end forces and end displacements for the member, in local and global
coordinates, are shown in Fig. 18.9(b) and (c), respectively. Note that at
each member end, two degrees of freedom and two end forces are
needed in global coordinates to represent the components of the mem-
ber axial displacement and axial force, respectively. Thus, in global co-
ordinates, the truss member has a total of four degrees of freedom, v1
through v4, and four end forces, F1 through F4, as shown in Fig. 18.9(c).

FIG. 18.8
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The transformation matrix T for truss members can be established
by expressing the local end forces, Q, in terms of the global end forces,
F, as (Fig. 18.9(b) and (c))

Q1 ¼ F1 cos yþ F2 sin y (18.20a)

Q2 ¼ F3 cos yþ F4 sin y (18.20b)

or in matrix form as

Q1

Q2

� �
¼ cos y sin y 0 0

0 0 cos y sin y

� � F1

F2

F3

F4

2
6664

3
7775 (18.21)

from which we obtain the transformation matrix,

T ¼ cos y sin y 0 0

0 0 cos y sin y

� �
(18.22)

The transformation relations given in symbolic or condensed matrix
form in Eqs. (18.11), (18.14), (18.17), and (18.18) remain valid for a
truss member, with the vectors Q;F; u, and v now representing the end
forces and end displacements of the truss member, as shown in Figs.
18.9(b) and (c), and the matrix T representing the transformation matrix
defined in Eq. (18.22).

FIG. 18.9
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18.4 MEMBER STIFFNESS RELATIONS IN GLOBAL COORDINATES

By using the member sti¤ness relations in local coordinates (Section
18.2) and the transformation relations (Section 18.3), we can now de-
velop the sti¤ness relations for members in global coordinates.

Frame Members

To establish the member sti¤ness relations in global coordinates, we first
substitute the sti¤ness relations in local coordinates Q ¼ kuþQf (Eq.
(18.4)) into the force transformation relations F ¼ TTQ (Eq. (18.17)) to
obtain

F ¼ TTQ ¼ TT ðkuþQf Þ ¼ TTkuþ TTQf (18.23)

Then, by substituting the displacement transformation relations u ¼ Tv

(Eq. (18.14)) into Eq. (18.23), we determine the desired relations be-
tween the member end forces, F, and end displacements, v, to be

F ¼ TTkTvþ TTQf (18.24)

Equation (18.24) can be conveniently written as

F ¼ Kvþ Ff (18.25)

where

K ¼ TTkT (18.26)

Ff ¼ TTQf (18.27)

The matrix K is called the member sti¤ness matrix in global coordinates

and Ff is the member fixed-end force vector in global coordinates.

Continuous Beam Members

As stated previously, the local coordinates of the members of con-
tinuous beams are oriented so that the positive directions of the local x
and y axes are the same as the positive directions of the global X

and Y axes, respectively. Thus no transformations of coordinates are
needed, and the member sti¤ness relations in the local and global co-
ordinates are the same.

Truss Members

The sti¤ness relations for truss members in global coordinates are ex-
pressed as
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F ¼ Kv (18.28)

Note that Eq. (18.28) is obtained from Eq. (18.25) by setting the fixed-
end force vector Ff ¼ 0.

When analyzing trusses, it is usually convenient to use the explicit
form of the member sti¤ness matrix K. By substituting Eqs. (18.8) and
(18.22) into Eq. (18.26), we write

K ¼
cos y 0

sin y 0

0 cos y

0 sin y

2
6664

3
7775EA

L

1 �1
�1 1

� �
cos y sin y 0 0

0 0 cos y sin y

� �

By performing the matrix multiplications, we obtain

K ¼ EA

L

cos2 y cos y sin y �cos2 y �cos y sin y

cos y sin y sin2 y �cos y sin y �sin2 y

�cos2 y �cos y sin y cos2 y cos y sin y

�cos y sin y �sin2 y cos y sin y sin2 y

2
6664

3
7775

(18.29)

The matrix K of Eq. (18.29) could have been determined alternatively
by subjecting an inclined truss member, separately, to unit values of
each of the four global end displacements and by evaluating the end
forces in global coordinates required to cause the individual unit dis-
placements. The end forces required to cause a unit value of the dis-
placement vi while all other displacements are zero represent the ith
column of the member global sti¤ness matrix K.

18.5 STRUCTURE STIFFNESS RELATIONS

Once the member sti¤ness relations in global coordinates have been
determined, the sti¤ness relations for the entire structure can be estab-
lished by writing equilibrium equations for the joints of the structure
and by applying the compatibility conditions that the displacements of
the member ends rigidly connected to joints must be the same as the
corresponding joint displacements.

To illustrate this procedure, consider the two-member frame shown
in Fig. 18.10(a). The analytical model of the frame is given in Fig.
18.10(b), which indicates that the structure has three degrees of freedom,
d1; d2, and d3. The joint loads corresponding to these degrees of freedom
are designated as P1;P2, and P3, respectively. The global end forces FðiÞ

and end displacements vðiÞ for the two members of the frame are shown
in Fig. 18.10(c), in which the superscript ðiÞ denotes the member num-
ber. Our objective is to express the joint loads P as functions of the joint
displacements d.
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Equilibrium Equations

By applying the three equations of equilibrium,
P

FX ¼ 0,
P

FY ¼ 0,
and

P
M ¼ 0, to the free body of joint 2 shown in Fig. 18.10(c), we

obtain the equilibrium equations

P1 ¼ F
ð1Þ
4 þ F

ð2Þ
1 (18.30a)

P2 ¼ F
ð1Þ
5 þ F

ð2Þ
2 (18.30b)

P3 ¼ F
ð1Þ
6 þ F

ð2Þ
3 (18.30c)

FIG. 18.10
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FIG. 18.10 (contd.)
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Member Stiffness Relations

To express the joint loads P in terms of the joint displacements d, we
first relate the member end forces FðiÞ to end displacements vðiÞ, by using
the member sti¤ness relations in global coordinates derived in the pre-
ceding section. By writing Eq. (18.25) in expanded form for member 1,
we obtain
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(18.31)

from which we determine the expressions for forces at end 2 of the
member to be
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Similarly, by writing Eq. (18.25) for member 2, we obtain
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from which we determine the forces at end 2 of the member to be
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Compatibility Equations

By comparing Fig. 18.10(b) and (c), we observe that since the lower end
1 of member 1 is rigidly connected to the fixed joint 1, which can neither
translate nor rotate, the three displacements of end 1 of the member
must be zero. Similarly, since end 2 of this member is rigidly connected
to joint 2, the displacements of end 2 must be the same as the displace-
ments of joint 2. Thus, the compatibility equations for member 1 are
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In a similar manner, the compatibility equations for member 2 are
found to be
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By substituting the compatibility equations for member 1 (Eq.
(18.35)) into the member’s force-displacement relations as given by Eqs.
(18.32), we express the member end forces Fð1Þ in terms of the joint dis-
placements d as
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Similarly, for member 2, substitution of Eq. (18.36) into Eqs. (18.34)
yields
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Structure Stiffness Relations

Finally, by substituting Eqs. (18.37) and (18.38) into the joint equili-
brium equations (Eqs. (18.30)), we obtain the desired relationships be-
tween the joint loads P and the joint displacement d of the frame as
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SECTION 18.5 Structure Stiffness Relations 791

https://engineersreferencebookspdf.com



P2 ¼ ðK ð1Þ54 þ K
ð2Þ
21 Þd1 þ ðK ð1Þ55 þ K

ð2Þ
22 Þd2 þ ðK ð1Þ56 þ K

ð2Þ
23 Þd3

þ ðF ð1Þf 5 þ F
ð2Þ
f 2 Þ (18.39b)

P3 ¼ ðK ð1Þ64 þ K
ð2Þ
31 Þd1 þ ðK ð1Þ65 þ K

ð2Þ
32 Þd2 þ ðK ð1Þ66 þ K

ð2Þ
33 Þd3

þ ðF ð1Þf 6 þ F
ð2Þ
f 3 Þ (18.39c)

Equations (18.39) can be conveniently expressed in condensed matrix
form as

P ¼ Sdþ Pf (18.40)

or

P� Pf ¼ Sd (18.41)

in which
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is called the structure sti¤ness matrix and
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is termed the structure fixed-joint force vector. The foregoing procedure
of determining the structure sti¤ness relations by combining the member
sti¤ness relations is often referred to as the direct sti¤ness method [39].

The structure sti¤ness matrix S is interpreted in a manner analogous
to the member sti¤ness matrix; that is, a structure sti¤ness coe‰cient Sij

represents the force at the location and in the direction of Pi required,

along with other joint forces, to cause a unit value of the displacement dj
while all other joint displacements are zero. Thus the jth column of ma-
trix S consists of the joint loads required to cause a unit value of the
displacement dj while all other displacements are zero. For example,
the first column of S consists of the three joint loads required to cause
the displacement d1 ¼ 1, as shown in Fig. 18.10(d), and so on.

The foregoing interpretation of the structural sti¤ness matrix S
indicates that such a matrix can, alternatively, be determined by sub-
jecting the structure, separately, to unit values of each of its joint
displacements and by evaluating the joint loads required to cause the
individual displacements. However, such a procedure cannot be easily
implemented on computers and is seldom used in practice. Therefore,
this alternative procedure is not pursued in this chapter.
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Assembly of S and Pf by Using Member Code Numbers

In the preceding paragraphs, we determined the structure sti¤ness ma-
trix S (Eq. (18.42)) and the structure fixed-joint force vector Pf (Eq.
(18.43)) by substituting the member compatibility equations into the
member global sti¤ness relations and then substituting the resulting re-
lationships into the joint equilibrium equations. This process of writing
three types of equations and then making substitutions can be quite te-
dious and time consuming for large structures.

From Eq. (18.42), we observe that the sti¤ness of a joint in a direc-
tion equals the sum of the sti¤nesses in that direction of the members
meeting at the joint. This fact indicates that the structure sti¤ness ma-
trix S can be formulated directly by adding the elements of the member
sti¤ness matrices into their proper positions in the structure matrix,
thereby avoiding the necessity of writing any equations. The technique
of directly forming a structure sti¤ness matrix by assembling the
elements of the member global sti¤ness matrices was introduced by
S. S. Tezcan in 1963 [38] and is sometimes referred to as the code number
technique.

To illustrate this technique, consider again the two-member frame
of Fig. 18.10. The sti¤ness matrices in global coordinates for the mem-
bers 1 and 2 of the frame are designated as K1 and K2, respectively (Fig.
18.10(e)). Our objective is to form the structure sti¤ness matrix S by as-
sembling the elements of K1 and K2. Before we can determine the posi-
tions of the elements of a member matrix K in the structure matrix S, we
need to identify, for each of the member’s degrees of freedom in global
coordinates, the number of the corresponding structure degree of free-
dom. If the structure degree of freedom corresponding to a member de-
gree of freedom is not defined (i.e., the corresponding joint displacement
is zero), then a zero is used for the structure degree of freedom number.
Thus by comparing the global degrees of freedom of member 1 shown
in Fig. 18.10(c) with the structure degrees of freedom given in Fig.
18.10(b), we determine the structure degree of freedom numbers for
the member to be 0; 0; 0; 1; 2; 3. Note that these numbers are in the
same order as the member degrees of freedom; for example, the fourth
number, 1, corresponds to the fourth degree of freedom, v

ð1Þ
4 , of the

member, and so on. In other words, the first three numbers identify,
in order, the X translation, the Y translation, and the rotation of the
beginning joint of the member, whereas the last three numbers identify
the X translation, the Y translation, and the rotation, respectively, of
the end joint. In a similar manner, we determine the structure degree of
freedom numbers for member 2 to be 1; 2; 3; 0; 0; 0.

The structure degree of freedom numbers for a member can be used
to define the compatibility equations for the member. For example, the
structure degree of freedom numbers, 0; 0; 0; 1; 2; 3, imply the following
compatibility equations for member 1:
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which are identical to those given in Eq. (18.35).
The positions of the elements of the member sti¤ness matrix K1 in

the structure sti¤ness matrix S can now be determined by writing the
member’s structure degree of freedom numbers ð0; 0; 0; 1; 2; 3Þ on the
right side and at the top of K1, as shown in Fig. 18.10(e). Note that
the numbers on the right side of K1 represent the row numbers of the S
matrix, whereas the numbers at the top represent the column numbers
of S. For example, the element K

ð1Þ
65 of K1 must be located in row 3 and

column 2 of S, as shown in Fig. 18.10(e). By using this approach, the
remaining elements of K1, except those corresponding to zero row or
column number of S, are stored in their proper positions in the structure
sti¤ness matrix S.

The same procedure is then repeated for member 2. When two or
more member sti¤ness coe‰cients are located in the same position in S,
then the coe‰cients must be algebraically added. The completed struc-
ture sti¤ness matrix S is shown in Fig. 18.10(e). Note that this matrix
is identical to the one obtained previously (Eq. (18.42)) by substituting
the member compatibility equations and sti¤ness relations into the joint
equilibrium equations.

The foregoing procedure of directly forming the structure sti¤ness
matrix by assembling member sti¤ness coe‰cients can be easily im-
plemented on computers. To save computer storage space, one member
sti¤ness matrix is generated at a time; it is stored in the structure sti¤-
ness matrix, and the space is reused to generate the sti¤ness matrix for
the next member, and so on.

The structure fixed-joint force vector, Pf , can be assembled by using
a procedure similar to that for forming the structure sti¤ness matrix. To
generate the Pf vector for the frame under consideration, the structure
degree of freedom numbers for member 1 are first written on the right
side of the member’s fixed-end force vector Ff 1, as shown in Fig.
18.10(f ). Each of these numbers now represents the row number of Pf in
which the corresponding member force is to be stored. For example, the
element F

ð1Þ
f 5 must be located in row 2 of Pf , as shown in the figure. In

a similar manner, the remaining elements of Ff 1, except those corre-
sponding to zero row number of Pf , are stored in their proper positions
in Pf . The same procedure is then repeated for member 2. The structure
fixed-joint force vector Pf thus obtained is shown in Fig. 18.10(f ). Note
that this vector is identical to that given in Eq. (18.43).

Once S and Pf have been evaluated, the structure sti¤ness relations
(Eq. (18.41)), which now represent a system of simultaneous linear al-
gebraic equations, can be solved for the unknown joint displacements d.
With d known, the end displacements for each member can be de-
termined by applying the compatibility equations defined by its struc-
ture degree of freedom numbers; then the corresponding end forces can
be computed by using the member’s sti¤ness relations.
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The procedure for generating the structure sti¤ness matrix S and
fixed-joint force vector Pf , as described here for frames, can be applied
to continuous beams and trusses as well, except that in the case of
trusses Pf ¼ 0.

18.6 PROCEDURE FOR ANALYSIS

Based on the discussion presented in the previous sections, we can de-
velop the following step-by-step procedure for the analysis of structures
by the matrix sti¤ness method.

1. Prepare an analytical model of the structure as follows:
a. Draw a line diagram of the structure, on which each joint and

member must be identified by a number.
b. Select a global XY coordinate system, with the X and Y axes

oriented in the horizontal (positive to the right) and vertical
(positive upward) directions, respectively. It is usually con-
venient to locate the origin of this coordinate system at a lower
left joint of the structure, so that the X and Y coordinates of
most of the joints are positive.

c. For each member, establish a local xy coordinate system by se-
lecting one of the joints at its ends as the beginning joint and
the other as the end joint. On the line diagram of the structure,
for each member indicate the positive direction of the local x
axis by drawing an arrow along the member pointing toward
the end joint. For horizontal members, the coordinate trans-
formations can be avoided by selecting the joint at the left end
of the member as the beginning joint.

d. Identify the degrees of freedom or unknown joint displace-
ments, d, of the structure. The degrees of freedom are specified
on the structure’s line diagram by drawing arrows at the joints
and are numbered by starting at the lowest joint number and
proceeding sequentially to the highest joint number. In the case
of more than one degree of freedom at a joint, the X translation
is numbered first, followed by the Y translation, and then the
rotation. Recall that a joint of a plane frame can have up to
three degrees of freedom (two translations and a rotation); a
joint of a continuous beam can have up to two degrees of free-
dom (a translation perpendicular to the beam’s centroidal axis
and a rotation); and a joint of a plane truss can have up to two
degrees of freedom (two translations). Note that joint trans-
lations are considered as positive when in the positive directions
of the X and Y axes; joint rotations are considered as positive
when counterclockwise.
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2. Evaluate the structure sti¤ness matrix S and fixed-joint force vec-
tor Pf . For each member of the structure, perform the following
operations:
a. For trusses, go directly to step 2(d). Otherwise, compute the

member sti¤ness matrix in local coordinates, k. Expressions
of k for the members of frames and continuous beams are given
in Eqs. (18.5) and (18.6), respectively.

b. If the member is subjected to external loads, then evaluate its
fixed-end force vector in local coordinates, Qf , by using the ex-
pressions for fixed-end moments given inside the back cover of
the book and by applying the equations of equilibrium (see Ex-
amples 18.2 and 18.3).

c. For horizontal members with the local x axis positive to the
right (i.e., in the same direction as the global X axis), the mem-
ber sti¤ness relations in the local and global coordinates are
the same (i.e., K ¼ k and Ff ¼ Qf ); go to step 2(e). Otherwise,
compute the member’s transformation matrix T by using Eq.
(18.12).

d. Determine the member sti¤ness matrix in global coordinates,
K ¼ TTkT (Eq. (18.26)), and the corresponding fixed-end force
vector, Ff ¼ T tQf (Eq. (18.27)). The matrix K must be sym-
metric. For trusses, it is usually more convenient to use the
explicit form of K given in Eq. (18.29). Also, for trusses, Ff ¼ 0.

e. Identify the member’s structure degree of freedom numbers and
store the pertinent elements of K and Ff in their proper posi-
tions in the structure sti¤ness matrix S and the fixed-joint force
vector Pf , respectively, by using the procedure described in
Section 18.5. The complete structure sti¤ness matrix S obtained
by assembling the sti¤ness coe‰cients of all the members of the
structure must be symmetric.

3. Form the joint load vector, P.
4. Determine the unknown joint displacements. Substitute P;Pf , and

S into the structure sti¤ness relations, P� Pf ¼ Sd (Eq. (18.41)),
and solve the resulting system of simultaneous equations for the
unknown joint displacements d.

5. Compute member end displacements and end forces. For each
member, do the following:
a. Obtain member end displacements in global coordinates, v,

from the joint displacements, d, by using the member’s struc-
ture degree of freedom numbers.

b. Determine member end displacements in local coordinates by
using the relationship u ¼ Tv (Eq. (18.14)). For horizontal
members with the local x axis positive to the right, u ¼ v.

c. Compute member end forces in local coordinates by using the
relationship Q ¼ kuþQf (Eq. (18.4)). For trusses, Qf ¼ 0.

d. Calculate member end forces in global coordinates by using
the transformation relationship F ¼ TTQ (Eq. (18.17)). For
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horizontal members with the local x axis positive to the right,
F ¼ Q.

6. Determine support reactions by considering the equilibrium of the
joints located at the supports of the structure.

Computer Program

A computer program for the analysis of plane framed structures us-
ing the sti¤ness method is available on the publisher’s web site
www.cengage.com/engineering for use by the reader. A brief description
of the program as well as information on how to use this program,
including an illustrative example, are presented in Appendix C.

Example 18.1

Determine the reactions and the force in each member of the truss shown in Fig. 18.11(a) by the matrix sti¤ness
method.

Solution
Degrees of Freedom From the analytical model of the truss shown in Fig. 18.11(b), we observe that only joint 3 is

free to translate. Thus the truss has two degrees of freedom, d1 and d2, which are the unknown translations of joint 3 in
the X and Y directions, respectively.

Structure Sti¤ness Matrix

Member 1 As shown in Fig. 18.11(b), joint 1 has been selected as the beginning joint and joint 3 as the end joint
for member 1. By applying Eqs. (18.13), we determine

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX3 � X1Þ2 þ ðY3 � Y1Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð15� 0Þ2 þ ð20� 0Þ2

q
¼ 25 m

cos y ¼ X3 � X1

L
¼ 15

25
¼ 0:6

sin y ¼ Y3 � Y1

L
¼ 20

25
¼ 0:8

The member sti¤ness matrix in global coordinates can now be evaluated by using Eq. (18.29)

K1 ¼ ð2417Þð9Þð25Þ

0:36 0:48 �0:36 �0:48
0:48 0:64 �0:48 �0:64
�0:36 �0:48 0:36 0:48

�0:48 �0:64 0:48 0:64

2
6664

3
7775

continued
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or

K1 ¼

2
6664

0 0 1 2

313:2 417:6 �313:2 �417:6 0

417:6 556:8 �417:6 �556:8 0

�313:2 �417:6 313:2 417:6 1

�417:6 �556:8 417:6 556:8 2

3
7775 (1)

FIG. 18.11

continued
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From Fig. 18.11(b), we observe that the displacements of the beginning joint 1 for the member are zero, whereas the
displacements of the end joint 3 are d1 and d2. Thus the structure degree of freedom numbers for this member are
0; 0; 1; 2. These numbers are written on the right side and at the top of K1 (see Eq. (1)) to indicate the rows and columns,
respectively, of the structure sti¤ness matrix S, where the elements of K1 must be stored. Note that the elements of K1,
which correspond to the zero structure degree of freedom number, are simply disregarded. Thus, the element in row 3
and column 3 of K1 is stored in row 1 and column 1 of S, as shown in Fig. 18.11(c). Similarly, the element in row 3 and
column 4 of K1 is stored in row 1 and column 2 of S. The remaining elements of K1 are stored in S in a similar manner
(Fig. 18.11(c)).

Member 2 From Fig. 18.11(b), we can see that joint 2 is the beginning joint and joint 3 is the end joint for mem-
ber 2. By applying Eqs. (18.13), we obtain

cos y ¼ X3 � X2

L
¼ 15� 15

20
¼ 0

sin y ¼ Y3 � Y2

L
¼ 20� 0

20
¼ 1

Thus, by using Eq. (18.29)

K2 ¼

2
6664

0 0 1 2

0 0 0 0 0

0 1;087:5 0 �1;087:5 0

0 0 0 0 1

0 �1;087:5 0 1;087:5 2

3
7775

From Fig. 18.11(b), we can see that the structure degree of freedom numbers for this member are 0, 0, 1, 2. These
numbers are used to store the pertinent elements of K2 in their proper positions in the structure sti¤ness matrix S, as
shown in Fig. 18.11(c).

Member 3 cos y ¼ 1 sin y ¼ 0
By using Eq. (18.29),

K3 ¼

2
6664

0 0 1 2

1;450 0 �1;450 0 0

0 0 0 0 0

�1;450 0 1;450 0 1

0 0 0 0 2

3
7775

The structure degree of freedom numbers for this member are 0; 0; 1; 2. By using these numbers, the elements of K3 are
stored in S, as shown in Fig. 18.11(c).

Note that the structure sti¤ness matrix S (Fig. 18.11(c)), obtained by assembling the sti¤ness coe‰cients of the
three members, is symmetric.

Joint Load Vector By comparing Fig. 18.11(a) and (b), we realize that

P1 ¼ 100 cos 60� ¼ 50 kN P2 ¼ �100 sin 60� ¼ �86:6 kN
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Thus the joint load vector is

P ¼ 50

�86:6
� �

(2)

Joint Displacements The sti¤ness relations for the entire truss can be expressed as (Eq. (18.41) with Pf ¼ 0)

P ¼ Sd (3)

By substituting P from Eq. (2) and S from Fig. 18.11(c), we write Eq. (3) in expanded form as

50

�86:6
� �

¼ 1;763:2 417:6

417:6 1;644:3

� �
d1

d2

� �

By solving these equations simultaneously, we determine the joint displacements to be

d1 ¼ 0:0434 m d2 ¼ �0:0637 m

or

d ¼ 0:0434

�0:0637
� �

m

Member End Displacements and End Forces

Member 1 The member end displacements in global coordinates, v, can be obtained by simply comparing
the member’s global degree of freedom numbers with the structure degree of freedom numbers for the member, as
follows:

v1 ¼
v1 0

v2 0

v3 1

v4 2

2
6664

3
7775 ¼

0

0

d1

d2

2
6664

3
7775 ¼

0

0

0:0434

�0:0637

2
6664

3
7775m (4)

Note that the structure degree of freedom numbers for the member ð0; 0; 1; 2Þ are written on the right side of v, as shown
in Eq. (4). Since the structure degree of freedom numbers corresponding to v1 and v2 are zero, this indicates that
v1 ¼ v2 ¼ 0. Similarly, the numbers 1 and 2 corresponding to v3 and v4, respectively, indicate that v3 ¼ d1 and v4 ¼ d2.
It should be realized that these compatibility equations could have been established alternatively simply by a visual in-
spection of the line diagram of the structure (Fig. 18.11(b)). However, the use of the structure degree of freedom num-
bers enables us conveniently to program this procedure on a computer.

The member end displacements in local coordinates can now be determined by using the relationship u ¼ Tv (Eq.
(18.14)), with T as defined in Eq. (18.22):

u1 ¼
u1

u2

� �
¼ 0:6 0:8 0 0

0 0 0:6 0:8

� � 0

0

0:0434

�0:0637

2
6664

3
7775 ¼ 0

�0:0249
� �

m

By using Eq. (18.7), we compute member end forces in local coordinates as
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Q ¼ ku

Q1 ¼
Q1

Q2

� �
¼ 870

1 �1
�1 1

� �
0

�0:0249
� �

¼ 21:66

�21:66
� �

kN

Thus, as shown in Fig. 18.11(d), the axial force in member 1 is

21:66 kN ðCÞ Ans.

By applying Eq. (18.17), we can determine member end forces in global coordinates as

F ¼ TTQ

F1 ¼
F1

F2

F3

F4

2
6664

3
7775 ¼

0:6 0

0:8 0

0 0:6

0 0:8

2
6664

3
7775 21:66

�21:66
� �

¼
13

17:33

�13
�17:33

2
6664

3
7775kN

Member 2 The member end displacements in global coordinates are given by

v2 ¼
v1 0

v2 0

v3 1

v4 2

2
6664

3
7775 ¼

0

0

d1

d2

2
6664

3
7775 ¼

0

0

0:0434

�0:0637

2
6664

3
7775m

By using the relationship u ¼ Tv, we determine the member end displacements in local coordinates to be

u2 ¼
u1

u2

� �
¼ 0 1 0 0

0 0 0 1

� � 0

0

0:0434

�0:0637

2
6664

3
7775 ¼ 0

�0:0637
� �

m

Next, the member end forces in local coordinates are computed by using the relationship Q ¼ ku:

Q2 ¼
Q1

Q2

� �
¼ 1;087:5

1 �1
�1 1

� �
0

�0:0637
� �

¼ 69:27

�69:27
� �

kN

Thus, as shown in Fig. 18.11(d), the axial force in member 2 is

69:27 kN ðCÞ Ans.

By using the relationship F ¼ TTQ, we calculate the member end forces in global coordinates to be

F2 ¼
F1

F2

F3

F4

2
6664

3
7775 ¼

0 0

1 0

0 0

0 1

2
6664

3
7775 69:27

�69:27
� �

¼
0

69:27

0

�69:27

2
6664

3
7775kN
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Member 3

v3 ¼
v1 0

v2 0

v3 1

v4 2

2
6664

3
7775 ¼

0

0

d1

d2

2
6664

3
7775 ¼

0

0

0:0434

�0:0637

2
6664

3
7775m

u ¼ Tv

u3 ¼
u1

u2

� �
¼ 1 0 0 0

0 0 1 0

� � 0

0

0:0434

�0:0637

2
6664

3
7775 ¼ 0

0:0434

� �
m

Q ¼ ku

Q3 ¼
Q1

Q2

� �
¼ 1;450

1 �1
�1 1

� �
0

0:0434

� �
¼ �62:93

62:93

� �
kN

Thus, the axial force in member 3 is (Fig. 18.11(d))

62:93 kN ðTÞ Ans.

F ¼ TTQ

F3 ¼
F1

F2

F3

F4

2
6664

3
7775 ¼

1 0

0 0

0 1

0 0

2
6664

3
7775 �62:9362:93

� �
¼
�62:93

0

62:93

0

2
6664

3
7775kN

Support Reactions As shown in Fig. 18.11(e), the reactions at the support joints 1; 2, and 4 are equal to the forces
in global coordinates at the ends of the members connected to these joints. Ans.

Equilibrium Check Applying the equations of equilibrium to the free body of the entire structure (Fig. 18.11(e)), we obtain

þ !P
FX ¼ 0 13� 62:93þ 100 cos 60� ¼ 0:07&0 Checks

þ "PFY ¼ 0 17:33þ 69:27� 100 sin 60� ¼ 0 Checks

þ ’
P

M1 ¼ 0 69:27ð15Þ þ 62:93ð20Þ � 100 cos 60�ð20Þ � 100 sin 60�ð15Þ
¼ �1:39&0 Checks

Example 18.2

Determine the reactions and the member end forces for the three-span continuous beam shown in Fig. 18.12(a) by using
the matrix sti¤ness method.

Solution
Degrees of Freedom From the analytical model of the beam shown in Fig. 18.12(b), we observe that the structure

has two degrees of freedom, d1 and d2, which are the unknown rotations of joints 2 and 3, respectively. Note that the
member local coordinate systems are chosen so that the positive directions of the local and global axes are the same.
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Therefore, no coordinate transformations are needed; that is, the member sti¤ness relations in the local and global co-
ordinates are the same.

Structure Sti¤ness Matrix

Member 1 By substituting L ¼ 10 m into Eq. (18.6), we obtain

K1 ¼ k1 ¼ EI

2
6664

0 0 0 1

0:012 0:06 �0:012 0:06 0

0:06 0:4 �0:06 0:2 0

�0:012 �0:06 0:012 �0:06 0

0:06 0:2 �0:06 0:4 1

3
7775

By using the fixed-end moment expressions given inside the back cover of the book, we evaluate the fixed-end moments
due to the 80-kN load as

Qf 2 ¼ 80ð6Þð4Þ2
ð10Þ2 ¼ 76:8 kN�m

Qf 4 ¼ � 80ð6Þ2ð4Þ
ð10Þ2 ¼ �115:2 kN�m

The fixed-end shears Qf 1 and Qf 3 can now be determined by considering the equilibrium of the free body of member 1,
shown in Fig. 18.12(c):

þ ’
P

M2 ¼ 0 76:8�Qf 1ð10Þ þ 80ð4Þ � 115:2 ¼ 0

Qf 1 ¼ 28:16 kN

þ "PFy ¼ 0 28:16� 80þQf 3 ¼ 0

Qf 3 ¼ 51:84 kN

Thus, the fixed-end force vector for member 1 is

Ff 1 ¼ Qf 1 ¼
28:16 0

76:8 0

51:84 0

�115:2 1

2
6664

3
7775

From Fig. 18.12(b), we observe that the structure degree of freedom numbers for this member are 0; 0; 0; 1. By using
these numbers, the pertinent elements of K1 and Ff 1 are stored in their proper positions in the structure sti¤ness matrix S

and the fixed-joint force vector Pf , respectively, as shown in Fig. 18.12(d).
Member 2 By substituting L ¼ 10 m into Eq. (18.6), we obtain

K2 ¼ k2 ¼ EI

2
6664

0 1 0 2

0:012 0:06 �0:012 0:06 0

0:06 0:4 �0:06 0:2 1

�0:012 �0:06 0:012 �0:06 0

0:06 0:2 �0:06 0:4 2

3
7775

The fixed-end moments due to the 24-kN/m load are
continued
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Qf 2 ¼ �Qf 4 ¼ 24ð10Þ2
12

¼ 200 kN�m

Application of the equations of equilibrium to the free body of member 2 yields (Fig. 18.12(c))

Qf 1 ¼ Qf 3 ¼ 120 kN

Thus,

Ff 2 ¼ Qf 2 ¼
120 0

200 1

120 0

�200 2

2
6664

3
7775

By using the structure degree of freedom numbers, 0; 1; 0; 2, for this member, we store the relevant elements of K2 and
Ff 2 into S and Pf , respectively, as shown in Fig. 18.12(d).

Member 3 L ¼ 5 m:

K3 ¼ k3 ¼ EI

2
6664

0 2 0 0

0:096 0:24 �0:096 0:24 0

0:24 0:8 �0:24 0:4 2

�0:096 �0:24 0:096 �0:24 0

0:24 0:4 �0:24 0:8 0

3
7775

The elements of K3 are stored in S using the structure degree of freedom numbers 0; 2; 0; 0. Note that since member 3 is
not subjected to any external loads,

Ff 3 ¼ Qf 3 ¼ 0

Joint Load Vector Since no external moments are applied to the beam at joints 2 and 3, the joint load vector is
zero; that is,

P ¼ 0

Joint Displacements The sti¤ness relations for the entire continuous beam, P� Pf ¼ Sd, are written in expanded
form as

�84:8
200

� �
¼ EI

0:8 0:2

0:2 1:2

� �
d1

d2

� �
By solving these equations simultaneously, we determine the joint displacements to be

EId1 ¼ �154:09 kN �m2 EId2 ¼ 192:35 kN�m2

or

d ¼ 1

EI

�154:09
192:35

� �
kN�m2

Member End Displacements and End Forces

Member 1 By using the member’s structure degree of freedom numbers, we obtain the member end
displacements:
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u1 ¼ v1 ¼
v1 0

v2 0

v3 0

v4 1

2
6664

3
7775 ¼

0

0

0

d1

2
6664

3
7775¼ 1

EI

0

0

0

�154:09

2
6664

3
7775

By using the member sti¤ness relations Q ¼ kuþQf (Eq. (18.4)), we compute member end forces as

F1 ¼Q1 ¼ EI

0:012 0:06 �0:012 0:06

0:06 0:4 �0:06 0:2

�0:012 �0:06 0:012 �0:06
0:06 0:2 �0:06 0:4

2
6664

3
7775 1

EI

0

0

0

�154:09

2
6664

3
7775þ

28:16

76:8

51:84

�115:2

2
6664

3
7775

¼
18:91 kN

45:98 kN�m
61:09 kN

�176:84 kN�m

2
6664

3
7775 Ans.

Member 2

u2 ¼ v2 ¼
v1 0

v2 1

v3 0

v4 2

2
6664

3
7775 ¼

0

d1

0

d2

2
6664

3
7775¼ 1

EI

0

�154:09
0

192:35

2
6664

3
7775

Q ¼ kuþQf

F2 ¼ Q2 ¼
0:012 0:06 �0:012 0:06

0:06 0:4 �0:06 0:2

�0:012 �0:06 0:012 �0:06
0:06 0:2 �0:06 0:4

2
6664

3
7775

0

�154:09
0

192:35

2
6664

3
7775þ

120

200

120

�200

2
6664

3
7775

¼
122:3 kN

176:83 kN�m
117:7 kN

�153:88 kN�m

2
6664

3
7775 Ans.

Member 3

u3 ¼ v3 ¼
v1 0

v2 2

v3 0

v4 0

2
6664

3
7775 ¼

0

d2

0

0

2
6664

3
7775¼ 1

EI

0

192:35

0

0

2
6664

3
7775

Q ¼ kuþQf

F3 ¼ Q3 ¼
0:096 0:24 �0:096 0:24

0:24 0:8 �0:24 0:4

�0:096 �0:24 0:096 �0:24
0:24 0:4 �0:24 0:8

2
6664

3
7775

0

192:35

0

0

2
6664

3
7775¼

46:16 kN

153:88 kN�m
�46:16 kN

76:94 kN�m

2
6664

3
7775 Ans.
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The end forces for the three members of the continuous beam are shown in Fig. 18.12(e).

Support Reactions Since support joint 1 is the beginning joint for member 1, equilibrium considerations require
that the reactions at joint 1, R1, be equal to the upper half of F1 (i.e., the forces at end 1 of member 1).

R1 ¼ 18:91 kN

45:98 kN�m
� �

Ans.

in which the first element of R1 represents the vertical force and the second element represents the moment, as shown
in Fig. 18.12(f ). In a similar manner, since support joint 2 is the end joint for member 1 but the beginning joint for
member 2, the reaction vector at joint 2, R2, must be equal to the algebraic sum of the lower half of F1 and the upper
half of F2.

R2 ¼ 61:09

�176:84
� �

þ 122:3

176:83

� �
¼ 183:39 kN

�0:01&0

� �
Ans.

Similarly, at support joint 3, R3 can be determined by algebraically summing the lower half of F2 and the upper
half of F3.

R3 ¼ 117:7

�153:88
� �

þ 46:16

153:88

� �
¼ 163:86 kN

0

� �
Ans.

Finally, the reaction vector at joint 4 must be equal to the lower half of F3:

R4 ¼ �46:16 kN

76:94 kN�m
� �

Ans.

The support reactions are shown in Fig. 18.12(f ). Ans.

Equilibrium Check Applying the equations of equilibrium to the entire structure (Fig. 18.12(f )), we obtain

þ "PFY ¼ 0

18:91� 80þ 183:39� 24ð10Þ þ 163:86� 46:16 ¼ 0 Checks

þ ’
P

M4 ¼ 0

45:98� 18:91ð25Þ þ 80ð19Þ � 183:39ð15Þ
þ 24ð10Þð10Þ � 163:86ð5Þ þ 76:94 ¼ 0:02&0 Checks

Example 18.3

Determine the reactions and the member end forces for the frame shown in Fig. 18.13(a) by using the matrix sti¤ness
method.

Solution
Degrees of Freedom From the analytical model of the frame shown in Fig. 18.13(b), we observe that while joints 1

and 3 of the structure can neither translate nor rotate, joint 2 is free to translate as well as rotate. Thus the frame has
three degrees of freedom: the translations d1 and d2 in the X and Y directions, respectively, and the rotation d3 of joint 2.
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Structure Sti¤ness Matrix

Member 1 Since the local xy coordinate system for this member coincides with the global XY coordinate
system, no coordinate transformations are needed; that is, the member sti¤ness relations in the local and global coor-
dinates are the same. By substituting E ¼ 201:4 kPa, I ¼ 0:039 m4, A ¼ 1111 cm2, and L ¼ 30 m into Eq. (18.5), we
obtain

K1 ¼ k1 ¼

2
6666666664

0 0 0 1 2 3

15;466:67 0 0 �15;466:67 0 0 0

0 71:6 1;074:07 0 �71:6 1;074:07 0

0 1;074:07 21;481:48 0 �1;074:07 10;740:74 0

�15;466:67 0 0 15;466:67 0 0 1

0 �71:6 �1;074:07 0 71:6 �1;074:07 2

0 1;074:07 10;740:74 0 �1;074:07 21;481:48 3

3
7777777775

(1)

By using the fixed-end moment expressions given inside the back cover of the book, we evaluate the fixed-end moments
due to the 2-kN/m load as

Qf 3 ¼ �Qf 6 ¼ 2ð30Þ2
12

¼ 150 kN-m

By applying equilibrium equations to the free body of the member, we obtain (Fig. 18.13(c))

Qf 2 ¼ Qf 5 ¼ 30 kN
continued
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Thus,

Ff 1 ¼ Qf 1 ¼

0 0

30 0

150 0

0 1

30 2

�150 3

2
666666664

3
777777775

(2)

By using the structure degree of freedom numbers, 0; 0; 0; 1; 2; 3, for this member, the pertinent elements of K1 and Ff 1

are stored in their proper positions in the structure sti¤ness matrix S and the fixed-joint force vector Pf , respectively, as
shown in Fig. 18.13(d).

Member 2 By substituting E ¼ 201:4 kPa, I ¼ 0:019 m4, A ¼ 833 cm2, and L ¼ 25 m into Eq. (18.5), we obtain

k2 ¼

13;920 0 0 �13;920 0 0

0 61:87 773:33 0 �61:87 773:33

0 773:33 12;888:89 0 �773:33 6;444:44

�13;920 0 0 13;920 0 0

0 �61:87 �773:33 0 61:87 �773:33
0 773:33 6;444:44 0 �773:33 12;888:89

2
666666664

3
777777775

(3)

Since member 2 is not subjected to any external loads,

Qf 2 ¼ 0 (4)

By using the global coordinates of the beginning joint 3 and the end joint 2, we determine the direction cosines of
member 2 as (Eq. (18.13))

cos y ¼ X2 � X3

L
¼ 30� 45

25
¼ �0:6

sin y ¼ Y2 � Y3

L
¼ 0� ð�20Þ

25
¼ 0:8

Substitution of these values into Eq. (18.12) yields the following transformation matrix for the member:

T2 ¼

�0:6 0:8 0 0 0 0

�0:8 �0:6 0 0 0 0

0 0 1 0 0 0

0 0 0 �0:6 0:8 0

0 0 0 �0:8 �0:6 0

0 0 0 0 0 1

2
666666664

3
777777775

(5)

To determine the member sti¤ness matrix in global coordinates, K2, we substitute the matrices k2 and T2 into the
relationship K ¼ TTkT (Eq. (18.26)) and carry out the necessary matrix multiplications to obtain
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K2 ¼

2
666666664

0 0 0 1 2 3

5;050:8 �6;651:9 �618:67 �5;050:8 6;651:9 �618:67 0

�6;651:9 8;931:07 �464 6;651:9 �8;931:07 �464 0

�618:67 �464 12;888:89 618:67 464 6;444:44 0

�5;050:8 6;651:9 618:67 5;050:8 �6;651:9 618:67 1

6;651:9 �8;931:07 464 �6;651:9 8;931:07 464 2

�618:67 �464 6;444:44 618:67 464 12;888:89 3

3
777777775

(6)

Note that K2 is symmetric. By using the structure degree of freedom numbers, 0; 0; 0; 1; 2; 3, for member 2, the relevant
elements of K2 are added into their positions in the S matrix, as shown in Fig. 18.13(d). Note that Ff 2 ¼ 0.

Joint Load Vector By comparing Fig. 18.13(a) and (b), we write

P ¼
0

0

75

2
64

3
75

Joint Displacements The sti¤ness relations for the entire frame, P� Pf ¼ Sd, are written in expanded form as

0

0

75

2
64

3
75� 0

30

�150

2
64

3
75 ¼ 20;517:47 �6;651:9 618:67

�6;651:9 9;002:67 �610:07
618:67 �610:07 34;370:37

2
64

3
75 d1

d2

d3

2
64

3
75

or

0

�30
225

2
64

3
75 ¼ 20;517:47 �6;651:9 618:67

�6;651:9 9;002:67 �610:07
618:67 �610:07 34;370:37

2
64

3
75 d1

d2

d3

2
64

3
75

By solving these equations simultaneously, we determine the joint displacements to be

d ¼
�0:00149 m

�0:00399 m

0:0065 rad

2
64

3
75

Member End Displacements and End Forces

Member 1

u1 ¼ v1 ¼

v1 0

v2 0

v3 0

v4 1

v5 2

v6 3

2
666666664

3
777777775

¼

0

0

0

d1

d2

d3

2
666666664

3
777777775
¼

0

0

0

�0:00149 m

�0:00399 m

0:0065 rad

2
666666664

3
777777775
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By substituting k1;Qf 1, and u1 in the member sti¤ness relationship Q ¼ kuþQf (Eq. (18.4)), we determine the member
end forces to be

F1 ¼ Q1 ¼

23:05 kN

37:27 kN

224:1 kN-m

�23:05 kN

22:73 kN

�6:08 kN-m

2
666666664

3
777777775

Ans.

Member 2

v2 ¼

v1 0

v2 0

v3 0

v4 1

v5 2

v6 3

2
666666664

3
777777775

¼

0

0

0

d1

d2

d3

2
666666664

3
777777775
¼

0

0

0

�0:00149 m

�0:00399 m

0:0065 rad

2
666666664

3
777777775

By substituting K2; v2, and Ff 2 ¼ 0 into the member sti¤ness relationship in global coordinates, F ¼ Kvþ Ff (Eq.
(18.25)), we determine the member end forces in global coordinates to be

F2 ¼

�23:04 kN

22:71 kN

39:12 kN-m

23:04 kN

�22:71 kN

81 kN-m

2
666666664

3
777777775

The member end forces in local coordinates can now be evaluated by substituting F2 and T2 into the relationship
Q ¼ TF (Eq. (18.11)).

Q2 ¼

31:99 kN

4:81 kN

39:12 kN-m

�31:99 kN

�4:81 kN

81 kN-m

2
666666664

3
777777775

Ans.

The end forces in the local coordinates of the members are shown in Fig. 18.13(e). Ans.

Support Reactions Since support joints 1 and 3 are the beginning joints for members 1 and 2, respectively, the re-
action vectors R1 and R3 must be equal to the upper halves of F1 and F2, respectively.

R1 ¼
23:05 kN

37:27 kN

224:1 kN-m

2
64

3
75; R3 ¼

�23:04 kN

22:71 kN

19:12 kN-m

2
64

3
75 Ans.

The support reactions are shown in Fig. 18.13(f ). Ans.

continued
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SUMMARY

In this chapter we have studied the basic concepts of the matrix sti¤ness
method for the analysis of plane framed structures. A block diagram
summarizing the various steps involved in the analysis is presented in
Fig. 18.14.

FIG. 18.14

Equilibrium Check Applying the equations of equilibrium to the entire frame (Fig. 18.13(f )), we obtain

þ !P
FX ¼ 0 23:05� 23:04 ¼ 0:01&0 Checks

þ "PFY ¼ 0 37:27� 2ð30Þ þ 22:71 ¼ �0:02&0 Checks

þ ’
P

M1 ¼ 0 224:1� 2ð30Þð15Þ þ 75� 23:04ð20Þ þ 22:71ð45Þ þ 39:12

¼ �0:63&0 Checks

Summary 813
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PROBLEMS

Section 18.6

18.1 through 18.3 Determine the reactions and the force in
each member of the trusses shown in Figs. P18.1–P18.3 by
using the matrix sti¤ness method.

FIG. P18.1

FIG. P18.2

FIG. P18.3

18.4 through 18.6 Determine the reactions and the member
end forces for the beams shown in Figs. P18.4–P18.6 by
using the matrix sti¤ness method.

FIG. P18.4

FIG. P18.5

FIG. P18.6

18.7 through 18.9 Determine the reactions and the member
end forces in local coordinates for the frames shown in Figs.
P18.7–P18.9 by using the matrix sti¤ness method.

FIG. P18.7

814 CHAPTER 18 Introduction to Matrix Structural Analysis
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FIG. P18.8

FIG. P18.9

Problems 815
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A
Areas and Centroids of
Geometric Shapes

817

Shape Area Centroid

Right-angled triangle

A ¼ bh

2
x ¼ 2b

3

Triangle

A ¼ bh

2
x ¼ aþ b

3
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Shape Area Centroid

Trapezoid

A ¼ bðh1 þ h2Þ
2

x ¼ bðh1 þ 2h2Þ
3ðh1 þ h2Þ

Semi-parabola

A ¼ 2bh

3
x ¼ 3b

8

Parabolic spandrel

A ¼ bh

3
x ¼ 3b

4

Parabolic segment

A ¼ 2bh

3
x ¼ b

2

Note: When the segment represents a
part of the bending moment diagram
of a member subjected to uniformly
distributed load w, then h ¼ wb2=8.

Cubic

A ¼ 3bh

4
x ¼ 2b

5

818 APPENDIX A Areas and Centroids of Geometric Shapes
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Shape Area Centroid

Cubic spandrel

A ¼ bh

4
x ¼ 4b

5

nth-degree curve
y ¼ axn, nb1

A ¼ bh

nþ 1
x ¼ ðnþ 1Þb

ðnþ 2Þ

APPENDIX A Areas and Centroids of Geometric Shapes 819
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B
Review of Matrix Algebra
B.1 Definition of a Matrix
B.2 Types of Matrices
B.3 Matrix Operations
B.4 Solution of Simultaneous Equations by the Gauss-Jordan Method

Problems

821

In this appendix, some basic concepts of matrix algebra necessary for for-
mulating the computerized analysis of structures are briefly reviewed. A
more comprehensive and mathematically rigorous treatment of these con-
cepts can be found in any textbook on matrix algebra, such as [11] and [28].

B.1 DEFINITION OF A MATRIX

A matrix is a rectangular array of quantities arranged in rows and col-

umns. A matrix containing m rows and n columns can be expressed as:

A ¼ ½A� ¼
A11 A12 � � � � � � A1n

A21 A22 � � � � � � A2n

� � � � � � Aij � � �
Am1 Am2 � � � �� � � � Amn

2
6664

3
7775ith row (B.1)

jth column m� n

As Eq. (B.1) indicates, matrices are usually denoted either by boldface

letters (e.g., A) or by italic letters enclosed within brackets (e.g., [A]).
The quantities that form a matrix are referred to as the elements of the
matrix, and each element is represented by a double-subscripted letter,
with the first subscript identifying the row and the second subscript
identifying the column in which the element is located. Thus in Eq.
(B.1), A12 represents the element located in the first row and the second
column of the matrix A, and A21 represents the element in the second
row and the first column of A. In general, an element located in the ith
row and the jth column of matrix A is designated as Aij . It is common
practice to enclose the entire array of elements between brackets, as
shown in Eq. (B.1).
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The size of a matrix is measured by its order, which refers to the
number of rows and columns of the matrix. Thus the matrix A in Eq.
(B.1), which consists of m rows and n columns, is considered to be of
order m� n (m by n). As an example, consider a matrix B given by

B ¼
5 21 3 �7

40 �6 19 23

�8 12 50 22

2
64

3
75

The order of this matrix is 3� 4, and its elements can be symbolically
represented by Bij , with i ¼ 1 to 3 and j ¼ 1 to 4; for example, B23 ¼ 19,
B31 ¼ �8, B34 ¼ 22, etc.

B.2 TYPES OF MATRICES

Row Matrix

If all the elements of a matrix are arranged in a single row (i.e., m ¼ 1),
then the matrix is called a row matrix. An example of a row matrix is

C ¼ ½50 �3 �27 35�

Column Matrix

A matrix with only one column of elements (i.e., n ¼ 1) is called a
column matrix. For example,

D ¼ fDg ¼
�10
33

�6
15

2
6664

3
7775

Column matrices are also referred to as vectors and are sometimes
denoted by italic letters enclosed within braces (e.g., fDg).

Square Matrix

A matrix with the same number of rows and columns ðm ¼ nÞ is called a
square matrix. An example of a 3� 3 square matrix is

A ¼

2
66664

5 21 3

40 �6 19

�8 12 50

3
77775 (B.2)

Main diagonal���������!
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The elements with the same subscripts—that is, A11;A22; . . . ;Ann—
form the main diagonal of the square matrix A. These elements are
referred to as the diagonal elements. As shown in Eq. (B.2), the main
diagonal extends from the upper left corner to the lower right corner
of the square matrix. The remaining elements of the matrix (i.e., Aij

with i= j) that are not along the main diagonal are termed the o¤-

diagonal elements.

Symmetric Matrix

If the elements of a square matrix are symmetric about its main diago-
nal (i.e., Aij ¼ Aji), the matrix is called a symmetric matrix. An example
of a 4� 4 symmetric matrix is

A ¼
�12 �6 13 5

�6 7 �28 31

13 �28 10 �9
5 31 �9 �2

2
6664

3
7775

Diagonal Matrix

If all the o¤-diagonal elements of a square matrix are zero (i.e., Aij ¼ 0
for i= j), the matrix is referred to as a diagonal matrix. For example,

A ¼
3 0 0

0 �8 0

0 0 14

2
64

3
75

Unit or Identity Matrix

A diagonal matrix with all its diagonal elements equal to 1 (i.e.,
Iii ¼ 1 and Iij ¼ 0 for i= j) is called a unit, or identity, matrix. Unit
matrices usually are denoted by I or [I ]. An example of a 4� 4 unit
matrix is

I ¼
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775

B.2 Types of Matrices 823
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Null Matrix

When all the elements of a matrix are zero (i.e., Oij ¼ 0), the matrix is
called a null matrix. Null matrices are commonly denoted by O or [O].
For example,

O ¼
0 0 0 0

0 0 0 0

0 0 0 0

2
64

3
75

B.3 MATRIX OPERATIONS

Equality

Two matrices A and B are equal if they are of the same order and if
their corresponding elements are identical (i.e., Aij ¼ Bij). Consider, for
example, the matrices

A ¼
�3 5 6

4 7 9

12 0 1

2
64

3
75 and B ¼

�3 5 6

4 7 9

12 0 1

2
64

3
75

Since both A and B are of order 3� 3 and since each element of A is
equal to the corresponding element of B, the matrices are considered to
be equal to each other; that is, A ¼ B.

Addition and Subtraction

The addition (or subtraction) of two matrices A and B, which must be of
the same order, is carried out by adding (or subtracting) the corre-
sponding elements of the two matrices. Thus if Aþ B ¼ C, then
Cij ¼ Aij þ Bij ; and if A� B ¼ D, then Dij ¼ Aij � Bij . For example, if

A ¼
2 5

3 0

8 1

2
64

3
75 and B ¼

10 4

6 7

9 2

2
64

3
75

then

Aþ B ¼ C ¼
12 9

9 7

17 3

2
64

3
75

and

A� B ¼ D ¼
�8 1

�3 �7
�1 �1

2
64

3
75

Note that matrices C and D have the same order as matrices A and B.
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Multiplication by a Scalar

To obtain the product of a scalar and a matrix, each element of the
matrix must be multiplied by the scalar. Thus, if

B ¼ 7 3

�1 4

� �
and c ¼ �3

then

cB ¼ �21 �9
3 �12

� �

Multiplication of Matrices

The multiplication of two matrices can be carried out only if the number

of columns of the first matrix equals the number of rows of the second

matrix. Such matrices are referred to as being conformable for multi-
plication. Consider, for example, the matrices

A ¼ �1 5

7 �3
� �

and B ¼ 2 3 �6
4 �8 9

� �
(B.3)

in which A is of order 2� 2 and B is of order 2� 3. Note that the
product AB of these matrices is defined, because the first matrix, A, of
the sequence AB has two columns and the second matrix, B, has two
rows. However, if the sequence of the matrices is reversed, the product
BA does not exist, because now the first matrix, B, has three columns
and the second matrix, A, has two rows. The product AB is usually re-
ferred to either as A postmultiplied by B or as B premultiplied by A.
Conversely, the product BA is referred to either as B postmultiplied by
A or as A premultiplied by B.

When two conformable matrices are multiplied, the product matrix
thus obtained will have the number of rows of the first matrix and the
number of columns of the second matrix. Thus, if a matrix A of order
m� n is postmultiplied by a matrix B of order n� s, then the product
matrix C will be of order m� s; that is,

A B ¼ C
#

m� n � equal �! n� s m� s
"

ith row

�
Ai1 ! Ain

� B1j

#
Bnj

2
6664

3
7775 ¼

�
Cij

�
ith row

jth column

jth column (B.4)

B.3 Matrix Operations 825
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As illustrated in Eq. (B.4), any element Cij of the product matrix C can
be evaluated by multiplying each element of the ith row of A by the
corresponding element of the jth column of B and by algebraically
summing the resulting products; that is,

Cij ¼ Ai1B1j þ Ai2B2j þ � � � þ AinBnj (B.5)

Equation (B.5) can be conveniently expressed as

Cij ¼
Xn

k¼1
AikBkj (B.6)

in which n represents the number of columns of the matrix A and the
number of rows of the matrix B. Note that Eq. (B.6) can be used to de-
termine any element of the product matrix C ¼ AB.

To illustrate the procedure of matrix multiplication, we compute the
product C ¼ AB of the matrices A and B given in Eq. (B.3) as

C ¼ AB ¼ �1 5

7 �3
� �

2 3 �6
4 �8 9

� �
¼ 18 �43 51

2 45 �69
� �

2� 2 2� 3 2� 3

in which the element C11 of the product matrix C is obtained by multi-
plying each element of the first row of A by the corresponding element
of the first column of B and summing the resulting products; that is,

C11 ¼ �1ð2Þ þ 5ð4Þ ¼ 18

Similarly, the element C21 is determined by multiplying the elements of
the second row of A by the corresponding elements of the first column
of B and adding the resulting products; that is,

C21 ¼ 7ð2Þ � 3ð4Þ ¼ 2

The remaining elements of C are determined in a similar manner:

C12 ¼ �1ð3Þ þ 5ð�8Þ ¼ �43
C22 ¼ 7ð3Þ � 3ð�8Þ ¼ 45

C13 ¼ �1ð�6Þ þ 5ð9Þ ¼ 51

C23 ¼ 7ð�6Þ � 3ð9Þ ¼ �69
Note that the order of the product matrix C is 2� 3, which equals the
number of rows of A and the number of columns of B.

A common application of matrix multiplication is to express simul-
taneous equations in compact matrix form. Consider the system of si-
multaneous linear equations:
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A11x1 þ A12x2 þ A13x3 ¼ P1

A21x1 þ A22x2 þ A23x3 ¼ P2 (B.7)

A31x1 þ A32x2 þ A33x3 ¼ P3

in which x1; x2, and x3 are the unknowns and A’s and P’s represent the
coe‰cients and constants, respectively. By using the definition of matrix
multiplication, this system of simultaneous equations can be written in
matrix form as

A11 A12 A13

A21 A22 A23

A31 A32 A33

2
64

3
75 x1

x2

x3

2
64

3
75¼ P1

P2

P3

2
64

3
75 (B.8)

or, symbolically, as

Ax ¼ P (B.9)

Even when two matrices A and B are of such orders that both
products AB and BA can be determined, the two products are generally
not equal; that is,

AB 6¼ BA (B.10)

It is, therefore, necessary to maintain the proper sequential order of
matrices when computing matrix products. Although matrix multi-
plication is generally not commutative, as indicated by Eq. (B.10), it is
associative and distributive, provided that the sequential order in which
the matrices are to be multiplied is maintained. Thus

ABC ¼ ðABÞC ¼ AðBCÞ (B.11)

and

AðBþ CÞ ¼ ABþ AC (B.12)

Multiplication of any matrix A by a conformable null matrix O

yields a null matrix; that is,

OA ¼ O and AO ¼ O (B.13)

For example,

0 0

0 0

� �
5 �7
9 2

� �
¼ 0 0

0 0

� �
Multiplication of any matrix A by a conformable unit matrix I

yields the same matrix A, that is,

IA ¼ A and AI ¼ A (B.14)

For example,

1 0

0 1

� �
5 �7
9 2

� �
¼ 5 �7

9 2

� �

B.3 Matrix Operations 827
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and

5 �7
9 2

� �
1 0

0 1

� �
¼ 5 �7

9 2

� �
As Eqs. (B.13) and (B.14) indicate, the null and unit matrices serve the
purposes in matrix algebra that are analogous to those of the numbers 0
and 1, respectively, in scalar algebra.

Inverse of a Square Matrix

The inverse of a square matrix A is defined as a matrix A�1 with ele-
ments of such magnitudes that the multiplication of the original matrix
A by its inverse A�1 yields a unit matrix I; that is,

A�1A ¼ AA�1 ¼ I (B.15)

Consider, for example, the square matrix

A ¼ 1 �2
3 �4

� �
The inverse of A is given by

A�1 ¼ �2 1

�1:5 0:5

� �
so that the products A�1A and AA�1 satisfy Eq. (B.15):

A�1A ¼ �2 1

�1:5 0:5

� �
1 �2
3 �4

� �

¼ ð�2þ 3Þ ð4� 4Þ
ð�1:5þ 1:5Þ ð3� 2Þ

� �
¼ 1 0

0 1

� �
¼ I

and

AA�1 ¼ 1 �2
3 �4

� � �2 1

�1:5 0:5

� �
¼ ð�2þ 3Þ ð1� 1Þ
ð�6þ 6Þ ð3� 2Þ

� �
¼ 1 0

0 1

� �
¼ I

The operation of inversion is defined only for square matrices. The
inverse of such a matrix is also a square matrix of the same order as the
original matrix. A procedure for determining inverses of matrices is
presented in the following section. The operation of matrix inversion
serves the same purpose as the operation of division in scalar algebra.
Consider a system of simultaneous equations expressed in the matrix
form as

Ax ¼ P

in which A represents the square matrix of known coe‰cients; x repre-
sents the vector of the unknowns; and P represents the vector of the
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constants. Since the operation of division is not defined in matrix alge-
bra, we cannot solve the foregoing matrix equation for x by dividing P

by A (i.e., x ¼ P=A). Instead, to determine the unknowns x, we pre-
multiply both sides of the equation by A�1 to obtain

A�1Ax ¼ A�1P

Since A�1A ¼ I and Ix ¼ x, we can write

x ¼ A�1P

which indicates that a system of simultaneous equations can be solved
by premultiplying the vector of the constants by the inverse of the co-
e‰cient matrix.

An important property of matrix inversion is that the inverse of a

symmetric matrix is always a symmetric matrix.

Transpose of a Matrix

The transpose of a matrix is obtained by interchanging its corresponding
rows and columns. The transposed matrix is usually identified by the
superscript T placed on the symbol of the original matrix. Consider, for
example, the 2� 3 matrix

A ¼ 6 �2 4

1 8 �3
� �

The transpose of A is given by

AT ¼
6 1

�2 8

4 �3

2
64

3
75

Note that the first column of A becomes the first row of AT . Similarly,
the second and third columns of A become, respectively, the second and
third rows of AT . The order of AT thus obtained is 3� 2.

As another example, consider the 3� 3 matrix

B ¼
9 7 �5
7 �3 2

�5 2 6

2
64

3
75

Since the elements of B are symmetric about the main diagonal (i.e.,
Bij ¼ Bji), interchanging the rows and the columns of this matrix pro-
duces a matrix BT that is identical to the matrix B itself; that is,

BT ¼ B

Thus, the transpose of a symmetric matrix yields the same matrix.
Another useful property of matrix transposition is that the transpose

of a product of matrices equals the product of the transposes in reverse

order; that is,
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ðABÞT ¼ BTAT (B.16)

Similarly,

ðABCÞT ¼ CTBTAT (B.17)

Partitioning of Matrices

Partitioning is a process by which a matrix is subdivided into a number
of smaller matrices called submatrices. For example, a 3� 4 matrix A is
partitioned into four submatrices by drawing horizontal and vertical
dashed partition lines:

A ¼
3 5 �1 2

�2 4 7 9

6 1 3 4

2
64

3
75¼ A11 A12

A21 A22

� �
(B.18)

in which the submatrices are

A11 ¼ 3 5 �1
�2 4 7

� �
A12 ¼ 2

9

� �
A21 ¼ ½ 6 1 3 � A22 ¼ ½4�

Matrix operations such as addition, subtraction, and multiplication
can be preformed on partitioned matrices in the same manner as de-
scribed previously by treating the submatrices as elements, provided that
the matrices are partitioned in such a way that their corresponding sub-
matrices are conformable for the particular operation. For example,
suppose that we wish to postmultiply the 3� 4 matrix A of Eq. (B.18)
by a 4� 2 matrix B, which is partitioned into two submatrices as

B ¼
1 8

�5 2

�3 6

7 �1

2
6664

3
7775¼ B11

B21

� �
(B.19)

The product AB is expressed in terms of the submatrices as

AB ¼ A11 A12

A21 A22

� �
B11

B21

� �
¼ A11B11 þ A12B21

A21B11 þ A22B21

� �
(B.20)

Note that the matrices A and B have been partitioned in such a way that
their corresponding submatrices are conformable for multiplication;
that is, the orders of the submatrices are such that the products
A11B11;A12B21;A21B11, and A22B21 are defined. As shown in Eqs. (B.18)
and (B.19), this is achieved by partitioning the rows of the second
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matrix B of the product AB in the same way that the columns of the first
matrix A are partitioned. The products of the submatrices are given by

A11B11 ¼ 3 5 �1
�2 4 7

� � 1 8

�5 2

�3 6

2
64

3
75¼ �19 28

�43 34

� �

A12B21 ¼ 2

9

� �
½7 �1� ¼ 14 �2

63 �9
� �

A21B11 ¼ ½6 1 3�
1 8

�5 2

�3 6

2
64

3
75¼ ½�8 68�

A22B21 ¼ ½4�½7 �1� ¼ ½28 �4�
Substitution into Eq. (B.20) yields

AB ¼
�19 28

�43 34

� �
þ 14 �2

63 �9
� �

½�8 68� þ ½28 �4�

2
64

3
75¼ �5 26

20 25

20 64

2
64

3
75

B.4 SOLUTION OF SIMULTANEOUS EQUATIONS BY THE GAUSS-JORDAN METHOD

The Gauss-Jordan elimination method is one of the most commonly
used procedures for solving simultaneous linear algebraic equations.
To illustrate the method, consider the following system of three simul-
taneous equations:

2x1 � 5x2 þ 4x3 ¼ 44

3x1 þ x2 � 8x3 ¼ �35 (B.21a)

4x1 � 7x2 � x3 ¼ 28

To solve for the unknowns x1; x2, and x3, we begin by dividing the first
equation by the coe‰cient of its x1 term:

x1 � 2:5x2 þ 2x3 ¼ 22

3x1 þ x2 � 8x3 ¼ �35 (B.21b)

4x1 � 7x2 � x3 ¼ 28

Next, the unknown x1 is eliminated from the remaining equations by
successively subtracting from each remaining equation the product of
the coe‰cient of its x1 term and the first equation. Thus, to eliminate
x1 from the second equation, we multiply the first equation by 3 and
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subtract it from the second equation. Similarly, we eliminate x1 from the
third equation by multiplying the first equation by 4 and subtracting it
from the third equation. The system of equations thus obtained is

x1 � 2:5x2 þ 2x3 ¼ 22

8:5x2 � 14x3 ¼ �101 (B.21c)

3x2 � 9x3 ¼ �60
With x1 eliminated from all but the first equation, we now divide the
second equation by the coe‰cient of its x2 term:

x1 � 2:5x2 þ 2x3 ¼ 22

x2 � 1:647x3 ¼ �11:882 (B.21d)

3x2 � 9x3 ¼ �60
Next, we eliminate x2 from the first and the third equations, succes-
sively, by multiplying the second equation by �2:5 and subtracting it
from the first equation, and then by multiplying the second equation by
3 and subtracting it from the third equation. This yields

x1 � 2:118x3 ¼ �7:705
x2 � 1:647x3 ¼ �11:882 (B.21e)

� 4:059x3 ¼ �24:354
By dividing the third equation by the coe‰cient of its x3 term, we obtain

x1 � 2:118x3 ¼ �7:705
x2 � 1:647x3 ¼ �11:882 (B.21f )

x3 ¼ 6

Finally, by multiplying the third equation by �2.118 and subtracting it
from the first equation, and by multiplying the third equation by �1.647
and subtracting it from the second equation, we determine the solution
of the given system of equations (Eq. (B.21a)) to be

x1 ¼ 5

x2 ¼ �2 (B.21g)

x3 ¼ 6

That is, x1 ¼ 5, x2 ¼ �2, and x3 ¼ 6. To check that the solution is car-
ried out correctly, we substitute the numerical values of x1; x2, and x3
back into the original equations (Eq. (B.21a)):

2ð5Þ � 5ð�2Þ þ 4ð6Þ ¼ 44 Checks

3ð5Þ � 2� 8ð6Þ ¼ �35 Checks

4ð5Þ � 7ð�2Þ � 6 ¼ 28 Checks
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As the foregoing example illustrates, the Gauss-Jordan method
essentially involves successively eliminating each unknown from all
but one of the equations of the system by performing the following
operations: (1) dividing an equation by a scalar; and (2) multiplying
an equation by a scalar and subtracting the resulting equation from
another equation. These operations, which do not change the solution of
the original system of equations, are applied repeatedly until a system
with each equation containing only one unknown is obtained.

The solution of simultaneous equations is usually carried out in
matrix form by operating on the rows of the coe‰cient matrix and the
vector containing the constant terms of the equations. The foregoing
operations are then referred to as elementary row operations. These
operations are applied to both the coe‰cient matrix and the vector of
the constants simultaneously, until the coe‰cient matrix is reduced to a
unit matrix. The elements of the vector, which initially contained the
constant terms of the original equations, now represent the solution of
the original simultaneous equations. To illustrate this procedure, con-
sider again the system of three simultaneous equations given in
Eq. (B.21a). The system can be expressed in matrix form as

Ax ¼ P

2 �5 4

3 1 �8
4 �7 �1

2
64

3
75 x1

x2

x3

2
64

3
75¼ 44

�35
28

2
64

3
75 (B.22)

When applying the Gauss-Jordan method, it is usually convenient to
write the coe‰cient matrix A and the vector of constants P as sub-
matrices of a partitioned augmented matrix:

2 �5 4 44

3 1 �8 �35
4 �7 �1 28

2
64

3
75 (B.23a)

To determine the solution, we begin by dividing row 1 of the augmented
matrix by A11 ¼ 2:

1 �2:5 2 22

3 1 �8 �35
4 �7 �1 28

2
64

3
75 (B.23b)

Next, we multiply row 1 by A21 ¼ 3 and subtract it from row 2 and then
multiply row 1 by A31 ¼ 4 and subtract it from row 3. This yields

1 �2:5 2 22

0 8:5 �14 �101
0 3 �9 �60

2
64

3
75 (B.23c)

B.4 Solution of Simultaneous Equations by the Gauss-Jordan Method 833

https://engineersreferencebookspdf.com



Divide row 2 by A22 ¼ 8:5, obtaining

1 �2:5 2 22

0 1 �1:647 �11:882
0 3 �9 �60

2
64

3
75 (B.23d)

Multiply row 2 by A12 ¼ �2:5 and subtract it from row 1; then multiply
row 2 by A32 ¼ 3 and subtract it from row 3. This yields

1 0 �2:118 �7:705
0 1 �1:647 �11:882
0 0 �4:059 �24:354

2
64

3
75 (B.23e)

Divide row 3 by A33 ¼ �4:059:
1 0 �2:118 �7:705
0 1 �1:647 �11:882
0 0 1 6

2
64

3
75 (B.23f )

Multiply row 3 by A13 ¼ �2:118 and subtract it from row 1; then mul-
tiply row 3 by A23 ¼ �1:647 and subtract it from row 2. This yields

1 0 0 5

0 1 0 �2
0 0 1 6

2
64

3
75 (B.23g)

Thus x1 ¼ 5, x2 ¼ �2, and x3 ¼ 6.

Matrix Inversion

The Gauss-Jordan elimination method can also be used to determine the
inverses of square matrices. The procedure is similar to that described
previously for solving simultaneous equations, except that in the aug-
mented matrix, the coe‰cient matrix is now replaced by the matrix A

that is to be inverted and the vector of constants P is replaced by a unit
matrix I of the same order as the matrix A. Elementary row operations
are then performed on the augmented matrix to reduce the matrix A to
a unit matrix. The matrix I, which was initially the unit matrix, now
represents the inverse of the original matrix A.

To illustrate the foregoing procedure, let us compute the inverse of
the 2� 2 matrix

A ¼ 1 �2
3 �4

� �
(B.24)

The augmented matrix is given by

1 �2 1 0

3 �4 0 1

� �
(B.25a)
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By multiplying row 1 by A21 ¼ 3 and subtracting it from row 2, we
obtain

1 �2 1 0

0 2 �3 1

� �
(B.25b)

Next, by dividing row 2 by A22 ¼ 2, we obtain

1 �2 1 0

0 1 �1:5 0:5

� �
(B.25c)

Finally, by multiplying row 2 by �2 and subtracting it from row 1, we
obtain

1 0 �2 1

0 1 �1:5 0:5

� �
(B.25d)

Thus,

A�1 ¼ �2 1

�1:5 0:5

� �
The computations can be checked by using the relationship A�1A ¼ I.
We showed in Section B.3 that the matrix A�1, as computed here, does
indeed satisfy this relationship.

PROBLEMS

Section B.3

B.1 Determine the matrix C ¼ Aþ 3B if

A ¼
12 �8 15

�8 7 10

15 10 �5

2
64

3
75 B ¼

2 �1 1

�1 4 6

1 6 3

2
64

3
75

B.2 Determine the matrix C ¼ 2A� B if

A ¼
3 7

8 4

2 �2

2
64

3
75 B ¼

�1 6

5 1

3 �4

2
64

3
75

B.3 Determine the products C ¼ AB and D ¼ BA if

A ¼ ½�6 4 �2� B ¼
2

�1
5

2
64

3
75

B.4 Determine the products C ¼ AB and D ¼ BA if

A ¼ 2 �5
�5 3

� �
B ¼ �3 4

4 1

� �

B.5 Show that ðABÞT ¼ BTAT by using the matrices A and
B given here.

A ¼
8 �2 5

1 �4 3

2 0 6

2
64

3
75 B ¼

1 �5
7 0

0 �3

2
64

3
75

Section B.4

B.6 Solve the following system of simultaneous equations
by the Gauss-Jordan method.

2x1 þ 5x2 � x3 ¼ 15

5x1 � x2 þ 3x3 ¼ 27

�x1 þ 3x2 þ 4x3 ¼ 14

B.7 Solve the following system of simultaneous equations
by the Gauss-Jordan method.

�12x1 � 3x2 þ 6x3 ¼ 45

5x1 þ 2x2 � 4x3 ¼ �9
10x1 þ x2 � 7x3 ¼ �32
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B.8 Solve the following system of simultaneous equations
by the Gauss-Jordan method.

5x1 � 2x2 þ 6x3 ¼ 0

�2x1 þ 4x2 þ x3 þ 3x4 ¼ 18

6x1 þ x2 þ 6x3 þ 8x4 ¼ �29
3x2 þ 8x3 þ 7x4 ¼ 11

B.9 Determine the inverse of the matrix shown using the
Gauss-Jordan method.

A ¼
4 �3 �1
�2 5 1

6 �4 �5

2
64

3
75

B.10 Determine the inverse of the matrix shown using the
Gauss-Jordan method.

A ¼
4 2 0 �3
2 3 �4 0

0 �4 2 �1
�3 0 �1 5

2
6664

3
7775
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C
Computer Software

A computer program for analyzing plane-framed structures is available
on the publisher’s website www.cengage.com/engineering. The software,
which can be used to analyze plane trusses, continuous beams, and
plane frames, is based on the matrix sti¤ness (displacement) method
described in Chapter 18. The software is designed for use on IBM and
IBM-compatible personal computers with Microsoft Windows1 Oper-
ating Systems, and it provides an option for saving input data into files
for subsequent modification and/or execution.

Complete instructions for downloading and installing the software
are provided on the publisher’s website www.cengage.wadsworth.com.

STARTING THE COMPUTER SOFTWARE

To start the computer software:

1. Click the Start button on the taskbar.
2. Point to the menu title Programs and then click the menu item

Structural Analysis 4.0 by A. Kassimali; the software’s title screen
will appear as shown in Fig. C.1.

INPUTTING DATA

The computer software is interactive in the sense that the user inputs
information about the structure by responding to questions and prompts
on the screen. The software is designed so that any consistent set of units
may be used. Thus all the data must be converted into a consistent set of

837
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units before being entered into the software. For example, if we wish to
use the units of kN and meter, then the joint coordinates must be de-
fined in meter, the moduli of elasticity in kN/m2, the areas of cross
section in m2, the moments of inertia in m4, the joint forces and mo-
ments in kN and kN/m, respectively, and the uniformly distributed
member loads in kN/m.

To start inputting data for a structure, click the menu title
Project; and then click the menu item New Project (Fig. C.2). The
input data necessary for the analysis of a structure consist of the
following:

FIG. C.1 Title Screen

FIG. C.2 Project Menu
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1. General Structural Data Input (a) the project title, and (b) the
structure type, as shown in Fig. C.3.

2. Joint Coordinates and Supports Input the X and Y coordinates
of each joint, and restraints for each support joint, as shown in Fig. C.4.
A plot of the joint coordinates and supports will appear on the screen,
which can be used to verify that the joint coordinates and restraints have
been entered correctly (Fig. C.5).

3. Material Properties Enter the modulus of elasticity (E) for each
material (Fig. C.6).

4. Cross-Sectional Properties Enter the cross-sectional area (A)
and moment of inertia (I ) for each cross-sectional property set
(Fig. C.7). For beams, the cross-sectional areas are not needed; whereas
for trusses, the moments of inertia are not needed.

5. Member Data For each member, input (a) the beginning joint,
(b) the end joint, (c) the material number, and (d) the cross-sectional
property set number (Fig. C.8). For frames and beams, the member
releases option can be used to define any hinges at the member ends.
The origin of the local coordinate system for a member is located at
the beginning of the member, with the x axis directed from the begin-
ning joint to the end joint. The positive direction of the local y axis is
defined by the right-hand rule, with the z axis pointing out of the plane
of the page. A plot of the structure appears on the screen, which can be
used to verify that the geometry of the structure have been entered
correctly.

FIG. C.3 General Structural Data Screen
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FIG. C.4 Joint Coordinates and Supports Screen

FIG. C.5 A Graphics Display of Joints
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6. Joint Loads When analyzing a frame, enter for each joint that is
loaded, the joint number, the forces in the global X and Y directions,
and the moment (Fig. C.9). In the case of a beam, input only the force
in the Y direction and the moment; whereas, for a truss, input only the

FIG. C.6 Material Properties Screen

FIG. C.7 Cross-Sectional Properties Screen
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forces in the X and Y directions. Since the software does not consider
member concentrated loads, frame and beam members subjected to such
loads must be subdivided into elements (i.e., smaller members) con-
nected together by rigid joints at the locations of the concentrated loads,
for the purpose of analysis.

7. Uniformly Distributed Loads on Frame and Beam Members For
each member subjected to uniformly distributed loading, enter the mem-
ber number and the load intensity (w), as shown in Fig. C.10. Note that
the uniformly distributed load, w, is considered to be positive if it acts in
the direction opposite to the member local y axis.

8. Support Settlements, Temperature Changes and Fabrication
Errors These e¤ects can be input in a manner similar to that for the
joint and member loads.

FIG. C.8 Member Data Screen
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FIG. C.9 Joint Loads Screen

FIG. C.10 Member Loads Screen
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RESULTS OF THE ANALYSIS

Once all the necessary data have been entered, click the menu title
Analysis of the main screen to analyze the structure (Fig. C.11). The
software will automatically compute the joint displacements, member
end forces, and support reactions by using the matrix sti¤ness (dis-
placement) method described in Chapter 18. The results of the anal-
ysis are displayed on the screen. The input data as well as the results
of the analysis can be printed by clicking on the menu title Project
and then clicking on the menu item Print, of the main screen, as
shown in Fig. C.12.

FIG. C.11 Main Screen
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FIG. C.12 Results of the Analysis

Example C.1

Analyze the two-story frame shown in Fig. C.13(a) using the computer software.

FIG. C.13 continued
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Solution
This frame was previously analyzed in Example 16.12 by the slope-deflection method, which takes into account only the
bending deformations of structures.

The analytical model of the frame is shown in Fig. C.13(b), and the input data are shown on the screen displays
given in Figs. C.3 through C.12. The computer printout, which contains the input data and the results of the analysis, is
shown in Fig. C.14. Note that the results of the computerized analysis are in agreement with those determined pre-
viously by the slope-deflection method.

continuedFIG. C.14 Computer Printout for Two-Story Frame
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FIG. C.14 (contd.) continued

Results of the Analysis 847

https://engineersreferencebookspdf.com



FIG. C.14 (contd.)
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PROBLEMS

C.1 and C.2 Using the computer software, determine the
smallest cross-sectional area A for the members of the
trusses shown in parts (a) through (c) of Figs. PC.1 and
PC.2, so that the maximum vertical deflection does not

FIG. PC.1

exceed the limit of 1/360 of the span length (i.e.,
Dmax aL=360).

FIG. PC.2

C.3 Using the computer software, determine the smallest
moment of inertia I required for the frame shown, so that
the horizontal deflection of its top right joint does not ex-
ceed 20 mm.

Problems 849
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FIG. PC.3
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Answers to Selected Problems

CHAPTER 2

2.1 Beam CD: w ¼ 9:4 kN/m; Girder AE: w ¼ 1:63 kN/m;

PC ¼ 35:25 kN; PA ¼ PE ¼ 19:34 kN

2.3 Beam BF : w ¼ 16:04 kN/m; Girder AD: w ¼
1:97kN/m; PB ¼ PC ¼ 80:2 kN; PA ¼ PD ¼ 41:85 kN

2.5 Beam CD: w ¼ 6:9 kN/m; Girder AE: PC ¼ 25:9 kN;

PA ¼ PE ¼ 13 kN

2.7 Beam EF : w ¼ 3 kN/m; Girder AG: PC ¼ PE ¼ 9

kN; PA ¼ PG ¼ 4:5 kN; Column A: P ¼ 13:5 kN

2.9 Windward side: �76.7 N/m2 and 191.7 N/m2; Lee-

ward side: �460.2 N/m2

2.11 Windward wall: 0.67 kPa for 0a za 5 m; 0.77 kPa

for z ¼ 10 m; Leeward wall: �0.4 kPa

2.13 0.7 kN/m2

CHAPTER 3

3.1 (a) Determinate; (b) Indeterminate, ie ¼ 2; (c) In-

determinate, ie ¼ 1; (d) Unstable

3.3 (a) Unstable; (b) Unstable; (c) Indeterminate, ie ¼ 1;

(d) Unstable

3.5 Ax ¼ 0; Ay ¼ 147:825 kN "; By ¼ 246:375 kN "
3.7 Ax ¼ 150 kN!; Ay ¼ 0;MA ¼ 1; 200 kN�m

1

3.9 Ax ¼ 0; Ay ¼ 220 kN "; MA ¼ 650 kN�m

’

3.11 Ay ¼ 145:31 kN "; Bx ¼ 0; By ¼ 272:89 kN "

3.13 Ax ¼ 37:5 kN!;Ay ¼ 100 kN"; RB ¼ 62:5 kN

’

3.15 For 0a xa 20 m: Ay ¼ 45� 2x kN ";
By ¼ 5þ 2x kN "
For 20 ma xa 25 m: Ay ¼ ð25� xÞ2=5 kN ";
By ¼ ð625� x2Þ=5 kN "

3.17 Ay ¼ 457:24 kN "; Bx ¼ 0; By ¼ 90:11 kN "
3.19 Ax ¼ 200 kN ; Ay ¼ 125 kN #;By ¼ 475 kN "
3.21 Ax ¼ 100 kN ; Ay ¼ 216:11 kN "; By ¼ 183:89 kN "
3.23 Ay ¼ 244:07 kN "; Bx ¼ 240 kN ; By ¼ 85:93 kN "
3.25 Ay ¼ 109:5 kN "; Bx ¼ 0; By ¼ 243 kN ";

MB ¼ 2150:25 kN-m

1

3.27 Ax ¼ 184:16 kN ; Ay ¼ 97:48 kN ";
Bx ¼ 140:82 kN  ; By ¼ 130 kN "

3.29 Ax ¼ 0; Ay ¼Dy ¼ 36:5 kN "; By ¼Cy ¼ 435:82 kN "
3.31 Ax ¼ 176:67 kN!; Ay ¼ 356:67 kN ";

Bx ¼ 23:33 kN !; By ¼ 3:33 kN "
3.33 Ax ¼ 55 kN  ; Ay ¼ 216:11 kN "; Bx ¼ 45 kN  ;

By ¼ 183:89 kN "
3.35 Ax ¼ 35:76 kN  ; Ay ¼ 79:45 kN "; Bx ¼ 53:24 kN

 ; By ¼ 168:46 kN "
3.37 Ax ¼ 0;Ay ¼ 80 kN "; By ¼ 480 kN ";

Cy ¼ 128:75 kN "; Dy ¼ 211:25 kN "
3.39 Ax¼61:13 kN ;Ay¼75:74 kN "; Bx¼205:87 kN ;

By¼471:76 kN "
3.41 Ax ¼ 238:59 kN ; Ay ¼ 5:04 kN #;

MA ¼ 585:27 kN-m

’

; Bx ¼ 163:08 kN ;

By ¼ 75:38 kN "; MB ¼ 424 kN-m

’
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CHAPTER 4

4.1 (a) Unstable; (b) Determinate; (c) Determinate;

(d) Unstable

4.3 (a) Indeterminate, i ¼ 2; (b) Indeterminate, i ¼ 1;

(c) Indeterminate, i ¼ 1; (d) Determinate

4.5 (a)Unstable; (b)Unstable; (c)Determinate; (d)Unstable

4.7 FAB ¼ FBC ¼ 77:31 kNðCÞ;FAD ¼ 168:75 kN (T);

FBD ¼ 37:5 kN (C); FCD ¼ 93:75 kN (T)

4.9 FAD ¼ 197:46 kN (C); FAC ¼ 153:21 kN (T);

FCD ¼ 117:85 kN (T); FDE ¼ 191:67 kN (C)

4.11 FAB ¼ FBF ¼ 20 kN (T); FAF ¼ 28:28 kN (C);

FBC ¼ FCD ¼ FCG ¼ 0; FBG ¼ 28:28 kN (T); FFG ¼
20 kN (C)

4.13 FBC ¼ 140 kN (C); FCF ¼ 108:17 kN (T); FCG ¼
72:11 kN (C); FFG ¼ 110 kN (T)

4.15 FDE ¼ 780 kN (C); FDJ ¼ 200 kN (C); FEJ ¼
84:85 kN (T); FJK ¼ 720 kN (T)

4.17 FBC ¼ 120 kN (T); FBF ¼ 60 kN (C); FBG ¼ 63:25 kN

(T); FFG ¼ 189:74 kN (C)

4.19 FCD ¼ 71:4 kN (T); FDI ¼ 18:84 kN (C); FDJ ¼
102:76 kN (T); FIJ ¼ 164:84 kN (C)

4.21 FAC ¼ FBE ¼ 62:5 kN (C); FAD ¼ 0;

FCD ¼ 32:5 kN (C)

4.23 FAC ¼ FCE ¼ 52 kN ðTÞ;FAD ¼ 126 kN (C);

FBC ¼ FCD ¼ 26 kN (C)

4.25 FGH ¼ 27 kN (C); FGM ¼ 18 kN (C); FGN ¼
33:33 kN (T); FHN ¼ 44:67 kN (C); FMN ¼ 7 kN (T)

4.27 FBC ¼ 130 kN (T);FCD ¼ 190 kN (C);

FCF ¼ 100 kN (C); FCG ¼ 300 kN (T)

4.29 FBC ¼ 1:525 kN (T); FBE ¼ 1:5 kN (C); FBG ¼ 1:25

kN (T); FEG ¼ 0:6563 kN (C)

4.31 FBC ¼ 160 kN-m/h (T); FGH ¼ 120 kN-m/h (C)

4.33 FBC ¼ 37:5 kN (T); FCF ¼ 137:88 kN (C); FFG ¼
90 kN (T)

4.35 FAD ¼ 61:85 kN (C); FCD ¼ 45:34 kN (T); FCE ¼
6:87 kN (T)

4.37 FCD ¼ 113:33 kN (T); FCH ¼ 41:67 kN (C);

FGH ¼ 100 kN (C)

4.39 FBC ¼ 144:78 kN (T); FCH ¼ 32:50 kN (C); FHI ¼
18:48 kN (T); FDE ¼ 54:50 kN (T); FEK ¼ 0:28 kN

(C); FKL ¼ 5:5 kN (C)

4.41 FCD ¼ 102:86 kN (C); FDI ¼ 6:17 kN (C); FDJ ¼
35:63 kN (C)

4.43 FCF ¼ 21:08 kN (T); FCG ¼ 27:04 kN (T); FEG ¼
27:04 kN (C)

4.45 FCH ¼ FEK ¼ 134:16 kN (C); FHM ¼ FKO ¼
134:16 kN (T); FEF ¼ 40 kN (C); FLM ¼ 40 kN (T)

4.47 FBC ¼ 45 kN (C); FBF ¼ 215 kN (C);

FEF ¼ 30 kN (T); FEI ¼ 161 kN (T)

4.49 FEF ¼ 220 kN (T); FEL ¼ 56:56 kN (T); FLP ¼
99 kN (T); FOP ¼ 260 kN (C)

4.51 FAD ¼ 2:24 kN (T); FBD ¼ 15:12 kN (C); FCD ¼
17:08 kN (C)

4.53 FAB ¼ 4:36 kN (C); FAC ¼ 12:48 kN (C); FAD ¼
33:26 kN (T); FBC ¼ 17:22 kN (T)

4.55 FAB ¼ 58:34 kN (T); FCD ¼ 31:66 kN (C); FAE ¼
8:24 kN (T); FEF ¼ 56:66 kN (T)

CHAPTER 5

5.1 QA ¼ �40 kN; SA ¼ 32:14 kN; MA ¼ 524:98 kN�m;

QB ¼ 0; SB ¼ �87:14 kN; MB ¼ 261:42 kN�m
5.3 QA ¼ 86:6 kN; SA ¼ 50 kN; MA ¼ �200 kN�m;

QB ¼ SB ¼MB ¼ 0

5.5 QA ¼ 60 kN; SA ¼ 55 kN; MA ¼ �95 kN�m;

QB ¼ 45 kN; SB ¼ 60 kN; MB ¼ �120 kN�m

5.7 QA ¼ QB ¼ 0; SA ¼ �50 kN; MA ¼ 50 kN�m;

SB ¼ �62:5 kN; MB ¼ �150 kN�m
5.9 QA ¼ QB ¼ SB ¼ 0; SA ¼ 200 kN;

MA ¼ �750 kN�m;MB ¼ 250 kN�m

5.11 QA ¼�40.5 kN; SA ¼54 kN; MA ¼ MB ¼324 kN-m;

QB ¼40.5 kN; SB ¼ �54kN
5.13 For 0 < x < ðL=3Þ: S ¼ 2P=3; M ¼ 2Px=3

For ðL=3Þ < x < L: S ¼ �P=3; M ¼ PðL� xÞ=3
5.15 S ¼ wðL� 2xÞ=2; M ¼ wxðL� xÞ=2
5.17 S ¼M=L

For 0 < x < ð2L=3Þ: Bending Moment ¼Mx=L

For ð2L=3Þ<x<L: Bending Moment¼Mðx�LÞ=L
5.19 S ¼ wðL2 � 3x2Þ=ð6LÞ; M ¼ wxðL2 � x2Þ=ð6LÞ
5.21 For 0 < x < 3 m: S ¼ 20; M ¼ 20x

For 3 m < x < 6 m: S ¼ 0; M ¼ 60

For 6 m < x < 9 m: S ¼ �20; M ¼ �20xþ 180
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5.23 For 0 < xa 7 m: S ¼ �60; M ¼ �60x
For 7 ma x < 14 m: S ¼ 10ð1� xÞ; M ¼ �5x2 þ
10x� 245

5.25 For 0<x< 6 m: S¼�ð15x2=12Þ�15xþ33:75; M¼
�ð15x3=36Þ�ð15x2=2Þþ33:75x

For 6 m < x < 9m: S ¼ �ð15x2=12Þ � 15xþ 236:25;

M ¼ �ð15x3=120Þ � ð15x2=2Þ þ 236:25x� 1215

5.27 For 0 < xa 5 m (from A to B): S ¼ �2x2 þ 83:33;

M ¼ �ð2x3=3Þ þ 83:33x

For 0 < x1 a 10 m (from C to B): S ¼ x2
1 � 66:7;

M ¼ �ðx3
1=3Þ þ 66:67x1

5.29 SA;R ¼ SB;L ¼ 90 kN; SB;R ¼ SC;L ¼ �10 kN;

SC;R ¼ SD;L ¼ �70 kN; MB ¼ 450 kN�m; MC ¼
350 kN�m

5.31 SA;R¼SB;L¼�45 kN; SB;R¼SC;L¼105 kN;

SC;R¼SD;L¼15 kN; SD;R¼SE;L¼�75 kN;

MB¼�112:5kN-m;MC¼150 kN-m;MD¼187:5kN-m

5.33 SA;R¼SB;L¼�55 kN;SB;R¼SC;L¼110 kN; SC;R¼
SD;L¼0; SD;R¼SE;L¼�110kN; SE;R¼SF ;L¼
55kN;MB¼ME¼�165kN-m; MC¼MD¼165 kN-m

5.35 SA;R ¼ SB;L ¼122.68 kN;SB;R ¼ SC ¼�12.32 kN;

SD;L ¼�117.32 kN-m;MA ¼MD ¼ 0;

MB ¼245.36 kN-m;MC ¼226.88 kN-m

5.37 SA;R ¼ SB;L ¼ 225 kN; SB;R ¼ SC ¼ 150 kN;

SD ¼ 0; MA ¼ �2;700 kN�m;

MB ¼ �1;350 kN�m; MC ¼ �450 kN�m; MD ¼ 0

5.39 SB;L¼�135kN; SB;R ¼ 180kN; SC;L¼�180kN;

SC;R¼ 135kN; MB¼MC ¼�202:5kN-m;

þMmax¼ 157:5 kN-m, at 7 m from A

5.41 SA;R ¼ �45 kN; SB;L ¼ �112.5 kN; SB;R ¼ 135kN;

SC;L ¼ �135kN; SC;R ¼112.5 kN; SD;L ¼ 45kN;

MB¼MC ¼�118.125 kN-m;þMmax¼84:375kN-m,

at 4.5 m from A

5.43 SA;R¼SB;L¼�35 kN; SB;R¼104:56 kN; SC;L¼
�93:44 kN; SC;R¼SD¼0; MB¼�105 kN-m; MC¼
MD¼�55 kN-m; þMmax¼143:33 kN-m, at 7.75 m

from A

5.45 SA;R ¼ SB;L ¼ 80 kN; SB; R ¼ SC ¼ �35 kN;

SD; L ¼ �125 kN; SD; R ¼ 120 kN;

MA ¼ �540 kN�m;MB ¼ 420 kN�m;

MD ¼ �720 kN�m

5.47 SA;R ¼ 50.83 kN; SB;L ¼ �84.17 kN;

SB;R ¼ 72.5 kN; SC ¼ SD; L ¼ 27.5 kN;

SD; R ¼ SE; L ¼ �27.5 kN; MB ¼ �150 kN-m;

MD ¼ 82.5kN-m; þMmax ¼ 86:16 kN-m,at3.39mfromA

5.49 SA;R ¼ 90 kN;SC; L ¼ �180 kN;

SC;R ¼ 157:5 kN;SE; L ¼ �112:5 kN;

SE;R ¼ 157:5 kN;SF ; L ¼ �112:5 kN;

MC ¼ �675 kN �m;ME ¼ �337:5 kN�m;

þMmax ¼ 351:6 kN�m; at 6.25 m to the left of F

5.51 SA;R ¼ 125 kN; SC;L ¼ �250 kN; SC;R ¼ 187:5 kN;

SD;L ¼ �187:5 kN; SD;R ¼ 250 kN; SF ;L ¼ �125
kN; MC ¼MD ¼ �937:5 kN�m; þMmax ¼ 312:5

kN �m, at 5 m from A and F

5.53 (a) a ¼ 3 m; (b) SA;R ¼ SB;L ¼ 50 kN; SB;R ¼
SC;L ¼ �100 kN; SC;R ¼ SD;L ¼ 150 kN; MB ¼ 450

kN�m; MC ¼ �450 kN�m

5.55 (a) Determinate; (b) Unstable; (c) Indeterminate,

i ¼ 6; (d) Indeterminate, i ¼ 5

5.57 Member AB: Smax ¼ 74:33 kN; Mmax ¼ 334:5 kN-m;

Q ¼ 0

Member BC: Smax ¼ �55 kN; Mmax ¼ 165 kN-m;

Q ¼ �37:67 kN

5.59 Member AB: Smax ¼ 48 kN; Mmax ¼ 120 kN�m;

Qmax ¼ �104 kN

Member BC: Smax ¼ �48 kN; Mmax ¼ 96 kN�m;

Q ¼ �24 kN

5.61 Member AB: Smax ¼ �204:97 kN; Mmax ¼
416:67 kN�m; Q ¼ �260:87 kN

Member BC: Smax ¼ 141:67 kN; Mmax ¼
416:67 kN�m; Q ¼ �300 kN

5.63 Member AB: S ¼ 227:4 kN; Mmax ¼ 2130:8 kN-m;

Q ¼ �123:2 kN
MemberBC:Smax ¼ 154 kN;Mmax ¼ 539 kN-m;Q ¼ 0

5.65 Member AC: Smax ¼ 108 kN; Mmax ¼ 486 kN�m;

Q ¼ �7:65 kN

Member BD: S ¼M ¼ 0; Q ¼ �217:35 kN

Member CE: Smax ¼ �142:35 kN; Mmax ¼
487:95 kN�m; Q ¼ 0

5.67 Member AB: S ¼ 43 kN; Mmax ¼ 279:5 kN-m; Q ¼
�49:5 kN

Member BC: Smax ¼ �140:25 kN; Mmax ¼ 335 kN-m;

Qmax ¼ �79:16 kN

Member CD: Smax ¼ 67 kN; Mmax ¼ 335 kN-m;

Q ¼ �125:5 kN
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5.69 Member AB: Smax ¼ �110 kN; Mmax ¼ 680 kN-m;

Q ¼ �135 kN

Member BC: Smax ¼ 135 kN; Mmax ¼ 680 kN-m;

Q ¼ �110 kN

Member CD: Smax ¼ 110 kN; Mmax ¼ 275 kN-m;

Q ¼ 0

5.71 MemberAC:S ¼ 5 kN;Mmax ¼ 25 kN-m;Q ¼ �55 kN
Member CE: Smax ¼ �165 kN; Mmax ¼ 575 kN-m;

Q ¼ �115 kN

Member EG: S ¼ 115 kN; Mmax ¼ 575 kN-m;

Q ¼ �165 kN

CHAPTER 6

6.1 y ¼ � M

6EIL
ð3x2 � 6Lxþ 2L2Þ;

y ¼ � M

6EIL
ðx3 � 3Lx2 þ 2L2xÞ

6.3 For 0a xa a: y ¼ wx

2EI

�
a2 � L2 þ ðL� aÞx

�
;

y ¼ wx2

2EI

a2 � L2

2
þ ðL� aÞx

3

� �
For aa xaL: y ¼ w

2EI
xLðx� LÞ �x3

3
þ a3

3

� �
;

y ¼ w

2EI
x2L

x

3
� L

2

� �
� x4

12
� a4

12
þ a3x

3

" #

6.5 y ¼ wx

24EIL
ð�x3 þ 6L2x� 8L3Þ;

y ¼ wx2

120EIL
ð�x3 þ 10L2x� 20L3Þ

6.7 y ¼ 0:0174 rad
1

; y ¼ 34:8 mm #
6.9 and 6.35 yB ¼ 0:00703 rad

1

; DB ¼ 23:4 mm #
6.11 and 6.37 yB ¼ Pa2=2EI

1

; DB ¼ Pa2ð3L� aÞ=6EI #
6.13 and 6.39 yA ¼ wL3=8EI ’ ; DA ¼ 11wL4=120EI #
6.15 and 6.41 yB ¼ 0:0514 rad

1

; DB ¼ 180 mm #
yC ¼ 0:0771 rad

1

; DC ¼ 373 mm #
6.17 and 6.43 yB ¼ 0:00304 rad

1

; DB ¼ 67 mm #
yC ¼ 0:0122 rad ’ ; DC ¼ 54:8 mm #

6.19 and 6.45 227:8 ð106Þmm4

6.21 and 6.47 9,585 (106) mm4

6.23 and 6.49 38.5 mm #
6.25 and 6.51 Dmax ¼ 146mm #; at 10.95 m from A

6.27 and 6.53 Dmax ¼ 47:5mm #; at 4.63 m from A

6.29 and 6.55 0.52 mm #
6.31 and 6.57 yD ¼ 0:0133 rad

2

; DD ¼ 66:53 mm "
6.33 and 6.59 yB ¼ 0:01172 rad

1

; DB ¼ 28:4 mm #
yD ¼ 0:0103 rad

2

; DD ¼ 28:8 mm #

CHAPTER 7

7.1 and 7.45 DBH ¼ 4:82 mm  ; DBV ¼ 31:4 mm #
7.3 and 7.47 DBH ¼ 9:6 mm !; DBV ¼ 2:13 mm "
7.5 and 7.49 DBH ¼ 9:64 mm  ; DBV ¼ 50:73 mm #
7.7 9.1 mm #
7.9 23 mm !
7.11 3,050 mm2

7.13 882.5 mm2

7.15 820 mm2

7.17 30.5 mm #
7.19 40.7 mm "
7.21 and 7.52 yB ¼ 0:0174 rad

1

; DB ¼ 34:8 mm #
7.23 and 7.54 373 mm #
7.25 and 7.56 0.25 mm "
7.27 126 ð106Þmm4

7.29 and 7.57 yD ¼ 0:01339 rad

2

; DD ¼ 67 mm "
7.31 and 7.59 60.9 mm #
7.33 and 7.60 81.3 mm!
7.35 3.33 mm !
7.37 19.2 mm #
7.39 and 7.62 0.182 m!
7.41 1080 (106) mm4

7.43 0.00386 rad

1

CHAPTER 8

8.1 Ay: 1 at A; 0 at C

Cy: 0 at A; 1 at C

SB: 0 at A and C; �0.5 at BL; 0.5 at BR

MB: 0 at A and C; 2.5 at B

8.3 Ay: 1 at A; 0 at C

Cy: 0 at A; 1 at C
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SB: 0 at A and C; �0.75 at BL; 0.25 at BR

MB: 0 at A and C; 0.75 at B

8.5 By: 1.25 at A; 0 at D

Dy: �0.25 at A; 0 at B; 1 at D

SC : 0.25 at A; 0 at B and D; �0.5 at CL; 0.5 at CR

MC : �1 at A; 0 at B and D; 2 at C

8.7 Ay: 1 at A; 0 at C

Cy: 0 at A; 1 at C

SA;R: 1 at A; 0 at C

MB: 0 at A and C; 0.75 at B

8.9 Ay: 1 at A and C

MA ðþ 2Þ: 0 at A; 5 at C

SB: 0 at A and BL; 1 at BR and C

MB: 0 at A and B; �2 at C

8.11 SE : 0 at B, D, and EL; 1 at ER and F

ME : 0 at B, D, and E; �4 at F

8.13 Ay: 1 at A; 0 at C and E

Ey: 0 at A; 1 at C and E

ME ðþ

1 Þ: 0 at A and E; 8 at C

8.15 SD: 0 at A, DR, and E; �1 at C and DL

MD: 0 at A, D, and E; �4 at C

8.17 Ay: 1 at C; 0 at E; �0.5 at F

By: 0 at C; 1.5 at F

SD: 0 at C and E; �0.5 at DL and F ; 0.5 at DR

MD: 0 at C and E; 1 at D; �1 at F

8.19 Ay: 0 at B and E; 2 at D

By: 1 at B; 0 at C and E; �1 at D

Ey: 0 at B, C, and D; 1 at E

SD: 0 at B, C, DL, and E; 1 at DR

8.21 SC : 0:5 at A; 0 at B;D;E;F ; and G;

�0:5 at CL; 0:5 at CR

MC : �1 at A; 0 at B;D;E;F ; and G; 1 at C

SD : 0:5 at A; 0 at B;DR;E;F ; and G;

�0:5 at C;�1 at DL

8.23 Ay: 1 at A; 0 at B, C, E, F , and G

Cy: 0 at A, E, and G; 1.333 at B; �0.25 at F

Ey: 0 at A, C, and G; �0.333 at B; 1.25 at F

Gy: 0 at A, B, C, E, and F ; 1 at G

8.25 SD: 0 at A, C, E, and G; 0.333 at B; �0.5 at DL; 0.5

at DR; �0.25 at F

MD: 0 at A, C, E, and G; �2 at B; 3 at

D; �1.5 at F

8.27 By : 1:67 at A; 1 at B; 0 at C;D;E;F and G

Dy : �1:17 at A; 0 at B;F and G; 1:75 at C; 1 at D

Gy : 0:5 at A; 0 atB andD;�0:75 atC; 1 andF and G

MGðþ

1 Þ : 1 at A; 0 at B;D and G;�1:5 at C; 2 at F

8.29 Ay: 1 at A and B; 0 at D, E, and G

Ey: 0 at A, B, and G; 1.667 at D

Gy: 0 at A, B, and E; �0.667 at D; 1 at G

MA ðþ 2Þ: 0 at A, D, E, and G; 4 at B

8.31 Ay: 1 at A and C; 0 at D and F

Fy: 0 at A and C; 1 at D and F

MA ðþ 2Þ: 0 at A, D, and F ; 10 at C

MF ðþ 2Þ: 0 at A, C, and F ; �6 at D

8.33 Ay : 1 at A; 0 at B;E;G and H;�0:75 at C

By : 0 at A;E;G and H; 1:75 at C

8.35 Ax: 0 at C and E; 0.5 at D

Ay: 1 at C; 0 at E

Bx: 0 at C and E; �0.5 at D

By: 0 at C; 1 at E

8.37 Ay: 1 at B, C, and D; 0 at F

MA ðþ 2Þ: �5 at B; 0 at C and F ; 5 at D

Fy: 0 at B, C, and D; 1 at F

SE : 0 at B, C, D, and F ; �0.5 at EL; 0.5 at ER

ME : 0 at B, C, D, and F ; 2.5 at E

8.39 Ay: 1 at D; 0 at F and H; �0.75 at G

By: 0 at D and H; 1 at F ; 1.75 at G

Cy: 0 at D, F , and G; 1 at H

SE : 0 at D, F , and H; �0.5 at EL; 0.5 at

ER; �0.75 at G

ME : 0 at D, F , and H; 2 at E; �3 at G

8.41 SDE : 0:667 at A; 0 at C and F ;�0:333 at D;

0:333 at E;�0:667 at H

ME : �4 at A; 0 at C and F ; 4 at E;�8 at H

8.43 SBC : �1 at A and B; 0 at C, D, and E

MC : �10 at A; 0 at C, D, and E

Answers to Selected Problems 857

https://engineersreferencebookspdf.com



8.45 FAB: 0 at A and C; 0.5 at B

FAD: 0 at A and C; �0.707 at B

FBD: 0 at A and C; 1 at B

8.47 FDH : 0 at A, B, C, and E; 1 at D

FCD: 0 at A and E; 1 at D

FGH : 0 at A and E; �1.33 at C

FCH : 0 at A and E; 0.833 at C; �0.417 at D

8.49 FDE : 0 at A, B, C, and D; �0.667 at E

FCG: 0 at A and D; �0.401 at B and E; 0.401 at C

FGH : 0 at A and D; �0.889 at C; 0.889 at E

FBC : 0 at A and D; 0.667 at B and C; �0.667 at E

8.51 FCD: �1.6 at A; 0 at C, D, E, F , and G

FCI : �1.8 at A; 0 at C and E; �0.5 at D; 1 at G

FDI : 1.494 at A; 0 at C and E; 0.534 at D; �1.067 at G

FDJ : �0.333 at A and G; 0 at C and E; 0.167 at D

8.53 FAB: 0 at A and G; �1.11 at B

FDI : 0 at A and G; 0.556 at C; �0.833 at D

FIJ : 0 at A and G; 2 at D

FCI : 0 at A and G; �0.333 at C; 0.5 at D

8.55 FBC : 0 at E, F , and G; �4.123 at D

FBF : 0 at E, F , and D; 0.5 at G

FBG: 0 at E, F , and D; �2.236 at G

FFG: 0 at E and F ; 2 at G; 4 at D

8.57 FAD: 0 at C and E; �1 at D; 1 at F

FBD: 0 at C, D, and E; �1.67 at F

FCD: 1.33 at C; 0 at D, E, and F

8.59 DB: 0 at A and C; �20.833/(EI ) at B
8.61 DD: 0 at A and C; � 0:6

ðEIÞ at D

CHAPTER 9

9.1 �30 kN-m

9.3 �23.3625 kN

9.5 Maximum Ay ¼ 275 kN ";
Maximum MA ¼ 937:5 kN-m

2

9.7 Maximum Positive SD ¼ 187:148 kN;

Maximum Negative SD ¼ �146:338 kN

Maximum Positive MD ¼ 1193 kN-m;

Maximum Negative MD ¼ �668 kN-m

9.9 608 kNðCÞ
9.11 Maximum Tensile FDI ¼ 800:9 kN ðTÞ;

Maximum Compressive FDI ¼ 302:1 kN ðCÞ
9.13 SB ¼ 92:5 kN; MB ¼ 487:5 kN�m

9.15 307.2 kN-m

9.17 88.56 kN (T)

9.19 170 kN

9.21 295.87 kN-m

9.23 240.2 kN-m

CHAPTER 10

10.17 FAC ¼ 118:55 kN (C); FBC ¼ 166:02 kN (T)

10.19 FDE ¼ 877:5 kN (C); FDJ ¼ 225 kN ðCÞ;
FEJ ¼ 95:36 kN (T); FJK ¼ 810 kN ðTÞ

10.21 AAD
X ¼ 20 kN !; AAD

Y ¼ 197:33 kN "; DAD
X ¼

20 kN ; DAD
Y ¼ 197:33 kN #;MAD

D ¼ 240 kN�m

1

10.23 BBG
X ¼ 105 kN  ; BBG

Y ¼ 155 kN "; MBG
B ¼

525 kN-m

2

; GBG
X ¼ 105 kN !; GBG

Y ¼ 155 kN #;
MBG

G ¼ 525 kN-m

2

CHAPTER 12

12.1 SL ¼ SR ¼ 90 kN "; ML ¼ 48:6 kN�m

2

; MR ¼
48:6 kN�m

1

12.3 Girder DE: SL ¼ SR ¼ 80 kN; ML ¼ 57:6 kN�m

2

;

MR ¼ 57:6 kN�m

1

Girder EF : SL ¼ SR ¼ 50 kN; ML ¼ 22:5 kN�m

2

;

MR ¼ 22:5 kN�m

1

12.5 Girder DE: SL ¼ SR ¼ 80 kN; ML ¼ 57:6 kN�m

2

;

MR ¼ 57:6 kN�m

1

Girder HI : SL ¼ SR ¼ 60 kN; ML ¼ 64:8 kN�m

2

;

MR ¼ 64:8 kN�m

1
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12.7 Member AD: Q ¼ 56:25 kN (T); S ¼ 56:25 kN; M ¼
168:75 kN-m
Member BE: Q ¼ 0; S ¼ 112:5 kN; M ¼ 337:5 kN-m
Member EF : Q ¼ 56:25 kN (C); S ¼ 56:25 kN; M ¼
168:75 kN-m

12.9 Member AD: Q ¼ 75 kN (C); S ¼ 67:5 kN; M ¼
168:75 kN-m
Member CF : Q ¼ 75 kN (T); S ¼ 67:5 kN; M ¼
168:75 kN-m
Member DE: Q ¼ 45 kN (C); S ¼ 60 kN; M ¼
225 kN-m
Member HI : Q ¼ 67:5 kN (C); S ¼ 15 kN; M ¼
56:25 kN-m

12.11 Member AD: Q ¼ 47:25 kN (C); S ¼ 45 kN; M ¼
81 kN-m
MemberCF :Q ¼ 63 kN (T); S ¼ 45 kN;M ¼ 81 kN-m
Member DE: Q ¼ 28:125 kN (C); S ¼ 37:125 kN;

M ¼ 111:375 kN-m
Member HI : Q ¼ 50:625 kN (C); S ¼ 13:5 kN; M ¼
30:375 kN-m

12.13 Member AE: Q ¼ 34:22 kN (T); S ¼ 29:17 kN; M ¼
70 kN-m
Member CG: Q ¼ 45:11 kN (C); S ¼ 58:34 kN; M ¼
140 kN-m
Member EF : Q ¼ 58:33 kN (C); S ¼ 24:89 kN; M ¼
112 kN-m
Member JK:Q ¼ 35 kN (C);S ¼ 28 kN;M ¼ 84 kN-m

12.15 Member AD: Q ¼ 56:25 kN (T); S ¼ 56:25 kN; M ¼
168:75 kN-m
Member BE: Q ¼ 0; S ¼ 112:5 kN; M ¼ 337:5 kN-m
Member EF : Q ¼ 56:25 kN (C); S ¼ 56:25 kN; M ¼
168:75 kN-m

12.17 Member AD: Q ¼ 75 kN (C); S ¼ 67:5 kN; M ¼
168:75 kN-m
Member CF : Q ¼ 75 kN (T); S ¼ 67:5 kN; M ¼
168:75 kN-m

Member DE: Q ¼ 45 kN (C); S ¼ 60 kN; M ¼
225 kN-m

Member HI : Q ¼ 67:5 kN (C); S ¼ 15 kN; M ¼
56:25 kN-m

12.19 Member AD: Q ¼ 56:96 kN (C); S ¼ 54:23 kN;

M ¼ 97:62 kN-m
Member CF : Q ¼ 51:78 kN (T); S ¼ 36:97 kN; M ¼
66:55 kN-m
Member DE: Q ¼ 33:88 kN (C); S ¼ 44:75 kN; M ¼
134:25 kN-m

Member HI : Q ¼ 54:58 kN (C); S ¼ 11:1 kN; M ¼
24:98 kN-m

12.21 Member AE: Q ¼ 42:82 kN (T); S ¼ 18:52 kN; M ¼
44:46 kN-m

Member CG: Q ¼ 10:71 kN (C); S ¼ 68:92 kN; M ¼
165:42 kN-m

Member EF : Q ¼ 82:36 kN (C); S ¼ 26:32 k; M ¼
118:58 kN-m

Member JK : Q ¼ 35 kN (C); S ¼ 6:59 kN; M ¼
19:77 kN-m

CHAPTER 13

13.1 and 13.5 Ay ¼ 99:26 kN "; MA ¼ 233:3 kN�m

2

; Dy ¼
60:74 kN "

13.3 and 13.7 Ay ¼ 28:13 kN "; Cy ¼ 91:87 kN "; MC ¼
307:4 kN�m

1

13.9 and 13.30 Ay ¼ Ey ¼ 78:125 kN "; Cy ¼ 343:75 kN "
13.11 and 13.32 Ay ¼ Ey ¼ 62:5 kN "; Cy ¼ 275 kN "
13.13 Ay ¼ 141:8 kN "; Cy ¼ 428:9 kN "; Dy ¼ 104:3 kN "
13.15 Ay ¼ 13:125 kN #; MA ¼ 91:875 kN�m

1

; By ¼
223:125 kN "

13.17 Ay ¼ ð13 wLÞ=32 "; By ¼ ð17 wLÞ=16 "; Cy ¼
ð33 wLÞ=32 "

13.19 AX ¼ 200 kN  ; AY ¼ 57:03 kN "; MA ¼
820:3 kN�m

2

; DY ¼ 92:97 kN "
13.21 AX ¼ 33:33 kN!; AY ¼ 168:75 kN "; CX ¼ 41:67 k

!; CY ¼ 81:25 kN "
13.23 AX ¼ 0; AY ¼ 8:23 kN #; MA ¼ 675:8 kN�m

1

;

BY ¼ 98:23 kN "
13.25 AX ¼ 150 kN ; AY ¼ 0; MA ¼ 267:9 kN-m

2

;

BY ¼ 10:71 kN #; DY ¼ 10:71 kN "
13.27 Ax ¼ 50 kN  ; Ay ¼ 58:5 kN "; Cy ¼ 207:4 kN ";

Dy ¼ 34 kN "
13.29 Ax ¼ 2:7 kN  ; Ay ¼ 20 kN #; Bx ¼ 57:3 kN  ;

By ¼ 100 kN "
13.35 FBC ¼ 119:8 kN (C); FAD ¼ 130:2 kN (T); FAC ¼

162:5 kN (T); FBD ¼ 170:8 kN (C)

13.37 Ay ¼ 92:8 kN "; MA ¼ 114:3 kN�m

2

; By ¼
228:6 kN "; Cy ¼ 78:6 kN "

13.39 Ay ¼ 29:1 kN ";Cy ¼ 138:7 kN ";
Ey ¼ 171 kN "; Gy ¼ 51:2 kN "

13.41 Ay ¼ Gy ¼ 115 kN "; By ¼ Fy ¼ 315 kN ";
Dy ¼ 240 kN "
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13.43 AX ¼ 60 kN !; AY ¼ 136:5 kN "; EX ¼ 40 kN !;

EY ¼ 123:5 kN "; ME ¼ 122:4 kN-m

1

13.45 AX ¼ 21:45 kN ;AY ¼ 116:25 kN";MA ¼ 107:9 k-ft

2

;

BX ¼ 78:55 kN ;BY ¼ 183:75 kN ";MB ¼ 222:1 k-ft

2

13.47 Ax ¼ 51:87 kN!;Ay ¼ 69:45 kN ";Cy ¼ 30:55 kN ";
Dx ¼ 51:87 kN ; FBD ¼ 61:23 kN (T)

13.49 Ay ¼ 179:5 kN "; MA ¼ 955:5 kN�m

2

; Dy ¼
19:5 kN #

13.51 Ay ¼ 133:6 kN"; By ¼ 177 kN"; Cy ¼ 89:4 kN"
13.53 Ay ¼ 165:2 kN "; MA ¼ 449:4 kN�m

2

; By ¼
125:8 kN "; Cy ¼ 109 kN "

13.55 FBC ¼ FEF ¼ 37:34 kN (C); FBF ¼ FCE ¼ 46:67 kN (T)

13.57 FAB ¼ 15:13 kN (C); FAC ¼ FBC ¼ 42:78 k (T); FCD ¼
60:5 kN (T)

CHAPTER 14

14.1 Ay ¼ Ey ¼ 62:5 kN "; Cy ¼ 275 kN "
14.3 Ay ¼ 141:8 kN "; Cy ¼ 428:9 kN "; Dy ¼ 104:3 kN "
14.4 and 14.11 Ay ¼ 13:125 kN #; MA ¼ 91:875 kN�m

1
;

By ¼ 223:125 kN "
14.7 Ay ¼ 125:64 kN"; By ¼ 354:86 kN";

Cy ¼ 298:36 kN"; Ey ¼ 71:14 kN"
14.9 Ay ¼ 133:7 kN"; By ¼ 176:7 kN"; Cy ¼ 89:6 kN"
14.13 FBC ¼ 119:8 kN (C); FAD ¼ 130:2 kN (T); FAC ¼

162:5 kN (T); FBD ¼ 170:8 kN (C)

CHAPTER 15

15.1 and 15.2 Ay: 1 at A; 0.688 at B; 0 at C

MA: 0 at A and C; 2.25 at B

Cy: 0 at A; 0.313 at B; 1 at C

SB: 0 at A and C; �0.313 at BL; 0.687 at BR

MB: 0 at A and C; 1.875 at B

15.3 Cy: 0 at A; 0.633 at B; 1 at C; 1.375 at D

SB: 0 at A and C; �0.633 at BL; 0.367 at BR;

�0.375 at D

MB: 0 at A and C; 0.633 at B; �0.625 at D

15.5 Ay: 1 at A; 0 at B and D; �0.047 at C; 0.063 at E

By: 0 at A and D; 1 at B; 0.594 at C; �0.625 at E

Dy: 0 at A and B; 0.453 at C; 1 at D; 1.563 at E

SC : 0 at A, B, and D; �0.453 at CL; 0.547 at CR;

�0.563 at E

MC : 0 at A, B, and D; 1.81 at C; �1.75 at E

15.7 FBC : 0 at C; 0.833 at D; 0.938 at E

FCD: 0 at C; 0.667 at D; 1.917 at E

15.9 By: 1.643 at A; 1 at B; 0.393 at C; 0 at D and E;

�0.054 at x ¼ 4 m

Dy: �0.857 at A; 0 at B and E; 0.767 at C; 1 at D;

0.447 at x ¼ 4 m

SC : 0.643 at A; 0 at B, D, and E; �0.607 at CL; 0.393

at CR; �0.054 at x ¼ 4 m

MC : �0.357 at A; 0 at B, D, and E; 0.393 at C;

�0.054 at x ¼ 20 ft

15.11 Cy: 0 at A and D; 0.582 at B; 1 at C

FBC : 0 at A, C, and D; 0.11 at B

FCE : 0 at A, C, and D; �0.252 at B

FEF : 0 at A, C, and D; �0.203 at B

CHAPTERS 16 AND 17

16.1 and 17.1 MAC ¼ 50:6 kN-m

2

; MCA ¼ 58:8 kN-m

1

;

MCE ¼ 58:8 kN-m

2

; MEC ¼ 26:9 kN-m

1

16.3 and 17.3 MAB ¼ 100 kN�m

1

; MBA ¼ 200 kN�m

1

;

MBE ¼ 200 kN�m

2

; MEB ¼ 500 kN�m

1

16.5 and 17.5 MAB ¼ MCB ¼ 0;MBA ¼ 101:7 kN-m

1

;

MBC ¼ 101:7 kN-m

2

16.7 and 17.7 MAB ¼ 449:4 kN�m

2

;MBA ¼ 72:3 kN�m

2

;

MBC ¼ 72:3 kN�m

1

; MCB ¼ 0

16.9 and 17.9 MAB ¼ 103:5 kN�m

2

; MBA ¼ 113 kN�m

1

;

MBC ¼ 113 kN�m

2

; MCB ¼ 85 kN�m

1

; MCE ¼
85 kN�m

2

; MEC ¼ 47:5 kN�m

1

16.11 and 17.11 MBA ¼ 67:5 kN-m

1

; MBD ¼ 67:5 kN-m

2

;

MDB ¼ 121:78 kN-m

1

; MDE ¼ 121:78 kN-m

2

;

MED ¼ 74:34 kN-m

1

16.13 and 17.13 MAB¼MED¼0; MBA¼MDC¼57:9 kN�m 1

;

MBC¼MDE¼57:9 kN�m

2

; MCB¼38:6 kN�m 1

;

MCD¼38:6 kN�m

2
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16.15 and 17.15 MAB ¼ 68:6 kN�m

2

;MBA ¼ 183 kN�m

1

;

MBC ¼ 183 kN�m

2

; MCB ¼ 29 kN�m

2

; MCE ¼
29 kN�m

1

; MEC ¼ 170:2 kN�m

1

16.17 and 17.17 MAC ¼ 9:4 kN�m

1

;MCA ¼ 187:5 kN�m

1

;

MCD ¼ 187:5 kN�m

2

;MDC ¼ 0

16.19 and 17.19 MAD ¼MCD ¼MED ¼ 0; MDA ¼ 50 kN-m

2

;

MDC ¼ 75 kN-m

1

; MDE ¼ 25 kN-m

2

16.21 and 17.21 MAC ¼ 58:6 kN�m

1

;MCA ¼ 286 kN�m

1

;

MCD ¼ 286 kN�m

2

;MDC ¼ 0

16.23 and 17.23 MAC ¼ 0; MDE ¼ 100 kN-m

2

; MCA ¼
128:46 kN-m

1

; MBC ¼ 397:2 kN-m

2

;

MCB ¼ 106:44 kN-m

2

; MCD ¼ 22:01 kN-m

2

;

MDC ¼ 100 kN-m

1

16.25 and 17.25 MAC ¼ 107:8 kN�m

2

; MCA ¼ 20:8

kN�m

2

; MBD ¼ 222 kN�m

2

; MDB ¼ 249:2

kN�m

2

; MCD ¼ 20:8 kN�m

1

; MDC ¼ 249:2

kN�m

1

16.27 and 17.27 MAB ¼ 127 kN-m

2

; MBA ¼ 103:4 kN-m

2

;

MBC ¼ 103:4 kN-m

1

;MCB ¼ 0

16.29 and 17.29 MAC ¼ 11:7 kN�m

2

;MCA ¼ 43:9 kN�m
1

;

MCD ¼ 43:9 kN�m

2

; MDC ¼ 14:7 kN�m

1

;

MDB ¼ 14:7 kN�m

2

;MBD ¼ 0

16.31 and 17.31 MAC ¼MBD ¼ 119 kN-m

2

; MCA ¼MDB ¼
83:5 kN-m

2

; MCE ¼MDF ¼ 23:3 kN-m

2

; MEC ¼
MFD ¼ 44:2 kN-m

2

; MCD ¼MDC ¼ 106:8 kN-m

1

;

MEF ¼MFE ¼ 44:2 kN-m
1

CHAPTER 18

18.1 Q1 ¼ 53:69 kN (T); Q2 ¼ 48 kN (C)

18.3 Q1 ¼ 102:8 kN (T); Q2 ¼ 28:6 kN (C); Q3 ¼
145:4 kN (C)

18.5 Q1 ¼

104:4 kN

394 kN�m

�104:4 kN

232 kN�m

2
66664

3
77775 Q2 ¼

�45:6 kN

�232 kN�m

45:6 kN

�178 kN�m

2
66664

3
77775

18.7 Q1 ¼

8:338 kN

8:99 kN

�0:2533 kN-m

�8:338 kN

5:0 kN

�5:742 kN-m

2
6666666664

3
7777777775
Q2 ¼

5:0 kN

8:337 kN

5:742 kN-m

�5:0 kN

11:662 kN

�12:389 k-m

2
6666666664

3
7777777775

18.9 Q1 ¼

23:26 kN

4:3 kN

108 kN-m

�23:26 kN

�4:3 kN

21 kN-m

2
6666666664

3
7777777775
Q2 ¼

15:7 kN

23:26 kN

�21 kN-m

�15:7 kN

36:74 kN

�249 kN-m

2
6666666664

3
7777777775

Q3 ¼

36:74 kN

15:7 kN

222 kN-m

�36:74 kN

�15:7 kN

249 kN-m

2
6666666664

3
7777777775

APPENDIX B

B.1 C ¼
18 �11 18

�11 19 28

18 28 4

2
64

3
75

B.3 C ¼ �26; D ¼
�12 8 �4
6 �4 2

�30 20 �10

2
64

3
75

B.5 ðABÞT ¼ BTAT ¼ �6 �27 2

�55 �14 �28

� �
B.7 x1 ¼ �7; x2 ¼ 3; x3 ¼ �5

B.9 A�1 ¼
0:42 0:22 �0:04
0:08 0:28 0:04

0:44 0:04 �0:28

2
64

3
75

APPENDIX C

C.1 (a) 5300 mm2; (b) 3700 mm2; (c) 5050 mm2

C.3 281(106Þ mm4
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863

Index

A

AASHTO Standard Specifications for Highway

Bridges, 18, 22–24
Absolute maximum response, influence lines for,

415–421
Analytical models, 12–16, 768–772
connections for, 14–16
degrees of freedom, 770–772
global coordinate system, 769–770, 786–787
line diagrams, 13–14
local coordinate system, 769–770, 786–787
matrix structural analysis, 768–772
plane structure, 12–13
space structure, 13
supports for, 16

Antisymmetric loadings, 434–436, 446–447
Applied forces, 46
Approximate analysis, 471–507
assumptions for, 472–475
cantilever method for, 497–504
degree of indeterminacy (i), 472–473
exact methods compared to, 471–472
forces, distribution of, 475
frames, 471–507
inflection points for, 473–477, 483–485
lateral loads, 481–504
portal method for, 481–497
procedures for, 485–497, 498–504
rectangular frames, 471–507
redundants, 472–473
statically indeterminate structures, 471–507

vertical loads, 475–480
Arches, structure of, 9–10
Areas of geometric shapes, 817–819
ASCE Standard Minimum Design Loads for Buildings

and Other Structures, 17–18, 25–30
Axial force (Q), 161–167
Axial stress distribution, 497–498
Axis of symmetry (s), 426–432

B
Ball-and-socket joints, 134, 136
Ball joints, 136
Beam-column structures, 9–10
Beams, 11, 160–274, 293–301, 313–314, 318,

338–367, 610–631, 635–672, 707–741, 778–779,
784, 786

axial force (Q), 161–167
bending moment diagrams, 248–252
bending moments (M), 162–164, 342–343,

636–641
Castigliano’s second theorem for, 318
conjugate-beam method for, 253–268
continuous, 651–672, 725–741, 778–779, 784,

786
deflection (�), 226–274, 293–301, 313–314, 318
direct integration method for, 230–233
equilibrium method for, 338–353
fixed-end moments (FEM), 640–644, 716–717,

721
flexural rigidity (EI) of, 229
geometric methods for, 226–274
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influence lines for, 338–367, 610–631
internal forces, 161–167
matrix structural analysis, 778–779, 784, 786
member end moments, 649
member end shears, 649–650
moment-area method for, 234–247
moment-distribution method, 707–741
Müller-Breslau’s principle for, 353–367, 627–631
procedures for analysis of, 164–167, 177–179,

237–247, 255–268, 295–301, 343–353
qualitative elastic shapes for, 172–173
reactions in, 339–341
relationships between loads and shear and bending

moments, 173–199
shear (S), 162–164, 341–342
shear and bending moment diagrams, 167–172,

645, 651
sign convention for, 162–164
slope–deflection method for, 635–706
statically determinate structures, 160–274, 293–301,

313–314, 318, 338–367
statically indeterminate structures, 610–631,

635–672, 707–741
sti¤ness (K), 708–710, 712–716
strain energy (U) for, 313–314
superposition method for, 233–234
supports for, 254–255
virtual work method for, 293–301
work–energy methods for, 293–301, 313–314,

318
Bending moment diagrams, 167–172, 248–252
beam deflection and, 248–252
cantilever parts method, 249–251
loads and, 249
shear (S) and, 167–172

Bending moments (M), 162–163, 342–343, 371–372,
531–543, 590–591, 636–641

axial force (Q) and, 161–167
beams, 160–194, 342–343, 636–641
concentrated loads and, 176
consistent deformation method and, 531–543
couples or concentrated moments, 177
flexibility coe‰cient (f ) and, 533–534
floor systems, 371–372
frames, 342–343, 636–641
influence lines for, 342–343, 371–372
qualitative elastic shapes and, 172–173

redundants, as, 531–543
relationships between loads and shear, 173–199
shear (S) and, 160–225

Bending moments (M), (cont.)
sign convention for, 162–164
slope (�) and, 531–535
slope-deflection method and, 636–641
statically determinate structures, 162–163, 342–343,

371–372
statically indeterminate structures, 531–543
three-moment equation for, 590–591

Bending sti¤ness, 709–710, 713–716
Bending structures, 11–12
Betti’s law of reciprocal deflections, 325–326
Bridges, 8–9, 22–24, 92. See also Trusses
impact factor (I ), 24
live loads on, 22–24
railroad loads, 23–24
suspension, 8–9
truck loads, 22–23
trusses, 92

Buildings, 10–12, 21–22, 24–39
bending structures, 11–12
earthquake loads, 35–37
environmental loads, classification of for, 27
exposure categories for, 27
external pressure coe‰cients (Cp) for, 28–30
impact loads on, 24
live loads on, 21–22
shear structures, 10
snow loads, 32–35
wind loads, 24–32

C

Cable structures, 8–9
Cantilever method, 497–504
Cantilever overhangs, analysis of, 653, 727
Carryover factor (COF), 711
Castigliano’s second theorem, 316–325
beam deflection by, 318
frame deflection by, 319
procedure for analysis using, 319–325
truss deflection by, 318

Centroids of geometric shapes, 817–819
Code numbers for members, 793–795
Column matrix, 822
Column structures, 9–10
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Compatibility conditions and equations, 461–462,
467–469, 791

Complex trusses, analysis of, 133–134
Compound trusses, analysis of, 97, 128–133
Compression structures, 9–10
Computer program for
computer results, 844–848
data input for, 837–843
matrix structural analysis, 797, 837–850

Concentrated loads, 176
absolute maximum response to, 415–417, 418–420
influence line applications for, 401–403, 408–415,

415–417, 418–420
procedures for analysis of, 412–415
responses due to, 401–403, 408–415, 415–417, 418–420
series of moving, 408–415, 418–420
single moving, 401–403, 415–417

Concentrated moments, 177
Conjugate-beam method, 253–268
procedure for analysis using, 255–268
sign convention, 255
supports for, 254–255

Connections, 14–16, 54–58, 100–101, 137, 197–198.
See also Joints

analytical models, 14–16
equations of conditions for, 54–58, 100–101, 137,

197–198
Consistent deformations, method of, 508–585
bending moments (M) and, 531–543
fabrication errors and, 574–575
flexibility coe‰cient (f) for, 511–522, 533–534,

544–547
internal forces and, 531–543
internally indeterminate structures, 535–537
multiple degrees of indeterminacy and, 544–547
procedures for analysis using, 515–531, 547–567
reaction moments (MA), 513–515
redundants for, 508–567
single degree of indeterminacy and, 509–531
slope (�) and, 531–535
statically indeterminate structures, 508–585
support settlements and, 568–574
temperature changes and, 574–577
trusses, 535–537

Construction material weight, 19
Continuous beams, 651–672, 725–741, 778–779, 784, 786
cantilever overhangs, 653, 727

coordinate transformations, 784
global coordinate system, 786
local coordinate system, 778–779
matrix structural analysis, 778–779, 784, 786
moment-distribution method for, 725–741
simple end supports, 652–653, 726–727
slope-deflection method for, 651–672

Cooper E loadings, 23–24
Coordinates, 769–770, 772–792
continuous beams, 778–779, 784, 786
frames, 772–778, 780–784, 786
global coordinate system, 769–770, 786–787
local coordinate system, 769–770, 772–779
member sti¤ness matrix (K), 786–787, 790–792
member sti¤ness matrix (k), 786–787, 790–792
structure sti¤ness matrix (S), 772, 791–792
transformation matrix (T), 780–785
trusses, 779, 784–785, 786–7897

Couple moments, 177
Couples, work (W) by, 277
Critical form, 104

D

Dead loads, 17–20
Decomposition of loading, 436–443
Deflection (�), 226–336, 389–392
beams, 226–301, 313–314, 318
bending moment diagrams, 248–252
Betti’s law of reciprocal, 325–326
Castigliano’s second theorem for, 316–325
conjugate-beam method for, 253–268
di¤erential equation for, 227–229
direct integration method for, 230–233
elastic curve for, 227–228
elastic, 226
flexural rigidity (EI), 229
frames, 301–312, 314–315, 319
geometric methods for, 226–274
influence lines for, 389–392
Maxwell’s law of reciprocal, 325–326, 390
moment-area method for, 234–247
plastic (inelastic), 226
strain energy (U) and, 312–315
superposition method for, 233–234
trusses, 282–292, 312–313, 318
virtual work method for, 278–312
work–energy methods for, 275–336
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Degree of indeterminacy, see Indeterminacy (i)
Degrees of freedom, 646, 673–675, 770–772
Diagonal matrix, 823
Di¤erential equation for beam deflection, 227–229
Direct integration method for beam deflection,

230–233
Displacement (sti¤ness) methods, 469–470, 635–815
matrix structural analysis of, 767–815
moment-distribution method for, 707–766
slope-deflection method for, 635–706
statically indeterminate structures, 469–470, 635–815

Displacements, virtual principle of, 287–279
Distribution factor (DF), 713–716, 718–721
joints, determination of at, 718–721
member sti¤ness (K), 713–716
moment-distribution method and, 713–716, 718–721

Dynamic pressure (q), 24–25

E

Earthquake loads, 35–37
Elastic curve, 172–173, 227–228
End support, 254
Equilibrium, 43–88, 465–469, 646, 651, 788–790
compatibility equations and, 467–469
concurrent force systems and, 45–46
equations of, 44–45, 466–467, 646, 651, 788–790
external forces and, 46
external structure stability, 50–58
force-deformation relations, 469
free-body diagrams (FBD) for, 60–61
internal forces and, 46–47
internal structure stability, 47–50
matrix structural analysis, 788–790
plane structures, 44–45, 47–49
reactions and, 47–80
slope-deflection method and, 646, 651
space structures, 44
stable structures, 50–54
static determinacy, 50–60
statically determinate structures, 43–88, 465–467
statically indeterminate structures, 466–469, 646, 651
superposition, principle of for, 78
two- and three-force structures, 46
unstable structures, 53–58

Equilibrium method, 338–353
beams, 338–353
bending moments (M), 342–343

frames, 338–353
influence lines and, 338–353
procedure for analysis using, 343–353
reactions, 339–341
shear (S), 341–342

Exposure factor (Ce), 33
External forces, 46
External pressure coe‰cient (Cp), 28–30
External structure stability, 50–58, 95

F

Fabrication errors, 283–284, 464–465, 574–575
consistent deformations method and, 574–575
stresses due to, 464–465
trusses and, 283–284

Fixed-end moments (FEM), 640–644, 716–717, 721
moment-distribution method, 716–717, 721
slope-displacement method, 640–644

Fixed supports, 16, 48, 254, 592–593
Flexibility coe‰cient (f), 326, 511–522, 533–534,

544–547
bending moments (M) and, 533–534
Maxwell’s law for, 544–547
multiple degrees of indeterminacy and, 544–547
redundants and, 511–522

Flexural rigidity (EI), 229
Floor systems, 13–14, 21, 367–377
beams, 13–14
bending moments (M) in, 371–372
girders, 367–377
influence lines for, 367–378
live load minimums, 21
panel points, 367, 368
procedures for analysis of, 372–377
reactions in, 370
shear (S) in, 370–371
stringers, 13–14, 367–370
trusses, 377–378

Force-deformation relations, 469
Force (flexibility) methods, 469–470, 508–599
consistent deformations, 508–585
statically indeterminate structures, 469–470, 508–599
three-moment equation, 586–599

Forces, 45–47, 94–95, 161–167, 276–277, 280–282,
380–383, 472–475. See also Loads

applied, 46
axial (Q), 161–167
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bending moment (M) from, 162–163
concurrent systems, 45–46
deformable bodies, 280–282
distribution of, 474–475
equilibrium and, 45–47
external, 46
influence lines for, 380–383
internal, 46–47, 161–167, 472–473
primary, 94
reactions, 46
redundants, 472–473
secondary, 94–95
shear moment (S) from, 162–163
statically determinate structures, 161–167, 276–277,

280–282, 380–383
statically indeterminate structure, 472–475
trusses, 94–95, 380–383
virtual, principle of, 280–282
work (W) by, 276–277

Frames, 11, 195–215, 301–312, 314–315, 319,
338–353, 471–507, 627–651, 673–706, 741–761,
772–778, 780–784, 786

approximate analysis for, 471–507
axial stress distribution for, 497–498
bending moments (M), 342–343, 636–641
cantilever method for, 497–504
Castigliano’s second theorem for, 319
connections, equations of conditions for, 197–198
coordinate transformations, 780–784
deflection (�), 301–312, 314–315, 319
degree of indeterminacy (i), 197–200, 472–473
degrees of freedom, 646, 673–675
displacement at joints, 681–684
equilibrium method for, 338–353
fixed-end moments (FEM), 640–644
girder axial force in, 475–479
global coordinate system, 786
inclined legs and, 684–688
indeterminacy (i), degree of, 197–200
inflection points for, 473–477, 483–485
influence lines for, 338–353, 627–632
joints, 301–312, 681–684
lateral load analysis, 481–504
local coordinate system, 772–778
matrix structural analysis, 772–778, 780–784, 786
member end moments, 649
member end shears, 649–650

moment-distribution method for, 741–761
multistory, 688, 760–761
portal method for, 481–497
procedures for analysis of, 201–215, 343–353,

485–497, 498–504
rectangular, 471–507
rotation (�) and, 301–312, 648–649
shear and bending moments, 195–215
sidesway, analysis of with, 681–701, 744–761
sidesway, analysis of without, 673–681, 741–743
slope-deflection method, for, 635–351, 673–706
static determinacy of, 195–200
statically determinate, 195–215, 301–312, 314–315,

319, 338–353
statically indeterminate, 471–507, 627–651,

673–701, 741–761
strain energy (U) for, 314–315
vertical load analysis, 475–480
virtual work method for, 301–312
work–energy methods for, 301–312, 314–315, 319

Free end support, 254
Free-body diagrams (FBD), 60–61, 107–110

G
Gauss-Jordan elimination method, 831–835
General loadings, 436–443, 447
Geometric analysis methods, 226–274
beam deflection by, 226–274
bending moment diagrams, 248–252
conjugate-beam, 253–268
direct integration, 230–233
moment-area, 234–247
superposition, 233–234

Geometric shapes, areas and centroids of, 817–819
Geometrically unstable structures, 53–54
Girders, 367–377, 457–459. See also Floor systems
axial force in frames, 475–479
influence lines for, 367–377

Global coordinate system, 769–770, 786–787
analytical models, 769–770
continuous beams, 786

Global coordinate system, (cont.)
frames, 786
matrix structural analysis, 769–770, 786–787
member sti¤ness matrix (K), 786–787
trusses, 786–787

Gust e¤ect factor (G), 30
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H

H-truck loads, 22
Hinged connections (supports), 14–16, 48, 254–255,

643–644
conjugate beams, 254–255
reactions, 48
slope-deflection method for, 643–644
structural use of, 14–16

HS-truck loads, 22–23
Hydrostatic pressure, 37

I
Ideal truss, 93–94
Impact factor (I), 24
Impact loads, 24
Importance factor (I), 25, 27
Inclined legs, frame sidesway and, 684–688
Indeterminacy (i), 53, 57, 103, 197–200, 472–473,

609–613
consistent deformations method using, 508–531,

544–547
external (ie), 57
flexibility coe‰cient (f) and, 511–522, 544–547
frames, 197–200, 472–473
influence lines for structures of, 609–613
multiple degrees of, 544–547, 611–613
plane trusses, 103
redundants and, 53, 197, 103, 509–513
single degrees of, 509–531, 609–611

Inflection points, 473–477
Influence lines, 337–424, 609–634
absolute maximum response applications,

415–421
applications of, 401–424
beams, 338–367, 610–631
bending moments (M), 342–343, 371–372
concentrated load applications, 401–403, 408–415,

415–417, 418–420
deflections, 389–392
equilibrium method for, 338–353
floor systems, 367–378
force members, 380–383
frames, 338–353, 627–632
girders, 367–377
live load applications, 403–408, 417–418
Müller-Breslau’s principle for, 353–367, 627–631
multiple degrees of indeterminacy and, 611–613

procedures for analysis of, 343–353, 358–367,
372–377, 383–389, 613–626

qualitative, 358
reactions, 339–341, 370, 378–380
shear (S), 341–342, 370–371
statically determinate structures, 337–424
statically indeterminate structures, 609–634
trusses, 377–389, 610–626
uniformly distributed load applications, 403–408,

417–418
Inspection, analysis by, 110–110
Interior support, 254
Internal forces, 46–47, 161–167, 472–473, 531–543
axial force (Q) as, 161–167
consistent deformation method using, 531–543
procedure for analysis of, 164–167
redundants, as, 472–473, 531–543
shear force (S) as, 161–167
structural reactions to, 46–47

Internal hinge support, 254
Internal structure stability, 47–50, 95–99
Internally indeterminate structures, 535–537
International Building Code, 18
Inverse of a matrix, 828–829

J

Joints, 14–16, 644–646, 648–649, 673–675, 681–684,
717–725, 768–772

analytical models, 14–16, 768–772
balancing, 721–725
connections, 14–16
coordinate systems for, 769–770
degrees of freedom, 646, 673–675, 770–772
displacement from sidesway, 681–684
distribution factors (DF) at, 718–721
elements, 768
external reactions at, 644–646
fixed-end moments (FEM) for, 721
frame analysis and, 673–675, 681–684
hinged (flexible), 14–15
matrix structural analysis, 768–772
moment-distribution method and, 717–725
nodes, 768
rigid, 14–15
rotations (�), 648–649
slope-deflection method and, 644–646, 648–649,

673–675, 681–684
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Joints, method of, 106–121, 137–139
free-body diagrams (FBD) for, 107–110
inspection, by, 110
plane truss analysis by, 106–121
procedure for analysis, 113–114
space truss analysis by, 137–139
zero-force members and, 111–112, 138–139

L

Lateral loads, 481–504
approximate analysis for, 481–504
axial stress distribution for, 497–498
cantilever method for, 497–504
inflection points for, 483–485
portal method for, 481–497
procedures for, 485–497, 498–504
rectangular frames, 481–504

Least work, method of, 586–587, 599–606
Link supports, 48, 136
Live loads, 17, 20–24, 403–408, 417–418
absolute maximum response to, 415–421
bridges, 22–24
buildings, 21–22
floor minimums, 21
influence line applications for, 403–408, 417–418
railroads, 23–24
responses due to, 403–408, 417–418
trucks, 22–23
uniformly distributed, 403–408, 417–418

Loadings, 432–447
antisymmetric, 434–436, 446–447
components of, 432–443
decomposition of, 436–443
general, 436–443, 447
symmetric, 433–434, 444–446
symmetric structures and, 432–447

Loads, 7, 17–40, 173–199, 401–424, 475–507
AASHTO Standard Specifications for Highway

Bridges, 18, 22–24
absolute maximum response, 415–421
approximate analysis for, 475–507
ASCE Standard Minimum Design Loads for

Buildings and Other Structures, 17–18, 25–30
cantilever method for, 497–504
combinations, 37–38
concentrated, 176, 401–403, 408–415, 415–417,

418–420

construction material weight for, 19
dead, 17–20
earthquake, 35
environmental, 17, 24–37
estimation for structural design, 7
frames (rectangular), 475–507
hydrostatic pressure, 37
impact, 24
influence line applications for responses due to,

401–424
International Building Code, 18
lateral, 481–504
live, 17, 20–24, 403–408, 417–418
Manual for Railroad Engineering, 18
portal method for, 481–497
procedure for analysis of, 177–179, 485–497,

498–504
relationships between shear and bending moments,

173–199
snow, 32–35
soil pressure, 37
thermal e¤ects, 37
uniformly distributed, 403–408, 417–418
vertical, 475–480
wind, 24–32

Local coordinate system, 769–770, 772–779
analytical models, 769–770
continuous beams, 778–779
frames, 772–778
matrix structural analysis, 769–770, 772–779
member fixed-end force vector (Qf), 776, 779
member sti¤ness matrix (k), 773–779, 791–792
structure sti¤ness matrix (S), 772
trusses, 779

M
Manual for Railroad Engineering, 18
Matrix structural analysis, 767–815, 821–850
algebra for, 821–836
analytical model for, 768–772
code numbers for members, 793–795
compatibility equations for, 791
computer program for, 797, 837–850
computer results, 844–848
continuous beams, 778–779, 784, 786
coordinate transformations, 780–785
data input for, 837–843
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degrees of freedom, 770–772
equilibrium equations for, 788–790
frames, 772–778, 780–784, 786
Gauss-Jordan elimination method for, 831–835
global coordinate system, 769–770, 786–787
joints, 768–772
local coordinate system, 769–770, 772–779
matrix inversion, 834–835
matrix operations, 824–831
member sti¤ness matrix (K), global, 786–787
member sti¤ness matrix (k), local, 776–779
procedure for, 795–813
sti¤ness (k) relations, 772–779, 786–795
structure sti¤ness matrix (S), 772, 791–795
transformation matrix (T), 780–785
trusses, 779, 784–785, 786–787
types of matrices, 822–824

Maxwell’s law of reciprocal deflections, 325–326,
390

Member end moments, 649
Member end shears, 649–650
Member rotation (�), 708–710
Member sti¤ness (K) relations, 772–779, 786–787,

790–791
global coordinates, 786–787
local coordinates, 772–779
matrix structural analysis, 772–779, 786–787,

790–791
structural sti¤ness and, 790–791

Moment-area method, 234–247
beam deflection, 234–247
first theorem, 234–235
moment of inertia and, 237–238
procedure for analysis using, 237–247
second theorem, 235–236
tangents and, 263–237

Moment-distribution method, 707–766
application of, 742–725
carryover factor (COF), 711
carryover moments, 711–715
concept of, 717–725
continuous beams, 725–741
distribution factor (DF), 713–716, 718–721
fixed-end moments (FEM), 716–717, 721
frames, 741–761
joints, balancing, 717–725
sidesway and, 744–761

sign convention for, 708
sti¤ness (K), 708–710, 712–716

Moment of inertia, 237–238
Müller-Breslau’s principle, 353–367, 627–631
influence lines construction, 353–367, 627–631
procedure for analysis, 358–367
qualitative influence lines and, 358, 627–631
statically determinate structures, 353–367
statically indeterminate structures, 627–631

Multiple degrees of indeterminacy, 544–547, 611–613
consistent deformations, method of for, 544–547
influence lines for, 611–613

Multistory frames, sidesway and, 688, 760–761

N

Null matrix, 824

P

Partitioning a matrix, 830–831
Plane structures, 12–13, 44–45, 47–54
equilibrium, equations of, 44–45
geometrically unstable, 53–54
internal stability of, 50–54
statically determinate, 51
statically indeterminate, 52–53
supports for, 47–49
unstable (statically), 53

Plane trusses, 89–133
assumptions for analysis, 91–95
compound, 97, 128–133
connections, equations of conditions for,

100–101
critical form of, 104
degree of indeterminacy (i), 103
internal stability of, 95–99
joints, method of, 106–121
reactions, 103–106
sections, method of, 121–128
simple, 96, 106–218
static determinacy of, 100–106
triangular (basic) element, 95–96
zero-force members, 111–112

Planning phase, 6–7
Portal method for statically indeterminate structures,

481–497
Preliminary structural design, 7
Pressure, 24–25, 28–30, 37
dynamic (q), 24–25
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external coe‰cients (Cp), 28–30
hydrostatic, 37
soil, 37
velocity coe‰cient (Kz), 25
wind loads, 24–25, 28–30

Primary beam, 509
Primary forces, trusses, 94
Primary structure, 508
Purlins, 89–91

Q

Qualitative elastic shapes, 172–173
Qualitative influence lines, 358, 627–631

R

Railroads, live loads on, 23–24
Reaction moments (MA), redundants as,

513–515
Reactions, 46–80, 103–106, 135–137, 339–341, 370,

378–380, 472–473, 650
beams, 339–341, 650
equilibrium method for, 339–341
external forces as, 46
external stability and, 50–58
floor systems, 370
frames, 339–341, 650
free-body diagrams (FBD) for, 60–61
influence lines for, 339–341, 370, 378–380
internal stability and, 47–50
plane trusses, 103–106
procedure for determination of, 60–78
proportion method for, 79–80
redundants, 472–473
simply supported structures, 79–80
slope-deflection method and, 650
space trusses, 135–137
stable structures, 50–54
static determinacy of, 50–60
supports, 47–49, 135–137, 650
trusses, 103–16, 135–137, 378–380
unstable structures, 54–58

Redundants, 53, 103, 197, 462–464, 472–473,
508–567

approximate analysis and, 472–474
bending moments (M) as, 531–543
consistent deformations method and, 508–567
degree of indeterminacy (i) and, 53, 103,

509–513

Redundants, (cont.)
flexibility coe‰cient (f), 511–522
frames, 197
internal forces as, 531–543
internally indeterminate structures, 535–537
multiple degrees of indeterminacy and, 544–547
plane trusses, 103
reaction moments (MA) as, 513–515
restraints, 508
single degree of indeterminacy and, 509–531
statically indeterminate structures, 462–464

Reflection, concept of, 426–427
Reponses, 401–424
absolute maximum, 415–421
concentrated loads, 401–403, 408–415, 415–417,

418–420
influence line applications for, 401–424
live loads, 403–408, 417–418
uniformly distributed loads, 403–408, 417–418

Rigid connections, 14–156
Rigid frame structures, 11–12, 47–50
Rocker supports, 48
Roller supports, 16, 48, 136
Roofs, 32–35, 93
snow loads on, 32–35
trusses, 93

Rotation (�), 278–280, 301–312, 648–649
joints, 648–649
virtual work and, 278–280, 301–312

Rotational sti¤ness, 714–715
Row matrix, 822

S

Safety and serviceability checks, 7
Secondary forces, trusses, 94–95
Sections, method of, 121–128, 139–140
plane trusses, 121–128
space trusses, 139–140

Seismic response coe‰cient (CS), 36
Shear (S), 160–225, 341–342, 370–371
axial force (Q) and, 161–167
beams, 160–194
bending moments (M) and, 160–225
concentrated loads and, 176
couples or concentrated moments, 177
diagrams, 167–172
equilibrium method for, 341–342
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framed structures, 195–215
influence lines for, 341–342, 370–371
procedures for analysis of, 164–167, 177–179
qualitative elastic shapes and, 172–173
relationships between loads and, 173–199
sign convention for, 162–164

Shear structures, 10
Sidesway, 673–701, 741–761
degrees of freedom, 673–675
frames with, 681–701, 741–761
frames without, 673–681, 741–743
inclined legs and, 684–688
joint displacement and, 681–684
moment-distribution method and, 741–761
multistory frames and, 688, 760–761
slope-deflection method and, 673–701

Simply supported structures, 79–80
Slope (�), 531–535
Slope-deflection method, 635–706
beams, 635–706
bending moments (M), 636–640
concept of, 644–651
continuous beams, 651–672
degrees of freedom, 646, 673–675
equations, 641, 647–648
equilibrium equations for, 646, 651
fixed-end moments (FEM), 640–644
frames, 635–351, 673–706
joints and, 644–646, 648–649, 673–675,

681–684
member end moments, 649
member end shears, 649–650
one-end hinged members, 643–644
rotations (�) at joints, 648–649
sidesway and, 681–701
sign convention for, 636–638
support reactions, 650

Slope factor (Cs), 33
Snow loads, 32–35
exposure factor (Ce) for, 33
flat roofs (pf), 32–33
slope factor (Cs) for, 33
sloped roofs (ps), 33–34
thermal factor (Ct) for, 33

Soil pressure, 37
Space structures, 13, 44, 90–95, 134–144
assumptions for analysis, 91–95

equilibrium, equations of, 44
joints, method of, 137–139
reactions, 135–137
sections, method of, 139–140
static determinacy of, 137
supports for, 136
tetrahedron element for, 134–135
trusses, 90–95, 134–144
zero-force members, 138–139

Square matrix, 822–823
Stable structures, 50–54
Static determinacy, 50–60, 100–106, 137, 195–200
connections, equations of conditions for, 54–58,

100–101, 137, 197–198
equilibrium and, 50–60
external determinacy, 50–58
frames, 195–200
indeterminacy (i), degree of, 53, 57, 103,

197–200
indeterminate structures, 52–53
internal stability, 50–54
plane trusses, 100–106
space trusses, 137
stable structures, 50–54
unstable structures, 53–58

Statically determinate structures, 42–458, 462–465
beams, 160–274, 293–301, 313–314, 318,

338–367
deflections, 226–336, 389–392
equilibrium of, 43–88
external stability of, 50–58, 95
floor systems, 367–378
frames, 195–215, 301–312, 314–315, 319,

338–353
geometric methods for, 226–274
girders, 367–377
indeterminate structures, comparison to,

462–465
influence lines, 337–424
internal stability, 50–54, 95–99
loadings and, 425–458
responses to loads, 401–424
shear and bending moments, 160–225
support reactions, 47–88
symmetric, 425–458
trusses, 89–159, 282–292, 312–313, 318, 377–389
work-energy methods for, 275–336
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Statically indeterminate structures, 52–53, 459–815
analysis of, 465–470
approximate analysis for, 471–507
beams, 610–631, 635–672, 707–741
compatibility conditions for, 461–462, 467–469
consistent deformations, method of, 508–585
determinate structures, comparison to,

462–165
displacement (sti¤ness) methods for, 469–470
equilibrium of, 465–469
force (flexibility) methods for, 469–470
force-deformation relations, 469
frames, 471–507, 627–651, 673–701, 741–761
inflection points for, 473–477, 483–485
influence lines for, 609–634
least work, method of, 586–587, 599–606
matrix structural analysis of, 767–815
moment-distribution method for, 707–766
procedures for analysis of, 485–497, 498–504,

515–531, 547–567
redundancies in, 462–464
slope-deflection method for, 635–706
static determinacy of, 52–53
sti¤ness of, 462–463
stresses in, 462–465
three-moment equation, 586–599
trusses, 535–537, 610–626

Sti¤ness (K), 462–463, 708–710, 712–716, 772–779,
786–795

bending, 709–710, 712–716
code numbers for members, 793–795
compatibility equations for, 791
continuous beams, 778–779, 786
distribution factors (DF) for, 713–716
equilibrium equations for, 788–789
frames, 772–778, 786
global coordinate relations, 786–787
global member sti¤ness matrix (K), 786–787
local coordinate relations, 772–779
local member sti¤ness matrix (k), 773–779,

791–792
matrix structural analysis, 772–779, 786–795
member (matrix) relations, 790–791
member rotation (�) and, 708–710
moment-distribution method and, 708–710,

712–716
rotational, 714–715

statically indeterminate structures, 462–463,
708–710, 712–716

structure (matrix) relations, 791–792
structure sti¤ness matrix (S), 772, 791–795
trusses, 779, 786–787

Strain energy (U), 312–315
beams, 313–314
conservation of energy and, 312–315
deflection and, 312–315
frames, 314–315
trusses, 312–313

Stress, 462–465, 497–498
axial, 497–498
statically indeterminate structures, 462–465

Stringers, 13, 367–370
Structural analysis, 3–16, 17–40, 43–88, 337–424,

609–634. See also Matrix structural analysis;
Statically determinate structures;
Statically indeterminate structures
analytical models for, 12–16
bending structures, 11–12
classification of structures, 7–12
compression structures, 9–10
connections and, 14–16
engineering projects, role of in, 6–7
equilibrium, 43–88
external stability, 50–58
free-body diagrams (FBD) for, 60–61
history of, 4–6
influence lines, 337–424, 609–634
internal stability, 47–50
line diagrams for, 13–14
loads, 7, 17–40
performance characteristics of, 3
plane structure model, 12–13
reactions, 46–80
shear structures, 10–1
space structure model, 13
static determinacy, 50–60
superposition, principle of for, 78
supports and, 16
tension structures, 8–9
trusses, 10

Structures, see Bridges; Buildings; Trusses
Superposition, 78, 233–234
beam deflection, method for, 233–234
principle of, 78
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Supports, 14–16, 47–49, 135–137, 254–255, 464,
568–574, 592–593, 643–644, 650, 652–653,
726–727

beams, 254–255, 650, 652–653, 726–727
conjugate beams, 254–255
consistent deformations method and, 464,

568–574
continuous beam end supports, 652–653,

726–727
end (simple), 652–653
fixed, 16, 48, 254, 592–593
hinges, 14–16, 48, 254–255, 643–644
moment-distribution method for, 726–727
plane structures, 47–49
reactions, 47–49, 135–137, 650
settlement of statically indeterminate structures,

464, 568–574
slope-deflection method for, 643–644, 650,

652–653
space trusses, 136
stresses due to settlements, 464
structural use of, 14–16, 47–49
three-moment equation, 592–593

Suspension bridge structure, 8–9
Symmetric loadings, 433–434, 444–446
Symmetric matrix, 823
Symmetric structures, 425–458
antisymmetric loadings, 434–436,

446–447
axis of symmetry (s) for, 426–432
behavior of under loadings, 443–447
decomposition of loading, 436–443
general loadings, 436–443, 447
loading components of, 432–443
procedure for analysis of, 447–455
reflection and, 426–427
symmetric loadings, 433–434, 444–446

T

Tangents, beam deflection and, 263–237
Temperature changes, 283–284, 464–465, 574–577
consistent deformations method and, 574–577
stresses due to, 464–465
trusses and, 283–284

Tension structures, 8–9
Tetrahedron truss element, 134–135
Thermal factor (Ct), 33

Three-moment equation, 586–599
application of, 592–599
bending moments (M) and, 590–591
derivation of, 587–592
fixed supports, 592–593
slope (�) continuity and, 587–590

Topographic factor (Kzt), 25, 30
Transpose of a matrix, 829–830
Triangular (basic) truss element, 95–96
Trusses, 10, 89–159, 282–292, 312–313, 318, 377–389,

535–537, 610–626, 779, 784–785, 786–787
assumptions for analysis, 91–95
bridges, 92
Castigliano’s second theorem for, 318
complex, 133–134
compound, 97, 128–133
consistent deformations method for, 535–537
coordinate transformations, 784–785
deflection, 282–292, 312–313, 318
external stability, 95
fabrication errors and, 283–284
force members, 380–383
global coordinate system, 786–787
ideal, 93–94
influence lines for, 377–389, 610–626
internal stability, 95–99
local coordinate system, 779
matrix structural analysis, 779, 784–785, 786–787
plane, 89–133
primary forces, 94
procedures for analysis of, 284–292, 383–389
reactions, 103–16, 135–137, 378–380
roofs, 93
secondary forces, 94–95
simple, 96, 106–218
space, 90–95, 134–144
statically determinate, 89–159, 282–292, 312–313,

318, 377–389
statically indeterminate, 535–537, 610–626
strain energy (U) for, 312–313
temperature changes and, 283–284
virtual work method for, 282–292
work–energy methods for, 282–292, 312–313, 318

U

Uniformly distributed live loads, 403–408, 417–418
absolute maximum response to, 417–418
influence line applications for, 403–408, 417–418
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Unit (identity) matrix, 823
Unstable structures, 53–58

V
Velocity pressure coe‰cient (Kz), 25
Vertical loads, 475–480
approximate analysis for, 475–480
girder axial force in, 475–479
inflection points for, 476–477
rectangular frames, 475–480

Virtual work, 278–312
beam deflection by, 293–301
deflection (�) by, 293–312
displacement (�), 287–279, 282–312

Virtual work, (cont.)
external (Wve), 287–279, 281–282
forces (F) for deformable bodies, 280–282
frame deflection by, 301–312
internal (Wve), 281–282
principle of, 278–282
procedures for analysis using, 284–292, 295–301,

303–312
rigid-body displacements, 287–279, 301–312
rotation (�), 278–280, 301–312
truss deflection by, 282–292

W

Wind directionality factor (Kd), 25, 30
Wind loads, 24–32
building classifications for, 27

dynamic pressure (q) and, 24–25
external pressure coe‰cients (Cp) for, 28–30
gust e¤ect factor (G) for, 30
importance factor (I), 25, 27
topographic factor (Kzt), 25, 30
velocity pressure coe‰cient (Kz), 25
wind directionality factor (Kd), 25, 30
wind speed (V) and, 24–26

Wind speed (V), 24–26
Work (W), total, 276–277
Work-energy methods, 275–336
beam deflection by, 293–301, 313–314, 318
Betti’s law of reciprocal deflections,

325–326
Castigliano’s second theorem, 316–325
couples, 277
deflection (�) by, 275–336
energy, conservation of, 312–315
forces and, 276–277
frame deflection by, 301–312, 314–315, 319
Maxwell’s law of reciprocal deflections,

325–326
strain energy (U), 312–315
total work (W), 276–277
truss deflection by, 282–292, 312–313, 318
virtual work, 278–312

Z

Zero-force members, 111–112, 138–139
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FIXED-END MOMENTS
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PRINCIPAL UNITS USED IN MECHANICS

International System (SI) U.S. Customary System (USCS)
Quantity

Unit Symbol Formula Unit Symbol Formula

Acceleration (angular) radian per second squared rad/s2 radian per second squared rad/s2

Acceleration (linear) meter per second squared m/s2 foot per second squared ft/s2

Area square meter m2 square foot ft2

Density (mass) kilogram per cubic meter kg/m3 slug per cubic foot slug/ft3

(Specific mass)

Density (weight) newton per cubic meter N/m3 pound per cubic foot pcf lb/ft3

(Specific weight)

Energy; work joule J N�m foot-pound ft-lb

Force newton N kg�m/s2 pound lb (base unit)

Force per unit length newton per meter N/m pound per foot lb/ft
(Intensity of force)

Frequency hertz Hz s�1 hertz Hz s�1

Length meter m (base unit) foot ft (base unit)

Mass kilogram kg (base unit) slug lb-s2/ft

Moment of a force; torque newton meter N�m pound-foot lb-ft

Moment of inertia (area) meter to fourth power m4 inch to fourth power in.4

Moment of inertia (mass) kilogram meter squared kg�m2 slug foot squared slug-ft2

Power watt W J/s foot-pound per second ft-lb/s
(N�m/s)

Pressure pascal Pa N/m2 pound per square foot psf lb/ft2

Section modulus meter to third power m3 inch to third power in.3

Stress pascal Pa N/m2 pound per square inch psi lb/in.2

Time second s (base unit) second s (base unit)

Velocity (angular) radian per second rad/s radian per second rad/s

Velocity (linear) meter per second m/s foot per second fps ft/s

Volume (liquids) liter L 10�3 m3 gallon gal. 231 in.3

Volume (solids) cubic meter m3 cubic foot cf ft3

https://engineersreferencebookspdf.com


	Front Cover
	Title Page
	Copyright
	Contents
	Preface to the SI Edition
	Preface
	PART ONE: INTRODUCTION TO STRUCTURAL ANALYSIS AND LOADS
	1 Introduction to Structural Analysis
	1.1 Historical Background
	1.2 Role of Structural Analysis in Structural Engineering Projects
	1.3 Classification of Structures
	1.4 Analytical Models
	Summary

	2 Loads on Structures
	2.1 Dead Loads
	2.2 Live Loads
	2.3 Impact
	2.4 Wind Loads
	2.5 Snow Loads
	2.6 Earthquake Loads
	2.7 Hydrostatic and Soil Pressures
	2.8 Thermal and Other Effects
	2.9 Load Combinations
	Summary
	Problems


	PART TWO: ANALYSIS OF STATICALLY DETERMINATE STRUCTURES
	3 Equilibrium and Support Reactions
	3.1 Equilibrium of Structures
	3.2 External and Internal Forces
	3.3 Types of Supports for Plane Structures
	3.4 Static Determinacy, Indeterminacy, and Instability
	3.5 Computation of Reactions
	3.6 Principle of Superposition
	3.7 Reactions of Simply Supported Structures Using Proportions
	Summary
	Problems

	4 Plane and Space Trusses
	4.1 Assumptions for Analysis of Trusses
	4.2 Arrangement of Members of Plane Trusses—Internal Stability
	4.3 Equations of Condition for Plane Trusses
	4.4 Static Determinacy, Indeterminacy, and Instability of Plane Trusses
	4.5 Analysis of Plane Trusses by the Method of Joints
	4.6 Analysis of Plane Trusses by the Method of Sections
	4.7 Analysis of Compound Trusses
	4.8 Complex Trusses
	4.9 Space Trusses
	Summary
	Problems

	5 Beams and Frames: Shear and Bending Moment
	5.1 Axial Force, Shear, and Bending Moment
	5.2 Shear and Bending Moment Diagrams
	5.3 Qualitative Deflected Shapes
	5.4 Relationships between Loads, Shears, and Bending Moments
	5.5 Static Determinacy, Indeterminacy and Instability of Plane Frames
	5.6 Analysis of Plane Frames
	Summary
	Problems

	6 Deflections of Beams: Geometric Methods
	6.1 Differential Equation for Beam Deflection
	6.2 Direct Integration Method
	6.3 Superposition Method
	6.4 Moment-Area Method
	6.5 Bending Moment Diagrams by Parts
	6.6 Conjugate-Beam Method
	Summary
	Problems

	7 Deflections of Trusses, Beams, and Frames: Work–Energy Methods
	7.1 Work
	7.2 Principle of Virtual Work
	7.3 Deflections of Trusses by the Virtual Work Method
	7.4 Deflections of Beams by the Virtual Work Method
	7.5 Deflections of Frames by the Virtual Work Method
	7.6 Conservation of Energy and Strain Energy
	7.7 Castigliano’s Second Theorem
	7.8 Betti’s Law and Maxwell’s Law of Reciprocal De.ections
	Summary
	Problems

	8 Influence Lines
	8.1 Influence Lines for Beams and Frames by Equilibrium Method
	8.2 Müller-Breslau’s Principle and Qualitative Influence Lines
	8.3 Influence Lines for Girders with Floor Systems
	8.4 Influence Lines for Trusses
	8.5 Influence Lines for Deflections
	Summary
	Problems

	9 Application of Influence Lines
	9.1 Response at a Particular Location Due to a Single Moving Concentrated Load
	9.2 Response at a Particular Location Due to a Uniformly Distributed Live Load
	9.3 Response at a Particular Location Due to a Series of Moving Concentrated Loads
	9.4 Absolute Maximum Response
	Summary
	Problems

	10 Analysis of Symmetric Structures
	10.1 Symmetric Structures
	10.2 Symmetric and Antisymmetric Components of Loadings
	10.3 Behavior of Symmetric Structures under Symmetric and Antisymmetric Loadings
	10.4 Procedure for Analysis of Symmetric Structures
	Summary
	Problems


	PART THREE: ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES
	11 Introduction to Statically Indeterminate Structures
	11.1 Advantages and Disadvantages of Indeterminate Structures
	11.2 Analysis of Indeterminate Structures
	Summary

	12 Approximate Analysis of Rectangular Building Frames
	12.1 Assumptions for Approximate Analysis
	12.2 Analysis for Vertical Loads
	12.3 Analysis for Lateral Loads—Portal Method
	12.4 Analysis for Lateral Loads—Cantilever Method
	Summary
	Problems

	13 Method of Consistent Deformations—Force
	13.1 Structures with Single Degree of Indeterminacy
	13.2 Internal Forces and Moments as Redundants
	13.3 Structures with Multiple Degrees of Indeterminacy
	13.4 Support Settlements, Temperature Changes and Fabrication Errors
	Summary
	Problems

	14 Three-Moment Equation and the Method of Least Work
	14.1 Derivation of Three-Moment Equation
	14.2 Application of Three-Moment Equation
	14.3 Method of Least Work
	Summary
	Problems

	15 Influence Lines for Statically Indeterminate Structures
	15.1 Influence Lines for Beams and Trusses
	15.2 Qualitative Influence Lines by Müller-Breslau’s Principle
	Summary
	Problems

	16 Slope-Deflection Method
	16.1 Slope-Deflection Equations
	16.2 Basic Concept of the Slope-Deflection Method
	16.3 Analysis of Continuous Beams
	16.4 Analysis of Frames without Sidesway
	16.5 Analysis of Frames with Sidesway
	Summary
	Problems

	17 Moment-Distribution Method
	17.1 Definitions and Terminology
	17.2 Basic Concept of the Moment-Distribution Method
	17.3 Analysis of Continuous Beams
	17.4 Analysis of Frames without Sidesway
	17.5 Analysis of Frames with Sidesway
	Summary
	Problems

	18 Introduction to Matrix Structural Analysis
	18.1 Analytical Model
	18.2 Member Stiffness Relations in Local Coordinates
	18.3 Coordinate Transformations
	18.4 Member Stiffness Relations in Global Coordinates
	18.5 Structure Stiffness Relations
	18.6 Procedure for Analysis
	Summary
	Problems


	Appendix A: Areas and Centroids of Geometric Shapes
	Appendix B: Review of Matrix Algebra
	B.1 Definition of a Matrix
	B.2 Types of Matrices
	B.3 Matrix Operations
	B.4 Solution of Simultaneous Equations by the Gauss-Jordan Method
	Problems

	Appendix C: Computer Software
	Starting the Computer Software
	Inputting Data
	Results of the Analysis
	Problems

	Bibliography
	Answers to Selected Problems
	Index



