
https://engineersreferencebookspdf.com



TRANSFORMER
DESIGN PRINCIPLES

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



TRANSFORMER
DESIGN PRINCIPLES

With Applications to
Core-Form Power Transformers

Robert M.Del Vecchio
Bertrand Poulin
Pierre T.Feghali

Dilipkumar M.Shah
Rajendra Ahuja

Boca Raton London New York Washington, D.C.

CRC PRESS

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



This book contains information obtained from authentic and highly regarded sources.
Reprinted material is quoted with permission, and sources are indicated. A wide
variety of references are listed. Reasonable efforts have been made to publish reliable
data and information, but the authors and the publisher cannot assume responsibility
for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, microfilming, and
recording, or by any information storage or retrieval system, without prior permission
in writing from the publisher.

The consent of CRC Press does not extend to copying for general distribution, for
promotion, for creating new works, or for resale. Specific permission must be obtained
in writing from CRC Press for such copying.

Direct all inquiries to CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, Florida
33431.

Trademark Notice: Product or corporate names may be trademarks or registered
trademarks, and are used only for identification and explanation, without intent to
infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2002 by CRC Press

No claim to original U.S. Government works
International Standard Book Number 90-5699-703-3

Printed in the United States of America 1 2 3 4 5 6 7 8 9 0
Printed on acid-free paper

© 2002 by CRC Presshttps://engineersreferencebookspdf.com

http://www.crcpress.com


CONTENTS

Preface xi

1 Introduction to Transformers 1
1.1 Historical Background 1
1.2 Uses in Power Systems 3
1.3 Core-Form and Shell-Form Transformers 9
1.4 Stacked and Wound Core Construction 10
1.5 Transformer Cooling 15
1.6 Winding Types 17
1.7 Insulation Structures 20
1.8 Structural Elements 24
1.9 Three-Phase Connections 29
1.10 Modern Trends 36

2 Transformer Circuit Models, Including Magnetic Core
Characteristics and Applications 39
2.1 Introduction 39
2.2 Basic Magnetism 42
2.3 Hysteresis 46
2.4 Magnetic Circuits 49
2.5 Inrush Current 54
2.6 Transformer Circuit Model with Core 66
2.7 Per Unit System 80
2.8 Voltage Regulation 82

3 Reactance Calculations 87
3.1 Introduction 87
3.2 Ideal Transformers 88

3.2.1 Ideal Autotransformer 92
3.3 Leakage Impedance for 2-Winding Transformers 94

3.3.1 Leakage Impedance for a 2-Winding
Autotransformer 98

3.4 Leakage Impedances for 3-Winding Transformers 99
3.4.1 Leakage Impedances for an

Autotransformer with Tertiary 104

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



CONTENTSvi

3.4.2 Leakage Impedance between 2 Windings
Connected in Series and a Third Winding 109

3.4.3 Leakage Impedance of a 2-Winding
Autotransformer with X-Line Taps 110

3.4.4 More General Leakage Impedance Calculations 113
3.5 Two Winding Leakage Reactance Formula 114

4 Fault Current Calculations 119
4.1 Introduction 119
4.2 Symmetrical Components 121
4.3 Fault Analysis on 3-Phase Systems 127

4.3.1 3-Phase Line to Ground Fault 129
4.3.2 Single Phase Line to Ground Fault 130
4.3.3 Line to Line Fault 131
4.3.4 Double Line to Ground Fault 132

4.4 Fault Currents for Transformers with 2 Terminals
per Phase 133
4.4.1 3-Phase Line to Ground Fault 135
4.4.2 Single Phase Line to Ground Fault 136
4.4.3 Line to Line Fault 137
4.4.4 Double Line to Ground Fault 137
4.4.5 Zero Sequence Impedences 138

4.5 Fault Currents for Transformers with 3 Terminals
per Phase 140
4.5.1 3-Phase Line to Ground Fault 143
4.5.2 Single Phase Line to Ground Fault 143
4.5.3 Line to Line Fault 144
4.5.4 Double Line to Ground Fault 145
4.5.5 Zero Sequence Impedances 146

4.6 Asymmetry Factor 147

5 Rabins’ Method for Calculating Leakage Fields, Forces and
Inductances in Transformers 149
5.1 Introduction 149
5.2 Theory 150
5.3 Determining the B-Field 166
5.4 Determing the Winding Forces 167
5.5 General Method for Determing Inductances and Mutual

Inductances 169
5.6 Rabins’ Formula for Leakage Reactance 175
5.7 Rabins’ Method Applied to Calculate Self and Mutual

Inductances of Coil Sections 182

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



CONTENTS vii

6 Mechanical Design 185
6.1 Introduction 185
6.2 Force Calculations 188
6.3 Stress Analysis 190

6.3.1 Compressive Stress in the Key Spacers 193
6.3.2 Axial Bending Stress per Strand 193
6.3.3 Tilting Strength 197
6.3.4 Stress in Tie Bars 201
6.3.5 Stress in the Pressure Rings 208
6.3.6 Hoop Stress 209
6.3.7 Radial Bending Stress 211

6.4 Radial Buckling Strength 219
6.5 Stress Distribution in a Composite Wire-Paper

Winding Section 229
6.6 Additional Mechanical Considerations 235

7 Capacitance Calculations 237
7.1 Introduction 237
7.2 Theory 238
7.3 Stein’s Capacitance Formula 245
7.4 General Disk Capacitance Formula 252
7.5 Coil Grounded at One End with Grounded

Cylinders on Either Side 253
7.6 Static Ring on One Side of Disk 256
7.7 Terminal Disk without a Static Ring 257
7.8 Capacitance Matrix 258
7.9 Two End Static Rings 261
7.10 Static Ring between the First Two Disks 265
7.11 Winding Disk Capacitances with Wound-in Shields 266

7.11.1 Analytic Formula 266
7.11.2 Circuit Model 270
7.11.3 Experimental Methods 276
7.11.4 Results 277

7.12 Multi-Start Winding Capacitance 281

8 High Voltage Insulation Design 285
8.1 Introduction 285
8.2 Principles of Voltage Breakdown 286
8.3 Insulation Coordination 298
8.4 Continuum Model of Winding Used to Obtain

the Impulse Voltage Distribution 303

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



CONTENTSviii

8.5 Lumped Parameter Model for Transient
Voltage Distribution 313
8.5.1 Circuit Description 313
8.5.2 Mutual and Self Inductance Calculations 317
8.5.3 Capacitance Calculations 319
8.5.4 Impulse Voltage Calculations and

Experimental Comparisons 320
8.5.5 Sensitivity Studies 326

9 Electric Field Calculations 329
9.1 Simple Geometries 329
9.2 Electric Field Calculations Using Conformal Mapping 337

9.2.1 Physical Basis 337
9.2.2 Conformal Mapping 338
9.2.3 Schwarz-Christoffel Transformation 342
9.2.4 Conformal Map for the Electrostatic

Field Problem 344
9.2.4.1 Electric Potential and Field Values 349
9.2.4.2 Calculations and Comparison with

a Finite Element Solution 356
9.2.4.3 Estimating Enhancement Factors 360

9.3 ‘Finite Element Electric Field Calculations 363

10 Losses 369
10.1 Introduction 369
10.2 No-Load or Core Losses 370

10.2.1 Building Factor 375
10.2.2 Interlaminar Losses 375

10.3 Load Losses 379
10.3.1 I2R Losses 379
10.3.2 Stray Losses 380

10.3.2.1 Eddy Current Losses in the Coils 383
10.3.2.2 Tieplate Losses 387
10.3.2.3 Tieplate and Core Losses Due to

Unbalanced Currents 397
10.3.2.4 Tank and Clamp Losses 404
10.3.2.5 Tank Losses Due to Nearby Busbars 407
10.3.2.6 Tank Losses Associated with

the Bushings 412
10.3.3 Winding Losses Due to Missing

or Unbalanced Crossovers 418

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



CONTENTS ix

11 Thermal Model of a Core Form Power Transformer
and Related Thermal Calculations 429
11.1 Introduction 429
11.2 Thermal Model of a Disk Coil with Directed

Oil Flow 431
11.2.1 Oil Pressures and Velocities 433
11.2.2 Oil Nodal Temperatures and Path

Temperature Rises 438
11.2.3 Disk Temperatures 440

11.3 Thermal Model for Coils without Directed Oil Flow 441
11.4 Radiator Thermal Model 444
11.5 Tank Cooling 448
11.6 Oil Mixing in the Tank 450
11.7 Time Dependence 453
11.8 Pumped Flow 454
11.9 Comparison with Test Results 455
11.10 Determining M and N Exponents 460
11.11 Loss of Life Calculation 462
11.12 Cable and Lead Temperature Calculation 466
11.13 Tank Wall Temperature Calculation 473
11.14 Tieplate Temperature Calculation 475
11.15 Core Steel Temperature Calculation 478

12 Load Tap Changers 481
12.1 Introduction 481
12.2 General Description of LTC 482
12.3 Types of Regulation 483
12.4 Principle of Operation 484

12.4.1 Resistive Switching 484
12.4.2 Reactive Switching with Preventative

Autotransformer 486
12.5 Connection Schemes 488

12.5.1 Full Transformers 488
12.5.2 Autotransformers 490
12.5.3 Use of Auxiliary Transformer 493
12.5.4 Phase Shifting Transformers 495

12.6 General Maintenance 495

13 Phase Shifting Transformers 499
13.1 Introduction 499
13.2 Basic Principles 503

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



CONTENTSx

13.3 Squashed Delta Phase Shifting Transformers 507
13.4 Standard Delta Phase Shifting Transformers 514
13.5 Two Core Phase Shifting Transformer 519
13.6 Regulation Effects 526
13.7 Fault Current Analysis 528

13.7.1 Squashed Delta Fault Currents 532
13.7.2 Standard Delta Fault Currents 535

14 Cost Minimization 543
14.1 Introduction 543
14.2 Geometric Programming 545
14.3 Non-Linear Constrained Optimization 552

14.3.1 Characterization of the Minimum 552
14.3.2 Solution Search Strategy 561
14.3.3 Practical Considerations 567

14.4 Application to Transformer Design 568
14.4.1 Design Variables 569
14.4.2 Cost Function 570
14.4.3 Equality Constraints 573
14.4.4 Inequality Constraints 577
14.4.5 Optimization Strategy 578

References 583

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



PREFACE
Many of the standard texts on power transformers are now over ten
years old and some much older. Much has changed in transformer design
since these books were written. Newer and better materials are now
available for core and winding construction. Powerful computers now
make it possible to produce more detailed models of the electrical,
mechanical and thermal behavior of transformers than previously
possible. Although many of these modern approaches to design and
construction are found scattered in the literature, there is a need to have
this information available in a single source as a reference for the designer
or power engineer and as a starting point for the student or novice.

It is hoped that the present work can serve both purposes. As a text for
beginners, we emphasize the physical basis of transformer operation. We
also discuss the physical effects which result from various fault conditions
and their implications for design. Physical principles and mathematical
techniques are presented in a reasonably self-contained manner, although
references are provided to additional material. For the specialist such as
a power or transformer design engineer, detailed models are presented
which focus on various aspects of a transformer under normal or
abnormal conditions. Cost minimization techniques, which form the
starting point for most designs, are also presented.

Although this book primarily deals with power transformers, many
of the physical principles discussed or mathematical modeling
techniques presented apply equally well to other types of transformers.
The presentation is kept as general as possible so that designers or users
of other transformer types will have little difficulty applying many of
the results to their own designs. The emphasis on fundamentals should
make this process easier and should also foster the development of new
and more powerful design tools in the future.

The International System of Units (SI) is used throughout the text.
However, an occasional figure, graph, or table may show quantities in
the British system of units. Sometimes a quantity is given in British units
in parentheses after its metric value.

References are referred to generally by the first three letters of the first
author’s name followed by the last two digits of the publication date, e.g.
[Abc98]. In cases where this format cannot be followed, an appropriate
substitute is made. They are listed alphabetically at the end of the book.

We wish to thank Harral Robin for guidance throughout the course of
this work. We would also like to acknowledge many helpful suggestions
from power industry representatives and consultants over the years.

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



1

1. INTRODUCTION TO
TRANSFORMERS

Summary Beginning with the principle of induction discovered by
Faraday, the transformer slowly evolved to fill a need in electrical
power systems. The development of 3 phase a.c. power has led to a
great variety of transformer types, We discuss some of these types
and their use in power systems. We also discuss and contrast some of
the main construction methods. The principle components of a
transformer are highlighted with special emphasis on core-form power
transformers. Some of the basic considerations which determine the
design of these components are presented. A look at some newer
technologies is given which could impact the future development of
transformers.

1.1 HISTORICAL BACKGROUND

Transformers are electrical devices which change or transform voltage
levels between two circuits. In the process, current values are also
transformed. However, the power transferred between the circuits is
unchanged, except for a typically small loss which occurs in the process.
This transfer only occurs when alternating current (a.c.) or transient
electrical conditions are present. Transformer operation is based on the
principle of induction discovered by Faraday in 1831. He found that
when a changing magnetic flux links a circuit, a voltage or electromotive
force (emf) is induced in the circuit. The induced voltage is proportional
to the number of turns linked by the changing flux. Thus when two
circuits are linked by a common flux and there are different linked turns
in the two circuits, there will be different voltages induced. This situation
is shown in Fig. 1.1 where an iron core is shown carrying the common
flux. The induced voltages V1 and V2 will differ since the linked turns N1

and N2 differ.
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INTRODUCTION2

Devices based on Faraday’s discovery, such as inductors, were little
more than laboratory curiosities until the advent of a.c. electrical
systems for power distribution which began towards the end of the
nineteenth century. Actually the development of a.c. power systems and
transformers occurred almost simultaneously since they are closely
linked. The invention of the first practical transformer is attributed to
the Hungarian engineers Karoly Zipernowsky, Otto Blathy, and Miksa
Deri in 1885 [Jes97]. They worked for the Hungarian Ganz factory.
Their device had a closed toroidal core made of iron wire. The primary
voltage was a few kilo volts and the secondary about 100 volts. It was
first used to supply electric lighting.

Modern transformers differ considerably from these early models but
the operating principle is still the same. In addition to transformers used
in power systems which range in size from small units which are attached
to the tops of telephone poles to units as large as a small house and
weighing hundreds of tons, there are a myriad of transformers used in the
electronics industry. These latter range in size from units weighing a few
pounds and used to convert electrical outlet voltage to lower values

Figure 1.1 Transformer principle illustrated for two circuits linked by a common
changing flux
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INTRODUCTION 3

required by transistorized circuitry to micro-transformers which are
deposited directly onto silicon substrates via lithographic techniques.

Needless to say, we will not be covering all these transformer types
here in any detail, but will instead focus on the larger power
transformers. Nevertheless, many of the issues and principles discussed
are applicable to all transformers.

1.2 USES IN POWER SYSTEMS

The transfer of electrical power over long distances becomes more
efficient as the voltage level rises. This can be seen by considering a
simplified example. Suppose we wish to transfer power P over a long
distance. In terms of the voltage V and line current I, this power can be
expressed as

P=VI (1.1)

where rms values are assumed and the voltage and current are assumed
to be in phase. For a line of length L and cross-sectional area A, its
resistance is given by

(1.2)

where ρ is the electrical resistivity of the line conductor. The electrical
losses are therefore

(1.3)

and the voltage drop is

(1.4)

Substituting for I from (1.1), we can rewrite the loss and voltage
drop as

(1.5)
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INTRODUCTION4

Since P, L, ρ are assumed given, the loss and voltage drop can be made
as small as desired by increasing the voltage V. However, there are
limits to increasing the voltage, such as the availability of adequate
and safe insulation structures and the increase of corona losses.

We also notice from (1.5) that increasing the cross-section area of the
line conductor A can lower the loss and voltage drop. However as A
increases, the weight of the line conductor and therefore its cost also
increase so that a compromise must be reached between the cost of
losses and acceptable voltage drop and the conductor material costs.

In practice, long distance power transmission is accomplished with
voltages in the range of 100–500 kV and more recently with voltages as
high as 765 kV. These high voltages are, however, incompatible with safe
usage in households or factories. Thus the need for transformers is
apparent to convert these to lower levels at the receiving end. In addition,
generators are, for practical reasons such as cost and efficiency, designed
to produce electrical power at voltage levels of ~10 to 40 kV. Thus there
is also a need for transformers at the sending end of the line to boost the
generator voltage up to the required transmission levels. Fig. 1.2 shows a
simplified version of a power system with actual voltages indicated. GSU
stands for generator step-up transformer.

In modern power systems, there is usually more than one voltage
step-down from transmission to final distribution, each step down
requiring a transformer. Fig. 1.3 shows a transformer situated in a
switch yard. The transformer takes input power from a high voltage
line and converts it to lower voltage power for local use. The secondary
power could be further stepped down in voltage before reaching the
final consumer. This transformer could supply power to a large number
of these smaller step down transformers. A transformer of the size
shown could support a large factory or a small town.

Figure 1.2 Schematic drawing of a power system
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INTRODUCTION 5

There is often a need to make fine voltage adjustments to
compensate for voltage drops in the lines and other equipment. These
voltage drops depend on the load current so they vary throughout the
day. This is accomplished by equipping transformers with tap changers.
These are devices which add or subtract turns from a winding, thus
altering its voltage. This process can occur under load conditions or
with the power disconnected from the transformer. The corresponding
devices are called respectively load or no-load tap changers. Load tap
changers are typically sophisticated mechanical devices which can be
remotely controlled. The tap changes can be made to occur
automatically when the voltage levels drop below or rise above certain
predetermined values. Maintaining nominal or expected voltage levels
is highly desirable since much electrical equipment is designed to
operate efficiently and sometimes only within a certain voltage range.
This is particularly true for solid state equipment. No-load tap
changing is usually performed manually. This type of tap changing can
be useful if long term drifts are occurring in the voltage level. Thus it is
done infrequently. Fig. 1.4 shows three load tap changers and their

Figure 1.3 Transformer located in a switching station, surrounded by auxiliary equipment
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INTRODUCTION6

connections to three windings of a power transformer. The same
transformer can be equipped with both types of tap changers.

Most power systems today are three phase systems, i.e. they produce
sinusoidal voltages and currents in three separate circuits which are
displaced in time relative to each other by 1/3 of a cycle or 120 electrical
degrees as shown in Fig. 1.5. Note that, at any instant of time, the 3
voltages sum to zero. Such a system made possible the use of generators
and motors without commutators which were cheaper and safer to
operate. Thus transformers were required which transformed all 3 phase
voltages. This could be accomplished by using 3 separate transformers,
one for each phase, or more commonly by combining all 3 phases within
a single unit, permitting some economies particularly in the core
structure. A sketch of such a unit is shown in Fig. 1.6. Note that the three
fluxes produced by the different phases are, like the voltages and currents,
displaced in time by 1/3 of a cycle relative to each other. This means that,
when they overlap in the top or bottom yokes of the core, they cancel
each other out. Thus the yoke steel does not have to be designed to carry
more flux than is produced by a single phase.

Figure 1.4 Three load tap changers attached to three windings of a power transformer.
These tap changers were made by the Maschinenfabrik Reinhausen Co., Germany.
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INTRODUCTION 7

At some stages in the power distribution system, it is desirable to
furnish single phase power. For example, this is the common form of
household power. To accomplish this, only one of the output circuits of

Figure 1.5 Three phase voltages versus time.

Figure 1.6 Three phase transformer utilizing a 3 phase core
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INTRODUCTION8

a 3 phase unit is used to feed power to a household or group of
households, The other circuits feed similar groups of households.
Because of the large numbers of households involved, on average each
phase will be equally loaded.

Because modern power systems are interconnected so that power can
be shared between systems, sometimes voltages do not match at
interconnection points. Although tap changing transformers can adjust
the voltage magnitudes, they do not alter the phase angle. A phase
angle mismatch can be corrected with a phase shifting transformer.
This inserts an adjustable phase shift between the input and output
voltages and currents. Large power phase shifters generally require two
3 phase cores housed in separate tanks. A fixed phase shift, usually of
30°, can be introduced by suitably interconnecting the phases of
standard 3 phase transformers, but this is not adjustable.

Transformers are fairly passive devices containing very few moving
parts. These include the tap changers and cooling fans which are
needed on most units. Sometimes pumps are used on oil filled
transformers to improve cooling. Because of their passive nature,
transformers are expected to last a long time with very little
maintenance. Transformer lifetimes of 25–50 years are common. Often
units will be replaced before their useful life is up because of
improvements in losses, efficiency, and other aspects over the years.
Naturally a certain amount of routine maintenance is required. In oil
filled transformers, the oil quality must be checked periodically and
filtered or replaced if necessary. Good oil quality insures sufficient
dielectric strength to protect against electrical breakdown. Key
transformer parameters such oil and winding temperatures, voltages,
currents, and oil quality as reflected in gas evolution are monitored
continuously in many power systems. These parameters can then be
used to trigger logic devices to take corrective action should they fall
outside of acceptable operating limits. This strategy can help prolong
the useful operating life of a transformer. Fig. 1.7 shows the end of a
transformer tank where a control cabinet is located which houses the
monitoring circuitry. Also shown projecting from the sides are radiator
banks equipped with fans. This transformer is fully assembled and is
being moved to the testing location in the plant.
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INTRODUCTION 9

1.3 CORE-FORM AND SHELL-FORM TRANSFORMERS

Although transformers are primarily classified according to their function
in a power system, they also have subsidiary classifications according
to how they are constructed. As an example of the former type of
classification, we have generator step-up transformers which are connected
directly to the generator and raise the voltage up to the line transmission
level or distribution transformers which are the final step in a power
system, transferring single phase power directly to the household or
customer. As an example of the latter type of classification, perhaps the
most important is the distinction between core-form and shell-form
transformers.

The basic difference between a core-form and shell-form transformer
is illustrated in Fig. 1.8. In a core-form design, the coils are wrapped or
stacked around the core. This lends itself to cylindrical shaped coils.
Generally high voltage and low voltage coils are wound concentrically,
with the low voltage coil inside the high voltage one. In the 2 coil split
shown in Fig. 1.8a, each coil group would consist of both high and low
voltage windings. This insures better magnetic coupling between the
coils. In the shell form design, the core is wrapped or stacked around the
coils. This lends itself to flat oval shaped coils called pancake coils,

Figure 1.7 End view of a transformer tank showing the control cabinet which houses
the electronics.
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INTRODUCTION10

with the high and low voltage windings stacked on top of each other,
generally in more than one layer each in an alternating fashion.

Each of these types of construction has its advantages and
disadvantages. Perhaps the ultimate determination between the two
comes down to a question of cost. In distribution transformers, the shell
form design is very popular because the core can be economically
wrapped around the coils. For moderate to large power transformers,
the core-form design is more common, possibly because the short circuit
forces can be better managed with cylindrically shaped windings.

1.4 STACKED AND WOUND CORE CONSTRUCTION

In both core-form and shell-form types of construction, the core is made
of thin layers or laminations of electrical steel, especially developed for
its good magnetic properties. The magnetic properties are best along
the rolling direction so this is the direction the flux should naturally
want to take in a good core design. The laminations can be wrapped
around the coils or stacked. Wrapped or wound cores have few, if any,
joints so they carry flux nearly uninterrupted by gaps. Stacked cores
have gaps at the corners where the core steel changes direction. This
results in poorer magnetic characteristics than for wound cores. In larger
power transformers, stacked cores are much more common while in
small distribution transformers, wound cores predominate. The

Figure 1.8 Single phase core-form and shell-form transformers contrasted
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INTRODUCTION 11

laminations for both types of cores are coated with an insulating coating
to prevent large eddy current paths from developing which would lead
to high losses.

In one type of wound core construction, the core is wound into a
continuous "coil". The core is then cut so that it can be inserted around
the coils. The cut laminations are then shifted relative to each other and
reassembled to form a staggered stepped type of joint. This type of joint
allows the flux to make a smoother transition over the cut region than
would be possible with a butt type of joint where the laminations are
not staggered. Very often, in addition to cutting, the core is reshaped
into a rectangular shape to provide a tighter fit around the coils.
Because the reshaping and cutting operations introduce stress into the
steel which is generally bad for the magnetic properties, these cores
need to be reannealed before use to help restore these properties. A
wound core without a joint would need to be wound around the coils or
the coils would need to be wound around the core. Techniques for doing
this are available but somewhat costly.

In stacked cores for core-form transformers, the coils are circular
cylinders which surround the core. Therefore the preferred cross-section
of the core is circular since this will maximize the flux earning area. In
practice, the core is stacked in steps which approximates a circular
cross-section as shown in Fig. 1.9. Note that the laminations are
coming out of the paper and carry flux in this direction which is the
sheet rolling direction. The space between the core and innermost coil is
needed to provide insulation clearance for the voltage difference
between the winding and the core which is at ground potential. It is also
used for structural elements.
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INTRODUCTION12

For a given number of steps, one can maximize the core area to
obtain an optimal stacking pattern. Fig. 1.10 shows the geometric
parameters which can be used in such an optimization, namely the x
and y coordinates of the stack corners which touch the circle of radius
R. Only 1/4 of the geometry is modeled due to symmetry
considerations.

Figure 1.9 Stepped core used in core-form transformers to approximate a circular
cross-section
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INTRODUCTION 13

The corner coordinates must satisfy

(1.6)

For a core with n steps, where n refers to the number of stacks in half the
core cross-section, the core area, An, is given by

(1.7)

where x0=0. Thus the independent variables are the xi since the yi can be
determined from them using (1.6) To maximize An, we need to solve the
n equations

(1.8)

We can show that

Figure 1.10 Geometric parameters for finding the optimum step pattern
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INTRODUCTION14

(1.9)

so that the solution to (1.8) does represent a maximum. Inserting (1.7)
into (1.8), we get after some algebraic manipulation,

(1.10)

In the first and last equations (i=1 and i=n), we need to use xo=0 and
xn+1=R.

Since (1.10) represents a set of non-linear equations, an approximate
solution scheme such as a Newton-Raphson iteration can be used to
solve them. Note that these equations can be normalized by dividing by
R4 so that the normalized solution coordinates xi/R are independent of
R. Table 1.1 gives the normalized solution for various numbers of steps.

Table 1.1 Normalized x coordinates which maximize the core area for a given number
of steps.

In practice, because only a limited number of standard sheet widths
are kept in inventory and because stack heights are also descretized, at
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INTRODUCTION 15

least by the thickness of an individual sheet, it is not possible to achieve
the ideal coverage given in the table. Fig. 1.11 shows a 3 phase stepped
core for a core-form transformer without the top yoke. This is added
after the coils are inserted over the legs. The bands around the legs are
made of a high strength non-conducting material. They help hold the
laminations together and prevent them from vibrating in service. Such
vibrations are a source of noise.

1.5 TRANSFORMER COOLING

Because power transformers are greater than 99% efficient, the input
and output power are nearly the same. However because of the small
inefficiency, there are losses inside the transformer. The sources of
these losses are I2R losses in the conductors, losses in the electrical
steel due to the changing flux which it carries, and losses in metallic
tank walls and other metallic structures caused by the stray time varying
flux. These losses lead to temperature rises which must be controlled
by cooling. The primary cooling media for transformers are oil and

Figure 1.11 Three phase stepped core for a core-form transformer without the top
yoke.

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



INTRODUCTION16

air. In oil cooled transformers, the coils and core are immersed in an
oil filled tank. The oil is then circulated through radiators or other
types of heat exchanger so that the ultimate cooling medium is the
surrounding air or possibly water for some types of heat exchangers.
In small distribution transformers, the tank surface in contact with the
air provides enough cooling surface so that radiators are not needed.
Sometimes in these units the tank surface area is augmented by means
of fins or corrugations.

The cooling medium in contact with the coils and core must provide
adequate dielectric strength to prevent electrical breakdown or
discharge between components at different voltage levels. For this
reason, oil immersion is common in higher voltage transformers since
oil has a higher breakdown strength than air. Often one can rely on the
natural convection of oil through the windings, driven by buoyancy
effects, to provide adequate cooling so that pumping isn’t necessary. Air
is a more efficient cooling medium when it is blown by means of fans
through the windings for air cooled units.

In some applications, the choice of oil or air is dictated by safety
considerations such as the possibility of fires. For units inside buildings,
air cooling is common because of the reduced fire hazard. While
transformer oil is combustible, there is usually little danger of fire since
the transformer tank is often sealed from the outside air or the oil
surface is blanketed with an inert gas such as nitrogen. Although the
flash point of oil is quite high, if excessive heating or sparking occurs
inside an oil filled tank, combustible gasses could be released.

Another consideration in the choice of cooling is the weight of the
transformer. For mobile transformers such as those used on planes or
trains or units designed to be transportable for emergency use, air
cooling might be preferred since oil adds considerably to the overall
weight. For units not so restricted, oil is the preferred cooling medium
so that one finds oil cooled transformers in general use from large
generator or substation units to distribution units on telephone poles.

There are other cooling media which find limited use in certain
applications. Among these is sulfur hexaflouride gas, usually
pressurized. This is a relatively inert gas which has a higher breakdown
strength than air and finds use in high voltage units where oil is ruled
out for reasons such as those mentioned above and where air doesn’t
provide enough dielectric strength. Usually when referring to oil cooled
transformers, one means that the oil is standard transformer oil.
However there are other types of oil which find specialized usage. One
of these is silicone oil. This can be used at a higher temperature than
standard transformer oil and at a reduced fire hazard.

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



INTRODUCTION 17

1.6 WINDING TYPES

For core-form power transformers, there are two main methods of
winding the coils. These are sketched in Fig. 1.12. Both types are
cylindrical coils, having an overall rectangular cross-section. In a disk
coil, the turns are arranged in horizontal layers called disks which are
wound alternately out-in, in-out, etc. The winding is usually continuous
so that the last inner or outer turn gradually transitions between the
adjacent layers. When the disks have only one turn, the winding is
called a helical winding. The total number of turns will usually dictate
whether the winding will be a disk or helical winding. The turns within
a disk are usually touching so that a double layer of insulation separates
the metallic conductors. The space between the disks is left open, except
for structural separators called key spacers. This allows room for
cooling fluid to flow between the disks, in addition to providing
clearance for withstanding the voltage difference between them.

Figure 1.12 Two major types of coil construction for core-form power transformers
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In a layer coil, the coils are wound in vertical layers, top-bottom,
bottom-top, etc. The turns are typically wound in contact with each
other in the layers but the layers are separated by means of spacers so
that cooling fluid can flow between them. These coils are also usually
continuous with the last bottom or top turn transitioning between the
layers.

Both types of winding are used in practice. Each type has its
proponents. In certain applications, one or the other type may be more
efficient. However, in general they can both be designed to function
well in terms of ease of cooling, ability to withstand high voltage
surges, and mechanical strength under short circuit conditions.

If these coils are wound with more than one wire or cable in parallel,
then it is necessary to insert cross-overs or transpositions which interchange
the positions of the parallel cables at various points along the winding.
This is done to cancel loop voltages induced by the stray flux. Otherwise
such voltages would drive currents around the loops formed when the
parallel turns are joined at either end of the winding, creating extra losses.

The stray flux also causes localized eddy currents in the conducting
wire whose magnitude depends on the wire cross-sectional dimensions,
These eddy currents and their associated losses can be reduced by
subdividing the wire into strands of smaller cross-sectional dimensions.
However these strands are then in parallel and must therefore be
transposed to reduce the loop voltages and currents. This can be done
during the winding process when the parallel strands are wound
individually. Wire of this type, consisting of individual strands covered
with an insulating paper wrap, is called magnet wire. The
transpositions can also be built into the cable. This is called
continuously transposed cable and generally consists of a bundle of 5–
83 strands, each covered with a thin enamel coating. One strand at a
time is transposed along the cable every 12 to 16 times its width so that
all the strands are eventually transposed approximately every 25–50
cm (10–20 in) along the length of the cable. The overall bundle is then
sheathed in a paper wrap.

Fig. 1.13 shows a disk winding situated over inner windings and core
and clamped at either end via the insulating blocks and steel structure
shown. Leads emerging from the top and bottom of one of the inner
windings are also visible on the right. The staggered short horizontal
gaps shown are transition points between disks. Vertical columns of key
spacer projections are also barely visible. This outer high voltage
winding is center fed so that the top and bottom halves are connected in
parallel. The leads feeding this winding are on the left.
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Figure 1.13 Disk winding shown in position over inner windings and core. Clamping
structures and leads are also shown.
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1.7 INSULATION STRUCTURES

Transformer windings and leads must operate at high voltages relative
to the core, tank, and structural elements. In addition, different windings
and even parts of the same winding operate at different voltages. This
requires that some form of insulation between these various parts be
provided to prevent voltage breakdown or corona discharges. The
surrounding oil or air which provides cooling has some insulating
value. The oil is of a special composition and must be purified to
remove small particles and moisture. The type of oil most commonly
used, as mentioned previously, is called transformer oil. Further
insulation is provided by paper covering over the wire or cables. When
saturated with oil, this paper has a high insulation value. Other types
of wire covering besides paper are sometimes used, mainly for specialty
applications. Other insulating structures which are generally present
in sheet form, often wrapped into a cylindrical shape, are made of
pressboard. This is a material made of cellulose fibers which are
compacted together into a fairly dense and rigid matrix. Key spacers,
blocking material, and lead support structures are also commonly made
of pressboard.

Although normal operating voltages are quite high, 10–500 kV, the
transformer must be designed to withstand even higher voltages which can
occur when lightning strikes the electrical system or when power is
suddenly switched on or off in some part of the system. However
infrequently these occur, they could permanently damage the insulation,
disabling the unit, unless the insulation is designed to withstand them.
Usually such events are of short duration. There is a time dependence to
how the insulation breaks down. A combination of oil and pressboard
barriers can withstand higher voltages for shorter periods of time. In other
words, a short duration high voltage pulse is no more likely to cause
breakdown than a long duration low voltage pulse. This means that the
same insulation that can withstand normal operating voltages which are
continuously present can also withstand the high voltages arising from
lightning strikes or switching operations which are present only briefly. In
order to insure that the abnormal voltages do not exceed the breakdown
limits determined by their expected durations, lightning or surge arresters
are used to limit them. These arresters thus guarantee that the voltages will
not rise above a certain value so that breakdown will not occur, assuming
their durations remain within the expected range.

Because of the different dielectric constants of oil or air and paper,
the electric stresses are unequally divided between them. Since the oil
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dielectric constant is about half that of paper and air is even a smaller
fraction of papers’, the electric stresses are generally higher in oil or
air than in the paper insulation. Unfortunately, oil or air has a lower
breakdown stress than paper. In the case of oil, it has been found that
subdividing the oil gaps by means of thin insulating barriers, usually
made of pressboard, can raise the breakdown stress in the oil. Thus
large oil gaps between the windings are usually subdivided by multiple
pressboard barriers as shown schematically in Fig. 1.14. This is
referred to as the major insulation structure. The oil gap thicknesses
are maintained by means of long vertical narrow sticks glued around
the circumference of the cylindrical pressboard barriers. Often the
barriers are extended by means of end collars which curve around the
ends of the windings to provide subdivided oil gaps at either end of the
windings to strengthen these end oil gaps against voltage breakdown.

Figure 1.14 Major insulation structure consisting of multiple barriers between
windings. Not all the keyspacers or sticks are shown.

The minor insulation structure consists of the smaller oil gaps
separating the disks and maintained by the key spacers which are narrow
insulators, usually made of pressboard, spaced radially around the disk’s
circumference as shown in Fig. 1.14b. Generally these oil gaps are small
enough that subdivision is not required. In addition the turn to turn
insulation, usually made of paper, can be considered as part of the minor
insulation structure. Fig. 1.15 shows a pair of windings as seen from the
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top. The finger is pointing to the major insulation structure between the
windings. Key spacers and vertical sticks are also visible.

Figure 1.15 Top view of two windings showing the major insulation structure, key
spacers, and sticks
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The leads which connect the windings to the bushings or tap
changers or to other windings must also be properly insulated since they
are at high voltage and pass close to tank walls or structural supports
which are grounded. They also can pass close to other leads at different
voltages. High stresses can be developed at bends in the leads,
particularly if they are sharp, so that additional insulation may be
required in these areas. Fig. 1.16 shows a rather extensive set of leads
along with structural supports made of pressboard. The leads pass close
to the metallic clamps at the top and bottom and will also be near the
tank wall when the core and coil assembly is inserted into the tank.

Figure 1.16 Leads and their supporting structure emerging from the coils on one side
of a 3 phase transformer

Although voltage breakdown levels in oil can be increased by means
of barrier subdivisions, there is another breakdown process which must
be guarded against. This is breakdown due to creep. It occurs along the
surfaces of the insulation. It requires sufficiently high electric stresses
directed along the surface as well as sufficiently long uninterrupted
paths over which the high stresses are present. Thus the barriers
themselves, sticks, key spacers, and lead supports can be a source of
breakdown due to creep. Ideally one should position these insulation
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structures so that their surfaces conform to voltage equipotential
surfaces to which the electric field is perpendicular. Thus there would be
no electric fields directed along the surface. In practice, this is not
always possible so that a compromise must be reached.

The major and minor insulation designs, including overall winding
to winding separation and number of barriers as well as disk to disk
separation and paper covering thickness, are often determined by
design rules based on extensive experience. However, in cases of newer
or unusual designs, it is often desirable to do a field calculation using a
finite-element program or other numerical procedure. This can be
especially helpful when the potential for creep breakdown exists.
Although these methods can provide accurate calculations of electric
stresses, the breakdown process is not as well understood so that there is
usually some judgment involved in deciding what level of electrical
stress is acceptable.

1.8 STRUCTURAL ELEMENTS

Under normal operating conditions, the electromagnetic forces acting
on the transformer windings are quite modest. However, if a short
circuit fault occurs, the winding currents can increase 10–30 fold,
resulting in forces of 100–900 times normal since the forces increase
as the square of the current. The windings and supporting structure
must be designed to withstand these fault current forces without
permanent distortion of the windings or supports. Because current
protection devices are usually installed, the fault currents are interrupted
after a few cycles.

Faults can be caused by falling trees which hit power lines, providing
a direct current path to ground or by animals or birds bridging across
two lines belonging to different phases, causing a line to line short.
These should be rare occurrences but over the 20–50 year lifetime of a
transformer, their probability increases so that sufficient mechanical
strength to withstand these is required.

The coils are generally supported at the ends with pressure rings.
These are thick rings of pressboard or other material which cover the
winding ends. The center opening allows the core to pass through. The
rings are in the range of 3–10 cm (1–4 in) for large power transformers.
Some blocking made of pressboard or wood is required between the
tops of the windings and the rings since all of the windings are not of the
same height. Additional blocking is usually placed between the ring
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and the top yoke and clamping structure to provide some clearance
between the high winding voltages and the grounded core and clamp.
These structures can be seen in Fig. 1.13. The metallic clamping
structure can also be seen.

The top and bottom clamps are joined by vertical tieplates which
pass along the sides of the core. The tieplates have threaded ends so
they pull the top and bottom clamps together by means of tightening
bolts, compressing the windings. These compressive forces are
transmitted along the windings via the key spacers which must be
strong enough in compression to accommodate these forces. The
clamps and tieplates are made of steel. Axial forces which tend to
elongate the windings when a fault occurs will put the tieplates in
tension. The tieplates must also be strong enough to carry the
gravitational load when the core and coils are lifted as a unit since the
lifting hooks are attached to the clamps. The tieplates are typically
about 1 cm (3/8 in) thick and of varying width depending on the
expected short circuit forces and transformer weight. The width is often
subdivided to reduce eddy current losses. Fig. 1.17 shows a top view of
the clamping structure. The unit shown is being lifted by means of the
lifting hooks.

The radial fault forces are countered inwardly by means of the sticks
which separate the oil barriers and by means of additional support next
to the core. The windings themselves, particularly the innermost one,
are often made of hardened copper or bonded cable to provide
additional resistance to the inward radial forces. The outermost
winding is usually subjected to an outer radial force which puts the
wires or cables in tension. The material itself must be strong enough to
resist these tensile forces since there is no supporting structure on the
outside to counter these forces. A measure of the material’s strength is
its proof stress. This is the stress required to produce a permanent
elongation of 0.2% (sometimes 0.1% is used). Copper of specified proof
stress can be ordered from the wire or cable supplier.

The leads are also acted on by extra forces during a fault. These are
produced by the stray flux from the coils or from nearby leads
interacting with the lead’s current. The leads are therefore braced by
means of wooden or pressboard supports which extend from the clamps.
This lead support structure can be quite complicated, especially if there
are many leads and interconnections. It is usually custom made for each
unit. Fig. 1.16 is an example of such a structure.

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



INTRODUCTION26

Figure 1.17 Top view of clamping stmcture for a 3 phase transformer.
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The assembled coil, core, clamps, and lead structure is placed in a
transformer tank. The tank serves many functions, one of which is to
contain the oil for an oil filled unit. It also provides protection not only
for the coils and other transformer structures but for personnel from the
high voltages present. If made of soft (magnetic) steel, it keeps stray flux
from getting outside the tank. The tank is usually made airtight so that
air doesn’t enter and oxidize the oil.

Aside from being a containment vessel, the tank also has numerous
attachments such as bushings for getting the electrical power into and
out of the unit, an electronic control and monitoring cabinet for
recording and transferring sensor information to remote processors and
receiving control signals, and radiators with or without fans to provide
cooling. On certain units, there is a separate tank compartment for tap
changing equipment. Also some units have a conservator attached to
the tank cover or to the top of the radiators. This is a large, usually
cylindrical, structure which contains oil in communication with the
main tank oil. It also has an air space which is separated from the oil by
a sealed diaphragm. Thus, as the tank oil expands and contracts due to
temperature changes, the flexible diaphragm accommodates these
volume changes while maintaining a sealed oil environment. Fig 18
shows a large power transformer installed in a switchyard. The
cylindrical conservator is visible on top of the radiator bank. The high
and low voltage bushings which are mounted on the tank cover are
visible. Also shown are the surge arresters which in this case are
mounted on top of the conservator.
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Figure 1.18 Large power transformer showing tank and attachments.
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1.9 THREE PHASE CONNECTIONS

There are two basic types of 3 phase connections in common use, the Y
(Wye) and ∆ (Delta) connections as illustrated schematically in Fig.
1.19. In the Y connection, all 3 phases are connected to a common point
which may or may not be grounded. In the ∆ connection, the phases are
connected end to end with each other. In the Y connection, the line
current flows directly into the winding where it is called the winding or
phase current. Note that in a balanced 3 phase system, the currents sum
to zero at the common node in Fig. 1.19a. Therefore, under balanced
conditions, even if this point were grounded, no current would flow to
ground. In the ∆ connection, the line and phase currents are different.
On the other hand, the line to line voltages in the Y connection differ
from the voltages across the windings or phase voltages whereas they
are the same in the ∆ connection. Note that the coils are shown at
angles to each other in the figure to emphasize the type of interconnection
whereas in practice they are side by side and vertically oriented as
shown for example in Fig. 1.16. The leads are snaked about to handle
the interconnections.

Figure 1.19 Basic 3 phase connections
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To be more quantitative about the relationship between line and
phase quantities, we must resort to phasor notation. The 3 phase
voltages as shown in Fig. 1.5 can be written

Va=Vo cos(ωt), Vb=Vo cos(ωt+240°), Vc=Vo cos(ωt+120°) (1.11)

where Vo is the peak voltage, t is the time, and ω the angular frequency
(ω=2πf, f the frequency in Hz). Actually the 240° and 120° above should
be expressed in radians to be consistent with the expression for ω. When
using degrees, ω=360°f should be understood. Using the identity

ejθ=cosθ+jsinθ (1.12)

where j is the imaginary unit (j2=”1), (1.11) 10 can be written

(1.13)

where Re denotes taking the real part of.
Complex quantities are more easily visualized as vectors in the

complex plane. Thus (1.12) can be described as a vector of unit
magnitude in the complex plane with real component cos θ and
imaginary component sin θ This can be visualized as a unit vector
starting at the origin and making an angle θ with the real axis. Any
complex number can be described as such a vector but having, in
general, a magnitude different from unity. Fig. 1.20 shows this pictorial
description. As θ increases, the vector rotates in a counter clockwise
fashion about the origin. If we let θ=ωt, then as time increases, the
vector rotates with a uniform angular velocity ω about the origin. When
dealing with complex numbers having the same time dependence, ejωt,
as in (1.13), it is customary to drop this term or to simply set t=0. Since
these vectors all rotate with the same angular velocity, their relative
positions with respect to each other in the complex plane remain
unchanged, i.e. if the angle between two such vectors is 120° at t=0, it
will remain 120° for all subsequent times. The resulting vectors, with
common time dependence removed, are called phasors.
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Using bold faced type to denote phasors, from (1.13) define

(1.14)

Then to recover (1.13), multiply by the complex time dependence and
take the real part. These phasors are also shown in Fig. 1.20. Note that
the process of recovering (1.13), which is equivalent to (1.11), can be
visualized as multiplying by the complex time dependence and taking
their projections on the real axis as the phasors rotate counterclockwise
while maintaining their relative orientations. Thus Va peaks (has maximum
positive value) at t=0, Vb achieves its positive peak value next at ωt=120°
followed by Vc at ωt=240°. This ordering is called positive sequence
ordering and Va, Vb, Vc are referred to as a positive sequence set of voltages.
A similar set of phasors can also be used to describe the currents. Note
that, using vector addition, this set of phasors adds to zero as is evident in
Fig. 1.20.

If Va, Vb, Vc are the phase voltages in a Y connected set of
transformer windings, let Vab denote the line to line voltage between

Figure 1.20 Phasors as vectors in the complex plane
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phases a and b, etc, for the other line to line voltages. Then these
voltages are given by,

(1.15)

Using a phasor description, these can be readily calculated. The line to
line phasors are shown graphically in Fig. 1.21. Fig. 1.21a shows the
vector subtraction process explicitly and Fig. 1.21b shows the set of 3
line to line voltage phasors. Note that these form a positive sequence set
that is rotated 30° relative to the phase voltages. The line to line voltage
magnitude can be found geometrically as the diagonal of the
parallelogram formed by equal length sides making an angle of 120°
with each other. Thus we have

(1.16)

where | | denotes taking the magnitude. We have used the fact that the
different phase voltages have the same magnitude.

Figure 1.21 Phasor representation of line to line voltages and their relation to the
phase voltages in a Y connected set of 3 phase windings
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Thus the magnitude of the line to line voltage is √3 times the phase
voltage magnitude in Y connected transformer coils. Since the phase
voltages are internal to the transformer and therefore impact the
winding insulation structure, a more economical design is possible if
these can be lowered. Hence, a Y connection is often used for the high
voltage coils of a 3 phase transformer.

The relationship between the phase and line currents of a delta
connected set of windings can be found similarly. From Fig. 1.19, we
see that the line currents are given in terms of the phase currents by

(1.17)

These are illustrated graphically in Fig. 1.22. Note that, as shown in
Fig. 1.22b, the line currents form a positive sequence set rotated -30°
relative to the phase currents. One could also say that the phase currents
are rotated +30° relative to the line currents. The magnitude relationship
between the phase and line currents follows similarly as for the voltages
in a Y connection. However, let us use phasor subtraction directly in
(1.17) to show this. We have

(1.18)

where we have used |Iab|=|Ica|.
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Thus the magnitude of the line current into or out of a delta connected
set of windings are  times the winding or phase current magnitude.
Since low voltage windings have higher phase currents than high voltage
windings, it is common to connect these in delta because lowering the
phase currents can produce a more economical design.

The rated power into a phase of a 3 phase transformer is the terminal
voltage to ground times the line current. We can deal with magnitudes
only here since rated power is at unity power factor. Thus for a Y
connected set of windings, the terminal voltage to ground equals the
voltage across the winding and the line current equals the phase
current. Hence the total rated power into all three phases is 3×the phase
voltage ×the phase current which is the total winding power. In terms of
the line to line voltages and line current, we have, using (1.16), that the
total rated power is × the line to line voltage×the line current.

For a delta connected set of windings, there is considered to be a
virtual ground at the center of the delta. From the geometrical
relationships we have developed above, the line voltage to ground is
therefore the line to line voltage÷ . Thus the total rated power is 3×
the line voltage to ground×the line current= ×line to line voltage×the
line current. Since the phase voltage equals the line to line voltage and
the phase current=1/ × the line current according to (1.18), the total
rated power can also be expressed as 3×the phase voltage×the phase
current or the total winding power. Thus the total rated power, whether

Figure 1.22 Phaser representation of line currents and their relation to the phase
currents in a delta connected set of 3 phase windings
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expressed in terms of line quantities or phase quantities, is the same for
Y and delta connected windings. We also note that the rated input
power is the same as the power flowing through the windings. This may
be obvious here, but there are some connections where this is not the
case, in particular autotransformer connections.

An interesting 3 phase connection is the open delta connection. In
this connection, one of the windings of the delta is missing although the
terminal connections remain the same. This is illustrated in Fig. 1.23.
This could be used especially if the 3 phases consist of separate units
and if one of the phases is missing either because it is intended for future
expansion or it has been disabled for some reason. Thus instead of
(1.17) for the relationship between line and phase currents, we have

(1.19)

But this implies

Ia+Ib+Ic=0 (1.20)

so that the terminal currents form a balanced 3 phase system. Likewise
the terminal voltages form a balanced 3 phase system. However only 2
phases are present in the windings. As far as the external electrical
system is concerned, the 3 phases are balanced. The total rated input or
output power is, as before, 3×line voltage to ground×line current= ×line
to line voltage×line current. But as (1.19) shows, the line current has the
same magnitude as the phase or winding current. Also, as before, the
line to line voltage equals the voltage across the winding or phase
voltage. Hence the total rated power is ×phase voltage×phase current.
Previously for a full delta connection, we found that the total rated
power was 3×phase voltage×phase current. Thus for the open delta, the
rated power is only 1/ =0.577 times that of a full delta connection. As
far as winding utilization goes, in the full delta connection 2 windings
carry 2/3×3×phase voltage×phase current=2×phase voltage×phase
current. Thus the winding power utilization in the open delta connection
is /2=0.866 times that of a full delta connection. Thus this connection
is not as efficient as a full delta connection.
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1.10 MODERN TRENDS

Changes in power transformers tend to occur very slowly. Issues of
reliability over long periods of time and compatibility with existing
systems must be addressed by any new technology. A major change
which has been ongoing since the earliest transformers is the improvement
in core steel. The magnetic properties, including losses, have improved
dramatically over the years. Better stacking methods, such as stepped
lapped construction, have resulted in lower losses at the joints. The use
of laser or mechanical scribing has also helped lower the losses in these
steels. Further incremental improvements in all of these areas can be
expected.

The development of amorphous metals as a core material is
relatively new. Although these materials have very low losses, lower
than the best rolled electrical steels, they also have a rather low
saturation induction (~1.5 Tesla versus 2.1 Tesla for rolled steels). They
are also rather brittle and difficult to stack. This material has tended to
be more expensive than rolled electrical steel and, since expense is

Figure 1.23 Open delta connection
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always an issue, has limited their use. However, this could change with
the cost of no-load losses to the utilities. Amorphous metals have found
use as wound cores in distribution transformers. However, their use as
stacked cores in large power transformers is problematic.

The development of improved wire types, such as transposed cable
with epoxy bonding, is an ongoing process. Newer types of wire
insulation covering such as Nomex are being developed. Nomex is a
synthetic material which can be used at higher temperatures than paper,
It also has a lower dielectric constant than paper so it produces a more
favorable stress level in the adjacent oil than paper. Although it is
presently a more expensive material than paper, it has found a niche in
air cooled transformers or in the rewinding of older transformers. Its
thermal characteristics would probably be underutilized in transformer
oil filled transformers because of the limitations on the oil temperatures.

Pressboard insulation has undergone improvements over time such
as precompressing to produce higher density material which results in
greater dimensional stability in transformer applications. This is
especially helpful in the case of key spacers which bear the
compressional forces acting on the winding. Also pre-formed parts
made of pressboard, such as collars at the winding ends and high
voltage lead insulation assemblies, are becoming more common and
are facilitating the development of higher voltage transformers.

Perhaps the biggest scientific breakthrough which could
revolutionize future transformers is the discovery of high temperature
superconductors. These materials are still in the early stage of
development. They could operate at liquid nitrogen temperatures which
is a big improvement over the older superconductors which operate at
liquid helium temperatures. It has been exceedingly difficult to make
these new superconductors into wires of the lengths required in
transformers. Nevertheless, prototype units are being built and
technological improvements can be expected [Meh98].

A big change which is occurring in newer transformers is the
increasing use of on-line monitoring devices. Fiber optic temperature
sensors are being inserted directly into the windings to monitor the
hottest winding temperature. This can be used to keep the transformer’s
loading or overloading within appropriate bounds so that acceptable
insulation and adjacent oil temperatures are not exceeded and the
thermal life is not too negatively impacted. Gas analysis devices are
being developed to continuously record the amounts and composition of
gasses in the cover gas or dissolved in the oil. This can provide an early
indication of overheating or of arcing so that corrective action can be
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taken before the situation deteriorates too far. Newer fiber optic current
sensors based on the Faraday effect are being developed. These weigh
considerably less than present current sensors and are much less bulky.
Newer miniaturized voltage sensors are also being developed. Sensor
data in digitized form can be sent from the transformer to a remote
computer for further processing. Newer software analysis tools should
help to more accurately analyze fault conditions or operational
irregularities.

Although tap changers are mechanical marvels which operate very
reliably over hundreds of thousands of tap changing operations, as with
any mechanical device, they are subject to wear and must be replaced
or refurbished from time to time. Electronic tap changers, using solid
state components, have been developed. Aside from essentially
eliminating the wear problem, they also have a much faster response
time than mechanical tap changers which could be very useful in some
applications. Their expense relative to mechanical tap changers has
been one factor limiting their use. Further developments perhaps
resulting in lower cost can be expected in this area.

As mentioned previously, there are incentives to transmit power at
higher voltages. Some of the newer high voltage transmission lines
operate in a d.c. mode. In this case, the conversion equipment at the
ends of the line which change a.c. to d.c. and vice versa requires a
transformer. However this transformer does not need to operate at the
line voltage. For high voltage a.c. lines, however, the transformer must
operate at these higher voltages. At present, transformers which operate
in the range of 750–800 kV have been built. Even higher voltage units
have been developed, but this technology is still somewhat
experimental. A better understanding of high voltage breakdown
mechanisms, especially in oil, is needed to spur growth in this area.
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2. TRANSFORMER CIRCUIT MODELS,
INCLUDING MAGNETIC CORE

CHARACTERISTICS, AND
APPLICATIONS

Summary The characteristics of transformer cores are discussed in
terms of their basic magnetic properties and how these influence
transformer design. Special emphasis is placed on silicon steel cores
since these are primarily used in power transformers. However, the
magnetic concepts discussed are applicable to all types of cores. The
magnetic circuit approximation is introduced and its use in obtaining
the properties of cores with joints or gaps is discussed. Basic features
of the magnetization process are used to explain inrush current and
to calculate its magnitude. The inclusion of the transformer core in
electrical circuit models is discussed. Although non-linearities in the
magnetic characteristics can be included in these models, for inductions
well below saturation a linear approximation is adequate. For many
purposes, the circuit models can be further approximated by
eliminating the core. As an application, an approximate circuit model
is used to calculate the voltage regulation of a two winding
transformer.

2.1 INTRODUCTION

Transformer cores are constructed predominantly of ferromagnetic material.
The most common material used is iron, with the addition of small amounts
of silicon and other elements which help improve the magnetic properties
and/or lower losses. Other materials which find use in electronic transformers
are the nickel-iron alloys (permalloys) and the iron-oxides (ferrites). The
amorphous metals, generally consisting of iron, boron, and other additions,
are also finding use as cores for distribution transformers. These materials
are all broadly classified as ferromagnetic and, as such, share many properties
in common. Among these are saturation magnetization or induction,
hysteresis, and a Curie temperature above which they cease to be
ferromagnetic.
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Cores made of silicon steel (~3% Si) are constructed of multiple
layers of the material in sheet form. The material is fabricated in
rolling mills from hot slabs or ingots. Through a complex process of
multiple rolling, annealing, and coating stages, it is formed into thin
sheets of from 0.18-0.3 mm (7–11 mil) thickness and up to a meter (39
in) wide. The material has its best magnetic properties along the
rolling direction and a well constructed core will take advantage of
this. The good rolling direction magnetic properties are due to the
underlying crystalline orientation which is called a Goss or cube-on-
edge texture as shown in Fig. 2.1. The cubic crystals have the highest
permeability along the cube edges. The visible edges pointing along
the rolling direction are highlighted in the figure. Modern practice can
achieve crystal alignments of >95%. The permeability is much lower
along the cube diagonals or cube face diagonals. The latter are
pointing in the sheet width direction.

Figure 2.1 Goss or cube-on-edge crystalline texture for silicon steel.

In addition to its role in aiding crystal alignment, the silicon helps
increase the resistivity of the steel from about 25 µΩ-cm for low carbon
magnetic steel to about 50 µΩ-cm for 3% Si-Fe. This higher resistivity
leads to lower eddy current losses. Silicon also lowers the saturation
induction from about 2.1 T for low carbon steel to about 2.0 T for 3%
Si-Fe. Silicon confers some brittleness on the material, which is an
obstacle to rolling to even thinner sheet thicknesses. At higher silicon
levels, the brittleness increases to the point where it becomes difficult to
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roll. This is unfortunate because at 6% silicon content, the
magnetostriction of the steel disappears. Magnetostriction is a length
change or strain which is produced by the induction in the material.
This contributes to the noise level in a transformer.

The nickel-iron alloys or permalloys are also produced in sheet
form. Because of their malleability, they can be rolled extremely thin.
The sheet thinness results in very low eddy current losses so that these
materials find use in high frequency applications. Their saturation
induction is lower than that for silicon steel.

Ferrite cores are made of sintered power. They generally have
isotropic magnetic properties. They can be cast directly into the desired
shape or machined after casting. They have extremely high resistivities
which permits their use in high frequency applications. However, they
have rather low saturation inductions.

Amorphous metals are produced by directly casting the liquid melt
onto a rotating, internally cooled, drum. The liquid solidifies extremely
rapidly, resulting in the amorphous (non-crystalline) texture of the final
product. The material comes off the drum in the form of a thin ribbon
with controlled widths which can be as high as ~25 cm (10 in). The
material has a magnetic anisotropy determined by the casting direction
and subsequent magnetic anneals so that the best magnetic properties
are along the casting direction. Their saturation induction is about 1.5
T. Because of their thinness and composition, they have extremely low
losses. These materials are very brittle which has limited their use to
wound cores. Their low losses make them attractive for use in
distribution transformers, especially when no-load loss evaluations are
high.

Ideally a transformer core would carry the flux along a direction of
highest permeability and in a closed path. Path interruptions caused by
joints, which are occupied by low permeability air or oil, lead to poorer
overall magnetic properties. In addition, the cutting or slitting
operations can introduce localized stresses which degrade the magnetic
properties. In stacked cores, the joints are often formed by overlapping
the laminations in steps to facilitate flux transfer across the joint.
Nevertheless, the corners result in regions of higher loss. This can be
accounted for in design by multiplying the ideal magnetic circuit losses,
usually provided by the manufacturer on a per unit weight basis, by a
building factor >1. Another, possibly better, way to account for the
extra loss is to apply a loss multiplying factor to the steel occupying the
corner or joint region only. More fundamental methods to account for
these extra losses have been proposed but these tend to be too elaborate
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for routine use. Joints also give rise to higher exciting current, i.e. the
current in the coils necessary to drive the required flux around the core.

2.2 BASIC MAGNETISM

The discovery by Oersted that currents give rise to magnetic fields led
Ampere to propose that material magnetism results from localized
currents. He proposed that large numbers of small current loops,
appropriately oriented, could create the magnetic fields associated with
magnetic materials and permanent magnets. At the time, the atomic
nature of matter was not understood. With the Bohr model of the atom,
where electrons are in orbit around a small massive nucleus, the localized
currents could be associated with the moving electron. This gives rise to
an orbital magnetic moment which persists even though a quantum
description has replaced the Bohr model. In addition to the orbital
magnetism, the electron itself was found to possess a magnetic moment
which cannot be understood simply from the circulating current point of
view. Atomic magnetism results from a combination of both orbital and
electron moments.

In some materials, the atomic magnetic moments either cancel or are
very small so that little material magnetism results. These are known as
paramagnetic or diamagnetic materials, depending on whether an applied
field increases or decreases the magnetization. Their permeabilities
relative to vacuum are nearly equal to 1. In other materials, the atomic
moments are large and there is an innate tendency for them to align due to
quantum mechanical forces. These are the ferromagnetic materials. The
alignment forces are very short range, operating only over atomic
distances. Nevertheless, they create regions of aligned magnetic moments,
called domains, within a magnetic material. Although each domain has a
common orientation, this orientation differs from domain to domain. The
narrow separations between domains are regions where the magnetic
moments are transitioning from one orientation to another. These
transition zones are referred to as domain walls.

In non-oriented magnetic materials, the domains are typically very
small and randomly oriented. With the application of a magnetic field,
the domain orientation tends to align with the field direction. In
addition, favorably orientated domains tend to grow at the expense of
unfavorably oriented ones. As the magnetic field increases, the domains
eventually all point in the direction of the magnetic field, resulting in a
state of magnetic saturation. Further increases in the field cannot orient
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more domains so the magnetization does not increase but is said to
saturate. From this point on, further increases in induction are due to
increases in the field only.

The relation between induction, B, magnetization, M, and field, H,
in SI units, is

B=µo(H+M) (2.1)

For many materials, M is proportional to H,

M=χH (2.2)

where χ is the susceptibility which need not be a constant. Substituting
into (2.1)

B=µo(1+χ)H=µoµrH (2.3)

where µo=1+χ is the relative permeability. We see directly in (2.1) that,
as M saturates because all the domains are similarly oriented, B can
only increase due to increases in H. This occurs at fairly high H or
exciting current values, since H is proportional to the exciting current.
At saturation, since all the domains have the same orientation, there are
no domain walls. Since H is generally small compared to M for high
permeability ferromagnetic materials up to saturation, the saturation
magnetization and saturation induction are nearly the same and will be
used interchangeably.

As the temperature increases, the thermal energy begins to compete
with the alignment energy and the saturation magnetization begins to
fall until the Curie point is reached where ferromagnetism completely
disappears. For 3 % Si-Fe, the saturation magnetization or induction at
20 °C is 2.0 T and the Curie temperature is 746 °C. This should be
compared with pure iron where the saturation induction at 20 °C is 2.1
T and the Curie temperature is 770 °C. The fall off with temperature
follows fairly closely a theoretical relationship between ratios of
saturation induction at absolute temperature T to saturation induction
at T = 0 °K to the ratio of absolute temperature T to the Curie
temperature expressed in °K. For pure iron, this relationship is shown
graphed in Fig. 2.2 [Ame57]. This same graph also applies rather
closely to other iron containing magnetic materials such as Si-Fe as
well as to nickel and cobalt based magnetic materials.

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



TRANSFORMER CIRCUIT MODELS44

Thus to find the saturation magnetization of 3 % Si-Fe at a temperature
of 200 °C=473 °K, take the ratio T/TC=0.464, From the graph, this
corresponds to Ms/M0=0.94. On the other hand, we know that at 20 °C
where T/TC=0.287 that Ms/M0=0.98. Thus M0= 2.0/0.98=2.04. Thus
Ms(T=200 °C)=0.94(2.04)=1.92 T. This is only a 4 % drop in saturation
magnetization. Considering that core temperatures are unlikely to reach
200 °C, temperature effects on magnetization should not be a problem
in transformers under normal operating conditions.

Ferromagnetic materials typically exhibit the phenomenon of
magnetostriction, i.e. a length change or strain resulting from the
induction or flux density which they carry. Since this length change is
independent of the sign of the induction, for an a.c. induction at
frequency f, the length oscillations occur at frequency 2f. These length
vibrations contribute to the noise level in transformers.
Magnetostriction is actually a fairly complex phenomenon and can
exhibit hysteresis as well as anisotropy.

Figure 2.2 Relationship between saturation magnetization and absolute temperature,
expressed in relative terms, for pure iron. This also applies reasonably well to other
ferromagnetic materials containing predominately iron, nickel, or cobalt.
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Another source of noise in transformers, often overlooked, results
from the transverse vibrations of the laminations at unsupported free
ends. This can occur at the outer surfaces of the core and shunts if these
are not constrained. This can be shown qualitatively by considering the
situation shown in Fig. 2.3. In Fig. 2.3a, we show a leakage flux density
vector B1 impinging on a packet of tank shunt laminations which are
flat against the tank wall and rigidly constrained. After striking the
lamination packet, the flux is diverted into the packet and transported
upward since we are looking at the bottom end. In Fig. 2.3b, the outer
lamination is constrained only up to a certain distance from the end, d,
beyond which it is free to move. We show its loose end at a distance x
from the rest of the packet. Part of the flux density B1 is diverted along
this outer packet and a reduced flux density B2 impinges on the
remaining packets. We can assume the magnetic shunts are linear since
the flux density they carry is usually far below saturation. The
magnetic energy for linear materials is given by

(2.4)

Using B=µoµτ H, this becomes

(2.5)

In highly oriented Si-Fe, µr is generally quite large (µr>5000) so that
most of the magnetic energy resides in the oil or air where µr=1. Thus
we can ignore the energy stored in the laminations. For the situation
shown in Fig. 2.3, let � be a distance along which B1 is parallel and
reasonably constant and let B1 also be constant through a cross-sectional
area A determined by d and a unit distance into the paper. Then the
magnetic energy associated with Fig. 2.3b is

(2.6)

The magnetic force component in the x direction is

(2.7)
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Since B2<B1, this force acts to pull the outer lamination outward in
the direction of x. It is independent of the sign of B so that if B is
sinusoidal of frequency f, Fm,x will have a frequency of 2f. Thus it
contributes to the transformer noise at the same frequency as
magnetostriction.

Figure 2.3 Geometry for simplified force calculation for a loose end lamination.

2.3 HYSTERESIS

Hysteresis, as the name implies, means that the present state of a
ferromagnetic material depends on its past magnetic history. This is
usually illustrated by means of a B-H diagram. Magnetic field changes
are assumed to occur slowly enough that eddy current effects can be
ignored. We assume the B and H fields are collinear although, in
general, they need not be. Thus we can drop the vector notation. If we
start out with a completely demagnetized specimen (this state requires
careful preparation) and increase the magnetic field from 0, the material
will follow the initial curve as shown in Fig. 2.4a. This curve can be
continued to saturation, B2. If at some point along the initial curve, the
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field is reversed and decreased, the material will follow a normal
hysteresis loop as shown in Fig. 2.4b. If the magnetic field is cycled
repeatedly between ±Hmax, the material will stay on a normal hysteresis
loop determined by Hmax, their being a whole family of such loops as
shown in Fig. 2.4c. The largest loop occurs when Bmax reaches Bs. This
is called the major loop. These loops are symmetrical about the origin.
If at some point along a normal loop, other than the extreme points,
the field is reversed and cycled through a smaller cycle back to its
original value before the reversal occurred, a minor or incremental
loop is traced as shown in Fig. 2.4d. Considering the many other
possibilities for field reversals, the resulting hysteresis paths can become
quite complicated.

Figure 2.4 Hysteresis processes
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Perhaps the most important magnetic path is a normal hysteresis
loop since this is traced in a sinusoidal cyclic magnetization process.
Several key points along such a path are shown in Fig. 2.5. As the field
is lowered from Hmax to zero, the induction remaining is called the
remanence, Br. As the field is further lowered into negative territory, the
absolute value of the field at which the induction drops to zero is called
the coercivity, Hc. Because the loop is symmetrical about the origin,
there are corresponding points on the negative branches. At any point
on a magnetization path, the ratio of B to H is called the permeability
while the slope of the B-H curve at that point is called the differential
permeability. Other types of permeability can be defined. The area of
the hysteresis loop is the magnetic energy per unit volume and per cycle
dissipated in hysteresis processes.

Figure 2.5 Key points along a normal hystersis loop

In oriented Si-Fe, the relative permeability for inductions reasonably
below saturation is so high that the initial curve is close to the B axis if
B and H are measured in the same units as they are in the Gaussian
system or if B vs µoH is plotted in the SI system. In addition, the
hysteresis loops are very narrow in these systems of units and closely
hug the initial curve. Thus for all practical purposes, we can assume a
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single valued B-H characteristic for these high permeability materials
coinciding with the initial curve. Since inductions in transformer cores
are kept well below saturation in normal operation to avoid high
exciting currents, the effects of saturation are hardly noticeable and the
core, for many purposes, can be assumed to have a constant
permeability.

2.4 MAGNETIC CIRCUITS

In stacked cores and especially in cores containing butt joints as well
as in gapped reactor cores, the magnetic path for the flux is not through
a homogeneous magnetic material. Rather there are gaps occupied by
air or oil or other non-magnetic materials of relative permeability
equal to 1. In such cases, it is possible to derive effective permeabilities
by using a magnetic circuit approximation. This approximation derives
from the mathematical similarity of magnetic and electrical laws. In
resistive electrical circuits, the conductivities of the wires and circuit
elements are usually so much higher than the surrounding medium
(usually air) that little current leaks away from the circuit. However,
in magnetic circuits where the flux corresponds to the electric current,
the circuit permeability, which is the analog of conductivity, is not
orders of magnitude higher than that of the surrounding medium so
that flux leakage does occur. Thus, whereas the circuit approach is
nearly exact for electric circuits, it is only approximate for magnetic
circuits [Del94].

Corresponding to Kirchoff’s current law at a node

(2.8)

where Ii is the current into a node along a circuit branch i (positive if
entering the node, negative if leaving), we have the approximate magnetic
counterpart

(2.9)

where Φi is the flux into a node. Whereas (2.8) is based on conservation
of current and ultimately charge, (2.9) is based on conservation of flux.
Kirchoff’s voltage law can be expressed
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(2.10)

where the voltage drops Vi are taken around the loop in which an emf is
induced. The electric field path integral in (2.10) is an alternate way of
expressing the voltage drops. With E↔H, the magnetic analogy is

(2.11)

In this case, (2.11) is exact.
In terms of the current density J and flux density B, we have

(2.12)

so that J and B are corresponding quantities in the two systems. Ohm’s
law in its basic form can be written

J=σE (2.13)

where σ is the conductivity. This corresponds to

B=µH (2.14)

in the magnetic system, where µ. is the permeability.
To obtain resistance and corresponding reluctance expressions for

simple geometries, consider a resistive or reluctive element of length L
and uniform cross-sectional area A as shown in Fig. 2.6. Let a uniform
current density J flow in the resistive element and a uniform flux density
B flow through the magnetic element. Then

(2.15)

Let a uniform electric field E drive the current and a uniform magnetic
field H drive the flux. Then

(2.16)

Using (2.13), we have

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



TRANSFORMER CIRCUIT MODELS 51

(2.17)

where the quantity in parenthesis is recognized as the resistance. Similarly
from (2.14),

(2.18)

where the quantity in parenthesis is called the reluctance. A similar
analysis could be carried out for other geometries using the basic field
correspondences.

As an application of the circuit approach, consider a simple
magnetic core with an air gap as shown in Fig. 2.7. A flux Φ is driven
around the circuit by a coil generating an mmf of NI. The path through
the magnetic core of permeability µ=µoµr has mean length L and the
path in the air gap of permeability µo has length Lo. The reluctances in
the magnetic material and air gap are

(2.19)

Since these reluctances are in series, we have

(2.20)

Figure 2.6 Geometries for simple resistance and reluctance calculation
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Thus since µr can be quite large, the reluctance with air gap can be
much larger than that without so that more mmf is required to drive a
given flux. Note that we ignored fringing in the air gap. This could be
approximately accounted for by letting the area A be larger in the air
gap than in the core material.

Figure 2.7 Air gap magnet driven by mmf=NI

In general, for two reluctances in series having the same cross-
sectional area A but lengths L1, L2 and permeabilities µ1, µ2, the total
reluctance is

(2.21)

where L=L1+L2, f1=L1/L, f2=L2/L. Thus the effective permeability of the
combination is given by

(2.22)

This could be extended to more elements in series. An identical
relationship holds for the effective conductivity of a series of equal cross-
sectional area resistive elements.
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Thus in a transformer core with joints, the effective permeability is
reduced relative to that of an ideal core without joints. This requires a
higher exciting current to drive a given flux through the core. The core
losses will also increase mainly due to flux distortion near the joint
region. For linear materials, the slope of the B-H curve will decrease for
a jointed core relative to an unjointed core. For materials which follow
a hysteresis loop, the joints will have the effect of skewing or tilting the
effective hysteresis loop of the jointed core away from the vertical
compared with the unjointed ideal core. This can be seen by writing
(2.11) as

(2.23)

where H1 is the field in the core steel and H2 the field in the gap. �1 and
�2 are core and gap lengths, � the total length, and Heff an effective
applied field. Assuming the gap is linear with permeability mo (relative
permeability 1), we have

B2=µoH2 (2.24)

Also assume that there is no leakage, that the core and gap have the
same cross-sectional area, and the flux is uniformly distributed across
it. Then B1=B2=B from flux continuity. Thus we get for the H field in the
core material

(2.25)

Since � ≈ �1 , H1 is more negative than Heff when B is positive. To see
the effect this has on the hysteresis loop of the jointed core, refer to
Fig. 2.8. On the ascending part of the loop, we show the Heff value
which applies to the jointed core. Since B>0, H1<Heff by (2.25) so the B
value associated with Heff corresponds to a B value lower down on the
loop for the intrinsic core material. The same situation applies on the
descending part of the loop. The points on the B=0 axis have H1≈Heff

so the loop is fixed at these points. The net effect is that the loop is
skewed towards the right on the top (and towards the left on the bottom).
Notice that the remanence falls for the jointed loop because according
to (2.25), when Heff=0, H1<0 and the associated B value is lower down
on the loop.
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2.5 INRUSH CURRENT

When a transformer is disconnected from a power source, the current is
interrupted and the magnetic field or mmf driving flux through the core
is reduced to zero. As we have seen in the preceding section, the core
retains a residual induction which is called the remanence when the
hysteresis path is on the positive descending (negative ascending) branch
of a normal loop. In other cases, there could also be a residual induction
but it would not have as high a magnitude. In order to drive the core to
the zero magnetization state, it would be necessary to gradually lower
the peak induction while cycling the field. Since the intrinsic normal
hysteresis loops for oriented Si-Fe have fairly flat tops (or bottoms), the
remanence is close to the peak induction. However, the presence of gaps
in the core reduces this somewhat. When the unit is re-energized by a
voltage source, the flux change must match the voltage change according
to Faraday’s law,

(2.26)

For a sinusoidal voltage source, the flux is also sinusoidal,

Figure 2.8 Effect of air or oil gaps on the hysteresis loop
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Φ=Φp sin(ωt+ϕ) (2.27)

where Φp is the peak flux. Assuming uniform flux density, we have Φp

=BpAc, where Ac is the core cross-sectional area. Substituting into (2.26),
we get

V=−NωBpAc cos(ωt+ϕ) (2.28)

Hence the peak voltage, using ω=2πf, where f is the frequency in Hz, is

Vp=2πfNBpAc (2.29)

Thus to follow the voltage change, the induction must change by ±
Bp over a cycle. If, in a worst case scenario, the voltage source is
turned on when the voltage is at a value which requires a -Bp value
and the remanent induction has a positive value of nearly Bp, then the
induction will triple to nearly 3 Bp when the voltage reaches a value
corresponding to +Bp. Since Bp is usually ~10 to 20 % below saturation
in typical power transformers, this means that the core will be driven
strongly into saturation, which requires a very high exciting current.
This exciting current is called the inrush current and can be many
times the normal load current in a transformer.

Actually as saturation is approached, the flux will no longer remain
confined to the core but will spill into the air or oil space inside the coil
which supplies the exciting current. Thus, beyond saturation, the entire
area inside the exciting coil, including the core, must be considered the
flux carrying area and the incremental relative permeability is 1. Let
Br be the residual induction in the core which, without loss of
generality, we can take to be positive. In the following, we will assume
that this is the remanence. Thus the residual flux is Φr=BrAc. Let ∆Φ be
the flux change required to bring the voltage from its turn-on point up
to its maximum value in the same sense as the residual flux. ∆Φ could
be positive, negative or zero, depending on the turn-on point. We
assume it is positive here.

Part of the increase in ∆Φ will simply bring the induction up to the
saturation level, entailing the expenditure of little exciting power or
current. This part is given approximately by (Bs–Br)Ac, where Bs is the
saturation induction. Beyond this point further increases in ∆Φ occur
with the expenditure of high exciting current since the incremental
relative permeability is 1. Since beyond saturation, the core and air or
oil have the same permeability, the incremental flux density will be the
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same throughout the interior of the coil, ignoring end effects. Letting the
interior coil area up the mean radius Rm be A(A=πRm), the incremental
flux density is

(2.30)

The incremental magnetic field inside the coil, ignoring end effects, is
Hinc=NI/h, where NI are the exciting amp-turns and h the coil height.
If we ignore the exciting amp-turns required to reach saturation since
these are comparatively small, then Hinc=H, where H is the total field.
Since the permeability for this flux is µo, we have Binc=µoHinc=µoH which
implies

(2.31)

For transformers with stacked cores and step-lapped joints, Br≈0.9 Bp.
Assuming, in the worst case, that the voltage is turned on at a correspond
flux density that is at the most negative point in the cycle, we have,
using (2.29)

(2.32)

In this expression, it is the flux change that matters since this is directly
related to the voltage change as indicated in the first equality. In the
second equality, we are measuring this flux change mathematically as
if it all occurred in the core even though we know this is not true
physically. Thus (2.31) becomes

(2.33)

For h=2 m, Ac/A=0.5, Bp=1.7 T, Bs=2 T, we obtain NI=2.33× 106 A-t. For
N=500, I=4660 Amps. This is quite high for an exciting current.
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While the voltage is constrained to be sinusoidal, the exciting current
will be distorted due mainly to saturation effects. Even below saturation
there is some distortion due to non-linearities in the B-H curve. Fig.
2.9a illustrates the situation on inrush. The sinusoidal voltage is
proportional to the incremental induction which is shown displaced by
the remanent induction. It requires high peak H values near its peak
and comparatively small to zero H values near its trough. This is
reflected in the exciting current which is proportional to H. This current
appears as a series of positive pulses separated by broad regions of near
zero value as shown in Fig. 2.9b. The high exciting inrush current will
damp out with time as suggested in Fig. 2.9b. This is due to resistive
effects.

Figure 2.9 Distortion of exciting current due to saturation
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Because the inrush current can be as large as a fault current, it is
important to find some way of discriminating them so that false alarms
are not set off when the unit is turned on. To this end we examine the
time dependence of the two types of current. Using (2.27), we can write

(2.34)

Thus, using (2.31) and ignoring the resistive damping since we are only
interested in examining the first few cycles,

(2.35)

This last equation holds as long as I(t) is positive. It is nearly zero for
negative values of the expression on the right hand side since then the
core is not saturated. Thus (2.35) will remain positive over a cycle for
values of ωt between

(2.36)

Thus the interval per cycle over which (2.35) is positive is

(2.37)

Shifting the time origin to t1, (2.35) becomes

(2.38)

Extreme values of X are determined by sinϕ=±1,

(2.39)
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Thus X cannot be <-1. If X>1, this simply means there is no noticeable
inrush current. (2.38) is graphed in Fig. 2.10 for X = -0.5.

Let us find the harmonic content of (2.38) by performing a Fourier
analysis. To facilitate this, rewrite (2.38) as

(2.40)

We use the expansion,

Figure 2.10 Inrush current (normalized) for X=-0.5
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I(t)=a0+a1 cosωt+a2 sinωt+…+b1 sinωt+b2 sinωt+…
where

(2.41)

Evaluating the first few harmonics and letting α=π2 sin-1X, we get

The ratio of second harmonic amplitude to fundamental amplitude is
given by

(2.43)

This is tabulated in Table 2.1 for a range of X values.

(2.42)

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



TRANSFORMER CIRCUIT MODELS 61

Thus we see that the second harmonic is a significant fraction of the
fundamental for most X values. In fact, the lowest practical X value can
be determined from (2.39) by setting Bs = 2 T, Bp≈0.85 Bs=1.7 T , Br=0.9
Bp=1.53 T. We obtain X=-0.72. At this value, the ratio of second to first
harmonic is >8 % which can be considered a lower limit.

For comparison purposes, we now examine the time dependence of
the fault current. We will ignore the load current at the time of the fault
and assume the transformer is suddenly grounded at t=0. The
equivalent circuit is shown in Fig. 2.11 which will be derived later.
Here R and L are the resistance and leakage reactance of the
transformer, including any contributions from the system. The voltage
is given by

V=Vpsin(ωt+ϕ) (2.44)

where ϕ is the phase angle which can have any value, in general, since
the fault can occur at any time during the voltage cycle. The circuit
equation is

(2.45)

Table 2.1 Ratio of second to first harmonic amplitudes for inrush current as a function
of the parameter X
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Using Laplace transforms, the current transform is given by [Hue72]

(2.46)

Taking the inverse transform, we obtain

(2.47)

The steady state peak current amplitude is given by

(2.48)

Using this and letting τ=ωt, v=ωL/R, we can rewrite (2.47)

Figure 2.11 Circuit for fault current analysis
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(2.49)

where β=tan-1 ν

To find the maximum amplitude for a given ϕ, we need to solve

(2.50)

In addition, if we wish to determine the value of ϕ which produces the
largest fault current, we need to solve

(2.51)

Solving (2.50) and (2.51) simultaneously, we find

tan(β-ϕ)=v=tanβ (2.52)

(2.53)

Equation (2.52) shows that ϕ=0 produces the maximum amplitude and
the time at which this maximum occurs is given by the solution of (2.53)
for τ>0. Substituting into (2.49), we obtain

(2.54)

This is the asymmetry factor over the steady state peak amplitude with
τ obtained by solving (2.53).
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The asymmetry factor is generally considered to be with respect to
the steady state rms current value. This new ratio is called K in the
literature and is thus given by substituting  in (2.54),

(2.55)

with τ obtained by solving (2.53). We have expressed the ratio of leakage
impedance to resistance as x/r. x and r are normalized quantities, i.e.
the leakage reactance and resistance divided by a base impedance value
which cancels out in the ratio. (2.55) has been parametrized as [IEE57]

(2.56)

This parametrization agrees with (2.55) to within 0.7 %. Table 2.2
shows some of the K values obtained by the two methods,

Table 2.2 Comparison of exact with parametrized K values

At ϕ=0 where the asymmetry is greatest, (2.49) becomes

(2.57)

This is graphed in Fig. 2.12 for ν=10.
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The lowest Fourier coefficients of (2.49) are

(2.58)

Figure 2.12 Fault current versus time for the case of maximum offset and ν=x/r=10.
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The ratio of second harmonic amplitude to fundamental, (2.43), is
tabulated in Table 2.3 for a range of ϕ and ν values.

For power transformers x/r is usually >20. We see from Table 2.3
that the second harmonic content relative to the fundamental is <4.3 %
for x/r>20. On the other hand, we found in Table 2.1 that the second to
first harmonic ratio is >8 % under virtually all conditions for the inrush
current. Thus a determination of this ratio can distinguish inrush from
fault currents. In fact x/r would need to fall below 10 before this method
breaks down.

2.6 TRANSFORMER CIRCUIT MODEL WITH CORE

To simplify matters, we will consider a single phase, two winding
transformer. For a balanced 3 phase system, the phases can be analyzed
separately for most purposes. We wish to develop a circuit model of
such a transformer under normal a.c. conditions which includes the
effects of the core. Capacitive effects have been traditionally ignored
except at higher frequencies. However, under no-load conditions, these
are not necessarily negligible in modern transformers made with high

Table 2.3 Ratio of second harmonic to fundamental amplitude of fault current for
various values of the reactance to resistance ratio and voltage phase angle

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



TRANSFORMER CIRCUIT MODELS 67

permeability steel cores. We will indicate several ways by which
capacitive effects can be included.

If the secondary winding were open circuited, then the transformer
would behave like an inductor with a high permeability closed iron
core, It would therefore have a high inductance so that little exciting
current would be required to generate the voltage or back emf. Some
I2R loss will be generated by the exciting current, however this will be
small compared with the load current losses. There will, however, be
losses in the core due to the changing flux. These losses are to a good
approximation proportional to the square of the induction, B2. Hence
they are also proportional to the square of the voltage across the core.
Thus these losses can be accounted for by putting an equivalent resistor
across the transformer voltage and ground, where the resistor has the
value

(2.59)

where Vrms is the rms phase voltage and Wc is the core loss. The open
circuited inductance can be obtained from

(2.60)

where Iex is the inductive component of the exciting current, which we
assume to be sinusoidal with angular frequency ω. Thus the circuit so
far will look like Fig. 2.13. The resistance Rp is the resistance of the
primary (or excited) winding. Note that as saturation is approached,
the inductance Lc as well as the resistance Rc will become non-linear. If
necessary, capacitive effects can be included by putting an equivalent
capacitance in parallel with the core inductance and resistance. Since
the core losses are supplied by the input power source, there is a
component of the total excitation current, Iex,tot, which generates the
core loss. We labeled it Ic in the figure. It will be in quadrature with Iex.
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When the secondary circuit is connected to a load, the emf generated
in the secondary winding by the changing core flux will drive a current
through the secondary circuit. This additional current (amp-turns)
would alter the core flux unless equal and opposite amp-turns flow in
the primary winding. Since the core flux is determined by the impressed
primary voltage, the net amp-turns must equal the small exciting
ampturns. Hence the primary and secondary amp-turns due to load
current must cancel out.

Fig. 2.14 shows a schematic of the flux pattern in a two winding
transformer under load. The currents are taken as positive when they
flow into a winding and the dots on the terminals indicate that the
winding sense is such that the induced voltage is positive at that
terminal relative to the terminal at the other end of the winding when
positive exciting current flows into the transformer. Notice that the bulk
of the flux flows through the core and links both windings. However
some of the flux links only one winding. When referring to flux
linkages, we assume partial linkages are included. Some of these can be
seen in the figure.

Figure 2.13 Transformer circuit model with secondary open circuited
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The voltage equations for the two windings are

(2.61)

where λ1 and λ2 are the total flux linkages for windings 1 and 2 and R1,
R2 their resistances. We are ignoring core loss here as that would
complicate matters unnecessarily.

The traditional way to further develop (2.61) is to subdivide the total
flux linkages into contributions from the two windings. Thus

λ1 = λ11 + λ12, λ2 = λ22 + λ21 (2.62)

where λ11 are the flux linkages contributed by winding 1 to itself and λ12

are the flux linkages contributed by winding 2 to winding 1 and similarly
for λ22 and λ21. Further, for linear materials, we can write

Figure 2.14 Schematic of a 2 winding single plase transformer with leakage flux
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(2.63)

where L and M are self and mutual inductances and M12=M21=M. Thus
(2.61) can be written

(2.64)

Assuming sinusoidal voltages and currents and reverting to phasor
notation (bold faced type), (2.64) becomes

(2.65)

Separating the exciting current component out of I1 so that I1=Iex+I1 and
using amp-turn balance,

N1I'1=-N2I2 (2.66)

we obtain by substituting into (2.65).

(2.67)

Defining single winding leakage inductances as

(2.68)

the circuit model corresponding to (2.67) is given in Fig. 2.15. These
single winding leakage inductance are for one winding with respect to
the other and thus depend on both windings.
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We have introduced an ideal transformer in Fig. 2.15. In such a
device the currents into it are related by (2.66) and the voltages by

(2.69)

Using (2.66)-(2.69), we can write

(2.70)

or

 

Thus the circuit diagram in Fig. 2.15 can be redrawn as shown in Fig.
2.16. The missing element in Fig. 2.15 or 2.16 is the core loss and
possibly capacitive effects. This could be added by putting a resistance
and capacitor in parallel with the voltage E1.

Figure 2.15 Circuit model of a 2 winding transformer under load

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



TRANSFORMER CIRCUIT MODELS72

It is instructive to develop a circuit model using a more fundamental
approach which does not neglect the core non-linearities [MIT43]. We
will utilize the concept of flux linkages per turn so that if λ is a flux
linkage, N the number of turns linked, then Φ=λ/N is the flux linkage/
turn. If the flux linked every turn of a circuit 100 %, then  would be the
total flux passing through the circuit.

Assume only coil 1 has current flowing through it. Let Φ11 be the flux
linkage/turn in coil 1 produced by this current. Let Φ21 be the flux
linkage/turn linking coil 2 produced by the current in coil 1. Define the
leakage flux of coil 1 with respect to coil 2 as

(2.71)

Similarly, if only coil 2 is carrying current, we define the leakage flux
of coil 2 with respect to coil 1 as

(2.72)

where Φ22 is the flux linkage/turn linking coil 2 and Φ12 is the flux
linkage/turn linking coil 1 produced by current in coil 2. Referring to
Fig. 2.14, we note that much of the flux produced by coil 1 or 2 flows in
the core and thus links both coils. Most of the remaining flux will have
paths in air or only partially in the core. Thus the leakage flux associated

Figure 2.16 Circuit model of a 2 winding transformer under load referred to the
primary side
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with either coil consists of this remaining flux which has a large part of
its path in air or oil. Therefore, the mmf required to produce it will be
almost entirely in oil or air which means that it, as well as the current,
will be linearly related to the leakage flux. In other words, non-linearities
in the core will have little impact on the leakage flux. Thus the single
winding leakage inductances defined as

(2.73)

will be essentially constant.
From (2.62) we see that the total flux linking winding 1 and 2 can be

expressed as

(2.74)

Substituting from (2.71) and (2.72),

(2.75)

Letting Φ=Φ12+Φ21 and using (2.73), (2.75) becomes

(2.76)

so that the voltage equations (2.61) become

(2.77)

Φ is the sum of the fluxes linking one coil and produced by the other.
In order to add these legitimately, we need to assume that the material
characteristics are linear. However, we can, at this stage, assume that
these mutual fluxes are produced by the combined action of the currents
acting simultaneously. This will allow non-linear effects to be included
and Φ can therefore no longer be regarded as the sum of separate fluxes.

As before, we expect the core excitation current, Iex, to be supplied by
the primary coil so that

I1=Iex+I1 (2.78)
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where I1 satisfies the amp-turn balance condition (2.66) when load current
flows in coil 2. Thus, from (2.77) and (2.78) we obtain the equivalent
circuit shown in Fig. 2.17. This model is identical with that derived
earlier and shown in Fig. 2.15 where linearity was assumed except that
now it is clear that the core characteristics may be non-linear. Also the
constancy of the leakage inductances as circuit elements is apparent.
As before, we can reposition the ideal transformer and derive a circuit
model equivalent to that shown in Fig. 2.16 except that the linear
inductive element (N1/N2)M is replaced by the possibly nonlinear N1dΦ/
dt This is shown in Fig. 2.18.

Figure 2.17 Circuit model of a 2 winding transformer under load, including a possibly
non-linear core

Figure 2.18 Circuit model of a 2 winding transformer under load referred to the
primary side and including a possibly non-linear core
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With the addition of core loss and possibly capacitive effects which
can be accounted for by placing a resistance and capacitance in parallel
with E1, Figs. 17 or 18 can be regarded as virtually exact circuit models
of a 2 winding transformer phase under load. In practice, because the
exciting current is small, it is usually permissible to transfer the shunt
branch to either side of the impedances as shown in Fig. 2.19, where the
resistances and reactances have been combined to give equivalent
quantities

(2.79)

These are the 2 winding resistance and leakage inductance referred to
the primary side. Although the equivalent resistance includes the I2R
losses in the windings, it can also include losses caused by the stray flux
since these are proportional to the stray induction squared to a good
approximation which, in turn, is proportional to the square of the current.
For sinusoidal currents, we can define an equivalent impedance by

(2.80)
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For many purposes, it is even possible to dispense with the exciting
current branch so that the approximate equivalent circuit reduces to
Fig. 2.20, with the simplified circuit equations

(2.81)

Figure 2.19 Approximate circuit models of a 2 winding transformer under load referred
to the primary side and including a possibly non-linear core
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Using (2.66), with I1'=I1 since we are ignoring exciting current, and
(2.69), we can write for (2.81)

]or (2.82)

 

Letting E1'=V1 and E2'=(N2/N1)V1, (2.82) becomes

(2.83)

where E1'/E2'=N1/N2. The circuit model for (2.83) is shown in Fig. 2.21
where

(2.84)

Z2,eq is the equivalent impedance referred to the secondary side. It should
noted that the equivalent circuits with the core excitation branch included

Figure 2.20 Approximate circuit model of a 2 winding transformer under load referred
to the primary side and ignoring core excitation
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could be transformed to ones having the impedances on the secondary
side by similar methods.

Figure 2.21 Approximate circuit model of a 2 winding transformer under load referred
to the secondary side and ignoring core excitation

We should note that the exciting current may not be restricted to the
primary winding when load current flows but may be shared by both
windings. This can lead to legitimate circuit models with shunt
branches on either side. These are all mathematically equivalent since
impedances can be transferred across the ideal transformer present in
the circuit. We demonstrated this above for a series impedance. We
show this now for a shunt impedance by means of Fig. 2.22.

Figure 2.22 Transfer of shunt impedances across the ideal transformer
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In Fig 22a, we have the relationships

(2.85)

Manipulating these equations, we obtain

(2.86)

From Fig. 2.22b, we have I2=I2'+I2,ex and I1/I2'=-N2/N1. Using these, (2.86)
becomes

(2.87)

Thus the equivalent shunt impedance on the secondary side is obtained
in the same manner as for series impedances as is seen by comparing
(2.84). The voltage and currents transform in the usual way across the
ideal transformer in both circuits of Fig. 2.22.

We see from Fig. 2.20 and 2.21 that if the shunt branch is ignored so
that the exciting current is zero and equal and opposite amp-turns flow
in the 2 coils, then the inductance of this configuration is the 2 winding
leakage inductance. This can then be obtained from the energy in the
magnetic field by methods to be described later.

We mentioned earlier that in modern power transformers, which
typically have very low core exciting current, capacitive effects can be
important in situations where the core characteristics play a role. We
indicated that one way of including these effects was by placing a shunt
capacitance across the core. However, for greater accuracy, a better
method is to use the circuit model shown in Fig. 2.23 or one of its
equivalents. This model also includes the core losses by means of a core
resistance. There are shunt capacitances across the input and output so
that even if one of the coils is open circuited, the shunt capacitance
would act as a load so that current would flow in both windings. This
model has been found to accurately reproduce test results over a
frequency range near the power frequency.
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When the core has non-linear Φ vs Iex characteristics, since E1= N1

dΦ/dt, a sinusoidal E1 will result in a non-sinusoidal Iex, For Φ
reasonably below saturation, the non-linearities are mild enough that
Iex can be considered sinusoidal for most purposes when the primary
circuit is driven by a sinusoidal voltage. In this case N1 dΦ/dt can be
replaced by a magnetizing inductance or reactance. As the transformer
is driven into saturation, the exciting current becomes nonsinusoidal
and also constitutes a greater fraction of the load current. In this case, it
begins to matter which coil carries it. As was seen in the extreme case of
inrush current, the exciting current depended on the mean area of the
coil through which it flowed. In this extreme, the circuit modals we
have developed here are no longer applicable. One would need to work
directly with flux linkages. One could define non-linear inductances
and mutual inductances as in (2.63) but it would no longer be true that
M12= M21. Also the L’s and M’s would depend on possibly both I1 and I2.

2.7 PER UNIT SYSTEM

Transformer impedances, along with other quantities such as voltages
and currents are often expressed in the per unit (p.u.) system. In this
system, these quantities are expressed as a ratio with respect to the
transformer’s nominal or rated phase quantities. Thus, if the rated or base
phase voltages are Vb1, Vb2 and the base currents are Ib1, Ib2 where 1 and 2
refer to the primary and secondary sides, then the base impedances are

Figure 2.23 Circuit model of a 2 winding transformer under load, including a possibly
non-inear core, core losses, and capacitative effects
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(2.88)

The rated or base voltages, currents, and impedances are assumed to
transfer from one side to the other by means of the ideal transformer
relationships among voltages, currents, and impedances. These base
quantities are all taken to be positive. Thus the minus sign is neglected
in the base current transfer across sides. Hence, it can be shown that the
base power, Pb, is the same on both sides of a transformer,

Pb=Vb1 Ib1=Vb2 Ib2 (2.89)

In an actual transformer, the real power into a transformer is nearly the
same as that leaving it on the secondary side. This is because the
transformer losses are a small fraction of the power transferred,

The primary side voltage, V1, current, I1, and equivalent impedance,
Z1,eq, are expressed in the per unit system by

(2.90)

and similarly for the secondary quantities. Often the p.u, values are
multiplied by 100 and expressed as a percentage. However, it is best not
to use the percentage values in calculations since this can lead to errors.
As indicated in (2.90), we use lower case letters to denote p.u. quantities.

Since the base quantities transfer across the ideal transformer in the
same manner as their corresponding circuit quantities, the p.u. values
of the circuit quantities are the same on both the primary and secondary
sides. Thus the 1 or 2 subscripts can be dropped when referring to p.u.
quantities. Although voltages, currents, and impedances for
transformers of greatly different power ratings can differ considerably,
their per unit values tend to be very similar. This can facilitate
calculations since one has a pretty good idea of the magnitudes of the
quantities being calculated. Thus, the 2 winding leakage impedances
when expressed in the p.u system are generally in the range of 5–15 %
for all power transformers. The exciting currents of modern power
transformers are typically ~0.1% in the p.u. system. This is also their
percentage of the rated load current since this has the value of 1 or 100
% in the p.u, system. The 2 winding resistances which account for the
transformers losses can be obtained in the p.u. system by noting that
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modern power transformers are typically >99.5 % efficient. This means
that <0.5 % of the rated input power goes into losses. Thus we have

(2.91)

We omitted a 1 subscript on the per unit equivalent resistance, r, since it
is the same on both sides of the transformer. Using this and the above
estimate of the leakage impedance in the p.u. system, x, for power
transformers, we can estimate the x/r ratio,

(2.92)

Thus 10 is probably a lower limit and, as previously shown, is high
enough to allow discriminating inrush from fault current on the basis of
second harmonic analysis.

2.8 VOLTAGE REGULATION

At this point, it is useful to discuss the topic of voltage regulation as an
application of the transformer circuit model just developed. In this context,
the core characteristics do not play a significant role so we will use the
simplified circuit model of Fig. 2.21. Voltage regulation is defined as
the change in the magnitude of the secondary voltage between its open
circuited value and its value when loaded divided by the value when
loaded with the primary voltage held constant. We can represent the
load by an equivalent impedance, ZL, and the relevant circuit is shown
in Fig. 2.24. In the figure, we have shown a load current, IL, where
IL=-I2.
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It is convenient to perform this calculation in the per unit system, We
will use lower case letters to represent per unit quantities. Thus since
base quantities transfer across the ideal transformer like their
corresponding physical quantities, we have

(2.93)

Therefore the ideal transformer can be eliminated from the circuit in the
per unit system. Also, since z2,eq=z1,eq, we can drop the numerical subscript
and denote the equivalent transformer p.u, impedance by

z=r+jx (2.94)

where r is the p.u. equivalent resistance and x the p.u. 2 winding leakage
reactance. Similarly we write

(2.95)

The p.u. circuit is shown in Fig. 2.25.

Figure 2.24 Approximate circuit models of a 2 winding transformer with load included
and referred to the secondary side
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Thus when the secondary terminal is open circuited so zL and its
ground connection are missing in Fig. 2.25, we obtain for the open
circuited value of v2,

v2,oc=v1 (2.96)

We assume that ν1 is a reference phasor (zero phase angle) and v1 is
therefore its magnitude. When the load is present, we have

(2.97)

Thus, from (2.97),

(2.98)

Hence the voltage regulation is given by

(2.99)

It is customary to express zL in terms of the load voltage and current
via (2.97),

Figure 2.25 The circuit of Fig. 2.24 shown in the p.u. system
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(2.100)

where θ=θν”θi is the angle by which the voltage leads the current. For an
inductive load, θ is positive. Letting v2 and iL represent the magnitudes
of the load voltage and current, i.e. dropping the magnitude signs, the
impedance ratio in (2.99) can be written

(2.101)

Substituting (2.101) into (2.99), we get

(2.102)

Since z is generally small compared with zL, the terms other than unity
in (2.102) are small compared to unity. Using the approximation for
small ε,

(2.103)

the regulation is given to second order in z/zL by

(2.104)
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3. REACTANCE CALCULATIONS

Summary Leakage reactances are calculated for transformers having
up to six separate windings per leg but with 2 or 3 terminals per phase.
These calculations may be applied to single phase units or to one phase
of a 3 phase unit. Windings may be connected in series or auto-connected.
In addition, tap windings or series taps within a winding may be
identified. Terminal-terminal and positive/negative sequence leakage
reactances are calculated, as well as the T-equivalent circuit model
leakage reactances for 3 terminal transformers. Expressions for per-unit
quantities are also given. When taps are present within a winding or as
separate windings, calculations are performed for the all in, all out, and
center or neutral position and for all combinations if more than one
type of tap is present. The calculations are based on a 2 winding reactance
formula which assumes that the windings are uniform along their length,
with a correction for end fringing flux. This has been found to be very
accurate for most purposes but, if greater accuracy is desired, a better
two winding reactance calculation could be substituted without changing
most of the formulas presented here.

3.1 INTRODUCTION

The reactance calculations performed here are on a per phase basis so
they would apply to a single phase unit or to one phase of a three phase
transformer. The phase can have up to six windings, interconnected in
such a way that only 2 or 3 terminals (external or buried) result. Thus
auto-transformers, with or without tertiary, are included as well as
transformers with tap windings. it should be noted that these reactances
are positive or negative sequence reactances. Zero sequence reactances
are somewhat sensitive to the three phase connection and to whether the
transformer is core-form or shell-form, but this does not appear to be
true for the positive/negative sequence reactances. Thus, in the following
discussion, we will be dealing with a single phase system which may or
may not be part of a 3 phase system.

It is usually desirable to design some reactance into a transformer in
order to limit any fault current. In addition, these reactances determine
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the voltage regulation of the unit. Hence it is desirable at the design
stage to be able to calculate these reactances based on the geometry of
the coils and core and the nature of the (single phase) winding
interconnections.

We begin by discussing ideal transformers, i.e. having no reactance
or resistance, since real transformers are usually described by adding
lumped resistance and reactance circuit elements to a model of an ideal
transformer. The following references have been used in this chapter:
[MIT43], [Lyo37], [Blu51], [Wes64].

3.2 IDEAL TRANSFORMERS

In an ideal 2 winding transformer as depicted in Fig. 3.1, the entire flux
φ links both windings so that, by Faraday’s law, the induced emf’s are
given by

(3.1)

Hence

(3.2)

We use the convention that the current is positive when entering the
positive terminal and that the fluxes generated by these positive currents
add.

Figure 3.1 Ideal 2 winding transformer
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In an ideal transformer, zero mmf is required to generate the flux so
that

N1I1+N2I2=0 (3.3)

which implies

(3.4)

i.e., the secondary current I2 is leaving terminal 2 (negative) when the
primaiy current I1 enters terminal 1. Also, from the above equations

(3.5)

i.e. the instantaneous power entering terminal 1 equals the power leaving
terminal 2 so that the unit is lossless as expected.

For a 3 winding unit, the above formulas become

(3.6)

and

N1I1+N2I2+N3I3=0 (3.7)

which imply

E1I1+E2I2+E3I3=0 (3.8)

i.e. the net power into the unit is 0, or the power entering equals the
power leaving. The generalization to more than 3 windings is
straightforward.

If the ideal transformer has a load of impedance Z2 connected to its
secondary terminals as shown in Fig. 3.2, we have the additional
equation

E2=-I2Z2 (3.9)

where -I2 is the load current, usually denoted IL.

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



REACTANCE CALCULATIONS90

But from the above equations,

(3.10)

Thus, as seen from the primary terminals, the load appears as an
impedance Z1,

E1=I1Z1 (3.11)

where

(3.12)

At this point we introduce per-unit values. That is, we choose base
values for voltages, currents, etc. and express the actual voltages, currents,
etc. as ratios with respect to these base values. Only two independent
base values need to be chosen and these are usually taken as power or
VI and voltage V. The base power is normally taken as the VI rating of
the unit per phase and the voltage taken as the open circuit rated phase
voltage of each terminal. Thus we have a (VI)b and V1b, V2b, … where b
denotes base value. From these we derive base currents of

(3.13)

and base impedances

Figure 3.2 Ideal 2 winding transformer with a load on its secondary terminals
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(3.14)

Letting small letters denote per-unit quantities, we have

(3.15)

Ignoring core excitation, at no load we have V1=E1, etc. so that from
(3.6), (3.13), (3.14),

(3.16)

since everything is on a common VI base.
In terms of per-unit quantities, we have for an ideal transformer

(3.17)

and, from (3.7) and (3.16)

Therefore

i1+i2+i3=0 (3.18)

Thus an ideal 3-circuit transformer can be represented by a one circuit
description as shown in Fig. 3.3, if per-unit values are used. This also
holds if more than 3 circuits are present.

, etc.

etc.

, etc.

, etc.
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3.2.1 Ideal Autotransformer

The ideal 2-terminal autotransformer is shown in Fig. 3.4. The two
coils, labeled s for series and c for common, are connected together so
that their voltages add to produce the high voltage terminal voltage E1.
Thus E1 =Es+Ec. The secondary or low voltage terminal voltage is E2 =
Ec. Similarly, from the figure, I1=Is and I2=Ic-Is. Using the expressions for
a two winding unit, which are true regardless of the interconnections
involved,

Figure 3.3 Ideal 3 circuit transformer schematic

we find
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Thus

(3.19)

so that the effective turns ratio as seen by the terminals is n=(Nc+Ns)/
Nc. Any impedances on the low voltage terminal could be transferred
to the high voltage circuit by the square of this turns ratio.

The co-ratio is defined as

(3.20)

Figure 3.4 Ideal autotransfonner
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where r < 1. The terminal power rating of an autotransformer is E1I1 (=-
E2I2) but the power rating of each coil is ESIS (=-EcIc). The ratio of these
power ratings is

(3.21)

Thus, since r<1, the terminal rating is always greater that the single coil
rating. Since the single coil rating is the same as the terminal rating of
a conventional 2-winding transformer, this shows an important advantage
of using the auto connection,

3.3 LEAKAGE IMPEDANCE FOR 2-WINDING TRANSFORMERS

In real transformers not all the flux links the windings. In addition,
there are resistive losses in the windings as well as core losses. The
basic equations for the terminal voltages are now given by

(3.22)

wheres λ1 is the flux linkages of coil 1 and R1 its resistance and similarly
for coil 2. If we let

= the common flux linking all turns of both coils, which is mainly

core flux, we can write

(3.23)

The quantity  is the leakage flux of coil i. It exists mainly in
the oil or air and conductor material but not in the core to any great
extent. Thus it exists in non-magnetic (or linear) materials and therefore
should depend linearly on the currents. Thus we can write very generally

or, assuming sinusoidal quantities,
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(3.24)

where I1 and I2 are phasors, X11=2πf L1 and X12=2πf M12, where f is the
frequency, and j is the imaginary unit. Using similar expressions for λ2,
(3.22) becomes

(3.25)

where  is the no-load terminal voltage of terminal 1, etc.
for E2. We have E1/E2=N1/N2. We have also used the fact that X12 =X21

for linear systems.
We are going to ignore the exciting current of the core since this is

normally much smaller than the load currents. Thus (3.3) applies so we
can rewrite (3.25)

(3.26)

or, more succinctly,

(3.27)

where Z1 and Z2 are single winding leakage impedances. This can be
visualized by means of Fig. 3.5a.
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LetV2=E'
2=I2Z2+E2. Then, since E1/E2=N1/N2 and I1/I2=-N2/N1, E'

2=-
(N1/N2Z2+(N2/N1)E1 or rewriting

(3.28)

Substituting into (3.27), we get

Figure 3.5 Circuit models of a 2 winding transformer with leakage impedance
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(3.29)

We see that (3.29) can be expressed in terms of a single effective
impedance Z12=Z1+(N1/N2)2 Z2,

(3.30)

where E21/E22=N1/N2. The circuit model for this is shown in Fig. 3.5b.
Using per-unit values, the picture in Fig. 3.5c applies. Note that E1/E2

=E'1/E’2=N1/N2 but that E1≠E'1, E2≠E'2 except at no load.
Thus a two winding transformer is characterized by a single value of

leakage impedance Z12 which has both resistive and reactive
components,

Z12 = R12 + jX12  

where

(3.31)

and

 

referred to the primary winding. We can obtain expressions for referring
quantities to the secondary winding by interchanging 1 and 2 in the
above formulas. In large power transformers X12>>R12 so we are normally
concerned with obtaining leakage reactances.

In terms of previously defined quantities,
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(3.32)

(Note that X12 in (3.32) is not the same as that in (3.31). We will usually
use the symbol Z12 when referring to leakage impedances and ignore the
resistive component so no confusion should arise.) Z12 will be calculated
by more direct methods later so (3.32) is rarely used.

We should note that another method of obtaining the effective
2winding leakage impedance, which corresponds with how it is
measured, is to short circuit terminal 2 and perform an impedance
measurement using terminal 1. Thus

(3.33)

Using (3.27), this implies that E2 = -I2 Z2. But, using (3.2) and (3.3), we
get E1=I1(N1/N2)2 Z2. Substituting into the V1 equation of (3.27), we find

 

so that, from (3.33), we get Z12=Z1+(N1/N2)2 Z2 as before.

3.3.1 Leakage Impedance for a 2-Winding utotransformer

The circuit model for a 2-winging autotransformer can be constructed
from separate windings as shown in Fig. 3.6. From the definition of
leakage impedance (3.33), we measure the impedance at the H terminal
with the X terminal shorted. But this will yield the same leakage
impedance as that of an ordinary 2-winding transformer so that ZHX=
Z12, i.e. the terminal leakage impedance of a two winding
autotransformer is the same as that of a transformer with the same
windings but not auto-connected.
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3.4 LEAKAGE IMPEDANCES FOR 3-WINDING TRANSFORMERS

We can go through the same arguments for a 3-winding transformer,
isolating the flux common to all coils φc, and expressing the leakage
flux for each coil, which exists in non-magnetic materials, in terms of
self and mutual inductances which are constants. We obtain

(3.34)

The order of the suffixes is irrelevant, since for linear materials (constant
permeability) Xij=Xji.

Using the same assumptions as before concerning the neglect of core
excitation, equation (3.7), we substitute I3=-(N1/N3) I1-(N2/N3) I2 in the

Figure 3.6 Circuit model of a 2 winding autotransformer with leakage impedance,
based on a seperate windings circuit model
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first 2 equations and I2 =-(N1/N2) I1-(N3/N2) I3 in the third equation of
(3.34) to obtain

(3.35)

Now add and subtract  from the first equation,

add and subtract  from the second, and add and

subtract  from the third equation of (3.35) to obtain

(3.36)
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Substituting for I3=-(N1/N3) I1-(N2/N3) I2 in the term in brackets in the
last equation, we obtain

(3.37)

Comparing the terms in brackets of the resulting V1, V2, V3 equations,
we find, using (3.6),

(3.38)

Therefore, labeling the terms in brackets E'1, E'2, E'3, we obtain

(3.39)

where

and

(3.41)

Here Z1, Z2, Z3 are the single winding leakage impedances and the
applicable multi-circuit model is shown in Fig. 3.7a. If we express
quantities in terms of per unit values, the single circuit description of
Fig. 3.7b applies. This is possible because (3.41) implies e'1=e'2=e'3=e'
and by equation (3.18). This figure should be compared with Fig. 3.3.

(3.40)
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Since the single winding leakage impedances are not directly measured
or easily calculated, it is desirable to express these in terms of 2-winding
leakage impedances. We will refer to these 2-winding leakage
impedances as Z12, Z13, Z23 which correspond to the notation Z12 used
previously for the two winding case. Thus to measure the 2-winding
leakage impedance between winding 1 and 2, we short circuit 2, open
circuit 3, and measure the impedance at terminal 1,

(3.42)

From (3.39) we see that this implies I2 Z2+E'2=0. Using (3.6) and (3.7),
we find for Z12 and similarly for Z13 and Z23

Figure 3.7 Circuit models of a 3 winding transformer with leakage impedance

(3.43)
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The subscript ordering is chosen so that the second subscript refers to
the shorted winding. The expression changes if we reverse subscripts,
according to

(3.44)

Solving (3.43) for the Zi’s, we get

Using per-unit values, where Z1b is the base impedance of circuit 1 so
that z12=Z12/Z1b, etc. and Z1=z1/Z1b, etc. we find, using (3.16), that (3.45)
can be expressed as

z1=(z12+z13-z23)/2

z2=(z12+z23-z13)/2 (3.46)

z3=(z13+z23-z12)/2

Similarly (3.43) becomes, in per-unit terms,

(3.47)

(3.45)
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The term  was added and subtracted from the V3 equation
above.

3.4.1 Leakage Impedances for an Autotransfonner with Tertiary

The autotransformer with tertiary circuit model can be obtained by
interconnecting elements of the 3-winding transformer circuit model as
shown in Fig. 3.8. Here the notation corresponds to that of Fig. 3.7a.
The problem is to re-express this in terms of terminal quantities. Thus
the appropriate terminal 1 voltage is V1+V2 and the appropriate terminal
2 current is I2-I1. Using (3.39),

(3.48)

Substituting from (3.7) into this equation and the V2 and V3 equations
of (3.39), we obtain after some algebraic manipulations,

(3.49)
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We see that the terms in brackets satisfy

(3.50)

Labeling these terms in brackets EH, EX, EY, we can rewrite (3.49)

(3.51)

where VH=V1+V2, VX=V2, VY=V3, IH=I1, IX=I2-I1, IY=I3, and

Figure 3.8 3 winding autotransformer circuit model, derived from the 3 separate
winding circuit model

(3.52)
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In terms of the measured two terminal impedances, we have as before

(3.53)

Rewriting (3.7), we find

N1I1+N2(I2–I1)+N2I1+N3I3

= (N1+N2)IH+N2IH+N2IX=0 (3.54)

From (3.53) with (3.50), (3.51) and (3.54), we obtain

Thus the circuit model shown in Fig. 3.9a looks like that of Fig. 3.7a
with H, X, Y substituted for 1, 2, 3.

Figure 3.9 Circuit models of a 3 winding autotransformer based on terminal parameters
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(3.55)

At this point, it is worthwhile to revert to per-unit quantities. Because
of the auto connection, we have, again choosing the VI per phase rating
of the unit and the rated (no-load) terminal voltages per phase, (VI)b,
VHb, VXb, VYb,

since (VI)b is the same for each terminal. From (3.54), we have on a per
unit basis,

iH+iX+iY=0 (3.57)

Similarly from (3.50), on a per-unit basis

eH=eX=eY=e (3.58)

On a per-unit basis, (3.55) becomes, using (3.56)

(3.59)

where the same VI base is used for all the terminals. Solving these for
zH, zX, zY, we obtain a set of equations similar to (3.46)

(3.56)
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(3.60)

Equation (3.52) contains terminal impedances and single coil
impedances and the bases are different for these. Keeping (VI)b the same
for both, we have

Thus, on a per-unit basis, (3.52) becomes

(3.61)

In terms of the terminal turns ratio n=(N1+N2)/N2, (3.62) can be
written

(3.62)

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



109REACTANCE CALCULATIONS

(3.63)

The per-unit circuit model is depicted in Fig. 3.9b. Note that from (3.45)
and (3.46), the autotransformer circuit parameters can be derived from
2winding leakage impedance values which, we will see, can be obtained
with reasonable accuracy, using an analytic formula.

3.4.2 Leakage Impedance between 2 Windings Connected in Series and
a Third Winding

It is useful to calculate the impedance between a pair of windings
connected in series and a third winding in terms of 2-winding leakage
impedances, as shown in Fig. 3.10. This can be regarded as a special
case of an autotransformer with the X-terminal open. But, by definition,
this leakage impedance is just ZHY. From (3.55) and (3.52), we obtain

(3.64)

or, in per-unit terms, using (3.61)

(3.65)

These can be expressed in terms of 2 winding leakage reactances by
means of (3.45) and (3.46)
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3.4.3 Leakage Impedance of a 2-Winding Autotransformer with XLine
Taps

A circuit model of a 2-winding autotransformer with X-line taps
constructed from the 3 separate winding circuit model is shown in Fig.
3.11. The derivation of its 2-terminal leakage impedance uses (3.39)
together with (3.6) and (3.7), In terms of terminal parameters, we have
VHT=V1+V2, VXT=V2+V3, IHT=I1, IXT=I3, where T is appended to indicate
the presence of a tap winding. We also require that I2=I1+I3.

Figure 3.10 Leakage impedance between two series connected windings and a third

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



111REACTANCE CALCULATIONS

Thus

Figure 3.11 Circuit model of a 2 winding autotransformer with X-line taps, derived
from the 3 separate winding circuit

Substitute I3=-(N1/N3)I1-(N2/N3)I2 into the VHT equation and I1=-(N2 /N1)I2-
(N3/N1)I3 into the VXT equation to obtain

(3.66)

(3.67)
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Add and subtract  from the VHT equation and add and

subtract  from the VXT equation to obtain, after some

algebraic manipulations,

(3.68)

which can be rewritten

VHT=IHTZHT+EHT . VXT=IXTZXT+EXT (3.69)

where

(3.70)

To obtain the 2 terminal leakage impedance, we use the definition

(3.71)

We have

(3.72)

and from (3.7) we obtain

N1I1+N2(I1+I3)+N3I3=(N1+N2)I1+(N2+N3)I3

=(N1+N2)IHT+(N2+N3)IXT=0 (3.73)

Using (3.69) together with (3.72) and (3.73), we obtain from (3.71)
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(3.74)

Using (3.70), this becomes

(3.75)

On a per-unit basis, using a fixed (VI)b and, noting that

 

we find

(3.76)

This is the two terminal leakage impedance of a 2 winding
autotransformer with X-line taps. It can be expressed in terms of the 2
winding leakage impedances via equations (3.45) and (3.46).

3.4.4 More General Leakage Impedance Calculations

The cases considered so far cover most of the configurations encountered
in practice. However, other situations can be covered by using these
results as building blocks. For example, to obtain the leakage impedance
between three windings connected in series and a fourth winding, use
formula (3.64) or (3.65) to obtain the leakage impedance between the
fourth winding and two of the other windings connected in series. Then
add the third winding. Considering the two series winding as a single
winding, calculate the single winding impedances for this new “three
winding” system and reapply (3.64) or (3.65).

Another example would be an autotransformer with tertiary and
Xline taps. The circuit model for this can be derived from the 2-winding
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autotransformer with X-line taps by adding a tertiary winding. Then
the 2-terminal leakage reactance, equation (3.75) or (3.76), between the
series+common and X-line tap+common, together with the 2-terminal
leakage reactances between the tertiary and the series+common and
between the tertiary and the X-line tap+common can be used to
construct a 3-terminal impedance model similar to Fig. 3.9.

3.5 TWO WINDING LEAKAGE REACTANCE FORMULA

All of the reactance circuit parameters obtained here for 2 or 3 terminal
transformers can be expressed in terms of 2-winding leakage reactances.
These can be calculated by advanced analytical techniques or finite
element methods which solve Maxwell’s equations directly. These
methods are especially useful if the distribution of amp-turns along the
winding is non-uniform, due, for example, to tapped out sections or
thinning in sections of windings adjacent to taps in neighboring windings.
However, simpler idealized calculations have proven adequate in practice,
particularly at the early design stage. These simpler calculations will
be discussed here but, however these 2-winding reactances are obtained,
they can be used directly in the formulas derived previously.

The simple reactance calculation assumes that the amp-turns are
uniformly distributed along the windings. It also treats the windings as
if they were infinitely long insofar as the magnetic field is concerned,
although a correction for fringing at the ends is included in the final
formula. The parameters of interest are shown in Fig. 3.12. If the
windings were infinitely long and the amp-turns per unit length were
equal for the two windings then the magnetic field as a function of
radius would be proportional to the amp-turn distribution shown in Fig.
3.12b, i.e. in the SI system,

H(r)=NI(r)/h (3.77)

where NI(r) is the function of r shown in the figure, linearly increasing
from 0 through winding 1, remaining constant in the gap, and decreasing
to 0 through winding 2. H is independent of the z-coordinate in this
model and points vectorially in the z-direction. The flux density is
therefore

B(r)=µoH(r)=µoNI(r)/h (3.78)
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For calculation purposes, we need to express B as a function of r
analytically

since the permeabilities of the materials in or between the winding are
essentially that of vacuum, µo=4π×10"7 in the MKS system. B also points
in the z-direction. We can take h=(h1+h2)/2 as an approximation.

Figure 3.12 Parameters used in 2 winding leakage reactance calculation

(3.79)
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In terms of mean radii Rm, thicknesses b, and gap g shown in Fig. 3.12,
(3.81) can be written

(3.82)

Because the terms in b1
2 and b2

2 are so much smaller that the others, we
drop them and find, using (3.80)

(3.83)

The leakage reactance is XL=2πfL so we get

(3.84)

On a per-unit basis,

where the Ri are indicated in Fig. 3.12. The leakage inductance, L, can
be obtained from the magnetic energy in the leakage field by means of
the expression

(3.80)

Substituting (3.79) into the integral, we get

(3.81)
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where (VI)b is the base volt-amps per phase and Vb/N is the base Volts/
turn. Letting x denote the per-unit reactance, where x=XL/Xb, we get

(3.85)

in MKS units at 60 Hz or

(3.86)

when lengths are measured in inches. This same result could have been
obtained by consideration of flux-linkages but the effort required would
have been greater.

In order to correct for fringing, it has been found that a good
approximation is to increase h by the amount

s=0.32(Ro-Rc) (3.87)

where Ro is the outer radius of the outermost coil and Rc is the core
radius. Thus we obtain

(3.88)
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4. FAULT CURRENT CALCULATIONS

Summary Fault currents at the terminals and in the windings are
calculated for transformers subjected to the standard faults: 3-phase line
to ground, single phase line to ground, line to line, and double line to
ground. Since these faults result in unbalanced currents in the 3 phase
system, except for 3-phase faults, the method of symmetrical components
is introduced and used in the fault analysis. In this method, the unbalanced
voltages and currents are replaced by balanced systems of positive,
negative, and zero sequence quantities. The circuits associated with
each of these sequences can differ. After solving the sequence circuit
equations, the unbalanced quantities are obtained by a reverse
transformation. A 2-terminal per phase transformer is modeled using a
single leakage impedance and a 3-terminal per phase unit is modeled
with 3 leakage impedances (T-equivalent circuit). The leakage
impedances are the same for the positive and negative sequence circuits
but can differ for the zero sequence circuit. The systems attached to the
external terminals of the transformer are treated simply as a voltage
source in series with an impedance. An asymmetry factor is included to
account for an initial transient surge which usually accompanies a fault.

4.1 INTRODUCTION

It is necessary to design transformers to withstand various possible faults,
such as a short to ground of one or more phases. The high currents
accompanying these faults, approximately 10 to 30 times normal, produce
high forces and stresses in the windings and support structure. Also,
depending on the fault duration, significant amounts of heat may be
generated inside the unit. The design must accommodate the worst case
fault which can occur from both the mechanical and thermal standpoints.

The first step in designing to withstand faults is to determine the fault
currents in all the windings, which is the subject of this report. Since this
is an electrical problem, it requires a circuit model which includes
leakage impedances of the transformer and also relevant system
impedances. The system is typically represented by a voltage source in
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series with an impedance, since we are not interested here in detailed
fault currents within the system external to the transformer. The
transformer circuit model considered here is that of a 2 or 3 terminal
per phase unit with all pairs of terminal leakage reactances given either
from calculations or measurement (from these the T-equivalent
reactances can be obtained). We ignore core excitation since, for
modern power transformers, its effects on the fault currents are
negligible.

The transformers dealt with here are 3-phase units and the fault types
considered are: 3-phase line to ground, single phase line to ground, line
to line, and double line to ground. These are the standard fault types
and are important because they are most likely to occur on actual
systems. The transformer must be designed to withstand the worst of
these fault types, or rather each coil must be designed to withstand the
worst (highest current) fault it can experience. Note that each fault type
refers to a fault on any of the single phase terminals. For example, a 3-
phase fault can occur on all the high voltage terminals (H1, H2, H3), all
the low voltage terminals (X1, X2, X3), or all the tertiary voltage
terminals (Y1, Y2, Y3). Etc. for the other fault types. Note also that faults
on a single phase system can be considered as 3-phase faults on a 3-
phase system so that these are included automatically in the analysis of
faults on 3-phase systems.

Since the fault types considered include faults which produce
unbalanced conditions in a 3-phase system, probably the most efficient
way of treating them is by the method of symmetrical components. In
this method, an unbalanced set of voltages or currents can be
represented mathematically by sets of balanced voltages or currents,
called sequence voltages or currents. These latter can then be analyzed
by means of sequence circuit models. The final results are then obtained
by transforming the voltages and currents from the sequence analysis
into the voltages and currents of the real system. We will discuss this
method in greater detail before proceeding with the specific fault
analyses.

It should also be noted that the circuit model calculations to be
discussed are for steady-state conditions, whereas actual faults would
have a transient phase where the currents can exceed their steady-state
values for short periods of time. These enhancement effects are included
by means of an asymmetry factor. This factor takes into account the
resistance and reactance present at the faulted terminal and is
considered to be conservative from a design point of view. The
following references have been used: [Ste62a], [Lyo37], [Blu51].
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4.2 SYMMETRICAL COMPONENTS

In a balanced 3-phase electrical system, the voltage or current phasors
are of equal magnitude and separated by 120° as shown in Fig. 4.1a.
They are labeled Va1, Vb1, Vc1 where the order a,b,c corresponds to the
order in which the phasors would pass a point, say on the horizontal
axis, as they rotate in the counter-clockwise direction (called a positive
sequence ordering). (The actual time dependent voltages are found by
projecting these rotating vectors onto the horizontal axis, assuming they
are rotating with angular velocity ω=2πf.) However, we usually ignore
the time dependence and assume the phasors are stationary at some
time snapshot. If the tips of the voltage vectors in Fig. 4.1a are represented
by complex numbers then, with Va1 along the positive real axis, where
the subscript 1 refers to positive sequence by convention, we have

(4.1)

or

(4.2)
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Let  i.e. a rotation in the positive sense
(counterclockwise) by 120°. Using polar notation, α=ej120, we see that

. Thus for a balanced 3-phase positive sequence
system

(4.3)

Notice that Va1 need not be along the positive real axis for (4.3) to hold
since  and α2 are rotation operators which guarantee that Vb1 and Vc1

are 240° and 120° from Va1 regardless of its position in the complex
plane. Also these phasors are of equal magnitude since  and its powers
are of unit magnitude.

A negative sequence set of balanced phasors is one with the phase
ordering a, c, b as shown in Fig. 4.1b where we see that

(4.4)

where 2 refers to negative sequence quantities by convention. These are
separated by 120° and have the same magnitude which can differ from
the positive sequence magnitude.

A zero sequence set of balanced phasors is shown in Fig. 4.1c. These
are all in phase and have equal magnitudes, which can differ from the
positive or negative sequence magnitudes. Thus

Va0=Vb0=Vc0 (4.5)

with 0 used to label zero sequence quantities.

Figure 4.1 Balanced systems of 3 phase phasors
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We now show that it is possible to represent any unbalanced set of 3
phasors by means of these balanced sequence sets. Let Va, Vb, Vc be such
an unbalance set as shown in Fig. 4.2. Since the positive, negative, and
zero sequence balanced sets are determined once Va1, Va2, and Va0 are
specified, we need to find only these phase a components of the
balanced sets in terms of the original phasors to prove that this
representation is possible. Write

(4.6)

Using (4.3), (4.4), and (4.5), this can be written

(4.7)

Figure 4.2 Unbalanced set of 3 phasors
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In matrix notation, we have

(4.8)

which is often abbreviated

Vabc=AV012 (4.9)

where Vabc and V012 are column vectors and A is the matrix in (4.8).
Va0, Va1, Va2 can be found uniquely if A has an inverse. This can be

shown to be the case and the result is

(4.10)

as can be verified by direct computation, using the identities

1+α+α2=0
α3=1
α4=α (4.11)

Equation (4.10) can be abbreviated to

V012=A–1Vabc (4.12)

where A-1 is the matrix in (4.10) including the factor 1/3.
Thus given any unbalanced set of phasors, the balanced positive,

negative, and zero sequence sets can be found or conversely, given the
balanced sets or just one phasor from each balanced set, chosen
customarily to be the a phasor, the unbalanced set can be obtained.

The virtue of this decomposition is that, using symmetrical
components, an unbalanced 3 phase system can be analyzed as 3 single
phase systems, each applying to one balanced sequence, in the same
manner that we need only consider one phase of a conventional
balanced 3 phase system. However, the circuit model applying to each
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sequence may differ from the normal 3 balanced phases circuit model.
This latter circuit model applies generally only to the positive sequence.
The negative sequence circuit may differ from the positive, particularly
if there are generators or motors in the system. Not only can the
positive and negative impedances differ but, since generated voltages
are usually of positive sequence, voltage sources are absent from the
negative sequence circuit. For transformers, the impedances are
independent of phase order so that the positive and negative sequence
circuit models of transformers are identical.

The zero sequence circuit model can differ considerably from the
positive or negative one. For example, in a balanced 3-phase line, the
currents add up to zero so there is no need for a return path or ground
for the currents to flow. Thus an effective ground point can be assumed.
Since zero sequence currents are of equal magnitude and phase, they
cannot sum to zero unless they are all zero. Thus for zero sequence
currents to flow, a return path or ground is necessary. Thus in the zero
sequence circuit model without ground or return path, an infinite
impedance must be placed in the circuit.

In order to justify this approach, assume that the phase a, b, and c,
circuits are identical as would be typical of a balanced 3-phase system.
Let Via, Vib, Vic be corresponding branch voltages and Iia, Iib, Iic

corresponding branch currents for branch i in the phase a, b, and c
circuits. Then Kirchoff’s voltage and current laws can be expressed in
the form

 

where the Ki and Bi=± 1 or 0 and the column vector notation is employed
so that each of the above vector equations represents 3 scalar equations
with the same Ki or Bi coefficients. Then multiplying on the left by A-1,
these are transformed into

 

Thus we see that each set of sequence voltages or currents satisfies the
same Kirchoff equations. This means that the sequence networks behave
like ordinary electrical networks.

With regards to the circuit elements, the situation is a bit more
complicated. Let the corresponding branch voltages and currents obey
an equation of the form, omitting the i subscript for simplicity,  
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or, more compactly

Vabc=ZIabc  

where Z is an impedance matrix. Then, pre-multiply by A-1 and,
substituting V012=A-1 Vabc and Iabc=AI012, we get

V012=(A-1ZA)I012=ZseqI012  

In general the sequence impedance matrix Zseq=A-1ZA which relates the
sequence voltages and currents is not diagonal even if Z is. This means
that there can be coupling between the different sequence circuits.

If the original circuit branches satisfy current-voltage relationships
of the form

 

i.e. the corresponding branches have the same impedance and are
uncoupled, then the sequence equations have the same form. This follows
since the above Z matrix is a multiple of the identity and Zseq=ZaA--1

IA=ZaI reduces to the same multiple of the identity. In this example,
there would be no need to use symmetrical components, since the original
uncoupled phase circuits could be solved with no more effort.

The method becomes more useful when, as is often the case in
practice, each sequence needs to be described by means of its own set of
sequence impedances, as for example when there is no return path for
zero sequence currents. We assume these sequence impedances are
uncoupled and equal for the 3 members of the balanced set. Thus, for
the positive sequence circuit we would have the branch current
relationship,  
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and similarly for the negative and zero sequences where Z2 and Z0

would be substituted for Z1 above. In this case, the sequence networks
have their own impedances and there is no coupling between sequences.
In this case, the matrix Z connecting the branch phase quantities is
nondiagonal in general. However, under normal operation with balanced
positive sequence voltages and currents, it reduces to the positive sequence
impedance matrix shown above.

The fault analysis performed here assumes uncoupled sequence
circuits. We assume that the sequence impedances are known or can be
calculated. For example, Z1 is taken to be the normal impedance to
positive sequence current and for static devices such as transformers, Z2

=Z1. Z0 is more difficult to calculate, but can be measured by energizing
the 3 terminals of the device with voltages of the same phase.

4.3 FAULT ANALYSIS ON 3-PHASE SYSTEMS

We assume that the system is balanced before the fault occurs, that is,
each phase has identical impedances and the currents and voltages are
positive sequence sets. Here we consider a general electrical system as
shown in Fig. 4.3a. The fault occurs at some location on the system
where fault phase currents Ia, Ib, Ic flow. They are shown as leaving the
system in the figure. The voltages to ground at the fault point are labeled
Va, Vb, Vc. The system, as viewed from the fault point or terminal, is
modeled by means of Thevenin’s theorem. First, however, we resolve
the voltages and currents into symmetrical components so that we need
only analyze one phase of the positive, negative, and zero sequence
sets. This is indicated in Fig. 4.3b where the a-phase sequence set has
been singled out.
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By Thevenin’s theorem, each of the sequence systems can be modeled
as a voltage source in series with an impedance, where the voltage
source is the open circuit voltage at the fault point and the impedance is
found by shorting all voltage sources and measuring or calculating the
impedance to ground at the fault terminal. The resulting model is
shown in Fig. 4.4. No voltage source is included in the negative and
zero sequence circuits, since the standard voltage sources in power
systems are positive sequence sources.

The circuit equations for Fig. 4.4 are

(4.13)

Since E1 is the open circuit voltage at the fault terminal, it is the voltage
at the fault point before the fault occurs and can be labeled Vpf where pf
denotes pre-fault. We can omit the label 1 since it is understood to be a
positive sequence voltage. Thus

Figure 4.3 Fault at a point on a general electrical system

(4.14)
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4.3.1 3-Phase Line to Ground fault

Three phase faults to ground are characterized by

Va=Vb=Vc=0 (4.15)

as shown in Fig. 4.5a. From (4.15), together with (4.10), we find

Va0=Va1=Va2=0 (4.16)

Therefore, from (4.14) we get

Ia1=Vpf/Z1, Ia2=Ia0=0 (4.17)

Using (4.17) and (4.8) applied to currents, we find

Ia=Ia1, Ib=α2Ia1, Ic=αIal (4.18)

Thus the fault currents, as expected, form a balanced positive sequence
set of magnitude Vpf/Z1. This example could have been carried out without
the use of symmetrical components since the fault does not unbalance
the system.

Figure 4.4 Thevenin equivalent sequence circuit models

If there is some resistance in the fault, this could be included in the
circuit model. However, because we are interested in the worst case
faults (highest fault currents), we assume that the fault resistance is
zero.
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4.3.2 Single Phase Line to Ground Fault

For a single phase to ground fault, we assume, without loss of generality,
that the a-phase is faulted. Thus we have

(4.19)

as indicated in Fig. 4.5b. From (4.10) applied to currents, we get

Ia0=Ia1=Ia2=Ia/3 (4.20)

From (4.14), (4.19), and (4.20), we find

Va=0=Va0+Va1+Va2=Vpf–Ia1(Z1+Z2+Z0)  

or

Figure 4.5 Standard fault types on 3 phase systems
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(4.21)

From (4.19) and (4.20), we get

(4.22)

4.3.3 Line to Line Fault

A line to line fault can, without loss of generality, be assumed to occur
between lines b and c as shown in Fig. 4.5c. The fault equations are

(4.23)

From (4.10) applied to voltages and currents, we get

(4.24)

Using (4.14) and (4.24), we find

Va0=0, Va1-Va2=0=Vpf-Ia1(Z1+Z2)  

or

(4.25)

Using (4.8) applied to currents, (4.24), and (4.25), we obtain

(4.26)
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4.3.4 Double Line to Ground Fault

The double line to ground fault, as shown in Fig. 4.5d, can be regarded
as involving lines b and c. The fault equations are

Vb=Vc=0, Ia=0 (4.27)

From (4.27) and (4.10), we find

Va0=Va1=Va2=Va/3, Ia=Ia0+Ia1+Ia2=0 (4.28)

Using (4.14) and (4.28),

 

or

(4.29)

so that, from (4.14)

(4.30)

Substituting into (4.8) applied to currents, we obtain
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(4.31)

4.4 FAULT CURRENTS FOR TRANSFORMERS WITH 2 TERMINALS
PER PHASE

A 2 terminal transformer can be modeled by a single leakage reactance
which we call zHL where H and L indicate high and low voltage terminals.
All electrical quantities from this point on will be taken to mean per-
unit quantities and will be written with small letters. This will enable us
to describe transformers, using a single circuit.

The high and low voltage systems external to the transformer are
described by system impedances zSH, zSL and voltage sources eSH, eSL.
The resulting sequence circuit models are shown in Fig. 4.6. A zero
subscript is used to label the zero sequence circuit parameters since they
can differ considerably from the positive or negative sequence circuit
parameters. The positive and negative circuit parameters are equal for
transformers and we will assume for the electrical systems also. They
bear no distinguishing subscript. We have shown a fault on the H
terminal in Fig. 4.6. By interchanging subscripts, the L terminal faults
can be obtained.
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In order to use the previously developed general results, we need to
compute the Thevenin impedances and pre-fault voltage. From Fig. 4.6,
we find

(4.32)

and

Vpf=eSH-iSHpf ZSH=eSL-iHLpf(ZHL+ZSL) (4.33)

Figure 4.6 Sequence circuits for a fault on the HV terminal of a 2 terminal per phase
transformer, using per unit quantities
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where the pre-fault (pf) quantities are all positive sequence. Fig. 4.6 and
the above formulas assume that both terminals are connected to the HV
and LV systems. If either terminal of the transformer is floating, then
this is equivalent to setting the system impedance to infinity for that
system.

We are interested in obtaining the currents in the transformer during
the fault. Thus, according to Fig. 4.6, we need to find iHL1, iHL2, iHL0 for
the standard faults. Since ia1, ia2, ia0 have already been obtained for the
standard faults, we must find the transformer currents in terms of these
known fault currents. From Fig. 4.6 we see that

Va1=eSL-iHL1(ZHL+ZSL),Va2=-iHL2(ZHL+ZSL), Va0=-iHL0(ZHL0+ZSL0)  

Using (4.33), we can rewrite this as

(4.34)

Naturally, if the transformer were not loaded before the fault, we would
have iHLpf=0. Substituting the per-unit version of (4.14) into (4.34), we
obtain

4.4.1 3-Phase Line to Ground Fault

For this fault case, we substitute (4.17), expressed in per-unit terms,
into (4.35) to obtain

(4.35)

(4.36)
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Then, using (4.8) applied to currents, we find

(4.37)

i.e. the fault currents in the transformer form a positive sequence set as
expected.

4.4.2 Single Phase Line to Ground Fault

For this type of fault, substitute the per-unit versions of (4.21) into (4.35),
using z1=z2 to obtain

Substituting (4.38) into (4.8) applied to currents, we obtain the phase
currents,

(4.38)

(4.39)
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Note that there is fault current in phases b and c inside the transformer
even though the fault is on phase a. These b and c fault currents are of
lower magnitude than the phase a fault current.

4.4.3 Line to Line Fault

For this type of fault, we substitute the per-unit versions of (4.25) into
(4.35) using z1=z2, to obtain

(4.40)

Using (4.8) applied to currents, we obtain

(4.41)

In this case, with the fault between phases b and c, phase a is unaffected.

4.4.4 Double Line to Ground Fault

For this fault, we substitute (4.30) expressed in per-unit terms, into (4.35),
using z1=z2, to obtain

(4.42)
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4.4.5 Zero Sequence Impedances

Zero sequence impedances require special consideration since certain
transformer 3-phase connections, such as the delta connection, block
the flow of zero sequence currents and hence provide an essentially
infinite impedance to their passage. This is also true of the ungrounded
Y connection. The reason is that the zero sequence currents, being all in
phase, require a return path in order to flow. The delta connection
provides an internal path for the flow of these currents, circulating around
the delta, but blocks their flow through the external lines. These
considerations do not apply to positive or negative sequence currents
which sum to zero vectorially and so require no return path.

For transformers, since the amp-turns must be balanced for each
sequence, in order for zero sequence currents to be present, they must
flow in both windings. Thus in a grounded Y-Delta unit, for example,
zero sequence currents can flow within the transformer but cannot flow
in the external circuit connected to the delta side. Similarly, zero
sequence currents cannot flow in either winding if one of them is an
ungrounded Y.

Fig. 4.7 shows some examples of zero sequence impedance diagrams
for different transformer connections. These should be compared with
Fig. 4.6c which applies to a grounded Y/grounded Y connection. Where
a break in a line occurs, imagine that an infinite impedance is inserted.
Mathematically, one needs to let the impedance approach infinity as a
limiting process in the formulas.

Using (4.8) applied to currents, we get for the phase currents

(4.43)
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For the Connection in Fig. 4.7a, the Thevenin impedance, looking in
from the fault point, is z0=zSH0 zHL0/(zSH0+zHL0) i.e. the parallel
combination of zSH0 and zHL0. In this case, the impedance zSL0 is
effectively removed from the circuit and replaced by zSL0=0. This
substitution should be made in all the formulas.

For the connection in Fig. 4.7b, we find z0=zSH0. In this case no zero
sequence current can flow into the fault from the transformer side of
the fault point so effectively zSL0→�. Figs. 7c and 7d are similar.
Because of the ungrounded Y connection, no zero sequence current
flows in the transformer.

Figure 4.7 Some examples of zero sequence impedance diagrams for 2 terminal
transformers. The arrow indicates the fault point. Yg=grounded Y, Yu= ungrounded Y
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Another issue is the value of the zero sequence impedances
themselves when they are fully in the circuit. These values tend to differ
from the positive sequence impedances in transformers because the
magnetic flux patterns associated with them can be quite different from
the positive sequence flux distribution. This difference is taken into
account by multiplying factors which multiply the positive sequence
impedances to produce the zero sequence values. For 3 phase core form
transformers, these multiplying factors tend to be ≈0.85, however they
can differ for different 3 phase connections and are usually found by
experimental measurements.

4.5 FAULT CURRENTS FOR TRANSFORMERS WITH 3 TERMINALS
PER PHASE

A 3-terminal transformer can be represented in terms of 3 Y (or T)
connected impedances if per-unit quantities are used. Fig. 4.8 shows the
sequence circuits for such a transformer where H, X, Y label the
transformer impedances and SH, SX, SY label the associated system
impedances. The systems are represented by impedances in series with
voltage sources. The positive sense of the currents is into the transformer
terminals. Although the fault is shown on the H-terminal, by
interchanging subscripts, the formulas which follow can apply to faults
an any terminal. As before, we have not labeled the positive and negative
sequence impedances with subscripts since they are equal for transformers
and we assume also for the systems. The zero sequence impedances are
distinguished with subscripts because they can differ from their positive
sequence counterparts.
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From Fig. 4.8, the Thevenin impedances, looking into the circuits from
the fault point, are

Figure 4.8 Sequence circuits for a fault on the H terminal of a 3 terminal per phase
transformer, using per unit quantities

(4.44)
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The pre-fault voltage is given by

vpf=eSH-iSHpfzSH=eSX-iXpf(zX+zSX)+iHpfZH (4.45)
=eSY-iYpf(zY+zSY)+iHpfzH

where pf labels pre-fault quantities which are all positive sequence. We
also have

iH+iX+iY=0 (4.46)

which applies to the sequence and pre-fault currents. If a terminal is
unloaded, then the corresponding pre-fault current should be set to zero.

From Fig. 4.8,

(4.48)

Solving (4.47), together with (4.44), (4.45), (4.46), and (4.14) expressed
in per-unit terms, we obtain

(4.47)
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4.5.2 Single Phase Line to Ground Fault

For this fault, we substitute the per-unit version of (4.21) into (4.48),
using z1=z2, to get

We now use these equations, together with the fault current equations to
obtain the currents in the transformer for the various types of fault. We
will only list the equations for the sequence currents. Equation (4.8),
applied to currents, may be used to obtain the phase currents in terms of
the sequence currents.

4.5.1 3-Phase line to ground fault

For this type of fault, we substitute the per-unit version of (4.17) into
(4.48) to obtain

(4.49)
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4.5.3 Line to Line Fault

For this fault condition, substitute the per-unit version of (4.25) into
(4.48), using z1=z2, to obtain

(4.50)

(4.51)
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4.5.4 Double Line to Ground Fault

For this fault, substitute the per-unit version of (4.30) into (4.48), using
z1=z2, to get

(4.52)
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4.5.5 Zero Sequence Impedances

Fig. 4.9 lists some examples of zero sequence circuits for 3-terminal
transformers. An infinite impedance is represented by a break in the
circuit. When substituting into the preceding formulas, a limiting process
needs to be used. Although there are many more possibilities than shown
in Fig. 4.9, they can serve to illustrate the method for accounting for the
different 3-phase connections. The previous formulas apply directly to
Fig. 4.8c which represents a transformer with all grounded Y terminal
connections.

Figure 4.9 Some examples of zero sequence circuit diagrams for 3 terminal transformers.
The arrow indicates the fault point. Yg=grounded Y, Yu= ungrounded Y
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In Fig. 4.9a, we have zX0→�, so that w0=zY0+zSY0. In the fault
current formulas, (zY0+zSY0)/(zX0+zY0+zSX0+zsy0)=0 and (zX0+zSX0)/
(zX0+zY0+zSX0+zSY0)=1. This insures that no zero sequence current flows
in the X-terminal.

In Fig. 4.9b, we see that z0=zSH0. We also have zH0→�. This implies
that there are no zero sequence fault currents in any of the terminals.

In Fig. 4.9c, we may take zSX0=0 since it is replaced by a short in the
circuit as seen by the transformer. This should be substituted into all the
formulas.

In Fig. 4.9d, we see that z0=ZSH0. In this case, the only zero sequence
current in the fault comes from the high voltage system, none from the
transformer.

4.6 ASYMMETRY FACTOR

A factor multiplying the currents calculated above is necessary to account
for a transient overshoot when the fault occurs. This factor, called the
asymmetry factor, is given by

(4.53)

where x is the reactance looking into the terminal, r the resistance and
in radians. Usually the system impedances are ignored

when calculating these quantities, so that for a 2 terminal unit,

(4.54)

while for a 3 terminal unit

(4.55)
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with corresponding expressions for xX, rX , xY, rY. When K in (4.53)
multiplies the rms short circuit current, it yields the maximum peak
short circuit current.
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5. RABINS’ METHOD FOR
CALCULATING LEAKAGE FIELDS,
FORCES, AND INDUCTANCES IN

TRANSFORMERS

Summary Rabin’s method utilizes a simplified transformer geometry,
consisting of a core, coils, and yokes of infinite extent, to solve Maxwell’s
equations. This method works well for calculating the magnetic field
near the coils so that quantities such as inductances and forces which
depend on this near field are accurately calculated. Since the tank wall,
clamping structure, and other details are omitted, this method does not
allow one to calculate stray losses in these structures. We use this method
to find forces, the two winding leakage inductance, as well as self and
mutual inductances between coil sections.

5.1 INTRODUCTION

Modern general purpose computer programs are available for calculating
the magnetic field inside the complex geometry of a transformer. These
numerical methods generally employ finite elements or boundary
elements. Geometric details such as the tank wall and clamping structure
can be included. While 3D programs are available, 2D programs using
an axisymmetric geometry are adequate for most purposes. Although
inputting the geometiy, the Ampere-turns in the winding sections, and
the boundary conditions can be tedious, parametric procedures are often
available for simplifying this task. Along with the magnetic field,
associated quantities such as inductances and forces can be calculated
by these methods. In addition, eddy currents in structural parts and their
accompanying losses can be obtained with the appropriate a.c. solver.

In spite of these modern advances in computational methods, older
procedures can often be profitably employed to obtain quantities of
interest very quickly and with a minimum of input. One of these is
Rabins’ method, which assumes an idealized transformer geometiy
[Rab56]. This simplified geometry permits analytic formulas to be
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developed for the magnetic field and other useful quantities. The
geometry consists of a single leg of a single or possibly 3 phase
transformer. The leg consists of a core and surrounding coils which are
assumed to be axisymmetric, along with yokes which are assumed to be
of infinite extent at the top and bottom of the leg. The entire
axisymmetric geometry is of infinite extent radially. Thus there are no
tank walls or clamping structures in the geometry. In addition, the core
and yokes are assumed to be infinitely permeable.

In spite of these simplifications, Rabins’ method does a good job of
calculating the magnetic field in the immediate vicinity of the
windings. Thus forces and inductances, which depend largely on the
field-near the windings, are also accurately obtained. This can be
shown by direct comparison with a finite element solution applied to a
more complex geometry, including tank wall and clamps. Although the
finite element procedure can obtain losses in structural parts, Rabins’
method is not suited for this. However, because the magnetic field near
or inside the windings is obtained accurately, eddy current losses in the
windings as well as their spatial distribution can be accurately obtained
from formulas based on this leakage field.

In the following, we present Rabins’ method and show how it can be
used to obtain forces, leakage reactances, and self and mutual
inductances between winding sections for use in detailed circuit models
of transformers such as are needed in impulse calculations.

5.2 THEORY

We model a cylindrical coil or section of a coil surrounding a core leg
with top and bottom yokes as shown in Fig. 5.1. The yokes and core are
really boundaries of the geometry which extends infinitely far radially.
The coils are assumed to be composed of stranded conductors so that no
eddy current effects are modeled. Thus we can assume d.c. conditions,
The current density in the coil is assumed to be piecewise constant axially
and uniform radially as shown in Fig. 5.2. As indicated, there can be
regions within the coil where the current density drops to zero. Since
there are no non-linear effects within the geometry modeled, the fields
from several coils can be added vectorially so that it is only necessary
to model one coil at a time.
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Figure 5.1 Geometry of iron core, yokes, and coil or coil section

Figure 5.2 Axial distribution of current density in the coil

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



RABINS’ METHOD152

Maxwell’s equations for the magnetic field, applied to the geometry
outside the core and yokes and assuming static conditions are, in SI units,

(5.1)

(5.2)

where H is the magnetic field, B the induction, and J the current density.
Defining a vector potential A, by

(5.3)

equation (5.2) is automatically satisfied. We also have

B=µoH (5.4)

in the region of interest where µo is the permeability of vacuum, oil, or
air. Substituting (5.3) and (5.4) into (5.1), we obtain

(5.5)

The vector potential is not completely defined by (5.3). It contains some
arbitrariness which can be removed by setting

(5.6)

Thus (5.5) becomes

(5.7)

The current density vector is azimuthal so that

(5.8)

where aϕ is the unit vector in the azimuthal direction. Because of the
axisymmetric geometiy, all the field quantities are independent of ϕ.
With these assumptions (5.7) becomes in cylindrical coordinates

(5.9)
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Thus A and J have only a ϕ component and we drop this subscript in the
following for simplicity.

Let us write the current density as a Fourier series in terms of a
fundamental spatial period of length L, the yoke to yoke distance or
window height.

(5.10)

where

(5.11)

For the current density described in Fig. 5.2, we have

(5.12)

Using (5.12), the integrals in (5.11) can be evaluated to get

(5.13)

Thus for one section with constant current density J we would have
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(5.14)

As shown in Fig. 5.1, we have divided the solution space into 3
regions:

 

In regions I and III, the current density is 0 so equation (5.9) becomes,
dropping the subscript ϕ

(5.15)

This is a homogeneous partial differential equation. We look for a
solution of the form

A(r,z)=R(r)Z(z) (5.16)

Substituting this into (5.15) and dividing by RZ, we get

(5.17)

This equation contains terms which are only a function of r and terms
which are only a function of z whose sum is a constant=0. Therefore,
each set of terms must separately equal a constant whose sum is zero.
Let the constant be m2, a positive number. Then

(5.18)

Rearranging terms, we get
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(5.19)

We need to consider separately the cases m=0 and m>0.
For m=0, the solution to the z equation which satisfies the boundary

conditions at the top and bottom yokes is a constant and the r equation
in (5.19) becomes

(5.20)

The solution to this equation is

(5.21)

where S and T are constants to be determined by the boundary
conditions,

For m>0, the solution to the z equation in (5.19) can be written

(5.22)

where Zm and ϕm are constants to be determined by the boundary
conditions. Since we assume that the yoke material has infinite
permeability, this requires that the B-field be perpendicular to the yoke
surfaces. Using (5.3), we have in cylindrical coordinates

(5.23)

where ar and k are unit vectors in the r and z directions. For B to be
perpendicular to the upper and lower yokes, we must have

(5.24)

Using this, (5.22) takes the form

(5.25)
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Here we use n rather than m to label the constant. m also depends on n
but we omit this reference for simplicity.

For m>0, the radial equation in (5.19) can be written, with the
substitution x=mr,

(5.26)

The solution to this equation is

Rn=CnI1+DnK1(x) (5.27)

where I1 and K1 are modified Bessel functions of the first and second
kind respectively and of order 1 [Dwi61]. We have also labeled the
constants C and D with the subscript n since the solution depends on n
through m which occurs in x.

In general, the solution to (5.15) is expressible as a sum of these
individual solutions, each a product of an R and Z term,

(5.28)

where the Z solution constants have been absorbed in the overall constants
shown. This solution satisfies the boundary condition at z=0, L. Because
we also assume an infinitely permeable core, the B-field must be normal
to the core surface. Thus from (5.23), we require in Region I

(5.29)

Substituting (5.28) into this last equation, we get

(5.30)

Although (5.30) would seem to require that S=0, it will turn out that
when all the windings are considered with their Ampere-turns which
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sum to zero, we can satisfy this boundary condition with S≠0 for each
winding. For the remaining z-dependent terms in (5.30), we require

(5.31)

where we have used modified Bessel function identities [Rab56]. I0 and
K0 are modified Bessel functions of order 0. Thus we have from (5.31)

(5.32)

Labeling the unknown constants with the region number as
superscript, (5.28) becomes

(5.33)

We have dropped the T/r term since it approaches infinity as the core
radius approaches zero. We also assume implicitly that m depends on n
as in (5.28).

In Region III, we require that A be finite as r→∞. Since I1→∞ as r→∞
and the Sr term also →∞, we have from (5.28), using the appropriate
region label,

(5.34)

In Region II, we must keep the current density term in (5.9).
Substituting the Fourier series (5.10) into (5.9) and dropping the ϕ
subscript, we have in Region II,

(5.35)

We look for a solution to this equation in the form of a series expansion,
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(5.36)

Substituting into (5.35), we get

(5.37)

Since the cosine functions are orthogonal, we can equate corresponding
coefficients on both sides of this equation. We obtain

(5.38)

The soludon to the n=0 equation can be written in terms of a solution
of the homogeneous equation plus a particular solution,

(5.39)

The solution to the n>0 equations in (5.38) consists of a homogeneous
solution which was found previously and a particular solution,

(5.40)

where L1 is a modified Struve function of order 1 [Abr72]. Thus the
solution (5.36) is given explicitly as

(5.41)
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This equation already satisfies the boundary conditions at z=0, L.
The unknown constants must be determined by satisfying the boundary
conditions ar r=r1, r2. We require that the vector potential be continuous
across the interfaces. Otherwise the B-field given by (5.23) would
contain infinities. Thus at r=r1, using (5.33) and (5.41),

(5.42)

Since this must be satisfied for all z, we obtain

(5.43)

where x1=mr1, xc=mrc.
At r=r2, we obtain similarly, using (5.34) and (5.41),

(5.44)

where x2=mr2.
In addition to the continuity of A at the interfaces between regions,

we also require, according to Maxwell’s equations, that the normal
component of B and the tangential component of H be continuous
across these interfaces. According to (5.23), the normal B components
are already continuous across these interfaces since all regional
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solutions have the same z dependence and because the A’s are
continuous. Since B is proportional to H in all regions of interest here,
we require that the tangential B components be continuous. Thus from
(5.23), we require that

(5.45)

be continuous at r=r1, r2 (x=x1, x2). Using this, we obtain the additional
conditions on the unknown constants

(5.46)

Using the identities [Rab56, Abr72],

(5.47)

we obtain for the last two equations in (5.46)

(5.48)
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Solving for the S and T constants from (5.43), (5.44), and (5.46), we
obtain

(5.49)

Solving for the Cn and Dn constants from (5.43), (5.44), and (5.46), we
get

(5.50)

Using the identities [Rab56],

(5.51)
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we can transform (5.50) into the form

(5.52)

Summarizing and simplifying the notation slightly, the solutions in
the three regions are given by

(5.53)

where m=nπ/L, x=mr, and
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(5.54)

Here x1=mr1 and x2=mr2.
Note that, using (5.23), the axial component of the induction vector

at the core radius is

Bz(rc,z)=µoJ0(r2-r1) (5.55)

This is µo times the average current density times the radial build of the
winding. Since the axial height L is the same for all the windings, when
we add this axial component for all the windings we will get zero, assuming
Ampere-turn balance. Thus the flux will enter the core radially as required.

Although the modified Bessel functions are generally available in
mathematical computer libraries, the modified Struve functions are not
so easily obtained. We therefore indicate here some methods of
obtaining these and other quantities of interest in terms of readily
available functions or easily evaluated integrals. From reference
[Abr72], the modified Struve functions are given in integral form as

(5.56)

It can be seen from (5.56) that these functions become asymptotically
large as x→∞. Such large values of x would occur when evaluating the
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higher harmonics in (5.53). Ref. [Abr72] also gives integral expressions
for the modified Bessel functions. In particular, we have

(5.57)

These also become asymptotically large as x increases. However, by
defining the difference functions

(5.58)

we can show that

(5.59)

The integrals in (5.59) are well behaved as x increases and can be
evaluated numerically. In subsequent developments, we will also need
the integral of M0. This is readily determined from (5.59) as

(5.60)

The integrand approaches x as θ→π/2 and so the integral is also well
behaved. For high x values, asymptotic series can be found in Ref.
[Abr72].

Let us now write other expressions of interest in terms of the M
functions and modified Bessel functions. Using (5.51) and (5.58), we can
write

(5.61)
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We will also need a similar integral for the modified Struve function.
We need the following identities given in [Rab56].

(5.62)

Multiplying these by t and integrating from 0 to x, we get

(5.63)

Substituting L0 in terms of the M0 function and rearranging, we get

(5.64)

Thus all the functions needed to determine the vector potential are
obtainable in terms of the modified Bessel functions and the M functions.
We will also need (5.64) in obtaining derived quantities in the following
sections.

The determination of the vector potential for the other coils or coil
sections proceeds identically to the previous development. Because
Maxwell’s equations are linear in the fields and potentials in the region
outside the core and yokes, we can simply add the potentials or fields
from the various coils vectorially at each point to get the net potential
or field. We need to be aware of the fact that a given point may not be
in the same region number (I, II, or III) for the different coils.
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5.3 DETERMINING THE B-FIELD

The B-field or induction vector is given by (5.23). We need to evaluate
it in the three regions using (5.53). The radial component is, using the
region label as superscript,

(5.65)

Using (5.47) and

(5.66)

the axial component is,

(5.67)

To find the net B-field associated with a collection of coils, we simply
add their components at the point in question, keeping in mind what
region the point is in relative to each coil.
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5.4 DETERMINING THE WINDING FORCES

The force density vector, F, in SI units (Newtons/m3), is given by

F=J×B (5.68)

Since J is azimuthal and B has only r and z components, this reduces to

F=JBzar-JBrk (5.69)

where ar is the unit vector in the radial direction and k the unit axial
vector. We have omitted the ϕ subscript on J. Thus the radial forces are
due to the axial field component and vice versa.

In (5.69), the B-field values are the resultant from all the coils and J
is the current density at the point in question. This force density is
nonzero only over those parts of the winding which carry current. In
order to obtain net forces over all or part of a winding, it is necessary to
integrate (5.69) over the winding or winding part. For this purpose, the
winding can be subdivided into as fine a mesh as desired and F
computed at the centroids of these subdivisions and the resulting values
times the mesh volume element added.

One force which is useful to know is the compressive force which
acts axially at each axial position in the winding. We assume that the
windings are constrained at the two ends by pressure rings of some type.
We ignore gravity here. Starting from the bottom, we integrate the
axial forces upwards along the winding, stopping when the sum of the
downward acting forces reach a maximum. This is the net downward
force on the bottom pressure ring which is countered by an equal
upward force on the winding exerted by the pressure ring. We do the
same thing, starting from the top of the winding, integrating the axial
forces until the largest upwards acting summed force is reached. This
then constitutes the net upward force acting on the top pressure ring
which is countered by an equal downward force exerted by the pressure
ring. Including the reaction forces of the pressure rings, we then
integrate upwards say, starting at the bottom of the winding and at each
vertical position, the force calculated will be the compressive force at
that position since there will be an equal and opposite force acting from
above. This is illustrated in Fig. 5.3a.
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Another force of interest for coil design is the radial force which
results in hoop stress, tensile or compressive, on the winding. Because of
the cylindrical symmetry, the radial forces vectorially add to zero. We
must therefore handle them a bit differently if we are to arrive at a
useful resultant for hoop stress calculations. In Fig. 5.3b, we isolate a
small portion of the winding and show the forces acting in a horizontal
section. We show the radial forces acting outward and the tensile forces
applied by the missing part of the winding which are necessary to
maintain equilibrium. If the radial forces acted inward, then the rest of
the winding would need to apply compressive forces to maintain
equilibrium and all the force arrows in the figure would be reversed.
The calculation would, however, proceed similarly.

In Fig. 5.3b, θ is assumed to be a very small angle. The force balance
in the upward direction in the figure is

(5.70)

Ftot, r is the sum of the radial electromagnetic forces acting on the winding
section shown and T is the total tensile force acting on the winding
cross-section. For small θ, this reduces to

Ftot, r=Tθ (5.71)

Figure 5.3 Forces on the winding needed for stress analysis
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In radians, θ=∆�/R, where ∆� is the circumferential length of the winding
section shown and R its average radius. The average tensile stress is
σ=T/A, where A is the cross-sectional area of the winding section. Noting
that the volume of the winding section is ∆V=A ∆�. In the limit of small
θ, (5.71) becomes

(5.72)

Thus the average tensile stress in the winding is the average radius
times the average radial force density, assuming the radial forces act
outward. For inward radial forces, σ is compressive. The average radial
force density at a particular axial position z can be found by computing
the radial component of (5.69) at several radial positions in the winding,
keeping z fixed, and taking their average. One should weight these by
the volume element which is proportional to r.

Other forces of interest can be found from the known force
densities.

5.5 GENERAL METHOD FOR DETERMINING INDUCTANCES
AND MUTUAL INDUCTANCES

Self and leakage inductances are usually defined in terms of flux linkages
between circuits. However, it is often more convenient to calculate
them in terms of magnetic energy. In this section, we show the
equivalence of these methods and develop a useful formula for the
determination of these inductances in terms of the vector potential. In
addition, we show how the vector potential can be employed to
calculate mutual inductances.

Consider a set of stationary circuits as shown in Fig. 5.4a. We
assume that we slowly increase the currents in them by means of
batteries with variable control. In calculating the work done by the
batteries, we ignore any I2R or dissipative losses or, more realistically,
we treat these separately. Thus the work we are interested in is the work
necessary to establish the magnetic field. Because of the changing flux
linking the different circuits, emf’s s will be induced in them by
Faraday’s law. We assume that the battery controllers are adjusted so
that the battery voltages just balance the induced voltages throughout
the process. Because the circuits can have finite cross sectional areas as
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shown in the figure, we imagine subdividing them into infinitesimal
circuits or tubes carrying an incremental part of the total current, dI, as
in Fig. 5.4b.

Figure 5.4 Method of circuit subdivision used to calculate self and mutual inductances

The incremental energy, dW, which the batteries supply during a
time interval, dt, is

(5.73)

Here the integrand is the infinitesimal power flowing through the
infinitesimal circuit or loop carrying current dI and along which a voltage
V is induced. The integral simply represents the sum of these powers.
We have also substituted the current density J times the infinitesimal
cross-sectional area dS for the incremental current in the loop so that
the last integral is over the cross-sectional area of the circuits. From
Faraday’s law for a single turn circuit

(5.74)
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where Φ is the flux linked by the circuit. Substituting into (5.73)

(5.75)

By definition

(5.76)

In (5.76), the surface integral is over the surface encircled by the loop
and the line integral is along the loop as shown in Fig. 5.4b. n is the unit
normal to the surface encircled by the loop and d� is the infinitesimal
distance vector along the loop. Note that d� points in the same direction
as J considered as a vector. Since the current loops are fixed, we get
from (5.76)

(5.77)

Substituting this into (5.75), we get

(5.78)

Since J points along d� and since the volume element dV=d�dS, we can
rewrite (5.78)

(5.79)

In changing to a volume integral, we are simply recognizing the fact
that the integral over the cross-sectional area of the circuits combined
with an integral along the lengths of the infinitesimal circuits amounts
to an integration over the volume of the circuits. If A increases linearly
with J, it can be shown that the total work done to establish the final
field values is
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(5.80)

It is sometimes more convenient for calculational purposes to express
(5.80), or more generally (5.79), differently. First of all the volume
integration in both of these equations could be taken over all space
since the current density is zero everywhere except within the circuits.
(By all space we mean the solution space of the problem of interest,
ignoring the rest of the universe.) Substituting (5.1) into (5.79), we get

(5.81)

Using the vector identity for general vector fields P, Q [Pug62],

(5.82)

we have, upon substitution into (5.81) with the identification P→H, Q
→dA,

(5.83)

In this equation, we have used the definition of A given in (5.3) and the
Divergence Theorem [Pug62] to convert the last volume integral into a
surface integral. The surface integral generally vanishes since the
boundary surface is usually at infinity where the fields drop to zero. In
the case of Rabins’ solution, it also vanishes on the core and yoke surfaces
because of the boundary conditions. Thus we can drop it, to get for the
situation where B increases linearly with H

(5.84)

Either (5.80) or (5.84) can be used to calculate the magnetic energy. The
second equality in both equations applies to linear systems.
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We now show how the magnetic energy can be related to inductances
or leakage inductances. The voltages induced in the circuits of Fig. 5.4a
can be written in terms of inductances and mutual inductances as

(5.85)

where Mij is the mutual inductance between circuits i and j. When j= i,
Mii=Li, where Li is the self inductance of circuit i. The incremental energy
for the circuits of Fig. 5.4a can be expressed, using (5.85),

(5.86)

For linear systems, it can be shown that Mij=Mji. Thus the second sum in
(5.86) can be written

(5.87)

The first equality in this equation is a matter of changing the index
labels in the sum and the second equality results from the symmetric
nature of Mij. The third equality results from the double counting which
happens when i and j are summed independently. Substituting (5.87)
into (5.86), we get

(5.88)

Integrating this last equation, we obtain

(5.89)
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Thus (5.89) is another expression for the magnetic energy in terms of
inductances and mutual inductances. As an example, consider a single
circuit for which we want to know the self-inductance. From (5.89),

(5.90)

where W can be calculated from (5.80) or (5.84) with only the single
circuit in the geometry. W is usually available from finite element codes.
If we have 2 circuits, then (5.89) becomes

(5.91)

If these two circuits are the high (label 1) and low (label 2) voltage
coils of a 2 winding transformer with N1 and N2 turns respectively,
then we have I2/I1=”N1/N2 so that (5.91) becomes

(5.92)

The expression on the left is the leakage inductance referred to the high
voltage side [MIT43]. The magnetic energy on the right side can be
calculated from (5.80) or (5.84) with the two windings in the geometry
and with the Ampere-turns balanced. Multiplying by ω=2πf produces
the leakage impedance.

The mutual inductance between two circuits is needed in detailed
circuit models of transformers where the circuits of interest are sections
of the same or different coils. We can obtain these quantities in terms of
the vector potential. By definition, the mutual inductance between
circuits 1 and 2, M12, is the flux produced by circuit 2 which links
circuit 1 divided by the current in circuit 2. 1 and 2 could be
interchanged in this definition without changing the value of the mutual
inductance for linear systems. We use the infinitesimal loop approach
as illustrated in Fig. 5.4 to obtain this quantity. Each infinitesimal loop
represents an infinitesimal fraction of a turn. For circuit 1, an
infinitesimal loop carrying current dIi represents a fractional turn dI1/ I1.
Therefore the flux linkage between this infinitesimal turn due to the flux
produced by circuit 2, dλ12, is

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



RABINS’ METHOD 175

(5.93)

Integrating this expression over the cross-sectional area of circuit 1 and
using the fact that dI1=J1dS1 and that J1 as a vector points along d�1, we
can write

(5.94)

where we have used the same integration devices as were used previously.
Thus the mutual inductance between these circuits is given by

(5.95)

Note that this formula reduces to the formula for self-inductance (5.90)
when 1 and 2 are the same circuit and letting M11=L1.

5.6 RABINS’ FORMULA FOR LEAKAGE REACTANCE

The leakage reactance for a 2 winding transformer as given in (5.92)
can be obtained from the total magnetic energy. We assume that the two
windings occupy different radial positions as shown in Fig. 5.5. We use
(5.80) for the magnetic energy where A is the total vector potential due
to both windings. Since A and J are both azimuthally directed, the dot
product becomes simply the ordinary product. We also drop the implied
subscript on J and A.
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Thus, writing A1, A2 for the vector potential due to coils 1 and 2 and
J1, J2 for their current densities, (5.80) becomes

(5.96)

For the A1J1 or A2J2 integrals, we must use the Region II solution.
Assuming coil 1 is the inner coil, the A2J1 integral requires that we use
the Region I solution for A2 while the A1J2 integral requires that we use
the Region III solution for A1.

From (5.53) and (5.10), using a second subscript to distinguish the
coil 1 quantities from the coil 2 ones,

Figure 5.5 Geometry for 2 coil leakage inductance calculation
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(5.97)

Performing the z-integral first, we notice that product terms which
contain a single cosine term will vanish, i.e.

(5.98)

Product terms which contain 2 cosine factors have the value

(5.99)

After performing the z-integral, (5.97) becomes

(5.100)

Performing the r-integration, we get

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



RABINS’ METHOD178

(5.101)

Formulas for the x-integrals above have been given previously in terms
of known or easily calculated quantities. The A2J2 term in (5.96) is
given by (5.101) with a 2 subscript and with the r-integration from r3 to
r4 (See Fig. 5.5). Thus we have

(5.102)

The A2J1 integral in (5.96) is given by

(5.103)

Using the previous method for carrying out these integrals, we obtain
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(5.104)

The A1J2 integral in (5.96) is given similarly by

(5.105)

In spite of their different appearances, (5.104) and (5.105) are the same.
Summing up the terms in (5.96), we get after some algebraic manipulation

(5.106)

When the coefficients En and Fn etc. have a 1 subscript, then the
expressions given by (5.54) apply with x1, x2 for the integration limits.
However, when the second subscript is a 2, then x3, x4 must be substituted
for x1, x2 in the formulas.

The first set of terms involving the J0's can be further manipulated by
realizing that the average current density in the coil times the area of
the coil equals the total Ampere-turns in the coil so that

(5.107)
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Using this and the geometric parameters shown in Fig. 5.5, this set of
terms can be expressed as

(5.108)

where Rm1, Rm2 are the mean radii of the coils, b1, b2 their radial
thicknesses, Rmg is the mean radius of the gap, and g the gap’s radial
thickness. In this equation NI could refer to either coil since they are
equal except for sign.

The leakage inductance, referred to coil 1 as given in (5.92), can be
written, using (5.106) and (5.108),

(5.109)

The first set of terms in this last equation is the leakage inductance
produced by the axial flux from two coils with uniformly distributed
currents and no end effects. The second set of terms has been written in
terms of NI to emphasize that it, along with N could refer to either coil.
To get the leakage impedance multiply Lleak by ω=2πf.

There are sometimes transformer designs where two coils are placed
on top of each other axially and therefore occupy the same radial
position. In this case the coil radial builds are usually the same. Often the
coils are duplicates. Rabins’ method can also be used to find the leakage
inductance for this situation. The current densities for each coil will be
non-zero within different axial regions but the Fourier decomposition
should reflect this. In this case, only the region II solution is needed for
both coils and (5.96) still holds. In this case, r3=r1 and r4=r2. Evaluating
the terms in (5.96), we find that the A1J1 and A2J2 terms are the same as
before except that we must replace r3, r4, x3, x4 by r1, r2, x1, x2.

The A2J1 integral is
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(5.110)

We can use a 1 subscript on En and Fn above since the radial extent of
the two windings is the same. However, the 2 subscript is needed on Jn

since the current distributions are different. Carrying out the z and r
integrations, we get

(5.111)

This expression is also equal to the A1J2 term. Hence we get, combining
terms

(5.112)

Using (5.107) applied to this case, we see that the first set of terms
vanishes. Thus we get for the leakage impedance

(5.113)

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



RABINS’ METHOD182

5.7 RABINS’ METHOD APPLIED TO CALCULATE SELF AND
MUTUAL INDUCTANCES OF COIL SECTIONS

A coil section for our purposes here consists of a part of a coil which has
a uniform current density. Then (5.14) holds for the Fourier coefficients.
In all other respects it is treated like a full coil. The self-inductance of
this section is given by (5.95) with the subscript 2 replaced by 1. In this
case, we use the solution for A in Region II since that is where the
current density is non-zero. The integral in (5.95) has already been
carried out in (5.101) so we have

(5.114)

Since

(5.115)

we can rewrite (5.114)

(5.116)

The mutual induction between two coil sections is given by (5.95). Here
again, except for the uniform current density in one coil section, we
treat the coil sections as if they were full coils in applying Rabins’
method. If the sections are on the same coil or two coils axially displaced,
then A2 is the solution in Region II. The A2J1 integral has already been
done in this case and is given in (5.111). Thus we have
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(5.117)

Since

(5.118)

we can rewrite (5.117)

(5.119)

When the coil sections are part of different coils, radially displaced,
then we can assume that 1 is the inner and 2 the outer coil. The result
will be independent of this assumption. Thus we need the Region I
solution. The A1J2 integral has already been done and the result given in
(5.104). Thus we have

(5.120)

In this case, we have

(5.121)

Using this, we can rewrite (5.120)
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(5.122)

From the formulas for leakage, self, and mutual inductances, we see
that all the results can be expressed in terms of the modified Bessel
functions of order 0 and 1, the M0, M1 functions, and the integral of the
M0 function. The M0, M1 and the integral of the M0 function have
convenient expressions in terms of well behaved integrals.
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6. MECHANICAL DESIGN

Summary During fault conditions when currents can increase to about
25 times their normal values, transformer windings are subjected to
very high forces. Sufficient bracing must be provided so that little
movement occurs. In addition, the mechanical design and material
properties must be such that the resulting stresses do not lead to permanent
deformation, fracture, or buckling of the materials. Although fairly
accurate calculations of the forces can be made either analytically or
via finite elements, because of the complex structure of the windings, it
is difficult to obtain the resulting stresses or strains without resorting to
approximations. Nevertheless, with sufficient allowances for factors of
safety, design rules to limit the stresses can be reliably established.

6.1 INTRODUCTION

Transformers must be designed to withstand the large forces which occur
during fault conditions. Fault currents for the standard fault types such
as single line to ground, line to line, double line to ground, and all three
lines to ground must be calculated. Since these faults can occur during
any part of the ac cycle, the worst case transient overcurrent must be
used to determine the forces. This can be calculated and is specified in
the standards as an asymmetry factor which multiplies the rms steady
state currents. It is given by [IEE93]

(6.1)

where  and x/r is the ratio of the effective ac reactance to
resistance. They are part of the total impedance which limits the fault
current in the transformer when the short circuit occurs. Using this factor,
the resulting currents are used to obtain the magnetic field (leakage
field) surrounding the coils and, in turn, the resulting forces on the
windings. Analytic methods such as Rabins’ method [Rab56] as discussed
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in Chapter 5 or finite element methods can be used to calculate the
magnetic field. An example of such a leakage field is shown in Fig. 6.1
which was generated by the finite element program Maxwell® EM2D
Field Simulator [Ansoft]. Since this is a 2D program, the figure is
cylindrically symmetrical about the core center line and only the bottom
half of the windings and core are shown because of assumed symmetry
about a horizontal center plane. Although details such as clamps and
shields can be included in the calculation using a finite element approach,
they are not part of Rabins’ analytical approach which assumes a simpler
idealized geometry. However, calculations show that the magnetic field
in the windings and hence the forces are nearly identical in the two
cases.

The force density (force/unit volume), f, generated in the windings by
the magnetic induction, B, is given by the Lorentz force law

f=J×B (6.2)

where J is the current density and SI units are used. These force densities
can be integrated to get total forces, forces/unit length, or pressures
depending on the type of integration performed. The resulting values or
the maxima of these values can then be used to obtain stresses or maximum
stresses in the winding materials.

The procedure described above is static in that the field and force
calculations assume steady-state conditions, even though the currents
were multiplied by an asymmetry factor to account for a transient
overshoot. Because the fault currents are applied suddenly, the resulting
forces or pressures are also suddenly applied. This could result in
transient mechanical effects such as the excitation of mechanical
resonances which could produce higher forces for a brief period than
those obtained by a steady-state calculation. A few studies have been
done of these transient mechanical effects in transformers [Hir71,
Bos72, Pat80, Tho79]. Although these studies are approximate, where
they have indicated a large effect, due primarily to the excitation of a
mechanical resonance, we use an appropriate enhancement factor to
multiply the steady-state force. In other cases, these studies have
indicated little or no transient effects so that no correction is necessary.

Because controlled short-circuit tests are rarely performed to
validate a transformer’s mechanical design, there are few empirical
studies which directly test the theoretical calculations. To some extent,
our confidence in these calculations comes from the fact that, in recent
years, very few field failures have been directly attributable to
mechanical causes.
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Figure 6.1 Plot of transformer leakage flux. Only the bottom half is shown. The
figure is assumed to be cylindrically symmetrical about the core center line.
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6.2 FORCE CALCULATIONS

As mentioned previously, the electromagnetic forces acting on the coils
are obtained by means of an analytic or finite element magnetic field
calculation in conjunction with the Lorentz force law. In our analytic
calculation which uses Rabins’ method [Rab56], each coil carrying
current is subdivided into 4 radial sections and 100 axial sections as
shown in Fig. 6.2a. In the case of a finite element method, the coil
crosssection is subdivided into an irregular net of triangles as shown in
Fig. 6.2b. The principles used to determine the forces or pressures needed
in the stress calculation are similar for the two cases so we will focus on
the analytic method.

The current density is uniform in each block in Fig. 6.2a but it can
vary from block to block axially due to tapping out sections of the coil

Figure 6.2 Coil subdivisions in (a) analytic and (b) finite element calculations of the
magnetic field. In (c), a modified finite element mesh is shown which is more useful
for subsequent stress analysis.
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or thinning of sections of the winding to achieve a better amp-turn
balance with tapped out sections in adjacent winding. These sections of
reduced or zero current density produce radially bulging flux lines as
are evident in Fig. 6.1. Form the Lorentz force law, since the current is
azimuthally directed, radially directed flux produces axial forces and
axially directed flux produces radial forces. There are no azimuthal
forces since the geometry is assumed to be cylindrically symmetric.

The radial and axial forces are computed for each block in Fig. 6.2a.
Because of the cylindrical symmetry, each block in the figure is really a
ring. The radial force can be thought of as a pressure acting inward or
outward on the ring depending on its sign. If these forces are summed
over the four radial blocks and then divided by the area of the
cylindrical surface at the average radius of the winding, we obtain an
effective total radial pressure acting on the coil at the axial position of
the block. The maximum of these pressures in absolute value for the
100 axial positions is the worst case radial pressure and is used in
subsequent stress analysis. Note that these forces are radially directed
so that integrating them vectorially over 360 degrees would produce
zero. This integration must therefore be done without regard to their
vectorial nature.

The axially directed force summed over the four radial blocks is also
needed. The maximum of the absolute value of this force for the 100
axial positions is a worst case force used in the stress analysis. These
axial forces are also summed, starting at the bottom of the coil. The
total of these axial forces (summed over all the blocks of the coil) is a
net upward or downward force depending on its sign. This force is
countered by an equal and opposite force exerted by the pressure ring. If
this net force acts downward, then the bottom pressure ring exerts an
upward equal force on the coil. If it acts upward, then the top pressure
ring exerts an equal downward force. In the former case, the top ring
exerts no force on the coil and in the latter case, the bottom ring exerts
no force on the coil We are ignoring the gravitational forces in
comparison with the electromagnetic forces here. Starting with the
force exerted upward, if any, by the bottom pressure ring, if we keep
adding to this the forces produced by the horizontal layers of 4 blocks
starting from the bottom row, we will arrive at a maximum net upward
force at some vertical position along the winding. This force is called
the maximum compressive force and is a worst case force used in the
stress analysis.

The total axial forces on the windings are added together if they are
upward (positive). Similarly, windings having downward (negative)
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total axial forces contribute to a total downward force. These total
upward or downward forces due to all the windings should be equal in
absolute value since the net electromagnetic force acting axially must
be zero. In practice there are slight differences in these calculated
quantities due to rounding errors. The net upward or downward axial
force due to all the windings is called the total end thrust and is used in
sizing the pressure rings. If the windings are symmetric about a
horizontal center plane, the total axial force on each winding is nearly
zero so there is little or no end thrust. However, when one or more
windings are offset vertically from the others, even slightly, net axial
forces develop on each winding which push some windings up and some
down. It is a good practice to include some offset, say 0.635 cm to 1.27
cm (1/4 to 1/2 in), in the calculations to take into account possible
misalignment in the transformer’s construction.

As can be seen from the way forces needed for the stress analysis
were extracted from the block forces in Fig. 6.2a, the finite element
mesh shown in Fig. 6.2c would be more useful for obtaining the needed
forces. Here the coil is subdivided into a series of axial blocks, which
can be of different heights, before the triangular mesh is generated.
Then the forces can be summed for all the triangles within each block to
correspond to the forces obtained from the 4 radial blocks at the same
axial height in Fig. 6.2a.

6.3 STRESS ANALYSIS

We need to relate the forces discussed in the last section to the stresses in
the coil in order to determine whether the coil can withstand them without
permanently deforming or buckling. The coils have a rather complex
structure as indicated in Fig. 6.3 which shows a disk type coil. Helical
windings are disk windings with only 1 turn per section and thus are a
special case of Fig. 6.3. The sections are separated vertically by means
of key spacers made of pressboard. These are spaced around the coil so
as to allow cooling oil to flow between them. The coils are supported
radially by means of axial sticks and pressboard cylinders or barriers.
These brace the coil on the inside against an inner coil or against the
core. There are similar support structures on the outside of the coil,
except for the outermost coil. Spaces between the sticks allow cooling
oil to flow. Because of the dissimilar materials used, pressboard, paper,
and copper for the conductors, and because of the many openings for
the cooling oil, the stress analysis would be very complicated unless
suitable approximations are made.
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Although we have shown distinct separate axial sections in Fig. 6.3,
in reality the wires must maintain electrical continuity from section to
section so that the coil has a helical (spring like) structure. For the stress
analysis, it is generally assumed that the helical pitch is small enough
that the coil can be regarded as having distinct horizontal sections as
shown in the figure. Moreover, these sections are assumed to close on
themselves, forming rings.

Another approximation concerns the cable which comprises the
winding turns. Fig. 6.4 shows the two types which are commonly used.
Magnet wire consists of a single strand of copper surrounded by a paper
covering and is treated almost without approximation in the stress
analysis. Transposed cable consists of multiple enamel coated copper
strands arranged in the nearly rectangular pattern shown. Not shown
are how the transpositions are made which rotate the different strands

Figure 6.3 Details of a typical disk winding
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so that they each occupy all the positions shown as one moves along the
wire. The transpositions give some rigidity to the collection of strands.
In addition, use is often made of bonded cable in which all the strands
are bonded together by means of an epoxy coating over the enamel
which is subjected to a heat treatment. In this case the cable can be
treated as a rigid structure, although there is some question as to how to
evaluate its material properties. With or without bonding, one has to
make some approximations as to how to model the cable for stress
analysis purposes. Without bonding, we assume for radial force
considerations that the cable has a radial thickness equivalent to 2
radial strands. With bonding, we assume a radial thickness equivalent
to 80% of the actual radial build.

We will begin by looking at the stresses produced by the axial forces.
Then we will consider the stresses due to the radial forces. We will need

Figure 6.4 Types of wire or cable used in transformer coils
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to examine worst case stresses in the copper winding turns, in the key
spacers, in the pressure rings and in the tiepiates which are attached to
the top and bottom clamps and provide the tension which compresses
the coils. In the following sections.

6.3.1 Compressive Stress in the Key Spacers

The maximum axial compressive force is used to determine the worst
case compressive stress in the key spacers. This force, Fc, obtained for
each coil from the magnetic field analysis program, is divided by the
area of the key spacers covering one 360 degree disk section to obtain
the key spacer compressive stress σks,

(6.3)

where Nks is the number of key spacers around one 360 degree section,
Wks, is the width of a key spacer, and B is the radial build of the coil, We
use key spacers made of pre-compressed pressboard which can withstand
a maximum compressive stress of 310 MPa (45,000 psi). Therefore, the
stress calculated by (6.3) should not exceed this number.

6.3.2 Axial Bending Stress per Strand

The maximum axial force over the 100 vertical subdivisions is computed
for each coil. Call this maximum force Fa. In order to compute the
bending stress, we need to know the force/unit length acting on an
individual strand, since these forces are continuously distributed along
the strand. The number of strands in the entire coil, Ns, is given by

Ns=NtNhNwNst (6.4)

where Nt is the number of turns/leg, Nh is the number of cables/turn
high (radially), Nw is the number of cables/turn wide (axially), and Nst

is the number of strands/cable. We are allowing for the fact that each
turn can consist of several cables in parallel, some radially and some
axially positioned, each having Nst strands. If the coil consists of 2
separate windings stacked axially (center fed) each having Ne electrical
turns, then Nt=2 Ne. Since the section with the maximum axial force is
only 1/100 of the coil, it only has 1/100 of the above number of strands.
Hence, the maximum force/unit length on a single strand, qst, is given by
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(6.5)

where Dm is the mean diameter of the coil.
The problem can be analyzed as a uniformly loaded rectangular

beam with built in ends as shown in Fig. 6.5a. There are 6 unknowns,
the horizontal and vertical components of the reaction forces and the
bending moments at the two built in ends, but only 3 equations of statics
making this a statically indeterminate problem. The two horizontal
reaction forces are equal and opposite and produce a tensile stress in the
beam which is small for small deflections and will be ignored. The
vertical reaction forces are equal and share the downward load equally.
They are therefore given by R1,up=R2,up=qL/2, where q=qst is the
downward force/unit length along the beam and L the beam’s length.
By symmetry, the bending moments M1 and M2 shown in Fig. 6.5a are
equal and produce a constant bending moment along the beam. In
addition, a bending moment as a function of position is also present,
resulting in a total bending moment at position x of

(6.6)

using the sign convention of Ref. [Tim56].

Figure 6.5 Uniformly loaded beam with built in ends
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To solve for the unknown M1, we need to solve the equation of the
beam’s deflection curve [Tim56]

(6.7)

where E is Young’s modulus for the beam material and Iz is the area
moment of inertia about the z axis. Substituting (6.6) into (6.7), we have

(6.8)

Integrating once, we get

(6.9)

where C is a constant of integration. Since the beam is rigidly clamped
at the ends, the slope dy/dx=0 at x=0 and x=L. Setting dy/dx =0 at x=0
in (6.9), yields C=0, Setting dy/dx=0 at x=L, we find that

(6.10)

Substituting these values into (6.9), we obtain

(6.11)

Integrating again, we obtain

(6.12)
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where the constant of integration was set to zero since y=0 at x=0 and
x=L.

Inserting (6.10) into (6.6), the bending moment as a function of
position along the beam is

(6.13)

The maximum positive value occurs at x=L/2 and is Mmax=qL2/24, The
minimum value occurs at x=0 or x=L and is Mmin=-qL2/12. Since the
minimum bending moment is larger in absolute value, we use it in the
formula to obtain the stress due to bending in the beam [Tim56]

(6.14)

where y is measured downward from the centroid of the beam cross-
section as shown in Fig. 6.5. For a given x, σx is a maximum or minimum
when y=± h/2, where h is the beam height in the bending direction. If σx

is positive, the stress is tensile, if negative compressive. Inserting Mmin

into (6.14), taking y=-h/2, and using

(6.15)

for the area moment of inertia for a rectangular cross section with respect
to the z-axis through the centroid (See Fig. 6.5b), we obtain

(6.16)

Here t is the thickness of the beam perpendicular to the bending plane.
This is a tensile stress and occurs at the top of the beam at the supports.
There is a compressive stress of equal magnitude at the bottom of the
beam at the supports.

Inserting the actual load (6.5) into (6.16), we get for the maximum
axial bending stress,
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(6.17)

The span length, L, can be determined from the number of key spacers,
their width, and the mean circumference,

(6.18)

The strand height h and thickness t apply to a single strand, whether as
part of a cable having many strands or as a single strand in a magnet
wire. If the cable is bonded, the maximum axial bending stress in (6.17)
is divided by 3. This is simply an empirical correction to take into
account the greater rigidity of bonded cable.

6.3.3 Tilting Strength

The axial compressive force which is applied to the key spacers can
cause the individual strands of the conductors which are pressed between
the key spacers to tilt if the force is large enough. Fig. 6.6 shows an
idealized geometry’ of this situation. Depicted is an individual strand
which has the form of a closed ring acted on by a uniform axial
compressive pressure, Pc. We assume initially that the strand has rounded
ends which do not dig into the adjacent key spacers to prevent or oppose
the tilting shown, (There could be several layers of strands in the axial
direction separated by paper, which plays the same role as the key
spacers in the figure.)

Analyzing a small section in the azimuthal direction of length ∆�,
the applied pressure exerts a torque, τc, given by

τc=Pc(t∆�)hsinθ (6.19)

where t is the radial thickness of the strand and where t ∆� is the area on
which the pressure Pc acts. The axial height of the strand is h and θ is the
tilting angle from the vertical which is assumed to be small. The tilting
causes the material of the ring to stretch above its axial center and to
compress below it. This produces stresses in the ring which in turn produce
a torque which opposes the torque calculated above. To calculate this
opposing torque, let y measure the distance above the axial center of the
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strand as shown in Fig. 6.6b. The increase in radius at distance y above
the center line is y tanθ. Therefore the strain at position y is

(6.20)

where ε is an azimuthal strain. This produces an azimuthal tensile stress
(hoop stress) given by

(6.21)

where E is Young’s modulus for the conductor material. This hoop stress
results in an inward force, Fr, on the section of strand given by

(6.22)

In (6.22) t ∆y is the area at height y over which the stress σ acts ∆ϕ and
the angle subtended by the azimuthal section of strand of length ∆�.
Also ∆�=R∆ϕ has been used.
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The inward force Fr produces a counter torque ∆τ  on the small section
of height ∆y which for small θ is given by

(6.23)

Figure 6.6 Geometry of strand tilting due to the axial compressive force
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Using (6.21) this becomes

(6.24)

Letting ∆y become infinitesimal and integrating from y=0 to h/2, we get

(6.25)

Analyzing the portion of the strand below the center line, the hoop stress
is compressive and will result in an outward force on the strand. This
will create a torque of the same magnitude and sense as that in (6.25) so
to take the whole strand into account we just need to multiply (6.25) by
2. In equilibrium, this resulting torque equals the applied torque given
by (6.19). Equating these two expressions and using, for small θ,
sinθ≈tan≈θ, we get

(6.26)

When the conductor strand has squared ends, there is an additional
resistance to tilting as a result of the ends digging into the key spacers or
paper. This results in an additional resisting torque of magnitude
[Ste62, Wat66]

(6.27)

Here C is a constant depending on the spacer material. We use a value
of C=6.21×104 MPa (9×106 psi). This should be added to 2× equation
(6.25), resulting in a tilting pressure of

(6.28)
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If the strand has rounded corners of radius Rc, then t in the above formula
is reduced by 2Rc so only its flat portion is considered. The resulting
critical axial pressure is therefore

(6.29)

For comparison with the applied maximum axial compressive force,
we multiply (6.29) by the radial surface area of the strands in one
horizontal layer, Alayer. This is

(6.30)

where Nd is the number of turns in a disk or section and the other
symbols have been defined previously. Note that as a result of the strand
positioning in a cable as shown in Fig. 6.4b, the expression (Nst-1)/2
gives the number of strands radially that are part of the double layer.
For magnet wire, the expression in parentheses is taken as 1. Thus the
critical axial force is

Fcr=PcAlayer (6.31)

This applies to unbonded cable. For bonded cable, we take Fcr=�since it
is assumed in this case that tilting cannot occur. We compare (6.31)
with the maximum applied axial compressive force, Fc, by taking the
ratio, Fcr/Fc. This ratio must be >1 for a viable design, i.e. Fc must be
<Fcr.

In the above derivation, the compressive force was assumed to be
applied uniformly around the strand ring, whereas in reality it is only
applied to the portions of the ring in contact with the key spacers. Since
the portions outside the key spacers see no applied pressure, the
uniformly applied pressure represents an averaging process over the
entire ring and is a reasonable approximation,

6.3.4 Stress in Tie Bars

The tie bars or tieplates are used to join the upper and lower clamping
structures which keep the coils under compression. These are generally
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long rectangular bars of steel which are placed along the sides of the
core legs. They are under mild tension during normal transformer
operation. During short circuit, the tensile stresses can increase
considerably. Also when the transformer is lifted, the tie bars support
the entire weight of the coils and core.

The short circuit stress in the tie bars is due to the total end thrust
produced by all the coils. This is the sum of the total upward or
downward forces acting on the coils and is an output of the force
program. Since this output refers to a single leg, the tie bars affected by
this force should only be those associated with a single leg. In the case
of a 3 phase fault, all the tie bars are affected equally. However, in the
case of a single line to ground fault where the forces are much higher on
one leg than the other two, the tie bars associated with the leg having
the greater force will probably experience the greatest stress. Therefore
in this worst case scenario, we are assuming that the legs act
independently at least for the short duration of the fault.

The total end thrust is the result of a static force calculation. Because
of possible dynamic effects associated with the sudden application of a
force to an elastic system, the end thrust could be considerably higher
for a short period after the force application. To see what the dynamic
force enhancement might be, we analyze an elastic bar subject to a
suddenly applied force as illustrated in Fig. 6.7. Let x measure the
change in length produced by the force, relative to the unstressed bar of
length L. A bar under stress stores elastic energy, U, given by [Tim56]

(6.32)

where E is Young’s modulus for the bar material and A is the cross-
sectional area of the bar. The applied force causes the bar material to
move so that it acquires a kinetic energy. Since each portion of the bar
moves with a different velocity—the bar is fixed at one end and moves
with maximum velocity at the other end—it is necessary to integrate the
kinetic energy of each segment along the bar to get the total. In Fig.
6.7a, a bar segment a distance y from the fixed end of thickness dy is
isolated. The parameter u measures the displacement of this bar segment
and its velocity is therefore du/dt. But the strain  ε is uniform along the
bar so we have ε=u/y=x/L. Therefore u=xy/L and du/dt=(y/L) dx/dt. The
segment’s kinetic energy is
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We use Lagrange’s method to obtain the equation of motion of the
bar. The Lagrangian is L=KE-U and the equation of motion is

(6.35)

Using (6.32) and (6.34), this becomes

(6.36)

The force applied to the tie bars during a fault is produced by the
coils. Although the forces applied to the coils are proportional to the
current squared, because of the coil’s internal structure, the force
transmitted to the tie bars may be modified. However, assuming the

(6.33)

where ρ is the mass density of the bar material. Integrating over the bar,
we get

(6.34)

This says that effectively 1/3 of the mass of the bar is moving with the
end velocity dx/dt.

Figure 6.7 Elastic bar fixed at one end and subject to an applied force at the other
end
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coils are well clamped, we expect that the force transmitted to the tie
bars is also proportional to the current squared to a good approximation.
The fault current has the approximate form [Wat66]

I=Io(e-at-coscwt)u(t) (6.37)

where a is a constant which is a measure of the resistance in the circuit,
ω is the angular frequency, and u(t) is the unit step function which is
zero for times t<0 and 1 for times t≥0, The force has the form

(6.38)

which results from squaring (6.37) and using a trigonometric identity,
This function is sketched in Fig. 6.8a for a=22.6 and ω=2π(60). To simplify
matters and maintain a worst case position, take a=0 so (6.38) reduces
to

(6.39)

This is plotted in Fig. 6.8b. It achieves a maximum of Fmax=4 Fo whereas
(6.38) reaches a maximum value of about 3.3 Fo for the parameters
used. If this maximum force were acting in a steady state manner, the
bar’s displacement would be, according to Hooke’s law,

(6.40)

This should be compared with the dynamical solution of (6.36) to get
the enhancement factor.

To solve (6.36), take Laplace transforms, using the boundary
conditions x(t=0)=0 and dx/dt(t=0)=0. We obtain

(6.41)

The Laplace transform of (6.39) is

(6.42)
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Figure 6.8 Graphs of some tie bar forces versus time in cycles
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Substituting into (6.41), we obtain for the Laplace transform of x

(6.43)

where b2=3E/ρL2. Using some algebra to rewrite (6.43) and taking inverse
transforms, we obtain

where the quantity in curly brackets is the enhancement factor.
We need to compare the natural angular frequency b with the

applied angular frequencies ω=2πf=377 Rads/sec, assuming f=60 Hz,
and 2ω=754 Rads/sec to see whether a resonance problem might occur.
For steel bars, E=2.07×105 MPa (30×106 psi), ρg=7.68×104 N/m3 (0.283
lb/in3), where g is the acceleration of gravity=9.8 m/sec2 (386 in/sec2).
Thus, we obtain for b,

(6.45)

For a 2.54m (100 in) long tie bar which is typical, this gives b=3504
Rads/sec. Since this is much larger than ω or 2ω, we are far from
resonance. Thus (ω/b)2 can be ignored relative to 1 in (6.44) and it
simplifies to x(t)=(L/EA) F with F given by (6.39). Hence xmax is the
same as in the steady-state case and the enhancement factor is 1. Thus,
unless the applied or twice the applied frequency is close to the tie bar’s
natural frequency, there is no dynamic enhancement. By numerically
checking over a large grid of times and frequencies, a maximum
enhancement of about 1.66 is produced if the time does not exceed one
period (ωt<2π). However as time increases, the maximum enhancement
factor gradually increases when we are near resonance. This is to be
expected since there is no damping in the problem and no cut-off of the
force.

(6.44)
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Another perhaps more realistic approximation to the applied force is
provided by a half wave pulse given by

(6.46)

where u(t) is a unit step at t=0 and u(t”π/ω) is a unit step at t=π/ω. This
is illustrated in Fig. 6.8c. The Laplace transform of (6.46) is

(6.47)

Substituting into (6.41), we obtain for the Laplace transform of x,

(6.48)

Taking the inverse transform, we get

where the quantity in curly brackets is the enhancement factor. For b>>
ω, we get the static response x=(L/EA) F, with F given by (6.46), i.e. the
bar extension is just proportional to the force with no enhancement. By
numerically checking over a large grid of times and frequencies, the
maximum enhancement factor obtained was 1.77.

In practice, we use a force of 1.8 times the end thrust provided it is
larger than 0.8 times the maximum compressive force over all the
windings. Otherwise we use 0.8 times the maximum compressive force
over all the windings. However, since the tie bars must support the

(6.49)
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weight of the core and coils during lifting, we check the stress in the tie
bars produced by lifting. During lifting, we only assume the tie bars
associated with the outer legs are stressed since this is where the lifting
hooks are positioned. Both the short circuit dynamic stresses and the
lifting stresses must be below a maximum allowable stress in the tie bar
material. We take this maximum allowable stress to be 620 MPa
(90,000 psi) if a low carbon steel is used and 414 MPa (60,000 psi) if a
stainless steel is used for the tie bar material,

6.3.5 Stress in the Pressure Rings

The pressure ring receives the total end thrust of the windings. In our
designs, it is made of pressboard of about 3.8 to 6.35 cm (1.5 to 2.5 in)
thickness. The ring covers the radial build of the windings with a little
overhang. During a fault, it must support the full dynamic end thrust of
the windings, which according to the last section is 1.8 times the total
end thrust or 0.8 times the maximum compressive force in all the windings
whichever is larger.

The end thrust or force is distributed over the end ring, producing an
effective pressure of

(6.50)

where we use ring to label the end force, Fring, and ring area, Aring. This
area is given by

(6.51)

in terms of the outer and inner ring diameters. The ring is supported on
radial blocks with space between for the leads. This produces an
unsupported span of a certain length Lu. To a good approximation, the
problem is similar to that discussed previously for the axial bending of
a strand of wire. Thus we can use formula (6.16) for the maximum
stress in the end ring, with L=Lu, t=(1/2)(Dring,out–Dring,in) the radial build
of the ring, h=hring the ring’s thickness, and q=Pring t the force/unit length
along the unsupported span. We obtain

(6.52)
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For our pressboard rings, the maximum bending stress permissible is
σbend=103 MPa (15,000 psi), Substituting this value for σx,max and solving
for Fring corresponding to this limiting stress, we find

(6.53)

This is the maximum end force the pressure ring can sustain. It must be
greater than the applied maximum end force.

6.3.6 Hoop Stress

The maximum radial pressure acting on the winding as obtained from
the force program creates a hoop stress in the winding conductor. The
hoop stress is tensile or compressive, depending on whether the pressure
acts radially outwards or inwards respectively. In Fig. 6.9, we treat the
winding as an ideal cylinder or ring subjected to a radially inward
pressure, Pr. Let Rm be the mean radius of the cylinder and H its axial
height. In part (b) of the figure, we show 2 compressive reaction forces
F in the winding, sustaining the force applied to half the cylinder. The x
directed force produced by the pressure Pr cancels out by symmetry and
the net y directed force acting downward is given by

(6.54)

This is balanced by a force of 2F acting upward so we get F=PrHRm.
Dividing by the cross sectional area A of the material sustaining the
force, we get the compressive stress in the material

(6.55)

For A=HB, where B is the radial build of the cylinder, we get

(6.56)
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This last formula assumes the cylinder is made of a homogeneous
material. If the cylinder is made of conductors and insulating materials,
the conductors primarily support the forces. In this case A should equal
the cross-sectional area of all the conductors in the winding, A=AtNt,
where At is the cross-sectional area of a turn and Nt is the total number
of turns in the winding. If the winding is center fed, i.e. consists of two
parallel windings on the same leg, and Nt refers to the total turns/leg or
twice the number of electrical turns, then At should be 1/2 the turn area.
Substituting into (6.55) and using Dm=2Rm, we obtain

(6.57)

Figure 6.9 Geometry for determining the hoop stress in a cylinder acted on by a
radially inward pressure
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for the hoop stress. This is compressive for Pr acting inward and tensile
for Pr acting outward. In either case, this stress should not exceed the
proof stress of the winding material.

When the radial pressure acts inwards, the winding is apt to buckle
before the proof stress is exceeded. This inward radial buckling is a
complex process to analyze. We will present an idealized analysis later.
Based on limited experimental results, it has been suggested that this
compressive hoop stress not exceed some fraction of the proof stress, the
fraction varying from 0.4 to 0.7 depending on the type of cable used
and whether it is bonded.

6.3.7 Radial Bending Stress

Windings have inner radial supports such as sticks made of pressboard
which are spaced uniformly along their circumference and extend the
height of the winding. When an inward radial pressure acts on the
winding, the sections of the winding between supports act like a curved
beam subjected to a uniform loading. A similar situation occurs in the
case of a rotating flywheel with radial spokes. In the flywheel case, the
loading (centrifugal force) acts outwards but otherwise the analysis is
similar. The flywheel example is analyzed in Timoshenko [Tim56] which
we follow here with minor changes.

We need to make use of Castigliano’s theorem. This states that if the
material of a system follows Hooke’s law, i.e. remains within the elastic
limit, and if the displacements are small, then the partial derivative of
the strain energy with respect to any force equals the displacement
corresponding to the force. Here force and displacement have a
generalized meaning, i.e. they could refer to torques or moments and
angular displacements as well as their usual meanings of force and
length displacements. Also the strain energy must be expressed as a
quadratic function of the forces. For example, the strain energy
associated with tensile or compressive forces N in a beam of length L is

(6.58)

where N, A, and E , can be functions of position along the beam , x.
The strain energy associated with a bending moment M in a beam of
length L is
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(6.59)

where M , I, and E can be functions of position, x Here I is the area
moment of inertia.

In Fig. 6.10a, we show a portion of the winding with the inner radial
supports spaced an angle 2α apart. There is a normal force X acting
radially outwards at the supports which counters the inward pressure
which has been converted to a force/unit length q acting on the coil
section. The coil section is assumed to form a closed ring of radial build
h, axial height t, and mean radius R.

In Fig. 6.10b, we further isolate a portion of the ring which extends
between adjacent mid-sections between the supports. The reason for
doing this is that there is no radially directed (shearing) force acting on
these mid cross-sections. This is because by symmetry, the distributed
load between the mid-sections must balance the outward force at the
included support. Thus the only reactions at the midsections are an
azimuthally directed force No and a couple Mo which need to be found.

Figure 6.10 Geometry for determining the radial bending stresses
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Balancing the vertical forces, we have

(6.60)

Performing the integral and solving for No, we obtain

(6.61)

At any cross-section as shown in Fig. 6.10c, measuring angles from
the mid-section position with the variable ϕ, we can obtain the normal
force, N, from the static equilibrium requirement

(6.62)

Integrating and substituting for No from (6.61), we get

(6.63)

Similarly, using Fig. 6.10d,e, we can obtain the bending moment at
the cross-section an angle ϕ from the mid-section by balancing the
moments

(6.64)

Performing the integration and substituting for No from (6.61), we obtain

(6.65)

Equations (6.63) and (6.65) express the normal force and bending
moments as functions of position along the beam (arc in this case).
These can be used in the energy expressions (6.58) and (6.59).
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Castigliano’s theorem can then be used to solve for the unknowns.
However, we are missing the strain energy associated with the supports.
The radial supports consist of several different materials as illustrated
in Fig. 6.11. We assume they can be treated as a column of uniform
cross-sectional area Astick. In general the column consists of winding
material (copper), pressboard sticks, and core steel. However, for an
innermost winding, the winding material is not present as part of the
support column. For such a composite structure, we derive an
equivalent Young’s modulus, Eeq, by making use of the fact that the
stress is the same throughout the column. Only the strain differs from
material to material. We obtain

(6.66)

where Lw is the length of the winding portion and Ew its Young’s modulus.
Similarly s refers to the stick and c to the core parameters. L =Lw+Ls+Lc

is the total column length.

Figure 6.11 Radial support structure
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The total strain energy for our system, retaining only the portion
shown in Fig. 6.10b, since the entire ring energy is simply a multiple of
this, can be written

(6.67)

where N and M are given be (6.63) and (6.65), A is the cross-sectional
area of the ring, A=th, I its bending moment, I=th3/12 , and the
infinitesimal length along the bar, Rdϕ, is used. The two unknowns are
X and Mo. At the fixed end of the support column (center of the core) the
displacement is zero, hence by Castigliano’s theorem ∂U/∂X=0. Also the
bending moment at the mid-section of the span between the supports
produces no angular displacement by symmetry. Hence, by Castigliano’s
theorem ∂U/∂Mo=0. Differentiating (6.67), we obtain

(6.68)

and

(6.69)

Substituting for N and M from (6.63) and (6.65), we obtain

and

(6.71)

(6.70)
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Integrating the above expressions, we obtain

(6.72)

and

(6.73)

where we have used the fact that L=R. Substituting into (6.63) and (6.65)
and defining

(6.74)

we obtain for N and M

(6.75)

(6.76)

We also have
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(6.77)

where h is the radial build of the ring. N gives rise to a normal stress

and M gives rise to a bending stress which varies over the cross-section,
achieving a maximum tensile or compressive value of (see formula (6.14))

We have factored out the term qR/A since this can be shown to be the
hoop stress in the ring. (In formula (6.55), PH corresponds to q and Rm
to R in our development here.) Thus σhoop will be substituted in the
following formulas for qR/A, where σhoop is given by (6.57).

We now need to add σN and σM in such a way as to produce the worst
case stress in the ring. The quantity

(6.80)

occurs in both stress formulas. We have tabulated f1(α), f2(α), and sin
times these in Table 6.1 for a range of α values.

(6.78)

(6.79)
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It can be see that for any choice of the other parameters (6.80) is
positive. In (6.79), the magnitude of σM for fixed  is determined by the
term (cosϕ sinα/α), where ϕ can range from 0 to α. This achieves a
maximum in absolute value at ϕ=α. The stress can have either sign
depending on whether it is on the inner radial or outer radial surface of
the ring. In (6.78), the magnitude of σN achieves a maximum at ϕ=α for
virtually any choice of the other parameters. It has a negative sign
consistent with the compressive nature of the applied force. Thus σN

and σM should be added with each having a negative sign at ϕ=α to get
the maximum stress. We obtain

Table 6.1 Tabulated values for f1(α) and f2(α) and sin times these quantities

This stress is negative although it is usually quoted as a positive number.
It occurs at the support.

(6.81)
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We have analyzed a ring subjected to a hoop stress having radial
supports. A coil is usually not a monolithic structure but consists of a
number of cables radially distributed. The cables could consist of a
single strand of conductor as in the case of magnet wire or be multi-
stranded. The latter could also be bonded. The average hoop stress in
the winding will be nearly the same in all the cables since the paper
insulation tends to equalize it. We will examine this in more detail in a
later section. The radial thickness, h in the formulas, should refer to a
single cable. If it is magnet wire, then its radial thickness should be
used. If multi-stranded transposed cable, then something less than its
radial thickness should be used since this is not a homogeneous
material. If unbonded, we use twice the thickness of an individual
strand as its effective radial build. If bonded, we use 80% of its actual
radial thickness as its effective radial build.

6.4 RADIAL BUCKLING STRENGTH

Buckling occurs when a sufficiently high force causes a structure to
deform its shape to the point where it becomes destabilized and may
collapse. The accompanying stresses may in fact be small and well
below the proof stress of the material. An example is a slender column
subjected to an axial compressive force. At a certain value of the force,
a slight lateral bulge in the column could precipitate a collapse. Another
example, which we will pursue here, is that of a thin ring subjected to a
uniform compressive radial pressure. A slight deformation in the circular
shape of the ring could cause a collapse if the radial pressure is high
enough. This critical radial pressure produces a hoop stress (see Section
3.6). It is called the critical hoop stress, which could be well below the
proof stress of the material. In general, the smaller the ratio of the
radial build to the radius, the smaller the critical hoop stress. Thus,
buckling is essentially an instability problem and is analyzed by assuming
a small distortion in the shape of the system under study and determining
under what conditions this leads to collapse.

We wish to examine the possible buckling of a winding subjected to
an inward radial pressure. We will treat an individual cable of the
winding as a closed ring as was done in the last section, since the
cables are not bonded to each other. In free radial buckling, it is
assumed that there are no inner supports. Thus the sticks spaced
around the inside circumference of a winding are assumed to be absent.
It is argued that there is sufficient looseness in this type of support that
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the onset of buckling occurs as if these supports were absent and once
started, the buckling process continues towards collapse or permanent
deformation. It could also be argued that even though buckling may
begin in the absence of supports, before it progresses very far the
supports are engaged and from then on it becomes a different type of
buckling, called forced or constrained buckling. The key to the last
argument is that even though free buckling has begun, the stresses in
the material are quite low, resulting in no permanent deformation and
the process is halted before collapse can occur.

We will analyze free buckling of a circular ring in some detail and
quote the results for forced buckling. The lowest order shape distortion
away from a circle is taken to be an ellipse [Tim56]. This is shown in
Fig. 6.12 along with the parameters used to describe the system. With u
measuring the displacement radially inward from the circular shape,
the differential equation for the deflection of a thin bar (ring) with
circular center line of radius R is [Tim56]

(6.82)

where s is the length along the bar. Since s=Rdϕ where the angle ϕ is
shown in Fig. 6.12, ds2=R2dϕ2, and (6.82) can be written

(6.83)

Here M is the bending moment along the ring, E is Young’s modulus,
and I the area moment of inertia.
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By symmetry, we need only consider one quadrant of the ring and we
have chosen the upper right quadrant. We wish to determine the bending
moment at a cross-section B at an angle ϕ from the x axis as shown in
Fig. 6.12. Consider the equilibrium of the section of the ring from A to
B. At the cross-section A there is an unknown normal force No and an
unknown bending moment Mo acting. From symmetry, no shearing force
acts at A. The bending moment at B has a contribution from Mo, from
No, and from the distributed force/unit length q acting on the segment
from A to B.

The moment at B due to Mo is just Mo and the moment at B due to No

is

Figure 6.12 Buckling of a circular ring. The distorted elliptical shape and its
parametrization are shown.
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(6.84)

where xB is the x-coordinate of position B as shown in Fig. 6.12b. No

must balance the net force acting downward on one quadrant of the
ellipse. The infinitesimal vectorial length along the ellipse is (Fig. 6.12c)

(6.85)

The force distribution q acts perpendicular to this length so that the
force on an element of length ds is given in magnitude and direction by

(6.86)

Thus the downward force acting on the quadrant is given by

(6.87)

Thus No acts up with a magnitude of qa so that (6.84) becomes

(6.88)

We need to compute the contribution to the moment at B from the
forces qds and integrate these from A to B. This is given by

(6.89)

where (x, y) are the coordinates of qds and B labels the coordinates of
position B. From the equation of an ellipse,
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(6.90)

we obtain

(6.91)

Substituting into (6.89), we obtain

(6.92)

Integrating from x=xB to x=a, we get

Adding the contributions to M at B, Mo, (6.88) and (6.93), we get

(6.94)

In terms of uo in Fig. 6.12, we have for uo small compared with R

(6.95)

Therefore

b2-a2=4Ruo (6.96)

(6.93)
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The equation of an ellipse in polar coordinates is

(6.97)

where (6.96) has been used to obtain the second approximate equality.
For small deviations from a circular shape (uo<<R), (6.97) becomes
approximately

(6.98)

Using (6.95), this becomes

(6.99)

Retaining only terms linear in uo, we get

(6.100)

Letting xB=a cos for small uo, (6.100) becomes

(6.101)

From Fig. 6.12,

(6.102)
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Therefore,

(6.103)

Substituting (6.96) and (6.103) into (6.94), we obtain

M=Mo-qR(uo-u) (6.104)

Substituting (6.104) into (6.83), the differential equation becomes

(6.105)

The general solution to this equation is

(6.106)

where A and B are constants to be determined by the boundary conditions
and

(6.107)

We can see from the shape of the ellipse that a choice of boundary
conditions for (6.105) is

(6.108)

These yield

(6.109)

The second equation above can be satisfied if p=2n for n=1, 2, 3, …. For
n=1, (6.107) becomes
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(6.110)

which can be re-expressed as

(6.111)

This is the critical buckling force/unit length since it is associated with
an angular dependence of u which corresponds to an elliptical shape.

We can find the critical hoop stress associated with q in (6.111) by
means of the expression σhoop=qR/A developed earlier (see the discussion
following formula (6.79)). Thus

(6.112)

For a ring with a radial build of h and an axial height of t (see Fig.
6.10), we have A=th and I=th3/12 so that (6.112) becomes

(6.113)

Thus the critical hoop stress depends geometrically only on the ratio of
the radial build to the radius of the ring.

Since buckling occurs after the stress has built up in the ring to the
critical value and increases incrementally beyond it, the appropriate
modulus to use in (6.113) is the tangential modulus since this is
associated with incremental changes. This argument for using the
tangential modulus is based on an analogous argument for the buckling
of slender columns together with supporting experimental evidence
given in Ref. [Tim56]. We will assume it applies to thin rings as well.

The tangential modulus can be obtained graphically from the stress-
strain curve for the material as illustrated in Fig. 6.13a. However, for
copper which is the material of interest here, the stress-strain curve can
be parametrized for copper of different hardnesses according to [Tho79]
by
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(6.114)

where k=3/7, m=11.6, and Eo=1.10×105 MPa (16×106 psi). σo depends
on the copper hardness. The tangential modulus obtained from this is

(6.115)

where γ=k(m+1)=5.4. Substituting Et from (6.115) for E in (6.113), we
obtain a formula for self-consistently determining the critical stress,

(6.116)

This can be solved by Newton-Raphson iteration,

Figure 6.13 Stress-strain curve and derived quantities
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The parameter σo is generally not provided by the wire or cable
supplier. It could be obtained by fitting a supplied stress-strain curve.
Alternatively and more simply, it can be obtained from the proof stress
of the material which is generally provided or specified. As one moves
along a stress-strain curve and then removes the stress, the material
does not move back towards zero stress along the same curve it
followed when the stress increased but rather it follows a straight line
parallel to the initial slope of the stress-strain curve as illustrated in Fig.
6.13b. This leaves a residual strain in the material, labeled εp in the
figure, corresponding to the stress σp which was the highest stress
achieved before it was removed. For εp=0.002 (0.2%), σp is called the
proof stress. (Some people use εp=0.001 in this definition.)

Thus the proof stress is determined from the intersection of the recoil
line

σ=Eo(ε-εp) (6.117)

with the stress-strain curve given by (6.114). Solving (6.114) and (6.117)
simultaneously, we find

(6.118)

This permits us to find σo from a given proof stress σp corresponding to
the appropriate εp.

When the supports (sticks) are engaged in the buckling process, we
have forced or constrained buckling. Since there is some looseness in
the support due to building tolerances, it can be regarded as a hinged
type of attachment for caiculational purposes. In this case, the lowest
order buckling mode is shown in Fig. 6.14. The corresponding critical
force/unit length, qcrit, is given by [Tim56]

(6.119)

where β is the angle between the supports. This corresponds to a critical
hoop stress of
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(6.120)

where h is the radial build of the arch. This will exceed the free buckling
critical stress, equation (6.113), when β≤π, i.e. for only 2 diametrical
supports. Thus, for most cases where β<<π, the constrained buckling stress
will be much larger than the free buckling stress. Both buckling types
depend on the radial build of the ring or arch. We will adopt the same
procedure for determining the effective radial build of a cable as was
done for the radial bending stress determination at the end of Section 3.7.

Since a loose or hinged support can also be imagined as existing at
the center point of the arch in Fig. 6.14, β should be taken as the angle
between three consecutive inner supports (sticks). Arched buckling with
this value of β appears to provide a more realistic value of buckling
strength in practice than totally free unsupported buckling.

6.5 STRESS DISTRIBUTION IN A COMPOSITE WIRE-PAPER
WINDING SECTION

The hoop stress previously calculated for a winding section or disk
(Section 3.6) was an average over the disk. In reality, for the innermost
winding, the axial magnetic field varies from nearly zero on the inside
of the winding to close to its maximum value at the outer radius of the
winding. Since the current density is uniform, the force density also
varies in the same fashion as the magnetic field. Thus we might expect

Figure 6.14 Buckling of a circular hinged arch
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higher hoop stresses in the outermost turns as compared with the inner
turns. However, because of the layered structure with paper insulation
between turns, the stresses tend to be shared more equally by all the
turns. This effect will be examined here in order to determine the extent
of the stress non-uniformity so that, if necessary, corrective action can
be taken.

We analyze an ideal ring geometry as shown in Fig. 6.15. In the
figure, rci denotes the inner radius of the ith conductor layer and rpi the
inner radius of the ith paper layer, where i=1,…, n for the conductors
and i=1,…, n–1 for the paper layers. Because of the assumed close
contact, the outer radius of the ith conductor layer equals the inner
radius of the ith paper layer and the outer radius of the ith paper layer
equals the inner radius of the i+1th conductor layer. We do not need to
include the innermost or outermost paper layers since they are
essentially stress free.

We will assume that the radial force density varies linearly from the
innermost to outermost conductor layers. Thus

Figure 6.15 Conductor-paper layered ring winding section, ci refers to conductor i
and pi to paper layer i.

(6.121)
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where fo is the maximum force density at the outermost conductor. We
wish to express this in terms of the average force density, fave. We have

(6.122)

Solving for fo and substituting into (6.121), we get

(6.123)

It is even more convenient to relate fci to the average hoop stress in the
winding resulting from these radial forces. We related this stress to the
radial pressure in equation (6.56). But the average force density is just
the average radial pressure divided by the winding radial build, Therefore
we find, from (6.56)

(6.124)

where Rm is the mean radius of the winding. Thus (6.123) can be written

(6.125)

We assume that the winding section can be analyzed as a 2 dimensional
stress distribution problem, i.e. stress variations in the axial direction
are assumed to be small. The governing equation for this type of problem
in polar coordinates when only radial forces are acting and the geometry
is cylindrically symmetric is [Tim70]

(6.126)

where σr is the radial stress, σϕ the azirnuthal stress, and fr the radial
force density. The stresses are related to the strains for the 2 dimensional
plane stress case by

(6.127)
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where E is Young’s modulus ν and is Poisson’s ratio(ν=0.25 for most
materials). The radial and azimuthal strains, ετ and εϕ, are related to
the radial displacement u, in the cylindrically symmetric case, by

(6.128)

Substituting (6.127) and (6.128) into (6.126), we obtain

(6.129)

with the general solution,

(6.130)

where A and B are constants to be determined by the boundary
conditions and

(6.131)

Note that for our problem, fr is negative (radially inwards) so that K is
positive. In the paper layers, K=0 since there is no force density there.
Using (6.130) for u in (6.127) and (6.128), we obtain

(6.132)

The solution (6.130), (6.131), and (6.132) applies to each layer of
conductor or paper. We therefore need to introduce labels to distinguish
the layers. Let Aci, Bci apply to conductor layer i and Api, Bpi apply to
paper layer i. Let ci and pi also label the displacements, u, and the
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stresses σr, σϕ for the corresponding layer. At the conductor-paper
interface, the displacements must match,

(6.133)

There are 2(n-1) such equations. (See Fig. 6.15 for the labeling.) Also
at the interface, the radial stresses must match,

(6.134)

There are also 2(n-1) such equations. We also have, at the innermost
and outermost radii,

(6.135)

This provides 2 more equations. Thus altogether we have 4n-2 equations.
There are 2 unknowns, Aci and Bci, associated with each conductor layer
for a total of 2n unknowns and 2 unknowns, Api and Bpi, associated with
each paper layer for a total of 2(n-1) unknowns since there are only n”1
paper layers. Thus there are altogether 4n-2 unknowns to solve for and
this matches the number of equations. In (6.132) we must use the
appropriate material constants for the conductor or paper layer, i.e.
E=Ec or Ep is the conductor’s or paper’s Young’s modulus and ν=νc or νp

for the conductor’s or paper’s Poisson’s ratio. In addition K needs to be
labeled according to the layer, i.e. Kci, and in the case of a paper layer
Kpi=0.

The resulting set of 4n-2 equations in 4n-2 unknowns is a linear
system and can be solved by standard methods. Once the solution is
obtained, (6.132) can be used to find the stresses. The σϕ can then be
compared with the average hoop stress to see how much deviation there
is from a uniform distribution. We show a sample calculation in Table
6.2. The average stresses are calculated for the conductor and paper
and then the stresses in the layers are expressed as multipliers of this
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average stress. These multipliers are averages for the layers since the
stresses vary across a layer. The input is the geometric data and the
average hoop stress in the conductor which is obtained from the radial
pressure via (6.124). The calculated average hoop stress in the
conductor does not quite agree with the input, probably because of
numerical approximations in the averaging method. The hoop stress in
the conductors varies by about 20% from the inner to the outer layers.
The other stresses are small in comparison although they show
considerable variation across the winding. The stresses are shown as
positive, even though they are compressive and therefore negative.

Table 6.2 Sample Stress Distribution in a Composite Conductor-Paper Disk
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6.6 ADDITIONAL MECHANICAL CONSIDERATIONS

During a short circuit, the leads or busbars are subjected to an increased
force due to the higher fault current they carry interacting with the
higher leakage flux from the main windings and from nearby leads.
These forces will depend on the detailed positioning of the leads with
respect to the main windings and with respect to each other. They will
therefore vary considerably from design to design. The leads must be
braced properly so that they do not deform or move much during a
fault. The leakage flux in the vicinity of the lead can be obtained from
a finite element calculation. The flux produced by neighboring leads
can be determined from the Biot-Savart law. From these, the forces on
the leads can be determined and the adequacy of the bracing checked.
In general, the bracing will contain sufficient margin based on past
experience so that the above rather laborious analysis will only be
necessary for unusual or novel designs.

We have neglected gravitational forces in the preceding sections
except for the effect of the core and coil weight on the tie bar stress
during lifting. Gravitational forces will affect the compressive force on
the key spacers and on the downward end thrust which acts on the
bottom pressure ring. Another force which was neglected is the
compressive force which is initially placed on the coils by pre-
tensioning of the tie bars. This force adds to the compressive force on
the key spacers and to the top and bottom thrust on the pressure ring as
well as adding some initial tension to the tie bars. Since the compressive
forces on the key spacers are involved in conductor tilting, this design
criterion will also be affected. These additional forces are present
during normal operation and will add to the fault forces when a fault
occurs.

We have treated the axial and radial stress calculations
independently, whereas in reality axial and radial forces are applied
simultaneously, resulting in a biaxial stress condition. Results of such a
combined analysis for a circular arched wire segment between supports
have been reported and show good agreement with experiment [Ste72].
In this type of analysis, the worst case stress condition is not necessarily
associated with the largest axial or radial forces since these would not
usually occur at the same position along the winding. It is rather due to
some combination of the two which would have to be examined at each
position along the winding at which the forces are calculated.

As long as the materials remain linear, i.e. obey Hooke’s law, and
the displacements are small, the axial and radial analyses can be
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performed separately. The resulting stresses can then be combined
appropriately to get the overall stress state. Various criteria for failure
can then be applied to this overall stress state. Our strategy of looking
at the worst case stresses produced by the axial and radial forces
separately and applying a failure criterion to each is probably a good
approximation to that obtained from a combined analysis, especially
since the worst case axial and radial forces typically occur at different
positions along the winding. The radial forces are produced by axial
flux which is high in the middle of the winding whereas the axial forces
are produced by radial flux which is high at the ends of the winding.

Dynamical effects have been studied by some authors, particularly
the axial response of a winding to a suddenly applied short circuit
current [Bos72, Ste72]. They found that the level of pre-stress is
important. When the pre-stress was low, ~10% of normal, the winding
literally bounced against the upper support, resulting in a much higher
than expected force. The enhancement factor over the expected non-
dynamical maximum force was about 4. However when the pre-stress
was normal or above, there was no enhancement over the expected
maximum force. The pre-stress also affects the natural frequency of the
winding to oscillations in the axial direction. Higher pre-stress tends to
shift this frequency towards higher values, away from the frequencies
in the applied short circuit forces. Hence little dynamical enhancement
is expected under these conditions. Thus, provided sufficient pre-stress
is applied to clamp the winding in the axial direction, there should be
little or no enhancement of the end thrust over the expected value
based on the maximum fault currents. However, as the unit ages, the
pre-stress could decrease. With modern pre-compressed pressboard key
spacers, this effect should be small. Even so, we allow an enhancement
factor of 1.8 in design.

An area of some uncertainty is how to treat transposed cable, with
or without bonding, in the stress calculations. It is not exactly a solid
homogeneous material, yet it is not simply a loose collection of
individual strands. We believe we have taken a conservative approach
in our calculations. However, this is one area, among others, where
further experimental work would be useful.
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7. CAPACITANCE CALCULATIONS

Summary Lumped circuit models of transformers require that the
capacitance of coil sections, consisting of one or more disks, as well as
coil to coil capacitances be determined. In addition, special treatment
of the disks at the high voltage end of a winding, such as the use of static
rings to shape the voltage profile, modify the normal disk capacitance.
These changed capacitances must also be determined for use in lumped
circuit as well as traveling wave models which attempt to simulate
transformer behavior under impulse conditions. We calculate these
capacitances in this report, using an energy method. We also calculate
the capacitance of a pair of winding disks containing wound-in-shields
by means of a simple formula and by means of a detailed circuit model
In addition, experiments were performed to check the formula under
various conditions such as changing the number of shield turns and
attaching the shield to the high voltage terminal at different points or
letting it float. Unlike a static capacitance calculation, these capacitances
depend on inductive effects.

7.1 INTRODUCTION

Under impulse conditions, very fast voltage pulses are applied to a
transformer. These contain high frequency components, eliciting
capacitative effects which are absent at normal operating frequencies.
Thus, in order to simulate the behavior of a transformer under impulse
conditions, capacitances must be determined for use in circuit or traveling
wave models [Mik78, Rud40].

Usually, the highest electrical stresses occur at the high voltage end
of the winding so that modifications are sometimes made to the first few
disks to meet voltage breakdown limits. These modifications
commonly take the form of the addition of one or more static rings so
that their effect on the disk capacitance must be determined. Other
methods such the use of wound-in-shields or interleaving, although
effective in increasing the disk capacitance (which is generally
favorable), are not treated here.
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We employ an energy method to determine the capacitance or, in
general, the capacitance matrix. This method is a generalization of the
method used by Stein to determine the disk capacitance of a disk
embedded in a winding of similar disks [Ste64]. It utilizes a continuum
model of a disk so that disks having many turns are contemplated. We
also compare capacitances determined in this manner with
capacitances determined using a more conventional approach. The
conventional method also works for helical windings, i.e. windings
having one turn per disk, and so is useful in its own right.

For completeness we also calculate coil-coil, coil-core, and coil-tank
capacitances which are qualitatively similar. These are based on a
cruder model and assume an infinitely long coil, ignoring end effects.
They are really capacitances per unit length.

7.2 THEORY

We try to be as general as possible so that we may apply the results to a
variety of situations. Thus we consider a disk or coil section having a
series capacitance per unit length of cs and shunt capacitances per unit
length of ca and cb to the neighboring objects on either side of the disk or
coil section as shown in Fig. 7.1. These neighboring objects are assumed,
for generality, to have linear voltage distributions given by

(7.1)

where L is the length of the disk or coil section and x measures distances
from the high voltage end at V1 to the low voltage end at V2.
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Applying current conservation to the node at x in Fig. 7.1 and
assuming the current directions shown, we have

ix-∆x -ix+∆x=ia+ib (7.2)

Using the current-voltage relationship for a capacitor, i=C dV/dt, we
can rewrite (7.2)

(7.3)

Rearranging, we find

Figure 7.1 Approximately continuous capacitance distribution of coil section
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(7.4)

Thus the quantity in curly brackets is a constant in time and may for all
practical purposes be set to 0. (For an applied pulse, all the voltages are
zero after a very long time so the constant must be zero.) Dividing (7.4)
by (∆x)2, we obtain

(7.5)

The first term in (7.5) is the finite difference approximation to d2V/
dx2. The combination

(7.6)

can be expressed in terms of the total series capacitance Cs and total
shunt capacitances Ca and Cb using

(7.7)

where N is the number of subdivisions of the total length L into units of
size ∆x, N=L/∆x Hence (7.7) becomes

(7.8)

Substituting into (7.6), we obtain

(7.9)
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where

(7.10)

Similarly,

(7.11)

Substituting into (7.5) and taking the limit as ∆x→0, results in the
differential equation

(7.12)

The solution to the homogeneous part of (7.12) is

(7.13)

where A and B are constants to be determined by the boundary conditions.
For the inhomogeneous part of (7.12), we try

V=F+Gx (7.14)

where F and G are determined by substituting into (7.12) and using
(7.1)

(7.15)
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Collecting terms, we find

(7.16)

Thus the general solution to (7.12) is

(7.17)

Using the boundary conditions V=V1 at x=0 and V=V2 at x=L, we can
solve (7.17) for A and B. Performing the algebra, the solution can be
cast in the form

 

where

(7.19)

so that γa+γb=1. The derivative of this expression is also needed for
evaluating the energy and for obtaining turn-turn voltages. It is

(7.20)
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To determine the capacitance, the stored electrostatic energy must be
evaluated. Reverting to the original discrete notation, the energy in the
series capacitance is

(7.21)

Using (7.8), this becomes

(7.22)

Substituting ∆V=(dV/dx) ∆x into (7.22) and letting ∆x→0, we obtain

(7.23)

The energy in the shunt capacitances can be found similarly,

(7.24)

Again, using (7.8) and taking the limit as ∆x→0, we get

(7.25)

Combining (7.23) and (7.25), the total energy is

(7.26)
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where

(7.28)

For most of the applications of interest here, the side objects on
which the shunt capacitances terminate are at a constant potential.
Thus

(7.29)

and

β=η=γaVa+γbVb (7.30)

We have

(7.31)

(7.32)

(7.33)

Substituting (7.18) and (7.20) into (7.26) and performing the
integrations, we obtain

(7.27)
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7.3 STEIN’S CAPACITANCE FORMULA

As an example, we can apply the above results to the case considered by
Stein, consisting of a disk embedded in a coil of similar disks [Ste64].
The situation is shown in Fig. 7.2. Assuming V is the voltage drop
across the disk, we can take V1=V and V2=0. Assuming neighboring
disks have the same voltage drop, we can imagine equipotential planes
between the disks with the values shown in the figure, namely Va=V and
Vb=0. As we move along the disk, these values are the average of the
two potential values on the neighboring disks and can be taken as
representing the potential value midway between them. The capacitances
to the mid-plane are twice the disk-disk capacitance, Ca=Cb=2Cdd. We
also have β=V/2. For these values, the energy, from (7.33), becomes

(7.34)

The effective disk capacitance is found from E=1/2 CV2 and is

(7.35)

where Cs is the series capacitance of the turns,

(7.36)

and Cdd is the disk-disk capacitance.
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Let us compare this result with the more conventional approach.
This assumes that the voltage drop along the disk is linear so that

(7.37)

The energy in the series turns is, from (7.23)

(7.38)

We must consider the shunt energy with respect to the equipotential
midplanes as before since we want the energy associated with a single
disk. This is

(7.39)

Figure 7.2 Disk embedded in a coil of similar disks with V the voltage drop along a
disk
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Evaluating this expression, we find

(7.40)

Combining (7.38) and (7.40) and extracting the effective disk
capacitance, we obtain

(7.41)

This expression applies to a helical winding (one turn/disk) with Cs=0.
In order to compare (7.35) with (7.41), let us normalize by dividing

by Cs. Thus

(7.42)

and

(7.43)

From (7.36), the right hand side of (7.42) is a function of Cdd/Cs as is the
right hand side of (7.43). Alternatively both right hand sides are functions
of α. For small α, it can be shown that (7.42) approaches (7.43). For
larger α, the comparison is shown graphically in Fig. 7.3. The difference
becomes noticeable at values of α>5. At α=10, the conventional
capacitance is about 15% larger than Stein’s.
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The voltage distribution along the disk can be obtained from (7.31),
substituting V1=V, V2=0, and β=V/2,

(7.44)

This is plotted in Fig. 7.4 in normalized form. As can be seen, the
voltage becomes increasingly less uniform as α increases.

The voltage gradient is obtained from (7.32) with the appropriate
substitutions and is

(7.45)

This is always negative as Fig. 7.4 indicates. Its largest value, in absolute
terms, occurs at either end of the disk

Figure 7.3 Comparison of Stein’s and conventional capacitance formulas
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(7.46)

As α→0, this approaches the uniform value of V/L. This voltage gradient
is equal to the stress (electric field magnitude) in the turn-turn insulation,
which must be able to handle it without breakdown.

In this and later applications the series and shunt or disk-disk
capacitances can only be approximated for use in the formulas since in
reality, we do not have a continuous distribution of capacitances as the
model assumes. As shown in Fig. 7.5, a disk consists of Nt turns, usually
rectangular in cross-section, with paper thickness τp between turns. τp is
twice the one sided paper thickness of a turn. The disks are separated by
means of key spacers of thickness τks and width wks spaced around the
circumference.

Figure 7.4 Normalized voltage along the disk for various values of alpha in Stein’s
example.
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The turn-turn capacitance, Ctt, is given approximately by

(7.47)

where εo is the permittivity of vacuum=8.854×10–12 farad/m and εp is the
relative permittivity of paper  for oil soaked paper). Rave is the
average radius of the disk and h is the bare copper or conductor height.
The addition of 2τp to h is designed to take fringing effects into account.
There are Nt-1 turn-turn capacitances in series which results in a total
series capacitance of Ctt/(Nt-1). However they do not see the full disk
voltage drop but only the fraction (Nt-1)/Nt. Thus the capacitive energy is

(7.48)

so that based on the full voltage drop V, the equivalent series capacitance
is

Figure 7.5 Geometry of a practical disk coil
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(7.49)

This makes sense because for Nt=1, we get Cs=0.
The disk-disk capacitance can be considered to be two capacitances

in parallel, namely the capacitance of the portion containing the key
spacers and the capacitance of the remainder containing an oil or air
thickness instead of key spacers. Let fks be the key spacer fraction,

(7.50)

where Nks is the number of key spacers spaced around the circumference
and Wks, their width. Typically fks≈1/3. The key spacer fraction of the
disk-disk space is filled with 2 dielectrics, paper and pressboard, the
latter being the usual key spacer material. For a planar capacitor
containing 2 dielectric layers of permittivity ε1 and ε2, it follows from
electrostatic theory that the capacitance is

(7.51)

where A is the area and �1 and �2 are the thicknesses of the layers.
Applying this to the disk-disk capacitance, we obtain

(7.52)

Here εks is the permittivity of the key spacer material (=4.5 for oil soaked
pressboard) and εoil is the oil permittivity (=2.2 for transformer oil). Rin

and Rout are the inner and outer radii of the disk respectively.
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7.4 GENERAL DISK CAPACITANCE FORMULA

More generally, if the disk-disk spacings on either side of the main disk
are unequal so that Ca≠Cb as shown in Fig. 7.6, then we have, from
(7.33),

(7.53)

where

(7.54)

with Cdd1 and Cdd2 the unequal disk-disk capacitances.

Figure 7.6 More general case of a disk embedded in a coil of similar disks
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7.5 COIL GROUNDED AT ONE END WITH GROUNDED
CYLINDERS ON EITHER SIDE

An early impulse model for a coil assumed the coil consisted of a
uniformly distributed chain of series capacitances connected to ground
cylinders on either side by shunt capacitances, i.e. the same model shown
in Fig. 7.1 but with Va1=Va2=Vb1=Vb2=0 [Blu51]. The V1 terminal was
impulsed with a voltage V and the V2 terminal was grounded. From
(7.30) we have β=η=0 and (7.31) becomes

(7.55)

with . Here Cg is the total ground capacitance (both sides)
and Cs the series capacitance of the coil. This is shown in normalized
form in Fig. 7.7 for several values of α.

Figure 7.7 Graph of normalized voltage along a coil for several values of α
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This voltage distribution is expected to apply immediately after the
application of the impulse voltage, before inductive effects come into
play. Later, oscillations can cause voltage swings above the values
shown in the figure.

The voltage gradient is given by

(7.56)

The maximum gradient occurs at the line end (x=0) and is

(7.57)

Thus the maximum disk-disk voltage immediately after impulse is
approximately (7.57) multiplied by the disk-disk spacing.

The coil’s total capacitance to ground is, from (7.33),

(7.58)

In this as well as previous formulas in this section, the series capacitance
is due to Nd disks in series and if the disk capacitances are obtained by
the Stein formula, we have

(7.59)

For an inner coil, the surfaces of the neighboring coils are usually taken
to be the ground cylinders. For the innermost coil, the core determines
the ground on one side while for an outermost coil the tank is the ground
on one side. In general, the distance to ground is filled with various
dielectric materials, including oil or air. One such structure is shown in
Fig. 7.8. There are usually multiple pressboard layers, but for
convenience there are grouped into a single layer.

The sticks provide spacing for cooling oil or air to flow. This
composite structure is similar to that analyzed previously for the disk-
disk capacitance. The ground spacing is usually small relative to the
coil radius for power transformers so that an approximately planar
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geometry may be assumed. We obtain for the ground capacitance on
one side of the coil, Cg1

(7.60)

where fs is the fraction of the space occupied by sticks,

(7.61)

Rgap the mean gap radius, ws the stick width, Ns the number of sticks
around the circumference, H the coil height, τpress the pressboard thickness,
εpress the pressboard permittivity, and τs, εs corresponding quantities for
the sticks. The ground capacitance of both gaps, Cg1 and Cg2 would be
added to obtain the total ground capacitance, Cg.

Figure 7.8 Ground capacitance geometry
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7.6 STATIC RING ON ONE SIDE OF DISK

If a static ring is present on one side of a disk and connected to the
terminal voltage as shown in Fig. 7.9, then we have a situation similar
to that considered in the general disk capacitance section. The only
difference is that Ca is the disk-static ring capacitance since the static
ring is an equipotential surface. Thus (7.53) applies with

(7.62)

with Cdd the disk-disk capacitance to the lower disk.
This case would be identical to Stein’s if the static ring were spaced

at 1/2 the normal disk-disk spacing or whatever is required to achieve
Ca =2Cdd=Cb. Then γa=γb=1/2,  and (7.53) would reduce to
(7.35). Thus the end disk would have the same capacitance as any other
disk.

Figure 7.9 Static ring on one side of a disk at the end of a coil
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7.7 TERMINAL DISK WITHOUT A STATIC RING

In case the end disk does not have an adjacent static ring, we assume
that the shunt capacitance on the end side is essentially 0. Then we have
the situation shown in Fig. 7.10a. We have Ca=0 so that γa=0 , γb=1 and
from (7.53)

(7.63)

with

(7.64)

This situation also applies to a center fed winding without static
ring. In this case, as Fig. 7.10b shows, there is no capacitative energy
between the two center disks so that effectively Ca=0. This result would
also follow if both center disks were considered as a unit and the energy
divided equally between them.
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7.8 CAPACITANCE MATRIX

Before proceeding to other cases of interest, we need to introduce the
capacitance matrix. For a system of conductors having voltages Vi and
total electrostatic energy E, it follows from the general theory of linear
capacitors that [Smy68]

Figure 7.10 Terminal disk without a static ring
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(7.65)

where Qi is the charge on conductor i, Cii is the self capacitance of
conductor i and Cij the mutual capacitance between conductors i and j.
The C’s can be grouped into a capacitance matrix which is symmetric,
Cij=Cji. The diagonal terms are positive while the off-diagonal terms are
negative. This follows because if Vk is a positive voltage while all other
voltages are 0, i.e. the other conductors are grounded, then the charge
of conductor k must be positive,  . The
charges induced on the other conductors must be negative so

. By charge conservation, again assuming
Vk>0 and all other V's=0,

(7.66)

which implies

(7.67)

i.e. the negative of the sum of the off-diagonal terms equals the diagonal
term.

Let’s apply this to the general energy expression (7.27). Consider the
V1 voltage node,

(7.68)
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Using the labeling scheme 1, 2, 3, 4, 5, 6↔1, 2, a1, a2, b1, b2, the
off-diagonal mutual capacitances are, from (7.68)

(7.69)

These are all negative and the negative of their sum is C11 which is

(7.70)

This is an example of (7.67).
The capacitance diagram corresponding to this situation is shown in

Fig. 7.11, which shows only the capacitances attached to voltage node
V1. The other mutual capacitances can be filled in by a similar
procedure. If the side voltages are constant so that Va1=Va2=Va and
Vb1=Vb2=Vb, then there is only one mutual capacitance connecting 1 to a
and it is given by

(7.71)

and similarly for C1b. For small α, this approaches

(7.72)

so that on the capacitance diagram, 1/2 the shunt capacitance is attached
to the V1 node. If we carried through the analysis, we would find that 1/
2 of the shunt capacitance would also be attached to the V2 node,
producing a π capacitance diagram.

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



261CAPACITANCE CALCULATIONS

7.9 TWO END STATIC RINGS

When two static rings are positioned at the end of a coil, they are situated
as shown in Fig. 7.12. Both are attached to the terminal voltage V1.
This situation also applies to a center fed coil with three static rings
since adjacent pairs are configured similarly with respect to the top or
bottom coil. It is necessary to analyze more than one disk at a time
since their electrostatic energies are coupled via the static rings. We are
allowing for the possibility of different spacings between the static rings
and adjacent disks and between disks by letting the disk-static ring and
disk-disk capacitances be different.

Figure 7.11 Lumped capacitance model of a general lattice capacitor network. The
C's are taken to be positive.
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The energy associated with the first or top disk is found, using (7.33)
with Va=Vb=V1 so that β=V1,

(7.73)

where  Ca and Cb being the disk-static ring
capacitances. The energy of the second disk, assuming the same series
capacitance Cs, is obtained from (7.33) with the substitutions Va=V1,
Vb=V3, V1=V2, V2=V3 so that β=γaV1+γbV3. We find

Figure 7.12 Two static rings at the end of a coil

(7.74)
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The lumped capacitance network associated with this configuration
can be obtained by the procedure described in the previous section. Thus

with ,

 γa+γb=1, this can be

simplified

(7.75)

(7.76)

Thus the total energy in the first two disks with static rings is

Reading off the mutual capacitances from (7.77), we find

(7.77)

(7.78)
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Extracting the mutual capacitances, we find

(7.80)

These are negative and the negative of their sum is C22. Moreover, we
see that C21=C12 as expected since the capacitance matrix is symmetric.
Differentiating (7.76) with respect to V3 would give us no new
information.

Thus we can draw the lumped capacitance diagram for this
configuration as shown in Fig. 7.13. We assume the capacitances shown
are positive (the negative of the mutual capacitances). Hence the total
capacitance between the V1 and V3 terminals is given by

(7.81)

These are negative and minus their sum is the self capacitance C11.
We also need to find C23. This is obtained by differentiating (7.76)

with respect to V2

(7.79)
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In model impulse voltage calculations, one could treat the first two
disks as a unit having the capacitance given by (7.81), Then the voltages
across each disk could be obtained from the overall voltage difference
(V1-V3)via

(7.82)

7.10 STATIC RING BETWEEN THE FIRST TWO DISKS

Sometimes a static ring is placed between the first two disks. This is
usually only considered for center fed windings so that there are two
symmetrically spaced static rings, one for each of the two stacked coils.
This case is very similar to the previous case. The only difference is that
the energy in the first disk is given by

(7.83)

with  since Ca=0. Thus the formulas of the last section
apply with this value of α.

Figure 7.13 Lumped capcitance diagram for the 2 static ring configuration, The C's
are taken to be positive.
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7.11 WINDING DISK CAPACITANCES WITH WOUND-IN-
SHIELDS

This section is essentially a reprint of our published paper [Del98]. ©
1997 IEEE. Reprinted, with permission, from IEEE Trans. on Power
Delivery, Vol. 13, No. 2, pp. 503–509, April 1998.

In order to improve the voltage distribution along a transformer coil,
i.e. to reduce the maximum disk-disk voltage gradient, it is necessary to
make the distribution constant, α, as small as possible, where α

 with Cg the ground capacitance and Cs the series capacitance
of the coil. One way of accomplishing this is to increase Cs. Common
methods for increasing the series capacitance include interleaving
[Nuy78] and the use of wound-in-shields [For69]. Both of these
techniques rely on inductive effects. Geometric methods for increasing
Cs such as decreasing turn-turn or disk-disk clearances are generally
ruled out by voltage withstand or cooling considerations.

Interleaving can produce large increases in Cs which may be
necessary in very high voltage applications. However, it can be very
labor intensive and in practice tends to be limited to magnet wire
applications. Wound-in-shields tend to produce more modest increases
in Cs compared with interleaving. However, they require less labor and
are suitable for use with transposed cable. In addition, they can easily
provide a tapered capacitance profile to match the voltage stress profile
of the winding.

Here we present a simple analytic formula for calculating the disk
capacitance with a variable number of wound-in-shield turns. Since this
formula rests on certain assumptions, a detailed circuit model is
developed to test these assumptions. Finally, experiments are carried
out to check the formula under a wide variety of conditions.

7.11.1 Analytic Formula

Fig. 7.14 shows the geometry of a pair of disks containing a wound-in-
shield. Also shown is the method of labeling turns of the coil and shield.
Since the shield spans two disks, it is necessary to calculate the
capacitance of the pair. Each disk has N turns and n wound-in-shield
turns, where n≤N-1. The voltage across the pair of disks is V and we
assume the rightmost turn of the top disk, i=1, is at voltage V and the
rightmost turn of the bottom disk, j=1, is at 0 volts, so that the coil is
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We assume the voltage rise per turn is ∆V where

(7.84)

We assume this same volts per turn applies to the shield as well. For
defmiteness, we assume the voltage at the shield cross-over point is
Vbias as shown in Fig. 7.14. Taking the voltage at the midpoint of a
turn, we have for the top disk

Vc(i)=V-(i-0.5)∆V (7.85)

where Vc(i) is the coil voltage for turn i, i=1,…, N. Also for the top disk

Vw(i)=Vbias-(i-0.5)∆V (7.86)

where Vw(i) is the shield voltage for turn i, i=1,…, n. For the bottom
disk, we have

wound in a positive sense from outer to inner turn on the bottom disk
and from inner to outer turn on the top disk. The shield turns are placed
between the coil turns and are wound in the same sense as the coil.
However, their cross-over is at the outermost turn rather than the
innermost one as is the case for the coil. This means that the positive
voltage sense for the shield is from the leftmost turn, i=n , on the top coil
to turn i=1 on the top disk and then from turn j=1 to j=n on the bottom
disk.

Figure 7.14 Disk pair with wound-in-shields with labelling and other parameters
indicated
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Vc(j)=V+(j-2N-0.5)∆V (7.87)

for j=1,…, N and

Vw(j)=Vbias+(J-0.5)∆V (7.88)

for j=1,…, n.
Letting cw be the capacitance between a coil turn and adjacent shield

turn, the energy stored in the capacitance between shield turn i and its
adjacent coil turns is

(7.89)

The two terms reflect the fact that there are two adjacent coil turns for
every shield turn. Using the previous expressions for the V's, (7.89)
becomes

(7.90)

This does not depend on i and so is the same for all n shield turns on the
top disk. For the bottom disk, (7.89) applies with j replacing i so the
capacitative energy between shield turn j and its surrounding coil turns
is

(7.91)

This again does not depend on j and so is the same for all n shield turns
on the bottom disk.

To the above energies, we must add the capacitative energy of the
turns without wound-in-shields between them. Letting ct be the turn-turn
capacitance, this energy is simply

(7.92)

There are 2(N-n-1) such terms in the energy. In addition, there is energy
stored in the disk-disk capacitance, cd . Since we are assuming the voltage
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varies linearly along the disks, this capacitative energy is given by

(7.93)

We are ignoring capacitative coupling to other disk pairs at this stage
since our experimental setup consisted of an isolated disk pair. However,
if this disk pair were embedded in a larger coil of similar disks, then
(7.93) would need to be doubled before adding to the energy.

The total capacitative energy of the disk pair is found by adding the
above contributions. To simplify the formula, we define

(7.94)

In terms of this parameter, the total capacitative energy, Etot, is given
by

where (7.84) has been used. Extracting the equivalent or total
capacitance from (7.95), we get

At this point, Vbias and hence β is unspecified. This will depend on
whether the shield is floating or whether it is attached at some point to
a coil voltage. If the shield is floating, we expect Vbias=V/2. If the shield
is attached at the cross-over to the high voltage terminal, then Vbias=V. If
the leftmost or end shield turn on the top disk (i=n) is attached to the
high voltage terminal, then Vbias=V+(n-0.5)∆V. In terms of β,

(7.95)

(7.96)

Other situations can be considered as well.

(7.97)
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For the turn-turn capacitance, we used the expression (in SI units)

(7.98)

where Rave is the average radius of the coil, h the bare copper height of
a coil turn in the axial direction, τc the 2-sided paper thickness of a coil
turn, εo=8.85×10–12F/m, and εp the relative permittivity of paper. The
addition of 2τc to h is designed to take fringing effects into account. Also
the use of Rave is an approximation which is reasonably accurate for
coils with radial builds small compared with their radii. For the
capacitance cw the same expression was used but with τc replaced by
0.5(τc+τw) where τw is the 2-sided paper thickness of a shield turn. Since
there are key spacers separating the disks and gaps between them, the
disk-disk capacitance is given by

(7.99)

where Ri and Ro are the inner and outer radii of the disk respectively, f
is the fraction of the disk-disk space occupied by key spacers, τk is the
key spacer thickness, εk the key spacer relative permittivity, and εa the
relative permittivity of air (=1) since the coils were tested in air.

7.11.2 Circuit Model

Since quite a few assumptions went into deriving the capacitance formula
in the last section, we decided to model the disk pair by means of a
circuit model, including capacitative, inductive, and resistive effects as
sketched in Fig. 7.15. We include all mutual couplings between the
turns of the coil and wound-in-shield. The circuit is assumed to be
excited by a current source which is nearly a step function. The circuit
equations are

(7.100)
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where C is a capacitance matrix, M an inductance matrix, R a diagonal
resistance matrix and A, B matrices of ±1's and 0's. The voltage and
current vectors, V and I, include the coil and shield turn voltages and
currents. These equations are solved by means of a Runge-Kutta solver.

Figure 7.15 Circuit model for a disk pair with wound-in-shields. The labelling scheme
and circuit parameters are indicated.
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Since the experimental setup was in air, we used air core inductance
and mutual inductance expressions. The mutual inductance between
two thin wire coaxial loops of radii r1 and r2 spaced a distance d apart
is given by [Smy68] in MKS units,

(7.101)

K(k) and E(k) are complete elliptic integrals of the first and second kinds
respectively and µo=4π×10–7 H/m. For rectangular cross-section coils,
Lyle’s method in conjunction with (7.101) could be used for a more
accurate determination of the mutual inductance [Gro73]. However, for
the turn-turn mutual inductances in our experimental coils, treating the
turns as thin circular loops was nearly as accurate as Lyle’s method.
The self inductance of a single turn circular coil of square cross section
with an average radius of a and square side length c is given by [Gro73]
in MKS units

(7.102)

This applies for c/2a≤0.2. When the cross-section is not square, it can be
subdivided into a number of squares and (7.102) together with (7.101)
can be applied to compute the self inductance more accurately. In our
experimental coil, the turn dimensions were such that the simple formula
with c taken as the square root of the turn area agreed well with the
more accurate calculation,

The turn-turn and turn-shield capacitances were the same as given in
the last section. The capacitance Cb in Fig. 7.15 was taken as Cd/N. We
did not include the capacitance between shield turns on neighboring
disks in our final calculations. Their inclusion had little effect on the
total capacitance.

The resistances used in the circuit model were based on the wire
dimensions but were multiplied by a factor to account for high

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



273CAPACITANCE CALCULATIONS

frequency This factor may be estimated by examining the frequency
dependence of the two main contributors to the coil loss, namely the
Joule or I2R loss and the eddy current loss due to stray flux carried by
the conductor strands. Based on a formula in Ref. [Smy68] for
cylindrical conductors, the Joule loss is nearly independent of frequency
at low frequencies which includes 60 Hz for our conductor dimensions.
At high frequencies, the loss divided by the dc or 60 Hz loss is given by,

(7.103)

where rcond is the radius of the conductor or in our case an effective
radius based on the wire dimensions, σ is the wire’s conductivity, and f
in this context is the frequency in Hz. Based on our cable dimensions
and for a typical frequency encountered in our calculations and
experiment of ~0.15 MHz, we estimate that Wjoule(f)/WJoule(f=0)~ 15.9
The eddy current frequency dependence due to stray flux is given in
Ref. [Lam66]. At low frequencies, this loss varies as f2 whereas at high
frequencies, it varies as f0.5. Taking ratios of the high to low frequency
eddy current loss, we obtain

(7.104)

where b is the thickness of the lamination or strand in a direction
perpendicular to the stray magnetic field. In our case, the cable was
made of rectangular strands with dimensions 0.055 in.×0.16 in. (1.4
mm×4.06 mm). For the small dimension, (7.104) gives a ratio of 68,086
while for the large dimension, we get a ratio of 2,766. A detailed field
mapping is necessary to obtain the eddy current loss contribution at low
frequencies but typically this amounts to about 10% of the dc loss,
depending on the cable construction. If we assume that the small and
large dimension eddy losses are equal at low frequencies, i.e. each is
5% of the dc loss, then we find that the ratio of high to low frequency
total loss based on the above ratios is given by Wtot(f)/Wtot(60Hz)=3557,
This is only a crude estimate. Our data show that this ratio is about
1500 for our cable. Since the capacitance obtained from the simulation
is nearly independent of the resistance used, we did not try to match the
model’s resistance with the experimental values. A sample output is
shown in Fig. 7.16.
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Two methods were used to extract the equivalent total capacitance
from the circuit model. Since the voltages of each coil and shield turn
were determined at each time step, the capacitive energy was simply
summed and the total capacitance determined via

(7.105)

where V is the voltage of turn i=1 at the particular time step. At the end
of the total time duration of about 200 time steps, the average and
median total capacitances were calculated. These two values generally
agreed fairly closely. The other method consisted of extracting the total
capacitance from a simplified equivalent circuit as shown in Fig. 7.17.
This latter method was also used to obtain the total capacitance
experimentally.

Figure 7.16 Voltage across the coil pair versus time from the detailed circuit model
calcualtions.
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for t≥0. Here

(7.107)

In the limiting case as R→0, (7.106) becomes

(7.108)

In all the cases examined computationally or experimentally, the
term (R/2L)2 was much smaller than 1/LC so that it can be ignored in
the expression for ωo. Thus by measuring the oscillation frequency, we
determine the combination LC, To obtain C, an additional capacitance,

Figure 7.17 Simplified circuit model for capacitance determination

Using Laplace transforms, the circuit of Fig. 7.17 can be solved
analytically, assuming a step function current input of magnitude I. We
obtain

(7.106)
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C1, was placed in parallel with the coil and a new oscillation frequency,
ω1, determined. Since this added capacitance doesn’t change L, we
have, taking ratios and squaring (7.107),

(7.109)

Since ωo and ω1 can be measured or determined from the output of the
circuit model and C1 is known, C can be obtained. We found good
agreement between the two methods of determining C.

7.11.3 Experimental Methods

A coil containing two disk sections was made of transposed cable. There
were 10 turns per disk. The cable turns were 0.462 in. radial build by
0.362 in. axial height, including a 30 mil (2-sided) paper cover (1.17
cm ×0.919 cm with 0.76 mm paper). The inner radius was 9.81 in.
(0.249 m). The outer radius depended on the number of shield turns but
was approximately 15.4 in. (0.392 m). The wound-in-shield turns
consisted of 0.14 in. radial build by 0.365 in. axial height magnet wire,
including a 20 mil (2-sided) paper cover (0.355 cm×0.927 cm with 0.51
mm paper). The disks were separated by means of 18 key spacers equally
spaced around the circumference. The key spacers were 1.75 in wide by
0.165 in. thick (4.45 cm×0.419 cm).

The coil was excited by means of a current source which produced a
near step function current. A sample of the current input and coil
voltage output is shown in Fig. 7.18. This voltage vs time plot was
Fourier analyzed to extract the resonant frequency. Frequencies were
measured with and without an external capacitor of 10 nF across the
coil in order to obtain the coil capacitance by the ratio method
described previously.

Shield turns/disk of n=3, 5, 7, 9 were tested as well as the no shield
case, n=0. In addition, for each n value, tests were performed with the
shield floating, attached to the high voltage terminal at the cross-over,
and attached to the high voltage terminal at the end shield turn on the
top disk. Other methods of attachment were also made for the n=9 case
to test for expected symmetries.

Because the disk pair was not contained in a tightly wound coil,
there tended to be some looseness in the winding. This could be
determined by squeezing the disk turns tightly together and noting how
much the radial build decreased. From this we could determine how
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much looseness there was in the insulation and correct for it. This
amounted to about a 5% correction.

7.11.4 Results

There are some uncertainties associated with the values of the relative
permittivities to use in the capacitance calculations, particularly that of
paper in air. For the pressboard key spacers, Ref. [Mos87] gives a method
for determining its permittivity in terms of the board density, the
permittivity of the fibers, and the permittivity of the substance filling
the voids. For our key spacers in air, we obtain εk=4.0 using this method.
(For pressboard in oil, the value is εk=4.5) For paper, Ref. [Cla62] presents
a graph of the dielectric constant vs density in air and oil. Unfortunately
paper wrapping on cable in not as homogeneous a substance as
pressboard. Its effective density would depend on how the wraps overlap
and how loosely or tautly it is wound. In addition, for transposed cable,
the paper-copper interface is not a clean rectilinear one. This is because
of the extra unpaired strand on one side of the strand bundle. We found
that a value of εp=1.5 was needed to get good overall agreement with

Figure 7.18 Experimental output from one of the test runs on the coil showing the
input current and voltage across the coil vs time.
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the test data. This would correspond to an effective paper density of 0.5
gm/cm3 according to the graph in Ref. [Cla62]. At that density, paper in
oil would have εp=3.0 according to the same graph. For tightly wound
paper in oil, values of εp=3.5–4.0 are typically used. Thus a paper
permittivity of 1.5 for paper in air is not unreasonable.

Table 7.1 shows the test results along with the calculated values of
the capacitance for different numbers of shield turns and different shield
biasing. The overall agreement is good. Certainly the trends are well
reproduced. Even for the floating shield case which has the lowest
capacitative enhancement, there is a capacitance increase of a factor of
5 for 3 shield turns/disk and a factor of about 13 for 9 shield turns/disk
over the unshielded case. By biasing the shield in different ways, even
greater increases are achieved.

In Table 7.2, the coil turn and shield turn voltages as calculated by
the circuit model at time t=30 µsec are shown for the n=9 case with the
shields floating. As can be seen, the coil volts/turn is about the same as
the shield volts/turn, verifying the assumption made in the analytic

Table 7.1 Capacitance of coil with 2 disks of 10 turns/disk and variable number of
wound-in-shield turns/disk.
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model. In addition, VbiasH≈V/2 as was also assumed in the simple
model. Also the voltage differences between the coil and shield turns
fall into two groups of either ~12.8 or 11.5 V in this case. This also
corresponds to the simple model prediction of either N∆V=V/2 or (N-1)
∆V=V/2-∆V volts. Thus, in the case where the shields are floating, the
maximum turn-shield voltage is V/2. Based on the simple model, this
holds regardless of the number of shield turns.

In Table 7.3, we show the corresponding output from the circuit
model at t=150 µsec for the case where the shield is attached at the
cross-over to the high voltage terminal. (It was actually attached to
shield turn i=1 in the model.) We see again that the coil volts/turn
≈shield volts/turn. According to the simple model prediction (β=0), the

Table 7.2 Turn voltages at t=30 µsec for a coil of 2 disks with 10 turns/disk and 9
shield turns/disk with the shield floating.
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to the high voltage terminal could be analyzed similarly although this
configuration is harder to achieve in practice. This configuration also
has a higher coil turn to shield turn voltage difference than the other
methods of shield attachment. As expected, however, the price to pay

voltage differences between shield and adjacent turn on the top disk are
0 and ∆V as is also nearly the case for the circuit model. Along the
bottom disk, the simple model gives voltage differences of 2N∆V=V and
(2N-1) ∆V=V-∆V and this is also nearly the case for the circuit model.
Thus the maximum coil turn to shield turn voltage is V. According to
the simple model, this holds regardless of the number of shield turns.

The case where the end turn of the shield on the top disk is attached

Table 7.3 Turn voltages at t=150 µsec for a coil of 2 disks with 10 turns/disk and 9
shield turns/disk with the shield attached at the cross-over to the high voltage
terminal.
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for the higher capacitances are higher coil turn to shield turn voltage
differences.

Several symmetric situations were noted in the experimental data.
These symmetries were only checked for the n=9 case but should apply
to all n values according to the simple model. We found that attaching
the high voltage terminal to the end shield turn on the top disk (i=n)
produced the same capacitance as attaching the low voltage terminal,
at 0 volts here, to the end turn on the bottom disk (j=n). This symmetry
can be seen in the simple formula (7.96) by using the appropriate values
for β. Attaching the top end shield turn to the low voltage terminal
produced the same capacitance as attaching the bottom end shield turn
to the high voltage terminal. This can also be shown by means of the
simple formula. Also the same capacitance was produced whether the
shield cross-over was attached to the high or low voltage terminal. This
also follows from the simple model.

For consistency, the inductance of our coil was extracted from the
experimental data as well as from the circuit model output. We found
L(data)=280 µH and L(circuit model)=320 µH. Using an algorithm in
Grover [Gro73], we obtained L(calc)=340 µH. These are all within
reasonable agreement. The decay constant R/2L appearing in (7.106)
could be extracted from the data by analyzing the envelope of the
damped sinusoid (Fig. 7.18) and we found that it could be dropped in
the formula for ωo (7.107). We also observed a significant resistance
change when the frequency was changed by adding the external
capacitance.

7.12 MULTI-START WINDING CAPACITANCE

Multi-start windings are a simple example of an interleaved type of
winding. They are commonly used as tap windings. In these windings,
adjacent turns have voltage differences which can differ from the usual
turn-turn voltage drop along typical disk or helical windings. Although
multi-start windings are helical windings, they can be thought of as a
collection of superposed series connected helical windings as shown in
Fig. 7.19.

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



CAPACITANCE CALCULATIONS282

These winding essentially start over again and again which
motivates the name. Each start represents a constitutent winding having
a certain number of turns called turns per start. The number of starts is
the same as the number of constituent windings. By connecting taps
between the starts, the turns per start become the number of tap turns.
Their advantage as tap windings compared with the standard type is
that they allow a more balanced force distribution regardless of the tap
setting and do not require thinning of adjacent windings.

Although shown as side by side windings in the figure for
explanatory purposes, the windings are superposed into one helical type
of winding. The botton to top connections are made external to this
winding. The constituent windings are meshed in such a way that the
voltage difference between adjacent turns in the composite winding is
kept to one or two times the voltage drop along a constituent winding
which is really the best that can be done. Letting 1, 2, 3,…label turns
from the different constituent windings, acceptable meshing schemes
are shown in Fig. 7.20 for various numbers of starts, Ns,

Figure 7.19 Schematic illustration of a multi-start winding
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The turns are arranged along the winding according to Fig. 7.20.
The voltage differences between adjacent turns, measured in units of the
voltage drop between starts, are also indicated in the figure. A pattern
can be seen in the organization: Start with turn 1 from start coil 1. Put
turn 2 from start coil 2 at the end of the group. Put turn 3 from start coil
3 below turn 1. Put turn 4 from start coil 4 above turn 2. Put turn 5 from
start coil 5 below turn 3. Put turn 6 from start coil 6 above turn 4. Etc.
until you run out of start coils. Then repeat the pattern until you run out
of turns in the start coils.

The capacitance is obtained by summing up the capacitative energy
associated with the winding configuration. Letting ctt be the turn to turn
capacitance and ∆Vtt the voltage difference between turns, the energy
associated with a pair of adjacent turns is given by Energy(turn-turn)=
1/2 ctt(∆Vtt)2. Letting the voltage drop between starts be ∆Vs, the total
energy is obtained by summing all the turn-turn energies. As can be
seen, each group of turns has two 1's except for the last group which has
only 1. If there are n turns/start, there are n such groups. Hence the

Figure 7.20 Winding schemes for multi-start windings. The numbers beside the turns
are the voltage differences between turns in units of the voltage drop between starts.
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energy is 2n-1 times the energy associated with voltage ∆Vs across
capacitance ctt. The remaining turn-turn voltages in the group have a
voltage of 2×∆Vs across them. There are Ns-2 such turns in the group.
Since there are n such groups, the energy associated with these is
n×(Ns∆2) times the energy associated with a voltage of 2∆Vs across
capacitance ctt. Combining these energies, we get at total energy of

(7.110)

Since ∆Vs=V/Ns, where V is the total energy across the entire winding,
by substituting this into (7.110), we can extract a total capacitance for
the winding, Cm-s,

(7.111)

ctt will depend on the insulation structure of the winding, i.e. whether
the turns are touching, paper to paper, in the manner of a layer winding
or whether there is an oil gap separating them. In any event, the
capacitance is much higher than that across a comparable helical winding
where the turn-turn voltages are much smaller.
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8. HIGH VOLTAGE INSULATION
DESIGN

Summary Transformer insulation must not only be designed to withstand
the normal operating voltages but to survive the effects of lightning
strikes and other possible disturbances such as switching operations which
may occur on the electrical system. In order to assess the adequacy of
the insulation, it is necessary to have some understanding of the
breakdown process, especially in liquids and solids which are normally
used in combination in large power transformers. Although our
understanding in this area is very incomplete, some trends or correlations
have been deduced from test data. Using these and much accumulated
experience, design rules have been formulated whose main justification
is that they work in practice at least in most cases. It is also necessary to
have some means of calculating the voltages and electric stresses which
occur in a transformer under normal and especially abnormal conditions
such as lighting strikes. From such calculations, voltages, voltage
differences, and electrical stresses can be obtained and compared with
the breakdown limits. Although a standardized waveform has been
developed to represent a typical lightning strike which reaches a
transformer, simple step function approximations are often used in
approximate analytical calculations. The test of design adequacy comes
when the unit is built and is subjected to a variety of electrical tests to
simulate the abnormal conditions. The ultimate test comes from the
unit’s survival in service for long periods of time.

8.1 INTRODUCTION

A transformer’s insulation system must be designed to withstand not
only the a.c. operating voltages, with some allowance for an ~15%
overvoltage, but also the much higher voltages produced by lightning
strikes or switching operations. These latter voltages can be limited by
protective devices such as lightning or surge arresters but these devices
are usually set to protect at levels well above the normal a.c. operating
voltage. Fortunately the transformer’s insulation can withstand higher
voltages for the shorter periods of time characteristic of lightning or
switching disturbances. Thus, insulation designed to be adequate at the
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operating voltage can also be sufficient for the short duration higher
voltages which may be encountered.

Insulation design is generally an iterative process. A particular
winding type is chosen such as disk, helix, or layer, for each of the
transformer’s windings. They must have the right number of turns to
produce the desired voltage and must satisfy thermal, mechanical, and
impedance requirements. The voltage distribution is then calculated
throughout the windings, using a suitable electrical model together with
the appropriate input such as a lightning impulse excitation. Voltage
differences and/or electric fields are then calculated to determine if they
are high enough to cause breakdown, according to some breakdown
criterion, across the assumed insulation structure. More elaborate path
integrals are sometimes used to determine breakdown. If the breakdown
criterion is exceeded at some location, the insulation is redesigned and
the process repeated until the breakdown criteria are met. Insulation
redesign can consist of adding more paper insulation to the wire or cable,
increasing the size of the oil or air ducts, or resorting to interleaving the
winding conductors or adding wound-in-shields or other types of shields.

Although voltages and electric fields can be calculated to almost any
desired accuracy, assuming the material properties are well known, the
same cannot be said for breakdown fields in solids or liquids. The
theory of breakdown in gases is reasonably well established, but the
solid or liquid theory of breakdown is somewhat rudimentary.
Nevertheless, design rules have evolved based on experience. With
suitable margins, these rules generally produce successful designs.
Success is usually judged by whether a transformer passes a series of
dielectric tests using standard impulse waveforms or a.c. power
frequency voltages for specified time periods without breakdown or
excessive corona. These tests have been developed over the years in an
effort to simulate a typical lightning or switching waveshape.

8.2 PRINCIPLES OF VOLTAGE BREAKDOWN

We briefly discuss some of the proposed mechanisms of voltage
breakdown in solids, liquids, and gases with primary emphasis on
transformer oil. This is because in oil filled transformers, due to the
higher dielectric constant of the solid insulation, the highest electric
stress tends to occur in the oil. In addition, the breakdown stress of the
oil is generally much lower than that of the solid insulation. The same
situation occurs in dry type transformers, however the breakdown
mechanism in the gas is much better understood.
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In gases, breakdown is thought to occur by electron avalanche, also
called the Townsend mechanism [Kuf88]. In this process, the electric field
imparts sufficient energy to the electrons between collisions with the
atoms or molecules of the gas that they release or ionize additional
electrons upon subsequent collisions. These additional electrons, in turn,
acquire sufficient energy between collisions to release more electrons in
an avalanche process. The process depends in detail on the collision
cross-sections for the specific gas. These cross-sections can lead to elastic
scattering, ionization, as well as absorption and are highly energy
dependent. They have been measured for a variety of gases. In principle,
breakdown can be calculated from a knowledge of these collision cross-
sections, together with corrections due to the influence of the positive
ions, photo-excitation, etc. In practice, the theory has served to illuminate
the parametric dependence of the breakdown process and is even in
reasonable quantitative agreement for specific gases.

One of the major results of the theory of gaseous breakdown is that
the breakdown voltage across a uniform gap depends on the product of
pressure and gap thickness or, more generally, on the product of gas
density and gap thickness. This relationship is called the Paschen curve.
A sketch of such a curve is shown in Fig. 8.1. A fairly common feature
of such curves is the existence of a minimum. Thus for a given gap
distance, as the pressure is lowered, assuming we are to the right of the
minimum, the breakdown voltage will drop and rise again as the
pressure is lowered past the minimum. Care must be taken that the gap
voltage is below the minimum in such a process to avoid breakdown.
For a given gas pressure or more accurately density, the breakdown
field depends only on the gap thickness.

Figure 8.1 Schematic Paschen curve
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During the avalanche process, because the negatively charged
electrons move much more rapidly than the positively charged ions and
because they are pulled towards opposite electrodes, a charge
separation occurs in the gas. When the excess charge is large enough, as
can occur in a well developed avalanche for large gap distances or high
pressure× gap values, the electric field produced by the excess charge
approaches the applied field. When this occurs, the Townsend
mechanism of breakdown gives way to a streamer type of breakdown.
In this process, secondary breakdown paths or plasma channels form at
the front of the avalanche, leading to a more rapid breakdown than can
be accounted for by the Townsend mechanism alone. Theoretical
calculations, based on idealized charge configurations, can account
approximately for this type of breakdown.

In solids and liquids where the distance between electron collisions is
much shorter than in gases so that the electrons have a harder time
acquiring enough energy to produce an avalanche, the Townsend
mechanism is not considered to be operative except possibly for
extremely pure liquids. A streamer type of mechanism is considered to
be much more likely but the theory is not as developed. Moreover,
especially in liquids, there are usually many types of impurities whose
presence even in small concentrations can lower the breakdown stress
considerably. This is well established experimentally where further and
further purifications lead to higher breakdown stress to the point where
the so called intrinsic breakdown stress of a pure liquid has rarely been
measured.

In solids and liquids, the breakdown stress does not appear to be
strictly a function of the gap thickness but rather appears to depend on
the area of the electrodes or the volume of the material under stress.
This would argue against a strictly Townsend mechanism of
breakdown according to which, with the nearly constant density of
most solids and liquids, the breakdown should depend on the gap
distance only. It should be noted, however, that the experimental
evidence is fragmentary and sometimes contradictory.

An electrode area or volume dependence of breakdown is usually
explained by means of a weak link theory. According to this theory,
there is some weak spot, imperfection, or mechanism based on the
presence of imperfections which causes the failure. Thus, as the size of
the specimen grows, weaker spots or more and greater imperfections
are uncovered, resulting in failure at lower electric stress. Some support
for this type of failure mechanism comes from studying the statistics of
breakdown. There is much experimental evidence to show that
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breakdown probabilities follow an extreme value distribution, in
particular the Weibull distribution [Gum58]. This type of distribution is
consistent with a weak link mechanism. In fact, Weibull invented it to
account for failure statistics in fracture mechanics which can be
associated with material flaws. In general form, the distribution
function giving the probability of failure for a voltage ≤V, P(V), is

(8.1)

where Vo, a, m are parameters >0. The density function, which is the
derivative of the distribution function, when multiplied by ∆V gives the
probability of failure in an interval ∆V, assumed small, about V. It is

(8.2)

The density function is, in general, asymmetric about the mode or most
probable value and this asymmetry is usually taken as evidence that
one is dealing with an extreme value distribution, in contrast to a
Gaussian density function which is symmetric about the mode or mean
in this case.

According to advocates of an electrode area dependence of the
breakdown stress, the weak link can be a protrusion on the electrode
surface where the field will be enhanced or it can be an area of greater
electron emissivity on the surface. Advocates of the volume dependence
of breakdown emphasize impurities in the material which increase with
volume. According to Kok [Kok61], impurities in liquids such as
transformer oil tend to have a higher dielectric constant than the oil,
particularly if they have absorbed some water. Thus they are attracted
to regions of higher electric field by the presence of gradients in the
field. They will tend to acquire an induced dipole moment so that other
dipoles will attach to them in a chain-like fashion. Such a chain can
lead to a relatively high conductivity link between the electrodes, due to
the presence of water and possibly dissolved ions, leading to
breakdown. The probability of such a chain forming increases with the
amount of impurity present and hence with the volume of liquid.

We know from numerous experiments that the breakdown electric
stress in transformer oil is lowered by the presence of moisture, by
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particles such as cellulose fibers shed by paper or pressboard insulation,
and also by the presence of dissolved gas. It was even shown in one
expehment that the breakdown stress between two electrodes depended
on whether the electrodes were horizontal or vertical. Presumably the
dissolved gas and its tendency to form bubbles when the electric stress
was applied was influencing the results, since in one orientation the
bubbles would be trapped while in the other they could float away. In
other experiments, causing the oil to flow between the electrodes
increased the breakdown stress compared with stationary oil. The above
influences make it difficult to compare breakdown results from different
investigators. However, for a given investigator, using a standardized
liquid or solid preparation and testing procedure, observed trends in the
breakdown voltage or stress with other variables are probably valid.

Breakdown studies not concerned with time as a variable are
generally done under impulse or a.c. power frequency conditions. In the
latter case, the time duration is usually 1 minute. In impulse studies, the
waveform is a unidirectional pulse having a rise time of trise=1–1.5 µs
and a fall time to 50% of the peak value of tfall=40–50 µs as sketched in
Fig. 8.2. In most such studies, the breakdown occurs on the tail of the
pulse but the breakdown voltage level is taken as the peak voltage.
However, in front of wave breakdown studies, breakdown occurs on the
rising part of the pulse and the breakdown voltage is taken as the
voltage reached when breakdown occurs. Although the variability in
times for the rise and fall of the pulse are not considered too significant
when breakdown occurs on the tail of the pulse, front of wave
breakdown voltages are generally higher that those occurring on the
tail. The polarity of the impulse can also differ between studies,
although the standard is negative polarity since that is the polarity of
the usual lightning strike. There is also a fair degree of variability in the
experimental conditions for a.c. power frequency breakdown studies.
The frequency used can be 50 or 60 Hz, depending on the power
frequency in the country where the study was performed. Holding times
at voltage can be between 1–3 minutes or the breakdown occurs on a
rising voltage ramp where the volts/sec rise can differ from study to
study. These differences can lead to differences in the breakdown levels
reported but they should not amount to more than a few percent. The
ratio between the full wave impulse breakdown voltage and the a.c.
rms breakdown voltage is called the impulse ratio and is found to be in
the range of 2–3. This ratio applies to a combination of solid
(pressboard) insulation and transformer oil, although it is not too
different for either considered separately.
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There is some controversy concerning the breakdown mechanism in
the different time regimes for transformer oil. Endicott and Weber
[End57] found the same asymmetric probability density distributions
for impulse and a.c. breakdown voltages, indicating that extreme value
statistics are operative. They also found that both types of breakdown
depended on the electrode area. On the other hand, Bell [Bel77] found
that the impulse (front of wave) breakdown voltages had a symmetrical
Gaussian probability density whereas the a.c. breakdowns had an
asymmetric probability density. They found, nevertheless, that the
impulse breakdown levels depended on the stressed oil volume.
According to this finding, the volume effect under impulse is not linked
to extreme value statistics. One would have difficulty imagining a
chain of dipoles aligning in the short times available during a front of
wave impulse test. Palmer and Sharpley [Pal69] found that both
impulse and a.c. breakdown voltages depended on the volume of
stressed oil. However, they reported that both impulse and a.c.
breakdown statistics followed a Gaussian distribution. It would appear
from these and similar studies that the breakdown mechanism in
transformer oil is not understood enough to conclude that different
mechanisms are operative in the different time regimes.

One of the consequences of the theoretical uncertainty in transformer
oil breakdown and to a certain extent in breakdown in solids also is that

Figure 8.2 Impulse waveshape

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



HIGH VOLTAGE INSULATION DESIGN292

there is no accepted way to parametrize the data. Thus some authors
present graphs of breakdown voltage or stress vs electrode area, others
show breakdown vs stressed oil volume, and others breakdown vs gap
thickness. An attractive compromise appears in the work of Danikas
[Dan90], In this work and others [Bel77], breakdown is studied as a
function of both electrode area and gap thickness. This also allows for
the possibility of a volume effect should the dependence be a function of
area×gap thickness. In fact, in [Dan90] the area effect appears to
saturate at large areas, i.e. the breakdown level is unchanged as the
area increases beyond a given value. Thus, breakdown becomes purely
a function of gap spacing at large enough areas. Higaki, et. al. [Hig75]
found that the breakdown electric stress becomes constant for large gap
distances as well as for large volumes. This would suggest caution in
extrapolating experimental results either in the direction of larger or
smaller parameter values from those covered by the experiment.

At this point, we present some of the breakdown data and parameter
dependencies reported in the literature. When graphs are presented, we
have converted the best fit into an equation. Also voltage values are
converted to electric field values when the voltage is applied across a
uniform gap. For consistency, we use kV/mm units for breakdown
stress, mm for gap thickness, and mm2 or mm3 for areas or volumes in
the formulas. This will allow us to compare different results not only
with respect to parameter dependencies but also with respect to
numerical values. Generally the breakdown voltages are those for
which the probability is 50% to have a breakdown. Thus some margin
below these levels is needed in actual design.

We begin with breakdown in solid insulation, namely oil saturated
paper and pressboard. Samples are prepared by drying and vacuum
impregnation and tested under oil. For paper at 25 °C, Blume, et. al.
[Blu51] report breakdown voltage stress Eb,ac vs thickness d for a.c. 60
Hz voltages,

(8.3) 

with d in mm and t, the duration of the voltage application, in minutes.
Palmer and Sharpley [Pal69] report the impulse breakdown in paper,
Eb,imp, vs thickness d in mm at 90 °C as

(8.4)
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In going from 90 °C to 20 °C, the impulse breakdown stress increases
by about 10 % according to [Pal69]. Clark [Cla62] reports for Kraft
paper at room temperature and a.c. test conditions

(8.5)

Results from different investigators are difficult to compare because the
thickness buildup is achieved by stacking thin layers of paper. The
stacking processes could differ. Some could use lapping with different
amounts of overlap as well as different thicknesses of the individual
layers. Other possible differences could include the shape and size of the
electrodes. Nevertheless the exponent of the thickness dependence is
nearly the same in different studies. Ref. [Cla62] reports an area effect
but it is difficult to quantify. The impulse ratio for paper, corrected for
temperature, based on (8.4) and (8.5) is ~2.7.

For pressboard in oil at 25 °C, Ref. [Blu51] reports

(8.6) 

where the frequency f in Hz and time duration t in minutes are taken
into account. The frequency dependence was only tested in the range of
25–420 Hz but is expected to hold for even higher frequencies. For
pressboard at room temperature, using 25 mm sphere electrodes, Moser
[Mos79] reports

(8.7)

Thus the impulse ratio for pressboard obtained from (8.7) is ~3.0.
Ref. [Pal69] reports for pressboard in oil at 90 °C
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(8.8)

The impulse ratio for pressboard, based on (8.8) is ~3.3. The trend in
the data between Refs. [Mos79] and [Pal69] is in the right direction
since pressboard breakdown strength decreases with increasing
temperature.

Based on the above data, there does not appear to be much difference
between the breakdown strength of oil soaked paper or pressboard
insulation either under a.c. or impulse test conditions. Even the
thickness dependencies are similar. Although Cygan and Laghari
[Cyg87] find an area and thickness dependence on the dielectric
strength of polypropylene films, it is not known how applicable this is
to paper or pressboard insulation.

For transformer oil at 90 °C, Ref. [Pal69] reports breakdown electric
fields which depend on volume Λ in mm3 according to

(8.9)

This would imply an impulse ratio for oil of ~2.5. In contrast to paper
insulation, the breakdown strength of transformer oil increases slightly
with temperature in the range of -5 to 100 °C [Blu51]. Nelson [Nel89]
summarizes earlier work on the volume effect for breakdown in oil by
means of the formula

(8.10)

with Λ in mm3. We should note that the logarithmic dependence on
volume given in (8.9) cannot be valid as volume increases indefinitely
since the breakdown stress would eventually become negative. In (8.10),
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the breakdown stress becomes unrealistically close to zero as volume
increases.

Refs. [End57, Web56] present breakdown strength in oil vs electrode
area, A, in the form

(8.11)

The gap spacing in both of these studies was 1.9 mm. Although the
impulse conditions in this study were front of wave, the voltage ramp
was kept slow enough in an attempt to approximate full wave conditions.
Thus, we can reasonably obtain an impulse ratio from (8.11) of ~2.8.

Ref. [Mos79] gives the a.c. (50 Hz, 1 min) partial discharge
inception electric stress, Epd,ac, for oil as a function of the gap thickness
only. While not strictly the breakdown strength, partial discharges
maintained over a long enough time period can lead to breakdown.
Separate curves are given for gas saturated or degassed oil and for
insulated and non-insulated electrodes. Fitting the curves, we obtain

with d in mm.
Trinh, et. al. [Tri82] analyzed transformer oil for dielectric strength

dependence on both area and volume. They conclude that both area
and volume effects can be present, with the area effect becoming more

(8.12)
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with A in mm2 and Λ in mm3. They seem to be saying that it is immaterial
whether one describes breakdown in terms of an area or volume effect.
However, the consequences of these two approaches are quite different.
For areas and volumes in the range of ~103–107 mm2 or mm3, the impulse
ratio implied by the above formulas is in the range of ~ 2–3. In these
formulas, as is also evident in the work of refs, [Dan90, Hig75], the
dielectric strength approaches a constant value as the area or volume
become very large. This is a reasonable expectation. On the other hand,
dielectric strengths approach infinity as areas, volumes, and gap distances
approach zero in all the above formulas. This is surely inaccurate,
although the formulas seem to hold for quite small values of these
quantities.

It can be seen, by putting in typical values for d, A, and Λ as found in
transformers in the above formulas, that the dielectric strength of paper
or pressboard is approximately twice that of oil. However, the electric
stress which occurs in the oil is typically greater than that which occurs
in the paper or pressboard. For this reason, breakdown generally occurs
in the oil gaps first. However, once the oil gaps break down, the solid
insulation will see a higher stress so that it could in turn break down.
Even if the solid insulation can withstand the higher stress, the

important for ultra clean oil and the volume effect for oil having higher
particle content. Although the data shows much scatter, they present
curves for oils of different purities. For their technical grade transformer
oil, the middle grade of the three analyzed, the following formulas are
approximate fits to their curves.

(8.13)

(8.14)
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destructive effects of the oil breakdown such as arcing or corona could
eventually puncture the solid insulation. Thus it would seem
inappropriate to design a solid-oil insulation system so that the solid by
itself could withstand the full voltage applied across the gap as has
sometimes been the practice in the past, unless the insulation is all solid.
In fact excess solid insulation, because of its higher dielectric constant
than oil, increases the stress in the oil above that of a design more
sparing of the solid insulation,

Because of the distance and volume dependence of oil breakdown
strength, it is a common practice to subdivide large oil gaps, as occur
for example between the transformer windings, by means of one or
more thin pressboard cylinders. Thus a gap having a large distance or
volume is reduced to several smaller gaps, each having a higher
breakdown strength. Hence, current practice favors a distance or
volume effect over a pure area effect since gap subdivision would not be
of benefit for an area effect. A combination gap-area or gap-volume
effect would also be consistent with current practice.

The breakdown data referred to above applies to uniform gaps or as
reasonably uniform as practical. This situation is rarely achieved in
design so the question arises as to how to apply these results in practice.
In volume dependent breakdown, it is suggested that only the oil volume
encompassing electric field values between the maximum and 90 % of
the maximum be used [Pal69, Wil53]. Thus for concentric cylinder
electrodes, for example, only the volume between the inner cylinder and
a cylinder at some fraction of the radial distance to the outer cylinder
would be used in the volume dependent breakdown formulas. For more
complicated geometries, numerical methods such as finite elements could
be used to determine this effective volume. For gap distance dependent
breakdown, the suggestion is to subdivide a possible breakdown path into
equal length subdivisions and to calculate the average electric field over
each subdivision. The maximum of these average fields is then compared
with the breakdown value corresponding to a gap length equal to the
subdivision length. If it exceeds the breakdown value, breakdown along
the entire path length is assumed to occur. This procedure is repeated for
coarser and coarser subdivisions until a single subdivision consisting or
the entire path is reached. Other possible breakdown paths are then
chosen and the procedure repeated [Nel89, Franc].

Another type of breakdown which can occur in insulation structures
consisting of solids and liquids or solids and gases is creep breakdown,
This occurs along a solid surface in contact with a liquid or gas. These
potential breakdown surfaces are nearly unavoidable in insulation
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design. For example, the oil gaps present in the region between
windings are kept uniform by means of sticks placed around the
circumference. The surfaces of these sticks bridge the gap, providing a
possible surface breakdown path. Since breakdown along such surfaces
generally occurs at a lower stress than breakdown in the oil or air
through the gap itself, surface breakdown is often design limiting. Ref.
[Pal69] parametrizes the surface creep breakdown stress along
pressboard surfaces in oil at power frequency, Ecb,ac, in terms of the
creep area, Ac, in mm2 according to

(8.15)

On the other hand, Ref. [Mos79] describes creep breakdown along
pressboard surfaces in oil in terms of the creep distance along the surface,
dc, in mm according to

(8.16)

For non-uniform field situations, the same procedure of path subdivision
and comparison with the creep breakdown strength calculated by (8.16)
is followed as was described earlier for gap breakdown.

8.3 INSULATION COORDINATION

Insulation coordination concerns matching the insulation design to the
protective devices used to limit the voltages applied to the terminals of
a transformer by lightning strikes or switching surges and possibly other
potentially hazardous events. Since the insulation must withstand the
normal operating voltages which are present continuously as well as
lightning or switching events which are of short duration, how breakdown
depends on the time duration of the applied voltage is of major importance
in insulation coordination. We have seen previously that the impulse
ratio is ~2–3 for oil filled transformer insulation. This means that the
breakdown strength of a short duration impulse voltage lasting ~5–10
µs is much higher than the breakdown strength of a long duration (~1
min) a.c. voltage. It appears that, in general, breakdown voltages or
stresses decrease with the time duration of the voltage application for
transformer insulation. The exact form of this breakdown vs time
dependence is still somewhat uncertain, probably because of variations
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in material purity and/or experimental methods among different
investigators.

Refs. [Blu51, Cla62] show a time dependent behavior of relative
strength of oil or pressboard which is schematically illustrated in Fig.
8.3. Three regions are evident on the curve, labeled A, B, C. For short
durations, <10 µs, there is a rapid fall-off in the strength with increasing
time. This is followed by a flat portion, B, which extends to about 1000
µs for oil and to about 20,000 µs for pressboard. In region A there is a
more gradual fall-off approaching an asymptotic value at long times.
The combination of an oil pressboard gap also produces a curve similar
to Fig. 8.3.

Using statistical arguments, i.e. equating the probability of
breakdown for times less than t for a fixed voltage across an oil gap
under corona free conditions which is 1-exp(-t/to) where to is the average
time to breakdown, to equation (8.1) with Vo taken to be 0, Ref. [Kau68]
obtains the breakdown voltage vs time relationship for an oil gap in the
form

(8.17)

Figure 8.3 Oil or pressboard breakdown relative strength vs time—schematic
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Experimentally they find that for times from a few seconds to a few
weeks, m is between 15 and 30. This relationship cannot, however, hold
for very long times since it predicts zero breakdown at infinite time. To
correct this, one could use the same statistical argument to show that

(8.18)

where Vo is the infinite time breakdown voltage. This can be rearranged
to the form

(8.19)

Picking a V1, t1 pair, this can be written for a general V, t pair,

(8.20)

Dividing by the gap thickness, this can be written in terms of the
breakdown stress, Eb, as

(8.21)

where Eb,o is the infinite time breakdown stress. This last equation is
very similar to (8.6) in its time dependence. As shown in Fig. 8.3, the
time dependent behavior of transformer oil breakdown is more
complicated over a time span from µs to years than the above formulas
would suggest. Presumably these expressions would apply to a.c.
breakdown stress covering region A in the curve of Fig. 8.3.

At short times in the µs region, the breakdown voltage or stress vs
time characteristic changes rapidly with time. Impulse waveshapes as
shown in Fig. 8.2 are somewhat complicated functions of time. In order
to extract a single voltage—time duration pair from this waveshape for
comparison with the breakdown curve, the common practice is to take
the peak voltage and the time during which the voltage exceeds 90% of
its peak value. Thus a standard impulse wave which rises to its peak
value in 1.2 µs and decays to 50% of its peak value in 50 µs spends
about 10 µs above its 90% voltage level. A switching surge test
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waveshape is similar to that of Fig. 8.2 but the rise time to peak value is
~100 µs and the fall time to the 50 % level is ~500 µs. The time spent
above the 90% of peak voltage level is ~200 µs. Therefore we would
expect breakdown to occur on a switching surge test at a lower voltage
than for a full wave impulse test.

Two other types of impulse test are the chopped wave test and front
of wave test, although the latter is considered unnecessary in view of
modern methods of protection. A standard chopped wave, as shown in
Fig. 8.4, rises to its peak in ~1.2 µs and abruptly falls to zero with a
slight undershoot at the chop time of ~3 µs. It is above its 90% of peak
voltage for ~3 µs. The front of wave is chopped on the rising part of the
wave and has a duration above 90 % of its maximum value of ~0.5 µs.
The generally accepted breakdown levels corresponding to these
different times, normalized to the full wave breakdown level, are given
in Table 8.1.

Figure 8.4 Chopped wave impulse waveshape
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We have included in Table 8.1 two other points, the 1 minute a.c. test
point and the essentially infinite time nominal voltage point. For the 1
min test point, we have used an impulse ratio of 2.8. Thus the
normalized breakdown peak voltage level is 1/2.8×√2=0.5 and the
duration above 90% of the peak voltage is 0.287×60 sec=17.2 sec. We
have taken the nominal system voltage to be half the 1 min test voltage.
Other values for these could have been chosen with equal justification.
For instance, an impulse ratio of 2.4 is commonly assumed in setting
test values and the nominal voltage can be a factor of 2.5–3.0 below the
1 min test level. Note that the nominal system voltage used here is from
terminal to ground.

We can produce a reasonable fit to the above tabular values with an
equation of the form (8.20). Letting Vb,rel be the breakdown levels
relative to the full wave level, we obtain

(8.22)

with t in µs. Table 8.1 is based on practical experience in testing
transformers. The numbers can only be regarded as approximate and
different choices are often made within a reasonable range about the
values shown. This would influence the fit given in (8.22) or possibly
require a different parametrization. This parametrization may have no
fundamental significance since it does not apply to any carefully
controlled experiment. However its form, which agrees with the more
fundamentally based equation (8.20), is noteworthy.

In practical applications, a table like Table 8.1 provides a way of
linking the various test voltages to the full wave impulse voltage which
is also called the basic impulse level (BIL). Since the required impulse
test levels are usually linked to the lightning or surge arrester protection
level whereas the a.c. test levels or nominal voltage level are not, they

Table 8.1 Breakdown voltages normalized to the full wave impulse level
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can be specified independently. For example, a 500 kVrms line to line
transformer (=288 kVrms line to ground=408.2 kVpeak line to ground)
would correspond to a full wave impulse level of 1633 kV according to
Table 8.1. However, the user may have sufficient protection that only a
1300 kV impulse test is required. Nevertheless, the insulation would
have to be designed to withstand a full wave 1633 kV impulse test, even
though not performed, since that level of protection is required to
guarantee satisfactory operation at the nominal 500 kVrms line to line
voltage. As another example, one may have breakdown stress vs
distance, area, or volume curves for 1 min a.c. test conditions. In order
to compare these to the stress levels generated in a simulated impulse
test calculation, one needs to know the relative breakdown level factors
given in Table 8.1.

8.4 CONTINUUM MODEL OF WINDING USED TO OBTAIN
THE IMPULSE VOLTAGE DISTRIBUTION

For very short times after the application of a voltage to a winding
terminal, the voltage distribution along the winding is governed primarily
by capacitive coupling. This is because the winding inductance limits
the flow of current initially. In this approximation, a winding can be
modeled by the capacitive ladder diagram shown in Fig. 8.5a. Although
discrete capacitances are shown, this is meant to be a continuum model.
The calculation outlined here is similar to that given in Chapter 7.
Some of the steps are repeated in order to more easily compare the
results with the travelling wave theory. Thus, as shown in Fig. 8.5b, the
series capacitors, cs, are separated by a distance ∆x, where ∆x will
eventually approach zero. The series capacitors are determined by the
winding structure, including the number of disks, their spacing, and the
number of turns/disk. The ground capacitors, cg, are determined by the
distance to neighboring windings or to the tank walls or core. These are
all assumed to be at ground potential relative to the impulsed winding,
which should be true initially.
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Analyzing a small portion of the winding at a distance x from the
bottom of the winding (at the end opposite to the impulsed terminal), we
can write Kirchoff’s current law at the center node shown in Fig. 8.5b as

(8.23)

However, using the voltage—current relationship for capacitors, we
can express this as

(8.24)

Rearranging, we get

(8.25)

The time derivative of the expression in curly brackets is zero so this
expression is a constant in time. The constant may be taken as zero
since the winding starts out at zero potential. Dividing by (∆x)2, (8.25)
can be written

Figure 8.5 Initial voltage distribution winding model
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(8.26)

The term on the left hand side can be recognized as the second order
difference operator which approaches the second derivative as ∆x→0. If
L is the length of the winding, there are N=L/∆x series capacitors, cs,
and ground capacitors, cg. In terms of the total series and ground
capacitances, Cs and Cg, we have

(8.27)

Substituting into (8.26) and letting ∆x→0, we obtain

(8.28)

where the distribution constant α has been defined as

(8.29)

If the bottom of the winding is grounded (switch S closed in Fig. 8.5a)
and a voltage Vo is applied at the line end, the solution to (8.28) is

(8.30)

When the switch S is open so that the bottom of the winding is floating
when the voltage Vo is applied to the top of the winding, the solution to
(8.28) is

(8.31)
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Equation (8.30) is plotted in Fig. 8.6 for several values of α. As can
be seen, the slope of the curve becomes very steep at the line end as
increases. This implies that the disk-disk voltage, ∆Vd, increases with
increasing α since this is given approximately as

(8.32)

where w is the disk-disk spacing, assumed small compared with L.
This has its maximum value at the line end where x=L,

(8.33)

For the ungrounded winding, the maximum stress again occurs at the
line end and, using (8.31), is

(8.34)

which is somewhat less than (8.33) since |tanhα| ≤ 1. If the voltage
distribution is uniform or α small, ∆Vd,line=Vo(w/L) for the grounded end
case.
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Since the disk-disk stress increases with α and by implication the
turn-turn stress also, (8.29) suggests that to reduce this we need to
increase Cs or decrease Cg or both. This has led to winding schemes such
as interleaving which can dramatically increase the series capacitance.
Interleaving schemes can be quite complicated and need not be applied
to the whole winding. In addition, the scheme may vary within a given
winding. A multi-start winding is an example of a simple interleaving
scheme for increasing the series capacitance of a tap winding. Another
method of increasing the series capacitance is by means of wound-in-
shields which can be applied to a section of the winding near the line
end where they are most needed. Decreasing Cg is not as promising
since this would involve, at least in a simple approach, increasing the
winding to winding or winding to tank distance for an outer winding or
decreasing the winding height for a given radius. Such changes could
conflict with impedance or cooling requirements,

An improvement over the static capacitance model is a model which
includes the winding inductance in an approximate way. This is the
traveling wave theory as developed by Rudenberg [Rud68, Rud40].
This is also a continuum model with the circuit parameters defined on a
per unit length basis. Thus, using primes to indicate per unit length, the

Figure 8.6 Initial voltage distribution along a winding for various values of α.
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capacitances per unit length become, in terms of our previous notation
with w the disk-disk distance,

(8.35)

and a new variable �' which is the inductance/unit length. Thus the
total series and ground capacitances, expressed in terms of the primed
quantities are, using (8.27),

(8.36)

since w=∆x in this context. Hence α can be written,

(8.37)

The use of an inductance per unit length can only be regarded as
approximate since it ignores the mutual inductance between the different
sections of the winding. This approximation can be justified to some
extent mathematically and by comparison with experiment.

Without going into all the details, the resulting differential equation
can be solved by a superposition of traveling waves of the form

(8.38)

with v the wave velocity and ω its angular frequency related by

(8.39)

At low frequencies, ω→0,

(8.40)

At higher frequencies the wave velocity eventually becomes zero at the
critical frequency, ωo, given by
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(8.41)

Thus input waves or Fourier components of input waves of this frequency
or higher cannot travel into the winding. However, at higher frequencies,
v becomes imaginary and the solution (8.38) takes the form

V=Voejωt-βx (8.42)

with β given by

(8.43)

Thus the higher frequencies exponentially decay with distance into the
winding, (Here x measures the distance from the line end.) At high ω,
this becomes asymptotically

(8.44)

where the last equality follows from (8.37).
Rudenberg [Rud68, Rud40] considers the special case of a step

function input to the line end of the winding as shown in Fig. 8.7, At the
line terminal where x=0, this wave can be written as a Fourier integral,

(8.45)

where Vo is its amplitude. As the integral shows, the frequency component
amplitudes decrease with increasing frequency. However, as we have
seen previously, only frequency components below the critical frequency
ωo can travel into the winding. Higher frequency components give rise
to an exponentially decaying standing wave. Thus, the wave penetrating
into the winding has the form
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(8.46)

Because of the truncation of the integral, V' no longer has a step function
shape but penetrates into the winding with the shape shown in Fig. 8.8.
Thus the steep front has been flattened.

Figure 8.7 Step function voltage wave impinging on winding terminal

The flattened wave can be approximated by the dotted lines shown
in Fig. 8.8. This consists of a sloped straight line front connecting the
horizontal straight line asymptotic values. The time duration of this

Figure 8.8 Flattened wave which enters the winding starting from the rectangular
wave shown in Fig. 8.7
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front, τ, is determined by the properties of the integral in (8.46) and is
given by

(8.47)

using (8.41). For the lower frequencies comprising this pulse, we can
approximate their velocity by vo as given in (8.40). Thus the length of
the sloped portion of the pulse in Fig. 8.8. H, is given approximately by

(8.48)

Using (8.44), this can be written

(8.49)

This sloped front causes a voltage difference across the winding disks
which is given by

(8.50)

For the decaying exponential part of the pulse, β can be taken to a
good approximation as β∞. Its amplitude, according to Rudenberg, is
Vo/2. It is therefore given by

(8.51)

Thus the disk-disk voltage drop due to this voltage is given in magnitude
by

(8.52)

Combining (8.50) and (8.52), the overall disk-disk voltage drop is given
by
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(8.53)

At x=0, this becomes

(8.54)

For α>3 which is somewhat typical, tanhα≈1, so that comparing this
last equation with its counterpart for the purely capacitive case, (8.33)
or (8.34), we see that the voltage drop in the traveling wave case is~18%
less than for the capacitive case. However, because of the slight over
and under shoots of the actual wave as shown in Fig. 8.8, this difference
is not that great.

Norris [Nor48] has proposed an improved version of (8.53) which
has the form

(8.55)

where Kg=Ho/Hx, where Hx is the length of the sloped front of the traveling
wave a distance x into the winding. The wave spreads out because the
different frequency components travel with different velocities and thus
Kg≤1. Kg can be found as a solution of the equation [Rud68, Rud40]

(8.56)

This reduces to a quartic equation which can be solved analytically. At
x=0 and for α>3, (8.55) is equal to disk-disk voltage drop in the capacitive
case as can bee seen by comparison with (8.33). Norris has also suggested
corrections for incoming waves having finite rise and fall times and
gives procedures for handling non-uniform windings.
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8.5 LUMPED PARAMETER MODEL FOR TRANSIENT VOLTAGE
DISTRIBUTION

In this section, we develop a circuit model of the transformer which
includes capacitive, inductive, and resistive elements. The inductive
elements include mutual inductances between elements in the same
winding and in different windings and the effects of the iron core. The
coils can be subdivided into as fine or coarse a manner as is consistent
with the desired accuracy. Moreover, the subdivisions can be unequal
so that accuracy in certain parts of the coil can be increased relative to
that in other parts. The approach taken is similar to that of Miki, et. al.
[Mik78] except that it includes winding resistance and the effects of the
iron core. Also the differential equations describing the circuit are
organized in such a way that circuit symmetries can be exploited and
other circuit elements such as non-linear varistors may be included.

8.5.1 Circuit Description

A transformer is approximated as a collection of lumped circuit elements
as shown in Fig. 8.9. Although not shown, mutual inductances between
all the inductors are assumed to be present. The subdivisions may
correspond to distinctly different sections of the coil, having different
insulation thicknesses for example, or may simply be present for increased
accuracy. The core and tank are assumed to be at ground potential. The
presence of the tank only affects the capacitance to ground of the outer
coil but not the inductance calculation. Other elements such as grounding
resistors, capacitors, inductors, or non-linear elements may be added.
Terminals or nodes may be interconnected, shorted to ground, or
connected to ground via a resistor, reactor, capacitor, or varistor.

In order to analyze the circuit of Fig. 8.9, we isolate a representative
portion as shown in Fig. 8.10. We adopt a node numbering scheme
starting from the bottom of the innermost coil and proceeding upward.
Then continue from the bottom of the next coil, etc. Similarly, a section
or subdivision numbering scheme is adopted, starting from the bottom
of the innermost coil, proceeding upward, etc. These numbering
schemes are related. In the figure, we have simply labeled the nodes
with i (p’s and q’s for adjacent nodes) and the sections with j. Our circuit
unknown are the nodal voltages Vi and section currents Ij directed
upward as shown.
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Figure 8.9 Circuit model of transformer. The number of coils and subdivisions within
a coil are arbitrary.
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Considering the voltage drop from node i-1 to node i, we can write

(8.57)

where Mjk is the mutual inductance between sections j and k. Defining a
section current vector I, a nodal voltage vector V, an inductance matrix
M, where Mjj=Lj, and a diagonal resistance matrix R, we can compress
the above formula as

(8.58)

where B is a rectangular matrix whose rows correspond to sections and
columns to nodes such that Bji-1=1 and Bji=-1, where nodes i-1 and i
bracket section j. The inductance matrix M is a symmetric positive

Figure 8.10 Representative portion of Fig. 8.9.
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definite matrix. Equation (8.58) holds independently of how the terminals
are interconnected or what additional circuit elements are present.

Applying Kirchoff’s current law to node i, we obtain

(8.59)

where the p-sum is over all nodes connected to node i via shunt
capacitances Kip. Cj is set to zero when node i is at the bottom of the coil
and Cj+1=0 when node i is at the top of the coil, although a small value
for capacitive coupling to the yokes could be used. dVp/dt=0 when node
p is at ground potential such as for the core or tank. Defining a
capacitance matrix C, (8.59) can be rewritten as

(8.60)

where A is a rectangular matrix whose rows correspond to nodes and
columns to sections and where Aij=1 and Aij+1=-1, with sections j and j+1
on either side of node i. One of these terms is 0 when i is at the end of a
coil.

When a nodal voltage Vi is specified, for example at the impulsed
terminal, as Vi=Vs, equation (8.59) is replaced by

(8.61)

If Vs=0 as for a grounded terminal, then (8.61) becomes dVi/dt=0. When
node i is shorted to ground via a resistor Rs, a term Vi/Rs is added to the
left hand side of (8.59). If node i is grounded by means of a capacitor Cs,
a term CsdVi/dt is added to the left hand side of (8.59). For a shorting
inductor Ls uncoupled from all the other inductors, a term + Vidt/Ls is
added to the left hand side of (8.59). Other situations such as a resistor
or varistor joining two nodes can be easily accommodated.

When several nodes are joined together, say nodes i, r, s,…, their
Kirchoff’s current law equations are simply added. The resulting
equation replaces the node i equation. Then the node r, s,…equations
are replaced by
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(8.62)

The net result of all these circuit modifications is that the capacitance
matrix in (8.60) may be altered and the right hand side may acquire
additional terms, e.g. terms involving V for a resistor, +∫Vdt for an
inductor, and the impulsed voltage Vs. Thus (8.60) is replaced by

(8.63)

where C' is the new capacitance matrix and f depends on the added
elements. The above procedure lends itself to straightforward computer
implementation.

Equations (8.58) and (8.63) can now be solve simultaneously by
means of for example a Runge-Kutta algorithm starting from a given
initial state. Linear equations must be solved at each time step to
determine dI/dt and dV/dt. Since M is a symmetric positive definite
matrix, the Cholesky algorithm may be used to solve (8.58) while (8.63)
may be solved by Gaussian elimination. LLT or LU factorization is first
performed on the respective matrices and the factors are used
subsequently to solve the linear equations at each time step, saving
much computation time.

8.5.2 Mutual and Self Inductance Calculations

The transformer core and coil geometry including the iron yokes is
assumed to have cylindrical symmetry. The iron is assumed to be
infinitely permeable. A typical coil section is shown in Fig. 8.11. It is
assumed to be rectangular in cross-section and carry a uniform current
density J, azimuthally directed. The yokes extend outward to infinity
and we ignore the tank walls. This geometry corresponds to that used in
the Rabins’ inductance and mutual inductance calculations of Chapter
5. However, we will use a slightly different method to obtain the self
and mutual inductances. For two coil sections, labeled p and q, where
p=q indicates a self inductance calculation, the mutual (or self) inductance
is given by

(8.64)
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Using the vector potential solution given in Chapter 5 but labeling
the inner and outer coil section radii by rip, rop, riq, roq for sections p and
q respectively, we find for coil sections on different radially displaced
coils.

where Ap is the vector potential generated by section p, Ip and Iq the total
currents in the two coil sections, and the volume integral is only over
the coil section q and not the entire window height L since this is where
all the current would be located if we used an infinite number of terms
in the Fourier expansion of the current density. This produces the same
result as before but we use slightly different notation here.

Figure 8.11 Geometry of iron core, yokes, and coil section.

(8.65)
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The coefficients Gn,p, En,p, Fn,p are as defined in Chapter 5. The modified
Bessel and Struve function integrals can be evaluated by the numerical
techniques given there.

8.5.3 Capacitance Calculations

The series capacitances must take into account the type of coil, whether
helix, disk, multi-start, or other. Series and shunt capacitances
incorporate details of the paper and pressboard insulation, the placement
of key spacers and sticks, and the oil duct geometry. Except when wound-
in-shields are present, the formula developed by Stein as discussed in
Chapter 7 is used for the series disk capacitances. This formula was
found to produce the best results in the work reported by Miki et. al.
[Mik78]. Simple standard formulas are used for helical and multi-start
windings as well as for shunt capacitances as discussed in Chapter 7.
Basically a shunt capacitance per unit length is calculated, assuming
the coils are infinitely long, and this is multiplied by the length of the
section to get the section to section or section to ground shunt capacitances.

The series capacitance for a section containing several disks or turns
in the case of a helical winding is obtained by adding the single disk
capacitances in series, i.e. dividing the single disk capacitance by the
number of disks in the section. Since the subdivisions need not contain
an integral number of disks, fractional disks are allowed in this
calculation. Other subdivision schemes could be adopted which restrict
the sections to contain an integral number of disks. When wound-in-
shields are present, only an integral number of disk pairs are allowed in
the subdivision. The finer the subdivisions or the greater their number,
the greater the expected accuracy. However, too fine a subdivision, say
less than the height of a disk, could be counterproductive. Fine
subdivisions can also lead to convergence problems for the Fourier
sums in the mutual inductance calculation.

where m=nπ/L as before. For coil sections on the same coil, we obtain

(8.66)
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8.5.4 Impulse Voltage Calculations and Experimental Comparisons

The standard impulse voltage waveform can be mathematically
represented as

(8.67)

where κ1, κ2, and Vo are adjusted so that Vs rises to its maximum value
in 1.2 µs and decays to half its value in 50 µs. It is desirable to have an
analytic formula which is smoothly differentiable such as (8.67) since
the derivative is used in the solution process. Other waveforms such as
a chopped wave may also be used. Procedures may be developed for
extracting the parameters used in (8.67) from the desired rise and fall
times and peak voltage. In our experimental RSO tests discussed below,
the actual rise and fall times were 3 and 44 µs respectively and the
parameters in (8.67) were adjusted accordingly.

We tested a 45 MVA autotransformer having 4 windings as shown in
Fig. 8.12. The high voltage (HV or series) winding consists of 2 coils in
parallel with two ends joined at the center where the impulse is applied.
The other two ends are joined at the autopoint with the low voltage (LV
or common) and tap windings. The HV and LV windings are disk
windings. The tap winding is a multi-start winding and is grounded for
the impulse test. The tertiary voltage winding (TV) is a helical winding
and is grounded at both ends for the impulse test. These windings
represent one phase of a three phase transformer but are essentially
isolated from each other for the impulse test.

Both the HV and TV windings contain tapped sections along their
lengths. The tap turns are out on the HV winding and in on the TV
winding during the impulse test. In the calculations a direct short is
placed across the tapped out sections. In the vicinity of these tap
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sections, the turn density is lowered in the LV winding (thinning) for
better short circuit strength. In the calculations, these thinned areas are
specified as one or more separate subdivisions with their own properties
which differ from those of the subdivisions in the rest of the winding.

Although nodal voltages and section currents are calculated
throughout the transformer as a function of time, voltage differences
can easily be obtained. In fact disk-disk voltages are calculated
throughout all the windings and the maximum occurring over the time
duration of the pulse is printed out for each winding. Similarly, the
maximum voltage difference occurring between adjacent windings for

Figure 8.12 Schematic diagram of impulsed autotransformer
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the duration of the pulse is also printed out. Secondary quantities such
as maximum electric fields in the oil can likewise be obtained.

Experimentally only voltages along the high voltage coil and at the
tap positions on the tertiary winding were easily accessible in the tests
conducted. In a recurrent surge oscillograph (RSO) test, a repetitive
series of pulses having the shape described by (8.67) are applied to, in
our case, the HV terminal This repetitive input results in persistent
oscilloscope displays of the output voltages for easy recording. The
peak applied voltage is usually low, typically several hundred volts.
This test simulates an impulse test done at much higher voltages to the
extent that the system is linear. This is likely to be a good assumption
provided the core doesn’t saturate and provided non-linear circuit
elements such as varistors do not come into play. In our RSO test, the
transformer was outside the tank. Thus the dielectric constant of air was
used in the capacitance formulas. In addition the tank distance, which
affects the ground capacitance of the outer coil, was taken as very large.

For the tests conducted here, the computer outputs of interest were
the voltages to ground at the experimentally measured points. We
present a sufficient number of these in the following figures to indicate
the level of agreement between calculation and experiment. We chose
to normalize the input to 100 at the peak of the impulse waveform. The
units can therefore be interpreted as a percent of the BIL.

It quickly became apparent in comparing the simulations with
experiment that the section resistances which were obtained from the
wire geometry and the d.c. or power frequency resistivity was not
adequate to account for the damping observed in the output waveforms.
In fact, we found it necessary to increase this resistivity by a factor of
about 3000 to account for the damping. Such a factor is not
unreasonable in view of the fact that the currents induced by the
impulse waveform contain high frequency components which induce
much higher losses than occur at power frequency. A factor of this
magnitude was estimated for the experiment involving wound-in-
shields in Chapter 7. A better approach which we subsequently adopted
is to Fourier analyze the current waveforms and calculate the effective
resistivity using the formula given in Chapter 7. This involves running
the calculation at least twice, once to obtain the waveforms using an
assumed resistivity. Fourier analyzing the waveforms to obtain a better
estimate of the effective resistivity, and then re-running the calculation
with the recalculated resistivity.

Each of the two HV coils had 52 disks having 12 radial turns each.
The impulse was applied to the center of the leg where the two coils are
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joined. Output voltages are recorded relative to this center point. Fig.
8.13 shows the experimental and calculated voltage waveform 4 disks
below the impulsed terminal. The impulse voltage is also shown for
comparison. Fig. 8.14 shows the voltage 12 disks below the impulsed
terminal. There is good agreement in the major oscillations but some
differences in the lower amplitude higher frequency oscillations. Fig. 8.15
shows the experimental and theoretical voltages at the tap position which
is about 30 disks below the impulsed terminal. Fig. 8.16 shows the
voltage transferred to the upper tap position on the TV winding. There is
good agreement between theory and experiment in overall magnitude
and major oscillations but the higher frequency ripple is not as well
predicted. Fig. 8.17 indicates another way to present the calculations.
This shows the voltage as a function of relative coil position along the top
HV winding at various instants of time. Note the flat portion of the curves
at a relative position of ~0.75 which corresponds to the tap section with
the taps out. Note also that the high capacitance of the multi-start tap
winding effectively grounds the autopoint. Maximum disk-disk voltages
could be obtained by examining such curves although this is more easily
done by programming.

Figure 8.13 Experimental and calculated voltage to ground 4 disks below the HV
impulsed terminal. The impulse voltage is also shown.
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Figure 8.14 Experimental and calculated voltage to ground 12 disks below the HV
impulsed terminal

Figure 8.15 Experimental and theoretical voltages to ground at the tap position on
the HV winding, about 30 disks below the impulsed terminal
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Figure 8.16 Experimental and theoretic voltages to ground at the center of the upper
tap position on the TV winding.

Figure 8.17 Calculated voltage profiles at various instants of time along the upper
HV coil. Relative position 0.5 is the impulsed terminal and 1 the top of the winding.
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8.5.5 Sensitivity Studies

We explore the sensitivity of the calculations to two of the inputs to
which some uncertainty is attached, namely the effective resistivity of
the copper and the number of subdivisions along the coils. Figs. 8.18–
8.20 show the effect of increasing the resistivity to 3000 times its d.c.
value relative to the d.c. calculation at several locations. The increased
damping has little effect on the waveforms at short times but progressively
lowers the amplitude of the longer time oscillations.

The effect of varying the number of coil subdivisions is shown in
Figs. 8.21, 8.22. Generally each coil has a minimum number of
subdivisions dictated by the number of physically different coil sections.
In our case this was about 6–8 per coil. The multi-start coil, however,
has only one section. Because of its construction, it cannot be
meaningfully subdivided into axial sections as can the other coils. In
fact the capacitances to neighboring coils must be coupled equally to
both the top and bottom node because its voltage is not a unique
function of position. We see from the figures that once the number of
subdivisions is ~12/coil, the results are fairly insensitive to any further
refinement. Thus one doesn’t have to be overly concerned about the
number of subdivisions used, provided they are above some reasonable
minimum which in this case is ~12/coil.

Figure 8.18 Sensitivity of the calculations to the resistivity of the nodal voltage 12
disks below the impulsed terminal
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Figure 8.19 Sensitivity of the calculations to the resistivity for the HV tap position
voltage

Figure 8.20 Sensitivity of the calculations to the resistivity for the upper tap position
on the TV winding
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Figure 8.21 Effect of the number of coil subdivisions on the voltage for a point 12
disks below the impulsed terminal

Figure 8.22 Effect of the number of coil subdivisions on the voltage at the tap
position on the HV winding
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9. ELECTRIC FIELD CALCULATIONS

Summary The electric field is calculated for some idealized insulation
structures which can often be useful approximations to actual insulation
systems. This can provide insight into the parameter dependence of such
fields and can suggest ways of reducing such fields if necessary. The electric
fields in the oil gaps between pairs of disks in a transformer winding are
strongest at the corners. These corner fields therefore determine the gap
spacing and paper insulation required to avoid breakdown. We determine
these fields by means of a conformal mapping technique for a 2-D geometry
consisting of 2 conductors at different potentials separated by a gap (disk—
disk spacing). Both conductors are separated by another gap from a ground
plane. This latter gap could be a winding—winding gap or a winding—
core or tank gap. The analytic solution does not include the effect of the
paper insulation. This leads to an enhancement of the field in the oil over
the situation without insulation. A method is proposed to account for the
insulation based on a comparison with a finite element solution. Finite
element solution methods are discussed for complex geometries.

9.1 SIMPLE GEOMETRIES

It is often possible to obtain a good estimation of the electric field in a
certain region of a transformer by idealizing the geometry to such an
extent that the field can be calculated analytically. This has the advantage
of exhibiting the field as a function of several parameters so that the
effect of changing these and how this affects the field can be appreciated.
Such insight is often worth the price of the slight inaccuracy which may
exist in the numerical value of the field.

As a first example, we consider a layered insulation structure having
a planar geometry as shown in Fig. 9.1. This could represent the major
insulation structure between two cylindrical windings having large
radii. We are further approximating the disk structure as a smooth
surface so that the resulting field calculation would be representative of
the field away from the corner of the disks. We treat this corner field in
the next section.
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We use one of Maxwell’s equations in integral form to solve this,

(9.1)

where D is the displacement vector, dA a vectorial surface area with an
outward normal, and q the charge enclosed by the closed surface S.
Because of the assumed ideal planar geometry, the surface charge density
on the electrode at potential V is uniform and is designated σ in the
figure. An opposite surface charge of -σ exists on the ground electrode.
Note that both electrode potentials could be raised by an equal amount
without changing the results. Only the potential difference matters. We
will also assume that the materials have linear electrical characteristics
so that

D=εE (9.2)

holds within each material where ε, the permittivity, can differ within
the various layers as shown in the figure.

Because of the planar geometry, the D and E fields are directed
perpendicular to the planes of the electrodes and layers. Thus if we take
our closed surface to be the dotted rectangle shown in the figure which
has some depth into the figure so that the two vertical sides represent
surfaces of area A, then the only contribution to the integral in (9.1)
which is non-zero is the part over the right vertical surface where the

Figure 9.1 Geometry of a planar layered insulation structure
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displacement vector has the uniform value labelled Di in the figure.
Thus, for this closed surface (9.1) becomes

(9.3)

Using (9.2) applied to layer i, (9.3) becomes

(9.4)

In terms of the potential V, we can write by definition

(9.5)

where the line integral starts at the 0 potential electrode and ends on the
V potential electrode. In terms of the E fields in the different materials
and their thicknesses �i, (9.5) becomes

(9.6)

Using (9.4), this can be written

(9.7)

Solving for σ and substituting into (9.4), we get

(9.8)

Letting � be the total distance between the electrodes so that �=�1+�2

+…and defining the fractional lengths, fi=�i/�, (9.8) can be expressed as
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(9.9)

where Eo is the electric field between the electrodes if there was only one
layer of uniform material between them.

Let’s apply these results to an oil-pressboard insulation system. Even
if there are many layers of pressboard used to subdivide the oil gap,
only the total fractional thickness, fpress, matters in the calculation.
Similarly, the subdivided oil gap's total fractional thickness, foil=1-fpress,
is all that is needed to perform the calculation, For this situation, (9.9)
becomes

(9.10)

Since the relative permittivities of pressboard and oil are  ,
  the electric field in the oil is about twice as high as the electric

field in the pressboard for a given oil-pressboard combination. Thus
the oil’s electric field is usually the most important to know for purposes
of breakdown estimation. We plot Eoil/Eo vs fpress in Fig. 9.2. We see
from the figure that for a given oil gap, the lowest field results when
there is no pressboard. As more pressboard displaces the oil, the field
in the oil increases, approaching a value of twice its all oil value when
the gap is nearly filled with pressboard.
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A somewhat better estimate can be made of the electric field in the
major insulation structure between two coils if we consider
approximating the geometry as an ideal cylindrical geometry. This
geometry is also useful for approximating the field around a long cable
of circular cross section. We consider the general case of a multi-layer
concentric cylindrical insulation structure as shown in Fig. 9.3. The
inner most cylinder is at potential V and the outer most at zero
potential, although it is only their potential difference which matters.

Figure 9.2 Relative electric field in the oil in a planar oil gap as a function of the
fractional amount of pressboard.
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From symmetry, we see that the D and E fields are directed radially.
We assume there is a surface charge per unit length along the inner
cylinder of λ. We apply (9.1) to the dashed line cylindrical surface in
Fig. 9.3 which is assumed to extend a distance L along the axis with
disk like surfaces on either end. The only contribution to the integral is
along the lateral sides of the cylinder and we find

(9.11)

Assuming linear materials, we get for layer i,

(9.12)

Figure 9.3 Ideal layered cylindrical insulation structure. This same drawing can
be reinterpreted to refer to a spherical geometry.
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Using the definition (9.5) and starting the line integral from the outer
zero potential electrode, we have, using (9.12),

(9.13)

Solving for λ and substituting into (9.12), we get

(9.14)

For any given layer, the maximum field, Ei, max, occurs at its inner radius,
so we have

(9.15)

We see from the last two equations that, for a given layer, the electric
field is inversely proportional to the permittivity. Thus an oil layer at a
given position will see about twice the eclectric field of a pressboard
layer at the same position, assuming the quantity in square brackets is
the same or nearly so. Since the maximum field in a layer is also inversely
proportional to the radius of the layer to first order, we see that this field
can be reduced by increasing the layer’s radius. Thus for a cable
surrounded by solid insulation such as paper and immersed in oil, the
cirtical field will probably occur in the oil at the outer surface of the
paper. To reduce this, one could increase its radius by adding more
paper or start with a larger radius cylindrical conductor to begin with.

Another geometry of some interest is the spherical geometry. The
general case of a multi-layered syperical insulation structure is shown
in Fig. 9.3 by interpreting it as a cross-section through a sphercial
system of insulators. In this case, the D and E fields are again directed
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radially by symmetry and the charge on the inner conductor at
potential V is taken as q. The dashed circle in the figure now defines a
spherical surface and (9.1) applied to this results in

(9.16)

From (9.5) and (9.16), we obtain

(9.17)

Solving for q and substituting into (9.16), we obtain

(9.18)

The maximum field in layer i, Ei, max, occurs at the inner radius and is
given by

(9.19)

This expression can be used to approximate the field near a sharp
bend in a cable immersed in oil with the various radii defined
appropriately. We see that as the radius of the layer increases, the field
in it decreases. Thus the field in the oil can be reduced by adding more
insulation or decreasing the sharpness of the bend.

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



ELECTRIC FIELD CALCULATIONS 337

9.2 ELECTRIC FIELD CALCULATIONS USING CONFORMAL
MAPPING

9.2.1 Physical Basis

In a region of space without charge, Maxwell’s electrostatic equation is

(9.20)

where D is the electric displacement. If the region has a uniform
permeability ε, then D=εE, where E is the electric field. Hence (9.20)
becomes

(9.21)

Introducing a potential function V, where

(9.22)

we obtain from (9.21)

(9.23)

In 2-dimensions, using Cartesian coordinates, this last equation reads

(9.24)

The solution of (9.24), including boundary conditions, can then be used
to determine the electric field via (9.22).

Boundary conditions are generally of two types, Dirichlet or
Neumann. A Dirichlet boundary condition specifies the voltage along
a boundary. This voltage is usually a constant as would be
appropriate for a metallic surface. A Neumann boundary condition
specifies the normal derivative along a boundary. The normal
derivative is usually taken to be 0, which says that the equipotential
surfaces (surfaces of constant V) or lines in 2-D intersect the boundary
at right angles. This type of boundary is often used to enforce a
symmetry condition.

Functions satisfying equation (9.24) are called harmonic functions. In
the theory of functions of a complex variable, analytic functions play a
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special role. These are functions which are continuous and differentiable
in some region of the complex plane. It turns out that the real and
imaginary parts of analytic functions are harmonic functions. Further,
analytic mappings from one complex plane to another have properties
which allow a solution of (9.24) in a relatively simple geometry in one
complex plane to be transformed to a solution of this equation in a more
complicated geometiy in another complex plane. We briefly describe
some of the important properties of these functions which are needed in
the present application. See reference [Chu60] for further details.

9.2.2 Conformal Mapping

Let z=x+iy denote the complex variable where  is the unit
imaginary. A function f(z) can be written in terms of its real and
imaginary parts as

f(z)=u(x,y)+iv(x,y) (9.25)

where u and v are real functions of 2 variables. If f is analytic, it is
differentiable at points z in its domain of definition. Since we are in the
z-plane, the derivative can be taken in many directions about a given
point and the value must be independent of direction. Taking this
derivative in the x direction and then in the iy direction and equating
the results, we obtain the Cauchy-Riemann equations

(9.26)

Differentiating the first of these equations with respect to x and the
second with respect to y we have

(9.27)

Since the mixed partial derivatives on the right hand sides of these
equations are equal for differentiable functions, when we add these
equations we obtain

(9.28)
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Thus u is a harmonic function. By differentiating the first of equations
(9.26) with respect to y, the second with respect to x, and adding, we
similarly find that v is a harmonic function.

The solution of the potential problem, equation (9.24) with boundary
conditions, is often needed in a rather complicated region
geometrically. The idea behind using complex variable theory is to
formulate the problem in a simpler geometric region where the solution
is easy and then use an analytic function to map the easy solution onto
the more complicated geometry of interest. The possibility of doing this
derives from several additional properties of analytic functions.

First of all, an analytic function of an analytic function is also
analytic. Since the real and imaginary parts of the original and
composite functions are harmonic, this says that harmonic functions are
transformed into harmonic functions by means of analytic
transformations. In terms of formulas, if f(z) is an analytic function of z
and z=g(w) expresses z in terms of an analytic mapping from the w-
plane, where w=u+iv, then f(g(w)) is an analytic function of w. The real
and imaginary parts of f are transformed into harmonic functions of the
new variables u and v.

Given an analytic mapping from the z to w-plane, w=f(z), the inverse
mapping

z=F(w) is analytic at points where f'(z)=df/dz≠0. Moreover at such
points

(9.29)

This result will be useful in later applications to the electrostatic problem.
Perhaps the most important characteristic of analytic mappings in

the present context is that they are conformal mappings. This means
that if two curves intersect at an angle α in the z-plane, their images in
the w-plane under an analytic mapping w=f(z) intersect at the same
angle α at the transformed point. To see this, we use the fact that an
analytic function can be expanded about a point zo using a Taylor’s
series expansion

(9.30)
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where we assume that f'(zo)≠0. Writing ∆w=w-wo and ∆z=z-zo, this last
equation becomes

∆w=f'(zo)∆z (9.31)

If ∆z is an incremental distance along a curve in the z-plane , ∆w is the
corresponding incremental distance along the transformed curve in the
w-plane (See Fig. 9.4). Since we can write any complex number in polar
form,

(9.32)

in terms of its magnitude |z| and argument φ (9.31) can be expressed as

(9.33)

where ψo=argument (f'(z)) and α and β are shown in Fig. 9.4. Thus we
see from (9.33) that

β=ψo+α (9.34)

As ∆z and ∆w approach zero, their directions approach that of the tangent
to their respective curves. Thus the angle which the transformed curve
makes with the horizontal axis  β is equal to the angle which the original
curve made with its horizontal axis α rotated by the amount ψo

Since ψo is characteristic of the derivative f'(Zo), which is
independent of the curve passing through zo, this says that any curve
through zo will be rotated by the same angle ψo. Thus, since any two
intersecting curves are rotated by the same angle under the
transformation, the angle between the curves will be preserved.
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In terms of the electrostatic problem, this last mapping characteristic
says that a set of equipotential (non-intersecting) curves in one
geometry will remain non-intersecting in the transformed geometry
obtained from the first by means of an analytic map. Similarly, the
orthogonal relationship between the equipotentials and the electric field
lines will be preserved in the new geometry.

Finally we need to look at the boundary conditions. If H is a
harmonic function which is constant along some curve or boundary,

H(x,y)=C (9.35)

then, changing variables by means of z=f(w), this becomes, in the new
variables,

H(x(u,v),y(u,v))=C (9.36)

ie. a transformed curve along which H has the same constant value.
Thus Dirichlet boundary conditions are transformed into Dirichlet
boundary conditions with the same boundary value along the transformed
curve.

A Neumann boundary condition means that the normal derivative of
H along the boundary vanishes. Since the normal derivative is the
scalar product of the gradient and unit normal vector, the vanishing of
this derivative means that the gradient vector points along the
boundary, i.e. is tangential to it. However, the gradient vector is
perpendicular to curves along which H is constant. Therefore these

Figure 9.4 Analytic mapping of a curve from the z to the w-plane
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curves of constant H are perpendicular to the boundary curve. Under a
conformal mapping, this perpendicularity is preserved so that the
transformed boundary curve is normal to the transformed curves of
constant H. Therefore the gradient of these transformed curves is
parallel to the transformed boundary so that their normal derivative
vanishes in the transformed geometry. Thus Neumann boundary
conditions are preserved under analytic transformations.

Since a solution of (9.24) which satisfies Dirichlet or Neumann
boundary conditions is unique, under an analytic mapping, the
transformed solution subject to the transformed boundary conditions
will also be unique in the new geometry.

9.2.3 Schwarz-Christoffel Transformation

This transformation is an analytic mapping (except for a few isolated
points) from the upper half plane to the interior of a closed polygon.
The closed polygon can be degenerate in the sense that some of its
vertices may be at infinity. This type of polygon includes the type of
interest here.

Let us consider the general case as illustrated in Fig. 9.5. Part of the
x-axis from x1 to xn=� is mapped onto the boundary of a closed polygon
in the w-plane. We have also drawn unit tangent vectors s and t along
corresponding boundary curves in the z and w-planes. We showed
earlier that the angle which the transformed curve makes with the
horizontal axis at a point is given by the angle which the original curve
makes with its horizontal plus the argument of the derivative of the
mapping. In this case, the original curve is along the x-axis in the
positive sense and so makes zero angle with this axis. Therefore the
transformed curve makes an angle with its axis given by arg(f'(z))
where arg=argument of. Thus if the mapping has a constant argument
between two consecutive points along the x-axis, the transformed
boundary curve will have a constant argument also and therefore be a
straight line. However, as the w value moves along the boundary
through a point wi where the polygon transitions from one side to
another, the argument of the tangent abruptly changes value. At these
points, the mapping cannot be analytic (or conformal). However, there
are only n such points for an n sided polygon.
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A mapping which has the above characteristics is given, in terms of
its derivative, by

(9.37)

where x1<x2<…< xn-1. Since

(9.38)

and since the argument of a product of terms is the sum of their
arguments,

arg(f'(z))
= argA-k1 arg(z-x1)-k2 arg(z-x2)…kn–1 arg(z-xn–1) (9.39) 

When z=x<x1,

arg(x-x1)=arg(x-x2)=…=arg(x-xn–1)=π (9.40)

However, when z=x moves to the right of x1, arg(x-x1)=0 but arg(x-xi)=
π for i>2. Thus the argument of f(z) abruptly changes by k1 π as z=x
moves to the right of x1. This is shown in Fig. 9.5. Similarly, when z=x
passes through x2, arg(x-x1)=arg(x-x2)=0 and all the rest equal π, so that

Figure 9.5 Schwarz-Christoffel mapping geometry
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arg(f'(z)) jumps by k2π. These jumps are the exterior angles of the polygon
traced in the w-plane. As such, they can be restricted to

-π≤kiπ≤π so that

-1≤ki≤1 (9.41)

Since the sum of the exterior angles of a closed polygon equals 2π, we
have for the point at infinity

knπ=2π-(k1+k2+…+kn–1)π (9.42)

so that

k1+k2+…+kn=2 (9.43)

Note that the point xn could be a finite point, in which case it must be
included in equation (9.37). However, the transformation is simplified
if it is at infinity.

To obtain the Schwarz-Christoffel transformation, we must integrate
(9.37) to get

(9.44)

The complex constants A and B and the xi values can be chosen to
achieve the desired map. There is some arbitrariness in the choice of
these values and this freedom should be used to simplify the calculations.
With this brief background, we now proceed to determine the mapping
of interest here. Further details and proofs can be obtained by consulting
Ref. [Chu60] or other standard books on complex variables.

9.2.4 Conformal Map for the Electrostatic Field Problem

Fig. 9.6 shows the w-plane geometry of interest for the electrostatic field
problem and the corresponding z-plane boundary points. Note that some
of the image points, w2, w3, and w5 are at infinity, albeit in different
directions in the complex plane. In assigning values to x1, x2, x3, and x4,
we have taken advantage of the symmetry in the w-plane geometry, In
fact the coordinate systems were chosen to exploit this symmetry. Note
that, in Fig. 9.5 the positive direction for the exterior angles was chosen
so that if we are moving along a side towards the next vertex, the angle
increases if we make a left turn and decreases if we turn towards the
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right. In Fig. 9.6, as we move through the vertex w1 from w5, we turn
towards the right by 90°, hence k1=-1/2. Moving through w2, we see that
we make a 180° turn to the left, so k2=1. Passing through w3, we again
make a 180° left turn so k3=1. We turn right by 90° in going through w4,
so k4=-1/2. The angular change through w5 is 180° to the left so k5=1.
Thus k1+k2+k3+k4+k5=-1/2+1+1-1/2+1=2 as required.

The derivative of the transformation is, from (9.37),

(9.45)

where a>1. The integral can be carried out by writing

(9.46)

Substituting into (9.45), we get

(9.47)

Figure 9.6 Schwarz-Christoffel Transformation for the electrostatic problem
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Using tables of integrals and the definitions of the complex version of
the standard functions (See Ref. [Dwi61]), we can integrate this to obtain

(9.48)

where ln is the natural logarithm. This solution can be verified by
taking its derivative.

In order to fix the constants, we must match the image points w1, w2,
etc. to their corresponding x-axis points. Thus, we must get w1=-�, when
x1=-a. Substituting into (9.48), we find

(9.49)

Since

ln z=ln|z|+iarg(z) (9.50)

(9.49) becomes

-�=A[ln(2a)+iπ]+B (9.51)

since arg(-2a)=π. Similarly, we must have w4=� correspond to x4=a.
Substituting into (9.48), we find

(9.52)

Subtracting (9.51) from (9.52), we obtain 2�=-iπA, so that

(9.53)
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Adding (9.51) and (9.52), we obtain 0=2A ln(2a)+iπA+2B. Using (9.53)
and solving for B, we get

(9.54)

Substituting A and B into (9.48), we obtain

(9.55)

The log terms can be combined, resulting in

(9.56)

Further manipulation of the log term leads to

(9.57)

Now, substituting ln(i)=ln(1)+i arg(i)=i π/2 and using the identity from
Ref. [Dwi61],

(9.58)

where C is a complex number, (9.57) becomes,
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(9.59)

Substituting into (9.56), we get

(9.60)

To determine the constant a, we must use the correspondence
between another set of points, such as x2, w2 or x3, w3. Using the x3, w3

pair, we note that as x approaches x3=1 from below, w must approach
�-ih. In (9.60) therefore let z= x→1 from below. Here we use another
expression for the complex inverse sin function [Dwi61],

(9.61)

where , and y≥0.

If=0 and x>1, p=1+x, q=x-1, and p+q=2x. If y=0 and x<-1, p=-(1-x), q=1-
x, and p+q=-2x. If y=0 and |x|< 1, p=1+x, q=1-x, and p+q=2. This latter
case corresponds to the real sine function. Substituting z→1 into (9.60),
we get

(9.62)

where the infinities must be interpreted in a limiting sense. Keeping this
in mind and using (9.61), we find

(9.63)
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Since

(9.64)

we have

(9.65)

Substituting into (9.62), and neglecting finite real terms compared with
�, we get

(9.66)

Therefore √a2 – 1 =h/� and solving for a,

(9.67)

Thus (9.60) becomes

(9.68)

with a given by (9.67). Other points of correspondence can be checked
for consistency by similar procedures.

9.2.4.1 Electric Potential and Field Values

In the w-plane which is the plane of interest for the electrostatic problem,
the boundary values of the potential are shown in Fig. 9.7. Two
conductors are at potentials V1 and V2 relative to a plane at zero potential.
This can be done without loss of generality, since if the plane were not
at zero potential, its value could be subtracted from all the potential
values without altering the values of the electric field. The corresponding
boundary values in the z-plane are also shown in Fig. 9.7. We wish to
solve the problem in the simpler z-plane geometry and then use the
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conformal map given by (9.68) to transfer the solution to the w-plane. A
method of doing this is suggested by Fig. 9.8. The angles θ1 and θ2 are
angles between the vectors from points 1 and -1 to z. In terms of these
angles, a potential which satisfies the boundary conditions in the z-
plane is given by

(9.69)

When z=x>1, θ1 and θ2 are zero, so V=V1. When -1<z=x< , θ1= π and
θ2=0, so V=0. When z=x<-1, θ1=θ2=π, so V= V2. Thus the boundary
conditions are satisfied.

Figure 9.7 Correspondence between potential boundary values for the z and w-
planes
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We must now show that V is a harmonic function. Note that

θ1=arg(zθ1) , θ2=arg(z+1) (9.70)

Note also that

ln(z±1)=ln|z±1|+iarg(z±1) (9.71)

Since the log function is analytic, its real and imaginary components
are harmonic functions as was shown previously for analytic functions.
Thus θ1 and θ2 are harmonic and so is V since sums of harmonic functions
are also harmonic.

In terms of x and y where z=x+iy, (9.69) can be written

(9.72)

Since the transformation (9.68) is analytic except at a few points, the
inverse transformation is defined and analytic at all points where w'=
dw/dz≠0. Thus V can be considered a function of u, v through the
dependence of x and y on these variables via the inverse transformation.
This will enable us to obtain expressions for the electric field in the w-
plane. We have,

Figure 9.8 The potential function in the z-plane
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(9.73)

Referring to (9.72), note that

(9.74)

Substituting c=±1, corresponding to the two terms in (9.72), and applying
a similar formula for the v derivative, we get for the electric field
components.

(9.75)

The derivatives in these formulas can be determined by means of (9.29),
(9.45), and (9.53). Thus

(9.76)

Expressing this in terms of x and y and separating into real and imaginary
parts, we get
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(9.77)

Now, using the uniqueness of the derivative when taken in the u or iv
directions which led to the Cauchy-Riemann equations mentioned earlier,
we can write

(9.78)

This, together with (9.77) can be used to extract the appropriate
derivatives for use in (9.75). Thus

(9.79)
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Thus the electric field in the w-plane can be expressed completely in
terms of x and y via (9.75) and (9.79). However, we must invert
equation (9.68) to do this. The first step is to express (9.68) in terms of x
and y and in terms of its real and imaginary parts. Thus we write the
first sin-1 term, using (9.61),

(9.80)

where

The second sin-1 term in (9.68) can be written similarly,

(9.81)

where

with the upper sign referring to p1 and the lower sign to q1. Treating the
third sin-1 term in (9.68) similarly and separating into real and imaginary
parts, we get
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(9.82)

where

The upper and lower signs refer to the p’s and q’s respectively.
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Given u and v, (9.82) can be inverted by means of a Newton-
Raphson procedure. Using this method, the problem reduces to one of
solving the following equations,

f1(x,y)=u(x,y)-uo=0

f2(x,y)=v(x,y)-vo=0
(9.83)

where uo and vo are the desired coordinates at which to evaluate the
field in the w-plane. Since ∂f1/∂x=∂u/∂x, etc., the Newton-Raphson
equations for the increments ∆x, ∆y are

(9.84)

where we have used the Cauchy-Riemann equations (9.26). At each
iteration, we let xnew=xold+∆x and ynew=yold+∆y and stop when ∆x and ∆y
are sufficiently small. The derivatives in (9.84) can be obtained by a
procedure similar to that used to derive (9.79).

9.2.4.2 Calculations and Comparison with a Finite Element Solution

A computer program was written to implement the above procedure for
calculating the electric field. According to the above formulas, the field
is infinite at the corners of the conductors, however, because real corners
are not perfectly sharp, the field remains finite in practice. In transformer
applications, the conductors are usually covered with an insulating layer
of paper and the remaining space is filled with transformer oil. Because
the paper has a much higher breakdown stress than the oil, the field in
the oil is usually critical for design purposes, The highest oil fields will
occur at least a paper’s thickness away from the corner of the highest
potential conductor which we assume is at potential V1. We have
accordingly calculated the field at the three points shown in Fig. 9.9
which are a paper’s thickness, d, away from the corner of the V1 potential
conductor.
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It should be noted that the presence of the paper, which has a
different dielectric constant than oil, will modify the electric field. In
general, it will increase it in the oil and decrease it in the paper. We will
attempt to estimate this oil enhancement factor later. Here, we wish to
compare the analytic results as given by the above formulas with results
from a finite element calculation without the presence of paper but with
the fields calculated at the points shown in Fig. 9.9, a paper’s distance
away from the corner. The magnitudes of the fields, E, are compared,
where

(9.85)

The results are shown in Table 9.1 for several different potential
combinations and conductor separations. The agreement is very good,
especially with the sharp corner finite element results. Also shown for
comparison are finite element results for a 0.02" radius on the corners.
These are also reasonably close to the analytic results and show that the
sharpness or smoothness of the corners is washed out at distances greater
than or equal to a paper’s distance away. Although not shown in the
table, the field deep in the gap between the V1 and V2 conductors was
also calculated with the analytic formulas and produced the expected
result, E=(V2-V1)/�.

Figure 9.9 Points near the corner of the highest potential conductor where the
electric field is calculated
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Also shown in Table 9.1 are the enhancement factors in parentheses,
These are obtained by performing the finite element calculations with
paper having its normal dielectric constant ε=4.0 and then repeating it
with the paper layer given the dielectric constant of oil ε=2.2 and taking
the ratio of the field magnitudes in the two cases. This is normally greater
than one, however in one case shown in the table it is 0.90. This is
probably due to discretization inaccuracies in the finite element
calculation or possibly in pin-pointing the exact location of where to
evaluate the field in the two cases since this was done with the cursor.
Note that there seems to be a tendency for greater enhancement factors at
the corner point 2 than on either side of it for the sharp corner case.

The conformal mapping technique does not apply to the paper-oil
situation so other approximate approaches must be employed to account
for the oil enhancement. The equipotential line plot for a finite element
calculation with paper present is shown in Fig. 9.10, with a blow-up of

Table 9.1 Comparison of analytic and finite element electric field magnitudes at
points 1, 2, 3 of Fig. 9.9. Enhancement factors are shown in parentheses.
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Figure 9.10 Equipotential line plot from a finite element calculation showing the
full geometry for the conditions given in Table 9.1a with rounded comers

Figure 9.11 Equipotential line plot from a finite element calculation showing a
blow-up of the region near the conductor’s corners for the same conditions as
Fig. 9.10

the region of interest shown in Fig. 9.11. This is for the conditions given
in Table 9.1a with rounded corners. Fig. 9.12 is a similar blow-up for the
conditions in Table 9.1a with sharp metal corners.
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9.2.4.3 Estimating Enhancement Factors

For a paper-oil layering in a planar geometiy as shown in Fig. 9.13a,
all the paper can be lumped into one layer for calculational purposes.
Letting 1 refer to the paper layer and 2 to the oil layer, the enhancement
factor η=E/Eo, ie. the ratio of the fields with and without a paper
layer, is

(9.86)

where f1=�1/�, f2=�2/� with �=�1+�2 are the fractional lengths of materials
1 and 2 respectively. It is assumed that when the paper is absent, it is
replaced by oil, keeping the total distance � between the metal surfaces
the same.

Figure 9.12 Equipotential line plot from a finite element calculation for the same
conditions as Fig. 9.11 but with the conductors having sharp corners
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In the cylindrical case, shown in Fig. 9.13b, the position of the paper
layer or layers is important in calculating the enhancement factors. We
will assume that one paper layer is next to the inner conductor and one
next to the outer conductor. When additional layers are present, such as
pressboard barriers, their position must be known and they can be
included in the calculation. The oil enhancement factor for the situation
shown in Fig. 9.13b is

(9.87)

The cylindrical enhancement factor is larger than the planar enhancement
factor for the same paper and oil layer thicknesses. It reduces to the
planar case when r1 becomes large.

The above enhancement factors refer to ideal geometries. For the
geometry of interest as shown in Fig. 9.9, the enhancement factors
reduce to the planar case for field points away from the corner and deep
into the V1-V2 gap or the V1–0 or V2–0 gaps. This is borne out by the
finite element calculations. However, near the corner, the geometry is
closer to the cylindrical case.

For a sharp corner, corresponding to r1=0, (9.87) shows that η→ε1/
ε2=1.82 for the oil-paper case. This is an upper limit on the

Figure 9.13 Paper-oil configurations for (a) planar and (b) cylindrical geometries
resulting in enhanced fields in the oil compared with the all oil case
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enhancement factor and is more than enough to account for the sharp
corner enhancement factors shown in Table 9.1. For our purposes, the
rounded corner enhancement factors are the most relevant ones. Table
9.1 shows that these are nearly the same for the 3 corner points.
Treating the rounded corner case as a cylindrical geometry, we can take
r1=0.02". It is less clear what radius to use for the outer conductor. In
Table 9.2, we calculate the planar and cylindrical oil enhancement
factors for the two different gaps, where the outer conductor radius is
taken to be the inner conductor radius plus the gap length which is � or
h for the two gaps (See Fig. 9.6). Thus, referring to Fig. 9.13b,

(9.88)

Note that the V1–0 gap has only one layer of paper. We also show a
weighted cylindrical enhancement factor, which uses a weighted average
of the above two radii. The weighting is taken to be inversely
proportional to the radius so that the outer conductor closest to the
corner is given the highest weighting. This results in an effective outer
conductor radius of

(9.89)

These weighted enhancements come closest to the corner enhancements
determined by the finite element calculations in most cases. We will
therefore use a cylindrical enhancement factor with this weighted outer
conductor radius in our design calculations if it is above the V1"V2 gap
planar enhancement factor. Otherwise the V1"V2 gap planar enhancement
factor will be used.

Table 9.2 Calculated oil enhancement factors for the cases in Table 9.1.
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The conformal mapping calculations of the electric field near the
corner of one of a pair of conductors at different potentials relative to a
neighboring ground plane agree well with calculations obtained by
means of a finite element program. Since the electric field is infinite at the
corner of a perfectly sharp conductor, the calculations were compared a
small distance from the corner, taken to be the thickness of a paper layer
in an actual transformer winding. The finite element calculations were
made with sharp and rounded corners and the resulting fields were nearly
the same a paper’s thickness away from the corner. Since the oil
breakdown fields are the most critical in transformer design and these
occur beyond the paper’s thickness, this result shows that a conformal
mapping calculation is appropriate for determining these fields.

The only problem with the conformal mapping approach is that it
does not take into account the different dielectric constants of oil and
paper. We have proposed a method to take these approximately into
account by means of an oil enhancement factor. By comparing with a
finite element calculation, a formula was developed to obtain this
enhancement factor.

9.3 FINITE ELEMENT ELECTRIC FIELD CALCULATIONS

Finite element methods permit the calculation of electric potentials and
fields for complicated geometries. Modern commercial finite element
codes generally provide a set of drawing tools which allow the user to
input the geometry in as much detail as desired. More sophisticated
versions even allow parametric input so that changes in one or more
geometric parameters such as the distance between electrodes can be
easily accomplished without redoing the entire geometry. Both 2 and 3
dimensional versions are available although the input to the 3D versions
is, of course, much more complicated. For many problems, a 2D geometry
can be an adequate approximation to the real configuration. 2D versions
usually allow an axisymmetric geometry by inputting a crosssection of
it. It this sense, it is really solving a 3D problem which happens to have
cylindrical symmetry. The x-y 2D geometry is really modelling an
infinitely long object having the specified 2D cross-section.

The basic geometry which the user inputs is then subdivided into a
triangular mesh. Smaller triangles are used in regions where the
potential is expected to change most rapidly. Larger triangles can
adequately describe more slowly varying potential regions. Some
programs automatically perform the triangular meshing and, through
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an iterative process, even refine the mesh in critical regions until the
desired solution accuracy is achieved. When linear triangles are used,
the potential is solved for only at the triangle nodes and a linear
interpolation scheme is used to approximate it inside the triangle. For
higher order triangles, additional nodes are added per triangle and
higher order polynomial approximations are used to find the potential
inside the triangles. Some programs use only second order triangles
since these provides sufficient accuracy for reasonable computer
memory and execution times.

Some art is required even for the geometric input. Very often,
complete detail is unnecessary to a determination of the fields in critical
regions. Thus the user must know when it is reasonable to ignore
certain geometric details which are irrelevant to the problem. This not
only saves on the labor involved in inputting the geometry but it can
also considerably reduce required computer memory and solution
times.

Finite element programs require that the user input sources and the
appropriate boundary conditions for the problem at hand. In the case of
electric potential calculations, the sources are electric charges and the
boundary conditions include specifying the voltage at one or more
electrode surfaces. These are often the sufaces of metallic objects and
thus have a constant potential throughout. It is therefore unnecessary to
model their interiors. Typically, the program will allow the user to
declare such metallic objects nonexistant so that the solution is not
solved for over their interiors. Their surface, however, is still included
as an equipotential surface. Sometimes the equipotential surface is a
boundary surface so it already has no interior. A metallic object can
also be allowed to float so that its potential is part of the problem
solution.

On external boundaries where no specification is made, the
assumption is that these have natural or Neumann boundary
conditions. This means that the normal derivative of the potential
vanishes along them. This implies that the potential lines (in 2D) or
surfaces (in 3D) enter the boundary at right angles. These types of
boundary are usually used to express some symmetry condition. For
instance a long conducting cylinder centered inside a rectangular
grounded box can by modelled by means of a circle inside the box.
However, by symmetry, only a quarter of the geometry, centered on the
circle need be modelled and natural boundary conditions imposed on
the new boundaries created by isolating this region. This is depicted in
Fig. 9.14
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The method works here because the potential lines are concentric
circles about the conducting cylinder and therefore enter the dotted line
boundaries in the 1/4 geometry at right angles. Although the problem
depicted in Fig. 9.14 is relatively simple to solve in the full geometry so
that the use of symmetry does not save much in input or solution times,
this technique can save much effort when more complicated geometries
are involved.

Another boundary condition which some programs allow is the
balloon boundary. This type of boundary is like specifying that the
boundary doesn’t exist and the solution continues beyond it as if there
were empty space out to infinity in that direction. There is a practical
necessity for this type of boundary condtition since the finite element
technique requires that the entire solution space of interest be
subdivided into triangles or elements. When this solution space extends
infinitely far or far enough that the geometric region of interest would
be dwarfed relative to the whole space, it is convenient to specify such
balloon boundaries rather that model vast regions of empty space.

We now give some examples of soving electrostatic problems with a
finite element program. We use Ansoft’s Maxwell® 2D software
[Ansoft]. The first is a varistor stack assembly shown in Fig. 9.15. This
is an axisymmetric geometry. The varistors themselves are modelled as
two continuous cylinders separated by a metallic region in the center
which is floating. The ends consist of shaped metal electrodes to help
reduce the end fields. There are pressboard disks which mechanically
hold the assembly together inside a pressboard cylinder. There is

Figure 9.14 Using symmetry to simplify the finite element problem
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another pressboard cylinder outside followed by the ground cylinder
which defines the outermost boundary. The top and bottom boundaries
are balloon boundaries. Although the geometry of the varistor stack
itself ir really cylindrical, the ground may not, in fact, be a concentric
cylinder as modelled. For instance, it may be a tank wall. However, it
is far enough away that a cylindrical approximation is reasonable.

Figure 9.15 Axisymmetric model of a varistor stack with equipotential lines

The varistor cylinders, the pressboard elements, and the oil were given
appropriate permittivities. The metallic end caps and center region were
declared nonexistant. Different voltages were specified on the two end
caps and the outer boundary cylinder was given a zero voltage. The
equipotential lines obtained by solving this problem are shown. Since the
electric field is the gradient of the potential, where the lines are closely
spaced, the field is highest. The field itself could be calculated and
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displayed vectorially, if desired. The field can also be obtained
numerically at specified points along with the maximum field value.

The second example is of two long parallel cylindrical cables. Using
symmetry, only the top half of one of these cables actually needs to be
modelled as shown in Fig. 9.16 This is an x-y geometry so that it is
assumed to be infinitely long in the direction into the page. The metallic
portion of the cable is surrounded by an insulating layer having a
certain permittivity. The outside space is filled with oil, having a
different permittivity. The metallic portion of the cylinder is declared
nonexistant and its boundary is given half the potential difference
between the two cylinders. This allows one to make the left boundary
line a zero potential line since it is assumed to bisect the distance
between the two cylinders. The Top and right boundary lines are
balloon boundaries. The bottom boundary line is unspecified (natural
boundary conditions assumed) since we are taking advantage of the
symmetry. The paper layer around the cable is actually subdivided into
two layers separated by a thin aluminum layer which is floating.

Figure 9.16 Model of two parallel cylindrical cables, using symmetry to simplify it.
The equipotential lines are shown.
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The equipotential solution lines are shown. They are closest together
along a line connecting the center lines of the two cylinders as might be
anticipated so that the field is highest here. A closer inspection shows
that the highest field occurs in the oil at the surface of the paper along
this line. As expected, the potential lines enter the bottom boundary
line at right angles.
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10. LOSSES

Summary Transformer losses comprise a small percentage of the power
throughput in a transformer. Yet these losses can produce localized heating
which can compromise its operation. It is important to be able to calculate
these losses at the design stage so that adequate cooling can be provided.
In addition, such calculations and their parameter dependencies can
suggest ways of reducing these losses should that be necessary based on
cost considerations or design feasibility. There are two main categories
of losses, no-load and load losses. Noload losses are basically core
losses associated with energizing the transformer and driving flux through
the core. Load losses are further subdivided into I2R losses and stray
losses. The I2R losses are resistive losses in the windings and leads caused
by the main current flow. The stray losses are the result of the stray flux
from the windings or leads impinging on metal parts such as the tank
walls, the clamps, and even the windings themselves, resulting in induced
eddy currents. We present formulas or methods for obtaining these losses
in this report.

10.1 INTRODUCTION

Transformer losses are broadly classified as no-load and load losses.
Noload losses occur when the transformer is energized with its rated
voltage at one set of terminals but the other sets of terminals are open
circuited so that no through or load current flows. In this case, full flux
is present in the core and only the necessary exciting current flows in
the windings. The losses are predominately core losses due to hysteresis
and eddy currents produced by the time varying flux in the core steel.
Load losses occur when the output is connected to a load so that current
flows through the transformer from input to output terminals. Although
core losses also occur in this case, they are not considered part of the
load losses. When measuring load losses, the output terminals are
shorted to ground and only a small impedance related voltage is
necessary to produce the desired full load current. In this case, the core
losses are small because of the small core flux and do not significantly
add to the measured losses.
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Load losses are in turn broadly classified as I2R losses due to Joule
heating produced by current flow in the coils and as stray losses due to
the stray flux as it encounters metal objects such as tank walls, clamps or
bracing structures, and the coils themselves. Because the coil conductors
are often stranded and transposed, the I2R losses are usually determined
by the d.c. resistance of the windings. The stray losses depend on the
conductivity, permeability, and shape of the metal object encountered.
These losses are primarily due to induced eddy currents in these objects.
Even though the object may be made of ferromagnetic material, such as
the tank walls and clamps, their dimensions are such that hysteresis
losses tend to be small relative to eddy current losses.

Although losses are usually a small fraction of the transformed power
(<0.5% in large power transformers), they can produce localized heating
which can compromise the operation of the transformer. Thus it is
important to understand how these losses arise and to calculate them as
accurately as possible so that, if necessary steps can be taken at the design
stage to reduce them to a level which can be managed by the cooling
system. Other incentives, such as the cost which the customer attaches to
the losses, can make it worthwhile to find ways of lowering the losses.

Modern methods of analysis, such as finite element or boundary
element methods, have facilitated the calculation of stray flux losses in
complex geometries. These methods are not yet routine in design
because they require a fair amount of geometric input for each new
geometry. They can, however, provide useful insights in cases where
analytic methods are not available or are very crude. Occasionally a
parametric study using such methods can extend their usefulness
beyond a specialized geometry. We will explore such methods, in
particular the finite element method, when appropriate. However, we
are largely concerned here with analytic methods which can provide
useful formulas covering wide parameter variations.

10.2 NO-LOAD OR CORE LOSSES

Cores in power transformers are generally made of stacks of electrical
steel laminations. These are usually in the range of 0.23–0.46 mm (9–
18 mils) in thickness and up to about 1 meter (40 inches) wide or as
wide as can be accommodated by the rolling mill. Modern electrical
steels have a silicon content of about 3% which gives them a rather
high resistivity, ~ 50×10–8 Ω-m. Although higher silicon content can
produce even higher resistivity, the brittleness increases with silicon
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content and this makes it difficult to roll them in the mill as well as to
handle them after. Special alloying, rolling, and annealing cycles produce
the highly oriented Goss texture (cube on edge) with superior magnetic
properties such as high permeability along the rolling direction. Thus it
necessary to consider their orientation in relation to the flux direction
when designing a core.

Although the thinness of the laminations and their high resistivity are
desirable characteristics in reducing (classical) eddy current losses, the high
degree of orientation (>95%) produces large magnetic domains parallel to
the rolling direction as sketched in Fig. 10.1. The lines between domains
with magnetizations pointing up and down are called domain walls. These
are narrow transition regions where the magnetization vector rotates
through 180°. During an a.c. cycle, the up domains increase in size at the
expense of the down domains during one part of the cycle and the opposite
occurs during another part of the cycle. This requires the domain walls to
move in the direction shown in the figure for increasing up magnetization.
As the domain walls move, they generate eddy current losses. These losses
were calculated by Ref. [Pry58] for the idealized situation shown in the
figure. They found that these losses were significantly higher than the losses
obtained from a classical eddy current calculation which assumes a
homogeneous mixture of many small domains. These non-classical losses
depend on the size of the domains in the zero magnetization state where
there are equal sized up and down domains. This is because the maximum
distance the walls move and hence their velocity depends on the zero
magnetization domain size. The larger this size and hence the greater the
domain wall’s velocity, the greater the loss.

Figure 10.1 Idealized magnetic domain pattern in highly oriented electrical steel.
The up and down arrows show the magnetization direction. The side pointing small
arrows show the direction of domain wall motion for increasing up magnetization.
v is their velocity.
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In order to decrease the non-classical eddy current losses, it is
therefore necessary to reduce the domain size. This is accomplished in
practice by laser or mechanical scribing. A laser or mechanical stylus is
rastered across the domains (perpendicular to their magnetization
direction) at a certain spacing. This introduces localized stress at the
surface since the scribe lines are not very deep. The domain size is
dependent on the stress distribution in the laminations. Localized
stresses help to refine the domains. Thus, after scribing, the laminations
are not annealed since this would relieve the stress. Fig. 10.2 shows the
domain pattern in an oriented electrical steel sample before and after
laser scribing. The domain patterns are made visible by means of
specialized optical techniques. One can clearly see the reduction in
domain size as a result of laser scribing in this figure. The losses were
reduced by ~12% as a result of laser scribing in this example.

Figure 10.2 Effect of laser scribing on the domain wall spacing of oriented electrical
steel. Left side—before scribing, right side—after scribing. Courtesy of Armco Inc.
With permission.

Another type of loss in electrical steels is hysteresis loss. This results
from the domain walls encountering obstructions during their motion.
At an obstruction, which can be a crystal imperfection, an occlusion or
impurity, or even a localized stress concentration, the domain wall is
pinned temporarily. However, because of the magnetizing force driving
its motion, it eventually breaks away from the pinning site. This
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process occurs very suddenly and the resulting high wall velocity
generates localized eddy currents. These localized eddy current losses
are thought to be the essence of what are called hysteresis losses. Thus
all losses in electrical steel are eddy current in nature. These hysteresis
losses occur even at very low, essentially d.c., cycle rates. This is
because, although the domain walls move very slowly until they
encounter an obstacle, the breakaway process is still very sudden. Thus
in loss separation studies, the hysteresis losses can be measured
independently by going to low cycle rates, whereas the total loss,
including hysteresis, is measured at high cycle rates. In high quality
electrical steel, the hysteresis and eddy current losses contribute about
equally to the total loss.

The manufacturer or supplier of electrical steel generally provides
the user with loss curves which show the total loss per kilogram or
pound as a function of induction at the frequency of interest, usually 50
or 60 Hz. One of these curves is shown in Fig. 10.3a. This curve is
generally measured under ideal conditions, i.e. low stress on the
laminations, and uniform, unidirectional, and sinusoidal flux in the
laminations, so that it represents the absolute minimum loss per kg or
1b to be expected in service. Another useful curve which the
manufacturer can provide is a curve of the exciting power per unit
weight versus induction at the frequency of interest. A sample curve is
shown in Fig. 10.3b. Again this is an idealized curve, but it can be
useful in estimating the power and current needed to energize the
transformer.
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Figure 10.3 Graphs of core loss and exciting power based on a polynomial fit to
data provided by Armco Inc. With permission, TRAN-COR H® is a registered
trademark of Armco Inc.
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10.2.1 Building Factor

As mentioned previously, the specific core losses at the operating induction
provided by the manufacturer are minimum expected losses so that
multiplying by the core weight produces a total core loss lower than what
is measured in practice. The discrepancy is a result of the fact that stacked
cores require joints where the induction must not only change direction
but must bridge a gap between different laminations and also because
stresses are produced in the steel due to cutting and stacking operations.
There are other causes of this discrepancy such as burrs produced by
cutting, but all of these can be lumped into a building factor which is
simply a number which multiplies the ideal core loss to produce the
measured core loss. These building factors are generally in the range of
1.2–1.4 and are roughly constant for a given core building practice.

Many attempts have been made to understand these extra losses,
particularly in the region of the core joints, and have led to improved
joint designs such as a step-lapped joint where the joint is made
gradually in a step like manner. In a 3 phase core, studies have shown
that near the joints where the flux changes direction by 90°, the
induction vector rotates and higher losses are generated. Thus another
approach to calculating the building factor is to apply a multiplier to
the ideal losses for the amount of steel in the joint region only. This joint
multiplier would be higher that the average multiplier and could be as
high as ~1.7. The advantage of this approach is that cores having
different fractions of their overall weight in the joint regions should
receive more accurate average multipliers which reflect this difference.

10.2.2 Interlaminar Losses

The core laminations are coated with a glass-like insulating material.
This is usually very thin, on the order of a few microns, to keep the
space factor reasonably high (>96%). Like any other material, the coating
is not a perfect insulator. Thus eddy currents, driven by the bulk flux in
the core, can flow across the stacked laminations which comprise the
core, i.e. normal to their surfaces. This is sketched in Fig. 10.4 for a
rectangular cross-section core. Of course the eddy current paths are
completed within the laminations where the resistance is much lower.
The coating must be a good enough insulator to keep these losses low
relative to the normal intralaminar losses. The insulative value of the
coating is determined not only by the intrinsic resistivity of the coating
material, which must be high, but also by its thickness. Although the
thickness is generally not perfectly uniform, it should not vary so much
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that bald spots are produced. In high quality electrical steels, two types
of coatings are generally applied, a first glass-like coating and a second
coat of special composition designed to apply a favorable stress to the
steel. The two coatings make the occurrence of bald spots unlikely.

The insulating value of the coating is determined by measuring the
resistance across a stack of laminations or ideally a single lamination
as shown in Fig. 10.4c. In terms of the parameters shown, the effective
resistance across a lamination of area A is

(10.1)

where ρc is the coating resistivity and tc its 2 sided thickness, ρs is the steel
resistivity and ts its thickness, t=tc+ts is the combined thickness, fc and fs

are fractional thicknesses of the coating and steel. It is often convenient to
express the result in terms of a surface resistivity, σsurf=ρefft, where t is the
thickness of one lamination. Its units are Ω-m2 in the SI system.

We now estimate the interlaminar losses with the help of the
geometiy shown in Fig. 10.4b. Assume a rectangular stack of core steel
of width w and height h and a uniform sinusoidal flux in the stack with
peak induction Bo and angular frequency ω. We use Faraday’s law

(10.2)

applied to the rectangle of area 4xy shown dotted in the figure. By
symmetry and Lenz’s law, the electric field points as shown on the two
vertical sides of the rectangle. The electric field is nearly zero along the
horizontal sides since these occur within the metallic laminations. Thus,
from (10.2), we have

E(4y)=-ω(4xy)Bo  

so that the magnitude of the electric field E is given by

E=-ωBox (10.3)

pointing down on the right and up on the left sides of the rectangle. In
these directions, we also have

E=ρeffJ (10.4)
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where J is the current density and ρeff the effective resistivity
perpendicular to the stack of laminations derived previously.

Figure 10.4 Interlaminar eddy currents produced by the bulk core flux

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



LOSSES378

The interlaminar losses are given by

(10.5)

where the volume integral is over the lamination stack, assumed uniform
in the direction into the paper (which we take to have unit length). The
factor of 1/2 comes from time averaging J which is assumed to be
expressed in terms of its peak value. Thus from (10.3)–(10.5), we get

(10.6)

where we have used ω=2πf. The specific loss (loss per unit volume) is
given by

(10.7)

since we assumed unit length in the other dimension. To find the loss per
unit weight or mass, divide by the density of the core steel in the
appropriate units. Equation (10.7) is in the SI system where w is in
meters, Bo in Tesla, ρeff in Ω-m, f in Hz, and Pint in Watts/m3.

The interlaminar loss should be compared with the normal loss at
the same peak induction. For typical values of the parameters, it is
generally much smaller than the normal loss and can be ignored. As a
numerical example, let f=60 Hz, w=0.75 m, Bo=1.7 T, ρeff=20 Ω-m. We
get Pint=481 W/m3. The density of electrical steel is 7650 kg/m3 (16870
lb/m3) so that Pint=0.063 W/kg (0.029 W/lb). This is a fairly small loss
compared with the normal losses at 1.7 T of ~1.3 W/kg=0.60 W/lb.
However, a high enough interlaminar resistance must be maintained to
achieve these low losses.
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10.3 LOAD LOSSES

10.3.1 I2R Losses

I2R losses in the coil conductors are generally the dominant source of
load losses. They are normally computed using the d.c. value of
resistivity. However, in the case of wires with large cross-sectional areas
carrying a.c. current this normally requires that they be made of stranded
and transposed conductors. To get a feeling for how a.c. current affects
resistance, consider the resistance of an infinitely long cylinder of radius
a, permeability µ, and d.c. conductivity σ=1/ where ρ is the d.c. resistivity.
Let it carry current at an angular frequency ω=2πf. Then the ratio of
a.c. to d.c. resistance is given by [Smy68]

(10.8)

The ber and bei functions along with their derivatives ber' and bei' are
given in Ref.[Dwi61]. This resistance ratio, which can also be regarded
as the ratio of an effective a.c. to d.c. resistivity, is plotted in Fig. 10.5.

Figure 10.5 Plot of the a.c. to d.c. resistance ratio for an infinitely long cylinder.
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As a numerical example, consider a copper cylinder with
parameters: a=2.52 cm=0.6 in, ρ=2×10-8 Ω-m, µ=4π×10-7 H/m, f=60 Hz
resulting in x=1.95. Then we find Rac/Rdc ≈1.15, i.e. a 15% effect.
Making the conductor out of strands, insulated from each other, is not
sufficient to eliminate this effect. In addition, the strands must be
transposed so that each strand occupies a given region of the
crosssectional area as often as any other strand. This is accomplished in
modern transposed cables which use typically 5–39 strands.

With this remedy or the use of small wire sizes, I2R losses can be
calculated using the d.c. resistance formula,

(10.9)

where ρ is the resistivity at the temperature of interest, � the length of
the conductor. A its cross-sectional area = the sum of the areas of all
wires in parallel, and I the total current flowing into cross-sectional
area A. The temperature dependent resistivity obeys the formula

ρ(T)=ρo[1+α(T-To)] (10.10)

over a wide range of temperatures, where ρo is the resistivity at T=To

and  is the temperature coefficient of resistivity. For soft copper at To

=20 °C, ρo=1.72×10-8 Ω-m and α=0.0039. For aluminum at To= 20 °C,
ρo=2.83×10-8 Ω-m and α=0.0039. These numbers apply to relatively pure
materials. Alloying can change them considerably. The temperature
dependence indicated in (10.10) is significant. For example both copper
and aluminum resistivities and hence I2R losses increase about 30% in
going from 20 to 100 °C.

10.3.2 Stray Losses

These are losses caused by stray or leakage flux. Fig. 10.6 shows the
leakage flux pattern produced by the coil currents in the bottom half of
a single phase or leg of a transformer, assuming cylindrical symmetry
about the center line. This was generated with a 2D finite element
program. The main components, core, coils, tank, and clamp are shown.
Shunts on the tank wall and clamp were given the material properties
of transformer oil so they are not active. Fig. 10.7 shows the same plot
but with the tank and clamp shunts or shields activated. These are
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made of the same laminated electrical steel as the core. The shunts or
shields divert the flux from getting into the tank or clamp walls so that
the stray losses in Fig. 10.7 are much less than those in Fig. 10.6. The
stray flux pattern depends on the details of the winding sizes and spacings,
the tank size, the clamp position, etc. The losses generated by this flux
depend on whether shunts or shields are present as well as geometric
and material parameters.

In addition to the coils’ stray flux, there is also flux produced by the
leads. This flux can generate losses, particularly if the leads are close to
the tank wall or clamps. We should also mention losses in the tank wall
depending on how the leads are taken out of the tank.

As Figs. 10.6 and 10.7 indicate, there is also stray flux within the
coils themselves. This flux is less sensitive to the details of the tank and
clamp position or whether shunts or shields are present. Therefore,
other methods besides finite elements, such as Rabin’s method which
uses a simplified geometry, can be used to accurately calculate this flux
in the coils. The coil flux generates eddy currents in the wires or
individual strands of cable conductors. The losses depend on the strand
size as well as its orientation relative to the induction vector and the
induction vector’s magnitude. The localized losses are therefore
different at different positions in the coil.

There are other types of stray loss which occur either in case of an
unusual design or when a manufacturing error occurs. In the latter
category, extra losses are generated when a cross-over or transposition
is missed or misplaced in a coil made of two or more wires or cables in
parallel.

We will examine these various types of stray loss here, deriving
analytic formulas or procedures for evaluating them where possible or
relying on finite element studies or other numerical methods if
necessary.
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Figure 10.6 Stray flux in the lower half of a core leg with no shunts or shields

Figure 10.7 Stray flux in the lower half of a core leg with shunts or shields
present
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10.3.2.1 Eddy Current Losses in the Coils

In order to study the effect of stray flux on losses in the coils, we examine
an individual wire or strand which could be part of a transposed cable.
This is assumed to have a rectangular cross-section. The magnetic field
at the site of this strand segment will point in a certain direction relative
to the strand’s orientation. This vector can be decomposed into components
parallel to each side of the rectangular cross-section as shown in Fig.
10.8a. (In a transformer, there is little or no magnetic fields directed
along the length of the wire.) We analyze the losses associated with each
component of the magnetic field separately and add the results. This is
accurate to the extent that the eddy currents associated with the different
field components do not overlap. We will see in the following that the
eddy currents tend to concentrate along the sides of the rectangular strand
to which the field component is parallel. Thus the eddy current patterns
associated with the two field components do not overlap significantly so
that our method of analysis is reasonably accurate.

Figure 10.8 Geometry for calculating losses in a conducting strand due to an
external magnetic field
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Consider the losses associated with the y-component of an external
magnetic field as shown in Fig. 10.8b, where the coordinate system and
geometric parameters are indicated. We assume an idealized geometry
where the strand is infinitely long in the z-direction. This implies that
none of the electromagnetic fields have a z dependence. We further
assume that the magnetic field, both external and internal, has only a
ycomponent. Applying Maxwell’s equations in this coordinate system
and with these assumptions, we obtain in the SI system.

(10.11)

where  µ is the permeability, E the electric field, and H the magnetic
field. We have ignored the displacement current term which is only
important at extremely high frequencies. In the metallic conductor, we
have Ohm’s law in the form

(10.12)

where µ is the electrical conductivity. There is only a z-component to J
and E. Combining (10.11) and (10.12), we obtain

(10.13)

where Hy is a function of x and t.
Let Hy have a sinusoidal time dependence of the form

Hy(x,t)=Hy(x)ejωt (10.14)

Then (10.13) becomes
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(10.15)

Hy is only a function of x in (10.15). Solving (10.15) with the boundary
condition that Hy=Ho at x=±b/2 where b is the strand width normal to
the field direction and Ho is the peak amplitude of the external field,
we get

(10.16)

and from (10.11)

(10.17)

The eddy current loss per unit length in the z direction is

(10.18)

where c is the strand dimension along the field direction. The factor of
1/2 comes from taking a time average and using peak values of the
field. The integration through only half the thickness is possible because
of the symmetry of the integrand. Note that, from (10.15),

(10.19)

Using this expression for k, we have the identities.

(10.20)
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Substituting into (10.18), integrating, and dividing by the cross-sectional
area, we get the specific eddy current loss (loss/unit volume) as

(10.21) 

This is in Watts/m3 in the SI system. Simply divide by the density in this
system to get the loss per unit mass or weight.

This last equation applies over a broad frequency range, up to where
radiation effects start becoming important. At the low frequency end,
which applies to transformers at power frequencies (small qb), this
reduces to

(10.22)

where we have used σ=1/ρ, where ρ is the resistivity, ω=2πf, where f is
the frequency, and Bo=µHo.

As a numerical example, let Bo=0.05T which is a typical leakage
induction value in the coil region, ρ=2×10-8 Ω-m, σ=5×107 (Ω-m)-1,
ω=2πf=2π(60) rads/sec, b=6.35×10–3 m (0.25 in), µ=4π×10–7 H/m. Then
q=108.8 m-1 and qb=0.691. This is small enough that the small qb limit
should apply. Thus we get from (10.22), Pec=2.985× 104 W/m3. The
exact formula (10.21) yields Pec=2.955×104 W/m3. Using the density of
copper dCu=8933 kg/m3, we obtain Pec=3.35 W/kg=1.52 W/1b. The I2R
loss on a per volume basis associated with an rms current of 3×106 A/
m2=1935 A/in2 (a typical value) in a material (copper) of the above
resistivity, is 1.8×105 W/m3 so that the eddy current loss amounts to
about 17% of the I2R losses in this case.

The losses given by (10.21) or (10.22) must be combined with the
losses given by a similar formula with Ho or Bo referring to the peak value
of the x-component of the field and with b and c interchanged. This will
give the total eddy current loss density at the location of the strand. A
method of calculating the magnetic field or induction at various locations
in the coils is needed. From the axisymmetric field calculation (flux map)
given in Figs. 10.6 and 10.7, we obtain values of the radial and axial
components of the field. These replace the x, y components in the loss
formulas given above. These loss densities will differ in different parts of
the winding. To obtain the total eddy current loss, an average loss density
can be obtained for the winding and this multiplied by the total weight or
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volume of the winding. However, in determining local winding
temperatures and especially the hot spot temperature, a knowledge of
how these losses are distributed is necessary.

From (10.17), (10.19), and (10.20), we can obtain the eddy current
loss density as a function of position in the strand,

(10.23)

This vanishes at the center of the strand (x=0) and is a maximum at the
surface (x=± b/2). The parameter q measures how fast this drops off
from the surface. The fall off is more rapid the larger the value of q. The
reciprocal of q is called the skin depth  and is given by

(10.24)

For copper at ~ 60 °C, σ=5×107 (Ω-m)”1, and f=60 Hz, we get δ=0.92
cm=0.36 in. For aluminum at ~60 °C, σ=3×107 (Ω-m)-1 , and f =60 Hz,
we get δ=1.19 cm=0.47 in. Thus the skin depth is smaller for copper
than aluminum which means that the eddy currents concentrate more
towards the surface of copper than aluminum.

The high frequency limit of (10.21) (large qb) is

(10.25)

This increases as the square root of the frequency.

10.3.2.2 Tieplate Losses

The tieplate (also called flitch plate) is located just outside the core in
the space between the core and innermost winding. It is a structural
plate which connects the upper and lower clamps. Tension in this plate
provides the clamping force necessary to hold the transformer together
should a short circuit occur. It is usually made of magnetic steel or
stainless steel and could be subdivided into several side by side vertical
plates to help reduce the eddy current losses. Fig. 10.9 shows a schematic
diagram of one of the tieplates associated with one leg. There is another
on the opposite side of the core leg. These generally have a rectangular
cross-section.
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Since the flux plots in Figs. 10.6 and 10.7 are for a 2 dimensional,
axisymmetric geometry, it was not possible to include the tieplate. (This
would have made it a solid cylinder around the core.) However, the flux
pattern shown in the figures should not be greatly altered by their
presence since they occupy a fairly small fraction of the core’s
circumference. As the flux pattern in the figures show, the flux is
primarily radial at the location of the tieplate. However, with an actual
tieplate present, there will be some axial flux carried by the tieplate.
This will depend on the permeability of the tieplate relative to that of
the core. We can estimate the axial tieplate flux by reference to Fig.
10.10 where we show two side by side solids of permeabilities µ1, µ2 and
cross sectional areas A1, A2 carrying flux. We assume that the coils
producing this flux create a common magnetic field H at the location of
the solids. (The field inside an ideal solenoid is a constant axial field.)

Figure 10.9 Tieplate location in a transformer
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The induction inside each solid is given by

(10.26)

so that

(10.27)

Using this last expression, we can estimate the induction in the tieplate.
We can use the ratio of relative permeabilities in the above formula.
These are a.c. permeabilities which we take to be ~5000 for the core
and ~200 for a magnetic steel tieplate. With a core induction of 1.7
Tesla which is typical, we find that Bmag t.p.=0.04 Bcore=0.068 T. For a
stainless steel tieplate of relative permeability=1, we obtain Bs.s. t.p.=
0.0002 Bcore=0.00034 T. Thus the axial induction is not insignificant for
a magnetic steel tieplate but ignorable for a stainless steel one.

Let us first look at the losses due to the radial induction since these
are common to both magnetic and stainless steel tieplates. We have
studied these losses using a 2D finite element analysis. Fig. 10.11 shows
a flux plot for a magnetic steel tieplate, assuming a uniform 60 Hz
sinusoidal flux density far from the plate. The plate is assumed to be
infinitely long in the dimension perpendicular to the page. Only 1/2 the
geometry is modeled, taking advantage of symmetry about the left
hand axis. The plate rests directly on a material of high permeability,

Figure 10.10 Dissimilar magnetic materials in a common magnetic field
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the core. The loss density contours are shown in Fig. 10.12. This
indicates that the eddy currents are concentrated near the surface due to
the skin effect. Fig. 10.13 shows a similar flux plot for a stainless steel
tieplate. Note that there is little eddy current screening so the flux
penetrates the plate without much distortion. Fig. 10.14 shows the loss
density contours for the stainless steel tieplate. There is much less
surface concentration of the eddy currents. Although we only calculate
eddy current losses with a finite element program, the hysteresis losses
in a magnetic steel tieplate make up only a small fraction of the total
losses for typical tieplate dimensions.

The finite element study was repeated for different tieplate widths
(perpendicular to the flux direction) while keeping the thickness (along
the flux direction) constant at 0.95 cm (3/8 in). The results are shown in
Fig. 10.15, where the loss per unit length in the axial direction and per
T2 are plotted. To get the actual loss multiply the ordinate by the
tieplate length and by the square of the radial induction in T2. Fig.
10.16 shows the same information as plotted in Fig. 10.15 but on a log-
log plot. This allows the extraction of the power dependence of the loss
on the width of the tieplate. The material parameters assumed were, for
magnetic steel: resistivity=25×10-8 Ω-m and relative permeability=200,
for stainless steel: resistivity=75×10-8 Ω-m and relative permeability=1.
We obtain for the losses

(10.28)
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Figure 10.11 Flux lines for a magnetic steel tieplate in a uniform 60 Hz magnetic
field normal to its surface. The tieplate rests on a high permeability core. Only 1/
2 the geometry is modeled.

Figure 10.12 Loss density contours for the magnetic steel tieplate shown in Fig.
10.11.
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Figure 10.13 Flux lines for a stainless steel tieplate in a uniform 60 Hz field
normal to its surface. The situation is otherwise the same as described in Fig.
10.11.

Figure 10.14 Loss density contours for the stainless steel tieplate shown in Fig.
10.13.
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Figure 10.15 Losses for 0.95 cm (3/8 in) thick tieplates made of magnetic and
stainless steel versus the tieplate width. The tieplates are in a uniform 60 Hz
magnetic field directed normal to the tieplate surface.

Figure 10.16 Same as Fig. 10.15 but on a log-log scale.
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The stainless steel finite element study shows that the magnetic field
and eddy currents inside the tieplate have nearly the same direction and
geometry dependence as was assumed for the eddy current loss in
conducting strands. Therefore if we multiply the loss density given in
(10.21) or (10.22) by the plate’s cross sectional area, we should get
nearly the same result as given above for stainless steel. We note that w
should be substituted for b in the previous formulas. Using the small qb
formula (10.22), and putting in the stainless steel parameters, we obtain

 

which is close to the result given above in SI units. We do not expect
exact agreement since qb(=qw) for stainless at w=0.127 m (5 in) is ~2.26
which is a little above the range of validity of the small qb formula.

In the case of magnetic steel, as Figs. 10.11 and 10.12 show, the
conditions under which the strand eddy current losses were developed
do not hold. The field is not strictly y-directed (radially directed) and it
does not depend only on x (the width direction). We should note that,
according to Fig. 10.15, the losses per unit length due to radial flux are
higher in stainless steel tieplates than in magnetic steel plates for the
same width and thickness. However, for magnetic steel tieplates, we
need to add on the losses due to the axial flux they carry.

We can estimate the losses in the tieplate due to axial flux by
resorting to an idealized geometry. We assume the tieplate is infinitely
long and the flux is driven by a uniform axial magnetic field parallel to
the tieplate’s surface. We are also going to assume that its width is much
greater than its thickness, in fact we assume an infinite width. Thus, as
shown in Fig. 10.17, the only relevant dimension is the y-dimension
through the sheet’s thickness. The eddy currents will flow primarily in
the x direction. We ignore their return paths in the y-direction which are
small compared to the x-directed paths.
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Applying Maxwell’s equations and Ohm’s law to this geometry, we
obtain in SI units,

(10.29)

Combining these equations, we obtain

(10.30)

The last equation is identical in form to equation (10.13). Thus, using
the previous results but altering the notation to fit the present geometry,
we get

Figure 10.17 Geometry of an idealized plate or sheet driven by a uniform sinusoidal
magnetic field paralled to its surface (perperdicular to page)
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(10.31)

and

(10.32)

This is a loss per unit volume (W/m3) in the tieplate due to axial flux.
Since the eddy currents generating this loss are at right angles to the
eddy currents associated with the radial flux normal to the surface,
there is no interference between them and the two losses can be added.

For magnetic steel at 60 Hz with µr=200, µ=µr 4π×10-7 H/m, σ=4×106

(Ω-m)-1 and c=9.52×10-3 m (0.375 in), we have qc=4.15. This is large
enough that (10.32) must be used without taking its small qc limit.
Substituting the parameters just given for magnetic steel and using
Bo=0.07 T (Ho=Bo/µ), we obtain Ptp,axial=925 W/m3=0.12 W/kg, where we
have used 7800 kg/m3 for the density of magnetic steel. The radial flux
loss formula for magnetic steel given previously, equation (10.28), must
be divided by the cross sectional area for comparison with the above
loss. We find, using Brms=0.1 T, w=0.127 m (5 in) and the previous value
for c, Ptp,radial=1552 W/m3=0.20 W/kg. Thus it appears that for a
magnetic steel tieplate, the loss associated with the axial flux is
comparable with the loss associated with the radial flux. In any event,
these two losses must be added to get the total loss. Since stainless steel
tieplates have virtually no axial flux loss, the net effect is that magnetic
steel tieplates could have a higher loss than comparably sized stainless
steel tieplates.

Since the axial flux loss is, to first order, independent of tieplate
width, the width dependence of the total magnetic steel tieplate losses
should not be as pronounced as that for stainless steel ones. Thus
subdividing the tieplates either with axial slots or into separate plates
will not be as effective for magnetic steel as compared with stainless
steel tieplates in reducing the losses. However, one benefit of magnetic
steel tieplates, not shared by stainless steel ones, is that they keep the
radial flux from passing through them into the core steel. (Compare
Figs. 10.11 and 10.13.) They do, however, concentrate the radial flux
reaching the core to the regions near the outer edges of the tieplate
where oil cooling should be more effective.
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10.3.2.3 Tieplate and Core Losses Due to Unbalanced Currents

There is a rather specialized type of loss which can occur in transformers
which have a large unbalanced net current flow. The net current is the
algebraic sum of the currents flowing in all the windings. This, in
contrast with the net Ampere-turns which are always nearly exactly
balanced, can be unbalanced. To visualize the magnetic effect of a
winding’s current, consider a cylindrical (solenoidal) winding carrying
a current which flows in at the bottom and out at the top. Outside the
winding, the net upward current appears equally distributed around
the cylinder. The magnetic field outside the cylinder associated with
this current is the same as that produced by the current flowing along
the centerline of the cylinder. In a core-form transformer, some of the
windings carry current up and some down. The algebraic sum of all
these currents can be considered as being carried by one cylinder of
radius equal to a weighted average of the contributing windings,
weighted by their current magnitudes. Outside this radius, the field is
that of a straight wire along the centerline earning the algebraic sum of
the currents.

The field around a long straight wire carrying a current I is directed
along concentric circles about the wire and has magnitude in SI units,

(10.33)

where r is the radial distance from the centerline and ϕ, the azimuthal
angle, indicates that the field is azimuthally directed. We are using bold
faced type here to indicate that the current is a phasor quantity, since we
are considering a 3 phase transformer on a single 3 phase core. This
field cuts through the transformer core windows as shown in Fig. 10.18.
The alternating flux passing through the core window induces a voltage
around the core structure which surrounds the window. The tieplates,
including their connection to the upper and lower clamps, make a similar
circuit around the core windows so that voltage is induced in them as
well.

We can calculate the flux due to the coil in Fig. 10.18a through the
left hand window, labeled 1 in the figure, Φa1, using (10.33)

(10.34)
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where µo is the permeability of oil (air)=4π×10-7 H/m, h the effective
winding height, d the leg center to center distance, and rw the effective
winding radius, h can be obtained as a weighted average of the
contributing windings as was done for rw. We have integrated all the
way to the centerline of the center leg. This is an approximation as the
flux lines will no doubt deviate from the ideal radial dependence given
in (10.33) near the center leg. The flux through window 2 due to the
phase a current, Φa2, is similarly

(10.35)

Using the same procedure, we find the flux through the two windows
due to phases b and c shown in Fig. 10.18 b, c

(10.36)

Thus the net fluxes through windows 1 and 2 are

(10.37)
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Figure 10.18 Field around a cylindrical winding located on a transformer leg and
carrying a net upward current
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Considering Ia, Ib, Ic to be a positive sequence set of currents and
performing the phasor sums above, we get

(10.38)

From Faraday’s law, the voltages induced by the two fluxes are

(10.39)

The direction of these voltages or emf’s s is given by Lenz’s law, i.e.
they try to oppose the driving flux,. We can assume that V1 is the reference
phasor and thus drop the minus sign and phase factor from its expression.
Then V2 is given by (10.39) with a phase of θ2-θ1 relative to the reference
phasor.

The induced voltages will attempt to drive currents through the
tieplates and core in loops surrounding the two windows. This will be
opposed by the resistances of the tieplates and core and by the self and
mutual inductances of the metallic window frames whether formed of
core sections or of tieplate and clamp sections. We can treat these as
lumped parameters, organized into the circuits of Fig. 10.19. There are
3 circuits involved since there are two tieplate circuits on either side of
the core plus the core circuit. These are essentially isolated from each
other except for coupling through the mutual inductances. Although the
tieplate circuits share the top and bottom clamps in common, they are
sufficiently symmetric that they can be regarded as separate circuits.
We assume that magnetic coupling exists only between window 1 loops
or window 2 loops but not between a window 1 loop and a window 2
loop. To make the circuit equations more symmetric, we have
positioned V2 in the circuit in such a way that it is necessary to take the
negative of the expression in (10.39).
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Thus we have for the voltage sources in the circuits of Fig 10.19,
assuming V1 is the reference phasor,

(10.40)

where f is the frequency in Hz.
Using the notation of Fig. 10.19 and assuming sinusoidal conditions,

we can write the circuit equations

Figure 10.19 Equivalent circuits for tiepiates and core driven by voltages induced
through unbalanced currents
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(10.41)

These can be organized into a matrix equation and solved for the
currents, using complex arithmetic. However, it is possible to solve
them using real arithmetic by separating the vectors and matrix into
real and imaginary parts. Thus, given a matrix equation

V=MI (10.42)

where V and I are complex column vectors and M a complex matrix,
write

(10.43)

Here bold faced type is doing double duty in indicating both vector and
phasor quantities. Substituting this separation into real and imaginary
parts into (10.42), we get

(10.44)

This reduces to two separate equations,

(10.45)

which can be organized into a larger matrix equation
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(10.46)

Here the separate entries are real vectors and matrices. Thus we have
doubled the dimension of the original matrix equation (10.41) from 6 to
12 but this is still small, considering the power of modern computers.

The remaining issues concern how to evaluate the resistances and the
self and mutual inductances in (10.41). The resistance of a tieplate, R,
can simply be taken as its d.c. resistance since it has a relatively small
thickness. We can ignore the resistance of the clamps since these should
have a much larger cross-sectional area than the tieplates. The core,
with its fairly large radius and high permeability will have an enhanced
a.c. resistance relative to its d.c. value. It can be estimated from Fig.
10.5, using an effective a.c. permeability and conductivity.

Since we do not expect extreme accuracy in this calculation, in view
of the approximations already made, we can use approximate formulas
for the self and mutual inductances. For example, Ref. [Gro73] gives a
formula for the inductance of a rectangle of sides a and b made of wire
with a circular cross-section of radius r and relative permeability µr

which is, in SI units,

(10.47)

L is in Henrys and lengths are in meters in the above formula. This
formula can be applied directly to calculate the inductance of the core
window. By defining an effective radius, it can be applied to the tieplate
loop as well. In calculating the core inductance, remember that the core
current generates magnetic field lines in the shape of concentric circles
about the core centerline so that the appropriate relative permeability is
roughly the effective permeability perpendicular to the laminations. For
a stacking factor of 0.96 and infinitely permeable laminations, the effective
perpendicular permeability is µr=25. Similarly, the effective tieplate
permeability is close to 1.0 for both magnetic and stainless steel tieplates.

The mutual inductance terms are not quite so important so that an
even cruder approximation may be used. Ref. [Gro73] gives an
expression for the mutual inductance between two equal coaxial squares
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of thin wire which are close together. Letting s be the length of the side of
the squares and d their separation, the mutual inductance, in SI units, is

(10.48)

In this equation, M is in Henrys and lengths in meters. With a little
imagination, this can be applied to the present problem. Once (10.41) or
its equivalent (10.46) is solved for the currents, the losses, which are I2R
type losses, can be calculated. As a numerical example, we found the
core and tieplate losses due to an unbalanced current of 20,000 Amps rms
at 60 Hz in a transformer with the following geometric parameters,

The tieplates were actually subdivided into three plates in the width
direction but this does not affect the calculation. For magnetic steel
tieplates, the calculated core loss was 11 Watts and the total tieplate
loss was 1182 Watts. For stainless steel tieplates, the calculated core
loss was 28 Watts and the total tieplate loss was 2293 Watts. For the
magnetic steel case, the current in the core legs was about 200 Amps
and in the tieplates about 600 Amps. For the stainless steel case, the
current in the core legs was about 300 Amps and in the tieplates about
500 Amps. The stainless steel losses are higher mainly because of the
higher resistivity of the material coupled with the fact that the
impedances, which limit the currents, are mainly inductive and hence
nearly the same for the two cases.

10.3.2.4 Tank and Clamp Losses

Tank and clamp losses are very difficult to calculate accurately. Here
we are referring to the tank and clamp losses produced by the leakage
flux from the coils, examples of which are shown in Figs. 10.6 and
10.7. The eddy current losses can be obtained from the finite element
calculation, however the axisymmetric geometry is somewhat simplistic

Winding height (h) 0.813 m (32 in)
Winding radius (rw) 0.508 m (20 in)
Leg center-center distance (d) 1.727 m (68 in)
Core radius 0.483 m (19 in)
Tieplate and core height 5.08 m (200 in)
Tieplate width 0.229 m (9 in)
Tieplate thickness 9.525×10-3 m (0.375 in)
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if we really want to model a 3 phase transformer in a rectangular tank.
Modern 3D finite element and boundary element methods are being
developed to solve eddy current problems and should be widely available
in the near future. In fact, some of these codes are already on the market.
They are not, however, in routine use largely because of the complexity
of 3D versus 2D modeling as well as computation time and memory
limitations. These problems should disappear with time and fully 3D
calculations of losses should become routine.

In the meantime, much can be done with a 2D approach. We refer to a
study in Ref. [Pav93] where several projection planes in the 3D geometry
were chosen for analysis with a 2D finite element program. The losses
calculated with this approach agreed very favorably with test results. As
that study and our own show, 2D models allow one to quickly asses the
impact on losses of design changes such as the addition of tank and/or
clamp shunts made of laminated electrical steel or the effect on losses of
aluminum or copper shields at various locations. In fact the losses in Fig.
10.7 with tank and clamp shunts present were dramatically reduced
compared with those in Fig. 10.6 where no shunts are present. While the
real losses may not show as quantitative a reduction, the qualitative
effect is real. Another study which was done very quickly, using the
parametric capability of the 2D modeling, was to asses the impact of
extending the clamp shunts beyond the top surface of the clamp. We
found that some extension was useful in reducing the losses caused by
stray flux hitting the vertical side of the clamp.

An example of where a 3D approach is crucial in understanding the
effect of design options on losses concerns the laminated steel shunts on
the clamps. The side clamps extend along all three phases of a
transformer as shown in the top view of Fig. 10.20. Should the clamp
shunts be made of laminations stacked flat on top of the clamps or
should the laminations be on edge, i.e. stacked perpendicularly to the
top surface of the clamp? In addition, should the shunts extend
uninterrupted along the full length of the clamps or can they be
subdivided into sections which cover a region opposite each phase but
with gaps in between? The 2D model of Fig. 10.7 cannot really answer
these questions. In fact, in the 2D model the flux in the clamp shunts is
forced to return to the core eventually, whereas in the 3D model one can
imagine the clamp shunt flux from the 3 phases canceling itself out
within the shunts, assuming the shunts are continuous along the sides.
Because of the laminated nature of the shunt material, the magnetic
permeability and electrical conductivity are both anisotropic. This will
affect both the flux and eddy current patterns in the shunts in a way that
only a 3D model which allows for these anisotropies can capture.
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A simple and reasonably accurate method of obtaining losses from a
2D axisymmetric model is to take the total losses in the tank or clamp
and divide by the circumference of the circle with radius equal to the
radial distance to the center of the core. This produces a loss per unit
length which can be multiplied by the tank perimeter or total clamp
length to get the total loss. If only half the geometry is modeled as in
Figs. 10.6 and 10.7, then a factor of 2 is needed to get the total loss.
With tank shunts present, some correction will be needed if shunts are
applied in packets with spaces in between. In addition, the tank radius
will need to be an effective radius, considering the actual tank shape.
The losses calculated in this way ignore hysteresis which should be only
a small component of the total loss for typical tank wall or clamp
dimensions.

Figure 10.20 Geometry of clamp arrangement from a top view
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10.3.2.5 Tank Losses Due to Nearby Busbars

When busbars carrying relatively high current pass close to the tank
wall, their magnetic field induces eddy currents in the wall, creating
losses. The busbars are usually parallel to the tank wall over a certain
length. Because of the magnetic field direction, laminated magnetic
shunts positioned near the busbar are not as effective at reducing these
losses as are metallic shields made of aluminum or copper. Since busbars
are usually present from all three phases, the question arises as to how
the grouping of 2 or 3 busbars from different phases would affect the
losses. Intuitively, we expect a reduction in the losses due to some
cancellation in the magnetic field from different phases.

These loss issues can be studied by means of a 2D finite element
program if we assume the busbars are infinitely long in the direction
along their length. Thus we will calculate losses per unit length which
can be multiplied by the total busbar length to get a reasonable
approximation to the total loss. We can make this a parametric study
by varying the distance of the busbars from the tank wall. Other
parameters such as busbar dimensions could be varied, but this would
greatly complicate the study. We have selected rather standard sized
busbars and separation distances when a grouping of busbars from
different phases is studied. Of course, a particular geometry can always
be studied if desired. Because eddy current losses are proportional to the
square of the current when linear magnetic materials are involved, it is
only necessary to calculate the losses at one current.

Fig. 10.21 shows the geometry studied with the variable distance
from the tank wall, d, indicated. We also show an aluminum shield
which can be given the material properties of oil or air when the losses
without shield are desired. The two busbar geometry applies to currents
120° apart and the three busbar geometry to a balanced 3 phase set of
currents. The current magnitudes were set at 1 kA. The busbars were
solid copper having cross sectional dimensions of 1.27 cm×7.62 cm (0.5
in×3 in) and separated from each other by 8.255 cm (3.25 in) in the 2 or
3 grouping cases. The aluminum shield was 1.27 cm (0.5 in) thick and
22.9 cm (9 cm) wide for the single busbar case and 30.5 cm (12 in) wide
for the 2 and 3 busbar groupings. The tank wall was 0.95 cm (0.375 in)
thick with material properties, µr=200, σ=4×106 (Ω-m)-1. The study was
done at 60 Hz.
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Figure 10.21 Geometry for loss study of busbars near the tank wall. The dimensions
are in inches.
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Since the busbars were modeled as solid copper and have a fairly
large cross-sectional area, there were extra losses induced in them
beyond the usual I2R losses based on d.c, resistance. We found that these
extra eddy current losses amounted to about 20% of the I2R losses,
regardless of whether one or groups of 2 or 3 busbars were studied. In
the following figures, we plot the normalized losses which should be
multiplied by the total length of the busbars or busbar group and by the
current in kA squared to get the total loss, not including the loss in the
busbars themselves. Thus the loss plotted is the tank loss when no
shields are present and the tank plus shield loss when a shield is present.

Fig. 10.22 shows the normalized loss versus distance, with and
without shield for the single busbar case. The figure shows that the
losses without shield drop off with distance, d, while the losses with
shield are relatively constant with distance. In the shielded case, the
relative amounts of loss in the shield and tank wall change with
distance, while their sum, which is plotted, remains almost constant.
We see that shielding reduces the losses by about a factor of 5 at close
distances and a factor of 2–3 at further distances compared with the
unshielded losses.

Fig. 10.23 shows the normalized losses versus distance for the two
busbar case. This figure has nearly the same features as the single
busbar case. In fact, even the magnitude of the losses is nearly the same.
However, since this figure applies to 2 busbars, this says that the losses
can be cut in half by pairing 2 phases compared with leaving them
separate. We also see in this case that shielding is very effective in
reducing the losses.

Fig. 10.24 shows the normalized loss versus distance for a group of 3
busbars. We see that the magnitude of the loss is considerably reduced
relative to the single or double busbar case. In fact, the losses shown
should be divided by 3 to compare with the single busbar loss. In this
case, shielding does not provide much improvement. This is because the
3 phase currents sum to zero at any instant of time, producing little net
magnetic field at distances large relative to the conductor spacings. Fig
10.25 shows a flux plot of the 3 busbar case, where the flux cancellation
can be directly observed.

It thus appears that loss reduction from busbars near bare tank walls
can be achieved by pairing 2 or 3 phases together, the latter being
preferable. Shielding is very effective in reducing the losses associated
with 1 or 2 busbars from different phases but not for 3 busbars where the
losses are small anyway.
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Figure 10.22 Stray losses due to a single busbar running parallel to the tank wall.
The geometry is shown in Fig. 10.21a.

Figure 10.23 Stray losses due to two side by side busbars from different phases
and running parallel to the tank wall. The geometry is shown in Fig. 10.21b.
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Figure 10.24 Stray losses due to a group of 3 busbars from different phases of a
three phase system and running parallel to the tank wall. The geometry is shown
in Fig. 10.21c.

Figure 10.25 Flux plot from a balanced 3 phase set of busbars near tank wall
with shield.
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10.3.2.6 Tank Losses Associated with the Bushings

Current enters and leaves a transformer tank via the bushings. The
bushings are designed to handle the voltage stresses associated with the
voltage on the leads without breakdown as well as to dissipate heat due
to the losses in the conductor which passes through the bushings. The
conductor or lead, which must pass through the tank wall, creates a
magnetic field which can generate eddy currents and accompanying
losses in the tank wall near the lead. These losses must be calculated
and appropriate steps taken to reduce them if necessary.

We can obtain a reasonable estimate of the tank losses due to a lead
penetrating the tank wall by resorting to an idealized geometry as
shown in Fig. 10.26. Thus we assume an infinitely long circular cross-
section lead passing perpendicularly through the center of a circular
hole in the tank wall. We can assume that the tank wall itself is a circle
of large radius centered on the hole. Since the losses are expected to
concentrate near the hole, the actual radial extent of the tank won’t
matter much. Also since most of the magnetic field which generates
eddy currents in the tank comes from the portion of the lead near the
tank, the infinite extent of the lead does not greatly affect the
calculation.

The geometry in Fig. 10.26 is axisymmetric. Thus we need to work
with Maxwell’s equations in a cylindrical coordinate system. We
assume the tank wall has permeability µ and conductivity σ.
Combining Maxwell’s equations with Ohm’s law inside the tank wall
and assuming that H varies harmonically in time as

H(r, t)=H(r)ejωt (10.49)

we get

(10.50)

where H in (10.50) is only a function of position.
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Because the problem is axisymmetric, H does not depend on ϕ, the
azimuthal angle. We also assume that H has only a  component. This is
all that is needed to produce the expected eddy current pattern indicated
in Fig. 10.26b, where the eddy currents approach and leave the hole
radially and the paths are completed along short sections in the z-
direction. The approximate solution we develop here will neglect these
z-directed eddy currents which should not contribute much to the total
loss. Thus we have

H(r)=Hϕ(r, z)aϕ (10.51)

where aϕ is the unit vector in the azimuthal direction. Expressing (10.50)
in cylindrical coordinates and using (10.51), we get

Figure 10.26 Idealized geometry and parameters used to calculate losses due to
a lead passing through the tank
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(10.52)

We need to solve this equation subject to the boundary conditions

(10.53)

where a is the radius of the hole in the tank wall and c is the tank wall
thickness. Once a solution is found, the current density J is given by

(10.54)

where r and k are unit vectors in the r and z directions.
To solve (10.52), we use a separation of variables technique and

write

Hϕ(r, z)=R(r)Z(z) (10.55)

Substituting into (10.52) and dividing by RZ, we obtain

(10.56)

Thus we have two terms which are separately a function of r and z and
whose sum is a constant. Hence, each term can be separately equated to
a constant so long as their sum is jωµσ. We choose

(10.57)

Letting k2=jωµσ so that
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(10.58)

we can solve the first equation in (10.57) up to an overall multiplicative
constant, Zo,

Z(z)=Zo cosh(kz)=Zo[cosh(qz)cos(qz)+jsinh(qz)sin(qz)] (10.59)

This equation takes into account the symmetry about the z=0 plane.
The second equation in (10.57) is solved up to an overall multiplicative
constant, Ro, by

(10.60)

Thus the complete solution to (10.56), using the boundary conditions
(10.53) is

(10.61)

This does not exactly satisfy the first boundary condition in (10.53)
except in the limit of small qc/2.

Solving for the eddy currents, equation (10.54), we see that the z-
directed currents are zero when we substitute the solution (10.61). We
expect that the losses contributed by these short paths will be small.
Solving for the r-directed eddy currents, we obtain

(10.62)

and the loss density as a function of position, assuming I is an rms
current, is

(10.63)
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This drops off with radius as 1/r2 and so is highest near the opening. The
total loss is given by

(10.64)

The upper limit of the r integration, b, is chosen to be a large enough
radius that the tank area of interest is covered. The result will not be too
sensitive to the exact value chosen. Performing the integrations in (10.64),
we obtain

(10.65)

For a magnetic steel tank wall, using µr=200, σ=4×106 (Ω-m)-1, f=60 Hz,
c=9.52×10-3 m (0.375 in), we have qc=4.15 as was found previously.
Thus the small qc approximation to (10.65) cannot be used. However
for a stainless steel tank wall of the same thickness and frequency, using
µr=1, µ=4π×10-7 H/m, σ=1.33×106 (Ω-m)-1, we have qc=0.17 so the low
qc limit of (10.65) may be used. This is

(10.66)

where ω=2πf and σ=1/ρ have been substituted. Applying these last two
equations to the case where I=1000 Amps rms (for normalization
purposes), the hole radius a=0.165 m (6.5 in), the outer radius b=0.91 m
(36 in), and using the above parameters for the two types of steel, we get
Lossbush(mag steel)=61.9 Watts/(kArms)2 and Lossbush(stainless) =5.87×10-3

Watts/(kArms)2. These losses are associated with each bushing. Applying
this to a situation where the lead is carrying 10 kArms, the loss in a
magnetic steel tank wall would be 6190 Watts per bushing and in a
stainless steel tank wall 0.587 Watts per bushing. These need to be
multiplied by the number of bushings carrying the given current to get
the total tank loss associated with the bushings. Thus when heavy currents
are carried by the leads, it might be worth while to insert a stainless
steel section of tank around the bushings, especially since these losses
are concentrated in the part of the tank wall near the opening.
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Another method of reducing these losses is to use a stainless steel
insert only around part of the opening as shown in Fig. 10.27a. This
will reduce the effective permeability as seen by the magnetic field
which travels in concentric circles about the center of the opening. We
can estimate this effect by considering the total flux which encircles the
opening shown in Fig. 10.27b. By continuity, this flux crosses every
imaginary radial cut we make centered on the opening. To a first
approximation, therefore, we can assume that the induction B is the
same everywhere along a circle as drawn in the figure. Letting the
length of the circular path in the magnetic steel section be d1 and the
length in the stainless steel section be d2, and using B=µ1H1=µ2H2 along
the path, we have from Ampere’s law

(10.67)

If this induction existed in a uniform material of permeability, µeff, we
would have

(10.68)

Thus from (10.67) and (10.68), we obtain

(10.69)

The same analysis can be used to find the effective conductivity,

(10.70)

For a strip of uniform width as shown in Fig. 10.27, f1 and f2 vary
with radius so that an averaging process should be used for µeff and µeff.
In view of the approximate nature of this calculation, we will simply
assume that f1 and f2 are evaluated at some average radius, weighted
towards smaller radii. Thus, if we take d2=0.127 m (5 in) and rave=
0.254 m (10 in), we get f1=0.92, f2=0.08, and using the material
parameters given previously, we obtain µeff=11.8 (relative
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permeability) and σeff=3.45×106 (Ω-m)”1. Using these parameters, we get
qc=0.935 so that, from (10.65) we obtain Lossbush=2.05 Watts/(kArms)2

for a single bushing. This is a considerable reduction from the loss
without a stainless steel insert. At a current of 10 kArms, this is a loss of
205 Watts per bushing.

Figure 10.27 Openings for three phase leads in the tank wall with stainless steel
strips inserted to reduce the permeability

10.3.3 Winding Losses Due to Missing or Unbalanced Cross-Overs

When two or more wires or cables in parallel are used to construct a
winding, it is necessary to interchange their positions at suitable points
along the winding in order to cancel out induced voltages produced by
the stray flux. Otherwise, any net induced voltage can drive currents
around the loop established when the parallel turns are joined at either
end of the winding and these circulating currents will produce extra
losses. The interchange points are called cross-overs and their number
will depend on the number of parallel strands and on the symmetry of
the stray flux pattern. An extreme example of cross-overs is provided by
transposed cable where cross-overs occur among the individual strands
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comprising the cable at relatively short equally spaced intervals along
the cable. Thus a single cable can be wound into a coil without any
need for additional cross-overs within the cable.

In order to estimate the losses associated with missing or unbalanced
transpositions, we make some simplifying assumptions. We assume that
the windings are uniformly wound and that the magnetic field pattern is
as shown in Fig. 10.28 for an inner and outer winding. Thus we are
ignoring end effects. Although this assumption is reasonably accurate
for coils long compared with their radii, it loses some accuracy for short
coils or coil sections. However, it should be clear in the following
development where improvements can be made for more accuracy.

Figure 10.28 Idealized magnetic field pattern for an inner-outer winding pair.
The parameters h and d can differ for the two windings.
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Since the permeability in the coil region is close to the permeability
of vacuum or air, µo, we have for the B field of an inner coil, Bin, or outer
coil, Bout, in SI units,

(10.71)

where h is the coil height, d its radial build, N the total number of
electrical turns in the winding, I the current, and x the distance through
the radial build, starting at the inner radius. These parameters can differ
for the inner and outer coils.

We assume that there are n radial turns in parallel. Any axial turns
in parallel do not see a different flux pattern from their radial
counterpart to first order. It is therefore unnecessary to consider them in
calculating voltage imbalances. The voltage induced in the ith parallel
radial turn by the leakage flux is different from that seen by the jth for
i≠j. Therefore it is necessary to interchange parallel radial turns so that
each one occupies the position of all the others as the winding proceeds
along the coil axis. If an interchange is missing or misplaced, different
voltages will be induced in the parallel turns and the voltage differences
will drive circulating currents around the loops formed by the top and
bottom connections.

Let us calculate the voltage induced in a single turn in the ith

position. This will equal the time derivative of the flux linkage, λi.
Referring to Fig. 10.29, the flux linkage for the ith turn is

(10.72)

Here Bin or Bout should be substituted for B to obtain λi,in or λi,out for inner
and outer coils. t is the turn radial thickness and d=nt. ro is the inner
radius of the coil. In the first term above, the integration is up to the
inner radius of the turn so all the flux is linked by the whole turn. In the
second term, the flux linkage changes from 1 at the start of the integral
to 0 at the end and this is taken care of by the factor (i”x/t). For Bout we
are ignoring the flux for radii <ro. This is the same for all the turns and
will not contribute to voltage differences between parallel radial turns.
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Substituting (10.71) into (10.72) and integrating, we obtain

(10.73)

These are the flux linkages per turn. If there are Nu uncompensated
electrical turns due to missed or unbalanced cross-overs, then (10.73)
should be multiplied by Nu to get the total flux linkage corresponding to
parallel radial turn i. Assuming sinusoidal currents of angular frequency
ω=2πf, we obtain for the induced voltages,

(10.74)

The number of unbalanced electrical turns needs to be estimated for
each particular case. For instance, if there are n parallel radial turns,
there should be a minimum of n-1 equally spaced cross-overs, assuming

Figure 10.29 Radial parallel turn numbering scheme and geometric parameters
for determining induced voltages
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uniform flux along the winding. The number of electrical turns between
cross-overs in this case is N/n. The simplest case to consider is that
where a cross-over is misplaced by a fraction f of N/n. Then the two
adjacent sections contain (1+f)N/n and (1"f)N/n turns. If a cross-over is
completely missed, then f=1. We can even imagine situations where f>1.

Perhaps the best way to handle the variety of situations which may
occur is to calculate the induced voltages and resulting induced currents
in each section of coil between cross-overs, including the sections
between the coil ends and the nearest cross-over. In this way the whole
coil is covered. If the sections are balanced, the induced currents will
automatically sum to zero. Otherwise, there will be net unbalanced
currents in the radial turns which will result in losses. We must identify
the positions of the radial turns in the starting configuration which may,
without loss of generality, be numbered consecutively starting at the
inner radius and follow these turns in the configurations which result
after the cross-overs. We then sum the currents for each turn in the
starting configuration as it advances through the coil, recognizing the
fact that its radial position is different in the different configurations. In
carrying this out, we will assume that the cross-overs are accomplished
by shifting the turns to the right by one turn position. Other cross-over
schemes could be accommodated with little additional effort. We also
refer to the turns in the different sections as Nu even though these no
longer refer to the net unbalanced turns. We will also refer to the section
involved as the unbalanced section.

Now we must consider the circuit model to which these induced
voltages should be applied. This is sketched in Fig. 10.30. The parallel
radial turns are joined at the winding ends. Since we are only interested
in circulating currents, the main winding voltage drop across the coil
and its associated load current are eliminated. Each parallel radial
turn, i, has a resistance, Ri, a self inductance, Li, and is mutually
coupled to all other turns as indicated by the mutual inductances, Mik.
Before evaluating these parameters, let’s look at the circuit equations.
Assuming sinusoidal conditions, we have

(10.75)

We are using bold faced type here to denote phasors. Singling out the i=
1 equation, we can rewrite the last equation in (10.75)
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(10.76)

Subtracting the V1 equation from the voltage equations in (10.75) and
using (10.76), we obtain

(10.77)

where i=2,…, n. We have used Mik=Mki which is valid for linear systems.

The expression in (10.77), L1+Li-2M1i, is the two winding leakage
inductance between turns 1 and i. Because any two turns are tightly
coupled over a fully balanced winding where their positions are shifting
and interchanging, this would average to zero. Thus to a good
approximation it need only be evaluated over the unbalanced section.
Similarly the term, L1+Mik-M1i-M1k, would average to zero over a
balanced winding. This is because the M terms would average to a
common value, M, and the residual, L1-M, is the single winding

Figure 10.30 Circuit model of n parallel radial turns in a winding
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leakage impedance between turn 1 and any other turn and it will
average to zero because of the close coupling of the turns. Therefore,
this expression need only be evaluated over the unbalanced section.
However, the resistances in (10.77) must be evaluated over the full
length of the winding since they do not depend on the turn coupling.
This will have nearly the same value for all the turns.

In order to evaluate the self and mutual inductances in the circuit
model, we will assume that the unbalanced section is long enough
axially that the same approximations as were used for the induced
voltage calculation are also valid here. Thus the magnetic field for a
coil of Nu turns located at the ith radial position is shown in Fig. 10.31.
Analytically, the B-field is

(10.78)

where hu is the axial height of the unbalanced section (=h Nu/N).

The flux linkage to itself, λii, is

Figure 10.31 Magnetic field for a coil consisting of Nu turns at radial position i

(10.79)
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The turn linkage factor Nu(1-x/t) has been included in the second term.
Performing the integral, we obtain

(10.80)

From this, the self inductance, Li, is

(10.81)

so that

(10.82)

The mutual inductance between turns i and k can be found, again
using Fig. 10.31 and (10.78). Let turn k be outside of turn i. Then the
flux linked to turn k from flux produced by turn i, λik, is

(10.83)

so that the mutual inductance is

(10.84)

This same expression would have been obtained if k were the coil creating
the magnetic field. Thus in (10.84), the terms involving i on the right
hand side refer to the inner winding of the pair. This insures that Mik=Mki.
From (10.84), we obtain
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(10.85)

since 1 is always the inner winding in the unbalanced section.
Using these formulas, we find for the two winding leakage

impedance term in (10.77),

(10.86)

This formula holds for i>1. This same expression could have been
obtained by energy methods. The second expression in (10.77) can also
be obtained from the above formulas,

(10.87)

This last formula holds for i<k and i, k>1. If i>k, substitute k for i on the
right hand side.

The resistances, Ri and R1 in (10.77) are roughly the same for all
turns. In the standard formula R=ρ�/A, � is the length of a parallel
radial turn over the whole winding and A is its cross sectional area,
including the area of any corresponding axially displaced turns in
parallel with it.

Let us cast (10.77) in matrix form by defining a matrix X with
elements

(10.88)

i.e. we are renumbering the equations so that they start from 1 rather
than 2. Similarly, define a resistance matrix R,
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(10.89)

Let us also define a vector of voltages, E, and currents, K, by

(10.90)

Here bold faced type is doing dual service in distinguishing vectors
and phasors. Then we can write (10.77) in matrix form

E=(R+jX)K (10.91)

Separating E and K into real and imaginary parts,

(10.92)

we can write (10.91) as a real matrix equation

(10.93)

where the elements in this equation are vectors or matrices. From (10.74),
we see that the voltages depend on the main coil current which can be
taken to be real so we can set EIm=0.

These equations are solved for the complex currents Ki=Ii+1 and then
I1 is given by
(10.76). These currents apply to the standard ordering, 1,…, n. These
same equations, with different Nu and hu are solved for the other
configurations making up the winding and the currents corresponding
to the position of turn i in each configuration are added for i=1,…, n.
Thus we obtain

(10.94)

Here bold faced type indicates phasor quantities. Once these currents
are obtained, the losses are found from
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(10.95)

As a numerical example, we solved an inner coil problem with a
cross-over shifted by 4 electrical turns and with the following
parameters:

ro=0.567 m (22.3 in)
h=2.60 m (102.5 in)
d=8.25 cm (3.25 in)
t=2.06 cm (0.813 in)
N=80
n=4
Nu=4
N/n=20
A=Resistance area=3.71 cm2 (0.575 in2)
I=6449 Amps
ρ=2×10-8 Ω-m

We obtained for the losses due to circulating currents 12.3 kW. This
should be compared with the total I2R losses of 171 kW. Thus the
circulating current loss amounts to about 7% of the I2R loss in this case,

The above calculation could be improved by using more accurate
expressions for the inductances and mutual inductances, reflecting the
fact that the unbalanced sections are not necessarily axially very long.
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11. THERMAL MODEL OF A CORE
FORM POWER TRANSFORMER AND
RELATED THERMAL CALCULATIONS

Summary A model of a core form power transformer is presented which
utilizes a detailed network of oil flow paths through the coils and
radiators. Along each path segment, oil velocities, temperatures, and
temperature rises are computed. The oil flows may be either thermally
or pump driven. Throughout the disk coils, the flow is assumed directed
by means of oil flow washers. Temperatures are computed for each disk
along the disk coils. Coils with non-directed oil flow are also treated but
in less detail. The model includes temperature dependent oil viscosity,
resistivity, and oil density as well as both temperature and velocity
dependent heat transfer and friction coefficients. The resulting non-linear
system of equations is solved iteratively. The radiator oil flow is also
treated by means of a similar network model. Radiator cooling can be
by natural convection or fans. Tank cooling by convection and radiation
is also included. Iterations are performed in a back and forth manner
between the coils and radiators until steady state is reached where the
electric power losses equal the losses to the surroundings. Some
assumptions regarding the temperature distribution of the tank oil and
tank oil flows are made in order to tie the coil and radiator flows together.
Although detailed output information is available such as path
temperatures and velocities, average coil, coil hot spot, average oil,
and top oil temperatures are also computed and compared with test
data. In the transient version, time constants and times at overload until
a particular hot spot or top oil temperature is reached can be obtained.
Other thermal issues such as the loss of life determination, cable, tieplate,
and tank wall temperatures are also addressed.

11.1 INTRODUCTION

A thermal model of an oil cooled power transformer is presented here,
along with details of the computer implementation and experimental
verification. Any such model, particularly of such a complex system, is
necessarily approximate. Thus, the model assumes that the oil flows in
definite paths and ignores local circulation or eddy patterns which may
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arise. Since we assume that the oil flow through the disk coils is guided
by means of oil flow washers, this assumption should be fairly accurate
for these types of coils. Although recent studies have shown that irregular
eddy flow patterns may exist in non-directed oil flow cooling in vertical
ducts [Pie92], these types of coils occur to a very limited extent in our
designs. Such patterns may also occur in the bulk tank oil. We assume
these are small compared with the major or average convective cooling
flow in the tank. We further assume that the convective flow in the tank
results in a linear temperature profile from the bottom of the radiators
to the top of the coils in the tank oil external to the coils. The model
likewise ignores localized heating which may occur, for example, due
to high current carrying leads near the tank wall. It accounts for these
types of stray losses in only an average way. However, a localized
distribution of eddy current losses in the coils is allowed for, along with
the normal I2R losses.

The radiators we model consist of a collection of radiator plates
spaced equally along inlet and outlet pipes. The plates contain several
vertical ducts in parallel. The ducts have oblong shaped, nearly
rectangular, cross-sections. Fans, vertically mounted, may or may not be
present (or turned on). In addition to radiator cooling, cooling also occurs
from the tank walls by both natural convection to the surrounding air and
by radiation. Although the oil may be pumped through the radiators,
most of our designs are without pumps so that the oil flow in the radiators
and coils is laminar. This determines the expressions used for the heat
transfer and friction coefficients along the oil flow paths.

Our model of a disk winding is similar to that of Oliver [Oli80].
However, since we consider the whole transformer, we need to reconcile
the oil flows and heat generated by the individual coils plus stray losses
with the radiator and tank cooling in an overall iteration scheme in order
to arrive at a steady state condition. We also consider transient heating.

Previous thermal models of whole transformers have focused on
developing analytic formulas with adjustable parameters to predict
overall temperature rises of the oil and coils [IEE81, Blu51, Eas65,
Tay58, Aub92, Pie92a]. While these produce acceptable results on
average or for a standard design, they are less reliable when
confronting a new or untried design. The approach taken here is to
develop a model to describe the basic physical processes occurring in
the unit so that reliance on parameter fitting is minimized. Such an
approach can accommodate future improvements in terms of a more
detailed description of the basic processes or the addition of new
features as a result of a design change.
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11.2 THERMAL MODEL OF A DISK COIL WITH DIRECTED OIL
FLOW

This section is essentially a reprint of our published paper [Del99]. ©
1999 IEEE. Reprinted, with permission, from the Proceedings of the
1999 IEEE Transmission and Distribution Conference, New Orleans,
LA, 11–16 April, 1999, pp. 914–919.

The disk coil is assumed to be subdivided into directed oil flow
cooling paths as shown in Fig. 11.1. We number the disks, nodes, and
paths, using the scheme shown. The geometry is really cylindrical and
the inner radius Rin is indicated. Only one section (region between two
oil flow washers) and part of a second is shown, but there can be as
many sections as desired. Each section can contain different numbers of
disks and the number of turns per disk, insulation thickness, etc. can
vary from section to section. The duct sizes can vary within a section as
well as from section to section.

Figure 11.1 Disk, node, and path numbering scheme for a disk coil with directed oil
flow
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In Fig. 11.3 we have indicated the unknowns which must be solved
for at each node and path. These include the nodal temperatures, T, the
nodal pressures, P, the path oil velocities, v, the path oil temperature
rises, ∆T, and the disk temperatures, TC. These are labeled with their
corresponding node, path or disk number. Note that we are not
allowing for a temperature profile along a single disk but are assuming
that each disk is at a uniform temperature. This is an approximation
which could be refined if more detail is required.

Fig. 11.2 shows the cross-sectional areas, A, and hydraulic
diameters, D, of the various paths. Normally the vertical duct
geometric parameters, labeled 1 and 2, are the same throughout the coil
but the horizontal duct values can differ along the coil.

Figure 11.2 Cross-sectional areas and hydraulic diameters of different oil paths. The
vertical ducts are assumed to be uniform along the coil.
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11.2.1 Oil Pressures and Velocities

Along a given path, the oil velocities are uniform since the cross-sectional
area is assumed to remain constant. Ignoring gravitational effects, the
pressure drop along a given path is only required to overcome friction
Treating a generic path and labeling the pressures at the beginning and
end of the path P1 and P2 respectively, we can write, using standard
notation [Dai73],

(11.1)

where ρ is the fluid density, f the friction coefficient, L the path length, D
the hydraulic diameter, and v the fluid velocity. We note that the hydraulic
diameter is given by

Figure 11.3 Numbering scheme for disk temperatures, node temperatures, node
pressures, path velocities, and path temperature changes. Also indicated are the heat
transfer surface areas, Ac, and the heat transfer coefficients, h, for these surfaces.
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D=4×cross-sectional area/wetted perimeter 

MKS units are used throughout this report. For laminar flow in circular
ducts, f=64/ReD,

where ReD is the Reynolds number, given by

(11.2)

where µ is the fluid viscosity. For laminar flow in non-circular ducts,
the number 64 in the expression for f changes. In particular, for
rectangular ducts with sides a and b with a<b, we can write

(11.3)

where K(a/b) is given approximately by

K(a/b)=56.91+40.31(e-3.5a/b-0.0302) (11.4)

This expression is based on a fit to a table given in reference [Ols80].
Substituting (11.2) and (11.3) into (11.1), we obtain

(11.5)

where K=K(a/b) is implied. This equation is linear in the pressures and
velocities. However, the oil viscosity is temperature dependent and this
will necessitate an iterative solution. Based on a table of transformer oil
viscosities verses temperature given in [Kre80], we achieved a good fit
to the table with the expression

(11.6)

with T in °C and µ in Ns/m2.
For non-laminar flow (ReD>2000), the expression for f is more

complicated and (11.5) would no longer be linear in v. Note that we are
ignoring the extra friction arising from flow branching and direction
changing at the nodes. There is considerable uncertainty in the

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



435THERMAL MODEL

literature as to what these additional factional effects are for laminar
flow. Instead we have chosen to allow the friction coefficient in (11.3) to
be multiplied by a correction factor which is the same for all the
branches. This correction factor is close to 1 in practice for disk coils.

We get an equation of type (11.5) for all the paths in Fig. 11.1. Note
that we need only solve for the unknowns in one section at a time since
the values at the topmost node and path can be taken as input to the
next section. There are 3n+2 paths in the section, where n is the number
of disks. However, the number of pressure unknowns is 2n+2, i.e. the
number of nodes. We do not include the node 0, where the pressure must
be input. This pressure will be given by the requirement that the overall
pressure drop through the coil is determined by buoyancy effects as will
be discussed below. The number of velocity unknowns is 3n+2 or the
number of paths. Hence 2n+2 additional equations are required to solve
for the pressures and oil velocities. We will treat the temperatures as
fixed during the solution process. A separate set of equations will be
derived for the temperatures and the two systems will ultimately be
coupled through back and forth iteration.

The additional equations needed to solve for the pressures and
velocity unknowns come from conservation of mass at the nodes. The
mass of fluid of velocity v flowing through a duct of cross-sectional area
A per unit time, dM/dt, is given by

(11.7)

Since the fluid is nearly incompressible, we can consider conservation
of volume instead, where Q=Av is the volume flow per unit time. Referring
to Fig. 11.3 and using the areas indicated in Fig. 11.2, we obtain for a
typical inner (smallest radii) node, 2i-1,

A1v3i-2=A1v3i+1+Ao,iv3i-1 (11.8)

and for a typical outer node, 2i,

Ao,iv3i-1+A2v3i-3=A2v3-i (11.9)

However, the nodes at the beginning and end require special treatment
(see Fig. 11.1). We want to calculate the velocity on path 3n+3 which is
input to the next coil. We assume that the input velocity at the bottom of
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the section, v1 on path 1, is known by some other means (overall energy
balance). This still leaves 3n+2 unknown velocities to solve for but v3n+3

will be re-labeled v1 and v1 will be called vo, a known input velocity.
Thus at node 1 we have

A1vo=A1v4+Ao,1v2 (11.10)

At node 2,

Ao,1v2=A2v3 (11.11)

At node 2n+1

A1v3n+1=Ao,n+1v3n+2 (11.12)

and at node 2n+2

Ao,n+1 v3n+2+A2v3n=A2v1 (11.13)

We have 5n+4 equations to solve for the pressure and velocity
unknowns, where n is the number of disks in the section. For n=30,
which is about as large a number of disks as would be used in one
section, this yields 154 equations. Since the equations are quite sparse,
a linear equation solver which uses sparsity techniques was used. Note
that the cross-sectional areas must be calculated taking into account the
area lost due to key spacers or vertical spacer sticks. These also
influence the hydraulic diameters.

The overall pressure drop through the coil is produced by the
difference in buoyancy between the hot oil inside the coil’s cooling ducts
and the cooler tank oil outside the coil. Thus

∆Pcoil=(ρave,out-ρave,in)gH (11.14)

where ρave,in is the average oil density inside the coil and ρave,out the
average density immediately outside the coil, g is the acceleration of
gravity, and H the coil height. Letting β be the volume coefficient of
thermal expansion, we have

(11.15)
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and thus, since β=6.8×10–4/°K for transformer oil, we have to a good
approximation over a reasonably large temperature range, ∆ρ=βρ∆T
so that (11.14) can be written

∆Pcoil=βρgH(Tave,in-Tave,out) (11.16)

Because we are only considering pressures which produce oil flows, the
pressure at the top of the coil when steady state is achieved should be
zero. This means that ∆Pcoil=Po, the pressure at node 0 in Fig. 11.1.

The oil velocity into the coil along path 1 is determined by the
overall energy balance. The energy per unit time acquired by the oil
must equal the energy per unit time lost by the coil. In steady state, the
latter is just the total resistive loss of the coil. Thus

(11.17)

where c is the specific heat of the oil, ∆Toil is the increase in temperature
of the oil after passing through the coil, and Ri is the temperature
dependent resistance of disk i, including eddy current effects. We use

Ri=γo(1+α∆Ti)(1+ecfi)�i/Aturn (11.18)

where γo is the resistivity at some standard temperature, Tstd, ∆Ti is the
temperature rise of the disk above the standard temperature, α the
temperature coefficient of resistivity, ecfi the fraction of the normal losses
due to eddy currents for disk i, �i  the length of the cable or wire in disk
i, and Aturn the cross-sectional current-carrying area of the cable or wire.
Note that ecfi can vary from disk to disk to account for the effects of
non-uniform stray flux along the coil. For a given temperature
distribution for the disks and for known input and output oil temperatures,
(11.17) can be solved for v0. These temperatures will be given by a
subsequent analysis and a back and forth iteration is required to achieve
consistency. Using these results, the path 1 equation can be written

(11.19)

which contains only P1 as an unknown.

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



THERMAL MODEL438

After solving these equations for the first section, we proceed to the
next section, taking Po,second=P2n+2 and vo,second=v1=vo (A1/A2). We proceed
similarly from section to section. It is necessary to interchange A1 and
A2 since the oil enters alternate vertical ducts in adjacent sections. This
strategy keeps the equations looking the same from section to section.
Some sort of relaxation technique must be used to keep the iteration
process from becoming unstable. Thus Po and vo must vary gradually
from iteration to iteration.

11.2.2 Oil Nodal Temperatures and Path Temperature Rises

For a given path, the temperature rise of the oil, ∆T, is determined from
an energy balance. Thus the energy rise of the oil per unit time is

(11.20)

where a constant oil specific heat has been assumed. The energy lost per
unit time through a surface of a conductor is given by

hAc(Tc-Tb) (11.21)

where h is the heat transfer coefficient, Ac the surface area, Tc the
conductor temperature, and Tb the average (bulk) oil temperature in the
adjacent duct, h should include the effects of conductor insulation as
well as convective heat transfer and can be expressed

(11.22)

where hconv is the convection heat transfer coefficient, τinsul is the insulation
thickness, and kinsul is the thermal conductivity of the insulation. While
kinsul is nearly constant over the temperature range of interest, hconv varies
with temperature and oil velocity. For laminar flow in ducts, we use
[Kre80]

(11.23)
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where k is the thermal conductivity of the oil, D the hydraulic diameter,
L the duct length, ReD the Reynolds number (11.2), Pr the Prandtl number
(Pr=µc/k),  the viscosity of the bulk oil, and µs the oil viscosity at the
conductor surface. Equation (11.23) applies when ReD Pr D/L>10. A
correction must be applied for smaller values. The major temperature
variation comes from the viscosity (11.6) and the velocity dependence
comes from the Reynold’s number. The other parameters are nearly
constant over the temperatures of interest. For transformer oil, we use
[Kre80] ρ=867 kg/m3, c=1880 J/kg°C, k=0.11 W/m°C.

Equating energy gains and losses per unit time (equations (11.20)
and (11.21)), we have for a horizontal duct between 2 disks (path 3i-1 in
Fig. 11.3)

cρAo,iv3i-1∆T3i-1=h3i-1Ac,o[(Tc,i-Tb,3i-1)+(Tc,i-1-Tb,3i-1)] (11.24)

where losses occur through 2 conductor surfaces and the bulk duct oil
temperature, Tb,3i-1, is approximately given by

Tb,3i–1=T2i–1+∆T3i–1/2 (11.25)

with T2i-1 the nodal oil temperature at the duct’s entrance. For horizontal
ducts at the beginning and end of a section, only one conductor surface
contributes to the right side of (11.24). For the vertical ducts, we have

(11.26)

for the left and right ducts 3i+1 and 3i respectively. We obtain 3n+2
equations in this manner. However, along the entrance and exit ducts
(ducts 1 and 3n+3) we have ∆T=0 since no heat is going into the oil
here. Hence this equation and unknown can be eliminated.

We obtain further equations from energy balance at the nodes. Thus
the thermal energy which the oil carries into a node must equal that
leaving. The thermal energy per unit time carried by a mass of oil
moving with velocity v normal to a surface of area A is given by
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ρcAv(T-Tref) (11.27)

assuming c remains constant from some reference temperature Tref up to
the temperature of interest T. Balancing these energy flows at node 2i-1
in Fig. 11.3, we obtain

Canceling ρc and using (11.8) we get

T2i-3+∆T3i-2=T2i-1 (11.28)

Similarly at node 2i we obtain,

Ao,iV3i-1(T2i-1+∆T3i-1)+A2v3i-3(T2i-2+∆T3i-3)=A2 v3iT2i (11.29)

These equations are slightly modified for a few nodes at the beginning
and end of a section, as was done for the mass conservation equations.

The temperature at node 0 or 1 will be taken as an input. It is the
bottom tank oil temperature and will be obtained from an overall
balance of heat generation and loss. The calculated temperature at the
topmost node of the section, 2n+2, will be taken as input to the next
section so that the calculation can proceed section by section up the coil
as was the case for the pressure-velocity equations. The temperature
dependence of the heat transfer coefficients makes these equations non-
linear. In addition, this coefficient depends on the oil velocity which
requires iteration between these equations and the pressure-velocity
equations. Another set of unknowns which appear in these equations are
the disk temperatures Tc. These have not been dealt with yet. They are
probably best solved for separately.

11.2.3 Disk Temperatures

The disk temperatures can be found by equating the I2R losses to the
heat passing through the disk surface in the steady state. Thus, for the
generic disk shown in Fig. 11.3, we have, using previously defined
parameters,
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(11.30)

Solving for Tc,i, we find

(11.31)

We can use (11.25) to express the Tb in terms of previously calculated
quantities and (11.18) for the Ri. Thus the disk temperatures can be
obtained directly once the other unknowns are solved for. The equations
must, however, all be iterated together until convergence to the steady-
state is achieved. This coil steady-state depends on the average oil
temperature of the tank oil outside the coil and the bottom tank oil
which enters the coil These temperatures are obtained from an overall
energy balance involving heat generation from all the coils and heat
lost through the radiators and tank surfaces. This necessitates an overall
iteration strategy involving all the coils, the radiators, and the tank.
Before discussing this, we need to model coils having vertical cooling
ducts with non-directed flow and the radiator and tank cooling.

11.3 THERMAL MODEL FOR COILS WITHOUT DIRECTED OIL
FLOW

Our treatment of non-directed oil flow coils is fairly simplistic. These
are used mainly as tap coils in our designs and thus carry a small
fraction of the total power. As shown in Fig. 11.4, there are inner and
outer vertical oil flow channels with cross sectional areas A1, A2 and
hydraulic diameters D1, D2. The oil velocities in the two channels can
differ. They are labeled v1 and v2 in the figure. The oil temperature is
assumed to vary linearly from To at the coil bottom to To+∆T1 and
To+∆T2 at the top of the inner and outer channel respectively. The
conductor temperature is also assumed to vary linearly with an average
value of Tc.
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The thermal pressure drops in the two channels are given by (11.16)
which becomes, in terms of the variables defined above

(11.32)

These pressure drops need only overcome the fluid friction in the
two channels which, for laminar flow, is given by (11.5). In terms of
the present parameters, this becomes

(11.33)

Equating (11.32) and (11.33), we obtain

Figure 11.4 Thermal model of a non-directed oil flow coil
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(11.34)

The overall energy balance equation, analogous to (11.17) is

ρcv1A1∆T1+ρcv2A2∆T2 =I2R (11.35)

where R is the total resistance of the coil and is a function of Tc by a
formula analogous to (11.18). Further thermal equations come from the
energy balance between the surface heat loss by the coil to the separate
oil flow paths. Thus, we have approximately

(11.36)

where h1, h2 are the surface heat transfer coefficients as given by (11.22)
and Ac,1, Ac,2 are the conductor surface areas across which heat flows
into the two oil channels. We take these areas to be half the total surface
area of the conductor. This assumes the oil meanders into the horizontal
spaces between the conductors on its way up the coil. We use (11.23) for
hconv with a smaller effective value for L than the coil height.

Equations (11.34), (11.35), and (11.36) are 5 equations in the 5
unknowns v1, v2, ∆T1, ∆T2, Tc. The quantities To and Tave,out will be
determined from an overall energy balance for the transformer and are
considered as known here. These equations are non-linear because the
∆’s and h’s depend on temperature and velocity and also because
products of unknowns such as v∆T occur. We use a Newton-Raphson
iteration scheme to solve these equations. If desired, the pressure drops
can be obtained from (11.33).
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11.4 RADIATOR THERMAL MODEL

Our radiators are fairly typical in that they consist of a series of vertical
plates containing narrow oil channels. The plates are uniformly spaced
and attached to inlet and outlet pipes at the top and bottom. These pipes
are attached to the transformer tank and must be below the top oil level
for non-pumped flow. Fans may be present. They blow air horizontally
through one or more radiators stacked side by side. The oil flow paths
for a radiator are similar to those of a disk winding section turned on its
side as shown in Fig. 11.5. In fact, the same node and path numbering
scheme is used. In some of the paths, however, the positive flow direction
is reversed. The analysis is very similar the that given previously for
disk coils with directed oil flow and will only be sketched here.

The pressure differences along a path are balanced by the factional
resistance in steady state so that, for laminar flow, equation (11.5) holds
along each path, where the velocity and pressure unknowns will be
labeled by the appropriate path and node numbers. For n plates along a
radiator, there are 2n nodes and 3n-1 oil paths as shown in Fig. 11.5.
Thus we need 2n more equations. These are given as before by mass
continuity at the nodes, similar to equations (11.7)–(11.13). Some
differences will occur because the positive flow direction is changed for
some of the paths. Also, similar to what was done for the coils, we

Figure 11.5 Node and path numbering scheme for a radiator containing n plates
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determine the overall pressure difference across the radiator from
buoyancy considerations so that an equation like (11.16) holds.
However, Tave,out will differ from that used for the coils since the tank oil
adjacent to the radiators will be hotter than that adjacent to the coils
because the average radiator vertical position is above that of the coils.
An overall energy balance is needed to obtain the input oil velocity so
that an equation similar to (11.17) holds with the right hand side
replaced by the total heat lost by the radiators,

In the radiator cooling process, the oil temperature drops as it passes
downward through a radiator plate, giving up its heat to the air through
the radiator surface. Fig. 11.6a shows a simplified drawing of a plate
with some of the parameters labeled.

We consider a thin horizontal strip of radiator surface of area 2w dx
=2w � (dx/�)=2As(dx/�), where As is the area of one side of the plate and
the factor of 2 accounts for both sides. � is the plate height and w its
width. The heat lost through this surface is 2hAs(T-Tair)(dx/�) , where h
is the heat transfer coefficient, T is the oil temperature at position x, and
Tair is the ambient air temperature. The heat lost by the oil in flowing
past the distance dx is -ρcvARdT, where v is the oil velocity and AR the

Figure 11.6 Parameters used in radiator cooling calculation
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cross-sectional area through which the oil flows through the plate.
Equating these expressions and rearranging, we get

(11.37)

Assuming that h is constant here (it will be evaluated at the average
temperature), we can integrate to obtain

(11.38)

where ∆T is the temperature drop across the plate and Ttop the top oil
temperature.

We get an equation like this for each plate so that for plate i, v should
be labeled

v3i-1, Ttop as T2i-1, h as hi, and ∆T as ∆Ti. This gives n equations. The
new unknowns are the n ∆T’s and 2n nodal temperatures. However, the
top nodal temperatures are all equal to the oil input temperature To

since we are neglecting any cooling along the input and output pipes. At
the bottom nodes, using a treatment similar to that used to get (11.29),
we obtain for node 2i

ARv3i-1(To-∆Ti)+A2v3iT2i+2=A2v3i-3T2i (11.39)

A slight modification of this is needed for node 2n. Thus we obtain
sufficient equations to solve for all the unknowns. Iteration is required
between the pressure-velocity equations and the T-∆T equations since
they are interdependent. Iteration is also required because of the non-
linearities.

The expression for the surface heat transfer coefficient, h, depends on
whether or not fans are used. For natural convection (no fans), we use
an expression which applies to a row of vertical plates separated by a
distance s [Roh85]

(11.40)
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Ra is the Rayleigh number, given by the product of the Grashof and
Prandtl numbers

(11.41)

where the compressibility β, specific heat c, density ρ, thermal
conductivity k, and viscosity  all apply to air at the temperature (Ts+
Tair)/2 where Ts is the average surface temperature of the plate. Also
∆T=Ts”Tair. The quantities c, ρ, k, and  for air vary with temperature
[Kre80] and this must be taken into account in the above formulas since
Ts can differ from plate to plate. However, we find in practice that a
similar expression given later for tank cooling, (11.44) with  replacing
L, works better for our radiators so it is used.

When fans are blowing, we use the heat transfer coefficient for
turbulent flow of a fluid through a long narrow channel of width s

(11.42)

where the hydraulic diameter D=2s. The Reynolds number is given by
(11.2) with ρ and µ for air, D=2s, and v an average velocity determined
by the characteristics of the fans and the number of radiators stacked
together. The Prandtl number for air is nearly constant throughout the
temperature range of interest and is Pr=0.71.

A simple way of parametrizing the radiator air velocity with fans
present which works well in practice is

(11.43)

where n is the number of stacked radiators cooled by a given fan bank,
vn is the air velocity flowing past the radiator surfaces, p is an exponent
to be determined by test results, and v1 is the fan velocity produced
when only one radiator is present. We find in our designs that p=0.58
works well. In addition v1 was taken to be the nominal fan velocity as
specified by the manufacturer. (This can be determined from the flow
capacity and the fan’s area.) We assumed that the radiator surface cooled
by fans was proportional to the fraction of the fan’s area covering the
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radiator side (Fig. 11.6b). The remaining surface was assumed cooled
by convective cooling.

11.5 TANK COOLING

Cooling from the tank occurs by means of natural convection and
radiation. Of course the radiators also cool to some extent by radiation,
however this is small compared with convective cooling. This is because
the full radiator surface does not participate in radiative cooling. Because
of the nearness of the plates to each other, much of a plate’s radiant
energy is re-absorbed by a neighboring plate. The effective cooling area
for radiation is really an outer surface envelope and as such is best
lumped with the tank cooling. Thus the effective tank area for radiative
cooling is an outer envelope, including the radiators. (A string pulled
tautly around the tank plus radiators would lie on the cooling surface.)
However, for convective cooling, the normal tank surface area is involved.

For natural convection in air from the tank walls of height L, we use
for the heat transfer coefficient [Roh85]

(11.44)

where Ra is the Rayleigh number which, in this context is given by

(11.45)

where the temperature dependencies are evaluated at (Ts+Tair)/2 and
∆T=Ts-Tair as before. The Rayleigh number in this formula should be
restricted to the range 1<RaL<1012. This is satisfied for the temperatures
and tank dimensions of interest. Ts is the average tank wall temperature
and Tair the ambient air temperature. Thus the heat lost from the tank
walls per unit time due to convection, Wconv,tank, is given by
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Wconv,tank=hconv,tankAconv,tank(Ts-Tair) (11.46)

where Aconv,tank is the area of the tank’s lateral walls.
The top surface contributes to the heat loss according to a formula

similar to (11.46) but with a heat transfer coefficient given by [Kre80]

(11.47)

and with the tank top area in place of the side area. In (11.47), B is the
tank width which must also be used in the Rayleigh number (11.45)
instead of L. In this formula the Rayleigh number should be restricted
to the range 8×106<RaB<1011 which is also satisfied for typical tank
widths in power transformers. On the bottom, we assume the ground
acts as an insulator.

Radiant heat loss per unit time from the tank, Wrad,tank, is given by
the Stephan-Boltzmann law

(11.48)

where σ=5.67×10-8 W/m2°K4 is the Stephan-Boltzmann constant, E is the
surface emissivity (EH≈0.95 for gray paint), Arad,tank is the effective tank
area for radiation, TK,s is the average tank surface temperature in °K,
and TK,air is the ambient air temperature in °K. (11.48) can be written to
resemble (11.46) with a convection coefficient given by

(11.49)

This is temperature dependent but so is hconv,tank.
The total power loss by the tank is given by the sum of (11.46),

together with the corresponding expression for the top heat loss, and
(11.48). This is then added to the radiator loss to get the total power loss
from the transformer. The radiator loss is the sum from all the
radiators. Although we modeled only one radiator, assuming they are
all identical, the total radiator loss is just the number of radiators times
the loss from one. Otherwise we must take into account differences
among the radiators. In equilibrium, the total power loss must match
the total power dissipation of the coils+core+the stray losses in the tank
walls, brackets, leads, etc.
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11.6 OIL MIXING IN THE TANK

Perhaps the most complex part of the oil flow in transformers occurs in
the tank. The lack of constraining channels or baffles means that the oil
is free to take irregular paths such as along localized circulations or
eddies. Nevertheless, there is undoubtedly some overall order in the
temperature distribution and flow pattern. As with any attempt to model
a complicated system, we make some idealized assumptions here in an
effort to describe the average behavior of the tank oil.

As shown in Fig. 11.7, we assume that the cold oil at the bottom of
the tank has a uniform temperature, Tbot, between the bottom radiator
discharge pipe to the tank bottom and that the top oil is at a uniform
temperature, Ttop, from the top of the coils to the top oil level. We
further assume that the temperature variation between Tbot and Ttop is
linear. This allows us to calculate the average oil temperature along a
column of oil adjacent to and of equal height as the coils and likewise
for the radiators, determining Tave,out,coils and Tave,out,rads. These two
temperatures will differ because the average radiator vertical position
is above that of the coils. These average temperatures are used in
determining the thermal pressure drop across the coils and radiators as
discussed previously.

Figure 11.7 Assumed oil temperature distribution inside tank. The oil flows, Q, as
well as the flow weighted temperatures are also indicated.
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In Fig. 11.7, we have labeled the volumetric oil flows Q with
subscripts c for coils, r for radiators, s for stray loss oil flows, and n for
net. Thus

Qn=Qr-Qc-Qs (11.50)

Qs accounts for the oil flow necessary to cool the core, brackets, tank
walls, etc. Since there is no constraint, mechanical or otherwise, to
force the radiator and coil+stray loss flows to be identical, Qn can differ
from zero. The flow Qc refers to the sum of the flows from all the coils
and Qr the sum from all the radiators.

We have also indicated temperatures associated with some of the
flows. The oil flowing into the bottom of the coils is at temperature Tbot

and the oil flowing into the top of the radiators is at temperature Ttop.
The temperature of the oil flowing out of the top of the coils, Tc,top, is a
flow weighted temperature of the oil from all of the coils. Thus

(11.51)

where i labels the individual coil flows and top temperatures of the oil
emerging from the coils. Since we are assuming that all radiators are
identical, Tr,bot is the bottom temperature of the oil exiting a radiator. If
the radiators were not all alike, we would use a flow weighted average
for this temperature also,

We assume, for simplicity, that the volumetric flow Qs, associated
with the stray power loss Ws, results in a temperature change of ∆T=
Ttop-Tbot for the oil participating in this flow. Thus Qs is given by

(11.52)

This is inherently an upward flow and, like the coil flow, is fed by the
radiators. We do not attribute any downward oil flow to the tank cooling,
but assume that this merely affects the average oil temperature in the
tank.

We assume that any net flow, Qn, if positive, results in the transport
of cold radiator oil at temperature Tr,bot to the top of the tank and,
if negative, results in the transport of hot coil oil at temperature
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Tc,top to the bottom of the tank. These assumptions imply that for Qn>
0,

(11.53)

while for Qn<0,

(11.54)

Another way of handling the net flow Qn is to assume that it raises the
level of the bottom oil layer at temperature Tbot if positive and that it
allows the top oil layer at temperature Ttop to expand downward if
negative. This will continue until Qn=0 at equilibrium.

After each calculation of the coil and radiator flows and
temperatures, the quantities Ttop, Tbot, Tave,out,coils, Tave,out,rads, and Qs can
be determined. Also the losses in the coils and from the radiators can be
obtained. From these, updated pressure drops across the coils and
radiators can be calculated as well as updated values of the oil
velocities flowing into the coils and radiators. The iterations continue
until the temperatures reach their steady state values and the losses
generated equal the losses dissipated to the atmosphere to within some
acceptable tolerance. This requires several levels of iteration. The coil
and radiator iterations assume that the tank oil temperature distribution
is known and these in turn influence the tank oil temperatures. A
relaxation technique is required to keep the iteration process from
becoming unstable. This simply means that the starting parameter
values for the new iteration are some weighted average of the previous
and newly calculated values.
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11.7 TIME DEPENDENCE

The basic assumption we make in dealing with time dependent conditions
is that at each instant of time the oil flow is in equilibrium with the heat
(power) transferred by the conductors to the oil and with the power loss
from the radiators at that instant. The velocities and oil temperatures
will change with time but in such a way that equilibrium is maintained
at each time step. This is referred to as a quasi-static approximation.
The conductor heating, or cooling, on the other hand, is transient. We
assume, however, that the temperature of a disk, which is part of a
directed oil flow coil, is uniform throughout the disk so that only the
time dependence of the average disk temperature is treated. A similar
assumption is made for non-directed oil flow coils.

The heat generated in a conductor per unit time is I2R, where R is its
resistance (including eddy current effects) at the instantaneous
temperature Tc and I its current. Here conductor refers to a single disk
for a directed oil flow coil and to the entire coil for a non-directed oil
flow coil. The transient thermal equation for this conductor is

(11.55)

The left hand side is the heat stored in the conductor of volume V per
unit time. This equals the heat generated inside the conductor per unit
time minus the heat lost through its surface per unit time. The sum is
over all surfaces of the conductor. The other symbols have their usual
meaning with the subscript cond indicating that they refer to the
conductor properties. The usual temperature and velocity dependencies
occur in some of the parameters in (11.55). We solve these equations by
a Runge-Kutta technique. These equations replace the steady state disk
coil equations for the Tc (11.31) and, in slightly modified form, one of
the non-directed oil flow coil equations.

The previous equation accounts for heat (energy) storage in the
current carrying conductors as time progresses. Thermal energy is also
stored in the rest of the transformer. We assume, for simplicity, that the
remainder of the transformer is at a temperature given by the average
oil temperature. This includes the core, the tank, the radiators, the
brackets or braces, coils not earning current, the insulation, the main
tank oil, etc. Thus, the conservation of energy (power) requires that
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(11.56)

where ci is the specific heat and mi the mass of the parts of the transformer,
apart from the current carrying coils, which store heat. Equation (11.56)
states that the heat absorbed by the various parts of a transformer per
unit time, except the current carrying coils, at a particular instant equals
the power flowing out of the coils in the form of heated oil plus the stray
power losses minus the power dissipated by the radiators and tank to
the atmosphere. Here the stray losses include core losses, tank losses,
and any losses occurring outside the coils. Equation (11.56) is solved
using a trapezoidal time stepping method.

Thus transient cooling can be handled by making relatively minor
modifications to the steady state treatment, using the assumptions given
above. So far the computer program we have developed treats the case
where the MVA of the transformer is suddenly changed from one level
to another. A steady state calculation is performed at the first MVA
level. Then the transient calculation begins with currents and stray
losses appropriate to the second MVA level. Also the fans may be
switched on or off for the transient calculation. As expected, the
solution approaches the steady state values appropriate to the second
MVA level after a sufficiently long time. With a little extra
programming, one could input any desired transformer transient
loading schedule and calculate the transient behavior.

11.8 PUMPED FLOW

The type of pumped flow considered here is one in which the radiator
oil is pumped and some type of baffle arrangement is used to channel
some or all of the pumped oil through the coils. Thus the oil velocity
into the entrance radiator pipes due to the pumps, vo, is given by

(11.57)

where Qpump is the volume of oil per unit time which the pump can
handle under the given conditions, A1, is the area of the radiator entrance
pipe, and Nrad is the number of radiators. In addition to the pressure
drop across the radiators due to the pump, the thermal pressure drop is
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also present and this adds a contribution, although small, to the velocity
in (11.57).

We assume that a fraction f of the pumped oil through the radiators
bypasses the coils. This could be due to inefficient baffling or it could be
by design. We also assume that part of the oil flow from the radiators is
used to cool the stray losses. This flow, Qs, is given by

(11.58)

where Ws is the stray power loss, Wt, the total loss, and f the fraction of
the flow bypassing the coils. In addition to the thermal pressure drop
across the coils, a pressure drop due to the pump is present. At
equilibrium, this is determined by the requirement that

Qc=(1-f)Qpump-Qs (11.59)

Thus after each iteration, the flow from all the coils is determined and
the pressure drop across the coils is adjusted until (11.59) is satisfied at
steady-state.

For pumped flow, it is necessary to check for non-laminar flow
conditions and to adjust the heat transfer and friction coefficients
accordingly.

11.9 COMPARISON WITH TEST RESULTS

Computer codes, based on the analysis given in this report, were written
to perform steady state, transient, and pumped oil flow calculations.
Although we did not measure detailed temperature profiles along a coil,
the codes calculate temperatures of the all the coil disks and of the oil in
all the ducts as well as duct oil velocities. Figures 11.8, 11.9, 11.10
show these profiles for one such coil having directed oil flow washers.
The oil ducts referred to in the figures are the horizontal ducts and the
conductor temperature is the average disk temperature. There is thinning
in this coil, i.e, increased duct size at two locations, near disk numbers
35 and 105, and this can be seen in the profiles. The kinks in the profiles
are an indication of the location of the oil flow washers.

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



THERMAL MODEL456

Figure 11.8 Calculated temperatures of the disks along a disk coil with directed oil
flow washers.

Figure 11.9 Calculated average oil temperatures in the horizontal ducts along a disk
coil with directed oil flow washers. The temperature is assumed to vary linearly in
the ducts.
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As mentioned previously, some leeway was allowed for in the
friction factors for the coils and radiators by including an overall
multiplying factor. This accounts, in an average way, for non ideal
conditions in real devices and must be determined experimentally. By
comparing test data with calculations, we determined that the best
agreement is achieved with a multiplying factor of 1.0 for the coils and
2.0 for the radiators. Thus the coil friction is close to the theoretical
value whereas that for the radiators is twice as high.

Temperature data normally recorded in our standard heat runs are:
(1) mean oil temperature rise, (2) top oil temperature rise, (3)
temperature drop across the radiators, and (4) average temperature rise
of the windings. These are usually measured under both OA and FA
conditions. The rises are with respect to the ambient air temperature. A
statistical analysis of such data, taken on a number of transformers with
MVAs ranging from 12 to 320, was performed to determine how well
the calculations and test results agreed. This is shown in Table 11.1
where the mean and standard deviations refer to the differences between
the calculated and measured quantity. Thus a mean of 0 and a standard
deviation of 0 would indicate a perfect fit. Non zero results for these
statistical measures reflect both the limitations of the model and some
uncertainty in the measured quantities. Table 11.1 shows generally
good agreement between the calculated and measured results. Essentially
only one parameter was adjusted in order to improve the agreement,
namely the overall friction factor multiplier for the radiators.

Figure 11.10 Calculated velocities of the oil in the horizontal ducts along a disk coil
with directed oil flow washers.
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Figures 11.11 and 11.12 show representative output from the
transient program in graphical form. In this example, the transformer is
operating at steady state at time 0 at the first MVA value (93 MVA) and
suddenly the loading corresponding to the second MVA (117 MVA) is
applied. The time evolution of the oil temperature is shown in Fig.
11.11 while that of one of the coils is shown in Fig. 11.12. The program
calculates time constants and m and n values from this information.
Fig. 11.13 shows a direct comparison of the calculated and measured
hot spot temperature of a coil in which a fiber optics temperature probe
was imbedded. Although absolute temperatures are off by a few
degrees, the shapes of the curves are very similar, indicating that the
time constants are nearly the same.

Table 11.1 Comparison of Calculated and Measured Quantities

Figure 11.11 Time evolution of the bottom, average, and top tank oil temperatures
starting from a steady state loading of 93 MVA at time 0, when a sudden application
of a 117 MVA loading is applied.

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



459THERMAL MODEL

Figure 11.12 Time evolution of the average and maximum coil temperature starting
from a steady state loading of 93 MVA at time 0, when a sudden application of a
117 MVA loading is applied.

Figure 11.13 Comparison of calculated and measured temperature versus time of the
coil’s hot spot. The coil is operating at steady state at time 0, when a sudden
additional loading is applied. The hot spot is measured by means of a fiber optics
probe.
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11.10 DETERMINING M AND N EXPONENTS

In order to extimate the temperature rises which occur under overload
conditions, approximate empirical methods have been developed which
make use of the m and n exponents. Although a detailed thermal model
such as the one presented above should make these approximations
unnecessary, these exponents are widely used to obtain quick estimates
of the overload temperatures for transformers in service. Although they
are frequently measured in heat run tests, they can also be obtained
from either the steady-state or transient calculations of the type presented
above.

The n exponent is used to estimate the top oil temperature rise above
the ambient air temperature, ∆Tto, under overload conditions from a
knowledge of this quantity under rated conditions. For this estimation,
the rated transformer total losses must be known as well as the losses at
the overload condition. The latter losses can be estimated from a
knowledge of how the losses change with increased loading and will be
discussed below. The formula used to obtain the overload temperature
rise above ambient is

(11.60)

Thus if 2 refers to the overload condition and 1 to the rated condition,
we assume that the 1 subscripted quantities are known either by
measurement or calculation.

In order to estimate the losses under overload conditions, we must
separate the losses into I2R resistive losses in the coils and stray losses,
which include the core, tank, clamp, and additional eddy current losses
which occur in the coils due to the stray flux. The I2R loss can be
calculated fairly accurately. By subtracting it from the total measured
loss, a good estimate can be obtained for the stray loss. Alternatively,
core loss, eddy current loss, tank loss, and clamp loss can be obtained
from design formulas. All of these losses depend on on the square of the
load current in either winding, (The stray losses depend on the square of
the stray flux which is proportional to the square of the current,
assuming the materials are operating in their linear range.) Since the
load current is proportional to the MVA of the unit, these losses are
proportional to the MVA squared. The I2R losses are proportional to the
resistivity of the winding conductor which is temperature dependent
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while the stray losses are inversely proportional the the resistivity of the
material in which they occur. Thus the total loss at the higher loading
can be obtained from the rated loss by

(11.61)

The resistivity ratios are temperature dependent so that some iteration
may be required with (11.60) to arrive at a self consistent solution. The
stray resistivity ratio is meant to be a weighted average over the materials
involved in the stray loss. However since the temperature dependence
of the coil, tank, and clamp materials is nearly the same, this ratio will
be nearly the same as that of the coils.

We should note that the n coefficient is generally measured or
calculated under conditions where the cooling is the same for the rated
and overload conditions. Thus if fans are turned on for the rated
loading, they are also assumed to be on for the overload condition.
Similarly if pumps are turned on at the 1 rating, they must also be on
for the 2 rating for the above formulas to work. Although n can be
determined from measurements or calculations performed at two
ratings, it is often desireable to determine it from 3 different loadings
and do a best fit to (11.60) based on these. The 3 ratings generally
chosen are usually 70%, 100%, and 125%. The 70%, 100% or 100%,
125% combinations are chosen when only 2 ratings are used.
Measurements and calculations show that n based on the 70%, 100%
combination can be fairly different from n based on the 100%, 125%
combination. This suggests that n is not strictly a constant for a given
transformer and it should be determined for loadings in the range where
it is expected to be used. A typical value of n for large power
transformers is 0.9.

The m exponent is defined for each winding and relates the winding
gradient to the winding current. The winding gradient at a particular
steady state loading is the temperature difference between the mean
winding temperature and the mean oil temperature in the tank, i.e.

Gradient=Mean winding temperature-Mean Tank oil temperature
(11.62)
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Letting 1 and 2 designate rated and overload conditions, the m coefficient
for a particular winding relates the gradients to the winding currents by

(11.63)

Since the currents are proportional the the MVA’s, the MVA ratio could
be substituted in the above formula for the current ratio. The m exponents
can be determined from 2 or 3 MVA loadings and, like the n exponent,
depend to some extent on the MVA range covered. They also can vary
considerably for different windings. A typical value for large power
transformers is about 0.8.

The winding gradient is often used to estimate the winding’s
maximum temperature. A common procedure is to add some multiple
of the gradient to the top oil temperature to arrive at the maximum
temperature for that winding, for example

Max winding temp=Top oil temp+1.1×Winding Gradient (11.64)

The factor of 1.1 can differ among manufacturers or transformer types
and should be determined experimentally. Formulas such as (11.64)
become unnecessary when detailed temperature calculations are available
or maximum temperatures are measured directly by fiber optics or
possibly other types of temperature probes, inserted into the winding at
its most probable location. Detailed temperature calculations such as
described above can provide some guidance as to where these probes
should be inserted.

11.11 LOSS OF LIFE CALCULATION

Although transformers can fail for a number of reasons such as from the
application of excessive electrical or mechanical stress, even a highly
protected unit will eventually fail due to aging of its insulation. While
the presence of moisture and oxygen affect the rate of insulation aging,
these are usually limited to acceptable levels in modern transformers so
that the main factor affecting insulation aging is temperature. The
insulation’s maximum temperature, called the hot spot temperature, is
thus the critical temperature governing aging. This is usually the highest
of the maximum temperatures of the different windings, although it
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could also be located on the leads which connect the windings to the
bushings or to each other.

Numerous experimental studies have shown that the rate of
insulation aging as measured by various parameters such as tensile
strength or degree of polymerization (DP) follows an Arrhenius
relationship,

K=Ae-B/T (11.65)

Here K is a reaction rate constant (fractional change in quantity per
unit time), A and B are parameters, and T is the absolute temperature.
For standard cellulose pased paper insulation, B=15000°K. This value
for B is an average from different studies using different properties to
determine aging [McN91]. If X is the property used to measure aging,
e.g. tensile strength of DP, then we have

X(t)=X(t=0)e-Kt (11.66)

The time required for the property X to drop to some fraction f of its
initial value if held at a constant temperature T, tT, is thus determined
by

(11.67)

Taking logarithms, we obtain

(11.68)

where (11.65) has been used.
There are several standard or normal insulation lifetimes which

have found some acceptance. For these, the insulation hot spot is
assumed to age at a constant temperature of 110°C. The insulation is
also assumed to be well dried and oxygen free. Under these conditions,
the time required for the insulation to retain 50% of its initial tensile
strength is 7.42 years (65000 hours), to retain 25% of its initial tensile
strength is 15.41 years (135000 hours), and to retain a DP level of 200
is 17.12 years (150000 hours). Any of these criteria could be taken as a
measure of a normal lifetime, depending on the experience or the
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degree of conservatism of the user However, if the transformer is
operated at a lower temperature continuously, the actual lifetime can be
considerably longer than this. For example, if the hot spot is kept at
95°C continuously, the transformer insulation will take 36.6 years to be
left with 50% of its initial tensile strength. Conversely, if operated at
higher temperatures, the actual lifetime will be shortened.

Depending on the loading, the hot spot temperature will vary over
the course of a single day so that this must be taken into account in
determining the lifetime. A revealing way of doing this is to compare
the time required to produce a fractional loss of some material property
such as tensile strength at a given temperature with the time required to
produce the same loss of the property at the reference temperature of
110 °C. Thus the time required to produce the fractional loss f in the
material property at temperature T is given by (11.68) and the time to
produce the same fractional loss at the reference temperature,
designated To , is given by the same formula with To replacing T. This
latter time will be designated tTo. Hence we have for the given fractional
loss,

(11.69)

We have defined the aging acceleration factor, AAF , in (11.69), Thus
it requires AAF(T) times as much time at the reference temperature
than at temperature T to produce the same fractional loss of life as
determined by property X. Since the T’s are in °K, we have

(11.70)

AAF is > or <1 depending on whether T(°C) is > or <110°C. This is
plotted in Fig. 11.14.
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A method of using the daily variations of hot spot temperature to
compute aging is to subdivide the day into (not necessarily equal) time
intervals over which the hot spot temperature is reasonably constant.
Let AAFi be the aging acceleration factor for time interval ∆ti measured
in hours. Then for a full day

(11.71)

where N is the total number of time intervals for that day.
The actual loss of life will depend on the definition of lifetime. If the

50% retained tensile strength criterion is uned, then in 1 day at 110°C
insulation hot spot temperature, the transformer loses the fraction 24/
65000=3.69×10-4 of its life. The fraction lost with variable hot spot
temperature is therefore AAFday ave×3.69×10-4. For the 25% retained
tensile strength criterion, the loss of life for 1 day is AAFday ave×1.78×
10–4.

A cautionary note must be sounded before too literal a use is made of
this procedure. Gas bubbles can start to form in the oil next to the
insulation when the insulation temperature reaches about 140°C. These

Figure 11.14 Aging Acceleration Factor (AAF) relative to 110°C vs temperature.
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bubbles can lead to dielectric breakdown which could end the
transformer’s life, rendering the calculations inapplicable.

There is bound to be some uncertainty involved in determining the
hot spot temperature unless fiber optics or other probes are used and
properly positioned. Short of this, it should be estimated as best as
possible, based on top oil temperature, winding gradients, etc. Also a
winding temperature indicator, if properly calibrated, can be used.

Since the AAF is independent of the choice made for the normal
transformer lifetime, the fractional loss of life can be easily recalculated
if a different choice of normal lifetime is made based on additional
experience or knowledge.

11.12 CABLE AND LEAD TEMPERATURE CALCULATION

Although the conductors in the coils are usually cooled sufficiently to
meet the required hot spot limits, it is also necessary to insure that the
lead and cable temperatures remain below these limits as well. Even
though these are generally not in critical regions of electric stress to
cause a breakdown if gassing occurs, the gassing itself can trigger alarms
which could put the transformer out of service. It is thus necessary for
the design engineer to insure that the leads and cables are sized to meet
the temperature requirements.

In general, no more insulation (paper) should be used on the leads
and cables than is necessary for voltage standoff. Given this minimum
paper thickness, the current carrying area of the lead or cable should
then be chosen so that the temperature limits are met when rated current
is flowing. A method for calculating the lead or cable temperature rise
is given here. It allows for the possibility that the lead is brazed to a
cable and that some heat conduction can occur to the attached cable,
acting as a heat sink. It also considers the case of a lead inside of duct or
tube or a lead in the bulk transformer oil.

We treat a cylindrical geometry. In the event the lead is not
cylindrical, an effective diameter should be calculated so that it may be
approximated by a cylinder. The cylinder is assumed to be long so that
end effects may be neglected. The geometric parameters are shown in
Fig. 11.15.
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The convective heat transfer coefficient of the oil is denoted by h.
The thermal conductivities of the conductor and paper are denoted kc

and kp respectively and the power generated per unit volume inside the
conductor is denoted by qv. This is given by the Joule loss density, ρ J2,
where ρ is the resistivity and J the rms current density. In addition, to
account for extra losses due to stray flux, we should multiply this by
(1+f) where f is the stray flux loss contribution expressed as a fraction of
the Joule losses.

There are two cases to consider for the convective heat transfer
coefficient of the oil. They are the case of a horizontal cylinder in free
tank oil and the case of a horizontal cylinder inside of a channel. (The
heat transfer coefficient for a vertical cylinder is higher so the resulting
temperature rises will be lower than for a horizontal cylinder.) These
are given by [Kre80]:

Natural convection from a horizontal cylinder of diameter D in bulk
fluid:

(11.72)

Figure 11.15 Cylindrical geometry of a paper wrapped conductor surrounded by oil
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Mixed natural convection and laminar flow in horizontal ducts:

(11.73)

where the symbols have the following meaning:

Nusselt number

Reynold’s number

Prandtl number

Grashof number

Graetz number

v=fluid velocity
D=hydraulic diameter for flow inside ducts=4×flow area/wetted
perimeter
=outer cylinder diameter for external flow
L=duct or cylinder length
g=acceleration of gravity=9.8 m/sec2

h=convective heat transfer coefficient
k=thermal conductivity of transformer oil=0.11 W/m°C
c=specific heat of transformer oil=1880 J/kg°C
µ=oil viscosity=6900.0/(T+50)3 Ns/m2, T=temp in °C
ρm=oil mass density=867 exp(-0.00068 (T-40)) kg/m3, T= temp in °C
β=volume expansion coefficient of oil=0.00068/°C
Subscripts s and b label the oil at the outside surface of the paper and
the bulk oil
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In steady state, the thermal equations governing this situation are

Inside conductor,

(11.74)

Inside paper,

(11.75)

The boundary conditions are:

At r=0,

At r=r1, Tc=Tp and

At r=r2,

where c labels the temperature inside the conductor and p inside the
paper. The solution is given by

(11.76)

(11.77)

The highest temperature occurs at r=r1 and is given, in terms of
temperature rise above the bulk oil, by

(11.78)

The quantity qv r1/2 is a surface heat flux, qs, since
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(11.79)

where L is the cylinder length which cancels. Thus (11.78) has the form

qs=heff (Tc(r1)-Tb) (11.80)

where

(11.81)

is an effective heat transfer coefficient which takes into account
conduction through the paper. In the case of a thin paper layer of thickness
τ where  and r2=r1+τ, (11.81) reduces to

(11.82)

This last expression also applies to a planar geometry. Note that the
surface heat flux in (11.81) is based on the surface area of a cylinder of
radius r1, i.e. that of the metallic part of the cable. We also need the
temperature rise of the surface oil in order to compute the Grashof number.
This is given by

(11.83)

so that, comparing (11.78) and (11.83), we can write

(11.84)

so that the temperature rise of the surface paper can be found once the
maximum conductor temperature rise is calculated.
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where

Tc=conductor surface temperature
Tb=bulk fluid temperature
Tcable=brazed on cable temperature
p=perimeter of the conductor’s cooling surface
Aside=pL=conductor’s side area through which heat flows to the cooling
fluid
Acond=conductor’s current carrying area
hcond=kcu/L=heat transfer coefficient for heat to flow from the conductor
to the brazed on cable. For copper kcu=400 W/m°C.

In order to use the above expression to obtain the lead temperature rise,
the temperature rise of the cable must be calculated first. Since the cable
is normally very long, its temperature rise can be obtained by neglecting
its brazed connection.

In case another cable is brazed to the conductor which may act as a
heat sink, we must consider heat conduction along the conductor to the
other cable. The situation is depicted in Fig. 11.16.

Figure 11.16 Geometry and thermal parameters for a cable or lead with another
brazed to it

Letting W=the total power dissipated inside the conductor of length L,
we have

(11.85)
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Although we have indicated the numerical value of most of the
material parameters in the preceding section, the missing ones will be
given here. They are:

Thermal conductivity of paper kp=0.16 W/m°C
Resistivity of copper ρ=1.72×10–8(1+0.004 (T-20)), T in °C v=oil velocity
in duct=0.1 in/sec=0.00254 m/sec (This is a conservative value. If a
better value can by obtained, e.g. from an oil flow calculated in the
cooling program, then it should be used.)

In addition, it should be noted that many of these material parameters
are temperature dependent so that it is necessary specify a bulk oil
temperature and to iterate the calculations. The appropriate temperature
to use for evaluating the oil parameters is (Ts+Tb)/2, i.e. the average of
the surface and bulk oil temperatures. For the conductor, its temperature
is nearly uniform so its maximum temperature can be used. The Grashof
number depends on the temperature difference Ts-Tb so it must be
recalculated during the iteration process along with the other material
parameters.

These formulas have been applied to some standard cable sizes to
obtain the maximum continuous currents permissible for a hot spot
temperature rise of about 25°C. We assumed an oil temperature rise of
55°C above an ambient air temperature of 30°C resulting in a bulk oil
temperature of 85°C. Thus a rise of 25°C would result in a hot spot
temperature of 110°C. The results are shown in Table 11.2. Note that
the conductor area does not fill 100% of the geometrical area of the
cable since the conductor is stranded.
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11.13 TANK WALL TEMPERATURE CALCULATION

Heating in the tank wall above the adjacent oil temperature is due to
eddy currents induced by the stray leakage flux from the main coils and
flux from any nearby leads or busses. Generally a chief cause for concern
is the presence of high current carrying leads near the tank wall. We
have indicated how these may be calculated in Chapter 10. Here we are
going to assume that these losses are known and that they are uniformly
distributed throughout the tank wall. We will also assume that the tank
wall surface dimensions involved are large compared with the tank
wall thickness so that only 1 spatial dimension through the wall thickness
is important. Fig. 11.17 shows the geometric and other relevent
parameters.

Table 11.2 Maximum Continuous rms Currents for Standard Cable Sizes producing
a Temperature Rise Above the Surrounding Oil of 25°C
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Here L is the wall thickness, qv the losses generated in the tank wall per
unit volume, k the thermal conductivity of the tank wall material, h1 the
heat transfer coefficient from the tank wall to the oil, h2 the heat transfer
coefficient from the tank to the air, and T(x) the temperature distribution
in the tank wall.

The steady state thermal equation for this situation is given by

(11.86)

with the boundary conditions

(11.87)

The different signs in the two boundary conditions are necessary to
properly account for the direction of heat flow. The solution can be
expressed as

Figure 11.17 Tank wall geometry and thermal parameters

(11.88)
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This expression can be simplified by noticing that thermal transfer within
the tank wall is much larger that that at the surface. This means that k
is much larger than h1L or h2L so that, ignoring terms ≤1 relative to k/
h1L or k/h2L, (11.88) becomes

(11.89)

This is independent of x so that the tank wall temperature is essentially
uniform throughout and we have written Ttank for it. The last term on
the right is the weighted average of the oil and air temperatures, weighted
by their respective heat transfer coefficients. The first term on the right
accounts for the heat generated in the tank wall. We can use the heat
transfer coefficients given in Section 11.5 on Tank Cooling. Another
expression which could be used for heat transfer due to natural convection
from one side of a vertical plate of height H immersed in a fluid (air or
oil) is given by [Kre80]

(11.90)

where the Grashof and Prandtl numbers have been defined in Section
11.12. This expression holds for 109<GrHPr<1013. To this, one would
have to add the radiation term to the air heat transfer coefficient.

As a numeric example, let h1=hoil=70 W/m2°C, h2=hair+hrad= 13 W/
m2°C, k=ksteel=40 W/m°C, L=9.525×10–3 m (0.375 in). From these we
obtain k/h1L=60 and k/h2L=323. Both of these are much larger than 1 so
that the approximate formula (11.89) may be used. Letting qv=2×105 W/
m3, Toil=85°C, Tair=30°C, we obtain Ttank= 99.3°C.

11.14 TIEPLATE TEMPERATURE CALCULATION

Tieplate losses were calculated in Chapter 10. These losses must be
obtained by some method, such as that described there, in order to
calculate the tieplate’s surface temperature. In order to make this
temperature calculation tractable analytically, we make some idealized
assumptions which appear to be reasonable. We assume the plate is
infinite in two dimensions and that the losses fall off exponentially from
the surface facing the coils in the other dimension. The exponential
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drop-off is determined by the skin depth and has the form e-x/τ where x is
the distance from the free surface and  is the skin depth. The surface
facing the coils is assumed to be cooled convectively by the oil with a
heat transfer coefficient h. The boundary condition on the other surface
facing the core will depend on the construction details which may differ
among manufacturers. We will assume that there is a cooling gap here
but that the heat transfer coefficient may be different from that at the
other surface. To allow for an insulated core facing surface, this heat
transfer coefficient may simply be set to zero. This geometry and the
cooling assumptions are identical to that assumed for the tank wall
temperature calculation. However here we are allowing for an
exponential drop off of the loss density which is more realistic in the
case of soft steel tieplates. Thus we are using the geometric and thermal
parameters of Fig. 11.17 except that air now refers to oil cooling on the
surface at a distance x=L, where L is the tieplate thickness. Tieplates
have a finite width and we are ignoring the enhanced loss density at the
corners which is evident in the finite element study for soft steel of
Chapter 10. However there is also extra cooling at the corner from the
side surface which could mitigate the effect of this extra loss density.
One could address this problem by means of a thermal finite element
program. However, the analytic solution presented below should apply
to temperatures away from the corner and these may possibly be higher
or comparable to the corner temperature.

This is a 1-dimensional steady-state heat transfer problem. The
differential equation to solve is the same as (11.86) in the previous
section. However, here we have , where qvo is the loss
density at the surface at x=0 and τ is the skin depth, rather than the
constant assumption for qv used for tank cooling. Thus the side facing
the coils is at x=0. The boundary conditions are the same as (11.87)
with the air subscript replaced by oil. The solution is

We have expressed the solution is this form so that the case of an insulated
back side (h2=0) could be easily obtained. From (11.91) we can obtain
the surface temperature rise at the x=0 surface,

(11.91)
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As a numerical example, let us consider the surface temperature rise
above the surrounding oil for soft iron and stainless steel tieplates using
the following parameters:

h1=70 W/m2°C
h2=20 W/m2°C
L= 9.525×10–3 m(3/8 in)
k=40 W/m°C (soft iron)
k=15 W/m°C (stainless steel)
τ= 2.297×10–3 m (0.0904 in) (soft iron)
τ= 5.627×10–2 m (2.215 in) (stainless steel)

We would like to compare these two materials when the total losses in
them are the same. This means that the losses per unit surface area
should be the same since we are assuming the geometry is unlimited in
the plane of the surface. Letting qA be the loss per unit area, we can
obtain qvo in terms of this by means of

(11.93)

Using (11.92) and (11.93) and the numerical data given above, we obtain
the surface temperature rise above the ambient oil for the two types of
tieplates,

T(x=0)-Toil=0.0111 qA (soft iron)
T(x=0)-Toil=0.0111 qA (stainless steel)

with qA in W/m2 and temperatures in °C. Thus we see that for the same
total losses, soft or magnetic iron tieplates have the same surface
temperature rise as stainless steel tieplates. Even though the surface loss
density is higher in soft iron tieplates than in stainless steel tieplates for
the same total loss, the higher thermal conductivity of the soft iron
rapidly equalizes the temperature within the material so that extreme

(11.92)
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temperature differences cannot develop. If the back surface were insulated
(h2=0), all the losses would have to leave the front surface in the steady
state. In this case also the surface temperatures of the soft iron and
stainless steel tieplates would be identical for the same total loss. As h2

increases up to h1, the front surface temperatures gradually differ for the
two cases but not significantly.

11.15 CORE STEEL TEMPERATURE CALCULATION

Because core steel is made up of thin stacked insulated laminations, it
has an anisotropic thermal conductivity. The thermal conductivity in
the plane of the laminations is much higher than the thermal conductivity
perpendicular to this plane or in the stacking direction. The steady
state heat conduction equation for this situation is, in rectangular
coordinates,

(11.94)

where the thermal conductivities k can differ in the x and y directions
are are labelled accordingly. The loss per unit volume, qv, is assumed to
be a constant here. Again there are finite element programs which can
solve this equation for complex geometries such as a stepped core. We
will derive a simple but approximate analytical solution here for a
rectangular geometry as shown in Fig. 11.18.

Figure 11.18 Rectangular geometry for anisotropic thermal calculation
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This could apply to one step of a core, say the central step, with
cooling ducts on the long sides or to all or part of a core between two
cooling ducts by suitably calculating effective dimensions for an
approximating rectangle from the steps involved.

We look for a solution of (11.94) of the form

T=A+Bx+Cx2+Dy+Ey2 (11.95)

satisfying the boundary conditions at the center

(11.96)

This is required by symmetry. At the outer surfaces, we only
approximately satisfy the boundary conditions for convective cooling

(11.97)

This means that we are satisfying the convective boundary condition
exactly only at the surface points on the two axes. However, this is
where we will evaluate the surface temperature. The solution is

(11.98)

Note that a and b are 1/2 the rectangle dimensions. We can estimate the
thermal conductivity in the direction perpendicular to the lamination
plane (the y-direction here) from a knowledge of the coating thickness
or stacking factor and the thermal properties of the coating. For stacked
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silicon steel we use kx=30 W/m°C and ky=4 W/m°C. Letting h=70 W/
m2°C for convective oil cooling and assuming an effective stack or
rectangle size of 0.762 m (30 in)×0.254 m (10 in) and using qv=104 W/
m3 (1.3 W/kg, 0.6 W/1b), we find for the maximum internal temperature
rise above the surrounding oil T(0.0)-Toil=25.8°C. The surface temperature
rise in the x or long dimension is T(a,0)-Toil= 17.8°C and the surface
temperature rise at the surface at y=b in the short direction perperdicular
to the stack is T(0,b)-Toil=12.2°C. Note that the surface in the direction
of lower thermal conductivity is actually cooler than the surface towards
which heat is more easily conducted. This is because, the central
temperature being the same, there is a smaller thermal gradient in the
high conductivity direction relative to the lower one.
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12. LOAD TAP CHANGERS

Summary Load tap changers are a major component of many
transformers. They are used to change the voltage of the primary or
secondary side of a transformer to compensate for voltage variations in
the power system mainly caused by variable loading. We discuss
genetically the various types of load tap changers and some of the
important ways they are connected to the primary or secondary windings
as well as the advantages and disadvantages of these connection schemes.
We also address some of the maintanence issues which are of interest to
the user.

12.1 INTRODUCTION

The flicker of the house lights while having dinner is a sign of a load tap
changer (LTC) tap change. When most people get home from work,
they start using electricity for cooking and lighting. This increases the
electrical load on the distribution network, which causes the voltage to
sag below its nominal value. The latter signals the LTC to change taps
to adjust the voltage back to its nominal value with some tolerance.

There are many applications of transformers in modern electric
power systems: from generator step-up to system interconnection to
distribution to arc-furnace to HVDC converters to mention just a few.
The role of a transformer is to convert the electrical energy from one
voltage level to another. As power systems become larger and more
complex, power transformers play a major role in how efficient and
stable the system is. For each transformer installed in a network, there
is an ideal (optimal) voltage ratio for an optimal operation of the
system. Unfortunately, this optimal voltage ratio varies depending on
the operating conditions of the total network. Early in the history of
electric power systems, it became evident that for power systems to
operate satisfactorily, transformer voltage ratios needed to be
adjustable without interrupting the flow of energy. This is the role of a
load tap changer.
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12.2 GENERAL DESCRIPTION OF LTC

A load tap changer is a device that connects different taps of tapped
windings of transformers without interrupting the load. It must be capable
of switching from one tap position to another without at any time
interrupting the flow of the current to the load and without at any time
creating a short-circuit between any two taps of the transformer winding.
Tap changing transformers are used to control the voltage or the phase
angle or both in a regulated circuit.

A LTC is made of 4 elements:

1) A selector switch which allows the selection of the active tap
2) A change-over switch, referred as a reversing switch when it reverses

the polarity of the tapped winding, used to double the number of
positions available

3) A transition mechanism, including an arcing or diverter switch,
which effects the transition from one tap to the other

4) A driving mechanism which includes a motor and gear box and
controls to drive the system

There are 2 generic types of tap changers:

In-tank

The cover mounted, in-tank tap changer, known as the Jansen type, sits
in the main transformer oil together with the core-and-coil assembly. Its
selector and change-over switches are at the bottom of the tap changer
in the main oil. The arcing (diverter) switch is located in a separate
compartment at the top, usually within a sealed cylinder made of
fiberglass or other similar material. All arcing is confined to this
compartment. They exist in single phase or three phase neutral end Wye
(Y) connected versions. For three phase folly insulated applications,
three single phase tap changers must be used. This type of tap changer
is used for higher voltages or current levels.

Separate compartment

The side mounted, separate compartment types have their own box and
are assembled separately from the transformer. They are bolted to the
side of the tank and connected to the transformer tapped windings through
a connecting board. Their selector, change-over, and arcing switches
are located in an oil compartment completely isolated from the main
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transformer oil. Some of them have two compartments, one for the
arcing switch and one for the selector and change-over switches. Others
have everything in one compartment only. They are available in three-
phase assembly, either Wye connected for application at the neutral end
of a three-phase transformer, or fully insulated for applications at the
line end.

12.3 TYPES OF REGULATION

The main types of regulation are illustrated in Fig. 12.1 and are discussed
below.

Linear

In linear switching, tapped turns are added in series with the main
winding and their voltage adds to the voltage of the main winding. No
change-over switch is needed for this type. The tapped winding is totally
by-passed in the minimum voltage position. The rated position can be
any one of the tap positions.

Plus—Minus (Reversing)

In a reversing type of regulation, the whole tapped winding can be
connected in additive or reversed polarity with respect to the main
winding. The tapped turns can add or subtract their voltage with respect
to the main winding. The tapped winding is totally by-passed in the
neutral (mid-range) voltage position. The rated position is normally the
mid one. The total number of positions available is twice the number of
sections in the tapped winding plus one.

Figure 12.1 LTC main regulation types. S=Selector switch, C=Change-over switch,
R=Reversing switch

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



LOAD TAP CHANGERS484

Coarse—Fine

The coarse-fine regulation can be defined as a two-stage linear regulation
where the first or coarse stage contains a large number of turns which
can be totally by-passed by the change-over selector. These turns are
shown as a single loop in the top coil of the figure. Fine regulation is
achieved with the selector switch. Normally, the coarse section contains
as many turns as the tapped winding plus one section. In that way, the
total number of positions available is twice the number of sections in
the tapped winding plus one.

Bias winding

The bias winding type of regulation is similar to the coarse-fine except
that the number of turns in the bias winding is half the turns of one
section of the tapped winding. It is used to provide half steps between
the main tap steps. Thus the total number of positions available is twice
the number of sections in the tapped winding plus one. The bias winding
technique can be combined with the reversing scheme to provide twice
the number of positions (four times the number of sections in the tapped
winding plus one) at the expense of adding one more switch and
increasing the complexity of the switching and driving mechanism.

Although not indicated in the figure, the tap selector switch is often a
circular type of switch to allow a smooth transition between the tap
voltages when the change-over or reversing switch operates.

12.4 PRINCIPLE OF OPERATION

A load tap changer must be capable of switching from one tap position
to another without interrupting the flow of current to the load at any
time. It must therefore follow a “make before break” switching sequence.
On the other hand, it cannot at any time create a short-circuit between
any two taps of the transformer winding. This means that during this
make before break interval, there must be something to prevent the
shorting of the turns. Two ways are primarily used to accomplish this.

12.4.1 Resistive Switching

Fig. 12.2 shows an example of a six step switching sequence. This
particular type of tap changer has two selector switches and an arcing
switch with four contacts.
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1) Step 1 of the figure above shows the steady state of the TC just
before the switching operation. The load current is flowing through
the contact #1 and the selector #1. Let us call that position tap #2.

2) At step 2, the non-conducting selector has moved 2 steps down,
from position 1 to position 3. The current is still flowing in contact
#1 and the selector #1.

3) At step 3, the contact #1 opens and the current flows through
resistor #1 and selector #1.

4) At step 4, the contact #3 closes and the current splits between the
2 resistors and the 2 selectors. There is also a circulating current

Figure 12.2 Sequence of operations involved in tap changers using resistive switching.
The selector switches are the top most switches. The arcing switches are closed when
a diagonal (shorting) line is present and open otherwise.
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flowing into the loop limited by the 2 resistors and the reactance
of the loop.

5) At step 5, the contact #2 opens, breaking the current in the resistor
and selector #1. It is at that moment that arcing occurs, The arc
remains on until the current crosses the zero line. At worst, it can
last one half cycle which, at 60 Hz, is 8 msec. The average arcing
time is around 5 to 6 msec.

6) At step #6, the contact #4 closes and the load current by-passes the
resistor #2 and goes directly to the selector #2. The TC has reached
the steady state for tap position #3.

This type of transition requires that the resistors be capable of
withstanding the full load current plus the circulating current during the
transition (from step 3 to step 5). In order to reduce the energy absorption
requirement for the resistors, the time of the complete transition has to
be minimized. These tap changers have normally very fast transitions.

12.4.2 Reactive Switching with Preventative Autotransformer

Another widely used way of handling the transition from one tap to
another is to use reactors instead of resistors. These reactors do not have
to dissipate as much energy as the resistors. They mainly use reactive
energy, which does not produce any heat. Therefore, they can be designed
to withstand the full load plus the circulating current for long periods of
time, even continuously. Two reactors per phase are needed. They are
normally wound on a common gapped core, making them mutually
coupled. When they are connected in series, they act as an auto-
transformer. When they are connected in parallel, they act as a single
reactor. Transformer designers take advantage of this feature. They use
the reactors not only to prevent the load current from being interrupted
or to prevent sections of a tapped winding from being shorted, but also
to act as a transformer and provide intermediate voltage steps in between
two consecutive tap sections of the main transformer. The total number
of positions available with this scheme is twice the number of sections
in the tapped winding plus one. Here is how it works.

The method of operation is diagrammed in Fig. 12.3, The tap
changer has two selectors, two reactors (actually one reactor with 2
windings), two by-pass switches (#1 and #2) and an arcing switch (#3).
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1) In step 1 of the figure above, the tap-changer is in the steady state
mode on tap position #2. The load current flows in the 2 selectors,
the 2 reactors and the by-pass switches. Although the arcing switch
is closed, no current flows through it.

2) In step 2, the by-pass switch opens. The current flows through the
switch #1, and then splits up between the 2 reactors and the 2
selectors.

3) In step 3, the arcing switch opens. All current flows through the
reactor 1 and the selector 1. Arcing occurs at that step because the
current in the reactor is interrupted.

Figure 12.3 Sequence of operations involved in tap changers using reactive switching
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4) In step 4, the right selector moves one step to the right, while it
carries no current.

5) In step 5, the arcing switch closes, causing current to flow again in
the reactor #2 and in selector #2. Note that the two selectors are
on different taps. This causes a circulating current to flow into the
loop.

6) In step 6, the by-pass switch #2 closes and a steady state condition
is reached, which is in this case tap position #1. Because the 2
ends of the reactors are on 2 different taps, they are in series
between the 2 taps. The voltage at their mid point is halfway
between the 2 taps. This state is called the “bridging position”,
where the reactors bridge between 2 taps.

When combined with a reversing switch, this scheme provides four times
as many voltage positions as tapped sections in the winding plus one.
The price to pay is that the reactor has to be designed to withstand
continuously the full load current plus the circulating current; the tapped
winding has also to withstand the full load plus the circulating current;
and the reactor introduces losses and draws more magnetizing current
from the source, specially on bridging positions. It might also add audible
noise to the transformer.

12.5 CONNECTION SCHEMES

12.5.1 Full Transformers

Normally, the primary winding of transformers is fed at a constant
voltage and the role of the tap changer is to add or subtract turns in
order to vary the voltage ratio of the transformer to maintain its output
at a constant voltage despite fluctuations in the load current. In principle,
this can be accomplished by changing the number of active turns either
in the primary or secondary winding. There are subtle differences in the
two ways of connecting the tap changer which transformer and system
designers have to be aware of.

Fixed volts/turn

The most natural way to add a tapped winding to a transformer is to
connect it in series with the regulated side. As shown in Fig. 12.4, the
primary winding of the transformer (H1–H2) is fed at a constant voltage
and it has a fixed number of turns. So the volts/turn of the transformer is
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constant. The voltage across X1-X2 varies with the number of turns. If
all the taps have equal number of turns, then the voltage increase is
equal for each step. If the X winding is Wye connected, then the tapped
winding and the tap changer can be placed at the low potential neutral
end and do not require a high insulation level. The price to pay is that
the tap changer has to be capable of carrying the current of the X winding.
For high current windings, the cost of such a tap changer could become
prohibitive. Another disadvantage is that low voltage windings often
have few turns. The design of the tapped winding might become
impractical if not impossible considering that fractional turns cannot be
used.

Figure 12.4 Fixed volts/turn tap changing scheme

Variable volts/turn

One way to solve the problem of high current low voltage windings is
to put the tapped winding in the high voltage side. The low voltage
side can still be regulated in this way. This is particularly applicable if
the HV is Wye connected since the tap changer could be placed at the
neutral end and would not require a high insulation level while not
carrying a high current. This scheme is illustrated in Fig. 12.5

Figure 12.5 Variable volts/turn tap changing scheme
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Although the solution might look very attractive, it has its disadvantages:

• If we consider that the voltage across H1-H2 is constant, varying
the number of turns in that winding implies that the volts/turn and
thus the flux in the core varies. It means that the core has to be
designed for the minimum turn position. The core would be bigger
than its fixed volt/turn counterpart and would really be used
efficiently only at that minimum turn position. At any other
position, it operates at lower flux densities.

• If the flux varies in the core, the no-load losses, the exciting current,
the impedance, and the sound level of the transformer will vary
also. If a transformer is designed to meet certain guaranteed losses
and sound level at rated position which is generally the mid position,
it is likely that at the minimum turn position, it will exceed these
guaranteed values significantly.

• In a variable flux transformer, the voltage variation per step is not
constant even if the number of turns per step is constant.

• If there is a third winding in the transformer used to feed a different
circuit, its voltage will vary as the tap changer moves, which
might not be desirable.

12.5.2 Autotransformers

Autotransformers with tap changers present special challenges for the
transformer designer. There are three ways of connecting a tap changer
in an auto-transformer without using an auxiliary transformer. These
are illustrated in the following figures.

Figure 12.6 Taps in the series winding of an autotransformer
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The connection shown in Fig. 12.6 is used when the high voltage of
the transformer is to be varied while keeping the low voltage constant.
In this case, we are assuming that the LV side is supplied by a fixed
voltage source. The voltage at the HV terminal varies linearly with the
number of turns added or subtracted to the series winding. The flux in
the core is constant. In this connection, the tap changer and the tapped
winding must be isolated for the voltage level of the LV line terminal
plus the voltage across the tapped section. They are directly exposed to
any voltage surge coming through the LV line so extra precautions have
to be taken at the design stage.

Fig. 12.7 shows the connection used when the high voltage side of the
transformer is to be kept constant while the low voltage varies. In this
case, the HV side is fed from a constant voltage source. The voltage at
the LV terminal varies linearly with the number of turns added or
subtracted in series with the LV line. As in the previous case, the flux in
the core is constant, the tap changer and the tapped winding must be
isolated for the voltage level of the LV line terminal plus the voltage
across the tapped section. They are directly exposed to any voltage
surge coming through the LV line so extra precautions have to be taken
at the design stage. Finally, the tap changer must be designed to carry
the full load current of the LV terminal.

In the previous 2 cases, if a three-phase transformer is designed, the
tap changer must have full insulation between the phases. If the voltage
on the LV is above 138 kV, then three single-phase. Jansen type tap
changers must be used.

Figure 12.7 Taps in the LV line from the auto connection
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The connection shown in Fig. 12.8 can be used when the LV is to be
varied while the HV is to be kept constant. The advantages of this
connection are:

• The level of insulation for the tapped winding and the tap changer
is low

• A Wye connected three-phase tap changer can be used for a three-
phase transformer

• The current in the common winding is lower than the current in
the LV line terminal; so a smaller tap changer can be selected.

As usual, there is a price to pay to obtain these benefits. If we assume
that the voltage between H1 and HoXo is constant, varying the number
of turns implies varying the volts/turn, and therefore the flux in the
core. It is a variable flux design. As explained earlier, in a variable
flux transformer, the losses, the exciting current, the impedance, and the
sound level vary with the tap position, and a bigger core must be selected
for proper operation at the minimum turn position. If there is a tertiary
winding, its voltage will vary as the tap changer changes position.

In an auto-transformer connection, the turns in the common branch
are part of both the HV and LV circuits. This means that if we add turns
in the common branch, we add turns to both the HV and LV circuits.
Because of this, the number of turns required to achieve a specified
regulating range is higher than for the other 2 cases. Here is an
example.

Figure 12.8 Taps in the common winding of an autotransformer, at the neutral end
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Let us suppose that we want 10% voltage regulation. We need a
ratio that varies by 10% when we add all the turns of the tapped
winding. Suppose that we have 100 turns in the series winding and 100
turns in the common winding. The LV circuit has 100 turns and the HV
circuit has 200 turns with no taps in circuit. It gives a ratio of 2:1. Let us
consider all three cases:

1) For the tapped turns in the series winding, if we want a 10%
change in the HV, we need to add or remove 20 turns to the HV
circuit. The size or rating of the tapped winding would be 10% of
the HV x the full load current of the HV=10% of the total MVA of
the transformer.

2) For the case of taps in the LV line from the auto point, we need to
add or remove 10 turns to the LV circuit to achieve 10% change in
the LV. The size of the winding would be 10% of the LV voltage x
the full current of the LV=10% of the total MVA of the transformer.
The ratio of LV to HV is 0.5 +/-.05 or 0.45-0.55

3) In the case of the taps in the neutral end, assuming that the HV is
constant, in order to increase the LV by 10%, we need
approximately 23 turns in order to get a ratio of 123/223= 0.552.
If we subtract the 23 turns (we add them in reverse polarity), we
obtain a ratio of 77/177=0.435. The variation of the voltage is not
symmetrical. The size of the tapped winding is 23% of the common
winding or 11.5% of the total MVA of the transformer. It is bigger
than the other 2 cases and the volts per step in the tap changer is
also higher. The designer of the transformer has to weigh all these
factors when selecting the connection of the tap winding.

12.5.3 Use of Auxiliary Transformer

When a transformer with a relatively high current LV winding is specified
and regulation is desired on the LV side, it may be economical to use an
auxiliary transformer to achieve regulation. This gives the designer a
greater flexibility in the design of the tapped winding and the savings
on the main transformer often outweighs the cost of the auxiliary
transformer. There are 2 popular way of using auxiliary transformers.

The Series Voltage Regulator

In this connection, the tapped winding is located on the auxiliary
transformer which is inserted in series with the low voltage line terminal,
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The Series (booster) Transformer

In this connection, shown in Fig. 12.10, the tapped winding is a separate
winding on the main transformer. The advantages of this connection
are that there is much more flexibility in the design of the tapped winding.
The number of turns per step can be selected so that the tap changer
carries a smaller current. The main saving in this case is on the tap
changer itself and in the greater flexibility in the optimization of the
main transformer.

adding or subtracting its voltage with the LV winding of the main
transformer. The main transformer has only 2 windings and can be
optimized independently from the series voltage regulator (SVR). This
is shown in Fig. 12.9.

Figure 12.9 Tap changing scheme using a series voltage regulator

Figure 12.10 Tap changing scheme using a series (booster) transformer

Auxiliary transformers can also be used with auto-transformers
pretty much in the same way. There are also plenty of possible
connections for using auxiliary transformers. The choice is only limited
by the imagination of the designer.
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12.5.4 Phase shifting transformers

A phase shifting transformer is ideally a transformer with a 1:1 voltage
ratio and which has the ability to change the phase angle of its output
voltage relative to its input. This feature is used by electric power
companies to help transfer power more efficiently within the electrical
grid. In these transformers, the voltage from the tapped windings is
added in quadrature with the input line terminals, producing an effective
phase shift in the output. There are quite a few possible connections to
achieve this and some of these are discussed in Chapter 13. Let us just
mention here that in a phase shifting transformer, the tap changer is a
key element and the size and rating of the tapped windings are much
higher than for conventional transformers.

12.6 GENERAL MAINTENANCE

The reason for the maintenance on a tap changer is to insure its reliability.
Any device with moving parts, some of which are used to interrupt
currents and voltages requires maintenance. It would be useless to repeat
here what can be found in the manufacturers instruction books. We will
only mention general principles. The factors affecting the reliability of
tap changers include:

• Oil quality
• Contact pressure
• Contact resistance and temperature
• Timing of movements
• Load currents
• Number of operations

The maintenance of the controls and the drive mechanism are normally
not a problem. The gears and other moving parts might wear and require
replacement, but in general, they are designed to last very long and do
not need frequent inspection. The main areas of concern are the switches
and the connecting board if present. The contacts have to be inspected
and verified periodically. The frequency of these inspections depends
mainly on the number of operations, the current flowing through the
contacts and the cleanliness of the oil.

The inspection and replacement of contacts require that the
transformer be taken out of service. Since it is always costly to take a
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transformer out of service, it is desirable to extend the period between
inspections as much as possible. Besides recommendations that can be
found in most instruction books for tap changers, here are some of the
tactics used by utilities to reduce their maintenance costs and the failure
rate of their tap changers.

The process of changing tap position includes arcing, which
generates gases and carbon particles. The movement of contacts also
promotes erosion of the metal and generates small metal particles. In
the long run, these particles can affect the dielectric properties of the oil.
Moreover, the carbon particles tend to aggregate on contacts and
increase the contact resistance. They also accumulate on connecting
boards and may lead to tracking on the surface of the board. For these
reasons, the reliability of a tap changer and its overall performance can
be improved by a simple filtering device which would keep the oil
clean. This is specially important if the arcing switch is located in the
same compartment as the selector and change-over switches. Some
utilities have introduced oil filters for load tap changers and they have
found that with these filters, they can extend their time between
inspections. However in some tap changers, the arcing occurs in a
separate vacuum chamber so that oil comtamination is reduced or
eleminated.

In a tap changer, contacts that operate frequently remain clean. The
ones that do not move tend to oxidize or collect carbon or both. With
time, their contact resistance increases, which produces more heat and
the situation deteriorates. This is typical of change-over selectors. Some
of those operate only twice a year. Many cases of damage to these
switches have been reported. Several utilities now force their tap
changers to ride over the mid position at least once a month and they
claim a much better performance of their tap changers since they have
introduced the procedure.

Instead of taking all transformers out of service for regular and
frequent inspections of tap changers, some utilities have introduced
monitoring procedures for tap changers without de-energizing their
transformers. One of those procedures is dissolved gas analysis (DGA).
They regularly take oil samples from tap changer compartments and
monitor the gasses. After a while, they know the pattern of all their tap
changers. Whenever one changes pattern, they go and inspect it. They
report that this procedure has helped them reduce the frequency of their
internal inspections while alerting them to dangerous problems before
they lead to a catastrophic failure.
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Another trick is to have inspection windows in the tap changer box.
When used in conjunction with an oil filter, they can look at their
contacts without opening the box and take the transformer out of
service if required.

Another possible procedure is to monitor the temperature on the tap
changer compartment regularly with infrared measuring devices. It is
very inexpensive and easy to do. They claim that if anything goes
wrong in a tap changer, it typically increases the temperature of the
contacts to a point that you can detect it by checking the temperature on
the outside of the wall of the box. Their rule is that if the temperature on
the surface of the tap changer compartment is higher than the tank of
the transformer by more than 7 to 10 degrees, something is going wrong
inside the transformer. They would then inspect the tap changer. Quite
a few problems have been detected this way.
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13. PHASE SHIFTING
TRANSFORMERS

Summary Equivalent circuit models are derived for three commonly
used types of phase shifting transformer. The winding configurations
are chosen to have a positive phase shift and no change in voltage
magnitude at no-load. The equivalent impedance as seen from the input
or output is expressed in terms of two winding impedances. This is done
for positive, negative, and zero sequence circuits. Negative sequence
circuits have a negative phase shift and zero sequence circuits have no
phase shift. The model is then used to study regulation effects and to
calculate fault currents for the major fault types.

13.1 INTRODUCTION

Phase shifting transformers are used in power systems to help control
power flow and line losses. They shift the input voltage and current
phases by an angle which can be adjusted by means of a tap changer.
They operate by adding a voltage at ±90° to the input voltage, i.e. in
quadrature. For 3 phase transformers, the quadrature voltage to be added
to a given phase voltage can be derived from the other phases. The
many ways of doing this give rise to a large number of configurations
for these transformers. We will deal with only a few common types
here. Phase shifting capability can be combined with voltage magnitude
control in the same transformer. This results in a more complex unit,
involving two sets of tap changers, which we no not discuss here.

As a simplified example of their utility, consider the circuit in Fig.
13.1 where a power source at voltage V is feeding a load along two
parallel paths. (We use bold faced symbols for phasor quantities.) With
the voltage source E=0, the currents will divide according to the line
impedances Z1 and Z2,

(13.1)
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With E inserted, we find,

(13.2)

Since, normally , the efifect of E is to add a current to I2

and subtract a current from I1, i.e. introduce a circulating current of

(13.3)

The magnitude as well as the phase of E controls the amount of circulating
current.

Figure 13.1 Addition of voltage E to control circulating current

In the approximation that ZL is much larger than Z1 or Z2 and
assuming Z1=Z2=Z, we have

(13.4)
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If ZL is resistive, i.e. a unity power factor load, and Z is primarily
inductive or capacitive, then

(13.5)

Thus if E is ±90° out of phase with V, then a circulating current in phase
with the primary current results. This can be useful in controlling the
flow of real power along each of the parallel lines. A phase shifting
transformer could add the required E.

As another example, consider feeding a common load from two
voltage sources which could be out of phase with each other as shown in
Fig. 13.2 Solving for the currents, we get

(13.6)

The current into the load. IL, is

(13.7)

and the voltage across the load, VL, is

(13.8)

Thus the complex power delivered to the load is

(13.9)

where * denotes complex conjugation.
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Consider the case where Z1=Z2=Z. V1=V. V2=Vejθ. Then (13.9)
becomes

(13.10)

Thus it can be seen that the maximum power is transferred when θ=0, In
this case a phase shifting transformer could be used to adjust the phase
of V2 so that it equals that of V1.

In modern power systems which are becoming more and more
interconnected, the need for these devices is growing. Other methods for
introducing a quadrature voltage are being developed, for instance by
means of power electronic circuits in conjunction with ac-dc converters,
These can act much faster than on-load tap changers. However, at
present they are more costly than phase shifting transformers and are
used primarily when response time is important. (Electronic on-load tap
changers are also being developed for fast response time applications.)

In this report, we develop a circuit model description for three
common types of phase shifting transformer. This is useful in order to
understand the regulation behavior of such devices, i.e. how much the
output voltage magnitude and phase change when the unit is loaded as
compared with the no load voltage output. In the process, we also find
how the phase angle depends on tap position, a relationship which can
be non-linear. In addition to the positive sequence circuit model which
describes normal operation, we also determine the negative and zero
sequence circuit models for use in short circuit fault current analysis.

Figure 13.2 Two possibly out of phase sources feeding a common load
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The latter analysis is carried out for the standard types of fault for two
of the phase shifting transformers.

Very little has been published on this subject in the open literature
beyond general interconnection diagrams and how they are used in
specific power grids. However, several references which emphasize
basic principles are Refs.[Hob39. Cle39]. Other useful references are
[Kra98, Wes64].

13.2 BASIC PRINCIPLES

We neglect exciting current and model the individual phases in terms of
their leakage impedances. For a two winding phase, we use the circuit
model shown in Fig. 13.3. Z12 is the two winding leakage impedance
referred to side 1. Most of the development described here is carried out
in terms of impedances in Ohms. Because of differences in per unit
bases for the input and winding quantities, per unit quantities are not as
convenient in the analysis. At the appropriate place, we indicate where
per unit quantities might prove useful. The currents are assumed to flow
into their respective windings. With N1 the number of turns on side 1
and N2 the number of turns on side 2, the ideal transformer voltages
satisfy

(13.11)

and the currents satisfy

(13.12)
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For 3 windings per phase, we use the model shown in Fig. 13.4. In
this case, the ideal transformer voltages satisfy

(13.13)

and the currents satisfy

N1I1+N2I2+N3I3=0 (13.14)

The single winding impedances are given in terms of the 2 winding
impedances by

(13.15)

Here the two winding impedances are referred to the winding
corresponding to the first subscript and the second subscript refers to the

Figure 13.3 Model of a two winding transformer phase
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winding which would be shorted when measuring the impedance. To
refer impedances to the opposite winding, use

(13.16)

Figure 13.4 Model of a 3 winding transformer phase. The vertical lines connecting
the diagrams represent the common core.
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For a 3 phase system, the positive sequence quantities correspond to
the ordering of the unit phasors shown in Fig. 13.5. Letting

(13.17)

the ordering is 1, α2, α. Negative sequence ordering is 1, α, α2. This is
obtained by interchanging 2 phases. Note that

(13.18)

Zero sequence quantities are all in phase with each other.

Figure 13.5 Positive sequence unit phasors

Our interconnections will be chosen to produce a positive phase shift
at a positive tap setting. By interchanging two phases, a negative phase
shift can be produced at a positive tap setting. Interchanging two phases
is equivalent to imputing a negative sequence set of voltages. This
implies that negative sequence circuits have the opposite phase shift to
positive sequence circuits. Zero sequence circuits have zero phase shift.
By positive phase shift we mean that output voltages and currents lead
input voltages and currents, i.e. output quantities are rotated counter
clockwise on a phasor diagram relative to input quantities.
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13.3 SQUASHED DELTA PHASE SHIFTING TRANSFORMER

One of the simplest phase shifters to analyze is the squashed delta
configuration shown in Fig. 13.6. In the figure S labels the source or
input quantities and L the load or output quantities. The input and
output set of voltages and corresponding currents form a balanced positive
sequence set. The input and output voltage phasor diagram is shown in
Fig 13.6b. These are voltages to ground. The currents form a similar set
but are not shown. Similarly, the internal voltages and corresponding
currents form a positive sequence set as shown in Fig. 13.6c for the
voltages. Note that Figs 13.6b and 13.6c could be rotated relative to
each other if shown on a common phasor diagram. Information on their
relative orientation is not contained in the figure although the phase
order is consistent between the figures. This applies as well to the
corresponding current phasors. a and a', etc. refer to windings on the
same leg, with the prime labeling the tapped winding. The 2 winding
impedances will be referred to the unprimed coil, i.e. etc. Since these
impedances are all the same by symmetry, we need only this one symbol.
This transformer can be designed with a single 3 phase core and is
referred to genetically as a single core design. It is also best adapted to
phase angle shifts in one direction.
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Using the two winding phase model described in the last section,
adapted to the present labeling scheme, and concentrating on one input-
output pair, we can write

(13.19)

We also have the transformer relations,

(13.20)

Figure 13.6 Squashed delta configuration with phase quantities labelled. The
ideal transformer voltages. E, increase in the opposite direction of the assumed
current flow. θ is a positive phase shift angle.

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



PHASE SHIFTING TRANSFORMERS 509

where we have defined , the turns ratio. We also have the
following relationships,

(13.21)

It is worthwhile going into the details of the solution of these equations
since we will need some of the intermediate results later. We assume
that VS1 and IS1 are given. From (13.19) and (13.20), we obtain

(13.22)

We also have

(13.23)

where 

Since n is determined by the tap position, this shows that θ is a non-
linear function of the tap position, assuming the taps are evenly spaced.

Adding equations (13.21) and using (13.19),

 

Solving for Ec, using (13.22),

(13.24)
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Combining with the first of equations (13.19) and (13.20), we obtain

(13.25)

where θ is given in (13.23). Although the current is shifted by θ in all
cases, in general, the voltage is shifted by θ only under no load conditions.

The circuit model suggested by (13.25) is shown in Fig. 13.7. By
symmetry, this applies to all three phases with appropriate labeling.
The equivalent impedance shown in Fig. 13.7 is given by

(13.26)

Fig. 13.7 is a positive sequence circuit model. The negative sequence
model is obtained simply by changing  to -θ with Zeq unchanged. Note
that Zeq depends on the tap setting.

Figure 13.7 Circuit model of one phase of a phase shifting transformer This is for
positive sequence. For negative sequence, change θ to -θ.

While the input power per phase is Pin=VS1IS1
*, the transformed or

winding power per phase. Pwdg, is somewhat less. Ignoring impedance
drops, we have from (13.22) and (13.24),

(13.27)
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where the factor of j shows that the transformed power is in quadrature
with the input power. As a numerical example, let θ=30°. Then, from
(13.23) and (13.27),

 

We can express (13.25) in per unit terms, however because of the
difference between the input power and voltage base and that of the
windings, we must be careful to specify the base used. For the input
base, use the rated input power. Pin,b, the rated input voltage. Vin,b, and
the rated input current which can be derived from the power and
voltage base. Iin,b=Pin,b/Vin,b. Similarly the input impedance base can be
derived from the power and voltage base. Zin,b=Vin,b/Iin,b=(Vin,b)2/Pin,b.
Note that, because the transformation ratio is 1:1 in terms of
magnitude, the output base values are the same as the input base
values. Thus (13.25) can be written

(13.28)

where small letters are used to denote per unit quantities. Note that all
the quantities in (13.28) are on a consistent base.

However, it is often more convenient to express winding quantities
such as impedances on a winding basis. Assuming rated input power
and voltage, the winding impedance base can be obtained from (13.27)
and (13.24), ignoring impedance drops,

(13.29)

Thus. Zeq can be expressed as

(13.30)
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where, as the development in (13.30) indicates, zeq is on an input base
and  is on a winding base. Note that the winding base depends on the

turns ratio as indicated in (13.29). Thus this base is perhaps most useful
when n refers to the maximum phase angle. At the other extreme, with
θ=0, we have n=�, so that Zeq=Zeq=0. In this case, the input is directly
connected to the output, bypassing the coils.

The zero sequence circuit model may be derived with reference to
Fig. 13.6 but assuming all quantities are zero sequence. Thus Fig.
13.6b, c should be replaced by diagrams with all phasors in parallel
Using a zero subscript for zero sequence quantities, we can write

(13.31)

and

(13.32)

Since Ib,0=Ic,0, (13.31) shows that

IL1,0=IS1,0 (13.33)

so the current is not phase shifted. We also have

(13.34)

Solving the above zero sequence equations, we obtain

(13.35)

and
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(13.36)

The circuit model for this last equation is shown in Fig. 13.8, where we
have defined

(13.37)

This has a different dependence on n from the positive sequence circuit.
It becomes infinite when n=1. This is reasonable, because from (13.32)

 when n=1 so that from (13.31) IS1,0=0. Thus no zero sequence
current can flow into the squashed delta transformer when n=1. Internal
current can however circulate around the delta. From (13.23), θ=60°
when n=1.

Figure 13.8 Zero sequence circuit model of one phase of a squashed delta phase
shifting transformer

There is no phase angle shift in the voltage at no load. Equation
(13.36) can be written in per unit terms referred to the same input base
as used for positive sequence

vL1,0=vS1,0-iS1,0zeq,0 (13.38)

Using the positive sequence winding base for the two winding zero
sequence impedance, we can write
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(13.39)

As before, in (13.39), the two z’s are on different bases and this expression
is primarily useful when the winding base is for the maximum phase
shift angle,

We postpone a discussion of regulation effects and short circuit
current calculations until other types of phase shifting transformers are
treated. This is because the positive, negative, and zero sequence circuit
diagrams for all the cases treated will have the same appearance,
although Zeq or zeq and θ will differ among the various types.

13.4 STANDARD DELTA PHASE SHIFTING TRANSFORMER

As opposed to the squashed delta design, the standard delta design utilizes
an unsquashed delta winding but is still a single core design. The
connection diagram is given in Fig. 13.9. The tapped windings are on
the same core as the corresponding parallel windings on the delta in the
figure. The taps are symmetrically placed with respect to the point of
contact at the delta vertex. This assures that there is no change in current
or no-load voltage magnitude from input to output. It also means that

 , etc. for the other phases. Each phase really consists of three
windings, the two tap windings and the winding opposite and parallel
in the figure, where primes and double primes are used to distinguish
them. Thus a 3 winding per phase model is needed.  will be
used to label the single winding impedances for phase a. Since all the
phases have equivalent impedances by symmetry, these same
designations will be used for the other phases as well. The same remarks
apply to the phasor diagrams as for the squashed delta case. Although
not shown, the current phasor diagrams have the same sequence order
as their corresponding voltage phasor diagrams, however the two
diagrams could be rotated relative to each other.

In Fig. 13.9a, V1, V2, V3 designate the phasor voltages to ground at
the delta vertices. Thus we have, using  , etc. and 

 , etc.,
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(13.40)

In addition, we have the transformer relations

(13.41)

where we have defined the turns ratio n as the ratio between the turns in
one of the delta windings to the turns in one of the tap windings. Both
tap windings have the same number of turns. Solving for Ia in the last
equation in (13.40) and inserting into the last equation in (13.41), we
obtain

(13.42)

We also have

(13.43)
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Figure 13.9 Standard delta configuration with phase quantities labelled. The
ideal transformer voltages. E, increase in the opposite direction of the assumed
current flow. The taps are symmetrically positioned.
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From the above equations, we obtain

(13.44)

and

(13.45)

with θ as given in (13.42). This is the no-load phase angle shift. This
conforms to the circuit model shown in Fig. 13.7 with

(13.46)

or in terms of 2 winding impedances, using (13.15),

(13.47)

This is the positive sequence circuit. As before the negative sequence
circuit is found by changing θ to -θ without change in Zeq.

Let us again determine the winding power per phase. Pwdg, in terms of
the input power per phase. Pin=VS1IS1*. Again, ignoring impedance
drops, we get

(13.48)

where j indicates that the transformed power is in quadrature with the
input power. Using trigonometric identities, it can be shown that

Pwdg=jsinθPin (13.49)
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with  as given in (13.42). (This relation does not hold for the squashed
delta design.) Thus for θ=30°, |Pwdg|=0.5|Pin|. In per unit terms, based on
input quantities, (13.45) can be cast in the form of (13.28). If we wish to
use a winding base for the 2 winding impedances given in (13.47) then
we must determine the relation between their bases and the input base
for impedances. The 2 winding impedances given above are referred to
either the a or a' winding. Their bases are given by.

(13.50)

Thus, in per unit terms. Zeq in (13.47) becomes

(13.51)

As before zeq is on an input base and the 2 winding impedances on their
winding base. Again this is primarily useful when n refers to the maximum
phase angle. At zero phase shift, n=�, (13.47) indicates that .
However, at this tap position, the tap windings are effectively out of the
circuit so that  and the input is directly connected to the output.

The zero sequence circuit model can be derived with reference to Fig.
13.9 but with all phasors taken to be zero sequence. Rewriting (13.40)
and (13.41) with this in mind and appending a zero subscript, we get

(13.52)

Solving, we find

IL1,0=IS1,0 (13.53)
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so that the zero sequence current undergoes no phase shift. We also have

(13.54)

and

(13.55)

Thus the voltage undergoes no phase shift at no-load. The circuit
model of Fig. 13.8 applies with

(13.56)

or, in terms of 2 winding impedances,

(13.57)

On a per unit basis, using rated input quantities, (13.55) has the same
appearance as (13.38). The equivalent per unit impedance on an input
base with the 2 winding impedances on their positive sequence winding
bases is given by

(13.58)

Again this is primarily useful when n refers to the maximum phase
angle shift. At zero phase shift, the output is directly connected to the
input as was the case for positive sequence,

13.5 TWO CORE PHASE SHIFTING TRANSFORMER

For large power applications, phase shifters are often designed as two
units, the series unit and the excitor unit, each having its own core and
associated coils. Depending on size, the two units can be inside the
same tank or be housed in separate tanks. This construction is largely
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dictated by tap changer limitations. A commonly used circuit diagram
is shown in Fig. 13.10. The phasor diagrams refer to positive sequence
quantities and although the phase ordering is consistent among the
diagrams, their relative orientation is not specified. Currents have the
same phase ordering as their associated voltages. A 3 winding model is
needed for the series unit, while a 2 winding model applies to the excitor
unit. We have used two different labeling schemes for the series and
excitor units, Letter subscripts are used for series quantities and number
subscripts for excitor quantities. Primes and double primes are used to
distinguish different windings associated with the same phase. Note
that the input-output coils in the figure are part of the series unit but are
attached to the excitor unit at their midpoints. The input and output
voltages are voltages to ground as before. We assume the input voltage
and current phasors are given.

Following an analysis similar to that of the last section for the series
unit, we can write, using  , etc.,

(13.59)

We also have the transformer relations,

(13.60)

where we have defined the turns ratio of the series unit, ns, as the ratio
of the turns in a coil of the delta to the turns in the first or second half of
the input-output winding, i.e. from the input to the midpoint or from the
output to the midpoint. We have also defined the excitor winding ratio,
ne, as the ratio of the turns in the winding connected to the midpoint of
the input-output winding to the turns in the tapped winding. This latter
ratio will depend on the tap position. From (13.59), (13.60), and the
phasor diagrams, we obtain
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which implies

(13.61)

Figure 13.10 Circuit diagram of a 2 core phase shifting transformer. The ideal
transformer voltages, the E’s, increase in the opposite direction to the assumed
current flow. The input-output coil is equally divided.
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Substituting I1 from (13.59) and Ia from (13.60), we get

(13.62)

Thus, in terms of the known input current, we can write, using
(13.59) and (13.60),

(13.63)

From the initial set of equations, we also obtain

(13.64)

Substituting (13.61) and (13.64) into the V1 equation in (13.59), we find

(13.65)

Substituting into the first equation in (13.59) and using (13.60) and the
first equation of (13.63),

(13.66)

Adding the first 2 equations in (13.59) and using (13.66), we get
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(13.67)

where θ is given in (13.62). This can be represented with the same
circuit model as Fig. 13.7, with

(13.68)

or, in terms of 2 winding impedances,

(13.69)

Using (13.63) and (13.64) and ignoring impedance drops, we can show
that the winding power per phase is the same for the series and excitor
units, i.e.,

(13.70)

In terms of the phase shift θ given in (13.62), (13.70) can be written

Pwdg=jsinθPin (13.71)

as was the case for the standard delta phase shifter.
In per unit terms, based on rated input power and voltage, (13.67)

can be cast in the form of (13.28). To express the two winding
impedances on their winding bases, we need to find the impedance
winding bases for both the series and excitor windings. Although the
winding power is the same for these, their voltages are different. Using
the above formulas, we find
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(13.72)

Using these relations, the per unit equivalent impedance can be written

(13.73)

where as before zeq is on an input base and the two winding impedances
are on their winding bases. Again this is primarily useful when ne refers
to the maximum phase angle shift. Also the negative sequence circuit
has the same equivalent impedance but a phase angle shift in the opposite
direction to the positive sequence circuit.

The zero sequence circuit model is derived with reference to Fig.
13.10 by assuming all quantities are zero sequence. Thus we simply
rewrite the basic equations, appending a zero subscript,

(13.74)

and

(13.75)

Solving, we find,
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(13.76)

Notice that, even if both Y windings of the excitor were grounded, no
zero sequence current flows into the excitor because the secondary current
from the tap winding would have to flow into the closed delta of the
series unit and this is not possible for zero sequence currents.

From the above formulas, we obtain

(13.77)

Thus we see that the zero sequence current and no-load voltage have no
phase angle shift and the circuit of Fig. 13.8 applies with

(13.78)

or, in terms of 2 winding impedances,

(13.79)

Using the same basis as for positive sequence, the per unit version of
(13.79) is

(13.80)

where, as before, zeq,0 is on an input base and the two winding impedances
are on their winding bases.
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13.6 REGULATION EFFECTS

Because all the phase shifting transformers examined here have the same
basic positive sequence (as well as negative and zero sequence) circuit,
Fig. 13.7, with different expressions for Zeq or zeq and θ, the effect of a
load on the output can be studied in common. The relevant circuit model
is shown in Fig. 13.11.

We are assuming a balanced positive sequence system. Since all
phases are identical, we drop the phase subscript. We could just as well
use per unit quantities for this development since a common base,
employing rated input quantities, can be used for the various quantities
in the figure. This is accomplished by simply changing form upper case
to lower case letters. From the figure, we see that

VL=(VS-ISZeq)ejθ=ILZL=eJθISZL (13.81)

where ZL is the load impedance. Solving for Is, we find

(13.82)

so that

Figure 13.11 One phase of a phase shifting transformer under load
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(13.83)

Thus any phase angle or magnitude shift from no load conditions is
due to a non-zero Zeq/ZL. Since Zeq is almost entirely inductive, a purely
inductive or capacitive load will not affect θ but will result only in a
magnitude change in the voltage. On the other hand, a resistive or
complex load will lead to both magnitude and phase angle shifts.

Following convention, let the load current lag the load voltage by an
angle θL, i.e. if θV is the voltage phasor angle, then

(13.84)

Note the distinction between bold faced phasor quantities and normal
type used for magnitudes in the above equation. A positive value of θL is
characteristic of a load with an inductive component. Let us also set

Zeq=R+jX (13.85)

Then

(13.86)

Under no-load. NL, conditions (ZL=�), (13.83) shows that

VL,NL=VSejθ  

Thus taking ratios and using (13.86), we see that

(13.87)
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Thus the presence of a load will lower the magnitude and shift the phase
generally in a negative direction since R is usually small compared
with X and θL is generally positive and closer to zero that to 90°.

13.7 FAULT CURRENT ANALYSIS

We briefly review the sequence circuit method of fault current analysis
here. This will also help establish notation. Although we do not work
on a per unit basis, the same formulas apply with the substitution of
lower case letters for the upper case ones if the input base is used. Our
phase designations here are not necessarily related to those chosen for
the transformers previously analyzed. Let Vfa, Vfb, Vfc be the voltages at
the fault point for phases a, b, c and let the currents leaving the fault be
Ifa, Ifb, Ifc. These voltages and currents do not necessarily form a balanced
set. The positive, negative, and zero sequence phasors corresponding to
phase a will be denoted Vfa,1, Vfa,2, Vfa,0 and Ifa,1, Ifa,2, Ifa,0 respectively.
Each one of these has a corresponding member for phases b and c so
that Vfa,1, Vfb,1, Vfc,1 form a balanced positive sequence set, Vfa,2, Vfb,2,
Vfc,2 form a balanced negative sequence set, and Vfa,0, Vfb,0, Vfc,0 form a
balanced zero sequence set. Therefore, once Vfa,1 is known, Vfb,1 and Vfc,1

are automatically determined and similarly for Vfa,2 and Vfa,0—The same
applies to currents. Thus Vfa,1, Vfa,2, Vfa,0 contain all the information
available in the original set Vfa, Vfb, Vfc. It is therefore natural that they
are related by some transformation. This is given by

(13.88)

and its inverse

(13.89)

where α is given in (13.17). The above equations also apply to currents
with appropriate change in notation.
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Since the sequence systems are balanced systems, it is only necessary
to study one phase of each system. Quite generally, they can be
modeled as a Thevenin equivalent system, containing an ideal voltage
source in series with a Thevenin equivalent impedance as shown in Fig.
13.12. A voltage source is shown only in the positive sequence circuit
since 3 phase sources are generally positive sequence.

From Fig. 13.12, we have

Vfa,1=ET-Ifa,1ZT1, Vfa,2=-Ifa,2ZT2, Vfa,0=-Ifa,0ZT0 (13.90)

The faults of interest are:

(1) 3 phase line to ground fault
(2) Single phase line to ground fault
(3) Line to line fault
(4) Double line to ground fault

For fault type (1), we have Vfa=Vfb=Vfc=0 so that, using (13.88) –
(13.90),

(13.91)

This simply means that the fault currents form a balanced positive
sequence set as expected from the symmetry of the fault.

For fault type (2), we assume that the a phase line is shorted so that
Vfa=0, Ifb=Ifc=0. From (13.88)–(13.90),

Figure 13.12 Thevenin equivalent swquence circuits
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(13.92)

For fault type (3), assume the b and c lines are shorted together so
that Vfb=Vfc, Ifa=0. Ifc=”Ifb. From (13.88)–(13.90), we obtain

(13.93)

For fault type (4), we assume the b and c lines are shorted to ground
so that Vfb=Vfc=0. Ifa=0. Then from (13.88)–(13.90),

(13.94)

Because voltages and currents are untransformed in magnitude and
transformed by the same phase shift across the ideal transformer in Fig.
13.7, impedances can be brought to one side or the other of the circuit
without change. We make use of this fact by shifting system impedances
on the load side to the source side and consider faults at the source
terminal. Faults on the load side can be found from the source side
results by slight notational changes in the results. Thus the sequence
circuit diagrams shown in Fig. 13.13 can be used. ZSS and ZSL are
system impedances on the source and load sides respectively. Note that
Eout is the load voltage multiplied by e”jθ to bring it across the ideal
transformer. Positive and negative sequence impedances are not
distinguished with subscripts since they are the same to a good
approximation.
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We assume for simplicity that no current flows in the pre-fault
condition. Because fault currents are usually much larger than pre-fault
currents, this is a good assumption. The Thevenin equivalent voltage
and impedances referred to the fault point are,

(13.95)

Figure 13.13 Sequence circuits showing system impedances and transformer
equivalent impedances. The fault is on the source side terminal.
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By substituting these into previous formulas, we obtain the fault
sequence currents in terms of known quantities. The fault sequence
currents into the transformer source side terminal are Iout,1 , Iout,2 , Iout,0.
From Fig. 13.13, (13.90) and ZT1=ZT2, we obtain

(13.96)

This last set of equations are standard equations for fault currents
into a two winding transformer. However, in a phase shifting
transformer, the winding currents are quite different from the terminal
currents. In addition, positive and negative sequence currents
experience opposite phase shifts. This makes the analysis of fault
currents inside these transformers quite different from fault currents in a
standard two winding transformer.

We have already considered currents in the windings of a phase
shifting transformer when we derived their equivalent impedance for
positive, negative, and zero sequence circuits. We simply make use of
these results now, together with the fact that negative sequence currents
inside a phase shifting transformer can be obtained from positive
sequence currents by changing their phase shift to its negative. Note
that Iout above equals IS1 in the previous formulas. Although we have
singled out the a phase in the above analysis, the above equations could
refer to any phase in our previous results for the different phase shifting
transformers, provided we maintain the correct phase ordering. We
now apply the above results to two of our previously studied phase
shifting transformers. Because of the length and similarity of the
formulas, we omit results for the two core design,

13.7.1 Squashed Delta Fault Currents

For the squashed delta, we find from (13.22) and (13.35), letting the c
phase in that analysis correspond to the a phase here,

(13.97)
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where θ is given in (13.23). The currents in the tapped winding are
obtained from these by multiplying by the negative of the turns ratio.
Using (13.96), these can be written

(13.98)

The actual phase currents can be found from (13.88) applied to currents
and the appropriate interpretation of subscripts,

(13.99)

For a 3 phase fault, these formulas become, using (13.91),

(13.100)

i.e. a balanced positive sequence set as expected. The overall phase in
the above formula can be disregarded when analyzing forces and stresses.

For a single line to ground fault, (13.99) becomes, using (13.92)
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(13.101)

For a line to line fault, (13.99) becomes, using (13.93) and ZT1=ZT2,

(13.102)

The factor of j can be ignored in the analysis of winding forces and
stresses.

For a double line to ground fault, (13.99) becomes, using (13.94) and
ZT1=ZT2,
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(13.103)

In this case, the fault currents are complex.

13.7.2 Standard Delta Fault Currents

For the standard delta phase shifting transformer, we have from (13.43)
and (13.54),

(13.104)

with θ given in (13.42). Substituting from (13.96), these become
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(13.105)

Since each phase has 3 windings, we must also specify the currents in
the other windings on the leg. One of these, the a' winding carries the
input current, designated Iout here. Using (13.96), we can write

(13.106)

The other winding, a", carries the output current. Again, using (13.96),
this can be written

(13.107)

The phase currents can be found from the transformation given by
(13.88) applied to currents, with subscripts appropriate to the present
context,
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and

(13.109)

and

(13.108)

(13.110)
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Substituting Ifa,1, Ifa,2, Ifa,0 for the various fault types we obtain, For a
3 phase fault:

For a single line to ground fault:

and

(13.111)

(13.112)
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and

For a line to line fault:

and

(13.113)

(13.114)

(13.115)
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(13.116)

and

For a double line to ground fault:

(13.117)

(13.118)
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and

and

(13.119)

(13.120)
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Except for the double line to ground fault, the fault currents can be
taken as real in force and stress calculations. In the case of normal
currents for the units with three windings on a leg, the currents are
complex. Leakage fields under normal conditions are needed for loss
calculations. Thus for double line to ground faults and for leakage field
calculations for the standard delta and 2 core design, calculations with
complex currents must be performed.
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14. COST MINIMIZATION

Summary Transformer design is primarily determined by minimizing
the overall cost, including the cost of materials, labor, and losses. This
minimization, however, must take into account constraints which may
be imposed on the transferred power, the impedance, the flux density,
the overall height of the tank, etc. Since the cost and constraints are
generally non-linear functions of the design variables, a non-linear
constrained optimization method is required. We examine several such
methods, developing in greater detail the one which appears to be best
suited to our needs. It is then applied to transformer design, considering
for simplicity only major cost components and constraints.

14.1 INTRODUCTION

A transformer must perform certain functions such as transforming power
from one voltage level to another without overheating or without
damaging itself when certain abnormal events occur, such as lightning
strikes or short circuits. Moreover, it must have a reasonable lifetime (>
20 years) if operated under rated conditions. Satisfying these basic
requirements still leaves a wide latitude in possible designs. A transformer
manufacturer will therefore find it in its best economic interest to choose,
within the limitations imposed by the constraints, that combination of
design parameters which results in the lowest cost unit. To the extent
that the costs and constraints can be expressed analytically in terms of
the design variables, the mathematical theory of optimization with
constraints can be applied to this problem,

Optimization is a fairly large branch of mathematics with major
specialized subdivisions such as linear programming, unconstrained
optimization, and linear or non-linear equality or inequality
constrained optimization. Transformer design optimization falls into
the most general category of such methods, namely non-linear equality
and inequality constrained optimization. In this area, there are no
algorithms or iteration schemes which guarantee that a global optimum
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(in our case a minimum) will be found. Most of the algorithms proposed
in the literature will converge to a local optimum with varying degrees
of efficiency although even this is not guaranteed if one starts the
iterations too far from a local optimum. Some insight is therefore
usually required to find a suitable starting point for the iterations. Often
past experience can serve as a guide.

There is however a branch of optimization theory called geometric
programming which does guarantee convergence to a global minimum,
provided the function to be minimized, called the objective or cost
function, and the constraints are expressible in a certain way [Duf67].
These restricted functional forms, called posynomials, will be discussed
later. This method is very powerful if the problem functions conform to
this type. Approximating techniques have been developed to cast other
types of functions into posynomial form. Later versions of this
technique removed many of its restrictions but at the expense of no
longer guaranteeing that it will converge to a global minimum [Wil67].
One of the earliest applications of geometric programming was to
transformer design.

Whatever choice of optimization method is made, there is also the
question of how much detail to include in the problem description.
Although the goal is to find the lowest cost, one might wish that the
solution should provide sufficient information so that an actual design
could be produced with little additional work. In general, the more
detail one can generate from the optimization process, the less work
which will be required later on. However, it would be unrealistic to
expect that the optimum cost design for a transformer, for example,
would automatically satisfy all the mechanical, thermal, and
electrical constraints that require sophisticated design codes to
evaluate. Rather, these constraints can be included in an approximate
(conservative) manner in the optimization process. When the design
codes are subsequently employed, hopefully only minor adjustments
would need to be made in the design parameters to produce a
workable unit.

We will briefly describe geometric programming, presenting enough
of the formalism to appreciate some of its strengths and weaknesses.
Then we will present a more general approach which is developed in
greater detail, since it is applied subsequently to the transformer cost
minimization problem.
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14.2 GEOMETRIC PROGRAMMING

Geometric programming requires that the function to be minimized, the
objective or cost function, and all the constraints be expressed as
posynomials. Using the notation of Ref. [Duf67], these are functions of
the form

g=u1+u2+···+un (14.1)

with

(14.2)

where the ci are positive constants and the variables t1, t2,…, tm are
positive. The exponents aij can be of either sign or zero. They can also
be integer or non-integer.

The method makes use of the geometric inequality

(14.3)

where the Ui are non-negative and the δi are positive weights that satisfy

 δ1+δ2+···δn=1 (14.4)

called the normality condition. Equality obtains in (14.3) if and only if
all Ui are equal. Letting ui=δiUi, (14.3) can be rewritten

(14.5)

Substituting (14.2) for the ui in (14.5), we obtain

(14.6)

where . If we can choose the weights δi in such a way that
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(14.7)

then the right hand side of (14.6) will be independent of the variables tj.
(14.7) is called the orthogonality condition. With the Dj's so chosen, the
right hand side of (14.6) is referred to as the dual function, v(δ), and is
given by

(14.8)

where the vector δ=(δ1, δ2,…, δn). Using vector notation for the variables
tj, t=(t1, t2,… tn), (14.6) can be rewritten

g(t)≥v(δ) (14.9)

subject to (14.7).
As (14.9) shows, the objective function g(t) is bounded below by the

dual function v(δ). Thus the global minimum of g(t) cannot be less than
v(δ) . Similarly the global maximum of v(δ) cannot be greater than g(t).
We now show that the minimum of g(t) and the maximum of v(δ) are
equal. Let t=t' at the minimum. At this point, the derivative of g(t) with
respect to each variable must vanish,

(14.10)

Since  by assumption, (14.10) can be multiplied by tj',

(14.11)

using (14.1) and (14.2). Dividing by g(t') and letting

(14.12)
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we see that (14.11) becomes

(14.13)

Thus the δi' satisfy the orthogonality condition (14.7). Moreover, the δi'
sum to 1 and thus satisfy the normality condition (14.4). Therefore we
can write

(14.14)

But, using (14.12), (14.14) becomes

(14.15)

The right hand side of (14.15) is v(δ'). Thus at the minimum,

g(t')=v(δ') (14.16)

This equation, along with (14.9), shows that the minimum of g(t) and
the maximum of v(δ) are equal and are in fact a global minimum and a
global maximum.

Note that at the minimum, according to (14.12),

(14.17)

This is also a requirement for the geometric inequality to become an
equality. In the geometric programming approach, one looks for a
maximum of the dual function v(δ) subject to the normality and
orthogonality conditions. Having found this v(δ') and the corresponding
δi', (14.17) can be used to find the design variables tj' at the minimum of
g. (14.17) also shows that, at the minimum, the weights δi' give the
relative importance (cost) of each term in the objective (cost) function.

In geometric programming, all the constraints must be expressed in
the form

gk(t)≤≤≤≤≤1, k=1,…p (14.18)
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where the gk are posynomials. Write

gk=u1+u2+…un (14.19)

as before with the ui given by (14.2). (We ignore labeling the ui with k
for simplicity.) In dealing with inequality constraints, the weights are
allowed to be unnormalized. Letting λ denote their sum, we have

λ=δ1+δ2+…+δn (14.20)

However, in applying the geometric inequality (14.5), we must use
normalized weights given by δi/λ, so we get

(14.21)

Raising everything to the power λ, we obtain

(14.22)

There is an inequality like (14.22) for each constraint. We need to label
these appropriately to avoid confusion. Let

(14.23)

be a set of integers labeling the terms in constraint k when k>0. We have
mo=1, m1=n0+1, m2=n1+1, np=n for a total of n terms in all of the functions.
We have m positive variables ti, i=1,…, m. Hence

(14.24)

where go(t)=g(t) is the objective function. We now multiply all of the
inequalities together, i.e. the extreme left and right sides of (14.5) and
(14.22) for each constraint, to get
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(14.25)

Using (14.24), this becomes

(14.26)

with the auxiliary conditions

(14.27)

which eliminates the tj dependencies. In addition, we have the normality
condition

(14.28)

All the weights δi are required to be non-negative,

δi≥0, i=l,...n (14.29)

The problem of minimizing the objective function subject to its
constraints becomes one of maximizing the dual function v(δ) subject to
the dual constraints (14.27), (14.28), and (14.29). These dual
constraints, aside from the non-negativity condition, are linear
constraints in contrast to the, in general, non-linear constraints of the
original formulation. There are as many unknowns δi as terms in the
objective plus constraint functions, namely n. However (14.27) and
(14.28) must be satisfied by these unknowns and there are m+1 of these,
where m is the number of design variables. The degree of difficulty is
defined as n-m-1. When this equals 0, this means that there are as many
unknowns as equations and the solution is found by solving the set of
linear equations (14.27) and (14.28) simultaneously. When this is
greater than 0, techniques for maximizing an, in general, non-linear
function subject to linear constraints must be employed. Under very
general conditions, it can be shown that the minimum of the objective
function subject to its constraints equals the maximum of the dual
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function subject to the dual constraints [Duf67]. Furthermore at the
maximizing point δ', the following equations hold

(14.30)

which permits the determination of the design variables tj' at the
minimizing point of the objective function via (14.2).

As a simple example, consider minimizing

 

subject to

 

There are four terms in total so that there are four δi. The dual function
is

 

subject to

This problem has degree of difficulty=0, so the solution is determined
by solving the above linear equations to obtain

 

The maximum of the dual function is therefore

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



COST MINIMIZATION 551

 

The design variables can be found from

 

These can be solved by taking logarithms or in this case by substitution.
The solution is

This solution can be checked by substituting these values into the objective
function g(t') which should produce the same value as given by v(δ')
above.

When the degree of difficulty is not zero, the method becomes one of
maximizing a non-linear function subject to linear constraints for which
various solution strategies are available. For problems formulated in
the language of geometric programming, these strategies lead to the
global maximum of the dual function (global minimum of the objective
function. This desirable outcome is not, however, without a price. In the
case of transformer design optimization, the number of terms in a
realistic cost function, not to mention the constraints, is quite large
whereas the number of design variables can be kept reasonably small.
This means that the degree of difficulty is large. In addition, it can be
quite awkward to express some of the constraints in posynomial form.
A further difficulty is that the constraints must be expressed as
inequalities whereas in some cases an equality constraint may be
desired.
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14.3 NON-LINEAR CONSTRAINED OPTIMIZATION

The general non-linear optimization problem with constraints can be
formulated in the following way:

(14.31)

where f and the ci are non-linear functions in general. We will assume
throughout that they are at least twice differentiate. Although we have
expressed this optimization in terms of a minimum, maximizing a
function f is equivalent to minimizing -f . Also any equality or inequality
constraint involving analytic functions can be expressed in the above
manner. For example, a constraint of the type ci(x)≤0 can be rewritten
-ci(x)≥0. Thus the above formulation is quite general.

14.3.1 Characterization of the Minimum

We will be concerned with finding a relative minimum of f(x) subject to
the constraints. This may or may not be a global minimum for the particular
problem considered. We first consider how to characterize such a
minimum, i.e. how do we know we have reached a relative minimum
while satisfying all the constraints. Let x* denote the design variable
vector at a minimum. In this section, minimum always means relative
minimum. If an inequality constraint is not active at the minimum, i.e.
ci(x*)>0, then it will remain positive in some neighborhood about the
minimum, (An inequality constraint is active if ci(x)=0 and it is said to be
violated if ci(x)<0.) Thus one could move some small distance away from
the minimum without violating this constraint. In effect, near the minimum,
this constraint places no restrictions on the design variables. It can therefore
be ignored. Only those inequality constraints which are active play a role
in characterizing the minimum. We therefore include them in the list of
equality constraints in our formulation (14.31). Strategies to add or drop
inequalities from the list of equality constraints will be discussed later.

Much of the methodology presented in this section is based on Ref.
[Gil81]. We adopt their notation which is briefly reviewed here. First a
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distinction is made between column and row vectors. A column vector
is denoted by

where the vi are its components. If there are n components, it can also be
referred to as an n-vector. Its transpose is a row vector, i.e.

vT=(v1 v2 ··· vn)  

where T denotes transpose. The dot or scalar product between two vectors
v and w is given by

vTw=v1w1+v2w2+···+vnwn  

It is essentially the matrix product between a row and column vector in
that order. If the order were reversed, we would have

i.e. the matrix product between a column and row vector in that order.
A matrix M is called an m×n matrix if it has m rows and n columns.
The i, j th matrix element is denoted Mij and these are organized into an
array

A matrix vector product between an m×n matrix and an n-vector, denoted
Mv, is an m-vector whose components are
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If we multiply on the left by a row m-vector wT, we get the scalar
product between w and the above vector

Further notation will be introduced as it is encountered.
Using Taylor’s theorem, expand the functions f(x) and the ci(x) about

the minimizing point x*. Let x=x*+εp, where p is an n-dimensional
vector and ε a positive constant. Then

(14.32)

where g is the gradient vector and is given by

(14.33)

G is the Hessian matrix which is given by

(14.34)

The Hessian matrix is symmetric because of the equality of mixed partial
derivatives. Vector dot products or matrix products are implied in (14.32).
Higher order terms in the expansion (14.32) are assumed to be small for
the values of ε considered.

Similarly we have for the equality constraints
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(14.35)

where ai is its gradient vector and Gi its Hessian matrix. Here ci(x*)=0.
We would like to continue to satisfy the constraints as we move away
from the minimum since they are assumed to apply for any choice of
design parameters. This means that the first order term, i.e. the term in
ε should vanish,

(14.36)

There is an equation like this for each equality constraint. Let A denote
a matrix whose i-th row is . Then (14.36) can be expressed compactly
for all equality constraints as

Ap=0 (14.37)

A has t rows and n columns. It also depends on x or x* but we omit this
for clarity. We assume that t≤n and that A has full row rank, i.e. that the
constraint gradient vectors ai are linearly independent. If this is not true,
then one or more of the constraints is redundant (to first order) and can
be dropped from the list.

From (14.37), we see that p must be orthogonal to the row space of
A. Thus p lies in the orthogonal complement of this row space. (Any
vector space is decomposable into disjoint subspaces which are
orthogonal complements of each other.) Let Z denote a matrix whose
column vectors form a basis of this orthogonal subspace of dimension
n-t. Thus Z has n rows and n-t columns. This orthogonality can be
expressed by

AZ=0 (14.38)

Since p lies in this orthogonal subspace, it can be expressed as a linear
combination of its basis vectors, that is a linear combination of the
column vectors of Z. Thus

p=Zpz (14.39)

where pz is a vector of dimension n-t.
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Probably the best way to obtain Z is via a triangularization of A
using Hausholder transformation matrices. These are orthogonal
matrices of the form

(14.40)

where w is a vector of magnitude |w| and I is the unit diagonal matrix.
By suitably choosing w, the columns of any matrix can be successively
put in upper triangular form [Gol89]. In our case, we apply this procedure
to AT to obtain

(14.41)

where Q is an n×n orthogonal matrix since it is the product of
orthogonal matrices, R is an upper triangular matrix of dimension t×t,
and 0 is a zero matrix of dimension (n-t)×t. Taking the transpose of
(14.41), we get

AQT=(L 0) (14.42)

where L=RT is a lower triangular matrix and 0 is the t×(n-t) zero matrix.
Thus we can take Z to be the last n-t columns of QT since these are
orthogonal to the rows of A. Since Q is an orthogonal matrix, its column
vectors form an orthonormal basis for the whole space. Thus the first t
columns form an orthonormal basis for the row space of A and the last
n-t columns form an orthonormal basis for its orthogonal complement.
We group the first t columns into a matrix called Y so that

QT=(Y Z) (14.43)

With p restricted to the form (14.39), the expression (14.32) becomes
to first order

f(x*+εp)=f(x*)+εgT(x*)Zpz+··· (14.44)

For f(x*) to be a minimum, we must have
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f(x*+εp)≥f(x*) (14.45)

In order for this to hold, the term in ε in (14.44) must be positive or zero.
Since ε is positive, if this term is non-zero for some vector pz, it can be
made negative by possibly changing pz to -pz and thus violate (14.45).
Hence we must require at the minimum

gT(x*)Z=0 (14.46)

This implies that the gradient is in the row space of A. Therefore

g(x*)=ATλ* (14.47)

where λ* is a vector of dimension t called the vector of Lagrange
multipliers. (Note that the column space of AT is the row space of A.

Let us now consider that one of our equality constraints at the
minimum was originally an inequality constraint. Let this be the cj th
constraint. Then a displacement vector p could be chosen so that

Cj(x*+εp)≥0 (14.48)

without violating the constraint. Noting that cj(x*)=0, from (14.35) with
j replacing i, we see that to first order in ε, we get

(14.49)

Assume that p satisfies the other constraints, i.e. (14.36) holds for i≠j.
Then rewriting (14.47), we have

(14.50)

where we have omitted the dependence of the a's on x*. For the above
choice of p,

(14.51)
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Substituting into (14.32), we get to first order in ε

(14.52)

If f(x*) is a local minimum, then (14.45) shows that the term .
But ε>0 together with (14.49), shows that we must have

(14.53)

This says that the Lagrange multipliers associated with the inequality
constraints that are active at the minimum must be non-negative. If the
j - th Lagrange multiplier were negative then the direction p chosen
above can be used to lower the value of f without violating the j-th
constraint thus contradicting the assumption what we are at a minimum.
In searching for a minimum, a negative Lagrange multiplier for an
active inequality constraint is an indication that the constraint can be
dropped (deactivated). This strategy is useful in deciding when to drop
a constraint from the active set.

The discussion so far applies equally well to whether we are looking
for a minimum or maximum of the objective function. The only
difference is that the sign of the Lagrange multiplier of an active
inequality constraint would be negative for a maximum. To distinguish
a minimum from a maximum, we need to go to higher order. In the case
of non-linear constraints, we can no longer move along a straight line
with direction p when considering higher order effects because the
constraints would eventually be violated. (With linear constraints, one
could move freely along the direction p given by (14.39) without
violating the active constraints,) For non-linear constraints, we need to
move along a curve x(θ) parametrized by θ chosen in such a way that
the constraints are not violated to second order as we move a small
amount ∆θ away from the minimum. At the minimum, let θ=θ* and
x*=x(θ*). Let p be the tangent vector to this curve at the minimum, i.e.

(14.54)

Using Taylor’s theorem in one variable to second order for the active
constraints, we have
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(14.55)

All derivatives are evaluated at θ*. Using the chain rule, we obtain

(14.56)

and, using (14.56),

where Gi is the Hessian of the i-th constraint defined previously. Since
ci(x*)=0 at the minimum, in order for (14.55) to vanish to second order,
we must have both (14.56) and (14.57) vanish. The vanishing of (14.56)
yields the first order results such as (14.36) previously derived. The
vanishing of (14.57) yields the new second order results. Just as we
previously turned (14.56) into a matrix equation so it applied to all the
constraints, equation (14.37), we apply the same procedure to (14.57),
Organizing the  into rows of the A matrix and setting (14.57) to zero,
we get

(14.58)

Now consider the behavior of the objective function f along this
curve which satisfies the constraints to second order. Using Taylor’s
theorem again in one variable,

14.57
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(14.59)

Since, by assumption f(x*) is a minimum, and since ∆θ can have either
sign, we must have to first order

(14.60)

This is the same first order condition we obtained previously and which
led to formulas (14.46) and (14.47) which are still valid in the present
context. As mentioned, they would be true whether we were at a
minimum or maximum. Now since we are at a minimum,

f(x(θ*+∆θ))≥f(x*) (14.61)

Since the first order term in (14.59) is zero, (14.61) implies that the
second order term is non-negative. Using the same mathematics as was
used for this term for the constraints, equation (14.57), we find using
(14.60),

(14.62)

Substituting for gT from (14.47) into (14.62), we obtain

(14.63)

Substituting (14.58) into (14.63), we get

(14.64)
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Using (14.39) for p, (14.64) becomes

(14.65)

Since (14.65) must be true for any choice of pz, this requires the
matrix within the square brackets to be positive semi-definite. Often
minimization with constraints is formulated in terms of a Lagrangian
function

(14.66)

Then (14.47) follows from requiring the Lagrangian to vanish to first
order at the minimum and (14.65) follows from requiring the projected
Hessian of the Lagrangian to be positive semi-definite. (The Hessian is
projected by means of the Z matrix,) The Lagrangian approach does
not appear to be as well motivated as the one we have taken.

Condition (14.65) together with (14.47) are necessary conditions for
a minimum subject to the constraints. They are not, however, sufficient.
This is because if (14.65) were 0 for some non-zero vector pz, the point
x* could be a saddle point. To eliminate this possibility, the inequality
in (14.65) must be replaced by a strict inequality, >, so that the matrix is
positive definite. This is sufficient to guarantee a minimum. We will
assume this requirement to be met in the minimization problems we
deal with.

14.3.2 Solution Search Strategy

Because the functions we are dealing with are, in general, non-linear,
iterations are required in order to arrive at a minimum from some starting
set of the design variables. Assuming the iterations converge, we can
then check that the conditions derived in the previous section hold at the
converged point to guarantee that it is a minimum. This may or may
not be a global minimum. However, if suitable starting values are chosen
based on experience, then for most practical problems, the minimum
reached will be, with high probability, a global minimum.

One of the best convergence strategies is Newton-Raphson iteration.
Provided one is near the minimum, this method converges very rapidly.
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In fact, for a quadratic function, it converges in one step. Applying this
method to the constraint functions, with p=∆x, we get

(14.67)

Collecting these into a vector of constraint functions, c(x)=(c1 c2… ct)
and using the matrix A whose rows are ai

T as defined previously, (14.67)
can be written to include all the active constraints as

A(x)p=-c(x) (14.68)

where the dependence of A on the value of x at the current iterate is
indicated. Since p is an n-vector in the space of design variables, we can
express it in terms of the basis we obtained from the QR factorization of
A. Thus, using (14.43)

p=YpY+ZpZ (14.69)

where pY is a t-vector in the row space of A and pZ is an (n-1)-vector in
its orthogonal complement. Using (14.38), (14.68) becomes

AYpY=-c(x) (14.70)

where the dependence of the matrices on x has been supressed for clarity.
However, from (14.42) and (14.43), we see that AY=L. Thus (14.70)
becomes

LpY=-c(x) (14.71)

Since L is a lower triangular matrix, (14.71) can be solved readily
using forward substitution. Thus the QR factorization of A has an
additional benefit in facilitating the solution of a matrix equation.

We now apply the Newton-Raphson technique to (14.47) which must
be satisfied at the minimum

(14.72)
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Rewriting (14.72),

(14.73)

Define

(14.74)

This is the Hessian of the Lagrangian function. Then (14.73) can be
rewritten

W(x)p=-g(x)+ATλ (14.75)

Multiply this last expression by ZT to obtain

ZTW(x)p=-ZTg(x) (14.76)

The term ZTATλ vanishes by the transpose of (14.38). Using (14.69) for
p, 14.76) becomes

ZTW(x)ZpZ=-ZT(g(x)+W(x)YpY) (14.77)

Having obtained pY from (14.71), this last equation can be used to solve
for pz.

The projected Hessian of the Lagrangian function occurs in (14.77).
It was previously shown that this matrix must be positive definite to
insure a minimum. However, during the iterations involved in finding a
minimum, this matrix may not be positive definite. If this occurs, the
Newton-Raphson iteration method may have difficulty converging.
One method of circumventing this problem is to modify this matrix so
that it is positive definite at each iteration step. The procedure must be
such that when the matrix eventually becomes positive definite, no
modification is made.

One way of producing a positive definite matrix that is not too
different from the matrix to be altered is called a modified Cholesky
factorization [Gil81]. In this method, a Cholesky factorization is begun
as if the matrix were positive definite. For a positive definite matrix. M,
a Cholesky factorization would result in the factorization
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M=PDPT (14.78)

where P is a lower triangular matrix and D a positive diagonal matrix,
i.e. a diagonal matrix with all positive elements. If, during the course of
the factorization of a not necessarily positive definite matrix, an element
of D is calculated to be zero or negative, the corresponding diagonal
element of M is increased until the element of D becomes positive.
Limitations are also placed on how large the values of P can become
during the factorization. These limitations can also be achieved by
increasing the diagonal values of the original matrix. The result is a
Cholesky factorization of a modified matrix M2 which is related to the
original matrix by

M'=PDPT=M+E (14.79)

where E is a positive diagonal matrix. Using this approach, (14.77) is
solved for pz at each iteration.

With pY and pZ determined, the complete step given by (14.69) is
known. This step may, however, be too large. Some of the equality
constraints may be violated to too great an extent or the objective
function may not decrease. The step may also be so large as to violate
an inequality constraint that is not active. We would like to keep the
direction of p but restrict its magnitude based on these considerations.
Consider multiplying p by ε to get a step εp. By letting ε vary from 0 to
1, we can check these other criteria at each ε, stopping when they
become too invalidated or when ε=1. One of these criteria would be that
we not violate any of the inactive inequality constraints. If this occurs at
some value of ε≤1, then this restricts the step size and the constraint
which is just violated is added to the list of active constraints on the next
iteration. Another criteria to use to restrict the step size is to define a
merit function which measures to what extent the constraints are
satisfied and to what extent the objective function is decreasing in value
along the step. One choice for this function is

(14.80)

where ρ is a positive constant. The values of ε are increased towards 1
so long as this merit function decreases or until one of the inactive
constraints is violated. When this function starts increasing or an inactive
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constraint is violated, that value of ε is used to determine the step size
εp. In this approach, units must be chosen so that the relative magnitudes
of f and the ci are close. This means that, for values of x which can be
expected to violate the constraints during the iterations, the values of f
and the ci are of the same order of magnitude. Then ρ can really be used
to weigh the importance of satisfying the constraints relative to achieving
a minimum of the objective function. In our work, we have chosen
ρ=20. Thus we gradually increase ε until either the merit function starts
increasing or an inactive constraint is violated or ε=l, whichever comes
first.

Having chosen ε, we solve for new values of the Lagrange
multipliers using (14.75) with p replaced by the actual step taken, εp.
Rearranging (14.75), we obtain

ATλ=g(x)+W(x)εp (14.81)

which is an equation for the unknown λ, since all other quantities are
known. The solution of this equation is also facilitated by the results of
the QR factorization of A. From (14.41), we can write

(14.82)

since QTQ=QQT=I for orthogonal matrices. Here I is the unit diagonal
matrix. Substituting into (14.81) and multiplying by Q, we obtain

(14.83)

But, using (14.43), this becomes

(14.84)

Only the top t equations in (14.84) are needed to determine λ and these
are
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Rλ=YT(g(x)+W(x)εp) (14.85)

Since R=LT is upper triangular, (14.85) can be directly solved by back
substitution. This value of λ is used in the next iterate. At the start, all
the λi are set to 1.

At the next iterate, the values of the design variables become

xnew=xold+εp (14.86)

where old labels the present values and new the new values for the design
variables. This process is continued until successive iterations produce
negligible changes in the design variables and the Lagrange multipliers.
At this point, it is necessary to check that the conditions which should
hold at a minimum are satisfied. Thus the projected Hessian of the
Lagrangian should be positive definite and the gradient of the objective
function should satisfy (14.47) to some level of accuracy. The equality
constraints should also equal 0 to some level of accuracy. The Lagrange
multipliers of the inequality constraints which are active at the minimum
should be positive. None of the inequality constraints should be violated,
i.e. <0.

During the course of the iterations, the number of equality
constraints may change as inequality constraints are added or dropped
from the list of active constraints. They are added when a step size
threatens to violate an inactive constraint and they are dropped when a
Lagrange multiplier becomes negative. Strictly speaking, the Lagrange
multiplier of an active inequality constraint only needs to be positive at
the minimum. This does not have to hold away from the minimum as
occurs during the iterations. However, there will be some neighborhood
about the minimum where they will remain positive if the constraint is
active at the minimum. We also noted previously that the gradients of
the active constraints are assumed to be linearly independent. If this is
not true, then constraints are dropped until a linearly independent set is
obtained. This is determined during the QR factorization of A since the
process requires the rows of A to be linearly independent.

For certain types of problems, it may be necessary for all or some of
the variables to be positive. This can be treated as a special type of
inequality constraint. Thus if variable xj must be positive, we add to the
list of constraints

ck(x)=xj≥0 (14.87)
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where k labels the inequality constraint. The gradient vector for this
constraint is given by

(14.88)

where the 1 is in the j-th position. Its Hessian matrix is identically zero.
Thus, this type of restriction can be handled like an ordinary inequality
constraint. It has no influence on the minimization unless xj becomes 0
or negative during the course of the iterations,

14.3.3 Practical Considerations

It is useful to choose units so that all the design variables are comparable
in magnitude. It is also desirable to keep the objective function and the
constraints (violated to some degree or away from 0 if inequalities) of
comparable magnitude. A good choice for this magnitude is unity. For
example, if the objective function is cost, one could express it in $,
kilo$, or mega$, whichever produces a value of order of magnitude
unity at the minimum. Similarly an equality or inequality constraint of
the form

A+B+C+D+···≥0  

could be divided by the absolute value of the maximum term so as to
bring it closer to 1. This may not be possible in all cases so some other
strategy may be necessary. This procedure will prevent the merit function
from favoring one constraint more that another.

Although the method developed here applies to any non-linear, twice
differentiate objective or constraint functions, in practice it is found that
these functions are often of the form

(14.89)

where the coefficients b, and the exponents aij are arbitrary constants.
This differs from the posynomials considered earlier where the coefficients
bi all had to be positive. The k-th component of the gradient vector of
this function is given by
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(14.90)

The k, q-th entry of its Hessian matrix, where k≠q, is given by

(14.91)

When k=q, the diagonal entry of the Hessian matrix is

(14.92)

Some care must be exercised in using the above formulas when a variable
or an exponent vanishes. Also when a variable is negative and the
corresponding exponent in non-integer, the expression becomes
imaginary. In the latter case, which could occur during the iterations
even if the variables are constrained to be non-negative, the exponent is
simply rounded off to the nearest integer. This allows the iterations to
proceed. Eventually as the minimum is approached, the appropriate
variables will become non-negative so that this rounding becomes
unnecessary. If a variable is expected to be negative at the minimum,
then it should occur with an integer exponent in all the functions,

14.4 APPLICATION TO TRANSFORMER DESIGN

In designing a transformer, we normally wish to minimize the cost. Our
objective function f(x) is therefore a cost function. It will, in general,
have many terms. These will include material costs, labor costs, the
cost of losses to the customer, and overhead costs. These component
costs, as well as the constraint functions, must be expressed in terms of
a basic set of design variables. Although the choice of design variables
is somewhat arbitrary, they should be chosen in such a way that the cost
and constraint functions can be easily expressed in terms of them. Here
we consider a 2 winding, 3 phase, core-form power transformer. We
will simplify the details in order to focus more on the method.
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14.4.1 Design Variables

Our basic design variables are:

(1) B Core flux density in Tesla
(2) Js OA current density in the secondary or LV winding in kAmps/
in2

(3)Re Core radius in inches
(4)g HV-LV gap in inches
(5)Rs Mean radius of the secondary or LV winding in inches
(6)Rp Mean radius of the primary or HV winding in inches
(7)hs Height of the secondary winding in inches
(8)ts Thickness (radial build) of the secondary winding in inches
(9)tp Thickness (radial build) of the primary winding in inches
(10)Mc Weight of the core steel in kilo-pounds
(11)Mt Weight of the tank in kilo-pounds

Note that the last two weights can be expressed in terms of the other
design variables. However, since some of the material and labor costs
and losses are easily expressed in terms of them, we find it convenient to
include them in the set of basic design variables. Their dependence on
the other variables will be expressed in terms of equality constraints.
The units chosen for the above variables are such that their magnitudes
are all in the range of about 1 to 100. These units are used internally in
the computer optimization program. As far as input and output is
concerned, i.e. what the user deals with, the units are a matter of
familiarity and can differ from the above.

Figure 14.1 illustrates some of the design variables geometrically.
We have not considered the height of the primary winding a design
variable since, in our designs, it is usually taken to be an inch shorter
then the secondary winding. We express this as hp=αhs, where hp is the
height of the primary winding and α is a fraction ≈0.95. gc and go are
gaps which are fixed and inputted by the user, gc depends on whether a
tertiary or tap winding is present under the LV winding and go depends
on the phase to phase voltages. H is the window height and T the
window width. X is the maximum stack width ≈2Rc. These are
expressible in terms of the other variables.

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



COST MINIMIZATION570

14.4.2 Cost Function

One of the cost components is the cost of the copper. To obtain this, we
need the copper weight. In terms of the design variables, the weight of
the 3 secondary windings (for 3 phases) is

Ms=3dCu ηs(2πRshsts) (14.93)

where dCu is the copper density and ηs is the fill factor, i.e. the fraction of
the coil’s cross-sectional area which is copper. If this is in pounds, it
must then be multiplied by a $/lb cost to arrive at the cost to include in
the objective function. This $/lb cost must reflect the cost of the raw
copper plus the add-on cost of forming it into an insulated wire or cable

Figure 14.1 Geometry of a 2 winding core-form power transformer illustrating
some of the design variables

© 2002 by CRC Presshttps://engineersreferencebookspdf.com



COST MINIMIZATION 571

plus any overhead or storage costs. The fill factor will be determined
separately by selecting a cable size which meets constraints on the coil’s
cross sectional dimensions and the number of turns. If a tertiary or tap
winding is present, its cost is determined as some fraction of the secondary
winding’s cost. The weight of the primary winding is similarly

Mp=3dCu ηpα(2πRphstp) (14.94)

where ηp is the primary winding’s fill factor. This also gets multiplied
by a $/lb which will differ from that of the secondary winding because
it will generally be made of a different type of wire or cable.

The weight of the core in pounds is simply 1000Mc. This is
multiplied by a $/lb for the core steel before inclusion in the cost
function. This $/lb also includes overhead and storage costs. The tank
cost is similarly 1000Mt times the appropriate $/lb. Mc and Mt will be
expressed in terms of the other variables by means of equality
constraints.

Other material costs are the cost of the oil, the insulation such as
cylinders, key-spacers, and lead support structure, the cost of leads,
clamping, bushings, tap-gear, conservator if present, radiators, and
auxiliary reactors or series transformers. The details are omitted here to
simplify the discussion.

Load and no-load losses are part of the overall cost of operating a
transformer and are included in the cost function. A customer buys a
transformer not on just its initial manufacturing cost but also on the
cost of operating it over many years. These latter costs depend on how
efficient the unit is, i.e. how high are its losses. The load losses include
the Joule heating in the windings (copper losses) and the losses due to
the stray flux impinging on tank walls, clamps, etc. (stray losses). The
losses in the secondary winding under OA conditions can be expressed
as

(14.95)

where ρCu is the copper resistivity which is evaluated at the appropriate
temperature, ecfs is the eddy current factor which is due to stray flux
and depends on the type of wire or cable making up the winding. Vs is
the copper volume which can be expressed

Vs=3ηs(2πRshsts) (14.96)
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Since Js is in kA/in2, ρs needs to be in appropriate units and an overall
multiplying factor is necessary to get Ws in kW. This must then be
multiplied by the cost of load losses in $/kW. Similarly, the primary
winding’s losses are given by

(14.97)

where the copper volume is

Vp=3ηpα(2πRphstp) (14.98)

and where Jp is the current density in the primary winding under OA
conditions. Because the ampere-turns of the primary and secondary are
equal under balanced conditions, we can obtain Jp in terms of Js by

(14.99)

This is then substituted into (14.97). We then multiply Wp by the $/kW
cost of load losses before adding it to the cost function. The stray losses
are also part of the load losses and must be added to the cost function
but we omit discussing them here for simplicity. If the transformer
includes a reactor, step voltage regulator, or series transformer, then the
cost of losses associated with these components must be added to the
cost function,

The no-load losses are essentially the core losses. Generally the core
steel manufacturer provides a curve or polynomial expression for the
core losses in W/1b in terms of the core flux density, e.g.

 

Multiplying this by the core weight in pounds, 1000Mc, gives a core
loss for an ideal core. Actual cores have higher losses due to non-uniform
flux in the comers, due to building stresses, and other factors. These
must be accounted for in the expression for the no-load loss. Having
done this, the core loss in kW is then multiplied by the cost of the noload
losses in $/kW before adding to the cost function,

Labor costs are an important part of the cost of a transformer since
power transformers are usually custom made. The various specialized
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types of labor must be tied to the appropriate design variables. For
instance, coil winding labor costs should be expressed in terms of the
coil weight or coil dimensions while core stacking labor costs should be
expressed in terms of the core weight or core dimensions. Labor
associated with tank welding or painting should be tied to the tank
weight or tank dimensions. Correlations need to be established between
the hours required to perform a certain job function and the appropriate
design variables. These correlations will differ from manufacturer to
manufacturer and are omitted in this discussion. Establishing
meaningful correlations requires much effort. Such correlations should
be revised periodically as conditions warrant. Once established, they
should be multiplied by a labor cost in $/hr, which includes labor
overhead, before adding to the cost function.

As can be seen, the cost function can get rather lengthy. However,
all the terms mentioned above are expressions of the form given by
formula (14.89). Labor hour correlations can also be expressed this
way, Therefore, gradients and Hessians can be obtained by means of
the formulas given in Section 3.3. Since we wish the overall cost to be
close to unity in magnitude and since our transformers cost in the
neighborhood of a million dollars, we express all costs in mega-
dollars,

14.4.3 Equality Constraints

Equality constraints are those which must be satisfied exactly in the
final design. Probably the most important such constraint is on the total
transferred power or MVA which is specified by the customer. We need
to express it in terms of the chosen design variables. In the following,
we work in terms of phase quantities. The power transferred per phase.
P, is given by P=MVA/3. This is also given by

P=VsIs (14.100)

where Vs is the rms secondary phase voltage in kV and Is is the rms
secondary phase current in kA. Using Faraday’s law,

(14.101)

where B is the peak flux density in Tesla. Ns is the number of secondary
turns. AFe is the area of the iron in a cross-section of the core steel in m2,
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and f is the frequency in Hz. Expressing AFe in terms of our design
variables, we have

(14,102)

where 0.0254 converts inches to meters and ηc is a fill factor for the core
steel, i.e. the fraction of actual steel in a circle of radius Rc. The current
Is is given in terms of the current density by

(14.103)

Substituting these into the expression for power, we see that Ns cancels
out and we find

(14,104)

Divide by P to get this to be or order 1 and express it in the form of our
standard equality constraints, ci(x)=0,

(14.105)

This is an expression of the form (14.89). Note that “1 is of this form
with all the aij=0, b1=”1, and m=1. We have kept the numerical constants
explicit in (14.105) in order to reduce errors,

Perhaps the next most important equality constraint is on the per unit
reactance between the primary and secondary windings which is
specified by the customer. A simplified expression for this which works
well in practice is

(14.106)

where r is the co-ratio (=1 for a two winding transformer). Rg is the
mean radius of the gap between the primary and secondary windings
and is given by
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(14.107)

h is the average height of the two windings,

(14.108)

s is a correction factor for fringing flux,

(14.109)

(VI)b is the base MVA/phase=P and (V/N)b is the base kV/turn which is
obtained from (14.101),

(14.110)

Substituting into (14.106) and converting to standard form, we obtain

This is in the form of equation (14.89) and has been suitably normalized
to order of magnitude 1. The constants are again kept explicit to reduce
errors.

We treated Rp as an independent variable thus far since it appears in
many formulas. However, it can really be expressed in terms of other
design variables as

(14.112)

(14.111)
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Converting to standard form and suitably normalizing, we get the equality
constraint

(14.113)

An equality constraint is needed for the core weight in kilo-lbs. In terms
of the window height H, window width T, and the maximum sheet
width X which make up the core stacks shown in Fig. 14.1, this is given
by

(14,114)

The last term is a correction factor for the joints. dFe is the density of
the core iron in lbs/in3. In terms of the basic design variables,

H=hs+slacks (14.115)

where slack, is a slack distance in the window which depends on the
voltage or BIL of the winding and is a constant for the unit under
consideration,

(14.116)

and X will be taken here as 2Rc although a more exact formula can be
used for greater accuracy. Thus we obtain, in standard normalized form,

(14.117)

There is an equality expressing the tank weight in terms of the other
variables. The tank dimensions depend, not only on the size of the 3
phase core and coils but also on clearances based on voltage
considerations and on the presence of reactors, tap leads, etc. The
expression is fairly complicated and is omitted here.
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14.4.4 Inequality Constraints

We place an inequality constraint on the mean radius of the LV winding
since it must not drop below a minimum value given by

(14.118)

Expressing this in standard form, we have

(14.119)

The HV-LV gap g must not fall below a minimum value given by
voltage or BIL considerations. Calling this minimum gap gmin, leads to
the inequality

g≥gmin (14.120)

or, in standard form

(14.121)

The flux density B is limited above by the saturation of iron or by a
lower value determined by overvoltage or sound level considerations.
Calling the maximum value Bmax leads to the inequality in standard
form

(14.122)

There is also a reasonable limit on the OA current density. Js, which we
call Jmax. This is based on cooling considerations which are most severe
under FA conditions. But since the FA current density is related to the
OA current density by the ratio of FA and OA MVA's, the current
limitation can be placed on the OA current density. Thus we have, in
standard form

(14.123)
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It may be necessary to limit the tank height for shipping purposes,
Referring to Fig. 14.1, the tank height can be expressed as

H+2X+slackt≤Hmax (14.124)

where Hmax is the maximum tank height and slackt is the vertical slack
of the core in the tank and will depend on the clamping structure, the
presence of leads, etc, slackt will be a constant for a given unit. H is
given by (14.115) and, taking X≈2Rc, we get

hs+4Rc+slacks+slackt ≤Hmax (14.125)

or, in standard form,

(14.126)

The quantity in parentheses in the above formula is a constant for the
unit under consideration.

There are other inequalities involving the radial forces on the
windings which are limited by the tensile strength of the copper used,
the cooling capacity of the windings which depends on the winding
current density and fill factor, and the impulse strength which depends
on the cable type, voltage level, etc. These inequalities are fairly
inexact since detailed design codes are ultimately used to determine
winding stresses, temperatures, and impulse voltages. Nevertheless,
they place some restrictions on the initial design so that later on, in the
detailed design phase, difficulties are not encountered. In addition, all
the design variables are positive so that a positivity condition on these
variables must be included among the inequality constraints.

14.4.5 Optimization Strategy

A transformer cost minimization program has been developed based on
the formulation described above. It uses the 11 basic design variables
discussed earlier. Initial values must be selected for these variables to
start the iteration process. Because of the equality constraints, of which
there are 5, we can only select 6 variables independently. For these, we
choose an initial value for B, Binit=0.9Bmax, where Bmax is the maximum
flux density specified in the input, an initial value for Js, Js,init=0.75Jmax,
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where Jmax is the inputted maximum OA current density, an initial value
for g, ginit=gmin, with gmin the inputted minimum high-low gap, an initial
value for hs, hs,init=60, i.e. a secondary coil height of 60 inches is typical
for many of our units, an initial value for ts, ts,init=3, i.e. a secondary coil
width of 3 inches, and an initial value for tp, tp,init=4, i.e. a primary coil
width of 4 inches, both coil widths typical for our units. We also choose,
for starting values, ηs=ηp=0.5, ηc=0.88, and ecfs=ecfp=0.1. The remainder
of the starting values for the design variables are determined by satisfying
the equality constraints or equations such as Faraday’s law which was
used in their derivation or by other means based on convenience. For
greater flexibility, the user can override the starting values for the 6
variables mentioned above.

The iterations are then started. The cost and constraint functions are
evaluated, together with their gradients and Hessians. The Lagrange
multipliers are initially set to 1 for the equality constraints. The
Hessian of the Lagrangian is then formed. The matrix A is formed and
subjected to a QR factorization. During this process, if a row vector of
A is found to be linearly dependent on the other row vectors, the
corresponding constraint is dropped from the active set. This process
produces the Y, Z, L, and R=LT matrices. The vector pY is then obtained
via equation (14.71). Equation (14.77) is then solved for pz using a
modified Cholesky factorization method. The new step direction is then
determined, p=YpY+Zpz . The merit function (14.80) is then evaluated for
steps of size εp where ε increases from 0 to 1 in small increments. This
process continues until (1) the merit function starts increasing, (2) one of
the inequality constraints is violated, or (3) ε=1. If (2) is true, then the
violated constraint is included among the active constraints on the next
iteration. For the value of ε determined by the above procedure, new
Lagrange multipliers are determined by means of (14.85). If one of
these is negative for an active inequality constraint, that constraint is
dropped from the active set on the next iteration. A new set of design
variables in then determined, using (14.86), and the process repeated
until convergence is achieved, i.e. until the changes in the design
variables and Lagrange multipliers are negligible. At convergence, the
projected Hessian of the Lagrangian must be positive definite, the
equality constraints must be satisfied to a given level of accuracy, the
inequality constraints must not be violated, and (14.47) must be
satisfied to a given level of accuracy.

At this stage, details concerning the wire or cable types for the two
windings are worked out based on the optimum dimensions hs, ts, hp=
αhs, and tp. From the formula for the given power per phase. P,
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P=VsIs=VpIp (14.127)

where Vs and Vp are known (inputted) secondary and primary voltages,
we can determine the phase currents Is and Ip for the secondary and
primary windings respectively. From these phase currents and the
optimized current densities Js and Jp, we obtain secondary and primary
turn areas As=Is/Js and Ap=Ip/Jp. We use (14.110) to get Volts/turn in
terms of the optimized variables and, using the known secondary and
primary voltages, we obtain the number of secondary and primary turns
Nt and Np. In addition, from the BIL levels of the windings which are
inputted, we obtain, via tables, the required paper and key spacer
thicknesses for the two windings. Staying within these constraints, a
wire size (magnet wire or cable) is selected by a search procedure from
those that are available. In arriving at a suitable wire type, eddy current
loss and impulse strength limitations are considered. The possibility of
needing to use several parallel wires or cables is also considered in the
search process. If a wire (cable) size or parallel package of wires (cables)
cannot be found which would meet all the requirements, the wire area is
then allowed to change. This would change the current density on
subsequent iterations but as long as it remains below Jmax, this is
acceptable.

Having arrived at a suitable wire size, from the paper and key
spacer thicknesses along with other allowances such as for cross-overs
and thinning, the fill factors of the two windings ηs and ηp can be
determined. Also from the optimized core radius, a better value for the
core fill factor ηc can be determined. These fill factors are then used in
subsequent iterations.

With optimized design variables as starting values and the newly
determined fill factors, iterations are resumed until convergence is
achieved. Wire sizes are then determined for these new optimized
parameters and new fill factors determined and the process continued
until wire sizes and fill factors no longer change between sets of
iterations.

At this point, the core radius may not correspond to one of our
standard radii. It is therefore set to the nearest standard value and an
equality constraint is imposed on the core radius. Rc=R0, or in standard
form

(14.128)
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where R0 is a standard radius. The entire iteration process is then restarted
with this new equality constraint. Since the starting values for the design
variables and the fill factors are the values arrived at by the optimization
process up to this point, the iterations with the fixed core radius usually
converge very quickly.

On output, the program prints out the total cost of the optimized unit
and a detailed breakdown of this cost such as the cost of each coil, the
core cost, the tank cost, the oil cost, the cost of radiators, the cost of
load and no-load losses, labor costs itemized by each job type, and a
summary of the total material, labor, loss, and overhead costs. In
addition, the physical values associated with these costs such as pounds
of material, kW of loss, or labor hours are also printed out. The
optimum values of the design variables are printed out as well as
additional design information such as the tank dimensions, details of
the magnet wire or cable used for each winding, the number of turns
and the turns/disk for each winding, the paper and key spacer
thicknesses for the windings, the number of radiators and their height,
and the size of the conservator if needed.
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