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Series Preface

The Advances in Earthquake Engineering series is intended primarily for the trans-
formation of frontier technologies and research results, as well as state-of-the-art
professional practices in earthquake engineering. It will encompass various topical
areas such as multidisciplinary earthquake engineering, smart structures and materi-
als, optimal design and lifecycle cost, geotechnical engineering and soil-structure
interaction, structural and system health monitoring, urban earthquake disaster
mitigation, postearthquake rehabilitation and reconstruction, innovative numerical
methods, as well as laboratory and field testing.

This book, Seismic Design Aids for Nonlinear Analysis of Reinforced Concrete
Structures, serves one of the aforementioned objectives. It provides nonlinear
properties of reinforced concrete elements in a comprehensive form so that prac-
ticing engineers and researchers can use them readily without solving complex
equations. With the step-by-step numerical procedures presented in the book,
and also through supplemental electronic material found at http://www.crcpress
.com/e_products/downloads/download.asp?cat_no=K10453, the reader will find
the publication a very useful and practical handbook. The book is to serve not
only as a reference for graduate students in civil, structural, and construction
engineering, but also as a good research directory for academicians.

Franklin Y. Cheng, PhD, PE, ASCE Distinguished Member

Editor, Advances in Earthquake Engineering Series



https://engineersreferencebookspdf.com



Series Editor

Franklin Y. Cheng, PE, honorary member of ASCE, joined the University of
Missouri-Rolla as an assistant professor in 1966. In 1987, the Board of Curators of
the University appointed him curators’ professor; he was honored as curators’ profes-
sor emeritus in 2000. He is a former senior investigator, Intelligent Systems Center,
University of Missouri-Rolla. Dr. Cheng received 4 honorary professorships abroad
and chaired 7 of his 24 National Science Foundation (NSF) delegations to various
countries for research and development cooperation. He has also been the director of
international earthquake engineering symposia and numerous state-of-the-art short
courses. His work has warranted grants from several funding agencies including
more than 30 from NSF. He has served as either chairman or member of 37 profes-
sional societies and committees, 12 of which are ASCE groups. He was the first
chair of the Technical Administrative Committee on Analysis and Computation and
initiated the Emerging Computing Technology Committee and Structural Control
Committee. He also initiated and chaired the Stability Under Seismic Loading Task
Group of the Structural Research Council (SSRC).

Dr. Cheng has served as a consultant for Martin Marietta Energy Systems, Inc.,
Los Alamos National Laboratory, and Martin & Huang International, among others.
The author, coauthor, or editor of 26 books and over 250 publications, Dr. Cheng’s
authorship includes two textbooks, Matrix Analysis of Structural Dynamics:
Applications and Earthquake Engineering, and Dynamic Structural Analysis.
Dr. Cheng is the recipient of numerous honors, including the MSM-UMR Alumni
Merit, ASCE State-of-the-Art twice, the Faculty Excellence, and the Halliburton
Excellence awards. After receiving a BS degree (1960) from the National Cheng-
Kung University, Taiwan, and a MS degree (1962) from the University of Illinois at
Urbana-Champaign, he gained industrial experience with C.F. Murphy and Sargent
& Lundy in Chicago, Illinois. Dr. Cheng received a PhD degree (1966) in civil engi-
neering from the University of Wisconsin-Madison.

xi



https://engineersreferencebookspdf.com



Preface

Seismic Design Aids for Nonlinear Analysis of Reinforced Concrete Structures (with
examples and computer coding) is an attempt toward clarifying and simplifying the
complexities involved in estimating some basic input parameters required for such
analyses. The necessity of safe seismic design of structures is becoming a big concern
for the engineering community due to the increase in damage of buildings during
recent earthquakes. Most existing buildings do not comply with the current seismic
codes; therefore, it is necessary to assess their structural safety and to have clear
answers to questions that raise doubts about their structural safety. For most of these
buildings it is necessary to prevent structural failure, although the occurrence of lim-
ited damages is usually accepted. As a matter of fact, nonlinear structural analysis
has been a fundamental tool for the past 30 years, but not one widely addressed in
university courses and hence not currently employed by structural engineers com-
fortably. On the other hand, spreading of efficient and complete computer codes of
structural analysis drives them toward a passive attitude that usually opposes the full
verification of the design process. While nonlinear analysis methods like static push-
over are commonly accepted and recommended as a reliable tool by international
codes for seismic assessment of buildings, accuracy of the estimate of seismic capac-
ity strongly depends on input parameters of such analysis. Some of the basic inputs,
namely, (1) axial force—bending moment yield interaction, (2) moment-curvature,
and (3) moment-rotation characteristics accounting for appropriate nonlinearity of
constitutive materials of reinforced concrete elements, need to be readdressed for
an accurate pushover analysis. The design curves and tables proposed in the book
are the outcome of the studies conducted by the authors using a variety of nonlinear
tools, computer programs, and software. During the course of teaching, research-
ing, and short-term courses conducted on the subject, it is felt that an appropriate
use of nonlinear properties of constitutive materials is not common among design
engineers using software tools. They tend to use default properties of materials as
input to nonlinear analyses without realizing that a minor variation in the nonlinear
characteristics of the constitutive materials like concrete and steel could result in an
unsatisfactory solution leading to wrong assessment and interpretation. The main
reason for such ignorance can be due to complexities involved in deriving the mate-
rial properties of reinforced concrete that constitute the basic input of the nonlinear
analyses.

Seismic Design Aids spans five chapters on the topics (1) axial force—bending
moment yield interaction (P-M), (2) bending moment-curvature relationship (M-0),
(3) bending moment-rotation characteristics (M-19) for beams with different support
conditions and loading cases, (4) collapse multiplier of seismic loads for regular
framed structures using plastic theorems, both upper bound and lower bound limit
analysis theorems, and (5) verification of plastic flow rule for the developed P-M
interaction domains. A detailed mathematical modeling of P-M interaction of RC

xiii
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rectangular beams based on international codes, namely, Italian code, Indian code,
and Eurocode, currently in prevalence by defining the boundaries of the subdomains
and set of analytical expressions is proposed in the first chapter. Moment-curvature
relationships for beams (with no axial force) and for columns (with different levels of
axial forces) are presented in Chapter 2. In Chapter 3, some practical cases of beams
with relevant support conditions and loading conditions are selected for which the
collapse mechanism and plastic hinge extension are presented with complete ana-
lytical expressions for moment-rotation and ductility ratios. Chapter 4 deals with
determination of collapse load multipliers using plastic theorems for a few selected
examples that are common cases of frames with a weak-beam, strong-column type.
The developed analytical modeling of P-M interaction is verified for plastic flow rule
in Chapter 5. Though the material characteristics used in Seismic Design Aids are
limited to a few international codes, readers can easily derive the required expres-
sions in accordance to any other international code of their choice. This is made
possible by presenting the step-by-step derivation of the expressions in the relevant
chapters; simply by replacing a few equations addressing the material characteristics,
one can readily arrive at the desired expressions. However, using the same algorithm,
the authors are certain that design engineers and researchers can easily derive other
cases not addressed in this book.

We also present a step-by-step procedure to carry out pushover analysis of an
example frame using the proposed design curves and tables as input parameters. Two
very simple relationships are proposed for upper and lower bounds of the seismic load
multiplier for regular frames of the weak-beam, strong-column type. The forecasts,
shown by means of their graphical representations, qualify an optimal agreement
with the relevant values obtained by pushover analysis for all the regular framed
structures analyzed. Knowledge of the foreseen static multipliers, also based on an
easy analytical approach, is useful both for seismic assessment and design, since the
structure will be safe, by definition, under the seismic loads amplified with static
lower bounds. The computer codes used for nonlinear optimization of collapse mul-
tiplier using static theorem and for determining kinematic multipliers are given in the
additional material found on the Web site; using the program, one can easily modify
the input to determine the multipliers for other cases that are not addressed in Seismic
Design Aids. The kinematic and static multipliers for collapse loads of frames are
then compared with the results obtained using the nonlinear static pushover method
to show the level of confidence in the results obtained using limit analysis.

Each chapter commences with a relevant brief literature review followed by a
description of the detailed mathematical modeling. Using material characteristics
of concrete and steel as proposed by the codes, analytical expressions are derived,
based on classical theory of nonlinear mechanics. The developed equations are
followed by treatment of structural components of building frames as example
problems. Tables and design curves are proposed for appropriate combinations of
cross-section dimensions of beams and columns with relevant sets of percentage of
tensile and compression reinforcements commonly used in design offices. Seismic
Design Aids can be useful for capacity assessment of reinforced concrete (RC) ele-
ments whose cross-sections are known and also for performing nonlinear analysis of
RC structures using readily available computer programs. Design curves are given
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only for few combinations of cross-section dimensions and steel reinforcement to
limit the color illustrations, thereby keeping the cost affordable. Using the comple-
mentary information at http:/www.crcpress.com/e_products/downloads/download
.asp?cat_no=K10453 provided, one can compute the required parameters for any
desired section not illustrated in the figures or tables of this book. Tables are devel-
oped in a spreadsheet form (Excel file), and steps to use these files are also described
at the end of each chapter. Design engineers can readily use these tables and curves
as input for their design assignments. The proposed analytical expressions of the
input parameters addressed in Seismic Design Aids are results of extensive research
work carried out by the authors. The numerical procedures are proposed in the tables
after thorough verification of the results in close agreement with those obtained from
analytical expressions. Complete computer coding, used for obtaining the collapse
multipliers, is given at the end. With appropriate modifications in the arguments, one
can easily determine the results for any specific building frame of interest.

The authors hope that Seismic Design Aids will be a useful reference to research-
ers preparing for advanced courses in structural mechanics. The authors extend their
sincere thanks to the editorial board of CRC Press, Taylor & Francis Group, LLC, for
publishing this book with great enthusiasm and encouragement. The authors also want
to place on record the generous permission accorded by Computers and Structures
Inc., Berkeley, California, for the use of screen shots of SAP2000 software in this
book. The basic objective is to make nonlinear properties of RC elements avail-
able in a comprehensive form so that practicing engineers and researchers can use
them readily without solving these complex equations. It is hoped that many design
engineers, particularly those facing the task of seismic assessment of buildings, will
find this book a very useful practical reference. We are grateful for any constructive
comments or criticisms that readers wish to communicate and for notification of any
errors detected in this book.

The authors have received great assistance, encouragement, and inspiration
from many sources. Thanks are given to the colleagues of the Department of
Structural Engineering, University of Naples Federico II, and to the Ministry of
University Research (MiUR) for the fellowship assistance of one of the authors.
Thanks are also given to the students of advanced courses of structural engineer-
ing and to practicing engineers who attended several training programs, work-
shops, and lecture series organized by the authors and their colleagues in Italy
and India for giving their exciting feedback to the approach and methodology of
handling the subject.

Finally, the authors would like to place on record the extensive cooperation and
kindness shown by their family members during the completion of this book within
the scheduled time frame.

Srinivasan Chandrasekaran
Luciano Nunziante

Giorgio Serino

Federico Carannante
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Notations

o, angle between the normal to P-M boundary and de . axis
o, angle between the plastic strain vector and de . axis

Y. partial safety factor for concrete

Y partial safety factor for steel

o displacement (mm)

3, elastic displacement (mm)

S, plastic displacement (mm)

AO relative rotation (rad)

AB, relative rotation at elastic limit (rad)

AB, relative rotation at collapse (rad)
strain in generic fiber of concrete
maximum strain in concrete

€0 elastic limit strain in concrete

€ ultimate limit strain in concrete
€, strain in tensile reinforcement
€ strain in compression reinforcement

€ elastic limit strain in reinforcement

ultimate limit strain in reinforcement

strain at CG of the cross-section

total rotation (rad)

total elastic rotation (rad)

total rotation at collapse (rad)

stress in generic fiber of concrete (N/mm?)
maximum stress in concrete (N/mm?)

design ultimate stress in concrete in compression (N/mm?)
yield strength of steel (N/mm?)

design ultimate stress in steel (N/mm?)

stress in tensile reinforcement (N/mm?)
stress in compression reinforcement (N/mm?)
curvature (rad/m)

elastic curvature (rad/m)

limit elastic curvature (rad/m)

ultimate curvature (rad/m)

rotation ductility (A8 /A8;)

curvature ductility (¢, /¢)

area of tension reinforcement (mm?)

A area of compression reinforcement (mm?)

b width of the beam (mm)

d effective cover (mm)

strain increment in the center of gravity (CG) of the reinforced
concrete (RC) beam
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Xxii Notations

do curvature increment

D overall depth of the beam (mm)

E, modulus of elasticity in steel (N/mm?)

k. collapse load multiplier

K¢ rotational-elastic stiffness (kN-m/rad)

K¢ rotational-hardening modulus (kN-m/rad)

Ki curvature-elastic stiffness (kN-m?/rad)

Kg’ curvature-hardening modulus (kN-m?/rad)

M bending moment (N-m)

M, elastic bending moment (N-m)

Mg limit elastic bending moment (N-m)

M, ultimate bending moment (N-m)

P percentage of tensile reinforcement

P. percentage of compression reinforcement

P axial load (N)

P, elastic axial load (N)

Pg limit elastic axial load (N)

P, ultimate axial load (N)

q depth of plastic kernel of concrete (mm)

Ry compressive cube strength of concrete (N/mm?)

\Y shear (kN)

X, depth of neutral axis measure from extreme compression
fiber (mm)

x9,x/,x7,x7” limit position neutral axis (mm)

y depth of generic fiber of concrete measured from extreme
compression fiber (mm)

Yo depth of point of rotation in subdomain 6 measured from

extreme compression fiber (mm)



Axial Force—Bending
Moment Yield Interaction

1.1  SUMMARY

The limit state design procedure of reinforced concrete elements has undergone
major revision in recent times with more emphasis toward a performance-based engi-
neering approach. This design approach demands a thorough understanding of axial
force—bending moment (P-M) yield interaction of elements, for moment-resistant
reinforced concrete (RC) frames under seismic loads, in particular. Current design
methodologies, both recommended by international codes and employed by prac-
ticing engineers, include desirable features of ultimate strength and working stress
procedures as well ensure a ductile response. In this chapter, detailed mathemati-
cal modeling of P-M yield interaction of RC rectangular beams based on Eurocode
currently in prevalence is presented; six subdomains defining the boundary of P-M
yield interaction are classified. A complete set of analytical expressions is proposed
and also illustrated through relevant examples. Results obtained for the failure inter-
action curve of RC rectangular sections under P-M yield interaction show that by
adopting Eurocode strain limits, the boundary curve is divided into two main parts,
namely, (1) tension failure with weak reinforcement resulting in yielding of steel
and (2) compression failure with strong reinforcement resulting in crushing of con-
crete. The curves are given in analytical form for every feasible coupling of bending
moment and axial force. Advantageous use of the proposed P-M interaction for non-
linear seismic analysis is demonstrated in the subsequent chapters; also the devel-
oped boundary of different subdomains is verified for a plastic flow rule. With the
help of the presented mathematical model and proposed expressions for P-M yield
interaction, the designing of new structures and assessment of existing RC structures
can be performed with better understanding and improved accuracy.

1.2 INTRODUCTION

Concrete is a heterogeneous, cohesive-frictional material exhibiting a complex non-
linear inelastic behavior under multiaxial stress states. The wide use of concrete
as the primary structural material in several complex structures demands detailed
understanding of the material response under a combination of different loads (Abu-
Lebdeh and Voyiadjis 1993; Candappa, Sanjayan, and Setunge 2001; Park and Kim
2003). Sufficient ductility ensured in the design procedure is an important prerequi-
site for suitability of reinforced concrete structures to resist seismic loads (IS 13920,
1993); this is true because seismic design philosophy demands energy dissipation/
absorption by postelastic deformation for collapse prevention during major earth-
quakes (Chandrasekaran, Tripati, and Srivastav 2003; Chandrasekaran, Serino, and



2 Seismic Design Aids for Nonlinear Analysis

Gupta 2008). Ductility also ensures effective redistribution of moments at critical
sections as the collapse load is approached (Park and Paulay 1975; Bangash 1989;
Papadrakakis, Fragiadakis, and Lagaros 2007). Ductility, a measure of energy dis-
sipation by inelastic deformation during major earthquakes, depends mainly on the
moment-curvature relationship at critical sections where plastic hinges are expected/
imposed to be formed at collapse. RC structures have the facility of changing, within
certain limits, at the ultimate moment the designer pleases, without changing the
overall dimensions of the cross-section. As a result, it is sometimes suggested that
the reinforcement steel areas should be adjusted to make the distribution of the
ultimate moment in the members the same as the elastic bending moment diagram
for the factored (ultimate) load. This is a critical aspect of (intended) performance-
based design of the structure, leading to some advantages, namely, (1) the elastic
analysis necessary will be more laborious; (2) the resulting design shall address the
required performance criteria set by the designer; as well as (3) plastic hinges are
made to form on the selected structural components of the desired choice (for exam-
ple, on the beam and not on the column), thus ensuring the required performance
of buildings under seismic loads. In other words, the structures should be able to
resist earthquakes in a quantifiable manner and to present levels of desired possible
damage (Ganzerli, Pantelides, and Reaveley 2000; Ghobarah 2001). Studies (Paulay
and Priestley 1992) conducted show that the behavior of statically indeterminate
RC structures depends on a cross-section area of reinforcing the steel-to-concrete
ratio. For smaller values of this ratio, reinforcement yields plastically before the
concrete is crushed in compression, while for larger values, it may initiate crush-
ing of concrete prior to the yielding of reinforcement. However, this ratio becomes
critical when tensile steel reaches yield limit simultaneously with the extreme com-
pressive fiber of concrete reaching its crushing strain. The increasing concern of
the structural safety of existing buildings not complying with current seismic codes
demands performance assessment to evaluate their seismic risk, which is a major
task ahead for structural designers.

Thus, the objective of ensuring safe buildings intensifies the above-stated con-
cerns for which pushover analysis can be seen as a rapid and reasonably accurate
method (ATC-40, 1996). Pushover analysis accounts for inelastic behavior of the
building models and provides a reasonable estimate of deformation capacity while
identifying critical sections likely to reach limit state during earthquakes (Chopra
and Goel 2000; Chao, Yungting, and Ruo 2006). Researchers used pushover analysis
successfully for seismic evaluation and showed its comparison with other detailed
analysis procedures (see, for example, Esra and Gulay 2005; Chandrasekaran and
Roy 2004, 2006; Chandrasekaran, Nunzinate, et al. 2008b). Researchers emphasised
that accuracy of results obtained from pushover analysis are strongly influenced by
basic inputs like: (1) stress-strain relationship of constitutive materials; (2) P-M yield
interaction; as well as (3) moment rotation capacity of members (see, for example,
Chandrasekaran et al. 2008a). A qualitative insight of these inputs, P-M interac-
tion in particular, for rectangular cross-section with different area of tensile and
compressive steel accounting for nonlinear properties of constitutive materials is
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relatively absent in the literature. This chapter presents a mathematical development
of nonlinear behavior of reinforced concrete members and derives P-M yield interac-
tion while describing their six subdomains.

1.3 MATHEMATICAL DEVELOPMENT

Concrete under multiaxial compressive stress state exhibits significant nonlinearity,
which can be successfully represented by nonlinear constitutive models (Hognestad,
Hanson, and McHenry 1955; Chen and Chen 1975; Ottosen 1977; Chen 1994a,
1994b). Many researchers reported different failure criteria in stress space by a
number of independent control parameters (see, for example, Hsieh, Ting, and Chen
1982; Menetrey and William 1995; Sankarasubramaniam and Rajasekaran 1996;
Nunziante, Gambarotta, and Tralli 2007). A nonlinear elastic response of concrete is
characterized by parabolic stress-strain relationship in the current study and shown
in Figure 1.1. Elastic limit strain and strain at cracking are limited to 0.2% and
0.35%, respectively (D.M. 9 gennaio 1996). Tensile stresses in concrete are ignored
in the study. The design ultimate stress in concrete in compression is given by

_(083)(085)R,,

o= (LD)

The stress-strain relationship for concrete under compression stresses is given by

— ac2
o (e.)=ae2+be +c O<e <g,
(1.2)
Gc (gc) = 800 ECO < 8c < 8cu
o (compressive)

i ;
/ 1 1
1 1
I I
1 1
1 1
1 1
1 1
1 1
1 1
T T
1 1
1 1

tleg = 0.29 te, 5 0.35%

0 .
e.(compressive)

FIGURE 1.1 Stress-strain relationship for concrete.



4 Seismic Design Aids for Nonlinear Analysis

where compression stresses and strains are assumed to be positive in the analysis.
Constants a, b, and ¢ in Equation 1.2 are determined by imposing the following
conditions:

GC(€C=O)=O c=0
— — 2 —
Gc (ec _S’CO) - GCO = ach +b€c0 - Gc()

(1.3)
do, —0
{dec l . 2ag (+b=0

c0

By solving the above equations, we get

c 20
a=— CO’ bzico’ c=0 (143)
030 GCO

By substituting in Equation 1.2, we get

c 206

—_ 202, 2P0

c.(g)= £§ e+—e, O<eg <g, (1.4b)
c0 c0

Steel is isotropic and homogeneous material exhibiting stress-strain relationship as
shown in Figure 1.2. While the ultimate limit strain in tension and that of compres-
sion are taken as 1% and 0.35%, respectively (D.M. 9 gennaio 1996), elastic strain in
steel in tension and compression are considered the same. The design ultimate stress
in steel is given by

Oy =

(o}
-y (1.5)
¥

o(tensile)

)

R SRR U M

W

59, - 19
5% 1 Equp = 1%!

tensile)

JERON O EE R e )

t
e i il i B V,m
=3

1050

FIGURE 1.2 Stress-strain relationship for steel.
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e

Shear stirrups

e

FIGURE 1.3 Cross-section of RC beam.

XY

The stress-strain relationship for steel is given by

Gs(gs) = Esgs - ESO < 85 < 850

o.(e)=0, g, <e <eg,, (e, =€) (1.6)

sut

Gs(es) :_GSO —€ c < 8s < _850

su,
The reinforced concrete beam of rectangular cross-section shown in Figure 1.3 is now
examined for P-M yield interaction behavior for the different percentage of tension and
compression reinforcements. The fundamental Bernoulli hypothesis of linear strain
over the cross-section, both for elastic and for elastic-plastic responses, of the beam
under bending moment combined with axial force is assumed. Interaction behavior
becomes critical when one of the following conditions apply: (1) Reinforcement in
tension steel reaches ultimate limit; (2) strain in concrete in extreme compression fiber
reaches ultimate limit; or (3) maximum strain in concrete in compression reaches elas-
tic limit under only axial compression. Figure 1.4 shows P-M limit domain consisting
of six subdomains as described below. Only the upper boundary curves (corresponding
to positive-bending moment M) will be examined since there exists a polar symmetry
of the domains with respect to the center of the domain. Figure 1.5 shows the strain and
stress profile in steel and concrete for subdomains 1 and 2 where collapse is caused by
yielding of steel, whereas Figure 1.6 shows the strain and stress profile for subdomains
3 to 6 for which collapse is caused by crushing of concrete.

1.4 IDENTIFICATION OF SUBDOMAINS

1.4.1 SuBDOMAINS 1 AND 2: CoLLAPSE CAUSED BY YIELDING OF STEEL

In subdomain 1 (Figures 1.4 to 1.7), the position of neutral axis measured from
the origin placed on the top of rectangular section (see Figure 1.3) varies in the
range ]—oo, 0]. Strain in tensile steel reaches ultimate limit and the corresponding
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stress reaches design ultimate stress, whereas strain in steel on compression zone
is given by

x —d
e =¢ | ———| Vx <0
s su[D_xc —d] X, 1.7

The strain in compression steel reaches elastic limit for the position of neutral axis
assuming the value as

d(e, +¢&,)—De,
X = — o ———0 (1.8)
(gsu - ES())

for e >¢,, 0, =0, and ultimate axial force and bending moment are given by
Pu = GsO(Asc - Ast)

c,lim

Vx, €| —oo,x? (1.9
RN B

for e, <e, o, =E € ,and ultimate axial force and bending moment (with respect

to the center of gravity [CG] of the cross-section) are given by

—d
Pu = AscEsesu XC - GSOAst
D-x,—d

M =|AaEe |- 2% lis A ||D-a
u SC S su D—Xc—d S S 2

From the above equations, position of neutral axis can be deduced as

VX € [Xg,nm’o] (1.10)

A Ee (D-2d
x,=D-d- B8y ) (L.11)
Pu+A Ee +A o

scs T su st s0

By substituting in Equation 1.10, we get

u

M :(];—d](Pu +2A,0) (1.12)

For depth of neutral axis becoming zero, ultimate axial force and bending moment
are given by
d
su(D_dj_GsoAst

M, =|c,A,—~A_Eg 4 E—d
u S S| SC s su D_d 2

P,=—A_Eg

u sC s

for x =

c

(1.13)
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Subdomain 2 is further composed of two regions, namely, yielding of tensile steel
while strain in concrete remains within elastic limits (2a), and yielding of tensile
steel while strain in concrete reaches ultimate limit (2b) Depth of neutral axis in
these regions lies in the range [0, xL imJand [x] ] for regions (2a) and (2b),
respectively (Figure 1.7), and are given by

c, llm’ c, hm

X, = —=0 |(D-d)=0.167(D-d) for e, =¢, € ,=¢, (L14)
’ 8 +8 ’

€
”oo= - D-d)=0.259(D—-d) for ¢ =€, £,=E€
Xc,hm [8su + Scu j( ) ( ) c,max cu st su (115)

Strain in compression steel, in subdomain 2a, is given by

x, —d
€. T8y [I)_Cxc_dj VX €[0, chm] (116)

The stress and strain of a generic compression fiber of concrete located at a distance
y measured from the extreme compression fiber are given by

2 -y)Re (D-x_—d)+
o (8 (y))_ cO £2+ GCO 80 — (Xc y)[ scO( 5 XC ) 8 2(y X )]GCO su (1 17)
g2, €., e3,(x,+d-D)
X~y ’
€. =€ [D—Xc—d] Vx, €l0,x] ;1 (1.18)

Ultimate axial force and bending moment in subdomain 2a are given by

Pu = jbcc(gc(y))dy - GSOASL + 0sclAsc
0<x, <x/. (1.19)

M, = I bcc(sc(y))(lg _ y)dy +(O A, + GSCASC)(]; _ dj
0

Depth of plastic kernel of concrete is given by

€
q=x,~_*D-x,~d) (1.20)

su
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Ultimate axial force and bending moment in subdomain 2b are given by

P = chc(sc(y)) dy+bqo -0, A +0 A X jim < X SX7)

Mu=jbcgggm(g—y}w+bﬁ@wD—qyachﬁ+omAQ(g—d)
q

(1.21)

1.4.2 SuBDOMAINS 3 TO 6: CoLLAPSE CAUSED BY CRUSHING OF CONCRETE

In subdomain 3, collapse occurs when maximum strain in concrete reaches crushing

strain while strain in tension steel varies in the range [€,,€_ ], stress in tensile steel
”r

is 0, and position of neutral axis varies in the range[x , Cllm] (Figures 1.4 to
1.7). Position of neutral axis x|, characterized by €, =€, is given by
X7 =—fa_(p_g
c,lim 830 +8cu (122)

Strains in steel, both in tension and compression, are given by

D-x_—-d -d
ESIZECU( XC ]’ Ssczecu(xc j VX G[ Lllm’ ;’Ilm] (12’3)

XC XC

The corresponding stress in steel bars reaches ultimate limit as strain exceeds elastic
limit. Strain in the generic fiber of concrete and depth of plastic kernel are given by

8c = ecu(xc yj’ q = @Xc VX E[ Lhm’ :,;lm] (124)
XC SCU

In subdomains 4 and 5, the position of the neutral axis varies in the range

(X[ »(D—d)] and [(D—d),D], respectively. In subdomain 4, strain in tensile steel

varies in the range [0,€ ], stress in tensile steel is 6, = E €, whereas in subdomain

5, tensile steel gains compressive stress progressively. Ultimate axial force and bend-

ing moment in subdomains 3 to 5 are given by

Pu = J-bcc(gc (y)) dy + bq GcO - GstAst + GSCASC
q

(1.25)

Xe b
M, = chc(sc(y))[]; - yj dy + %(D -+ A + GscAsc)[]; - dj

q
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Figure 1.7 shows the linear strain profile over the cross-section determined by the
tensile strain in steel. In subdomain 6, the position of the neutral axis varies in the
range [D, +eo[, and strain diagram in cross-section rotates about point Q as shown in
Figure 1.7. The depth of plastic kernel, whose distance is measured from the extreme
compression fiber, is given by

€ — €y 3
= = J e S— D:—D
a=Yq ( e, J 7 (1.26)

cu
Strain in reinforcing steel, both in tension and compression, are given by

- 8cu'?‘(:()(I) — Xc - d) = Scuec()(xc — d)
’ sc
ecuxc - D(ecu - ECO) €auXe ™ D(Ecu - 800)

cu ¢

(1.27)

st

The strain in generic fiber of the concrete is given by

ScuecO(Xc — y)
e =
¢ Ecuxc - D(Ecu - 80()) (128)

Ultimate axial force and bending moment are given by

D
Pu = J.bcc(gc(y)) dy + quCO - GslAst + GscAsc
q D<x, <+es

D
b
M, = chc(sc(y))[];— y]dy +7q560 (D—q)+ (0 A, + GSCASC)[];— dj
q

(1.29)

1.5 NUMERICAL STUDIES AND DISCUSSIONS

Using the above expressions, P-M yield interaction is now studied for RC beams
of different cross-sections, reinforced in both tension and compression zones. The
cross-section dimensions and other relevant data can be seen from the legend of
the figures. All six subdomains are traced and plotted as seen in Figures 1.8 to 1.19.
The sample plots are shown for relevant practical cases, namely, (1) for different
cross-sections; (2) for varying percentage in tension and compression reinforcements;
(3) for different characteristic strength of concrete; and (4) for different yield strength
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of reinforcing steel. The relevant numerical values are also reported in Tables 1.1 to
1.12. For a ready use of obtaining P-M interaction of any desired RC section other
than those given in the figures and tables presented above, a summary of expressions
in the closed form is given in Table 1.13. Ready use of the above-presented procedure
is demonstrated using the simple spreadsheet program, as discussed in Section 1.7.

The results obtained for the RC failure interaction curve of beams of rectangular
cross-section under P-M yield interaction show that, by adopting Eurocode strain
limits, the boundary curve is first divided into two parts based on the type of failure,
namely, (1) tension failure with weak reinforcement resulting in yielding of steel and
(2) compression failure with strong reinforcement resulting in crushing of concrete.
The expressions for different subdomains are also given in analytical form for every
feasible coupling of bending and axial force. The boundary curve for the steel fail-
ure, in which by definition the tensile steel is in ultimate yielding condition, can be
further subdivided in three subdomains (1, 2a, 2b). These parts, when subjected to
increasing compressive axial force, correspond to compression of concrete reaching
the ultimate limit. Subsequently, for the concrete failure part, for which by definition
concrete is crushed, the curve can be subdivided into four subdomains (3, 4, 5, 6) for
which by increasing the compressive axial force, strain in steel varies between the
tensile failure limit and the tensile elastic limit, until elastic limit in compression for
concrete disperses all over the cross-section. The sharp bend seen in the boundary of
subdomain 3 to 4 corresponds to the fact that the stress-strain relationship for steel
is bilinear (Figure 1.2). The procedure proposed for the bending moment-curvature
relationships of beams, in the presence of constant axial force, is very simple and
furnishes expressions in closed form for elastic-plastic regions of RC sections after
verification with the numerical results. The applied principle may not be new, but the
presented expressions in closed form will be very useful for practical nonlinear static
analyses like pushover. The analyses of these responses show that for every kind of
reinforcement, owing to the small bending strength increment between the elastic
and the failure limits, the moment-curvature response of rectangular RC sections
is basically bilinear: After the first linear response, a further linear plastic branch
is present, with a small slope. The whole response is very close to an elastic-plastic
response, characterized by a sort of small “hardening effect.”

It is important to note that the subdomains classified for P-M interaction are based
on strain limit conditions imposed by the codes. For these prescribed strain limits,
all points of the section are not in failure condition; this implies that the stress and
strain increments of the points lying along the P-M boundary depend on both the
elastic and plastic increments. Hence, normality rule that is valid for true plastic
domain does not hold completely true. Detailed discussion of the validity and appli-
cability of flow rule can be seen in Chapter 5. Subsequent verifications made by the
authors show that plastic flow rule is completely satisfied in the subdomains where
failure is caused by yielding of steel, and not verified for subdomains where failure
is caused by crushing of concrete.
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1.6 CONCLUSIONS

In this chapter, a detailed methodology for estimating the P-M yield interaction is
presented while identifying the subdomains of the P-M boundary. RC beams of dif-
ferent cross-sections and percentage of reinforcement in tension and compression
are analyzed, and their subdomains in P-M interaction are identified. The proposed
expressions for P-M and M- ¢ are carefully examined for their close agreement
with selected examples of RC beams. Though some of the observations are already
reported in the literature, the study quantifies the value through illustrated examples
relevant to the Eurocode currently prevalent. The expressions presented in a closed
form will be very useful to the engineering community to perform nonlinear analy-
ses like pushover.

1.7 NUMERICAL PROCEDURE IN SPREADSHEET FORMAT

A compact disc with relevant content can be downloaded free from http://www.
crcpress.com/e_products/downloads/download.asp?cat_no=K10453. The user can
change the common design parameters (shown in color in the spreadsheet), namely,
(1) diameter and number of bars of tensile and compression reinforcement, (2)
cross-section dimensions, and (3) material properties like f, and f,. All relative coef-
ficients required for each domain are computed automatically, and one can find the
required P-M curve plotted.
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2 Moment-Curvature
Relationship for
RC Sections

2.1 SUMMARY

The correct estimate of curvature ductility of reinforced concrete members has
always been an attractive subject of study because it engenders a reliable estimate
of the capacity of buildings under seismic loads. The majority of building stock
needs structural assessment to certify its safety under revised seismic loads by new
codes. Structural assessment of existing buildings, by employing nonlinear analyses
tools like pushover, needs an accurate input of moment-curvature relationship for
reliable results. In this chapter, analytical predictions of curvature ductility of rein-
forced concrete sections are presented. Relationships, in explicit form, to estimate
the moment-curvature response are proposed, leading to closed form solutions after
their verification with those obtained from numerical procedures. The purpose is
to estimate curvature ductility under service loads in a simpler closed form. The
influence of longitudinal tensile and compression reinforcements on curvature duc-
tility is also examined and discussed. The spreadsheet program used to estimate the
moment-curvature relationship, after simplifying the complexities involved in such
estimates, predicts in good agreement with the proposed analytical expressions. In
lieu of tedious hand calculations and approximations required in conventional itera-
tive design procedures, the proposed estimate of curvature ductility provides a ready
solution for a potentially safe design.

2.2 INTRODUCTION

Earthquake-resistant design of RC-framed structures is essentially focused on the
displacement ductility of buildings instead of on material ductility of reinforcing
bars. Critical points of interest are the strain levels in concrete and steel, indicating
whether the failure is tensile or compressive at the instant of reaching plastic hinge
formation (Pisanty and Regan 1998). Estimate of ductility demand is of particular
interest to structural designers for ensuring effective redistribution of moments in
ultraelastic response, allowing for the development of energy dissipative zones until
collapse (Pisanty and Regan 1993). In seismic areas, ductility of the structure is
an important design parameter since modern seismic design philosophy is based
on energy absorption and dissipation by postelastic deformation for the survival of
the structure during major earthquakes (Park and Kim 2003). Studies conducted
on existing buildings showed they were structurally unfit to support seismic loads
demanded by the revised international codes (see, for example, Chandrasekaran and

43
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Roy 2006; Chao et al. 2006). The deformation demand predictions by improved
Demand Capacity Method are sensitive to ductility, since higher ductility results in
conservative predictions (Sinan and Asli 2007). The estimate of moment-curvature
relationship of RC sections has been a point of research interest for many years (see,
for example, Pfrang, Siess, and Sozen 1964; Carreira and Chu 1986; Mo 1992); his-
torically, moment-curvature relationships with softening branch were first introduced
by Wood (1968). Load-deformation characteristics of reinforced concrete members,
bending in particular, are mainly dependent on moment-curvature characteristics
of the sections since most of these deformations arise from strains associated with
flexure (Park and Paulay 1975). Studies also show that in well-designed and detailed
RC structures, the gap between the actual and design lateral forces narrows down
by ensuring ductility (see, for example, Wood 1968; Pankaj and Manish 2006). With
regard to RC building frames with sidesway, their response assessment is compli-
cated because of second-order deformations and because considerable redistribution
of moments may occur as a result of plastic behavior of sections as well (Nunziante
and Ocone 1988). Plastic curvature is therefore a complex issue mainly because of
interaction of various parameters, namely, (1) the response of constitutive material,
(2) member geometry, and (3) loading conditions. Observations made on plastic soft-
ening beams (Challamel and Hjiaj 2005) showed that the correct estimate of yield
moment, a nonlocal material parameter, is important to ensure proper continuity
between elastic and plastic regions during the loading process. Experimental evi-
dence of the moment-curvature relationship of RC sections already faced limited
loading cases and support conditions (Ko, Kim, and Kim 2001). Mo (1992) per-
formed elastic-plastic buckling analysis by employing a finite element procedure
to reproduce moment-curvature relationship with the softening branch, and Jirasek
and Bazant (2002) used an alternate, simplified model where the complex nonlin-
ear geometric effects are embedded in the developed model of material behavior.
Experimental investigations also impose limitations in estimating the plastic rota-
tion capacity. As already seen (Lopes and Bernardo 2003), the experimental results
for rotation-deflection behavior showed good agreement with the analysis in the elas-
tic regime, but for the phase of yielding of reinforcement steel, the theoretical results
did not agree with the experimental inferences.

Studies reported above show that no simplified procedure exists to estimate cur-
vature ductility of RC sections. The response of RC building frames under ground
shaking generally results in nonlinear behavior, which is complex to model. Further,
increased use of a displacement-based design approach leads to nonlinear static pro-
cedures for estimating seismic demands (FEMA 450, 2004; FEMA 440, 2005) for
which such an estimate of moment-curvature relationship is essential. Therefore, in
this study, a simplified numerical procedure for moment-curvature relationship of
RC sections is attempted. The computations are based on their nonlinear character-
istics in full depth of the cross-section, for different ratios of longitudinal tensile and
compression reinforcements. They account for the variation on depth of neutral axis
passing through different domains, classified on the basis of strain levels reached in
the constitutive materials, namely, concrete and steel. Obtained results, by employ-
ing the numerical procedure on example RC sections, are verified with expressions
derived from detailed analytical modeling.
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2.3 MATHEMATICAL DEVELOPMENT

Significant nonlinearity exhibited by concrete, under multiaxial stress state, can be
successively represented by nonlinear characteristics of constitutive models capable
of interpreting inelastic deformations (Chen 1994a, 1994b). Elastic stress-strain rela-
tionship of constitutive materials, as prescribed by the code currently in prevalence
(D.M. 9 gennaio 1996; Eurocode UNI ENV 1991-1, 1991-2; Ordinanza 2003, 2005;
D.M. 2005) are used in this study, as already presented in Chapter 1. The funda-
mental Bernoulli’s hypothesis of linear strain over the cross-section, both for elastic
and elastic-plastic responses of the beam under bending moment combined with
axial force, will be assumed. The interaction behavior becomes critical when one
of the following conditions applies: (1) strain in reinforcing steel in tension reaches
ultimate limit; (2) strain in concrete in extreme compression fiber reaches ultimate
limit; or (3) maximum strain in concrete in compression reaches elastic limit under
only axial compression.

2.4 MOMENT-CURVATURE IN ELASTIC RANGE

It is well known that the bending curvature is the derivative of bending rotation,
varying along the member length and at any cross-section, and is given by slope of
the strain profile. It depends on the fluctuations of neutral axis depth and continu-
ously varying strains. Moment-curvature relationship, in elastic range, depends on
both the magnitude and nature of the axial force. Figure 2.1 shows the curvature

Arctan:q)o
| b
gc,max

f

at limit elastic

Xc

Arctan ¢g

Tensile (e < 0)  Compressive
(e>0)

FIGURE 2.1 Curvature profile for strain variation in concrete and steel.
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profile for strain variation in concrete and steel. Magnitude of axial force is assumed
to vary in the range of

_(Asc + As[) Oy < P< {bDGcO + (Asc+ Ast) GSO} (213)

The nature of axial force will vary as (1) tensile axial force (considered as nega-
tive in this study); (2) zero axial force; as well as (3) compressive axial force
(considered positive). Stress and strain in concrete and steel, in elastic range are
given by

e.=0. (X, ~y); €.,=0.(x.—d); £, =0 (D-x —d)

G = (XC - Y) [2800 - (Xc B y) (Pe]Gc() (pe .

c 2
800

o, =E ¢, (x,—d); (2.1b)
Gst = Es (Pe (D —X. - d)’

2.4.1 Tensite AxiAL FORcE

Tensile axial force results in reduced curvature. Under the action of axial force, the
equilibrium equation for axial force is written along the length axis of the beam
while moment is evaluated about the CG of the cross-section. Expressions for axial
force and bending moment, in explicit form, are given by

PS = _GSIASI. + GSC‘ASC = b(d - D)[d(pc - pl) + Dpl - (pC + pt)XC]E§¢ (2'2)

D
Me = (GSIASt + GSCASC)(Q’ - dj

1 (2.3
= Eb(D_ 2d)(D-d[(p, —p)x +Dp, —d(p. +p)IE O
Percentages of steel, in tension and compression zones, are given by
A =pb(D-d);, A =pbD-d 2.4)

By solving Equation 2.2 with respect to x_, we obtain the following relationship:

+ = P.+b(@-D)ld(p,—p,)+Dp,IE 0
¢ b(d-D)(p. +p)E0

2.5)
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By substituting Equation 2.5 in Equation 2.3, moment-curvature relationship is
obtained as

D-2d
=———|P.(p,—p,)+2b(D*+d>-3dD)Eppd| V $<€[0,0,] (2.6)
20, +p) ‘ P28] '
where ¢, is the limit curvature for X, =0 ; by imposing this condition in Equation
2.5, we get
P

%0 = 1= D)ES[D;t +d(p, —py)l @7

As curvature is influenced by the percentage of tension reinforcement, by imposing

the conditions x, =0 and ¢ =€ _,/(D—d) in Equation 2.2 and solving with respect to
p,. for a specified range of ¢® =-Q, +,/Q? —4Q,Q,/2Q,, Equation 2.6 is defined
in the total range [0,¢.], where ¢ is the limit elastic curvature and is derived in
the following section. For further increase in curvature more than ¢, , concrete also
contributes to the resulting compression, and expressions for axial force and bending
moment take the following form:

P, = jbcc[sc(y)]dy —G AL FOAL = A0+ A D)X, + AL (0)X2 + A (9,3
0

(2.8)
M, = J.bcc[ec(y)](D - y] dy+(c A+ GSCASC)(D - dj
d 2 2 29)

M, =By (9.)+B, (0%, +B,(9)xZ + By (9)x + B, (9,)x¢

where the coefficients A, (for i = 0 to 3) and B; (for i = 0 to 4), as a function of cur-
vature, are given by

Ay(9,)=b(d—-D)[Dp, +d(p, —p)IE0.; A,(¢,)=bD—-d)(p.+p)IE?,:

bo_,0 bo 2
A — cOTe . A - _ cOTfe .
,(9,) e, (9, 3er
1
By(¢,)= Eb(Zd2 —3dD+D?)[Dp, —d(p, +p)IE9.; (2.10)
1 bDo
B,(0,)= - (24> ~3dD+ D?)(p, ~p,)E, 0 By(0,)= oile
2 2e
bo 0. (2e ., +Dd.) bo 2
B - _ c0te c0 e : B — c0 e;
5(9.) 6c2, 4 () 12e2,
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By solving Equation 2.8 with respect to variable x., three roots of the variable are
obtained as

1
Xcl(Pe’q)e) - 6A3(¢e)
2.5198(A2(0,)—3A,(6,)A,(6,) )
x|-2A,(0,)+ TS +1.5874C,(¢_,P.)
I (2.5198+4.36451)( A2(9,) — 3A ,(9.)A,(0,)) |
T SR B (e 1c((qj(¢P)) CALECY)
c2\te’ Ve _]2A3(¢e) I\Ye’"e
| —(1.5874-2.74951)C,(¢,.P.) |
I 25198 —4.36451)(A2(0,)—3A,(0,)A,(9,)) |
Xy(P0)=— ‘4Az(¢e)—( 1)C(((;(¢;)) (00,0)
c3\te’Te _]2A3(¢e) 1\Ye’> e
| —(1.5874+2.74951)C, (9,.P.) |
@.11)
where,
3 p 1/3
Clop)- +\/—4(A§—3A1A3) +(2A3-9A,A,A, +27A%(A, - P,)) o)

2A3+9A,A,A, —27TAX(A, - P)

Out of the above, only one root, namely X, is in close agreement with the obtained
numerical solution. By substituting the root x_; in Equation 2.11, the moment-curva-
ture relationship in elastic range is obtained as

Me = B()(q)e) + Bl (q)e)xcfa ((I)e’Pe) + B2(¢e)xg3(¢e’Pe)
+B3(0.)x% (9, P) + B, (0)x5 (0. P) VO e, 0]

2.13)

2.4.2 No AxiaL FOrce

The moment-curvature relationship is given by Equation 2.13 for the complete range
of [0,¢.].

2.4.3 CoMPressIVE AXIAL FORCE

Expressions for axial force and bending moment are given by

st st SC SC

D
Pe:chc[sc(y)] dy-o A ,+6 A _=E,+E x +E,x2 (2.14)
0
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D

D D
Mc = J.ch[gc(y)](z - dey + (GstAsl + GSCASC)(z - dj = FO + l::l xc (215)

0
where the coefficients E;_,, , and F,_, are given by

2
8(:0

2
E,= ;b¢[3d(d ~D)E.p, - 3(d—D)’E_p, — Dcco(%wm’)}

& _ bO[-dE (b, +p el + DB, (P, + el + Oy (280 +DO) |

1 85()
bDG _¢?
B
c0
D6 ,(2¢.,+D
F = _"i‘g’{w@ ~2d)(D-d)E p, +6(d—Dy2d—D)E p, - > et q’)},
» » ECO

L _bo [3(D2+2d2 - 3dD)(p, - p,)E £2, —~ D6 6 |

b 622,

(2.16)

By solving Equation 2.14, the position of the neutral axis is determined as

~E, +/E2 —4E,(E,-P,)
X =

c 2E, (2.17)
By substituting Equation 2.17 in Equation 2.15, we get
Me :FO(¢’P6)+FI(¢’P6)XC Vq)e[(),%] (218)
where
_ 3be,,[(D-dE (Dp, +d(p,~p,))+ D0, |
o 2bDG
(2.19)

£ 3b \/3b[(D ~dEe,((Dp, +d(p,~p)+ chc())z:'— 4P Do,
- 2bD’G,,

By imposing the condition (x, = D) in Equation 2.17, limit curvature ¢, is deter-
mined as given above. Further increase in curvature changes the equilibrium conditions
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due to contributions from the resultant compressive force by concrete. For curvature
more than 0, , moment-curvature relationship is discussed in the next section.

2.5 ELASTIC LIMIT BENDING MOMENT AND CURVATURE

The limit elastic curvature, depending on the magnitude of axial force and percent-
age of reinforcing steel in tension and compression, results in four possible cases,
namely, (1) strain in tension steel reaches yield limit and stress in concrete vanishes;
(2) strain in tension steel reaches yield limit but stress in concrete is present; (3)
strain in compression steel reaches elastic limit; and (4) strain in extreme compres-
sion fiber in concrete reaches elastic limit value.

2.5.1 CAase 1: STRAIN IN TENSION STEEL REACHES YIELD
LimiT AND STRESS IN CONCRETE VANISHES

This case is verified when p, < P, + bdEp.£,/b(d-D)G,,. By imposingo =G, and
recalling Equation 2.2, the depth of the neutral axis can be obtained as given below:

. &
X(cl):D_d_Fo Vx, <0 (2.20)

E

By substituting Equation 2.20 in Equation 2.2, elastic limit curvature can be deter-
mined as

_ P, +b(D-d)(p,+p)0,

O bE p, (D2 +2d2-3dD)

.21)

By substituting Equation 2.21 in Equation 2.3, elastic limit moment is obtained as

 D-2d
MO =

[P, +2b(D—d)p,G,,] (2.22)

2.5.2 CAase 2: STRAIN IN TENSION STEEL REACHES YIELD LimiT
AND STRESS IN CONCRETE DOES NoT EQUAL ZERO

Depth of neutral axis is given by

X = D—d—% Vx, €[0,D-d] (2.23)

E

By substituting Equation 2.23 in Equation 2.8, the expression for limit elastic curva-
ture can be obtained as

Ly+L o +L, 08 +L,0{ =0 (2.24)
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where the coefficients L;_, , ; are given by

2
L. = b850(3800 + 8sO)GCO
0 2
38C0

[l

P2 +bD-de,, [ (2e,, +£,)0,, +E(p, +p)e |

' e T (25)
b(D-d)[ (2d—D)E,p.e2, +(d—D)(e,, +£,)0,, |
L,= o2 ,
c0
b(d-D)?
L= (d-D)‘c,,
3£§0

By solving Equation 2.24, which is of a third-degree polynomial, only one real root
(third root) gives the limit elastic curvature:

oo 1
() —_—— | 4], —
o lZLi :

(2.5198 - 4.36451) (14 3L, L)
A

—(1.5874 + 2.7495i)k}

(2.26)

where

1/3

A= [_2132 +9L,L,L, —27L2L, +~4(L3 — 3L L,)* + 2L} ~9L,L L, + 27L3L )* J
(2.27)

By substituting Equation 2.26 in Equation 2.9, limit elastic bending moment is
obtained as:

OO
M = b {M' M

(ii) (i) g i (i) g ii)2
2€2 | o2 @i + MY + MU0 + MV o } (2.28)
co L9 E

where the superscript @ represents the second case. Constants of the above equation
are given by

3
es() (48 + es()) GCO

6

c0

_ (D-2d) 830(3800 + 850) S
3 9
M = (D-d)e [ (D-2d)E (p, —p,) €2, —d(2e , +£,,)0,, .

(i) _
MY =

(i) _
My =

(D-d)[ 3(D-2d)°E,p.e2, +(D—d)(2d+D) (2¢,, +£,))0,, | (2.29)
3 b

(i) —
M," =

(d-D)*(D+d)o,,
6

(i)
MY =
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2.5.3 Cask 3: STRAIN IN COMPRESSION STEEL REACHES ELAsTIC LIMIT VALUE

Depth of neutral axis is given by

Xgiii) =d+ SLO (2.30)

E

By substituting Equation 2.30 in Equation 2.8, the expression for limit elastic curva-
ture is obtained as

H,+H, 6. +H, ¢z +H, ¢} =0 (2.31)

where the constants H, (for i =0 to 3) are given by

H — bgg()(38c() +Ss())6c()
0
3e2,
H - —-P.e2 +be [(D-d)E (p, +p,)e3, +do (2, —£ )]

€% (2.32)
deCO(ECO - 8sO):|

2
c0

H, = b{@dD ~D?-2d%)E p, +

3
— bd Gc()
2
3eZ,

By solving Equation 2.31, only one real root (the second one) gives the limit elastic
curvature as

i =

] {_ " | (25198+4.36451)(H3 - 3H, H,)
2
®

L —(1.5874-2.74951)®
12H,

(2.33)

where

1/3
®= [_2Hg +9H H,H, - 27H2H, + \/—4(H§ ~3H,H,)"+(2H3 ~9H H,H, + 27H2H, )’ }

(2.34)

By substituting Equation 2.33 in Equation 2.9, limit elastic bending moment can be
obtained as follows:

(iii) (iii)
Mgii): b ':Ml +M2

(iii) (i) s (i ) (i) 4 (iii)2
282 q)(iii)z q)(iii) +M3 +M4 q)E +M5 (DE :| (235)
c0 E E
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where

820(850 - 4800)Gc0 MG = (D-2d) (3£c0 - 850)830 O
6 o 3 ’

M{® = (d-D)e [ (D-2d)E,(p, —p,)e2, — (2, —£,,)0,, |

(i) —
M" =

(2.36)
i d2(3D—2d)(eC —£,)0,
M{? =(D-d)(D-2d)’Ep,e2, + 3 0 “s0--c0

d3(d-2D)o,

(i)
M"Y =
6

2.5.4 Cask 4: STRAIN IN EXTREME COMPRESSION FIBER
IN CONCRETE ReAacHES ELAsTic LimiT VALUE

Now, the depth of neutral axis is given by

. €
X(Cw) — _—c0
0, (2.37)

By substituting Equation 2.37 in Equation 2.8, the expression for limit elastic curva-
ture is obtained as

Ry+R o +R, 05 =0 (2.38)
where the constants R, (for i =0 to 2) are given by

2be .©
R, = %’ R, =-P, +b(D-dEg(p. +p,) (2.39)

R, =-b(D-dE [Dp, —d(p,—p,)]
By solving Equation 2.38, the only real root (in this case, the first root) gives the limit

elastic curvature as
_ R,+,/R?-4R R,
OV = — (2.40)

2R

2

By substituting Equation 2.40 in Equation 2.9, limit elastic bending moment, Mg,
can be obtained as follows:

M(W) M(IV) ) )
M(w) ik S e M(W) ME;V)(])EV) (2'41)

q)(w)Z q)(w)
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where

M(iv) — bDecOGCO
! 3

i 1
MY =—-—be2 0,
4 e (2.42)

v 1
M = Eb(D2 +2d?-3dD)E (p, - p,)E,,
v 1
MY = Eb(D2 +2d?-3dD)E [Dp, —d(p, +p,)]

It may be easily seen that for tension steel exceeding the maximum limit of 4%,
as specified in many codes (e.g., see IS 456, 2000), case 4 will never result in a
practical situation. For the case (x,> D), the limits of the integral in Equation 2.8
will be from (0, D), which will also result in compression failure and hence are not
discussed (compression failure is not of design interest for several disadvantages
affiliated to such failure). Expressions for limit elastic moments are summarized
below:

M if p,<p,4
Mg=y (2.43)
MED - if p > p,

where P, for two cases, namely, (1) axial force neglected, and (2) axial force con-
sidered, are given by the following equations:

DZ[D(38CO - 850) - 6d800]0c0
6(D—d)(D-2d)E g2,

pt,el = pc + (244)

_ 6(D-2d)%e) [P +b(d—D)E p e,y ]+ bD%,[6de,, + D(e,, —3e,)lo,
Piea 6b(D—d)(D-2d)’E g2

sO

(2.45)

2.6 PERCENTAGE OF STEEL FOR BALANCED SECTION

The percentage of reinforcement in tension and compression for balanced failure is
obtained by considering both of the following conditions: (1) maximum compressive
strain in concrete reaches ultimate limit strain and (2) strain in tensile reinforce-
ment reaches ultimate limit. Balanced reinforcement for two cases is considered,
namely, (1) for beams where axial force vanishes and (2) for beam/columns where
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P-M interaction is predominantly present. For sections with vanishing axial force,
depth of neutral axis is given by

x, = ( fa J(D —d) (2.46)

8CLI + SSU

For vanishing axial force, the governing equation to determine the percentage of
reinforcement is given by

P= Ibcc[ec(y)]dy +(A,—-A,)o,+qbo,,=0 (2.47)
q

In explicit form, Equation 2.47 becomes
b(d - D) [GCOE’CO - 38cu600 - 3(pc - pt)(ecu + SSU)GSO] =0 (248)
By solving, the percentage of steel for a balanced section is obtained as

(3£cu — 8c()) Gc()

pt,bal = pc +
3(ecu + 8su)GSO

(2.49)

For a known cross-section with a fixed percentage of compression reinforcement,
Equation 2.49 gives the percentage of steel for a balanced section. It can be easily
seen that for the assumed condition of strain in compression steel greater than elastic
limit, Equation 2.49 shall yield the percentage of tension reinforcement for balanced
sections whose overall depth exceeds 240 mm, which is a practical case of cross-
section dimension of RC beams used in multistory building frames. For sections
where axial force is predominantly present, the percentage of balanced reinforce-
ment depends on the magnitude of axial force. By assuming the same hypothesis
presented above, the depth of the neutral axis is given by Equation 2.46, but Equation
2.48 becomes as given below:

b(d - D) [Gc()gc() - 3iicucc() - 3(pc - pl)(ecu + asu)cs()] = P() (250)
By solving, the percentage of steel for a balanced section is obtained as

(3£cu — 8CO) GCO _ PO
3, +g,)0, bD-do (2.51)

pl,bal = pc +

where P, is the axial force (P, >0 if it is compression). For the known cross-section
with a fixed percentage of compression reinforcement, Equation 2.51 gives the per-
centage of steel for a balanced section. In a similar manner, the percentage of compres-
sion reinforcement for a balanced section, by fixing p,, can be obtained by inverting the
relationship given in Equations 2.49 and 2.51 for respective axial force conditions.
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2.7 ULTIMATE BENDING MOMENT-CURVATURE RELATIONSHIP

The study in this section is limited to RC sections imposed with tension failure,
because the compression and balance failures do not have any practical significance
in the displacement-based design approach, in particular. Let us consider two pos-
sible cases: (1) neutral axis position assumes negative values and (2) neutral axis
position assumes positive values.

2.7.1  NEUTRAL AXis PosITION ASSUMING NEGATIVE VALUES

By imposing the conditions x, =0 and ¢ =¢_/(D—d) and solving Equation 2.2 with

respect to Py, for a specified range of p, <P, +bdEp e /b(d-D)o,, the depth of
the neutral axis is given by
€
xC=D—d—¢S“ Vx, <0 (2.52)
At collapse, the equilibrium equations become
Pu = _Gs()Asl + GSCASC = b(d - D)[plcso + Espc (d - X(:)(I)u] (253)
D b(D-2d
Mu = (GSOAst + GscAsc)(Z_ dj = ( 2 ) (D - d)[ptGSO + Espc (Xc - d) (l)u:I
(2.54)

By solving Equation 2.53 with respect to ¢, we obtain the ultimate curvature as

_ P +b(D-d[op, +Ep.e,]

Cc su

* bEp.(D?+2d2-3dD) (2.55)

By substituting Equation 2.55 in Equation 2.54, the ultimate bending moment can
be determined as

D-2d
== [P, +2bD-d)po,] (2.56)

M

It may be noted that the ultimate bending moment in this case is similar to one given
by Equation 2.22 for elastic range.

2.7.2  NEeutrAL AXxis PosITION AsSUMING PosITIVE VALUES

Under this condition at collapse, four different cases of tension failure of RC sections
are possible, namely,

(a) Sst = 8su’ E-:sc < 8sO’ € < SCO’

c,max

(b) €, =€, &, <E, €0 <€.m <E

sC c,max cu’
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(C) 85[ = 8su’ 830 < Ssc < Ssu’ € < 8CO’ (257)

¢,max

(d) E.:st = E.:su’ ESO <Ssc < ecu’ SCO <€ <€

¢,max cu

As strain in tensile steel reaches its ultimate value causing tensile failure, in all the
four cases mentioned above, the equation for computing the depth of the neutral axis
(as a function of ultimate curvature) will remain unchanged and is given by

x6-9 = D—d— ‘:‘T (2.58)

Axial force and bending moment in the cross-section at collapse for case (a) are
given by

k.= J-bcc[ec(y)] dy -6, A, +0 A (2.59)
0
XC D D
M, = J.bcsc[ec(y)](2 - yj dy+(o A, + (SSCASC)[2 - dj (2.60)
0

By substituting Equation 2.58 in Equation 2.59 we get
Jo+J,0,+1,02+1,03=0 (2.61)

where the constants J;_,, , ; are given by

2
— besu (SSCO + Ssu)cco
0 2
38c()

s

_ _Pu€’<2:0 + b(d - D)[(Espcgzo + 600(2800 + 8su))gsu + pt650£§0:|

s

| =
2.62)
_D)2(e  +
J2 = b|:(D2 +2d42 - 3dD)E5pC + (d ) (8(:20 ESU)GCO :|’
SCO

b(d-D)’c,

J3 = 7 ¢V
3e?

c0

By solving Equation 2.61, the real root (in this case, the third root) gives the ultimate
curvature as

(2.5198—4.36451)(13 31,1,
(04

1

—(1.5874 +2.74951) .
121,

(2.63)
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where

173

o= {-213 +93,J,1, - 2712) + \/—4(Jg -313,) +(213-93,0,3,+ 2703, ) }

(2.64)
By substituting Equation 2.63 in Equation 2.60, ultimate moment is given by
b Mia) M(za) (a) (a) (a)
a) — a a)4(a a)h(a)2
MEI )= 2820 q)(a)z + (I)(a) + M3 + M4 (bEI ) + MS ¢$.l ) (265)

where the superscript @ stands for the case (a); the constants of the above equation
are given by

egu (4800 + esu)GcO (2d — D)ezu (38c() + 8su )Gc()

M(la) — c , M(za) — 3 ,

M =(D-d)[ (2d-D)E,pe, 2 - de,,(2e, +&,)0,, +(D—2d)p,e20,, |.

v - O~ d)[ -3(D-2d)°E p 2, + (d - D)2d +D)(e,, +£,,)0,, | (2.66)
4 3 B
o _ (d=D)y(D+d)o,

1\/[(S ) — 0

6

Axial force and bending moment in the cross-section at collapse for case (b) are
given by

Xe

P,= [bote.mldy-A,0,+ A0, +abo, .67)

8C 7 sC

q

1oy D-q) (2.68)

M, = Ibcc[ec(y)](];— yjdy +(A, G, +A_G,) (]; - dj e
q

By substituting the Equation 2.58 in 2.67, we get
Qy+Q; 0, +Q,07=0

(2.69)
where the constants Q;_, , are given by
bo (e, +3€,)
Q() — 0 0 S ,
3
(2.70)

Ql = b(D_d)(Gco _Ebp € +GsOpt)_PLl’

c su

Q, = bE p, (D? +2d? - 3dD)
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By solving Equation 2.69, the first root of the quadratic, representing the ultimate

curvature, is given as
_ 2 _
o = Q QI ~4Q0Q; 2.71)
2Q,

By substituting Equation 2.71 in Equation 2.68, ultimate moment is obtained as

where
M® (sgo +4e € +6€2 ) G, ’
6
MO = (D-2d) (SC:;) +3e,)0, ’ 2.73)

Mgb) = (D - d)[d(ZEspcgsu + Gc() - 2ptcs()) + D(ple() - Espcesu )]
M =(D-d)D-2d)%E p,
Axial force and bending moment in the cross-section at collapse for case (c) are

given by

P, = jbcc[sc<y>] dy+0, (A, ~A,) 274)

0

M, = chc[sc(y)](]; - yj dy+(A +A )0, (]; - dj 2.75)

0

By substituting Equation 2.58 in Equation 2.74, we get
W, +W, 0, +W,02+W.03 =0 (2.76)

where the constants W, _ , , ; are given by

w,=1,,
W = _Pu£<2:() + b(d - D)[(zgc() + 8su )Gc()esu + (pt — pc)Gsoezo]
17 2 )
€0 Q.77)
W, = b(d— D)%sgo(gcO +e) ’
ch
W, =]

3 3
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where J, ; can be seen from Equation 2.62. By solving Equation 2.76, the real root (in
this case, it is the third root) gives the ultimate curvature as

1 (2.5198-4.36451)(W2 —3W, W,) .
0 =——| -4 W, - —(1.5874+2.74951)B
12W, B

(2.78)

where

3

1/3
B= [_zw; +OW, W, W, —27TW2W, + \/—4(w22 “3W,W, ) +(2W3 - OW, W, W, +27W2W, ) ]

(2.79)

By substituting Equation 2.78 in Equation 2.74, ultimate moment is obtained as

b M(C) M(C)
M =56 [q)(:)z g MM+ M0 2.80)
c0 u u

where

M{?=d(d-D)e G (2¢,,+¢€,)+(D?+2d>-3dD)(p, +p,) O, €%

(d-D)*2d+D)(e,, +¢,,)0,,
3 ,

(c) — n (@) (¢) — ng(a)
MY =M@, MY = M¢

2

M = 2.81)

M(1C) =M@

1

Axial force and bending moment in the cross-section at collapse for case (d) are
given by

P = J.bcc[ec(y)] dy+(A_—A )0, +qbo, 0.82)
q

M, = chc[sc(y)](];— yjdy+(As[ +ASC)050[];—dj+qb;°°(D—q) (2.83)
q

By substituting Equation 2.58 in Equation 2.82 and solving, the ultimate curvature

is obtained as

bo (e, +3€,)
b(D-d) (6., +0,,(p.—p)—P)I

(d) =
ol} 3 (2.84)
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By substituting Equation 2.84 in Equation 2.83, the ultimate bending moment is
obtained as

6(D—d)[d+(D—2d) (pC +p1)050j+
bo °c

M@ = = 2c0 <0
u (2.85)
2(D-2d)(e,, +3¢,,) €, +4e &, +6€
o) M2

d(2e.0—€40tE

For the condition of D < ) , ultimate moment, derived above, takes the

following form:

€070
M@ if p <p®
M, ={M® if pb <p <p@ (2.86)
M@ if p® <p,
where

3(e,, +& )P, +bEp.(d(2e,,+¢ )—De )l +2b(d-D)e 0,
3b(d-D)(e,, +€,)0,, '

1) —
pE)_

o1 = 3+ e, )P, +B(A=DIEp.E, 1+ b0 [Dle,, ~3e,0)+d(Be, =26~ 32,)
‘ 3b(d-D)(e, +€,)0,,

2.87)

The percentage of tension reinforcements is determined by imposing the follow-
ing conditions:

€ =&

su’ ~c,max c0

1. p{V is determined by imposing € =€
2.60 with respect to p,.

and solving Equation

2. p? isdetermined by imposing the € =€
2.68 with respect to p,.

€. =€, and solving Equation

su’ sc

.. d(2e,.,— . . .
For the other condition, namely, D > %, ultimate moment now takes a dif-
. c0™ s0
ferent form as given below:

M® if p <p®

= ©) 4 (3) (4)
M, M@ if p® <p, <p! 2.88)

M if p® <p,



62 Seismic Design Aids for Nonlinear Analysis

where

3P, (¢,,+€,)+2b(d-D)e 0,
3b(d-D)(e,, +¢,)0,

)

L

p£4) — pc + 1:)u + [Dgs() + d(gsu — 890)]2[D(8c0 - 3850) + d(6€c() — 830 + 8su)]cc() (289)
b(d-D)o, 3e2, (e, +&,)(D—-2d)*(d-D)o,

The percentage of tension reinforcements is determined by imposing the follow-
ing conditions:

1. p?is determined by imposing the €, =¢€.,¢€ . =€, and solving
Equation 2.75 with respect to p,;
2. p®is determined by imposing the €, =¢,,€,=€, and solving

Equation 2.83 respect to p,.

d(2e.g—€4tE

For the condition D = =) yltimate moment is given by

€c07 €0

M® if p <p;
M, = p, =p’ =p? =p{’ =p{¥ (2.90)
M@ if pf <p,

2.8 NUMERICAL STUDIES AND DISCUSSIONS

An example RC section of 300 x 500 is considered for the study. The section is rein-
forced on both tension and compression zones whose percentage is varied to study
their influence on the curvature ductility. Concrete with compressive cube strength
of 30 N/mm? and steel with yield strength of 415 N/mm? are considered. Figure 2.2
shows the variation of elastic moment with percentage of tension reinforcement for
a constant compression reinforcement consisting of 4®22. It is seen that the limit
elastic moment increases linearly for the case of tensile steel reaching its yield
limit while strain in concrete is within the elastic limit (see the curve governed
by Equations 2.22 and 2.28). For other cases, namely, (1) strain in compression
steel reaches elastic limit (see the curve governed by Equation 2.35 as well as (2)
crushing failure where strain in extreme fiber in concrete reaches elastic limit (see
the curve governed by Equation 2.41), the influence of the percentage of tension
reinforcement on the limit elastic moment is marginal. Although there is a sharp
rise for lower percentages of reinforcements, this increase becomes marginal for
higher percentage values. The point of intersection of moment profiles governed
by Equations 2.22 and 2.28 with that of Equation 2.35 gives the limit value of the
percentage of tensile reinforcement (p, .i.;i.)- A percentage of tensile steel less than
this value results in yielding of tensile steel while greater values result in yielding
of compression steel. The point of intersection of moment profiles governed by
Equations 2.22 and 2.28 with that of Equation 2.41 is not of significant importance
because the latter results in crushing failure of concrete. It is evident that the
percentage of tensile reinforcement influences limit elastic moment considerably
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FIGURE 2.2 Variation of elastic moment with percentage of tensile steel reinforcement.

in the case of ductile failure only. It may be noted that Figure 2.2 plots the moment
variation based on the same governing equations used subsequently for estimating the
moment-curvature relationship. It can also be seen that limit elastic moment is given
by the minimum of the four values given by the Equations 2.22, 2.28, 2.35, and 2.41,
respectively. The trace of the point along the hatched line gives the minimum limit
elastic moment, thus obtained. Figure 2.3 shows the moment-curvature plots for the
RC section reinforced with 4#22® on tension face but varying the compression steel.
It can be seen from the figure that for a fixed percentage of tensile reinforcement,
influence of variation of compression reinforcement on moment-curvature is only mar-
ginal. Also, there exists at least one critical value of the percentage of both tensile and
compression reinforcement that reduces the curvature ductility to the minimum. The
proposed analytical expressions are capable of tracing this critical value, so that it can
be avoided for a successful design of the section.

The effect of axial force on moment-curvature is also studied by subjecting the
RC section reinforced with 4#22®, both on compression and tension zones. The sec-
tion is subjected to compressive axial force only as the tensile force limits the cur-
vature and cannot be helpful in predicting the desired behavior. Figure 2.4 presents
the moment-curvature for different axial forces considered. Moment-curvatures seen
in the figure show linear response in elastic range and hardening-like response in
elastic-plastic range. The figure shows that increase in axial force results in increase
of moments and curvature at both the elastic and ultimate levels. For all four cases
shown in the figure, there is only a marginal increase in ultimate moment with respect
to their corresponding limit elastic moment. For the numerical cases examined, it is
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FIGURE 2.3 Variation of moment-curvature with percentage of compression reinforcement.

therefore stated that the variation in magnitude of axial force does not influence
the ductility ratio much in comparison to its influence on limit elastic and ultimate
moments; however, higher axial forces tend to reduce the curvature ductility. The
critical value of axial force, beyond which a reduction is caused in curvature ductil-
ity, can also be obtained from the proposed analytical hypothesis.

350
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300 P-200kN |
~ —] P=100kN | !
= 1,
= 250 T
Z P=OkN 11|
- I

£ 200 ]
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FIGURE 2.4 Moment-curvature relationship for different axial forces.
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FIGURE 2.5 Variation of curvature ductility with percentage of tensile steel reinforcement.

The influence of the percentage of reinforcing steel on ductility ratio for different
axial forces is also studied by examining two cases:(1) by varying steel percentage
in tension, with 4#22® on the compression side; and (2) by varying the percentage
of compression reinforcement, with 4#22® on the tension side. Figures 2.5 and 2.6
show the influence of tensile and compression reinforcement on curvature ductility,
respectively. Figure 2.5 shows that plastic softening behavior is observed in the sec-
tion under large curvature amplitudes. This may be attributed to the expected failure
pattern (local collapse mechanism) of the structural members of building frames
located in seismic areas. Larger ductility ratios for reduced tensile reinforcement
prompts the design of members initiating ductile failure. However, tensile reinforce-
ment closer to p,,, will result in more curvature ductility since there is a marginal
reduction seen due to the kink in the curve for (lesser) values closer to p, ,,,. Figure 2.6
shows that maximum curvature ductility is obtained for compression reinforcement
equal to p,,,, when the section is subjected to axial compressive force. However, for
tensile axial forces, the same percentage of compression steel as of tension steel (p.=p,)
gives the maximum curvature ductility. It can be therefore summarized that the
percentage of tension reinforcement influences curvature ductility to a larger extent
and therefore demands good ductile detailing in the members of building frames
located in seismic areas. Focus should be on this aspect while designing structures in
seismic areas. Studies conducted by researchers with respect to the recent develop-
ment in codes in this aspect (for example, see Amador and Nadyane 2008) also veri-
fied the same for a safe distribution of earthquake forces without complete collapse
of the building. A spreadsheet program is used to estimate the moment-curvature
relationship by iteration, after simplifying the complexities involved in such an esti-
mate. The values are estimated in two ranges, namely, (1) elastic and (2) elastic-plastic,
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FIGURE 2.6 Variation of curvature ductility with percentage of compression steel
reinforcement.

separately. The results given in the closed form are useful for researchers but not
as much for practicing engineers; a simplified spreadsheet program is prepared to
facilitate ready use for practicing engineers.

With the spreadsheet program, moment-curvature relationship of the RC sec-
tion, reinforced with 4#22®, both in tension and compression sides, is now plot-
ted for different axial loads (only compressive). The curves are compared with
those obtained by using the proposed analytical expressions. Figure 2.7 shows the
comparison of the curves obtained by employing both numerical and analytical
procedures. By comparing, it can be seen that there is practically no difference
between the curves in the elastic range, whereas there exists a marginal difference
in the plastic range. However, both procedures estimate the same ultimate curva-
ture and the ultimate moments as well. Also, the curvature ductility ratio obtained
by both procedures remains the same. With regard to their close agreement, the
proposed closed-form expressions for moment-curvature relationship, accounting
for nonlinear characteristics of constitutive materials according to Eurocode, are
thus qualified for use in seismic design and in structural assessments as well. A
detailed procedure to obtain the moment-curvature relationship using the spread-
sheet program is presented in Section 2.10. For easy reference to practicing engi-
neers, Figures 2.8 to 2.15 show the moment-curvature plots for a few RC sections
used in common practice; used are the relevant percentage of tensile and compres-
sion reinforcement. Please note that these are plotted for pure bending case only
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FIGURE 2.7 Comparison of moment-curvature by analytical and numerical procedures.

(P = 0). Tables 2.1 to 2.14 show the values for M — ® relationship for the relevant
sections considered in the analysis.

It can be inferred from the above discussions that a detailed trace of moment-
curvature relationship is inevitable for successful seismic design of structures. The
relationship is, however, very complex as a result of many factors: (1) constitutive
material’s nonlinear response; (2) magnitude of axial load and their nature; as well
as (3) cross-section properties and percentage of reinforcement (tensile steel, in par-
ticular). Numerical studies conducted lead to useful design guidelines of multistory
RC buildings. The upper-floor elements (beams, in particular) are designed to have
ductile failure, which in turn permits large curvature ductility. This, in fact, helps the
formation of plastic hinges at upper floors (on beams, in particular with a strong col-
umn-weak beam design concept) first, enabling effective redistribution of moments;
this subsequently enables the formation of plastic hinges at lower floors. On the con-
trary, a column member, usually subjected to larger axial force, is designed without
much increase in compression reinforcement because this does not help to improve
its curvature ductility. However, in building frames under seismic loads, columns
reinforced on two sides only will either be in tension or in compression, and hence
P, = p. holds well.
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TABLE 2.1
M- for RC Section 300 x 450 (p,= 1.5%, p.= 1.2%, fy = 25 N/mm?,
f, = 380 N/mm?)

X¢ € o, £y Gy € O, (o} M

¢,max c,max

(mm) (kKN/m?) (KN/m2) (kKN/m?)  (rad/m)  (kN-m)

175.45  0.000002 0.019  0.000002 0.514  0.000001 0.305  0.000010 0.364
177.18  0.000261 2.693  0.000358 75215 0.000217 45588  0.001475  53.264
179.02  0.000528 5.053  0.000711 149.287 0.000440  92.318  0.002950 105.604
180.98  0.000801 7.060  0.001058 222.111 0.000668 140.296 0.004425 156.938
183.06  0.001080 8.691  0.001398 293.563 0.000903 189.647  0.005900 207.171
173.44  0.001279 9.591  0.001818 330.435 0.001058 222.152 0.007375 234.406
155.36  0.001375 9.947  0.002342 330.435 0.001109 232.977 0.008850 236.584
141.56  0.001462  10.225  0.002875 330.435 0.001152 241.891 0.010325 238.133
130.64 0.001542  10.444  0.003414 330.435 0.001188 249.389 0.011800 239.280
121.76  0.001616  10.618  0.003959 330.435 0.001218 255.799 0.013275 240.157
11438 0.001687  10.754  0.004508 330.435 0.001245 261.357 0.014750 240.845
108.14 0.001755 10.857  0.005060 330.435 0.001268 266.231 0.016225 241.395
102.79 0.001819  10.933  0.005615 330.435 0.001288 270.549 0.017700 241.842
98.15 0.001882  10.985  0.006172 330.435 0.001307 274.407 0.019175 242.211
94.08 0.001943 11.014  0.006730 330.435 0.001323 277.883  0.020650 242.518
90.49 0.002002 11.023  0.007290 330.435 0.001338 281.036  0.022125 242.777
87.29 0.002060 11.023  0.007852 330.435 0.001352 283.915 0.023600 242.998
84.42  0.002117 11.023  0.008415 330.435 0.001365 286.555 0.025075 243.186
81.83  0.002173  11.023  0.008978 330.435 0.001376 288.984 0.026550 243.350
79.48 0.002228  11.023  0.009543 330.435 0.001387 291.226 0.028025 243.492
77.35 0.002282 11.023  0.010108 330.435 0.001397 293.303  0.029500 243.617

TABLE 2.2
M-® for RC Section 300 x 500 (p,= 1.5%, p.= 1.2%, fy = 25 N/mm?,
fy =380 N/mm?)

xc 8c,max Gc,max 8sl Gsl 8sc Gsc CD M
(mm) (kN/m?) (kN/m?) (kN/m?)  (rad/m)  (kN-m)

195.46  0.000002  0.022  0.000003 0.577  0.000002 0.347  0.000010 0.514
197.34  0.000257  2.647 0.000354  74.436 0.000218  45.684 0.001300  66.344
199.35 0.000518  4.973  0.000704 147.775 0.000440  92.465 0.002600 131.584
201.48 0.000786  6.960 0.001047 219918 0.000669 140.442 0.003900 195.626
203.75 0.001059 8586  0.001385 290.749  0.000903 189.731  0.005200 258.357
19412 0.001262  9.522  0.001793 330.435 0.001067 224.020 0.006500 295.025
173.58 0.001354  9.873  0.002312 330.435 0.001120 235.192 0.007800 297.850
157.90 0.001437 10.150  0.002840 330.435 0.001164 244.417 0.009100 299.863
145.47 0.001513 10.370  0.003375 330.435 0.001201 252.194 0.010400 301.358
135.35 0.001584 10.546  0.003915 330.435 0.001233 258.855 0.011700 302.503

(Continued)
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TABLE 2.2 (CONTINUED)
M-® for RC Section 300 x 500 (p,= 1.5%, p.= 1.2%, f, = 25 N/mm?,
f, = 380 N/mm?)
xc Ec,max 6c,max Es( Gst Ssc Gsc (1) M
(mm) (kN/m?) (KN/m?) (kN/m?)  (rad/m)  (kN-m)
126.94 0.001650 10.686  0.004460 330.435 0.001260 264.638 0.013000 303.403
119.82  0.001713  10.797  0.005008 330.435 0.001284 269.715 0.014300 304.125
11370 0.001774 10.882  0.005558 330.435 0.001306 274.214 0.015600 304.712
108.40 0.001832 10946 0.006111 330.435 0.001325 278.234 0.016900 305.198
103.75 0.001888 10.989  0.006666 330.435 0.001342 281.854 0.018200 305.604
99.63 0.001943 11.014  0.007222 330.435 0.001358 285.135 0.019500 305.947
95.96 0.001996 11.023  0.007780 330.435 0.001372 288.127 0.020800 306.240
92.67 0.002048 11.023  0.008339 330.435 0.001385 290.871 0.022100 306.491
89.71 0.002099 11.023  0.008899 330.435 0.001397 293.396  0.023400 306.708
87.01 0.002149 11.023  0.009460 330.435 0.001408 295.728 0.024700 306.898
84.56 0.002199 11.023  0.010021 330.435 0.001419 297.889 0.026000 307.065

TABLE 2.3

M-® for RC Section 300 x 600 (p,= 1.5%, p.= 1.2%, f, = 25 N/mm?,

f, = 380 N/mm?)

X¢ €, max O max € Oy € [ O] M
(mm) (kN/m?) (kN/m?) (kN/m?)  (rad/m)  (kN-m)
235.47  0.000002 0.026  0.000003 0.703  0.000002 0.431 0.000010 0.929
237.69  0.000252 2.602 0.000352  73.971 0.000220  46.233 0.001060  97.705
240.06  0.000509 4.896  0.000699 146.890 0.000445  93.518 0.002120 193.868
242.56  0.000771 6.863  0.001041 218.664 0.000676 141.948 0.003180 288.358
245.22  0.001040 8.482  0.001377 289.184 0.000913 191.632 0.004240 381.023
234.19 0.001241 9.437  0.001780 330.435 0.001082 227.265 0.005300 437.422
208.89  0.001329 9.781  0.002297 330.435 0.001138 238.929 0.006360 441.757
189.54 0.001406 10.052  0.002823 330.435 0.001184 248.593 0.007420 444.857
174.18  0.001477 10270  0.003357 330.435 0.001223 256.762 0.008480 447.166
161.66 0.001542 10.446  0.003896 330.435 0.001256 263.775 0.009540 448.941
151.24 0.001603 10.589  0.004439 330.435 0.001285 269.874 0.010600 450.338
14241 0.001660 10.706  0.004986 330.435 0.001311 275235 0.011660 451.461
134.82  0.001715 10.799  0.005536 330.435 0.001333 279.990 0.012720 452.379
128.22  0.001767 10.874  0.006088 330.435 0.001354 284.241 0.013780 453.139
12244 0.001817 10931  0.006642 330.435 0.001372 288.068 0.014840 453.776
117.31 0.001865 10.973  0.007198 330.435 0.001388 291.534 0.015900 454.316
112.74 0.001912 11.002  0.007755 330.435 0.001403 294.692 0.016960 454.777
108.64 0.001958 11.018  0.008314 330.435 0.001417 297.583 0.018020 455.174
104.93  0.002002 11.023  0.008873 330.435 0.001430 300.242 0.019080 455.519
101.57 0.002046 11.023  0.009434 330.435 0.001441 302.699 0.020140 455.821
98.50 0.002088 11.023  0.009996 330.435 0.001452 304.975 0.021200 456.085
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TABLE 2.4
M- for RC Section 350 x 500 (p,= 1.5%, p.= 1.2%, f, = 25 N/mm?,
fy =380 N/mm?)

X¢ € (] €4 [ € Cc D M

c,max c,max

(mm) (kN/m?2) (KN/m2) (kKN/m?)  (rad/m)  (kN-m)

195.46  0.000002  0.022  0.000003 0.577  0.000002 0.347  0.000010 0.600
197.34 0.000257  2.647  0.000354 74.436  0.000218 45.684  0.001300  77.401
199.35 0.000518  4.973  0.000704 147.775 0.000440 92.465 0.002600 153.515
201.48 0.000786  6.960  0.001047 219918 0.000669 140.442  0.003900 228.230
203.75 0.001059  8.586  0.001385 290.749 0.000903 189.731  0.005200 301.417
194.12 0.001262  9.522  0.001793  330.435 0.001067 224.020  0.006500 344.196
173.58 0.001354  9.873  0.002312 330.435 0.001120 235.192  0.007800 347.491
157.90 0.001437 10.150  0.002840 330.435 0.001164 244.417 0.009100 349.840
145.47 0.001513 10.370  0.003375 330.435 0.001201  252.194 0.010400 351.584
135.35 0.001584 10.546  0.003915 330.435 0.001233  258.855 0.011700 352.921
126.94 0.001650 10.686  0.004460 330.435 0.001260 264.638  0.013000 353.970
119.82 0.001713 10.797  0.005008 330.435 0.001284 269.715  0.014300 354.812
11370 0.001774 10.882  0.005558 330.435 0.001306 274.214 0.015600 355.498
108.40 0.001832 10.946  0.006111 330.435 0.001325 278.234  0.016900 356.065
103.75 0.001888 10.989  0.006666 330.435 0.001342 281.854 0.018200 356.538

99.63 0.001943 11.014  0.007222 330.435 0.001358 285.135 0.019500 356.939

95.96 0.001996 11.023  0.007780 330.435 0.001372 288.127  0.020800 357.280

92.67 0.002048 11.023  0.008339 330.435 0.001385 290.871 0.022100 357.573

89.71 0.002099 11.023  0.008899 330.435 0.001397 293.396  0.023400 357.827

87.01 0.002149 11.023  0.009460 330.435 0.001408 295.728 0.024700 358.048

84.56 0.002199 11.023  0.010021 330.435 0.001419 297.889  0.026000 358.242

TABLE 2.5
M-® for RC Section 350 x 600 (p,= 1.5%, p.= 1.2%, fy = 25 N/mm?,
f, = 380 N/mm?)
Xe €c,max Oc,max €t Ot € Osc @ M
(mm) (KN/m?) (kN/m2) (kN/m?)  (rad/m)  (kN-m)

235.47 0.000002 0.026  0.000003 0.703  0.000002 0.431  0.000010 1.083
237.70  0.000253 2.614 0.000354  74.318 0.000221  46.453 0.001065 114.523
240.08 0.000511 4916 0.000703 147.573 0.000447  93.969 0.002130 227.229
242.60 0.000775 6.889  0.001046 219.671 0.000679 142.642 0.003195 337.963
245.27 0.001045 8.509 0.001383 290.502 0.000917 192.582 0.004260 446.545
233.50 0.001243 9.446  0.001792 330.435 0.001084 227.569 0.005325 510.468
208.28 0.001331 9.790  0.002311 330.435 0.001139 239.227 0.006390 515.502
188.98 0.001409 10.060 0.002841 330.435 0.001185 248.885 0.007455 519.101
173.67 0.001480 10.277  0.003377 330.435 0.001224 257.046 0.008520 521.782
161.18 0.001545 10.453  0.003919 330.435 0.001257 264.051 0.009585 523.841

(Continued)
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TABLE 2.5 (CONTINUED)

M-® for RC Section 350 x 600 (p,= 1.5%, p.= 1.2%, fy = 25 N/mm?,

fy =380 N/mm?)
Xc Sc,max Gc,max 8st Gsl Ssc Gsc
(mm) (kN/m?2) (kN/m?2) (kN/m?2)

150.79 0.001606  10.595  0.004465 330.435 0.001286 270.143
141.98 0.001663 10.711  0.005014 330.435 0.001312 275.496
13442 0.001718 10.804 0.005567 330.435 0.001334 280.243
127.85 0.001770 10.878  0.006122 330.435 0.001355 284.487
122.08 0.001820 10.934  0.006679 330.435 0.001373 288.307
116.97 0.001869 10.976  0.007237 330.435 0.001389 291.767
11242 0.001916  11.004 0.007797 330.435 0.001404 294.919
108.33  0.001961  11.019  0.008359 330.435 0.001418 297.804
104.64 0.002006 11.023  0.008921 330.435 0.001431 300.459
101.28 0.002049 11.023  0.009484 330.435 0.001442 302.910
98.23 0.002092 11.023  0.010049 330.435 0.001453 305.181

(0]
(rad/m)

0.010650
0.011715
0.012780
0.013845
0.014910
0.015975
0.017040
0.018105
0.019170
0.020235
0.021300

M
(kN-m)

525.463
526.766
527.830
528.711
529.450
530.076
530.611
531.071
531.471
531.820
532.127

TABLE 2.6
M-® for RC Section 350 x 700 (p,= 1.5%, p.= 1.2%, fy =
f, = 380 N/mm?)

xc 8c,max Gc,max es( Gs| 8SC GSC

(mm) (kN/m?) (kN/m?) (kN/m?)

275.49  0.000003 0.030  0.000004 0.828  0.000002 0.516
278.06 0.000250  2.586  0.000353  74.077  0.000223 46.883
280.80 0.000505 4.868  0.000701 147.119  0.000451 94.801
283.69 0.000766  6.827  0.001043 219.036  0.000685  143.844
286.77 0.001032  8.443  0.001380 289.722  0.000924 194.118
273.27 0.001230  9.388  0.001785 330.435 0.001095 229.889
243.30 0.001314  9.726  0.002304 330.435 0.001152 241.888
220.36 0.001388  9.992  0.002833 330.435 0.001199 251.848
202.14 0.001455 10.206  0.003369 330.435 0.001239  260.280
187.28 0.001517 10.380  0.003910 330.435 0.001274 267.528
174.89 0.001574 10.523  0.004456 330.435 0.001304 273.838
164.39 0.001627 10.641  0.005006 330.435 0.001330 279.389
155.36  0.001678 10.737  0.005558 330.435 0.001354 284.315
147.51 0.001726 10.816  0.006113 330.435 0.001375 288.720
140.61 0.001772 10.880  0.006670 330.435 0.001394  292.686
134.51 0.001816 10.930  0.007229 330.435 0.001411 296.278
129.06 0.001858 10.968  0.007790 330.435 0.001426  299.549
124.16  0.001900 10.996  0.008351 330.435 0.001441  302.542
119.74 0.001940 11.013  0.008914 330.435 0.001454 305.293
115.72  0.001979 11.022  0.009478 330.435 0.001466 307.832
112.06 0.002017 11.023  0.010043 330.435 0.001477 310.183

25 N/mm?,

D
(rad/m)

0.000010
0.000900
0.001800
0.002700
0.003600
0.004500
0.005400
0.006300
0.007200
0.008100
0.009000
0.009900
0.010800
0.011700
0.012600
0.013500
0.014400
0.015300
0.016200
0.017100
0.018000

M
(kN-m)

1.775
158.569
314.709
468.218
618.860
709.364
716.525
721.656
725.486
728.435
730.760
732.632
734.162
735.432
736.498
737.402
738.176
738.843
739.424
739.931
740.378
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TABLE 2.7
M-® for RC Section 300 x 450 (p,= 1.5%, p.= 1.2%, fy = 25 N/mm?,
fy =415 N/mm?)
X¢ € max Oc,max £, Oy € [ [} M
(mm) (KN/m2) (KN/m2) (kN/m?)  (rad/m)  (kKN-m)

175.45 0.000002  0.019  0.000002 0.514  0.000001 0.305  0.000010 0.364
177.18 0.000262  2.701  0.000359 75468  0.000218  45.744  0.001480 53.443
179.03 0.000530  5.068  0.000713  149.785 0.000441  92.639  0.002960 105.955
181.00 0.000804  7.079  0.001061 222.845 0.000670 140.791  0.004440 157.455
183.09 0.001084 8.711  0.001402 294.522  0.000906 190.326  0.005920 207.844
183.99 0.001362  9.900 0.001746 360.870  0.001140 239.300  0.007400 254.523
164.88 0.001464 10.232  0.002266 360.870  0.001198 251.517  0.008880 257.127
150.26  0.001557 10.482  0.002794 360.870  0.001246 261.645 0.010360 258.986
138.68 0.001642 10.670  0.003331 360.870  0.001287 270.217  0.011840 260.369
129.24 0.001721 10.810  0.003873  360.870  0.001322 277.591  0.013320 261.429
121.38  0.001796  10.909  0.004420 360.870  0.001352 284.018  0.014800 262.262
11473 0.001868 10.975  0.004970 360.870  0.001379 289.684  0.016280 262.930
109.02 0.001936 11.012  0.005523 360.870  0.001403 294.729  0.017760 263.474
104.07  0.002002 11.023  0.006079  360.870  0.001425 299.259  0.019240 263.923
99.72  0.002066 11.023  0.006636 360.870  0.001445 303.357  0.020720 264.299
95.87 0.002128 11.023  0.007196 360.870  0.001462 307.084  0.022200 264.616
92.44 0.002189 11.023  0.007757 360.870  0.001479 310.486  0.023680 264.886
89.35 0.002248 11.023  0.008319 360.870  0.001493 313.606  0.025160 265.120
86.57 0.002306 11.023  0.008883 360.870  0.001507 316.476  0.026640 265.322
84.04 0.002363 11.023  0.009447 360.870  0.001520 319.126  0.028120 265.499
81.73  0.002419 11.023  0.010013 360.870  0.001531 321.580  0.029600 265.655

TABLE 2.8
M-® for RC Section 300 x 500 (p,= 1.5%, p.= 1.2%, f, = 25 N/mm?,
fy =415 N/mm?)
X, €, max O max £y Oy € Cyc [} M
(mm) (kN/m?2) (kN/m?) (kN/m?)  (rad/m)  (kN-m)

195.46  0.000002  0.022  0.000003 0.577  0.000002 0.347  0.000010 0.514
197.36  0.000260  2.675  0.000359 75.288 0.000220  46.218 0.001315  67.103
199.40  0.000524 5.023  0.000712 149.453 0.000446  93.559  0.002630 133.076
201.56  0.000795 7.023  0.001059 222392 0.000677 142.126  0.003945 197.820
203.85 0.001072 8.652  0.001400 293.984 0.000914 192.040 0.005260 261.219
205.03 0.001348  9.852  0.001742 360.870 0.001151 241.670 0.006575 320.485
183.43 0.001447 10.182  0.002261 360.870 0.001211 254.225 0.007890 323.833
166.91 0.001536 10.431  0.002790 360.870 0.001260 264.652  0.009205 326.228
153.80 0.001618 10.621  0.003326 360.870 0.001302 273.489 0.010520 328.013
143.10  0.001694 10.765  0.003869 360.870 0.001339 281.096 0.011835 329.385

(Continued)
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TABLE 2.8 (CONTINUED)

M-® for RC Section 300 x 500 (p,= 1.5%, p.= 1.2%, fy = 25 N/mm?,

fy =415 N/mm?)

Xc Ec,max Gc,max gst Gst 8sc Gsc CI) M
(mm) (kN/m?) (kKN/m2) (kN/m?)  (rad/m)  (kN-m)
134.19 0.001765 10.871  0.004416 360.870 0.001370 287.731 0.013150 330.466
126.65 0.001832 10.946  0.004967 360.870 0.001398 293.580 0.014465 331.333
120.16  0.001896 10.994  0.005520 360.870 0.001423 298.786 0.015780 332.042
114.53  0.001958 11.019  0.006077 360.870 0.001445 303.458 0.017095 332.628
109.58 0.002017 11.023  0.006635 360.870 0.001465 307.681 0.018410 333.119
105.21 0.002075 11.023  0.007196  360.870 0.001483 311.520 0.019725 333.534
101.30  0.002131 11.023  0.007757 360.870 0.001500 315.027 0.021040 333.889
97.79 0.002186 11.023  0.008321 360.870 0.001515 318.243 0.022355 334.194
94.62 0.002240 11.023  0.008885 360.870 0.001530 321.202 0.023670 334.460
91.74 0.002292 11.023  0.009451 360.870 0.001543 323.934  0.024985 334.693
89.11 0.002344 11.023  0.010017 360.870 0.001555 326.465 0.026300 334.897
TABLE 2.9
M-® for RC Section 300 x 600 (p,= 1.5%, p.= 1.2%, f, = 25 N/mm?,
fy =415 N/mm?)

xc Ec,max 0-c,max Ssl Gsl Esc 0-sc d) M
(mm) (kN/m?) (kN/m?) (kN/m?)  (rad/m)  (kN-m)
235.47  0.000002 0.026  0.000003 0.703  0.000002 0.431  0.000010 0.929
237.73  0.000256 2.637  0.000357 75.011  0.000223 46.894 0.001075 99.077
240.13  0.000516 4.957  0.000709  148.938  0.000452 94.872  0.002150 196.566
242.67 0.000783 6.939 0.001056  221.684 0.000686 144.031 0.003225 292.330
245.38 0.001055 8.563 0.001396  293.136 0.000926 194.484 0.004300 386.210
247.15 0.001328 9.780  0.001735  360.870 0.001167 245.104 0.005375 475.224
220.59 0.001423  10.105  0.002254  360.870 0.001229  258.153 0.006450 480.345
200.24 0.001507  10.353  0.002782  360.870 0.001281 269.018 0.007525 484.021
184.07 0.001583  10.544 0.003319  360.870 0.001325 278.243 0.008600 486.770
170.86  0.001653  10.692  0.003862  360.870 0.001363  286.195 0.009675 488.888
159.85 0.001718  10.805 0.004409  360.870 0.001396 293.136 0.010750 490.561
150.51 0.001780  10.890  0.004960  360.870 0.001425 299.259 0.011825 491.908
142.48 0.001838  10.951 0.005515  360.870 0.001451 304.708 0.012900 493.011
135.49 0.001894  10.992 0.006072  360.870 0.001474 309.594 0.013975 493.926
129.35 0.001947  11.016 0.006632  360.870 0.001495 314.007 0.015050 494.694
12391 0.001998  11.023  0.007193  360.870 0.001514 318.016 0.016125 495.346
119.06 0.002048  11.023  0.007756  360.870 0.001532 321.677 0.017200 495.903
114.69 0.002096  11.023 0.008321  360.870 0.001548 325.035 0.018275 496.385
110.75 0.002143  11.023  0.008886  360.870 0.001563  328.126 0.019350 496.803
107.17  0.002189  11.023  0.009453  360.870 0.001576  330.981 0.020425 497.170
103.89 0.002234  11.023  0.010021  360.870 0.001589  333.625 0.021500 497.493




82 Seismic Design Aids for Nonlinear Analysis

TABLE 2.10
M-® for RC Section 300 x 600 (p,= 2.0%, p.= 1.5%, fy = 25 N/mm?,
fy =415 N/mm?)

X c, £ Oy € Oy [ M

C Sc,max

(mm) (kN/m2) (kN/m2) (kN/m?2)  (rad/m)  (kN-m)

¢,max

253.84 0.000003 0.028  0.000003 0.664  0.000002 0.470  0.000010 1.168
256.29 0.000287 2937 0.000351  73.784 0.000253  53.224 0.001120 129.721
258.91 0.000580 5466 0.000697 146.338 0.000513 107.678 0.002240 257.112
261.68 0.000879 7.562 0.001036 217.548 0.000778 163.476 0.003360 381.970
264.64 0.001186 9.196  0.001368 287.283  0.001051 220.749 0.004480 504.059
267.80 0.001500 10.334 0.001692 355385 0.001332 279.655 0.005600 623.099
240.89 0.001619 10.623  0.002212 360.870 0.001417 297.605 0.006720  639.282
217.95 0.001709  10.790  0.002760 360.870 0.001474 309.448 0.007840 644.483
199.76  0.001790  10.902 0.003317 360.870 0.001521 319.425 0.008960 648.340
184.94 0.001864 10.973 0.003881 360.870 0.001562 327.968 0.010080 651.290
172.59 0.001933  11.011  0.004451 360.870 0.001597 335.378 0.011200 653.603
162.14 0.001998 11.023  0.005025 360.870 0.001628 341.878 0.012320 655.454
153.17 0.002059 11.023  0.005602 360.870 0.001655 347.633 0.013440 656.959
14537 0.002117 11.023  0.006183 360.870 0.001680 352.765 0.014560 658.202
138.53 0.002172 11.023  0.006765 360.870 0.001702 357.370 0.015680 659.242
132.98 0.002234 11.023  0.007342 360.870 0.001730 360.870 0.016800 660.015
130.50 0.002339  11.023  0.007876 360.870 0.001801 360.870 0.017920 660.173
128.31 0.002443 11.023  0.008410 360.870 0.001872 360.870 0.019040 660.303
126.37 0.002548 11.023  0.008944 360.870 0.001943 360.870 0.020160 660.413
124.63 0.002652 11.023  0.009478 360.870 0.002014 360.870 0.021280  660.505
123.06 0.002757 11.023 0.010011 360.870 0.002085 360.870 0.022400 660.584

TABLE 2.11
M-® for RC Section 300 x 600 (p,= 2.5%, p.= 2.0%, f, = 25 N/mm?,
f, = 415 N/mm?)

X, c, €y [ € [ D M

C 8c,max c,max

(mm) (kN/m?2) (kKN/m2) (kN/m2)  (rad/m)  (kN-m)

260.56  0.000003 0.029  0.000003 0.650  0.000002 0.484  0.000010 1.436
262.80  0.000294 3.006 0.000344 72254 0.000261  54.754 0.001120 159.655
265.17  0.000594 5.575 0.000683 143.391 0.000527 110.625 0.002240 316.747
267.67  0.000899 7.685 0.001016 213.321 0.000799 167.703  0.003360 471.078
27032 0.001211 9.308  0.001343 281.939 0.001077 226.093 0.004480 622.425
273.13  0.001530 10.413  0.001662 349.123 0.001362 285.917 0.005600 770.527
247.63  0.001664  10.712  0.002166 360.870 0.001462 307.115 0.006720 803.297
22291 0.001748 10.848  0.002721 360.870 0.001512 317.603 0.007840  809.358
203.41 0.001823  10.937 0.003285 360.870 0.001554 326.291 0.008960 813.776
187.61  0.001891  10.991 0.003855 360.870 0.001589 333.620 0.010080 817.106

(Continued)



Moment-Curvature Relationship for RC Sections 83

TABLE 2.11 (CONTINUED)
M-® for RC Section 300 x 600 (p,= 2.5%, p.= 2.0%, f, = 25 N/mm?,
fy =415 N/mm?)
Xc €¢,max O max £ Oy € Oy [ M
(mm) (kKN/m2) (KN/m2) (kN/m2?)  (rad/m)  (kN-m)

174.51 0.001955 11.018  0.004429 360.870 0.001619 339.895 0.011200 819.683
163.48  0.002014  11.023  0.005008 360.870 0.001644 345.334 0.012320 821.719
154.04 0.002070  11.023  0.005590 360.870 0.001667 350.097 0.013440 823.359
145.88  0.002124  11.023  0.006175 360.870 0.001687 354.304 0.014560 824.699
138.74  0.002175 11.023  0.006762 360.870 0.001705 358.046 0.015680 825.810
13298 0.002234 11.023  0.007342 360.870 0.001730 360.870 0.016800 826.628
130.50  0.002339  11.023  0.007876 360.870 0.001801 360.870 0.017920 826.786
12831  0.002443  11.023  0.008410 360.870 0.001872 360.870 0.019040 826.917
126.37  0.002548  11.023  0.008944 360.870 0.001943 360.870 0.020160 827.026
124.63  0.002652  11.023  0.009478 360.870 0.002014 360.870 0.021280 827.119
123.06  0.002757 11.023  0.010011 360.870  0.002085 360.870 0.022400 827.198

TABLE 2.12
M-® for RC Section 350 x 500 (p,= 1.5%, p.= 1.2%, f, = 25 N/mm?,
fy =415 N/mm?)
X, €¢ max O max €4 Oy € Cyc [} M

(mm) (kN/m2) (kN/m?2) (kN/m2?)  (rad/m)  (kN-m)

195.46  0.000002  0.022  0.000003 0.577  0.000002 0.347  0.000010 0.600
197.36  0.000259  2.671  0.000358  75.146  0.000220  46.129 0.001313 78.139
199.39  0.000523  5.015  0.000710 149.174 0.000445  93.376 0.002625 154.965
201.54  0.000794  7.012  0.001057 221.980 0.000675 141.845 0.003938 230.364
203.84 0.001070  8.641  0.001397 293.445 0.000913 191.655 0.005250 304.199
205.27 0.001347  9.849  0.001737 360.870 0.001150 241.538 0.006563 373.854
183.65 0.001446 10.178  0.002255 360.870  0.001210 254.095 0.007875 377.767
167.10  0.001535 10.428  0.002783 360.870 0.001260 264.525 0.009188 380.568
15397 0.001617 10.619  0.003318 360.870 0.001302 273.364 0.010500 382.654
14327 0.001692 10.763  0.003860 360.870 0.001338 280.975 0.011813  384.259
13435 0.001763 10.869  0.004405 360.870 0.001370 287.612 0.013125 385.522
126.79  0.001831 10.944  0.004955 360.870 0.001397 293.465 0.014438 386.537
120.30  0.001895 10.993  0.005508 360.870  0.001422 298.674 0.015750 387.365
114.66  0.001956 11.018  0.006063 360.870 0.001445 303.348 0.017063 388.051
109.71  0.002016  11.023  0.006620 360.870 0.001465 307.573 0.018375 388.625
10532 0.002074 11.023  0.007180 360.870 0.001483 311.416 0.019688 389.110
101.41  0.002130 11.023  0.007740 360.870  0.001500 314.925 0.021000 389.525

97.90 0.002184 11.023  0.008303 360.870 0.001515 318.143 0.022313  389.883

9472 0.002238 11.023  0.008866 360.870  0.001529 321.105 0.023625 390.194

91.84 0.002290 11.023  0.009430 360.870 0.001542 323.839 0.024938 390.466

89.21 0.002342 11.023  0.009996 360.870 0.001554 326.372 0.026250 390.705
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TABLE 2.13

M-® for RC Section 350 x 600 (p,= 1.5%, p.= 1.2%, f, = 25 N/mm?,
fy =415 N/mm?)

XC 8c,max Gc,max 8st Gsi 8sc Gsc (I) M

(mm) (kN/m?) (kN/m2) (kN/m?)  (rad/m)  (kN-m)

235.47  0.000002 0.026  0.000003 0.703  0.000002 0.431 0.000010 1.083
237.73  0.000256 2.637 0.000357  75.011 0.000223  46.894 0.001075 115.590
240.13  0.000516 4957  0.000709 148938 0.000452  94.872 0.002150 229.327
242.67  0.000783 6.939  0.001056 221.684 0.000686 144.031 0.003225 341.052
245.38  0.001055 8.563  0.001396 293.136  0.000926 194.484 0.004300 450.579
247.15  0.001328 9.780  0.001735 360.870 0.001167 245.104 0.005375 554.428
220.59 0.001423 10.105 0.002254 360.870 0.001229 258.153 0.006450 560.402
200.24  0.001507  10.353  0.002782 360.870 0.001281 269.018 0.007525 564.692
184.07  0.001583  10.544  0.003319 360.870 0.001325 278.243 0.008600 567.898
170.86  0.001653 10.692  0.003862 360.870 0.001363 286.195 0.009675 570.370
159.85 0.001718  10.805  0.004409 360.870 0.001396 293.136 0.010750 572.321
150.51  0.001780 10.890  0.004960 360.870 0.001425 299.259 0.011825 573.893
142.48 0.001838 10.951  0.005515 360.870 0.001451 304.708 0.012900 575.180
135.49  0.001894  10.992  0.006072 360.870 0.001474 309.594 0.013975 576.247
129.35 0.001947 11.016  0.006632 360.870 0.001495 314.007 0.015050 577.143
12391 0.001998 11.023  0.007193 360.870 0.001514 318.016 0.016125 577.903
119.06  0.002048 11.023  0.007756 360.870 0.001532 321.677 0.017200 578.554
114.69  0.002096 11.023  0.008321 360.870 0.001548 325.035 0.018275 579.115
110.75 0.002143 11.023  0.008886 360.870 0.001563 328.126 0.019350 579.604
107.17  0.002189 11.023  0.009453 360.870 0.001576 330.981 0.020425 580.031
103.89  0.002234 11.023  0.010021 360.870 0.001589 333.625 0.021500 580.408

TABLE 2.14
M-®@ for RC Section 350 x 700 (p,= 1.5%, p.= 1.2%, fy = 25 N/mm?,
fy =415 N/mm?)

XC €, Gc,max Sst Gsl Esc Gsc P M

¢,max

(mm) (KN/m?) (kN/m?) (kN/m?)  (rad/m)  (kN-m)

275.49  0.000003 0.030  0.000004 0.828  0.000002 0.516  0.000010 1.775
278.09  0.000253 2,613  0.000357 74.894 0.000226  47.410 0.000910 160.317
280.86  0.000511 4915  0.000708 148.730  0.000457  95.878 0.001820 318.150
283.79  0.000775 6.886  0.001054 221.412 0.000693 145.500 0.002730 473.287
286.91  0.001044 8.507  0.001394 292.833 0.000935 196.383 0.003640 625.484
289.09  0.001315 9.732  0.001733 360.870 0.001179 247.558 0.004550 770.508
257.59  0.001406  10.052  0.002252 360.870 0.001243  260.950 0.005460 778.985
23342 0.001487 10.298  0.002781 360.870 0.001296 272.118 0.006370  785.085
21420  0.001559 10.488  0.003318 360.870 0.001341 281.611 0.007280 789.656
198.50  0.001626  10.637  0.003862 360.870  0.001380 289.803  0.008190  793.185

(Continued)
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TABLE 2.14 (CONTINUED)
M-® for RC Section 350 x 700 (p,= 1.5%, p.= 1.2%, fy = 25 N/mm?,
fy =415 N/mm?)

Xc E::,max Gc,max Es| Gst 8sc Gsc CI) M

(mm) (kN/m?) (kN/m2) (kN/m?)  (rad/m)  (kN-m)

185.39  0.001687 10.754  0.004410 360.870 0.001414 296.958 0.009100 795.977
174.27 0.001744  10.843  0.004962 360.870 0.001444 303.272 0.010010 798.229
164.70  0.001799 10912  0.005518 360.870 0.001471 308.891 0.010920 800.075
156.37  0.001850 10.961  0.006076 360.870 0.001495 313.931 0.011830 801.610
149.04  0.001899 10.995  0.006637 360.870 0.001517 318.479 0.012740  802.900
142.54 0.001946 11.015  0.007200 360.870 0.001536 322.610 0.013650 803.996
136.74  0.001991 11.023  0.007764 360.870 0.001554 326.379 0.014560 804.936
131.53  0.002035 11.023  0.008330 360.870 0.001571 329.837 0.015470 805.747
126.81  0.002077 11.023  0.008897 360.870 0.001586 333.019 0.016380 806.454
122,53  0.002119 11.023  0.009466 360.870 0.001600 335.958 0.017290 807.073
118.61  0.002159 11.023  0.010035 360.870 0.001613 338.681 0.018200 807.619

2.9 CONCLUSIONS

In this chapter, a new analytical procedure for estimating curvature ductility
of RC sections is proposed. The purpose is to estimate the moment-curvature
relationship under service loads, in a simpler closed-form manner. Analytical
expressions for moment-curvature relationship of RC sections, accounting for
nonlinear characteristics of constitutive materials according to Eurocode, are
proposed in elastic and elastic-plastic ranges as well. Percentage of tension rein-
forcement influences curvature ductility to a large extent. There exists at least
one critical value of percentage of both tensile and compression reinforcements
that reduces the curvature ductility to the minimum. The proposed analytical
expressions are capable of tracing this critical value, so that it can be avoided
for a successful design of the section. Tensile reinforcement, closer to p,,;, will
result in more curvature ductility since there is a marginal reduction seen due to
the kink in the curve for (lesser) values closer to p,,;. Maximum curvature duc-
tility is obtained for compression reinforcement equal to p, ,,; when the section is
subjected to axial compressive forces; for tensile axial forces, the percentage of
compression steel, the same as that of tension steel (p. = p,), gives the maximum
curvature ductility.

With regard to their close agreement with the analytical procedure, proposed
expressions for moment-curvature estimate are thus qualified for use in design and
in structural assessments as well. Avoiding tedious hand-calculations and approxi-
mations required in conventional iterative design procedures, the proposed method
eliminates the possibility of potentially unsafe design. In the absence of enough
experimental evidence to be more conclusive on the topic, the proposed closed-form
solutions for the unknown curvature ductility ratios are confident of giving a reliable
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and safe estimate of the said parameter. With due consideration to the increasing
necessity of structural assessment of existing buildings under seismic loads, the pro-
posed expressions of moment-curvature relationship shall become an integral input
while employing nonlinear static procedures.

2.10 SPREADSHEET PROGRAM

The presented analytical expressions for moment-curvature relationship in closed
form are very useful for researchers. However, to facilitate the ready application of
the developed procedure, a simple spreadsheet program used to estimate the moment-
curvature relationship is presented; this should encourage the structural designers to
use it instantly and with confidence. The spreadsheet is available in the CD content,
which can be freely downloaded from the following Web site: http://www.crcpress
.com/e_products/downloads/download.asp?cat_no=K10453. Table 2.15 shows the
values of the points traced along the M-® curve, obtained numerically, for no axial
force case.

2.10.1  Ster-BY-STEP PROCEDURE TO USE THE SPREADSHEET
ProGrAM GIVEN ON THE WEB SITE

Table 2.15 shows the demonstrated example case, which is explained in this section.
First, to predict the moment-curvature relationship in elastic range, the steps are
as follows:

1. An arbitrary value is assumed for the limit elastic curvature; assign any
value to cell B21; for example, 0.005.

2. Fix axial force to the desired value; depth of neutral axis is determined.
Click cell A21; Go to Tools in the menu; then select Goal Seek; Set cell:
A21; To value: axial force; for example, axial force is set to zero; By
changing cell: click iteration, select $C$21 (neutral axis position); click
iteration. You will find a remark: Goal Seeking with Cell A21 found solu-
tion. If target value and current value are the same, then the solution is
determined; press OK. We get x, as 0.172. Observe the values of cells
D21 =0.00086; E21 = 0.000708; F21 = 0.00149. These values correspond

to €, ..»E- €, respectively. These values of the strain should be less than
€., =(cellll1);e =(cellM11). In this case, €, =0.00172. Therefore, we
increase the curvature to 0.00578 to get x, as 0.173 m for € =¢_,. Thus,
the limit elastic curvature is determined as 0.00578 rad/m, and the cor-
responding moment is 232.62 kN-m.

3. Fixing this value as the limit elastic curvature and subdividing it equally,
moment-curvature values for the first five rows are now obtained as fol-
lows: For example, consider the first row, select Cell A16; Go to Tools;
select Goal Seek; Set Cell A16; To value: Axial force (in this case it is
zero); By changing Cell: Click iteration; select $C$16; press OK. You will
find a remark: Goal Seeking with Cell A21 found solution. If target value
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and current value are the same; then the solution is determined; press OK.
Repeat the same procedure for the next four rows and obtain the points of
M-® curve in elastic range.

Second, for estimating the values in elastic-plastic range, the following steps are
adopted:

1. Assign any value to cell B36; for example, 0.025.

2. Fix axial force to the desired value; depth of neutral axis is determined.
Click A36; Go to Tools in the menu; then select Goal seek; Set cell: A36;
To value: axial force; for example, axial force is set to zero; By changing
cell: click iteration; select $C$36 (neutral axis position); click iteration;
You will find a remark: Goal Seeking with Cell A36 found solution; If
target value and current value are the same; then the solution is deter-
mined; press OK. We get x_ as 0.075. Observe the values of cells D36 =
0.00187; E36 = 0.00112; F36 = 0.00988. These values correspond to

€. x> x> €y » TESPEctively. These values of the strain should be less than
g, =(celllll);e  =(cellN11). In this case, € =0.01. Therefore, we
increase the curvature to 0.025276 to get x, as 0.074 m for € , = €_. Thus,
ultimate curvature is determined as 0.025276 rad/m, and the correspond-
ing moment is 241.77 kNm.

3. Fixing this value as the ultimate curvature and subdividing it equally,
moment-curvature values for the next 14 rows after limit elastic values
(first yellow band) are now obtained as follows: For example, consider
row 22; select Cell A22; Go to Tools; select Goal Seek; Set Cell A22; To
value: Axial force (in this case it is zero); By changing Cell: Click itera-
tion, select $C$22; press OK. You will find a remark: Goal Seeking with
Cell A22 found solution. If target value and current value are the same,
then the solution is determined; press OK. Repeat the same procedure
for the next 13 rows and obtain the points of M-® curve in elastic-plastic
range.

The above example shows that tensile strain in steel reaches limit elastic values and
ultimate value first, making the failure as tension failure. However, in some exam-
ples, you may also see that concrete reaches its maximum value first, making it as a
compression failure.



3 Moment-Rotation
Relationship for RC Beams

3.1 SUMMARY

Moment-rotation relationships of RC beams provide an estimate of the beams’
ductility, which is a valuable design parameter. The correct estimate of ductility
is very important in the context of recent advancements in design approaches like
displacement-based design. In this chapter, collapse mechanism and plastic hinge
extensions of RC beams in bending, under increasing concentrated design load until
collapse, are examined. Moment-rotation relationships in explicit form, in elastic and
elastic-plastic ranges, are derived from the proposed bilinear modeling of moment-
curvature relationships, presented in Chapter 2. Analytical estimates are verified for
equilibrium and compatibility conditions. Ductility ratios of two cases, (1) a fixed
beam and (2) a simply supported beam, are presented. The proposed analytical
procedure is capable of modeling the moment-rotation relationship, accounting for
nonlinear characteristics of the materials, and providing a satisfactory estimate of
ductility. They are useful for designing special moment-resisting RC framed struc-
tures, in particular, where ductility is an important design parameter. In the techni-
cal context in this chapter, relative rotation occurring between the extremities of a
plastic hinge is termed as rotation.

3.2 INTRODUCTION

Recent revisions in design approaches of RC elements include desirable features of
ultimate strength and working stress design as well, to ensure satisfactory design. A
seismic design procedure that does not account for maximum plastic deformation
demands, which a structure is likely to undergo during severe ground motion, could
lead to unreliable performance (Amador and Nadyane 2008). With displacement-
based design approach becoming more common, it is imperative to ensure conceptual
implication of multiple target performance (damage) levels that are expected to be
achieved, or at least not exceeded, when the structure is subjected to earthquakes of
specified intensity (Priestley, Calvi, and Kowalsky 2007). Gilbert and Smith (2006)
showed the significance of strain localization in RC slabs and its adverse effect on
ductility. While seismic design philosophy demands energy dissipation/absorption
by postelastic deformation for collapse prevention during major earthquakes, the
seismic capacity of buildings is highly sensitive to their ductility estimates (Zhang
and Der Kiureghian 1993). Owing to the large economic losses derived from recent
seismic events, design methodologies based on explicit control of dynamic response
of structures emphasizing sufficient ductility of members at local and global levels are
being practiced by and large; this should lead to a desired solution for the sustainable
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development of building stock envisaging more major earthquakes in future (Mahin
et al. 2006). Ductility, a measure of energy dissipation by inelastic deformation dur-
ing major earthquakes, depends mainly on moment-curvature relationship at criti-
cal sections, where plastic hinges are expected/imposed to be formed at collapse; it
also ensures effective redistribution of moments at these sections, as collapse load is
approached (Park and Paulay 1975; Paulay and Priestley 1992). Damage models that
quantify severity of repeated plastic cycling through plastic energy dissipation are
simple tools that can be used for practical seismic design. In other words, structures
should be designed to resist earthquakes in a quantifiable manner, imposed with
desired possible damage (Bangash 1989; Ghobarah 2001; SEAOC 1995). Structural
performance of a building during an earthquake depends on many parameters such
as material properties and hysteretic behavior of members, joints, and the like that
are highly uncertain (Rustem 2006). Fan Sau-Cheong and Wang (2002) justified
recommendation of reinforced concrete structures to resist seismic loading only if
the design is capable of ensuring sufficient ductility.

The literature reviewed critically emphasizes the importance of ductility in RC sec-
tions to ensure satisfactory behavior under seismic loads. However, analytical expres-
sions, in a closed form for moment-rotation relationship and ductility of rectangular
RC sections (with different tensile and compressive reinforcements), accounting for
nonlinear properties of constitutive materials, are relatively absent in the literature.
This chapter presents a mathematical development of nonlinear behavior of RC beams
based in Eurocode currently in prevalence and derives moment-rotation relationships
and ductility from the bilinear modeling of moment-curvature relationships presented
in Chapter 2. Theoretical moment-rotation curves for RC beams in bending, under
increasing central concentrated design load until collapse, are studied. Ductility ratios
of fixed beams and simply supported beams are examined and discussed.

3.3 MATHEMATICAL DEVELOPMENT

Concrete under multiaxial compressive stress state exhibits significant nonlinearity.
The fundamental Bernoulli hypothesis of linear strain over the cross-section for both
elastic and elastic-plastic responses of the beam, under bending moment combined
with axial force, is assumed in the study. Axial force—bending moment yield inter-
action discussed in Chapter 1 is recalled. For classifying the failure as fension (or)
compression caused by yielding of steel (or) crushing of concrete, respectively, the
percentage of steel or a balanced section is given by

(38cu — 8cO)GcO _ PO
3(8cu + esu)cs() b(D - d)G

Pipa =Pt 3.1

sO

where P is the axial force (P,> 0, if it is compression). For the known cross-section
with fixed percentage of compression reinforcement, Equation 3.1 gives the percent-
age of reinforcement for the balanced section. It is to be noted that the above equa-
tion is the same as Equation 2.51. Moment-curvature relationship, as presented in
Chapter 2, is recalled for elastic and elastic-plastic range. It is well known that the
presence of axial force influences moment-curvature relationships. It is also essential
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to know the critical value of axial force up to which the failure remains tensile; only
until those critical values, moment-rotation relationships are proposed to be exam-
ined in the following section. For the axial force of P €[0,P*], collapse is caused by
yielding of tensile steel, and for P > P*, collapse is caused by crushing of concrete.
The critical value of axial force P* is given by

(SECU — 800)

O.,— - 9 .
3(£Cu + 8su) c0 (pl pc) N (3 2)

P*:b(D—d)[

Moment-curvature relationships, in elastic and elastic-plastic ranges are now
examined for an RC beam of cross-section 300 x 450 mm with R, as 25 N/mm? and
f, as 41 N/mm?. For members of building frames under seismic loads, in particular,
design type leading to tension failure is normally used, because of its known advan-
tages. For the beam reinforced with the same percentage of tension and compression
steel (4#22d), critical axial force computed from Equation 3.2 amounts to 291.51kN.
Moment-curvature relationships are examined for axial forces less than this critical
value, and relevant curves are shown in Figure 3.1. Both the curves obtained from
bilinear approximation and using moment-curvature relationships are presented in
the figure. It is seen from the figure that the variations are very small for lesser
values of axial force but tend to increase for greater values. Therefore, the devel-
oped moment-curvature relationship discussed in Chapter 2 validates the procedure
for tensile failure up to axial load level of critical value. Hence it is satisfactory to
use bilinear approximated moment-curvature to further investigate moment-rotation
relationships and rotation ductility of RC beams; the same is used in the further sec-
tions of discussions.

300 — -
Bilinear modeling
————— Exact
P = 200 kN|
250 e ———— —— — i
£ /N I T S ! P = 100 kN|
Z /A N == 11 /[P = OkN
. /i i
: /i i
£ 150 y Al Pl
[
= // ::| -1"? : : :
.= 4 b 44220 Li)
g 100 ¥ HH e HHI
/// :: : felc = 25 N/mm? E : : |
/) | f, = 415 N/mm? |
y/ ik y=4 ! I
50 y// Hl | 1 |
i 44220 i !
! I
| |
b | Ml o
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Curvature

FIGURE 3.1 Moment-curvature for RC section 300 x 450 for different axial forces.
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3.4 ANALYTICAL MOMENT-ROTATION RELATIONSHIPS

The relationships shall be examined in elastic and elastic-plastic range, successively
(Nunziante, Gambarotta, and Tralli 2007). General equations of equilibrium are
known as

dV(z) dZM( )

iz =—q(2),

=—q(z) 3.3)

where V(z), M(z), q(z) are shear force, bending moment, and distributed load present
in the beam. Assuming the hypothesis of small displacement, compatibility equa-
tions are given by

d25(z)
1 (3.4)

0(z)=—

where, 8(z) is the transverse displacement function of the beam. Moment-curvature
relationships, in elastic and elastic-plastic ranges for monotonically increasing cur-
vature, are known as

K o(z) Vo €[0,0]
M(z) = (3.5)
M, +K20@) - 0.1 Vo eld,.0,]

where, Kq’ _T: is the curvature-elastic stiffness and K %q)M* is the curvature-
hardening modulus. Figure 3.2 shows moment-curvature and 'moment-relative rota-
tion for the beams considered in the analysis, showing also the elastic stiffness and
the hardening modulus for curvature and relative rotation, respectively. General dif-
ferential equations for the beam can now be written as

d4d (z
K? 0 g )_ q(z) (for elastic range) (3.6)
d*d (z) . :
Kﬁ P p4 =q(z) (for plastic-hardening range) 3.7
zZ
Mll ___________________ Ml.l ___________________
Mg | __ T ____ 4 Mg | __ 4
o i B2 ! - i o !
: | 2 | |
g : tan B, = K¥ : g : tan o = 1<2 :
=y : tan B, = K$ : o : tan o, = 1(?, :
3 | I g ' |
g ! I g l !
= P b Pu | = 1 1ABg 26,
Curvature Relative Rotation

FIGURE 3.2 Elastic stiffness and hardening modulus: (a) relative rotation, (b) curvature.
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Further, (1) rotation, (2) curvature, (3) bending moment, and (4) shear in elastic
and elastic-plastic range, expressed as the function of displacement, are given by

__dﬁe(z) __dzﬁe(z) _ 0 d20.(z) _ » d430,(2)
0,(z)= “dz , 0.(2)= iz2 , M (z)=-Kg Q72 , V. (2)=-Kg PP
(3.8)
ds d28 d28
ep(z)z—gz(z),q)p(z):_d;z(z), Mp(z):ME—Kﬁli dzpz(z)+¢E},
d°8,(2) (3.9)

V(@) =-K} dz3

This proposed modeling of elastic-plastic beam allows to obtain deformations
with good accuracy. On the basis of the procedure discussed above and with the help
of bilinear approximated moment-curvature, moment-rotation relationships of two
cases are now examined.

3.4.1 Fixep BeEam UNDER CENTRAL CONCENTRATED LOAD

Figures 3.3 and 3.4 show a fixed beam and simply supported beams under central
concentrated load. The beams are examined for increasing design load until collapse
and the corresponding moment-rotation relationships, both in elastic and elastic-
plastic ranges; axial force is not considered in the analysis (P = 0). In the elastic
range, the beam is subdivided in two parts whose lengths lie in the range (0, L/2) and
(L/2, L), respectively. Displacement functions of both of the parts in the same refer-
ence system (with origin at left support of the beam) are given by

8,(z)=S,,+8S,z+S,2*+8,,23 Vz €[0,L/2]
(3.10)
8,(2) =Sy, +S,,(z—L/2)+S,,(z— L2 +S,,(z—L/2)} Vze[L/2,L]

where S;,S,,,...,S;, are integration constants. It is assumed that both the tension
and compression reinforcements of the beam are continuous without any curtailment
along its length, leading to the same values of limit elastic and ultimate bending
moments. At elastic limit, bending moment reaches its limit value in its absolute

A F B
Z N
V1(Z) Vz(Z) Vg(Z) V4(Z) V5(Z) Ve(Z)
Iz Pl L
y Lml /||/ | | |

L/2 /I|/ : :
Lm
2 - /II/ i/
/|

FIGURE 3.3 Fixed beam subjected to central concentrated load.
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F
Az vi(z) vy(z) y v3(z) v4(z) B
] 1 |
Y Lml |/ : : %
il | !
L/2 Lo :
Lm2 i |/ |
L L
7

FIGURE 3.4 Simply supported beam subjected to central concentrated load.

terms at sections z = 0 and z = L/2, simultaneously. By imposing the appropriate
equilibrium and compatibility conditions at fixed supports and midspan, integration
constants are obtained as

kFL kF
80 =5,,=0,5,, = 16Kg E =_12K§§
3.11)
_ kFI? __kFL _ _ kF
292K TR 16K P 12KD

where, k is the load multiplier and F is the point load. Substituting in Equation 3.8,
displacement function for the beam in elastic range is determined as

kFz?
0,(z)= 3L -4z Vz €[0,L/2
(@) 48Kg( ) [ ]
[for fixed beam case] (3.12)
_ —7)2
8,(z)=— KE@L=42XL=2)" o, (oL

48K¢

Similarly, functions for rotation, bending moment and shear can be readily derived
from Equation 3.12. Figure 3.5 shows the bending moment, curvature, rotation and
displacement of the beam, plotted along its length; profiles are shown at elastic limit
and at collapse as well. It can be seen from the figure that both compatibility and equi-
librium conditions are well satisfied. Load multiplier at elastic limit is given by

8,

= 3.13
¢ FL @13

At elastic limit, relative rotation, total rotation, and ductility of the hinge formed
at midspan are given by

Aegndsl)a“) = eE (Z = Lml) — BE(Z = LmZ)’
Ae(umidspan) — eu(z = Lml) - eu(Z = Lmz), (3.14)

n _ Ae(umidspan)
(midspan)
ABC
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In terms of moment and curvature-elastic stiffness, relative rotation at elastic
limit is given by

M, [L(L,, +3L,,)-2(12, +12,,)-17]

Ae(mjdspan) —
: KL

(3.15)

where, L, and L , are the extremities of the plastic hinge, measured along the
length of the beam (see Figure 3.3). Similarly, for the plastic hinges formed at
fixed supports, relative rotation at elastic limit, total rotation, and ductility ratio
are given by

support
A@surp
u

support
A}

AL =@ (z=L,), AU =@ (z=L,), N= (3.16)

where, L, is the length of plastic hinges formed at the fixed supports. Relative rota-
tion of these hinges can also be expressed as

ML, (@L-2L,) (3.17)

AQuPPOT)
. KL

In the elastic-plastic range, the beam is subdivided by six parts (see Figure 3.3).
Plastic hinges are present in the first, third, fourth, and sixth parts, while strain
remains elastic in the second and fourth parts. Displacement function for each part
is given by

8,(z)=N,, +N,z+N,z2 +N, z* vz €[0,L;]
8,(z)=Ny, +N,(z-L;)+N,,(z—L,)2+N,,(z-L,)? Vzel[L,,L ]
8,(z)=N,+N;z-L_)+N,(z-L_)?+N,(z-L_)? vze[L,_,,L/2]
8,(2)=N,, +N,,(z—L/2)+ N,,(z—L/2)> + N, (z— L/2)® Vze[LR2,L,,]
0,(z)=N+N,;(z—L _,)+N,(z-L_,)*+N,(z-L_,)’ VzelL, , L-L;]

84(2) =Ny + N (z=L+L)+ N, (z=L+L,)? + N, (z-L+L,)* Vze[L-L,,L]
(3.18)

where N ,N, ,N, N, ...,N,N,,N,.,N. are integration constants. The functions
8,(2),84(z) are required to satisfy Equation 3.6, while the remaining functions sat-
isfy Equation 3.7. Imposing the respective equilibrium and compatibility conditions,
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derived are the following set of equations that have to be satisfied:
8,(z=0)=0, ¢,(z=0)=0,
8,(z=L,)=9,z=L,),¢,(z=L,)=0¢,(z=L;)M,(z=L,)
=M,(z=L,),V,(z=L,)=V,(z=L,),
8,z=L,_)=v,(z=L_),0,(z=L_)=0,(z=L_)M,z=L_)=M,(z=L_ ),
V,z=L_)=V,(z=L,_)),0,(z=L/2)=v,(z=L/2), 0,(z=L/2)=0¢,(z=L/2),
M,(z=L/2)=M,(z=L/2), V,(z=L/2)=V,(z=L/2)+kF,,(z=L, ,)
=d,(z=L_,),
¢,z=L,_,)=0,z=L_,),M,(z=L_,)=M;(z=L_,),V,(z=L_,)=V.(z=L_,)
8 (z=L-L;)=08,z=L-L,), 0;(z=L-L,)=0,(z=L-L,),My(z=L-L,)

=M,(z=L-L,),

Vi(z=L-L,)=V,(z=L-L,),8,(z=L)=0, ¢,(z=L)=0
(3.19)

By solving, integration constants can be determined. By substituting moment as Mg
at (z=L,,) and M, at (z=L/2), collapse load multiplier is obtained as

8M LM, -M
u Lf= ( u E),L

L(M, ~M,)
AM, m2 ~ =

k.= m= oM (3.20)

=M. L
¢~ FL

By substituting in Equations 3.15 and 3.17, respectively, relative rotation of plastic
hinges formed at midspan and supports, at elastic limit, are obtained as

(M2-M2)M, L (M2-M2)o.L
4KOM2 4M2

(midspan) _
AQT)

M2 -M2)M.L (M2-M2)o.L 32D
( u E) E :( u E)q)E

8K ¢ M2 8M?

(support) _
AQEUPe) =

In the elastic-plastic range, respective values are given by

M, - M)[2KEM, +K (M, - M) [L (M.~ M, )0, +6,)L
4KFKOM, 4M,

(midspan) —
AQmidspan) =

M, —Mp)[2KE M, +KEM, - M) L (M.~ M, )6, +6,)L
8K{KOM, 8M,

Ae(suppon) —
u

(3.22)
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Rotation ductility of the plastic hinges formed at supports and midspan are given by

M,[2KEM +KEM,-Mp)] M (q) "y
ne = — u u

= (3.23)
Kg M. (M, +Mp) M, +M; O j

Moment-rotation relationships, in both elastic and plastic zones, are summarized as

K9A0 A0 €[ 0, a6 |
M(A®) = _ _ . (3.24)
ME + Kg (A(-)— Aegmdspan)) AO e [Aegndspan),Aegmdspan)]

where the rotational-elastic stiffness and hardening modulus K¢ , K9 assume differ-
ent values for plastic hinges formed at midspan and supports. For hinges formed at
midspan and supports, their respective values are given by:

oo ML lie ko AREKIM,
KE: (7 =

M2-MZ)L |57 (M, - M, )(MKg + M K¢ L 429
0 — SMﬁ ¢ 0 — SKgKgMﬁ
Ke {(Mﬁ—Mé)L} e Ky (MU—ME)(MEK$+MuK‘};)L (3.26)

3.4.2 SimpLy SurPORTED BEAM UNDER CENTRAL CONCENTRATED LOAD

Figure 3.4 shows the simply supported beam under central concentrated load. The
beam is examined for increasing design load until collapse; and moment-rotation rela-
tionships, in elastic and elastic-plastic ranges, are presented. In the elastic range, the
beam is subdivided in two parts whose lengths lie in the range (0, L/2) and (L/2, L),
respectively. The displacement functions for both of the parts are given by

3,2 =Y, +Y,z+Y,z>+Y, 7’ Vz €[0,L/2]

3.27
8,(2) = Yo, + Y, (2= L12)+ Y, (z = L12)? + Y, (z — L/2)} Vz e[L/2,L] (3.27)

By imposing appropriate equilibrium and compatibility conditions, integration con-
stants of Equation 3.27 are obtained as

kFI12? kF
Y, =0,Y,, = 16Kg > Iy =Y 31:_12Kg
X (3.28)
kFL? kFL kF
27 48K Y =0, Ypp =~ 8KS 2 12K?
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where k and F are the load multiplier and point load, respectively. Substituting in
Equation 3.27, displacement function for the beam in elastic range is determined as:

kFz
0.(2)= 312 —4z2 Vz €[0,L/2
1(2) 48K° ( ) [ ]
, , [for simply supported beam]
52(z)=—kF(L_4ZXL —8Lz+4z2) Vze[L2.L]

48K?
(3.29)

Figure 3.6 shows the bending moment, curvature, rotation, and displacement pro-
files of the beam, plotted along its length; profiles are shown at elastic limit and
collapse as well. It can be seen from the figure that compatibility and equilibrium
conditions are well satisfied. The load multiplier at elastic limit is now given by

_4ME

k
¢ FL

(3.30)

Using Equation 3.14, relative rotation of the plastic hinge formed at midspan, at
elastic limit, is given by

Mg [4LL,,-12=2(L2, +12,,)]
2KL

E

Ae;midspan) — (3.3

where L, and L, are the extremities of the plastic hinge measured along the length
of the beam as shown in Figure 3.4 and are given by

Lm1=%£’ L ,=L|1- My (3.32)
M, 2 2M

u u

The length of the plastic hinge formed at midspan is given by:

M
L,-L, = L(l—MEJ (3.33)

u

Substituting in Equation 3.31, relative rotation of the plastic hinge at elastic limit is
given by

(M2 -Mz )M L _ (M2 —M2 )6,

(midspan) __
AR = TV S
2K¢ M2 M2

(3.34)

In the elastic-plastic range, the beam is subdivided in four parts (see Figure 3.4).
Plastic hinges are present in second and third part, while the strain in the
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FIGURE 3.6 Bending moment, curvature, rotation, and displacement for simply supported
beam under central concentrated load.



Moment-Rotation Relationship for RC Beams 101

first and fourth parts remains elastic. Displacement functions for each part are
given by

5,(z)=R,, +R,z+R,z2+R,Z} Vze[O,L ]

8,z)=R,+R,,z-L_)+R,,(z-L_)?*+R,,(z-L_,)* Vze[L_ L/2]

ml’

8,(2) =Ry +R ;2= L/2)+R,;(z—L12* +R,(z- L2  Vze[L2,L,,]

8,2)=R,, +R,,(z—L,_,)+R,,(z-L,,? +R,,(z-L_,)* Vze[L_,,L]

(3.35)

where Ry,R,,....R,,,R;, are the integration constants that can be determined by
imposing the respective equilibrium and compatibility conditions in Equation 3.35.
Relative rotation of the plastic hinge formed at midspan is given by

m2°

M, - ME)[Kﬁ(Mu ~Mp)+ 2K$ME]L _ (M, — M) (0, +0,)L
2KIKIM, - 2M,

idspan) —
Aeﬁml span) —

(3.36)

By recalling the relative rotation of the plastic hinge at elastic limit given by Equation
3.34, ductility of the plastic hinge formed at midspan can be expressed as

g M [2KSM, +KIM,-M,)| M (¢u+¢5

= . = = 3.37
Mo Aegmdspam Kg M; (M, +M,) M, +M; O j G:37)

It is important to note that rotation ductility obtained above is as same as the hinge
formed at midspan in the fixed beam, given by Equation 3.25, but the changes in
rotational-elastic and hardening modulus are given by

ke=| - 2Mo ko ko= 2KEKGM} (3.38)
P -ME)L | TE TP (M, - My)(MK S+ MK L '

3.4.3 Fixep Beam UNDER UNIFORMLY DISTRIBUTED LOAD

In this section, the collapse mechanism and the plastic hinge extension of a fixed RC
beam, in bending under increasing uniformly distributed design load until collapse,
is examined, and expressions for moment-rotation relationships are derived. A fixed
beam of 5 m span considered for the study is shown in Figure 3.7. Two RC beams with
cross-sections 300 x 450 mm and 300 x 600 mm are analyzed with different percent-
ages of tension and compression reinforcements. The bending moment, curvature,
rotation, and deflection function in a closed form in elastic range are given by

L2 2
M, (z) =0 {—Z+Z—l} (3.39)
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M, (2) WOL2 z2 oz 1
0.(z)= e I (3.40)
KY 2K L2 L 6
M (z) w3 | 3z2 223 2z
GC(Z)z.’.%dZ+GO= - |:——i|+G0 3.41
K¢ K| 1L (34D
wolt | 22 273 z*
o (Z)— J-G (Z)dZ+G = 24K ¢ |:L2_L3+L4:|+G1 (342)

where G,,G, are integration constants depending on boundary kinematical con-
straints. The equivalent bending stiffness is given by

20, bD?
12

_ D2
K} =E,(p, +p)bD—-d) =+ (3.43)

c0

A procedure based on the static theorem of limit analysis is applied to obtain a
lower-bound collapse load multiplier, length of plastic hinge, and relative rotation.
It is well known that in the framework of the static theorem, only equilibrium and
plastic compatibility conditions are to be fulfilled. For the selected cross-section
and reinforcement, let the ultimate moments be M, , and M,; at fixed supports, M,
at midspan, and let Mg be the limit moment (Figure 3.7). Since the load is uni-
formly distributed, equilibrium requires a parabolic bending moment function over
the beam. A statically admissible bending moment distribution M = M(z) is hence
a parabola passing through these values at supports and midspan. The equilibrium
equations at collapse of these sections are thus given by

P = J.bcsc(ec(y)) dy+bqo, +(A_—A,)G, =0 (3.44)

¥ D bqo,, D
Mp—jb(ic(sc(y))(2 yjdy+ > (D q)+(550(AS‘+AS€)(2 dj (3.45)
q

where 4= MX& € = %(XC —Y). By solving Equation 3.44, depth of neu-

€¢max

tral axis is obtained as

_ 3(D_d) (pt pc)cs() c,max

X, = (3.46)
c() (38 c())
By substituting in Equation 3.45 and imposing the conditions
se — €50
e =¢ (3.47)
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three values of elastic bending moments are obtained, out of which lower bound
value is taken as elastic moment, Mg. By further substituting in Equation 3.45 and
imposing the condition that €, =¢€_ , the ultimate bending moment of the cross-
section is obtained as

30,,(D—d)(p, — p,)* (€2, — 4e,,E,, +0€2,)

Mu = b(D_d)GSO Dpt _d(pt +pc)_

400()(80() - 38cu )2
(3.48)
The relevant uniformly distributed statically admissible load is given by
. = d>M
W, =— o (3.49)

By integrating the moment distribution along the length of the beam at collapse, we
get

k
M(z) = - VZVO 22+Dz+D, (3.50)

Now, by imposing M ,I=M . = M, , the collapse load multiplier and integration
constants D,, D, are obtained as

_16M, 8M

k , D, =
w, [

“, D,=-M, (3.51)

where M, is given by Equation 3.48. For equilibrium of stresses corresponding to
the vanishing value of axial force, the position of neutral axis and linear axial defor-
mation profile can be obtained under the Bernoulli condition for both elastic and
elastic-plastic zones. Figure 3.7 shows the details of plastic hinges formed at critical
sections. For the zero axial load case in Equation 3.44, strain in concrete in extreme
compression fiber is given by

X000

c—c0

8 =
e 3[x,0, — (d=D)p, —p,)0,]

(3.52)

By substituting in Equation 3.44 and equating it to Equation 3.50, depth of neutral
axis is obtained as

. = Pd=D)p. —p)0o +\20E @)
¢ bo

(3.53)

c0

where

F(2)= \/—2D20'C0 +z(kwyz-2D,)o , +2b(d - D)[-Dp, +d(p, +p, )lo 0, —b(d - D)? Gfo (p, — P, )?
(3.54)
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Subsequently, curvature, rotation, and displacements for the elastic-plastic zone
of the beam are given by

q) _ 8c,max _ becOGCO (3 55)
X, 3J2bF@ '
bo., F,(2) ln[cco (-, +kwyz+ 032 flow, F, (z)):|
0 = J.q) dz+H, = +H
P P 0 32k w, F,(2) ‘
(3.56)

5 = —'[9 Qi - Jkw, F,(z) (-6H kw G,z +2be G F, (2)) .
P P 1 6k3’2w(3,’26c0 F] (z)

26,,¢.,,F, (2)[D, In(D, /o, —kw /0 ,z—kw,F (2))—kw,zIn(-D,6_,+ kw Gz + [k w,G , F (2)] oH

6k w326, F,(z) !

3.57)

where H,, and H, are integration constants.

By means of the above procedure, functions of curvature, rotation, and displace-
ment of the elastic and elastic-plastic sections of the beam are obtained. Equating
rotations and displacements in the connecting points and imposing the conditions
zero rotation at midspan and zero displacements at fixed supports, the actual solu-
tion for displacement at collapse is determined by solving Equations 3.42 and 3.57.
The solution for displacement obtained from the static procedure described above
clearly fulfills the continuity requirements at the connection points between the
elastic and elastic-plastic parts since the solution presents only a negligible error
of 0.005 radians of the rotation at the fixed supports. On the other hand, it is well
known that in the framework of static theorem of limit analysis, not all kinemati-
cal conditions can be satisfied. The results obtained for the collapse multiplier and
plastic hinge length that are intended as relative rotations between the sections
whose abscissa are L, and L,, also representing the boundaries of the incoming
plastic hinge, are only lower bounds of the actual ones. Even though obtained
by means of the shown static procedure, the result is nearly close to the exact
ones. The proposed modeling for the elastic-plastic beam allows one to obtain the
deformation of the beam also with good accuracy. Further, the relative rotations at
elastic limit and collapse and ductility ratio (see the enlarged view of Figure 3.7)
are given by

AB, =0,(z=L,)-0,(z=L,)

A8, =6,(z=L,)-6,(z=L,)

A9 (3.58)

u

0= A0,
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The points along the length of the beam, namely, L, and L, representing extremi-
ties of the plastic hinge, can be determined by equating the lower bound value of
elastic moment to the actual bending moment given by Equation 3.50 and solving
it with respect to variable z. The moment-rotation relationship of the beam in both
elastic and plastic zones is summarized as

K, 1270
AB 10,48, ]
(L, L[ L2 =3L(L, +L,)+2(12 +L L, +L2) ]
Mo+ MMs g A ) AOE[AB_.AO ] 439
MamMe | ag e[, .
Folae, - A8, k B

3.5 NUMERICAL STUDIES AND DISCUSSIONS

The above developed procedure is verified with numerical examples. RC beams of
cross-section 300 x 450 mm, reinforced with 4# 22 @ in both tensile and compression
zone, under central point load are now examined. Two support conditions are consid-
ered: (1) both ends fixed and (2) both ends simply supported. The spans of the beams
are varied as 3.5 m, 4 m, 4.5 m, and 5 m. The spans are selected in a close range, since
the objective is to examine their influence on moment-rotation relationship; and at the
same time, the chosen cross-section shall be also accommodated. Further, the cross-
section and the reinforcement of the beams (with different spans) are kept the same so
that the influence of their variation on moment-curvature is controlled as the moment-
rotation relationship is derived from the bilinear approximation of moment-curvature.

The percentages of reinforcements, both in tension and compression (p,= p. =
1.21%), are kept less than the balanced section (p,;,; = 1.85%) to initiate a tensile
failure in the beam. Axial force is varied as (1) 0 kN, (2) 100 kN, and (3) 200 kN but
kept well below the critical load value (p* for the chosen cross-section is 291.51 kN),
since the load level in closer proximity to the critical may indicate the influence of
compression failure. Moment-rotation curves are plotted only for the plastic hinge
formed at the midspan. However, details of plastic hinges formed at the support
can be seen from Tables 3.1 and 3.2 for fixed beam and simply supported beam,
respectively.

Figures 3.8 and 3.9 show the moment rotation of the fixed beam and simply sup-
ported beam under different axial forces, respectively. The curves in these figures
are plotted for the beams of 4 m span only, but Tables 3.1 and 3.2 show the details for
the beams with different spans considered in the study. The tables and Figures 3.8
and 3.9 show that for the fixed beam and simply supported beams of specific span
length, say L m, the rotational-elastic stiffness K decreases for the increase in axial
force while rotational-hardening modulus Kg increases; this is true for beams of all
spans examined in the study. For the same axial force, increase in span length of the
fixed and simply supported beams leads to the decrease of both rotational-elastic and
hardening modulus. Relative rotation of plastic hinges formed at the supports (in the
case of fixed beam) and at the midspan increases with the increase in span length
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FIGURE 3.8 Moment-rotation of fixed beam under different axial forces:
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FIGURE 3.10 Moment-rotation of fixed beam with different span length (P = 0):
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for the same axial force level; this is true for both at elastic and ultimate stages.
Also, for the same span length, say for L m, increase in the axial force increases the
relative rotation of the hinges, both at elastic and ultimate stages. Ductility ratios of
plastic hinges formed at supports (in case of fixed beams only) and midspan are the
same for beams of all spans, subjected to the same axial force; they decrease with
the increase in the axial force. The length of plastic hinges formed, both at supports
and midspan, increases with the increase in axial force for the same span of the
beams. Figures 3.10 and 3.11 show moment-rotation curves of plastic hinges formed
at midspan of the fixed beam and simply supported beams of cross-section 300 X
450 mm, with different spans under consideration; plots show the behavior for no
axial force. It can be seen from the figures and tables that ductility ratios of plastic
hinges formed at supports (in the case of fixed beams) and midspan are the same
even with the increase in the span length, under the same axial force. However, there
is increase in the length of these plastic hinges with the increase in span lengths, both
those formed at supports and those at midspan as well; the length of plastic hinges
formed at midspan is double those formed at the supports in the case of fixed beams
examined.

Figures 3.12 and 3.13 show the moment-rotation curves for the beam of 4 m span,
with two different percentages of tensile reinforcements: (1) 1.21%, which is the
same as p,, and (2) 1.85%, which is the same as p,,. It is seen from the figures that
increase in tension reinforcement certainly increases relative rotations at elastic and
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FIGURE 3.13 Moment-rotation of simply supported beam with different tensile reinforcements:
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collapse states, and it also increases moments at elastic and ultimate stages. It is
interesting to note that ductility increases only to a marginal extent in comparison
with the increases in moments and relative rotations. Therefore, members of RC
frames located in seismic zones shall be designed with lesser percentage of tensile
reinforcement (which, in other words, is not a compromise on ductility) in compari-
son with the balanced section, as this can certainly ensure a tensile failure; savings
in steel can be seen since a derived benefit apart from ensuring the required ductility.
Also, fixing the percentage of compression reinforcement, either equal to that of ten-
sion steel or lesser, will be advantageous.

Figures 3.14 and 3.15 show the moment-rotation plots for fixed beams (under uni-
formly distributed load) of two cross-sections, 300 X 450 mm and 300 x 600 mm,
respectively. Table 3.3 shows the moment-rotation and ductility ratio for example
cases considered. It is seen that the ductility ratio considerably increases for beams
with tension failure compared with that of compression failure, showing also a reduc-
tion in length of plastic hinge thus formed. It is also observed that there is a reduction
in the length of plastic hinge and increase in ductility ratio when the percentage of
tension reinforcement decreases. The required ductility shall be fixed on the basis
of demand capacity ratio of the building frame under earthquake loads obtained
from preliminary assessment and appropriate input parameter, namely, (1) the sec-
tion causing tension failure or (2) a balanced section can be chosen.
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TABLE 3.3
Details of Hinges Formed at Midspan and Supports in a Fixed
Beam under Uniformly Distributed Load

Section 300 x 450 Section 300 x 600
Description Compression Compression
Classification Failure Balanced Failure Balanced
P (%) 2.50 1.84 2.50 1.84
P. (%) 1.00 1.00 1.00 1.00
ABg (rad) 0.00112 0.00051 0.00096 0.00046
AB, (rad) 0.00606 0.00586 0.0046 0.00475
n 5.19 11.60 4.81 10.35
Mg (Nm) 3.67E+05 2.842E+05 6.797E+05 5.295E+05
M, (Nm) 3.75E+05 2.938E+05 6.975E+05 5.472E+05
k 4.789 3.756 8.899 6.99
(€5)suppont (M) 12.30 2.95 14.03 4.0
(Cp)midspan (mm) 495.0 24291 529.1 283.7

3.6  CONCLUSIONS

A detailed methodology for estimating moment-rotation for RC sections in both
elastic and plastic zones separately is presented. Nonlinear characteristics of con-
stitutive materials, namely, concrete and reinforcing steel, according to Eurocode
currently in prevalence are considered, while deriving the analytical expressions
for moment-rotation in a closed form. The expressions are derived from the ear-
lier developed moment-curvature relationship in Chapter 2, considering a bilinear
modeling. Collapse mechanism and plastic hinge extension of RC beams in bend-
ing under increasing design load until collapse is presented. Axial forces limit-
ing to result in tensile failure of the chosen beams are also considered during the
analysis. The proposed moment-rotation relationships are verified for equilibrium
and compatibility conditions and ductility ratios of fixed beams and simply sup-
ported beams of different span length are presented. The bilinear approximation
of moment-curvature used in the study does not seem to influence the derived ana-
lytical expressions of moment-rotation relationships, thus providing a reasonably
accurate estimate.

Rotational-elastic stiffness and hardening modulus, the main contributors of duc-
tility, are influenced by the span length of the beam, axial force level, and percentage
of steel reinforcement of the cross-section but are not influenced by the support con-
straints. Ductility is not influenced by the span length of fixed and simply supported
beams and their support constraints, whereas length of the plastic hinges is influ-
enced significantly. It is advantageous to limit the value of tension reinforcement less
than that required for a balanced section because ductility is not being influenced by
the increase in percentage of tension reinforcement (for a fixed value of compression
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reinforcement). This initiates tensile failure for certain and makes use of the member
ductility for effective redistribution of moments at sections where hinges are formed.
In the present context of increased emphasis on ductile detailing and displacement-
based design approach for structures under seismic loads, analytical estimates of
moment-rotation, ductility, and length of plastic hinges presented in a closed form
can be seen as useful contributions. It is reemphasized that ductility estimates of RC
sections should be made with caution in the presence of axial force. Estimates of
critical axial force provided in the closed form can also be useful in this context.

The study verified some of the important facts through proposed analytical expres-
sions presented in a closed form. They are useful for designing special moment-
resisting RC framed structures, where ductility is an important design parameter.
The method verifies a safe seismic design procedure and can be useful for the prac-
ticing engineers as well.

3.7 SPREADSHEET PROGRAM

The spreadsheet program used to estimate the moment-rotation relationship simpli-
fies the complexities involved in such an estimate, thus encouraging the practicing
structural designers to use it instantly and with confidence. A compact disc with
relevant contents can be downloaded free from the following Web site: http:/www.
crepress.com/e_products/downloads/download.asp?cat_no=K10453.

3.7.1  Step-BY-STEP PROCEDURE TO USE THE NUMERICAL METHOD ON THE WEB SITE

Using the same procedure as explained in Section 2.10, moment-curvature for
the chosen cross-section is first determined. The program based on the numerical
procedure automatically computes the moment-rotation for the RC beam, using
bilinear approximation of the moment-curvature, thus obtained. A sample case
problem is presented for fixed beam and a simply supported beam with 3.5 m span
length, with different point loads. Please note that the hypothesis discussed above
is verified for a tensile failure only. To ensure the failure as tensile, you will cross-
check two important parameters: (1) axial load not to exceed P* value (given by
Equation 3.2), as well as (2) the percentage of tension reinforcement not to exceed

Pt par-
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4 Bounds for Collapse
Loads of Building
Frames Subjected
to Seismic Loads

A Comparison with
Nonlinear Static Pushover

4.1 SUMMARY

Recent updates of international codes on seismic analysis and design of buildings
reflect the threats to existing buildings under more frequent earthquakes foreseen in
the near future. The objective of ensuring structural safety of these buildings under
seismic action intensifies their performance assessment for which pushover analysis
is widely accepted as a rapid and reasonably accurate method. However, approaches
based on limit analysis procedures (both static and kinematic theorems of plasticity
theory) have also been equally popular for addressing issues related to structural
safety in situations of extreme loads that can jeopardize buildings and could threaten
the lives of inhabitants. A comparison between the forecast of design base shear
obtained by pushover analysis and collapse loads based on limit analysis procedures
is advantageous to establish confidence in the obtained results. In this chapter, we
discuss the analytical procedures to determine the collapse loads by limit analysis
and pushover as well. Comparison of the results obtained by employing the above
tools on multistory moment-resisting reinforced concrete frames subjected to seis-
mic loads is presented. Displacement-controlled pushover analysis is performed on
the building frames whose input parameters like axial force—bending moment yield
interaction and moment-rotation are derived based on the detailed mathematical
modeling presented in earlier chapters. Bounds for collapse loads based on both
static and kinematic theorems of limit analysis are obtained using mathematical pro-
gramming tools. Computer code used to determine the collapse multipliers is given
in Chapter 6.

Numerical studies conducted show that the design base shear computed using
nonlinear static pushover, for an accepted level of damage like collapse prevention,
predicts the response value closer to the upper bounds obtained by plasticity theo-
rems, in certain cases considered. The proposed bounds for collapse loads obtained
in closed form, which fit with pushover analysis to a good accuracy, become a
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useful tool for preliminary design and assessment as well. This study helps the
designers and researchers to use displacement-controlled pushover analysis with
improved confidence as their results of different examples are compared with other
similar methods used to assess the collapse loads. While pushover analysis is rec-
ommended as an appropriate tool for seismic assessment of buildings, it is empha-
sized that accuracy of pushover depends on characteristic inputs presented in the
earlier chapters, and design base shear will be better estimated using the proposed
expressions.

4.2 INTRODUCTION

The increased use of concrete as the primary structural material in several complex
structures such as reactor vessels, dams, offshore structures, and the like needs an
accurate estimate of this material response when subjected to a variety of loads that
determine the presence of bending, shear, and axial force (Abu-Lebdeh and Voyiadjis
1993; Paulay and Priestley 1992). Seismic design philosophy demands energy dis-
sipation/absorption by postelastic deformation for collapse prevention during major
earthquakes. Most of the existing RC buildings do not comply with revised seismic
codes as a result of material degradation with age, as well as increase in seismic
intensity imposing higher design loads. In such situations, performance assessment
of existing buildings becomes inevitable to estimate their structural safety. While
Gilbert and Smith (2006) showed a parameter-varying approach to identify con-
stitutive nonlinearities in structures subjected to seismic excitations, the objective
of ensuring safe buildings intensifies the above-stated concerns for which nonlin-
ear static pushover analysis (NLSP) can be seen as a rapid and reasonably accurate
method (Esra and Gulay 2005). Pushover analysis accounts for inelastic behavior of
building models and provides reasonable estimates of deformation capacity while
identifying critical sections likely to reach limit state during earthquakes (Chopra
and Goel 2000). A qualitative insight of input parameters required for performing
nonlinear static pushover is presented in earlier chapters. In this chapter, collapse
multipliers of RC building frames with different geometry are assessed by employ-
ing different procedures, namely, (1) displacement-controlled nonlinear static push-
over; (2) upper bound, or kinematic theorem; (3) lower bound, or static theorem;
and (4) step-by-step load increment procedure by employing the force-controlled
method. The results obtained are then compared.

4.3 COLLAPSE MULTIPLIERS

In this section, the procedure employed for obtaining the collapse load multipliers on
RC building frames is briefly presented. For the sake of simplicity, a regular frame
with m spans and n floors is considered. Let L be the length of all floor beams and H
be the height of all floors. Let Q, be the constant vertical load on beams at midspan,
corresponding to the sum of dead loads and appropriate live loads (IS 1893, 2002;
Chopra 2003; Chandrasekaran and Roy 2006). Let F,, F,_,, ... F,, ... F,, F, be the
set of transverse forces distributed along the height of the building for the base shear
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computed from the code (IS 1893, 2002). They are assumed to act at every floor level
where a constant, equal mass is lumped.

- (1H)?

3 W,(iH)?

Vie{l,0,...,n}
.1

where V, is the base shear and W, is the seismic weight of the floors computed from
dead load and percentage of appropriate live loads as specified in the code (IS 1893,
2002). All beams and columns are considered to have the same ultimate bending
strength, M, , and M, ., respectively. Without loss of generality, only the cases of
weak or balanced section for beams are considered, while columns are considered
to be strongly reinforced. In the following section, a straightforward procedure for
obtaining upper bounds, K, (using kinematic theorem), and lower bounds, K| (using
static theorem), of the collapse multiplier is proposed. Figures 4.1 and 4.2 show the
P-M interaction of the RC beam and the column, respectively. Figures 4.3 and 4.4
show the moment-rotation capacity of the tensile and compressive plastic hinges,
which are used for the analysis. For any other RC section, the reader can easily deter-
mine these input parameters either using the enclosed CD or referring to the explicit
expressions given in Chapters 1 and 3 of Seismic Design Aids. It is well known that
the limit analysis theorem is applicable to convex domains only where the normality
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rule is verified. A detailed insight of verification of flow rule for the proposed P-M
interaction domain is presented in Chapter 5.

4.3.1 KiNemaTiC MuLTiIPLIER, K|

The proposed upper-bound collapse multiplier, K,, for the seismic design forces
distribution shown in Equation 4.1 is obtained by means of the kinematical proce-
dure of limit analysis. This is based on the assumption of a failure mode shown in
Figure 4.5, fulfilling only the compatibility requirement that allows the evaluation
of the total dissipation.

zp: M, A6, -zn:Kk E-3,, —sz: Qy3,, 20 .2
=1 i=1 i=l k=l

where M, is the ultimate bending moment of the element considered, p is the number
of plastic hinge, n is the number of floors, m is number of spans, L is the length of
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beams, Q, is the concentrated load on the beam at midspan, AB, is the relative rota-
tion rate, 8,; is the floor displacement rate in the horizontal direction and 0, is the
beam displacement rate in the vertical direction. The searched kinematical multi-
plier is given by

p n m
.Z Mu,j Aej - 2 ZQO Sv,ik
Kk — =1 - i=1k=1 > KC (43)
zFi '8hi
i=1 ’

The simplest failure mode is assumed corresponding to the positioning of plastic
hinges at critical sections, namely, all beam supports and the bottom section of first-
floor columns. The modeled failure mode assumes point-wise plastic hinges at which
relative plastic rotations occur. For this failure mode, vertical loads do not work, and
hence the revised kinematical multiplier is given by

“_20+202maM,, +m+DM, ]

4.4
3BHn(n+1) V,
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4.3.2 StATiIc MULTIPLIER, K|

A static multiplier, K, constituting a lower bound of the collapse multiplier, is to be
obtained by employing the static procedure of limit analysis, based on the search of a
statically admissible stress distribution. While the stress field fulfilling only equilib-
rium equations must be contained in the ultimate strength limits, no kinematic com-
patibility equations, in elastic or plastic range, are required to be satisfied. Statically
admissible distribution of bending moment at any section is considered, and its dis-
tribution is set to satisfy the condition that bending moment is less than or equal to
ultimate bending moment at the cross-section. Equilibrium equations written for
various characteristic sections of the structure and satisfactory conditions for plastic
compatibility at these sections impose constraints to the mathematical programming
problem (Rustem 2006; Yakut, Yilmaz, and Bayili 2001). The static theorem of limit
analysis enables one to compute the collapse static multiplier of loads, K, satisfying
the following relationship:

K, =max(K)), @.5)

where K is the collapse multiplier to be bounded. The usual hypotheses of piecewise-
linear structure having characteristics of piecewise-constant geometry and strength,
subjected to concentrated loads and convex yield domain with plane boundaries, are
applied (Nunziante and Ocone 1988). Thus, the associated plastic flow rule for small
displacements simplifies the procedure, in static instance, to a problem of optimal
research by means of linear programming. In order to give an idea of the computational
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FIGURE 4.5 RC frame under lateral displacement showing position of plastic hinges (kine-
matic theorem).

tasks required to fulfill the above general procedure, we shall evaluate the number of
equations and variables involved in the study of an ordinary rectangular mesh frame.
For [n] floors and [m] spans subjected to central concentrated load [Q,], the number of
characteristic sections is [n(5m + 2)]. The number of redundancies become [3mn] and
the number of independent equilibrium equations become [2n (m + 1)], making the
number of variables in the problem, represented by the redundant moments, [3mn].
By using monodimensional strength domains for beams and columns (plasticization
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caused only due to bending moment and P-M interaction is ignored), the number
of plastic compatibility inequalities becomes [n(10m + 4)]. Plastic compatibility
inequalities at midspan and at supports of the beams are given by

~IM, JSM,, <M, | Vke(0,1,2,...,m}, Vie(0,1,2,...,n} 4.6)

Further, inequalities at the column supports are given by

~IM, <M, <M, | Vke(0,L.2...m+1}, Vie{0,12,..n}  @47)

Thus, the total number of equations and inequalities amounts to [6n(2m + 1)]. By solv-
ing the linear programming problem using LINGO (Raphel, Marak, and Truszcynski
2002; Sforza 2002) characterized by these equations and inequalities, static multiplier
can be determined. One can foresee the complexities involved in establishing the above
equilibrium equations and inequalities, for a multistory building frame, in particular.

An approximate and simplified procedure is therefore desirable to determine the col-
lapse multiplier by overcoming the above-mentioned complexities. A statically admis-
sible solution is obtained as the sum of results of two cases, namely, (1) the solution
corresponding to vertical concentrated loads on beams causing linear bending moment
diagram, satisfying null moments at supports; and (2) the solution corresponding to the
distribution of floor shear equally to (m + 1) floor columns assuming null moments at the
column center and obtaining end moments at the ith floor. In the latter case, frame node
equilibrium is fulfilled by equating the end moments of columns with that of beams.
Figure 4.6 shows the bending moment diagrams for the two cases mentioned above. At
the extreme joints of beams, bending moment is equal to the sum of end moments of col-
umns from upper and lower floors, while at internal nodes, two adjacent beams share this
value. The sum of the equilibrated bending moment distributions, [K, (Mg + My)] (the
subscript ;. stands for floor shear, and (, stands for vertical concentrated load) shall satisfy
the static compatibility conditions given by Equations 4.6 and 4.7. However, kinematic
compatibility at nodes of the frame is not satisfied, and hence the obtained multiplier is
only a static lower bound of the collapse multiplier K_. It is interesting to verify that for
a strong column-weak beam design concept [M, > M, ], the maximum value of the
collapse multiplier is obtained on the extreme spans when bending moments at these sec-
tions reach their ultimate values. In general, it should also be verified that these bending
moments shall not be greater than the ultimate moment. Thus, the lower bound of the
collapse load, K, is given in a more simplified form as

_ 2meD M, (rmyene2nM,,
s { S }H T HQ+2np2v, ¢ “.8)

2E+2XF

i=1 i=1
However, this simplified procedure cannot be extended for building frames with
irregular structural configurations.

4.3.3 STEP-BY-STEP ANALYSIS FOR A SIMPLE FRAME WITH P-M INTERACTION

A step-by-step procedure based on successive applications of the displacement
method is briefly presented, where the lateral load (seismic load distributed along the
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FIGURE 4.7 Force displacement curves by step-by-step analysis (with P-M interaction).

height from base shear) with constant collapse multiplier in each floor is applied until
the required number of plastic hinges are formed, leading to collapse. For simplicity,
a single story—single bay frame is considered, as shown in Figure 4.7.

Step 1: The frame is characterized by seven sections (A, B, C, D, E, G, R) at which
bending moment and axial forces are computed. Three degrees of freedom, namely,
0., 6, and A as rotations at beam-column joints and sway displacement at the top,
respectively, are considered. Equilibrium equations, as functions of the degrees of
freedom, are given by

K-8=B 49)
where
al Ko Ko 2k, 6k, [ QL]
L H L H? ) e
2k k. k 6k ¢ QL
K= == 4l byl e §=(0, |, B=| 2
L ( Lth j T " p g 4.10)
6k, 6k, 6k, k,F
H? H? H? L ]
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where k; and k_ are stiffness of beam and column elements, respectively. While the
vertical load, Q,, is kept constant, the lateral load, F, is increased by the multiplier
k,. By solving Equation 4.9 with respect to the degrees of freedom, elastic solution
for the frame, as a function of the collapse multiplier, is obtained. Bending moment
and axial forces at all the sections are given by

2k 2k 2k L
My == [9C+;A}, M, =~ {29C+;A}, MC=_Tb[29c+ 5 Q§ :

A

Qg M, = 2K 2afo,+20,]- QgL,

2k, 3 2k, 3

M, =- b[e -0, ]+

@.11)

6k Q 6k, 12k
P, =P, _+—b(e +0,)+—=>, P.=P,=P, _kF—?e ~ I

c A,
@.12)

P =P, = (e + )+Q°

By increasing the multiplier, k; is obtained as 15.90, while the couple (P, M) in section
A reaches the boundary of the P-M domain for columns, resulting in the formation of
the first plastic hinge at this section (Figure 4.7). The couples (P, M) at other sections
are verified for not reaching the boundaries of their corresponding domains.

Step 2: In the second step, only the lateral load is increased by the multiplier, k,.
With the presence of plastic hinge at section A, the couple (P, M) must belong to
P - M domain of the column in the second step. For the equilibrium condition given
by Equation 4.9, stiffness matrix and vector B are given by

4k, 3k, 2k, 3k,
7_’_ [
L H L H? 0
K=| oo yfRey k) Ok g ) (“.13)
L L H H>
k,F
3k, 6k, 15k,
ITE H> H |

Bending moment and axial forces at all section are now given by

3k A 2k k
M, =0, M,= HC[GCJFH}’ Mc==="21200+6,] My =—-"[0.-6,]

2k 2k, 3 2k, 3
ME=Tb[9C+26E], M, =+ q [29E+HA} M, =- T {6E+HA},

4.14)
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P

A

=P

B

k
=+%(9C +6,),

3k, A
Pe=Py =Py =k,F - (9C+HJ,

6k
P, =P, =—Tb(eC +6,)

@.15)

Net bending moment and axial force at any section can be determined by summariz-
ing the respective equations of Steps 1 and 2. By further increasing the collapse mul-
tiplier, k, is obtained as 0.5, and the couple (P, M) at section R reaches the boundary
of P-M domain of the column, resulting in the formation of the second plastic hinge
at this section.

Step 3: Now, a new frame characterized by two plastic hinges at sections A and R
is considered. Stiffness matrix and the vector 3 are given by

4k, 3k, 2k, 3k, |
74_ - U -t
L H L H? 0
2k 4k k k
K=| oAk 3k Sk g g | @.16)
L L H H?
3k, 3k, 6k, K F
H? H? H?
Bending moment and axial forces at all sections are given by
3k A 2k k
M, =0, M= HC {GC +H} M. = —Tb[ZGC +6.1, M= —fb[ec -0;]
2k 3k
MEzT"[OC+29E], M, = HC {eCjLPAI}’ M, =0,
@4.17)
6k
PA = PB = +Tb(ec +9E)’
3k, A
PC = PD = PE = k3F— 2 (OC +Hj, (418)
6k
PG :PR :—Tb(ec +9E)

Net bending moment and axial force at any section can now be determined by sum-
marizing the respective equations of Steps 1, 2, and 3. By further increasing the col-
lapse multiplier, k; is obtained as 1.35, and the couple (P, M) at section E reaches the
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boundary of the P-M domain of the beam, resulting in the formation of third plastic
hinge in the beam at section E.

Step 4: Finally, the frame is characterized by three plastic hinges at sections A,
R, and E, formed successively. The stiffness matrix and vector displacements are
given by

k, k, 3k,
ST T 0 0
K= , 6{ C}, B{ } .19
3k, 3k, A k,F
H2 H3

By solving, bending moment and axial forces at all sections are given by

a0y ad]

H H
“ “ 4.20)
Mc===50c, Mp=-""0c. M;=0, Mg=0, M, =0
3k 3k
P,=P,=+" 6. P.=P,=P,=0, Pi=P=="""0 @4.21)

Net bending moment and axial force at collapse can be obtained by summarizing the
respective equations of all the above steps. By further increasing the collapse multi-
plier, k, is obtained as 0.58, and the couple (P, M) at section C reaches the boundary
of P-M domain of the beam, resulting in the formation of the final plastic hinge at
section C, causing collapse. The total collapse load multiplier is given by the sum of
multipliers of each step and is equal to 18.33.

Table 4.1 shows the trace of strain values for concrete and steel at compression
and tension, respectively, obtained during the analysis. It can be seen from Table 4.1
that the strain in tensile steel reaches ultimate value, causing the plastic hinges at

TABLE 4.1
Strain Values in Elements Obtained by Step-by-Step Procedure
(P-M Interaction)

Step No. Element Section € £y €4 max

1 column 1 0.0010 0.01000 0.00214
2 column 7 0.0013 0.01000 0.00249
3 beam 5 0.0009 0.01000 0.00213
4 beam 3 0.0013 0.01000 0.00253
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TABLE 4.2

Collapse Multiplier, Displacement, and Base Shear Obtained by Step-by-Step
Procedure (P-M Interaction)

Step
No. Section

>

AQ@mUUaowr» FaOUOQO®mm» OQO@OmMOUOQW» OmMmIUOQW

P (kN)

—68.638
—-68.638
115.509
115.509
115.509
109.888
109.888

—72.262
—72.262
120.872
120.872
120.872
113.512
113.512

-90.912
-90.912
130.197
130.197
130.197
132.162
132.162

-98.93
-98.93
130.20
130.20
130.20
140.18
140.18

M
(kN-m)

—253.218
163.380
163.380

26.103

—-193.673
193.673

—268.364

—251.861
169.560
169.560

25.035

—201.989
201.989

—284.451

—248.454
206.860
206.860

25.035

—-239.290
239.290

—288.856

—246.99
238.91
23891

41.06

-239.29
239.29

—-290.30

Hinge
Formation

yes
no
no
no
no
no
no

yes
no
no
no
no
no
yes

yes
no
no
no
yes
no
yes
yes
no
yes
no
yes
no
yes

Collapse
Multiplier
in Each

Stage

15.900

0.500

1.350

0.580

Collapse  Displ.
Multiplier (m)

15.900 0.01152
16.400 0.012123
17.750 0.016360
18.330 0.021488

Base
Shear
(kN)

219.6585

226.566

245.2163

253.229

critical sections. Collapse is caused by tensile failure as the strain in steel reaches
ultimate value before concrete reaches its ultimate strain. Table 4.2 shows the his-
tory of collapse multipliers thus obtained along with the displacements and base
shear at each step. The strains at critical sections where plastic hinges are formed
are verified for their ultimate values. Figure 4.7 shows the force-displacement pro-
file obtained by the force-controlled, step-by-step procedure employed on a single
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FIGURE 4.8 Pushover curve of single story—single bay RC frame.

story—single bay frame. Traces of plastic hinges tagged in the force-displacement
curve can be seen in the figure. Figure 4.8 shows the pushover curve obtained from
nonlinear static pushover analysis; while for easy comparison it is also superposed
in Figure 4.7. While the P-M interaction is ignored, the final collapse multiplier
is 17.35, which marginally underestimates the collapse load in comparison to the
case when P-M interaction is considered. Trace of hinges formed during the analy-
sis is shown in Table 4.3. It is worthwhile to note that the history of formation of
plastic hinges is different for the two cases, namely, (1) considering axial force and
P-M interaction and (2) neglecting axial force, respectively.

4.4 NUMERICAL STUDIES AND DISCUSSIONS

Reinforced concrete building frames with different geometry are analyzed, and
bounds of collapse multipliers obtained by employing different procedures are com-
pared. Seven frames are considered for the analytical study: (1) single bay—single
story, (2) single bay—double story, (3) single bay—single story with unequal column
length, (4) four bay—two story, (5) six bay—three story irregular, (6) six bay—three
story regular, and (7) five bay—ten story. All the frames are comprised of (1) 450 mm
square RC columns, reinforced with 12#25® and lateral ties of 8 mm at 200 c/c
(refer to Figure 4.2); (2) 300 x 450 mm RC beam, reinforced with 4#22® as tensile
and compression steel with shear stirrups of 10 mm at 250 c/c (refer to Figure 4.1); and
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TABLE 4.3
Collapse Multiplier, Displacement, and Base Shear Obtained
by Step-by-Step Procedure (Neglecting Axial Force)

Collapse Base
Step Hinge Multiplier in ~ Collapse  Displ. Shear
No. Section M (kKN-m) Formation Each Stage Multiplier (m) (kN)
A —249914 no
B 161.124 no
C 161.124 no
1 D 26.104 no 15.699 15.70 0.0114 216.88
E - 191417 no
G 191.417 no
R —265.060 yes
A —265.060 yes
B 170.716 no
C 170.716 no
2 D 27.336 no 0.577 16.28 0.0121 224.85
E —198.544 no
G 198.544 no
R —265.060 yes
A —265.060 yes
B 186.622 no
C 186.622 no
D 27.336 no
E —214.450 yes
3 G 214.450 no 0.576 16.85 0.0139 232.80
R —265.060 yes
A —265.060 yes
B 214.450 no
C 214.450 yes
4 D 107.225 no 0.504 17.35 0.0183 239.76
E —214.450 yes
G 214.450 no
R —265.060 yes

(3) 125-mm-thick RC slab. M25 mix and high-yield strength deformed bars (Fe 415)
are used in the members. All building frames consisting of 4 m bay widths and 4 m
story heights are assumed to be located in Zone V (IS 1893, 2002) with soil condi-
tion as “‘medium” type. Seismic weight at each floor is computed using IS code (IS
1893, 2002), and the base shear is distributed along the height of the building. Live
load of equivalent magnitude is considered to act at the midspan of the beam, while
lateral loads, computed from the base shear, are assumed to act at each floor level.
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FIGURE 4.9 Pushover curves.

Using the proposed expressions for P-M interaction and moment-rotation, beams and
columns are modeled.

Collapse multipliers are assessed by employing above-described procedures,
namely, (1) displacement-controlled nonlinear static pushover; (2) upper bound, or
kinematic theorem; (3) lower bound, or static theorem; and (4) step-by-step load
increment procedure by employing force-controlled method; and the results obtained
are compared. Nonlinear characteristics of beam and column hinges are assigned to
the structural elements of the building frames and performance levels, namely, (1)
immediate occupancy (10), (2) life safety (LS), and (3) collapse prevention (CP),
are tagged to the respective moment-rotation curves during the pushover analysis.
Displacement-controlled pushover analysis is performed for the preset target dis-
placement of about 4% of the height of the building to trace the formation of plastic
hinges. Pushover curves obtained are plotted for different types of building frames
considered and shown in Figure 4.9. Base force corresponding to the step at which
requisite numbers of plastic hinges are formed to ensure a collapse mechanism is
traced and tabulated. Collapse multiplier is obtained as the ratio of base shears at
collapse and design base shear recommended by the code for safe seismic design (IS
1893, 2002). Collapse multipliers obtained using (1) kinematic procedure (Equation
4.4), (2) modified static procedure (using Equation 4.8), and (3) mathematical pro-
gramming tool (LINGO) (Raphel, Marak, and Truszcynski 2002; Sforza 2002) are
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also shown in the table. During limit analysis procedures, P-M interactions of the
structural elements are ignored.

To trace the path of formation of plastic hinges, a step-by-step, force-controlled
procedure is also employed on a single bay—single story frame, with and without
considering P-M interaction. Plastic hinges obtained at each step are traced and the
corresponding displacement and collapse multipliers are recorded. Tables 4.2 and
4.3 show the displacement, base shear, and collapse multipliers obtained at various
steps for both cases, (1) considering P-M interaction and (2) neglecting axial force,
respectively. It can be seen from the tables that the collapse multipliers obtained from
the force-controlled, step-by-step procedure are 18.33 (by considering P-M interac-
tion) and 17.35 (by neglecting axial force). A ready comparison of displacement-
controlled pushover cannot be made with the force-controlled method, employed
on a single bay—single story frame. However, base shear obtained from pushover
analysis at Step 6 (refer to Table 4.4), where four plastic hinges are formed (same
as the case of the step-by-step, force-controlled procedure), becomes comparable
and the collapse multiplier determined from pushover is 20. Table 4.4 also shows
that the collapse load at this stage determined from pushover is capable of pushing
the rooftop of the frame by about 14 mm as compared to that of about 21 mm and
18 mm obtained from the force-controlled methods (refer to Tables 4.2 and 4.3);
hence, the comparison is made by considering the force level causing the same num-
ber of plastic hinges.

Figure 4.10 shows the comparison of collapse multipliers obtained for different
types of buildings considered in the study, while Table 4.4 shows the comparison
obtained by employing different procedures. By comparing these multipliers, it can
be seen that for a single bay—single story frame, plastic theorems underestimate the
true collapse load in comparison with pushover, since they do not account for reserve
capacities of structural members that can be reflected in the analysis by considering
P-M interaction. For multibay-multistory frames, pushover multipliers closely agree
with that of the kinematic theorem; also in the case of frames with irregular struc-
tural configurations, pushover multipliers are in close agreement with kinematic
theorem only for increased bay and story numbers. This intuits employing kinematic
theorem as an approximate method for the preliminary estimate of collapse loads,
which should be subsequently verified by pushover analysis, however. Limitations
imposed by mathematical programming tools can be seen for the absence of results
for higher story frames (for example, a ten-story frame), whereas no such limitations
are imposed by pushover analysis. Force-controlled, step-by-step analysis is capable
of estimating the collapse multiplier in close agreement with pushover and is a better
estimate compared with limit theorems. This may be due to the fact that the former
method accounts for redistribution of moment-carrying capacity of plastic hinges
at critical sections, which is an indirect contribution from P-M interaction. While
axial force is neglected, this procedure results in the same value as that of the limit
theorems, since the hypothesis becomes the same in both the cases.
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4.5 CONCLUSIONS

Although different procedures exist to estimate collapse loads of building frames
under seismic action, a relatively new procedure, pushover analysis, is compared,
showing its suitability for the subject of discussion. Based on the numerical stud-
ies conducted, it can be seen that for single-story building frames, plastic theo-
rems underestimate the true collapse load in comparison with pushover because
they do not account for reserve capacities of structural elements that can be
reflected in the analysis by considering P-M interaction. For multistory-multibay
frames, design base shear estimated by pushover closely agrees with the kine-
matic theorem, making it an appropriate method for the preliminary estimate of
collapse load in such cases. Force-controlled, step-by-step analysis is capable of
estimating the collapse load in close agreement to pushover (closer than limit
theorems) because it accounts for P-M interaction. But still the difference may
be due to the fact that the former procedure does not account for redistribu-
tion of moments at critical sections where plastic hinges are formed. Also, this
procedure is computationally expensive and cumbersome in comparison with
nonlinear static pushover.

Under the increasing necessity of seismic evaluation of existing RC buildings,
displacement-controlled pushover analysis is certainly seen as an appropriate and
reasonably accurate tool. This study shall help the designers and researchers to use
displacement-controlled pushover analysis with improved confidence as their results
of different examples are compared with other similar methods used to assess the
collapse loads. The results obtained are influenced by input parameters, P-M inter-
action in particular. It is therefore emphasized to use axial force—bending moment
yield interaction accounting for nonlinear characteristics of constitutive materials.
Though the results obtained by employing plastic theorems on the limited exam-
ples are not new, the study quantifies these values through illustrated examples and
their comparison with those obtained using pushover analysis; this is a relatively
new attempt made through this study. With the presented mathematical modeling
and proposed expressions for the said input parameters to nonlinear static pushover
analysis, it is believed that designers and researchers will use pushover analysis more
commonly in the future with improved confidence and accuracy.
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5 Flow Rule Verification
for P-M Interaction
Domains

5.1 SUMMARY

A detailed analytical modeling of P-M yield interaction is presented in Chapter 1,
defining the limit boundaries with six subdomains based on Eurocode currently in
prevalence. In this chapter, the developed P-M interaction domains are verified for
plastic flow-rule in two main sections: (1) tension failure resulting in yielding of
steel and (2) compression failure resulting in crushing of concrete. The conventional
limit P-M domain is described according to Eurocode currently in prevalence as
long as the plastic strain increment becomes nearly normal to the yield domain over
the part of bending response, in the presence of axial force. The flow rule verifies
for a close agreement in all subdomains of tension failure, while it does not qualify
in a few of the subdomains of crushing failure. The mathematically developed P-M
interaction model is thus capable of identifying the damage mechanism of different
subdomains in RC sections, in a closer agreement for tension failure subdomains, in
particular; damage identification is made on the basis of strain profile of concrete
and reinforcing steel.

5.2 INTRODUCTION

Earlier studies conducted by researchers (e.g., Abu-Lebdeh and Voyiadjis 1993;
Park and Kim 2003) emphasized a prerequisite of material response behavior to
a variety of loads to successfully forecast their behavior under conditions leading
to damage. Through knowledge of P-M yield domains, the structural designer is
enabled to assess the type of failure caused to the member, either tensile or compres-
sive (Chandrasekaran et al. 2008a). Khan, Al-Gadhib, and Baluch (2007) used two
parameters to define the effective compliance nature of elastic-damage model of
high-strength concrete under multiaxial loading; these two parameters account for
different behavior of concrete in tension and compression. They emphasized that the
study of concrete behavior under P-M interaction is necessary to trace the strain soft-
ening effect, in particular. In a reinforced concrete section, reinforcement behaves as
an elastic-plastic spring because of which an RC beam section developed horizontal
cracks under three-point loading (Sumarec, Sekulovic, and Krajcinovic 2003). It is a
well-understood fact that RC members inherit the flexibility of changing, within cer-
tain limits, the ultimate moment as the designer pleases, without undergoing a major
change in the overall dimensions of the cross-section. This initiated a recent practice

139
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among structural designers to adjust the area of tensile steel for achieving the dis-
tribution of ultimate moment to be the same as that of the elastic moment for the
factored load. However, under seismic loads, codes insist that the structures should
be designed to resist earthquakes in a quantifiable manner imposed with desired
possible damage (e.g., Ganzerli, Pantelides, and Reaveley 2000). Therefore, damage
models that quantify severity of repeated plastic cycling through energy dissipation
are simple tools that can be used for safe seismic design. The strain equivalence
hypothesis used by the researchers (e.g., Hsieh, Ting, and Chen 1982) that equates
strain in effective (undamaged) and damaged configurations is adopted for deriving
the constitutive equations in the present study.

The proposed P-M yield interaction shown in Chapter 1 is a conventional limit
domain with strain limits prescribed by Eurocode; hence, it does not fulfill the
complete mechanical meaning. Since the entire cross-section is not under limit
stress, the proposed limit domain is different from the one valid for homogeneous
materials like steel. Further, equilibrium states inside the P-M boundary are not
fully in elastic state since loading and unloading for composite materials, such as
reinforced concrete does not follow the same path. Also, the plastic strain incre-
ments evaluated for limit stress states belonging to P-M boundary are not truly
and completely plastic increments because part of the section remains elastic. The
above-mentioned arguments are addressed in this chapter with a main focus to
verify the plastic flow rule in the developed P-M interaction domains. To examine
this objective closely, P-M domains are reclassified broadly as (1) tensile failure
resulting in yielding of steel, which is now subdivided into five subdomains, and
(2) compression failure resulting in crushing of concrete, which is now further sub-
divided into five subdomains, making the total number of subdomains fen instead
of six as seen in Chapter 1. For closer examination of plastic flow rule, this reclas-
sification becomes inevitable.

5.3 MATHEMATICAL DEVELOPMENT

The domain 2a discussed in Chapter 1 is now subdivided into two, namely, 2()
and 2(; domain 2b is subdivided into two, namely, 2{" and 2" in the tensile fail-
ure zone. In the compression failure zone, domain 6 presented in Chapter 1 is
now subdivided into two, namely, 6a and 6b. All other subdomains proposed in
Chapter 1 remain the same. Figure 5.1 shows the typical P-M limit domain con-
sisting of ten subdomains as discussed below. Only the upper boundary curves
will be examined to see which one-to-one M = M(P) relationship exists; the
lower boundary can be readily examined using the similar procedure and hence
is not presented. Figure 5.2 shows the strain level in steel and concrete for sub-
domains 1 to 2;2) in which collapse is caused by yielding of steel, and Figure 5.3
shows strain levels for subdomains 3 to 6b in which collapse is caused by crush-
ing of concrete.
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5.3.1 SuspOMAINS 1 T0 2 : CoLLAPSE CAUSED BY YIELDING OF STEEL

In the subdomains from 1 to 25)2’, strain in tensile steel reaches its ultimate limit, and
the corresponding stress reaches the design ultimate stress; strain in compressive

steel is given by
j— XC - d
8sc - esu D-— X, — d (51)

Strain in any generic compression fiber of concrete located at a distance y measure
from the extreme compression fiber of concrete is given by

8SLl (XC — y) — SSU XC

e(y)= Dox —d’ Comn _m (5.2

where €_ . is the maximum strain in concrete.

In subdomain 1, neglecting the tensile stress in concrete in the equilibrium equa-
tions, the position of the neutral axis lies in the range ]—eo,x! 1.x{) is the limit
position of neutral axis between two subdomains 1 and 2(V for strain in compression
steel reaching its elastic limit (refer to Figure 5.2, subdomain 1). It is important to
note that the neutral axis positions are chosen only for detecting the characteristics
of the P-M boundary; please note that the succeeding states do not belong to the

same loading path for the chosen cross-section. This limit position is given by

d(e, +¢&,)—De,
X = e ey (5.3)
(esu - 830)

In subdomain 1, for strain conditions€, <€, > €  and G =0, ultimate axial
force and bending moment are given by

l:)u = Gs() b(D_ d)(pc _p[)

D VX, €l=eo x| (54)
Mu = Pub E— d

SC

“bD-d)’

st

b(D-d)

P. p. = (3.5)
where p,, p. are percentage of tensile and compression reinforcements, respectively.

It may be noted from the above equations that the ultimate axial force and bending
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moment are independent of the position of neutral axis; bending moment varies lin-
early with axial force.

In subdomain 2{V, neglecting the tensile stress in concrete in the equilibrium
equations, the position of the neutral axis lies in the range [x(), ,x% = 0], where
xﬁ‘ﬁm is the limit position of the neutral axis between two subdomains 2(V and 2(»
for strain in compression steel less than elastic limit (refer to Figure 5.2, subdomain
2(1). In subdomain 2(V, for the strain conditionse <€, 6 =E_¢_,ultimate axial

force and bending moment are given by

x. —d
P =b(D-d)|pEe | —— |-
u ( )|:pc sgsu[D_Xc_dj Gs()pl:|

che[x(o) x® =O]
M —1b(D—d)(D—2d) Ee _X=d +0
L) PeEEu D-x_ -d soPt

¢ lim?®“*c,lim

(5.6)
Depth of neutral axis can be deduced as
X = (D - d)[Pu + b(Espcgsud — Gsopl (D — d))] (5 7)
¢ P +b(D-d)(Epe, +p0,,) '
Further, by substituting in Equation 5.6, we get
D
M, =[P, +2b(D—d)ppsO](2—dJ (5.8)

Besides, for depth of neutral axis reaching zero, ultimate axial force and bending
moment are given by

P, =—bldp,Ee, +(D-d)p,o,]

Cc s su

for x, =x% =0 (5.9

c,lim

Mu = b(lz - d)[(D - d) p1650 - dchsesu]

In subdomain 2(2), stress in any generic compression fiber of concrete is given by

o.(e (y))z_&gz + 20, e = (x.— Y2 (D—x, —d)+e_(y—Xx )]0 €,
o & € €2,(x, +d—D)?

(3.10)
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The position of the neutral axis lies in the range [xfl)im =0,x/ .1, where X:,lim is
the limit position of neutral axis between the subdomains 2 and 2" for maximum
strain in concrete approaching elastic limit (refer to Figure 5.2, subdomain 2(»). This

limit position is given by

X,-l' — i (D-d)= & (D-d)
oim g, +e, 0.002+0.01

(5.11)
=0.167(D—d) fore  .=€.5€,=¢€
Ultimate axial force and bending moment in subdomain 22 are given by
P,=b| [bo e,y + (D)0 p, =00
0
X(c;?l)im < Xc < X;,lim
D D
M,=b chc(sc(y))[z - yjdy +(D-d) (o p, + cssopl)[2 - dj
0
(5.12)

It may be noted that the stresses in concrete and compression steel are less than
their elastic limits. The ultimate axial force expression given by Equation 5.12 can
be rewritten as

Aj+Ax +Ax2+AXx3=0

(5.13)
where the constants, A,_ , , ; are given by the following relationships:
A,=—(d-D)*[P, +bdEpe  +b(D-d)poc,,]
A, =(D-d)I2P, +bDEpe  +2b(D-d)p0c,,]
A = _Puec() + b(d - D)[gsu (Espces() — Gc()) + plgc()cs()] (5 14)
) .

8cO

— _basu (3£c0 + 8su)cscO

A 2
3e,

3
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By solving Equation 5.13, the depth of the neutral axis can be derived as a func-
tion of axial force and properties of the cross-section, as given by

1 2.5198(A2-3A A,)
x,(P)=——|2A,+ ~~+1.5874 A
6A, A
'l (2.5198+4.36451)(A2-3A A,) ]
x,(P)=——| A, - 3 (15874 -2.74951) A
124, A
'l (2.5198-4.36451)(A2-3A A,) ]
X, (P)=——| A, - —(1.5874+2.74951) A
: 124, A
(5.15)
where

1/3
A= {\/_4(1% “3AA, ) +(2A3-9A ALA+27A2A, )~ 2A3 +9A ALA, - 27A§A0}

(5.16)

Out of the above, only one root (x,;) is in close agreement with the numerical solution
obtained; by substituting X ; in moment expression of Equation 5.12, we get

M, =B(>+[1)1J{Bl(xc3(Pu)—d)+ B, x&(B)+ Byx s(Pu>+B4X§3(Pu)}

-x,(P)-d (D-x,P)-d)
(5.17)
where the constants, B,_  , , , are given by
B, = 2P pt;so (2d> ~3dD +D?)
= %b(2d2 3dD+D?Ep.e,
_ bD(D-d)e,0
B su >~ c0
) = 2, (5.18)
be 0,
B, = 6¢2, [2de ,—D(5e , +€,)]

€
=—"-(4e ,+¢€ )0,
‘1262 ) )
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In subdomain 2{", maximum strain in concrete is greater than elastic limit but
still less than its ultimate limit; this causes plasticization of a small zone near the
extreme compression fiber. This zone is termed as the plastic kernel of concrete,
whose depth is given by the following equation:

€
q=x,~ = (D-x,~d) (5.19)

su

The position of the neutral axis lies in the range[x , Cllm] where x(cbl) _is the
limit position of neutral axis between subdomains 2{" and 2 for strain in compres-
sion steel approaches elastic limit (refer to Figure 5 2, subdomaln 2"). This limit

position is given by

€
x® = [e 50 J(D -2d)+d fore =g, €, ,=¢, (5.20)
sC su

s0

Expressions for ultimate axial force and bending moment in subdomain 2;” are given
by

Xe

P, =b| [o.(e.)dy+a0,,+(D-dX0.p, ~0,p)

q

Xe

M, =b J‘(S (€ (y))(—y)dy+ ¢ (D-q)+(D-d) 0P, +0P, )( j

q

X, Sx, <x®)

c,lim c,lim
5.21)

Expression for axial force, presented in the above equation can be rewritten as
Co+Cx +CxZ=0 (5.22)

where the constants, C_ , , are given by the following relationship:

(D—d)[ 3P, +b(3dE pe2, +(D - d)3pE, 0, +£,0.,,)) |

csu su s0

0~ 3¢

su

C = 3Puesu + b(d — D) [28(:()600 + 3Esu (Espcesu + Gc() + ptcso)]
1= 3¢ (5.23)

b
C2 = 200[3 + ZCOJ

su
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By solving, the depth of the neutral axis can be derived as a function of axial force
and properties of the cross-section as given below:

2 _
. =_c1+,/c1 4C,C, 524

¢ 2C

2

By substituting the root x, in moment expression of Equation 5.21, the relationship
for P-M interaction is obtained as given below:

) D,[x,(P,)—d] (5.25)
= : D-x,(B)—d
M, =D, +D.Xc(Pu)+D2xC(P“)+D—Xc(Pu)_d

where the constants, D;_, , ; are given as below:

_ b(d-D) [Ec()Gc() (D(e,, +2e,,)—de ) +6(2d - D)ptegucs()l

0 128?”
bo
D, = ?go[D(ego +3e .8, +3€2 ) —de (e, + ngu):|
(5.26)
_ -bo,, (£§O +4e e, + 6.93“)
’ 12¢2,
bp.E
D,= chSSSH(Zdz ~3dD+D?)

In the subdomain 2{”, steel in compression zone starts yielding while the depth
of plastic kernel of concrete assumes the same value as given by Equation 5.19. The
position of the neutral axis lies in the range [x") ,x”; 1, wherex?, is the limit

position of neutral axis between the subdomains 2{* and 3 for strain in compression
steel reaching elastic limit (refer to Figure 5.2, subdomain 2{*) and is given by

Xn=| o |D—dy=| 20 Jp_g)
ein”| e ye_ 0.01+0.0035

=0.259(D-4d) fore, =€ ; € _=¢

¢,max cu st su

(5.27)

Ultimate axial force and bending moment in subdomain 2’ are given by

X¢

P =b jcgec(y)) dy+qo,, +6.,(D—d)p, —p,)
q

XC

M, =b jcn(sc(y»[g—y]dy+°“;°°<D—q>+cso<D—d><pc+pt>(1;—dj

q

x(®

”
c,lim c

c,lim

<x <X
C

(5.28)
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By solving the expression of axial force in the above equation, depth of neutral axis
is determined as

_3Pg  +b(D-d)g 0., +3,0,p —p)] (5.29)
bo (., +3¢,,)

C

By substituting in the moment expression of Equation 5.28, P-M relationship for this
domain is obtained as

M, =E, +Ex (P)+E, x(P,)

(5.30)
where the constants E;_ , , are given by:
D-d)[e d—-D(e,+2
E, = lbz{( Ned =D+ 280100 , 66 (p, +p,)2d2 + D2 = 3dD)
8%Ll »
bo,
1= 6820 |:D(8<2:0 + 38c0€su + 3€§u ) - dECO(SCO + 2£_:su):| (531)
bo,
E2 = _@[830 + 48C083u + 6852u:|

5.3.2 SuBbpoMAINs 3 TO 6b: CoLLapse CAUSED BY CRUSHING OF CONCRETE

The strain profile for concrete and steel for different subdomains is shown in
Figure 5.3. By imposing the respective strain limits in concrete and steel, the posi-
tion of the neutral axis between the respective limit values can be determined as
explained above. However, it is necessary to know that the plastic flow rule shall
stand verified in the tensile failure zone initiated by yielding of steel; therefore a
detailed mathematical derivation is presented in the above section. For continu-
ity of understanding the limit domains in compression failure zone, a summary
of expressions for all ten domains is given in Table 5.1. A detailed procedure can
be seen from the literature (see, for example, Chandrasekaran et al. 2008a). The
presented summary of expressions may be readily used by designers to identify the
damage to cross-section based on strain profile of constitutive materials. Adding to
the designer’s point of interest, influence of tension and compression reinforcements
on the developed P-M interaction domain can also be seen from Chandrasekaran
et al. (2008a).

5.4 PLASTIC STRAIN INCREMENT IN DIFFERENT SUBDOMAINS

For a stress state belonging to the yield boundary of P-M curve and moving on the
curve, plastic strain increment, in vector form, can be expressed as

de = | %o (5.32)
P d(l)
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where de is strain increment along the axis of the beam evaluated at the CG of
the cross-section and d¢is the curvature increment. It is usual in the theory of plas-
ticity that plastic strain vector increments given by Equation 5.32 shall be repre-
sented in the same plane reporting P-M yield domain by placing the axes of de ;and
d¢ upon P and M, respectively. The vector de is shown connected to the relevant
stress point belonging to the P-M yield boundary of every subdomain, as seen in
Figure 5.4. Axial strain at CG and curvature in subdomains 1 to 2(bz) are given by

8 p— SSU X _B
CcG — D-xc—d c 2 (5.33)
€
= fa 534
¢ D-xc-d 639

By solving Equation 5.33 with respect to x,, we obtain the following relationship:

De. —-2(D-d)e
Xg=—t——— ¢ (5.35)
2(Ssu - ECG)
Substituting in Equation 5.34, the relationship between curvature and strain at CG is
obtained as given below:
2(e

— su _SCG)
=" (5.36)

The derivative of Equation 5.36 with respect to axial strain increment at CG is given by

do __ 2 180

do
=- o T —arctan ——
de deg

) (in deg) 6.37)
p
G D-2d T ]
where o is the angle between the plastic strain vector and strain axis that assumes
a constant value given by Equation 5.37 in subdomains 1 to 2{”. Strain increment at
CG and curvature in subdomains 3 to 5 are given by

€.-=¢€_ |1- L
G = Ca 2x, (5.38)
o= Fa (5.39)
XC

By solving Equation 5.38 with respect to x, and substituting in Equation 5.39, we obtain
the relationship between curvature and strain increment at CG as given below:

o= 2 Ea—Ecc) (5.40)

D
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FIGURE 5.5 Verification of plastic flow rule for P-M subdomains (RC beam 300 x 450 mm
with p, not equal to p)).

Further, derivative of curvature given by the above equation with respect to axial
strain increment at CG is given by

do

=——, a 180 T —arctan (in deg) (5.41)
v

CG

where, o assumes a constant values given by Equation 5.41 in subdomains 3 to 5. In
subdomains 6a to 6b, depth of plastic kernel of concrete is limited to (3/7D) to limit
maximum strain in concrete to its ultimate value. Now, strain at CG and curvature in
subdomains 6a to 6b are given by

£eq = €€ X, — 2 (5.42)
g xc—D(e,—€,) 2

€80
= cc 5.43
¢ e xc—D(e_, —€,) ( )
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By solving Equation 5.42 with respect to x. and substituting in Equation 5.43, we
obtain the relationship between curvature and strain at CG as given below:

— 2€cu (SCO - ECG)

q) D (28c0 - 8cu)

(5.44)

The derivative of curvature in the above equation with respect to strain at CG is
given by

do 2 180 do

= = s O, =——| T—arctan———
de D(e, —2¢,) T G

J (indeg)  (5.45)

CG

where o assumes a constant value given by Equation 5.46 in subdomains 6a to 6b.
By summarizing the results, we can write:

2d2—D subdomains (1) to (2*)
do 2 .
=0-= bd 3)to (5
deo. 5 subdomains (3) to (5) (5.46)
2¢ .
—%——  subdomains (6a) and (6b)
D (ecu - 2800)

5.5 VERIFICATION OF FLOW RULE

The developed P-M interaction relationships are now verified in different subdo-
mains, both in tension and compression failure zones. In subdomain 1, it may be
noted that the ultimate axial force and bending moment are independent of the posi-
tion of neutral axis, as seen from Equations 5.4 and 5.5. Therefore, verification of
flow rule does not apply to this subdomain. In subdomain 2(V, ultimate moment is
given by Equation 5.8, and its derivate with respect to axial force is given by

dM, D- aM
M, _D-2d - B0\ T retan| DM | | (in deg) (5.47)
&, 2 |2 dp

u

where o, is the angle between the normal to P-M boundary and strain axis, de .
The product of Equations 5.37 and 5.47 gives the following relationship:

AM, 1[40 )} amde+dPdey, =0 (5.48)
dp, deg
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This perfectly verifies the plastic flow rule in subdomain 2(". Similarly, verifica-
tion of the plastic flow rule in other subdomains is carried out and the results are
plotted as shown in Figure 5.4. The verification is also illustrated through an exam-
ple. An RC beam of size 300 x 450 mm, reinforced with 4#22® on the tension and
compression side with R, as 25 N/mm? and f, as 415 N/mm? is now considered. The
P-M boundary showing all the subdomains is plotted in Figure 5.4. Different points,
A to H, one on each subdomain from 2{" to 6a are identified; angles between the nor-
mal to the P-M boundary (o) and plastic strain vector (o) with respect to de axis
are computed. It can be seen from Figure 5.4 that the normality rule is well satisfied
in subdomains 2" to 2{", whereas it is not completely satisfied in subdomains 2{” to
6a; it means that the developed P-M interaction relationships are well agreed with
the plastic flow rule in the subdomains causing tension failure, with an exception in
subdomain 2{”, since this is the limit boundary between tension and compression
failure zones.

In the case of subdomains of compression failure, since the damage is initiated
by strain in concrete reaching its limit value leading to crushing of concrete, the
flow rule verification fails. In subdomains 6a—6b, strain in concrete is reaching
its ultimate limit and the section is becoming more plasticized (see Figure 5.3).
Strain profile is rotated about the point Q since ultimate limit strain in concrete
is fixed (as imposed by Eurocode); hence, the plastic flow rule cannot be verified
since there is no continuity in the strain increment. Table 5.2 shows the numerical
values of the angles between the strain axis and normal and tangent of the plastic
strain vectors for different subdomains. It can be seen that plastic normality rule
qualifies well in subdomains 2(—2(* but it does not satisfy completely in sub-
domains 3 to 6a.

5.6 CONCLUSIONS

A detailed methodology of examining the plastic flow rule in the proposed P-M
yield interaction subdomains is presented in this chapter. The mathematically
developed P-M interaction model is capable of identifying the damage mechanism
of different subdomains in RC sections; damage identification is made on the basis
of strain profile of concrete and reinforcing steel. The verified plastic flow is in
close agreement with normality in all subdomains of tension failure, while it does
not qualify in a few of the subdomains of crushing failure. Also, verification of the
plastic flow rule on the proposed P-M interaction relationships is influenced neither
by cross-section area of the members nor by variation of tension and compression
reinforcements. The developed P-M interaction boundary that is subsequently veri-
fied for complete agreement in tension zone, in particular (where failure is initiated
by yielding of steel), will enhance the confidence level of structural designers to use
the proposed expressions. With the help of the proposed summary of expressions
presented in a closed form, it is believed that structural design of new RC buildings
and assessment of existing buildings can be performed with better understanding
and improved accuracy.
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Other detailed studies (Chandrasekaran et al. 2008a) conducted by the authors
on RC beams to examine the influence of the developed P-M interaction sub-
domains are also quite useful for the design engineers and are summarized here
for their benefit. However, these studies are not the subject of this chapter and
hence are not presented in detail. For increased percentage of tension reinforce-
ment (with a fixed percentage of compression reinforcement), the P-M boundary
gets elongated along its leading diagonal without influencing the boundary limit
of subdomains, causing crushing failure; for a fixed percentage of tension rein-
forcement, increase in the percentage of compression reinforcement elongates the
P-M boundary along its shorter diagonal without influencing the boundary limit of
subdomains, causing tension failure. Increase in the areas of cross-section of the
beam show enlargement in the P-M boundary. Influence of material characteristics
is also examined by the authors in detail. The results show that increase in yield
strength of steel reinforcement enlarges the P-M boundaries nominally, but this
nominal enlargement is symmetrical about the axial load axis. Change in charac-
teristic compressive strength of concrete in the beams influences P-M boundaries
by enlarging the subdomains of crushing failure while those of tension failure are
not influenced at all.

APPENDIX: SUMMARY OF P-M RELATIONSHIPS
FOR DIFFERENT SUBDOMAINS

The stress-strain limits for the different subdomains are seen in Table 1. The follow-
ing summary of expressions is useful to determine the P-M relationships in different
subdomains.

Subdomain 1

D

M, = Pub(2 - d} AG.I)

Subdomain 2(V
D

M, =[P, +2b(D— d)plcso](z - d) AG2)

Subdomain 2
B, x%,(P B.x3.(P B,x% (P
Mu:B0+ 1 Bl(xci(Pu)_d)+ 2xc3( u)+ 3Xc3( u)+ 4Xc3( u)
D_XC3(Pu)_d \ (D_XC3(PU)_d)

AB5.3)
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where the constants, B_ , ,, , are given by

B, = 2P:%0 242 34D + D?)
2

c su

B, = %b(Zdz ~3dD+D*E e

_ bD(D —-d)e

c
0O o
B2 su C
2e

A4

c0

be o
B, = 76»22;0 [2de ,—D(5¢ , +¢€ )]

be
— _Tsu
4 128%0 (48c0 +8$u)000

Xc3(Pu)= TrA 7\’

N N (2.5198-4.36451)( A2-3A A, )
12A, :

—(1.5874+ 2.7495i)7\.:|

AGB.S)

3

1/3
A= [\/—4(A§ “3AA, ) +(2A3-9A ALA, +27A2A, ) ~2A3+9A A LA, - 27A§A0}

A(.6)
where the constants, A_ | , 5, are given by
A,=—(d-D)*[P, +bdEpe  +b(D-d)pc I
A, =(D-d[2P, +bDEpe  +2b(D-d)p,c ]
: 0 AGT)
A = _PuECO + b(d - D)[gsu(EspcgsO — GCO) + plSCOGSO]
2
SCO
A2 — _besu (380() + 8su)cc()
; 3e2,
Subdomain 2"
M, =D, +D, x (P.)+ D, x2(P,) + 2al¥eFu) =d] AG.8)

D-x.(P,)-d
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where D_ , , are constants given by the following relationship:

e D)[ £,,0,,(D(e,, +2¢€,)—de ) +6(2d-D)pe2o,, |

0 12e2,
— chO D 2 2 d 2
1~ 6c2 |: (SCO + 38c085u +38$u)_ £C0(8CO + 8su):|
AGG.9)
D, - -bo, (830 +4e e+ 6852u)
12€2
bp E
D, = 7&2885“ (2d2 —3dD+D?)
C, +,C:-4CLC,
X, == A(5.10)
2C,
where C_ | , are constants given by the following relationship:
UL [3P.e,, +b(3dE p.€2 +(D—d)3p£,0,, +£,0.))]
o 3¢,
3Pe +b(d-D)[2 +3¢_(E +0_,+
C] —_ ugsu ( )[ ECOGC() 8su( spcgsu GCO plcso)] A(Sll)
3e,
C2 — chO [3 Sc()j
3 €,
Subdomain 2{”’
Mu =E0+EIXC(PU)+E2 Xg(Pu) A(512)

where E,_ | , are constants given by the following relationships:

b | (D—d)e d-D(e,,+2¢ )0,
E, =E 0 = 0 , 0 +60,,(p, +p,)(2d*>+D?-3dD)
— chO 2 >
1= @[D(sco +3€ €, T38, ) —de (e + ngu)] AG.I3)

boc
E,= 0 [g2) +4e

2
- 1282 c0 c()esu + 6£su :|
su
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_3Pe +b(D- dle 0., +3€,0,(P, —p)]
bo (e, +3¢€,)

C

Subdomain 3
_ bo,(2d*-3dD+D?)(p, +p,)
v 2

[P, +bo,(D—d)(p, —p.)]
4bcc()£cu (800 - 380u )2

M

X [2chcoscu (e.,—3e.) -3¢, (efo —4e e+ 6£§u)

[P, +bo ,(D—d)(p,—p,)] |

Subdomains 4 and 5
G
M, =G,+G,x,(P)+G,x>(P)+—2
u C u c u XC(PU)
where the constants G;_, , ; are given by
b 2 2
G, = —E(Zd —3dD+D*)(E,pE, —P.Oy)
G — bDGc()(38cu — 8c())
! 6¢,,
G — _chO (830 - 48c0£cu + 68§u)
: 12¢€2,

b
G,=-(d-DP(D-20)Epg,,

L _h +JF2 —4E,F,
¢ 2F,

F,=-b(d-D)’Epg,,

F1 = b(D - d)[Esplgcu + pCGSO] - Pu

€
F,=0c bl 1-—>
2 c0 [ 3gcu]

AG.14)

AG.15)

AG.16)

AG.17)

A.18)
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Subdomain 6a

M, =], + J,+J,x.(P) + L+1,x (P)+Ix2(P) AG5.20)
D(ec() - 8cu) + X(:(Pu)acu I:D(Ec() - acu) + Xc (Pu)gcu]2

2 —
5, = 2| DB =€) 00y +(2d2—3dD+D2)pccso}

0 2
2 €,

J, = %Esptecoecu (D -2d)(d-D)?

J,= %(Zd2 —3dD+D*Epe &,

\ , ) A(5.21)
_ bDée 0, [ €3, (56, —16e,,) +6e2, (3, —2,,) |
’ 12¢2,
] = bD38c06c0(800 — 8cu)2
‘ 8Cu
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> 2
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¢ 2H

X
2
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H, = -3¢} [P, +(D—d)E pe, , +Dp.0.,)l
A(5.23)

Subdomain 6b
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Computer Coding for
Collapse Multipliers

6.1 INTRODUCTION

Reinforced concrete building frames with different geometry are analyzed, and bounds
for collapse loads are determined. The computer coding used for this will be discussed
in this section. With reference to numerical studies discussed in Chapter 4, the cases
considered for the analysis are (1) single bay—single story regular frame, (2) single bay—
double story regular frame, (3) single bay—single story with unequal column length,
(4) four bay—two story regular frame, (5) six bay—three story irregular frame, (6) six
bay—three story regular frame, and (7) five bay—ten story regular frame. Figures 6.1 to
6.6 show the elevation of the building frames considered for the analysis. All building
frames are comprised of (1) 450 mm square RC columns, reinforced with 1225 and
lateral ties of 8 mm at 200 c/c; (2) 300 x 450 mm RC beam, reinforced with 4®22 as
tensile and compression steel with shear stirrups of 10 mm at 250 c/c; as well as (3)
125-mm-thick RC slab. M25 mix and high-yield-strength deformed bars (Fe 415) are
used. All building frames consisting of 4 m bay widths and 4 m story heights are
assumed to be located in Zone V (IS 1893, 2002) with soil condition as “medium” type.
Seismic weight at each floor is computed using IS code (IS 1893, 2002), and the base
shear is distributed along the height of the building. Live load of equivalent magnitude
is considered to act at the midspan of the beam, and lateral loads, computed from the
base shear, are assumed to act at each floor level. With the proposed expressions for
P-M interaction and moment-rotation, beams and columns are modeled.

6.2 COMPUTER CODING FOR COLLAPSE MULTIPLIERS

The computer coding listed below is compatible with Wolfram Mathematica (Version
6.0.0) for Windows platform.

Quit[ ]

Units for Length (m), Moment (kN-m), Force (kN)

p0 = Live load (as per admissible loading clause): 2.5 kN/sq.m

Story height H, length of beam L, breadth of beam b, overall depth of beam

DO, density of concrete v, size of square column DI, slab thickness s
6.2.1 SINGLE BAY=SINGLE STORY REGULAR FRAME

H=4; L=4; p0=2.5; b=0.3; D0=0.45; y=25; D1=0.45; s=0.125;
Live load
ql=(1/2*L*L*p0)/2

165



166 Seismic Design Aids for Nonlinear Analysis
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FIGURE 6.3 Single bay—single story frame with unequal column length.
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FIGURE 6.4 Four bay—two story regular frame.

10

Dead load for slab

q2=(1/2*L*L*s* y)/2

12.5

Dead load for finishes

q3=(172*L*L*1)/2

4

Dead load for beam

q4=(b*DO*L*y)/L

3.375

Total dead load on the beam and slab, B1
B1=(1/2)*L*q1*0.5+(1/2)*L*q2+(1/2)*q3*L+q4*L
56.5

Total dead load on the column, Fc
Fc=2*D1*DI1*H*y

40.5

Seismic mass, M

M=(2*B1+Fc)/9.81

15.6473

Spectral ordinate (as per IS 1893)
Sa=((1+15*T)*(UnitStep[T]-UnitStep[T-0.1])+2.50*(UnitStep[T-
0.1]-UnitStep[T-0.55])+1.36/T*(UnitStep[ T-0.55]-UnitStep[ T-4.00]))

(1.36 (-UnitStep[-4+T]+UnitStep[-0.55+T]))/ T+2.5 (-UnitStep[-0.55+T H-UnitStep[-
0.14T]+(1+15 T) (-UnitStep[-0.1+T]+UnitStep[ T])
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Graphic representation of the spectrum
Plot[Sa,{T,0,4},PlotRange —{0,3}]

(The plot thus obtained in the computer screen can be seen in Image 6.1.)

3.0
25
2.0 —
15 —
10

0.5

IMAGE 6.1 Response spectrum.

Base shear constants

70=0.36; 10=1; RO=5; T=0.075*(H)"0.75

0.212132

Acceleration coefficient for calculating base shear
Ah=70/2*10/R0*Sa

0.09

Base shear

Vb=Ah*M*9.81

13.815

Ultimate bending moment for beam and column
Mb=214.45; Mc=265.06;

Kinematic multiplier, kc [Equation 4.4 of Seismic Design Aids]
ke=Simplify[(2*Mb+2*Mc)/(Vb*H)]

17.3547

Static multiplier, ks [Equation 4.8 of Seismic Design Aids]
ks=Simplify[Mb/(Vb/2*H/2)]

15.523



Computer Coding for Collapse Multipliers 171

6.2.2 SINGLE BAY=Two STORY REGULAR FRAME

Quit] ]

H=4; L=4; p0=2.5; b=0.3; D0=0.45; y =25; D1=0.45; s=0.125;
Live load

ql=(172*L*L*p0)/2

10

Dead load for slab

q2=(1/2*L*L*s* vy )/2

12.5

Dead load for finishes

q3=(1/2*L*L*1)/2

4

Dead load for beam

q4=(b*DO*L* vy )/L

3.375

Total dead load on the beam and slab, B1
B1=(1/2)*L*q1*0.5+(1/2)*L*q2+(1/2)*q3*L+q4*L
56.5

Total dead load on the column, Fc
Fc=2*D1*DI1*H*y

40.5

Seismic mass for first floor, M1
M1=(2*B1+Fc)/9.81

15.6473

Seismic mass for second floor, M2
M2=2*B1+Fc)/9.81

15.6473

Total seismic mass

M=MI1+M2

31.2946

Spectral ordinate (as per IS 1893)

Sa=((1+15*T)*(UnitStep[T]-UnitStep[T-0.1])+2.50*(UnitStep[T-0.1]-
UnitStep[T-0.55])+1.36/T*(UnitStep[ T-0.55]-UnitStep[ T-4.00]))
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(1.36 (-UnitStep[-4-+TH+UnitStep[-0.55+T1))/ T+2.5 (-UnitStep[-0.55+T +UnitStep|-
0.1+T])+(1+15 T) (-UnitStep[-0.1+T]+UnitStep[ T])

Graphic representation of the spectrum
Plot[Sa,{T,0,4},PlotRange —{0,3}]

Base shear constants

70=0.36; 10=1; RO=5; T=0.075*(2*H)"0.75
0.356762

Acceleration coefficient for calculating base shear
Ah=70/2*10/R0*Sa

0.09

Base shear

Vb=Ah*M*9.81

27.63

Seismic forces at each floor (starting from the ground floor)
F1=Vb*(MI*(H 2))/(M1*(HA2)+M2*((2*¥H)"2))
F2=Vb*(M2*((2*¥*H)"2))/(M1*(H"2)+M2*((2*H)"2))
5.526

22.104

Ultimate bending moment for beam and column
Mb=214.45; Mc=265.06;

Kinematic multiplier, kc [Equation 4.4 of Seismic Design Aids]
ke=Simplify[@*Mb+2*Mc)/(F1*H+F2*2*H)]
6.97672

Static multiplier, ks [Equation 4.8 of Design Aids]
ks=Simplify[(2*Mb)/(F1+F2)/2*H+F1/2*H)]
6.46791

6.2.3 SINGLE BAY-SINGLE STORY FRAME WITH UNEQUAL COLUMN LENGTH
Quit[ ]
H=4; L=4; H1=3; p0=2.5; b=0.3; D0=0.45; v =25; D1=0.45; s=0.125;
Live load
ql=(1/2*L*L*p0)/2
10
Dead load for slab
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Q2=(1/2*L*L*s*y)/2

12.5

Dead load for finishes

q3=(1/2*L*L*1)/2

4

Dead load for beam

q4=(b*DO*L*y)/L

3.375

Total dead load on the beam and slab, B1
B1=(1/2)*L*q1*0.5+(1/2)*L*q2+(1/2)*q3*L+q4*L
56.5

Total dead load on the column, Fc
Fe=D1*D1*H*y+(H1/2+2)*D1*D1*y
37.9688

Seismic mass

M=(2*B1+Fc)/9.81

15.3893

Spectral ordinate (as per IS 1893)

Sa=((1+15*T)*(UnitStep[ T]-UnitStep[T-0.11)+2.50*(UnitStep[ T-0.1]-
UnitStep[ T-0.551)+1.36/T*(UnitStep[ T-0.55]-UnitStep[ T-4.001))

(1.36 (-UnitStep[-4+T]+UnitStep[-0.55+T]))/ T+2.5 (-UnitStep[-0.55+T H+UnitStep|[-
0.1+T+(1+15 T) (-UnitStep[-0.1+T]+UnitStep[T])

Graphic representation of the spectrum
Plot[Sa,{T,0,4},PlotRange—{0,3}]

Base shear constants

70=0.36; 10=1; R0O=5; T=0.075*(H)"0.75
0.212132

Acceleration coefficient for calculating base shear
Ah=70/2*10/R0*Sa

0.09

Base shear

Vb=Ah*M*9.81

13.5872

Ultimate bending moment for beam and column
Mb=214.45; Mc=265.06;
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Kinematic multiplier, kc [Equation 4.4 of Seismic Design Aids]
ke=Simplify[((1+H/H1)*Mb+(1+H/H1)*Mc)/(Vb*H)]
20.5866

6.2.4 Four BAY=Two STORY REGULAR FRAME

Quit] ]

H=4; L=4; p0=2.5; b=0.3; D0=0.45; v =25; D1=0.45; s=0.125;
Live load

ql=(172*L*L*p0)/2

10

Dead load for slab

q2=(1/2*L*L*s*y )/2

12.5

Dead load for finishes

q3=(172*L*L*1)/2

4

Dead load for beam

q4=(b*DO*L*y )/L

3.375

Total dead load on the beam and slab, B1
B1=(1/2)*L*q1*0.5+(1/2)*L*q2+(1/2)*q3*L+q4*L
56.5

Total dead load on the column, Fc
Fc=5*D1*DI1*H*y

101.25

Seismic mass for first floor, M1
M1=(8*B1+Fc)/9.81

56.3965

Seismic mass for second floor, M2
M2=(8*B1+Fc)/9.81

56.3965

Total seismic mass

M=MI1+M2

112.793
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Spectral ordinate (as per IS 1893)

Sa=((1+15*T)*(UnitStep[T]-UnitStep[T-0.1])+2.50*(UnitStep[T-0.1]-
UnitStep[T-0.55])+1.36/T*(UnitStep[ T-0.55]-UnitStep[ T-4.00]))

(1.36 (-UnitStep[-4+T+UnitStep[-0.55+T7]))/ T+2.5 (-UnitStep[-0.55+T]+UnitStepl[-
0.1+T+(1+15 T) (-UnitStep[-0.1+T]+UnitStep[T])

Graphic representation of the spectrum
Plot[Sa,{T,0,4},PlotRange —{0,3}]

Base shear constants

70=0.36; 10=1; RO=5; T=0.075*(2*H)"0.75
0.356762

Acceleration coefficient for calculating base shear
Ah=70/2*10/R0*Sa

0.09

Base shear

Vb=Ah*M*9.81

99.585

Seismic forces at each floor (starting from the ground floor)
F1=Vb*(M1*(HA2))/(M1*(HA2)+M2#((2*¥*H)"2))
F2=Vb*(M2*((2*H)"2))/(M1*(H"2)+M2*((2*H)"2))
19.917

79.668

Ultimate bending moment for beam and column
Mb=214.45; Mc=265.06;
ke=Simplify[(16*Mb+5*Mc)/(F1*H+F2*2*H)]
6.63378
ks=Simplify[(5*MDb)/(F1+F2)/2*H+F1/2*H)]
4.48633

6.2.5 Six BAY-THREE STORY IRREGULAR FRAME
Quit[ ]
H=4; L=4; p0=2.5; b=0.3; D0=0.45; y=25; D1=0.45; s=0.125;
Live load
ql=(1/2*L*L*p0)/2
10
Dead load for slab
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Q2=(1/2*L*L*s*y)/2

12.5

Dead load for finishes
q3=(1/2*L*L*1)/2

4

Dead load for beam
q4=(b*DO*L*y)/L

3.375

Total dead load on the beam and slab, B1
B1=(1/2)*L*q1*0.5+(1/2)*L*q2+(1/2)*q3*L+q4*L
56.5

Total dead load on the column, Fc
Fc=DI*DI1*H*y

20.25

Seismic mass for first floor, M1
M1=(12*B1+7*Fc)/9.81

83.5627

Seismic mass for second floor, M2
M2=(8*B1+5*Fc)/9.81

56.3965

Seismic mass for third floor, M3
M3=(4*B1+3*Fc)/9.81

29.2304

Total seismic mass
M=M1+M2+M3

169.19

Spectral ordinate (as per IS 1893)

Sa=((1+15*T)*(UnitStep[ T]-UnitStep[T-0.11)+2.50*(UnitStep[ T-0.1]-
UnitStep[ T-0.55])+1.36/T*(UnitStep[ T-0.55]-UnitStep[ T-4.001))

(1.36 (-UnitStep[-4+T]+UnitStep[-0.55+T]))/ T+2.5 (-UnitStep[-0.55+THUnitStep|[-
0.1+T+(1+15 T) (-UnitStep[-0.1+T]+UnitStep[T])

Graphic representation of the spectrum
Plot[Sa,{T,0,4},PlotRange—{0,3}]

Base shear constants

70=0.36; 10=1; RO=5; T=0.075*(3*H)"0.75
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0.483556

Acceleration coefficient for calculating base shear
Ah=70/2*10/R0*Sa

0.09

Base shear

Vb=Ah*M*9.81

149.378

Seismic forces at each floor (starting from the ground floor)
F1=Vb*(MT*(HA2))/(M1*(HA2)+M2*((2*¥H)2)+M3*((3*H)"2))
F2=Vb*(M2*((2*¥*H)"2))/((M1*(H 2)+M2*((2*H)"2)+M3*((3*H)"2))
F3=Vb*(M3*((3*H)"2))/(M1*(H"2)4+M2*((2*H)"2)+M3*((3*H)"2))
21.8139

58.8888

68.6748

Ultimate bending moment for beam and column

Mb=214.45; Mc=265.06;

Kinematic multiplier, kc [Equation 4.4 of Seismic Design Aids]
ke=Simplify[(24*Mb+7*Mc)/(F1*H+F2*2*H+F3*3*H)]

5.06503

6.2.6 Six BAY-THREE STORY REGULAR FRAME

Quit[ ]

H=4; L=4; p0=2.5; b=0.3; D0=0.45; y=25; D1=0.45; s=0.125;
Live load
ql=(172*L*L*p0)/2

10

Dead load for slab
q2=(1/2*L*L*s*y)/2
12.5

Dead load for finishes
q3=(172*L*L*1)/2

4

Dead load for beam
q4=(b*DO*L*y)/L
3.375
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Total dead load on the beam and slab, B1
B1=(1/2)*L*q1*0.5+(1/2)*L*q2+(1/2)*q3*L+q4*L
56.5

Total dead load on the column, Fc
Fe=D1*D1*H*y

20.25

Seismic mass for first floor, M1
M1=(12*B1+7*Fc)/9.81

83.5627

Seismic mass for second floor, M2
M2=(12*B1+7*Fc)/9.81

83.5627

Seismic mass for third floor, M3
M3=(12*B1+7*Fc)/9.81

83.5627

Total seismic mass

M=MI1+M2+M3

250.688

Spectral ordinate (as per IS 1893)

Sa=((1+15*T)*(UnitStep[T]-UnitStep[T-0.1])+2.50*(UnitStep[T-0.1]-
UnitStep[T-0.55])+1.36/T*(UnitStep[ T-0.55]-UnitStep[ T-4.00]))

(1.36 (-UnitStep[-4+T+UnitStep[-0.55+T]))/T+2.5 (-UnitStep[-0.55+T]+UnitStepl[-
0.1+TT)+(1+15 T) (-UnitStep[-0.1+T]+UnitStep[T])

Graphic representation of the spectrum
Plot[Sa,{T,0,4},PlotRange—{0,3}]

Base shear constants

70=0.36; 10=1; RO=5; T=0.075*(3*H)"0.75
0.483556

Acceleration coefficient for calculating base shear
Ah=70/2*10/R0*Sa

0.09

Base shear

Vb=Ah*M*9.81

221.332

Seismic forces at each floor (starting from the ground floor)
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FI=Vb*(MI*(HA2)/(M1*(H2)+M2*((2*¥H)"2)+M3*((3*H)"2))
F2=Vb*(M2*((2*H)"2))/((M1*(H 2)+M2*((2*H)"2)+M3*((3*H)"2))
F3=Vb*(M3*((3*H)"2))/(M1*(H2)+M2*((2*H)"2)+M3*((3*H)"2))
15.8095

63.2379

142.285

Ultimate bending moment for beam and column

Mb=214.45; Mc=265.06

Kinematic multiplier, kc [Equation 4.4 of Seismic Design Aids]
ke=Simplify[(36*Mb+7*Mc)/(F1*H+F2*2*H+F3*3*H)]

4.20617

Static multiplier, ks [Equation 4.8 of Seismic Design Aids]
ks=Simplify[(7*Mb)/(F1+F2+F3)/2*H-+(F1+F2)/2*H)]

2.49875

6.2.7 Five BAY=TEN STORY REGULAR FRAME

Quit[ ]

H=4; L=4; p0=2.5; b=0.3; D0=0.45; y=25; D1=0.45; s=0.125;
Live load

ql=(1/2*L*L*p0)/2

10

Dead load for slab

q2=(1/2*L*L*s*y)/2

12.5

Dead load for finishes

q3=(1/2*L*L*1)/2

4

Dead load for beam

q4=(b*DO*L*y)/L

3.375

Total dead load on the beam and slab, B1
B1=(1/2)*L*q1*0.5+(1/2)*L*q2+(1/2)*q3*L+q4*L
56.5

Total dead load on the column, Fc
Fe=D1*D1*4*y
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20.25

Seismic mass for each floor
M1=(10*B1+6*Fc)/9.81,;
M2=(10¥*B1+6*Fc)/9.81;
M3=(10*B1+6*Fc)/9.81;
M4=(10*B1+6*Fc)/9.81;
M5=(10¥*B1+6*Fc)/9.81;
M6=(10*B1+6*Fc)/9.81;
M7=(10*B1+6*Fc)/9.81;
M38=(10*B1+6*Fc)/9.81,;
MO9=(10*B1+6*Fc)/9.81;
M10=(10*B1+6*Fc)/9.81;

Total seismic mass
M=MI+M2+M3+M4+M5+M6+M7+M8+M9+M10
699.796

Spectral ordinate (as per IS 1893)

Sa=((1+15*T)*(UnitStep[T]-UnitStep[T-0.1])+2.50*(UnitStep[T-0.1]-
UnitStep[T-0.55])+1.36/T*(UnitStep[ T-0.55]-UnitStep[ T-4.00]))

(1.36 (-UnitStep[-4+T+UnitStep[-0.55+T]))/T+2.5 (-UnitStep[-0.55+T+UnitStepl-
0.1+TT)+(1+15 T) (-UnitStep[-0.1+T]+UnitStep[T])

Graphic representation of the spectrum
Plot[Sa,{T,0,4},PlotRange —{0,3}]

Base shear constants

70=0.36; 10=1; RO=5; T=0.075*(10*H)"0.75
1.19291

Acceleration coefficient for calculating base shear
Ah=70/2*10/R0*Sa

0.0410426

Base shear

Vb=Ah*M*9.81

281.758

Seismic forces at each floor (starting from the ground floor)

FI=VbH*(M F(HA2)/(M P*(HA2)+HM2%((2FH)A2)+M3*((3¥H )A2)+M4*(4¥H)A2)
FM5*((SH)A2)+HME*(6¥H)A2)+M7#((TH)A2)+M8*((8*H)2)+M9*((9+H)"2)
+MI10*((10¥H)"2))
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F2=Vb*(M2*((2¥H)A2))/(M1*(HA2)-+M2*(2¥H) A 2)+M3*((3*H)A2)+M4*(4*H
YA2)+MS5*((5¥H)A2)+M6*(6*H) 2)+M7*((T+H)A2)+M8*((8*H)A2)+M9*(9*H
YA2)+M10%((10¥H)2))

F3=Vb*(M3*((3*H) 2))(MI*(HA2)+M23((25H)A2)+ M3*((3*H)A2)+M4*((4*H
)A2)+M5*((S*H)A2+ME*(6*H)A2)+MT*(T+H)A2)+M8*(8*H)A2)+M9*((9*H
)A2)+MI10%((10¥H)A2))

FA=Vb*(M4*((@*H) 2)(M1I*(HA2+M2*(2#H)"2)+M3*((3*H)A2)+M4*((4*H
YAD)+M5*((5*¥H)A2)+ME*(6*H)A2)+MT*((7*H)A2)+M8*(8*H)"2)+M9*((9*H
)A2)+MI10%((10*H)"2))

F5=Vb*(M5*((5*H) 2))/(M I*(HA2)+M2%*((2¥H)A2)+ M3*((3*H)A2)+M4*(4*H
YA2)+MS5*((5¥H)A2)+M6*(6*H) 2)-+M7*(T+H)A2)+M8*((8*H)A2)+M9*((9*H
YA2)+M10%((10¥H)"2))

F6=Vb*(M6*((6*H) 2))/(M1*(HA2)+M2*((2H)A2)+M3*((3*H)"2)+M4*(4*H
)A2)+M5*((SH)N2+ME*(6*H)A2)+MT*((T+H)A2)+M8*((8*H)A2)+M9*(9*H
)A2)+M10%((10%H)"2))

F7=Vh*(MT#(THH)A2)/(M I¥(HA2)-+M2*(25H)A2)-+M3*((3*H)A2)+Md*(4*H
YA2)+MS5*((5*H)A2)+M6*(6*H)A2)+M7*((7+H)A2)+M8*((8*H)A2)+M9*((9*H
YA2)+M10%((10¥H)2))

F8=Vb*(M8*((8*H)"2))/(M I*(HA2)-+M2%*((2¥H) 2)+M3*((3*H)A2)+Md*(4*H
YA2)+MS5*((5¥H)A2)+M6*(6+H)A2)+M7*(T+H)A2)+M8*((8*H)A2)+M9*(9*H
YA2)+M10%((10¥H)2))

F9=Vb*(M9*((9*H) 2))/(M1*(HA2)+M2*((2+H)A2)+M3*((3*H)A2)+Md*(4*H
YA2)+MS5*((5*H)A2)+M6*(6*H)A2)+M7*(7+H)A2)+M8*((8*H)*2)+M9*(9+H
YA2)+M10*((10¥H)"2))

F10=Vb*(M10*((10*H) 2))/(M1*(H 2)+M2*((2*H)"2)+M3*((3*H)"2)+M4*((
4*¥H)N2)+MS*((S*H)2)+MO6*((6*H) 2)+MT7*((7*H) 2)+M8*((8*H ) 2)+M9*((
9*H)A2)+M10*((10*H)"2))

0.731838

292735

6.58654

11.7094

18.296

26.3462

35.8601

46.8376

59.2789

73.1838

Ultimate bending moment for beam and column
Mb=214.45; Mc=265.06;
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2 Chapter 4_program.nb =13
-~

Example 7: 3 baye and 10 storey reqular frame 1
nfipe Quit[] ]
wijs Med: Led: POa2.5: Dad.3: Die0dS: ya25: Dle.dS:ee0.12% ]

Live Load 1
g ql-[‘_tLoLtpD]/! ]

r
owgp 10. 1|
Dead Loar for slah 1
" "
Infi] = l?-[5|L|L|S|¥]/? T
Buafie 12.5 il

Deal Load Tor finishes 1

In[¢|-n2-l"l'..'l.'1]/! 1
H

oappe 4 -Ir

Dead Load for bean ]l

beDOsLlsy i

L Ll E L 2 I

tafile 3,375 il

tatal dead Load on Ehe beam and alab, H1 1
g M= {172} e Lowgle @5 (1/2) alwg?« {(1/2) ngleloaglsl h |
oupp 56.5

Total dead Load on the column, Fc i
W FEaDlaDladay b
Ouppe 20.25

.o
& >
1T -

IMAGE 6.2 Five bay—ten story regular frame; coding in Mathematica_page 1.

Kinematic multiplier, kc [Equation 4.4 of Seismic Design Aids]

ke=Simplify[(100*Mb+6*Mc)/(FI*H+F2*2*H+F3*3*H+F4*4*H+F5*5*H+F6
*6*H+F7*7*H+F8*8*H+F9*9*H+F10*10*H)]

2.60133
Static multiplier, ks [Equation 4.8 of Seismic Design Aids]

ks=Simplity[(6*Mb)/((F1+F2+F34+F4+F5+F6+F7+F8+F9+F10)/2*H+(F1+F2+
F3+F4+F5+F6+F7+F8+F9)/2*H)]

1.31207

(The computer coding as appears on the screen can be seen in Images 6.2 to 6.6.)

6.2.8 GENERAL PROCEDURE FOR REGULAR FRAMES WiITH M BAYs—N STORIES
This section provides the coding for obtaining the collapse multipliers (both static and

kinematic) for regular frames with the number of bays and stories of the user’s choice.

Quit[ ]
H=4; L=4; p0=2.5; b=0.3; D0=0.45; y =25; D1=0.45; s=0.125;
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e} Chapler 4_program.nb

Seismic mass for cach floor b |

WaBL1+6aFe
981 )
104B1 6 «FC

9.81
10+B1+6 «Fc

981

1WaN1e6aPe
9.0

WaB1l+6ake

9.81
10+Bl+6 «Fc

981
1046146« Fo
901
10aN1 .6 aFe
9,51
WeBl+bake

9.81
10+Bl+6+Fc
.81

nglr Ml=

me o

Mi-

K=

H10 -«

Total scismic mass

i [ T T

fg]« M« MLe M2+ 13 + B8 + B3+ M6+ 27 o MU + 19+ M10 |
oapup 699,796 1
Spectral ordinate {as per 15 1893) ]
e Sas [u. 154 T) » (UnitSten[T] - UnitStep(T - 0.11) +
2,90 « (UNAtStep[T - 0. 1] - UndtStep(T - 0,951)
1.36
= n(lln.llSlzp(T—l.'iﬁ]-l.lnil!lep[‘l’—d.ﬂl])]
1.36 (-UnitStep(-d. « T) + UnitStep[-0. 55 + T
s { Al 1 il 1 ;
T
2.5 [-Un1EStep[-0.55 « T] + UnitStep|-0.L+T]] +
1+ 15T) (-UnitStep(-0.14 T] + Unicstep (T
-
¢ >
100% - 3

IMAGE 6.3 Five bay—ten story regular frame; coding in Mathematica_page 2.

Live load

ql=(1/2*L*L*p0)/2

10

Dead load for slab

q2=(1/2*L*L*s*y)/2

12.5

Dead load for finishes

q3=(1/2*L*L*1)/2

4

Dead load for beam

q4=(b*DO*L*y)/L

3.375

Total dead load on the beam and slab, B1
B1=(1/2)*L*q1*0.5+(1/2)*L*q2+(1/2)*q3*L+q4*L
56.5
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2 Chapter 4_program.nb

Graphic represental ion ol Ue speclren i=

R

Flot(sa, (T, 0, 4], PlotRange - (0, 3)] ]

oupae 13

Basw shear constanle
Wf]e FOa0.36; TOal; RO« 55 T «0.075. (10« H)}~0.75

ol 1.19281

T

s e pa— |
— U R vl [ VP R el [ T R s (|

Accelerationcoefficient for calculating hase shear

v 1o
iy Hhe —o —w
P 2 R

ey 0.0410426
Dase shear

s Ve RhaMe9.81

e

o 281,758
Seimmic farces at each floor (starting trom the ground floor)

npe Ele
W
Mle (" 2Y) /
(ML (M 2% o B2 w (€2 wHY*2) o MY w ({3 H} *2) « D w {{d o }0) 2} « MG w ({5210} *2)} &
M6 w ({60} 2) + M7 w ({7 =M} 2) « MO w (DM} 2}« HO» {{910)"2) «
M0« ({10« H}* 2))

100% =

IMAGE 6.4 Five bay—ten story regular frame; coding in Mathematica_page 3.

Total dead load on the column, Fc
Fe=D1*D1*4*y

20.25

Seismic mass for generic ith floor
Mi=((m+1)*Fc+2*m*B1)/9.81
0.101937 (113. m+20.25 (1+m))
Total seismic mass

M= Mi*(n)

0.101937 (113. m+20.25 (1+m)) n
Spectral ordinate (as per IS 1893)

Sa=((1+15*T)*(UnitStep[T]-UnitStep[T-0.1])+2.50*(UnitStep[T-0.1]-
UnitStep[T-0.55])+1.36/T*(UnitStep[ T-0.55]-UnitStep[ T-4.00]))

(136 (-UnitStep[-4+T+UnitStep[-0.55+T]))/T+2.5 (-UnitStep[-0.55+T H+UnitStep|-
0.1+T])+(1+15 T) (-UnitStep[-0.1+T]+UnitStep[ T])
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Ed chapter 4_program.nb * r-_|rE|r§|
-

2.
Vs (M2e ((2eH) 220D/
(ML (HA 29+ M2 ({2 oMY 2) + H3a ({30 M) 2] + Wl u ({4 o 1) ~2) « W a ({50 ) “2) &
Mo ({6 =H)“2) ¢ MT o ({TeH}"2) s ME» ((HeH)*2) + M= ((F+H)}"2) « M1~ ((10+H) "2))
i
Vb (M3 = ((3H) “2)) J
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F3«
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(HLs (H*2) M20 ({2 +H)"2) s MIw (3o H)"2) + Mo ((4oH) “2) + M3 ((GaH) "2) +
Bh o ({6 oMY 2) «MTa (T oM} 2] o MEo ({BoH}*2)+ WO ({9 H)~2) « M10W ({100 H)*2))
Fé-
Vhw (MEw((6=))"2))}/
(MLe (H2) M2 o ({2« H)“2) o M3 0 (03w H) 20 o B w ({4 o H) “2) + MO » ((SeH) 2} o
BGw ({6 w0} 2 o M7 w ({70 M} "2} = HBw (0w I} 2}« MO w (¢ w0}~ 2) = NI ({100 ) "2})
ET.
Vhw (HIw({7el)} 2))}/
(MLa (HA2) o M2 a ({2 o H)*2) + M3 0 ({30 H}*2) o Ml ({4 o H) “2) + WO ((TaH) ~2) +
BEn ({6 - I "2 o BT w ({7 o ME" 2}« M v ({0210} 2)« HBw {08 =M}~ 2) « HI0 ({100 M) =23}
i
Vs (ME« ((BeH) “2))J
(Mo (HA2) o M2 a ({2« H)“2) + W3a ({30 H)*2) + M ({42 H) “2) + W ((SaH)~2) +
ME e ((6=H)*2) s MTa ({ToH)}*2) s MEw ((BeH)"2)+ M= ((9+H)"2) « M10 s ((10+ H) “2))
FI.
Vhs (M9 = ((#=H) “2)) J
CMLw (U7 230 M2 (42w M3 "2) ¢ M3 w (43w M} 23+ B w (0 w103 " 2) + M3 (45 w10} "2 +
Mo ({6 +H)“2) i MT 2 ({ToH}"2) s ME» ((BeH)*2)+ M= ((P+H)}"2) « M1~ ((10+H) “2))
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Wi (HL0 ({100 H) 203 1
CMLw (U 230 M2 (42w M}"2) + B3 (43w 3" 23+ P w (L w00 " 23 + M3 (45 w003 23 »
Bh o ({6 M) 2) +MTa ({TaM) 2] o MEo ({BoH}* 2]« Moo ({9 H)*2) « MI0o ({100 H)*2))

| 8
100 =

IMAGE 6.5 Five bay—ten story regular frame; coding in Mathematica_page 4.

Graphic representation of the spectrum
Plot[Sa,{T,0,4},PlotRange_{0,3}]

Base shear constants

70=0.36; 10=1; R0O=5; T=0.075*(n*H)"0.75
0.212132 n®7%

Acceleration coefficient for calculating base shear
Ah=70/2*10/R0*Sa

0.036 ((6.4111 (-UnitStep[-44+0.212132 n®7]+UnitStep[-0.55+0.212132
n%])/m07+2.5 (-UnitStep[-0.55+0.212132 n®">]+UnitStep[-0.1+0.212132

n%])+(143.18198 n°7) (-UnitStep[-0.140.212132 n®75]+UnitStep[0.212132

nO .75] ))

Base shear
Vb=Ah*M*9.81
0.036 (113. m+20.25 (1+m)) n ((6.4111 (-UnitStep[-4+0.212132

n%]+UnitStep[-0.55+0.212132 n°%73]))/n®7+2.5 (-UnitStep[-0.55+0.212132

nO75]+UnitStep[-0.1+0.212132 n®75])+(143.18198 n7) (-UnitStep]-
0.1+0.212132 n®7S]+UnitStep[0.212132 n®751))
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= cChapter 4 program.nb *

oupdr 071030
oupme 392738
Dupty 658854

e 11,7084

|
]
1
py 18,295 A
Oupse 26,1462 j
DuHep 35,8601 3

1

Dupp 46,8376

tnejisp 592789

oupse 73,1838 1
N timate hesding momest for beam and col mn 3
Wpge M. 214.89; Mo < 265, 06; 3!
Kinematic meltiplier, ke [Fquationd.4 of Design&ids] i

Inpig= ke =
Simplity[
[SULES LN RS L
(FleHMF? a2 aHaF ol aH Pl e d e H o FAe e H o FEafaHaFToa 7o H-FlolaH+
FiaSalaF10=10M)]

Dupgy 2.60193 3
Stalic sultiplier , bs [Equation 4. % of Design fids] 1

. L]
e E— I S— - ]
:

mepep 1.31207 1

IMAGE 6.6 Five bay—ten story regular frame; coding in Mathematica_page 5.
Seismic forces at each floor (starting from the ground floor)

W, *(i*H) A2
> W *(i*H)A2

i=1

F,=Vb*

1/((14n) (142 1))0.216 i2 (113. m+20.25 (1+m)) ((6.4111 (-UnitStep[-
440.212132 n075]+UnitStep[-0.55+0.212132 n®7]))/n%5+2.5 (-UnitStepl-
0.55+0.212132 n®S|+UnitStep[-0.1+0.212132 n075])+(1+3.18198 n°7)
(-UnitStep[-0.1+0.212132 n®75]+UnitStep[0.212132 n®75]))

Base shear

i=1

0.036 (113. m+20.25 (1+m)) n ((6.4111 (-UnitStep[-4.+0.212132
n%P1+UnitStep[-0.55+0.212132 n®7]))/n%»+2.5 (-UnitStep[-0.55+0.212132
n%P1+UnitStep[-0.1+0.212132 n®])+(1+3.18198 n®7) (-UnitStepl-
0.1+0.212132 n%1+UnitStep[0.212132 n%73]))
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Kinematic multiplier, kc [Equation 4.4 of Seismic Design Aids]

(n*(2*m)* M, +(m+1)*M,)
Y E*i*H
i=1

(4.62963 (1. +2. n) (Mc+m Mc+2. m Mb n))/((20.25 +133.25 m) n'23 (1.
+n) (-6.4111 UnitStep[-4.+0.212132 n%75]4(6.4111 -2.5 n%75) UnitStepl-
0.55+0.212132 n®74+(1.5 n°75-3,18198 n'5) UnitStep[-0.1+0.212132
n075]4+(n°7343.18198 n'%) UnitStep[0.212132 n°75]))

Static multiplier, ks [Equation 4.8 of Seismic Design Aids]

k. =FullSimplify

(m+1)*2*M,)

[Ee}{5r )

((0.5 +0.5 m) Mb (0.5 +n) (1. +n))/(20.25 +133.25 m) n®2 (0.036 +0.072
n?) (-6.4111 UnitStep[-4+0.212132 n075]+(6.4111 -2.5 n%75) UnitStep[-
0.55+0.212132 n971+(1.5 n075-3.18198 n'5) UnitStep]-0.1+0.212132

075 (n°75+3.18198 n'5) UnitStep[0.212132 no75]))

Ultimate bending moment for beam and column
Mb=214.45; Mc=265.06;

Kinematic multiplier for example cases

k, = FullSimplify

k./{m—=>1n—1}
k./{m—1n—2}
k./.{m—4,n—2}
k /{m —6,n— 3}
k./.{m—5n—10}
17.3547

6.97672

6.63378

4.20617

2.60133

Static multiplier for example cases

k./.{m—=1n—1}
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k/.{m—1Ln—2}
k/{m—4,n— 2}
k./{m— 6,n— 3}
k/.{m—5,n— 10}
15.523

6.46791

4.48633

2.49875

1.31207

Base shear for example cases
V,/{m —=1n—1)
V,/{m—1,n— 2}
V,/{m —=4,n—2}
V,/-{m — 6,n — 3}
V,/{m = 5,n =10}
13.815

27.63

99.585

221.332

281.758

Plot[{k./m — 1,k /m — 1},{n,1,10}]

(The plot thus obtained on the computer screen can be seen in Image 6.7.)

9

IMAGE 6.7 Collapse multipliers for regular frame (m bays, n stories).
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6.2.9 Comruter CopING TO CompuTE STATIC CoLLAPSE MuLTIPLIERS (LINGO)

Computer coding used to obtain static collapse multipliers by an alternative method
(Sforza 2002; Student LINGO 2005) is given for two example cases: (1) single bay—
single story regular frame, and (2) single bay—single story irregular frame. The cod-
ing can be seen in Images 6.8 and 6.9, respectively.

iglgfi!!lgﬂ ?Itﬁllﬂ! ] o qa“}lcal §2'Ef l’[EﬂIlEIE |E§i_§i§§

= OES

H=4;
L=4;
Me:=265.06;
Mb=214.45:
F0=13.815:
Q= 41.25:

EHDDATA

={FO=H=k+n1-22-n3-yl+y2+y3){=Mc: |
(FORH® k42 1-%2-%3-y 1+y24y3) 2 =-Me:
(-xl+yl)<=Me:

(-2 14yl)>m-He:

(-xl4yl)<=Mhb:

(~%14yl)r=-Mh:

(-0.58 (2 1-v1422-y2) 4+ (0*L)~4) C=Mb:
(-U.5% (x1-yl+ed-y2 )+ (U¥L)<4] > =-Mb;
={x2-y2)<{=Mb;

—(x2-y2)r=-Mh;

(x2-y2)<=Mc:

[x2-y2)r=-Hc:

={x3-yI)<{=Mc:

=(x3=y3)o==Mc;

EHD

IMAGE 6.8 Single bay—single story regular frame; coding in LINGO.

MG i

3 > o e
Dizald ¢ he o= selel 8= 8 Aol 2kl
: orey_irrsgula UoE

max=l:
DATA:

H=4;

L=4;

Hl=3;
Mc=265.06:
Mb=214.45;
F0=13.5872;
(=41.25:

ENDDATA

= (FO®Hwk+ (21-y1)~(x2-y2)* (H/H1) - (£3-y3) = (H/H1) ) < =Me;
= (FOwHk# (x1-y1)={x2-y2)# (H/H1) - (£3-y3)* (H/H1) ) b =-Hc;
={xl-y1)<{=Mc:
={xl-yl)>=-Mc:
~(x1-y1)<=Mh;

(x1-y1)r=-Mh;

0.5%((x1-y1)4(%2-y2))+QeLe0. 25¢=Mh;
=058 [x1-y1)+(x2~y2) )+QuLw0. 255 ==Mb;
—(%2-y2) {=Mb;
~(%2-v2)>=-Mb;
{x2-y2) =]

={x3-y3){=Mc:
={#3-y3)»=-Mc:

END vl

IMAGE 6.9 Single bay—single story frame with unequal column length; coding in LINGO.
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6.3 PROCEDURE TO PERFORM PUSHOVER ANALYSIS

In this section, a detailed procedure to perform nonlinear static pushover analysis is
presented. A five bay—ten story regular frame in reinforced concrete is considered
as an example case. The building frame consists of structural elements as follows:
(1) 450 mm square RC columns, reinforced with 12925 and lateral ties of 8§ mm
at 200 c/c; (2) 300 x 450 mm RC beam, reinforced with 4®22 as tensile and com-
pression steel with shear stirrups of 10 mm at 250 c/c; and (3) 125-mm-thick RC
slab. The concrete mix is M25 and the reinforcing steel used is high-yield-strength
deformed bars, Fe 415. The building frame consists of 4 m bay width and 4 m story
height, with no structural and geometric irregularities and assumed to be located in
Zone V (IS 1893, 2002) with soil condition as “medium” type. Using the proposed
expressions for P-M interaction and moment-rotation, presented in Chapters 1 and 2,
respectively, beams and columns are modeled. Figure 6.7 shows the P-M interaction
details for the beam hinges to be used in the model. The P-M interaction domains
are traced using the summary of expressions given in Chapter 1. Figure 6.8 shows
the moment rotation for the beam hinges, which are plotted using the expressions
given in Chapter 3. Similarly, P-M interaction details and moment-rotation for col-
umn hinges are shown in Figures 6.9 and 6.10, respectively. The building frame is
modeled in SAP2000, version 10.1.2 advanced, using the geometric and structural
details as mentioned above. In the following section, a step-by-step approach for
performing pushover analysis of the building model is presented.

P (kN) 4 (comp)

==

20077 4#220

00
b 4 #220

M, (kN-m)

300 -260\—100 1 0/2’ 0 300,
fava¥
;; b

—1vw\/@

—1500

FIGURE 6.7 P-M interaction for beam hinges.
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: é% 1
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3 - B Co
: e
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r B =1000 kN : : :
E o e
E:/ r P (cpmpression b L : : :
S 100f X s _s i N
L 4 #220 [
L | | |
| | |
3 D | | |
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L | | |
- 44220 T
r | | |
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| I |
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FIGURE 6.8 Moment-rotation for beam hinges.
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FIGURE 6.9 P-M interaction for column hinges.
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300 |2
250 [ 77
- P =—1000 kN P =0kN|
200 [
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g 1501
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FIGURE 6.10 Moment-rotation for column hinges.

6.3.1  Step-BY-STEP APPROACH UsING SAP2000

Step 1: Select New Model from the pull-down menu. (Image 6.10)

Step 2: Select the 2D frame with n stories and m bays. Set the units to kN-m.
(Image 6.11)

Step 3: Fix the dimensions of the frame. (Image 6.12)

Step 4: The 2D frame is prepared and displayed. (Image 6.13)

i@ SAP2000 ¥10.1.2 Advancad - (Untitlad)

§e

Curstem Report Wrier .

Show Ingut/Cutput Text Fles

1€, 10 storey bidg. 508

2011, \single story_sym_01 506

T Nangh storey few. 500

4.1\, 170 seorey by 06

Ext shift+'4

IMAGE 6.10 New model from the pull-down menu.
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IMAGE 6.11 2D frame with n stories and m bays.
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Step 5: Save the file as fen story bldg_new. It is necessary to mark the tip node with
the desired label to monitor the pushover curve at this node. Select the tip node,

and in the menu, select Edit — Change Label; enter roof top. (Image 6.14)

Step 6: Display labels of members. Click View on the menu bar; set Display
Options — Frames/Cables/Tendons. The default labeling in SAP is as follows:
The first bottom column is numbered as 1, and the numbering increases

1% SAPZ000 v10.1.2 Advanced - (Untitled)

[ | HE| o2& 2 2|1 For| 2 ¥ |5
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IMAGE 6.12 Fixing the dimensions of the frame.
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IMAGE 6.13 Display of the prepared 2D frame.
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IMAGE 6.14 Display of joint roof top.
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IMAGE 6.15 Numbering of beams.

along the height; this is repeated for other column lines. The numbering of
the beams is then assigned (automatically) from the lower floor (left mem-
ber) and increases along the height. (Image 6.15)

Step 7: Change labels for columns. Go to Edit — Change Labels — Element
Labels — Frame. The columns are labeled as ICOJ (the prefix I denotes floor
number and J denotes column line). One can use Excel program to rename
the labels quickly. (Image 6.16)

Step 8: Change labels for beams. Go to Edit — Change Labels — Element Labels
— Frame. The beams are labeled as IBOJ (the prefix I denotes floor number
and J denotes beam line). (Image 6.17)

Step 9: To assign the fixed supports to the columns at the base, select the col-
umn joints at the base. Go to Assign — Joint — Restraints. (Image 6.18)

Step 10: Material properties for reinforced concrete. (Image 6.19)

Step 11: Section properties — beams. Go to Menu — Define — Frame Section and
enter the details. (Image 6.20)

Step 12: Section properties — columns. Go to Menu — Define — Frame Section
and enter the details. (Image 6.21)

Step 13: Assign beams and columns of the frame with appropriate sections. Go
to Menu — Assign — Frame/Cable/Tendon — Frame Sections. (Image 6.22)

Step 14: Define nonlinear hinge properties for beam hinges. Go to Menu —
Define — Hinge Properties. (Image 6.23)
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IMAGE 6.17 Changing labels for beams.
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IMAGE 6.19 Material property data.
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IMAGE 6.23 Nonlinear hinge properties for beams, step 1.
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IMAGE 6.24 Nonlinear hinge properties for beams, step 2.

Step 15: Define nonlinear hinge properties for beam hinges, continued. Go to
Menu — Define — Hinge Properties. (Image 6.24)

Step 16: Define nonlinear hinge properties for beam hinges, continued. Go to
Menu — Define — Hinge Properties. (Image 6.25)

Step 17: Define nonlinear hinge properties for column hinges. Go to Menu —
Define — Hinge Properties. (Image 6.26)
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IMAGE 6.25 Nonlinear hinge properties for beams, step 3.
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IMAGE 6.26 Nonlinear hinge properties for columns, step 1.
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Step 18: Define nonlinear hinge properties for column hinges, continued. Go

to Menu — Define — Hinge Properties. (Image 6.27)
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IMAGE 6.27 Nonlinear hinge properties for columns, step 2.

https://engineersreferencebookspdf.com



202 Seismic Design Aids for Nonlinear Analysis

Hinge Intaraction Surface far FH1 - Intaracting P83 P-M2 ineraciion Curve Definitien for FH1

Intstaction Sufsce Optont
(! sl Propes iatwd Lina Obisca Uhser Internztion Curve Options
(" Giel MSCARFD Equations W1-1a and H1-1b with phis 1 ¥ Interacton Curve Is Symmetc
™ Steel. FEMA 356 Equaiin 54 Mumber of Curves
1 Coreie, AQT1E02 wih pha =1 Mlussbs of Parts on E.ach Curvm p:;
" Ure Doteiien Suale Factuns 5 e r Al Curves)
| -
N, ™ -
i Load - Displacement Melaticnshin
I Prepedionsl i Mamart - Rotsion rm“me'i::I""n"ml = _:5 The M inkersction surface & scceptabis,
e Padcty Pl e - b=
[ a7 =] Cirve
o Lowed| risacion O z : Pl i I
1 Ordy one P M2 curve i spocied o3 P [ Highlight Cusert Curve.
1% Defemaation Conted [Ducin] ant] | | 2 Pihansion posiive] incieasss mcnckirscaly, M 2
3. MZ = 02k the first-and st ponds.
Interscting M2 -
IH" _i el & AIMD Y 0 [wcepd of lest arcd bl poris]
& T e o e . —
| Mz
o l Coreed
ok Cancel |

IMAGE 6.28 Nonlinear hinge properties for columns, step 3.

Step 19: Define nonlinear hinge properties for column hinges, continued. Go
to Menu — Define — Hinge Properties. (Image 6.28)

Step 20: Mass source. Go to Menu — Define — Mass Source. (Image 6.29)

Step 21: Assign end length offset to ensure rigidity of connections between
beams and columns. Select all the members and joints, in total. Go to Menu —
Assign — Frame/Cable/Tendon — End (length) Offsets. (Image 6.30)
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IMAGE 6.29 Defining mass source.
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IMAGE 6.30 Assigning End offset, step 1.

Step 22: Assign end offsets, continued. Once the end offsets are created, you
will note dark lines at the beam-column joints in the model. (Images 6.31
and 6.32)
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IMAGE 6.31 Assigning End offset, step 2.
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IMAGE 6.32 Assigning End offset, step 3.

Step 23: Assign tensile hinges to the beams. Select the beams. Go to Menu —
Assign — Frame/Cable/Tendon — Hinges. (Images 6.33 and 6.34)

Step 24: Assign compression hinges to columns. Select the columns. Go to
Menu — Assign — Frame/Cable/Tendon — Hinges. (Image 6.35)

Step 25: Define load cases. Go to Menu — Define — Load Cases. (Image 6.36)
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IMAGE 6.33 Assigning tensile hinges to beams, step 1.
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IMAGE 6.35 Assigning compression hinges to columns.
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IMAGE 6.36 Defining load cases.

Step 26: Assign the loads to the beam. In this example, we assign a central
concentrated load of 41.25 kN, calculated as per the code (IS 1893, 2002),
to beams in each floor. Select all the beams. Go to Menu — Assign — Frame/
Cable/Tendon — Point. (Images 6.37 to 6.39)

Step 27: Assign diaphragm action to the model. Select each floor, separately.
Go to Menu — Assign — Joint — Constraints. (Images 6.40 and 6.41)
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IMAGE 6.37 Assigning loads to beams, step 1.
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IMAGE 6.38 Assigning loads to beams, step 2.

207

Step 28: Assign pushover load at the roof top. Select the left top joint (as shown
in the screen). Go to Menu — Assign — Joint Loads. Assign 10 kN load in

global X direction. (Image 6.42)
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IMAGE 6.39 Assigning loads to beams, step 3.
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IMAGE 6.40 Assigning diaphragm action, step 1.

Step 29: Define analysis cases. Go to Menu — Define — Analysis Cases — Add
New Case. Let the case name be initial pushover. It is essential to apply the
dead and live loads on the frame before we intend to push the frame using
lateral load. Do not apply pushover load before applying gravity loads. The
results could be erroneous. (Image 6.43)
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IMAGE 6.41 Assigning diaphragm action, step 2.
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IMAGE 6.42 Assigning pushover load at roof top.

Step 30: Define analysis cases, continued. While selecting other parameters,
click Load Application — Modify/Show and set the parameters as Full Load.
Use monitored displacement at joint roof fop created in Step 5. (Image 6.44)

Step 31: Define analysis cases, continued. Set a new case—pushover by the same
procedure. But we will apply this load case, using displacement control, con-
tinuing from the previous case. While defining the parameters, results are saved
at multiple states to trace the formation of hinges. (Images 6.45 and 6.46)

Step 32: Define analysis cases, continued. Set the nonlinear parameters. Click
Modify/Show. An example case is shown in Image 6.47. However, these param-
eters are system dependent, and the user can choose these values depending
upon the nature of the model, by trial and error (and with experience).
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IMAGE 6.43 Defining analysis cases, step 1.
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IMAGE 6.44 Defining analysis cases, step 2.
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IMAGE 6.45 Defining analysis cases, step 3.
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IMAGE 6.46 Defining analysis cases, step 4.
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IMAGE 6.47 Defining analysis cases, step 5.

Step 33: Define analysis cases, continued. All defined analysis cases may be
viewed and checked using Show Analysis Case Tree. (Image 6.48)
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IMAGE 6.48 Defining analysis cases, step 6.
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IMAGE 6.49 Pushover curve.

Step 34: Run the analysis. Press F5. To see the pushover curve for a target dis-
placement set at the point roof tip, go to Menu — Display — Pushover Curve.
(Image 6.49)

Step 35: Obtain the history of formation of plastic hinges. Go to File in the
pushover curve screen — Display Tables. (Image 6.50)

Important Note: This example is only a sample illustration to introduce push-
over analysis to new users. Although the above steps are believed to introduce
this nonlinear static analysis procedure clearly, interpretation of results for any
specific model, for any specific purpose, is not the responsibility of the authors.
Readers are advised to go through research papers and the Help menu of SAP2000,
in detail, for a thorough understanding of different analysis parameters, in their
own interest. The aforementioned are only introductory guidelines and solely the
interpretation of the software parameters by the authors.
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IMAGE 6.50 History of formation of plastic hinges.
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A

Analysis, running, 212, 212

Analysis cases, defining, 208-209, 208-211, 211

Analytical moment-rotation relationships,
92-106
Axial force
elastic range, 46
fixed beam under uniformly distributed
load, 104
limit elastic moments, 54

moment-curvature relationship, 48, 63—-64,

64, 90-91

moment-rotation relationship, 90, 106, 115

neutral axis positions, 57-60

step-by-step analysis, 127-129

vanishing, 55

verification of flow rule, 156

zero, elastic range, 48

Axial force-bending moment (P-M) yield

interaction

concrete, 3—4, 8, 12-13

curves for subdomains, 6

description, 41

expressions summary, 39—40

fundamentals, 1-3, ix—x

identification of subdomains, 5-13, 6

literature review, 1-3

mathematical development, 3-5

numerical procedures, 13, 26, 41

numerical values, 27-38

reinforced concrete (RC) beams, 5, 13,
14-25, 26, 27-40

sample plots, 14-25

spreadsheet format, 41

steel, 4-5, 7, 10-12

strain profile, 9

stress-strain relationships, 3—4, 3-5

studies and discussions, 13, 26

subdomains, 5-40

summary, 1

B

Balanced section, steel percentage, 54-55
Bays selection, 192, 193

Beams, see also Fixed beams; Simply supported

beams
moment rotation, tensile hinge, 119, 121

P-M interaction curve, 119, 120
pushover analysis procedure, SAP2000
software
assigning, 195, 199
load cases, assigning, 206, 206
nonlinear hinge properties, defining, 195,
199, 200, 200
numbering, 195, 195
section properties, 195, 198
tensile hinges, 204, 204-205
Bending moment
crushing of concrete, 12—13
fixed beam under central concentrated load,
93-94, 95
fixed beam under uniformly distributed load,
101, 103
function of displacement, 93
moment-rotation relationship, 90
neutral axis positions, 57-60
simply supported beams under central
concentrated load, 99, 100
steel, strain in compression zone, 10—12
step-by-step analysis, 126-129
Bending (ultimate) moment-curvature
relationship, 56—62
Bernoulli’s hypothesis, linear strain, 45, 90
Bilinearity, moment-curvature relationship, 26
Bounds for collapse loads, building frames
discussions, 131-134
fundamentals, 118, 137
kinematic multiplier, 120-122, 123
literature review, 118
multipliers, 118131
numerical studies, 131-134
simple frame with P-M interaction, 124, 126,
126-131, 129-132
static multiplier, 122-124, 125
summary, 117-118
Building frames, bounds for collapse loads
discussions, 131-134
fundamentals, 118, 137
kinematic multiplier, 120-122, 123
literature review, 118
multipliers, 118—131
numerical studies, 131-134
simple frame with P-M interaction, 124, 126,
126-131, 129-132
static multiplier, 122-124, 125
summary, 117-118
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C

Central concentrated loads, fixed beams, 93-101
CG and curvature, 153, 155-156

Codes imposition, subdomains, 26

Collapse load bounds, building frames

discussions, 131-134

fundamentals, 118, 137

kinematic multiplier, 120-122, 723

literature review, 118

multipliers, 118-131

numerical studies, 131-134

simple frame with P-M interaction, 124, 126,
126-131, 129-132

static multiplier, 122-124, 125

summary, 117-118

Collapse multipliers, computer coding, see also

Multipliers, collapse loads

analysis, running, 212, 212

analysis cases, defining, 208-209, 208-211,
211

assigning, 195, 197, 199, 206, 206, 207, 209

bays selection, 192, 193

changing labels, 195, 196

compression hinges, 204, 205

diaphragm action, 206, 208

end offsets, 202-203, 203-204

five bay—ten story regular frame, 179-182,
182-186

fixed supports, 195, 197

four bay—two story regular frame, 167,
174-175

frame dimensions, 192, 193

frame preparation and display, 192, 194

frame selection, 192, 193

fundamentals, 165, x

LINGO, 189

load cases, 204, 206, 206, 206-207

mass source, 202, 202

material properties, RC, 195, 197

members, displaying labels of, 193, 195, 195

nonlinear hinge properties, defining, 195,
199, 200, 200, 200-202, 200-202,
201-202

plastic hinges, obtaining formation history,
212,213

pushover analysis procedure, 190-212

pushover curve, 212, 212

pushover load, assigning, 207, 209

regular frames, variable bays and stories,
182-188

running analysis, 212, 212

saving the file, 193, 194

section properties, 195, 198

selecting new model, 192, 192

single bay—single story frame, unequal
column length, /66, 172-174, 189

Index

single bay—single story regular frame, 165,
166, 167, 170, 189

single bay—two story regular frame, /66,
171-172

six bay—two story irregular frame, /168—169,

175-179
static collapse multipliers, 189
stories selection, 192, 193
tensile hinges, 204, 204-205
Collapse prevention (CP), 133
Columns
P-M interaction curve, 119, 120
pushover analysis procedure, SAP2000
software
assigning, 195, 199
assigning fixed supports, 195, 197
changing labels, 195, 196
compression hinges, 204, 205
nonlinear hinge properties, defining,
200-202, 201-202
numbering, 195, 196
section properties, 195, 198
Comparison, moment-curvature relationship,
66, 67
Compatibility equations and requirements

fixed beam under central concentrated load,

94, 96-97
fixed beam under uniformly distributed
load, 103
general, 92
kinematic multiplier, 120
simply supported beams under central
concentrated load, 98, 101
Compression failure
flow rule verification, 140
moment-rotation relationship, 112
verification of flow rule, 156157
Compression fiber
extreme, in concrete strain, 13,
53-54
fixed beam under uniformly distributed
load, 104
stress-strain measurement, 11, 13
yielding of steel, 144-145
Compression reinforcement
moment-curvature relationship,
63, 64
steel percentage, balanced section, 55
yielding of steel, 144145
Compression steel strain, 52-53
Compression strain and failure
elastic range, 46, 48-50
failure interaction curve, 26
moment-curvature relationship,
48-50
moment-rotation relationship, 90
Compressive steel, 144
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Computer coding, collapse multipliers, see also
Multipliers, collapse loads
analysis, running, 212, 272
analysis cases, defining, 208-209, 208-211,
211
assigning, 195, 197, 199
bays selection, 192, 193
changing labels, 195, 196
compression hinges, 204, 205
diaphragm action, 206, 208
disclaimer, xvii
end offsets, 202-203, 203-204
five bay—ten story regular frame, 179-182,
182-186
four bay—two story regular frame, 167,
174-175
frame dimensions, 192, 193
frame preparation and display, 192, 194
frame selection, 192, 193
fundamentals, 165
LINGO, 189
load cases, 204, 206, 206-207
mass source, 202, 202
material properties, RC, 195, 197
members, displaying labels of, 193, 195,
195
nonlinear hinge properties, defining, 195,
199, 199-202, 200-202
numbering, 195, 195-196
plastic hinges, obtaining formation history,
212,213
pushover analysis procedure, 190-212
pushover curve, 212, 212
pushover load, assigning, 207, 209
regular frames, variable bays and stories,
182-188
running analysis, 212, 212
saving the file, 193, 194
section properties, 195, 198
selecting new model, 192, 192
single bay—single story frame, unequal
column length, 166, 172-174, 189
single bay—single story regular frame, 165,
166, 167, 170, 189
single bay—two story regular frame, 166,
171-172
six bay—two story irregular frame, /68—169,
175-179
static collapse multipliers, 189
stories selection, 192, 193
tensile hinges, 204, 204-205
Concrete behavior, flow rule verification, 139
Concrete (crushing of)
flow rule verification, 150
stress-strain relationship, 3, 3—4
subdomains, 8, 11-13, 140, 143, 150
CP, see Collapse prevention (CP)
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Curvature
ductility, 65-66
fixed beam under central concentrated load,
94, 95
fixed beam under uniformly distributed load,
101, 103, 105
function of displacement, 93
moment-rotation relationship, 110
monotonically increasing, 92
simply supported beams under central
concentrated load, 99, 100
strain variation, 45-46
Curvature-elastic stiffness, 92, 92
Curvature-hardening modulus, 92, 92

D

Deflection function, 101, 103
Degrees of freedom, 126127
Demand Capacity Method, 44
Depth of neutral axis
fixed beam under uniformly distributed load,
103-104
yielding of steel, 145, 147, 149-150
Diaphragm action, 206, 208
Differential equations, 92
Dimensions, 192, 193
Discussions
collapse loads, 131-134
moment-curvature relationship, RC sections,
62-67
moment-rotation relationship, 106, 110, 112
numerical procedures, 13, 26
Displacement-controlled nonlinear static
collapse load bounds, building frames, 133
Displacement functions
fixed beam under central concentrated load,
93-94, 95
fixed beam under uniformly distributed
load, 105
simply supported beams under central
concentrated load, 98-99, 100
Display, 192, 194
Dissipation, 120
Ductility
curvature estimate, 43
demand estimate, 43
fixed beam under central concentrated load,
97-98
fundamentals, 89-90
moment-rotation relationship, 114-115
percentage of reinforcing steel effect, 65
simply supported beams under central
concentrated load, 101
Ductility ratio
fixed beam under central concentrated load,
96
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fixed beam under uniformly distributed
load, 105
moment-rotation relationship, 110

E

Elastic and elastic-plastic ranges
fixed beam under central concentrated load,
96-98
fixed beam under uniformly distributed load,
101, 103, 105
function of displacement, 93
moment-curvature relationship, 90-91
monotonically increasing curvature, 92
simply supported beams under central
concentrated load, 98-99
Elastic limit bending, 50-54
Elastic range, moment-curvature relationship,
see also Moment-rotation
relationship
compressive axial force, 48-50
fundamentals, 45-46
tensile axial force, 46—48
zero axial force, 48
Elastic stiffness, 92, 92-93
End offsets, 202-203, 203-204
Equilibrium equations
fixed beam under central concentrated load,
94,96-97
fixed beam under uniformly distributed
load, 103
general, 92
simply supported beams under central
concentrated load, 98, 101
static multipliers, 123
step-by-step analysis, 126127
yielding of steel, 144
Estimating P-M yield interaction, see Axial
force-bending moment (P-M) yield
interaction
Eurocode
flow rule verification, 139, 157
moment-curvature relationship, 66
moment-rotation relationship, 90, 114
strain limits, boundary curves, 26
verification of flow rule, 156-157
Expressions, summary of, 39-40
Extreme compression fiber in concrete strain,
11, 53-54

F

Failure modes, kinematic multiplier, 121

Fiber, see Compression fiber

Files, saving, 193, 194

Five bay—ten story regular frame, 179-182,
182-186

Index

Fixed beams, see also Beams; Simply supported

beams
300 450, 76, 80, 91, 101, 102, 106, 110,
112, 113, 131

300 500, 76-77, 80-81
300 “ 600, 77, 81-83, 101, 102, 112, 113
350 " 500, 78, 83
350 “ 600, 78-79, 84
350 “ 700, 79, 84-85
axial forces, 106, 109
central concentrated load, 93-98, 101-106
Hinque properties, 107
300 mm wide plots, 68
350 mm wide plots, 69
moment-rotation, tensile reinforcements,
110, 111, 112
moment-rotation relationship, 106, 110
span lengths, 110, /10
Floor shear distribution, 124, 125
Flow rule verification
crushing of concrete as collapse cause, 150
fundamentals, 139-140, 157, 159, x
literature review, 139-140
mathematical developments, 140-150
numerical values examples, 158
plastic strain increment, 150, 153-156
P-M relationships, 159-163
subdomains, 144-150, 159-163
summary, 139
verification, flow-rule, 154-155, 156-157
yielding of steel as collapse cause, 144-150
Force-controlled method, 130-131
Force displacement curves, 126, 126-127
Force displacement profile, 130
Four bay-two story regular frame, /67, 174—175
Frames, pushover analysis procedure in
SAP2000 software
dimensions, 192, 193
preparation and display, 192, 194
selection, 192, 193

H

Hardening effect, 26

Hardening modulus
fixed beam under central concentrated load, 98
moment-rotation relationship, 106, 114
moment-rotation relationships, 92, 92-93
simply supported beams under central

concentrated load, 101
Hinges, see Plastic hinges
Hinque properties, 107

Identification, subdomains, 5-13, 6
Immediate occupancy (10), 133



Index

Independent equilibrium equations, 123
Integration constants, 104
Irregular structural configurations, 124

K

Kinematic multiplier, 119, 120-122, 123
Kinematic theorem, 133

L

Life safety (LS), 133
Limit analysis theorem, 119
Limit elastic curvature, 51-53
Limit position, 146, 148
Linear axial deformation profile, 104
LINGO
collapse load bounds, building frames, 133
collapse multipliers, computer coding, 189
static multipliers, 124
Literature reviews
axial force-bending moment (P-M) yield
interaction, 1-3
building frames, bounds for collapse loads, 118
flow rule verification, 139-140
moment-curvature relationship, RC sections,
43-44
moment-rotation relationship, RC beams,
89-90
Load cases, 204, 206-207
Load multiplier, 94
Lower bounds
collapse load bounds, building frames, 133

fixed beam under uniformly distributed load,

105-106
safety, x
LS, see Life safety (LS)

M

Mass source, 202, 202
Material properties, RC, 195, 197
Mathematical model development
flow rule verification, 140-150
moment-curvature relationship, 45
moment-rotation relationship, 90-91
P-M yield interaction, 3-5
Members, displaying labels of, 193, 195, 195
Moment-curvature relationship
300 450, 76, 80, 91
300 “ 500, 76-77, 80-81
300 “ 600, 77, 81-83
350 500, 78, 83
350 600, 78-79, 84
350 700, 79, 84-85
axial force, 48, 63-64, 64, 90-91
bilinearity, 26
comparisons, 66, 67
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compression steel, 5253, 63—-66
compressive axial force, 48-50
curvature ductility, 65-66
curvature profile, strain variation, 45-46
elastic limit bending, 50-54
elastic range, 45-50
extreme compression fiber in concrete strain,
53-54
fundamentals, 43-44, 85-86, x
literature review, 43—44
mathematical development, 45
300 mm wide plots, 68, 70, 72, 74
350 mm wide plots, 69, 71, 73, 75
negative values, neutral axis position
assuming, 56
neutral axis positions, 56—62
numerical studies and discussions, 62—67
percentages, 54-55, 63
plots, 66, 68-77
positive values, neutral axis position
assuming, 56—62
spreadsheet program, 43, 86, 88
steel for balanced section, percentage, 5455
strain, 45-46, 50-54
summary, 43
tensile axial force, 46—48
tensile steel reinforcement, 63, 65
tension steel strain, 50-51
ultimate bending moment-curvature
relationship, 5662
Moment-rotation relationship
analytical relationships, 92—106
central concentrated loads, 93-101
discussions, 106, 110, 112
fixed beams analysis, 93-98, 101-106
fundamentals, 89-90, 92-93, 114-115, x
literature review, 89-90
mathematical development, 90-91
numerical studies, 106, 110, 112
simply supported beams, 98—101
spreadsheet program, 115
summary, 89
uniformly distributed loads, 101-106
Monodimensional strength domains, 123
Monotonically increasing curvature, 92
Multipliers, collapse loads, see also Collapse
multipliers, computer coding
comparison of, 134, 136
fixed beam under uniformly distributed
load, 104
fundamentals, 118—-120
kinematic multiplier, 120-122, 123
simple frame with P-M interaction, 124,
126, 126-131, 129-132
static multiplier, 122-124, 125
step-by-step procedure, 132
various procedures, 134, 135
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N

Negative values, neutral axis position, 56
Neutral axis positions
elastic limit bending moment and curvature,
50, 52-53
fixed beam under uniformly distributed
load, 104
moment-curvature relationship, 56—62
positive values, 56—62
steel, strain in compression zone, 10
vanishing axial force, 55
yielding of steel, 144
NLSP (nonlinear static pushover), see Building
frames, bounds for collapse loads
Nonlinear hinge properties, defining, 195, 199,
200-202, 200-202
Nonlinear static pushover (NLSP), see Building
frames, bounds for collapse loads
Normality rule, 156-157
Notations, 19-20
Numerical procedures
moment-curvature relationship, RC sections,
62-67
sample plots, 14-25
spreadsheet format, 41
studies and discussions, 13, 26
summary of expressions, 39—40
tables, 27-38
Numerical studies
collapse loads, 131-134
moment-curvature relationship, 62—67
moment-rotation relationship, 106, 110, 112
Numerical values, fixed beams
300 “ 450, 27-28, 76, 80, 91, 101, 102, 106,
110, 112, 113, 131
300 “ 500, 29-30, 76-77, 80-81
300 “ 600, 31-32, 77, 81-83, 101, 102, 112,
113
350 500, 33-34, 78, 83
350 600, 35-36, 78-79, 84
350 700, 37-38, 79, 84-85

P

Percentages of reinforcements
compression reinforcement, 63, 64
moment-rotation relationship, 106
steel, balanced section, 5455
tensile steel reinforcement, 63
yielding of steel, 144—145
Piecewise-linear structure, 122
Plastic flow rule, 12-13, 122. See also Flow rule
verification
Plastic hinges
collapse load bounds, building frames, 134
compression hinges, 119, 122, 204, 205

Index

300 “ 450 fixed beam, 102
fixed beam, uniformly distributed load, 112,
114
fixed beam under central concentrated load,
96-98
kinematic multiplier, 120, 123, 124, 125
moment-rotation relationship, 106
nonlinear hinge properties, defining, 195,
199, 200-202, 201-202
obtaining formation history, 212, 213
plastic, obtaining formation history, 212, 213
RC frame under lateral displacement, 120,
123
rotation, 89
simply supported beams under central
concentrated load, 99, 101
step-by-step analysis, 127-131
tensile hinges, 119, 121, 204, 204-205
Plasticization, yielding of steel, 148
Plastic kernel
depth, 11-12, 13
plastic strain increment, subdomains, 155
yielding of steel, 148—149
Plastic normality rule, 156-157
Plastic strain increment, 150, 153-156
Plots, moment-curvature relationship, 66, 68—77
P-M interaction
beam curve, 119, 119
column curve, 119, 120
curve for subdomains, 140, 141
flow rule verification, 140
force displacement curves, 126, 126—127
multipliers, collapse loads, 124, 126—131
P-M yield interaction, axial force-bending
moment
concrete, 3—4, 8, 12—-13
curves for subdomains, 6
description, 41
expressions summary, 39—40
fundamentals, 1-3
identification of subdomains, 5-13, 6
literature reviews, 1-3
mathematical development, 3-5
numerical procedures, 13, 26, 41
numerical values, 27-38
reinforced concrete (RC) beams, 5, 13,
14-25, 26, 27-40
sample plots, /4-25
spreadsheet format, 41
steel, 4-5, 7, 10-12
strain profile, 9
stress-strain relationships, 3—4, 3-5
studies and discussions, 13, 26
subdomains, 5-40
summary, 1
Preparation of frames, pushover analysis
procedure, 192, 194
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Pushover analysis, 2, 26 plots
Pushover analysis, SAP2000 software 300 ~ 400, 14
analysis, running, 212, 272 300 “ 450, 15

analysis cases, defining, 208-209, 208-211,
211

assigning, 195, 197, 199, 206, 206

bays selection, 192, 193

changing labels, 195, 196

compression hinges, 204, 205

diaphragm action, 206, 208

end offsets, 202-203, 203-204

fixed supports, 195, 197

frame dimensions, 192, 193

frame preparation and display, 192, 194

frame selection, 192, 193

fundamentals, 190

load cases, 204, 206, 206, 206-207

mass source, 202, 202

material properties, RC, 195, 197

members, displaying labels of, 193, 195,
195

nonlinear hinge properties, defining, 195,
199, 200, 200, 200-202, 200-202,
201-202

plastic hinges, obtaining formation history,
212,213

pushover curve, 212, 212

pushover load, assigning, 207, 209

running analysis, 212, 212

saving the file, 193, 194

section properties, 195, 198

selecting new model, 192, 192

stories selection, 192, 193

tensile hinges, 204, 204-205

Pushover curves

building frames, various, 133, 133
single-story bay RC frame, 131, 131

300 “ 500, 1617

300 “ 600, 18-19

350 “ 500, 20-21

350 600, 22-23

350 © 700, 24-25
P-M yield interaction behavior, 5, 5
studies and discussion, 13, 26
tension and compression reinforcements, 5

Reinforced concrete (RC), moment-curvature

relationship
300 450, 76, 80, 91
300 “ 500, 7677, 80-81
300 “ 600, 77, 81-83
350 " 500, 78, 83
350 “ 600, 78-79, 84
350 “ 700, 79, 84-85
axial force, 63—64
axial forces, 48, 63-64, 64
bilinearity, 26
comparisons, 66, 67
compression steel, 5253, 63-66
compressive axial force, 48-50
curvature ductility, 65-66
curvature profile, strain variation, 45-46
elastic limit bending, 50-54
elastic range, 45-50
extreme compression fiber in concrete strain,
53-54
fundamentals, 43—-44, 85-86, x
literature review, 43—44
mathematical development, 45
300 mm wide plots, 68, 70, 72, 74
350 mm wide plots, 69, 71, 73, 75
negative values, neutral axis position

Pushover load, assigning, 207, 209 assuming, 56
neutral axis positions, 56—62
R numerical studies and discussions, 62—-67
percentages, 54-55, 63
Redundancies, static multipliers, 123 plots, 66, 68-77
Regular frames, variable bays and stories, positive values, neutral axis position
182-188 assuming, 56—62
Reinforced concrete spreadsheet program, 43, 86, 88
expressions summary, 39—40 steel for balanced section, percentage, 54—55
failure interaction curve, 26 strain, 45-46, 50-54
fixed beams, numerical values summary, 43
300 “ 450, 27-28, 76, 80, 91, 101, 102, tensile axial force, 46—48
106, 110, 112, 113, 131 tensile steel reinforcement, 63, 65
300 “ 500, 29-30, 7677, 80-81 tension steel strain, 50-51
300 " 600, 31-32, 77, 81-83, 101, 102, ultimate bending moment-curvature
112, 113 relationship, 5662
350 “ 500, 33-34, 78, 83 Relative rotation
350 600, 35-36, 78-79, 84 defined, 89
350 © 700, 37-38, 79, 84-85 fixed beam under central concentrated load,
flow rule verification, 139 96-97
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moment-rotation relationship, 106,
110

simply supported beams under central
concentrated load, 99, 100, 101

Rotation

fixed beam under central concentrated load,
94-96

fixed beam under uniformly distributed load,
101, 103, 105

function of displacement, 93

plastic hinges, 89

simply supported beams under central
concentrated load, 99, 100

Rotational-elastic stiffness

fixed beam under central concentrated load,
98

moment-rotation relationship, 106,
114

simply supported beams under central
concentrated load, 101

S

Sample plots, RC beams
300 “ 400, 14
300 “ 450, 15
300 500, 16-17
300 “ 600, 18-19
350 500, 20-21
350 “ 600, 22-23
350 700, 24-25
Saving files, 193, 194
Section properties, 195, 198
Selection, pushover analysis procedure, 192,
192-193
Shear, fixed beam under central concentrated
load, 94
Simple frame with P-M interaction, 124, 126,
126-131, 129-132
Simply supported beams, see also Beams; Fixed
beams
axial forces, moment-rotation, 106
central concentrated load, 98—101
moment-rotation relationship, 106
span lengths, moment-rotation, 110, 77/
tensile reinforcements, moment-rotation,
110, 112, 112
Single bay—single story frame, 134
Single bay—single story frame, unequal column
length, 166, 172-174, 189
Single bay—single story regular frame, 165, 166,
167, 170, 189
Single bay—two story regular frame, /66,
171-172
Single—story bay RC frame, 131, 13/
Six bay—two story irregular frame, /68—169,
175-179

Index

Spreadsheet files
axial force-bending moment yield
interaction, 41
complementary information, xi, xv
moment-curvature relationship, 43, 65-66,
86, 88
moment-rotation relationship, 115
P-M yield interaction, 41
Static multipliers
collapse loads, 119, 122-124, 125
computer coding, 189
Static theorem, 133
Static theorem of limit analysis, 103, 105,
122
Steel (yielding)
collapse caused by, 140, 142
material properties, 4
moment-curvature relationship, 54-55
percentage of, balanced section, 5455
RC failure interaction curve, 26
strain in compression zone, 10
strains, tension and compression, 12, 13
stress-strain relationship, 4, 4-5
subdomains, 5, 7, 7, 10-12, 144-150
Step-by-step analysis, simple frame with P-M
interaction, 124, 126131, x
Step-by-step analysis with force-controlled
method, 133-134
Stiffness matrix, 127-129
Stories selection, 192, 7193
Strain
compression steel reaches elastic limit value,
52-53
extreme compression fiber in concrete
reaches elastic limit value, 53-54
moment-curvature relationship, 50-54
steel, tension and compression, 12
step-by-step analysis, 130
subdomains, 9
tensile steel, values, 129, 129-130
tension steel reaches yield limit/stress in
concrete does not equal zero, 50-51
tension steel reaches yield limit/stress in
concrete vanishes, 50
verification of flow rule, 156-157
yielding of steel, 144
Stress-strain relationship, 3—4, 3-5
Subdomains
codes imposition, 26
concrete, 8, 12-13, 150
curves for, 6
expressions summary, 39—-40, 151-152
flow rule verification, 140, 144-150, 159-163
identification, 5-13, 6
numerical values, examples, /58
sample plots, 14-25
steel, 5, 7, 7, 10-12, 144-150
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strain profile, 9
studies and discussions, 13, 26
verification of flow rule, 156157
Summaries
axial force-bending moment (P-M) yield
interaction, 1
collapse loads, 117-118
flow rule verification, 139
moment-curvature relationship, 43
moment-rotation relationship, 89
Summary of expressions
behavior, P-M yield interaction, 26, 39—40
subdomain, P-M yield interaction, 150,
151-152

T

Tensile axial force, 46—48

Tensile failure
flow rule verification, 140
step-by-step analysis, 130

Tensile hinges, 204, 204-205

Tensile reinforcements
fixed beams, moment-rotation, 110, /71, 112
moment-curvature relationship, 63
moment-rotation relationship, 110, 112
neutral axis positions, 61
yielding of steel, 144—145

Tension failure
ductility ratio, 112
failure interaction curve, 26
moment-curvature relationship, 50-51
moment-rotation relationship, 90

U

Ultimate axial force
crushing of concrete, 12—13
steel, strain in compression zone, 10—12
yielding of steel, 144-146, 148-149
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Ultimate bending moment

fixed beam under uniformly distributed

load, 104

kinematic multiplier, 120

neutral axis positions, 56, 61

yielding of steel, 144-146, 148-149
Ultimate bending moment-curvature

moment-curvature relationship, 56—62
Ultimate curvature, 57-60
Ultimate moment

neutral axis positions, 60—61

verification of flow rule, 156
Uniformly distributed loads, 101-106
Upper bound, 133

\Y

Vanishing axial force, 54-55

Verification, flow rule, see Flow rule verification
Vertical concentrated loads, 124, 125

Vertical loads, 121

Web sites

axial force-bending moment yield
interaction, 41

complementary information, xi, xv

moment-curvature relationship, 43, 65-66,
86, 88

moment-rotation relationship, 115

P-M yield interaction, 41

Y
Yielding of steel, 144-150

A
Zero axial force, 46, 48, 134
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for RC section 300 x 500 (f, =25 N/mm?, f, = 380 N/mm?).

COLOR FIGURE 1.10 P-M interaction curves
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COLOR FIGURE 1.11  P-M interaction curves for RC section 300 X 500 (f,, = 25 N/mm?, f, = 415 N/
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for RC section 300 X 600 (£, = 25 N/mm?, f, = 380 N/mm?).

P-M interaction curves

COLOR FIGURE 1.12
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tion 300 x 600 (f, = 25 N/mm?, f, = 415 N/mm?).

RC sec

for

COLOR FIGURE 1.13 P-M interaction curves
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for RC section 350 x 600 (f,, = 25 N/mm?, f = 380 N/mm?).

COLOR FIGURE 1.16 P-M interaction curves
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Nonlinear analysis methods such as static pushover or limit
analysis until collapse are globally considered reliable tools
for seismic and structural assessment. But the accuracy of
seismic capacity estimates, which can prevent catastrophic

loss of life and astronomical damage repair costs, depends
on the use of the correct basic input parameters.

Tools to Safeguard New Buildings and Assess Existing Ones

Seismic Design Aids for Nonlinear Analysis of Reinforced
Concrete Structures simplifies the estimation of base structural
parameters and enables accurate evaluation of proper bounds

for the safety factor. Many design engineers make the relatively
common mistake of using default properties of materials as
input to nonlinear analyses without realizing that any minor
variation in the nonlinear characteristics of constitutive
materials, such as concrete and steel, could result in a solution

error that leads to a disastrously incorrect assessment or 4 _
interpretation. To achieve a more accurate pushover analysis _j=——{ Ll
and improve general performance-based design, this book:

« Reviews relevant literature to help engineers conduct
structural seismic assessment
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Reassessing key inputs, this book analyzes boundaries using pezoas
a detailed mathematical model based on international codes.
It proposes design curves and tables derived from the authors’
studies, detailing modeling numerical procedures step by
step. The authors include analytical bounds of the structural
safety factor for some typical frames, making this work a /
sound and valuable tool for assessment or design purposes. :
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