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Foreword

This text is an outgrowth of the material used by the author for several decades in senior

and graduate courses for students of mechanical, aerospace and civil engineering. It deals

with the problem of computing the stress and displacement fields in solid bodies at two

levels of approximation: the level of the linear theory of elasticity and the level of the

theories of mechanics of materials. The linear theory of elasticity is based on very few

assumptions and can be applied to bodies of any geometry. The theories of mechanics of

materials are based on many assumptions in addition to those of the theory of elasticity and

they can be applied only to bodies of certain geometries (beams, bars, shafts, frames, plates

shells and thin-walled, tubular members). In this text the formulas of the theories of

mechanics of materials are derived in a way that the assumptions on which they are based

can be clearly understood. Moreover, wherever possible the results obtained on the basis of

the theories of mechanics of materials are compared with those obtained on the basis of the

theory of elasticity.

In the past, the use of the linear theory of elasticity was limited by the fact that only a few

problems could be solved using the available classical methods. Thus, approximate theories

like the theories of mechanics of materials were formulated for which exact solutions could

be found. With the advent of the electronic computer, many problems involving bodies

whose geometry does not justify the use of the theories of mechanics of materials, are

formulated on the basis of the linear theory of elasticity and solved approximately with the

aid of a computer. Thus, a mechanical, civil or aerospace engineer who works in the area of

stress analysis and design often uses software based on the linear theory of elasticity. It is

important therefore that master’s level  students of mechanical, aerospace and civil

engineering who specialize in the area of stress analysis and design, should acquire some

knowledge of applied elasticity.

The book includes 18 chapters and 7 appendices. In the first chapter a brief review of

vector analysis is presented followed by a very elementary, but concise introduction to the

algebra of symmetric tensors of the second rank. In the theories of mechanics of materials

and elasticity one deals with quantities such as stress, strain and moments and product of

inertia which are symmetric tensors of the second rank. It is desirable therefore that the

student learns at the very beginning the transformation properties of such quantities as well

as how to determine their stationary values.

The boundary value problems for computing the displacement and stress fields in solid

bodies on the basis of the linear theory of elasticity, are formulated in Chapter 5 and applied

to simple examples in Chapters 5, 6 (torsion problem) and 7 (plain stress and plain strain

problems). The boundary value problems for computing the displacement and stress fields

on the basis of the theory of mechanics of materials are presented in Chapters 8 and 9 for

bodies made of prismatic line members, in Chapter 10 for nonprismatic line members, in

Chapter 11 for curved line members, in Chapter 12 for tubular members and in Chapters 17

for plates. Part of the material presented in Chapters 8 and 9 is available in elementary texts

of strength of materials. It is included in this text for completeness of our presentation and

for those who need a review of this material at a slightly more advanced level than that of

the elementary texts. 

In this text, the boundary value problems for computing the displacement and stress

fields in solid bodies are formulated using both their differential and integral forms (see

Chapters 13 and 14). The latter include the principle of virtual work, Castigliano’s second

theorem, the theorem of minimum total potential energy, the weighted residual equation and

the modified weighted residual equation. The last three are suitable for obtaining numerical
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solutions of boundary value problems with the aid of a computer, using the finite element

method presented in Chapter 15.

With the exception of Chapter 16, where an introduction to plastic analysis of structures

is presented, throughout this text, we limit our attention to bodies made from isotropic

linearly elastic materials. Moreover, with the exception of Chapter 18, where an introduction

to elastic instability of structures is presented, we assume that the magnitude of the

deformation of each material particle of the bodies, which we are considering, is such that

the change of its geometry can be approximated by its components of the strain tensor which

are related to its components of displacement by linear relations. This assumption linearizes

the boundary value problems involving bodies made from linearly elastic materials, that is,

renders the effect linearly related to the cause and permits superposition of the results.

The author wishes to thank Dr. Nikitas Skliros for typing and laying out the final version

of the manuscript and Mr. Nassos Papoutsis for drawing and labeling the figures. Moreover,

the author wishes to thank Ms. Cleo Avrithy for checking the solution presented in the

solution manual of the problems included at the ends of Chapters 1 to 10 and Ms. Isabella

Vassilopoulou for checking the solution presented in the solution manual of the problems

included at the ends of Chapters 11 and 13 to 17.
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Properties of Plane Areas

Notation: 
A =  area

 ,  =  coordinates of the centroid C

11 22 1 2   I ,  I  =  moments of inertia with respect to the x  and x  axes,  respectively

12 1 2         I  =  product of inertia with respect to the x  and x  axes,  respectively

1 2      I ,  I =  moments of inertia with respect to the principal  and  axes
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1

(1.1)

 

Chapter

1
Cartesian Tensors

1.1 Vectors

In order to specify completely certain physical quantities, such as temperature, energy

and mass, it is necessary to give only a real number.  These quantities are referred to as

scalars.  In order to specify completely certain other physical quantities, such as force,

moment, velocity and acceleration, it is necessary to give both their magnitude (a non-

negative number), their direction and their sense.  These quantities are referred to as

vectors.  They may be represented in a three-dimensional, Euclidian space by directed line

segments (arrows) whose length is proportional to the magnitude of the vectors and whose

direction and sense are those of the vectors.

Two vectors are equal if they have the same magnitude, direction and sense.  

One way of denoting vector quantities is by boldface Latin letters, i.e.,  a, b, c, whereas

their magnitude is represented as *a*,*b* and *c*,  respectively.

The sum of two vectors a and b, as, for example, of two forces or of two velocities,

is a vector c, which is specified (as shown in Fig. 1.1) by the diagonal of the parallelogram

having as adjacent sides the vectors a and b.  This rule of addition of two vectors is

referred to as the parallelogram rule.

The negative of a vector a is a vector !a having the magnitude and direction of a and

reverse sense.

Any vector whose magnitude is equal to unity is referred to as a unit vector.  Every

nvector a may be expressed as the product of its magnitude and the unit vector i  having

the same direction and sense as the vector a.

         Figure 1.1  Addition of two vectors.
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Cartesian Tensors2

(1.2)

(1.3)

1.1.1 Components and Representation of a Vector

Every vector a can be expressed as a linear combination of three arbitrary noncoplanar

linearly independent  vectors b, c, and d, referred to as base vectors.  That is,†

where m, p and q are real numbers.  The vectors mb, pc and qd are referred to as the

components of the vector a with respect to the base vectors b, c and d.  It can be shown

that the components of a vector with respect to a set of base vectors b, c and d are unique.

That is, for any vector a there exists only one set of real numbers m, p and q satisfying

1 2 3relation (1.2).  As base vectors, we choose the three orthogonal unit vectors i , i  and i
which lie along the positive directions of the set of right-handed  rectangular system of††

1 2 3axes (cartesian system of axes) x , x  and x , respectively (see Fig. 1.2).  Thus, we may

represent a vector a as a linear combination of the three right-handed orthogonal unit

1 2 3vectors i , i  and i  as

1 1 2 2 3 3The vectors a i , a i  and a i  (see Fig. 1.2)  are the cartesian components of the vector a.

iHowever, in the sequel we will refer to the quantities a  (i = 1, 2, 3) as the cartesian
components of the vector a.  It is apparent that a vector may be specified by its three 

Figure 1.2  Components of a vector. Figure 1.3  Direction cosines of a unit

vector.

1 2 3, n i i† In general a set of n vectors a , a , a ..., a  is said to be linearly independent if the relation Ea m  = 0

iis satisfied only when m  = 0 (i = 1,2, ..., n).  In the contrary case, the set of vectors is said to be linearly
dependent.

1 2 3 3†† We say that a set of axes x , x , x  is right-handed, when a right hand screw placed parallel to the x  axis

3 1 2moves in the direction of increasing x  when turned from the x  to the x  axis.
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Vectors       3

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

(1.9a)

cartesian components.  Thus, if each one of the cartesian components of a vector with

respect to a rectangular system of axes is equal to the corresponding component of

another vector referred to the same rectangular system of axes, the two vectors are equal;

that is, their components referred to any rectangular system of axes are equal.

Referring to Fig. 1.2, from geometric considerations, it can be seen that the magnitude

of the vector a is given by

nConsider a unit vector i

Referring to Fig. 1.3, we may conclude that

nn1 n2 n3where cos N , cos N  and cos N  are called the direction cosines of the unit vector i  or

of line  . From geometric considerations we find that the direction cosines of a vector

are related by the following relation: 

The sum of two or more vectors is the vector whose cartesian components are the sum

1 1of the corresponding cartesian components of the added vectors.  For instance, if a = a i
2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3+ a i  + a i  and b = b i  + b i  + b i , then their sum is a vector c = c i  + c i  + c i  whose

components are given as

A vector may be represented as follows:

1. By the symbolic representation employed heretofore, i.e., a, b, A, B, which does not

require a choice of a coordinate system.

12. By its three cartesian components with respect to a set of orthogonal unit vectors i ,

2 3i , and i , using one of the following notations:

(a) Indicial notation, as,
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(1.9b)

              (1.10)

(1.11)

(1.12a)

(1.12b)

(1.12c)

                      (1.14)

(b) Matrix notation, as,

1.1.2     Scalar or Dot Product of Two Vectors

Let us consider two vectors a and b and let us denote the angle between them by 2

(0 # 2 # B).  The scalar or dot product of the two vectors is denoted by a @ b and is equal

to a scalar c whose magnitude is given by the following relation:

Notice that if a @ b = 0 and a � 0, b � 0, then the vectors a and b are mutually

iperpendicular.  On the basis of definition (1.10), it is apparent that the unit vectors i  

(i = 1, 2, 3) satisfy the following relations:

Moreover, it can be shown that

Using equations (1.11) and (1.12b), the scalar product of two vectors may be written in

terms of their cartesian components as

(1.13)

Notice that the scalar product of two vectors can be found by matrix multiplication.  That

is,

1.1.3   Vector or Cross Product of Two Vectors

Consider two vectors a and b and denote by 2 ( 0 # 2 # B) the angle between them 
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(1.15)

Figure 1.4  Vector product.

(see Fig. 1.4).  The vector product or the cross product of the two vectors a and b is a

vector c (see Fig. 1.4) defined by the following relation:

nwhere i  is the unit vector normal to the plane of the vectors a, b in the sense in which the

right-hand screw will move, if it is turned from a to b.

Referring to Fig. 1.4, the magnitude of the vector c is equal to the area of the

parallelogram OABCO.  On the basis of definition (1.15), it is apparent that

a x b = !b x a (1.16)

iMoreover, the right-handed orthogonal system of unit vectors i  (i = 1, 2, 3) (see Fig. 1.2)

satisfy the following relations:

1 1 2 2 3 3i  x i  =  0 i  x i  =  0 i  x i  =  0

1 2 3 2 3 1 3 1 2i  x i  =  i i  x i  =  i i  x i  =  i (1.17)

2 1 3 3 2 1 1 3 2i  x i  = !i i  x i  = !i i  x i  = !i
Furthermore, it can be shown that

a x (b + c) = a x b + a x c (1.18a)

       (m a) x b = m (a x b) = a x (m b) (1.18b)

where m is a real number.

By direct multiplication, using relations (1.17) and (1.18a), the vector product of two

vectors a  and b may be expressed as follows in terms of their components, referred to the

same right-handed rectangular system of axes

2 3 3 2 1 3 1 1 3 2 1 2 2 1 3a x b = (a  b  ! a  b )i  + (a  b  ! a  b )i  + (a  b  ! a  b )i (1.19)

i i where a  and b  (i = 1, 2, 3) are the component of the vectors a and b in the directions of

1 2 3the unit vectors i , i , i .
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(1.20)

(1.21)

(1.22)

(1.23)

Relation (1.19) may be written in the following easy to remember determinant form:

When the components of two vectors a and b are referred to a left-handed rectangular

system of axes, a minus sign must be prefixed on the right-hand side of relations (1.17),

(1.19) and (1.20).  In order to eliminate this difficulty, in this text we use only right-
handed rectangular systems of axes unless stated otherwise.

1.1.4 Rotation of a Rectangular System of Axes — Transformation Matrix

i jLet us consider two right-handed rectangular systems of axes xN (i = 1, 2, 3) and x   (j
= 1, 2, 3) having the same origin at an arbitrary point O.  Referring to Fig. 1.5, the

i jdirection cosines of the system of axes xN with respect to the system of axes x  are defined

as

or in indicial notation.

i j i jDenoting by iN(i = 1, 2, 3) and i (j = 1, 2, 3), the unit vectors acting along the xN and x
axes, respectively, and referring to Fig. 1.5, we have

or

Similarly, we obtain

The nine direction cosines may be written in a matrix form as
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(1.24a)

(1.24b)

(1.25b)

           (1.25a)

Figure 1.5  Rotation of a right-handed rectangular system of axes.

or

s iThe 3 x 3 matrix [7 ] is referred to as the transformation matrix for the system of axes xN
j(i = 1, 2, 3) with respect to the system of axes x (j = 1, 2, 3).  The nine direction cosines

ij i8  (i,j  = 1, 2, 3) specify the rectangular system of axes xN relative to the rectangular

jsystem of axes x   but are not independent. They satisfy relations resulting from the

orthogonality of the two systems of axes.  These relations are:

The above relations may be rewritten in the following form:
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(1.26a)

(1.26b)

(1.27)

(1.28)

                           
(1.29)

                          
(1.30)

                              
   (1.31)

                               
 (1.32)

Referring to relations (1.24), relations (1.25) may be written in matrix form as

where [ I ] is the 3 x 3 unit matrix defined by

Relations (1.26) are referred to as the conditions of orthog onality.  Linear

transformations, such as (1.22) and (1.23) whose coefficients satisfy relations (1.26) are

referred to as orthogonal transformations.  The orthogonality conditions (1.26) imply that

s sthe transpose of the matrix [7 ] is equal to its inverse [7 ] .  That is,-1

1.1.5 Transformation of the Components of a Vector upon Ro tation of the
Rectangular System of Axes to Which They Are Referred

Let us consider the vector a whose components relative to the rectangular systems of

i j i jaxes xN(i = 1, 2, 3) and x (j = 1, 2, 3) are aN and a , respectively. That is,

Substituting relation (1.23) into (1.29), we obtain

Consequently,

Similarly, substituting relation (1.22) into (1.29), we get
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(1.33)

                        

                  (1.34)

                        

    (1.35)       

         (1.36a)

Relations (1.31) and (1.32) can be written in matrix form as

or

and

or

1.1.6 Transformation of the Components of a Planar Vector upon Rotation of the
Rectangular System of Axes to Which They Are Referred

In two-dimensional (planar) problems we encounter certain vectors such as forces and

translations which act in the plane of the problem.  In this section we establish the

relations between the components of such vectors referred to two sets of two mutually

perpendicular axes laying in the plane of the problem (see Fig. 1.6).  Consider the vector

1 2F acting in the plane specified by the two mutually perpendicular axes x  and x  and

1 2denote its components with respect to these axes by F  and F , respectively.  Moreover,

1 2 1consider another set of two mutually perpendicular axes xN and xN located in the plane x
2 1 2x  and denote the components of vector F with respect to these axes by FN and FN,

respectively.  That is,

Referring to Fig. 1.6, we have

and
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         (1.36b)

         (1.37)

                    (1.38)  

Figure 1.6  Components of a planar vector.

where 

From relations (1.36a) and (1.36b) it can be seen that

1.1.7 Definition of a V ector on the Basis of the L aw of Transformation of Its
Components

In Section 1.1, we have defined a vector as an entity possessing magnitude, direction

and sense and obeying certain rules. It may be represented in the three-dimensional space

by a directed line segment (arrow) whose direction is that of the vector.  This definition

does not associate any system of axes with a vector and, thus, it is immediately apparent

that a vector has an existence independent of any system of axes in the same frame of

reference. On the basis of this definition, it was established in Section 1.1.5 that the

components of a vector transform, upon rotation of the rectangular system of axes to

which they are referred, in accordance with the transformation relation (1.31) or (1.32).

The reverse is also valid. That is, any entity defined with respect to any rectangular system

iof  axes  by an array of three numbers a  (i = 1, 2, 3) satisfying relation (1.31) or (1.32) is

a  vector
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(1.39a)

(1.39b)

(1.39c)

(1.39d)

(1.40)

             (1.41)

             (1.45)

                 (1.44) 

      (1.43)

            (1.42)

Thus, a vector may be defined as an entity which possesses the following properties:

1. With respect to any rectangular system of axes, it is specified by an array of three

i      numbers a  (i = 1, 2, 3) — its three Cartesian components.

2. Its Cartesian components referred to any two rectangular systems of axes are related

      by the transformation relation (1.31) or (1.32).

1.2    Dyads

We define a dyad as the product a b of two vectors a and b which obeys the following

rules:

where 8 is a real number.  In general this product is not commutative.  That is,

The following products are defined between a vector and a dyad, and between two

dyads:

On the basis of the above definition a dyad like a vector has an existence independent of

1 2any coordinate system.  In what follows, we introduce a rectangular system of axes x , x ,

3 1 2 3x  specified by the orthogonal unit vectors i , i , i  in order to permit the use of well-known

mathematical procedures.  Thus, in terms of the components of the two vectors a and b,

1 2 3referred to the orthogonal unit vectors i , i , i , using the rule (1.39d), a dyad ab may be
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(1.46)

(1.47)

                             
(1.49)

                       
(1.50)

written as

or

The sum of two dyads a b and c d is a dyad whose components are equal to the sum

of the components of the two dyads

1.3 Definition and Rules of Operation of Tensors of the Second Rank

A tensor of th e second rank, also known as dyadic, is a linear combination of a finite
number of dyads.  We denote tensors of the second rank by modified letter symbols as A,

B, e, etc.  For example,

        A =  a b + c d + e f       (1.48)

Referring to relations (1.46) to (1.48), it is apparent that any tensor of the second rank can

1 2 3be written with respect to the orthogonal unit vectors i , i , i  as

or

ijThe nine quantities A  (i, j = 1, 2, 3) are referred to as the cartesian components of the
1 2 3tensor of the second rank with respect to the set of the  orthogonal unit vectors i , i , i  or

1 2 3with respect to the rectangular system of axes x , x , x  specified by these unit vectors.

Any tensor of the second rank can be specified by giving its nine cartesian components

1 2 3 11 22with respect to a set of orthogonal unit vectors i , i , i .  The cartesian components A , A ,
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           (1.51)

(1.52c)

(1.52d)

33A  of a tensor of the second rank A are referred to as its diagonal components, while the

12 13 21 23 31 32cartesian components A , A , A , A , A , A  of the tensor of the second rank A are

referred to as its non-diagonal components.  On the basis of the foregoing presentation,

it is evident that the non-diagonal cartesian components of a tensor of the second rank A
i jare associated with two orthogonal directions (i  and i  where i � j), whereas the diagonal

cartesian components of a tensor of the second rank are associated with a single direction

i j i itwice (i  and i  where i = j).  Notice that the cartesian components of a vector a (a  = i @a)

are associated solely with one direction.  A vector is a tensor of the first rank.

The sum of two tensors of the second rank is a tensor of the second rank whose

components referred to a rectangular system of axes are equal to the sum of the

components of the two tensors referred to the same system of axes.  That is,

or

or

Tensors of the second rank obey the following rules:

A + B = B + A (1.52a)

( A + B) + D = A + ( B + D)  (1.52b)

where 8 and : are real numbers.  Moreover, the products of a tensor of the second rank

and a vector obey the following rules:

                     A @ v � v @ A (1.53a)

   (A + B)@  v = A @ v + B @ v (1.53b)

   A @ (a + b) = A @ a + A @ b (1.53c)

The dot product of a tensor of the second rank A and a vector a is a vector c whose

components can be established from those of the tensor A and the vector a as follows:
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(1.54)

         (1.55)

(1.56)

(1.57)

(1.58a)

or

and

or

The dot products of a tensor of the second rank by a vector (1.54) and (1.55) may also

be obtained by multiplication of the matrices of their cartesian components referred to the

same rectangular system of axes.  Thus,

and

where
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(1.58b)

                     (1.59)

           (1.61)

                             
(1.62)

                 (1.64a)

                        
(1.64b)

                              
(1.65)

ijFrom relation (1.50), we may deduce that, in general, the cartesian components A  of

a tensor of the second rank are given by

Moreover, the diagonal component of a tensor of the second rank A in the direction

n n1 1 n2 2 n3 3specified by the unit vector i  = 8 i  + 8 i  + 8 i  is given as

              

nn n n                                      A  = i  @ A @ i                                                                        (1.60)

This relation may be rewritten in matrix form as

where [A] is given by relation (1.58a) and {n} is equal to

The non-diagonal component of a tensor of the second rank A in the directions specified

n n1 1 n2 2 n3 3 s s1 1 s2 2 s3 3by the orthogonal unit vectors i  = 8 i  + 8 i  + 8 i  and i  = 8 i  +8 i  + 8 i , is given

as

ns n sA  = i  @ A @ i (1.63a)

sn s nA  = i  @ A @ i (1.63b)

ns snwhere the components A  and A  are not necessarily equal.  Relations (1.63) may be

written in matrix form as

where
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                  (1.66)

(a)

As in the case of vectors, tensors of the second rank may be represented as follows:

1. By the symbolic representation using modified letter symbols, as A, B, e, J. This

representation does not require a choice of a coordinate system.

2. By their cartesian components with respect to a set of unit orthogonal base

vectors, using

ij ij ij ij ij ij ij ij ij(a) Indicial notation as A , B , a , b , e , J , F , , , T

(b) Matrix notation, that is,

                                                                                                                                              

n 1 2Example 1  Consider the two mutually perpendicular unit vectors i  = 3/5i  ! 4/5i  and

s 1 2i  = 4/5i  + 3/5i .  Moreover, consider the tensor

nn nsFind the components of the tensor A  and A .

Solution  Referring to relation (1.60), we have

nn n sA  = i  @ A @ i (b)

Where

1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2A = !2i i  + 3i i  + i i  + 4i i  + 2i i  + 3i i  ! 2i i  + i i

Thus,

and
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(1.68)

The same results may be obtained using matrix multiplication.  That is,

and

                                                                                                                                              

1.3.1  Example of a Tensor of the Second Rank

In this section we give an example of a quantity which is a tensor of the second rank.

Consider a body subjected to external forces.  In general the particles of this body will

be stressed.  In Section 2.8 we show that the state of stress of a particle of a body is

completely specified by a tensor of the second rank, which referring to Fig. 1.7, it is given

as

(1.67)

ijJ is called the stress tensor and J (i, j = 1, 2, 3) are its components with respect to the

1 2 3system of orthogonal axes x , x , x .  Notice than in order to specify a component of stress

we must give two directions in addition to its magnitude, namely, the direction of the

normal to the plane on which it acts and the direction of the component of stress.  For

12example, in order to specify the component of stress J , we must give its magnitude, the

1 2direction i  of the normal to the plane on which it acts and direction i  in which the

component of stress acts.  The components of the tensor J may also be presented in matrix

form as

In what follows we present an example.
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(b)

(a)

The components of stress acting 

on the faces CC’EE’ and AA’DD’
are not shown.

Figure 1.7  Components of stress acting on a particle of a body.

                                                                                                                                              

Example 2  The state of stress at point A of the beam of rectangular cross section is

shown in Fig. b.  Compute the components of stress acting on plane aa which is normal

1 3to the x x  plane as shown in Fig. a.

Figure a  Simply supported beam Figure b  State of stress at pint A
of rectangular cross section.                  of the beam of Fig. a.

                                                                                                                                              

Solution  Referring to Fig. b, the stress tensor at point A of the beam is

or

Referring to Fig. a, the unit vector normal to the plane aa is
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(c)

(d)

nFigure c  Components of stress acting on the plane normal to the unit vector i .

s n 1 3Moreover, the unit vector i  normal to i  and lying in the x x  plane is

Thus,

and

n2 nThe component of stress J  acting on the plane normal to the unit vector i  in the direction

2of the x  axis is equal to

nThe components of stress acting on the plane normal to the unit vector i  are shown in Fig.

c.
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                (1.69)

(1.70)

                 (1.71a)

                 (1.71b)

                 (1.71c)

                 (1.71d)

                 (1.71e)

                 (1.71f)

1.4 Transformation of the Cartesian Components of a Tensor of the Second Rank
upon Rotation of the System of Axes to Which They Are Referred

i j ijConsider a tensor of the second rank /A and denote by AN  and A , its components with

i jrespect to the system of axes xN(i = 1, 2, 3) and x (j = 1, 2, 3),  respectively.  Thus, referring

to relation (1.49), we have

Referring to relation (1.59), we obtain

Substituting relation (1.22) into the above and using relation (1.59), we get

Thus,

This relation specifies the transformation of the components of a tensor of the second rank

upon rotation of the axes of reference.  It can be expanded to give
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(1.71g)

(1.71h)

(1.71i)

(1.72)

(1.73a)

(1.73b)

(1.74)

Following a procedure analogous to the one employed in obtaining the transformation

 relation (1.70), we may obtain

Relations (1.70) and (1.72) may be written in matrix form as follows

s swhere [7 ] is the transformation matrix (1.24a) and [7 ]  is its transpose.T

1.5 Definition of a Tensor of the Second Rank on the Basis of t he Law of
Transformation of Its Components

In Section 1.3 a tensor of the second rank was defined without referring to any system

of axes.  Thus, it is explicitly apparent that a tensor has an existence independent of the

choice of the system of axes.  The system of axes (specified by the orthogonal unit vectors

1 2 3i , i , i ) has been introduced subsequently in order to permit the use of well-known

mathematical procedures.  On the basis of this definition of a tensor of the second rank,

it was established in Section 1.4 that its cartesian components transform upon rotation of

the right-handed system of axes to which they are referred in accordance with the

transformation relations (1.70) or (1.72).  The reverse is also valid; that is, any physical

entity defined with respect to any rectangular system of axes by an array of nine numbers

ijA  (i,j = 1, 2, 3) which satisfy relation (1.70) or (1.72) specifies a tensor of the second rank

The transformation relation (1.70) or (1.72) is often used as the basis for the definition

of a tensor of the second rank as an entity which possesses the following properties:

1. With respect to any set of rectangular axes it is specified by an array of nine

ijnumbers A  (i,j = 1, 2, 3) — its nine cartesian components.
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(1.75)

     (1.76)

             (1.77)

2. Its cartesian components referred to any two right-handed rectangular system of

1 2 3 1 2 3axes specified by the orthogonal unit vectors i , i , i  and iN, iN, iN are related by the

transformation relation (1.70) or (1.72).

This definition of a tensor of the second rank has the shortcoming that it is dependent

upon the choice of a system of axes, while the definition presented in Section 1.3 is not.

1.6 Symmetric Tensors of the Second Rank

A symmetric tensor of the second rank is one whose components satisfy the following

relation:

For instance, the tensor /A whose components with respect to a rectangular system of axes

is given as

is a symmetric tensor of the second rank.  If a tensor A is symmetric, we have

In Section 1.9 we show that for any symmetric tensor of the second rank, there exists at

1 2 3least one system of rectangular axes x , x , x , called principal, with respect to which the

diagonal components of the tensor assume their stationary values.  That is, one of them

is a maximum and another is a minimum of the diagonal components of the tensor in any

direction.  Moreover in Section 1.9, we show that, with respect to the principal axes, the

 non-diagonal components of the tensor vanish.  That is, the tensor assumes the following

diagonal form:  

1 2 3In this case the diagonal components A , A  and A  are called the principal components
of the tensor.

1.7 Invariants of the Cartesian Components of a Symmetric Tensor of the Second
Rank

Consider a tensor of the second rank  A and denote its components with respect to the
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               (1.79)

                (1.80)

(1.81)

(1.82)

1 2 3 1 2 3 ik jmrectangular systems of axes x , x , x  and xN, xN, xN by A  (i, k = 1, 2, 3), A  (j, m = 1, 2, 3).

Adding relations (1.71a), (1.71e) and (1.71i) and using relations (1.25), we obtain

1 11 22 33 11 22 33 II  = AN  + AN  + AN  = A  + A  + A (1.78)

That is, the sum of the three diagonal components of a tensor of the second rank is

independent of the system of axes to which the components are referred.  That is, it is

invariant to the rotation of the axes of reference.  It is referred to as the first invariant of
the tensor.  Moreover, by appropriate manipulation of relations (1.71) it may be shown

that a symmetric tensor of the second rank has the following invariants:

2 3where II  and II  are referred to as the second and third invariants of the tensor of the
second rank, respectively.

1.8 Stationary Values of a Function Subject to a Constraining Relation

1 2 3Consider a function f (x , x , x ) having continuous first derivatives in a region R.  We

1 2 3 1 2 3say that the function f (x , x , x ) assumes a stationary value at a point P (x , x , x ) in the

region R if the following relation is satisfied at this point:

A stationary value of a function could be a maximum or a minimum or a saddle point.

1 2 3If the variables x , x , x  are independent, then a necessary and sufficient condition for the

satisfaction of relation (1.81) is

In many problems in mechanics, it is necessary to establish the stationary values of a

1 2 3 1 2 3function f (x , x , x ), when the variables are related by a constraining relation g(x , x , x )

1 2 3 1= 0.  If the relation g(x , x , x ) = 0 can be solved for one of the variables, say x , in terms

1of the other two, then the resulting expression may be substituted into the function f(x ,

2 3x , x ) and a function  is obtained.  In this case it is apparent that the stationary

1 2 3 1 2 3values of f (x , x , x ) under the constraining relation g(x , x , x ) = 0 may be obtained from
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(1.83)

(1.84)

(1.85)

(1.86)

(1.87)

(1.88)

the following relation:

2 3Inasmuch as dx  and dx  are independent, the necessary and sufficient condition for the

satisfaction of the above relation is

1 2 3However, in certain problems, g(x , x , x ) = 0 is a complicated function.  In this case in

1 2 3order to establish the stationary values of  f (x , x , x ), it is convenient to use the ingenious

method proposed by Lagrange, which we describe in the sequel.

1 2 3 1 2 3Inasmuch as the variables x , x , x  are related by the constraining relation g(x , x , x )

i= 0, the increments dx  (i = 1, 2, 3) in relation (1.81) are not independent.  They are related

by the following relation:

3Solving equation (1.85) for dx , we obtain

3Substituting dx  from the above relation into equation (1.81), we get

1 2Since dx , dx  are independent, their coefficients in the above relation must vanish. 

Hence,

1 2 3 1 2 3Thus, the function f (x , x , x ) assumes stationary values at the points P (x , x , x ) of the

region R whose coordinates satisfy the following relation:
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(1.89)

(1.90)

(1.91)

(1.92)

(1.93)

(a)

Consider the function

This function assumes its stationary values at points whose coordinates satisfy the

following relation:

1 2 3 1 2 3Inasmuch as the function F(x , x , x , 8) is not subjected to a constraint, dx , dx , dx  and

d8 are independent and relation (1.91) is satisfied when

Substituting relation (1.90) into the above relations, we get

1 2These equations are identical to equations (1.89).  Thus, the stationary values of f (x , x ,

3 1 2 3 1x ) subjected to the constraining relation g(x , x , x ) = 0 and the stationary values of F(x ,

2 3x , x ) without a constraining relation occur at the same points.  Consequently, the

1 2 3 1 2 3stationary values of f (x , x , x ) subjected to the constraining relation g(x , x , x ) = 0 and

the points at which they occur may be obtained from equations (1.92).  The multiplying

constant 8 is called the Lagrange multiplier.

                                                                                                                                              

Example 3  Using the method of Lagrange multipliers, find the point on the plane

specified by the following relation which is the nearest to the origin of the system of axes

1 2 3x , x , x :

1 2 3 1 2 3Solution  The distance d(x , x , x ) of any point P (x , x , x ) from the origin is given as
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(b)

(c)

(d)

               (e)

 (f)

Thus, we must establish the point at which the function d  assumes a stationary value2

under the constraining relation (a).  For this purpose we form the function

1 2 3 1 2 3and we find x , x , x  and 8 for which the partial derivatives of F(x , x , x , 8) are all zero.

That is,

From the first three of the above relations, we obtain

Substituting relation (e) into the last of relations (d), we get

Substituting result (g) into relations (e), we have

These are the coordinates of the point on the plane specified by relation (a) which is

1 2 3nearest to the origin of the system of axes x , x , x .

                                                                                                                                              

            

1.9  Stationary Values of the Diagonal Components of a Symmetric Tensor of the
       Second Rank

1 2 3 1 2 3Consider a set of orthogonal axes x , x , x  specified by the unit vectors i , i  and i .

nReferred to these axes the unit vector i N can be written as
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† A stationary value of a function could be a maximum, a minimum or a saddle point.

(1.94)

(1.96)

(1.97)

    (1.98)

(1.99)

(1.100)

ni n 1 2 3where 8 (i = 1, 2, 3) are the direction cosines of i Nwith respect to the set of axes x , x , x .

Consider a symmetric tensor of the second rank [A].  Referring to relation (1.70) its

nn ndiagonal component A  associated with the unit vector i  is equal to

(1.95)

nnIt is apparent that the diagonal component A N of a tensor is a function of the direction

n1 n2 n3cosines 8 , 8  and 8 .  However, these direction cosines are not independent; they are

related [see the right column first row of relations (1.25b)] by the following relation:

In what follows we employ the technique of Lagrange multipliers (see Section 1.8) in

n nnorder to establish the directions i  (n = 1,2, ..., N) along which the function A N(n)

 assumes stationary values  subjected to the constraining relation (1.96).†

nMoreover, we establish the stationary values of the function.  The unit vectors i  may(n)

be expressed as

nwhere  and  are the direction cosines of the unit vector i .(n)

n1 n2 n3We define the function F(8 , 8 , 8 , 8) as

where the constant 8 is the Lagrange multiplier.  The function F assumes a stationary

value for each set of direction cosines,    and multiplier 8  (n = 1,2...N).  Eachn

one  of  these  sets  of  direction  cosines  and multiplier satisfies the following relations.

Substituting relation (1.98) into (1.99) and using (1.95), we get
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(1.102)

(1.103)

(1.104)

(1.105)

Multiplying the first of relation (1.100) by , the second by  and the third by 

adding the resulting relations and using relation (1.96), we obtain

(1.101)

Referring to equation (1.95), we see that relation (1.101) can be rewritten as

nThus, the Lagrange multipliers are equal to the stationary values A  of the diagonal

components of the symmetric tensor of the second rank [A].  Using relation (1.102),

relation (1.100) can be rewritten as

These three linear algebraic homogeneous equation, in   and   have a solution

other than the trivial  , if the determinant of the coefficients of

  and   is zero.  That is,

This determinant may be expanded to yield

1 2 3where II , II  and II  are the three invariants of the symmetric tensor [A] of the second rank

ndefined by relations (1.78) to (1.80).  From equation (1.105) we see that the values A  of

a symmetric tensor of the second rank [A] are independent of the choice of the system of

axes to which the components of the tensor are referred.

1 2 3It can be shown that equation (1.105) has three real roots A , A , A  which are the three
stationary values of the diagonal components of the tensor.  If the three roots of equation

1 2 3 1(1.105) are different (A  � A  � A  � A ), then substituting each one of them into equations

(1.103) we obtain three different sets of ratios of the direction cosines   and  

 (n = 1, 2, 3). For example ,  . We find three sets of the direction cosines

  and    (n = 1, 2, 3), using the relation  . It can
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† See Messai, E.E., Finding true maximum shear stress Machine Design, Dec. 7, 1978, p. 166-169; and

Terry, E.S., A Practical Guide to Computer Methods for Engineers, Prentice-Hall, Englewood Cliffs,

NJ, 1979.

(1.106)

(1.107)

(1.108a)

(1.108b)

(1.109)

be shown that these sets of direction cosines specify three mutually perpendicular

directions, referred to as the principal directions of the tensor.
The three roots of equation (1.105) are equal only if the given components of the

tensor have the following form:

In this case all directions are principal.

Finally, it can be shown that the non-diagonal components referred to the principal

axes vanish.  Thus, with respect to its principal axes, a symmetric tensor of the second

rank assumes a diagonal form.  That is,

Moreover, it can be shown that any direction along which the non-diagonal components

of a symmetric tensor vanish, is a principal direction, that is, a direction along which the

normal component of the tensor assumes a stationary value.

There are several methods available for solving a cubic equation.  For example one

1root A  of equation (1.105) can be found by trial and error.  Equation (1.105) can then be

n 1divided by (A  ! A ) and the resulting quadratic equation can be solved by applying the

general formula for the solution of such an equation.  The solution of equation (1.105) can

be also obtained using the following formulas :†

where
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(a)

(b)

(c)

(e)

(f)

In what follows we present an example.

                                                                                                                                              

   

Example 4  The components of a symmetric tensor of the second rank with respect to

jrectangular system of axis x  (j = 1, 2, 3) are

Compute the principal values and the principal directions of the tensor.

Solution  Referring to relation (1.78) to (1.80) the invariants of the tensor [A] are

Substituting the values of the invariants (b) into equation (1.105), we have

The roots of this equation are the stationary values of the diagonal components of the

tensor.  They may be established either by employing formulas (1.108) or by employing

another method for solving cubic equations.  They are

1 2 3A  = 4     A  = 1     A  = !2 (d)

1In order to obtain the direction cosines of the principal axis corresponding to A  we

1substitute the value of A  in the first two of relations (1.103).  That is,

From the above equations we have

The orthogonality condition  [see relations (1.25b)], gives

Substituting relations (e) into (f), we get
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     (g)

(h)

(i)

    (j)

              (k)

                     (1.110)

Thus,

Substituting result (h) into relations (e), we obtain

2 3Similarly, using the values of A  and A  we find the following sets of direction cosines.

Thus, the principal directions of the symmetric tensor of the second rank [A] whose

1 2 3components with respect to the orthogonal unit vectors i , i , i  are specified by the matrix

(a) are

                                                                                                                                              

1.10 Quasi Plane Form of Symmetric Tensors of the Second Rank

In this section we consider symmetric tensors of the second rank whose two, non-

diagonal components vanish.  We call such tensors quasi plane symmetric tensors of the
second rank.  As an example consider the symmetric tensor of the second rank whose

1 2 3components, with respect to the rectangular system of axes x , x , x , are

1 2We call the plane specified by the axes x  and x  the plane of the tensor [A].  Referring to

3relation (1.110), we see that the x  axis is principal.  Thus, on the basis of our discussion

in the previous section there exist at least two mutually perpendicular axes in the plane

1 2x  x  which are principal.  In the next section we establish the principal directions of quasi

plane symmetric tensors of the second rank and their principal values.
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(1.113)

   (1.112)            

Figure 1.8  Rotation of axes.

In what follows we establish the transformation relations of the components of a quasi

plane symmetric tensor of a second rank when the axes to which they are referred rotate

about the axis normal to the plane of the tensor.

j i 3Consider two rectangular systems of axes x  (1, 2, 3) and  xN (i = 1, 2, 3) whose axes xN
3 1 2 1and x   coincide.  As shown in Fig. 1.8, the xN and xN axes are located relative to the x  and

2 ix  axes by the angle .  The direction cosines of the system of axes xN (i = 1, 2, 3) with

jrespect to the system of axes x  (j = 1, 2, 3) may be written in terms of the angle  as

                             (1.111)

Thus, referring to relations (1.24a) and (1.111) the transformation matrix of the system

i jof axes xN with respect to the system of axes x  is

Substituting relation (1.112) and (1.110) into (1.73a), we obtain the components of the

tensor (1.110) referred to the system of axes .  That is, 
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(1.114)

(1.115)

(1.116a)

(1.116b)

(1.116c)

(1.116d)

(1.117)

(1.118)

or

and

PThe matrix [7 ] is specified by relation (1.112).  Relations (1.114) can be expanded to

give

Relations (1.114) or (1.116) represent the transformation relations for the components of

a quasi plane symmetric tensor of the second rank.  They transform the components of

1 2 3 1 2 3 3 3this tensor from one set of axes (x , x , x ) to another xN, xN, xN with x  = xN.  Referring to

relation (1.116), we see that the tensor [A], whose components are defined with respect

1 2 3to the rectangular set of axes x , x , x  by relation (1.110), assumes a plane form with

1 2 3 3 3respect to any rectangular set of axes  xN, xN, xN whose axis xN coincides with the axis x .

However, this tensor does not assume a plane form with respect to a rectangular set of

1 2 3 3 3axes xO, xO, xO if the axis xO does not coincide with the axes x .

1Referring to Fig. 1.8, we see that the  angle  specifies the system of axes x ,

2 1 2x  while the angle specifies the system of axes xO, xO. The unit vectors

associated with these two systems of axes are related as follows:

Moreover, for  relations (1.116a) and (1.116b) give

1.11 Stationary Values of the Diagonal and the Non-Diagonal Components of
Quasi Plane, Symmetric Tensors of the Second Rank

1    Consider a quasi plane symmetric tensor of the second rank and the system of axes x ,

2 1 2 3x  in its plane. We denote the components of this tensor with respect to the x ,x ,x  axes

ij 13 23 by A (i, j = 1, 2, 3)(A = A = 0). The transformation relations (1.116) for the quasi plane
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(1.119)

(1.120)

(1.121)

(1.122)

(1.123a)

form of a symmetric tensor of the second rank show that its diagonal and non-diagonal

components are continuous functions of the angle  . For certain values   of the

angle , the diagonal components of the tensor assume their stationary values. The axes

 specified by the angle   are called the principal axes of the tensor, while the

values of the diagonal components of the tensor obtained from the transformation

equations (1.116a) and (1.116c) for  are called its principal values.  In order

11to establish the principal axes of the tensor we set the derivative of AN  with respect  to 

 equal to zero.  That is, referring to equation (1.116a), we have

11 22 12If A  = A  and A  � 0, equation (1.119) yields

This equation has the following two solutions in the interval 0 #  # B:

11 22 12If A  = A  and A  = 0, equation (1.119) is satisfied for any value of  .  That is, any

1 2 3pair of two mutually perpendicular axes in the x  x  plane constitutes, with the x  axis, a

11 22set of principal axes.  Finally, if A  � A  equation (1.119) may be rewritten as

This transcendental equation has two solutions in the interval 0 #    # B which differ

by 90  (  and   + B/2).  That is, any quasi plane symmetric tensor of the second ranko

1 2in the x  x  plane has two mutually perpendicular principal directions in this plane.

Referring to relation (1.122), we obtain
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(1.123b)

(1.124)

                       (1.125)

(1.126)

Substituting relations (1.123) into (1.116), we obtain the following expressions for the

1 2stationary values A  and A  of the diagonal components of the quasi plane form (1.110)

of a symmetric tensor of the second rank

1 2A  is the algebraically largest and A  is the algebraically smallest value of the diagonal

1 2components of the tensor referred to any system of axes in the x  x  plane.  However, a

tensor of the second rank has at least a set of three mutually perpendicular principal

directions.  The three principal directions for the quasi plane symmetric tensor of the

second rank specified by relation (1.110) are the two directions given by equation (1.122)

3and the x  axis.  The two principal values of the diagonal components of the tensor are

3 33 1given by relations (1.124) while the third is equal to A  = A .  Thus, A  is algebraically

2 3 1larger than A  but A  may be algebraically larger or smaller than either one or both A  or

2A .

The non-diagonal components of the quasi plane symmetric tensor (1.110) associated

1 2with the two principal directions in the x  x  plane may be established by substituting

relations (1.123) into equation (1.116b).  It can be shown that they are equal to zero.

On the basis of the preceding discussion, we may conclude that for any quasi plane

symmetric tensor of the second rank (1.110) there exists at least one set of three mutually

perpendicular principal axes with respect to which the diagonal components of the tensor

1 2assume stationary values.  Two of these axes are in the x  x  plane while the third is the

3x  axis.

The values  of the angle  corresponding to the directions along which the non-

diagonal components of the tensor assume their stationary values, may be obtained by

12differentiating relation (1.116b) and setting the derivative of AN  with respect to  equal

to zero.  That is,

11 22 12If A  = A  and A  � 0, then relation (1.125) yields
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(1.127)

(1.128a)

(1.128b)

(1.129)

    A stationary value of the non-diagonal

    components of the tensor occurs in the 

  , directions.

1 2Figure 1.9  Directions in the x  x  plane along which the stationary values of the non-diagonal components

of the plane form (1.110) of a symmetric tensor of the second rank occur.

11 22 12 12 11 22If A  = A  and A  = 0, then AN  vanishes for any values of .  Finally, if A  � A

relation (1.125) yields.

This equation has two solutions in the interval  0 <  < B which differ by 90° (  and

      + B/2).  Comparing  equation  (1.127)  with  (1.122),  we  may  conclude  that  the

1 2 12directions in the x , x  plane along which the non-diagonal components AN  of the quasi

plane tensor of the second rank (1.110) assume stationary values, are inclined 45° to the

1 2principal directions of this tensor in the x  x  plane (see Fig. 1.9).  Referring to equation

(1.127), we get

Substituting relations (1.128) into (1.116b), we obtain

The diagonal components of the tensor corresponding to the direction of the maximum

12and minimum values of the non-diagonal component AN  are obtained by substituting

relations (1.128) into equation (1.116a).  Thus,
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(1.130)

(1.131)

(1.132)

(1.133)

(1.134a)

(1.134b)

1.12  Mohr's Circle for Quasi Plane, Symmetric Tensors of the Second Rank

In this section we present a graphical interpretation of equations (1.116).  These

equations give the transformation of the components of the quasi plane form (1.110) of

1 2a symmetric tensor of the second rank from one set of mutually perpendicular axes x , x ,

3 1 2 3 3x  to another obtained by rotating the set x , x , x  about the x  axis.  The first two of

equations (1.116) can be rewritten as

Equations (1.131) are the parametric equations of a circle.  We will prove that this is so

by eliminating  from equations (1.131).  In order to accomplish this, we square both

sides of equations (1.131), and we add and simplify the resulting expression.  Thus, we

obtain

where

33 33Taking into account that A  = A N and referring to relations (1.78) and (1.79), we can

show that

That is,  the same values of a and R are obtained from the components of the tensor  with

1 2respect to any set of orthogonal axes in the plane x x .  For given values of the components

11 22 12of the quasi plane symmetric tensor of the second rank  (A , A , A )  with  respect to a

1 2system of axes x , x ,  the quantities a and R are known constants and equation (1.132)

is the familiar equation of a circle of radius R with the center at the point (a, 0) plotted in

11 12the plane of the axes AN , AN . The coordinates of any point of this circle are the

11 12 1 2components AN  and AN  of the tensor A with respect to the set of orthogonal axes xN, xN.
This circle, obtained in 1889 by the German professor Otto Mohr, is referred to in the

literature as Mohr's circle.

www.EngineeringEBooksPdf.com



Cartesian Tensors38

           (1.135)

           (1.136)

           (1.137)

           (1.138)

   (1.139)

(1.140)

Suppose the Mohr's circle shown in Fig. 1.10b was constructed from the specified

11 22 12values of the components A , A , A  of a quasi plane symmetric tensor of the second

1 2 1 2 1 2rank referred to the set of axes x , x .  Consider another set of axes xN, xN in the x  x  plane

1 2which, as shown in Fig. 1.10a, is obtained by rotating the x , x  axes counterclockwise by

3 11 12the angle  about the x  axis.  We shall determine the components AN , AN  of the tensor

geometrically, with the aid of Mohr's circle.  We designate the point on Mohr's circle

11 12 1 11 12 1whose coordinates are A , A  by X  and the point whose coordinates are AN , AN  by XN
1 1and we suppose that XN is located  clockwise from point X .  Here we are establishing the

1 1 1convention that if the xN axis is located counterclockwise from the x  axis, point X N on
11 12Mohr's circle, whose coordinates are the components AN , AN  of the tensor, lies on Mohr's

1 1 1circle clockwise from point X .  The angle between the radial lines to the points X  and XN
1of Mohr's circle is designated by 2, while the angle between the radial line to point X  and

11the AN  axis is designated by R.  From geometric considerations, referring to Fig. 1.10b,

we may write

Expansion of the cos  and sin  in relations (1.135) and (1.136) and use

of equations (1.137) and (1.138) result in the following relations:

Comparing the above relations with (1.116a) and (1.116b), we see that they become

identical if we set

On the basis of foregoing presentation, we conclude that:

11 12 11 121. The components AN , AN  and A , A  of the quasi plane symmetric tensor of the second

1 2 1 2 1 1rank [A] referred to the axes xN, xN and x , x  are the coordinates of points XN and X ,

respectively, of Mohr's circle.  

1 2 1 2 32. If the axes xN, xN are obtained by rotating the axes x , x  counterclockwise about the x
1axis by an angle , point XN is located on Mohr's circle by an angle 2   clockwise

1from point X . 

23. Referring to Fig. 1.10b, we note that point X  lies on the opposite end of the diameter
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(1.141)

1 2(a) Location of the xN, xN axes        (b) Mohr's circle

Figure 1.10  Mohr's circle.

                  

1 1of Mohr's circle which passes through point X .  That is, the radial line to point X  must

2be turned clockwise by 2 = 180° in order to coincide with the radial line to point X .

2 1 1Consequently, the coordinates of point X  on Mohr's circle represent the components AO
1 2 1 2and AO  of the tensor with respect to the system of axes xO, xO obtained by rotating the

1 2axes x , x  counterclockwise by 90° (see Fig. 1.10a).  However, as discussed in Section

1 1 1 2 22 121.10, the components AO  and AO  of the tensor are equal to its components A  and !A
respectively [see relation (1.118)].  Thus, if we know the components of a quasi plane

1 2symmetric tensor of the second rank with respect to a set of axes x , x , we can plot two

1 11 12 2 22 12points [X  (A , A ) and X  (A , !A )] located on the same diameter of Mohr's circle.

11These two points and the knowledge that the center of the circle is on the AN  axis are

sufficient to specify Mohr's circle.

Referring to Fig. 1.10b, it is apparent that the abscissa of point of Mohr's circle

represents the maximum value of the diagonal components of the tensor with respect to

1 2any direction in the x  x  plane.  Moreover, the ordinates of points  and  of Mohr's

circle represent the maximum and minimum values, respectively, of the non-diagonal

1 2components of the tensor with respect to any set of axes in the x x  plane.

3 1Notice that the x  and x  axes must be taken as shown in Fig. 1.11a, when the quasi

plane form of the tensor is given as
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(1.142)

3 1 2 3(a) x  and x  axes (b) x  and x  axes

Figure 1.11  Right-handed axes of reference used with Mohr's circle.

3In this case we denote by X  the point on Mohr's circle whose coordinates are the

33 13 1components A  and A  of the tensor and by X  the point on Mohr's circle whose

11 13coordinates are the components A  and !A  of the tensor and we proceed as previously.

2 3Moreover, notice that the x  and x  axes must be taken as shown in Fig. 1.11b, when the

quasi plane form of the tensor is given as 

2In this case we denote by X  the point on Mohr's circle whose coordinates are the

22 23 3components A  and A  of the tensor and by X  the point on Mohr's circle whose

33 32coordinates are the components A  and !A  of the tensor and we proceed as previously.

The method of employing known elementary concepts in order to solve a problem

which involves concepts which are more complicated and difficult to visualize is referred

to in the literature as an analogy.  In the case of Mohr's circle, elementary geometry is

used to solve the problem of transformation of the components of a quasi plane symmetric

tensor of the second rank.  Mohr's circle could be used as a graphical solution.  However,

its real value is a means of visualizing the transformation of the components of the quasi

plane form (1.110) of a symmetric tensor of the second rank from one set of axes to

another.  In what follows we illustrate the use of Mohr's circle by an example.

                                                                                                                                              

Example 5  The components of a tensor of the second rank referred to the system of axes

jx  are given by
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          (a)

       (b)

(a)  Find the principal values of the diagonal components of the tensor and the directions

     of the principal axes.

11 22 12 1(b)  Compute the components of the tensor AN , AN , AN  with respect to a set of axes xN,
2 3 1 2 1 2xN, xN, such that xN, xN are located in the x  x  plane as shown in Fig. a.

(c)  Compute the stationary values of the non-diagonal components of the tensor.

iFigure a  Location of the system of axes xN.
                                                                                                                                              

Solution
Part a

11 12We draw the two axes of reference the AN  axis and the AN  axis, as shown in 

1Fig. b.  Then we plot point X  (!0.8, 0.8) whose coordinates are the components of the

11 12 2 22 21tensor A  and A  and point X  (0.4, !0.8) whose abscissa is A  and its ordinate is !A .

1 2Points X  and X  lie on the same diameter of Mohr's circle.  The center of this circle is on

11 11 22the AN  axis at a distance 1/2 (A  + A ) = !0.2 from the origin.  Moreover, from geometric

consideration, the radius of this circle is

The maximum and minimum values of the diagonal components of the tensor along

1 2directions located in the x  x  plane may be computed by referring to Mohr's circle, shown

in Fig. b.  The maximum value of the diagonal components of the tensor is the abscissa

of point , whereas the minimum value is the abscissa of point .  Thus,

Notice that in this example the maximum value of the diagonal components of the tensor

1 33 1is not A  = 0.8 but rather A  = 1.0. The angle  from the x  axis to the principal axis 

may be computed geometrically by referring to Fig. b, as

www.EngineeringEBooksPdf.com



Cartesian Tensors42

(c)

(d)

Figure b  Mohr's circle.

Hence

3 1 2One of the principal directions is the i , whereas the other two lie in the x  x  plane.

Referring to Mohr's circle of Fig. b, we see that point  is located 126.87° clockwise

1 1 1from point X .  Consequently, the axis x  associated with the principal value A  of the~

1diagonal component of the tensor is located  = 63.43° counterclockwise from the x

axis.  The principal axes of the tensor are shown in Fig. c.

       The  non-diagonal  components of the

       tensor  assume  their maximum value

12 max           (A )  with respect to the pair of axes

       ,    and   their   minimum   value

21 min           (A )   with  respect  to  the  pair   of

       ,  axes.

Figure c  Location of the principal axes.
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(e)

(f)

Part b
1 1We locate on Mohr's circle the point XN counterclockwise from point X  so that the angle

1 1 1 11 12ÊX CXN is equal to 20°. The coordinates of point XN are equal to the components AN , AN
1 2 1 2of the tensor A referred to the xN, xN axes, obtained by 10° clockwise rotation of the x , x

22 21axes.  The components of the tensor AN , AN  are the abscissa and the negative of the

2ordinate of point XN of Mohr's circle.  Referring to Fig. b, the components of the tensor

1 2with respect to the xN, xN axes are

Part c
Referring to Fig. b, the maximum non-diagonal components of the tensor are the ordinates

of point  and . Thus,

The axes ,  and  ,  with respect to which the stationary values of non-diagonal

components of the tensor occur are shown in Fig. c.  Referring to Fig. b, the values of the

diagonal components corresponding to the ,  axes are

                                                                                                                                             

1.13 Maximum Values of the Non-Diagonal Components of a Symmetric Tensor
of the Second Rank

Referring to relations (1.107) and (1.110), we see that the diagonal form of a tensor of the

second rank is a special case of the quasi plane form of the tensor.  That is, a form which

is quasi plane with respect to the three planes specified by the pairs of principal axes

.  From our discussion in Section 1.11 we know that when the

1 2components of a tensor assume a plane form with respect to a pair of axes x , x , the

maximum values of the non-diagonal components of the tensor with respect to any set of

1 2two mutually perpendicular axes located in the x x  plane occur with respect to a set of

two  axes  ,     located   at  45°  from  the  principal  axes    (see  Fig. 1.12).  
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(1.143)

Figure 1.12 Location of the axes with respect to which the non-diagonal components of a tensor assume

stationary values.

Consequently when the components of a tensor are referred to its principal axes ,

we can easily establish the maximum and minimum values of its non-diagonal

1 2 1 3 2 3components with respect to any set of axes in the x x , the x x  and the x x  planes.  That~ ~ ~ ~ ~ ~

is, referring to relation (1.129), we have

1.14 Problems

1 2 31. Consider points P  (1, !1, 2), P  (1, 0, !3) and P  (!1, 2, 1).  The units are in meters.

1 2(a) Determine the unit vector acting from point P  to point P .

1 2 1 2(b) Determine the angles pP OP  and pOP P , where O is the origin of the axes of

reference.

1  2(c) Determine the unit vector normal to the plane specified by the points O, P , P .

1 2 3(d) Compute the volume of the parallelepiped whose edges are OP , OP  and OP .

Ans.  (a)   (b) 130.20 , 28.27   (c)  (d) 8 mo o 3

i2. Consider the rectangular system of axes xN (i = 1, 2, 3) specified with respect to the

jrectangular system of axes x  by the transformation matrix
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jThe cartesian components of a vector referred to the rectangular system of axes x  are a
1 2= 4i  + 3i . Find the components of vector a with respect to the rectangular system of axes

ixN. Ans.  

3. Consider the vectors

Find

(a)   The angle between the vectors a and b
(b) The component of the vector b in the direction of vector a
(c) The area of the parallelogram whose sides are the vectors a and b
(d) The volume of the parallelepiped specified by the vectors a, b and c

Ans.  (a) 2 = 78.55   (b) 1.49 m  (c) 39.5 m   (d) 118 mo 2 3

4. Find the shortest distance from point P (!1, 2, 0) to the line passing through points A
(!2, 1, 3) and B (!1, 2, !1). Ans.  1/3

i5. The transformation matrix of a right-handed cartesian system of axes xN (i = 1, 2, 3),

jwith respect to the right-handed cartesian system of axes x  (j = 1, 2, 3) is, 

31 32 33 3 1  3 2  3 3  (a) Compute 8 , 8 , 8 .   Ans.  8 = 0, 8 = ±3/5, 8 = ±4/5

j(b) If the components of a tensor with respect to the rectangular system of axes x  are

given by
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iCompute its components with respect to the rectangular system of axes xN.  

i6. The transformation matrix of a right-handed cartesian system of axes xN (i = 1, 2, 3),

jwith respect to the right-handed cartesian system of axes x  (j = 1, 2, 3) is,

i(a) Find the coordinates of a point in the system of axes xN if its coordinates in the

jsystem of axes x  are P (!2, 1, 0). Ans.  !1.84, 0.80, !0.99

1 2 2 2 3 2(b) What are the components of a tensor A = 2i i  ! i i  ! 2i i  in the system of axes

ixN.
Ans.  

1 2 3 i(c) What is the equation of the plane x  ! x  + 2x  = 1 in the system of axes xN.
Ans.  

i7. The transformation matrix of a right-handed cartesian system of axes xN (i = 1, 2, 3),

jwith respect to the right-handed Cartesian system of axes x  (j = 1, 2, 3) is,

i(a) Find the coordinates of a point in the system of axes xN if its coordinates in the

jsystem of axes x  are P (3, 2, !4). Ans.  (4.998, 1.513, !1.315)

1 2 2 2 2 3 3 1(b) What are the components of a tensor A = ! 2i i  + i i  ! 2i i  + i i , in the system
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iof axes xN.                                         Ans.  

1 2 3 i(c) What is the equation of the plane 2x  + 3x  ! x  = 1 in the system  of axes xN.
               Ans.  

8. Consider the following symmetric tensors of the second rank:

Using relations (1.122), (1.124), (1.127) and (1.129), compute

(a) The principal directions and the principal values of the diagonal components of

these tensors and show the results on a sketch

Ans.  

(b) The maximum values of the non-diagonal components of these tensors and show

on a sketch the axes with respect to which they occur

Ans.  

(c) The diagonal component of these tensors in the direction of the unit vector

n n  n n  n n  Ans.  A = 11/3  B = 7/3  C = 4

9. Consider the following symmetric tensors of the second rank:
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Using Mohr's circle, compute

(a) The principal directions and the principal values of the diagonal components of

these tensors and show the results on a sketch

Ans.  

(b) The maximum values of the non-diagonal components of these tensors and show

on a sketch the axes with respect to which they occur

Ans.  

(c) The diagonal component of these tensors in the direction of the unit vector

n n  n n  n n  Show the results on a sketch.                         Ans.  A = !4/3, B = 3.33, C = !4/3, 

n n  n n  n n                                                                                 D = ! 2.667, E = !1/3, F = !10/3

10. Using Mohr's circle, compute the components of the tensors [A], [B], [D] and [E]

of Problem 1.9 with respect to the directions shown in Fig. 1P10a and of the

tensor [B] of problem 1.9 with respect to the direction shown in Fig. 1P10b.

                Ans.

      Ans. 
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(a) (b)

Figure 1P10

11. Consider the tensors [A], and [E] whose components with respect to the

jrectangular system of axes x  are given in Problem 1.9.  Compute their

icomponents with respect to the rectangular system of axes xN whose

jtransformation matrix with respect to the rectangular system of axes x  is

Ans. 

12. and 13.  The state of stress acting on a particle of a beam is given in Fig. 1P12.

Compute at this particle:

(a) The components of stress acting on the plane normal to the unit vector

(b) The maximum normal component of stress and show on a sketch the plane on

which it acts

(c) The maximum shearing component of stress and show on a sketch the plane on

which it acts

(d) The normal component of stress acting on the plane normal to the unit vector
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Repeat with the state of stress shown in Fig. 1P13.
Ans.  12 

                          Ans.  13       

Figure 1P12 Figure 1P13

14. The components of a symmetric tensor of the second rank with respect

1 2 3  to the system of axes x , x , x  are

Compute the stationary values of the diagonal components of the tensor and the direction

cosines of the system of the axes with respect to which they occur.
Ans. 

(b)  Compute the maximum value of the non-diagonal components of the tensor.      

             Ans.   = 3.2913, = 4.7882,  = 1.4969

  
15. The components of a symmetric tensor of the second rank with respect
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1 2 3 to the system of axes x , x , x  are

(a) Compute the stationary values of the diagonal components of the tensor and the

direction cosines of the system of the axes to which they are referred.
Ans. 

(b) Compute the maximum value of the non-diagonal component of the tensor.

Ans.   = 2.0394, =  4.0414,  = 2.002

16. The component of a symmetric tensor of the second rank with respect to the system

1 2 3of axes x , x , x  are 

(a) Compute the stationary values of the normal component of the tensor.

31 2(b) Compute the component of the tensor in the direction of the axes xN, xN, xN, shown

      in Fig. 1P16

Figure 1P16
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Ans. (a)  Ans. (b)

                           

References
For a more detailed presentation of vector algebra, see Weatherburn, C.E., Elementary Vector Analysis with
applications to Geometry and Physics,  G. Bell and Sons Ltd., London, 1931.
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Chapter

2
Strain and Stress Tensors

2.1 The Continuum Model

Bodies are composed of a large number of discrete particles (atoms, molecules) in

constant motion. Solids differ from liquids and liquids from gases in the spacing of these

particles and in the amplitude of their motion.

In studying the behavior of bodies the assumption is usually made that the material is

distributed in the space which it occupies without leaving gaps or empty spaces.  In other

words, it is assumed that at every instant of time, there is a particle at every point of the
space occupied by the body at that time.  This model is referred to in the literature as

continuum and it is used in all engineering disciplines because it is mathematically

convenient.  It permits integration and differentiation of the quantities describing the

behavior of a body which are functions of the space coordinates.  An infinitesimal portion

of a continuum is called a particle.  In this text we study the behavior of deformable solid
bodies subjected to external loads on the basis of the continuum model.

2.2 External Loads

Consider a body initially in a reference undeformed and unstressed state of

0mechanical  and thermal  equilibrium at the uniform temperature T .  In this state the† ††

body is not subjected to external loads and heat does not flow in or out of it because its

temperature is uniform.  Subsequently, the body is subjected to one or more of the

following external  loads:

1.  Body forces

2.  Surface forces

1 2 33. A temperature field  T(x , x , x )†††

4. Specified components of displacements of some particles of the surface of the body

†   When a body is in a state of mechanical equilibrium, its particles do not accelerate; that is, the sum

of the forces acting on any portion of the body and the sum of their moments about any point vanish.

††   When a body is in a state of thermal equilibrium, heat does not flow in or out of it; that is, the

temperature of all its particles is the same.

†††     In general the temperature changes from particle to particle.  The totality of temperatures assigned

to each particle of a body is referred to as the temperature field of the body.

         53 
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(2.1)

(2.2)

Figure 2.1  Surface traction on a particle of the surface of a body.

The points of the surface of the body where components of displacement are specified are

called its supports.  The forces exerted by the supports of a body on its particles are not

known.  They are called the reactions of the supports of the body.

The body forces are the result of the presence of a body in a force field and are

distributed throughout its mass.  The most important example of a body force is the

weight of the body resulting from its presence in the earth's gravitational field.  The

measure of the body force acting on a particle of a body located at point P whose

1 2 3coordinates are x , x , x  is called the specific body force at point P.  We denote it by

1 2 3B(x , x , x ) and it is defined as

where the volume ÄV includes point P as it approaches zero. ÄF  is the resultant bodyB

force acting on the particles of a small portion of the body of volume ÄV taken in the

deformed state.  However, as we shall see in Section 2.5, when the deformation of the

body is small, the change of its volume due to its deformation is negligible compared to

its undeformed volume. Consequently, we can approximate ÄV with the corresponding

volume in the undeformed state. 

The surface forces are exerted on the surface of a body through direct contact with

other bodies. The measure of the surface force acting on a particle of the surface of a body

located at point P whose coordinates are   is called the surface traction at point
P.  We denote it by   and it is defined as

The superscript n indicates that the unit vector outward normal to the surface of the body

nat point P is denoted by i .  ÄF  is the resultant of the forces acting on a small portion ofs

the surface of the body of area ÄS, which includes point P, as it approaches zero.  In

ngeneral the surface traction at point P need not be in the direction of the unit vector i  (see

Fig. 2.1).

Due to the application of the external loads described above the body deforms and

reaches a second state of mechanical but not necessarily thermal equilibrium.  We call the

afore described initial reference state of  equilibrium the undeformed state and the second

state of mechanical equilibrium, the deformed state.
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(2.3)

(2.4)

2.3 The Displacement Vector of a Particle of a Body

Consider an infinitesimal portion (particle) of a body, located in the undeformed state

0 1 2 3at point P  (x , x , x ), whose position vector, referred to a fixed origin O, is designated

0 1 1 2 2 3 3 1 2 3 1 2by r  = x i + x i + x i  where i , i  and i  are unit vectors in the direction of the x , x
3and x  axes, respectively.  When the body reaches its deformed state, the particle under

1 2 3consideration moves to a point P (î , î , î ) whose position vector, referred to the same

1 1 2 2 3 3 1 2fixed origin O, is designated by r = î i + î i  + î i .  Variation of the coordinates x , x ,

3 1x  indicates a different particle which in the deformed state has different coordinates î ,

i2 3 1 2 3î , î .  In other words, the coordinates î  (i = 1, 2, 3) are functions of x , x  and x .  We

i 1 2 3assume that the functions î  (x , x , x ) (i = 1, 2, 3) have continuous partial derivatives of

any order required.  Referring to Fig. 2.2, we define the displacement vector
0 of the particle of the body located at point P , prior to deformation,

by the following vector equation:

or

Notice that in relations (2.3) and (2.4) the coordinates of a particle in the deformed

state are expressed in terms of its coordinates in the undeformed state.  This is known as

the Lagrangian method of describing the deformation of a body.  In another method, the

Eulerian, the coordinates of a particle in the undeformed state are expressed in terms of

its coordinates in the deformed state.  In the mechanics of solid bodies the Lagrangian

method is more convenient and it is exclusively used in this text.

In  general,  the  magnitude  and  direction  of  the displacement vector changes from

Figure 2.2  Displacement vector of a particle of a body.
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(2.6a)

        (2.5a)

        (2.5b)

          (2.5c)

1 2 3particle to particle.  The totality of the displacement vectors (x , x , x ) assigned to each

particle of a body is referred to as the displacement field of the body.

2.4 Components of Strain of a Particle of a Body

In this section we define certain quantities which specify completely the change of

geometry (deformation) of a particle of a body as the body goes from its undeformed to

its deformed state.  These quantities are not affected by the rigid body motion of the

particle. Consider a particle of a body which in the undeformed state is an orthogonal

0 0 0 0 1 2 3 0 1 2 3parallelepiped P X Y Z  with edges dx , dx , and dx , located at point P  (x , x , x ) (see

Fig. 2.3).  In general, as the body goes from its undeformed to its deformed state its

particles translate, rotate and deform (elongate, or shrink and distort).  The translation and

rotation of a particle are rigid-body motions.  Material straight lines and planes of a body

in its undeformed state are likely to become curves and non-planar surfaces, respectively,

in its deformed state.  However, within the infinitesimal domain of a particle we assume
that straight lines, planes and parallelism of straight lines and planes are preserved.

Therefore, in general, the deformed particle under consideration is a non-orthogonal

parallelepiped PXYZ (see Fig. 2.3). Consequently, the geometry of the deformed particle

is completely specified if the lengths of its three edges ,  and  and its three

angles ÊXPY, ÊXPZ and ÊYPZ are specified.  When the geometry of the deformed

particle is known the change of its geometry due to its deformation can be established as

the difference of its undeformed from its deformed geometry.

Referring to Fig. 2.3, we choose the following dimensionless quantities as the measure

of the change of length of the three edges of the particle under consideration, due to its

deformation

ii iE  (i = 1, 2, 3) is called the unit elongation or shrinkage in the direction of the axis x  of
0the particle which was located in the undeformed state at point P .  On the basis of its

iidefinition E  represents the change of length divided by the undeformed length of a

material line segment of infinitesimal length which in the   undeformed state was located

i0at point P  and was oriented in the direction of the axis x  (i = 1, 2, 3).  From relations

(2.5), we see that the lengths of the edges of the deformed particle are 
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          (2.6b)

          (2.6c)

(2.7a)

(2.7b)

(2.7c)

Figure 2.3  Deformation of a particle.

Referring to Fig. 2.3, we choose the following quantities as a measure of the change

of the angles of the deformed particle under consideration

ij i jã  (i, j = 1, 2, 3  i � j) is called the unit shear in the directions of the axes x  and x  of a
ij0particle located in the undeformed state at point P .  On the basis of its definition, ã

represents the change of the angle between two infinitesimal material line segments which

0in the undeformed state were located at point P  and were mutually perpendicular and

i joriented in the directions of the axes x  and x . With the definitions (2.7) we have

ijestablished the convention that positive unit shear ã  indicates reduction of the before

deformation right angle.

We have defined a set of six quantities with respect to the rectangular system of axes

1 2 3 11 22 33x , x , x  (the three unit elongations or shrinkages E , E , E  and the three unit shears

12 13 23ã , ã , ã ), which specify completely the change of geometry of a particle due to its

deformation.  Such a set of six quantities can be defined with respect to any rectangular

system  of  axes.  In  what  follows,  we  use  geometry  to express the unit elongations or

shrinkages and the unit shears of a particle in terms of derivatives of its components of
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          (2.8a)

         (2.8b)

(2.9a)

(2.9b)

(2.10a)

displacement.  Referring to Fig. 2.4, consider two material infinitesimal line segments

1 and  of a body directed prior to deformation, the one along the x  axis and the

2other along the x  axis.  After deformation, these infinitesimal material line segments

translate, rotate and elongate or shrink.  Moreover, the angle between them changes.  In

Fig. 2.4 the deformed configurations of these line segments are indicated by  and ,

respectively.  Referring to Fig. 2.4, we have

Thus, the lengths of the line segments  and  are

11The unit elongation E  is equal to

12Moreover, referring to Fig. 2.4, we see that the unit shear ã  is equal to

Figure 2.4  Unit elongations and unit shears.
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(2.10b)

(2.11b)

   (2.12a)

       (2.12b)

          (2.12c)

(2.13a)

(2.13b)

Substituting relation (2.9a) into relations (2.10a), we obtain

(2.11a)

Similarly, we get

Moreover, using relations (2.9) and noting by referring to relations (2.6) that  = (1 +

11 1 22 2E ) dx  and  = (1 + E ) dx , we get

Similarly, we obtain

ijwhere the quantities  (i, j = 1, 2, 3) in relations (2.11) and (2.12) are known as the

components of the Lagrangian strain and are defined as:
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(2.13d)

(2.13e)

(2.13f)

(2.13c)

(2.14)

(2.15a)

(2.15b)

(2.15c)

Referring to relations (2.11) and (2.12), we see that the components of the  Lagrangian

strain of a particle specify completely its unit elongations or shrinkages and its unit

shears. Consequently, they are a measure of its deformation.  Moreover, it can be shown

that the components of the Lagrangian  strain are  components of a symmeric tensor  of

the second rank. When the unit elongations or shrinkages and the unit shears are very

small compared to unity, referring to relations (2.11) and (2.12), we have

From relations (2.13) we see that the components of the Lagrangian strain of a particle are

non-linear functions of derivatives of its components of displacement. Consequently, they

are very difficult to handle when employed in the solution of problems.  In order to

linearize these functions we limit our attention to bodies whose deformation is such that
the unit elongations, unit shears and rotations of their particles are very small compared
to unity and, moreover, the rotations are not of a higher order of magnitude than the unit
elongations or shrinkages and the unit shears.  This statement is known as the assumption
of small deformation.  It can be shown  that, on the basis of this assumption, the rates of†

i jchange (gradients) of the components of displacement [Mf /Mx  (i, j = 1, 2, 3)] are very

small compared to unity and the squares of a gradient and the products of two gradients

can be disregarded as compared to a gradient.  Thus, referring to relations (2.13) and

(2.14), we have

† For a more detailed discussion, see Novozhilov, V.V., Foundations of the Nonlinear Theory of Elasticity,
Gaylock Press,  Rochester, NY, 1953.
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(2.15d)

(2.15e)

(2.15f)

(2.16a)

(2.16b)

(2.17)

where 

Relations (2.16a) can be rewritten as

Notice that

Consequently, the nine quantities  form a symmetric matrix.  They are

1 2called the components of strain of the particle with respect to the system of axes x , x  and
3 11 22 33x .  The quantities e , e  and e  are called the normal components of strain of the

1 2 3 12 21 13 31particle in the directions of the axes x , x  and x , respectively, while e  = e , e  = e
3223and e  = e  are called the shearing components of strain in the directions of the axes 

ii1 2 1 3 2 3x ,  x  and x , x  and x , x , respectively.  The normal component of strain e  of a particle

is positive, if the infinitesimal material line element elongates and negative, if it shrinks.

In the range of validity of the  assumption  of  small deformation, the normal component

iiof strain e  (i = 1, 2 or 3) of a particle represents an approximation to the change of length

due to the deformation divided by the undeformed length of an infinitesimal material line

element of this  particle  which  prior  to deformation was oriented in the direction of the

iaxis x  (i = 1, 2, 3).

www.EngineeringEBooksPdf.com



62 Strain and Stress Tensors

(2.18)

(2.19)

        (2.20a)

          (2. 20b)

          (2.20c)

2.5 Implications of the Assumption of Small Deformation

Except for Chapter 17, in this text we consider bodies which are subjected to external
loads of such magnitudes that their deformation is within the range of validity of the
assumption of small deformation (see Section 2.4).  As a result of this assumption, the

following approximations can be made:

1. The deformation of a particle of a body is completely specified by its components of

1 2strain which are related to the derivatives of the components of displacement (x , x ,

3 1 2 3 1 2 3x ), (x , x , x ) and (x , x , x ) of the particle by the linear relations (2.16).

2. The change of length, area or volume of a segment of a body due to its deformation is

negligible   compared   to   its   undeformed   length,   area   or   volume,   respectively.

Consequently, when we consider the equilibrium of a portion of a body (finite or

infinitesimal) we do not take into account the change of its dimensions due to its

deformation. That is, when we draw its free-body diagram we use its undeformed

configuration. For example, we use the free-body diagram, shown in Fig. 2.5b when we

ccnsider the equilibrium of point 2 of the truss of Fig. 2.5a.  In this case, we have

It is apparent that the relation between the internal forces in the members of the truss N(1)

= N  and the external force P is linear.  This is not true if the effect of the rotation of the(2)

members of the truss on the magnitude of their internal forces is taken into account.  In

this case referring to Fig. 2.5c, we have

The magnitude of the angle  depends on the magnitude of the external force P.

Consequently, the relation between the internal forces in the members of the truss and the

external force P is not linear.

As a second example, we consider the equilibrium of a segment of a beam subjected

3 1to a transverse P  and an axial P  forces as shown in Fig. 2.6.  If the effect of the change

due to its deformation of the geometry of the beam on the magnitude of its internal

moment is not taken into account, we use the free-body diagram of Fig. 2.6b.  In this case,

we have
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(2.21a)

(2.21b)

(2.21c)

(a) Geometry and loading           (b)  Free-body diagram of                  (c) Free-body diagram of

     of the truss joint 2 disregarding the                     joint 2 including the

change of the angle a due                 change of the angle a due 

          to the  deformation                           to the deformation

 

Figure 2.5  Two-member truss subjected to an external force.

Thus, in this case, the internal forces and moment acting on a cross section of the beam

are related to the external forces by a linear relation.

If the effect of the change of the geometry of the beam due to its deformation on the

magnitude of its internal moment is taken into account, referring to Fig. 2.6c, we have

           (a) Geometry and loading of the beam

(b) Free-body diagram of a segment of the (c) Free-body diagram of a segment of the

   beam using its undeformed configuration         beam using its deformed configuration

Figure 2.6  Beam subjected to transverse and axial forces.

www.EngineeringEBooksPdf.com



64 Strain and Stress Tensors

       (2.22a)

                (2. 22b)

3The magnitude of the components of translation u  depends on the magnitude of the

1 3external forces  P  and P .  Consequently, as can be seen from relation (2.21c), the

internal moment acting on a cross section of the beam is not related to the external forces

by a linear relation.

The assumption of small deformation cannot be used for the following problems of

interest to the engineer:

1. In analyzing beams subjected to transverse and axial forces when the effect of the axial

forces on their bending moment cannot be neglected

2. In establishing the loading under which a structure or a group of its members reaches

a state of unstable equilibrium (see Chapter 18) 

3. In analyzing long cables subjected to transverse forces

2.6 Proof of the Tensorial Property of the Components of Strain

ijIn this section we prove that the quantities e  (i, j = 1, 2, 3) defined by relation (2.16)

are components of a symmetric tensor of the second rank.  For this purpose we consider

1 2 3 1the displacement vector by (x , x , x ) of a particle of a body and we denote by (x ,

n2 3 1 2 3x , x ) and (x , x , x ) its components with respect to the rectangular system of axes x
nand x N (n = 1, 2, 3), respectively.  That is,

Referring to relations (1.31), we have

iDifferentiating this relation with respect to x , we obtain

Using the chain rule of differentiation, we get

The position of a point in space may be specified by a position vector r with respect to

a fixed point O.  The components of this vector with respect to a rectangular system of

axes having as its origin point O are the coordinates of the point with respect to that

system of axes. For example, the components of the vector r with respect to the

1 2 3 1 2 3rectangular systems of axes x , x , x  and x N, x N, x N with origin the fixed point O are

1 2 2 3 3 1 1 2 2 3 3           r = xi  + x i  + x i  = x Ni N + x Ni N + x Ni N

www.EngineeringEBooksPdf.com



65Proof of  the Tensorial Property of the components of Strain

(2.23a)

(2.23b)

(2.24a)

(2.24b)

   (2.25)

(2.26)

(2.27)

Referring to relations (1.31) and (1.32), the transformation relations of the coordinates of

i ja point with respect to two rectangular systems of axes xN (i = 1, 2, 3) and x (j = 1, 2, 3) are

and

jDifferentiating relation (2.23a) with respect to x , we get

iSimilarly, by differentiating relation (2.23b) with respect to xN, we obtain

Substituting relation (2.24a) into (2.22a), we obtain

Substituting relation (2.25) into (2.22), we get

Multiplying both sides of the above relation by       and adding for n = 1, 2, 3, we obtain

Referring  to  relations  (1.25a),  we  see  that  the                       is equal to zero if j � k and

to unity if j = k. Thus, the above relation reduces to

jTherefore, on the basis of our discussion in Section 1.5, the nine quantities M    /Mx  (I, j
= 1, 2, 3) transform as components of a tensor of the second rank.  Similarly, we can show

that

www.EngineeringEBooksPdf.com



66 Strain and Stress Tensors

  (2.28)

(2.29)

(2.30)

(2.31)

  (2.32)

Thus, using relations (2.26) and (2.27), we get

Similarly, we can show that

ijThus, the nine quantities e  (i, j = 1, 2, 3) transform according to relation (1.70) and,

consequently, are components of a symmetric tensor of the second rank.

2.7 Traction and Components of Stress Acting on a Plane of a Particle of a Body

Consider a body in equilibrium under the influence of external loads.  Imagine that the

cbody is cut into two parts (part I and II) by a surface S  (not necessarily a plane) passing

through point P (see Fig. 2.7).  Generally, there will be a distribution of forces exerted by

cthe particles of the one part of the surface S  of the body on the particles of the other part

cof the surface S .  On the basis of Newton's law of action and reaction, the distribution

cof forces on the surface S  of part I, must be equal and opposite to the distribution ofI

c c cforces on the surface S  of part II.  Consider a portion ÄS  of the surface S  whichIII I I

nincludes point P and denote by i  the unit vector outwardly normal to it at point P.  The

resultant of the forces acting on this portion is denoted by ÄF.  Moreover, consider a

c c nportion ÄS  of the surface S , which includes point P and denote by !i  the unit vectorIII III

outwardly normal to it at point P.  The resultant of the forces acting on this portion is

denoted by !ÄF.  The traction, also known as the stress vector, at point P, acting on the

csurface S  of part I is denoted by  and is defined asI

cwhile the traction at point P, acting on the surface ÄS  of Part II is denoted by  and isIII

defined as

Comparing relations (2.30) and (2.31), we see that

Notice that the surface elements  and  have been defined when the body was in
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(2.33)

Figure 2.7  Body cut in two parts by a plane passing through point P.

the deformed state.  However, for deformation within the range of validity of the assumption

of small deformation the change of an area due to deformation is negligible compared to its

value in the undeformed state.  Therefore, it is immaterial whether the traction is referred

to the deformed or undeformed state. On the basis of its definition, the traction is a vector

whose magnitude is in units of force per unit area [FL ].  It is apparent that the traction at-2

ncpoint P, acting on the surface S  need not be in the direction of unit vector  i ,  normal  toI

c cthis  surface  at  point  P. In  relations  (2.30)  and (2.31) ÄS  and ÄS  include point P asI III

they approach zero.  Moreover, it has been postulated that the limits in these relations

c cexist and are independent of the way the portions of surface ÄS  and ÄS  shrink to zero.I III

c cIn fact, ÄS  and ÄS  could be portions of any surface through point P, whose normal atI III

npoint P is the unit vector i . It is apparent that the magnitude and direction of the traction

 at a point P of a body, acting on a plane nn, generally are different than the magnitude

and direction, respectively, of the traction  at point P, acting on another plane mm.

nThe traction  at point P of a body on a plane specified by the unit vector i  may be

expressed as the sum of its components in three mutually perpendicular directions

n t pspecified by the unit vectors i , i , i .  That is,

nnwhere ô  is called the normal component of stress at point P acting on the plane normal

n nt npto the unit vector i  while ô  and ô  are called the shearing components of stress at point

n tP acting on the plane normal to the unit vector i  in the directions of the unit vectors i  and

pi , respectively.  Notice that the first subscript indicates the direction of the normal to the

plane on which the stress acts, while the second subscript indicates the direction of the

n 1component of stress.  In Fig. 2.8, the vector i  is parallel to the axis  x . In this case the

1normal component of stress at a point P acting on the plane normal to the x  axis is

11denoted by ô  and is represented schematically by an arrow acting normal to this plane,

1whereas the shearing components of stress at point P acting on the plane normal to the x
2 3 12 13axis in the directions of the x  or x  axis are denoted by ô  or ô , respectively.  They are

1 2 3represented by arrows on the plane normal to the x  axis in the directions of the x  or x
axis.  Referring  to  relation   (2.31),  the   tractions   and  (i = 1, 2, 3,) acting on the
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(2.34a)

(2.34c)

(2.34b)

1Figure 2.8  Body cut in two parts by a plane normal to the x  axis passing through point P. 

1 2 3planes of a particle which are perpendicular to the x , x , x  axes, are given as

A schematic representation of the state of stress of a particle of a body is shown in Fig.

2.9; in this figure, plane ANENDNCN of the parallelepiped represents the plane of the

1particle which is normal to the x  axis as viewed on part I of the body (see Fig. 2.8),

whereas plane AEDC of the parallelepiped represents the same plane of the same particle

as viewed on part II of the body (see Fig. 2.8).  Similarly, planes AANEEN and DDNCNC
2represent the plane of the same particle  which is normal to the x  axis.  The components

of stress at a point are assumed positive as shown in Fig. 2.9.  A positive, normal

component of stress is referred to as tension.  It tends to elongate an infinitesimal material

line segment oriented along the line of action of the stress.  A negative normal component

of stress is referred to as compression.  It tends to shorten an infinitesimal material line

segment oriented along the line of action of the stress.

2.8 Proof of the Tensorial Property of the Components of Stress

In this section we prove that the components of stress are components of a tensor of

the second rank.

Consider the material tetrahedron OABC shown in Fig. 2.10.  This tetrahedron may be

located either inside the body or on its surface.  In the latter case, surface ABC = ÄA is

a portion ÄA of the surface of the body.  The unit vectors normal to the faces OAC, OBC,

1 2 3and OAB of the tetrahedron are !i , !i , !i , respectively, whereas the unit vector normal

n ito the face ABC is denoted by i  and its components with respect to the x  (i = 1, 2, 3) axes

are denoted by      (i = 1, 2, 3).  That is,

www.EngineeringEBooksPdf.com



69Proof of the Tensorial Property of the Components of Stress       

       (2.35a)

(2.35b)

(2.36a)

(2.36b)

 (2.37)

Referring to Fig. 2.10, consider the plane OAD which is perpendicular to line CB and

2contains the x  axis.  It is apparent that line CB is perpendicular to any line in the plane

OAD and, in particular, to line OD.  Thus,

Moreover, referring to Fig. 2.10, we have

Using relations (2.35a) and (2.35b), we get

Similarly, we obtain

In Fig. 2.10,  (i = 1, 2, 3) and  are the average  tractions acting on the  faces of the†

i ntetrahedron which are normal to the unit vectors !i  (i = 1, 2, 3) and i , respectively.

Moreover,  is the average specific body force acting on the  tetrahedron.  Considering

the equilibrium of the tetrahedron and using relations (2.36), we get

Figure 2.9  Schematic representation of the state Figure 2.10  Material tetrahedron.

     of stress at a point.

† The average traction  is equal to the resultant force vector acting on the face OAC of the tetrahedron

of Fig. 2.10 divided by the area of this face.
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(2.44)

  (2.45)

      
          (2.38)

(2.39)

(2.40)

(2.43)

                 (2.41)

 (2.42)

where ÄV is the volume of the tetrahedron.  Notice that ÄV = (Äh)ÄA/3), where Äh = O6E6
is the length of the line which is perpendicular to the plane ABC from point O (see Fig.

2.10).  Dividing both sides of the equation (2.37) by ÄA, we obtain

In the limit as Äh 6 0 (in a way that point E moves toward point O), the tetrahedron

degenerates into a particle located at point O.  Moreover,

where  (i = 1, 2, 3) is the traction acting on the particle located at point O on the plane

inormal to the unit vector !i  (i = 1, 2, 3); B is the specific body force acting on the particle

located at point O.  Thus, in the limit as Äh approaches zero, equation (2.38) reduces to

From equation (2.32), we have

Substituting relation (2.41) into (2.40), we obtain

Notice that the term in parentheses in relation (2.42), is the sum of dyads. Consequently,

it is a tensor of the second rank (see Section 1.3). It is called the stress tensor of the

material particle under consideration and we denote by ô. That is

In Section 2.13, we show that the stress tensor is symmetric.

Using relation (2.43), relation (2.42) can be written as

Substituting relation (2.34) into (2.42), we get

1 2 3Referring to Fig. 2.10, consider another set of axes x N, x N, x N with origin point O (the

1 2 3origin of the set of axes x , x , x ); with respect to this set of axis, we have
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        (2.46)

or

ijô (i, j = 1, 2 or 3) are the components of the stress tensor acting on the three planes which

1 2 3are normal to the x , x , x  axes of the particle under consideration.  Notice that each

component of stress is associated with two unit vectors.  The first is normal to the plane

on which the component of stress acts while the second acts in the direction of the

component of stress. It is clear that the stress tensor of a particle specifies completely the

state of stress of the particle.

2.9 Properties of the Strain and Stress Tensors

ijIn Section 2.6 it is shown that the nine components of strain e  (i, j = 1, 2, 3) of a

1 2 3particle of a body referred to a rectangular system of axes x , x , x  are cartesian

components of a symmetric tensor of the second rank called the strain tensor.  Moreover,

ijin Section 2.8 it is shown that the nine components of stress ô  (i, j = 1, 2, 3) acting on

three mutually perpendicular planes of a particle of a body are components of a tensor of

the second rank called the stress tensor.  In Section 2.13, we prove that the stress tensor

is symmetric. On the basis of our discussion in Sections 1.3, 1.4 and 1.9 to 1.13, the strain

or stress tensors of a particle of a body have the following properties:

ij ij1. They are specified by their nine components e  (i, j = 1, 2, 3) or ô  (i, j = 1, 2, 3) with

1 2 3respect to a rectangular system of axes x , x , x . That is, if the nine components of strain

ij ije  (i, j = 1, 2, 3) or stress ô  (i, j = 1, 2, 3) of a particle are known with respect to a

rectangular system of axes, its components with respect to any other rectangular system

of axes can be obtained using the following transformation relation:

(2.47a)

and

                                               (2.47b)

1 2 3 1where      and       are the direction cosines of the x N, x N and x N axes with respect to the x ,

 122 3 1 2x and x  axes; that is, ë  is the cosine of the angle between the axes x N and x  (see

kmSection 1.1.4).  e  or        (k, m = 1, 2, 3) are the components of strain or stress,

ij1 2 3respectively, referred to the rectangular system of axes x , x , x  while eN  (i, j = 1, 2, 3)

ijor ôN  (i, j = 1, 2, 3) are the components of strain or stress, respectively,  referred to the
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              (2.49)

(2.50a)

(2.50b)

1 2 3rectangular system of axes x N, x N and x N.  Relations (2.47) can be written in matrix form

as

(2.48a)

and

(2.48b)

s swhere [Ë ]  is the transpose of the matrix [Ë ] defined by relation (1.24a) and [e] and [ô]T

are the matrices of the components of strain and stress, respectively, referred to the axes

1 2 3x , x , x , given as

2. There exists at least one rectangular system of axes, called principal axes, with respect

to which the shearing components of strain vanish, while the normal components of strain

assume stationary values.  That is, one is the maximum and another is the minimum of

the normal components of strain  with respect to any axis.

3. There exist at least three mutually perpendicular axes, called principal, which are

normal to the planes on which, the shearing components of stress vanish, while the

normal components of stress assume stationary values.  That is, one is the maximum and

another is the minimum of the normal components of stress  acting on any plane.

4. The quasi plane form of the tensor [e] or [ô] transforms in accordance with relations

(1.116).  Moreover, this transformation can be applied using Mohr's circle.

In general, the strain or stress tensors change from particle to particle.  That is, its

components referred to the same system of axes are functions of the space coordinates.

1 2 3 1 2 3The totality of the strain [e(x , x , x )] or stress [ô(x , x , x )] tensors assigned at each

point of a body is referred to as the strain or stress field of the body, respectively.

Referring to relation (1.60), the normal component of strain in the direction of the unit

nvector i  and the normal component of stress acting on the plane normal to the unit vector

ni  are equal to

and

Moreover, referring to relation (1.59) the shearing component of strain referred to the

n sdirections i  and i  and the shearing component of stress acting on the plane normal to the

n sunit vector i  in the direction of the unit vector i  are equal to
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(2.51)

11 22 33As discussed previously, the three unit elongations E , E  and E  and the three unit

12 13 23 1shears ã , ã  and ã  of a particle of a body referred to a rectangular system of axes x ,

2 3x  and x  specify completely the deformation of this particle. In the case the unit

elongations, the unit shears and the rotations are very small compared to unity and the

rotations are not of a higher order of magnitude than the unit elongations and unit shears.

Referring to relations (2.15), we see that the nine components of strain of a pa rticle

 1 2 3referred to a rectangular system of axes x , x and x  specify completely the deformation
of this particle; that is, the deformation of a particle of a body is specified by a symmetric
tensor of the second rank whose components are linearly related to the derivatives of the
components of the displacement vector     of the particle [see relations (2.16)].

In what follows we present four examples.

                                                                                                                                             

Example 1  The components of strain of a particle of a body were measured as

1. Compute the principal normal components of strain and the directions of the principal

axes and show them on a sketch.

1 22. Compute the components of strain with respect to the axes x N, x N shown in Fig. a.

 Figure a  Orientation of the  axes.

2Solution  We know the coordinates of two points on Mohr's circle, namely, X (0.008,

30.004) and X (0.002, !0.004) which are located on the same diameter.  In Fig. b we plot

22 23these points on the e N  e N  plane and we draw the diameter of Mohr's circle.  It is apparent

22that the center of the circle is at e N  = 0.005.  Moreover, the radius of the circle is equal

to
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Thus, referring to Fig. b, the principal values of the normal components of strain are

Referring to Fig. b, the angle  is equal to

Thus,

The direction of the principal axes is shown in Fig. c.

2As shown in Fig. b, point X N whose coordinates are the unknown components of strain

1 2 2with respect to the x N, x N axes is located 60° counterclockwise from point X .  Thus, the

angle  is equal to 

Consequently, referring to Fig. b, we have

The results indicate that the right angle between two material lines which before

deformation were the one in the direction of the line        and the other in the direction of

 the line        will decrease, due to deformation, by

Figure b  Mohr's circle. Figure c Direction of the principal axes.
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23 23ãN  = 2eN  = 0.0092 rad

                                                                                                                                             

                                                                                                                                             

                                                                    

Example 2  The components of stress acting on a particle with respect to the rectangular

 jsystem of axes x (j = 1, 2, 3) are given as 

(a) Find the principal values of stress and the directions of the principal axes and

    show them on a sketch.

1(b) Compute the components of stress with respect to the rectangular system of axes x N,
2 3 1 2 3 3x N, x N, which are obtained by rotating the system of axes x , x , x  about the  x  axis, as

shown in Fig. a.

1 2 3Figure a  Location of the system of axes x N , x N , x N .

Solution

Part a

STEP 1  We make a sketch showing a plane view of the particle subjected to the given

components of stress (see Fig. b).

12 11STEP 2  We draw the ôN  and the ôN  axes of reference, as shown in Fig. c and we plot

1point X  whose coordinates are the components of stress acting on the plane normal to the

1x  axis.  Tensile stress is plotted as positive; shearing stress tending to turn the element

1in a counterclockwise direction is plotted as positive.  Thus, the coordinates of point X
2are 80 MPa and 15 MPa.  Then we plot point X  whose  coordinates are the components

2 1of stress acting on the plane normal to x  axis, that  is, 40 MPa and !15 MPa.  Points X
2 11and X  lie on the same diameter of Mohr's circle. The center of this circle is on the ôN  axis

11 22at a distance ½(ô  + ô ) = 60 MPa from the origin  while  the radius of the circle is

R = [(20)  + (15) ]  = 252 2 ½

www.EngineeringEBooksPdf.com



76 Strain and Stress Tensors

or

1STEP 3  Referring to Mohr's circle of Fig. c, we compute the maximum value ô  of the

1 2normal components of stress acting on any plane normal to the x  x  plane.  That is

2Moreover, the minimum value ô  of the normal component of stress acting on any plane

1 2normal to the x  x  plane is equal to

2 3 33Notice that the minimum normal component of stress is not ô  but rather ô  = ô  = 10

MPa. 

11The angle  from the x  axis to the principle axis x  may be computed~

geometrically by referring to Fig. c.  That is,

Thus,

Figure b  State of stress of the particle. Figure c  Mohr's circle.

1 2STEP 4  We locate the principal planes.  One principal plane is the x  x  plane. The other

1 2two are normal to x , x  plane. The plane on which the maximum normal  component of

1 11 1stress ô  acts is located by the angle  = 18.43° counterclockwise from the x  axis.  This

1is so because the point on the Mohr's circle whose coordinates are (ô , 0) is located by the

11 1angle 2  = 36.87° clockwise from point X .  The principal planes are shown in Fig. d.

Part b
1 2STEP 5  We locate on Mohr's circle the points X N and X N whose coordinates are the

1 2components  of  stress  acting  on  the planes normal to the x N and x N axes, respectively.
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Figure d  Principal planes and principal      Figure e  Components of stress on acting the 

 normal components of stress.      planes normal to the   axes.

1 1 1Since the x N axis is located 10° clockwise from the x  axis (see Fig. a), point X N is located

1on Mohr's circle 20° counterclockwise from X  (see Fig. c).  From geometric

considerations, referring to Fig. c, we establish the components of stress acting on the

1 2planes normal to x N and x N axes as

1 2 3The components of stress acting on the planes normal to the x N, x N, x N axes are shown in

1Fig. e.  Notice that the shearing components of stress acting on the plane normal to the x N
axis is positive and consequently its direction must be such that it tends to turn the

element in a counterclockwise direction.

                                                                                                                                             

                                                                                                                                             

Example 3  The components of stress acting on a particle of a body when referred to the

1 2 3system of axes specified by the unit vectors i , i , i  are given as

Compute the normal and shearing components of stress acting on a plane specified by the

n 1 2 3unit vector i  = (1/%3) (i  ! i  + i )
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2 3Solution  For any two conveniently chosen mutually perpendicular directions i N and i N
n 1 12 13in the plane normal to the unit vector i  = i N the components of stress ôN  and ôN  may be

found by using relations (2.47a) or (2.48a).  The resultant shearing stress acting on the

nplane normal to the unit vector i  may be found from the components of shearing stress

12 13ôN  and ôN .  However, this straightforward procedure is somewhat cumbersome.  Instead,

nthe components of traction acting on the plane normal to the unit vector i  may be found

by using relations (2.44).  That is   

The traction may now be decomposed into two components - one normal and the other

nntangential to the plane on which it acts (see Fig. a).  The normal component ô  is given

by

ntReferring to Fig. a the tangential component of traction ô  may be found from the

following relation:

Hence

tThe shearing component of stress acts in the direction specified by the unit vector i  given

by

nFigure a  Traction and components of stress acting on the plane normal to the unit vector i .
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   (a)

(b)

 (c)

(d)

         (e)

                                                                                                                                             

                                                                                                                                             

Example 4   Compute the stationary values of stress and the principal directions at a

1 2 3particle whose components of stress with respect to the x , x , x  axes are

Solution On the basis of their definitions (1.78) to (1.80) the invariants of stress are

Therefore, equation (1.105) becomes

This equation may be solved either by employing one of the standard procedures for

establishing the roots of a cubic equation or by employing a numerical technique, to yield

In order to establish the direction of the unit vector normal to the plane on which the

1 1stationary value of stress ô  acts, we substitute the value of ô  from the first of relations

(c) into the first and second of equations (1.103).  Thus,

Solving equations (d), we obtain

  1 1Substituting relations (e) into the orthogonality condition i @ i = 1 [see relation (1.25b)]

11 12 13or ë  + ë  + ë  = 1, we get2 2 2
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(2.52a)

(2.52b)

(2.52c)

(2.52d)

(2.52e)

(2.52f)

(2.53a)

(2.53b)

It can be shown that the calculated direction cosines satisfy the last of equations (1.103)

with            1   03.2.  Similarly, using the values of      and      we obtain the following sets

of direction cosines corresponding to directions normal the planes on which      and      act.

As a check, it can be shown that the calculated direction cosines satisfy relations (1.25).

                                                                                                                                             

2.10 Components of Displacement for a General Rigid Body Motion of a Particle

Within the range of validity of the theory of small deformation, the components of

ijstrain e  (i,  j = 1, 2, 3) of a particle specify completely its deformation.  Consequently,

when all the components of strain of a particle  vanish, the particle has not been

deformed.  Either it did not move at all or it was displaced as a rigid body.  Therefore,

referring to relations (2.16), the components of displacement of a particle of a body for

a general rigid-body motion of this particle must satisfy the following relations:

Integrating relations (2.52a) to (2.52c), we obtain
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(2.53c)

(2.55a)

(2.55b)

(2.56a)

(2.56b)

(2.56c)

(2.56d)

       (2.57a)

        (2. 57b)

Substituting relations (2.53b) and (2.53c) into relation (2.52f), we obtain

1 2The left side of the above relation is a function of x  and x , while the right side is a

1 3 1function of x  and x  only.  Thus, both sides must be functions of x  only.  Integrating the

above relations, we obtain

2 3 1 2 1           u  = !x  f(x ) + c  (x ) (2.54a)^

3 2 1 3 1           u  = x  f(x ) + c  (x ) (2.54b)^

Substituting relations (2.54) into (2.52d) and (2.52e), we get

2 3The left side of the above relations is a function of x  and x  only, while the right side of

1 2 1 3the first is a function of x  and x  only and of the second is a function of  x  and x  only.

2Consequently, both sides of the first relation must be functions of x  only and both sides

3of the second relation must be functions of x  only.  Thus, relations (2.55) are valid if 

Consequently,

iWhere c  (i = 4, 5, 6, 7, 8, 9) are constants. Substituting relations (2.56) into (2.55) and

integrating, we get

Comparing equations (2.57a) with (2.57b), we have

4 10 2 6 2 12 11 3 5 3 12c  = 0 c (x ) = !c x  + c  c (x ) = !c x  + c (2.58)
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(2.59b)

(2.59c)

(2.60a)

(2.60b)

1Figure 2.11  Rigid-body rotation of a particle about the x  axis.

Substituting relations (2.58b) into (2.57), we get

1 6 2 5 3 12        u  =   !c x  ! c x  + c (2.59a)^

Substituting relations (2.56b, c, d) into (2.54) and using the first of relations (2.58), we

have

8 9 12The constants c , c  and c  represent rigid-body translation of the particles of the body,

5 6 7while the terms involving the constants c , c  and c  represent rigid-body rotation of the

particles of the body.  For example, referring to Fig. 2.11, we see that the rigid-body

1rotation of the particle about the x  axis is equal to

Substituting relation (2.59b) and (2.59c) into (2.60a), we get

2.11 The Compatibility Equations

1 2 3If we assume a distribution of the three components of displacement     (x , x , x ) (i
= 1, 2, 3) in a body, we can find the corresponding components of strain by substituting

the assumed components of displacement in relation (2.16).  However, if we assume a

ij ij ji1 2 3distribution of the six components of strain e  (x , x , x )(i, j = 1, 2, 3, e  = e ), it may not

be possible to find a corresponding distribution of the three components of displacement

by integrating the six partial differential equations (2.16). In this section we establish the

ij ij ji1 2 3restrictions that must be imposed on the function e  (x , x , x )(i, j = 1, 2, 3, e  = e ) in

order to ensure that equations (2.16) can be integrated to give a set of continuous single-
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(2.61a)

   (2.61b)

(2.62)

valued components of displacement     (i = 1, 2, 3).

Consider a body in its stress-free, strain-free reference state of mechanical and thermal

oequilibrium at a uniform temperature T .  Moreover, consider two particles of the body

o olocated at points P  and Q  which are an infinitesimal distance ds apart. The body

deforms due to the application on it of external loads and reaches a second state of

mechanical equilibrium.  As shown in Fig. 2.12, after deformation the two particles under

consideration move to points P and Q, respectively.  We denote the displacement vector

0 0of the two particles  which  were  located  prior  to  deformation at point P   and  Q  by

u and             , respectively.  The distance between points P and Q is equal to              .

It is apparent that if the components of displacement are single-valued continuous

functions of the space coordinates, all particles located on a closed curve before

deformation must move to a closed curve after deformation.  Moreover, if the particles

of every closed curve of an undeformed body move to a closed curve after deformation,

the components of displacement of the particles of the body are single-valued continuous

functions of the space coordinates.  That is, referring to Fig. 2.12a, a necessary and

sufficient condition which ensures that the components of displacement of the particles

of a body are continuous single-valued functions  of the space coordinates is that the

following relation is valid for the particles of every closed curve of the body:

Noting that for a closed curve

we obtain the following necessary and sufficient condition for single-valuedness and

continuity of the components of displacement of the particles of a body

where the integral is taken around every closed curve of the body.  It can be shown  that

a necessary  and  sufficient  condition  to ensure  the validity  of  relation (2.62) in a

simply

Figure 2.12  Deformation of a closed curve.
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(2.63)

connected body (that is, a body without holes) is that the components of strain satisfy the

following relations:

Thus, for a body without holes the satisfaction of equations (2.63) by a set of six functions

11 22 33 12 21 13 31 23 32e , e , e , e  = e , e  = e , e  = e  is a necessary and sufficient condition for

ensuring that relations (2.16) can be integrated to yield a set of three single-valued

continuous functions of the space coordinates.  However, for a body with holes, the

11 22 33 12 21 13 31satisfaction of relations (2.63) by a set of six functions e , e , e , e  = e , e  = e ,

23 32e  = e  ensures only that when these functions are substituted into relations (2.16), they

i 1 2 3can be integrated to give a set of three functions f  (x , x , x )(i = 1, 2, 3), which may or

may not be single valued and continuous.  If they are not, it is an indication that the six

ijfunction e  (i, j = 1, 2, 3) cannot be the components of strain of the body.

The six equations (2.63) are called the compatibility equations.  It can be shown that

they are equivalent to a system of three independent fourth order equations.  However,

it is more convenient to use the system of six second order equations (2.63) instead of the

equivalent system of three fourth order equations.

2.12 Measurement of Strain

Any device or instrument employed in measuring the change of a specified length of

a body is called an extensiometer.  In general, inasmuch as the change of this length is

very small, it is usually magnified.  The most commonly used extensiometers are the

resistance wire electrical strain gages, which are composed of a grid of fine wire filament

(usually 0.001 in. diameter) cemented on the surface of the body so that the wire of the

strain gage deforms as  the  surface  of  the  body  deforms.  The  operation  of  the strain
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(2.64)

Figure 2.13  Directions along which the normal component of strain is measured.

gage is based on the principle that, as the wire elongates or shrinks, its electrical resistance

changes in proportion to the change of its length.  The change of the resistance of the wire

is then measured accurately with a simple Wheatstone Bridge circuit, and converted into

a direct measure of the normal component of strain at the point of the body at which the

gage is bonded, in the direction of the gage.

Two strain gages would suffice in establishing the state of strain of a particle in a state

of plane strain, if the directions of the principal components of strains are known.  In

general, however, the directions of the principal components of strain are not known and,

consequently, the state of strain of a particle in plane strain can be specified by measuring

the normal component of strain in two mutually perpendicular directions and the shearing

component of strain associated with these directions.  The experimental measurement of

the shearing component of strain, however, is more difficult and for this reason, normal

components of strain are measured in three non-collinear directions.  An arrangement of

three strain gages which measure the normal components of strain in three different

directions is known as a strain rosette.  The gage lines of a strain rosette are located with

1respect to an axis x  (see Fig. 2.13) by the known angles                  . Inasmuch  as  a  plane

13 13 33strain condition is assumed (e  = e  = e  = 0), the measured strain components

11 12 12designated by                      are related to the strain components e , e , and e  [see

relations (1.116)] by the following relations:

This set of three simultaneous equations may be solved for the desired strain components

11 12 22 1 2e , e , e  referred to the directions x  and x .  However, in order to simplify the

computations,  the  strain  rosettes  are  manufactured  with  conveniently  chosen   angles

                , the most common of which are the 45° strain rosette (      = 0,      = 45°,       =

90°) and the 60° strain rosette (      = 0,      = 60°,       = 120°).  For the 45° strain rosette,
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(2.65)

(2.66)

relations (2.64) yield

while for the 60° strain rosette, relations (2.65) reduce to

In what follows we present an example.

                                                                                                                                             

Example 5  The following readings were taken by three strain gages attached to a body

in a state of plane strain, in the directions shown in Fig. a.

1. Find the principal normal components of strain and the direction of the principal axes.

1 22. Compute the components of strain with respect to the set of axes x N, x N, shown in Fig.

b.

1 2Figure a Location of the strain gages. Figure b  Location of the axes x N , x N .

Solution  Referring to relation (2.64), we have

1 2The minus sign indicates that the angle px Ox , which was a right angle prior to

12 12deformation, has increased due to deformation by approximately ã  = 2e  = 0.17°.
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1Referring to Fig. c, we plot point X  whose coordinates are 0.002 and !0.0015 and

2point X  whose coordinates are 0.006 and 0.0015.  These points lie on the same diameter

11 11 22of Mohr's circle.  The center of this circle is on the e  axis at a distance 1/2 (e  + e )N

= 0.004 from the origin.  Moreover, from geometric considerations, referring to Fig. c, the

radius of Mohr's circle is

Part a

Referring to Fig. c, we see that the maximum normal component of strain is

1 2while the minimum in the x x  plane is

1Using  geometry,  the  angle    between  the  x   axis  to  the principal axis  may be

computed as

1 2The principal axes x , x  are shown in Fig. d.~ ~

Part b

1 1 1Since the axis x N is located 20° clockwise from the axis x , point X N on Mohr's circle

11 12 1 2whose coordinates are the components of strain e N  and e N  with respect to the x N and x N
1axes is located 40° counter clockwise from point X .  Referring to Fig. c, from geometric

considerations, we obtain

Figure c  Mohr's circle. Figure d  Location of the principal axes.
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12 1 2The minus sign in e N  indicates that the angle px Ox  increased due to the deformation

by

                                                                                                                                             

2.13 The Requirements for Equilibrium of the Particles of a Body

Consider a body initially in a stress-free, strain-free state of mechanical and thermal

0equilbrium at the uniform temperature T .  Subsequently, the body is subjected to external

loads and reaches a second state of mechanical but not necessarily thermal equilibrium.

In this text we are interested in establishing the displacement and stress fields in the body

when it is in its second state of mechanical equilibrium.  Clearly the stress field must be

such that every particle of the body is in equilibrium.  That is, the sum of the forces of the

components of stress acting on each particle of the body and their moments about any

point must vanish.

In what follows, we consider two particles of the body in the second state of

mechanical equilibrium. The one is located inside the volume of the body or on the

portion of its surface where components of displacement are specified (see Fig. 2.14).

The other is located on the portion of the surface of the body where components of

tractions are specified (see Fig. 2.15).  The particle shown in Fig. 2.14 is subjected to

Figure 2.14  Free-body diagram of a particle Figure 2.15  Free-body diagram of a particle located

located  inside the volume of a body or on the on the portion of the surface of the body where the 

portion of its surface where the components components of traction are specified.  

of displacement are specified.
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(2.67)

 (2.68)

(2.69a)

(2.69b)

(2.69c)

components of stress on its faces and  distribution of body forces whose resultant acts

through its mass center. The components of stress acting on any face of the particle in

general vary throughout this face. Thus, referring  to  Fig. 2.14,                                       

and                        are  the  average  components  of  stress acting on face OGFD, while

                                                             and                                  are    the    average

 components  of  stress  acting  on  face  ABCE.  Inasmuch as the components of stress are

differentiable functions,                                can be expressed in terms of its values at the

1 2 3neighboring point (x , x , x ) using a Taylor series expansion.  That is, disregarding the

1terms involving second or higher powers of dx , we have

11 1 2 13where the partial derivative of ô  is evaluated  at point (x , x , x ).  Since the element

is in equilibrium, the sum of the forces acting on it must vanish.  Therefore, we may write

 1 2 3Collecting terms and dividing by dx  dx dx , we have

Similarly, we obtain

Equations (2.69) are referred to as the equations of equilibrium.  They must be satisfied

by the components of stress acting on any three mutually perpendicular planes at every

particle located inside the volume of a body.

In addition to the above, the equilibrium of an element requires that the sum of the

moments of all the forces acting on it, about any point, must vanish.  We may, therefore,

write
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(2.71a)

       (2.71b)

        (2.71c)

 (2.73a)

            (2.73c)

            (2.73b)

(2.70)

Simplifying and neglecting higher order terms, we obtain

Similarly, we have

Therefore, we may conclude that the components of stress of a particle are components
of a symmetric tensor of the second rank.

In Fig. 2.15 we show a particle of a body, in the form of tetrahedron OABC, located

on its boundary.  The surface ABC of the particle is a portion of area ÄA of the surface of

the body where the components of traction  are specified.  From the

equilibrium of the particle we have

(2.72)

where referring to Fig. 2.15 Äh is the distance from point O to the plane ABC.

Substituting relations (2.34) into (2.72) and dividing by ÄA, in the limit as Äh approaches

zero, we obtain
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(2.74)

(2.75)

(2.76)

These relations may be written as

Relations (2.73) relate the specified components of tracton acting on a particle of the

surface of a body to the components of stress acting on three mutually perpendicular

planes of this particle.  It is clear that the actual components of stress acting on this

particle must satisfy relations (2.73).  In this case we say that the components of stress

satisfy the given traction boundary conditions at that particle.  Notice that relations (2.73)

apply to any particle of the body.  For a particle which is located inside the volume of a

body they represent relations among the components of stress acting on three mutually

perpendicular planes of the particle and the components of traction acting on the plane

nof the particle specified by the unit vector i  (see Fig. 2.15).

2.14 Cylindrical Coordinates

Problems involving deformable bodies having circular cylindrical boundaries can be

1solved more conveniently by using cylindrical coordinates x , r, è.  Referring to Fig. 2.16,

the cylindrical coordinates of a point are related to its cartesian coordinates by the

following relations:

and

Figure 2.16  Cylindrical coordinates.
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(2.77)

           (2.78)

(2.79)

(2.80a)

iAll points which have the same coordinate x  (i = 1, 2, or 3) are located on one plane

inormal to axis x . Thus, the cartesian coordinates of a point specify three mutually

perpendicular planes which intersect at that point.  The cylindrical coordinates of a point

specify three mutually perpendicular surfaces which intersect at that point. Referring to

Fig. 2.16, we see that

1.  All points which have the same coordinates r = constant =       are located on a

1cylindrical surface whose radius is       and whose axis is the x  axis.

2.  All points which have the same coordinates  = constant =  are located on a plane*

1 1 2containing the x  axis and forming an angle  with the x  x  plane.*

13.  All points which have the same coordinates x  = constant =  are located on a plane

1 1perpendicular to the x  axis at x  = .

1If any two of the coordinates x , r, è are constant, relations (2.75) or (2.76) specify a

curve in space called coordinate curve.  For every point in space we have three mutually

perpendicular coordinate curves which are the intersections of the three coordinate

1surfaces  (see Fig. 2.16).  The x -curve corresponds to r = constant and  =  constant and

1is a straight line. The  r-curve  corresponds  to  x  = constant  and   = constant  and  is

1a  straight line.  The -curve corresponds to x  = constant and r = constant and is a circle

r è1(see Fig. 2.16). Consider a system of three mutually perpendicular unit vectors i , i , i
1which, as shown  in Fig. 2.16, are tangent to the x , r and è coordinate curves,

respectively.  Referring to Fig. 2.16 the direction cosines of these unit vectors with respect

1 2 3to the x , x , x  axes are

Thus, the transformation matrix which transforms the cartesian components of a vector

to cylindrical is

Consider vector f and denote its cartesian and cylindrical components as follows

Its cartesian components may be expressed in terms of its cylindrical ones, using relations

(1.34) and (2.78).  That is,

Moreover, its cylindrical components may be expressed in terms of its cartesian ones,
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(2.80b)

(2.81)

(2.82)

using relations (1.33) and (2.78).  That is,

Using relations (2.76) and (2.75), we find that the partial derivatives of a function

1 2 3F(x , x , x ), in terms of cartesian coordinates, are related to its partial derivatives in terms

of cylindrical coordinates, by the following relations:

2.15 Strain–Displacement Relations in Cylindrical Coordinates

In order to convert to cylindrical coordinates the strain–displacement relations given

by relations (2.16) with respect to cartesian coordinates, we adhere to the following steps:

STEP 1 We establish the cylindrical components of strain in terms of its cartesian

components by substituting the direction cosines (2.77) into the transformation relations

(2.48a).  That is,

STEP 2 We eliminate the cartesian components of strain from relations (2.82), using the

strain–displacement relations (2.16).

STEP 3 In the expression for the cylindrical components of strain obtained in step 2, we

convert differentiation with respect to cartesian coordinates to differentiation with respect

to cylindrical coordinates using relations (2.81).

STEP 4 In the expressions for the cylindrical components of strain obtained in step 3, we

replace the cartesian components of the displacement vector with its cylindrical

components, using relations (2.80a), and we obtain the following strain–displacement
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         (2.83)

     (2.84)

relations in cylindrical coordinates:

The afore described procedure is long and algebraically tedious.  For this reason, the

strain–displacement relations in cylindrical coordinates are often established by

considering the geometry of deformation of an infinitesimal material element bounded

1 1 1by surfaces x  and x  + dx , r and r + dr and rè and rè + rdè.

2.16 The Equations of Compatibility in Cylindrical Coordinates

The equations of compatibility (2.63) in cartesian coordinates can be converted to

equations of compatibility in cylindrical coordinates in two steps:

1. Differentiation with respect to cartesian coordinates in equation (2.63) is converted to

differentiation with respect to cylindrical coordinates using relations (2.81).

2. The cartesian components of strain are replaced with cylindrical using  the

transformation relation (2.48b) and the direction cosines (2.77). 

After algebraically cumbersome manipulations we obtain the following equations of

compatibility in cylindrical coordinates:
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                           (2.84)

(2.85)

2.17 The Equations of Equilibrium in Cylindrical Coordinates

The equations of equilibrium in cylindrical coordinates may be derived by considering

the equilibrium of the element shown in Fig. 2.17.  For instance, setting the sum of the

forces in the radial direction equal to zero, we obtain

Elevation Plan view

Figure 2.17  Material element in cylindrical coordinates subjected to components of stress.
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(2.86a)

(2.86b)

(2.86c)

1Collecting terms, disregarding higher order terms and dividing by dV = rdè dr dx ,

equation (2.85) reduces to

Similarly, by setting equal to zero the sum of the forces in the tangential and the axial

directions, we get

2.18 Problems

1. The displacement field of a body is given as 

where k is a small number so that the magnitudes of the components of strain are

within the range of validity of the theory of small deformation.

(a) Consider a material straight-line segment which prior to deformation was

extending from point P(3, 1, 0) to point Q(1, 2, 0).  Find the equation of this line

1 2after deformation.  Hint: The line under consideration is in the x x  plane.

1 2Ans. (4k - 1)î  = (2 - 6k)î  + 50k - 52 

12 22(b) Determine the equation of the ellipse into which a circle x  + x  = 1 is

deformed.

Ans. Inclined ellipse 

(c) Compute the components of the strain tensor. Ans. 

(d) Compute the change of angle due to the deformation between two infinitesimal

n2 1material elements oriented in the direction of the unit vectors i  and i =1/5(3i  !

n 3 24i ). Ans. ã = 3k

2. The parallelepiped of Fig. 2P2 has deformed into the shape indicated by the dashed

straight lines.  The components of displacement of the parallelepiped are given as

1 2 3The coordinates of point EN are î  = 1.503 mm, î  = 1.004 mm, î  = 1.997 mm.
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(a) Establish the components of strain of the particle located prior to deformation at

point E.

Ans. 

(b) Determine the normal component of strain in the direction  of the particle

EA located prior to deformation at point E. Ans. e = 8(10 )-4

(c) Determine the change due to the deformation of the before deformation right

AEF angle pAEF. Ans. ã = 0.00298 rad.

Warning: Do not attempt to find the change of the angle LAEF by using

  

because line EA deforms into a curve and the orientation after deformation of an

infinitesimal segment of line EA at point E is not in the direction of  Å{Á{.

Figure 2P2

1 2 33. The components of strain at a point of a body referred to the x , x , x  axes are given as

11 22 12 33 31 32e  = !0.002 e  = 0.0012 e  = !0.002 e  = e  = e  = 0

Using Mohr's circle:

(a) Compute the principal values of the normal components of strain and show in a sketch

the direction in which they act. Ans. 

(b) Compute the maximum shearing component of strain and show in a sketch the axes

      to which it is referred. Ans. 

11 12 1 2(c) Compute the components of strain e N, e N with respect to the x N, x N axes shown
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      in Fig. 2P3. Ans. 

n 1 2(d) Compute the normal component of strain in the direction i  = 3/5i  + 4/5i .

nnAns. e = !0.00187

n s 1 2(e) Compute the  change  of  angle between the directions i  and i  = 4/5i  ! 3/5i  due  

ns    to the deformation. Ans. ã  = 0.00419 rad (increase)

1 2 34. The components of strain at a point of a body referred to the x , x , x  axes are

Using Mohr's circle:

(a)  Compute the principal values of normal components of strain and show in a sketch

       the direction in which they act. Ans. 

(b)  Compute the maximum shearing component of strain and show in a sketch the axes

       to which it is referred. Ans. 

11 12 1 2(c)  Compute the components of strain e N , e N  with respect to the x N, x N axes shown  

     in Fig. 2P4. Ans. 

n 1 2(d)  Compute the normal component of strain in the direction i  = 3/5i  + 4/5i .
nn Ans. e = 0.002

n s 1 2(e)  Compute the change of angle between the directions i  and i  = 4/5i  ! 3/5i  due to

ns  deformation. Ans. ã = 0.002 rad

Figure 2P3 Figure 2P4

1 2 35. The components of strain at a point of a body referred to the x , x , x  axes are given

as:

Using Mohr's circle:

(a)  Compute the principal values of the normal components of strain and show in a     

       sketch the direction in which they act.
Ans. 

(b)  Compute the maximum shearing component of strain and show in a sketch the axes

       to which it is referred. Ans. 

11 13 1 3(c)  Compute the components of strain e N , e N  with respect to the x N, x N axes shown in 

     Fig. 2P5.  Ans. 

www.EngineeringEBooksPdf.com



Problems       99

n 1 3(d)  Compute the normal component of strain in the direction i  = 3/5i  + 4/5i .

Ans. 

n s 1 3(e)  Compute the  change  of  angle  between  the  directions  i  and i  = 4/5i  ! 3/5i  due

      to deformation. Ans. 

Figure 2P5

6. The following readings were taken by three gages attached to a body in a state of plane

strain, in the directions shown in Fig. 2P6.

Compute the maximum normal component of strain and show the direction in which it

acts. Ans. 

Figure 2P6 Figure 2P7

7. The following readings were taken by a 60° strain rosette attached to a structure in a

state of plane strain

(a)  Find the principal values of the normal components of strain and the direction of the

 principal axes. Ans. 

1 2(b)  Compute the components of strain with respect to a set of axis x N x N shown in Fig.

 2P7. Ans. 

8. The following readings were taken from a 45° strain rosette attached to a structure in
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a state of plane strain:

(a)  Find the principal values of the normal components of strain and the direction of

 the principle axes. Ans. 

1 2(b)  Compute the components of strain with respect to a set of axis xN  xN  as shown  in the

      Fig. 2P8.

Ans. 

9. The following readings were taken by three gages attached to a structure in a state of

33 31 32plane strain, in the directions shown in Fig. 2P9 (e  = e  = e  = 0):

(a)  Find the principal values of the normal components of strain and show the directions

 of the principal axes. Ans. 

1 2(b) Compute the components of strain with respect to a set of axes x Nx N shown in       

Fig.2P9.  Ans. 

Figure 2P8 Figure 2P9

10. Consider a bar of constant circular cross section of diameter d = 40 mm subjected to

an axial centroidal tensile force of P = 60 kN (see Fig. 2P10).  For this loading the

11component of stress ô  acting on the particles of the bar is equal to P/A (A is the area of

the cross section of the bar), while all other components of stress vanish. 

(a) Compute  the magnitude of the maximum shearing component of stress and show on

     a sketch the direction of the plane on which it acts.

1 3(b) Compute the traction acting on the plane mm which is normal to the x , x  plane.

(c) Compute the components of stress acting on the plane normal to the unit vector.
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                Ans. 

Figure 2P10 Figure 2P11

11.  Consider a bar of circular cross section subjected to equal and opposite torsional

1moments at its ends M  = 2 kN@m (see Fig. 2P11).  In this case, the only non-zero

è1component of stress acting on a particle is ô  which is equal to

Pwhere r is the radial coordinate of the particle and I  is the polar moment of inertia of the

Pcross section of the bar with respect to centroidal axes (I  = ða /2).4

(a) Compute the principal normal components of stress at a particle of the surface of the

bar and show the direction of the planes on which they act.

Ans. 

(b) Compute the components of stress acting on the plane mm.  Find the traction acting

1 3on the plane mm (the normal to this plane is in the x  x  plane).

Ans. 

12. to 14. The state of plane stress at a particle of a body is shown in the Fig. 2P12.

(a) Using equations (1.116), find the normal and shearing components of stress acting on

      the plane mm shown in Fig. 2P12.  Show the results on a sketch.

(b) Find the components of stress acting on the plane

Figure 2P12 Figure 2P13 Figure 2P14

www.EngineeringEBooksPdf.com



102 Strain and Stress Tensors

Repeat with the state of stress shown in Figs. 2P13 and 2P14.

15. to 17. Solve problems 12 to 14 using Mohr's circle.

18. to 20. For the state of plane stress at a particle of a body shown in Fig. 2P18, using

Mohr's circle. 

(a) Compute the principal normal components of stress and show on a sketch the planes

      on which they act.               

(b)  Compute  the  maximum  shearing  component  of  stress  and  the  associated normal

 component of stress and show the planes on which they act on a sketch.

(c) Compute the components of stress acting on plane mm.

Repeat with the states of stress shown in Figs. 2P19 and 2P20.

Figure 2P18 Figure 2P19 Figure 2P20

21. and 22. The tractions on planes mm and nn at a particle are shown in Fig. 2P21.  They

1 2act in the x  x  plane.  Compute the principal normal components of stress and locate the

planes on which they act.  Show the results on a sketch.  Repeat with the tractions shown

in Fig. 2P22.
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Figure 2P21 Figure 2P22

23. and 24. By considering the equilibrium of the element shown in Fig. 2P23, determine

the unknown stress components acting on it.  The element is in a state of plane stress

Repeat with the element of Fig. 2P24.

Figure 2P23 Figure 2P24

25.  The state of stress at a point is

(a) Compute the stationary values of the normal components of stress and the directions

      of the planes on which they act.
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(b) Compute the components of stress in the direction of the axes shown in Fig. 2P25.

Ans. 

Figure 2P25

1 2 326.  The components of stress with respect to a system of axes x , x , x  are given as

(a)  Compute the components of stress acting on the plane specified by the unit vector

(b) Compute the stationary values of the normal components of stress and the direction

of the principal axes.

(c) Compute the magnitude of maximum shear stress and indicate the plane on which it

12 max .acts. Ans.  (ô ) = 23.63 MPa

(d) Compute the components of stress referred to the system of axes  shown in

Fig. 2P25.
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Ans.  

27. The components of stress acting on a particle of a body with respect to a system of

axes  are given as

(a) Compute the components of stress acting on the plane specified by the unit vector

(b) Compute the stationary values of the normal components of stress and the direction

of the principal axes.

(c) Compute the magnitude of maximum shear stress and indicate the plane on which it

acts.

(d) Compute the components of stress referred to the system of axes  whose

transformation matrix is

        

1 2 328. The rectangular coordinates of point P are x  = 80 mm, x  = 120 mm, x  = 40 mm.

1(a) Compute the cylindrical coordinates x , r, è of point P.

1 Ans.  x = 80 mm  r = 126.49  è = 18.43o

(b) If the components of strain at point P are
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x10-5

12 13 23 11 22 33            e  = e  = e  = e  = 0,        e  = 0.002,        e  = !0.004 

rr èè rè rr èè rè determine e , e  and e  at this point. Ans.  e = 0.0014  e = !0.0034  e = !0.0018

29. The state of strain of a particle of a body is specified with respect to the orthogon axes

1 2 3x , x , x , by the following matrix:

1Referring to Fig. 2P29 compute the change of the angles pAOx  due to the deformation.

n1             Ans.   ã  = 1.6(10 ) rad-5

Figure 2P29

www.EngineeringEBooksPdf.com



107

Chapter
3

Stress–Strain Relations

3.1 Introduction

In Section 2.4 we consider a body subjected to external loads and we define certain
quantities (the components of strain) which specify completely the deformation of its
particles.  In Section 2.6 we consider a body subjected to external loads and we define
certain quantities (the components of stress) which specify completely the internal forces
acting on its particles.  In this chapter we present relations among the components of
strain and stress of a particle of a body subjected to external loads.  These relations
represent properties of the material from which the body is made and they are known as
its constitutive equations. They are based on experimental observations of the
macroscopic phenomenological behavior of bodies of simple geometry subjected to such
loads that the distribution of the components of stress acting on their particles can be
easily established.  The constitutive equations of materials are classified into two groups
— time independent and time dependent.  Those belonging to the second group include
first and possibly higher time derivatives of stress and/or strain, and are sensitive to the
rate and history of loading.  For instance, the stress–strain relations of metals at high
temperatures and of certain non-metallic materials, such as plastics, ceramics and rubbers
at room temperature are affected appreciably by the rate of loading.

Actually, the constitutive relations of all materials are time dependent.  Time-
independent constitutive relations represent an idealization which is approached rather
closely by many materials when subjected to loads at ordinary temperatures.  For any
material there exists a range of temperature in which its constitutive relations may be
considered time independent.  For example, the constitutive relations of most metals are
considered time independent at temperatures up to a little above room temperature and
time dependent at higher temperatures.  The time-dependent response of the materials is
of paramount importance in the design of boilers, gas turbines or reactor shields as well
as of other structures which are subjected to stress fields in an environment of high
temperature.

Many features of the time-independent behavior of a body under a general loading are
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(3.1a)

(3.1b)

(3.2a)

revealed by simple tests involving specimens of simple geometry  (for example, prismatic
bars of circular cross section) subjected to external forces which induce only one
component of stress.  The most commonly used such tests are the uniaxial tension or
compression and the torsion.  In these tests a specimen of constant circular cross section
is subjected to external actions (axial centroidal forces or torsional moments) at its ends.
These actions induce a uniform stress field in the specimen which can be specified by
only one component of stress.  Such a stress field is known as uniaxial.

3.2 The Uniaxial Tension or Compression Test Performed in an Environment of
Constant Temperature

In the uniaxial tension test, a prismatic specimen (see Fig. 3.1) of circular cross section

0of area A  is placed in a tension–compression testing machine and it is subjected at its
ends to equal and opposite axial centroidal tensile or compressive forces whose
magnitude P is read on a dial.  In Chapter 8 we show that when the resultant of the forces
applied at the ends of the specimen passes through the centroid of its cross sections, in a
portion of its volume which is not located very close to its ends, the normal component

11 11of stress  and the normal component of strain e  are constant  while the other†

components of stress vanish.  That is, the particles of this portion of the specimen are
subjected to the following uniaxial state of stress:

0where A  is the area of the cross section of the specimen before deformation.  The axial
component of strain corresponding to the state of stress (3.1a) is equal to 

0where  is the total elongation or shrinkage of the before deformation length L  (the

distance AB of the specimen of Fig. 3.1).  As shown in Fig. 3.1,  can be measured by

11means of a dial gage attached to the specimen.  Moreover, e  can also be measured by a

11 11strain gage (see Section 2.12).  The normal component of stress  and of strain e
defined by relations (3.1) are called conventional.  The curve obtained by plotting the

11conventional normal component of stress  versus the conventional normal component

11of strain e  is called the conventional stress–strain diagram in uniaxial tension or
compression (see Fig. 3.2).  This diagram represents a property of the material from which
this specimen is made.  Different stress–strain curves are obtained for different materials.

11 11The true stress  and strain e  are defined byT T

† As a result of the forces exerted by the jaws of the tension–compression machine on the ends of a
specimen, its particles which are located very close to its ends are not in a state of uniaxial  stress.
Moreover, the magnitude of the components of stress acting on these particles could vary from particle to
particle.
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     (3.2b)

Figure 3.1  ASTM† standard  metal specimen for uniaxial tension test.

where, at any instance during the process of loading, A is the area of the cross section of

Fthe specimen; dL is the increment of the instantaneous length L of the specimen; L  is the
final deformed length of the specimen.  For small values of the forces applied to the
specimen, the difference between the conventional normal component of stress or strain
and the true normal component of stress or strain, respectively, is negligible.

Generally, the stress–strain curve of the same material may be affected appreciably by
the temperature at which the experiment is performed, and by the rate of loading (see
Section 3.5.1).  However, in this section we assume that the load is applied slowly and
that the experiment is performed at room temperature.

The following observations have been made from uniaxial tension or compression

11 22 33 12 13 23 tests ( � 0, = = = = = 0) performed in an environment of constant

temperature:

Figure 3.2  Stress–strain diagram of mild steel.

† In standard tension or compression tests, a standard specimen (see Fig. 3.1) is used, as described by
specification A370-77 in the annual book of standards Vol. 01.01 of the American Society for Testing
Materials (ASTM) Philadelphia, PA 19103.
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(3.3)

       (3.4)

(3.5)

1. For any material there is a range of temperature and a range of loading rate in which
its response may be considered as time independent. For many materials this range is of
practical interest.

2. The stress–strain curve upon unloading, of many materials of engineering interest,
when subjected to small values of stress, is identical to that obtained during loading.  That
is, the relation between the component of stress and the corresponding component of
strain is unique and energy is not lost during the process of loading and unloading.   This
response of a material to external forces is called elastic. The maximum value of stress
for which a material exhibits elastic response is called elastic limit or yield stress.  The
response of a material above the elastic limit is called plastic.  This response of a material
is independent of the rate of loading but it depends on the path of loading.

3. For certain materials, such as metals at room temperature, subjected to values of the
components of stress below a certain limiting value known as the proportional limit, the
relation between the normal component of stress and strain is linear (see Fig. 3.2). That
is,

The constant of proportionality E is known as Young's modulus or modulus of elasticity.
 For many materials, the proportional limit and the yield limit are very close and may be
considered identical.

4. Certain elastic materials, such as rubber, have a non-linear stress–strain relation, even
at very low values of stress.  Such a relation involves more than one elastic constant.

5. When a specimen is subjected to uniaxial tension (or compression), it elongates (or
shrinks) in the axial direction and shrinks (or elongates) in the lateral directions.  For
elastic materials, the ratio of the lateral to the axial component of strain of any particle of
the specimen remains constant during the process of loading and unloading. That is,

   

This phenomenon of lateral contraction is referred to as Poisson's effect. The effect of
lateral contraction or expansion upon the cross sectional area of the specimen is small for

11small values of the normal component of strain e .

6. The microstructure of many engineering materials, such as metals, consists of small
crystals, randomly oriented.  These materials are referred to as polycrystalline materials.
Their macroscopic behavior may be assumed independent of direction.  That is, it is
assumed that they have the same properties in all directions.  This independence of
material properties of  direction is referred to as isotropy and materials possessing this
property are called isotropic.  Actually, isotropy is an idealized behavior which is

12approached rather closely by many materials.  For isotropic, linearly elastic materials v
13= v  = v and consequently,

The positive constant v is referred to as Poisson's ratio.  Its value is less than 0.5.  It can
be computed from relations (3.5) using data obtained from the uniaxial tension

22experiment.  The component of strain e  can be established by measuring the change of
the diameter of the cylindrical specimen.  That is,
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(3.6a)

(3.6b)

7. When the value of the component of stress acting on a particle of a specimen does not
exceed the elastic limit of the material from which the specimen is made for any two

11 11different values of the component of stress [  and ], there correspond two different( 1) ( 2)

11 11values of the corresponding component of strain [e  and e ] of the particle and vice( 1) ( 2)

11versa.  Moreover, an increase or a decrease of the component of stress  acting on a

particle results in an increase or a decrease, respectively, of the corresponding component

11of strain e  of this particle and vice versa.  That is,

The equality holds only when the two values of the components of stress and strain are

11 11 11 22identical [  =  and e  = e ].  Inasmuch as relation (3.6a) is valid for any two( 1) ( 2) ( 1) ( 2)

values of the components of stress and strain, it will also hold when the differences of the
components of stress and of the components of  strain are infinitesimal.  That is,

Condition (3.6a) or (3.6b) is referred to as the condition of material stability.  Materials
processing the property indicated by relations (3.6) are called stable.  On the basis of the
above observations, the stress–strain diagram of a specimen made from a stable elastic
material subjected to a state of uniaxial tension in an environment of constant temperature
cannot be like the diagrams shown in Fig. 3.3.

8. The yield stress of mild steel, that is, steel having a low carbon content, is well defined
(see Fig. 3.2). For most ductile materials, however, the transition from elastic behavior
to non-elastic (plastic) behavior is gradual and, consequently, difficult to establish.  For
these materials, the so–called offset yield stress is defined as the stress which produces
a small but measurable permanent strain.  Generally, this permanent strain is taken as
0.2%.  The yield stress is taken as the stress corresponding to the intersection with the
stress–strain curve of a line parallel to its straight-line portion, commencing from the
value of the permanent strain (see Fig. 3.4).

9. Loading beyond the elastic limit brings the material into the plastic range.  In this range

Figure 3.3  Stress–strain diagram of unstable materials.

www.EngineeringEBooksPdf.com



       Stress–Strain Relations112

(3.7)

Figure 3.4 Offset yield stress.

only a portion of the deformation is elastic, whereas the remaining portion is irreversible

11plastic deformation.  That is, at every particle of a specimen, the component of strain e

is equal to the sum of an elastic part , which is recoverable upon unloading, and a

plastic part       , which is not recoverable upon unloading.  Hence

For mild steel, when the component of stress reaches a certain critical value, referred to
as the upper yield stress, it drops sharply to a lower value, referred to as the lower yield
stress.  Subsequently, yielding takes place at constant stress (see Fig. 3.2).  However,
resistance to such deformation is created within the material and increasing stress is
required to produce additional strain.  This final effort of the material to resist
deformation is referred to as strain hardening (see Fig. 3.2).  The flat portion of the
stress–strain diagram may extend over a range of strain 10 to 40 times the value of strain
at the yield stress.

10. If a specimen is stressed beyond the elastic limit and subsequently unloaded, the
stress–strain curve during unloading is virtually a straight line with a slope equal to the
original modulus of elasticity of the material from which the specimen is made.  When
all the load is removed, the specimen does not assume its before-deformation
configuration.  That is, it has been deformed permanently.  A residual strain remains in
the particles of the specimen.  Upon reloading, the specimen yields at a stress
approximately equal to the stress just before unloading.  The stress–strain curve for
reloading may differ slightly from that at unloading.  A small hysteresis loop may be
formed, whose area represents the energy lost during the cycle of unloading and reloading
(see Fig. 3.2).  The size of the hysteresis loop varies with the speed of loading — it is
larger at higher rates of loading.  For a metal at ordinary temperatures, the energy lost per
cycle of loading and unloading is small and may be disregarded, except in cases involving
many cycles.  The hysteresis loop is an indication that the actual mechanical behavior of
materials is not entirely time independent. The size of the hysteresis loop shown in Fig.
3.2 is greaterly exaggerated.

11. A material, such as mild steel, which fails subsequent to large, predominantly plastic
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Figure 3.5 Stress–strain curve of various engineering materials.

deformation (see Fig. 3.5), is referred to as a ductile material, whereas a material which
fails after small, predominantly elastic deformation (see Fig. 3.5), is referred to as a brittle
material.  Depending upon the environmental conditions, the rate of loading and the
geometry of the specimen, the same material could behave either as a brittle or as a
ductile material.  Some materials, such as ceramics and glass, do not exhibit plastic
deformation at ordinary temperatures.  They fracture at small strains, while deforming
elastically.

12. From the conventional stress–strain curve of a ductile material, it can be seen that the

11 0conventional stress and, consequently, the axial force P (since P =     A ) applied to a
specimen attain their maximum value at an appreciably lower strain than that at fracture.
The maximum value of the conventional stress is called the ultimate stress.  Actually, the
true stress increases up to fracture (see Fig. 3.2).  That is, strain hardening continues
throughout the whole plastic range.  At the  maximum value of the applied force, the
deformation becomes unstable and a localized rapid decrease of the cross sectional area
(neck) occurs at some location of the specimen (see Fig. 3.6d).  This results in a non-
uniform stress and strain distribution in the neighborhood of the neck which differs from
the true stress P/A and the true strain (3.2b).  This phenomenon occurs in ductile materials
and is referred to as necking.  After necking has begun, somewhat lower forces are
sufficient to keep the specimen elongating further until it fractures. Fracture occurs along
a cone-shaped surface which is inclined to the axis of the specimen by approximately 45°
(see Fig. 3.6e).  Referring to Fig. 3.6c, we see that this mode of fracture indicates that the
shearing stress is primarily responsible for the fracture of ductile materials.

13. When a specimen made from a brittle material is subjected to increasing equal and
opposite axial tensile forces at its ends, fracture occurs at the plane normal to its axis (see
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(a) State of stress of a         (b) Mohr's circle for the state    (c) Planes of maximum shearing
particle of the specimen                 of stress of Fig. 3.6a                  stress at a particle of the specimen 

(d) Necking of a ductile         (e) Fracture of a ductile    (f) Fracture of a brittle specimen
specimen         specimen                 

Figure 3.6  State of stress, necking and fracture of specimens subjected to equal and opposite axial
centroidal tensile forces at their ends.

Fig. 3.6f).  As we see in Fig. 3.6b, this is the plane of maximum tensile stress.  Brittle
materials exhibit little or no plastic deformation when they fracture.

14. When a metal specimen is subjected to a tensile or compressive force which stresses
its particles above the elastic limit and, subsequently, it is unloaded and subjected to
opposite forces, it yields at a considerably smaller stress than its initial yielding stress.
This phenomenon is referred to as the Bauschinger effect and is illustrated in Fig. 3.7.

15. Specimens having large length to diameter ratios, when subjected to axial centroidal
compressive forces on their end surfaces, become unstable and buckle when the applied
forces reach a certain critical value.   Moreover, short specimens subjected to high values
of axial centroidal compressive forces on their end surfaces are not in a state of uniaxial
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(3.8)

(3.10)

(3.11)

Figure 3.7  Bauschinger effect.

compression because the platens of the compression machine restrain the radial expansion
of the end cross sections of the specimens.

1 2 316. Consider an element of volume dx dx dx  of a cylindrical specimen of constant cross

1sections subjected to axial tension in the x  direction. Referring to relations (2.6) and
(2.17) the volume of this element subsequent to deformation may be approximated as (1

11 22 33 1 2 3+ e  + e  + e ) dx  dx  dx .  Hence, taking into account the symmetry of the specimen

22 33(e  = e ) the change of the volume of the element due to its deformation is

In the plastic range, the total strain  of a particle is the sum of its elastic        and plastic

      components.  Therefore, substituting relation (3.7) into (3.8), we obtain

(3.9)

Plastic deformation can be assumed equivoluminal.  Consequently, )V  can be assumedP

to vanish.  Therefore,

3.3 Strain Energy Density and Complementary Ener gy Density for E lastic
Materials Subjected to Uniaxial Tension or Compression in an Environment
of Constant Temperature

Consider a body made from an elastic material, subjected to external forces producing

11 12 13 23 22 33a state of uniaxial tension or compression (  � 0   =  =  =  =  = 0), in an

environment of constant temperature, from a stress-free, strain-free state.  The strain
s cenergy density U  and the complementary energy density U  of a particle of this body are

defined as
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(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

Figure 3.8  Strain energy density and complementary energy density.

Referring to Fig. 3.8a, from its definition (3.11), the strain energy density

11 11corresponding to any value e  of the component of strain e , is the area between the^

11 11 11stress–strain curve, the e  axis and the line e  = e .  Moreover, referring to Fig. 3.8a,^

from its definition (3.12), the complementary energy density for any value     of the
component of stress       is the area between the stress–strain curve, the       axis and the
line        =       .  For linearly elastic  materials,  referring  to  Fig. 3.8b,  it  is  apparent 
that  the   strain energy  density  equals  the complementary energy density.  That is,

s I c IThe total strain energy (U )  and the total complementary energy (U )  of a body of
volume V are equal to

As stated in Section 3.2, for bodies made from an elastic material, the component of stress

11 11 is uniquely determined from the component of strain e  and vice versa.  This implies

11 11 11 11 11 11that the integrands (e )de  and e ( )d  of relations (3.14) and (3.15) must beN N N N

perfect differentials.  Hence,

Consequently,
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(3.18)

(3.19)

(3.20)

(3.22)

In order to establish a physical meaning of the strain energy density let us consider an
infinitesimal parallelepiped of a body subjected to external forces which induce in it a

state of uniaxial tension (  � 0, all other components of stress vanish).  Referring to Fig.

23.9, this parallelepiped is subjected to two equal and opposite forces of magnitude  dx

3 1dx  acting on its faces AB and CD.  We denote by û  the component of displacement in

1 1the x  direction of face AB.  The component of displacement in the x  direction of face CD
is equal to

When the external forces change by an infinitesimal amount, the components of

1 1 1 11 1displacement in the x  direction of faces AB and CD change by du  and d(u  + e  dx ),
respectively.  The increment of work performed by the forces acting on the parallelepiped
due to this additional displacement is equal to

(3.21)
The total work performed by the forces acting on the infinitesimal parallelipiped of Fig.
3.9, as the body deforms from its stress-free, strain-free state to a state specified by the

11component of strain e , is equal to

The total work of the component of stress  acting on all the infinitesimal

parallelepipeds which make up the volume of the body is equal to 

Figure 3.9  Infinitesimal element of a
specimen subjected to uniaxial tension.
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(3.23)

(3.24)

(3.25)

(3.26a)

Figure 3.10 Strain energy density and complementary energy density.

Referring to relations (3.14) and (3.23) we have

s Twhere (U )  represents the total strain energy of the body.  Since the common boundary
of two adjacent elements is subjected to equal and opposite components of stress and is
displaced by the same amount, the sum of the work performed by these equal and
opposite components of stress vanishes.  Consequently, the total work performed by the
forces acting on all the elements of the body consists only of the work of the components
of stress acting on the faces of the elements which are part of the surfaces of the body and
the work of the body forces.  Thus, W in equation (3.24) is equal to the work of the known
external forces (body forces and surface tractions) acting on the body and of the reactions
of its supports.  If the supports of the body do not move, the work of the reactions
vanishes.  On the basis of the foregoing presentation, we have:

Thus, we may conclude that the total strain energy of an elastic body subjected to surface
tractions and body forces inducing only one component of stress       in an environment
of constant temperature is equal to the work performed by these tractions and body forces
in bringing it from its stress-free, strain-free reference state to its deformed state.

Let us now examine the restrictions imposed on the strain energy density and on the
complementary energy density by the condition of stability (3.6).  Referring to relation
(3.18), this condition may be rewritten as

and
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(3.26b)

(3.27a)

(3.27b)

From the above relations we see that

and

At the stress-free, strain-free state, from relations (3.18), (3.19), we have

and

s 11 cThese relations indicate that the functions U (e ) and U (       ) assume an extremum value
at the stress-free, strain-free state, while relations (3.27) indicate that this extremum is a

s 11 cminimum.  The functions U  (e ) and U (      ) are plotted in Fig. 3.10.  It is apparent that

11both functions are non-negative and vanish only when the variable (e  or       ) vanishes.
A function satisfying such conditions is referred to as positive definite.  Therefore, we
may conclude that the condition of stability (3.6) includes the requirement that the strain

s 11 11energy density U (e ) is a positive definite function of the component of e  and that the
ccomplementary energy density U ( ) is a positive definite function of the component

11of stress    .   However,  relation (3.27a) holds for any value of e ,  while relation

11(3.27b) holds for any value of J .   Thus, the condition of stability (3.6) imposes a
stronger restriction on the strain energy density and the complementary energy density
functions, than the requirement that they are positive definite.   It does not allow for a

change of the sign of the curvature ( ) of the strain energy density versus

strain curve and of the curvature (                ) of the complementary energy density
versus stress curve.

3.4 The Torsion Test

In the torsion test,  a specimen of constant circular cross section of radius r is placed
in a torsion testing machine and it is subjected at its ends to equal and opposite torsional

1moments M  (see Fig. 3.11a).  In Chapter 6 we show that only a shearing component of
stress       acts on the cross sections of this specimen in the direction normal to their
radius.  That  is, referring  to  relations  (6.14)  and  (k) of the example of Section 6.5 the
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(3.29)

(3.28)

Figure 3.11  The torsion test.

components of stress acting on the particles of the surface of the specimen are

pwhere I  is the polar moment of inertia of the cross section of the specimen about its
centroid.  This uniaxial state of stress is known as a state of simple shear.  The
stress–strain relation for isotropic linearly elastic materials subjected to a state of simple
shear can be written as

The constant G is a mechanical property of the material from which the specimen is
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(3.30)

(3.31a)

(3.31b)

(3.32a)

(3.32b)

made, called the shear modulus.
1 The relative rotation   of the end cross section of the specimen due to its* 

deformation is measured for various values of the applied torsional moments.  From this,
the shearing component of strain        of the particles of the surface of the specimen is
computed and the stress–strain curve is plotted (see Fig 3.11e).  Referring to relations
(3.28), (3.29) and (w) of the example of Section 6.5, the shearing component of strain is
equal to

Observations similar to those made in Section 3.2 from uniaxial tension or compression
tests are made from torsion tests.

When a specimen made from a ductile material is subjected to increasing equal and
opposite torsional moments at its ends, it fractures on a plane normal to its axis (see Fig.
3.11d).  Referring to Fig. 3.11b, we see that this is the plane of maximum shearing stress.
That is, as in the case of specimens subjected to uniaxial tension, shearing stress is
responsible for the fracture of specimens made from a ductile material.

When a specimen made from a brittle material is subjected to increasing equal and
opposite torsional moments at its ends, it fractures at a plane inclined at 45° to its axis
(see Fig. 3.11f).  Referring to Fig. 3.11b and c, we see that on this plane the normal
component of stress assumes its maximum value.  This indicates that, as in the case of
specimens subjected to uniaxial tension, tensile stress is responsible for the fracture of
specimens made from a brittle material.

s c The strain energy density U  and the complementary energy density U  of a particle
of a body in a state of simple shear are defined as

The condition of stability for a particle of a body in a state of simple shear is

or

3.5 Effect of Pressure, Rate of Loading and Temperature on the Response of
Materials Subjected to Uniaxial States of Stress

Experimental results have revealed that when a particle of a body is subjected to a
hydrostatic state of stress, its volume does not change.  Moreover, results of uniaxial
tension tests of ductile materials  under superimposed hydrostatic pressure have revealed†

that their modulus of elasticity, their yield stress and their component of plastic strain are
not affected by the pressure.  However, the strain at fracture increases with the intensity
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of the pressure.  That is, the material becomes more ductile. This is due to the fact that the
compressive stresses produced by the pressure prevent the formation of microcracks
which lead to fracture.  For every material there exists a critical pressure above which the
material behaves as ductile.

3.5.1  Effect of the Rate of Loading

1. The rate of loading can have a significant effect on the stress–strain curve of materials.
This is particularly so at elevated temperatures .††

2. At room temperature the stress–strain curve of metals may be considered independent
of the rate of loading for a certain range of rates of loading of practical interest.
3. At high rates of loading the yield stress and modulus of elasticity of ductile materials
increase with the rate of loading .  Moreover, the magnitude of the plastic components†††

of 
strain which precedes fracture of ductile materials is reduced considerably as the rate of
loading is increased.  That  is,  the material becomes less ductile.  In fact at very high
rates of loading materials which are ductile at ordinary rates of loading, behave as brittle.
These  effects are more pronounced at elevated temperature.
4. At high rates of loading it is difficult to maintain a constant temperature during a test
since there is not enough time for the heat generated to dissipate into the environment.
That is, at high rates of loading the process of deformation is approximately adiabatic.
5. In order to take into account the effect of the rate of loading on the stress–strain curve
of a material, it must be considered as time dependent.  That is, first or higher time
derivatives of stress or strain must be included in its stress–strain relation.

3.5.2  Effect of Temperature

A  change  in  the  temperature  of  the  particles of a body produces a change of their
dimensions (deformation).  The particles of ordinary materials expand when heated and
contract when cooled.  That is, the normal components of strain increase as the
temperature increases and decrease as the temperature decreases, while the shearing
components of strain are not affected by changes of temperature.  However, some unusual
materials do not obey this rule.  For example, the particles of water expand when heated
at temperatures above 4°C but also expand when cooled at temperatures below 4°C.  A
measure of the deformation of a particle due to a change of its temperature is its thermal

1 2 3strain tensor [e ] whose components referred to the system of axes x , x , x  are denotedT

as

† A detailed account of experimental investigations of the effect of hydrostatic pressure on the stress–strain
curves of metals can be found in
(a) Bridgman, P.W., Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York, 1952.
(b) Pugh, H.Li D. (ed.), Mechanical Behavior of Materials under Pressure, Elsevier, Amsterdam, 1970.
†† The temperature of a body in the absolute scale is considered elevated if it exceeds one third of its
melting temperature. 
††† Morkovin, D., Sidebottom, O., The effects of nonuniform distribution of stress on the yield strength of
steel, Engineering Experimental Station University of Illinois Bulletin, 373, Urbana, IL,  1947.
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(3.33)

(3.34a)

(3.34b)

The thermal components of strain of a particle of a body made from a general non-
isotropic material are equal to

1    2    3where    ,   and   are called the coefficients of linear thermal expansion. The

  i iicoefficients    (i = 1, 2 or 3)  represent  the  component  of  thermal strain e  (i = 1, 2 orT

i3) of a particle in the direction of the x  (i = 1, 2 or 3) axis due to an increase in
temperature of 1 .  The units of the coefficients of thermal expansion are the reciprocalo

of  the units of the change of temperature )T.  That is, in the  International System of
Units (SI) they are given either as strain per degree Kelvin (1/°K) or as strain per degree
Celsius (1/°C), while in the English system of units are given as strain per degree
Fahrenheit (1/°F).  The thermal components of strain of a particle made from an isotropic
material are equal to

Consider an infinitesimal orthogonal parallelepiped whose edges are oriented in the

1 2 3direction of the x , x , x  axes.  The parallelepiped is made from an isotropic linearly
elastic material.  Its dimensions in the stress-free and strain-free reference state at the

o 1 2 3uniform temperature T  are dx , dx , dx . When this parallelpiped is subjected to an
increase  of  temperature  )T  and it is free to expand, no stresses are induced in it.  The

11 1 22 2 33 3dimensions of  its  edges  change  to  (1 + e )dx ,  (1 + e )dx   and  (1 + e )dx .   If, T T T

Figure 3.12  Effect of temperature on the Figure 3.13  Variation of the modulus of
stress–strain curve of annealed copper at elasticity in tension with the temperature.
a strain rate of 10-5/sec†.

† Taken from Mahtah, F.U., Johnson, W., Stater, R.A.C., Proceedings of Institute of  Mech anical
Engineers, 180, p. 285, 1965.
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however, this parallelepiped is not free to expand, a state of stress will be induced in it.
Generally, all the mechanical properties of a material (E, G, < or ") are affected by

changes of temperature (see Fig. 3.12).  However, for a range of temperature in the
vicinity of room temperature, these changes are rather small for many materials of
engineering interest (see Fig. 3.13). 

The ductility or brittleness of materials depends on their temperature.  For instance,
a metal specimen which, when subjected to uniaxial tension at room temperature, fails in
ductile manner, may fail in a brittle manner when subjected to uniaxial tension at a
temperature substantially below room temperature.  Moreover, if a metal specimen is
subjected to a constant axial centroidal force at a temperature higher than its
recrystallization temperature, its normal components of strain will continue to increase
with time until the specimen fractures.  This time-dependent deformation is known as
creep.  It is discussed in Section 3.15.

3.6 Models of Idealized Time-Independent Stress–Strain Relations for Uniaxial
States of Stress

The stress–strain relations of engineering materials are highly non-linear in the plastic
region.  This difficulty is circumvented by using idealized stress–strain relations.  The
idealized stress–strain relations for uniaxial tension or compression or for simple shear
most commonly used in engineering are illustrated in Fig. 3.14.

A crude but useful idealization of the stress–strain relation of materials subjected to
uniaxial tension or compression or to simple shear above the elastic limit is shown in Fig.
3.14c and e.  Consider a specimen made from this idealized material subjected to external
forces inducing a state of uniaxial stress.  When the component of stress acting on 
the particles of this specimen reaches its value at yielding, it will continue to deform at
constant stress.  The deformation of the particles of the specimen at constant stress is
irreversible  plastic  deformation.   If  the  specimen is unloaded before it fractures, it will
deform elastically.  Its stress–strain curve will be parallel to that during loading.  The
value of the yield stress does not depend on the number of cycles of loading and
unloading.  This behavior of a material is referred to as ideally plastic.  The model shown
in Fig. 3.14e is referred to as linearly elastic — ideally plastic and it is used when the
plastic components of strain of the particles of a body are of the same order of magnitude
as their elastic components.  If the elastic components of strain are small as compared to
the plastic components of strain, it may be possible to disregard their effect and assume
rigid body behavior up to yielding, and perfectly plastic behavior subsequent to yielding
(see Fig. 3.14c).   This  model  is  called  rigid — ideally  plastic  and  it has been used in
problems involving large plastic strains such as those associated with forging, rolling,
extruding and drawing.

If the effect of strain hardening cannot be entirely disregarded, two simple
idealizations of the behavior of materials subjected to a uniaxial state of stress above the
elastic limit are shown in Fig. 3.14d and f.  In these idealizations the strain hardening is
linear.  When a body is subjected to a uniaxial state of stress of magnitude higher than the
elastic limit, its behavior during unloading is linearly elastic with modulus of elasticity
equal to that during loading.  On reloading, the yield stress is raised to the value of the

11 tstress just before unloading.  The initial yield stress  and the slope E  of the strainY

hardening line of the idealized stress–strain curve may be determined by matching this
curve to that of the real material (see Fig. 3.14f).
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Figure 3.14  Idealized stress–strain relations for time-independent materials subjected to a uniaxial  state
of stress.

                                                                                                                                             

Example 1  Consider a prismatic bar of circular cross section and length of 120 mm.  The
bar is subjected to axial centroidal forces at its ends which produce an uniaxial state of

11tensile stress of  = 250 MPa.  The bar is made from an isotropic, linearly

1elastic–linearly strain hardening material (E = 200 GPa, E  = 100 GPa) whose
stress–strain diagram is shown in Fig. a.  Compute
(a)  The elongation of the bar when loaded
(b)  The residual elongation of the bar when unloaded

Figure a  Stress–strain diagram for the material from which the bar is made.
                                                                                                                                                                     

Solution  When the magnitude of the applied forces is such that the normal component
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(a)

(b)

(c)

(e)

(f)

(g)

11of stress      acting on the particles of the bar is equal to the yield stress       = 200 MPa,

11the corresponding component of strain e  is equal toY

When the magnitude of the applied forces reaches the value which produces a normal

11component of stress of 250 MPa, the additional normal component of strain )e  of the
particles of the bar is equal to

 11Thus, when the normal component of stress in the bar is     = 250 MPa, the total normal

11component of strain e  is equal toT

The elongation of the bar )L is equal to

When the bar is unloaded, its particles will not assume their undeformed

11configuration.  A plastic normal component of strain e  will remain.  Referring to Fig.P

a this is equal to

where

Substituting relations (c) and (f) into (e), we get

Consequently, the residual elongation of the bar upon unloading is

                                                                                                                                             

3.7 Stress–Strain Relations for Elastic Materials Subjected to Three-Dimensional
States of Stress

In this section we extend to bodies made from an elastic material and subjected to
three-dimensional states of stress the findings from the uniaxial tension or compression
and the torsion tests described in Sections 3.2 and 3.4. When a body made from an elastic
material is subjected to loads which do not induce large components of stress at its
particles, it recovers its original shape and size upon removal of the loads.  Energy is not
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(3.35a)

(3.35b)

(3.36a)

(3.36b)

(3.37a)

(3.37b)

lost during the process of loading and unloading.  Moreover, for a given temperature, the
relations among the components of stress and strain are unique.  They are independent not
only of time, but also of the path of loading.  That is, for any given temperature, a certain
set of values of the components of stress corresponds to given values of the components
of strain, notwithstanding whether this set of values of the components of stress has been
reached by loading or unloading, subsequent to one or more cycles. Therefore, an elastic
material is defined as one having the following properties:

01. It has a stress-free, strain-free natural state, at a uniform temperature T .
2. The components of stress       (i, j = 1, 2, 3) acting on any particle of a body made from

mnsuch material are single-valued functions of the components of strain e (m, n = 1, 2, 3)
and the temperature T of this particle having continuous first derivatives.  That is,

ijwhere F  are such that

Moreover, relation (3.35a) can be uniquely inverted to yield the components of strain as
single-valued functions of the components of stress and temperature, having continuous
first derivatives.  That is,

such that

Furthermore, if the body is subjected to surface tractions and body forces in an

ij mn 0 mn ij 0environment of constant temperature, the functions F (e , T ) and G (J , T ) satisfy the
following relations:

and

ij mn 0 mnRelations (3.37a) and (3.37b) impose  restrictions  on  the functions F (e , T ) and G
  ij 0(  , T ),  respectively.  These  restrictions  are  necessary  in  order  to  ensure  that for an

elastic material there exists a functional  of the components of strain called strain energy†

density and a functional of the components of stress called complementary energy density
which are independent of the history of loading and unloading to which the body has been
subjected (see Section 3.11).  If the relations among the components of stress and strain

11 11are nonlinear, the sum of the components of strain of a particle e  and e  which are- .

11produced when the components of stress      and J  act on this particle separately is.

11unequal  to  the  component  of  strain  e   produced  when  the   component  of   stress

† A functional is an expression whose value depends on one or more functions.  For example, the strain
energy density is a function of the components of strain which are functions of the space coordinates.
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  (3.38a)

(3.38b)

 acts on the particle.  That is, the results cannot be superimposed.

3. It is assumed that when a body made from an elastic material is subjected to external
forces in an environment of constant temperature, any two different sets of components

i j i jof stress [  and  (i, j = 1, 2, 3)] acting on any one of its particles correspond to two(2) (1)

i j i jdifferent sets of components of strain [e  and e  (i, j = 1, 2, 3)] of this particle and vice(2) (1)

versa.  Moreover, these sets of components of stress and strain satisfy the following
relation:

i j i j i jThe left side of relation (3.38a) is equal to zero only if =  and, consequently, e(2) (1) (2)

i j= e .  Inasmuch as relation (3.38a) is valid for any two sets of values of the components(1)

of stress, it  will  also  hold  when  the  differences  of  the  components  of  stress  and
strain   are infinitesimal.  Thus,

Elastic materials possessing the property (3.38) are called stable.
An elastic material is an idealization approached by some materials.  In reality, even

when a body is subjected to very small forces, some permanent distortion of its
microscopic structure occurs.  Consequently, for any load, no matter how small, there is
some permanent deformation and some energy is lost during the process of loading and
unloading.  When the applied forces are not very large, the permanent deformation of
bodies made from certain materials within a certain range of temperature is of a smaller
magnitude than we are able to observe.  Moreover, the energy lost per cycle of loading
and unloading is small and can be disregarded except in cases involving many cycles.  For
instance, in the case of a vibrating metal part, the energy lost results in the damping of the
vibrations.  The response of these materials is considered as elastic.  As the applied forces
increase, the permanent deformation reaches detectable magnitudes.  It becomes evident
that the body does not recover its original volume and shape upon unloading.  The process
of deformation has obviously become irreversible.  However, the relations among the
components of stress and strain do not depend upon time but upon  the direction and path
of loading.  That is, while elastic deformation depends only upon the initial and final
states of stress, the total irreversible time-independent deformation depends upon both the
final state of stress and the path of loading.  The time-independent behavior of a material
subjected to loads beyond the maximum corresponding to elastic response is termed
plastic.  The mathematical theory concerned with this material behavior is termed
plasticity.

3.8 Stress–Strain Relations of Linearly Elastic Materials Subjected to Three-
Dimensional States of Stress

From the uniaxial tension and the torsion experiments it has been established that for
certain engineering materials the relationship among the components of stress and strain
is approximately linear, for values of the components of stress below the elastic limit.
This result has been extended to three-dimensional states of stress by Robert Hooke and
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 (3.39)

  (3.40)

(3.41)

(3.42)

is generally referred to in the literature as Hooke's law.  It states that the components of
stress, in three-dimensional states of stress, are linearly related to the components of
strain.  In the most general form, Hooke's law for a body in an environment of constant
temperature or for a body thermally isolated from its environment may be written as

These relations can be inverted to yield the components of strain as functions of the
components of stress

ijkl ijklThe coefficients C  and S  are referred to as the elastic con stants and the elastic
compliances, respectively.  Generally, they are functions of the space coordinates.  In this
text we limit our attention to homogeneous materials, that is, materials whose properties

ijkl ijkldo not vary from point to point.  For these materials, the coefficients C  and S  are
constant throughout the body.  Their value depends upon the material and the direction
of the axes to which they are referred.  That is, generally, if the stress–strain relations are

1 2 3referred to another set of rectangular axes xN, xN, xN, the coefficients assume different

i jkl i jkl ijkl ijklvalues  CN  or SN , which may be obtained from the values of the coefficients C  or S ,†

1 2 3respectively, referred to the set of rectangular axes x , x , x .  
Inasmuch as the stress–strain relations (3.40) must satisfy relation (3.37b), we have

or in shorthand notation

ijThe physical interpretation of relations (3.41) is that the component of strain e  due to the

mn mncomponent of stress     =    , must be equal to the component of strain e , due to the

ijcomponent of stress     = .

Similarly  in  order  that  the  stress–strain  relations  (3.39)  satisfy  relation  (3.37a), we

† See next page.
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(3.43)

(3.44)

have

Therefore, it is apparent that the relations among the components of stress and strain of
a  general   non-isotropic,   linearly   elastic   material   involve  a maximum of 36 ! 15
= 21 material constants, which may be established experimentally.

12 13 23 The last three of relations (3.39), when referred to the principal axes (e = e = e =
0) of strain, reduce to

1 2 3where e , e , e  are the principal components of strain.  Therefore, it is apparent that the
shearing components of stress       ,       ,        corresponding to the principal axes of strain
do not vanish.  That is, for a non-isotropic material, the principal axes of strain do not
coincide with the principal axes of stress.

3.9 Stress–Strain Relations for Orthotropic, Linearly Elastic Materials

Many important engineering materials possess a certain symmetry of their microscopic
structure, which is reflected in their stress–strain relations.  For instance, certain
engineering materials, such as fiber reinforced composites, have a microstructure which

† The coefficients CNijkl can be established as follows:
The stress–strain relations (3.39) can be written in indicial notation as

where

The 81 quantities  relate the components of two tensors of the second rank, the stress and strain

tensors.  Consequently, as we know from tensor analysis, they are components of a tensor of the fourth rank.

ijkmMoreover, if the components C  (i, j, k, m = 1, 2, 3)of a tensor of the fourth rank are known with respect

1 2 3to the rectangular system of axes x , x , x , its components  (p, q, r, s  = 1, 2, 3) with respect to any

1 2 3other rectangular system of axes x ', x ', x ' can be established using the following transformation relation:

where  (i, j = 1, 2, 3) are the direction cosines of the rectangular system of axes , with respect

to the rectangular system of axes .
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(3.45)

(3.46)

              (a)

his symmetric with respect to three mutually perpendicular planes.  Consequently, their
elastic constants are also symmetric with respect to these planes.  Materials having this
symmetry are known as orthotropic.  For these materials, as shown in Appendix B, the
stress–strain relations (3.39) when referred to axes which are perpendicular to the planes
of symmetry of their microstructure reduce to 

Referring to relations (3.43), we find that

Thus, when the stress–strain relations for an orthotropic material are referred to axes
which are perpendicular to the planes of symmetry of their microstructure, they  involve
only nine elastic constants.  If the stress–strain relations for an orthotropic material are
referred to an arbitrary set of axes, not perpendicular to the planes of orthotropic
symmetry of the material, they assume the form (3.39).  For instance, a normal
component of stress      acting on a plane which is not a plane of symmetry  of the

12 13 23material, generally, induces shearing components of strain eN , eN  and eN .  However, the

i jkl21 coefficients CN  involved in the stress–strain relations for an orthotropic material,

ijklreferred to any set of axes, may be derived from its nine coefficients C , referred to the
axes normal to the planes of symmetry of its microstructure (see footnote, previous page).

Referring to equation (3.45), one may form the impression that for orthotropic
materials the principal axes of strain coincide with the principal axes of stress.  However,
this is not true, because for a given state of stress the principal directions of stress may not
coincide with the axes that are perpindicular to the planes of symmetry of the
microstructure of the material. Consequently, in order to compute the components of
strain corresponding to the principal directions of stress relations (3.40) must be
employed. Thus, in general the sheering components of strain corresponding to the
principle directions of stress do not vanish .

Example 2  Wood is an orthotropic material. Birch wood has the following stress–strain

1 2 3relations, relative to its orthotropic axes x , x , x :

The state of stress at a particle of Birch wood acting on the planes normal to its
orthotropic axes is
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(b)

              (c)

Compute the direction of the principal axes of the normal components of stress and strain,
of this particle.

3Solution: The given state of stress is a quasi-plane state. Consequently, the axis x  is one

1 2 of the three principal axes while the other two lie in the plane x  x . The principal axis

is specified by the angle  which, referring to relation (1.122), is equal to     

Thus, 

The results are shown in Fig. a.
The components of strain may be computed by substituting the given components of

stress (b) into the stress–strain relations (a). That is,

Referring to relation (1.122), we get 

and

Figure a Location of the Figure b Location of the
principle axes of stress. principle axes of strain.
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             (3.47)

      (3.48)

    Thus, for orthotropic linear elastic materials the principal axes for stress and strain do
not coincide as they do for isotropic linearly elastic materials.

3.10 Stress–Strain Relations for Isotropic, Linearly Elastic Materials Subjected
to Three-Dimensional States of Stress

To the order of accuracy of most engineering calculations, the behavior of many
engineering materials under stress can be considered independent of the direction of the
stress field.  That is, the constants involved in the relations among the components of
stress and strain of a particle of a body made from one of these materials do not change
with the system of axes to which the components of stress are referred.  These materials
are called isotropic.  As shown in Appendix B, for isotropic linearly elastic materials the
stress–strain relations (3.39) are simplified to

ijRelations (3.47) can be solved for e  (i, j = 1, 2, or 3) to obtain

11 22 33The material constant E is evaluated from a uniaxial tension test (  � 0,  = 

12 13 23=  =  =  = 0), described in Section 3.2.  In this case, relations (3.48) reduce to
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(3.49)

(3.50)

Therefore, E is the slope of the stress–strain curve referred to as the modulus of elasticity,
and v is Poisson's ratio.

The material constant G may be evaluated from a simple torsion test described in
Section 3.4.
   The material constants G, E and v are actually related.  That is, the  response of an
isotropic, linearly elastic material is characterized by two material constants.  Physically
this makes sense.  It implies that the response of a material to a shearing component of
stress is not independent of its response to a normal component of stress.  As shown in
Appendix B, the relation between the elastic constants is

Mechanical properties of some commonly used engineering materials are given in
Appendix A.

3.10.1 Stress–Strain Relations for States of Plane Strain and Plane Stress

A state of plane strain is defined as one which has one component of displacement

1equal to zero (say u  = 0), while the other components of displacement are functions only

2 3of two space coordinates (say x  and x ).  In this case, referring to relations (2.16), we
have

Taking into account the above, relations (3.47) reduce to

or
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(3.52)

                           
              (3.51)

   (3.53)

(3.54)

A state of plane stress is defined as one which has three components of stress acting

11 12 13on one plane equal to zero.  If we choose  =  =  = 0, relations (3.48) reduce to

or

3.11 Strain Energy Density and Complementary Energy Density of a Particle of
a Body Subjected to External Forces in an Environment of Constant
Temperature

ij pqConsider a symmetric tensor of the second rank  (e )(i, j, p, q = 1, 2, 3) whose

components are functions of the components of another symmetric tensor of the second

pqrank e  and have continuous  first derivatues. A theorem of calculus states that the

necessary and sufficient condition for the integral   to exist and be

independent of the path of integration is

Consequently, on the basis of the definition of an elastic material given in Section 3.7
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(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

[see relation (3.37)], it is apparent that, when a body made from an elastic material is
subjected to surface tractions and/or body forces in an environment of constant
temperature (deforms isothermally), the following integrals exist and are independent of
the path of integration:

mns mn c  The functional U (e ) is called strain energy density, while the functional U ( ) is

ij mn ij mncalled complementary energy d ensity.  Since the functions (e ) and e ( ) have

continuous first derivatives, on the basis of their definitions (3.55) and (3.56), the strain

s mn c mnenergy density U (e ) and the complementary energy density U ( ) have continuous

second derivatives and vanish at the stress-free, strain-free reference state.  In relations
(3.55) or (3.56), integration is carried out over a curve in the nine-dimensional space of

pq pqe  or  (p, q = 1, 2, 3), respectively, connecting the origin (undeformed state) with the

mn mnpoint P(e ) or P( ) (deformed state).  Inasmuch as the integrals in relations (3.55) and

(3.56) are independent of the path of integration, their integrands  and

 must be perfect differentials.  That is,

and

Consequently,

and

s mnIn relation (3.59), U (e ) is considered a function of the nine components of strain, while

c mnin relation (3.60) U (  ) is considered a function of the nine components of stress.

s mnTherefore, the partial derivative of U (e ) with respect to any component of strain and

c mnthe partial derivative of U (  ) with respect to any component of stress, respectively,
imply that the other eight components of stress are considered constant during
differentiation.  It is apparent that for an elastic material the relations between the

scomponents of stress and strain may be established if the strain energy density U  or the
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(3.61)

    (3.63)

c scomplementary energy density U  is known. If U  is a second degree polynomial of the
components of strain, the relations between the components of stress and strain are linear.

sIf U  is a polynomial of higher degree than the second of the components of strain or any
non-linear function, then the relations between the components of stress and strain are
non-linear.

Substituting relation (3.59) and (3.60) into the condition of stability (3.38b), we get

or

(3.62)
Referring to relations (3.59) and (3.60), at the stress-free, strain-free state of

mechanical equilibrium, we have

s mn c mnRelations (3.63) indicate that the functions U (e ) and U ( ) assume an extremum

value at the stress-free, strain-free state, while relations (3.62) indicate that the extremum

s mn c mnis a minimum.  Thus, the functions U (e ) and U ( ) are non-negative and vanish only

pq pqwhen the variables (e  or ) vanish.  Functions satisfying such a condition are referred
to as positive definite.  Therefore, we may conclude that the condition of stability (3.38b)

s mnimplies that the strain energy density U (e ) is a pos itive definite function of the
c mncomponents of strain and that the complementary energy density U ( ) is a positive

definite function of the components of stress.
On the basis of the foregoing presentation, the elastic model of material behavior

under isothermal conditions may be defined either as was done in Section 3.2 or as one

swhose components of stress are obtained from the strain energy density U , on the basis
of relation (3.59).  The strain energy density is a positive definite function of the
components of strain, having continuous second derivatives and vanishing at the stress-

ofree, strain-free state at the uniform temperature T .  The two definitions are almost
equivalent.  However, the condition of stability imposes greater restrictions on the stress-
strain relations of materials subjected to uniaxial tension or compression, than the
requirement that the strain energy density is a positive definite function of the
components of strain.

From their definition, it is apparent that the strain energy density and the
complementary energy density are related.  This relation may be obtained using relations
(3.60), and (3.57) as follows:
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(3.64)

(3.65)

(3.66)

Relation (3.64) may be integrated to yield

3.11.1 Physical Significance of the Strain Energy Density

Consider a body initially in a stress-free, strain-free state of mechanical and thermal

oequilibrium at the uniform temperature T .  Subsequently, the body is subjected to
external loads and reaches a second state of mechanical but not necessarily thermal
equilibrium.  Moreover, consider the material element (particle) ABCDEFGO of this body

1 2 3of dimensions dx , dx  and dx  whose free-body diagram in the second state of mechanical
equilibrium is shown in Fig. 3.15.  This particle is subjected to components of stress on
its faces and to a distribution of body forces whose resultant acts through its mass center.
The components of stress acting on any face of the particle in general vary throughout this

11 1 2 3      12 1 2 3 13 1 2 3face.  Thus, referring to Fig. 3.15,     (x , x ,  x ),  (x , x , x ) and     (x , x , x ) are the

11 1 1 2 3 12 1average components of stress acting on face OGFD, while     (x  + dx , x , x ),     (x  +

1 2 3 13 1 1 2 3dx , x , x ) and     (x  + dx , x , x ) are the average components of stress acting on face
ABCE.
We denote the components of displacement of the mass center of the particle under

1 2 3consideration by û , û , û .  We assume that the average displacement of each face of the

element is equal to the displacement of its centroid.  Thus, if we denote by  the average

component of displacement of face OGFD, we have

Figure 3.15  Free -body diagram
 of  an element of the  body.
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     (3.67)

    (3.68)

(3.69)

    (3.70)

Moreover, referring to Fig. 3.15, the average displacement of face AECB is equal to

Suppose that the surface traction and the distribution of body forces acting on the body
change by an infinitesimal amount.  The corresponding changes of the average
components of displacements of the faces of the infinitesimal element ABCEDFGO are

denoted as  and  . The increment of work performed by the

1component of stress and the body force, acting on the particle ABCDEFGO of volume dx
2 3dx  dx  as a result of this additional deformation is

where the average traction on face ODCB or OBAG or ODFG is

while the average traction on face AEFG or DCEF or AECB is

Substituting relations (3.66), (3.67), (3.69) and (3.70) into (3.68), we obtain
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(3.72)

(3.73)

(3.74)

   (3.71)
Referring to relations (2.16), we have

Using relation (3.72) in relation (3.71) and disregarding higher order terms, the following
expression is obtained for the increment of work performed by the surface tractions and
body forces acting on the material element ABCDEFGO due to the change by an
infinitesimal amount of the surface tractions and body forces acting on the body under
consideration:

1 2Referring to the equations of equilibrium (2.69), we see that the coefficients of du  du
3du  in relation (3.73) vanish.  Therefore, the increment of the work d(dW) is given as

This expression is valid for bodies made from any material subjected to a general process
of deformation.  The total work of the surface traction and body forces acting on the
infinitesimal element under consideration during the processes of deformation from its
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(3.75)

(3.76)

(3.77)

(3.78)

stress-free, strain-free reference state to its deformed state of equilibrium characterized

mn 1 2 3by the components of strain e  (x , x , x ) is equal to

The sum of the work performed by the forces acting on all the elements of the body
as a result of its deformation from the stress-free, strain-free state to a general deformed

mmstate characterized by the components of strain e , is equal to

Since the common boundary of two adjacent elements is subjected to equal and opposite
components of stress and is displaced by the same amount, the sum of the work
performed by these equal and opposite components of stress vanishes.  Consequently, the
total work performed by the forces acting on all the elements of the body consists only
of the work of the components of stress acting on the faces of the elements which are part
of the surface of the body and the work of the body forces.  Thus, W in relation (3.76) is
equal to the work of the known external forces (body forces and surface tractions) acting
on the body and of the unknown reactions at its supports.  If the supports of the body do
not move, the work of its reactions must vanish. On the basis of the foregoing discussion,
relation (3.76) becomes

Referring to relation (3.77), for an elastic body subjected to body forces and surface
tractions in an environment of constant temperature, the above relation can be rewritten
as

s Twhere (U )  represents the total strain energy of the body.  Thus, we may conclude that
the total strain energy of an elastic body subjected to surface tractions and body forces
in an environment of constant temperature is equal to the work performed by these forces
in bringing it from its stress-free, strain-free reference state to its deformed state.

3.11.2 Strain Energy Density for Linearly Elastic Materials

Recall that the strain energy density of an isotropic linearly elastic body is equal to the
complementary energy density.  Substituting the stress–strain relations (3.47) in relation
(3.55) and integrating, we obtain that for a body made from an isotropic linearly elastic
material, we have

 (3.79)
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(3.80)

(3.82)

(3.83)

Using the stress–strain relations (3.48), we may write the strain energy density and the
complementary energy density (3.79) for a body made from an isotropic, linearly elastic
material only in terms of the components of stress.  That is,

Using relations (3.48) relation (3.79) may be rewritten as

(3.81)

ijDifferentiating relation (3.81) with respect to , we get

These relations are referred to as Castigliano's formulae.  They are valid only for bodies
made from linearly elastic materials, whereas relation (3.59) and (3.60) are valid for
bodies made from any elastic material.  Relations (3.59) are based on the property of
elastic materials that the work performed by the external forces acting on a body made
from an elastic material is independent of the path of loading.  In relations (3.82) the

sstrain energy density U  is considered a function of the nine components of stress. 
In Section 3.11 we have shown that the strain energy density of stable materials is a

"positive definite" function of the components of strain.  Referring to equation (3.79), we
see that the "positive definite" of the strain energy density function imposes the following
restrictions on the magnitudes of the elastic constants:

3.12 Thermodynamic Considerations of Deformation Processes Involving Bodies
Made from Elastic Materials 

Consider a deformable body in an initial stress-free, strain-free state, at the uniform

otemperature T .  We assume that all the particles of the body are at rest.  Consequently,
all the quantities that specify the state of the body (the state variables) do not change with
time.  The body, therefore, is in thermodynamic equilibrium.  Imagine that we bring this
body to a second state of thermodynamic equilibrium through a process of deformation.

ijThis state is characterized by the uniform temperature T, the components of strain e  (I,
     ijj = 1, 2, 3) and the components of stress  .  The number of admissible independent state

variables describing a state of  thermodynamic equilibrium may be established from
experimental observation.  In the case of an elastic body we may choose as the
independent state variables the temperature and the six components of strain.  From
experimental observations, it has been established that some relations, known as
equations of state, exist among the state variables.  The relations among the components
of stress and strain are equations of state.

During the process of deformation, the body is acted upon by surface tractions
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(3.85)

(3.86)

(3.87)

(3.88)

 and body forces B(r,t), where r  and r denote the position vectors in the initials

state of a particle on the surface and in the interior of the body, respectively.  If the
displacement vector of a particle at time t is denoted by û(r, t), the total work W of the
external forces acting on a body due to its deformation is equal to

(3.84)
where û(r) is the displacement vector of a particle which  in the undeformed state was
located at the point whose position vector is r.

Referring to relation (3.76) the total work of the external forces acting on a body due
to its deformation may be expressed as 

s pqwhere U (e ) is equal to*

We assume that the process of deformation is adiabatic.  That is, throughout the
process, the body is entirely separated from its surroundings by an adiabatic wall which
preserves the thermodynamic equilibrium of the body when it is brought into contact with
another body through this wall. In an adiabatic deformation process the temperature is a
function of the components of strain. Thus, as in the case of an isothermal deformation
process, in an adiabatic deformation process of an elastic body the components of strain
may be taken as the independent variables. It has been verified experimentally that the
work performed during adiabatic deformation of an elastic body is dependent solely upon
the initial and final values of the displacement vector û(r, t) [or equivalently of the

ijcomponents of strain e (r, t)], and not on the particular path of loading.  Moreover, it has
been established experimentally that there exists an adiabatic deformation process which
connects any two equilibrium states of a body. Consequently, for an adiabatic

sdeformation process, U  depends only on the final values of the components of strain,*

and thus  must be a perfect differential.  That is,

Consequently,

sU  is the strain energy density for an adiabatic deformation process given by relation*

(3.86).  The coefficients of the monomials of the components of strain in the expression
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(3.89)

(3.90)

for the strain energy density for an adiabatic deformation process differ slightly from
those in the expression for the strain energy density for an isothermal deformation
process. That is, the elastic constants for an elastic body undergoing adiabatic
deformation are slightly different than the corresponding constants for the same body
undergoing isothermal deformation.

The change of the internal energy  of the body is defined as the work performed

by the external forces acting on the body in bringing it from one state of equilibrium to
another, adiabatically.  That is,

From relation (3.85) we see that for an adiabatic deformation process the total strain
energy is equal to the work of the external forces acting on a body in bringing it from its
undeformed to its deformed state.  Consequently, for an adiabatic deformation process,
the total strain energy density of a body is equal to the change of its internal energy.

For a non-adiabatic process, the difference between the change in internal energy and
the work performed by the external forces acting on the body in bringing it from one state
of equilibrium to another, is defined as the total heat Q, absorbed by the body from its
surroundings, during this process.  That is, 

This definition of total heat is the first law of thermodynamics, which is also referred to
as the principle of conservation of energy.  It can be shown that relation (3.90) couples
the stress field with the temperature field of a body.  That is, the deformation of a body
affects the distribution of its temperature.  However, we assume that the effect of the
deformation of the body on the distribution of its temperature is very small and can be
disregarded. On the basis of this assumption relation (3.90) involves only the temperature
field and it is known as the heat conduction equation which is used to compute the
distribution of temperature in a body.  In this book we a ssume that th e temperature
distribution has been computed and it is given.

Consider an elastic body subjected to a distribution of surface tractions and body
forces. If the body is isolated by an adiabatic wall, the work of the surface tractions and
body forces is utilized in increasing the internal energy of the body [see relation (3.89)].
The temperature of the body will increase or decrease, depending upon whether the body
has been subjected to compression or tension, respectively.  Inasmuch as the process of
deformation for a body made from an elastic material is reversible the body will revert
to its undeformed shape, volume and temperature, upon unloading.

Clearly, for a body made from an elastic material enclosed in an adiabatic wall or
loaded fast enough so that heat does not have time to dissipate into the environment, yet
slow enough so that the kinetic energy of its particles is negligible, the relations between

sthe components of stress and strain may be established if the strain energy density U  is*

sknown.  If U  is a homogeneous quadratic form of the components of strain, as that given*

in relation (3.79), then the relations between the components of stress and strain will be

slinear.  If U  is of a higher degree than a quadratic form of the components of strain, then*

the relations between the components of stress and strain will be non-linear.
Let us now consider a process of isothermal deformation of an elastic body.  During

this process, reversible heat energy is dissipated into or absorbed from the environment,
which during unloading is absorbed from or dissipated into the environment.  For
instance, when a bar made from an elastic material is subjected to axial tensile forces
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(3.91)

(3.94)

           (3.92)

(3.93)

isothermally, it absorbs from the environment a considerable amount of reversible heat
energy which it dissipates into the environment when the load is released.  Thus, during
the process of isothermal deformation of an elastic body, the work of the external forces,
which we have shown to be equal to the total strain energy of the body, is not equal to the
energy stored into the body.

Referring to relation (3.59), (3.55), (3.86) and (3.88), it is apparent that for isothermal
and adiabatic deformation the temperature does not appear explicitly in the stress–strain
relations.  However, the elastic constants such as the modulus of elasticity or the Poisson
ratio, established by subjecting to uniaxial tension a completely thermally isolated bar,
differ slightly from those established by subjecting the same bar to uniaxial tension under
isothermal conditions.

In other deformation processes, the temperature must appear explicitly in the

ijstress–strain relations.  The components of strain e  (i, j = 1, 2, 3) of a particle of a body
subjected to such deformation processes may be considered as the sum of two parts: a part

ije (i, j = 1, 2, 3) due to the change of temperature known as the thermal components ofT

ijstrain and a part e (i, j = 1, 2, 3) due to the components of stress acting on the particle.s

That is, 

where

If the body is made from an isotropic, linearly elastic material, referring to relation

ij(3.34a), the thermal components of strain e  (i, j = 1, 2, 3) of its particles are equal to T

where  is the coefficient of linear thermal expansion for an isotropic, linearly elastic

material (see Section 3.5.2).  This coefficient is a material property which may be taken
as constant for moderate changes of temperature.  The coefficients of linear thermal
expansion, for certain engineering materials at room temperature, are given in Appendix
A.  In general, at a given temperature, the coefficient of linear thermal expansion of a
material changes with the magnitude and the character of stress.  This change, however,
is  very  small  for  states  of  stress  within  the  elastic limit. The components of strain
                          are related to the components of stress by the stress–strain relations
(3.48). Substituting relations (3.48) and (3.93) into (3.91), we obtain the following
stress–strain relations for the particles of a body made from an isotropic, linearly elastic
material
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(3.95)

(3.96)

    (3.97)

The constants E,    , G are established from uniaxial tension and torsion tests in an
environment of constant temperature.  Relations (3.94) may be solved for the components
of stress to give

where

Notice that in relation (3.47) the components of strain are only due to the components of

ij ij ij ijstress.  Thus we can replace e  by e  = e  ! e  and get relation (3.95).s T

Consider a body made from an elastic material subjected to a general deformation
process.  The strain energy density of a particle of this body is defined as a function of the
components of strain, which on the basis of relation (3.88), yields the stress–strain
relations for that material from which the body is made.  On the basis of this definition
for a body made from an isotropic, linearly elastic material, we have

In a general non-isothermal and non-adiabatic deformation process the components of
strain and the temperature are the independent variables. It can be shown, that the total
strain energy obtained from the strain energy density defined above for a body made from
an elastic material undergoing a general non-isothermal and non-adiabatic deformation
process is not equal to the work of the external forces.

3.13 Linear Response of Bodies Made from Linearly Elastic Materials

Consider a body made from a linearly elastic material, subjected to loads of such
magnitude that the deformation of its particles is within the range of validity of the
assumption of small deformation.  Thus, the relations between the measure of the
deformation (the components of strain) of a particle of the body and its components of
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displacement are linear [see relations (2.16)].  Moreover, the change of the dimensions
of any portion of the body due to its deformation is considered negligible compared to its
original dimensions.  Thus, the loads acting on the body and the components of stress
acting on its particles may be considered independent of the change of its dimensions due
to its deformation.  This indicates that the components of stress acting on a particle of the
body are related to the magnitude of the loads acting on it by linear relations.  That is,
when the loads acting on the body are doubled, the magnitude of the components of stress
acting on its particles is also doubled.

On the basis of the foregoing discussion and taking into account that the relations
between the components of stress and strain of the particles of the body are linear, we
may conclude that the relations between the external loads acting on the body and the
components of stress, the components of strain or the components of displacement are
linear.  That is, the effects are linearly related to the causes. In this case we say that the
response of the body is linear.

A direct consequence of the linear response of a body is that the principle of
superposition is valid for this body. That is, its response due to a number of
simultaneously applied loads is equal to the sum of its responses due to the application
of each of these loads separately.

3.14 Time-Dependent Stress–Strain Relations

In the Section 3.6, we present idealized models of material behavior.  The constitutive
relations of these models are time independent.  When a thermally isolated body made
from an elastic material is subjected to external forces, all the work performed by these
forces is stored in the body as elastic energy.  Upon unloading, this energy is used to
restore the body to its undeformed configuration.  Consider a thermally isolated body
made of an elastoplastic material in an unstressed unstrained state of thermodynamic

0equilibrium at the uniform temperature T . When the body is subjected to external forces
inducing plastic components of strain, only part of the work performed by these forces
is stored in the body as elastic energy.  The remaining is converted to heat and raises the
temperature of the body.  Moreover, upon removal of the external forces, the body does
not revert to its undeformed configuration and its temperature remains higher than that
at its undeformed stress-free, strain-free state.  The total amount of energy used to raise
the temperature of a particle depends not only upon the final state of stress at this particle,
but also upon the way this particle was stressed (that is, upon the path of loading in the
six-dimensional stress space).  However, the total amount of energy used to raise the
temperature of a particle is not dependent upon the time history of stress acting on this
particle.  For example, the total amount of energy used to raise the temperature of a
particle depends on the number of cycles of loading and unloading and on the magnitude
of the components of stress acting on the particle during each cycle.  It does not depend
on the rate of loading and unloading or on the time it remained under load.

A model of time-dependent behavior employed in describing the response to stress of
many fluids is the viscous fluid.  When this model is subjected to external forces, inducing
a state of stress with zero hydrostatic stress, all the work performed is dissipated into the
environment as heat.  Moreover, when the applied forces reach a constant value, this
model continues to deform at a constant rate.  If the rate of straining of the model is
linearly related to the magnitude of the applied stress, the model is called a Newtonian
fluid.
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The response of real materials is time dependent.  However, for some materials, under
certain environmental conditions, as, for instance, relatively low temperature, the amount
of energy dissipated due to viscous (time-dependent) deformation is very small compared
to the energy stored in the material or to the energy dissipated due to plastic deformation
and can be disregarded.  Consequently, the response of theses materials may be
represented by that of the elastic or elastoplastic models provided that they are not
subjected to many cycles of loading and unloading.  The fact that the amplitude of
vibrations  of  a  bar  made  from  a material such as steel, which under static loading is
considered elastic, decreases with time (it is damped), even when the bar vibrates in a
vacuum, is a clear indication that the behavior of real materials is not entirely time
independent.

For low values of the applied stress, at relatively low temperature, the response of
many metals is only slightly dependent on the rate and the path of loading and it can be
described to a considerable degree of accuracy by that of the elastic model.  For higher
values of the applied stress, even at relatively low temperatures, the response of these
metals is highly dependent on the path of loading (plastic deformation).

Under certain environmental conditions, the response to external forces of many
materials of technological interest (i.e., metals at relatively high temperatures or polymers
and ceramics at room temperature) cannot be represented adequately by the response of
the elastic or the elastoplastic models.  Moreover, at relatively low temperatures the 
response of many fluids cannot be adequately represented by that of the viscous fluid
model.  Under the forementioned environmental conditions, the response of these
materials can be represented adequately only by the response of models which are a
combination of the elastic and the viscous models or of the elastic, the plastic and the
viscous models.  These models of material behavior are referred to as viscoelastic or
elastoviscoplastic, respectively.

When a body made from a viscoelastic or an elastoviscoplastic material is subjected
to external forces, only part of the work performed by these forces is stored in the body;
the remaining is dissipated into the environment as irreversible heat. 

3.15 The Creep and the Relaxation Tests

Some characteristics of the behavior of bodies made of materials having time-
dependent constitutive relations are revealed by the creep and the relaxation tests.  In this
section we describe these two tests.

In the creep test, a specimen is subjected to a state of constant uniaxial stress in an
environment of constant temperature and the corresponding component of strain is
measured at a number of time intervals.  For metals, a prismatic specimen of circular
cross section is used subjected to a constant tensile force in an environment of constant
temperature.   The specimen is in a state of uniaxial tension.  In Fig. 3.16 we plot the

11normal component of strain e  of the specimen as a function of time.  As shown in Fig.
3.16, the specimen exhibits an instantaneous (time-independent) deformation (denoted
as OA) and then continues to deform.  This time-dependent deformation of the specimen
at constant load is called creep.  Part of the instantaneous initial deformation of the
specimen is reversible (elastic) and the rest is irreversible (plastic).  The time rate of
change of strain is high immediately after the application of the load.  This time-
dependent  deformation is   called  transient  creep.  However,  the  time  rate of strain 
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Figure 3.16  Creep curve of metal.

decreases with time until a constant rate of strain is achieved. This time-dependent
deformation is called steady-state creep and is analogous to viscous flow. If the
magnitude of the applied constant force is sufficiently high, the velocity of straining will
ultimately start to increase and fracture will occur.  This time-dependent deformation is

1referred to as tertiary creep. Upon unloading, at time t  =  t , the initial elastic deformation
is recovered instantaneously, while a portion of the time-dependent deformation is
recovered subsequently, at a progressively decreasing  rate, until the residual strain
decreases to a permanent value representing the sum of the instantaneous initial plastic
deformation and the irrecoverable time-dependent deformation. In metals, creep
deformation is predominantly irrecoverable deformation. That is, upon unloading, the
specimen does not revert to its original size and shape.  

In some non-metallic materials, such as plastics and rubber, creep may involve
predominantly recoverable elastic deformation.  For instance, when a piece of natural
rubber (vulcanized without filters) is subjected to constant shearing stress (see Fig. 3.17),
it exhibits some instantaneous deformation and subsequently depending on the
temperature, it may continue to deform with time (see Fig. 3.17).  In this case, if the load
is suddenly released, the rubber immediately recovers only a portion of its deformation.
A residual deformation remains, reducing with time, to a limit of small permanent
deformation. The magnitude of this residual permanent deformation is dependent  upon
the temperature, the  magnitude of the applied load and the duration of its application. 

Figure 3.17   Retarded elasticity of vulcanized rubber.
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Figure 3.18   Stress–strain diagram for a Figure 3.19  Stress relaxation under
material exhibiting retarded elasticity. constant strain.

This phenomenon of time-dependent elastic recovery is referred to in literature as
retarded elasticity and is more pronounced when the rubber is subjected to higher strains
or to longer periods of stretching.  In general, this retarded elastic effect and the residual
permanent deformation is small at room temperature, and increases at lower temperatures
(see Fig. 3.17).  Some of the work performed by the applied forces during both
recoverable and irrecoverable time-dependent deformation is converted into irreversible
heat and dissipated into the surroundings.  Materials exhibiting only recoverable, time-
dependent deformation, like those exhibiting elastic time-independent deformation,
"remember" their unstressed–unstrained reference state.  However, their stress–strain
curve during loading differs from that at unloading — the area between the two curves
represents the energy lost (see cross-hatched area in Fig. 3.18).

In the relaxation test, the stress required to maintain constant the corresponding
component of strain of a specimen subjected to a state of uniaxial stress in an
environment of constant temperature is measured at a number of time intervals.  For
metals, a prismatic specimen of circular cross section is used subjected to the axial
centroidal force required to maintain its elongation constant in an environment of
constant temperature.  The applied force is measured at a number of time intervals.  For
a metal specimen at a relatively high temperature or a specimen made from some non-
metallic material at room temperature, this force decreases continuously with time (see
Fig. 3.19).  This phenomenon is referred to as relaxation.

3.16 Problems

1. A circular cylindrical specimen of 20-mm diameter has been subjected to uniaxial
tension of 50 kN.  The change of length of a before-deformation 80-mm length was
measured by an extensiometer as 0.08 mm, while the change of its diameter was
measured as 0.006 mm.  The specimen is made from a homogeneous, isotropic, linearly
elastic material.  Compute the true stress at a point of the specimen, the modulus of
elasticity and the Poisson ratio of the material from which the specimen is made.

Ans. E = 159.15 GPa,     = 0.3

2. Consider a structure made from an isotropic, linearly elastic material whose modulus
of elasticity and shear modulus are E = 210 GPa and G = 75 GPa, respectively.  If the
components of strain of a particle of this structure are given as
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compute the components of stress acting on this particle.

3. The Poisson ratio of an isotropic, linearly elastic material is 1/3 and its modulus of
elasticity is 210 GPa.  Determine the components of strain of a particle of a body made
from this material, when subjected to the following state of stress:

4. Strain gages were placed at various points on the surface of a plate made from a

1 2homogeneous, isotropic, linearly elastic material with     = 1/3, E = 210 GPa.  The x , x
axes are in the plane of the plate.  The gages were placed in such a way as to measure at

1 2each point the principal strains e  and e .  The values of these strains are given below:

Point A Point B Point C Point D 

1e 0.0004 0.0006 !0.0002 !0.0009

2e !0.0002 0.0003 !0.0006 0.0002

Compute the principal stresses at these points.

33 31 32(Hint: On any point of the surface the stresses ,  and  vanish.)

1  2  1  2  Ans. Point A = 78.75 MPa, =  !15.75 MPa     Point C =  !94.5   MPa, = !157.5 MPa 

1  2  1  2          Point B = 70.88 MPa, =  118.13 MPa     Point D =  !196.88 MPa, = !23.63 MPa

5. A bar of circular cross sections and undeformed diameter of 8 mm is subjected to the
following state of uniaxial stress:

11 22 33 12 13 23 = 140 MPa    =  =  =  =  = 0

Compute the change of the diameter of the bar due to its deformation.  The bar is made
from a homogeneous, isotropic, linearly elastic material with E = 210 GPa and     = 1/3.

Ans. )d = !0.00177 mm

6. An incompressible material is defined as one that cannot experience any volume
change.  If such a material is linearly elastic, what is its Poisson ratio? Ans.      = 0.5
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7. The state of stress at a point of a steel member (E = 210 GPa,     = 1/3) is given by

11 22 12 23 13 33 = 120 MPa      = !40 MPa    = !60 MPa     =  =  = 0

Determine the principal normal components of strain and their directions.

8. The components of displacement in a body made from a homogeneous, isotropic, linearly

elastic material have been found to have the following form:

1 1 2 2 1 2 3u  = Ax  + Bx ,      u  = Cx x       u  = 0 2 2

Disregarding the effect of body forces, determine the relation between the parameters A, B
and C, so that the components of stress obtained from the given components of displacement

satisfy the equilibrium equations.

. Ans. 4(1 !  í)A + 2(1 !  2í)B + C = 0

9. Wood is an orthotropic material.  Douglas fir has the following strain–stress relations

1 2 3relative to orthtropic axes x , x , x :

1where the components of stress are given in MPa.  The x  axis is parallel to the grain, the

2 3x  axis is in the radial direction of the tree and the x  axis is tangent to the growth rings
of the tree.  At a particle of a Douglas fir log subjected to external forces, the components

11 22 33 12 13 23of stress are  = 8 MPa,  = 2.4 MPa,  = !2.8 MPa,  = 1.0 MPa and  = 

= 0.
(a)  Determine the orientation of the principal axes of stress at that particle.

1(b) Determine the components of strain of that particle with respect to the axes x ,

2 3   x, x .

(c)  Determine the orientation of the principal axes of strain at that particle.

10. The bar of Fig. 3P10 has a square cross section (160 mm x 160 mm) and is 400 mm
long.  The bar is made from an isotropic, linearly elastic material (E = 70 GPa, v = 0.33).

11 22The components of stress  = 228 MPa and  are uniformly distributed as shown in
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Fig. 3P10.

22(a) Determine the magnitude of , so that the dimension b = 160 mm does not

2 2change under the load. Ans. J  = 154.4 MPa

(b) Determine the amount by which the length L = 400 mm of the bar changes due
to its deformation. Ans. )L = 0.65 mm

(c) Determine the change in the cross-sectional area of the bar.
Ans. )A = 35.84 mm2

11. A prismatic bar of circular cross section of 20-mm diameter is subjected to uniaxial

11tension  = 250 MPa.  The bar is made from an isotropic, linearly elastic, strain

1 2hardening material, whose stress–strain curve is shown in Fig. 3P11 (E  = 200 GPa, E  =

70 GPa,   = 1/3).  Compute the change of diameter of the bar due to its deformation.

Compute the change of the diameter of the bar when the load is removed. 

[Hint: .]

Figure 3P10 Figure 3P11

12. A circular bar of undeformed diameter 20 mm is subjected to a state of uniaxial stress

  11 22 33 12 13 23   = 120 MPa,  =  =  =  =  = 0.  Compute the change of its diameter as

a result of the deformation.  E = 200 GPa, v = 1/3. Ans. )d = ! 0.004 mm

13. The coefficient of thermal expansion, the modulus of elasticity and the Poisson ratio
of an isotropic, linearly elastic material are     = 10 / C, E = 200 GPa, v = 0.3.  Compute-5 o

the stress field of a body made from this material when its temperature increases by 20 Co

1while every point of its surface is completely restrained from moving. (Hint : Assume u
2 3= u  = u  = 0.)

14. Express the strain energy density of an orthotropic linearly elastic medium in an
environment of constant temperature, as a function of the components of strain referred
to the set of axes which is normal to the planes of symmetry of the material.

15. Consider a cylinder whose wall thickness is small compared to its mean radius. The

Acylinder is  formed from an inner aluminum cylinder of outer radius R and thickness t
Sand from an outer steel cylinder of inner radius R and thickness t  bound rigidly together.

A SThe dimensions t  and t  are very small compared to R. The supports of the cylinder can
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restrain its ends only from moving in the direction of its axis. That is, they can exert only

axial component of traction. An inner pressure p is applied to the cylinder and moreover its

temperature increases by DT C. Since the wall of the cylinder is free to move in the radialo

direction it can be shown that

1r 12    =     = 0

Moreover, it can be shown that the component of stress        vanishes. Furthermore, since

the thickness of the cylinder is very small compared to its radius the radial component of

stress  acting on its particles is negligible compared to the tangential component of stress

acting on them. Thus, there are only two components of stress acting on the particles of this

cylinder, namely,  and . We denote the tangential components of stress acting on the

particles of the steel cylinder by  and those acting on the particles of the aluminum

cylinder by . Since the aluminum and steel cylinders are very thin, these components of

stress  and  vary negligibly in the radial direction.  Furthermore, since the loads and

the geometry of the cylinder do not vary in the axial direction, the components of stress 

and  must be constant. 

Compute the stress distribution acting on the particles of the cylinder.  Evaluate the

S A S A S Aresults for  t  = t  = t = 8 mm,   v  = v  = 1/3,   E  = 200GPa,   E  = 70GPa,    = 2(10 )/ C,-5 o

R = 70 mm,   p = 20 MPa,  )T = 30 C.o

Ans.  = 22.03 MPa,  = 152.96 MPa.
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         (4.1)

Chapter
4

Yield and Failure Criteria

4.1 Yield Criteria for Materials Subjected to Triaxial States of S tress in an
Environment of Constant Temperature

When a body is subjected to external forces (body forces and surface tractions), its
particles are in general subjected to components of stress as a result of which they deform.
When the values of the external forces are small, the body and its particles assume their
undeformed configuration upon removal of the external forces.  That is, the deformation
of the body is reversible.  No energy is lost during the process of loading and unloading.
In this case we say that the deformation of the body and its particles is elastic.  For
sufficiently high magnitudes of the external forces, the components of strain of some
particles of the body may include an irreversible part.  We say that at these particles

ijplastic deformation or yielding has occurred.  The components of strain e  of these

particles are equal to the sum of an elastic part  and a plastic part .  That is,

 

In this section we focus our attention to two models of idealized time-independent
material behavior under general three-dimensional states of stress.  These models are the
isotropic, rigid-ideally plastic and the isotropic, linearly elastic-ideally plastic.  In the
special case of a uniaxial state of stress, these models reduce to the corresponding models
described in Section 3.6 (see Fig. 3.14c and e, respectively).  For these models of
idealized time-independent material behavior, we present criteria for defining the limiting
combinations of values of the components of stress acting on a particle of a body, for
which its deformation is elastic.

It is assumed that plastic components of strain are produced at a particle of a body
subjected to a general three-dimensional state of stress, when the components of stress
acting on it satisfy a certain relation referred to as the yield criterion or the yield
condition.  The yield criterion for a particle of a body made from a material which
exhibits strain-hardening (see Section 3.6, Fig. 3.14d and f) depends on the path of
loading and unloading to which this particle has been subjected since the last  annealing†

of the body. Consequently, it is a function of the components of stress and of  the plastic

† Annealing is the process of heating a metal to an appropriate temperature for a specified time and
subsequently cooling it at an appropriate slow rate.  This process can restore a metal to its stress-free, strain-
free state of mechanical and thermal equilibrium.
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(4.2)

(4.3)

      (4.4)

components of strain of the particle. The yield criterion for a particle of a body made from
an ideally plastic material does not depend on the path of loading and unloading to which
this particle has been subjected.  That is, it is not a function of the plastic components of
strain.  Thus, the yield criterion for the particles of a body made from an ideally plastic
material has the following form:

 nmwhere the yield function    f( ) has first derivatives which are sectionally continuous.

The sign of the yield function is chosen so that an increment of the components of stress
does not change the plastic components of strain at a particle of a body , if the

nmcomponents of stress at this particle satisfy the relation f(J ) < 0.  On the basis of this

nmconvention, it is apparent that a state of stress satisfying the relation f( ) > 0, cannot be

realized at a particle of a body made from an ideally plastic material. If the components

nmof stress satisfy the relation f( ) = 0 at a particle of a body made from an ideally plastic

ijmaterial, an increment d  (i, j = 1, 2, 3) of the components of stress may or may not

produce changes in the components of plastic strain at that particle.  That is, if for an

ijincrement d  (i, j = 1, 2, 3) of the components of stress, the increment of the yield

function is negative , the new value of this function will be

ijnegative and, thus, the forementioned increment d  (i, j = 1, 2, 3) does not produce any

change in the components of plastic strain of the particle.  Thus, for any increment of the

ijcomponents of stress d  (i, j = 1, 2, 3), the plastic components of strain of a particle do

not change if

ijwhereas, for any increment of the components of stress d  (i, j = 1, 2, 3), the plastic

components of strain of a particle change if

When a body made from an elastic-ideally plastic material is subjected to increasing
external forces from its unstressed–unstrained state, it deforms elastically until for a
certain value of the external forces the components of stress acting on one or more
particles of the body reach values satisfying the yield criterion (4.2).  Then, an increase
of the external forces acting on the body could produce plastic components of strain at
these particles.  Thus, for sufficiently high values of the external forces, there will be one
or more parts of the body whose particles are subjected to components of stress which
satisfy relation (4.2).  These parts of the body are referred to as the plastic regions.
Generally, the plastic regions of a body are surrounded by elastic regions.  The boundaries
between the elastic and plastic regions are referred to as the elastoplastic boundaries.  If
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Figure 4.1  Symmetrically notched plate subjected to tensile forces.

the elastic regions of a body made from  an  ideally  plastic  material,  can  restrain  the
deformation of its plastic regions, the magnitude of the deformation of the particles of the
plastic regions could be within the range of validity of the theory of small deformation.
As the external forces increase, the size of the plastic regions increases until they extend
to a sufficiently large portion  of the volume of the body that the elastic regions are not
able to restrain the deformation of the plastic regions.  The body then deforms without
any further increase of the external forces.  In this case, we say that the body collapses
plastically.  For instance, consider the symmetrically notched plate shown in Fig. 4.1 in
an environment of constant temperature subjected on its end surfaces to a uniform
gradually increasing distribution of the axial component of traction from its unstressed
and unstrained reference state.  Assume that the plate is made from an elastic-ideally
plastic material. For small values of the external forces, the distribution of the
components of stress throughout the plate is elastic and can be established using one of
the formulations presented in Section 5.2.  For such values of the external forces, a high-
stress concentration occurs at the root of the notches.  Thus, as the external forces
increase, the components of stress at a number of particles in the neighborhood of the root
of the notches satisfy the yield criterion (4.2) and plastic deformation occurs at these
particles.  Consequently, two plastic regions are formed in the plate, as shown in Fig. 4.1.
In general, the location and geometry of the elastoplastic boundary are unknown.  In many
cases, the geometry of the elastoplastic boundary is complex and can only be established
using numerical methods.  Once the elastoplastic boundary corresponding to a given value
of the applied forces is established, the components of stress and displacement of every
particle of the elastic and the plastic regions can be computed.  In the elastic regions, the
stress–strain relations (3.47) for an isotropic, linearly elastic material are used.  In the
plastic regions, appropriate relations between the increments of the component of stress
and strain are employed.  When the external forces are increased by a small amount, the
location and the geometry of the elastoplastic boundary and the distribution of the
components of stress and displacement in the elastic and plastic regions will change and
must be recomputed.  The location of the elastoplastic boundary and the distribution of
the components of stress and displacement depend on the number of cycles of loading and
unloading to which the plate has been subjected and on the extent of plastic deformation
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(4.5)

(4.6)

             (4.7)

in each cycle.  The plate does not deform extensively until, for some value of the external
forces, the plastic regions extend across its width.  Then the plate deforms to failure while
the external forces remain constant.  We say that the plate has collapsed plastically.

Consider a body made from an elastic-ideally plastic material subjected to a
sufficiently high loading so that components of plastic strain have been produced at some
of its particles, and suppose that it is subsequently unloaded.  As the body is unloaded,
the changes (decrements) of the components of strain of each of its particles are elastic.
That is, the components of plastic strain do not change during unloading.  When the body
has been unloaded, the components of plastic strain of its particles do not vanish and,
consequently, the plastic regions of the body inhibit its elastic regions from reverting to
their unstrained state.  Thus, generally, a residual stress field exists in the body after the
loading has been removed.

If the material from which the body is made is isotropic, the values of the yield
function f must be independent of the axes to which the components of stress are referred.
That is, the value of the yield function f does not change if the components of stress are

1 2 3referred to the x , x , x  axes or to another set of axes.  Hence, the yield function for
isotropic, ideally plastic, materials can be expressed in terms of the three principal
components of stress and thus, the yield criterion assumes the following form:

In the sequel we limit our attention only to isotropic materials.
It has been verified experimentally  that to a reasonable degree of approximation,†

hydrostatic pressure does not affect the yield condition or the components of plastic
strain. The form of the yield function may be restricted further by assuming that the yield
condition
in tension is identical to the yield condition in compression.  This implies that the
material does not exhibit a Bauschinger effect.  On the basis of this assumption, we have

1 2 3In a three-dimensional  space where the principal components of stress , ,  are††

taken as the cartesian coordinates (principal stress space) (see Fig. 4.2), the state of stress
of a particle of a body during a program of loading may be represented by a curve.  The
yield criterion (4.2) may be represented by a closed surface for which it can be shown that
it must be convex and for an ideally plastic material it is a cylindrical surface (see Fig.
4.2).  For isotropic materials, the axis of the yield surface must pass through the origin of

1 2 3the , ,  axes.  Moreover, since it is assumed that hydrostatic pressure does not

produce yielding, it can be shown that the axis of the yield surface is in the direction of
the following unit vector:

 Bridgmen, P.W., The compressibility of thirty metals as a function of pressure and temperature,†

Proceedings of the American Academy of Arts and Science, 58, p. 163-242, 1923.

 In general, the state of stress at a particle of a body may be represented by a point in the six-dimensional††

space of the components of stress.  However, for an isotropic material, we prefer to think in terms of the three-
dimensional prinicpal stress space.
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         (4.8a)

  (4.8b)

(4.9)

Figure 4.2 Graphical representation of the yield criterion for isotropic, ideally plastic material.

The geometry of the cross section of the yield surface depends on the prescribed yield
criterion (4.2).  The state of stress at any particle of a body made from an ideally plastic
material may be represented by a point, either on or inside the yield surface but not
outside the yield surface.

4.2 The Von Mises Yield Criterion

A widely employed form of the yield criterion for metals due to Von Mises , states†

that yielding occurs at a particle of a body when the components of stress acting on it,
satisfy the following relation:

or 

where k  is a constant to be determined from the uniaxial tension experiment .  Denoting2 ††

the yield stress in uniaxial tension by , the Von Mises yield criterion (4.8) for uniaxialY

tension reduces to

 Von Mises, R., Mechanik der Festen Koerper im Plastischen Deformablen Zustand  Goettinger Nachr.,†

Math-Phys. K1, p. 582-592, 1913.

 The constant  k  may also be established from an experiment in which the specimen is subjected to a state2††

of pure shear , .  In this case, denoting by  the yield stress in pure shear,

the Von Mises yield criterion (4.8b) reduces to .
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(4.10)

(4.11)

(4.12)

(4.13)

Figure 4.3  Octahedron.

It can be shown that the shearing stress acting on the faces of an octahedron whose faces
form equal angles with each of the principal axes of stress (see Fig. 4.3) is equal to

1 2In the case of uniaxial tension (  � 0,  =  = 0), from relation (4.10), we obtain that

the total shearing stress acting on the face of the octahedron is equal to

Referring to relations (4.10) and (4.11), it can be seen that the Von Mises yield criterion
is obtained if it is postulated that, yielding occurs at a particle subjected to a triaxial state
of stress,  when the value of the total shearing stress acting on a face of the octahedron
described above is equal to the value of the shearing stress acting on a face of this

11octahedron when the particle yields while subjected to uniaxial tension (  = ).  ForY

this reason, the Von Mises yield criterion is also known as the octahedral yield criterion.
A general state of stress of a particle may be regarded as the superposition of two parts.
The  one  part  causes only change of its volume and it is called dilatational while the
other part causes only change of its shape (distortion) and its is called distortional.  The
dilatational part of the state of stress of a particle (see Fig. 4.4b) is a hydrostatic state of
stress given as

where  is referred to as the mean stress and it is given as  

 Adding the first three of relations (3.47), we obtain:
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(4.14)

(4.15)

(4.16)

(4.17)

(4.19)

(a) (b)      (c)

Figure 4.4 Dilatational and distortional part of the states of stress of a particle.

where

 is called the mean strain and K is called the bulk modulus.  
     The distortional part of the state of stress of a particle (see Fig. 4.4c) is equal to

     The strain energy density of a particle corresponding to the dilatational part of its state

Vof stress is known as dilatational and we denote it by U .  Substituting relation (4.12)  into
(3.80), we get

The strain energy density of a particle corresponding to the distortional part of its state of

dstress is called distortional and we denote it by U .  It can be established by substituting
relation (4.16) into (3.82) or using the following relation:

d s V              U = U  ! U     (4.18)

Substituting relation (3.82) and (4.17) in the above, we get

Referring to relation (4.19)  the distortional part of its strain energy density when the
particle yields while subjected to a state of uniaxial tension or compression, is equal to
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(4.20)

(4.21)

(4.22)

Referring to relation (4.18) and (4.20) it can be seen that the Von Mises criterion (4.7) is
obtained if it is postulated that yielding occurs at a particle subjected to a general triaxial
state of stress when the value of the corresponding distortional strain energy density is
equal to the distortional strain density energy density when the particle yields while
subjected to a state of uniaxial stress. For this reason the Von Mises yield criterion is also
known as the distortional energy density yield criterion.  

4.3 The Tresca Yield Criterion

Another well-known yield criterion was proposed by Tresca .  It postulates that yielding†

occurs when the maximum shearing stress at a particle of a body in a general, triaxial state
of stress attains a value equal to the maximum shearing stress at yielding in uniaxial
tension.  That is why this criterion is also known as the maximum shearing stress yield

11 22 33 12 13 23criterion.  In uniaxial tension (  � 0,  =  =  =  =  = 0) the maximum

11shearing stress is /2.  In  a  general,  triaxial  state of stress if the principal components

1 2 3 1 3of stress are  > > , the maximum shearing stress is (  ! )/2 [see relation

(1.143)].  Thus, the Tresca yield criterion can be written as

This simple form of the Tresca yield criterion can be used only in problems wherein the
ordering of the magnitude of the principal components of stress is known.  If the ordering
of the magnitude of the principal components of stress is not known, the Tresca yield
criterion must be written in the following general form:

In the principal stress space, the Tresca yield criterion is an infinitely long cylindrical
surface of hexagonal cross section inscribed in the Von Mises circular, cylindrical surface
(see Fig. 4.5). Thus, the Tresca yield criterion satisfies the requirement of convexity of
the yield surface.

4.4 Comparison of the Von Mises and the Tresca Yield Criteria

The Von Mises yield criterion is non-linear, whereas the Tresca yield criterion is
piecewise linear.  However, if the ordering of the magnitudes of the principal components
of stress is not known, the Tresca yield surface involves singularities (edges and corners)
and is difficult to handle.

The difference in the predictions of the two criteria is not appreciable.  This may be
illustrated by considering a state of plane stress at a particle of a body specified by

 Tresca, H., Memoire sur 1 'Eccoulement des Corps Solides,  Mem. Pres. Par Div. Sav., 18, p. 733-799,
†

1868.
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(4.23)

(4.24)

Figure 4.5  The Von M ises and the Tresca yield surfaces.

Such a state of stress may be realized by subjecting a thin, circular, cylindrical tube to
axial tension combined with internal pressure.  For this case, the Von Mises yield criterion
(4.8a) reduces to

1 2 1This is an ellipse in the ,  plane, with its major and minor axes inclined 45° to the ,

2and  axes (see Fig. 4.6).

1 2The Tresca yield criterion depends on the ordering of the magnitudes of  and .

1 2 If J  > J > 0, the Tresca yield criterion reduces to  

1  =  (4.25a)Y

2 1If  >  > 0 it reduces to 

2  =  (4.25b)Y

Figure 4.6 Comparison of the Von Mises and the Tresca yield criteria.
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                     (a)

1 2if  > 0 >  it reduces to 

1 2 !  = (4.25c)Y

As can be seen from Fig. 4.6, the greatest divergence in the predictions of the two criteria

1 2occurs at  = ! .  For this case, the Von Mises yield criterion gives   = /%3, whileM Y

1the Tresca yield criterion gives  = /2.  Thus, the maximum discrepancy T Y

in the predictions of the two criteria is approximately 15%.
In what follows, we present an example.

                                                                                                                                             

Example 1 The state of stress of a particle of a body,  made from an isotropic linearly

elastic-plastic material, is specified by two parameters  and  and it is given as 

33Determine and plot in the    ,    space the yield surface corresponding to this state of
stress.  The yield stress in uniaxial tension or compression for  the material from which
the body is made is    = 200 MPa.  Assume that the material from which the body isY

made, obeys (a) the Von Mises yield criterion, (b) the Tresca yield criterion.

Solution

Part a

Substituting the values of the components of stress (a) in the Von Mises yield condition
(4.8b), we get

or
         (b)

This is the equation of an ellipse whose one axis, as shown in Fig. a, is assumed to be

inclined by an angle  with respect to the axis . Referring to relation (1.36b) the

33 33coordinates of any point, on the ,  plane, referred to the axes ,  are related to its

1 2coordinates, referred to the axes x , x  (see Fig. a) by the following relations:

1 2                 = x cos  ! x sin                        

         (c)

1 2               = x sin  ! x cos                         
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  (d)

  (e)

  (f)

  

              

         Figure a Assumed axes of the ellipse.

Substituting relations (c) into (b), we obtain

or

In order that relation (e) assumes the form

1 2the coefficient of x  x  must vanish. Thus,

 !8 cos " sin " !3 cos " + 3 sin " = 02 2 

or

and

Comparing relations (e) and (f), we get

and
     a = 126.51       b = 219.01 
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  (g)

 (h)

Figure b The Von Mises and Tresca yield criteria in the ,  space.

Thus, the Von Mises yield condition is an ellipse (see Fig. b), whose minor axis is
inclined to the axis     by 18.43  clockwise.  The equation of this ellipse with respect too

1 2the axes x  and x  is

Part b

In Fig. c we plot Mohr’s circle for the state of stress (a) using its two points

 and                    . Referring to fig. C, we have

Referring to relations (4.22) and (h), we find that, on the basis of the Tresca yield

33criterion,  yielding occurs when the values of  and   satisfy one of the following

relations:
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(4.26)

The results are plotted in Fig. b.

Figure c Mohr’s circle for the
state of stress (a).

                                                                                                                                             

4.5 Failure of Structures — Factor of Safety for Design

We define a structure as a man-made object, such as a building, a machine,  a vehicle,
an aircraft, or a ship, which supports or transmits loads. A structure is designed to perform
a certain function. The design of a structure entails
1. The determination of the loads (external forces, change of temperature, etc) to which
it is expected to be subjected during its lifetime.
2. The selection of the dimensions and material of its members as well as the  details of
their connections which ensure that the structure is able to perform its function when
subjected to the maximum value of the anticipated loads.
The capacity of a structure to support or transmit loads without failing to perform its
function is known as its strength. Due to the many uncertainties involved in the design
of a structure, the strength for which it is designed is greater than that required. The ratio
of the design strength to the required strength is known as the factor of safety (F.S.).  That
is,

The following are some of the criteria which must be taken into account in
determining the F.S., which should be used for a structure of a particular type of structures
(as, for example, buildings or machines):
1. The type (i.e., static, dynamic, repeated) and magnitude of the loads to which it is
anticipated that the structure will be subjected during its lifetime, as well as the expected
accuracy of their estimation. A load-inducing strain rate greater than 10 /sec is considered-4

dynamic. 
2. The anticipated quality of construction.
3. The quality of available materials for construction.
4. The anticipated damage from environmental conditions such as corrosion of metal
parts. 5. The nature of the anticipated failure. Gradual failures give time to reinforce or
modify
the structure and prevent its failure.
6. The consequences of failure. Greater factor of safety is used if the consequences of
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(4.27)

(4.29)

       (4.28)

failure are catastrophic.
7. The cost of increasing the factor of safety. In an airplane, a small increase of the factor
of safety may result in a prohibitive increase of cost of operation because the weight of
the airplane increases as the F.S. increases and the load which can be transported
decreases.
8. The effect of the approximations involved in the theory used to analyze the  structure.
9. The determination of the factor of safety for a structure or for a particular type of
structures (like buildings or bridges), a difficult task which is usually performed by groups
of experienced engineers who write the design specifications  or codes which are used by†

designers.
The F.S. is applied in one of the following ways:

1.The loads for which the structure is designed (design loads) are obtained by multiplying
by the F.S. the maximum value of the loads to which the structure is anticipated 
that it will be subjected during its lifetime. That is, 

The dimensions of the members of the structure are then chosen so that the structure is
just able to perform its function when subjected to the design loads.
2. The yield stress or the ultimate stress of the material from which the structure is made
is
divided by the F.S. and an allowable or  working stress is obtained. That is,

or

The actual yield stress is replaced by the allowable one in the yield criteria described in
Sections 4.2 and 4.3, to obtain allowable yield criteria. Moreover, the actual ultimate
stress is replaced by the allowable one in the fracture criteria described later in this
section, to obtain allowable fracture criteria. The members of the structure are then
chosen so that when the structure is subjected to the maximum values of the loads to
which it is anticipated to be exposed during its lifetime, the values of the components of
stress acting on its particles are less or just equal to those satisfying the allowable yield
of fracture criterion. 

In establishing the required strength of a structure, all possible ways (modes) that a
structure can fail to perform its faction must be taken into account. The following are the
most commonly encountered modes of failure:

† Examples of design specifications are 
1. The specifications of the AISC (American Institute of Steel Construction) for the design and erection
    of  structural steel for buildings.
2.  The specifications for reinforced concrete of ACI (American Concrete Institute)
3. The standard specifications for highway bridges of AASHO (American Association of State 
    Highway Officials).
4. The specifications for stress–grade lumber and its fastenings of the National Forest Products 
    Association.
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1. Failure of structures due to excessive elastic or viscoelastic deformation of one or
more of their members

In order to prevent this type of failure, the structure is designed so that when it is
subjected to the design loads, the displacements of its particles do not exceed the
maximum permissible displacement.

2. Failure of structures made from a ductile material due to initiation of yielding

It is postulated that structures made from ductile materials fail as soon as the
components of stress acting on one of their particles satisfy the yield criterion for the
material from which they are made. In order to prevent this  type of failure, structures are
designed so that when they are subjected to the maximum values of the loads to which it
is anticipated that they will be exposed during their lifetime, the components of stress
acting on their  particles reach values which satisfy the "allowable" yielding criterion in
one or more of their particles.  When the Von Mises yield criterion is used, the failure
theory is known as the maximum distortion energy theory of failure or the octahedral
shearing stress theory of failure.  When the Tresca yield criterion is used, the theory is
known as the maximum shearing stress theory of failure.

When a structure is designed on the basis of this failure mode, we say that the
structure is designed for strength on the basis of elastic design.

3. Failure of structures made from a ductile material due to plastic collapse

It is postulated that a structure made from a ductile material fails when the loads acting
on it reach values (called the collapse loads of the structure) for which the structure would
have collapsed, if it was made from an isotropic, linearly elastic–ideally plastic material.
That is, in some of its members a sufficient number of sufficiently large plastic regions
would have been formed so that the structure would deform to collapse (see Chapter 16).
In order to prevent this type of failure, the structure is designed so that the design loads
are smaller or equal to the collapse loads.

When a structure is designed on the basis of this failure mode, we say that the
structure is designed for strength on the basis of plastic design.

4. Failure of structures due to elastic or plastic instability of one or more of their
members (see Chapter 18)

In order to prevent this type of failure, structures are designed so that when they are
subjected to their design loads, one of their members or a group of their members does
not reach a state of instability and buckle (see Chapter 18).

5. Failure of structures by fracture†

† For further reading see
Barsom, J.M., Rolfe S.T., Frature and Fatigue Control in Structures, 2nd edition, Prentice-Hall,
Englewood  Cliffs, NJ, 1987.
Broek, D., Elementary Engineering Fracture Mechanics, 4th edition, Matinus Nijhoff, London, 1985.
Ewalds H.L., Wanhill R.J.H. Fracture Mechanics Edward Arnold, London 1986.
Knott, J.F., Fundamentals of Fracture Mechanics, J. Wiley & Sons, New York, 1973.
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Figure 4.7  S-N diagram for structural steel.

Some structures resist the applied loads satisfactorily until one or more of their members
break rather suddenly with little or no evidence of plastic deformation. We distinguish the
following three different mechanisms of failure by fracture:

(a) Sudden fracture of structures made from brittle materials

When a specimen made from a brittle material, such as high carbon steel, gray cast
iron, glass, or ceramics, is subjected to a state of uniaxial tension, it fails  with little or no
visual evidence of plastic deformation (see Section 3.2) as soon as the maximum normal
component of stress acting on its particles reaches its ultimate value. When a structure
made from a brittle material is subjected to a state of triaxial stress, it is postulated that
it fails as soon as the components of stress acting on one of its particles satisfy the fracture
criterion for the material from which it is made. In Sections 4.6 and 4.7, we describe two
criteria for brittle fracture. The ultimate stress in uniaxial tension or compression is a
parameter of these criteria, as the yield stress in uniaxial tension or compression is a
parameter of the yield criteria.

(b) Brittle fracture of structures made from ductile materials

Structures made from ductile materials can fracture as if they were made from brittle
materials.  Such brittle fractures are caused by pre-existing flaws (such as cracks, small
notches, or scratches) producing stress concentrations in their neighborhoods involving
high tensile hydrostatic stresses. As discussed in Section 4.1 the effect of hydrostatic
stress on the yield criterion is very small. Consequently, when a ductile material is
subjected to states of stress involving high tensile hydrostatic stress, it may break before
the components of stress acting on one of its particles satisfy the appropriate yield
criterion. That is, it may fracture with little or no visual evidence of yielding. Low
temperatures and dynamic loads decrease the ability of the material to resist brittle
fracture. The phenomenon of brittle fracture of ductile materials is a broad subject which
requires knowledge of material science including fracture processes and crack initiation
and propagation, and consequently is beyond the scope of this book.
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(c) Fatigue fracture of structures

When a member made from a ductile metal is subjected to repeated cycles of stress,
minute cracks are formed at one or more of its points and the member may fracture after
N cycles, provided that the maximum stress in each cycle is equal to or  greater than a
value known as the fatigue strength of the metal corresponding to N number of loading
cycles. This type of failure of a member of a structure is called fatigue failure or fatigue
fracture. The number of load cycles to which the member is subjected when fracture
occurs is called the fatigue life of the member. The fatigue life of a member is affected
by many factors such as the type of loading (uniaxial, bending, tension), the frequency of
the loading cycles, the amplitude of the load, the size of the member, the presence of
flaws, or the temperature during testing. Each of these factors can have considerable
effect on the fatigue life of a member.

We distinguish two types of fatigue fracture — low cycle (10  cycles or less) and high4

cycle (usually above 10  cycles). When a member made from a ductile material fractures6

while undergoing low cycle fatigue, large plastic strains occur in the neighborhood of the
fracture. When a member made from a ductile material fractures while undergoing high
cycle fatigue, little or no visual plastic deformation is apparent.

The curve of Fig. 4.7 has been plotted from results of tests on a number of specimens
having the same geometry and made from the same material (structural steel). Every
specimen was  subjected to a loading which was the same completely reversing function
of time of  constant amplitude. The curve gives the fatigue strength of the structural steel
specimen as a function of the number of cycles required to break it. It is called the S-N
(stress–number) diagram for the metal.
 The S-N diagrams for metals are usually 50% probability of failure curves. That is, if
a large number of specimens having the same geometry and made from the same material
were subjected to the same loading cycles, the numbers of cycles at which they  will
fracture would have appreciable scatter. However, approximately 50% of the specimens
are expected to fracture at a smaller number of cycles than the number indicated in the
S-N diagram for the amplitude of the loading to which the specimens were subjected.

In the next two subsections we present two criteria for fracture of members made from
brittle materials.

In what follows we present an example.
                                                                                                                                             

Example 2  A bar of circular cross section of radius R is made from a ductile, isotropic,
linearly elastic material with yield stress in uniaxial tension or compression

2 .  The bar is subjected to two equal and opposite bending moments M =

1 12 kN@m and to two equal and opposite torsional moments M = 16 kN@m at its ends (see
Fig. a).  Determine the minimum diameter of the bar for safe design assuming that the bar
fails as soon as yielding occurs at one of its particles.  Use the maximum shearing stress

Figure a  Bar subjected to torsional 
and bending moments.
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(a)

(b)

(c)

         (d)

  (e)

   (f)

and the maximum distortion energy theories with a factor of safety of three.
                                                                                                                                             

Solution  The maximum tensile or compressive stress acting on the particles of the bar

3due to the bending moment alone occurs at x  = ±R and it is given by relation (9.12b) as

2 2where I  is the moment of inertia of the cross section of the bar about its x  axis.
The maximum shearing stress due to the torsional moment alone occurs on the

particles of the lateral surface of the bar and it is equal to

pwhere I  is the polar moment of inertia for a circular cross section which referring to
relation (C.10) of Appendix C is equal to

3 On the basis of the foregoing presentation, the particles of the bar at x = R will be
subjected  to  the  maximum   tensile  and shearing stresses while the particles of the bar

3at x  = !R will be subjected to the maximum compressive and shearing stresses.  That is,

3yielding will start at these particles, simultaneously.  The state of stress of a particle at x
= R is shown in Fig. b.  Mohr's circle for this state of stress is shown in Fig. c.  Referring
to fig. c, we see that

  
According to the Tresca yield criterion (see Section 4.3), yielding occurs at a particle of
a body when the maximum  shearing stress acting on it is equal to the maximum shearing

stress at yielding in uniaxial tension; that is, . Thus the radius of the bar for safe

design with a factor of safety of three must satisfy the following relation:

or

Thus, according to the maximum shearing stress failure criterion the minimum radius of
the bar required for safe design is 68.28 mm.

According to the Von Mises yield criterion, yielding occurs at a particle of a body
when the components of stress acting on it satisfy relation (4.8b).  For the state of stress
of Fig. b, this relation gives
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(g)

(h)

(i)

3 3 Figure b State of stress at x = R.               Figure c Mohr's circle for the state of stress at x = R.

        

     

   

Consequently, for safe design of the bar with a factor of safety of 3, its radius must be
such that

or

Thus, according to the maximum distortion energy failure theory, the minimum radius of
the bar for safe design is 66.32 mm.  Referring to results (f) and (i), we see that the
minimum radius of the bar for safe design based on the maximum shearing stress theory
is about 3% bigger than that based on the maximum distortion energy theory.
                                                                                                                                             
 

4.6 The Maximum Normal Component of Stress Criterion for Fracture of Bodies
Made from a Brittle, Isotropic, Linearly Elastic Material†

This criterion is based on the assumption that a body made from a brittle material
fractures when the maximum absolute value of the normal component of stress acting at
one of its particles is equal to the ultimate stress in uniaxial tension of the material from
which  the  body  is  made.  This  implies  that  the  response  of the material to uniaxial

†  This criterion is attributed to Rankine (1820–1872), a British scientist and educator.
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(a)

Figure 4.8  The maximum normal stress 
             fracture criterion surface.

compression is the same as its response to uniaxial tension. As shown in Fig 4.8, in the
principal stress space the maximum stress criterion is the surface of a cube with edges
equal to twice the ultimate stress in uniaxial tension. Experimental results indicate that
this criterion gives good results provided that a tensile principal stress exists at the
particles of the body.
                                                                                                                                             

Example 3 A bar of circular cross section is made from a brittle, isotropic, linearly elastic

material with ultimate stress in uniaxial tension or compression .  The bar

2is subjected to two equal and opposite bending moments M  = 12 kN@m and to two equal

1 and opposite torsional moments M = 16 kN@m at its ends (see Fig. a).  Determine the
minimum diameter of the bar for safe design using the maximum normal component of
stress criterion for fracture with a factor of safety of three.

Figure a  Bar subjected to torsional 
and bending moments.

                                                                                                                                             

Solution  As  discussed  in  the  example of the previous section, the particles of the bar

3at x  = ±R are subjected to the maximum normal component of stress due to the bending
moment and to the maximum shearing component of stress due to the torsional moment.
The state of stress of these particles is shown in Fig. b of the example of the previous
section, while Mohr's circle for this state of stress is shown in Fig. c of the example of the
previous section.  Referring to fig. c,we see that the maximum absolute value of the

3 normal component of stress acting on the particles of the bar at x = ±R is equal to

According to the maximum normal component of stress fracture criterion, in order to
avoid fracture of the bar, its radius must satisfy the following relation:
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(b)

(c)

or

Thus, according to the maximum normal component of stress criterion for fracture, the
minimum radius of the bar for safe design is 55.37 mm.
                                                                                                                                             

4.7 The Mohr's Fracture Criterion for Brittle Materials Subjected to States of
Plane Stress

The "maximum normal stress" fracture criterion is valid for materials having the same
properties in uniaxial tension and in uniaxial compression.  There are brittle materials,
however, as, for example, concrete, cast iron and soils whose properties in uniaxial
tension are different than in uniaxial compression. A fracture criterion for such materials
subjected to states of plane stress has been proposed by the German engineer Otto Mohr.
In order to establish this criterion for a particular material, several different tests must be
performed on it.

Consider a uniaxial tension test performed on a specimen made from a material whose
fracture criterion for states of plane stress we are interested to establish.  In Fig. 4.9a we
show the stress–strain curve for this material and in Fig. 4.9b we plot Mohr's circles for
the states of stress corresponding to points a, b and u of this stress–strain curve. It is clear

1 11 1 11that, when the magnitude of the applied force is equal to P  = A or P  = A,(a) (a) (b) (b)

the specimen under consideration is safe.  The specimen fails when the applied force

1 11reaches the value P  = A.  From Fig. 4.9b we see that Mohr's circles for safe states(u) (u)

of stress lie inside the Mohr's circle for the ultimate state of stress.
Consider a  body  made  from  a  brittle  material  whose  ultimate stresses in uniaxial

 

(a) Stress–strain curve in uniaxial tension  (b) Mohr's circles

Figure 4.9  Mohr's circles for state of stress at the particles of a specimen subjected to uniaxial tension.
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(a) Mohr's circles for a safe       (b) Fracture criterion for plane

1 2     and an unsafe states of stress          stress state with  > 0 and > 0

1 2         or     < 0 and    < 0.
Figure 4.10  Safe and unsafe states of stress for a body in a state of plane stress whose principal stresses
are either both tensile or both compressive.

tension and compression are known.  In Fig. 4.10a we plot Mohr's circles for these
ultimate states of stress.  Suppose that the body is subjected to loads which induce states

1 2of plane stress whose  principal  stresses    and   are  either  both tensile or both

compressive.  Mohr postulated that the body under consideration is safe, when Mohr's
circles for the states of stress of all its particles lie entirely within Mohr's circles for the
ultimate state of stress in uniaxial tension or compression.  A state of plane stress whose
principal stresses are either both tensile or both compressive is unsafe when its maximum
principal stress is equal to the ultimate stress in uniaxial tension or compression.  In Fig.
4.10a, we plot  Mohr's circles for a safe and two unsafe plane states of stress.  In Fig.
4.10b we  plot, in the principal stress space, Mohr's fracture criterion for the body under
consideration.  Points A and B in this figure represent the safe and the unsafe states of
stress, respectively, whose Mohr's circles are shown in Fig. 4.10a.

 

(a) Mohr's circles and fracture envelope (b) Fracture criterion for states of plane stress

Figure 4.11  Mohr's fracture envelope and fracture criterion for states of plane stress.
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(a) Mohr's circles and approximate (b) Approximate fracture criterion
    fracture envelope     for states of plane stress            

Figure 4.12  Mohr's fracture envelope and approximate fracture criterion for states of plane stress.

      For materials for which Mohr's postulate is assumed to be valid, we perform a number
of  different  tests  and from each test we draw Mohr's circle corresponding to the state
of ultimate stress. For example, we can perform a uniaxial compression test and a torsion
(pure shear) test in addition to the uniaxial tension test. In Fig 4.11a we plot Mohr's circles
for the states of ultimate stress of these three tests as well as the envelope of these Mohr's
circles.  Mohr's fracture criterion states that a body in a state of plane stress made from
an isotropic material is safe if Mohr's circles for the states of stress of its particles are
located entirely within the area bounded by the envelope of Mohr's circles representing
the state of ultimate stress of several tests (see Fig 4.11a). In Fig. 4.11b, we plot in the
principal stress space Mohr's fracture  criterion for states of plane stress.

If the only test results available for a material are from uniaxial tension and
compression tests as shown in Fig 4.12a, Mohr's envelope may be approximated by
straight lines tangent to the two Mohr's circles representing the ultimate state of stress in
uniaxial tension and compression. The corresponding fracture criterion in the principal
stress space is shown in Fig. 4.12b.  Thus, Mohr's fracture criterion can be stated as
follows:

"A body in a state of plane stress fractures as soon as the loads acting on it reach such
a value that the principal normal components of stress acting on one or more of its
particles are coordinates of a point on line ABCDEFA of the fracture criterion of Fig.
4.11b or 4.12b."

For materials whose properties in tension are the same as their properties in compression,
the geometry of Mohr's fracture criterion is similar to that of the Tresca yield criterion.

The fracture criterion of many cohesive materials such as concrete, soil or rock,
depends on hydrostatic stress. An increase in the hydrostatic compressive stress increases
the ability of the material to resist the applied stresses without fracturing. It is assumed
that the addition of hydrostatic pressure does not fracture bodies made from such
materials.
                                                                                                                                             

Example 4 A bar of circular cross section of radius R = 60 mm is made from a brittle,
isotropic, linearly elastic material with ultimate stress in tension of 360 MPa and in
compression of 720 MPa.  The  bar  is  fixed  at  its one end and is subjected to a bending
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(a)

(b)

(c)

(g)

(d)

                  (e)

(f)

2 1moment M  = 12 kN@m and a torsional moment M  at its unsupported end.  Using Mohr's
failure criterion with a factor of safety of 2, determine the maximum allowable torsional

1moment M  to which the bar can be subjected.

Figure a  Geometry and loading 
of the bar.

                                                                                                                                             

3Solution  The particles of the bar at x  = ±R are subjected to the maximum absolute value

of the normal component of stress as well as to the maximum value of the shearing stress.

 The state of stress of a particle at r = R is shown in Fig. b.  Mohr's circle for this state of

stress is shown in Fig. c; referring to this figure, we see that

mwhere R  is the radius of Mohr's circle.  Since  , the minimum principal stress 

is compressive.  Thus, referring to Fig. 4.12b, we see that the bar will fail when the value

of the torsional moment is such that  and  are the coordinates of a point of line AB.  The

equation of line AB is

Substituting relations (b) and (c) into (d), we obtain

The normal component of stress  is obtained using relation (9.12b).  That is,

Substituting relation (f) into (e), we get

Substituting results (f) and (g) into relation (a), we have
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Figure b  State of stress of a Figure c  Mohr's circle for the state stress

1 1particle of the bar at x = R.                 of a particle of the bar at x  = R.

or

The allowable torsional moment is equal to

                                                                                                                                              

4.8 Problems

1.  The state of stress of a particle of a body made from an isotropic, linearly

elastic–ideally plastic material with a yield stress  = 200 MPa is given asY

33Compute the value of  required for yielding if the material obeys (a) the Tresca yield

condition (b) the Von Mises yielding condition.
         Ans. 

2.  The state of stress of a particle of a body made from an isotropic linearly

elastic–plastic material, is specified by two parameters  and  and it is given as 
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11Determine and plot in the ,  space the yield surface corresponding to this state of

stress.  The yield stress in uniaxial tension or compression for  the material from which

the body is made is  = 200 Mpa.  Assume that the material from which the body isY

made, obeys
(a) The Von Mises yield criterion      Ans.  

(b) The Tresca yield criterion
Ans. The yield criterion is an exagon in the ,   plane, consisting of segments of the following six straight

lines:

3.  Consider a particle of a body subjected to external forces and assume that its state of

stress is specified by only one parameter  and it is equal to

Determine the values of  for yielding if the body is made from steel (  = 200 MPa)Y

obeying (a) the Von Mises yield criterion, (b) the Tresca yield criterion.

Ans. (aa)  = ±83.86 MPa,   (ab)  = ±80 MPa  

(ba)  = ±130.93 MPa, (bb)  = ±120 MPa

4.  For an isotropic, linearly elastic–ideally plastic material obeying the Von Mises yield

condition, determine the values of  for yielding for the following state of stress:

5. The state of stress of a particle of a body made from an isotropic linearly elastic-plastic

material, is specified by two parameters  and  and it is given as 
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33Determine and plot in the ,  space the yield surface corresponding to this state of

stress.  The yield stress in uniaxial tension or compression for  the material from which

the body is made is  = 200 Mpa.  Assume that the material from which the body isY

made obeys
(a) The Von Mises yield criterion

        

(b) The Tresca yield criterion
Ans. The yield criterion is an exagon in the     ,       plane, consisting of segments of the following six
straight lines:

6.  Consider a prismatic bar of circular cross section of radius R made from an isotropic,
linearly elastic material of modulus of elasticity E and shear modulus G. When this bar

1is subjected to equal and opposite torsional moments of magnitude M  at its ends, its stress
field is given as

where, referring to Fig. 3.11a, we have

When the bar under consideration is subjected to equal and opposite axial centroidal

1tensile forces of magnitude P  at its ends, its stress field is given as

1 1Find the combination of P  and M  which is required for incipient yielding.

(a)  Use the Von Mises yield criterion.

(b)  Use the Tresca yield criterion.             Ans. The Tresca yield criterion is a quadra-

             lateral defined by segments of the ellipse  

                and  of  the 

              parabolas  

7.  An 80-pmm diameter rod  is made from an isotropic, linearly elastic–ideally plastic

material which obeys the Von Mises yield criterion with  = 250 MPa.  The rod is
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1subjected to equal and opposite torsional moments of magnitude M  = 10 kN@m at its ends,

1and subsequently to equal and opposite axial centroidal forces of magnitude P .  Compute

1the magnitude of the axial forces P  for which some particles of the rod begin to yield.

12 1 p 11 1 1(Hint:  = M r/I   = P /A) Ans.  P  = 910.6 kN

8. and 9.  A particle of a body begins to yield when subjected to the state of plane stress

shown in Fig. 4P8.  The body is made from steel (E = 200 GPa,  = 250 MPa).

Determine the factor of safety used in designing the body, assuming that the body fails as
soon as yielding begins at the particle under consideration on the basis of the Von Mises
yield criterion.  Repeat with the particle subjected to the state of stress shown in Fig. 4P9.

Ans. 8  F.S. = 1.05
Ans. 9  F.S. = 1.44

10.  Using the maximum distortional energy failure criterion with a factor of safety of
three, determine the minimum safe width of the cantilever beam subjected to a
concentrated force as shown in Fig. 4P10.  The beam is made from a ductile, isotropic,

linearly elastic material with a yield stress in tension and compression of  = 240 MPa.

(Hint: ).

Ans.  b = 24 mm

(a) Bar subjected to equal and opposite (b) Stress distribution on the cross section
    torsional moments at its ends     of the bar due to the torsional moments

Figure 4P6

Figure 4P8 Figure 4P9
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Figure 4P10

11.  A body made from a ductile, isotropic, linearly elastic material with a yield stress in
pure shear of 80 MPa fails according to the maximum distortion energy failure criterion,
as soon as the state of stress of one of the particles is equal to

Using a factor of safety of two, compute the allowable value of m.
       Ans.  m  = 76.192

12.  A body is subjected to loads of such magnitude that yielding has just begun at one of
its particles.  The state of stress of this particle is

The body is made from a ductile, isotropic, linearly elastic material with yield stress in
uniaxial tension of 320 MPa.  Determine the F.S. used in the design of the body assuming
(a) the maximum distortional energy failure criterion and (b) the maximum shearing stress
failure criterion. Ans.  (a) F.S. = 2.298    (b) F.S. = 2.027

13.  A thin-walled cylinder of radius R = 120 mm and thickness t = 10 mm is made from
a brittle, isotropic, linearly elastic material, whose ultimate uniaxial tensile and

compressive stresses are  = 360 MPa and  = 720 MPa, respectively.  Using a F.S.

of two, compute the maximum allowable axial centroidal force which can be applied to the
cylinder when it is already subjected to a torsional moment of 24 kN@m.  

Employ Mohr's fracture criterion. (Hint: )

                   Ans.  Max. allow. tensile axial force = 1,245.34 kN
                            Max. allow. compr. axial force = 2,545.96 kN

14.  A solid cylinder must withstand a maximum torsional moment of 24 kN@m together
with a bending moment of 12 kN@m.  The cylinder is to be made from a brittle, isotropic,
linearly elastic material with ultimate stress in tension and compression of 320 MPa and
800 MPa, respectively.  Using Mohr's failure criterion with a F.S. of two, determine the
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minimum allowable radius of the cylinder. (Hint: .)

allow.Ans. r  = 50.76 mm

15.  A solid cylinder must withstand a maximum torsional moment of 24 kN@m together
with a bending moment of 12 kN@m.  The cylinder is to be made from a brittle, isotropic,
linearly elastic material with ultimate stress in tension and compression of 320 MPa.  Using
the maximum normal component of stress fracture criterion with a F.S. of two, determine
the minimum allowable radius of the cylinder.

allow.(Hint: .) Ans. r  = 53.65mm

16.  Prove that the total shearing stress acting on a face of the octahedron (shown in Fig.
4.3) is given by relation (4.10).
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Chapter
5

Formulation and Solution of Boundary
Value Problems Using the Linear

Theory of Elasticity

5.1 Introduction

The mathematical formulation of a time-independent problem (equilibrium or steady
state) using the continuum model (see Section 2.1) is referred to as a boundary value
problem.  It involves the determination of a scalar, a vector or a tensor function of the
space coordinates which satisfies a differential equation in a certain region called the
domain of the problem as well as appropriate specified conditions on the boundary of the
domain called the boundary conditions.

In this book we consider solid bodies initially in a reference stress-free, strain-free

ostate of mechanical  and thermal  equilibrium at a uniform temperature T .  In this state† ††

the bodies are not subjected to external loads and heat does not flow in or out of them.
Subsequently, the bodies are subjected to specified external loads  described in Section
2.2, as a result of which they deform and reach a second state of mechanical, but not
necessarily thermal, equilibrium. We formulate and solve boundary value problems for
computing the displacement and stress fields of solid bodies subjected to external loads,
using two theories: the linear theory of elasticity and the theories of mechanics of
materials. 

The linear theory of elasticity can be employed to formulate boundary value problems
for computing the displacement, and stress fields of bodies of any geometry subjected to
any loading.  However, only a few such problems have been solved exactly.  The rest are
solved approximately using one of the modern numerical methods suitable for
programming their solution on an electronic computer.  The finite elements method is the
most popular of these methods.   Examples of boundary value problems formulated on
the basis of the linear theory of elasticity are solved exactly in this and the next two
chapters.  They involve bodies of simple geometry supported in an idealized convenient
way and subjected to external loads which induce states of stress having some vanishing
components.

†  When a body is in a state of mechanical equilibrium, its particles do not accelerate.  That is, the sum of
the forces acting on any portion of the body and the sum of their moments about any point vanish.
†† When a body is in a state of thermal, equilibrium heat does not flow in or out of it.  That is, the
temperature of all its particles is the same.
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The linear theory of elasticity is based on the following assumptions:

1. The response of a body may be approximated by that of the continuum model (see
Section 2.1).
2. The deformation of the particles of a body is in the range of validity of the assumptions
of small deformation (see Sections 2.4 and 2.5).
3. The effect of the deformation of a body on the change of its temperature is negligible.
4. The relations among the components of stress and strain are linear.

The theories of mechanics of materials are approximate. They can be employed to
formulate boundary value problems for computing the displacement and stress fields in
solid bodies of certain geometries (see Section 8.1).  Most of these problems can be
solved exactly by hand calculation if the geometry and loading of the body are simple or
with the aid of a computer if the geometry and loading of the body are complex.

In Chapters 8 to 18 we formulate and solve boundary value problems for computing
the  displacement and stress fields of solid bodies subjected to external loads, using the
theories of mechanics of materials. 

5.2 Boundary Value Problems for Computing the Displacement and Stress Fields
 of Solid Bodies on the Basis of the Assumption of Small Deformation
  

Consider a solid body initially in a reference stress-free, strain-free state of mechanical

oand thermal equilibrium at a uniform temperature T .  Subsequently, the body is subjected
to specified external loads, as a result of which it deforms and reaches a second state of
mechanical, but not necessarily thermal, equilibrium.  These loads could include one or
more of the following:

1. Specified components of force applied to every particle of the body due to its presence
in a force field as, for example, the gravitational field of the earth (see Section 2.2).  They
are called components of the specific body force and are given in units of force per unit
volume of the body.  We denote the specific body force by

2. Specified components of surface traction applied on some particles of the surface of
the body due to its contact with other bodies.  They are given in units of force per unit 

Figure 5.1  Body fixed on a portion of 
  its surface and subjected to

                    traction on another.
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(5.1)

 (5.2)

area of the surface of the body.  Consider a point of the surface of the body whose

1 2 3coordinates are x , x , x  and the unit vector normal to the surface of the body at this points s s

nis i .  We denote the surface traction at this point by

3. Specified components of displacement of the other particles of the surface of the body.
The points of the surface of the body where components of displacement are specified are
called its supports.  The tractions exerted by the supports of a body on its particles are not
known.  They are called the reacting tractions of the body and are determined as part of
the solution of the problem.  This is accomplished by substituting the computed
components of stress into the traction–stress relations (2.73) and evaluating the resulting
expressions at the points of the surface of the body where components of displacement
have been specified. 

1 2 34. Specified temperature T(x , x , x ) of some points of the surface of the body.s s s

n n5. Specified temperature gradient MT/Mx  at the other points of the surface of the body.  x
is the coordinate of a point measured  in the direction normal to the surface of the body
at that point.
For a properly formulated problem, four quantities must be specified at each point of the
surface of a body, one from each of the following pairs of quantities:

The quantities which are specified at the points of the surface of a body are called its
boundary conditions.  When the components of displacement and the temperature are
specified at a point of the surface of a body, the boundary conditions at that point are
called essential.  When the components of traction and the temperature gradient are
specified at a point of the surface of a body, the boundary conditions at that point are
called natural.  It is possible to have mixed boundary conditions at some points of the 

1surface of a body.  That is, one component of displacement could be specified (say u )

and two components of traction (  and ) or two components of displacement could

1 2be specified (say u  and u ) and one component of traction .  As an example, consider

the body of Fig. 5.1.  Its boundary conditions are
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(5.3)

Notice that the distribution of the component of traction                           on the surface
of a body in equilibrium cannot be specified throughout its whole surface independently

iof the distribution of the components of the specific body force B (i = 1, 2, 3).  These two
distributions must satisfy the conditions imposed by the equilibrium of the body as a

whole.  This requirement does not arise if the components of displacement (i = 1, 2, 3)

are specified at some points of the surface of the body.  In this case, at the points where

the component of displacement  is specified, the solution of the problem yields

components of traction  satisfying the equilibrium of the particle on which they act as

well as the equilibrium of the body as a whole.
If the temperature T is not maintained uniform throughout its volume, the body does

not reach a state of thermal equilibrium because heat will be flowing in or out of it.  If
during a process of deformation the temperature distribution on the surface of the body

oremains constant (T = T ), the temperature distribution inside the volume of the body may
change slightly and heat may be absorbed from or emitted to the environment.  However,
when the body reaches the second state of equilibrium, the temperature distribution inside

oits volume becomes uniform again and equal to the temperature T  of its surface.
Consequently, heat does not flow in or out of the body.  When a body made from an
elastic material is subjected to external forces in an environment of constant temperature,
the amount of heat absorbed from or emitted to the environment during loading is equal
to the amount of heat emitted to or absorbed from the environment during unloading
(reversible heat).

We are interested in establishing the displacement, stress and temperature fields in
the body under consideration.  In general these quantities must satisfy the following laws:

1. The principle of conservation of mass.  That is, the mass of any portion of a body does
not change during a process of deformation.  Denoting by dm the mass of a particle of a
body on the basis of this principle, we have

where

o   dV = the volume of the particle in the undeformed state.
   dV = the volume of the particle in the deformed state.
   = the density of the particle in the undeformed state.
   = the density of the particle in the deformed state.
For deformation within the range of validity of the assumption of small deformation

we have

Consequently  for  the  boundary  value  problems  under consideration, the principle of
conservation of mass reduces to
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(5.4)

(5.5)

        (5.6)

         (5.7)

(5.8)

  (5.9)

That is, the change of the density of a particle of the body due to its deformation is
negligible compared to its density before deformation.
2. The sum of the forces acting on any particle of a body in equilibrium that must vanish.
In Section 2.13 we show that on the basis of this law the stress field of the body must
satisfy the following requirements:

(a) The three equations of equilibrium (2.69) at every point inside the volume of the
body.  They can be written as

(b) When substituted into the traction–stress relations, (2.73) must give components
of traction which are equal to the specified components of traction when
evaluated at the points of the surface of the body where components of traction
are specified.

3. The sum of the moments, about any point, of the forces acting on any portion of a body
in equilibrium that must vanish.  In Section 2.13 we show that this law is satisfied if the
stress tensor is symmetric.  That is, 

4. The six strain–displacement relations.  That is,

From relations (5.7) we see that the strain tensor is symmetric

5. The relations between the components of stress and strain for the material from which
the body is made.  
6. The first law of thermodynamics, also known as the principle of conservation of
energy.  This law may be expressed as

where
Q = the heat absorbed by the portion of the body under consideration, from its

environment during the process of deformation.
)E = the change of the internal energy of the portion of the body under
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consideration due to its deformation.
W = the work done by the external forces (surface tractions and body forces) acting

on the portion of the body under consideration in moving from their position
in the undeformed configuration of the body to their position in its deformed
configuration.

It can be shown that relation (5.9) couples the temperature field with the strain field
of a body. Thus, the deformation of a body affects the distribution of its temperature.
However, we assume that the effect of the deformation of a body on the distribution of its
temperature is very small and can be neglected. On the basis of this assumption relation
(5.9) involves only the temperature field and it is known as the heat conduction equation.
Consequently, the boundary value problem for computing the temperature, the
displacement and the stress fields of a body is divided into the following two parts:
1.  A boundary value problem which involves the determination of the temperature field
of the  body (known as the heat conduction problem) which satisfies the heat conduction
equation at every point inside the volume of the body and the specified boundary
conditions at the points of the surface of the body. For a correctly formulated problem
either the temperature or its gradient              must be specified at every point of the
surface of the body.
2. A boundary value problem which involves the determination of the displacement and
stress fields of the body using the temperature field established by solving the heat
conduction problem.

In this boo k we a ssume that th e temperature field  of the bodies which we are
considering has been established and it is known.

On the basis of the foregoing presentation it is clear that the boundary value problems
for computing the components of displacement strain and stress fields in a solid body
involve the following 15 unknown quantities:

Moreover, referring to relations (5.5) and (5.7) and taking into account that the six
components of stress are related to the six components of strain by six stress–strain
relations, we find that 15 equations are available for the boundary value problems under
consideration.

The boundary value problems for computing the displacement strain and stress fields,
of bodies made from a homogeneous, isotropic, linearly elastic material are known as the
boundary value problems of the linear theory of elasticity and are usually formulated
either in terms of the components of displacement or in terms of the components of stress.
We present these formulations in Sections 5.2.1 and 5.2.2, respectively.

As discussed in Section 3.13 the relations between the external loads acting on a body
made from a linearly elastic material and the components of stress, the components of
strain or the components of displacement are linear when its deformation is in the range
of validity of the assumption of small deformation.  That is, the effects are linearly related
to the causes. In this case we say that the response of the body is linear.  A direct
consequence of the linear response of a body is that the principle of superposition is valid
for this body.  That is, its response due to a number of simultaneously applied loads is
equal to the sum of its responses due to the application of each one of these loads
separately. 

The linear theory of elasticity is based on the following four assumptions:
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1. The bodies which are considered are made from a continuum (see Section 2.1).
2. The magnitude of the external loads acting on the bodies which we are considering is
such that their deformation is within the range of validity of the assumption of small
deformation (see Section 2.4).  As a result of this assumption, the following
approximations can be made:
(a)  The deformation of a particle of a body is completely specified by its components

 of strain which  are  related  to  first  derivatives  of the components of displacement

1 2 3 1 2 3 1 2 3      (x , x , x ), (x , x , x )  and  (x , x , x )  of  the particle by the linear relations

       (2.16).
(b) The change of length, area or volume of a segment of a body due to its deformation

is  negligible  compared  to  its  undeformed  length,  area  or  volume, respectively.
 Consequently, when we consider the equilibrium of a portion of  a body  (finite  of 
 infinitesimal), we do not  take into  account the  change  of its dimensions due to its

deformation.  That is,  when we draw its free-body diagram we use its undeformed 
configuration.

3. The relations among the components of stress and strain are linear and independent of
time and of the history of loading and unloading.  In this book we limit our attention to
bodies made from isotropic, linearly elastic materials.  Their stress–strain relations are
(3.94) and (3.95).
4. The effect of deformation of a body on the distribution of its temperature can be
neglected.  As a result of this assumption the boundary value problems for computing the
displacement stress and temperature fields in a body are divided into two uncoupled
problems: one involving the computation of only the temperature field and the other
involving the computation of only the displacement and the stress fields.

It can be shown that the boundary value problems formulated in this section have a
solution , which moreover, is unique  provided that the specified components of† ††

displacement prevent the body from moving as a rigid body.  If the specified components
of displacement do not prevent the body from moving as a rigid body the solution is only
unique to within a rigid-body motion.

5.2.1 Strong Form–Displacement Formulation

The strong form–displacement formulation of the boundary value problems for
computing the components of displacement and stress of the particles of solid bodies
made from linearly elastic materials when they are in the second state of mechanical
equilibrium described in Section 5.2 can be formulated.

1 2 3Establish the components of displacement  (x , x , x )(i = 1, 2, 3) which have the

following attributes:

1.  They are bounded, single-valued functions of the space coordinates having continuous

                                                                        
† Rigorous but lengthy proofs of the existence of a solution is presented in the following publications:

Korn, A., Uber die losung des grund problems des elastizitatsttheorie, Mathematisch Annalen, 75, p.
497-544, 1914, Lichtenstein, L., Uber die erste randwertaufgabe der elastizitatsttheorie, Mathematisch
Zeitschrift, 20, p. 21-28, 1924.

††  A proof that the solution is unique is presented in the following publication:  Kirchhoff, G., Vorlesunger
      uber Mathematisch Phys. Mechan. 3rd edition, Leipzig, 1882.
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(5.10)

(5.11)

first derivatives.
2.  They satisfy the specified essential (displacement) boundary conditions at the points
of the surface of the body where such conditions are specified.  If we assume that the

tcomponents of displacement  of the particles of the portion S!S  of the surface

of the body are specified, the boundary conditions at this portion are

1 2 3where  are the specified components of displacement and x , x , x  are thes s s

coordinates of the points on the surface of the body.
              
3. When substituted into the strain–displacement relations, components of strain which
on the basis of the stress–strain relations for the material from which the body is made
give components of stress which satisfy the conditions for equilibrium of every particle
of the body.  That is,
 (a)    They satisfy the specified natural (traction) boundary conditions at the points of the
         surface of the body where such conditions are specified.  In Section 2.13 we show
 that the components of surface traction acting on a particle located at a  point of the
 surface of the body are related to the components of stress acting on this particle by
 relations (2.73).  If we assume that the components of traction acting on the particles

t of the portion S  of the surface S of the body are specified, the boundary conditions
 at this portion are

1where  are the specified components of traction acting at a point (x ,s

2 3 t n 1x , x )  of  the  portion  S   of  the  surface of the body.  We denote by i  =       i  +s s

2 3    i +     i  the unit vector outward normal to the surface at that point. The
satisfaction of relation (5.11) ensures that the components of stress acting on the

tparticles of the portion S  of the surface of the body where components of traction
are specified are in equilibrium with the specified components of traction.

 (b) They satisfy the equations of equilibrium (5.5) at every point inside the volume of
the body. This ensures that the sum of the forces acting on each particle which is
located inside the volume of the body is equal to zero.  For bodies made from
isotropic, linearly elastic materials the equations of equilibrium (5.5) can be written

i 1 2 3in terms of the components of displacement û (x , x , x ) (i = 1, 2, 3).  That is,
substituting the strain–displacement relations (2.16) into the stress–strain relations
(3.47) and the resulting expressions into the equations of equilibrium (5.5), we
obtain the following three displacement equations of equilibrium:
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(5.12)

(5.13)

1where II  is the first invariant of strain.  That is, referring to relation (1.78), we  have

The reacting tractions of a body are computed by substituting the calculated
components of stress into the traction–stress relations (2.73) and evaluating the resulting
expressions at the points of the surface of the body where components of displacement
are specified.

5.2.2 Strong Form–Stress Formulation

The strong form–stress formulation of the boundary value problem for computing the
displacement and stress fields of solid bodies made from linearly elastic materials, when
they are in the second state of mechanical equilibrium described in Section 5.2, can be
formulated as shown below.

1 2 3Establish  the  components  of  stress      (x , x , x )  (i, j = 1, 2, 3)  which  have  the
following attributes:
1.  They are bounded single-valued continuous functions of the space coordinates.
2.  They are symmetric       
3.  They satisfy the equations of equilibrium (5.5) at every point inside the volume of the
body. 
4.  They satisfy the natural (traction) boundary conditions at every point of the surface of
the body where such conditions are specified.
5.  On the basis of the stress–strain relations for the material from which the body is
made, they give components of strain which when substituted into the
strain–displacement relations (5.7) the resulting relations can be integrated to give
components of displacement which are single-valued continuous functions of the space
coordinates.  A necessary condition, which ensures that the components of strain satisfy
this requirement is that they satisfy the compatibility equations (2.63) at every point of
the body.  For simply connected (without holes) bodies  the satisfaction of the equations
of compatibility is a necessary and sufficient condition.  For multiply connected (with
holes) bodies the satisfaction of the equations of compatibility  ensures only that the
strain–displacement relations can be integrated.  It does not ensure that the components
of displacement will be continuous single-valued functions.  This can be ensured by
requiring that the components of strain satisfy additional relations (see Section 6.6).
6.  The components of displacement obtained from the components of stress satisfy the
essential (displacement) boundary conditions at the points of the surface of the body
where such conditions are specified. 
 The reactions of the body are computed as discribed in the previous subsection. 

5.3 The Principle of Saint Venant

The exact solution of static boundary value problems involving the determination of
the components of displacement and stress of bodies made from linearly elastic materials
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  (a)     (b)

Figure 5.2  Bar subjected to statically equivalent distributions of external forces on its end surfaces and
corresponding stress distribution† near the end surface.

†

is usually mathematically complex.  The solution of certain boundary value problems
could be simplified by allowing the components of stress to satisfy convenient statically
equivalent traction boundary conditions instead of the actual ones over one or more small
portions of the surface of the body.  The license for such modification of the boundary
conditions of a body was set forth by Barre'  de Saint Venant (1797–1886), a French
mathematician, in the form of the following principle:

"If some distribution of traction acting on a small portion of the surface of a body is
replaced by a different distribution of traction acting on the same portion of the
surface of the body, then the effects of the two different distributions on the parts of
the body sufficiently far removed from the region of application of the traction are
essentially the same, provided that the two distributions of traction are statically
equivalent."

"Statically equivalent" distributions of traction have the same resultant force and the same
moment about any chosen point.

On the basis of the principle of Saint Venant the distribution of the components of
stress in the bar loaded in the two different ways shown in Fig. 5.2 is the same at points
sufficiently distant from the region where the load is applied provided that t and b are
small compared to L.  The results shown in Fig. 5.2 have been obtained on the basis of the
linear theory of elasticity.  As can be seen from Fig. 5.2, at sections sufficiently removed
from the end surfaces of the bar where the load is applied, the distribution of the
components of stress due to a line load approaches the distribution of the components of
stress due to an equivalent uniformly distributed load.  However, at sections close to the
end surfaces of the bar, the distribution of the components of stress due to the line load
is non-uniform.  Similarly, the distribution of the components of stress in the beam loaded
in the three different ways shown in Fig. 5.3 is the same at a sufficient distance from the
region where the load is applied, provided that b is small compared to the length of the
beam.
                              

† These results are adopted from Timoskenko, S. and Goodier, J.N., Theory of Elasticity, Mc-Graw Hill,
New York, 1951, p. 52.
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Figure 5.3  Statically equivalent distribution of forces acting on a beam.

The applicability of the principle of Saint Venant is limited to static problems.  In
dynamic problems, a disturbance may be propagated at distances far removed from the
region of its application.  Moreover, in static problems, the principle of Saint Venant  is
valid  only  if  there  are  paths  available   through  which  the internal forces may balance
themselves .  This may be illustrated by considering the very long truss shown in Fig. 5.4,†

loaded on its one end by a self-equilibrated force system.  On the basis of the principle
of Saint Venant, the effect of this load should vanish a short distance from the face on
which it is applied.  However, as it can be seen in Fig. 5.4 some members of truss far
removed from the point of application of the external forces are stressed appreciably.

In certain boundary value problems we do not know the distribution of the
components of traction acting on one or more small portions of the surface of the body.
Instead, we know their resultant force and moment.  Thus, in the solution of such
problems we can only ensure that the components of stress give the known resultant force

Figure 5.4  Truss loaded with self-equilibrating load system.

                             
† Hoff, N.J., The applicability of Saint Venant's principle to airplane structures, Journal of  Aeronautical
Science, 12, p.445-460, 1945.
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and moment when evaluated on each of these small portions of the surface of the body.
In accordance with the principle of  Saint Venant the difference between the computed
and actual stress distributions will be negligible at points sufficiently  removed from the
forementioned small portions of the surface of the body.

5.4 Methods for Finding Exact Solutions for Boundary Value Problems in the
Linear Theory of Elasticity

The exact solution for very few boundary value problems formulated on the basis of
the linear theory of elasticity has been found.  These problems involve bodies having a
simple geometry which are subjected to simple distributions of the external loads and are
supported in a convenient way.  Solutions of boundary value problems involving bodies
of complex geometry subjected to any distribution of external loads can be obtained with
the aid of a computer using a numerical method such as the finite element method.

Some of the methods for obtaining exact solutions of boundary value problems
formulated on the basis of the linear theory of elasticity are
1. The inverse method
2. The semi-inverse method
3. The method of potentials

In the inverse method, a stress field which satisfies the equilibrium equations and the
compatibility conditions is usually selected and the corresponding displacement field is
determined.  Subsequently, the boundary conditions are found which correspond to these
stress and displacement fields.  This approach is of very limited use.

In the semi-inverse method, certain assumptions are made as to the form of the
components of stress or of the components of displacement, on the basis of physical
intuition or experimental evidence. As a result of these assumptions, the number of
unknown quantities decreases and, moreover, the governing equations are reduced to a
set of simpler differential equations from which the solution may be established by direct
 mathematical methods.  In the next section we establish the displacement and stress
fields of prismatic bodies made from a homogeneous, isotropic, linearly elastic material
using the displacement or the stress formulation, presented in Section 5.2.1 or 5.2.2, in
conjunction with the semi-inverse method.

In the method of potentials, the number of the unknown quantities is reduced by
expressing two or more of them in terms of derivatives of one function called the
potential.  In Chapters 6 and 7, we establish the displacement and stress fields of
prismatic bodies made from a homogeneous, isotropic, linearly elastic material using the
stress formulation presented in Section 5.2.2 in conjunction with the method of potentials.

5.5 Solution of Boundary Value Problems for Computing t he Displacement and
Stress Fields of Prismatic Bodies Made from Homogeneous, Isotropic, Linearly
Elastic Materials

In this section we formulate three boundary value problems on the basis of the linear
theory of elasticity and we solve them using the semi-inverse method.  All three problems
involve prismatic bodies, that is, bodies obtained by translating a surface in the direction
normal to its plane without rotating it (see Fig. 5.5). The line described by the centroid 
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Figure 5.5 Prismatic body subjected to positive resultant forces and moments at its end.

of the plane surface as it translates is called the axis of the prismatic body. Moreover, the
surface cut by an imaginary plane perpendicular to the axis of a prismatic body is called

1its cross section.  We choose the axis of a prismatic body as the x  axis.  
In practice, we often do not know the distribution of the components of traction on the

end surfaces of a prismatic body.  Instead we usually know the magnitudes and directions
of  concentrated  forces  and  moments  which  are  statically  equivalent  to  the  actual
distribution of traction.  However, in accordance with the principle of Saint Venant (see
Section 5.3) if the cross-sectional dimensions of a prismatic body are small compared to
its length, the difference in the components of stress acting on a particle of the body
which is sufficiently removed from its end surfaces due to two statically equivalent
distributions of traction on these surfaces is negligible.  For such a body  we only require
that at its end surfaces the stress field gives the known concentrated forces and moments.
In such an eventuality, we realize that the computed stress field may differ substantially
from the actual at particles of the body which are close to its end surfaces.  

We consider the tractions acting on an end surface of a prismatic body as being
statically equivalent to one or more of the following concentrated forces and moments,
known as the resultant forces and moments:
1. A concentrated force applied at the centroid of the end surface acting in the direction

1 1of the x  axis.  It is called internal axial centroidal force and we denote it by F .
2. A transverse force acting in the plane of the end surface whose line of action passes
through a point known as the shear center  of the end surface (see Section 9.5).  It is called†

2 3 2shearing force.  We denote its components in the directions of the x  and x  axis by F  and

3F , respectively (see Fig. 5.5).

13. A moment about an axis parallel to the x  axis through the shear center of the end

1surface.  It is called torsional moment and we denote it by M  (see Fig. 5.5).*

4.  A moment whose vector acts in the plane of the end surface.  It is called bending
2 3 2 3moment.  We denote its components about the x  and about the x  axes by M  and by M ,* *

respectively.
We consider as positive the resultant forces and moments acting on a positive  end††

surface or cross section of a prismatic body if their sense coincides with the positive sense

1 2 3of its axes x , x , x  (see Fig. 5.5).  Furthermore, we consider as positive the components
                              
† The shear center of an end surface or of a cross section of a prismatic body is a point on the plane of this
end surface or of this cross section which has the property that the prismatic body does not twist  
when subjected to transverse forces whose line of action lies in a plane which contains the shear centers of
its end surfaces and of its cross sections.
††  We call an end surface or a cross section of member positive or negative if the unit vector normal to it

1is directed along the positive or negative x  axis, respectively.
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(5.14)

of the resultant forces and moments acting on a negative end surface or cross section of

1 2 3a prismatic body if their sense coincides with the negative sense of its axes x , x , x  (see
Fig. 5.5).  Thus, a tensile axial force is considered positive, while a compressive axial
force is considered negative.  Keeping in mind this sign convention, referring to the
traction–stress relations (2.73) and noting that for the end surfaces of  a prismatic body

n 1i  = ±i                                     the resultant forces and moments are related to the
components stress by the following relations:

2 3 2 3where e  and e  are the x  and x  coordinates, respectively, of the shear center of a cross
section of the prismatic body.

When we use the displacement formulation in conjunction with the semi-inverse
method for the solution of boundary value problems, we adhere to the following steps:

STEP 1  We assume the form and/or part of the displacement field which satisfies the
displacement boundary conditions at the points of the surface of the body where
components of displacement are specified.

STEP 2  We substitute the assumed displacement field into the strain–displacement
relations (2.16) to obtain the components of strain.

STEP 3  We substitute the components of strain established in step 2 into the stress–strain
relations (3.94) for an isotropic, linearly elastic material to obtain the components of
stress.

STEP 4  We substitute the components of stress established in step 3 into the equations
of equilibrium (2.69) and we establish the conditions which must be imposed on the
assumed components of displacement in order to satisfy these equations.  If this cannot
be  done , the  assumed  components of displacement cannot be modified to become the
actual and we must return to step 1 and start with a new set of assumed components of
displacement.
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STEP 5 We substitute the components of stress established in step 3 and modified in step
4 into the traction–stress relations (2.73) and we establish the additional conditions which
must be imposed on the assumed components of displacement in order to satisfy the
traction boundary conditions at the points of the surface of the body where components
of traction have been specified. If this cannot be done, the assumed components of
displacement cannot be modified to become the actual and we must return to step 1 and
start with a new set of assumed components of displacement.

When the components of stress obtained from the assumed components of
displacement satisfy the equations of equilibrium and the traction boundary conditions,
the assumed components of displacement as modified in steps 4 and 5 are the actual.

When we use the stress formulation of a boundary value problem we adhere to the
following steps:

STEP 1  We assume some components of stress and the form of the others.

STEP 2  We substitute the assumed components of stress into the equations of
equilibrium and we establish the conditions which must be imposed on them in order to
make them satisfy these equations.  If this cannot be done, the assumed components of
stress cannot be modified to become the actual and we must return to step 1 and start with
a new set of assumed components of stress.

STEP 3  We substitute the assumed components of stress as modified in step 2 into the
traction–stress relations (2.73) and we establish the additional conditions which must be
imposed on them in order to satisfy the traction boundary conditions at the points of the
surface of the body where components of traction have been specified. If this cannot be
done the assumed components of stress cannot be modified to become the actual and we
must return to step1 and start with a new set of assumed components of stress.

STEP 4  We substitute the components of stress assumed in step 1 as modified in steps
2 and 3 into the stress–strain relations (3.95) to obtain the components of strain.

STEP 5  We substitute the components of strain established in step 4 into the  equations
of compatibility (2.63) and we establish the conditions which must be imposed on the
assumed components of stress in order to satisfy these equations.   If the assumed
components of stress cannot be made to satisfy the equations of compatibility, we must
return to step 1 and start with a new set of assumed components of stress.

STEP 6  We substitute the components of strain obtained in step 4 as modified in step 5
into the strain–displacement relations and we integrate them to obtain the components of
displacement.  If the body is simply connected, the components of displacement, thus
obtained, are single-valued continuous functions of the space coordinates.  If the body is
multiply connected, the components of displacement, thus obtained, may or may not be
single-valued continuous functions of the space coordinates.  If they are not, the assumed
components of stress are not the actual.  In such an eventuality we must return to step 1
and start with a new set of assumed components of stress.

STEP 7  We check to see whether the components of displacement obtained in step 6 can
be made to satisfy the displacement boundary conditions at the points of the surface of
the body where components of displacement are specified.  If the components of
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displacement cannot be made to satisfy the displacement boundary conditions, we must
return to step 1 and start with a new set of assumed components of stress.  If the
components of displacement satisfy the displacement boundary conditions, the assumed
components of stress as modified in steps 2, 3, 5 and 7 are the actual.

In what follows we formulate on the basis of the linear theory of elasticity and solve
the following boundary value problems:

Problem 1. We establish the components of displacement and stress in a prismatic body

1 1with traction-free lateral surfaces subjected on each of its end surfaces (x  = 0 and x  = L)
to a distribution of traction which is statically  equivalent to an axial centroidal force.  The
cross sections of the body are simply or multiply connected (have holes).  We use the
stress formulation.  
Problem 2. We establish the components of displacement and stress in a prismatic body
with traction-free lateral surfaces subjected to a uniform increase of temperature with its

1 1end surfaces (x  = 0 and x  = L) restrained from moving in the axial direction but free to
move in the transverse directions.  The cross sections of the body could be simply or
multiply (have holes) connected .  We use the displacement formulation.
Problem 3. We establish the components of  translation (deflection) and the components
of  stress in a prismatic beam of simply or multiply connected cross sections subjected on

1 1each of its end surfaces (x  = 0 and x  = L) to a distribution of traction which is statically
equivalent to a bending moment. We use the stress formulation.  
                                                                                                                                             

Example 1  Consider a prismatic body of arbitrary (simply or multiply connected) cross
section made from a homogeneous (E  = constant), isotropic, linearly elastic material.
The dimensions of the cross sections of the body are small compared to its length. The
body is initially in a reference stress-free, strain-free state of mechanical and thermal

oequilibrium at a uniform temperature T .  The body reaches a second state of mechanical

oand thermal equilibrium at the uniform temperature T  due to the application on each of

1 1its end surfaces (x  = 0 and x  = L) of a distribution of traction (see Fig. a) which is

1statically equivalent to a given concentrated axial centroidal force F .  Assume that the
body forces are negligible.   On the basis of the principle of Saint Venant (see Section 5.3)
all distributions of traction acting on the end surfaces of the body which are statically
equivalent to the given axial centroidal force produce essentially the same results on parts
of the body which are sufficiently removed from its end surfaces.  For instance, the results

1are valid for a relatively long prismatic body fixed at its one end (x  = 0) into a rigid wall

1and subjected to a distribution of traction at its unsupported end (x  = L) which is

1statically equivalent to the given axial centroidal force.  In this case, on the boundary x
i= 0, the distribution of traction is such that the components of displacement u$ (i = 1, 2, 3)

vanish, while the components  and  of traction do not vanish.  However, the

2 3components F  and F  of the resultant force over the total cross-section vanish.
Consequently, on the basis of the principle of Saint Venant for a particle sufficiently

distant from the fixed end, the effect of the components of traction  and  acting on

its fixed end is negligible.  If, however, the cross-sectional dimensions of the body are not

1small, compared to its length, then the constraint at x  = 0 will affect the distribution of
the components of stress throughout the length of the body and, therefore, the results will
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(b)

Figure a  Prismatic body subjected to a uniformly distributed Figure b  Prismatic body
axial component of traction on its end surfaces. fixed at one end.

not be valid.  In this case, the problem must be formulated as a mixed boundary value

1problem.  That is, we must take into account that on the end surface x  = 0 of the body,

1 2 3the components of displacement, are specified (û  = û  = û  =  0).  As yet, this problem
has not been solved analytically, on the basis of the theory of elasticity.  However, it can
be solved numerically using the method of finite elements.  On the basis of the foregoing
discussion, referring to relation (5.14), the boundary conditions for the body under
consideration are

On its cylindrical surfaces

(a)

1 1On its end surfaces x  = 0  and x  = L

Notice that the above boundary conditions do not restrain the body from moving as
a rigid body.  Thus, we anticipate that when we use the stress formulation we will obtain
expressions for the components of displacement of the particles of this body which
include an unspecified rigid-body motion of the body.  We will eliminate this rigid-body
motion by assuming that it is possible to restrain the body from moving as a rigid-body
without restraining the displacement of the particles of its end surfaces.
.
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(c)

(d)

    (e)

(f)

Solution

Stress formulation

STEP 1  From physical intuition we assume the following stress distribution in the body:

STEPS 2 and 3  It is apparent that the stress distribution (c) satisfies the equations of

n n2 2 n3 3 n1equilibrium (2.69). Moreover, on the lateral surfaces [i  = 8 i  + 8 i  (8  = 0)] of the
body the traction–stress relations (2.73) reduce to

By inspection we see that the assumed solution (c) satisfies the boundaries conditions

 on the lateral surfaces of the body.  Moreover, on the end boundaries,

1 1 n 1x  = 0 and x  = L (i  = ±i ,                                      ),  of the body substituting relation (c)
into (b), we have

Thus, the boundary conditions (b) are satisfied by the assumed solution (c) provided
that

Notice that if the body under consideration was subjected to a specified distribution

of the axial component of traction  on its lateral surface, the assumed solution

(c) cannot give this specified distribution of traction, when substituted into relations (d).
Consequently, the assumed solution (c) is not the actual solution of the boundary value
problem for computing the components of displacement and stress of a prismatic body
subjected to a distribution of the axial component of traction on its lateral surfaces.
Moreover, notice that if a body with traction free lateral surfaces has variable cross
sections                , the  assumed  solution (c) does not satisfy the first of relations (2.75)
on its lateral surface.  Consequently, the assumed solution (c) with (f) is not the actual
solution of the boundary value problem for computing the components of displacement
and stress of bodies of variable cross sections subjected to a uniform distribution of the

1 1axial component of traction on each of its end surfaces (x  = 0 and x  = L).  However, it
can be shown that the assumed solution (c) is a good approximation to the actual
distribution of the components of stress in prismatic bodies subjected to a distribution of
the axial component of traction on their lateral surfaces as well as  in tapered bodies,
provided that the angle of taper is small.

www.EngineeringEBooksPdf.com



             Solut ion of Boundary Value Problems for Computing the Displacement and Stress Fields 203

   (g)

(h)

(i)

(j)

(k)

STEP 4  Substituting relations (c) and result (f) into the stress–strain relations (2.50), we
obtain

STEP 5  By inspection, it can be seen that the components of strain, (g), satisfy the
equations of compatibility (2.63).  For a simply connected body (no holes) the satisfaction
of the equations of compatibility is necessary and sufficient to ensure that the
strain–displacement relations (5.7) can be integrated to yield single-valued continuous
components of displacement.  For a multiply connected body the satisfaction of the
equations of compatibility is necessary and sufficient to ensure that the
strain–displacement relations (5.7) can be integrated.  However, the resulting components
of displacement may or may not be single-valued continuous functions of the space
coordinates.  If they are not, this indicates that the assumed components of stress with
relation (f) are not the solution of the problem.  If the components of displacement
obtained by integrating the strain–displacement relations (5.7) are single-valued
continuous functions of the space coordinates and moreover satisfy the essential
(displacement) boundary conditions, then the assumed components of stress are the
solution of the problem.

STEP 6  We substitute the components of strain (g) into the strain–displacement relations
(5.7) and we integrate the resulting relations to obtain the components of displacement
of the particles of the body.  That is,

Substituting relations (i) and (j) into the expression, for the shearing component of strain,

23e  = 0, we obtain

1 2The left side of the above relation is a function of x  and x  while the right side is a

1 3 1function of x  and x  only.  Thus, both sides must be functions of x  only.  Integrating
relations (k), we obtain

2 3 1 2 1g   = !x  f(x )  +  c  (x )
(l)

3 2 1 3 1g   =   x  f(x )  +  c  (x )

21 13Substituting relations (l) into e  = 0 and e  = 0, we get
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(m)

(n)

  (o)

(p)

   (s)

(t)

2 3The left sides of the above relations are functions of x  and x  while the right-hand side

1 2 1 3of the first is a function of x  and x  and of the second is a function of x  and x .

2Consequently, both sides of the first relation must be functions of x  only and both sides

3of the second must be functions of x  only.  Relations (m) are valid if

Consequently,

iWhere c (i = 4, 5, 6, 7, 8, 9) are constants.  Substituting relations (n) into (m) and
integrating, we get

Thus,

10 2 6 2 12 11 3 5 3 12 4   c (x ) = !c x  + c        c (x ) = !c x  + c           c  = 0 (q)

Substituting relations (q) into (p), we obtain

1 5 3 6 2 12         g  =  !c x  !  c x   +  c (r)

Substituting relations (q) into (o) and the resulting expressions into (l), we have

Substituting relations (r) and (s) into (h), (i) and (j), we get

5Referring to relations (2.59b) and (2.59c) we see that the terms involing the constants c ,
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(u)

(a)

6 7 8 9 12c , c , c , c , c  represent unspecified rigid-body motion of the body.  Thus, if we restrain
the body from moving as a rigid body, these constants vanish and relations (t) reduce to

Strictly speaking the body must be restained from moving as a rigid body in a way that
its end surfaces are not inhibited from deforming freely.  However, on the basis of the
principle of Saint Venant, the solution is valid for particles which are not very close to the
end surfaces of the body no matter how the end surfaces of the body are supported or how
the tractions applied on them are distributed provided that 
1. The distribution of traction on each end surface is statically equivalent to an axial

1centroidal force of magnitude F .
2. The dimensions of the cross sections of the body are small compared to its length.

STEP 7  Referring to relations (u), we see that the components of displacement obtained
by integrating the strain–displacement relations (5.7) are single-valued continuous
functions of the space coordinates. Consequently, the assumed distribution of the
components of stress (c) with (f) is the solution of the boundary value problem under
consideration.
                                                                                                                                             
                                                                                                                                             

Example 2  Consider a prismatic body of arbitrary simply or multiply connected cross-
sections made from a homogeneous, isotropic, linear elastic material (E = 200 GPa;    =
0.3;     = 10 /°C).  When this body is in its reference stress-free, strain-free equilibrium-5

ostate at the uniform temperature T  = 10°C, it fits exactly between two rigid walls (see Fig.
a).  Subsequently, the temperature of the environment of the body is increased to 30°C
and the body reaches a second state of mechanical and thermal equilibrium.  As the
temperature of the body increases its length cannot change but the dimensions of its cross
sections can.  That is, it is assumed that the two rigid walls do not restrain the particles

1 1of the end surfaces (x  = 0 and x  = L) of the body from moving freely in directions
normal to its axis. Assuming that the body forces are negligible, compute the stress and
displacement fields of the body.

Figure a  Prismatic body with its end surfaces restrained from moving in the axial direction.

Solution From physical intuition we assume that the components of stress and
displacement of the body are not functions of the tangential coordinate, Thus, it is
convenient to use cylindrical coordinates.  In these coordinates, the traction boundary
conditions become 
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(b)

(c)

(d)

(e)

(a)

The boundary conditions for the body in cylindrical coordinates are

Displacement formulation

1 2STEP 1  We assume that the components of displacement û  and û  vanish while the

rcomponent of displacement û  is function only of the radial coordinate r.  That is,

1This displacement field satisfies the displacement boundary conditions of the body, at x
1= 0 and x  = L [see relations (b)].

STEP 2  Substituting the assumed displacement field (d) into the strain–displacement
relations (2.83) we obtain

STEP 3  Substituting relations (d) into the stress–strain relations (3.94), we have

STEP 4  Substituting relations (e) into the equations of equilibrium (2.86), we get 

www.EngineeringEBooksPdf.com



             Solut ion of Boundary Value Problems for Computing the Displacement and Stress Fields 207

(f)

(g)

    (h)

(i)

      (j)

This equation can be written as

Integrating equation (f) twice, we have

Substituting relations (g) into the strain–displacement relations (d), we get

Substituting relation (h) into the stress–strain relation (e), we obtain

STEP 5  The stress field (i) must satisfy the traction boundary conditions (b) at the end

1 1surfaces (x  = 0 and x  = L) of the body.  Noting that the unit vectors normal at the end

1 1 n 1surfaces (x  = 0 and x  = L) of the body are i  = Ki                                            referring to
relations (a)  and (b) and using the last of relations (i), we have

1Thus, the stress field (i) satisfies the traction boundary conditions at the end surfaces (x
1= 0 and x  = L) of the body without imposing any restriction on the value of the constants

1 2A  and A .
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(k)

(l)

   (m)

(n)

(p)

STEP 6  The stress field (i) must satisfy the boundary conditions (b) on the lateral
surfaces of the body.  Noting that the unit vector normal to the lateral surfaces of the body

n r 2is i  =       i  +       i , (      = 0)  referring  to  relations  (a)  and  (b) and using the last of
relations (i), we get

Thus, the assumed solution (b) with (g) gives components of stress which satisfy the
boundary conditions on the lateral surfaces of the prismatic body under consideration if
on these surfaces, we have

Substituting the second and third of relations (i) into (l), we obtain

Subtracting one of the above relations from the other, we get

Thus,

2A  = 0 (o)

Referring to relations (i) and taking into account relation (o) we see that the components
of stress are constant throughout the body.  Consequently, the components of stress      
and         must be zero at every particle of the body since they vanish at the particles of its
lateral surfaces.   With this in mind, we conclude that the components of stress (i) with
(o) satisfy the equations of equilibrium (2.86).  Using relations (o) and (3.96) from any
one of relations (m), we obtain 

Substituting relations (o) and (p) into (g) and (i) taking into account relations (b), we have
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(q)

(a)

(b)

(c)

(d)

(e)

(f)

It is clear that the components of displacement and stress (q) satisfy the equations of
equilibrium and the boundary conditions (b) of the body. Consequently, they are the
actual components of displacement and stress of the body.
                                                                                                                                             
                                                                                                                                             

Example 3 Consider a prismatic beam of arbitrary cross sections (simply or multiply
connected) made from a homogeneous, isotropic, linearly elastic material.  The beam is
initially in a reference stress-free, strain-free state of mechanical and thermal equilibrium

oat a uniform temperature T .  The beam reaches a second state of mechanical and thermal

oequilibrium, at the uniform temperature T , due to the application on each of its end

1 1surfaces (x  = 0 and x  = L) of a distribution of traction which is statically equivalent to

2 3specified components of moment of magnitude M  and M  (see Fig. a).  Since the* *

distribution of the components of traction on the end surfaces of the beam is not given,
we can only ensure that the calculated components of stress satisfy the following [see
relations (5.14)] boundary conditions at the surfaces of the beam:

On its lateral surfaces

1 1 On its end surfaces x  = 0 and x = L
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3In the above relations, the convention has been made that M  is positive if it produces

2tensile stress on the portion of the cross section having a negative x  coordinate.           

2Moreover, M  is positive if it produces tensile stress on the portion of the cross section

3having a positive x  coordinate.  On the basis of this convention, the components of the

1 1external moment applied on the surface x  = 0 (or x  = L) are positive when they are

1 2represented by a vector acting in the direction of the negative (or positive) axes x , x , and

3x  (see Fig. 5.5).  When the loading of the beam consists of only end bending moments,
we say that the beam is subjected to pure bending.

The principle of Saint Venant (see Section 5.3) applies to the end surfaces of the beam
under consideration because the  dimensions of their cross section are small compared to
their length.  Consequently, on the basis of this principle all distributions of traction
acting on the end surfaces of the beam under consideration which are statically equivalent
to the  given bending moment produce essentially the same results on parts of the beam
which are sufficiently removed from its end surfaces.  For instance, the results are valid
at particles sufficiently removed from the fixed end of a prismatic beam fixed at its end

1x  = 0 into a rigid wall and subjected to a distribution of traction at its unsupported end

1x  = L which is statically equivalent to the given bending moment.  In this case, on the

1boundary x  = 0, the distribution of traction is such that the components of displacement

iu$ (i = 1, 2, 3) vanish, while the components  and  of traction do not vanish.

2 3However, the resultant components of force F  and F  of these components of traction
vanish.  For a particle sufficiently distant from the fixed end of the beam, the effect of
these components of traction is negligible.  If, however, the cross-sectional dimensions

1of the beam are not small, compared to its length, then the constraint at x  = 0 will affect
the distribution of the components of stress throughout the length of the beam and,
therefore, the results will not be valid for any particle of the beam.  In this case and in
case one is interested in establishing the exact distribution of the components of stress in
the neighborhood of the fixed support of a long cantilever beam, the problem must be
formulated as a mixed boundary value problem.  That is, one must take into account that

1on the end surface x  = 0 of the beam, the components of displacement are specified
( ).  This problem has not been solved analytically, on the basis of the

linear theory of elasticity.  However, it can be solved numerically using the method of
finite elements.
    Notice that the specified boundary conditions (a) to (f) do not restrain the beam from
moving as a rigid body. Thus, we anticipate that the calculated components of
displacement of the particles of the beam will include an unspecified rigid-body motion.
We will eliminate this rigid motion by assuming that it is possible to restrain the beam
from moving as a rigid body without inhibiting the displacement of the particles of its end
surfaces.      

Figure a  Prismatic body in pure bending. 
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† This problem was solved by Saint Venant in 1856.

(g)

(h)

    (i)

(j)

 
Compute the stress and displacement fields of the beam under consideration.

Solution We solve the boundary value problem  described above using the stress†

formulation (see Section 5.2.2) in conjuction with the semi-inverse method (see Section
5.4).  That is, we start by assuming a solution of the following form:

Thus, the components of the resultant moment of the tractions acting on any cross section
of the beam must be equal to

By inspection, we see that the components of traction acting on the lateral surfaces of the
beam obtained by substituting the components of stress (g) into relations (2.73) are equal
to zero.  Thus, solution (g) satisfies the boundary conditions on the lateral surfaces of the
beam.  Moreover, the components of stress (g) satisfy the equations of equilibrium (2.69).
Substituting relations (g) into the stress–strain relations (3.48), we obtain

Substituting relations (i) into the compatibility equations (2.63), we find that three of
these equations are satisfied automatically, while the other three reduce to 

The solution of these equations is

Thus, the assumed distribution of the components of stress (g) with (j) satisfies:
1. The equations of equilibrium occur at every particle inside the volume of the beam.
2. The traction-free boundary condition exists on the lateral surfaces of the beam.
3.   When  substituted  in  the  stress–strain  relations,  (3.48)  gives  components  of strain
which satisfy the equations of compatibility at every point of the beam. For a simply
connected  body (no holes) the satisfaction of the equations of compatibility by the
components of strain is necessary and sufficient to ensure that the strain–displacement
relations (5.7) can be integrated to yield single-valued continuous components of
displacement.  For a multiply connected body the satisfaction of the equations of
compatibility is necessary and sufficient to ensure that the strain–displacement relations
(5.7) can be integrated.  However, the resulting components of displacement may or may
not be single-valued continuous functions of the space coordinates.  If they are not, this
indicates that the assumed components of stress are not the solution of the problem.  If
the components of displacement obtained by integrating the strain–displacement relations
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(k)

(m)

(n)

(5.7) are single-valued continuous functions of the space coordinates and, moreover,
satisfy the essential (displacement) boundary conditions of the beam, then the assumed
components of stress are the solution of the problem.

Substituting relations (g) and (j) into the relations (i), we obtain

Substituting the components of strain (k) into the strain–displacement relations (5.7) and
integrating the resulting relations, we get

(l)

1 2 1 2 3where A B C m , m , n, p , p  and p  are constants.  Referring to relations (2.59), we see
that the following part of the displacement field (l) represents only rigid-body motion:

1 2 1 2 3Thus, the constants m , m , n, p , p  and p  in relation (l) vanish if the beam is supported

1in a way that it cannot move as a rigid body.  However, in doing so the end surfaces (x
1= 0 and x  = L) of the beam should not be restrained from deforming freely. Disregarding

the rigid-body motion of the beam, relations (l) reduce to

From relations (n) we see that the components of displacement of the beam obtained by
integrating the strain–displacement relation (5.7) are single-valued continuous functions
of the space coordinates.  Consequently, the assumed distribution of the components of
stress (g) with (j) is the actual distribution of the components of stress of the beam under

1consideration, provided that it satisfies the boundary conditions at the end surfaces (x  =

10 and x  = L) of the beam, that is, relations (b) to (f).  By inspection we see that conditions
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(o)

(p)

(q)

(r)

          (s)

        (t)

2 3(c) and (d) are automatically satisfied.  Noting that x  and x  are centroidal axes, we have

Substituting relation (j) into relation (b) and using relations (o), we obtain

Moreover, substituting relations (j) into relations (e) and (f), we get

22 33Where I  and I  are the moments of inertia of the cross sections of the beam about the

2 3 23x  and x  axis, respectively, I  is the product of inertia of the cross sections of the beam

2 3with respect to x  and x  axes (see Section C.2 of Appendix C).  Solving relations (q) and
(r) for A and B, we obtain

Substituting relations (p) and (s) into (j) and (n) and referring to relations (g), the solution
 of the problem under consideration is 

If the length of the beam is considerably larger than its other dimensions, solution (t)
represents a good approximation of the components of displacement and stress of

1 1particles located sufficiently far from the end surfaces (x  = 0 and x  = L) of the beam
even when the end surfaces of the beam are restrained from deforming freely.  For
instance, solution (t) is valid for the particles of a relatively long beam fixed into a rigid
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(u)

(v)

(w)

(x)

(y)

1 1wall at x  = 0 and subjected to a bending moment at x  = L provided that they are not
located very close to the rigid wall.

1 1 2 3Referring to the expression for u (x , x , x ) in relations (t), we see that for a given

1 1 1value of x  the expression for u$  is the equation of a plane.  That is, plane sections (x =
constant) which prior to deformation were perpendicular to the axis of the beam remain
plane subsequent to deformation.

The displacement of the centroidal axis of a beam is referred to as the deflection of the
beam, while the displaced centroidal axis of a beam is called its elastic curve.  The

3 2deflection of the beam may be obtained from relations (t) by setting x  = x  = 0.  That is,

2 2 3 1Consider a beam subjected to a moment M* = M* i  (M*  = 0) on its end surface x
1= L and an equal and opposite moment on its end surface x  = 0 and assume that the axes

2 3x , x  are principal centroidal.  For this loading referring to relations (h) relations (s)
reduce to

Referring to relations (u) and using the above results, the deflection of the beam is

The radius of curvature  of the elastic curve of the beam under consideration is equal

to [see relation (9.25a)].

3 1When the assumption of small deformation is valid, (du /dx )  is negligible compared to2

unity; consequently, relation (x) reduces to

1Differentiating the second of relations (w) twice with respect to x  and using relation (y),
we obtain
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(z)

(za)

  (zb)

(zc)

(zd)

Figure b  Elastic curve of a prismatic         Figure c  Deformation of rectangular
body (beam) subjected on each of its         cross section of a beam in pure bending.

2end surfaces to a moment M .

1 3That is, the elastic curve of the beam under consideration is a circle in the x  x  plane.  The
slope of the elastic curve of the beam is equal to

Moreover, referring to Fig. b and the third of relations (t), the angle of rotation          of
the cross section of the beam is given as

Comparing relations (za) and (zb), we see that the slope of any point of the elastic curve
of the beam under consideration is equal in magnitude to the angle of rotation       of the
cross section of the beam at that point.  Therefore, planes normal to the axis of the beam
before deformation remain plane and normal to its elastic curve, subsequent to
deformation.

2 2 3Consider a beam of rectangular cross section subjected to a moment M* = M* i   (M*
1 1= 0) at its end surface x  = L and to an equal and opposite moment at its end surface x  =

0.  For this loading, A = 0.  Referring to relations (t) the deformed configuration of the

2 1edges, x  = ±b/2 of  the cross section of the beam located at x  = c is given by

2If the applied moments M*  is positive, B is positive and the sides of the cross section of
the beam deform, as shown in Fig. c. 

3Referring to relation (t) the deformation of edges x  = ±h/2 of the cross section of the

1beam located at x  = c is given by
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(zd)

The top and bottom sides of the deformed cross section are second degree parabolas,

2tangent to the lines perpendicular to the deformed sides x  = ± b/2.  This is due to the fact
that the shear stress is zero at the particles located at the corners of the cross section of the
beam.  Consequently, these particles of the beam do not distort.
                                                                                                                                             

5.6 Problems

1. to 4. Write the boundary conditions for the body (parallelepiped) shown in Fig. 5P1.
Determine the components of stress acting on the particle at point A on the plane

 .  Repeat with the bodies of Fig. 5P2 to 5P4.

Figure 5P1 Figure 5P2

Figure 5P3 Figure 5P4
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(a)

(a)

5. The components of displacement of the particles of the three-dimensional body shown
in Fig. 5P5 are

Find the traction acting on the surface of the body and the distribution of the specific
body force.      

      

Figure 5P5 Figure 5P6

6. Consider a bar of constant circular cross section shown in Fig. 5P6.  The bar is made
from a homogeneous, isotropic, linearly elastic material and is supported and loaded in
a way that the components of displacement of its particles are

where     is a constant. Disregarding the body forces, find
(a)  If the equations of equilibrium are satisfied by this displacement field
(b)  The value of     so that the components of displacement of its particles are the

  actual components of displacement of the bar

7.  Consider the cantilever beam of constant rectangular cross section of width b and
depth h shown in Fig. 5P7.  On the basis of theories of mechanics of materials,  the
components of stress acting on the particles of this beam, disregarding the effect of its
weight, are equal to

(a)  Check to see whether, the distribution of the components of stress (a) satisfies the
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equations  of equilibrium (2.69) and the compatibility equations (2.63) at the particles of
the beam.

3 1 (b)  Establish the  boundary  conditions  for  the  beam  at x = ±h/2  and  at  x = L,
corresponding to the components of stress given by relations (a).  Do they satisfy the

1 1 given boundary conditions at x = 0 and at x = L ?

Figure 5P7 Figure 5P8

1 2 38. The particles of the surfaces x  = 0, x  = 0 and x  = 0 of the rectangular parallelepiped

1 2 3whose dimensions are shown in Fig. 5P8 are restrained from moving in the x , x  and x
directions, respectively, while they are free to move in any other direction.  The
parallelepiped is subjected to a uniform pressure, p(kN/m ) on its other surfaces.2

Disregarding the body forces find the displacement and stress fields of the parallelepiped.
Assume

9. Consider a bar of constant cross section, length L (m) and specific weight w (N/m ).3

The bar is made from a homogeneous isotropic, linearly elastic material of modulus of

1elasticity E (N/m ) and Poisson's ratio    . As shown in Fig. 5P9 the bar is suspended at x3

1= 0 in a way that the traction on the surface x  = 0 is uniform and equal to

The remaining surface of the bar is traction free.  Compute the stress and displacement
fields of the bar resulting from its weight.

Notice that in reality it is not possible to hold the bar in a way that a uniform traction

1at x  = 0 is induced. However, if the length of the bar is considerably greater than its other
dimensions on the basis of the Saint Venant principle, the state of stress at points

1sufficiently removed from the boundary x  = 0 is not affected by the way the traction at

1x  = 0 is distributed.
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Ans. 

Figure 5P9            Figure 5P10

110.  The body shown in Fig. 5P10 is fixed at x  = L and it is subjected to body forces and
surface tractions which are not shown in the figure. The components of displacement of
the particles of the body are equal to

where

E = modulus of elasticity     = Poisson's ratio          c = small number in kN/m3

(a)  Find the distribution of the specific body force acting on the particles of the

1 2 3   body. Ans. 2B  = !c (1 ! 2   ) =  !B ,  B = 0

(b)  Find the distribution of traction acting on the surface of the body.

11. A body made from a homogeneous, isotropic, linearly elastic material [E = 200 GPa,
   = 1/3,   = 10 / C] is subjected to a uniform increase in temperature )T while every point-5 o

of its surface is restrained from moving.  Disregard the effect of the body forces.  Find its
stress and displacement fields. Ans.                          !6)T MPa

12. The particles of the lateral surface of a prismatic body of length L = 2 m are restrained
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1from moving in the plane normal to its axis.  Moreover, the particles of its end surface x
1= 0 are restrained from moving in the x  direction while the particles of its end surface at

1x  = 2m are free to move in any direction.  Write the boundary conditions for the body.
Determine the stress and displacement fields in the body when it is subjected to a uniform
increase of temperature )T = 20 C.  The body is made from an isotropic, linearly elastico

material [E = 200 GPa,   = 1/3,    = 10 / C] [Hint: Assume the displacement field-5 o

].

213. Consider the beam subjected at x  = ±c to the traction  shown in Fig. 5P13.  On its

1surface x  = L the beam is subjected to a distribution of traction  which is statically

3 1equivalent to a force P  = 40 kN.  On its surface x  = 0 the beam is subjected to a

distribution   of   traction      which   is   statically  equivalent  to  a force

3 2P  = !40 kN and a moment M  = !80 kNAm.  The beam is made from an isotropic,
linearly elastic material (E = 200 GPa,    = 1/3).  Using L = 2m, c = 20 mm, h = 80 mm,
compute the stress field in the beam.  Disregard the effect of weight of the beam.  Assume
that                 

      Ans. 

            Figure 5P13

References for further reading
1. Fung, Y.C., Foundations of Solid Mechanics, Prentice-Hall, Englewood Cliffs, NJ, 1965.
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    1969.
3. Timoshenko, S., Goodiar, J.N., Theory of Elasticity, McGraw-Hill, New York, 1970.

4. Sokolnikoff, I.S., Mathematical Theory of Elasticity, McGraw-Hill, New York, 1956.

www.EngineeringEBooksPdf.com



221

Chapter
6

Prismatic Bodies Subjected
to Torsional Moments

at Their Ends

6.1 Description of the Boundary Value Problem for Computing the Displacement
and Stress Fields in Prismatic Bodies Subjected to Torsional Moments at
Their Ends

In this chapter we formulate and solve the boundary problem for computing the
displacement and stress fields of prismatic bodies having cross sections of arbitrary
geometry (solid or with holes)(see Fig. 6.1) made from isotropic, linearly elastic
materials.  The dimensions of the cross sections of these bodies are small as compared to

1their length.  We call such bodies prismatic bodies.  We choose the x  axis to be any axis
parallel to their axis.  The bodies are initially in a reference, stress-free, strain-free state

oof mechanical and thermal equilibrium at a uniform temperature T .  Subsequently, they
reach a second state of mechanical equilibrium due to the application on each of their end

1 1surfaces (x  = 0 and x  = L) of a distribution of external tractions which is statically

1equivalent to a given concentrated torsional moment of magnitude M .  We assume that
the distribution of the external tractions  is applied in such a way that it does not restrain
the end surfaces of the bodies from warping.  In practice we often do not know the
distribution of traction acting on the end surfaces of prismatic bodies.  However, we do
know the magnitude of their resultant force and moment.  On the basis of the principle
of Saint Venant (see Section 5.3) all distributions of traction, acting on the end surfaces
of the prismatic  bodies under consideration, which are statically equivalent, produce
essentially the same distribution of components of stress on parts of the bodies which are
sufficiently removed from their end surfaces.  Thus, we can only ensure that the stress
field of such bodies yields a distribution of traction on each one of their end surfaces

1which is statically equivalent to a given torsional  moment  of  magnitude  M . On  the 

Figure 6.1  Prismatic body of arbitrary cross section subjected to torsional moments at its ends.
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(6.1)

       (6.2a)

     (6.2b)

 (6.2c)

      (6.2d)

      (6.2e)

      (6.2f)

basis of the above presentation, referring to relations (5.14), the boundary conditions for
the prismatic bodies under consideration are

On their lateral surfaces

1 1On their end surfaces (x  = 0 and x  = L)

2 3 2 3where e  and e  are the x  and x  coordinates, respectively, of the shear center of the cross

2 3sections of the prismatic bodies.  Notice that since F  and F  vanish the moment of the

1components of tractions  and  about any axis parallel to the x  axis must be equal to

1M .  These boundary conditions do not restrain a body from moving as a rigid-body.
Thus, we anticipate that the components of displacement of a body obtained from the
solution of the boundary value problem under consideration will include an unspecified
rigid-body motion of this body.  We will eliminate this rigid-body motion by assuming
that it is possible to restrain the body from moving as a rigid-body without inhibiting the
warping of its end surfaces.

When a prismatic body of non-circular (hollow or solid) cross sections is subjected to
equal and opposite torsional moments at its ends, its cross sections warp.  Practically, it
is not possible to apply a distribution of traction on the end surfaces of a prismatic body
of non-circular cross sections without restraining their warping.  From physical intuition,
we may deduce that when the warping of a cross section is restrained, a distribution of
normal component of stress must act  on it. For bodies of thin-walled, open cross sections
the effect of this distribution of stress is not negligible.  Moreover, although this
distribution of normal component of stress is statically equivalent to zero force and
moment, its magnitude on cross sections away from the one whose warping is restrained,
does not reduce as quickly as one would expect that it would, on the basis of the principle
of Saint Venant.  For this reason in Section 9.11 we investigate the effect of restraining
the warping of a cross section of prismatic bodies having thin-walled open cross sections.
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(6.3)

          (6.4)

          (6.5)

(6.6)

(6.7)

6.2 Relations among the Coordinates of a Point Located on a Curved Boundary
of a Plane Surface

Before proceeding with the formulation and the solution of the boundary value
problem under consideration in this chapter, in what follows we derive certain relations
among the coordinates of a point located on one of the lateral surfaces of a prismatic

o obody.  Referring to Fig. 6.2a consider two points P  and P N located on a closed external

e i 2 3 2 3 2 2curve C  or internal curved C  in the x x  plane whose coordinates are x , x  and x  + )x ,

3 3 s sx  + )x , respectively.  These points may also be specified by the coordinates x  and x  +

s s e)x , respectively; where x  is measured along the external curve C  counterclockwise from

e i ia reference point A  or along the internal curved C  clockwise from a reference point A .

e iThat is, for the points of curve C  or C , we have

n 2 3 2 3Denoting by i =      i  +       i  = cos    i  + sin    i  the unit vector outward normal to the

e i ocurve C  or C  at point P  and referring to Fig. 6.2a, from geometric considerations, we
obtain

o eReferring to Fig. 6.2b, consider another point P O located on the normal to curve C
i o 2 3 n o oor C  at point P (x , x ).  Denoting by )x  the distance of point P O from point P , from

geometric considerations, referring to Fig. 6.2b, we have  

(a) (b)

Figure 6.2  Cross section of a prismatic body.
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(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

From equations (6.4) to (6.7), we obtain

6.3 Formulation of the Torsion Problem for Prismatic Bodies of Arbitrary Cross
Section on the Basis of the Linear Theory of Elasticity

In this section we use the semi-inverse method in conjunction with the method of
potentials to formulate and solve the boundary value problem for computing the
components of displacement and stress of prismatic bodies of arbitrary cross section
subjected to equal and opposite torsional moments at their ends.

1Inasmuch as, neither the geometry of the bodies nor their loading vary with x , the

1 2components of stress and the component of displacement u  must be only functions of x
3and x .  This implies that

1 1Moreover, at the end surfaces x  = 0 and x  = L the normal component of the resultant

2 3force and the resultant moments about the x  and x  axis must vanish.  This suggests the
assumption that

Substituting relations (6.10) and (6.11) into the first of the stress–strain relations (3.48),
for a body made from an isotropic, linearly elastic material, we get

Taking into account that on the lateral surfaces of the bodies under consideration the

n  2  3traction  vanishes and that the unit vector outward normal to them is i  =      i  +       i
 (       = 0), the traction–stress relations (2.73) reduce to

22 33 23From the last two of relations (6.13) using relation (6.12) we obtain that     ,    ,    
must be equal to zero on the lateral surfaces of the bodies.  Thus, we assume a solution
of the following form:
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(6.15)

(6.16)

(6.17)

                (6.18)

Substituting relations (6.14) into the equations of equilibrium (2.69), we get

2 3The  above  relation  indicates  that  a  function N (x , x ) exists  referred  to  as  the  stress
function, such that

The equations of equilibrium are therefore satisfied at every particle of the body if the
components of stress are obtained from a stress function by relations (6.14) with (6.16).

12 13Thus, we have reduced the problem of finding the components of stress     and     acting
on the particles of a prismatic body subjected to equal and opposite moments at its ends,

2 3to that  of  establishing  the  single-valued  differentiable  function     (x , x )  which  when
substituted into relation (6.16), gives components of stress which with relations (6.14)
have the following attributes:
1. May satisfy the boundary conditions of the body.
2. When substituted into the stress–strain relations (3.48), they give components of strain
which when substituted into the strain–displacement relations (2.16), the resulting
expressions can be integrated to give single-valued continuous components of
displacement.

Referring to relations (6.14) the boundary conditions (6.13) on the lateral surfaces of
a prismatic body reduce to

Substituting relations (6.16), (6.4) and (6.5) into the first of relations (6.17), we get

Therefore the assumed solution (6.14) with (6.16) satisfies the boundary conditions on
the traction-free lateral surfaces of the body if

e iwhere C  is the closed external curve bounding the cross sections of the body while C  is
the closed curve bounding the i  (i = 1, 2, ..., N) hole of the cross sections of the body.th

In  what  follows  we  establish  the restrictions which must be imposed on the

2 3function    ( x , x ) in order to ensure that the assumed stress field (6.14) with (6.16)

1 1satisfies the boundary conditions (6.2) on the end surfaces (x  = 0 and x  = L) of the body.

  11Inasmuch as    is zero, it is apparent that conditions (6.2a), (6.2e) and (6.2f) are satisfied

2 3without   imposing   any   additional  restrictions  on  the  function      (x , x ).  Moreover,
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(6.21)

(6.19a)

(6.19b)

(6.20a)

(6.20b)

              (6.20c)

substituting relations (6.16) into relations (6.2b) and (6.2c) and using Green's theorem of
the plane  (6.19a) and relations (6.20a) and (6.20b), (see footnote) for a prismatic body†

with N holes, we get

where A is the area of the cross section of the body.  The line intergrals in relations (6.21)

e iare evaluated counterclockwise on the curve C  and clockwise on the curves C  (i = 1, 2,
..., N). Substituting relations (6.16) into relation (6.2d), we obtain

† Green's theorem of the plane states:

2 3 2 3 2 3 2 3If M(x , x ) and N(x , x ), MM/Mx  and MM/Mx  are finite continuous functions of x  and x  on a plane

e isurface of area A bounded by an external closed curve C  and N internal closed curves C (i = 1, 2, ...,
N) then

Using relations (6.4) and (6.5), relation (6.19a) can be rewritten as

eIn the above relations the line integrals are evaluated counterclockwise along the closed curve C  and

iclockwise along the closed curves C .  Notice that if N = 0 and M = 1 for a plane surface without holes,
relation (6.19a) reduces to 

Similarly, if M = 0 and N = 1 for a plane surface without holes relation (6.19a) reduces to

3 2Moreover, if M = x  and N = -x  for simply connected regions relation (6.19a) gives

and
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(6.22)

   (6.23)

(6.24)

(6.25)

3 2Using Green's theorem of the plane (6.19a) with M = !   x  and N =    x  and relations
(6.20c) and (6.20d), relation (6.22) can be rewritten as

e ewhere A is the area of the cross section and A  is the area enclosed by the curve C , while

i iA  is the area enclosed by the curve C .  Thus,

On the basis of the foregoing presentation the components of stress (6.14) with (6.16)
satisfy the equations of equilibrium at all points inside the volume of the prismatic body
under consideration and the boundary conditions (6.1) and (6.2) on its surfaces provided

2 3that the stress function     (x , x ) has the following attributes:

1. It is constant on the lateral surfaces of the body.
2. It satisfies relation (6.23).

In what follows we establish the additional restrictions which must be imposed on the

2 3stress function     (x , x )  in  order  to  ensure that the components of strain obtained from
the components of stress (6.14) with (6.16) satisfy the equations of compatibility (2.63).
If the body under consideration is simply connected (does not have holes), the satisfaction
of the equations of compatibility is necessary and sufficient to ensure that the
strain–displacement relations (2.16) can be integrated to give single-value continuous
components of displacement. If the body is multiply connected (has holes), the
satisfaction of the equations of compatibility is necessary and sufficient to ensure only
that when the components of strain are substituted into the strain–displacement relations,
the resulting relations can be integrated.  However, the resulting components of
displacement may or may not be single-valued, continuous functions of the space
coordinates.  In order to ensure that the components of displacement are single-valued,
continuous functions of the space coordinates, restrictions must be imposed on the stress

2 3function     (x , x ) in addition to those imposed by the equations of compatibility.  We
establish these restrictions in Section 6.6.

Substituting relations (6.14) with (6.16) into the stress–strain relations (3.48) for a
body made from an isotropic, linearly elastic material , we obtain
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(6.26)

           (6.27)

     (6.28)

(6.29)

Notice that since the normal components of strain vanish, the length of the longitudinal
fibers of the body does not change.

Substituting relations (6.25) into the equations of compatibility (2.63) and noting that

12 12 2 3 13 13 2 3e  = e (x , x ) and e  = e (x , x ), we find that the first four of the equations of
compatibility (2.63) are satisfied without imposing any additional restriction on the

2 3function    (x , x ) while the last two of these equations reduce to 

Consequently,

Thus,

Hence, relations (6.27) can be rewritten as

Substituting relation (6.25) into (6.28), we obtain

On the basis of the foregoing presentation the components of stress (6.14) with (6.16)
satisfy the equations of equilibrium at all points inside the volume of the prismatic body
under consideration as well as the boundary conditions on all its surfaces.  Moreover, on
the basis of the stress–strain relations (3.48) the components of stress (6.14) with (6.16)
give components of strain which satisfy the equations of compatibility (2.63) at every

2 3point of the body, provided that the function    (x , x ) has the following attributes

1. It satisfies the differential equation (6.29) at every point of the cross sections of the
body.

e i2. It is constant on the curves C  and C  (i = 1, 2, ..., N) bounding the cross sections of the
body. 

In order to obtain a differential equation which does not involve an unknown constant,

2 3like    ,  we introduced the function    (x , x ) defined by 
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(6.30)

(6.31)

(6.32)

(6.33)

  (6.35)

     (6.36)

(6.34)

Substituting relations (6.30) into (6.29), we have

Moreover, substituting relation (6.30) into (6.23), we get

where

e e iA  is the area enclosed by the curve C  bounding the cross sections of the body, while A
iis the area enclosed by the curve C  bounding the i  (i = 1, 2, ..., N) hole of its crossth

T Csections.   R  is called the torsional rigidity and R  is called the torsional constant.  The
latter depends only on the geometry of the cross sections of the body and can be

2 3computed once the function      (x , x ) is established   using relation (6.33).  Furthermore,†

substituting relations (6.30) into (6.16) and (6.25), we obtain

and

Thus, we have converted the boundary value problem for computing the components of
displacement and stress in a prismatic simply connected (without holes) body subjected
to a distribution of shearing components of traction on each of its end surfaces which is
statically equivalent to a given torsional moment, to the simpler boundary value problem

2 3of finding the function    (x , x ) which has the following attributes:

1. It satisfies the differential equation (6.31) at every point inside of the cross sections of
the body.

e i2. It is constant on the curves C  and C  (i = 1, 2, ..., N) bounding the cross sections of the
body. 

2 3On the basis of the above presentation it is clear that the function    (x , x ) depends 

C†  Saint Venant presented the following empirical formula for finding R  for simply connected  cross sections of any

geometry

pwhere A  is the area of the cross section and I  is its centroidal  polar moment of inertia.  This formula gives

acceptable results except for bodies whose cross sections have one dimension considerably larger than the other.

www.EngineeringEBooksPdf.com



230 Prismatic Bodies Subjected to Torsional Moments at Their Ends

(6.37a)

(6.37b)

(6.37c)

            (6.38a)

            (6.38b)

           (6.39)

        (6.40)

only on the geometry of the cross sections of the body under consideration.  Once the

2 3function     (x , x )  is  established,  it  can  be  substituted  into  relation  (6.33)  to  give
the torsional constant which in turn can be substituted into relation (6.32) to yield the
constant    .  The components of stress are obtained from relations (6.34).

In what follows we substitute relations (6.35) into the strain–displacement relations
(2.16) and integrate the resulting equations to obtain the components of displacement

2 2 3 3 2 3u (x , x ) and u (x , x ) of the body.  That is,

(6.37d)

Integrating, relations (6.37d), we get

13 12From the strain–displacement relation for e  and e , using relations (6.36) we have

1Differentiating the above relations with respect to x , we obtain

1 1However, referring to relation (6.37a), we see that u  is not a function of x  and, moreover,

1     is not a function of x .  Therefore, from relations (6.40), we have
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   (6.41)

 (6.42)

Substituting relations (6.38) into the above, we get

These equations are satisfied if

Integrating the above relations, we have

Substituting the above relations into (6.38), we obtain

1 2 3 1where x , x  and x  are any set of orthogonal axes having the x  axis parallel to the axis of
the body.  Referring the relations (2.59) we see that the last two terms on the right-hand
side of relations (6.41) represent rigid-body motion.  That is, as expected, the components
of displacement (6.41) include an unspecified rigid-body motion of the body.  We can
eliminate this rigid-body motion by restraining the body from moving as a rigid-body.

1 1However, this must be done in a way that the warping of the end surfaces (x  = 0 and x
= L) of the body is not inhibited.  Otherwise normal components of stress will be induced
on the cross sections of the body and the length of its longitudinal fibers will  change.  In
practice one or more cross sections of a body are usually restrained from warping.  In
Section 9.11 we investigate the effect of restraining the warping of a cross section on the
stress field in prismatic bodies having thin-walled, open cross sections when subjected
to equal and opposite torsional moments at their ends.  Eliminating the terms which
represent rigid-body motion, relations (6.41) may be rewritten as

From relation (6.42) we see that the components of displacement      and     of the point
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(6.43)

                (6.44)

   (6.45)

on the plane of a cross section (not necessarily on the cross section) whose coordinates

2 2 3 3are x = e  and x = e  vanish.  That is, the particles of the cross section rotate about this
point.  We call this point the center of twist of the cross section of the body. Its location
depends on the geometry of the cross section of the body.  It can be shown that if a cross
section has an axis of symmetry, its center of twist is located on the axis of symmetry.
Thus, if a cross section has two axes of symmetry, its center of twist is the point of
intersection of the two axes of symmetry. Consequently, it coincides with the centroid of
the cross section. Similarly if the cross section of a body has a center of symmetry, its
center of twist coincides with the center of symmetry which is also the centroid of the
cross section. In Section 13.16 we show that the center of twist of a cross section is
identical to its shear center.  This is a point on the plane of each cross section  of a body
(not necessarily on the cross section) which has the property that when the line of action
of an external transverse force acting on the body lies on a plane which contains the shear
center of its cross sections, the body does not twist  (see Section 9.7).

In our presentation in this chapter we consider bodies which we assume are supported
and loaded in a way that all their cross sections are free to warp.  Moreover, we assume
that the supports restrain the bodies from moving as rigid bodies.  In general these
assumptions cannot be easily realized in practice. For this reason in Section 9.11 we
investigate the effect of restraining the warping of a cross section of certain bodies on the
state of stress of their particles and on the angle of twist of their cross sections.

Using relations (2.16), relation (6.28) may be rewritten as

Substituting relations (6.42) in the above, we get

Substituting the above relation into (6.42) we obtain

       2 3 2The component of displacement (x , x )  is  obtained  by substituting the function     (x ,

3x ) into the following relations established from the fourth and fifth of the strain-
displacement relations (2.16) and using relations (6.36) and (6.44).  That is, 

2 3When the function     (x , x ) corresponding to the given geometry of the cross section of
a prismatic body is established, it can be substituted into relation (6.33) to get the

Ctorsional constant R  which can in turn be used in a relation (6.32) to obtain    .  The
function      and the constant      can then be substituted into relations (6.45) and the
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(6.46)

       2 3resulting expressions can be integrated to give the component of displacement (x , x ).

6.4 Interpretation of the Results of the Torsion Problem

rReferring to Fig. 6.3 the direction cosines of the  unit vectors in the radial i  and in the

2 2 3transverse i  directions, with respect to the axes x  and x , whose origin is the center of* *

twist of the cross section of a body, are

Referring to relation (2.80b) and using the above relations and (6.44) the radial and
transverse components of displacement of a particle located at a distance r from   the* 

center of twist of a cross section of a prismatic body, may be established as

Thus, when a prismatic body is subjected to equal and opposite torsional moments at its
ends, the radial component of displacement of its particles, with respect to the center of
twist, vanishes.

Consider a prismatic body in its stress-free, strain-free state (undeformed state) of

omechanical and thermal equilibrium at the uniform temperature T .  Moreover, consider

1 2 3a particle, which when the body is in its undeformed state is located at a point P(x , x , x )

1of  the  cross section at  x   of  this  body.  When the body is subjected to equal and
opposite torsional moments at its ends, in a way that all its cross sections are free to warp,

1 2 3 1 2 3the particle under consideration moves to point P (  ,   ,   ). We denote by P (x ,   ,   )/ //

1the projection of point P' on the cross section at x . Referring to relations (2.4) and (6.44),
we have

  Figure 6.3  Radial and transverse

  directions with respect to the

  center of twist of a cross section.
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(6.47)

(6.48a)

(6.48b)

2 3Solving the above relations for x  and x , we obtain

Consider a segment of a material straight line which in the undeformed state is  located

1 1 1 2 3on the cross section at x  of a prismatic body and extends from point P (x , x , x ) to(1) (1)

2 1 2 3point P (x , x , x ). The equation of this line can be written in the following form:(2) (2)

When the prismatic body under consideration is subjected to equal and opposite
torsional moments at its end, in a way that the warping of its cross sections is not
inhibited, the before deformation material straight line of a cross section deforms into a
three-dimensional curve. The end particles of this line which in the unformed state were

1 1 2 3 2 1 2 3 1 1 2 3located at points P (x , x , x ) and P (x , x , x ) moved to points P (  ,   ,   )/(1) (1) (2) (2) (1) (1) (1)

2 1 2 3and P (  ,   ,   ), respectively. In Fig. 6.4 we denote the projection of these points,/ (2) (2) (2)

1 1 1   2 3 2 1 2  3on the cross section at x  by P (x ,   ,    ) and P (x ,    ,   ), respectively. The// //(1) (1) (2) (2)

1equation of the projection, on the cross section at x , of the deformed line under
consideration may be obtained by substituting relations (6.47) in (6.48a). That is,

Thus, a material straight line which, in the undeformed state, is located on a cross section

1at x  of a prismatic body, deforms into a curve when the body is subjected to equal and

   (a)  Undeformed straight line            (b) Projection of the deformed line

Figure 6.4  Deformed configuration of a m aterial straight line which in the undeformed state is located on a cross

section of a prismatic body subjected to equal and opposite torsional moments at its ends.
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(6.49a)

(6.49b)

   (6.50a)

       (6.50b)

(6.51a)

(6.51b)

opposite torsional moments at its ends without restraining the warping of its cross
sections. However, as can be seen from relation (6.48b) the projection of this curve on a
plane normal to the axis of the body is a straight line. Referring to Fig. 6.4, we have

and

From relations (6.48a), we have

Moreover, from relation (6.48b) we get

Substituting relations (6.50a) into (6.49a) and relations (6.50b) into (6.49b), we obtain

and

1 1We denote by    the rotation about the x  axis of the line under consideration due to the
deformation of the body. Thus,

Consequently, from trigonometric considerations, we have

Substituting relations (6.51) into the above, we get
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(6.52)

 (6.53)

(a)

or

On the basis of the foregoing presentation we may arrive at the following conclusions:
When a prismatic body is subjected to equal and opposite torsional moments at its ends
in a way that no one of its cross sections is restrained from warping, a material straight
line located on one of its cross sections before deformation in general deforms into a
three- dimensional curve. However, the projection of this curve on a cross section of the

   1body is a straight line which rotated by an angle  .  As  can  be  seen  from  relation
 (6.52)  all material straight lines located on the same cross section rotate by the same

    1 1angle  which is proportional to the axial coordinate x . It is called the angle of twist of
the cross section. Referring to relation (6.52) we see that the constant    , introduced in
relation (6.27) as a constant of integration, is the angle of twist per unit length. That is,
differentiating relation (6.52) and using relation (6.32), we have

T CR  is the torsional rigidity and R  is the torsional constant.  The latter depends only on
the geometry of the cross section of the body.

6.5 Computation of the Stress and Displ acement Fields of B odies of So lid
Elliptical and Circular Cross Section Subjected to Equal and Opposite
Torsional Moments at Their Ends

In this section we present an example
                                                                                                                                             

Example 1 Consider a prismatic body of solid elliptical cross section, whose geometry
is shown in Fig. a, subjected to equal and opposite torsional moments at its ends of

1 2 3magnitude M .  We choose the x  and x  axes to be the principal centroidal axes of the
elliptical cross section of the body.  With respect to these axes the equation of the
boundary of the cross sections of the body is given by

Figure a Elliptical cross

section of a prismatic body.
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(b)

(c)

(d)

(e)

   (f)

    (g)

(h)

(i)

2 3Solution We are interested in establishing, to within a constant, the function     (x , x )
which satisfies relation (6.31) at every point of the body.  That is,

eand moreover, is a constant on the closed curve C  (the perimeter of the cross sections of
the  body).  Inasmuch  as  the  components  of  stress  are derivatives of the function     

ewe can choose  the constant value      equal to zero on  the closed curve C .  Thus, we
assume that     is given by

eIt is apparent that      vanishes on the closed curve C .  Substituting relation (c) into (b),
we obtain

Substituting relation (d) into (c), we get

CThe torsional constant R  may be computed by substituting relation (e) into (6.33).  That
is,

3 2 3 2where I , and I  are the moments of inertia about the x  and x  axes, respectively, of the
elliptical cross section of the body; A is the area of the cross section of the body.
Referring to the table on the inside of the back cover of the book, these quantities are
given by

Substituting relations (g) into (f), we obtain the following expression for the torsional
constant of the body:

Substituting relation (h) into (6.53), we get

    Notice that using relations (g) the empirical formula (6.34) presented by Saint Venant
gives
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(j)

    (k)

   (l)

Comparing relations (h) and (j), we see that they differ by 1.3%.  
The components of stress may be computed by substituting relation (e) into (6.35) and
using relation (i). That is,

2 3Consider a point A(x , x ) located r distance from the centroid C of the cross section.
Referring to Fig. b and to relations (k), the resultant shear stress at that point is given by

1sIt can be seen that      is proportional to r.  Moreover, it can be shown that the maximum

2 3shearing stress occurs at x  = 0 x  = b (b = 90 ).  Referring to Fig. b and using relations (k)o

the direction of the resultant shearing stress is given by

It is apparent, that the direction of the resultant shearing stress acting on the particles of
any centroidal line CB (    = constant) is constant.  At point B, the resultant shearing stress
must be tangent to the elliptical boundary  of the cross section of the body. Consequently,
the direction of the resultant shearing stress at any point of line CB, must be parallel to
the tangent to the elliptical boundary at point B.
       The components of displacement      and      are obtained by substituting relation (i)

Figure b Distribution of shearing stress        Figure c Contour lines of     for a prismatic body
in a body, of elliptical cross section,            of elliptical cross section subjected, to equal and 
subjected to equal and  opposite torsional.                          opposite torsional moments at its ends.

www.EngineeringEBooksPdf.com



239Stress and Displacement Fields of Prismatic Bodies of Solid Eliptical Cross Section            

     (m)

(n)

(o)

(p)

(q)

into relations (6.44).  An elliptical cross section has two axes of symmetry; consequently,

2its center of twist coincides with its centroid (see Section 9.7) and, the constants e  and

3e  in relations (6.44) are zero.  Thus,     

The displacement component     may be obtained by substituting relations (e) and (i) into
(6.45) and integrating the resulting relations.  That is,

Integrating relations (n), we get

Equating the left-hand side of the above relations, we obtain

Therefore, if we restrain the prismatic body from moving as a rigid-body by setting     =

2 30 at x  = x  = 0, we get

       As it can be seen from relation (q) for a prismatic body with an elliptical cross
section, plane sections normal to the axis of the body before deformation do not remain

1plane after deformation.  The contour lines of û  are the hyperbolas plotted in Fig. c.
When the body is twisted by end torsional moments acting in the direction indicated in
Fig. c, the dotted lines denote the concave portion of the cross sections, whereas the solid
lines denote its convex portion.

Prismatic bodies of circular cross sections subjected to equal and opposite torsional
moments at their ends

        The results obtained for a prismatic body of elliptical cross sections reduce to those
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    (r)

(s)

     (t)

(u)

  (v)

for a prismatic body with  circular cross sections of radius R by setting a = b = R.  For this
case relations (k) give

pwhere I  is the polar moment of inertia of the circular cross section with respect to its
centroid given by

        As has been deduced previously the direction of the resultant shearing stress is the
same at all points of a radial line.  Moreover, the resultant shearing stress at points of the
boundary of the cross section acts in the direction of the tangent to the boundary. Thus,
the resultant shearing stress acting on a particle of a cross section of a prismatic body of
circular cross section must act in the direction normal to the radius passing through this

1rparticle.  Consequently, for such a body the radial component     of shearing stress must

12vanish while the tangential component     of shearing stress is given by 

The torsional rigidity of a prismatic body of circular cross section is obtained by
substituting a = b = R in relation (h).  That is,

The components of displacement of the particles of a prismatic body of circular cross
sections may be obtained by substituting a = b = R into relations (q) and (m).  That is,

Therefore, when a prismatic body of circular cross sections is subjected to equal and
opposite torsional mo ments at its ends, plane sections normal to  its axis before
deformation, remain plane subsequent to deformation.  Moreover, since the center of
twist of a prismatic body with circular cross section coincides with its centroid, radial
straight lines remain straight and radial.

      Figure d Stress distribution on the cross section

      of a prism atic body of circular cross section

      subjected to torsional moments at its ends.
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(w)

(6.54)

        Finally, the twist per unit length of a prismatic body of circular cross sections
subjected to torsional moments at its ends may be obtained by substituting relation (u) in
relation (i).  That is, referring to relation (6.53), we have

                                                                                                                                             

6.6 Multiply Connected Prismatic Bodies Subjected to E qual and Opposite
Torsional Moments at Their Ends

       Consider a multiply connected (with N holes) prismatic body (see Fig. 6.5) made
from a homogeneous, isotropic, linearly elastic material subjected to a distribution of

1 1external traction on each of its end surfaces (x  = 0 and x  = L) which is statically

1equivalent to a torsional moment of magnitude M .  In Section 6.3 we show that the stress
distribution in a prismatic body (simply or multiply connected) subjected to torsional

2 3moments at its ends can be established from a stress function    (x , x ) on the basis of

2 3relations (6.34) provided that the function      (x , x ) satisfies the following requirements:

1.  The differential equation (6.31) at every point  of the body.
2.  It is constant on the lateral surfaces of the body.
3.  Relation (6.32) with (6.33).

Requirement 3 ensures that the components of stress satisfy the boundary conditions on

1 1the end surfaces (x  = 0 and x  = L) of the body.  Requirement 2 ensures that the
components of stress satisfy the boundary conditions on the lateral boundary of the body.
Requirement 1 ensures that the components of strain obtained from the components of
stress on the basis of the stress–strain relations (3.48) satisfy the equations of
compatibility. For a multiply connected body the satisfaction of the equations of
compatibility is necessary and sufficient to ensure that the strain–displacement relations
(2.16) can be integrated.  However, the resulting components of displacement may or may
not be single-valued, continuous functions of the space coordinates.  In order to ensure
that the strain–displacement relations can be integrated to give single-valued, continuous
components  of  displacement,  additional  restrictions must be imposed on the function

2 3     (x , x ).  In this section we establish these additional restrictions.  As we have indicated
in Section 2.11 the necessary and sufficient condition for accomplishing this is that the
components of strain satisfy relations which result from the following requirement:

where the integral is taken around any closed curve P lying entirely on a cross section of
the prismatic body (see Fig. 6.5).  However, on the basis of relations (6.44) the

2 3components of displacement u  and u  are single-valued continuous functions of the space

11coordinates.  Therefore, noting that e  vanishes, it is sufficient to set

www.EngineeringEBooksPdf.com



242 Prismatic Bodies Subjected to Torsional Moments at Their Ends

(6.55)

(6.56)

(6.57)

Figure 6.5 Cross section as a prismatic body

with holes.

Substituting relations (6.45) into (6.55), taking into account relations (6.20a) and (6.20b)
and using Green's theorem of the plane (6.19a), we get

P iwhere A  is the net area enclosed by the closed curve P; C  is the perimeter of the i  holeth

enclosed by the closed curve P; q is the number of the internal  holes enclosed by curve
P.  In relation (6.56) the integral over the closed curve P is taken counterclockwise while

ithe integrals over the curves C  (i = 1, 2, ..., N) are taken clockwise.  Using relations (6.8),
(6.9), (6.20c) and (6.20d), relation (6.56) may be rewritten as

2 3Relation (6.57) is valid if the function     (x , x ) has the following attributes:

1.  At every point of the cross section of the body it satisfies the following relation:
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(6.58)

(6.59)

(a)

(b)

(c)

2.  On the perimeter of each internal hole it satisfies the following relation:

i iIn the above relation the line integral is taken clockwise around the curves C .  A  is the
 area of the cross section of the i  hole.th

     On the basis of the foregoing presentation we have converted the boundary value

 12 2 3  13 2 3problem for computing the components of shearing stress   (x , x ) and   (x , x ) acting
on the particles of the cross sections of a multiply connected (with holes) prismatic body
subjected to equal and opposite torsional moments at its ends to the simpler boundary

2 3value problem of finding the stress function      (x , x ) which has the following attributes:

1.  It satisfies the differential equation (6.58) at every point of the cross sections of the
body.
2.  It vanishes on the external lateral boundary of the cross sections of the body.

i3.  It satisfies relation (6.59) on the perimeter C  (i = 1, 2, ..., N) of each hole of the cross
section of the body.

2 3Once the stress function      (x , x ) is established the angle of twist per unit length can be
obtained on the basis of relation (6.32).  Moreover, the components of stress can be
computed on the basis of relations (6.35).
      In what follows we compute the stress and displacement fields in a hollow prismatic
body subjected to equal and opposite torsional moments at its ends.  The cross sections
of the body are bounded by two homothetic ellipses.
                                                                                                                                             

Example 2 Consider a prismatic body of  hollow cross sections bounded by two
homothetic ellipses, that is, similarly shaped, similarly placed and oriented, ellipses. The

1body is subjected to equal and opposite torsional moments at its ends of magnitude M .
Referring to Fig. a, the equations of the curves bounding the cross sections of the body
are

Moreover,

where m is a given constant. The body is subjected to equal and opposite torsional
moments at its ends.  Compute the displacement and stress fields of the body.
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(d)

(e)

            (f)

         (g)

      (h)

Figure a  Geometry of the cross

section of the prismatic body.

2 3Solution We are looking for the function     (x , x ) which vanishes on the external

e 1boundary C , is constant       on the internal boundary C  and satisfies relation (6.58) at
every point of the cross sections of the body.  A function which appears to satisfy these
requirements has the following form:

Substituting relation (d) into (6.58), we get

Thus, the stress function may be rewritten as

where m is defined by relation (c).  On the internal boundary  of the cross section of the
body relation (f) gives

Inasmuch as the cross sections of the body under consideration are multiconnected (have
holes) the satisfaction of equation (6.58) is not sufficient to ensure that the component of

1 2 3displacement u (x , x ) is a single-valued continuous function of the space coordinates.
In order to ensure this, the stress function     must satisfy relation (6.59).  That is,  

1 1where the line integral is taken clockwise around the internal boundary C ; A  is the area
of  the  hole.  Referring  to relations (6.8), (6.9), and (d) the derivative of the function   

n 2 3with respect to x  may be expressed in terms of its derivatives with respect to x  and x  as
follows:
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   (i)

                (j)

    (ka)

      (kb)

      (la)

(lb)

          (m)

Substituting the above relation into (h), we obtain

Since the function      is not defined inside the hole, Green's theorem of the plane cannot
be used to transform the line integral on the right side of relation (j) into a surface integral.

1Instead the line integral must be evaluated.  Referring to relation (b) on the curve C , we
have

and

Noting the line integral in relation (j) is taken clockwise we see that when we integrate

3 1 3 1 2from x = !b  to x = b  clockwise, the coordinate x  is negative.  That is,

2 1 2 1When we integrate clockwise from x  = b  to x  = !b  we have

2 1 2 1 3Moreover, when we integrate from x = - a  to x =a  clockwise, the coordinate x  is
positive.  That is,

3 1 2 2When we integrate clockwise from x  = a  to x  = !a , we have

Using relations (k) and (l), we obtain
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 (n)

              (p)

(q)

(r)

and

1 1 1Substituting relations (m) and (n) into relation (j) and noting that A  = Ba b , we obtain

2 3Therefore, the assumed function      (x , x ) [see relation (d)] satisfies the requirement (h).
Consequently, it is the stress function for the boundary value problem under
consideration.
      In what follows we compute the twist per unit length      in terms of the given torsional

1moment M .  Substituting relation (f) and (g) into (6.33), we obtain

(o)
Referring to the table in the inside of the back cover of the book we find that the moments

2 3of inertia about the x  and x  axes and the area of the cross sections of the body are given
by

Substituting relations (p) into (o), we get

Therefore,

Substituting relation (f) into (6.34) and using (r), we get
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(s)

 (t)

                                    (u)

(v)

(w)

(x)

2 3Consider a point D (x , x ) located at a distance  CD = r from the centroid C of the cross
section. Referring to Fig. b and relations (s) the resultant shearing stress at point D is 

Thus, we see that as in the case of a prismatic body of solid elliptical cross section the
shearing  stress  along  any  radius  CB  has a constant direction which coincides with the
direction of the tangent to the elliptical boundaries at points B and A (see Fig. b).  
Substituting relations (f) and (r) into (6.45), we get

1 2 3Integrating relations (u) and assuming that at x  = x  = x  = 0 the component of
displacement     vanishes, we obtain

1The contours of u  are hyperbolas having the principal axes of the ellipse as asymptotes
(see Fig. c).
      By setting m = 0 the results obtained for a prismatic body of hollow elliptical cross
section reduce to those obtained in the example of Section 6.5 for a prismatic body of

e 1 1 isolid elliptical cross section. Moreover, when a = b = R  and a  = b  = R  the results of this
example reduce to those of a prismatic body of hollow circular cross section of external

e iradius  R   and  internal  radius  R .  Referring  to  relation  (v), we see that for such a body
      vanishes.  Thus, plane sections normal to the axis of a prismatic body of hollow
circular cross section before deformation do remain plane after the body is subjected to
equal and opposite torsional moments at its ends. Moreover, for such a body relations (r)
and (s) reduce to 

pwhere I  is the polar moment of inertia of the hollow circular cross section given as
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 Figure b  Distribution of shearing stress Figure c  Contour lines of     for the hollow
on the hollow elliptical cross section of elliptical cross section of a prismatic body 
a prismatic body subjected to equal and subjected to equal and opposite torsional
opposite torsional moments at its ends. moments at its ends.

                                                                                                                                             

6.7   Available Results

        In Table 6.1 we tabulate formulas for the angle of twist and the maximum  shearing
stress of prismatic bodies having the indicated cross section subjected to equal and
opposite torsional moments at their ends.  These formulas have been established on the
basis of the linear theory of elasticity with the assumption that the end cross sections of
the bodies are not restrained from warping.

6.8 Direction and Ma gnitude of t he Shearing Stress Acting on t he Cross
Sections of a P rismatic Body of Arbitrary Cross Section Subjected to
Torsional Moments at Its Ends

2 3     In Fig. 6.6 we plot the stress function     (x , x ) on the cross section of a prismatic
body; referring to this figure we see the following:

1. The integral  is equal to the volume of the cross-hatched regions.

eC e2. The quantity    A  is the volume of the prism BCDE.

iC i3. The quantity    A  is the volume of the prism of height  and of cross section equal

to that of the i  hole.th

Thus, from relation (6.23) we find that the applied torsional moment is equal to twice the
volume under the surface BGHKLC.
       In what follows we show that the shearing component of stress at any point of the
cross section of a prismatic body subjected to torsional moments at its ends is tangent to

2 3the contour  of the stress function     (x , x ) passing through that point.†

†  A contour of the stress function is a closed curve on the cross section of a body at every point of which

the value of the stress function     is the same. 
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Table  6.1 Angle of twist per unit length and maximum shearing stress for bodies subjected to equal and opposite
†

torsional moments at their ends, obtained on the basis of the linear theory of elasticity.

Cross section Angle of Twist M aximum  Shearing Stress

For circular bar : a = b

Equilateral triangle

         

For circular tube : a = b
1 1                            a  = b

Hexagon

Rectangular

1 2h/t K K

1.0 0.422 0.624

1.2 0.498 0.657

1.5 0.588 0.693

2.0 0.687 0.738

2.5 0.747 0.774

3.0 0.789 0.801

4.0 0.843 0.846

5.0 0.873 0.873

10.0 0.936 0.936

Infinity 1.000 1.000

†  Taken from Timoshenko, I.S., Goodier, J.N., Theory of Elasticity, McGraw Hill, New York, 1951.
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      (6.60)

(6.61)

           Figure 6.6  Graphical representation

2 3           of the stress function     (x ,x ).

       Consider a point on a contour of the stress function and denote the unit vectors normal

n sand tangential to this contour at this point by i , and i , respectively.  We are interested to

1ncompute the shearing components of  stress  in  the direction normal (    ) and tangential

1s(   ) to the contour line.  Using the transformation relations (2.48a) of the components
of stress.  together with relations (6.4), (6.5) and (6.16), we obtain 

Since      must be constant on the contour line, we have

  1nTherefore, the component of stress    vanishes.  That is, the shear stress acting on any
particle of a cross section of a prismatic body subjected to torsional moments at its ends
is tangent to the contour of the stress function      passing through this particle.  Similarly,

referring to relations (6.6), (6.7) and (6.16), we may obtain

(6.62)

nwhere x  is positive in the direction of the outward normal to the contour line.  The
shearing component of stress is taken positive if it acts along the direction of the unit

svector i  (see Fig. 6.6), that is, if it tends to turn the contour in a counterclockwise
direction.
     On the basis of the foregoing presentation we may conclude that the shearing
component of stress acting on a particle located at any point P of a cross section of a
prismatic body subjected  to torsional moments at its ends is tangent to the contour of the
stress  function        passing  through  point  P.  Moreover,  it  is  numerically  equal  to

n!d    / dx . That is, if the contour lines of the     surface are plotted on a cross section of
a body subjected to equal and opposite torsional moments at its ends, it is possible to
obtain the direction and the magnitude of the shearing component of stress acting on any
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(6.63)

               (6.64)

(6.65a)

particle of a cross section of this body. This finding constitutes the basis of the membrane
analogy which is discussed in the next section.

6.9 The Membrane Analogy to the Torsion Problem

    The solution of the torsion problem presented in Section 6.3 becomes complex for
prismatic bodies whose cross sections are geometrically complicated.  Exact solutions are
available only for a limited number of geometries of cross sections, most of which are
given in Table 6.1.  However, accurate values of the components of stress and
displacement may be obtained with the aid of a computer using one of the numerical
methods available as for example, the finite element method. In this section, we present
the "membrane analogy" to the torsion problem introduced by Prandt.  This analogy is
useful in visualizing the stress distribution over the cross section of prismatic bodies
subjected to equal and opposite torsional moments at their ends, and in establishing
experimentally the magnitude and direction of this distribution.
        The membrane analogy is based on the mathematical equivalence of the boundary
value problem  for  computing  the  stress function      , for  prismatic bodies subjected to
torsional moments at their ends and the boundary value problem for computing the lateral

1displacement u  of a stretched elastic membrane, when subjected to a uniform lateral
pressure.  This is demonstrated below.

e      Consider a thin, weightless, homogeneous membrane fixed at its boundary C , after
being subjected to an initial tension      having the same value in all directions.  That is,
   is equal to the initial tensile stress acting on any cross section of the membrane
multiplied by its thickness, or to the initial tensile force per unit length acting on any cross

e 2 3section of the body.  We consider C  as a given curve on the x x  plane (see Fig. 6.7).
When the membrane is subjected to a small uniform, lateral pressure p, it undergoes a

1 2 3 1displacement u (x , x ) in the x  direction.  We assume that the change of the initial
tension as a result of the deformation of the membrane is negligible.  Referring to Fig. 6.7
consider an infinitesimal element ABCD of the deformed membrane.  Since, by definition,
a membrane cannot resist shearing stresses, this element is subjected only to a normal
force per unit length,   , identical on all its sides.  The slope of the plane tangent to the
membrane which contains side AB of element ABCD is equal to

The slope of the plane tangent to the membrane which contains side BC of element ABCD
may by approximated by

Similarly, the slope of the planes tangent to the membrane which contain sides AD and
BC may be approximated by

and 
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(6.65b)

              (6.66)

               (6.67)

Figure 6.7 Stretched thin homogeneous membrane.

Since the element under consideration is in equilibrium, setting the sum of the forces in

1the x  direction equal to zero, we obtain

Simplifying, we get

1Thus, the displacement u  of the membrane under consideration must satisfy at every one

eof its points, relation (6.66) while on its boundary C  it must vanish.  Comparing relation
(6.66) with (6.29) we see that the stress function    , for a prismatic body having a given,
simply connected cross section subjected to equal and opposite torsional moments at its

1ends, is identical to the displacement u  of a membrane stretched over a hole of the shape
of the given cross section of the prismatic body and subjected to a lateral pressure p,
which is equal to 

        In the case of multiply connected cross sections, the membrane is stretched between
the outside boundary and weightless plates of the shape of the internal holes.  These plates
are kept horizontal by outside couples applied subsequent to the application of the

1internal pressure p.  The displacement of the membrane u  will again satisfy relation
(6.66).  Moreover, since the plate is in equilibrium under the influence of the uniform
pressure p and the  constant  tensile  force  per  unit  length    ,  exerted by the membrane
on its perimeter, referring to Fig. 6.8, we have
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           (6.68)

Figure 6.8 Stretched thin homogeneous membrane with weightless plate.

It is apparent, that the above equation is the same as relation (6.59) if     = p /2   G. 

1Therefore, the displacement u  of the membrane will be equal to the stress function N if
the pressure to the stress ratio of the membrane is that given by (6.67).  Using relation
(6.67) relation (6.32) may be written as

Cwhere R  is the torsional constant of the prismatic body under consideration and is a

Tproperty of its cross section.  R  is the torsional rigidity.  Thus, if the ratio p/2    is known

Cthe torsional constant R  could be established on the basis of relation (6.68).  However,
the ratio p/2    is not known.
     In the laboratory the setup shown in Fig. 6.9 is employed.  It consists of a rectangular
container partially filled with water.  The amount of water can be increased by opening
the valve of the connected small water jar.  The top of the container consists of a
horizontal plate with two holes.  The one hole is circular while the other has the geometry
of the cross section of the prismatic body whose response to end torsional moments we
want  to  establish.  A  soap  film  subjected  to  an  unknown initial tension      is stretched
over the two holes.  The pressure inside the container is subsequently increased by
releasing a few drop of water from the small water jar.  We denote the unknown increase
of the pressure inside the container by pN.  As a result of this pressure the particles of the
soap film move upward forming a surface over each hole.  This surface is identical to the
     surface for a prismatic body, whose cross section has the geometry of the hole, when

1subjected to equal and opposite torsional moments at its ends of unknown magnitude M N.
The contours of the analogous membrane for the applied ratio pN/2   N are established
experimentally using a depth gage moving freely on a horizontal plane.  The volume VN
under the membrane is computed from these contours.  As discussed in Section 6.8 the

www.EngineeringEBooksPdf.com



254 Prismatic Bodies Subjected to Torsional Moments at Their Ends

   (6.70)

  (6.71)

(6.69)

Figure 6.9 Experim ental setup for m embrane analogy.

1torsional moment M N is equal to twice the volume VN under the membrane.  Thus,
referring to relations (6.68), we have

CThis relation may be used to establish the torsional constant R  of the body under
consideration in terms of the ratio pN/   N.  That is,

However, it is difficult to measure the  ratio pN/   N in the laboratory.  For this reason, the
contours of the soap film extending over the circular hole are established.  This soap film
is subjected to the same initial stress    N and internal pressure pN as the film extended over
the hole, whose geometry is identical to that of the cross section of the body, whose
response, when subjected to equal and opposite torsional moments at its ends, we are
interested to establish.  From the contours of the soap film, which extends over the
circular hole, the volume under it is computed.  In the example of Section 6.5 [see relation
(u)] we have shown that the torsional constant of a prismatic body of circular cross
section is equal to the polar moment of  inertia  of its cross sections. Taking this into
account and using relation (6.70),  we have 

Substituting relation (6.71) into (6.70) we obtain the following formula for the tortional

Cconstant R  of the cross sections of the body under consideration. 

(6.72)
       The shearing stress at any point on a cross section of a prismatic body is tangent to
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(6.73)

(6.74)

    (6.75)

      (6.76)

            (6.77)

(6.78)

(6.79)

the contour line of the analogous membrane at that point.  In order to compute the value
of the shearing stress at a point of a cross section of a prismatic body we establish the

1 nslope Mu N/Mx  in the direction normal to the contour, through that point.  The measured

1deflection u N of the membrane subjected to initial tension   N and pressure pN must satisfy
a differential equation analogous to (6.66).  That is,

We denote by N the following ratio:

Substituting relation (6.74) into (6.68) and using relation (6.69), we get

Thus,

Multiplying both sides of relation (6.73) by N, and using relations (6.74) and (6.67), we
get

Comparing relation (6.77) with (6.29), we see that 

Consequently, substituting relation (6.78) into (6.62), we get

     In the laboratory the contours of the membrane are established experimentally and
plotted.  From those the volume under the membrane is computed and used in relation

1 n(6.76) to obtain N.  Moreover, from the contours of the membrane the slope Mu N/Mx  is

1scomputed.  Thus, the magnitude of the shearing component of stress    at any point of
the cross section of a prismatic body can be established using relation (6.79).  Its direction
is tangent to the contour passing through that point.
                                                                                                                                             

Example 3 A setup similar to that shown in Fig. 6.9 was employed to establish the
torsional constant of a prismatic body having an I-shape cross section and made of steel
(G = 11 x 10  psi) .  A hole having the dimensions of the  cross section of the body and6

a reference circular hole were made on the horizontal top plate of the rectangular
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                  (a)

                  (b)

container.  A soap film was spread over the two holes and a few drops of water were
added in the container to increase the pressure underneath the film.  The contours of the
soap film were established by using a depth gage moving freely on the top horizontal plane.

The results are shown in Fig. a.  A micrometer was employed to measure the area inside
each contour of the I-section.  The area inside each contour of the circular cross section
was computed from the diameter of the contour.  The results are given in Table a.
     The volume under the membrane is equal to the sum of the volumes of the cones with

i i+1bases the areas A  and A  enclosed by two adjacent contours [the i  and the (i + 1) ] andth th

height h equal to the difference in elevation between these two contours. Thus,

where n is the total number of contours inside the cross section.  Notice that in Fig. a the

idifference in elevation between most contours is constant (h  = h).  Using these data
compute the torsional rigidity of the I-section.  Compute the twist per unit length if the
prismatic body is subjected to a torque of 69 in-kips (thousand lbs).  Compute the
shearing stress at points A,B,C,D. 

Figure a  Experimentally established contours of film  membranes.

                                                                                                                                             

Solution  First the volume under the membrane of the I-section and of the circular section
are computed, as the sum of the volumes of the cones having as bases the areas enclosed
by two adjacent contours and height the difference in height between the two adjacent
contours.  Referring to Table a, we have

†  Notice that in this column we add only the areas, inside those of the contours which have a constant
difference of elevation.
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(c)

  (d)

            (e)

(f)

Table a   Computation of the volume under the membrane.

I-Section Circular Section 

Elev.

(in)

Contour
Area

(in )2

Comorputations†

for

Elev.

(in)

Contour
Area

 (in )2

Comorputations†

for

0.380

0.390
0.400
0.410
0.420
0.430
0.440
0.450
0.460
0.465

10.75

9.13
7.60
6.15
4.46
2.76
1.31
0.50
0.18
0.00

  5.38

   9.13
   7.60
   6.15
   4.46
   2.76
   1.31
   0.50
   0.09
=====
' 37.38

0.380
0.400
0.425
0.450
0.475
0.500
0.525
0.550
0.575
0.600
0.625
0.650
0.675
0.700
0.715

9.64
9.11
 8.46
 7.83
 7.15
 6.65
 5.94
 5.16
 4.50
 3.98
 2.59
1.77
 0.98
 0.37
 0.00

4.56
8.46
7.83
7.15
6.65
5.94
5.16
4.50
3.98
2.59
1.77
0.98
0.18

========

' 62.99

Substituting result (b) into relation (6.71), we have

Substituting results (a) and (c) in relation (6.70), we get

The twist per unit length " may be computed from relation (6.53) as

The shearing stress at any point of the cross section of the prismatic body is tangent to the
contour  of  the  soap  film  membrane  passing  through  that  point.  In order to find the
magnitude of shearing stress, we must first establish from Fig. a  the slope of the soap
film membrane

Thus, referring to Fig. a, we have

www.EngineeringEBooksPdf.com



258 Prismatic Bodies Subjected to Torsional Moments at Their Ends

    (g)

(h)

    (i)

(6.80)

(6.81)

From equation (6.76) we have

       The magnitude of the shearing stress is obtained by substituting relations (g) and (h)
into (6.79).  That is,

                                                                                                                                             

6.10 Stress Distribution in Prismatic Bodies of Thin Rectangular Cross Section
Subjected to Equal and Opposite Torsional Moments at Their Ends.

     An important application of the membrane analogy is its use as a mental aid in
visualizing the stress distribution in prismatic bodies subjected to equal and opposite
torsional moments at their ends.  For instance, the     surface for a body having a narrow
rectangular cross section has the form shown in Fig. 6.10.  This analogous surface is

3 2symmetric with respect to x  and x  axes, and has a cross section that is nearly constant
for a  considerable  portion  of  the  width  h  of  the  cross  section  of the body.  Actually,

3 3the     function varies considerably with x  only in the proximity of the edges x  = Kh/2.

2It is reasonable, therefore, to assume that      is only a function of x .  Clearly, the accuracy
of the results obtained on the basis of this assumption increases as the h/t ratio increases.
On the basis of this assumption, equation (6.29) reduces to

Integrating the above relation twice, we obtain

The constants of integration are obtained by requiring that     vanishes on the boundary.

2Thus, at x  = Kt/2 we have
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(6.82)

(6.83)

        (6.84)

(6.85)

           (6.86)

  (6.87)

           (6.88)

Consequently,

Substituting the values of the constants into relation (6.81), we get

The angle of twist per unit length     may be obtained by equating twice the volume under
the     surface to the given applied torsional moment.  That is,

Therefore,

where

Substituting relation (6.86) with (6.87) into (6.84), we get

Substituting relation (6.88) into (6.16), we obtain

(a) Contours of the analogous membrane (b) View of the analogous membrane

Figure 6.10   Analogous membranes for a body of narrow rectangular cross section.
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(6.89)

(6.90)

(6.91)

(6.92)

(6.93)

(6.94)

The distribution of the shear stress (6.89) is shown in Fig. 6.11.  Substituting the

second of relation (6.89) into (6.2d), we get

13The reason for this discrepancy is that the stress component      shown in Fig. 6.11
supplies only half of the internal moment acting on a cross section.  The other half is

12 3supplied by the stress component      which although very small occurs close to x  = ±h/2
and therefore its moment is considerable.

2 3        The components of displacement in the x  and x  directions are given by relation

1(6.44) while the component of displacement u  may be obtained by substituting relation
(6.30) into(6.88) and the resulting relation into (6.45) and using relation (6.32). Thus,
taking into account that the center of twist of a rectangular cross section coincides with

2 3its centroid (e  = e  = 0), we have 

Integrating relations (6.91), we obtain

These relations must be identical.  Thus,

1 2 3 1If we hold the prismatic body at x  = x = x = 0 from moving in the x  direction, we have

Thus,

Substituting relations (6.94) and (6.86) into (6.92) and using (6.87), we get
   

Figure 6.11  Approximate distribution of the shearing stress on the cross section of a prismatic body of thin
rectangular cross section.
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(6.95)

(6.96)

We define the following ratios:

where
A    = the angle of twist per unit length obtained on the basis of relation (6.86).

E    = the angle of twist per unit length obtained on the basis of the theory of elasticity.

13 max(   )  = the maximum shearing component of the stress obtained on the basis ofA

relation (6.89).

 13 max(  )  = the maximum shearing components of stress obtained on the basis of theE

theory of elasticity.

1 2The values of the correction coefficients K  and K  are tabulated in the Table 6.1 pg. 248
for various values of h/t.  It can be seen, that if h/t $ 10, the error of the results of the
approximate analysis presented in this section is less than 8%.

6.11       Torsion of Prismatic Bodies of Composite Simply Connected Cross Sections

The results obtained for a prismatic body of thin rectangular cross section may be
employed in establishing the torsional constant of prismatic bodies of composite simply
connected cross sections consisting of n thin rectangles as, for example, the prismatic
bodies whose cross sections are shown in Fig. 6.12.   When such  prismatic bodies are
subjected to equal and opposite torsional moments at their ends, we note the following:

1. Each thin rectangle of a cross section rotates by the same amount.  For example, the
cross section of a prismatic body of I cross section consists of three thin rectangles: its
two flanges and its web.  As shown in Fig. 6.13 when this prismatic body is subjected to
equal and opposite torsional moments at its ends, its two flanges translate and rotate while
its web only rotates.  The twist per unit length of the flanges is equal to that of the web.
 

(a) (b) (c)

Figure 6.12 Stress distribution on bodies having thin-walled, open cross section.
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(6.97)

(6.98)

(6.99)

(6.100)

(6.101)

       (6.102)

12. The internal torsional moment M  acting on a cross section is equal to the sum of the

1torsional moment M (i = 1, 2, ..., n) of the components of stress acting on each of the(i)

thin rectangles which constitute this cross section.  That is,

Consider an auxiliary thin prismatic body having a rectangular cross section identical to
that of the i  thin rectangle of the prismatic body of composite cross section underth

consideration.  Both prismatic bodies have the same length.  We assume that when the
auxiliary prismatic body is subjected to equal and opposite torsional moments at its ends

1of magnitude M  its twist per unit length is equal to that of the prismatic body of(i)

composite cross section when subjected to equal and opposite torsional moments at its
1ends of magnitude M .  Thus referring to relation (6.85), we have

Substituting relation (6.98) into (6.97), we get

CThat is, referring to relation (6.53) the torsional constant R  of a prismatic body of
composite cross-section consisting of n thin rectangles is equal to

Substituting relation (6.99) into (6.98), we obtain

Substituting relation (6.101) into (6.88), we get the following expression for the stress
function of the j  rectangular component of the composite cross section of the prismaticth

body:

Figure 6.13  Cross section of a prismatic
member subjected to torsional moments at
its ends.
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   (6.103)

2Where x  is the thickness coordinate measured from the center line of the j  narrow(j) th

jrectangular component of the cross section; t  is the thickness of this component of the

13cross section. The shearing stress (   ) acting on the j  narrow rectangular component(j) th

of the cross section may be obtained by substituting relation (6.102) into (6.16).  That is,

6.12    Numerical Solution of Torsion Problems Using Finite Differences

In Section 6.3 we convert the boundary value problem for computing the components

 12 2 3 13 2 3of stress   (x , x )  and   (x , x ) and the angle of twist per unit length of a prismatic
body subjected to equal and opposite torsional moments at its ends to that of finding the

2 3stress function     (x , x ) which has the following attributes:

1. It satisfies equation (6.31) at every point of the cross sections of the body.  

e2. It vanishes on the curve C   bounding the cross sections of the body.

i3. It is constant and satisfies relation (6.59) on the curves C  (i = 1, 2, ..., N) bounding the
holes of the cross sections of the body.

2 3Once the stress function    (x , x ) is established it can be substituted into relation

C(6.33) to give the torsional constant R , which can be substituted into relation (6.32) to
give the angle of twist per unit length. 

2 3The components of stress are obtained by substituting the function   (x , x ) and the
angle of twist per unit length     into relations (6.35). 

In Sections 6.5 and 6.6 we obtain closed form solutions of the boundary value problem
described above for prismatic bodies of solid and hollow elliptical and circular cross
sections.  In the literature very few more closed form or series solutions of the boundary
value problem under consideration are available. They involve  prismatic bodies whose
cross sections have a simple geometry (i.e., equilateral triangle or square).  For prismatic
bodies of other geometry, it is necessary to employ a numerical procedure such as the
method of finite differences or the method of finite elements.  In this section we use the
method of finite differences.

When the method of finite differences is applied to the boundary value problem for

2 3computing the function     (x , x ) we adhere to the following steps:

STEP 1  The cross section of the body is represented by a rectangular or other type of
network called finite difference mesh (see Fig. 6.14) and the mesh points are labeled.  In
doing so it is important to take into account the conditions of symmetry which may exist.
Cross sections with a curved boundary may require a variable mesh size close to the
boundary.  Fundamentally, this does not represent any difficulty but practically it causes
a great deal of work.  For this reason the cross section is usually approximated by a
constant size mesh which as shown in Fig. 6.14 does not match its boundary.  The values
of the stress function at intermediate mesh points can be established by interpolation.

STEP 2  The derivatives appearing in the governing differential equation (6.31) are replaced

by their finite difference approximations at the mesh points.  Using a rectangular mesh of

2 3dimensions h  × h  and referring to relation (D.20) of Appendix D the approximation of the

governing equation (6.32) at the pivotal point mn by central differences is  
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(6.104)

       (6.105)

  (6.106)

Prismatic Bodies Subjected to Torsional Moments at Their Ends

where  is the error term indicating that the error approaches zero as fast  as h .  For2

1 2a mesh of equal spacing (h =h =h) relation (6.104) reduces to

Relation (6.105) is applied to each mesh point of the cross section.  This results in a set
of  simultaneous  algebraic equations involving the approximate values of the  function
             at the mesh points of the cross section.  These equations are solved and a set of

approximate values to the function  at the mesh points is established.

STEP 3  The values of the function                 at the mesh points established in step 2 are
used  to  obtain  an  approximation  to  the  value  of the integral in relation (6.33) using
a numerical procedure such as Simpson's rule (see Fig. D.7 of Appendix D).  From this
an approximation to the angle of twist per unit length can be established on the basis of
relation (6.32).

STEP 4  The derivatives in relations (6.35) may be approximated using finite differences.

2 3For example, using backward differences with mesh  dimensions h  and h  and referring
to Fig. D.4 of Appendix D, the values of the components of stress at the mesh point m,n
are approximated as follows:

Generally, a relatively fine mesh is required in order to obtain accurate results,
especially for the components of stress.  In general the accuracy of the values of the
derivatives of a function is worse than the accuracy of the values of the function.

In what follows we present an example.

   Figure 6.14  Constant size rectangular

   finite difference mesh which does 

    not match the curved boundary of

     the cross section.
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Example 4 
Consider a prismatic body of square cross- 
section (see Fig. a) subjected to equal and 

1opposite torsional moments M  at its ends.  
Use a mesh of equal squares of dimension 
L/10 to  compute  approximate  maximum 
values for the components of stress acting
at the mesh points.

Figure a  Cross section of the body.

                                                                                                                                             

Solution  

STEP 1 The cross section of the body is represented by the square mesh and the mesh
points are labeled as shown in Fig. b.  In numbering these points we took into account that

2 3the  stress  function               is  symmetric  with  respect  to  the x  and x  axes and with
respect to the diagonal axes (see Fig. a).

STEP 2  We apply relation (6.105) to each interior mesh point taking into account that the

function  vanishes on the boundary of the cross section.  That is,

Mesh point 1

Mesh point 2

Mesh point 3

Mesh point 4

Mesh point 5

Mesh point 6 

Mesh point 7  (a)

Mesh point 8  

Mesh point 9  

Mesh point 10 

Mesh point 11 

Mesh point 12 

Mesh point 13 

Mesh point 14 

Mesh point 15 

Relations (a) may be rewritten as
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(c)

           (b)

       

From relation (b) we get
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   (d)

         (e)

       (f)

  Figure b  Cross section of the body 

 represented by a square mesh.        

Substituting relations (c) into Simpson's rule (see Fig. D.9 of Appendix D), we obtain

Substituting relation (d) into (6.32), we get the following approximate value for the angle
of twist per unit length:

Referring to Table 6.1 (see pg. 248) the exact value of the angle of twist per unit length
is
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    (h)

Substituting relation (c) and (e) into (6.106), we get

(g)

Referring to Table 6.1, the exact value of the shearing stress at point A of Fig. a is

Comparing relation (e) with (f) and (g) with (h), we find that the error in the approximate
value of the angle of twist per unit length is 7.69 %, while the error in the approximate
value of the maximum stress is  5.88%.
                                                                                                                                             

6.13 Problems

1. Consider a prismatic body whose cross section is an equilateral triangle subjected to
equal and opposite torsional moments at its ends.  Denote by h the height of its cross
section.  The body is made from an isotropic linearly elastic material.  Compute

(a) The twist per unit length of the body
(b) The distribution the shearing components of stress acting on the particles of the 

           principal centroidal axes of the cross section
Hint: Referring to Fig. 6P1 the equations of the boundary of the triangle are

Consequently, a function which vanishes on the boundary is

Figure 6P1 Figure 6P2 Figure 6P3
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2. and 3.  A cantilever beam having the Z cross section shown in Fig. 6P2 is subjected to

1a torsional moment M .  Compute and draw on a sketch the distribution of the shearing
components of stress.  Compute the angle of twist per unit length.  Repeat with the beam
having the cross section shown in Fig. 6P3.

4. A 120-mm long steel (G = 76 GPa) angle L 89 × 64 × 12.7 is subjected to equal and
opposite torsional moments at its ends.  Knowing that the allowable shearing stress for

allowablesteel is     = 50 MPa and disregarding the effect of stress concentrations determine
the maximum permissible value of the applied torsional moment and the corresponding
relative rotation of the two end cross sections of the  angle.

5. A membrane analogy test was performed in order to establish the torsional constant of
an I-beam whose cross section is shown in Fig. 6P5.  Two holes were opened on a plate;
the one had the geometry of the I-beam and the other was a circle of radius 100 mm.  The
plate was placed at the top of the rectangular container of the setup for the membrane
analogy test shown in Fig. 6.9 and was sealed all around.  A thin soap film was placed
over the two holes.  A few drops of water were added in the container and the pressure
on the soap film increased.  It was established that the volume of the deformed soap film
over the I-shaped hole was 10  mm  while that of the deformed film over the circular hole5 3

was 5(10 ) mm .  Compute the torsional constant of the I-beam and the twist per unit5 3

length when the I-beam is subjected to two equal and opposite moments at its ends of
magnitude 60 kN@m.  The beam is made from an isotropic, linearly elastic material (G =
100 GPa).

C     Ans.  R  = 31,415,926 mm             =  1.9 (10 ) Rad/m4 -8

Figure 6P5 Figure 6P6                                 Figure 6P7

6. Consider a prismatic bar of rectangular cross section of dimension 2 b × b (mm) (see
Fig. 6P6) made from an isotropic, linearly elastic material.  The bar is subjected to equal
and opposite torsional moments at its ends and is supported at its ends in such a way that
the warping of its cross sections is not restrained.  Using the method of finite differences,
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compute the torsional constant, the angle of twist per unit length and the components of
stress acting at point A of the cross sections of this bar.  Subdivide the cross section of the
bar into equal rectangles of dimensions (2b/10) × (b/10).

       

7. Consider the prismatic bar whose cross section is shown (see Fig. 6P7) made from an
isotropic, linearly elastic material.  The bar is subjected to equal and opposite torsional
moments at its ends and is supported at its ends in such a way that the warping of its cross
sections is not restrained.  Using the method of finite differences, compute the torsional
constant, the angle of twist per unit length and the components of stress acting at point
A of the cross section of this bar.  Subdivide the cross section of the bar into equal squares
of dimensions b/5 × b/5.  
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(7.1)

(7.2)

 (7.3)

 (7.4)

Chapter
7

Plane Strain and Plane Stress 
Problems in Elasticity

7.1    Plane Strain

In this section we consider prismatic (multiply or simply connected) bodies made from

1isotropic, linearly elastic materials and we choose the x  axis to coincide with the locus of

the centroid of their cross sections.  The bodies are originally in a stress-free, strain-free

o state of mechanical and thermal equilibrium at the uniform temperature T . Subsequently,

the bodies are subjected to specified specific body forces and to specified boundary

conditions and reach a second state of mechanical and thermal equilibrium at the uniform

o 1temperature T  in which the component of displacement u  vanishes while their other two

2 3components of displacement are functions of only x  and x .  We say that these bodies are

in a state of plane strain. Referring to the strain–displacement relations (2.16) the

components of strain of these bodies are

Referring to the stress-strain relations for a state of plane strain (3.50), we see that

Substituting relations (7.2) into the equilibrium equations (2.69), we have

2 3Inasmuch as the components of stress are only functions of x  and x , referring to relations

(7.3), we see that in order to have a state of plane strain in a body the distribution of the

specific body force must have the following form:
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             (7.5a)

(7.5b)

                     (7.5c)

(7.6)

Figure 7.1  Prismatic body
in a state of plane strain.

The stress distribution (7.2) when substituted into the traction–stress relations (2.73)

must give components of traction which when evaluated at the points of the boundary of the

body where components of traction are specified give the specified components of traction.

Referring to Fig. 7.1 the unit vector outward normal to the lateral surfaces of a prismatic

body  is                                                 . Consequently,  using  relations (7.2),  from  relations

(2.73) we find that the components of traction acting on the lateral surfaces of a prismatic

body, in a state of plane strain, must have the following form:

1 1 The  unit  vector normal  to  the  end  surfaces  (x  0 and x = L)  of  a   prismatic  body  is

                                          . Consequently, using relations  (2.73)  we  find  that the

components of traction acting on the end surfaces of a prismatic body in a state of plane

strain, must have the following form:

We limit our discussion to bodies on the lateral surfaces of which the components of traction

  and `     are specified.  That is, we do not consider

boundary value problems involving bodies having one or more components of displacement

specified on one or more of their lateral surfaces.  

Referring to relations (7.4) to (7.6) and taking into account that the component of

1displacement u  of every particle of the body vanishes, we may conclude that a state of plane

strain can be maintained in a prismatic (simply or multiply connected) body,  when it is

subjected to the following boundary conditions and distribution of specific body forces (see

Fig. 7.1):

11. Vanishing components of traction  and  and component of displacement u  on its end
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(7.7)

(7.8)

(7.9)

1 1 surfaces (x = 0 and x = L).  In order to satisfy this requirement the particles of the end

1surfaces of the body must be restrained from moving in the direction of the x  axis by a rigid

1wall which,  however, allows them to move freely in the plane normal to the  x  axis.

11 2 3      = J (x , x ) represents the unknown distribution of the reacting traction applied on each

1 1 end surface (x = 0 and x = L) of the prismatic body by the wall.

12. A distribution of specific body forces whose component in the direction of  the x  axis

2 3vanishes while its other components are functions of x  and x  only.

3. A distribution of surface traction on its lateral surfaces whose component in the direction

1 2 3of the x  axis vanishes while its other components are functions of x  and x  only.

When a prismatic body is subjected to the above described boundary conditions and

1specific body forces, referring to relations (7.6) and taking into account that u  is equal to

zero, we may conclude that the components of stress (7.2) satisfy the specified boundary

conditions at the end surfaces of the body as well as the boundary condition (7.5a) on its

lateral surfaces.  Consequently, the components of stress (7.2) must be  made to satisfy the

following remaining requirements:

1. The equations of equilibrium at every point inside the volume of the body.

2. The boundary conditions (7.5b) and (7.5c) at every point of the lateral surfaces of the

body.

3. When substituted into the stress–strain relations (3.51), they must give components of

strain which when substituted into the strain–displacement relations (2.16) the resulting

expressions can be integrated to give single-valued continuous components of displacement.

7.2 Formulation of the Boundary Value Problem for Computing the Stress and the
Displacement Fields in a Prismatic Body in a State of Plane Strain Using the
Airy Stress Function

We assume that the prismatic bodies under consideration are in a conservative specific

2 3body force field; that is, one whose components can be derived from a potential V(x , x ),

as follows: 

Substituting relations (7.7) into the equations of equilibrium (7.3), we obtain

The first of relations (7.8) is satisfied if the components of stress are obtained from  a

2 3function      (x , x ) such that 

The second of relations (7.8) is satified if the components of stress are obtained from  a
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(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

2 3function      (x , x ),  such that

From the first of relations (7.9) and (7.10) we obtain

This relation is satisfied if 

Substituting relations (7.12) into (7.9) and (7.10), we get

Thus, the components of stress of a prismatic body in a state of plane strain obtained from
2 3a function     (x , x ) on the basis of relations (7.13) satisfy the equations of equilibrium.

2 3The function     (x , x ) is known as the Airy stress function.

In what follows we establish the restrictions which must be imposed on the Airy stress

2 3function      (x ,x ) in order to ensure that when the components of stress are substituted into

the stress–strain relations for plane strain (3.51) give components of strain which when

substituted into the strain–displacement relations (2.16) the resulting relations can be

integrated to give a set of components of displacement.  In order to accomplish this it is

necessary that the components of strain satisfy the equations of compatibility (2.63) at every

point of the body. For simply connected bodies the satisfaction of the equations of

compatibility by the components of strain is necessary and sufficient to ensure that the

components of displacement are single-valued continuous functions of the space coordinates.

For multiply connected bodies the satisfaction of the equations of compatibility by the

components of strain is necessary and sufficient to ensure the integrability of the

strain–displacement relations (2.16).  However, the resulting components of displacement

may or may not be single-valued continuous functions of the space coordinates.  In order to

ensure that the components of displacement are single-valued continuous functions of the

space coordinates the components of strain must satisfy in addition to the equations of

compatibility certain other relations (see Section 7.3).

Referring to the compatibility equations (2.63) we see that they are all satisfied

automatically by components  of strain of the form (7.1) except the third one, which is

Substituting the stress–strain relations (3.51) into the above relation and taking into account

relations (7.2), we get
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(7.15)

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)

1where L  is the plane Laplace operator defined by2

Substituting relation (7.13) into (7.15) we obtain†

1where L  is the plane biharmonic operator defined as4

1In case the  specific body force vanishes, (V = 0), or V is a harmonic function (L V = 0)2

equation (7.17) reduces to the biharmonic equation 

2 3         2 3Thus, we have reduced the problem of finding the component of stress     (x , x ), (x , x )

     2 3and (x , x ) in  a  prismatic  body  in a state of plane strain to that of finding the function

2 3    (x , x ) which satisfies equation (7.17) or (7.19).  However, there are an infinite number

2 3of functions     (x , x ) that satisfy equation (7.17) or the biharmonic equation  (7.19).  For††

na unique solution, the function      and its gradient M     /Mx   must assume known values when

kevaluated on each curve C  [k = im or e(m = 1, 2, ..., M)] bounding the cross sections of a

nprismatic body (see Fig. 7.2).  The symbol  x  represents the coordinate normal to the curve

k n kC  [k = im or e(m = 1, 2, ..., M)].  The values of      and M    /Mx  on each curve C  [k = im or

e(m = 1, 2, ..., M)] bounding the cross sections of a prismatic body with M  internal holes are

obtained from the specified  values of the components of traction   and  

                                    

†  Relation (7.17) could be expanded in order to apply to prismatic bodies which reach a plane strain state

2 3of mechanical but not necessarily thermal equilibrium at a temperature T(x , x ).  For such bodies 
substituting the plane strain form of the stress strain relations (3.94) with (7.1) into relation (7.14) and using
relations (7.13), we get

†† Some well-known solutions of the biharmonic equation are

     (7.21)

2 3Additional solutions may be obtained by interchanging x  with x .  Any solution of the biharmonic equation
is actually the Airy stress function for some prismatic body in a state of plane strain due to some appropriate
distribution of surface traction on its lateral surfaces  and zero body forces.
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(7.22a)

(7.22b)

                                             
  

(7.23a)

 (7.23b)

         Figure 7.2  Multiply connected 
             cross section of a prismatic body.

on the lateral surfaces of the body.  Substituting relation (7.13) into relation (7.5b) and

(7.5c) and using relations (6.4) and (6.5), we find that on the lateral surfaces of the body the

2 3function     (x , x ) must satisfy the following relations:

kIntegrating relations (7.22) along the curves C  [k = im or e(m = 1, 2, ..., M)] bounding the

k kcross sections of the prismatic body (see Fig. 7.2), from a reference point O  to any point P
e im[counterclockwise on the curve  C , clockwise on the curves C  (m = 1, 2, ..., M), we obtain

and

where M  is the total number of holes of the prismatic body;     and     are the direction

     2      3 kncosines of the unit vector i  =   i  +   i  which is normal to k  curve C  [k = im or e(m =th

1, 2, ..., M)] of the cross sections of the prismatic body.  Multiplying relation (7.23a) by
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3 s 2 sdx /dx  and relation (7.23b) by dx /dx , adding the resulting products and taking into account†

relations (6.4) and (6.5), we obtain

   (7.24)

sMultiplying relation (7.24) by dx  and integrating the resulting expression, we get

(7.25)

kwhere (  is a constant of integration;  and  are the given components of

traction on the lateral surfaces of the body; V is the known potential from which the specific

body force is obtained on the basis of relations (7.7).  Relations (7.24) and (7.25) give the

n kfunctions       /dx  and    , respectively, on each of the curves C  [k = im or e(m = 1, 2, ..., M)]

bounding the cross sections of the body. The solution of equation (7.17) or of the plane

kbiharmonic equation (7.19) must satisfy relations (7.24) and (7.25) on each of the curves C
[k = im or e(m = 1, 2, ..., M)] bounding the cross sections of the body.  Thus, in the general

case of a body with M  holes, we will have 3(M + 1) unknown quantities. Namely, the

imconstants              and      [k = im or e(m = 1, 2, ..., M)] for each of the M  curves C  and for

ethe curve  C .  However, the constants             and      may be set equal to zero on the curve

eC  inasmuch as this choice does not affect the components of stress [see relations (7.13)].

On the basis of the foregoing presentation the solution of the boundary value problem

2 3          2 3          2 3for establishing the components of stress      (x , x ), (x , x ) and (x , x ) of a simply

connected prismatic body in a state of plane strain subjected to the external loads described

2 3in Section 7.1 has been reduced to that of finding the function    (x , x ) which satisfies

relation (7.17) at every point of the body as well as relations (7.24) and (7.25) on the curves

kC  [k = im or e(m = 1, 2, ..., M)] bounding the cross sections of the body.  For multiply

connected bodies the components of strain (7.1) must satisfy additional relations which we

present in the next section. These  relations could impose additional restrictions on the

2 3function     (x , x ).

Notice that for simply connected prismatic bodies, subjected only to specified tractions

2 3on their lateral surface [no body forces (V = 0)] the Airy stress function   (x , x ) is

independent of the material constants E and < [see relations (7.19), (7.24) and (7.25)].

Consequently, the components of stress                   of such bodies are independent of the

properties  of  the  material  from  which they are made; that is, the same distribution of the

components  of  stress                    exists  in  two  simply  connected   bodies  of  the same
                                      

s†  x  is the coordinate measured counterclockwise along the external boundary and clockwise along any
internal boundary of the cross section (see Fig. 7.2).
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geometry but made from different materials when subjected to the same surface tractions on

their lateral surface.  The magnitude of the component of stress     in the two prismatic

bodies, however, is different, because as can be seen from the first of relations (7.2), the

magnitude of      depends on the value of Poisson's ratio of the material from which the

prismatic body is made.

7.3 Prismatic Bodies of Multiply Connected Cross Sections in a State of Plane
Strain 

In Section 2.11 we conclude that a necessary and sufficient condition for ensuring that

an assumed strain field for a body gives single-valued, continuous components of

displacement is that the components of displacement satisfy the following relation for every

closed curve of the cross sections of the body:

    (7.26)

Using the strain–displacement relations (2.16) the derivatives of the components of

displacement in relation (7.26) may be replaced by the components of strain.  It can be

shown that a necessary and sufficient condition for ensuring that relation (7.26) is satisfied

on every closed curve of a simply connected body is that the components of strain satisfy

the equations of compatibility (2.63) at every point of the body.  Moreover, it can be shown

that in order to ensure that relation (7.26) is satisfied for every closed curve of a multiply

connected body the components of strain must satisfy certain other relations in addition to

the equations of compatibility (2.63).  Taking into account the stress–strain relations (3.50)

and relations (7.13), these additional requirements can be written as

Components of stress dependent of v Component of stress independent of v

Figure 7.3 Cross sections of multiply connected prismatic bodies in a state of plane strain (the body force
is zero).
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(7.27)

im  where C is the closed curve bounding the m  hole of the multiply connected cross sectionsth

of the body, while M  is the total number of holes of the cross sections of the body.  In

deriving relations (7.27) it has been taken into account that if the line integral of a vector

1 2 3field [i.e., û(x , x , x )] vanishes along a closed curve surrounding a hole of a multiply

connected cross section of a body, it will vanish along any other closed curve surrounding

this hole.  Thus, a necessary and sufficient condition for ensuring that the components of

displacement obtained from an assumed set of components of stress of a multiply connected

prismatic body [with M  holes] in a state of plane strain are single-valued and continuous

functions of the space coordinates, is that relations (7.27) are satisfied on M  closed curves

each of which bounds one of the M  holes of the cross sections of the body.  Relations (7.27)

are known as the Mitchell conditions .  Their derivation is rather cumbersome and for this†

s nreason it is not presented in this text.  In relations (7.27) x  and x  are curvilinear coordinates

im imwhich are measured along the curves C  (m  = 1, 2, ..., M) and normal to the curves C ,

respectively. 

On the basis of the foregoing presentation the solution of the boundary value problem

for establishing the distribution of the components of stress in a multiply connected

prismatic body with  M  holes in a state of plane strain has been reduced to that of finding a

2 3function     (x , x ) which has the following attributes:

1. It satisfies relation (7.17) or (7.19) at every point of the cross sections of the body.

2. It satisfies conditions (7.24) and (7.25) at the points of the external and internal

boundaries of the cross sections of the body.

im3. It satisfies the Mitchell conditions (7.27) on the close curves C  (m  = 1, 2, ..., M) each

of which  bounds one of the M  holes.

Notice, that the right side of relations (7.27) vanishes if the body force is zero and if the

2resultant of the traction acting on the surface of each hole is zero.  Thus, in this case     (x ,

3x ) and consequently, the components of stress      ,       and       are independent of the elastic

constants E and < (See Fig. 7.3).  However, as can be seen from the first of relation (7.2) the

component of stress       depends on the value of Poisson's ratio    .

†  Mitchell, J.H., On the direct determination of stress in an elastic solid with application to the theory of
plates, Proceedings London Mathematical Society, 31, 1899, p. 100.
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      (7.28)

(7.30)

     (7.29)

(7.31)

7.4    The Plane Strain Equations in Cylindrical Coordinates 

There are problems involving prismatic bodies which may be solved more conveniently

1by using cylindrical coordinates x , r,  . Accordingly in this section we set in polar

coordinates the equations established in cartesian coordinates in the previous sections.

11 rr 22In a plane strain state, the non-vanishing cylindrical components of stress are J , J , J ,

and      . The  relations  between  these  components  of  stress and the Airy stress  function

               may  be  established  by  first  converting  the  partial  derivatives of                 with

2 3respect to x  and x  in equation (7.13) to partial derivatives with respect to the cylindrical

coordinates r and     . Thus, using relation (2.81), we obtain

The transformation relations between the cylindrical components of stress and the cartesian

components of stress may be obtained by substituting in relation (2.48a) the direction

cosines (2.77).  That is, 
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(7.31)

(7.32)

(7.33)

(7.34)

(7.35)

          (7.36a)

           (7.36b)

Substituting relations (7.28), (7.29) and (7.30) into relations (7.31) and referring to relations

(7.2), we obtain the following expressions for the cylindrical components of stress:

Moreover, referring to first of relations (7.2) and to the first invariant of the stress tensor

(1.78), we have

1The harmonic operator L  may be expressed in terms of cylindrical coordinates, using2

relations (7.13), (7.16) and (7.32). Thus,

Consequently, referring to relations (7.18) the biharmonic operator may be written in

cylindrical coordinates as

Using relations (7.34) and (7.35), relation (7.17) becomes

when the body forces vanish relation (7.36a) reduces to

A solution of the biharmonic equation (7.36b) was derived by J.H. Mitchell .  The†(see next page)

following is a modified form  of this solution:††(see next page)
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(7.37)

The components of stress may be obtained by substituting the stress function (7.37) into

relations (7.32).  That is,

(7.38a)

(7.38b)

(7 .3 8 c )

For problems involving prismatic bodies having simply connected cross sections with

boundaries adaptable to cylindrical coordinates, we retain in the expression for      (r, 2) only

 

†  Mitchell, J.H., On the direct determination of stress in an elastic solid with application to the theory of
plates, Proceedings London Mathematical Society, 31, 1899, p. 100.
†† Timoshenko, S.P. and Goodier J.N., Theory of Elasticity, 3rd edition, McGraw-Hill, New York, 1970,
Chapter 4.
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        (a)

        (b)

        (c)

        (d)

        (e)

the terms of the general expression (7.37) which are required in order to satisfy the given

boundary conditions.  For problems involving prismatic bodies having multiply connected

cross section with boundaries adaptable to cylindrical coordinates, we must retain in the

general expression (7.37) for     (r, 2) more terms than those retained for simply connected

bodies in order to satisfy the Mitchell conditions (7.27).

In what follows we present an example involving a simply connected prismatic body.

                                                                                                                                             

Example 1  Establish the stress field in a semi-infinite (0 < r < 4) wedge subjected on its

1apex, to a line force of constant magnitude p given in units of force per unit length in the x
1 1direction as shown in Fig. a.  The particles of the end surfaces of the wedge at x  = 0 and x

1= L are restrained from moving in the x  direction by rigid walls which, however, do not

2 3inhibit their movement in planes parallel to the plane x x . Specialize the results to a semi-

infinite body subjected to a line load of constant magnitude p (kN/m) or to a distributed load

3w(x ) (kN/m ) acting on a portion of its surface.2

         Figure  a  Semi-infinite wedge subjected

         on its apex to a line load. 

1 Solution  The wedge is in a state of plane strain (u = 0). Theoretically at the apex of the

wedge the components of stress become infinite.  In reality however, the material of a small

wedge of radius R near the apex yields and the force p is distributed over a small cylindrical

surface as shown in Fig. b.  If this small wedge of radius R is isolated, a solution on the basis

of the theory of elasticity may be established for the remaining part of the wedge.  Thus,

referring to relations (2.73), the boundary conditions for the wedge are

One way to satisfy the boundary conditions (a), (b) and (e) is to set the constants in the
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(f)

  (g)

(h)

(i)

(j)

(k)

(l)

Figure b  Assumed distribution of stress
  near the apex of a semi-infinite wedge.

expression for         and         in relations (7.38) equal to zero. In this case relations (7.37)

and (7.38) reduce to 

and

Substituting relations (g) into (c) and (d), we have

Thus,

Substituting the values of the constants (j) into relations (f) and (g) and using relation (7.33),

we get

and
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(m)

(o)

(p)

(n)

Figure c  Semi-infinite body subjected to a line load.

Semi-infine body subjected to a line load

      In case      = B/2 the infinitely long wedge becomes a semi-infinite body (see Fig. c).  For

this case the solutions (k) and (l) reduce to

and

As expected from physical intuition the maximum stress occurs, along the line of action of

the applied force 

    For a vertical line load               on a semi-infinite body relations (m) and (n) reduce to

and

3Semi-infinite body subjected to distributed forces w(x )

Figure d  Semi-infinite body subjected to a distributed load.    
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(q)

(r)

  (s)

(t)

   (u)

3 3Consider a semi-infinite body subjected to distributed forces w(x )  [w(x ) is given in

units of forces per unit area] on a portion of its surface which, as shown in Fig d, extends

3  2 3from !a <  x <a, and .  The Airy stress function at any point Q(x , x ) due to

3a strip of force of width dx  may be obtained by referring to Fig d and using relation (o)./

Thus, 

Therefore,

3 o 3 2For a uniformly distributed load w(x ) = w  for !a < x  < a, the above expression for     (x ,

3x ) may be integrated to give 

This relation may be rewritten as

2 3 where the quantities r ,  r ,             are defined in Fig. e.  The components of stress for a

3  semi-infinite body subjected to a uniformly distributed load extending from !a  <  x  <  a,

and , may be obtained by substituting the expression for the Airy stress

function (s) into relations (7.13).  Thus,

Figure e  Semi-infinite body loaded with a uniformly distributed load.
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   (u)

(7.40)

(7.41a)

7.5    Plane Stress

In this section we consider prismatic bodies made from isotropic, linearly elastic

materials whose length we denote by 2b.  For each body we choose a system of axes with

1origin at the centroid of  its middle cross section while the x  axis coincides with its axis.

1Thus, its end surfaces are at x  = Kb.  We first consider bodies with no restriction on the

magnitude of b.  However, subsequently, we focus our attention on thin plates (b small).

The bodies are originally in a stress-free, strain-free state of mechanical and thermal

o .equilibrium at the uniform temperature T  Subsequently, the bodies are subjected to specific

body forces and boundary conditions and reach a second state of mechanical and thermal

oequilibrium at the uniform temperature T  wherein the three components of stress on the

1 1plane normal to the x  axis vanish, while the other components of stress are functions of x ,

2 3x , x .  That is,

(7.39)

We say that these bodies are in a state of plain stress. Notice that in this case we cannot

assume, as we have done in the case of plane strain, that the non-zero components of stress

2 3are functions only of the x  and x  coordinates. If we do so, we find that the components of

strain obtained from the components of stress (7.39) on the basis of the stress–strain

relations (3.52) for states of plane stress cannot be made to satisfy all the equations of

compatibility.

Substituting relations (7.39) into (2.73) we find that the components of traction acting

on the surfaces of the prismatic bodies under consideration must have the following form:

1Thus, in order to maintain a state of plane stress in a prismatic body the x  component of

traction acting on its lateral surfaces must vanish.  Moreover, taking into account that the

1nunit  vector  normal  to  the end surfaces of a prismatic body is i  = ±i                          and

    = 1) referring to relations (2.73) and using relations (7.39) we see that the end surfaces

1(x  = ±b) (see Fig. 7.4) of a prismatic body in a state of plane stress must be traction free

. Furthermore, in Appendix F we show that in order to maintain a state of

plane stress (7.39) in a prismatic body the specific body forces acting on its particles must

1 1be normal to its axis (B  = 0), must not be functions of its axial coordinate x  and must be

2 3obtained from a potential V(x , x ) as
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(7.41b)

(7.42a)

(7.42b)

Figure 7.4 Prismatic body in a state of plane stress subjected to a distribution of traction on its lateral

1 1surface which is symmetric with respect to the plane x  = 0 and has an x  variation.2

where the potential V  must satisfy the following relation: 

1The plane Laplace operator L  is defined by relation (7.16).2

In Appendix F we show [see relations (F.6)] that the components of stress in a prismatic

body subjected to the external forces described above can be obtained from a plane stress

1 2 3function X(x , x , x ) on the basis of the following relations:

For some problems it is convenient to use cylindrical coordinates.  For such problems

referring to relations (7.13) and (7.32), relations (7.42a) can be written in cylindrical

coordinates as 

1 2 3In Appendix F we show [see relation (F.38)] that the function X(x , x , x ) is obtained from

the following relation:

(7.43)

2 1 2 1 2 3where referring to relations (F.36) and (F.37) the functions Y (x , x ) and Y (x , x ) satisfy at
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(7.44)

(7.45)

every point of the body the following relations:

and

1The plane biharmonic operator L  is defined by relation (7.18).4

Relation (7.43) has been established by requiring that the components of stress,  obtained

1 2 3from the plane stress function X(x , x , x ) on the basis of relation (7.42),  when substituted

into the stress–strain relations for plane stress (3.52) give components of strain which satisfy

the equations of compatibility (2.63).  For simply connected bodies the satisfaction of the

equations of compatibility is necessary and sufficient to ensure that the strain–displacement

relations (2.16) can be integrated to yield single-valued continuous components of

displacement.  For multiply connected bodies the satisfaction of the equations of

compatibility is necessary and sufficient to ensure only that the strain–displacement relations

(2.16) can be integrated.  However, the resulting components of displacement may or may

not be single-valued continuous functions of the space coordinates.  In order to ensure that

the components of displacement obtained from a set of components of strain by integrating

the strain–displacement relations are single-valued continuous functions of the space

1 2 3coordinates, additional restrictions must be imposed on the stress function X(x , x , x ).

These restrictions as well as the equations of compatibility result from the requirement that

the components of displacement must satisfy relation (7.26) around every closed curve on

the cross sections of the body.

From relations (7.43), (7.42) and (7.40) we see that in order to maintain a state of plane

stress in a simply connected prismatic body the components of stress and, consequently, the

specified components of traction ( ) acting on its lateral surfaces must be the sum of

1 1two parts — an antisymmetric in x  and a symmetric in x .  The first is a linear function of

1 1 1x  while the second has an x  variation (see Fig. 7.4).  If they do, the stress function X(x ,2

2 3x , x ) obtained from relations (7.43) when substituted into relations (7.42) gives the exact
components of stress in the body under consideration.  However, there are not many cases

of practical interest which involve simply connected prismatic bodies subjected to a

distribution of the components of traction on their lateral surface which is required in order

to maintain a state of plane stress in them.  Therefore,  the plane stress solution for a general

thick simply connected prismatic body is of little practical value.  Nevertheless, if the
thickness of a prismatic body is small compared to its other dimensions, on the basis of the
principle of Saint Venant, we may conclude that for any given distribution of traction on its
lateral surfaces which is statically equivalent to that required for a state of plane stress, the
stress distribution at the parts of the body away from its lateral surfaces will approach a

1 2 3state of plane stress.  Hence, the function X (x , x , x ) given by relation (7.43) can be used

to obtain the components of stress acting on particles sufficiently removed from the lateral

surface of simply connected thin prismatic bodies made from isotropic, linearly elastic

materials and subjected to the following forces:

11. A distribution of specific body forces exists, whose component in the direction of the x
2 3axis vanishes, while its other components are only functions of x  and x  obtained from a

2 3potential V(x , x ) on the basis of relation (7.41a).  The potential satisfies relation (7.41b).

2. A distribution of traction occurs on its lateral surface which is statically equivalent to the

distribution required in order to maintain the body in a state of plane stress.

13. Vanishing components of traction occur on their end surfaces x  = ±b.
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(7.46)

(7.48)

(7.49)

(7.50)

7.6   Simply  Connected  Thin  Prismatic  Bodies  (Plates)  in  a State of Plane Stress

1      Subjected on Their Lateral Surface to Symmetric in x  Components of Traction  

Consider a simply connected (without holes) thin prismatic body (plate), subjected to the

following forces: 

2 2 3 2 3 2 3 31. A distribution of components of specific body forces B  = B (x , x )i  + B (x , x )i  is

2 3obtained from a potential V(x , x ) on the basis of relations (7.41a).  The potential satisfies

relation (7.41b).

2. A distribution of transverse components of traction                                                      on

1its lateral surface, which are symmetric with respect to the middle plane (x  = 0) of the plate.

13. Vanishing components of traction on the end surfaces (x  = ±b) of the plate.

1 2 3For this loading the function Y (x , x ) must vanish and relation (7.43) reduces to

2 2 3In what  follows  we  replace  the function Y (x , x ) in relation (7.46) with the function

2 3 1 1 2 3   (x , x ) which represents the average value in x  of the function X(x , x , x ). We do this

2 3because as we will show in the next section the function     (x , x ) can be established from

2 3the plane strain function     (x , x ) for an auxiliary plate. Using relation (7.46), we get

(7.47)

Taking the Laplacian of both sides of relation (7.47) and using relation (7.44), we obtain

Taking the Laplacian of both sides of relation (7.48) and using relation (7.44), we have†

1 2 3Thus, if V vanishes or L V = 0 the function     (x , x ) is biharmonic.  Using relation (7.48)2

1 2to eliminate L Y  from relation (7.47), we obtain2

Substituting the above relation into (7.46) and using relation (7.48), we get
                                   

†  Relation (7.49) could be written to include the effect of temperature.  Using the plane stress form of the
stress–strain relations (2.95) we obtain
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      (7.51)

(7.52)

(7.52a)

On the basis of the foregoing presentation, the stress distribution of a thin prismatic

simply connected body (plate), subjected to the external forces described at the beginning

of this section, may be established by adhering to the following steps:

2 3STEP 1 We establish the function      (x , x ) which satisfies the differential equations (7.49)

2 3at every point of the body.  The resulting expression  for the function    (x , x ) involves

unknown constants.

2 3STEP 2 We substitute the function    (x , x ) established in step 1 into relation (7.51) to

2 1 2 3obtain the stress function X (x , x , x ).

2 1 2 3STEP 3 We substitute the stress function X (x , x , x ) established in step 2 into relations

(7.42) to obtain the components of stress acting on the particles of the body.

STEP 4 We establish the components of traction acting on the lateral surface of the body by

substituting the components of stress established in step 3 in the traction–stress relations

1(7.40).  The resulting expressions have an x  variation and involve the  unknown constants2

introduced in step 1.  We evaluate these constants by requiring that at the lateral surface of

the body the computed components of traction are statically equivalent to the given

components of traction.

   This approach yields reasonably accurate components of stress for particles sufficiently

removed from the lateral boundary of thin plates.  The thinner the plate the better the

accuracy of the results.

2 37.6.1 Computation of the Plane Stress Function    (x ,  x ) for a Thin Plate Subjected
1to Symmetric in x  Components of Traction on Its Lateral Boundary from the

2 3Plane Strain Function    (x , x ) for an Auxiliary Plate 

Consider a thin prismatic body (plate) made from an isotropic, linearly elastic material

of modulus of elasticity  E  and Poisson's ratio     subjected  to  the  loading  described  in

Section 7.6. Moreover, consider an auxiliary thin plate having the same geometry as the

actual plate and made from an isotropic linearly elastic material with modulus of elasticity†

E and Poison’s ratio given by the following relation:

Assume that the auxiliary plate is in a state of plain strain due to the following external
                                    

aux†  If the affect of temperature was included, the modulus of elasticity  E  of the auxiliary plate should be
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(7.53)

(7.55)

forces, acting on it:

2 2 31. A distribution of components of specific body force B (x , x ) and  equal  to that

to which the actual thin plate is subjected.

2. Components of traction  on its lateral surface equal to the average

1in x   of  the  specified components of traction                                                       acting on

the lateral surface of the actual plate.

1 13.  The end surfaces of the plate (x  = ±b) are restrained from moving in the x  direction.

2 3However, they can move freely in the x  and x  directions.  That is, the components of

1traction and vanish on the end surfaces (x  = ±b) of the  auxiliary plate. 

For the auxiliary plate under consideration, using relation (7.52), relation (7.17) becomes

2 3where V(x , x ) is the potential from which the components of specific body force acting on

the real plate are obtained on the basis of relation (7.41a).  Thus, the Airy stress function

2 3         (x , x ) for the auxiliary plate must satisfy relation (7.53) at every point of the plate and

when substituted into relation (7.21) must give components of traction

1 which are the average in x  of the components of traction acting

on the actual plate.  The average components of traction   may

be expressed as 

    (7.54)

Notice that the same average transverse components of traction given by relations (7.54) are

obtained from any distribution of transverse components of traction of the form

 [ ], and [ ] provided that  and 

satisfy the following relations:

However, for thin prismatic bodies (plates) on the basis of the principle of Saint Venant the

effect  of  the  components  of  traction  , and   on the components of stress acting on
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(7.56a)

(7.56b)

(7.57)

Figure 7.5  Thin plate subjected to  transverse components of traction, which are  symmetric  with respect

1to the plane x  = 0. 

particles located at points sufficiently away from the lateral surface of the plates is

negligible.

Using relation (7.47), relations (7.54) can be rewritten as

Comparing relation (7.53) with (7.49) and relation (7.21) with (7.56) we see that 

1 2Thus, the function    (x , x ) defined by relation (7.47) for a simply connected thin

prismatic plate subjected to the external forces described at the beginning of Section 7.6 is

2 3equal to the Airy stress function     (x , x ) for the auxiliary prismatic plate under

consideration. Notice that if the specific body force distribution acting on a simply

connected body is negligible, the auxiliary body could be made from the same material as

the actual body.

In the case of multiply connected thin prismatic plates in a state of plane stress,

1 2 3 2 3additional restrictions must be imposed on the functions X(x , x , x ) and    (x , x ) by the

requirement (7.26).  In Section 7.3 we have noted that the additional restrictions which this

requirement imposes on the Airy stress function for plane strain is that this function must

satisfy the Mitchell conditions (7.27).  Thus, if the elastic constants of the auxiliary  body

under consideration could be chosen so that the stress–strain relations for plane stress of the

actual prismatic body are identical to the stress–strain relations for plane strain of the

2 3auxiliary prismatic body, the function     (x ,x ) will satisfy relations (7.27) and consequently,

2 3it will be equal to the plane strain  function         (x , x )  for the auxiliary body. However,

this is not possible.   

2 3   It can be shown that for a multiply connected body the function     (x , x ) obtained from

2 3the Airy  stress  function         (x , x )  of  the  auxiliary body on the basis of relation (7.57)
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1 2 3when substituted into relation (7.51) gives a function X(x , x , x ) which when substituted

into relations (7.42) gives components of stress which on the basis of the stress–strain

relation for plane stress (3.52) give components of strain which do not satisfy relation (7.26).

2 3Thus, for a multiply connected thin plate the function      (x , x ) cannot be equal to the Airy
2 3stress function     (x , x ) for the corresponding  auxi liary plate described above.

Nevertheless, for very thin multiply connected plates one could disregard this discrepancy
and obtain an approximate solution which does not satisfy all the compatibility equations

2 3 2 3by taking the function     (x , x ) to be equal to the Airy stress function         (x , x ) for the
auxiliary plate.
    On the basis of the afore going presentation the components of stress of thin prismatic
bodies (plates) subjected to the external forces described at the beginning of Section 7.6 can
be established by adhering to the following steps: 

2 3 2 3STEP 1 We first establish the Airy stress function         (x , x ) =      (x , x ) for an auxiliary

prismatic body in a state of plane strain.  The auxiliary body has the same geometry as the

1real body and is subjected on its lateral surface to traction which is constant along the x
direction and is equal in magnitude to the average value of the specified traction

  acting on the lateral surface of the actual body.  Moreover, the

1auxiliary body is subjected to the distribution of traction on its end surfaces x  = ±b which

is required in order to maintain it in a state of plane strain.  The elastic constant         of the

auxiliary prismatic body is obtained from that of the real body on the basis of relation (7.52).

If the specific body force distribution acting on a simply connected body is negligible, the

auxiliary body could be made of the same material as the actual body.

2 3 2 3STEP 2 Once the Airy strain  function        (x , x ) =     (x ,x ) for plane strain of the

1 2 3auxiliary body is obtained the stress function X(x , x , x ) for the actual thin prismatic body

may be established from relation (7.51) and substituted into relations (7.42) to give the stress

field of the body.

This method yields the exact solution, within the limitations of the linear theory of

elasticity, for simply connected thin prismatic bodies (plates) subjected to a symmetric with

1respect to the plane x  = 0 distribution of traction on their lateral surface which  is equal to

1Here  is a symmetric with respect to the plane x  = 0 distribution

1of traction which when added to the average, in x  of the actual distribution of the

1components of traction  makes it have the x  variation along the2

thickness of the plate needed for the plane stress solution.  However, the distribution of the

components of traction   satisfies relation (7.55), and thus, on the

basis of the principle of Saint Vernant for thin prismatic plates its effect is negligible at

points away from their lateral surface.  This method can be used only for very thin multiply

connected prismatic plates, keeping in mind that  for such plates the results do not satisfy

relation (7.26).
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(7.58)

7.7 Two-Dimensional or Generalized Plane Stress

Consider a very thin prismatic plate of thickness 2b, specific body forces and surface

tractions described at the beginning of Section 7.6.  An approximation to the components

1of stress of such a plate is their average value in x .  Thus, for such a plate we use the

1 1 2 3average value in x  of the stress function X(x , x , x ) which we denote by .  That

is, referring to relation (7.51) and (7.57), we have

1This average in x  stress function when substituted into relation (7.42a) gives an

approximation to the components of stress which when substituted into the stress–strain

relations (3.52) for an isotropic, linearly elastic body in a state of plane stress give

components of strain which satisfy the fourth and fifth of the compatibility relations but in

general they do not satisfy the second, third and sixth of the compatibility relations (2.65).

In Appendix F we show that in order that the components of strain obtained from the

1, 2, 3stress function X(x x x ) satisfy the compatibility relations the body force must be

2 3obtainable from a potential V(x , x ) which satisfies relation (7.41b).  Inasmuch as the two-

dimensional or generalized plane stress solution is an approximation which does not satisfy

the second, third and sixth compatibility relations, it is anticipated that if we remove the

restriction that the components of the specific body force are derivable from a potential, the

accuracy of the approximation will not deteriorate.

Thus, in order to establish on the basis of the two-dimensional or generalized plane stress

approximation, the stress field in very thin simply or multiply connected prismatic bodies

(plates) subjected to the external forces described at the beginning of  Section 7.6, without

the restriction that the components of the specific body force are derivable from a potential,

we adhere to the following steps:

2 3 2 3STEP 1 We first establish the Airy stress function          (x , x ) =       (x , x ) for an auxiliary

prismatic body in a state of plane strain.  The auxiliary body (plate) has the same geometry

as the real body (plate) and is subjected to the same body forces as the actual body (plate)

1while on its lateral surfaces is subjected to traction which is constant along the x  direction

and equal in magnitude to the average value of the specified traction

 acting on the lateral surfaces of the actual body.  The

elastic constant          of the auxiliary body (plate) is obtained from the Poisson ratio of the

real body  (plate) on the basis of relation (7.52).

2 3 2 3STEP 2 Once the plane strain function         (x , x ) =     (x , x ) is established the stress

2 3function (x , x ) is obtained from relation (7.58) and substituted into relations (7.42a) or

1(7.42b) to give the average values in x  of the components of stress acting on the thin plate

under consideration.  

     The components of stress of thin plates obtained on the basis of the two-dimensional or

generalized plane stress approximation represent a good approximation of the actual

components of stress acting on particles sufficiently removed from their lateral surfaces.

Moreover, their accuracy increases as the thickness of the plate decreases.

In what follows we present two examples.

                                                                                                                                             

www.EngineeringEBooksPdf.com



   Plane Strain and Plane Stress Problems in Elasticity296

(a)

Example 2  Establish an approximation to the stress distribution in a cantilever prismatic

beam of a very narrow rectangular cross section (small thickness to depth ratio) subjected

1at its free end (x  = L) to a distribution of traction which is statically equivalent to a force

1 3 3 3whose line of action lies in the x x  plane and it is equal to P i   [see Fig (a)]. The dimensions

of the cross section of the beam are small compared to its length. The free-body diagram of

the beam is shown in Fig. a.

The boundary conditions of the beam under consideration do not correspond to those

21required  to maintain a state of plane strain in it.  In order that a state of plane strain (e  =

23 22e  = e  = 0) exists in the beam it must be subjected to a distribution of normal component

2of traction on its sides  x  = ±b of the magnitude required to render the component of

2 1 2 3displacement û (x , x , x ) equal to zero. However, since the cross sectional dimensions of

the beam are small compared to its length and its cross section is narrow b << h, we can

obtain an approximate solution by considering the beam as being in a state of  plane stress.

               Figure a Cantilever beam of rectangular cross

            section.

                                                                                                                                             

Solution

Part a  State of plane strain

In this part we assume that the beam is in a state of plane strain.  That is, we assume that

1 1it is subjected in addition to the given actions on its end surfaces (x  = 0 and x  = L)  to the

2distribution of traction on its lateral surfaces x  = +b which is required in order to render the

2 1 2 3component of displacement u (x , x , x ) equal to zero. It can be shown  that the Airy stress†

function for plane strain for the beam under consideration is

2 2Where I  is the moment of inertia of the cross sections of the beam about the x  axis.

Substituting relation (a) into (7.13) and taking into account relation (7.2) with subscript 1

replaced by 2 and 2 by 1, we get
                                    

† A systematic procedure for determining Airy stress functions has been presented by  Neou, C.Y., Direct
method  for determining airy stress functions, Journal of Applied Mechanics, 24 Sept. 1957. Relation (a)
has been established using that procedure.
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     (b)

(c)

  (d)

It can be shown that this distribution of the components of stress has the following attributes

1. It satisfies the equations of equilibrium (2.69).

2. It when substituted into the stress–strain relations for an isotropic, linearly elastic material,

(3.48) gives components of strain which satisfy the compatibility relations.

33. It satisfies the boundary conditions at x  = ±h.

14. It gives a distribution of the components of traction on the end surface x  = L of the beam

3which is statically equivalent to the force P .

15. It gives a distribution of the components of traction on the end surface x  = 0 of the beam

3 2 3which is statically equivalent to the force (!P ) and the moment (M  = !P L) which are

required for the equilibrium of the beam.

2 6. It gives the following components of traction on any plane  normal to the x axis

:

This distribution of traction is shown in the Fig. b. It is required in order to render the

2displacement component û  equal to zero. It is statically equivalent to the following

1 1 2distributed moment m  about the x  axis acting on each surface x  = ±b of the beam

Figure b  Distribution of the components of traction required for the beam to be in a state of plane.
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(e)

       (f)

  (g)

Part b  State of plane stress

In this part we establish the components of stress corresponding to a state of plane stress

1in the beam. In order to accomplish this we first substitute the plane strain function (x ,

3 1 3x ) =    (x , x ) given by relation (a) into relation (7.51) to obtain the plane stress function

1 2 3X(x , x , x ). From relation (a) we have

Substituting relations (a) and (e) in (7.51), we obtain

The components of stress corresponding to a state of plane stress of the beam are obtained

by substituting relation (f) into (7.42a).  That is,

 

1On the surface x  = L this stress distribution gives a distribution of the component of traction

3 1 which is statically equivalent to the force P , while on the surface x  = 0 gives a

distribution of the components of traction  which is statically equivalent to the 

Figure c  Distribution of the component of traction 

 required for the beam to be in a state of plane stress.
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(h)

  (i)

(j)

(k)

3 2 3force !P  and the moment M  = !P L.  Thus, the stress distribution (g) satisfies the given

1 1boundary conditions on the end surfaces of the beam x  = 0 and x  = L. However, as

3expected on the surfaces x  = ±h he stress distribution (g) does not

yield the specified zero traction (            ) but rather the traction             where

The distribution of the component of traction  is shown in Fig. c.  The resultant force and

moment per unit length of the beam of the component of traction  are

On the basis of the Saint Venant principle, if b is small compared to h, the affect of the

3component of traction  at particles away from the boundary x  = ±h will be negligible, and

the plane stress solution will give accurate results at these particles. That is, the plane stress

solution is valid for beams whose cross sectional dimensions are small as compared to their

length but also whose cross section is narrow (b << h).

For very narrow beams the two-dimensional plane stress theory, also known as

generalized plane stress theory, may be employed.  In this theory the components  of stress

1of the beam are approximated by their average in x  value and the stress function reduces to

Substituting the stress function (j) into relations (7.42a), we get

2The value  is the average in x  of the value of  . Notice that the difference between

13solutions (k) and (g) is only in the expression for the shearing component of stress J .

Solution (k) does not satisfy all the compatibility equations but it does satisfy all the

boundary conditions of the beam. It is a satisfactory approximation for beams with large h/b
ratios.  The stress distribution (k) is the same as that obtained on the basis of the classical

theory of mechanics of materials for beams (see Example 7 Section 9.5). In general when

the beam is subjected to a different loading, the results obtained on the basis of the two-

dimensional or generalized plane stress theory may not be identical to those obtained on the

basis of the classical theory of mechanics of materials for beams.

3The maximum value of   is obtained for x  = 0. From relations (g), we get
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(l)

(m)

(n)

and

where A is the area of the cross section of the beam. From solution (k) we obtain

Table a Comparison of the exact value of the shearing component of stress with results obtained from the
plane stress theory. 

b/h   0.5   1.0   2.0

2  3 K (x = 0, x = 0)   0.983   0.933   0.733

2  3  (x = b x = 0)   1.034   1.133  1.533

  

    0

 

 !0.75%

 

 !14.2%

   

    0

 

  0.60%    10%

 

  !0.7% 

 

-6.2% !17.7%
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   28%
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In Table a we tabulate the values of K and  for various values of the ratio b/h for = 1/4.

Moreover in this table we tabulate the percent, differences of the values of the component

of stress       given by the third of relations (g) and the third of relations (k) from its exact

value   obtained on the basis of the three-dimensional theory of elasticity.  It is apparent†

that the plane stress solution based on the assumption that the non-vanishing components of

1 2 3stress are functions of x , x , x  gives very accurate results for long beams having a thickness

to depth ratio of up to b/h = 1.  For this ratio the two-dimensional plane stress theory, based

1on the assumption that the non-vanishing components of stress are only functions of x  and

3 2 3x , gives a shearing component of stress  which at x  = 0, x  = 0 is 11.2% larger than that

computed on the basis of the exact theory of elasticity. Thus, it is on the safe side.

                                                                                                                                              

                                                                                                                                             

Example 3  Establish the stress distribution in a large very thin plate of constant thickness

2b with a small traction-free circular hole of radius R.  The plate is subjected to a uniform

axial tension p(kN/m ) as shown in Fig. a. The effect of body forces is negligible.2

Figure a  Thin large plate with a small circular hole.

                                                                                                                                              

Solution  Inasmuch as the plate is very thin we assume that the distribution of stress in it can

be approximated to that obtained on the basis of the approximate two-dimensional plane

stress theory.  Thus, in order to determine the approximate stress distribution in the plate,

we first establish the Airy stress function for an auxiliary plate in a state of plane strain

having the same geometry as the actual plate and made from the same material from which

the actual plate is made.  The plate is subjected on its lateral surface to the same traction as

1the real plate and on its end surface x  = ±b  to the distribution of traction required in order

to maintain in it a state of plane strain.  Since the hole is circular, it is convenient to use

cylindrical coordinates.  If there was no hole in the auxiliary plate, the stress distribution

would have been equal to 

 = p     (a)

By inspection we can see that this stress distribution can be obtained from the following

Airy stress function:
                                   

† See Timoshenko, I.S. and Goodier J.N., Theory of Elasticity, McGraw-Hill, New York, 3rd edition, 1970,
p. 364.  The exact solution is valid for beams whose cross sectional dimensions are small compared to their
length. Their cross sections could have any  b/h  ratio. 
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(b)

(c)

(d)

(f)

(e)

     (h)

     (i)

In cylindrical coordinates the stress function (b) may be written as

Substituting the above relation into relations (7.32), we obtain

When a small hole of radius R exists in a very large plate subjected to tension, the stress

distribution far away from the hole will be the same as that in a plate without the hole.  Thus,

The boundary conditions of the plate at the hole are

The Airy stress function (r,     ) for this problem could have the following form:

1 2        (r,    ) = f (r) + f (r) cos 2 (g)

Substituting relation (g) into the biharmonic equation (7.36b), we obtain

or

Since the above relation must be satisfied for all values of    , we have
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      (j)

      (k)

(n)

(o)

After four successive integrations of equation (j), we obtain

1 1 2 3 4 f  = B ln r + B r ln r + B r  + B (l)2 2

i where B (i = 1, 2, 3, 4) are constants.  Equation (k) is a linear ordinary differential equation

with variable coefficients and may be reduced to a linear differential equation with constant

coefficients by introducing the variable    defined by

   = ln r (m)

From this definition, we have

Substituting the above relations into equation (k) and simplifying, we get

This is a linear differential equation with constant coefficients and may be written in the

form

2D  (D ! 4D  ! 4D  + 16)f  = 0 (p)3 2

The roots of its auxiliary equation are

D  = 0        D = ±2       D  = 4 (q)

Thus, the solution of the differential equation (o) is
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(r)

      (s)

            (t)

(v)

The right side of the above relation has been obtained by recalling that on the basis of the

definition of the natural logarithm of a number from relation (m) we have e  = r. Substituting>

relation (l) and (r) into relation (g), we obtain

1From the function         (r,   )  the  function X(x , r,    )  may  be  established  using  relation

(7.57) and (7.51).  The components of stress for the plane stress problem may be established

1by substituting the function X(x , r,    )  in  relations (7.42a).  However,  since we have

assumed that  the plate is very thin, the components of stress may be obtained using the

function   X(r,     )  defined  by relation  (7.58).  Thus,  substituting the Airy stress function

        (r,    )  given  by  relation  (s)  into  relation  (7.58)  and  the resulting expression into

relations (7.42a), we have

Notice, however, that the components of stress                      must remain finite as 

r 6 4.  Thus,

2 3 B  = C  = 0 (u)

The remaining constants may be evaluated from the given boundary conditions (e) and (f).

That is, from the requirement that as r 6 4, the components of stress given by relations (t)

must be  equal to the corresponding components of stress given by relations (e). Thus, we

obtain

Moreover, from the requirement that at r = R  the components of stress                 must

vanish, we get

www.EngineeringEBooksPdf.com



Two-Dimensional or Generalized Plane Stress 305

(w)

(x)

(y)

        Figure b Distribution of the components
        of stress on the plane normal to the axis

2        of the plate at x =0.

Substituting relations (v) into the above, we obtain

Substituting the values of the constants (u), (v) and (w) into relations (s) and (t), we have

The maximum values of the components of stress                    occur at     = ±B/2  and  are

equal to

These results are plotted in Fig b.  Notice that as r increases      decreases rapidly; it

approaches asymptotically the value       = p.  Thus, stress concentration occurs only very

close to the boundary of the hole. Moreover,        decreases to zero as r approaches R.  The
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(7.59)

(7.60)

(7.61)

(7.62)

maximum value of        occurs at     = ±B/2  r = R.  From relations (y)  we get

max      = 0          = 0   (      ) = 3p (z)

At the boundary of the hole (r=R) relations (x) give

The stress distribution (y) should not be used to determine the maximum value of the

2 component of stress        =         acting on the cross section at x = 0 (    = ±B/2) of flat plates

of finite width with a hole because it can differ considerably from the actual maximum value

  of        =       except when the ratio of the width D  of the plate to the radius R of the hole is

large (D/R > 25).

                                                                                                                                              

7.8 Prismatic Members in a State of Axisymmetric Plane Strain or Plane Stress

In this section we consider a class of problems involving prismatic bodies in a state of

plane strain or plane stress which have the following attributes:

1. The axial and the tangential component of the specific body force vanishes, while the

radial component is a function only of the radial coordinate and is obtained from a potential

V(r) as follows:

2. The distribution of the components of traction on the lateral surfaces of these bodies is

such that the components of stress and displacement are not functions of the coordinate 2.

We say that these bodies are in a state of axisymmetric plane strain or plane stress.  Notice

1that a body does have to be symmetric with respect to the x  axis in order to be in a state of

axisymmetric plane strain or plane stress.  For example, consider the prismatic body of

square cross section subjected to the distribution of traction 

shown in Fig. 7.6. It can shown that the stress distribution in this body is

The transformation matrix which transforms the cartesian coordinates of a point to

cylindrical is given by relations (2.78).  The cylindrical components of stress are obtained

by substituting relation (2.78) and (7.60) into the transformation relation (2.4a).  That is,

Consequently, the components of stress of the prismatic body of Fig. 7.6 are not functions

of the coordinate   .

Referring to relations (7.32) we see that inasmuch as the components of stress are not

functions of the coordinate     the Airy stress function               must have the following form:
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                (7.63c)

           (7.63d)

                (7.63e)

                  (7.64)

(7.65a)

(7.65b)

(7.65c)

(7.65d)

(7.65e)

               (7.63a)

               (7.63b)

1Figure 7.6  Non-symmetric with respect to the x  axis
                 prismatic body whose particles are subjected to

components of stress which are symmetric with respect

1to x  axis.

7.8.1 Axisymmetric Plane Strain

Referring to relations (7.2), (7.17), (7.32), (7.62) and (2.83), for a prismatic body in a

state of axisymmetric plane strain, we obtain

and
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(7.66)

(7.67)

(7.68)

Referring to relations (7.30) and (7.34), relation (7.64) may be rewritten as

or

Multiplying both sides of relation (7.66) by r and integrating, we get

Dividing both side of the above relation by r and integrating, we obtain

Multiplying both sides of the above relation by r and integrating and dividing by r, we have

owhere r  is some fixed arbitrary point on the cross section of the body. Integrating relation

(7.68), we obtain

(7.69)

The constant of integration is omitted inasmuch as it does not contribute to the components

of stress which are derivatives of the function     (r). Using relation (7.68) relation (7.67)

gives 

(7.70)

Substituting relations (7.68) and (7.70) into (7.63b) to (7.63e),we get the following formulas

for the components of stress in prismatic bodies in a state of axisymmetric plain strain:
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(7.71)

(7.72)

(7.73a)

(7.73b)

(7.73c)

(7.74)

  (7.75)

(7.76)

(7.77)

(7.78)

Moreover, substituting relations (7.71) into (7.33), we obtain

In what follows we compute the components of displacement of prismatic thin plates in

a state of axisymmetric plane strain.  The stress–strain relations for plane strain (3.51) are

Substituting relation (7.73b) into (7.65b), we get

Substituting the first two of relations (7.71) into (7.74), we obtain

Substituting the first of relations (7.73c) into (7.65c) and using the third of relations (7.71),

we have

Integrating relation (7.76), we get

The first term on the right side of the above relation represents rigid-body rotation of the

1body about the x  axis which we eliminate by setting C = 0.  Thus,

o 1 2 3For simply connected (no holes) prismatic bodies the constants C , C , C , C  are

evaluated by requiring that the components of stress and displacement (7.71), (7.75) and

(7.78) satisfy the following conditions:

1. They are finite at r = 0.  Referring to relations (7.71), (7.75) and (7.78), we see that in

order that this requirement is satisfied we must set
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(7.79)

(7.80)

(7.81)

(7.82)

(7.84)

(7.85)

2. They satisfy the specified boundary conditions on their lateral surface.

o 1 2 3For multiply connected bodies the constants C , C , C , C  are evaluated by requiring that

the components of stress and displacement satisfy the following conditions:

1. The given boundary conditions are on their lateral surfaces.

2. The Mitchell compatibility equations (7.27) are on the boundary of the holes.  For bodies

nwith  one  circular  hole  of  radius  R  on  the  boundary   of  the  hole  we have x  = !r and

sx =r    (see Fig. 7.7).  Thus,

Moreover, referring to relation (7.34) and using relations (7.68) and (7.69), we have

Thus,

Substituting relations (7.82) into the Mitchell compatibility equations (7.27), we get

(7.83)

The transformation matrix which transforms the cartesian coordinates of a point to

cylindrical is given by relation (2.78).  Using this relation, from relation (2.80a) we have

Substituting relations (7.84) into (7.83) and taking into account that for axisymmetric plane

strain the components of traction  and  are not functions of      we find that the last two

of relations (7.83) are automatically satisfied while the first is satisfied if
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(a)

Figure 7.7  Circular internal boundary.

                                                                                                                                             

Example 4  Establish the stress and the displacement fields in a hollow cylinder of internal

i e i eradius R  and external radius R  subjected to internal pressure p  and to external pressure p
(see Fig. a).  Assume that the effect of body forces is negligible.  The ends of the cylinder

are restrained only against axial movement.  That is, the boundary conditions at the ends of

1 1the cylinder x  = 0 and x  = L are

Figure a  Geometry and loading of the cylinder.

Solution  The cylinder under consideration is in a state of axisymmetric plane strain.  That

is, its components of stress and displacement are not functions of    and are given by

relations (7.71), (7.72), (7.75) and (7.78).  Thus, taking into account relation (7.85), we have
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                                (c)

(d)

radial component             tangential component

e iFigure b Variation of the components of stress along the radial direction when p  = 0 and p  � 0.

(b)

This solution satisfies the boundary conditions (a) without imposing any restrictions on the

o 2 3values of the constants C , C  and C .  These constants are evaluated by requiring that the

nstress distribution (b) satisfies the following boundary conditions on the lateral surfaces i
= ±r/r (                                     ) of the cylinder

The first four of relations (c) are satisfied by the components of stress (b) without imposing

o 2 3any restrictions on the constants C , C  and C .  Substituting the second of  relations (b) into

the last two of relation (c), we have
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(e)

            (f)

Solving relations (d), we obtain

Substituting relations (e) into (b), we get

Notice that on the basis of the Saint Venant principle, the solution is valid, at points away

r 2 1 1 1from the ends of a fixed at both ends cylinder (u$  = u$  = u$  = 0 at x  = 0 and x  = L) provided

that the dimensions of the cross section of the cylinder are small as compared to its length.

In this case, the component of traction  acting on the end surfaces of the cylinder will not

vanish.  However, due to the symmetry of the geometry of the cylinder, of its loading and

of its constraints, the resultant of this component of traction will vanish.  That is, the

1 1distribution of the component of traction  at x  = 0 and x  = L required to render the

rdisplacement component u  equal to zero is statically equivalent to zero component of

traction  (  = 0).

From the third of relations (f) we see that when a cylinder is subjected only to internal

or only to external pressure, the maximum circumferential stress occurs at the particles of

iits innermost surface r = R .  In Fig. b we plot the distribution of the circumferential

ecomponent       of stress acting on a plane containing the axis of the cylinder, when p  = 0

iand p  � 0.  Moreover, we plot the variation of the radial component       of stress along the

e iradial direction when p  = 0 and p  � 0.

Comments

Thick-walled cylinders are used extensively as pressure vessels, pipes, cannon tubes, etc.

Such cylinders are usually subjected to one or more of the following loads:

(a) Cylinder with flat caps (b) Cylinder with semispherical caps

Figure c Thick-walled cylinders with end caps.
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(7.86)

(7.87)

(7.88)

(7.89)

1. Uniform internal pressure

2. Uniform external pressure

3. Axial centroidal forces

4. Change of temperature

If the change of temperature of a cylinder is either uniform or only a function of the

radial coordinate, its displacement and stress fields are symmetric with respect to its axis.

Usually cylindrical vessels are provided with end caps (see Fig. c) or they are fixed on

rigid supports.  In these cases in the vicinity of their end caps or of their supports the

1components of displacement and stress are functions of the axial coordinate x .  If the

external radius of a cylinder is small compared to its length, the dependence on its axial

coordinate of the components of displacement and stress of particles sufficiently removed

from its ends is negligible.  The components of displacement and stress of such particles

may be approximated by the formulas obtained in this example.

                                                                                                                                             

7.8.2  Axisymmetric Plane Stress

In this section, we consider a very thin prismatic plate in a state of axisymmetric plane

stress.  We choose a system of axes with the origin at the centroid of the middle cross

1 1 section of this plate and the x  axis along its axis.  Thus, its end surfaces are x = ±b.  In

1 2 3order to establish the stress function X(x , x , x ) for plane stress we consider an auxiliary

plate having the same geometry as the actual plate, being in a state of plane strain made from

an isotropic, linearly elastic material whose Poisson's ratio is obtained from that of the actual

plate on the basis of relation (7.52).  As shown in Section 7.8, the Airy stress function 

                 or the auxiliary plate is equal to the function               for the real plate.  Referring

to relation (7.62), we have

where  the  function          satisfies  relations  (7.64)  with          replacing       Substituting

relation (7.86) into (7.34), using relations (7.68) and (7.70) replacing     by        in the

resulting relations and using relation (7.52), we get

Substituting relation (7.87) and (7.86) into (7.51), and noting that  , we have

where

Substituting relation (7.88) into (7.42a), replacing     by          and eliminating the derivatives

of        from the resulting relations using relations (7.68) to (7.70) and eliminating        

using relation (7.52), we obtain
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(7.90)

  (7.92)

(7.93a)

1 2 3For thin prismatic simply connected plates the constants C , C  and C  are evaluated by

requiring that when the components of stress (7.90) are substituted into the traction–stress

relations (2.73), they give components of traction which on the lateral surface of the plate

are equal to the specified components of traction.

For very thin prismatic multiply connected plates with one hole in order that the function

      satisfies the Mitchell compatibility relations (7.27) on the boundary of the hole, as

shown in Section 7.8.1, [see relation (7.85)] we have

1C  = 0 (7.91)

2 3The constants C  and C  are evaluated by requiring that when the components of stress

1 (7.90) with C = 0 are substituted into the traction–stress relations (2.73), give the specified

components of traction on the lateral surfaces of the body.

In what follows we compute the components of displacement of thin prismatic bodies

using the axisymmetric plane stress theory.  Referring to relations (3.52) the stress strain

relations for plane stress are

Moreover, referring to relations (2.83), the strain–displacement relations for a state of

axisymmetric plane stress are
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 (7.93b)

 (7.94)

(7.95)

(7.96)

(7.97)

(7.98)

(7.99)

Substituting the third of relation (7.92) into the third of relation (7.93a), we obtain

The component of displacement  is obtained by substituting the first two of relations

(7.92) into relation (7.94) and the last of relations (7.93b) and using the third of relations

(7.90).  Thus,

or

The solution of the equation is

2The first term in the expression for û  represents rigid-body rotation of the body about the

1x  axis which we eliminate by setting C = 0.  Thus, relation (7.97) gives

7.8.3 Two-Dimensional or Generalized Axisymmetic Plane Stress

As discussed in Section 7.6.1 for very thin plates the magnitude of the components of

1stress does not differ much from their average in x  value.  In this case, substituting relation

(7.86) into (7.58), we have

where         is obtained from relation (7.69) by replacing      by          and using relation

(7.52) in the resulting relation. Substituting relation (7.99) into (7.42a), taking into account

relations (7.68), and (7.70), replacing     by        and using relation (7.52) in the resulting

relation, we obtain
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(7.100)

(7.101)

2Referring to relation (7.98), the component of displacement u   is equal to

rThe components of displacement û  is obtained by substituting relation (7.100) into (7.94).

That is,

(7.102)

For a very thin prismatic body with one hole, referring to relation (7.91), we have

1C  = 0 (7.104)

In what follows we present two examples.

                                                                                                                                             

Example 5  Establish the stress distribution in a plane curved beam of thin rectangular cross

section of thickness 2b subjected at its ends to equal and opposite bending moments, about

the axis normal to its plane, as shown in Fig. a.  Disregard the effect of body forces.

Figure a  Geometry and loading of

the curved beam.

                                                                                                                                             

Solution  From physical intuition we can conclude that the components of stress and

displacement of the beam are not functions of     .  Moreover, since the thickness 2b is small

compared to the depth of the cross section of the beam, the components of stress may be

approximated by relations (7.100).  Substituting these relations into the traction–stress

relations (2.73) (with n 6 r, 2 6 r, 3 6    ) and noting that on the lateral surface of the beam
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   (a)

                                       (b)

(c)

                                     the boundary conditions on this surface are 

Solving these relations, we obtain

     

Referring to the first of relations (b) and relation (7.99), we see that

Substituting the above relation  into relations (7.42a), we get 

On the boundaries      = 0 and            the resultant components of force must vanish while

the resultant moment about any point must be equal to the applied moment M . Using

relations (2.73), (b) and (7.100) and  noting that on these boundaries 

              , we have

(d)
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(e)

(f)

   (g)

         (h)

      e       i oFrom relations (a) and (b) we see that  (R ,    ),  (R ,   ) and C  are equal to zero.  Thus,

the first two of relations (d) are satisfied without imposing any restrictions on the value of

1the constant C , while  the third reduces to 

where

The components of stress of a prismatic thin curved beam in a state of plane stress may

be obtained by substituting relations (b) and (e) into (7.100).  We thus, obtain

e iThe stress distribution for the case R  = 2R  is plotted along the thickness of the beam in Fig.

b.

Substituting relations (b) and (e) into (7.101) and (7.102), we have

Figure b  Distribution of the components of stress along the thickness of a prismatic thin curved beam  with

e iR  = 2R .
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  (h)

(b)

(d)

                                                                                                                                             

                                                                                                                                             

Example 6  Compute the components of stress and displacement in a flat circular disk of

    constant thickness of radius R rotating about its axis with an angular velocity  .

Figure a  Geometry of the disk.

                                                                                                                                             

Solution  On every particle of volume dV of the disk, a specific body force (force per unit

volume) is acting in the radial direction equal to the centrifugal force.  That is,

r       B  =   (a)

where D is the mass density of the material from which the disk is made.  Referring to

relation (7.41a) from relation (a), we get

Since the disk is very thin, we assume that it is in a state of two-dimensional plane stress.

Moreover, since the geometry of the disk and the specific body force are not functions of

  the coordinate , we have a case of axisymmetric two-dimensional plane stress.

Consequently, the components of stress and displacement are given by relations (7.100) to

                   (7.102).  Notice that in order that the components of stress   ,      and     be finite at

r = 0, we must set in relations (7.100) to (7.102) the following:

2 1 3                                               C  = C = C  = 0 (c)

Substituting relation (b) into (7.100) to (7.102) and taking into account relation (c), we get
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(f)

(g)

           (h)

            (i)

(j)

(k)

(e)

2The constant C  is evaluated by requiring that when the components of stress (d) are

substituted into the traction–stress relations (2.73), they give components of traction which

are equal to the specified components of traction on the lateral surface (r = R) of the disk.

Taking into account that on the lateral surface of the disk  , we have

It is apparent that the components of stress (d) satisfy the first and third of relations (f)

2without imposing any restriction on the value of the constant C .  Substituting the first of

relations (d) into the second of relations (f), we obtain

2Substituting the value of C  from relation (g) into relations (d) and (e), we have

The maximum values of the components of stress occur at r = 0 and are equal to

rThe maximum radial component of displacement, û , occurs at r = R and it is equal to
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7.9 Problems

1. Given the polynomial 

establish the distribution of surface traction which we must have on a prismatic body of

      rectangular cross section so that    is the Airy stress function for plane strain.  Show the

required distribution of surface traction on a sketch.

    

2. Given the polynomial 

establish the distribution of surface traction which we must have on a prismatic body of

      rectangular cross section so that   is the Airy stress function for plane strain.  Show the

required distribution of surface traction on a sketch.

          

3. Derive relation (7.20) following a procedure analogous to that adhered to in Section 7.2

for the derivation of relation (7.17).

4. A long dam of triangular cross section is subjected to a linearly varying hydrostatic

pressure on its surface OA as shown in Fig. 7P4.  Surface OB is traction free while on the

base AB act the normal and shearing components of stress required to balance the weight of

the dam and the hydrostatic pressure.  Show that for this problem L V = 0. Establish the2

stress distribution in the dam.  Assume that the specific weights of the water and the dam are

               and  ,  respectively.  Use the following Airy stress function

  

   

      

Figure 7P4 Figure 7P5

5. A thin cantilever beam is loaded as shown in Fig. 7P5.  Establish the stress distribution

in the beam assuming that the beam is in a state of plane stress. Disregard the effect of the

weight of the beam. Assume a plane strain function for the auxiliary beam in a state of plane

strain of the form
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Figure 7P6 Figure 7P7

6. and 7.  A simply supported thin prismatic beam of width 2b and depth 2h is loaded with

a uniform force (see Fig. 7P6).  Establish the components of stress acting on the particles

2of the beam assuming that it is in a state of plane strain (u  = 0). Disregard the effect of body

forces. Plot the distribution of the components of stress on the cross section of the beam

assuming that it is in a state of plane stress.  Repeat with the cantilever beam of Fig. 7P7.

Hint: For Problem 6 assume

       1  3 1  1  3 3 3   = Ax + B x x + Cx x + Dx + Ex2 2 2 3 3 5

For Problem 7 assume:

8. Establish the stress distribution in a thin semi-infinite plate due to a moment M  (kN@m per

meter of width) as shown in Fig. 7P8.  (Hint: Superimpose the results due to two equal and

3 3 3opposite line forces p kN/m [one at (! x /2) the other at ( x /2)] and take the limit as x

36 0 and p x  6 M .          

Figure 7P8 Figure 7P9
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9. Consider a very large thin square plate with a small circular hole of radius R subjected to

      uniform distribution of the shearing, component of stresses  = c as shown in Fig. 7P9.

      Establish the stress field in the plate.  Plot the distribution of the components of stress   

      2  ,      at the cross section x  = 0.

 

 

Figure 7P10 Figure 7P11
 

10. Consider a very large thin plate with a small circular hole of radius R subjected to a

            uniform distribution of the components of stress   = c,   = b (see Fig. 7P10).  Establish

22 33the stress distribution in the plate. Plot the distribution of the components of stress J , J ,

      2and   at the cross section x  = 0.

e i11. A long thick-walled elastic cylinder of outer radius R  and inner radius R  is bounded to

a rigid circular cylindrical core as shown in Fig. 7P13.  The end surfaces of the cylinder at

1 1x  = 0 and x  = L are restrained from moving in the direction of its axis.  However, they can

move freely in direction normal to its axis. If the cylinder is subjected to a uniform external

pressure p, determine the components of stress and displacement of the cylinder assuming

that the body force is negligible.

 

12. Establish the distribution of the components of stress in the circular cantilever beam of

thin rectangular cross sections of width 2b subjected to a shearing force at its unsupported

end as shown in Fig. 7P12.  Use the following Airy stress function: 
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Figure 7P12 Figure 7P13

13. Establish the distribution of the components of stress in the circular beam of thin

rectangular cross section of width 2b.  The beam is subjected to a tangential to its axis force

at its unsupported end as shown in Fig. 7P13.  Use an Airy stress function of the following

form:

      

14. Consider a prismatic thick-walled circular cylinder consisting of a steel (E = 210 GPa

                = 0.3)  circular  tube,  fitted  into  an aluminum alloy (E = 80 GPa,  = 0.3)  tube.  The

inner radius of the steel tube is 0.3 m while its outer radius is 0.45 m.  The inner  radius of

the aluminum is 0.45 m while its outer radius is 0.6 m.  The cylinder is subjected to internal

i epressure p  and external pressure p .  The ends of the cylinder are restrained from moving

1only in the axial direction.  That is, the component of displacement u$  and the components

1 1 of traction  and  vanish at x = 0 and x = L.  Assuming that the body forces are

negligible, compute the pressure exerted by the inner surface of the steel cylinder on the

outer surface of aluminum cylinder.    

   

15. It is possible to increase the strength of a composite thick-walled circular cylinder by

inducing beneficial initial stresses in its walls.  For example consider a composite circular

       cylinder consisting of an inner steel (E = 210 GPa,  = 0.3) and an outer aluminum (E =

        80 GPa,  = 0.3) circular tubes.  Before assembling the cylinder the inner radius of the steel

tube is 0.3 m and its outer radius is 0.454 m, while the inner radius of the aluminum tube is

0.45 m and its outer radius is 0.6 m.  That is, the outer radius of the inner tube is slightly

larger than the inner radius of the outer tube.  The outer tube is heated in order to expand

and the inner tube is pressed inside it.  As the temperature of the tubes becomes uniform the
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inner tube resists the shrinkage of the outer tube and a pressure is created between the outer

surface of the inner tube and the inner surface of the outer tube.  The ends of the cylinder

are restrained from moving only in the axial direction.  That is, the component of

1 1 1 displacement u$  and the components of traction  and  vanish at x  = 0 and x = L.

Assuming that the body forces are negligible, compute the components of displacement and

istress of the particles of the cylinder, when it is subjected to a uniform internal pressure p .

16. A long circular cylinder is constructed from two hollow circular cylinders made from

the same isotropic linearly elastic material (E = 200 GPa, v = 0.3).  Before assembly the

inner radius of the outside cylinder was 0.193 m while its outer radius was 0.3 m.  The outer

radius of the inside cylinder was 0.2 m while its inner radius was 0.1 m.  The inside cylinder

was inserted by heating the outside cylinder until it expanded enough.  The particles of the

1 1end surfaces of the combined cylinder at x  = 0 and x  = L are restrained from moving in the

1direction of the x  axis.  However, they were free to move in the plane normal to the axis of

the cylinder. 

   (a) Establish the contact pressure between the two cylinders. 
                  Ans. Contact pressure = 5.16 Pa

   (b) Establish the stress distribution in the two cylinders. 

   (c) If a pressure of 120 MPa is applied at the inside of the inner cylinder, compute the

         stress distribution of the combined cylinder.
        Ans. Contact pressure = 2023.88 MPa
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Chapter
8

Theories of Mechanics of Materials

8.1 Introduction

In this book we consider solid bodies initially in a reference stress-free, strain-free

ostate of mechanical  and thermal  equilibrium at a uniform temperature T .  In this state† ††

the bodies are not subjected to external loads and heat does not flow in or out of them.
Subsequently the bodies are subjected to specified external loads described in Section 2.2,
as a result of which they deform and reach a second state of mechanical, but not
necessarily thermal, equilibrium.

In Chapters 5 to 7 we formulate and solve boundary value problems for computing the
displacement and stress fields of solid bodies subjected to external loads, on the basis of
the linear theory of elasticity.  This theory can be employed to formulate boundary value
problems for computing the displacement, and stress fields of bodies of any geometry
subjected   to  any  loading.   However,   only  a few such problems involving bodies of

 

Figure 8.1  One-dimensional line and two-dimensional surface members.

                                   

†  W hen a body is in a state of mechanical equilibrium , its particles do not accelerate.  That is, the sum of the forces

acting on any portion of the body and the sum of their moments about any point vanish.

†† When a body is in a state of thermal equilibrium heat, does not flow in or out of it.  That is, the temperature of

all its particles is the same.
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Figure 8.2  Thin-walled tubular member.

simple geometry supported in an idealized convenient way and subjected to external loads
which induce states of stress having some vanishing components have been solved
exactly.  The rest are solved approximately using one of the modern numerical methods
suitable for programming their solution on an electronic computer.  The finite elements
method is the most popular of these methods.

In Chapters 8 to 18 we formulate and solve boundary value problems for computing
the displacement and stress fields of solid bodies subjected to external loads, using the
theories of mechanics of materials.  These are approximate theories which can be used
only for bodies whose geometry is such that certain assumptions can be made as to the
equilibrium of their particles, as to their deformed configuration and as to the distribution
of the components of stress acting on their particles.  Most problems can be solved
exactly by hand calculation if the geometry and loading of the body is simple or with the
aid of a computer if the geometry and loading of the body is complex.

Bodies for which mechanics of materials theories have been developed include:

1. Thin surface members — One dimension of these bodies, called their thickness, is
considerably smaller than their other two dimensions (see Fig. 8.1b).  The locus of the
midpoints of their thickness is a surface known as their midsurface. If the midsurface of
a surface member is a plane, the member is called a plate, while if it is a surface of higher
degree, it is called a shell (see Fig. 8.1b).
2. Line members — These bodies have one dimension called their length, which is
considerably larger than their other two dimensions (see Fig. 8.1a).  The plane surface cut
by a plane perpendicular to the larger dimension of a line member is called its cross
section.  Moreover, the locus of the centroids of the cross sections of a line member made
from one material is called its axis.  The end surfaces of a line member are perpendicular
to its axis.  The axis of a line member could be straight or curved.  We limit our attention
to straight-line members which either have constant cross sections or cross sections whose
geometry changes in a way that the direction of their principal centroidal axes remains
constant throughout their lengths.  Moreover, we limit our attention to curved line
members whose axis lies in one plane, whereas one of the principal centroidal axes of
their cross sections is normal to this plane.  For straight-line members we choose their

1axis as the x  axis and the centroid of one of their end cross sections as the origin of the

1 2 3axes of reference x , x , x  (see Fig. 8.1a).
3. Thin-walled tubular member — These are thin-walled prismatic bodies with one or
more holes (see Fig. 8.2).

The theories of mechanics of materials are established for surface members of constant
thickness and for line members and thin-walled, tubular members of constant cross
section.  Such line and tubular members are called prismatic.  Moreover, with reduction
of accuracy, the theories of mechanics of materials have been applied to surface members
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(8.1a)

(8.1b)

of variable  thickness, and to line members of variable cross sections (see Chapter 10). 

8.2 Fundamental Assumptions of the Theories of Mechanics of Materials for
Line Members

In the theories of mechanics of materials for line members, made from any material,
the following assumptions  are made:†

Assumption 1. The behavior of a line member may be approximated by that of the
continuum model (see Section 2.1).

Assumption 2. The effect of the deformation of the bodies which we are considering on
their temperature is negligible.  On the basis of this assumption the temperature
distribution of a body can be computed independently of its deformation.  In this book we
assume that it has been computed and it is known.

  22 33Assumption 3.  The normal components of stress    and      acting on the particles of
2 3line members on the planes normal to the x  and x  axes, respectively, and the shearing

 22        33component   of   stress         acting  on  these  planes   are  considered   negligible
compared to the other components of stress (see Fig. 8.3).  That is,

or in cylindrical coordinates

where       is the normal component of stress acting on the cylindrical surface r = constant

(see Fig. 2.16);  is the normal component of stress acting on the plane       = constant

  22 33(see Fig. 2.16).  Actually, the component of stress    or      may not vanish at some
particles of line members subjected to a distribution of transverse components of traction
on their lateral surface.  However, the values of these components of stress are negligible

        Figure 8.3  Components of stress
            acting on a particle of a line member.

                                         
† In this book we do the following:
   (a) We limit our attention to bodies which are made from isotropic, linearly elastic materials.
   (b) Except in Chapter 18 we limit our attention to bodies subjected to loads of such magnitudes that the
        deformation of their particles is within the range of validity of the assumption of small deformation

  (see Sections 2.3 and 2.4).
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(8.2)

(8.3)

Figure 8.4  Beam subjected to a uniform distribution of the transverse component of traction.

  11compared to the maximum value of the normal component of stress     .  For example,
consider the beam of constant rectangular cross section of width b and depth d shown in
Fig. 8.4.  The beam is subjected on its upper surface to a uniformly distributed traction

.  From physical intuition we may deduce  that the normal component of stress†

 33    is  zero  at  the  particles  of the  bottom  surface of the beam and maximum at the
particles  of its upper surface where

In Section 9.2 we show that for the beam of Fig. 8.4 the value of the normal component

 11of stress     is equal to

2where I  is the moment of inertia of the cross section of the beam about the principal

2 1centroidal axis x .  The maximum value of the moment  in the beam occurs at x  = L/2 and
it is equal to

2Substituting the above relation into (8.3) and recalling that, for the beam of Fig. 8.4, I  =

  11bd /12, the maximum value of the compressive normal component of stress    is equal3

to

Substituting relation (8.2) into the above, we obtain

† It can be shown that for the beam of Fig. 8.4 we have 
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† Two statically equivalent distributions of tractions have the same resultant force and moment about
the same point.

(8.4)

Inasmuch as for line members d/L << 1 it is apparent that for such members  is very

 11small compared to the maximum value of    .

Assumption 3,  reduces the number of unknown components of stress and simplifies
the stress–strain relations for line members (see Section 8.11).

1Assumption 4.  The distribution of the components of traction, on the end surfaces (x  =

10 and x  = L) of line members usually is not known.  However, since the dimensions of
the cross sections of line members are in general small compared to their length, it is
assumed that all distributions of traction on the end surfaces of a line member which are
statically equivalent  have the same effect at particles sufficiently removed from the end†

surfaces of the member.  This assumption is an application of the principle of Saint
Venant which is discussed in Section 5.3.  Consequently, at an end surface of a line
member at which a component of displacement is not specified, it is sufficient to specify
the corresponding resultant force and moment of the tractions acting on it.  The resultant
force and moment obtained from the calculated distribution of the components of stress

1 1on each end surface (x  = 0 and x  = L) of a member, should be equal to the specified
resultant force and moments of the tractions acting on it.

Assumption 5.  When the theory of elasticity is employed to establish the distribution
of the components of displacement and stress in a body in equilibrium under the influence
of external forces (surface tractions and body forces) and/or change of temperature, it is
required that the distribution of the components of stress satisfies the conditions for
equilibrium for all the particles of the body.  

In the theories of mechanics of materials for line members we do not ensure that every
particle of a body is in equilibrium.  Instead we ensure that each segment of infinitesimal
length cut from the member by two imaginary planes normal to its axis is in equilibrium.

As a result of Assumption 5 in the theories of mechanics of materials it is not
necessary to specify the distribution of the components of traction acting on the lateral
surface of a line member or the distribution of the body force acting on the particles of
a line member.  Instead it is sufficient to specify the statically equivalent distribution of
external forces and moments acting along the length of the member.  Moreover, as
discussed previously, on the basis of the principle of Saint Venant the distribution of the

1 1components of traction acting on each of the end surfaces (x  = 0 and x  = L) of a member
may be replaced by statically equivalent concentrated components of force and moment.
Thus, as shown in Fig. 8.5, a line member can be represented schematically by a line (its
axis) subjected to specified distributions of external forces along its length and to
specified concentrated forces and moments on its ends.

When external forces and moments of high intensity are distributed over a very small
portion of the length of a member, they are replaced, depending upon the nature of their
distribution, by an equivalent concentrated force and/or moment.  Thus, line members are

irepresented by a line subjected to specified concentrated external forces P (i = 1, 2, 3)(n(n)

i i i= 1, 2, ..., n ) and moments M (i = 1,2,3)(m = 1, 2, ..., m ) and to specified distributed (m)
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     (8.5a)

(a)  Cantilever beam subjected (b) Schematic representation of the  beam of      
to a distribution of traction Fig. 8.5a subjected  to a specified statically    
on its lateral surface. equivalent distribution of  external forces       

 along its length and on its unsupported end.   
Figure 8.5  Schematic representation of a line member.

i 1 i 1forces p (x ) (i = 1, 2, 3) and moments m (x ) (i = 1, 2, 3) along their length as well as to
concentrated forces and moments on their ends.   The distributed external forces and
moments are given in units of force and moment, respectively, per unit length of the axis
of the member.  The external forces and moments acting on a member are called the
external actions. 

Assumption 6.  Plane sections normal to the axis of a line member before deformation
remain plane after deformation. Consequently, the movement of a cross section of a
member, due to its deformation, is specified by the three components of the translation
vector of its centroid, referred to a set of rectangular axes, and by the three components
of its rotation  about the same axes (see Fig. 8.6).  The components of the displacement†

vector of the centroid of a cross section of a line member are referred to as the
components of translation of this cross section.  We denote the components of  translation

1 2 3 1 1 2 1 3 1in the direction of the x , x  and x  axes by u (x ), u (x ) and u (x ), respectively.

1 2 3Moreover, we denote the components of rotation of a cross section about the x , x  and x
1 1 2 1 3 1axes by    (x ),    (x ) and    (x ), respectively, and we consider them as positive if they

1 2 3are represented by a vector  acting in the direction of the positive x , x  and x  axes,†

respectively.  Inasmuch as a cross section of a member is represented by a point on the
line diagram of the structure, we refer to the components of translation and rotation of the
cross section represented by point A on the line diagram of a member as the components

1of translation and rotation of point A of this member.  The components of translation u ,

2 3 1 2 3u , u  and the components of rotation , ,  of a cross section of a member of a

structure are called its components of displacement.
On the basis of Assumption 6 referring to Fig. 8.6 we have

Substituting relation (8.5) into the first of the strain–displacement relations (2.16), we

† A rotation about an axis is represented by a vector acting along this axis and pointing in the direction in
which a right-hand screw moves when subjected to this rotation.  Small rotations are vector quantities, while
large rotations are not.  Except in Chapter 18, in this text we consider bodies whose deformation involves
only small rotations.
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(8.5b)

(8.6a)

(8.6b)

         Figure 8.6  Components of displacement in the

1 3           x x  plane of a cross section of a member.

obtain

Assumption 7. When the theory of elasticity is employed to establish the distribution of
the components of displacement and stress in a body in equilibrium under the influence
of external forces and/or change of temperature, it is required that the components of
strain obtained from the components of stress satisfy the compatibility equations at every
particle of the body.  That is, the deformation of every particle is compatible with that of
its neighbors. In the theories of mechanics of materials we do not  ensure that the
deformation of every particle of the body is compatible with that of its neighbors.  Instead
we ensure that the deformation of every segment of infinitesimal length cut from the
member by two imaginary planes normal to its axis is compatible with that of its
neighboring segments. This is accomplished by requiring that the components of

1 1 2 1 3 1 1 1 2 1translation u (x ), u (x ) and  u (x ) and  the  components  of  rotation   (x ),  (x ) and

3 1(x ) are continuous throughout the length of the member. 
In Example 1 of Section 5.5 we have shown that when a prismatic line member is

1 1subjected on each of its end surfaces (x  = 0 and x  = L) to a distribution of traction, which
is statically equivalent to an axial centroidal force, plane cross sections normal to the axis
of the member prior to deformation remain plane after deformation provided that they are
sufficiently removed from its end surfaces. Moreover, the cross sections of the member
do not rotate and the particles of its axis do not translate in the transverse directions.  Its
axis only elongates or shrinks.  That is,

while the stress distribution on the cross section of the member is

It is apparent that in this case the assumptions of the theories of mechanics of materials
are satisfied and, consequently, these theories give exact results.

In the examples of Sections 6.5 and 6.6 we have shown that when a prismatic line
member of  solid  or  hollow  circular  cross section  is  subjected  on  each  of  its  end

1 1surfaces (x  = 0 and x  = L) to a distribution of traction which is statically equivalent to
a torsional moment, its cross sections do not warp.  That is, the axial component of

1 1 2 3translation û (x , x , x ) of the particles of this member is equal to zero.  Moreover, the 
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     (8.7a)

  (8.7b)

(a)                   (b)         (c)

Figure 8.7  Cantilever member subjected to an axial non-centroidal force.

2 3particles of its axis do not translate and its cross sections do not rotate about the x  and x
axes.  That is, in this case, we have

While the stress distribution on the cross sections of the member is

where       is the component of stress acting on the cross sections of the member in the
direction normal to the radial direction. It is apparent that in this case the assumptions of
the theories of mechanics of materials are satisfied and, consequently, these theories give
exact results. However, when a prismatic line member of non-circular cross section is

1 1subjected on each of its end surfaces (x  = 0 and x  = L) to a distribution of traction which
is statically equivalent to a torsional moment, as discussed in Section 6.4, its cross

1 1 2 3sections warp.  That is, (x , x , x ) does not vanish and plane sections normal to the axis

of the member prior to deformation do not remain plane after deformation.  Moreover, the

2 1 2 3 3 1 2 3effect of warping on the components of displacement (x , x , x ) and  (x , x , x ) and

the shearing components of strain and stress cannot be disregarded.  For this reason in the
theories of mechanics of materials only line members of circular (solid or hollow) cross
section are considered subjected to torsional moments.

In Example 3 of Section 5.5 we have shown that when a prismatic member is subjected

1 1on each of its end surfaces (x  = 0 and x  = L) to a distribution of traction which is
statically equivalent to a moment whose vector is normal to the axis of the member plane,
sections normal to the axis of the member prior to deformation remain plane after
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          (8.8)

deformation provided that they are sufficiently removed from its end surfaces. Moreover,

1the translation of the particles of its axis, in the x  direction, is negligible .  That is, for this†

loading, we have 

When prismatic line members are subjected only to transverse forces, whose line of
action lies in a plane which contains the shear centers of their cross sections, their cross

1sections do not rotate (twist) about the x  axis (     = 0) and relation (8.8) is valid (see
Section 9.7). However,  their cross sections warp.  That is, plane sections normal to the
axis of the member do not remain plane after deformation  Nevertheless, when the length
of a member is considerably larger than its other dimensions, the warping of its cross
sections, due to the transverse forces, does not affect appreciably the components of
displacement, strain and stress of its particles and can be disregarded. 

When prismatic line members are subjected only to transverse forces whose line of
action does not lie in a plane which contains the shear center of their cross sections, they

twist (     0).  

For the reasons discussed above in the theories of mechanics of materials, the axial
component of traction acting on the surface of a member and the axial component of body
force acting on the particles of a  member are replaced by an equivalent system consisting
of

1 1 11. Distributed axial centroidal forces p (x ) and concentrated axial centroidal forces P (n( n)

1= 1, 2, ..., n ) applied on the axis of the member.  These forces produce only an axial
component of translation and only an axial component of stress acting on the cross
sections of a member.

2 1 3 12. Distributed bending moments m (x ) and m (x ) and concentrated bending moments

2 2 3 3M  (m = 1, 2, ..., m ) and M  (m = 1, 2, ..., m ).  These moments do not produce an axial( m) (m)

component of translation or rotation.  

For example, consider a cantilever beam subjected to a distribution of traction on its

1unsupported end (x  = L) which is statically equivalent to a force of 100 kN acting at point
A as shown in Fig. 8.7a.  This distribution of traction is replaced by the following

1 2statically equivalent system of an axial centroidal force P  and bending moments M  and

3 2 3M  about the x  and x  axes, respectively

1          P  = 100 kN           

2M  = 100(0.02) = 2 kNAm

3M  = 100(0.01) = 1 kNAm

Moreover, the transverse components of traction acting on the particles of the surface of
a member and the transverse components of body forces acting on its particles are
replaced by an equivalent system of forces and moments consisting of

2 1 3 1 2 21. Distributed forces p (x ) and p (x ) and concentrated forces P (n = 1, 2, ..., n ) and( n)

3 3 2 3P (n = 1, 2, ..., n ) acting in the direction of the x  and x  axis, respectively. The line of( n)

1 1† The axial component of translation u (x ) may be different than zero when a line member, made from an
isotropic linearly elastic, ideally plastic material, is subjected to transverse forces and bending moments inducing
components of plastic strain at some of its particles (see Section 16.2).
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(a) Beam subjected to a force which            (b) Beam subjected to      (c) Beam subjected to a force which
does not pass through the shear                   a torsional moment          passes through the shear center
center of its cross section                          of its cross section

Figure 8.8  Cantilever beam subjected to a transverse force whose line of action does not lie on a plane
which contains the shear centers of its cross sections.

action of each one of these forces lies in a plane which contains the shear centers of the
cross sections of the member. These forces do not produce axial component or rotation
(twist) of the cross sections of the member and axial component of translation of the
particles of the axis of the member. 

1 1 1 12. Distributed moments m (x ) and concentrated moments M (m = 1,2...m ) about an axis( m)

1parallel to the x  axis and passing through the shear center of the cross sections of the
member. These moments produce only axial component of rotation of the cross sections
of the member and only shearing component of stress on its cross section. For example,
when the cantilever beam of Fig. 8.8 is subjected to a distribution of traction on its end

1surface x  = L which is statically equivalent to a transverse concentrated force of
magnitude P passing through its centroid, its cross sections translate vertically downward

1and rotate about an axis parallel to the x  axis, passing through the shear centers of the

3cross sections of the member. The force P is statically equivalent to a force P  = P lying
on a plane which contains the shear centers of the cross section of the beam and a

1torsional moment of magnitude M  = Pe; where e is the distance of the shear center of the

3cross section of the beam from its centroid.  The force P  translates the cross sections of
the beam vertically downward (see Fig. 8.8c) while the moment Pe rotates (twists) the

1cross sections of the beam about an axis parallel to the x  axis passing through the shear
center of its cross sections (see Fig. 8.8c).

The afore described assumptions are considered valid for prismatic line members made
from any material (as, for example, elastic, plastic, viscoelastic).  Moreover, with some
restrictions, they are extended to members of variable cross section (see Chapter 10).
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(8.9a)

(8.9b)

(8.9c)

8.3 Internal Actions Acting on a Cross Section of Line Members

When a line member is subjected to external loads, a distribution of normal and
shearing components of stress could exist on any of its cross sections.  This distribution
of stress on a cross section is statically equivalent to one or more of the following
concentrated internal forces and moments known as the stress resultants or the internal
actions acting on this cross section:

11. A force applied to the centroid of the cross section acting in the direction of the x  axis.

1It is called internal axial centroidal force and we denote it by N(x ) (see Fig. 8.9).
2. Two forces acting in the plane of the cross section whose line of action passes through
a point known as the shear center of the cross section (see Section 9.7).  They are called

2 2 1shearing forces.  The one acts in the direction of the x  axis and we denote it by Q (x ).

3 3 1The other acts in the direction of the x  axis and we denote by Q (x ) (see Fig. 8.9).

13. A moment about an axis parallel to the x  axis. It is called torsional moment and we

1 1denote it by M (x ) (see Fig. 8.9).
4. A moment whose vector acts in the plane of the cross section.  It is called bending

2 2 1moment.  It has two components: one about the x  axis which we denote by M (x ) and the

3 3 1other about the x  axis which we denote by M (x ).

We consider as positive the components of internal force and moment acting on a
positive  cross section of a member if their sense coincides with the positive sense of its†

1 2 3local axes x , x , x  (see Fig. 8.9).  Furthermore, we consider as positive the components
of internal force and moment acting on a negative cross section of a member if their sense

1 2 3coincides with the negative sense of its axes x , x , x  (see Fig. 8.9). Thus, a tensile axial
force is considered positive, while a compressive axial force is considered negative.  On
the basis of the sign convention described previously, the components of the internal
action acting on a cross section are related to the components of stress acting on it by the
following relations:

Figure 8.9  Positive internal actions acting on the cross sections of a member.
                             

† We call a cross section of a member space positive or negative if the unit vector normal to it is directed

1along the positive or negative x  axis, respectively.
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(8.9d)

(8.9e)

(8.9f)

2 3 2 3where e  and e  are the x  and x  coordinates, respectively, of the shear center of a cross
section of a member.

8.4 Framed Structures

Bodies made of line members joined together at their ends are called framed
structures.  The configuration of a framed structure is conveniently described by a line
diagram (see Fig. 8.10).  Therein a line member is represented by a line (its axis) and a
cross section by a point.  Moreover, a connection of two or more members is represented
by a point called a joint.

In general, framed structures have a three-dimensional configuration.  Often, however,
for purposes of analysis and design, a framed structure may be broken down into planar
parts called planar framed structures, whose response can be considered as two-
dimensional (see Fig. 8.10).  The axes of the members of planar structures lie in one plane
and one principal centroidal axis of the cross sections of their members is normal to this
plane.  Moreover, they are subjected to external loads which do not induce displacement
of their axes in the direction normal to their plane.  Thus, framed structures may be
classified as

1. Planar
2. Space

The supports of a planar framed structure are idealized as

1. Roller support.  This support permits the supported ends of the members of the
structure to rotate about an axis normal to the plane of the structure and to move only in
one direction, referred to as the direction of rolling. It can exert a reacting force on the
structure acting in the direction normal to the direction of rolling and of magnitude equal

Figure 8.10  Idealizations of a  framed structure.
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Figure 8.11  Supports of planar framed structures.

to that required to counteract the applied loads.  The schematic representation of this
support is shown in Fig. 8.11a.
2. Hinge support.  This support restrains the supported end of the members of the
structure  from  translating.  However, it permits it to rotate about an axis normal to the
plane of the structure.  A hinged support can exert a reacting force R on the structure,
passing through the center of the hinge and  having the magnitude and direction required
to counteract the applied loads.  The schematic representation of this support is shown in
Fig. 8.11b.
3. Fixed support.  This support restrains the supported end of the members of the structure
from translating and rotating.  It can exert a reacting force on the structure acting in any
required direction in the plane of the structure and a moment whose vector is normal to
the plane of the structure.  The schematic representation of this support is shown in Fig.
8.11c.
4. Helical spring support.  This support partially restrains the supported end of the
members of the  structure from moving in the direction of the axis of the spring.
However, it permits it to translate freely in the direction normal to the axis of the spring
and to rotate about an axis normal to the  plane of the structure.  This support can exert
a reacting force on the structure in the direction of the axis of the spring whose magnitude
is a known function (usually a linear function) of the deformation of the spring.  The
schematic representation of this support is shown in Fig. 8.11d.
5. Spiral spring support.  This support restrains the supported end of the members of the
structure from translating and partially from rotating.  It can exert a reacting moment on
the structure whose magnitude is a known function (usually linear) of the rotation of the
connected end of the members.  The schematic representation of this support is shown in
Fig. 8.11e.

The supports of space framed structures restrain one or more of the components of
translation and-or rotation of the supported end of their members.  Supports which permit
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rotation of the supported end of the members of a space structure about any axis are
referred to as ball-and-socket supports (see Fig. 8.12).  Supports which permit rotation of
the supported end of the members of a space structure about only one axis are referred to
as cylindrical or pin supports.  Supports which do not permit rotation of the supported end
of the members of a space structure are referred to as fixed-against-rotation supports.
Each of the forementioned types of supports can be either non-translating or translating
in one or two directions.  Usually, however, supports fixed against rotation are non-
translating and are referred to as fixed supports.  These supports can exert a reacting force
and a reacting moment on the structure, both acting in any direction required to counteract
the applied loads.

We analyze framed structures on the basis of the theories of mechanics of materials
for line members presented in this and the subsequent chapter.  In the analysis of framed
structures we are interested in establishing the following:

1. The  internal  actions  (forces  and  moments)  acting  on  the  cross sections  of   their
members.  The components of stress at any point of a cross section of a member can be
computed from the internal forces and moments acting on this cross section using the
formulas established in  this and the subsequent chapter.
2. Components of translation and rotation of certain cross sections.

8.5 Types of Framed Structures

We distinguish the following types of framed structures:

1. Planar trusses 4. Space trusses     7. Grids 
2. Planar beams 5. Space beams 
3. Planar frames 6. Space frames 

Trusses are framed structures whose members are straight and assumed connected by
frictionless pins; moreover, the axes of their members which are connected to the same
joint are assumed to intersect at a point.  Trusses are loaded by concentrated forces acting
on their joints (see Fig. 8.12a).  The weight of the members of trusses is usually neglected
or considered as acting on their joints.  Thus, it is assumed that the members of a truss are
not subjected to external actions along their length or to end moments.  Consequently,
they are subjected only to internal axial centroidal forces, inducing a uniform state of
uniaxial tension or compression.

Beams are framed structures whose line diagram is a straight line.  They are subjected
to external loads which induce internal forces and moments on their cross sections.  Planar
beams are subjected to tranverse external forces lying on a plane which passes through the
shear center of their cross sections. This plane is parallel to a plane which contains their
axis and a principal centroidal axis of their cross sections.  Moreover, the vector of the
external moments acting on planar beams is normal to the plane of the external forces.
Consequently, every cross section of a planar beam rotates only about the axis normal to
the plane of the external forces.  It does not twist, and it does not translate in the direction
normal to the plane of the external forces.  When the external forces and moments acting
on a beam do not meet one or more of the requirements described previously, the beam
is called a space beam.
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Figure 8.12  Types of framed structures.

Frames are the most general type of framed structures.  Their members can be
subjected to axial and shearing forces, bending moments and torsional moments.  They
can have both rigid and non-rigid joints and can be loaded in any way.  Usually, frames
are space structures.  Frequently, however, they can be analyzed by being broken down
into planar frames and/or grids (see Fig. 8.12c and e).  The members of a planar frame lie
in one plane, and one of the principal centroidal axes of their cross sections is normal to
this plane.  Moreover, the external forces acting on the members of a planar   frame lie on
a plane which contains the shear centers of their cross sections and is parallel to the plane
of the frame.  Furthermore, the vector of the external moments is normal to this plane.
Thus the cross sections of a member of a planar frame do not twist — they translate only
in the plane of the frame and rotate only about an axis normal to the plane of the frame.

The members of a grid also lie in one plane.  However, the external forces are  normal
to the plane of the grid, and the vector of the external moments lies in this plane (see Fig.
8.12e).
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Figure 8.13  Internal action release mechanisms.

8.6 Internal Action Release Mechanisms

In certain cases, a mechanism is introduced at a point of a member of a beam or frame
which renders one or more of the internal actions at this point equal to zero.  We refer to
this mechanism as an internal action release mechanism.  For example, the internal action
release mechanism (rollers) of the beam of Fig. 8.13a renders the internal axial force and
the bending moment equal to zero.

Pinned joints of planar or space beams and frames and ball-and-socket joints of space
beams and frames are also internal action release mechanisms. For example, the pin at the
apex of the frame of Fig. 8.13b is an internal action release mechanism.  It renders the
bending moment at that point equal to zero.

8.6.1 Structures Which Constitute a Mechanism

When a structure or a group of its members can move without deforming when
subjected to certain types of loads, we say that the structure constitutes a mechanism.  We
distinguish the following three types of mechanisms:

1.  Structures which are not supported properly and can move as rigid bodies under certain
types of loading (see Fig. 8.14a).
2. Structures which cannot support certain types of loads because when they are subjected
to such loads, some of their members move without deforming until the structure
collapses (see Fig. 8.14b).
3. Kinematically unstable structures move instantaneously without deforming when
subjected to certain types of loads until they reach a configuration which allows them to
carry the applied loads.  For example, consider the structure of Fig. 8.14c subjected to a
transverse force. Referring to Fig. 8.14d it can be seen that when the transverse force is
applied, the members of the structure cannot be subjected to any internal force and,
consequently, they do not deform.  Thus, the members of the structure rotate
instantaneously without deforming until they reach a configuration which allows them to
carry the applied force in tension.  Consequently, in order to compute the internal force
 in  the  members  of  this  structure, their geometry in the deformated state must be taken
into account (see Fig. 8.14e).
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Figure 8.14  Structures which constitute a mechanism.

8.7 Statically Determinate and Indeterminate Framed Structures

If the reactions (forces and moments) of a framed structure and the internal actions in
its members can be computed using the equations of equilibrium alone, then we say that
the structure is statically determinate.  That is, the number of unknown reactions and
internal actions of a statically determinate frame structure is equal to the number of
independent equations of statics which can be written for this structure.  For example, a
beam whose one end is hinged to a rigid support and whose other end is connected to a
roller support is statically determinate (see Fig. 8.15c).  The first support can exert on the
beam a reacting force that has two independent components, while the second support can
exert on the beam a reacting force that is normal to the direction of rolling.  These reacting
forces can be computed by considering the free-body diagram of the beam and using the

1 3 2equations of equilibrium ('F  = 0, 'F  = 0, 'M  = 0).  Moreover, the internal actions
acting at any cross section of the beam can be computed by considering the equilibrium
of a part of the beam.  Additional examples of statically determinate structures are shown
in Fig. 8.15.  The reactions and internal actions of the members of these structures are
obtained by using only the equations of equilibrium.

If the sum of the independent components of the reactions of a structure and of the
internal actions of its members exceeds the number of independent equations of
equilibrium, we say that the structure is statically indeterminate.  The degree of static
indeterminacy (IND) of a structure is equal to the number by which the sum of the
independent components of its reactions and the independent components of the internal
actions in its members exceeds the number of independent equations of equilibrium.

The number of independent components of internal actions in a member of a structure
is equal to the number of components of internal actions which must be specified in order
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      (8.10a)

       (8.10b)

Figure 8.15  Statically determinate structures.

to be able to establish uniquely the internal actions acting at any cross section of the
member by considering the equilibrium of appropriate parts of the member.  Thus,
referring to Fig. 8.16a, there is only one independent action in a member of a planar or
space truss (the axial force acting at one end of the member).  Moreover, referring to Fig.
8.16b, there are three independent components of internal actions in a member of a planar
frame, if internal release mechanisms do not exist in this member.  Furthermore, there are
six independent components of internal actions in a member of a space beam or frame if
internal release mechanisms do not exist in this member.  If internal release mechanisms
exist in a member, the number of independent components of its internal actions decreases
by the number of actions released by these mechanisms.  For example, an internal hinge
at a point of a member releases (renders it equal to zero) the moment about the axis of the
hinge at that point of the member.  Thus, the member of a planar structure shown in Fig.
8.16c has two independent components of internal actions because it has a hinge at some
point along its length which renders the internal moment at that point equal to zero.

Inasmuch as the structures that we are considering are in equilibrium, the forces acting
on their joints must satisfy the equations of equilibrium.  The forces acting on a joint of

ia planar truss must satisfy two equations of equilibrium ('F  = 0, i = 1, 3), while the

iforces acting on a joint of a space truss must satisfy three equations of equilibrium  ('F
= 0, i = 1, 2, 3).  Moreover, the forces acting on a joint of a planar beam or frame must

i 2satisfy three equations of equilibrium ('F  = 0, i = 1, 3, 'M  = 0), while the forces acting

ion a joint of a space beam or frame must satisfy six equations of equilibrium ('F  = 0,

i'M  = 0, i = 1, 2, 3).  The number of independent equations of equilibrium that can be
written for any structure is equal to the sum of independent equations of equilibrium that
can  be  written  for  its  joints.   Thus,  for  a  planar  truss  with NJ joints, we have 2NJ
independent equations of equilibrium, while for a space truss with NJ joints we have 3NJ
independent equations of equilibrium.  Moreover, for a planar beam or frame with NJ
joints, we have 3NJ independent equations of equilibrium, while for a space beam or
frame with NJ joints we have 6NJ independent equations of equilibrium.  Thus, the IND
degree of a planar or a space truss having NR independent components of reactions and
NM members is equal to
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(8.11a)

(8.11b)

(8.12)

(8.13)

Figure 8.16  Independent components of internal actions in members of planar structures.

Moreover, the IND degree of a planar or a space beam or frame having NR independent
components of reactions, NM members and NAR actions released by release mechanisms
is equal to

Notice, that
1. If IND < 0, the structure is a mechanism (Section 8.6.1).
2. If IND = 0 or if IND $ 0, then we cannot say whether the structure is or is not a
mechanism.  However, if the structure is not a mechanism and IND = 0, then it is statically
determinate, while if the structure is not a mechanism and IND $ 0, it is statically
indeterminate to the IND degree.

Relations (8.10) and (8.11) may be employed to establish the degree of static
indeterminacy of a structure.  For example, for the planar truss of Fig. 8.17a we have

Substituting the above values into relation (8.10a), we obtain

Consequently, the truss of Fig. 8.17a is statically indeterminate to the first degree.

Figure 8.17  Statically indeterminate planar trusses.
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(8.14a)

(8.14b)

(8.15a)

(8.15b)

(8.15c)

8.8 Computation of the Internal Actions of the Members of  Statically
Determinate Framed Structures

We consider structures originally in a reference stress-free, strain-free state of

omechanical and thermal equilibrium at the uniform temperature T .  Due to application
of external loads (surface tractions, body forces, change of temperature or movement of
their supports) the structures reach a second state of mechanical equilibrium.  In this state
the sum of the forces acting on any part of the structure and the sum of their moments
about any convenient point vanish.  That is,

These equations are called the equations of statics.
A vector in a three-dimensional space may be resolved into three components with

1 2 3respect to a rectangular system of axes x , x , x .  Moreover, a necessary and sufficient
condition for the sum of a number of vectors to be equal to zero is that the sums of their

1 2 3components in the x , x  and x  directions vanish.  Thus, equations (8.14a) may be
rewritten as

iIn the above equations, 'F (i = 1, 2, 3) represents the algebraic sum of the

icomponents, along the x  axis, of the forces acting on the part of the structure under

iconsideration.  Moreover, 'M (i = 1, 2, 3) represents the algebraic sum of the

icomponents, along the x  axis, of the moments, about any conveniently chosen point, of
the actions acting on the part of the structure under consideration.

The internal forces acting on a part of a planar structure do not have a component in
the direction normal to the plane of the structure and the moments do not have

1 3components in the plane of the structure.  Thus, for a planar structure in the x x  plane the
equations of statics (8.14b) reduce to

Often, it is convenient to employ a different set of equilibrium equations which are

equivalent to equations (8.15a).  For example, for any part of a planar structure in the 

plane, we can use one of the following sets of equilibrium equations:

or

where in relation (8.15b), the moments are taken about two different points i and j which

are not located on the same line normal to the  axis.  Moreover, in relations (8.15c), the

moments are taken about three different points i, j and k which are not located on the same
line.
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           (a)

           (b)

           (c)

In order to compute its internal actions of the members of a structure we consider the
free body diagrams of parts of the structure which usually extend between a cross section
of the structure on which unknown internal actions act and a cross section subjected to
known actions.  The first step when manually computing the internal actions in the
members of statically determinate structures is to compute their reactions.  For simple
structures, this is accomplished by considering the equilibrium of the whole structure.
That is, the free-body diagram of the whole structure is drawn, and the equations of
equilibrium involving the unknown reactions are written and solved.  The graphical
representations of the internal axial force, shearing forces and moments acting on a
member of a structure are known as its axial force, its shear and its moment diagrams,
respectively.

In what follows we present three examples.
                                                                                                                                             

Example 1  Compute the force in each member of the simple truss shown in Fig. a.

Figure a  Geometry and loading of the truss.

Solution  First, we compute the reactions of the truss by referring to the free-body
diagram of the whole truss shown in Fig. b and write the equations of equilibrium.  
Thus,

or

vSubstituting the value of R  into relation (b), we get(1)

Figure b  Free-body diagram of the whole truss.
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vThe reaction R  may also be computed by setting the sum of moments about joint 1(6)

equal to zero.  Thus,

or

The coincidence of the above result with that obtained by solving relations (b) and (c) is

va check on the calculations of R .  It is advisable to check the values of the reactions(6)

prior to proceeding to the calculation of the internal forces in the members of a structure.
The forces in the members of the truss may be obtained by drawing the free-body

diagrams of its joints and considering their equilibrium.  Notice that in drawing free-body
diagrams we assume, for convenience, that all unknown internal forces are tensile forces.

Equilibrium of joint 1

Since the reactions of the truss have been established as shown in Fig. c, there are only
two unknown internal forces (N , N ) acting on joint 1; consequently, these forces may(2) (1)

be established by considering the equilibrium of this joint.  The horizontal and vertical
components of the force N  may be obtained from the similarity of the force triangle(2)

shown in Fig. d and the triangle of the truss 1, 2, 3 (see Fig. a).  Thus,

Consequently, referring to Fig. c and setting equal to zero the sum of the vertical and
horizontal components of the forces acting on joint 1, we obtain

Thus, 

and

Figure c  Free-body diagram of joint 1. Figure d  Global components of force N(2).
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Figure e  Free-body diagram of joint 3. Figure f  Free-body diagram of joint 2.

Figure g  Free-body diagram of joint 4. Figure h  Free-body diagram of joint 6.

Equilibrium of joint 3

Since the internal force N  has been established, as shown in Fig. e, there are only two(1)

unknown internal forces (N , N ) acting on joint 3.  Moreover, since the force N  and(3) (5) (3)

the external force of 45 kN are collinear and normal to the other forces acting at joint 3,
it is apparent that

Equilibrium of joint 2

As  shown in Fig. f,  since  the  internal  force N  and N  are known, there are only two(2) (3)

unknown forces (N , N ) acting on joint 2. Consequently, these forces may be(6) (4)

established by considering the equilibrium of joint 2.  Thus,

or
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      (a)

      (b)

      (c)

Equilibrium of joint 4

Referring to Fig. g, we have

Equilibrium of joint 6

Referring to Fig. h, we have

                                                                                                                                              

3 1Example 2  Compute the distribution of the internal shearing force Q (x ) and bending

2 1moment M (x ) acting on the cross sections of the one member structure (beam) subjected
to the transverse forces and bending moment shown in Fig. a.  The plane of the transverse
forces contains the shear centers of the cross sections of the beam.

Figure a  Geometry and loading of the structure.

Solution  Since the structure under consideration does not have an unsupported end, it is
necessary to compute its reacting forces before we establish the distribution of its internal
actions.  Thus, referring to Fig. b, we have

3 1 2 1The shearing force Q (x ) and the bending moment M (x ) acting on the cross sections
of the structure are obtained by considering the equilibrium of its parts shown in Fig. c.
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Figure b  Free-body diagram of the structure.

Figure c  Free-body diagrams of parts of the structure.
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    (i)

    (j)

(d)

(e)

(f)

            (g)

    (h)

1 Thus, referring to Fig. ca for 0 < x  < 2, we have

1Referring to Fig. cb for 2 < x  < 4, we get

1Referring to Fig. cc for 4 < x  # 7, we obtain

1Referring to Fig. cd for 7 # x  < 10, we have

We plot relations (c) to (j) in Figs. d and e.  These are the shearing force and bending
moment diagrams for the beam of Fig. a.

Figure d  Shear diagram.

Figure e  Bending moment diagram.
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(a)

Notice that the distribution of the external forces acting on this structure has three
points of discontinuity (points A, B and C).  As a consequence of this, the distribution of

3 1 2 1the internal shearing force Q (x ) and bending moment M (x ) acting on the cross sections

1of the structure is specified by four different functions of x  — one for each of the
segment 1A, AB, BC and C2 [see relations (c) to (j)].  Moreover, notice that at the point
of application of the concentrated force of 36 kN there is a discontinuity or jump of 36kN
in the shear diagram, where as at the point of application of the concentrated moment of
120 kN@m there is a discontinuity or jump of 120 kN@m in the bending moment diagram.
                                                                                                                                              

Example 3  Compute the internal actions acting on the cross sections of the members of
the machine component of Fig. a as functions of their axial coordinate.  The machine
component is subjected to the external force shown in Fig. a.  Plot the moment and shear
diagrams for the members of this structure.

Figure a  Geometry and loading Figure b  Line diagram of the
of the machine component and the machine component and the 
chosen global axes. chosen local axes for its members.

Solution  In Fig. b we show the line diagram of the machine component of Fig. a.
Moreover, in Fig. b we give the components of the applied force in the direction of the

axes  and . In Fig. c we show the free-body diagram of a part of member 1 with the

unknown of internal actions at point X as assumed positive; referring to this figure, we
have

In Fig. d we show the free-body diagram of a part of member 2.  The internal forces
acting at point 2 of member 2 have been obtained from those of point 2 of member 1
using the principle of equal and opposite action and reaction.  The unknown internal
actions at point X are shown as assumed positive (see Fig. 8.9).  Referring to Fig. d we
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 (b)

have

Figure c  Free-body diagram Figure d  Free-body diagram
of a part of member 1. of a part of member 2.

Figure e  Free-body diagrams of the members of the machine component of Fig. a .

Figure f  Shear and moment diagrams of the machine component.
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(8.16)

   (8.17)

   (8.18)

 (c)

In Fig. e we draw the free-body diagrams of the members of the machine component of
Fig. a. In Fig. f we plot their shear and moment diagrams.
                                                                                                                                              

8.9 Action Equations of Equilibrium for Line Members

iConsider a line member subjected to external concentrated forces P  (i = 1, 2, 3) (n((n)

i i i= 1, 2, ..., n ), and moments M  (i = 1, 2, 3)(m = 1, 2, ..., m ) and to external distributed((m)

i 1 i 1forces p (x ) (i = 1, 2, 3) and moments m (x ) (i = 1, 2, 3) given in units of force or moment

1 1 1 i i 1per unit length. The forces P  and p (x ) are axial centroidal.  The forces P  and p (x ) (i( j) (j)

i= 2, 3) act in the direction of the x  (i = 2, 3) axis.  The line of action of each of these
forces lies in planes which contain the shear center of the cross sections of the member.

1Moreover, consider a segment of this member of length )x  at point B (see Fig. 8.18).

i 1 i 1This segment is subjected only to distributed forces  p (x ) (i = 1, 2, 3) and moments m (x )
(i = 1, 2, 3) which are represented by one expression in the neighborhood of point B.  The
distributed moments are not shown in Fig. 8.18 in order to avoid cluttering it.  Since the
segment is in equilibrium, we have

1 1Dividing by )x  and taking the limit as )x  6 0, the above relations reduce to

www.EngineeringEBooksPdf.com



   Theories of Mechanics of Materials356

   (8.19)

   (8.20)

   (8.21)

(8.22)

(8.23)

Figure 8.18  Segment of a member with positive internal and external actions. 

Differentiating relations (8.20) and (8.21) and substituting equations  (8.17) and (8.18),
respectively, in the resulting relations, we obtain

Relation (8.16) is the action equation of equilibrium for a line member subjected to axial
centroidal forces.  Relation (8.19) is the action equation of equilibrium for a line member
subjected to torsional moments.  Relations (8.22) and (8.23) are the action equations of
equilibrium for a member subjected to transverse forces and bending moments.  The line
of action of each of these forces lies in a plane which contains the shear centers of the
cross sections of the member.  Each one of equations (8.16) to (8.23) must be satisfied by
the distribution of the corresponding internal action at every point of a line member in
equilibrium which is not a point of application of the corresponding component of a
concentrated external action or a poi nt at which the expression specifying the
corresponding component of distributed external actions changes. 

2 3In practice it is difficult to apply to a member distributed moments m  and m .  For this
reason they are usually omitted.  We retain them in this and Chapter 9 in order to explain
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in Section 9.3  how a function of discontinuity known as the doublet function (see
Appendix G) is used to convert concentrated moments to mathematically equivalant
distributed moments.

The external actions (forces and moments) acting on a member can be distributed
and/or concentrated.  The components of the distributed external actions are functions of

1x  specified by one or more expressions.  Referring to relations (8.16) to (8.23), we see
that at the points at which the expression that specifies a component of the external
distributed actions changes, the expression specifying the corresponding component of
internal action also changes.  Moreover, at the points at which the expression specifying

2 3the internal shearing force Q  or Q  changes, the expression specifying the internal

3 2bending moment M  or M , respectively, also changes.  Furthermore, it can be shown that
the points at which a component of a concentrated external action is applied the
corresponding component of internal action has a simple discontinuity or jump equal to
the magnitude of the component of the concentrated external action.  We call the points
of a member at which the expressions which specify the distributed external actions
change and the points at which concentrated external actions are applied,  points of load
change.  Thus, a component of internal action of a member is specified by a set of
expressions having continuous derivatives of any order, each of which represents the
component of internal action over a segment of the member, which extends between a
support and its adjacent point of load change or between two consecutive points of load
change.  Each one of the sets of the expressions specifying an internal action must satisfy
the corresponding equation of equilibrium  (8.16) to (8.23) at all points of the
corresponding segment of the member.  This ensures the satisfaction of the requirements
for equilibrium of the actions acting on every segment of infinitesimal length of the
member cut by two imaginary planes normal to its axis except the segments of
infinitesimal length which contain the points of load change.  Moreover, each one of the
sets  of  expressions  specifying  an  external  action  must  satisfy  the  requirements  for
equilibrium of the segments of infinitesimal length which contain the points of load
change.

1 1For example, the expression describing the external axial centroidal force p (x  ) acting
on the bar of Fig. 8.19a changes at point B.  Moreover, there is a concentrated axial
centroidal force acting at point C.  Thus, the internal axial centroidal force acting on the

(a) Bar subjected to axial centroidal forces segment (b) Free-body diagram of a 
segment of infinitesimal
length of the bar of Fig. 8.19a  
containing point C

(c) Axial force diagram for the bar of Fig. 8.19a.

Figure 8.19  Line members subjected to axial centroidal forces.
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       (8.24a)

(8.24b)

(8.24c)

(8.24d)

(8.24e)

  (8.25)

  (8.26)

cross sections of the bar of Fig. 8.19a is represented in each of its segments ,  or

1 1 1, by the continuously differentiable function N (x ), N (x ) or N (x ), respectively.(1) (2) (3)

In order to ensure that the forces acting on each segment of infinitesimal length of the bar,
except those which contain one of the points of load change B and C, are in equilibrium,

1 1 1referring to relation (8.16), the functions N (x ), N (x ) or N (x ) must satisfy the(1) (2) (3)

following equilibrium equations:

Moreover, in order to ensure that the forces acting on each segment of infinitesimal length
of the bar, which contains point B or C, are in equilibrium, referring to Fig. 8.19b, the

1functions N (x ) (j = 1, 2, 3) must satisfy the following equilibrium relations:(j)

It should be emphasized that the satisfaction of relations (8.16) to (8.23) by a
distribution of the components of internal actions in a member does not ensure that every
particle of the member is in equilibrium.  As we pointed out previously in the theories of
mechanics of materials  it is assumed that it is not necessary to satisfy this requirement
for every particle inside the volume of a member or on its boundary.  In fact in some cases
the components of stress obtained on the basis of the theories of mechanics of materials
do not satisfy this requirement at all particles of a member.

8.10 Shear and Moment Diagrams for Beams by the Summation Method

The method of plotting shear and moment diagrams for beams presented in Section 8.8
is time-consuming.  For this reason, in this section we describe a more convenient method
in which the relation between the external distributed force and the shearing force (8.17)
or (8.18), and the relation between the shearing force and the bending moment (8.20) or
(8.21) are employed.  These relations have been derived in Section 8.9 by considering the

1 3equilibrium of an infinitesimal segment of the beam.  For a planar beam in the x  x  plane
they are
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(8.27a)

(8.28a)

Consider the planar beam shown in Fig. 8.20, subjected to external actions.  If we
integrate relation (8.25) over an arbitrary interval of the length of the beam from a point

1 1x  = a to a point x  = b, we obtain

3 1Referring to Fig. 8.20a, we see that the quantity p  dx  represents the cross-hatched portion
of the area under the diagram of external distributed forces.  Thus, the right integral of
relation (8.27a) is equal to the area under the diagram of external distributed forces from

1 1 3 1point x  = a to point x  = b.  If the shearing force Q  is a continuous function of x  between

1 1points x  = a and x  = b relation (8.27a) gives

3 3 1 1 Q (b) ! Q (a) = ! (Area under the diagram of external forces from x = a to x = b)
(8.27b)

The shearing force is discontinuous only at the points of a member where a concentrated
external force acts (see Fig. c of Example 2 of Section 8.8 ).  Thus, if we know the

3 1shearing force Q (a) at a point x  = a of a beam and if a concentrated force does not act

1 1on the beam in the interval from x  = a to x  = b, then from relation (8.27b), we can find

3 1directly the shearing force Q (b) at point x  = b of the beam.

1 1Integrating relation (8.26) from x  = a to x  = b, we get

3 1Referring to Fig. 8.20b, we see that the quantity Q dx  represents the cross-hatched
portion of the area under the shear diagram.  Thus, the integral at the right side of relation

1 1(8.28a)  is  equal  to the area under the shear diagram from point x  = a to x  = b.  If the

2 1 1 1moment M  is a continuous function of x  between points x  = a and x  = b, relation
(8.28a) gives

2 2 1 1 M (b) ! M (a) = (area under the shear diagram from x = a to x = b) (8.28b)

Figure 8.20  Beam subjected to external
 actions and its shear diagram.
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      (a)

      (b)

      (c)

The moment is discontinuous only at its points where a concentrated external moment

2acts (see Fig. e of Example 2 of Section 8.8).  Thus, if we know the moment M (a) at any

1point x  = a of a beam, and if a concentrated moment does not act on the beam in the

1 1 2interval from x  = a to x  = b, we can find directly from relation (8.28b) the moment M (b)
1at point x  = b of the beam.

On the basis of the foregoing presentation, it is clear that the shear and moment
diagrams for a beam can be plotted starting from the one end (usually the left) of the beam
where the shear and moment are known and proceeding to the other end using relations
(8.27b) and (8.28b), respectively.  This method of plotting the shear and moment diagrams
is referred to as the summation method.

In what follows we plot the shear and moment diagrams of a beam by the summation
method.
                                                                                                                                              

Example 4  Plot the shear and moment diagrams of the planar beam shown in Fig. a.

Figure a  Geometry and loading of the beam.

Solution  We first compute the reactions of the beam.  Referring to the free-body diagram
of the beam shown in Fig. b, we have

Referring to Fig. b we know that at point 1 the shearing force is equal to the reaction

vR  (45 kN).  Using relation (8.27b), we find that the shearing force at point 2 is smaller(1)

than at point 1 by 48 kN which is the area under the diagram of the external forces from
point 1 to point 2; that is, the shearing force at point 2 is equal to 45 ! 48 = !3 kN.  The
shear diagram from point 1 to point 2 is a straight line inasmuch as the external force,

3 1 3which is equal to minus the slope of the shear diagram, is constant (dQ /dx  = !p  = !12

Figure b  Free-body diagram of the beam.
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Figure c  Free-body diagram of an Figure d  Free-body diagram of an
infinitesimal segment of the beam infinitesimal segment of the beam
containing point 3. containing point 4.

kN/m).  From point 2 to point 3 the shearing force remains constant since the area under
the diagram of external forces is zero.  At point 3 there is a discontinuity in the shear
diagram equal to the concentrated external force of 24 kN.  The shearing force changes
from !3 to the left of point 3 to !27 kN to the right of point 3.  This becomes clear by
considering the free-body diagram of the segment of infinitesimal length which includes
point 3 of the beam shown in Fig.c.  On the left face of this segment a shearing force of
3 kN acts downward.  It is apparent that an upward shearing force of 27 kN must act on
its right face in order for the segment to be in equilibrium.  From point 3 to point 5 the
shearing force remains constant and equal to !27 kN.  Thus, the value of the shearing
force at point 5 is equal to the value of the reaction at this support.  This in fact is a check
of the algebra required for computing the shearing forces.  The shear diagram is plotted

3in Fig. e.  Notice that the shearing force Q  vanishes at point A located between points 1

2 1and 2.  Referring to equation (8.26) we see that at this point dM /dx  = 0.  Consequently,

2 1at this point M (x ) assumes an extremum value which is maximum in this case.  The
position of point A may be established from the similarity of the two triangles under the

1 1shear diagram between  points 1 and A and points A and 2 [x /45 = (4 ! x )/3].  That(A) (A)

1is, the distance x  from point 1 to point A is equal to 3.75 m.  Thus, the area of the shear(A)

diagram from point 1 to A is equal to (45) (3.75/2) = 84.375 kN@m whereas the area under
the shear diagram from point A to point 2 is equal to (3)(0.25)/2 = 0.375 kN@m.

Figure e  Shear diagram.

Figure f  Moment diagram.
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           (8.29)

Referring to Fig. b we see that the moment at point 1 is zero. Therefore, referring to
Fig. e and using  equation (8.28b) at point A the moment is equal to 84.375 kN@m which
is the area under the shear diagram from point 1 to point A.  At point 2 the moment is
equal to the moment at point A plus the area under the shear diagram from point A to point
2 which is equal to -0.375 kN@m.  Therefore, the moment at point 2 is equal to 84.375 !
0.375 = 84.0 kN@m. 

From point 1 to point 2 the moment diagram is a second degree curve because the

1 2 1 3 3shear diagram in this interval is a linear function of x  (dM /dx  = Q ).  Inasmuch as Q
1becomes less positive as x  increases, the slope of the moment diagram must decrease with

1x .  The moment at point 3 differs from the moment at point 2 by !6 kN@m which is the
area under the shear diagram from point 2 to point 3.  That is, the moment at point 3 is 78

3 2 1kN@m.  Since Q  = dM /dx  is constant from point 2 to point 3, the moment diagram
between these two points is a straight line.  Similarly, the moment just to the left of point
4 differs from the moment at point 3 by !54 kN@m which is the area under the shear
diagram from point 3 to point 4.  Therefore, the moment just to the left of point 4 is 24
kN@m.  At point 4 there is a discontinuity in the moment diagram of 84 kN@m.  The
moment changes from 24 kN@m  just  to  the  left of point 4 to 108 kN@m just to the right
of point 4.  This becomes clear by considering the equilibrium of the infinitesimal
segment of the beam, which includes point 4, whose free-body diagram is shown in Fig.
d.  A clockwise moment of 24 kN@m acts on the left face of this segment.  For the
equilibrium of the segment a counterclockwise moment of 108 kN@m must act on its right
face.  From point 4 to point 5 the shearing force is constant.  Consequently, the moment
diagram is a straight line.  The moment at point 5 is equal to the moment just to the right
of point 4 plus the area under the shear diagram from point 4 to point 5.  This area is equal
to !108 kN@m. That is, the moment at point 5 is equal to zero.  This concurs with the
actual moment at the pin end of the beam and it is a partial check of the algebra done in
plotting the moment diagram.  The moment diagram is plotted in Fig. f. 
                                                                                                                                              

8.11    Str ess–Strain Relations for a  Particle of a L ine Member Made from an  
Isotropic Linearly Elastic Material

The relations among the components of stress and strain of a particle of a line member
made from a homogeneous, isotropic, linearly elastic material are obtained by substituting
relations (8.1a) into the stress–strain relations (3.93).  That is,

1 2 3In general it is not possible to measure the temperature T(x , x , x ) of the particles of a
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member which are not located on its surface.  For this reason in what follows we  express
the temperature of any particle of a member in terms of the temperature of certain
particles located on the surface of this member.  For this purpose we introduce the
following notation:

2 1 2 11. T (x ) and T (x )  are the temperatures at the points of the two lines of intersection of( +) ( -)

1 2the plane x  x  and the lateral surface of the member (see Fig. 8.21a).  We define the

2 1difference in temperature *T (x ) as

2 1 2 1 2 1*T (x ) = T (x ) ! T (x ) (8.30)(+) ( -)

3 1 3 12. T (x ) and T (x ) are the temperatures at the points of the two lines of intersection of( +) ( -)

1 3the plane x  x  and the lateral surface of the member (see Fig. 8.21a).  We define the

3 1difference in temperature *T (x ) as

3 1 3 1 3 1*T (x ) = T (x ) ! T (x ) (8.31)(+) ( -)

c 13. T (x ) is the temperature of the points of the centroidal axis of a member.  We define

c 1the change of temperature )T (x ) at the points of the centroidal axis of a member as

c 1 c 1 o)T (x ) = T (x ) ! T (8.32)

4. We denote       is the coefficient of linear thermal expansion of the material from which

1the member is made.  Thus, the change in length of a fiber of a member of length dx  due
to an increase of temperature )T is equal to

1)L =     )Tdx (8.33)

1 2 3We assume that the variation of the temperature T(x , x , x ) is such that plane sections
normal to the axis of a member, before the temperature changes, remain plane after the
temperature changes.  This implies that the change of temperature is a linear function of

2 3the coordinates x  and x  (see Fig. 8.21b), and consequently, it can be expressed as

(a) Temperature at the points of (b) Distribution of temperature

1 2 1 3 3intersection of the x x  or x x  plane along the x  axis
with the lateral surface of a member

Figure 8.21  Distribution of temperature on a cross section of a member.
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      (8.36)

   (8.38)

(8.40)

(8.41)

o 1 2 2 3 3T ! T  = A  + A x  + A x (8.34)

1 2 3 1where A , A , A  are functions of x  only.  Referring to relation (8.34) the change of

c 2 3temperature )T  at the points of the centroidal axis (x  = x  = 0) of a member is equal to

c c o 1)T  = T  ! T  = A (8.35)

Referring to Fig. 8.21a, we see that 

Substituting condition (8.36) into relation (8.34) and using (8.35), we obtain

2 o 2 2 cT  ! T  =  A x  + )T( +) ( +)

(8.37)

2 o 2 2 cT  ! T  = - A x  + )T( -) ( -)

Moreover, referring to Fig. 8.21a, we see that  

Substituting condition (8.38) into relation (8.34) and using (8.35), we get

3 o 2 3 cT  ! T  = A x  + )T( +) ( +)

(8.39)

3 o 2 3 cT  ! T  = !A x  + )T( -) ( -)

2 2Multiplying the first of relations (8.37) by *x * and the second by *x * and adding, we(-) (+)

obtain

2 3Multiplying the first of relation (8.39) by *x * and the second by *x * and adding, we(-) (+)

obtain

2 2 3 3Notice that as expected when three of the temperatures T , T , T  or T  are given,(+) (-) (+) (-)

cthe fourth may be established from relations (8.40) and (8.41).  Moreover, notice that )T
c o 2 2 3 3= T  ! T  can be established if T  and T  or T  and T  are given.  Subtracting the(+) (-) (+) (-)

second of relations (8.37) from the first and using relation (8.30), we get
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(8.42a)

(8.42b)

(8.43)

 (8.44)

   (8.45)

Subtracting the second of relation (8.39) from the first and using relation (8.31), we obtain

Substituting relations (8.35), (8.42a) and (8.42b) into relation (8.34), we have

Substituting relation (8.43) into (8.29), we get

Relations (8.44) represent a convenient form of the stress–strain relations for a particle

c 2of a line member made of a homogeneous isotropic linearly elastic material. )T , *T  and

3*T  are functions only of the axial coordinate of the member.  Eliminating  from the

first two of relations (8.44), we obtain

8.12 The Boundary Value Problems in the Theories of Mechanics of Materials for
Line Members

We consider a line member of arbitrary constant cross sections made from an isotropic
linearly elastic material.  The end surfaces of the member are perpendicular to its axis.
Initially the member is in a stress-free strain-free, state of mechanical and thermal

oequilibrium at a uniform temperature T .  In this state the member is not subjected to
external actions and heat does not flow in or out of it.  Subsequently, the member is
subjected to specified loads and to specified constraints as a result of which it does not
move as a rigid body but it deforms and reaches a second state of mechanical but not
necessarily thermal equilibrium.

We assume that the effect of the deformation of a line member on the distribution of
its temperature is negligible.  Consequently, the distribution of temperature in a line
member can be established independently of its deformation.  We assume that it has been
established and it is part of the data of the problem under consideration.  If the given
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temperature distribution is a function of the axial coordinate, the member does not reach
a state of thermal equilibrium, because heat will be flowing in or out of it.

We consider only external loads whose magnitude is such that the deformation of the
member is within the range of validity of the assumption of small deformation (see
Section 2.4).  These loads could include the following:

1. A specified change of temperature.  We assume that the distribution of temperature

2 3inside a member is a linear function of x  and x .  Thus, the change of temperature can be

c 1 2 1 3 1specified by )T (x ), *T (x ) and *T (x ) (see Section 8.11).

1 12. Specified external axial centroidal distributed forces p (x ) and specified external axial

1 1centroidal concentrated forces P  (n = 1, 2,  ..., n ) acting along the length of the(n)

member.  An axial force whose line of action does not pass through the centroids of the
cross sections of the member on which it acts is replaced by a statically  equivalent system
consisting of an equal force whose line of action passes through the centroids of the cross

2 3sections of the member and moments about the x  and x  axes (see Section 8.2).

2 1 3 13. Specified external transverse distributed forces p (x ) and p (x ) and specified external

2 2 3 3transverse concentrated forces P  (n = 1, 2, ..., n ) and P  (n = 1, 2, ..., n ).  The line of(n) (n)

action  of each one of these forces lies in a plane which contains the shear centers of the
cross sections of the member. A transverse force whose line of action does not meet this
requirement is replaced by a statically equivalent system consisting of an equal force
whose line of action lies in a plane containing the shear centers of the cross sections of the
member and a torsional moment which is equal to the moment of the force about an axis

1parallel to the x  axis and passing through the shear centers of the cross sections of the
member (see Section 8.2).

i 14. Specified external distributed moments m (x ) (i = 1, 2, 3) and specified external

i iconcentrated moment M  (i = 1, 2, 3) (m = 1, 2, ..., m ).  However, the theories of(m)

mechanics of materials cannot handle line members of non-circular cross section,

1 1 1 1subjected to torsional moments m (x ) and M    (m = 1, 2, ..., m ), because as shown in(m)

Sections 6.5 and 6.6 for such members plane sections normal to their axis before
deformation do not remain plane after deformation but they warp and the effect of their
warping cannot be disregarded.

1 15. A distribution of traction on each of its end surfaces (x  = 0 and x  = L) which is
statically equivalent to

1 1(a) An axial centroidal concentrated force P  or P  (see Fig. 8.22).O L

2 2 3 3(b) Transverse concentrated forces P  or P  and P  or P  (see Fig. 8.22).  The lineO L O L

of action of each one of these forces lies in a plane containing the shear centers
of the cross sections of the member.

1 1(c) A torsional moment M  or M  (see Fig. 8.22).O L

2 3 2 3(d) Bending moments M  and M  or M  and M  (see Fig. 8.22),O O L L

For a correctly formulated problem one quantity from each of the following pairs of

1 1quantities must be specified at each end surface (x  = 0 or  x  = L) of a member:

1 1 1 1u   or  P 2   or  Mq q q q

2 2 2 2u   or  P 2   or  M q = 0 or L                    (8.46)q q q q

3 3 3 3u   or  P 2   or  Mq q q q

iThe specification of u  (i = 1, 2, 3) or      (i = 1, 2, 3) is called an essential boundaryq

i icondition,  while  the  specification  of P  (i = 1, 2, 3) or M  (i = 1, 2, 3) is called a naturalq q
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Figure 8.22 Positive actions at the ends of a member.

boundary condition.  For a unique solution the rigid-body motion of the member must be

1 1 2 1 3 1specified.  Consequently, the component of translation u (x ), u (x ) and u (x ) and the
component of rotation       must be specified at least at one end of the member.  Moreover,

jeither       (i = 2, 3) must be specified at the same end of the member or u  [(j = 2, 3  j � i)]
must be specified at the other end of the member.

When a component of displacement is specified at an end of a member, the
corresponding component of action at this end is unknown and it is called the reaction of
the member at this end.  When a component of action is specified at an end of a member,
the corresponding component of displacement at this end is unknown.

We are interested in establishing the distribution of the components of displacement

i 1u (x ) (i = 1, 2, 3) of the particles of the axis of the member, of the components of rotation

1     (x ) (i = 1, 2, 3) of the cross sections of the member and of the components of stress

1 2 3 1 2 3 1 2 3      (x , x , x ) ,      (x , x , x ) and       (x , x , x ) acting on the particles of the member.  The
other components of stress are assumed negligible [see  relation (8.1)].

On the basis of our discussion in Section 8.2 the boundary value problem described
above is reduced into the following three uncoupled boundary value problems.

Boundary value problem 1

1 1Find the component of translation u (x ) of a prismatic line member, which is
restrained at one or both ends from moving as a rigid body, and is subjected to axial

ccentroidal forces and/or change of temperature )T  [see relation (8.32)].

Boundary value problem 2

1Find the component of rotation      (x ) of a prismatic line member of solid or hollow
circular cross sections which is restrained at one or both ends from moving as a rigid body
and is subjected to torsional moments.

Boundary value problem 3

i 1Find the components of translation u (x ) (i = 2 or 3) and the components of rotation

1     (x ) (i = 3 or 2) of a prismatic line member which is restrained at one or both ends from
moving as a rigid body and is subjected to transverse forces, bending moments and change

2 1 3 1of temperature *T (x ) and *T (x ) [see relations (8.30) and (8.31)].  The line of action of
each of the forces lies in a plane which contains the shear centers of the cross sections of
the member.  Consequently, the cross sections of the member do not rotate (twist) about

1the x  axis.  We say that the member is subject to bending without twisting.  Members
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            (8.48)

      (8.47)

     (8.49)

(8.50)

subjected to such loading are called beams.
In the next two sections we formulate the first two boundary value problems and we

solve several examples. In Chapter 9 we formulate the third boundary value problem, and
we solve several examples.

8.13 The Boundary Value Problem for Computing the Axial Component of
Translation and the Internal Force in a Member Made from an Isotropic,
Linearly Elastic Material Subjected to Axial Centroidal Forces and to a
Uniform Change of Temperature

Consider a straight-line member, having constant cross sections of arbitrary geometry,
made from a homogeneous (E = constant) isotropic, linearly elastic material.  We choose

1the x  axis to be the axis of the member, that is, the locus of the centroids of its cross
sections.  The member is initially at a reference stress-free, strain-free state of mechanical

oand thermal equilibrium at a uniform temperature T .  Subsequently, the member reaches
a second state of mechanical equilibrium due to the application on it of one or more of the
following loads:

1. A distribution of the axial component of body force throughout its volume and a
distribution of the axial component of traction on its lateral surface which are statically
equivalent to a set of specified axial centroidal forces.  That is, forces applied to the axis

1 1of the member.  These could be concentrated forces P  (n = 1, 2, ..., n ) and distributed(n)

1 1forces p (x ) given in units of force per unit length of the member.

c 12. Specified change of temperature [)T (x ) (see Section 8.11)] which does not vary over
the cross sections of the member. Notice that if in the second state of mechanical
equilibrium the temperature of the member is a function of its axial coordinate, heat will
flow into or out of it and, consequently, it will not be in a state of thermal equilibrium.

1 13. Axial components of traction acting on each end surfaces (x  = 0 and x  = L) of the
member which are statically equivalent to an axial force acting on the centroid of each end
surface of the member.  

For a correctly formulated problem either the axial component of force or the axial

1component of translation u  must be specified at each end of a member.  However, for a
unique solution it is essential that the rigid-body motion of a member is specified.  Thus,
the axial component of translation must be specified at least at one end of a member.  For
example, the boundary conditions for the one member structure of Fig. 8.23a are

1where P  is the specified axial component of external axial centroidal force at the end LL

of the member.  The boundary condition (8.47) is essential, while the boundary condition
(8.48) is natural.  The boundary conditions for the one-member structure of Fig. 8.23b are

Thus, for the one-member structure of Fig. 8.23b both boundary conditions are essential.

www.EngineeringEBooksPdf.com



The Boundary Value Problem for Computing the Axial Component of Translation    369

            (8.51)

(8.52)

Figure 8.23 One-member structures subjected to external axial forces.

Notice that the number of essential boundary conditions specified for the one-member
structure of Fig. 8.23a is the minimum required in order to prevent it from moving as a
rigid body.  In this case the structure is statically determinate.  That is, its reactions and

1the distribution of the internal forces N(x ) can be established by considering the
equilibrium of appropriate segments of the structure.  Moreover, notice that there is one
more essential boundary condition specified for the structure of Fig. 8.23b than the
minimum required in order to prevent it from moving as a rigid body.  In this case the
structure is statically indeterminate to the first degree.  That is, its reactions and the

1distribution of its internal force N(x ) cannot be established by considering only the
equilibrium of segments of the member.

We are interested in computing the displacement and stress fields of the member under
consideration when it reaches the second state of mechanical equilibrium due to the
application on it of one or more of the loads described above.  When a line member is
subjected to one or more of these loads, as discussed in Section 8.2, its cross sections do
not rotate and the particles of its axis do not translate in the transverse direction.  That is,

Consequently, relations (8.5) and (8.6) reduce to†

and
                                 

1 2 3 1† (x ,x ,x ) is the component of the displacement in the direction of the x  axis of a particle of the member while

1 1 1 2u (x ) is the component of the displacement in the direction of the x  axis of a particle of the centroidal axis (x
3= x  = 0) of the member.
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(8.53)

  (8.54)

(8.55)

(8.56)

(8.57)

(8.58)

(8.59)

That is, the axial component of displacement of the particles of the member does not vary

2 3with x  and x .
In addition to the assumptions described in Section 8.2 for the member under

consideration we assume that 

In Example 1 of Section 5.5 we show that when a prismatic line member is subjected on

1 1each of its end surfaces (x  = 0 and x  = L) to an uniform distribution of the axial
component of traction, plane sections normal to its axis prior to deformation remain plane
and normal to its axis after deformation.  Thus, in this case the shearing components of

12 1 2 3 13 1 2 3strain e (x , x , x ) and e (x , x , x ) vanish.  When the lateral surface of a prismatic
member is subjected to a distribution of the axial component of traction, the shearing

12 13components of strain e  and e  do not vanish.  However, they are very small compared

11to the normal component of strain e  and can be neglected.  Consequently, referring to
the stress–strain relations (3.47) and taking into account assumption (8.1), the stress
distribution in the member under consideration is 

Substituting relation (8.53) into the first of relations (8.44), we get

where

Substituting relation (8.56) into relation (8.9a) and integrating, we get the following
internal action–displacement relation for a line member made from a homogeneous
isotropic, linearly elastic material

where A is the area of the cross section of the member.

1 1 1Notice that, by eliminating (du /dx  ! H ) from relations (8.58) and (8.56), as expected,
we obtain the following stress–internal action relation for the member under consideration

1where N(x ) is the resultant axial centroidal force acting on the cross sections of the
member.

Referring to relations (8.55) and (8.59) we see that the state of stress at the particles
of a member subjected to external axial centroidal forces is specified by the following

1 2 3matrix which gives the components of the stress tensor referred to the x , x  and x  axes.
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(8.60)

      (8.61)

(8.62)

In Example 1 of Section 5.5 we find that the stress distribution (8.60) is equal to that
obtained on the basis of the linear theory of elasticity for a prismatic member subjected
only to a uniform distribution of the axial component of traction on each of its end

1 1surfaces (x  = 0 and x  = L) which is equivalent to an axial centroidal force.  Moreover,
it can be shown that the stress distribution (8.60) is a satisfactory approximation to the
stress distribution in prismatic members subjected to axial centroidal forces along their
length, except in the neighborhood of the discontinuities of the external forces, where
there may be stress concentrations.

Substituting relation (8.58) into (8.16), we get

On the basis of relations (8.58) and (8.61) and referring to our discussion in Section

1 18.9, the axial component of translation u (x ) is represented by a set of continuously

1 1 1 1differentiable functions u (x ) [s = 1, 2, ..., (S +1)], where S  is equal to the number of(s)

points of load change of the axial component of the external forces acting on the member.
Each one of these functions gives the axial component of translation in one segment of
the member extending between a support and its adjacent point of load change of the axial
component of the external forces or between two consecutive points of load change of the
axial component of the external forces.  Thus, the boundary value problem for computing

1 1 1the axial component u (x ) of translation and the axial component N(x ) of internal
centroidal force in a line member (statically determinate or indeterminate) subjected to

1a distribution of external axial centroidal forces which have S  points of load change and

c 2 3to a uniform change of temperature ()T  � 0, *T  = *T  = 0), can be formulated in the so-
called strong or classical form cited below:

1 1 1Find the functions u (x ) [s = 1, 2, ..., (S +1)] which have the following properties:(s)

1. They have continuous derivatives of any order.
2. They satisfy the essential boundary conditions at the ends of the member, when such
conditions are specified.
3. They yield a continuous axial component of translation throughout the length of the
member.  This requirement is met if at each point of load change of the external axial

1 1 1centroidal forces, the axial component of translation u  obtained from the function u (x )(s)

for the segment at the left of the point of load change is equal to that obtained from the

1 1functions u (x ) for the segment at the right.(s+1)

4. Each satisfies the displacement equation of equilibrium (8.61) at all points of the
segment of the member whose axial component of translation it represents.  That is,

This ensures that every segment of infinitesimal length of the member cut by two
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imaginary planes perpendicular to its axis, which does not contain a point of load change
of the axial component of the external forces, is in equilibrium.
5. When substituted into the internal force, translation relation (8.58), they give a set of

1 1 functions N (x )[s = 1, 2, ..., (S + 1)] each one of which represents the axial component(s)

of internal force in the s  segment of the member. Each of these segments extendsth

between a support and its adjacent point of load change of the external axial centroidal
forces or between two adjacent points of load change of the external axial centroidal
forces.  These functions satisfy
(a) The natural boundary condition at the end of the member where a specified external

axial centroidal force is applied.
(b) The equilibrium  of the segments of infinitesimal length cut by two imaginary  planes
      normal   to  the  axis  of  the  member,   which  contain  a point  of  load change of the
      external axial centroidal forces.

1 1On the basis of the foregoing presentation, the axial component of translation u (x )

1and the axial component of the internal force N(x ) of any member can be established by
adhering to the following steps:

STEP 1  The set of differential equations (8.62) is solved to obtain the axial component

1 1 1 of translation u (x ) [s = 1, 2, ..., (S + 1)] of each segment of the member extending(s)

between a support and its adjacent point of load change of the external axial centroidal
forces or between two points of load change of the external axial centroidal forces.   Each

1 1 1 of the functions u (x ) [s = 1, 2, ..., (S + 1)] involves two constants.(s)

STEP 2  The constants are evaluated by requiring that the axial components of translation

1 1 1 u (x ) [ s = 1, 2, ..., (S + 1)] satisfy properties 2 and 3 described above, and when(s)

1substituted into the internal-force-translation relation (8.58) give a set of functions N(x )

1[s = 1, , ..., (S +1)] which satisfies the natural boundary condition of the member if any
and the requirements for equilibrium of the segments of infinitesimal length cut by two
imaginary planes normal to the axis of the member, which contain a point of load change
of the external axial centroidal forces.

1 1The component of translation u (x ) of statically determinate members can also be
established by adhering to the following simpler procedure:

1 1 1STEP 1 The set of functions N (x ) [s=1,2...(S +1)] representing the axial component of(s)

the internal forces in the statically determinate member is established by considering the
equilibrium of appropriate segments of the member. It is apparent that the set of functions

1 1N (x ) satisfies the natural boundary condition of the problem and the requirements for(s)

equilibrium of any segment of infinitesimal length cut by two imaginary planes normal
to the axis of the member.

1 1STEP 2 The functions N (x )  established in step 1 are substituted into relation (8.58) and(s)

1 1the resulting differential equations are solved to obtain the functions u (x ) [s = 1, 2, ...,(s)

1 (S + 1)] involving one constant each.

STEP 3 The constants are evaluated by requiring that the solution satisfies the essential
boundary conditions of the member as well as the continuity conditions at the points of
load change of external axial centroidal forces.
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(a)

(b)

In what follows we present an example.
                                                                                                                                              

1 1Example 5  Establish the component of translation u (x ) and the internal axial centroidal

1force N(x ) for the prismatic bar [A = 10(10 ) mm  of Fig. a subjected to the external axial3 2]

c  centroidal forces shown in this figure and to a uniform increase of temperature )T =
20°C.  The bar is made from a homogeneous, isotropic, linearly elastic material [E = 200

1 1GPa,     = 10 /°C].  Evaluate the reactions of the bar for P  = 60kN,  p  = 36 kN/m and L-5

= 2 m.  Show the results on a sketch.

Figure a  Geometry and external forces acting on the bar.

                                                                                                                                              

Solution This is a statically indeterminate bar; consequently, we cannot establish the

1distribution of the internal axial centroidal force N(x ) in it by considering the equilibrium
of its segments.  Thus, we must use the displacement equations of equilibrium (8.62).  

In this problem we have two points of load change of the external axial centroidal

1 1forces, one at x  = L/3 and another at x  = 2L/3.  Thus, the component of translation is

1 1 1expressed in terms of three different functions: u (x ) in the segment 0 # x  # L/3,(1)

1 1 1 1 1 1u (x ) in the segment L/3 # x  # 2L/3 and u (x ) in the segment 2L/3 # x  # L.  Each of(2) (3)

these functions must satisfy one of the following differential equations:
Integrating the above equations twice, we obtain
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(b)

        (c)

(d)

     (e)

(f)

(g)

iThe six constants C (i = 1, 2, ..., 6) are evaluated by requiring that the expressions for the
axial component of displacement (b) satisfy the following conditions:

1. The essential  boundary conditions.  That is,

2. The continuity conditions at the points of load change of the given external axial
centroidal forces.  That is,

13. The internal axial centroidal forces N (x ) (s = 1, 2, 3), obtained by substituting in(s)

1 1relation (8.58) the expressions for EA du /dx  (s = 1, 2, 3) from relations (b) must satisfy(s)

the requirements for equilibrium of the segments of infinitesimal length of the bar at

1 1points x  = L/3 and x  = 2L/3.  That is,

Substituting relations (b) into relations (c), (d) and (e) we obtain a set of six linear

ialgebraic equations whose solution gives the following values of the constants C (i = 1,
2, .., 6):

Substituting the values of the constants in relations (b), we obtain
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(g)

   (h)

(i)

           (j)

          (k)

        (l)

and

Where, referring to relation (8.57), we have

Referring to Fig. b and using relations (h) and (i), the reactions of the structure are

Using relations (j) and (k) we get

1The maximum stress occurs at 2L/3 < x  < L and for A = 10(10 ) mm  it is equal to3 2

The yield stress of ordinary structural steel is about 210 MPa.

Figure b Reactions of the one-member structure of Fig. a.
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 (m)

(8.63)

(8.64)

Notice that for this example the internal force and the component of stress resulting
from the increase of temperature are considerably larger than the corresponding quantities
resulting from the external forces.

1 1For p  = P  = 0 relations (g) and (h) reduce to

Consequently,

Referring to relations (q) of Example 2 of Section 5.5, we see that the results obtained for
the same problem using the linear theory of elasticity are identical to those obtained using
the theory of mechanics of materials.
                                                                                                                                              

8.13.1 Solution of t he Boundary Value Problem for Computing the Axial
Component of Translation and of the Internal Force in a Member Subjected
to Axial Centroidal Forces and to a Uniform Change of Temperature Using
Functions of Discontinuity

The formulation and the solution of the boundary value problem for computing the

1 1 1axial components of translation u (x ) and of the internal force N(x ) presented in the
previous section are cumbersome.  In this section we present a more efficient approach
to the same problem using functions of discontinuity.  These functions are used to write
a discontinuous function as, for example, the external or internal forces acting on a
member by a single expression.  Using these functions we can write one displacement
equation of equilibrium (8.61), as if the distribution of the external axial centroidal forces
was continuous.  That is, referring to Appendix G, we can convert a concentrated force

1 1 1n 1 1P  applied at x  = a  to an equivalent distributed force p (x ) as follows:(n)

1! 1nwhere *(x a ) is the Dirac delta-unction defined by relation (G.10) of Appendix G.
Referring to this definition, we see that the right side of relation (8.63) vanishes

1neverywhere except at the point a , where it is not specified.  However, referring to

1 1nrelation (G.13), the resultant of the external forces acting on the member from x  = a  !

1 1n    to x  = a  +    is equal to

where     is a small positive number.
Using relation (8.63) and referring to relation (G.1) of Appendix G, the displacement

equation of equilibrium for the one-member structure of Fig. 8.23a can be written as
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   (a)

  (b)

  (c)

(8.65)

1 1 1 1nwhere    (x -c ) is the unit step function defined by relation (G.1) and     (x -a )(n=1 or 2)
is the Dirac delta-function defined by relation (G.10) of Appendix G.  Using the rules for
integration of the functions of discontinuity presented in Appendix G, relation (8.65) may

1 1be integrated to give the axial component of translation u (x ) as a function of the axial
coordinate of the member involving two constants.   The constants can be evaluated from
the specified boundary conditions at the ends of the member.  As mentioned previously,

1for a properly posed problem either the internal axial centroidal force N(x ) or the axial

1 1component of translation u (x ) must be specified at each end of a member.
In what follows we illustrate the solution of the boundary value problem described in

this section, using functions of discontinuity, by an example.
                                                                                                                                              

1 1 1Example 6  Establish the component of translation u (x ) and the internal axial force N(x )
for the one-member structure of Fig. a subjected to the external axial centroidal forces

c shown in this figure and to a uniform increase of temperature )T  = 20°C.  The member
has a constant cross section and is made from a homogeneous, isotropic, linearly elastic
material [E  = 200 kN/mm ,  A = 10 (10 ) mm ,     = 10 /°C].  Evaluate the reactions of2 3 2 -5

1 1the member for P  = 60 kN, p  = 9 kN/m and L = 2 m.  Show the results on a sketch.

   Figure a Geometry and external forces

   acting on the one-member structure. 

 

Solution Referring to relation (8.65), the displacement equation of equilibrium for the
one-member structure of  Fig. a is

Moreover, the boundary conditions for the one-member structure of Fig. a are

1 1u (0) = 0 u (L) = 0
Referring to relations (G.4) and (G.12) of Appendix G and integrating equation (a) twice,
we get
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  (d)

(e)

   (f)

    (g)

The constants are evaluated by requiring that the solution (c) satisfies the boundary
conditions.  Thus,

or

Substituting the values of the constants (d) and (e) into relations (b) and (c), we get

and

As expected, these results are identical to the  corresponding  results (h) and (i) of the
example of the previous section.
                                                                                                                                              

8.14 The Boundary Value Problem for Computing the Angle of Twist and the
Internal Torsional Moment in Members of Circular Cross Section Made from
an Isotropic, Linearly Elastic Material Subjected to Torsional Moments

Straight-line members subjected to torsional moments are encountered in many
engineering applications as, for example, power transmission shafts.  These are members
of solid or hollow circular cross sections and are used to transmit power from one device
or machine to another. 

The assumptions of the theories of mechanics of materials discussed in Section 8.2 are
valid for prismatic line members of solid or hollow circular cross sections subjected to

1 1tractions on each of their end surfaces (x  = 0 and x  = L ) which are statically equivalent
to a torsional moment.  However, as we show in Sections 6.5 and 6.6, plane sections
normal to the axis of prismatic members of non-circular cross sections subjected to equal
and opposite torsional moments at their ends, do not remain plane after deformation; they
warp and the effect of warping on the components of stress acting on their particles and
on the angle of twist of their cross sections cannot be disregarded.  Consequently,
members having non-circular cross sections subjected to torsional moments cannot be
analyzed on the basis of the theory of mechanics of materials. 

Consider a member of constant solid or hollow circular cross sections made from a
homogeneous, isotropic, linearly elastic material (see Fig. 8.24).   The member is initially
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(8.66)

     (8.67)

(8.68)

Figure 8.24  One-member structure
 subjected to positive torsional moments.

in a reference stress-free, strain-free state of mechanical and thermal equilibrium at a

ouniform temperature T .  The member reaches a second state of mechanical and thermal
equilibrium due to the application on it of the following loads :

1. A distribution of external tractions acting on its lateral surface which are statically
equivalent to specified torsional moments.  These could be distributed torsional moments

1 1 1 1 1 1mm (x ) and concentrated torsional moments M (m = 1, 2, ..., m ) applied at x  = b (m =(m)

11, 2, ..., m ).

12. A distribution of shearing components of traction acting on each of its end surfaces (x
1 1 1= 0 and x  = L) which is equivalent to a torsional moment M  and M , respectively.0 L

1For a correctly formulated problem, either the component of rotation about the x  axis
or the torsional component of moment must be specified at each end of a member.
However, for a unique solution it is essential that the rigid-body motion of the member

1is specified.  That is, the component of rotation about its x  axis must be specified at least
at one end of the member. For example, the boundary conditions for the one member
structure of Fig. 8.24 are

In addition to the fundamental assumptions of the theories of mechanics of materials
discussed in Section 8.2, we assume that

1.  All material lines of a cross section of a member rotate due to its deformation by the

same angle known as the angle of twist which we denote by .

2.  When the loads described above are applied to a member, the particles of its axis do

2 3not translate and its cross sections do not rotate about the x  and x  axes.  That is,

3.  Radial lines do not elongate. That is,

In Section 6.3 and in the examples of Sections 6.5 and 6.6 we show, using the theory of
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†A proof of relations (8.69), and (8.70) based on the assumptions of Mechanics of Materials, can be found in 
1. Beer, F., Johnson, R. Jr., Mechanics of Materials, 2nd edition, McGraw-Hill, New York, 1982
2. Gere, J. M., Timoshenko, S.P., Mechanics of Materials, Brooks/Cole Engineering Division, Monterey, CA,
1984.

(8.69)

(8.70)

(8.71)

(8.72)

Figure 8.25  Distribution of the shearing component of stress in a member of circular cross section

subjected to torsional moments.

elasticity, that the assumptions discussed in Section 8.2 and the ones described above are
valid for members having constant solid or hollow circular cross sections, when they are
fixed on their one end surface and are subjected to a distribution of traction on their other
end surface which is equivalent to a torsional moment.  However, the torsional moment
must be applied in such a way that the end surface itself remains plane and undistorted.
This may be accomplished by applying the torsional moment to a rigid plate which is
solidly attached to the unsupported end of these members.  In the theories of mechanics
of materials the above stated assumptions are considered a good approximation for
prismatic members subjected to torsional moments along their length.  Thus, referring to
relations (w) and (x) of the example of Section 6.6,  we get†

where referring to Fig. 8.18 for members  of  hollow circular cross sections of external

e iradius R  and internal radius R , we have

while for  members of solid circular cross sections of radius R, we obtain

Moreover,

The last of relations (8.72) indicates that the shearing components of stress  acting on
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the cross sections of a member of circular cross section subjected to torsional moments
vary linearly with the radial distance r (see Fig. 8.25a and b).  As shown in Fig. 8.25c,

there is a distribution of the component of stress  of the same magnitude as  acting

on the longitudinal planes of the member.  This is due to the fact that, as shown in Section
2.13 the stress tensor is symmetric. That is,

 Table 8.1    Comparison of the boundary value problems for computing the displacement and 

     stress fields of a member subjected to axial centroidal forces in an environment

     of constant temperature or to torsional moments.

Tabulated
Item

Members Subjected to

Axial Centroidal Torsional Moments     

External
Actions

Component of
Displacement

Axial Component of
Translation

1 1 u (x )

Axial Component of

Rotation (Twist)  

Internal Action Axial Centroidal Force

1N(x )
Torsional Moment

1 1M (x )

Differential
Equation

Action–
Displacement

Relation

Boundary
Conditions

State of Stress
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(8.73)

(8.74)

(8.75)

(8.76)

Differentiating both sides of relation (8.69) and using the equilibrium equation (8.14),
we get

1 1where m (x ) is the distributed torsional moment acting along the length of the member.
As illustrated in Table 8.1, the boundary value problem for computing the axial

component of rotation  of a prismatic member of circular cross section subjected

to torsional moments is mathematically identical to the boundary value problem for

1 1computing the axial component of translation u (x ) of a prismatic member subjected  to
axial centroidal forces.  The domain of both problems is a line (the length of the member)

1 1and the boundary consists of its two end points (x  = 0 and x  = L).  For this reason these
problems are called two point boundary value problems.  Moreover, both problems
involve a linear ordinary differential equation of the second order.  Thus, the procedures
for establishing the axial component of rotation of members subjected to torsional
moments are identical to those described in Sections 8.13 for establishing the axial
component of translation of members subjected to axial centroidal forces.

8.14.1 Analysis of Power Transmitting Prismatic Circular Shafts

The most common use of prismatic  members of circular cross section subjected to
torsional moments is to transmit mechanical power from one machine or device to another
as rotating shafts.  The torsional moments to which a shaft is subjected depend on the
magnitude of the transmitted power and the angular velocity of the rotational motion of

1the shaft.  The work done by a torsional moment of constant magnitude M  acting on a

cross section of a member when it rotates by an angle  is equal to

1If M  is expressed in Newton-meters and  in radians, then the work is expressed in

joules.  That is, one Joule is one Newton-meter.

Consider a motor-driven shaft rotating with an angular velocity of  radians per

1second which transmits a torsional moment M .  The power P transmitted by the shaft is

the time rate at which work is done.  That is, recalling from dynamics that ,

we have

1If M  is expressed in newton-meters and  in radians per second, then the power is

expressed in watts (W) or joules per second.  From dynamics we know that the angular

speed  may be written as
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(8.77)

                       (8.78)

(8.79)

(8.80)

(8.81)

(a)

where f is the frequency of revolution, that is, the number of revolutions per unit time.
The unit of frequency is the hertz (Hz) which is equal to one revolution per second.
Substituting relation (8.77) into (8.76) we obtain

1If M  is expressed in newton meters and f in hertz, then P is in watts.  This relation is often
written as

where n is the number of revolutions per minute (rpm).  That is,

In the English system power is often expressed in horsepower (hp).  One horsepower

is equal to 550 .  Thus, the horsepower transmitted by a shaft subjected to a

1moment of M   at n rpm is equal to

In what follows we present an example.
                                                                                                                                              

Example 7  The assembly of two solid steel shafts and gears shown in Fig. a is used to
transmit to machine D, a power of 16 kW from motor A, which rotates at a frequency of
25 Hz .  Determine the maximum shearing stress in each shaft.

Figure a  Assembly of power
transmitting shafts.

Solution  Shaft AB transmits the 16 kW power at a frequency of 25 Hz.  Using relation
(8.78), the torsional moment in this shaft is equal to

In Fig. ba the gears are shown at time t when particle H  of gear B is in contact with(B)

particle H  of gear C.  At time t + )t as shown in Fig. bb, particles H  and H , traveled(C) (B) ©
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(b)

(c)

  (d)

(e)

             (f)

             (g)

a distance AH  and AH  respectively.  From physical intuition it is clear that the distance(B) (C)

AH  must be equal to distance AH .  Referring to Fig. bb, we see that(B) (C)

or

Dividing by )t both sides of the above relation, taking the limit as )t goes to zero and
using relation (8.77), we obtain

Thus,

Substituting result (e) into (8.78), we get

Referring to relation (8.72), the maximum values of the shear stress in shafts AB and CD
are

Figure b  Gear kinematics.

                                                                                                                                             

8.15 Problems

1. to 4. Consider the beam subjected to the transverse forces shown in Fig. 8P1.  The line
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of action of each force passes through the shear center of the cross section on which it

2 3acts.  The x  and x  axes are principal centroidal.

3 1(a) Write the expressions for the internal shearing force Q (x ) and the internal bending

2 1      moment M (x ) acting on the cross sections of the beam and plot them.
(b) Write the equations which the internal actions must satisfy in order to ensure that   
       every segment of infinitesimal length of the beam cut by two planes normal to its axis
      is in equilibrium.  Describe the types of discontinuities of the internal actions.  

1  3 1 2 1 1Repeat with the beams of Figs. 8P2 to 8P4. Ans.  4 (a)  0 # x  < 3  Q (x ) = 30  kN  M (x ) = 30x(1 ) (1 )

1   3 1 1 2 1 1  1      3 < x < 6  Q (x ) = !20(x -3)  M (x ) = 60x ! 10x(2 ) (2 ) 2

Figure 8P1 Figure 8P2

Figure 8P3 Figure 8P4

Figure 8P5               Figure 8P6

Figure 8P7

5. to 7.  Compute the internal forces in the members of the truss subjected to the forces
shown in Fig. 8P5.  Repeat with the truss of Figs. 8P6 and 8P7.
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8. to 11.  Plot the moment diagram of the beam subjected to the external actions shown
in Fig. 8P1 using the method of summation.  Repeat with the beams of Figs. 8P2 to 8P4.

12. to 19.  Compute the internal actions in each member of the structure of Fig. 8P12 as
functions of its axial coordinate.  Plot the shear and moment diagrams of the members of
this structure. Repeat with the structures of Figs. 8P13 to 8P19.

Figure 8P12 Figure 8P13 Figure 8P14

Figure 8P15             Figure 8P16

20.  Determine the internal actions acting on the cross sections of each member of the
pipe assembly shown in Fig. 8P20 as functions of its axial coordinate.  Plot the shear and
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moment diagrams of the members of the pipe assembly. 

Figure 8P17             Figure 8P18

Figure 8P19             Figure 8P20

B

Figure 8P21 Figure 8P22

21.  A steel hanger is subjected to the forces shown in Fig. 8P21.  Compute the internal
actions acting on the cross sections of each member of the hanger as functions of its axial
coordinate.  Plot the shear and moment diagrams of the members of the hanger.

     Ans.
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22.  Determine the internal actions acting on the cross sections of each member of the
machine part of Fig. 8P22 as functions of its axial coordinate.  Plot the shear and moment
diagrams of the members of this machine part.

Ans.  

23. A bar ABC of rectangular cross section (6 x 12 mm) shown in Fig. 8P23 rotates about

an axis through point B with a constant angular speed = 180 rpm.  The bar is made from

an isotropic, linearly elastic material of modulus of elasticity E = 75 GPa and density =

2800 kg/m .  Determine the elongation of part AB of the bar due to the centrifugal forces3

acting on its particles.        Ans. Elongation = 1.590(10 )A L  (m)-4 3

            

Figure 8P23 Figure 8P24

24. A 3 mm thick steel tube (E = 200 GPa) of 40 mm outside diameter and 600 mm
length is fixed at its one end and is subjected to an uniformly distributed axial component
of traction of 2,000 Pa on its outer lateral surface as shown in Fig. 8P24.  Compute the

1 1axial component of translation u (x ) of the tube. Ans. 

25. A prismatic bar of length L is suspended in the vertical position from one of its end
surfaces.  The bar is made from an isotropic, linearly elastic material of modulus of
elasticity E (kN/m ) and specific weight w (kN/m ).  The area of cross section of the bar2 3

1 1is A (m ).  Compute the component of translation u (x ) of the bar caused by its own2

weight.

26. A 2 m long prismatic bar of rectangular cross section (80 x 40 mm) is subjected to an

1uniform distribution of the axial component of traction p  (kN/mm ) on its lateral surface2

and to a concentrated force of 40 kN as shown in Fig. 8P26.  The bar is made from an
isotropic, linearly elastic material with modulus of elasticity E = 200 GPa and Poisson’s
ratio    = 1/3.  If  the  total decrease of the 80 -m dimension of the bar at section   

1is 0.024 mm., compute the value of the uniform axial traction p  and the total elongation

1of the bar. Ans.  p  = 0.44667 kN/mm2

Figure 8P26 Figure 8P27
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27. Friction piles support vertical forces by frictional forces exerted along their length by
the surrounding soil (see Fig. 8P27).  Consider a friction prismatic steel pile of modulus
of elasticity E and cross sectional area A, embedded L meters into soil.  Assuming that the
frictional force is uniform and has a magnitude p kN/m derive a formula for the total
shortening of the pile when it is subjected to a compressive force P at its one end.

28. and 29. Consider a member of constant cross section (A = 60 mm ) subjected to the2

axial centroidal forces shown in Fig. 8P28.  The member is made from an isotropic,
linearly elastic material with modulus of elasticity E = 200 GPa.  Using functions of

1 1discontinuity determine the translation field u (x ) of the member.  Repeat with the
member of Fig. 8P29. 

Figure 8P28 Figure 8P29

30. and 31. A prismatic member made from an isotropic, linearly elastic material with
modulus of elasticity E is subjected to the axial centroidal forces shown in Fig. 8P30.
Using functions of discontinuity compute the reactions of the member and plot the axial
force diagram.  Repeat with the member of Fig. 8P31.

Figure 8P30 Figure 8P31

32.  Compute the component of displacement and the components of stress in a fixed at

1one end (x  = 0) prismatic member of solid circular cross section when subjected to a

1 1torsional moment M  at its other end (x  = L) and to a linearly varying distribution ofL

1 1 1 1torsional moment along its length [m (x ) = m (L ! x )/L].  The member is made from a0

homogeneous, isotropic, linearly elastic material and has a cross section of polar moment

pof inertia I .

Figure 8P33 Figure 8P34
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33. A prismatic shaft of solid circular cross section of radius R is subjected at its ends to

1equal and opposite torsional moments of magnitude M .  The member is made from an

isotropic, linearly elastic material of shear modulus G and Poison’s ratio . The maximum

normal component of strain at 45  to the axis of the member is equal to e (see Fig. 8P33).o

1Obtain a formula for G as function of ,  M , e and R.             

34. A member of solid circular cross section of radius R is fixed at both ends and is
subjected to the torsional moments  shown Fig. 8P34.  The member is made from an
isotropic, linearly elastic material of shear modulus G.  Using functions of discontinuity
derive formulas for the reactions of the member.     

 

Figure 8P35 Figure 8P36

35. The assembly of two shafts connected with gears as shown in Fig. 8P35 is subjected
to a torsional moment of magnitude 20 kN@m at the cross section at point A. Compute

(a) The maximum shearing stress  in shafts ABCD and EFG.

(b) The angle of twist of the cross section is at point A (G=75 GPa).

(c) If the allowable shearing stress for the shafts is 60 MPa, determine the maximum

torsional moment that can be applied at point A.
(d) Redesign the assembly of shafts; that is, choose new diameters for the shafts so

that you have the most economical design when the assembly is subjected to a
torsional moment of 20 kN@m at point A.  The most economical design of the
assembly is achieved if both shafts are stressed to the maximum allowable stress.

36. The steel (G = 75 GPa) shafts AB and CD are fixed at their ends B and C and
connected by gears, as shown in Fig. 8P36.
(a)  Compute the maximum value of the shearing stress in each shaft when a torsional  

1        moment M  = 3.6 kN@m is applied at point A.            

(b)  Compute the angle of twist of the cross section of the shaft AB at point A when a   

1       torsional moment M  = 3.6 kN@m is applied at point A.         

1(c)  Establish the maximum allowable torsional moment M  which can be applied at point
       A of shaft AB if the allowable shearing stress for steel is 60 MPa. Hint: Notice that

1 1 1  the algebraic sum of the torsional moments M  and M is not equal to M  becauseB C 

   the board EAD exerts a force on shafts AB and CD.            

www.EngineeringEBooksPdf.com



391

Chapter
9

Theories of Mechanics of Materials for
Straight Beams Made from Isotropic,

Linearly Elastic Materials

9.1 Formulation of the Boundary Value Problem for Computing the Components
of Displacement and the Internal Actions in Prismatic Straight Beams Made
from Isotropic, Linearly Elastic Materials   

Consider a prismatic straight-line member, having cross sections of arbitrary geometry,

1made from a homogeneous, isotropic, linearly elastic material.  We choose the x  axis to be

the axis of the member, that is, the locus of the centroids of its cross sections. The member

is initially at a reference stress-free, stain-free state (undeformed state) of mechanical and

othermal equilibrium at a uniform temperature T .  Subsequently, the member reaches a

second state (deformed state) of mechanical, but not necessarily thermal, equilibrium due

to the application on it of one or more of the following loads (see Fig. 9.1):

1. A distribution of body forces throughout its volume as well as a distribution of traction

on its lateral surfaces which are equivalent to specified transverse forces and bending

1 1moments whose vector is normal to the axis of the member (M  = 0 and m  = 0).  The forces

2 1 3 1 2 2 3could be distributed p (x ) and p (x ) and concentrated P (n = 1, 2,  ..., n ) and P (n = 1,(n) (n)

3 2 1 3 1 22, ..., n ). The moments could be distributed m (x ) and m (x ) and concentrated M (m  =(m)

2 3 31, 2, ..., m ) and M (m  = 1, 2, ..., m ). The line of action of the transverse forces lies in a(m)

plane which contains the shear centers of the cross sections of the member (see Section 9.7).

2 32. A specified change of temperature which is a linear function of x  and x  and moreover

2 3 c 2vanishes at the centroid (x  = x  = 0) of the cross section of the member [)T  = 0, *T  � 0,

3 *T  � 0 (see Section 8.11)]. Notice that if in the second state of mechanical equilibrium the

temperature of the surface of the member varies with the space coordinates, the temperature

inside the member will be non-uniform. Thus, heat will flow into or out of the member and

consequently, the member will not be in a state of thermal equilibrium.

1 1 3. A distribution of traction on each of its end surfaces (x = 0 and x = L) which is statically

equivalent to

2 2 3 3(a) Transverse concentrated forces P  or P  and P  or P  (see Fig 9.1).  The line of0 L 0 L

      action of each of these forces passes through the shear center of the end surface on

            which it acts.

2 2 3 3(b) Bending moments M  or M  and M  or M  (see Fig 9.1).0 L 0 L

Line members subjected to the loading described above are called beams. They are

subjected to bending without twisting. Due to this loading, the originally straight axis of the

beam deforms  into  a  curve called  its  elastic  curve  which  is  specified  by  its  translation
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2 1The distributed moments m (x ) not shown in the 

2 1figure and extend for d  < x  < L.     

2Figure 9.1  Free-body diagram of a beam subjected to bending about the x  axis.

3 1 2 1(deflection) fields u (x ) and u (x ).

In order to formulate correctly the boundary value problems for computing the

2 1 3 1components of deflection u (x ), and u (x ) of a beam one quantity from each of the

following pairs of quantities must be specified at each end of a beam:

2 2     u  or   P  q q

3 3 u  or   P (9.1)q q

2 or   M q = 0 or Lq

3 or   9 q

However, for a unique solution, the rigid-body motion of the beam must be specified.

2 3 2Consequently, at least either u  and  must be specified at one end of a beam or u  must be

3 2specified at both ends of a beam. Moreover, at least either u  and  must be specified at one

3end of a beam or u  must be specified at both ends of a beam. For example, the boundary

conditions for the beam of Fig. 9.2a are

3u (0) = 0 (9.2a)

2(0) = 0 (9.2b)

3 3Q (L) = P (9.2c)L

2 2M (L) = M (9.2d)L

3 2where P  and M  are the specified transverse force and bending moment, respectively, atL L

1the end x  = L of the beam. The boundary conditions (9.2a) and (9.2b) are essential, while

the boundary conditions (9.2c) and (9.2d) are natural. The boundary conditions for the beam

of Fig. 9.2b are

3 u (0) = 0 (9.3a)

2(0) = 0 (9.3b)

3 u (L) = 0 (9.3c)

2(L) = 0 (9.3d)

Thus, all boundary conditions for the beam of Fig. 9.2b are essential. Notice that the number

of essential boundary conditions specified for the beam of Fig. 9.2a is the minimum required

in order to prevent it from moving as a rigid body. In this, case the beam is statically
2 1determinate. That is, its reactions and the distribution of its internal actions M (x ) and

3 1Q (x ) can be established by considering the equilibrium of appropriate segments of the

beam. Moreover, notice that there are two more essential boundary conditions specified for

www.EngineeringEBooksPdf.com



Formulation of the Boundary Value Problem        393

(9.4a)

   (9.4b)

(9.4c)

   

3 1Figure 9.2  Beams subjected to external actions producing only a transverse component of translation u (x ).

the beam of Fig. 9.2b than the minimum required in order to prevent it from moving as a

rigid body. In this case the beam is statically indeterminate to the second degree. That is, its

2 1 3 1reactions and the distribution of its internal actions M (x ) and Q (x ) cannot be established

by considering only the equilibrium of segments of the beam. 

2 1 3 1We are interested in computing the components of translation u (x ) or u (x ) and rotation

3 1 2 1 2 1 3 1 3 1(x ) or (x ) and the internal shearing forces Q (x ) or Q (x ) and bending moments M (x )

2 1or M (x ) acting on the cross sections of beams when they reach the second state of

equilibrium due to the application on them of the loads and boundary conditions described

above. When a line member is subjected to these loads and boundary conditions, as

1discussed in Section 8.12, its cross sections do not rotate (twist) about the x  axis. That is,

Moreover, referring to relations (8.5), we have

and

Relations (9.4b) and (9.4c) have been established on the basis of the assumption that plane

sections normal to the axis of the beam remain plane after deformation.  Consequently, they

are valid for beams made from any material (elastic, plastic, viscoelastic, etc.).

Substituting relation (9.4c) into the first of the stress–strain relations (8.44), we obtain

the following stress–displacement relations for a beam made from a homogeneous, isotropic,
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(9.5a)

          (9.5b)

           (9.5c)

(9.6a)

(9.6b)

        (9.6c)

        (9.6d)

     (9.7a)

     (9.7b)

     (9.7c)

linearly elastic material

where

3 1 2 1 1 1*T (x ) and *T (x ) are defined in relations (8.31) and (8.30), respectively; h (x ) and h (x )(3) (2)

are defined in Fig. 8.21;     is the coefficient of linear thermal expansion of the material from

which the beam is made.

Inasmuch as the beam is not subjected to external axial centroidal forces, the internal

1axial centroidal force N(x ) vanishes.  Taking this into account and substituting relation (9.5)

into relation (8.9a), we obtain

or

2 3In obtaining the above relation we have noted that the x  and x  axes are centroidal and

consequently,

If we restrain the beam from translating in the axial direction as a rigid body at one point of

its axis, taking into account relation (9.6), we have

From relation (9.4c) we see that 

It should be emphasized that the above relation  was obtained using relation (9.5) and,

consequently, we have only shown that it is valid for beams made from an isotropic, linearly

elastic material. Thus, for such beams relations (9.4) and (9.5) reduce to

www.EngineeringEBooksPdf.com



Formulation of the Boundary Value Problem        395

     (9.8a)

     (9.8b)

(9.8c)

(9.8d)

(9.9a)

(9.9b)

(9.10a)

(9.10b)

Substituting relation (9.7c) into (8.9e) and (8.9f), we get the following internal

moment–rotation relations for prismatic, straight beams made from a homogeneous,

isotropic, linearly elastic material.

22 1 33 1where I  (x ) and I  (x ) are the moments of inertia of the cross section of the beam about

2 3 23its x  and x  axes, respectively; I  is the product of inertia of the cross section of the beam

2 3about the x  and x  axis.  Substituting relations (9.8b) into (8.20) and (9.8a) into (8.21),  we

obtain the following internal shearing force–rotation relations for prismatic, straight beams

made from a homogeneous, isotropic, linearly elastic material.

1 2 1 3Solving relations (9.8a) and (9.8b) for (d /dx  - H  ) and (d /dx  + H ), we get

Substituting relation (9.8a) and (9.8b) into the action equations of equilibrium (8.22) and

(8.23), we obtain
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(9.11a)

(9.11b)

(9.12a)

(9.12b)

Figure 9.3  Cross sections of prismatic beams showing their neutral axis.

As discussed in Section 8.2 in the theories of mechanics of materials it is assumed that

the components of stress  and  are very small compared to the other components

of stress and can be disregarded.  Thus,

Consequently, we only consider the following components of stress acting on a cross section

of prismatic, straight beams

A formula for the normal component of stress acting on the cross sections of prismatic,

straight beams made from an isotropic, linearly elastic material, subjected to bending can

be established by using relations (9.9) and (9.7c).  That is,

22 33 23where I , I , I  are the moments and product of inertia of a cross section of the beam, with

2 3respect to the x  and x  axes, defined in Appendix C.  Formulas for the shearing components

2 3of stress      and     are derived in Section 9.5. When the axes x  and x  are principal

23centroidal (I  = 0) relation (9.12a) reduces to

2From relation (9.12a), we see that when a cross section of a beam is subjected only to M
3 2 3(M = 0) and its x , x  axes are not principal centroidal, the normal component of stress varies

2in the direction of the  x  axis (see the example at the end of this section).  This is not the

2 3case, however, when the  x , x  axes are principal centroidal [see relation (9.12b)].
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 (9.13)

(9.14)

(9.15a)

(9.15b)

(9.16)

          (9.17)

From relation (9.12a) we see that for every cross section of a beam, made from an

isotropic, linearly elastic material there exists a straight line, which passes through the

centroid of the cross section, whose particles are not subjected to axial component of stress

       ( = 0).  We call this line the neutral axis of the cross section.  From relations (9.7b) and

(9.7c) we deduce that the particles of the neutral axis of the cross sections of beams made

from an isotropic, linearly elastic material and loaded in an environment of constant

2 3 11temperature (H  = H =0), do not elongate or shrink in the axial direction; that is, e  = 0.

 The neutral axis of a cross section can be located by specifying the angle     shown in Fig.

9.3a.  Referring to relation (9.12a),  the equation of the neutral axis is

where  and  are the coordinates of a point located on the neutral axis.  Moreover,

referring to Fig. 9.3a, we have

Solving equation (9.13) for  and substituting the resulting expression in the above relation,

we obtain

2 2In Fig. 9.3 we denote by      the angle which the vector of the bending moment M  = M i
3 3 2+ M i  acting on a cross section makes with the x  axis; referring to this figure, we have

where M  is the magnitude of the bending moment M  acting on the cross section under

consideration.  From relation (9.15a), we get

Using relation (9.15b) to eliminate the moments from relation (9.14) we obtain

2 3If the x  and x  axes are principal centroidal, relation (9.16) reduces to
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2 3Therefore, if for a cross section of a beam I  = I , its neutral axis is in the direction of the

vector of the bending moment acting on it.  Moreover, if the vector of the bending moment

2 3acting on a cross section has component, only in the direction of the principal axis x  or x
3 2 2 3(M  = 0 or M  = 0), then the principal axis x  or x , respectively, is the neutral axis.

2The moment of inertia I  of some manufactured rolled beams such as channels and I-

3beams is many times greater than I .  As demonstrated buy the following example, the

        maximum value of the normal component of stress acting on the cross sections of such

 beams, when subjected to a bending moment with    close to zero but not equal to zero,

could be considerably larger than when the beam is subjected to a bending moment of the

           same maguitude with equal to zero.  Referring to Appendix H, an I-beam S 380 × 74 has

2 3I  = 201(10 )mm , I  = 6.65(10 )mm , b = 143 mm and d = 381mm.  Suppose that this beam6 4 6 4

2 2 3 3was subjected to a moment M = M i + M i  whose vector was inclined 2° counterclockwise* 

2         from the principal x  axis (  is 2°).  Referring to Fig. 9.3b and relations (9.12b and 9.15b)

2 3 we see that the maximum value of the normal component of stress occurs at x = !b/2, x =

d/2.  That is,

The magnitude of the moment M  acting on the cross sections of the beam is*

2If that moment had been acting about the x  axis of the beam, the maximum stress would

have been

2Thus, we see that a small inclination of the vector of the bending moment from the x  axis

     1 3( = 2°) and  consequently  of the  plane  of  loading  from  the  x x   plane,  increases the

maximum normal component of stress by 39.54%.

In order to be able to formulate the boundary value problem under consideration, we

2 1 3 1need two relations relating the component of translation u (x ) or u (x ) of the cross sections

   1    1of a beam with its component of rotation  (x ) or  (x ), respectively.  There  are  two

mechanics of materials theories available in the literature, for computing the deflection of

2 1 3 1beams. They differ only in the relation of the component of translation u (x ) or u (x ) of a
   1    1cross section of a beam with its component of rotation    (x ) or   (x ), respectively. The

one theory which we use in this text is called the classical theory of beams. We present it

in Section 6.2. It is based on the assumption that the geometry of the beam is such that the

12 1 2 3effect of shear deformation [that is, of the shearing components of strain e (x , x , x ) and

13 1 2 3 2 1 3 1e (x , x , x )] of the particles of the beam on its components of translation u (x ) and u (x )

is negligible. The other theory for analyzing beams is called the Timoshenko theory of
beams. We present it in Section 6.4. In this theory a portion of the effect of shear deforma-

2 1 3 1tion of the particles of a beam on its components of translation u (x ) and u (x ) is retained.

12 1 2 3 13 1 2 3Expressions for the shearing components of strain e (x , x , x ) and e (x , x , x ) of a

beam can be obtained by substituting relation (9.7a) into the corresponding

strain–displacement relations (2.16). That is,
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            (9.18a)

           (9.18b)

      (9.19a)

             (9.19b)

Figure 9.4  Deformed configuration of a segment of infinitesimal length of a beam subjected to bending

1 3in the x x  plane without twisting.

However, the theories of mechanics of materials do not offer a satisfactory way for

      1 2 3       1 2 3computing the components of displacement (x , x , x ) and (x , x , x ) of the particles of

beams. Consequently, relations (9.18) cannot be used to establish the shearing components

12 1 2 3 13 1 2 3of strain e (x , x , x ) and e (x , x , x ). Instead these quantities are obtained from the

   1 2 3     1 2 3shearing components of stress     (x , x , x ) and   (x , x , x ), respectively, using the third

and fourth of the stress-strain relations (8.44). The shearing components of stress are

   1 2 3established from the normal components of stress    (x , x , x ) as shown in  Section 9.5.

2 3When relations (9.18) are evaluated at x  = x  = 0, they become relations between the

2 1 3 1    1    1component of translation u (x ) or u (x ) and the component of rotation  (x ) or   (x ),

respectively, for a beam subjected to bending without twisting. That is,

In order to illustrate the physical significance of the terms of relations (9.19) consider the

1segment ABCD  of length dx  of a beam in its stress-free strain-free, state of mechanical and

thermal equilibrium shown in Fig. 9.4.  The segment is cut from the beam by two imaginary

planes normal to its axis. When the beam is subjected to external loads which bend it only

1 3 3in the x x  plane without twisting it, the segment under consideration translates in the x
2direction, rotates about an axis parallel to the x  axis as a rigid body and it deforms. In Fig.

9.4 we denote the deformed configuration of the segment by ANBNCNDN. The deformed

3configuration of the cross section AB is specified by its component of translation u  and its

 component of rotation –   , while the deformed configuration of the cross section CD  is
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(9.20a)

(9.20b)

(9.20c)

(9.21)

(9.22a)

(9.22b)

3 3    specified by its component of translation u  + du  and its component of rotation               

The angle between the deformed configuration B'E'A' of the cross section BEA of the beam

13 1 13 1and its deformed axis is equal to B/2 - 2e (x , 0, 0) .  The strain e (x , 0, 0) is positive

because the before deformation right angle ÊAEF after deformation has decreased to

3 3ÊA'E'F '.  Referring to Fig. 9.4, we see that the increment du  of the translation u  consists

of two parts.  That is,

where, referring to Fig. 9.4 ,we have

Substituting relations (9.20b) and (9.20c) into (9.20a), we obtain

Relation (9.21) is identical to (9.19a). Thus, relation (9.19a) indicates that the increment of

3the transverse component of translation du  of a segment of infinitesimal length of the beam

3may be regarded as the sum of two parts. The one du  is the result of the rotation of ther

3segment as a rigid body while the other du  is the result of its shear deformation.s

Similarly, it can be shown that relation (9.19b) indicates that the increment of the

2transverse component of translation du  of a segment of infinitesimal length of a beam may

2be regarded as the sum of two parts.  The one du  is the result of the rotation of the segmentr

2as a rigid body while the other du  is the result of its shear deformation as follows:s

                                                                                                                                             

Example 1  A 2 m long cantilever beam made from an American rolled steel angle L 51 x

3 51 x 9.5 is subjected on its unsupported end to a force P = 2 kN (see Fig. a).  Compute the

distribution of the normal component of stress at the fixed end of the beam and locate its

neutral axis.

Figure a Geometry and loading of the beam.

                                                                                                                                             

www.EngineeringEBooksPdf.com



Formulation of the Boundary Value Problem        401

(a)

(b)

(c)

Solution  As we explain in Section 9.7, the shear center of an angle is located at the

intersection of the center lines of its legs.  Consequently, the beam under consideration

bends without twisting.

Referring to Fig. b, notice that the pair of principal centroidal axes of the cross section

2 3of the beam are its axis of symmetry  and the axis perpendicular to it.  The x  and x  axes

are not principal.

Referring to the table of properties of rolled steel shapes in Appendix H, we obtain

Using relation (C.11a) of Appendix C the moment of inertia of the cross sections of the

beam about the principal centroidal axis  is equal to

22 33 2 3From relations (a) and (b) we know the moments of inertia I  and I  about the x  and x  axes

3and the moment of inertia I  about the principal axis .  Consequently, we can compute the

23 2product of inertia I  and the principal moment of inertia I  about the principal axis  .  For

this purpose we recall that as shown in Section C.4 of Appendix C the tensor of the moments

2 3and the product of inertia with respect to the x  and x  axes is

3Referring to relation (1.116c) the moment of inertia I  with respect to the principal centroidal

axis  (see Fig. b) can be expressed as

Figure b  Cross section of the beam.
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(d)

         (e)

   (f)

              (g)

Thus,

Using the first of relations (a) and relation (d), we get

   The distribution of the normal component of stress     acting on the cross sections of the

beam is given by formula (9.12a).  Substituting the first of relations (a) and relations (d) and

2 3 1(e) into (9.12a) and noting that M = –P (L - x ), we obtain

   3 The normal components of stress   acting on the particles of the top surface (x =

2 1 –16.15) and of the surface of the right side (x  = –16.20) of the beam at its fixed end (x =

0) are equal to

and

Figure c Distribution of the normal component Figure d Location of the neutral axis
 of stress at the fixed end of the beam.                 on a cross section of the beam.

www.EngineeringEBooksPdf.com



Formulation of the Boundary Value Problems        403

      (h)

    (9.23)

(i)

The results are plotted in Fig. c.

The equation of the neutral axis is obtained by setting  in relation (f).  That is,

The location of the neutral axis is shown in Fig. d.

                                                                                                                                             

9.1.1  Radii of Curvature of the Elastic Curve of a Beam

Consider two particles of the axis of a beam located before deformation at points A and

1 1 1B.  The coordinates of these particles are x  and x  + dx , respectively.  When the beam is

subjected to external loads which bend it without twisting it, the particles under

consideration move to points AN and BN of its elastic curve (deformed axis).  In Fig. 9.5a we

1 3show the projection of the elastic curve of the beam on the x x  plane and we denote by AO
1 3and BO the projection on the x x  plane of points AN and BN, respectively.  Moreover, we

sdenote by dx  the distance between points AO and BO measured along the projection of the

1 3elastic curve on the x x  plane.  Furthermore, in Fig. 9.5a we draw lines normal to the tangent

1 3lines to the projection of the elastic curve on the x x  plane at points AO and BO.  These lines

intersect at point C which is called the center of curvature for point AO of the projection of

1 3the elastic curve of the beam on the x x  plane.  The length of line CAO is the radius of
   1 3curvature     at point AO of the projection of the elastic curve of the beam on the x x  plane.

1 3 13The curvature of the projection of the elastic curve on the x x  plane is denoted by k  and

   is defined as the reciprocal of the radius of curvature    .  That is,

     1 1Finally, we denote by  (x ) the angle between the x  axis and the tangent to the projection

1 3of the elastic curve of the beam on the x x  plane at point AO.  This angle represents the

2rotation about the x  axis of the particle which before deformation was located at point A of

     the  axis  of  the  beam. In  accordance  with  our  convention  (see  Section  8.2)  is

2considered positive when its vector is directed in the direction of the positive x  axis.

Referring to Fig. 9.5a, we see that

Moreover, as shown in Fig. 9.5a the angle between lines CAO and CBO is equal to the

          increment d   of the angle   from point AO to point BO.  Thus,

and

Referring Fig. 9.5a, we have
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     (9.24)

   (9.25a)

       (a)            (b)

1 3 1 2Figure 9.5  Projections of the elastic curve of a cantilever beam on the x x  and x x  planes having positive
curvatures. 

Thus,

3 1Moreover, recall from calculus that the derivative of arctan (du /dx ) is equal to

Substituting the above relation and (9.24) into (9.23), we obtain

Similarly, referring to Fig. 9.5b, we see that

and
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(9.25b)

       (9.26a)

      (9.26b)

        (9.27a)

              (9.27b)

(9.28a)

           (9.28b)

3 1 2 1Within the range of validity of the theory of small deformation (du /dx )  and (du /dx )  are2 2

very small compared to unity and can be disregarded.  Thus, relations (9.25) reduce to 

9.2 The Classical Theory of Beams

In the classical theory of beams it is assumed that the contribution of the shear
3 2deformation of the particles of a beam to its components of translation u  and u  is

negligible compared to the contribution of t he rotation of these segments. That is, in

12 1 13 1relations (9.19) the components of strain e (x , 0, 0) and e (x , 0, 0) are considered

  1  1negligible compared to the components of rotation (x ) and  (x ), respectively.

Consequently,  relations (9.19) reduce to  

This is equivalent to assuming that plane sections normal to the axis of a beam before

deformation not only remain plane after deformation but also are perpendicular to its

deformed axis.  Substituting relations (9.27) into (9.7a) and (9.7b) and using relations (9.26)

for beams made from isotropic, linearly elastic materials,  we have

and

Substituting relations (9.27) into (9.8), we obtain the following action–displacement

relations for a beam made from a homogeneous, isotropic, linearly elastic material
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   (9.29a)

   (9.29b)

   (9.29c)

   (9.29d)

      (9.30a)

      (9.30b)

                (9.31a)

              (9.31b)

Substituting relations (9.27) into (9.9), we obtain

Substituting relations (9.30) into (9.26), we obtain

2 3 23 If the x  and x  axes are principal centroidal (I = 0), relations (9.29) and (9.31) reduce to

Figure 9.6  Deflection of a cantilever beam having a Z cross section.
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(9.32a)

(9.32b)

(9.32c)

(9.32d)

(9.32e)

(9.32f)

(9.33a)

(9.33b)

(9.34a)

2 3 2 3where I  or I  is the moment of inertia about the principal centroidal axis x  or x ,

2 3respectively.  Referring to relations (9.30), we see that when the x , x  axes of a beam are

i iprincipal centroidal and the loads acting on the beam produce an internal moment M  = M i
2 3(i = 2 or 3) and H  = H  = 0, the centroids of the cross sections of the beam translate only

j iin the direction of the x  (j = 3 or 2, j � i) axis. That is, the component of translation u
2 3vanishes. However, when the x , x  axes of a beam are not principal centroidal and the

i iexternal actions acting on the beam produce an internal moment M  = M i  (i = 2 or 3), the

2 3centroids of the cross sections of the beam translate in the directions of the x  and x  axes.

2 1 3 1That is, the translation vector of the beam has two components u (x ) and u (x ) .  For

2 3example, the cantilever beam of Fig. 9.6 has a Z cross section, consequently, the x  and x
axes of the beam are not principal. When this beam is subjected to a force at its free end

3 2 3 1acting in the direction of the x  axis, the internal moment is M  = P (L ! x ). As shown in

Fig. 9.6 the movement of the cross sections of the beam has components in the directions

2 3of the x  and x  axes.

Substituting relations (9.27) into (9.10), we obtain

For prismatic beams relations (9.33) can be uncoupled.  That is, they can be rewritten as a

2 1 3 1differential equation involving only u (x ) and a differential equation involving only u (x ).

2 3 23If the x  and x  axes are principal centroidal (I  = 0), relations (9.33) reduce to
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(9.34b)

(9.35a)

(9.35b)

Relations (9.33) or (9.34) are the displacement equations of equilibrium for the beam under
consideration .

Consider a prismatic beam subjected to a loading having S points of load change.

Referring to our discussion in Section 8.9, we may conclude that the transverse component

2 1 3 1 i 1of translation u (x ) or u (x ) of this beam is represented by a set of functions u (x ) [[s =(s)

1, 2, ..., (S + 1)] (i = 2 or 3)] having derivatives of any order.  Each one of these gives the

icomponent of translation u (i = 2 or 3) and satisfies relations (9.33) in one segment of the

beam extending either between a support and its adjacent point of  load change or between

two consecutive points of load change. 

The boundary value problem for computing the transverse components of translation

3 1 2 1      1       1u (x ) and u (x ), the components of rotation  (x ) and   (x ), the shearing components of

3 1 2 1 2 1the internal force Q (x ) and Q (x ) and the components of the bending moment M (x ) and

3 1M (x ) for a beam (statically determinate or indeterminate) subjected to a distribution of

external transverse forces and bending moments which have S points of load change and to

c 2 3a change of temperature ()T  = 0, *T  � *T  � 0) can be formulated as shown next.

i 1Find the functions u (x )[s = 1, 2, ..., (S + 1)] (i = 2, 3) which have the following(s)

properties:

1.  Each has derivatives of any order.

2.  They satisfy the translation boundary conditions at the ends of the beam where such

conditions are specified.

3.  They form continuous transverse components of translation (deflection) throughout the

length of the beam.

     4.  When substituted into relations (9.27), they give a set of components of rotation     

     and    [s = 1, 2, ..., (S + 1)] which has the following properties:

(a) It satisfies the rotation boundary conditions of the beam.

(b) It yields continuous components of rotation throughout the length of the beam.

2 35.  Each pair [u  and u ] of these functions satisfies the displacement equations of(s) (s)

equilibrium (9.33) at all points of the segment of the beam whose transverse components of

translation they represent. That is,

This ensures that every segment of the beam of infinitesimal length, cut by two imaginary

planes perpendicular to its axis, which does not contain a point of load change, is in

equilibrium.

6.  When substituted into the internal action–translation relations (9.29), they give a set of

3 1 2 1 2 1 3 1functions Q (x ), Q (x ), M (x ) and M (x ) [s = 1, 2, ..., (S + 1)] each one of which(s) (s) (s) (s)

represents either the shearing force or the bending moment in the s  segment of the beamth
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extending between a support and its adjacent point of load change or between two

consecutive points of load change.  These functions satisfy

(a) The natural boundary conditions at the ends of the beam where specified external

transverse forces and/or beading moments are applied.

(b) The requirements for equilibrium of the segments of infinitesimal length of the beam

cut by two imaginary planes normal to its axis which contain a point of load change.

3 1On the basis of the foregoing presentation, the components of translation u (x ) and

2 1 3 1 2 1 2 1 3 1u (x ), of shearing force Q (x ) and Q (x ) and of bending moment M (x ) and M (x ) of a

beam can be established by adhering to the following steps:

STEP 1  The set of differential equations (9.35) are solved to obtain the transverse

i 1components of translation u (x ) [s = 1, 2, ..., (S + 1)] (i = 2, 3) of each segment of the(s)

beam extending between a support and its adjacent point of load change or between two

i 1 i consecutive points of load change.  Each of the functions u (x ) [s = 1, 2, ..., (S + 1)] (i =(s)

2, 3) involves four constants.

STEP 2  The constants are evaluated by requiring that the transverse components of

i 1translation u (x ) [s = 1, 2, ..., (S+1)] (i = 2, 3) satisfy the following requirements:(s)

1. The translation equations of continuity at every point of load change.

2. The translation boundary conditions at the ends of the beam where components of

translation are specified.

3. When substituted into the rotation–translation relations (9.27), they give components of

    rotation         and          which satisfy

(a) The rotation boundary conditions at the ends of the beam where components of

rotation are specified

(b) The rotation equations of continuity at every point of load change

4. When substituted into the action–translation relations (9.29), they give internal shearing

forces and bending moments which satisfy

(a) The requirement for equilibrium of each segment of infinitesimal length of the beam

which contains a point of load change

(b) The natural boundary conditions at the ends of the beam at which such conditions

are specified

3 1 2 1The components of translation u (x ) and u (x ) of statically determinate beams can also

be established by adhering to the following simpler procedure:

2 1 3 1STEP 1  The sets of functions M (x ) and M (x ) [s = 1, 2, ..., (S + 1)] representing the(s) (s)

bending moments in the statically determinate beam is established by considering the

equilibrium of appropriate segments of the beam.

2 1 3 1STEP 2  The functions M (x ) and M (x ) [s = 1, 2, ..., (S + 1)] established in step 1 are(s) (s)

substituted into relations (9.30) and the resulting differential equations are solved to obtain

2 1 3 1 1the components of translation u (x ) and u (x ) [s = 1, 2, ...(S + 1)] as functions of x(s) (s)

involving two constants each.  

STEP 3  The constants are evaluated by requiring that the solution satisfies the essential

boundary conditions of the beam as well as the continuity conditions at the points of load

2 1 3 1change.  It is apparent that the sets of functions  M (x ) and M (x ) [s = 1, 2, ..., (S + 1)](s) (s)

obtained in step 1 satisfy the natural boundary conditions of the beam, if any, and the

requirements for equilibrium of all the segments of infinitesimal length of the beam cut by

two imaginary planes normal to its axis, which contain a point of load change.
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(a)

(b)

(c)

In what follows we present two examples.

                                                                                                                                             

2 1 3 1Example 2 Determine the components of translation u (x ) and u (x ) of the 2 m long

3 cantilever beam subjected to a concentrated force P = 0.6 kN at its free end as shown in Fig.

a.  The beam is made of from an American rolled angle with equal legs L 51 x 51 x 9.5 (E
= 200 GPa). 

Figure a  Geometry and loading of the beam.

Solution We can solve the problem under consideration either by referring our calculations

2 3 3to the axes x  and x  or by resolving the force P  into components parallel to the principal

axes  and  and referring our calculations to these axes.  In what follows we use the first

approach.  The beam under consideration is statically determinate; consequently, it is

preferable to determine the equation of its elastic curve by using relations (9.30).  Noting

2 3 1that M  = !P (L ! x ), we have

Integrating relations (a) twice, we get

and

The constants are evaluated by substituting relations (b) and (c) into the following
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(d)

(e)

    (f)

       (h)

  (i)

essential boundary conditions of the beam:

Thus, we obtain

Substituting the values of the constants (e) into the expressions for the components of

displacement (c), we get

The moments and products of inertia of the cross sections of the beam of Fig. b, with respect

2 3to the x , x  centroidal axes, are computed in the example of Section 9.1. Referring 

to this example we have

22 33I  = 0.202(10 ) mm  = I6 4

        (g)

23I  = ! 0.114977(10 ) mm6 4

Thus,

Substituting relations (g) and (h) into (f) the components of translation (deflection) of the

1beam at its end x  = L are

Figure b Results for the beam of Fig a.
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  (i)

       (a)

             (b)

The results are shown in Fig b.

                                                                                                                                             

                                                                                                                                             

Example 3  Establish the equation of the elastic curve and the reactions of the beam

subjected to a concentrated moment as shown in Fig. a. The beam is made from a

homogeneous, isotropic, linearly elastic  material with modulus of elasticity E and has a

3constant cross section. The x  axis is a principal centroidal axis of the cross sections of the

3 1 2beam. Thus, the beam will deflect in the x x  plane (u  = 0).

Figure a  Geometry and loading of the beam.

Solution The beam of Fig. a is statically indeterminate. Thus, we cannot find its reactions

and its internal actions by considering only the equilibrium of segments of the beam.

Consequently, in order to establish the deflection of the beam we must use relation (9.35b).

3 1At point A of the beam there is a load change. Thus, the deflection u (x ) of  the beam is

represented in each of the segments  and  by a continuously differentiable function

3 1 3 1which we denote by u (x ) and u (x ), respectively. Each of these functions must satisfy(1) (2)

relation (9.35b). That is,  referring to Fig. a, we have

Integrating each of equations (a) four times, we obtain
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          (c)

         (d)

         (e)

(f)

  (g)

(h)

(i)

3 1We evaluate the constants by requiring that the deflection u (x ) given by relations (e)

satisfies.

1. The boundary conditions of the beam. That is,

2.  The continuity relations at the point (point A) of load change. That is,

3.  The equations of equilibrium for the segment of infinitesimal length of the beam which

includes the point (point A) of load change. That is,

Substituting relations (e) into (f) and (g), (b) into the first of relations (i), (c) into the second

of relations (i) and solving the resulting linear algebraic equations, we obtain
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   (j)

Substituting relations (j) into (b), (c), and (e), we obtain

Figure b  Free-body diagram of the beam.

                                                                                                                                             

9.3 Solution of the Boundary Value Problem for Computing the Transverse
Components of Translation and the Internal Actions in Prismatic Beams Made
from Isotropic, Linearly Elastic Materials Using Functions of Discontinuity

The solution of the boundary value problem for computing the transverse components

2 1 3 1of translation u (x ) and u (x ) and the internal actions of beams, presented in the previous

section, is cumbersome.  In this section we present a more efficient approach to the same

problem using functions of discontinuity. These functions are used to write a discontinuous

function, as, for example, the external forces and moments acting on a beam, by a single

expression.  Using these functions we write one set of displacement equations of equilibrium

(9.33) for the whole beam as if the distribution of the external actions was continuous.  That
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(9.36)

             (9.37)

(9.38)

(9.39)

(9.40)

(9.41)

(9.42a)

           (9.42b)

2is, referring to Fig. 9.7 and to Appendix G, we can convert the concentrated forces P  and(n)

3 2 1 3 1P  (n = 1, 2, 3, ...)to mathematically equivalent distributed forces p (x ) and p (x ),(n)

respectively, as follows:

Referring to the definition of the Dirac delta-function in Appendix G, we see that the right

1 2n 1hand side of relation (9.36) [or (9.37)] vanishes everywhere except at point x  = a  [or x
3n= a ] where it is not specified.  However, referring to relation (G.13), the resultant of the

2 1 3 1 1 2n    1 2n   1 3n   1 distributed forces p (x ) [or p (x )] from x  = a !    to x  = a +    (or x  = a !    to x  =

3n   a +   ) is equal to 

where , is a small positive number.  

2 3Similarly, we can convert the concentrated moments M  and M  acting on a beam to(m) (m)

2 1 3 1mathematically equivalent distributed moments m (x ) and m (x ) as follows:

Referring to relation (G.15), we have

Figure 9.7 Beam subjected to transverse forces and bending moments.
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(9.43a)

(9.43b)

1 2m 1 3mwhere * (x  ! b ) and * (x  ! b ) are the doublet functions defined by relation (G.15).I I

Using relations (9.36), (9.37) and (9.42) and taking into account relation (G.14), the

displacement equations of equilibrium (9.33) for the beam of Fig. 9.7 can be written as

1 2 1 3 1 21where )(x  ! c ) and )(x ! c ) are unit step functions defined by relation (G.1), *(x ! a )

1 31 1 21 1and *(x ! a ) are Dirac Delta functions defined by relation (G.10), * (x ! b ) and * (xI I

31!b ) are doublet functions defined by relation (G.15).  Using the rules for integration of the

functions of discontinuity presented in Appendix G, relations (9.43) may be integrated to

2 1 3 1give the transverse components of translation u (x ) and u (x ) as functions of the axial

coordinate of the member involving four constants each.  The constants may be evaluated

from the specified boundary conditions at the ends of the beam.  As mentioned previously,

for a properly posed problem one quantity from each of the following pairs of quantities

must be specified at each end of a beam

2 2u    or   Q  

  3     or   M

3 3u    or   Q (9.44)

  2     or   M

That is, using functions of discontinuity, the requirements for continuity of the transverse

2 1 3 1   components  of  translation  u (x )  and  u (x ) and of the components of rotation          and

            at each point of load change are satisfied automatically.  Moreover, the requirements

2 1 3 1for equilibrium of the internal shearing forces Q (x ) and Q (x ) and the internal bending

2 1 3 1moments M (x ) and M (x ) acting on each segment of infinitesimal length containing a point

of load change are satisfied automatically.

3 1In what follows we compute the transverse component of translation u (x ), the internal

3 1 2 1shearing force Q (x ) and the bending moment M (x ) of two prismatic beams using functions

of discontinuity.

                                                                                                                                             

                 

Example 4 Consider the fixed at both ends beam of constant cross section and length L
subjected to the loads shown in Fig. a.  The line of action of the external forces is in a plane

3which contains the shear centers of the cross sections of the beam and is parallel to the x
2 3axis. The x  and x  axes are principal centroidal of the cross section of the beam.  The beam

is made of a homogeneous, isotropic, linearly elastic material.  Establish the deflection

3 1 3 1 2 1u (x ), the internal shearing force Q (x ) and the internal bending moment M (x ) of the beam
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(a)

(b)

 

  (d)

  (e)

using functions of discontinuity.  Compute the reactions of the beam and show the results

on a sketch.

          Figure a Geometry and loading of the beam.

Solution  This is a statically indeterminate beam, consequently, the distribution of its

internal moments cannot be established by considering only the equilibrium of parts of the

3 1beam. For this reason, the deflection u (x ) of the beam cannot be established by integrating

relation (9.30a), but rather by solving equation (9.43b).  Referring to this equation, we have:

3Moreover, the deflection u  must satisfy the following boundary conditions:

Integrating equation (a) four times, using relations (G.5) and (G.16) and referring to relation

(9.32a) and (9.32d), we obtain

www.EngineeringEBooksPdf.com



4  1  8   Theories of Mechanics of Materials for Beams

(c)

  (f)

(g)

   (h)

(i)

    (j)

1 2 3 4The constants C , C , C  and C  are evaluated by requiring that the solution (e) and (f)

satisfies the boundary conditions (b).  Hence, substituting relations (e) and (f) into the first

two of the boundary conditions (b), we obtain 

Moreover, substituting relations (e) and (f) into the last two of the boundary conditions (b)

and using relations (g), we get

Solving relations (h), we obtain

Substituting the values of the constants (g) and (i) into relations (c), (d) and (f), we obtain

Figure b Free-body
diagram of the beam.
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(k)

(l)

Referring to Fig. b, the reactions of the beam are

                                                                                                                                             

                                                                                                                                             

3 1Example 5 Using functions of discontinuity establish the deflection u (x ) of the simply

2supported beam of constant cross section subjected to a concentrated moment M , as shown*

3in Fig. a.  The x  axis is a principal centroidal axis of the cross sections of the beam.  The

beam is made from a homogeneous, isotropic, linearly elastic material with modulus of

elasticity E.
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(a)

    (b)

(c)

     (d)

(e)

Figure a  Geometry and loading of the beam.

                                                                                                                                             

   

Solution  This beam is statically determinate. Thus, we can easily find its internal moment

as a function of its axial coordinate by considering the equilibrium of portions of the beam.

Consequently, it is preferable to establish the deflection of the beam using relation (9.32a)

instead of relation (9.34b). The reaction of support 0 may be obtained by referring to Fig.

b and setting the sum of moments about point L equal to zero. Thus,

The moment acting on the cross sections of the beam is given by

These relations may be rewritten as

Substituting relation (c) into (9.32a), integrating twice the resulting differential equation and

using relation (G.5) of Appendix G, we obtain

1 2 3 1The constants C  and C  are evaluated by requiring that the deflection u (x ) satisfies the 

1 1essential boundary conditions at x  = 0 and x  = L. That is,

Substituting the last of relations (d) into (e), we get
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(f)

     (g)

(9.45a)

(9.45b)

(9.46a)

(9.46b)

                (9.47a)

         (9.47b)

Substituting the values of the constants (f) in the last of relations (d), we obtain

Figure b  Free-body diagram of the beam.

                                                                                                                                             

9.4  The Timoshenko Theory of Beams

In this theory the assumption is made that relations (9.19) represent a satisfactory

12 1 13 1approximation of the magnitude of the shearing components of strain e (x , 0, 0) and e (x ,

0, 0) of the particles which are located on the axis of a beam.  Thus, substituting relations

(9.19) into the fourth and fifth of relations (8.44), we obtain

The shearing components of stress acting on the particles of the cross sections of a beam

may be expressed as

Substituting relations (9.46) into (8.9b) and (8.9c), we get

Substituting relations (9.45) into (9.47), we obtain
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(9.48a)

(9.48b)

      (9.49a)

        (9.49b)

(9.50)

(9.51)

(9.52)

(9.53)

where using relations (9.47), we have

Comparing relations (9.48) with (9.8c) and (9.8d), we get

    These are the relations between the components of rotation    and     and the components

2 3of translation u  and u  used in the Timoshenko theory of beams.  For a given cross section

    the factors     and      can be computed by first computing the shearing components of stress

  1    1    (x , 0, 0) and    (x , 0, 0) using formula (9.65).  This formula is derived in Section 9.5

by requiring that the sum of the axial component of the forces acting on any segment of

infinitesimal length and finite cross sections of a beam is equal to zero.  For example

  1 2 3referring to relation (a) of Example 7 of Section 9.5, the shearing stress    (x , x , x ) acting

on the cross sections of a beam of rectangular cross section of width b and depth d subjected

1 3to transverse forces in the x  x  plane is equal to 

Consequently,

Substituting relation (9.52) into (9.49b), we obtain
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(9.54)

(9.55)

(9.56)

      (9.57)

Figure 9.8 Cross section of a I-beam
       or a wide beam.

Moreover,  referring  to  relation  (b)  of  Example  2  of  Section 9.5,  the  shearing stress

  1 2 3   (x , x , x ) acting on the cross sections of a beam having an S or a W cross section (see

Appendix H) shown in Fig. 9.8 is equal to

Consequently,

Substituting relation (9.55) into (9.49b), we get

Referring to Appendix H for a standard W100 x 19.3 beam, we have

  FA  = 2480 mm b  = 103  mm t  = 8.8  mm2

 W 2d  = 106  mm t  = 7.1  mm I  = 4.77 (10 ) mm6 4

Substituting the properties of the cross section of the W100 x 19.3 beam given above in

relation (9.56), we obtain

  W WFor wide flanges and I-beams      is taken as approximately equal to A  / A where A  is the

area of the cross section of the web. Referring to Appendix H for the standard W100 × 19.3

beam, we have

Thus,

Consider a prismatic beam subjected to external loads having S points of load change.
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(9.58a)

(9.58b)

2 1Recalling our discussion in Section 8.9, the transverse components of translation u (x ) and

3 1     u (x ) and the components of rotation          and          of this beam are represented by a set

i 1   of functions u (x ) and      [[s = 1, 2, ..., (S + 1)] (i = 2 or 3)] having continuous derivatives,(s)

i   of any order.  Each one of the functions u  and      [[s = 1, 2, ..., (S + 1)] (i = 2 or 3)] gives(s)

i   the component of translation u  or rotation  (i = 2 or 3) in one segment of the beam

extending either between a support and its adjacent point of load change or between two

consecutive points of load change.

The boundary value problem for computing the transverse components of translation

3 1 2 1     u (x ) and u (x ), the components of rotation          and         , the shearing components of

3 1 2 1the internal force Q (x ) and Q (x ) and the components of the internal bending moment

2 1 3 1M (x ) and M (x ) in a beam (statically determinate or indeterminate) subjected to a change

c 2 3of temperature ()T  = 0, *T  � *T  � 0) as well as to  a distribution of external transverse

forces and bending moments, which have S points of load change, can be formulated on the

basis of the Timoshenko theory of beams as shown next:

  1Find  the  functions      (x )[s = 1, 2, ..., (S + 1)] (i = 2, 3)  which  have the  following 

properties:

1.  Each has continuous derivatives of any order.

2.  They satisfy the rotation boundary conditions at the ends of the beam where rotations are

specified.

3.  They yield continuous components of rotation throughout the length of the beam.

    4.  Each pair [       and      ] of these functions satisfies the rotation equations of equilibrium 

(9.10) at all points of the segment of the beam whose components of rotation they represent.

That is,

This ensures that every segment of the beam of infinitesimal length, cut by  two imaginary

planes perpendicular to its axis, which does not contain a point of load change, is in

equilibrium. 

5.  When substituted into the internal action–rotation relations (9.8), they give a set of

3 1 2 1 2 1 3 1functions Q (x ), Q (x ), M (x ) and M (x ) [s = 1, 2, ..., (S + 1)] each  one of which(s) (s) (s) (s)

represents either the shearing force or the bending moment in the s  segment of the beamth

extending between a support and its adjacent point of  load change or between two

consecutive points of load change.  These functions satisfy 

(a) The natural boundary conditions are at the ends of the beam where specified

external transverse forces and beading moments are specified.

(b) The requirements for equilibrium of the segments of infinitesimal length of the beam

are cut by two imaginary planes normal to its axis which contain a point of load

change.

6.  When substituted into relations (9.50), the resulting equations can be solved to give a set

2 3of components of translation u  and u  [s = 1, 2, ..., (S + 1)] which (s) (s)

(a) Satisfy the translation boundary conditions of the beam where components of

translation are specified
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(b) Yield continuous components of translation throughout the length of the beam

    3 1 2 1The components of rotation         and         , translation u (x ) and u (x ) shearing force

3 1 2 1 2 1 3 1Q (x ) and Q (x ) and bending moment M (x ) and M (x ) of a beam can be established on

the basis of the Timoshenko theory of beams by adhering to the following steps:

STEP 1  The set of differential equations (9.58) are solved to obtain the transverse

components of rotation  [s = 1, 2, ..., (S + 1)] (i = 2, 3) of each segment of the beam

extending between a support and its adjacent point of load change or between two

i consecutive points of load change.  Each of the functions  [s = 1, 2, ..., (S + 1)] (i =

2, 3) involves three constants.

STEP 2  The constants are evaluated by requiring that the components of rotation  

[s = 1, 2, ..., (S + 1)] have the following attributes:

1.  They satisfy the equations of continuity for the components of rotation at every point of

load change of the beam.

2.  They satisfy the rotation boundary conditions at the ends of the beam.

3.  When substituted into the action–rotation relations (9.8), they give internal shearing

forces and bending moments which satisfy

(a) The requirements for equilibrium of the segments of infinitesimal length of the beam

which contain a point of load change

(b) The natural boundary conditions at the ends of the beam at which such conditions

are specified

i 1STEP 3  The  components  of  rotation             and  the  shearing  forces  Q (x ) [s = 1, 2,(s)

..., (S + 1)] (i = 2, 3) are substituted into relations (9.48) and the resulting equations can be

2 3solved to obtain a set of components of translation u  and u  [s = 1, 2, ..., (S + 1)](s) (s)

involving two constants which are established by requiring that the components of

translation satisfy

(a) The translation boundary conditions at the ends of the beam where such  conditions

are specified

(b) The equations of continuity for the components of translation at every point of load

change

3 1The components of rotation            and            and the components of translation u (x )

2 1and u (x ) of statically determinate beams can also be established by adhering to the

following simpler procedure:

2 1 3 1STEP 1 The set of functions M (x ) and M (x ) [s = 1, 2, ...,(S + 1)] representing the(s) (s)

2 1bending moments in the statically determinate beam and the set of functions Q (x ) and(s)

3 1Q (x ) [s = 1, 2, ..., (S + 1)] representing the shear forces in the statically determinate beam(s)

are established by considering the equilibrium of appropriate segments of the beam.

2 1 3 1STEP 2 The functions M (x ) and M (x ) [s = 1, 2, ..., (S + 1)] established in step 1 are(s) (s)

substituted into relation (9.8a) and (9.8b) and the resulting differential equations are solved

to obtain the components of rotation               and              [s = 1, 2 ..., (S + 1)] as functions

1of x  involving one constant each.

2 1 3 1STEP 3  The components of rotation         and         and the shear forces Q (x ) and Q (x )(s) (s)
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     (a)

     (b)

   (c)

   (d)

[s = 1, 2, ..., (S + 1)] established in Step 1, are substituted into relations (9.48) and the

2 3resulting equations are solved to obtain the components of translation u  and u  [s = 1,(s) (s)

2, ..., (S + 1)] involving two constants each.

STEP 4  The constants are evaluated by requiring that the solution satisfies the essential

boundary conditions of the beam as well as the continuity conditions at the points of load

2 1change of the corresponding external actions.  It is apparent that the set of functions M (x ),(s)

3 1 2 1 3 1M (x ) and Q (x ), Q (x ) [s = 1, 2, ..., (S + 1)] obtained in step 1 satisfy the natural(s) (s) (s)

boundary conditions of the problem and the requirements for equilibrium of all the segments

of infinitesimal length of the beam cut by two imaginary planes normal to its axis.

In what follows we present one example.

                                                                                                                                             

Example 6  Using the Timoshenko theory of beams establish the equations of the elastic

curve of the fixed at the one end and simply supported at the other end beam subjected to

3a concentrated force P  as shown in Fig a.  Moreover, compute and show on a sketch the

3reactions of the beam. The x  axis is a principal centroidal axis of the cross sections of the

3 3beam.  The line of action of the force P  is parallel to the x  axis and lies in a plane which

contains the shear centers of the cross sections of the beam.

Figure a  Geometry and loading of the beam.

Solution This is a statically indeterminate beam.  Consequently,  we must  use  the first

procedure described in this section. The loading has one point (point A) of load change.

3 1 2 1Thus, the components of internal action Q (x ) and M (x ), the component of translation

3 1u (x ) and the component of rotation           are each expressed by two functions.

STEP 1  We integrate the equations of equilibrium (9.58) to obtain the components of

rotation as functions of the axial coordinate involving three constants each.  Referring to

relations (9.58), we have

Integrating three times the above equations and using relations (9.8), we obtain
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  (e)

          (i)

         (n)

3 1STEP 2  We establish relations among the constants by requiring that the functions Q (x ),(s)

2 1M (x ) and         (s = 1, 2) given by relations (c), (d) and (e) satisfy the following(s)

conditions:

11. The rotation               must satisfy the boundary condition at x  = 0.  That is,

             = 0

Substituting the first of relations (e) in the above, we get

5    C  = 0 (f)

2 1 12.  The internal bending moment M (x ) must satisfy the natural boundary condition at x(2)

= L.  That is, referring to relation (d), we have

2 2 4 M (L) = 0 = C L + C (g)(2)

13.  The rotation               must satisfy the rotation continuity condition at x  = a. That is,

                      =         (h)

Substituting relations (e) in the above, we obtain

4. The internal shearing forces and the internal bending moments must satisfy the

requirements for equilibrium of an infinitesimal segment containing the concentrated force

3P .  That is,

3 3 3Q (a ) = Q (a ) + P (j)(1) - (2) +

2 2M (a ) = M (a) (k)(1)  (2)

Substituting relations (c) and (d) in the above, we have

1 2 3      C  = C  + P (l)

1 3 2 4C a + C  = C a + C (m)

From relations (g), (i), (l) and (m), we obtain

STEP 3  We substitute the values of the constants (f) and (n) into relations (e) and (c) and

the resulting expressions into (9.48b) and we integrate the resulting relation to obtain an

3 1 3 1expression for each of the components of translation u (x ), u (x ) involving three(1) (2)

constants.  For the beam under consideration relations (9.48b) reduce to
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  (o)

                                 (p)

                                (q)

(s)

(t)

Substituting the values of the constants (f) and (n) into relations (e) and (c) and the resulting

expressions in relations (o), we get

Integrating relations (p), we obtain

2 7 8 3 1STEP 4  We evaluate the constants C , C  and C  by requiring that the functions u (x ) and(1)

3 1 1 1u (x ) satisfy the translation boundary conditions at x  = 0 and x  = L and the translation(2)

1continuity condition at x  = a.  That is,

3     u (0) = 0(1)

Thus,

7        C  = 0 (r)

and

3    u (L) = 0(2)

Hence,

1Moreover, at x  = a, we have,

  

3 3u (a) = u (a)(1) (2)

Substituting relations (q) into the above, we get
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(u)

(v)

(w)

(x)

(y)

Figure b  Free-body diagram of the beam.

Substituting relation (t) into (s), we obtain

where 

For a beam of rectangular cross section of width b and depth h, we have

Substituting relations (w),  (9.53) and (2.53) into relation (v),  for v = a we get

The components of translation of the beam are obtained by substituting the values of the

constants (r), (t) and (u) into relations (q).

The internal shearing forces and bending moments acting on the cross sections of the

beam are obtained by substituting the values of the constants from relations (n) and (u) into

relations (c) and (d), respectively. That is,

Referring to Fig b, the reactions of the beam are
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                                       (z)

Usually, in practice, beams have a very small h/L ratio (h/L < 1/10).  Consequently, k is very

small compared to unity.  Thus, referring to relations (z), we may conclude that the influence

of the shear deformation of such beams on their internal actions is negligible.

                                                                                                                                             

9.5 Computation of the Shearing Components of Stress in Prismatic Beams
Subjected to Bending without Twisting

When a prismatic straight beam is subjected to transverse forces whose line of action lies

in a plane which contains the shear centers of its cross sections, in addition to the normal

components of stress     , shearing components of stress       and        act on its cross sections.

2 3Consider a prismatic beam of a general cross section and denote by x  and x  a set of

orthogonal centroidal axes not necessarily principal.  The beam is subjected to external

1 3transverse forces acting in a plane parallel to the x x  plane which contains the shear centers

of its cross sections.  Moreover, referring to Fig. 9.9, consider  particle abcdef located on

the perimeter of a cross section of the beam.  The resulting shearing stress acting on the

plane abcd of this particle may be decomposed into a normal        and a tangential        to the

perimeter components. Since the particle under consideration is in equilibrium, as we have

shown in Section 2.13, a shearing stress        equal in magnitude to        must act on the plane

cdef.  This, however, is not possible because the plane cdef is part of the lateral surface of

the body which is traction free.  Thus, the component of stress        must vanish.  That is, the

shearing stress acting on a cross section of a beam on particles located on its perimeter must

be tangent to the perimeter.

In Section 9.1 we establish formulas (9.12) for computing the normal component of

stress        acting on a cross section of a beam.  This formula is valid for beams whose cross

sections have any given geometry.  In this section we establish a formula for computing the

 

Figure 9.9  Shearing stress acting on a particle located on the perimeter of a cross section of a member.

properties.
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(9.59)

(9.60)

shearing components of stress acting on the cross sections of a beam.  However, as we show

later, this formula can be used only for beams whose cross sections have certain geometric

properties. 

Consider a prismatic beam subjected to one or more of the external loads described in

1Section 9.1.  Moreover, consider a segment of infinitesimal length dx  of this beam (see Fig.

9.10a).  The components of shearing force and bending moment acting on the left surface

2 3 2 3of this segment of the beam are denoted by Q , Q , M  and M , while the components of

2 2 3shearing force and bending moment acting on its right surface are denoted by Q  + dQ , Q
3 2 2 3 3+ dQ , M  + dM  and M  + dM .  Referring to relations (9.12a), the normal component of

stress acting on the left surface of the segment under consideration is equal to 

Moreover, the normal component of stress acting on the right surface of the segment under

consideration is equal to

Imagine that the segment under consideration is cut in two parts by a plane ABCD  which is

nnormal to a unit vector i  =                     and consider the equilibrium of part ABCDEF
1shown in  Fig. 9.10d.  Using relation (9.59), the resultant force F  of the normal component

of stress      acting on face CDE of this part is equal to

Figure 9.10  Segment of a beam  subjected to bending without twisting.
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              (9.63)

(9.64)

(9.61a)

nwhere A  is the area of face CDE which is equal to the area of face ABF.  Moreover, using

2relation (9.60) the resultant force F  of the normal component of stress        +         acting on

face ABF of part ABCDEF is equal to

(9.61b)

Referring to Fig. 9.10d, we see that the equilibrium of part ABCDEF requires that a force

dF must exist on its surface ABCD  given by

(9.62)

1nThe force per unit length q  exerted on the surface ABCD  of Fig. 9.10d is referred to as the

2 3shear flow.  Taking into account relations (8.20) and (8.21), and disregarding m  and m  (see

Section 8.9),  from relation (9.62) we have 

2 3 2 3where Z  and Z  are the first moments about x  and x  axes, respectively, of the portion of

narea A  of the cross section of the beam.  That is,

and

iQ (i = 2 or 3) = shearing component of the force acting on the cross section of

i             the beam in the direction of the axis x .

ii iI (i = 2 or 3)  = moment of inertia of the cross section of the beam about the axis x .

23 2I          = product of inertia of the cross section of the beam about the axes x  and 

3              x .

n j= distance of the centroid of the area A  from the axis x  (j = 3 or 2, j �  

n 2            i).  Notice that A  is always positive.  Consequently, the sign of Z  and 

3             Z  depends on the sign of  and , respectively.
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1†The unit vector normal to a positive cross section is i  while the unit vector normal to a negative cross

1section is !i .

(9.65)

(9.66)

(9.67)

2 3If the x  and x  axes are principal centroidal,  relation (9.63) reduces to

In general, the distribution of the shearing component of stress        on the surface ABCD
is not known.  In the theories of mechanics of materials for beams, we do not have a rational

means for establishing this distribution for beams of any cross section.  However, for beams

of certain cross section (see Fig. 9.11), we know a priori that the shearing component of

nstress        does not vary very much along the direction normal to the unit vector i .  For such

beams, the shearing component of stress        is obtained from relation (9.63) as

1nA positive value of        or q  acting on the positive  cross section indicates that its sense is†

n nthat of the unit vector i , that is, toward the area A  (see Fig. 9.10b).

2 3If the x  and x  axes are principle centroidal axes, relation (9.66) reduces to 

In Fig. 9.11 we show cross sections of prismatic beams for which we can employ formula

(9.66) or (9.67) to compute the shearing components of stress acting on them.  They include

1.  Open thin-walled cross sections (see Figs. 9.11a and b).  The total shearing stress acting

on the particles of the boundary of a cross section is tangent to the boundary.  Moreover,

since the thickness of the cross section is small, the component of shearing stress normal to

its boundary is negligible throughout the cross section.  Furthermore, the variation of the

shearing stress along the normal to the boundary is small.  Thus, we assume that the shearing

stress acting on the cross sections of beams having thin-walled open cross sections does not

vary along its thickness and it is parallel to the tangent to its boundary.  Consequently, we

can use formula (9.66) or (9.67) to compute the magnitude of shearing stress acting on the

cross sections of such members.  Referring to Fig. 9.11a, when the formula (9.67) is

s Femployed to compute      in the flanges of the beam, b  is equal to t  while when it is

s W employed to compute       in the web of the beam, b  is equal to t .

2.  Closed, thin-walled cross sections having an axis of symmetry (see Figs. 6.11c and d)

when they are subjected to transverse forces whose plane contains the axis of symmetry.  In

sthis case b  = 2t.
33.  Solid cross sections having an axis of symmetry (say the x  axis) when the plane of the

transverse forces contains the axis of symmetry, provided that the  ratio of the width of the

cross section to its depth is not large (see Fig. 9.11e and f).  The shearing component of

stress        in beams of rectangular cross section subjected to transverse forces acting in the

1 3 3x x  plane in the direction of the x  axis (see Fig. 9.11e) has been computed on the basis of

2the theory of elasticity.  It was established that its variation along the direction of the x  axis

is small when the ratio b/h is less than 1/2 .  Thus, we can use formula (9.67) to compute the
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magnitude of the shearing component of stress       acting on the cross sections of such a

beam.  After the shearing component of stress         has been computed, using relation (9.67),

the shearing component of stress        can be established by recalling that the total shearing

stress    at a particle located on the perimeter of a cross section must be tangent to the

perimeter; otherwise there will be a component of shearing stress normal to the boundary

which requires a component of shearing stress on the traction-free lateral surface of the

2 3beam.  Thus, denoting the equation of the boundary by x  = f (x ) and referring to Fig. 9.11f

at any point of the boundary, we have

Figure 9.11 Types of cross section of beams for which formula (9.65) can be used to compute the
distribution of shearing stress due to transverse forces.
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(9.68)

(9.69)

(9.70a)

(9.70b)

3Moreover, since the component of stress        must be symmetric with respect to the x  axis,

3 12it must vanish on the x  axis.  Assuming that the variation of the component of stress J  in

2the x  direction is linear, we have

3The accuracy of the results obtained on the basis of relation (9.69) decreases as df/dx
increases.  For example, consider a cantilever beam of solid circular cross sections, of radius

R, made from an isotropic, linearly elastic material.  The beam is subjected at its

3 1 3 3unsupported end to a force P  acting in the x x  plane in the direction of the x  axis.  The

stress distribution in such a beam has been established on the basis of the theory of

elasticity .  The shearing components of stress were found to be†

2Referring to relations (9.70b), we see that the assumption that        varies linearly with x  is

valid for beams of circular cross section.  The distribution of the shearing components of

3 3stress        on lines x  = 0 and x  = R/2 obtained on the basis of the theory of elasticity is

shown in Fig. 9.12.  Referring to this figure, we find that the average values of the shearing

component of stress       acting on the particles of lines AB and DE for (v = 1/3) are equal to

Figure 9.12  Distribution of the shearing components of stress on the cross section of a beam of solid
circular cross section obtained on the basis of the theory of elasticity, for v = 1/3.

                                   

† See Timoshenko, S.P., Goodier, J.N., Theory of Elasticity, McGraw-Hill, 3rd edition, New York, 1970,
p. 358.
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(9.71a)

        (9.71b)

(9.72a)

(9.72b)

(9.73)

(9.74)

and 

Thus, the maximum variation of the shearing component of stress        acting on the particles

of lines AB and DE from the average stress      , is about 6%.  Moreover, using formula

(9.67) and referring to the table on the inside of the back cover of the book, we obtain

The shearing component of stress        acting on the particles of lines AB and DE computed

on the basis of the theory of mechanics of materials is equal to the average value of the

corresponding component of stress computed on the basis of the theory of elasticity (9.70).

 The total shearing stress acting on any particle of the boundary of the cross section of

the beam must be tangent to the boundary.  At points A and B the shearing component of

stress        is tangent to the boundary, while at points D  and E it is not.  Thus, on line AB the

shearing component of stress        vanishes, while on line DE it does not.  The boundary of

the cross section of the beam under consideration is

Therefore,

Substituting relations (9.73) into (9.69), we obtain
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(9.75)

(9.76)

Figure 9.13  Types of cross sections of beams for which formula (9.67) will not give accurate results or
cannot be applied directly.

3The distribution of the shearing component of stress        on line DE (x  = R/2) on the basis

of the theory of mechanics of materials is obtained by substituting relation (9.72b) into

(9.74).  Thus, we get

12Referring to relation (9.70b), the distribution of the shearing component of stress J  on line

DE obtained on the basis of the theory of elasticity is equal to

Relation (9.66) or (9.67) does not give a satisfactory approximation of the components

of shearing stress in beams having solid, unsymmetric cross sections (see Fig. 9.13a) or solid

cross sections with one axis of symmetry if the plane of the external forces to which they are

subjected does not contain the axis of symmetry.  In this case, relations (9.66) or (9.67) gives

the average value of the distribution of the shearing component of stress      along the

sdistance b .  Moreover, relation (9.66) or (9.67) cannot be employed directly to compute the

total shearing stress in beams having unsymmetric, thin-walled, hollow cross sections (see

Fig. 9.13b) or closed, thin-walled cross sections with one axis of symmetry if the plane of

the external forces to which they are subjected does not contain the axis of symmetry.  A

formula for computing the shearing stress in such beams is presented in Section 12.6.

In the sequel, we compute the distribution of shearing stress in prismatic beams subjected

to bending without twisting.  We consider beams whose cross sections are (a) rectangular,

and (b) I cross section (c) thin-walled angle.  Whenever possible we compare the results with

those obtained on the basis of the theory of elasticity.

                                                                                                                                             

Example 7  Compute the distribution of shearing stress in a beam having a rectangular cross

1 3 3section and loaded by forces acting in the x x  plane parallel to the x  axis.
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(a)

(b)

Figure a  Geometry of the
cross section of the beam.

13Solution  We assume that the shearing component of stress J  is constant along the width

13of the beam.  Hence, referring to Fig. b, the shearing component of stress J  at any particle

nof line AB can be established using relation (9.67).  That is, denoting by A  the area of the

portion ABCD  of the cross section of the beam, we have

13The above relation indicates that the distribution of the shearing component of stress J

3 3along the x  axis is parabolic (see Fig. b).  It is zero at x  = ±d/2 and assumes  its maximum

3value, at x  = 0, equal to

where A is the area of the cross section of the beam.

The shearing component of stress        , obtained on the basis of relation (9.67), is zero.

This may be readily seen by considering a segment of infinitesimal length of the beam cut

2by two planes normal to its axis and a plane normal to the x  axis (see Fig. c).  The resultant

1 2forces F  and F  of the normal components of stress acting on the end surfaces of this

2 2segment vanish.  Consequently, the resultant shearing force dF acting on the plane x  = !x N
must vanish.

The shearing stress        induces shearing deformation whose magnitude is a function of

3x .  As shown in Fig. d, as a result of shear deformation, the cross sections of the beam warp.

13 3The nature of warping becomes apparent by noting that J  = 0 at x  = ±d/2.  Consequently,

3the cross section is not distorted at x  = ±d/2, whereas the distortion of the cross section is

3maximum (       is maximum) at x  = 0.  For beams whose depth is small as compared to their

length, the warping is negligible.  Therefore, for such beams, the assumption that plane 

Figure b  Distribution of the shearing         Figure c  Part of a segment of the beam

2  component of stress     .        cut by a plane normal to the x  axis.
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3Figure d  Deformation of a cantilever Figure e  Distribution of shearing stress at x  = 0 
beam subjected to a transverse force. on a cross section of a prismatic beam of rectangular

cross section obtained on the basis of the theory of
elasticity. (see Ibid Timoshenko and Goodier).

sections normal to the axis of the beam before deformation remain plane, subsequent to

deformation, is a very satisfactory approximation.

The distribution of the shearing components of stress in cantilever beams of constant

rectangular cross section has been obtained on the basis of the theory of elasticity.  For

values of the ratio b/d less than 1/2, the shearing component of stress        has a very small

magnitude, while the shearing component of stress        is almost uniformly distributed along

2the x  axis.  Consequently, for this range of the ratio b/d, the results obtained on the basis of

relation (a) are in satisfactory agreement with the  results obtained on the basis of the theory

of elasticity (see Table a).  However, for larger values of the ratio b/d, the solution obtained

on the basis of the theory of elasticity yields values for the component of stress       which

2vary considerably with x  (see Table a).  Consequently, in this case, the results obtained on

the basis of relation (a) represent only the average value of the shearing stress       obtained

on the basis of the theory of elasticity.  At the centroid of the cross section of a member the

magnitude of        obtained on the basis of the theory of elasticity is less than that given by

2relation (a), whereas at x  = ±b/2, the magnitude of       , obtained on the basis of the theory

of elasticity, is greater than that given by relation (a) (see Table a).

  Table a   Shearing stress coefficients for beams of rectangular cross sections.†

b/d 1/2 1 2 4

1K 0.983 0.940 0.856 0.805††

2K 1.033 1.126 1.396 1.988††

                                                                                                                                             

                                                                                                                                             

Example 2  Compute the distribution of the shearing components of stress for a beam

having an S or a W (wide flange) cross section (see Appendix H), subjected to external

1 3 3forces in the x x  plane parallel to the x  axis (see Fig. a).

                                   

†  See Timoshenko, S.P., Goodier, J.N. Theory of Elasticity, 3rd edition, McGraw-Hill, New York, 1970.

1 2†† For definitions of K  and K , see Fig. e. 
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(b)

   (a)

Figure a  Geometry of the cross sections of the beam and distribution of the shearing components of stress.

Solution  The shearing component of stress     in the flanges of the beam under

consideration is generally small and may be neglected.  Moreover, in the flanges, the

2component of stress       varies considerably with x  and thus, it cannot be computed using

3 F 2 Wrelation (9.67).  This becomes apparent by noting that at x  = ±(d/2 ! t ) and |x | > t /2 the
shearing component of stress       must be zero because this stress must be equal to the

shearing component of stress        acting on the free surface of the flanges.  However, across

2 Wthe junction LM  (|x |  <  t /2), the shearing component of stress       is different than zero.

3 FThis indicates that at the points of the flange close to x  = ±(d/2 ! t ), the distribution of the

2shearing component of stress       in the direction of the x  axis is not uniform.

The values of the shearing component of stress       on the web, obtained on the basis of

relation (9.67), are a satisfactory approximation of its actual values because on the web the

2shearing component of stress       varies negligibly in the direction of the x  axis.  In order

to establish the shearing component of stress       at a point of the web of the beam of Fig.a

3[say on the line RS (x  = )], we compute the first moment of the area of the portion of the

cross section of the beam below line RS.  Referring Fig. a, this area consists of two

F Wrectangles, the flange of area bt  and the portion of the web below line RS of area t (d/2 !

F 2 Ft  ! ).  The distance of the centroid of the flange from the x  axis is equal to (d ! t )/2

2while the distance of the centroid of the portion of the web below line RS from the x  axis

Fis equal to (d/2 ! t  + )/2.  Thus, the first moment of the area of the portion of the cross

section of the beam below line RS is equal to 

Substituting relation (a) into (9.67) we get
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(c)

(d)

(e)

That is, as shown in Fig. a, the distribution of the shearing component of stress       on the

web is parabolic.  The maximum value of        is at  = 0.  For the I-beams used in practice,

the shearing component of stress       on the web accounts for 90% to 98% of the shearing

3forces Q .

In order to establish the shearing component of stress       at any point of the bottom

1flange of the beam of Fig. a, consider a segment ABCDEFG of length dx  and width (b/2 !

) (see Fig. a).  The equilibrium of this segment requires that a force dF acts on the plane

CDG  (see Fig. a).  As discussed previously, the shearing component of stress       acting on

the flanges of the beam of Fig. a can be considered approximately as being uniformly

Fdistributed over the thickness t  of each flange. Thus, the shearing component of stress    

acting on the bottom flange is 

nwhere A  is the area EDGF.  Referring to Fig. a, relation (c) may be rewritten as

nNotice that since       is positive, its sense is toward the area A .  That is, referring to Fig. a,

its sense is from line DG  to EF.

2The shearing component of stress       at any point of line x  =  of the top flange is

equal to

nIn this case,       is negative. Consequently, its sense is away from the area A ; that is,

referring to Fig. a, its sense is from line HJ to IK.  The distribution of the shearing

component of stress       is shown in Fig. a.

                                                                                                                                             

                                                                                                                                             

Example 9 Consider a cantilever beam whose cross section is the thin-walled angle with 

Figure a  Geometry of the cross sections of the beam.
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(b)

  (c)

(d)

3equal legs shown in Fig. a. The beam is subjected at its free end to a concentrated force P
passing through the shear center of its cross section. Compute the distribution of the shearing

component of stress on the cross sections of the beam.

                                                                                                                                                                     

Solution Inasmuch as the legs of the angle are thin we disregard their thickness t as

compared to their length a. We first locate the centroid of the cross section of the beam with

2 3respect to the system of axes x , x  shown in Fig. a; referring to this figure, we have* *

2 3The moments and the product of inertia with respect to the centroidal axes x , x  are

Using the above results, we get

The shearing components of stress       and       are computed using formula (9.66). That is,

referring to Fig. ca, we have

Figure b Location of the centroid of the
cross section of the beam.
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(f)

     (g)

nFigure c  Area  A   and  distances   and    for  computing  the  shearing  components of stress    

and      .

2 2Taking into account that x  = 3a/4 ! x  the above relation reduces to/

2The minus sign indicates that for x  < a/12 the direction of the shearing component of stress

      acting on the flange of the beam is from point A to point B (see Fig ca). From relation

2 2(f) we see that       vanishes when x  = a/12 and x  = 3a/4. The distribution of the shearing

component of stress       is shown in Fig. d.  Referring to Fig. cb, we obtain

Figure d Distribution of the shearing components of
stress on the cross sections of the beam.
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(h)

3 3Taking into account that x  = 3a/4 ! x  relation (g) reduces to /

The distribution of the shearing component of stress       is shown in Fig. d.

                                                                                                                                             

                     

9.6 Build-Up Beams

A build-up beam is made from two or more pieces of the same material connected

together to form one beam.  The connections of these pieces must have the strength to

transmit the shearing forces, which must be transmitted in order that the pieces act as one

unit.  As an example consider the plate girder whose cross section is shown in Fig. 9.14a.

This girder consists of three plates welded together to form an I-beam.  In Fig. 9.15 we show

the free-body diagram of a segment of infinitesimal length of the bottom flange of the girder

of Fig. 9.14a.  If we designate the normal component of stress acting on face ABC by      ,

the normal component of stress acting on face DEF in general will be         + d     .  That is,

1the resultant force F  of the normal component of stress acting on the face ABC of the flange

2of the grider is different than the resultant force F  of the normal components of stress acting

on its face DEF.  Consequently, since the segment ABCDEF is in equilibrium, a horizontal

shearing force is exerted by the web of the beam on its flange.  Referring to Section 9.5, it

13is clear that the value of this force per unit length is equal to the shear flow q  between web

and flange given by relation (9.65).  For the beam of Fig. 9.14a we have 

Figure 9.14  Cross sections of build-up beams.
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(9.77)

    Figure 9.15  Free-body diagram of a segment of
    the bottom flange of the girder of Fig. 9.14a.

where

n  A   = area of the cross section of the bottom flange of beam.

3n 3  x  = x  coordinate of the centroid of the cross section of the bottom flange.

2 2  I   = moment of inertia of the cross section of beam about the x  axis.

On the basis of the foregoing presentation, it is clear that each unit length of  the weld

must be able to transmit from the web of the beam to its flange a shearing force equal to the

shear flow given by relation (9.77).

The connections of pieces made from steel are often welded using either a butt weld as

shown in Fig. 9.16a or a fillet weld as shown in Fig. 9.16b.  The strength of a butt weld is

established by multiplying the area of the cross section of the thinner plate being connected

by the allowable stress for the welding metal.  Pressure vessels are often manufactured using

butt welds.  The strength per unit length of a filled weld is equal to  the smallest dimension

(throat) across the weld multiplied by the allowable shearing stress for the welding metal.

As a second example consider the girder whose cross section is shown in Fig. 9.14b

which consists of two channels bolted on the flanges of a wide flange.  In Fig. 9.17 we show

the free-body diagram of a segment of length s of the bottom channel of this girder extending

1from center to center of two adjacent lines of bolts.  In general, the resultant force F  of the

normal component of stress       acting on the face ABC of the segment under consideration

2will be different than the resultant force F  of the normal component of stress acting on face

DEF.  Thus, a horizontal shearing force F must be applied to the segment ABCDEF of the

channel  in  order to keep  it in equilibrium.  This force is equal to the product of the shear

 

Figure 9.16  Types of welds.
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   (9.78)

(9.79)

(9.80)

Figure 9.17  Free-body diagram of a segment of          Figure 9.18  Free-body diagram of a segment
the bottom channel of the girder of Fig. 9.14b.           of the bottom plank of the girder of Fig. 9.14c.

13flow q  given by relation (9.65) multiplied by the distance s between the two adjacent rows

of bolts.  That is,

Disregarding the frictional forces between the channel and the flange of the wide- flange,

13the force F = q s must be transmitted from the channel to the flange of the wide-flange by

bthe four half bolts.  That is, the shearing force F  that one bolt must transmit is equal to

As a third example consider the wood box girder whose cross section is shown in Fig.

9.14d.  In Fig. 9.18 we show the free-body diagram of a segment of the bottom plank of

length s extending from center to center of two adjacent rows of nails.  The resultant force

1F  of the normal component of stress acting on the face ABC of this segment in general is

2not equal to the resultant force F  of the normal component of stress acting on its face DEF.

Thus, a horizontal force F must act on the segment ABCDEF of the girder in order to keep

13it in equilibrium.  This force is equal to the  shear flow q  multiplied by the distance s
between two adjacent nails.  Disregarding the shearing forces transmitted between the

vertical and horizontal planks due to friction, the force F must be transmitted by the four half

nnails.  That  is,  the  shearing  force  F   that  one  nail  must  transmit  is  equal  to

In what follows we present two examples.

                                                                                                                                             

Example 10  Consider a simply supported steel girder whose cross section is shown in Fig.

a.  The girder consists of two C 150 ×12.2 channels connected by 12 mm-diameter bolts on

the flanges of a wide-flange W 150 × 18.  The girder is subjected to a concentrated force of

80 kN acting at the middle of its span.  The allowable shearing stress in the bolts is 40 MPa.

Compute the maximum allowable spacing of the bolts.
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    (a)

  (b)

(c)

Figure a  Geometry and loading of the girder.  

Solution  Referring to Appendix H and to Fig. b, we have

Using quantities (a) and referring to Fig. b, we have

3Substituting the first of quantities (a) and quantities (b) into relation (9.65) and using Q  =

40 kN, we get

Substituting result (c) into relation (9.79), we obtain

or

nFigure b  Area A  and distance       of the girder.
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         (a)

Example 11  Consider a cantilever wood box beam whose cross section is shown in Fig. a.

The beam is subjected to a concentrated force of 24 kN at its unsupported end.  The beam

is made of four planks screwed together as shown in Fig. a.  The screws have a diameter of

4 mm and are spaced at 20 mm.  Compute the average shearing stress acting on the cross

section of the screws.

      Figure a  Cross section of the beam.

Solution  Referring to Fig. a, we have

Substituting the quantities (a) into relation (9.65), we obtain

                                                                                                                                             

9.7 Location of the Shear Center of Thin-Walled Open Sections

In Section 9.5, we have established a formula for the shearing component of stress in

beams subjected to bending without twisting.  In order that a beam is subjected to bending

without twisting, the external moments acting on it should not have a torsional component.

Moreover, the external transverse forces acting on it must lie on a plane which contains the

shear center of the cross sections of the beam. This is a point on the plane of any cross

section of the beam which has the property that the moment of the shear flow, acting on the

1cross section about an axis through the shear center parallel to the x  axis, vanishes.  It can

be shown that 

1. The shear center of cross sections having an axis of symmetry or a center of symmetry is

located on the axis of symmetry or is the center of symmetry (see Fig. 9.19a and b).

2. The shear center of cross sections having two axes of symmetry is the intersection of these

axes; that is, the shear center of such cross sections coincides with their centroid.
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Figure 9.19 Shear centers of cross section having an axis of symmetry or a center of symmetry or consisting
of two thin intersecting rectangles.

3.The shear center of cross sections consisting of two thin, intersecting rectangles, as shown

in Fig. 9.19c, is the point of intersection of the median lines of the rectangles.  This is so

because the resultant forces of the shearing components of stress acting on the rectangular

parts of a cross section intersect at that point.

When the line of action of the external transverse forces acting on a beam does not lie

in a plane which contains the shear centers of its cross sections, they can be replaced by  a

statically equivalent system of external torsional moments and of external transverse forces

whose line of action lies in a plane which contains the shear centers of the cross -sections

Qof the beam (see Fig. 9.20).  The shearing component of stress (     )  due to the external

transverse forces whose line of action lies in a plane which contains the shear centers of the

cross sections of the beam can be established using relation (9.67).  If the beam has a

circular cross section the shearing component of stress  due to the torsional moment

Figure 9.20  Channel subjected to transverse forces whose plane does not pass through the shear center of
its cross section.

www.EngineeringEBooksPdf.com



4  5  0   Theories of Mechanics of Materials for Beams

Table 9.1  Location of the shear center of thin-walled open cross sections having an axis of symmetry.

Geometry of the cross section Distance e

The + sign of the ± term refers

to the figure on the left; the !

sign, to the figure on the right.

can be established using relation (8.72).  For beams of non-circular cross sections see

Chapter 6.  The shearing component of stress acting on the particles of a beam subjected to

given forces is
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(9.81)

The shear center of a cross section of a beam can be located by considering a segment

1of the beam and setting equal to zero the sum of the component along the x  axis of the

moments of the external forces acting on this segment and of the shearing components of

stress acting on the end faces of this segment.  In the examples which follow, we locate the

shear center of two cross sections—a channel and a thin-walled semicircular cross section.

                                                                                                                                             

Example 12  Locate the shear center of the thin channel shown in Fig. a.

Figure a  Geometry of the cross section of the channel and distribution of the shearing components of stress.

2Solution  The shear center of the thin channel shown in Fig. a is located on the x  axis

2because it is an axis of symmetry.  In order to establish the distance e  of the shear center

from the center line of the web of the channel, we assume that the channel is a cantilever

3beam subjected at its unsupported end to a force P , whose line of action passes through the

shear center of the end cross section of the beam (see Fig. b).  The component of stress    

acting on the particles of the flanges of the channel generally is small and its effect on the

3location of the resultant shearing force Q  of the shearing component of stress      acting on

3the cross sections of the channel may be disregarded.  That is, the shearing force Q  is

3assumed to act through the center line of the web of the channel.  The force P  induces a

component of shearing stress       on the flanges (see Fig. a) which referring to relation (9.67)

Figure b  Cantilever channel subjected to a Figure c  Free-body diagram of a segment
a transverse force P through its shear center. of the cantilever beam of Fig. b.
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(a)

(b)

(c)

(d)

is equal to

2As shown in Fig. a, the coordinate x N is measured from the edge B of the flange of the

2channel.  Using the above relation, we find that the resultant horizontal force F  of the

shearing component of stress      acting on each flange, is equal to

Considering the equilibrium of the segment of the channel, whose free-body diagram is

shown in Fig. c, we have

Thus,

                                                                                                                                             

                                                                                                                                             

       

Example 13  Compute the coordinates of the shear center of the thin-walled beam of

constant thickness whose cross section is shown in Fig. a.

Figure a  Geometry of the cross section of the beam.

2Solution  The x  axis is an axis of symmetry of the cross sections of the beam.

2Consequently, its shear center and its centroid are located on the x  axis.  Therefore, we only

compute the distance e of the shear center from the center O of the circles which bound the

cross section of the beam.  Consider a cantilever beam having the cross section of Fig. a and

3assume that the beam is subjected at its unsupported end to a concentrated force P  acting

3in the direction of the x  axis and passing through the shear center of its end cross section.
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(a)

(b)

  (c)

(d)

      (e)

(f)

For this beam we have

The shearing component of stress acting on the cross sections of the beam may be computed
using relation (9.67).  That is,

where dA is the shaded area shown in Fig. b.  Referring to Fig. b, we have

Substituting relation (c) in (b), we get

The moment of the shearing force acting on area dA about an axis through point O, parallel

1to the x  axis, is equal to

Thus,

For bending without twisting, the moment of the shearing components of stress acting on a

1cross section about an axis parallel to the x  axis through point O must be equal to the
moment of the external force about the same axis.  That is,

2The moment of inertia of the cross section of the beam about the x  axis is equal to

Figure b  Cross section of the beam.
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(g)

(h)

(9.82)
    

Substituting relation (g) into (f), we obtain

                                                                                                                                             

9.8 Members Whose Cross Sections Are Subjected to a Combination of Internal
Actions

In the previous sections of this chapter we focus our attention to members subjected to

external loads (transverse forces, bending moments and changes of temperature) which are

resisted only by internal bending moments and shearing forces.  In practice, however,

members are often required to resist loads which subject their cross-sections to a

combination of internal actions (axial centroidal forces, torsional moments, bending

moments and shearing forces); such loads are called combined loads.
The components of stress and displacement of members subjected to combined loads are

established by superimposing the corresponding quantities resulting from only one type of

load at a time.  As discussed in Section 3.13 superposition of the results is permitted for

bodies made from linearly elastic materials when subjected to deformation whose magnitude

is in the range of validity of the assumption of small deformation.

In this section we illustrate the computation of the components of stress in prismatic

members subjected to combined loads.  We distinguish the following cases:

1. Members subjected to eccentric axial forces.

2. Members subjected to external transverse forces acting on a plane which does not

contain the shear center of their cross-sections.

9.8.1 Members Subjected to Eccentric Axial Forces

Consider a straight prismatic member subjected to equal and opposite eccentric axial

1 1 1forces P  at its end cross sections (x  = 0 and x  = L) as shown in Fig. 9.21.  In order to

2 3simplify our presentation, we refer our discussion to principal centroidal axes x  and x .

1Taking advantage of the principle of Saint Venant, we replace the eccentric force P  with

1a statically equivalent system consisting of a centroidal axial force P  and two components

2 3of bending moment M  and M  equal to

The normal components of stress acting on a particle on a cross section of the member can

be computed by superimposing the normal components of stress due to the axial centroidal

2force [given by relation (8.59)] to those due to the two components of bending moment M
3and M  [given by relation (9.12b)].  That is,
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(9.83)
    

                        
               (9.84) 

  

(9.85)
    

(9.86)
     

2 3 2where I  and I  are the moments of inertia of the cross section of the member about the x
3and x  axes, respectively.  A is the area of the cross section. Substituting relations (9.82) in

(9.83) we get

The equation of the neutral axis is obtained by setting       equal to zero in relation (9.84).

That is,

This is the equation of a straight line. From relation (9.85) we see that when a member is

subjected to an eccentric force the neutral axis may or may not be on its cross section.  Its

2 3location depends on the position of the eccentric force.  When the eccentricity e  and e  of

the force is small the neutral axis is not on the cross section of the member.  In this case the

normal component of stress acting on the cross section will not change sign.  There exists

a region on the cross section of a member called the kern which has the property that when

a compressive force is applied at any one of its points, it produces compression on all the

particles of the cross section.  When a member is made from a material which is very weak

in tension, like concrete, and is subjected to an eccentric compressive force, it is important

that this force is applied at a point inside the kern of its cross section.

Consider a member of rectangular cross section (see Fig. 9.22), when a compressive

2 3force is applied at some point of the x  axis (e  = 0) from relation (9.85) we get

2 2This is the equation of a line normal to the x  axis.  As e  decreases, the neutral axis moves

2away from the centroid of the cross section.  For certain positive value e  of the eccentricity*

2of the applied force, the neutral axis becomes the edge x  = !b/2 of the cross section of the

member.  That is

Figure 9.21  Prismatic member subjected to an eccentric axial force.
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(9.87)
     

(9.88a)
     

(9.88b)
     

Figure 9.22  Kern of a rectangular cross section.

and

Noting that

relation (9.87) gives

3Similarly it can be shown that the edge x  = !h/2 of the cross section of a member of

rectangular cross section becomes its neutral axis when an eccentric force is applied on the

3positive x  axis with eccentricity equal to

Thus as shown in Fig. 9.22, the kern of a rectangular cross section is a parallelogram ABCD .

When the force is applied at points A, B, C or D, the neutral axis is the opposite edge of the
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cross section.  When the force is applied at any point of line AB, the neutral axis passes

through corner u of the cross section.

9.8.2 Prismatic Beams Subjected to External Transverse Forces Acting in a Plane
Which Does not Contain the Shear Centers of their Cross Sections

In order to establish the stress distribution on the cross sections of beams subjected to

transverse forces whose line of action is not located in a plane which contains the shear

center of their cross sections, as we mention in Section 8.2, the transverse forces are

replaced by an equivalent system of forces and moments consisting of

2 1 3 1 2 21. Distributed forces p (x ) and p (x ) and concentrated forces P (n = 1, 2, ..., n ) and(n)

3 3 2 3P (n = 1, 2, ... , n ) acting in the direction of the x  and x  axis, respectively.  The line(n)

of action of each one of these forces is located in a plane which contains the shear centers

of the cross sections of the member. In Section 9.7 we present a procedure for

determining the location of the shear center of thin-walled open cross sections.

1 1 1 12. Distributed moments m (x ) and concentrated moments M (m  = 1, 2, ...., m ) occur(m)

1about an axis parallel to the x  axis and pass through the shear center of the cross section

of the member.

The first loading described above induces a distribution of normal           and shearing

(      or      ) components of stress.  The normal component of stress can be computed using

formula (9.12a or 9.12b).  The shearing components of stress for beams whose cross

sections have the properties of one of the cross sections shown in Fig. 9.11 can be computed

using relation (9.66 or 9.67). The second loading described above induces only a

distribution of shearing stress.  For beams of circular cross sections, this distribution of

shearing stress can be computed using relations (8.72).  For beams having a thin-walled open

cross section, this distribution of shearing stress can be computed using relation (6.103).  For

beams having a thin-walled hollow cross section, this distribution of shearing stress can be

computed using the procedures described in Sections 12.2 and 12.5.

The distribution of stress in beams subjected to external transverse forces acting in a

plane which does not contain the shear center of their cross sections can be established by

superimposing the stress distribution obtained from the two loading cases described above.

In what follows we present an example.

                                                                                                                                             

Example 14  A cantilever beam is made from a standard American channel C 75 x 8.9. The

Figure a Cross section of the beam.
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(a)

(b)

(c)
    

    (d)

beam is subjected to a vertical force of 16 kN at its free end, whose line of action passes

through the centroid of its cross section (see Fig. a).  Compute the maximum shearing stress

at cross sections sufficiently away from the fixed support of the beam, so that the effect of

restraining the warping at the fixed end can be disregarded (see Section 9.11). Show on a

sketch the state of stress of the particles on which the maximum shearing stress acts.

                                                                                                                                             

Solution  Referring to the table of standard American rolled steel shapes given in Appendix

H the dimensions and properties of the channel are

As shown in Fig. b the applied transverse force of 16 kN is statically equivalent to a

transverse force of 16 kN acting through the shear center of the cross section of the beam

and a torsional moment

We denote the shearing components of stress due to bending by      or      and the shearing

components of stress due to torsion by      or      . Referring to relation (9.67) we have

Figure b  Distribution of the shearing components of stress on the cross section of the beam. 
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(e)
  

     (f)

    (g)

(h)

(i)

nFigure c  Cross section of the beam showing the area A  and distance  .

Referring to Fig. ca and substituting relations (a) into (c) and (d), we get:

In the web

                                                                                              

                              

                                                              
In the flanges referring to Fig cb

3 F WThe maximum shearing stress in the web occurs at x  = 0 and in flanges at y = b  ! t  = 31

mm.  Thus,

                                                                                         

Moreover, referring to relation (6.103), we have

Where, referring to Fig. a, we get

Substituting relations (b) and (i) into (k), we obtain
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(m)
 

   (9.89)

   (9.90)

  (9.91)

The results are shown in Fig. d.

(a) Bending                         (b) Torsion (c) Maximum

shearing stress 
Figure d  Results.

                                                                                                                                             

9.9 Composite Beams

A prismatic composite beam consists of two or more prismatic components of
different material firmly bonded together to act as a single beam.  Examples of composite
beams are sandwich and reinforced concrete beams (see Fig. 9.23).  In this section we
limit our attention to prismatic beams whose cross sections have an axis of symmetry.

3 1We chose the x  axis to be the axis of symmetry of the cross section of the beam at x  =
0.  Moreover, in this section we consider only beams subjected to external forces whose

1 3 3line of action is in the x x  plane parallel to the x  axis and to external moments whose

1 3vector is normal to the x x  plane.  Thus,

2We choose the x  axis so that

and

2 11That is, the x  axis is the axis of zero e  of the cross sections of the composite beam.
We assume that the fundamental assumptions of the theories of mechanics of materials

discussed in Sectio n 8.2 are  valid for composite beams.  Consequently, referring to
relations (8.1), (8.5), and (8.6) and taking into account relations (9.89) and (9.91) for the
beams under consideration, we have
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    (9.95a)

         (9.95b)

(9.96)

               (9.97)

       (9.92)

       (9.93)

     (9.94)

Figure 9.23  Cross sections of composite beams.

and

Consider a prismatic composite beam made from two different materials A and B
A Bhaving modulus of elasticity E  and E , respectively.  The area of the cross section of the

Abeam consists of two parts: area A  (area RSMN in Fig. 9.24a) made from material A and

Barea A  (area MNGD in Fig. 9.24a) made from material B.  The beam is subjected to

11 11external actions in an environment of constant temperature.  We denote by J  and J(A) (B)

the normal component of stress acting on the parts of the cross section of the composite
beam made from material A and B, respectively.  Referring to relations (8.44) and using
(9.94), we have

The resultant axial force acting on a cross sections of the beam is zero.  That is, using
relations (9.95), we get

Thus,

where
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    (9.98)

(9.99)

(9.100)

      (9.101)

(a) Cross section of (b) Strain (c) Stress        (d) Transformed
     composite beam      distribution      distribution             cross section

Figure 9.24  Distribution of the axial component of strain and stress on a cross section and transformed
cross section of a two-material composite beam.

Relation (9.97) is a generalization of relation (9.6b) for beams made from two materials

2and it is used to locate the x  axis of the beam which is the neutral axis of its cross
sections (see example at the end of this section).

2 1 1The relation between the bending moment M (x ) and the angle of rotation      (x ) may
be established by substituting relations (9.95) into (8.9e).  That is,

A B 2where I  or I   is the moment of inertia about the x  axis of the area of the portion of the
cross section made from material A or B, respectively.  Substituting relation (9.27a) into
(9.99), we get

2 1For any statically determinate beam, M (x ) can be established by considering the

2 1equilibrium of appropriate segments of the beam.  The expressions for M (x ) can be
substituted in relation (9.100) and the resulting differential equations can be solved to
obtain the deflection of the statically determinate composite beam, following the
procedure described in Section 9.2.

Differenting relation (9.100) twice and using relation (8.23), we obtain
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(9.102a)

(9.102b)

(9.103a)

(9.103b)

(9.104)

Figure 9.25  Free-body diagram of an infinitesimal segment of the beam made form  material B.

This equation can be solved to obtain the deflection of any composite statically
determinate or indeterminate beam following the procedure described in Section 9.2.

1Using relation (9.99) to eliminate d    /dx  from relation (9.95), we get

In order to compute the shearing component of stress  acting at any particle of

material B, we consider the free-body diagram of the segment of infinitesimal length of
the beam made only from material B, shown in Fig. 9.25b.  Referring to this figure and

1 2using relation (9.102b), the resultant forces F  and F  of the distribution of the normal
component of stress on faces ABC and DEFG of the segment under consideration are

where
n              Area ABC = Area DEFG = A

In order that the segment under consideration be in equilibrium, a shearing force dF must
act on its surface BEFC.  This force is equal to

Referring to relation (9.104) and using relation (8.21), the shear flow  on the portion

of the cross section made from material B  is equal to 
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(9.105)

(9.106)

         (9.107a)

   (9.107b)

(a) Cross section of the beam        (b) Segment of the beam

Figure 9.26  Free-body diagram of a segment of infinitesimal length of the composite beam. 

For the beam under consideration, as discussed in Section 9.5, the shearing component

2of stress  does not vary much in the x  direction.  Consequently, 

In order to compute the shearing component of stress acting at any particle of the
portion of the beam made from material A we consider the free-body diagram of the
segment of infinitesimal length shown in Fig. 9.26b.  This segment is cut from the beam

1 3by two planes normal to its axis and by a plane parallel to its axis and normal to the x x
1 2plane.  Referring to Fig. 9.26b, the resultant forces F  and F  of the stress distribution on

faces AHF and DIJG of the segment of the beam under consideration are

B nAwhere A  or A  is the part of the end surfaces of the segment under consideration which
is made from material B or A, respectively.  In order that the segment under consideration
is in equilibrium, a shearing force dF must act on its surface HFJI.  Using relations
(9.102) and (9.107) this force is equal to

(9.108)
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(9.109)

           (9.110)

(9.111)

(9.112)

(9.113)

(9.114)

(9.115)

Using relation (8.21) the shear flow  on the portion of the cross section made from

material A is equal to

For the beam under consideration the shearing component of stress does not vary much
2in the x  direction.  Consequently,

Consider an auxiliary beam made from material A whose cross section consists of two
parts.  The one part has a geometry identical to that of the portion of the cross section
made from material A of the real beam while the other has a depth equal to that of the
portion of the cross section made from material B, a width n times that of the portion of

Bthe cross section of the real beam  made from material B and, hence, an area equal to nA
3(see Fig. 9.24d).  Referring to Fig. 9.24a and 9.24d we see that the x  coordinate of the

3centroid of the portion DMNG of the cross section of the actual beam is equal to the x
coordinate of the portion D M N G  of the cross section of the auxiliary beam.  Thus,N N N N

referring to relation (C.1) of Appendix C for the cross section of the auxiliary beam, we
have

We call the cross section of the auxiliary beam the transformed cross section of the beam.
In order to locate the centroid of the transformed cross section we set its first moment

2about its centroidal axis x  equal to zero.  That is, using relation (9.111) we have

2Thus, referring to relation (9.97), we see that the centroidal axis x  of the cross section of
11the auxiliary beam is the axis of zero normal component of  strain e  of the composite

2beam, which we have denoted by x .  The moment of inertia of the cross section of the
2auxiliary beam about its centroidal axis x  is equal to

A B 2where I  or I   is the moment of inertia about the x  axis of the area of the portion of the
cross section of the actual beam made from material A or B, respectively.  The distribution
of the normal component of stress on the cross sections of the auxiliary beam is obtained
by substituting relation (9.113) into (9.12b).  That is,

Comparing relation (9.114) with relations (9.102), we find

The distribution of the shearing component of stress on the cross sections of the
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  (9.119a)

  (9.119b)

(9.120)

(9.121)

(9.122)

(9.123)

(9.116)

(9.117)

(9.118)

auxiliary beam may be established by substituting relation (9.113) into (9.67).  When
relation (9.67) is used to compute the shearing stress acting on a particle of the portion of
the cross section made from material A, referring to Fig. 9.24d, we see that 

where,  for a particle on a line IJ (see Fig. 9.24d), we have 

When relation (9.67) is used to compute the shearing stress acting on a particle of the
portion of the cross section made from material B, referring to Fig. 9.24d, we see that

where,  for a particle on line E'F'

Thus, referring to relation (9.111),  we have

Referring to Fig. 9.24d and to relations (9.106), (9.110)  and (9.119), we see  that

Referring to relation (9.32a),  we have

Differentiating twice relation (9.121) and using (8.23), we obtain

Comparing relation (9.100) with (9.121) and (9.101) with (9.122) and taking into account
relation (9.113), we see that

Consider a prismatic beam, consisting of two or more layers of different material,
3whose cross section has an axis of symmetry.  We choose as the x  axis the axis of

2symmetry of the cross section of the left end surface of the beam and as the x  axis the 
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Figure 9.27 Real and transformed cross sections of a composite beam.

neutral axis of this cross section.  The beam is subjected to external transverse forces
acting in a plane which contains the axis of symmetry of its cross sections and to bending

1 3moments whose vector is normal to the x x  plane.  In Fig. 9.27a we show the cross
section of a beam consisting of five horizontal layers of different materials, while in Fig.
9.27b we show the cross section of a beam consisting of three vertical layers of different
materials.  Consider an auxiliary beam of the same length and support conditions and
subjected to the same external actions as the real beam.  The cross section of this
auxiliary beam is called the transformed cross section and consists of the same number
of layers as that of the real beam (see Fig. 9.27).  However, all its layers are made from
the same material (say that of layer A) and each layer has a depth equal to that of the
corresponding layer of the real beam and a width equal to

iwhere b  is the width of layer i.  It is clear that the components of stress acting on the cross
sections of the auxiliary beam and its deflection can be computed using relations (9.12b),
(9.34b) and (9.67) .  On the basis of the foregoing presentation the components of stress
acting on the cross sections of the real beam and its deflection can be established from the
corresponding quantities of the auxiliary beam on the basis of relations (9.115), (9.120)
and (9.123).  This method is known as the transformed cross section method and it
involves the following steps:

2STEP 1  The auxiliary beam is formed and its centroid is located. The x  axis of the real
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            (9.124)

                   (9.125)

    (a)

2beam is chosen to be at the same distance from its top and bottom surfaces as the x
centroidal axis of the auxiliary beam (see Fig. 9.27).

STEP 2  The components of stress acting on the cross sections of the auxiliary beam are
computed using relations (9.12b) and (9.67).  The deflection of the auxiliary beam is
computed using relation (9.34b).

STEP 3  The components of stress and the deflection of the real beam are obtained from
those of the auxiliary beam on the basis of the following relations

where

The transformed cross section method can be used to analyze beams consisting of
horizontal or vertical layers.  We apply it in Section 9.9.2.

In what follows we present an example.
                                                                                                                                             

Example 15  Consider a 2 m long, simply supported, composite beam whose cross
wsection is shown in Fig. a.  The upper part of the beam is made of wood (E  = 10 GPa)

swhile the lower part is a strap of steel (E  = 200 GPa).  The beam is subjected to a
3transverse force of 40 kN at the midpoint of its span acting in the direction of the x  axis.

Compute
(a) The normal component of stress in the wood and the steel
(b) The required strength of the glue
(c) The deflection of the beam

Figure a  Geometry of the cross section of
the composite beam.

Solution
2STEP 1  We locate the x  axis of the cross section of the beam.  We assume that the

2x  axis lies in the wood at a distance d from the bottom surface of the beam as shown in
Fig. a.  Referring to Fig. a,  we have
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(b)

(c)

(d)

    (e)

    (f)

    (g)

   (h)

   (i)

Substituting relations (a) and (b) into (9.97),  we get

or

Referring to Fig. a, the moments of inertia of the cross section of the wood and of the
2steel about the x  axis are

Thus,

2 maxSubstituting relation (e) into (9.102) and noting that (M )  = 20 kN @ m,  we get

max 3 max 3Noting that (      )  occurs at x  = !140 mm, while (      )  occurs at x  = 50 mm, we
have

The required strength of the glue is equal to the value of the shearing stress         acting
on the particles located between the steel and the wood.  That is, referring to relation

3(9.119a) and to Fig. a, noting that Q  =20 kN and using relation (e),  we have
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(j)

(k)

(l)

(n)

(m)

(o)

(9.126a)

In order to obtain the deflection of the statically determinate beam, we compute the
2 1moment M (x ) acting on its cross sections.  That is,

or

Substituting relation (j) into (9.100), we get

Integrating relation (k) twice, we obtain

1 2The constants C  and C  are evaluated from the essential boundary conditions of the
beam.  That is,

Substituting relation (m) into relations (n) and solving the resulting equation, we get

Substituting the values of the constants (o) into relation (m), we get

                                                                                                                                             

9.9.1  Sandwich Beams

A sandwich beam consists of two thin layers of the same materials called the faces
bonded to a thick core (see Fig. 9.28).  The faces are usually made from a material of high
strength while the core is made from a light material of low strength.  Thus,  although
sandwich beams can be analyzed as described in the previous section, usually their
analysis is simplified by assuming that the particles of the faces carry all the normal
component of stress, while the particles of the core carry only the shearing component of
stress.  On the basis of this assumption we have

and

www.EngineeringEBooksPdf.com



Composite Beams 471

(9.126b)

(9.127)

(9.128)

Figure 9.28  Cross section of a sandwich beam.

2where  is the moment of inertia of the two faces about the x  axis.  That is,

9.9.2  Reinforced Concrete Beams

Concrete is a material which is very weak in tension but able to carry considerable
compression.  The maximum allowable stress in compression for concrete could be as
much as 100 times larger than that for tension.  For this reason, when a concrete beam is
subjected to a positive bending moment, it is reinforced by steel rods placed a small
distance above its bottom surface.  The lower part of the concrete of such a beam cracks
and the steel reinforcement carries all the tensile stresses.

The transformed cross section of a reinforced concrete beam is obtained by using only
the portion of the cross section  of the concrete above the neutral axis and replacing the

Ssteel by an equivalent cross section  of area nA  where n is the ratio of the modulus of 
elasticity of steel to concrete.  That is,

In what follows we present an example.

Figure 9.29  Actual and transformed cross sections of a reinforced concrete  beam.
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(a)

(b)

Example 16  Consider a 4 m long simply supported concrete beam whose cross section
is shown in Fig. a.  The modulus of elasticity of concrete is 20 GPa while that of steel is
200 GPa.  The beam is subjected to a uniform load of 10 kN/m including its weight.
Compute the maximum value of the normal component of stress acting on the particles
of the concrete and of the steel.

Figure a  Geometry of the cross-
section of the beam.

Solution  For the beam under consideration we have

The transformed cross section of the beam is shown in Fig. b.  The location of the
centroidal axis of the transformed section can be established using relation (C.1) of
Appendix C.  That is,

or

Thus,

and

2The maximum moment occurs at x  = L/2 and it is equal to

The maximum normal components of stress acting  on the cross sections of the concrete
and the steel rods of the beam are
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(9.130)

The results are shown in Fig. c.

Figure b  Transformed cross section of the beam. Figure c  Results.
                                                                                                                                             

9.10 Prismatic Beams on Elastic Foundation

In the previous sections of this chapter we consider prismatic beams supported at
discrete locations along their length.  In this section we consider prismatic beams resting
on an elastic foundation originally at a stress-free, strain-free reference state of

omechanical and thermal equilibrium at the uniform temperature T .  Subsequently, these
beams are subjected to external actions along their length and reach a second state of

omechanical and thermal equilibrium at the uniform temperature T . We assume that the
foundation resists the loads transmitted to it by the beams as a linearly elastic body.  That
is, the traction exerted at any point of a beam by the foundation is related linearly to its
deflection at that point.  This type of foundation is known as the Winkler foundation.  It
represents an idealization which approximates closely many cases encountered in
practice, provided that the deflection of the beam is not large.  Examples of such cases are
railroad tracks and concrete footings.  One may think of the Winkler foundation as
consisting of a number of linear springs of constant stiffness k attached next to each other
along the entire length of a beam.  The stiffness k also known as the modulus of the
foundation is given in units of force per unit length of the beam, per unit deflection.  In
order to simplify our presentation we limit our attention to beams whose cross sections
have an axis of symmetry which is normal to the plane of the foundation.  Moreover, we
assume that the vector of the external moments acting on these beams is normal to the
plane specified by their axis and the axis of symmetry of their cross sections, while the
line of action of the external forces acting on these beams lie in this plane and is parallel
to the axis of symmetry of its cross sections.  The force exerted by the foundation per unit

3length of the beam is equal to !ku .  Thus the total load on the beam is equal to

(9.129)
Using relation (9.129) for prismatic beams resting on an elastic foundation the
displacement equation of equilibrium (9.34b) becomes
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(9.131)

where

The solution of equation (9.130) may be expressed as the sum of the solution  of its

homogeneous part and a particular solution .  That is,

(9.132)
The particular solution         of equation (9.132) is obtained from the given loading of the

beam and is added to  to give an expression for the deflection of the beam, involving

ithe constants C  (i = 1, 2, 3, 4) which are evaluated by requiring that the solution (9.132)
satisfies the boundary conditions of the beam.  This is done easily for infinitely long
beams by taking into account that their deflection and their rotation at infinity must

1 2remain bounded.  Consequently, the constants C  and C  must vanish.  However, for
beams of finite length the evaluation of the constants requires very lengthy calculations .†

In the next section we apply the method of finite differences to obtain approximate
solutions of the boundary value problem for computing the deflection of a prismatic beam
of finite length resting on an elastic foundation.

9.10.1 Computation of the Deflection and the Internal Actions of Beams of Finite
Length on Elastic Foundation Using the Method of Finite Differences

The analytical solution of practical problems involving beams of finite length on
elastic foundation,  although conceptually straightforward, it is very time consuming
because it involves lengthy algebraic calculations.  For this reason such problems are
often solved using a numerical method.  In this section we present an example of
obtaining numerical solutions for a beam of finite length, using the method of finite
differences discribed in Section D.3 of Appendix D.
                                                                                                                                             

Example 17  Determine the deflection and the internal moments of a prismatic beam of
2length L = 8 m, moment of inertia I  = 240(10 ) mm , fixed at its one end, simply6 4

supported at its other end and resting on an elastic foundation of modulus k = 24 MPa.
The beam is made from an isotropic, linearly elastic material and is subjected to a
uniformly distributed force of 20 kN/m.

Figure a Geometry and loading of the beam.
                                                                                                                                             

Solution  The boundary conditions for the beam of Fig. a are
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(a)

(b)

(c)

(d)

STEP 1 As shown in Fig. b we subdivide the length of the beam into eight equal intervals
of length h = L/8 by nine pivotal points (k = 0, 1, 2, 3, ..., 8).

STEP 2 We replace the derivatives appearing in the differential equation (9.130) by their
central difference approximation.  That is, referring to Fig. D.3 of Appendix D,  for the
k  pivotal point, we haveth

When the beam is subdivided into eight equal intervals (h = L/8), from relation (9.131),
we obtain

We apply relation (b) to each pivotal point of the beam.  Referring to Fig. b, we have
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           (d)

     (e)

(f)

(g)

Figure b Beam subdivided into eight equal intervals.

STEP 3 We replace the derivatives appearing in the boundary conditions of the beam (a)
by their central difference approximations [see Fig. D.3 of Appendix D].  That is,

-1 9STEP 4 We use the relations obtained in step 3 to eliminate u  and u  from relations (d).
Using relation (c), and disregarding the first and last of equations (d), we get

3 2 iwhere p  is in kN/m.   E is in kN/m  I  is in m   and u  is in meters.  From relation (f), we2 4

obtain
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(h)

(i)

(j)

Referring to relation (9.32a) the moment acting on the cross sections of the beam is
given as

We replace the derivatives appearing in relation (h) by their central difference
approximations [see Fig. D.3 of Appendix D].  That is,

We obtain the values of the moment by substituting the values the deflection given by
relation (g) into relation (i) and taking into account relations (e).  For example,

Table a Results.

1x
(m)

2 3Deflection x EI /p

8 Equal Spaces 16 Equal Spaces 32 Equal Spaces

1 0.6047 0.5137 0.4912

2 1.3523 1.2825 1.2715

3 1.8740 1.8513 1.8594

4 2.1248 2.1371 2.1587

5 2.1230 2.1490 2.1747

6 1.8242 1.8443 1.8650

7 1.1235 1.1259 1.1353

                                                                                                                                             

9.11 Effect of Restraining the Warping of One Cross Section of a Prismatic
Member Subjected to Torsional Moments at Its Ends

Our presentation in Chapter 6 has been restricted to prismatic members subjected to
equal and opposite torsional moments at their ends in a way that all their cross sections
are free to warp.  We  have  found  that  the  length  of  the  longitudinal  fibers of such
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Figure 9.30  Distribution of shearing stress on the cross section of a cantilever channel subjected to a torsional
moment at its free end.

members does not change.  Consequently, the  normal  component  of  stress       acting
on their cross sections is zero.  Moreover, plane sections normal to the axis of such
members do not remain plane after deformation; they warp.  Only plane sections normal
to the axis of prismatic members of circular (solid or hollow) cross sections and of non-
circular thin-walled multiply connected cross sections of certain geometry  remain plane†

subsequent to deformation; that is, they do not warp.  Furthermore, a material straight line
located prior to deformation on a plane normal to the axis of such members does not
always  remain straight subsequent to deformation.  It can become a curve whose
projection on a plane normal to the axis of the member is a straight line which,
subsequent to deformation, rotated by an angle      about an axis normal to the cross
sections of the member and passing through their center of twist.  Every line of a plane
normal to the axis of a member prior to deformation rotates by the same angle      about
this axis subsequent to deformation.

In practice, however, one or more cross sections of a member subjected to torsional
moments are usually restrained from warping (see Fig. 9.30).  Moreover, when a member
is subjected to torsional moments which vary along its axis, the warping of its cross
sections also varies along its axis.  Consequently, the cross sections of such a member are
not free to warp because they are restrained by the adjacent cross sections which warp
differently.  Due to the restraint of the warping of one or more cross sections of a member
the length of its longitudinal fibers changes.  Consequently, a normal component of stress
must act on particles located on cross sections at or near those which are restrained from
warping.  For members having thin-walled open cross sections this component of stress
is large and must be taken into account.  Moreover, the effect of restraining the warping
of a cross section of such members on the angle of rotation of their cross sections about
their center of twist may not be negligible.  For members having other types of cross
sections the effect of restraining the warping of one of their cross sections on the values
of the normal component of stress and on the angle of rotation about their center of twist
is small and it is neglected.  For example, the effect of restraining the warping of a cross
section of   members  of thin-walled hollow tubular cross sections is discussed  by Von†

Karman and Chien (1946) and by Smith et al., (1970) who concluded that this effect is
small.

† See   Von  Karman, T., Chien, W. Z.,  Torsion with variable twist,  Journal of  Aerosol Science, 13(10), 1946
p.  503-510.
Smith,  F.A.,  Thomas,  F.M.,   Smith,  J.O.,  Torsion  analysis   of   wavy  box  beams in structures,  Journal
Structural Division of ASCE, 96(553), 1970, p. 613-635.
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In this section we investigate the effect on the components of stress and the angle of
twist of restraining the warping of a cross section of members having thin-walled open
cross sections.

Consider a cantilever channel subjected at its unsupported end to a distribution of
1 shearing traction which is statically equivalent to a torsional moment M  (see Fig. 9.30).

The cross section of this member adjacent to its fixed support is completely prevented
from warping.  This  is  accomplished  by a distribution of normal components of stress
   acting on the flanges of the member whose magnitude may not be negligible.
Moreover, since the cross section adjacent to the fixed support cannot twist, the torsional
moment is resisted by a distribution of the transverse shearing components of stress
acting on the flanges of the member.  The resultant of these shearing components of stress

2is denoted in Fig. 9.30 by Q .  The warping of cross sections of the member close to itsF

unsupported end is not restrained.  The normal component of stress acting on these cross
sections is negligible.  At any other cross section of the member the value of the normal
component of stress       acting on its flanges is somewhere between the value of zero at
the unsupported end and the maximum value at the fixed end of the member.

1Consequently, it  is  a  function  of  the  axial  coordinate  x .   Moreover,  the amount of
warping of any cross section is between zero at the fixed end and a maximum at the
unsupported end of the member.  Furthermore, the value of the shearing stress acting on
a particle of the flanges of the member is the algebraic sum of the shearing stress due to
bending of the flanges and the shearing stress due to twisting. The stress distribution
acting on any cross section of a member is statically equivalent to the torsional moment

1M .  That is, the distribution of the normal component of stress      is statically equivalent
to zero resultant force and moment, while the distribution of the shearing component of
stress due to bending of the flanges is statically equivalent to zero resultant force and to

1 1a resultant moment M i .  According to the principle of Saint Venant, the effect of suchB

statically equivalent to zero stress distribution should decay rapidly at cross sections away
from the fixed end of the member.  However, for members having thin-walled open cross
sections, the stress distribution produced by restraining the warping of a cross section not
only could be large but diminishes rather slowly at cross sections away from their
restrained cross section.

In what follows, we use the theories of mechanics of materials presented in Chapters
8 and 9, to establish the normal component of stress acting on the cross sections as well
as the angle of twist per unit length of the cross sections of cantilever members having a
wide flange cross section when they are subjected to a torsional moment at their
unsupported end.
                                                                                                                                             

Example 18  Consider the cantilever beam of constant wide flange cross section shown

in Fig. a.  The beam is subjected to a torsional moment  at its unsupported end as well

1as to a constant distributed torsional moment m  given in units of moment per unit of
length

Figure a  Cross section of the beam.

                                                                                                                                             

Solution  The center of twist of each cross section of this beam coincides with its
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(a)

(b)

(c)

(d)

(e)

centroid.  Thus, the centroids of its cross sections do not translate and, consequently, the
web of the beam is not subjected to bending.

1 1At a small distance from the fixed support of the beam, the torsional moment  M (x )
acting on its cross sections may be considered as made up of two parts.  The one part

1 1M (x ) is the moment which bends the flanges of the beam.  It is equal to the moment ofB

the resultant forces of the shearing stresses acting on the cross sections of the flanges of
the beam.  The resultant force of the shearing stresses acting on the cross section of the
top flange is equal and opposite to that of the bottom flange.  In Fig. b we denote these

resultant forces by ; referring to this figure, we have

1 1The second part, M (x ), of the torsional moment is the moment which twists theT

cross sections of the beam and may be approximated by relation (8.69).  That is,

1Where the angle of twist per unit length      Iis a function of x . The torsional constant 

is given by relation (6.100) as

1 1From relations (a) and (b), we find that the total torsional moment  M (x ) acting on a
cross section of the beam is equal to

In order to determine the shearing force , we consider the bending of the

flanges.  We assume that each flange bends in its own plane as a cantilever beam.  Thus,
referring to relations (8.20) and (9.32b) for the bottom flange of the beam, we have

Figure b  Internal actions acting on the      Figure c  Deformed configuration of a
cross sections of the beam as a result of     typical cross section of the beam.
restraining the warping of a cross section.
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(f)

(g)

(h)

(i)

(j)

(k)

Figure d  Detail of simply supported end of a beam.

3where  is the moment of inertia of the cross section of the bottom flange about the x
2 1axis and u (x ) is the component of translation of the centroid of the bottom flange in theF

 direction.  Referring to Fig. c, this component of translation is related to the angle of

twist  by the following relation:

Referring to relation (9.27b) and using relation (f), the rotation of the bottom flange of the
beam about the  axis is equal to

Substituting relation (f) into (e), we get

Moreover, substituting relation (h) into (d), we obtain

where

Referring to relation (9.32b) and using relations (f), (j) and (8.69), the bending moment 

acting on the cross sections of each flange is equal to

Referring to relations (9.12b) and (k) we see that the normal component of stress acting
on the cross sections of the bottom flange is equal to
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(l)

(m)

  (n)

(o)

(p)

(q)

      (r)

1 Differentiating relation (i) with respect to x  and using relation (8.19), we have

where

The general solution of equation (m) has the following form:

1 For the beam of Fig. a, subjected to m = constant, we have

The constants A, B, C and D are evaluated from the boundary conditions of the beam.
The following three types of support conditions for beams subjected to torsional moments
are often encountered in practice.

1. Fixed end
The angle of twist  and the rotation of the supported end must vanish. That is,

referring to relation (g), the boundary conditions are

2. Unsupported end 

3. Ball and socket (simply) supported end (see Fig. d)

The unsupported end and the simply supported end of beams are not subjected to
normal components of stress and are free to rotate.  When such ends are subjected to a

1torsional moment M , referring to relations (l) and (i), the boundary conditions are*

On the basis of the foregoing, the boundary conditions for a cantilever beam subjected to
a uniformly distributed torsional moment along its length and to a concentrated torsional

1moment M at its unsupported end, referring to relations (q) and (r), are* 
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   (t)

  (u)

  (v)

    (w)

(y)

Substituting the solution (p) into the above relations, we obtain

Using relations (t) to (w) and noting that  [see relation (n)], we obtain

         (x)
Substituting  the  values  of  the constants (x) into relation (p), we get the angle of twist

1 1    (x ).  The angle of twist per unit length " (x ) is equal to

Cantilever beam subjected only to a torsional moment at its unsupported end

(a) Normal component of stress (b) Shearing component of stress 

Figure e Components of stress acting on cross sections of the beam in the vicinity of its fixed end. 
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(z)

(za)

(zc)

(zd)

               (ze)

(zg)

From relation (y), we get

Substituting relation (z) into (b) and (k), we get

Thus, the maximum bending moment acting on the cross sections of the flanges of the
beam under consideration is equal to

For kL > 2.5, tan h(kL) may be considered approximately equal to unity.  This occurs for
relatively long beams.  For such beams relation (zc) may be approximated as

Substituting relation (zd) into (l), noting that the maximum tensile stress in the bottom

1 2flange  occurs at x  = 0 and x  = b/2, and using relation (n), we get

For  the  beam under consderation, substituting relations (zf) and (c) into (ze) and using
F W 1h = 2b = 400 mm, t = 2t  = 2t = 12 mm, and M * = 2 kN@m and referring to Fig. a, we

get

(zf)

Referring to relation (a), the shearing force  acting on the cross section of the

1 bottom flange at x = 0  is equal to
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(zh)

     (zi)

Referring to relation (b) of Example 7 of Section 9.5, the maximum shearing stress acting
1 on the cross sections of the bottom flange of the beam at the fixed end (x = 0)  of the

beam is equal to

Moreover, referring to relation (6.103) the maximum shearing stress due to torsion acting
on cross sections sufficiently removed from the fixed end of the beam is equal to

From the results of this example we may deduce that when a relatively long cantilever
beam is subjected to a torsional moment at its unsupported end, the magnitude of the

normal component of stress  acting on the cross section of its flanges in the vicinity

of its fixed end is larger than the magnitude of the maximum shearing stress acting on its
cross sections in the vicinity of its unsupported end.  However, taking into account that
for many materials the allowable stress in shear is less than that in tension or
compression, it is probable that the maximum shearing stress is the  critical design stress
for  beams made from such materials.  Nevertheless, in the design of beams subjected to
torsional moments the normal component of stress acting on their cross sections should
not be disregarded.

Comments 
Referring to Fig. b it can be seen that in this example the normal component of stress 

2 and the normal component of strain     of the particles of the flange vanish at x = 0.

Consequently the normal component of strain  of the particles of the web at its

interfaces with the flanges must also vanish.  That is, the web is not subjected to normal
component of stress.  However, this is not the case for channels and for z-members
subjected to torsional moments and having a cross section restrained from warping. As
shown in Fig. d the cross section of a channel is subjected to a distribution 

Fig c Deformed configuration of a typical Fig d Free-body diagrams of the flanges and the web at
cross section of a channel subjected to a the fixed end of the cantilever channel of Fig c.
torsional moment at its unsupported length.  
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(zj)

of normal component of stress  which is statically equivalent to a moment  about

2the x  axis. Moreover, as shown in Fig. f the cross section of the flanges of a z-member

is subjected to a distribution of normal component of stress  which is statically

equivalent to an axial centroidal force and a moment, the magnitude of which can be
established from the following compatibility of strains relation:

Fig e Deformed configuration of a typical Fig f Free-body diagrams of the flanges and the web at
cross section of a z-section subjected to a the fixed-end of the cantilever z-section of Fig c.
torsional moment at its unsupported length.  
                                                                                                                                             
         

9.12 Problems

Section 9.1

1.  Consider a 2 m long cantilever beam made from an American steel W 460x74 wide
flange section.  The beam is subjected to a uniformly distributed force of 10 kN/m as
shown in Fig. 6P1.  Plot the distribution of the normal component of stress on the cross
section of this beam at its fixed end and locate the neutral axis of its cross sections.

2 2        Ans.        =  0.21x  ! 0.11856x  MPa

Figure 9P1 Figure 9P2 Figure 9P3
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2.  A 1 m long cantilever beam made from an American rolled steel angle L 127 x 76 x
9.5 is subjected to a concentrated force of 20 kN at its unsupported end as shown in Fig.
9P2.  The plane of the loading of the beam contains the shear center of its cross sections.
Plot the distribution of the normal component of stress on the cross section of this beam
at its fixed end and locate the neutral axis of its cross sections.

 1 2  3   Ans.     =  10 (10 ! x )(7.02x + 1.65x )-6 -3

3. and 4.  Consider a 2 m long cantilever beam whose cross section is shown in Fig. 9P3
3and is subjected to a concentrated force P  = 20 kN at its unsupported end.  Plot the

distribution of the normal component stress acting on the cross section of beam at its
fixed end.  Repeat with beam whose cross section is shown in Fig. 9P4.

Figure 9P4 Figure 9P5

5.  The strain gage attached to the top of the top flange of the standard W 460 x 113 steel
11rolled beam shown in Fig. 9P5 measures a strain of e  = 0.0004 when the beam is

subjected to the forces shown in this figure. The modulus of elasticity for steel is E = 200
3GPa.  Determine the magnitude of the uniformly distributed load p .

6.  The strain gage attached to the top of the top flange of the wide flange steel beam
11shown in Fig. 9P6 measures a strain of e  = !0.004 when the beam is subjected to the

forces shown in this figure.  The modulus of elasticity for steel is E = 200 GPa.
Determine the depth d of the beam. Ans.  d = 701 mm

7.  The strain gage attached to the top of the top flange of the beam shown in Fig. 9P7
11measures a strain of e  = 0.0006 when the beam is subjected to the forces shown in this

figure.   The modulus of elasticity for steel is E = 200 GPa.  Determine the magnitude of
3the uniformly distributed forces p  and plot the distribution of the normal component of

1 stress acting on the cross section of the beam at x = 3 m.
Ans. 1.087 kN/m downward

   

Figure 9P6
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Figure 9P7

Section 9.2 

2 18.  Using the classical theory of beams compute the components of translation u (x ) and
3 1u (x ) of the cantilever beam of  Z cross section subjected to an external bending moment,

as shown in Fig. 9P8.  Moreover, compute the maximum value of the normal component
of stress acting on the cross sections of the beam.  The beam is made from an isotropic,
linearly elastic material (E = 200 GPa).

Figure 9P8     cross section

9. to 11.  Using the classical theory of beams, compute the equation of the elastic curve
2of the beam subjected to bending about the x  axis without twisting, due to the external

2 3actions shown in Fig. 9P9.  The x  and x  axes are principal centroidal.  The beam is made
from an isotropic, linearly elastic material of modulus of elasticity is E = 200 GPa.  The

2 2moment of inertia of the beam about its x  axis is I  = 179(10 ) mm .  Do not use functions6 4

of discontinuity.  Repeat with the beam of Fig. 9P10 to 9P11.                

      
12.  Consider the cantilever beam subjected to the forces shown in Fig. 9P12 and to a
temperature difference of 20  C.  That is, the temperature of its top surface is 20 C whileo o

2the temperature of its bottom surface is 0 C.  The beam has a constant cross section [I  =o

200(10 ) mm  h  = 200 mm (see Section 4.7)] and it is made from a homogeneous,6 4 (3)

3 2isotropic, linearly elastic material (E = 200 GPa,     = 10 / C). The x  and x  axes are-5 o
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principal centroidal of the cross sections of the beam.  Moreover, the plane of the external
3forces is parallel to the x  axis and contains the shear center of the cross sections of the

3 1 2 1beam.  Compute the deflection of the beam u (x ) and its internal bending moment M (x )
3 1and shearing force Q (x ).         

   

Figure 9P9 Figure 9P10

Figure 9P11 Figure 9P12

13. and 14.  Using the classical theory of beams, compute the components of translation
2 1 3 1u (x ) and u (x ) of the simply supported beam subjected to the external forces shown in

Fig. 9P13.  Moreover, compute the maximum value of the normal component of stress
acting on any cross sections of the beam. The beam is a standard steel (E = 200 GPa)
rolled angle L 64 × 51 × 6.5.  Repeat with the beams of Fig. 9P14.

Figure 9P13
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Figure 9P14    

Section 9.3

15. to 18.  Using the classical theory of beams and functions of discontinuity compute the
2equation of the elastic curve of the beam subjected to bending about the x  axis without

2 3twisting due to the external actions shown in Fig. 9P9.  The x  and x  axes are principal
centroidal.  The beam is made from an isotropic, linearly elastic material of modulus of

2 2elasticity E = 200 GPa.  The moment of inertia of the beam about its x  axis is I  = 179
(10 ) mm .  Repeat with the beam of Figs. 9P10 to 9P12.          Ans. See problems 9 to 12

6 4

Figure 9P19 Figure 9P20

19. to 22.  Using the classical theory of beams and functions of discontinuity, compute
the reactions of the prismatic beam subjected to the external forces shown in Fig. 9P19.

2 3The x  and x   axes are principal centroidal.  Plot the shear and moment diagrams for the
beam.  Repeat with the beam of Figs. 9P20 to 9P22.

Figure 9P21 Figure 9P22
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Figure 9P23

23. to 25.  Using the classical theory of beams, compute the reactions of the beam whose
cross section is shown in Fig. 9P23 resulting from the loading shown in this figure and

oplot its shear and moment diagrams.  The temperature during construction was T  = 20 C.o

The beam is made from steel (E = 200 GPa,      = 10 / C).  Repeat with the beams of Figs.-5 o

9P24 and 9P25.

  

Figure 9P24

Figure 9P25

Section 9.4

26. to 29.  Using the Timoshenko theory of beams, compute the components of translation
3 1 1u (x ) and of rotation     (x ) of the beam of rectangular cross section (depth = 200 mm,

width = 120 mm) subjected to the external actions shown in Fig. 9P26.  The beam is made
2 3from an isotropic, linearly elastic material (E = 200 GPa, G = 75GPa).  The x  and x  axes

2are principal centroidal axes [I  = 80(10 ) mm ].  Repeat with the beams of Figs. 9P27 to6 4

9P29.
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Figure 9P26 Figure 9P27

Figure 9P28 Figure 9P29

Section 9.5

30.  Consider a cantilever beam whose cross section is an equilateral  triangle shown in
Fig. 9P30 with a = 200 mm.  The beam is subjected at its free end to a force of 120 kN

1 3 3acting in the x x  plane in the direction of the x  axis.  Compute the shearing components
of stress       and      acting on the particles of the cross section of the beam.  Evaluate the
results for the particles of line CD of the beam.

Ans.  Resulting shearing stress at point D = 10.67 MPa

31.  Establish formulas for the shearing stress in the flanges and in the web of a thin-
walled beam having the Z cross section shown in Fig. 9P31.  The beam is subjected to a

3 2 F Wshearing force Q  (Q  = 0).  Disregard the thickness t  and t  compared to b and d,
respectively.

 

Figure 9P30 Figure 9P31

32.  Derive formulas for the shearing stress in the flanges and the web of the thin-walled
F Wbox-beam whose cross section is shown in Fig. 9P32.  Disregard the thickness t  and t

compared to b and h.
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Figure 9P32 Figure 9P33

33.  A rolled steel channel C 200 × 20.5 is used as a 4 m simply supported beam on an
inclined plane, as shown in Fig. 9P33.  Determine the maximum tensile stress acting on
the cross sections of the beam when subjected to a uniformly distributed force of 2kN/m
including its weight.  Compare the results with those obtained when     = 0.  The plane of
loading of the beam contains the shear centers of its cross sections and it is vertical.
Compute the maximum value of the shearing component of stress. 

Figure 9P34 Figure 9P35              Figure 9P36

34. A wide flange beam W 130 × 28.1 of length 3 m is simply supported on an inclined
position as shown in Fig. 9P34.  Compute the maximum values of the normal and
shearing components of stress due to its own weight and indicate on a sketch the location
of the particles on which they act. Locate the neutral axis of the cross sections of the
beam.  

Section 9.6

35.  A 2 m long simply supported beam is made up from four 60 × 120 mm rectangular
wood planks glued to a 30 × 500 mm wood plank, as shown in Fig. 9P35.  The beam is

3subjected to a concentrated force P  at the middle of its span.  The allowable normal and
shearing components of stress in the wood is 12 MPa and 1 MPa, respectively.  The
allowable value of the average shearing stress in the glue is 0.5 MPa.  Determine the

3 3 m axmaximum value of P . Ans.  (P )  = 22.6 kN

36.  A simply supported beam is made from four 40 mm wood planks nailed together as
shown in Fig. 9P36.  The beam is subjected to a concentrated force at the middle of its
span. Disregard the effect of the weight of the beam.   The nails are spaced every 20 mm.
If the allowable shearing force per nail is 10 N, compute the maximum allowable value
of the applied force. 

3 allowable         Ans. (P )  =  653.6  N
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37.  Two W 100 × 19.3 beams are connected together with bolts to form one beam, whose
cross section is shown in Fig. 9P37.  The beam is simply supported and is subjected to a
concentrated force of 120 kN at the middle of its span.  The allowable force in shear for
each bolt is 40 kN.  Assuming that the spacing of the bolts is to be the same throughout
the length of the beam, compute the maximum allowable spacing of the bolts.

Figure 9P37      Figure 9P38              Figure 9P39

38.  A cantilever beam is made with a standard wide-flange and two standard channels
bolted together as shown in Fig. 9P38.  Each bolt can carry a maximum allowable
shearing force of 20 kN.  The beam is subjected at its unsupported end to a concentrated
force of 80 kN.  Compute the maximum allowable spacing of the bolts.

   Ans. s # 260.7 mm

39.  A cantilever T-beam is made from two wood planks nailed together as shown in Fig.
9P39.  The beam is subjected at its unsupported end to a concentrated force of 4 kN.  The
allowable force that each nail can carry is 1.2 kN.  Compute the spacing of the nails.

   Ans. s # 130.8 mm
Section 9.7

40. to 45.  Derive a formula for the distance e which locates the shear center of the cross
W Fsection of the thin-walled beam shown in Fig. 9P40.  Disregard t  and t  as compared to

h, b or a.  Repeat with the cross sections of Figs 9P41 to 9P45.

Figure 9P40 Figure 9P41              Figure 9P42
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Figure 9P43 Figure 9P44 Figure 9P45

Section 9.8

46.  A member of a structure consists of two steel rods welded to a 10 mm thick steel
plate and is subjected to the forces shown in Fig. 9P46.  Assuming that the rods and the
plate are sufficiently longer than the dimensions of the cross sections of the member,
determine the largest tensile stress acting on the cross sections of the rods and the plate.

47.  The inner and outer diameters of the steel pipe of Fig. 9P47 are 30 mm and 40 mm,
respectively.  The pipe is fixed at its end B.  Compute the value of the forces P  and P(1) (2)

acting on the pipe so that the normal components of stress acting on the particles at points
A (0.2 m, 0, !0.02 m)  and  B (0, 0.02 m, 0)  are  equal to      = 60 MPa compression and

= 120 MPa tension.

         

Figure 9P46 Figure 9P47

48.  Consider member 1, 2, 3 shown in Fig. 9P48 subjected at its end 3 to an axial
centroidal force of 40 kN.  The cross section of the member is 80 mm by 80 mm.
Compute the maximum normal component of stress acting on the cross section AA.

49.  The structural tubing shown in Fig. 9P49 has an uniform thickness of 6 mm.

Compute the normal component of stress at point A.       

50.  A bar AB is welded on the unsupported end surface of a cantilever beam of solid
circular cross section of radius 24 mm. Two forces are applied to the end B of the bar as
shown in Fig. 9P50.  Establish the components of stress acting on the particles of the
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beam which are located at points D and E.

Figure 9P48  Figure 9P49

Figure 9P50 Figure 9P51

51. and 52.  Consider a cantilever beam whose cross section is shown in Fig. 9P51
3subjected to a concentrated force P  at its unsupported end.  The beam is made from an

isotropic linearly elastic material. Determine the maximum shearing stress at cross
sections sufficiently removed from the fixed end of beam so that the effect of restraining
the warping of the cross section of the beam can be disregard.  Repeat with the beam
whose cross section is shown in Fig. 9P52.

Section 9.9

S53.  Consider the 2 m long simply supported beam made of two steel  (E  = 200 GPa)
Aflanges connected to an aluminum alloy web (E  = 75 GPa) as shown in Fig. 9P53.  The

beam is subjected to a concentrated force of 20 kN at the middle of its span.  Compute the
distribution of the normal and shearing components of stress acting on the cross section

1of the beam at x  = 1.0 m.  Establish a formula for the deflection of the beam.

54.   Consider a simply supported beam of length 6 m made of three vertical layers as
Sshown in Fig. 9P54.  The modulus of elasticity of steel is E  = 200 GPa while that of the

aaluminum alloy is E  = 75 GPa.  The beam is subjected to a concentrated force of 40 kN
at the middle point of its span. Compute the normal and shearing components of stress
acting on the cross section of the beam.
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Figure 9P52           Figure 9P53 Figure 9P54

Figure 9P55 Figure 9P56

55.  The webs of the 6 m long hollow simply supported box beam, whose cross section
pis shown in Fig. 9P55, are made of western pine (E  = 10 GPa), while the beam flanges

dare made of Douglas fir (E  = 13 GPa).  The beam is subjected to a concentrated force at
3the middle point of its span P = 10 kN.  Compute the maximum normal and shearing

components of stress acting on the cross section of the beam just to the left of the
concentrated force.  Compute the maximum deflection of the beam.

56.  The cross section of a 2 m reinforced concrete simply supported beam is shown in
Fig. 9P56.  The beam is subjected to a concentrated force of 4 kN at the middle point of
its span.  Establish the distribution of the normal and shearing components of stress acting

son the cross section of the beam just to the left of the concentrated force  (E  = 200 GPa
cand E  = 20GPa).

Figure 9P57 Figure 9P58

57. and 58.  Using the method of finite differences, determine the deflection and the
sinternal moments of the prismatic beam [I  = 200(10 ) mm , E = 200 GPa) having the end6 4

supports and subjected to the external forces shown in Fig. 9P57.  The beam bends at
2about the x  axis without twisting and rests on an elastic foundation of modulus k = 20
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2 3MPa.  The x  and x  axes are principal centroidal. Subdivide the beam into ten equal
segments.  Repeat with the beam of Fig. 9P58. 

W  59.  An I-beam (with of flange b = 120mm, depth of cross section h = 240mm, t = 20
F mm, t = 16 mm) is made from an aluminum alloy (E = 75 Gpa, v = 1/3) and having a

length of 1.5 m.  The beam is fixed at its one end and is connected rigidly to a thick plate
at its other end, which prevents this end from warping.  A torsional moment of 80 kN@m
is applied to the beam by two equal and opposite forces acting on the plate in a plane
perpendicular to axis of the beam. Compute the angle of twist of the plate and the
distribution of the normal and of the shearing components of stress acting on the cross
section of the beam at its ends.
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Chapter
10

Non-Prismatic Members —
Stress Concentrations

10.1 Computation of the Component s of Displacement and S tress of No n-
Prismatic Members 

The following equations and formulas, established in Chapters 8 and 9 for prismatic
line members are expected to give reasonably accurate values for the components of

1displacement and stress, of tapered members provided that the rate of change (dA/dx ) of

1the area of their cross sections is not very large.  The error increases as dA/dx  increases.

 1.  Equations (8.61)  and formula (8.59) are used to compute the component of

1 1translation u (x ) and the components of stress, respectively, of symmetrically (see Fig.
10.1a) tapered members subjected to axial centroidal forces.

1 1 2.  Equations (8.74) and formula (8.72) are used to establish the angle of twist è (x ) and

1è 1the component of stress ô (x ), respectively, of symmetrically tapered members of
circular cross sections subjected to torsional moments.

  

Figure 10.1  Members of variable cross section.
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                          (10.1)

(10.2)

(10.3)

3.  Equations (9.33) and formula (9.12) are used to compute the transverse components
of translation (deflection) and the normal component of stress of tapered beams subjected

12to bending  without twisting.  The distribution of the shearing components of stress ô
13and ô  on the cross sections of tapered beams, subjected to bending without twisting,

could differ considerably from that of the corresponding components of stress acting on
the cross sections of prismatic beams (see Section 10.2.1).  Thus, formula (9.66) cannot
be used to compute the shearing components of stress acting on the cross sections of non-
prismatic beams.

10.2 Stresses in Symmetrically Tapered Beams

In this section we derive formulas for computing the shearing components of stress
acting on the cross sections of symmetrically tapered beams (see Fig. 10.1a) subjected to
bending without twisting.  We assume that the rate of change of the cross sectional area

1(dA/dx ) of the beams under consideration is small.  For such beams the error in the value

11of the normal component of stress ô  acting on their cross sections obtained on the basis
of relation (9.12a) is small.  For example, the error in the maximum normal component
of stress acting on the cross sections of a symmetrically tapered cantilever beam of
rectangular cross sections having an angle of taper of 15  is 5%.  Notice, however, thato

the maximum normal component of stress does not necessarily act on the cross section
of maximum moment as in the case of prismatic beams.  This is so because the value of
the maximum normal component of stress depends not only on the value of the moment
but also on the value of the moment of inertia of the cross section of the beam both of

1which are functions of x .  For example, consider the tapered beam of rectangular cross
section of constant width b shown in Fig. 10.1a.  Referring to relation (9.12b) and

L odenoting by n the ratio h /h , the normal component of stress acting on its cross sections
is equal to

The maximum normal component of stress at any cross section of the beam occurs at

 and it is equal to

Differentiating relation (10.2) with respect to  and equating the derivative of  to zero,

we find the following value of  for which  is maximum

This relation indicates that when n $ 0.5 the maximum normal component of stress acts
on the cross section at the fixed end, while when 0.5 > n the location of the cross section
on which the maximum normal component of stress acts is obtained from relation (10.3).

In what follows we derive a formula for the shear flow in symmetrically tapered beams
of  arbitrary  cross  sections, when  they  are  subjected  to  bending without twisting. A
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(10.4)

(10.5)

1Figure 10.2  Free-body diagrams of a segment of length Äx  of a non-prismatic beam and a portion of this
segment.

1segment ABCD  of  length  Äx  of  such  a beam is shown in Fig. 10.2a.  The segment is
cut by two planes                                                 normal to the axis of the beam. Moreover,
the free-body diagram of portion BCEFGH of the segment ABCD is shown in Fig. 10.2b.

3This portion is cut from the segment ABCD by a plane normal to the x  axis.  Referring
to Fig. 10.2b from the equilibrium of portion BCEFGH, we have

1Assuming that the rate of change of the area of the cross sections of the beam (dA/dx )
is not large, formula (9.12a) can be use to compute the normal component of stress acting
on its cross sections.  Substituting relation (9.12a) into (10.4), we obtain

The above relation may be used to compute the average value of the shear flow over a

small length of the beam extending from  to  by substituting in it the

numerical values of , , , , , ,

www.EngineeringEBooksPdf.com



502    Non-Prismatic Members — Stress Concentrations

†A derivation of a formula for the shearing component of stress acting on the cross sections of
unsymmetrically non-prismatic tapered beams of rectangular cross section is available in the following
reference :

Oden, T.J., Ripperger, A.E., Mechanics of Elastic Structures, 2nd edition, McGraw-Hill, New York,
1981, p. 112.

(10.7a)

(10.7b)

(10.8a)

(10.8b)

   (10.6)

, , , , and .  This average value

of the shear flow is an approximation to the shear flow at .  The smaller the

distance  the more accurate the results will be.  However, if  is very small,

considerable numerical accuracy is required because in this case the right side of relation
(10.5) represents the sum of the differences of two terms which are almost equal.

10.2.1 Shearing Stresses in Symmetrically  Tapered Beams of Rectangular Cross†
Sections

Consider a symmetrically tapered beam of rectangular cross section of constant width

1b and varying depth h.  We assume that h is larger than b and that dh/dx  is small.  The

3beam is subjected to bending about the principal axis  (M  = 0).  For such a beam the

components of stress  and  can be assumed constant in the direction of the  axis

while the shearing component of stress  can be disregarded.  Moreover, taking into

account that the  and  axes are principle centroidal, relation (10.5) reduces to

Denoting by h and h + Äh the depth of the cross sections at  and , respectively,

(see Fig. 10.2a) and disregarding terms involving  and , we have
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(10.9)

(10.10)

Substituting relations (10.7b) and (10.8b) into (10.6) using (10.7a) and multiplying both

sides by  , we obtain

Dividing relation (10.9) by , taking the limit as  goes to zero, and noting that in

3 1the limit  is equal to Q  while  is equal to dh/dx , we obtain

This relation is valid for beams of rectangular cross sections of constant width b and

1symmetrically varying depth h provided that dh/dx  is small.
In what follows we present an example.

                                                                                                                                             

Example 1  Derive a formula for the shearing stress  acting on the cross sections of the

tapered cantilever beam of rectangular cross sections of contant width b subjected to a

3force P  at its unsupported end (see Fig. a).

        Figure a  Geometry and 
        loading of the beam.

                                                                                                                                             

Solution  For the beam of Fig. a we have
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    (a)

   (b)

(c)

(d)

(e)

The shearing component of stress  can be established by substituting relations (a) into

(10.10).  That is,

From relation (b) we see that the distribution of the shearing component of stress is a

1 1function of x .  For example, consider a tapered beam with n = 0.5.  For this beam at x
= 0 relation (b) gives

while, at  relation (b) gives

3and at  (just to the left of the force P ) relation (b) gives

The results (c) to (e) are plotted in Fig. b.  Notice that the maximum normal component

1of stress acting on the cross section of a beam with n = 0.5 occurs at x  = 0, .

However, at these points, the shearing component of stress does not vanish. Thus, the
maximum normal component of stress occurs on a plane which is not normal to the axis
of the beam.

Figure b  Distribution of shearing stress on cross sections of the beam of Fig. a with n = 0.5.
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†   For  formulas for  stress concentration in m em bers having abrupt or  sudden changes of their  cross
sections see:

N euber ,  H . ,  Kerbspannungslehre: Grundlagen fur Genaue Spannungsrechnung,  Springer ,
   Berlin,  1937 (Translation ' 74,  David Taylor  M odel Basin,  U . S.  Navy W ashington,  D . C.  1945).
Savin,  G. N . ,  Stress Concentrations Around Holes,  Pergamon Press,  New York,  1961.
Peterson,  R. E . ,  Stress Concentration Factors for Design,  John W iley and Sons,  New York,  1974.
Rooke,  D . P.  and Cartwright,  D . J. ,  Compendium of Stress Intensity Factors,  Her M ajesty' s Stationary   
   Office,  London,  1976.

(10.11)

(10.12)

10.3    Stress Concentrations

The conditions which increase the magnitude of the components of stress acting on
some particles of line members are called stress raisers.  They include the following:

1. Cracks which may have resulted during fabrication or erection of a structure
2. Abrupt changes in the distribution of external tractions of high intensity acting on the
members of a structure
3. Abrupt or sudden changes of the cross sections of members of a structure
4. Abrupt changes of the mechanical properties of the materials from which the members
of a structure are made 

Often, as a result of the existance of stress raisers, large stresses are developed only
in a small portion of the volume of a member.  They are called localized stresses or stress
concentrations.  In this section we limit our attention to stress concentrations resulting
from abrupt or sudden changes of the geometry of the cross sections of line members.  In
the neighborhood of such changes the state of stress is triaxial; that is, some of the
components of stress which were negligible in prismatic members are not negligible in
the neighborhood of a sudden or an abrupt change of the cross sections of a member.
Thus, the values of the components of stress in the neighborhood of an abrupt or sudden
change of the cross sections of a member cannot be computed using the theories of
mechanics of materials.  However, they can be established experimentally using the
method of photoelasticity or the technique of Moiree or with the aid of a computer, on the
basis of the theory of elasticity using a numerical method such as the finite element
method.  This approach requires considerable computer time. 

The maximum stress due to geometric irregularities is usually expressed as 

where K is called the stress concentration factor .  Its value depends on the geometry of†

the neighborhood of the abrupt or sudden change of the cross sections of the member.
The nominal stress is the maximum stress acting on the cross section of an auxiliary
prismatic member whose cross sections are identical to the smallest cross section in the
neigborhood of stress concentration of the actual member.  For example, the maximum
value of the normal component of stress     acting on the cross sections of a member
located in the neighborhood of an abrupt or sudden change of its cross sections, when
subjected to tractions on its surfaces which are statically equivalent to axial centroidal
forces, acting along its length and/or at its ends is expressed as

where A is the net area of the smallest cross section of the member.  K is the stress 
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 Taken from  Frocht,  M . M . ,  Factors of Stress Concentration Photoelastically Determined,  Trans.  Am.
† 

Soc.  M ech.  Eng.  57,  p. A-67,  1935.

Figure 10.3 Stress concentrations in flat bars having varying cross sections subjected to equal and opposite
axial centroidal tensile forces on their ends.

concentration factor.  The distributions of the axial component of stress on the smallest
cross section of a member with a hole, symmetric notches and suddenly changing cross
sections with fillets are shown in Fig. 10.3.  In Fig. 10.4 the stress concentration factors
for flat bars with a hole and for flat bars with suddenly changing cross sections with fillets
are plotted as functions of the geometry of the bar.  These stress concentration factors
have been obtained using photoelastic methods.  They are valid only for values of the
components of stress for which the response of the material is linearly elastic.

Figure 10.4 Stress concentration factors for flat members of constant thickness in tension, obtained  using
 photoelastic methods.†
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Table 10.1  Data for Neuber's diagram.

Type of Change

of Section

Type of

Loading

Normal

Component

of Stress

Scale

for

Curve

for

Type of

Section

Tension f 1

Bending f 2

Tension f 3

Bending f 4

Tension f 5

Bending e 5

Tension f 6

Bending f 7

Direct

shear
e 8

Torsional

shear
e 9

As shown in Example 3 of Section 7.7 when a plate of infinite width with a circular
hole is subjected to axial centroidal tensile forces, the stress concentration factor is 3.
However, this result cannot be used for plates of finite width, except if the ratio of the
width D of the plate to the radius r of the hole is large (D/r > 25).  An empirical formula
for the stress 
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†  Neuber,  H. ,  Kerbspannungslehre: Grundlagen fur Genaue Spannungsrechnung,  Springer ,  Berlin,  1937.

(10.13)

 

Figure 10.5  Neuber's diagram.

concentration factor K for flat members of finite width with a hole subjected to axial
centroidal tensile forces is

Approximate values of the stress concentration factor K for the members with grooves
whose geometry and loading is shown in Table 7.1, may be obtained using Neuber's
diagram  shown in Fig. 10.5.  In order to demonstrate how to use Neuber's diagram,†

consider a cantilever beam of circular cross section of radius 300 mm with a circular
groove of radius a = 8 mm and depth h = 44 mm.  The beam is subjected to a bending

2moment M  at its unsupported end.  Referring to Fig. D of Table 7.1, we have

As can be seen from the fifth column of Table 7.1, curve 7 corresponds to the beam under

consideration; we enter the diagram with  and we draw a line perpendicular

to its abscissa axis at that point, until it intersects curve 7.  We denote the point of
intersection by A.  We draw from point A a line parallel to the abscissa axis of the diagram
until it meets the ordinate axis at a point which we designate by B.  Subsequently, we

locate the point of the left abscissa axis representing  according to scale

f  which is obtained from the fourth column of Table 7.1.  We designate this point as C.
We connect points B and C with a straight line which intersects the OK axis.  We read the
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value of theconcentration factor  on the OK axis.  Thus, referring to Table 7.1 the

maximum value of the normal component of stress is equal to

2where  is in kN/mm  when M  is in kN@mm.2

10.4  Problems

1. Consider the circular cone of height h and maximum radius R resting on a horizontal
surface as shown in Fig. 10P1.  The cone is made from an isotropic, linearly elastic
material of modulus of elasticity E and mass density ñ.  Determine the displacement of

the apex A of the cone due to its own weight. Ans. 

Figure 10P1 Figure 10P2

2. A member with a suddenly changing cross section is made from an isotropic, linearly
elastic material of modulus of elasticity E = 200 GPa and coefficient of linear thermal
expansion á = 10 / C.  The member is subjected to the axial centroidal forces shown in-5 o

cFig. 10P2 and to an increase of temperature ÄT  = 20 C.  Compute the reactions of theo

member and draw its axial force diagram.

3. Consider the fixed at both ends member of suddently changing cross section shown in

1Fig. 10P3.  The area of the cross section of the left part of the member is A  while that of

2 2 1the right part is A , where A  > A .  The member is made from an isotropic, linearly
elastic material with modulus of elasticity E and coefficient of thermal expansion á.  The

cmember is subjected to an increase of temperature ÄT . Derive formulas for the normal

11 1 1 1component of stress (x ) and the axial component of translation u (x ).

     

4. The tapered member of constant thickness t shown in Fig. 10P4 is subjected to an axial

1centroidal force P  at its unsupported end and to uniformly distributed axial centroidalL
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1forces p  along its length.  The member is made from an isotropic, linearly elastic
material of modulus of elasticity E.  Determine the elongation of the member.

Figure 10P3           Figure 10P4
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     Chapter

11
Planar Curved Beams

11.1 Introduction

In this chapter we establish the stress field of curved beams, of a constant cross section
whose axis (the locus of the centroids of their cross sections) lies in one plane. We denote
by s the distance measured along the axis of the beam from a chosen reference point on
its axis. The beams are subjected to a general loading.  We call such beams planar curved
beams.

When the radius of curvature R of the axis of a planar curved beam is large as
compared to the depth h of its cross sections (R/h > 5), the components of stress acting
on its cross sections may be approximated by assuming that the beam is straight (R 6 4).
Consequently, in this section we focus our attention on planar curved beams of constant
cross section of small R/h ratio(R/h < 5).

11.2 Derivation of the Equations of Equilibrium for a Segment of Infinitesimal
Length of a Planar Curved Beam

1 3Consider a segment of length )s of a planar curved beam in the x x  plane, cut by two

Figure 11.1  Coordinates and free-body diagram of a segment of a planar curved beam.
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(11.3)

(11.4)

planes normal to its axis. We denote by p(s) the distributed forces and by m(s) the
distributed moments acting on this beam. Both p(s) and m(s) are taken per unit length of
the axis of the beam. These actions can be decomposed into three components, a

2 . .2circumferential p  or m , a radial p  or m , and a component normal to the plane of the

2 2beam p  or m . The free-body diagram of this segment of the beam is shown in Fig 11.1b.
The circumferential, the normal to the plane of the beam and the radial components of the
force and of the  moment acting on the left cross section of this segment of the beam are

2 . 2 2 . denoted by N, Q , Q  and M , M , M , respectively. The components of the force and
moment acting on the right cross section of this segment of the beam are denoted by N +

2 2 . . 2 2 2 2 . .)N, Q + )Q , Q + )Q  and M + )M , M + )M , M  + )M . That is, the terms )N,
2 . 2 2 . 2 . 2 2 . )Q , )Q  and )M , )M , )M  represent the change in N, Q , Q  and M , M , M ,

respectively. All internal actions are assumed positive, as shown in Fig 11.1b; referring
to this figure, the equilibrium of the segment of the beam under consideration requires
that

(11.1)

and

(11.2)

Notice that

and

where R(s) is the radius of curvature of the axis of the curved beam. Dividing relations
(11.1) and (11.2) by )s, taking the limit as )s 6 0 and )2 6 0, using relations (11.3) and
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2 æ†In practice it is difficult to apply distributed moments m  and m ; for this reason they are usually
omitted.

       (11.5a)

       (11.5b)

       (11.5c)

(11.6a)

(11.6b)

(11.6c)

  (11.7a)

    (11.7b)

  (11.7c)

(11.8a)

2 .(11.4) and omitting  the distributed moments m  and m , we obtain†

and

Using relations (11.5), relations (11.6) become

Relations (11.5) and (11.7) are the equilibrium equations for planar curved beams.  For

1straight beams (R 6 4, s 6 x , subscripts . 6 3 and 2 6 1), these equations yield the
equations of equilibrium (8.16) to (8.23) obtained in Section 8.9.  From equations (11.5a),

2(11.5c) and (11.7b), we obtain the following equation for the moment M :

where

Moreover, from relations (11.5b), (11.7a) and (11.7c) we get the following coupled

. 2equations for M   and M :
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(11.8b)

(11.11)

     (11.9a)

     (11.9b)

     (11.9c)

(11.10)

2 3When a straight beam is subjected to equal and opposite bending moments M  or M
at its ends, its cross sections do not twist. Moreover, when a straight beam is subjected to

1equal and opposite torsional moments M  at its ends, its axis does not bend. However, as
can be seen from relations (11.8), the bending about the radial axis of planar curved
beams and their twisting are coupled. That is, when a cantilever prismatic planar curved

.beam is subjected to a moment M  (see Fig. 11.1b) at its unsupported end, its cross
sections twist. Furthermore, when a cantilever planar curved beam is subjected to a

2torsional moment M  at its unsupported end, its axis bends. 

11.3 Computation of the Circumferential Component of Stress Acting on the
Cross Sections of Planar Curved Bea ms Subjected to B ending without
Twisting 

We assume that the assumptions made for prismatic straight beams (see Section 8.2)
are valid for planar curved beams of constant cross sections. However, the assumption
that plane sections normal to the axis of the beam before deformation remain plane after
deformation (Bernoulli assumption) is valid only for the effect of bending. Thus, referring

to Fig. 11.1a we express the circumferential , the normal to the plane of the beam 

2and the radial  components of displacement of a point (s, x , ) of a planar curved

beam, due to bending only, as

2where s is zero at the cross section at the left end of the beam. The symbols            , u (s)B

and            represent the circumferential, the normal to the plane of the beam and the
radial components, respectively, of translation of the points of the axis of the beam due
to bending only.

In Fig. 11.2, we denote by )s the length of the arc of the segment of the beam
measured along its axis. Moreover, we denote by      the length of the arc of radius        .
Thus, referring to Fig. 11.2 we have

In the limit as )s 6 0, relation (11.10) reduces to
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(11.12a)

(11.12b)

(11.12c)

(11.12d)

(11.12e)

(11.12f)

(11.13)

Figure 11.2  Geometry of a segment of a planar curved beam.

1 2             Comparing Fig 2.16 with Fig. 11.1a we see that r =         , dr 6        , x 6 x , rd   6 

1 2 r . 1r                                , u  6 u , u  6 - u ,               , e  6    ,                , . Thus, the strain–
displacement relations (2.83) can be rewritten as

       In Section 6.2 we show that, when a straight prismatic member is subjected to equal
and opposite torsional moments at its ends in a way that its cross sections are free to warp,

11the axial component of strain e  vanishes. With this in mind we assume that when a
planar curved beam is subjected to torsional moments, the circumferential component of

strain  is negligible. Thus, substituting relations (11.9) into (11.12c), we get

where a, b and c are functions of s given as
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(11.14)

(11.15)

(11.16)

(11.17)

(11.18)

(11.19)

For planar curved beams with small R/h ratio (<10), the variation of the circumferential
component of strain       given by relation (11.13) becomes considerably different than
that for prismatic straight beams. 

22       As in the theories for straight beams, we assume that the components of stress , 

and  in planar curved beams of constant cross section are negligible compared to 
(see Section 8.2). Thus, the first of the stress–strain relations (3.48) for curved beams
made from an isotropic, linearly elastic material reduces to

Substituting relation (11.13) into (11.15), we get

Substituting relation (11.16) into relations (8.9a), (8.9e) and (8.9f) with subscripts 1 6 2,
3 3 6 . and coordinate x 6 ., we obtain

where

2In obtaining relations (11.17), we took into account that, since the axes x  and   are
centroidal, we have

After some calculations and using relations (11.18) and (11.19), it can be shown that the

www.EngineeringEBooksPdf.com



517Computation of the Circumferential Component of Stress         

(11.20)

(11.21)

(11.22)

(11.23)

following relations are valid:

Substituting relations (11.20) into (11.17), we obtain

Solving equations (11.21) for a, b and c, we get

Substituting relations (11.22) into (11.16), we have

where
A = area of the cross section of the beam.
R = the distance from the center of curvature of the curved beam to the
      centroid of its cross section.
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The first two terms on the right side of relation (11.23) represent a uniformly distributed
normal (circumferential) component of stress acting on the cross sections of the beam.
Notice that in case  N = 0, a normal component of stress exists at the centroid

 of the beam. Moreover, notice that, as R becomes very large, relation

(11.23) reduces to relation (9.12a) which gives the normal (axial) component of stress
acting on the cross sections of straight beams.
      When relation (11.23) is used to calculate the circumferential component of stress
acting on the particles of curved beams having thin flanges, it does not give good results.
Moreover, the error is not on the safe side.  Consider the segment of infinitesimal length
of a cantilever beam cut by two radial planes AB and CD shown in Fig.11.3a, subjected
to equal and opposite positive bending moments on its end faces.  Referring to this figure,
we see that the resultant force of the circumferential stresses acting on the end cross
sections of each flange of the segment under consideration has a component in the radial
direction.  These radial components cause the flanges of the beam to deflect radially as
shown in Fig. 11.3b and thus distort its cross section.  This decreases the circumferential

stress  at the tips of the flanges  and increases it at the portion near the web (see Fig.

11.3c).  Thus, for beams with thin flanges, either the resulting circumferential components

Figure 11.3 Effect of the radial forces acting the cross sections of the flanges of a curved I-beam.
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  †A way for correcting the values of the circumferential components of stress acting on the cross section of
planar curved beams with thin flanges was proposed by professor Hans Bleich  "Die Spannungsverteilung in
den Gurtungen gekru(mmter stabemit T und I-formigen Querschnitt" Der stahlblau Beilage zur Zeitschriff, Die
Bautechnik, 6(1) 1933  p. 3-6.  

(11.24)

(11.25)

(11.26)

(11.27)

              (11.28)

(11.29)

of stress obtained by using relation (11.23) must be corrected , or the distortion of the†

cross sections of the beam must be prevented by welding stiffeners on them (see Fig.
11.3d).  In the latter case, relation (11.23) gives good results.

       When the axis is an axis of symmetry of the cross sections of the beam, referring

2.to the last of relations (11.18), we see that J  vanishes. Thus, relation (11.23) reduces to

     When the    axis is an axis of symmetry of the cross section of the beam and, moreover,

      = 0,  relation (11.24) reduces to

Referring to Fig. 11.2, we have

Moreover, we define

Furthermore, referring to the first of relations (11.18), using relations (11.26) and (11.27)

and noting that  is equal to zero, we obtain

Substituting relation (11.28) into (11.25) and using (11.26), we obtain the following
formula for the circumferential component of stress of a curved beam whose cross
sections are symmetric about the    axis
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mTable 11.1  Formulas for A , A and R for curved beams whose cross sections are symmetric about

their  axis.
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(11.30)

Table 11.1 Continued

m        In Table 11.1, we present formulas for computing A , A and R for several symmetric

m about their    axis cross sections of curved beams. The values of A , A and R for
symmetric about their   axis composite cross sections, composed of n parts, may be
established using the following formulas:

         In Example 6 of Section 7.8.3 the components of stress acting on the particles of a
thin curved beam of rectangular cross section subjected at its ends to equal and opposite

2bending moments M  are established on the basis of the theory of elasticity. In Table 11.2
we tabulate, for various values of h/R, the ratios of the maximum value of the

circumferencial component of stress  obtained on the basis of relation (11.29) to that

obtained on the basis of the theory of elasticity .  Moreover, in Table 11.2 we tabulate

the ratios of the maximum circumferencial component of stress  obtained on the basis

Table 11.2   Ratios of the maximum circumferencial stress  or  acting on the cross sections of curved

beams of rectangular cross sections  obtained on the basis of relation (11.29) or (9.12b), respectively, to that

obtained on the basis of the theory of elasticity   .

h/R / /

3/2 1.040 0.450

1 0.990 0.526

1/2 0.997 0.654

1/3 0.999 0.888

1/5 0.999 0.933
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  (a)

        (b)

(c)

of formula (9.12b) for straight beams to that obtained on the basis of the theory of

elasticity . Referring to Table 11.2, we can make the following observations:

1. The results obtained on the basis of relation (11.29) are accurate for all values of h/R
(3/2 > h/R > 1/5) with a maximum error of 4% for h/R  = 3/2.

2. When h/R < 1/5, the error in the circumferencial component of stress  obtained by

using the formula for straight beams (9.12b) is less than 6.7%.
In what follows, we present three examples.

                                                                                                                                             

Example 1  Consider the cantilever planar curved beam of constant rectangular cross
section of width b, depth h, and h/R ratio of 0.25, shown in Fig. a.  The beam is subjected

to a bending moment  at its unsupported end.  Compute the maximum normal

component of stress acting on the cross sections of the beam.

Figure a  Geometry and loading of the beam.

                                                                                                                                             

Solution  Referring to Fig. a and to Table 11.1, we have 

Substituting relations (a) into (11.29), using relation (11.26) and h/R = 0.25, we obtain

The neutral axis is located at

or

        The distribution of the normal component of stress on a cross section of the planar
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curved beam under consideration and of a straight beam of the same cross section
subjected to the same moment is shown in Fig. b; referring to this figure we can make the
following observations:

1. The neutral axis of the curved beam does not pass through the centroid of its cross
sections.
2. The maximum circumferencial stress acting on the cross sections of a curved beam
with h/R = 1/4 is 9.1% bigger than that computed by formula (9.12b) for the normal
component of stress acting on the cross sections of a straight beam of the same
rectangular cross section when subjected to the same moment.

Figure b  Distribution of the normal component of stress.

                                                                                                                                             
                                                                                                                                             

Example 2  The crane hook shown in Fig. a is made from an isotropic, linearly elastic
material and is subjected to a force P = 40kN.  Compute the circumferencial component

of stress  acting on its cross section BC whose geometry is shown in Fig. b.

Figure a  Crane hook. Figure b Geometry of the cross section BC  

                of the crane hook.

                                                                                                                                             

Solution  We divide the cross section of the crane hook into three sub-regions whose area

1 2 3we denote by A , A , A   (see Fig. b).

1 For the region of area A referring to Fig b and to Table 11.1, we obtain
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             (b)

(d)

a = 84 mm                h = 24 mm                 b = 46 mm (a)

Referring to Table 11.1, we have

2For the region of area A   referring to Fig b and to Table 11.1, we get

i e 1 2R  = 84 mm R  = 188 mm b  = 92 mm b  =  36 mm (c)

Moreover,

3For the region of area A   referring to Fig. b and Table 11.1, we have

Moreover,

3Figure b  Region of area A .
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         (e)

        (f)

i mi iSubstituting the values of A  A  and R  (i = 1, 2, 3) computed above in relations (11.30),
we obtain

m 2 Substituting the values of A, A  and R from (f) into relation (11.29) and noting that M =
PR, we find the following expression for the circumferential component of stress:

Thus,

                                                                                                                                             
                                                                                                                                             

Example 3 Consider a cantilever curved beam of radius R = 100mm made from a steel
angle whose cross sectioned properties are given below. The beam is subjected to a

2 bending moment M = 24kN"m at its free end. Compute the distribution of the normal

component of stress  acting on the cross sections of the beam and locate their neutral

axis.
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(a)

(b)

(c)

Figure a  Cross section of the beam.

                                                                                                                                             

22 .. 2.Solution  We first compute the constants J , J , J  of the cross sections of the beam.
Referring to relations (a), we have

Substituting the values of the geometric constants (a) into relations (b), we get

Figure b  Results.
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  (d)

    (e)

    (f)

(g)

Using relation (11.28) and (c), referring to Fig. a and integrating relations (11.18), we
have

From relations (d), we get

Substituting relations (d) and (e) into (11.23), we obtain

At the outer surface of the curved beam (  = !16.15 mm), relation (f) gives  

From relation (f) we find that the equation of the neutral axis ( = 0) is
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(h)

The results are shown in Fig. b
                                                                                                                                             
       

11.4 Computation of the Radial and Shearing Components of Stress in Curved
Beams

      In Section 11.3 we derive a formula for the circumferential component of stress 

acting on the cross sections of prismatic planar curved beams.  This formula is based on

the assumption that the radial component of stress  is negligible.  This assumption is

satisfactory for curved beams, which do not have thin webs, as, for example, beams of
circular, rectangular or trapezoidal cross sections.  In Fig. b of Example 6 of Section 7.8.3,

e ia thin curved beam of rectangular cross section having R  = 2R  and h/R = 2/3 is
considered.  It is found using the theory of elasticity, that when this beam is subjected to

2equal and opposite bending moments M  at its ends, a radial component of stress 

exists, whose maximum value is approximately 13% of the maximum value of the

circumferential stress .  However, it is found that the maximum value of  occurs

slightly below the center line of the cross sections of the beam where  is small.

Consequently, the radial component of stress does not affect the ability of such beams to
carry the applied moment, except when they are made from an anisotropic material, like
wood, which does not have much strength in the radial direction.  Moreover, the
maximum value of the radial stress in I- or T-beams having thin webs may exceed the
maximum value of the circumferential stress and thus, for such beams, it cannot be
disregarded.

rr    In  what  follows  we  derive  formulas  for the radial component of stress  and the

shearing component of stress  acting on the particles of planar curved beams of

constant cross section subjected to bending moments whose vector is normal to their
plane as well as to external forces whose line of action lies in a plane which is parallel to
the  plane  of  the  beam  and  contains  the  shear  centers  of its cross sections.  For this

Figure 11.4 Radial component of stress in prismatic planar curved beams.
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(11.32a)

(11.32b)

(11.34a)

             (11.34b)

purpose, we consider a segment BDFG of length ds of a prismatic planar curved beam cut
by two radial planes (see Fig. 11.4a).  Moreover, we consider the equilibrium of a portion
of this segment ABCDE cut from it by a cylindrical surface r = R !     = constant (see Fig.
11.4b). The end surfaces of this segment are subjected to circumferential and shearing
stresses. In Fig. 11.4b the resultant forces of the circumstantial stresses are designated as

.r      and                  while the resultant forces of the radial stresses are designated by Q  and
                 . Moreover, as shown in Fig. 11.4b, the part AC of the lateral surface of the
portion under consideration is subjected to radial stresses.  Referring to Fig. 11.4b, we
have

(11.31a)

(11.31b)

r rwhere A  is the area of the portion CDE = A  of the cross section of the beam (see Fig.
11.4a) and

Substituting relation (11.23) into (11.32a), we get

(11.33)

Noting that and , from relations (11.31), we

obtain

and

Referring to relation (11.34b), we see that the shearing component of stress  depends

.r .ron the shearing force Q  which is not known.  Thus, we must eliminate Q  from relation
(11.34b), using relation (11.32b).  This leads to an integral equation on the dependent
variable        .  In order to avoid having to solve such an equation, we disregard the effect
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(11.35)

(11.36)

(11.38)

                               (11.39)

of curvature of a curved beam on the magnitude of .  That is, we assume that in

13relations (11.32b)  may be approximated by the shearing stress  acting on the cross

section of a straight beam whose cross section is identical to that of the curved beam
under consideration.  That is, referring to Fig. 11.5, substituting relations (9.67) into

(11.32b) and recalling that  and , we get

where

and

rA =  area of portion DCE of the cross section of Fig. 11.5a.

rA N         =  cross-hatched area of the cross section of Fig. 11.5a.

r 2=  distance of the centroid of area A N measured from the x  axis.

2 2I =  moment of inertia of the cross section about the x  axis.

For example, referring to Fig. 11.5, for a rectangular cross section, we have

 (11.37)

Substituting relations (11.37) into (11.36), we obtain

Substituting relations (11.33) and (11.35) into (11.34a) and using relation (11.5c), we get

If the cross section of a beam is symmetric about the  axis, referring to relations (11.18)

we see that  vanishes.  Moreover, if in addition  = 0, relation (11.39) reduces to
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 (11.40)

(11.41)

(11.42)

(11.43)

Figure 11.5  Cross sections of a planar curved beam.

Notice that, as R increases,  decreases.  Moreover, notice that

where

Substituting relations (11.26) and (11.41) into (11.40) and using relation (11.28), we get

mr mwhere A , A  and r are defined by relations (11.42), (11.27) and (11.26), respectively; A
ris the total area of the cross section of the beam; A  is the area of the portion DCE of the

cross section of Fig. 11.5a of the beam; R is the radius of curvature of the axis of the
beam.
        Consider a planar beam subjected to bending moments whose vector is normal to the
plane of the beam and to external forces whose line of action lies on a plane which is
parallel to the plane of the beam and contains the shear centers of its cross sections.  For

this beam .  Taking this into account and substituting relations

(11.33) and (11.35) into (11.34b) and using relations (11.7b), (11.6c) and (11.5a), we
obtain
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            (b)

(11.45)

(a)

If the cross section of a beam is symmetric about the    axis,       vanishes.  Thus, using
relations (11.41) and (11.42), relation (11.44) reduces to

In what follows we present one example.
                                                                                                                                             

Example 4 Consider the planar curved beam of constant cross section shown in Figs. a
and b, subjected to a force P = 80 kN.  Determine the circumferential, the radial and the
shearing components of stress acting on the particles of line EF of cross section ADH of
this beam.

Figure a Geometry and loading of the beam. Figure b Cross section ADH  of the beam.

                                                                                                                                             

Solution  Referring to Figs. a and b, we have

Moreover, considering the area of the cross section of the beam as the sum of parts ABCD
and EFGH and referring to relations (11.30) and to Table 11.1, we have
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(d)

   (e)

Furthermore, referring to Fig. a, we have

2   N = 80 kN   M  = (138.33 + 200) 80 = 27,066.4 kN mm        = 0        = 0 (c)

Substituting relations (a), (b) and (c) into (11.29), we obtain

Thus,

In order to compute the radial stresses at the junction of the flange and web of
the beam, we calculate the following quantities:

Referring to Fig. b and substituting relations (e) into (11.36), we obtain

Figure c  State of stress of the particles of line  EF.
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(8.33)

         

(g)

(h)

         (f)
Substituting relations (a), (c) and (e) into (11.43), we have

The results are shown in Fig. c.  Notice that big values of the radial component of stress
occur at points where the circumferential component of stress is small.  
       Referring to relations (c) and (11.45), we see that on the cross section ADH of the
beam under consideration, we have

                                                                                                                                             
 

11.5 Problems

31.  A crane hook is subjected to the force P  = 120 kN as shown in Fig. 11P1. The crane
has the trapezoidal cross section shown in Fig. 11P1 and is made from an isotropic,
linearly elastic material.  Determine the distribution of the circumferential, and the  radial
components of stress acting on its cross section BC.

Figure 11P1

2.  Determine the maximum allowable force P that the crane hook shown in Fig. 11P2 can
carry, if the maximum allowable circumferential stress is 150 MPa.

maxAns.   P  = 37.55 kN
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Figure 11P2

3. and 4.  The curved beam of Fig. 11P3 has a T cross section and is subjected to a force
P = 120 kN.  Determine the circumferential and the radial components of stress acting on
the particles of the beam located on its cross section BC on the line DE of intersection of
the flange with the web. Repeat with the beam of Fig. 11P4.

    

Figure 11P3 

Figure 11P4

5.  Consider the cantilever curved beam shown in Fig. 11P5 subjected to a force P = 240
kN.  The beam is made from an isotropic, linearly elastic material.  Determine the values
of the maximum circumferential and radial components of stress acting on the particles
of this beam.
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Figure 11P5

6.  A gluelam (glued laminated) Douglas fir beam of constant cross section will be used
in a roof system.  The beam will be simply supported.  It will have a span of 8 m and its
middle half will be curved with a radius R = 8, as shown in Fig. 11P6.  The snow load and
dead load that the beam should be designed to carry a load of 8 kN/m.  The allowable
circumferential and radial stresses for Douglas fir as given by the American Institute of

allowable rr allowableTimber Construction are ( )  = 15.8 MPa and ( )  = 0.119 MPa,

respectively.  The depth of the beam will be h = 1.0 m.  Determine the required width of
the beam.

Ans. b $ 68.8 mm

Figure 11P6
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Chapter
12

Thin-Walled, Tubular  Members†

12.1 Introduction

In Section 8.14 we present the theory of mechanics of materials for prismatic members
of solid or hollow (thin- or thick-walled) circular cross sections subjected to torsional
moments.  In Chapter 9 we present the theories of mechanics of materials for prismatic
beams subjected to transverse forces and bending moments at their ends and/or along their
length.  These theories apply to beams of arbitrary simply or multiply connected cross
sections.  However, as discussed in Section 9.5, the theories of mechanics of materials can
be used to compute directly the shearing components of stress acting on the cross sections
of beams, only if their geometry is such, that we know a priori a direction along which the
shearing component of stress, normal to that direction, may be considered constant.  For
example, formula (9.66) cannot be used directly to compute the shearing component of
stress in a prismatic beam of hollow thin-walled cross sections, if its cross sections do not
have an axis of symmetry and the plane of the transverse forces acting on the beam does
not contain the axis of symmetry.

Thin-walled, tubular members of circular cross sections are used in many structures
and machines to resist torsional and/or bending moments.  Moreover, thin-walled, tubular
members of non-circular cross sections are often used in light structures such as aircrafts
and spacecrafts to resist torsional and/or bending moments.  Thin-walled, tubular
members may be classified as single-cell when their cross sections have only one hole and
multi-cell when their cross sections have more than one hole.

In this chapter we use the theory of mechanics of materials to establish formulas for
computing the stress and displacement fields of prismatic thin-walled, tubular members
of arbitrary cross section when subjected to one or more of the following external actions:

1.  Equal and opposite torsional moments at their ends
2.  Transverse forces and bending moments

 Tubular members are prismatic bodies with one or more holes.†
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12.2 Computation of the Shearing Stress Acting on the Cross Sections of Thin-
Walled, Single-Cell Tubular Members Subjected to Equal and Opposite
Torsional Moments at Their Ends.

Consider a prismatic thin-walled, single-cell, tubular member of arbitrary cross section
subjected to equal and opposite torsional moments at its ends (see Fig. 12.1).  The
thickness t of the wall of the member may vary around its cross section.  The shearing
component of stress acting on a particle located at a point of the boundary of a cross
section of this member must be tangent to the boundary at this point (see Fig. 12.1c).
Moreover, since the thickness of the wall of the member is small, it is anticipated that the
intensity of the shearing stress varies very little across its thickness.  Consequently, we
assume that the shearing stress acting on the cross sections of a tubular member does not
vary along their thickness.  This assumption simplifies considerably the analysis of thin-
walled, tubular members.

1In Fig. 12.1b we show a segment abcd of length dx  of a thin-walled, single-cell,
tubular member cut by two planes perpendicular to its axis and by two planes which are
parallel to the axis of the member and normal to its middle surface.  The thickness of this
segment is constant in the axial direction (ab or cd), but could vary in the circumferential

b cdirection (bc or ad).  We denote by t  and t  the thickness of the longitudinal surfaces ab
and cd, respectively.  When the thickness of a member varies in the circumferential
direction, the intensity of the shearing stress varies in that direction.  We denote by      and
      the  shearing  components  of  stress  acting  on the surfaces ab and cd, of the segment

                   (a) Thin-walled single-cell member    
 

(b) Segment of the member of Fig. 12.1a (c) Distribution of shearing stress on a cross section
of a thin-walled, single-cell, tubular member
subjected to torsional moments at its ends.

Figure 12.1  Thin-walled, single-cell, tubular member subjected to equal and opposite torsional moments
at its ends.
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(12.1)

(12.2)

(12.3)

(12.4)

(12.5)

(12.6)

(12.7)

abcd,  respectively. As  we  have  shown  in  Section 2.13  the  components  stress are
symmetric. Consequently, the shearing stress      acting on the longitudinal surface ab
must be equal to the shearing stress acting on the end cross sections (ad and bc) of the
segment of Fig. 12.1b at points a and b. Moreover, the shearing stress     acting on the
longitudinal surface cd must be equal to the shearing stress acting on the end cross

b csections of the segment of Fig. 12.1b at points c and d.  We denote by F  and F  the
resultant shearing forces acting on the longitudinal surfaces ab and cd, respectively.  That
is,

Inasmuch as the element abcd is in equilibrium, we have

or

Since the longitudinal cuts ab and cd are arbitrary, relation (12.2) indicates that the
product of the shearing stress     acting on a particle of the cross section of a single-cell
thin-walled, tubular member and the thickness t of the wall of the cross section at the
point where this particle is located is constant.  This product is known as the shear flow
and represents the force per unit circumferential length acting on the cross sections of the
tubular member.  Denoting the shear flow by q, we have

In what follows, we proceed to relate the shear flow q acting on a cross section of a

1tubular member to the torsional moment M  acting on this cross section.  For this purpose,
referring to Fig. 12.2, we consider a portion AB of a cross section of the member of

sthickness t and circumferential length dx .  The total shearing force acting on this portion
of the cross section is equal to

The moment of the force dF about an arbitrary point O is equal to

where, referring to Fig. 12.2,  r is the distance OD from point O to the tangent to the
median line of the portion AB of the cross section.  Thus,

The integral is taken counterclockwise around the median line of the cross section of the
member.  Referring to Fig. 12.2, we have
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(12.8)

(12.9)

(12.10)

Figure 12.2  Cross section of a single-cell,
thin-walled, tubular member.

where        is the area of the triangle ABO.  Integrating relation (12.7) along the median
line of the cross section, we get

where     is the area enclosed by the median line of the cross section of the member.
Substituting relation (12.8) into (12.6), we have

Substituting relation (12.3) into (12.9), we obtain the following formula for the shearing
stress        acting   on   a   cross   section   of  a  single-cell,  thin-walled,  tubular  member,
subjected to equal and opposite torsional moments at its ends

Relations (12.9) and (12.10) have been derived in this section for a thin-walled, single-
cell, tubular member subjected to equal and opposite torsional moments at its ends.
However, it can be used to obtain approximate expressions for the shearing stress       of
thin-walled, single-cell, tubular members subjected to torsional moments along their

1 1length.  In this case M  and consequently q and       are functions of x .

12.3 Computation of the Angle of  Twist per Unit Length of Thin-Walled, Single-
Cell, Tubular Members Subjected to Equal and Opposite Torsional Moments
at Their Ends

In this section we derive a formula for computing the angle of twist per unit length 
     of a cross section of a thin-walled, single-cell, tubular member of arbitrary cross
section subjected to equal and opposite torsional moments at its ends.

Consider a particle located at point P of a cross section of a prismatic body of arbitrary
cross section which may be solid or it may have one or more holes. We denote by O the
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†The center of twist of a cross section of a prismatic body subjected tortional moments is the point on
the plane of the cross section about which the cross section rotates.

(12.11)

                (12.12)

 (12.13)

                   (12.14)

Figure 12.3 Displacement of a particle of Figure 12.4  Cross section of a single-cell,
a prismatic member subjected to tortional thin-walled, tubular member subjected to 
moments at its ends. torsional moments at its ends.

center of twist  of the cross section, which as shown in Section 13.11 coincides with the†

shear center of the cross section.  When this body is subjected to equal and opposite
torsional moments at its ends, as shown in Section 6.4 the particle under consideration

moves to point PN and the before-deformation straight line  becomes a space curve 

whose projection on the cross section of the member is a straight line  (see Fig. 12.3).

1The projection of every line of a cross section of the body rotates by the same angle     (x )
known as the angle of twist of the cross section.  The rate of change of the angle of twist
along the axis of the member is known as the angle of twist per unit length of the member
and we denote it by    . That is, 

In Section 6.4 we show that the component of displacement of point P in the plane of

the cross section is normal to the line .  That is, the radial component of displacement
of any particle of a cross section of a prismatic member subjected to equal and opposite
torsional moments at its ends vanishes.  Consequently, the displacement vector  of any

particle of such a member has only a transverse component of displacement and an

axial  Therefore,

twhere i  is the unit vector normal to the line OP.  Referring to Fig. 12.3, we see that the

ttransverse component of displacement u  can be expressed as

In Section 6.3 we show [see relations (6.42)] that 
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        (12.14)

              (12.15)

 (12.16)

(12.17)

  (12.18)

(12.19)

(12.20)

(12.21)

(12.22)

2where " is angle of twist per unit length of the cross sections of the member, while e  and

3e  are the coordinates of the center of twist of the cross sections of the member.  Thus,
referring relation (12.13) and to Fig. 12.3 and using relations (12.14), we have

The transverse component of displacement may be decomposed into tangential  and

normal  components.  In Fig. 12.4 the lines  and  represent the transverse and

the tangential components of displacement of point P, respectively, while    = 

is the angle which the tangential component of displacement makes with the line .
Referring to Fig. 12.4, we have

Substituting  relation (12.15) into (12.16), we get 

In Fig. 12.4 line OE is normal to the tangent to the median line of the cross section of the
member at point P; referring to this figure, we have

and

Using relation (12.19), relation (12.17) becomes 

Substituting relation (12.20) into (2.16), we obtain

Using the stress–strain relations (3.47), relation (12.21) may be rewritten as
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(12.23)

(12.24)

(12.25)

(12.26)

(12.27)

(12.28)

We assume that the change of over the thickness of the wall of the member is negligible.

sConsequently, on a cross section may be considered as function of x  only and relation

(12.22) can be rewritten as

Integrating relation (12.23) around the median line of the cross section of the member,

taking into account that          = q and noting that the integral of d over a closed curve

is zero, we get

Substituting relation (12.8) into the above and noting that q is constant on a cross section,
we obtain

Substituting relation (12.9) into the above, we get

Cwhere the torsional constant R  of the prismatic thin-walled, single-cell, tubular member
under consideration is equal to

For thin-walled single-cell tubular members of constant wall thickness t, relation (12.27)
reduces to

where S is the length of the median line of the cross section of the member.
Relation (12.26) with (12.27) has been established on the basis of results obtained in

Chapter 6 for prismatic bodies subjected to equal and opposite torsional moments at their
ends.  However, it can be used to approximate the angle of twist per unit length of thin-
walled, tubular members subjected to torsional moments along their length.

In order to get an indication of the range of validity of the formula (12.27), we compare
the torsional constant obtained from this formula for a thin-walled, single-cell, tubular
member of circular cross section (see Fig. 12.5) with that obtained on the basis of the linear
theory of elasticity.  The value of the torsional constant for such a member obtained on the
basis of the theory of elasticity [see relation (x) of the example of Section 6.6] is
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(12.29)

(12.30a)

(12.30b)

(12.30c)

(12.30d)

(12.31)

(12.32a)

(12.32b)

(12.33)

Figure 12.5  Circular cross section
of a tubular member.

Notice that

CUsing relations (12.30b) to (12.30d) the approximate value R  of the torsional constantA

obtained on the basis of formula (12.28) is

Using relations (12.29) and (12.31), we get

where

CThe % error in the approximate value of R  is

medianFor a tubular member with a t/R  ratio of 0.1, referring to relations (12.30a), (12.30d)
and (12.32b), we have 
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(a)

(b)

(c)

Consequently, 

Substituting the above value of k into relation (12.33), we get

This result indicates that even for tubular members with not very thin walls, as, for

medianexample, t/R  = 0.10, the theory of mechanics of materials for tubular members
presented in this section gives very good results.
                                                                                                                                              

Example 1 Consider a thin-walled, tubular member whose cross section is shown in Fig.

1 1a.  The member is fixed at its end (x  = 0) and is subjected to a torsional moment M L

1(kN@m) at its end (x  = L).  The member is made from an isotropic, linearly elastic material
with shear modulus G (kN/mm ).   Derive formulas for the stress distribution on the cross2

sections of the member and the angle of twist of its unsupported end.

Figure a  Geometry of the member.

                                                                                                                                              

Solution  Referring to Fig. a, we have

Substituting relation (a) into relation (12.10) the shear stress acting on the cross sections
of the member is equal to

Substituting relations (a) and (b) into (12.28), the torsional constant of the member is equal
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(d)

(e)

(f)

(12.34a)

(12.34b)

to

Substituting relation (d) into (12.26), we get

The total angle of twist of the cross section of the member at its unsupported end is equal
to

                                                                                                                                              

12.4 Prismatic Thin-Walled, Single- cell, Tubular Members with Thin Fins
Subjected to Torsional Moments

In Section 6.10 we derive an approximate formula for the shearing stress and the angle
of twist per unit length of prismatic members of thin rectangular cross sections.  Referring
to Fig. 12.6 these formulas are 

Moreover, in Section 12.2 and 12.3 we derive formulas for the shearing stress and the angle
of twist per unit length of thin-walled, single-cell, tubular members subjected to torsional
moments. In this section we use these formulas to approximate the response to torsional
moments of composite members consisting  of a thin-walled, single-cell, tube having a
number of thin rectangular plates (fins) connected to it (see Fig. 12.7).  When such a
composite member is subjected to equal and opposite torsional moments at its ends, the
fins and the tube rotate by the same amount.  Consequently, the twist per unit 

Figure 12.6 Thin rectangular cross section.
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(12.35)

(12.36a)

(12.36b)

(12.37)

length of the tube  and of each fin  is equal to that ( ) of the composite member.

That is,

where  and  are the torsional moments of the distribution of shear stress acting on

C Cthe cross section of the i  fin and of the tube, respectively.  R ,  and R  are the torsionalth T

constants of the composite member, the i  fin and the tube, respectively.  Referring toth

relations (12.27) and (12.34b), we have

where     is the area enclosed by the median line of the cross section of the tube; t is the

i ithickness of the tube; b  and t  are the width and the thickness of the i  fin.  In relationth

(12.36a) the integration is carried counter-clockwise around the median line of the cross
section of the tube.

The total moment acting on the cross section of a composite member with n fins is
equal to

Substituting the expression for the torsional moments  and  from relations (12.35)

into (12.37), we obtain

Figure 12.7  Cross section of a thin-walled,
single-cell, tubular member with fins.
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(12.38)

(12.39)

(12.40)

(12.41)

(12.42)

(12.43)

(12.44)

Thus, using relations (12.36), from relation (12.38), we get

Referring to relations (12.34a) and (12.10), the shearing stresses  and  acting on the

cross section of the i  fin and of the tube respectively, are equal toth

2where x  is the coordinate measured along the principal centroidal axis of the i  fin which(i) th

is normal to its long edge (see Fig. 12.6).  Referring to relation (12.35) and (12.36), the

1 1torsional moments M  and M  may be expressed asFi T

Substituting relations (12.41) and (12.42) into (12.40), we get

In what follows, we illustrate the computation of the distribution of the shearing stress
on the cross sections of a composite member subjected to equal and opposite torsional
moments at its ends.
                                                                                                                                              

Example 2 Consider the thin-wall prismatic composite member of length L = 1 m whose
cross section is shown in Fig. a.  The member consists of a tube of circular cross section

iof thickness t = 5 mm and four thin plates (fins) of thickness t  = 5 mm attached to it. The

iinternal radius of the tube is R  = 60 mm.  The member is made from an isotropic linearly

1elastic material of shear modulus G = 100 kN/mm . The member is  fixed at its end x  = 02
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(a)

(b)

(c)

          (d)

(e)

1 1and is subjected to a torsional moment of magnitude M  = 12 kN@m at its end x  = L.
Compute

1(a) The total angle of rotation of the end cross section (x  = L) of the member
(b) The distribution of the shearing stress on the cross sections of the fins and the tube

and show them on a sketch
(c) The percentage of the total moment carried by the tube

Figure a Geometry of the cross section
of the composite member.

                                                                                                                                              

Solution  Referring  to  relation  (12.39),  the  torsional  constant for the composite cross
section of Fig. a is

where, referring to Fig. a, the area      enclosed by the median line of the cross section of
the tube is equal to

Moreover, the length of the median line of the cross section of the tube is equal to

Referring to Fig. a and substituting relations (b) and (c) into (a), we obtain

Substituting relation (d) into (12.35), the total angle of twist of the one end of the member
of Fig. a, relative to its other end, is equal to

Substituting relation (d) into (12.43), the shearing stress acting on the cross sections of 
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Figure b  Distribution of shearing stresses on the cross section of the composite member.

the fins is equal to

Thus,

Substituting relations (b), (c) and (d) into (12.44) the shearing stress acting on the walls of
the tube is equal to 

1 1Referring to relations (12.35), the portion M  of the total moment M  resisted by the wallT

of the tube is equal to

Moreover,

Hence,

Area of the cross section of the tube = B (65  ! 60 ) = 1963.49 mm2 2 2

Area of the cross section of the Fins = 2(5)80 + 2(5)40 = 1200 mm2
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That is, the tube resists 99.87% of the applied torsional moment while the area of its cross
section is 62% of the area of the total cross section of the member.
                                                                                                                                              

12.5 Thin-Walled, Multi-Cell, Tubular Members Subjected to Torsional Moments

In Sections 12.2 and 12.3 we consider prismatic thin-walled, single-cell, tubular
members subjected to torsional moments. For such members we derive formulas for
computing:

1.  The magnitude of the shearing stress acting on their cross sections
2.  The angle of twist per unit length of their cross sections

We derive the formula for the shearing stress by considering the equilibrium of an

1element of length dx  of such a member and taking into account that the distribution of the
shearing stress over the thickness of each wall may be considered approximately constant.
That is, the problem considered in Section 12.2 and 12.3 is statically determinate.  

Thin-walled, multi-cell, tubular members having n cells subjected to torsional moments
are statically indeterminate to the n!1 degree.  Consequently, in addition to the equation
of equilibrium we must establish (n!1) equations by requiring that the angles of twist of
each one of the cells of a member are equal.

Consider a thin-walled, n-cell, tubular member of arbitrary cross section subjected to

1equal and opposite torsional moments at its ends of magnitude M .  Referring to Fig. 12.8a

j-1 j j+1we denote by q , q  and q  the shear flows acting on the walls ED, DC and CH,
respectively, and we consider them positive when they act in the directions shown in Fig.

        (c) Free-body diagram of an element
             of the member containing point D

(a) Three-dimensional view

(b) Free-body diagram or a portion

1     of the member of length dx

Figure 12.8  Thin-walled, multi-cell, tubular member subjected to torsional moments and free-body diagram
of two parts of it.
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(12.45) 

(12.46)

(12.48)

(12.49)

(12.50)

12.8a.  The equilibrium of the forces acting on the portion of the member shown in Fig.
12.8b requires  that the shear flow acting on the wall AB is equal and opposite to that acting
on DC.  Similarly, the shear flow acting on the wall FA or BG is equal and opposite to that
acting on the wall ED or CH, respectively.  Moreover, the equilibrium of the forces acting
on the element of the member shown in Fig. 12.8c requires that the shear flow acting on

j j-1 1the wall DA is equal to q  ! q , respectively. We denote by M  the moment of the portion(j)

j iq  of the shear flow acting on all the walls of the j  cell about an axis parallel to the axis x .th

Thus, referring to relation (12.9), we have

jwhere      is the area enclosed by the median line of the cross section of the j  cell of theth

multi-cell member.  The moment of the shear flows acting on any cross section of the

1 1member about any axis parallel to the x  axis must be equal to the torsional moment M
acting on this cross section.  Thus, using relation (12.45), we have

The angle of twist per unit length of the cross section of a multi-cell, tubular member
is equal to that of the corresponding cross section of any one of its cells subjected to the
actual shear flows acting on its walls.  That is, denoting by q  the shear flow on the walls(j)

of the j  cell of an n-cell, thin-walled, tubular member and referring to relation (12.25), theth

angle of twist of the j  cell, is equal toth

(12.47)

jwhere s  is the length of the median line of the wall of the j  cell.  If the j  cell of a multi-th th

jcell member having n cells is bounded by m  cells, we have

jrwhere s  is the length of the wall between the j  and the r  cells.th th

Relations (12.48) are called the equations of consistent deformation.  The shear flow
satisfying these relations is the only one which corresponds to equal angles of twist for
each cell component of the multi-cell member.  Relation (12.48) may be rewritten as

where
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    (a)

  (b)

   (c)

For a thin-walled, multi-cell, tubular  member  of specified geometry, the coefficients

jj jr j     and     (r = 1, 2, ..., m ) can be computed using relations (12.50).  Consequently, for any

1given value of the torsional moment M   equations (12.49), together with equation (12.46),

jcan be solved to establish the unknown shear flows q  (j = 1, 2, ..., n) and the unknown
angle of twist 

In what follows we illustrate the computation of the shear flow and the angle of twist
of prismatic thin-walled, multi-cell, tubular members by one example.
                                                                                                                                              

Example 3  Consider the thin-walled, three-cell, tubular member of length L whose cross
section is shown in Fig. a.  The thickness of the wall of the member is constant and we
denote it by t.  The member is made from an isotropic, linearly elastic material of shear
modulus G = 100 GPa.  The member is subjected to equal and opposite torsional moments

1of magnitude M  (kNAm) at its ends.  Derive formulas for the distribution of the shearing
component of stress on the cross sections and the twist per unit length of this member.

Figure a Cross section of the thin-walled, three-cell, tubular member.

                                                                                                                                              

Solution  Referring to Fig. a, from relation (12.46), we obtain

Referring to relation (12.47) and to Fig. a, for cell 1, we have

Moreover, referring to relation (12.47) and to Fig. a, for cell 2, we have
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   (c)

 (d)

(e)

(f)

(g)

       (h)

(i)

(j)

Furthermore, referring to relation (12.47) and to Fig. a, for cell 3, we get

From relations (b) and (d), we obtain

Substituting relations (e) into (c), we get

Substituting relation (f) into (e), we obtain

Substituting relations (g) and (f) into (a), we obtain

Thus,

Substituting relation (i) into (g) and (f), we get
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(j)

The distribution of the shearing component of stress on the walls of the member, referring
to Fig. a, is equal to

The multi-cell member under consideration is made from the single-cell member of the
example of Section 12.3 by welding to it two diaphrams. Comparing the angle of twist and
the magnitude of shearing stress acting on the cross sections of the two members, we can
make the following observations:

1.  The addition of the diaphrams has increased the torsional stiffness of the multi-cell
member.  Thus, the angle of twist per unit length of the multi-cell member is smaller than
that of the single-cell member.
2.  The addition of the diaphrams resulted in a non-uniform distribution of the shearing
stresses on the cross sections of the member.  The maximum shearing stress in the multi-
cell member is almost 50% more than that in the single-cell member.
                                                                                                                                              

12.6 Thin-Walled, Single-Cell, Tubular Bea ms Subjected to Bending without
Twisting

Consider a thin-walled, single-cell, prismatic tubular beam subjected to distributed and
concentrated transverse forces and bending moments acting along its length and

1concentrated transverse forces and bending moments acting on its end surfaces (x  = 0 and

1x  = L) (see Fig. 12.9a). The line of action of the transverse forces lies in a plane which
contains the shear centers of the cross sections of the beam.  In general, on any cross
section of this beam there is a distribution of normal component of stress    and a

 distribution of shearing component of stress      (see Fig 12.9b).
At any particle located at a point of the boundary of a cross section of a thin-walled, 
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(12.51)

(12.52)

Figure 12.9  Thin-walled, single-cell, tubular beam subjected to bending without twisting.

tubular  beam,  the  shearing  component of stress must act tangent to the boundary of the
cross section at that point. Inasmuch as the thickness of the tubular beam under
consideration is small, the component of shearing stress in the direction normal to the
boundary of the beam acting at particles which are not located on the boundary must be
very small.  Moreover, the tangential component of shearing stress varies little across the
thickness of the cross sections of the beam.  Thus, we as sume that the direction and
magnitude of the shearing component of stress are constant across the thickness of the
cross sections of the beam.

The normal component of stress      acting on the cross sections of any thin-walled,
tubular beam subjected to bending without twisting can be computed using relation (9.12a
or b).  However, as dicussed in Section 9.5 the shearing conponent of stress acting on the
cross sections of a beam cannot always be computed using relation (9.66).  This becomes
apparent if we recall that relation (9.66) has been established by considering the

1equilibrium of segment ABDHEFG of length dx , shown in Fig. 12.10b.  This segment is
cut from the beam by two planes perpendicular to its axis and a plane parallel to its axis

1which contains line AD (see Fig. 12.10a).  In general, the magnitude F  of the resultant of
the normal components of stress acting on the end surface EFG of the segment under

2consideration will be different than the magnitude F  of the resultant of the normal
component of stress acting on the end surface ADH of the segment. Thus, a shearing force
dF is required on the surface ABDEF of the segment ABDHEFG in order to keep it in
equilibrium.   Thus, 

2 1The forces F  and F  can be computed from the distribution of the normal component of
stress acting on the end surfaces ABDH and EFG, respectively, of the segment of the beam
shown in Fig 12.10b.  That is, referring to relation (9.63), we have

where q is the shear flow, that is, the force per unit length, acting on the surface ABDEF.

nA  is the cross-hatched area ABDH of Fig. 12.10a.  If the shearing stress                  acting
on the plane ABDEF is constant along line AD, we can compute it as

www.EngineeringEBooksPdf.com



Single-Cell, Tubular Beams Subjected to Bending Without Twisting          557

(12.53)

On the basis of the foregoing presentation, the determination of the shear flow acting
on the cross sections of a solid prismatic beam subjected to bending without twisting is a
statically determinate problem.  However, as it would become clear later the determination
of the shear flow acting on the wall of single-cell, tubular beams subjected to transverse
forces, which bend them without twisting them, is in general a statically indeterminated
problem of the first degree.  Consequently, in addition to the equation which we can obtain
from statics we need a relation which will ensure that the shear flow acting on the cross
sections of the beam does not twist it.  This relation is established by setting the angle of
twist per unit length    , equal to zero.

Consider a thin-walled, single-cell, tubular beam whose cross section is shown in Fig.

AA12.10c.  We choose the shear flow q  acting on line AA as the unknown quantity which

BBwe call the redundant shear flow.  We express the shear flow q  at any other line BB in

AA 1terms of q  by considering the equilibrium of the segment AABBCCDDEF of length dx
of the beam under consideration, cut from it by two planes normal to its axis and two
planes normal to its cross sections.  One of these planes contains line AA, while the other
contains line BB. These lines are normal to the median line of the cross section of the

1 2beam.  In general, the magnitude F  and F  of the resultant forces of the normal component
of stress acting on the cross sections CCDDE and AABBF, respectively, are not equal.

AAConsequently, since segment AABBCCDDEF is in equilibrium, two shearing forces dF
BBand dF  exist on the surfaces AADD and BBCC, respectively. That is,

Figure 12.10  Cross sections and segments of prismatic beam subjected to bending without twisting.
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(12.54)

(12.57)

                 (12.55)

(12.56)

In the above relation, we assume that the shear flow q is positive as shown in Fig. 12.10c;
that is, if it tends to turn counterclockwise, the cross sections whose outward normal is in

1 2 1the direction of the positive x  axis.  The force F  ! F  can be computed from the
distribution of the normal component of stress acting on the end surfaces AABBF and
CCDDE of the segment of Fig. 12.10d using relation (9.63).  That is,

where 

AAq  = shear flow on transverse surface AADD.

BBq  = shear flow on transverse surface BBCC.
nA   = area of the cross-hatched surface AABBF of Fig. 12.10c.

Referring to relation (9.63), we see that the right side of relation (12.55) represents the
shear flow at line BB of an auxiliary prismatic beam, whose cross section is shown in Fig.
12.11, subjected to the same loads and supported the same way as the actual beam. The
auxiliary beam is obtained from the actual beam by making a slit across line AA along its

BBentire length.  Thus, in relation (12.55), we express the shear flow q  = q at any line BB
of a cross section of the beam (see Fig. 12.10c) as the difference of the redundant shear

AA auxflow q  at some reference line AA and the shear flow q  of the auxiliary beam at line BB
(see Fig. 12.11). That is,

where

nA  is the area of the shaded surface of Fig. 12.11.

Figure 12.11  Cross section of the Figure 12.12 Cross section of a thin-
auxiliary thin-walled, tubular beam. walled, single-cell, tubular beam subjected

to bending without twisting.
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(12.58)

(12.59)

(12.60)

(12.61)

(12.62)

   (12.63)

It is apparent that the equation of equilibrium (12.55) is not sufficient to compute the

AA BBshear flows q  and q . Therefore, the problem is statically indeterminate.  Consequently,
we have to take into account that the cross sections of the beam under consideration do not
twist.  That is, referring to relation (12.25), we have

Substituting relation (12.56) into (12.58), we obtain

Substituting relation (12.59) into (12.56), we obtain that the shear flow acting on the cross
sections of a thin-walled, single-cell, tubular beam is equal to

Substituting relation (12.57) into (12.60), we get

where

and
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(12.64)

The shear flow q is positive when it acts counterclockwise on the cross section whose

1normal is in the direction of the positive x  axis.
On the basis of the foregoing presentation, we adhere to the following steps in order to

establish the shear flow at a line BB normal to the middle line  of a cross section of a
single-cell, tubular beam subjected to bending without twisting:

STEP 1  We choose a reference line AA normal to the middle line of the cross section of
the beam.

nSTEP 2  We establish the products  and  for line BB where A  is the area of the

portion of the cross section from the reference line AA to line BB while  and  are the

coordinates of the centroid of this area.

STEP 3  We substitute the expressions for  and  established in step 2 in relations

2 3(12.62) and (12.63) to compute the values of K  and K .  The line integrals in these
relations are evaluated counterclockwise.

STEP 4  The expressions for the products  and  established in step 2 and the

2 3values of K  and K  established in step 3 are substituted into relation (12.61) to obtain the
shear flow at line BB of the cross section of the beam.

After the distribution of the shear flow in a thin-walled, single-cell, beam subjected to
bending without twisting is computed, the shear center of its cross sections may be
established.  In order to accomplish this, we assume that the tubular member is a cantilever

3 3 3beam subjected at its unsupported end to a force P  = Q  which is parallel to the x  axis and
its line of action passes through the shear center of its unsupported end.  Referring to Fig.
12.12 from the equilibrium of the end segment of the beam we have

where q is the shear flow on the negative cross section.
                                                                                                                                              

Example 4  Consider the cantilever beam whose cross section is shown in Fig. a.  The

3beam is subjected at its unsupported end to a transverse force P  whose line of action 

Figure a  Cross section of the beam.
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       (a)

(b)

   (c)

passes through the shear center of its cross section.  The beam is made from an isotropic,
linearly elastic material of shear modulus G (GPa).  Compute the shear flow on the cross
sections of the beam and locate their shear center.  Assume that the thickness of the beam
is negligible compared to its other dimensions.
                                                                                                                                              

2Solution  Since the x  axis is an axis of symmetry of the cross sections of the beam, it is

23a principal axis ( I  = 0 ) for any point on it.  Referring to Fig. a, the moment of inertia of

2the cross sections of the beam about the x  axis is equal to

The shear flow on the cross sections of the beam is given by relation (12.61), which

2 23referring to relation (12. 63), for the beam under consideration (Q  =  0, I  =  0 ), reduces
to

STEP 1  We choose line AA, shown in Fig. b, as the reference line.

STEP 2  We establish expressions for the product  and we compute the integrals

 and .  Referring to Fig. b, for the portion of the cross section of the beam

from line AA to line BB, we have

 Referring to Fig. c, for the portion of the cross section of the beam from line BB to line

Figure b  Cross section of the beam showing            Figure c  Cross section of the beam showing

n nthe area A  used in the computation of the            the area A  used in the computation of the
shearing stress, acting on the portion of the            shearing stress acting on the portion of the
cross section from line AA to line BB.            cross section from line BB to line DD.
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    (d)

(e)

(f)

(g)

(h)

DD, we have

Referring to Fig. d, for the portion of the cross section of the beam from line DD to 
line FF,  we have

where

Substituting relations (f ) into (e), we get

Referring to Fig. e and to relation (g) for the portion of the cross section of the beam
kfrom line FF to line HH, we have

For the portion of the cross section of the beam from line HH to line AA, we have

Figure d  Cross section of the beam showing            Figure e  Cross section of the beam showing

n nthe area A  used in the computations of the            the area A  used in the computation of the
shearing stress, acting on the portion of the            shearing stress, acting on the portion of the
cross section from line DD to line FF.            cross section from line FF to line HH.

www.EngineeringEBooksPdf.com



Single-Cell, Tubular Beams Subjected to Bending Without Twisting          563

            (i)

(k)

STEP 3  Using relations (c), (d), (g), (h) and (i), we obtain

(j)
In obtaining the above relation, we took into account, referring to Fig. a that in the portion

s 3 s 2AB of the cross section x  = !x , in the portion BD of the cross section x  = 3a + x  where

s 2 s0 # x  # 3a and !3a # x  # 0. In the portion DEF of the cross section x  = a     where 0 #

s 2 s 2     # B, in the portion FH of the cross section x  = !x  where 0 # x  # 3a and 0 # x  # !3a.
s 3 s 3In the portion HA of the cross section x  = a ! x  where 0 # x  # a and a # x  # 0.

Moreover, referring to Fig. a, we have

STEP 4  Substituting relations (a), (c), (j) and (k) into (b), we get

(l)
Substituting relations (a), (d), (j) and (k) into (b), we have

(m)
Substituting relations (a), (g), (j) and (k) into (b), we obtain

(n)
Substituting relation (a), (h), (j) and (k) into (b), we have
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   (p)

(q)

(o)
Substituting relations (a), (i), (j) and (k) into (b), we get

The results are shown in Fig. f.
In order to locate the shear center of the cross sections of the beam we use relation

(12.64).  Thus, referring to Fig. f, we have

or 

Figure f  Results. Showing the shear flow on the positive cross section.
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12.7 Thin-Walled, Multi-Cell, Tubular Beams Subjected to Bending without
Twisting

Consider an n-cell, thin-walled, tubular beam subjected to bending without twisting due
to the application on it of transverse forces whose line of action lies in the plane which
contains the shear centers of the cross sections of the beam.  An n-cell, tubular beam is a
statically indeterminate structure to the n  degree.  That is, there are n more unknown shearth

flows than the number of available equations of statics and, consequently, we need n
equations of compatibility in addition to the equations of statics.  Thus, in order to establish
the shear flow acting on the cross sections of an n-cell beam we adhere to the following
steps:

STEP 1 We choose a line normal to the median line of the wall of each cell of the beam
in a way that if we make slits extending over the whole length of the beam by planes
normal to its cross sections, each of which contains one of the chosen lines, the resulting
auxiliary beam has an open cross section (see Fig. 12.13d).  We choose the shear flows
corresponding to the chosen lines as the unknown quantities, which we call the redundant
shear flows.  They are considered positive when they tend to turn the cell on whose walls
they act counterclockwise.  We express the shear flow at any line normal to the median line
of the cross sections of the walls of the beam in terms of one or more redundant shear flows
by considering the equilibrium of parts of the wall of the beam.  For example, referring to
Fig. 12.13b, we choose lines  AA, BB, CC, DD and  EE of the five-cell tubular beam shown

(b) Cross section of the five-cell, thin-walled, tubular beam (d) Cross section of the auxiliary beam of the
of Fig. 12.13a showing the chosen redundant shear flows.  beam of Fig. 12.13a 

Figure 12.13 Thin-walled, multi-cell beam.
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(12.65)

(12.67)

(12.68)

A B C D Ein Fig. 12.13a and the shear flows q , q , q , q  and q  acting on these lines as the

Xredundant shear flows (see Fig. 12.13b). We can establish the shear flow q  at any line
normal to the median line of part ab of this five-cell beam by considering the equilibrium

1of seqment AAXXA'A'X'X of length dx  shown in Fig. 12.13c.  This segment is cut from the

1 1 1beam by two planes normal to its axis at x   and x  + dx  and by two planes normal to its

2 1cross sections,  the one containing line AA and the other line XX.   We denote by F  and F
the resultants of the normal components of stress acting on the faces AAXX and A'A'X'X'
of the segment under consideration, respectively.  Referring to Fig. 12.13c, we have

X aux STEP 2 We denote by (q )  the shear flow at line XX of an auxiliary beam obtained from
the actual beam by making slits along its entire length by planes normal to the cross
sections of the beam each of which contains one of the lines AA, BB, DD, EE or FF (see
Fig. 12.13d).  The auxiliary beam has thin-walled open cross sections and the shear flows
acting on its walls can be established using relation (9.63).  That is, referring to relation
(12.57), we have

(12.66)
where

nA   = area of the part AAXX of the cross section of the beam.
  = distance of the centroid of the part AAXX of the cross section of the

3 2      beam from its x  or x  centroidal axis, respectively (see Fig. 12.13c).

22, 33, 23I  I  I= moments and product of inertia of the cross section of the beam

2 3      about the its x  and x  centroidal axes.
Using relation (12.66) relation (12.65) can be rewritten as

We compute the shear flows acting on the walls of the auxiliary beam using relation
(12.66) and we substitute them into relation (12.67) to obtain the shear flows at any line
normal to the middle line of the cross sections of the beam in terms of the redundant shear
flows.

STEP 3  We write one equation of consistent deformation for each cell of the beam.  We
accomplish this by noting that inasmuch as the thin-walled, multi-cell beam under
consideration does not twist, the angle of twist per unit length of each cell must vanish.
That is, referring to relation (12.25), we have

where q  is the shear flows acting on the cross sections of the walls of the j  cell of the(j) th
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 (a)

beam established in step 2.  We substitute q  in relations (12.68) to obtain n linear(j)

algebraic equations involving the n unknown redundant shear flows and the known shear
flows acting on the cross sections of the auxiliary beam.  We solve these equations to
obtain the redundant shear flows.  Relations (12.68) are referred to as the equations of
consistant deformation of the beam.

STEP 4  We substitute the values of the redundant shear flows obtained in step 3 and the
shear flows acting on the cross sections of the auxiliary beam established in step 2 in
relation (12.67) to obtain the shear flows acting on the cross sections of the walls of the
thin-walled, multi-cell, tubular beam under consideration.

In what follows we present an example.
                                                                                                                                              

Example 5 Consider the thin-walled, three-cell, tubular beam whose cross section is shown
in  Fig. a.  The  beam  is  fixed at  its  one end and is subjected to a concentrated transverse

3force of magnitude P  at its other end.  The walls of the beam have a constant thickness t.
The line of action of this force passes through the shear center of the unsupported end cross
section of the beam.  The  beam  is  made  from  an  isotropic  linearly  elastic  material
whose shear modulus is G. Compute the distribution of shearing stress on the cross sections
of the beam and locate their shear center.

Figure a  Geometry of the cross sections of the tubular beam and positive shear flows.

                                                                                                                                              

ab bc de ef fga fa eb dcSolution We denote by q , q , q , q , q , q , q  and q  the shear flows acting on the
parts ab, bc, de, ef, fga, fa, eb and dc, respectively, of the cross sections of the beam.  We
consider them positive as shown in Fig. a.  Inasmuch as, the cross sections of the beam are

2 2 3symmetric with respect to the x  axis, the x  and x  axes are principal.  Moreover, 

STEP 1  Referring to Fig. a we choose the shear flows at lines AA, BB and CC of the walls

Aof cells 1, 2 and 3, respectively, as the redundant shear flows and we denote them by q ,

B C ab bc fga fa eb dcq  and q , respectively.  We establish the shear flows q , q , q , q , q  and q  in terms

1of the redundant shear flows by considering the equilibrium  of the seqments of length dx
of the beam shown in Fig. b.  That is
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   (b)

  (c)

(d)

(e)

Figure b Free-body diagrams of segments of infinitesimal length of a beam.

Referring to Fig. ba

Referring to Fig. bb

Referring to Fig. bc

Referring to Fig. bd

Referring to Fig. be
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(f)

(g)

(h)

(i)

(j)

(k)

Referring to Fig. bf

STEP 2  We form an auxiliary beam by making slits across lines AA, BB and CC extending
over the entire length of the beam.  A cross section of the auxiliary beam is shown in Fig.
c.  We compute the shear flow acting on parts ab, bc, fga, fa, eb and dc, of the cross

nsections of the auxiliary beam.  That is, referring to Fig. ba and denoting by A  area X(ab) (1)

X  BB, we have(1)

nReferring to Fig. bb and denoting by A  area X  X  CC, we get(bc) (2) (2)

nReferring to Fig. bc and denoting by A  area CC X  X , we obtain(dc) (3) (3)

nReferring Fig. bd and denoting by A  area X  X  BBCC, we have(eb) (4) (4)

          Figure c Cross section

            of the auxiliary beam.
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(l)

(m)

nReferring to Fig. be and denoting by A  area X  X  AABB, we get(fa) (5) (5)

nReferring to Fig. bf and denoting by A  area X  X  AA, we obtain(fga) (6) (6)

STEP 3  Substituting relations (f) and (g) into relation (12.68) and using relations (l) and
(m), we obtain

(n)
In obtaining the above relation we have taken into account that in the portion af of the cross

s 3 s 3section of the beam x  = a ! x  where 0 # x  # 2a and a # x  # !a, while in the portion fga
s sof the cross section x  = a2 + aB/2 where 0 # x  # aB and !B/2 # 2 # B/2.  Moreover,

fapositive q  is acting clockwise while in the integrand of relation (12.68) positive q  is(j)

faacting counterclockwise; thus, q  = !q .  Substituting relations (b), (e) and (f) into (12.68)(j)

and using relations (a), (h), (k) and (l), we have

(o)
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In obtaining the above relation we have taken into account that in the portion ab of the

s 2 s 3cross section x  = !x , in the portion be of the cross section of the beam x  = a ! x  where

s 3 eb0 # x  # 2a and a # x  # !a, while in the integrand of relation (12.68) q  = !q .  Moreover,(j)

s 3 sin the portion of fa of the cross section of the beam x  = a + x  where 0 # x  # 2a and !a #

3 fax  # a while in the integrand of relation (12.68) q  = q .  Substituting relations (c), (d) and(j)

(e) into (12.67) and using relations (a), (i), (j) and (k), we get

(p)
In obtaining the above relation we have taken into account that in the portion bc of the

s 2 s 2cross section of the beam x  = !x  ! 2a where 0 # x  # a and !2a # x  # !3a, in the portion

s 3 s 3cd of the cross section x  = a ! x  where 0 # x  # 2a and a # x  # !a, while in the integrand

dcof relation (12.68) q  = !q .  Moreover, in the portion eb of the cross section of the beam(j)

s 3 s 3x  = a + x  where 0 # x  # 2a and -a # x  # a while in the integrand of relation (12.68)  q(j)

eb= q .  Integrating relations (n) to (p), we have

Figure d Results.
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(q)

              (r)

Solving relations (q), simultaneously, we obtain

Substituting relations (r) into relations (b) to (g), and using relations (h) to (m), we get

ab,b bc dc eb fa fga expressions for the shear flows q  q , q , q , q  and q .  They are plotted in Fig. d.  It
can be shown that the sum of the resultant forces of the computed shear flows is equal to

3the external force P .  This is a partial check of the calculations.
                                                                                                                                              

12.8 Single-Cell, Tubular Beams with Longitudinal Stringers Subjected to Bending
Without Twisting

Single-cell, thin-walled, tubular beams are also known as monocoque.  These beams are
not well suited to resist transverse forces and bending moments since their walls offer little
resistance to local buckling.  For this reason these beams are often reinforced with
longitudinal stringers (see Fig. 12.14).  Such stiffened tubular beams are called
semimonocoque.

When analyzing semimonocoque beams, it is assumed that the stringers carry all the
normal components of stress while the walls (skins) of the beams transmit the shearing
components of stress from one stringer to another.  Recalling the derivation of the formula
for computing the shearing components of stress acting on the cross sections of beams we
can deduce that the assumption that the normal component to stress acting on the skins of
a semimonocoque beam is negligible implies that the shear flow acting on the skins 
of such a beam is constant between stringers.  The normal component of stress acting on
the cross sections of the stringers of a semimonocoque beam is determined using relation

Figure 12.14 Thin-walled, single-cell tubular
beam stiffened with longitudinal stringers.
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(12.69)

`   (12.70)

(12.71)

(12.72)

Figure 12.15  Segments of the auxiliary beam of the thin-walled, single-cell, semimonocoque beam.

22 33 23(9.12a), where I ,  I  and I  are the moments and the product of inertia of the cross

2 3sections of the stringers about the x  and x  centroidal axes of the cross section of the
beam.  The shearing component of stress is computed following the procedure adhered to
in Section 12.6 for computating the shear flow in monocoque beams. For example, for the
beam of Fig. 12.14, we form an auxiliary beam having an open cross section obtained from
the actual beam by making a slit at the left side of stringer 1 running along the entire length
of the beam.  The auxiliary beam is subjected to the given loading of the actual beam.  A

1segment of this auxiliary beam of the length dx  is shown in Fig. 12.15a; in this figure we

denote by  and  the resultants of the normal component

1 1 1of stress  acting on the end surfaces of the i  stringer at x  and at x +dx , respectively.th

We compute the shear flow  acting on the skin of the auxiliary beam which extends

between the k  and the (k + 1)  stinger.  In Fig. 12.15b  we show a portion of the segmentth th

of the auxiliary beam shown in Fig. 12.15a.  From the equilibrium of this portion we have

Referring to relations (9.12a) the forces  are equal to

where  is the average value of the normal component of stress acting on the cross

section of the i  stringer which could be approximated by the value of the normalth

component of stress at the centroid of the i  stringer.  Substituting relation (12.70) intoth

(12.69) and using relations (8.20) and (8.21) we obtain

This relation may be rewritten as
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(12.73)

(12.74)

(a)

22 33 23 In the above relations I , I  and I  are equal to

Once the shear flow  (k = 1, 2, ..., 6) acting on the skins of the auxiliary beam is

established the shear flow q  acting on the skins of the actual beam can be computed using(k)

relation (12.60).  That is,

In the above relation the line integrals are taken counterclockwise.
In what follows we present an example.

                                                                                                                                              

Example 6  Compute the shear flow acting on the skin of the thin-walled, single-cell,
tubular reinforced with stringers cantilever beam of Fig a.  subjected to a concentrated

3force P  at its unsupported end.  The stringers have the same cross section of area A.

        Figure a  Geometry and loading of 
        the cross section of the beam.

                                                                                                                                              

Solution  We form the auxiliary beam of Fig. b by making a slit adjacent to stringer 1 of

2 3the actual beam extending over its entire length.  Noting that the axes x  and x  are
principal, for this auxiliary beam relation (12.72) reduces to
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(b)

(c)

(d)

    (e)

Figure b  Auxiliary beam.

where

Substituting relation (b) into (a), we obtain

Thus,

Substituting relation (c) into (12.74) and integrating, we obtain 

Substituting relations (d) into (e), we obtain
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The results are shown in Fig. c.

Figure c  Shear flow on the cross sections of the beam of Fig. a.

                                                                                                                                              

12.9 Problems

1. to 4.  Consider the thin-walled, single-cell cantilever member whose cross section is
shown in Fig 12P1.  The member is made from an isotropic, linearly elastic material (G =

180 GPa) and is subjected to a torsional moment M (kNAm ) at its unsupported end.
Determine the magnitude of the shear stress acting on the cross sections of the member as
well as the twist per unit length.  Repeat with the members whose cross sections are shown
in Figs. 12P2 to 12P4.

Figure 12P1 Figure 12P2
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Figure 12P3 Figure 12P4

Figure 12P5 Figure 12P6

5. and 6.  Consider the thin-walled, single-cell, tubular cantilever member with fins whose
cross section is shown in Fig. 12P5.  The member is made from an isotropic, linearly elastic

1material G(GPA) and it is subjected to a torsional moment M  (kN@m) at its unsupported
end.  Determine the distribution of shearing stress on the cross sections of the member as
well as the twist per unit length.  Repeat with the member whose cross section is shown in
Fig 12P6.

Figure 12P7 Figure 12P8

7. to 10.  Consider the thin-walled, multi-cell, cantilever member whose cross section is
shown in Fig. 12P7.  The member is made from an isotropic, linearly elastic material (G

1= 80 GPa) and is subjected to a torsional moment M  (kN@m) at its unsupported end.

www.EngineeringEBooksPdf.com



 Thin-Walled, Tubular Members578

Determine the distribution of shearing stress on the cross sections of the member as well
as the twist per unit length.  Repeat with the members whose cross sections are shown in
Figs. 12P8 to 12P10.

Figure 12P9 Figure 12P10

Figure 12P11 Figure 12P12

11.  The cross section of a reinforced concrete hollow girder bridge is as shown in Fig.

112P11.  A cross section of the girder is subjected to a torsional moment M . Consider the
girder as a thin-walled, tubular member and determine the shear flow acting on this cross
section of the girder.  Disregard the effect of the cantilevering part of the cross section of
the girder.

12. to 14.  Consider the thin-walled, single-cell, tubular cantilever beam whose cross

3section is shown in Fig. 12P12.  The beam is subjected to a transverse force P  acting on
its unsupported end as shown in Fig. 12P12.  Determine the shear flow acting on the cross
section of the beam.  Locate the shear center of the cross sections of the beam.  Repeat with
the beam whose cross section is shown in Figs. 12P13 and 12P14.
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Figure 12P13 Figure 12P14

15.  The cross section of a hollow reinforced concrete girder of a bridge is shown in Fig
12P11.  Consider the girder as a thin-walled, tubular beam and determine the shear flow

3acting on one of its cross sections which is subjected to a shearing force Q  acting through
its shear center.

16. to 19.  Consider the 2 m long thin-walled, multi-cell, cantilever beam whose cross
section is shown in Fig. 12P16.  The beam is made from an isotropic, linearly elastic

3material (G = 80 GPa) and is subjected to a transverse force P  at its unsupported end
which passes through the shear center of the cross section at the unsupported end.
Determine the distribution of shearing stress on the cross sections of the beam.  Locate the
shear center of the cross section of the beam. Repeat with the beams whose cross sections

22 33 are shown in Figs. 12P17 to 12P19. In problem 12.17 use: I = 0.3042(10 ) m , I =-3 4

23 0.9189(10 ) m , I = 0.0971(10 ) m .-3 4 -3 4

Figure 12P16 Figure 12P17

Figure 12P18 Figure 12P19
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20. and 21. Consider 2 m long thin-walled, single-cell, cantilever beam reinforced with
longitudinal stringers as shown in Fig. 12P20, the beam is subjected at its free end and to

3a concentrated transverse force P  whose line of action passes through the shear center of
the cross section at the unsupported end of the beam.  The thickness of the walls of the
beam is as shown in Fig. 12P20 while the area of the cross section of each stringer is 800
mm .  Assume that the stringers carry all the normal components of stress, while the skin2

is carrying the shearing components of stress.  Determine 
(a)  The distribution of the normal component of stress acting on the cross section of the
stringers at the fixed end of the beam
(b) The shear flow acting on the cross section of the walls of the beam

Repeat with the beam of Fig. 12P21.

Figure 12P20 Figure 12P21
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 Chapter
13

Integral Theorems
of Structural Mechanics

13.1 A Statically Admissible Stress Field and an Admissible Displacement Field
of a Body

Consider a body initially in a stress–free, strain–free state of mechanical and thermal

oequilibrium at the uniform temperature T .  Subsequently, the body is subjected to
external loads as a result of which it deforms and reaches a second state of mechanical

1 2 3equilibrium at some known temperature distribution T(x , x , x ).  We define the following
quantities for this body:

1 2 31. A  statically  admissible  stress  field  (x , x , x )  (i, j  = 1, 2, 3)  in the body in the

deformed state of mechanical equilibrium is one which satisfies the requirements for
equilibrium of its particles.  This implies that the statically admissible components of
stress have the following attributes:

(a) They have first derivatives at every point inside the volume of the body.

(b) They are symmetric .  This ensures that the sum of the moments of all

the forces acting on each particle of the body vanishes.
(c) They satisfy the equations of equilibrium (2.69) at every point inside the volume

of the body.  This ensures that the sum of all the forces acting on each particle
inside the volume of the body vanishes.

(d) When substituted in the traction–stress relations (2.73), they yield the specified
components of traction at the points of the surface of the body where components
of traction are specified.  This ensures that the sum of all the forces acting on each
particle of the surface of the body vanishes.

Notice that an infinite number of statically admissible distributions of components of

1 2 3stress (x , x , x ) (i, j =1, 2, 3) exist in a statically indeterminate body.  Generally, for

a given material (given stress–strain relations) the components of strain obtained from a
statically admissible stress field may not yield the specified components of displacement
at the points of the surface of the body where components of displacement are specified.

2. We denote by  the components of a vector field which have
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derivatives of any order required at every point inside the volume of the body. In the
literature they are usually called admissible components of the “virtual” displacement
field. We shall adopt this label. However  it should be emphasized that they are not
necessarily components of displacement of the body.

3. We define as the components of a geometrically admissible “virtual” displacement

field  any set of functions  which have the following properties:

(a) They are admissible.
(b) They yield the specified components of displacement at the points of the surface

of the body where components of displacement are specified.

4. We define an admissible or a g eometrically admissible “virtual” str ain field

 as one which is related to an admissible or geometrically

admissible “virtual” displacement field, respectively, by relations (2.16).  

13.2  Derivation of the Principle of Virtual Work for Deformable Bodies

Consider a deformable body initially in a reference stress–free, strain–free state of

omechanical and thermal equilibrium at a uniform temperature T .  In this state the body
is not subjected to external loads and heat does not flow in or out of it.  Subsequently, the

i 1 2 3body is subjected to a specified distribution of specific body forces B  (x , x , x ) (i = 1,

1 2 32, 3) throughout its volume, to a specified temperature distribution T(x , x , x ), to

specified components of traction  (i  = 1, 2, 3) at the points of the portion

tS   of its surface and to specified components of displacement  (i = 1, 2, 3)

at the points of the remaining  portion of its surface.  As a result of these loads the body
deforms and reaches a second state of mechanical but not necessarily thermal equilibrium.

1 2 3Consider an infinitesimal portion (particle) of dimensions dx , dx  and dx  and volume
dV of the body under consideration in the second state of mechanical equilibrium and

denote by  a distribution of stress in the body which is statically admissible to the given

external forces (specific body forces and surface tractions).  The forces acting on the faces

1of this particle which are normal to the x  axis and the components of the specific body
force B acting on it, are shown in Fig. 13.1.  Moreover, consider an admissible vector

1 2 3field  and corresponding“virtual” strain field (x , x , x ) (i, j = 1, 2, 3).

Referring to Fig. 13.1, we denote by ,  and  the average value, of the components

of the vector field  on the face OAFE of the particle under consideration.  The

average value of the components of the vector  field   on the face BGDC of

this particle may be expressed as
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 (13.1)

(13.2a)

(13.2b)

1Figure 13.1  Forces acting on the faces of a particle of a body which are normal to the x  axis.

The sum of the products of each one of the statically admissible components of stress

1acting on the two faces of the particle under consideration, which are normal to the x

axis, with the corresponding component of the vector field    is equal to

Simplifying and disregarding infinitesimals of higher order, the above relation reduces to

This result can be extended to establish the sum of the products of each one of the
statically admissible components of stress acting on all the faces of the particle under

consideration with the corresponding component of the vector field .

Moreover, the sum of the products of each one of  the components of the body force
acting on the particle under consideration with the corresponding component of the vector

field  can be computed.  That is,
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 (13.3)

(13.4a)

       (13.4b)

(13.4c)

                  (13.5)

Inasmuch as the stress field  is statically admissible, it satisfies the

equations of equilibrium (2.69).  Referring to these equations we see that the sum of the
terms in the second parenthesis on the right side of relation (13.3) is equal to zero.
Moreover, using the strain–displacement relations (2.16) relation (13.3) is simplified to
the following:

where  are a set of functions of the space coordinates

obtained from the admissible vector field  on the basis of relations (2.16).

Relation (13.4a) may be rewritten as

Integrating relation (13.4b), we obtain

Notice that, two adjacent particles of a body have a common boundary and the
components of stress acting on this boundary of the one particle are equal and opposite
to those acting on the common boundary of the other particle.  Thus, the sum of the
products of each one of these equal and opposite components of stress with the

corresponding component of the “virtual” strain field ,

vanishes.  Consequently, W is equal to 

where 

ext forcesW  = the sum of the products of each one of the known external forces (body
forces and surface tractions) acting on the body with the corresponding component of

the vector field .

reactions W = the sum of the products of each one of the unknown statically admissible
reactions of the supports of the body with the corresponding component of the vector

field .

The reactions of a body are the unknown tractions at the points of its surface where
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(13.6a)

(13.6b)

(13.7)

  (13.8)

          (13.9)

(13.10)

components of displacement have been specified.  If the supports of the body do not

reactionsmove and moreover the vector field   is geometrically admissible, then W

vanishes.  
Substituting relation(13.5) into (13.4c), we get

Relation (13.6a) may be rewritten as

where

and

The sum of the products of each one of the components of the given external forces

(specific body forces B and surface tractions ) acting on the body with the

corresponding component of the vector field   is equal to

The sum of the products of each one of the components of the statically admissible

reactions with the corresponding component of the vector field  is equal to

where   are the unknown statically admissible components of traction

(reactions) exerted on the body by its supports (points of its surface where components
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of displacement are specified).
Relation (13.6a) or (13.6b) is known as the principle of virtual work for a deformable

body.  In obtaining this relation, we have not employed the stress–strain relations for the
material from which the body is made.  Consequently, this relation is valid for bodies
made from any material (elastic or inelastic).

1 2 3We have shown that a stress field (x , x , x )(i, j = 1, 2, 3) which is statically
admissible to the given external forces acting on a body satisfies the principle of virtual
work (13.6) for any admissible vector field (admissible “virtual” displacement field)

1 2 3 1 2 3(x , x , x ) (i = 1, 2, 3) and corresponding “virtual” strain field       (x , x , x ) (i, j = 1,

1 2 32, 3).  Moreover, it can be  shown that a set of functions       (x , x , x )(i, j = 1, 2, 3), which
together with the given external forces acting on a body satisfy the principle of virtual

1 2 3work (13.6) for every admissible vector field (x , x , x )(i = 1,2,3) and corresponding

1 2 3“virtual” strain field      (x , x , x ) (i = 1, 2, 3), represents a set of components of stress
which are statically admissible to  the given ex ternal forces.  This implies that a

1 2 3geometrically admissible set of functions (x , x , x )(i = 1, 2, 3) is the actual
displacement field of a body if when substituted in relations (2.16) gives a strain field

ij 1 2 3e (x , x , x )(i, j = 1, 2, 3), which on the basis of the stress–strain relations for the material
       1 2 3from which the body is made gives a stress field (x , x , x ), which together with the

given set of external forces acting on the body satisfies the principle of virtual work (13.6)

1 2 3for every admissible vector field  (x , x , x )(i = 1, 2, 3) and corresponding admissible

1 2 3“virtual” strain field      (x , x , x ) (i = 1, 2, 3).
On the basis of the foregoing discussion the boundary value problem for computing

the components of displacement, strain and stress of the particles of a deformable body
can be formulated as follows:

1 2 3Find the geometrically admissible vector field (x , x , x ) which when substituted

ij 1 2 3into the strain–displacement relations (2.16) gives a strain field e (x , x , x )(i, j = 1, 2,
3) which when substituted into the stress–strain relations for the material from which the

         1 2 3body is made gives a stress field (x , x , x )(i, j = 1, 2, 3) which together with the given
set of external forces acting on the body satisfies the principle of virtual work (13.6) for

1 2 3every admissible vector field (x , x , x )(i = 1, 2, 3) and corresponding strain field

1 2 3(x , x , x ) (i = 1, 2, 3).  This formulation of the boundary value under consideration is

called weak and is equivalent to its strong formulation described in Section 5.2.  It is used
in conjunction with the finite element method to obtain approximations to the
components of displacement of the particles of a body.

Notice, that if we choose as the “virtual” displacement field, the actual displacement
field of a deformable body subjected to given loads, and as the statically admissible stress

ext forces reactionsfield the actual stress field of the body, W  and W  represent the work of the
given loads and of the unknown reactions due to the deformation of the body. If the

reactionssupports of the body do not move, W  vanishes. Moreover, the right side of relation
(13.6) represents the sum of the work of the components  of  stress  acting  on  all the
particles of the body. That is, in this case, the principle of virtual work reduces to “the
sum of the work performed by the external forces acting on a body and by its reactions
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Figure 13.2  Statically admissible sets of reactions and corresponding moment distributions.

due to its deformation is equal to the sum of the work of the components of stress acting
on all the particles of the body due to their deformation.” 

13.3 Statically Admissible Reactions and Internal Actions of Framed Structures

In statically determinate framed structures only the actual internal actions are in
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(13.11)

(13.12)

equilibrium with the given external actions, while in statically indeterminate framed
structures, we can find an infinite number of distributions of internal actions which satisfy
the equations of equilibrium for every portion of the structure.  These distributions of
internal actions are referred to as statically admissible.  In addition to being statically
admissible, the actual distribution of internal actions must yield components of
displacement which are continuous functions of the space coordinates and satisfy the
specified conditions at the supports of the structure (displacement boundary conditions).

When a framed structure is externally statically indeterminate, an infinite number of
sets of reactions can be found which are in equilibrium with the given external actions
acting on the structure.  These sets of reactions are referred to as statically admissible.
The one set of statically admissible reactions which yields components of displacement
compatible with the constraints of the structure is the actual set of reactions.  For
example, two statically admissible sets of reactions for the beam shown in Fig. 13.2a are
shown in Figs. 13.2b and d.  The corresponding statically admissible distributions of
moment are shown in Figs. 13.2c and e.

13.4 The Principle of Virtual Work for Framed Structures

13.4.1 Prismatic Members Subjected to Axial Centroidal Forces and to Uniform
Change of Their Temperature

Consider a member of a framed structure of length L and cross-sectional area A, made
from an isotropic, linearly elastic material.  The member is originally in a stress-free,

ostrain-free state of mechanical and thermal equilibrium at a uniform temperature T .  The

1member reaches a second state of mechanical equilibrium at the temperature T(x ) such

2 3 that *T = *T = 0 (see Section 8.8) due to the application on it of the following forces:

1. Distributed axial centroidal forces  given per unit length of the member

12. Concentrated axial centroidal forces          (n = 1, 2, ..., n ) acting along the length of
the member

This loading induces on the cross sections of the member only normal components of

stress  which does not vary in the directions normal to the axis of the member.  Thus,

a statically admissible state of stress in the member under consideration has the following
form:

If we denote by  the resultant force of the statically admissible distribution of

stress acting on the cross sections of the member, we have

Consider an admissible “virtual” displacement field          and the corresponding
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(13.13)

(13.14a)

               (13.14b)

(13.15)

1“virtual” strain field (x ) defined as

Moreover, for members made from an isotropic linearly elastic material, we define the
following quantity :†

where as we shall see later  is chosen either zero or equal to

 is the uniform temperature of the member in the deformed state. We introduced  in

order to be able to include the effect of the temperate when we apply the principle of
virtual work to compute a component of displacement of a point of a member due to its
deformation using the unit load method (see Section 13.5). In this method we choose the

function   to be the actual translation of the cross sections of the member of a structure

and we want the function     to be the actual axial internal force acting on the cross
sections of the member. Substituting relations (13.11), (13.12) and (13.13) into (13.6) and
using relation (13.14a), we get

13.4.2 Prismatic Members Subjected to Torsional Moments

As we have seen in Chapter 6 when a prismatic member is free to warp and it is
subjected to equal and opposite torsional moments at its ends, the state of stress of its

                particles  is  specified  by  the  shearing  components  of  stress  and  .  These

     2 3components of stress are obtained from the stress function (x , x ) on the basis of
relation (6.34). The stress  function  is a property of the geometry of the cross section of
the member which has  been  established  for only a few  cross  sections  as, for example,
solid elliptical and circular (see example of Section 6.5); hollow elliptical or circular (see

1† (x ) is a quantity obtained from the admissible “virtual” displacement field  on the basis of relation

(13.14).  However,  referring  to  relation (8.58a) we see that, if                is the actual displacement field

1of the member and if   is given by relation (13.14b), then (x ) is the actual distribution of the internal

force acting on its cross sections.
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(13.16a)

(13.16b)

           (13.17)

example of Section 6.6); triangular, thin, rectangular (see Section 6.10) and simply
connected composite consisting of a number of thin rectangular components. Thus, a
statically admissible stress field in the member under consideration has the following
form:

where

where  is defined by the above relation. However, if  and  are the actual

components of stress acting on the particles of a member subjected to equal and opposite

torsional moments at its ends,  is its angle of twist [see relations (6.34)].

As we have seen in Chapter 6 when a prismatic member is free to warp and it is
subjected to equal and opposite torsional moments at its ends, any material line of a cross
section which is straight before deformation in general deforms into a space curve whose

2 3projection on the x x  plane is a straight line obtained by rotating the before-deformation
line by an angle      about an axis normal to the cross section through its center of twist.
All lines of a cross section rotate by the same angle      .  This angle is called the angle of
twist of the cross section and its relation to the torsional moment may be expressed as

where  is the constant angle of twist per unit length and  is the constant torsional

Cmoment acting on the cross sections of the member.  R  is the torsional constant of the
member defined by relation (6.33).  It depends  on the geometry of the cross sections of

Cthe member. For a member of circular cross section R  is equal to its polar moment of
inertia.

We assume that relations (13.16a), (13.16b) and (13.17) are also valid for prismatic
members subjected to torsional moments along their length. In this case, the twist per unit

1 1length     and the internal moment M  are functions of x .
Consider a prismatic member of a framed structure of length L made from an isotropic,

linearly elastic material and supported in such a way that its cross sections can be
assumed  free  to  warp.  Originally,  the  member is in a stress-free, strain-free state  of

o 1mechanical and thermal equilibrium at a uniform temperature T .  We choose as the x
axis, the axis of the member.   Subsequently, the member is subjected to the following
loading and  reaches a second state of mechanical equilibrium:

1. Distributed axial component of moment  given per unit of length of the member

12. Concentrated axial component of moment          (m  =  1, 2, ...,, m ) acting along the
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  (13.18)

(13.19a)

(13.19b)

(13.19c)

length of the member and on its end faces.

We choose the following “virtual”strain field

1where  is any admissible function of x . It is called the admissible “virtual” twist.

Taking into account relation (13.16a) and using relation (13.16b), (13.17) and (13.18)
into (13.6b), we get 

where

Referring to relations (13.17), we see that if  is the actual twist of the cross

sections of the member, then    is their actual twist per unit length and       is the actual
torsional moment acting on the cross sections of the member.

It can be shown that relation (13.19a) is valid for prismatic members whose cross
sections have any given geometry provided that the appropriate expressions are used for

C 2 3their torsional constant R  and the function (x , x ).

For a member of solid elliptical cross section referring to Fig. 13.3a and to relations
(e) and (h) of the example of Section 6.5, we have

Thus,

Substituting the above relation into (13.19b) and integrating the resulting relation, we
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  (13.20)

(13.21b)

 (13.21a)

obtain

CFor a member of circular cross section D = R  is equal to the polar moment of inertia of
its cross section. 

Similarly, it can be shown, that for a member of hollow elliptical cross section (see
Fig. 13.3b), we have

where

Figure 13.3  Cross sections of members.
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(13.24)

  (13.22)

  (13.23)

For members of thin rectangular cross section referring to relations (6.30), (6.88) and
(13.17) and to Fig. 13.3c, we have

Substituting the above relation into (13.19b) and integrating, we get

For prismatic members of a simply connected composite cross section consisting of n thin
rectangular components, it can be shown that

In order to simplify our presentation throughout this chapter, we limit our attention
to structures wh ose members, which are subjec ted to to rsional moments, have cross

Csections with D = R .

13.4.3 Members Subjected to Bending without Twisting

Consider a member of a framed structure of length L made from an isotropic, linearly
elastic material.  The member is originally in a stress-free, strain-free state of mechanical

oand thermal equilibrium at the uniform temperature T .  Subsequently,  it reaches a second

1 2 3state of mechanical equilibrium at a temperature T(x , x , x ) due to the application on it

2of the following actions, which bend it about the x  axis without twisting it:

1. Distributed external transverse forces  (including the weight of the member)

given per unit of length of the member.  The lines of action of these forces lie in a plane

3 1parallel to the x x  plane which contains the shear center of the cross sections of the
member.

2 12. Distributed external moments m (x ) given per unit of length of the member.

33. Concentrated forces          (n = 1, 2, ..., n ) acting along the length of the member.  The

1 3line of action of these forces lies in a plane parallel to the x x  plane, which contains the
shear center of the cross sections of the member.

2 24. Concentrated moments M  (m = 1, 2, ..., m ) acting along the length of the member.(m)

As discussed in Sections 9.1 and 9.5 this loading induces on the cross sections of the

nmember normal       and shearing        and possibly       components of stress; where i  and

si  are mutually perpendicular unit vectors in the plane of the cross section (see Fig. 13.3d).

2 3In this section we limit our attention to principal centroidal axes x  and x .  Thus, a
statically admissible state of stress of a particle of a member subjected to the loading
described above has the following form:
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     (13.25)

 (13.26)

       (13.27)

     (13.28a)

 (13.28b)

(13.29)

        (13.30)

Referring to relations (9.12b) and (9.67), we have

nA = area of the portion ABDA of the cross section shown in Fig. 13.3d.

3 n= x  coordinate of the centroid of the portion of cross section of Area A  (see

   Fig. 13.3d).
Moreover, we choose a “virtual” strain field of the following form:

where  is taken as either zero or referring to Fig. 13.3d as

where      is the coefficient of thermal expansion. We include        for the same reason we

1have included        (see Section 13.4.1). Referring to relation (9.9a), we see that if (x ,

3x ) is the actual component of strain of the particles of the body and if  is given by

relation (13.28b), then  is the actual moment acting on the cross sections of the

member.
Taking into account relation (13.24), relation (13.6a) reduces to

The second and third terms of the integrand of the above relation represent the effect of
shear deformation of the particles of the member.  For members whose lengths are large
as compared to their other dimensions these terms are small compared to the first term
and can be disregarded.  For such members relation (13.29) reduces to

Substituting relations (13.25) and (13.27) into (13.30), we get
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(13.31)

   (13.32a)

 (13.32b)

3Similarly for a member subjected to bending about its x  axis without twisting, it can
be shown that

where  equal either to zero or referring to Fig. 13.3d it is taken as

Consider a framed structure consisting of NE members originally in a stress-free,

ostrain-free state of mechanical and thermal equilibrium at a uniform temperature T .
Subsequently, the structure reaches a second state of mechanical equilibrium at the

1 2 3temperature T(x , x , x ) due to the application on it of the following loading:

1. Distributed external forces (including the weight) given per unit length of the member
on which they act.  The line of action of the forces acting on each member of  this
structure is normal to its axis and lies in a plane which contains the shear center of its
cross sections.
2. Distributed external moments given per unit length of the member on which they act.
3. Concentrated external forces.  Some of these forces act on the members of the
structure, while the remaining act on its joints.  The line of action of the forces acting on
each member of the structure is normal to its axis and lies in a plane, which contains the
shear center of its cross sections.
4. Concentrated external moments.  Some of these moments are applied to the members
of the structure, while the remaining are applied to its joints.

For this loading we choose a set of statically admissible reactions of the supports of the

structure which we denote by (s = 1, 2, ..., S).  Moreover, we denote the corresponding

statically admissible internal axial force, shearing forces, torsional moment and bending
moments acting on the cross sections of a member of the structure by

, respectively.

We denote the additional "virtual" translation and rotation vectors of the cross sections

of the member of the structure under consideration by  and

, respectively.  Moreover, we denote by { } the matrix of the

components of the "virtual" displacement field evaluated at the supports of the structure.

www.EngineeringEBooksPdf.com



          Integral Theorems of Structural Mechanics596

(13.33)

   
(13.34)

This  matrix  is  conjugate  to  the matrix {    }.  That is,       represents  the  "virtual"
component of displacement of the same support and in the same direction as the statically

admissible reaction .  Thus, the sum of the products of each one of the components of

the statically admissible reactions of the structure with the corresponding component of
the "virtual" displacement field evaluated at the supports of the structure is equal to

Substituting relations (13.33), (13.17), (13.23), (13.31), and (13.32) into the principle
of virtual work (13.9), we obtain

The superscript (e) indicates that the quantities of the terms inside the bracket pertain to

member e.  The components of rotation  are obtained from the components of

translation  on the basis of relations (9.27a) and (9.27b), respectively. , 

and  are taken as equal to zero or are  defined by relations (13.14b), (13.28b) and

(13.32b), respectively.
Relation (13.34) represents the principle of virtual work for framed structures. In

general it is only required that the "virtual" displacement field be admissible.  If, however,
it is chosen to be geometrically admissible, the last term on the left-hand side of relation
(13.34) represents the sum of the products of the statically admissible reactions of the
supports of the structure with their specified components of displacement. 

On the basis of our discussion in Section 13.2 the following statements are valid:

1. The actual components of displacements of the members of a framed structure, when
substituted into relations (8.58), (8.69) and (9.29), give components of internal actions

1 1 1 2 1 3 1N (x ), M (x ), M (x ) and M (x )(e = 1, 2, ..., NE) which satisfy the principle of(e) (e) (e) (e)

virtual work (13.34) for any admissible distribution of the components of the “virtual”

displacement field , ,  and (e = 1, 2, ..., NE).

1 1 12. A set of continuous functions u (x ) and       (x )(e = 1, 2, ..., NE) and a set of(e)

2 1 3 1functions u (x ) and u (x )(e = 1, 2, ..., NE) which have continuous first derivatives and(e) (e)

give the specified components of displacements of the supports of a framed structure and
moreover, give on the basis of relations (8.58), (8.69) and (9.29) components of internal
action for its members which satisfy the principle of virtual work (13.34) for every
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admissible “virtual” displacement field              (i = 1, 2, 3) and        (e = 1, 2, ..., NE) are
the actual components of displacement of the members of the structure.

1 1 1 2 1 3 13. Any set of internal actions N (x ), M (x ), M (x ) and M (x )(e = 1, 2, ..., NE)(e) (e) (e) (e)

acting on the members of a structure which are statically admissible to the given external
actions acting on the structure satisfy the principle of virtual work (13.34) for any

admissible distribution of the components of “virtual” displacement , ,

 and (e = 1, 2, ..., NE) of the members of the structure.

1 1 1 2 1 3 14. A set of functions N (x ), M (x ), M (x ) and M (x )(e = 1, 2, ..., NE) which(e) (e) (e) (e)

together with the given external actions acting on a framed structure satisfy relation

(13.34) for every admissible “virtual” displacement field , ,  and

(e = 1, 2, ..., NE) is statically admissible to the given external actions acting on

1 1 1 2 1 3 1the structure.  If it happens that N (x ), M (x ), M (x ) and M (x ) are obtained from(e) (e) (e) (e)

1 1 2 1 3 1a geometrically admissible “virtual” displacement field u (x ), u (x ), u (x ) and(e) (e) (e)

1 1 1 (x )(e = 1, 2, ..., NE) on the basis of relations (8.58), (8.69) and (9.29), then u (x ),(e)

2 1 3 1 1 1 1 1 2 1 3 1u (x ), u (x ),       (x ), N (x ), M (x ), M (x ),and M (x )(e = 1, 2, ..., NE) are the(e) (e)     (e) (e) (e) (e)

actual components of displacement and of internal actions of the members of the
structure.

13.5 The Unit Load Method

In this section we describe  the unit load method, also known as the method of†

"virtual" work, or the dummy load method and we apply it to several examples.  This
method has been used extensively in classical structural analysis in establishing the
following:

m m1. The component of translation u  in the direction of the unit vector i , of any point A
of a framed structure

m2. The component of rotation        about an axis specified by the unit vector i  at any point
A of a framed structure

mThe component of displacement u  and the component of rotation        at a point of a
structure may be due to external actions, to a change of temperature or to specified
movement of the supports of the structure.  The structure may be statically determinate
or statically indeterminate.

mIn order to establish the component of displacement u , or the component of rotation
      at  any  point  A  of  a  structure,  we  introduce  in the principle of virtual work the
following quantities:

1. As "virtual" displacement and strain fields we choose the actual (real) displacement

field of the structure subjected to the given loading.  With this choice { } is the matrix

of the specified components of displacements of the supports of the structure.

† For a more detailed description and many examples  see Armenàkas,  A. E., Classical Structural Analysis:
A Modern Approach, McGraw-Hill, New York, 1988, Chapter 5.
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2. As the loading and corresponding statically admissible distribution of internal actions

 in the members of the structure, we choose

an auxiliary loading and a corresponding statically admissible distribution of internal
actions in the members of the structure.  If we want to establish the component of

m mtranslation u  in the direction of the unit vector i  at point A of the structure, the
"auxiliary" loading consists of a unit force acting at point A in the direction of the unit

mvector i .  If we want to establish the component of rotation       in the direction of the unit

mvector i  at point A of the structure, the "virtual" loading consists of a unit moment acting

mat point A in the direction of the unit vector i .

On the basis of the foregoing discussion, we adhere to the following steps in order to
compute a component of translation or of rotation of a point of a framed structure made
from an isotropic, linearly elastic material:

1 2 1 3 1STEP 1  We establish the actual components of internal actions N(x ), Q (x ), Q (x ),

1 1 2 1 3 1M (x ), M (x ), M (x ) in the members of the structure as functions of their axial
coordinate.  For statically determined structures this can be done by considering the
equilibrium of appropriate segments of each member.  For statically indeterminate
structures this can be done by analyzing the structure using one of the classical methods
(for example, the force method presented in Chapter 14).

STEP 2  We subject the structure to the "auxiliary" loading described previously and

establish a set of statically admissible reactions { } of the structure and corresponding

internal actions  of its members.

STEP 3  We substitute the internal actions and the reactions { } established in steps 1

and 2 into the principle of virtual work (13.34) which can be rewritten as 

(13.35)

nwhere d is either u  or    ; the superscript (e) indicates that the quantities of the terms

inside the brackets pertain to member e; { } is the matrix of the specified components

of displacements of the supports of the structure; { } is the matrix of statically

admissible reactions of the supports of the structure subjected to the "auxiliary" loading;

1 2 3H , H , H  are specified by relations (13.14b), (13.28b) and (13.32b) respectively,  where

c 2 3in )T , *T , *T  are the given changes of temperature of the members of the structure.
This procedure gives the desired component of translation or rotation.

In what follows we illustrate the unit load method with two examples.
                                                                                                                                             

Example 1  Using the unit load method compute the total translation of joint 2 of the
truss loaded as shown in Fig. a.  The members of the truss have the same constant cross
section (A = 4 × 10  mm ) and are made of steel (E = 210 GPa).3 2

www.EngineeringEBooksPdf.com



The Unit Load Method           599

(a)

  (b)

   (c)

(d)

Figure a  Geometry and loading of the truss. Figure b  Free-body diagram of
joint 2 of the truss of Fig. a.

Solution

STEP 1  The truss of Fig. a is statically determinate.  Consequently, we can readily
compute the internal forces in its members resulting from the application of the given
external force.  Referring to Fig. b, from the equilibrium of joint 2 of the truss, we have

STEP 2  In order to find the total translation of joint 2 of the truss we establish its vertical
and horizontal components.  This may be accomplished using the unit load method in
conjunction with the auxiliary loading of Figs. c and d. However, the horizontal
component of translation of joint 2 may be established by noting that it is equal to the
shortening of member 2.  That is,

Referring to Fig. e from the equilibrium of joint 2 of the truss of Fig. c, we have

Figure c  Auxiliary loading Figure d  Auxiliary loading           Figure e  Free- body diagram
for computing the vertical for computing the horizontal       of joint 2 of the truss
component of translation of component of translation of       of Fig. c.
joint 2. joint 2.
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(e)

(f)

   (a)

STEP 3  We substitute results (a), (b), (d) and (e) into relation (13.35) to obtain the
vertical component of translation of joint 2 of the truss.  That is,

The total translation of joint 2 of the truss is equal to

                                                                                                                                             
                                                                                                                                             

2Example 2  The beam shown in Fig. a has a constant cross section [I  = 360 (10 ) mm ,6 4

depth of cross section h = 300 mm] and it is made from an isotropic, linearly elastic
material (E = 200 GPa,    = 10 / C).  Compute the deflection and the rotation of point 3-5 o

of the beam due to following loading cases:
1. The forces shown in Fig. a

t2. A  difference  in  temperature  between  the  top  and bottom fibers of the beam (T  =

b     40 C, T  = 10 C)o o

3. A 5 mm downward settlement of support 2

Figure a  Geometry and loading of the beam.

                                                                                                                                             

Solution

Part a  Computation of the deflection and the rotation of point 3 of the beam due
         to the forces shown in Fig. a:

STEP 1  Referring to Fig. b, we obtain the following distribution of moments due to the
forces shown in Fig. a.

www.EngineeringEBooksPdf.com



The Unit Load Method           601

   (a)

(b)

(d)

Figure b  Free-body diagram of the beam loaded with the actual loading.

Notice that in order to reduce the required algebra, the moment in the beam segment 2,

1 13 was expressed in terms of the coordinates x N, x NN, shown in Fig. b.

Computation of the deflection of point 3

STEP 2  In order to compute the deflection of point 3 of the beam, the auxiliary loading
shown in Fig. c is employed.  The distribution of moments corresponding to this loading
is

STEP 3  We apply the unit load method to compute the deflection of the beam.
Substituting relations (a) and (b) into (13.35), we get

(c)

2 vIn the above relation, if E is in megapascals and I  is in mm , the deflection u  is in4 (3)

millimeters.  Integrating relation (c), we get

Figure c  Free body-diagram of the beam loaded with the auxiliary loading for computing the deflection of point
3.

www.EngineeringEBooksPdf.com



          Integral Theorems of Structural Mechanics602

(e)

    (f)

Figure d  Free-body diagram  of the beam loaded with the virtual loading for computing the rotation at point 3.

The minus sign indicates that point 3 moves in the direction opposite to the unit load
shown in Fig. c.  That is, it moves upward.

Computation of the rotation of point 3

STEP 2  In order to compute the rotation of the elastic curve of the beam at point 3, the
auxiliary loading shown in Fig. d is employed.  The internal moments corresponding to
this loading are

STEP 3  Substituting relations (a) and (e) into relation (13.35), we have

The plus sign indicates that the rotation         of the beam is in the direction of the applied
unit moment shown in Fig. d. The deformed configuration of the beam is shown in Fig.
e.

Part b  Computation of the deflection and the rotation of point 3 of the beam due to the
       difference in temperature between its top and bottom surfaces

STEPS 1, 2, 3  The deflection and the rotation of point 3 of the beam due to the given
change of temperature may be established using relation (13.35) in conjunction with the
auxiliary loading of Figs. c and d, and, consequently, the distribution of moments given
by relations (b) and (e), respectively.  Thus,

Figure e  Deformed configuration of the beam subjected to the given external forces.
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  (g)

  (h)

(i)

(j)

(k)

Figure f  Deformation of the beam due to the change of temperature.

The minus sign indicates that the rotation        of the beam is as shown in Fig. f.  That is,
in the direction opposite to the applied unit moment in Fig. d.

Part c  Computation of the deflection and the rotation of point 3 of the beam due to the
settlement of its support 2

STEPS 1, 2, 3  We use relation (13.35) to compute the deflection and the rotation of point
3 of the beam due to the 5 mm settlement of support 2.  Thus, we have

where  are the reactions at support 2 when the beam is subjected to the

auxiliary loading shown in Figs. c and d, respectively.  The reactions  are

positive in the direction of the settlement    , i.e., when they act downward.  Thus,  

consequently,

Figure g  Deformation of the beam due to the settlement of support 2.
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(a)

(b)

and

                                                                                                                                             

13.5.1 Application of the Unit Load Method to Curved Beams

The principle of virtual work (13.35) is valid for straight and curved (with small h/R
ratio) beams made from an isotropic, linearly elastic material.  However, for curved
beams referring to Fig. 11.1 the following substitutions must be made in relation  (13.35)

1 s 3or (13.35); x  becomes x , x  becomes    ; subscripts: 1 becomes t and  3 becomes   . The
coordinate s is measured along the curved axis of the beam;   is measured along the
normal to the axis of the beam.  L is the total length of the axis of the beam.

In this section the unit load method is employed in establishing the components of
displacement of the unsupported end of a curved cantilever beam whose axis lies in one
plane and is an arc of a circle.  The beam is subjected to a concentrated force acting in its
plane. 
                                                                                                                                             

Example 3  Consider the cantilever curved beam of constant cross sections and radius R
shown in Fig. a.  Assuming that the thickness-to-radius ratio of the beam is very small,
compute the components of translation of point 2.

Figure a  Geometry and loading of              Figure b  Free-body diagram of a segment of
the curved beam.              the curved beam subjected to the given loading.

                                                                                                                                             

Solution

STEP 1  We compute the internal moment and axial force in the curved beam subjected

1 3to the given loading.  Referring to Fig. a, the coordinates (x N, x N) of a point of the beam
specified by the angle N are

From the equilibrium of the segment of the curved beam shown in Fig. b we have

STEP 2  In order to find the total translation of point 2 of the beam we establish its
horizontal and vertical components.  This is accomplished by using the principle of virtual
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(c)

(d)

              (e)

(f)

work (13.35) in conjunction with the auxiliary loadings of Figs. c and e, respectively.
From the equilibrium of the segment of the beam shown in Fig. d, we get

Moreover, from the equilibrium of the segment of the beam shown in Fig. f we have

STEP 3  For the beam of Fig. a the principle of virtual work (13.35) reduces to

where S is the length of the axis of the beam.  Substituting relations (b) and (c) into (e),
we obtain

        
Substituting relation (b) and (d) into (e), we get

Figure c  Auxiliary loading Figure d  Free-body diagram
for computing the horizontal of a segment of the curved
component of translation of point 2. beam loaded as shown in Fig. c.

Figure e  Auxiliary loading for Figure f  Free-body diagram
computing the vertical component of a segment of the curved
of translation of point 2. beam loaded as shown in Fig. e.
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(g)

(h)

(i)

(13.36)

The first term on the right side of relations (f) and (g) represents the effect of the bending
moment while the second term represents the effect of the axial force.  For a beam of
rectangular cross section, we have

Thus, substituting relations (h) into (f) and (g), we can readily see that for this example
the effect of the axial force is of the order of h /R  as compared to unity.  As stated2 2

previously, we are limiting our attention to curved beams with small h/R ratios;
consequently, h /R  may be disregarded as compared to unity.  Hence, in this example the2 2

effect of the axial force is negligible.
For     = 90 , disregarding terms of the order of h /R , relations (f) and (g) yieldo 2 2

hThe negative sign for u  indicates that its direction is opposite to that of the unit force(2)

of Fig. c.
                                                                                                                                             

13.6 The Principle of Virtual Work for Framed Structures, Including the Effect
of Shear Deformation

In Section 13.3 we derive the principle of virtual work for framed structures
disregarding the effect of shear deformation of the members of the structure.  For most
structures of practical interest, this effect is small and it is neglected.  In this section we
derive the principle of virtual work for framed structures which includes the effect of
shear deformation of their members.  We establish this effect first on the basis of the
Timoshenko theory of beams and then on the basis of a more accurate theory.

In the theories of beams (classical and Timoshenko) the shearing components of stress
acting on a cross section are established from the shearing components of force acting on
this cross section on the basis of relation (9.67); that is

2 3I  and I  are the moments of inertia of the cross section of the member under

2 3   consideration about its principal centroidal axes x  and x , respectively;      is the shearing

ncomponent of stress at a point of a cross section in the direction of the unit vector i .  
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(13.37a)

(13.37b)

Figure 13.4  Deformation of an Figure 13.5  shearing deformation
element of a member of a planar of an infinitesimal element and
structure subjected to bending statically admissible shearing
without twisting. components of stress.

nReferring to Fig. 13.3d, A  is the area of the shaded portion of the cross section while

n i is the distance of the centroid of area A  from the x  axis (i = 3 or 2, i �

sj).  Moreover, b  is the length of the line AB (see Fig. 13.3d).

  As  discussed  in  Section  9.5,  in  general  the  formula for      gives its average value

  along  line  AB  (see Fig. 13.3d).  However,  if  the  variation  of        along  the  direction

n   normal to the unit vector i  (line AB) is negligible, the average value of       is equal to its
actual value.  This occurs in members having one of the cross sections shown in Fig. 9.11
in the directions indicated in that figure.  Moreover, in members having cross sections like

1nthe ones shown in Fig. 9.11b, c, d and e, the shearing component of stress normal to J
is negligible while for members whose cross sections are like the ones shown in Fig. 9.11a

1nand f, the components of stress normal to J  are antisymmetric and, consequently, do not

  contribute to the deflection of the member.  Thus, we consider only the effect of    .
Consider a structure subjected to bending without twisting by given external forces

(actual loading).  The undeformed and the deformed configurations of an element of

1length dx  of this structure are shown in Fig. 13.4.  The geometry of the latter is based on
the assumption that plane sections normal to the axis of the element prior to deformation
can be considered plane subsequent to deformation but not normal to its deformed axis.

3 2As  discussed  in  Section  9.1,  in  this case the increments du  and du  of the transverse

3 2components of translation consist of two parts.  One part du  and du  is due to ther r

2 3rotation of the element as a rigid body about the x  and x  axis, respectively; the other part

3 2du  and du  is due to the shear deformation of the element.  Referring to Fig. 13.4 ands s

to relations (9.20c), (9.22b), (9.45) and (9.48), we have

Consider the same structure subjected only to the auxiliary loading for computing a
component of displacement of one of its points (see Section 13.5), and denote by

 statically admissible shearing forces acting on the faces of an element of
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(13.38)

(13.39)

(13.40)

(13.41)

(13.42)

(13.43)

1length dx  of  a  member  of  the  structure. The sum of  the products of the shearing forces

3 with the corresponding increments of the components of translation  du  ands

2du  is equal tos

Substituting relations (13.37) into (13.38), we have

Integrating relation (13.39), we obtain

Adding W  to the right-hand side of relation (13.34) we obtain the principle of virtuals

work which includes the effect of shear deformation of the members of a structure on the
basis of the Timonshenko theory of beams.

In what follows we present a more accurate theory than the Timonshenko theory of

1nbeams for establishing W .  In this theory, the component of strain e  of the particles ofs

the members of the actual structure is computed from the corresponding components of

  stress      , as

Using relations (13.36) and (13.41) from relation (13.29), we have

where

2 3The factors K  and K  depend on the geometry of the cross sections of the member and
are referred to as form factors.

Adding the effect of shear deformation (13.42) to the principle of virtual work (13.35),
we get
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(a)

(13.44)
This is the principle of virtual work for framed structures which includes the effect of
shear deformation of the members of the structure.

Notice that  W  given by relation (13.42) has the same form as that obtained on thes

2 3basis of the Timoshenko theory of beams (13.40).  However, the factors K  and K  are

    obtained from relations (13.43) while the factors    and    represent the ratio of the

 average to the maximum values of the shearing components of stress    and    ,
respectively [see relations (9.49)].  As shown in the example at the end of this section, for

2 3      a rectangular cross section K  = K  = 1.2, while as shown in Section 9.4,    

  (1/    = 1/   = 1.5).   This  indicates  that  the  effect  of  shear  deformation  on  the
components of displacement of a particle of a structure whose members have rectangular
cross sections, obtained on the basis of the Timoshenko theory of beams, is 1.25 times
larger than that obtained on the basis of the principle of virtual work (13.44).

In the sequel, we apply the method of virtual work in computing the deflection of a
beam, including the effect of shear deformation.  It is shown that the effect of shear
deformation is negligible when the ratio of the depth to the length of the beam is small.
                                                                                                                                             

Example 4  Consider a cantilever beam of rectangular cross section subjected to a
concentrated force as shown in Fig. a.  Compute the deflection of the beam at point 1.
Include the effect of shear deformation and establish the range of the parameters
characterizing the geometry of the beam for which the effect of shear deformation is
negligible.

Figure a  Geometry and loading of the beam. Figure b  Cross section of beam.

                                                                                                                                             

Solution  The effect of shear deformation is represented by the second and third terms on
the right-hand side of relation (13.44).  To compute this effect, we must calculate the

3value of the form factor K  of the beam [see relation (13.43)].  Thus, referring to Fig. b,
we have

and
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(b)

(c)

            (d)

    (e)

(f)

Substituting relation (b) into (13.43), we obtain

Referring to Figs. a and c, we get

Substituting relations (c) and (d) into (13.44), we have

The last term in the bracket represents the effect of shear deformation.  It is apparent that
the effect of shear deformation depends on the a/h and L/h ratios.  For the case < = 0.3
and a = L, relation (e) reduces to

For L/h = 2, the effect of shear deformation is approximately equal to 20%, while for L/h
= 6, it is less than 2%, and may be disregarded.  Thus, it is only for very short and deep
beams that the effect of shear deformation is not negligible.

    Figure c  Beam subjected to the auxiliary loading
          for the computation of the deflection of point 1.

                                                                                                                                             

13.7 The Strong Form of One-Dimensional, Linear Boundary Value Problems

The strong or classical form of one-dimensional, linear boundary value problems

1involves the determination of a function X(x ) called the state variable which has the
following attributes:

11. It satisfies an ordinary differential equation at every point of a line 0 # x  # L called
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                 (13.45)

(13.47)

    (13.48a)

    (13.48b)

the domain of the problem which can be written in the following form:

1where L is a linear differential operator; J is a scalar function of x  called the source
function.  It represents the distribution of the sources located inside the domain of the
problem which together with the sources located on the boundary of the domain produce

1the state variable X(x ).
As  an  example   consider  a  boundary  value  problem  involving  a  state  variable

           satisfying the following differential equation of order 2m where m is an integer:

(13.46)
The differential operator L for this equation is

0 1 1 1 2m-1 1 2m 1where a (x ), a (x ),. . . ,a (x ), and a (x ) are known functions which usually represent
material properties.

2. It satisfies appropriate equations, called boundary conditions, relating the values of

1the state variable X(x ) and/or some of its derivatives of order less than that of the
differential operator L at the points of the boundary of the domain.  The boundary of the

1 1problems considered in this section consists of the two end points x  = 0 and x  = L of

1their domain 0 # x  # L.  A boundary value problem of order 2m requires m boundary
conditions to be specified at each one of its two end points.  Boundary conditions
involving a differential equation of order up to m ! 1 are called essential, while boundary
conditions involving a differential equation from order m up to 2m ! 1 are called natural.
Thus, for the correct formulation of second order one-dimensional, linear boundary value
problems, one boundary condition must be specified at each end of the domain. If we

1 1suppose that an essential boundary condition is specified at x  = 0 and a natural at x  = L,
the boundary conditions for a second order, one-dimensional, linear boundary value
problem have the following form:

where  B  is  a  linear  differential  operator involving the first derivative while G and  

1are given functions of x .

In addition to the state variable in a boundary value problem we are interested in
establishing one or more quantities known as fluxes, which for the problems that we are
considering are equal to a linear combination of derivatives of the state variable.

For example, consider the second order, one-dimensional, linear boundary value

1 1problem for computing the axial component of translation, u (x ) of the member of Fig.

1 18.23a subjected to axial centroidal forces. For this problem  u (x ) is the state variable
1while the axial component of the internal force N(x ) is the flux. The domain of this

1problem is a line (the axis of the member 0 < x  <L). Its boundary consists of the two end

1 1points x  = 0 and x  = L. That is, why such boundary value problems are called two point.
Moreover, comparing relations (13.45) with (8.65) the differential operator L and the
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           (13.50)

    (13.51a)

    (13.51b)

    (13.51c)
    (13.51d)

(13.52a)

(13.49a)

(13.49b)

1function J(x ) for this boundary value problem are equal to

and

1 1where n  is the total number of concentrated axial centroidal forces P  acting along the(n)

1 1 1length of the member. H  is defined by relation (8.57).  J (x ) is called the source function.
1 1It includes all the loads that produce the state variable. u (x ) Furthermore comparing

relations(13.48) with (8.58) the differential operator B and the functions G and  for the

one-member structure of Fig. 8.23a are equal to

For the correct formulation of fourth order, one-dimensional, linear  boundary value
problems two boundary conditions must be specified at each end of the domain. If we

1suppose that two essential boundary conditions are specified at x  = 0 and two natural at

1x  = L, the boundary conditions have the following form:

1 2 1 1 2where     ,     , G , G  are given functions of x , while B , B   are linear differential
operators involving the second and third derivatives, respectively.

Boundary value problems of the type considered in this section exist in many fields
of science and engineering and our presentation applies to all of them. 

As an example, consider the forth order, one-dimensional, linear boundary value

2 1 3problem for computing the deflection  u (x ) of a beam subjected to bending about its x
2 1principal centroidal axis. For this problem u (x ) is the state variable while the shearing

2 1 3 1force Q (x ) and the bending moment M (x ) are the fluxes. Moreover, comparing relation

1(13.45) with (9.34a), the differential operator L and the function J(x ) for the beam of Fig.
13.6 is equal to 
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          (13.53a)

          (13.53b)

          (13.53c)

          (13.53d)

3Figure 13.6 Beam subjected to bending about its x  axis.

 (13.52b)

2 2 2where n  is the total number of concentrated transverse forces P  (n = 1, 2, ..., n ) acting(n)

3 3on the member and m is the total number of concentrated bending moments M  (m =(m)

31, 2, ..., m )  acting on the member.

1 2Furthermore, referring to Fig. 13.6 the differential operators B  and B  and the

1 2functions G , G ,       and        of  relations  (13.51)  for  the  one  member  structure of Fig.

313.6 subjected to bending about its x  axis, are equal to

13.8 Approximation of the Solution of One-Dimensional, Linear Boundary Value
Problems Using Trial Functions

Only simple boundary value problems can be solved exactly with the available
mathematical methods.  The rest are solved approximately.  In order to use a digital
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       (13.54)

(13.55)

computer to obtain approximate solutions of boundary value problems they must be
discretized.  That is, they must be recast in an algebraic form involving a finite number
of unknown coefficients.  The methods used to discretize boundary value problems can
be classified into two groups.  Those applied directly to their strong or classical form
[such as finite differences (see Sections 6.12 and 9.10)] and those applied directly to one
of their integral forms; for example, their weighted residual form (see Sections 13.9 to
13.11) or their modified weighted residual (weak) form (see Sections 13.12 and 13.13).
The most important by far of the second group of methods is the finite element method
(see Chapter 15) which in the last three decades has been used extensively in writing
programs for solving complex engineering problems by a computer.

In order to discretize one-dimensional, linear boundary value problems, using one of

their integral forms, we construct approximate solutions  of the following form:

where

sc (s = 1, 2, ..., S)       = undeterminate coefficients, also known as degrees of freedom
1 1     (x )       = continuous function of x  chosen to satisfy at least the essential

          boundary conditions of the problem.

1 1     (x )(s = 1, 2,..., S) = linearly independent functions of x  known as interpolation or
          trial functions.  They are chosen to satisfy the homogeneous
          part of the boundary conditions of the problem which were

1 1          satisfied by the function     (x ).  Thus the function     (x ) and

1               (x )(s = 1, 2, ..., S) are chosen so that the approximation to the
          state variable (13.54) satisfies at least the essential boundary
          conditions of the problem.

1 1The choice of the function     (x ) and      (x )(s = 1, 2, ..., S) affects the accuracy of the
approximate solution (13.54).  In order to ensure that as s increases the approximate
solution (13.54) converges to the actual solution of the boundary value problem, the trial
functions must be a sequence of functions from a complete in energy infinite sequence
of functions starting from the lowest order up to the order S without missing an
intermediate term.  A sequence of trial functions      (s = 1, 2, ..., S) is complete in energy

sif a set of parameters c (s = 1, 2, ..., S) can be found so that the function  given by

1relation (13.54) approaches closely the exact solution X(x ) as s increases.  The closeness

1is measured by the energy error.  For instance, the set of functions sin(sBx /L) or cos

1(sBx /L) (s = 1, 2, ..., S) is a complete set, because, as known from the theory of Fourier

1 1series, any function of x  which is continuous in an interval a # x  # b can be expanded

1in a convergent series of these functions in this interval.  Moreover, the functions (x  !

1a)  (s = 1, 2, ..., S) are also a set of complete functions, because any function of x  havings

1continuous derivatives of any order in the interval a # x  # b can be expanded into a
Taylor series in that interval.  That is,

1 1where X (a) represents the s  derivative of the function X(x ) evaluated at x  = a. Notices th

that the Fourier series can represent continuous and discontinuous functions, while the
Taylor series can represent only functions which have derivatives of all orders.
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(13.56)

(13.57)

(13.58)

(13.59)

1Due to the inclusion of only a finite number of trial functions a pointwise error  E(x )
is introduced in the approximate solution (13.54) called the discretization error. It is  
defined as

where  represents the approximate solution corresponding to n trial functions while

1X(x ) is the actual solution.  We say that the approximate solution (13.54) converges
pointwise if it satisfies the following relation:

It is clear that if a sequence of approximate solutions converges pointwise, then two

different approximate solutions  and  will approach each other as m and n

increase to infinity.  That is,  

Notice that although relation (13.57) implies (13.58), the reverse is not true.  That is,
relation (13.58) does not imply (13.57).  A sequence of approximate solutions may
converge according to relation (13.58) but the limit to which it converges may not be the
exact solution of the boundary value problem.  However, if in constructing approximate
solutions, of the type (13.54), to a boundary value problem we choose  a set of trial
functions from a complete set of functions, there is a high likehood that if the sequence
of shape functions converges according to (13.58), it will also converge according to
(13.57).  In such an eventuality we can examine the accuracy of  a solution by finding a
sequence of approximate solutions and examining their difference.

A measurement of the closeness of approximate solutions to the exact solution is the
energy error.  For example, the energy error of an approximate solution of a boundary
value problem involving a state variable of one space coordinate is defined as

1where E(x ) is the pointwise error defined by relation (13.56) and L is the differential
operator of the governing differential equation of the problem under consideration.  

When we say that a sequence of functions is complete in energy, we mean that when
it is used to form approximate solutions of a boundary value problem, the energy error
defined by relations (13.59) can be made as small as desired by increasing the number of
terms in the series of relation (13.54).  Convergence of an approximate solution in energy
does not ensure its pointwise converge.  However, when the approximate solutions of
most properly posed physical problems converge in energy, they also converge pointwise.

13.9 The Classical Weighted Residual Form for Second Order, One-Dimensional,
Linear  Boundary Value Problems

When the approximate solution (13.54) is substituted into the differential equation
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(13.60)

(13.61a)

(13.61b)

d(13.45) there may be a residual R .  That is,

Moreover, when the approximate solution (13.54) is substituted into the boundary
conditions (13.48) there may be residuals.  That is,

1 1The functions    (x ) and     (x ) (s = 1, 2, ..., S) are chosen in a way that the
approximate solution (13.54) satisfies as many of the boundary conditions of the problem

bas possible.  The residuals  and/or R  corresponding to these boundary conditions

1 1vanish.  We assume that the functions     (x ) and     (x ) are chosen in a way that the
approximate solution (13.54) satisfies at least the essential boundary conditions of the

sproblem.  Thus, we are interested in establishing a set of values of the parameters c (s =

d b1, 2, ..., S) which reduce the value of the residual R  and of the non-vanishing residual R
if there are any. 

dA way to reduce the residual R , uniformly throughout the domain of the problem and

b 1 sthe residual R  on its boundary (say at x  = L) is to choose the coefficients c (s = 1, 2, ...,
S) of the approximate solution (13.54) so that the following S integral equations are
satisfied:

(13.62)
where

(13.63)

r brW  and W (r = 1, 2, ..., S) are called the weighting functions.  They are sequences of

1linearly independent functions of x .  Each sequence could be chosen independently.
Substituting relations (13.60) and (13.61b) into (13.62), we get

(13.64)
Equation (13.64) is called the weighted residual equation for the boundary value problem
(13.45) with (13.48).  It is apparent that the exact solution of this boundary value problem

rsatisfies the weighted residual equation (13.64) for any weighing function W .  Moreover,

1a function X(x ) which satisfies the essential boundary conditions of the problem and the

r brweighted residual equation (13.64) for every set of weighting functions W  and W  is the
solution of the boundary value problem (13.45) and (13.48).  In order to prove this
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         (13.65)

(13.66a)

(13.66b)

(13.66c)

(13.66d)

(13.66e)

1statement  let  us  assume that there exists a function    (x ) which satisfies the essential
boundary conditions of the problem and its weighted residual equation (13.64) for every

r brset of weighting functions W  and W  but it does not satisfy equation (13.45) at some

points of the domain of the problem.  That is, L( ) + J � 0 at some points of the domain.

r brFor such a function it is apparent that we can find a set of weighting functions W  and W
which do not satisfy the weighted residual equation (13.64).  Consequently, our

assumption leads to a contradiction.  Thus, any function  which satisfies the

essential boundary conditions of the problem and its weighted residual equation (13.64)

r brfor every set of weighting functions W  and W  must also satisfy relations (13.45) and
(13.48).  That is, it must be the solution of the boundary value problem.

On the basis of the foregoing discussion the weighted residual form of the boundary
1value problem under consideration involves the determination of the function X(x ) which

satisfies the essential boundary conditions of the problem and its weighted residual
r brequations (13.64) for every set of weighting functions W  and W  . The weighted residual

form of a boundary value problem is equivalent to its strong form. 
Referring to relation (13.49) and (13.50), the weighted residual equation (13.64) for

the one member structure of Fig. 8.23a, is

13.10 The Classical Weighted Residual Form for Fourth Order, One-Dimensional,
Linear  Boundary Value Problems

When the approximate solution (13.54) is substituted into the differential equation
(13.45) of a fourth order, one-dimensional, linear boundary value problem, there could

dbe a residual R .  Moreover, when the approximate solution (13.54) is substituted into the

boundary conditions (13.51) of such a problem there could be residuals .

That is, referring to relations (13.45) and (13.51), we have
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(13.69)

1 1The function     (x ) and     (x ) (s = 1, 2, ..., S) of the approximate solution (13.54) are
chosen so as to satisfy as many of the boundary conditions of the problem as possible.

The residuals which correspond to these boundary conditions vanish.  We

1 1assume that the functions     (x ) and    (x ) are chosen in a way that the approximate
solution (13.54)  satisfies at least the essential boundary conditions of the problem.  Thus,

swe are interested in establishing a set of values of the coefficients c (s = 1, 2, ..., S) which

dreduce the value of the residual R  uniformly throughout the domain of the problem as

b1 b2well as the value of those of the residuals  R  or  R  which do not vanish.  One way to

saccomplish this is to choose the coefficients c (s = 1, 2, ..., S) so that the following S
integral equations are satisfied:

(13.67)

where
  0 if the approximate solution (13.54) is chosen to satisfy

 the corresponding natural boundary condition.

  1 if the approximate solution (13.54) is not chosen to satisfy 
         the corresponding natural boundary condition.

(13.68)

r 1 1W (x ) and (x ) (i = 1 or 2) =  functions   of   the   axial   coordinate  called  weighting

(r = 1, 2, ..., S) functions.  

rThe functions W  are such that they do not make infinite the integrals in equations (13.67).
Equation (13.67) is the weighted residual equation for one-dimensional, fourth order,
linear, boundary value problems.  It is apparent that the exact solution of such a  boundary
value problem satisfies the weighted residual equation (13.67) for any set of weighting

r bri 1functions W  and W  (i = 1, 2).  Moreover, it can be shown that a function X(x ) which
satisfies the essential boundary conditions of the problem and the weighted residual

r 1 bri 1equation (13.67) for every set of weighting functions W (x ) and W (x ) (i = 1, 2) is the
solution of the boundary value problem (13.45) and (13.51). 

On the basis of the foregoing discussion the weighted residual form of the one-
dimensional, fourth order, linear boundary value problem (13.45) and (13.51) involves

1the determination of the function X(x ) which satisfies the essential boundary conditions
of the problem and the weighed residual equation (13.67) for every set of weighting

r brifunctions W  and W  (i = 1, 2).  The weighted residual form of a boundary value problem
is equivalent to its strong form.

Substituting relations (13.52) and (13.53) into (13.66) and the resulting relations into
(13.67) and using relation (9.32b), the weighted residual equation for the beam of Fig.
13.6, is
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(13.70)

(13.71)

(13.72a)

(13.72b)

(13.73)

(13.74)

13.11 Discretization of Boundary Value Problems Using the Classical Weighted
Residual Methods

There are several methods available in the literature for constructing approximate
solutions of boundary value problems using their weighted residual form. They are known
as classical weighted residual methods.  In these methods the state variable is
approximated  by  relation  (13.54).  Each  of  the  functions        and      (s = 1, 2, ..., S)
is defined over the entire domain of the problem by a single function which has

 derivatives of any order.  Moreover the functions      and     (s = 1, 2, ..., S) are usually
chosen so that the approximate solution (13.54) satisfies all the boundary conditions of
the problem.  Thus, for these methods the weighted residual equations (13.62) and (13.67)
reduce to

s   A boundary value problem is discretized and the coefficients c (s = 1, 2, ..., S) are
evaluated by substituting the approximate solution (13.54) into relation (13.70).  Thus,

Relations (13.71) are a set of S linear algebraic equations which can be written as 

or

where

rsThe matrix [S] is called the stiffness matrix while its terms S  are called the stiffness
coefficients.  Moreover, the matrix {F} is called the load vector.  Referring to relation
(13.73) we see that the stiffness matrix [S] may or may not be symmetric.

rs rWhen the terms S (r, s = 1, 2, ..., S) and F (r = 1, 2, ..., S) of the matrices [S] and {F}
are evaluated, the system of algebraic equations (13.72) can be solved to obtain the

scoefficients c (s = 1, 2, ..., S).  These coefficients can then be substituted into relation
(13.54) to give an approximate solution of the boundary value problem under
consideration.  
     The weighted residual methods defer only in the choice of the weighting functions

rW (r = 1, 2, ..., S).  They have been applied to obtain approximate solutions of boundary
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value  problems  involving  a  state  variable of usually one and occasionally two space
coordinates.  The most extensively used weighted  residual  method is the Gallerkin. In

rthis method the weighting function W  is taken as

rW  =      (13.75)

Substituting relation (13.75) into (13.73), it can be seen that the stiffness matrix in the

rs srGallerkin method usually is not symmetric (S  � S ) and, consequently, it  could be
difficult to invert.

13.12 The Modified Weighted Residual (Weak) Form of One-Dimensional, Linear
Boundary Value Problems

      The modified residual (weak) form of the boundary value problems described in
Section 13.7 is obtained by adhering to the following steps:

STEP 1  We form the weighted residual equation (13.62) or (13.67).

STEP 2  We reduce the order of the derivative of  present in the integrand of the first

integral in relation (13.62) or (13.67).  Since X is a function of one space coordinate, this
is accomplished by integration by parts.

brSTEP 3  We choose the weighting function W  for a second order boundary value

br1 br2problem or W  and W  for a fourth order, boundary value problem, in a way that some
of the boundary terms in the integral equation obtained in step 2 are eliminated.  The
resulting equation is  the weak form of the boundary value problem.

    In the classical weighted residual methods, we use a function       and shape functions
      (s = 1, 2, ..., S)  each  of  which  is  defined  over  the  entire  domain  of  the  problem
by a single expression which has derivatives of any order.  Thus, in these methods it is not
important to lower the order of differentiation of the state variable in the integrand of the
first integral of relation (13.62) or (13.67), except when such a reduction results in a
symmetric stiffness matrix [S] as, for example, in the Gallerkin method.  For this reason
in the classical weigthed residual methods the weighted residual form (13.62) or (13.67)
is usually employed.
    In Chapter 15, we present the finite element method.  As shown in that chapter this is
a weighted residual method in which the domain of the problem is subdivided into a finite
number of subdomains called elements.  Moreover, the trial functions       are defined by
different expressions over some elements.  Thus, the derivatives of these functions above
a certain order do not exist at some interelement boundaries.  In order to be able to choose
simple trial functions in the finite element method, it is desirable that the derivatives of
the state variable and of the weighting functions be of as small order as possible.  For this
reason in the finite element method we discretize a boundary value problem, using its
modified weighted residual (weak) form.
   As a first example, we establish the modified weighted residual (weak) form of the

1 1boundary value problem for computing the component of translation u (x )  and the

1internal force N(x ) of the one member structure of Fig. 8.23a by adhering to the
following steps:
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(13.76)

     (13.77)

      (13.78)

(13.79)

      (13.80)
      

STEP 1  We form its weighted residual equation [see relation (13.65)].

1STEP 2  We reduce the order of the derivative of u  present in the first term of the
integrand of the integral in relation (13.65).  This is accomplished by integration by parts.
Thus, relation (13.65) becomes  

brSTEP 3  We choose the weighting functions W  as follows:

       If the approximate solution  does not satisfy the natural boundary condition of

the one member structure of Fig. 8.23a then .  Taking this into account and using

relations (13.77) and (8.58), the last two terms of relation (13.76) reduce to

If  the  approximate  solution    satisfies  the  natural  boundary  condition  of the

1one member structures  of  Fig. 8.23a,  then   and                                   = P .L

Consequently, relation (13.78) is still valid.  Using relations (13.77) and (13.78), relations
(13.76) can be rewritten as   

Where  is an approximation to the internal axial centroidal force. Referring to

relation (8.58), it is equal to

    Relation (13.79) is the modified weighted residual equation for the one-dimensional,
second order, linear boundary value problem for computing the component of translation

1 1u (x ) of the one-member structure of Fig. 8.23a. The modified weighted residual (weak)
form of the boundary value problem for the one-member structure of Fig. 8.23a involves
the   determination   of   the   function               which   satisfies   the   essential   boundary
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   (13.82)

(13.83)

conditions of the member and the modified weighted residual equation (13.79) for every
rweighting function W  .

   Notice that the weighted residual form for the boundary value problem of computing

1 1the component of translation u (x ) of a structure subjected to the axial centroidal forces
having only essential boundary conditions, is obtained from relation (13.79) by replacing

 by .

    As a second example, we establish the modified weighted residual (weak) form of the

2 1boundary value problem for computing the deflection u (x ) of the beam of Fig. 13.6 by
adhering to the following steps:

STEP 1  We form its weighted residual equation (13.69).

2 1STEP 2  We reduce the fourth order of the derivative of u (x ) present in the integral of
the first integral in relation (13.69) to second order.  This is accomplished by integrating
by parts twice this integral.  Thus, referring to relations (13.69), we get

(13.81)

br1 br2STEP 3  We chose the weighting functions W  and W  as follows:

2 1If the approximate solutions é (x ) [see relation (13.54)] do not satisfy the natural
boundary conditions of the beam of Fig 12.6, then                . Taking this into account and
using relations (13.82) and (8.21), the last four terms of relation (13.81) reduce to

If the approximate solution (13.54) satisfies the natural boundary conditions of the beam

of Fig 12.6 then                   and .  Consequently, relation

(13.83) is still valid.  Using relations (13.82) and (13.83), relation (13.81) can be rewritten
as 

www.EngineeringEBooksPdf.com



          Modified Weighted Residual Form of One-Dimensional, Linear Boundary Value Problems 623

(13.84)

(13.85)

The  integral                       can  be  computed,  using  functions  of  discontinuity.  For
example, if 

referring to relations (G.3), (G.12) and (G.17), we have 

(13.86)
Relation (13.84) is the modified weighted residual equation for the  one-dimensional,

2 1fourth order, linear boundary value for computing the deflection u (x ) of the beam of Fig.
13.6. 

2 1    On the basis of the foregoing presentation we can deduce that a function u (x ), which
satisfies the essential boundary conditions for a beam and on the basis of relation (9.32a)

3 1gives a function M (x ), which satisfies the modified weighted residual equation (13.84)

r 1 3 1for every function W (x ), is the actual deflection u (x ) of the beam. Hence, the modified
weighted residual (weak) form, of the boundary value problem under consideration

2 1involves the determination of the function u (x ), which when substituted into relation
3 1(9.32a) gives a bending moment M (x ), which satisfies the modified weighted residual

requation (13.84) for every weighting function W . The modified weighted residual (weak)
form of a boundary value problem is equivalent to its weighted residual form and
consequently, to its strong form.

r 1    Notice that if we replace W (x ) by              and take into account that                      ,
relation (13.78) assumes the form of the principle of virtual work (13.15) for the one

rmember structures of Fig. 8.23a. Moreover, if we replace W  by  and take into

account  relations  (9.27a)  and (8.22) and noting that                     , relations (13.84)
assume the form of the principle of virtual work (13.31) for the one member structure of
Fig. 13.6.  However,  in  the  principle of virtual work         and           are statically
admissible internal actions, while in relations (13.84) are approximate expressions for the
internal actions obtained from a displacement field, which satisfies the essential boundary
conditions of the problem.

       In what follows we present an example.
                                                                                                                                             

Example 5  Using the modified Gallerkin method with S = 2 and S = 4, establish an
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   (a)

    (b)

   (c)

   (d)

    (e)

approximate expression for the axial component of translation of the tapered (n = 0.5)
one- member structure of length L = 4 m subjected to the loading shown in Fig. a.  The
structure has a constant thickness t and it is made from an isotropic, linearly elastic
material with modulus of elasticity E.

      Figure a   Geometry   and  

          loading  of the one- member
        structure.

                                                                                                                                             

Formulation

We assume a solution of the form (13.54) and we substitute it into relation (13.79) with
the Gallerkin assumption (13.75) to get for the one-member structure of Fig. a:

Relation (a) represents a set of S linear algebraic equations, which can be written as

where

and

Solution

Case 1  Assumed solution satisfies all the boundary conditions

STEP 1  We choose a function       which satisfies all the boundary conditions.  Moreover,
we  choose  trial  functions     which  satisfy  the  homogenous  part of  the boundary
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   (f)

  (g)

    (h)

    (i)

    (j)

conditions (c). That is,

Substituting relations (f) into (13.54), we obtain

STEP 2  We compute the matrices [S] and {F}.  Substituting relations (f) into (d), we get

If r = s, noting that (s + r) is even, relation (h) gives

If r � s, relation (h) gives

Using L = 4 m, n = 0.5 from relations (i) and (j), we get

11 o 31 oS  = 0.262569 EA S  = 0.093750 EA
13 o 33 oS  = 0.093750 EA S  = 2.1131207 EA
15 o 35 oS  = 0.017361 EA S  = 0.468750 EA
17 o 37 oS  = 0.0243056 EA S  = 0.026250 EA

(k)

51 o 71 oS  = 0.017361 EA S  = 0.0243055 EA
53 o 73 oS  = 0.468750 EA S  = 0.026250 EA
55 o 75 oS  = 5.814222 EA S  = 1.093750 EA
57 o 77 oS  = 1.093750 EA S  = 11.365880 EA

Substituting relations (g) into (f), we obtain

www.EngineeringEBooksPdf.com



626   Integral Theorems of Structural Mechanics  

(l)

    (n)

    (o)

Using L = 4 m and n = 0.5 from relation (l), we obtain

1 1 1F  = 0.63662077 p L ! 0.63662077 P L

3 1 1F  = 0.21220659 p L ! 0.21220659 P (m)L

5 1 1F  = 0.12732395 p L ! 0.12732395 P L

7 1 1F  = 0.09045680 p L ! 0.09094568 P L

sSTEP 3  We compute the coefficients c  and use them to obtain approximate solutions for
the boundary value problem under consideration.  Substituting relations (k) and (l) into
(b), for S = 2, we get

Moreover, for S = 4 we obtain

Table a  Comparison of the results L = 4 m, n = 0.5.

No. of Trial
Functions

o 1 EA u (L)

1 1Two 2.434845 p L + 5.565155 P L

1 1Four 2.454509 p L + 5.548139 P L

Exact
solution

1 12.454822 p L + 5.545177 P L

s sWe substitute the parameters c  (s = 1, 3) or c  (s = 1, 3, 5, 7) given by relation (n) or (o),

respectively, into relation (g) to obtain approximate expressions  for the axial

component of translation of the structure of Fig. a.  The values of  are tabulated in

Table a together with its value obtained on the basis of the exact analysis, given (see
Problem 11.4 at the end of Chapter 11) as
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    (p)

(q)

(r)

     (s)

(u)

(v)

1It can be seen that as s increases, the values of the component of translation u (L)
approaches monotonically the exact solution. 

Case 2 Assumed solution satisfies only the essential boundary condition 

STEP 1  We  choose  a  function         which satisfies the essential boundary condition (c)
but not the natural (d).  Moreover, we choose trial functions    , which satisfy the
homogeneous part of the essential boundary conditions (c). That is,

Substituting relation (l) into (13.54), we get

STEP 2  We compute the terms of the matrices [S] and {F}.  Substituting relations (q)
into (d), we obtain

From relations (r) using L = 4 and n = 0.5, we get

11 o 21 oS  = 3 EA S  = 10.667 EA
12 o 22 oS  = 10.667 EA S  = 53.333 EA
13 o 23 oS  = 40 EA S  = 230.4 EA
14 o 24 oS  = 153.6 EA S  = 955.733 EA (t)

31 o 41 oS  = 40 EA S  = 153.6 EA
32 o 42 oS  = 230.40 EA S  = 955.733 EA
33 o 43 oS  = 1075.20 EA S  = 4681.143 EA
34 o 44 oS  = 4681.143 EA S  = 21065.143 EA

Moreover, substituting relations (q) into (c), we obtain

From relation (u), using L = 4 m and n = 0.5, we have

sSTEP 3  We compute the coefficients c  and use them to obtain approximate solutions.
Substituting relations (t) and (v) into (b) for S = 2, we get
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(x)

(y)

(w)
Moreover, for S = 4, we obtain

s sWe substitute the values of the coefficients c (s = 1, 2) or c  (s = 1, 2, 3, 4) given by

relation (w) or (x), respectively, into relation (r) to obtain approximate expressions 

for the axial component of translation of the structure of Fig. a. The values of   are

tabulated in Table a together with those obtained on the basis of the exact analysis (p). It
can be seen that as s increases the approximate values of the component of translation

1u (L) approach monotonically its exact value.

s s     We substitute the values of the coefficients c  (s = 1, 2) or c  (s = 1, 2, 3, 4) given by
relation (w) or (x), respectively, in relation (p) and the resulting relation into (8.58) to
obtain approximate expressions for the internal axial force in the structure of Fig. a.

Thus, at the support ( ), we have

The values of the axial force  obtained on the basis of relation (y) are tabulated in

Table a together with the corresponding exact value obtained by considering the
equilibrium of the structure.  It can be seen that as S increases, the approximate values of

1the component of translation u (L) and the axial force N(0) approach monotonically the

1 1 1exact values. Since  N(x )  is  related to the first derivative of u (x ), as expected, for the

1same  number of trial functions, the error in the approximate values of N(x ) is larger that

Table a  Comparison of the results (n = 0.5, L = 4 m)

No. of

Trial

Functions

0 1EA u (L) %
Error

N(0) %
Error

Two 1 1 1 12.46148p L + 5.55385P 1.45 1.077p L + 0.92308P 7.7L L

Four 1 1 12.45522p L + 5.54728P 0.09 1.00828p L +L

10.99409P L
0.828

Exact

solution
1 1 1 12.4548p L + 5.5452P  p L + PL L
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(13.87)

(13.88)

(13.89)

1 1in the approximate values of u (x ).
                                                                                                                                             

13.13 Total Strain Energy of Framed Structures

      As shown in Section 3.11.1 [see relation (3.80)], the total strain energy of an elastic
body subjected to external actions in an environment of constant temperature is equal to
the work performed by the external actions and the reactions as they are applied to the
body in order to bring it from its stress-free, strain-free state to its deformed state.  That
is,

    Consider a framed structure whose supports do not move (workless supports)
consisting of NM members (straight or curved with small h/R ratio) made from elastic
materials, subjected in an environment of constant temperature to external actions.  As
these external actions are applied, the structure deforms.  We denote the displacement
vector at the point of application of the force P  by u  and the rotation vector at the(n) (n)

point of application of the moment M  by .  Thus, assuming that there are N(m)

concentrated forces and M concentrated moments acting on the structure, the work
performed by the external actions as they are applied to the structure is equal to

If we choose the actual displacement field of the members of the structure as the
geometrically admissible displacement field and the actual internal actions in the
members of the structure as the statically admissible internal actions, the principle of
virtual work (13.34) gives

Comparing relation (13.88) with the above, we obtain

If the members of the structure are made from isotropic, linearly elastic materials taking

1 2 3into account that H  = H  = H  = 0, and using  relations (13.14a), (6.32) and (9.8) into
(13.89), we obtain the following expression for the total strain energy of a structure
consisting of NM members, made from isotropic, linearly elastic materials:
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(13.90)

(13.91)

(13.92)

13.14 Castigliano's Second Theorem

In this section, we present Castigliano's second theorem and we prove it for framed
structures made from isotropic, linearly elastic materials, using the principle of virtual
work.  Moreover, we employ this theorem in computing the components of translation
and rotation of points of framed structures.

Theorem  Consider a body made from a linearly elastic material, subjected to external
actions (N concentrated forces, M concentrated moments, and distributed forces and
moments) in an environment of constant temperature and assume that its supports do not
move (workless supports).  Moreover, assume that at point A of the body, a concentrated

n nforce P  acts in the direction specified by the unit vector i , while at point B of the body(A)

ma concentrated moment M  whose vector acts in the direction specified by the unit(B)

m s Tvector i .  The total strain energy (U )  of the body (see Section 13.13) may be considered
a function of the external forces and moments and satisfies the following relations:

nwhere u  is the component of translation of point A in the direction specified by the unit(A)

nvector i ;  is the component of rotation at point B in the direction specified by the unit

mvector i .  Relations (13.91) and (13.92) were established by Castigliano in 1873 and are
referred to as Castigliano's second theorem.

13.14.1     Proof of Castigliano's Second Theorem

As mentioned previously Castigliano's second theorem is valid for bodies made from
linearly elastic materials.  In this subsection, however, we prove it only for framed
structures whose members are made from isotropic, linearly elastic materials, using the
principle of virtual work.

Consider a framed structure consisting of  NM members made from isotropic,
linearly elastic materials subjected to external actions in an environment of constant
temperature and assume that its supports do not move (workless supports).  We denote

1 2 3the corresponding internal actions in the members of the structure by N, M , M , M  and

1 2 3the resulting components of displacement by u , u , u ,                 .  Referring to relation
(13.89), we see that the total strain energy of this structure is equal to
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(13.93)

(13.94)

1 2 3If we choose the actual components of displacement (u , u , u ,              ) of the
members of this structure as the geometrically admissible displacement field and the

1 2 3actual internal actions (N, M , M , M ) in the members of this structure as the statically
admissible distribution of internal actions, the principle of virtual work (13.34) gives

Consider the same framed structure subjected to a slightly different loading
consisting of the external actions of the previous loading except that the concentrated

nforce P  has increased to .  As a result of this loading, the components of(A)

internal actions are , , , .  Moreover, the components

of displacement of the points of the structure are , , , ,

, .  The total strain energy of the structure subjected to this second

loading is equal to

(13.95)

1 2 3    If we choose the components of displacements (u , u , u ,                 ) of the structure
subjected to the first loading as the geometrically admissible displacement field and the

internal actions , , ,   of the structure subjected

to the second loading as the statically admissible internal actions, the principle of virtual
work (13.34) gives

(13.96)
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(13.97)

(13.98)

(13.99)

(13.100)

(13.101)

Substracting relations (13.93) from (13.95) and disregarding infinitesimal of higher order,
we get

1 1 1 C 1 2 2 1 3 3  1Noting that N = EA du /dx , M  = GR  d   /dx , M  = EI  d    /dx  and M  = EI  d   /dx ,
relation (13.97) may be rewritten as

Moreover, substracting relation (13.94) from (13.96), we have

Comparing relations (13.98) and (13.99), we get

Thus,

Similarly we can prove the validity of relation (13.92).

13.14.2     Application of Castigliano's Second Theorem in Computing Components
of Displacements of Points of Framed Structures

Using relation (13.90), for a framed structure made from isotropic, linearly elastic
materials, we may rewrite relations (13.91) and (13.92) as
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Relations (13.102) or (13.103) can be used to compute a component of translation or a
component of rotation at a point A or B of a framed structure in the direction of the unit

n mvector i  or i , respectively, by adhering to the following steps:

STEP 1  The structure is considered subjected to an auxiliary loading consisting of

n m1. The given actions, except the components in the direction of the unit vectors i , i  of
the force (moment) acting at point A(B) if the given actions include a force (moment)
having such a component

n m2. An unknown force P  [moment M ] acting at point A(B) in the direction of the unit(A) (B)

n mvector i , [i ]

1 2 3STEP 2  The internal actions N, M , M , M  in the members of the structure subjected to

nthe auxiliary loading described in step 1 are established as functions of the force P (A)

m[moment M ].(B)

n mSTEP 3  The internal actions are differentiated with respect to P  [M ] and the results(A) (B)

nare substituted in relation (13.102) [(13.103)].  This gives the translation u  [rotation (A)

    ] of the structure subjected to the auxiliary loading described in step 1.(B)

nSTEP 4  The translation u  [rotation         ] of the structure subjected to the given actions(A)

n mis obtained by setting P  [M ] equal to the component in the direction of the unit(A) (B)

n mvector i , [i ] of the given force (moment) acting at point A(B).  If there is not a force

n m n(moment) acting at point A(B) in the direction of the unit vector i , [i ], the force P (A)

m[moment M ] is set equal to zero.(B)

In what follows, we illustrate with two examples the use of Castigliano's second
theorem in computing components of displacement of points of framed structures made
of isotropic, linearly elastic materials.
                                                                                                                                             

Example 6  Consider the truss shown in Fig. a.  The cross-sectional area of its top and
bottom chords is equal to 2.4(10 ) mm , while the cross-sectional area of its diagonal and3 2

vertical members is equal to 1.6(10 ) mm .  The members of the truss are made from an3 2

isotropic, linearly elastic material (E = 200 GPa).  Compute the vertical component of
translation (deflection) of joint 7.

Figure a  Geometry and loading of the truss.

                                                                                                                                             

Solution  In order to compute the vertical component of translation of joint 7, the vertical
force of 40 kN acting at joint 7 is replaced by a vertical force P.  The reactions of the truss
are computed by referring to Fig. b and considering its equilibrium.  Moreover, the 
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Figure b  Free-body diagram of the truss

   subjected to the auxiliary loading for 

    computing the deflection of joint 7. 

internal forces in the members of the truss are computed by considering the equilibrium
of its joints.

Equilibrium of joint 1 (see Fig. c)

Equilibrium of joint 3 (see Fig. d)

Equilibrium of joint 4 (see Fig. e)

Equilibrium of joint 7 (see Fig. f)

Figure c  Free-body diagram of joint 1.               Figure d  Free-body diagram of joint 3.

www.EngineeringEBooksPdf.com



          Castigliano’s Second Theorem 635

           (a)

Figure e  Free-body diagram of           Figure f  Free-body diagram of          Figure g  Free-body diagram  of 
       joint 4.     joint 7.          joint 6.

Equilibrium of joint 6 (see Fig. g)

     Taking into account that the internal force N is constant in each member of the truss,
we find that Castigliano's second theorem (13.102) reduces to

The deflection of joint 7 of the truss, subjected to the given loading, may be obtained by
substituting in relation (a) the expressions for the internal forces established above,
carrying out the differentiation, and setting P = 40 kN.  This is done in Table a; referring
to this table, the vertical component of translation of joint 7 of the truss is

Table a Computation of the deflecti.on     

Member
A,

10 mm  3 2

L,

mm 

1
2
3
4
5
6
7
8
9

10

!60
!60
!60
!10

0
40
50

!40
50

120
30

2.4
2.4
2.4
1.6
1.6
1.6
1.6
1.6
2.4
2.4

2400
2400
2400
4000
3200
4000
3200
4000
2400
2400

!0.30
!0.30
!0.15
!1.25

0.40
0.625
!0.40
0.625

0.60
0.15

!1.5
!1.5

!0.75
!1.25

0
1.25

!1.00
1.25
2.25
0.75

0.450
0.450

0.1125
1.5625

0.000
0.78125

0.400
0.78125

0.350
0.1125

Total 6.000
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(a)

(b)

(c)

Example 7  Consider a cantilever beam made from an isotropic, linearly elastic material
subjected to a uniform load over part of its span, as shown in Fig. a.  Compute the
deflection and the rotation of the unsupported end of this beam, using Castigliano's
second theorem.

Figure a  Geometry and loading of the beam.

                                                                                                                                             

Solution

1.  Computation of the deflection of the unsupported end of the beam

In this case, we consider the beam subjected to the auxiliary loading shown in
Fig. b, consisting of the actual load of the beam and a concentrated force P acting at point
2.  The bending moment in the beam is given as

vThe deflection u  of point 2 of the beam of Fig. b is obtained from relation (13.102)(2)

which, in this case, reduces to

Substituting relations (a) into (b), we get

Figure b  Beam subjected to the auxiliary loading        Figure c  Beam subjected to the auxiliary loading
for the computation of the displacement of point 2.        for the computation of the rotation at point 2.
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                     (d)

(e)

(f)

(g)

(h)

The  deflection  of  point  2  of the beam of Fig. a may be obtained from relation (c) by
setting P = 0 and integrating.  Thus,

In case a = 0, the above relation yields

2. Computation of the rotation of the unsupported end of the beam

In this case, we consider the beam subjected to the auxiliary loading of Fig. c,
consisting of the actual load of the beam and a concentrated moment acting at point 2.
The bending moment in this beam is given as

Substituting relations (f) into (13.103), the rotation of  point 2 of the auxiliary beam of
Fig. c is obtained as

The rotation of  point 2 of the beam of  Fig. a may be obtained from relation (g) by setting

 2  M = 0 and integrating.  Thus,(2)

The minus sign indicates that the rotation        is opposite to the moment M  shown in(2)

Fig. c; that is,        is clockwise.  
                                                                                                                                             

13.15    Betti-Maxwell Reciprocal Theorem

      Consider a body made from a linearly elastic material subjected to a set of external
actions A in an environment of constant temperature.  Consider the same body subjected
to another set of external actions B in the same environment of constant temperature.  We
denote the displacement field of the body resulting from the set of external actions A and
B by u  and u , respectively.  Betti's reciprocal theorem states that the work performedA B

by the system of external actions A on the displacement field u  is equal to the workB

performed by the system of external action B on the displacement field u .A

       For a framed structure, Betti's reciprocal theorem can be stated as follows:
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(13.104)

(13.105)

Theorem  Consider a framed structure consisting of NM members made from a linearly
elastic material and subjected to loading in an environment of constant temperature.  The
loading consists of N concentrated forces P (n = 1, 2, ..., N), M concentrated moments(n)

M (m = 1, 2, ..., M), a distributed force p, and a distributed moment m.  We denote the(m)

resulting distributions of the translation and the rotation vectors by u and 2, respectively.
       Consider the same structure subjected to another loading in the same environment of

constant temperature. This loading consists of  concentrated forces  concentrated

moments , a distributed force  and a distributed moment .  We denote the

resulting distribution of the translation and rotation vectors by , respectively.

      According  to  the Betti-Maxwell  reciprocal  theorem the work performed by the

loading P , M , p and m on the displacements  is equal to the work performed(n) (m)

by the loading  on the displacements u and 2.  That is,

Proof  As previously mentioned, Betti's reciprocal theorem is valid for framed structures
made from linearly elastic materials.  However, in this text, we limit our attention to
framed structures made from isotropic, linearly elastic materials.  For this reason, we
prove Betti's reciprocal theorem only for framed structures made from such materials.
       To  prove  this  theorem, we employ  the  principle  of  virtual  work  for the structure
under consideration subjected to the external actions P  (n = 1, 2, ..., N), M  (m = 1, 2,(n) (m)

1 2 3..., M), p and m.  We choose the resulting distribution of internal actions N, M , M , M
in the members of the structure as the statically admissible distribution of internal actions.

Moreover, we choose the displacement fields  of the structure subjected to the

external actions  as the geometrically admissible displacement

fields.  Thus, the principle of virtual work [see relation (13.34)] yields

Moreover, we employ the principle to virtual work for the structure under consideration

subjected to the external actions  .

We choose the resulting distribution of internal actions  as the statically

admissible distribution of internal actions.  Moreover, we choose the displacement field
u  and  2  of  the  structure  subjected  to  the  external  actions P , M , p and m as the(n) (m)
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(13.106)

(13.107)

(13.108)

(13.109)

Figure 13.7  Application of Betti-Maxwell's reciprocal theorem.

geometrically admissible displacement fields.  Thus, the principle of virtual work [see
relation (13.34)] yields

Using the relations between the components of internal actions and the corresponding
components of displacements for structures made from isotropic linearly elastic materials

1 1 1 C 1(i.e., N/EA = du /dx , M /GR  = /dx , etc.) [see relations (8.9), (6.32) and (9.8)], we

can convert the integral on the right-hand side of relation (13.106) to that on the right
hand  side  of  relation  (13.105).   Thus,  the  left-hand  sides  of relations (13.105) and
(13.106) must be equal. Hence, relation (13.104) is valid, and concomitantly Betti's
reciprocal theorem has been proven.
      We illustrate Betti's theorem by applying it to the beam loaded as shown in Fig. 13.7a.
That is,

This relation is referred to as Maxwell's theorem.  If , relation (13.107) reduces to

      Betti's theorem may be applied to the beam loaded as shown in Fig. 13.7b.  That is,

13.16    Proof That the Center of Twist of a Cross Section Coincides with Its Shear
             Center

3     Consider a cantilever beam subjected to a transverse concentrated force P  at its
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    (13.110)

(13.111)

(13.112)

(13.113)

1unsupported end (x  = L) whose line of action passes through the shear center of its end
cross section.  Under this loading the angle of twist of the cross sections of the beam is

    equal to zero (  = 0).  Consider the same beam subjected to a concentrated torsional*

1 3moment M  at its unsupported end.  We denote by u  the component of translation, inM

3the direction of the x  axis of the shear center of the cross section at the unsupported end
of the beam.  On the basis of Betti's theorem (see Section 13.15), we have

Thus,

Consequently, the shear center of the cross sections of a beam does not translate when the
beam is subjected to a torsional moment and, therefore, it coincides with their center of
twist.

13.17   The Variational  Form  of  the Boundary Value Problem for Computing the
             Components   of   Displacement   of   a   Deformable   Body  — Theorem  of
             Stationary Total Potential Energy

1 2 3       Consider a variation (i = 1, 2, 3) of the solution (x , x , x ) (i = 1, 2, 3) of the

boundary value problem for computing the components of displacement of a deformable
body defined by

where the family of the sets of functions   satisfies the essential

t(displacement) boundary conditions of the problem on the portion S ! S  of the surface
S of the body where such conditions are specified.  Consequently

The variation of the components of strain  is defined as

where  or  are obtained from  or ,

respectively, on the basis of relations (2.16).

      Choosing   the principle of virtual work (13.6a) with (13.9)  becomes

where the right side of relation (13.113) represents the work done by the components of

body force and surface traction acting on the body due to the variation  of

its components of displacement .  In obtaining relation (13.113)

use has been made of the fact that  vanishes on the points on the portion
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(13.114)

(13.115)

(13.116)

(13.117)

(13.118)

(13.119)

(13.120)

(13.121)

tS ! S  of the surface of the body where the components of displacement are specified.

0       In what follows we consider a body in an environment of constant temperature T
made from an elastic material.  For such a body, as discussed in Section 2.11, there exists
a positive definite function of the nine components of strain, the strain energy density,

, which satisfies the following relation:

Substituting relation (13.114) into (13.113), we obtain

s 1 2 3 ijThe variation of the strain–energy density U  (x , x , x , e ) is defined as

s 1 2 3 ij ij ij Expanding U  (x , x , x , e  + *e ) into a Taylor series about e , relation (13.116) can be
written as

ijwhere 0(*e ) refers to the terms containing second and higher powers of the variations of

ij ije .  For sufficiently small variations *e   relation (13.117) may be approximated as

s s* U  is called the first variation of U .  Substituting relation (13.118) into (13.115), we(1)

get

In obtaining relation (13.119) it was possible to take the operator * outside the second and

i 1 2third integral signs because the distributions of the components of body force B (x , x ,

3x ) (i = 1, 2, 3) and surface traction  remain constant during the variation

of the components of displacement .  Relation (13.119) can be rewritten

as

where

1 2 3The functional (x , x , x , ) of the function                     is called the total potential
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(13.123)

energy of the body.  The first term, on the right side of the relation (13.121), represents
the energy stored in the body during an isothermal or adiabatic deformation process.  The
last two terms represent the work that the external forces (body forces and surface
tractions) will perform in going from their position in the deformed configuration to their
position in the undeformed configuration of the body.

    We have shown that the actual displacement field  of an elastic body

subjected to external forces in an environment of constant temperature satisfies relation

1 2 3(13.120). That is, renders the first variation of the total potential energy  (x , x , x , )

1 2defined by relations (13.120) equal to zero. It can be shown that a vector field (x , x ,

3 1 2 3x ) which renders a functional   (x , x , x , ) stationary must render its first variation

equal to zero (see Section E-4 of Appendix E).  Moreover, it can be shown that a vector
1 2 3 1 2 3field (x , x , x ) which renders the first variation of a functional (x , x , x , ) equal

to zero, makes this functional assume stationary values.  Furthermore, it can be shown

1 2 3 1 2 3that the vector field (x , x , x ), which renders a functional (x , x , x , ) stationary,
must satisfy the Euler–Lagrange equations for this functional  (see Section E-4 of

1Appendix E).  This implies that we have shown that the actual displacement field (x ,

2 3x , x ) of an elastic body subjected to external forces in an environment of constant
temperature renders  stationary its total potential energy.
      In  what  follows,  we  show that if a geometrically admissible displacement field
renders stationary, the total potential energy of an elastic body, subjected to external
forces in an environment of constant temperature, is the actual displacement field of this
body.  For this purpose we consider a geometrically admissible displacement field

 and we denote by  the geometrically

admissible strain field obtained from  on the basis of relations

(2.16).  Moreover, we denote by  the strain energy density corresponding to the

components of strain , on the basis of relation (3.55).  Furthermore, we denote by 

the components of stress obtained from the strain energy density on the basis of relation
(13.114).  Using the strain–displacement relation (2.16) the first variation of the strain
energy density (13.118) can be written as

(13.122)
It can be shown by expansion that

Thus, relation (13.122) reduces to
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(13.124)

(13.125)

(13.127)

                 (13.126)

Substituting relation (13.124) into (13.120), we have

tThe surface integral is taken over the portion S  of the surface of the body where the
components of traction are specified.  Notice that

Thus, we can apply the divergence theorem of Gauss  to the first term of the first volume†

integral of relation (13.125) to obtain

nj nwhere 8  (j = 1, 2, 3) are the components (direction cosines) of the unit vector i  which
is outward  normal  to the surface element dS.  In obtaining relation (13.127), we took into

taccount  that  at  the  particles  of  the  portion  S ! S  of the surface of the body where the

i 1 2 3components of displacement are specified  is zero because u  (x , x , x ) is a

geometrically admissible displacement field. Substituting relation (13.127) into (13.125),
we obtain

i 1 2 3†  Gauss's theorem states: Consider a vector field F (x , x , x ) (i = 1, 2, 3) which has continuous derivatives in

o  ia region of volume V bounded by a continuous outer surface S . The body may have N cavities of surface S  (i
= 1, 2, ..., N) each . Then

n iwhere 8 (i = 1, 2, 3) are the direction cosines of the unit vector normal to the surface element dS and

.
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(13.129)

        (13.130)

(13.131)

ton the particles of the portion S  of the surface of  
the body          

         (13.132)

ton the particles of the portion S  of the surface of 

the body                       (13.134)

(13.128)

(i = 1, 2, 3) are the specified components of traction acting on the surface element dS.

Inasmuch as  is an arbitary variation of the geometrically admissible displacement

tfield  we may choose it to vanish on the portion S  of the surface of the body while

inside  the  volume  of  the  body  it  could assume any value.  With this choice, relation
(13.128) reduces to

According to the fundamental lemma of the calculus of variations (see footnote in
Appendix E) the term inside the brackets must vanish at every point inside the volume V.
Consequently,

Substituting relation (13.130) into (13.128), we obtain

According to the fundamental lemma of the calculus of variations the term inside brackets

tmust vanish at every point of the portion S  of the surface of the body.  Consequently,

     
Using relation (13.114), relations (13.130) and (13.132) can be rewritten as

on every particle inside the volume of the body 

               (13.133)
and               
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  (13.135)

Equations (13.133) are the Euler–Lagrange equations (see Section E-4 of Appendix E)

for the total potential energy   of the elastic body under consideration.  That is, the

Euler-Lagrange equations for the total potential energy   of an elastic body are the

equations of equilibrium (2.69) for the particles of the body.
       We have shown above that a geometrically admissible displacement field which
renders stationary the total potential energy (13.121) of the body under consideration
yields components of stress which satisfy the equations of equilibrium (2.69) at every
particle inside the volume of the body and, moreover, give the specified components of

ttraction  [see relation (2.73)] at the points of the portion S  of the surface of the body

where the components of traction are specified.  Consequently, this geometrically
admissible displacement field is the actual one.  Hence, when an elastic body is subjected
to external forces in an environment of constant temperature the geometrically admissible
displacement field which renders stationary its total potential energy   is its actual
displacement field.  This statement is known as the theorem of stationary total potential
energy.

13.17.1  Theorem of Minimum Total Potential Energy

      Consider a deformable body of volume V and surface S made from a stable elastic
material.  The body is in equilibrium in an environment of constant temperature under the
influence of 

i 1 2 3(a) Specified body forces B (x , x , x ) (i = 1, 2, 3)  given in units of force per unit
      volume

(b) Specified components of surface traction (i = 1, 2, 3)  given in units of 

t      force per unit area at the portion S  of its surface

t(c) Specified components of displacement (i = 1, 2, 3) at the portion S ! S  of

     its surface
      The theorem of minimum potential energy states that the actual displacement field
of a body made from a s table elastic material renders its total potential energy an
absolute minimum.

Proof

The total potential energy of the body in an equilibrium state specified by the

1 2 3displacement field (x , x , x ) is equal to

The total potential energy of the body under consideration corresponding to another

geometrically admissible displacement field  is equal to 
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(13.139)

(13.140)

(13.136)
Thus,

(13.137)

s ij ij ijExpanding the strain energy density U (e  + *e ) as a Taylor Series about e  , we have

(13.138)
where 0(* ) represents  the  terms  containing  higher  powers  than  the  second of the3

ij variations of e . Substituting relation (13.138) into (13.137), we get

iInasmuch as we are considering variations *yu  of the actual components of displacement

iyu  at the equilibrium state of the body, relation (13.115) is valid and may be substituted
in relation (13.139) to yield 

iFor sufficiently small variations *yu  the terms included in 0(* ) are negligible compared3

to the other term on the right side of relation (13.140).  In this case the variation of the
potential energy is approximated by the volume integral on the right side of relation

(13.140) which is known as the second variation of  and is denoted as .  Thus,

using relation (13.114), we have

(13.141)
Referring to relation (3.38b) for a stable elastic material the following inequality holds:
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(13.142)

             (13.143)

(13.144)

     (13.145)

Hence, from relation (13.141), we get

Relation (13.143) indicates that for any geometrically admissible variation of its actual
displacement field, the variation of the total potential energy of a body in equilibrium
made from a stable elastic material is positive.  Thus, of all geometrically admissible
displacement fields of a body in equilibrium made from a stable elastic material, the
actual one renders its total potential energy (13.121) a minimum.

13.17.2   The Ritz Method

The theorem of stationary total potential energy has been used extensively in
conjuction with the Ritz method to obtain approximate expressions for the displacement
fields of elastic bodies.  In this method the components of displacement are approximated
as follows:

Usually the functions       (j = 1, 2, 3) are chosen to satisfy at least the essential boundary
conditions of the problem while the functions       (j = 1, 2, 3) (i = 1, 2..., S) are chosen to
vanish on the points where essential (displacement) boundary conditions are specified.

js In the Ritz method the coefficients c (j = 1, 2, 3) (s = 1, 2..., S) are chosen as to render
the total potential energy of the body stationary.  For this purpose relations (13.144) are
substituted in (13.121) to obtain an approximate expression of the total potential energy

js.  Then the values of the coefficients c (j = 1, 2, 3) (s = 1, 2..., S) which render the total

potential  of the body stationary are established by imposing the following

requirements:

js This yields 3S equations for the 3S unknown coefficients, c (j = 1, 2, 3) (s = 1, 2..., S).

iIf the functions        and        (j = 1, 2, 3) (s = 1, 2, ..., S)   are chosen so that u#  (i = 1, 2, 3)
satisfy all the essential boundary conditions of the body [for the proper choice of the
function       (j = 1, 2 ,3) (s = 1, 2, ..., S) (see Section 13.7)], relations (13.144) converge
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(a)

(b)

(c)

(d)

(e)

to the exact displacement field as S 6 4.
       In what follows we present an example.
                                                                                                                                             

Example 8  Consider the beam of constant width b = 0.3 m subjected to the loading
shown in Fig. a .  The beam is made from an isotropic, linearly elastic material.  Establish
an approximate expression for the transverse component of translation (deflection) of the
beam using the Ritz method with S = 3. 

Figure a Geometry and loading of the beam.

                                                                                                                                             

Solution  Referring to relation (13.90), for the beam under consideration, we have
 

The work of the external forces in going from their position in the deformed configuration
of the beam to their position in the undeformed configuration of the beam, is equal to 

Substituting relations (a) and (b) into (13.121) and using relation (9.32a) we obtain 

The essential boundary conditions of the beam are

We assume an approximate solution of the following form:
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(f)

  (g)

   (h)

(i)

(j)

(k)

             (l)

(m)

and we choose 

It is apparent that the approximate solution (e) with (f) satisfies the essential boundary
conditions (d).  Substituting relation (e) into (c), we get

sThe values of c  (s = 1, 2, 3) which render the functional  stationary satisfy

the following relations:  

where

Relations (h) may be rewritten has

Referring to Fig. a, we have

Moreover, referring to relation (f), we get

Substituting relations (m) and (l) into (i) and integrating, we obtain
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   (o)

  (p)

        (n)
Substituting relation (f) into (j), we get

Substituting relations (n) and (o) into (k), we have

Solving relation (p), we get
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         (q)

     (r)

Substituting the values of the coefficients (q) into relation (e) and using (f), we have

                                                                                                                                             
       

13.18    Comments on the Modified Gallerkin Form  and the Theorem of Stationary
             Total Potential Energy

      From our presentation in this chapter, we can make the following statements:

1. The modified Gallerkin method can be employed to discretize any boundary value

problem  provided that a function  can be found which satisfies at least the

essential boundary conditions of the problem and trial functions  can

be found which satisfy the homogeneous part of the boundary conditions satisfied by the

function .

2. The theorem of stationary total potential energy can be employed, using the
Raleigh–Ritz method, to discretize the boundary value problems for computing the
displacement and stress fields of bodies made only from elastic materials provided that

a function  can be found which satisfies at least the essential boundary conditions

of the problem and trial functions  can be found which satisfy the

homogeneous part of the boundary conditions satisfied by the function .  This

method, and the modified Galerkin method,  always give the same results.  Thus, the
Rayleigh–Ritz  method does not seem to have any conceptual or computational
advantages over the modified Galerkin  method. Moreover, it requires knowledge of some
elements of calculus of variation.  However, the theorem of stationary total potential
energy can be employed to establish natural boundary conditions of some problems
whose natural boundary conditions are not easily established from physical consideration.
Moreover, as we show in Section 18.2, the principle of minimum total potential energy
can be employed to find out whether an equilibrium state of a body is stable or not.

13.19    Problems

1. and 2.  Using the unit load method, compute the vertical component of translation of
joint 3 of the truss subjected to the loads shown in Fig. 13P1.  The members of the truss
are made from the steel (E = 210 GPa).  Repeat with the truss of Fig. 13P2.

v vAns. 1 u  = 1.13 mm8 Ans. 2 u  = 0.494 mm9(3 ) (3 )

3.  Using the unit load method, compute the vertical component of translation of joint 4
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of the truss of Fig. 13P2 resulting from the external actions shown in the figure and from
a 20 C increase of temperature of the members of its bottom chord.  The members of theo

vtruss are made from steel (E = 210 GPa, " = 10 / C).  Ans. u  = 1.22 mm9(4 )-5 o

4.  Using the unit load method, compute the vertical component of translation of joint 2
of the truss of Fig. 13P1, due to a 20-mm settlement of the right-hand support.  Verify
your results by considering the geometry of the deformed truss. 

v  Ans.  u  = 10 mm9(2 )

Member         area                     Member            area
1,2,5,6      3 x 10  mm           1,3,4             8 x 10  mm3 2 3 2

3,4         2 x 10  mm           2,6              6 x 10  mm3 2 3 2

7         6 x 10  mm           5,7            10 x 10  mm3 2 3 2

Figure 13P1 Figure 13P2

5. Using the unit load method compute the deflection of point A of the simply supported
beam subjected to the external forces shown in Fig. 13P5.  The beam has a constant cross

2section  [I  = 369.70(10 ) mm ]  and  is made from an isotropic, linearly elastic material6 4

(E = 200 GPa).  Disregard the effect of the shear deformation of the beam.

                             *

Figure 13P5 Figure 13P6

6.  Using the unit load method compute the rotation of the unsupported end of the
cantilever beam subjected to the actions shown in Fig. 13P6.  The beam has a constant

2cross section [I  = 369.70(10 ) mm ] and it is made from an isotropic, linearly elastic6 4

material (E = 200 GPa).  Disregard the effect of shear deformation of the beam. 

   

7. and 8.  Using the unit load method, compute the horizontal movement of support 4 of
the frame loaded as shown in Fig. 13P7.  The members of the frame have the same

2constant cross section [I  = 369.70(10 ) mm ] and are made of the same material (E = 2106 4

GPa).  Disregard the effect shear and axial deformation of the members of the frame.
Repeat with the horizontal movement of point 1 of the structure of Fig. 13P8.

v  Ans.  7  334.68 mm6   Ans.  8 u  = 6.64 mm7(2 )
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Figure 13P7 Figure 13P8

9. Using the unit load method, compute the vertical movement of point 3 and the slope
of the elastic curve of member (2, 3) at point 3 of the frame subjected to the loading
shown in Fig. 13P7.  The members of the structure have the same constant cross section

2 (I = 369.7 x 10 mm ) and are made from the same material (E = 210 GPa) disregard the6 4

effect of shear and axial deformation of the members of the structure
vAns.  u  = 4.47 mm9 2  = 0.001288 rad clockwise(2 ) (2 ,3 )

Figure 13P9 Figure 13P10

10.  Using the unit load method, compute the horizontal component of translation of point
3 of the frame loaded as shown in Fig. 13P10.  Disregard the effect of axial and shear
deformation of the members of the frame. The members of the frame have the same
constant rectangular cross section (depth = 600 mm width = 200 mm) and are made from

vsteel (E = 210 GPa).  Ans. u  = 6.85 mm9(3 )

11.  Using the unit load method, compute the horizontal component of translation of joint
2 of the structure loaded as shown in Fig. 13P11.  Disregard the effect of shear and axial

Figure 13P11 Figure 13P12
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deformation of the members of the structure.  The members of the structure have the same

2constant cross section [I  = 369.70 (10 ) mm ] and are made from steel (E = 210 GPa).6 4

hAns. u  = 21.47 mm6(2 )

12.  Using the unit load method, compute the deflection at point 4 of the beam subjected
to the external actions shown in Fig. 13P12.  The beam has a constant rectangular cross
section of width b = 40 mm and depth h = 200 mm and it is made from an isotropic,
linearly elastic material (E = 200 GPa, v = 1/3). Include the effect of shear deformation

of the members of the beam.

13.  Using the unit load method, compute the horizontal component of translation of point
2 and the rotation at point 3 of the frame of Fig. 13P11 due to a temperature differential

e iat its exterior (T  = 5 C) and interior (T  = 45 C) surfaces.  The temperature duringo o

oconstruction was T  = 5 C.  The members of the frame are made from the same materialo

(E = 210 GPa, " = 10 / C) and have the same constant cross section [A = 16.2(10 ) mm ,-5 o 3 2

I = 564.8(10 ) mm , h = 475 mm].          6 4

14. Using the unit load method, compute for point A of the beam of Fig. 13P5 the
deflection due to a 20-mm settlement of support 2.  Verify your results by considering the
geometry of the deformed beam.
  
15.  Using the unit load method, compute the horizontal component of translation of point

e3 of the frame of Fig. 13P7 due to a temperature differential at the exterior (T  = 10 C)o

i oand interior (T  = 30 C). The temperature during construction was T  = 20 C.  Theo o

members of the frame are made from the same material (E = 210 GPa,  = 10 / C) and-5 o

have the same constant cross section [A = 16.2(10 ) mm , I = 564.8(10 ) mm , h = 4753 2 6 4

mm].                       

Figure 13P16

16.  Using the modified Gallerkin method, establish an approximate expression for the

1 1 1axial component of translation u (x ) and the internal force N(x ) of the structure of Fig.
13P16 subjected to the axial centroidal forces shown in Fig. 13P16.  The structure is made

0 from steel (E = 210 GPa).  Use S = 4, n = 0.5,  L = 2m,  A = 4cm . Choose2

1. Evaluate u (2L) and N(0).
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17.  Using the modified Gallerkin method, obtain approximations of the form (13.54) for
the deflection of point 2 of the beam resulting from the load shown in Fig. 13P17.  The
cross sections of the beam are rectangular and have a constant width b = 300 mm.  The
beam is made from steel (E = 210 GPa).  Disregard the effect of shear deformation of the

vbeam and use S = 6. Ans. approximate value u  = 18.75 mm9(2 )

Figure 13P17

18.  Consider a simply supported beam of length L and resting on an elastic foundation

3of modulus k. The beam is subjected to a uniform load p (kN/m).  The beam is made from
an isotropic, linearly elastic material of modulus of elasticity E.
(a)  Establish the weighted residual form of the boundary value problem for computing

3 1the deflection u (x ) of the beam.
(b) Establish the modified weighted residual form of the boundary value problem for

3 1computing the deflection u (x ) of the beam.
(c)  Discretize the boundary value problem using the modified Gallerkin weighted
residual form, with S = 6.

3 2 (d) Assume that L = 8m, k = 24 MPa, p = 20 kN/m,  E = 200 GPa, I = 240(10 ) mm and6 4 

3 1 2 1find an approximate expression for u (x ) and M (x ) using the results of question (c).
 
19.  Using the second theorem of Castagliano, compute the vertical component of
translation of joint 3 of the truss loaded as shown in Fig. 13P2. The members of the truss
are made form steel (E = 210 GPa).

20.  Using the second theorem of Castigliano, compute the horizontal component of
translation of joint 4 of the truss loaded as shown in Fig. 13P1.  The members of the truss

are made from steel (E = 210 GPa).   Ans. 

21. and 22.  Using the second theorem of Castagliano, compute the deflection and
rotation of point A of the beam loaded as shown in Fig. 13P5.  The beam is made from

2steel (E = 210 GPa) and has a constant cross section [I  = 369.70(10 ) mm ].  Disregard6 4

the effect of shear deformation of the beam. Repeat with the rotation of the unsupported
end of the beam  of Fig. 13P6.

23.  Obtain an approximate expression for the deflection of the beam of Fig. 13P17, using
the Ritz method with S = 6. 
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Chapter
14

Analysis of Statically Indeterminate
Framed Structures

14.1 The Basic Force or Flexibility Method

The reactions and internal actions of statically determinate structures can be
determined from the given loads using the equations of equilibrium alone.  However, the
reactions and/or internal actions of statically indeterminate structures cannot be
determined using only the equations of equilibrium.  Additional equations are required
which are established by imposing the requirement that the deformed configuration of the
structure be continuous and compatible with the constraints imposed by its supports.

In this chapter, we limit our attention to statically indeterminate structures to the first
degree, subjected only to external actions so as to emphasize the basic steps involved in
the analysis of statically indeterminate structures using the basic force or flexibility
method.

Figure 14.1  Primary structures.
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(14.1)

Figure 14.2  Superposition of the primary structure subjected to the given loading and to the redundant.

3Let us consider the beam of Fig. 14.1a, and let us choose one of the reactions R ,(1)

3 2 1R , M , or an internal action (say the moment at x  = 3 m) as the redundant.  The(2) (2)

statically determinate beam resulting from the actual beam by removing the constraint
which induces the chosen redundant is referred to as the primary structure.  If the

3reaction R  is chosen as the redundant, the primary structure is the cantilever beam(1)

2shown in Fig. 14.1b.  If the moment M  is chosen as the redundant, the primary structure(2)

1is the simply supported beam shown in Fig. 14.1c.  Moreover, if the moment at x  = 3 m
is chosen as the redundant, the primary structure is the beam of Fig. 14.1d.  Notice that
the reactions of a primary structure represent a set of statically admissible reactions of the
actual structure corresponding to a value of zero for the chosen redundant.

Referring to Fig. 14.2 or 14.3 we can readily see that the internal forces, bending
moments and the translation (deflection) at any point of the beam can be obtained by
superimposing the corresponding quantities of the primary structure subjected to the given
loading and those of the primary structure subjected only to the redundant.  In Fig. 14.2

3the redundant is the unknown reaction R  of the beam.  In Fig. 14.3 the redundant is the(1)

unknown pair of equal and opposite moments which are applied, the one to the left and
the other to the right of the hinge at point A.  Thus, for the beam of Fig. 14.2a, we may

write that the translation (deflection)  at point 1 of the actual structure whose

magnitude we know (it is zero) is equal to the sum of the translation (deflection)        of
point 1 of the primary structure, subjected to the given loading, and the deflection       
of point 1 of the primary structure, subjected to the redundant.  Hence

Moreover, as shown in Fig. 14.2f, the internal actions and the deflection of the primary
structure subjected to the redundant are equal to those of the primary structure subjected
to a unit value of the redundant multiplied by the value of the unknown redundant.  Thus,
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(14.2)

(14.3)

Figure 14.3  Superposition of the primary structure subjected to the given loading and to the redundant.

relation (14.1) can be rewritten as

11 1where F  is the deflection of point 1 of the primary structure subjected to X  = 1.  It is

1called the flexibility coefficient corresponding to the redundant X .  Equation (14.2) is

11called the compatibility equation of the beam.  The deflections  and F  of point 1 of

the primary structure can be computed using the unit load method presented in Section

113.5. Using the values of these deflections, we obtain the redundant X  from relation
(14.2).

Notice that if we choose as the redundant the pair of equal and opposite internal
moments at point B, the slope of the tangent to the elastic curve of the primary structure
at the point just to the left of the hinge at point B is not equal to that just to the right.  In
this case referring to Figs. 14.3e and 11.3d we have 

Where                  is the angle that the tangent to the elastic curve of the primary structure
at the point just to the right (left) of the hinge at point B makes with the horizontal, when

the  primary  structure  is  subjected  to  the  given loading,  is the corresponding

angle when the beam is subjected only to the redundant.
An internal action B of the structure is equal to the sum of the corresponding internal

actions A  in the primary structure, subjected to the actual loading, and the correspondingPL

internal action of the primary structure, subjected to the redundant.  That is,
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(14.4)

1where A  represents the internal action in the primary structure subjected to X  = 1PX

corresponding to B.  Thus, when the redundant is computed, any internal action in the
structure can be determined using relation (14.4).

On the basis of the foregoing discussion, in order to analyze a statically indeterminate
structure to the first degree subjected to external actions, we adhere to the following steps:

STEP 1  We select the redundant, and we form the primary structure by removing the
constraint which induces the redundant.

STEP 2  We compute the displacement  of the primary structure subjected to the

given loading, using the unit load method (13.35).

11 1STEP 3  We compute the displacement F  of the primary structure subjected to X  = 1
using the unit load method (13.35).

STEP 4  We compute the redundant using the compatibility equation (14.2).

STEP 5  We compute the internal actions in the structure either by using relation (14.4)
or by considering the equilibrium of appropriate parts of the structure.

In the sequel, the basic force method is applied to the following two examples.
                                                                                                                                             

Example 1  The beam of  Fig. a has constant cross section and is made from an isotropic,
linearly elastic material.  Compute its reactions and plot its shear and moment diagrams.

Figure a  Geometry and loading of the beam.

                                                                                                                                             

Solution

STEP 1  The beam under consideration is statically indeterminate to the first degree.  We
choose as the redundant the reaction at point 1.  Consequently, the primary structure is
a cantilever beam.

STEP 2  We compute the deflection        of point 1 of the primary structure subjected to
the given loading (see Fig. b).  For this purpose we do the following:

1. We compute the internal moment acting on the cross sections of the primary structure
subjected to the given loading.
2. We compute the internal moment acting on the cross sections of the primary structure

1subjected to X  = 1.
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(a)

(b)

(c)

(d)

(e)

Figure b  Primary structure subjected to the given loading.

The free-body diagram of the primary structure subjected to the given external force is
shown in Fig. c; referring to this figure the distribution of moment in the primary beam
is

1The free-body diagram of the primary structure subjected to X  = 1 kN is shown in Fig.
d; referring to this figure the distribution of moment in the primary beam is

Substituting relations (a) and (b) into (13.35), we get

11STEP 3  We compute the flexibility coefficient F  of the primary structure.  As shown

11in Fig. e the flexibility coefficient F  is equal to the deflection of end 1 of the primary

1structure subjected to X  = 1.  Substituting relation (b) in (13.35), we have

1STEP 4  We compute the redundant X  by superimposing the results of steps 2 and 3.

1Since end 1 of the actual structure does not move )  is equal to zero.  Substitutings

relations (c) and (d) into (14.2), we obtain

Figure c  Free-body diagram of Figure d  Free-body diagram of
the primary structure subjected the primary structure subjected

1to the given force. to X  = 1.
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1 1Figure e  Flexibility coefficient F        Figure f  Free-body diagram of the beam
 of the primary structure.        subjected to the given loading.

Figure g Shear diagram for the              Figure h  Moment diagram for the
beam of Fig. a.                                 beam of Fig. a.

STEP 5  We compute the reactions at the end 2 of the beam by considering its

1equilibrium. Thus referring to Fig. f and using the value of X  established in step 4, we get

The shear and moment diagrams for the beam of Fig. a are shown in Figs. g and h,
respectively.
                                                                                                                                             
                                                                                                                                             

Example 2  Compute the internal forces N  in the members of the statically(e)

indeterminate truss shown in Fig. a.  The members of the truss have the same constant
cross section and are made from the same material.

Notice that the internal forces in the members of the truss will be the same whether or
not members 3 and 6 are joined together at point 5.  This becomes apparent by assuming
that members 3 and 6 are joined at point 5 and considering the equilibrium of forces at

Figure a  Geometry and loading of the truss.
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joint 5.  The force in member 1, 5 must be equal to that of member 5, 3 while the force
in member 2, 5 must be equal to that in member 5, 4.
                                                                                                                                             

Solution

STEP 1  The truss under consideration is statically indeterminate to the first degree.  We

1choose the force in member 6 as the redundant (N  = X ) and form the primary structure(6)

by cutting member 6.

Figure b  Primary structure      Figure c  Primary structure subjected to
subjected to the given loading.      a pair of equal and opposite unit forces.

STEP 2  We compute the relative movement        of the ends of the cut of member 6 of
the primary structure subjected to the given loading (see Fig. b).  For this purpose the
following quantities must be computed:

1. The internal forces N (e = 1, 2, ..., 6) in the members of the primary structurePL(e)

subjected to the given loading (see Fig. b).

2. The internal forces (e = 1, 2, ..., 6) in the members of the primary structure

1subjected to a pair of equal and opposite unit forces X  = 1 (see Fig. c).

The results are given in Table a.  Using relation (13.15) and referring to Table a we have

Table a  Computation of the internal forces in the members of the truss. 

Member                                      

  1     4.0    1.333P    !0.8      !4.2667P        2.56       0.5833P
  2     3.0    1.00 P     !0.6      !1.8000P        1.08       0.4375P
  3    5.0  !1.667P      1.0       !8.3333P        5.00              !0.7292P
  4     3.0    1.00 P     !0.6      !1.8000P        1.08       0.4375P
  5     4.0       0           !0.8                0                2.56               !0.7500P
  6    5.0       0            1.0                0                5.00     0.9375P
                                                                         

Total                           !16.2P           17.28
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11STEP 3  We compute the flexibility coefficient F  of the truss corresponding to the
chosen redundant.  The flexibility coefficient is equal to the relative movement of the cut

1ends of member 6 of the primary structure subjected to X  = 1 (see Fig. c).  Using relation
(13.35) and referring to the Table a, we have

STEP 4  We compute the redundant by superimposing the results of steps 2 and 3.  Since

1in the actual structure, the relative movement of the cut ends of member 6 is zero ()  =s

0), from relation (14.2) we get

STEP 5  We compute the internal forces in the members of the truss using relation (14.4).
That is

The results are tabulated in Table a and in Fig. d.

         Figure d  Internal forces in the members of 
`          the truss subjected to the given force.

                                                                                                                                             

14.2 Computation of Components of Disp lacement of Po ints of Stat ically
Indeterminate Structures

In this section we apply the unit load method to compute the components of
displacement of points of statically indeterminate structures.  That is, we employ the
following relation:
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  (14.5)

where d is either a component of translation or a component of rotation of a point of the
structure.  The symbols     and       (i = 1, 2, 3) denote a set of statically admissible (not
necessarily the actual) distributions of the internal axial force and the components of
moment, respectively, in the members of the structure subjected to an auxiliary loading.
This auxiliary loading consists of a unit load applied at the point of the structure where
the displacement is desired.  If we want to compute the component of translation of a

npoint of a structure in the direction of the unit vector i , the auxiliary loading is a unit

nforce acting in the direction of the unit vector i .  If we want to compute the component

mof rotation of a point of a structure about an axis specified by the unit vector i , the

mauxiliary   loading is a unit moment whose vector is in the direction of the unit vector i .
The symbol     (s = 1, 2, ..., S) denotes the given components of displacements

(translations or rotations) of the supports of the structure.  The symbol (s = 1, 2, ...,

S) denotes the statically admissible components of the reactions (forces and moments) at
the supports of the structure corresponding to the given components of displacements

, when the structure is subjected to the auxiliary loading.  R  is considered positive(s)

when it acts in the direction of       .
In what follows, we compute components of displacement of a statically indeterminate

truss and a statically indeterminate frame using the method of virtual work.
                                                                                                                                             

Example 3  Compute the horizontal and vertical components of translation of joint 3 of
the statically indeterminate truss shown in Fig. a.  The members of the truss have the same
constant cross section and are made from the same material.

 

Figure a  Geometry and loading of the truss                 Figure b  Internal forces in the members 
                of the truss subjected to the given force.   

                                                                                                                                             

Solution  The internal forces in the members of this truss have been established in
Example 3 of Section 14.2.  They are shown in Fig. b.

In order to compute the horizontal component of translation of joint 3, we consider the
truss subjected at this joint to a horizontal unit force (see Fig. c).  This truss is statically
indeterminate to the first degree.  That is, it has one member more than the minimum
required for not forming a mechanism.  Thus, we can arbitrarily select the value of the
internal  force  in  one  member  of  the truss and compute a statically admissible set of
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internal forces in its other member.  For example, we can set the force in member 3 equal
to zero.  By considering the equilibrium of joint 2, we can see (see Fig. c) that the forces
in members 1 and 4 must vanish.  Moreover, by considering the equilibrium of joint 3,
we an establish the forces in members 6 and 5.  The results are shown in Fig. c.  Thus,
using the internal forces shown in Figs. b and c, we find that relation (14.5) gives

In order to compute the vertical component of translation of joint 3, we consider the truss
subjected at this joint to a vertical unit force (see Fig. d).  We choose the convenient,
statically admissible distribution of internal forces corresponding to this loading shown
in Fig. d.  Using the internal forces in the members of the truss shown in Figs. b and d, we
find that relation (14.5) gives

The minus sign indicates that the displacement is in the direction opposite to that of the
unit force applied to the truss in Fig. d.

Figure c Statically admissible internal forces                       Figure d  Statically  admissible internal forces
in the members of the truss subjected to a unit           in the members of the truss subjected to a unit
horizontal force.           vertical force.

                                                                                                                                             

14.3 Problems

Note: In these problems disregard the effect of shear deformation of the members of the
structures.

1. and 2.  Using the basic force method, compute the internal forces in the members of the
truss resulting from the external forces shown in Fig. 14P1.  The members of the truss are
made from the same material (E = 210 GPa).  Repeat with the trusses of Figs. 14P2 and
11P3.

Ans. 1   N  = 16.12 kN tension           N  = 33.77 kN tension   N  = 2.380 kN compression(1 ) (2 ) (3 )

    N  = 26.87 kN compression(4 )

Ans. 2   N  = 26.67 kN tension           N  = 72.0 kN tension     N  = 66.67 kN compression(1 ) (2 ) (3 )

    N  = 52.70 kN compression  N  = 8.93 kN tension     N  = 32.75 kN tension  (4 ) (5 ) (6 )
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Member Cross sectional Member Cross sectional
       area       area

1,3,5 3 x 10  mm 1,5 3 x 10  mm3 2 3 2

2 4 x 10  mm 8,3 6 x 10  mm3 2 3 2

4 6 x 10  mm All others 2 x 10  mm3 2 3 2

Figure 14P1 Figure 14P2

3. and 4.  Using the basic force method, establish the reactions of the beam resulting from
the external actions shown in Fig. 14P3.  The members of the beam have the same
constant cross section and are made of the same material (E = 210 GPa).  Choose the
reaction at support 2 as the redundant.  Plot the shear and moment diagrams for the beam.
Repeat with the beams of Fig. 14P4.

v 2 v v v                   Ans. 3  R  = 2.5P, M  = 0 Ans. 4  R  = 0.9687P, R  = 1.0625P, R  = 0.9688P(2 ) (1 ) (1 ) (2 ) (3 )

5.  Using the basic force method, establish the reactions of the beam of Fig. 14P4.
Choose the internal moment at point 2 as the redundant.  Plot the shear and moment
diagrams for the beam. Ans. see Problem 4

Figure 14P3                  Figure 14P4

6.  Using the basic force method, establish the reactions of the beam of Fig. 14P3.
Choose the internal moment of point 1 as the redundant.  Plot the shear and moment
diagrams for the beam. Ans. see Problem 3

7.  Using the basic force method, establish the reactions of the structure resulting from the
external forces shown in Fig. 14P7.  The members of the structure have the same constant
cross section and are made from the same material.  Choose the reaction at support 3 as
the redundant.  Plot the shear and moment diagrams for the structure.  Disregard the effect
of the axial deformation of the members of the structure.

v h v v Ans. R  = 36.25, R  = 0, R  = 65.50 kN, R  = 118.75 kN (1 ) (1 ) (2 )

8.  Using the basic force method, establish the reactions of the beam resulting from the
external forces shown in Fig. 14P8.  The beam is made from a standard steel shape with
cover plates extending 2 m on each side of support 2.  Plot the shear and moment
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diagrams for the beam.

v v v  Ans. R  = 2.07 kN, R  = 47.20 kN, R  = 10.73 kN(1 ) (2 ) (3 )

Figure 14P7 Figure 14P8

9.  Using the basic force method, compute the reactions of the steel (E = 210 GPa)
structure subjected to the external force shown in Fig. 14P9.  The area of the cross section

cof the steel cable is A  = 800 mm . The moment of inertia of the beam is I = 369.7 (10 )2 6

mm .  Disregard the effect of the axial deformation of beam 1, 3, 4.  Plot the shear and4

moment diagrams for the beam.
v h 2Ans. R  = 76.40 kN, R  = 235.20 kN, M  = 58.41 kNAm(1 ) (1 ) (1 )

Figure 14P9 Figure 14P10

Figure 14P11                       Figure 14P12

10. to 12.  Using the basic force method, plot the shear and moment diagrams for the
frame subjected to the external actions shown in Fig. 14P10.  The members of the frame
are made from the same material and have the same constant cross section.  Disregard the
effect of axial deformation of the members of the frame.  Repeat with the frames of Figs.
14P11 and 14P12.

v h hAns. 10  R  = 34.87 kN, R  = 19.46 kN,  R  = 40.54 kN(1 ) (1 ) (4 )

v h 2Ans. 11  R  = 7.28 kN,   R  = 160.0 kN,  M  = 121.83 kNAm(1 ) (1 ) (1 )
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v h 2Ans. 12  R  = 86.15 kN, R  = 0,              M  = 49.23kNAm(1 ) (1 ) (1 )

13. and 14.  Using the basic force method, compute the reactions of the structure and plot
its shear and moment diagrams resulting from the temperature distribution shown in Fig.

o14P14.  The temperature during construction was T  = 15 C.  The members of theo

structure are made of the same material (E = 210 GPa,  = 10 / C), and have the same-5 o

constant cross section.  Repeat with the structures of Fig. 14P14.
v 2Ans. 13  R  = 2.91 kN, M  = 34.92 kNAm(1 ) (1 )

v v vAns. 14  R  = 5.11 kN, R  = -8.94 kN, R  = 3.83 kN(1 ) (2 ) (3 )

Figure 14P13 Figure 14P14

15. and 16.  Using the basic force method, for the structure shown in Fig. 14P13, establish
the reactions and plot the shear and moment diagrams resulting from settlement of
support 1 of 20 mm.  The members of the structure are made from the same material (E
= 210 MPa) and have the same constant cross section whose properties are given in Fig.
14P13.  Disregard the effect of axial deformation of the members of the structure.  Repeat
with the structures of Fig. 14P14.

Figure 14P17 Figure 14P18

17. and 18.  Using the basic force method, analyze the frame shown in Fig. 14P17 for
each of the following loading cases and plot its shear and moment diagrams:

(a) The external actions shown in Fig. 14P17.
(b) A settlement of 20 mm of support 1.

e(c) A  temperature  of  the  external  surface  of  its  members  of T  = 35 C and of theo
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iinternal surface of its members of T  = !5 C.  The temperature during construction waso

15 C.o

The members of the frame are made from the same material (E = 210 GPa, =10 / C)-5 o

and have the same constant cross section [I = 162.7 (10 ) mm , h = 360 mm].  Disregard6 4

the effect of shear and axial deformation of the members of the frame.  Repeat for the
structure of Fig. 14P18.

v v 2 v vAns. 17 (a) R  = !59.09 kN, R  = 100.91 kN, M  = 167.36 kNAm  (b) R  = !3.88 kN, R  = 3.88 kN, (3 ) (1 ) (1 ) (1 ) (3 )

2     M  = 31.04 kNAm(1 )

v v 2          (c) R  = !7.13 kN, R  = 7.13 kN, M  = 58.64 kNAm(3 ) (1 ) (1 )

v h v 2Ans. 18 (a) R  = 18.28 kN, R  = 0, R  = 21.72 kN, M  = 3.99 kNAm(1 ) (1 ) (3 ) (1 )

v h 2 v h 2         (b) R  = 7.78 kN, R  = 0, M  = 27.24 kNAm   (c) R  = 11.73 kN, R  = 0, M  = 41.05 kNAm(1 ) (1 ) (1 ) (1 ) (1 ) (1 )

19.  Using the unit load method, compute the horizontal component of translation of joint

h3 of the truss of Fig. 14P2. Ans. u  = 3.5 mm(2 )

20.  Using the unit load method, compute the vertical component of translation of the

vjoint 4 of the truss of Fig. 14P2. Ans. u  = 0.875 mm(3 )

21. and 22.  Using the unit load method, compute the deflection of joint 3 of the beam of

v 2Fig. 14P3.  Repeat with joint 4 of the beam of Fig. 14P4.   Ans. 21 u  = 2PL/3EI(3 )

23.  Using the unit load method, compute the deflection of point 4 of the structure of Fig.

v14P9.   Ans. u  = 102.16 mm,  = 0.0235 rad.(4 )

24.  Using the unit load method, compute the horizontal component of translation of joint

2 h3 of the frame of Fig. 14P12 [I  = 369.70(10 )mm , E = 210 GPa].  Ans. u  = 11.4 mm(3 )6 4

25.  Using the unit load method, compute the horizontal component of translation of joint
3 of the frame of Problem 13.

h  Ans. 25 u  = 6.46 mm(3 )
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Chapter

15
The Finite Element Method

15.1  Introduction 

   The weighted residual methods for constructing approximate solutions of boundary
value problems presented in Sections 13.8 to 13.12, have the following serious
shortcomings especially when applied to two- or three-dimensional boundary value
problems:

   1. There is not a systematic procedure available for choosing the functions  and 
(s = 1, 2, ..., S) of the approximate solution (13.54) on whose choice the accuracy of the
solution depends.  A poor choice of the trial functions  (s = 1, 2, ..., S) may produce an

ill-conditioned stiffness matrix [S] and thus, it may be difficult to solve the resulting set
of linear algebraic equations (13.72).

   2.  It is not easy to find functions  and  (s = 1, 2, ..., S) which satisfy all the

essential boundary conditions of two- or three-dimensional problems having boundaries
of complex geometry.

Some of these difficulties are avoided by using the finite element method, which is
presented in this chapter. This method was originally developed from physical
considerations as a method for analyzing framed structures known as the direct stiffness
method (see Section 15.8).  However, it was soon recognized that it is a very effective tool
for the approximate solution of a great variety of boundary value problems. 
   In Sections 15.2 to 15.6, we present the finite element method as it applies to one
dimensional, second order, linear boundary value problems.  The application of the finite
element method to those problems is of limited practical interest because usually exact
solutions can be easily established for them, or in cases that they cannot, approximate
solutions can be established using less sophisticated methods. Our purpose in these
sections, is to introduce the fundamental concepts of the finite element method using
these boundary value problems.

15.2 The Finite Element Method for One-Dimensional, Second Order, Linear
Boundary Value Problems as a Modified Galerkin Method

   In  the  weighted  residual  methods  presented  in Sections 13.8 to 13.12, each of the
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        (15.1a)

       (15.1b)

Figure 15.1 One-dimensional domain subdivided into three two-node elements.

functions  and  (s = 1, 2, ..., S) of the approximate solution (13.54) is†

defined with respect to the global  coordinate  by one expression which is valid†

throughout the domain of the problem.  In the finite element method the domain
 of the problem is divided into a number (say n) of non-overlapping linear

subdomains  called finite elements .  Moreover, certain key points

called nodes or nodal points are chosen at which the values of the state variable and flux
are computed.  At least the ends of the elements of a one-dimensional domain must be
chosen as its nodes.  However, other points along the length of an element may be chosen
as nodes. In Fig. 15.1 a one-dimensional domain is divided into three two-node elements
numbered consecutively  from 1 to 3.  Element numbers are enclosed in a circle.  The††

nodes of the domain are also numbered consecutively from 1 to 4. 
As in the weighted residual methods, presented in Sections 13.8 to 13.12, in the finite

element method the solution of one-dimensional boundary value problems is
approximated by relation (13.54).  However, in the finite element method the function

 is taken equal to zero. That is, the approximation (13.54) to the state variable 

becomes 

where
(s = 1, 2, ..., S)           = constants which as we show later, have physical meaning.

 (s = 1, 2, ..., S)   = global functions known as trial or basis functions.

 S           = total number of nodes in the domain.

In the finite element method, the trial function  (s = 1, 2, ..., S) are defined in an
element-wise fashion using a different expression  in each  element.  Howev er, these
expressions must meet a continuity requirement in order that the integrals in relations
(13.79) and (13.84) exist.  That is, the trial functions used for one-dimensional, second
order, linear boundary value problems must be at least continuous throughout the domain
of  the  problem.   More  specifically, the  trial  function   must  have the following
                                       

† A bar over a symbol representing a function indicates that this symbol represents the function over the entire
domain of the problem. A bar over a coordinate indicates that the coordinate is global. That is, it specifies all the
points of a domain.
††  The numbering of the nodes of a domain could affect significantly the efficiency of the computations
performed in obtaining a solution.  The best way to number one-dimensional domains is consecutively starting
from their one end.
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      (15.2)

      (15.3)

properties:
 (a) It must be  continuous functions throughout the domain of the problem.
 (b) It must vanish on all nodes except node s.
 (c) It must be equal to unity on node s.
 (d) It must vanish on all elements except those adjacent to node s.
 (e) In each of the elements neighboring node s it is chosen to be a polynomial.

On the basis of the afore described properties of trial functions, at node  n the trial

function  is equal to unity while all other trial functions vanish. Thus, referring to

relation (15.1) and denoting by  the global coordinate of node n, the approximate

value of the function  at node n is equal to 

That is, th e undetermined coefficient  in re lation (15.1) has physical meaning.  I t
represents the approximate value of the state variable   at node n.  This property of
the trial functions permits the direct satisfaction of the essential boundary conditions of
a problem.  For example, if the function  is specified at  , the coefficient 

is set equal to the specified value (0).  If the function  is specified at , the

coefficient  is set equal to the specified value .

The simplest set of trial functions for one-dimensional, second order, linear boundary
value problems which meet all the requirements described above, consist of element-wise
linear functions which referring to Fig. 15.2 have the following form:

 where 
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Figure 15.2 The simplest trial functions and their derivatives for one-dimensional, second order, linear boundary
value problems.
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      (15.4a)

            = global coordinate of node s.

s s-1    L  or L  = length of element s or s ! 1, respectively. 
   The trial functions (15.3) and their first derivatives are plotted in Fig 15.2 for a domain 

which is subdivided into three elements. They are polynomials of the first degree on the
elements on which they do not vanish.

Notice that the first derivatives of the trial functions (15.3) are continues in the domain
of each element. Consequently, a state variable w hose first derivative h as a simple
discontinuity at a point inside the domain of an element cannot be approximated properly
in the domain of this element by relation (15.1) with the trial functions (15.3). For this
reason, the points of a domain where the first derivative of the state variable has a simple
discontinuity or jump are usually chosen as nodes.  For example, when a line member
subjected to axial centroidal forces, is made from two isotropic, linear elastic materials,
in series, its modulus of elasticity E  and its coefficient of thermal expansion 

have a simple discontinuity or jump at the interface of the two materials. As can be
deduced from relation (8.61) the component of translation  of such a member is

expressed by different  expressions in each material. Consequently, its first derivative has
a simple discontinuity of jump at the point of change of material. Similarly, when the
cross-section of a line member subjected to axial centroidal forces changes abruptly at a
point, its cross-sectional area has a simple discontinuity or jump at that point and the first
derivative of the component of translation  has also a simple discontinuity or jump

at that point. For this reason, we choose as nodes all the points of abrupt change of the
material and of the cross-sectional area of a member.  However, often it is not practical
to choose as nodes all the points of Dirac delta-type discontinuity of the source function

. At these points the internal force  (see Fig. 8.19) and the first derivative of†

the component of translation  have also a simple discontinuity or jump [see relation

(8.58)].  Consequently, relation  (15.1) with (15.3) does not approximate properly the
state variable in the domain of elements wherein the source function  has a Dirac
delta-type discontinuity.  Nevertheless,  the  values  of  the  state variable and the flux at
the nodes of domains subdivided into elements of constant modulus of elasticity and
cross-sectional area, obtained using the approximation (15.1) with (15.3), are exact (see
example of Section 15.7).

15.2.1  Discretization of One-Dimensional, Second Order, Linear, Boundary Value
            Problems   

In order to add physical meaning to our presentation, we focus our discussion in
Sections 15.2.1 to 15.6 to the boundary value problem for computing the component of
translation  of a member subjected to axial centroidal forces. For this problem, we

write relation (15.1) as 

where , is equal to the axial component of translation of node s and

                                       
† The source function has a Dirac delta-type discontinuity at a point where a concentrated axial centroidal

force is applied [see relation (13.49)].
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       (15.4b)

                          (15.6a)

      (15.6b)

      (15.7)

The coefficients  (s = 1, 2, 3, ..., S) of the approximate solution (15.4a) can be

established by substituting relation (15.4a) in the modified weighted residual equation
(13.79) with the Gallerkin assumption (13.75) or using the Rayleigh–Ritz method
presented in Section 13.17.2.  For example, for the one member structure of Fig. 8.23a,
substituting the approximate solution (15.4) into relations (13.79) and using relations
(13.75) and (13.80), we have

(15.5)

where  is an approximation to the axial component of translation of node s.  Relations

(15.5) represent a set of S linear algebraic equations which can be written as

or

rswhere [S] is the stiffness matrix. The stiffness coefficients S , are given as

{F} is the load vector. For the one-member structure of Fig 8.23a, we have 
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(15.8a)

(15.8b)

         (15.10)

         (15.11)

where  and  are Kroneker  defined as 

In obtaining relations (15.8) we took into account that referring to relation (15.3) the term

1 contributes only to F  while the term  contributes

Sonly to F .
   Referring to Fig. 15.2 and to relations (15.3) and (15.7) we see that in the finite element
method the stiffness matrix [S] for the domain of a problem has the following properties:

 1. It is symmetric
 2. A number of its coefficients vanish. That is, 

rs                            S  � 0 only if r = s or (s ± 1)     (15.9)

Moreover, referring to relations (15.3) and Fig.15.2 we see that the only non-zero parts
of the integrals in relations (15.8) are those taken over the elements, which are adjacent
to node r.  That is, only the loads acting on the elements adjacent to node r and the forces

r(fluxes) acting on this node affect the term F  of the load vector {F}.
Notice that in order for the integral in relations (15.7) and the first integral in relation

(15.8a) to exist, the global trial functions  (r = 1, 2, .., S) must be at least of class C .0

That is, they must be continuous in the domain of the problem. However, their first
derivatives could have a simple discontinuity or jump at some points of the domain.  The
trial functions (15.3) meet this requirement.

15.3 Element Shape Functions

   We consider a typical two-node element (say element e) of the domain of a one-
dimensional, second order, linear boundary value problem and we denote by j and k the
global numbers assigned to the nodes at its left and right ends, respectively.  Moreover,

we denote by  and  the global coordinates of nodes j and k, respectively, of element

1e.  Furthermore, we choose a local coordinate x  measured from the end j of the element

in the direction .  Thus, referring to Fig. 15.3, we have 
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      (15.12a)

 (15.12b)

    (15.13a)

  (15.13b)

    (15.13c)

Figure 15.3 Shape functions for elements e and e+1 and approximation of the state variable over these elements.

From Fig. 15.2 we see that only the trial functions associated with nodes j and k of an
element do not vanish on this element.  We call the parts of these trial functions which
extend over the length of element e the shape or interpolation functions for element e and

we denote them by  and  (see Fig. 15.3).  The shape functions for element e
corresponding to the trial functions specified by relations (15.3) can be written (see Fig
15.3) as  

Thus,

e        Consider an element (say element e) of length L  of a member and assume the nodes

at its ends are numbered as j and k while their global coordinates are denoted by  and

, respectively.  Recall  that  on  element  e  all  trial  functions  vanish  except

                                       and   .  Using  relation  (15.4a),  the  state

variable  of the boundary value problem for computing the axial component of

translation of a member subjected to axial centroidal forces is approximated over element
e as

or

where
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   (15.14)

 (15.15)

 (15.16)

1 1 1 1 e and  are approximate values of the state variable u (x ) at x  = 0 and x  = L ,

respectively.  Relation (15.13a), is known as the interpolation equation for element e.
Substituting relations (15.12) into (15.13a) we get

That is, in the domain of an element, the state variable  is approximated by a

straight line.  Consequently, two of its values and therefore two nodes are required in

order to specify  in the domain of an element.

       The shape functions (15.12) are polynomials of the first degree.  They represent the
simplest set of shape functions which can be employed in approximating the state variable
of one-dimensionals second order, linear boundary value problems in the domain of an
element.  Polynomials of higher degree (say n) are used as shape functions in
approximating the solution of such  problems.  In this case, however, the state variable is
approximated in the domain of an element by a curve of degree n and each element must
have n + 1 nodes.  For example, when second order polynomials are used as shape

1 1functions, the state variable u (x ) is approximated by a parabola in the domain of an
element and three values of the state variable must be known in order to specify it in the
domain of an element.  Consequently, each element must have three nodes.
        When the interpolation or shape functions are polynomials, the approximate solution
in (15.13a) converges to the actual as the size of the elements decreases provided that the

shape functions  and  are such that relation (15.13a) gives a constant value of the

state variable throughout the domain of each element when its nodal values  and 

are identical .  Physically, this implies that the shape functions (15.12)

can accommodate rigid-body motion of the element.  This requirement imposes the
following restriction on the shape functions:

Thus,

It can readily be shown that the shape functions specified by relations (15.12) satisfy
relation (15.15). That is, they can accommodate rigid-body motion.
    When the exa ct solution of a bo undary value problem is the sum  of po lynomials,
relation (15.13a) represents the exact expression for its state variable provided that the
highest degree of the shape functions included in relation (15.13a) exceeds or equals that
of the polynomials of the exact solution.
   In what follows we show that for elements which have constant modulus of elasticity

e e(E ) and cross-sectional area (A ) and are not subjected to external disturbances along their

length [ , ] relation (15.13a) is exact.  For such elements equation

(8.61) reduces to 

1In order to establish the state variable  as a function of the local coordinate x  of an

element involving its values at the end points of this element, we use the following
boundary conditions:
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    (15.17)

 (15.18)

 (15.19)

 (15.20)

(15.21)

Integrating equation (15.16) twice, we obtain  

10 11 1 1The constants c  and c  are evaluated by requiring that u (x ) satisfies the boundarye

conditions (15.17).  That is, 

From relation (15.19), we get 

Substituting relation (15.20) into (15.18) and referring to relations (15.12a), we have

Comparing relation (15.21) with (15.13a) we see that the approximate expression
1 1(15.13a) for the component of translation u (x ) of an element is identical to the exact

expression (15.21) when the element is made from on e material, has con stant cross
e e section (constant E  and A  ) and is not subjected to external loads along its length.

e eWhen an element has constant E  and A  but is subjected to loads along its length relation

(15.13a) represents an approximate expression for its component of translation .

Thus, we may conclude that the finite element method gives the exact expression for the

1component of translation  and the internal force N (x ) for members subjected toe

axial centroidal forces, when they can be subdivided into elements each of which is made
from one material, has a constant cross section and is not subjected to external loads
along its length.  

15.4 Assembly of the S tiffness Matrix for the Domain of O ne-Dimensional,
Second Order, Linea r Boundary Value Problems fro m the Stiffness
Matrices of Their Elements

rs   In the finite element method the stiffness coefficients S  (r, s = 1, 2, ..., S) and the terms
rF  (r = 1, 2 ,..., S) of the load vector {F} for a domain are computed as the sum of the
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        (15.22)

 (15.23)

 (15.24)

contributions of each of its elements.  That is, referring to relation (15.7), and denoting
by j and k the global numbers assigned to the  nodes at the ends of element e, we have
 

Where NE is the total number of elements of the domain;  and  are the global

coordinates of nodes j and k, respectively, of element e;   [e = 1, 2, ..., NE} represents

the contribution of element e to the stiffness coefficient  for the domain.  Referring to

relation (15.22), we have

 

Substituting relations (15.3) into (15.23) we see that 

Thus, the contributions of the three elements of the domain of Fig. 15.2a to its stiffness
matrix are

 (15.25)

Notice that many of the terms of the matrices [S ] (e = 1, 2, 3) vanish.  We call the non-e

vanishing coefficients of the matrix [S ] the stiffness coefficients of element e and wee

denote them by .  Moreover, we call the matrix of the non-vanishing coefficients of

the matrix [S ] the stiffness matrix for element e and we denote it by [K ].  Thus, thee e

stiffness matrices of the elements of the domain of  Fig.15.2a are

(15.26)

Notice that the indices of the stiffness coefficients of each element correspond to the
global numbers of the nodes at the ends of the element.  Referring to relation (15.22) it

rsis apparent that the stiffness coefficients S  for the domain of a problem are obtained
from the stiffness coefficients of its elements by the following relation:
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      (15.27)

                (15.28)

       (15.29)

                 (15.30)

In the above relation the stiffness coefficients for an element vanish if their indices do not
correspond to the numbers of the nodes at the ends of the element.  Substituting relations
(15.26) into (15.27) we obtain the stiffness coefficients for the domain of Fig. 15.2a and
we use them to form its stiffness matrix.  That is,

From relation (15.28) we see that the stiffness matrix for a domain is sparsely populated
and banded.  The solution of the stiffness equations (15.6) requires less computer time
and storage when the stiffness matrix is sparse and banded than when it is complete. The
numbering of the nodes of a domain affects the size of the bandwidth of its stiffness
matrix.  In obtaining relation (15.28) the nodes were numbered consecutively from 1 to
4 as shown in Fig.15.2.  This is the best way to number one-dimensional domains.
     Referring to Fig. 15.2 from relations (15.23) the stiffness coefficients for element e are

Where j and k represent the global numbers of the nodes at the ends of element e.
Relations (15.29) may be rewritten as

where the matrix  is defined by relation (15.13a).
    It is apparent that the stiffness matrix for an element of a member subjected to axial
centroidal forces and to a change of temperature  depends only on its geometry and

on its material properties.  It is independent of the loads acting along the length of the
e eelement.  For an element having constant E  and A , substituting relations (15.12) into

(15.30), we get 
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       (15.31)

(15.32)

       (15.33)

Figure 15.4 Geometry of a tapered element.

e eThe stiffness matrix for line elements with constant A  and E  given by formula (15.31)
is exact to within the accuracy of the theory of mechanics of materials.
     A  formula  for  the  stiffness  matrix  of  the  tapered element of Fig. 15.4 can be
established by substituting the expression for their cross sectional area given in Fig.15.4
and relations (15.12b) and (15.13b) into (15.30) and integrating.  That is,

      The stiffness matrix (15.32) is exact to within the accuracy of the theory of mechanics
of materials.
     Elements with variable cross section can be approximated by elements of constant
cross section whose stiffness matrix is computed using relation (15.31).  This will
introduce an error in the stiffness matrix of the element and as a result in the solution of
the problem.  However this error will diminish as the number of elements, to which a
domain is subdivided, increases. 
      Once the stiffness matrices for the elements of a domain are established its stiffness
matrix can be assembled using relations (15.27).

15.5  Construction of  the Load Vector  for  the  Domain  of  One-Dimensional,
    Second Order, Linear Boundary Value Problems 

      Consider a node r of a one-dimensional domain and the two adjacent to it elements
e and (e + 1) (see Fig. 15.3).  As we mention in Section 15.2.1 only the concentrated
forces acting directly on node r, and the loads (external forces, change of temperature)

racting on elements e and (e + 1) contribute to the term F  of the load vector {F}.  Thus,
for the structure of Fig. 8.23a, using the element shape functions (15.12) relations (15.8a)
can be rewritten as
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(15.37a)

       (15.34)

(15.35a)

                    (15.35b)

      (15.36)

Figure 15.5  Free-body diagram of element e subjected to axial centroidal forces. The nodal forces  and 

are considered positive as shown.

where

rP  = given concentrated force acting on node r.G

rP  = equivalent nodal force for node r. It represents the contribution of the loadsE

racting on elements e and (e + 1) of a one-dimensional domain, on the term F  of
1its load vector. It is equal to the sum of the contributions V  of the loads actingek

1on element e and of the contribution V  of the loads acting on element e + 1.(e+1)j

That is,

where referring to relation (15.8a), we have

1 1J  and J  represent the external axial centroidal forces acting along the length ofe e+1

elements e and e + 1, respectively, except those acting on the nodes of these elements.
For example, for the element subjected to the axial centroidal forces shown in Fig.15.5,
we have 

Substituting relations (15.36) and (15.12) into (15.35) and using relations (G.3) and
(G.11) of Appendix G, we obtain
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       (15.38)

       (15.39)

 (15.40)

              (15.37b)
       On the basis of the foregoing presentation the load vector {F} for a problem can be
written as

where 

    {P } = matrix of equivalent loads.  Its terms are given by relation (15.34). E

    {P } = matrix of given concentrated forces (fluxes) applied to the nodes of theG

domain. 
     {R}     = matrix of reactions.  Its terms are either zero or the unknown  resultant

forces (fluxes) applied to the end nodes of the domain at which the state
variable is specified, that is, at the nodes at which essential boundary
conditions are specified.

 As can be deduced from relations (15.34) and (15.35), the contribution of the loads
acting on a line element of constant cross section made from one material to the matrix
of equivalent actions of the structure is exact. Consequently, the stiffness equations (15.6)

e eof a one-dimensional domain subdivided into elements of constant A  and E  are exact to
within the accuracy of the theory of mechanics of materials

  

15.6 Direct Computation of the Contribution of an Element to the Stiffness Matrix
and the Load Vector of the Domain of One-Dimensional, Second Order,
Linear Boundary Value Problems 

    Consider an element of a member (say element e) subjected to given loads inducing in
1it only a distribution of axial centroidal force N (x ) and assume that the component ofe

translation  is specified at both ends of the element.  That is,

Substituting relations (15.13), into the modified weighed residual equation (13.79) using
relations (13.75) and (13.80) and recalling that for the element under consideration

 and r = j and k, we have 

where 
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(15.41a)

(15.41b)

(15.42)

(15.43)

             =  an approximation to the local matrix of nodal displacements for element
         e defined by relation (15.13c).

The matrix of shape functions [ ] is defined by relation (15.13b).

Referring to relations (15.12) and taking into account that  and

 (see Fig. 15.5) the last two terms of equation (15.40) can be   written as

Thus,

where

 and  = approximations to the axial centroid forces acting at the end  j and k of the

                        element,  respectively.  They  are  considered   positive  if  they  act in the
1 direction of the positive x  axis.                                   

        = approximation to the local matrix of nodal actions of the element.

Substituting relation (15.42) into equation (15.40) and using relation (15.30), we obtain

where

       = an  approximation  to  the  local  stiffness  matrix  for element e defined by
        relation (15.30).

(15.44)
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Figure 15.6  Superposition of the element subjected to the given loads with its ends fixed and the  element
subjected only to the nodal actions required to produce its actual nodal translations.

 and  = contributions of the loads acting on element e to the equivalent forces at

                         nodes j and k, respectively [(see relations 15.35)]. 

Equation (15.43) expresses the nodal actions of an element as a linear combination of
its nodal displacements.  It is clear that once equation (15.43) is established for an
element, its local stiffness matrix and the contribution of the loads acting along its length
to  the  matrix of  equivalent  actions  of  the  domain  are  known.  That is, referring to

Table 15.1  Restraining actions for elements of constant cross section subjected to axial centroidal forces and
c 2 3temperature change )T (*T  = *T  = 0).
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(15.45)

(15.46)

(15.47)

(15.48)

 

m n lFigure 15.7  Physical significance of the local stiffness coefficients K (m, n = 1, 2) for an element of a domain
of a one-dimensional, second order, linear boundary value problem..

relations (15.34) and (15.44) the equivalent action  at node r located between elements

e and (e + 1) is equal to

In what follows we illustrate the physical meaning of the terms of equation (15.43).
If the ends of the element are fixed, the matrix {D } is a zero matrix and equatione

(15.43) reduces to 

This indicates that  is an approximation to the matrix of local nodal actions of the

element subjected to the given loads with its ends fixed.  We call  the matrix of fixed-

end actions of element e where we call  and  the fixed-end forces of element.
From relation (15.45) we see that the equivalent force at node r defined by relation

(15.34) with (15.35) is equal and opposite to the sum of the fixed-end forces acting at the
ends of the elements connected to node r. The fixed-end forces for elements of constant
cross section subjected to certain loads of practical interest can be computed and
tabulated.  In structural analysis such tables are used to compute the equivalent actions
acting on the nodes of a structure (see Table 15.1).
   If an element is not subjected to loads along its length but only to nodal displacements, 
is a zero matrix and equation (15.43) reduces to 

Equation (15.47) is called the approximate local stiffness equation for element e.  From
relation (15.47) we see that  represents an approximation to the matrix of nodal
forces which must be applied at the ends j and k of  element e in order to displace them

1 1by amounts equal to their actual nodal translations u  and u , respectively.ej ek

When the ends of an element are displaced by  and , relation (15.47)

gives

That is, as shown in Fig. 15.7a, the stiffness coefficients  and  are the axial forces

which must be placed at the ends j and k of element e, respectively, in order to shorten it
by one unit.  Inasmuch as the element is in equilibrium, referring to Fig 15.7a, we have
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(15.49)

(15.50)

(15.51)

(15.52)

Similarly, as shown in Fig. 15.7b, the stiffness coefficients  and  are the axial

forces which must be placed at the ends k and j of element e, respectively, in order to
elongate it by one unit.  Moreover, from the equilibrium of the element, we get

Finally, referring to Fig. 15.7 and employing the Betti-Maxwell reciprocal theorem
(see Section 13.15), we obtain

That is, as shown in Section 15.4, the local stiffness matrix of an element of a one-
dimensional domain is symmetric.

15.7 Approximate Solution of Linear Boundary Value Problems Using the Finite
Element Method

 In the previous sections we present a procedure for establishing the stiffness equations
(15.6) for one-dimensional, second order, linear boundary value problems, using the finite
element method.  Similar procedures are employed for establishing the stiffness equations
for any linear boundary value problem using the finite element method. In this section we
present an outline of these procedures as they apply to the boundary value problems
considered in this book. Moreover, we describe the steps that must be taken in order to
solve the stiffness equations for a domain. Thus, in the finite element method we adhere
to the following steps: 

STEP 1 The modified weighted residual equation is established for the boundary value
problem under consideration, following a procedure similar to the one described in
Sections 13.9 to 13.12.  

STEP 2 The domain of the problem is subdivided into a finite number of subdomains
called elements and their ends and possibly other key points along their length are chosen,
as nodal points or nodes (see Section 15.2). For example, we choose as nodal points for
one-dimensional elements, their two end points .  Moreover, we choose as nodal points†

for the planar triangular element of Fig. 15.8b its three vertices .††

STEP 3 Approximate expressions for the nodal values of the local components of the
fluxes are established for each element.  That is,  

where [K ] is called the local stiffness matrix of  element e while the terms of the matrixe

 represent an approximation to the values of the local components of the nodal fluxes
of element e. That is,

For two-node elements of planar trusses

† In addition to their two end points, we could choose as nodal points of one-dimensional elements a finite
number of points along their length. This possibility is not explored further in this book. 
†† In addition to their vertices we can choose as nodal points of triangular elements a finite number of points
along their sides and inside their area.
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(15.53a)

(15.53b)

(15.53c)

(15.53d)

(15.53e)

(15.54a)

(15.54b)

(15.54c)

(15.54d)

(15.54e)

  (15.55)

1 2For two-node elements of planar beams or frames in the x ,x  plane

For two-node elements of space beams or frames

For the three-node planar triangular element of Fig. 15.8b

1 2For three-node triangular elements of thin plates in the x ,x  plane

  For the correct formulation of a boundary value problem certain quantities must be
specified on its boundary. As discussed in Section 13.7 some of these quantities are called

essential while the others are called natural. The matrix  is called the matrix of nodal
displacements of element e. Its terms represent an approximation to the values of the
essential quantities at all nodes of element e. That is,  

For two-node elements of  planar trusses

1 2For two-node elements of  planar beams or frames in the x ,x  plane

For two-node elements of a space beams or frames

For the three-node planar triangular element of Fig. 15.9b

1 2For three-node triangular elements of thin plates in the x ,x  plane

Relation (15.52) is established as follows:

1. Within each element the state variables are approximated by

where, within an element, the terms of the matrix  represent an approximation to the
state variables. That is,

For two-node elements of  planar trusses
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(15.56a)

(15.56b)

(15.56c)

(15.56d)

(15.56e)

       (15.57)

        (a) Beam subdivided into triangular                          (b) Nodal actions and nodal displacement of a 
               elements                                                     straight-edge triangular element

Fig 15.8   Plate in a state of generalized plane stress subdivided into planar triangular finite elements.

1 2For two-node elements of  planar beams or frames in the x ,x  plane

For two-node elements of a space beams or frames

For the planar triangular element of Fig. 15.9b

1 2For three-node triangular elements of thin plates in the x x  plane

[ ] is a rectangular matrix whose terms are polynomials of the local coordinates of the
element.  It is called the matrix of element shape functions.  Its terms are called the trial
or shape functions for the element.

2.The approximation to the state variables (15.55) for each element is substituted into the
modified weighted residual form of the boundary value problem under consideration and
it is assumed that only essential boundary conditions are specified at the ends of the
element.  This yields relation (15.52)

STEP 4 The local stiffness matrix [K ] and the local matrix  of each element aree

transformed to global.

STEP 5 The stiffness equations (15.6) for the domain are constructed from the global
properties of its elements established in step 4. Using relation (15.38) the stiffness
equations (15.6) can be rewritten as  

 = matrix of nodal displacements. Its terms represent an approximation to the value
      of the  global components of the essential quantities at the nodes of the domain. The

         essential quantities are those which must be specified at a boundary of the domain
         at  which   only   essential   boundary   conditions  are  specified. For example, the
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 (15.58)

      essential  quantity  for   a   bar   subjected  to  axial  centroidal  forces  is  the  axial
1        component of  translation  u  while  the essential quantities for a beam subjected to

2 3        bending about its x  axis without twisting are u  and     .

 = an approximation of the global matrix of equivalent actions.
{P } = global components of the fluxes (reactions) acting at the nodes of the domain.G

    = an  approximation  to  the  matrix  of  global  components of the unknown fluxes
         (reactions)  at  the nodes of the  boundary of the domain where essential boundary

         conditions are specified.  
 
In order to construct the stiffness equation (15.57) for a domain the following must be
done:

1. The stiffness matrix [S] of the domain is assembled from the global stiffness matrices
of its elements established in step 4. In order to accomplish this the indices of the global
stiffness coefficients of each element of the domain are chosen so as to correspond to

those of the terms of the matrix . The stiffness coefficients for the domain are then
computed of the basis of relations (15.27).

2. The matrix of equivalent actions  of the domain is constructed from the global

matrices  [see relation (15.52)] of its elements using relation (15.45).

3. The matrices {P } and  are constructed from the data of the problem. G

 
STEP 6 The stiffness equations are solved to obtain the global components of the
unknown quantities. 
The unknown quantities in the stiffness equation (15.57) for a boundary value problem

are the reactions and the unknown components of the essential quantities at the nodes of
the domain. Notice that for every known component of an essential quantity at a node of
the boundary of the domain there is a corresponding unknown reaction.  Thus, the number
of unknown quantities in the stiffness equations for a problem does not change when its
boundary conditions change.  Moreover, the number of unknown quantities in the
stiffness equations for the domain of a problem is equal to the number of stiffness
equations.  However, the stiffness matrix [S] for a domain is singular, and, consequently,
the stiffness equations cannot be solved directly to yield the unknown quantities.  In order
to be able to solve the stiffness equations for a problem its essential boundary conditions
must be incorporated in them.  This is accomplished by rearranging the rows and columns
of the stiffness equation (15.57) as follows:

1. The rows of equation (15.57) involving reactions are moved to the bottom.
2. The columns of the stiffness matrix in Equation (15.57) which are multiplied by a
specified value of the components of displacement at the nodal points of the boundary of
the domain are  moved to the right.   

An algorithm can be written for moving the rows and columns of the stiffness equations
(15.57) for a domain.  The resulting stiffness equations can be partitioned as follows:

The terms of matrix {P } are the computed values of the equivalent actions applied toEF

the nodes of the domain excluding those of the nodes of the boundary of the domain
which correspond to specified essential boundary conditions. The terms of matrix {P }ES

are the computed values of equivalent loads corresponding to specified essential boundary
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  (15.59a)

  (15.59b)

(15.60)

conditions.  The terms of the matrix { } are the known values of the fluxes (reactions)
at the nodal points of the boundary of the domain at which essential boundary conditions
are specified.  The terms of the matrix            represent an approximation to the values of
the unknown global components of the essential quantities at the nodes of the domain.
The terms of the matrix          are the values of the specified essential quantities at the
nodes of the boundary of the domain.  Relations (15.58) can be expanded to yield:

In Sections 15.4 and 15.5 it is shown that the stiffness equations for one-dimensional
domains are exact, when the domain is divided into elements made from one material and
having constant cross sections. This implies that the components of the essential
quantities at the nodes of a domain obtained from relation (15.59a) are exact if the domain
is subdivided into elements made from one material and having constant cross section.
Similarly, we can deduce that the reactions of a domain obtained from a relation (15.59b)
are exact provided that the domain is subdivided into elements made from one material
and having constant cross section. Notice that inasmuch as the stiffness matrix [S] is
symmetric, the following relation is valid:

The matrix [S ] is called the basic stiffness matrix for the domain.  Its terms dependFF

on the stiffness matrices for the elements of the domain and on the boundary conditions.
The matrix [S ] is square and symmetric, and if the boundary value problem is propertyFF

formulated, it is nonsingular.  Thus, relation (15.59a) can be solved to yield the unknown
values  of  the  essential  quantities          at  the  nodes  of  the  domain.  These can be
substituted in relation (15.59b) and the resulting relations can be solved to yield the

unknown reactions { } of the problem.

STEP 7 Approximations to the state variables and to the corresponding resultant fluxes
in each element of the domain are computed.  This is accomplished by substituting in
relation (15.55) the values of the essential quantities at the nodes of each element
established in step 6.  This gives approximate expressions for the state variables in the
elements.  We use these expressions to obtain approximate expressions for the resultant
fluxes of the elements. 

Notice that in the solution of one-dimensional, boundary value problems no error is
introduced in steps 2 and 5. However, this is not so in the solution of two- or three-
dimensional boundary value problems. The state variables and the fluxes of boundary-
value problems are required to satisfy the laws which govern their solution at every point
of the interelement boundaries and the specified boundary condition at every point of the
boundary of their domain. The two nodal points of each one-dimensional element
constitute its entire boundary. Consequently, in steps 2 and 5 no error is introduced in the
solution of one dimensional  boundary value problems. However, the finite elements may
not match completely the boundary of two- or three-dimensional domains, and,
consequently, an error is introduced in step 2. Moreover, the nodal points of two- and
three- dimensional elements, represent only a few points of their boundary (see Fig.
15.23). Thus in Step 5 the state variables and the fluxes of two- or three-dimensional
boundary value problems are required to satisfy the laws which govern their solution only
at a few points of the interelement boundaries. Consequently, in step 5 an error is
introduced in the solution of two and three-dimensional boundary value problems. The
errors introduced in steps 2 and 5 are called discretization errors and they decrease as the
size of the elements decreases.  In most finite-element formulations of boundary value
problems, involving two- or three-dimensional domains, the discretization errors are
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   (a)

reduced by an appropriate choice of nodal points and shape functions of their elements.
That is, they are chosen in a way that some of the laws which govern the solution of a
boundary value problem are automatically satisfied at all points of the boundary of its
elements when they are satisfied at their nodal points. 

   In what follows we illustrate the solution of an one-dimensional, second order, linear
boundary value problems using the finite element method  by an example. 
                                                                                                                                              

Example 1  Consider the fixed at both ends bar shown in Fig. a consisting of three
members of constant but different cross sections. The bar is subjected to concentrated
external axial centroidal forces as shown in Fig.a. The bar is a statically indeterminate
structure to the first degree. Using the finite element method, compute the reactions, the

1 1 1axial component of translation u (x ) and the internal axial centroidal force N(x ) in the
bar. 

Figure a Geometry and loading of the bar.
                                                                                                                                              

Solution

STEP 1 The modified weighted residual equation for this boundary value problem is
(13.79)

STEP 2  We subdivide the bar into three unequal elements of constant cross section. (See
Fig. a).  This is the smallest number of elements into which the bar of Fig. a can be
subdivided, because it is necessary to have a node at each point of discontinuity of the
cross sectional area of the bar. 

STEP 3  We establish expressions for the nodal values of the local component of the flux

1[N (x )] as a linear combination of its nodal displacements . For the elementse

of the bar under consideration, this has been done in Section 15.4.  Thus, referring to
relation (15.31) and to Fig. a  the stiffness matrix [K ] of each element of the bar ise
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              (e)

  (b)

  (c)

                 (d)

Figure b  Free-body diagram of the bar.

Moreover, referring to Fig. a and to relation (15.44) we establish the restraining (fixed-
end) nodal actions (forces) for each element of the bar.  Referring to Fig.a, we have

Substituting the above relations into (15.35) using relations (15.12) and integrating, we
get 

Referring to relations (15.44), we have                                           

Notice that the matrix {A } can be obtained by referring to Table 15.1.Re

e eAs discussed in Section 15.4 the stiffness matrix for elements of constant A  and E
obtained on the basis of formula (15.31) is exact to within the accuracy of the theory of
mechanics of materials. The same is true for the matrix of fixed-end actions {A }Re

obtained from relations (15.44) with (15.37) .

STEP 4 In this problem the local axes of the elements of the bar coincide with its global
axes.  Thus, we do not have to transform the local stiffness matrix and the local matrix
{A } of the elements of the bar to global.  Re

STEP 5  We write the stiffness equations for the bar. In order to accomplish this, we
assemble the stiffness matrix for the bar from the stiffness matrices (a) of its elements.
Moreover, we construct the load vector for the bar from the fixed-end actions of its
elements and the given concentrated forces acting on its nodes. Substituting relations (a)
into relation (15.27), we obtain
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              (e)

        (f)

       (g)

       (h)

         (i)

Thus, the stiffness matrix for the bar of Fig. a is 

Referring to relations (b), (c) and (15.34), we obtain 

Moreover, referring to  Fig. b, we get

The stiffness equations for the bar are obtained by substituting relations (f), (g) and (h)
into (15.57). Thus, we get
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     (j)

   (k)

      (l)

Figure c Components of translation of the nodes of the bar.

where  is the axial component of translation of node i of the bar (see

Fig. c).  Notice that since the stiffness matrix [S] and the matrix of equivalent loads {P }E

efor a domain subdivided into elements having constant modules of elasticity E  and cross
esectional area A  are exact to within the accuracy of the theory of mechanics of materials,

the stiffness equations (i) are exact.

STEP 6 We compute the values of the axial components of translation of the nodes of the

bar and its reactions  and .  In order to accomplish this we introduce into the

stiffness equations (i) the essential boundary conditions of the bar.  That is, we rearrange
the rows of the stiffness equations (i) by moving the rows which include the unknown
reactions to the bottom.  Moreover, we rearrange the columns of the stiffness matrix [S]
by moving to its right the columns which are multiplied by the specified (in this problem
vanishing) axial components of translation of the supports of the bar.  Furthermore, we
partition the resulting stiffness equations for the bar as indicated in relation (15.58).  Thus,
the stiffness equations (i) can be rewritten as

Referring to relation (15.58) and (j), we have

We compute the components of translation of the nodes of the bar.  Substituting relations
(k) into (15.59a), we obtain 

We compute the reactions of the supports of the bar.  Substituting the computed values
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   (m)

     (n)

     (o)  

   (p)

of the components of translations of the nodes of the bar (l) into relation (15.59b), we get

Notice that, as we discussed previously, the stiffness equations for a domain subdivided
e einto elements of constant E  and A  are exact.  Consequently, the values of the components

of translation (j) of the nodes of the bar and the reactions (m) of the supports of the bar
are exact, to within the accuracy of the theory of mechanics of materials.

1 1 1STEP 7  We compute the axial component of translation u (x ) and the internal force N(x )
of each element of the bar.  Referring to relation (l) the matrices of nodal displacements
of the elements of the bar are

Substituting relations (n) and (15.12) into (15.13), we get 

1We compute the internal force N(x ) in each element of the bar.  Substituting relations (o)
into (8.58), we obtain

Element 1 has a constant cross section and is subjected to an external concentrated
force at a point along its length. Thus, relation (15.13a) represents an approximation to

1 1the component of translation u (x ) of this element.  Elements 2 and 3 have a constant
cross section and are not subjected to external disturbances along their length.  Thus,
relation (15.13a) is an exact expression for the component of translation of these elements.

1 1 1 1 1 1Therefore,  u (x ), u (x ), N (x ) and N (x ) as given by the last two of relations (o)(2) (3) (2) (3)

1 1 1and (p) are exact, while  u (x ) and N (x ) as given by the first of relations (o) and (p)(1) (1)

are approximate. It can be shown that their exact values are 
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        (q)

The free-body diagrams of the three elements of the bar are shown in Fig. d.

Figure d  Free-body diagrams of the elements of the bar.
                                                                                                                                             

15.8 Application of the Finite Element Method to the Analysis of Framed Structures

  The finite element method can be used to analyze any statically determinate or
indeterminate framed structure (beam, truss or frame). In this case it is known as the
direct stiffness or displacement method for analyzing framed structures. This method has
been developed in the last 50 years and is best suited for writing programs for analyzing
framed structures by computers.  Practically all major general programs for analyzing
framed structures have been written using the direct stiffness method because of its
simplicity, generality and cost effectiveness. In this section we present the finite element
method as it applies to the analysis of framed structures and we apply it to a few simple
examples using a desk calculator. However, this method is not suitable for analyzing
framed structures by a hand calculator or by a desk calculator, especially if their static
indeterminancy is smaller than their kinematic indeterminancy. That is, the number of
unknown components of displacements of their joints is bigger than the number of
redundant reactions and/or internal actions..  The examples presented in this section can
be easier solved using the flexibility method described in Chapter 14.   

15.8.1 Elements, Nodes and Degree of Freedom of Framed Structures

    In the finite element method a structure is subdivided into elements whose ends are
imagined as being connected to a number of points called nodes.  Thus an element of a
framed structure extends between two nodes and it is either a member or a segment of a
member of the structure.  The nodes of a structure are its joints, its supports, the free ends
of its members and any other point which we have a reason to choose along the length of
its members.  As a rule we choose the smallest number of nodes required for the analysis
of a structure because the more nodes we choose, the more simultaneous algebraic
equations we have to solve.  For instance, the smallest number of nodes for the beam of
Fig. 15.9b is the sum of the points of support (1, 3 and 6), the two points (4 and 5) on each
side of the internal rollers. We do not have to choose  as nodes the points where external
concentrated actions are applied.
     The nodes and elements of a structure are numbered consecutively, and the number
of each element is placed in a circle, as shown in Fig. 15.9.  Moreover, we label the ends
of each element by j and k (j being the end of the element connected to the node having
the smallest number).  It is preferable that the nodes of framed structures are numbered
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Figure 15.9  Numbering the nodes and elements of framed structures.

so that the difference between the numbers of the nodes at the ends of each element is as
small as possible.
    After the nodes and the elements of a structure are numbered, their connectivity can be
expressed, for example, as shown in Table 15.2 for the structure of Fig. 15.9c.

Table 15.2  Connectivity of the elements and nodes of the structure of Fig. 15.9c.

Element Node Number

Number End j End k

1
2
3
4
5
6

1
2
4
2
5
5

2
3
5
5
6
7
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We classify the elements of planar framed structures as follows:

     1.  Elements whose cross sections are subjected only to an internal axial centroidal
force.  Each end of these elements is pinned to other elements or to a support.  We
consider the pins at the ends of these elements as being part of them.  We refer to these
elements as axial force elements.
    2.  Elements whose cross sections are subjected to an internal axial centroidal force, a
transverse force and an internal moment whose vector is normal to the plane of the
structure. The transverse force acting on an element lies on a plane which is parallel to the
plane of the structure and contains the sheer center of the cross sections of the element.
We refer to these elements as general planar elements. One end of an element of this type
is rigidly connected to other elements or to a support, while the other end is either free or
supported in some way (rigidly, with pins, rollers, etc.) to other elements or to a support.
We consider each end of these elements as being rigidly connected to a node.  That is, if
one end of an element of this type is connected to other elements or to a support by a
connection which is not rigid (pin, rollers), we consider this connection as part of the
node.  (See nodes 1, 3, 4 and 5 of the beam of Fig. 15.9b and nodes 3, 4 and 6 of the
frame of Fig. 15.9c.) Thus, we have two or more nodes adjacent to an action release
mechanism (see Section 8.6) which we call connected nodes. For example, there is a node
on each side of the hinge at the apex of the frame of Fig. 15.9c and on each side of the
internal rollers of the beam of Fig. 15.9b. 

    With the above classification the elements of a planar truss are axial force elements
(see Fig. 15.9a); the elements of a planar beam are general planar elements (see Fig.
15.9b) while the elements of a planar frame can be either general planar elements or axial
force elements (see Fig. 15.9c). 
     Depending on the type of the internal action release mechanism, one or more
components of the relative motion of the connected nodes vanish.  For instance, nodes 4
and 5 of the beam of Fig. 15.9b can rotate and translate in any direction.  However, their
components of translation in the direction of the  axis are equal.  Moreover, nodes 3

and 4 of the frame of Fig. 15.9c can rotate and translate in any direction.  However, their
components of translation are equal.
    When a structure is subjected to loads, some of its nodes undergo translations and/or
rotations which are not known, while others undergo translations and rotations which are
known.  For instance, the components of translation and rotation of a fixed support are
zero.  We refer to the components of translation and rotation of a node as its components
of displacement.  The degree of freedom of a body is equal to the smallest number of
independent components of displacement of its particles required for the specification of
its configuration.  However, in this text we call the number of unknown components of
displacement of the nodes of a framed structure its degree of freedom or its degree of
kinematic indeterminacy.
    In general, the displacement of an unrestrained node of a planar frame has two
components of translation with respect to a set of two rectangular axes lying in the plane
of the frame, and one component of rotation whose vector is normal to the plane of the
frame.  Moreover, the nodes of a truss do not rotate since they are assumed to be
connected to the nodes by pins, and, consequently, they cannot transfer a moment to the
nodes.  Thus, the displacement  of  an  unrestrained  (free)  node  of  a  planar  truss has
two components of  translation.  For example, the translation of each of nodes 2, 3, 4 and
5 of the simple planar truss shown in Fig. 15.10 has a horizontal and a vertical
component, while the translation of node 6 has only a horizontal component because this
node cannot move in the vertical direction.  Thus, the simple planar truss of Fig. 15.10 is
kinematically indeterminate to the ninth degree.
      As discussed in Section 8.2, the deformed configuration of a cross section of a general

1 2planar element in the x x  plane is completely specified if its components of translation
1 2u , u  and its components of rotation     are known.  However, in the classical theory of
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Figure 15.10  Degree of freedom of a planar truss.

beams employed in this text the component of rotation     of the cross sections of an
2 1element can be established if the component of translation u (x ), is a known function of

its axial coordinate  [see  relation (9.27b)]. Thus, the deformed configuration of a general
1 2planar element in the x x  plane is completely specified if the components of translation

1 1 2 1u (x ) and u (x )  are known functions of the axial coordinate of the element.  We call the
components of displacement which are needed in order to specify the deformed
configuration of an element its state variables. The state variables of the types of
elements which we are  considering are

1 1axial force element u (x )
1 2 1 1  2 1general planar element in the x x  plane u (x ) , u (x )

The state variables of a general planar element are not coupled.  Each one of them can be
established as a function of the axial coordinate of the element by solving one of the
boundary-value problems described in Section 8.12.

15.8.2     Global and Local Axes of Reference     

     We refer each planar framed structure to a right-handed rectangular system of axes
(cartesian axes)  called the global axes of the structure.  Moreover, we refer each

1 2element of a structure to a right-handed rectangular system of axes x , x , called its local
axes.  As local axes of an element, we choose the set of axes whose origin is the centroid

1of its cross section at its end j; its x  axis is directed along the axis of the element from its
2 3end j to its end k; its x  and x  axes are the principal centroidal axes of the cross section

at the end j of the element (see Fig. 15.11).

                        Figure 15.11 Global axes of a planar
                            frame and local axes of element 3.
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(15.61a)

(15.61b)

(15.61c)

(a) (b)

Figure 15.12  Sign conventions for internal actions.

15.8.3 Nodal Actions and Nodal Displacements of an Element

     When  we  analyze  structures  using  the  finite  element   method (direct  stiffness  or
displacement method) we denote the components of the internal force and moment acting

on  the  end  q (q = j or k) of an element by  and  (m = 1, 2, 3), respectively, when

referred to local axes and by  and , respectively, when referred to global axes.

Moreover, we consider as positive  the components of force and moment acting on the†

ends of an element if their sense coincides with the positive sense of the corresponding
1 2 3local axes x , x , x  (see Fig. 15.12b).  That is, the sign convention for the nodal actions

of an element used in this chapter is different than the one employed in the previous
chapters (see Fig. 15.12a). Thus,

Figure 15.13  Positive local and global components of nodal displacements of an element of a planar structure.

†The sign convention for the nodal actions (see Fig. 15.12b) used in this chapter is different than the one used
in the previous chapters (see Fig. 15.12a).
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(15.61d)

(15.61e)

(15.62)

(15.63)

The component of the internal forces and moments acting at the ends of an element are
called components of its nodal actions.
  The components of translations and rotations of the ends of an element are called
components of its nodal displacements.  The positive components of displacement of the
ends of an element of a planar structure are shown in Fig. 15.13.

15.8.4 Computation of the Local Shape Functions for a General Planar Element

       The matrix of state variables {u } and the matrix of the nodal displacements {D } ofe e

general planar element e are given by relations (15.56b) and (15.54b), respectively. The
matrix of state variables {u } is approximated on element e as e

2 1 1 1 ewhere  and  are approximate values of the state variable u (x ) at x  = 0 and x  = L ,

1 1respectively.   and  are approximate values of the rotation  at x  = 0 and x
e= L , respectively. Relation (15.62) is known as the interpolation equation for element e.

The shape functions   and    are given by relations (15.12), while the shape functions

             and               are chosen so that at the nodes of each element relation (15.62) gives

the approximate values of the components of translation  and .  That is, 

    The effect of axial deformation of general planar elements is in general small, and it
is usually disregarded when analyzing framed structures by hand calculations.  In this
case, we do not include the axial components of the nodal forces of an element in its
matrix {A } and the axial components of its nodal displacements in the matrix {D }.  Thate e

is, relation (15.62), reduces to 

www.EngineeringEBooksPdf.com



                Application of the Finite Element Method to the Analysis of Framed Structures         705

(15.64a)

and

(15.64b)

  (15.65)

    In order that each shape function has the properties described by relations (15.63) it
must involve at least four constants.  Consequently, it must be at least a polynomial of the
third degree.  That is, the simplest polynomials which can be chosen as shape functions
for one-dimensional, fourth order, linear boundary value problems, as the one under
consideration, have the following form:

The constants  and  ( q = jork ) (i = 0, 1, 2, 3 ) are evaluated by requiring that the

element shape functions satisfy relations (15.63).  That is, 

www.EngineeringEBooksPdf.com



7  0  6      The Finite Element Method

(15.67)

(15.68)

      (15.66)
Substituting the values of the constants obtained from relations (15.66) into relations
(15.65) we get the following element shape functions for the one-dimensional, fourth
order, linear boundary value problem for computing the transverse component of

2 1translation u (x ):

It can be shown that the element shape functions for the boundary value problem for
computing the transverse component of translation  are 

     Elements with more than three nodes are employed for one-dimensional, fourth order,
linear boundary value problems. However, their shape functions are polynomials of a
degree higher than the third.
     When the interpolation or shape functions are polynomials, the approximate solution
(15.62) converges to the actual as the seize of the elements decreases provided that the

shape functions  and  can accommodate rigid-body motion of the element.

That is, provided that relation (15.62) satisfies the following requirements: 

   1.  It gives a constant value of the state variable  throughout the domain of each

2 2 2 2element when its nodal values u  and u  are identical (u  = u  = C) whileej ek ej ek

 vanish. That is,

         Figure 15.14 Rigid-body rotation of an element.
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(15.69)

(15.70)

(15.71)

Thus,

It can be readily shown that the shape functions specified by relations (15.67) satisfy
requirement (15.69).
    2.  It gives a constant value of  throughout the domain of the

element when  and  (see Fig. 15.14).  That is, using

relations (15.64a) we have 

Thus, 

It can be readily shown that the shape functions (15.67) satisfy requirement (15.70).
Moreover, it can be shown that relation (15.62) with (15.67) represents the exact solution

2 1of the boundary value problem for computing the component of translation u (x ) of
e eelements which have constant modules of elasticity E  and cross sectional area A  and are

e enot subjected to loads along their length. However, for elements with constant E  and A
which are subjected to loads along their length, relation (15.62) represents an approximate
solution.  Thus, we may conclude that the finite element method gives the exact expression

2 1 2 1for the component of translation displacement u (x ), the internal shearing force Q (x )
3 1and the internal bending moment M (x ) for beams and frames, when t hey can be

subdivided into elements each of which is made from one material, has a constant cross
section and is not subjected to loads along their lengths.  

15.8.5  Direct Computation of the Contribution of a General Planar Element to the
1 2Stiffness Matrix and the Load Vector of a Planar Framed Structure in the x  x  Plane

     Consider a general planar element (say element e)  of planar beams or frames in the
1 2x  x  plane. The element is subjected to given loads inducing in it only a distribution of

shearing force , and bending moment . Assume that the component of

2 1translation (deflection) u (x ) and the component of rotation  are specified at bothe

ends of the element

Substituting relation (15.64a) into (9.32b) and the resulting relation into the modified
weighed residual equation (13.80), with                     and using the Gallerkin assumption
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  (15.72)

(15.73a)

(15.73b)  

(13.75), for the element under consideration, we obtain

where

Relation (15.72) may be rewritten as

The matrix of shape functions [ ] is defined by relation (15.67). Referring to relations

2 3 1(15.67) and taken into account that Q =-dM /dx , we have

where
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(15.74)

(15.75)

    (15.76)

(15.78)

(15.79)    

  and  = approximations  to  the  shearing  forces  acting  at  the ends j and k of  

                         element e, respectively.  They are considered positive if they act in the 
2                          direction of the positive x  axis (see Fig. 15.12b).                      

  and  = approximations to the bending moments acting at the ends j and k of the

                          element, respectively.  They are considered positive if their vector acts
3                          in the direction of the positive x  axis (see Fig. 15.12b).

Substituting relation (15.73b) into (15.73a), we get

where

 = an approximation to the matrix of nodal displacements for element e defined by
             relation (15.54b).

 = the local stiffness matrix for element e. Referring to relation (15.73) it is equal to

It can be shown that the terms of the matrix  are equal and opposite to the
contributions, of the loads acting on element e, to the equivalent actions at the nodes of
the structure where the ends j and k of element e are connected.  
     It is clear that once equation (15.74) is established for an element its local stiffness
matrix and the contribution of the loads acting along its length to the matrix of equivalent
actions of the domain are known.  That is, denoting by e and (e + 1) the two elements

radjacent to node r, the equivalent actions {P } at node r are equal toE

      If the effect of the axial deformation is negligible, the stiffness matrix for a general
planar element is obtained by substituting relations (15.67) into (15.76). That is,
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 (15.80)

  (15.81)

      The stiffness matrix of a prismatic general planar beam element made from one
material, when the effect of axial deformation is not negligible, is obtained by combining
relation (15.79) and (15.31). That is,

 

where 
e   L  = length of element.

3 3   I  = moment of inertia of cross section of element about its x  local axis.e

e   E  = modulus of elasticity of the material from which element is made.
Moreover, the stiffness matrix for an axial force element of a frame if the effect of axial
deformation is not negligible, is

3Figure 15.15    Free-body diagram of an element subjected to bending about the x  principal centroidal axis.
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(15.82)

 (15.83)

15.8.6 Physical Meaning of Relation (15.74)

     In this section we illustrate the physical meaning of relation (15.74). If the ends of the

element are fixed the matrix  is a zero matrix and equation (15.74) reduces to

This indicates that  is an approximation to the matrix of local nodal actions (the

reactions) of the element subjected to the given loads with its ends fixed.  We call 
the matrix of fixed-end actions of the element.
   If an element is subjected only to nodal displacements,  is a zero matrix and when
the effect of axial deformation is included, relation (15.74) reduces to

Equation (15.83) is the approximate local stiffness equation for element e when the effect
of axial deformation is not negligible. The terms of the matrix  represent an
approximation to the nodal actions which must be applied to the ends j and k of element
e in order to displace them by amounts equal to  i ts actual nodal translations and
rotations.
Thus, as shown in Fig. 15.16,  in relation (15.74), the nodal actions of an element are
expressed as the sum of the nodal actions when the element is subjected only to its nodal
displacements and its nodal actions when it is subjected, to the given loading with its ends
fixed. Consider an element subjected to the loading shown in Fig. 15.16a.  The external
actions acting on this element are equal to the sum of the external actions acting on the
element subjected to loadings of Fig. 15.16b and c.  Moreover, each component of nodal
displacement of the element  subjected  to  the  loads  shown  in  Fig. 15.16a  is  equal
to the sum of the corresponding component of nodal displacement of the element
subjected to the loads shown in Figs. 15.16b and c. Consequently, since the principle of
superposition is valid for the structures which we are considering, the internal actions
acting on any cross section of the element subjected to the loads shown in Fig. 15.16b and
the components of displacement of any of its points are equal to the sum of the
corresponding quantities of the element subjected to the loads shown in Figs. 15.6b and
c. 
The fixed-end actions for elements of constant cross section subjected to loads of
practical interest can be computed and tabulated (see Table 15.3).  In structural analysis
such tables are used to compute the matrix { }.
    The physical significance of the stiffness coefficients of the second column of the
stiffness matrix of relation (15.83) for a general planar element can be established by
considering such an element subjected only to the components of nodal actions which are
required to induce the following nodal displacements:
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(15.84)

(a) Element subjected to the      (b) Element subjected on to its (c) Element subjected to the
given loading and its actual      actual nodal displacements                given loading acting along its
nodal displacements                length with its ends fixed

Figure 15.16  Superposition of the response of a general planar element subjected only to its nodal
displacements,  and that of the element subjected to the given loads acting along its length with its ends fixed.

In this case the stiffness equations (15.83) reduce to

Table 15.3 Restraining actions for elements of constant cross section subjected to axial centroidal forces and
3 c 2temperature change *T ()T  = *T  = 0).
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(15.85)

(15.86)

(15.87)

      (a)                  (c)

      (b)                  (d)

m nFigure 15.17  Physical significance of the local stiffness coefficients K (m, n = 1, 2, ..., 6) of a general planar
element. 

22 32 52 62Thus, as shown in Fig. 15.17a the stiffness coefficients K , K , K  and K  represent the
nodal actions which must be applied to an element in order to induce the nodal
displacements specified by relation (15.84).
    The physical significance of the stiffness coefficients of the third column of the
stiffness matrix of a general planar element can be established by considering an element
subjected only to the components of nodal actions which are required to induce the
following nodal displacements:

In this case the stiffness equations (15.83) reduce to

23 33 53 63Thus, as shown in Fig. 15.17b the stiffness coefficients K , K , K  and K  represent the
nodal actions which must be applied on an element in order to induce the nodal
displacements specified by relation (15.86).
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(15.92)

(15.88)

(15.89)

(15.90)

(15.91)

     The physical significance of the remaining non-vanishing stiffness coefficients for a
general planar element is illustrated in Fig. 15.17c and d.

15.8.7  Transformation of the Matrices of Nodal Actions of an Element

    In this section, we give the transformation relations between the local and global
matrices of nodal actions of the elements of the various types of structures that we are
considering.

Elements of a Planar Truss
     Consider an element of a planar truss and choose the ,  and ,  axes in the

plane of the truss.  Referring to Fig. 15.18, we have

Hence,

Moreover,

where

Elements of a Planar Beam or a Planar Frame
1 2    Consider an element of a planar beam or a planar frame and choose the x , x  and , 

axes  in  the  plane  of  the  structure.  Noting  that         is   equal to        (q = j or k), and

referring to relations (1.36) and (1.37) the matrices of nodal actions {A } and { }(q =q

j or k) of the element under consideration are related by the following transformation
relations:
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(15.93)

   (15.94)

(15.95)

(15.96)

(15.97)

Figure 15.18  Free-body diagram of an element of a truss.

and

where

PThe matrix {7 } is the transformation matrix for the element given by relations (1.37).

The matrices of nodal actions {A} and { } of an element of a planar beam or a planar
frame are related by the following transformation relations:

and

where
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(15.98a)

(15.98b)

  (15.99)

(15.100a)

(15.100b)

(15.101)

(15.102)

(15.103)

(15.104)

PThe matrix [7 ] is the transformation matrix for the element given by relation (1.37).

Generalization of the Results

    On the basis of the foregoing presentation, the relation between the matrices of nodal

actions {A} and { } of an element of a structure may be written as

and

PTwhere depending on the type of the structure the matrix {7} is one of the matrices [7 ]
PFor [7 ] given by relation (15.91) or (15.97), respectively.  From relations (15.98), it is

apparent that

where [I] is the unit matrix.

15.8.8 Transformation of the Matrices of Nodal Displacements of an Element

     It is apparent that the transformation relations between the local and global matrices
of nodal displacements are analogous to those between the nodal and global matrices of
nodal actions.  That is, in general, referring to relations (15.98) the relations between the
local and global matrices of nodal displacements can be written as

and

PTwhere depending on the type of structure, the matrix [7] is one of the matrices  [7 ] or
PF[7 ] given by relation (15.91) or (15.97), respectively. 

15.8.9 Transformation of the Local Stiffness Matrix to Global

     In this section we express the stiffness equation (15.47) or (15.83) for an element of
a framed structure in global form.  That is,

For this purpose consider relation (15.83) for an element of a framed structure.  That is,

Substituting relation (15.100a) into (15.102), we obtain

We  call  the  matrix         the  hybrid  stiffness  matrix  for  the element.  It transforms the
global components of nodal displacements of an element to the local components of its
nodal actions.  It is given as
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(15.105)

(15.106)

(15.107)

PTwhere depending on the type of the structure the matrix [7] is one of the matrices [7 ]
PFor [7 ] given by relation (15.91) or (15.97), respectively. Premultiplying each side of

relation (15.102) by [7]  and using relation (15.103) and (15.104), we obtainT

Referring to relations (15.101) and (15.105) we may conclude that

Equation (15.106) is employed in obtaining the global stiffness matrix of an element from
its local stiffness matrix.
     The global matrix of nodal actions of an element of a framed structure subjected to
given loads can be expressed as

15.8.10 Restrained Structure — Structure Subjected to Equivalent Actions

    Consider the frame subjected to the loading shown in Fig. 15.19a.  The external actions
acting on this frame are equal to the sum of the corresponding external actions acting on
the frame subjected to the loads shown in Fig. 15.19b and c.  Consequently, since the
principle of superposition is valid for the structures which we are considering (see Section
3.13), the internal actions at any cross section of an element and the components of
displacement of any point of the frame, loaded as shown in Fig. 15.19a, are equal to the
sum of the corresponding quantities of the frame loaded as shown in Fig. 15.19b and c.

Notice that the values of the external actions , , , ,  and  can be

chosen so that the components of translation and of rotation of nodes 2 and 3 of the frame

loaded as shown in Fig. 15.19b vanish.  For this choice of the external actions , ,

        ,        ,        and       , the frame of Fig. 15.19b becomes kinematically determinate.
That is, all the components of displacement of its nodes vanish.  In this case the structure

of Fig.  15.19b  is  called  the  restrained structure.  The external actions , , ,

       ,        and         acting on the nodes of the restrained structure are called the restraining
actions.  Moreover, the external actions , , , , , and acting on the

nodes of the structure of Fig. 15.19c are called the equivalent actions. They are equal and
opposite to the restraining actions.
     The restrained structure is comprised of elements which are either fixed at both ends
or pinned at both ends.  Thus, the external loads (external actions, change of temperature)
acting along the length of an element of the restrained structure affect only this element.
     Notice that by considering the equilibrium of a node of the restrained structure, it can

Figure 15.19  Principle of superposition.
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      (a) Structure subjected     (b) Restrained structure subjected         (c) Structure subjected to the  
       to the given loading     to the given loading except the              equivalent actions and to the

                       given actions acting on its nodes           given actions acting on its nodes

Figure 15.20  Superposition of the restrained structure and the structure subjected to the equivalent actions and
to the given concentrated actions acting on its nodes.

be shown that the global components of the restraining actions acting on this node are
equal to the sum of the corresponding global components of the fixed-end actions of the
ends of the elements connected to this node.  Moreover, notice that for uniformity of
treatment we consider the reactions of the supports of the restrained structure as
restraining actions (see Fig. 15.20).  Referring to Fig. 15.20, it is apparent that the
superposition of the components of displacement of nodes 1, 2 and 3 of the restrained
structure (see Fig. 15.20b) and those of the structure subjected to the equivalent actions
and to the given concentrated actions acting  on  its  nodes  (see Fig. 15.20c)  must  yield
the  corresponding components of displacement of nodes 1, 2 and 3, of the structure
subjected to the given loading (see Fig. 15.20a). Inasmuch as the components of
displacement of nodes 1, 2 and 3 of the restrained structure are zero, the components of
displacement of nodes 1, 2 and 3 of the structure, subjected to the equivalent actions and
to the given concentrated actions acting on its nodes, must be equal to the corresponding
components of displacement of the nodes of the structure subjected to the given loading.
Moreover, the superposition of the reactions and the equivalent actions acting at the
supports of the structure, subjected to the equivalent actions and to the given concentrated
actions acting on its nodes (see Fig. 15.20c) and the corresponding restraining actions of
the restrained structure (see Fig. 15.20b), yields the corresponding reactions of the actual
structure subjected to the given loads.  Thus, it is apparent that the nodal displacements
and the reactions of the structure subjected to the equivalent actions and to the given
concentrated actions acting on its nodes are equal to those of the structure subjected to
the given loads. Consequently, the stiffness equation (15.57) for the structure subjected
to the given loads is identical to those of the structure subjected to the equivalent actions
and the given concentrated actions acting on its nodes. However, the components of
displacement (translations and rotations) and the internal actions of elements subjected
to loads along their length are not equal to the corresponding quantities of the structure
subjected to the equivalent actions and to the given concentrated actions acting on its
nodes. The components of displacement and the internal actions of points along  the
length  of  such  elements  obtained on the basis of the finite element method represent
an approximation to their actual components of displacement and their internal actions,
respectively. The correct values of the components of displacement and of the internal
actions of points along the length of an element subjected to loads along its length are
obtained by superimposing those of the structure subjected to the equivalent actions and
the given concentrated actions acting on its nodes and those of the restrained structure.

15.8.11  Analysis of Framed Structures

     When we analyze a framed structure using the finite element method (direct stiffness
method), we adhere to the following steps:
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(15.108)

STEP 1 We subdivide the structure into a number of elements.  Usually we choose each
member of constant cross section as an element.

STEP 2  We compute the local matrix of fixed-end actions {A } of each element of theR

structure.  The terms of this matrix represent the local components of nodal actions of the
element subjected to the given loads with its ends fixed.  Moreover, using relation
(15.98b), we transform the local matrix {A } to global.R

STEP 3  We establish the matrix of equivalent actions  to be applied on the nodes
of the structure from the global components of the fixed-end actions of its elements.

Moreover, we form the matrix  of the given concentrated actions acting on the
nodes of the structure from the data of the problem.

STEP 4  We establish the local stiffness matrix [K] for each element of the structure using
relations (15.31) or (15.79) or (15.80) and (15.81).

STEP 5  We compute the hybrid  and the global  stiffness matrices for each
element of the structure using relations (15.104) and (15.106), respectively.

STEP 6  We assemble the stiffness matrix for the structure from the global stiffness
matrices of its elements (see Section 15.4).  Moreover, we form the stiffness equation
(15.57) for the structure.

STEP 7  We compute the components of displacements of the nodes of the structure and
its reactions. To accomplish this we do the following:

1.We rearrange the rows and columns of the stiffness equations for the structure in order
   to incorporate its boundary conditions in them (see Section 15.7).

2.We partition the modified stiffness matrix of the structure as shown in relation (15.58).

3.We use relations (15.59a) and (15.59b) to compute the components of displacement of
the nodes and the reactions of the supports, respectively, of the structure subjected to the
equivalent actions, to the given concentrated action acting on its nodes and to the given
components of translation and rotation of its supports.  They are equal to those of  the
structure  subjected  to  the  given  loads  including  the  given  components of translation
and rotation of its supports.

STEP 8  From the components of displacement of the nodes of the structure computed
in step 7, we compute the global components of nodal displacements of each element of
the structure.  From these, we compute the local components of nodal actions of each
element of the structure.  That is, substituting relation (15.103) into (15.52) we obtain

where  is the hybrid stiffness matrix of the element defined by relation (15.104). It
transforms the global components of nodal displacements of an element to the local
components of its nodal actions when subjected only to its nodal displacements.
     A computer program can be written for analyzing any framed structure statically
determinate or indeterminate using the finite element method (direct stiffness method)
presented in this section. However, when analyzing framed structures using only a desk
calculator, this method should be employed only for statically indeterminate framed
structures of a degree of static indeterminancy higher than the number of unknown
components of displacements of their joints. For example, the frame of Fig. 15.21a is
statically undetermined to the second degree but its joints have four unknown components
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(a) Frame that preferably should be analyzed using     (b) Frame that preferably should be analyzed
the flexibility method presented in Chapter 14                   using the direct stiffness method

Figure 15.21 Preferred method for analyzing statically indeterminate framed structures when only a desk
calculator is available.

of displacement. Thus, its analysis will involve substantially less algebra if the flexibility
method presented in Chapter 14 is employed instead of the direct stiffness method
presented in this section.  Moreover, the structure of Fig. 15.21b is statically
undetermined to the sixth degree but has only three unknown components of displacement
of its joints. Thus, its analysis would involve less algebra if the direct stiffness method is
employed instead of the flexibility method. 
                                                                                                                                             

Example 2  Using the finite element method (direct stiffness method), compute the
components of displacements of the nodes, the reactions and the internal forces in the
elements of the truss subjected to the forces shown in Fig. a.  The elements of the truss
are made of the same isotropic, linearly elastic material and have the same constant cross
section (AE = 20,000 kN).

Figure a  Geometry and loading of the truss.

                                                                                                                                             

Solution 

STEP 1 We choose as elements the three members of the truss.

STEPS 2 and 3 The truss under consideration is subjected to loads acting only on its
joints. Thus, 

{P } = 0        (a) E

       
Moreover, referring to Fig. a we have 

                       {P }  = [ 0  0  40  !80  0  0 ]                                     (b)G T

STEP 4  We compute the local stiffness matrix for each element of the truss. That is,
referring to relations (15.31), we have
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         (c)

 (d)

(e)

STEP 5 We compute the hybrid and the global stiffness matrices for each element of the
truss. Substituting relations (c) and (15.91) into (15.104), we get

Substituting relations (d) and (15.91) into (15.105), we obtain 

STEP 6  We assemble the stiffness matrix for the truss from the global stiffness matrices
for its elements and we form the stiffness equations for the truss. In order to accomplish
this we choose the indices of the stiffness coefficients for each element of the truss so as
to correspond to those of the components of displacements of the nodes of the truss to
which the element is connected.  Referring to Fig. b the global stiffness equation (15.102)
for the elements of the truss may be expressed as
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     (f)

   (g)

The stiffness matrix for the truss has the following form:

Figure b  Numbering of the components of         Figure c  Degrees of freedom of the nodes of the
displacements of the nodes of the truss.         truss.
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    (h)

                      (i)

pqwhere the stiffness coefficient S  for the truss is equal to the sum of the stiffness

coefficients  for all the elements of the truss.  Thus, referring to relations (e) to (g) and

using relation (15.27), we have

Substituting relation (h) into (g), we obtain the stiffness matrix  for the truss. That is,

Notice that the determinant of the matrix  vanishes. This becomes apparent by noting
that the sum of rows 2 and 4 of this determinant is the negative of row 6. This indicates
that the stiffness matrix is singular. This was anticipated because in establishing the

matrix  we did not take into account the supports of the structure and, thus, it can
move as a rigid body. 
    Using relation (i) and referring to Figs. a and b the stiffness equations for the truss are
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   (j)

(k)

    (l)

  (m)

STEP 7  We compute the components of displacements of the nodes of the truss and its
reactions.  In order to accomplish this we take into account the boundary conditions of the
truss.  That is, we rearrange the rows of the stiffness equation (j) in order to move to the
bottom those corresponding to the reactions of the supports of the truss.  Moreover, we

rearrange the columns of the stiffness matrix  in order to move to the right the columns
which are multiplied by the vanishing components of displacements of the supports of the
truss (see Fig. c).  Furthermore, we partition the resulting stiffness equations as indicated
in relation (15.58).  Thus,

Referring to relations (15.59) and (k), we have

We compute the components of displacements of the nodes of the truss.  Substituting
relation (l) into (15.59a), we obtain
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          (n)

      (o)

We compute the reactions of the truss. Using relation (l) and (m) from relations (15.59b),
we get

The reactions of the truss are shown in Fig. d. Their values can be checked by considering
the equilibrium of the truss.

STEP 8  We compute the local components of internal forces in the elements of the truss.
Referring to Fig. b and relation (m), the global components of nodal displacements of the
elements of the truss are

We substitute relations (o) and (d) into (15.103), to get

The results are shown in Fig. d.  They can be checked by considering the equilibrium of
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the joints of the truss.  It is apparent that the finite element method is not suitable for
analyzing trusses, using a desk calculator only,  because in this case the analysis of a
simple statically determinate truss involves lengthy computations. The reason for this is
that the truss of Fig. a has six unknown components of displacement while it is statically
determinate.

       Figure d  Results for the truss of Fig. a.
                                                                                                                                              
                                                                                                                                              

Example 3  Using the finite element method (direct stiffness method), compute the
components of displacement of the nodes of the frame of Fig. a subjected to the external
actions shown in this figure, as well as to a change of temperature of its elements and to
a settlement of 20 mm of support 1.  Moreover, compute the reactions of the frame and
the nodal actions of its elements.  The temperature of the top and bottom fibers of the

t belements of the frame is T  = 25°C and T  = !15°C, respectively. The  temperature during
0 Cconstruction  was T  = 5°C; thus )T  = 0°C.  The elements of the frame are made of the

same isotropic, linearly elastic material (E = 210 kN/mm ,  = 10 /°C) and have the same2 -5

3constant cross section (A = 16 × 10  mm , I  = 400 × 10  mm , h = 420 mm).3 2 6 4

Figure a  Geometry and loading of the frame.

                                                                                                                                              

Solution  We establish the internal actions of the elements of the frame of Fig. a by
superimposing (a) the corresponding nodal actions of the elements of the restrained
structure subjected to the given actions except the given concentrated external actions
acting on its nodes (b) the structure subjected to the equivalent actions and the given
concentrated actions acting on its nodes and the settlement of its support 1 (see Fig. b).

STEP 1 We choose as elements the two members of the frame. When we use the finite
element method to analyze a framed structure, we actually analyze the structure subjected
to the equivalent actions and the given concentrated actions acting on its nodes and the
settlement of its supports (see Fig. bc). The components of nodal displacement and the
reactions of this structure are equal to the corresponding quantities of the structure
subjected to the given loads. However, since the elements that we have chosen are
subjected to loads along their length, the components of displacement and the internal
actions  of  the  elements of the structure of Fig. bc are an approximation to those of the
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Figure b  Superposition of the restrained structure and the structure subjected to the equivalent actions and the
settlement of support 1.

structure subjected to the given loads. The results could improve by choosing smaller
elements. However, in the analysis of framed structures, we can obtain exact results for
the internal actions and the components of displacement of their elements by
superimposing the corresponding qualities of the corresponding elements of the restrained
structure to those of the structure subjected to the equivalent actions (see Fig. b).

STEP 2  We establish the fixed-end actions of the elements of the structure subjected to
the given actions except the given concentrated external actions acting on its nodes, by
referring to Table 15.3.  They are shown in Fig. c. Moreover, we establish the fixed-end

Figure c  Free-body diagrams of the elements and nodes of the restrained structure subjected to the given actions
except the given concentrated actions acting on the nodes of the structure.
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   (a)

(b)

   (c)

actions of the elements of structure subjected to the given temperature change by referring
to Table 15.3. Referring to Fig. c the local matrices of fixed-end actions of the elements
of the structure are

We transform the local matrix of fixed-end actions of each element of the structure to
global.  The local axes of the elements of the frame are shown in Fig. d; referring to this
figure we form the transformation matrix for each element of the frame [see relations
(15.97) and (1.37)], and we substitute it in relation (15.98b) to obtain its global matrix of
fixed-end actions.  That is,

STEP 3  We form the matrix of equivalent actions from the global matrices of fixed-end
actions of the elements of the frame. That is, referring to relations (b), we have

Morever, we form the matrix of the given actions  acting on the nodes of the
structure.  Referring to Fig. a we have

Figure d  Global axes of the frame and local axes of its elements.
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      (e)

          (f)

       (g)

      (d)

Thus,

The structure subjected to the equivalent actions is shown in Fig. e.

STEP 4  We compute the local stiffness matrix for each element of the structure including
the effect of axial deformation. That is, referring to relation (15.80), we have

STEP 5 We compute the hybrid and the global stiffness matrices of each element of the
structure. The transformation matrix [7 ] of element 1 is given by relation (15.97).  That1

is,

Substituting relation (f) and (g) into (15.104), we get
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  (h)

     (i)

     (j)

Substituting relation (g) and (h) into (15.106), we get

and

Figure e  Structure subjected to the          Figure f  Numbering of the components of
equivalent actions.              displacements of the nodes of the frame.
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   (k)

          (l)

STEP 6  We assemble the stiffness matrix for the structure from the global stiffness
matrices for its elements.  To accomplish this we choose the indices of the stiffness
coefficients for each element of the structure so as to correspond to those of the
components of displacement of the nodes of the structure to which the element is
connected.  Referring to Fig. c the global stiffness relations for the elements of the
structure may be written as

The stiffness matrix for the structure of Fig. a has the following form:

ijwhere the stiffness coefficient S  for the structure is obtained from the global stiffness

coefficients  for its elements. Thus, referring to relations (i) to (l) and using relation

(15.27) the stiffness matrix for the structure of Fig. a is
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(m)

Referring to relations (e) and (m) and to Figs. a and f the stiffness equations for the frame
of Fig. a are 

(n)
STEP 7  We compute the components of displacement of the nodes of the frame and its
reactions.  In order to accomplish this we take into account the boundary conditions of the
frame.  That is, we rearrange the rows of the stiffness equations (n) in order to move to
the bottom the equations involving the reactions of the frame. Moreover, we rearrange the
columns of the stiffness matrix in order to move to its right the columns which are
multiplied by the vanishing components of displacements of the supports of the frame.
Furthermore, we partition the resulting stiffness equations as indicated in relation (15.58).
Thus, referring to Fig. f, we have

        (o)
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      (p)

  (q)

Referring to relation (15.58) and (o), we have

Substituting from relations (p) into relation (15.59a), we obtain
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       (q)

        (r)

Moreover, substituting from relations (p) into relation (15.59b) we get

 Thus, 
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     (s)

STEP 8  We compute the internal actions in the elements of the frame.  Referring to Fig.
f and relation (q), the global components of nodal displacements of the elements of the
frame are

Substituting relations (t) and (s) into relation (15.108), we obtain
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(15.109)

    (15.110a)

(15.110b)

  (15.111)

 (15.112)

               (t)

15.9 Approximate   Solution   of   Scalar  Two-Dimensional,  Second  Order,  Linear
        Boundary  Value  Problems  Using  the  Finite  Element  Method

   In this section we apply the finite element method to scalar two-dimensional, second
order, linear boundary value problems.  The domain of these problems is a plane surface
and its boundary is a planar curve.

15.9.1 The Strong or Classical Form of Scalar Two-Dimensional, Second Order,
Linear Boundary Value Problems 

2 3   Consider the boundary value problem for establishing a scalar function X (x , x ) (state
variable) which has the following attributes:

1.  It satisfies in a two-dimensional domain     ended by a closed planar curve     the
following differential equation:

2 3where a, b, c and f are known functions of x  and x .
2.  It satisfies the following boundary conditions:

n 2 3 1where i  =       i  +       i  is the unit vector normal to the boundary     ; X  is a function of
2 3 2 3x  and x  specified on the portion      of     ; g is a function of x  and x  specified on the

portion            of    . The boundary condition (15.110a) is essential while the boundary
condition (15.110b) is natural. A point on the boundary ' can be specified by the
following parametric equations:

s 2where x  is the length from an arbitrary reference point on the boundary      to the point (x ,
3 2 3x ), measured along the boundary   .  The values of a function f (x , x ) on   can be

expressed as follows:
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(15.113)

     (15.114)

(15.115)

    If a = b = 1 and c = 0, equation (15.109) reduces to the following form known as the
Poisson equation:

If f = 0, equation (15.113) reduces to the following form known as the Laplace equation

2 3     The boundary value problem for establishing the function X(x , x ) which satisfies the
differential equation (15.114) at the points of a domain and the boundary condition
(15.110a) is known as the Dirichlet problem.  The boundary value problem for

2 3establishing the function X(x , x ) which satisfies the differential equation (15.114) and
the boundary condition (15.110b) is known as the Neumann problem. The solution of the
Dirichlet problem is unique while the solution of the Neumann problem is determined
only to within an additive constant.
     Special cases of the boundary value problems (15.109) and (15.110) arise in many
fields.

15.9.2 Approximations to the Solution of Scalar Two-Dimensional, Second Order,
Linear Boundary Value Problems by Trial Functions

     Consider a scalar two-dimensional, second order, linear boundary value problem
2 3whose strong form involves the determination of the function X(x , x ) which satisfies the

differential equation (15.109) and the boundary conditions (15.110). We construct
approximate solutions for this boundary value problem of the following form:

where

sc (s = 1, 2, ..., S)           = undetermined coefficients also known as degrees of
freedom.

0 2 3 2 3N (x , x )         = continuous   function   of   x   and  x   chosen  to  satisfy  the
boundary  conditions  in as  big  a  portion  of  the boundary as
possible.

s 2 3N (x , x ) (s = 1, 2, ..., S)  = linearly  independent  functions  known  as   trial   or  basis
 functions. They are chosen to satisfy the homogeneous part of

                                             the boundary conditions on the portion of the boundary where

2 3                                         they are satisfied by the function       (x , x ).

2 3 2 3    The selection of the function       (x , x ) and the trial function       (x , x ) (s = 1, 2, ...,
S) affects the accuracy of the approximate solution of a boundary value problem.  In order
to insure that as s increases the approximate solution (15.115) converges to the actual
solution of the boundary value problem, the trial functions must be a sequence of
functions from a complete set of functions starting from the lowest order up to the order
S without missing an intermediary term (see Section 13.8).  Moreover, the approximate
solution (15.115) should not vanish at points where the actual solution does not vanish.
Furthermore, the speed of convergence of the approximate solution improves if the

2 3 2 3function       (x , x ) and the trial functions      (x , x ) (s = 1, 2, ..., S) satisfy the symmetry
conditions, if any, of the problem.
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   (15.116a)  

15.9.3 The Weighted Residual Form of Scalar Two-Dimensional, Second Order,
Linear Boundary Value Problems

Following a procedure similar to the one adhered to in sections 13.9 and 13.10 and
assuming that the solution (15.115) satisfies at least the essential boundary conditions of
the problem we obtain the following weighting residual equations for the scalar, two
dimensional, second order, linear boundary value problem (15.109) with (15.110):

where

when the approximate solution (15.115) satisfies the boundary
condition (15.110b).

           (15.116b)
when the approximate solution (15.115) does not satisfy the

  boundary condition (15.110b).
    

n 2 3The line integral is taken in the counterclockwise direction; i  =       i  +       i  is the unit
r 1vector normal to the element        of the boundary. The weighting functions W (x ) and

rb 1W (x ) are such that the integrals of equations (15.116a) do not become infinite.
 It is apparent that the exact solution of the boundary value problem under
consideration satisfies the weighted residual equation (15.116a). Moreover, it can be

2 3shown that the function X(x , x ) which satisfies the essential boundary conditions and
r 1 rb 1equations (15.116a) for every set of functions W (x ) and W (x ) is the solution of the

boundary value problem under consideration.  Thus the weighted residual form of the
2 3boundary value problem for computing the function X(x , x ) can be stated as follows:

2 3"Find the function X(x , x ) which satisfies the essential boundary conditions and the
r 1weighted residual equation (15.116b) for every set of weighting functions W (x ) and

rb 1W (x )."
2 3 In the weighted residual methods the functions       (x , x )  and  the  shape  functions

 2 3     (x , x ) (s = 1, 2,..., S) are usually chosen to satisfy all the boundary conditions of the
sproblem. The parameters c  (s = 1, 2, ...,  S) of the approximate solution (15.115) of the

boundary value problem (15.109) with (15.110) are established by substituting relation
(15.115) into its weighted residual equations (15.116a) and solving the resulting linear
algebraic equations. There are several weighted residual methods available in the

r 2 3literature.  They defer only in the choice of the weighting function W (x x ). The most
extensively used of these methods is the Gallerkin method in which the weighting
function is taken as

r 2 3 2 3W (x , x ) =        (x , x )               (15.117)

15.9.4  The Modified Weighted Residual (Weak) Form of Scalar, Two-Dimensional,
           Second Order, Linear Boundary Value Problems

We can obtain the modified weighted residual (weak) form of the boundary value
problems (15.109) to (15.110) by adhering to the following steps: 

STEP 1 We write its weighted residual equation (15.116a) as
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(15.119)

(15.120)

(15.121)

r = 1, 2, ..., S (15.118)

where the parameter      is defined by relation (15.116b) and the line integral is taken in
the counterclockwise direction.

STEP 2 We apply Green's theorem of the plane [see relations (6.19)] to the first two terms
of the integral over the domain     of relation (15.118), to obtain

where the parameter     is defined by relation (15.116b) and the line integrals are taken in
the counterclockwise direction.

STEP 3 We simplify relation (15.119) by limiting the choice of the weighting functions
as follows

If the approximate solution (15.115) does not satisfy the natural boundary condition , =
1.  In this case using relation (15.120) the last two terms of relation (15.119) reduce to

If  the  approximate  solution  (15.115)  satisfies  the  natural  boundary condition      = 0

and  on  the  portion  of  the  boundary                .  Thus,

relation (15.121) is still valid. Substituting relation (15.121) into(15.119), we obtain
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(15.122)

(15.123a)

Notice that, if  the  boundary  conditions  are  all  essential            and               and
relation  (15.119)  reduces  to (15.122). 
   Relation (15.122) is the modified weighted residual equations for the scalar, two
dimensional, second order, linear boundary value problem (15.109) with (15.110).  In
order to ensure that the integrals on the left side of relation (15.122) exist, we impose the

r 2 3requirement   that   W (x , x )    and                     are  continuous  functions  of  the  space
coordinates in the domain     .

2 3   From our presentation in this section it is clear that the solution X(x , x ) of the boundary
value problem under consideration satisfies relation (15.122).  Moreover, we can deduce

2 3that a function X(x , x ) which satisfies the essential boundary conditions of the problem
r 2 3and the integral equation (15.122) for every weighting function W (x , x ) is the solution

of the boundary value problem (15.109) with (15.110).  Hence, the modified weighted
residual (weak) form of the boundary value problem under consideration involves the

2 3determination of the function X(x , x ) which satisfies the essential boundary conditions
r 2 3of the problem and the integral equation (15.122) for every continuous function W (x , x ).

15.9.5  The  Finite  Element  Method  for Scalar, Two-Dimensional Second Order,
               Linear Boundary Value Problems, as a Modified Weighted Residual Method

      In  the  finite  element  method  the  domain      of  the  problem  under  consideration
is  divided  into  a  number  (say n) of non-overlapping two-dimensional subdomains    
(e = 1, 2, ..., n) called finite elements.  We choose elements which are well suited for
modeling irregular domains and yet are simple enough to minimize computational effort.
For two-dimensional domains such elements are the straight edge and curved edge
triangular and the straight edge and curved edge quadrilateral. In this book we consider
only straight edge elements (see Fig. 15.22).
If the boundary      or portion of the boundary of a domain is a curve, as in Fig. 15.23,

there will be some modeling error since the boundary of the finite element mesh
consisting of straight edge triangular and/or quadrilateral elements cannot be made to
coincide with the curved portions of the boundary       of the domain.  However, as the size
of the elements located close to the curved portions of the boundary decreases, the
accuracy, by which the boundary of the mesh approximates that of the domain, increases
and the modeling error decreases.  Certain key points of each element are chosen as nodes.
They must include at least the vertices of each element and could include other points on
its boundary or within its domain.  As in the case of one-dimensional elements, the
number of nodes in two-dimensional elements depends on the order of the shape
functions used.

2 3In the finite element method the state variable X(x , x ), of the boundary value problem
under consideration, is approximated as follows:

where
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        (15.123b)

        (15.123c)

(15.124)

(a) Three-node, straight-sided                  (b) Four-node straight-sided          (c) Four node straight-
triangular                     rectangular         sided quadrilateral  

Figure 15.22 Finite elements for two-dimensional domains.

                       S = total number of nodes in the domain

(s = 1, 2, ..., S) = global  shape,  trial,  interpolation  or  basis functions

The shape functions  are chosen to have the following properties:

1. Are a continuous function throughout the domain of the problem.
2. Vanish on all nodes except node n.
3. Are equal to unity on node n.
4. Vanish on all elements except those containing node n.
5. Have continuous first derivatives inside the domain of each element where it does not
     vanish.

From the above properties we see that at node n all the shape functions vanish except 

which is equal to unity. Thus, referring to relation (15.123a) the approximate value of

 at node n is equal to

Consequently, the coefficient  in relation (15.123a) has physical meaning. It represents

an approximation to the value of the state variable at node n. This property of the shape
functions permits the direct satisfaction of the essential boundary conditions of the

problem.  In order to accomplish this, each of the coefficients  which is associated with

a node that is located on the portion  of the boundary of the domain where essential

boundary conditions are specified, is set equal to the specified value of the state variable 

at node n.  The simplest set of shape functions which meet all the above requirements are
linear as shown in Fig 15.23.

The coefficients  (s = 1, 2, ..., S) of the approximate solution (15.123a) can be

established by substituting it in the modified weighted residual (weak) equation (15.122),
and using the  Gallerkin  assumption  (15.117).  This  gives  a  set  of  S  linear algebraic
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(15.126)

   (15.127)

   

Figure 15.23 Shape functions for a scalar, two-dimensional, second order, linear boundary value problem.

equations which can be written as

[S] { } = {F} (15.125)
where  

{ }= matrix of approximate values of the state variable at the nodes of the domain.
[S]   = the global stiffness matrix of the domain. Its terms are equal to

{F} = the global load vector of the domain. Its terms are equal to

Relations (15.125) are the stiffness equations for the boundary value problem
described in Section 15.9.1.

Referring to relations (15.126) we see that for the scalar, two-dimensional, second
order, linear boundary value problems under consideration the global shape functions

 must be at least of class C ; that is, they must be at leasto

continuous over the domain of the problem.
In the finite element method the global stiffness matrix [S] and the load vector {F}  of

a domain are established directly from the contributions of its elements. Moreover,
following the procedure described in Section 15.7 the essential boundary conditions are
introduced directly in the stiffness equations (15.125) and the resulting equations are

2 3solved to obtain an approximation to the values of the state variable X(x , x ) at the nodes
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                  (15.128)

(15.129)

 (15.130)

inside the domain of the problem and those of the boundary at which natural boundary
conditions have been specified. 
An important advantage of the global shape functions used in the finite element method

is that the calculations for the contributions of the elements to the stiffness matrix and the
load vector of the domain can be made repetitive.  That is, for each type of element a
formula can be derived for the stiffness matrix and for its contributions to the load vector
of the domain and used to compute the stiffness matrices and their contribution to the load
vector of all the elements of this type.   

15.9.6 Local Shape Functions for Two-Dimensional Elements

For  two  dimensional  scalar  problems  we use global shape functions                   whose

2 3non-vanishing part  over element e is a polynomial of x  and x  of the following

form

qiwhere c (i = 0, 1, 2, ...) are constants which are evaluated by requiring that the shape

function  satisfies the requirements that it is equal to unity at node q and to zero

at all other nodes of the element.  Thus, the number of monomials retained in the
expression for shape function (15.128) for an element of the domain of a scalar, two-
dimensional, second order, linear boundary value problem is equal to the number of its
nodes.  For example, consider a triangular element with nodes only at its three vertices,
which as shown in Fib. 15.22a we denote by i, j and k (we always proceed
counterclockwise from node i to nodes j and k).  For this element we know the value of
each shape function at its three nodes.  Consequently, we can evaluate only three
constants in relation (15.128).  Hence, for a three-node, triangular element we use the
following set of linear shape functions:

As can be seen from Fig. 15.23 each of the shape function (15.129) for a three node
straight edge triangular element is part of a continuous global  shape function.
    Consider a rectangular element with nodes only at its four vertices which as shown in

Fig. 15.22b we denote by  i, j, k and l.  Inasmuch as we know the values of the shape
functions for this element only at its four-nodes we can evaluate four constants in relation
(15.128).  Consequently, for the four node straight edge rectangular element we use as
shape functions the following set of bilinear functions:

2Relation (15.130) represents a surface whose intersections with the planes x  = constant
3and x  = constant are straight lines.  Thus, continuity of the global shape functions at the

sides of a straight edge, four-node, rectangular element is ensured provided that the shape
functions of two adjacent elements are equal at their common nodes.  
    The shape functions of triangular elements having more than three nodes and of

rectangular elements having more than four nodes, must be complete polynomials of
higher order than that of the linear (15.129) or the bilinear (15.130) polynomials,
respectively.
      In this text we consider only straight edge, three-node, triangular and straight edge,
four node, rectangular elements.
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        (15.133)

(15.134)

   (15.135)

(15.131)

    (15.132)

15.9.7 Shape Functions for Straight Edge, Three-Node Triangular Elements

As shown in Fig. 15.22a we denote the nodes of a three-node triangular element by i, j
and k.  As discussed in the previous section, the shape functions for such an element have

qrthe form (15.129). The constants c  (q = i,  j or k) (r = 0, 1, 2) are established by requiringe

that the shape functions satisfy the following relations at the nodes of the element:

2 3where x , x  represent the local coordinates of node p.  Substituting relations (15.129)(p) (p)

into (15.131) for the shape function , we have

From relation (15.132), we obtain

where      is the area of element e given as

jrThe constants c  (r = 0, 1, 2) are obtained from relations (15.133) by changing thee

krsubscripts j 6 k and k 6 i.  The constants c  (r = 0, 1, 2) are obtained from relatione

(15.133) by changing subscripts j 6 i and k 6 j.  Taking this into account and substituting
the values of the constants (15.133) into relation (15.129), we get

15.9.8 Shape Functions for Straight Edge, Four-Node, Rectangular Elements

Following a procedure analogous to the one adhered to in Section 15.9.7 we obtain the
following expression for the shape functions for straight edge, four-node, rectangular
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           (15.136)

     (15.137)

        (15.138a)

        (15.138b)

        (15.139a)

        (15.139b)

elements:

15.9.9 Direct Computation of the Contribution of a Straight Edge Element to the
Stiffness Matrix and the Load Vector of the Domain of Scalar Two Dimensional
Second Order Linear Boundary Value Problems

Referring to relations (15.123) and to Fig 15.24 it can be seen the state function 

is approximated over element e as

where for a straight edge three-node triangular element

while for a straight-edge four node rectangular element

For a straight edge, three-node, triangular element relation (15.136) may be rewritten as

Figure 15.24  Approximation of the state variable in the domain of a three-node, triangular element.
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       (15.140)

(15.141)

From  relations  (15.135)  and  (15.140)  we  see  that  the state variable  is

approximated over a straight edge, triangular element by a planar surface (see shaded

triangle in Fig. 15.24).  Notice that   is a straight line along each side of the

triangle.  Thus, it is uniquely determined by its values at the two nodes at the end of this
side.  Consequently, if the values of state variable of two adjacent elements coincide at
their common nodes, their values will coincide along their common line boundary (line
2.3 of Fig. 15.24). Moreover, from relations (15.136) we see that the shape functions for
straight edge, four-node, rectangular elements are linear along each of their sides. This

ensures that the state variable  will be continuous on the common side of two

adjacent elements provided that the values of the approximations to the state variables
over these two elements coincide at two points of their common side. Thus two nodes are
required on each side of a straight edge, four-node, rectangular element.
    Consider the straight edge, three-node, triangular element shown in Fig. 15.22a.
Substituting relations (15.123a) into the modified weighted residual equation (15.122) and
using the Gallerkin assumption (15.117) for the element under consideration, we obtain

Where the first line integral in relation (15.141) is different than zero only for elements
having the two nodes of one of their sides on the portion ( ) of the boundary of the

domain. The integration  is  carried out along the length   (            )  of this side of suche

an element. The second line integral of relation (15.141) is different than zero only for
elements having the two nodes of one of their sides on the portion      of the boundary of

the domain of the problem. The integration is carried out along the length  of this side

n 2 3of such an element and i  = i  + i   is the unit vector normal to that side.  The

second and third integrals of relation (15.141) can be evaluated using the element shape
functions and the known functions f and g.  We can approximate the source function

c over each element by its value at the centroid of the element f .  Thus,  we cane

cmove f  outside the integral sign of the second integral of relation (15.141) and evaluatee

the remaining integral.  The function  represents the specified flux at the

boundary of the domain.  Often the side of an element may not coincide with the
boundary of the domain and a modeling error is introduced.  This error decreases as the

ssize of the elements close to the boundary decreases.  The function g(x ) is usually
approximated by its value at the midpoint of the external boundary of an element or by
its average value over the external boundary.  Thus, we can move the constant value of
g outside the integral sign of the third integral of relation (15.141).

c      On the basis of the foregoing discussion denoting by g  the constant value of g overe

the  side  of  element  e,  having  two  of  its  nodes  on  the  boundary                 ,  relation
(15.141) can be approximated as
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(15.143)

(15.144)

(15.146)

(15.147)

   (15.148)

      (15.149)

              (15.142)
c cThe constants f  and  g  are part of the data of a problem.e e

   The quantity  of the integrand of the fourth integral of

relation (15.142) is not specified on the portion     of the boundary of the domain.
Consequently, this integral is an unknown which is established as part of the solution of
the problem. This integral is analogous to the end actions of elements of framed
structures.
  Relation (15.142) may be rewritten as

[K } is the local stiffness matrix of element e which referring to relation (15.142) is equale

to

{F } represents the contribution of the straight edge, three-node, triangular element e toe

the load vector of the domain. Referring to relation (15.142) it is equal to

              (15.145)
For a straight edge, three-node, triangular element

For a straight edge, four-node, rectangular element

For a straight edge three-node triangular element, referring to relation, (15.135), we get

Thus, referring to relation (15.138a), we obtain

Substituting relations (15.149) into (15.144) and taking c = 0 we get the following
approximation to the stiffness matrix for a straight edge, three-node triangular element:
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(15.150)

     (15.151)

Similarly, for a straight edge, four-node, rectangular element, we obtain

15.9.10 Approximate Solutions of Scalar, Two-Dimensional, Second Order, Linear
Boundary Value Problems 

When we use the finite element method to construct approximate solutions for scalar,
two-dimensional, second order, linear boundary value problems, we adhere to the steps
described in Section 15.7.  In what follows we apply the finite element method to
establish approximate expressions for the components of stress      and      and the angle
of twist      of a prismatic member, of square cross section, subjected to equal and opposite
torsional moments at its ends. Our aim is to illustrate the application of the finite element
method to a scalar, two-dimensional, second order, linear boundary value problem, not
to obtain accurate results.  For this reason, in order to avoid lengthy calculations we
subdivide the domain of the problem into a very small number of finite elements.
4444444444444444 44444444 4444444444444444444444444444 44444444

Example 4  Using the finite element method, establish an approximate expression for the
angle of twist per unit length and for the components of stress acting on the particles of
a prismatic bar having the square cross section shown in Fig. a.  The bar is made from an
isotropic, linearly elastic material with shear modulus G and it is subjected to two equal

1and opposite torsional moments M  at its ends.

Figure a  Geometry of the rectangular cross section of the bar.
                                                                                                                                              

Formulation

As discussed in Section 6.3, we solve this problem by first finding the stress function
 which satisfies the differential equation (6.31) and vanishes on the boundary.

That is,
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     (a)

             (b)

    (c)

    (d)

    (f)

    (e)

and

Consequently, comparing  (15.109) with (a) and (15.110a) with (b) we have

Solution

STEP 1  We subdivide the domain of the problem (the cross section of the beam) into
elements.  As shown in Fig. b, the cross section of the prismatic bar has four axes of
symmetry with respect to which the function  is symmetric while the shearing

components of stress are antisymmetric. Thus it is sufficient to establish the stress
distribution only on a portion of the cross section of the bar between two adjacent axes
of symmetry as, for example, the portion CAB shown in Fig. b. We subdivide this portion
of the cross section into three elements — two identical three-node, triangular and one
square as shown in Fig. c.  These elements are not enough to obtain accurate results.
However, as we mentioned previously, our purpose is to illustrate the application of the
finite element method without getting involved into excessive numerical calculations.

STEP 2  We compute an approximation to the stiffness matrix for each element of the
domain. For the triangular elements of Fig. c, we have

and 

Substituting relations (d) and (e) into relations (15.133), we obtain
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      (j)

     (g)

    (h)

    (i)

Figure b  Cross section of the bar  Figure c  Portion CAB of the cross section of the bar
          and stress distribution.                                              subdivided into three elements.

Substituting the values of the constants (f) into relations (15.129), we get the following
shape functions for the triangular elements of Fig. c:

Substituting the values of the shape functions (g) into the relation (15.144) and using
relation (c), we obtain

This matrix represents an approximation to the stiffness matrix for any orthogonal
isosceles triangular element.  The approximation to the stiffness matrix for the four-node

2 3square element may be established by substituting a = b = 1 and h = h  = h  in relation
(15.151).  Thus,

STEP 3  We use the approximations to the stiffness matrices of the elements of the
domain to assemble an approximation to its stiffness matrix [S]. In order to accomplish
this, referring to Fig. c, we choose the subscripts of the stiffness coefficients for each
element so as to correspond to those of the components of displacements of the nodes to
which the element is connected. That is,
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             (j)

   (k)

    (l)

  (m)

    (n)

    (o)

Referring to relations (h), (i), and (j) from relation (15.27), we get

STEP 4  We establish an approximation to the load vector of the domain.  In order to
accomplish this we use relation (15.145) to compute the contribution of each element to
the load vector of the domain.  Referring to relations (c) from relation (15.145), we have

where

Referring to relations (6.6) and (6.7), we get

Substituting relation (n) into (m) we obtain

 is the rate of change of  in the direction normal to the boundary.  Since

on the boundary  is constant, it is clear that the boundary is a contour line of the

function .  In Section 8.3 we show that the shearing stress acting at a point of a

cross section of a prismatic bar subjected to equal and opposite torsional moments at its
ends is tangent to the contour line of the stress function  passing through that
point.  Moreover, referring to relations (6.62) and (6.30) the shearing stress is equal to
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    (p)

   (q)

      (r)

   (s)

For the triangular elements 1 and 3 we substitute the shape functions (g) in relation (l),
to obtain

         e = 1 , 3

[R ] is a zero matrix since the sides of element 1 are not part of the boundary of the(1)

domain. In evaluating the matrix {R } (e = 2, 3) we assume that is constant on thee

side of elements which are part of the boundary of the cross section of the bar. That is,

2 3 For the rectangular element 2, substituting relation (15.136) into (l) and using h  = h =
h = a/2, we get
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       (t)

     (u)

   (v)

where

STEP 5 We form the approximate stiffness equations for the problem and we introduce
in them its essential boundary conditions.  We solve the approximate stiffness equations
to obtain the unknown values of the state function  at the nodes of the

domain and the values of the normal derivative of the state variable at the nodes which
are located on the portion of the boundary where essential boundary conditions are
specified.  Referring to relations (k), and (q) to (t), the stiffness equations for the domain
of Fig. c are 

3 5 6where referring to relations (r) and (t), and using relation (6.62), R , R ,and R  are equal
to

We rearrange the rows and columns of the stiffness equations (u) and we partition them
as follows:
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     (w)

      (x)

                   (y)

       (z)

     (za)

(zb)

Noting that  we have

and

Solving relation (x), we get

Substituting results (z) into relation (y), we obtain

STEP 6  We compute the angle of twist per unit length of the bar under consideration
using relation (6.32).  Noting that the area of the portion of the cross section shown in Fig.
c is one-eighth that of the total cross section, referring to relations (6.33) and using
relation (15.123a), we have
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 (zc)

  (zd)

  (ze)

  (zf)

 (zg)

 (zh)

The integrals  have been evaluated for the triangular

elements 1 and 3 in relation (q) and for the rectangular element 2 in relation (s).
Substituting the values of these integrals from relations (q) and (s) in relation (zb), we
obtain

Substituting relation (zc) into relation (6.32), we get

STEP 7  We compute the components of stress using relations (6.34).  That is, 

Substituting relation (15.123a) into relations (ze), we get

Where referring to Fig. c , we have

For the triangular elements 1 and 3 substituting relations (g) into (15.138) and the
resulting matrix into (zf) and using relations (zg), (z) and (zd), we obtain

www.EngineeringEBooksPdf.com



    The Finite Element Method756

 (zh)

 (zi)

    (zj)

    (zk)

   (zl)

These are the average values of the components of the stress over the area of the
triangular elements.
      For the rectangular element 2 referring to relations (zd),(zf),(zg) and (15.139a), we get

From relation (zj) we see that, as expected, the component of stress  vanishes on the

2line x  = a/2.  This line is part of the stress free boundary of the cross section of the bar

(see Fig. c).  Referring to relation (zj), the maximum stress  on element 2 occurs at

2x  = 0 and it is equal to
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 (zm)

  (zn)

  (zo)

  (zp)

This is the average value of the component of stress  over the length of line 2, 4 (see

Fig. c).  It could be considered as the value of the component of stress  at the middle

point of line 2, 4.  From relation (zk) we see that the maximum stress  on element 2

3occurs at x  = 0 and it is equal to

This is the average value of the component of stress  on line 2, 3 (see Fig. c).  It could

be considered as the value of the component of stress  at the middle of line 2, 3.  If we

assume that the component of stress  vanishes at point 1 and varies linearly along line

1, 3 from relation (zm), we get

The maximum value of stress obtained on the basis of the theory of elasticity occurs at
point 3 and it is equal to

The component of stress  at nodes 3, 5 and 6 of the boundary can be established

by substituting relations (za) into (v).  That is,

 

Figure c  Results.
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Thus, the computed value of the maximum component of stress  is approximately

1.5% in error.  From the results obtained in this example we see that the components of
stress        and        do  not  vary  in  the  domain  of  three-node,  triangular  elements.
Moreover, they vary only with the one coordinate in the domain of four-node,  rectangular
elements. The results can improve as follows:

1. By using a large number of elements.  As the size of the elements decreases, the
constant gradient result becomes less objectionable.

2. By using triangular elements with more than three nodes and/or rectangular elements
with more than four nodes.

15.10 Problems

1.  Using the finite element method (direct stiffness method), establish the component of
1 1translation u (x )  and the internal forces of the structure of Fig. 15P1 subjected to the

axial centroidal forces shown in that figure. The structure has constant width b. Use n =
0.5. Subdivide the structure into two equal elements. (Hint: Use relation (15.42) to
compute the local stiffness matrix of the tapered element.)     

    

  

Figure 15P1             Figure 15P2
 

2.    Using the finite element method (direct stiffness method), establish the component
1 1 1of translation u (x ) and the internal force N(x ) in the bar of Fig. 15P2, due to a uniform

increase of temperature )T = 20°C and to a concentrated force P = 40kN. The bar has
constant cross section (A = 4 cm ) and is made of two materials in series steel (E = 2102

GPa     = 1.2(10 °C) and an aluminum alloy (E = 70GPa       = 2.3(10 /°C). -5 5

   

  

Figure 15P3  Figure 15P4

3.  Using the finite element method (direct stiffness method), establish the deflection, the
shearing force and the bending moment of the beam subjected to the loading shown in
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Fig. 15P3. Subdivide the beam in two elements of length 8 m and 12 m.

 

4.  Establish an approximate expression for the fixed-end actions of the beam of variable
width b shown in Fig. 15P4 by subdividing it into three elements of equal length.
Approximate each element by a parallelepiped of depth equal to that of the middle cross

section of the real element.      

15.  Given a function X(x ) which satisfies the following differential equation in the
domain 1# #2:

                                          (a)

and the boundary conditions 

        essential B.C. (b)

        natural   B.C.  (c)

where F( ) is the flux of the problem. Establish the modified weighted residual equation.

Using the finite element method, establish an approximate solution for X( ). Subdivide

the domain with four elements.

6.  The elements of the frame of Fig. 15P6 have constant cross sections and are subjected
to the following two cases of loading:

Case 1 
To a uniform temperature increase )I. This temperature increase represents the
difference between the uniform temperature to which the frame is exposed in its present
state and the temperature existing during its construction.         

Case 2
1 2 1 To a temperature T  at the external fibers of its elements and to a temperature T  > T at

their internal fibers. Assume that in this case the temperature of the axis of the elements
of the frame is the same as the temperature during construction. Thus, the axis of the
elements of the frame does not elongate. For each case of loading compute the equivalent
actions to be applied to the nodes of the frame.

Figure 15P6                 Figure 15P7
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Figure 15P8              Figure 15P9

7. to 11. The elements of the frame are made from the same isotropic, linearly elastic
material and have the same cross section.  Compute and show on a sketch the equivalent
actions to be applied to the nodes of the frame of Fig. 15P7. Repeat with the frames of
Fig. 15P8 to 15P11.

         

Figure 15P10               Figure 15P11
 

12. Assemble the stiffness matrix for the structure shown in Fig. 15P12. The elements of
this structure are made from the same isotropic, linearly elastic material and have the
same constant cross sections with I/A = 0.025 m . The elements of the structure are2

connected by a pin.

 

Figure 15P12               Figure 15P13

13. Assemble the stiffness matrix for the frame of Fig. 15P13. The elements of the frame
are made of steel (E = 210 GPa). The area of the cross section of the pin at both ends

4 member is A = 800 mm . The other elements of the frame have a constant cross section2

[A = 13.2(10 ) mm , I = 369.7(10 ) mm ].3 2 6 4

14. and 15. Consider the structure subjected to the external actions and supported as
shown in Fig. 15P14.  The  elements  of  the  structure  are made from the same isotropic,
linearly elastic material (E = 210 GPa) and the areas and moments of inertia of their cross
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sections are shown in Fig. 15P14. Compute
(a) The components of displacements of the nodes of the frame
(b) The reactions of the supports of the frame
(c) The nodal actions of the elements of the frame 

Repeat with the structures of Figs. 15P15.

1  I = 117  x 10 mm  A = 6.26 x 10 mm(1 ) 6  4 3  2

2  I = 83.6 x10 mm  A = 5.38 x10 mm(2 ) 6  4 3  2

Figure 15P14

1                I = 369.7 x 10 mm A = 13.2 x 10 mm(1 )  6  4     3  2

2  3                                                          I = I = 117.7 x 10 mm  A = A = 6.26 x 10 mm  (2 )  (3 ) 6  4 3  2

Figure 15P15       
   

16. The structure shown in Fig. 15P10 is subjected to the force shown in that figure. The
members of the structure have a constant cross section and are made from the same
isotropic, linearly elastic material (E = 210 GPa,  A = 13.2(10 ) mm , I = 369.7(10 ) mm ).3 2 6 4

Compute 
(a) The components of displacement of the nodes of the beam
(b) The reactions of the supports of the beam 
(c) The internal forces in the members of the beam 

17.  The frame shown in Fig. 15P17 is subjected to the following loading:
   (a) The external actions shown in Fig. 15P17
   (b) Settlement of support 1 of 20 mm

e    (c) Temperature of the upper or outside fibers T = 35°C and of lower or inside fibers
i 0               T = !5°C. the temperature during the construction of the frame was T = 15°C.

The elements of the frame are made of steel (E = 210 kN/mm ,      = 10 /°C) and have the2 -5

same constant cross section (A = 13.2 x 10 mm , I = 369.7 x 10 mm , h = 425mm).3 2 6 4

Disregard the effect of axial translations of the members of the frame. Using the finite
element method (direct stiffness method) compute

(a) The components of displacements of the nodes of the frame
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(b) The reactions of the supports of the frame
(c) The nodal actions of the elements of the frame

Figure 15P17

18.  Using the finite element method establish the angle of twist per unit length and the
shearing components of stress of a prismatic bar of rectangular cross section subjected to
equal and opposite torsional moments at its ends.  The bar is made from an isotropic,
linearly elastic material of shear modulus, G(GPa).  The cross section of the bar has two
axes of symmetry with respect to which the stress is antisymmetric.  Thus use only the
portion ABCD of the cross section and subdivide it into nine identical four-node
rectangular elements of dimensions b/3 and a/3 as shown in Fig. 15P18. 

Figure 15P18

www.EngineeringEBooksPdf.com



763

(16.1)

(16.2)

             (16.3)

             (16.4)

 (16.5)

Chapter
16

Plastic Analysis and
Design of Structures

16.1 Strain–Curvature Relation of Prismatic Beams Subj ected to Bending
without Twisting

The assumptions of the theories of mechanics of materials for line members, discussed
in Section 8.2, apply to line members made from any material.  Thus,  relations (9.5)
apply to beams made from isotropic linearly elastic–ideally plastic materials (see Fig.

2 33.14e).  Choosing the x  and x  axis to be principal centroidal and limiting our attention

2to beams subjected to bending about the x  axis without twisting, we have

and

For the classical theory of beams, referring to relations (9.27a) the above relations may
be rewritten as

Substituting relation (9.26a) into (16.4), we obtain

11Relation (16.5) indicates that the neutral axis (e  = 0) of the cross sections of a beam is

3not necessarily a centroidal axis (x  = 0).  For a better understanding of relation (16.5) 
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(16.6)

(16.7)

(16.8)

2Figure 16.1  Portion of beam subjected to bending about its x  axis.

1let us consider the element of length )x  of a beam, shown in Fig. 16.1d cut by two planes
normal to its axis.  On the basis of the assumptions of the theories of mechanics of
materials, as shown in Fig. 16.1c and d, the faces of the element remain plane after
deformation and normal to the deformed centroidal axis (elastic curve) of the beam.
Consequently, the radius of curvature of the elastic curve of the beam lies on the
deformed face of the element.  Consider the longitudinal material line EF of the element

under consideration located at .  Its length prior to deformation is denoted by

, whereas its length subsequent to deformation is

where  is the elongation, due to deformation, of the longitudinal material line of the

1 3 3beam of undeformed   length )x  located at x = x .Referring to Fig. 16.1d and denoting*

1 11 2 3by *(x ) the distance of the neutral axis (e  = 0) from the centroidal axis x (x  = 0), we
have
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(16.9)

(16.10)

(16.11)

(16.12)

(16.13)

(16.14)

In obtaining relation (16.8) we took into account that, in general, the radius of curvature 

is large as compared to the depth of the beam.  Consequently, to our order of

approximation, * is negligible as compared to .  From relations (16.6) and (16.7), we

have 

Using relations (16.8) and (16.9), the component of strain  is expressed as 

This relation is equivalent to (16.5).  It is used to determine the stress and displacement
fields in beams made from any material.  It is always possible to determine the stress  and
displacement fields in a beam if the stress–strain diagram of the material from which it
is made is known, no matter what the shape of this diagram is.

16.2 Initiation of Yielding M oment and Fully Plastic Moment of Bea ms Made
from Isotropic, Linearly Elastic–Ideally Plastic Materials

Consider a prismatic, statically determinate beam made from a homogeneous,
isotropic, linearly elastic–ideally plastic material (see Fig. 3.14e).  The beam is initially
in a reference stress–free, strain-free state of mechanical and thermal equilibrium at the

ouniform temperature T .  Subsequently, the beam is subjected to slowly increasing
external forces and moments which bend it without twisting it and bring it to a second

ostate of mechanical and thermal equilibrium at the uniform temperature T .  In order to

2 3 23simplify our presentation we chose the x  and x  axes to be principal centroidal (I  = 0)

2and we assume that the external actions acting on the beam bend it only about the x  axis

3(M  = 0) without twisting it (  = 0).  When the values of the external actions acting on

the beam are sufficiently small, the components of strain of all its particles are elastic.
In this case, as shown in Section 9.1 (see relation 9.6d), we have 

This implies that the neutral axis is a centroidal axis.
Substituting relation (16.11) into (16.10) and using relation (9.26a), we get

c 2 3Referring to relations (8.44) for the beam under consideration ()T  = *T  = *T  = 0), we
have

Substituting relation (16.12) into the above and using (9.29a), we obtain
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Figure 16.2  Distribution of the normal component of stress on the cross-sections of beams made from an
isotropic, linearly elastic–ideally plastic material.

2In general, the internal moment M  acting on the cross sections of the beam is a

1function of x .  Without loss of generality we assume that the internal moment assumes
its maximum value at one cross section of the beam which we call the critical cross
section.  Thus, for a certain value of the external actions to which the beam is subjected,

2the moment acting on its critical cross section reaches the value M  =  which induces

on the top and/or the bottom particles of the critical cross section a normal component of

stress equal to the yield stress  in uniaxial tension or compression of the material from

which the beam is made.  We call the moment   the initiation of yielding or the elastic

 

Figure 16.3  Plastic regions in the neighborhood of the critical cross section.
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(16.15)

(16.16)

failure moment.  For example, the normal component of stress acting on the particles of
the top line of the critical cross section of the T-beam of Fig. 16.2a reaches the value of

2the yield stress first.  For beams whose x  axis is an axis of symmetry of their cross
sections, the normal component of stress acting on the particles of both the top and the
bottom lines of their critical cross section reach the value of the yield stress
simultaneously (see the beam of rectangular cross section of Fig. 16.2b).

As the value of the applied moments increases above , one or two plastic regions

are formed in the neighborhood of the critical cross section (see Fig. 16.3).  The normal

component of stress acting on the particles of these regions is equal to .  The geometry

of the plastic regions depends on the geometry of the cross sections of the beam.  For a

2beam whose cross sections are symmetric with respect to the x  axis, as the internal

moment at the critical cross section assumes values greater than , there exist two equal

plastic regions and between them an elastic core.  The normal component of stress 

3acting on the particles of the elastic core varies linearly with x .  That is, if we specify the

3elastoplastic boundary by x  =   (see Fig. 16.2b), we have

When the external actions reach values which produce at all particles of the critical

cross section of the beam a normal component of stress , which is equal to the yield

stress , the moment acting on the critical cross section reaches its maximum value.

This moment is referred to as the fully plastic moment and we denote it by .  The ratio

of the fully plastic moment to the initiation of yielding or the elastic failure moment 

depends only on the geometry of cross sections of the beam.  It is called its shape factor,
and we denote it by s.f. That is, 

As soon as the external actions acting on a statically determinate beam reach values
which produce the fully plastic moment at its critical cross section the beam deforms to
failure, while the external actions remain constant.  That is, the beam rotates about its
critical cross section as if there was a hinge at this cross section.  We say that a plastic
hinge has been formed at the critical cross section of the beam.  Moreover, we call this
type of failure plastic collapse and the corresponding actions acting on the beam its
collapse load.  Statically indeterminate beams can usually carry bigger actions than those
producing a fully plastic moment at one of their cross sections (see Section 16.8).

Inasmuch as the resultant compression on any cross section of the beam must be equal
to the resultant tension, it is obvious that at the instant the fully plastic moment is reached

11at a cross section, the neutral axis (e  = 0) of this cross section is a line dividing the cross
section into  two  equal  areas.  Thus,  as  the moment acting on any cross section
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(16.17)

(a)

(b)

(c)

2increases from  to  its neutral axis shifts from the centroidal axis x  to the equal

2area axis.  If the centroidal axis x  happens to coincide with the equal area axis, as in the

2case of cross sections having the x  axis as an axis of symmetry, the neutral axis does not

shift as the moment increases above .  The fully plastic moment of any cross section

may be computed as

where A is the area of the cross section and  and  are the distances from the

centroidal axis of the cross section of the beam to the centroids of the portions of the cross
section which are located above and below the equal area axis, respectively.  Thus, the
fully plastic moment depends only on the geometry of the cross section of the beam and
the value of the yield stress of the material from which the beam is made.  

In what follows we present two examples which illustrate the computation of the fully
plastic moment and the shape factor of beams.
                                                                                                                                             

Example 1  Compute the fully plastic moment and the shape factor of a beam of
rectangular cross sections of width b and depth d.

                                                                                                                                             

Solution  Referring to relation (16.14), the moment which produces yielding at the top
and bottom particles of the  critical cross section of the beam under consideration may be
computed as

Referring to relation (16.17) and noting that , the fully plastic moment

is given by 

Therefore, the shape factor is 

                                                                                                                                             
                                                                                                                                             

Example 2  Compute the fully plastic moment and the shape factor for the beams whose
cross section is shown in Fig. a.
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(a)

(b)

(c)

Figure a Geometry of the cross section of the beams.

                                                                                                                                             

Solution  Referring to relation (16.14) the moment which produces yielding at the top and
bottom particles of the critical cross section of the beams of Fig. a is given by 

Referring to relation (16.17), the fully plastic moment of the beams of Fig. a is given by

F WTaking as an illustration t  = 5 mm, t  = 4 mm, d = 80 mm, b = 40 mm, we obtain

Therefore, the shape factor for this beam is equal to

Thus, for an I-beam or a channel, the difference between  and  is small.  From

physical intuition, we may deduce that as the depth of the beam increases  approaches

.

                                                                                                                                             

16.3 Distribution of the Shearing Com ponent of Stress Acting on the Cross

Sections of Beams Where 

Consider a beam of rectangular cross section supported in some fashion and subjected

2to external actions which bend it about the x  principal centroidal axis.  In Fig. 16.4a we
show a segment of this beam of length      cut from the part of the beam where the
moment acting on its cross sections is bigger than .      . In Fig. 16.4d we show the
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(16.18)

free–body diagram of a piece ABCDEG cut from the segment of Fig. 16.4a by a plane

1 2 3parallel to the x x  plane at x  > .  It can be seen that the resultants of the normal

component of stress acting on the surfaces CAG and DBE of this piece are equal.
Consequently, a shearing force )F is not required on the surface ABEG in order to keep

the piece under consideration in equilibrium.  Thus, the shearing component of stress 

is zero at the particles of the beam at which plastic components of strain have been
produced (see Fig. 16.4b).

In what follows we compute the distribution of the shearing component of stress 

3acting on the particles of the elastic core (x  < ) of a cross section of a beam of

2rectangular cross section subjected to a moment M ( ).  For this purpose we

show in Fig. 16.4c the free–body diagram of piece CDMLPR cut from the segment of the

1 2 3beam shown in Fig. 16.4a by a plane parrallel to the x x  plane at x  <  + ) .  Referring

1to this figure, we note that in general the resultant F  of the distribution of the normal

2component of stress acting on the particles of surface CLP is not equal to the resultant F
of the distribution of the normal component of stress acting on the particles of surface
DMR.  Consequently, a shearing force )F is required on the surface MLPR equal to 

 

Figure 16.4 Distribution of shearing stress in a beam of rectangular cross sections made from an isotropic,
linearly elastic–ideally plastic material.
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(16.19)

(16.20)

   (16.21)

(16.22)

For a beam of rectangular cross section of width b and depth d, we have 

 Substituting relations (16.19) into (16.18), we get 

Consequently, the shearing component of stress  acting on the particles of the elastic

2core of a cross section of a beam of rectangular cross sections subjected to a moment  M  

is equal to

From relation (16.21) we see that the maximum value of the shearing component of stress

3 occurs at x  = 0 and it is equal to 

maxIt can be shown that  and, consequently, the maximum shearing stress ( )

2 2become very large as the moment M  acting on the critical cross section approaches M .P

On the basis of the foregoing presentation, we may conclude that, when a beam is
subjected to increasing transverse forces, before the upper and the lower plastic regions
at the critical cross section meet, the maximum shearing stress at the centroidal axis
reaches the value of the yield stress in shear and a new plastic region is formed around the
centroidal axis.  The establishment of the boundary of this plastic region is complicated
by the fact that the value of the yield stress in shear  is affected by the presence of the†

normal component of stress .  As the load increases, the three plastic regions increase

until, for a certain value of the load, the critical cross section becomes fully plastic.  It is
evident that the value of the fully plastic moment at the critical cross section depends not
only upon the geometry of the cross section and upon the value of the  yield stress  in
 tension,  but  also upon the value of the shearing force acting on the cross section, and
upon the value of the yield stress in pure shear.  If the existence of the plastic  region  due
                             

†  When a particle of a body made from an isotropic linearly elastic–ideally plastic material is subjected to
shearing and to normal components of stress simultaneously, it yields at values of the normal component stress
which are smaller than the yield stress in uniaxial tension, or at values of the shearing component of stress which

are smaller than the values of the yield stress in pure shear (see Chapter 4). 
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(16.23)

(16.24)

(16.25)

  (16.26)

to  yielding  in  shear  is  taken  into account, the computation of the collapse load of a
beam will become cumbersome.  Moreover,  the size of the plastic region due to yielding
in shear is rather small.  For this reason, the effect of this plastic region which is formed
around the cen troidal axis of a bea m on its collap se load and  on its deflection is
disregarded.

16.4 Location of the Elastoplastic Boundaries  —  Moment–Curvature Relation

2For any cross section of a beam at which the moment M  is greater than  and less

than , the position of the neutral axis and the dimensions of the elastic core may be

obtained from the requirement that the distribution of the normal component of stress on

1the cross sections of the beam is such that its resultant force F  vanishes while its resultant

2moment is equal to M .  That is,

Relations (16.23) involve the functions ,  and (see Fig. 16.3) which

specify the geometry of the plastic regions and the position of the neutral axis.  The

functions  and  are, respectively, the distances between the centroidal axis

2 1x  and the elastoplastic boundary of the top and bottom plastic regions of a beam.  *(x )

2is the distance between the x  axis and the neutral axis.  In what follows we write relations

1(16.23) in terms of the functions ,  and *(x ).  In the elastic region  varies

3 3linearly with x  and vanishes when x  = *.  For beams made from an isotropic, linearly

2elastic–ideally plastic material subjected to bending about their x  axis without twisting
in an environment of constant temperature, the normal component of stress in the elastic
region is obtained by substituting relation (16.10) in the first of the stress–strain relations
(8.44).  That is,

When two plastic regions exist on a cross section of a beam from relation (16.24) we

3 t 3see that the following relations must be valid on the elastoplastic boundaries (x  = !n , x
b= n ):

Consequently,

or 
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(16.27)

(16.28)

(16.29)

(16.30)

Moreover, substituting relation (16.27) into the first relations (16.25), we have

Relation (16.27) indicates that the neutral axis is located at the middle of the elastic core.
The normal component of stress in the plastic region can be expressed as

Substituting relations (16.24) and (16.29) into (16.23), we get

(16.31)
where 

E  A         = area of the portion of the cross section whose particles deform
elastically.

pt pbA  and A   = area of top and bottom plastic regions, respectively, of the  cross section
under consideration.

pt pb EFor given geometry of the cross sections of a beam the areas A  ,A  and A  can be

expressed in terms of  and .  Using relations (16.27) and (16.28) we can eliminate

 and  from relations (16.30) and (16.31) to obtain a set of two equations for  and

2.  For beams whose cross sections are not symmetric with respect to the x  axis the

solution of these equations is very cumbersome.  It requires a trial and error approach.
However, as it is discussed in the next section, in practice it is rarely required to compute

2, , , or 1/  for given values of M .  Nevertheless, once  and  are established

for a given value of , they can be substituted into relations (16.27) and

(16.28) to give the position of the neutral axis ( ) and the curvature (1/ ) for the given

2value of M .  In Fig. 16.5 we plot the moment–curvature relation.  For values of the

moment less than the elastic design moment  the moment–curvature relation is

given by relation (16.14) and it is linear.  For values of the moment greater than  the

moment–curvature relation is obtained from relations (16.31) and it is non-linear.  As the
moment approaches its fully plastic value, the curvature becomes very large.  The
moment–curvature curve approaches asymptotically the fully plastic moment (see Fig.
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    (16.32a)

    (16.32b)

(16.33)

(16.34)

 (16.35)

(16.36)

               (16.37)

16.5).  As the moment acting on a cross section of a beam is reduced after reaching a

value greater than  the moment–curvature curve is a straight line parallel to that

2during loading with M  <  .

2For beams whose cross sections are symmetric with respect to the x  axis we have

2 EMoreover, the x  axis is centroidal axis of the area A  and consequently

Furthermore, relation (16.28) reduces to

Taking relations (16.32) and (16.33) into account, relations (16.30) and (16.31) reduce to

Relation (16.35) indicates that for beams whose cross sections are symmetric with respect

2to the x  axis the neutral axis of its cross sections does not shift as the moment acting on

it exceeds  but is less than .  Substituting relation (16.34) into (16.36), we obtain

Figure 16.5   Moment–curvature relation.
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   (16.39)

     (16.38)

(16.40)

(16.41)

(16.42)

2Relation (16.37) can be used to compute  in terms of the moment M  for values of the

moment greater than  but less than .  Once the distance  is computed, the

distribution of the normal component of stress on the cross sections of the beam which

are subjected to a moment  can be established using relation (16.15).

Moreover, the radius of curvature of the beam can be established using relation (16.34).
For example, for a beam of rectangular cross section, referring to Fig. 16.2b, relation
(16.37) becomes

Solving relation (16.38) for  , we get

Referring to relation (b) of Example 1 of Section 16.2, the fully plastic moment of a beam
of rectangular cross section is

Eliminating  from relation (16.39) by using relation (16.40), we obtain

Substituting relation (16.41) into (16.34) we get the following expression for the curvature
of the portions of a prismatic beam of rectangular cross sections at which the moment is

greater than  but less than .

In what follows we present an example of establishing the geometry of the plastic
regions of beams of rectangular cross sections.
                                                                                                                                             
 
Example 3 Consider a simply supported beam of length L and rectangular cross sections
of width b and depth d. The beam is made from an isotropic linearly elastic–ideally

plastic material of yield stress .  The beam is subjected to uniformly distributed forces

3p  along its length. Establish the geometry of the plastic regions of the beam when the

3 3force p  is greater than the elastic failure load p  but less than the plastic collapse loadY
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     (a)

(b)

          (c)

(d)

(e)

(f)

3p . Determine the distribution of the normal component of stress acting to the crossC

3 3 3 3sections of the beam, when subjected to the uniform force p  where p  < p  < p .Y C

Moreover, determine the residual  stress distribution when the beam is unloaded.
                                                                                                                                             

Solution  The moment at any cross section of the beam is equal to
    

3 3When p  is equal to the elastic failure load p  we haveY

or

2 2 2Substituting relation (a) into (16.41) for the region of the beam where M  < M  < M ,Y P

we have

From relation (c) we see that the elastoplastic boundaries of the beam under consideration

1are hyperbolas. As the load increases the distance (x ) decreases until it becomes equal

1to zero at the middle cross section (x  = L/2) of the beam.  For this value of the load the
moment acting on the middle cross section of the beam is equal to the fully plastic
moment and the beam deforms to failure, while the load remains constant. That is, the
beam behaves as if a hinge has developed at its middle cross section (see Fig. a).  We say

3that the beam collapses plastically and we call the corresponding load p  its collapseC

1load.  Substituting relation (16.40) into (a), for x  = L/2, we obtain

1 1The elastoplastic regions extend from x  = a to x  = L ! a where the distance a is obtained

1from relation (c) by setting  = d/2 and x  = a . That is, 

Substituting relations (16.40) and (d) into (e) we get the following value for the distance
a at plastic collapse:
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     (g)

                (h)

Figure a  Plastic regions of the beam.

2The normal component of stress acting on the cross sections of the beam where  M Y

2 2< M  < M  may be obtained by referring to relations (16.15) and (16.29).  That is,P 

If, after subjecting the beam to a load greater than the elastic failure load, but less than
the collapse load, the beam is unloaded, it will deform elastically. The stress distribution
at any cross section during unloading may be established by subtracting from the stress
distribution which existed prior to unloading, the elastic stress distribution caused by a
moment equal in magnitude to the reduction of the applied moment.  The residual stress
distribution, therefore, which remains on a cross section of a beam when the moment

acting on it is reduced to zero after reaching a value , is given by

Figure b  Residual stress distribution.
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(i)

(j)

    (k)

      (l)

The residual stress distribution (h) is plotted in Fig. b.
Referring to relation (16.22), the maximum value of the shearing component of stress

acting on the cross sections of the beam is equal to

Substituting relation (c) into (i), we obtain

EUsing relation (c), the surface A  of the elastic core of the cross sections of the beam may
be expressed as

3 3 1Substituting relation (k) into (j), using relations (16.40) and noting that Q = P (L!2x )/2
 the shearing force  acting on the cross sections on the beam is equal to

3where Q  is the shearing force acting on the cross section.  Notice that the relation (l) is

2 2valid for every cross section of  the beam. For cross sections subjected to M  < M  theY

Earea A  is equal to that of the cross section.
                                                                                                                                             

16.5 Computation of the Deflection of B eams Made from Isotropic, Linearly
Elastic–Ideally Plastic Materials

When the loads acting on a statically determinate beam do not produce plastic

2 1 2deformation at any of its particles [M (x ) < M ], its deflection may be established byY 

computing the internal moment as a function of the axial coordinate substituting it into
the moment–curvature relation (9.32a) and integrating the resulting differential equation.
When the loads acting on a statically determinate beam produce plastic deformation of
the particles of a region of the beam, its moment curvature relation for the segments of
the beam whose cross sections do not have particles undergoing plastic deformation may
be obtained by substituting relation (9.26a) into (9.32a). Moreover, the moment–curvature
relation for the regions of the beam whose cross sections have some particles which have
undergone  plastic deformation, can be established from relation (16.28). Thus,
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         (16.43)

(16.44)

1 1(x ) and (x ) are the distances of the top and bottom elastoplastic boundary,

2 2 1respectively, from the x  axis of the beam. They are related to the bending moment  M (x )
by relation (16.31). For example, for a beam of rectangular cross section of width b and

depth d, taking into account that  and referring to relations (16.40) to (16.42),

we have

3 1Relation (16.44a) may be integrated to give an expression for the deflection u (x ) for
each portion of the beam whose cross sections do not have particles which underwent
plastic deformation. Each of these expressions involves two unknown constants.
Moreover, relation (16.44b) can be integrated to give an expression for the component of

3 1translation u (x ) for each portion of the beam whose cross sections have particles which
underwent plastic deformation.  Each of these expressions involves two unknown
constants.  The constants are evaluated by requiring that

1. The expressions for the deflection of the end segments of the beam satisfy its essential
boundary conditions.
2. The expressions for the deflection of the various segments of the beam give continuous

3 1 1deflection u (x ) and rotation     (x ).
3. The actions obtained from the expressions for the deflection of the various segments
of the beam are in equilibrium.

Theoretically, this procedure is straightforward. In practice, however, it is very
cumbersome and it is avoided by assuming that the moment–curvature relation of a beam

2 2is linear up to the value of M  = M . That is, the moment–curvature relation in Fig. 16.5P

3 1(see p. 774) is approximated by the straight-line OABD and the deflection u (x ) of the
beam is computed as if the beam was made from an elastic material until a plastic hinge
is formed. This assumption is justified by referring to Fig.16.5 and observing that the

2 2curvature becomes large only when the value of the moment M  is very close to M .P

Thus, large curvatures occur for a very small segment of the beam.  Consequently, for
beams subjected to loads whose values are not very close to the collapse load the
approximation of the moment–curvature relation by a straight line introduces only a small
error.  This error also depends on the geometry of the cross sections of the beam. For
beams having the cross section of Fig. a of Example 2 of Section 16.2, where b and d are
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(16.45)

Figure 16.6  Beams subjected to collapse forces. 

W F 2large while t  and t  are small, the elastic failure moment M  does not differ much fromY

2the fully plastic moment M  and, consequently, the error due to the above approximationP

is small.
When the moment at the critical cross section of a statically determinate beam reaches

its fully plastic value, the beam deforms to failure while the load remains constant. This

2 1implies that the moment M (x ) of all the cross sections of the beam remains constant

2during plastic collapse ()M  = 0).  Hence, referring to relation (16.44) we see that during
plastic collapse the right side of relation (16.44) does not change and, consequently, the

1curvature        (x ) of all the cross sections of the beam remains constant except that of the
critical cross section which increases without limit. Moreover, referring to relation

3(16.44b), the additional displacement )u  of the beam must satisfy the following relation:

3where u  is the deflection of the beam at the instance plastic collapse begins.*

3 1Consequently, the additional deflections )u  of the beam is a linear function of x . That
is, as shown in Fig. 16.6, the two parts of the beam, that to the left and that to the right of
the plastic hinge, rotate as rigid bodies about the plastic hinge formed at the critical cross
section.

16.6 Effect of Stress Concentrations on the Design of Line Members

Consider a member made from an ideally plastic material, having an abruptly or
suddenly changing cross section and assume that it is subjected to slowly increasing equal
and opposite axial centroidal forces at its ends.  The distribution of the normal component

of stress  on the cross sections of the member which are located close to the abruptly

or suddenly changing cross section is not uniform.  For a certain value of the applied

1 1forces P  = P  the normal component of stress acting on one or more particles of theY

critical cross section of the member will reach its yield value .  As the forces increase
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(16.46)

Figure 16.7 Stress distribution in a flat member of constant thickness with a circular hole.

1 above P , in the neighborhood of the abruptly or suddenly changing cross section of theY

member, plastic regions will be formed.  The normal component of stress acting on every

particle of these regions will be equal to the yield stress .  Any additional increase of

the applied forces increases the normal component of stress acting on the particles of the
parts of the member which have not been stressed up to the elastic limit.  In Fig. 16.7 the
distribution of the normal component of stress on the critical cross section of a plate with
a hole is shown for various values of the applied forces.  It is assumed that the plate is
made from an isotropic, linearly elastic–ideally plastic material. When the value of the
applied forces is small, the components of strain of all the particles of the plate are elastic.
For such value of the applied forces as it is shown in Example 3 of Section 7.7 the
maximum normal component of stress               acts on the particles located at points B

1 1and C and it is equal to three times its average value (P /A).  For a certain value P  of theY

applied forces, as shown in Fig. 16.7a, the value of the normal component of stress 

acting on particles B and C is equal to the yield stress  in uniaxial tension of the

material from which the plate is made.  As the value of the applied forces increases, the
normal component of stress acting on particles in the neighborhood of points B and C

reaches the yield stress  (see Fig. 16.7b), until for a certain value  of the applied

forces referred to as the collapse load, as shown in Fig. 16.7c, the normal component of
stress      acting on all particles of the cross section ABCD of the member reaches the
value of the yield stress and the member continues to deform to fracture, while the applied
forces remain constant.  This value of the applied forces is equal to

where A is the net area of the cross section ABCD of the member.  It is clear that the effect

of the local stress concentration disappears as the external forces approach .  However,

this conclusion is valid only for the ideally plastic model of material behavior.  If a
member with an abruptly or suddenly changing cross section is made from an ideally
brittle material (that is, a material which fractures without yielding) and is subjected to
gradually increasing axial centroidal forces, according to the maximum normal
component of stress criterion (see Section 4.6 ) it fractures when the applied forces reach
the value for which the maximum stress (acting at points B and C) is equal to the ultimate
stress in uniaxial tension of the material from which the member is made.   That is, for
such a member, the local stress concentration is an important design parameter.

The foregoing observations are also valid for members subjected to torsional moments
and for beams.  Thus, the following statements can be made:
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1. Plastic deformation tends to eliminate the stress concentrations produced by abrupt or
sudden changes of the cross sections of  members made from a highly ductile material.
Consequently, it is assumed that stress concentrations do not affect the value of the
applied loads at failure of line members made from highly ductile materials, except in
cases of repeated cycles of loading and unloading.  For such loading a member made from
a ductile material could fail as if it was made from a brittle material.  This phenomenon
is known as fatigue (see Section 4.5).
2. Stress concentrations are important design parameters for members of abruptly or
suddenly changing cross sections when they are made from brittle materials.  It is
assumed that members made from highly brittle materials fracture, as soon as the values
of the components of stress acting on one or more of their particles satisfy an appropriate
brittle fracture criterion for the material from which the member is made, as, for example,
the maximum normal component of stress criterion presented in Section 4.6.
3. The effect of stress concentrations on the load at failure of members with suddenly or
abruptly changing cross sections made from materials which are neither very ductile nor
very brittle can only be established experimentally.

On the basis of the foregoing discussion, the effect of stress concentrations is of
considerable importance in the design of machines, airplanes and other structures having
members made from ductile materials which are exposed to repeated cycles of loading
and unloading or having members made from brittle materials.

16.7 Elastic and Plastic Design for Strength of Statically Determinate Structures

Consider a prismatic statically determinate member made from a homogeneous,
isotropic, linearly elastic–ideally plastic material, subjected to increasing external axial
centroidal forces.  For certain values of the external forces, the normal components of

stress  acting on each particle of one or more cross sections of the member reach

simultaneously the yield stress of the material from which the member is made and the
member deforms to failure, while the external forces remain constant.  We say the
member collapses plastically.  That is, in this case the collapse load of the structure is
equal to its initiation of yielding or elastic design load.

Consider a prismatic statically determinate member of solid or hollow circular cross
sections made from a homogeneous, isotropic, linearly elastic–ideally plastic material,
subjected to external torsional moments whose magnitude is specified by one parameter
only which we call the load parameter.  We denote the torsional moments acting on these

1cross sections by M .  As the load parameter increases the magnitude of the componentsY

stress acting on the particles of the member increases. For a certain value of the load
parameter, which we call the initiation of yielding or elastic failure load parameter, the
components of stress acting on the particles of the perimeter of some cross sections of the
member reach simultaneously the value of the yield stress in shear of the material from
which the member is made.  As the load parameter increases above its initiation of
yielding value, a plastic region is formed (see Fig. 16.8).  The shearing component of

12stress  acting on every particle of this region is equal to the yield stress in shear J .Y

For a certain value of the load parameter, called the plastic collapse load parameter, the
shearing stress acting on all the particles of one or more cross sections of the member
reach the value of the yield stress in pure shear, and the member twists to failure while
the  external  torsional  moments  remain constant.  We say that the member collapsed 
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Figure 16.8  Stress distribution on a cross section of a member of circular cross section made from an isotropic,

linearly elastic–ideally plastic material subjected to torsional moments.

plastically.  If the member is designed on the basis of elastic design, its dimensions are
established by requiring that the anticipated maximum value of the load parameter
multiplied by the factor of safety is equal to its initiation of yielding or elastic design
value.  If the structure is designed using plastic design, its dimensions are established by
requiring that the anticipated maximum value of the load parameter multiplied by the
factor of safety is equal to its plastic collapse value. 

Consider a statically determinate prismatic beam made from a homogeneous,
isotropic, linearly elastic–ideally plastic material subjected to transverse forces and
bending moments inducing bending without twisting.  Assume that the magnitute of the
loads is specified by one load parameter.  For a certain value of the load parameter, called
the initiation of yielding or elastic failure load parameter, the normal component of stress

 acting on one or more particles of a cross section of the beam reaches the value of the

yield stress  in uniaxial tension or compression of the material from which the beam

is made.  As the load parameter increases above its initiation of yielding value, it reaches
a value, called the plastic collapse load parameter, at which the moment acting on one

2cross section reaches the value of the fully plastic moment M  and the beam deflects toP

failure while the external actions remain constant.
If a statically determinate beam is designed using elastic design, it is assumed that it

fails when the load parameter multiplied by the factor of safety reaches its initiation of
yielding or elastic failure value.  If a statically determined beam is designed using plastic
design, it is assumed that it fails when the load parameter multiplied by the factor of
safety reaches its plastic collapse  value.

In what follows we present an example.
                                                                                                                                             

Example 4  Design a simply supported beam to withstand the forces shown in Fig. a.  The

Figure a  Maximum anticipated loading on the beam.
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            (a)

 (b)

(c)

(d)

(e)

(f)

(g)

beam must have a length of 5 m and it is to be made of steel (yield stress in uniaxial
tension and compression 250 MPa).  Choose one of the standard wide-flange beams
whose cross sectional properties are given in Appendix H so that the factor of safety for
elastic failure is not less than 5.  Compute the factor of safety corresponding to the chosen
cross section for elastic failure and for plastic collapse.
                                                                                                                                             

Solution  We first determine the maximum moment in the beam.  Referring to Fig. b the
reactions of the beam are

Due to symmetry of the load, we have

Referring to Fig. c, the moment in the beam is equal to

1The maximum moment occurs at x  = 2.5 m and it is equal to

The allowable stress on the basis of elastic design is

1The maximum normal component of stress acting on the cross section at x  = 2.5 m is

where S is the so-called section modulus of the beam.  Thus, on the basis of elastic design
we need a beam with a section modulus equal to or greater than

Figure b  Free-body diagram of the beam.
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Referring to the tables of Appendix H, we see that the lightest beam which meets the
above requirement is W 530 x 92 with S = 2,070 mm .  The dimensions of the cross3

section of the beam are shown in Fig. d.  The maximum stress in the beam is

Thus, the factor of safety of the chosen cross section on the basis of elastic design is

Referring to Fig. d and to relation (16.17) the plastic collapse moment is

Thus, the factor of safety of the chosen cross section on the basis of plastic design is

Figure c  Free-body diagram          Figure d  Geometry of the chosen
of a portion of the beam.          cross section of the beam.

                                                                                                                                             

16.8 Plastic Analysis and Design of Planar Statically Indeterminate Beams and
Frames

In Sections 16.2 to 16.5 we investigate the behavior of statically determinate beams
made from an isotropic, linearly elastic–ideally plastic material when subjected to loads
bigger than those required to initiate yielding of one or more of their particles.  Under
such loads in the neighborhood of the critical cross section (the cross section subjected
to the maximum moment) of the beam plastic regions are formed, which increase as the
loads are increased.  For certain values of the loads the components of stress acting on
every particle of the one half of the critical cross section reach the value of the yield stress
in uniaxial tension for the material from which the beam is made, while the stress acting
on every particle of the other half of the critical cross section reaches the value of the
yield stress in uniaxial compression. We call the moment corresponding to this stress
distribution the fully plastic moment.  When the fully plastic moment acts on its critical
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(16.47)

(16.48)

(16.49)

cross section a beam behaves as if a hinge has been formed at its critical cross section.
Thus, a statically determinate beam becomes a mechanism (see Section 8.6.1) and the
curvature at its critical cross section increases without any limit while the load remains
constant.  We say that the statically determinate beam collapses plastically.

In this and the subsequent sections we present methods for computing the collapse
load of statically indeterminate beams and frames made from an isotropic, linearly
elastic–ideally plastic material having the same yield stress in uniaxial tension and
compression. When the fully plastic moment acts on a cross section of statically
indeterminate beams or frames, they behave as if a hinge has been formed at this cross
section. However, they do not become a mechanism. Statically indeterminate beams or
frames can support loads higher than those which produce a fully plastic moment at one
their cross sections. They collapse plastically when plastic hinges reduce a part of them
to a mechanism, that is, when a part of them can deform to failure while the load remains
constant.

Consider the fixed at both ends beam shown in Fig. 16.9a made from an isotropic,

3linearly elastic–ideally plastic material subjected to a uniformly distributed force p  and

2 3assume that the x  and x  axes are axes of symmetry of the cross section of the beam.  This

3beam is statically indeterminate to the third degree.  For small values of the force p  the
normal component of stress acting on all the particles of the beam will be less than the
yield stress in uniaxial tension or compression of the material from which the beam is
made and its reactions and internal actions can be computed using the force method
presented in Chapter 14. It can be shown that the values of the moments at the ends O and
L and at the middle point A of the beam are

As the load increases, it reaches a certain value , for which the normal component

of stress acting on the top and bottom particles of the end cross sections of the beam
becomes equal to the yield stress in uniaxial tension or compression for the material for

which the beam is made.  On the basis of elastic design,  is the maximum value of the

load that the beam can safely withstand.  From the first of relations (16.47) we find

As the load increases above , for a certain value  the moment at the ends O and

L of the beam becomes equal to the fully plastic moment .  We assume that the beam

behaves as if it  was made from an elastic material until the  fully pla stic moment is
developed at the ends O and L.  Thus, referring to Fig. 16.9b we find

For any value of the load greater than  the beam carries the increment of the load 

as if hinges have been formed at its ends, that is, as if it was simply supported (see Fig.
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Figure 16.9  Fixed at both ends beam subjected to increasing distributed forces.
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(16.50)

(16.51)

(16.52)

(16.53)

16.9d).  For a certain value  of the load called the collapse load of the beam the

moment at point A reaches its fully plastic value and the beam becomes a mechanism with
plastic hinges at points O, A and L.  That is, the beam continues to deflect while the load
remains constant.  We say that the beam collapses plastically.  It is clear that during
plastic collapse of the beam its moment remains constant throughout its length and,
consequently the curvature of all its cross sections remains constant except that of its
cross sections at O, A, and L at which it increases without limit.  This indicates that the

additional deflection  in excess of that which exists when the load reaches the value 

1is a linear function of x .  The beam rotates about the plastic hinges until it collapses.  The

additional deflection  of the beam is plotted in Fig. 16.9h.  This diagram is known as

the plastic collapse mechanism for the beam.

If we denote by  the difference between the loads  and , referring to Fig.

16.9b and 16.9e the moment at point A is equal to

Substituting relation (16.49) into (16.50), we find that

Consequently using relations (16.49) and (16.51) the collapse load for the beam is equal
to

If we denote by  the ratio of  to  from relations (16.48) and (16.52) we get

When we design a structure using plastic design we choose its dimensions so that none
of its parts behave like a mechanism, when it is subjected to values of the loads equal to
the maximum values to which it is anticipated that it will be subjected during its lifetime,
multiplied by an appropriate factor of safety.  Thus, from an elastic design point of view

the beam under consideration cannot support a uniformly distributed load  higher than 

while from a plastic design point of view the beam can support a uniformly distributed

load as big as  which as can be seen from relation (16.53) is considerably bigger than

.

During unloading the behavior of the beam is linearly elastic.  The difference between

the moment diagrams for the beam subjected to a load bigger than  from that for the
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(16.54)

Figure 16.10  Load–deflection diagram.    Figure 16.11  Moments acting on the plastic
   hinges at the instance of collapse.

beam subjected to an equal and opposite load (unloading) (see Fig. 16.9k) is the residual
moment diagram.  As shown in Fig. 16.9l when the beam under consideration is unloaded

from a value of the load just below , the residual moment is constant and equal to

.  As shown in Fig. 16.9n the corresponding elastic curve of the beam is an arc of

a circle.  The load–deflection diagram for the beam is shown in Fig. 16.10.
It is important to note that the collapse load for a structure can be computed by

considering its equilibrium at the instant plastic collapse begins without having to analyze
the statically indeterminate beam, as we have done in this example.  That is, referring to
Fig. 16.9i from the equilibrium of segment OA of the beam, we have

or

The collapse load for a structure can also be computed using the principle of virtual
work established in Section 13.2 and choosing as the "virtual" displacement the increment

 corresponding to its collapse mechanism.  Referring to Fig. 16.9h we see that the

segments OA and AL of the beam during plastic collapse move as rigid bodies. Therefore

the components of strain of the particles of these segments due to the displacement 

vanish. Taking this into account and noting that  the principle virtual world

(13.6) for segments OA and AL of the beam reduces to 
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(16.55)

(16.56)

From relations (16.55), we obtain

 In plastic analysis of structures we are usually interested in computing only their
plastic collapse load.
                                                                                                                                             
     

16.9 Direct Computations of the Collapse Load of Beams and Frames

From the example of the previous section we may deduce that the collapse load of a
structure is not affected by the presence of residual stresses.  Moreover, in most cases of
practical interest the value of the collapse load of a structure does not depend on the
history of loading.  However, the order at which plastic hinges are formed and the
deformation of a structure depend on the history of loading.  For example, if we first

apply on half of the length of the beam of Fig. 16.9a, a load of  and then we

subject the other half of its length to an increasing uniformly distributed load, the beam

collapses when this load reaches the value of .  That is, the beam collapses

for the same value of the load as when it was subjected to an increasing load over its
entire length.

On the basis of the foregoing observations when we compute the collapse load of a
structure, we assume that its load is applied in such a way that it creates simultaneously
all the plastic hinges required for plastic collapse of the structure.  That is, we compute
the collapse load of a structure assumin g that it behaves elastically until it collapses.
This assumption does not affect the value of its collapse load.
  For the beam of Fig. 16.9a there is only one possible collapse mechanism and thus the
collapse load can easily be established.  More complicated structures can collapse in one
of several possible collapse mechanisms.  The actual collapse mechanism of the structure
is the one which requires the smallest collapse load.  Thus, one way to establish the actual
plastic collapse load for a structure is to identify all possible collapse mechanisms and to
compute the corresponding collapse loads.  The smallest of these loads is the collapse
load for the structure.  This method is known as the kinematic method. 

In what follows we present an example.
                                                                                                                                             

Example 5 Establish the collapse load of the frame whose geometry and loading are
shown in Fig. a.  The members of the frame have the same constant cross section and are
made from the same isotropic, linearly elastic–ideally plastic material with a fully plastic

2moment M .P
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(a)

(b)

(c)

Figure a  Geometry and loading
of the frame.

Solution

Referring to Fig. a we see that there are five cross sections of the frame under
consideration, where plastic hinges could be formed, namely, those at points 1, 2, 3, 4 and
5.  We can write a number of equations of equilibrium including the moments at these
five cross sections by drawing free-body diagrams of appropriate parts of the frame and
considering their equilibrium.  However, the frame is statically indeterminate to the third
degree.  That is, three of these five moments are in excess of those which can be
computed using the equations of equilibrium.  This implies that if we know three of these
moments, we can compute the other two using the equations of equilibrium.
Consequently, only two of the equations of equilibrium that we write are independent.

STEP 1 We write equations of equilibrium involving the moments acting on the cross
sections at points 1, 2, 3, 4 and 5, by considering the equilibrium of appropriate parts of
this frame.  Referring to Fig. ba from the equilibrium of members (4, 5), (3, 4) and (2, 4),
we have

Figure b  Free-body diagrams of the members of the frame.
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(d)

(j)

(e)

(f)

(g)

(h)

(i)

Figure c  Possible collapse mechanisms of the frame of Fig. a.

Moreover, referring to Fig. bb from the equilibrium of the portion 1, 2, 3, 4 of the frame,
we have

Notice that some of the equilibrium equations that we have chosen involve the force P in
addition to the moments at the five cross sections at which plastic hinges could be formed.
We can establish a convenient set of two independent equations of equilibrium involving

v hthe moments at the five cross sections and the force P by eliminating R  and R  from(5) (5)

relations (a) to (d).  Thus, we get

For any value of the load the internal moments at point 1,  2, 3, 4, 5 must satisfy the above
independent equilibrium equations.

STEP 2 As shown in Fig. c, there are three possible collapse mechanisms of the frame of
Fig. a. We compute the collapse load for each possible collapse mechanism of the frame.
Referring to Fig. ca we see that for the sidesway collapse mechanism the moments at
points 1, 2, 4 and 5 must be equal to the fully plastic moment.  That is,

Notice that during plastic collapse the sign of the moments is such that all the terms of
relations (e) and (f) are positive.  Substituting relations (g) into (e) we obtain the following
collapse load for the sidesway collapse mechanism:

For plastic collapse of the beam of the frame, referring to Fig. cb, we see that the
moments at points 2, 3 and 4 must be equal to the fully plastic moment.  That is,

Substituting relations (i) into relation (f), we get the following collapse load for plastic
collapse of the beam of the frame:

Finally, for the combined collapse mechanism referring to Fig. cc we see that the
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(k)

(l)

moments at points 1, 3, 4 and 5 must be equal to the fully plastic moment.  That is,

Substituting relations (k) into relations (e) and (f), we get the following collapse load for
the combined collapse mechanism of the frame:

The collapse load of the combined collapse mechanism given by relation (l) is the
smallest of the collapse loads of the three possible collapse mechanisms of the frame of
Fig. a and, consequently, is its collapse load.

The method employed in this example to obtain the collapse load was very effective
because the frame under consideration has only three possible collapse mechanisms (see
Fig. c). In practice, however, there are structures which have many possible collapse
mechanisms.  The collapse load of such structures is established using more systematic
procedures than the one used in this section.  One such procedure is presented in Section
16.12.
                                                                                                                                             

16.10 Derivation of the Equations of Equilibrium for a Struct ure Using t he
Principle of Virtual Work

The equations of equilibrium of a structure may also be obtained by using the principle
of virtual work derived in Section 13.2.  This is illustrated by the following example.
                                                                                                                                             

Example 6 Establish the equations of equilibrium of the frame of Fig. a using the
principle of virtual work.

Figure a  Geometry and loading of the frame.

Solution  We consider the auxiliary frame shown in Fig. b which has the same geometry
as the actual frame, except that it has hinges at cross sections 1, 2, 4, 5 where the pairs of

2 2 2 2positive moments M , M , M , M  act as shown in Fig. b.  When this frame is(1) (2) (4) (5)

subjected to the same loading as that acting on the actual frame and to the external

2 2 2 2moments M , M , M , M  which are equal to the corresponding internal moments(1) (2) (4) (5)

of the actual frame, the distribution of internal moments in the members of the two frames
(the auxiliary and the actual) are identical.  Suppose that the auxiliary frame of Fig. b is
subjected to the virtual displacement shown in Fig. c.  During this displacement, the
segments 12, 24 and 45 of the frame are displaced as rigid bodies, and, consequently, the
components of strain of the particles of these members vanish.  Thus, the principle of
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(c)

     (a)

(b)

virtual work, (13.6) reduces to

or

We consider the auxiliary frame shown in Fig. d and subject it to the virtual displacement
shown in Fig. e.  During this displacement, the segments 23 and 34 of the frame are
displaced as rigid bodies.  Consequently, the components of strain of the particles of these
segments vanish.  Thus, the principle of virtual work (13.6) reduces to

or

Equations (a) and (b) are two independent equations of equilibrium corresponding to the
two elementary collapse mechanisms of  Figs. c and e.  These equations may be combined
to give the following equation:

The above equation may also be obtained using the principle of virtual work, that is,
subjecting the auxiliary frame of Fig. f, to the virtual displacement shown in Fig. g and
taking into account that during this displacement the components of strain of the particles
of the members of the structure vanish. Thus, the principle of virtual work (13.6) gives

Figure b  Auxiliary frame. Figure c  Virtual displacement of
the auxiliary frame of Fig. b.

 

Figure d  Auxiliary frame.     Figure e  Virtual displacement of
the auxiliary frame of Fig. d.
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    (d)

(16.57)

Figure f  Auxiliary frame.     Figure g  Virtual displacement of the auxiliary frame of Fig. f.

Dividing by , relation (d) reduces to relation (c).

On the basis of the foregoing presentation, we may conclude that an equation of
equilibrium corresponds to every collapse mechanism of a structure.  However, all these
equations of equilibrium are not independent.  The choice of which of the equations of
equilibrium are the independent and which are the dependent is arbitrary.  The collapse
mechanisms corresponding to the chosen independent equations of equilibrium are
referred to as elementary.  The other collapse mechanisms are referred to as combined and
can be obtained by suitable superposition of elementary mechanisms.  Thus, the choice
of which of the collapse mechanisms are the elementary and which are the combined, is
also arbitrary.  For planar frames, it is usually convenient to choose the beam and
sidesway mechanism as the elementary and the corresponding equations of equilibrium
as the independent equations.
                                                                                                                                             

16.11 Theorems for Limit Analysis

In this section we present two theorems which are employed for the systematic plastic
analysis of framed structures made from isotropic, linearly elastic–ideally plastic
materials.  For this purpose we define as safe a distribution of internal moments in a
framed structure whose value at any cross section does not exceed the value of its fully
plastic moment.

16.11.1    Lower Bound Theorem

Consider a beam or a frame, made from an isotropic, linearly elastic–ideally plastic
material, subjected to external forces whose values depend on one parameter k.  That is,
these forces could include concentrated  kP ,  kP , kP , ..., kP  and distributed kp(1) (2) (3) (n)

sforces.  If for a set of values of these forces specified by k = k , one can find a statically
admissible distribution of internal moments (see Section 13.3) which is also safe, then

cwhere k  is the value of the load parameter which corresponds to the collapse load of the
structure.  This theorem is also known as the static theorem.
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(16.58)

(16.59)

           (16.60)

Proof

cConsider a beam or a frame subjected to the loads described above with k = k .  We

2denote by M (j = 1, 2, ..., m) the fully plastic moments acting at its cross sections j = 1,P(j)

2, ..., m where plastic hinges have been formed.  Moreover, we denote by  the

rotation of the plastic hinges during plastic collapse.  Furthermore, we denote by )u the
additional displacement after the structure began to collapse plastically and by )u  the(i)

value of this additional displacement at the point of application of the concentrated force
P  in the direction of P .  During this displacement the components of strain of the(i) (i)

particles of the members of the structure vanish. Moreover, during that displacement, the

plastic moments act in the direction opposite to that of . Taking this into account

choosing )u with  as the virtual displacement field, and applying the principle of

virtual work (13.6), we have

where S is the surface of the body and m is the number of plastic hinges formed in the
structure at plastic collapse.

sConsider the same structure subjected to the loads described above with k = k .  We

2 2denote by M (j = 1, 2, ..., m) the moments, corresponding to M , of a staticallyS(j) P(j)

admissible and safe distribution of internal moments in the strucure under consideration.

Choosing )u with  as the “virtual” displacement field, and applying the principle

of virtual work (13.6), we have

Substituting relation (16.59) from (16.58), we get

2 2Since M  is less or equal to M  the right side of relation (16.60) is either positive orS(j) P(j)

zero.  Moreover, the term in the bracket at the left side of relation (16.60) is positive since
it is equal to the work performed by the external forces acting on the structure during
plastic collapse of the structure.  Consequently, from relation (16.60) we see that

16.11.2    Upper Bound Theorem

Consider a framed structure, made from an isotropic linearly elastic–ideally plastic
material, subjected to external forces whose values depend on one parameter k.  That is,
these forces could include concentrated  kP ,  kP , kP , ..., kP  and distributed kp(1) (2) (3) (n)

forces.  If we denote by  the value of the force parameter corresponding to a possible

collapse mechanism of the structure not necessarily the actual one, we have
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(16.61)

(16.62)

(16.63)

(16.64)

cwhere k  is the value of the load parameter which corresponds to the actual collapse load
of the structure.  This theorem is also known as the kinematic theorem.

Proof
Consider a structure subjected to the forces described above with k =  which

corresponds to the values of the external forces that render the structure a mechanism
having plastic hinges at q cross sections.  This mechanism may or may not be the actual

collapse mechanism of the structure.  We denote by (j = 1, 2, ..., q) the fully plastic

moments of the structure subjected to the forces described above with k = .  Moreover,

we denote by  the rotations of the plastic hinges and by  the additional

displacement that the points of the structure would have undergone if the structure was

collapsing as the mechanism under consideration.  Furthermore, we denote by  the

additional displacement of the point of application of the force P  in the direction of P .(i) (i)

During this displacement the components of strain of the particles of the members of the

structure vanish. Taking this into account, choosing  with  as the virtual

displacement field and applying the principle of virtual work (13.6), we have

cConsider the same structure subjected to the loads described above with k = k .  We

2denote by M (j =  1, 2, ..., q) the moment at the j  cross section (j = 1, 2, ..., q) of the(j) th

cstructure subjected to the forces described above with k = k .  The cross sections (j = 1,

2, ..., q) are the ones at which plastic hinges are formed when k = . Choosing  with 

as the virtual displacement field, and applying the principle of virtual work (13.6) we have

Subtracting relation (16.62) from (16.63), we obtain

2 2The moment M  is less or equal the the fully plastic moment M .  Consequently, the(j) P(j)

right side of relation (16.64) is negative or zero.  Moreover, the term in the bracket in the
left side of relation (16.64) is always positive because it represents the work of the
external forces during plastic collapse.  Consequently, from relation (16.64), we see that

16.12 Systematic Procedure for Plastic Analysis of Structures

A systematic procedure for plastic analysis of structures involves the following steps:
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STEP 1  The elementary collapse mechanisms of a structure are listed and the upper
bound to the collapse load corresponding to each elementrary collapse mechanism is
established.

STEP 2  Some of the elementary collapse mechanisms having the lower upper bounds are
combined and the upper bounds corresponding to the resulting combined mechanisms are
established.

STEP 3  A lower bound to the collapse load is established.  If the difference between the
lowest upper bound established in step 2 and the lower bound is not within the desired
accuracy, additional collapse mechanisms must be analyzed and a new upper bound, as
well as a new lower bound must be established.  The process is repeated until the
forementioned difference is within the desired accuracy.  Then the collapse load of the
structure may be approximated to the lowest lower bound.

In what follows, we present an example.
                                                                                                                                             

Example 7  Compute the collapse load of the one bay frame loaded as shown in Fig. a.
Notice that the fully plastic moment of the beam is twice that of the columns.

Figure a  Geometry and loading of the frame.

Solution

STEP 1  Referring to Fig. a, we see that there are six cross sections in this structure where
plastic hinges could possibly develop.  These cross sections are at points 1, 2, 3, 4, 5, 6.
Moreover, this is an indeterminate structure of the third degree.  Therefore, there are 6-3
= 3, independent equations of equilibrium relating the moments at the forementioned
cross sections and, consequently, three elementary collapse mechanisms.  We choose as

(a)  Sidesway collapse mechanism (b)  Beam collapse mechanism (c)  Column collapse mechanism

Figure b  Elementary collapse mechanisms of the frame of Fig. a. 
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(a)

(b)

           (c)

(d)

(e)

(f)

the elementary mechanisms the sidesway, the beam and the column collapse mechanisms
shown in Fig. b.  The equations of equilibrium corresponding to these mechanisms may
be obtained by applying the principle of virtual work, as discussed in Section 16.10.

2Thus,  referring  to  Fig. ba  and  denoting by M (I = 1, 2, 3, ..., 6) the internal moments(i)

at points (i = 1, 2, 3, ..., 6) of the frame, the equilibrium equation corresponding to the
sidesway collapse mechanism is

or

In relation (a) positive moment produces tension on the inside fibers of the members of
the frame (see Fig. c). The upper bound to the collapse load, corresponding to the
sidesway collapse mechanism, may be obtained by setting the following values for the
moments in equation (b):

Thus, we get

Notice that the sign of the moments in relation (c) is obtained by nothing that the fully
plastic moment acting at the ends of a segment of the structure extending between two
plastic hinges has such a sense that it tends to oppose the rotation of the segment. For
example, referring to Fig. ba we see that the rotation of ends 1 and 3 of member 13 is
clockwise. Thus, the sense of the fully plastic moments acting at the ends of member 13

2 2of the structure during sidesway plastic collapse is as shown in Fig. d, ( M  = ! M  and(1) P

2 2M  = M ). Moreover, the sense of the fully plastic moments for a collapse mechanism(3) P 

may be established by noting that it must be such that all the terms on the right side of the
corresponding equilibrium equation must be positive. Referring to Fig. bb, the equation
of equilibrium corresponding to the beam collapse mechanism is

or

Figure c Positive internal moments acting Figure d Free-body diagram of member 13 of the

on the members of the structure.                sidesway collapse mechanism of Fig. ba.
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(g)

(h)

(i)

(j)

(k)

(l)

The upper bound to the collapse load corresponding to the beam collapse mechanism may
be obtained by setting the following values for the moments in relation (f): 

Thus, we get

Referring to Fig. bc, the equation of equilibrium corresponding to the column collapse
mechanism is

or

The upper bound to the collapse load corresponding to the column collapse mechanism
may be obtained by setting the following values for the moments in relation (j):

Thus, we get

STEP 2  Inasmuch as the two lowest of the upper bounds established in step 1 are those
obtained from the sidesway and the column collapse mechanisms, it is possible that a
lower upper bound could be obtained by combining these two mechanisms to yield the
mechanism shown in Fig. ec.  Applying the principle of virtual work to this mechanism,
we obtain the following equation:

(m)
The same result may be obtained by adding equations (a) and (i).  For any choice of the

ratio  equation (m) gives an equation of equilibrium.  Assuming that 

> 0 an upper bound to the collapse load corresponding to the combined mechanism of Fig.
ec may be obtained by setting the following values for the moments in relation (m):

(n)

Figure e  Superposition of the sidesway and column mechanisms.
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(o)

(p)

(q)

(r)

(s)

Thus, relation (m) reduces to

From relation (o) we see that P  depends on the value of the ratio                 .  Inasmuch u.b.

as it has been assumed that 0 <  # 1, the lowest value of P  is obtained for u.b.

 equal to unity.  This choice of the ratio  cancels the hinge at point 3

and reduces the combined collapse mechanism of Fig. ec to that of Fig. f.  Moreover, it
reduces equation (m) to the following equation of equilibrium:

The same result may be obtained by combining equations (b) and (j) or by applying the
principle of virtual work to the mechanism shown in Fig. f.  The upper bound to the
collapse load corresponding to the combined collapse mechanism shown in Fig. f is
obtained by setting the following values for the moments in relation (p):

Thus, we obtain

It is apparent that the upper bound to the collapse load corresponding to the combined
(sidesway and column) collapse mechanism is the lowest of the ones corresponding to the
mechanisms which we have thus far analyzed.

STEP 3  We compute a lower bound to the collapse load of the structure.  In order to
accomplish this, we note that for the frame under consideration, there are three
independent equations of equilibrium.  One of these equations has been used in obtaining
P  as the statically admissible load corresponding to the moment distribution given by u.b.

relations (q).  Thus, there are two independent equations of equilibrium available, for

2 2obtaining M  and M , the only moments not included in relations (q).  We can use(3) (4)

equations (b) and (f) as the independent equations.  Thus, substituting relation (q) and (r)
into (b) and (f), we get

The moment distribution

Figure f  Combined collapse mechanism for .
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(t)

(u)

is statically admissible to the applied load P = 3M /L and, moreover, is safe.  Thus, on theP

basis of the lower bound theorem, this value of the load is a lower bound to the collapse
load.  That is,

Comparing relation (r) and (t), it is apparent that the collapse load is

Remarks  On the basis of the foregoing example, we note that
(a) The equation of equilibrium corresponding to a combined collapse mechanism

may be obtained by combining the equations of equilibrium corresponding to
each of the mechanisms which have been combined, to yield the combined
collapse mechanism.

(b) We denote by  the parameter that specifies the geometry of the i  mechanismth

of a structure. When n mechanisms are superimposed, the number of hinges of the
resulting combined mechanisms depends on the choice of the relative values of

(i = 1, 2, ..., n). The combined mechanism which gives the lowest upper

bound is obtained for relative values of      which cancel as many hinges as
possible.

(c) Only if one or more hinges are canceled during the combination of two or more
mechanisms, the upper bound obtained from the resulting combined mechanism
could be less than the lowest upper bound obtained from each of the elementary
mechanisms which have been combined.

                                                                                                                                             

16.13 Problems

1. A shaft of length 1.2 m and solid circular cross sections of radius 40 mm is subjected
to equal and opposite torsional moments at its ends.  The shaft is made from an isotropic,

12linearly elastic–ideally plastic material with G = 75 GPa and  = 160 MPa. Y

(a) Determine the magnitude of the torsional moments for which yielding begins at
the particles of the lateral surface of the shaft. Ans. 16.085 kN@m

(b) Determine the magnitude of torsional moments which reduces the radius of the

1  elastic core of the shaft to 20 mm. Ans. M = 20.776 kN@m

(c) Determine the corresponding angle of twist of the one end of the shaft relative to
the other. Ans.  = 7.334°

(d) Determine the distribution of the residual stresses on the cross sections of the
shaft when the torsional moments determined in (b) are removed.

Ans. (0.02) = 56.66 MPa  (0.004) = !46.8 MPa

(e) Determine the residual angle of twist. Ans.   = 2.597°

2. A shaft of length 1.5 m is made from a steel (G = 77 GPa) circular tube, whose cross
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section is shown in Fig. 16P2.  Steel can be approximated by the isotropic, linearly
elastic– ideally plastic model of material behavior having a yield stress in pure shear

equal to = 145 MPa.  The shaft is subjected to equal and opposite torsional moments

at its ends. 

(a) Establish  and .

(b) Suppose that the shaft is subjected at its ends to equal and opposite torsional

1 1moments of magnitude (M  + M )/2.  Compute and show on a sketch theY P

distribution of shearing stress on the cross section of the shaft.

(c) Establish the distribution of the residual shearing stress when the shaft is

unloaded.

Figure 16P2                    Figure 16P4             Figure 16P5

3. A prismatic shaft of circular cross section is fixed at its one end and is subjected to a
distribution of traction on its other end which is statically equivalent to a concentrated
axial centroidal force of 20 kN and a torsional moment of 0.6 kN@m. The shaft is made
from an isotropic, linearly elastic material (E = 200 GPa, G = 75 GPa) obeying the Von

Mises yield criterion with a yield stress in uniaxial tension or compression of = 340

MPa. Using a factor of safety of 2.5, determine the minimum required safe diameter D
of the shaft. Assume that the shaft fails at the initiation of yielding.     Ans. D = 42.7 mm

2 24. and 5.  Compute the elastic design moment M , the fully plastic moment M  and theY P

shape factor of the beam whose cross section is shown in Fig. 16P4.  Repeat with the
beam whose cross section is shown in Fig. 16P5.

6. to 8.  Consider the 3 m long simply supported beam whose cross section is shown in
Fig. 16P6.  The beam is made from an isotropic linearly elastic–ideally plastic, material
with modulus of elasticity E = 200GPa and yield stress in uniaxial tension

3. The beam is subjected to a concentrated force of P  at the middle point

of its span. Compute the elastic failure force P  and the plastic collapse force P .  Y C

(a) Establish the distribution of the normal and shearing components of stress acting
on the cross section of the beam just to the left of the concentrated force

www.EngineeringEBooksPdf.com



804 Plastic Analysis and Design of Structures

.

(b) Establish the geometry of the plastic regions for .

(c) Establish the distribution of the residual normal component of stress acting on the
cross section just to the left of the concentrated force when the beam is unloaded

after being subjected to .

Repeat with the beams whose cross sections are shown in Figs. 16P7 and 16P8.

Figure 16P6 Figure 16P7 Figure 16P8

9. A machine part made from steel has the T cross section as shown in Fig. 16P9. The part

3is fixed at its one end and is subjected to a uniform load p .  If the yield stress for steel in
tension or in compression is 250 MPa, compute the maximum allowable value of the load

3p , using a factor of safety of 4 and (a) elastic design (b) plastic design.

Figure 16P9

10.  Consider the beam subjected to the loading shown in Fig. 16P10.  The beam is made
from an isotropic, linearly elastic material.  Using  a factor of safety of 4 and (a) elastic
design and (b) plastic design, determine the maximum allowable value of the force P.
The yield stress in uniaxial tension of the material from which the beam is made is

. Neglect the weight of the beam. 

Figure 16P10
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311. Using elastic design, find the maximum safe force P  which can be placed at the
unsupported end of the tapered cantilever beam of rectangular cross section of constant
width b = 0.2 m (see Fig. 16P11) in order to have a factor of safety of 2.  The beam is

made from an isotropic, linearly elastic-ideally plastic material (E = 200 GPa,  = 0.3,

) obeying the Von Mises yield criterion. (Hint: The shearing component

13of stress J  can be obtained from relation (b) of the example of Section 10.2.1.)

Figure 16P11 Figure 16P12

12.  The two-span continuous beam of Fig. 16P12 is subjected to the loads shown.  The
left span has a fully plastic moment of M .  Find the required value of the fully plasticP

moment of the right span so that the two spans collapse plastically simultaneously.

13.  Find the collapse load of the fixed at both ends beam of constant cross section of Fig.

16P13. The beam is made of one material (E = 200 GPa, v = 0.3, ).

Figure 16P13

14. to 17.  Use the method of described in Section 16.12 to compute the collapse load PC

of the structure subjected to the loads shown in Fig. 16P14.  The structure is made from
an isotropic, linearly elastic–ideally plastic material.  Repeat with the structures of Fig.
16P15 to 16P16.

Figure 16P14           Figure 16P15
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Figure 16P16
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Chapter
17

  Mechanics of Materials
Theory for Thin Plates

17.1 Introduction

A plate is a body whose boundary consists of two plane surfaces, called its faces,
located a small distance apart and one or more (if it has holes) prismatic lateral surfaces
(see Fig. 17.1).  The distance between the faces of a plate is called its thickness and is
considerably smaller than its other two dimensions.  The locus of the midpoints of the
thickness of a plate is a plane known as its midplane.  We call the closed line bounding
the midplane of a plate its edges. We limit our attention to thin plates of constant
thickness t.  Plates are considered as thin when their thickness is less than about 1/20 of

3the smallest dimension of their midplane.  As shown in Fig. 17.1, we choose the x  axis

1 2normal to the midplane of the plate and the x  and x  axes in its midplane.
We consider plates originally in their undeformed stress-free, strain-free state of

0mechanical and thermal equilibrium at the uniform temperature T . Subsequently, the
plates reach a second deformed state of mechanical, but not necessarily thermal
equilibrium due to the application of specified boundary conditions on their lateral
surfaces and to the application on their faces of one or more of the following loads:

3 1 21. Specified distributed p (x , x ) and concentrated  transverse forces

acting on their faces

1 2 1 2 3 2. Specified temperature distribution T (x , x ) and T (x , x ) at their faces x = t/2 and(+) (-)

3 x = !t/2, respectively

Figure 17.1  Thin plate.
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(17.1)

(17.2a)

2 1Figure 17.2 Radii of curvature and twist of the midplane of a plate in the plane normal to the x  and x  axes.

These loads deform the plate in a way that the particles of its midplane move only in the
direction normal to it.  That is

1 2We denote by r  and r  the radii of curvature of the deformed midplane of the plate in the

2 1planes normal to the x  and x  axis, respectively.  In Fig. 17.2a we show the positive radii
of curvature; referring to this figure we see that when the midplane of a plate has a

1 2positive curvature r  and r , the rate of change of its slopes  and  is

3 1 2negative.  That is, the second derivative of u  with respect to x  or x , respectively, is
negative.  Taking this into account, referring to relations (9.25) and  limiting our attention
to plates whose deformation is within the range of validity of the assumption of small
deformation, their radii of curvature may be approximated as
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(17.2b)

(17.3)

(17.4)

(17.5)

The midplane of a plate may also twist.  That is, there may be a change of the slope 

2 1or  as one proceeds in the x  or x  direction, respectively.  The measure of the

twist is the rate of change of the slope  in the direction .

That is,

The geometric interpretation of the twist is demonstrated in Fig. 17.2b.

17.2 Fundamental Assumptions of the Theories of Mechanics of Materials for
Thin Plates

In the theories of mechanics of materials for thin plates the following assumptions are
made:
Assumption 1. The behavior of a plate may be approximated by that of the continuum
model (see Section 2.1).

Assumption 2. The effect of the deformation of the plates which we are considering on
their temperature is negligible.  On the basis of this assumption the temperature
distribution of a plate can be computed independently of its deformation.  In this book we
assume that it has been computed and it is known.

Assumption 3. The normal component of stress , acting on the particles of plates is

negligible compared to the other normal components of stress. That is,

On the basis of this assumption, referring to relations (3.95), the stress–strain relations for
plates made from an isotropic linearly elastic material reduce to
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(17.6)

or

Assumption 4.  The principle of Saint Venant can be applied to the lateral surfaces of
plates.  This principle indicates that the change of the stress field at points sufficiently
removed from the lateral surfaces of a plate is negligible when the distribution of traction
acting on its lateral surfaces is replaced by a statically equivalent one, that is, one which
has the same resultant force and moment, per unit length of the edge of the plate.  For this
reason at the portion of the lateral surface of a plate at which the components of
displacement are not specified it is sufficient to specify the resultant force and the
resultant moment per unit length of its edge.

Assumption 5.  When the theory of elasticity is employed to establish the distribution of
the components of displacement and stress in a body in equilibrium under the influence
of external forces (surface tractions and body forces) and/or change of temperature, it is
required that the distribution of the components of stress satisfies the conditions for
equilibrium for all the particles of the body.

In the theories of mecha nics of mate rials for plates w e do not en sure that eve ry
particle of a plate is in equilibrium.  Instead we ensure that each segment of infinitesimal
length and width, and finite thickness t of a plate is in equilibrium.

Assumption 6.  Straight lines normal to the midplane of a plate before deformation
remain straight after deformation.  Consequently, the deformed configuration of a line
which before deformation is normal to the midplane of a plate at point A is specified by

the transverse component of translation  of its midpoint and by the two

1 2components of rotation  and  about the x  and x  axes, respectively.

Referring to Fig. 17.3 consider  the  particles  of  the  straight  line  ABCD which before

Figure 17.3  Deformed configuration of a material straight line. 
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(17.7a)

(17.7b)

(17.8)

(17.9)

(17.10)

(17.11a)

deformation was normal to the midplane of the plate.  On the basis of Assumption 4, due
to the deformation of the plate,  these particles move to another straight line ANBNCNDN not
shown in Fig. 17.3.  Taking into account relation (17.1) the projection of line ANBNCNDN

1 3on the x x  plane is the straight line ANNBNNCNNDNN shown in Fig. 17.3.  The movement of
the particle located before deformation at point C is specified by its components of

displacement , , and .  As can be seen from Fig.

17.3, we have

Similarly, it can be shown that

Assumption 7.  In view of the small thickness of a plate we assume that the component
of translation of a particle in the direction normal to its midplane is approximately equal
to that of its projection on the midplane.  That is,

In order to be able to formulate the boundary value problem for computing the

3 1 2component of translation (deflection) u (x , x ) of a plate we need two relations relating

1 2 1 2it to the components of rotation      (x , x )  and      (x , x ). There are two theories available
in the literature, for analyzing plates.  They differ only in the relations of the component

3 1 2 1 2 1of translation u (x , x ) of the plate with the components of rotation      (x , x )  and      (x ,

2x ).  The one theory which we present in this text is called the classical theory of plates.
It is based on the assumption that the geometry of the plate is such that the effect, of shear

23 1 2 3 13 1 2 3deformation [that is, of the shearing components of strain e (x , x , x ) and e (x ,x ,x )]

3 1 2of the particles of the plate, on its component of translation u (x , x ) is negligible. The
other theory for analyzing plates is called the Timoshenko theory of plates.  In this theory
a portion of the effect of shear deformation of the particles of the plate on its component

3 1 2of translation u (x , x ) is retained.  That is, following a reasoning similar to that adhered
to for beams [see relations (9.27)] for the classical theory of plates, we have

Substituting relations (17.9) into (17.7), we get

Substituting relations (17.10) into the strain–displacement relations (2.16) and referring
to relations (17.2) and (17.3), we obtain

www.EngineeringEBooksPdf.com



812 Mechanics of Materials Theory for Thin Plates

   
          (17.11b)

(17.11c)

(17.12a)

(17.12b)

(17.12c)

1 2where r  or r  is the radius of curvature of the deformed midplane of the plate in the plane

2 1normal to the x  or x  axis, respectively.  In the classical theory of plates the components

13 23of strain e  and e  cannot be computed from the components of displacement on the
basis of relations (2.16) because in obtaining relations (17.9) we have assumed that these
components of strain are negligible and, consequently, substituting relations (17.10) into

13 23(2.16), we get that e  and e  are equal to zero. Substituting relations (17.11) into the
stress–strain relation (17.6), we have

17.3  Internal Action Intensities Acting on an Element of a Plate

Consider a plate originally in its undeformed stress-free, strain-free state of

0mechanical and thermal equilibrium at the uniform temperature T .  Subsequently the
plate reaches a second state of mechanical but not necessary thermal equilibrium due to
the application on it of one or more of the following loads and constraints:

3 1 21. Specified distributed p (x , x ) and concentrated  transverse forces

acting on its faces

1 2 1 2 32. Specified  temperature distribution T (x , x ) and T (x , x ) at their faces x  = t/2 and(+) (-)

3 x = !t/2, respectively
3. Specified boundary conditions on its lateral surfaces (see Section 17.5)
Due to the application of these loads there will be stresses acting on the particles of the
plate.  We define the resultant force and moment intensities of the components of  stress

1 2 2 1acting on a plane normal to the x  or x  axis, per unit length in the x  or x  direction,
respectively, as
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(17.13a)

(17.13b)

(17.13c)

(17.13d)

(17.13e)

(17.13f)

(17.13g)

(17.14a)

1 1Q  is the resultant shearing force acting on a plane perpendicular  to the x  axis in the

3 2 2direction of the x  axis.  It is taken per unit length in the x  direction.  Q  is the resultant

2shearing force intensity acting on a plane perpendicular  to the x  axis in the direction of

3 1 1the x  axis.  It is taken per unit length in the x  direction.  M  is the resultant bending

2moment intensity about the x  axis of the component of stress rotation      acting on a

1 2 12plane perpendicular to the x  axis.  It is taken per unit length in the x  direction.  M  is the
resultant twisting moment intensity of the component of stress    acting on a plane

1 2 2perpendicular to the x  axis.  It is taken per unit length in the x  direction.  M  is the

1resultant bending moment intensity about the x  axis of the component of stress  acting

2 1 21on a plane perpendicular to the x  axis.  It is taken per unit length in the x  direction. M
is the resultant twisting moment of the component of stress    acting on a plane

2 1perpendicular to the x  axis.  It is taken per unit length in the x  direction. In Fig. 17.4 we
show the resultant shearing force, bending moment and twisting moment intensities as

ithey are assumed positive.  N  (i = 1, 2) is the resultant normal component of force

iintensity acting on the plane perpendicular to the x  (i = 1, 2) axis.  It is taken per unit

jlength in the x  (j = 2, 1, j � i) direction.  The loads to which the plates under consideration
are subjected do not produce such force intensities.

The quantities defined by relations (17.13) are also known as the internal action
intensities of the plate 

Substituting relations (17.12) into (17.13c) to (17.13e), we get
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(17.14b)

(17.14c)

(17.15)

(17.16)

(17.17a)

(17.17b)

(17.17c)

Figure 17.4 Positive internal actions. 

where

and

3We assume that the variation of the temperature of the plate in the x  direction is
clinear.  That is, denoting by T  the temperature of the midplane of the plate, we have

Denoting by  and  the temperature of the faces  and

, respectively, of the plate, from relation (17.17a), we obtain

or 

We limit our attention to changes of temperature which vanish at the midplane of the
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(17.17d)

(17.17e)

(17.18)

(17.19a)

         (17.19a)

                    (17.19c)

(17.20a)

(17.20b)

(17.20c)

plate.  That is, 

Substituting relation (17.17c) into  (17.17a) and using (17.17d), we get

Substituting relation (17.17c) into (17.16) and integrating, we obtain

3Using relations (17.14) to eliminate u  from relations (17.12), we get

117.4 Internal Action Intensities Acting on Planes Which Are Inclined to the x  and
2x  Axes

Consider a plane normal to the midplane of a plate containing a point A of the

n smidplane.  As shown in Fig. 17.4b we denote by i  and i  the unit vectors normal and

n s 3tangential to this plane at point A, respectively. The unit vectors i , i  and i  specify a
right-hand orthogonal system of directions.   Referring to Fig. 17.4b we define the

n nresultant shearing force intensity Q , bending moment intensity M  and twisting moment

ns nM  intensity at point A acting on the plane normal to the unit vector i , as

nThe components of stress       and      acting on the plane normal to the unit vector i
are related to the components of stress               and       acting on the planes normal to the

1 2unit vectors i  and i  by the transformation relations (1.116).  That is,
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           (17.21)

(17.22)

(17.23a)

(17.23b)

(17.23c)

Substituting the relations (17.21) into (17.20b) and (17.20c) and taking into account
relations (17.13c) to (17.13e), we obtain

Comparing relations (17.22) with (1.116), we see that the following matrix transforms as
a planar symmetric tensor of the second rank:

Consequently, we can use Mohr's circle to locate the planes of maximum and minimum
bending and twisting moments as well as their values.  

1 2Referring to relations (17.14), and imaging that the x  and x  axes are oriented in the

n sdirection of unit vectors i  and i  shown in Fig. 17.4b  

, we can deduce that

17.5 Equations of Equilibrium for a Plate

Consider the free-body diagram of a segment of a plate, cut by two imaginary pairs of
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(17.24b)

(17.24c)

(17.25a)

(17.25b)

parallel planes ,  and , , shown in Fig. 17.5.  The

segment does not include a concentrated force or any other discontinuity of the external
forces acting on the faces of the plate.  That is, it is only subjected to a transverse

3 1 2distributed forces p (x , x ) not shown in Fig. 17.5.  From the equilibrium of this segment
we have

(17.24a)

1 2Disregarding infinitesimals of higher order and dividing relations (17.24) by dx dx , we
have

Figure 17.5 Resultant actions acting on a segment of infinitesimal length and width and thickness t of a plate.
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                    (17.25c)

(17.26a)

(17.26b)

(17.26c)

(17.26d)

(17.27)

(17.28a)

(17.28b)

(17.29a)

(17.29b)

Substituting relations (17.14) into (17.25b) and (17.25c), we get

1 2Moreover, referring to Fig. 17.4b, and imagining that the x  and x  axes are oriented in the

n sdirection of the unit vectors i  and i  from relations (17.26), we have

1Differentiating relation (17.25b) with respect to x  and relation (17.25c) with respect to

2 1 2x ,  adding the resulting relations and using (17.25a) to eliminate Q  and Q , we obtain

Substituting relations (17.14) into (17.27), we get

or

The operators L  and L  are known as the harmonic and the biharmonic operators,2 4

respectively, and are defined as

and
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(17.30a)

(17.30b)

(17.31a)

(17.31b)

(17.32)

3 1 3The satisfaction of relation (17.28a) by the translation field u (x , x ) ensures that every
segment of infinitesimal length and width and thickness t of a plate, which does not
contain a point or a line of discontinuity of the external forces, is in equilibrium.  The
solution of equation (17.28a) involves two constants which are evaluated from
appropriate boundary conditions, described in the next section.

On the basis of the foregoing presentation, the boundary value problem for computing
3 1 2the deflection of a plate may be stated as follows.  Find a single-valued function u (x , x )

which has continuous first derivatives and satisfies the differential equations (17.28a) at
every point of the midsurface of the pla te and appropriate boundary conditions on its
edges.
     In the following section we present the boundary conditions that the deflection and
internal actions of plates must satisfy at their edges.  

17.6 Boundary Conditions for Plates

1 2Consider a rectangular plate and choose the x  and x  axes parallel to its edges.  In what

2 2follows we describe some of the most common boundary conditions for the edge x  = L
of the plate.  

2 217.6.1 Build-In Edge x = L

    It is clear that the boundary conditions for such an edge are

2 217.6.2 Simply Supported Edge x = L

2 2 3  A simply supported edge at x  = L  is restrained from moving in the x  direction but is

1free to rotate about the x  axis.  Thus, its boundary conditions are 

3 1 2 2 2Inasmuch as u (x , L ) does not change along x  = L  , we have
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(17.33a)

(17.33b)

(17.34)

2 2Consequently, the boundary conditions (17.31) for the simply supported edge x  = L  of
a plate reduce to

2 217.6.3 Unsupported Free Edge x = L

2 2If the edge x  = L  of a plate is unsupported and free, the bending moment, twisting
moment or shearing force intensity along this edge must vanish.  That is, 

However, only two boundary conditions are allowed for an equation of fourth order like
equations (17.28).  This paradox can be resolved by referring to Fig. 17.6, where we show

2 2a portion of the lateral surface  x  = L   of a plate divided into two equal segments of

1 21 1length )x  each.  The twisting moment acting on segment CD is denoted as M )x  while

the twisting moment acting on segment DE is denoted by .  In

1Fig. 17.6a we also show a third segment AB of length )x  and we denote the shearing

2 1force acting on this segment by Q )x .  In Fig.13.6b we replace the twisting moment
acting on each of the segments CD and DE by a statically equivalent couple consisting

2 1 2 1of two equal and opposite shearing forces Q )x  and Q )x  of magnitudeCD DE

2Figure 17.6  Portion of the lateral  boundary  x  = 0 of a plate.
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(17.35)

(17.36)

(17.37)

(17.38b)

(17.38c)

(17.39a)

    (17.39b)

2Referring to Fig. 17.6b, we see that the effective shearing force Q  acting on segment ABe

is equal to

or

2 2Thus, the boundary conditions for an unsupported free edge (x  = L ) of a plate are

1. The effective shearing force  vanishes.

2. The moment  vanishes.

Substituting relations (17.14c) and (17.26b) into (17.37), we get

(17.38a)
Similarly, we obtain

nFor an edge which is normal to the unit vector i  referring to Fig. 17.4b, we have

On the basis of relations (17.14b) and (17.38a) the boundary conditions for an

2 2unsupported free edge (x  = L ) of a plate are
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(17.40)

(17.41a)

(17.41b)

2 217.6.4 Plate Rigidly Built into a Supporting Beam at x = L

2 2Consider a plate whose edge at x = L  is rigidly connected to a supporting beam (see

2 2Fig. 17.7a).  The deflection of the plate at x = L  is equal to the deflection of the beam

.  That is,  

Moreover, the rotation per unit length  of the plate is equal to the angle of twist

per unit length     of the beam.  Referring to relation (6.53), the angle of twist per unit
length     of the beam of Fig. 17.7a can be expressed as

where  is the internal torsional moment acting on the cross sections of the beam.

C is the angle of twist of the cross sections of the beam.  R  is called the torsional

constant and depends only on the geometry of the cross section of the beam.  For a beam
of rectangular cross section of width b and depth d it is given in Table 6.1, as

Figure 17.7  Plate rigidly built into an elastic beam.
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(17.42)

(17.43)

(17.44)

(17.45)

(17.46)

1The coefficient K  is given in Table 6.1 for various values of d/b. From the equilibrium
of a segment of infinitesimal length of the beam referring to relation (8.19), we have

1where m  is the external torsional moment per unit length acting on the beam.
Substituting relation (17.41a) into (17.42), we get

Referring to Fig. 17.7b, we see that

Moreover, referring to Fig. 17.7c, we see that

Substituting relations (17.44) and (17.45) into (17.43), we obtain

Substituting relation (17.14b) into the above, we have

Figure 17.8 Curved lateral surface of a plate.
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(17.47)

(17.48)

  (17.49)

(17.50)

Finally, referring to Fig. 17.7b, we see that

Referring to relation (9.34b), the deflection of the beam must satisfy the following
relation:

Substituting relation (17.38a) and (17.48) into (17.47), we obtain

2 2Thus, relations (17.46) and (17.49) are the two boundary conditions for the edge x  = L
of a plate which is rigidly connected to a beam.  The boundary conditions for a straight

2 2edge x = L  of a plate are tabulated in Table 17.1.  The boundary conditions for plates
with curved lateral surfaces can be obtained from the boundary conditions for straight
lateral surfaces described above by referring the Fig. 17.8 and relations (17.23), (17.26c)
and (17.26d). They are tabulated in Table 17.1.

17.6.5 Corner Forces of Rectangular Plates

12As shown in Fig. 17.9 concentrated reacting forces of magnitude 2M  are required at
the corners of rectangular plates in order to keep them in equilibrium. Referring to
relation (17.14c) these corner forces are equal to

In the above relation positive corner forces are acting in the direction shown in Fig. 17.9b.

1 2Figure 17.9  Concentrated reacting forces acting on the corners of a rectangular plate when M  is assumed
positive.
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Table 17.1  Boundary conditions for plates.

Type of
Boundary

Straight edge

2  2x = L
2  1Curved Edge x = f(x ) with Unit Vectors

n sOutward Normal i  and Tangential i

Build in
edge

Simply
supported
edge

Un-
supported
free edge

Edge
build into
a beam

17.7 Analysis of Simply Supported Rectangular Plates Subjected to a General
Distribution of Transverse Forces

The deflection, the moments and the shearing forces of plates of any geometry
supported in any way and subjected to any loads can be established using available market
computer programs.  In these programs the boundary value problems presented in the
previous sections are solved approximately usually employing the finite element method
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(17.51)

(17.52)

(see Chapter 15).
    In this section we present briefly the solution of boundary value problems for
computing the deflection, the moments and the shearing forces of simply supported
rectangular plates using double Fourier series.
   Consider a simply supported rectangular plate in a stress-free, strain-free state of

0mechanical and thermal equilibrium at the uniform temperature T . Subsequently, the

3 1 2plate is subjected to a general distribution of transverse forces p (x , x ) and reaches a

0second state of mechanical and thermal equilibrium at the uniform temperature T .  The

3 1 2deflection u (x , x ) of this plate must satisfy the differential equation (17.28) at every
point of the midplane of the plate, and referring to relations (17.33) and to Fig. 17.10,  the
following boundary conditions:

3 1All these boundary conditions (17.51) are satisfied if we represent the deflection u (x ,

2x )of the plate by a double Fourier series.  That is,

Substituting relation (17.52) into (17.28), we get

Figure 17.10  Geometry and loading of the plate.
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(17.54)

(17.55)

(17.57)

(17.58)

(17.56)

(17.53)

3 1 2From this equation we see that if p (x , x ) were represented by a double Fourier series it

mncould be possible to compute A  by matching coefficients.  Thus,

1 1 1 2 2 2 1 2Multiplying both sides of the above relation by sin(q Bx /L )sin(q Bx /L )dx dx
integrating the resulting relation and making use of the orthogonality property  of the sine†

functions, we get

Substituting relation (17.54) into (17.53), we obtain

 

1 2Since the above relation must be valid for all values of x  and x , the coefficients of

1 1 2 2sin(mBx /L )sin(nBx /L ) must vanish.  Hence,

Substituting relation (17.57) into (17.52), we have

Expressions for the moments and the shearing forces may be established by substituting
relation (17.58) into (17.14) and (17.26), respectively.
     The afore described method is straightforward.  However,  the double infinite series
                              

†  The orthogonality property of the sine functions is
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(a)

(b)

   (c)

that appear in the expression for the moments and the shearing forces of plates subjected
to certain loads may not converge very fast.  
     In what follows we present two examples.
                                                                                                                                             

3 1 2Example 1  Compute the deflection u (x , x ) and the normal components of stress of the
simply supported rectangular plate whose geometry is shown in Fig. a, when subjected

3to a uniformly distributed transverse force p .  The plate is made from an isotropic,
linearly elastic material.

Figure a  Geometry of the plate.

                                                                                                                                             

Solution  Referring to relation (17.55), we obtain

where m and n are odd integers.  Substituting relation (a) into (17.58), we get

Substituting relation (b) into (17.14), we have
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(f)

  (g)

  (h)

   (d)

   (e)

     (i)

             (j)

     For any given simply supported rectangular plate the series involved in relation (b) to
(e) may be evaluated with the help of an electronic computer.
   Referring to relations (b), (c) and (d), we see that the maximum deflection and the

1 1 2 2maximum bending moments occur at x  = L /2 and x = L /2 and are equal to

For m = 1 n = 1

where

The contributions of the term with m = 3 n = 3 of the series in relations (f),(g) and (h)
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  (k)

     (l)

(m)

    (n)

    (o)

to the maximum deflection and moments on the plate are

As can be seen from relation (k) the series in relations (f), (g) and (h) converge fast.  In
fact it can be shown that accurate results can be obtained for the deflection of a simply
supported rectangular plate by retaining the first term of the series of relation (f).
Moreover, accurate results can be obtained for the bending moments by retaining the first
six terms [(m = n = 1), (m = 1, n = 3), (n = 1, m = 3), (m = 3, n = 3), (m = 1, n = 5), (n =
1, m = 5)] of these series.  

1 2      For a square plate (L = L = L), retaining the first four terms in the series of relations

(f), (g) and (h), and using  = 0.3, we get

1 1 2 2The maximum normal component of stress acting on the planes x  = L /2 or x = L /2

3occurs at x  = ±t/2.  Referring to relations (17.19) and (l) for a square plate it is equal to

Substituting relation (b) into (17.38a) and (17.38b), we obtain

We denote by  and  the resultants of the reacting forces exerted on the plate by its

1 1 1supports, at x = 0 and x = L , respectively.  Moreover, we denote by  and  the
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        (p)

        (q)

2resultants of the reacting forces exerted on the plate by its supports on its edges at x  = 0

2 2and x = L , respectively.  We consider the resultants of the reacting forces positive when

3they act in the negative x  direction.  Referring to relations (o) and (n), these forces are
equal to

Referring to Fig. 17.9a and to relations (17.50) and (e), and considering the reacting

3forces positive when they act in the positive x  direction, we have 

Referring to Fig. 17.9b and to relations (q) we see that all the corner forces are acting in

3the direction of the positive x  axis.  From relation (p) and (q) we find that the resultant

2 1 2of all the reacting forces acting on the plate by its supports is equal to p  L L . That is, the

3sum of the reacting forces acting on the plate in the direction of the negative x  axis is

3 1 2equal, as it should be, to the resultant of the external forces (p L L ) acting  on the face of

3the plate in the direction of the positive x  axis.
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(a)

         (b)

            (c)

Example 2  Compute the deflection  of a simply supported plate subjected to

3a concentrated force P  as shown in Fig. a.  The plate is made from an isotropic, linearly
elastic material. 

Figure a  Geometry and loading of the plate.

                                                                                                                                             

Solution  Referring to relation (9.37) and to Appendix G we can convert the concentrated

3 3 1force P  to mathematically equivalent distributed forces p (x ) as follows

Substituting relation (a) into (17.55) and using relation (G.12), we obtain

Substituting relation (b) into (17.58), we get

Expressions for the moments are obtained by substituting relation (c) into (17.14).
                                                                                                                                             

17.8 The Method of Levy for Computing the Deflection of Rectangular Plates
Having a Simply Supported Pair of Parallel Edges

In this section we present the method of the French mathematician Levy which gives
expressions for the deflection the bending and twisting moments, and the shears forces,
which involve single infinite series. These series usually converge faster than the double
series involved in the expression for the same quantities obtained using the method of
double Fourier series presented in the previous section. Referring to Fig. 17.11 the method
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(17.59)

(17.60)

(17.61)

3 1Figure 17.11 Rectangular plate subjected to a load p (x ).

3 1 2of Levy can be employed to compute the deflection u (x , x ) of rectangular plates having
the following attributes:

1 1 1(a) They are simply supported along two opposite edges say x = 0 and x = L .

2 2(b) They have identical boundary conditions along their other two edges (x = ±L /2).
(c) They are subjected to a distribution of transverse forces which does not vary in

2the x  direction.

3 1 2  In the method of Levy the deflection u (x , x ) of the plate is expressed as the sum of two
parts

1  is the deflection of an auxiliary plate simply supported along its edges x = 0 and

1 1x = L  while its other edges are unsupported and free.  The auxiliary plate is subjected to

the given forces and change of temperature if any acting on the actual plate.    is

the  correction  which  must  be  added  to    in order to obtain the deflection of

the actual plate.  Referring to relation (17.28b) the function  must satisfy the

following ordinary deferential equation:

The solution of this equation involves four constants which are evaluated from the

1 1 1boundary conditions of the plate at x  = 0 and x = L .  That is, referring to relations
(17.33) we have

We shall seek the solution of the boundary value problem for computing   using

1Fourier series.  Every periodic function f (x ) can be expanded into such series.  That is,
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(17.62)

(17.63)

(17.64)

(17.65)

(17.66)

(17.67)

Figure 17.12  Periodic loading.

3 1The load p (x ) can be considered as being periodic by imagining that it extends beyond

3 1the span of the plate as shown in Fig. 17.12.  This extension of p (x ) deflects the beam
in a way that is compatible with its boundary conditions.  Thus, it can be expanded in the
following Fourier series:

Multiplying both sides of relation (17.63) by (m = 1, 2, 3, ...) and integrating

1 1 1from x = 0 to x = L , we get

Using the orthogonality property (17.56) of the functions  (see footnote

p. 827) relation (17.64) reduces to

or

Referring to relation (17.62) and taking into account the boundary conditions (17.61)

of the auxiliary plate, we expand its deflection  into the following Fourier series:

Substituting relations (17.63) and (17.67) into (17.60), we obtain
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(17.68)

(17.69)

(17.70)

(17.71)

(17.72)

(17.73)

(17.74)

(17.75)

1Inasmuch as the above relation must be valid for all values of x , the coefficients of

 must vanish.  That is, using relation (17.66), we get

Substituting relation (17.59) into (17.28), we have

Using relation (17.60), relation (17.70) reduces to

Since both  and  satisfy identical boundary conditions [see relation

1 1 1(17.61)] at x  = 0 and x = L  the correction  must satisfy the following

1 1 1boundary conditions at x = 0 and x = L :

We assume a solution of equation (17.71) of the following form:

1 1 1This solution satisfies automatically the boundary conditions at x  = 0 and x = L .
Substituting relation (17.73) into the differential equation (17.71), we get

where  and  are the second and fourth derivatives, respectively, of the function

.  Inasmuch as the functions  are linearly independent the

coefficient of each one of them must vanish.  Thus,
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(17.76)

(17.77)

(17.78)

(17.79)

The solution of this equation is

The constants are evaluated by requiring that the solution (17.73) satisfies the boundary

2 2conditions at x  = ±L /2.

2Notice that the loading is not a function of x .  Moreover, since the support of the edge

2 2 2 2of the plate at x = !L /2 is identical to that of its edge at x  = L /2 the deflected surface

1of the plate will be symmetric with respect to the axis x .  Therefore  and

2 n n must be even functions of x .  Consequently, C  and D  must vanish.  Thus, for

such plates introducing the constant                        , relation (17.76) reduces to

Substituting relation (17.77) into (17.73), we have

Substituting relations (17.78) and (17.67) into (17.59), we get

The moments can be obtained by substituting relation (17.79) into relations (17.14).

3 1For a given distribution of the external forces p (x ) which varies only in one direction

n nthe coefficients c (n = 1, 2, ...) are established using relation (17.69).  The constants A
nand B  are evaluated by requiring that the solution (17.79) satisfies the boundary

2 2conditions at the edges x  = ±L /2 of the plate.
In what follows we present an example.

                                                                                                                                             

1 1 1Example 3  Consider a rectangular plate simply supported at its edges x  = 0 and x  = L

Figure a  Geometry and loading of the plate.
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(a)

(b)

(c)

(d)

  (e)

(f)

(g)

2 2and fixed at its edges x  = ± L /2.  The plate is made from an isotropic, linearly elastic

3 1material and is subjected to hydrostatic pressure p (x ) as shown in Fig. a.  Compute the

3 1 2deflection u (x , x ) of the plate and the internal actions acting on its cross sections.
                                                                                                                                             

Solution  The external forces acting on the plate are

nThe solution of this problem is given by relation (17.79), where the coefficients c  are
obtained by substituting relation (a) into (17.69) and integrating the resulting relation.
That is,

n nMoreover, the constants A  and B  in relation (17.79) are evaluated from the boundary

2 2 2 2conditions at x  = L /2 or x  = !L /2.  That is, referring to relations (17.30), we have

Substituting relation (17.79) with (a) into (c), we obtain

where

1Inasmuch as relations (d) and (e) must be valid for all values of x  the coefficients of

1 1sin(nBx /L ) must vanish.  That is,

Solving relations (g), we get
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(h)

    (i)

   (k)

Substituting relations (h) and (b) into (17.79), we obtain

Substituting relation (i) into (17.14b), we have

(j)

2 2The moment at x  = ±L /2 is equal to

The same result has been obtained by Timoshenko and Woinowsky-Kreiger  by†

superimposing the solution for the simply supported plate subjected to the triangular load

0 1 1(p x  / L ) with the solution to the same plate subjected to an unknown distribution of

2 2moment  along its fixed edges x   =  ± L /2.  The moment  is established

                            
†  Timoshenko, S. and Woinowsky-Kreiger, S., Theory of Plates and Shells, McGraw-Hill, New York, 1959,
p. 190.
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(17.80a)

(17.80b)

as the one which renders               equal to zero.

2The series in relations (j) and (k) converge fast and the value of the moment M  can

be readily established.  The moment  and the twisting moment  are

obtained by substituting relation (i) into (17.14a) and (17.14c).

Numerical values of the bending moment divided by  are presented on p. 190 of

the book by Timoshenko and Woinowsky-Kreiger .†

                                                                                                                                             

17.9 Bending of Circular Plates

For circular plates we will use polar coordinates.  That is, referring to Fig. 17.13, we
have

and

From relation (17.80b), we get

Figure 17.13  Circular plate fixed at r = R and polar coordinates.

                            

†  Timoshenko, S. and Woinowsky-Kreiger, S., Theory of Plates and Shells, McGraw-Hill, New York, 1959,
p. 190.
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             (17.83b)

(17.81a)

(17.81b)

(17.81c)

(17.81d)

                     (17.82b)

             

Using relations (17.81), we have

             (17.83a)

Expressions for  and  can be obtained by following the procedure adhered

to in obtaining relation (17.83a).  That is,
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(17.86)

             (17.84)

(17.85)

(17.87a)

(17.87b)

(17.87c)

Adding relations (17.83a) and (17.83b), we have

Using relation (17.84), relation (17.28b) can be written as

In what follows we convert to polar coordinates relations (17.23) and (17.38c).  In

1 2order to accomplish this we take into account referring to Fig. 17.13 that if the x  and x
raxes were chosen to coincide with the unit vectors i  and     the angle     would be zero.

Thus, referring to relations (17.83), we have

Using relations (17.86) relations (17.23), (17.26c) and (17.26d) can be written as
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(17.89)

          (17.91a)

(17.88)

(17.90)

(17.87d)

(17.87e)

Referring to Table 17.1, the boundary conditions for a circular plate of radius R
without holes are

Simply supported circular plate

Build in circular plate

17.9.1 Circular Plates Whose Geometry and Loading Do Not Vary With     .

If the geometry of circular plates and their loading does not vary with    , relation
(17.85) reduces to

or

Integrating relation (17.90), we get
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(17.91b)

          (17.91c)

                    (17.91d)

(17.92)

(17.93)

(a)

(b)

For plates without a hole the deflection must be finite for any value of r.  Therefore, the
constants A and C must vanish since (lnr) 6 4 as r 6 0.  Thus, for such plates relation
(17.91d) reduces to

The constants B and E are obtained by requiring that relation (17.92) satisfies the
boundary conditions of the plate. Substituting relation (17.92) into (17.87), we obtain

In what follows we present two examples.
                                                                                                                                             

Example 4  Establish the deflection and the internal actions of a circular plate of radius
R without holes build in at r  = R and subjected to uniformly distributed transverse forces.
                                                                                                                                             

Solution  Substituting relation (17.92) into the boundary conditions (17.89), we get

From relations (a), we obtain

Substituting the values of the constants (b) into relations (17.92) and (17.93), we have
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    (c)

   (d)

    (e)

(f)

               (g)

             (h)

(i)

   (a)

(b)

Referring to relation (c) we see that the maximum deflection occurs at r = 0 and it is
equal to

Moreover, referring to relation (d) and (e) we see that the maximum negative bending
moments occurs at r = R and are equal to

while the maximum positive bending moments occur at r=0 and are equal to

From relations (g) and (h) we see that the maximum value of the radial component  of

stress occurs at r = R. Thus, substituting relation (g) into (17.19a), we have

                                                                                                                                             
                                                                                                                                             

Example 5  Establish the deflection and internal actions of a simply supported circular
plate of radius R, without holes subjected to uniformly distributed transverse forces.
                                                                                                                                             

Solution  Substituting relation (17.92) and (17.93) into the boundary conditions (17.88),
we get

From relation (a), we obtain

Substituting the values of the constants (b) into relations (17.93), we have
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       (c)

      (d)

      (e)

  (f)

  (g)

(17.94a)

(17.94b)

Referring to relation (c), (d) and (e) we see that the maximum deflection and bending
moments occurs at r = 0 and are equal to

The maximum value of the radial component  of stress occurs at r = 0.  Referring to

relation (17.19a) and (g), it is equal to

                                                                                                                                             

17.10   Use   of   the   Weighted   Residual   Methods   to   Construct   Approximate
Expressions for the Deflection of Plates 

Many boundary value problems of practical interest involving the determination of the
deflection and the internal actions of plates cannot be solved analytically.  For such
problems it is necessary to resort to approximate solutions.  In this section we use the
weighted residual methods to construct approximate solutions of the following form for
the boundary value problem for computing the deflection field of a plate:

where

1 2  = continuous   functions   of   x    and   x    chosen   to   satisfy

     at least the essential boundary conditions of the plate. 

  = undeterminate coefficients also known as degree of freedom.
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      (17.95)

 (17.96)

1 2  = linearly independent functions of x  and x  chosen to satisfy

      at least the homogeneous part of the boundary conditions of

     the  plate  which  were  satisfied   by .  They   are

             known as interpolation or trial functions.

The selection of the functions  affects the accuracy of the

approximate solution of a boundary value problem.  In order to ensure that as s increases
the approximate solution (17.94a) converges to the actual solution of the boundary value
problem, the trial functions must be a sequence of functions from a complete set of
functions starting from the lowest order up to the order S without missing an intermediate
term.  Moreover, the approximate solution (17.94a) should not vanish at points where the
actual solution does not vanish. Furthermore, the speed of convergence of the

approximate solution improves if the trial functions  satisfy the

symmetry conditions of the problem, if any.

17.10.1 The Classical Weighted Residual Equation for the Deflection of Rectangular
     Plates

1 2 1 2 1 We consider a rectangular plate in the x x  plane of dimensions L  and L , in the x and

2x  directions, respectively. We assume that relation (17.94a) satisfies at least its essential
boundary conditions.  Thus, when the approximate solution (17.94a) is substituted into

d. the differential equation (17.28a), there could be a residual R  That is,

 Moreover, when the approximate solution (17.94a) is substituted into the natural
boundary conditions there could be residuals.  That is,

where

 are given values of the applied moments and of the equivalent shears [see

relation (17.37)] on the lateral boundary of the plate.

sWe are interested to establish a set of values of the parameters c (s = 1, 2, ..., S) of
relation (17.94a) which reduce in a uniform way throughout the area of the plate the value
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(17.97)

 

(17.98)

dof the residual R  and on the lateral boundary of the plate the values of the non-vanishing

biresiduals R (i = 1, 2, ..., 8) if there are any.  That is, using relations (17.95) and (17.96),
we get 

where

r r 1 2W , W  (i = 1, 2, ..., 8) = chosen functions of x , and x  known as weighting functions.bi

Relation (17.97) is the weighted residual equation for the boundary value for computing
the deflection of rectangular plates.

17.10.2  The Modified Weighted Residual Equation for the Deflection of a Plate

We can obtain the modified weighted residual (weak) form of the boundary value
problem for computing the deflection of plates by adhering to the following steps:

STEP 1   We write the weighted residual equation (17.97).

STEP 2   We rewrite the last term of equation (17.97) as follows:
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 (17.99)
We apply Green’s theorem (6.19a) to the first and second integrals of relation (17.99) and
we rewrite the remaining integrals as follows:
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             (17.100)

   (17.101)

(17.102)

     (17.103)

The line integrals are taken in the counterclockwise direction.
We combine the line integrals of relation (17.100) and we use relations (17.26).

Moreover, we apply Green’s theorem (6.19a) to the first and third surface integrals of
relation (17.100) and we use relations (17.14).  Thus, we obtain

We integrate by parts the fifth and sixth line integrals of relation (17.101), to obtain

We substitute relation (17.102) into (17.101) and we use relations (17.37), to get

where the line integrals are taken in the counterclockwise direction.  For example
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(17.104)

(17.106)

We take into account relation (17.104) and we rewrite relation (17.103) as follows:

             (17.105)
STEP 3 We simplify relation (17.97) by limiting the choice of  the weighting functions

rW  (i = 1, 2, ..., 8) as follows:bi

We substitute relations (17.106) into relation (17.105) and the resulting relations into
(17.97), to obtain
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  (17.107)

 (17.108)

(17.109)

          

where the parameters     (i = 1, 2, ..., 8) are defined by relation (17.98).  Equation (17.109)
is the modified weighted residual equation for computing the deflection of plates.

17.10.2 Discretization of the Boundary Value Problem for Computing the Deflection
of Rectangular Plates

In this section we use the modified weighted residual equation (17.107) to obtain
approximate expressions for the deflection of rectangular plates, using the Gallerkin
assumption. That is, 

We assume a solution of the form (17.94a) and we substitute it into relations (17.14)
to get

We substitute relations (17.109) into the relation (17.107) with (17.108) to obtain
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(17.110)

(17.112)

(17.111)

Relation (17.110) can be rewritten as

rswhere [S] is a square matrix known as the stiffness matrix of the problem whose terms S
(r, s = 1, 2, ..., S) are known as the stiffness coefficients and are given as

rThe matrix [F] is called the load vector. Its terms F  (r = 1, 2, ...) are equal to

(17.113)

On the basis of the foregoing presentation in order to construct approximate solutions
for the boundary value problem for computing the deflection field of rectangular plates
using the modified weighted residual equation (17.107) with the Gallerkin assumption
(17.108), we adhere to the following steps:
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(a)

         (b)

STEP 1  We choose the set of trial functions  and .

STEP 2  We substitute the trial functions  and  into

relations (17.112) and (17.113) to obtain the values of  and

.

rs rSTEP 3  We substitute the values of S  and F  obtained in step 2 into relation (17.111)

and solve the resulting relations to find the matrix .

STEP 4  We substitute the matrix  obtained in step 3 into relation (17.94a) to obtain

an approximation to the deflection field  of the plate.

STEP 5  We substitute the approximation for the deflection of the plate obtained in step
4 in relations (17.14) and (17.26) to obtain approximations to the internal actions of the
plate.

In what follows we present an example.
                                                                                                                                             

Example 6 Establish an approximation for the deflection field and the internal actions of
the rectangular plate whose geometry is shown in Fig. a. The plate is made from an
isotropic, linearly elastic material, is fixed on all edges and is subjected to uniformly

3distributed transverse forces p .

Figure a  Geometry of the plate.
                                                                                                                                             

Solution 

STEP 1  We choose the following trial functions:

These functions satisfy all the boundary conditions of the plate which are essential.  That
is
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(c)

  (d)

  (e)

rs rSTEP 2  We compute the values of S  and F .  From relations (a) we obtain

Substituting relation (c), (d) and (e) into (17.108) and then integrating  and evaluating the†

resulting relations for a = 1.5 m, b = 1.0 m, and  = 0.3, we get

 The integration has been performed by the computer using an integration subroutine.†
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                   (f)

(g)

    (i)

(j)

 (k)

and

STEP 3  We substitute relations (f) and (g) into (17.109) and solve it for {c}.  That is,

(h)
STEP 4  We substitute the values of the constants (h) and the expressions for the trial
functions (a) into relation (17.94a) to obtain

1 2 The maximum deflection of the plate occurs at x  = 0 and x = 0.  That is, 

Substituting relation (a) into (17.109), we have

i swhere the derivatives of N (i = 1, 2, 3) are given by relations (c) to (e) and the constant c
(s = 1, 2, 3) are given by relation (h).  Substituting these relations into (k) and evaluating

1 2 the resulting expressions at x = 0 and x = 0 we obtain the following approximations for
the values of the bending moments at the middle point of the plate:
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(l)

(17.114)

(17.115)

(17.116)

(17.117)

(17.118)

These results differ by less than 5% from those given   

by Timoshenko and Woinowsky-Krieger .†

                                                                                                                                             

17.11 The Theorem of Total Stationary Potential Energy for Plates

The theorem of total stationary potential energy for an elastic deformable body has
been proved in Section 13.12 and it can be stated as follows.
Consider a body made from an elastic material subjected to external forces in an
environment of constant temperature.  The actual displacement field of the body makes
its total potential stationary.  Moreover, if a geometrically admissible displacement field
renders the total potential energy of a body stationary is the actual displacement field of
the body.  Referring to relation (13.121), the total potential energy of an elastic body is
defined as

tS  is the portion of the surface of the body where the components of traction

s are  specified. U  is  the strain energy  density defined by relation (3.55).

Referring to relation (3.83) the strain energy density for a linearly elastic body is equal
to

1 2For a plate in the x x  plane, made from a linearly elastic material, disregarding the effect
33of shear deformation and recalling that J  is small and can be neglected, relation (17.115)

reduces to 

 Substituting relation (17.11) into (17.116), we get

The last two terms in relation (17.114) represent the work that the external forces
(body  forces  and  surface  tractions)  will  perform  in  going from their position in the
deformed configuration to their position in the undeformed configuration of the body.
For a plate this work is equal to

†  Timoshenko, S. and Woinowsky-Kreiger, S., Theory of Plates and Shells, 2nd edition, McGraw-Hill, New
York, 1959, Table 35 p. 202.
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(17.121)

(17.122)

Substituting relations (17.117) and (17.118) into (17.114) and using relations (17.13c),
(17.13d) and (17.13e), we obtain the following expression for the total potential energy
of a plate:

(17.119)
Substituting relations (17.14) into (17.119), we get

(17.120)
where the harmonic operator L  is defined by relation (7.29a).2

17.11.1   Use of the Theorem of Stationary Total Potential Energy to Construct
               Approximate Expressions for the Deflection of a Plate

The theorem of stationary total potential energy can be used in conjunction with the
Ritz method (see Section 13.17.2) to obtain approximate expressions for the deflection
field of plates.  In this method an approximation to the deflection is chosen of the form

 (17.94a) with = 0 and is substituted into relation (17.120) to give the following

approximate expression for :

The values of the coefficients  which render the total potential

energy of the plate stationary are established by setting

Substituting relation (17.121) into (17.122), we obtain
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(17.124)

(17.126)

(17.123)
This relation can be written as

where the terms of the matrices [S] and {F} are

(17.125)

Comparing relation (17.125) with (17.112) and (17.126) with relation (17.113), we see
that the results obtained using the theorem of total potential energy in conjunction with
the Ritz method are identical with those obtained using the Gallerkin method.

17.12 Problems

1.  Consider the simply, supported rectangular plate of constant thickness t whose
geometry is shown in Fig. 17P1.  The plate is made from an isotropic, linearly elastic
material of modulus of elasticity E and Poisson's ratio  and it is subjected to the
following distribution of lateral forces:

Using the method described in Section 17.7, derive a formula for the deflection of the

0 1 2plate in terms of p , L , L , t, E and .  Compute the deflection at the center of the plate

0 1and the concentrated reactions acting at the corners of the plate when p = 20 kN/m , L2

2 = 2 m, L = 3 m, t = 10 mm, E = 200 GPa, and  = 0.3.

2.  Consider the simply, supported rectangular plate of constant thickness t subjected to
uniform distribution of moments along its two edges as shown in Fig. 17P2.  The plate
is made from an isotropic, linearly elastic material. Using the method of Levi establish

3 1 2formulas for the deflection u (x , x ) of the plate.

, where 
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Figure 17P1             Figure 17P2

3.  Consider a simply, supported circular plate of radius R and constant thickness t
subjected to moments  uniformly distributed along its edge.  The plate is made from

an isotropic, linearly elastic material.  Establish a formula for the deflection and the radial
 and the tangential  components of stress of the plate.

4.  Consider the simply supported circular plate with a concentric circular hole shown in

Fig. 17P4 subjected to a moment  uniformly distributed along its inner edge.  The

plate is made from an isotropic, linearly elastic material.  Establish a formula for the
deflection of the plate and the radial and tangential components of stress.

5.  The circular plate of Fig. 17P5 is simply supported at its edge and point supported at
its center.  The plate is made from an isotropic, linearly, elastic material.  Compute the
reaction at the center of the plate when its is subjected to uniformly distributed transverse

3forces p .  The deflection of the center of a simply supported circular plate subjected at
3its center to a concentrated force P  is equal to

Figure 17P4             Figure 17P5

             
6.  Consider a simply supported circular plate of constant thickness t and radius R

3subjected to uniformly distributed transverse forces p  kN/m .  The plate is made from an2

isotropic, linearly elastic material.  The deflection of this plate is given by the following
formula:

www.EngineeringEBooksPdf.com



860 Mechanics of Materials Theory for Thin Plates

(a)

(b)

Consider the same plate subjected to a moment  uniformly distributed along its edge.

The deflection of the plate under this loading is given by the following formula:

Using formulas (a) and (b) establish a formula for the deflection of a circular plate of
radius R built in along its edge and subjected to uniformly distributed transverse forces

3p  (kN/m  ).      2

7.  A simply supported circular plate of radius 320 mm and thickness t = 30 mm is
3subjected to uniformly distributed transverse forces p  = 1.5 MPa.  The plate is made from

an isotropic, linearly elastic material (E = 200 GPa,  = 0.30, and  = 280 MPa).
(a) Determine the maximum bending stress and the maximum deflection of the plate.

(b) Determine the value  of the external transverse forces which are required to

initiate yielding in the plate.
(c) Determine the factor of safety against initiation of yielding in the plate.

8.  Assume a solution of the form (17.94a) with S = 6 and use the Gallekin method to
compute an approximate value for the maximum deflection and maximum moments of
the simply supported rectangular plate subjected to the transverse forces shown in Fig.
17P8.  The plate is made from an isotropic, linearly elastic material with E = 200 GPa and

 = 0.3.             

Figure 17P8

References: For a more detailed presentation and many solved examples, see:
1. Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and Shells, 2nd edition,
McGraw-Hill, New York, 1959.
2. Szilard, R., Theory and Analysis of Plates, Prentice-Hall, Englewood Cliffs, NJ, 1974.
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Chapter
18

Instability of Elastic Structures

18.1 States of Unstable Equilibrium of Structures

The availability of electronic computers permits the use of more accurate methods in
analyzing structures.  Moreover, recent advances in manufacturing resulted in stronger
engineering materials whose actual strength varies little from that specified by the
manufacturer.  These developments led to the reduction of the factors of safety used in
the design of structures and the concomitant decrease of the area of the cross sections of
their members.  However, members of thin cross sections may reach a state of unstable
equilibrium and fail by buckling at loads less than those which initiate yielding of one or
more of their particles.

In this chapter we describe the phenomenon of buckling of certain structures and we
present methods for computing the load (critical load) which produces buckling and for
investigating the postbuckling behavior of structures.  The magnitude of the critical load
of certain structures depends on the type of forces to which they are subjected.  We limit
our attention to structures subjected to static, conservative, compressive forces, that is,
forces whose work in moving from one position to another depends only on their initial
and final position and not on the path which they follow.  An example of a non-
conservative force is a centroidal force of magnitude P, acting on the unsupported end of
a cantilever column, which is axial when the column is straight but remains tangent to its
elastic curve as the column deforms (see Fig. 18.1).  A column subjected to such a force

Figure 18.1 Beck's column.
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is known as Beck's column.  The work of such a force depends on the way the
unsupported end of the column reaches its deformed position.  If the unsupported end A
of the column moves to its deformed position A! first by translating and then by rotating

1referring to Fig. 18.1 the work of the force is Pu .  If the unsupported end of the column(A)

moves to its deformed position by first rotating and then translating, referring to Fig. 18.1

the work of the force is equal to .

Consider a body made from a linearly elastic material originally at a stress-free, strain-

0free state of mechanical and thermal equilibrium at the uniform temperature T .
Subsequently, the body is subjected to loads (body forces, surface tractions, change of

1temperature) and reaches a second state of mechanical equilibrium at a temperature T(x ,

2 3x , x ).  In the previous chapters we limit our attention to bodies made from a linearly
elastic material and subjected to external loads of such magnitude that the unit
elongations or shrinkages, the unit shears and the components of rotation of their particles
are very small compared to unity; and, moreover, the components of rotation are not of
a higher order of magnitude than the unit elongations or shrinkages and the unit shears.
For this reason, we can approximate the unit elongations or shrinkages with the
corresponding normal components of strain and the unit shears with twice the
corresponding shearing components of strain (see Sections 2.3 and 2.4).  Moreover, we
can disregard the effect of the change of the geometry of a body, due to its deformation,
on the components of stress and displacement of its particles; and as long as we take into
account appropriate boundary conditions, we obtain unique solutions of the boundary
value problems which we consider.  Moreover, the relations between cause (external
loads) and effect (deformation and stress) can be considered linear.  However, bodies of
certain geometries when they are subjected to certain values of certain types of loads, can
assume more than one equilibrium configuration all of which are not stable. These
equilibrium configurations cannot all be established using a theory based on the
assumption of small deformation.

In investigating problems involving multiple equilibrium configurations it is necessary
to take into account at least the effect of rotation of the particles of the body.  A theory
which assumes that the unit elongations or shinkages and the unit shears are small and can
be disregarded compared to unity but the components of rotation are of a higher order of
magnitude than the unit elongations or shrinkages and the unit shears, is known as the
theory of moderate rotations and can be used to compute the critical load at buckling and
to investigate the postbuckling behavior of bodies.  The theory of moderate rotations is
non-linear.  That is, the relations between the cause (external forces) and the effect
(components of displacement) is not linear.

In what follows we describe six examples of structures which reach a state of
instability.

18.1.1 Perfectly Straight Column Subjected to Equal and Opposite Perfectly Axial
Perfectly Centroidal Compressive Forces at Its Ends

Consider a long, perfectly straight column, made from a homogeneous, isotropic,
linearly elastic material.  We choose the principal centroidal axes of the cross sections of

2 3 2 3the column as the x  and x  axes such that I  < I .  The one end of the column cannot

1 1 2 3translate and cannot rotate about the x  axis (u  = u  = u  =  = 0), while its other endo o o

1is freed to translate in the direction of its axis (u  � 0).  For example, one end of the  
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Figure 18.2  Positions of stable and  unstable equilibrium of a ball.

1 2 3column could be pinned to a fixed support (u  = u  = u  =      = 0), while its other endo o o

is connected with a ball and sucket to a support which is free to translate only in the

2 3direction of the axis of the column (u  = u  = 0).  As another example, one end of the(A) (A)

1 2 3column could be fixed (u  = u  = u  =     =     =     = 0) while its other end iso o o

unsupported.  The column is subjected to a perfectly centroidal, compressive, axial force
P at its translating end, whose direction does not change during deformation.  For values

crof the force P less than a critical value, which we denote by P , the column remains

2 3straight and its cross sections do not twist (u  = u  = 0, =     =     =     = 0).  Moreover,

2when the column is subjected to a small transverse force F  or to a small torsional

2moment, it undergoes a small deflection u  or a small twisting rotation      , respectively,
which, however, vanishes after the transverse force or the torsional moment is removed.

crFurthermore, it can be shown that for any value of the force P = P < P  the total potential* 

energy of the column  (see Section 13.17) is a relative

3 3minimum when u  or      , respectively, vanish. u  and        are the transverse(A) (A)

component of translation and the twisting component of rotation, respectively, of a cross
section of the column which specify a possible deflected equilibrium configuration.  For

crvalues of the force in the range from P = 0 to P = P  the column, in its perfectly straight
configuration, is in a state of stable equilibrium analogous to that of a ball in equilibrium
at position A of Fig. 18.2.  If the ball is displaced slightly from this equilibrium position,
it will return to it after the displacing force is removed.  Moreover, the potential energy
of the ball at position A is a relative minimum.  For values of the compressive force

crhigher than its critical value (P ) the column may stay in the straight configuration or it
may deflect (flexural buckling) (see Fig. 18.3a) or in some cases it may twist (torsional
buckling) (see Fig. 18.3b) or it may deflect and twist (flexural–torsional buckling) (see
Fig. 18.3c).  In general only columns of very thin-walled, open cross sections could
exhibit torsional or flexural–torsional buckling when subjected to compressive axial
forces.  Columns of doubly symmetric, thin-walled, open cross sections buckle either in
the   flexural   or   in   the   torsional   mode   depending   on   whether   the  buckling  load

Figure 18.3  Modes of buckling of perfectly straight columns subjected to perfectly centroidal axial compressive
forces undergoing flexural or torsional or flexural–torsional buckling.
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corresponding to the flexural or to the torsional mode is the lowest. However, columns
of not doubly symmetric, thin-walled, open cross sections, as, for example, a T-beam,
may buckle either in the flexural mode or in a combined flexural–torsional mode (see Fig.
18.3c).

crFor values of the compressive force higher than its critical value (P = P > P ) the* 

column will be in a state of unstable equilibrium in its straight configuration, ready to
move to its deflected or twisted or deflected and twisted stable equilibrium configuration
when subjected to a very small transverse force or torsional moment, which is
immediately removed. We say that the column has buckled under the compressive force

crP . It can be shown that for P = P >P , the total potential energy of the column in its* * 

buckled configuration is a minimum, while in its straight configuration it is a maximum.
Therefore, when a column is in its perfectly straight configuration under a perfectly
centroidal axial force greater than its critical value, it is in a state analogous to that of a
ball at position B of Fig.18.2. When the ball is at position B and it is subjected to a very
small force, which is immediately removed, it will move to the stable equilibrium position
A or C depending on the direction of the applied force. Moreover, the potential energy of
the ball at position B is a relative maximum while at position A or C is a relative
minimum.

In this text, we consider only columns which buckle in the flexural mode.  Consider a
perfectly straight such column subjected to a perfectly centroidal axial force P.  In Fig.

318.4b, we plot the force P versus the transverse component of translation u  diagram for(A)

crthis column.  When the column is subjected to P = P > P , it could stay in the unstable* 

equilibrium configuration specified in Fig. 18.4b by point C but when a very small
transverse force is applied to it and is immediately removed, it will move to the stable
equilibrium configuration specified in Fig. 18.4b by point D.  It can be shown that the
total potential energy of the column (see Section 13.17) at position C is a maximum while

crat position D is a minimum.  Moreover, when the column is subjected to P = P > P  and* 

is displaced from its stable equilibrium configuration D by the application of a very small
transverse force, it will return to that configuration when the transverse force is removed.
Referring to Fig. 18.4b, point A is called bifurcation or branching point.  For values of

crthe  compressive  force  higher  than  P   the  straight  line  AC  represents  an unstable
equilibrium path while the curve AD is  the  stable  equilibrium path known as the post-
buckling  path.  The  straight  line  AC  can  be established using both a linear and a non-

Figure 18.4  Load–deflection diagram of a perfectly straight column fixed at  its one end and subjected to a
perfectly centroidal, compressive, axial force at its other end, undergoing flexural buckling.
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linear theory while the curve AD can be established only using a non-linear theory like
the theory of moderate rotations.

Suppose that the column under consideration and/or its loading had an initial
imperfection.  For example, the imperfect column could have a small initial curvature
and/or the compressive axial force could have been applied a small distance from the
centroid of the cross section of the column.  In such a case, for every value of the
compressive axial force, no matter how small, there corresponds a unique bent
configuration of stable equilibrium at which the total potential energy of the column is
a minimum.  However, for values of the compressive force close to the critical value of
a perfectly centroidal perfectly axial compressive force acting on the corresponding
perfectly straight column, the deflection of the imperfect column increases rapidly and
as shown in Fig. 18.4b the equilibrium path of the imperfect column approaches the post-
buckling equilibrium path of the perfect column.  Thus, in this example, the presence of
initial imperfections does not change significantly the ability of the column to resist the
compressive force.  However, it does change the response of the column.  That is, its load-
deflection diagram does not have a point of bifurcation.

On the basis of the foregoing presentation we may arrive at the following conclusions
for a column undergoing flexural buckling:
1.  When a perfectly straight column is subjected to a perfectly centroidal, compressive,
axial force (perfect column), higher than its critical value, it can assume one of two
possible equilibrium configurations: the straight line which is unstable or the bent which
is stable.  Consequently, we cannot use a theory based on the assumption of small
deformation, to establish the two equilibrium configurations of a perfect column because
such a theory gives a unique solution.  For values of the applied compressive, axial force
higher than its critical value, a theory based on the assumption of small deformation gives
only the straight-line unstable equilibrium path of the column.  The straight line and the
bent configurations of a perfect column can be established using a theory which is more
accurate than a theory based on the assumption of small deformation.
2. When an imperfect column is subjected to a compressive axial force, for every value
of the force, it assumes a bent configuration of stable equilibrium.  However, for values
of the compressive force, close to the critical force of the corresponding perfect column,
the deflection of the imperfect column is large and in order to compute it we must use a
more accurate theory than the one based on the assumption of small deformation.
3. Usually the deflection of a column subjected to an axial compressive force of
magnitude higher than its critical value is very large, and for this reason the column can
not perform properly the task which it has been designed to perform.  Thus, for design
purposes, we consider that the column fails when  the compressive force acting  on it
reaches its critical value.

Notice that the critical value of the centroidal, compressive, axial force acting on
slender straight columns can be considerably smaller than the smallest value of the
centroidal, compressive, axial force required to produce yielding of one or more particles
of this column.  Consequently, the critical value of the centroidal, compressive, axial
force of slender columns could be their important design parameter.

18.1.2 Shallow Sinusoidal Arch, Pinned to R igid Abutments, Subjected to
Sinusoidally Varying, Distributed Forces

Consider a symmetric, shallow sinusoidal arch made from a homogeneous, isotropic,
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      (a) Geometry and loading of the sinusoidal arch

      (b) Load amplitude versus displacement diagram.

Figure 18.5  Load amplitude versus displacement and total potential energy versus displacement diagrams of a
shallow, sinusoidal arch subjected to sinusoidally distributed forces.

linearly elastic material and pinned to rigid abutments.  As shown in Fig. 18.5a the arch
is subjected to sinusoidally varying, distributed forces of amplitude P.  We take as
measure of the magnitude of the deformation of the arch the deflection       of its middle
point (see Fig. 18.5a).  In Fig. 18.5b we plot the amplitude P of the external forces acting
on the arch versus its deflection     . As P increases from zero, the arch deforms to
symmetric about its axis of symmetry, stable, equilibrium configurations.  In Fig. 18.5b
these configurations are represented by the path from point O to a point just to the left of
point B, which is a local maximum of the load versus the deflection diagram and it is
known as the limit point.  The value of the amplitude of the external forces corresponding

crto point B is called the critical load of the arch and we denote it by P .  When the
amplitude of the external forces reaches its critical value, in the presence of any
disturbance no matter how small, the arch is inverted dynamically and it vibrates about
its stable equilibrium configuration represented in Fig. 18.5b by point D.  Finally, the
vibrations are damped out and the arch comes to rest at the stable equilibrium
configuration D.  This phenomenon is known as snap through buckling.

For any value P  of the amplitude of the external forces less than that corresponding(A)

to the limit point B, as shown in Fig. 18.5b, the arch could assume one symmetric
unstable equilibrium configuration, on the path from point B to point C, as well as two
symmetric stable equilibrium configurations: one on the path from point O to a point just
to the left of point B and the other on the path from point C to point D.  In the two stable

sconfigurations the total potential energy (P ,     ) versus     diagram of the arch, as(A)

shown in Fig. 18.5b, has a relative minimum, while in the unstable equilibrium
configuration  it  has  a  local  maximum.  Moreover,  when  the amplitude of the external
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†       

Figure 18.6  Load amplitude versus displacement of a moderately shallow, sinusoidal arch subjected to
sinusoidally distributed forces.

crforces reaches its critical value (P = P ), as shown in Fig. 18.5b, the total potential energy

s cr.(P ,     ) versus      diagram of the arch in its symmetric unstable configuration at the

limit point B has a horizontal point of inflection.
In its buckled configuration the arch cannot perform the function for which it has been

designed.  Thus, for design purposes, we consider that the arch fails when the amplitude
of the external forces reaches its critical value.  The unstable equilibrium path BC is not
followed in a normal loading sequence. However, the equilibrium configurations
represented by this path can be observed experimentally by controlling the deformation
of the arch.

18.1.3 Moderately Shallow Sinusoidal Arch Pinned to Rigid Abutments Subjected
to Sinusoidally Varying Distributed Forces

Consider a symmetric, moderately shallow, sinusoidal arch made from a homogeneous
isotropic, linearly elastic material.  As shown in Fig. 18.6a the arch is subjected to a 
                                 

† Taken from Thompson, J. M.T. amd Hunt, G.W., A General Theory of Elastic Stability, John Wiley and
Sons, New York, 1973.

www.EngineeringEBooksPdf.com



           Instability of Elastic Structures868

sinusoidally varying force of amplitude P.  We take as measure of the deformation of the

1 1arch the deflections      of its middle (x  = L/2) and     and      of its quarter (x  = L/4 and

1x  = 3L/4) points.  In Fig. 18.6b we plot the amplitude P of the external forces versus the
deflections     and (*            *). As P increases from zero the arch deforms to symmetric
about  its  axis  of  symmetry  stable  equilibrium configurations (*          *), until the

cr amplitude P of the external forces  reaches a critical value (P = P ) less than that(A)

corresponding to the limit point B of Fig. 18.6b.  At this value of the amplitude P of the
external forces, in the presence of any disturbance, no matter how small, the arch is
inverted dynamically (snaps through) and it vibrates about its stable equilibrium
configuration represented in Fig. 18.6b by point E.  Finally, the vibrations are dumped out
and  the  arch  comes  to  rest   at    the   symmetric  stable   equilibrium   configuration
E (*            *).  However, during its dynamic inversion the deformation of a moderately
shallow arch is not symmetric.  Referring to Fig. 18.6b, we see that A is a point of
bifurcation from which emanate two symmetric paths (ADE), with respect  to the  plane
P,     of unsymmetric (*        *�0)  unstable  equilibrium  configurations.  If  the
unsymmetric movement of the arch is prevented by controlling its deformation, the arch
will reach a state of instability when the amplitude of the external forces assumes the
value corresponding to the limit point B of Fig. 18.6b. Under this loading, in the presence
of any disturbance, no matter how small, the arch will be inverted dynamically to the
symmetric configuration specified by point F in Fig. 18.6b.

Notice that if the loading of the arch and/or its geometry were slightly non-symmetric
the critical load at buckling would be less than that of the perfect arch. We say that the
arch is imperfection sensitive.

Notice that the critical value of the load for a shallow or moderately shallow arch
could be considerably smaller than that which produces yielding at one or more of its
particles.  Consequently, in such cases the critical value of the load for buckling is the
important design parameter.

18.1.4 Planar Frame Consisting of a Horizontal and a Vertical Member Subjected
to a Vertical Force on Its Horizontal Member

Consider a planar frame consisting of two perfectly straight, perfectly prismatic
members made from an isotropic, linearly elastic material whose cross sections have an
axis of symmetry which lies in the plane of the frame. The two members have the same
length L and cross sectional area A. As shown in Fig. 18.7a the two members are rigidly
connected at point 2 and pinned to a rigid support at points 1 and 3.  Moreover, the frame
is subjected to a vertical force P acting on its horizontal member at a point located e
distance from the centroid of the cross sections of the vertical member.  The line of action
of the force P lies in the plane specified by the axis of the members of the frame.  We take
as measure of the deformation of the frame the angle of rotation    of joint 2.  It is
apparent that as the load increases from zero with or without eccentricity both members
are subjected to bending.  It can be shown  that the force–rotation diagram of joint 2 of†

the frame exhibits a limit point for all values of e less than a certain small positive

0 0eccentricity e .  In Fig. 18.7b e /L = 0.000473.  Moreover, as e increases from minus

0infinity to a value less  than e  the  force corresponding to the limit point (critical force)

0increases.  For values of the eccentricity e of the force, greater than e  as shown in Fig. 
                                 

† See Kounadis, A.N., Giri, J. and Simitses, G.J., Non-linear stability analysis of an eccentrically loaded two-
bar frame, Journal of Applied Mechanics, Dec. 1977/70, p. 39.
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Figure 18.7  Response of a two members frame.

18.7b, the force–rotation diagram does not exhibit a limit point but a continuously rising
path.  That is, the frame does not loose its stability.  For a certain value of the eccentricity
slightly to the left of the axis of the vertical member, the limit point degenerates into a
bifurcation point.  For this value of e the angle    in the initial stable equilibrium path (0

cr< P < P ) is equal to zero.

18.1.5 Symmetric Frame Consisting of Two Vertical and One Horizontal Members
Subjected to Two Symmetric Forces on Its Horizontal Member

Consider the symmetric frame shown in Fig. 18.8a consisting of three perfectly
straight, prismatic members made from an isotropic, linearly elastic material.  As shown
in Fig. 18.8a the frame is subjected to two equal forces which are acting on its horizontal
member at points located at equal distances from the axis of symmetry of the frame.  As
the forces increase proportionally from zero the frame assumes symmetric about its axis
of symmetry stable equilibrium configurations (see Fig. 18.8a) until for a certain critical
value of the forces, as shown in Fig. 18.8b, the frame buckles (snaps through) to an
asymmetric configuration, involving sidesway, denoted by point C in Fig. 18.8c. The line
from point O just to the left of point B represents the stable equilibrium path.  Point B is
an asymmetric unstable bifurcation point.  That is, the point at which the stable
equilibrium path OB meets the equilibrium path BC.  The value of the force
corresponding to the bifurcation point is the critical load of the frame.

If the frame is prevented from swaying, it snaps through to a symmetric configuration
denoted by E in Fig. 18.8c when the value of applied forces becomes equal to that
corresponding to the limit point D of Fig. 18.8c.

Initial imperfections such as asymmetric forces or initially bent members change the
response  of  the frame.  Its  force–rotation diagram exhibits a limit point with a critical
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(18.1)

Figure 18.8  Response of a three-member symmetric frame subjected to symmetric forces.

force considerably smaller than that of the perfect frame (see Fig. 18.8c).

18.1.6 Thin Circular Cylindrical Shell Subjected to a Uniform Distribution of Axial
Compressive Forces on Its End Surfaces

Consider a thin, perfectly cylindrical shell of perfectly circular cross section of radius
R and constant thickness t . Each of the end surfaces of the shell is subjected to a perfectly
uniform distribution of axial compressive forces whose resultant we denote by P (see Fig.
18.9a).  The ratio R/t of the shell is large and its end surfaces are supported in such a way
that their particles are free to move in any direction normal to its axis.  The state of stress

1of the particles of the shell is specified with respect to a cylindrical system of axes x , r,
    by the following matrix:
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(18.2)

Figure 18.9  Response of a circular cylindrical shell subjected to forces at its ends.

where A is the area of the cross section of the shell.
In Fig. 18.9b we plot the force P versus the total axial shortening     of the shell.  As

P increases from zero the shell deforms to stable equilibrium configurations with its walls
straight.  In Fig. 18.9b these configurations are represented by the equilibrium path from
point O to a point just to the left of point A.  The latter is a branching or bifurcation point.
As can be seen from Fig. 18.9b at the intersection of the fundamental path OA of stable
equilibrium and the postbuckling path ABC the latter drops precipitously.  The value of

crthe force corresponding to point A is the critical load of the shell and we denote it by P .
It can be shown that it is equal to

However, many experiments  have placed the actual buckling load of the shell as low as†

cr0.1P .  The reason for this discrepancy is that small imperfections change the response
of the shell significantly and it looses its stability at a limit point [see point D of Fig.
18.9b)] at a considerably reduced value of the computed critical load (18.2) and snaps
through to a stable equilibrium large amplitude diamond pattern configuration.

Figure 18.10  Free-body diagram of a cantilever beams of rectangular cross section undergoing flexural–torsional
buckling.

                                  
† See for example, Almroth, B.O., Holmes A.M.C. and Brush, D.O., An experimental study of the buckling
of cylinders under axial compression, Journal of Experimental Mechanics, 1964.
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18.1.7 Beam of Thin-Walled Open Cross Sections Subjected to Bending About Its
Principal Centroidal Axis of Maximum Moment of Inertia

A beam of thin-walled, open cross sections when subjected to bending about its
principal centroidal axis of maximum moment of inertia may reach a state of instability
and buckle by deflecting in the direction of the axis of maximum moment of inertia and
twisting (see Fig. 18.10).  This form of buckling may occur in beams whose torsional
stiffness is relatively small and their bending stiffness about the centroidal axis  of
minimum principal moment of inertia is small compared to its stiffness about the
centroidal axis of maximum principal moment of inertia.  For example, an I-beam loaded
in the plane of its web may reach a state of instability and buckle by twisting and
deflecting in the direction normal to its web.  This buckling phenomeon is known as
flexural–torsional buckling of beams.

18.1.8 Comments

From the above examples we can make the following observations:
1. Bodies of certain geometry when they are subjected to certain values of a certain type
of conservative forces, specified by one parameter P, assume equilibrium configurations
which cannot be established using a theory based on the assumption of small deformation
(see Section 2.4). The deformed configuration of such bodies can be established using
theories based on less restrictive assumptions than the assumption of small deformation.
2. If we denote by     a parameter which gives an indication of the magnitude of the
deformation of such a body, its P versus     diagram has either a limit point (see Fig.
18.5b) or a bifurcation point (see Figs. 18.4b, 18.6b, 18.8c and 18.9b); or for values of
P higher than a certain value,     grows rapidly as the load increases (see Figs. 18.4b and
18.7b).  A limit point is a local maximum of the P versus     diagram (see Fig. 18.5b).  A
bifurcation point is the point of intersection of the initial stable equilibrium path with
another equilibrium path (postbukling  path).  The pattern of the deformed configuration
of the body in the postbukling path is different than that in the initial stable equilibrium
path.  We distinguish three types of bifurcation points — stable-symmetric (see point A
of Fig. 18.4b) unstable-symmetric (see point A of Fig. 18.6b) and unstable asymmetric
(see point A of Fig. 18.9b).  The value of the load parameter P corresponding to a limit
point or to a bifurcation point is called the critical load at buckling of the structure.
3. The total potential energy of a body at a stable equilibrium configuration is a local
minimum, while at an unstable equilibrium configuration is a local maximum .
4. Initial imperfections affect the pattern of deformation of bodies whose load deflection
diagram has a bifurcation point. Moreover, initial imperfections reduce the value of the
buckling load of bodies whose load–deflection diagram has either a limit point or an
unstable bifurcation point.
5. The critical load at buckling is considered an upperbound to the load a structure can
carry before loosing its ability to perform the task for which it has been designed, that is,
before failing.

18.2 The Non-Linear Theory of Elasticity and the Theory of Moderate Rotations

Consider a particle of a body, which in the undeformed state of mechanical and

othermal  equilibrium  at  the  uniform  temperature  T ,  is an orthogonal parallelepiped
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(18.3)

Figure 18.11  Deformed configuration of an infinitesimal orthogonal parallelepiped and components of traction

ijP .

o o o o 1 2 3P X Y Z  with edges dx , dx , dx  (see Fig. 18.11).  In general as the body goes from its
undeformed to its deformed state its particles translate, rotate and deform (elongate or
shrink and distort).  As shown in Fig. 18.11 the particle under consideration in the
deformed state is a non-orthogonal parallelepiped PXYZ whose edges have lengths (1 +

11 1 22 2 33 3 11 22 33E )dx , (1 + E )dx , (1 + E )dx  where E , E  or E  are the unit elongations or

1 2 3shinkages in the direction of the x , x  or x  axis, respectively, defined by relations (2.5).

o o o o o oMoreover, as shown in Fig. 18.11 the before deformation right angles ÊX P Y , ÊX P Z
o o oand ÊY P Z  after deformation become equal to B/2 -     , B/2 -     and B/2 -     ,

1 2 1 3respectively, where                and       are the unit shears in the directions x x , x x  and

2 3x x , respectively, defined by relations (2.7).  We denote by  the tractions

per unit undeformed area acting on the planes of the particle under consideration which

ibefore deformation were normal to the x (i = 1, 2, 3) axes.  We decompose each of these

1 2 3tractions into three components along the three non-orthogonal directions j , j  and j ,
which are parallel to the edges of the deformed parallelepiped (see Fig. 18.11).  That is,

ijIt can be shown that the quantities P (i, j = 1, 2, 3) do not transform as components of a

isymmetric tensor of the second rank upon rotation of the system of axes x (i = 1, 2, 3).
For this reason we define another set of nine quantities known as the components of the
Lagrangian or material stress tensor which can be shown that transform as components
of a symmetric tensor of the second rank and are defined as 
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(18.4)

(18.5)

(18.6)

Figure 18.12  Approximation of the deformed configuration of an infinitesimal material parallelepiped in the
theory of moderate rotations.

In the theory of moderate rotations it is assumed that the unit elongations or shinkages
and the unit shears are negligible compared to unity.  Consequently, as shown in Section
2.4 the unit elongations or shrinkages may be approximated by the normal components
of the Lagrangian strain and the unit shears by twice the shearing components of the
Lagrangian strain [see relations (2.14)].  That is,

Moreover, an infinitesimal material orthogonal parallelepiped before deformation may
be considered as being approximately orthogonal after deformation (see Fig. 18.12) and
the length of its deformed edges may be approximated by the length of its corresponding
undeformed edges.  However, the rotation of an infinitesimal material parallelepiped, due
to the deformation of the body, cannot be disregarded (see Fig. 18.12).  Furthermore,
referring to relation (18.4) we see that the components of the Lagrangian stress may be

ijapproximated by the components P  (i, j = 1, 2, 3) of traction acting on the surfaces of an
infinitesimal material parallelepiped which before deformation was orthogonal with edges

1 2 3parallel to the x , x , x  axes.  That is,

ij 1 2 3where P  (i, j = 1, 2, 3) are the components of traction in the directions j , j , j  which, in
the theory of moderate rotations, may be considered as being approximately orthogonal.

In the non-linear (large deformation) theory of elasticity and in the theory of moderate
rotations it is assumed that when a body is subjected to external forces in an environment
of constant temperature, the components of the Lagrangian stress of a particle are related
to its components of the Lagrangian strain defined by relations (2.13) by linear relations
analogous to (3.47) and (3.48).  Moreover, it can be shown that the theorem of stationary
total potential energy proved in Section 13.17 for the linear theory of elasticity is valid

www.EngineeringEBooksPdf.com



Criterion for the Stability or Instability of an Equilibrium Configuration of Structures           875

(18.7)

(18.8)

(18.9)

(18.10)

for the non-linear theory of elasticity and for the theory of moderate rotations.  Referring
to relation (13.121) the total potential energy of a body, in an environment of constant
temperature, made from an elastic material is 

In the non-linear theory of elasticity and in the theory of moderate rotations the strain

senergy density U  is considered a function of the nine components of the Lagrangian

ijstrain  (i, j = 1, 2, 3) [see relations (2.13)] and it is defined as

ijwhere  are the Lagrangian components of stress. It can be shown that the strain energy

density of a particle of a body made from an isotropic, linearly elastic material is equal
to

18.3 Criterion for the Stability or Instability of an Equilibrium Configuration of
Structures

An effective criterion for the stability or instability of an equilibrium configuration of
a body subjected to conservative forces is the following axiom which it is known as the
stability axiom:

A necessary and sufficient condition for an equilibrium configuration of a body
subjected to conservative forces to be stable is that its total potential energy is a local
minimum.  That is, the second variation of the total potential energy is positive (see
Section E.4 of Appendix E)

Moreover, a necessary and sufficient condition for an equilibrium configuration of a body
subjected to conservative forces to be unstable is that its total potential energy is a local
maximum.  T hat is, the second variation of its total potential energy is negative.
Furthermore, if the second variation of the total potential energy of a body subjected to
conservative forces is zero, a necessary and sufficient condition for an equilibrium
configuration of the body to be stable is that the third variation of its total potential energy
is positive.

18.4 Investigation of the Beginning of Buckling

In most cases of practical interest, we are only interested in establishing the critical
load at buckling.  For structures which exhibit a bifurcation point, when they are assumed
perfect, this may be accomplished by investigating only the beginning of buckling,
wherein the unit elongations or shrinkages, the unit shears and the rotations are very small

ijand can be disregarded compared to unity.  Thus, the Lagrangian components of strain 
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ij(i, j = 1, 2, 3) [see relations (2.13)] can be approximated by the components of strain e
(i, j = 1, 2, 3) [see relations (2.15)].  However, in drawing the free-body diagrams of the
elements of a structure their rotation must be taken into account.  The resulting approach
yields the value of the critical load at buckling, as well as the shape of the buckled
configuration of the structure at the beginning of buckling.  It does not give, however, the
postbuckled configuration of the structure.

18.5 Buckling of Structures Having One Degree of Freedom

Consider a structure subjected to conservative external forces whose magnitude is
specified by one parameter P while its buckled configuration is specified by one

parameter .  For example, for the column of Fig. 18.4a  could be the transverse

3component of translation u  of the end A of the column.  For the arch of Fig. 18.5a, (A)

could be the deflection  of its middle point.  The critical load at buckling and the post-

buckling behavior of such a structure can be established using the theory of moderate
rotations and adhering to the following steps:

STEP 1 The equation for equilibrium for the structure is established.  This is a non-linear

relation between the force parameter P and the deformation parameter  and can be

established using one of the following methods:
1. The direct equilibrium method
2. The method of stationary total potential energy

STEP 2 The equation of equilibrium is solved and the P versus  diagram is plotted.  For

small values of P the equation of equilibrium has an unique solution, which represents
a stable equilibrium configuration of the structure.  However, for higher values of P the
equation of equilibrium may have more than one solution, each of which represents an
equilibrium configuration which could be stable or unstable.  The P versus     diagram
could consist of one continuous curve or of two intersecting curves known as equilibrium
paths.  The point of intersection of the two curves is known as the bifurcation point.  For
a structure whose load–deflection diagram has a bifurcation point, the extension of the
original stable equilibrium path is unstable.  The postbuckling equilibrium path is stable

if  increases when P increases.

In this section we establish the critical load at buckling and the postbuckling behavior
of two simple structures having one degree of freedom.  The load–deformation parameter
diagram of the first structure when its loading is perfectly centroidal has a bifurcation
point while that of the second structure has a limit point.
                                                                                                                                             

Example 1  Consider the structure shown in Fig. a consisting of two rigid prismatic bars
AB and BC of length L joined by a frictionless pin.  The bars are constrained from rotating

rrelative to each other about the axis of the pin by a linear rotational spring of stiffness k .
One end of the structure is pinned to a rigid support while its other end is pinned to a
support which can move only in the direction of the axis of the structure.  Moreover, the
translation of the middle point of the structure is constrained by a linear extensional

espring of stiffness k .  Both springs are unstretched when the structure is in its straight-line
configuration.  The structure is subjected to an axial centroidal compressive force P.
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     (a)

(b)

(c)

(d)

Establish the critical value of P for which the structure can assume a stable
equilibrium configuration (buckled) other than the straight.  Moreover, determine the
post-bucking behavior of the structure.

 

Figure a  Geometry and loading of the structure.

Solution  The structure of Fig. a has one degree of freedom.  That is, as shown in Fig. b,

its deformed configuration can be specified by one variable the angle of rotation .

Determination of the equation of equilibrium using the direct equilibrium method

In Fig. c we show the free-body diagram of bar AB in its deformed configuration.
Referring to this diagram we have

This is the equation of equilibrium for the structure of Fig. a.  It has the following two
solutions:

Therefore, there are two equilibrium paths in the P versus  diagram which intersect at

a bifurcation point.  The critical value of the load is obtained from equation (c) in the

limit as  approaches zero and noting that .  That is,

Determination of equation of equilibrium using the method of stationary total potential
energy

The equation of equilibrium (a) can be established by applying the theorem of
stationary total potential energy presented in Section 18.2.  Recall that the total strain 
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(e)

(f)

(g)

(h)

(i)

Figure b Deformed configuration of the structure. Figure c Free-body diagram of bar AB in
its deformed configuration.

energy stored in a linear extensional spring is equal to the work of the applied force.  That

is, denoting by  the elongation of the spring, we have 

Moreover, the total strain energy stored in a linear rotational spring is equal to the work
of the applied moment.  That is, referring to Fig. b, we get

sThus, the total strain energy U  stored in the two springs of the structure of Fig. a, when
it assumes the equilibrium configuration shown in Fig. b, is equal to 

Referring to Fig. b, the work of the external forces in moving from their position in the
deform configuration of the structure to their position in its undeformed configuration,
is given as 

Substituting relations (g) and (h) into relation (18.7), we obtain the following expression
for the total potential energy of the structure:

The theorem of stationary total potential energy of the non-linear theory of elasticity

and the theory of moderate rotations, states that a function (P) which renders the total

potential energy of a structure stationary specifies a configuration of equilibrium of this
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            (j)

    (k)

(l)

(m)

(n)

(o)

structure.  This implies that the function (P) which renders the first variation of the total

potential energy of the structure equal to zero specifies a position of equilibrium of this
structure (see Section E.4 of Appendix E).  Thus,

Relation (j) is valid for any variation .  Consequently, the term in parentheses in

relation (j) must vanish.  That is,

This equation is the equation of equilibrium for the structure of Fig. a.  As expected it is

identical to equation (a) and it is satisfied if  or if P and  satisfy relation (c).

Investigation of the stability or instability of the equilibrium paths of the column of
Fig. a using the stability axiom presented in Section 18.3.

Recall that the stability action states that a necessary and sufficient condition for a path
to be stable (unstable) is that the total potential energy of the structure is a local minimum
(maximum).  This implies that a structure is stable if the second variation of its total
potential energy is positive and unstable if it is negative.  Referring to relation (E.9) of

Appendix E and using relation (i) the second variation of  is

For the path  = 0 relation (j) reduces to 

Thus, using relation (d), we see that the second variation  of  is positive for

and negative for 

e rTherefore, as expected, for any set of values of the parameters k L  and k  the path  =2

cr cr0 is stable for P < P  and unstable for P > P . 
For the path specified by relation (c), relation (j) reduces to

From relation (o) we see that the sign of  and, consequently, the stability or

e rinstability of the postbuckling path, depends on the values of the parameters k L  and k .2
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(r)

(s)

(t)

(u)

(v)

Moreover, from relation (o) we find that  vanishes at the bifurcation point .

Thus, in order to establish whether  is a maximum or a minimum at the bifurcation

point we must examine the sign of the third or higher variations of .  That is, expanding

 into a Taylor series about , we have

(p)
At the bifurcation point the first and second terms on the right side of relation (p)

vanish, while the third and fourth terms may be obtained from relation (k) as

        (q)

Thus, the third variation of  vanishes at the biforcation point and in order to establish

if  is a minimum or a maximun at the biforcation point, we must examine the sign of

the fourth variation of      .

crSubstituting relation (d) into (p) at P = P , we get

This indicates that, at the bifurcation point,  is positive if

e rTherefore, if the values of the parameters k L  and k  satisfy relation (r),  is a minimum2

at the bifurcation point and, consequently, when the structure under consideration is

crsubjected to the value of the force P = P , it is in a state of stable equilibrium in the
straight configuration.

eFor k L  = 0 we obtain the structure of Fig. d and relations (c), (d) and (i) reduce to2

crIn Fig. e we plot for the structure of Fig. d, the P/P  versus  diagram [relation (t)]

cr cr crand  the  /P L  versus   diagrams  [using  relation  (u)]  for  P  =  P   and  P = 1.1P ;

www.EngineeringEBooksPdf.com



Buckling of Structures Having One Degree of Freedom           881

(w)

(x)

(y)

Figure d Geometry and loading Figure e Load deflection and total potential energy

eof the structure with k L = 0. deflection diagrams for the structure of Fig. d.

referring to this figure, we see that

 is greater than zero on the postbuckling path.  Therefore the

postbuckling path is a stable equilibrium path.  Moreover, from relation (r) we see that at
the bifurcation point         is positive. This indicates that as shown in Fig. e the total
potential energy of the structure at the bifurcation point is a relative minimum and
therefore, at this point the equilibrium is stable.  We say that the structure of Fig. d has

cra stable symmetric bifurcation point.  Referring to Fig. e, we see that for P = 1.1P  the

total potential energy at point D ( ) is a relative maximum while at point E is a

crrelative minimum.  That is, when P = 1.1P , the straight-line  equilibrium configuration
of the structure is unstable while the bent equilibrium configuration, specified by point
E, is stable. 

r For k = 0 we obtain the structure of Fig. f and relations (c), (d) and (i) reduce to 

cr.In Fig. g we plot the P/P  versus  diagram for the structure of Fig. f; referring to this

figure, we see that the postbuckling path is an unstable equilibrium path.  Therefore as
soon as the load reaches its critical value in the presence of any disturbance, no matter
how small, the structure will collapse.  We say that the structure of Fig. f has an unstable
symmetric bifurcation point.
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(z)

(za)

(zb)

Figure f  Geometry and loading of the Figure g  Load–deflection diagram for the

rstructure with k  = 0. structure of Fig. f.

e rFor k L  = 8k  relations (c), (d) and (i) reduce to2

e rFigure h  Load–deflection diagram for the structure of Fig. a with K L  = 8 K .2
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(zc)

(zd)

crIn Fig. h we plot P/P  versus  [relation (z)] and   versus  [relation (zb)]

for the structure under consideration; referring to this figure, we see that when the load

crreaches the value P = 0.8P , the total potential energy of the structure is a relative
minimum at its straight-line configuration specified by point A on the load–rotation
diagram.  Consequently, for this value of P the straight-line configuration is stable.
However, if sufficient energy was applied to the structure by a transverse force or by a
bending moment, the structure could snap through to the configuration specified by point
C on the load–rotation diagram of Fig. h since this configuration is more stable than that

crat  point A.  Referring  to  Fig. h,  we  see  that at P = P  the total potential energy of the
is in a state of unstable equilibrium in its straight-line configuration and it will snap
through to the stable equilibrium configuration at point E.  This example illustrates the
importance of knowing the postbuckling path of a structure when designing it.   Although

crthe  straight-line  configurations  of  the  structure are stable up to P < P , for values of
P < P , the structure may snap through to a more stable bent configuration at which it(D)

may not be able to perform the task for which it has been designed.  Thus, the failure load

crfor the structure under consideration is not P  but the much lower load P .(D)

Computation of the critical load at buckling by investigating only t he beginning of
buckling

If we investigate only the beginning of buckling, the angle  in Figs. b and c is very

small and, consequently,  is approximately equal to the angle  while  is

approximately equal to unity.  Taking this into account relation (a) reduces to  

This equation has the following solution:

e r           for all choice of k , k , P and L

It is clear that this approach gives only the value of the critical load at buckling.

Imperfect structure

Up to this point we have assumed that the structure under consideration is perfect.
That is, it is perfectly straight in its undeformed state and the external compressive axial
force is perfectly centroidal.  This implies that the springs are unstretched and unstrained
when the structure is in its straight line configuration.  In what follows we assume that the
structure, under consideration, is imperfect in the sense that  the two springs are
unstrained when the rigid bars AB and BC have a small rotation  which in Fig. i we denote

by . The postbuckling configuration of the structure is specified by the angle  measured

from its straight-line configuration (see Fig. i).  The free-body diagram of bar AB in its
deformed configuration is shown in Fig. j; referring to this figure, from the equilibrium
of bar AB, we have 
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 (ze)

(zf)

Figure i Imperfect structure.             Figure j Free-body diagram of bar AB of the imperfect
            structure of Fig. i in a deformed configuration.

The solution of this equation is 

eIn Fig. e we plot relation (zf) for k L = 0 and a value of ; referring to this figure, we2 

see that the load–deflection diagram of the imperfect structure under consideration is

constantly rising and stable (*P*  > 0).  However, as the value of the force P acting on

the imperfect structure approaches the critical value of the force, acting on the perfect
structure (    =0) the rate of increase of the deflection of the imperfect structure becomes
large.  Moreover, the loading path for the imperfect structure of Fig. i approaches the
postbuckling path for the perfect structure of Fig. d.  Usually when the force acting on the

crimperfect structure reaches the value of P  for the perfect structure, the deflection of the
imperfect structure is large and the structure cannot perform the task which it has  been

crdesigned to perform.  Thus, P  is an upper bound of the maximum load the structure can
carry.  From Fig. e we see that the effect of the initial imperfection on the ability of the
structure of Fig. d to resist the applied force is small.  That is, the critical load at buckling
of the structure of Fig. d is imperfection insensitive.

r In Fig. g we plot relation (zf) for k = 0 and a value of ; referring to this figure, we see

that the load–deflection diagram for the imperfect structure has a limit point.  When the
external force reaches the value corresponding to the limit point, the structure reaches a
state of unstable equilibrium and collapses. The values of the external force
corresponding to the limit point depends on the value of the initial imperfection     and it

cris considerably less than P  of the perfect structure. That is, the critical load of the

rstructure of Fig. f (k  = 0) is imperfection sensitive.
                                                                                                                                             
                                                                                                                                             

Example 2  Consider the structure shown in Fig. a, consisting of two identical slender 
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(a)

(b)

(c)

(d)

Figure a Geometry and loading of the structure.

members of constant cross section, pinned together at one end, while their other end is
pinned to a rigid support.  The members of the structure are made from an isotropic,
linearly elastic material. That is, the relationship between the axial component of the
Lagrangian stress tensor and the axial component of the Lagrangian strain tensor (2.13)
of a particle of a structure is linear.  Consequently, since the members of the structure are
in a state of uniaxial stress (                                                               ), we have 

where E is the modulus of elasticity of the material from which the members of the

structure are made and is the Langrangian component of strain of a particle of a

member of the structure in the direction of its axis.  The structure is subjected to a
concentrated transverse force at joint 2.  Compute the displacement of joint 2 as a

function of the force P and of the angle .  The latter specifies the geometry of the

undeformed structure.  Use the theory of moderate rotations to compute the displacement
of joint 2 of the structure.

Solution  The undeformed and deformed configurations of the structure are shown in Fig.
a.  Joint 2 is displaced to point 2N.  The change of length per unit length of a particle of
a member of the structure in the direction of its axis is equal to 

Moreover, referring to Fig. a, from geometric considerations, we obtain

Substituting the first and the fourth of the above relations into (b), we obtain the following

11non-linear relation between the unit elongation E  and the displacement u:

We now proceed to analyze the structure using the theory of moderate rotations.  In
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(e)

(f)

(g)

(h)

    (i)

      Figure b  Free-body diagram of joint 2 of the
      structure of Fig. a in its deformed configuration.

this theory, the unit elongations or shrinkages and the unit shears are negligible compared

11to unity.  Thus, the unit elongation or shrinkage E  is approximately equal to the normal
component       of the Langrangian strain.  That is, 

Moreover, the change of the area of the cross sections of the members of the structure is
disregarded, as compared to their original area A.  Thus, denoting by F the axial centroidal
force acting the cross sections of each member, we have

However, in the theory of moderate rotations the rotations are assumed of higher order
of magnitude than the unit elongations or shrinkages and the unit shears.  Thus, in
drawing the free-body diagrams of segments of the structure their rotation is taken into
account.  Consequently, referring to Fig. b from the equilibrium of joint 2, we have:

Substituting relation (g) into (f) and the resulting relation into (a), we obtain

Substituting relations (h) into (e) and using the third of relations (c), we get 

This is the nonlinear, force–displacement relation obtained on the basis of the theory of
moderate rotations.  It is plotted in Fig. c for h/L = 0.01, and h/L = 0; referring to this
figure, it can be seen that for values of h/L different than zero, the displacement of point
2 of the structure increases monotonically as the force increases from zero.  When the

crforce reaches its critical value at the limit point A(P /EA . 3.85 x 10 ), the structure-7

reaches  a  state  of  unstable  equilibrium and jumps (buckles) to its stable equilibrium
configuration at point E (see Fig. c).  For values above the critical value, the displacement
of point 2 of the structure increases monotonically as the force increases.  The structure
does not reach another state of unstable equilibrium until its members yield.  If the force
decreases after reaching its value at point F, the displacement decreases monotonically
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Figure c  Force–displacement relations, on the basis of the theory of moderate rotations.

until the force vanishes at point D.  If the structure is subsequently subjected to an upward
force, the displacement at point 2 decreases monotonically until the force reaches its
critical value at point C  (see Fig. c) and the structure jumps (buckles) to its stable
configuration at point G.

When h/L is equal to zero (see Fig. d), the structure is kinematically unstable.  Its
members cannot resist a transverse force before rotating.  Thus, as soon as a transverse
force is applied to this structure, its members rotate instantaneously without deforming.
Moreover, as can be seen from Fig. c, for small values of the force, the rate of increase
of the deformation is very large.  However, the structure does not necessarily fail.  In fact,
as the force increases the rotation and the deformation of the members of the structure
increases and, thus, their orientation is more favorable for resisting the transverse force.
For instance, suppose that the structure of Fig. d is made from American steel A36 (yield

stress  = 248 MPa; modulus of elasticity E = 210 GPa).  Thus, yielding will occur

when the Lagrangian component of strain [ /E  =  248/210(10 )] in the members3

of the structure is equal to 1.181 x 10 .  The corresponding displacement of point 2 of the-3

structure maybe obtained from relation (b) as

Substituting this result into relation (i), the force required to produce yielding of the
members of the structure is equal to 

Thus, the phenomena illustrated in Fig. c occur for values of the force P/AE considerably
below that which causes the members of the structure to yield.
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(18.11)

(18.12)

Figure d  Kinematically unstable structure.

                                                                                                                                             

18.6 Buckling of Structures Having Infinite Degree of Freedom — The Direct
Equilibrium Approach

When the theory of moderate rotations is applied to an infinite degree of freedom
structure, the resulting differential equations are difficult to solve.  For this reason, in this
text we consider only prismatic line members (columns) subjected to conservative
compressive axial component of tractions on their end surfaces.

Consider a prismatic column in a stress-free, strain-free state of mechanical and

othermal equilibrium at the uniform temperature T .  The column reaches a second state of

omechanical and thermal equilibrium at the uniform temperature T  due to the application

1 1on each of its end surfaces x  = 0 nd x  = L of compressive axial component of tractions
whose resultant acts at the centroid of each of its end surfaces and we denote it by P.
Referring to relation (18.4), we assume that

Taking into account relations (18.11) and (18.5), the stress–strain relations of the form
(3.48) reduce to

In order to simplify our presentation we assume that the shear center of the cross

2sections of the column under consideration coincides with their centroid and that the x
3 2 3and x  axes are principal centroidal such that I  < I .  Thus, in its buckled configuration

2the column bents about its x  axis.  Referring to Fig. 18.13c consider a fiber of the column

1of infinitesimal length dx  extending in its undeformed state from point D to point C.  In
the buckled state of the column the ends of this fiber move to points Dt and Ct (see Fig.

s s18.13d).  From geometric considerations, denoting by dx  and dx  the deformed lengtho

of fibers CD and AB, respectively, we have

Figure 18.13  Buckling of a column.
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(18.13)

(18.14)

(18.15a)

(18.15b)

    (18.17)

(18.16a)

where             is the radius of curvature of the elastic curve at point A and       is the angle

1the tangent to the elastic curve at point AN makes with the x  axis (see Fig. 18.13d).  In
obtaining the above relations we have explicitly assumed that plane sections normal to
the axis of the column before deformation remain plane after deformation.  Moreover, we

have assumed that the change of the transverse component of displacement 

2 3 11with x  and x  is negligible.  That is, .  The unit elongations E  and

11E  areo

defined as 

11where E  is the unit elongation of the particles of the axis of the column.o

The moment of the distribution of traction acting on a cross section of the column
which before deformation was normal to its axis, referring to relations (18.6) (18.12) and
(18.15a), is equal to†

Referring to Fig. 18.13d, from the equilibrium of a deformed element of the column, we
have
                                  

1 1† In the literature an attempt has been made to retain the effect of the axial unit shrinkage E  of the column
in a modified theory of moderate rotations.  In this case, referring to relation (2.11a), we have

1 1 1 1 1 12      = (1 + E )  ! 1 = E (2 + E )2

1 1Using the above and relations (18.4) and (18.12) and disregarding E  as compared to unity, it seems that one 2

1 1must use the following expression for the component P  of traction:

Using the above relation and (18.15a), we get

(18.16b)
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(18.18)

(18.19)

(18.20)

(18.21)

Notice that relation (18.18) is also valid when the force has an eccentricity.  That is, it is

3applied at x  = !   .  Referring to Fig. 18.13a and b, from geometric considerations, we
obtain

or

Substituting relations (18.17) and (18.19) into (18.18), we get

2When EI  is constant, relation (18.20) reduces to

This is a non-linear equation whose solution, when subjected to the appropriate boundary

1conditions of a column gives the rotation      (x ) as a function of the axial compressive
force P.  By inspection we see that for initially straight columns with homogeneous
boundary conditions, for any value of the force P, one solution of equation (18.21) is

1   (x ) = 0.  This solution represents the straight-line configuration of the column.
However, this configuration of the column becomes unstable for values of the force P

crgreater than certain critical value P  and a second stable configuration exists, which can
be established by finding the second solution of equation (18.21).  Therefore, the diagram

1of the force P versus the rotation        of the end x  = L of the column under consideration

crhas a bifurcation point at P = P .
Notice that equation (18.21) is also valid for initially straight columns made from an

isotropic, linearly elastic material subjected to eccentric compressive axial forces at their

1ends.  However,      (x ) = 0 is not a solution of this boundary value problem because it

2does not satisfy its non-homogeneous boundary condition M (L) = P   , where    is the
eccentricity of the forces.

18.6.1 Solution of the Non-Linear Equation (18.21)

In this subsection we present a method for finding the second solution of equation

1(18.21) in the form of a transcendental relation between      (x ) and P.  For this purpose
notice that
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(18.22)

(18.23)

(18.24)

(18.25)

(18.26)

(18.27)

Substituting the above relation into (18.21), we get

Integrating the above relation, we have

1We assume that the end x  = L of the column is either unsupported or simply supported.

1On the basis of this assumption, referring to relation (18.17), the constant C  is evaluated
from the following condition:

From relations (18.22) and (18.23), we obtain

Substituting relation (18.24) into (18.22), we get

Inasmuch as      is positive when it represents counterclockwise rotation, for the simply
supported  or  the  cantilever  column under consideration,  (see Fig. 18.13)               is
always positive.  Consequently, the negative sign must be disregarded in relation (18.25).

Simply Supported Column

1The rotation of a simply supported column at x  = 0 is equal to        . Taking this into
account, from relation (18.25), we have

In obtaining the above relation we took into account that       

3In what follows we compute the deflection !u (L/2) of the middle span of the column
under consideration.  For this purpose we introduce the following notation:

Thus,
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(18.28)

(18.29)

(18.30)

       (18.32)

(18.33)

(18.34)

Noting that       varies from          to       , from the second of relations (18.27) we see that
the quantity sing varies from 1 to !1 and thus, g varies from B/2 to !B/2.  Substituting
relations (18.29) and (18.21) into (18.26), we get

(18.31)
Using the condition that

from relation (18.31), we obtain

The integral K(k) is known as a complete elliptic integral of the first kind and its value

depends only on the parameter .  Numerical values of K(k) for different

values of k are given in some engineering handbooks . Relation (18.33) is a transcendental†

1relation between the force P and the angle of rotation  of the end x  = L of the column.

For  any  chosen  value of  the  angle         the  corresponding  value  of k can be computed
from the first of relations (18.27) and used in the available tables to obtain the value of
the integral K(k) which when substituted into relation (18.33) gives the value of P
required to produce the chosen value of       .

crAt the beginning of buckling (P = P ) the angle       is very small therefore k is also
very small and the term k sin g is negligible compared to unity.  Thus, relation (18.33)2 2

reduces to

1In what follows, we proceed to compute the deflection of the column at x  = L/2.  For
                                  
† See for example, Byrd, P.F. and Friedman, M.D., Handbook of Elliptic Integrals for Engineers and Scientists,
2nd edition, Springer-Verlag, Berlin, 1971.
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(18.35)

(18.40)

(18.36)

(18.37)

(18.38)

(18.39)

this purpose, referring to relation (18.19) and using relation (18.25), we have

Integrating relation (18.35) and taking into account that      (L/2) = 0, we obtain

Using the first of relations (18.28) and (18.27), we get

Substituting relation (18.37), (18.29) and (18.30) into (18.36) and taking into account that

at , the parameter g is equal to B/2 while at  = 0 the parameter g is equal to

zero, we have

For any chosen value of        , the parameter k can be computed from the first of relations

1(18.27) and substituted into relation (18.38) to compute the maximum deflection at x  =
L/2 of the column under consideration as function of the force P.

Cantilever Column

1The rotation      of a cantilever column at x  = 0 is equal to zero.  Taking this into
account from relation (18.25), we get

We introduce the following notation

www.EngineeringEBooksPdf.com



           Instability of Elastic Structures894

(18.41)

Figure  18.14  Shape of the elastic curve of a cantilever column for various values of †

 Noting that      varies from 0 to        , from the second of relations (18.40), we see that the
quantity           varies from 0 to 1 and thus,      varies  from  0  to B/2.   Using  relations
(18.40) and following a procedure similar to the one employed for the simply supported
beam, from relation (18.39), we obtain

Relation (18.41) is a transcendental relation between the force P and the angle of rotation

cr of the unsupported end of the cantilever column.  Values of P/P  obtained from

relation (18.41) for various values of  are tabulated in Table 18.1; referring to this

table we see that    increases as P increases.  Consequently, the postbuckling
configurations of the column under consideration are stable.  The shapes of the elastic

curve of a cantilever column are shown in Fig. 18.14 for various values of .

Table 18.1   Shape of the elastic curve of a cantilever column for various values of †

2T L 0 20 40 60 80 100 120 140 160 176o o o o o o o o o o

crP/P 1 1.015 1.063 1.152 1.293 1.518 1.884 2.541 4.029 9.116

1x  / LL 1 0.970 0.881 0.741 0.560 0.349 0.123 -0.107 0.340 -0.577

3u  / LL 0 0.220 0.422 0.593 0.719 0.792 0.803 0.750 0.625 0.421

† Taken from Timoshenko, S.P. and Gere, J.M., Theory of Elastic Stability, McGraw-Hill, New York, 1961, p.79.
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(18.42)

(18.43)

(18.44)

(18.45)

(18.46)

crAt the beginning of buckling (P = P ) the angle        is very small; therefore, k is also

very small and the term k  sin  in relation (18.41) is negligible compared to unity.2 2 

Thus, relation (18.41) reduces to

Comments

Referring to relations (18.34) and (18.42) we see that the critical force at buckling of the

2columns  of  Fig. 18.13a and b,  is proportional to the flexural rigidity EI  and inversely
proportional to the square of the length of the column.  It is not affected by the yield stress
of the material from which the column is made.

18.7 Buckling of Structures Having Infinite Degree of Freedom — The Stationary
Total Potential Energy Approach

The equation of equilibrium (18.20) can be established by applying the theorem of
stationary total potential energy which is proved in Section 13.17 for the linear theory of
elasticity and it is extended to the non-linear theory of elasticity and the theory of
moderate rotations in Section 18.2.  For the columns of Fig. 18.13a and b, referring to
relation (18.9) and taking into account relations (18.5) and (18.12), we have

Substituting relation (18.43) into (18.7), we get

Referring to Fig. 18.13 from geometric consideration using relation (18.14), we obtain

swhen referring to Fig. 18.13d, dx  is the length of the curves ANBN. From relation (18.45),o

we obtain

Substituting relations (18.15a) and (18.46) into (18.44), integrating over the area of the
cross section of the column and using relation (18.15b), we get
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(18.47)

(18.49)

(18.50)

(18.51)

where

(18.48)
The theorem of stationary total potential energy of the non-linear theory of elasticity

1states that a function       (x , P) which renders the total potential energy of the column of
Fig. 18.13a or b stationary specifies a configuration of equilibrium of that column. This

1implies that a function    (x , P) which renders the first variation of the total potential
energy of the column equal to zero, specifies a configuration of equilibrium of that
column.  Referring to relation (18.48), we get

where      stands for            .  Referring to relation (E.20) of Appendix E and using
relations (18.49), the Euler–Lagrange differential equation for the functional (18.47) is

As expected relation (18.50) is identical to (18.20).  It is the necessary relation that the

1function      (x , P) must satisfy in order that the functional  given by relation (18.47),

assumes stationary values.  Referring to relations (E.22) of Appendix E we see that in
order that the functional  given by relation (18.47), assumes stationary values the

1 1following boundary conditions must be satisfied at the ends x  = 0 and x  = L of the
column:

These boundary conditions are satisfied by the columns of Fig. 18.13a and b.
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(18.56)

(18.52)

(18.54)

(18.55)

In order to establish the postbuckling path is stable or unstable we compute the second
variation of .  For this purpose referring to relation (18.50) we find

Referring to relation (E.16), using relation (18.52) integrating by parts and using relations
(18.51) and (18.46), we get

(18.53)
Since        vanishes, we must check the third variation of     . For this purpose from
relations (18.52) we find

Substituting relations (18.54) into (E.9) of Appendix E, we get

Thus, the postbuckling path of the columns of Fig. 18.13a and b is a stable equilibrium
path.  The integrand of the integral in relation (18.55) is always positive for the columns
under consideration, because if      is negative        must also be negative while if      is
positive         must also be positive.  That is, the absolute value of      can only increase.
Relation (18.55) indicates that the structure in its postbuckling configurations, as expected
is in a state of stable equilibrium.

18.8 Determination of the Critical Load at Buckling of Infinite Degree of Freedom
Structures by Investigating the Beginning of Buckling

At the beginning of buckling the external force acting on a column is equal to its
critical value.  Moreover, not only the unit elongations or shrinkages and the unit shears
are negligible compared to unity, but also the rotations are negligible compared to unity.
Thus,
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(18.57)

(18.58)

(18.59)

(18.60)

(18.61)

(18.62)

(18.63)

 (18.64)

(18.65)

Taking relation (18.56) into account, relations (18.19) and (18.21) reduce to

The solution of equation (18.58) has the following form:

The constants A and B are evaluated from the boundary conditions of the column.

Cantilever column

The boundary conditions of a perfectly straight cantilever column subjected to a
perfectly centroidal compressive axial force at its unsupported end are

From relation (18.61), we get

Taking into account relations (18.60) and (18.62) relation (18.59) reduces to

For n = 1, 3, 5, ... we obtain an infinite number of critical loads and corresponding
buckled shapes.  However, the column buckles when the load reaches its lowest (n = 1)
critical value and thus, only the critical load and buckled shape for n = 1  is  of  practical
interest.  The constant B in relation (18.63) represents the rotation       at the unsupported
end of the column which is unspecified.

Substituting relation (18.63) with n = 1 into (18.57), we get

Integrating the above relation, we obtain
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(18.66)

(18.67)

(18.68)

(18.69)

(18.70)

(18.71)

Simply supported column

The boundary conditions for a perfectly straight simply supported column subjected
to perfectly centroidal axial compressive forces are

Consequently,

or

Taking into account relations (18.66) and (18.69) relation (18.59) reduces to

Substituting relation (18.70) with n = 1 into (18.57) integrating the resulting relation and

3taking into account that u (0) = 0, we obtain

Table 18.2   Critical load at buckling and buckled shapes of columns with various boundary conditions.

Comments
From the presentation in this section it is apparent that the problem of studying the

beginning of buckling of a perfectly prismatic, perfectly straight column subjected to
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          (18.72)

(18.73)

(18.74)

(18.75)

(18.76)

perfectly centroidal compressive axial forces involves the solution of the differential
equation (18.58) with appropriate boundary conditions.  Solutions of this equation exist

cronly for certain values of P = P . These values of P are called eigenvalues or

1characteristic values.  The corresponding functions      (x ) are called eigenfunctions or
normal buckling modes.  They specify only the shape of the elastic curve of the column
not the magnitude of its deformation.  Such problems are known as eigenvalue problems.

 In Table 18.2 we give the critical load at buckling and the buckled shapes of columns
with different boundary conditions.

18.9 Columns Subjected to Eccentric Axial Compressive Forces at Their Ends

Consider the simply supported column shown in Fig. 18.15 made from an isotropic,
linearly elastic material subjected to compressive axial forces at its ends with an

3 2 2 3eccentricity x =     and x = 0.  The x  and x  axes are principal centroidal.  For any value
of the applied forces the column has an unique stable equilibrium configuration.
Moreover, for small values of the applied forces the deformation of the imperfect column
is within the range of validity of the theory of small deformations.  Therefore, we can
disregard the effect of the change of the geometry of the column due to its deformation
on its internal actions.  Thus, the moment at any cross section of the column can be
approximated by

Furthermore, the moment acting on a cross section of the column and the component

3of translation u  of this cross section are related by relation (9.32a).  That is,

2 2I  is the moment of inertia of the cross section of the column with respect to its x  axis.
Substituting relation (18.73) into (18.72), we get

The solution of this equation is

where the constants A and B are evaluated from the boundary conditions of the simply
supported column.  That is,

Consequently, the solution of the differential equation (18.74) becomes
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(18.77)

(18.78)

(18.79)

Figure 18.15  Simply supported column subjected Figure 18.16  Free-body diagram
to eccentric axial compressive forces at its ends. of a portion of the column.

3When the eccentricity    is different than zero, the component of translation u  of the
column increases as the force increases.  However, for values of the external force which

3induce a component of translation u  at the middle point of the column whose magnitude
approaches the value of    , solution (18.77) does not represent a good approximation of

3u  because the deformation of the column is not any longer in the range of validity of the
theory of small deformation.  In this case a non-linear theory such as the theory of
moderate rotations must be used in order to find the deformed configuration of the
column.  That is, the solution of the non-linear differential equation (18.21) must be

2established which satisfies the non-homogeneous boundary condition M (L) = P    .  In
the literature this problem is simplified by retaining only the effect of change of the
geometry of the column, due to its deformation, on the magnitude of its internal moment.
That is, referring to Fig. 18.16, the moment at any point of the column is taken equal to

3Notice that in relation (18.78), the component of translation u  is a function of the force
P; consequently, the moment is not a linear function of the force P.  Substituting relation
(18.73) into (18.78) and differentiating twice the resulting relation, we get the following
linear differential equation:

Equation (18.79) can be obtained by substituting relation (18.57) into (18.58) and
differentiating  the  resulting  relation.  This  equation  is valid only for values of P and

3   which cause small values of the component of translation u , that is, for values of P
somewhat smaller that the critical force at buckling of the perfect column.  The solution
of equation (18.79) is
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(18.80)

(18.81)

(18.82)

(18.83)

(18.84)

(18.85)

where A, B, C and D are constants of integration which are evaluated from the following
conditions at the ends of the column:

Substituting relation (18.80) into (18.81), we get

Substituting the value of the constants (18.82) into solution (18.80), we have

3In the above result, the relation between the component of translation u  and the force P
is not linear.  Notice that when    � 0, the first term in the bracket of relation (18.83)
becomes infinite for certain values of the axial force P satisfying the following relation:

That is, for the values of P satisfying relation (18.84) the transverse component of

3 1displacement u (x ) becomes infinite and thus, relation (18.83) is not valid.  The values
of P satisfying relation (18.84) are identical to the critical force at buckling of the perfect
column.  That is,

It should be emphasized that although relation (18.83) represents a better approximation

3 1of the component of translation u (x ) than relation (18.77), both relations do not represent

3 1 cra satisfactory approximation of u (x ) for values of P close to P  of the perfect column.
The maximum deflection occurs at the midpoint of the column, and referring to

relation (18.83), it is equal to
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(18.86)

(18.87)

(18.88)

Figure 18.17  Load for local and total buckling of columns made from 245 TR aluminum (E = 74.5 Gpa) .
†

The maximum bending moment occurs at the midpoint of the column where its deflection
is maximum and it is equal to

1The maximum compressive stress occurs on the concave side of the column at x  = L/2.
Thus, using relation (18.87), we have

3 2where c  is the distance from the x  axis to the extreme fiber on the concave side of the

column, while  is the radius of gyration of the cross sections of the column with

2respect  to   the  x    axis.   Equation  (18.88)  is  known  as  the  secant  formula  for  an
                              

†  Taken from Bridget, F.J., Jerome C.C. and Vosseller, A.B., Some new experiments in buckling of thin-walled
    construction, Transactions of the American Society of  Mechanical Engineers, No. 56, 1934, p. 569-578.
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eccentrically loaded column.  It can be used to obtain the maximum stress in simply
supported columns subjected to eccentric compressive axial forces at their ends provided

crthat the value of P is not very close to P  of the corresponding perfect column.

18.10 Local Buckling of Columns

Columns whose cross sections are formed by two or more thin-wall parts (i.e., wide-
flanges, angles, I-beams, channels) may exhibit local buckling of their flange or of their
web at values of the compressive forces below the critical value at buckling of the column
as a whole (global buckling).  In Fig. 18.17, we show the results of experiments performed
on aluminum columns whose cross section is an angle with equal legs of length b and
thickness t  = 0.635 mm.  For values of the ratio t/b greater than 0.033 the columns
buckle  as  a  whole  while  for  small  values of the ratio t/b the one leg of the columns
buckles at values of the compressive forces below the critical value at buckling of the
column as a whole.

Local buckling of a flange or of the web of a column may not cause the immediate
collapse of the column.  However, it will cause the column to buckle as a whole at values
of the compressive forces less than the computed critical forces at buckling.  In practice
local buckling of columns is avoided by choosing columns whose cross sections are
sufficiently thick.

18.11 Problems

1. to 2.  Establish the postbuckling behavior and the critical load at buckling of the
perfectly straight rigid bar shown in Fig. 18P1 subjected to a perfectly centroidal axial
force P.  Establish the equation of equilibrium using both the direct equilibrium method
and the method of stationary total potential energy.  Repeat with the bar of Fig. 18P2.

Figure 18P1                                   Figure 18P2
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Appendix
A

Mechanical Properties of Materials

M aterial Specific

Weight

(kN/m )3

M odulus

of†

Elasticity

E
(GPa)

Poisson's

Ratio

(GPa)

Yield

Stress†

(MPa)

Ultimate

Stress†

(MPa)

Coefficient

of Thermal

Expansion

(10 / C)-6 o

Alum inum (pure)

Aluminum alloys

  2014-T6

  6061-T6

  7075-T6

26.6

28

26

28

70

73

70

72

0.33

0.33

0.33

0.33

20

410

270

480

70

480

310

550

23

23

23

23

Brass

Brick  (comp.)

Bronze

Cast iron  (ten.)

Cast iron  (com p.)

82–85

17–22

80–86

68–72

68–72

96–100

10–24

96–120

83–170

83–170

0.34

—

0.34

0.2–0.3

0.2–0.3

70–550

550

82–690

120–290

—

200–620

7–70

200–830

69–480

50–200

20.9

5–7

18–21

9.9–12.0

9.9–12.0

Concrete (com p.)

 Low strength

 M edium strength

 High strength

23

23

23

18

25

30

0.1–0.2

0.1–0.2

0.1–0.2

—

—

—

14

28

41

11

11

11

Copper (pure)

Glass

Nickel

Rubber

87

24–28

87

9–13

110–120

48–83

210

0.0007–0.

004

0.33–0.36

0.20–0.27

0.31

0.45–0.50

330

—

140–620

1–7

380

30–1000

310–760

7–20

16.6–17.6

5–11

13

130–200

                              

†  The yield stress, the ultimate stress and the modulus of elasticity are for both compression and tension unless

otherwise stated.
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M aterial Specific

Weight

(kN/m )3

M odulus

of†

Elasticity

E
(GPa)

Poisson's

ratio

(GPa)

Yield

Stress†

(MPa)

Ultimate

Stress†

(MPa)

Coefficient

of Thermal

Expansion

(10 / C)-6 o

Steel

 High strength

 M achine

 Spring

 Stainless

 Tool

 Steel structural

 ASTM  A36

 ASTM  A572

 ASTM  A514 

77

77

77

77

77

77

77

77

77

190–210

190–210

190–210

190–210

190–210

190–210

190–210

190–210

190–210

0.27–0.30

0.27–0.30

0.27–0.30

0.27–0.30

0.27–0.30

0.27–0.30

0.27–0.30

0.27–0.30

0.27–0.30

340–1000

340–700 

400–1600

240–700 

520

200–700 

250

340

700

550–800 

700–1900

400–1000

900

340–830 

400

500

830

—

14

17

17

17

12

12

12

12

—

Titanium  (pure)

Titanium (alloy)

Timber (air dry)

 (bending)

 Ash

 Douglas fir

 Oak

 Southern pine

Wrought iron

44

44

5.3–6.3

4.7–5.5

6.3–7.1

5.5–6.3

72–77

110

110–120

10–11

11–13

11–12

11–14

190

0.33

0.33

—

—

—

—

0.3

400

760–900

40–70

30–50

40–60

40–60

210

500

900–970

50–100

50–80 

50–100

50–100

340

8–10

8–10

—

—

—

—

12

Stone (comp.)

  Granite

  Limestone

  M arble

26

20–28

26–28

40–70 

20–70 

50–100

0.2–0.3

0.2–0.3

0.2–0.3

—

—

—

70–280

20–200

50–180

5–9

5–9

5–9

                              

†  The yield stress, the ultimate stress and the modulus of elasticity are for both compression and tension unless

otherwise stated.
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Appendix
B

Stress–Strain Relations for Orthotropic 
and Isotropic Materials

B.1 Stress–Strain Relations for Orthotropic, Linearly Elastic Materials

Certain materials, such as fiber reinforced composites, have a microstructure which
is symmetric with respect to three mutually perpendicular planes.  Consequentlly, their
elastic constants are also symmetric with respect to these planes.  These materials are
called orthotropic.  In this Appendix we prove that the stress–strain relations for
orthotropic, linearly elastic materials involve only nine constants when referred to axes
which are perpendicular to the planes of symmetry of their microstructure.  Moreover, in
this Appendix we show that the stress–strain relations for isotropic, linearly elastic
materials involve only two constants.

We consider a body made from an orthotropic, linearly elastic material and we choose

1 2 3 1 2 1 3 2 3the x , x , x  axes in a way that the x x , x x , x x  planes are parallel to the planes of
symmetry of the microstructure of the material. Thus, the coefficients in the stress–strain
relations (3.39) or (3.40) must be symmetric with respect to these planes. Symmetry of

2 3these coefficients with respect to the x x  plane implies that they remain the same when
the  system  of  axes  to  which  the  stress–strain  relations (3.39) or (3.40) are referred,

1 2 3 1 2 3Figure B.1  System of axes x N, x N,x N Figure B.2  System of axes x O, x O, x O

1 2 3 1 2 3obtained from the system of axes x , x , x obtained from the system of axes x , x , x
2 3by rotating it by 180° about the x  axis. by rotating it by 180° about the x  axis.
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(B.1)

(B.2)

       (B.3)

             
       (B.4)

1 2 3 1 2 3changes from x , x , x  to x N, x , x  (see Fig. B.1).  Moreover, symmetry of the coefficients

1 2of the stress–strain relations (3.39) or (3.40) with respect to the x x  plane implies that
they remain the same when the system of axes to which these relations are referred

1 2 3 1 2 3changes from x , x , x  to x , x , x N (see Fig. B.1).  Thus, if the coefficients of relations

1 2 2 3(3.39) and (3.40) are symmetric with respect to the x x  and x x  planes, they remain the

1 2same when the system of axes to which these relations are referred changes from x , x ,

3 1 2 3 1 2 3x  to x N, x N, x N.  The latter is obtained by rotating the system of axes x , x , x  by 180°

2about the x  axis, that is, referring to Fig. B.1, the stress–strain relations (3.39), can be

1 2 3written as follows with respect to the system of axes x N, x N, x N:

1 2 3Referring to Fig. B.1 the transformation matrix of the system of axes x N, x N, x N with

1 2 3respect to the system of axes x , x , x  is 

Substituting relation (B.2) into a transformation relations (2.46a), the components of

1 2 3stress referred to the system of axes x N, x N, x N are related to the components of stress

1 2 3referred to the system of axes x , x , x  by the following relation:

Moreover, substituting relation (B.2) into the transformation relation (2.46b) the

1 2 3components of strain referred to the system of axes x N, x N, x N are related to the

1 2 3components of strain referred to the system of axes x , x , x  by the following relation: 

Substituting relation (B.3) and (B.4) into (B.1), we obtain

www.EngineeringEBooksPdf.com



Stress–Strain Relations for Orthotropic and Isotropic Materials       911

 (B.5)

            (B.6)

(B.7)

   (B.8)

      (B.9)

Comparing relations (B.5) with (3.49), we see that

Following a reasoning similar to the one presented above we may conclude that if the
coefficients of the stress–strain in relations (3.39) or (3.40) are symmetric with respect to

1 3 2 3x x  and x x  planes, they remain the same when the system of axes to which these

1 2 3 1 2 3relations are referred changes from x , x , x  to x O, x O, x O. The latter is obtained by

1 2 3 3rotating the system of axes x , x , x  by 180° about the x  axis (see Fig. B.2).  That is,

1 2 3referring to Fig. B.2, with respect to the system of axes x O, x O, x O the stress–strain
(3.39) can be written as 

1 2 3Referring to Fig. B.2 the transformation matrix of the system of axes x O, x O, x O with

1 2 3respect to the system of axes x , x , x  is

Substituting relation (B.8) into the transformation relations (2.46a) the components of

1 2 3stress referred to the  x O, x O, x O axes are related to the components of stress referred to

1 2 3the x , x , x  axes by the following relation:

Moreover, substituting relation (B.8) into the transformation relations (2.46a) the
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(B.10)

(B.11)

   (B.12)

        (B.13)

1 2 3components of strain referred to the  x O, x O, x O axes are related to the components of

1 2 3strain referred to the x , x , x  axes by the following relation:

Substituting relation (B.9) and (B.10) into (B.7) we obtain,

Comparing relations (B.11) with (3.39) we see that 

Substituting relations (B.6) and (B.12) into (3.39), the stress–strain relations for an
orthotropic, linearly elastic materials are

B.2 Stress–Strain Relations for Isotropic, Linearly Elastic Materials

The coefficients of the stress–strain relations for isotropic materials are independent
of the system of axes to which the components of stress and strain are referred.  In the

1 2 3 1 2 3previous section we consider a system of axes x N, x N, x N or x O, x O, x O obtained by 

1 2 3       Figure B.3  System of axes x �, x �, x � obtained from the

1 2 3         system of axes x , x , x  by rotating it first about the

1 3         x  axis by 180  and then about the x � axis by 90 .o o
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        (B.14)

           (B.15)

        (B.16)

        (B.17)

1 2 3 2 3rotating the system of axes x , x , x  by 180° either about the x  or about the x  axis,
respectively.  We have shown that in order that each one of the coefficients of the stress-

1 2 3 1 2 3strain relations referred to the system of axis x N, x N, x N and x O, x O, x O is equal to the

1corresponding coefficients of the stress-strain relations referred to the system of axes x ,
2 3x , x ,  the stress–strain relations must have the form (B.13).

In this section we establish the additional relations which must exist between the
coefficients of the stress–strain relations (B.13) in order to be independent of the system
of axes to which the components of stress and strain are referred.  In order to accomplish

1 2 3this, we consider the stress–strain relations referred to the system of axes x �, x �, x �
shown in Fig. B.3.  Since the microstructure of an isotropic material is symmetric with
respect to the planes normal to these axes we have 

1 2 3Referring to Fig. B.3, the transformation matrix of the system of axes  x �, x �, x � with

1 2 3respect to to the system of axes x , x , x  is

Substituting relation (B.15) into the transformation relations (2.46a), the components of

1 2 3stress referred to the system of axes x �, x �, x � are related to the components of stress

1 2 3referred to the system of axes x , x , x  by the following relation:

Moreover, substituting relation (B.15) into the transformation relations (2.46a), the

1 2 3components of strain referred to the system of axes x �, x �, x � are related to the

1 2 3components of strain referred to the system of axes x , x , x  by the following relation:
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        (B.18)

        (B.19)

        (B.20)

        (B.21)

        (B.22)

        (B.23)

Substituting relation (B.16) and (B.17) into (B.14), we obtain

Comparing relations (B.18) with (B.13), we see that

Referring to Fig. B.4, the transformation matrix of the system of the axes  with respect

1 2 3to the system of axes x , x , x  is

Following a procedure analogous to the one employed above, we obtain

Using relations (B.19) and (B.21), the stress–strain relations (B.13) reduce to 

11 22 33These relations can be solved for e , e , e  to give
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        (B.23)

        (B.24)

        (B.25)

        (B.26)

          (B.27)

Figure B.4  System of axes  obtained by

rotating the system of axes x1, x2, x3 first about the

2axis x  by 180  and then about  the axis  by 90 .IV o o

where

Solving relations (B.24) for A and 8, we get

Thus, the stress-strain relations (B.22) can be written as

For a  state  of  uniaxial  stress  (     � 0,                                                     ),  relations (B.23)
reduce to

Comparing relations (3.3) and (3.5) with (B.27), we see that E is the modulus of elasticity
and      is Poisson ratio.  Relations (B.23) and (B.26) are the stress–strain relations for an
isotropic, linearly elastic material.
     In what follows we show that the material constants G, E and      are related.  In order
to establish the relation among the three constants, we consider a particle of a body made
from an isotropic, linearly elastic material and we refer our discussion to the principal

axes  of the components of stress acting on this particle.  The shearing
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        (B.28)

          (B.29)

        (B.30)

   (B.31)

        (B.32)

          (B.33)

        (B.34)

1 1 2component of stress        acting on a plane specified by the unit vector i N =       i  +      i
3 2 1 2 3+      i  in the direction of the unit vector  i N =      i  +      i  +      i  may be expressed in

terms  of  the  principal  components  of  stress                  using  the  transformation  of
relations (2.49a). That is,

12Moreover, the shearing component of strain e N of the particle under consideration

1 2referred to the directions specified by the unit vectors i N and i N can be written as

1 2 3The fourth of the stress–strain relations (B.26) referred to the system of axes x N, x N, x N
becomes

Substituting relations (B.28) and (B.29) into (B.30), we obtain

Substituting the stress-strain relations (B.23) in the above and simplifying, we obtain

Using the first of relations (1.25b) the above relation reduces to

Relation (B.33) is valid for any state of stress.  Consequently, the first term of
the product on the left side of the above relation must vanish.  That is,

Thus, the stress–strain relations for an isotropic, linearly elastic material involve only
two independent elastic constants.
       Relations (B.23) may be obtained directly as follows:
     Consider a body subjected to a loading inducing an uniaxial state of stress on its

particles  ( � 0,                                                          ).   Referring to relations  (3.3)  and

(3.5) the corresponding components of strain are
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(B.38)

(B.35)
Consider the same body subjected to a second loading inducing a uniaxial state of stress

( � 0,                                                         ). The corresponding components of strain are

(B.36)
Finally, consider the same body subjected to a third loading inducing an uniaxial state of

stress  ( � 0,                                                     ).   The  corresponding components of

strain are

(B.37)
When the three loadings are applied on the body under consideration

ijsimultaneously the resulting components of strain e (i, j = 1, 2, 3) are equal to the sum of

the components of strain given by relations (B.35) to (B.37).  That is, denoting by  (i,

j = 1, 2, 3) the sum of the components of stress  and (i, j = 1, 2, 3) we have

www.EngineeringEBooksPdf.com



www.EngineeringEBooksPdf.com



919

(C.1)

(C.2)

Appendix
C

Centroid, Moments and Products
 of Inertia of Plane Surfaces

C.1 The Centroid of a Plane Surface

1 2Consider a plane surface of area A located in the x x  plane.  The centroid of this

1 2surface is defined as the point whose coordinates (6x , 6x ) with respect to two mutually

1 2perpendicular axes x  and x  are

The integral  is known as the first moment of the plane surface of area A about

jthe x  axis (i, j = 1, 2; i � j).  Any set of two mutually perpendicular axes located on a
plane surface and having as origin its centroid is called centroidal set of axes for this
surface.  As can be seen from relation (C.1) the first moment of a surface about one of its
centroidal axis vanishes.  That is,

If the boundary of a plane surface is an irregular curve, the integral in relation (C.1)
may have to be evaluated numerically.

Figure C.1  Centroid of a plane surface.
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(C.3)

(C.4)

(C.5)

Figure C.2  Plane surfaces with axis or point of symmetry.

jIf a plane surface has an axis of symmetry x  for every infinitesimal area dA with a

jpositive coordinate  measured from the axis of symmetry x , there is an area dA

iwith a negative coordinate x  and vice versa (see Fig. C.2a).  Thus, the first moment of the
surface about its axis of symmetry is zero.  Moreover, if a plane surface has a point of
symmetry for every infinitesimal area dA with a position vector r measured from the point
of symmetry, there is an area dA with a position vector !r and vice versa (see Fig. C.2b).
Hence, the first moment of a surface about any axis passing through its point of symmetry
is zero. Consequently, if a surface has an axis or a point of symmetry, its centroid lies on
the axis of symmetry or i s the poin t of symmetr y.  Thus, if an area has two axes of
symmetry, its centroid is the intersection of the two axes of symmetry.  In the table of the
inside of the back cover of the book we give the coordinates of the centroids of certain
plane surfaces.

If a plane surface can be subdivided into parts whose centroids are known, then its
centroid can be found by noting that the first moment of a plane surface about an axis is
equal to the sum of the first moments of its parts about the same axis.  Thus, if a plane
surface is subdivided into n parts, we have

jwhere A  (j = 1, 2..., n)  is the area of the j  part.  Referring to relation (C.1), theth

coordinates of the centroid of the j  part satisfy the following relation:th

Substituting relation (C.4) into (C.3), we obtain
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(C.6)

(C.7)

(C.8)

(C.10)

C.2 Moments and Products of Inertia of a Plane Surface

11 22Referring to Fig. C.1, the moments of inertia I  and I  of a plane surface of area A
1 2about the x  and x  axes, respectively, are defined as

12 21 1 2Moreover, the products of inertia I  and I  of a plane surface of area A about the x , x
axes are defined as

pFurthermore, referring to Fig. C.1, the polar moment of inertia I  of a plane surface of area
A about a point O is defined as

where    is the distance from point O to the element of area dA.  If point O is the origin of
the axis of reference we have

1 2 = x  + x (C.9)2 2 2

Substituting relation (C.9) into (C.8) and using (C.6), we obtain

From their definition, it is apparent that the moment of inertia of a plane surface with
respect to any axis in the plane of the surface is positive, while its product of inertia with
respect to a set of two mutually perpendicular axes in the plane of the surface could be
positive or negative.  Moreover, the polar moment of inertia with respect to any point O
in the plane of the surface is positive.

The moment of inertia of a composite surface with respect to an axis in its plane is the
sum of the moments of inertia of its parts with respect to the same axis.  Moreover, the
product of inertia of a composite surface with respect to a set of two mutually
perpendicular axes in its plane is the sum of the products of inertia of its parts with
respect to the same set of axes.  Furthermore, the polar moment of inertia of a composite
surface with respect to a point on its plane is the sum of the polar moments of inertia of
its parts with respect to the same point.

Consider a plane surface having an axis of symmetry.  The product of inertia of this
surface with respect to two mutually perpendicular axes, one of which is the axis of 

Figure C.3  Plane surface with an axis of symmetry.
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(C.11)

(C.13)

symmetry of the surface, vanishes.  This becomes apparent by referring to Fig. C.3 and

2 1 2noting that for every dA with positive x  there is a dA with the same x  and negative x .
In the inside of the back cover of the book we give the moments and product of inertia

about a set of centroidal axes for certain plane surfaces of engineering interest.

iThe radius of gyration of a surface of area A with respect to the axis x  (i =1, 2) is
defined as

C.3 The Parallel Axes Theorems

In this section we derive the relation between the moment of inertia of a plane surface
with respect to any axis in its plane and its moment of inertia with respect to a parallel to
it centroidal axis.  Moreover, we derive the relation between the product of inertia of a
plane surface with respect to a system of two mutually perpendicular axes in the plane of
the surface and its product of inertia with respect to a parallel to it system of two mutually
perpendicular centroidal axes.  Referring to Fig. C.4, we have

(C.12a)

(C.12b)

The first integral on the right side of relation (C.12a) is the moment of inertia       of the

1surface with respect to the centroidal axis 6x .  The second integral is equal to the area of
the surface, while the third integral represents the first moment of the surface with respect

1to  the centroidal  axis  6x   and  consequently  vanishes.   Moreover,  the first  integral on

the right side of relation (C.13) is the product of inertia  of the 

Figure C.4  Plane surface with two

parallel systems of axes in its plane.
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1 2surface with respect to the centroidal axes 6x , 6x .  The third and fourth integrals represent

1 2the first moments of the surface with respect to the centroidal axes 6x  and 6x , respectively,
and consequently vanish.  Therefore, relations (C.12) and (C.13) reduce to

11 2I  =  + Aa    (C.14)2

22 1I  =  + Aa    (C.15)2

12 1 2I  =  + Aa a  (C.16)

Relations (C.14) to (C.16) are called the parallel axis theorems for the moments and
11product of inertia.  If it is required to find the moment of inertia IN  of a plane surface with

11respect to a non-centroidal axis  when its moment of inertia I  is known with respect

1to another non-centroidal axis x  which is parallel to    , we must apply the parallel axis

theorem (C.14) twice.  First, we use the theorem to find the moment of inertia  of the

1surface about the centroidal axis 6x  which is parallel to .  Then we use the theorem a

11        second time to find the moment of inertia IN  from .  We follow a similar procedure if

12it is required to find the product of inertia IN  of a plane surface with respect to a system

1 2 12of non-centroidal mutually perpendicular axes xN, xN when its product of inertia, I , is

1 2known with respect to another system of non-centroidal axes x , x  which is parallel to the

1 2system of axes xN, xN.  Referring to Fig. C.5, we have

11 2 11 2 11 2 2 = I  ! Aa IN  =  + Ac  = I  + A (c  ! a ) (C.17)2 2 2 2

and

12 1 2 12 1 2 12 1 2 1 2 = I  ! Aa a IN  =  + Ac  c  = I  + A (c c  ! a a ) (C.18)

The parallel axes theorems are extremely useful for finding moments and products of
inertia of composite sections.  This is illustrated by the following example.
                                                                                                                                             

Example 1 Determine the moments and product of inertia with respect to the set of

1 2centroidal axes x x  of the plane surface shown in Fig. a.

Figure a  Geometry of the plane surface. Figure b  Plane surface subdivided
into three rectangular parts.

Solution  We subdivide the plane surface under consideration into three rectangular parts
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  (b)

as shown in Fig. b.  Each one of the moments and the product of inertia of the surface

1 2with respect to the system of axes x , x  are equal to the sum of the corresponding
quantities of the three parts about the same system of axes.  Noting that each one of the

1 2moments and the product of inertia of part 3 with respect to the x , x  axes are equal to the
corresponding quantity of part 1 with respect to the same axes we have

11 11 11 11 11 11I  = I  + I  + I  = 2I  + I(1) (2) (3) (1) (2)

22 22 22 22 22 22I  = I  + I  + I  = 2I  + I (a)(1) (2) (3) (1) (2)

12 12 12 12 12 12I  = I  + I  + I  = 2I  + I(1) (2) (3) (1) (2)

i jwhere I  (i, j = 1, 2) (k = 1, 2, 3) are the moments and the product of inertia of part k of(k)

1 2the surface with respect to the system of axes x , x .  Denoting by  a moment or the

1product of inertia of part k of the surface with respect to its own centroidal axis 6x  and( k)

26x , we have( k)

Substituting relations (c) into (b), we obtain

11I  = 2(230.53)(10 ) + 50.70(10 ) = 511.76(10 ) mm5 5 5 4

22I  = 2(130.23)(10 ) + 0.024(10 ) = 260.48(10 ) mm (c)5 5 5 4

12I  = 2(!148.8)(10 ) = !297.6(10 ) mm5 5 4

                                                                                                                                             

C.4 Transformation of the Moments and Product of Inertia of a Plane Surface
upon Rotation of the Axes to Which They Are Referred

The values of the moments and product of inertia of a plane surface depend upon the
position of the origin of the system of axes to which they are referred and upon the
orientation of this system of axes.  In the previous sections we have established how the
values of the moments and product  of inertia of a plane surface change as the system of
axes to which they are referred is translated.  In this section we establish how the values
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(C.19)

(C.20)

(C.21)

of the moments and product of inertia of a plane surface change as the system of two

1 2mutually perpendicular axes x , x  to which they are referred is rotated about an axis
perpendicular to its plane at its origin.

Consider the following matrix of moments and products of inertia  of a plane surface

1 2with respect to two mutually perpendicular axes x , x  located in its plane:

Moreover, consider the following matrix of moments and products of inertia of the same

1 2plane surface, with respect to two mutually perpendicular axes x N, x N located in its plane

1 2and having the same origin as the system of axes x , x :

In what follows we show that the elements of these matrices are components of a plane
symmetric tensor of the second rank called the inertia tensor.  

The position of a point in space may be specified by a position vector r with respect
to a fixed point O. The components of this vector with respect to a rectangular system of
axes having as it origin point O are the coordinates of the point with respect to that system

1 2of axes. Thus, for a point on the x x  plane, we have 

1 1 2 2 1 1 2 2         r = x i  + x i  = xN iN  + xN iN

Consequently, referring to relations (1.37) and (1.36a), we have

Substituting relations (C.21) into the expressions [see relation (C.6) and (C.7)] for the
elements of array (C.20), we obtain
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(C.22)

Comparing relations (C.22) with (1.116), we see that the elements of the arrays (C.19)
and (C.20) transform upon rotation of the system of axes to which they are referred in
accordance to relations (1.116). Consequently, they are components of a plane symmetric
tensor of the second rank known as the inertia tensor of the planar surface under
consideration. Therefore, they have the properties of the components of such tensors
established in Sections 1.3 to 1.12. From those properties the one that has the greatest
practical application is that there exists at least one set of two mutually perpendicular
axes, called principal, with respect to which the tensor assumes its diagonal form; that is,
the product of inertia vanishes. It is often convenient to refer our calculations to principal
axes in order to avoid the presence of the product of inertia in the results and, thus, it is
important to know how to establish these axes.  

In what follows we illustrate how to establish the direction of the principal axes and
the values of the principal moments of inertia of a plane surface.
                                                                                                                                             

Example 2  Using Mohr's circle establish the principal axes and the principal moments
of inertia at the centroid of the plane surface shown in Fig. a.

Figure a  Geometry of the plane surface.

Solution
The moments and product of inertia of the plane surface of Fig. a with respect to the set

1 2of centroidal axes x , x  have been computed in the example of the previous section.
Referring to this example we have

11I  =  511.76(10 ) mm5 4

22I  =  260.48(10 ) mm5 4

12I  = -297.60(10 ) mm5 4
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(a)

(b)

(c)

Figure b  M ohr's circle. Figure c  Results.

Thus, the tensor of the moments and product of inertia is

11 12In Fig. b, we draw the two axes of reference  —   the IN  axis and the IN  axis.  Then we

1plot point X  [511.76(10 ), 297.60(10 )] whose coordinates are the components of the5 5

11 12 2tensor I  and !I .  Moreover, we plot point X  [260.48(10 ) ! 297.60(10 )] whose5 5

22 12 1 2coordinates are I  and I .  Points X  and X  lie on the ends of a diameter of Mohr's circle.

11 11 22The center of this circle lies on the IN  axis at distance ½ [(I  + I )] = 386.12(10 ) mm5 4

from the origin.  Moreover, from geometric considerations, the radius of the Mohr's circle
is

Referring to Fig. b, we have

Therefore,

The direction of the principal axes is shown in Fig. c.  The maximum and minimum value
of the moments of inertia are computed on Fig. b. They are also given in Fig. c.
                                                                                                                                             

C.5 Problems

1 21.  Using the definition of the centroid (C.1), determine the coordinates 6x  and 6x  to the
centroid of the trapezoid of Fig. CP1.

Ans.  

22.  Calculate the coordinate 6x  of the centroid of the channel section shown in Fig. CP2,
if a = 240 mm, b = 20 mm and c = 80 mm. Ans. 
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1 23.  Determine the coordinates 6x  and 6x  of the centroid of the surface shown in Fig. CP3.
Ans.  

Figure CP1 Figure CP2 Figure CP3

24. Determine the coordinate 6x  of the centroid of the surface shown in the Fig. CP4.
Ans. 

1 25.  Determine the coordinates 6x  and 6x  of the centroid of the area shown in the Fig. CP5.
Ans.  

Figure CP4    Figure CP5 Figure CP6

11 126.  Calculate the moments of inertia IN  and the product of inertia IN  for the angle section
shown in Fig. CP6. (Assume a = 160 mm, b = 120 mm, t = 10 mm and      = 30°).

 

7.  Consider the angle section shown in Fig. CP6 with a = 240 mm, b = 160 mm and t =
40 mm.  Using Mohr's circle, determine the orientation of the principal axes through the

1 2origin O and the magnitudes I  and I  of the principal moments of inertia with respect to
axes with origin point O.

 

8. to 10.  Using Mohr's circle determine the orientation of the principal centroidal axes
and the principal moments of inertia of the surface shown in Fig. CP3.  Repeat with the
surfaces of Figs. CP4 and CP5.

www.EngineeringEBooksPdf.com



929

         (D.1a)

(D.1b)

Appendix
D

Method of Finite Differences†

D.1 Introduction

Problems involving the determination of a function of one or more variables
satisfying a differential equation which cannot be integrated in closed form are solved
using an approximate method.  The most commonly used approximate methods are
numerical as, for example,  the finite difference and the finite element methods.  These
methods lead to numerical values of the unknown function of the problem at certain
pivotal points of its domain.

In the method of finite differences the derivatives in the governing differential
equation and in the boundary conditions of a problem are replaced by approximate
expressions involving the values of the unknown function at certain pivotal points.   In

1 2this Appendix we establish such expressions for a function f(x) and f(x ,  x ) and we
investigate the order of their error.

D.2 Approximations of the Derivatives of  a Function f(x) Using Central
Differences

Consider a smooth function f(x) and denote by  its values at the

equally spaced pivotal points  and by h the distance between two

adjacent pivotal points.   Moreover,  denote by  and  the values of f(x) at the

middle points of the intervals from x  to x  and from x  to x ,  respectively.   The firstk k+ 1 k-1 k

central difference of f(x) at point x  is denoted by  and is defined ask

The second central difference at x =  x  is the central difference of the first centralk

difference.  That is

Similarly,
                                                           

†  For  a more detailed presentation see Salvadore,  M .  and Baron,  M . ,  Numerical Methods in Engineering,
Prentice-Hall,  New York,  1952.
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(D.1c)

(D.2)

(D.3)

(D.5)

(D.6)

(D.7)

From relations (D.1) we may deduce that the coefficients of the pivotal values of a
function in the expression for its n  central difference are the coefficients of theth

binomial expansion of (a ! b) .   Moreover,  from relations (D.1) we see that then

expressions for the odd central differences of a function f(x) at point x  involve thek

values  of  this  function  at  the  intermediate  points  ,   ,   ,

              ,  etc. which are not known.  In order to obtain for an odd central difference
of a function f(x) at point x ,  an expression which involves only values of this functionk

at pivotal points, this central difference is approximated by the average of the central

differences of the function at points  and .   For example, the average

kfirst central difference of a function f(x) at point x  is denoted by :*f  and referring tok

relation (D.1a),  it is equal to

In what follows we denote the n  derivative of a function f(x) by the n  power of theth th

symbol D.   That is,

Expanding the function f(x +  h), in Taylor series about point x  using relation (D.3)k

and the series expansion for e ,  we gethD

(D.4)

Similarly, we can show that

Using relations (D.4) and (D.5),  relation (D.2) can be rewritten as

or using the Taylor series expansion of sinh  (:*),  we have-1

The operators * and : are related.  Their relation may be established by computing

kthe average difference of :f .   That is,  referring to relations (D.2) and (D.1b),  we have
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(D.9)

(D.10a)

(D.10b)

(D.10c)

(D.10d)

(D.8)

or

It can be shown that the central difference operators *,  :*,  * ,  :* ,  * ,  etc. and the2 3 4

differential operator D satisfy the laws of algebra and consequently they can be treated
as if they were numbers.   Thus,  using relation (D.9) to eliminate even powers of :,
relation (D.7) may be rewritten as

Taking powers of hD and eliminating even powers of : using relation (D.9),  we obtain

Figure D. 1  Approximations of the most commonly used der ivatives of a function f(x) using central differences.
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(D.11)

(D.13)

(D.15)

Figure D. 2  Unequal spacing of pivotal points.

Approximations for the most commonly used ordinary derivatives using central
differences are given in Fig.  D.1.   Those obtained by retaining only the first term in
relations (D.10) are given in Fig. D.1a while those obtained by retaining the first two
terms in relations (D.10) are given in Fig. D.1b.

The order of the error in the central difference approximations for the derivatives
of a function of one variable can be established by rederiving these approximations
using Taylor series.  The Taylor series of a function f(x +  h) about point x  is given byk

Referring to Fig.  D.2 and applying relation (D.11), we obtain

(D.12a)

(D.12b)

Subtracting relation (D.12b) from (D.12a),  we get

where

(D.14)

From relations (D.13) and (D.14) we see that the error in the approximation for the
first derivative  of a function using central differences approaches zero as fast as h if
    � 1 and as fast as h  if    = 1; that is, if the pivotal points are evenly spaced.2

Eliminating df/dx between relations (D.12), we obtain

where

www.EngineeringEBooksPdf.com



Method of Finite Differences          933

(D.16)

(D.17)

(D.18)

From relations (D.15) and (D.16),  we see that the error in the approximation for the
second derivative of a function f(x) using central differences approaches zero as fast as
h if    �1 and as fast as h  if     = 1, that is, if the pivotal points are evenly spaced.2

D.3 Approximations of the Derivatives of a Function f(x) Using Forward and
Backward Differences

Consider a smooth function f(x) and denote by  its values at

the equally spaced K+ 1 pivotal points  and by h the distance

between two adjacent pivotal points.   The first forward difference of f(x) at the pivotal

point x  is denoted by  and is defined ask

kwhile the first backward difference of f(x) is denoted by Lf  and it is defined as

Following a procedure similar to that employed in the previous section,  we obtain
the formulas shown in Figs.  D.3 and D.4, respectively, for the approximations of the
derivatives of a function f(x) using forward and backward differences.

Figure D. 3  Approximations of the der ivatives of a function f(x) using forward differences.
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Figure D. 4  Approximations of the der ivatives of a function f(x) using backward differences.

D.4 Solution of Boundary Value Problems Involving the Determination of a
Function of One Variable, Using Finite Differences

In this section we consider boundary value problems which involve the
determination of a function of one variable f(x) that satisfies an ordinary differential
equation at every point of a line domain and appropriate boundary conditions at its two
end points.  In order to obtain numerical solutions of such problems, using finite
differences to approximate the derivatives involved in their differential equation and
their boundary conditions,  we adhere to the following steps:

STEP 1  We subdivide the domain of the problem into K intervals (usually equal) by
K + 1 pivotal points k =  0,  1,  2,  .  .  . ,  K.

STEP 2  We replace the derivatives appearing in the differential equation whenever
possible by their central difference approximations since their accuracy is greater than
that of the forward or backward difference approximations.  We apply the resulting
algebraic equation to each pivotal point of the domain of the problem and we obtain a
set of linear algebraic equations involving the values of the function f(x) at the pivotal
points of the domain of the problem as well as certain pivotal points outside the
domain.

STEP 3  We replace the derivatives appearing in the boundary conditions of the
problem by their central,  forward or backward difference approximations.  When
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(D.19a)

(D.19b)

central differences with error approaching zero as fast as h  are used to approximate the2

derivatives in the differential equation and either forward or backward differences are
used to approximate the derivatives in the boundary conditions, the error of the latter
should also approach zero as fast as h .   The boundary conditions are used to define the2

function f(x) at points located outside the domain of the problem, that is,  to express
values of the function f(x) at points located outside the domain of the problem in terms
of its values at points located inside the domain of the problem.

STEP 4  We use the relations obtained in step 3 to eliminate from the algebraic
equations obtained in step 2 the values of the function f(x) at points outside the domain
of the problem.  Moreover,  we solve the resulting algebraic equations to obtain the
values of the function at the pivotal points of the domain of the problem.

D.5 Approximation of the Partial Derivatives Using Central Differences

The approximations of the partial derivatives of a function of two or more variables
by central differences may be obtained directly from Fig. D.1.  Consider a function of

1 2two variables f(x ,  x ).   We subdivide the domain of this function into a network of

1 2identical rectangular subdomains of dimensions h  and h  called the finite difference

m,n 1 2mesh (see Fig. D.5).   We denote by f  the values of the function f(x ,  x ) at the mesh

point whose coordinates are  and .   Moreover,  we denote by  and

1 2by  the k  partial derivatives of a function  with respect to x  and x ,th

respectively,  at the mesh point whose coordinates are  and .   Thus,

referring to Fig. D.1 the central differential approximations of the partial derivatives

of  are

The error in the above approximations approaches zero as fast as h .2

Referring to relations (D.19) the Laplacian L f of the function  may be 2

approximated as
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 (D.20)

(D.21)

(D.22)

Figure D. 5  Constant rectangular  finite difference m esh.

1 2For a mesh of equal spacing h = h = h relation (D.20) reduces to

The central difference approximation for the second mixed derivative at point

1 2,   of the function  with respect to x  and x  is equal to the central

2difference approximation of the first derivative with respect to x  of the central

1difference approximation of the first derivative of  with respect to x .   That is,

Similarly,  the  central  difference  approximation  of  the  fourth  mixed  derivative of
           is equal to the central difference approximation of the second derivative with

2respect to x  of  the  central  difference  approximation   of  the  second derivative of

1           with respect to x .   That is,
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(D.23)

(D.24)

1 2Finally,  for a mesh of equal spacing h  =  h  =  h referring to relation (D.20),  the
function L f may be approximated as4

The approximations of the operators L  and L ,  for a square mesh, are shown in Fig.2 4

D.6a and D.6b.

Figure D. 6  Approximations to the operators L  and L  for  a square mesh.  2 4
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(D.25)

D.6 Numerical Integration

In this section we derive approximate formulas for single and double numerical
integration.  The formulas for single integration are based on the interpretation of the

2 1 definite integral  as the area under the curve x  =  f(x ) between the coordinates

1 1 x =  a and x =  b.   The formulas for double integration are based on the interpretation

3 of the  definite  integral    as  the  volume under the surface x =

1 2 1 1 2 2 f(x ,  x )  between the lines x = a,  x = b,  x = c,  and x = d.

D.6.1 Numerical Integration of Single Integrals

Consider the definite integral

1 1 extended over the straight line from x  = a to x = b.   In order to evaluate this integral
numerically referring to Fig D.7 we subdivide the interval from point a to b into m

1 1segments of equal length h by m +  1 points x (i =  0,  1,  . . . ,  m),  where x  =  a and(i) (0)

1 o 1 m 1x  =  b.   We assume that at these points, the values f ,   f , . . . ,  f  of the function f(x )(m)

can be established.  The best known formula for numerical integration of the integral 

is Simpson’s rule and is derived in what follows.

1 1 1 1 The  function  f(x )  between  any  three  points  x ,  x  and x [i =  0,  1,  2,  . . . ,(2i) (2i+ 1) (2i+ 2)

Figure D. 7  Numerical integration of a function.
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(D.26)

(D.27)

  (D.29)

(D.30)

(D.31)

(m ! 2)/2] where m is an even number, is approximated by a second degree parabola

1 1 1passing through these points.   That is,  in the interval x  # x  # x ,  we have (2i) (2i+ 2)

i i i 1where the coefficients a ,  b  and c  are obtained by requiring that f(x ) assumes the

2i 2i+ 1 2i+ 2 1 1 1values of f ,  f  and f  at points x ,  x  and x ,  respectively.   That is,(2i) (2i+ 1) (2i+ 2)

referring to Fig. D.7, we have

1 1 1Solving relations (D.27) simultaneously and noting that h =  x  ! x  =  x  !(2i+ 1) (2i) (2i+ 2)

1x ,  we get(2i+ 1)

(D.28)

2i 2 1 1 1 1 1The area A  under the curve x  =  f(x ) from line x  =  x  to line x  =  x  is equal(2i) (2i+ 2)

to

Substituting relations (D.28) into (D.29) and simplifying,  we obtain

Applying the above formula for i =  0,  1,  2,  . . . ,  (m ! 2)/2,  we obtain

D.6.2 Numerical Integration of Double Integrals

Consider the double integral
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(D.32)

  (D.33)

1 2Figure D. 8  Domain of the function f(x ,  x ) subdivided into equal rectangles.

1 1 2 2 extended over a rectangle of edges x = a,  x = b,  x = c,  and x = d.   In order to
evaluate this integral numerically, referring to Fig. D.8 we subdivide the domain of the

1 2 1 1 2 function into a number (S  x S ) of equal rectangles of sides h = (b ! a)/S  and h =  (d

2 m,n 1 2! c)/S .   We denote by f  the value of the function f(x ,  x ) at the mesh point 

and .

D.6.3 Simpson's Rule

The value  of the integral (D.32) extended over four rectangles (see rectangles

EFBCDGHE in Fig. D8)  meeting  at  point            is  obtained  by  means  of two

1 2successive applications of Simpson' s rule in the x  and x  directions.  Thus, referring
to relation (D.31) and Fig. D.8  we have
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Figure D. 9  Schematic representation of the approximation to a surface integral using Simpson' s rule.

Adding the value of  over the domain of the function,  we obtain the approximate

1 2value of the integral I in terms of the values of the function f(x ,  x ) at the mesh points.
It can be shown that the error in this approximation approaches zero as fast as h .   The4

value of the integral I is represented schematically in Fig. D.9.
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Appendix
E

Elements of Calculus
of Variations†

E.1 Introduction

In this Appendix we present a brief review of the elements of calculus of variations
which are required for the variational formulation of boundary value problems.

The calculus of variations is a mathematical discipline which deals with problems that
require the determination of one or more functions of one or more variables which make
a given definite integral of a functional of these functions assume stationary values.  As
an example suppose that we have to design a frictionless chute between points A and B

1 2located in a vertical plane (x  x ) such that a body sliding under the action of its own

1weight goes from point A to point B in the shortest interval of time.  x  is the horizontal
coordinate.  We denote by I  the time required for the body to slide from point A to point*

2 2 1B on a chute whose geometry is specified by the curve x  = x (x ).  That is,

2 2 1where v is the speed of the body, s is the distance along the chute and x N = dx /dx .

oEmploying the principle of conservation of energy, denoting by v  the initial  velocity of

2 1the body at point A , and by v the velocity of the body at point (x , x ), we have

Therefore,

                              

†  For a more detailed and rigorous approach see

1. Dym, C.L. and Sham es, I.H., Solid Mechanics a Variational Approach, M cGraw-Hill, New York, 1973,

Chapter 2.

2. Courant, R., Differential and Integral Calculus, Vol. II,  Blackie and Son,  London, 1936.

3. Gelfand, I.M . and Fom in S.V., Calculus of Variations, Prentice-Hall, Englewood Cliffs, NJ, 1963.

4. Fox, C.,  An Introduction to the Calculus of Variations, Oxford University Press, London, 1954.
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(E.3)

(E.1)

(E.2)

Substituting the above relation into the expression for I , we get*

2 2 1Thus, we must find which one from all the curves x  = x (x ) between points A and B
renders the above integral a minimum.  It can be shown that the chute should take the
shape of a cycloid.  This problem was posed by Johann Bernoulli in 1696 and was solved
by Jahann and Jacob Bernoulli, by Sir Isaac Newton and by the French mathematician
L'Hospital.

E.2  Variation of a Function

Consider the following single parameter family of slightly differing functions  

which have continuous second derivatives in the internal  and are defined as

where  is a given function having continuous second order derivatives in the interval

 and is a small parameter.  The functions            may or may not take identical

 prescribed  values  at  points          and .      .  If  the  functions           take identical values

at these points, the function  vanishes at points  and .  We call the

functions  the varied functions. We define the variations of the functions  as

where *-delta is called the variational operator.  The variation  of a function  

represents an arbitrary infinitesimal change of the function.  A family of functions  

is plotted in Fig. E.1; referring to this figure, it is apparent that the variational operator

indicates an arbitrary change in the value of  at a point.  Moreover, the variation 

of a function is different than its differential .  Both represent change of the function

.  However,  is the infinitesimal change of the value of the function   caused

by the infinitesimal change  of the independent variable, while   is an infinitesimal

change of  which produces a new function  + .  The independent variable 

does not change in the variation process.
On the basis of relation (E.2) and agreeing to use as varied functions the derivatives

, the variation of the derivative of a function   at a point is given as
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        (E.6)

(E.4)

(E.5)

      Figure E.1  Variation of a function.

Moreover,  if  we  agree  to  use  as  the varied functions  the integrals                         ,  the

variation of the integral of a function  is given as

Thus, it is apparent that the variational operator is commutative with the differential and
integral operators.

Consider a functional   which is a continuously differentiable function†

1of the variable x , the dependable variable  and its derivatives  and .  The

variation of F is defined as

Expanding  in a Taylor series about u, u', and u" we†† 

obtain

A functional is a function of a function whose values are dependent on the function used in the functional. †

o o oConsider the function F(x,y,z) pocessing partial derivatives of third order at a point (x ,y ,z ) with respect to all†† 

o o ocombinations of the variables x, y and z. Then this function can be approximated in the neighborhood of (x ,y ,z )
by a Taylor series, as
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(E.7)

(E.8)

(E.9)

(E.10)

(E.11)

where  represents the terms containing products of four or more variations of , 

and .  The quantities ,  and  are called the first, second and third

variations of function , respectively, and are defined as

If we consider small variations of ,  and  the terms ,  and  in

relation (E.6) are small compared to  and thus in this case this relation reduces to

Notice that at a fixed value of , the first variation of the function

 has the same form as its total differential dF.  That is,

This suggests that the variational operator * acts like a differential operator with respect
to the dependent variables.  Indeed the rules of variation are analogous to the
corresponding rules of differentiation.  That is, the following relations are valid:
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(E.12a)

(E.12b)

(E.12c)

(E.12d)

(E.13)

(E.14)

(E.15)

(E.16)

(E.17)

E.3 The First, Second and Third Variations of a Functional

1 1 1 1Consider the following integral of a known functional F(x , u , u ',u ") of the function

1u(x ): 

1 2where K  and K  are constants.  It is apparent that the value of the functional I at any point

1x  depends on the function .  Using relations (E.2) and (E.6) the variation of I is
given as

where referring to relations (E.6) to (E.9) we have
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(E.18)

(E.19)

      (E.20)

* I, * I and * I are known as the first, the second and the third variations, respectively,(1) (2) (3)

of the functional defined by relation (E.13).  

E.4  Stationary Values  of a Functional†

It can be shown  that a function  which makes the functional  stationary††

(maximum, minimum or inflection point) must render its first variation equal to zero.
That is,

Moreover, it can be shown that if the function  which makes the functional 

stationary renders its second variation positive (negative), then this function renders the

functional  a local minimum (maximum).  Integrating by parts the integral in relation

(E.15), we get

Since  is arbitrary, we may choose it so that  and  vanish at  and 

while inside the region  could assume any value.  For this choice relation (E.19)

reduces to

According to the fundamental lemma of the calculus of variations , the term in brackets†††

must vanish at any point in the interval .  Consequently,

This  relation is referred to as the Euler or the Euler–Lagrange differential equation for
the functional .  It is the necessary condition which   must satisfy in order to make

the functional  stationary.  However, referring to relation (E.19) we see that 
                              
†   We say that a function has a stationary value at a certain point if the rate of change of the function in every
possible direction from this point vanishes.
††  See:
 1. Courant, R., Differential and Integral Calculus, Vol. II, Blackie and Son, London, 1936.
 2. Dym, C.L. and Shames, I.H., Solid Mechanics a Variational Approach  McGraw-Hill, New York, 1973,

Chapter 2.

1††† The  fundamental  lemma  of  the  calculus  of  variations  states:  A  continuous   function    (x ) vanishes

identically in the  internal  a # x # b  if  the  integral    vanishes  for all functions  which
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(E.21)

   (E.22)

 (E.23)

(E.24)

(E.25)

1 1have continuous second derivatives and vanish at x =a and x =b.

there are additional necessary conditions for making  stationary.  That is, a function

 must be such that at points  and  satisfy the following condition:

Relation (E.21) is satisfied if one condition from each of the following pairs is satisfied

at each end point  and  of the interval .

The boundary conditions  and  are called essential, while the remaining

two boundary conditions (E.22) are called natural.
2In case K  is equal to zero and the function F does not involve second order derivatives

of , the partial derivative of the function F with respect to  is equal to zero.  Thus,

in this case the Euler–Lagrange equation (E.20) for the functional  reduces to

Moreover, relation (E.21) becomes

Relation (E.24) is satisfied if

The boundary condition  is called essential while the boundary condition

 is called natural.

We have started with the functional  and we have established the differential

equation (E.20) and the boundary conditions (E.22) that must be satisfied by the function 

1which renders this functional stationary.  It can be shown that the function u(x ) which
satisfies the Euler–Lagrange differential equation (E.20) and the boundary conditions
(E.22) renders the functional stationary.  We can begin with the strong form of a boundary
value problem and we can establish the functional which has the differential equation of
this boundary value problem as its Euler–Lagrange equation.  However, it is not always
possible to find a functional whose Euler–Lagrange equation is the differential equation
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of a given boundary value problem.  Only when the differential equation of a boundary
value problem satisfies certain conditions, such as a functional exists .  Nevertheless, if†

for a given boundary value problem such a functional exists, we can have an alternative
equivalent formulation of this boundary value problem.  That is, its solution could be
sought either as the function which satisfies the differential equation and the given
essential and natural boundary conditions or as the function which satisfies the given
essential boundary conditions and renders the functional described previously stationary.
The latter formulation of a boundary value problem is called variational and it is suited
for establishing approximate solutions of such a boundary value problem (see Section
13.17.2).

                              

†   Shame, I.H. and Dym, C.L., Energy and Finite Element Methods in Structural Mechanics, McGraw-Hill, New
York, 1985, Section 3.11, p. 151. 

www.EngineeringEBooksPdf.com



951

(F.1)

(F.2)

(F.3)

Appendix
F

Derivation of the Expression for the
1 2 3Plane Stress Function X(x , x , x )

Consider a prismatic body in a state of plane stress.  That is, in general the components
of stress acting on its particles have the form indicated by relations (7.39).  The body is

2 3subjected to body forces which are obtained from a potential function V(x , x ) on the
basis of the following relations:

Substituting these relations into the equations of equilibrium (2.69) and taking into
account relations (7.39) we obtain

From the first of the above relations we see that in order to maintain a state of plane
stress in a prismatic body the potential V and, consequently, the components of specific

2 3body force must be a function only of x  and x .  From the second of relations (F.1) we

1 1 2 3can conclude that there exists a function X (x , x , x ) such that

2 1 2From the third of relations (F.1) we can conclude that there exists a function X (x , x ,

3x ) so that

From the second of relations (F.2) and (F.3) we obtain
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(F.4)

(F.5)

(F.6)

(F.7)

(F.8)

1 2 3Thus, there exists a function X(x , x , x ) such that

Substituting the above relations into (F.2) and (F.3), we have

In what follows we establish the restrictions which must be imposed on the plane

1 2 3stress function X(x , x , x ) in order to ensure that when the components of stress are
substituted into the stress–strain relations for plain stress (3.52) give components of strain
which when substituted into the strain–displacement relations (2.16) the resulting
relations can be integrated to give a set of components of displacement.  In order to
accomplish this it is necessary and sufficient that the components of strain satisfy the
equations of compatibility (2.65) at every point of the body.  For simply connected bodies
the satisfaction of the equations of compatibility by the components of strain is necessary
and sufficient to ensure that the components of displacement are single-valued continuous
functions of the space coordinates.  For multiply connected bodies the satisfaction of the
equations of compatibility by the components of strain is necessary and sufficient to
ensure the integrability of the strain–displacement relations (2.16).  However, the
resulting components of displacement may or may not be singled-valued continuous
functions of the space coordinates.  In order to ensure that the components of
displacement are single-valued continuous functions of the space coordinates the
components of strain must satisfy in addition to the equations of compatibility certain
other relations.  Substituting  relations (F.6) into the stress–strain relations for plane stress
(3.52) we get

1Where I  is the first invariant of stress given by
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(F.9)

(F.10)

(F.11a)

(F.11b)

(F.12a)

(F.12b)

(F.13)

(F.14)

(F.15)

From the above relation, we obtain

1 1where L  and L  are defined by relations (7.16) and (7.18), respectively.2 4

Substituting relations (F.7) into the third of the compatibility equations (2.63) and
referring to relation (7.18), we get

1Using relation (F.9) to eliminate I  from the above and using the above to eliminate
X from relation (F.9), we have 

1 2 3Notice, that X is a function of x , x  and x .  Consequently, if L V is equal to zero, X2

is not a biharmonic function.
Substituting relations (F.7) into the fifth and sixth of the compatibility relations (2.63)

1and taking into account that V is not a function of x , we obtain

3 2We find (M X/M x  + M X/M x ) from relation (F.8) and we substitute it into the above2 2 2 2

1relations.  Taking into account that V is not a function of x , we have†

1 1 1From the above relations we see that M I /M x  must be only a function of x .  Therefore,

1 2 3the function I(x , x , x ) must have the following form:

Substituting relation (F.14) into (F.11b), we get

Substituting relations (F.7) into the first and second of the compatibility equations (2.63),
                                   

1 2 3†  If                 were  assumed not  to be functions of x , X   and I  would be functions only of x  and x  and,

consequently, the second and third compatibility equations would have yielded 

1 2 3This indicates that I  =Ax +Bx +C .  Thus, referring to the first of relations (F.7) it is apparent that the com ponent of

11 2 3strain e  would have been a linear function of x  and x .  There are not, however, many practical problems having

solutions which satisfy this requirement.
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(F.16)

(F.17)

(F.18)

(F.19)

(F.20)

(F.21)

(F.22)

we get

Using relations (F.11b), relation (F.16) can be written as 

Adding the above relations, we have

Differentiating equation (F.8), we obtain

Substituting relations (F.19) into (F.18), we get

Substituting relation (F.11b) into (F.20), we have

Substituting relation (F.14) into the above relation, we obtain

1The left side of the above relation is a function of x  only while the right side is a function

2 3of x  and x  only. Consequently, both sides must be equal to a constant C.  Thus for a state

2 3of plane stress the body force potential V(x , x ) must satisfy the following relation:

1L V = constant (F.23)2

Substituting equation (F.21) into (F.17), we get
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(F.24)

(F.25)

(F.26)

(F.27)

     (F.28)

(F.29)

(F.30)

Substituting relations (F.7) into the fourth of the compatibility relations (2.65) we obtain

Thus, from relations (F.24) and (F.25) we may conclude that

1 2 3 1 2where the functions g(x , x , x ) is an arbitrary function of x  and a linear function of x
3 1and x .  Integrating relation (F.26) with respect to x  and using (F.14), we obtain

1 2 3 2 3As it was indicated previously, g(x , x , x ) is a linear function of x  and x , whereas,

2 3the components of stress are second derivatives of X, with respect to x  or x .  Thus the
first term on the right-hand side of the above equation may be disregarded inasmuch as
it does not affect the components of stress (see relation F.6).  Moreover, the term

2 3 does not involve x  and x  and, consequently, does not affect

the components of stress and may be disregarded.  Therefore,

1 1Operating both sides of relation (F.28) by L , taking into account that L V is constant2 2

and using relation (F.15) we get

From relations (F.8) and (F.14) we have

Equating the right side of relations (F.29) and (F.30) we obtain
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(F.31)

(F.32)

(F.33)

(F.34)

(F.35)

(F.36)

(F.37)

(F.38)

Consequently,

and

Taking the Laplacian of both sides of relation (F.32) and (F.34), we get

Substituting relation (F.15) into (F.35), we have

Substituting relation (F.32) into (F.28) and taking into account relation (F.36), we get

Substituting relation (F.37) into (F.6) we see that the components of stress have the
following form:

From to relations (F.38) we may conclude that in order to maintain a state of plane stress
in a simply connected prismatic body the components of stress and consequently the

components of traction  and  acting on its lateral surfaces must

1 1be the sum of two parts, one that varies linearly with x  and another that has an x 2

variation.  Thus, if a simply connected prismatic body has traction-free end surfaces and

is subjected to traction  and  which have the form indicated by

2 2 3 3 2 3 1relations (F.38) and to components of specific body forces B (x , x ) and B (x , x ) (B  =

2 30) derivable from a potential V(x , x ) satisfying relation (F.23), then this body is in a state
of plane stress.  Its stress distribution can be established by finding expressions for the

2 1 2 1 2 3function Y (x , x ) satisfying relation (F.36) and for the function Y (x , x ) satisfying
relation (F.34). These expressions involve two constants each, which are evaluated by

2 2 3 1 2 3requiring that when the functions Y (x , x ) and Y (x , x ) are substituted into relation

1 2 3(F.37) give a plane stress function X(x , x , x )  which when substituted in relations (F.6)
gives components of stress, which when substituted into the traction–stress relations
(2.75) give the specified components of traction on the lateral surface of the body.

www.EngineeringEBooksPdf.com



957

(G.1)

(G.2)

(G.3)

(G.4)

Appendix
G

Functions of Discontinuity

G.1 Definition of the Unit Step Function, the Dirac *-Function, and the Doublet
Function

Referring to Fig. G.1, the unit step function )(x ! a) is defined as

The  unit step function is not defined  at x = a.  In  case a = 0, the unit step  function is
denoted as )(x).

In general, for b <a we have

Referring to the definition of the unit step function (G.1) it can be seen that the first
integral on the right-hand side of relation (G.2) vanishes.  Thus relation (G.2) reduces to

From relation (G.3) we obtain

Figure G.1  Unit step function.   Figure G.2  Approximation of the unit step function

         by the continuous function (x ! a).
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    (G.5)

(G.6)

(G.7)

(G.8)

             (G.9)

Referring to Fig. G.2, imagine  that  there  exists a sequence of continuous functions
      (x ! a)  (n = 1, 2, 3, ...)  which  vanish  for  x <a !     and  are  equal to unity for x > a
+      where      is a small positive number.  Moreover, assume that     approaches zero as
n approaches infinity. Then, as n increases and      decreases,     (x ! a) approaches )(x !
a).  Consequently, )(x ! a) may be considered as the limit of the sequence of continuous
functions      (x ! a) as n approaches infinity.  Thus,

Consider the following sequence of functions, one of which is plotted in Fig. G.3

nNotice that the cross-hatched area in Fig. G.3 is equal to unity for any value of , .  This
may be shown as follows

For very small values of      , the cross-hatched area in Fig. G.3 may be approximated by
2        (x ! a).  Thus,

Consequently, for large values of n (small values of     ), we have

It is apparent that in the limit as n 6 4 the value of      (x ! a) in the region a !     < x < a
+       increases   to  infinity   (see Fig. G.3).  That  is,  in  the  limit as n 6 4 the function
    (x ! a) does not exist as an ordinary function.  We call that limit the Dirac * -function,
that is,

(G.10)

If a = 0, the Dirac *-function is denoted as *(x).
We assume that *(x - a) has the same properties as ordinary functions when used  as

an integrand.  Using relations (G.10) and (G.8) we obtain
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(G.11)

(G.12)

(G.13)

(G.14)

n nFigure G.3  Derivative of the function R (x - a). Figure G.4  Derivative of the function N (x - a). 

Noting that *(x ! a) vanishes at every point except x = a. Taking into account relation
(G.11) for any function f (x) which is continuous at x = a the following relation is valid

Thus, the *-function cannot be assigned any value at x = a  and  vanishes  at all other

points.  However, the integral  is equal to unity.  Hence, the *-function

is not an ordinary function, having definite values for every value of x, but rather, an
entity possessing certain properties as, for instance, those given by relation (G.12) .  This†

relation indicates that *(x ! a) acts as a sieve selecting from all possible values of f (x) its
value at the point x = a.

Using relations (G.6), (G.7) and (G.10) we obtain

where b < a.  Moreover using relations (G.6), (G.7) and (G.10) we have

Consider the sequence of functions d    (x ! a)/dx, one of which is shown in Fig. G.4.
We define the doublet function as
                                     

†  For a more detailed discussion see Butkov, E., Mathematical Physics, Addison-Wesley, Reading, M A, 1973, p.

221; and Papoulis, A., The Fourier Integral and Its Applications, M cGraw-Hill, New York, 1962, p. 269.
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(G.15)

(G.16)

(G.18)

(G.19)

(G.20)

(G.21)

(G.22)

(G.23)

(G.24)

On the basis of this definition we have

Moreover, for any function f(x) which is continuous at x = a, using relation (G.15) and
integrating by parts we have

(G.17)

Following a procedure analogous to that employed in proving relation (G.17) it can be
shown that

G.2 Additional Properties of the Dirac *-Function and of the Doublet Function

1.  For any function f(x) which is continuous at x = 0, the following relation is valid:

2.  For any constant c � 0, the following relation is valid:

3.  As a consequence of property (G.20), it is apparent that *(x) is an even function, that
is

4.  The following relation is valid:

5.  The following relation may be proven by differentiating relation (G.22) with respect
to x:

Similarly,

www.EngineeringEBooksPdf.com



961

Appendix
H

Properties of Rolled Shapes †

In this Appendix we present in S.I. units, the properties of some rolled shapes
manufactured in the U.S.A.

ANGLES
Unequal legs

Size and 

Thickness 

mm

M ass per

M eter       Area 

kg/m        mm  2

Axis X-X Axis Y-Y Axis Z-Z

x x x     I           S             r       y
10  mm   10  mm mm   mm6 4 3 3      

y y y     I             S           r         x
10  mm    10 mm mm     mm6 4 3 3      

x  r
mm      tan a

L152 × 102 × 19

             × 12.7

           × 9.5

L127 × 76 × 12.7

               × 9.5

               × 6.4

L102 × 76 × 12.7

                × 9.5

                × 6.4

L89 × 64 × 12.7

             × 9.5

            × 6.4

L76 × 51 × 12.7

            × 9.5

           × 6.4

L64 × 51 × 9.5

               × 6.4

35.0         4470

24.0         3060

18.2         2320

19.0         2420

14.5         1840

  9.8         1260

16.4         2100

12.6         1600

  8.6         1100

13.9         1780

10.7         1360

  7.3           938

11.5         1450

  8.8         1120

  6.1           772

  7.9         1000

  5.4           695

  10.1      102       47.5    52.5

    7.20      70.8    48.5    50.3

    5.56      54.0    49.0    49.1

   

    3.93      47.6    40.3    44.4

    3.06      36.6    40.8    43.3

    2.14      25.2    41.2    42.1

   

    2.12      31.1    31.8    33.9

    1.66      24.0    32.2    32.8

    1.17      16.6    32.6    31.6

   

    1.36      23.3    27.6    30.6 

    1.07      18.0    28.0    29.5

    0.759    12.5    28.4    28.3

   

    0.795    16.4    23.4    27.4

    0.632   12.7    23.8    26.2

    0.453      8.90  24.2    25.1

   

    0.388      9.10  19.7    21.3

    0.280      6.39  20.1    20.2

   3.65         49.0     28.6    27.5

   2.64         34.4     29.4    25.3

   2.06         26.4     29.8    24.1

   1.06         18.6     20.9    19.0

   0.841       14.5     21.4    17.8

   0.598       10.1     21.8    16.6

   1.00         18.1     21.8    20.9

   0.792       14.1     22.2    19.8

   0.564         9.83   22.6    18.6

   0.581       12.7     18.1    18.1 

   0.463         9.83   18.5    16.9

   0.333         6.91   18.8    15.8 

   

   0.283        7.84    14.0    14.9

   0.228        6.11    14.3    13.7

   0.166        4.32    14.7    12.6

   0.217        5.99    14.7    14.8

   0.158        4.24    15.1    13.7

21.9    0.435

22.2    0.446

22.4    0.452

16.3    0.355

16.6    0.362

16.8    0.369

16.2    0.536

16.3    0.545

16.5    0.552

13.7    0.491

13.8    0.503

13.9    0.512

10.9    0.420

10.9    0.434

11.1    0.446

10.8    0.610

10.8    0.621

                                     

† Taken from the M etric Version of the second edition of LRFD M anual of Steel Construction of the American

Institute of Steel Construction, Chicago, 1999.
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962   Appendix H

ANGLES
Equal legs

Size and Thickness    
mm

 Mass per
  Meter           Area 
   kg/m            mm  2

Axis X-X and Y-Y Axis Z-Z

        I             S           r    x or y
 10  mm    10 mm  mm    mm6 4 3 3   

x     r
   mm       tan a

L203 × 203 × 25.4

               × 19

                  × 12.7

L152 × 152 × 25.4

               × 19

                  × 15.9

                  × 11.1

                × 9.5

L127 × 127 × 19

                      × 15.9

                     × 12.7

                   × 9.5

L102 × 102 × 19

                      × 15.9

                      × 12.7

                    × 9.5

                    × 6.4

       L89 × 89 × 12.7

                    × 9.5

                    × 6.4

       L76 × 76 × 12.7

                    × 9.5

                    × 6.4

       L64 × 64 × 12.7

                    × 9.5

                    × 6.4

                    × 4.8

     L51 × 51 × 9.5

                     × 6.4

                    × 3.2

  75.9                 9670

  57.9                 7350

  39.3                 4990

  55.7                 7080

  42.7                 5420

  36.0                 4580

  25.6                 3250

  22.2                 2800

                

  35.1                 4470

  29.8                 3790

  24.1                 3060

  18.3                 2320

  27.5                 3520

  23.4                 2990

  19.0                 2430

  14.6                 1850

    9.8                 1260

  16.5                 2100

  12.6                 1600

    8.6                 1100

  14                    1770

  10.7                 1350

    7.3                   932

  11.4                 1460

    8.7                 1130

    6.1                   778

    4.6                   591

    7.0                   879

    4.7                   612

    2.4                   316 

    36.9         258         61.8     60.0 

  

    28.9         199         62.7     57.8

    20.2         137         63.6     55.5

  

    14.6        139         45.4     47.2

    11.6        108         46.3     44.9

    10.0          92.5      46.7     43.9

      7.29        66.3      47.4     42.1

      6.34        57.4      47.6     41.5

      6.54         74.0      38.3     38.6

      5.66         63.2      38.6     37.5

      4.68         51.7      39.1     36.5

      3.63         39.6      39.6     35.3

      3.23         46.3      30.3     32.3

      2.81         39.7      30.7     31.3

      2.34         32.6      31.0     30.2

      1.83         25.1      31.5     29.0

      1.29         17.4      32.0     28.0

      1.52         24.5      26.9     26.9 

      1.19         18.8      27.3     25.8

      0.845       13.1      27.7     24.6

   

      0.915       17.5      22.7     23.6

      0.725       13.6      23.2     22.5

      0.517         9.50    23.6     21.4

   

      0.524       12.1      18.9     20.6

      0.419         9.40    19.3     19.4

      0.302         6.62    19.7     18.4

      0.235         5.09    19.9     17.8

      0.202         5.80    15.2     16.2

      0.147         4.09    15.5     15.1

      0.0806       2.17    16.0     13.9

    39.7      1.000

    40.0      1.000

    40.4      1.000

    29.5      1.000

    29.7      1.000

    29.9      1.000

    30.1      1.000

    30.2      1.000

    24.7      1.000

    24.8      1.000

    25.0      1.000

    25.1      1.000

    19.9      1.000

    19.9      1.000

    19.9      1.000

    20.0      1.000

    20.3      1.000

    17.4      1.000

    17.4      1.000

    17.6      1.000

    14.8      1.000

    14.9      1.000

    15.0      1.000

    12.5      1.000

    12.5      1.000

    12.6      1.000

    12.7      1.000

      9.95    1.000

      9.94    1.000

    10.1      1.000

www.EngineeringEBooksPdf.com



Properties of Rolled Shapes   9  6  3         

CHANNELS
AMERICAN STANDARD

Desig-
nation

Area
A

Depth
d

Web Flange

Shear 
Center

Location

0e

Axis X-X Axis Y-Y

Thickness

wt
Width

tb
Thickness

tt I/10 S/10 r I/10 S/10 r6 3 6 3

mm x
kg/m

mm mm mm mm mm mm mm mm mm mm mm mm mm2 4 3 4 3

C380 × 74
        × 60

          ×50.4

C310 × 45
       × 37

         × 30.8

C250 × 45
        × 37
       × 30

         × 22.8

C230 × 30
        × 22

          × 19.9

C200 × 27.9
        × 20.5
       × 17.1

C180 ×22
          × 18.2
         × 14.6

C150 × 19.3
        × 15.6
        × 12.3

C130 × 12
          × 10.4

C100 × 10.8
    × 8

C75 × 8.9
      × 74

       × 6.1

9480
7570
6430

5690
4720
3920

5670
4750
3780
2880

3800
2840
2530

3560
2600
2170

2790
2310
1850

2450
 1980
1540

1710
1310

1370
1020

1130
  936
  765

381
381
381

305
305
305

254
254
254
254

229
229
229

203
203
203

178
178
178

152
152
152

127
127

102
102

 76.2
 76.2
 76.2

18.2
13.2
10.2

13.0
  9.8
  7.2

17.1
13.4
  9.6
  6.1

11.4
  7.2
  5.9

12.4
  7.7
  5.6

10.6
  8.0
  5.3

11.1
  8.0
  5.1

  8.3
  4.8

  8.2
  4.7

  9.0
  6.6
  4.3

94
89
86

80
77
74

76
73
69
65

67
63
61

64
59
57

58
55
53

54
51
48

48
47

43
40

40
37
35

16.5
16.5
16.5

12.7
12.7
12.7

11.1
11.1
11.1
11.1

10.5
10.5
10.5

  9.9
  9.9
  9.9

  9.3
  9.3
  9.3

  8.7
  8.7
  8.7

  8.1
  8.1

  7.5
  7.5

  6.9
  6.9
  6.9

20.2
19.7
19.9

17.0
17.0
17.4

16.3
15.6
15.3
15.8

14.7
14.9
15.0

14.3
13.9
14.4

13.4
13.1
13.7

12.9
12.5
12.7

12.2
13.0

11.4
11.5

11.3
10.8
10.8

14.6
19.3
22.5

15.4
18.8
21.7

   
   8.97
12.4
16.0
19.7

12.9
17.3
18.5

10.8
15.1
17.5

11.1
13.3
16.4

  
    9.32

12.0
14.8

10.8
15.3

  
    9.38

12.6
  

   7.96
    9.39

11.3

167
144
131

  67.2
  59.7
  53.4

  42.7
  37.9
  32.6
  27.7

  25.4
  21.2
  19.8

  18.2
  14.9
  13.4

  11.3
  10.0
    8.83

    7.11
    6.21
    5.35

    3.70
    3.25

    1.90
    1.61
      
0.850
  0.751
  0.671

877
756
688

441
391
350

336
298
257
218

222
185
173

179
147
132

127
112
 99.2

 93.6
 81.7
 70.4

 58.3
 51.2

 37.3
 31.6

 22.3
 19.7
 17.6

133
138
143

109
112
117

 86.8
 89.3
 92.9
 98.1

 81.8
 86.4
 88.5
 
71.5
 75.7
 78.6

 63.6
 65.8
 69.1

 53.9
 56.0
 58.9

 46.5
 49.8
      
 37.2
 39.7
       
 27.4
 28.3
 29.6

4.54
3.79
3.34

2.09
1.83
1.57

1.58
1.38
1.14
0.912

0.997
0.796
0.708

0.817
0.620
0.538

0.561
0.470
0.400

0.420
0.347
0.276

0.264
0.229

0.172
0.130

0.122
0.0948
0.0765

61.5
54.7
50.5

33.3
30.5
27.7

26.5
24
21.2
18.5

19.1
16.5
15.4

16.4
13.7
12.6

12.6
11.2
10.2

10.2
 9.01
 7.82

 7.37
 6.74

 5.44
 4.56

 4.25
 3.62
 3.16

21.9
22.4
22.8

19.2
19.7
20

16.7
17
17.4
17.8

16.2
16.7
16.7

15.1
15.4
15.7

14.2
14.3
14.7

13.1
13.2
13.4

12.4
13.2

11.2
11.3

10.4
10.1
10.0
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S SHAPES

Designation Weight
Area

A
Depth

d

Web Flange Elastic Properties

Thickness
wt

Width
tb

Thickness
tt

Axis X-X Axis Y-Y

I/10 S/10 r I/10 S/10 r6 3 6 3

mm × kg/m kN/m mm mm mm mm mm mm mm mm mm mm mm2 4 3 4 3

S610 × 149
        × 134
        × 119

S510 × 143
        × 128

       
 S510 × 112
          × 98.2

        
S460 × 104
         × 81.4

  S380 × 74
           × 64  

  S310 × 74
           × 60.7
   
  S310 × 52
           × 47.3

  S250 × 52
           × 37.8

  S200 × 34
           × 27.4

  S150 × 25.7
           × 18.6  
  S130 × 15

  S100 × 14.1
           × 11.5

    S75 × 11.2
           × 8.5

1.46
1.31
1.17

1.40
1.26

1.10
 0.963

1.02
0.799

0.726
0.628

0.726
0.595

0.510
0.464

0.510
0.371

0.334
0.269

0.252
0.182

0.147

0.138
0.113
0.110

0.0834

19000
17100
15200

18200
16400

14200
12500

13300
10400

9500
8150

9480
7730

6650
6040

6670
4820

4370
3500

3270
2370

1890

1800
1460
1430
1070

610
610
610

516
516

508
508

457
457

381
381

305
305

305
305

254
254

203
203

152
152

127

102
102
  76
  76

18.9
15.9
12.7

20.3
16.8

16.1
12.8

18.1
11.7

     14
10.4

17.4
11.7

10.9
8.9

15.1
7.9

11.2
6.9

11.8
5.9

5.4

8.3
4.9
8.9
4.3

184
181
178

183
179

162
159

159
152

143
140

139
133

129
127

126
118

106
102

91
85

76

71
68
64
59

22.1
22.1
22.1

23.4
23.4

20.2
20.2

17.6
17.6

15.8
15.8

16.7
16.7

13.8
13.8

12.5
12.5

10.8
10.8

9.1
9.1

8.3

7.4
7.4
6.6
6.6

995
938
878

700
658

530
495

385
333

201
185

126
113

95.3
90.5

61.2
51.1

26.8
23.9

10.8 
9.11

5.07

2.82
2.53
1.20
1.03

3260
3080
2880

2710
2550

2090
1950

1680
1460

1060
  971

  826
  741

  625
  593

  482
  402

  264
  235

  142
  120
     
79.8

 55.3
 49.6
 31.6
 27.1

229
234
240

196
200

193
199

170
179

145
151

115
121

120
122
 
95.8
103
 
78.3
82.6

57.5
62.0

51.8

39.6
41.6
29.0
31.0

20.2
19.0
17.9

21.3
19.7

12.6
11.8

10.4
8.83

6.65
6.15

6.69
5.73

4.19
3.97

3.59
2.86

1.83
1.60

1.00
0.782

0.513

0.383
0.328
0.254
0.190

215
206
198

228
216

152
145

127
113

 90.8
 85.7

 93.2
 83.6

 63.6
 61.1

 55.7
 47.5

 33.8
 30.6

 21.3
 18.0

 13.2
 
10.5
 9.41
 7.72 
 6.44

32.3
33.0
34.0

33.9
34.4

29.5
30.4

27.5
28.8

26.1
27.1

26.1
26.8

24.8
25.3

22.9
24.1

20.2
21.1

17.2
18.0

16.3

14.4
14.8
13.1
13.3
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W SHAPES

Designation
Area

A
Depth

d

Web Flange Elastic Properties

Thickness
wt

Width
tb

Thickness
tt

Axis X-X Axis Y-Y

I/10 S/10 r I/10 S/10 r6 3 6 3

mm × kg/m mm mm mm mm mm mm mm mm mm mm mm2 4 3 4 3

W920 × 446
         × 201

W840 × 299
         × 176

W760 × 257
         × 147

W690 × 217
         × 125

W530 × 150
       × 92
       × 66

W460 × 158
         × 113
       × 74
       × 52

W360 × 551
         × 216
         × 122
         × 101
       × 79
      × 64

         × 57.8
      × 44

             × 39
         × 32.9

57000
25600

38100
22400

32600
18700

27700
16000

19200
11800
 8370

20100
14400 
9450

 
6630
70100
27600
15500
12900
10100
 8140 
7220
 5730
 4980 
4170

933
903

855
835

773
753

695
678

543
533
525

476
463
457
450

455
375
363
357
354
347
358
352
353
349

24.0
15.2

18.2
14.0

16.6
13.2

15.4
11.7

12.7
10.2
 8.9

15.0
10.8
  9.0
  7.6

42.0
17.3
13.0
10.5
  9.4
 7.7
 7.9
 6.9
 6.5
 5.8

423
304

400
292

381
265

355
253

312
209
165

284
280
190
152

418
394
257
255
205
203
172
171
128
127

42.7
20.1

29.2
18.8

27.1
17.0

24.8
16.3

20.3
15.6
11.4

23.9
17.3
14.5
10.8

67.6
27.7
21.7
18.3
16.8
13.5
13.1
9.8

10.7
 8.5

8470
3250

4790
2460

3420
1660

2340
1190

1010
  552
  351

  796
  556
  333
  212

2260
  712
  365
  302
  227
  178
  161
  122
  102

 82.7

18200 
7200

11200
 5890

 
8850

 4410
 

6730
 3510

 
3720

 2070
1340

 3340
 2400
1460

  942  

9930
3800

 2010
 1690
1280

 1030
   899
   693
   578

 474

385
356

355
331

324
298

291
273

229
216
205

199
196
188
179

180
161
153
153
150
148
149
146
143
141

540
  94.4

312
  78.2

250
  52.9

185
  44.1

103
  23.8
  8.57

  91.4
  63.3
  16.6
  6.34

825
283
  61.5
  50.6
  24.2
  18.9
  11.1
  8.18 
  3.75
  2.91

2550
  621

1560
  536

1310
  399

1040
  349

  660
  228
  104

  644
  452
  175
 83.4

3950
1440
  479
  397
  236
  186
  129
 95.7
 58.6
 45.8

97.3
60.7

90.5
59.1

87.6
53.2

81.7
52.5

73.2
44.9
32.0

67.4
66.3
41.9
30.9

 
 108
 101
63.0
62.6
48.9
48.2
39.2
37.8
27.4
26.4
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W SHAPES

Designation
Area

A
Depth

d

Web Flange Elastic Properties

Thickness
wt

Width
tb

Thickness
tt

Axis X-X Axis Y-Y

I/10 S/10 r I/10 S/10 r6 3 6 3

mm × kg/m mm mm mm mm mm mm mm mm mm mm mm2 4 3 4 3

W310 × 143
         × 107
       × 74

         × 60  
          × 52
          × 44.5

         × 38.7
          × 32.7
          × 23.8

 
W250 × 167
         × 101
       × 80
       × 67
       × 58

         × 44.8
         × 22.3

 
W200 × 86
        × 71
        × 59

          × 41.7
          × 35.9

           × 26.6      
     × 22.5

         × 19.3

W150 × 37.1
          × 29.8

        × 24
       × 18

          × 13.5

W130 × 28.1
          × 23.8

W100 × 19.3

18200
13600
 9490
 7590

  6670 
 5690

  4940 
 4180
 3040

21300
12900
10200
  8550
  7420
  5720
  2850

11100
  9110 
 7560

  5310 
 4580
  3390
  2860
 2480

 4730
 3790
 3060
 2290
 1730

 3580
 3010

 2480

323
311
310
303
317
313
310
313
305

289
264
256
257
252
266
254

222
216
210
205
201
207
206
203

162
157
160
153
150

131
127

106

14.0
10.9
 9.4

  7.5 
  7.6 
  6.6 
 5.8
 6.6
 5.6

19.2
11.9
  9.4
  8.9
  8.0

   7.6  
 5.8

13.0
  10.2  

  9.1
  7.2
  6.2
  5.8
  6.2
  5.8

  8.1
  6.6
  6.6
  5.8
  4.3

  6.9
  6.1

  7.1

309
306
205
203
167
166
165
102
101

265
257
255
204
203
148
102

209
206
205
166
165
133
102
102

154
153
102
102
100

128
127

103

22.9
17.0
16.3
13.1

 13.2 
11.2
 9.7
10.8
 6.7

31.8
19.6
15.6
15.7
13.5
13.0
  6.9

20.6
17.4
14.2
11.8
10.2
  8.4
  8.0
  6.5

11.6
  9.3
10.3
  7.1
  5.5

10.9
9.1

8.8

348
248
165
129
118
  99.2
  85.1
  65.0
  42.7

300
164
126
104
  87.3
  71.1 
  28.9

  94.7
  76.6
  61.1
  40.9
  34.4
  25.8
  20.0
  16.6

  22.2
  17.2
  13.4
  9.17
  6.87

  10.9
  8.80

  4.77

2150
1590
1060
  851
  744
  634
  549
  415
  280

2080
1240
  984
  809
  693  
  535 
  228
  
  853
  709  
  582
  399  
  342
  249  
  194
  164
  
  274
  219
  168  
  120
  91.6 
 
 166
 139
 
  90.0

138
135
132
130
133
132
131
125
119

119
113
111
110
108
111
101

  92.4
  91.7
  89.9
  87.8
  86.7
  87.2
  83.6
  81.8

  68.5
  67.4
  66.2
  63.3
  63.0

  55.2
  54.1

  43.9

113
  81.2
  23.4
  18.3
  10.3
    8.55
    7.27
    1.92
    1.16

  98.8
  55.5
  43.1
  22.2
  18.8
    7.03
    1.23
  
  31.4
  25.4 
  20.4
    9.01 
    7.64
    3.3 
    1.42
    1.15
  
    7.07
    5.56
    1.83
    1.26
   
0.918
  
    3.81
    3.11
  
    1.61

731
531
228
180
123
103 
  88.1
  37.6
  23.0

746
432
338
218
185
  95.0
  24.1
  
300
247
199
109
  92.6
  49.6
  27.8
  22.5
 
  91.8
  72.7
  35.9
  24.7
  18.4
 
  59.5
  49.0
 
  31.3

78.8
77.3
49.7
49.1
39.3
38.8
38.4
21.4
19.5

68.1
65.6
65.0
51.0
50.3
35.1
20.8

53.2
52.8
51.9
41.2
40.8
31.2
22.3
21.5

38.7
38.3
24.5
23.5
23.0

32.6
32.1

25.5
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Conversion of SI Units to USCS Units

Quantity SI Unit Conversion 
factor

USCS unit

Area square meter, m2

square millimeter, mm2

  10.76391

    0.001550

square foot, ft2

square inch, in2

Energy joule, J

megajoule, MJ

joule, J

    0.737561

    0.277778

    0.0009478

foot-pound, ft@lb
kilowatthour, kWh

British thermal unit, Btu

Force newton†, N

kilonewton, kN

    0.22481

    0.22481

pound, lb

kip (1000 pounds)

Length meter, m

millimeter, mm

kilometer, km

    3.28084

    0.03937

    0.6213722

foot, ft

inch, in

mile, mi

Mass kilogram, kg     0.68522 slug, lb@s /ft2

Moment newton-meter, N@m
newton-meter, N@m
kilonewton-meter, kN@m

    0.73756

    8.85073

    0.73756

foot-pound, ft@lb
inch-pound, in@lb
foot-kip, ft@kip

Power watt, W

watt, W

    0.737561

    0.001341

foot-pound per second,

ft@lb/s

horsepower, hp

Stress 

   (pressure)

pascal, Pa

megapascal, MPa

    0.0208854

145.04

pounds per square foot,

lb/ft2

pounds per square inch

lb/in2

Temperature degrees Celsious, C 1.8 C + 32 degrees Farenheit, Fo o o

Volume cubic meter, m3

cubic millimeter, mm3

 35.3147

 61.0236 × 10-6

cubic foot, ft3

cubic inch, in3

† A newton is the force required to accelerate a 1-kg mass by a constant acceleration of 1 m/s . A pascal is equal to2

1 N/m  .2

NOTE: To convert USCS units to SI units, divide by the conversion factor. For temperature, C = (5/9)( F - 32).o o 

 
SI Prefixes

Prefix Symbol Multiplication   

factor Prefix

Symbol Multiplication 

factor

   tera

   giga

   mega

   kilo

T

G

M

k

          1012

          109

          106

          103

   milli

   micro

   nano

   pico

m

:
n

p

          10-3

          10-6

          10-9

          10-12
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