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Preface 

Significant changes have occurred in the approach to structural analysis 
over the last twenty years. These changes have been brought about by a 
more general understanding of the nature of the problem and the develop­
ment of the digital computer. Almost all s~ructural engineering offices 
throughout the world would now have access to some form of digital 
computer, ranging from hand-held programmable calculators through to 
the largest machines available. Powerful microcomputers are also widely 
available and many engineers and students have personal computers as a 
general aid to their work. Problems in structural analysis have now been 
formulated in such a way that the solution is available through the use of 
the computer, largely by what is known as matrix methods of structural 
analysis. It is interesting to note that such methods do not put forward new 
theories in structural analysis, rather they are a restatement of classical 
theory in a manner that can be directly related to the computer. 

This book begins with the premise that most structural analysis will be 
done on a computer. This is not to say that a fundamental understanding 
of structural behaviour is not presented or that only computer-based tech­
niques are given. Indeed, the reverse is true. Understanding structural 
behaviour is an underlying theme and many solution techniques suitable 
for hand computation, such as moment distribution, are retained. The most 
widely used method of computer-based structural analysis is the matrix 
stiffness method. For this reason, all of the fundamental concepts of struc­
tures and structural behaviour are presented against the background of the 
matrix stiffness method. The result is that the student is naturally introduced 
to the use of the computer in structural analysis, and neither matrix methods 
nor the computer are treated as an addendum. 

Matrix algebra is now well taught in undergraduate mathematics 
courses and it is assumed that the reader is well acquainted with the subject. 

xiii 



xiv PREFACE 

In many instances the solution techniques require the manipulation of 
matrices and the solution of systems of simultaneous linear equations. These 
are the operations that the digital computer can most readily handle and 
they are operations which are built into computer application programs in 
structural engineering. For the student, however, it is important that these 
operations are understood, so that it is desirable to have a form of matrix 
manipulation computer program available. Many programmable pocket 
calculators currently provide for such operations and there is no doubt that 
the capacity and speed with which these machines can carry out these tasks 
will increase with further developments. Some computer languages, notably 
some versions of BASIC, provide for general matrix manipulation, and 
scientific library subroutines for handling matrices are provided with other 
languages such as Fortran. A third possibility is to provide a computer 
program in the form of a problem-orientated language, with a command 
structure directly aimed at facilitating the manipulation of matrices. Such 
a computer program, known as MATOP and developed by the author, is 
presented as an appendix to the text and used with illustrative examples 
throughout. The program is not unique and other such programs have been 
widely available for a number of years. 

The text is seen as a first course in structural mechanics or the theory 
of structures, although it is assumed that students will have done a first 
course in the more general field of applied mechanics including simple 
beam theory and stress analysis. The material is probably more than can 
be covered in two semesters, and indeed it has been delivered over three 
semesters. The first two chapters outline the fundamental principles and 
introduce students to the nature of structures and the structural analysis 
problem. A detailed study of equilibrium and statical and kinematic deter­
minacy is presented in chapter 2. In chapter 3, the foundations of the 
matrix stiffness method are presented and the ideas of element and structure 
stiffness matrices are developed. The classical slope-deflection equations 
are developed from simple beam theory in this chapter, and presented in 
matrix notation to give the general beam element stiffness matrix. 

The matrix stiffness method is further developed in chapter 4, where 
it is applied to continuous beams and rectangular frames. At this stage 
coordinate transformation is not introduced and axial deformation of the 
element is ignored. The approach leads to some powerful applications where 
the analysis results can be obtained quite rapidly, particularly with the use 
of the direct stiffness method. It is shown in many instances that the solution 
is reduced to one of handling matrices of a size that can be adequately 
dealt with on a pocket calculator. 

The moment distribution method has been retained as a useful hand 
method of analysis and this is detailed in chapter 5, with applications to 
beams and rectangular frames. The work is closely related to that of chapter 
4 and the moment distribution method is shown as a logical variation of 



PREFACE xv 

the matrix stiffness method. Chapter 6 returns to the matrix stiffness method 
to introduce the general stiffness method and coordinate transformation. A 
wider range of structures is now considered, including composite structures 
where elements of different types are introduced into the one structure. 

A fundamental study of structural analysis must include a reference 
to the principle of virtual work which is presented in chapter 7. Both the 
principle of virtual displacements and the principle of virtual forces are 
considered. The principle of virtual forces, particularly with regard to 
expressions for the deflection of structures, leads logically into the flexibility 
method of analysis presented in chapter 8. This provides an alternative 
approach to the stiffness method and gives a balance to the overall study. 

The author is convinced that the general use of computer programs 
for structural analysis makes demands for greater, rather than less, awareness 
and understanding of structural behaviour on the part of users. Structural 
computations must still be checked, results must still be interpreted and 
engineering judgement must still be exercised. To facilitate this, a chapter 
on approximate methods of analysis is included (chapter 9). It is presented 
at this stage since it is felt that approximate methods can only be introduced 
against a background of general knowledge of structural behaviour. 

In a final chapter, some general guidance to computer application 
programs in structural analysis is presented. Some aspects of modelling of 
structures are also discussed. Numerous examples are given throughout the 
text and a common thread is achieved through the use of the program 
MATOP, details of which are given in an appendix with a program listing 
in Fortran 77. Much of the data presented throughout the text is collected 
together in another appendix as a 'Structural Mechanics Students' Hand­
book'. The significant data here is a collective statement of the element 
stiffness matrices for various element types. 

w. 1. Spencer 



Chapter 1 
Introduction to Structural 
Engineering 

The analysis of structures has long been a subject of enquiry by intellectual 
man. Attempts to determine the nature of forces within structures has kept 
pace with man's determination to build. Serious study commenced in the 
16th and 17th Centuries with scholars such as Leonardo Da Vinci and 
Galileo Galilei. Rapid progress was made during the 18th and 19th Cen­
turies, and particularly in the Industrial Revolution, when many classical 
theories of structural behaviour were first put forward. More recently, the 
advent of the digital computer has led to a re-appraisal of the theory of 
structures. It is now expected that computations associated with the analysis 
of structures will be carried out by computer. 

Engineers conceive a structure in the form in which it will be built, 
however the analysis must be based on a mathematical model which approxi­
mates to the behaviour of the structure. As will be seen, part of the art of 
structural engineering is to model the structure accurately in this mathemati­
cal sense. It is more convenient though, in an educational sense, to start 
with an understanding of mathematical models representing certain struc­
tures. Simple line diagrams can be used to represent beams, columns and 
ties, and these are at once mathematical models. 

1.1 THE NATURE OF STRUCTURES 

A structure may be regarded as a number of components, referred to as 
elements, connected together to provide for the transmission of forces. The 
forces arise from loads on the structure and the elements are designed to 
transmit these forces to the foundations. In addition, a structure will have 
a particular form to enable it to perform a useful function such as providing 
an enclosed space. Broadly speaking, this is the function of the structure 
of a building. 



2 FUNDAMENTAL STRUCTURAL ANALYSIS 

Figure 1.1 is a line diagram of a structure made up of pin-connected 
elements. In response to the loads applied, the elements develop axial forces 
which are transmitted along the elements to the support points at A and B, 
where the reactions develop. At the reactions, the structure exerts forces 
on the foundations while the foundations exert balancing forces back on 
the structure. 

The fundamental objective of structural analysis is to determine the 
response of the structure to the application of loads. As such, this involves 
consideration of the loads, materials and the geometry and the form of the 
structure. The response of the structure may be measured in many ways. 
Clearly one of these is the resulting deflections of the structure which can 
be measured or calculated at discrete points. However, unless the structure 
is a mechanism, the deflections are simply the aggregate effect of internal 
deformations of the elements which cause strain and stress within the 
element. The conditions of stress, strain and deflection are all inter-related 
according to appropriate laws of mechanics. The response, or behaviour, 
of the structure must meet certain minimum requirements for the structure 
to be considered satisfactory. Deflections must be confined to reasonable 
limits otherwise the structure may not be able to perform its intended 
function. The stresses must be similarly limited to values which will not 
cause failure within the elements or connections, perhaps leading to the 
collapse of the structure. 

Methods of analysis are frequently based on numerical techniques 
which require the structure to be modelled as a series of discrete elements 
that are connected together at node points. Since the behaviour of the 
structure is the aggregated effect of the behaviour of the element, a study 
of the behaviour of the element is particularly important. Figure 1.2(a) 
shows a typical portal frame commonly used in industrial buildings. The 
action or behaviour of the structure is considered to apply in the plane of 
the frame so that the problem is a two-dimensional one. Further, the 
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Figure 1.1 Force transmission in a structure. 
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Figure 1.2 Modelling of a portal frame. 

mathematical model can be presented as a series of one-dimensional ele­
ments, or line elements, since the actions on such an element can later be 
used to determine the stresses over the depth of the section. 

In response to the loads applied, the structure may deform after the 
pattern shown in figure 1.2(b), where the structure is also shown as having 
nine nodes and eight elements, although more or fewer elements and nodes 
could be used in the model. The deformation causes internal stresses, the 
resultants of which can be shown on a free body diagram once the element 
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is isolated, as is the case for element three as shown in figure 1.2(c). In 
many instances, a study of structural behaviour can begin with a study of 
the behaviour of such an element under the action of the stress resultants 
shown. 

1.2 EQUILIBRIUM AND COMPATIBILITY 

In a satisfactory response of a structure to the loads applied to it, the 
structure develops reactive forces which are in equilibrium with the loads. 
The conditions of equilibrium must be satisfied for the structure as a whole 
and for each element considered as a free body. It may be noted from figure 
1.2 that each element must deform in such a way that, following deformation, 
the assembly of elements must conform to the continuous nature of the 
structure. This is, in effect, a description of compatibility. Compatibility 
can be described in a number of ways but the essential feature is that the 
structure, in satisfying compatibility, remains in one piece after deformation. 

It is possible then to set down certain equations of equilibrium and 
equations of compatibility to be used in the analysis of structures. This will 
be presented in more detail in subsequent chapters. It is sufficient to note 
at this stage that the structure must, in general, satisfy the conditions of 
equilibrium and compatibility. 

1.3 STRESS-STRAIN RELATIONSHIPS AND 
BOUNDARY CONDITIONS 

It has already been suggested that the deformation of the structure sets up 
strains and related internal stresses within the elements. Stress is related to 
strain through a stress-strain law which is a function of the type of material 
and the nature of the strain. The best known stress-strain law is that which 
defines linear elastic behaviour. In this case, stress is proportional to strain 
and the constant of proportionality is Young's Modulus, E. There are other 
stress-strain laws defining a wide range of behaviour but it should be 
appreciated that all stress-strain laws are approximations. 

At the boundaries of the element, where the elements are interconnected 
through the nodes, the internal stresses may be summed to give the resultant 
forces such as those shown in figure 1.2( c). Such forces act on the node 
through all the elements connected at the node and keep it in equilibrium 
with any external loads applied there. If the node happens to be a boundary 
node, then the external actions there are the reactions. Boundary nodes are 
important in the overall solution to the problem since they provide certain 
conditions which must be met. For example, there must be sufficient restraint 
on the structure as a whole to meet the conditions of equilibrium, and the 
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displacements at these restraints must be zero, or at least some prescribed 
value. 

In summary, it can be seen that the solution to a problem in structural 
analysis, where the full behaviour of the structure is investigated, involves 
a consideration of equilibrium, compatibility, stress-strain relationships 
and the boundary conditions. 

1.4 STRUCTURAL ANALYSIS-AN ILLUSTRATIVE EXAMPLE 

Figure 1.3(a) shows two rods of a linear elastic material suspended from 
two supports and connected together to provide support for a vertical load. 
In this case the structure consists of two elements and three nodes, and 
node 2 can displace, because of elongation of the bars, with translations in 
the x and y directions shown. However, because of the symmetry of the 
structure and the load, the displacement at node 2 will be restricted to y 

translation only. 
The analysis can commence with a consideration of the behaviour of 

element CD isolated from the structure and shown as a free body in figure 
1.3(b). The deformation of the element can be considered in two parts. 
Namely, rigid body rotation followed by an axial extension e[, so that end 
2 moves to meet the requirement that it should descend vertically by the 

Figure 1.3 Two bar truss. 

3 

--­x 

(c) 
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amount Ll as shown in figure 1.3(a). It is assumed that the displacements 
are small so that the element still has the same inclination to the vertical. 
This enables a simple geometric relationship to be found between el and 
Ll, so that 

el = (cos O)Ll (1.1 ) 

Equation (1.1) is an expression of compatibility since it ensures that the 
element will deform to meet the overall displacement requirements of the 
structure. It is also clear that element (!l will undergo similar deformation. 

The elongation of element CD results in internal stress which gives rise 
to the stress resultant Fl. The linear-elastic stress-strain law then gives 

(1.2) 

where E is Young's Modulus for the material and A is the cross-sectional 
area of the element. The same force, F I , obviously exists in element (!l as 
well. 

A free body diagram of node 2 is shown in figure 1.3(c). The element 
forces react on the node so that equilibrium of the node is maintained. 
Recalling that the displacements are small, the geometry of the forces on 
the node is taken as the geometry of the undeformed structure. On this 
basis the following equilibrium equation can be written: 

2FI cos () = Q (1.3) 

While the solution to equation (1.3) is immediately obvious for given values 
of Q and 0, it is instructive to substitute for FI in equation (1.3) to give 

EA 
2 L el cos 0 = Q (1.4) 

Then, substituting for e l from equation (1.1) into equation (1.4) gives 

EA 
2 L cos2 OLl = Q (1.5) 

The term 2(EA/ L) cos2 0 may be written as k, so that equation (1.5) becomes 

kLl= Q (1.6) 

where k is now an expression of the stiffness of the structure. (It should 
be noted that it is not the general stiffness of the structure, since it is valid 
only when the structure carries vertical load.) This result is summarised in 
the graphs of figure 1.4. 

A feature of the analysis is that it has been assumed that the change 
in geometry of the system was not significant. This is a qualitative concept 
that is expanded on in section 1.5 and it must be treated with some care, 
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Figure 1.4 Structure and element stiffness. 

although in the majority of cases it is clear that the displacements do not 
cause a significant change in geometry. From equation (1.5), it is seen that 
as () approaches 90, the stiffness of the system approaches zero, suggesting 
that two horizontal bars pin-connected together cannot carry a vertical load. 
Rigid body statics, where no deformations or change in geometry are 
admitted, supports this view but in reality the system will deflect, allowing 
the elements to carry the load. The analysis under these circumstances 
requires the change in geometry to be considered and the problem becomes 
non-linear because of this effect. 

1.5 LINEARITY, STABILITY AND LOADING 

Structural systems are frequently assumed to be linear elastic systems. 
However, structures may behave both in a non-linear manner and inelasti­
cally. The characteristics of structural behaviour can be summarised by the 
series of load-deflection curves of figure 1.5. As shown in the graphs of 
figure 1.5, a structure is said to behave elastically when the loading path is 
retraced during unloading. The graphs of figures 1.5(e) and 1.5(f) can be 
considered as special cases of linear inelastic behaviour. These are important 
since they represent the fundamental basis of the plastic theory of structures 
which concentrates on the behaviour of structures once the elastic limit is 
reached. The characteristics of figure 1.5 may apply to either an element of 
a structure or the structure as a whole. Non-linear behaviour may be due 
to the material properties (material non-linearity), or to the geometry of 
the system (geometric non-linearity). 

For structures that behave in a linear elastic manner, the principle of 
superposition can be applied. This principle is frequently used to advantage 
in the analysis of structures, and it simply refers to the fact that a super­
position of effects from several load systems is equivalent to the effects 
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Figure 1.5 Chararacteristics of structural behaviour. 
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caused by all the load systems acting simultaneously. The effects refer to 
any condition at a given point such as a reaction, an internal action or a 
deflection. 

1.5.1 Geometric Non-linearity 

In general, the changes in geometry due to the loads applied to a structure 
are not significant and, provided the material is linear elastic, this leads to 
the linear elastic behaviour of the structure. The neglect of changes of 
geometry is not so difficult to accept when it is appreciated that in most 
structures the deflections are very small when compared with the dimensions 
of the structures. However the assumption is not always appropriate and 
this can be illustrated by two classical cases, one involving a tension element, 
the other involving a compression element. 

The cable stays of a guyed mast, for instance, are clearly tension 
elements with some initial geometry. Under wind load, the mast will sway 
and the cable geometry will change. The resisting force developed by the 
cables due to the cable tension can be shown to be a non-linear function 
of the mast displacement. In a relative sense, the change in geometry of 
such a structure is significant and it cannot be ignored. 
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On the other hand, a column with some initial lateral deflection at mid 
height will exhibit non-linear behaviour as the column load is increased. 
Usually, the non-linearity is not significant at normal design loads, but it 
becomes highly pronounced as the load approaches the critical elastic load 
for the column. In spite of this, structures which include compression 
elements may still be considered to be linear elastic systems. This is due to 
the fact that it is assumed that the compression elements will be designed 
in such a way that the element load is confined to that part of the load­
deflection curve which is essentially linear. These two non-linear effects are 
illustrated in figures 1.6(a) and 1.6(b) where it can be noted that the effective 
stiffness of the cable actually increases with load, while the stiffness of the 
column decreases. 

1.5.2 The Stability of Structures 

A simple tension element can be loaded essentially up to the yield stress 
of the material without any undue effect on the structure. On the other 
hand, compression elements are limited not only by the yield stress, but 
also by their tendency to buckle elastically. This introduces the question of 
the stability of columns and of structures generally. The Euler buckling 
load of a column under various end conditions is widely known and it is 
well treated in a number of texts on applied mechanics. 

Mathematically, the Euler load, or critical elastic load, represents a 
bifurcation point in the load-displacement curve. That is to say, there are 
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two equilibrium states beyond the critical load, one of which is the buckled 
condition. Just as a column acting as a single element has a critical load, 
so too does a structure, as a collection of elements including compression 
ones, have a critical load. An element of a structure loaded in compression 
beyond the critical load is unstable and liable to buckle. 

A study of the stability of structures is aimed at calculating the elastic 
critical load and deducing appropriate design loads for the compression 
elements, to ensure that buckling does not occur. This is generally a complex 
procedure although the techniques can be built up from the matrix analysis 
methods presented in later chapters. Fortunately, the stability analysis of a 
structure can be considered subsequent to the linear elastic analysis. Further, 
in many cases Codes of Practice offer sufficient guidance for a stability 
analysis not to be necessary. Nevertheless, important structures are subjected 
to stability analysis and the computational effort required is continually 
being reduced by developments in computer applications. 

1.5.3 Loads on Structures 

Structural analysis is simply one part of the design process for a structural 
engineering project. Throughout this text, the analytical starting point is 
the mathematical model of the structure with nominated loads acting on it. 
The design of structures is much broader than that and includes such things 
as the assessment of loads and proposals for the form that the structure 
should take. Loads arise from the materials of which the structure is built 
and from the function and use of the structure. Many different types of 
load are readily identified and they include dead load, live load, and wind 
load as well as loads due to other natural effects such as temperature, 
earthquakes, snow and ice. A full discussion on loads is beyond the scope 
of this text although it must be treated in the overall design context. In 
many cases, loads can be assumed to be static; that is, they are simply 
applied to the structure and do not vary with time. Even the effect of wind 
forces acting on a structure is generally approximated by a set of static 
loads. For this reason, routine structural analysis is often referred to as 
static analysis of a structure. 

Of course loads do vary with time and if the time variation is significant 
compared with certain dynamic characteristics of the structure, then the 
loads should be regarded as dynamic. Broadly speaking, dynamic loads 
cause a variation in the structures behaviour that oscillates about a mean 
position given by the static analysis. Such behaviour can introduce vibration 
and fatigue problems and it introduces the topic of the dynamic analysis 
of structures. As with the techniques for the stability analysis of structures, 
the procedures for the dynamic analysis of structures can be developed 
from the matrix methods of static analysis. 
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1.6 SCOPE OF THE BOOK-FUNDAMENTAL ASSUMPTIONS 

Some reference to the scope of this text has already been made in the 
preface. However it is pertinent to make some further reference here and, 
in particular, to point out some underlying assumptions which provide 
limits to the material subsequently presented. 

The text has been written as a first course in structural mechanics for 
students undertaking- civil engineering or structural engineering degree 
courses. It is assumed that students will have done an introductory course 
in the more general field of applied mechanics, including an introduction 
to simple beam theory and beam stress analysis. Some familiarity with 
drawing bending moment and shear force diagrams for beams is also 
assumed, along with fundamental notions of equilibrium. 

There are some underlying assumptions of structural analysis which 
apply to all of the material presented in the text. On occasions, particularly 
when first introduced, these assumptions are restated. However it is expected 
that the assumptions as stated here will be understood to apply throughout. 
The assumptions are: 

(a) that the structures behave in a linear elastic manner; and 
(b) that small deflection theory applies to the structures under analysis. 

In presenting a fundamental text on structural analysis, it is appropriate 
to restrict the material to that which is applicable to linear elastic structures. 
Most of the common types of structure under loads within their serviceability 
limits act in a manner that is approximately linear elastic. In any event, a 
fundamental understanding of linear elastic behaviour is essential before 
other types of behaviour are studied. 

1.6.1 Sign Conventions 

In introducing students to beam behaviour and bending moment diagrams, 
it is usual to introduce a sign convention based on a rigorous mathematical 
approach using the first quadrant right-hand set of cartesian axes. This 
leads logically to the notion of positive bending moment being associated 
with positive curvature, or more simply, a sagging beam. Such moments 
are then often plotted with positive ordinates above a datum line in the 
conventional manner of any graph, which after all is what a bending moment 
diagram is. 

However it is a widely held convention that the ordinates of the bending 
moment diagram should be plotted off the tension face of a line diagram 
of the structure. Where bending moment diagrams are shown in this text, 
that is the convention that has been followed. Beyond that it is not necessary 
to indicate whether the bending moment value is positive or negative. 
Although the concept of positive and negative bending can still be applied 
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to continuous beams, it becomes rather meaningless for frames. Bending 
moments may equally well be plotted off the compression face of an element; 
the important point is simply that the convention be stated and adhered to. 

The sign conventions for other quantities such as displacements and 
internal actions and loads are defined as they arise. Further comment on 
the question of sign convention is also made in the introductions given to 
both parts of the 'Structural Mechanics Students' Handbook' presented as 
appendix B. 
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Chapter 2 
Equilibrium Analysis and 
Determinacy of Structures 

The equilibrium of forces throughout a structure at rest represents an 
important basis for the analysis of those forces. Provided the structure stays 
at rest as the loads are applied, the structure can be described as being in 
a state of static equilibrium. There are conditions of dynamic equilibrium 
relating to bodies in motion, including structures, but this text is concerned 
only with statics-that is, the interaction of bodies at rest. 

The early Greek mathematicians developed the important principles 
of statics which underlie the behaviour of all structures. A significant 
contribution was made to the theory of structures in the 18th Century by 
the French engineer C. A. Coulomb, when he clearly stated for the first 
time the conditions of equilibrium of forces acting on a beam-conditions 
which are the basis of shear force and bending moment diagrams. 

2.1 THE EQUATIONS OF EQUILIBRIUM 

Although most structures are elastic bodies, the deformations under load 
are considered to be small so that changes in geometry are generally ignored. 
For this reason, when considering equilibrium, the structure is regarded as 
a rigid body and the operation is often described as one of applying rigid 
body statics. Any system of forces and moments acting on a rigid body can 
be resolved into components acting along a set of Cartesian axes. This is 
illustrated in figure 2.1 where an arbitrary set of actions on a rigid body in 
three-dimensional space is shown. A typical force Fi has components as 
shown in figure 2.1(a), which gives rise to the equivalent actions at the axes 
as shown in figure 2.1(b). The resultant forces acting on the body of figure 
2.1(c) are shown with respect to the coordinate system, the origin and 
orientation of which is quite arbitrary. For the body to be in equilibrium 

13 
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Figure 2.1 Generalised forces in 3-D space. 

there must be no resultant force acting, and the equations of equilibrium 
for a rigid body in three-dimensional space are then given as 

L Fx = 0; L Fy = 0; 

L Mox =0; L Moy =0; 
(2.1 ) 

2.1.1 Moment of a Force about an Axis 

The resolution of any force F into components parallel to a set of Cartesian 
axes is well known as a function of its direction cosines. Not so well known, 
however, is the moment of any arbitrary force F about an axis. This may 
be defined as the product of the resolute of the force on a plane normal 
to the axis and the perpendicular distance between the line of action of the 
resolute and the intersection of the plane and the axis. It follows that a 
force will have no moment about an axis if the force is parallel to the axis 
or intersects it. It is necessary to understand the moment of a force with 
respect to an axis to apply the moment equations of equation (2.1) success­
fully to three-dimensional structures, as will be seen. 
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Frequently it is sufficient to work in two-dimensional space, nominating 
a suitable origin and x and y coordinates. Under these circumstances, the 
equations of equilibrium become 

I Fy =0; and I Moz =0 (2.2) 

The last of these equations is still strictly the sum of the moments about 
an axis oz taken normal to the x-y plane from the origin. However, since 
this axis is not usually shown, the equation is often written simply as 
I M = o. The moment of a force about a point in two-dimensional statics, 
which may be defined as the product of the force and its perpendicular 
distance from the point, should now be seen as a special case of the moment 
of a force about an axis. 

2.1.2 Sufficiency of Restraint 

For a structure acting as a rigid body under load to be in static equilibrium, 
a sufficient number of restraining forces or reactions must develop. A 
three-dimensional system requires a minimum of six independent reaction 
components, since any arbitrary applied load may result in a force com­
ponent in any of three directions or a moment about any of the three axes. 
For a structure in two-dimensional space, the necessary minimum n~mber 
of restraints is three. These are necessary, but not sufficient, conditions 
however, since certain conditions also apply to the arrangement of the 
reactions, as will be shown. 

Figure 2.2(a) shows a two-dimensional rigid body and serves to intro­
duce the notation for support conditions. At A, the body is attached to the 
foundation by a roller support, capable of developing a reaction, xa , only 
in the direction normal to the direction in which the roller is free to move. 
At B, the connection to the foundation is through a pin connection, capable 
of developing a reaction in any direction, which gives rise to two independent 
components expressed as Xb and Yb as shown in the free body diagram of 
figure 2.2(b). A further type of restraint, which is not illustrated, can be 
defined as a fixed or clamped support where the body is built into the 
foundation so that it cannot rotate at that point. The fixed support can 
develop three independent reaction components since a moment restraint 
can develop in addition to the reactive forces in the x and y directions. 

Applying the equations of equilibrium as expressed by equation (2.2) 
to figure 2.2(b) gives 

I Fx=O: Xa+Xb =0 (i) 

I Fy =0: -Q+Yb =0 (ii) 

IM=O: L L -x --Q-+ Y; L=O a 2 2 b (iii) 
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(0.) Support Deto.ll 

Figure 2.2 Reactions on a 2-D body. 

From equation (ii): 

Yb=Q 

Substituting into equation (iii): 

L L 
-Xa"2=-Q"2 

Xa=Q 

and using equation (i): 

Xb=Q 

Xo. 
~r----------------' 

I Xb 

L-------~~Q----~I~ 

(b) Free Beely IJ'Qgro.M 

It should be evident that a consistent sign convention has been used in 
applying the equations. Moments have been taken as acting positive in an 
anticlockwise sense about the implied oz axis, consistent with the right-hand 
grip rule often used. Of course, any other convention could equally well 
have been used. 

The more general equations of equilibrium given by equation (2.1) are 
applicable to the three-dimensional rigid body, in this case a space truss, 
of figure 2.3(a). The structure is attached to the foundations at A, Band 
C. The connection at A is capable of developing a reaction in any direction 
and, as the equivalent to a pin connection in two-dimensional statics, may 
be described as a spherical pin connection. It is more convenient, though, 
to represent such a connection by its three independent components shown 
as rigid pin-ended links as in figure 2.3(a). To satisfy equilibrium with 
respect to such links alone, the reaction component in the link must act 
along its direction. On a similar basis, the rigid links have been introduced 
at Band C to define the reactions there. A similar notation to define reactions 
can be used with two-dimensional statics. 



EQUILIBRIUM ANALYSIS AND DETERMINACY OF STRUCTURES 17 

Ete-vatlon 

A 
% 

(0.) A SIMple Spa.ce Truss Plo.n 

(10) Deta.lls of' ArrangeMent 

Q 

(c) Free Body Dlagro.M 

Figure 2.3 Reactions on a 3-D body. 

For the equilibrium analysis to proceed it is helpful to assume that all 
of the reactions are acting as tension positive. This leads to the free body 
diagram of figure 2.3(c) where all of the forces acting on the structure are 
shown. 

Applying the equations of equilibrium as expressed by equation (2.1) 
gives 

I Fy=O: -r2- 3Q 

I Fz = 0: r3 + r4 - Q 

"M = 0: r J(3)a _ r ~+ Q J(3)a 
L... ox 2 6 3 2 2 

=0 

=0 

=0 

=0 

(i) 

(ii) 

(iii) 

(iv) 
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(v) 

=0 (vi) 

and these equations may be solved to give the values of the six independent 
reaction components. There may have been some computational advantage 
in putting the origin of the axes at A, since the first three reactions would 
then have no moments with respect to any of the axes. 

The equations can also be expressed in matrix notation; after dividing 
equations (iv)-(vi) through by a, the result is 

1 

o 
o 

o 

J3 
6 

J 
:2 

o 
-1 

o 
J3 
6 

o 

J 
2 

o 
o 
1 

J 
:2 

J 
:2 

o 

o 
o 

o 

o 

which may be written as 

A· R=P 

-1 

o 
o 

o 

J3 
2 

o 

-1 

o 
o 

o 

o 

o 

o 
3Q 

Q 
J(3)Q 

----
2 

Q 

2 

3Q 

2 

(2.3) 

(2.4) 

where A is a statics matrix, R is a vector of the reactions and P is a load 
vector. 

It was previously mentioned that while a minimum of six independent 
reaction components was a necessary condition for the equilibrium of a 
three-dimensional body, that condition alone was not sufficient. The 
arrangement of the restraints is also important. This can be illustrated by 
returning to the structure of figure 2.3(a) but now introducing a spherical 
pin connection at B while eliminating the restraint at C. This gives the 
required six reactions and the equilibrium analysis can proceed as before. 
The statics matrix, A, may now be shown to be 

A= 

1 

o 
o 

o 

J3 
6 
J 
:2 

o 
-1 

o 
J3 
6 

o 
J 
:2 

o 
o 
1 

o 

-1 

o 
o 

o 

J3 
2 

o 

o 
o 
1 

o 

o 

o 
-1 

o 
J3 
2 

o 
J 
:2 

(2.5) 
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Attempts to find a solution to the equation of the form of equation (2.4) 
will fail since the matrix A will be found to be singular. A physical 
interpretation of this is immediately given by considering an origin of the 
axes at A, with an axis along AB. Since all the reactions now intersect such 
an axis, no reactive moment can develop about it and the structure is free 
to rotate about AB. 

While it is possible to derive certain rules about the arrangement of 
the reactions, they will not be pursued here. In most cases the necessary 
arrangement is fairly obvious and in any event, as was shown, the reactions 
cannot be calculated for an unsatisfactory arrangement. A similar situation 
occurs in two-dimensional statics, where the statics matrix A can be written 
and examined in that case. 

Throughout this discussion some emphasis has been placed on the 
notion of independent reaction components. Engineers find it convenient 
to define reactions with respect to forces in the x, y and z directions of a 
suitably nominated set of cartesian axes. These components are said to be 
independent if the reaction is free to develop in any direction. For the pin 
connection in two-dimensional statics, there are two unknowns associated 
with the reaction: namely its magnitude and direction. (Its sense may be 
simply nominated, to be verified by equilibrium.) Instead of describing the 
unknowns as say, Rb and 0o , the reaction is described in terms of its 
independent components of say, Xb and Yb • This is shown in figure 2.4(a), 
which also illustrates a condition when the reaction must develop in a 
specified direction. The pin connection at B in figure 2.4(b) is only subjected 
to two forces and for these to be in equilibrium, they must be co-linear. 
The reaction can still be resolved into two components, but these are not 
independent components. 

~~ t Y B (b) D~p~nd~nt Reaction COMponeni;& 

Figure 2.4 The nature of reactions. 
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2.1.3 Determinacy on the Basis of Equilibrium 

If more than the required number of reactions is provided for a rigid body, 
then the equilibrium equations will not be sufficient to define the reactions. 
In such a case the statics matrix, A, of equation (2.4) will not be square 
and the equation cannot be solved for R. The problem is then said to be 
statically indeterminate; in other words, the reactions cannot be determined 
by statics alone. This issue will be developed further in section 2.4. 

On the other hand, if an insufficient number of restraints were intro­
duced then the body would be unstable. For example, a beam resting on 
two roller supports actually represents an unstable system, since it has no 
resistance to lateral force. If the loads are confined to vertical loads though, 
the system has a solution. In this case the first equation of equation (2.2), 
that is L Fx = 0, is being ignored and the loads are not general. It is 
convenient to use this approach in the case of continuous beam analysis 
since the transverse loads represent one loading condition, while the longi­
tudinal loads represent another and the system can be analysed separately 
for this condition. 

2.2 A CLASSIFICATION OF STRUCTURES 

Part of the definition of a structure given in chapter 1 was that a structure 
may be defined as a series of elements connected together in a certain 
manner. The elements may be physically recognised, for example, as beams, 
columns, ties, slabs and plates. In each case, for the analysis of the structure 
to proceed, the element must be represented by a suitable idealisation. 

Elements which can be represented by a single line are described as 
one-dimensional elements, characterised by the fact that one dimension is 
very much greater than the other two. Structures which are built up from 
one-dimensional elements are known as skeletal structures or skeletal 
frames. In general, beams, columns, ties and struts are all one-dimensional 
elements and they are certainly considered as such in skeletal frame 
analysis. 

A two-dimensional element is one where two dimensions, of about the 
same magnitude, are very much greater than the third. This definition 
introduces slabs, plates and shells as two-dimensional elements. In a three­
dimensional element, all dimensions are recognized and the structure is 
seen as being built up from three-dimensional blocks. The emphasis in this 
text is on skeletal frame analysis and the elements are all necessarily 
considered as one dimensional. Within that constraint though, the resulting 
analysis may be of a two-dimensional or a three-dimensional structure. 
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2.2.1 Skeletal Frames 

Clearly a three-dimensional form can be built up from one-dimensional 
elements as is evidenced by the skeletal form of any city building. Frequently, 
because of the orthogonal arrangement, such structures are analysed as 
two-dimensional systems in different planes. When the structure is con­
sidered in three-dimensional space it is described as a space frame. Further, 
if the connections of the elements are modelled as pin connections, then 
the structure is a space truss. The more general space frame is a structure 
with moment transfer possible at the connections which are considered as 
rigid jointed. 

A plane frame or planar structure, as a class of skeletal frame, is defined 
as one where all of the elements of the frame, and the loads acting on it, 
lie in the one plane. This leads to the two-dimensional skeletal frames which 
are dominant in the examples of this text. As a special case of the plane 
frame, when all the connections are modelled as pin connections, the 
structure is defined as a plane truss. Otherwise the plane frame may have 
connections that are modelled as rigid joints, allowing moment transfer. 

Two other classes of skeletal frame remain. The first of these is the 
plane grid or grillage. In this system all of the elements of the structure lie 
in the one plane with the loads confined to act normal to that plane. The 
deck of a bridge structure may be modelled as a plane grid. The final 
classification is perhaps the simplest form of a skeletal frame and that is 
simply a beam, either acting with a single span or continuous over several 
spans. The classification is summarized in table 2.1 of section 2.5, where 
additional characteristics of the structures are also noted. 

2.3 INTERNAL ACTIONS IN STRUCTURES 

A one-dimensional element in a space frame will develop internal stresses 
due to the strains of its deformation under load. On any nominated section 
taken through the element, the stresses can be defined by a stress resultant. 
Since the stress resultant can be resolved into three components with respect 
to a selected set of cartesian axes taken at that section, six internal actions 
can be defined, as shown in figure 2.5(a). The six internal actions reduce 
to three for a plane frame as shown in figure 2.5(b); for a beam SUbjected 
to transverse loads alone, only shear and moment apply, while for a plane 
truss, axial force is the only internal action. 

A knowledge of the type of internal actions in a given class of structure 
enables free body diagrams to be drawn for parts of the structure. Provided 
the structure is statically determinate, an analysis is then possible by con­
sidering equilibrium. The structure itself must have a stable form so that, 
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Figure 2.5 internal actions in one-dimensional elements. 

for the purposes of statics, it is a rigid body. A simple beam will meet this 
requirement as will a plane truss built up from a series of basic triangles 
or a space truss built up from a series of basic tetrahedrons. 

2.4 STATICAL DETERMINACY 

A structure is said to be statically determinate when the reactions and 
internal actions can be determined from a consideration of statics only. 
That is, the solution is possible by considering equilibrium alone. It has 
been seen that there are certain minimum requirements with regard to the 
restraints on a structure in order that the equations of equilibrium can be 
satisfied overall for the structure. If the minimum requirements are exceeded, 
the structure would have redundant reactions and be statically indeter­
minate. 

However, the question of statical determinacy does not rest with the 
reactions. The arrangement and the number of elements also affect the 
determinacy with regard to the internal actions. It is possible then for a 
structure to be statically determinate with respect to the reactions, but 
indeterminate with respect to the internal actions, and such a structure must 
be classified as statically indeterminate. 

The series of plane trusses shown in figure 2.6 illustrates the point. A 
truss has a sufficient and satisfactory arrangement of elements if the form 
can be built up from a basic triangle with two additional elements being 
added for each additional node, such as is shown in figure 2.6(a). The three 
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equations of equilibrium for a planar structure require a minimum of three 
independent reaction components to develop at the restraints, in order that 
the equations can be satisfied, and again a satisfactory arrangement is shown 
in figure 2.6(a). The truss of that figure can be described as statically 
determinate. 

In figure 2.6(b), additional elements have been introduced into each 
of the panels so that the total number of unknowns exceeds the number of 
equations of equilibrium that are available for the solution. This can be 
seen by considering each node in a free body diagram, representing a system 
of co-planar concurrent forces for which two equations of equilibrium can 
be written. For n nodes there are 2n such equations available. The unknowns 
are represented by the total number of independent reaction components, 
r, and the number of elements, b, since each element has the unknown axial 
force as the internal action. Thus it can be seen that if 2n equals b + r, the 
truss is statically determinate; while if 2n is less than b + r, the truss is 
statically indeterminate. The structure would have an unstable form if 2n 
were greater than the number of unknowns. While the truss of figure 2.6(b) 
is statically indeterminate, it may be noted that the reactions may still be 
calculated from statics. The truss of figure 2.6(c) has both the additional 
elements and an additional reaction component, and this is therefore stati­
cally indeterminate. 

A further example is given by the series of plane frames shown in figure 
2.7. The rigid jointed plane frame of figure 2.7(a) has a sufficient and 
satisfactory arrangement of restraints and both the reactions and the internal 
actions can be determined from a consideration of equilibrium. The flexural 
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Figure 2.7 Statical determinacy of a frame. 

element of a plane frame carries axial force, shear force and moment as 
the unknown internal actions. For the frame of figure 2.7(a), these can be 
determined at any point in the frame by applying the method of sections 
and considering the resulting free body diagram. Clearly such a frame is 
statically determinate. The additional element introduced in figure 2.7(b) 
renders that structure indeterminate, even though the reactions can still be 
calculated. The frame of figure 2.7(c) is redundant both with regard to the 
reactions and the internal actions. 

It is possible to generalize the question of statical determinacy of a 
frame in a similar manner to that given for a truss. Since each node, as a 
free body diagram, represents a system of non-concurrent co-planar forces, 
there are three equations of equilibrium available per node. The total number 
of unknowns is the sum of the independent reaction components, r, and 
the total number of internal actions, which is three times the number of 
elements, b. Thus if 3n is equal to 3b + r, the frame is statically determinate, 
while if 3n is less than 3b + r, then the frame is statically indeterminate. An 
unstable form would result if 3n was greater than 3b + r. 

2.4.1 Equations of Condition 

Frequently the internal actions at some point in a structure are prescribed 
by a condition introduced through the connection of the elements. For 
instance, if two beam elements are pin-connected together then the pre­
scribed condition is that there can be no bending moment at the pin, since 
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9 nooles 14 el&Ments 6 nodes 5 IPleMents 

(b) 

LS 
1 1 

3 nodes 2 eleMents 

(c) 

Figure 2.B Statically determinate forms. 

the pin cannot resist or transmit moment. Such a condition effectively 
provides an additional equation of equilibrium, usually described as an 
equation of condition. In all cases then, the number of equilibrium equations 
available becomes the sum of the nodal equilibrium equations and the 
equations of condition. 

Equations of condition effectively amount to the release of an internal 
action that would otherwise be present in the structure. However, in terms 
of understanding statical determinacy, the number of equations is simply 
increased by the number of equations of condition present in the structure. 
On this basis, all of the structures shown in figure 2.8 are statically determin­
ate and this may be verified by applying the rules previously given. The 
portal truss of figure 2.8(a) is particularly interesting. The structure acts as 
a three pinned arch, and the fact that there are four independent reaction 
components is compensated for by the equation of condition at the crown 
where there is no bending moment. 

It should be noted that while the moment release is one of the most 
common forms of equation of condition, it is by no means the only one. 
Any or all of the internal actions of an element may be released by the 
nature of a particular connection. 

2.4.2 Degree of Statical Indeterminacy 

The extent to which a structure is statically indeterminate may be described 
by the degree of statical indeterminacy. This is simply the amount by which 
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the number of unknowns for the structure (reactions plus internal actions) 
exceeds the number of equilibrium equations available for the solution 
(including equations of condition). The information is of some value in 
comparing structural forms and ultimately it is of significance in the analysis 
of such structures. For the present, it is simply instructive to understand 
the notion. 

An alternative definition which leads to a preferred method of under­
standing statical determinacy, and hence structural behaviour, may be given 
as follows: 

The degree of statical indeterminacy of a structure is the number of releases 
that must be introduced into the structure in order to give a statically 
determinate primary form 

A release may be specified with regard to an internal action or a reaction 
component. It can be seen that the introduction of a release effectively 
introduces an equation of condition. The nature of the release is also a 
function of the element type. For example, since a truss element only carries 
axial force as the internal action, the only internal release possible is 
achieved by cutting the element. On the other hand, completely severing a 
flexural element of a frame amounts to three releases, corresponding to the 
internal actions of axial force, shear force and moment. 

This approach leads to the notion of cutting back the structure and a 
useful concept with regard to frames is to introduce the idea of a tree 
structure. The unique form of a tree has the main trunk fixed at the base 
with branches from the trunk that are not directly connected to each other. 
Any frame which takes this form will be found to be statically determinate. 
This can be readily confirmed since the static analysis can start at the end 
of any cantilever branch and proceed throughout the structure. The concept 
is illustrated in figure 2.9 with the original frame of figure 2.9(a) released 

3 

3 

10 nodes 11 eleMents 

(~) (b) 

Figure 2.9 Tree structure concept. 
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3 

3 

L::, 

(0) (b) 

Figure 2.10 Frame releases. 

by the cuts shown in figure 2.9(b) to produce three tree structures. The 
frame has a degree of statical indeterminacy of 12, which can be seen as 
both the total number of releases and as 3b+r-3n. 

Of course not all frames have fixed bases, so that introducing three 
releases into each beam element is not always appropriate and may in fact 
result in an unstable form. A suitable arrangement of releases for the frame 
of figure 2.1O(a) is shown in figure 2.10(b), where the true tree form is 
restricted to the upper levels and the lower level has a statically determinate 
form similar to that of the structure of figure 2.8(b). 

2.5 KINEMATIC DETERMINACY 

Kinematic determinacy is given little attention in the general literature in 
structural engineering, but it is particularly relevant to the general stiffness 
method of structural analysis. As the term suggests, kinematic determinacy 
is related to determining the displacements of the structure. However, since 
a linear elastic structure has an infinite number of displacements throughout 
its displaced shape, the displacements in question need to be confined to 
the nodes. A structure can be said to be kinematically determinate when 
the displacements at the nodes are restrained to be zero. The restraints may 
come from the supports as specified or they may be provided by additional 
restraints imposed on the structure at the nodes, which would otherwise be 
free to move. The simplest form of a kinematically determinate structure is 
a beam built in at both ends which is often described as an encastre beam. 
Such a beam has a degree of statical indeterminacy of three, while it is 
kinematically determinate. Kinematic determinacy is closely linked to the 
concept of degrees of freedom of a structure and it is necessary to examine 
this aspect before proceeding further. 
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2.5.1 Degrees of Freedom 

The number of degrees of freedom of any structure can be defined as the 
number of displacement terms necessary to completely define the displaced 
shape of the structure. For a linear elastic structure, the deflected shape 
will be continuous throughout the entire structure. This implies that there 
is an infinite number of degrees of freedom in a structure, as is indeed the 
case. However, the definition can be refined somewhat by selecting the 
displacement terms at the nodes only. All other displacements follow as a 
consequence. This is because the nodal displacements lead to the end actions 
on the elements, and the elastic curve of the element is a function of loads, 
geometry and element properties. Thus, the number of degrees of freedom 
of a structure is a function of the number of nodes selected to define the 
structure and the number of displacement terms associated with each 
node-that is, the nodal degrees of freedom. 

2.5.2 Nodal Degrees of Freedom 

For a three-dimensional structure, a node may have up to six degrees of 
freedom. This corresponds to the three translations and three rotations that 
may occur with respect to a set of three mutually orthogonal coordinate 
axes taken through the node. For a two-dimensional structure, a node may 
have three degrees of freedom corresponding to the two translations and 
one rotation with respect to the coordinate axes taken through the node. 
The general nodal degrees of freedom for a range of skeletal structures are 
shown in table 2.1. It should be noted that with pin-jointed trusses, rotations 
are not included since the behaviour of a truss is completely defined by the 
translations of each node. 

Table 2.1 Nodal Degrees of Freedom for Various Structures 

Translation Rotation 
Nodal degrees 

Structure type of freedom x y z Ox 0, 0= 

3-D Space 
Frame 6 J J J J J J 
Truss 3 J J J 
2-D x-y plane 
Frame 3 J J J 
Truss 2 J J 
Beam 2 J J 
2-D x-z plane 
Grid 3 J J J 
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2.5.3 Structure Degrees of Freedom 

The number of degrees of freedom for a structure then follows from a 
summation of the nodal degrees of freedom, excluding those degrees of 
freedom that are restrained by the boundary conditions. The application 
of this principle is shown in figure 2.11 where a series of structures are 
shown along with the degrees of freedom of the structure. 

PLANE FRAME 

3 

4 

5 

PLANE TRUSS 

6 

Nodes , 5 

D.D,F .Inocle , 3 

Restro.lned D.O.F. I 4 

Structure D.O.F, I 3x5-4 

= 11 

( Unrestra.tned 
structure D.O.F, I 15 ) 

Nodes ,8 

D.D.F .Inocle ' 2 

Restro.tnea D.D.F, I 4 

Structure D.D,F, I 2x8-4 

= 12 

8 ( Unrestro.lned 
k----,J-------;~;::---:::f_---_7__ s1:rudure D.D.F. , 16 ) 

CONTINUOUS BEAM 

3 6 

Figure 2.11 Structure degrees of freedom. 

Nodes I 6 

D.D.F.lnocie , 2 

Restro..lned D,O.r, I 3 

Structure D,D,F. I 2x6-3 

= 9 

( Unres1:rnlned 
structure D,D.F, I 12 ) 
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There are two aspects of figure 2.11 that warrant particular attention. 
Firstly it may be noted that for each structure, the unrestrained structure 
degrees of freedom are quoted. The reason for this is that in the general 
application of the matrix stiffness method of analysis, the structure stiffness 
matrix may be formed without regard to the boundary conditions initially. 
The number of degrees of freedom for the unrestrained structure represents 
the number of equations initially set up and represented in the structure 
stiffness matrix, so that this information is of general interest. This will 
become apparent as details of the matrix stiffness method are presented in 
later chapters. 

The second point is made with regard to the continuous beam example. 
In the present context, the continuous beam must be considered to be loaded 
under transverse load only, so that the matter of reactions along the line 
of the beam do not arise. The restraint type at node 1 of figure 2.11 (c) is 
capable of restraining movement both normal to the beam and along the 
line of the beam, but this latter restraint is not considered. 

It is now possible to define the degree of kinematic indeterminacy of 
a structure simply as the number of degrees of freedom of that structure. 
Alternatively, it may be defined as the number of restraints that must be 
placed on the nodes of a structure to prevent movement of the structure 
completely. It can be seen that the notion of the restraint, in the form of 
props and clamps, is exactly opposite to the notion of a release which is 
central to the concept of statical indeterminacy. 

2.6 ANALYSIS OF STATICALLY DETERMINATE BEAMS AND 
FRAMES 

As was indicated in chapter 1, a background in applied mechanics involving 
simple beam theory and an introduction to shear force and bending moment 
diagrams is assumed. A brief review of shear force and bending moment 
will be presented here, mainly to introduce sign conventions before 
proceeding to more substantive work. 

Consider the simply supported beam of figure 2.12(a). The reactions 
are readily calculated from equilibrium and are shown in figure 2.12(b). 
For transverse loads only, the internal actions at any section of the beam 
consist of a resisting shear force, V, and a resisting moment, M. Internal 
actions may be illustrated when an element is sectioned and part of it is 
removed so that the remainder can be shown in a free body diagram. That 
is to say all the equilibrating actions are shown on the body, with the internal 
actions representing those actions that the removed portion exerts on the 
remainder. This leads to the free body diagrams of figure 2.12(c) where two 
cases are illustrated with the internal actions shown in a positive sense; in 
case 1, the section is taken before the load Q, while in case 2 the section 
is beyond the load. 
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Since all the free body diagrams of a stable structure must be in 
equilibrium, the equilibrium equations can be applied as follows, taking an 
origin of coordinates at A: 

For case I: 0 < x < a 

For case 2: a < x < L 

I Fx =0: Xa 

I Fy =0: Ya - V 

IM =0: -Vx+M 

From (ii) 

From (iii) 

I Fx =0: Xa 

I Fy =0: Ya-Q- V 

=0 

=0 

=0 

(L-a) 
= Q--'----'-

L 

M=Vx 

(L-a)x 
=Q--'--­

L 

=0 

=0 

IM =0: -Vx-Qa+M=O 

From (ii) 

From (iii) 

a 
=-Q­

L 

a 
M=-Q-x+Qa 

L 

(L-x)a 
= Q --'------'-

L 

(i) 

(ii) 

(i i i) 

(i) 

(i i) 

(iii) 

It is assumed that the beam is capable of developing the necessary internal 
actions without failure of the material, so that the shear force and bending 
moment due to the applied loads are equal to the resisting shear force, V, 
and the resisting moment, M, respectively. The expressions for shear force 
and bending moment, which can be seen as functions of x, can be plotted 
to give the shear force diagram and the bending moment diagram respec­
tively, as shown in figure 2.12(d). In this case, as with all the bending 
moment diagrams in this text, the bending moment values have been plotted 
off the tension face of the beam. 

From this simple illustration it is possible to define shear and bending 
moment at any point in a flexural element as follows; 
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(,,) A SIMply Support •• d B."M 

lQ 

X" A _ 

~i~Y-Q----~----------~ 
B FrOM equlllbrtUM' 

i Yb 

X" = 0 

Y" = Q(L-,,)/L 

Yb = Q"/L 

(b) Th" BeQI'! R .. "ctlons 

CQS" 1 0 < )( < L 

C"s" 2 ,,<)( < L 

Q(L -o')/L 

(e) Intern,,1 Actions through 
Fre" Body DlQgr"Ms 

L-----1f--_____ --,O 

~----------~I -Qo/L 

Q(L-o)o/L 
(d) Action DlQgrCl.MS 

Figure 2.12 Equilibrium analysis of a simple beam. 

The shear force, V, acting transversely across a section is equal to the sum 
of all the forces acting parallel to the section and taken on one side of the 
section 

The bending moment, M, acting at a section is equal to the sum of the 
moments of all the forces and moments about the section and taken on one 
side of the section 

Both definitions are of course an expression of equilibrium based on rigid 
body statics. In dealing with the elements of a frame, a liberal interpretation 
must be placed on the notion of 'one side of the section'. The expression 
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really refers to the continuation of the entire structure beyond either side 
of the section in question. 

For the element to perform satisfactorily it must be capable of develop­
ing the internal stresses. For example, a beam, through its section and 
material properties, must develop a moment of resistance equal to the 
bending moment imposed on it by the applied loads. This is a matter for 
stress analysis and element design which are considered after the structure 
has been analysed to determine the shear forces and bending moments 
acting throughout the structure. Other internal actions, such as axial force 
and torsional moment, can be considered in a similar manner for structures 
where such actions occur. 

Rigid jointed plane frames represent an important class of structure to 
the structural engineer. Such structures maintain stability through the capac­
ity of the rigid connection between the beam and column to transfer bending 
moment, and the flexural action is dominant in their behaviour. Simple 
cases are often referred to as bents or portal frames when a beam and two 
columns are involved. Example 2.1 demonstrates the equilibrium analysis 
of a frame and serves to introduce some important concepts in drawing 
frame bending moment diagrams. The frame of example 2.1 can be regarded 
as simply a bent beam although it must be stressed that while the rest of 
the structure is free to bend or flex, the angular relationship between the 
elements at node 2 must remain the same; this is a characteristic of a rigid 
joint. 

In example 2.1, the internal action diagram shows how typical actions 
may be calculated along the element 1-2. A similar diagram can be drawn 
for a section along the element 2-3. For frames, it is convenient to plot the 
action diagrams using a line diagram of the structure as the base line; the 
ordinates are simply plotted normal to the beam section at which they apply. 
On this basis, the shear force and bending moment diagrams of example 
2.1 result. At node 2, the shear in the element 1-2 is balanced by the applied 
load, while the shear in element 2-3 is balanced by the axial force in element 
1-2. 

On the other hand, since there is no applied moment at node 2, the 
moment at end 2 of element 1-2 must be consistent with the moment at 
end 2 of element 2-3, which is indeed the case. Since the frame turns through 
90 degrees, the same ordinate information is displayed twice. Again the 
bending moment diagram is plotted from the tension face of the elements, 
as may be confirmed by the deflected shape of the frame as shown. The 
axial deformation of the column may be ignored and the frame sways in 
response to the lateral load since the roller support is free to move. Although 
node 2 sways and rotates, the joint angle remains at 90 degrees. 

A more elaborate frame is analysed to find the reactions and bending 
moments in example 2.2. In this case, an equation of condition must be 
used, based on the pin connection of the beam element 4-6 to the column 
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Example 2.1: Equilibrium Analysis of a Simple Bent 

Given data: 

10k:T 
2 

--------'- ---x 

(a) The Frame (b) Frame Reactions 

Reactions from equilibrium: 

L Fx=O: 

L Fy=O: 

LM=O: 

From (i): 
From (iii): 
From (ii): 

tokN 2 

15kN 

10kN 

X,=-10RN 
Y3 =15 kN 
Y, =-15 kN 

3 

l:5kN 

X, +10=0 

Y, + Y3 =0 

-10(6) + Y3(4) =0 
2 3 r--------
I 
I 

P+ M(x) 

~IJ 
~ 15 

2 GOkN,., 
,----,---7" 

60kN ... 

3 

V=10 

M(x)=10(x) 

P=15 

(c) Internal Actions 

2 3 

(i) 

(i i) 

(i i i) 

r-TI ---~-,,",,-=-=-=-=-,-rr. 
I 
I 
I 
I 
I 
I 
I 
/ 
I 

1 I 

(d) Shear Force Diagram (e) Bending Moment Diagram (f) Deflected Shape 
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at node 4. Four independent reaction components are identified from the 
support conditions but, with the three equations of equilibrium and one 
equation of condition, a solution for the reactions is readily found. With 
the reactions known, the bending moment diagram can be drawn by pro­
gressively considering sections along the elements. There is no bending in 
element 1-2 or 5-6, since there is no horizontal reaction at either node 1 
or 5. Continuity of moment is again preserved at nodes 3 and 6. The same 
frame is used in chapter 7, where the frame deflections are calculated and 
a sketch of the deflected shape is given in example 7.3. The frame is used 
again in chapter 8 where this time a statically indeterminate version is 
analysed. 

Example 2.2: Equilibrium Analysis of a Building Frame 

Given data: 

2kN/M M 

2 

3.6 3.6 6 
(0.) The FraMe 

(10.4kN 3 

2kN/M 

(10) FraMe Reactions 

Reactions from equilibrium: 

L Fx=O: X 7 +5+4=0 

L Fy=O: Y1 + YS+ Y7- 9.6 - 12 =0 

LM=O: Ys{7.2) + Y7(13.2) -5(3) -12(10.2) -4(4.5) 

- 9.6(3.6) =0 

(i) 

(ii) 

(iii) 
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Equation of condition: (bending moment at pin is zero) 

Y7(6) + X7(3) -12(3) =0 

From (i): 
From (iv): 
From (iii): 
From (ii): 

X7=-9 kN 
Y7 = 10.5 kN 
Y5=7.133 kN 
Y, =3.966 kN 

12 

~ __ ~ ____ +-__ 727 

CkN 1"'\) 

(iv) 

(c) Fral"'\e Bending MOMent DiagraM 

2.7 ANALYSIS OF STATICALLY DETERMINATE TRUSSES 

Trusses are an efficient form of structure in which the elements are arranged 
in a triangular pattern, with the connection of the elements at the node 
assumed to act as a pin. This assumption, coupled with the additional 
requirement that the loads are only applied at the nodes, ensures that the 
elements carry axial force as the only internal action. 

If a node is examined as a free body under the action of the applied 
loads and the internal forces acting on it, then the resulting forces represent 
a system of concurrent forces. Concurrent force systems necessarily satisfy 
the moment equations of the equilibrium equations of equation (2.1). For 
a space truss, this leaves three equations of equilibrium available for the 
solution for the internal forces at any node, while for a plane truss, two 
such equations are available. 

The equilibrium analysis of a truss may proceed on the same basis as 
that already presented for beams and frames. That is, the reactions can be 
calculated considering the structure as a rigid body in an overall sense, and 
the solution can then go on to calculate the internal actions. As has already 
been intimated, the solution for internal actions is based on free body 
diagrams. Traditionally, the technique where each node is regarded in turn 
as a free body has been described as the method of joints, while the method 
in which the truss is sectioned to provide free body diagrams is known as 
the method of sections. It is sometimes convenient to use a combination of 
both techniques and the procedures are applicable to both space trusses 
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and plane trusses, the only difference being the number of equilibrium 
equations used as previously indicated. 

The analysis of a truss requires a systematic approach which is certainly 
emphasised in computer-based analysis. A certain degree of rigour is applied 
in the following examples, in so far as all of the unknown internal actions 
are initially assumed to be in tension, and the reactions are assumed to act 
in the positive directions of the coordinate axes. It should be recognised, 
though, that intuitive guesses as to the sense and magnitude of certain forces 
is an aid to understanding and may reduce the computational effort. The 
latter point is certainly true when elements that have zero force are identified 
intuitively, even though the basis of this must be equilibrium. 

In example 2.3, a plane truss is analysed by the method of joints, after 
first calculating the reactions. Since there are only two equilibrium equations 
applicable at each node, the nodes are taken in an order which introduces 
a maximum of two unknowns. 

A statically indeterminate form of the plane truss of example 2.3 is 
studied in chapter 3, and it is useful to consider the equilibrium equations 
in more general terms as a guide to understanding subsequent work. If each 
of the nodes is considered in turn without regard to the nature of the internal 
actions or the reactions, the following set of equations is found: 

15 + 1.011 + 0.612 

I Fy = 0: -30 

I Fx =0: 

I Fy =0: 

I Fx =0: 

I Fy =0: 

o -0.612 

+0.812 

+ LOA 

=0 

=0 

=0 

=0 

-1.015=0 

+1.014 = 0 

+1.015 = 0 

=0 
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Example 2.3: Equilibrium Analysis of a Truss 

Given data: 

y i 30kN 
2~ 30kN 

30kN ~ 30kN 

15~~1 CD 15k~~ 0 

® 
~S' 

0 @g 
~ 

C) 

'" M 

4 ® X4 15 
-7 

t Y3 600 x t Y4 

(0) The Truss (b) Truss Reactions and Forces 

Reactions from equilibrium: 

I Fx.=O: X4 +15=0 

I Fy=O: Y4 + Y3 -30-30=0 

IM=O: Y3(600) -15(800) - 30(600) =0 

From (i): X4 =-15kN 
From (iii): Y3 =50 kN 
From (ii): Y4 =10kN 

Equilibrium equations applied to each node: 

Select node 2 

I Fx =0: 

I Fy =0: 

0- f, =0 

-30- f4 =0 

hence f, =0; f4 =-30 kN 

(local axes) 

(i) 

(ii) 

(iii) 
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Select node 4 

I Fx=O: 

I Fy=O: 

-15 + f5=0 

10 + f3=0 

hence f5 =15kN; f3 =-10kN 

Select node 1 

I Fx=O: 

I Fy=O: 

15+f, +0.6f2 =0 

-30-0.8f2 - f3=0 (check) 

hence f2 =-25 kN 

y t 13 

15 t 4 
~O~ 

t 10 

Y t 30 

15 1 i f, 
----,;;. ~ 

13 
~ ~12 

These equations may be written in matrix form as: 

15 -1.0 -0.6 0.0 0.0 0.0 II 
-30 0.0 0.8 1.0 0.0 0.0 12 

0 1.0 0.0 0.0 0.0 0.0 11 
-30 0.0 0.0 0.0 1.0 0.0 14 

0 0.0 0.6 0.0 0.0 1.0 Is 
Y3 0.0 -0.8 0.0 -1.0 0.0 
X 4 0.0 0.0 0.0 0.0 -1.0 
Y4 0.0 0.0 -1.0 0.0 0.0 

and in the matrix notation of 

P=A·I 

15 
----,;;. 

~ 
x 

(2.6) 

(2.7) 
where P is a load vector, A is a statics matrix and I is the vector of unknown 
internal forces. However, since the equilibrium equations of equation (2.6) 
include the unknown reactions as part of the load vector, a solution to 
equation (2.7) is not immediately possible. The load vector and the statics 
matrix may both be partitioned to distinguish between the known load 
terms, denoted collectively as Ph and the unknown reactions, denoted by 
PR • Equation (2.7) can then be written as 

f pd r AI' 1 
fpR1 = [4Rl{f} 

Expanding equation (2.8) gives 

PF=A F ·1 
and 

(2.8) 

(2.8a) 

(2.8b) 
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Equation (2.8a) can be solved for f and the reactions can be recovered by 
the use of equation (2.8b). More generally, a solution can be found for the 
internal forces and the reactions, simultaneously, if the equations are aug­
mented as follows. 

Equation (2.8a) is also PF = AF • f + O· PR where 0 is a null matrix, 
and equation (2.8b) is also 0 = AR • f -1· PR where 1 is the identity, or unit 
matrix. These two equations can be written in the form 

(2.9) 

and equation (2.9) can be solved directly. Taken node by node, the equations 
of e'quilibrium will not always appear in the ordered fashion of equation 
(2.6), but they can always be re-arranged to that form. 

Equation (2.9) has been used as the basis for analysing the truss of 
example 2.3 in conjunction with the matrix operations program, MATOP, 
which is presented in appendix A. The following output file from MATOP 
indicates the nature of the operations and presents the solution. 

REMARIC. Anal,3h or tbe TrllSS or Zxaapl. 2.3 Inltal H.l~OP 
LOAD.AT.8.S 
PRINT. AT The Augaented Static:s Matrix 
-.100000£.01 -.600000E.00 0.000000£ ... 00 O.OOOOOOE.OO O.OOOOOOf!.OQ 
0.000000£ ... 00 O. 00000 OE.OO a .OOOOOOE.OO 
0.000000£.00 0.800000£.00 0.100000::.01 O. oaoaooc: ... oo 0.000000£.00 
0.000000£.00 0.000000£.00 0.000000£.00 
0.100000£.01 O. OOCOOO £.00 a. oooaao!.oo 0.000000£.00 O. aaaOOOhOO 
0.000000£.00 0.000000£.00 0.000000£ ... 00. 
0.000000£.000.00.'0000£+00 O.OOOOOOE+OO 0.100000£+01 O.OOOOOOE ... OO 
0.000000£.00 O. OOOIJOOE+OQ a .OOOOOQ£.OO 
O.OOOOOOE.OO o.60000Q!+OO 0.000000£.00 O.OOOOOOE.OO 0.100000£.01 
0.000000£.00 0.000000::.00 O.OOOCOOE.OO 
0.000000&.00 -.800000£.00 0.000000&.00 -.100000£.01 0.000000£.00 
0.100000£.01 0.000000£.00 0.000000&.00 
0.000000£.00 O.OOOOOOhOO 0.000000£.00 0.000000£+00 -.100000£.01 
0.000000£.000.100000£.01 O.oooooor;.oo 
0.000000£.000.000000£.00 -.100000£.01 0.000000£.00 0.000000£.00 
0.000000£+00 0.000000£.00 0.100000E.Ol 
LOAD.P.8.! 
PRU'l'.P The Modif1ed Load Vecto:" 
0.150000::.02 
·.300000£.02 
0.000000£.00 
_.300000Z.02 
0.000000£+00 
0.000000£.00 
O.OOOOOOE.OO 
0.000000£.00 
SOLVE.A.T.P 
SELECT. F. P. 5.1.1. I 
P!lINT.F The Elallent Forces 
_.941159£_15 
_.250000£.02 
_.100000£.02 
_.300000&~a2 
0.150000E.02 
S£LEr.T.R.P.3.1.6.1 
PRINT. It The Reactions 
_.500000£.02 
0.150000£.02 
_.100000£.02 
End ot FUe 

A computer program for the analysis of statically determinate plane 
trusses could be developed using the matrix operations outlined. There is 
not much point in this though, since more general procedures that will 
analyse trusses, irrespective of the nature of their determinacy, will be 
outlined in later chapters. 
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2.8 PROBLEMS FOR SOLUTION 

2.1 For each of the beams shown in figure P2.1, determine the reactions 
and sketch the shear force and bending moment diagrams. 

$-1 2 L § 1 2 10 kN} L 1 2 t 10 kN 4 
I 0.5 31 '14 05A _ 

3IE-r I 3 ~ 
I 2 110kN I 2 I 2 I 2 I 2 I 

Figure P2.1. 

2.2 For each of the plane frames shown in figure P2.2, determine the 
reactions and sketch the bending moment diagram. 

20 kN 

15 kN 15 kN -n 
4 

I 

W 
I 

U 4 

Figure P2.2. 

2.3 For each of the plane grid structures shown in figure P2.3, calculate 
the reactive forces and sketch the shear force, and bending and tor­
sional moment diagrams for the element 1-2. 

~x 

Figure P2.3. 
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2.4 For each of the space frames shown in figure P2.4, calculate the reactive 
forces and sketch the axial thrust, shear force, bending moment and 
torsional moment diagrams for the element 1-2. 

Figure P2.4. 

2.S Determine the reactions and all element forces for both of the plane 
trusses shown in figure P2.S. 

(a) 

2 2 

6115 kN 2 4 -;:] 
3 5 ~40 kN 7 ~ 40 kN 

2 2 I 2 I 2 

Figure P2.5. 
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2.6 The boom of a tower crane is pin-connected to the tower at B, and 
held in place by a tie rod, AC, connected to the top of the tower as 
shown in figure P2.6. Calculate the forces acting on the tower face 
due to the load shown on the boom. For this analysis, the boom may 
be regarded as a plane truss. 

3 

Figure P2.6. 

2.7 The boom of the tower crane of problem 2.6 is in fact a space truss 
with the general arrangement of elements as shown in figure P2.7, 
which only shows a portion of the boom from the cantilever end. 
Determine the forces in all the elements shown due to the loads 
indicated. 

3 

I 

&~ 
I 500 I 

Section 

Figure P2.7. 

FURTHER READING 

Norris, C. H. and Wilbur, J. B., Elementary Structural Analysis, 2nd edn, McGraw­
Hill, New York, 1960. 



Chapter 3 
Basic Concepts of the 
Stiffness Method 

The underlying philosophy of the stiffness method was informally intro­
duced in chapter 1 and it is now appropriate to examine the fundamental 
principles which form the basis of what is known as the stiffness or displace­
ment method of structural analysis. The method is applicable to all classes 
of structure and while particular details may vary in different applications, 
the basic concepts remain the same. The method begins by regarding the 
structure in the manner in which it has already been defined, that is as a 
collection of elements connected together at node points. In response to 
certain loads, generally at the nodes but not necessarily so, the structure 
will displace and the displaced shape can be defined by the collective terms 
describing the displacements at the nodes. 

The stiffness method regards the displacements as the fundamental 
unknowns and it is for this reason that the method is sometimes referred 
to as the displacement method. With the displacements known, it is possible 
to determine the internal actions on the elements. By way of contrast, the 
flexibility method, which is presented in chapter 8, regards any redundant 
actions as the fundamental unknowns and the displacements are calculated 
subsequently. 

Consider the behaviour of a single linear elastic spring, which is a one 
degree offreedom system as shown in figure 3.1(a). In response to the force, 
F, the spring will extend by the displacement, x, which will be a function 
of the spring constant, k. The force-extension relationship can be described 
by the graph of figure 3.1(b), and may be written as 

F=k·x (3.1 ) 

The spring of figure 3.1(a) represents a simple form of structure and the 
notion of the force-extension relationship can be extended to a multi-degree 
of freedom system. However, the external forces acting on the structure, 

44 



BASIC CONCEPTS OF THE STIFFNESS METHOD 45 

F; -----

Gro.dlen"t k 

stiffness 
k 

l? 
XI 

(0.) (b) 

Figure 3. 1 Behaviour of a linear elastic spring. 

and the resulting displacements, must be described in terms of vectors which 
are known as load and displacement vectors respectively. The relationship 
which is the equivalent of equation (3.1) is then given in a matrix equation, 
which may be written as 

P=K·d (3.2) 

where P and d are both n by 1 vectors, and K is an n by n matrix known 
as the structure stiffness matrix. The size of the arrays is therefore defined 
by n, which is directly related to the degrees of freedom of the structure. 

3.1 ELEMENT AND STRUCTURE STIFFNESS 

In general, a structure is built up from a series of elements, each of which 
has its own characteristics with regard to action and response. These charac­
teristics are described in the element stiffness which must be expressed in 
matrix form where the nodes of the element have more than one degree of 
freedom. Collectively, the elements contribute to the stiffness of the structure 
as expressed in the structure stiffness matrix and it remains for a convenient 
way of determining the terms of this matrix to be found. There are in fact 
several ways of achieving this and the details vary depending on the precise 
nature of the structure and the selected technique. In the following section, 
a general technique for analysing pin-jointed trusses is described. Although 
alternative techniques are available and the method has some limitations, 
it is a useful method for illustrating the basic concepts of the stiffness 
method of structural analysis. 
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3.2 FORMING THE STRUCTURE STIFFNESS MATRIX BY 
DIRECT MULTIPLICATION 

The analysis of a pin-jointed truss will be examined in some detail as an 
illustration of the principles of the stiffness method. In this case, the structure 
stiffness matrix will be seen to be formed by the multiplication of three 
matrices in a technique that the author suggests should be known as the 
global stiffness method. 

The elements of a pin-jointed truss are subjected to axial force only 
and the individual elements behave in the same manner as the spring of 
figure 3.I(a). Consider the truss of figure 3.2. Initially, attention will be 
focused only on the unrestrained degrees of freedom, with the unknown 
displacements being described in the vector with terms from d l to ds and 
the corresponding possible loads being defined in the vector with terms 
from PI to Ps . It should be noted that the positive directions of the loads 
and displacements are defined with respect to the global axes of reference 
as shown in figure 3.2. In this case the structure stiffness matrix is a 5 by 
5 matrix and it can be developed through a consideration of equilibrium, 
compatibility and the stress-strain law governing element behaviour. 

Each node is in equilibrium through the action of the external loads 
acting there and the resulting internal actions which can be described in 
an internal force vector, J. the terms of which are II to 16' Defining the 
internal forces as tension positive, the nodal equations of equilibrium are 

PI = -1.0/1-0.6/2+0.0J;+0.0/4+0.0Is+0.0/6 

P2 = 0.0/1 + 0.8/2 + 1.0J; + 0.0/4 + O.Ols + 0.0/6 

x 

Figure 3.2 Behaviour of a truss. 

E = 200 kN/..,.., 2 
Ax = BOO ..,..,2 (cllngonnls) 
Ax = 1200 ..,..,2 (oth.rs) 
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P3 = 1.0/1 + 0.0/2 + o.of, + 0.0/4 + 0.6/s + 0.0/6 

P4 = 0.0/1 + 0.0/2 + 0.0/3 + 1.0/4 + 0.8/s + 0.0/6 

Ps = 0.0/1 + 0.6/2 + O.Of, + 0.0/4 + O.O/s + 1.0/6 

These equations may be expressed in matrix form as 

PI -1.0 -0.6 0.0 0.0 0.0 0.0 II 
P2 0.0 0.8 1.0 0.0 0.0 0.0 12 
P3 1.0 0.0 0.0 0.0 0.6 0.0 13 
P4 0.0 0.0 0.0 1.0 0.8 0.0 14 
Ps 0.0 0.6 0.0 0.0 0.0 1.0 Is 

16 

and written in the notation 

P=A·I (3.3) 

where A is known as a statics matrix, and P and I are the vectors previously 
defined. 

Under the action of the internal forces, each element will extend. The 
extensions may be described in an element extension vector with terms from 
e l to e6. For a linear elastic structure, the force-extension relationship is 
given by the equation 

where E; is Young's Modulus, A; is the section area and L; is the length 
of the element. It may be noted that the equation is an expression of element 
stiffness and in this case it can be expressed in a scalar algebraic equation. 
However, the full set of such equations may be written in matrix form as 

II 
EIA, 

L, 
el 

12 
E2A2 

L2 
e2 

h 
E3 A 3 

L3 
e3 

14 
E4A4 

L4 
e4 

Is 
EsAs 

Ls 
es 

16 
E6A 6 

L6 
e6 
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and written in the notation: 

f=S· e (3.4) 

where the matrix S is a matrix of element stiffnesses. Clearly equation (3.4) 
is an expression of the stress-strain law governing the material behaviour. 

The element extensions are directly related to the displacements through 
the compatibility equations, the nature of which may be determined by 
considering the displacements at the end of each element in turn. For 
example, consider element (3) as shown in figure 3.3. End 4 of element (3) is 
held against translation by the restraints, while end 2 moves with components 
of displacement d3 and d4 , each of which contributes to the element 
extension. Considering each component in turn and assuming small dis­
placement theory, then 

as is shown by figure 3.3(a) and (b), and it is unrelated to the remaining 
displacements. Compatibility is expressed in the fact that the nodal displace­
ments are common to all elements that terminate at that node. 

Repeating the process for all elements results in the equations: 

e j = -l.Od j +O.Od2 + I.Od3 + O.Od4 + O.Ods 

ez = -O.6d j + O.8d2 + O.Od3 + O.Od4 + O.6ds 

e3 = O.Od j + l.Od2 + O.Od3 + O.Od4 + O.Ods 

e4 = O.Od j + O.Odz + O.Od3 + I.Od4 + O.Ods 

es = O.Od j + O.Od2 + O.6d3 + O.8d4 + O.Ods 

e6 = O.Od j + O.Od2 + O.Od3 + O.Od4 + I.Ods 

e' 
5 

Figure 3.3 Details of element extension. 

(b) 
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which can be written in matrix form as 

e] -1.0 0.0 1.0 0.0 0.0 d] 

e2 -0.6 0.8 0.0 0.0 0.6 d2 

e3 0.0 1.0 0.0 0.0 0.0 d3 

e4 0.0 0.0 0.0 1.0 0.0 d4 

es 0.0 0.0 0.6 0.8 0.0 ds 

e6 0.0 0.0 0.0 0.0 1.0 d6 

and expressed in matrix notation as 

e=B· d (3.5) 

where the matrix B is known as a displacement transformation matrix or 
a kinematics matrix. It may be seen that the matrix B is the transpose of 
the matrix A, and this is a necessary condition as may be seen from the 
proof presented in chapter 7. 

and 

In summary, the equations may be written as 

P=A·j 

j=S· e 

e=B· d 

Substituting equation (iii) into equation (ii) gives 

j=S·B·d 

and substituting equation (iv) into (i) gives 

P=A·S·B·d 

which can be written as 

P=K· d 

(i) 

(ii) 

(i i i) 

(iv) 

(v) 

(3.6) 

where K is the structure stiffness matrix now given by the multiplication 
of three defined matrices as K = A . S· B. 

Equation (3.6) can be solved for a given set of loads to yield the 
displacements. With the displacements known, the internal forces can be 
calculated from the equation (iv), in a back-substitution process. Although 
the technique has been presented in terms of a particular problem, it is 
readily seen that it is a general one applicable to both statically determinate 
and statically indeterminate trusses. 

The method offorming the structure stiffness matrix by matrix multipli­
cation can be applied to other classes of structure such as continuous beams. 
However it has the disadvantage of involving the multiplication of large 
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matrices for structures with a high degree of freedom, and other techniques 
are more frequently used. The principles expressed in the technique are 
fundamental to the matrix stiffness method and it is worth while to review 
briefly the process before proceeding further. The initial objective of the 
stiffness method is to develop a relationship between the external loads 
applied to the structure and the resulting displacements. This relationship 
is given by the structure stiffness matrix. The external loads are related to 
the internal actions on the elements through the nodal equilibrium equations, 
while the internal actions are related to the element displacements (strains) 
by the element stiffness expressed through a stress-strain law. The element 
displacements are then linked to the structure displacements by the require­
ments of compatibility. Finally, the boundary conditions are applied either 
by inference or by direct consideration, as will be seen in the following 
section. The solution for the displacements follows from the formation of 
the stiffness matrix and the internal actions are recovered by back-substitu­
tion. 

The boundary conditions have been implicitly taken into account 
through the nomination of zero displacements at the restraints, as shown 
in figure 3.2. However it is possible to take a more general approach than 
that outlined so far and include both the reactions and the restraint displace­
ments. This is done through augmenting the statics matrix and the kinematics 
matrix and by incorporating the reactions and the restrained displacements 
in general load and displacement vectors respectively. 

Applying the equations of equilibrium to the restrained nodes with 
respect to the restrained degrees of freedom gives the following additional 
equations: 

P6 = 0.0/1 - 0.8/2 + O.Of, - 1.0f4 + 0.Of5 + 0.0/6 

P7 = 0.0/1 + 0.0/2 + O.Of, + 0.Of4 - 0.6/5 - 1.0f6 

Ps = 0.0/1 + 0.0/2 - 1.0f, + 0.Of4 - 0.8f., + 0.Of6 

which may be written as 

n r" -0.8 0.0 -1.0 0.0 

P7 = 0.0 0.0 0.0 0.0 -0.6 

P8 0.0 0.0 -1.0 0.0 -0.8 

and expressed in the notation 

fl 

00] f2 

-1.0 
f, 

0.0 
f4 

f5 

f6 
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The terms P6 to Pg describe the reactions and follow the ordered set of 
terms PI to Ps• In more general terms, equation (3.3) may be written as 

(3.7) 

where the general load vector P has now been partitioned to incorporate 
the load terms, PF , and the reactions, PR , so that P and A of equation (3.3) 
now become PF and AF respectively. 

In a similar manner it can be seen that in general terms equation (3.5) 
can be written as 

I f dFl 
{e} = [BFI BR]riRJ (3.8) 

where the compatibility equations have been extended to include prescribed 
displacements at the restraints. 

The general displacement vector has now been partitioned to incorpor­
ate the unrestrained displacements, dF , and the restrained displacements, 
dR. The terms of dR for the example under study are d6 to dg and they 
follow the ordered set of terms d l to ds . The terms Band d of equation 
(3.5) now become BF and d p respectively. The result is that the more general 
expression of the structure stiffness is given in the equation 

(3.9) 

where the matrix [BF! BR] is still given as t1:~ T and the result may be 

written as 

(3.10) 

where Kp is stiffness matrix relating to the unrestrained displacements, 
KR is the reaction stiffness matrix, 

and C is a connection stiffness matrix with the transpose CT. 
Equation (3.10) is the general form of equation (3.6) which should 

now be written in the particular form of PF = KF • dF • 

3.3 SOLUTION TO OBTAIN DISPLACEMENTS 

While equation (3.10) has been developed from a consideration of the 
analysis of a truss, it will be seen that it is in fact a general form of 
presentation of structure stiffness in a load-displacement relationship. As 
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such it is appropriate to consider how the solution can proceed from such 
a relationship. 

Equation (3.10) can be expanded by matrix multiplication to give the 
matrix equations 

PF = K F • dF + C· dR 

PR = CT. dF + K R • dR 

A solution follows from equation (3.10a) since 

(3.10a) 

(3.10b) 

and dR is known as a prescribed set of values (often zero). With dF known, 
the reactions can be determined from equation (3.lOb) and the internal 
actions can be recovered from the action-displacement relationships. 

The solution technique implied is not a preferred method although it 
is convenient to describe the solution in this manner at this stage. One of 
the problems is that the equations may not have been ordered in such a 
way that the load and displacement vectors, and subsequently the stiffness 
matrix, can be conveniently partitioned as required by equation (3.10). Of 
course the equations can be re-arranged since it should always be remem­
bered that the relationship simply presents a set of linear simultaneous 
equations. However this is a tedious process and alternative procedures are 
available and will be presented in chapter 6. A further disadvantage is that 
the solution requires the inverse of the matrix K F , particularly when dR is 
specified as non-zero. While the solution of linear equations is readily given 
through the inverse of a matrix, this is not a computationally efficient 
method. Particular solution techniques, such as Gaussian Elimination or 
Choleski Decomposition, are more efficient and should be used wherever 
possible. Details will not be presented here, although it is appropriate to 
point out that the SOLVE routine of the matrix manipulation program 
MATOP is based on Gaussian Elimination. 

In spite of the adverse comments, the solution presented is a concise 
way of introducing the topic and it does offer ready understanding. In many 
instances dR is zero so that solution immediately follows from 

This is the standard form of the solution of a set of linear simultaneous 
equations, often expressed in mathematics texts as the problem 

Ax=B 

where x is the vector of unknowns, A is the matrix of coefficients and B is 
the vector of constants or right-hand side terms. 
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3.4 NATURE OF THE STRUCTURE STIFFNESS MATRIX 

There are several characteristics of a structure stiffness matrix that are 
worthy of comment. The first of these is the rather obvious statement that 
the matrix is square. This follows from the one-to-one correspondence that 
exists between the terms of the load and displacement vectors. In addition 
the matrix is necessarily symmetrical, although this will not be proved here 
since the proof is dependent on a subsequent study. For a stable structure 
the terms on the leading diagonal must all be positive and typically they 
are dominant. That is to say the diagonal term is greater than the sum of 
the off-diagonal terms of the same row. 

If an attempt is made to analyse a geometrically unstable structure, 
the resulting stiffness matrix will be deficient and the solution technique 
should be capable of detecting this. For instance, if a diagonal element 
were to be omitted from a panel of an otherwise statically determinate truss, 
the truss would have no shear capacity and it would be unstable. A computer­
based solution routine should detect this and probably display an error 
message advising that the matrix is singular. A similar situation will arise 
if the restraints are either insufficient in number or incorrectly arranged. 

Generally, a structure stiffness matrix is sparse and banded because of 
the nature of the connectivity between the elements. A sparse matrix is 
simply one with many zero terms, while a banded matrix has the non-zero 
terms concentrated about the leading diagonal. This is not apparent in the 
example treated at this stage, but it will become evident later on. Most of 

Example 3. 1: Analysis of a Truss 

15kN 
~~-----------; 

600 

x 

C> 
C> 
m 

Given dQtQI 

E = 200 kN/MM2 throughout 
Ax 800 M!'I 2 (dIQgonQls) 
Ax = 1200 !'1M 2 (others) 
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Procedure: Form complete structure stiffness by matrix multiplica­
tion, K=A· S· B=A· S'AT 

Statics Matrix: 

Hence 

P, -1 -0.6 0 0 0 0 f, 

P2 0 0.8 0 0 0 f2 

Pa 0 0 0 0.6 0 fa 

P4 0 0 0 0.8 0 f4 

Ps 0 0.6 0 0 0 fs 

Ps 0 -0.8 0 -1 0 0 fs 

l 
P7 0 0 0 0 -0.6 -1 

Pa 0 0 -1 0 -0.8 0 
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Matrix of Element Stiffnesses: 

E;A; 
f.=-e-

I I; I 

f, 400 0 0 0 0 0 e, 

f2 0 160 0 0 0 0 e2 
f3 0 0 300 0 0 0 e3 
f4 0 0 0 300 0 0 e4 
f5 0 0 0 0 160 0 e5 
f6 0 0 0 0 0 400 e6 

With the matrices A and S defined, the solution can proceed 
by matrix operations in any suitable manner, the program MATOP 
of appendix B is specifically designed for the necessary operations. 
For this example, the MATOP input file is as follows: 

REMARK. Example 3.1 Chapter 
LOAD.A.8.6 The Full Statics Matrix 
-1 -0.6 0 0 0 0 
o 0.8 1 0 0 0 
1 0 0 0 0.6 0 
o 0 0 1 0.8 0 
o 0.6 0 0 0 1 
o -0.8 0 -1 0 0 
o 0 0 0 -0.6 -1 
o 0 -1 0 -0.8 0 
NULL.S.6.6 
MODDG.S Create the matrix of element stiffnesses 
6 
1 400 
2 160 
3 300 
4 300 
5 160 
6 400 
TRANS.A.B The Displacement Transformation Matrix 
MULT.A.S.TEMP 
MULT.TEMP.B.K 
PRINT.K The Structure Stiffness Matrix 
SELECT.KF.K.5.5.1.1 
LOAD.PF.5.1 The Load Vector 
15 
-30 
o 
-30 
o 
PRINT.PF The Load Vector 
SOLVE.KF.PF 
PRINT.PF Now th~ Displacement Vector DF 
REMARK. Back substitute to find Forces 
SELECT.BF.B.6.5.1.1 
DELETE.TEMP 
MULT.S.BF.TEMP 
MULT.TEMP.PF.FORCES 
PRINT.FORCES The Element Actions 
SELECT.CT.K.3.5.6.1 
MULT.CT.PF.REACT 
PRINT.REACT The Reaotions 
QUIT 

55 
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The operations can be understood by referring to the manual 
of MATOP in appendix A. In the first phase of the operations, the 
structure stiffness matrix is formed and 

P=K· d 

is found to be 

P, 457.6 -76.8 -400 0 -57.6 76.8 0 0 

P2 -76.8 402.4 0 0 76.8 -102.4 0 -300 

P3 -400 0 457.6 76.8 0 0 57.6 -76.8 

P4 0 0 76.8 402.4 0 -300 -76.8 -102.4 

Ps -57.6 76.8 0 0 457.6 -76.8 -400 0 

P6 76.8 -102.4 0 -300 -76.8 402.4 0 0 

P7 0 0 -57.6 -76.8 -400 0 457.6 76.8 

Pa 0 -300 -76.8 -102.4 0 0 76.8 402.4 

which can be expressed in the form 

f~~} = t~i-j-~jf~~1 
The solution for dF follows from PF = KF • d F since dR is zero. 

The remaining operations give the displacements, the element 
forces and the reactions, and the relevant part of the output file is 

SELECT.tF.t.5.5.1.1 
LOAD.PF.5.1 The Load Vector 
PRINT.PF The Load Vector 
0.150000E+02 
-.300000£+02 
O.OOOOOOE+OO 
-.300000E+02 
O.OOOOOOE+OO 
SOLVE.rF.PF 
PRINT.PF How the Displacement Vector DF 
0.193403£+00 
-.436864£-01 
0.187579E+00 
-.110353E+00 
0.31676QE-Ol 
REHARt. Back substitute to find Foroes 
SELECT.BF.B.6.5.1.1 
DELETE.TEHP 
HOLT.S.BF.TEHP 
HOLT.TEHP.PF.FORCES 
PRINT.FORCES Tbe Element Actions 
-.232944£+01 
-.211176E+02 
-.131059E+02 
-.331059E+02 
0.388240E+Ol 
0.126706£+02 
SELECT.CT.t.3.5.6.1 
HOLT.CT.PF.REACT 
PRINT.REACT Tbe Reactions 
0.500000£+02 
-.150000E+02 
0.100000E+02 
End of File 

d, 

d2 

d3 

d4 

ds 

d6 

d7 

da 
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SUMMo.ry of Solution 

~ ~OkN 
i.--~--_--,o 

Loads, forc!?s and r!?o.ctlons In kN 

M 
M 

the solution techniques available reduce the computational effort by using 
the fact that the matrix is symmetrical and banded. 

The truss of figure 3.2 is analysed in example 3.1 using the matrix 
stiffness method with the formation of the structure stiffness matrix based 
on the global stiffness approach. 

3.5 DEVELOPMENT OF THE SLOPE-DEFLECTION EQUATIONS 

The beam is an important structural element both in its own right as a single 
element structure under various end conditions and as part of a more 
complex structure. As such it is important to understand the behaviour of 
a beam with regard to its response under load. The beam is a flexural 
element transmitting load primarily through bending action and its response 
to load can be measured in terms of rotation and translation at the nodes. 
Classical studies of the deflection of beams begin with the governing 
differential equation relating bending moment and curvature in a flexural 
element. The equation is known as the Bernoulli-Euler equation after the 
18th Century mathematicians who first proposed and solved it, and is given 
by the expression 

d2y _ M(x) 
dx2 - EI 

(3.11 ) 

While it is possible to proceed directly to the solution of the differential 
equation and obtain general expressions for slope (rotation) and deflection, 
an important interpretation of the solution is given by the moment-area 
theorems. These theorems are particularly attractive since they are based 
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on properties of area of the bending moment diagram of the beam which 
are familiar to both students and engineers. 

3.5.1 The Moment-Area Theorems 

Consider an element 1-2 taken from any region of a flexural member with 
second moment of area, I, and modulus of elasticity, E, as shown in figure 
3.4(a). The element is subjected to the end actions of moment and shear 
to maintain equilibrium with any arbitrary transverse load acting along its 
length. The bending moment, M(x), over the length of the element can be 
readily evaluated in terms of the end actions and the load, and it may be 
conveniently plotted as an M / EI diagram as shown superimposed on the 
element. 

(0.) The Beo.M EleMent 

2 
81! 

"- o"O"~ I frOM 1 to 1! DR 

(b) The EIQstlC CUrve froM 1 to 1! 

I 
2 

x 

(c) DetQlls of thO' EIQstic Curve 

Figure 3.4 Beam element in bending. 
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The bending moment produces the elastic curve (that is, the deflected 
shape of the beam centre line) of figure 3.4(b), where the ends of the element 
have rotated and translated relative to the initial position of the unloaded 
beam. It is assumed that the flexural displacements are small and that the 
deformation caused by shear stresses is negligible. The first of the moment­
area theorems is concerned with the change of slope over the length of the 
element. This is given directly by the expression of equation (3.11) since 

d2y = dcP 
dx 2 dx 

where cP is the slope of the element at any point x. Thus 

and 

dcP = M 
dx EI 

fX 2 M 
cP= -dx 

XI EI 

(3.12) 

(3.13) 

The integral of equation (3.13) can be interpreted as the area of the M/ EI 
diagram between the ends of the element. This leads to a formal statement 
of the first moment-area theorem as 

The change in slope between two points on a flexural member is equal to 
the area of the M / EI diagram between those points 

The second of the moment-area theorems is concerned with the deflec­
tion of one point with respect to a tangent taken at another point. In figure 
3.4(b) the deflection of point 2 with respect to a tangent at point 1 is defined 
as DR. From figure 3.4(c) it is apparent that DR is built up from increments 
such as l>DR due to the slope change over the incremental length dx. The 
magnitude of l>DR is given by 

l>DR = x dcP 

where x is the distance from point 2 to the increment dx. Integrating over 
the length of the element gives 

fX 2 M 
D = x-dx 

R EI 
XI 

(3.14) 

The integral of equation (3.14) can be interpreted as the first moment of 
area of the M / EI diagram between points 1 and 2, taken about point 2. 
This leads to a formal statement of the second moment-area theorem as 

The deflection of a point 2 on a flexural member, taken relative to a tangent 
from point 1, is equal to the first moment of area of the M / EI diagram 
between those points, taken about point 2 
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The two theorems provide a direct method of calculating slopes and 
deflections in flexural elements. For instance, consider the simple cantilever 
beam of figure 3.5(a), shown with both the deflected shape and the bending 
moment diagram imposed on the beam. The deflection at the free end is 
given directly by the second moment-area theorem, since the tangent at 
point 1 is coincident with the line of the undeflected beam. Hence 

1 I 2 
d2 = E/2 . L· QL· 3L ) 

= QL3 

3EI 

The first moment-area theorem gives the slope at end 2 directly, again 
because the slope at point 1 is zero. Then 

1 I 
82 = El(2· L· QL) 

= QL2 

2El 

The theorems say nothing about the sign associated with either of the terms 
evaluated, and although a sign convention can be introduced it is not 
considered necessary. An appropriate sign can be assigned to the results 
based on a sign convention that will be introduced in section 3.5.2. 

A further example is given by considering the simply supported beam 
of figure 3.5(b). In this case, taking advantage of symmetry, it is appropriate 
to consider point 1 at mid span on the deflection curve. The slope at point 
1 is zero and the tangent is now parallel to the line of the undeflected beam. 
The displacement of point 2 from the tangent at point 1 is then the mid 
span deflection of the beam. Hence 

d =_1 (!.~. QL.~.~) 
2 EI 2 2 4 3 2 

= Qe 
48EI 

Again, since the slope at point 1 is zero, the rotation at either end is given 
in magnitude by 

8 = _1 (!. ~ . QL) 
2 EI 2 2 4 

= QL2 

16EI 
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QL 

~]d' 
I L I 

QLl4 
L 

Figure 3.5 Application of the moment-area theorems. 

Clearly the use of the theorems is dependent on a knowledge of the 
properties of area, and some appropriate details for standard moment 
diagram shapes are given in appendix B. 

It is possible to generalise the approach, outlined by the two examples 
given, to calculate the slopes and deflections at any point in a beam. However 
this will be left as an exercise for the student, while the moment-area 
theorems will be used to develop the beam element stiffness matrix and the 
slope deflection equations. 

3.5.2 The Beam Element Stiffness Matrix 

Consider now the general behaviour of a flexural element as shown in figure 
3.6(a). The beam element is subjected to end moments and shears as a 
result of which it deforms in the general manner shown relative to the set 
of axes taken through point 1. The element is of length, L, and has flexural 
properties defined by E1, where E is Young's Modulus and 1 is the second 
moment of area of the beam section. The deformation can be considered 
as the combination of the deformations shown in figures 3.6(b) and (c), 
and it is convenient to consider the action-displacement relationship for 
the element in terms of these two patterns before combining the result. It 
is important to node that all of the terms shown in figure 3.6(a) are shown 
in a positive sense and that, as such, they define the sign convention to be 
used. 

The moment-area theorems may be applied to the element of figure 
3.6(b), where the slope change from point 1 to point 2 is (J2 - (JI and where 
the deflection of point 2 from a tangent at point 1 is equal to -(JIL. Hence 
the first moment-area theorem gives 

(3.15) 
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(a.) Genera.l DeforMo. tlDn 

(b) End RotQtlon Only 

(c) End TrQnslQtlon Only 

Figure 3.6 Behaviour of a general flexural element. 

while the second moment-area theorem gives 

-(}IL= ~I (-!. m l 2 • L· ~L+!' m21 • L· ~L) 

Equations (3.15) and (3.16) may be written as 

m 12L m21 L 
(} -(} =---+--

2 I 2EI 2EI 

(3.16) 
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and solving for 01 and O2 gives 

m I2L m21 L 
01 = 3EI - 6EI 

m I2L m21 L o =---+--
2 6EI 3EI 

The results may be written in matrix form as 

{::}=[_3~1 
6EI 

-6~1] 
3EI 

Solving equation (3.17) for m l 2 and m21 results in 

4EI 2ET 
m I2 =-01 +--02 

L L 

2EI 4EI 
m 21 =-01 +-02 

L L 

which can be written in matrix form as 

[
4EI 2EI] -- --

m I2 L L 01 

{m,.} ~ 2:1 4:1 {.J 

(3.17) 

(3.18) 

The moment-area theorems can be applied to the element of figure 
3.6(c) in a similar manner. In this case the slope change from point 1 to 
point 2 is zero, while the deflection of point 2 from a tangent at point 1 is 
equal to Y2. Hence the first moment-area theorem gives 

1 L 1 L O--·m ·----·m .--
- 2 12 EI 2 21 EI (3.19) 

and the second moment-area theorem gives 

1 L 2 1 L 1 
Y2 = 2· mI2 • -- • 3L -2· m21 • --·3· L 

EI EI 
(3.20) 

From equation (3.19), mI2 = m21 as would be expected from the symmetry 
of problem. Equation (3.20) thus gives 

_ mI2L2(!_!) 
Y2 - EI 3 6 

6EI 
(3.21) 
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The end moments that must be developed to prevent end rotation, while 
relative end translation occurs, are thus seen to be equal in magnitude to 
(6EI/ L 2 )Y2. However, they are necessarily of opposite sense to the end 
moments, defined in figure 3.6(a) as being positive. For this reason the 
action-displacement relationship for figure 3.6(a) can be written as 

(3.22) 

(3.23) 

The end shears are readily introduced into the relationship through the 
requirements of equilibrium. Taking moments about point 2 gives 

and for equilibrium in the y direction: 

The more general relationship applies to the beam element specified with 
respect to the x-y coordinates as shown in figure 3.7. The displacement Y2 
as previously defined in figure 3.6 is now equal to d2 - d l • Thus 

2El 4EI 6El 6EI 
m21=-01+-02+-2 d l --2 d 2 

L L L L 

6EI 6El 12El 12EI 
VI 2=["!01+ L2 02+----u- dl -----u- d2 

(3.24) 

6EI 6El 12El 12El 
V21 = - L2 01 - L2 02-----u- dl +----u- d2 

The first two of the above set of simultaneous equations are usually referred 
to as the slope-deflection equations, although they are often written in a 
form that includes the effect of transverse load on the beam. 

El, L 2 

Figure 3.7 The general beam element. 
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The equations may be written in matrix form as 

12EI 6EI I 12EI 6EI 
V12 e I -IF L2 d l 

C I 
I 

6EI 4EI I 6EI 2EI 
m l 2 e I L2 81 

L I L 
----------+---------- (3.25) 

12EI 6EI I 12EI 6EI 
d2 V21 -IF - L2 I L3 L2 I 

I 
6EI 2EI I 6EI 4EI 

m21 L2 I - L2 L 
82 

L I 

It appears that the matrix expression of equation (3.25) represents four 
equations with four unknowns. However there are really only three 
unknowns, namely 81 , 82 and the relative displacement between the beam 
ends conveniently specified as (d2 - d1). It follows then that solutions are 
only possible when certain restraints are placed on the element, either in 
its own right or as part of a structure. 

The beam element stiffness matrix is given in the action-displacement 
relationship of equation (3.25) where the actions and displacements are 
defined by figure 3.7. The matrix is more generally referred to as the 
continuous beam element stiffness matrix, since it is generally used in that 
context as will be seen in chapter 4. 

3.6 APPLICATION TO SOME SIMPLE BEAM PROBLEMS 

As was the case with the moment-area theorems, the slope-deflection 
equations as presented in equations (3.24) may be applied directly to beam 
elements to obtain some useful results. However, it is of more interest to 
consider the equations in the form of the beam element stiffness matrix, 
using a single element to define a beam and applying the necessary boundary 
conditions. Figure 3.8 shows a series of such cases where the loads and 
reactions become equivalent to the element end actions. To satisfy equili­
brium there must be a minimum of three independent reaction components 
and, consistent with the reactions, the displacements there must be zero. It 
is possible for the boundary displacements to be specified at some non-zero 
value, as in the case of support settlement, but that will not be considered 
at this stage. 

The effect of specifying certain displacements as zero is to reduce the 
number of equations to correspond to the number of unknown displace­
ments. Effectively, any coefficients in the matrix related to a zero displace­
ment by matrix mUltiplication can be ignored. At the same time, any equation 
which relates the reactions to the displacements is also ignored at this stage. 
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~1 t ~1 V L 2 L 
M 

Sot ve to obto.lnl Sol ve to obtalnr 

"2 = -Q~/3EI "2 = -M@/2EI 

9 2 = -Q~I2EI 92 = -Ml/EI 

(0) (b) 

M M 

(E ;D Q c 
LOS L it LOS L it 

M 
Solve to ob-to.lnr S.olve to obtalnr 

91 -MLl2EI 9 1 +Ml/3EI 

92 = +MLl2EI 9 2 = -Ml/6EI 

(C) (cl) 

~Q/2 

~ 2~ I 2~ 
M fr L fr l/2 

Solve to obto.lnr Sol ve to obtalnl 

92 = +MLl4EI 9, = _Ql2/16EI 

"2 = _Ql3/ 48EI 

(e) (f) 

~Q/2 

~1 l/2 2~ 
Solve to obtalnr 

d 2 = -QIil/19cEI 

(g) 

Figure 3.8 Single element beam problems. 

The beam problem of figure 3.8(a), where the element is set up as a 
simple cantilever beam carrying the point load Q at the free end, is solved 
in example 3.2. 

Considering the results of example 3.2, with the displacements of the 
nodes now known, including the zero values specified as the boundary 
conditions, the full action-displacement matrix relationship can be used to 
recover all the actions by matrix multiplication. This operation will give 
both the applied loads and the reactions and thus allow for a full description 
of the solution to the beam problems. 
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Example 3.2: Deflection of a Cantilever Beam (1) 

Given: 

Solve to obtain: 

Oe 
d2 = - 3EI; 

12EI 6EI I 12EI 6EI 
e L2: -7 e 

I 

6B 4B: 6B 2B 

L2 L! e L 
-- -12-E'- -- -6-£1- r- f 2E'- - - -6£1 

I 

L3 L2: e -L! 
2EI 

L 

6EI 

e 
4EI 

L 

d, 

e, 

Oe e ---
2- 2EI 

Applying the boundary conditions, d, = e, =0, and the known actions 
at node 2, the remaining equations are given in the relationship 

6 Ell + J {::l 
Expressed in a non-dimensional form, the matrix equation is 

OL =-{-1} EI[ 12 
o L-6 

and the basis of the solution is seen in 

B=A·X 

where 

with the solution X, =-~ and X2=-~. 
Hence 

that is, 

Oe 
d --- and 
2- 3EI 
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For example 3.2 the appropriate relationship is 

0 

{~~} [ 12 

6 -12 

-~J 
0 

EI 

-1~ 
4 -6 QL" 

V2L L -6 12 3EI 

M2 2 -6 QL2 

2EI 
Expanding out gives: 

V L= EI(4QL2 _ 3QL") 
, L EI EI' 

.. V,=+Q 

M = EICQL" _ QL2) 
, L EI EI' 

.. M,=+QL 

V L= EI( _ 4QL2 + 3QL") 
2 L EI EI' 

V2=-Q 

M = EICQL2 _ 2QL2) 
2 L EI EI' 

:. M 2=0 

The results are of course confirmed by the requirements of equilibrium 
and are obvious since the problem is statically determinate. The procedure 
is valid, however, irrespective of whether or not the structure is statically 
determinate. This is because all the requirements of structural behaviour 
have been met-namely, equilibrium, compatibility, stress-strain laws and 
boundary conditions. 

It is constructive now to consider the above approach in terms of the 
general stiffness matrix relationship of equation (3.10) of section 3.2, and 
its subsequent treatment in section 3.3. It may be noted that the load­
displacement relationship takes the same form, as indeed it must do, and 
that the solution is obtained essentially as the solution to PF = KF • d F , since 
d R is zero. 

While many of the results to the problems of figure 3.8 may appear 
trivial, they represent some important relationships which recur from time 
to time in the general analysis of beams and frames. It is also useful to 
consider the results on the beams when d R is specified not as zero but as 
some settlement of supports. For the indeterminate beams, such action will 
result in internal stress even when the beam does not carry any loads. The 
arrangement of figures 3.8(f) and 3.8(g) are of particular interest, since the 
boundary conditions, the span and the load have been selected so that the 
beams model the behaviour of firstly, a simply supported beam under a 
central load Q, and secondly, a built-in beam under a central load. In further 
studies in the next chapter, the general question of transverse loads on a 
beam will be introduced, but at this stage only nodal loads can be considered. 
This was another reason for the careful selection of figures 3.8(f) and 3.8(g). 
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3.7 STANDARD SOLUTIONS TO BEAM PROBLEMS 

It is now possible to establish some standard solutions for statically indeter­
minate beams which are, at the same time, kinematically determinate. The 
standard solutions are of significance in their own right but more especially 
they are of importance as components in further studies. Although the 
predominant concern of this chapter is to present the basis of the stiffness 
method, the results to be presented here are actually based on a flexibility 
principle rather than a stiffness principle. The flexibility method is con­
sidered in detail in chapter 8. Both the moment-area theorems and the 
results of using the beam element stiffness matrix will be applied in the 
following problems. 

Consider each of the beams of figure 3.9(a) which are restrained against 
rotation at both ends. The action of the loads is such that end moments 

BEAM 1 BEAM 2 

~Q 
q 

~l 2~ ~l J I J I I J J I I 2~ 
EL L El. L 

(,,) The BeaMs 

~Jd,~Jd' 
q~/8 

QL/4 

(b) rree- SpOons 

~------------~ 
M M 

(c.) End MOMents 

QL/8 QL/8 

~ /1 
~ 

(01) F"lno.t Bending MOMen-t Dlo.graMS 

~------------~ 
M M 

Figure 3.9 Two standard beam problems. 
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develop at nodes 1 and 2 and effectively prevent the ends from rotating. 
Suppose each beam were released from the moment restraint and allowed 
to rotate freely as shown in figure 3.9(b). The beams would now be simply 
supported beams and the rotations could be calculated using the moment­
area theorems. In either case, d2 , being the deflection of 2 from a tangent 
at 1, is given by the second moment area theorem and the rotation at 1 is 
given by d2/ L. 

For the beam under concentrated load the end rotations are of magni­
tude QL2/16EI, while for the beam under the uniform load the end rotations 
are of magnitude qL3/24EI. Now suppose end moments, as shown in figure 
3.9(c), were to be applied to the simply supported beams to produce opposite 
rotations such that the combined effect of the end moments and the applied 
loads gave the condition of the original beams. The relationship between 
such moments and the rotation they produce is given as the solution to the 
beam problem of figure 3.8(c). On this basis the size of the end moments 
can be calculated taking due regard of sign convention as shown in table 3.1. 

For zero net rotation for beam 1, the end moments must be of magnitude 
QL/8; while for beam 2, the end moments required are of magnitude qL2/12. 
The final bending moment diagram can be obtained in each case by superpo­
sition of the bending moment diagrams for the simply supported beam and 
for the beam under end moments in both cases. The result is shown in 
figure 3.9(d) and it is also given, along with a range of other standard beam 
problems, in table B1.3 of the 'Structural Mechanics Students' Handbook' 
in appendix B. 

The remaining beam problems given in table B1.3 of appendix B can 
be solved in a similar manner, although the algebraic expressions involved 
in some cases are difficult to handle. 

Table 3.1 Beam rotations 

Beam 1 Beam 2 

Action O. O2 o. O2 

Applied load 
QL2 QL2 qL3 qe 

16EI 16EI 24EI 24EI 

ML ML ML ML 
Applied moment --

2EI 2EI 2EI 2EI 
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3.8 PROBLEMS FOR SOLUTION 

3.1 Analyse the pinjointed plane truss shown in figure P3.1 to find the 
displacements, element actions and reactions for both load cases. The 
area of each element is shown in brackets adjacent to the element. 
E = 200 kN/mm2. 

~ 5 kN 

Case 1 

15 kN i ~ 20 kN 

4250 

Figure P3.1 

3.2 Repeat problem 3.1 for the situation where the roller support at node 
3 has been replaced by a pin support, as for node 4, and the element 
3-4 has been removed. 

3.3 Calculate the forces and displacements in the truss of figure P3.1 due 
to a vertical settlement of 20 mm at node 3. 

3.4 Analyse the truss of figure P2.5(a) of chapter 2, to find the displace­
ments at the nodes, given that the elements 1-2,2-4, 1-3 and 3-5 have 
an area of 1800 mm2; elements 2-3 and 3-4 have an area of 1200 mm2; 
and element 4-5 has an area of 2000 mm2 • E = 200 kN/mm2. 

3.5 Using the beam element stiffness matrix given by equation (3.25), solve 
each of the beam problems of figure 3.8 to obtain the nodal displace­
ments and actions on the elements. 

3.6 Repeat the solutions to the beam problems given in section 3.7 for the 
case where the right-hand end of the beam is not restrained against 
rotation. 



Chapter 4 
The Matrix Stiffness 
Method-Part 1: Beams and 
Rectangular Frames 

The basic concepts of the matrix stiffness method as presented in chapter 
3 can be extended to the analysis of continuous beams and rectangular 
frames. This group of structures has been selected since it is possible to 
develop a suitable approach without introducing coordinate transformation. 
Coordinate transformations are introduced in chapter 6 with what can be 
described as the general stiffness method. The general stiffness method can 
be used to analyse all types of skeletal structure and the approach of this 
chapter will ultimately be seen as a subset of the more general technique. 

4.1 THE ANALYSIS OF CONTINUOUS BEAMS 

A continuous beam is usually defined as one which continues over more 
than two supports in such a way that the deflected shape is a continuous 
curve throughout the beam. From the point of view of modelling a beam, 
it can be considered as being made up of a series of beam elements connected 
together at arbitrarily selected nodes. From this definition, even a simply 
supported beam or a cantilever beam can be considered as a continuous 
beam if it is considered to be made up of more than one element. This is 
a definition that will be adopted here, and it will be seen that the same 
analysis procedure can apply to any beam system, whether or not it is 
statically determinate. The type of structure covered by this definition is 
illustrated in figure 4.1. 

4.1.1 Forming the Structure Stiffness Matrix 

The basic concepts of the stiffness method were introduced in chapter 3, 
however it is worth while restating some of the points here in introducing 
the application to continuous beams. 

72 
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5 
LS CD ® @ 

4 5 
zs@ 

LS CD ® @ 

Figure 4.1 Some continuous beams. 

The basis of the matrix stiffness method is to determine a relationship 
between the external actions (loads) acting on the structure and the resulting 
displacements. Since the structure is considered to be an assembly of a 
number of discrete elements, the external actions and the corresponding 
displacements are defined at the nodes of the structure so that both form 
a finite set. It is necessary to introduce a sign convention to define positive 
loads and displacements with respect to some global axes of reference. This 
has been done in figure 4.2, where the general terms identifying possible 
loads and displacements in a continuous beam have been shown. 

At this stage, the influence of transverse loads acting between the nodes 
is not considered. The only loads are thus the nodal loads corresponding 
to the two degrees of freedom at each node. Boundary conditions will also 
be treated at a later stage. Both the external loads and the displacements 
may be written in vector form and they are related by the structure stiffness 
matrix. Although the structure stiffness matrix is as yet undefined, the general 

) 

Figure 4.2 External loads and displacement at nodes. 
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form of the relationship is 

VI kl\ k\2 k\3 d l 

MI k21 k22 81 

V 2 k31 d2 

M2 k41 82 

V3 d3 

M3 83 
V 4 d4 

M4 k81 k82 k88 84 

Equation (4.1) may also be written in the form 

P=K·d 

(4.1 ) 

(4.2) 

where P is a load vector, K is the structure stiffness matrix and d is the 
displacement vector. 

The terms of the load vector can be readily specified and it is the 
displacements that are sought initially, once the terms of the structure 
stiffness matrix have been defined. To define these, a knowledge of the 
behaviour of each beam element and its internal action-displacement 
relationship is required. The procedure can be compared with physically 
putting the beam elements together to assemble the continuous structure. 

Figure 4.3 shows a free body diagram of node 2 of the beam in figure 
4.2, and the details of part of the adjoining elements on either side. For the 
structure to be in equilibrium, the nodal forces must be in equilibrium, 
requiring 

V2 = V21 + V23 

M 2 = m21 + m23 

(4.3) 

Similar equilibrium equations can be written for all the nodes of the 
structure, thus linking the external loads to the internal actions. The internal 
actions of the elements are related to the displacements through the element 
stiffness matrix as given in equation (3.25), which, in conjunction with the 
nodal equilibrium equations defines the terms of the structure stiffness 

Figure 4.3 Nodal equilibrium at node 2. 
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matrix, K. This may be demonstrated in algebraic terms as follows; let 

f"} la
n 

a l2 al3 

a,,] n m l 2 a 21 a22 a23 a24 81 
(4.4) 

V21 a 31 a32 a 33 a34 d 2 

m 21 a 41 a 42 a43 a 44 82 

and let 

r} lb
n 

b12 bl3 

b"]rI m23 b 21 b 22 b23 b 24 82 
(4.5) 

V32 b 31 b32 b 33 b 34 d 3 

m32 b 41 b 42 b 43 b 44 83 

where the terms aij and bi) are known functions of the properties of the 
elements CD and a> respectively, as previously defined; that is, terms of a 
beam element stiffness matrix. 

From equation (4.4): 

V21 = a3l d l + a32 81 + a33 d2 + a34 82 

m21 = a4l d l + a 42 81 + a43 d 2 + a 44 82 

and from equation (4.5) 

V23 = bll d 2 + b l2 82 + bl3 d 3 + b l4 83 

m23 = b 21 d 2 + b n 82 + b23 d 3 + b 2483 

Substituting these expressions into equations (4.3) gives 

V2 = a 31 d l + a 32 81 + (a33 + b ll )d2 + (a34 + b 12 ) 82 + b[3d3 + b l4 83 

M2 = a 41 d l - a 42 81 + (a43 + b 21 )d2 + (a44 + b n ) 82 + b23 d 3 + b 2483 

Compatibility is expressed through the variables d2 and 82 being common 
to adjoining spans, so that both equilibrium and compatibility are satisfied 
at the node. If the operation is carried out for each node, then the complete 
set of equations defined by equation (4.1) will be developed. However the 
operation can be seen to be the assembly of the element stiffness matrices 
according to a strict pattern dictated by the connectivity of the structure. 
For example, for the beam of figure 4.2, the K matrix is given by 

all a l2 a l3 a l4 

a21 an a23 a 24 

a31 a 32 (a33+ b ll) (a34 + b 12 ) bl3 b l4 

a 41 a 42 (a43 + b 21 ) (a44 + b 22 ) b 23 b 24 

b 31 b 32 (b33 +C II ) (b34 + Cl2) C l3 Cl 4 

b 41 b 42 (b43 + C2l) (b44 + C22) C23 C24 

C31 C32 C33 C34 

C41 C42 C43 C44 
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<D ® 0 8) ® 

2 3 456 

r I 
1 I 
I ESMI I 
I I 
I r -t I 
I I I I 
I I I ESM2 I 
L ___ +-- __ -.l I 

I r -t I 
I I I I 
I I I ESM3 I 
L ___ +-- __ -.l I 

I r -t I 
I I I I 
I I I ESM4 I L ___ +-- __ -.l I 

I r -t I 
I I I I 
I I I ESM5 I L ___ +-- __ -.l I 

I I .-t 

I I I 
I I I L ___ +- __ -.l 

Figure 4.4 Form of the structure stiffness matrix for continuous beams. 

where the terms Cij are the terms of the element stiffness matrix for the third 
element. In diagram form, the structure stiffness matrix for a continuous 
beam of any number of elements is seen to follow the pattern shown in 
figure 4.4. 

4.1.2 Solving for Displacements 

The problem is now defined in terms of the relationship expressed by 
equation (4.2). Once the boundary conditions have been considered, a 
solution is available in exactly the same way as that presented in section 
3.3. For a continuous beam, it is likely that the terms in the load vector 
representing the reactions will be distributed throughout the load vector, 
with a corresponding distribution of the restrained displacements in the 
displacement vector. This means that the equations will not generally be 
ordered in such a way as to make the partitioning of the matrices immediately 
obvious. Provided that the restrained displacements are zero, it is a relatively 
simple matter to reduce the set of equations to the form 

(4.6) 

This can be done by noting that all the column terms of the stiffness matrix 
associated, by matrix multiplication, with a zero displacement can be elimi-
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nated, along with the row terms which express a relationship between the 
reactions and the displacements. The remaining terms can be consolidated 
to give equation (4.6) which can then be solved for dF • Of course this means 
that the reactions cannot be so readily recovered although it is still possible. 

A more general technique for the consideration of the boundary condi­
tions is presented in chapter 6. As an example of that technique, a continuous 
beam is analysed to determine its behaviour under support settlement, which 
is clearly a case of non-zero displacement at a restraint. 

4.1.3 Element Actions 

With the displacements of the structure known at each of the nodes, 
including the given displacements at the reactions, it is possible to return 
to the element action-displacement relationship and recover the internal 
actions on the element. For each element in turn, the appropriate element 
stiffness matrix is used in conjunction with the nodal displacements, and 
the internal actions are found by matrix multiplication. That is, equation 
(3.25) is applied in a back-substitution role. For ease of reference, equation 
(3.25) can be written in the form 

(4.7) 

where the terms are evident from a comparison with equation (3.25), with 
the ESM being the beam element stiffness matrix. 

The procedure is summarised by the analysis flowchart shown in figure 
4.5 and illustrated by example 4.1. The same basic data can be used to solve 
the beam problems of figure 4.6 and it should be noted that it was simply 
convenient to use beam elements of the same length; this is not a necessary 
condition. 

4.1.4 Consideration of Transverse Loads 

In the material presented so far, the external loads have been restricted to 
moments or forces applied at the nodes of the structure. However a flexural 
beam element may have transverse loads applied anywhere over the length 
of the element, including point loads and distributed loads of various types. 
The question of how such loads are to be considered is resolved through 
the use of the principle of superposition. 

Consider the problem of the cantilever beam modelled as a single beam 
element. The beam is shown in figure 4.7(a) with a uniformly distributed 
load applied. If the beam is fully restrained as shown in figure 4.7(b), by 
applying a restraining clamp and prop to prevent both rotation and transla­
tion, the problem is reduced to a standard fixed end beam problem. In this 
case, the actions on the ends of the element, which are developed by the 
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For each element 

Apply boundary conditions 
to give stiffness matrix 

for unrestrained degrees 
of freedom, K F 

Recover element actions 
from 

{!~ l = [ESM] {c!L} 
fj J d j 

Figure 4.5 Flowchart for the analysis of continuous beams. 

L L L 

(a) 

4~ 

(b) 

Figure 4.6 Beam analysis problems. 
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Example 4.1: Deflection of a Cantilever Beam (2) 

,-il 12 ,3 ~~ 
~~------~I~-----+I~----~I Constant EI 
I L L L 

Consider the beam as three uniform elements of length L. Each 
beam element stiffness matrix is 

12EI 6E/: 12EI 6EI 

7 £.2: L3 e 
6B 4B 1 6B 2B _ 1 __ _ 

L2 L 1 L2 L 
----------~--------~ 

12EI 6E/: 12EI 6EI 
-7 -£.2 1 7 L2 

1 

6B 2B 1 6B 4B 
1 

L2 L 1 -£.2 L 
1 

The assembled structure stiffness matrix then follows as 

12EI 6EI 12EI 6EI 

7 £.2 e L2 
6EI 4EI 6EI 2EI 

£.2 L L2 L 
12EI 6EI 24EI 12EI 6EI 

-7 -£.2 7 0 -7 7 
6EI 2EI 8EI 6EI 2EI 

£.2 0 - -£.2 L L L 

12EI 6EI 24EI 
0 

12EI 
-7 -£.2 7 -7 

6EI 2EI 
0 

8EI 6EI 
-- -£.2 e L L 

12EI 6EI 12EI 

6EI 
L2 

2EI 

L 

6EI 
-7 -7 e -7 

6EI 2EI 6EI 4EI 
-- -£.2 -e L L 
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Applying the boundary conditions and forming the load vector gives 

0 
24EI 

e 0 
12EI 

e 
6EI 

e 0 0 d 2 

8EI 6EI 2EI 
0 0 -l! - 0 0 (}2 

L L 

12EI 6EI 24EI 12EI 6EI 
d 3 0 -7 -l! e 0 -7 L2 

6EI 2EI 8EI 6EI 2EI 
0 - 0 - -l! (}3 e L L L 

12EI 6EI 12EI 6EI 
d4 -a 0 0 -7 L e -l! 

6EI 2E1 6EI 4EI 
0 0 0 l! L2 

- (}4 
L L 

which can be written as: 

0 24 0 -12 6 0 0 d 2/ L 

0 0 8 -6 2 0 0 (}2 

0 EI -12 -6 24 0 -12 6 d3/ L 
(a) OL -

2 0 8 -6 2 (}3 0 L 6 
-1 0 0 -12 -6 12 -6 d4 / L 

0 0 0 6 2 -6 4 (}4 

Solving equation (a) with a suitable solution routine such as that 
available in MATOP gives 

r d2/ L -1.333 

(}2 

d3/ L OL2 
-

(}3 EI 

d4 /L 

(}4 

so that 

OL3 

d2 = -1.333£/; 

Oe 
d3 =-4.666£/; 

Oe 
d4 =-9.0£/; 

-2.5 
-4.666 
-4.0 

-9.0 
-4.5 

OL2 

(}2= -2.5 £/ 

OL2 

() =-4.0-
3 EI 

OL2 

(}4=-4.5£/ 
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q 

~1 ~ I ~ I I ~ ~ t 
2 

I L, [I 

(,,) The Si:ructure 

~ L I I ~ 
* 

L L , 
(10) The Restrained Structure 

t qL/2 

~ ~ I J L ~ 
* 

l ~ qr/12 

(c) Actions frOM Restro.lnts 

_____________________ ~L/2 
~ -Y ) qr/12 

(eI) The Noel,,\ Loo cis 

Figure 4.7 Transverse loads on a cantilever beam. 

imposed restraints, can be calculated to be as shown in figure 4.7(c). If the 
reverse actions were to be applied to the otherwise unloaded beam as shown 
in figure 4.7(d), and the solution to this problem were combined with the 
solution of the problem specified by figure 4.7(c), then the solution to the 
given beam problem of figure 4.7(a) would be obtained. 

The solution to the beam of figure 4.7(b) can be described as a fixed 
end action solution, while the solution to the beam of figure 4.7(d) can be 
described as the analysis of a beam under nodal loads only. The latter 
solution is therefore available by matrix analysis. For this reason the matrix 
analysis of structures is often described as a two-part solution problem. The 
fixed end action solution can be described as a Part 1 solution, to be followed 
by the nodal load solution as Part 2. The final solution is of course a 
combination of both parts. It may be noted that there are no nodal displace­
ments in a Part 1 solution so that the nodal displacements given in Part 2 
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are the final nodal displacements. The flowchart of figure 4.5 does not reflect 
this requirement since its emphasis is on the matrix analysis from the nodal 
loads. The preliminary step of considering the fixed end action solution in 
order to establish the nodal loads, and the final step of combining that 
solution with the nodal load solution, must be added. The same procedure 
can be applied when a series of elements are used. In this case the nodal 
loads are the sum of the reversed end actions which are applied to the ends 
of the elements connected to the node, as a result of the fixed end actions. 
This is illustrated in figure 4.8 using numerical data and that beam is fully 
analysed as example 4.2. 

~ 20kN SkN/M t 15kN 
I 2~ I I k I g 4 

LS :6 

2 3 I 1.5 1.5 

(Q) The Structur~ 

~ t , I k I - t ~ 

(b) Th~ Restro.lnea Structure 

~ ~ 
4.44kN M ~ 5.18kN 

8.88kN M Q; I * I * I!) 
7.SkN 3.75kN M 3.75kN M 

* ~ iJ 
5.625kN M 5.625kN M 

(c) EleF"tent Actions froM Restro.lnis 

=v 
~'68kN 

;V ~ 
8.8BkN M O.69kN M 1.875kN M 5.625kN M 

(cO The NoclQI LOQcls 

Figure 4.8 Transverse loads on a typical beam. 
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Example 4.2: Analysis of a Continuous Beam 

Given data: 

J 20kN SkN/M 

1] 
J LSkN 

4 
z::,. 

E=200 kN/mm2 

I 1.5 1.5 1=10X106 mm4 2 3 

Nodes and Elements: 

1 CD ® 3 @ 4 
LS~------------_2~1---------------zs~------------~z::,. 

Procedure: Form beam element stiffness matrices, assemble to give 
structure stiffness matrix. Apply boundary conditions and solve to 
obtain displacements. Recover element actions. 

Element Stiffness Matrices (Units: kN and m): 

All elements have: 

[ 

0.444 0.666 

S I 0.666 1.333 
E M=E 

-0.444 -0.666 

0.666 0.666 

Structure Stiffness Matrix: 

234 
K= 

2 

3 

4 

-0.444 

-0.666 

0.444 

-0.666 

0.666J 
0.666 

-0.666 

1.333 
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.. K=EI 

0.444 0.666 -0.444 0.666 

0.666 1.333 -0.666 0.666 
-0.444 -0.666 0.888 0 -0.444 0.666 

0.666 0.666 0 2~666 -0.666 0.666 
-0.444 -0.666 0.888 0 -0.444 0.666 

0.666 0.666 0 2.666 -0.666 0.666 
-0.444 -0.666 0.444 -0.666 

0.666 0.666 -0.666 1.333 

Applying the boundary conditions gives PF = KF . dF , as 

M, 1.333 -0.666 0.666 0 0 0, 
V2 -0.666 0.888 0 0.666 0 d2 

M2 = EI 0.666 0 2.666 0.666 0 O2 

M3 0 0.666 0.666 2.666 0.666 03 

M4 0 0 0 0.666 1.333 04 

Load Vector: From Part 1 Solution Fixed End Actions 

~ ~ r 1 1 1_ -1 ~ 

C; ~ 
4.44kN 1"1 ~ 5.18kN 

8.88kN ... 

~ 1 I I l~ 
7.5'kN 3.75kN ... 3.75kN M ~ 

C; iJ 
5.625kN M 5.625kN M 

Hence nodal loads are 

$ 
~'68kN 

;V ~ 
B.BBkN 1"1 a.69kN M 1.B75kN M 5.625kN M 



THE MATRIX STIFFNESS METHOD-PART 1 85 

Solution: Using MATOP, the following results were obtained with 
the displacements being interpreted as shown in the table. 

LOAD.It.5.5 
SCALE.It.2000 
LOAD.P.5.1 
SOLVE.It.P 
PRINT.P DISPLACEMENTS 
-.162437E-01 
-.227981E-01 
0.302937E-02 
0.464374E-02 
-.212494E-03 
SCALE.P.2000 
PRINT.P SCALED DISPLACEMENTS 
-.324875E+02 
-.455962E+02 
0.605874E+01 
0.928748E+01 
-.424988E+00 
End of File 

Node d (mm) 

1 0 
2 -22.8 
3 0 
4 0 

(J (radian) 

-0.0162 
0.0031 
0.0046 

-0.0002 

Element Actions: Using equation (4.7), the element actions can be 
recovered noting in particular the additional zero terms in the 
displacement vector. The results from matrix multiplication are 
shown in the following table. 

Element 

1-2 2-3 3-4 

vij (kN) 2.65 -10.03 5.91 
mij (kN m) -8.88 -16.13 12.09 
vji (kN) -2.65 10.03 -5.91 
mji (kN m) 16.82 -13.97 5.62 
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Final Actions 

J 20kN 5kN/M J 15kN 
1 2k I I I I I 4 

LS g 
6 E ~200 kN/mm2 

2 3 I 1.5 1.5 

8.8BkNM 

~ 4'~5kNM 
5.62kNM 5.62kNM 

3.75k~ /J 

5.93kNM 5.62kNM 

13.97kNM 
12.09kNM 

5.62kNM 

16.13kNM 

\6.82kNM 

17.72kNM 

2.39kNM 

17.46kNM 

I J, 20kN J lSkN 4 

~~~--~----------~~L-~~~-L~~L-~------~L-------~6 

5kN/M 

2! I l L L L l L g 

1=10x106 mm4 

Fixed End Actions 
(Part I) 

Matrix Analysis Solutior 
(Part 2) 

Bending Moment Diagrar 
(kNm) 

Reactions 

t 17.46kN t 1.59kN t 30.95kN 

(kN) 

17.46kN 
13.4IkN;..--___ ---, 

======J o 
2.S4kN l.S9kN 

Shear Force Diagram 
(kN) 

17.S4kN 
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4.2 THE ANALYSIS OF RECTANGULAR FRAMES 

The matrix stiffness method as applied to continuous beams can be extended 
to the analysis of rigid jointed plane frames of a rectangular nature. The 
principal action of such frames is the flexural bending of the beams and 
columns, and horizontal forces are resisted through this action. The rigid 
joint is an essential part of this action since this is how the moments are 
transmitted through the frame. Under horizontal or lateral forces, a frame 
may deflect horizontally at the level of the beams and this is known as 
lateral sway, or simply a sway deflection. A typical set of frames to which 
this method of analysis applies is shown in figure 4.9. It may be noted that 
some of the frames are actually restrained against lateral sway by the 
supports, but in geQeral this must be considered. 

A fundamental difference between the continuous beam analysis and 
the frame analysis lies in the fact that the elements do not have the same 
orientation with respect to each other. For this reason it is necessary to 
introduce some limitations on the nature of the elements. The limitations 
can be overcome in a more general analysis procedure that will be presented 
in chapter 6. 

The limitations are: 

(a) The column is considered to be the fundamental element having the 
actions and displacements as indicated in figure 4.10, where each action 
and displacement is shown in the positive sense. 

LS 

I I 
(0.) 

(c) (d) 

Figure 4.9 Some rectangular rigid-jointed frames. 
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(b) Each beam is considered to be a single element subjected to end 
moments and corresponding end rotations only. 

(c) Although the elements of the structure are subjected to axial load, axial 
deformation of the elements is ignored. This means that the only 
translation considered is the lateral sway of the frame at the level of 
the beams. The general degrees of freedom of the frame are thus reduced 
by this assumption. The assumption is reasonably valid since the axial 
stiffness of most frames is significantly greater than the flexural stiffness 
which dominates the sway characteristics. 

One of the consequences of these limitations is that the degrees of 
freedom of the frame are reduced to the rotation at each node and the sway 
translations at each beam level, plus any translations that may be admitted 
at the boundary nodes. Of course the nodal loads are correspondingly 
reduced and particular attention should be paid to the fact that only a single 
horizontal force, or sway force, is applied at a given beam level. This follows 
from the fact that the beams (and columns) are regarded as axially rigid 
so that all horizontal forces evaluated at a given beam level may be lumped 
together. 

4.2.1 The Column Element Stiffness Matrix 

The slope-deflection equations expressed in equation (3.24) may be applied 
directly to the column element of figure 4.10 to give 

4EI 2EI 6EI 6EI 
m 12 =T 81+T 82- L2 dl + L2 d 2 

where it should be noted that the moments induced by translation are now 
positive moments. 

1'121 

2 , __ d.=.2_+-G,--, ;21 

EI, L 

x 

Figure 4.10 The column element. 
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Taking moments about node 2 results in 

(m\2+ m2l) 
V\2 = - L 

and since 

The above equations may be written in matrix form to define the column 
element stiffness matrix in the relationship: 

12El -6E/: 12EI 6EI 
L3 L2: L' L2 

6EI 4E/: 6EI 2EI 
- eLI L2 L 

I 
-12ET - -6EI- -:-12ET - - -6£1-

L 3 L2 I C L2 
I 

6EI 2EI I 6EI 4EI 
I 

L2 L I L2 L 
I 

4.2.2 Assembly of the Structure Stiffness Matrix 

(4.8) 

The structure stiffness matrix is assembled according to the same principles 
as those used in the analysis of continuous beams. However, in this case 
parallel column elements are linked by beam elements and are not directly 
connected. The consequences of this are that while the nodal equilibrium 
equations, with respect to moments, have a precise parallel with those used 
in the continuous beam analysis, the equivalent expression for the transverse 
loads is different. In this case the transverse loads are acting horizontally 
and the equilibrium equations arise from a consideration of horizontal shear 
taken right through the frame. The procedure is best understood with the 
help of an example. 

Consider the portal frame shown in figure 4.11 (a). The node numbering 
of the frame is significant, since it is important that the columns are 
numbered such that each column can be addressed as low node number, 
high node number, consistent with the column element of figure 4.10. The 
alternative to this is to introduce coordinate transformation as will be seen 
in chapter 6. The possible external loads and displacements are those defined 
in figure 4.11(b). As has been previously mentioned, axial deformation is 
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J r swo.y 

3 

I I 
I I 
I I 
I I 
I I 
I I 
I I 

L I I 
I I 

El consto.nt 
I I throughout 

I I 
I I 

I I 
2 

L 

(0.) 

4 Q 

~I 
M. cE-Q' 

-----;. 
V .. 

Q V + V 
31 .. 

(b) (c) 

Figure 4.11 Details of a swaying frame. 

ignored, so that there are no translations in the y direction. Further, any 
loads applied directly in the line of the columns will be transmitted directly 
to the reactions at the column bases. To avoid subscripts in the interests of 
clarity, each element has the same length and flexural rigidity but this is 
not a necessary condition. 

The sway load, Q, is distributed into the columns according to their 
capacity to resist sway. This is illustrated in figure 4.11(c), which also 
demonstrates the horizontal shear equilibrium requirement. In general, at 
any beam level the horizontal load is distributed into the column lines and 
is taken up by the shear in the column elements at that node. It is convenient 
to introduce the notation Q', and Q" to describe the distribution so that 

Q=Q'+Q" 
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This allows the assembly of the structure stiffness matrix to proceed on 
similar lines to that used in continuous beam analysis. However the resulting 
matrix must then be compacted by combining the equations relating to Q' 
and Q" as will be seen. 

The element stiffness matrix for the column element 1-3 is thus defined 
in the relationship 

o 
o 

12EI 
L3 

6EI 
L2 
o 
o 

12EI 
-IF 

6EI 
L2 

6EI 
L2 

4EI 

L 

o 
o 

6EI 
L2 

2EI 

L 

o 0 

o 0 

o 0 
o 0 

o 0 

o 0 

while that for column 2-4 is given by 

o 
o 

12EI 
L3 

6EI 
L2 

o 
o 

12EI 
-IF 

6EI 
L2 

6EI 
- L2 

4EI 

L 

o 
o 

6EI 
L2 

2EI 

L 

o 0 

o 0 

o 0 
o 0 

o 0 

o 0 

12EI 
L3 

6EI 

e 
o 
o 

12EI 
L3 

6EI 

e 

12EI 
-IF 

6EI 
L2 

o 
o 

12EI 
L3 

6EI 
L2 

6EI 
- L2 

2EI 

L 

o 
o 

6EI 
L2 

4EI 

L 

6EI 
- L2 

2EI 

L 

o 
o 

6EI 

e 
4EI 

L 

o 
o 

o 
o 

In both cases the element stiffness matrices have been expanded to 
accommodate the non-sequential node numbering so that the assembly 
procedure is more obvious. 

The element stiffness matrix for the beam element 3-4 is given in the 
relationship. 

{::}[:~: :~:]{::} 
which is a subset of the continuous beam element stiffness matrix given by 
equation (3.25). The structure stiffness matrix, which can now be assembled 
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from the element stiffness matrices as defined, has the form indicated by 
the block diagram of figure 4.12. 

The structure stiffness matrix, which satisfies nodal equilibrium and 
compatibility, is then initially given by 

Q' 

Q" 

12El 
L3 

6El 
- L2 

12El 
-IF 

6El 
- L2 

6El 
- L2 

4El 

L 

12El 
-IF 

6El 
L2 

12El 6El 

6EI 
L2 

2EI 

L 

6EI 
- L2 

2EI 
-
L 

6El 
L2 

(4:1 + 4~1) 

2EI 

L 

L3 - L2 

6El 4El 
L2 L 

12El 6EI 
L3 L2 

6EI 2EI 
L2 L 

12EI 
-IF 

6El 
L2 

12EI 
L3 

6EI 
L2 

12El 
L3 

6El 

e 

6EI 
- L2 

2EI 
-
L 

2EI 
-
L 

6EI 
L2 

(4:1 + 4~/) 

d J 

9J 

d2 

92 

d 

93 

d 

94 
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2 3 4 

r -. 
I I 
I I 
I EleMent Stiffness Me trlx I 
I COlL EleMent 1-13 I 
I 

Mn I 
I I 
I I 
I I -t -. 
I I I I 
I I I I 

2 I I EleMent Stiffness Mq rlx I 
I I C lLmn EleMent: 2-4 I 
I I I 
I I I I 
I I I I 
I I I I 
I I I I 
I I I I 
I I I I 
I I r--"""1 f-------'I 

3 

I I I I II 
I I I I II L _______ 

-1-------- ____ L_ .J II 
I I EleMe nt Stiffness:: I 
I I Mo rlx II 
I I II 
I I 3-4:: I I Be OM EleMent 

4 

I I II L _______ L ___ 
--------!J ------

Figure 4.12 Form of the structure stiffness matrix for the frame of figure 4.11. 

Combining the fifth and seventh equations and coefficients of ll, which is 
a repeated displacement term, results in the following relationship which 
describes the structure stiffness, 

12El 6El 6El 
VI e - L2 - L2 

6El 4El 2El 
MI L2 L L 

12El 6El 
V2 e - L2 

6EI 4El 
M2 L2 

--
L 

6El 2El (4:1+ 4:1) M3 L2 L 

6El 2El 2El 
M4 - L2 L L 

12El 6El 12El 6El 6El 
Q -7 L2 e L2 L2 

(continued) 
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12EI 
-U 

6EI 
L2 

6EI 12EI 
L2 -U 

2EI 6EI 
-

L L2 

2EI 6EI 
-

L L2 

(4:1+ 4~I) 6EI 
e 

6EI (12EI + 12EI) 
L2 C C 

The solution can now proceed by specifying boundary conditions. A com­
plete solution for a typical portal frame is presented as example 4.3. 

Example 4.3: Analysis of a Rectangular Plane Frame 

Given data: 

40kN 

20kN 3 4 

± 
21 @ 

3 
E =200 kN/mm2 

I =200 x 106 mm4 

Case (a)-Fixed Bases 

3 3 

Procedure: Form column stiffness matrices and beam element 
stiffness matrix. Assemble to give structure stiffness matrix. Apply 
boundary conditions; form load vector from Fixed End Action 
solution; solve for displacements; recover element actions. 



THE MATRIX STIFFNESS METHOD-PART 1 95 

Degrees of Freedom: 

Ignore axial deformation 

DOF=3 

Element Stiffness Matrices: (Units: kN and m) 

Column Elements <D and (2) 

~ 
0.1875 -0.375 -0.1875 -0.375] 

EI =~:~~~5 ~.375 ~:~~~5 ~::75 
-0.375 0.5 0.375 1 

Beam Element <ID 

[ 1.333 0.666] 
EI 0.666 1.333 

Structure Stiffness Matrix: From Figure 4.12, initially with Q' and Q" 

V, 0.1875 -0.375 

M, -0.375 
V2 0.1875 -0.375 

M2 
=EI 

-0.375 
Q' -0.1875 0.375 

M3 -0.375 0.5 
Q" -0.1875 0.375 

M4 -0.375 0.5 

-0.1875 -0.375 
0.375 0.5 

-0.1875 -0.375 
0.375 0.5 

0.1875 0.375 
0.375 2.333 0.666 

0.1875 0.375 
0.666 0.375 2.333 
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Combining A' and a" to give a and combining coefficients of A gives 

VI 0.1875 

MI -0.375 

V2 
M2 =EI 

M3 -0.375 

M4 
a -0.1875 

-0.375 

0.1875 -0.375 
-0.375 

0.5 
-0.375 

0.375 -0.1875 

-0.375 
0.5 

2.333 
0.666 
0.375 

-0.375 
0.5 
0.666 
2.333 
0.375 

0.5 
0.375 

-0.1875 
0.375 

-0.1875 
0.375 
0.375 
0.375 
0.375 

Applying the boundary conditions to give PF = KF • dF gives 

{ 
M3} [2.333 0.666 0.375]{ 83} 
M4 = EI 0.666 2.333 0.375 84 

a 0.375 0.375 0.375 A 

Load Vector: Fixed end actions 

30kNI'I 30kNI'I 

C~ /1.) 
"'7 

20kN 
40kN 

30kNI'I 

Hence 

{ M3} {-30} 
~4 = ~~ 

d l 

81 

d2 

82 

83 

84 

A 
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Solution: The following results were obtained from MATOP 

LOAD.1I:.3.3 
SCALE. II:. 40000 
LOAD.P.3.1 
SOLVE.1I:.P 
PRINT.P DISPLACEMENTS 
-.672222E-03 
0.227778E-03 
0.177778E-02 
SCALE.P.40000 
PRINT.P SCALED DISPLACEMENTS 
-.268889£+02 
0.911110E+01 
0.711111E+02 
End of File 

Node 

2 
3 
4 

x (mm) 

1.78 
1.78 

y (mm) rot. (radian) 

-0.0007 
0.0002 

Element Actions: Using the known displacements and the element 
stiffness matrices in the relationship of the form of equation (4.7), 
the internal actions can be found. For example 

-

r" j 0.1875 -0.375 -0.1875 -037~ { 0 j m 13 =EI -0.375 0.375 0.5 1 0 

V31 -0.1675 0.375 0.1875 0.375 EI 71.11 
m 31 ·-0.375 0.5 0.375 1 -26.88 

r325} = 13.22 
3.25 

-0.22 

Similarly 

r-} r675
} 

m 24 31.22 
and {m34} ={ -29.77} 

V42 16.75 m43 -5.77 

m42 35.77 
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Final Actions: 

30kNM 

Fixed End Actions 
(Part 1) 

30kNM 
5.8kNM 

O.2kNM ,,--------1---=---="1---, 35.8kNI'1 

13.2kNM 

Matrix Ahalysis Solution 
(Part 2) 

Frame Bending Moment Diagram Reactions 

35.8kNM 
40kN 

"..O_.2-kN-M----+-----4-~ 3S.8kNM 20kN 

---------, I 
I 

/ 

14.lkN 

~kNM 
25.9kN I J6.7kN 3.3kN 

The same frame can now be analysed for the case when the column 
bases are pinned. 

Case (b)-Pinned Bases Other data as for Case (a) 

Degrees of Freedom: 
40kN 

20kN 3 4 Ll 

°1 
2[ 0 83 

r ® DOF=5 

2 
91 82 

The structure stiffness matrix remains as for case (a), but after 
applying the boundary conditions, using the technique described 
in section 4.1.2, then 

M, 1 

M2 0 

M3 =EI 0.5 

M4 0 
Q 0.375 

o 

o 
0.5 

0.375 

0.5 

o 
2.333 

0.666 

0.375 

o 
0.5 

0.666 

2.333 

0.375 

0.375 

0.375 

0.375 

0.375 

0.375 
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Load Vector: Fixed End Actions 

40kN 

Hence 

M, 0 

M2 0 

M3 -30 

M4 30 
Q 20 

Solution: The following results were obtained from MATOP 

LOAD.Jt.5.5 
SCALE.I •• OOOO 
LOAD.P.5.1 
SOLVE. I. P 
PRINT.P DISPLACEMENTS 
-.223529E-02 
-.2761171E-02 
-.1029111£-02 
0.294114E-04 
0.733333E-02 
SCALE.P.IIOOOO 
PRINT.P SCALED DISPLACEMENTS 
-.8911118£+02 
-.110588£+03 
-.1111765£+02 
0.1176115£+01 
0.293333E+03 
Ead or File 

Node 

1 
2 
3 
4 

x(mm) y(mm) 

7.33 
7.33 

rot. (radian) 

-0.0022 
-0.0028 
-0.0010 

0.0000 



100 FUNDAMENTAL STRUCTURAL ANALYSIS 

Element Actions: Using the now known displacements, the following 
internal actions were found using the element stiffness matrices. 

Action 1-3 

Vij (kN) -6.03 
mij (kN m) 0 
vji (kN) +6.03 
mji (kN m) 24.13 

Final Actions: 

30kN ... JOkN ... 

Fixed End Actions 
(Part 1) 

Element 

2-4 3-4 

-13.97 
0 -54.10 
13.97 
55.88 -25.88 

2S.9kN ... 

Matrix Analysis Solution 
(Part 2) 

Frame Bending Moment Diagram Reactions: 

SS.9kN ... 

40kN 

r--r=-:::::.:.:.:.:.:..----.'-~-+-----, SS.9kN... 2_Ok-<N'"r-r-"='=-=-~ ___ =-t--, 

&.7kN 

I 
I 
I 
I 

I 
1~.OkN 

33.3kN 
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4.3 THE DIRECT STIFFNESS METHOD 

The routine of forming the structure stiffness matrix by assembling a series 
of element stiffness matrices can be eliminated in a procedure which may 
be referred to as the direct stiffness method. The process may be applied 
to any matrix equation describing an action-displacement relationship. 

The general form of such an equation may be written as 

PI kll k12 k13 dl 

P2 k21 k22 d2 

P3 k31 d3 (4.9) 

Pn knl knn dn 

If a nominated term dj in the displacement vector were given a unit value, 
while all the remaining terms were specified as zero, then the expansion of 
the equation (4.9) would give 

PI klj 

P2 k2j 

P3 k3j (4.10) 

Pn k nj 

It may be seen from equation (4.10) that the load or action vector which 
imposes the set of displacements to be such that dj equals unity while all 
other displacements are zero, is equal to the jth column of the coefficients 
of the matrix linking the actions and the displacements. 

The technique may be effectively used to check the continuous beam 
element stiffness matrix previously defined. The series of specific actions 
to create the displacement patterns required is shown in figure 4.13. It may 
be noted that in each case the required actions (which may be determined 
from the slope-deflection equations and equilibrium considerations) are 
the coefficients taken from the appropriate column of the continuous beam 
element stiffness matrix. In applying the technique to the formation of a 
structure stiffness matrix, the actions are the nodal actions, or loads, that 
would have to be applied to cause the unique set of displacements required. 
The magnitude of nodal loads can be readily determined once the internal 
element actions are identified from the imposed displacements. This is 
illustrated in the series of diagrams shown in figure 4.14. 
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t 12EI/LJ 

~ 
-6EIILe 

~2EIIL 
4EI/L 

Figure 4.13 Beam actions under specified displacements. 

For a given structure, the appropriate number of degrees of freedom 
should be nominated, excluding the restrained degrees of freedom at boun­
dary nodes unless the total structure stiffness matrix is required, and the 
action-displacement relationship written out in a general form similar to 
that given in equation (4.9). Each column of the coefficients of the stiffness 
matrix can then be determined in turn, by sketching the appropriate displace­
ment pattern and noting the necessary nodal loads that would have to be 
applied to give the required displacements. With the structure stiffness 
matrix formed, the analysis can proceed on the same basis as the earlier 
study. In particular, once the matrix equation has been solved to determine 
the displacements, the element actions can be calculated using the element 
stiffness matrices in the usual way. Example 4.3 (Case (a)-Fixed Bases) 
can now be repeated as example 4.4 using the direct stiffness method. 
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~4 C;-
~(JM34 

M3 ~ 

""j 
~ 2 5 13 

DlspLa.ceMents Joint MOMents ColUMn Actions 

(0.) Unit Rota. tlon 0. t Node 3 

M4 

M3cr-
3G~ 

3 4 M31 

V 

"')' 
5 13 ~ ~ 

DISpLo.ceMtlnts Joint MOMents ColUMn Actions 

(b) Unit Swa.y dt BeQM Level 

Figure 4.14 Rectangular frame displacements. 

Example 4.4: Frame Analysis using the Direct Stiffness Method 

Example 4.3 repeated using the direct stiffness method of forming 
the structure stiffness matrix. 

Case (a)-Fixed Bases 

40kN 
20kN 3 4 

2 
77n'7T 

Given data: 
E=200 kN/mm2 

I =200 x 106 mm4 

103 
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Degrees of Freedom: 

Structure Stiffness Matrix: 

Require KF of the form: 

kll = 4EI + 4E(21) =2.333EI 
4 6 

2E(21) . 
k21 =-6-=0.666EI 

6EI 
k31 = (4)2=0.375EI 

2E(21) . 
k12 =-6-=0.666EI 

4E(21) 4EI . 
k22 =-6-+4=2.333EI 

6EI 
k32= (4)2=0.375EI 

6EI 
k13= (4)2=0.375EI 

6EI 
k23= (4)2=0.375EI 

12EI 12EI 
k33 = (4)3 + (4)3 =0.375EI 
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Hence KF has the form of example 4.3 and the analysis proceeds 
from there as before. 

Case (b)-Pinned Bases 

Degrees of Freedom: 

Ll 

8J 84 

I 91 

Q 
92 

Unit Displacement Diagrams: 

81 =1; 

Structure Stiffness Matrix: 

Ml kll 

M2 k21 

M3 k31 

M4 k41 

Q kSl 

4EI 
k11 =-=lEI 

4 

k12 

k22 

k32 

k42 

kS2 

k21 =0=0 

2EI 
k31 =7=0.5EI 

k41 =0=0 

6EI 
kSl =4:2=0.375EI 

k13 k14 k 1S 

k23 k24 k 2S 

k33 k34 k3S 

k43 k44 k 4S 

kS3 kS4 kss 

(Similarly for the second column) 

83 =1 ; 
2EI 

k I3 =7=0.5EI 

k23 =0=0 

k = 4EI + 4E(21) =2 333EI 
33 4 6 . 

2E(2/) 
k43 =-6-=0.666EI 

6EI 
kS3=4:2 =0.375EI 

81 

82 

83 

84 

A 
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(Similarly for the fourth column) 

11= 1; 
6EI 

k1S ="42=O.375EI 

12EI 12EI 
kss =7+7=O.375EI 

which leads to the form of KF in example 4.3, Case (b). 

4.4 MODIFICATION TO ELEMENT STIFFNESS MATRICES FOR 
END MOMENT RELEASE 

While the elements of a continuous beam or plane frame are often connected 
in such a way as to provide for moment transfer, such structures may include 
connections where the elements should be regarded as being pin-connected. 
In the general case of three or more elements framing into a node, one of 
which is pin-connected, there may still be moments at the node and a nodal 
rotation, although the local moment at the pin-ended element must be zero 
and its end rotation is independent. Such a condition is shown in the frame 
of figure 4.15(a), along with a detail of a possible rotation response of node 
5 in figure 4.15(b ).Cleariy the pin-connected element has a different stiffness 
and it is necessary to define appropriate element stiffness matrices for these 
circumstances. 

4 5 pin connection 6 
,------------.~-----------, 

2 3 

(a) rra.Me Deto.lLs (b) Rota. tlon Detail at Node 5 

Figure 4.15 Element end moment release. 
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Case (a): Pinned Left-hand End of the Continuous Beam Element 

Consider again the general beam element as shown in figure 3.8 of chapter 
3. From the element stiffness matrix, the general equations describing the 
element behaviour can be written as 

(i) 

(ii) 

12El 6El 12El 6El 
V2' = --3- d'--2 (), +-3- d2--2 (}2 

L" L L L 
(iii) 

6El 2El 6EI 4El 
m21 = L2 d, +T (), - L2 d2+T (}2 (iv) 

However in this case, m'2 is zero, so that equation Oi) may be used to 
express (}1 in terms of the remaining displacements. Equation (ii) is then 

6EI 4EI 6El 2El 
0=-2 d,+- (}'--2 d2+- (}2 

L L L L 

so that 

and 

3 3 1 
() =--d +-d --() , 2L 1 2L 2 2 2 

This expression can be substituted back into the remaining equations to 
eliminate ()" to give 

3EI 3El 3El 
V 2, = --3 d'-0+-3 d2+-2 (}2 

L L L 

3EI 3EI 3EI 
m21 =-2 d 1+O--2 d2+-(}2 

L L L 
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Writing the coefficients in matrix form gives 

3EI 0: 3EI 3EI 
e 1 e L2 

o 0: 0 0 
-------,----------
_ 3 EI 0 1 3 EI _ 3 EI 

e : e L2 

3EI : 3EI 3EI 
L2 0: - e L 

which is the required element stiffness matrix. 

Case (b): Pinned Right-hand End of the Continuous Beam Element 

In the same way, considering the moment m21 as zero, the continuous beam 
element stiffness matrix when the right-hand end of the element is pinned 
is found to be 

3EI o 3EI 1 3EI 
1 el 
1 

3EI 1 3EI 
1 

L2 Lie 

3EI o 
---------,-------

3EI 3EI 1 3EI 
-- --I - 0 e L2 1 e 

o o : 0 o 

Case (c): Pinned Base of the Column Element Stiffness Matrix 

Again, following considerations similar to those outlined for Case (a), the 
appropriate element stiffness matrix is found to be 

3EI 1 3EI 3EI 
eO: -u - L2 

o 0: 0 0 --------,---------
3EI 1 3EI 3EI 

- L3 0: u L2 

3EI : 3EI 3EI 
2 0 1 2 

L 1 L L 

When an element is pin-connected at a boundary node, the analyst has 
to decide which way this is considered. The first approach is to ignore the 
specific boundary conditions initially and to form the structure stiffness 
matrix in a general way. The boundary conditions can then be applied to 
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accommodate the pin connection. This approach has been used in alI of 
the examples presented to this stage. However, since the specific behaviour 
of a pin-ended element is known, the rotational degree of freedom at the 
boundary node need not be admitted in defining the behaviour of the 
structure. This leads to an overall simplification of the problem as is 
explained in more detail in section 4.5 and ilIustrated in example 4.5. 

Example 4.5: Analysis of a Continuous Beam 

Given data: 

4kN/M ~ lOkN 2 
1 3dj I I I f E = 16 kN/MMt 

15. 15. I = 225)()o' 1'11'1" 

I 1 I 2 3 I 

Nodes and Elements: 

Procedure: Form beam element stiffness matrices and assemble to 
give structure stiffness matrix. Recognize left-hand end pinned for 
element CD; right-hand end pinned element (2); both ends pinned 
element (3), therefore zero stiffness. Apply boundary conditions and 
solve to obtain displacements. Recover element actions. 

Element Stiffness Matrices (Units: kN and m): 

ESM 1 = EI r ~.024 ~ -~.024 
-0.024 0 0.024 

0.12 0 -0.12 

~.12] 
-0.12 

0.6 

[ 

0.375 

ESM2= EI 0.75 
-0.375 

o 

0.75 
1.5 

-0.75 
o 

-0.375~ 00] -0.75 

0.375 

o 
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Structure Stiffness Matrix 

234 

I 1 
I 1 I 

2 I 
r- 1 -I 
1 I I 

, 
L 1 

1 I 1 -, 
1 , , 
I J 

3 

1 I 
I I L __ __ I 

4 

VI 0.024 0 -0.024 0.12 d1 

Ml 0 0 0 0 01 

V2 -0.024 0 0.399 0.63 -0.375 0 d2 
M2 

=EI 
0.63 2.1 -0.75 0 O2 

V3 -0.375 -0.75 0.375 0 0 0 d3 

M3 0 0 0 0 0 0 03 
V4 0 0 0 0 d4 
M4 0 0 0 0 04 

Applying the boundary conditions and eliminating equations with 
zero coefficients gives PF = KF . dF as 

{ M2} [2.1 -0.75]{ 02} 
V3 = EI -0.75 0.375 d3 

The same result can be obtained by the direct stiffness method. 

Consider: 

k12 t kZ2 

a~--------~~~~~ 6 

Degrees of Freedom = 2 

3EI 3EI 
k =-+-=21EI 

11 5 2 . 

3EI 
k21 =-"22=-0.75EI 

3EI 
kI2 =-"22=-0.75EI 

3EI 
k22 =2!=0.375EI 
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which gives the same result, as required. 

Load Vector: From Part 1 Solution-Fixed end actions, noting pins 

!IOkN 

f!.r----~4) 
7.<!kNI'I 

Solution: Solve 

{ 7.2} = EI [ 2.1 
-6 -0.75 

-0.75 ]{(}2} 
0.375 d3 

{ (}2} 1 1 [0.375 0.75]{ 7.2} 1 { -B.O} 
d3 = EI . 0.225 0.75 2.1 -6 = EI -32.0 

(}2 = -0.0022 radian and d3 = -B.9 mm 

Element Actions: Using equation (4.7), then 

1-2 

vij (kN) -0.96 
mij (kN m) 0 
vji (kN) 0.96 
mji (kN m) -4.BO 

Final Actions: 

4kN/I'I 

15. 
36 s s S !4 

4 <! 3 I 
47.2kNM 

~
2'DkNI'I 

3.B4kNI'I 4.8kNI'I 

6 ....-----,.0 

Element 

2-3 ~ 

6.0 0 
12.0 0 
-6.0 0 

0 0 

Fixed End Actions 
(Part 1) 

Matrix Analysis Solution 
(Part 2) 
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~
12'OkNI'I 

I.GkNI'I 
D.K"'-~==~--..-~~ Bending Moment Diagram (kN m) 

4.:ikN", 

t IOkN 4kN/I'I 

~I ____ ~~_.:2~~3!J&l;::::J.=:lS=:l*~* 46kN Reactions (kN) ! O.4kN t 16.4kN I 
r-_~6.0kN 

~~==~d~--~~ O.4kN ""J 6.0kN Shear Force Diagram (kN) 
IO.4kN 

4.5 APPLICATION OF THE STIFFNESS METHOD TO BEAMS 
AND RECTANGULAR FRAMES 

The matrix stiffness method, as applied to beams and rectangular frames, 
may be consolidated through a consideration of the application of the 
method to the structures shown in figure 4.16. It should now be apparent 
that there are several distinct approaches available in the analysis of such 
structures using the stiffness method. The variations can be clarified through 
a general discussion of how the analysis may proceed. For convenience in 
this discussion, the node and element numbering has already been selected 
for the structures shown in figure 4.16, although this would clearly be the 
starting point of any analysis. 

In figure 4.16(b), a node point has been nominated at the mid-point 
of the second span. This ensures that the deflection and other data at that 
point are obtained as part of the immediate results of the analysis, although 
such nodes are optional. The other node points on the continuous beams 
are essential since the boundary conditions are expressed through them. 
For the frames of figure 4.16, there is little flexibility in the selection of 
nodes or in the node numbering. Because of the restrictions placed on the 
method presented in section 4.2, nodes must be confined to the supports 
and the beam-column intersections. These restrictions do not apply to the 
more general approach offered in chapter 6. 

A feature of the method is that axial deformation of the elements is 
ignored. This is of no consequence to the continuous beams since they are 
considered to be under transverse loads only, and the effect of pin supports 
is exactly the same as that of roller supports. If longitudinal loads exist 
they can always be considered in a separate analysis, and the distribution 
of longitudinal forces will then depend on the precise nature of the supports. 
For the rectangular frames, the assumption that axial deformations are 
negligible introduces an approximation which is overcome in the more 



al s ! 2 S 
I 

I 4 I 
(0) 

al CSkN 

2'i:2 

I 2 2 I a 

(b) 

5kN/M 
3 4 

21 

M 

2 

M 

6 

(c) 
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4kN/I'I 

! 3 S 
21 

E> I 

2 

E = 200 kN/MM2 
I = 25xl0' MM' 

(cl) 

L 
1 

IOkN/M 

21 

3 

14 E = ZO kN/l'll'l e 
I = lOOxlO' MM' 

3 

I 

E = ZOO kN/MM2 
I = 15CxlO' 1'11'14 

E = ZOO kN/MM2 

j_. 1 = 80xl0' 1'11'1' 

Figure 4.16 Typical beam and frame problems. 

general technique of chapter 6. The omission of axial deformation for the 
frames leads to a reduction of the number of degrees of freedom so that it 
is only necessary to introduce one sway term at each level. Although it 
has not been particularly discussed, the method can of course be readily 
extended to multi-storey and multi-bay rectangular frames. 

Either the direct stiffness method or the more general method of 
assembly from element stiffness matrices can be used for forming a structure 
stiffness matrix. Further, as was pointed out in section 4.4, decisions on 
handling boundary conditions must be taken. All of this means that the 
analyst must be specific about the details of the method of solution. While 
much of this is irrelevant to the use of fully developed structural analysis 
computer programs, it is highly relevant to an understanding of what is 
going on. In any case, one objective of this study is to show that quite 
complex problems can be reduced to some routine calculations quite 
within the scope of very modest computational aids, as is illustrated with 
example 4.6. 

In a final comment on the application of the matrix stiffness method 
of this chapter, it is worth noting that the same approach applies irrespective 
of the determinacy of the structure. If the structure happens to be statically 
determinate, then the method can still be applied to advantage since relevant 
deflection data can be obtained. Further, the same basic data may be used 
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Example 4.6: Analysis of a Non-swaying Rectangular Frame 

Given data: 

GOkN 15kN/M 
3 G 

21 31 5 21 E = 20 kN/MM Z 
I Ln 1 = 1000xlO· 1'11'1' 

2 

4 4 12 8 

Nodes and Elements: 

3 
@ ® ® G 

6. 

CDt ®:I 
/'; 

Procedure: Form column and beam element stiffness matrices, 
recognising the pin-ended conditions of elements CD, (2), @ and @ 
immediately. Use direct stiffness method to form structure stiffness 
matrix, KF . Solve for displacements and recover element actions. 

Element Stiffness Matrices (Units: kN and m): 

Column Elements CD and (2) 

Ell- ~.024 ~ -~.024 -~'121 
-0.024 0 0.024 0.12 
-0.12 0 0.12 0.60 

Beam Element @ 

[

0.01172 0 -0.01172 

EI 0 0 0 
-0.01172 0 0.01172 

0.09375 0 -0.09375 

Beam Element @ 

~'09371 
-0.09375 

0.75 

r 0.02083 0.125 -0.02083 012~ 
EI -~:~~~83 

1.0 -0.125 0.5 
-0.125 0.02083 -0.125 

0.125 0.5 -0.125 1.0 
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Beam Element (5) 

[ 0.01172 
0.09375 -0.01172 

~l 0.09375 0.75 -0.09375 
EI -0.01172 -0.09375 0.Q1172 

0 0 0 

Structure Stiffness Matrix KF based on: 

Degrees of Freedom: 

T 
3EI 3E(2/) 4E(31) 

k =-+--+--
11 5 8 12 

=2.35EI 

k21 = 2E(31) =0.5EI 
12 

Similarly: 
k12=0.5EI 

k22=2.35EI 

Load Vector: From Part 1 Solution-Fixed End Actions, noting pins 

1 
120kNI"I 180kNI"I 180kNI"I 

£ * 'I' 'I' * * ! £ L I {) Q L L * * *{) 
-i) 90kNI"I 

[5. /:; 
30kNI"I 60kNI"I 

[5. 

T T 
to. 

Solution: Solve 

{30} = EI [2.35 0.5] {04} 
60 0.5 2.35 05 

{04} 1 1 [2.35 -0.5 ]{30} 1 { 7.6814} 
05 = EI . 5.2725 -0.5 2.35 60 = EI 23.8976 

:. 04 =0.004 radian and 05 =0.0012 radian 



116 FUNDAMENTAL STRUCTURAL ANALYSIS 

Element Actions: Using equation (4.7). then 

1-4 2-5 

Vij (kN) -0.92 -2.87 
mij (kN m) 0 0 
vji (kN) +0.92 2.87 
mji (kN m) 4.61 14.34 

Final Actions: 

210kNM 

19.63kNM .17.92kNM 

5.76kNM 4.61kNM 

137.9kNM 94.1kNM 

Element 

3-4 

0.72 
0 

-0.72 
5.76 

4-5 5-6 

3.95 2.24 
19.63 17.92 
-3.95 -2.24 
27.74 0 

Fixed End Actions 
(Part 1) 

Matrix Analysis Solution 
(Part '2) 

Bending Moment Diagram 
(kN m) 
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t 64.5kN 
O.9kN 2.9kN 

t 42.7kN Reactions (kN) 

t 209.5kN t 163.3kN 

Check Vertical Equilibrium: 

60 +28(15) =480 

64.5 +209.5 + 163.3 +42.7 =480 

in variations on the structure, though different boundary conditions and 
multiple load cases can be readily considered. In examples 4.5 and 4.6, 
there is considerable choice available in respect of the modification to the 
degrees offreedom based on the pin-connected boundary nodes. The degrees 
of freedom have in fact been selected to minimise the size of the stiffness 
matrix K, and it would be useful to consider the problems again on the 
basis of additional degrees of freedom in order to understand the differences. 
It can be seen that in the final results for the reactions of the frame of 
example 4.6, the distribution of the horizontal reaction at the beam level is 
unknown. This is because axial deformation is ignored and there is no 
data on the longitudinal stiffness of the beam elements. Of course the force 
is a small one and it could be proportionally distributed between the supports 
with little error. If the support at node 6 had been a roller support, then 
the analysis as presented would not be any different (again because of the 
assumption of zero axial deformation), and the nett horizontal force required 
for equilibrium would be at node 3. 

4.6 PROBLEMS FOR SOLUTION 

4.1 Considering the cantilever beam of figure P4.1 as two beam elements, 
calculate the deflection and rotation at nodes 2 and 3. Complete the 
analysis by matrix methods to confirm the bending moment diagram 
that is given by equilibrium alone. 

5 kN/m 

2 3 
1.5 1.5 

Figure P4. 1. 
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4.2 The built-in end beam of figure P4.2 is to be analysed using two beam 
elements to find the end moments due to a uniformly distributed load 
acting on half the beam. Show that the displacements at node 2 are 

qL4 
d2 = - 768EI and 

and that 

5 2 
MAB=-qL and 

192 

q 

qL3 e ----
2 - 768EI 

11 7 
MBA=--qL-

192 

JiiiitB 
2 3 

EI constant 

1./2 I L/2 

Figure P4.2. 

4.3 The three element cantilever beam of figure P4.3 is an approximation 
to a tapered beam. Calculate the deflections of the beam for both the 
load shown and when the beam is under a uniformly distributed load 
of 5 kN/m. 

J20kN 

tiC-~"""j ===--~+ ~ E = 200 kN/mm 2 r 81 31 1 = 50 x 106 mm4 

1000 1000 1000 

Figure P4.3. 

4.4 Analyse the structures shown in figure 4.16 of chapter 4. Sketch the 
deflected shapes and draw the bending moment diagrams showing all 
principal ordinates. 



Chapter 5 
The Moment Distribution 
Method 

It is a characteristic of the structural analysis problem that most formulations 
lead to the need to solve a set of simultaneous equations. Without using a 
computer or programmable calculator, solving four or more equations is a 
tedious, if not daunting, task that most people would prefer to avoid. The 
general basis of the matrix stiffness method as presented in earlier chapters 
was well understood prior to the development of the digital computer, so 
that analysts were left with having to find the solution to a large number 
of simultaneous equations by hand calculation, or to avoid them. 

Attention was focused on the latter option and, in the 1930s, Professor 
H. Cross published a method of moment distribution (Cross, 1936) which 
circumvented the actual solution to the set of equations. The essential 
elements of that method are presented in this chapter, and it is considered 
important since there will always be a need for hand calculations in the 
design office. A few simple hand calculations, even using gross assumptions, 
are invaluable either in a checking situation or in the preliminary design 
phase. This point is expanded in chapter 9 in a study of approximate 
methods. 

The moment distribution method is based on the philosophy of the 
stiffness method of structural analysis. While the technique can be used on 
more extensive structures, this presentation will be restricted to a study of 
beams and frames similar to the applications of chapter 4. 

5.1 AN ITERATIVE SOLUTION TO A SET OF SIMULTANEOUS 
EQUATIONS 

Before proceeding to a study of the moment distribution method, it is 
appropriate to consider an iterative method for the solution to a system of 
linear equations. The method of moment distribution is itself an iterative 

119 
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method based on the following technique, although the actual solution for 
the primary unknowns is usually by-passed. Any iteration technique relies 
on an iteration formula or recursive equation, in which the current value 
of the (n + l)th variable is expressed in terms of the previously determined 
variables from 1 to n. 

Consider the general set of n simultaneous equations: 

a 11 x1+a12X2+·· ·a1nxn=b1 
a2J X 1 + a22 x2+ ••• a2nXn = b2 

Equations (5.l) can be rewritten in the form: 

1 
X2 = - (b2 - a21 x 1 - a23 x3 ••• -a2nxn ) 

a22 

1 
Xn = - (bn - anJx J - an2 X2 ••• -ann - JXn - J) 

ann 

(5.1 ) 

(5.2) 

A first approximation to the solution is given by assuming that all the Xi 

values in the right-hand side of equation (5.2) are zero. In practical terms, 
the coefficients along the leading diagonal of the matrix A, representing the 
coefficients au of equation (5.l), often dominate the other coefficients so 
that the first approximation may in fact be close to the solution. 

Equation (5.2) is a set of recursive equations so that substitution of 
the first approximation into equation (5.2) gives the second approximation. 
The process can be repeated up to the kth iteration, where the results are 
not significantly altered by further iterations. The method is generally known 
as Gauss-Seidel Iteration and it is important to stress that it is not an 
approximate method, since any desired accuracy can be achieved by increas­
ing the number of iterations. 

The convergence of the procedure is usually improved by modifying 
the technique to the extent that in anyone iteration, to find a new value, 
next-best estimates of the lower variables are used. That is, as opposed to 
using the values of the ith iteration in a substitution into the recursive 
equations for the (i + 1 )th iteration, the currently improved values are used. 
For example, the set of equations used in the solution to example 4.3 of 
chapter 4 can be written as 

2.333xJ + 0.666x2 + 0.375x3 = - 30 

0.666xJ + 2.333x2 + 0.375x3 = 30 

0.375xJ + 0.375x2 + 0.375x3 = 20 

(5.3) 
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ignoring the scalar effect of the flexural rigidity E1. Applying equations 
(5.2) to equations (5.3) gives 

1 
XI = 2.333 (-30 - 0.666x2 - 0.375x3 ) 

1 
X2 = 2.333 (30 - 0.666xl - 0.375x3) (5.4) 

The first approximation is then 

XI = -12.86; 

In the second iteration, XI is given by the first of the recursive equations 
as -25.56, and it is this value which is used with the first approximation 
to X3 to give the second approximation to X 2 , found to be 12.17. Now both 
second approximation values of XI and X 2 are used to find the second 
approximation of X3' The results from three iterations are recorded in table 
5.1, along with the exact solution given by Gaussian Elimination from the 
program MATOP. 

The iterative method is simply a numerical analysis technique and it 
does little to relieve the computational effort associated with large numbers 
of equations. However the process can be interpreted in a physical sense 
in association with the analysis of a continuous beam. In a three-span 
continuous beam taking the length of each element as equal to the span, 
the structure has four degrees of freedom expressed by the rotations 81 to 
84 over the supports. The rotations are the unknown variables in the resulting 
equations that express the moment-rotation relationship for the structure 
through the structure stiffness matrix. An iterative solution would start with 
all the rotations held at zero. The next step would allow the first node to 
rotate to give a first approximation to 81 while all the other rotations 
remained at zero. For the first approximation to 82 , 01 would be held at its 
current value while 82 was released with 83 and 84 both remaining at zero. 
In one iteration all of the nodes would be progressively released as the 
process moved from one node to the next. Subsequent iterations would 

Table 5.1 Iterative solution to equations 

k XI X2 X3 

1 -12.86 16.53 49.66 
2 -25.56 12.17 66.72 
3 -27.06 9.86 70.53 

Exact -26.89 9.11 71.11 
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start again at the first node and move across the structure. The actions of 
first setting the rotation to zero, and subsequently allowing a rotation and 
holding it, can be further interpreted physically if the nodes are assumed 
to have imaginary clamps applied. The iteration procedure can then be seen 
as one of progressively relaxing the restrained form of the structure to the 
free deflected shape. 

Element rotations are related to the end moments acting, and the 
moment distribution method exploits this by considering the effects of the 
rotation rather than the actual rotation. By carrying out the iterative 
operations in a systematic and tabular fashion, much of the computational 
effort in the solution of simultaneous equations is reduced. 

5.2 THE ELEMENTS OF THE MOMENT DISTRIBUTION 
METHOD 

The method will be presented initially for structures where the degrees of 
freedom are restricted to nodal rotation only, such as continuous beams 
and non-swaying frames with nodes selected at the joints. In the matrix 
stiffness method, the problem is generalised to one of nodal loads of applied 
moments producing a set of nodal rotations as the displacement vector. 
The applied moments generally derive from the effects of transverse loads 
on the beams and columns, although that is oflittle consequence at this stage. 

Figure 5.1 shows three examples of structures with nodal rotation 
only-in fact, restricted to one rotational degree of freedom so that the 
load-deflection relationship is given by 

(5.5) 

Figure 5.1 Structural systems with one rotational DOF. 
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where equation (5.5) is actually a scalar relationship with the matrix K 
reduced to one term. 

The element stiffness matrix for prismatic beam elements subjected to 
end rotations only is a subset of the continuous beam element stiffness 
matrix and takes the form 

[
4EI 2EI] - --

m·· L L (). t:.} ~ 2~I 4~I {.J (5.6) 

Taking case (b) as a specific example from figure 5.1, the moment-rotation 
relationship can be found as follows. 

From joint moment equilibrium: 

(5.7) 

However values of m21 and m23 can be found using equation (5.6) applied 
to each element in turn, noting particularly that the far end of each element 
is fixed, so that 

with the subscript on the second moment of area, I, and the length, L, used 
to refer to the specific element. 

Substituting for m21 and m23 into equation (5.7) and noting the compati­
bility requirement that (}2 is common to both beam ends, then 

M = (4EII + 4EI2) . () 
2 LI L2 2 

hence 
1 

() - . M 
2 - (4EII + 4EI2) 2 

LI L2 

The internal beam end moments m21 and m 23 can now be recovered by 
back-substitution into equation (5.7) and they are found to be 

4EII 

LI m - ·M 
21 - (4EI 4EI ) 2 __ 1+ __ 2 

LI L2 

4EI2 
(5.8) 
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The results given by equation (S.8) can be interpreted in a general way to 
describe the influence of a moment applied to a node. The coefficient 
4Ehl Lk used in the moment-rotation relationship can be defined as a 
stiffness factor ~j, in this case appropriate to a prismatic element subjected 
to end rotation with the far end fixed. Other stiffness factors can be evaluated 
for non-prismatic elements and for other forms of displacement, although 
they will not be considered here. 

With this definition of element stiffness in mind, it can be seen that 
the applied moment, M 2 , has been distributed into the beam elements in 
proportion to the relative stiffness of each beam, and a simple distribution 
factor, r, can be defined. 

Equation (S.8) may be written as 

(5.9) 

where 

and 

k23 r 23 = ---="----
(k21 + k23) 

In general, the distribution factor applicable to the beam end ji is 

_ k ji 
rji - n 

Im~1 kjrn 

(5.10) 

where n is equal to the number of beams framing into the node j. 
At the same time as the beam end moments m21 and m23 develop due 

to the rotation O2 , end moments m l2 and m32 are induced at the far ends 
of the beam which are held against rotation. These far end or carry-over 
moments can be found from equation (S.6) which gives 

(5.11 ) 

where j = 1, 3 and k = 1, 2 for case (b) of figure S.l. This shows that for a 
prismatic beam, the carry-over moments are one-half of the distributed 
moments and of the same sign. 

The preceding analysis has followed the guidelines of the direct stiffness 
method as developed in chapter 4 and it has introduced the concepts behind 
the moment distribution method. It remains for these concepts to be intro­
duced in a systematic procedure for the analysis of a complete structure. 



THE MOMENT DISTRIBUTION METHOD 125 

5.3 APPLICATION OF THE MOMENT DISTRIBUTION METHOD 

The three-span continuous beam of figure 5.2(a) will be analysed both by 
the matrix stiffness method and by moment distribution, in order to 
emphasise the relationship between the two techniques. Ignoring for the 
present the modification that can be made for the pin-ended condition of 
the exterior spans, the matrix stiffness method proceeds by restraining all 
the nodal rotations to develop the fixed end moments shown in figure 5.2(c). 
This leads to the set of applied moments of figure 5.2(d), representing the 
load vector for the matrix analysis. 

k8 ;JjkN;Jj q=3kN/M 

1£;Jj ;Jj ;Jj ;Jj ;Jj ;Jj ;Jj2:t;: ;Jj iii ;Jj ;Jj ;Jj if * ilQf* * ;Jj * ;Jj4L 
2 

I 4 I 6 I 3 I (0.) 

r;;; ~1 14.7k 2.2~ 

(cD 

14.06 

(e) Lf"'"~ 
12.50~ 

.J zc:::::J 
2.22 2.25 

(f) 

MOMents kN '" Flexuro.l Rlglclity EJ Consto.nt 

Figure 5.2 Analysis of a continuous beam. 
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Clarification may be needed for the sign of the moments acting on the 
node. A consistent sign convention has been used througholH this text and 
the convention itself embodies nodal moment equilibrium. It may be seen 
that anti clockwise internal moments acting on an element are positive along 
with the conjugate clockwise internal moment acting on the node. The 
external moment is necessarily of opposite sense to the resultant internal 
moments in order to satisfy the equilibrium of moments at the node. The 
positive external moment has therefore been taken in an anticlockwise sense. 
The sign convention is illustrated in figure 5.3 where all the moments shown 
are positive. Restraining moments represent external moments maintaining 
moment equilibrium and, since the nodal loads must negate the effects of 
the restraints, the sign of the applied moments of figure 5.2(d) is opposite 
to the sign of the resultant of the fixed end moments acting at the node. 

Returning to the matrix stiffness method of analysis of the continuous 
beam, the structure stiffness matrix can be readily assembled from the beam 
element stiffness matrix of equation (5.6) to give 

1-4} [1.0 0.5 
-21 = EI 0.5 1.666 0.333 

14.75 0.333 2.0 

2.25 0.666 
0.666] {::} 
1.333 84 

(5.12) 

The recursive equations for an iterative solution to equation (5.12) are 

EI8 1 =t(-4-0.582) 

1 
EI82 = 1.666 (-21-0.58 1 -0.333(3 ) 

EI83 = 1(14.75 - 0.33382 - 0.666(4 ) 

1 
EI84 = -- (2.25 - 0.666(3 ) 

1.333 

(5.13) 

The results for the solution using both strict Gauss-Seidel Iteration and the 
modified technique outlined in section 5.1 are given in table 5.2. 

As expected, the modified iteration technique converges more rapidly 
and while the iterations could continue, sufficient accuracy has been 
achieved with the cycles shown. The beam end moments due to the nodal 

C?-) (--) c -9 
Figure 5.3 Positive moments. 
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Table 5.2 Iterative solutions for beam rotations 

k EIO I EI02 EI03 EI04 

Gauss-Seidel Iteration 
1 -4.00 -12.60 7.38 1.69 
2 2.30 -12.88 8.91 -2.00 
3 2.44 -15.07 10.91 -2.77 
4 3.54 -15.37 10.81 -3.41 
5 3.69 -15.82 11.07 -3.72 
6 3.91 -15.82 11.25 -3.85 
7 3.96 -16.02 11.31 -3.94 
8 4.01 -16.05 11.36 -3.97 

Modified Gauss-Seidel Iteration 
1 -4.00 -11.40 9.27 -2.95 
2 1.70 -14.97 10.85 -3.74 
3 3.49 -15.82 11.26 -3.94 
4 3.91 -16.03 11.36 -3.99 

loads are recovered by back-substitution and these are shown in figure 5.2( e). 
Typically, the results for the interior span are given as 

{m23} = EI [0.666 
m32 0.333 

= {-6.91} 
2.22 

0.333 EI I {

-16.03 ) 

0.666] ~/6 J 

The final moments in the beam are given by the combination of the moment 
diagrams of figures 5.2(c) and 5.2(e), as shown in figure 5.2(0. 

The moment distribution method uses a similar iteration technique 
based on the distribution of moments into the beam ends and the influence 
of the subsequent carry-over moments. A physical interpretation of the 
operations is shown in figure 5.4, starting with all the nodes clamped against 
rotation. Each node is then released in turn, with all the remaining nodes 
still restrained, resulting in the series of diagrams of figure 5.4. Applied to 
the continuous beam of figure 5.2(a), the nodal moments of figure 5.2(d) 
are distributed into the beam ends according to the relative stiffness of the 
elements. A distribution should be seen as a release followed by a replace­
ment of the restraining clamp. Initially, the release relaxes the node so that 
the end moments are balanced, consistent with the applied moment. The 
results at this stage represent the first approximation of an iterative solution. 
This operation is shown as cycle 1 in table 5.3 where each column is headed 
by the subscripts appropriate to the element end moment. The distribution 
of the nodal moments is according to the distribution factors calculated 
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Figure 5.4 Progressive nodal release. 

from equation (5.12) and shown immediately underneath the subscripts in 
the table. For example, at node 2 the applied moment of -21.00 kN m 
results in internal moments m2I of 0.6 (-21.00) [that is, -12.60] and m23 

of 0.4 (-21.00) [that is, -8.40] at the node. 
As was pointed out previously, the distribution of moments induces 

carry-over moments at the far end of a restrained element, causing a 
balancing moment to develop in the restraint. The carry-over moments are 
shown immediately after the distribution cycle and are derived as one-half 
of the opposite end distributed moment. Again using node 2 as an example, 
the carry-over moments are to ml 2 equal to -6.30 kN m and to m32 equal 
to -4.20 kN m, with the arrows in table 5.3 indicating the initial carryover 
for the first cycle only. In the second cycle of operation each node must 
again be relaxed to distribute the unbalanced moment produced by the 
carry-over moments and given as the sum of the carry-over moments at the 
node. Since the balancing moment in the restraint is always of opposite 
sense to the resultant internal moments acting on the node, the distributed 
moments are of opposite sign to the unbalanced moment. This cycle also 
produces carry-over moments and the process must be repeated until the 
carry-over moments are small enough to be neglected, in which case the 
node is fully relaxed from any rotational restraint. The fact that a balance 
is achieved after each distribution is indicated by the bars drawn in table 5.3 
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Table 5.3 Moment distribution table for beam of figure 5.2 

Subscript 12 21 23 32 34 43 

Dist. F 1 0.6 0.4 0.33 0.67 1 

Cycle 
Number 

1 -4.00 ><.. -12.60 -8.40 ><: 4.92 9.83>< 2.25 
-6.30 -2.0 2.46 -4.20 1.13 4.92 

2 6.30 -0.28 -0.18 1.02 2.05 -4.92 
-0.14 3.15 0.51 -0.09 -2.46 1.03 

3 0.14 -2.20 -1.46 0.85 1.70 -1.03 
-1.10 0.Q7 0.43 -0.73 -0.52 0.85 

4 ---.l.!.Q -0.30 -0.20 0.42 0.83 -0.85 
-0.15 0.55 0.21 -0.10 -0.43 0.42 

5 0.15 -0.45 -0.30 0.18 0.35 -0.42 
-0.23 0.08 0.09 -0.15 -0.21 0.18 

6 0.23 -0.10 -0.Q7 0.12 0.24 -0.18 
-0.05 0.11 i 0.06 -0.03 -0.09 0.12 

7 0.05 -0.10 -0.Q7 0.04 0.08 -0.12 
1--

-0.05 0.02 0.02 -0.03 -0.06 0.04 
8 0.05 -0.02 -0.02 0.03 0.06 -0.04 

-4.00 -14.07 -6.93 2.24 12.52 2.25 

and it should be recalled that in the first cycle, the moments are balanced 
with the applied moment. For the given beam, eight cycles are considered 
to.be sufficient and the element end moments are then given as the sum of 
the end moment entries in each column. The results agree substantially with 
those obtained by Gauss-Seidel Iteration. 

Since the modified Gauss-Seidel Iteration produced more rapid conver­
gence, it is pertinent to seek a parallel procedure in the moment distribution 
method. This can be done by considering the carry-over moment as soon 
as a distribution has been performed. This is equivalent to taking the 
next-best estimate of the rotations instead of using all the values of rotation 
from the previous cycle. The process is shown in table 5.4, in which it should 
be noted that the value of the fixed end moments is included at the head 
of each column. These fixed end moments are responsible for the initial 
applied nodal moments which are of opposite sign to the unbalanced 
moment, as previously explained. 

At node 1, the initial unbalanced moment is 4.00 kN m and the distribu­
tion factor is 1, so that a moment of -4.00 kN m is distributed into the end 
'12' of the first span. This immediately induces a carry-over moment of 
-2.00 kN m at the end '21' of the span, and this is considered in determining 
the unbalanced moment of 19.00 kN m now acting at node 2. Moment 
dh;tribution is now applied at node 2 to give the values of -11.40 and -7.60 
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Table 5.4 Moment distribution-immediate carry-over 

Subscript 12 21 23 32 34 43 

Dist. F 1 0.6 0.4 0.33 0.67 1 

Cycle 4.00 -4.00 25.00 -17.00 2.25 -2.25 
Number ------------------- --------------------- -----------------

1 -4.00 ~ -2.00 
-5.70 ~ -11.40 -7.60 ~ -3.80 

2 5.70 ~ 2.85 3.09 ~ ~ 12.37 ~ 6.18 
-1.78 ~ -3.57 -2.38 ~ -1.19 -1.97 ~ -3.93 

3 1.78 ~ 0.89 0.53 ~ 1.05 2.10 ~ 1.05 
-0.43 ~ -0.85 -0.57 ~ -0.28 -0.53 ~ -1.05 

4 0.43 ~ 0.21 0.14 ~ 0.27 0.54 ~ 0.27 
-0.21 -0.14 ~ -0.07 -0.14 ~ -0.27 

0.07 0.14 ~ 0.07 
-0.07 

~m 0.0 -18.07 18.07 -14.77 14.77 0.0 

~d·m 3.91 -16.02 -10.68 7.57 15.15 -5.32 

L/4~d· m 3.91 -16.02 -16.02 11.36 11.36 -3.99 
I--

to balance that node, and the operations continue throughout the structure. 
Four iterations are shown in table 5.4 but since the carry-over operation is 
considered at the same time as the distribution of moments, the iterations 
are staggered throughout the table. To give emphasis to this and to indicate 
that the node is currently balanced, a bar is drawn below the moment entries 
for each distribution. Further, the source of the carry-over moments, which 
impinge on the previously achieved balance, is shown by the arrows in the 
table. After four iterations, the carry-over moments are considered small 
enough to be neglected and the end moments, including the fixed end 
moments, can be summed to give the end moments corresponding to those 
of figure 5.2(0. 

The relationship between the modified Gauss-Seidel Iteration and the 
moment distribution method as applied in table 5.4 can be demonstrated 
more clearly when the rotations of the nodes are identified from table 5.4. 
Each node relaxes or rotates under a distributed moment and, from equation 
(5.7), the amount of rotation is L/4EI times the distributed moment. The 
sum of the distributed moments of each column is shown in table 5.4 along 
with these values multiplied by L/4, which can be compared with the last 
line of entries in table 5.2. Intermediate values of rotation can also be 
calculated at the end of any iteration and these values will be found to be 
consistent with the corresponding terms in table 5.2. A similar comparison 
can be made between table 5.3 and the strict Gauss-Seidel Iterations of 
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table 5.2. It is clear that the approach to moment distribution taken in 
table 5.4 is a preferable one and no further consideration will be given to 
the procedure used in table 5.3. 

5.3.1 Modification for Pin-ended Elements 

At this stage the computational effort of moment distribution is still quite 
considerable but a simple modification is available for handling pin-ended 
elements. This modification, which is in line with that used in the matrix 
stiffness method, again reduces the computation. 

The end moments at nodes 1 and 4 of the continuous beam of 
figure 5.2(a) ·are known to be zero because of the nature of the pin supports. 
A beam has a reduced rotational stiffness, with respect to a moment applied 
at one end, when the far end is free to rotate. Under these conditions the 
element stiffness matrix for a prismatic beam is given in the relationship 

(5.14) 

so that the appropriate stiffness factor is now 3 EI/ L, and this may be used 
to calculate the distribution factors. There is of course no carry-over moment 

~8 kN 3 kN/M 

4 4 

El consto.nt 

21 23 32 34 

0,53 0,47 0,40 0,60 

-6,00 25,00 -17,00 1-~,~8 ____ 1-----------------------
-10,07 -8,93 -4.47 

3,61 7,23 10,86 
-1.91 -1.70 -0,85 

0.17 0,34 0,51 
-0,09 -0,08 -[f.04 

0,02 0,02 

-18,07 18,07 -14,77 14,77 

Figure 5.5 Moment distribution using modified stiffness. 
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to the pinned end. The pinned ends of the elements are not considered to 
be clamped at any stage, and this must be noted when calculating the fixed 
end moments. The continuous beam of figure 5.2(a) can now be analysed 
again, this time using the modified stiffness for the exterior spans. 

The results of the analysis and the moment distribution table are shown 
in figure 5.5, together with the beam and its initial restrained form. Figure 5.5 
introduces a practical notion of the modified stiffness factor that is con­
venient to use with prismatic elements. With the standard stiffness factor 
expressed as 4El/ L, and assuming all the elements have the modulus of 
elasticity, E, the term 4E can be cancelled from the expression of the 
distribution factor rji given by equation (5.10). The standard stiffness factor 
might well then be defined simply as 1/ L. The modified stiffness factor, 
denoted as k*, must now be defined as ~ of the standard stiffness factor to 
preserve the cancellation of the term 4E in calculating the distribution 
factors. This approach is demonstrated in the solution shown in figure 5.5. 

A further study of the use of the moment distribution method is given 
in example 5.1, where a rigid jointed frame superstructure of a bridge system 
is analysed. 

Example 5.1: Moment Distribution of a Non-swaying Frame 

Given data: 

1 
~ 40kN 

2 
,~ 60kN 

3 4 

/" 

i&J \;~ 
Tt777r 

~. I 2 I 2 I 2 

E constant throughout. Relative I values: beams 41; columns I. 

Calculate distribution factors and fixed end moments from 

41 
k=-

6 

3 I 
4 2.5 

fr 
k* = 3 I 

4 2.5 

! 40kN J 
LS 2 2 ~ 

30kNI'I 

! GOkN J C ~:3--4----.J'--2 -----f~ 
26.67kNI'I 53.33kNI'I 
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Moment Distribution Table: 

21 25 23 32 36 

0.44 0.17 0.39 0.39 0.17 

-30 26.67 -53.33 
------~----- -------------- -----

1.47 0.56 1.30 0.65 

10.28 20.55 8.96 

-4.52 -1.75 -4.01 -2.00 

0.39 0.78 0.34 

-0.17 -0.07 -0.15 -0.08 
... +0.03 0.01 

-33.20 -1.26 34.48 -33.40 9.30 

34.5kNI'I 33.4kNI'I 

Frame Bending Moment Diagram 

34 

0.44 

-----

23.18 

{l.88 

0.04 

24.10 

Distribution Factors 

Fixed End Moments 

Final End Moments 
(kNm) 

5.4 MOMENT DISTRIBUTION APPLIED TO SWAYING 
RECTANGULAR FRAMES 

In extending the application of the moment distribution method to swaying 
frames, the more general principles of the stiffness method of analysis are 
introduced. Although the technique can be used for non-rectangular frames, 
the additional computational effort erodes the advantages of simple hand 
calculations, and the general stiffness method of matrix analysis or the 
flexibility method of analysis is probably to be preferred. 

5.4.1 Beam Element Behaviour under Transverse Displacement 

Before proceeding to the analysis, some general observations about the 
displacement of a beam element need to be made. The general behaviour 
of a beam element was presented in chapter 3 and summarised by the beam 
element stiffness matrix given in equation (3.25). Two particular cases are 
of interest here and they are shown in figure 5.6. 
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(0.) 

(10) 

Figure 5.6 Fixed end moments under transverse displacements. 

For case (a) of figure 5.6, d l , 01 and O2 are zero, while d2 = -.:1, so that 
equation (3.25) gives 

6EI 
m12=U.:1 

(5.15) 

For case (b) of figure 5.6, d l and O2 are zero while d2 = -.:1, so that equation 
(3.25) gives 

4EI 6EI 
mI2=TOI+ L2.:1 (i) 

(ii) 

Since m 12 is zero, equation (i) allows 01 to be expressed in terms of .:1 as 

6 o = --.:1 
I 4L 

Substituting for 01 into equation (ii) results in 

(5.16) 

Equations (5.15) and (5.16) represent values of fixed end moments due to 
translation of one end of a beam element, and this information is relevant 
to the analysis of swaying frames. 

5.4.2 Frames with One Sway Degree of Freedom 

The behaviour of rectangular frames with sway displacement was introduced 
in chapter 4. It may be recalled that with the nodes nominated at the joints, 
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and ignoring the effects of axial deformation, the degrees of freedom of a 
single-storey frame can be described by the rotations at the nodes and the 
sway of the frame at the level of the beam. Using the principle of superposi­
tion, the behaviour of such a frame can be considered in two parts: firstly 
with the sway prevented by a restraining prop and secondly with the effects 
of sway taken into account. This is illustrated in the diagrams of figure 5.7 
where the frame sways by an amount a l . In figure 5.7(b), the frame is 
restrained against sway by the prop which, because of the loads, develops 
a reactive force that can be designated as FlO' In figure 5.7(c) a sway force 
FI is assumed to be applied to the structure to produce the sway a l . Since 
the behaviour of the frame is given by the superposition of these two systems, 
equilibrium requires FlO plus FI to be zero. This provides an equilibrium 
equation which is the key to the solution. 

The restraining force FlO can be readily calculated since it involves the 
analysis of a non-swaying frame. In terms of the moment distribution 
method, each node can be clamped as required and the fixed end moments 
can be calculated. The nodes can then be progressively released to give the 
end moments from which the bending moment diagram can be drawn and 
the reactions, including the propping force, can be found. 

Sway moment distribution can be applied to determine a relationship 
between the sway deflection and the sway force. Rather than calculate the 
sway a l from the known value of FI of figure 5.7(c), it is more convenient 
to introduce an arbitrary sway, a', and determine the force necessary to 
produce it. For sway moment distribution, the frame is again assumed to 
be clamped at the nodes as necessary to prevent rotation and the arbitrary 
sway is applied. This induces sway fixed end moments in accordance with 
equations (5.15) and (5.16) as appropriate, and the moment distribution 
process can be applied again to give the bending moment diagrams and 
reactions. The arbitrary sway force, say FII , is then found from equilibrium. 
Since the sway stiffness of the frame is expressed by FIll a', the equilibrium 

Lll 1 I FlO LlJ 1 I 
----?> ., ----?> I 

---l----?> 
I I I \ I I 

F J I I I \ I I 
I I I I I I 
I I I I I I 
I I I I { { 
/ \ 

(0.) (b) (c) 

Figure 5.7 Behaviour of a swaying frame. 
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equation satisfying the superposition requirements of the two part study is 
then, 

.1) 
FlO + .1' FIl = 0 (5.17) 

Equation (5.17) may be used to calculate the sway .1] as a ratio of the 
assumed sway. The same factor would have to be applied to the assumed 
sway moments, before they were combined with the no-sway moment results 
to give the bending moments in the frame. The method is demonstrated in 
example 5.2 for a typical single-bay frame. The different column heights 
and the base conditions have been deliberately chosen to illustra~e the 
nature of the sway fixed end moments in relationship to the assumed sway. 
The final bending moment diagram and reactions of the frame are not 
shown but these can be deduced from the final end moments given by 
combination in the sway moment distribution table of example 5.2. 

The technique can be immediately applied to multi-bay rectangular 
frames with one sway degree of freedom, and it is also appropriate for the 
analysis of continuous beams and frames with support movements. While 
most of the routine structural analysis assumes unyielding supports, it is 
possible to estimate foundation settlement due to the reactive loads. The 
effect of settlement or other support movements on statically indeterminate 
structures can be readily analysed by the moment distribution method. If 
the structure is initially displaced, without nodal rotation or other transla­
tion, to accommodate the support movements, then this action will set up 
transverse fixed end moments again in accordance with equations (5.15) 
and (5.16). The nodal restraints can then be relaxed through moment 
distribution to give the final condition of the structure. 

Example 5.2: Moment Distribution of a Swaying Frame 

Given data: 

6kN/M 

2 3 

.., 

k 

k 
I 

6 

E =2 X 105 MPa; 1= 100 x 106 mm4, throughout 
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Part A-No-sway Moment Distribution 

21 23 32 34 43 

0.43 0.57 0.60 0.40 -

+8.00 -8.00 
----- ------------- ---------

-3.44 -4.56 -2.28 

3.09 6.17 4.11 2.06 

-1.33 -1.76 -0.88 

0.27 0.53 0.35 0.18 

-0.11 -0.15 -0.08 
... 0.05 0.03 0.01 

-4.88 4.89 -4.49 4.49 2.25 

Moments (kN m) 

3.10kN 

L22kN 

FlO =-3.10kN 

Part B-Sway Moment Distribution 

Sway Fixed End Moments: 

6EI 
m34 =m43 ="62.l' 
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Select Il' such that 

3EIIl'=10 
16 

.. Il'= 160 
3EI 

then m 21 = 10; m 34 = m 43 = 8.89 

21 23 32 

0.43 0.57 0.60 

10.00 
---- -------------
-4.30 -5.70 -2.85 

-1.81 -3.62 

0.78 1.03 0.52 

-0.16 -0.31 

0.07 0.09 0.05 
. . . -0.03 

6.55 -6.55 -6.24 

5.17 -5.17 -4.93 

-4.88 4.88 -4.49 

0.29 -0.29 -9.42 

Equilibrium equation: 

Il 3.10 
---

.. !l' 3.94 

=0.79 

34 43 

0.40 -

8.89 8.89 
----------

-2.42 -1.21 

-0.21 -0.10 

-0.02 ... 

6.24 7.58 

4.93 5.99 

4.49 2.25 

9.42 8.24 

Adjust arbitrary sway moments by 0.79 

F" =3.94 kN 

Arbitrary sway moments 

Sway moments 

No-sway moments 

Final moments 
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Calculation of sway displacement: 
Since 

fl'= 160 
3EI 

160 
fl=0.79 3E1 

=2.1 mm 

5.4.3 Frames with Multi-sway Degrees of Freedom 

In extending the moment distribution method to swaying frames of several 
stories, a restraining prop is introduced at each sway level to allow the 
no-sway moment distribution to proceed. This analysis results in the prop­
ping forces FlO, F 2Q , •.. , F nQ , where n is the number of sway levels. Each 
level must then in tum be allowed to sway while the remaining levels are 
held at zero sway. The superposition of the results will then give the required 
frame behaviour. There is an equilibrium equation appropriate to each sway 
level but, since a permissible sway at anyone level will induce further 
reactive forces in the remaining props, the equilibrium equations will be of 
the form 

(5.18) 

where Sij is a sway stiffness coefficient expressing the force in the prop at 
level i due to a unit sway displacement at level j. Again, as a matter of 
convenience, arbitrary sways may be introduced at each level in order to 
calculate the sway stiffness coefficient. In a two-storey frame, for example, 
an arbitrary sway of fl' at level 1 will require a force of FII at levelland 
develop a reaction of F21 in the remaining prop, while for an arbitrary sway 
of fl" at level 2 the corresponding forces are F22 and F 12 • Equation (5.18) 
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then gives 

(5.19) 

With the propping and sway forces known, equations (5.19) can be solved 
as a set of simultaneous equations for the ratios fld fl' and fl2/ fl". The 
assumed sway moments must then be adjusted by these ratios, as appropri­
ate, before the sway moments are combined with the no-sway moments to 
give the final result. 

Example 5.3 illustrates the use of equation (5.19) and introduces a 
number of other points relating to the moment distribution method. The 
first of these concerns the layout of the moment distribution table when the 
frame involves nodes with more than three elements framing into it. In 
example 5.3, recognizing the nature of the pinned bases, nodes 3, 4, 5 and 
6 must be initiaIly restrained and progressively relaxed. The carry-over 
moments from a distribution of moment at node 3 involve nodes 4 and 5 
with end moments m53 and m 43 . With the distribution of moment into three 
elements at node 3, requiring three columns to express the end moments 
there, the related end moments of '53' and '43' cannot both be adjacent to 
columns '35' and '34' of the table. Instead a symmetrical layout of the table 
has been nominated for the no-sway moment distribution, and the interac­
tion of end moments '34' and '43' has been stressed by the arrow bar across 
the top of the table. Clearly other layouts can be devised and the order of 
relaxation of the nodes is not important, but it is important that all carry-over 
moments be recognized. With the end moments calculated, an equilibrium 
analysis is applied to the frame to determine the propping forces FlO and 
F20 as shown. The solution for the no-sway case converges rapidly because 
of the nature of the loads, and little bending moment is transferred to the 
second column line. 

In carrying out the sway moment distribution, it is apparent that the 
symmetry of the frame can be used to advantage. Because of symmetry, the 
beams '34' and '56' wiIl have a point of inflection at mid span and there 
will be no vertical deflection there under any sway displacements. Hence 
the frame can be modelled to reflect this, as shown in the sway moment 
distribution of example 5.3. The results can then be extended to the fuIl 
frame to find the sway forces, again using equilibrium. It is helpful to note 
that a horizontal shear plane may be applied at each level and the resulting 
free body diagram must be in horizontal equilibrium. In this way the sway 
force and the propping restraints can be related to the shear in the columns 
calculated from the end moments there. 
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Example 5.3: Moment Distribution of a Multi-storey Frame 

Given data: 

6 
21 

4 

21 

2 

8 

4 

6 

21 
k=-

8 

21 
k=-

8 

level 2 

level 1 

E constant: Relative I as shown 

Part A-No-sway Moment Distribution (Moments kN m) 

.j, 

31 34 35 53 56 65 64 46 43 

0.2 0.4 0.4 0.5 0.5 0.5 0.5 0.4 0.4 

-5.40 1.60 -1.60 
---- ---- --------- -------- -------- ----

0.76 1.52 1.52 0.76 0.76 

-0.15 0.21 0.42 0.42 0.21 -0.15 -0.30 -0.30 

-0.01 -0.02 -0.02 -0.01 -0.01 -0.03 -0.03 -0.01 -0.Q1 

0.01 0.01 0.01 0.01 

-4.65 1.35 3.31 -0.42 0.42 0.18 -0.18 -0.30 0.46 

42 

0.2 

1-----

-0.16 

... 

-0.16 
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282 kN 

FlO ~ ~7A1 kN 

1.80 kN 

~ 
~0.03 kN 

Sheill in column lines (kN) 

1 3 5 

~~ 
--)( ) 

.1.078 0.78 t t072 ~ 
IV 072 

~ 003 00;(1° 12012
6 f 

F20 ~ ~ 1.80 kN 

Part B-Sway Moment Distribution 

Arbitrary sway forces Levell sway 

I 
\ \ k c I 
\ \ 4 

\ \ Fll 
\ \ 

~P-'~=-~~-~~r~ ~ 
I 
I 6'~ I~ 
I I 
I I 
I I 
I I 

I I 
/ 
~ 

Sway Moment Distribution-Levell 

31 34 35 53 56 

1 1 1 2 3 
6 2: :3 5 5 

10 - -45 -45 
~~~~- ~ ~~~- ----------r~~~~ 

5.83 17.50 11.67 5.83 

7.84 15.67 23.50 

-1.31 -3.92 -2.61 -1.31 

0.26 0.52 0.78 
-0.04 -0.13 -0.09 

14.45 13.45 -27.94 -24.29 24.28 

31 
8 

(Moments kN m) 

Sway Fixed End Moments: 

Assume m31 = 10 

then m 35 =-45 

and 
, 120 a=-

EI 
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Shear in column line 1-3-5 

______ ----'-14.:.:..4.:..:5'---) ( 27.94 ) 24.29 

t ~ ~ t 
2.41 2.41 13.06 13.06 

Column line 2-4-6 similar 

and 

Fll =30.94 kN 

F21 =-26.12 kN 

Arbitrary Sway Forces-Level 2 Sway 

Fn 
'-~~~--==~--l~ 

I 
I 
I 
I 
I 
1 

I 
I 

I 
I 

I 

A 

I 
/~ 

I 
1/ F12 

kN 

Sway Moment Distribution-Level 2 (Moments kN m) 

31 34 

1 1 
6 :2 

---- -----

-8.33 -25.00 

1.39 4.17 

0.05 0.14 

-6.89 -20.69 

35 53 

1 2 
:3 5 

50 50 
---------
-16.67 -8.34 

-8.34 -16.67 

2.78 1.39 

-0.28 -0.56 

0.09 

27.58 25.82 

56 

3 
5 

-----

-25.00 

-0.83 

-25.83 

Sway Fixed End Moments: 

6EI 
m3S=mS3="42/1 

assume 

then /1"= 133.33 
EI 

Shear in column line 1-3-5 

_______ 6._89_) c:_.5_8 ______ ) 25.82 

t t t 
1.15 1.15 13.35 13.35 
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Column line 2-4-6 similar 

.. F12 = -29.00 kN 

and F22=26.70 kN 

Applying equation (5.19): 

~1 ~2 
FlO+Fll . ~' +FI2 • ~,,=O 

~1 ~2 
-1.80-.26.12 ~' +26.70 ~' =0 

The solution is 

~1 
and 

~2 
-=364 ~,,=3.63 
~' . 

hence 

437 484 
~-- and ~--
1- EI 2- EI 

The final moments are then given as follows (half the frame only 
shown): 

31 34 35 

14.45 13.45 -27.94 

-6.89 -20.69 27.58 

52.66 49.01 -101.81 
-25.02 -75.15 100.17 

27.64 -26.14 -1.64 

-4.65 1.35 3.31 

22.99 -24.79 1.67 

53 

-24.29 

25.82 

-88.51 
93.78 
5.27 

-0.42 

4.85 

56 

24.28 

-25.83 

88.48 
-93.78 
-5.27 

0.42 

-4.85 

(a) Sway assumed; 
level 1 

(b) Sway assumed; 
level 2 

(c) (a) x3.64 
(d) (b) x3.63 
(e) (c) +(d) Final sway 

moments 
(f) No-sway moments 

(g) (e)+(f) 
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5.08 
4.85 

4.85 5.08 

1.67 4-----r--T~---tJ---, 27.44 

5.5 PROBLEMS FOR SOLUTION 

Frame BMD 
(kNm) 

5.1 Analyse each of the continuous beams of figure PS.l by the moment 
distribution method and draw the bending moment diagram. Note 
that the cantilever span of figure PS.l(b) effectively applies a moment 
directly to the beam at the end support that must be distributed entirely 
to the end moment of the adjacent span. 

10 kN/m 

1-1 __ 4 __ +-1 ___ 6 ___ +1 __ 4_---l1 EI constant 

(a) 

8 kN/m 

f~~~J~~~l ~ 25 kN ~ 5 kN 

ZS ZS 

I 
6 

I 
5 3 4 2 

I 21 21 

(b) E constant: Relative 1 shown 

l::l./(" ______ ~..,....f-4-0-k-N-m--9..,....+4-0-k-N-m-';;J 20 kN m 

1-___ 4 ___ +-__ 3 __ +-__ 3_--11 EI constant 

(e) 

Figure P5.1 
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5.2 Analyse each of the rigid jointed plane frames of figure PS.2 by the 
moment distribution method and draw the bending moment diagram. 
Relative values of second moment of area, I, are shown and Young's 
Modulus, E, is constant throughout. 

40 kN (b) 

21 

20 kN 
3 

31 
41 3 

6 

3 
6 

6 

(c) 
4 kN/m 

21 
3 3 

4 

Figure P5.2 
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Chapter 6 
The Matrix Stiffness 
Method-Part 2 

In a final presentation of the matrix stiffness method of structural analysis, 
a general technique applicable to all classes of structure is outlined. The 
technique uses coordinate transformation and it is first necessary to discuss 
the axes of reference used to define the structure and its actions. 

The geometry of a structure can be defined by reference to a suitably 
positioned set of axes. The axes can be described as global axes or system 
axes and are usually taken as a first quadrant right-hand cartesian set. An 
element of a structure may have any orientation with respect to the global 
axes, although the displacements· of a structure are defined in terms of 
components in the directions of the global axes. On the other hand, element 
actions must be expressed in terms of local axes to provide meaningful 
results to the engineer. For example, the normal or transverse force at a 

® ® ~3 
2 eleMent specified 2-3 

CD 3 

5 eLeMent speclf'lea 3-2 

(b) 

x (0.) 

globnl o.xes 

Figure 6. 1 Global and local axes of reference. 

147 
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section of a beam is recognized as a shear force, while the force in line 
with the element is recognized as an axial force. For one-dimensional 
elements it is usual and convenient to take the local x-axis in the direction 
of the element with the y-axis following as a consequence. Positive x is 
taken in the direction from end A to end B of the element according to 
how the element is specified in a reference list. The concepts of global and 
local axes are shown in figure 6.1(a), with the variation of local axes as a 
function of the element specification being shown in figure 6.1(b). It may 
now be appreciated that for continuous beams, the local axes for all of the 
elements specified in a logical sequence have the same orientation as the 
global axes. For this reason, continuous beam analysis does not involve 
coordinate transformation. 

6.1 THE GENERAL ANALYSIS OF TRUSSES 

A useful technique for the analysis of trusses has already been presented 
in chapter 3 with the formation of the structure stiffness matrix by matrix 
multiplication. A form of coordinate transformation was involved, in so far 
as the equilibrium equations were all expressed in terms of global axes, 
and the axial forces in the elements were resolved into components in the 
global x and y directions, before being introduced into the equilibrium 
equations. However that approach has a number of limitations and a more 
general approach is necessary. 

6.1.1 The Plane Truss Element 

Consider the behaviour of a single truss element under axial loads applied 
at either end as shown in figure 6.2(a). The element will move with displace­
ments SI and S2 and develop an internal force II as shown in figure 6.2(b). 
The internal force is related to the element extension by the linear elastic 
stress-strain law, so that 

EA 
II =T(S2- SI) (6.1 ) 

For nodal equilibrium: 

PI = -II and P2=/1 

and substituting for II from equation (6.1) gives a load-displacement 
relationship of the form 

[ 
EA EA] 

{~} _ ~ ~E: {;:} (6.2) 
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P, ~ p. 
~-----=------~ 

1 

I 
<a.) Ext .. rnQl r oreeS 

Figure 6.2 Truss element under load. 

In more general terms, the nodal displacements at either end of an 
element must be described in both the x and y directions with respect to 
local element axes, as shown in figure 6.3. The end actions on the element, 
now recognized as internal actions, can also be more generally described 
with components in the local x and local y directions. However, the local 
y direction forces must be zero since any displacements normal to the 
element -do not cause any element extension. The force-displacement 
relationship can now be written as 

P;2 EA 0: _ EA 0 d; 
L : L 

d2' o 0 I 0 0 ______ L _____ _ 

EA 0: EA 0 d~ 
L I L 

o 
I 

o I 0 
I 

o d~ 

(6.3) 

where the prime used in association with each of the terms of the action 
and displacement vectors indicates that those terms are defined with respect 
to the local axes. 

The four by four matrix of equation (6.3) is the truss element stiffness 
matrix. The reason for the inclusion of the obviously zero shear actions, 
V;2 and V~l' becomes apparent when the nodal equilibrium equations are 

Figure 6.3 General truss element actions. 
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considered. The nodal equilibrium equations are expressed in terms of the 
global x and y axes, so that a coordinate transformation is necessary to 
adequately express equilibrium. 

6.1.2 Coordinate Transformation for a Truss Element 

As was mentioned, the local axes of a truss element are generally not the 
same as the global axes of reference set up to define the structure. It is 
necessary then to consider the influence of this on the actions and displace­
ments defined with respect to the local axes. In essence, the transformation 
as indicated in figure 6.4 is required, both with regard to actions and 
displacements. Since the nett effect on both systems of figure 6.4 is the same 
then 

and 

pij = Pij cos a + vij sin a 

V;j = -P;j sin a + vij cos a 

PJ; = Pj; cos a + vji sin a 

vJ; = -Pji sin a + Vj; cos a 

The equations may be written in matrix form as 

f
cosa sinal 0 O]fP""f -=-~i~~ __ ~~~_l __ ~ ___ .~__ v; 
o 0 I cos a sm a pj "; I " 
o 0 I -sin a cos a vji 

(local) (global) 

(6.4) 

where the four by four matrix is a coordinate transformation matrix that 
will be denoted by T. It is convenient to write equation (6.4) as 

(6.5) 

and the displacements may be treated in a similar manner to give the 
equation 

{d'l f dj i;J =[T]l~J (6.6) 

where /; and d; are the actions and displacements at end i of the element, 
recalling that the prime used with the terms indicates a reference to local 
axes. 
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~> 
® J ® 

,~ d. 
~ p ,VIj 

d. IJ yi ~, 

LOCAL I GLOBAL 

y' \L::, 
x 

Figure 6.4 Truss action coordinate transformation. 

Equation (6.3) can now be conveniently written as 

-I-;-~~I--:- !~~l 
o 1 0 d' 

L 1 L J 

(6.7) 

o 0 1 0 0 
1 

Substituting for the local actions and displacements from equations (6.5) 
and (6.6) into equation (6.7) gives 

EA : EA 
L 0 1-- 0 

1 L 

__ ~ ___ ~ 1 __ 0 ___ 0_ 
EA 

L 

o 

1 EA 
0 1 0 

1 L 
1 

o 1 0 0 
1 

Pre-multiplying both sides by T-\ and noting that coordinate transforma­
tion matrices are necessarily orthogonal matrices which have the special 
property that the inverse is equal to the transpose, then 

EA 1 EA 
0 1 -- 0 

L 1 L 
1 

TOO 1 0 0 
= [T] --EA - -- -:1--£:4----

o - 0 L 1 L 
I 

o 0 1 0 0 
1 

[T] !~~l (6.8) 
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which can be conveniently written as 

6.1.3 Assembly of the Structure Stiffness Matrix using 
Truss Elements 

(6.9) 

With the truss element stiffness matrix now defined with respect to global 
axes as a transformed element stiffness matrix, it is possible to assemble a 
structure stiffness matrix. The assembly procedure follows on the basis of 
the nodal equilibrium equations and satisfies compatibility because common 
displacements are assigned to the ends of all elements terminating at the 
same node. 

The procedure can best be explained with reference to an example. 
The truss of figure 3.2 and presented in a detailed study in section 3.5 will 
be used to illustrate the point. As a matter of convenience all elements will 
be addressed from low node number to high node number. This is not a 
general restriction and any automated process can readily cope with address­
ing the element in either order. The restriction simply assists in the explana­
tion of the assembly process. The truss is shown again in figure 6.5 with 
the local axes defined for each element, and in particular, the angle lX, 

defining the relationship between the global and local axes for a given 
element, is clearly stated. 

The unrestrained structure has eight degrees of freedom and the struc­
ture stiffness matrix sought is therefore an eight by eight matrix. The matrix 
can be represented in a block diagram form as shown in figure 6.6 with an 
initial subdivision into four blocks each having four terms. That is to say 

Elel'"lent Rotation 

CD 0 

® 306.870 

0 ® 270 

0 270 

® 233.130 

® 180 

Figure 6.5 Truss analysis-relationship between global and local axes. 
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2 3 

~'"'' 
------ .-

~ """ 
" " 

" " " " 2 

" " " 
I " " I " I " I " " I~ "~ 

3 

I " 
4 

I " " I " I " 
Il " " 

Figure 6.6 Block diagram of the structure stiffness matrix for the truss of figure 6.5. 

each block represents a two by two submatrix and can be addressed by the 
node numbers arranged to define the row and column position of each. 

Consider the equilibrium of node 1 for example, as shown in figure 
6.7. The nodal equilibrium equations are given by 

and 

3 

Pix = L Px, end 1 of ® 
k~1 

3 

Ply = L Py , end 1 of ® 
k~1 

Figure 6.7 Nodal equilibrium-node 1. 
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where the notation is apparent from a reference to figure 6.7. The equations 
relate the external loads at the node to a summation of the internal forces 
resolved into appropriate components with respect to the global axes. 

It should be recalled that the objective is to relate the external loads to 
the displacements. At this stage, the external loads are related to the internal 
actions, but of course the internal actions are related to the displacements 
by the transformed element stiffness matrices (TESM). The summation is 
achieved by assembling the TESMs in the appropriate location of the 
stiffness matrix for the structure. For element CD, with nodes 1 and 2, for 
instance, the TESM is located in the boxes of figure 6.6 addressed by nodes 
1 and 2. All other TESMs are located in a similar manner and overlaying 
terms are added algebraically. The apparent difficulty of an element that is 
not consecutively node-numbered is easily overcome when it is realized 
that the TESM can be expanded to whatever size is necessary by the inclusion 
of zero terms. Thus for element (2), the TESM can be written as 

1 3 1 2 3 

1 [!.!}J_~~] = 1 [!~L~L'!:"] 3 T21: T22 2 0 1 0 I 0 __ ...l ___ I- __ 

3 T21 : 0 : T22 

and conveniently entered into the stiffness matrix. 
In figure 6.6 the block diagram of the stiffness matrix is used to illustrate 

the assembly of three of the TESMs in this manner. The remainder follow 
in a similar way and have only been omitted in the interests of clarity. The 
structure stiffness matrix for the truss of figure 6.5 can now be confirmed 
on the basis of the above approach. 

6.1.4 Solution for Element Actions 

With the structure stiffness matrix and the load vector defined, the boundary 
conditions can be applied and a solution to the displacements found. A 
general procedure for the application of the boundary conditions is presen­
ted in section 6.3 and either this technique, or the techniques previously 
outlined, may be used. 

The element actions can then be found by back-substitution of the 
displacements into equation (6.9). However this would result in the actions 
being expressed in terms of the global axes, rather than the local axes as 
required for meaningful interpretation. The necessary transformation is 
given in equation (6.5) so that equation (6.9) can be written as 

f~} = [T][TESM]f~} (6.10) 
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6.2 THE GENERAL ANALYSIS OF PLANE FRAMES 

The analysis of rigid-jointed plane frames has already been introduced in 
chapter 4 with a technique for the analysis of rectangular frames, ignoring 
axial deformation. It is now appropriate to consider a more general method, 
applicable to any plane frame. The method will be seen as a logical extension 
to the general stiffness method for the analysis of trusses. Indeed the method 
is even broader than that and is in fact the basis of the finite element method, 
where a wide range of different element types can be considered. 

Restricting the elements to one-dimensional types for skeletal frames, 
the range of structures that can be analysed in this way includes continuous 
beams, plane trusses, plane frames, plane grids, space trusses and space 
frames. With both an element stiffness matrix and a coordinate transforma­
tion matrix defined for each element, the procedure for the assembly of the 
structure stiffness matrix and the subsequent solution for displacements and 
back-substitution to determine the element actions is the same for all classes 
of structure. Differences do arise though in the treatment of the general 
loads on the structure. The matrix operations of the stiffness method are 
defined for the case of nodal loads only. The load vector is simply defined 
as the set of loads that may be applied at the nodes, according to the degrees 
of freedom admitted. For the analysis of a truss this has not presented any 
problem, since the assumption is usually made that the loads can only be 
applied at the nodes. 

The apparent restriction is readily overcome and the appropriate tech­
nique has already been used in chapter 4. However, it is an important 
concept and worthy of restatement here. Any general set of loads on a linear 
elastic structure can be considered through a two-part approach to the 
problem. From the structure whose analysis is required, a restrained primary 
structure can be introduced. The imposed restraints correspond to the 
degrees of freedom at the nodes. The actions in the restrained primary 
structure under the loads are well known as fixed end actions that can be 
readily calculated as moments and forces. Therefore the actions in the 
imposed restraints are identified. These actions can be negated in a second 
solution where the structure is loaded at the nodes. Clearly the superposition 
of the two solutions then gives the solution to the problem. The procedure 
is shown in principle in the diagrams of figure 6.8 using a simple portal frame. 

6.2.1 The General Plane Frame Element 

The general plane frame element is subjected to the internal actions of axial 
force, shear force and moment. These actions can be readily defined by a 
combination of the continuous beam element and the truss element, using 
the principle of superposition. In effect, additional independent equations 
relating to the axial force-axial displacement relationship are introduced 
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1 

Structure for 
solutton 

Nodo.l loads 
Mo. trlx a.no.lysIs 
solution 
<pClrt 2) 

(c) 

Figure 6.8 Nodal loads on a plane frame. 

Fixed node 
solutIon 
<po.rt 1) 

(b) 

into the continuous beam action-displacement relationship. The continuous 
beam element stiffness matrix is expanded to a six by six matrix to accommo­
date the three degrees of freedom per node. The result is given in equation 
(6.11) which defines the required element stiffness matrix: 

EA I EA 
Pij 0 0 I 0 0 Sj 

L I L 
I 

12EI 6EI I 12ET 6EI 
Vij 0 I 0 -IF d j L3 L2 I L2 

I 
6EI 4EI I 6EI 2EI 

mij 0 I 0 L2 OJ L2 L I L ---------------+---------------
EA I EA 

Pjj 0 0 I 0 0 Sj L I L 
12EI 6EI 

I 
12ET 6EI I 

Vjj 0 L3 L2 I 0 L3 L2 dj 
I 

6EI 2EI 
I 6EI 4ET I 

mjj 0 e I 0 L2 OJ L I L 

(6.11 ) 
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The actions and displacements of equation (6.11) are defined in the figure 
shown in section B2.7 of appendix B. 

6.2.2 Coordinate Transformation for a Plane Frame Element 

It is apparent from figure 6.1 (a) that the general analysis of a plane frame 
involves coordinate transformation. Further, the process can be seen as an 
extension of the procedure involved in the analysis of a truss. Equation 
(6.11) introduces the additional degree of freedom of rotation at each end 
of the element, accompanied by the corresponding internal moment. The 
rotation and the internal moment are defined with respect to the z-axis 
which is the axis normal to the plane of the structure, and this axis is 
unaffected by coordinate transformation of the type considered here. In 
effect, the z-axis is common to both the local and global axes. For this 
reason the coordinate transformation matrix appropriate to the plane frame 
element is simply the extension of the matrix given in equation (6.4), so 
that for the plane frame element 

cos a Sill a 0 I 0 0 0 
I 

-Sill a cos a 0 I 0 0 0 
I 

o 0 1 I 0 0 0 [T] --------------~------------
o 0 0 I cos a Sill a 0 

I 
o 0 0 I-sin a cos a 0 

I o 001 0 0 1 
I 

The general nature of the transformed element stiffness matrix can now be 
seen as 

[TESM] = [Tf[ESM][ T] (6.12) 

where both the element stiffness matrix, ESM, and the coordinate transfor­
mation matrix, T, are appropriate to the nature of the structure. As has 
already been indicated, the procedure for the assembly of the structure 
stiffness matrix for the plane frame follows along exactly the same lines as 
that used in the general truss analysis. 

6.2.3 Application of Boundary Conditions-Solution 
for Displacements 

In the preceding sections the transformed element stiffness matrices have 
been used to assemble the structure stiffness matrix without regard to the 
boundary conditions. This is a general approach and has the advantage of 
expressing the structure stiffness characteristics in such a way that alternative 
boundary conditions could be readily applied. Mathematically, the general 
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load-displacement characteristics for the structure are expressed by 

P=K· d (6.13) 

as has already been seen. 
The solution technique used in chapters 3 and 4, based on the partition­

ing of an ordered form of equation (6.13), could be used. However, in 
keeping with the more general line presented in this chapter, a general 
technique for proceeding to the solution of equation (6.13) will be given. 
The technique was first presented by Zienkiewicz (1971). 

The general form of equation (6.13) is 

PI .k" k12 kJ3 

P2 k2J k22 

P3 k31 

Pn - 2 

Pn - I 

Pn kn' 

kIn 

kiln 

d , 

d2 

d3 

(6.14) 
dn- 2 

dn- , 

dn 

Suppose the prescribed displacements, that is, the boundary restraints, are 
at d" d2 , dn ._ 2 and dn -_

" 
and that the values are 

and 

If each of the leading diagonal terms of the stiffness matrix, corresponding 
to a prescribed displacement, is multiplied by a weighting factor of say 
1020 , and the corresponding term in the load vector is replaced with the 
weighted diagonal term times the prescribed displacement, then equation 
(6.14) becomes 

0'1 k 1l 1020 

O'2k221020 

P3 

0'3 kn - 2 n -2 1 020 

O' 4 k n - 1 n_ , 1020 

k ll 1020 kl2 kJ3 

k21 k22 1020 

k31 

Pn kn' 

kn _ 2 n _ 2 1020 

kn- , n- ,1 020 

kIn d, 

d2 

d3 

dn- 2 

dn- , 

knn dn 

(6.15) 
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The first equation represented in the matrix relationship of equation (6.15) 

is 

Solving for dJ gives 

d J =[aJ· klJ .102°-(kJ2· d2 +kJ3· d3+·· ·+kJn · dn)]/(k lJ .102°) 

that is 

dJ = a J (to a very good approximation) 

A similar result is obtained by considering the remaining equations directly 
related to the restraints and, of course, the results are equally valid when 
aj equals zero. The standard solution to equation (6.15) will return the 
complete displacement vector. 

In considering what the technique does, it is relevant to return to the 
general relationship given in equation (6.13), and to recall that, prior to the 
consideration of the boundary conditions, a solution is not possible. This 
is because P is not a vector of completely known terms and d is not a 
vector of completely unknown terms. The general load vector contains the 
unknown reactions, and the general displacement vector contains the 
specified or prescribed displacements at the restraints. What the above 
technique does is to specify a term in the load vector to replace an unknown 
reaction, in such a way as to ensure that the corresponding displacement 
has its prescribed value on solution. 

A simplified version of the technique, valid only when the prescribed 
displacements are zero, serves to illustrate the point further. In this case, 
suppose the required leading diagonal terms were replaced by a unit value, 
with the remaining terms in both the corresponding rows and columns set 
to zero. The result is that equation (6.14) would be written as 

0 1 0 0 d1 

0 0 1 0 d2 

P3 0 0 k33 k34 d3 
(6.16) 

0 0 0 0 0 1 0 0 dn- 2 

0 0 0 0 0 0 1 0 dn- J 
Pn 0 0 kn3 kn4 0 0 knn dn 

Effectively the equations represented in equation (6.16) are 

PF=KF· dF 

plus a set of equations 

{O}=[I]·{dR } 
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where [1] is the identity matrix. However the equations are all distributed 
throughout the matrix rather than being arranged in a compact form. The 
solution of equation (6.16) will return the required displacements for all 
the nodes of the structure. 

The general procedure for handling the boundary conditions is demon­
strated in examples 6.1 and 6.2. Both examples use the MATOP command, 
MODDG, which has been specifically designed to handle the boundary 
conditions by permitting a modification to the diagonal elements of a matrix. 
In addition, the SELECT command facilitates the back-substitution process 
to recover the element actions. Displacement terms appropriate to each 
element can be selected from the displacement vector for structures where 
the elements have consecutive node numbering. 

Example 6.1: Analysis of a Continuous Beam 

Given data: 

ACD 
I i 

2 
I 

Load Case 1: 

3 

<'lJ;A 
2 I 

Q) 
3 

1.51 

4 

15 kN/m 

5 

@/A 
3 I E =200 kN/mm2 

I =50 x 106 mm4 

Load Case 2: Support 3 settles vertically by 10 mm 

Procedure: Form ESM from continuous beam element stiffness 
matrix. Consider pin support condition with the boundarycondi­
tions. Assemble full structure stiffness matrix. 

Element Stiffness Matrices: 

Elements <D and <2> 

Elements (3) and @ 

t 1.5 1.5 ! -1.5 1.5J 

ESM = EI ---}.:?_-- -~---~-:!:~ -- -]--­
-1 .5 -1.5 I 1.5 -1.5 

I 

1.5 1 ! -1.5 2 

ESM = EI t~/~~--~~-;~:::----;~ 0.666 1 I 0.666 -1 
I 

1 1 l -1 2 

(kN m units) 
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Structure Stiffness Matrix: 

1.5 1.5 -1.5 1.5 
1.5 2 -1.5 1 

-1.5 -1.5 3 0 -1.5 1.5 
1.5 1 0 4 -1.5 1 

K=EI 
-1.5 -1.5 2.166 -0.5 -0.666 

1.5 -0.5 4 -1 

-0.666 -1 1.333 
0 

-0.666 

Load Vector: Load case 1-Fixed End Actions 

1 
0 
4 

-1 

-0.666 
-1 

0.666 
-1 

-1 

2 

~2.66 ~_11_.25_· _? 
Typical fixed end actions 

8 1 1225 1 

Hence nodal loads are: 

2.06 

~ 
E 

~ 16 8.583::l 

~ 
OK 

Load case 2-d3 = -0.01 Om 

Hence 

R, R, 
-2.666 0 

-16 0 
0 0 

R3 R3 
p= 

-8.5833 
and 

0 
-45 0 

0 0 
R5 R5 

11.25 0 

~45 11.25 

n 
A 

P(modified) = 

0 0 

-2.666 0 
-16 0 

0 0 
0 -0.01 . k" . 1020 

-8.5833 0 
-45 0 

0 0 

0 0 

11.25 0 
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Solution: Using MATOP, and the commands MODDG and SELECT 
in particular, the solution can now be found as shown in the following 
output. 

LOAD.('10.10 
PRINT.I Struoture Stiffness Hatrix (soaled) 
0.150000E+Ol 0.150000E+Ol -.150000E+Ol 0.150000E+Ol 
O.OOOOOOE+OO O.OOOOOOE+OO O.OOOOOOE+OO O.OOOOOOE+OO 
0.150000E+Ol 0.200000£+01 -.150000E+Ol 0.100000£+01 
0.000000£+00 O.OOOOOOE+OO O.OOOOOOE+OO O.OOOOOOE+OO 
-.150000£+01 -.150000E+Ol 0.300000£+01 O.OOOOOOE+OO 
O.OOOOOOE+OO O.OOOOOOE+OO O.OOOOOOE+OO O.OOOOOOE+OO 
0.150000E+Ol 0.100000E+Ol 0.000000£+00 O.~OOOOOE+Ol 
O.OOOOOOE+OO O.OOOOOOE+OO O.OOOOOOE+OO 0.000000£+00 
O.OOOOOOE+OO 0.000000£+00 -.150000E+Ol -.150000E+Ol 
-.666666E+00 0.100000E+Ol O.OOOOOOE+OO O.OOOOOOE+OO 
O.OOOOOOE+OO O.OOOOOOE+OO 0.150000E+Ol 0.100000E+Ol 
-.100000E+Ol 0.100000E+Ol O.OOOOOOE+OO 0.000000£+00 
0.000000£+00 O.OOOOOOE+OO 0.000000£+00 0.000000£+00 
0.133333E+Ol O.OOOOOOE+OO -.666666E+00 0.100000E+Ol 
0.000000£+00 0.000000£+00 O.OOOOOOE+OO 0.000000£+00 
0.000000£+00 0 •• 00000£+01 ~.100000E+Ol 0.100000E+Ol 
0.000000£+00 0.000000£+00 O.OOOOOOE+OO 0.000000£+00 
-.666666£+00 -.100000E+Ol 0.666666E+00 -.100000E+Ol 
0.000000£+00 O.OOOOOOE+OO O.OOOOOOE+OO O.OOOOOOE+OO 
0.100000E+Ol 0.100000E+Ol -.100000E+Ol 0.200000E+Ol 
LOAD.P.l0.2 
HODDG.II: 
PRINT.II: Now modified for 
0.150000E+21 0.150000E+Ol 
0.000000£+00 0.000000£+00 
0.150000£+01 0.200000E+Ol 
0.000000£+00 0.000000£+00 
-.150000E+Ol -.150000E+Ol 
O.OOOOOOE+OO 0.000000£+00 
0.150000£+01 0.100000E+Ol 
O.OOOOOOE+OO 0.000000£+00 
O.OOOOOOE+OO 0.000000£+00 
-.666666E+00 0.100000E+Ol 
0.000000£+00 O.OOOOOOE+OO 
-.100000E+Ol 0.100000E+Ol 
O.OOOOOOE+OO O.OOOOOOE+OO 
0.133333E+Ol 0.000000£+00 
0.000000£+00 0.000000£+00 
0.000000£+00 0 •• 00000£+01 
O.OOOOOOE+OO 0.000000£+00 
-.666666£+00 -.100000E+Ol 
0.000000£+00 O.OOOOOOE+OO 
0.100000£+01 0.100000E+Ol 
SCALE.II:. 10000 
SOLVE.LP 
PRINT.P Tbe 
0.162500E-23 
0.650000E-03 
0.150833£-02 
0.695833E-03 
-.221057E-22 

-.3_3333E-02 
_.106125E-Ol 
-.69583_£-03 
-.23312U-22 
0.621667£-02 

Displacement 
-.260.17E-23 
-.35.167£-02 
-.656250E-02 
-.2760.2E-02 
-.100000E-Ol 

-.'16663£-03 
-.7H37.E-02 
0.192708E-02 
-.390615E-23 
0.270833E-02 

solution 
-.150000E+01 
0.000000£+00 
-.150000£+01 
O.OOOOOOE+OO 
0.300000E+01 
0.000000£+00 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
-.150000E+Ol 
O.OOOOOOE+OO 
O.150000E+Ol 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
-.666666E+00 
O.OOOOOOE+OO 
-.100000£+01 
O.OOOOOOE+OO 
0.666667£+20 
0.000000£+00 
-.100000E+Ol 

Vector 

REHARf: -caic..i~ating Ele.ent Actions 
LOAD.E.... (Elements 1 and 2) 
SCALE.E.l0000 
SELECT.D.P ••• 2.1.1 
HULT.E.D.P 
PRINT.P Ele.ent 1 Aotions 
-.2'3750E+01 0.390626E+Ol 
-.266667E+Ol -.3935.0E-05 
0.2'3750E+Ol -.390626E+Ol 
-.220833E+Ol 0.781251E+Ol 
D£LETE.D 
DELETE.P 
S£LECT.D.P ••• 2.3.1 
HULT.£.D.P 

0.150000£+01 
O.OOOOOOE+OO 
0.100000£+01 
0.000000£+00 
O.OOOOOOE+OO 
0.000000£+00 
0 •• 00000E+01 
0.000000£+00 
-.150000£+01 
O.OOOOOOE+OO 
0.100000E+Ol 
O.OOOOOOE+OO 
0.000000£+00 
0.100000E+Ol 
0.000000£+00 
0.100000£+01 
O.OOOOOOE+OO 
-.100000£+01 
0.000000£+00 
0.200000E+Ol 

O.OOOOOOE+OO 0.000000£+00 

O.OOOOOOE+OO O.OOOOOOE+OO 

-.150000E+Ol 0.150000£+01 

-.150000E+01 0.100000£+01 

0.216667£+01 -.500000E+00 

-.500000£+00 O •• OOOOOE+Ol 

-.666666£+00 -.100000£+01 

0.100000£+01 0.100000£+01 

O.OOOOOOE+OO U.OOOOOOE+OO 

0.000000£+00 O.OOOOOOE+OO 

0.000000£+00 0.000000£+00 

0.000000£+00 0.000000£+00 

-.150000E+Ol 0.150000E+Ol 

-.150000£+01 0.100000£+01 

0.216667E+21 -.500000E+00 

-.500000£+00 0 •• 00000E+01 

-.666666E+00 -.100000E+Ol 

0.100000£+01 0.1 OOOOOE+O 1 

0.000000£+00 0.000000£+00 

0.000000£+00 0.000000£+00 



PRINT.F Element 2 Actions 
-.184375E+02 0.390626E+Ol 
0.220833E+Ol -.781251£+01 
0.184375E+02 -.390626E+Ol 
-.390833E+02 0.1562508+02 
DELETE.D 
DELETE.F 
DELETE .E 
LOAD.E.4.4 (Elements 3 and 4l 
SCALE.E.l0000 
SELECT.D.P.4.2.5.1 
HULT.E.D.F 
PRINT.F Element 3 Actions 
0.294583E+02 -.260~17E+Ol 
0.305000E+02 -.156250E+02 
-.294583E+02 0.260417E+Ol 
0.578750E+02 0.781245E+Ol 
DELETE.D 
DELETE.F 
SELECT.D.P.4.2.7.1 
HULT.E.D.F 
PRINT.F Element 4 Actions 
-.155416E+02 -.260410E+Ol 
-.578750E+02 -.781245E+Ol 
0.155416E+02 0.260410E+Ol 
0.112500E+02 -.211227E-05 
End of F11e 

Final Actions: 
Load Case 1: 
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11.25 

Fixed end 
moments 

2.66 ! A { 
~t-"1lJ:lJOOV'QJJ I «(ILV 

(P~rt 1 ) 
I I 
I I 
I I 

2.21 I I 
I 

Matrix allalys;s 

(Part 2) 

kN m 

46.63 

Load Case 2: Since there are no moments in the fixed end case 
here, the results are given directly by the matrix analysis. 

Bending Moment Diagram 

I I 
kN m 
/~~ 

tfI 78 78 t 
I . ~15.6 2.6kN 

3.9 kN 

6.5 kN 
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Deflections: 

Node 

2 
3 
4 

y translation (mm) 

Load case 1 

1.5 
o 

-10.6 

Load case 2 

-6.6 
-10 
-7.3 

Example 6.2: Analysis of a Plane Frame 

Given data: 

5 

Properties for all elements: 

E=2 X 105 MPa 
1=6000mm 

Ax =7500 mm2 

Ix =400 x 106 mm4 

Procedure: Form TESM for each element based on element stiffness 
matrix and element transformation matrix. Assemble structure 
stiffness matrix. Form load vector and apply boundary conditions. 
Solve for displacements. Recover element actions. 

Element Stiffness Matrix: Since all elements have the same proper­
ties only one ESM is evaluated 

ESM (all 250 0 0 
elements)= 0 4.44- 13333.33 

0 13333.33 53333333.3 
------- - -- - -- -- - -- ---- -----
-250 0 0 

(Units kN) 0 -4.44- -13333.33 

mm) 0 13333.33 26666666.6 
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: -250 
: 0 
I 0 
I 

o 
-4.44 

-13333.33 

o 
13333.33 

26666666.6 
1------ --- --- - - - - -- -- -- - ---
I 
I 
I 
I 
I 
I 

Transformation Matrices: Based on 

250 
o 
o 

o 
4.44 

-13333.33 

Element a cos a sin a 0 
-sin a cos a 0, CD 

CZl 

o 
o 
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Transformed Element Stiffness Matrices: The appropriate TESM can now 
be calculated from 

TESM=[T]T. [ESM]· [T] 

Using MATOP the following results are obtained: 

LOAD.I.6.6 
LOAD.T.6.6 Hatrix T tor 11 ••• Dt 1 
TRAlS.T.R 
HULT.R.I.S 
HOLT.S.T.1: 
PRINT.1: TESH tor 11 ••• Dt 1 
0._' __ 001+01 0.0000001+00 -.1333331+05 -._"'001+01 0.0000001+00 -.133333£+05 
0.0000001+00 0.2500001+03 0.0000001+00 0.0000001+00 -.2500001+03 O.OOOOOOE+OO 
-.1333331+05 0.0000001+00 0.5333331+08 0.1333331+05 0.0000001+00 0.2666671+08 
-._' __ 001+01 0.0000001+00 0.1333331+05 0 ••• _.00£+01 0.000000£+00 0.1333331+05 
0.0000001+00 -.2500001+03 0.000000£+00 0.0000001+00 0.250000E+03 0.0000001+00 
-.1333331+05 0.000000£+00 0.2666671+08 0.133333£+05 0.000000£+00 0.533333E+08 
DILITI.T 
DELETE.R 
DELETE.S 
DELETE.1: 
LOAD.T.6.6 Hatrix T tor Il ••• Dt 2 
TRANS.T.R 
HOLT.R.E.S 
HOLT.S.T.II: 
PRINT.1: TESH tor E1 •• ent 2 
0.1886001+03 0.106326E+03 -.6666671+0_ -.188600£+03 -.106326E+03 -.666667£+04 
0.106326E+03 0.6583281+02 0.115_671+05 -.1063261+03 -.658328£+02 0.115467£+05 
-.6666671+04 0.115_67E+05 0.533333B+08 0.666667E+04 -.115467B+05 0.266667£+08 
-.188600£+03 -.106326E+03 0.666667E+04 0.188600£+03 0.106326E+03 0.666667E+04 
-.106326E+03 -.658328E+02 -.115467E+05 0.106326E+03 0.658328E+02 -.115467B+05 
-.6666671+0' 0.1154671+05 0.266667E+08 0.666667E+04 -.115467E+05 0.533333E+08 
DILETE.T . 
DBLETE.R 
DILETE.S 
DILETE.II: 
LOAD.T.6.6 Hatrix T tor E1 ••• Dt 3 
TRANS.T.R 
HULT.R.E.S 
HULT.S.T.II: 
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PRINT.I TESM for Element 3 
0.188600E+03 -.106326£+03 0.666667E+04 -.188600£+03 0.106326E+03 0.666667E+04 
-.106326E+03 0.658328E+02 0.115467£+05 0.106326E+03 -.658328E+02 0.115467E+05 
0.666667E+04 0.115467E+05 0.533333E+08 -.666667E+04 -.115467E+05 0.266667E+08 
-.188600E+03 0.106326E+03 -.666667E+04 0.188600E+03 -.106326E+03 -.666667£+04 
0.106326£+03 -.658328E+02 -.115467£":05 -.106326E+03 0.658328£+02 -.115467£+05 
0.666667E+04 0.115467E+05 0.266667E+08 -.666667E+04 -.115467E+05 0.533333£+08 
DELETE.T 
DELETE.R 
DELETE.S 
DELETE.I 
LOAD.T.6.6 Matrix T for El ••• nt _ 
TRANS.T.R 
MULT.R.E.S 
MULT.S.T.I 
PRINT.I TESM for Ele •• nt _ 
0.444400E+01 O.OOOOOOE+OO 0.133333E+05 -.444400E+01 O.OOOOOOE+OO 0.133333E+05 
0.000000£+00 0.250000E+03 O.OOOOOOE+OO O.OOOOOOE+OO -.250000E+03 0.000000£+00 
0.133333E+05 O.OOOOOOE+OO 0.533333E+08 -.133333E+05 O.OOOOOOE+OO 0.266667E+08 
-.444400E+01 O.OOOOOOE+OO -.133333E+05 0.444400E+01 O.OOOOOOE+OO -.133333£+05 
0.000000£+00 -.250000£+03 O.OOOOOOE+OO 0.000000£+00 0.250000£+03 O.OOOOOOE+OO 
0.133333E+05 O.OOOOOOE+OO 0.266667E+08 -.133333£+05 0.000000£+00 0.533333E+08 
End of FUe 

Structure Stiffness Matrix: Since MATOP does not provide for the 
assembly of a structure stiffness matrix, this operation must be carried 
out by hand. The block diagram of the stiffness matrix is 
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Load Vector: Fixed End Actions 

Nodal Loads 

31.25kN 

18.75x10 3 
kN MM 

Element 0 

C\12.5kN 
18.75 kN m 

:::J., 18.75 kN m 

~ 
12.5 kN 

.t\ 12.5 
10.825'[~ 

6.25 

LOAD.I.15.15 Structure StittDe •• Matrix 
MODDO.I 
LOAD.P.15.1 
PHX.T.P Tbe Moditied Load Vector 
0.0000008+00 
0.0000008+00 
0.0000008+00 
0.3125008+02 
-.1082508+02 
-.1875008+05 
0.6250008+01 
-.6082508+02 
0.1875008+05 
0.0000008+00 
0.0000008+00 
0.0000008+00 
0.0000008+00 
0.0000008+00 
0.0000008+00 
SOLV8.I.P 
PHX.T.P Tbe Di.place.eDt Vector 
0.25311688-19 
-.7170I18E-21 
-.611111828-02 
0.33413I1E+02 
-.71701188-01 
-.387706£-02 
0.361150E+02 
-.1I91770E+01 
0.173951E-02 
0.385992E+~2 
-.216968E+00 
-.2119510E-02 
0.590390E-19 
-.216968E-20 
-.8110226E-02 

Solution: The results as shown were obtained from MATOP 
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Displacements 

Node x (mm) y(mm) Rot. (radian) 

1 0 0 -0.0064 
2 33.55 -0.07 -0.0039 
3 36.25 -4.93 0.0017 
4 38.75 -0.22 -0.0025 
5 0 0 -0.0084 

Element Actions: In a final series of operations using MATOP, the element 
actions were recovered as shown: 

LOAD.E.6.6 Element Stiffness Metrix 
LOAD.T.6.6 Mstrix T for Element 1 
TRANS.T.R 
MULT.R.E.S 
MULT.S.T.M 
SELECT.D.P.6.1.1.1 
MULT.T.M.U 
MULT.U.D.r 
PRINT.F Element 1 Aotions 
0.179262£+02 
0.1126111 E+02 
0.756298E-03 
-.17 9262E+02 
-.1126"'1£+02 
0.676738£+05 
DELETE.T 
DELETE.R 
DELETE.S 
DELETE.M 
DELETE.U 
DELETE.D 
LOAD.T.6.6 Matrix T for Element 2 
TRANS.T.R 
MULT.II.E.S 
MULT.S.T.M 
SELECT.D.P.6.1.",.1 
MULT.T.M.U 
MULT.U.D.G 
PRINT.G Element 2 Aotions 
0.208598E+02 
-.38"'770E+01 
-.86"'238£+05 
-.208598£+02 
0.384770E+01 
0.6335H£+05 
DELETE.T 
DELETE.R 
DELETE.S 
DELETE.M 
DELETE. U 
DELETE.D 
DELETE.r 
DELETE.G 

11.3 

~ 17.8 

2 

68055 

11.3 
~1 

3.9 \r,.. 
20~V 

86805 

t 17.8 

63462 
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LOID.T.6.6 Hatrix T tor Blement 3 
TRANS.T.R 
HULT.R.B.S 
MULT.S.T.M 
SBLECT.D.P.6.1.7.1 
MULT.T.M.U 
MULT.U.D.' 
PRINT.' Ele.ent 3 lotions 
0."97"60B+02 
-.3368388+02 
-.111160158+05 
-."9711608+02 
0.3368388+02 
-.15752118+06 
DELBTB.T 
DELBTE.! 
DELETE.S 
DELETE.M 
DELETE.U 
DELETB.D 
LOID.T.6.6 Hatrix T tor Element" 
TRANS.T.R 
MULT.R.E.S 
MULT.S.T.M 
SELECT.D.P.6.1.10.1 
MULT.T.M.U 
MULT.U.D.G 
PRINT.G Element _ Actions 
0.542_20E+02 
0.262369B+02 
0.15752_E+06 
-.5"2"20E+02 
-.262369E+02 
0.1268118E-01 
End ot File 

~ 
49.7 

~49.7 
158067~ 

~: 
~ j- 26.3 

158067 

26.3 
~ t 54.3 

Final Actions: Finally the Frame BMD is given by a combination of the 
element actions under nodal loads and the fixed end actions as shown: 

18.75 

18.75 

Fixed End Moments 
(Part 1 Solution) 

Element Moments 
due to Nodal Loads 
(Part 2 Solution) 



25kN 

25kN 

i 17.8kN 

Equilibrium Check: 
~ V=O 

~H=O 
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Bending Moment Diagram, 
Loads and Reactions 
(kN m) (kN) 

17.8 +54.3 - 21.65 - 50 =0.45 

25 + 12.5 -11.3 - 26.3 = -0.10 

(small errors due to rounding off) 

6.2.4 The Bandwidth of the Stiffness Matrix 

As has been previously noted, a structure stiffness matrix has several 
characteristics. The matrix is generally sparse, and is both symmetrical and 
banded. That is to say, it is possible to define a band within the matrix, 
parallel to the leading diagonal, such that the band encloses all non-zero 
terms of the matrix. This is illustrated in figure 6.9 which demonstrates the 
assembly of a structure stiffness matrix in a similar manner to that presented 
in section 6.1.3 for a truss. Figure 6.9(a) shows a two-bay gabled frame of 
a type often used in light industrial buildings. The unrestrained structure 
has 24 degrees of freedom and the stiffness matrix can be represented by 
the block diagram shown. In this case each block represents a three by 
three sub-matrix corresponding to the three degrees of freedom per node. 
The structure stiffness matrix is assembled by locating the TESMs in the 
locations addressed through the element node numbers. Each of the elements 
is conveniently consecutively node-numbered with the exception of element 
number five. The transformed element stiffness matrix for that element 
extends, with zero terms, over the locations four to six and this defines the 
band width in this case. The band width is clearly a function of the maximum 
difference between the node numbers of any element and it may be seen 
that it is given by 

bandwidth = number of DO F / node (max. diff in node numbers + 1) 
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(b) Block DIQ.grQ.f"I of the Structure Stiffness Matrix 

Figure 6.9 Band width of a stiffness matrix. 

The significance of the band width may be appreciated when it is 
realised that it is only necessary to store the terms within the bandwidth, 
for any computer-based solution to the problem. Most solution routines 
used in structural analysis programs take advantage of the banded and 
symmetric nature of the structure stiffness matrix in the interests of computa­
tional efficiency. It is therefore desirable to number the nodes in such a 
way that the band width is kept to a minimum. The solution routine in the 
program MATOP is a general one however, applicable to both symmetric 
and nonsymmetric equations, and it does not use the special features of a 
structure stiffness matrix. 
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6.2.5 Frame Elements with End Moment Releases 

In the general analysis of plane frames based on forming the structure 
stiffness matrix, it is a relatively simple matter to include elements with 
special features. One example is the frame element with end moment release. 
In chapter 4, details of the modification for the continuous beam element 
stiffness matrix for end moment release were presented. The resulting 
matrices for both a left-hand and a right-hand end-pinned element are 
summarised in appendix B. 

Just as the general frame element was seen to be the result of the 
superposition of the general continuous beam element and the truss element, 
so the frame element with end moment release can be derived by combining 
the corresponding beam element stiffness matrix with that for a truss element. 
It is important to note that the matrix is retained as a six by six matrix, in 
spite of the presence of a complete row and column of zero terms. The 
reason for this is that, while the element end rotation is unspecified, and 
the element end moment is zero at the release end, that does not necessarily 
apply to other elements terminating at that node. Overall the frame retains 
its degrees of freedom. 

The element stiffness matrix, now modified for the end moment release, 
can be transformed and assembled into the structure stiffness matrix in 
exactly the same way as before. Whether the element is considered to be 
left-hand end or right-end end-pinned, is a function of the element 
specification since this determines the orientation of the local axes. A 
comment needs to be made with respect to a situation where the node is 
fully released from all moment. In this case the procedure will require the 
pin to be nominated in all elements terminating at that node except one. 
This is necessary to retain a rotational displacement. If only two elements 
are involved, the pin can be considered either just to the right or just to 
the left of the node, so that additional displacement data (rotation) is 
obtained from the analysis. 

Figure 6.10 illustrates two examples of frames involving end moment 
release. In figure 6.10(a) for instance, element 6 would be formed as a 
left-hand end-pinned element stiffness matrix, provided the element is 
specified as 5-7. In figure 6.1 O(b) the moment release can be exclusively 
assigned to either the right-hand end of element 2 (element specified 2-3) 
or the left-hand end of element 3 (element specified 3-4). 

Finally, it should be appreciated that while the end moment release 
concept can be applied to an element to meet the requirements of the 
boundary conditions, this is not a necessary condition. Rather it is a function 
of the overall approach to the problem. The structure stiffness matrix can 
always be assembled without regard to the boundary conditions, and these 
can then be accommodated by the technique described in section 6.3. This 
is actually the more general approach and it is the basis of many analysis 
programs. 
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3 

2 4 

5 KJ>-------=@::.'----,7 
pin connection 

(a.) 

pin connection 3 

2 4 

5 

(b) 

Figure 6.10 Frames with end moment release. 

6.3 COMPOSITE STRUCTURES-TRUSS AND 
FRAME ELEMENTS 

The mathematical model of any structure is an idealisation of the actual 
behaviour. For the most part, plane frames can be modelled essentially as 
a collection of rigid-jointed flexural elements, with trusses as a collection 
of pin-jointed axial elements. In the case of frames, many joints may not 
be fully rigid and it is certainly true that truss joints are seldom pin-connected 
in a physical sense. However, the approximations are reasonable and, 
although the modelling of structures can be extended to include flexible 
joints, this is not necessary in routine analysis. It is appropriate though to 
model some structures as combinations of truss elements and frame or 
flexural elements, and it is in this context that the structures are referred 
to as composite structures. 
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A classical problem that falls into the category is the case of a beam 
on an elastic foundation. If a strip footing is supported on a sub-grade that 
is considered to be elastic, then it can be modelled as a beam supported 
on a foundation which will develop a continuous reaction proportional to 
its deflection. The problem was first studied by E. Winkler in 1867 and such 
a beam is sometimes referred to as a Winkler Beam. Various results based 
on the closed form solution to the governing differential equation have been 
published over the years. The problem as defined in figure 6.11(a) may be 
modelled by the beam and spring system indicated in figure 6.11(b). In this 
case the springs are assigned a stiffness corresponding to the sub-grade 
modulus of elasticity. The spring element is equivalent to a truss element 
with the spring stiffness, k, equal to the axial rigidity, EAj L. 

Some discretion must be used in the selection of the number of elements 
since the beam is modelled, in figure 6.11(b), with support at finite intervals, 
rather than the continuous support provided by the sub-grade. The model 
of figure 6.11 (b) is shown as a typical arrangement, and a sensitivity analysis 
would have to be carried out in a given problem to determine an adequate 
interval for the springs. The model is of course only valid for transverse 
loads on the beam. At this stage, interest is in the assembly of the structure 
stiffness matrix once the model has been defined. 

Consider the behaviour of a typical spring element as shown in figure 
6.11(c). The element action-displacement relationship is given by the 
equation 

(6.17) 

Equation (6.17) has the same form as equation (6.2) used in the development 
of the truss element stiffness matrix. Details of the nodal loads and displace­
ments at nodes 2 and 6 of the model of figure 6.11 (b) are shown in figure 
6.11(d), and this suggests the relationship between the terms of both the 
continuous beam element stiffness matrices, representing elements 1 to 3, 
and the spring element stiffness matrices. The full assembly of the structure 
stiffness matrix is given in the block diagram of figure 6.11(e). It may be 
noted from that figure that, for a typical spring element, say element 5, the 
element stiffness matrix is expanded in the relationship 

2 6 2 6 

~[=~t--~~ 
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Figure 6. 11 Beam on elastic foundation. 
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to facilitate its assembly into the structure stiffness matrix. Of course the 
boundary conditions are that the displacements, ds to d8 , are zero, and 
interest centres on the structure stiffness matrix, K F , related to the unre­
strained degrees offreedom from which the solution can proceed. A detailed 
study of a beam on an elastic foundation is presented in example 6.3. 
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Example 6.3: Beam on an Elastic Foundation 

Given data: 

~1O kN ~ 30 kN 

~ 

1 5m I Elastic sub-yrarJe 

Model as: 

110 kN 

2 'f 3 4 5 6 7 

130 kN 

'VS 9 10 

~ ~ ~ ! ! ! ! ! ! ! Beam EI=10MN m2 

Spring k=1 MN/m 

I 9 at 1 m centres I 

Procedure: Form beam element stiffness matrix; assemble to give 
kF with beam elements and spring stiffness. Solve for displace­
ments, recover element actions. 
Beam Element Stiffness Matrices: 
All elements: 

-120 

ESM= 60 [

120 

-120 

60 
40 

-60 
20 

-60 
120 
-60 

20 . 60] 
-60 (Units: MN and m) 

60 40 

Structure Stiffness Matrix: 
121 60 -120 60 

60 40 -60 20 

-120 -60 241 0 -120 60 

60 20 0 80 -60 20 

-120 -60 241 0 -120 60 

60 20 0 80 -60 20 

-120 -60 241 0 -120 60 

60 20 0 80 -60 20 

-120 -60 241 0 -120 60 

60 20 0 80 -60 20 

-120 -60 241 0 -120 60 

60 20 0 80 -60 20 

-120 -60 241 0 -120 

60 20 0 80 -60 

-120 -60 241 

60 20 0 

-120 

60 

60 

20 

0-120 60 

80 -60 20 
-60 241 o -120 

20 0 80 -60 

-120 -60 121 

60 20 -60 

60 

20 

-60 

40 
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Solution for displacements: The structure stiffness matrix has been 
formed as KF • The applied loads are immediately nodal loads and 
the solution follows from MATOP as: 

LOAD.I.20.20 
LOAD.P.20.1 
SOLVE.J: .P 
PRlMT.P 
-.791118I1E+00 
-.8840311E+00 
-.1661198E+Ol 
-.8H325£+00 
-.2112861£+01 
_.61119118E+00 
-.299309£+01 
-.5722211£+00 
-.369358£+01 
-.8611069£+00 
-.1173031£+01 
-.118315£+01 
-.592856£+01 
-.110826£+01 
-.663781£+01 
-.1061178£+00 
-.612310£+01 
0.9505311£+00 
-.500571£+01 
0.120082£+01 
End or File 

Node 

2 
3 
4 
5 
6 
7 
8 
9 

10 

Displacements 

d(mm) 

-0.79 
-1.66 
-2.43 
-2.99 
-3.69 
-4.73 
-5.93 
-6.64 
-6.12 
-5.01 

8 (radian) 

-0.00088 
-0.00084 
-0.00064 
-000057 
-0.00086 
-0.00118 
-0.00111 
-0.00011 

0.00095 
0.00012 

Note that particular care must be 
taken to ensure that consistent units 
are used. 

Element Actions: A typical solution is that for element (J) (node 7-8) 

{ 
V7B1 [120 

m78 60 
VB7 -120 

mB7 60 

60 
40 

-60 

20 

-120 
-60 

120 
-60 

60J { -5.928 x 10-
31 20 -1.10826 x 10-3 

-60 -6.6378 x 10-3 

40 -0.10647 x 10-3 

{ 
12.23 x 10-31 
-3.90 x 10-3 

- -12.23xlO-3 

16.13 X 10-3 

(Shear MN; moment MN m) 

12 23k~ __________ ~'"'' 
3 90 k N m 1 Ei 13k N m 
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10 kN 30 kN 

2 3 4 5 6 7 8 9 10 

Beam deflections (mm) 

6.64 

3.98 

~~~ I Y Bending moment diagram 

325 ~._ (kNm) 

16.13 

6.4 PROBLEMS FOR SOLUTION 

6.1 Using the general stiffness method, form the structure stiffness matrix 
for the truss of figure P6.1 and hence analyse the structure to find 
the displacements at each node. 

2 4~ ll~:S:50C 
1 1 200 3 1 1 200 51 

Figure P6.1. 

All elements E = 200 kN/mm 2 

A = 1200 mm2 

6.2 Modify the structure of figure P6.1 by the addition of an element 3-4 
with the same properties as those given. Compare the resulting 
structure stiffness matrix with that of problem 6.1, and analyse the 
truss to find the displacements and the internal forces. 

6.3 Figure P6.2 shows a cranked beam modelled with three elements. 
Using the general plane frame element, form the transformed element 
stiffness matrix for each element and assemble the structure stiffness 
matrix. Calculate the displacements at nodes 2 and 3 and determine 
the beam bending moment diagram. 
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2 

1000 

2000 

Figure P6.2. 

U U 0 1111 n 2kN/m horiz. 

1732 

3 4 

2000 

All elements: E = 16.5 kN/mm2 

I=210x106 mm4 

A = 40000 mm2 

6.4 Modify the problem presented as example 6.2 by introducing fixed 
bases at nodes 1 and 5 and a horizontal restraint at node 4, and 
analyse the resulting structure. 

6.5 Analyse the two hinged gable roof structure shown in figure P6.3 by 
the general stiffness method to determine the reactions and the 
bending moment diagram. 

3 

Figure P6.3. 

E = 12 x 103 MPa 
I = 30 x 106 mm4 

A = 6500 mm2 

6.6 Analyse the rigid jointed frame (known as a Vierendeel Truss) of 
figure P6.4, incorporating axial deformation, and proceed to the 
solution for nodal displacements and all the element actions. 

~ 60 kN ~ 120 kN ~ 60 kN 

20 k~ ;.-----:-r-----6--i

5 

~ I 

1000 1000 

Figure P6.4. 

All elements: 
E = 200 kN/mm2 

I = 5 x 106 mm 4 

A = 1000 mm2 
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6.7 (a) Calculate the nodal loads that would be used in a load vector 
for the matrix analysis of the frame of figure P6.4, if the frame carried 
a uniformly distributed load of 15 kN/m along the beams '2-4' and 
'4-6' and 7.5 kN/m along the beams '1-3' and '3-5', in addition to 
the loads shown. 
(b) Some of the results of a matrix analysis using the load vector of 
part (a) are shown in table P6.1. Using these results, draw the bending 
moment diagram for the frame. The results have not been combined 
with any fixed end moments and the given end moments are anticlock­
wise positive. 

Table PB.1 

Element 

A 

1 
3 
2 
4 

B 

3 
5 
4 
6 

Moment (kN m) 

End A 

12.52 
-23.35 

11.77 
-22.38 

End B 

18.94 
-18.17 

18.02 
-17.35 

6.8 The beam of figure P6.5 is fully restrained at node 1 and supported 
at node 2 by one linear spring of stiffness k), and one rotational 
spring of stiffness k2 • 

(a) Form the structure stiffness matrix clearly, showing the influence 
of the spring stiffnesses, k) and k2 • 

(b) Given that k) = 3000 kN/m and that k2 = 2000 kN m/radian, 
determine the beam bending moment diagram and actions in the 
springs. 

E~2x105MPa 
I ~ 160 x 106 mm4 

Figure P6.5. 

6.9 The two cantilever beams of figure P6.6 are connected by a linear 
spring between nodes 2 and 3. Analyse the system to determine the 
bending moment diagram for each beam and the force in the spring. 
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10 kN/m 

§lW~~~}J~t2 

I 2 
J,---------.,r E ~ 2 " 105 MPa 

f-. _________ +t--____ 2 ____ 4-i~ I ~ 50 x 10
6 

mm
4 

k ~ 5000 kN/m 

Figure P6.6. 

6.10 Modify the structure of figure P6.4 by introducing diagonal bracing 
in both directions in both panels. Assume that the bracing is pin­
connected to the frame elements with properties E = 200 kN/mm2 
and A = 500 mm2, and that the bracing elements are not connected 
where they cross. Analyse the resulting structure by modifying the 
structure stiffness matrix of problem 6.6 and compare the results. 
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Chapter 7 
The Principle of Virtual Work 

The methods of structural analysis presented in the previous chapters have 
been based on relationships between internal actions and displacements of 
the elements of a structure, and on relationships between the external loads 
and the internal actions. The relationships have been based on two funda­
mental requirements in the analysis of static structural systems: firstly that 
the structure must be in equilibrium, and secondly that the deformation of 
the structure must be compatible and meet the boundary conditions. Equili­
brium has been satisfied by applying the equations of statics, while compati­
bility has been based on the geometry of the elastic curve or the geometry 
of the deformed element. The resulting techniques have been general enough 
to cover a wide range of structural analysis problems for both statically 
determinate and statically indeterminate systems. 

However there is an alternative approach to deriving the fundamental 
equations of structural behaviour, based on a consideration of work done 
by forces acting through displacements. Such a consideration leads into the 
principle of virtual work and its two parts: the principle of virtual displace­
ments and the principle of virtual forces. The principle of virtual work is 
perhaps one of the most fundamental principles in mechanics. It is appli­
cable to both non-linear and inelastic systems, and, as stated by Malvern 
(1969), it is not dependent on the conservation of energy. The principle has 
been widely used in studies of elastic structural analysis and in this context, 
where the principle of conservation of energy applies, the principle of virtual 
work can be seen to be underlying what are collectively known as the energy 
theorems in structural analysis. While the major emphasis of this chapter 
is on the application of the principle of virtual forces to the deflection of 
linear elastic structures, the general nature of the principle should not be 
overlooked. 

183 
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7.1 WORK CONCEPTS 

Work is equal to the product of a force and the displacement of its point 
of application in the direction of the force. More precisely, the differential 
work d W, done by a force F, in moving through a differential displacement 
ds, in the direction of F, is defined as 

dW=Fds 

If the displacement occurs from point A to point B then the work done, 
W, is 

W= f: Fds (7.1 ) 

Further, if the force is constant during a displacement t::.. in the direction 
of the force, then 

W=Ft::.. (7.2) 

Although equation (7.2) is simply a special case of equation (7.1), it is 
important to distinguish between the two expressions. In many applications 
in structural mechanics, the displacement is as a result of the force acting. 
For instance, in applying a gravity load to the end of a deformable rod 
arranged vertically as a pin-ended bar, the bar will extend as the load is 
applied and continue to do so until the elongation of the bar develops an 
internal force to balance the external load and the system is in equilibrium. 
In such a case the force is simply not constant throughout the displacement 
t::... The effect is illustrated for the elastic rod of figure 7.1(a) with the 

2 

EA, 
L 

(a) 

~ ____ .,.,A 

o 1----'-'-----'---

JL oil! 
l!, 

(b) 

t---iA 

L.... "UL 
I 

oil! 

(c) 

Figure 7.1 Force-extension relationship in an elastic rod. 
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force-extension relationship shown for both the non-linear and linear case 
in figures 7.1(b) and 7.1(c) respectively. In both cases the work done is 
equal to the area under the curve OA. 

7.2. THE PRINCIPLE OF VIRTUAL DISPLACEMENTS 

An important abstract extension to the work principle was introduced by 
the early 18th Century mathematician John Bernoulli, when he put forward 
the principle of virtual displacements. Prior to that time, work principles 
were used as the basis for the calculations of static equilibrium and were 
applied, for example, to the mechanics of a simple lever. Bernoulli's contri­
bution was his emphasis on the independence of the force and the displace­
ment systems in considering work; hence the term virtual work. The word 
'virtual' is widely understood to mean 'in effect but not in fact', and in this 
context virtual displacements refer to a set of imaginary displacements 
caused by some agency independent of the forces acting on the system. 

7.2.1 The Principle of Virtual Displacements applied to a Rigid 
Body 

The principle will be introduced as it applies to a rigid body before going 
on to the application to deformable bodies. Consider a rigid body in 
three-dimensional space in equilibrium under the action of a set of general­
ised forces designated by Q as shown in figure 7.2. Suppose the body is 
then subjected to a small virtual displacement during which the forces 
remain acting in their original directions and equilibrium is maintained. 
The virtual displacement of the body which is a rigid body movement may 
be defined by the set of displacements Ll, with each term corresponding to 
a displacement in the direction of a force Q. Since the forces are constant 
during the virtual displacement, the total amount of virtual work done is 
given by 

(7.3) 

Each generalized force, Qj, on the body may be resolved into three force 
and three moment components with respect to the coordinate axes taken 
through an origin 0, and designated as 

These components may then be transformed into an equivalent set of actions 
acting through the origin of coordinates and described as 

L Fjx , L Fjy , L Fjz , L M;x, L M;y and L M;z 

The prime notation has been introduced since, although the moments 



186 FUNDAMENTAL STRUCTURAL ANALYSIS 

Figure 7.2 Virtual work done on a rigid body. 

transform directly, in general the force components transform with a force 
and a moment component. 

On the other hand, any virtual displacement can be defined by the 
displacement of the origin of the coordinate axes system, expressed by its 
six components 

It should be noted that any virtual displacement term Ai is necessarily 
geometrically related to the defined displacement of the origin. The total 
virtual work done is now seen as the sum of six expressions and is given by 

WT = 0: Fi.,)8ox +(L Fiy )8oy +(L Fiz)8oz 

+(L M:Jaox+(L M:y)aoy+(L M;Jaoz (7.4) 

However, in order to satisfy the equations of static equilibrium, each of the 
summations in equation (7.4) must be zero, so that the total virtual work 
done is zero. 

The principle of virtual displacements as applied to a rigid body may 
be formally stated as: 

If a rigid body, in equilibrium under the action of a system of forces Q, is 
subjected to a virtual displacement, then the virtual work done by the Q 
force system is zero 

The converse of the principle of virtual displacements as stated, may be 
used to establish equilibrium conditions as an alternative to using the 
equations of statics. If the virtual work done on a rigid body is equated to 
zero, the resulting expression must be an equilibrium condition if the body 
is to be in equilibrium. Adequate structural systems are constrained and at 
first sight it appears difficult to see how any virtual displacement can be 
introduced to a constrained rigid body. However each constraint can be 
replaced with the reactive force associated with it so that a kinematic 
boundary condition (that is, a prescribed displacement) is replaced with a 
static boundary condition, namely the reactive force on the boundary. Such 
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action effectively releases the system and it is possible to be selective about 
the number of releases so as to establish data about specific reactions. For 
two-dimensional systems, three independent rigid body movements can be 
introduced as virtual displacements corresponding to the three equations 
of equilibrium available from statics. As an example, consider the beam of 
Figure 7.3(a). The kinematic boundary condition of zero vertical displace­
ment at node 2 can be replaced with the reaction Y2 and a small virtual 
displacement ~ can be introduced in the direction of Y2 • The resulting 
virtual displacement diagram is shown in figure 7.3(b). From the principle 
of virtual displacements it is then necessary that 

-20(O.5~) + Y2(~) -12(O.75~) = 0 

that is 

Y2 = 19 kN 

Other constraint releases can be introduced, with corresponding virtual 
displacement patterns, to establish the remaining reactions. 

It is important to note that in all cases, all other displacements 
throughout the system are necessarily related to the specified virtual dis­
placement through geometry. Further, although compatibility appears to 
have been violated in the virtual displacements, this is not the case. In figure 
7.3(b), a kinematic boundary condition has been replaced with a static 
boundary condition and all kinematic and static boundary conditions have 
been met. Virtual displacement patterns established under these conditions 
can be described as geometrically compatible displacements. 

Equilibrium equations involving internal actions can be established in 
a similar manner. In this case, the constraint may be regarded as the 

4~ 
3 ,\5kN 

2 

M fr 

2kN/M 

~_----"L...-_-----:~_---<~ III 1 t III 1 III 1 III 1 A 3 

I 3 3 I 3 I 6 I 
(0.) 

0.5 L'I 1.0 L'I 1.5 L'I 0.75 L'I 

Figure 7.3 Reactions from principle of virtual displacements. 
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compatibility of the element associated with the type of action. The structure 
can be released from this constraint, which is then replaced with the 
appropriate internal action acting as an external static condition on the 
introduced boundary. For axial force, the element can be allowed to slip 
in the axial direction; for shear force, the element can slip in the transverse 
direction; and for moment, the element can be allowed to rotate. The release 
of internal actions and some corresponding displacement patterns are shown 
in figure 7.4 for a simply supported beam. Each of the patterns are geometri­
cally compatible since all of the virtual displacements throughout the 
structure can be expressed in terms of the specified virtual displacement, 
.l. With the release of the shearing constraint only, moment continuity must 
be preserved and this is met by having the same slope on either side of the 
shear release. The virtual displacements of figures 7.4(b) and (c) both satisfy 
this requirement, although a more useful work equation can be derived 
from figure 7.4( c) since only the shear force Vx and the Q load do virtual 
work. In figure 7.4(b), the reaction YI is also involved in the work equation. 
A similar situation occurs with the virtual displacements of figures 7.4( d) 
and 7.4(e) where the latter figure generally proves more useful. 

Q 

I" I l 2 
-m; fr x 

Q (0.) BenM In EquilibriuM 

L ~tv, ~ Vlt I YI fr 
(10) Shenrlng DlsplnceMent (J) 

Q 

~tv,~ 
vIl---rr 4 

(c) Shenrlng DlsplnceMent <ID Q 

L 
Ll 
I 

(cO Rotn tlonnl DisplaceMent (J) 

Q 

(e) Rotational DisplaceMent (]D 

Figure 7.4 Virtual displacement patterns for a beam. 
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The application of the principle of virtual displacements is not restricted 
to statically determinate systems. In fact the principle can be used to 
advantage with statically indeterminate systems where several internal 
actions are known and reactions are required. Such a case arises in the 
analysis of frames by the moment distribution method, as shown by example 
5.2 of chapter 5. In the initial part of the analysis, the frame is prevented 
from swaying by the introduced reaction at node 3 that must be calculated. 
The problem is solved in example 7.1 using some of the results from example 
5.2. 

Example 7. 1: Reactions in an Indeterminate Frame 

Given data: 

~fI~CL~~£I~3 
3kN 

/ 

4 

T 
(b) Vlrtuo.l Displo.c"",,,nts 

From example 5.2 the internal moments are known as 

m21=-4.88kN m; m34=4.49kN m; and m43=2.25kN m 

Releasing the frame with pins at nodes 2,3 and 4 and placing the 
static moment condition there, and treating the horizontal reaction 
at node 3 similarly, enables the virtual displacement diagram shown 
to be introduced. 

By the principle of virtual displacements, the virtual work done 
must be zero, hence 

3Jl + FlOJl- m21 (}2 - m 34 (}3 - m43 (}4 =0 

but 

(}2=Jlj4 and (}3= (}4=M6 for small Jl, so that 

3Jl + F10Jl + 4.88Jlj 4 - 4.49Jlj 6 - 2.25M 6 = 0 
.. FlO =-3.10 kN 
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For a statically indeterminate system, it is of course necessary to 
introduce a sufficient number of releases, either internal or external, to 
allow the resulting assemblage of rigid elements to act as a mechanism. 

Example 7.2 demonstrates an application in the analysis of trusses. For 
any statically indeterminate truss, any internal force can be expressed in 
terms of the external loads and the reactions. The procedure involves 
releasing the nominated element by a cut, permitting longitudinal slip, and 
replacing the continuity by the static condition of the internal force. As 
with all such releases, the static condition must act on both cut faces. Of 
course the value of example 7.2 can be questioned since Y13 must be known 
before F35 can be calculated. However, the example has been introduced 
in order to demonstrate principles more than anything else. A solution for 
the force is immediately available for the statically determinate version of 
the truss where the support at node 13 is removed. It can then be seen that 
virtual work equation of example 7.2 achieves the same type of result as 
would a method of sections approach from equilibrium. As an approximate 
analysis for the given truss, the reaction Y 13 can be estimated by assuming 
that the structure acts like a propped cantilever beam. In this case, Y 13 is 
readily calculated as 12.5 kN giving the approximate value of F35 as 17.5 kN. 

Example 7.2: Forces in an Indeterminate Truss 

Given data: 

~I 3 :5 7 9 II 

~ §I 

I 1000 I 1000 I 1000 I 1000 I 1000 I 1000 I 

with reaction at node 13 known as 13.5 kN. 
To find the force in element 3-5, release the force by a cut and 

place the static force F35 there. Similarly replace the kinematic 
boundary condition at node 13 with the reactive force Y13' Develop 
the following virtual displacement diagram by introducing a small 
displacement of say 1 mm at the cut, causing a rotation of the rest 
of the structure about node 4. From the geometry of the structure, 
nodes 8 and 13 drop by 2 and 5 mm respectively. 
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By the principle of virtual displacements, the virtual work done 
must be zero, hence 

-F35(1) +40(2) - Y13(5) =0 

:.F35=40(2) - Yd5) 

=12.5 kN 

7.2.2 The Principle of Virtual Displacements applied to a 
Deformable Body 

In the preceding section, it has been assumed that all of the structural 
systems have behaved as rigid bodies during the virtual displacements, that 
is, the virtual displacements have been rigid body displacements. In fact, 
the systems may well be deformable but the deformation of the systems as 
a result of the loads applied has not been a consideration. The rigid body 
assumption is simply consistent with the application of the equations of 
statics where changes of geometry under the loads are ignored. Nevertheless, 
any compatible displacement pattern of a deformable body in equilibrium 
can be used as a virtual displacement pattern. When such a virtual displace­
ment is used then the question of virtual work of the internal stresses in 
the body arises. This leads to the principle of virtual displacements for a 
deformable body, which applies to any structural system although it is 
developed here for a planar structure for simplicity. 

Consider now a planar deformable body in equilibrium under the 
action of a set of generalized forces, Q, as shown in figure 7.5(a). Over any 
interface, the internal stresses may be described as the set q typically 
illustrated by figure 7 .5(b), where an element from the body has been isolated 
as a free body diagram. Suppose the body is now subjected to a virtual 
displacement which, because the body is a deformable one, involves both 
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b 
Q 

/ ~ 
y / ~ 

qj / ~ 
qk /, ~ 
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b I 10 a Q 

x 

(a) (b) 

Figure 7.5 Virtual work done on a deformable body. 

external displacements, say d, and internal displacements, 8. Both the 
external forces and the internal stresses (as stress resultants) do virtual work. 

Any displacement of a deformable body can be described in two parts. 
The first of these can be defined as a rigid body movement to be followed 
by deformation, involving the internal stresses, to take up the final form. 
This is illustrated in figure 7 .5(b) for the element from figure 7.5(a). Similarly, 
the virtual work of a deformable body can be described in two parts, namely 
that done during rigid body movement and that done during deformation. 
The total amount of virtual work done by the system can be represented 
as WT • Although both internal stresses and external loads are involved, the 
summation of work done by Q and q to find WT will only involve the 
external loads Q. This is because, for every interface in the body where the 
stresses q are defined, equal and opposite stresses acting on adjacent 
boundaries necessarily undergo the same displacements. Thus the total 
virtual work done by the internal stresses cancels out, leaving the total 
amount of virtual work done by the system as 

(7.5) 

If the virtual work done by the system during deformation is denoted as 
WE, then the virtual work done by the body during rigid body movement 
must be given by WT - WE. However, by the principle of virtual displace­
ments as applied to a rigid body, this work must be zero, so that 

(7.6) 

The virtual work done during deformation is done by the internal stresses 
and it may be written as 

WE=L q j8j 

Thus, equation (7.6) becomes 

L QJ::lj = L q j8 j 

(7.7) 

(7.8) 
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which is an expression of the principle of virtual displacements as it applies 
to a deformable body. The principle may be formally stated as: 

If a deformable body, in equilibrium under the action of a system of forces 
Q, is subjected to a virtual displacement, then the external virtual work done 
by the Q force system is equal to the internal virtual work done by the 
internal stresses q 

Table 7.1 Internal actions on various elements. 

Type of In tern a I forces Internal displacements 
deformation 

p CJ p PO' P ~ ~ ~ :~ 

~ 
I 

Axial I dx 118 

q=p a P 
8=10 dx=-dx=-dx 

f fA 

Bending 
me Djm M~Q)'M 

~dx ~dx 

q=m 8 = dll = ~ dx 
EI 

'1D~' [J-L 
Shearing 

V 1 ,- ~ dy 

~ I d;1 
8 = dy = ydx = .I- dx 

G q=v 
=K ~ dx 

GA 

(~t 
T T 

t(c Cl--;;'~) ( 

Torsional I dx I dx 1 

T 
8=d.p=-dx 

q = t GJ 

(circular section) 
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It remains now for suitable expressions to be found for internal virtual 
work. While the principle of virtual displacements is quite general, further 
consideration will only be given to its application to linear elastic systems. 
Once the deformation behaviour of the system is specified, the internal 
deformations follow from the nature of the external deformation. For 
one-dimensional structural elements, four types of deformation are in­
volved: namely, axial, flexural, shearing and torsional deformation. In order 
to calculate the internal virtual work, each of these deformations must be 
linked with the corresponding, but independent, internal stress due to axial 
force, bending moment, shear force and torsional moment. Since the 
resultant stress effects under such actions are well known, it is more con­
venient to look at the internal force and the nett effect of the internal 
deformation acting on a section. 

Table 7.1 summarizes the nature of the internal force and internal 
displacement for the four actions under consideration. In table 7.1, each 
of the internal displacements has been also linked to an internal action 
associated with an applied load. While this is a useful relationship that will 
be used extensively, it is not a necessary one. Internal deformations do not 
have to be caused by applied loads; they may be due to temperature or 
lack of fit of specified elements, as will be seen. The independence of the 
internal forces and the internal displacements, central to the whole concept 
of virtual work, is emphasized by the notation adopted in table 7.1, where 
one set of internal actions is written in lower case, while the other set is 
written in uppercase. Under specific circumstances, the required expressions 
for internal virtual work can be found from the data of table 7.1 by integrating 
over the length of the elements of the structure. For example, provided the 
virtual displacement is assumed to be associated with some bending moment, 
M, and it is applied to a flexural system already under the action of another 

Table 7.2 Internal virtual work 
expressions 

Type of Internal virtual 
deformation work 

Axial f p~dx 
EA 

Bending f m ~dX 
Shearing K f v~dx 

OA 

Torsional f t~dx 
OJ 
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bending moment, m, then the internal virtual work due to bending is given 
by 

L qo = f m M dx 
El 

(7.9) 

The integral of equation (7.9) is to be interpreted as the sum of all such 
integrals taken over the length of each element making up the structure. 
Other integral expressions for internal virtual work, applicable for similar 
conditions, are summarized in table 7.2. 

7.2.3 A Mathematical Illustration of the Principle of Virtual 
Displacements 

The validity of the principle of virtual displacements may be demonstrated 
in the behaviour of a simply supported linear elastic beam carrying a 
uniformly distributed load of intensity q over a span L. Denoting the 
deflection at any point along the beam ~s v, and introducing a small virtual 
displacement OV there, so that both v and OV follow elastic curves and meet 
the compatibility requirements, then equation (7.8) may be written as 

f L fL M 
q(ov) dx- m-dx=O 

o 0 El 
(7.10) 

The first integral of equation (7.10) represents the external virtual work 
while the second is the internal virtual work due to bending. The second 
integral expression may also be written in terms of the displacements using 
equation (3.10), so that 

Integrating by parts results in 

f L (dOV) d3 v =- - El-dx 
o dx dx3 

where the static boundary condition of zero moment at either end of the 
span has reduced the term in the square brackets to zero. Integrating again 
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by parts gives 

fL(d8V) d3vd - - EI- x 
o dx dx3 

= - EI -!i 8v + 8vEI-4 dx [ d3 ] L f L d4 v 
dx 0 0 dx 

where now the kinematic boundary condition of zero virtual displacement 
at either end of the span has reduced the term in the square brackets to 
zero. From simple beam theory 

d4 v = q(x) 
dx4 EI 

so that 

EI~ --2 dx = q(8v) dx f L d2 (d28V) fL 
o dx dx 0 

which confirms equation (7.10). A rigorous mathematical approach to the 
principle of virtual work along these lines is given in chapter 8 of Oden 
and Ripperger (1981). 

7.3. THE PRINCIPLE OF VIRTUAL FORCES 

Since work involves both forces and displacements, it is reasonable to 
suppose that some advantage could be gained by considering virtual work 
on the basis of a virtual force system and the true displacements. The 
principle of virtual forces arises from such a consideration as an important 
concept that is complementary to the principle of virtual displacements. 
The principle may be formally stated as: 

If a deformable body, in equilibrium under the action of a system of virtual 
forces Q, is subjected to a set of compatible displacements consistent with 
the constraints, then the external virtual work done is equal to the internal 
virtual work 

In practical terms, the principle can be seen as an alternative interpretation 
of equation (7.8) where the set of loads, Q, and the internal stresses, q, are 
now regarded as virtual, while the set of external displacements, Il, and the 
internal displacements, 8, are the true displacements. The data of tables 
7.1 and 7.2 can now be seen as relevant expressions for internal virtual 
work for both of the virtual work principles. 
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Considering the expression for external virtual work, which is the 
left-hand side of equation (7.8), an expansion of the summation involved 
gives 

(7.11 ) 

In the principle of virtual forces, the set of displacements are those caused 
by the actual loading condition on the structure in question. As has already 
been mentioned, such displacements may be caused by applied loads but 
they may also be caused by other effects such as temperature and lack of 
fit. The set offorces Q are of course the virtual forces which are an imaginary 
set offorces necessarily in equilibrium on the structure. By a careful selection 
of the virtual force system, the principle of virtual forces may be used to 
calculate the deflections at nominated points throughout a structure. For 
example, consider the deflection of a cantilever beam carrying a uniformly 
distributed load as shown in figure 7.6(a). The beam will deflect along its 
length and the vertical deflection at node 2 may be nominated as.:1 l . Suppose 
now that a virtual force system, comprising a single unit load applied 
vertically at node 2 and the consequent equilibrating reactive forces Q2 and 
Q3, is applied to the same structure as shown in figure 7 .6(b). 

Because of the selection of the Q force system, equation (7.11) is simply 
1(.:1 1). Internal virtual work is done by the virtual stresses of bending and 
shear in the single element 1-2 of the structure. Applying equation (7.8) 
gives 

which is 

f L M fL V 
1(.:1 1)= m-dx+K v-dx 

o EI 0 GA 

q 

~11 J. J, J,~~ <11 

EI. L 
2 

I 

~ :: 
~ x I 
~I 

I I 

M(x) qx 2 /2 ",(x) = lex) 

(0.) (b) 

Figure 7.6 Deflection of a cantilever by the principle of virtual forces. 
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The contribution to the beam deflection due to shear deformation is generally 
regarded as a second-order effect and may be neglected, so that 

fL M 
1(il l ) = m- dx 

o El 

that is 

fL qx2 
= 1x--dx 

o 2El 

qL4 
il --1- 8E1 

which is the required result. 
If the deflection is required at any other point along the beam, it is 

only necessary to introduce another Q force system involving a unit load 
in a position corresponding to the deflection sought. 

7.3.1 General Application to the Deflection of Frames 

Example 7.3 serves to illustrate the general application of the principle of 
virtual forces to the deflection offrames. In addition, the example introduces 
the concept of the standard integrals which are summarised in table 81.5 
of appendix B. The example shows a light building frame which is statically 
determinate. The horizontal deflection of the frame at nodes 1, 5 and 6 is 
to be calculated using the principle of virtual forces. The principal action 
in the frame is bending, and although there is shearing action and axial 
deformation, these will not contribute significantly to the deflection. The 
internal virtual work will thus be considered to be carried out by the virtual 
bending stresses, in association with the real internal bending deformation 
throughout the elements. The appropriate integral expression for internal 
virtual work due to bending is given as 

fL M 
Iq8 = m-dx 

o El 
(7.12) 

where the integral implies the sum of all such integrals over the length of 
all participating elements of the structure. Interest then centres on the 
moment diagrams applicable under various loads, since these give the 
functional relationship to be used in the integral of equation (7.12). 

There are several significant points to be made in connection with the 
use of the principle of virtual forces and the use of the standard integrals 
in the example 7.3. Appropriate care must be taken with the sign of the 
bending moment functions, since the result of integrating along any element 
may represent either positive or negative internal virtual work. The standard 
integrals are quite general and negative values may be substituted into the 
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Example 7.3: Deflections in a Statically Determinate Frame 

Given data: 

3 

2kN/1'\ M E = 200 kN/l'\l'\e 
I = B5x10 6 1'\1'\ 4 

2 SkN 
---+ 

6 

M 

5 7 

3.6 3.6 6 

The horizontal deflection at nodes 1, 5 and 6 is required. The frame 
reactions and bending moment diagram are 

12 

~ __ ~+-____ +-____ 27 

i 3.97kN i 7.13kN 

Apply unit horizontal force in turn to nodes 1, 5 and 6 to give 
the following bending moment diagrams: 

i 0.42 

3 

3 

! 0.92 

3 

Ie==========f-, ---+ 
3 

n.s ! O.S i 

3 

3 

i 0.42 ! 0.92 
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Ignoring axial and shear deformation as second-order effects, the 
internal virtual work expression is 

L. q . 8 = f m M dx 
EI 

Considering each unit force application as a virtual force system, 
the principle of virtual forces gives 

l(.:l.)=f m M dx 
I lEI 

(a) Horizontal Deflection at Node 1 
Integration over element 4--6: 

x2 

M(x)=1.5x-2 2 0~x~6 
2kN/M 27kN M 

-11 \11 \11 t \11 \11 'l-i) 
m,(x)=-0.5x 

r 1.5~N I lO.5kN 

=- ;1 [0.75 ~3 -0.5 ~4J: 
108 

EI 

The remaining integrals can be evaluated in a similar way, but the 
standard integrals of table 81.5 in appendix 8 can be used to 
advantage. These are based on standard functions to describe m(x) 
and M(x). Integrating over elements 2-3 (in two parts), 3-4 and 6-7 
gives the following tabulated results, with the remaining elements 
not contributing in this case: 

M(xi m, (xi !m,M dx 

0 3.9 0 ~I 16 .~ M2 m, ~ -83.54 

~-14.28 3.9 
2 

17 

61 I~ L 

~ "2 [m,(M, +M 2 i] ~-13.34 

-14.28 0 
3.9 

1~~ ~~ L "3 M, m, ~ 36.0 

?7~ 
3 

6~ L "3 M, m, ~ 81.0 o 3 3 
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Summing all of the integral expressions gives 

128.12 
d--­, - EI 

=0.007 m 

(b) Horizontal Deflection at Nodes 5 and 6 
Using the remaining two moment diagrams, m 2 and m 3 , the horizon­
tal deflections at nodes 5 and 6 can be found as 

178.04 
d 5 =--=0.010 m 

EI 

189.00 
d 6 =--=0.011 m 

EI 

and from a more general analysis, the deflected shape is known to 
have the following form: 

r 
I 
I 
I 

_/ 

" " // 

-, 
\ 
\ 

I -----., 
I 
I 
I 

expressions as required. It is only necessary consistently to declare a local 
sign convention to determine positive bending for a given element. Since 
the sense of any displacement may not be known at the outset, it is quite 
feasible to obtain a negative result for a deflection. This simply means that 
the actual deflection has the opposite sense to the applied unit load in the 
Q force system. While it is possible to derive more complex standard 
integrals, they become increasingly difficult to interpret. It is considered 
that it is better to use the limited set given in appendix B, and complete 
the work by carrying out any other necessary integration from first principles. 

It should be appreciated that the Q force system is a completely general 
one. As such, it may include a unit moment to be used in conjunction with 
a rotation, as part of the displacements sought on a given structure. With 
this in mind it is appropriate to comment on the consistency of the units 
involved. It is of no consequence whether the unit action of the Q force 
system is regarded as having force dimensions or not. Equation (7.8) will 
always be dimensionally correct, since it should be realized that the final 
result for the displacement is found by dividing both sides by the unit 
action. Provided consistent units are used throughout, the correct values 
will be obtained. 
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7.3.2 General Application to the Deflection of Trusses 

In a similar manner to that presented in the previous section, an example 
will be considered in some detail to illustrate the application of the principle 
of virtual forces to the deflection of trusses. 

Example 7.4 shows a simple pin-jointed truss subjected to lateral loads. 
The horizontal and vertical deflection at node 2, and the relative deflection 
between nodes 1 and 4, in the direction of a line joining them, are to be 
calculated using the principle of virtual forces. The truss carries the load 
through the action of axial force only. The internal virtual work is thus only 
that associated with axial effects. From table 7.2, the expression for internal 
virtual work due to axial force is given as 

L. q8 == f p ~ dx 
EA 

(7.13) 

For prismatic elements, the axial forces are constant along the element and 
the integral expression becomes a simple product. Recalling that the integral 
implies a summation over all the elements of the structure, equation {7.l3} 
becomes 

PL 
L. q8 ==L.p­

EA 

Example 7.4: Deflections in a Statically Determinate Truss 

Given data: 

10kN) 1 lD 

E = 200 kN/MM2 
Ax 800 MM 2 (cllagona!s) 
Ax = 1000 MM 2 (oth£'rs) 

NF' 

(7.14) 
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The horizontal and vertical deflection at node 2 and the relative 
deflection of nodes 1 and 4, along a line joining them, is required. 
The forces in the truss under the loads, designated as the set 'F', 
are shown as part of the data. Apply unit forces as shown to give 
the sets of internal force designated as 'f,', 'f2' and 'f3" 

4 

Hi=; N 

Equation (7.14) can then be seen as 

FL 
1'~='f-

I L... 'AE 

4 

'\.,.:.1_f-..::;O.:;::.6 --+----, 2 

'" d 

, 
\ 

\ 
\ 

\ ." 
\" 

\ 
\ 

\ 
\ 

'" d 

\ 
1?--+---""O.6,,--,>---'1' 4 

\1 

and the summation is best evaluated in tabular form as follows: 

Element LIEA xl03 L L L 
F f, f2 f3 Ff- Ff2 EA Ff-, EA 3 EA 

1-2 3 -10 -0.6 0.02 
1-3 4 0 -0.8 
2-3 6.25 16.67 1.67 1.0 0.17 0.10 
2-4 4 -13.33 -1.33 -1.0 -0.8 0.07 0.05 0.04 
3-4 3 0 -0.6 
3-5 4 46.67 2.67 0.50 
3-6 6.25 -41.67 -1.67 0.43 
4-6 4 -13.33 -1.33 -1.0 0.07 0.05 
5-6 3 25 1.00 0.08 

L 1.32 0.10 0.16 
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That is, the virtual force systems have been combined with the real 
displacement system to give 
(a) Horizontal deflection at node 2, A2H = 1.32 mm 
(b) Vertical deflection at node 2, A2V =0.10 mm 
and 
(c) Denoting the displacements at nodes 1 and 4 along the line 1-4 
as AIO and A40 respectively, equation (7.14) becomes 

which is 

1 . AlO +1 . A40 =0.16 

:.1 (AIO +A40) =0.16 

AI _4=0.16 mm 

where A I - 4 is the required relative deflection. 

It follows, then, that equation (7.8), as an expression of the principle of 
virtual forces applied to the deflection of trusses, is 

PL 
IQA=Iq­EA (7.14) 

where P represents the set of internal forces due to the loads causing the 
deflection, and q represents the set of internal virtual forces due to a suitably 
defined virtual force system. 

7.3.3 Deflections due to.Temperature, Lack of Fit and Support 
Movements 

The principle of virtual forces has been shown to be an effective method 
of calculating the deflections due to applied loads. Deflections may also 
occur because of temperature variation in the elements, discrepancies 
between the length of the elements and their design length or specified 
movements at the supports. For statically determinate systems, these effects 
result in deflections without stresses and the deflections can be readily 
calculated using the principle of virtual forces. In the first two cases the 
internal displacement of the element is specified by the effect. For example, 
the total internal deformation of a truss element of length L, subjected to 
a temperature rise of A T, is given as 

8=aATL 

where a is the coefficient of linear expansion of the material. 
On the other hand, any variation in the length of a truss element from 

the design length is necessarily given directly by measurement. Deflections 



THE PRINCIPLE OF VIRTUAL WORK 205 

in a truss due to any of these effects can be calculated directly from equation 
(7.8) as an expression of virtual work in the form 

For temperature loads the relevant expression is 

I Q~=I q(a~TL) 
while for lack of fit the expression becomes 

I Q~=I q(~L) 
Consistent with the 'tension positive' sign convention adopted for axial 
effects, a temperature rise will produce a positive internal deformation, as 
will an excessive length of an element. In either case, the virtual Q force 
system is selected to suit the displacement required, as previously explained. 
A useful application of virtual work in this context arises with the need to 
camber trusses to offset deflections under load. In this case an external 
deflection can be specified as a suitable camber and the necessary variation, 
~L, in selected elements can be calculated. For instance, each element in 
the bottom chord of a truss can be shortened to camber the truss. 

A further aspect of temperature effects occurs with a temperature 
gradient across an element. The internal deformation is now the rotation 
of a plane section through the element, resulting in curvature. The effect is 
illustrated in figure 7.7 where it can be noted that the factors influencing 
the curvature are the temperature variation about the mean value and the 
depth of the section. The mean temperature, if it is a variation from an 
accepted normal value for the structure, is responsible for longitudinal 
expansion or contraction and does not effect curvature. Deflections due to 

TeMp&'ratLAre Gradient DeforMQ tlcn 

e = a~Tdx 

where a = coefficient of linear expansion 

( Tl - T2 ) 2a ~ T 
and ~T= so that dcjJ =--dx 

2 d 

Figure 7.7 Effect of temperature gradient on an element. 
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the temperature gradient may then be calculated as required from the virtual 
work expression: 

I QA= f m de!> 

A statically determinate structure subjected to support movements will 
simply move as a rigid body. Although the deflections throughout the rest 
of the structure can usually be deduced from the geometry of the system, 
the principle of virtual forces can be used to advantage here also. Since 
there are no internal deformations, the external virtual work must be zero. 
With the external deflections at the supports specified, the deflections at 
other points in the structure can be calculated by using a virtual Q force 
system in the usual way. In this case the virtual work expression is 

I QIl=O 

which is 

The expansion of the summation does not now reduce to a single term, 
since the Q system necessarily includes the forces at the reactive supports 
where the movement has taken place. Instead, the expansion includes the 
known virtual work done by the reactive Q forces moving through the 
support movements, and the unknown virtual work term associated with 
the required displacement which can now be determined. 

The question of deflections of statically determinate systems due to 
effects other than applied loads is again taken up in chapter 8 as part of a 
study of the behaviour of statically indeterminate structures. 

7.4 THE RECIPROCAL THEOREMS 

Two related theorems based on the virtual work principles, one the generalis­
ation of the other, are often referred to as the reciprocal theorems and they 
will be presented here since they are relevant to the work of chapter 8. The 
theorem was first put forward in a specific form by the nineteenth century 
British engineer, Maxwell, and it was later generalised by Betti. 

The reciprocal theorems relate to the relationships between the indepen­
dent force and displacement systems acting on the same structure under 
virtual work concepts. The general form of the reciprocal theorem, or Betti's 
Law, may be stated as follows: 

For a linear elastic structure, the external work done by a set of Q forces 
acting through the displacements Il' produced by a set of Q' forces, is equal 
to the external work done by the set of Q' forces acting through the 
displacements Il produced by the set of Q forces 
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The theorem is a direct result of the application of the principle of virtual 
work and it may be demonstrated in an application to a simple planar truss. 
The more general application of the theorem should be readily appreciated 
as a result of the following study. 

A suitable notation to describe the loads (external forces) and displace­
ments of a truss was introduced in chapter 3 with the concepts of load and 
displacement vectors. The displacements may also be identified with the 
degrees of freedom of the structure nominated, in part, by the selection of 
the nodes as discussed in chapter 2. For a truss, the nodes are identified at 
the joints with two degrees of freedom at each node. The complete set of 
forces acting on the structure is given by a vector of 2n terms, where n is 
the number of nodes. At the ith node, the forces can be described as Q2i-1 

and Q2;, in the x and y direction respectively. The displacements at the ith 
node may be described in a similar manner as a2i - 1 and a2i • The forces 
and displacement systems acting on the truss of figure 7.8 can be readily 
described with this notation. 

In figure 7.8(a) for example, a Q force system with internal forces q 
is shown, with the forces QI and Qs producing the set of displacements, a, 
as shown in figure 7.8(b). Similarly, figure 7.8(c) represents another force 
system Q', with the forces Q~ and Q; producing the set of displacements 
a' (as shown in figure 7.8(d» and the internal forces q'. 

In line with example 7.4, the Q' force system may be regarded as a 
virtual force system to be considered in conjunction with the displacement 
system a. Equation (7.8) is then 

(7.15) 

where [) represents the internal deformation of the element due to the Q 
force system; hence 

qL 
[).=-'-' 
, EA 

Equation (7.15) is then 

L Q'a=L q' qL 
EA 

(7.16) 

Similarly, the Q force system may be regarded as a virtual force system to 
be considered in conjunction with the displacement system a'. Equation 
(7.8) now gives 

L Qa'=L q[)' 

but now [)' represents the internal deformation given by 

[)' = q;Li 

, EA 

(7.17) 
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Figure 7.B Reciprocal theorems applied to a truss. 

so that equation (7.17) becomes 

q'L 
I QIl'=I q-

EA 

'.L) , 

(10) 

.~/. 

(cD 

(7.18) 

Since equations (7.16) and (7.17) both have the same right-hand sides, it 
follows that the left-hand sides, both expressing external work quantities, 
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By Maxwell's ReClproco.l TheoreMI 

Figure 7.9 Maxwell's reciprocal theorem. 

are equal, thus proving the theorem. Specifically, with the suggested 
values of the Q and Q' force systems, then the reciprocal theorem states 
that 

Q,a; + Qsa; = Q~a4 + Q;a7 
More specifically, Maxwell presented the reciprocal theorem in a form 
where the force systems are represented by a unit force acting in the direction 
of an unrestrained degree of freedom. This condition leads directly to a 
reciprocal relationship between specified displacements acting on a struc­
ture. Maxwell's reciprocal theorem may be stated as follows: 

For a linear elastic structure, the displacement aij at a point i, in the direction 
of a unit load at i but caused by a unit force at j, is equal to the displacement 
aji at the point j, in the direction of the unit force at j but caused by the unit 
force at i 

The theorem follows directly from Betti's Law and it can be readily verified 
by considering the simple example of figure 7.9 and using the principle of 
virtual displacements. 

7.5 PROOF OF THE RELATIONSHIP BETWEEN THE STATICS 
MATRIX AND THE KINEMATICS MATRIX 

In section 3.2 of chapter 3, where the matrix analysis of trusses was 
introduced in a particular application of the stiffness method, it was stated 
that the kinematics matrix, B, was necessarily the transpose of the statics 
matrix, A. This relationship can now be proved using the principle of virtual 
forces. Once again, it is convenient to use a plane truss as the structure for 
consideration. 

Any plane truss in equilibrium under the action of a set of loads, P, 
develops the set of internal forces, f The action also produces the set of 
element extensions, e, and results in the displacements of the structure, d. 
Equations (3.3) and (3.5) give the general relationships between the load 
and force vectors and the element extension and displacement vectors for 
a truss as 

P = A . f and e = B· d 
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where A is the statics matrix and B is the kinematics matrix or displacement 
transformation matrix. 

It is required to prove that B = AT. Suppose that the general set of 
loads P has the particular form p' such that all the internal forces f, except 
in one element, are zero. This is shown in part in figure 7.1O(a), and equation 
(3.3) is then 

P~ 

p' n 

o 
o 

jj 

A typical result from multiplying out equation (7.19) is 

P~ = akjjj 

(7.19) 

(7.20) 

Suppose now that a compatible deformation of the structure is introduced, 
caused by another load system plI, such that dk is the only non-zero term 
in the displacement vector. This action, which is shown in part in figure 
7.1O(b), will result in the particular form of the element extension vector, 
e", and equation (3.5) is then 

er bll b12 b13 0 
e; b21 b22 0 

e~ 

Bmxn dk (7.21 ) 
e" 

} 

0 
e" In bml bmn 

and a typical result from multiplying out equation (7.21) is 

(7.22) 

The principle of virtual work may now be applied with figure 7.10(b) 
representing a virtual displacement system to be applied in conjunction 
with the force system of figure 7.10(a). Equation (7.8) then gives 

(7.23) 

as a relationship between external virtual work and internal virtual work. 
Substituting from equations (7.20) and (7.22), for P~ and e'j respectively, 
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/ 

(0.) P' Lao.d SysteM (b) COMpo'1:tble Dtsplo.cE'ME'n-t Sys1:eM 

Figure 7.10 Force and displacement system acting on a truss. 

into equation (7.23) results in 

akjjjdk = jjbjkdk 

which is the required proof. 

7.6 PROBLEMS FOR SOLUTION 

7.1 Using the principle of virtual displacements, verify the general 
expressions for shear force and bending moment in a simply suppor­
ted beam under a single concentrated load as given in section 2.6 of 
chapter 2. 

7.2 Calculate all the reactions of the beam of figure 7.3(a) using the 
principle of virtual displacements. 

7.3 Calculate the horizontal deflection at node 1 and the rotation of the 
joint at node 2 for the rigid-jointed frame of figure P7.1. 

2 

10 kN 
-EE----

Figure P7. 1. 

4 

E I = lOx 1 03 k N rn 2 

throughout 
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7.4 Calculate the slope and deflection at the end of the cantilever beam 
of problem 4.1 of chapter 4, using the principle of virtual forces. 

7.5 For the truss of figure P7.2, calculate the following quantities: 
(a) vertical deflection at node 7 due to the load shown. 
(b) vertical deflection at node 7 due to the effect of a temperature 
rise of 20°C in the upper chord elements only. 
The area of each element is 500 mm and the coefficient of linear 
expansion a = 0.000 012;oC. E = 200 kN/mm2. 

7 J 10 kN 

~>----------~~-----------,------------~ 
3 5 

2 

4 

1.2 1.2 

Figure Pl. 2. 

7.6 Show that the deflection at the centre of a simply supported beam 
of length, L, and depth, h, caused by a rise of t in the temperature 
gradient over the depth is given by (atL 2 )/8h, where a is the 
coefficient of linear expansion. 

7.7 The bridge truss of figure P7.3 has steel elements with E = 2 X 105 MPa, 
the area of each chord element = 2500 mm 2 and that of each web 
element = 1500 mm2• Elements 1-2 and 6-8 are considered as web 
elements. 
Calculate the vertical deflection of node 5, and the relative displace­
ment between nodes 2 and 5 along the diagonal line 2-5. 

Figure Pl. 3. 

7.8 A camber is to be introduced into the truss of problem 7.7 by 
modifying the lengths of the elements so that, under the loads shown, 
node 5 has the same elevation as nodes 1 and 8. Determine a suitable 
scheme for producing the required camber. 
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7.9 Evaluate the horizontal displacement of node 6 for the frame of figure 
P7.4. 

3 

2 

5 2 Properties E ~ 2 x 105 MPJ 
I ~ 85 \ 106 mm 4 

4 

6 

9.6 4.8 

Figure Pl.4. 

7.10 Calculate the total deflection (in three components) of the free end 
of the cantilevered roadway sign structure shown in figure P7.S. 

Tubular section 
I ~60x106mm4 
G ~ 80 x 103 MPa 
J ~ 120x 106 mm4 

E ~ 200 x 103 MPa 

Figure Pl. 5. 
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Chapte.r 8 
The Flexibility Method of 
Analysis 

It is a feature of the analysis of structures that each technique can find 
expression in an alternative or dual form. This is sometimes referred to as 
the 'duality' of structural analysis and it is frequently useful for a student 
to study the dual problem. Obviously, certain problems are solved more 
directly by one method than by the other, but the fact remains that the 
alternative method is available. During the latter part of the last century 
and the early part of this century, methods of structural analysis proliferated. 
It is now recognized that all of the methods of structural analysis are based 
on either a stiffness approach or a flexibility approach, but this was not 
widely accepted until the advent of the digital computer which prompted 
further investigative work. 

The stiffness method is also known as the displacement method or 
sometimes as the equilibrium method. The flexibility method, on the other 
hand, is also known as the force method or the compatibility method. Each 
of these titles is descriptive and its appropriateness becomes apparent on 
a reflection of what is involved in the application of the method. The 
flexibility method can be used effectively with computers, but it is less 
amenable to matrix formulation and therefore to computer methods than 
is the stiffness method. 

8.1 BASIC CONCEPTS OF THE FLEXIBILITY METHOD 

In presenting the basic concepts of the flexibility method, a deliberate 
comparison and contrast will be made with the stiffness method. This is 
both for convenience and to give emphasis to the dual nature of the problem. 

214 
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Although either method can be used with statically determinate or indeter­
minate structures, this study will concentrate on the latter. Structures which 
are highly kinematically determinate represent convenient starting points 
for the analysis of structures by the stiffness method. In fact, the primary 
structure of the stiffness method is the restrained form where certain degrees 
of freedom have been suppressed. In the flexibility method, the primary 
structure is the released form, where unknown actions, either internal or 
external, have been released. 

The primary unknowns in the stiffness method are the displacements 
at the nodes, while in the flexibility method, the primary unknowns are the 
released unknown actions. The initial equations affording the solution in 
the stiffness method can be regarded as equilibrium equations. The corre­
sponding equations in the flexibility method are based on compatibility 
requirements or the need for consistent deformation. The following study 
of a propped cantilever beam under a uniformly distributed load further 
illustrates the concepts of the flexibility method and highlights a comparison 
with the stiffness method. 

Figure 8.1 shows a series of operations that may be carried out on a 
propped cantilever in order to determine the moment at the built-in end. 
Ignoring the fact that this is a standard solution that is widely known, the 
direct stiffness method may be readily applied to determine the rotation (J2 

and hence the required moment. The steps of the analysis are shown in the 
series of operations of figure 8.1, commencing with the restrained primary 
structure where the end moments are taken from a standard solution. The 
action necessary to introduce a unit displacement at the imposed restraint 
at node 2 was covered in chapter 4. It can be recognised as a coefficient 
of the structure stiffness matrix, or simply as a stiffness coefficient. Moment 
equilibrium at node 2 is then satisfied by the equation 

(8.1 ) 

Equation (8.1) is in fact of the form PF = KFdF, as previously discussed as 
the basis of the stiffness method. In this case the stiffness matrix has one 
term only. The required moment is found by back-substitution and super­
position. A careful study of the operations will show that the technique has 
all the steps of the direct stiffness method as explained in chapter 4. 

Using the flexibility approach, the operations as shown in figure 8.1 
commence with identifying a suitable unknown action. In this case, the 
redundant reaction at node 2 has been selected and designated X 2 • In the 
released primary structure the displacement at node 2 can be readily found, 
either as a standard solution or by direct calculation. With a unit force 
applied at the release, the displacement designated tIl can also be found. 
Again this mayor may not be a standard solution, but in any event it can 
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STIFFNESS METHOD 

q per unit length 

PriMary unknown- 8 2 

qL"I12 

Restrained PriMary Structure 

Unit dlspla.ceMent o.-t restralntl 

kll = 4EIIL 

EqUILibriUM equo. tlon 
require' 

Back substltutlonl 

o 

qL! 14BEI 

1'1 12 = 2EIIL ,qL!/4BEI + q~/12 
= q~/B 

FLEXIBILITY METHOD 

q per UnI"t length 

PriMary unknownt X 2 

Released PriMary Structure 

---f11 t 1 

Unit force at releasel 

fll = L!/3EI 

COMpo.tlblllty equation 
requlre l 

Back 5ulostltutlonl 

o 

3qL/B 

Figure 8. 1 Comparison of methods of structural analysis. 

be calculated. The displacement at a release due to unit action is known 
as a flexibility coefficient, the general nature of which will be presented in 
section 8.1.2. For unyielding supports, compatibility is then satisfied by the 
equation 

e qL4 
X ---=0 

23E1 8E1 (8.2) 

The unknown action, X 2 , can be determined from equation (8.2) and the 
required moment, m12 , is again found by back-substitution and superpo­
sition. 
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8.1.1 Analysis of Structures with One Degree of Statical 
Indeterminacy 

The flexibility method is particularly convenient for the analysis of structures 
with a degree of statical indeterminacy of one. In such cases, the selected 
redundant action can be found directly from a compatibility equation similar 
to that of equation (8.2). A significant feature of the method is that the 
analyst has a choice in the selection of the action to be released and that 
the action may be either internal or external. The example of figure 8.t' can 
be repeated, selecting the moment action m12 as the redundant. Actually 
such an approach was used in section 3.8 of chapter 3, as the basis for 
determining the standard solutions for fixed end actions on beams. 

The tied portal frame of example 8.1 has a degree of statical indeter­
minacy of one. The tie may be necessary when poor soil conditions on one 
side of the site prevent the development of a lateral restraint at one footing. 
It is convenient to take the internal action in the tie as the primary unknown. 
Cutting the tie represents the one release necessary to give a statically 
determinate primary structure. 

Example 8. 1: Flexibility Analysis of a Tied Portal Frame 

Given data: 

2 Coh.lMns Qna Ro.f'tltrs 
J = 100xlO 6 ", ... 4 
E = 200 kN/ ...... z 

n .. 
A = 100 ...... 2 

5 E = 200 kN/MI'I2 

4.B 4.B 

Introduce released primary structure by cutting the tie: 

7 7 

5 
5 5 

UIOW 
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Calculate displacement at the release due to the loads (particular 
solution) as 

U = m-dx+" f-f M FL 
'0 EI L. EA 

For rafter 2-3: 

and 

M (x) = 12.88 C D x -1.2x2 C ~) 

m(X)=-(5+~X) 
5.2 

Ignoring axial deformation in the columns and rafters, then 

UlO=~ f5.2 -(5 +0.384x)(11.89x -1.107x2) dx 
EI 0 

= -1361.23/ EI 

=-68.06 mm 

Calculate the displacement at the release due to unit action as 

Using standard integrals for moment integration overthe frame, 
then 

461.25 9.6 
f ---+-,,- EI EA 

=23.06+0.48 

=23.54mm 

Applying the compatibility equation at the release: 

UlO + f"x, =0 

68.06 
x, =23.54 

=2.89 kN 
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The final solution is given as a combination of the actions of 
the 'M' diagram and XI times the actions of the 'm' diagram. 

14.5 

Under the action of the loads, the primary structure of example 8.1 
deflects, giving a displacement at the release which may be designated as 
U IO • Since the frame is now statically determinate, all of the actions of the 
frame, including U IO , can be readily calculated. Such results may be regar­
ded as the particular solution to the problem. 

With unit force applied at the release, the frame develops the actions 
shown in the' m' diagram of example 8.1 resulting in the flexibility coefficient 
ill. (The action at the release is shown enlarged at the end of the example.) 
The actual force in the tie may be denoted as Xl, so that the compatibility 
requirements of the structure are satisfied by the equation 

(8.3) 

The results show that the superposition of the actions of the structure of 
the 'M' diagram, and Xl times the actions of the structure of the 'm' diagram, 
satisfy the requirements of the given structure. The latter set of results may 
be referred to as the complementary solution to the problem. The displace­
ments UIO and ill have been calculated using the principle of virtual forces, 
and they presented no difficulty since they represent displacements of a 
statically determinate structure. Actually, ill should be seen as a displace­
ment per unit force, so that equation (8.3) is dimensionally correct. 

It may be noted that the axial effects in the tie have contributed little 
to the flexibility coefficient in example 8.1. Nevertheless it is important to 
note this effect and to appreciate how the elasticity of the tie is taken into 
consideration. If the tie were axially rigid, then the solution would be that 
for a portal frame with pinned bases. Of course the technique can be applied 
to such a frame, in which case the released action can simply be taken as 
the horizontal reaction at one support. The structures referred to in problem 
8.1 of section 8.3 all fall within the same category as the structure of example 
8.1. Although all the structures are also of a composite nature, comprising 
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clearly defined flexural and axial force elements, this is not a necessary 
condition. The structures simply represent an interesting class of structure 
that can be analysed by the flexibility method. 

The method as outlined is sometimes referred to as the method of 
consistent deformations. This arises from the nature of equation (8.3) which 
can clearly be seen to ensure consistent deformation in the structure. As 
will be seen in section 8.2, the flexibility method may be developed with 
more rigour to include the subsequent calculation of the displacements of 
the structure. 

8.1.2 Application to Higher-order Statically Indeterminate 
Structures 

The flexibility method can be effectively applied to structures with a degree 
of statical indeterminacy greater than one. The primary structure still 
remains statically determinate, so that it is necessary to introduce releases 
of action equal to the degree of statical indeterminacy. This leads to a set 
of values, UiO , for the particular solution since displacements will occur at 
each release under the load on the structure. There is also a corresponding 
redundant action, Xj, associated with each release and the influence of unit 
force applied in turn at each release must be considered. The application 
of unit force at anyone release may cause a displacement at any, or all, of 
the remaining releases. It is this interaction which characterises the difference 
between the analysis of first-order and higher-order statically indeterminate 
structures by the flexibility method. In the following discussion, the terms 
action and force are used in a generalised sense to include moments, shear 
and axial force. A displacement may of course be either a translation or a 
rotation. 

In general, the flexibility coefficient may be defined as the displacement 
fi)' which is the displacement at release i, caused by the action of unit force 
at release j. Equation (8.3), expressing compatibility or consistent deforma­
tion, now takes the more general form of 

U IO + fllX, + f12 X 2+· .. + f'nXn = 0 

U20 + f2'X, + f22 X 2 + ... + f2nXn = 0 

where the structure has a degree of statical indeterminacy of n. 

(8.4) 

Equation (8.4) is simply a set of simultaneous linear equations which 
can be solved for X j once the flexibility coefficients and the particular 
solution have been found. The released actions may again be either internal 
or external and relate to any action of axial force, shear force or bending 
or torsional moment. The final solution to the problem is again given as a 
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combination of the particular solution and each of the solutions for unit 
force in the redundant action, scaled by the now known redundant action 
Xi' The technique is illustrated by examples 8.2 and 8.3. In each case, the 
structures are a redundant form of the structures used in examples 7.1 and 
7.2 of chapter 7. 

Example 8.2: Flexibility Analysis of a Higher-order Indeterminate Frame 

Given data: 

2 

3.6 3.6 

3 

5 

E ; <?oo kN/MM 2 
J ; 85)(10· MM • 

Degree of' sto. tlCo.l 
IndeterMlno.cy = 2 

Introduce primary structure by releasing horizontal restraint at 
nodes 1 and 5: 

12 

3 

3 

f~L 

The 'M' cilo.gro.M -

PrlMo.ry structure 
under o.pplied loo.ds 

The '1'1 1' cilo.gro.M -

PrlMo.ry structure 
unit o.ction 0. t releo.se 
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3 

f~L f~ L 
The 'M Z' cllo.graM -

PriMary structure 
unit o.ctlon at release 2 

Solution: Equation (8.4) gives 

From example 7.1 of chapter 7: 

128.12 178.04 u --_·u ---
10- EI ' 20- EI 

The flexibility coefficients may be calculated from 

Using the standard integrals of table B.1: 

21.60 
f 12=f21 =---

EI 

Substituting into the simultaneous equations (a) above, then 

128.12 + 115.20x1 - 21.60X2=0 

178.04-21.60Xl +86.40X2=0 

(a) 

from which, Xl = -:-1.57 kN and X2 = -2.45 kN (the negative sign simply 
indicates that the sense of the reaction is opposite to that assumed 
with the unit action). 

The frame bending moment diagram is then given as a combi­
nation of the moments of the 'M' diagram, Xl times the moments 
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of the 'm,' diagram and X2 times the moments of the 'm2' diagram. 

14.64 

14.64 

14.94 

tOf-==-""'"---t----, 14.94 
1.53 

Bending MOMent DiagrnM 
(kN M) 

In the structure of example 8.3, additional bracing has been introduced 
in both panels to give a redundant form. It is assumed that the bracing 
elements can cope adequately with both tension and compression forces so 
that the structure is truly a redundant one. (In many cases, wind bracing 
is designed to take the tension load with a slenderness ratio such that it 
buckles elastically under load reversal to become ineffective in compression. 
This is compensated for by having such bracing elements in two directions.) 
The choice of redundants in this example is very obvious; the released 
structure is found by cutting the redundant diagonal elements. 

Example 8.3: Flexibility Analysis of a Higher-order Indeterminate Truss 

Given data: 

E = 200 kN/MM2 
Ax 800 MM 2 (diagonals) 

g Ax = 1000 MM 2 (others) 
ttl 

'" '" IX) 

Degree of stn tical indeterMlnncy 2 
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Introduce primary structure by cutting a diagonal in each panel. 

'f I 

1 
Hf H 

2 

The 'F' diagram-primary structure under applied loads. The 'fl' 
diagram-primary structure, unit action at release 1. The 'f2' 
diagram-primary structure, unit action at release 2. 

The particular solution, UlO and U20 and the flexibility coefficients 
can all be calculated as deflections in a determinate truss, hence 

FL 
u;o=I f; EA and 

In table form, the calculations are: 

Element ~Xl03 F f, f2 f, FL xl03 f2 FL x103 
EA EA EA 

1-2 3 -10 -0.6 18 
1-3 4 -0.8 0 
2-3 6.25 16.67 1.0 104.19 
2-4 4 -13.33 -0.8 42.66 
3-4 3 0 -0.6 -0.6 0 
3-5 4 48.67 -0.8 -149.34 
3-6 6.25 -41.67 1.0 -260.44 
4-6 4 -13.33 -0.8 42.66 
5-6 3 25 -0.6 -45.00 
1-4 6.25 0 1.0 0 
4-5 6.25 0 1.0 0 

~ 164.85 -412.12 

f f,L x103 
' EA 

f f2Lxl03 
2 EA 

f f2L X 103 
' EA 

1.08 
2.56 
6.25 
2.56 
1.08 1.08 1.08 

2.56 
6.25 
2.56 
1.08 

6.25 
6.25 

19.78 19.78 1.08 
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Equation (8.4) gives 

UlO+ f"X, +f'2X2=0 

U20 + f2,x, + f22 X2=0 

Substituting into equations (a) results in 

164.85 + 19.78x, + 1.08x2 =0 

-412.12+1.08x, +19.78x2=0 

from which x,=-9.5kN and x2=21.4kN 

(a) 

The final forces in the truss are given by combining the set of 
forces, 'F', with x, times the set of forces, 'f,: and X2 times the set 
of forces, 'f2'. 

Element 

1-2 
1-3 
2-3 
2-4 
3-4 
3-5 
3-6 
4-6 
5-6 
1-4 
4-5 

F 

-10 
0 

16.67 
-13.33 

0 
46.67 

-41.67 
-13.33 

25 
0 
0 

x,f, 

5.7 
7.6 

-9.5 
7.6 
5.7 

-9.5 

x2f2 Final force (kN) 

-4.3 
7.6 
7.17 

-5.73 
-12.84 -7.14 
-17.12 29.55 

21.4 -20.27 
-17.12 -30.45 
-12.84 12.16 

-9.5 
21.4 21.4 

From the preceding examples it becomes apparent that there is a matter 
of choice in the selection of the redundant actions of a structure, for the 
purposes of analysis by the flexibility method. While the technique is not 
dependent on the selection of any particular redundant action, the selection 
does influence the ease with which the required displacements can be 
calculated. Often the idea of introducing a moment release, through a pin, 
in a flexural element in a frame is overlooked. In many cases the moment 
release will lead to a well conditioned set of simultaneous equations with 
simple calculations for the rotations. Of course a mixture of both force and 
moment releases is acceptable and sometimes desirable. The illustrative 
example in section 8.2 uses moment releases to give a statically determinate 
primary structure. 
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8.1.3 Deflection Calculations for Statically Indeterminate Frames 

Since the flexibility method treats the redundant actions as the primary 
unknowns, deflections throughout the structure are not available without 
further analysis. Such a deflection analysis can be carried out using the 
principle of virtual forces as in chapter 7, since the technique is equally 
applicable to statically indeterminate structures. An apparent difficulty arises 
though since the moment diagram for the frame under a unit virtual force 
may require another indeterminate analysis to establish it. Fortunately this 
step can be avoided using the following observation. 

The behaviour of any indeterminate frame, including the deflections, 
is equivalent to the behaviour of the primary structure under the action of 
the loads and the redundant actions at the releases. Any displacement can 
therefore be found by applying a unit virtual force at the required point on 
the primary structure, and integrating the resulting moment diagram with 
the moment diagram of the indeterminate frame. The primary structure is 
of course statically determinate so that the virtual force moment diagram 
is easily established. Further, the primary structure need not be the same 
primary structure as that used in the original indeterminate analysis, if one 
was used at all. The analysis may have been based on a stiffness method 
or obtained from a computer program, and deflections other than those 
given by such methods may be required. It is only necessary to use a statically 
determinate primary structure as a basis for the virtual force system when 
using the principle of virtual forces to calculate deflections. 

The procedure is shown in example 8.4 using the results of the analysis 
of example 8.2. It is worth noting that in a routine structural analysis by 
computer, the deflections throughout the structure are reported at selected 
nodes depending on how the structure is modelled. Subsequently the design 
engineer may require a deflection at some other point in the structure, and 
the technique outlined here could be used to advantage. 

Example 8.4: Deflection of a Statically Indeterminate Frame 

Given the following results: 

2 

1.5~1 

t 2.29kN 

I 3.& 

3 

M 

i--1r--r--r----r-,--, 5kN 
'I'O-"--'''-''--'''--''Y---;. 

2.45kN 5 
+--i 10.82kN 

3.6 I 6 

6 
M 

4.98kN 7 
+--t B.49kN 

I 

E = eoo kN/I'I1'I2 
1 = 85><10 6 1'11'1 4 
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14.64 

,......,.-,---.--r-,...., i B.49 
i()i' \11 'lI \11 'lI 'l- ) 

3.5\ U \4.94 

BendIng l'4oM"nt DIQgrQM (kN M) 

To calculate the horizontal deflection at node 6, apply a unit horizon­
tal load there on a released primary structure: 

3 

Io--==::::::===+' ~ 

1 
~ t a.5 

From the principle of virtual forces, the deflection is given by 

a6 = f m ~ dx 

1 r6 1 ( X2) 3 
= EI Jo -2" x 3.51x -2 2 dx + 3EI (3)(14.94) 

36 44.82 
=-+--

EI EI 

80.82 

EI 

=0.0047 m 

8.2 MATRIX FORMULATION OF THE FLEXIBILITY METHOD 

The flexibility method of analysis has been presented in the previous 
sections, as a general philosophy for the analysis of statically indeterminate 
structures. In fact the technique has been widely used for many years under 
a variety of titles, without particular reference to its relationship to the 
matrix stiffness method. It is relevant to consider the technique in the context 
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of this relationship, in order that both methods may be more clearly 
understood. Although displacements have been central to this chapter so 
far, the displacements have been those at the releases and not the general 
displacements at nominated nodes in the structure. The general displace­
ments of a structure can be calculated by the flexibility method of analysis 
by an extension of the technique already presented. The method can then 
be expressed in matrix notation and its relationship to the matrix stiffness 
method will become more apparent. 

Consider the frame of figure 8.2(a) which was previously analysed in 
chapter 4. The analysis can again be expressed in two parts so that any 
general loading can be considered as a set of nodal loads plus the fixed 
end actions. The nodal loads and displacements, as shown in figure 8.2(b), 
have a relationship given by the equation 

Equation (8.5) may be written as 

PF = K F • dF 

(8.5) 

(8.6) 

where KF is the structure stiffness matrix based on the three degrees of 
freedom nominated, ignoring axial deformation. 

40kN 

20kN Q 

3 Cl 4 

1 
21 

2 

3 3 

E = 200 kN/I'I1'I2 

(a.) 
I = 200x10' 1'11'14 

(10) 

20kN 

JOkN M 30kN 1'1 

Releo.se 1 Releo.se 3 

(c) (01) 

Figure B.2 General portal frame analysis. 
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In parallel with the stiffness method, the flexibility method ought to 
express the inverse relationship to that given by equation (8.5), that is 

Equation (8.7) may be written as 

d F = G· PF 

(B.7) 

(B.B) 

where G is the structure flexibility matrix, necessarily the inverse of the 
matrix K F • The basic concepts of the flexibility method can now be extended 
to derive the flexibility matrix of equation (8.8) and to determine the 
displacements of the frame. 

Figure 8.2(c) shows the particular values of the load vector, PF , which 
are relevant to the given problem, while figure 8.2(d) shows a released 
primary structure suitable for flexibility analysis. The initial task is to find 
the redundant actions which, in this case, are the moments at nodes 1 and 
2 and at the mid point of element 3-4. (This latter point can be conveniently 
described as 'a'.) Proceeding on the basis of the previous examples, and 
using the moment diagrams of figure 8.3, then equation (8.4) can be written 
as 

(B.9) 

40 

20kN 10 
0.5 

0.5 r+---==--===:---=::;-, 
0.5 

40 30kN M 

'M' 'Mi' 

(a.) (b) 

0.5 

0.5 .-t----==---==----"'::" 

(c) (d) 

Figure 8.3 Moment diagrams for the flexibility analysis of a frame. 
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and conveniently expressed in the notation 

UR+G lI , X=O (8,10) 

where U R is a vector of displacements at the releases, x is the vector of 
redundant actions, and GIl is a flexibility matrix, 

The displacement computations necessary to evaluate the terms of U R 

and the flexibility coefficients are summarised in table 8,1, and substituting 
into equation (8,9) results in 

{
-80} [2,9166 0,6666 1.5833] {XI} {OJ ~I 80 + ~I 0,6666 5,6666 -0,6666 X2 = ° 

-120 1.5833 -0,6666 2,9166 X3 ° 
(8,11 ) 

The simultaneous equations of equation (8,11) may be solved to give 

XI = 13,22 kN m; X2 = -12,00 kN m; and X3 = 31.22 kN m 

from which the bending moment diagram for the frame of figure 8,2(a) can 
be readily established, recalling that the fixed end moments must be added 
to element 3-4, 

The displacements of the frame at any point can also be found by 
superposition of the influences of the actions on the primary structure, The 
equations which permit this can be seen as an extension to the set of 
equations already used, in that they again express consistent deformation 
of the structure, While any displacements can be found, it is nodal displace-

Table 8,1 Displacement computations for flexibility analysis (a) [based on principle 
of virtual work] 

Element length 

J gl(X)g2(X) dx 1-3 3-a a-4 4-2 ~ 

Mml -WO(1 -/2' 40'! -/2' 40'! -~, 70'! -80 
+ 1» 

Mm2 -~, 10, 1 -/2' 40, 1 /2' 40, 1 ~'70' 1 80 

Mm3 -~, 10'! -3~2'40'! -/2' 40'! -t(70(1 -120 
+ 1» 

mImI t(2!+ 1) 3 1 1 3 I I 4 I 1 2,91666 M'2'2 M'2'2 3'2'2 

m1m2 t'l ,2 3~2'1'! -/2'1'! -~'1'! 0,66666 

mlm3 t'!'2 3 1 1 3 1 1 t'!'2 1.58333 M'2'2 M'2'2 

m2m2 ~, 1 ' 1 ~ , 1 ' 1 ~ , 1 ' 1 ~ , 1 ' 1 5,66666 

m2m3 ~ , 1 ,! /2' 1 ,! -/2'1'! -~'1'2 -0,66666 

m3m3 4 1 1 3 1 1 3 1 1 £ (2!+ 1) 2,91666 3'2'2 M'2'2 M'2'2 
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ments of the vector dF- that are of prime interest. The nodal displacements 
are a combination of the nodal displacements of the primary structure under 
load (a particular solution) and the nodal displacements of the primary 
structure due to each of the redundant actions (a complementary solution). 
Evaluating the nodal displacements in this way leads to another set of 
equations involving particular values, flexibility coefficients and the redun­
dants: 

UH,o+ f41 X I + f42 X2+ f43 X3 = (J3 

UH40 + !,,,,xI + fS2 X2+ !'3X 3 = (J4 

Ut.a+ f61 X I + f62 X2+ f63 X 3 = ~ 

(8.12) 

The flexibility coefficients of equation (8.12) are again found by the principle 
of virtual forces using the moment diagrams of figures 8.3 and 8.4, which 
show the effect of unit action at the degrees of freedom. Equations (8.12) 
may be written in matrix notation as 

UD+GOI ' x=dF (8.13) 

where Un is a vector of the displacements at the nodes of the primary 
structure under the particular applied loads, and GOI is an extension of the 
matrix of flexibility coefficients previously defined. 

The terms of UD and G OI are given by displacement computations 
using the moment diagrams of figures 8.3 and 8.4 and the results are 

0.5 

Ie 0.5 

(0.) 

(c) 

0.5 

2 

0.5 

0.5 rt----==---======:inJ 0.5 
O.S 0.5 

(10) 

Figure 8.4 Moment diagrams for unit actions at degrees of freedom. 
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Table 802 Displacement computations for flexibility analysis (b) 

Element length 

J gl(X)g2(X) dx 1-3 3-a a-4 4-2 l: 

Mm4 to 10 0 f -/2 0400 f -/2 0400 f -t 0 70 0 f -60 

Mms -t 010 0 f -/2 0400 f -3~20400f to 70 0 f 20 

Mm6 to 10 0 2 /204002 /204002 to 70 02 2930333 

m4 m1 -W(1 + 1» 3 1 1 3 1 1 4 1 1 -0008333 D 02°2 D 02°2 3 02 02 

m4 m2 -t 01 0 f /2 010 f -/2 010 f -t o10 f -1.33333 

m4m3 
4 1 1 3 1 1 3 1 1 g(005(1 + 1» 0058333 -3 02 02 D 02°2 D 02°2 

mSml g(005(1 + 1» 3 1 1 3 1 1 4 1 1 0058333 D 02°2 D 02°2 -3 02 02 

mSm2 to lot /2 010 f -/2 010 f t ol 0 f 1.33333 

mSm3 4 1 1 3 1 1 3 1 1 -W(1 + 1» -0008333 3 02 02 D 02°2 D 02°2 

m6 m1 -g 0 2(1+ 1) -~020f -~020f -t 020 f -5 

m6m2 -t o102 -~2 02 01 /2 0201 to 1 02 0 

m6 m3 -1 020 f -~020f -~020f -g(2(1 + 1» -5 

summarised in table 8020 Equation (8013) then becomes 

1 {-60 } 1 [-000833 -103333 005833] { 13022} {03} 
- 20 +- 005833 1.3333 -000833 -12000 = 04 
EI EI 

29303 -500 000 -500 31.22 .:1 

that is 
(8014) 

- 9011 = 04 
1 {-2609} {03} 

EI 71.13 .:1 

and the results compare favourably with those obtained in chapter 40 

8.2.1 Forming the Flexibility Matrix 

Although the problem of the previous section has now been solved for both 
the actions and the displacements of the frame, the flexibility matrix of 
equation (8.8) has not been explicitly formed. This can be achieved by 
further examination of the matrices used to this stage. 

Equations (8.10) and (8.13) may be combined and written as 

(8.15) 
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However equation (8.15) is still a function of the particular values of UR 

and U D • For other load cases, these particular values may be recalculated 
but, more conveniently, they can be expressed in terms of unit actions and 
related to the load vector. Recalling the definition of a flexibility coefficient 
and referring to the moment diagrams of figures 8.3 and 8.4, it may be seen 
that 

UJO = MJil4 + M 4fl5 + Qfl6 

U20 = MJi24 + M4f25 + Qf26 

U30 = M Ji34 + M4f35 + Qf36 

Equation (8.16) may be written in the notation of 

(B.16) 

(B.17) 

where it may be noted from the definition of the flexibility coefficients that 
010 is the transpose of 0 01 , Similarly it is seen that 

Uo,o = MJi44 + M4f45 + Qf46 

U040 = MJi54 + M4f55 + Qf56 

Uao = MJi64 + M4f6S+ Qf66 

which can be expressed as 

UD = 0 00 ' PF 

(B.1B) 

(B.19) 

The flexibility coefficients of the matrix 0 must be calculated in a manner 
similar to those previously determined, and the results for these coefficients 
are summarised in Table 8.3. 

Substituting equations (8.17) and (8.19) into equation (8.15) gives 

[OIOJ [OllJ to f --- . {PF }+ --- ·{x}= -
0 00 0 01 dF 

(B.20) 

Table 8.3 Displacement computation for flexibility analysis (c) 

Element length 

J g\(X)g2(X) dx 1-3 3-a a-4 4-2 ~ 

m4m4 4 I I 3 I I 3 I I 4 I \ 0.91666 3' 2' 2 3-2'2'2 3·2 ·2 ·2 3'2"'2" 

m4mS 4 I I 3 I I 3 \ I 4 I I -0.41666 -3'2'2 3-2'2'2 3-2'2".2" -3':1'2" 

m4m6 1· 2 ·! -/2· 2 ·! -332· 2 ·! -1· 2 ·! -1.000 

msms 4 \ I 3 I I 3 I I 4 I \ 0.91666 3' 2' 2 3-2'2'2 3-2'2'2 3' 2" . 2" 

mSm6 -1'!'2 -/2'!'2 -/2· 2 ·! 1'!'2 -1.000 

m6m6 1. 2 . 2 /2. 2 . 2 /2. 2 . 2 1. 2 .2 14.66666 
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Re-arranging, equation (8.20) may be conveniently written as 

[-6:!t~~:j· f~t =ftt (8.21 ) 

representing equations (8.10) and (8.13) in a compact and general form. 
Multiplying out equation (8.21) gives the equations 

0 10 • PF+Oll·X=O 

and from equation (8.22b) 

x = - 0 1/ . OlO . PF 

Substituting for x into equation (8.22a) gives 

0 00 • PF- 0 01 . oli . 0 10 . PF= dF 

that is 

(8.22a) 

(8.22b) 

(8.23) 

Comparing equation (8.23) with equation (8.8), it is seen that the structure 
flexibility matrix, 0, is given by 

0=[000-001.01/.010] 

In particular, for the frame of figure 8.2(a): 

0 1/ = EI -0.10000 0.20000 [ 
0.53611 -0.10000 

-0.31389 0.10000 

[ 
0.39444 -0.33889 

_I 1 
0 01 . Oil . 010 = EI -0.33889 0.39444 

-0.55555 -0.55555 

0 00 = ~l -0.41666 0.91666 [ 
0.91666 -0.41666 

So that 

[ 
0.52222 

o = ~l -0.07777 
-0.44444 

-1.00000 -1.00000 

-0.07777 -0.44444] 
0.52222 -0.44444 

-0.44444 3.55555 

-0.31389] 
0.10000 

0.53611 

-0.55555] 
-0.55555 

11.11050 

-1.00000] 
-1.00000 

14.66666 

and it may readily be confirmed that the matrix 0 is the inverse of the 
matrix KF given in example 4.3 in chapter 4. 
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While the preceding material has been developed from a specific 
example, the approach is quite general and equation (8.21) summarises the 
features of the matrix formulation of the flexibility method. The various 
matrices as defined in equation (S.21) simply take on a size directly related 
to the degrees of freedom introduced, and to the degree of statical indeter­
minacy of the structure. For a statically determinate structure, equation 
(S.22a) is simply 

(8.24) 

For a statically indeterminate structure, equation (S.21) may be seen as an 
extension of equation (S.24), where the load vector has been augmented 
by the redundant actions and both the flexibility matrix and the displacement 
vector have been suitably expanded. 

Where displacements of the structure are not sought, equation (S.21) 
reduces to 

Expanding equation (S.25) gives 

which, using equation (S.17), is 

UR+Gll·X=O 

(8.25) 

(8.26) 

Equation (S.26) is the matrix formulation of the set of equations expressed 
in equation (S.4). 

As has been previously mentioned, the selection of the redundant 
actions in any structure is a matter of choice. It is difficult to standardise 
this selection unless the structure takes on a regular, repetitive form. This 
is one of the reasons why the flexibility method is not widely used in the 
computer analysis of structures. 

8.2.2 Analysis for Temperature and Support Movement 

The general nature of equation (S.26) may be demonstrated by two further 
conditions imposed on the frame of figure S.2(a). The flexibility method of 
analysis can readily handle problems with either temperature load, initial 
lack of fit of elements, or support movements on an indeterminate structure. 
The general philosophy is simply that the vector UR of equation (S.26) 
represents the displacements at the releases, whatever the cause. Since the 
released structure is necessarily statically determinate, the displacements 
U R can be calculated for various effects as discussed in section 7.3.3. 
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Figure 8.5 Displacements at releases. 
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Figure 8.5(a) shows the portal frame that was the subject of the study 
of the previous section. In this instance, the frame is subjected to a tem­
perature variation across the elements due to the internal and external 
temperatures shown, and to a vertical settlement of the support at node 2 
of 10 mm. An analysis is to be carried out to find the moments in the frame 
due to these conditions considered separately. In addition to the data given, 
it is assumed that the columns have a depth of section of 400 mm; the beam 
has a depth of 480 mm; and that all elements are of steel with a coefficient 
of linear expansion of 14 x 10-6 per °C. Further, it is assumed that the 
construction temperature of the frame was the mean temperature of 15°C, 
so that no longitudinal expansion of the elements will occur, although this 
effect could be readily incorporated into the problem. 

The temperature gradient across each element of the released structure 
of figure 8.5(b) causes the rotations at the releases as shown in figure 8.5(c). 
These rotations may be calculated by virtual work using the expression 
given in section 7.3.3 as 

OJ = f mj drj) 

where drj) = (2aIlT/d) dx, as specified in figure 7.7. 
The unit moment diagrams of figures 8.3(b), (c) and (d) form the basis 

for the evaluation of the integral expression in conjunction with the constant 
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curvature caused by the temperature gradient, so that 

Vn,= f m l dcf>; V 2T = f m2 dcf>; and V3T= f m3 dcf> 

For the columns 

0.000014(10) 
dcf> = dx 

200 

and for the beams 

d = 0.000014(10) dx 
cf> 240 

from which 

and 

VIT = -0.0014 radians 

Vn = -0.0063 radians 

V3T = 0.0014 radians 

The specific form of equation (8.26) relevant to the problem is then 

{
-0.0014} [2.9166 
-0.0063 + ~I 0.6666 

0.0014 1.5833 

0.6666 

5.6666 

-0.6666 

1.5833] {XI} {OJ 
-0.6666 X2 = 0 

2.9166 X3 0 

and the equations may be solved to give XI = 22.4 kN m; X2 = 39.2 kN m; 
and x] = -22.4 kN m-resulting in the bending moment diagram of figure 
8.6(a). 

The rotations at the releases due to the support settlement are shown 
in figure 8.5(d) and the values may be deduced either directly from the 
geometry of the frame or by virtual work. In this case, VIs = 

39.~ 39.~ 

14.8~ 

39r'~_-+-________ -+-------,39.2 14.8''::~+-_--===--""""",=c--__ 14T""""1.82 

14.8~ 

~~ ~~ 

14.8~ 14.8~ 

(0) TeMperQture (b) Suppor-t S.ttleM .. nt 

Figure 8.6 Moment diagrams for temperature and settlement. 
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-0.00166 radians; U2s = 0; and U3s = -0.00166 radians. Substituting for UR 

into equation (8.11) and solving for the redundant moments gives XI = 

14.82 kN m; X2 = 0; and X3 = 14.82 kN m-from which the bending moment 
diagram of figure 8.6(b) has been drawn. 

In both cases, the results are dependent on the specific values of the 
flexural rigidity, El, of the elements of the frame. This is in contrast to the 
moments due to applied loads which, in a statically indeterminate frame, 
may be calculated when only relative values of flexural rigidity are specified. 

8.2.3 Element Flexibility Matrices 

Although this chapter started with a comparison with the stiffness method 
of analysis, the flexibility method has been presented without introducing 
element behaviour, or the element flexibility matrix. However, element 
flexibility matrices are recognized and one has already been used in chapter 
3, although it was not noted as such. 

While a series of element flexibility matrices can be introduced to cover 
different element types, they do not exist as the inverse of all the correspond­
ing element stiffness matrices. For example, it is not possible to invert the 
beam element stiffness matrix of equation (3.25), since all of the displace­
ments cannot be unspecified; boundary condtions must be introduced, 
Nevertheless, if one end of the beam element were fully restrained to give 
a cantilever beam as shown in figure 8.7, then a beam element flexibility 
matrix could be found. 

With reference to figure 8.7, the relationship sought has the form: 

f :1 --­al-----===-=-------

1 

~ --------~ af------=-=-=-=----
Figure 8.7 Derivation of the cantilever beam element flexibility matrix. 

(8.27) 
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The elements of the flexibility matrix of equation (8.27) may be found by 
a process similar to that used in the direct stiffness method. If V21 is given 
a unit value while m21 is zero, then the resulting displacements at node 2 
of the beam are equivalent to the elements gIl and g21 of the flexibility 
matrix. Similarly, if m21 is given a unit value while V21 is zero, then the 
elements gl2 and g22 can be found. It is this influence of unit actions on a 
structure which characterises the flexibility method. The results of such 
actions are shown in figure 8.7 and they may be verified by using the 
principle of virtual forces, or any other technique which gives the displace­
ments of a statically determinate structure. 

Equation (8.27), expressing a beam element displacement-force 
relationship, then gives the cantilever beam element flexibility matrix as 

[ 
L3 e 1 

G= 3EI 2EI 
L2 L 
-- --
2EI EI 

(8.28) 

It can be readily shown that this matrix is the inverse of the corresponding 
2 by 2 sub-matrix of the beam element stiffness matrix of equation (3.25). 
The matrix of equation (8.28) can also be augmented to accommodate 
axial load effects. Using the notation of equation (6.11), the required 
matrix is 

L 

EA 
0 0 

L3 L2 
G= 0 (8.29) 

3EI 2EI 
L2 L 

0 
2EI EI 

since the inverse of the axial force-extension relationship, 

is clearly 

An alternative and useful beam element flexibility matrix is given by 
applying other boundary conditions to the unrestrained beam element. In 
figure 8.8, the end translations of the beam element have been restrained 



240 FUNDAMENTAL STRUCTURAL ANALYSIS 

A)~!_MI-!l!_'_8_1 _______ ~2!,82 

L, El 

------
( L"--- ---~ ---b. 

1 

1 

~-- /~ -----------" 

91 =--'=- ) 
6E1 

Figure B.B Derivation of a simply supported beam element flexibility matrix. 

and unit actions applied to give the rotation responses. This results in the 
beam element flexibility matrix of the form: 

G= [_ 3~1 
6E1 

(8.30) 

which is the inverse of the beam element stiffness matrix when only rotations 
are admitted as degrees of freedom. The matrix given by equation (8.30) 
was in fact introduced in chapter 3 in equation (3.17). 

8.2.4 Fixed End Actions by Flexibility Analysis 

Fixed end actions play an important role in the stiffness method in accom­
modating general transverse loads on the elements. The topic was introduced 
in chapter 3, particularly in section 3.8 where it can now be seen that the 
principles of the flexibility method were used. Consider again the case of 
a beam built in at both ends and under a uniformly distributed load q, as 
shown in figure 8.9(a). Ignoring the advantages that the symmetry of the 
beam offers, a suitable released primary structure is the cantilever beam of 
figure 8.9(b). The particular solution then consists of the translation and 
the rotation of the free end of the beam. The fixed end actions sought are 
the redundants Xl and X2; the vertical reaction and the reactive end moment 
respectively, at node 2. 

The problem is of the form given by equation (8.26), that is 

UR+Gll·X=O 

where the vector U R represents the displacements at the releases due to the 
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~ >1 L >1 L ~ L >1 ! >1 ! >1 ~ 
I L, EI I 

1 

-------~ 
(d) 

Figure 8.9 Fixed end actions by flexibility analysis. 

applied loads, namely, the particular solution. Using the principle of virtual 
forces, the components of UR are easily obtained as 

{
_ qL4} 

8EI 
UR = qL3 

6EI 

The matrix Gil is already defined as the cantilever beam element flexibility 
matrix of equation (8.28). 

Equation (8.26) is then 

Solving for X then gives 

{
_ qL4} 

8El 
qe 
6EI 
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The required inverse is the corresponding sub-matrix of the beam element 
stiffness matrix of equation (3.25); thus 

_ 6EI] {_ qL4} 
L2 SEI 

4EI _ qe 
L 6EI 

which is the required result. The remalOlOg fixed end actions can be 
recovered by equilibrium. Obviously other fixed end actions can be obtained 
with appropriate changes to the particular solution. In general, the vector 
of fixed end actions is given by the matrix equation 

X=-G~/· UR (8.31) 

It should be noted that the displacements and element actions have been 
defined with regard to the same sign convention as that used with the 
standard beam element throughout this text. 

8.3 PROBLEMS FOR SOLUTION 

8.1 For each of the structures shown in figure PS.l, calculate the forces 
in the struts and ties, and draw the final bending moment diagram for 
all the flexural elements. Axial effects in the flexural elements may be 
ignored. 

10 kN 10 kN 4 5 
---=--

2 10 kN strut tie 2 
2 Pole: 

3 I =200 X 106 mm4 
strut E=14xl03 MPa 2.5 

tie Tie: 
A =500 mm2 

6 Beams and Columns: 6 E=200xl03 MPa 
I=100x106 mm4 Strut: 
E=200xkN/mm2 A=1000mm2 

Strut: E=200 x 103 MPa 
A=100mm2 
E=200 kN/mm2 

(a) H 
(b) 



(c) 

Figure PB.1. 
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Beam: 
J=50x106 mm4 
E=14 x103 MPa 

Strut: 
A=5625mm2 

E=14x103 MPa 
Tie: 

A=201 mm2 

E=200 x 103 MPa 

8.2 Calculate the deflection at the centre of the beam of figure P8.1(c). 
8.3 Using the flexibility method, analyse the structures shown in figure 

P8.2. Draw the bending moment and torsion diagrams as appropriate. 

20 kN/m horiz 

~+L+*11 
2 

3 3 

EI constant 
(a) 

Figure PB.2. 

3 

4 

] 

(b) 

Constant properties 

5l =40 
GJ 

Vertical reaction 
only 

8.4 Complete problems 6.5, 6.8(b) and 6.9 of chapter 6 using the flexibility 
method of analysis. 

8.5 The steel beam of figure P8.3 carries a uniform load and is simply 
supported at either end and at the third points of the span by steel 
rods acting as ties. Calculate the tension in the bars and draw the 
bending moment diagram for the beam. 

Figure PB.3. 

E = 200 kNj mm2 

Ties: A=1200 mm2 

Beam: I=50x106 mm4 
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8.6 Figure P8.4 shows a structural system for supporting a cantilevered 
roof of a grandstand. The principal column, ABC, raker beam, BO, 
and cantilevered rafter, CE, are all rigidly connected flexural elements, 
while ~he remaining struts and ties providing additional support are 
all pin-connected elements. 

Analyse the system to determine the bending moments in the frame 
and the forces in the ties and struts due to the uniformly distributed 
load of intensity of 5 kN/ m, acting normally along the rafter as shown. 

11 

10 

Figure PB.4. 
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Flexural elements 

E = 2 x 105 MPa 
I = 2000 x 106 mm4 

Ties and struts 
E = 2 x 105 MPa 
A = 5000 mm2 
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Chapter 9 
The Approximate Analysis of 
Structures 

Experienced structural engineers have expressed a concern that the adoption 
of computer-based methods of analysis and design will lead to a generation 
of structural engineers who have little feel for and understanding of struc­
tural behaviour. Engineering educators are aware of this and many have 
noted the blind fascination that students seem to have for numbers forming 
the output of a computer. There are several ways of tackling the problem. 
One solution lies in the way in which the interface between the user and 
the computer program is developed. The user should have a feeling of being 
in control and not being divorced from an automatic process. Alternatively, 
and more importantly, structural engineers must be trained continually to 
exercise engineering judgement on the results from computer programs or 
other methods of analysis. One way of achieving this last objective is to 
introduce a study of approximate methods of structural analysis. In one 
sense, all structural analysis is approximate since some idealisation of 
structural behaviour is involved in proposing the model for analysis. 
However, there are clear cases where a known principle is relaxed, or a 
condition is assumed, that makes the analysis approximate in the accepted 
sense of the word. 

Engineering is not an exact science. There is still plenty of art to 
engineering design, and scope for the imaginative and innovative mind. 
Often the professed mathematical rigour tends to overshadow the true nature 
of structural engineering, and creative minds feel restricted. Skills with 
approximate analysis ought to build up confidence and encourage creative 
design. Apart from the broad philosophical reason given, there are two 
clear situations where approximate analysis is appropriate. The first of these 
is in the area of preliminary design. Details of the design process are 
discussed in chapter 10, but it is widely appreciated that at the early stages 
of design, a number of alternative solutions are usually proposed. The 

245 
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experienced engineer can quickly appraise the alternatives and size the 
elements in order that costs can be estimated. Although experience may 
tend to be mixed with approximate analysis, there is a clear case for the 
latter. Approximate analysis is also relevant later in the design process of 
statically indeterminate structures. Since the analysis is based on the 
behaviour of the element, element properties must be known. The analysis 
of a continuous beam, for example, is dependent on the relative stiffness 
of each span, expressed through the flexural rigidity, El. An estimate of 
the beam properties is therefore necessary to start the analysis cycle. The 
second situation, which has already been highlighted, is the use of approxi­
mate methods to check the results of a more formal analysis. 

9.1 APPROXIMATE ANALYSIS OF BEAMS AND 
RECTANGULAR FRAMES 

Statically indeterminate beams and frames can be analysed by a consider­
ation of the behaviour of a statically determinate version, known as the 
primary structure. This is the basis of the flexibility method of analysis 
discussed in chapter 8. For structures dominated by flexural actions, it is 
frequently convenient to introduce moment releases, in the form of pins, 
to reduce the structure to a determinate form. As a statically determinate 
system, equilibrium alone will then be sufficient for the analysis to proceed 
to give the actions in the primary structure. Compatibility is generally 
violated at the releases, and the actions there must subsequently be con­
sidered to give the correct analysis for the indeterminate structure. If, by 
chance, moment releases were selected at points in the structure where no 
moments were acting, and there were no other releases in the structure, 
then the solution of the primary structure would be the solution to the given 
structure. 

There are indeed points of zero moment in beams and frames corre­
sponding to points of inflection in the deflection curve; that is, points where 
the curvature and moment change sign. With experience it is possible to 
estimate the position of points of inflection based on sketching deflected 
shapes. Provided sufficient such points are nominated, the structure is 
effectively released to the statically determinate form where analysis by 
equilibrium can proceed. 

The procedure outlined forms the basis of an approximate method of 
analysis, the accuracy of which is a function of how accurately the points 
of inflection are selected. It is important to stress that the analysis is still 
based on equilibrium principles and at no stage can either the whole or 
part of the structure violate equilibrium. Although the principle can be 
applied to any structural system, guidance on the selection of points is 
readily available for continuous beams and low-rise rectangular frames. 
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9.1.1 Flexural Elements and Points of Inflection 

A study of the exact analysis of a number of standard beam problems is a 
useful starting point for locating points of inflection. Solutions to such 
problems have been given in chapter 3 and a useful summary may be found 
in appendix B. Working from a known solution, it is a simple matter to 
locate a point of inflection. An expression for bending moment as a function 
of position, say x, can be written down and equated to zero. The resulting 
equation can then be solve'd for x. Figure 9.1 shows the results for such an 
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Figure 9.1 Points of inflection in beams. 
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analysis for the beams illustrated. Particular attention is drawn to case (e) 
in figure 9.1, where one end of the beam is restrained by a rotational spring 
of stiffness, kR • Such a restraint may be provided by other elements framing 
into the joint such as a column, as in the case of a simple bent. One of the 
solutions for case (e) of figure 9.1 is given in example 9.1 to illustrate the 
point. 

It is possible to use the data of figure 9.1 to provide guidance in selecting 
points of inflection in the deflected shape of continuous beams and frames. 
Coupled with reasonable sketches of the elastic curve, points of inflection 
can be chosen to give a basis for an approximate analysis. It may be noted 
that the range over which the inflection points move is small: from 0.21L 
to 0.27 L for the beams under transverse load. Further, the points of inflection 
move away from the restrained beam end towards the end of least restraint, 
with one point of inflection becoming coincident with the pin end in cases 
(c) and (d). This is shown again in the table accompanying case (e) of 
figure 9.1, which also indicates that with the ratio of kR/ kB equal to 10, 
both ends of the beam are effectively restrained. 

Example 9.1,' Beam Analysis 

Given data: 

q 

~l I I I I kl I I I 

I El.L 11 

Analysis by Direct Stiffness Method: 

Fixed End Moment: 
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Element actions: 

Final end moments: 

I qL2 • 2 
m 21 =m21 --=-O.016qL 

12 

Deflected Shape 

I~I 

E I O,'356L 

M(x) =0.6qLx - qx2/2 -O.116qe 

M(x)=Owhen 

x2-1.2Lx +0.2333L2=O 

x = L(1.2 ± 0.71 )/2 

=0.244L or 0.956L 

Cases (e) and (f) indicate the behaviour of a beam under end moments 
only. In both cases, the end moments are anticlockwise and there is only 
one point of inflection in the span. Only one other case of end moment is 
possible, and that is where the end moments are acting in opposite directions. 
In this case the span will be in single curvature with no point of inflection. 
It is apparent then that no more than one point of inflection can occur in 
a span without transverse loads. 

An approximate analysis can start with the sketching of the deflected 
shape of the structure. Boundary conditions must be preserved along with 
the angular relationship in a rigid joint of a frame. Axial shortening is 
ignored and the flexural element is regarded as maintaining its overall length 
in spite of the curvature. While the transverse scale of a deflected shape 
must be exaggerated, this should not be excessive. A good starting point is 
to nominate all known positions, such as those at points of support, followed 
by a sketch of the slope through those points. The loads and the relative 
stiffness of adjoining elements give an indication of the likely magnitude 
and direction of the slope. Two studies, indicating a procedure for sketching 
deflected shapes are shown in figure 9.2. The deflected shapes, coupled with 
the data of figure 9.1, suggest where points of inflection should be nominated. 
Since the bending moment at the point of inflection is zero, the appropriate 
number of equations of condition will have been introduced to lead to a 
statically determinate system. The analysis can then be carried out by 
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Figure 9.2 Sketching deflected shapes. 

equilibrium alone. For the continuous beam of figure 9.2(a), under transverse 
load only the degree of statical indeterminacy is three, and three equations 
of condition have been introduced. In the first span, the point of inflection 
might be nominated at the third point of the span, while for the remaining 
spans the point of inflection could be taken at the quarter points. 
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9.1.2 Approximate Analysis of a Two-bay Rectangular Frame 

A study of the behaviour of a two-bay rectangular frame under lateral load 
gives a further insight into the techniques of approximate analysis and the 
concepts can be extended into more complex frames. The frame of figure 
9.3 (a) has a degree of statical indeterminacy of three. If a flexibility analysis 
were to be carried out, then three releases could be introduced to give the 
statically determinate structure of figure 9.3(b). However, it is clear that the 
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resulting equilibrium analysis of the determinate form would not give an 
acceptably approximate result since the column on the extreme right would 
not be taking any load. Figure 9.3( c) demonstrates horizontal equilibrium 
with a horizontal shear plane taken through the structure. The equivalent 
forces also act as horizontal reactions at the supports. By introducing a 
distribution of the lateral force into the three columns, while retaining the 
points of inflection at the beam pins of figure 9.3(b), the structure is again 
determinate. Any combination of the three column shears that sum to the 
lateral force Q will satisfy equilibrium. For example, it might be assumed 
that each column takes one-third of the lateral load Q in shear, consistent 
with the rigid beam model of figure 9.3(e). The consequences of this 
assumption are demonstrated in figure 9.4(a), where the beam end moments 
follow from joint moment equilibrium requirements and the symmetry of 
the structure. In turn, these beam moments lead to the location of the points 
of inflection as shown at one-third of the beam spans from the central 
column. This assumption would be consistent with a situation where the 

Q 

(0) 

Q 

O.SL 

(b) 

L L 

(c) 

Figure 9.4 Approximate moment diagrams. 
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stiffness of the beams, expressed by the term E1/ L, is significantly greater 
than the stiffness of the columns. 

Alternatively, the symmetry of the problem suggests that the distribution 
of column shears should be as shown in figure 9.4(b) with the central column 
taking twice the shear of the exterior columns. Such an arrangement requires 
the points of inflection in the beams to be at mid span, in order that joint 
moment equilibrium can be satisfied. The rational basis for this distribution 
can be appreciated when the two-bay frame is considered as two similar 
single-bay frames, side by side sharing the lateral load. This is the basis for 
what is known as the portal method of approximate analysis, with the 
equivalent single bays taking an equal share of the shear at any level. For 
a multi-bay frame, all interior columns will take twice the shear load of the 
exterior columns. For a four-bay frame taking a total shear of 24 kN, the 
exterior columns will take 3 kN in shear, while the interior columns will all 
take 6 kN. 

For a symmetrical single-bay rectangular frame similar to that of figure 
9.3(a), the exact analysis coincides with the approximate analysis based on 
the three-pinned arch model, when the point of inflection at the mid span 
of the beam is taken as a pin. If one of the columns is stiffened, then it will 
attract more bending moment and a greater share of the lateral load. This 
is a general principle in the behaviour of statically indeterminate structures. 
For the two-bay frame, the approximate solution is exact when the interior 
column has twice the stiffness of the exterior columns and the frame is 
symmetrical. 

The approximate analysis of frames under gravity loads follows on 
from the behaviour of continuous beams and the study of section 9.1.1. In 
figure 9.4( c), for example, symmetry suggests no joint rotation at the connec­
tion of the beams and the internal column, while the remaining joint rotations 
will be controlled by the relative stiffness of the beams and columns. Two 
limiting cases are of interest; as the structure approaches the rigid beam 
model and assuming the columns are axially rigid, then each beam span 
will behave like the propped cantilever of figure 9.l(c). As the flexural 
rigidity of the columns increases compared with that of the beams, then 
the beams tend to be fully restrained at both ends. A reasonable compromise 
is suggested by the nominated points of inflection in figure 9.4(c) with the 
form of the bending moment diagram indicated. It is interesting to note 
how the frame behaves differently under lateral and gravity loads and how 
different models, in the form of the pin releases at nominated points of 
inflection, are used in both cases. The model of figure 9.4(c), with four pins 
at the points of inflection, is strictly an unstable form since only three 
releases are necessary to make the structure determinate. With four releases 
the model is a mechanism, although equilibrium is possible under the gravity 
load. Example 9.2 illustrates the approach further and the results of both 
load cases can be combined to give the results for the frame as given. 
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Example 9.2: Approximate Analysis of a Two-bay Frame 

Given data: 

40 kN 

~ 

4 

5 kN/m 

7.5 

Case (a)-Gravity load only. Assume points of inflection at O.2L 
from the ends of all beams, to give 

~---~O I O)-----------<O>--------i 

I 08 1 2.4 I 08 1 1.5 
4.5 1.5 

Hence the frame bending moment diagram and reactions are 

22.5 22.5 

6.4 r-t-''''-.:::----.:;:".L--+--~----___:.,L_-+_-____=.; 

1.6 kN 
~ 

4.03 kN 
~ 

~ 10 kN t 28.75 kN 

(kN m) 

5.63 kN 
~ t 18.75 kN 
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Case (b}-Lateral load only. Using the portal method to distribute 
the horizontal reaction gives the following result: 

40 

10 kN 
-E--t 20 kN 

40 

40 

20 kN 
~ t 9.33 kN 

80 

40 

10 kN 
~ 

t 10.67 kN 

40 

(kN m) 

9.1.3 Approximate Analysis of Multi-storey Rectangular Frames 

The principles suggested in the previous study can be extended to the 
approximate analysis of multi-storey frames by identifying frame behaviour 
in a similar manner. Under lateral load for instance, if points of inflection 
were assumed at the mid points of all the beams and columns in a multi­
storey frame (except for the lowest storey columns if the bases were pinned), 
then the analysis can proceed from the top of the frame by a distribution 
of the shear at each level. However the behaviour of tall frames is influenced 
by axial forces in the columns and the portal method ignores this type of 
behaviour. A tall structure under lateral load, such as that shown in figure 
9.5(a), is affected by overall bending of the structure as a beam cantilevered 
up from the base, in addition to the shear distortion or frame wracking. 
These two types of lateral deflection are shown in figures 9.5(b) and 9.5( c). 

Considering the action of the cantilever bending only, the columns act 
like fibres in a beam and the section has a beam neutral axis through the 
centroid of the column group. Assuming a linear strain distribution, the 
resultant axial forces in the columns at any section can be calculated from 
equilibrium. This is illustrated in figure 9.6(b) which shows a free body 
diagram of the upper section of the frame of figure 9.6(a). The section x-x 
can be taken repeatedly at the mid point of the columns at all levels in the 
frame to determine the necessary axial forces. Coupled with the assumption 
of points of inflection at the mid point of all beams and columns as required, 
the approximate analysis can proceed from the upper level of the frame 
and a suitable distribution of the lateral forces will result. The technique 
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Figure 9.5 Multi-storey frame behaviour under lateral load. 

is known as the cantilever method and it is discussed further, along with 
the portal method, in Norris and Wilbur (1960) and Benjamin (1959). 

Before proceeding to an example using both techniques, it is relevant 
to return to the frame of figure 9.4 to study the influence of the assumptions 
of both approximate methods on the determinacy of the model. As observed 
earlier, the frame of figure 9.4(a) has a degree of statical indeterminacy of 
three. The two releases obtained by noting the effect of the points of inflection 
in the beams leave the structure with one degree of indeterminacy. There 
are in fact six unknown reactions and three equations of equilibrium plus 

c: -x 
~ ~. 

7lTT 71.77 71 'TT 
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Figure 9.6 Cantilever action in a multi-storey frame. 
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two equations of condition available for the solution. The assumed distribu­
tion of the lateral forces of the portal method is equivalent to two more 
releases-effectively nominating two horizontal reactions-while the third 
is based on horizontal equilibrium. Similarly, the assumed distribution of 
the axial loads in the columns based on the cantilever method is equivalent 
to two more releases. In both cases more assumptions are made than are 
necessary, but the assumptions are consistent with the necessary ones. 
Further insight into the problem can be gained by analysing a determinate 
form of figure 9.4(b) with a roller release at one of the column bases carrying 
a nominated load. 

The approximate analysis of a six-storey two-bay frame is demonstrated 
in example 9.3 using both the portal method and the cantilever method. 
The results are summarized with a comparison of the reactions in table 9.1 
and the end moments of selected columns in table 9.2. The results from a 
general frame analysis program have been included as the exact results. 

An initial comparison of the results of example 9.3 may not be encourag­
ing, but it must be stressed that the results are derived from an approximate 
analysis. It is inappropriate to draw firm conclusions from such a limited 
study, although either method of approximate analysis does give the order 
of the moments and forces in the frame. 

Example 9.3: Approximate Analysis of a Multi-storey Frame 

Given data: 
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Case (a)-Portal Method 
Section at level 6 mid height gives 

15 15 

40 15 ~ 30 ~ 15 

~~ ~ 
I~ t~ t-E---;o 

'¥7.5 2.5 5 

Section at level 5 mid height gives 

15 15 

Forces kN 
Moments kN m 

40 
~ Forces kN 

Moments kN m 

Proceeding in this way, the results of tables 9.1 and 9.2 can be 
obtained. 
Case (b)-Cantilever Method 
The column group centroid is given as 

I I Centroid of column group I 

~ ~ rr ~ 
L 4 1 0.67 I 5.33 I 
4!"""":::-----------::»~I< > 

4.67 1 

>1 

1.14X 
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Axial Forces: Section at level 6 mid height 

40(1.5) =4.67x +(0.14x)0.67 +(1.14x)5.33 

x=5.54 

11.1 

40 11.1 ~ 30 ~9 

-:,~~ li 
--E-- --E-- ~ 
I 7.4 '" 20 '" 12.6 

'VI 5.54 I 077 I 6.31 

Axial Forces: Section at level 5 mid height 

Forces kN 
Moments kN m 

40(4.5) +32(1.5) =4.67x +(0.14x)0.67 +(1.14x)5.33 

x=21.03 

and equilibrium then gives 

Forces kN 
Moments kN m 

Proceeding in this way, the results of tables 9.1 and 9.2 can be 
obtained. 

Table 9.1 Comparison of reactions (kN) from example 9.3 

X direction Y direction 

Joint Portal Cant. Exact Portal Cant. Exact 

19 -46.0 -33.9 -58.8 -264.0 -194.7 -274.8 
20 -92.0 -92.0 -72.3 88.0 -27.3 106.0 
21 -46.0 -58.0 -52.9 176.0 221.9 168.8 
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Table 9.2 Column end moments (kN m) from example 9.3 

Portal method Cantilever method Exact analysis 

Column Top Bottom Top Bottom Top Bottom 

1-4 15.0 15.0 11.1 11.1 15.4 10.2 
4-7 27.0 27.0 19.9 19.9 31.8 25.5 
7-10 39.0 39.0 28.8 28.8 46.5 40.5 

10-13 51.0 51.0 37.6 37.6 62.2 56.3 
13-16 63.0 63.0 46.3 46.3 82.7 61.0 
16-19 138.0 0.0 101.8 0.0 176.5 0.0 

9.2 BOUNDS ON SOLUTIONS 

In any problem-solving situation, the analyst can be guided by past 
experience with similar or related problems. Often a restatement of the 
problem in an alternative and more familiar form is helpful, as is some idea 
of the nature of the outcome. These ideas can certainly be applied to the 
analysis of structures and, as part of an approximate analysis, the mathemat­
ical model could be simplified. 

For example, faced with the problem of analysing a two-span con­
tinuous beam where the interior support is considered to be an elastic one, 
two extreme values of the interior support reaction could be readily found. 
Firstly, if the support is approximated to an unyielding one, a routine 
analysis can give an upper bound to the reaction. Secondly, the support 
could be considered to yield to such an extent that no effective reaction 
develops there, thus giving a lower bound value of zero. These bounds on 
the solution are useful as a check on the analysis, but they may also be 
sufficient in their own right as an approximate analysis result. Returning to 
the beam on an elastic support problem, experience with a similar problem 
may suggest that the result is only marginally affected by the yielding support 
so that the upper bound solution is an acceptable approximation. By 
definition, the true result must be less than the upper bound value and 
greater than the lower bound value, and both results will converge on the 
true result as the respective models are refined. 

As a further example, two approaches to the approximate analysis of 
a continuous beam can be considered. If each span were to be considered 
as a free span, by assuming a pin connection across each interior support, 
then the resulting equilibrium moment diagrams would represent a limiting 
set of values that could be regarded as a lower bound set. Such an approach 
ignores the compatibility requirements of the structure and it is an approach 
often taken in approximate analysis. On the other hand, each support could 
be considered to be fully restrained against rotation, forcing compatibility 
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but ignoring joint equilibrium. The result is well known from previous 
chapters as the fixed end moment solution, but here it represents an upper 
bound set of values for the moments. Sketching a deflected shape and 
assuming locations for points of inflection in a continuous beam, as dis­
cussed in section 9.1.1, is of course a refinement on the bounds approach 
suggested; the bounds may be easier to determine and appropriate enough 
in some circumstances. 

While the general principles outlined can be extended to a wide range 
of structures, it is difficult to be more specific. In the final analysis, engineers 
must develop their own skills in the field of approximate analysis from 
experience. Continual appraisal of any known solution and comparison 
with previous results will enable the engineer to build up a store of informa­
tion useful to approximate analysis. 

9.3 PROBLEMS FOR SOLUTION 

9.1 For the continuous beams of figure P9.1, sketch the deflected shape 
and select points of inflection. Complete an approximate analysis of 
the beams to give the bending moment diagrams based on equilibrium 
principles and the nominated points of inflection. The symmetry of 
the beam of figure P9.1 (b) should be used to advantage. 

~ 
I 
(a) 

(b) 

6 

6 kN/m 

Figure P9. 1. 

/.A 
I 

6 

6 

EI constant 

EI constant 

20 kN/m 

6 kN/m 

9.2 Considering the lateral load and the vertical load as two separate load 
cases, analyse the plane frame of figure P9.2 by approximate methods 
to find the moments in the frame. Clearly show the deflected shapes 
for both cases and the locations of the points of inflection. 
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3 

10 kN/m 

6 kN 
~~LL~~LL~~ 

Figure P9.2. 

E I constant 

9.3 Analyse the frame of figure P9.3 to determine the bending moment 
diagram and reactions by both the cantilever method and the portal 
method of approximate analysis. Revise the analysis for the cantilever 
method for the case when the interior column has twice the area of 
the exterior columns. 

20 kN 
~r----------.---------------, 

40 kN 
~~--------~----------------~ 

4 6 

Figure P9.3. 

3 

3.5 

Constant properties 
throughout 

9.4 Sketch a suitable deflected shape for the plane frames of figure P9.4 
and nominate points of inflection in order that an approximate analysis 
can be carried out. Complete the analysis and draw the bending 
moment diagrams. 
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Figure P9A. 
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Chapter 10 
Application of Computer 
Programs to 
Structural Analysis 

Structural analysis, the fundamentals of which are the subject of this text, 
is simply a part of the overall design process in structural engineering. Since 
it often requires considerable computational effort though, it is not surprising 
to learn that the analysis was the first aspect to which digital computers 
were applied. What might be described as computer aided analysis is now 
carried out as a routine design office procedure on a wide range of computer 
systems. 

The broader aspects of computer aided design are receiving attention 
also so that, in the long term, the structural engineering design process may 
be carried out in an integrated manner on a computer system. This will 
involve the integration of the various techniques of computer aided draught­
ing, computer aided structural analysis and computer aided element design. 
The structural engineering design process is illustrated in the flowchart of 
figure 10.1, where the structural analysis component can be seen in the 
overall context of the design problem. This is considered to be an important 
point, since the analyst should not lose sight of the overall task. This text, 
however, is concerned primarily with the specific task of structural analysis 
and this chapter will only consider general aspects of computer programs 
related to analysis. 

The emergence of the digital computer as a powerful computing 
machine in the 1950s led to a revised formulation of the structural analysis 
problem. In the following decades, matrix methods of analysis and the 
computer developed side by side. Matrix methods did not bring any new 
theory of structures to light. It was simply the fact that matrix algebra, 
representing a convenient way of manipulating numerical data with a 
computer, led to a matrix formulation of the classical methods of structural 
analysis. A definitive series of papers on the subject was written by Argyris 
(1954/55) and this work is generally regarded as the foundation for the 
matrix methods of analysis. 
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Figure 10.1 The design process. 
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A central feature of the solution of a structural analysis problem has 
always been the need to solve a set of linear simultaneous equations. This 
presents no particular difficulty when the number of equations is, say, less 
than 10; but when the number of equations is hundreds or even thousands, 
the task without computational aids is daunting if not impossible. Such a 
problem faced the analysts of aircraft frames with the development of 
modern jet airliners, and this provided great stimulus to computer-based 
structural analysis. Initially there were difficulties in coping with a problem 
that led to a large number of equations because of the limited memory 
capacity and speed of the early computers. However, advances in computer 
hardware have now reduced this problem to one of only incidental interest. 

10.1 THE STRUCTURE OF AN ANALYSIS PROGRAM 

In common with all software development, before proceeding to the struc­
ture of the program, the problem must be clearly defined and the steps to 
the solution must be set out. The preceding chapters of this text have done 
this and the mathematics involved have been demonstrated in the examples. 
Figure 4.5 gives a flowchart indicating the steps in the analysis of a con­
tinuous beam. The material there represents a good example to illustrate 
program development. 

As was previously mentioned, the matrix formulation of the problem 
lends itself to application on a computer since high-level languages such 
as Fortran and BASIC can so readily cope with arrays of numbers represent­
ing matrices. As has been seen with the program MATOP, the essential 
basis of the solution to the structural analysis problem is one of matrix 
manipulation. MATOP has been designed to simulate the operations of a 
structural analysis program and its commands can provide a form of 
pseudo-code to assist in full program development. Example 6.2 of chapter 
6 presents the full output file from a MATOP solution to a continuous beam 
problem. The essential features of the MATOP commands used in that 
solution are given in figure 10.2(a) and they serve as pointers to the required 
program modules and hence to the structure of the program. The suggested 
processes involved in program development are shown in figure 10.2(b). 
The use of MATOP to provide a pseudo-code step is not essential, but it 
does serve as a convenient link in the context of this text. Details of the 
program MATOP are given in the abstract and user manual in appendix 
A, where a full description of the commands is presented. 

It should be immediately apparent that a major component of any 
structural analysis program is overlooked in both the flowchart of figure 
4.5 and the pseudo-code of figure 10.2(a). In both cases the formation of 
the key matrices receives no attention. This is deliberate since the nature 
of the element stiffness matrices and the structure stiffness matrix has been 
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(b) Processes 

presented in earlier chapters. More specifically, MATOP has been designed 
as a teaching program and users are expected to formulate the required 
matrices based on their own understanding. However, in a fully developed 
structural analysis program the user need not even be aware that matrices 
are involved; the matrix operations are normally transparent to the user. 
The starting point then must bc the data necessary to define the element 
matrices and suitable algorithms must be used to assemble the structure 
matrices, so that the whole process of matrix manipulation is automatic. 
The LOAD command, as an item of pseudo-code, implies this. Details of 
the techniques involved are given in a number of texts including Mosley 
and Spencer (1984), which includes listings of suitable analysis programs. 

The structure of an analysis program has been presented against the 
background of the matrix stiffness method. While the majority of computer 
programs for the analysis of skeletal structures are based on matrix stiffness 
methods, the alternatives should not be overlooked. Computer programs 
have been developed on the basis of the matrix formulation of the flexibility 
method, and other structural analysis techniques may form the basis of 
some computer programs. 

10.1.1 Data Input 

Element stiffness or flexibility matrices obviously form the starting point 
for an analysis based on matrix methods. Such matrices have been defined 
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in previous chapters and it can be seen that the terms are based on the 
geometry of the structure and the element properties. Clearly then, a major 
function of the input module is to provide the necessary information for 
the terms of the matrices to be evaluated. The data set can be described in 
a general way under five headings as follows: 

(a) coordinate geometry; 
(b) element connectivity; 
(c) element properties; 
(d) boundary conditions; 
(e) load data. 

The data is entered in a systematic manner and manipulated to form the 
necessary matrices. 

The computer analysis starts with the mathematical model and the 
coordinate geometry of the model defines the nodal points with regard to 
a specified set of axes, known as the global axes or system axes. The element 
connectivity can then be expressed by specifying the node numbers that 
are relevant to each element. Each element specification is usually tagged 
with a code that can subsequently be related to the properties of the element. 
The element properties include properties of area and material properties 
such as the modulus of elasticity. Boundary conditions must also be specified 
by an indication of what nodes are boundary nodes and what restraints to 
the degrees of freedom are to be applied there. Obviously the load data 
forms an integral part of the input data. However, the load data is specific 
and unlike the rest of the data which essentially defines the characteristics 
of the structure. The normal specification of load data includes the loads 
on the nodes and a variety of load types along the elements. Other features 
can include multiple load cases and load case combinations with load 
factoring. 

In a well developed program, the data entry will be carefully considered 
and include features such as validation of the data and editing sequences 
to permit a review of the data. Opportunities also exist for data generation 
for regular structures. For instance, with coordinate data it is frequently 
possible to provide only key coordinates along with details of how intermedi­
ate nodes are to be generated. 

Many existing programs still operate in a batch file mode where the 
input data is set up to a specified format by a suitable text editor. The input 
file is then subsequently linked to the program during its execution. The 
alternative strategy is to offer the user data entry on an interactive basis 
with screeen prompts for the data. This is valuable for the inexperienced 
or infrequent user but sometimes tiresome for the experienced users. Pro­
grams which offer both modes of data input are therefore desirable. In a 
final sequence of interactive data input, options for storing the data on a 
disk file are usually presented. 
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10.1.2 Data Output 

While it is fairly clear as to what information should be presented as output 
to a structural analysis program there are some features worthy of emphasis. 
The output can be categorised in the following manner: 

(a) echo output of all input data; 
(b) displacements of the structure; 
(c) element actions; 
(d) reactive forces and equilibrium checks; 
(e) graphics options. 

It is the engineer's responsibility to check the validity of the output of 
all structural analysis programs. The information must be carefully con­
sidered and engineering judgement must be applied to ensure that the results 
are sensible. The echo output of all input data is most important in this 
regard, to ensure that there is no conjecture about the data the program 
started with. The major component of the output data then involves the 
displacements of the structure and the actions in the elements. 

In general-purpose packages capable of handling large structures, 
options to select items of an output file are sometimes offered. Other features 
often include load case combinations with optional load factors. Typically 
the dead loads, wind loads and live ioads may have been considered in 
three separate load cases in the analysis. It is useful to be able to combine 
the results of these load cases within the scope of the program, without 
having to do the task manually. 

The results for the reactions enable an overall equilibrium check to be 
applied to the structure. Sometimes this is included as part of the program 
operations but in any event, it is an exercise which the engineer can readily 
carry out with the loads and reactions known. 

There is a general expectation that structural analysis programs should 
include options for the graphical presentation of data. Clearly the computer 
facilities for doing this exist and it makes little sense to have an engineer 
return to the desk to plot bending moment diagrams from a printout of 
numerical data. The graphics option is also relevant to the data input since 
the defined geometric model can be displayed to check its validity before 
the problem is actually solved. This is particularly important for complex 
three-dimensional models of structures like space frames. Frequently a 
general-purpose graphics module is incorporated into the program with 
standard graphics features such as zooming, windowing, rotating and screen 
dump commands. For output data, it is possible to display scaled deflected 
shapes against the undeflected model, and selected actions such as axial 
force, shear force and moment against all or part of the structure. The use 
of peripheral units such as printers and plotters to reproduce the screen 
graphics completes the task with hard copy output. 



270 FUNDAMENTAL STRUCTURAL ANALYSIS 

It is quickly appreciated that a major component of the programming 
effort in a structural analysis program relates to the input/output features. 
As much as 75 per cent of the code may in fact be devoted to the input 
and output of data. 

10.2 MODELLING OF STRUCTURES 

The central box of figure 10.1 may be expanded, as shown in figure 10.3, 
to illustrate the relationship between the model and the analysis process. 
In the theory presented in the previous chapters, the modelling has already 
taken place and each of the line diagrams, representing the structure for 
analysis, are idealisations of the concept of the finished structure. In many 
cases the relationship between the structural concepts and the model is 
self-evident, but this is not always true and it is particularly less so as the 
problem becomes more complex. 

enter refer to figure 10.1 

exit 

Figure 10.3 A model analysis process. 



APPLICATION OF COMPUTER PROGRAMS 271 

The analysis of a structure may generally be broken down into com­
ponent tasks, each with its own problem definition and .perhaps with a 
different model as a function of the task. Recognising the multiple nature 
of the tasks, figure 10.3 shows an important procedure to be used in the 
analysis of structures. While it might appear to be obvious, the importance 
of applying engineering judgement to the results of the analysis cannot be 
overstressed. There are always underlying assumptions in the model and 
they may not be appropriate to the task or problem definition. The funda­
mental principle is that the model should predict the behaviour of the 
structure as conceived as accurately as possible. If the results are considered 
to be unsatisfactory then the model, or perhaps even the problem definition, 
should be reviewed. Once satisfactory results have been obtained, the next 
task can be considered or the design process can proceed to the next phase. 

Before elaborating on the nature of the model, the idea of component 
tasks and multiple models can be illustrated by reference to a simple example 
in statics. The tower crane is a structure which strongly expresses its 
structural form and the model in its realisation. There are several aspects 
to its analysis perhaps commencing with the question of overall stability, 
then the analysis of the boom followed by the analysis of the tower. Even 
considering the analysis of the boom alone, two tasks are immediately 
apparent: one is to calculate the reactions on the boom (or conversely the 
actions on the tower from the boom), and the other is to determine the 
forces in the boom. These two tasks have been set as an exercise in chapter 
2 in problems 2.6 and 2.7. While the details are unimportant here it can be 
appreciated that by taking advantage of symmetry, a two-dimensional model 
is adequate for calculating the reactions, while a three-dimensional model 
is necessary to find the forces in the boom since it is in fact a space truss. 

10.2.1 Element Connections 

The very nature of a skeletal structure suggests which model should be used 
in the analysis and, in most cases, modelling is not a difficult task. The 
major idealisation concerns the connection of the elements. Truss elements 
are assumed to be pin-connected, but they are rarely constructed in that 
way, while the dominant assumption in a frame is that the elements are 
rigidly connected at the joints. For a truss, the triangulation ensures that 
the dominant action is an axial one and the assumption of pin-connected 
elements is justified. This can be tested by analysing the same truss, firstly 
using a pin-connected model and secondly using a rigid connected model. 
For a frame, the modelling of the element connections is more important 
since the stability of the structure usually derives from moment transfer 
through the elements. A number of elements in a frame may be conceived 
as being pin-connected and they must both be modelled and constructed 
as such. 
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The modelling is expressed mathematically with element end moment 
releases as described earlier. If a connection in a frame is modelled as a 
pin connection, then it is anticipated that the connection will be through 
web cleats, permitting little moment transfer. On the other hand, if the 
connection is modelled as a rigid one, then steps must be taken in the 
subsequent connection design to ensure that moment transfer does occur. 
The behaviour of a connection may be intermediate between the two 
extremes of a pin connection and a fully rigid one. It is possible to model 
such flexible connections but the details will not be pursued here. 

10.2.2 Boundary Conditions 

The principles applied to modelling the element connections also apply to 
the boundary conditions. At the foundations, the connection may be mod­
elled as a pin connection or regarded as fully fixed or with a range of other 
releases of action. Generally there is more scope for variation in the model 
at the restraints since a variety of conditions can be applied there without 
too much difficulty. For example, in the simplest case the supports of a 
structure are regarded as unyielding. On an elastic sub-grade it might be 
more realistic to consider the restraints as spring restraints. In many cases 
a computer program will allow for this but, if not, additional elements can 
be introduced to accommodate that behaviour if it is expected. 

10.2.3 The Modelling of Non-skeletal Structures by 
One-dimensional Elements 

It was stated earlier that skeletal structures express the nature of the 
mathematical model through their very form. This is certainly true during 
construction or once the cladding is removed. There are however clear cases 
of structures where the skeletal form is not immediately obvious. The first 
example is that of the superstructure of a bridge or simply a bridge deck. 
A common form of bridge deck consists of a series of longitudinal beams 
with an in situ concrete slab cast across the top of the beams. In some cases 
the beams are eliminated and the superstructure is simply a concrete slab. 
A wide range of such structures can be analysed in the skeletal form of a 
plane grid. This is really a specialised form of modelling but it is a useful 
example to illustrate the concepts of structural modelling. A significant 
amount of work was done in this field and it resulted in a series of 
recommendations concerning the modelling of bridge decks as grid struc­
tures (West, 1973). Briefly, in many cases the longitudinal elements of the 
grid are obvious, but what is not so obvious is the modelling of the effect 
of the deck slab by the transverse elements of the grid. 

A second example arises with the use of shear walls in framed buildings. 
Beams may well be rigidly connected to a shear wall, as part of a lift shaft 
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for example. The problem then is to model the continuous wall with a 
one-dimensional element of appropriate position and properties, to obtain 
the influence that the shear wall may have on the rest of the frame. Details 
will not be presented here; the idea is simply suggested to broaden the 
concepts of structural modelling. In any event, a note of caution should be 
struck. In such cases the solution often leads to assigning a very large second 
moment of area to the element representing the shear wall, while adjacent 
elements have standard values. If this is extended too far there may be 
computational difficulties due to ill-conditioning of the equations involved 
in the solution. It is difficult to be precise on this point since it is a function 
of the accuracy to which a particular program works. Programs operating 
in double precision on modern computers have a high tolerance in this 
regard, but the user should always be aware of the possibility of ill­
conditioning. 

10.3 INFLUENCE OF THE COMPUTER PROGRAM 
ON MODELLING 

The analysis process is not confined to computer analysis and the principles 
are the same irrespective of how the analysis is carried out. However, if it 
is thought to be appropriate to use a computer program for the analysis, 
then the nature of the available program may well influence the model. 
There is a wide range of computer programs available for structural analysis, 
both from commercial sources and published texts and papers. In consider­
ing the use of any program, the capabilities and limitations of that program 
must first be understood and the notation and sign convention must be 
appreciated. Details are generally given in program abstracts and user 
manuals available with the program. To illustrate the point here, consider 
the limitations of a plane frame analysis program based on the matrix 
stiffness method and written assuming only rigid joint connections between 
the elements. In this case end moment releases in an element are not provided 
for, except at the supports where a full range of releases would probably 
be available. At first glance the program might be considered as unsuitable 
for use with a frame where one or more elements are considered to be 
pin-connected. However the pin connection can be modelled by including 
a short flexible element in the model. The element flexibility is controlled 
by the flexural rigidity, EI, and a value several orders of magnitude less 
than the prevailing values for the rest of the structure would be appropriate. 
The precise nature of this must be studied by testing with the program to 
ensure that suitable results are being obtained and that ill-conditioning does 
not occur. If the flexible nature of the element is likely to introduce excessive 
deflections, then an additional support condition may have to be imposed 
on the structure. 
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Figure 10.4 Rigid-jointed frame modelling of pin connections. 

This feature of structural mode\ling is illustrated in figure 10.4 with 
two common cases that occur in industrial building frames. In figure 10.4(a), 
the end bay of a portal frame has been propped with the column element 
34 pin-connected to the ridge joint. The column element can be assigned 
a low flexural rigidity, while the axial rigidity, EA, is maintained, and 
modelled as the rigid jointed frame of figure 10.4(b). 

The frame of figure 10.4(c) was extensively studied in chapter 8. For 
a computer analysis under the circumstances outlined, the pin connection 
between element 46 and the rest of the frame at node 4 can be modelled 
by the arrangement shown in figure 10.4(d). An additional flexible element 
has been introduced and the element 46 could be taken as, say, 0.1 of the 
original length of the side bay beam. However, introducing a flexible element 
alone would allow node 6 to deflect excessively, when in fact the beam end 
must remain essentially at the same level as node 4. This is achieved by the 
introduction of a vertical restraint at node 6. If the element 46 is given a 
high axial rigidity, then the sway response of the structure will meet the 
requirements of the original model. The vertical reaction at node 5 of figure 
1 O.4( c) is given approximately as the sum of the vertical reactions of nodes 
5 and 6 of figure 10.4(d). 

10.3.1 Additional Effects on Structures 

The load types recognised by a given program may be limited in scope 
although any program will almost certainly accept all of the nodal loads 
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possible. If a required load type, such as a partial uniformly distributed 
load, or a triangularly distributed load, is not available, then the preliminary 
calculation of fixed end moments can always be carried out external to the 
program and the nodal loads only entered as input. The final results must 
then be obtained by combining the results of the computer analysis, rep­
resenting results for nodal loads only, with the fixed end moment solution 
of each element. 

This approach can be extended readily to incorporate temperature 
loads on structures and the influence of initial strains or lack of fit, assuming 
that the program does not cater for such actions specifically. Fixed end 
actions can be readily deduced for both temperature loads and lack of fit 
on a variety of elements. The negating actions can then be applied as nodal 
loads in the analysis program with the final results again being given as a 
combination of the results from the program and the fixed end actions. 

Two examples are given to illustrate the point. As a first example, 
suppose the truss of figure 10.5(a) was fabricated with the element 34 too 
long by 0.01 L. The restraining compressive force, F, is readily calculated 
in the fixed end action situation appropriate to a truss element as shown 
in figure 10.5(b). The restraint action determines the necessary nodal loads 
shown on the truss in figure 1O.5(a), which can be applied in a truss analysis 
program in the usual way. Temperature loads on a truss can be treated in 
a similar manner by effectively considering each element to be initially free 
to expand or contract in length according to the temperature variation. The 
restraining forces then follow as a function of the axial rigidity of the 
elements. 

The flexural action caused by temperature load on the portal frame of 
figure 8.5(a) was considered in chapter 8 as an illustration of the use of the 
flexibility method. The same problem can be studied here as the second 
example, this time in the context of the matrix stiffness method. The frame 
is shown again in figure 1O.6(a). The fixed end moments for an element 
under a temperature gradient are shown in figure 10.6(b) and the values 
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Figure 10.5 Truss loads due to fabrication error. 
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Figure 10.6 Frame loads due to temperature load. 

have been calculated using a flexibility approach and the end moment 
rotation relationships developed in chapter 3. For the beam with the end 
moments released the rotation at either end of the beam can be calculated 
using virtual work. From figure 7.7 in section 7.3.3 of chapter 7, since 

2atlT 
dc/>=--dx 

d 

then the angle 8 of figure 1 O.6(b) is 
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8=-x--
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d 

The fixed end moments then follow since 

2EI 
MAB=T8 and 

that is 

2EIatlT 
MBA=---d--

It should be noted that the fixed end moments are necessarily expressed 
in terms of the flexural rigidity, EI, of the element. With the fixed end 
moment solution known, the necessary nodal loads for the frame of figure 
lO.6(a) can be determined as shown and these can be applied in a computer 
analysis. For this simple example, the results can also be easily found using 
the moment distribution method. It is interesting to note that if the frame 
had the same element properties throughout, then the fixed end moments 
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due to temperature load would have balanced immediately, giving a constant 
moment diagram with no deflection of the structure. 

10.3.2 The Use of Symmetry 

In a final comment, attention is drawn to the advantages that the symmetry 
of the structure may offer the analyst. Although the remarks are made in 
the context of computer modelling, the principles can be applied to any 
analytical procedure. 

For a symmetrical structure under symmetrical loads, the behaviour of 
the structure along the plane or line of symmetry is usually obvious. For 
example, by virtue of symmetry certain displacements and internal actions 
must be zero. Restraints which provide these necessary conditions can be 
placed along the line of symmetry and the resulting model can be analysed 
as representative of the behaviour of the full structure. Generally one line 
of symmetry can be identified in a plane frame, leading to a model of 
one-half of the frame for analysis. The principle can be extended through 

I 
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Figure 10.7 Use of symmetry in structural modelling. 
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Figure 10.8 Combining symmetrical and antisymmetrical loads. 

to more lines or planes of symmetry, reducing some models to a quarter or 
even one-eighth of the full model. Often the behaviour of a structure is 
obviously anti symmetric about a geometric line of symmetry as is the case 
with a symmetrical structure subjected to lateral load, and this introduces 
a different model. Models to accommodate symmetrical and antisymmetrical 
behaviour are shown in figure 10.7 using a two-storey plane frame as the 
example. Under the symmetrical gravity loads of figure 10.7(a), the sym­
metrical frame will not sway and the mid point of both the beams will not 
rotate although vertical deflection will occur there. These conditions are 
met by the model shown in figure 10.7(b). The lateral forces acting on the 
frame in figure 10.7(c) will cause the anti symmetric deflections shown, 
dictating points of inflection at the mid point of each beam with no vertical 
deflection. The restraints imposed on the model of figure 10.7(d) provide 
these necessary conditions. 

For symmetrical structures subjected to asymmetric loading, analysis 
taking advantage of symmetry may still be used with the superposition of 
symmetric and antisymmetric load cases. The analysis of the symmetrical 
three-span continuous beam of figure 10.8(a) could proceed in this way, 
using the superposition of the results of the structures shown in figures 
10.8(b) and 1O.8(c) analysed using symmetry and antisymmetry respectively. 
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Appendix A 
MATOP {Matrix Operations 
Program-Version 1.2 
Feb 1986)-User Manual 

A.1 INTRODUCTION 

Throughout the book, reference has been made to the computer program, 
MATOP, details of which are now presented. While the program is con­
sidered to be most useful for a student using the book, it is neither essential 
nor unique and any other matrix manipulation program that is available 
could be substituted. The program has been implemented on an IBM PC 
and compatible microcomputers. 

A.2 FORM OF THE PROGRAM 

MATOP is a program written in Fortran 77 and offers the user a series of 
high-level commands to carry out certain operations with matrices. The 
commands are a limited set but they have been selected to meet the 
requirements for matrix manipulations encountered in the analysis of statical 
structural systems. The program has been designed for an extension of its 
scope by the addition of other subroutines linked to additional commands 
of similar format. 

The program may be used either interactively or in a batch mode. Used 
interactively, a HELP command is available and error messages are provided 
to guide the user, although complete data validity checks after the matrix 
names on a command line are not provided in this version. 

A.3 OPERATION OF THE PROGRAM 

The program initially requests the name of a datafile (maximum of 8 
characters without any filename extension) and the mode of operation. If 
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the batch mode is selected, the program will search for a datafile with the 
given filename with the extension '.INM'. For batch operation such a file 
should first be set up using a suitable editor. In the interactive mode, an 
inputfile is neither required nor created. In both modes, the series of 
commands, and any matrices printed by the PRINT command, are sub­
sequently written to a file with the filename of the given datafile name with 
the extension ':OTM'. The output file can then be printed out at the end 
of the session or on a subsequent occasion. The operations are shown 
schematically in figure A.I. 

I nteractive mode: Batch mode: 

Create 

Figure A. 1 Schematic presentation of operations. 

It is important to note that matrices are only written to the output file 
by the PRINT command. 

The program is limited by the total number of matrices that can be 
used, a maximum size of anyone matrix and the total number of elements 
of those matrices. The maximum number of matrices permitted is 20 and 
a given matrix cannot have more than 20 rows or columns. Further, the 
total number of elements of all matrices cannot exceed 2000. However, 
since the DELETE command re-allocates all data storage, and resets both 
the number of matrices and the total number of elements, the limits can be 
avoided. 

A.4 THE COMMAND FORMATS 

The general format of a command is 

Operation.[ (matrix namel ).(matrix name2) .. ,]'[ (nl ).(n2) .. ,] 

where each part of the command line is separated by a period (or full stop). 
Matrix names may use up to six alphanumeric characters and cannot be 
repeated as a new matrix unless the old matrix is deleted. The details of 
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the matrix names and the numbers nl, n2 ... , are given as required in a 
description of each command. 

The following commands are available: 

LOAD.Ml.Nl.N2 Allows a matrix of the name Ml, with Nl rows and 
N2 columns, to be input. In the interactive mode, each element is entered 
through the keyboard, row by row, pressing the return key each time. If an 
error is made on data entry, the operation can be terminated by entering a 
non-numeric character. In batch mode, the elements of the matrix follow 
immediately after the LOAD command in the file, in free format with either 
a comma or a space separating each element. 

MULT.Ml.M2.M3 Multiplies the matrix Ml by M2 and stores the result 
in M3. The matrices must be compatible for multiplication. 

SCALE.Ml.Nl Multiplies the elements of the matrix Ml by the scalar 
quantity Nl. The resulting matrix retains the name Ml. Nl may be specified 
either as an integer or a decimal number, but it cannot be specified in 
E-format. 

TRANS.Ml.M2 Creates a new matrix M2 as the transpose of the matrix 
Ml. 

SOLVE.Ml.M2 Solves the set of simultaneous linear equations expressed 
in the matrix form of the equation 

A·X=B 

where Ml is the matrix, A, and M2 is the matrix, B. The solution is stored 
in the matrix M2 and the matrix Ml is unaltered by the routine. The 
equations do not have to be symmetrical. 

MODDG.Ml Allows the user to modify the diagonal terms of a square 
matrix MI. For each diagonal element, the user is prompted either to modify 
the element or to pass to the next one. In the batch mode, the line following 
the MODDG command must give the number of elements to be modified. 
Successive lines then give the row number and the modified diagonal element 
in free format. The matrix retains the name Ml. 

SELECT.Ml.M2.Nl.N2.N3.N4 Creates a new matrix, Ml, of Nl rows 
and N2 columns from the elements of the matrix, M2, starting at row 
number N3 and column number N4. 

NULL.Ml.Nl.N2 Creates a null matrix, Ml, ofNI rows and N2 columns. 
The diagonal terms can then be modified (refer MODDG), to give a diagonal 
matrix. 

PRINT.Ml Causes the matrix Ml to be displayed and to be written to 
the output file. 
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HELP This command can be used to present a summary of the commands 
on the screen. 

DELETE.Ml Deletes the matrix named Ml, allowing that name to be 
used again. All array storage is re-allocated so that with effective use of the 
DELETE command, the size limitations are not significant. 

REMARK.any string as a comment line! This command allows comments 
to be inserted in the output file. In addition each command may have an 
optional comment extension separated from the required command by at 
least one space. Such comments will appear in the print listing of the output 
file. The period character cannot be used in the comment. 

QUIT Terminates the operations of the program. 

A.5 AN EXAMPLE OF THE USE OF THE PROGRAM: 
SOLUTION OF SIMULTANEOUS EQUATIONS 

Consider the equations 

3x+4y+5z=12,9 

Ix -ly + 1z = 1, 8 

2x+2y-3z=I,10 

which may be expressed in matrix form as 

and written in the notation of 

A·X=B 

The appropriate commands to solve for X using MATOP are then 

LOAD.A.3.3 
LOAD.B.3.2 
SOLVE.A.B 
PRINT.B THE RESULTS FOR X 
QUIT 

The elements of the matrices A and B are input following the respective 
LOAD commands. 
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For a batch mode of operation the datafile would be as follows: 

LOAD.A.3.3 
345 
1 -1 1 
2 2-3 
LOAD.B.3.2 
12 9 
1 8 
110 
SOLVE.A.B 
PRINT.B THE RESULTS FOR X 
QUIT 

and the resulting output file is 

HATOP Version 1.2 Feb 1986 
Hatrix Operations Program- Output File :A500.0TH 

LOAD.A.3.3 
LOAD.B.3.2 
SOLVE.A.B 
PRINT.B THE RESULTS FOR I 
O.100000E+01 0.639535E+01 
0.100000E+01 -.202326E+01 
0.100000E+01 -._18605E+00 
End of File 

A.6 LISTING OF THE PROGRAM MATOP 

PROGRAH HATOP 
COMMON IA/Z,SIZE,NHN 
COMMON IB/NAME 
COMMON IC/LL,IPAGE 
COMMON ID/OFLN,MODE 
DIMENSION Z(2000),SIZE(40) 
CHARACTER"6 NAME(20) 
CHARACTER"60 COMH,HESAGE"30 
CHARACTER"8 DFLN,REPLY"3,IFLN"12,OFLN"12 
CHARACTER ESC 
DATA ESC/Z'1B'I 
DOUBLE PRECISION Z 
INTEGER SIZE 
INTEGER POS 
NMN.O 
LELEM=O 
IPAGE.1 
LL=O 
MODE=O 
CALL HEAD 
WRITE(",10)ESC 

10 FORMAT(1X,A1,'[6;14HMatrix Operations Program') 
WRITE(·,15)ESC 

15 FORMAT(1X,A1,'[10;15HEnter Data Filename :') 
READC.,20) DFLN 

20 FORMATCA8) 
POS.INDEX(DFLN,' ,) 
IFCPOS.EQ.O) POS=9 
WRITEC",25)ESC 
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25 FORHAT(IX,AI,'[12jI5HBatch or Interactive? (Type B/I) :') 
READ " REPLY 
IF(REPLY(I:I).EQ.'B') THEN 

HODE=1 
IFLN=DFLN(:POS-l)II'.INH' 
OPEN(4,FILE=IFLN,STATUS='OLD') 

ENDIF 
OFLN=DFLN(:POS-l)II'.OTH' 
OPEN(3,FILE=OFLN,STATUS='NEW') 
CALL PAGER 

90 CALL HEAD 
IF(HODE.EQ.O) THEN 
PRINT','Enter Command :' 
READ(',100) COHH 

100 FORHAT(A60) 
ELSE 

READ(4,100) COHH 
PRINT','Command read :',COHH 
CALL CONT 

ENDIF 
IF ( COMM(I:4).EQ.'LOAD' ) THEN 
CALL LOAD(COHM,LELEH,HODE) 
ELSE IF (COHH(I:5).EQ.'TRANS' THEN 
CALL TRANS(COHH.LELEH) 
ELSE IF (COHH(I:5).EQ.'SC!LE' THEN 
CALL SCALE(COHH) 
ELSE IF (COHH(I:S).EQ.'PRINT' THEN 
CALL PRINT(COHH) 
ELSE IF ( COMH( 1 :4) .EQ. 'HULT' ) THEN 
CALL HULT(COHH,LELEM) 
ELSE IF ( COHH(I:5).EQ.'SOLVE' ) THEN 
CALL SOLVE(COMH) 
ELSE IF ( COHH(I:6).EQ.'DELETE' ) THEN 
CALL DELETE(COMH,LELEH) 
ELSE IF ( COHH(I:5).EQ.'HODDG' ) THEN 
CALL HODDG(COHH,MODE) 
ELSE IF ( COHM(I:6).EQ.'SELECT' ) THEN 
CALL SELECT(COHH,LELEH) 
ELSE IF ( COHH(I:4).EQ.'NULL' ) THEN 
CALL NULL(COHH,LELEH) 
ELSE IF (COHH(I:7).EQ.'REMARK.') THEN 
CALL PAGER 
WRITE(3,110) COHH 
LL=LL-l 

110 FORHAT(A6o) 
ELSE IF (COHM(I:4).EQ.'HELP' THEN 
CALL HELP 
ELSE IF (COMH(I:4).EQ.'QUIT' THEN 
CALL QUIT 
GO TO 210 
ELSE 
HESAGE='Invalid Format -Try HELP' 
CALL TRAP(HESAGE) 
CALL CONT 
ENDIF 
GO TO 90 

210 CALL PAGER 
WRITE(3,120) 

120 FORHAT('End ot File') 
END FILE (3) 
CLOSE (3) 
IF(HODE.EQ.l) CLOSE (4) 
END 

SUBROUTINE LOAD(COHH,Kl,HODE) 
COMHON IA/Z,SIZE,NHN 
COHHON IB/NAHE 
COHHON IC/LL,IPAGE 
DIHENSION Z(2000),SIZE(40) 
DIHENSION TEHP(400) 
CHARACTER'6 NAHE(20) 
CHARACTER'60 COHH,HATNAH"6,HESAGE I 30 



CHARACTER TEST(9),TOST(II)-2 
DOUBLE PRECISION Z 
INTEGER SIZE 
INTEGER c(6) 
INTEGER FLAG 
INTEGER LL 
INTEGER IPAGE 

MATOP USER MANUAL 285 

D A TAT ES T / I 1 I • t 2 I , • 3 t , • 4 • , , 5 • • I 6 • , • 7 ' , • 8 • • • 9 • / 
DATA TOST/'10',' 11', '12', '13', '14', '15', '16', '17', '18', '19', '20'/ 
CALL LOCATE(COHH,C,IEND) 
HATNAH:COHH(C(I)+I:C(2)-I) 
CALL CHKNAH(HATNAH,FLAG) 
IF (FLAG.EQ.l) THEN 

HESAGE:'Name Already used' 
CALL TRAP(HESAGE) 
CALL CONT 

ELSE 
DO 20 1:1,9 
IF (COHH(C(2)+I:C(3)-I).EQ.TEST(I» THEN 
IR = I 
ENDIF 
IF (COHH(C(3)+I:IEND-l).EQ.TEST(I» THEN 
IC = I 
ENDIF 

20 CONTINUE 
DO 30 1:1,11 
IF (COHH(C(2)+I:C(3)-I).EQ.TOST(I» THEN 
IR : 1+9 
ENDIF 
IF (COHH(C(3)+I:IEND-l).EQ.TOST(I» THEN 
IC = 1+9 
ENDIF 

30 CONTINUE 
IF(HODE.EQ.O) THEN 
[:0 

DO 50 1=1,IR 
CALL HEAD 
PRINT-,'Loading Hatrix '//HATNAH 
PRINT-,' Enter row number ',I 

PRINT-,' , 
DO 50 J:l,IC 
[=K+l 
WRITE(-,60) 

50 READ(-,70,ERR=80) TEHP(K) 
60 FORHAT(IH+,IX,':') 
70 FORHAT(DI4.0) 

GO TO 90 
80 PRINT-,'Terminating Input - Hatrix Deleted' 

CALL CONT 
GO TO 95 

90 DO 110 I:l,IR-IC 
K1:Kl+l 

110 Z(Kl):TEHP(I) 
ELSE 

DO 55 1: 1, IR 
READ(4,FHT:-) (Z(Kl+J),J:l,IC) 
Kl:Kl+IC 

55 CONTINUE 
CALL HEAD 
PRINT-,'Hatrix '//HATNAH//' loaded' 
CALL CONT 

ENDIF 
NHN:NHN+l 
CALL WRTNAH(HATNAH,IR,IC) 
CALL PAGER 
WRITE(3,100) COHH 

100 FORHAT(A60) 
LL=LL-l 

95 CONTINUE 
ENDIF 
RETURN 
END 
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CIII 

SUBROUTINE CHKNAM(MATNAM,FLAG) 
COMMON IB/NAME 
CHARACTER"6 NAME(20) 
CHARACTER"6 MATNAM 
INTEGER FLAG 
FLAG=O 
DO 100 1=1,5 
IF (MATNAM.EQ.NAME(I» THEN 
FLAG=l 
END IF 

100 CONTINUE 

C""" 

C"I 

RETURN 
END 

SUBROUTINE WRTNAM(MATNAM,I,J) 
COMMON IA/Z,SIZE,NMN 
COMMON IB/NAME 
DIMENSION Z(2000),SIZE(40) 
CHARACTER"6 NAME(20) 
CHARACTER"6 MATNAM 
DOUBLE PRECISION Z 
INTEGER SIZE 
NAME(NMN)=MATNAM 
SIZE(NMN"2-1)=I 
SIZE(NMN"2)=J 
RETURN 
END 

SUBROUTINE HEAD 
CHARACTER ESC 
DATA ESC IZ'lB'1 
WRITE(",10)ESC 

10 FORMAT(lX,Al,'[2J') 

CIII 

PRINTI,. __ ~~ ____________________________ ~ __ ~ __ ~~-=~ __ ~~ 
PRINT",' MATOP Version 1. 2 Feb. 1986' 
PRINT",·-------------------------------------------------------. 
RETURN 
END 

SUBROUTINE EXTNAM(MATNAM,K,FLAG) 
COMMON IB/NAME 
CHARACTER"6 NAME(20) 
CHARACTER"6 MATNAM 
INTEGER FLAG 
FLAG=O 
DO 100 1=1,20 
IF (MATNAM.EQ.NAME(I» THEN 
FLAG.l 
K=I 
ENDIF 

100 CONTINUE 

C""" 
RETURN 
END 

SUBROUTINE CONT 
COMMON ID/OFLN,MODE 
CHARACTER"12 OFLN 
CHARACTER ESC 
DATA ESC/Z 'lB' I 
IF(MODE.EQ.O) THEN 

PRINT 10,ESC 
10 FORMAT(lX.Al,t[20;10H·) 

PAUSE 'Type any key to Continue -> • 
ELSE 

PRINT 15,ESC 
15 FORMAT(lX,Al,'[20;10HContinuing .•..• ) 

DO 20 1=1,30000 
20 CONTINUE 

ENDIF 
RETURN 
END 



SUBROUTINE TRAP(HESAGE) 
CHARACTER-30 HESAGE 
CHARACTER ESC,BEL 
DATA ESC/Z'1B'1 
DATA BEL/Z'07'I 
PRINT-,BEL,BEL 
PRINT 10,ESC 

10 PORHAT(1X,Al,'[18jl0H') 
PRINT-, HESAGE 
RETURN 
END 

SUBROUTINE PRINT(COHM) 
COHHON IA/Z,SIZE,NHN 
COHHON IB/NAHE 
COHHON IC/LL,IPAGE 
DIHENSION Z(2000),SIZE(40) 
CHARACTER-6 NAHE(20) 
CHARACTER-60 COHH,HATNAH-6,HESAGE-30 
DOUBLE PRECISION Z 
INTEGER SIn 
INTEGER PLAG 
INTEGER C(6) 
INTEGER LL 
INTEGER IPAGE 
CALL LOCATE(COHH,C,IEND) 

HATNAH=COHH(C(1).1:IEND-l) 
CALL EXTNAH(HATNAH,INDEX,PLAG) 
IF (PLAG.EQ.O) THEN 

HESAGE='Hatr1x doea not Exiat' 
CALL TRAP(HESAGE) 
CALL CONT 

ELSE 
CALL POINT(INDEX,IR,IC,IOUNT) 
11=10UNT 
CALL HEAD 
DO 110 1=1,IR 
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PRINT-,'At Print: No. or Bowa and Columna 1a: ',IR,IC 
PRINT-, 'Row number :',1 
DO liS J=1,IC 
10UNT .. IOUNT.l 
WRITE(-,SO) Z(IOUNT) 

50 FOBHAT(1X,E12.6) 
45 CONTINUE 

CALL CONT 
IF (I.NE.IR) CALL HEAD 

40 CONTINUE 
CALL PAGER 
WRITE(3,100) COHH 

100 PORHAT(A60) 
LL=LL-1 
DO 60 r..l,IR 
CALL PAGER 
WRITE(3,70) (Z(11.J),J=1,IC) 
IF (IC.GT.6.AND.IC.LT.13) LL=LL-l 
IP (IC.GT.12) LL=LL-2 
LL=LL-l 
IhB:l.IC 

60 CONTINUE 
70 PORHAT(6(E12.6,1X» 

ENDIP 
RETURN 
END 

SUBROUTINE LOCATE(COHH,C,IEND) 
CHARACTER-60 COHH 
INTEGER POS,C(6) 
1 .. 0 
IENDaO 
DO 5 1=1,6 

5 C(I)=O 
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C'" READ POSITION OF PERIODS AND FIRST BLANI 
DO 10 POS.l.80 
IF (COMM(POS:POS).EQ.·.·) THEN 
I.I+l 
C(I)aPOS 
ELSE IF (COMM(POS:POS).EQ.· ') THEN 

IF (IEND.EQ.O) THEN 
IEND.POS 
ENDIF 

ENDIF 
10 CONTINUE 

RETURN 
END 

SUBROUTINE POINT(INDEX.IR.IC.IOUNT) 
COMMON IA/Z.SIZE.NHN 
DIMENSION Z(2000).SIZE(40) 
DOUBLE PRECISION Z 
INTEGER SIZE 
IR.SIZE(INDEX'2-1) 
IC.SIZE(INDEX'2) 
IOUNT.O 
IF (INDEX.GT.l) THEN 
DO 30 I=1.(2'INDEX-2).2 

30 IOUNT.KOUNT+SIZE(I)'SIZE(I+l) 
ENDIF 
RETURN 
END 

SUBROUTINE PAGER 
COMMON IC/LL.IPAGE 
COMMON ID/OFLN.HODE 
CHARACTER'12 OFLN 
INTEGER LL 
INTEGER !PAGE 
I.O 
IF (LL.GT.O) RETURN 
IF (LL.EQ.O.AND.IPAGE.GT.l) I=7 
IF (LL.EQ.-l.AND.IPAGE.GT.l) I=6 
IF (I.NE.O) THEN 
DO 90 I=l.K 

90 WRITE(3.95) 
95 FORHAT("J 

ENDIF 
WRITE(3.110) IPAGE 

110 FORHAT(/'MATOP Version 1.2 Feb 1986·.44X.·Page '.12) 
WRITE(3.112) OFLN 

112 FORMAT('Matrix Operations Program- Output File :'.A12/) 
IPAGE=IPAGE+l 
LL=55 
RETURN 
END 

SUBROUTINE QUIT 
CALL HEAD 
PRINT'. I At Quit I 

CALL CONT 
RETURN 
END 

SUBROUTINE TRANS(COHH.KOUNT) 
COHHON IA/Z.SIZE.NHN 
COHHON IB/NAHE 
COHMON IC/LL.IPAGE 
DIHENSION Z(2000).SIZE(40) 
CHARACTER'6 NAHE(20) 
CHARACTER'60 COHH.HATNAM'6.HESAGE'30 
CHARACTER'6 NAHl 
DOUBLE PRECISION Z 
INTEGER SIZE 
INTEGER FLAG 
INTEGER c(6) 



INTEGER LL 
INTEGER IPAGE 
CALL HEAD 
PRINT,'At Trans' 
CALL LOCATE(COHH,C,IEND) 
HATNAH=COHH(C(1)+1:C(2)-1) 
CALL EXTNAH(HATNAH,INDEX,FLAG) 
IF (FLAG.EQ.O) THEN 
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HESAGE='Hatrix 'IIHATNAHII' does not Exist' 
CALL TRAP(MESAGE) 
CALL CONT 

ELSE 
NAH1=HATNAM 
INDhINDEX 
HATNAH=COHH(C(2)+1:IEND-l) 
CALL CHKNAH(HATNAH,FLAG) 
IF (FLAG.EQ.l) THEN 

HESAGE:'Name 'IIHATNAHII' Already used' 
CALL TRAP(HESAGE) 
CALL CONT 

ELSE 
CALL POINT(IND1,IR1,IC1,KOUNT1) 
NHN:NHN+l 
CALL WRTNAM(HATNAH,IC1,IR1) C... TRANSPOSITION ROUTINE 
DO 15 I=l,ICI 
KOUNT1=ltOUNT1+l 
lt2=0 
DO 15 J=l,IRI 
KOUNT=ltOUNT+l 
Z(ltOUNT)=Z(ltOUNT1+lt2·IC1) 

15 K2=lt2+1 
CALL PAGER 
WRITB(3,100) COHH 

100 FORMAT(A60) 
LL=LL-l 
PRINT.,'Hatrix '1INAM111' transposed to 'IIHATNAM 
CALL CONT 

ENDIF 
END IF 
RBTURN 
END 

SUBROUTINE SCALE(COMM) 
COHHON IA/Z,SIZB,NHN 
COMHON IB/NAHE 
COHHON IC/LL,IPAGE 
DIHENSION Z(2000),SIZE(40) 
CHARACTER.6 NAHE(20),NAH1,NAH2.20 
CHARACTER.60 COHH,HATNAH.6,HESAGE.30 
CHARACTER TEST(10) 
DOUBLE PRECISION NUMBER 
DOUBLE PRECISION Z 
INTEGER SIZE 
INTEGER FLAG 
INTEGER c(6) 
INTEGER POS 
INTEGER LL 
INTEGER IPAGE 
DATA TEST/'O', "'. '2', '3', '11', '5'. '6', '1' ,'8', '9'1 
NUHBER=O 
CALL HEAD 
PRINT,'At Soale' 
CALL LOCATE(COHH,C,IEND) 
HATNAM=COHH(C(1)+1:C(2)-1) 
CALL EXTNAH(HATNAH,INDEX,FLAG) 
IF (FLAG.EQ.O) THEN 

HESAGE='Hatrix does not Exist' 
CALL TRAP(HESAGE) 
CALL CONT 

ELSE 
NAHhMATNAM 
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CALL POINT(INDBX,IR,IC,KOUNT) 
HATNAH=COHH(C(2)+I:IBND-l) C... THIS IS THB SCALB FACTOR 
POS=1 
IF (C(3).BQ.0) C(3)=IBND 
DO 15 I=I,C(3)-C(2)-1 
NAH2=HATNAH(POS:POS) 
DO 20 J=I,10 

20 IF (NAH2.EQ.TEST(J» N=J-l 
NUHBBR=NUHBBR+N·l0··(C(3)-(C(2)+I+I» 
POS.POS+l 

15 CONTINUB 
IF (C(3).NB.IBND) THBN 
POS=POS+l 
DO 25 I.l,IEND-C(3)-1 
NAH2.HATNAH(POS:POS) 
DO 30 J.l,10 

30 IF (NAH2.EQ.TEST(J» N=J-l 
NUHBER=NUHBBR+N·l0··(-I) 
POS.POS+l 

25 CONTINUB 
END IF 
DO 35 I=I,IR 
DO 35 J.l , IC 
KOUNT_KOUNT+l 

35 Z(KOUNT)=Z(KOUNT)·NUHBER 
PRINT.,'Hatrlx '11NAH111' Soaled by ',NUHBBR 

CALL PAGBR 
WRITE(3 , 100) COHH 

100 FORHAT(A60) 
LL=LL-l 

CALL CONT 
ENDIF 
RETURN 
END 

SUBROUTINE HULT(COHH,KOUNT) 
COHHON IA/Z,SIZE,NHN 
COHHON IB/NAHE 
COHHON IC/LL,IPAGE 
DIHENSION Z(2000),SIZE(40) 
CHARACTBR.6 NAHB(20) 
CHARACTBR.60 COHH,HATNAH.6,HESAGB.30 
CHARACTBR.6 NAH1,NAH2 
DOUBLB PRECISION Z 
INTBGER SIZE 
INTEGER FLAG 
INTEGER C(6) 
INTEGER LL 
INTBGER IPAGE 
CALL HEAD 
PRINT,'At Hult' 
CALL LOCATE(COHH,C,IEND) 
HATNAH=COHH(C(I)+I:C(2)-I) 
CALL BXTNAH(HATNAH,INDEX,FLAG) 
IF (FLAG.EQ.O) THEN 

HESAGE='Hatrlx 'IIHATNAHII' does not Exist' 
CALL TRAP(HESAGE) 
CALL CONT 

BLSB 
NAHhHUMAH 
INDhINDEX 
HATNAH=COHH(C(2)+I:C(3)-I) 
CALL EXTNAH(HATNAH,INDEI,FLAG) 

IF (FLAG.EQ.O) THEN 
HESAGE='Hatrix 'IIHATNAHII' does not Exist' 
CALL TRAP(HESAGE) 
CALL CONT 

ELSE 
NAH2=HATMAH 
IND2dNDEX 
HATNAH=COHH(C(3)+I:IEND-l) 
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CALL CHKNAH(HATNAH,FLAG) 
IF (FLAG.EQ.l) THEN 

HESAGE.'Name 'IIHATNAHII' Already used' 
CALL TRAP(HESAGE) 
CALL CONT 

ELSE 
CALL POINT(IND1,IR1,IC1,KOUNT1) 
CALL POINT(IND2,IR2,IC2,KOUNT2) 
IF (IC1.NE.IR2) THEN 

HESAGE='Hatrice. Incompatible' 
CALL TRAP(HESAGE) 
CALL CONT 

ELSE 
NHN=NHN+l 
CALL WRTNAH(HATNAH,IR1,IC2) C··· HULTIPLICATION ROUTINE 
KOUNT1=KOUNT1+1 
DO 20 I=I,IRI 
DO 20 J=I,IC2 
TEHP=O 
K2=KOUNT1+(I-l)·ICl 
K3=KOUNT2+J 
DO 25 K.l,ICl 
TEHP=Z(K2)·Z(K3)+TEHP 
K2.K2+1 

25 K3cK3+IC2 
C--- END OF Z ARRAY CURRENTLY AT KOUNT(LELEH) 

KOUNT=KOUNT+l 
20 Z(KOUNT)=TEHP 

CALL PAGER 
WRITE(3,100) COHH 

100 FORHAT(A60) 

CAH 

LL=LL-l 
PRINT-,'Hatrice. '1INAH111'.'IINAH211' multiplied to 'IIHATN 

CALL CONT 
ENDIF 

ENDIF 
ENDIF 

ENDIF 
RETURN 
END 

SUBROUTINE SOLVE(COHH) 
COHHON IA/Z,SIZE,NHN 
COHHON IB/NAHE 
COHHON IC/LL,IPAGE 
DIHENSION Z(2000),SIZE(~0) 
CHARACTER-6 NAHE(20) 
CHARACTER·60 COHH,HATNAH.6,HESAGE.30 
CHARACTER-6 NAH2 
DOUBLE PRECISION A(20,20),X(20,20),P(20,20) 
DOUBLE PRECISION Z 
DOUBLE PRECISION TEHP 
INTEGER SIZE 
INTEGER FLAG 
INTEGER C (6) 
INTEGER LL 
INTEGER IPAGB 
CALL HBAD 
PRINT,'At Solve' 
CALL LOCATE(COHH,C,IEND) 
HATNAH=COHH(C(I)+I:C(2)-I) 
CALL EXTNAH(HATNAH,INDEX,FLAG) 
IF (FLAG.EQ.O) THEN 

HBSAGE.'Hatrix 'IIHATNAHII' doe. not Exist' 
CALL TRAP(HESAGE) 
CALL CONT 

ELSE 
INDhINDEX 
HATNAH=COHH(C(2)+I:IEND-l) 
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CALL EXTNAH(HATNAH,INDEX,FLAG) 
IF (FLAG.EQ.O) THEN 

HESAGE='Hatrix 'IIHATNAHII' does not Exist' 
CALL TRAP(HESAGE) 
CALL CONT 

ELSE 
NAH2=HArNAH 
IND2.INDEX 
CALL POINT(IND1,IR1,IC1,KOUNT1) 
CALL POINT(IND2,IR2,IC2,KOUNT2) 

IF (IR1.NE.IC1.0R.IR2.NE.IC1) THEN 
MESAGE='Hatrioes Inoompatible' 
CALL TRAP(HESAGE) 
CALL CONT 

ELSE 
C""" SOLUTION ROUTINE 

K1=KOUNT2 
C""" CONVERT TO TWO DIMENSIONAL ARRAYS 

DO 20 I=l,IRl 
DO 20 J=l,IRl 
KOUNT1=KOUNT1+l 

20 A(I,J)=Z(KOUNT1) 
DO 25 I=l,IRl 
DO 25 J=l,IC2 
KOUNT2=KOUNT2+1 

25 P(I,J)=Z(KOUNT2) 
C""" FORWARD ELIHINATION 

FLAG.O 
DO 30 lI:=l,IR1-l 
K2=K+l 
IF «ABS(A(K,K»-.OOOOOl).LE.O) THEN 

C""" TRY ROW INTERCHANGE 

34 

36 

32 
42 

35 

40 
30 

45 

60 
50 
CIII 

FLAG=l 
DO 32 J=K2,IRl 
IF «ABS(A(J,K»-.OOOOOl).GT.O) THEN 

DO 34 L=K,IRl 
TEHP=A(K,L) 
A(K,L)=A(J ,L) 
A(J,L).TEHP 
DO 36 L.l,IC2 
TEHP.P(It,L) 
P(K,L)=P(J,L) 
P(J,L)=TEHP 
FLAG=O 
GO TO 42 

ENDIF 
CONTINUE 

ENDIF 
DO 30 I=K+l,IRl 

TEHP=A(I,K)/A(It,K) 
DO 35 J=It,IRl 
A(I,J)=l(I,J)-TEHP l l(K,J) 
DO _0 L=l,IC2 
P(I,L).P(I,L)-TEHPIP(K,L) 
CONTINUR 
IF «ABS(A(IR1,IR1»-.000001).LE.0) FLAG=l 
IF (FLAG.EQ.l) THEN 

HESAGE='Hatrix Singular' 
CALL TRAP(HESAGE) 
CALL CONT 

RLSE 
BACK SUBSTITUTION 

DO 45 L=l,IC2 
X(IR1,L).P(IR1,L)/A(IR1,IR1) 
DO 50 K=IR1-l,l,-1 
DO 50 L=l,IC2 
DO 60 J=IR1,K+l,-1 
P(K,L)=P(It,L)-A(K,J)IX(J,L) 
X(K,L)=P(K,L)/A(K,It) 

DISPLAY AND STORE RESULT 
CALL HEAD 
PRINTI,'Solution Hatrix '1INAH2 



DO 55 I=I,IRI 
55 WRITE(I,65) (I(I,J),J=I,IC2) 
65 FORHAT("b",6(DI2.6,II» 

DO 70 I=I,IRI 
DO 70 J=I,IC2 
1:1=1:1+1 

70 Z(l:l)=I(I,J) 
CALL PAGER 
WRITE(3,100) COHH 

100 FORHAT(A60) 
LL=LL-l 
CALL CONT 

ENDIF 
ENDIF 

ENDIF 
ENDIF 
RETURN 
END 

SUBROUTINE DELETE(COHH,LELEH) 
COHHON IA/Z,SIZE,NHN 
COHHON IB/NAHE 
COHHON IC/LL,IPAGE 
DIHENSION Z(2000),SIZE(40) 
DIHENSION ZTEHP(2000),SIZET(40) 
CHARACTER'6 NAHE(20) 
CHARACTER"60 COHH,HATNAM'6,HESAGE'30 
CHARACTER'6 NTEMP(20) 
DOUBLE PRECISION Z 
DOUBLE PRECISION ZTEMP 
INTEGER SIZE 
INTEGER FLAG 
INTEGER C(6) 
INTEGER SIZET 
INTEGER LL 
INTEGER lPAGE 
CALL HEAD 
PRINT,'At Delete' 
CALL LOCATE(COMH,C,IEND) 

HATNAM=COMH(C(I)+I:IEND-l) 
CALL EXTNAM(HATNAH,INDEX,FLAG) 
IF (FLAG.EQ.O) THEN 
HESAGE='Hatrix does not Exist' 
CALL TRAP(MESAGE) 
CALL CONT 

ELSE 
CALL POINT(INDEX,IR,IC,I:OUNT) 

C'" REHOVE ELEHENTS FROH Z(2000) DATABASE 
1:1=0 
DO 40 I=I,LELEM 
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IF (I.LT.I:OUNT+l.0R.I.GT.XOUNT+IR'IC) THEN 
I:l=Xl+1 
ZTEHP(Xl) =Z(I) 
ENDIF 

40 CONTINUE 
LELEH=LELEM-IR'IC 
DO 45 I=I,LELEH 

45 Z(I)=ZTEHP(I) 
C"" REHOVE DIHENSIONS FROH SIZE(40) DATABASE 

1:1=0 
DO 50 I=I,NHN 
IF (I.NE.INDEX) THEN 
l:1=ltl+l 
SIZET(2'Kl-l)=SIZE(2'I_l) 
SIZET(2'ltl) =SIZE(2II) 
ENDIF 

50 CONTINUE 
NHNaNHN_l 
DO 55 I=I,NHN 
SIZE(2'I-l)=SIZET(2I I_l) 

55 SIZE(2'I) =SIZET(2'I) 
C'" REHOVE NAHE FROH NAHE(20) DATABASE 
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NHN=NHN+l 
Itl=O 
DO 60 hl,NHN 
IF (I.NE.INDEX) THEN 
1t1=ltl+l 
NTEHP(Kl)=NAHE(I) 
ENDIF 

60 CONTINUE 
C'" CLEAR NAHE(20) 

DO 70 I=l,20 
70 NAHE(I)=' 

NHN=NHN-l 
DO 65 hl,NHN 

65 NAHE(I)=NTEHP(I) 
PRINT','Hatrix 'IIHATNAHII' Deleted' 
CALL PAGER 
WRITE(3,100) COHH 

100 FORHAT(A60) 
LL=LL-l 
CALL CONT 

ENDIF 
RETURN 
END 

SUBROUTINE HODDG(COHH,HODE) 
COHHON IA/Z,SIZE,NHN 
COHHON IB/NAHE 
COHHON IC/LL,IPAGE 
DIHENSION Z(2000),SIZE(40) 
CHARACTER'6 NAHE(20) 
CHARACTER'60 COHH,HATNAH'6,HESAGE'30 
CHARACTER'3 REPLY 
DOUBLE PRECISION Z 
INTEGER SIZE 
INTEGER FLAG 
INTEGER c(6) 
INTEGER LL 
INTEGER IPAGE 
CALL HEAD 
PRINT','At Hoddg' 
PRINT',' , 
CALL LOCATE(tOHH,C,IEND) 

HATNAH=COHH(C(l)+l:IEND-l) 
CALL EXTNAH(HATNAH,INDEX,FLAG) 
IF (FLAG.EQ.O) THEN 

HESAGE='Hatrix does not Exist' 
CALL TRAP(HESAGE) 
CALL CONT 

ELSE 
CALL POINT(INDEX,IR,IC,KOUNT) 
IF(HODE.EQ.O) THEN 
DO 35 I=l,IR 

DO 35 J=l,IC 
KOUNT=KOUNT+l 
IF(I.EQ.J) THEN 

WRITE(',45) I,J 
45 FORHAT(lH+,lX,'Element ',213,' Hodify? (Type YIN) ') 

READ(',50) REPLY 
50 FORHAT(A3) 

IF (REPLY(l:l).EQ.'Y') THEN 
WRITE(',55) Z(KOUNT) 

55 rORHAT(lH+,1X,D12.6,' Hodify to: t) 
READ(',40) Z(KOUNT) 

40 FORHAT(D14.8) 
ENDIF 
ENDlr 

35 CONTINUE 
ELSE 

READ(4,FHT=') II: 
DO 70 1,,1,11: 
READ(4,FHT=') IND,VALUE 
J=II:OUNT+(IND-l)'IC+IND 



Z(J) .. VALUB 
70 CONTINUB 

PRINT.,'Hatrix 'IIHATNAHII' moditied' 
BNDIF 
CALL PAGBR 
VRITB(3,100) COHH 

100 FORHAT(A60) 
LL_LL-1 
CALL CONT 

BNDIF 
RETURN 
END 

SUBROUTINB SBLBCT(COHH,LBLBH) 
COHHON IA/Z,SIZB,NHN 
COHHON IB/NAHB 
COHHON IC/LL,IPAGB 
DIHBNSION Z(2000),SIZB(40) 
CHARACTER-6 NAHB(20) 
CHARACTBR-60 COHH.HATNAH-6,HESAGB.30 
CHARACTBR.6 NAH1,NAH2 
CHARACTER TEST(9).TOST(11)-2 
DOUBLB PRECISION Z 
INTEGER SIZB 
INTEGER C (6) 
INTEGBR FLAG 
INTEGER LL 
INTEGBR IUGB 
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DATA TBST/'1','2'.'3'.'4','5','6','7','8'.'9'1 
DATA TOST/'10','11','12','13','14','15','16','17','18','19' ,'20'1 
CALL LOCATB(COHH,C,IEND) 
HATNAH_COHH(C(1)+1:C(2)-1) 
CALL CHXNAH(HATNAH,FLAG) 
IF (FLAG.BQ.1) THEN 

HBSAGE_'Name Already used' 
CALL TRAP(HBSAGB) 
CALL CONT 

ILSI 
IAHhHATNAH 
HATNAH.COHH(C(2)+1:C(3)-1) 
CALL EXTNAH(MATNAH,INDBX,FLAG) 
IF (FLAG.EQ.O) THEN 

HESAGB='Hatrix 'IIHATNAHII' does Dot Bxist' 
CALL TRAP(HBSAGB) 
CALL CONT 

BLSE 
NAH2.HATNAH 
CALL POINT(INDEX,IB,IC,IOUHT) 
DO 10 1.1,9 
IF (COHH(C(3)+1:C(_)-1).BQ.TEST(I» IB1.1 

10 IF (COHH(C(4)+1:C(5)-1).EQ.TEST(I» IC1=I 
DO 15 h1, 11 
IF (COHH(C(3)+1:C(4)-1).EQ.TOST(I» IR1_I+9 

15 IF (COHH(C(4)+1:C(5)-1).EQ.TOST(I» IC1-I+9 
DO 20 1.1,9 
IF (COHH(C(5)+1:C(6)-1).EQ.TEST(I» IR2-1 

20 IF (COHH(C(6)+1:IEND-1).BQ.TEST(I» IC2.1 
DO 25 1 .. 1,11 
IF (COHH(C(5)+1:C(6)-1).EQ.TOST(I» IR2-I+9 

25 IF (COHM(C(6)+1:IBND-1).EQ.TOST(I» IC2-I+9 C.-. SELBCT HATRIX ELEMBNTS 
CALL HEAD 
PRINT.,'At Seleot' 
NHNaNHN+1 
CALL VRTNAH(NAH1,IR1,IC1) 
DO _0 I_IR2,IR2+IR1-1 
11.XOUNT+(I-1)-IC+IC2-1 
DO 40 J.1,IC1 
Ih11+1 
LBLEH_LELEH+1 

40 Z(LELEH).Z(ll) 
PRINT·,'Matrix '1INAH111' seleoted trom '111AH2 
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CALL PAGER 
WRITE(3,100) COMM 

100 FORMAT(A60) 
LL=LL-l 
CALL CONT 

ENDIF 
ENDIF 
RETURN 
END 

SUBROUTINE NULL(COMM,Kl) 
COMMON IA/Z,SIZE,NMN 
COMMON IB/NAME 
COMMON IC/LL,IPAGE 
DIMENSION Z(2000),SIZE(40) 
CHARACTER'6 NAME(20) 
CHARACTER'60 COMM,MATNAM'6,MESAGE'30 
CHARACTER TEST(9),TOST(II)'2 
DOUBLE PRECISION Z 
INTEGER SIZE 
INTEGER c(6) 
INTEGER FLAG 
INTEGER LL 
INTEGER IPAGE 
DATA TEST/'1','2','3','4','5','6','7','8','9'I 
DATA T03T/'10','11','12','13','14','15','16','17','18','19','20'/ 
CALL LOCATE(COMM,C,IEND) 
MATNAM.COMM(C(I)+I:C(2)-I) 
CALL CBKNAM(MATNAM,FLAG) 
IF (FLAG.EQ.l) THEN 

MESAGE.'Name Already used ' 
CALL TRAP(MESAGE) 
CALL CONT 

ELSE 
DO 20 1=1,9 
IF (COHH(C(2)+I:C(3)-I).EQ.TEST(I» THEN 
IR = I 
ENDIF 
IF (COHM(C(3)+I:IEND-l).EQ.TEST(I» THEN 
IC • I 
ENDIF 

20 CONTINUE 
DO 30 1.1,11 
IF (COHM(C(2)+I:C(3)-I).EQ.TOST(I» THEN 
IR • 1+9 
ENDIF 
IF (COHH(C(3)+I:IEND-l).EQ.TOST(I» THEN 
IC = 1+9 
ENDIF 

30 CONTINUE 
CALL HEAD 
PRINT', 'At Null' 
DO 110 hl,IR'IC 
K1ooKl+l 

110 Z(Kl).O.O 
NHN.NMN+l 
CALL WRTNAH(HATNAH,IR,IC) 
CALL PAGER 
WRITE(3,100) COMH 

100 FORHAT(A60) 

C'" 

LL=LL-l 
PRINT','Matrix 'IIMATNAM//' oreated aa null matrix' 
CALL CONT 

ENDIF 
RETURN 
END 

SUBROUTINE HELP 
CALL HEAD 
PRINT','Matrix names may be any alphanumerio atring to a maximum' 
PRINT',' ot six oharacters' 
PRINT','For any specitied matrix the' 
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PRINT-,, 
PRIIIT-, ' 
PRIIIT-,'Command 
PRIIIT-,' , 

maximum number ot rovs is 20' 
maximum number ot oolumns ia 20' 

Formats ara aa tollows:' 

PRIIIT-,' HBLP - vill oause this display' 
PRIIIT-,' , 
PRIIIT-,' QUIT - vill terminate the ses8ion' 
PRIIIT-,, LOAD.matrixname.no rova.no oolumns' 
PRIIIT-,, Bxample: LOAD.KHAT.6.6' 
PRIIIT-,, PRIIIT.matrixname' 
PRIIIT-,, , 
PRIIIT-,' HULT.matrixname1.matrlxname2.newmatrixname' 
PRIIIT-,, Bxample: HULT.A.B.C (result in C), 
CALL COIIT 
CALL HEAD 
PRIIIT-,' 
PRINT-,' 
PRINT·,' 
PRINT·,' 
PRINT-,' 
PRIIIT·, ' 
PRINT·, ' 
PRINT-,' 
PRIIIT·,' 
PRIIIT·,' 
PRINT·,' 
PRIIIT·, ' 
PRIIIT·,' 
PRIIIT·,' 
PRINT·,' 
PRIIIT·,' 
CALL CONT 
RETURN 
BND 

SOLVB.matrixname1.matrixname2' 
Bxample: SOLVB.KHAT.P (result In P)' 

TRANS.matrixname.newmatrixname' 
Bxample: TRANS.A.B' 

SCALE.matrixname.soalefaotor' 
Bxample: SCALB.KHAT.1500 (not B tormat)' 

HODDO.matrixname' 
Permits moditioation ot diagonal elements' 

DBLETE.matrixname' 
Deletea matrix trom database' 

SBLECT.newmatrixname.matrixname.rn.on.rs.os' 
Example: SBLBCT.D.P._.1.6.2' 

NULL •• atrixnall.1.no rovs.no ooluana' 
Bxallpl.: HULL.S._.6' 

RBHARK.oharaoter string' 
Example: RBHARK. THB STIFFNESS HATRII' 



Appendix B 
Structural Mechanics 
Students' Handbook-A 
Manual of Useful Data 
and Information 

PART 1 

B1.1 Introduction-Convention 

In introducing students to beam behaviour and bending moment diagrams, 
it is usual to introduce a sign convention based on a rigorous mathematical 
approach using the first quadrant right-hand set of cartesian axes. This 
leads logically to the notion of positive bending moment being associated 
with positive curvature or, more simply, a sagging beam. Such moments 
are then often plotted with positive ordinates above a datum line in the 
conventional manner of any graph. 

However it is a widely held convention that the ordinates of a bending 
moment diagram should be plotted off the tension face of a line diagram 
of the structure. Where bending moment diagrams are shown in this manual, 
that is the convention that has been followed. Beyond this, it is not necessary 
to indicate whether the bending moment is positive or negative. Although 
the concept of positive and negative bending can still be applied to beams, 
it becomes rather meaningless for frames. Only simple beam deflections are 
quoted in this manual and they are taken as positive downward. 

In tables B1.3 and B1.3A, where end moments are given, the end 
moments are quoted as positive or negative according to the direction of 
the reactive moment developed. The convention followed here is that the 
anticlockwise moment on the beam and the corresponding clockwise 
moment on the joint are POSITIVE moments, while the clockwise moment 
on the beam and the corresponding anticlockwise moment on the joint are 
NEGATIVE. It should be appreciated that this information, of itself, is 
insufficient when it comes to drawing a bending moment diagram. It is the 
position of an applied moment with respect to the beam, together with its 
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sense, which determines the tension face and hence the way in which the 
bending moment diagram is drawn. The classic illustration of this is the 
case of a simply supported beam with an anti clockwise moment (positive) 
applied firstly at the left-hand end and secondly at the right-hand end. 

Table B1.1 shows some standard information relating to simply suppor­
ted beams under transverse load. In table B1.2 some useful properties of 

Table B1.1 Simple beam moments and deflections (uniform E1) 

BEAM Mo.x. MOMent Mo.x. Deflection 

L/2 !Q L/2 
IS- - Z. 

~ Ql/4 Ql3/48EI 

q 
gOJ: J; J; I L J; JO ~-!..~ -

~ q~/8 5ql4/384El 

~ 
! Q 

------ Ql Ql3/3El 

~ 
~ 

q 
J; L J; "' J; "' L L "' ~ 

------
q~/2 q~/8EI 

~ 
Cl lQ b 

LS-==- --~ 

~ Qo.lo/l 
00.(103 (l +0.)7'243)°·5 

Ell 

~ 
Cl !Q b 
= -------- Qo. Q0.2 (2l +1o)/6EI 

~ 
-
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Table 81.2 Some properties of area 

SHAPE Centroia Dlsta.nce x Area 

hi I 
L/2 Lh 

I x 

I L 
I 

h~ L/3 Lh/2 

~ 
I 

~gm 
h 

pa.rabola. L/4 Lh/3 
I 
I 

W ta.ngen-tlo.l 

I 

~&P h I po.ro.bolo. Ll5 Lh/4 
I 

~ 
tQngentlQI 

I s .. cond degr .. e I 

ZE"\ L/2 2Lh/3 

I x I 
I 

sE'cond 
~.~~l __ d .. gr .... 

h ~ 3L/S 2Lh/3 

I x I 
I 
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Table 81.3 Indeterminate beam end moments-transverse loads (uniform E1) 

END A A BEAM B END B 

C ~ 
L/2 !Q Ll2 

~ ;) 
+QL/B ~ d -QLlB 

~ 

C ~ 
q 

~ ;) x x x X L X X X X 

+qf/12 ~ /1 -q~/12 

~ 

C ~ 
L/2 !Q Ll2 

b. 

+3QL/16 ~ 
~ 

C ~ 
q 

L X X X X X L X L 1,. 

+q~/8 ~ 
~ 

C ~ 
0. !Q 10 

~ ;) 
+Qolo'1~ ~ 
~ 

....---::1 - Q02101f 

C ~ 
0. lQ 10 

b. 

+Qo(L -0)(2L -0) ~ 
2~ ~ 
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area are given. This information is frequently used in the application of the 
moment area theorems in the calculation of slopes and deflections. Table 
B1.5 is also relevant to deflection calculations since the standard integrals 
arise in the application of the principle of virtual forces to determine 
deflections. Tables B1.3 and B1.3A present standard fixed end moments for 
a beam under various conditions. Although the vertical reactions are not 
shown there, they can be readily calculated from equilibrium. Table B1.6 
completes the set with some further properties of area. See sections B1.2 
and B1.3 for discussion of table B1.4. 

Table 81.3A Indeterminate beam end moments-translation only (uniform EI) 

END A 

( 

+6EI f:, /~ 

( 

+3EI f:, /~ 

A BEAM B 

~ ~ ~--~=-----------~b 
----__ f:, 

-~I 

~ 
I L I 

END B 

) 

+6EI f:, /~ 
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Table B 1.4 Beam end rotations under transverse load 

DE'Tlnltlons 

L. 91 

~ FlE'xura.l Properties EI 
D. ~ Length L 

9J 7 
Tota.l Loo.d = Q 
rJ.= o./LJ ~= lolL J IS = elL 

Loa.d TypE' End Rota. tlons 

Q t Q b E1 ~= -QIo(~ -10 2 )/6L 
15. D-

EI 9J = Qa.(~ -a. 2 )/6L 
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I 
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15. I c I D-

EI 9 = Qo.[41o(o.+L)-e 2 ]/24L 
J 

I 
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I ~Q EI 81 = -Qa270( ~- ~3)-1S2(45~+21S)]/1620 
15. I c I D-

EI 8 = +Ql:[270(rJ.- rJ.3)-1S 2(45rJ.-2CS)]/1620 
J 

I 0. I b 

I Q~ EI 9 = -Q[[270(~ ~3)-1S2(45~-21S»)/1620 
15. I I D- 1 

C 
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Table 81.5 Standard integrals relating to moment diagrams 

The Integro.l. 
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The Integrnl: j,L 9 1 (x),g2(X) dx 

g/x) 
2 

9 1 (x) 

(a.ll second Ml M j MlilM2 degree 

I I ~ pa.rabolas) 

L L L 

I Me 
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Table 81.6 Second moments of area 

SHAPE Ixx Iyy 

·[ill' 1001 3/12 0110 3/12 

~ 

hGZS-, bh 3/36 hb 3/4B 

I 
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B1.2 Summary of the Slope-Deflection Equations 

In the linear elastic analysis of beams and frames, the slope-deflection 
equations represent a powerful technique. For a beam element subjected 
to end moments and shear only, the equations may be written as 

Since, in general .l = d2 - d 1 , the equations become 

For beams subject to end rotations only, obviously the equations become 

The sign convention is again defined by reference to the following diagram 
where all the terms are shown in the POSITIVE sense. 

E1, L 2 

B1.3 Use of Table B1.4--Fixed End Moment Calculation 

In conjunction with the slope-deflection equations, table B1.4 may be used 
to calculate some more general fixed end moments for beams. If the free 
span end rotations under transverse loads are known, then the fixed end 
moment must be that moment that would counteract the end rotation. This 
can be readily calculated by substituting for the given end rotation, with a 
change in sign, in the slope-deflection equations. 
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For example, consider the case of a beam under a general point load. 
From table B1.4: 

Qb(L2- b2) 
81 = 

6EIL 

Qa(e-a2) 
82 = + 6EIL 

Hence 

m = 4EI(Qb(L2-b2») + 2EI(_ Qa(L2-a2») 
12 L 6EIL L 6EIL 

= Q(2b(L2-b2)-a(L2-a2») 
L2 3 

=!l(a3 +2bL2- aL2-2b3 ) 

L2 3 

which reduces to 

Qab 2 

m12 =+U 

as required. 
In general, the information is best handled numerically and it is not 

expected that algebraic expressions would be evaluated. 

PART 2 

B2.1 Introduction-Convention 

Element stiffness matrices are used to describe the relationship between the 
actions on the nodes of an element of a structure and the corresponding 
displacements at the nodes in response to those actions. In this context the 
element stiffness matrix provides the link between the element actions and 
element displacements such that when the element displacement vector is 
pre-multiplied by the element stiffness matrix, the element actions are given. 

The derivation of the element stiffness matrix is a function of both the 
element type, the governing stress-strain law and equilibrium. Significantly, 
the form of the resulting element stiffness matrix for a given type is also 
dependent on the sign convention adopted in defining the problem and the 
way in which the displacement and action vectors are defined. For this 
reason, in each case where an element stiffness matrix is presented, it is 
given in the matrix relationship between the action and the displacement 
vector. In addition, the specific terms are also defined in an accompanying 
diagram where each action and displacement is shown in the POSITIVE 
sense. On this basis the diagrams also serve to define the sign convention. 
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The beam element stiffness matrix is presented in three forms. Firstly 
for the standard continuous beam, then for the same element with a moment 
release at the left hand end, and finally with a moment release at the right 
hand end. The element stiffness matrix for a column element, ignoring axial 
deformation, is then presented. This may be used effectively in the analysis 
of simple rectangular frames which are considered to be axially rigid. A 
second form of the matrix allows for a moment release at the base. 

The general plane frame element stiffness matrix is then given as a six 
by six matrix. This matrix includes axial deformation and may be used in 
a general two dimensional analysis of a rigid jointed plane frame. The 
appropriate plane truss element stiffness matrix may be deduced from the 
matrix given and a similar matrix is given for use in the analysis of plane 
grids. The plane frame coordinate transformation matrix accompanies the 
presentation of the plane frame element stiffness matrix, and the coordinate 
transformation matrix for a plane truss analysis can be seen as a subset of 
the given matrix. All of the preceding matrices can be seen as a subset of 
the twelve by twelve general space frame element stiffness matrix, which is 
given to conclude the Appendix. Attention is also drawn to the general 
form of the transformation matrix from which preceding transformation 
matrices can be found. 

B2.2 Continuous Beam Element 

The element stiffness matrix for a beam element is given by the following 
relationship: 

12EI 6EI 12EI 6EI dl VJ2 L3 L2 C e 
6EI 4EI 6EI 2EI 01 m l 2 L2 

--
L2 L L 

----------------------
12EI 6EI 12EI 6EI d2 V21 L3 - L2 L3 L2 

6EI 2EI 6EI 4EI 
Oz mZI -

LZ L L2 L 

where the terms are defined by 

~2) 

""~ 
~ d 2 

1"l)2 d l 

E1. L 2 
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B2.3 Continuous Beam Element-LHE-pinned Moment Release 

The element stiffness matrix is given by the following relationship: 

3El 

o 

I 3El 3El 
0 1 --

I L3 
I 

o I 0 
I 

o 
--------r--------

3El I 3El 3El 
- L3 0: L3 - L2 

L 

I 3El 3El 
o : 

I 

3El 

where the terms are defined by 

El, L 2 

B2.4 Continuous Beam Element-RHE-pinned Moment Release 

The element stiffness matrix is given by the following relationship: 

3El 3El I 3El I 
d\ V12 L3 L2 1-- 0 

I L3 

3El 3El I 
3El I 

m12 L2 L 1- L2 0 8\ 

---------~-------
3El 3El I 3El 

V2\ -e I 0 d2 L3 I L3 
I 

m2\ 0 0 I 0 0 82 I 

where the terms are defined by 

t V21 --------

E1, L 2 
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B2.5 Column Element 

The element stiffness matrix for a column element, ignoring axial deforma­
tion, is given by the following relationship: 

12EI 6EI 1 12EI 6EI 
V\2 1--- - L2 d\ L3 L2 1 L3 

1 
6EI 4EI 1 6EI 2EI 

m12 L2 1 
L2 OJ 

L 1 L 
--- = ----------4---------

12EI 6EI 1 12EI 6EI 
V2J L3 L2 1 L3 L2 d2 

1 
1 

6EI 2EI 1 6EI 4EI 
m2J - L2 L 

1 L2 O2 
1 L 

where the terms are defined by 

M2\ 

2 01 2 G1= ~21 

EL L 

B2.6 Column Element-Base-pinned 

The element stiffness matrix for a column element, ignoring axial deforma­
tion and having a pinned base, is given by the following relationship: 

VJ2 3EI 1 3EI 3EI d\ 
0 1 

L3 1 L3 L2 
m l 2 1 0\ 

0 0 1 0 0 
----------~----------

V2I 3EI 1 3EI 3EI d2 
0 l' 

L3 1 L3 L2 
1 

m21 3EI 1 3EI 3EI O2 
- L2 0 1 L2 1 L 
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where the terms are defined by 

2 

E1, L 

B2.7 General Plane Frame Element 

The element stiffness matrix for a plane frame element is given by the 
following relationship: 

EA 1 EA 
P12 0 0 1 -- 0 0 

L 1 L 
1 

12El 6El 1 12E1 6E1 
V12 0 1 0 L3 L2 1 L3 L2 

1 
6El 4El 1 6El 2E1 

m12 0 L2 1 0 L2 L 1 L 
= --------------~---------------

EA 1 EA 
P21 0 0 1 0 0 

L 1 L 
12El 

1 
6El1 12El 6El 

V21 0 L3 --I 0 L3 L2 L2 1 

6El 2El 
1 

6El 4El 1 
m21 0 L2 1 0 L2 L 1 L 

where the terms are defined by 
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Plane Frame Transformation Matrix 

The coordinate transformation matrix allowing for transformation between 
element actions or displacements expressed in global coordinates, and the 
same actions or displacements expressed in local coordinates is given by: 

cos CI' sin CI' 0 : 0 0 0 

-sin CI' cos CI' 0 : 0 0 0 

o 0 : 0 0 0 
-------------~-------------

o 0 Oleos CI' sin CI' 0 
o 0 0: -sin CI' cos CI' 0 

o 00: 0 01 

where the global and local axes are defined by 

y 

global x 

B2.S Plane Grid Element 

The element stiffness matrix for a plane grid element is given by the following 
relationship: 

GJ 1 GJ 
t12 0 0 1 0 0 OXt L 1 L 

1 

4EI 6EI 1 2EI 6EI 
m\2 0 - L2 1 0 °Yt L 1 L L2 

1 
6EI 12EI 1 6EI 12EI 

V\2 0 L2 L3 1 0 L2 L3 d1 
1 

-------------~--------------
GJ 1 GJ 

t21 0 0 1 0 0 OX2 L 1 L 
1 

2EI 6EI 1 4EI 6EI 
m21 0 1 0 -

°Y2 L L2 1 L L2 

6EI 12EI: 6EI 12EI 
V21 0 L2 

---I 0 L2 L3 d2 L3 1 
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where the terms are defined by: 

z~ 
x 

Plane Grid Transformation Matrix 

For the plane grid element stiffness matrix expressed in the above manner, 
the coordinate transformation matrix is identical to that given for the plane 
frame element. The angle a is defined in the following relationship between 
the local and global axes: 

z 

locol 

82.9 Space Frame Element 

The element stiffness matrix for a space frame element is given by the 
following relationship: 

, 
dx , Px, I 

I 
dy , py! I 

I 
dz , PZ" kll 

I 
k12 I 

Ox! m x , I 

my! 
I 

Oy! I 

m z, 
I 

Oz, I 

P X2 
----------T--------- dX2 I 

P Y2 
I dY2 I 

PZ2 
I dZ2 

k21 I k22 
m X2 I 

OX2 I 
m Y2 I 

°Y2 I 
m Z2 I OZ2 , 
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where the terms are defined by 

2 

z~ 

and a general notation for element actions and displacements has been 
introduced, similar to that given in reference [B.1]. 

Further: 

EA 

L 
0 0 0 0 0 

0 
12Elz 

0 0 0 
6Elz 

e L2 

0 0 
12Ely 

0 
6 Ely 

0 
k,,= 

e -U 
GJ 

0 0 0 0 0 
L 

0 0 
6 Ely 

-U 0 
4 Ely 

L 
0 

0 
6Elz 

0 0 0 
4Elz 

L2 L 
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k22 = kll' but with the signs of the off diagonal elements reversed. And 

EA 
0 0 0 0 0 

L 

0 
12E1z 

0 0 0 
6EIz ---u- L2 

0 0 
12Ely 

0 
6 Ely 

0 ---u- -U 
k12 = 

OJ 
0 0 0 0 0 

L 

0 0 
6 Ely 

0 
2 Ely 

0 L2 L 

0 
6EIz 

0 0 0 
2EIz 

-U L 

with k21 = ki2. 
The space frame transformation matrix operating on the 12 by 12 

element stiffness matrix has the form 

tR I OJ T= _.L (12x12) o I R 
I 

where 

[
II ml 

and Ro= 12 m 2 

13 m3 

and I, m and n, i = 1, 3, are the direction cosines of the local x, y and z 
axes respectively with respect to the global x, y and z axes respectively. 

A more convenient expression of the matrix R is given as: 

LzlL I ( - LyLz cos 'Y + LLx sin 'Y) 

LJ(L~+ L;) 

LyLz sin 'Y + LLx cos 'Y 

LJ(L;'+L;) 

where Lx, Ly and L z are the projections of the length of the element on to 
the global x, y and z axes respectively, and 'Y is the angle between the 
global axes x-y plane and the element axes x-y plane. 

Users should note that this form of the matrix Ro is indeterminate 
when the centroidal x-axis of an element is coincident with the global 
y-axis. Further details are given in reference [8.1]. 
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