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Preface

Mechatronics	 is	 a	 multidisciplinary	 field	 and	 synergistic
combination	 of	 electronic	 engineering,	mechanical	 engineering
and	 software	 engineering.	 Therefore	 knowledge	 of	 these
disciplines	 is	 a	must	 for	mechatronic	 engineers	 as	 well	 as	 for
mechanical	 and	 software	 engineers.	 They	 should	 have	 a	 basic
understanding	 of	 electrical	 engineering	 to	 be	 able	 to	 work	 on
mechatronic	systems.
You	 can	 find	 mechatronic	 systems	 in	 nearly	 every	 area	 of
modern	 life,	 from	 rather	 simple	 white	 goods	 to	 much	 more
complex	systems	such	as	are	found	in	satellites.	I	have	used	the
practical	applications	 found	 in	modern	vehicles	as	examples	of
complex	 mechatronic	 systems.	 Mechanical,	 electrical	 and
software	 components	 are	 needed	 to	 realise	 complex
functionalities	 like	 hybrid	 and	 electrical	 powertrains	 in	 hybrid
and	 electric	 vehicles	 (HEV/EV),	 electric	 power	 steering	 or
advanced	driver	assistant	systems.	Automotive	applications	are
therefore	 ideal	 for	 demonstrating	 the	 application	 of	 the
electrical	topics	introduced	in	this	textbook.
The	 aim	 of	 this	 textbook	 is	 the	 introduction	 of	 basic	 concepts
and	 laws	 of	 electrical	 engineering	 with	 an	 emphasis	 on
mechatronic	 systems.	 It	 is	 based	 on	 a	 one-semester
introduction	 course	 in	 the	 “Fundamentals	 of	 electrical
engineering	 for	 mechatronics”	 at	 the	 University	 of	 Applied
Sciences	in	Aachen,	Germany.
The	target	group	are	students	of	either	mechatronics,	or	other
engineering	topics	who	require	a	brief	 introduction	to	electrical
engineering.	 In	 addition,	 non-electrical	 engineers	 working	with
mechatronic,	 or	 electrical	 systems	 can	 use	 this	 textbook	 as	 a
quick	start	to	understanding	electrical	engineering.	The	focus	of
this	book	 is	 to	help	 students	understand	electrical	 circuits	and
to	learn	different	methods	of	how	to	analyse	them.
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The	 book	 starts	 with	 an	 introduction	 to	 the	 basic	 laws	 and
concepts	involved	in	solid	state	physics	and	electric	fields.	Then
basic	electric	circuit	concepts	and	components	like	resistors	and
sources	are	 introduced.	The	main	part	of	 this	book	 focuses	on
circuit	 analysis	 techniques.	 For	 example,	 DC	 circuits	 are
analysed	 in	 chapter	 four	 using	 Kirchhoff’s	 laws.	DC	 analysis	 is
extended	in	chapter	five	using	structured	methods	of	analysing
circuits	 using	 nodal,	 or	 mesh	 analysis.	 In	 chapter	 six	 the
operational	 amplifier	 is	 introduced	 as	 the	 first	 more	 complex
electrical	 device	 and	 circuits	 with	 operational	 amplifiers	 are
analysed.
After	 DC	 analysis,	 time-dependent	 circuits	 are	 analysed.
Chapter	 seven	 starts	 with	 an	 introduction	 to	 capacitors	 and
inductors	as	energy	storage	elements.	These	elements	are	used
to	build	circuits	with	transient	behaviour.	Afterwards	AC	circuits
are	analysed	using	complex	AC	analysis.
In	chapter	eight	simple	circuits	are	combined	into	more	complex
building	blocks.	The	analysis	of	complex	circuits	can	be	reduced
to	 the	 analysis	 of	 simpler	 sub-circuits	 using	 the	 concept	 of
building	 blocks.	 Chapter	 nine	 deals	 with	 AC	 power	 and	 in
chapter	10	oscillating	circuits	are	introduced.
More	 complex	 circuit	 elements	 are	 part	 of	 chapter	 11.	 It
includes	 semiconductor	 devices	 like	 diodes,	 biopolar	 junction
transistors	 and	 MOSFETs.	 The	 textbook	 finishes	 with	 a	 short
introduction	to	the	important	field	of	circuit	simulation.
In	 addition	 to	 this	 theoretical	 introduction	 using	 a	 textbook,
exercises	are	very	important	to	gain	a	deeper	understanding	of
the	 subjects.	 Exercises	 and	 solutions	 to	 each	 of	 the	 chapters
can	be	found	online	under	www.degruyter.com.
Last	but	not	least,	I	would	like	to	thank	Prof.	Dr.	Martin	Ossmann
for	 discussing	 the	 technical	 details	 and	 for	 his	 very	 helpful
feedback	 as	well	 as	 to	Gary	 Evans	 for	 editing	 the	 text	 and	 to
Caroline	Huertgen	for	her	support	with	the	images.

https://engineersreferencebookspdf.com

http://www.degruyter.com


Table	of	Contents

The	Fundamentals	of	Electrical	Engineering
Title	Page
Copyright	Page
Preface
1	The	fundamentals	of	solid-state	physics
1.1	 Charge	 carriers,	 crystal	 structure	 and
conductivity
1.2	The	electrical	properties	of	solids

2	Fundamental	electrical	laws
2.1	The	basics	of	electric	field	theory
2.2	Electric	potential	and	voltage
2.3	Displacement	field	and	electric	flux
2.4	Electric	current	and	current	density

3	Fundamental	circuit	elements
3.1	Electric	circuits
3.2	Consumer	and	generator	system
3.3	Voltage	sources
3.4	Ideal	current	sources
3.5	Resistance,	resistors	and	Ohm’s	law
3.5.1	Real	resistors
3.5.2	Short	circuit	and	open	load
3.5.3	Real	voltage	sources
3.5.4	Real	current	sources
3.5.5	Transformation	of	sources

4	Fundamental	electrical	circuit	laws
4.1	Kirchhoff’s	laws
4.1.1	Kirchhoff’s	current	law

https://engineersreferencebookspdf.com



4.1.2	Kirchhoff’s	voltage	law
4.2	Operating	point
4.3	Wye-Delta	transformation
4.4	Meters	and	measurements
4.5	Power	and	energy
4.6	Maximum	power	transfer
4.7	Dependent	and	independent	sources

5	Circuit	analysis
5.1	Nodal	analysis
5.2	Mesh	analysis
5.3	Linearity	and	Superposition
5.4	Two-terminal	circuit	and	Thévenin’s	theorem
5.5	Norton’s	theorem

6	Operational	amplifier
6.1	Operational	amplifier
6.2	Operational	amplifier	circuits

7	Time	domain	circuit	analysis
7.1	Capacitor
7.2	Inductors
7.3	Transient	effects	and	switching
7.3.1	First	order	circuit	–	the	natural	response
7.3.2	First	order	circuit	–	complete	response
7.3.3	Second	order	circuit	–	the	natural	response
7.3.4	Second	order	circuit	–	the	complete	response

7.4	AC	Analysis
7.4.1	Vector	diagram
7.4.2	Complex	numbers
7.4.3	Application	of	complex	numbers	to	AC	circuits
7.4.4	AC	circuits
7.4.5	Kirchhoff’s	laws	for	AC	circuits

8	Building	blocks
8.1	High-pass	filter

https://engineersreferencebookspdf.com



8.2	Bode	plot
8.3	Low-pass	filter
8.4	Higher	order	filters
8.5	Active	filter

9	AC	power
9.1	 AC	 power	 of	 a	 pure	 resistive	 two	 terminal
network
9.2	 AC	 power	 of	 a	 pure	 inductive	 two	 terminal
network
9.3	AC	power	of	a	mixed	two	terminal	networkwith	L,
R	and	C

10	Oscillating	circuits
10.1	Series	configuration
10.2	Parallel	configuration

11	Semiconductor	devices
11.1	Diode
11.2	Bipolar	transistor
11.3	MOSFET

12	Circuit	simulation
PSPICE

References
Index

https://engineersreferencebookspdf.com



1	The	fundamentals	of	solid-state
physics

1.1	Charge	carriers,	crystal	structure	and
conductivity

You	should	be	familiar	with	some	very	basic	concepts	of	matter
and	electrical	quantities	such	as	charge,	current	and	voltage	in
order	 to	 describe	 the	 operation	 of	 electronic	 circuits.	 Matter
consists	 of	 atoms	 made	 of	 a	 nucleus	 which	 is	 orbited	 by
negatively	 charged	electrons.	 The	nucleus	 itself	 is	made	up	of
positively	 charged	 protons	 and	 neutrons	 without	 an	 electrical
charge.	 Electric	 charge	 is	 measured	 in	 coulombs	 (C).	 The
smallest	 fundamental	 unit	 of	 electrical	 charge	 is	 a	 physical
constant	called	the	elementary	positive	charge:

All	 charges	 are	 an	 integer	multiple	 of	 this	 elementary	 charge.
The	proton	has	a	charge	of	+e	while	the	electron	has	a	charge
of	–e.
As	 a	 consequence	 of	 quantum	 mechanics,	 the	 electrons	 of	 a
single	 isolated	 atom	 (not	 interacting	 with	 other	 atoms)	 can
occupy	 only	 discrete	 energy	 levels	 (atomic	 orbitals),	 see	 Fig.
1.1.

Fig.	1.1:	Splitting	of	discrete	energy	levels	into	energy	bands	for	increasing	number	of
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atoms.

If	 several	 atoms	 form	 a	 molecule	 by	 chemical	 bonding	 the
atomic	 orbitals	 split	 into	 separate	 molecular	 orbitals	 with
different	 energy	 levels.	 Fig.	 1.1	 shows	 this	 splitting	 of	 energy
levels:	For	an	H2	molecule	with	two	atoms	the	energy	levels	of
the	 single	 atoms	 split	 into	 two	 energy	 levels	 with	 the	 lower
energy	 level	 being	 occupied	 by	 two	 electrons.	 In	 general	 the
outermost	 electrons	 (valence	 electrons)	 can	 participate	 in	 the
formation	 of	 chemical	 bonds	 with	 other	 atoms	 to	 form
molecules,	in	solid,	liquid	or	gaseous	states.
When	 a	 large	 number	 of	 atoms	 form	 a	 solid	 the	 number	 of
orbitals	 (proportional	 to	 the	 number	 of	 valence	 electrons)
becomes	very	large	and	the	difference	in	energy	between	these
orbitals	becomes	very	small.	In	consequence	solids	(with	about
1023	or	more	atoms)	show	continuous	energy	bands	rather	than
discrete	 energy	 levels.	 The	 energy	 bands	 can	 overlap	 or	 are
separated	 by	 intervals	 of	 energy	 without	 orbitals	 (electrons
within	 the	 solid	 cannot	 have	 these	 energies).	 These	 forbidden
energy	 intervals	 are	 called	 band	 gaps	 and	 the	 total	 of	 bands
and	band	gaps	is	called	the	band	structure.
Fig.	 1.2	 shows	 a	 simplified	 diagram	 of	 the	 electronic	 band
structure	 of	 crystalline	 solids	 on	 the	 right.	 The	 shape	 of	 the
band	structure	depends	on	the	atoms	forming	the	solid	and	its
crystal	structure.

Fig.	1.2:	The	electronic	band	structure	of	solids:	metal	(left);	semiconductor	(center);
insulator	(right).

The	electric	properties	of	a	solid	are	mainly	determined	by	the
band	 structure	 around	 the	 so-called	 Fermi	 level	 (see	 Fig.	 1.2)
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where	 the	 Fermi	 level	 in	 a	 simplified	 image	 divides	 the	 band
structure	into	a	region	at	a	low	energy	level	that	is	occupied	by
electrons	and	a	 region	at	 a	higher	energy	 level	 that	 is	 empty.
The	highest	 (almost	 fully)	 occupied	band	 is	 called	 the	 valence
band	and	 the	 lowest	 (almost)	empty	band	 is	called	conduction
band.	Conductivity	occurs	if	the	conduction	band	is	partly	filled
by	electrons	or	electrons	are	missing	in	the	valence	band.

1.2	The	electrical	properties	of	solids

Electrical	 properties	 can	 be	 distinguished	 depending	 on	 the
presence	and	size	of	a	band	gap	at	the	Fermi	level.
	
Metals
The	valence	and	conduction	band	overlap	 (the	Fermi	 level	 lies
within	 this	overlapping	band)	or	 the	Fermi	 level	 lies	within	 the
conduction	 band	 (not	 shown)	 and	 therefore	 the	 band	 is	 partly
filled	with	electrons	regardless	of	temperature.	These	electrons
form	 a	 “sea”	 of	 practically	 free	 electrons	 moving	 in	 the
background	of	the	positively	charged	crystal	structure	(Fig.	1.3).
The	electron	density	is	of	the	same	magnitude	as	the	density	of
the	atoms.	For	example	the	density	of	 free	electrons	 in	copper
is	about	8·1022	electrons	per	cm–3.	The	conductivity	is	very	high
as	 the	 electrons	 can	 easily	 absorb	 energy.	 Conductivity
decreases	 with	 increasing	 temperature.	 Classic	 examples	 are
silver,	copper	and	iron	(see	Tab.	1.1).

Fig.	1.3:	The	crystal	structure	of	a	metal:	positively	charged	atomic	cores	surrounded
by	delocalized	free	electrons.

Insulators
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In	 an	 insulator	 the	 Fermi	 level	 is	 located	 within	 a	 large	 band
gap.	The	valence	band	 (at	absolute	zero)	 is	 fully	occupied	and
the	 conduction	 band	 is	 empty,	 resulting	 in	 no	 conductivity.	 At
higher	temperatures	electrons	can	be	excited	to	the	conduction
band	 due	 to	 thermal	 energy	 (leaving	 a	 hole	 in	 the	 valence
band),	 but	 at	 reasonable	 temperatures	 the	 number	 of	 excited
electrons	is	negligible	and	there	is	no	conductivity.
Examples	 of	 insulators	 are	 glass	 or	 plastic	materials,	 see	 Tab.
1.1.
	
Semiconductors
Like	for	insulators	the	Fermi	level	for	pure	semiconductors,	(also
known	 as	 intrinsic	 semiconductors),	 is	 within	 a	 band	 gap	 of
width	ΔE,	but	this	time	the	band	gap	is	smaller.	Semiconductors
are	isolators	at	absolute	zero.	Thanks	to	the	smaller	band	gap,
electrons	 can	 be	 excited	 to	 the	 conduction	 band	 more	 easily
due	 to	 thermal	 energy.	 As	 the	 excitation	 of	 electrons	 is	 a
thermal	 effect	 the	 number	 of	 intrinsic	 electrons	 in	 the
conduction	band	ni	is	strongly	temperature	dependent:

Here	kB=1.38…·10-23	J/K	which	is	the	Boltzmann	constant.
When	an	electron	is	excited	to	the	conduction	band	this	electron
is	missing	in	the	valence	band.	This	missing	electron	is	called	an
electron	 hole,	 or	 defect	 electron	 and	 also	 contributes	 to
conductivity.	The	density	of	holes	is	the	same	as	the	density	of
excited	electrons.	The	conductivity	of	semiconductors	 is	higher
than	 that	of	 insulators,	but	 still	 significantly	 lower	 than	 that	of
metals.
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Fig.	1.4:	The	crystal	structure	of	silicon.

As	 every	 excited	 electron	 generates	 a	 hole	 the	 density	 of
electrons	 n0	 and	holes	 p0	 is	 the	 same	and	 corresponds	 to	 the
intrinsic	charge	carrier	density	ni:

The	 opposite	 of	 the	 generation	 of	 electron-hole	 pairs	 is	 called
recombination.	 The	 recombination	 rate	 depends	 on	 the	 carrier
density	 of	 electrons	 and	 holes.	 The	 rate	 of	 generation	 and
recombination	of	electron-hole	pairs	is	temperature	dependent.
In	thermal	equilibrium	both	rates	are	the	same	and	the	number
of	free	electron-hole	pairs	is	constant	at	the	given	temperature.
The	equality	of	the	two	rates	leads	to	the	mass	action	law:

The	 product	 of	 the	 charge	 density	 of	 the	 free	 electrons	 and
holes	 equals	 the	 square	 of	 the	 intrinsic	 charge	 carrier
concentration.	 Mass	 action	 law	 also	 holds	 true	 for	 doped
semiconductors.
The	 most	 important	 semiconductor	 used	 in	 semiconductor
devices	is	silicon.
The	band	gap	of	silicon:

~1.1	eV	(where	1	eV	=	1.602…·10-19	J	is	a	measure
of	small	scale	energy)
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Atom	density:

~5·1022	atoms	per	cm-3

The	 number	 of	 intrinsic	 charge	 carriers	 due	 to	 thermal
activation	at	room	temperature	(293	K):

~1.5·1010	electrons	per	cm-3	
~1.5·1010	holes	per	cm-3

This	 example	 shows	 that	 the	 carrier	 density	 of	 intrinsic
semiconductors	like	silicon	is	significantly	lower	than	of	metals.
Therefore	 intrinsic	 semiconductors	 are	 rather	 poor	 electrical
conductors.
Other	 examples	 of	 intrinsic	 semiconductors	 are	 germanium
(band	gap	about	0.7	eV),	SiC	 (band	gap	about	2.3	eV)	or	GaN
(band	gap	about	3.2	eV).
	
Doped	semiconductors
The	electron	density	and	conductivity	of	semiconductors	can	be
varied	by	so	called	doping.	By	doping	small	amounts	of	silicon
atoms	 (with	 four	 valence	 electrons	 per	 atom)	 are	 replaced	 by
other	 atoms	with	 a	 different	 number	 of	 valence	 electrons	 in	 a
very	 controlled	manner.	 In	 p-type	 semiconductors	 the	 number
of	 valence	 electrons	 is	 less	 than	 4	 (e.g.	 boron,	 three	 valence
electrons)	and	holes	are	easily	generated	as	majority	carriers.	In
n-type	semiconductors	the	number	of	valence	electrons	is	more
than	four	(e.g.	arsenic,	five	valence	electrons)	and	electrons	as
majority	carriers	are	easily	generated.	 In	 this	way	 the	electron
(or	 hole)	 density	 of	 the	 semiconductor	 can	 be	 changed	 to	 a
desired	number.
Fig.	1.5	shows	the	crystal	structure	of	silicon	doped	with	arsenic
(left	side)	as	a	donor.	The	binding	of	 the	additional	electron	to
the	 arsenic	 atom	 is	 rather	 weak	 and,	 as	 shown	 in	 the	 band
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structure	in	Fig.	1.5	(right),	the	energy	levels	of	this	electron	are
within	the	band	gap,	just	0.049	eV	below	the	conduction	band.
This	electron	can	easily	be	excited	to	the	conduction	band	even
at	low	temperatures	and	can	increase	conductivity.	Note	that	no
hole	is	generated	in	the	valence	band.

Fig.	1.5:	The	crystal	structure	of	arsenic-doped	silicon,	n-type	semiconductor	(left)
and	the	band	structure	of	a	n-type	semiconductor	showing	the	donator’s	energy

levels	within	the	band	gap	(right).

The	 temperature	 dependence	 of	 a	 doped	 semiconductor	 is
depicted	 in	Fig.	1.6.	Even	at	 low	temperatures	 (some	10	K)	all
impurity	 atoms	 are	 ionized	 generating	 electrons	 in	 the
conduction	 band	 (n-type	 semiconductors)	 or	 holes	 in	 the
valence	 band	 (p-type	 semiconductors).	 In	 a	 wide	 temperature
range	 around	 room	 temperature	 the	 carrier	 density	 is	 almost
constant	 n0	 and	 equals	 the	 density	 of	 impurity	 atoms	 ND.	 At
higher	 temperatures	 intrinsic	 carriers	 are	 increasingly
generated.
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Fig.	1.6:	The	carrier	density	n	of	an	n-type	semiconductor	as	a	function	of
temperature:	solid	line	=	total	carrier	density	n,	dotted	line	=	intrinsic	carrier	density

ni;	ND	is	the	density	of	impurity	atoms.

As	 the	mass	 action	 law	 is	 also	 valid	 in	 doped	 semiconductors
the	 density	 of	minority	 charge	 carriers	 can	 be	 calculated,	 e.g.
for	n-type	semiconductors:

Tab.	 1.1	 lists	 some	 examples	 for	 metals,	 semiconductors	 and
insulators	and	corresponding	conductivity	values.

Tab.	1.1:	The	conductivity	values	and	electrical	classification	for	certain	materials.

Classification Material Specific	conductivity	σ
[S/m]

Metal Silver 61·106

Copper 58·106

Iron 10·106

Semiconductor Germanium 1.45
Silicon	(pure) 252·10-6

Insulator Plastic	material 	10-9

Glas 	10-9

Diamond 	10-9
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2	Fundamental	electrical	laws

2.1	The	basics	of	electric	field	theory

Any	 electric	 charge	 is	 responsible	 for	 an	 electric	 field	 that
surrounds	 the	 charge.	 Forces	 are	 exerted	 on	 each	 other	 by
charges	due	to	this	electric	field.	Charges	with	same	sign	repel
whereas	 charges	 with	 an	 opposite	 sign	 attract.	 The	 force	 of
charge	Q2	on	another	charge	Q1	can	be	expressed	by	Coulomb’s
law:

As	shown	in	Fig.	2.1	R	is	the	separation	of	the	two	point	charges
Q1	 and	 Q2.	 	 is	 the	 unit	 vector	 along	 the	 line	 joining	 the
charges.	 The	 parameter	 ε	 =	 ε0	 ·	 εr	 is	 the	 permittivity	 of	 the
surrounding	 material	 between	 Q1	 and	 Q2.	 Constant	 ε0	 is	 the
permittivity	 of	 free-space	 (ε0	=	 8.854…·10-12	 As/Vm)	 and	 εr	 is
the	 relative	 permittivity	 of	 the	 material.	 For	 a	 vacuum	 the
relative	permittivity	is	equal	to	1.
Of	 course	 Q1	 exerts	 a	 force	 of	 the	 same	 magnitude,	 but
opposite	direction	on	Q2.	The	force	is	directly	proportional	to	the
product	of	the	charges	and	inversely	proportional	to	the	square
of	the	distance.

Fig.	2.1:	An	illustration	of	Coulomb’s	law
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The	electric	 field	 strength	 	describes	 the	 force	of	 the	electric
field	onto	charged	particles.	Consider	a	very	small	charge	Q1	in
the	 electric	 field	 of	 Q2.	 The	 force	 of	 Q2	 on	 small	 charge	Q1	 is
given	by	Coulomb’s	law	and	the	electric	field	strength	is:

The	unit	of	the	electric	field	strength	is	N/C	=	V/m.
The	 electric	 field	 strength	 is	 parallel	 to	 the	 force	 for	 positive
charge	Q1	and	antiparallel	 for	negative	charge	Q1.	The	electric
field	strength	can	be	depicted	by	electric	field	lines	as	shown	in
Fig.	2.2.	The	field	lines	normally	start	at	the	positive	and	end	at
the	 negative	 charge,	 the	 direction	 is	 indicated	 by	 arrows.	 The
strength	of	 the	 field	 is	given	qualitatively	by	 the	 separation	of
the	field	lines:	the	closer	the	lines	the	higher	the	strength.

Fig.	2.2:	Electric	field	lines	for	two	charges	(left)	and	the	voltage	in	an
inhomogeneous	electric	field	(right)

2.2	Electric	potential	and	voltage

When	 electrical	 forces	 act	 on	 a	 particle	with	 charge	Q1,	 it	will
possess	 potential	 energy.	 To	 move	 the	 particle	 in	 an	 electric
field	of	 strength	 	along	a	distance	 	you	have	 to	expend	 (or
you	gain)	the	energy	dE:
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Do	not	mix	up	electrical	field	strength	 	(it	is	a	vector	field)	with
the	electrical	energy	E	which	is	a	scalar.	 If	a	positive	charge	is
moved	in	the	direction	of	the	electric	field	it	gains	energy	(dE	
0),	 if	 it	 is	 moved	 in	 opposite	 direction	 you	 have	 to	 expend
energy	(dE	 	0).	If	moved	perpendicular	to	the	field	on	the	lines
of	 same	 potential	 the	 energy	 is	 zero.	 These	 lines	 of	 same
potential	are	called	equipotential	lines.
The	electrical	 voltage	 is	now	defined	as	 the	energy	needed	 to
move	the	particle	in	an	electric	field	from	point	A	to	B	divided	by
the	charge	Q1:

The	 electrical	 voltage	 is	 a	 scalar	 quantity	 and	 the	 unit	 for	 the
voltage	is	the	volt	(V).
In	a	homogeneous	electrostatic	field	(the	electric	field	strength
has	 the	 same	 size	 and	 direction	 everywhere)	 the	 voltage
between	A	and	B	with	distance	d	is	simply:

The	voltage	in	case	of	electro	static	fields	is	independent	of	the
path	the	particle	takes	within	the	field	when	moving	from	point
A	to	B	(path	P1	or	P2):

Or	in	other	words:	The	line	integral	along	any	closed	path	(loop)
is	always	zero:

This	equation	is	one	of	Maxwell’s	equations	for	the	electrostatic
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field	 in	 integral	 form.	 It	 can	 be	 rewritten	 in	 differential	 using
Stoke’s	integral	theorem.
	
Excursus:	Stoke’s	integral	theorem

For	 an	 arbitrary	 vector	 field	 	 the	 integral	 along	 a
closed	loop	around	any	arbitrary	surface	 	is:

Applying	 Stoke’s	 integral	 theorem	 to	 the	 Maxwell	 equation
given	above	yields:

As	 this	 equation	 holds	 true	 for	 any	 surface	 	 the	 second
integrand	has	to	be	zero:

This	 differential	 form	 of	 Maxwell’s	 equation	 states	 that	 the
electrostatic	 field	 has	 no	 curls.	 The	 electric	 potential	 is	 the
voltage	at	any	point	 referred	 to	a	 fixed	 reference	point.	 It	 is	a
scalar	field.	As	the	voltage	is	always	referred	to	two	locations	(A
and	 B)	 the	 voltage	 can	 be	 written	 in	 terms	 of	 the	 electric
potential	as:

This	equation	is	true	for	any	path	between	to	arbitrary	locations
and	therefore	yields	the	correlation	of	electric	field	and	electric
potential:
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The	 electric	 field	 is	 given	 by	 the	 gradient	 of	 the	 electric
potential.

2.3	Displacement	field	and	electric	flux

As	given	above	Coulomb’s	law	and	the	electric	field	of	a	charge
is	strongly	dependent	on	the	surrounding	material:	by	changing
the	 surrounding	 material	 the	 electric	 field	 is	 changed.	 This
dependence	 is	 given	 by	 the	 relative	 permittivity	 εr.	 It	 is	 a
material	parameter	without	a	unit.	In	the	simplest	case	εr	is	just
a	 constant	 scalar,	 but	 in	 general	 it	 can	 also	 be	 non-linear	 (εr
depends	on	 	or	 	like	in	ferroelectric	materials	such	as	BaTiO3)
or	anisotripic	(εr	is	a	tensor	and	 	and	 	are	not	parallel).	These
three	cases	are	depicted	in	Fig.	2.3.

Fig.	2.3:	The	relationship	between	electric	and	displacement	field	:	linear	with
constant	εr	(left);	non-linear	with	hysteresis	shape	(center);	anisotropic	(right).

If	 the	material	 is	an	electrical	 insulator	 the	material	 is	called	a
dielectric.	 An	 external	 electric	 field	 causes	 a	 shift	 of	 electric
charges	inside	the	dielectric	as	shown	in	a	simplified	picture	in
Fig.	 2.4.	 The	 origin	 of	 the	 dielectric	 polarization	 can	 be	 a
displacement	 polarization	 of	 the	 atoms,	 or	 an	 orientation
polarization	by	the	alignment	of	permanent	dipoles	with	respect
to	the	external	field.	In	both	cases	the	polarization	field	 	has	an
opposite	 direction	 compared	 with	 the	 external	 field	 and	 the
external	field	is	weakened.
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Fig.	2.4:	The	displacement	polarization	(left)	and	orientation	polarization	(right).

To	get	rid	of	the	material	dependence	the	electric	displacement
field	can	be	defined	by	the	superposition	of	the	external	electric
field	and	the	polarization	field:

The	 displacement	 field	 or	 electric	 flux	 density	 describes	 the
density	 of	 field	 line	 independent	 of	 the	 surrounding	 material.
The	unit	for	the	displacement	field	is	C/m2.
For	a	point	charge	q	in	the	origin	of	the	coordinate	system	the
displacement	field	at	location	 	yields:

As	the	displacement	field	describes	the	density	of	field	lines	an
electric	flux	is	associated	with	it.	The	electric	flux	ψ	is	given	by
the	 integral	 of	 the	 displacement	 field	 perpendicular	 to	 any
arbitrary	surface	 :

The	 unit	 of	 the	 electrical	 flux	 is	 C.	 If	 the	 displacement	 field	 is
homogeneous	and	the	surface	 	is	perpendicular	to	the	field	the
electric	flux	is	just:
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Fig.	2.5:	Electric	flux	 	through	a	surface	 	with	surface	element	d	

The	displacement	field	of	a	point	charge	is	given	above	and	the
electric	flux	for	any	arbitrary	surface	is:

Integrating	 over	 a	 closed	 surface	with	 the	 point	 charge	 inside
gives	 the	 total	 electric	 flux	 of	 the	 point	 charge.	 This	 closed
surface	integral	is	in	particularly	simple	for	a	sphere	(with	radius
r,	 see	 Fig.	 2.5)	 as	 the	 displacement	 field	 everywhere	 is
perpendicular	to	the	sphere.

The	total	electric	flux	through	a	closed	surface	like	the	sphere	is
equal	to	the	point	charge	inside	the	surface.	This	result	is	valid
for	any	surface.	In	addition	any	arbitrary	charge	distribution	can
be	 built	 by	 point	 charges	 and	 the	 total	 charge	 Q	 within	 the
closed	surface	is	given	by	the	charge	density	 :

Second	Maxwell’s	equation:
For	any	arbitrary	charge	distribution	within	a	volume	V	the	total
electric	flux	through	the	closed	surface	 	around	the	volume	is
equal	to	the	total	charge:
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Excursus:	Gauss’s	integral	theorem

For	 an	 arbitrary	 vector	 field	 	 the	 integral	 over	 a
closed	surface	around	an	infinitesimal	volume	V	is:

The	flux	through	a	closed	surface	of	an	infinitesimal
volume	equals	the	divergence	of	the	original	vector
field	 .

Applying	 Gauss’s	 theorem	 to	 the	 second	 Maxwell’s	 equation
yields	its	differential	form:

Charges	are	the	sources	of	the	displacement	field.

2.4	Electric	current	and	current	density

The	 rate	 of	movement	 of	 net	 positive	 charge	dq(t)	 per	 unit	 of
time	 dt	 through	 a	 cross	 section	 of	 a	 conductor	 is	 known	 as
current:

For	time-dependent	values	lowercase	letters	are	used,	for	time-
independent	values	capital	letters.	The	SI	basic	unit	for	current
is	 the	Ampere	 (A)	where	1	Ampere	 corresponds	 to	 the	 charge
flow	of	1	C	within	1	second:
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As	we	have	seen	in	chapter	1.2	free	electrons	are	the	exclusive
charge	 carriers	 in	 most	 metallic	 conductors	 such	 as	 copper
wires.	 Since	 the	 charge	 of	 electrons	 is	 negative	 and	 since	 the
direction	designated	 for	 the	current,	as	given	above,	 is	 that	of
the	 net	 positive	 charge,	 the	 charges	 in	 the	wire	 thus	move	 in
opposite	direction	to	the	current	designation,	see	Fig.	2.6.

Fig.	2.6:	The	definition	of	conventional	(technical)	current	flow	(flow	of	positive	charge
carriers)	and	the	direction	of	electron	flow.

If	a	current	I	is	uniformly	distributed	across	a	cross-section	of	a
conductor	A	(like	a	wire)	the	current	density	J	is:

The	 unit	 for	 the	 current	 density	 is	 A/m2	 or	 (more	 realistic)
A/mm2.
To	 calculate	 the	 flow	 speed	 or	 drift	 velocity	 v	 of	 electrons	we
need	the	time	t	an	electron	needs	to	move	for	a	distance	Δl.	In
other	 words	 t	 is	 the	 time	 it	 takes	 for	 the	 charges	 in	 the	 grey
volume	of	Fig.	2.7	to	pass	through	cross-section	A.	The	charge	Q
in	the	grey	volume	inside	the	blue	volume	is:

Here	e	is	the	elementary	charge	and	n	is	the	electron	density	of
the	 conductor	 (e.g.	 8.5·1019	 mm-3	 for	 copper).	 Corresponding
current	is:

https://engineersreferencebookspdf.com



Finally	the	drift	velocity	yields:

Drift	 velocity	 is	 rather	 small	 (~1	 mm/s),	 depending	 on	 the
current,	 cross-section	 and	 electron	 density.	 Nevertheless	 the
cause	of	the	current	propagates	with	about	the	speed	of	light.

Fig.	2.7:	The	current	density	J	for	a	current	flowing	in	a	wire	with	cross-section	A
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3	Fundamental	circuit	elements

3.1	Electric	circuits

A	 collection	 of	 interconnected	 electronic	 components	 such	 as
voltage	 and	 current	 sources,	 resistors,	 capacitors	 and	 other
active	and	passive	elements	that	has	at	least	one	closed	path	in
which	 current	may	 flow	 is	 called	 an	 electric	 circuit	 or	 network
(Fig.	 3.1).	 The	 behavior	 of	 these	 networks	 can	 be	 determined
using	so-called	circuit	analysis,	either	time-independent	or	time-
dependent.
To	make	 circuit	 analysis	 easier	 the	 so	 called	 lumped	 element
model	 is	used.	This	model	simplifies	a	circuit	 in	a	way	that	the
properties	of	the	circuit,	like	resistance,	inductance	and	sources,
are	 concentrated	 into	 idealized	 electrical	 components.	 These
idealized	components	(resistors,	capacitors,	 inductors,	etc.)	are
connected	 by	 perfectly	 conducting	 wires.	 In	 addition,	 the
dimensions	 of	 the	 circuit	 have	 to	 be	 much	 smaller	 than	 the
circuit’s	 operating	 wavelength,	 or,	 in	 other	 words,	 the	 time	 it
takes	for	signals	to	propagate	around	the	circuit	can	be	ignored.

Fig.	3.1:	Simple	electric	circuits	or	networks.

There	are	two	types	of	elements	in	a	circuit:	sources	and	loads.
A	source	usually	supplies	energy	to	the	circuit.	It	is	a	force	that
drives	 the	 current	 through	 the	 circuit,	 like	 a	 battery	 or	 a
generator.	When	the	current	flows	out	of	the	positive	terminal	of
an	electric	source,	it	implies	that	nonelectrical	energy	has	been
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transformed	 into	 electrical	 energy.	 In	 contrast	 a	 load	 absorbs
the	energy	supplied	by	a	source.	The	current	delivered	by	 the
source	 passes	 through	 the	 load.	 When	 current	 flows	 in	 the
direction	 of	 a	 voltage	 drop,	 it	 implies	 that	 electrical	 energy	 is
transformed	into	nonelectrical	energy.
In	a	 circuit,	 electrical	 sources	and	 loads	may	usually	be	easily
distinguished	 by	 a	 comparison	 of	 their	 current	 direction	 and
voltage	drop	polarities:

–	Electrical	source:	voltage	polarity	opposite	to	technical
current	flow	(voltage	rise)

–	 Electrical	 load:	 voltage	 drop	 parallel	 to	 technical
current	flow	(voltage	drop)

A	 source-load	 combination	 is	 depicted	 in	 Fig.	 3.1.	 A	 node	 in	 a
circuit	is	a	point	where	two	or	more	components	or	devices	are
connected	 together.	 A	 branch	 is	 a	 part	 of	 a	 circuit	 containing
only	 one	 component	 between	 two	 nodes.	 A	 loop	 or	mesh	 is	 a
closed	 path	 through	 a	 circuit	 in	 which	 no	 electric	 element	 or
node	 is	encountered	more	than	once.	A	mesh	that	contains	no
other	 meshes	 is	 called	 an	 essential	 mesh.	 Both	 nodes	 and
meshes	play	a	major	role	in	circuit	analysis.

3.2	Consumer	and	generator	system

Both	current	and	voltage	have	an	orientation	in	electric	circuits.
As	seen	above,	the	current	flows	in	the	direction	of	the	positive
charge	 carriers	 from	 the	 positive	 terminal	 of	 a	 voltage	 source
through	the	circuit	to	the	negative.	Voltages	usually	point	from
the	 positive	 to	 the	 negative	 terminal	 of	 a	 source	 as	 shown	 in
Fig.	3.2.
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Fig.	3.2:	The	direction	of	current	and	voltage.

Consider	now	the	circuit	on	the	right	of	Fig.	3.2.	The	direction	of
current	 depends	 on	 voltages	 of	 the	 two	 sources	 and	 the
direction	 indication	 can	be	 chosen	arbitrarily	 at	 the	beginning.
Consider	voltage	U1	is	higher	than	U2,	then	the	current	flow	is	as
shown.	For	the	right	part	of	the	circuit	current	and	voltage	are
parallel	and	the	power	P	=	U	·	I	is	dissipated.	For	this	reason	it	is
called	 a	 consumer	 system	 when	 current	 and	 voltage	 are
parallel.	In	the	left	part	current	and	voltage	are	antiparallel.	This
behavior	is	called	generator	system	as	this	part	provides	power
P	=	-U	·	I.
During	circuit	analysis	it	is	common	to	use	the	consumer	system
for	 resistances	 to	 be	 able	 to	 use	 Ohm’s	 law	 in	 the	way	 given
below	without	a	minus	sign.
Before	starting	circuit	analysis,	basic	elements	like	current	and
voltage	sources	and	resistors	are	introduced.

3.3	Voltage	sources

Any	 electric	 circuit	 needs	 at	 least	 one	 point	 where	 charge
carriers	 are	 driven	 by	 a	 force.	 This	 point	 is	 called	 the	 source.
The	 driving	 force	 of	 voltage	 sources	 is	 the	 electrical	 voltage.
Voltage	sources	can	be	constant	or	may	be	a	function	of	time	as
depicted	in	Fig.	3.3.

Fig.	3.3:	Constant	(left)	and	time-dependent	(right)	voltage	source.
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Voltage	 sources	 can	 be	 based	 on	 different	 physical	 and
chemical	 principles,	 for	 example	 electrochemical	 voltage
sources	(e.g.	batteries)	and	electro-mechanical	voltage	sources
(e.g.	generators).

Fig.	3.4:	A	simple	electric	circuit	with	an	ideal	voltage	source.

The	electromagnetic	force	within	the	sources	causes	current	to
flow	as	soon	as	the	loop	is	closed.	The	current	flows	in	a	closed
loop	 from	 one	 terminal	 of	 the	 source	 to	 the	 other.	 Therefore
current	 lines	 do	 not	 have	 a	 starting	 or	 an	 ending	 point.	 The
positive	 terminal	 is	 called	 the	 anode	 whereas	 the	 negative
terminal	 is	 called	 the	 cathode.	 In	 case	 there	 are	 both	 positive
and	negative	charges	inside	a	conductor	these	different	charge
carriers	flow	in	opposite	directions.	As	already	mentioned	above
we	need	a	definition	for	the	direction	of	the	current	flow:

The	direction	of	a	current	 is	defined	to	be	same	as
the	direction	of	the	positive	charges	and	opposite	to
the	direction	of	negative	charges.

This	 definition	 implies	 that	 flow	 of	 electrons	 in	 metallic
conductors	is	opposite	to	the	direction	of	the	current.
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Fig.	3.5:	A	simple	electric	circuit	indicating	the	direction	of	current	flow	I	and	the
direction	of	electrons.

Ideal	voltage	sources
For	 an	 ideal	 voltage	 source	 the	 voltage	 at	 the	 terminals	 is
independent	 of	 the	 load	 connected	 to	 the	 terminals	 and	 the
current.	 It	 is	 called	 a	 DC	 source	 if	 the	 voltage	 is	 time-
independent	as	the	current	is	a	direct	current	in	this	case.	If	the
voltage	 of	 the	 source	 is	 a	 function	 of	 time	 (like	 a	 sinusoidal
voltage	 source)	 it	 is	 called	 an	 AC	 source	 as	 it	 produces	 an
alternating	current.
Instead	 of	 this	 physical	model	 the	 following	 graphical	 symbols
are	used	for	ideal	voltage	sources	in	electronic	schematics:

Fig.	3.6:	A	simple	notation	of	voltage	sources:	general	symbol	(left),	electrochemical
symbol	(battery,	center),	DC	generator	(right).

The	definition	of	 an	 ideal	 voltage	 source	 (voltage	 independent
of	load	connected	to	the	source)	implies	that	it	is	not	permitted
to	connect	two	(or	more)	ideal	voltage	sources	in	parallel	to	the
same	terminal.

Fig.	3.7:	Do	not	connect	ideal	voltage	sources	in	parallel.

A	series	connection	of	 ideal	voltage	sources	is	possible	and	for
the	resulting	voltage	at	the	terminals	the	voltages	of	the	single
sources	are	simply	added.
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Fig.	3.8:	The	permitted	connection	of	two	ideal	voltage	sources	in	series..

Automotive	application
The	 number	 of	 electrical	 systems	 in	 modern	 cars	 is	 steadily
increasing.	The	control	of	these	systems	is	often	achieved	using
electrical	control	units	(ECUs).	Even	in	conventional	cars	with	a
combustion	engine	 the	number	of	electrical	systems	and	ECUs
can	 be	 up	 to	 100,	 or	 even	 higher.	 ECUs	 can	 be	 found	 nearly
everywhere	 in	 the	 car:	 for	 lighting,	 motor	 control	 and
transmission	 as	 well	 as	 for	 convenience	 applications	 like	 seat
heating,	window	winders	or	multimedia	systems.	The	electrical
systems	 are	 supplied	 by	 a	 12	 V	 power	 circuit	 and	 lead	 acid
batteries	 are	 commonly	 used	 as	 electrical	 energy	 storage
elements.	To	reach	the	power	circuit	voltage	of	12	V	6	lead	acid
cells	with	a	nominal	voltage	of	about	2	V	each	are	connected	in
series.
In	electric	vehicles	 (EV)	with	an	electric	 traction	motor	 (and	 to
some	extent	also	for	hybrid	electric	vehicles	(HEV)	combining	a
combustion	and	electric	motor)	an	additional	power	circuit	with
higher	voltages	is	introduced	to	provide	sufficient	power	to	the
electric	traction	motor.	The	voltage	level	is	up	to	350–400	V	and
lithium	ion	batteries	are	used	for	the	high	voltage	power	circuit.
Again	 the	 battery	 is	 built	 up	 of	 a	 series	 connection	 of	 single
cells.	For	 lithium	ion	batteries	each	cell	has	a	voltage	of	about
3.24	V	depending	on	the	technology.	E.g.	LiFePO4	cells	have	an
end-of-charge	 voltage	 of	 about	 3.6	 V	 and	 100	 cells	 are
concatenated	in	series	to	reach	a	voltage	level	of	360	V.

3.4	Ideal	current	sources
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An	ideal	current	source	drives	a	current	I	or	i(t)	regardless	of	the
load	 connected	 to	 the	 terminals	 but	 there	 has	 to	 be	 a	 load
connected	to	the	terminals.	Without	the	load	the	current	source
cannot	produce	the	current	as	the	circuit	has	to	be	closed.	Like
for	ideal	voltage	sources	the	current	will	be	in	general	a	function
of	 time.	 Fig.	 3.9	 shows	 models	 of	 ideal	 current	 sources	 and
waveforms.

Fig.	3.9:	Models	of	ideal	current	sources	(top)	and	current	waveforms	(bottom).

For	 ideal	 current	 sources	 it	 is	not	permitted	 to	 connect	 two	or
more	in	series.	But	a	parallel	connection	of	ideal	current	source
is	 possible	 and	 the	 currents	 of	 the	 two	 sources	 are	 simply
added:
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Fig.	3.10:	Two	ideal	current	sources	connected	in	parallel.

3.5	Resistance,	resistors	and	Ohm’s	law

The	 ratio	of	 the	voltage	across	a	material	u(t)	and	 the	current
through	it	i(t)	is	called	the	resistance	of	the	material.	If	this	ratio
is	constant	for	the	material	independent	of	current	or	voltage,	is
it	called	a	linear	resistor	(short:	resistor)	and	it’s	resistance	is:

In	case	of	DC	current	and	voltage	sources	Ohm’s	law	yields:

Fig.	3.11:	Current	I	and	voltage	U	for	a	resistor	R.

This	law	is	called	Ohm’s	law	and	the	SI	unit	for	the	resistance	is
the	Ohm	or	Ω.
The	resistor	is	a	simple	component,	usually	considered	as	linear,
concentrated	 (lumped	 model)	 and	 is	 a	 constant.	 Symbols	 for
resistors	are:

Fig.	3.12:	Different	models	for	resistors	used	in	electric	circuits:	European	style	(left)
and	American	style	(right).
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The	reciprocal	of	the	resistance	R	is	the	conductance	G	(SI	unit:
S=1/Ω,	siemens):

The	 value	 of	 the	 resistance	 of	 a	 component	 is	 mainly
determined	 by	 the	 physical	 dimensions	 of	 the	 component	 and
the	 specific	 resistivity	 of	 the	 material	 of	 which	 the	 resistor	 is
composed.	For	a	bar	of	resistive	material	of	length	l	and	cross-
section	A	the	resistance	R	is	given	by

Here	ρ(T)	 is	 the	 specific	 resistivity	of	 the	material	 in	Ω·m.	The
reciprocal	 is	called	the	specific	conductivity,	given	in	S/m.	Tab.
1.1	lists	the	specific	conductivity	values	for	some	materials.
A	 copper	 wire	 of	 1	 m	 length	 and	 a	 diameter	 of	 2	 mm	 has	 a
resistance	of	about	5.5	mΩ	at	room	temperature.
The	 (specific)	 resistivity	 of	 conductor	 metals	 is	 temperature
dependent	 and	 varies	 approximately	 linearly	 over	 (normal
operating)	 temperature	 (see	 Fig.	 3.13).	 The	 resistivity	 at
temperature	 T	 can	 be	 calculated	 based	 on	 the	 resistivity	 at	 a
given	 temperature	 (e.g.	 room	 temperature,	 R(293	 K)	 and	 a
material	dependent	constant	τ:

The	abbreviation

is	 called	 the	 temperature	 coefficient	 of	 the	 resistance.	 It
depends	on	the	material	and	the	given	temperature	(here:	293
K).	 Copper	 for	 example	 has	 a	 constant	 τ	 =	 38	 K	 and	 a
temperature	coefficient	at	room	temperature	of	α293	K	=	3.9·10-
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3	K-1.	In	other	words,	the	resistance	of	copper	increases	by	~0.4
%	for	every	degree	Kelvin	or	doubles	when	heated	up	to	463	K.
For	the	1	m	copper	wire	of	2	mm	diameter	the	resistance	at	125
°C	 (the	 ambient	 temperature	 within	 the	 engine	 compartment)
increases	by	40	%.
The	temperature	dependence	of	metals	has	a	positive	slope	and
metals	 are	 typical	 examples	 for	 materials	 with	 a	 positive
temperature	 coefficient	 (PTC):	 the	 higher	 the	 temperature	 the
higher	 the	 resistance.	 The	 opposite	 of	 PTC	 elements	 are	 NTC
elements	 (negative	 temperature	 coefficient).	 For	 these
materials	 (e.g.	 semiconductors)	 the	 resistance	 decreases	 with
increasing	temperature.

Fig.	3.13:	Temperature	dependence	of	the	resistance	of	a	conductor.

Automotive	application
Everything	is	resistive	in	any	electrical	application	and	countless
resistors	 are	 used	 in	 all	 kinds	 of	 electrical	 systems.	 Besides
resistors	in	electric	circuit	resistive	devices	can	also	be	used	as
sensors.	In	this	application	they	make	use	of	the	geometric	and
temperature	dependence	of	the	resistance	for	example.
Resistors	with	a	well	known	temperature	dependence	are	used
as	 sensors	 to	 measure	 e.g.	 air	 temperature,	 water	 or	 oil
temperature.	 Very	 often	 NTC	 materials	 with	 a	 dedicated
temperature	 dependence	 are	 used	 as	 temperature	 sensors.	 A
small	measurement	 current	 flowing	 through	 the	NTC	 causes	 a
voltage	drop	across	 this	 element.	According	 to	Ohm’s	 law	 this
voltage	 drop	 together	 with	 the	 measurement	 current
corresponds	to	a	resistance	value.	This	resistance	is	in	the	end	a

https://engineersreferencebookspdf.com



measure	 of	 the	 temperature.	 In	 Fig.	 3.14	 the	 typical
characteristics	 of	 a	 NTC	 temperature	 sensor	 is	 depicted.	 The
resistance	 varies	 in	 a	 wide	 range	 and	 makes	 a	 temperature
measurement	with	high	resolution	possible.

Fig.	3.14:	Typical	characteristic	of	a	NTC	and	circuit	symbol.

The	 geometric	 dependence	 of	 the	 resistance	 is	 used	 by
resistance	strain	gauges	to	measure	force,	pressure	or	torque.	If
a	 bar	 of	 resistive	 material	 like	 silicon	 is	 compressed	 or
lengthened,	 the	geometry	of	 the	bar	changes	as	shown	 in	Fig.
3.15	on	 the	 left	 side.	Both	 the	 length	and	 the	diameter	of	 the
bar	 change	 slightly	 if	 strain	 is	 applied	 to	 it.	 Due	 to	 the	 very
small	 geometric	 change	 the	 change	 of	 resistance	 is	 rather
small.	To	increase	the	geometric	effect	dedicated	structures	like
a	meander	are	used	(Fig.	3.15,	right	side).

Fig.	3.15:	Geometric	changes	of	a	bar	of	material	in	case	of	lengthening	(left);
resistance	strain	gauge	with	a	meander	like	structure.

As	 the	 resistance	 changes	 are	 still	 small	 the	 measurement	 is
usually	 done	 using	 four	 strain	 gauges	 configured	 in	 a
Wheatstone	bridge	configuration	(Fig.	3.16,	left).	A	Wheatstone
bridge	consists	of	two	 legs	with	two	resistors	 in	each	 leg.	Both
legs	build	a	voltage	divider.	Depending	on	theses	four	resistors
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a	 voltage	 difference	Ua	 between	 the	middle	 nodes	 of	 the	 legs
can	 be	 measured.	 In	 case	 that	 all	 resistors	 have	 the	 same
resistance	the	voltage	difference	is	zero.	If	one	resistor	changes
its	resistance	the	voltage	will	be	non-zero	and	a	measure	for	the
change	of	the	resistance.
For	 the	 measurement	 with	 strain	 gauges	 four	 elements	 are
used.	These	elements	are	mounted	in	a	way	that	the	change	in
resistance	of	 the	elements	amplifies	 the	voltage	difference	Ua.
Two	of	the	strain	gauges	are	compressed	(e.g.	the	top	left	and
bottom	 right	 element)	 and	 the	 other	 two	 are	 lengthened	 to
increase	the	voltage	difference	between	the	two	half	bridges	of
the	Wheatstone	bridge.
A	pressure	sensor	as	shown	in	Fig.	3.16	uses	four	strain	gauges
to	determine	 the	differential	 pressure	between	p1	 and	p2.	 The
four	 strain	 gauges	 are	 implemented	 onto	 a	 silicon	membrane
fabricated	 using	 microsystems	 technology.	 One	 strain	 gauge
element	 each	 is	 located	 at	 region	 “a”	 at	 the	 edge	 of	 the
membrane	and	the	other	two	are	located	at	“b”	in	the	middle	of
the	 membrane.	 Without	 a	 differential	 pressure	 each	 strain
gauge	 has	 a	 resistance	 R.	 Due	 to	 a	 differential	 pressure	 the
membrane	 is	 deformed	 and	 the	mechanical	 stress	 is	 opposite
for	 the	 two	 strain	 gauges	 in	 the	 middle	 compared	 to	 the
elements	 at	 the	 edge.	 Therefore	 the	 resistance	 of	 two	 strain
gauges	is	reduced	by	ΔR	and	for	the	other	two	it	is	increased	by
ΔR.	 The	 voltage	 difference	 between	 the	 two	 half	 bridges	 is	 a
measure	for	the	resistance	change	and	hence	for	the	pressure.

Fig.	3.16:	A	Wheatstone	bridge	(left)	with	four	strain	gauges;	pressure	sensor	for
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differential	pressure	measurement	(right).

3.5.1	Real	resistors

Of	 course	 resistors	 can	 be	made	 in	 any	 value	 and	 any	 shape
that	 is	 needed.	 But	 in	 reality	 resistors	 are	 manufactured	 in
standard	 values	 and	 a	 number	 of	 different	 shapes.	 Examples
are	the	E	series	of	resistors	with	standardized	resistance	values.
Types	 of	 resistors	 include	 composition	 type,	 wire-wound	 type
and	metal-film	type.	The	most	common	construction	technique
for	 resistors	 is	 the	 composition	 type,	 which	 uses	 carbon	 or
graphite	and	is	molded	into	a	cylindrical	shape.	As	the	shape	of
the	 cylinder	 is	 the	 same	 the	 value	 of	 the	 resistance	 and	 its
tolerance	is	color-coded	in	bands	as	shown	in	Fig.	3.17	and	Tab.
3.1.
Using	these	4	bands	the	resistance	can	be	calculated	using

Sometimes	a	fifth	band	indicates	the	reliability	of	the	device.

Fig.	3.17:	Color-coding	of	resistors.

Tab.	3.1:	Color	coding	of	resistors.
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Standard	resistance	values	for	the	E24	series	in	the	range	from
1	 to	9.1Ω	are	 listed	 in	Tab.	3.2.	Other	available	values	can	be
obtained	 by	multiplying	 these	 values	 by	 factors	 of	 10	 ranging
from	10	Ω	to	about	22·106Ω.

Tab.	3.2:	Resistance	values	in	Ω	for	the	E24	series	of	resistors.

Besides	the	resistance	value	and	the	shape	of	a	resistor	also	its
power	capability	has	to	be	taken	into	account	when	selecting	a
resistor	 for	 an	 application.	 Electrical	 power	 that	 is	 dissipated
within	a	resistor	is	converted	into	heat.	As	excessive	heating	of
the	 resistor	 may	 destroy	 the	 device	 the	 heat	 has	 to	 be
conducted	away	from	the	resistor	by	providing	a	good	thermal
path.

3.5.2	Short	circuit	and	open	load

After	an	introduction	to	resistance	and	resistors	we	will	analyze
two	extremes.	Consider	an	electric	circuit	as	shown	in	Fig.	3.18
with	a	load	resistance	R.	What	happens	for	R	=	0	Ω	and	R	=	∞
Ω?
The	 first	 case	 is	 called	 a	 short	 circuit.	 Keeping	 Ohm’s	 law	 in
mind	we	see	that	voltage	drop	is	zero	for	finite	currents:	a	zero-
Ohm	resistor	 is	equivalent	to	an	ideal	voltage	source	with	zero
volts.	In	other	words:	if	you	connect	an	ideal	voltage	source	to	a
zero-Ohm	 resistor,	 the	 current	 will	 rise	 to	 infinity.	 As	 a
conclusion,	never	place	a	short	circuit,	neither	intentionally	nor
unintentionally,	 across	 a	 voltage	 source	 to	 avoid	 excessive
currents.
The	latter	with	R	=	∞	Ω	is	called	an	open	circuit.	Again	looking
at	Ohm’s	law	it	is	obvious	that	current	will	tend	towards	0	A	(as
long	as	the	voltage	has	finite	value)	in	this	case.	This	behavior	is
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equivalent	to	a	circuit	with	an	opening	and	no	current	is	flowing.
In	 other	 words,	 as	 already	 stated	 at	 the	 beginning	 of	 chapter
3.1,	it	needs	a	closed	loop	for	currents	to	flow.

Fig.	3.18:	Simple	electric	circuit:	short	circuit	(left)	and	open	load	(right).

Automotive	application
Both	 short	 circuit	 and	 unwanted	 open	 load	 are	 severe	 fault
conditions	 in	 automotive	 applications.	 Consider	 a	 lighting
application	like	a	headlight	as	depicted	in	a	simplified	circuit	in
Fig.	3.19.	A	voltage	source	with	internal	resistance	Ri	drives	the
bulb	and	a	current	I	of	some	amperes	flows	through	the	circuit.
For	 a	 given	 voltage	 (e.g.	 12	 V	 vehicle	 electrical	 system)	 the
current	 is	 determined	 by	 the	 internal	 resistance	 and	 the
resistance	 of	 the	 bulb.	 If	 a	 short	 circuit	 occurs	 that	 shorts	 the
bulb	the	current	will	just	flow	through	the	short	circuit	path	and
it	 will	 only	 be	 limited	 by	 the	 internal	 resistance.	 Hence	 the
current	will	be	much	higher.	This	excessive	current	will	 rapidly
discharge	the	battery,	or	even	severely	damage	the	circuit	and
the	battery	until	total	destruction	of	the	system	and	maybe	the
vehicle	 occurs.	 Therefore	a	 short	 circuit	 has	 to	be	detected	 to
prevent	 damage	 to	 the	 system.	 In	 the	 simplest	 case	a	 fuse	 in
the	 circuit	 separates	 the	 battery	 from	 the	 rest	 of	 the	 circuit	 if
the	current	gets	too	high.	Alternatively	the	current	is	measured
and	a	switch	is	triggered	to	open	the	circuit	in	case	of	excessive
currents	without	using	the	fuse.
An	open	load	situation	can	happen	if	the	filament	of	the	bulb	is
broken,	no	current	flows	through	the	bulb	and	the	bulb	does	not
shine	 anymore.	 This	 malfunction	 of	 the	 lighting	 has	 to	 be
detected	at	least	in	cases	where	the	lighting	is	used	for	a	safety
critical	application	 like	headlights.	A	defect	headlight	 is	 critical
for	the	recognizability	and	visibility	of	the	vehicle	and	hence	is	a
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traffic	hazard.

Fig.	3.19:	A	simple	circuit	with	voltage	source	and	internal	resistance	to	drive	a	bulb
(left);	short	circuit	(center);	open	load	by	broken	filament	of	the	bulb	(right).

3.5.3	Real	voltage	sources

An	 ideal	 voltage	 source	 produces	 a	 voltage	 at	 the	 terminals
regardless	of	what	 is	 connected	 to	 it	 (independent	of	 the	 load
and	the	current).	In	reality	the	voltage	at	the	terminals	drops	if
a	 load	 is	 connected	 to	 the	 source.	 This	 voltage	 drop	 can	 be
modeled	 by	 an	 internal	 resistance.	 In	 reality	 this	 internal
resistance	 is	 unavoidable	 as	 every	 voltage	 source	 contains
internal	 resistive	elements	 like	wires.	Fig.	3.20	shows	a	simple
drawing	of	a	real	voltage	source	with	an	internal	resistance	Ri.

Fig.	3.20:	A	simple	schematic	for	a	real	voltage	source	with	internal	resistance	Ri	and
voltage	vs	current	characteristic.
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The	 voltage	 source	 shown	 in	 this	 simple	 schematic	 is	 divided
into	an	 ideal	voltage	source	 (Uq)	and	an	 internal	 resistance	Ri,
connected	 in	 series.	 Ra	 is	 the	 external	 load	 resistance.	 The
voltage	U10	at	the	terminals	of	the	real	voltage	source	is	then:

The	two	parameters	Uq	and	Ri	are	in	general	independent	of	the
load	 current	 I.	 As	 voltage	 U10	 is	 a	 linear	 function	 of	 the	 load
current	I.	This	type	of	voltage	source	is	called	a	linear	source.
In	the	case	of	an	open	circuit	(no	external	 load	Ra)	the	voltage
at	the	terminals	is	called	the	open-circuit	voltage	(OCV).	If	Ri	is
zero	 the	 real	 voltage	 source	 turns	 again	 into	 an	 ideal	 voltage
source	 with	 a	 constant	 voltage	 at	 the	 terminals	 (constant
voltage	source).
In	the	case	of	a	short-circuit	condition	(U10	=	0	V)	the	current	is
limited	by	the	internal	resistance	Ri	according	to:

In	reality	an	 internal	 resistance	Ri	as	small	as	possible	 is	often
required	to	come	close	to	an	ideal	voltage	source	(for	example
for	 batteries).	 In	 this	 case	 the	 short-circuit	 current	 ISC	 might
become	 very	 high	 –	 be	 careful	 of	 creating	 short-circuit
conditions	in	your	applications.
Even	though	you	deal	with	real	voltage	sources	in	reality	we	will
use	ideal	voltage	sources	during	our	analysis	of	electric	circuits
if	not	otherwise	stated.
	
Automotive	application
A	combustion	engine	needs	an	electrical	starter	motor	for	initial
starting.	 This	 electrical	 starter	 motor	 requires	 rather	 high
currents	of	some	hundred	amperes	from	the	lead	acid	battery	to
generate	the	torque	to	start	 the	engine.	To	provide	these	high
currents	 during	 starting	 the	 internal	 resistance	 of	 the	 battery
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should	 be	 very	 low.	 But	 the	 internal	 resistance	 depends	 on
many	parameters:	it	increases	over	lifetime	due	to	corrosion	for
example	and	it	is	higher	at	low	temperatures,	e.g.	in	winter.
Consider	 a	 starter	 motor	 with	 a	 resistance	 of	 30	 mΩ	 that
requires	at	least	180	A	to	start	the	engine.	A	new	12	V	lead	acid
battery	has	an	internal	resistance	of	30	mΩ.	During	starting	the
starter	motor	 is	 in	 series	with	 the	battery’s	 internal	 resistance
and	 a	 current	 of	 200	 A	 flows	 through	 the	 starter	 motor.	 The
terminal	 voltage	 of	 the	 battery	 drops	 down	 to	 6	 V	 (and	 all
electrical	 systems	 supplied	 by	 the	 battery	 have	 to	 keep	 on
operating).	 For	 an	 old	 battery	 the	 internal	 resistance	 at	 low
temperatures	might	 increase	up	 to	60	mΩ.	Now	 the	maximum
current	 through	the	starter	 is	 just	133	A	and	the	starter	motor
cannot	generate	sufficient	torque	to	start	the	engine.

3.5.4	Real	current	sources

An	ideal	current	source	produces	a	current	regardless	of	what	is
connected	to	it	(independent	of	the	load	and	the	voltage),	it	is	a
constant	 current	 source.	 Like	 for	 the	 real	 voltage	 source	 we
model	 the	 real	 current	 source	 with	 an	 ideal	 element	 and	 an
internal	 resistance,	 but	 this	 time	 the	 ideal	 element	 and	Ri	 are
connected	in	parallel	as	shown	in	Fig.	3.21.

Fig.	3.21:	A	real	current	source	without	(left)	and	with	load	(right).

For	 an	 open	 circuit	 as	 shown	 on	 the	 left	 side	 of	 Fig.	 3.21	 the
voltage	U10	at	the	terminals	is:

Connecting	 a	 load	 to	 the	 real	 current	 source	 this	 constant
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current	is	divided	into	two	parts	flowing	through	Ri	and	Ra:

The	voltage	at	the	terminals	now	depends	on	the	external	load
resistance	and	is:

According	 to	 the	 current	 divider	 rule	 (based	 on	 Kirchhoff’s
current	law,	see	below),	this	voltage	can	be	calculated	as:

Again	 the	 voltage	 is	 a	 linear	 function	 of	 the	 load	 current	 as
shown	in	Fig.	3.22.

Fig.	3.22:	Voltage	as	a	function	of	load	current	for	different	external	loads.

Linear	 voltage	 (see	 Fig.	 3.20)	 and	 current	 (see	 Fig.	 3.21)
sources	are	equivalent	and	can	be	transformed	into	each	other.
At	 the	 end	 of	 the	 introduction	 of	 real	 voltage	 and	 current
sources	the	following	images	show	some	examples	of	sources.

https://engineersreferencebookspdf.com



Fig.	3.23:	Examples	of	sources:An	ideal	voltage	source	(top	left);	an	ideal	current
source	(top	right);	a	battery	(center	left);	a	bipolar	transistor	(center	right);	ideal,

linear	and	non-linear	current	source	of	a	solar	cell	(bottom).

3.5.5	Transformation	of	sources

Consider	real	voltage	and	current	sources	as	shown	in	Fig.	3.20
and	Fig.	3.21.	If	we	want	to	replace	the	former	(given	Uq	and	Ri)
by	the	latter	we	have	to	determine	the	parameters	Iq	and	Ri	(or
Gi)	of	the	real	current	source.
In	case	of	a	short	circuit	(Ra	=	0	Ω)	we	find	for	the	real	voltage
source:

And	for	the	corresponding	current	source:
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As	 these	 currents	 have	 to	 be	 the	 same	 we	 conclude	 for	 the
current	source:

On	the	other	hand	for	open	load	(infinite	Ra)	of	the	real	voltage
source	we	get:

And	for	the	corresponding	current	source:

Finally:

The	 internal	 resistances	 of	 the	 corresponding	 sources	 are	 the
same	and	the	relation	between	Iq	and	Uq	is	as	given	above.
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4	Fundamental	electrical	circuit	laws

4.1	Kirchhoff’s	laws

As	 we	 have	 already	 seen	 in	 the	 previous	 chapter	 about	 real
sources,	 electric	 circuits	 in	 general	 are	 built	 up	 of	 several
different	parts.	To	analyze	more	complex	circuits	two	basic	laws
are	 fundamental:	 Kirchhoff’s	 current	 law	 (KCL)	 and	 Kirchhoff’s
voltage	 law	 (KVL).	 These	 laws	 describe	 the	 correlations	 of
currents	and	voltages	in	an	electric	circuit.

4.1.1	Kirchhoff’s	current	law

Remember	that	a	node	is	a	connection	of	two,	or	more	elements
of	 a	 circuit.	 The	 first	 of	 Kirchhoff’s	 laws,	 the	 current	 law
describes	the	currents	at	any	node	of	the	circuit	and	is	based	on
the	law	of	conservation	of	electric	charge:

–	At	any	node	of	a	circuit,	the	currents	algebraically	sum
to	zero	at	any	instant	of	time.

Here	 currents	 flowing	 into	 the	 node	 are	 considered	 to	 be
positive	and	currents	directed	out	of	 the	node	are	negative.	 In
other	words,	 the	sum	of	 the	currents	 into	 the	node	 is	equal	 to
the	sum	of	the	currents	out	of	the	node.	Refer	to	Fig.	4.1	to	see
examples	for	nodes	with	several	currents	flowing	into	and	out	of
the	node.

Fig.	4.1:	An	electric	circuit	with	one	voltage	source,	two	resistors	and	corresponding
current	vectors	(left);	one	node	as	part	of	a	circuit	with	six	elements	connected	to	the
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node	and	corresponding	currents	(right).

Kirchhoff’s	current	law	can	now	be	written	as	(see	Fig.	4.1):

Example:	The	circuit	on	the	left	side	of	Fig.	4.1.	Here	current	I1
flows	 into	 the	node	and	 therefore	 is	positive	whereas	 I2	and	 I3
are	directed	out	of	the	node	and	are	counted	negative:

In	 a	 more	 general	 way	 Kirchhoff’s	 current	 law	 is	 not	 only
applicable	 for	nodes	but	also	 for	any	closed	 region	of	a	circuit
(see	Fig.	4.2).	Here	KCL	of	course	applies	for	node	1,	but	also	for
the	closed	region	marked	by	the	dotted	line.	The	algebraic	sum
of	all	currents	flowing	into	and	out	of	the	closed	region	has	to	be
zero.	In	this	case:

Fig.	4.2:	A	more	complex	part	of	a	circuit	with	a	closed	region	(dotted	line)	for	which
KCL	also	applies.
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Application	of	KCL:	Resistors	connected	in	parallel
Consider	two	resistors	connected	in	parallel	to	a	voltage	source
as	depicted	in	Fig.	4.3	on	the	left	side.	Two	(or	more)	parts	are
connected	in	parallel	 if	they	are	connected	to	the	same	pair	of
nodes.	We	would	like	to	find	the	equivalent	resistor	R	(see	right
side	of	Fig.	4.3)	 to	 replace	 the	 two	parallel	 resistors.	How	 is	R
related	to	R1	and	R2?

Fig.	4.3:	Parallel	connection	of	two	resistors	(left)	and	equivalent	circuit	with	one
equivalent	resistor	(right).

According	to	KCL	the	current	I	splits	into	I1	and	I2:

As	the	voltage	across	each	resistor	R1	and	R2	is	U	Ohm’s	law	for
each	resistor	is:

And	for	the	equivalent	circuit:

Using	the	three	equations	from	Ohm’s	law	in	KCL	results	in:
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Thus,	 we	 see	 that	 the	 parallel	 connection	 of	 two	 resistors	 is
equivalent	to	a	single	resistor	provided	that:

This	rule	for	parallel	resistors	can	be	generalized	to	any	number
n	of	parallel	resistors:

Or,	using	the	conductance	G	and	Gk:

The	resulting	conductance	of	n	parallel	resistors	is	the	sum	of	all
single	conductances.	Coming	back	 to	 the	easy	example	of	 two
resistors	 connected	 in	parallel:	 how	 is	 the	 current	 I	 divided	by
the	 resistors?	 From	 the	equations	above	we	conclude	 that	 the
voltage	U	is:

Replacing	 the	 voltage	 U	 in	 Ohm’s	 laws	 for	 the	 two	 resistors
gives	the	current	for	both	resistors:

These	 two	 formulas	 describe	 how	 the	 current	 I	 is	 divided	 into
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two	parts	through	the	resistors.	This	circuit	 is	often	referred	to
as	a	current	divider.	The	ratio	of	the	two	currents	is:

From	 these	 equations	 it	 is	 obvious	 that	 the	 currents	 are
reciprocally	proportional	to	the	resistances.	 In	other	words:	the
smaller	 the	 resistance	 (compared	 to	 the	other	 resistance),	 the
higher	the	current	through	this	resistance.	The	current	tends	to
take	the	path	of	least	resistance.

4.1.2	Kirchhoff’s	voltage	law

Remember	that	a	loop	is	a	closed	path	through	a	circuit	in	which
no	 electric	 element,	 or	 node	 is	 encountered	 more	 than	 once.
Kirchhoff’s	second	 law,	 the	voltage	 law,	describes	 the	voltages
within	 loops	 and	 is	 based	 on	 the	 physical	 law	 of	 the
conservation	of	energy:

–	Around	any	loop	in	a	circuit,	the	voltages	algebraically
sum	to	zero.

In	 other	 words:	 in	 traversing	 any	 loop	 in	 any	 circuit,	 at	 every
instance	of	time,	the	sum	of	voltages	having	one	polarity	equals
the	 sum	 of	 the	 voltages	 having	 the	 opposite	 polarity.	 KVL	 is
valid	for	all	loops	of	a	circuit,	even	for	open	loops	(loops	with	an
open	circuit)	and	 loops	 that	do	not	 follow	a	physical	branch	 in
the	 circuit.	 But	 you	 never	 encounter	 any	 other	 node	 twice
except	the	starting	point.
Two	loops,	I	and	II,	are	marked	in	the	circuit	shown	in	Fig.	4.4.	In
fact	 these	 loops	 are	 even	meshes.	 First	 of	 all	 the	 direction	 of
traversing	 has	 to	 be	 defined.	 For	 both	 loops	 in	 Fig.	 4.4	 this
direction	 is	defined	arbitrarily	as	counterclockwise.	All	voltages
pointing	 in	 the	 same	 direction	 are	 counted	 positive.	 Voltages
pointing	 in	 opposite	 direction	 are	 counted	negative.	Hence	we
find	for	the	two	loops	of	Fig.	4.4:

–	Loop	I:
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–	Loop	II:

As	KVL	is	valid	for	all	loops,	not	only	meshes	like	I	and	II,	we	can
also	write	for	the	outer	loop:

–	Outer	Loop:

In	general	we	can	write	for	any	loop	of	a	circuit:

Here	n	is	the	number	of	voltages	within	the	loop.

Fig.	4.4:	A	simple	circuit	with	a	voltage	source	and	4	resistors,	two	loops	(meshes)	are
marked	with	I	and	II.

Application	of	KVL:	Resistors	connected	in	series
Consider	 two	 resistors	 connected	 in	 series	 to	a	voltage	 source
as	 depicted	 in	 Fig.	 4.5	 on	 the	 left	 side.	 Two	 elements	 are
connected	in	series	if	they	have	a	node	in	common	and	no	other
element	 is	connected	to	this	common	node.	As	a	consequence
of	 this	 definition,	 the	 same	 current	 I	 flows	 through	 elements
connected	in	series.	We	would	like	to	find	the	equivalent	resistor
R	to	 replace	the	two	resistors	 in	series.	How	 is	R	related	to	R1
and	R2?
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Fig.	4.5:	Series	connection	of	two	resistors.

Applying	KVL	yields:

With	Ohm’s	law	for	R1,	R2	and	R	this	results	in:

The	 resistance	 R	 of	 a	 single	 resistor	 equivalent	 to	 a	 series
connection	of	resistors	is	just	the	sum	of	the	resistors	connected
in	series.	In	general	for	n	resistors	in	series:

Looking	 again	 at	 Fig.	 4.5	 shows	 that	 the	 total	 voltage	Utotal	 is
divided	 by	 the	 two	 resistors	 into	 two	 parts,	 U1	 and	 U2.	 Two
voltage	 divider	 rules	 describe	 how	 the	 voltage	 is	 divided
between	the	resistors	and	two	resistors	connected	in	series	are
therefore	often	called	a	voltage	divider:

The	larger	voltage	drop	will	be	across	the	larger	resistor.
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4.2	Operating	point

Consider	an	easy	example	for	an	electric	circuit	as	shown	in	Fig.
4.6.	 It	 consists	 of	 two	meshes,	 the	 source	and	 the	 load	mesh.
Both	meshes	are	closed	via	the	terminal	with	voltage	U10.

Fig.	4.6:	A	simple	electric	circuit	with	a	source	and	a	load	mesh.

For	 mesh	 I	 we	 can	 write	 the	 following	 equation	 according	 to
KVL:

For	mesh	II	we	can	write:

Thus	we	have	two	unknown	variables	(IL,	U10)	and	two	equations
and	this	linear	equation	system	is	algebraically	solvable:

These	two	values	define	the	operating,	or	working	point	of	this
circuit.	For	given	parameters	 (like	RL,	Ri	and	Uq)	 the	operating
point	 (or	 working	 point,	 WP)	 defines	 the	 steady	 state	 of	 the
system.	 In	 practical	 problems	 often	 small	 parameter	 changes
around	 the	 working	 point	 are	 considered:	 small	 voltage,
temperature	or	resistance	variations	for	example.

https://engineersreferencebookspdf.com



Instead	of	solving	these	equations	algebraically	they	can	also	be
solved	 graphically.	 For	 this	 purpose	 the	 equations	 for	 the	 two
meshes	 as	 given	 above	 are	 transformed	 to	 show	 the
dependence	of	load	current	IL	as	a	function	of	terminal	voltage
U10:

Fig.	4.7:	Characteristic	curves	of	the	voltage	source	and	the	load.	WP	indicates	the
working	point	of	the	circuit.

Fig.	 4.7	 shows	 the	 characteristic	 curves	 for	 both	 the	 voltage
source	 and	 the	 load.	 The	 characteristic	 curve	 of	 the	 voltage
source	 is	 a	 falling	 line	 that	 intersects	 the	 IL-axis	 at	 the	 short
circuit	 current	 ISC	 (U10	=	0	V)	and	 the	U10-axis	at	 the	value	of
the	 source	 voltage.	 The	 straight	 load	 line	 rises	 according	 to
Ohm’s	 law.	 Since	 any	 point	 on	 the	 source	 curve	 satisfies	 the
source	 equation	 and	 any	 point	 on	 the	 load	 curve	 satisfies	 the
load	 equation,	 the	 intersection	 of	 both	 plots	 satisfies	 both
equations	 simultaneously	 and	 the	 point	 of	 intersection	 is	 the
operating,	or	working	point	(WP).
For	 linear	 equations	 as	 shown	 above	 the	 graphical	 solution
seems	 to	 be	 inappropriate.	 But	 consider	 a	 circuit	 with	 a	 non-
linear	load	where	the	load	current	is	a	non-linear	function	of	the
applied	 voltage.	 Semiconductor	 components	 like	 diodes	 or
transistors	 are	 examples	 for	 such	 non-linear	 components.	 For
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these	systems	with	non-linear	components	the	techniques	used
for	 linear,	 algebraic	 simultaneous	 equations	 cannot	 be
employed	and	the	equation	system	has	no	analytical	solution	in
general.	Fig.	4.8	shows	an	example	of	a	circuit	with	a	non-linear
component,	a	diode.

Fig.	4.8:	A	simple	circuit	with	a	diode	as	load	(left);	Characteristic	curves	for	the
source	and	the	diode;	diode	current	is	a	non-linear	function	of	the	voltage	(right).

The	current	of	the	diode	 is	a	non-linear	function	of	the	voltage
as	shown	on	the	right	side	of	Fig.	4.8,	e.g.

Here	 IS	 (inverse	 current)	 and	 C	 are	 constants.	 As	 it	 is	 not
possible	to	solve	the	source	and	load	equation	simultaneously	in
this	 case,	 the	 WP	 is	 determined	 by	 the	 graphical	 solution	 as
shown	on	the	right	side	of	Fig.	4.8.
In	general	for	electronic	systems	the	operating	conditions	have
to	be	set	properly	to	operate	the	components	and	devices	in	the
required	functionality.	The	method	for	setting	proper	operating
points,	voltages	or	currents,	is	also	called	biasing.

4.3	Wye-Delta	transformation

We	 have	 seen	 that	 certain	 circuit	 configurations,	 serial	 and
parallel	 connections	 of	 resistors,	 can	 be	 simplified	 by	 a	 single
resistor	 to	make	circuit	analysis	easier.	Refer	 to	Fig.	4.9	as	an
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example	of	simplification:

Fig.	4.9:	A	circuit	with	series	and	parallel	connections	for	the	demonstration	of
simplification.

First	of	all	 replace	 resistors	R1	and	R2,	 connected	 in	series,	by
equivalent	 resistor	 R12	 =	 R1	 +	 R2.	 This	 equivalent	 resistor	 is
parallel	to	R3	and	these	two	resistors	can	be	replaced	by	R123:

R123	now	is	connected	in	series	with	R4	and	the	final	resistor	R,
replacing	resistors	R1-R4	is:

But	 not	 all	 configurations	 can	 be	 simplified	 by	 these	 simple
laws.	 In	 some	 of	 such	 cases	 a	 special	 transformation,	 a	Wye-
Delta	 transformation	 can	 be	 used	 to	 replace	 three	 resistors	 in
Wye	 configuration	 by	 three	 resistors	 in	 Delta	 configuration	 or
vice	 versa,	 so	 that	 the	 circuits	 are	 equivalent	 as	 far	 as	 the
terminals	 are	 concerned.	 Refer	 to	 Fig.	 4.10	 for	 the	 two
configurations.	 Both	 configurations	 are	 equivalent	 if	 the
resistances	measured	between	two	of	the	terminals	1,	2,	3	are
the	same.
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Fig.	4.10:	Delta	configuration	(left)	and	Wye	configuration	(right).

Delta	configuration	to	Wye	configuration
Starting	 with	 the	 Delta	 configuration	 with	 given	 resistors	 R12,
R23	and	R31	we	are	looking	for	the	equivalent	Wye	configuration
with	resistors	R1,	R2,	R3.	For	the	resistance	between	terminal	1
and	2	to	be	the	same	for	both	configurations	it	follows	that:

For	the	resistance	between	terminal	1	and	3	and	terminal	2	and
3	similar	equations	can	be	obtained:

Using	these	three	equations	we	can	calculate	the	three	resistors
of	the	Wye-configuration	as	follows:
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Each	resistor	of	the	Wye	configuration	is	given	by	the	product	of
the	 two	 adjacent	 resistors	 of	 the	 corresponding	 Delta
configuration	 divided	 by	 the	 sum	 of	 the	 three	 resistors	 of	 the
Delta	configuration.
For	a	symmetric	delta	configuration	with

each	resistance	of	the	corresponding	Wye	configuration	is	just:

Wye	configuration	to	Delta	configuration
Going	 the	 opposite	 direction	 from	 given	 resistors	 in	 Wye
configuration	 the	 resistors	 of	 the	 corresponding	 Delta
configuration	 can	 be	 calculated.	 The	 final	 result	 for	 the	 Delta
configuration’s	resistors	is:

4.4	Meters	and	measurements

The	 measurement	 of	 parameters	 like	 current	 and	 voltage	 in
reality	 is	 a	 broad	 field	 and	 cannot	 be	 handled	 here	 in	 detail.
However	a	few	basic	principles	will	be	introduced	to	get	an	idea
of	 how	 to	measure	 electrical	 parameters.	 Real	 measurements
are	 made	 by	 real	 instruments.	 In	 general	 the	 measurement
disturbs	the	operation	of	an	electric	circuit	to	some	extent	and
therefore	 care	 has	 to	 be	 taken	 to	 avoid	 useless	 and	 wrong
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measurements.
	
Voltmeter
Voltage	 is	 measured	 between	 two	 terminals,	 or	 nodes	 of	 a
circuit.	For	this	voltage	measurement	a	voltmeter	 is	connected
across	 these	 two	points	as	shown	 in	Fig.	4.11.	Without	 looking
at	 the	 details	 of	 how	 the	measurement	 is	 done	 the	 voltmeter
can	be	modeled	as	a	parallel	combination	of	an	ideal	voltmeter
(without	 current	 flow)	 and	 an	 internal	 resistor	 RV.	 The	 shunt
resistor	 is	 therefore	also	parallel	 to	 the	voltage	 (resistance)	 to
be	 measured.	 As	 the	 current	 is	 divided	 by	 these	 parallel
combinations	 of	 resistances	 according	 to	 KCL	 the	 value	 of	 the
shunt	resistance	hast	to	be	very	high	to	avoid	disturbance	of	the
measurement	as	much	as	possible.	In	practice	it	is	of	the	order
of	several	million	Ohms.
If	 the	 voltage	 is	 measured	 across	 a	 well	 known	 resistor,	 the
current	 flowing	 through	 this	 resistor	 can	 be	 calculated	 using
Ohm’s	law.

Fig.	4.11:	The	connection	of	a	voltmeter	to	measure	the	voltage	across	the	shunt
resistor	RV.

Ampmeter
In	 contrast	 to	 the	 voltmeter	 the	 ampmeter	 is	 connected	 in
series	to	measure	the	current	through	a	line,	or	wire	of	a	circuit.
Therefore	 the	 circuit	 has	 to	 be	 broken	 to	measure	 its	 current
(whereas	 the	 circuit	 doesn’t	 need	 to	 be	 broken	 for	 a	 voltage
measurement,	see	above).	The	ampmeter	can	be	modeled	as	a
series	 combination	 of	 an	 ideal	 ampmeter	 and	 an	 internal
resistance	RI.	According	to	KVL	the	internal	resistance	has	to	be
as	 small	 as	 possible	 to	 keep	 the	 disturbance	 of	 the	 circuit	 as
small	as	possible.
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An	 indirect	way	of	measuring	 the	current	without	breaking	 the
circuit	 is	 to	 use	 a	 current	 probe	 or	 measuring	 caliper.	 These
measuring	 instruments	 enclose	 the	 wire	 and	make	 use	 of	 the
magnetic	properties	of	the	current	flowing	through	the	wires.

Fig.	4.12:	A	current	probe	or	measuring	caliper.

Oscilloscope
An	 oscilloscope	 is	 used	 to	measure	 time-varying	 signals,	 both
voltages	and	currents.	An	oscilloscope	samples	the	time-varying
signal	at	fixed	instances	of	time	(e.g.	every	10ms)	and	displays
a	graph	of	the	measured	parameter	as	a	function	of	time.	This
operating	 mode	 makes	 it	 possible	 to	 observe	 the	 general
behavior	of	the	voltage	as	a	function	of	time.
	
Automotive	applications:
Voltage	 and	 current	 are	 frequently	 measured	 by	 automotive
systems	and	 this	measurement	has	 to	be	done	by	 the	 system
itself.	The	voltage	is	usually	measured	using	an	analog	to	digital
converter	(ADC).	This	ADC	can	be	a	separate	device	or	it	is	part
of	a	microcontroller.	In	general	the	ADC	has	a	maximum	voltage
range	 (e.g.	 0–5	V)	 that	 can	 be	measured.	 If	 the	 voltage	 to	 be
measured	 is	 higher	 than	 the	 measurement	 range	 of	 the	 ADC
can	 be	 divided	 using	 a	 voltage	 divider	 to	 fit	 to	 the	 ADC	 input
requirements.
One	 indirect	way	of	measuring	currents	 in	automotive	systems
is	to	use	a	shunt	resistor.	This	shunt	resistor	is	designed	into	the
branch	 of	 the	 current	 flow.	Due	 to	 the	 current	 there	will	 be	 a
voltage	drop	across	the	shunt	resistor	and	this	voltage	drop	can
be	 measured	 as	 described	 above	 using	 an	 ADC.	 With	 the
knowledge	of	 the	exact	value	of	 the	shunt	 resistor	 the	current
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can	be	calculated	from	the	voltage.	This	simple	method	has	the
disadvantage	 that	 power	 is	 dissipated	 in	 the	 shunt	 resistor.
Another	 current	 measurement	 method	 utilizes	 the	 Hall	 effect.
Hall	 effect	 sensors	 measure	 the	magnetic	 field	 of	 the	 current
carrying	wire.	The	output	of	 the	Hall	sensor	 is	 the	Hall	voltage
that	can	be	measured	by	an	ADC.

4.5	Power	and	energy

When	a	current	 i(t)	 flows	through	a	resistor	 (voltage	drop	u(t))
energy	 is	dissipated	 inside	the	resistor	and	electrical	energy	 is
converted	 into	 heat	 as	 (positive	 charged)	 current	 goes	 from	a
higher	potential	to	lower	potential.	Indication	arrows	for	current
and	voltage	are	parallel.	The	electrical	energy	E	during	time	t1-
t2	is	given	by:

In	 the	 case	 of	 DC	 currents	 and	 voltages	 the	 energy	 is	 just
(starting	at	t1	=	0	s):

The	 SI	 unit	 is	 the	 Joule	 (J)	 and	 1	 J	 =	 1	 Vas	 =	 1	 Ws.	 For
convenience	 it	 is	usual	 to	calculate	with	 the	unit	kWh	where	1
kWh	=	3.6·106	Ws	=	3.6	MJ.	1kWh	equals	to

–	 Working	 for	 50	 hours	 on	 a	 notebook	 (20	 W	 power
consumption)

–	Heating	about	10	liters	of	water	from	room	temperature
to	100	°C

–	Driving	an	electric	vehicle	(EV)	about	6–7km	(for	an	EV
with	15	kWh	/	100	km)

Based	 on	 the	 electrical	 energy	 given	 above	 the	 instantaneous
electrical	power	in	Watts	(W)	is	given	by:
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For	DC	currents	power	is	time-independent:

So	 a	 current	 of	 1	 A	 and	 a	 voltage	 drop	 of	 1	 V	 results	 in	 1	W
power	dissipated	in	the	resistor.

Fig.	4.13:	Power	at	a	resistor	with	current	i(t)	and	voltage	drop	u(t).

Efficiency
When	talking	about	the	transformation	of	energy	(in	a	source	or
load)	efficiency	is	a	key	parameter.	 It	 is	defined	as	the	ratio	of
transformed	power	P2	to	spent	power	P1:

Efficiency	is	always	 	1	(or	 	100	%)	as	not	all	the	power	can	be
transformed.	The	difference	P1-P2	is	the	power	loss.	Target	is	to
reduce	power	loss	as	much	as	possible	and	to	get	close	to	1	for
the	efficiency.	For	example	a	generator	(which	does	not	actually
generate)	 transforms	 mechanical	 power	 (P1)	 into	 electrical
power	(P2)	and	can	reach	an	efficiency	of	up	to	99.5	%	(whereas
an	 automotive	 combustion	 engine	 has	 something	 like	 	 45	%
which	is	not	very	good…).

4.6	Maximum	power	transfer
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As	 already	 stated	 above	 power	 is	 provided	 by	 a	 source	 and
consumed	by	a	load	such	as	a	resistor.	Of	course	power	is	also
consumed	by	the	 internal	resistor	of	a	real	source.	But	what	 is
the	 maximum	 power	 transfer	 between	 a	 real	 source	 (ideal
source	 plus	 internal	 resistor)	 and	 a	 load	 resistor?	What	 is	 the
maximum	power	a	 source	can	provide?	 In	order	 to	 investigate
the	power	transfer	in	more	detail,	consider	Fig.	4.14	in	which	a
real	 voltage	 source	 is	 connected	 with	 a	 variable	 load	 resistor
(Ra).	 Two	 extremes	 for	 the	 variable	 resistor	 were	 already
considered	above,	short	circuit	(Ra	=	0	Ω)	and	open	load	(Ra	=
∞	Ω).

Fig.	4.14:	A	simple	circuit	for	the	investigation	of	power	transfer,	Ri	is	the	internal
series	resistor	of	the	voltage	source,	Ra	the	load	resistor.

The	current	is	given	by:

We	obtain	for	the	power	in	the	resistor:

For	fixed	values	of	Uq	and	Ri	the	value	of	Ra	that	maximizes	the
power	 absorbed	 by	 the	 load	 can	 be	 found	 by	 setting	 the	 first
derivative	equal	to	zero:
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So	 maximum	 power	 is	 transferred	 to	 the	 load	 if	 the	 load
resistance	 matches	 the	 source	 resistance	 or,	 in	 other	 words,
both	resistances	have	to	be	equal	to	each	other.	The	maximum
power	in	this	case	is:

Fig.	4.15	shows	the	power	transfer	to	the	load	(PL)	compared	to
the	total	power	provided	by	the	source	(Pges)	and	the	efficiency
of	 the	 source	 η.	 In	 power	 electronics	 the	 efficiency	 is	 often
maximized,	in	signal	processing	it	is	often	the	power.

Fig.	4.15:	Power	transfer	to	the	load	(PL)	and	total	power	provided	by	the	source
(Pges)	in	units	of	the	maximum	power	transfer	(PLmax)	(left);	efficiency	(right).

4.7	Dependent	and	independent	sources
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So	 far	 we	 have	 dealt	 with	 sources	 whose	 values	 (current	 or
voltage)	 are	 in	 general	 time	 dependent.	 In	 more	 detail	 these
sources	 were	 independent	 sources,	 i.e.	 the	 behavior	 of	 the
sources	(the	current,	or	voltage	they	applied	to	the	circuit)	was
independent	of	 the	behavior	of	 the	circuit	 to	which	 the	source
belonged.	 No	 matter	 what	 happens	 within	 the	 circuit,	 the
independent	 source	 supplies	 a	 fixed	 (but	 time-dependent)
value.
On	 the	 other	 hand,	 for	 a	 dependent,	 or	 controlled	 source
(current	 or	 voltage)	 the	 value	 depends	 on	 some	 variable
(usually	 voltage	 or	 current)	 in	 the	 circuit	 to	 which	 the	 source
belongs.	 In	 electronic	 circuits	 dependent	 sources	 are
represented	by	the	symbols	shown	in	Fig.	4.16.

Fig.	4.16:	Symbols	of	a	dependent	voltage	source	(left)	and	a	dependent	current
source	(right).

In	 general	 both	 voltage	 and	 current	 sources	 can	be	 controlled
by	 a	 current	 or	 a	 voltage.	 Fig.	 4.17	 shows	 the	 four	 types	 of
dependent	sources.
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Fig.	4.17:	Examples	for	dependent	sources.

Example	1:	Current	controlled	current	source
The	example	as	depicted	in	Fig.	4.18	contains	a	current	source
that	 depends	 on	 the	 value	 of	 the	 current	 I1	 through	 another
branch	 of	 the	 circuit	 (like	 for	 example	 a	 bipolar	 transistor).
Given	parameters	are	the	current	of	the	independent	source	on
the	 left,	 the	 two	 resistors	 and	 the	 dependence	 of	 the	 current
controlled	current	source.	What	will	the	resulting	currents	I1	and
I3	be?

Fig.	4.18:	An	example	of	a	circuit	with	a	current	controlled	current	source.

The	node	rule	(KCL)	provides:
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KVL	in	combination	of	Ohm’s	law	for	the	two	resistors	provides:

Substituting	I3	into	the	node	rule:

Using	R1	=	3	Ω	and	R2	=	1	Ω	yields	I1	=	1	A	and	I3	=	3	A.
	
	
Example	 2:	 Bipolar	 transistor	 as	 current	 controlled
current	source
A	 bipolar	 transistor	 can	 be	 regarded	 as	 a	 current	 dependent
current	source	as	the	collector	current	is	controlled	by	the	base
current:	the	collector	current	IC	(through	the	transistor)	is	given
by	 the	 base	 current	 IB	multiplied	 by	DC	 current	 gain	 factor	 B.
Consider	a	circuit	as	shown	 in	Fig.	4.19	on	 the	 left	 side	where
the	bipolar	transistor	with	a	DC	gain	of	100	is	used	to	make	the
21	W-bulb	to	be	operated	at	a	voltage	of	12	V.	Voltage	source	is
Uq	=	14	V.	On	the	right	side	of	Fig.	4.19	the	equivalent	circuit
with	 a	 current	 controlled	 current	 source	 is	 shown.	What	 about
the	resistors	R1	and	R2?

Fig.	4.19:	A	circuit	with	a	biploar	transistor	acting	as	a	current	controlled	current
source	(left);	an	equivalent	circuit	showing	the	current	controlled	current	source

(right).
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From	 the	 given	 parameters	 of	 the	 bulb	 we	 can	 calculate	 the
resistance	of	the	bulb	and	the	current	that	has	to	flow	through
the	bulb	and	that	equals	the	collector	current	IC:

As	 the	 transistor	 works	 as	 a	 current	 controlled	 current	 source
with	a	DC	gain	of	B	=	100	the	base	current	has	to	be:

The	voltage	drop	UBE	for	the	bipolar	transistor	is	about	0.7	V	and
thus	the	base	resistance	is:

To	avoid	excessive	currents	through	the	two	resistances	R1	and
R2	we	choose	R2	to	be	in	the	range	of	RB,	e.g.	100	Ω.	Using	KCL
for	node	B	(I1=	I2+	I3)	gives:

Hence	 resistor	 R1	 can	 be	 calculated	 as	 R1	 =	 543	 Ω	 and	 the
current	I1	is	24	mA.
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5	Circuit	analysis

In	 the	 previous	 chapter	 I	 presented	 basic	 electric	 circuit
concepts	like	KCL,	KVL	or	Wye-Delta	transformation.	Now	I	want
to	 introduce	 some	 more	 sophisticated	 circuit	 analysis
techniques	 for	 practically	 and	 efficiently	 solving	 problems
associated	with	 circuit	 operations.	We	will	 start	with	 two	basic
analysis	 techniques,	 nodal	 and	 mesh	 analysis.	 These	 two
techniques	 are	 based	 on	 KCL	 and	 KVL	 and	 make	 use	 of	 two
fundamental	facts	about	electric	circuits:

1.	 In	any	electric	network	with	n	nodes	(n–1)	independent
equations	for	the	nodes	can	be	found

2.	 In	any	electric	network	with	m	meshes	m	independent
equations	can	be	found

5.1	Nodal	analysis

Nodal	 analysis	 can	 be	 used	 for	 any	 electric	 circuit	 and	 in
particular	for	circuits	with	few	nodes	(but	rather	many	loops)	as
the	 number	 of	 equations	 will	 be	 small.	 It	 is	 based	 on	 the
definition	 of	 voltage:	 Voltage	 is	 the	 difference	 between	 two
electrical	potentials.

Fig.	5.1:	Voltages	(including	a	reference	potential	U0)	in	an	electric	circuit.

It	 is	 common	 to	 define	 a	 reference	 potential	 and	 to	 refer	 the
other	 voltages	 to	 this	 reference	 potential.	 The	 reference
potential,	or	ground	potential	is	marked	with	a	special	sign	and
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is	 defined	 to	 have	 a	 voltage	 of	 U0	 =	 0	 V.	 For	 a	 circuit	 with	 n
nodes	 there	 are	 (n–1)	 nodal	 voltages	 referring	 to	 ground
potential.	With	nodal	analysis	the	voltages	of	all	nodes	referring
to	 the	 reference	potential	 can	be	calculated.	The	procedure	of
nodal	 analysis	 will	 be	 introduced	 by	 an	 example	 before	 the
general	approach	is	presented.
	
An	example	of	a	nodal	analysis
Refer	 to	 Fig.	 5.2	 for	 the	 first	 example	 of	 nodal	 analysis.	 The
circuit	contains	4	nodes,	0–3,	and	node	0	 is	defined	as	ground
potential.	 The	 direction	 of	 the	 current	 vectors	 can	 be	 chosen
arbitrarily	(at	the	end	of	the	calculation	the	sign	of	the	current
will	show	whether	the	current	flows	in	the	chosen,	or	in	opposite
direction).	By	using	KCL	and	Ohm’s	law	the	three	nodal	voltages
U10,	 U20	 and	 U30	 can	 be	 calculated.	 For	 simplification	 of	 the
calculation	 each	 resistance	 Ri	 is	 substituted	 by	 corresponding
conductance	Gi,	i.e.	Gi	=	1	/	Ri.

Fig.	5.2:	An	electric	circuit	with	corresponding	currents	and	voltages	as	an	example	of
nodal	analysis	(left);	node	0	is	defined	as	ground	potential;	equivalent	circuit	with	the

voltage	source	and	resistance	R1	transformed	into	a	current	source	(right).

For	node	1-3	in	Fig.	5.2	KCL	results	in:
–	node	1:

–	node	2:
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–	node	3:

Using	Ohm’s	law	(I	=	G	·	U)	for	the	currents	give:

Hence	for	the	KCL	of	node	1–3:

So	 we	 have	 3	 linear	 independent	 equations	 for	 the	 three
unknown	variables	U10,	U20	and	U30.	After	these	voltages	have
been	calculated	the	currents	I1	-	I6	can	be	determined	using	the
equations	for	Ohm’s	law	above.
Sorted	by	the	unknown	voltages	these	equations	look	like:

These	 equations	 can	 also	 be	 written	 in	 matrix	 multiplication

https://engineersreferencebookspdf.com



form:

For	the	last	step	we	make	use	of	the	transformation	of	a	voltage
source	into	an	equivalent	current	source:	The	voltage	source	U
with	 resistance	 R1	 in	 series	 can	 be	 transformed	 into	 an
equivalent	current	source	with	a	parallel	conductance	G1	with:

Algorithm	of	nodal	analysis
As	we	have	 seen	 in	 the	 example,	 by	 applying	KCL	 and	Ohm’s
law	 we	 are	 able	 to	 set	 up	 (n–1)	 equations	 for	 (n–1)	 unknown
nodal	voltages	of	a	circuit	with	n	nodes.	The	following	algorithm
is	one	of	several	slightly	different	algorithms	and	it	can	be	used
for	circuits	with	n	nodes:

1.	 The	circuit	has	n	nodes.	Select	one	node	as	reference
potential	(voltage	0	V).

2.	 Label	 the	 remaining	 (n–1)	 nodes	 with	 their	 voltages
referring	to	the	reference	node	(e.g.	U1,	U2).

3.	 Transform	 all	 voltage	 sources	 (together	 with	 the
resistors	 in	series)	 into	equivalent	current	source	with
parallel	conductance.

4.	 Draw	 the	 current	 arrows	 in	 the	 circuit	 and	 label	 the
currents.	 The	 direction	 of	 the	 arrows	 can	 be	 chosen
arbitrarily.

5.	 Derive	 the	 (n–1)	 equations	 by	 applying	 KCL	 to	 each
node.

6.	 Substitute	 the	 unknown	 currents	 by	 the	 voltage	 drop
across	the	resistance	in	the	corresponding	branch.
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7.	 Solve	the	n–1	equations	for	the	node	voltages.
8.	 Calculate	the	branch	currents	using	Ohm’s	law.

The	application	of	algorithm	for	nodal	analysis
The	following	example	is	used	to	apply	the	presented	algorithm
to	an	electric	circuit	as	shown	in	Fig.	5.3:

Fig.	5.3:	Electric	circuit	with	two	ideal	current	sources	and	three	nodes.

1.	 The	circuit	has	n	nodes.	Select	one	node	as	reference
potential	(voltage	0	V).

–	See	node	with	0	V	in	Fig.	5.3
2.	 Label	 the	 remaining	 (n–1)	 nodes	 with	 their	 voltages

referring	to	the	reference	node	(e.g.	U1,	U2).
–	See	voltages	U1,	U2	in	Fig.	5.3

3.	 Transform	 all	 voltage	 sources	 (together	 with	 the
resistors	 in	series)	 into	equivalent	current	source	with
parallel	conductance.

–	No	voltage	source
4.	 Draw	 the	 current	 arrows	 in	 the	 circuit	 and	 label	 the

currents.	 The	 direction	 of	 the	 arrows	 can	 be	 chosen
arbitrarily.

–	See	currents	I1-I3	in	Fig.	5.3

5.	 Derive	 the	 (n-1)	 equations	 by	 applying	 KCL	 to	 each
node.

–	Two	nodes	and	therefore	two	equations:
–	Node	1:
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–	Node	2:

6.	 Substitute	 the	 unknown	 currents	 by	 the	 voltage	 drop
across	the	resistance	in	the	corresponding	branch.

–	Node	1:

–	Node	2:

7.	 Solve	the	(n–1)	equations	for	the	node	voltages.
–	We	have	 two	equations	 for	 the	 two	unknown
node	 voltages:	 U1,	 U2	 and	 we	 can	 calculate
these	node	voltages:

–	From	node	2:

–	 Substituting	 U2	 into	 the	 equation	 for	 node	 1
gives:

–	And	finally	the	node	voltage	U1:
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–	Node	voltage	U2	can	be	calculated	afterwards.
8.	 Calculate	the	branch	currents	using	Ohm’s	law.

For	given	values	of	Iq1	=	6	A,	Iq2	=	12	A,	,R1	=	1	Ω,	R2	=	3	Ω,	R3
=	2	Ω	the	voltages	and	currents	yield	U1	=	1	V,	U2	=	-14	V	and
I1	=	1	A,	I2	=	5	A,	I3	=	-7	A.
	
An	 example	 of	 nodal	 analysis	 having	 a	 voltage	 source
between	two	non-reference	nodes
So	far	we	have	dealt	with	circuits	that	contain	sources	between
any	 node	 and	 the	 reference	 node.	 Voltage	 source	 with	 series
were	 transformed	 into	 current	 sources	 with	 parallel
conductance.	 In	 general	 voltage	 sources	 can	 also	 be	 present
between	non-reference	nodes	and	without	series	resistance.	To
overcome	the	difficulty	of	transforming	the	ideal	voltage	source
an	extension	of	nodal	analysis	can	be	used.	This	modified	nodal
analysis	 (MNA)	 is	 for	 example	 also	 used	 in	 circuit	 simulation
programs	like	PSPICE.
Consider	the	circuit	given	in	Fig.	5.4.	We	want	to	determine	the
node	 voltages	 for	 the	 4	 nodes.	 It	 contains	 two	 ideal	 voltage
sources	 between	 two	 nodes	 (Uq1,	 Uq2)	 and	 an	 ideal	 current
source.	We	 select	 one	 of	 the	 nodes	 of	Uq1	 as	 reference	 point.
The	other	three	nodes	and	the	currents	are	labeled	as	shown	in
Fig.	5.4.
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Fig.	5.4:	Circuit	for	nodal	analysis	with	an	ideal	voltage	source	between	two	reference
nodes.

Now	 we	 derive	 the	 (n–1)	 =	 3	 equations	 by	 applying	 KCL	 and
Ohm’s	law:
Node	1:

Node	2:

We	cannot	 immediately	derive	a	requirement	 from	the	voltage
source	Uq1	that	determines	the	current	I4.
Node	3:

From	 node	 1	 the	 voltage	 U1	 is	 immediately	 given.	 From	 the
other	two	nodes	we	have	two	equations	but	still	three	unknown
variables	as	 the	current	 I4	 cannot	be	determined	directly	 from
voltage	source	Uq2.	However	we	have	the	branch	voltage	for	the
branch	containing	Uq2	that	provides	another	equation:
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From	node	2	and	3	we	obtain:

Substituting	the	branch	equation	gives:

Starting	from	this	equation	and	with	given	values	for	Uq1,	Uq2,	Iq
and	 the	 resistors	 we	 can	 calculate	 the	 values	 for	 the	 node
voltages	and	the	branch	currents.
	
Determinants	and	Cramer’s	rule
The	 algorithm	 presented	 above	 derives	 the	 linear	 equation
system	from	KCL	and	Ohm’s	law.	Using	the	matrix	multiplication
form	also	presented	above	there	is	another	way	of	determining
the	nodal	voltages	using	determinants	and	Cramer’s	rule.
Determinants	are	special	functions	that	associate	a	scalar	value
to	 a	 square	matrix	 A.	 The	 determinant	 can	 be	 used	 to	 check
whether	linear	equation	systems	have	a	unique	solution	and	this
solution	can	be	calculated	using	Cramer’s	rule.
Determinants	for	small	square	matrices	(1	×	1,	2	×	2	and	3	×	3)
are	easy	to	calculate:
1	×	1	matrix:

2	×	2	matrix:
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3	×	3	matrix:

Consider	 the	 equation	 system	 of	 the	 first	 example	 for	 nodal
analysis:

This	 equation	 system	 can	 also	 be	 written	 in	 matrix
multiplication	form:

Here	 the	 conductance	 values	 are	 known	 coefficients	 listed	 in
conductance	matrix	G.	 The	 (source)	 currents	 on	 the	 right	 side
are	also	known.	The	unknown	parameters	we	are	looking	for	are
the	 nodal	 voltages.	 Cramer’s	 rule	 states	 that	 these	 unknown
voltages	 Ui	 (here	 U10,	 U20,	 U30)	 can	 be	 calculated	 by	 the
determinates	 as	 follows	 (in	 fact	 Cramer’s	 rule	 does	 not	 care
about	what	is	calculated,	but	is	valid	for	linear	equations	with	as
many	equations	as	unknowns	in	general):
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	 is	the	conductance	matrix	and	 	is	constructed	by	replacing
column	i	in	the	conductance	matrix	by	the	current	vector	of	the
right	side,	e.g.	for	U10:

Remembering	how	the	determinate	of	a	matrix	looks	like	gives
for	U10:

Example	of	Cramer’s	rule
The	circuit	such	as	that	shown	in	Fig.	5.5	can	be	analyzed	using
Cramer’s	 rule.	 The	 circuit	 has	 four	 nodes.	 As	 node	 1	 is
connected	to	an	ideal	voltage	source	to	the	reference	node,	the
node	voltage	1	is	equal	to	 .

Fig.	5.5:	Circuit	with	three	nodes	and	the	reference	node	for	the	application	of
Cramer’s	rule.

For	nodes	2	and	3	we	can	apply	KCL:

Converting	 the	 resistances	 into	 corresponding	 conductance
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values,	using	Ohm’s	law	and	sorting	by	U2	and	U3	gives:

Or	in	matrix	form:

Determinants	used	for	application	of	Cramer’s	rule	are:

Node	voltages	can	be	calculated	by	these	determinants	as:

Automotive	application
Since	the	introduction	of	electric	lighting	in	vehicles	the	number
of	 electric	 and	 electronic	 components	 has	 been	 steadily
increasing.	The	nominal	voltage	of	a	typical	automotive	electric
system	 is	 12	 V.	 An	 alternator	 connected	 to	 the	 internal
combustion	engine	 is	 used	 to	generate	 the	 current	 needed	by
the	large	number	of	electronic	systems.	A	battery,	either	a	lead-
acid	 storage	 battery	 or	 a	 lithium	 ion	 battery,	 is	 used	 as	 a
storage	 element	 for	 the	 electrical	 energy	 if	 the	 motor	 and
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therefore	 the	 alternator	 stop.	 In	 this	 example	 the	 battery	 is
placed	 in	 the	 motor	 compartment	 near	 to	 the	 alternator.
Therefore	 the	battery	can	be	charged	very	well	as	 the	voltage
drop	between	alternator	and	battery	can	be	rather	small.	On	the
other	hand	the	motor	compartment	is	a	very	harsh	environment
with	 respect	 to	 temperature,	 vibration,	 dirt.	 This	 harsh
environment	generates	lot	of	stress	for	the	battery.
Several	loads	are	connected	to	the	battery	via	cables.	Here	the
loads	 are	 all	 electronic	 systems	 of	 the	 vehicle.	 The	 loads	 are
placed	in	the	motor	compartment	(e.g.	electric	power	steering,
motor	 control),	 in	 the	 interior	 (e.g.	 dashboard,	 electric	window
lifter,	seat	heating)	or	the	trunk	(e.g.	rear	lighting).
Fig.	 5.6	 shows	 this	 electrical	 system	 and	 Fig.	 5.7	 shows	 the
corresponding	electric	 circuit.	 To	 transfer	 the	electrical	 system
into	 the	 corresponding	 electric	 circuit	 the	 elements	 are
modeled:	The	generator	is	modeled	by	a	current	source	and	the
battery	by	a	voltage	source	with	 internal	 resistance.	According
to	 the	 lumped	 element	 method	 the	 cables	 between	 the
elements	are	modeled	by	resistors	RWx.	As	long	as	the	details	of
the	loads	are	not	relevant	the	loads	are	also	summarized	as	far
as	possible	and	modeled	by	resistors	RLx.
By	applying	nodal	analysis	the	currents	and	the	voltages	can	be
calculated.

Fig.	5.6:	Automotive	electrical	system	with	the	battery	in	the	engine	compartment.
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Fig.	5.7:	The	corresponding	electric	circuit,	alternator	modeled	by	a	current	source.

5.2	Mesh	analysis

In	mesh	analysis	 the	meshes	of	a	circuit	are	 the	starting	point
for	 the	 calculation.	 In	 simple	 and	 small	 circuits	 the	 essential
meshes	 can	 be	 used.	 The	 circuit	 in	 Fig.	 5.8	 consists	 of	 two
essential	 meshes	 and	 these	 can	 be	 used	 for	 mesh	 analysis.
After	 the	 meshes	 are	 found	 a	 virtual	 mesh	 current	 and	 the
direction	of	this	virtual	mesh	current	 is	defined	for	each	mesh.
The	 labeling	 of	 the	 mesh	 currents	 and	 their	 direction	 can	 be
chosen	arbitrarily.	The	real	branch	currents	are	composed	of	the
mesh	currents	flowing	through	this	branch.
The	KVL	can	be	applied	within	the	meshes.	This	means	we	get
an	equation	for	each	mesh.	In	these	equations	the	voltages	are
substituted	 by	 using	 Ohm’s	 law	 –	 the	 corresponding	 voltage
drop	 across	 each	 component	 expressed	 by	 the	mesh	 current.
Then	 the	 mesh	 currents	 are	 determined.	 Once	 the	 mesh
currents	have	been	found	the	voltages	and	branch	currents	can
be	calculated.
	
Algorithm	of	mesh	analysis

1.	 Identify	 the	 meshes	 and	 draw	 a	 corresponding	 mesh
current	in	each	mesh	(the	direction	is	arbitrary)

2.	 Label	the	voltage	drop	across	each	component	with	an
arrow

3.	 Apply	KVL	to	each	of	the	meshes
4.	 Apply	 Ohm’s	 law	 to	 each	 voltage	 drop	 across	 a

component	 and	 substitute	 the	 voltage	 by	 the
corresponding	mesh	currents
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5.	 Solve	the	equation	system	for	the	mesh	currents
6.	 Calculate	the	branch	currents
7.	 Determine	the	voltages	across	the	elements

An	example	for	the	application	of	the	algorithm	for	mesh
analysis
Consider	an	easy	example	for	the	presented	algorithm	as	shown
in	Fig.	5.8.	Two	meshes	build	the	circuit	and	the	mesh	currents
I1,	I2	are	identified	as	depicted	in	a	clockwise	manner.	Based	on
the	mesh	currents	the	current	through	resistor	R1	is	I1,	through
R2	it	is	I2	and	through	R3	it	is	I1	-	I2.

Fig.	5.8:	An	example	for	mesh	analysis.

1.	 Identify	 the	 meshes	 and	 draw	 a	 corresponding	 mesh
current	in	each	mesh	(the	direction	is	arbitrary)

–	See	mesh	currents	I1,	I2	in	Fig.	5.8
2.	 Label	the	voltage	drop	across	each	component	with	an

arrow
–	See	voltages	U1,	U2,	U3	in	Fig.	5.8

3.	 Apply	KVL	to	each	of	the	meshes
–	Mesh	1:

–	Mesh	2:

4.	 Apply	 Ohm’s	 law	 to	 each	 voltage	 drop	 across	 a
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component	 and	 substitute	 the	 voltages	 by	 the
corresponding	mesh	currents

–	Mesh	1:

–	Mesh	2:

5.	 Solve	the	equation	system	for	the	mesh	currents

6.	 Calculate	the	branch	currents

7.	 Determine	the	voltages	across	the	elements

For	given	values	of	R1	=	1	Ω,	R2	=	1	Ω,	R3	=	2	Ω	and	Uq1	=	5	V,
Uq2	=	10	V	the	voltages	and	currents	yield	I1	=	-1	A,	I2	=	-4	A,
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U1	=	-1	V,	U2	=	4	V,	U3	=	6	V.	Current	I3	=	(I1	-	I2)	=	3	A	through
resistor	R3	flows	parallel	to	the	voltage	drop	U3.
	
An	 example	 for	 mesh	 analysis	 with	 an	 ideal	 current
source
The	circuit	to	be	analyzed	using	the	algorithm	of	mesh	analysis
is	given	in	Fig.	5.9.

Fig.	5.9:	Circuit	for	mesh	analysis,	mesh	currents	indicated	clockwise	by	arrows.

Three	 meshes	 are	 identified	 and	 the	 corresponding	 mesh
currents	 in	 clockwise	 direction	 are	 labeled	 I1,	 I2,	 I3.	 Voltage
drops	are	 labeled	accordingly.	Applying	KVL	and	Ohm’s	 law	 to
the	three	meshes	results	in:

–	Mesh	1:

–	Using	Ohm’s	law	for	U1	=	R1·(I1	-	I3)	and	U2	=	R2·(I1	-	I2)
we	get:

–	Mesh	2:

–	 U5	 is	 unknown	 for	 the	 moment	 as	 the	 voltage	 drop
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across	an	 ideal	 current	 source	 is	unknown.	With	U3	=
R3·I2	we	can	express	U5	by	the	mesh	currents	and	the
resistances:

–	Mesh	3:

–	With	U4	=	R4·I3	we	get	for	U5:

–	 Using	 the	 two	 equations	 from	 mesh	 2	 and	 3	 for	 U5
gives:

–	 Up	 to	 now	 we	 have	 had	 two	 equations	 for	 the	 three
mesh	currents	and	we	need	a	third	one	to	solve	for	the
three	currents.	This	third	equation	can	be	derived	from
the	ideal	current	source	Iq:

–	 This	 leads	 us	 to	 the	 equation	 system	 for	 the	 three
currents:

For	given	values	of	Uq	=	6	V,	Iq	=	7	A,	R1	=	3	Ω,	R2	=	2	Ω,	R3	=
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4	Ω,	R4	=	7	Ω	the	matrix	looks	like

Using	Cramer’s	rule	this	yields	for	the	currents	I1	=	2	A,	I2	=	5	A,
I3	=	–2	A.
	
Independent	meshes:	complete	tree	of	a	circuit
So	far	rather	simple	circuits	have	been	analyzed	using	essential
meshes.	 In	general	 the	 independent	meshes	 for	mesh	analysis
of	a	complex	and	big	circuit	can	be	found	using	a	complete	tree
of	the	circuit.	A	tree	of	a	circuit	 is	a	 line	along	the	branches	of
the	 circuit	 connecting	 all	 nodes	 without	 a	 loop.	 In	 general
several	trees	exist	for	a	given	circuit	and	any	of	these	trees	can
be	 used	 to	 find	 the	 independent	 meshes.	 Fig.	 5.10	 shows	 a
circuit	 with	 four	 nodes.	 In	 addition	 two	 complete	 trees	 are
depicted	exemplarily.	Both	trees	connect	all	four	nodes	without
forming	a	loop.	After	a	tree	is	defined,	the	branches	that	are	not
part	 of	 the	 tree	 (links)	 are	 used	 to	 close	 the	meshes	 step	 by
step.	 A	 mesh	 must	 not	 contain	 more	 than	 one	 link	 and	 the
currents	in	the	links	are	the	mesh	currents	for	the	analysis.
In	the	first	example	(mid	of	Fig.	5.10)	mesh	M2	is	closed	via	the
link	 containing	 the	 voltage	 source.	 Meshes	 M1	 and	 M3	 are
closed	using	the	links	with	R1	and	R5	respectively.	In	fact	these
are	 the	 essential	meshes	 again.	 In	 the	 second	 example	 (right
side	 of	 Fig.	 5.10)	 another	 tree	 is	 chosen.	 M1	 is	 again	 closed
using	the	link	with	R1.	M2	is	closed	using	the	link	via	R3.	For	M3
the	mesh	is	closed	via	the	voltage	source.	This	mesh	is	not	an
essential	mesh.	 In	 both	 examples	 all	meshes	 contain	 just	 one
link	and	the	currents	in	these	links	are	the	corresponding	mesh
currents.
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Fig.	5.10:	Electric	circuit	with	examples	of	two	complete	trees	for	the	definition	of
meshes	M1-M3.

Independent	meshes	of	complex	circuits	can	be	found	by	using
this	method.	After	the	meshed	are	defined	mesh	analysis	can	be
done	as	described	before.
	
Automotive	application
We	 have	 again	 a	 look	 at	 the	 electrical	 system	 of	 a	 vehicle.
However	 this	 time	 the	 battery	 is	 placed	 inside	 the	 trunk	 to
reduce	the	environmental	stress.	But	as	can	be	seen	in	Fig.	5.11
the	resistance	between	battery	and	alternator	is	now	higher	and
charging	 the	 battery	 is	 worse	 as	 the	 voltage	 drop	 from
alternator	 to	 battery	 is	 higher.	 Whether	 this	 voltage	 drop	 is
acceptable	should	be	calculated,	e.g.	by	applying	mesh	analysis
to	determine	 the	 currents	and	 the	voltages.	Of	 course	also	by
using	nodal	analysis…

Fig.	5.11:	Electric	circuit	with	the	battery	located	inside	the	trunk.

5.3	Linearity	and	Superposition

Mathematically	a	 function	 is	 said	 to	be	 linear	 if	 it	 satisfies	 two
properties:	homogeneity	(scaling)	and	additivity	(superposition).
For	an	arbitrary	function	f(x)	homogeneity	is	given	by:
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K	is	a	constant	scalar	value.	Additivity	is	given	by:

For	 a	 linear	 circuit	 (or	 system)	 in	 which	 excitations	 x1	 and	 x2
produce	 responses	 y1	 and	 y2,	 respectively,	 the	 application	 of
K1x1	and	K2x2	together	(K1	and	K2	being	constants)	results	in	a
response	of	K1y1	+	K2y2.
A	 circuit	 consisting	 of	 independent	 sources,	 linear	 dependent
sources	and	linear	elements	(like	resistors)	is	said	to	be	a	linear
circuit.	 For	 a	 linear	 circuit	 consisting	 of	 several	 independent
sources	 the	 net	 response	 in	 any	 element,	 according	 to	 the
principle	of	superposition,	is	the	algebraic	sum	of	the	individual
responses	produced	by	each	of	the	independent	sources	acting
only	 by	 itself.	 While	 each	 independent	 source	 acting	 on	 the
circuit	 is	considered	separately,	 the	other	 independent	sources
are	suppressed.	The	effect	of	any	dependent	source,	however,
must	be	included	in	evaluating	the	response	due	to	each	of	the
independent	sources.	In	brief:
In	 linear	 networks	 we	 can	 determine	 the	 results	 of	 different
sources	by	analyzing	 the	behavior	of	 the	circuit	 independently
for	each	source	and	the	superposition	of	the	results	for	the	total
number	 of	 sources.	 But	 how	 are	 independent	 sources
suppressed,	 which	 were	 not	 considered	 during	 analysis	 of
another	source?
Voltage	 sources	 are	 replaced	 by	 short	 circuits	 (insignificant
internal	resistance	of	the	voltage	source,	ideal	voltage	source).
Current	 sources	 are	 replaced	 by	 open	 circuits	 (infinite	 high
internal	resistance).
	
An	example	for	superposition
An	 example	 for	 the	 application	 of	 principle	 of	 superposition	 is
depicted	in	Fig.	5.12.	Both	voltage	sources	as	well	as	the	three
resistors	 are	 known	 and	 we	 are	 looking	 for	 the	 current	 I1
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through	resistor	R1.
We	 start	 analyzing	 the	 circuit	 by	 suppressing	 all	 sources	 but
one,	e.g.	U1.	So	U2	is	suppressed	and	replaced	by	a	short	circuit
as	 shown	 in	 the	middle	 of	 Fig.	 5.12.	 The	 branch	 currents	 are
now	 labeled	with	 an	 extra	 suffix	 ‘1’	 to	 indicate	 that	 these	 are
the	first	partial	currents.	Now	the	parallel	connected	resistors	R2
and	R3	are	in	series	with	resistor	R1	and	the	current	I11	through
resistor	R1	is:

The	 second	 step	 is	 to	 analyze	 the	 circuit	 using	 U2	 and
suppressing	 U1,	 refer	 to	 right	 side	 of	 Fig.	 5.12.	 This	 time	 the
parallel	connected	resistors	R1	and	R3	are	in	series	with	resistor
R2	and	the	current	I22	through	resistor	R2	is

Fig.	5.12:	An	example	for	the	application	of	superposition.

Using	the	current	divider	rule	for	the	parallel	resistors	results	in:

In	 the	 end	 the	 total	 current	 through	 resistor	 R1	 sums	 up	 from
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the	two	partial	currents:

An	 example	 for	 superposition	 with	 linear	 dependent
sources
How	 can	 we	 deal	 with	 linear	 dependent	 sources	 after
introducing	superposition	with	independent	sources?	The	effect
of	 any	 dependent	 source	 must	 be	 included	 in	 evaluating	 the
response	due	to	each	of	the	independent	sources.	The	following
example	 illustrates	 the	 analysis.	 The	 circuit	 contains	 an
independent	 voltage	 source,	 one	 independent	 current	 source
and	one	linear	voltage	controlled	current	source.	The	current	of
the	 dependent	 source	 is	 given	 by	 the	 voltage	 drop	 across
resistor	R4	multiplied	with	a	factor	of	B.
Determine	 the	 voltage	 across	 the	 resistor	 R4	 of	 the	 circuit
depicted	in	Fig.	5.13	by	the	application	of	superposition.

Fig.	5.13:	An	example	for	superposition	for	a	circuit	with	a	dependent	current	source;
complete	circuit	(top);	circuit	with	suppressed	current	source	(open	circuit,	middle);

circuit	with	suppressed	voltage	source	(short	circuit,	bottom).

For	superposition	we	have	to	suppress	the	independent	sources
in	turn.
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–	Step	1:	Replace	the	 independent	current	source	by	an
open	circuit	as	shown	in	middle	of	Fig.	5.13.	For	node	1
we	get	by	KCL:

–	Applying	KVL	to	the	left	mesh	gives:

–	Therefore	 the	voltage	across	resistor	R4	 from	this	 first
part	of	the	solution	is:

–	Step	2:	Replace	the	independent	voltage	source	with	a
short	circuit	(s.	bottom	of	Fig.	5.13).

–	At	node	1,	KCL	gives

–	At	node	2,	KCL	gives
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Finally	the	total	net	response	for	the	voltage	drop	across
resistor	R4	by	superposition	is:

For	given	values	of	Uq	=	18	V,	Iq	=	6	A,	R1	=	6	Ω,	R2	=	12	Ω,	R3
=	80	Ω,	R4	=	20	Ω	and	B=3Ω	the	voltage	across	resistor	R4	 is
U22	=	96	V.
	
Automotive	application
Superposition	can	of	course	also	be	used	to	analyze	the	circuits
of	the	electric	system	as	given	in	Fig.	5.7	and	Fig.	5.8.
	
An	example	where	the	method	of	superposition	fails
The	method	of	superposition	is	only	valid	for	linear	networks.	If
non-linear	elements	are	part	of	the	circuit	it	fails	due	to	the	non-
linear	behavior.	Fig.	5.14	shows	an	example	circuit	with	a	Zener
diode	 (special	 kind	 of	 diode	 with	 rather	 non-linear	 behavior).
First	 we	 determine	 the	 current	 IZ1	 for	 Uq1	 and	 Uq2	 =	 0	 V.
Afterwards	we	determine	the	current	IZ2	for	Uq2	and	Uq1	=	0	V.
Now	 we	 add	 the	 voltages	 UZ1	 and	 UZ2	 and	 compare	 the
resulting	current	value	with	IZ1	+	IZ2.	As	can	be	seen	directly	in
the	 diagram	 the	 method	 yields	 the	 wrong	 results.	 Don’t	 use
superposition	for	non-linear	components.
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Fig.	5.14:	An	example	for	a	non-linear	network	with	a	Zener	diode;	the	method	of
superpopsition	fails	in	this	case.

5.4	Two-terminal	circuit	and	Thévenin’s	theorem

Any	 electric	 circuit	with	 just	 two	 external	 terminals	 is	 called	 a
two-terminal	 circuit.	 Without	 any	 current	 or	 voltage	 source
inside	 it	 is	 a	 passive	 two-terminal	 circuit.	 Therefore	 a	 passive
two-terminal	 circuit	 is	 an	 arbitrary	 configuration	 of	 resistors
such	as	depicted	in	Fig.	5.15.

Fig.	5.15:	A	passive	two-terminal	circuit	composed	of	resistors.

This	 arbitrary	 configuration	 of	 resistors	 can	 be	 replaced	 by	 a
single,	 equivalent	 resistor.	 In	 the	 example	 the	 equivalent
resistor	Req	of	the	passive	two-terminal	circuit	is:

In	 contrast	 to	 the	 passive	 two-terminal	 circuit	 an	 active	 two-
terminal	 circuit	 does	 contain	 sources.	 Like	 any	 resistor,	 the
configuration	of	a	passive	 two-terminal	 circuit	 can	be	 replaced
by	an	equivalent	resistor,	any	active	two-terminal	circuit	can	be
replaced	 by	 a	 voltage	 source	 in	 series	 with	 a	 resistor.	 This
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combination	 of	 voltage	 source	 and	 resistor	 is	 the	 equivalent
voltage	source,	or	the	Thèvenin	equivalent	circuit	of	the	original
circuit.	Fig.	5.16	shows	a	variable	load	resistor	connected	to	an
active	 two-terminal	 circuit	 with	 arbitrary	 internal	 configuration
of	 linear	elements.	Consider	we	don’t	care	about	the	details	of
the	 internal	 configuration	 of	 the	 two-terminal	 circuit	 but	 we
want	to	know	the	behavior	of	the	load	circuit,	e.g.	to	know	the
maximum	power	transfer	to	the	load	resistor.	Changing	the	load
resistor	results	in	a	linear	dependency	of	the	terminal	voltage	U
of	the	load	current	I:

Here	Uq	and	Ri	are	constants	and	this	equation	 is	 the	same	as
the	equation	for	a	voltage	source	Uq	with	an	internal	resistor	Ri
connected	in	series.

Fig.	5.16:	Active	two-terminal	circuit	with	arbitrary	internal	configuration	(left);
corresponding	voltage	vs	current	diagram	(middle);	Thevenin	equivalent	circuit

(right).

Thévenin’s	 theorem	 says	 that	 an	 arbitrary	 linear	 two-terminal
circuit	 (network	 of	 linear	 dependent	 and	 independent	 sources
and	elements)	can	be	substituted	by	a	real	voltage	source	(ideal
voltage	source	and	internal	resistor	in	series)	if	just	the	behavior
at	the	terminals	is	regarded.	In	terms	of	this	theorem,	the	circuit
of	voltage	source	and	 internal	 resistor	on	 the	 right	side	of	Fig.
5.16	 is	Thévenin’s	equivalent	 to	 the	active	 two-terminal	circuit
on	the	left	side.	If	we	are	just	interested	in	the	load	circuit	(here
a	 single	 resistor)	 it	 can	 simplify	 the	 analysis	 if	 we	 use	 this
theorem.
Example:	We	want	to	determine	the	maximum	power	transfer	to
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the	 load	 resistor.	 Using	 the	 original	 two-terminal	 circuit
connected	 to	 the	 load	 resistor	we	have	 to	calculate	 the	power
transfer	 for	 changing	 load	 resistor	 values.	 Depending	 on
complexity	 of	 the	 two-terminal	 circuit	 this	 might	 be	 difficult.
Using	 Thévenin	 equivalent	 immediately	 reveals	 the	 solution:
maximum	power	is	transferred	to	the	load	resistor	if	 it	 is	equal
to	the	internal	resistor	of	the	Thévenin	equivalent.
How	can	we	(easily)	determine	the	two	parameters	(Uq	and	Ri)
of	the	Thévenin	equivalent?
	
Algorithm	to	determine	the	Thévenin	equivalent

1.	 The	 load	 network	 must	 not	 contain	 dependencies	 of
the	supply	network

2.	 Determine	 the	 open	 loop	 voltage	 at	 the	 terminals	 of
the	 supply	 network	 (i.e.	 load	 resistor	 RL	=	∞	Ω).	 This
yields	Uq	=	Urep	=	U

3.	 Determine	the	inner	resistance	if	the	supply	circuit	Ri	=
Rrep.	Two	possibilities:

–	First	possibility:
Determine	the	short-circuit	current	Isc
(i.e.	RL	=	0	Ω)	with

–	Second	possibility:
Short-circuit	 of	 all	 ideal	 voltage
sources
Remove	 all	 ideal	 current	 sources
(open	load)
Leave	depending	sources	as	is
Look	 from	 the	 outside	 into	 the
modified	 arbitrary	 network	 and
determine	 the	 resistance	 that	 you
“see	from	the	outside”
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This	 resulting	 resistor	 will	 be	 the
replacement	resistor	of	the	Thévenin
equivalent

An	example	for	Thévenin’s	theorem

Fig.	5.17:	An	example	for	a	circuit	of	a	supply	network	and	a	simple	load	network
(top);	supply	network	is	to	be	replaced	by	the	Thévenin	equivalent	(bottom).

In	 this	 example	 (see	 Fig.	 5.17)	 we	 are	 not	 interested	 in	 the
internals	of	 the	supply	network,	but	 just	 in	 the	behavior	of	 the
terminals	1	and	0	and	we	want	 to	 know	 the	value	of	 the	 load
resistor	for	maximum	power	transfer	from	the	source.	Therefore
we	simplify	the	supply	network	by	applying	Thévenin’s	theorem.
First	we	regard	the	supply	network	without	the	load	as	depicted
in	Fig.	5.18:
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Fig.	5.18:	Supply	network	of	the	example,	currents	and	voltages	are	depicted	in	the
figure.

The	 currents	 can	 be	 expressed	 by	 the	 nodal	 voltages	 using
Ohm’s	law:

–	Node	1:

–	Node	2:

Two	equations	 to	determine	 the	 two	node	voltages	U10	=	Urep
and	 U′.	 Resorting	 of	 the	 two	 equations	 yields	 the	 equation
system	in	matrix	form:



The	following	values	are	used	to	calculate	Urep	and	U′:
R1	=	1	Ω,	R2	=	2	Ω,	R3	=	6	Ω	and	Uq1	=	20	V,	Iq2	=	15	A,	Iq3	=
15	A.

After	 determination	 of	 Urep	 the	 inner	 resistor	 Rrep	 of	 the
Thévenin	equivalent	is	calculated	by	removing	the	sources	from
the	 supply	 network	 (replace	 voltage	 sources	 by	 short-cut	 and
current	sources	by	open	circuit),	see	Fig.	5.19:

Fig.	5.19:	Supply	network	of	the	example	for	determination	of	Rrep:	removal	of
sources.

The	resulting	circuit	after	removal	of	the	sources	is	just	a	series
combination	 of	 two	 resistors	 (R1	 and	 R2)	 in	 parallel	 to	 a	 third



resistor	R3.

Finally	we	can	draw	the	Thévenin	equivalent	circuit	in	Fig.	5.20.

Fig.	5.20:	The	Thévenin	equivalent	circuit	with	values	for	Urep	and	Rrep.

Maximum	 power	 PLmax	 is	 transferred	 to	 the	 load	 if	 the	 load
resistor	 equals	 the	 internal	 resistor	 of	 the	 voltage	 source
(according	to	the	rule	of	maximum	power	transfer):

Automotive	application
Consider	again	the	electric	system	as	given	in	Fig.	5.7.	But	this
time	we	are	just	interested	in	the	analysis	of	the	electrical	loads
RLx	 and	 are	 not	 interested	 in	 the	 internal	 details	 of	 the
alternator/battery	 system.	 Therefore	 we	 would	 like	 to	 replace
the	alternator/battery	system	with	a	simple	real	voltage	source.
By	 application	 of	 Thévenin’s	 theorem,	 a	 replacement	 can	 be
achieved	 and	 the	 Thévenin	 equivalent	 can	 be	 used	 for	 the
analysis	of	the	load	system.



Fig.	5.21:	A	sub-circuit	with	alternator,	battery	and	resistances	(left)	and
corresponding	Thévenin	equivalent	(right).

5.5	Norton’s	theorem

Norton’s	 theorem	 is	 the	 complement	 to	 Thévenin’s	 theorem.
While	Thévenin’s	theorem	converts	a	linear	network	into	a	real
voltage	 source,	 Norton’s	 theorem	 converts	 an	 arbitrary	 linear
network	into	a	current	source:
An	 arbitrary	 network	 of	 linear	 elements	 can	 be	 substituted	 by
the	Norton	equivalent.

Fig.	5.22:	Arbitrary	(supply)	network	(left)	and	Norton’s	equivalent	(real	current
source,	right).

Algorithm	to	derive	Norton’s	equivalent
1.	 Remove	the	load	resistor	in	the	original	network
2.	 Replace	 the	 removed	 resistance	 by	 an	 electric	 short-

circuit
3.	 Determine	the	short-cut	current	(in	the	“load”	branch):

Isc	=	Irep
4.	 Determine	the	replacement	conductance	Grep
5.	 Construct	Norton’s	equivalent	with	Irep	and	Grep
6.	 Determine	the	load	current	IL	with	Norton’s	equivalent

as	the	supply	circuit



The	circuit	already	analyzed	by	Thévenin’s	 theorem	 is	used	as
an	example	for	Norton’s	theorem.
	
An	example	for	Norton’s	theorem

Fig.	5.23:	Supply	circuit	for	application	of	Norton’s	theorem,	load	circuit	is	short-cut
for	determination	of	Irep.

As	the	load	branch	is	short-cut	the	terminal	voltage	U10	=	0	V.
The	branch	currents	are:

–	Node	1:

–	 Using	 the	 values	 from	 Thévenin’s	 example	 and



converting	 the	 resistor	 values	 into	 corresponding
conductance	values	the	node	voltage	U′	is:

–	Node	2:

–	Determination	of	the	replacement	conductance	Grep:

Fig.	5.24:	Replacement	circuit	of	supply	network	for	determination	of	Grep.

Finally	Norton’s	equivalent	looks	like	depicted	in	Fig.	5.25:

Fig.	5.25:	Norton’s	equivalent	with	Irep	and	Grep.

The	 current	 of	 the	 source	 is	 split	 into	 a	 current	 through	 the
internal	 resistance	 and	 through	 the	 external	 load.	 Maximum
power	 is	 transferred	 to	 the	 load	 if	 the	 internal	 and	 external
resistances	are	equal,	just	like	for	Thévenin’s	equivalent.
For	 a	 load	 resistor	 of	 2	 Ω	 the	 current	 is	 split	 between	 the
internal	 and	 the	 load	 resistor	 according	 to	 the	 current	 divider
rule:





6	Operational	amplifier

6.1	Operational	amplifier

The	 voltage	 controlled	 voltage	 source	 was	 introduced	 in	 the
chapter	4.7.	Let’s	recall	this	circuit	and	add	two	resistors	to	the
circuit	 like	 shown	 in	 Fig.	 6.1.	 The	 voltage	 controlled	 voltage
source	 amplifies	 the	 voltage	 different	 U′	 =	 U1	 -	 U2	 by
amplification	factor	–A.	Between	U1	and	U2	there	is	an	open	load
(R	=	∞	Ω).	There	is	one	resistor	R1	in	one	of	the	input	terminal
paths	 and	 a	 feedback	 resistor	 R2	 from	 one	 output	 terminal	 to
the	 same	 input	 terminal.	 For	 simplicity	 we	 set	 U2	 as	 the
reference	point	(0	V)	and	also	refer	the	output	voltage	Ua	to	this
reference	point.

Fig.	6.1:	Voltage	controlled	voltage	source	with	feedback	loop	via	resistor	R2.

What	 about	 the	 output	 voltage	 Ua?	 Is	 it	 affected	 by	 the
resistors?	How	and	why?
According	 to	 KCL	 the	 currents	 I1	 and	 I2	 sum	 to	 zero	 at	 input
terminal	U1.	With	Ohm’s	law	KCL	can	be	written	as:

Using	the	amplification	of	the	voltage	source,	Ua	=	-A	·	U′	yields:



Due	to	 the	 feedback	 loop	the	output	voltage	depends	not	only
on	the	amplification	factor	A	but	also	from	the	resistors	R1	and
R2.	This	voltage	controlled	voltage	source	with	an	infinite	input
resistance	Re	and	open	 loop	gain	A	 (where	Ua	=	A·(U2	 -	U1),	A
positive	 or	 negative)	 is	 called	 ideal	 voltage	 amplifier.	 As	 Re	 is
infinite	 no	 current	 will	 enter	 the	 input	 terminals,	 and	 as	 the
output	 is	an	 ideal	voltage	source,	Ua	 is	driven	by	 the	amplifier
regardless	of	load	connected	to	the	output.	Terminal	U2	(labeled
with	 ‘+’)	 is	 called	 the	 non-inverting	 input	 and	 terminal	 U1
(labeled	with	‘–’)	is	called	the	inverting	input.

Fig.	6.2:	Circuit	and	model	of	an	ideal	voltage	amplifier	with	gain	A.

Considering	a	very	high	amplification	factor	(A	→	∞)	the	output
voltage	becomes	independent	from	A	and	is	just	determined	by
the	ratio	of	the	resistors:

The	 output	 voltage	 is	 inverted	 compared	 to	 the	 input	 voltage
and	 amplified	 by	 the	 ratio	 of	 the	 two	 resistors.	 The	 ideal



amplifier	 can	be	used	 to	obtain	a	defined	amplification	due	 to
the	external	resistors	R1	and	R2.	In	case	of	A	→	∞	this	feedback
loop	forces	the	output	to	stay	finite	(just	determined	by	the	ratio
of	the	resistors)	even	though	the	gain	 is	 infinite.	This	 is	due	to
the	fact	that	the	voltage	at	the	 internal	(infinite)	resistor	tends
to	zero:

As	 the	 ideal	 voltage	 amplifier	 with	 infinite	 gain	 is	 very
important,	 it	 has	 its	 own	 name,	 the	 operational	 amplifier	 (or
OpAmp).	The	major	property	of	an	OpAmp	is	the	amplification	of
an	 input	 voltage	 that	 can	 be	 measured	 at	 the	 output	 of	 the
device.	The	symbol	that	is	used	in	electric	circuits	is	depicted	in
Fig.	6.3:

Fig.	6.3:	Symbol	of	an	OpAmp;	UN:	voltage	at	inverting	input;	UP:	voltage	at	non-
inverting	input;	UD:	differential	input	voltage;	Ua:	voltage	at	output;	U+	and	U-:

power	supply	terminals.

U+	 and	 U-	 are	 the	 power	 supply	 terminals	 for	 the	 operational
amplifier,	 e.g.	 +15	 V	 and	 -15	 V.	 The	 input	 voltages	must	 not
exceed	 the	 supply	 voltage,	 otherwise	 the	 OpAmp	 can	 be
destroyed:

Under	normal	conditions	the	usable	output	voltage	is	limited	by
the	power	 supply	voltages	and	 the	 range	usually	 is	 something



like:

The	ideal	OpAmp	is	characterized	by	an	infinite	open	loop	gain
A	(hence	the	output	has	to	be	 limited	somehow	by	a	feedback
resistor	 in	 most	 cases),	 infinite	 input	 resistance,	 zero	 output
resistance	 and	 frequency	 independent	 amplification.	 Real
OpAmps	differ	from	this	ideal	version	as	shown	in	Tab.	6.1.

Tab.	6.1:	DC	characteristics	of	ideal	and	real	OpAmps.

Ideal	OpAmp Real	OpAmp
Open	loop	gain A	=	∞ A	≈	104-107

Input	resistance Re	=	∞	Ω Re	 	1	MΩ
Output	resistance Ra	=	0	Ω Ra	≈	1–100	Ω

The	 input-output	 characteristic	 (Ua	 =	 Ua(UD)	 of	 an	 OpAmp	 is
depicted	 exemplarily	 in	 the	 following	 diagram	 (see	 Fig.	 6.4).
Notice	 that	 due	 to	 the	 very	 high	 open	 loop	 gain	 A	 (or	 V0)	 the
output	of	the	OpAmp	is	already	in	saturation	for	rather	low	input
voltage	differences	in	µV	range	as	shown	in	this	example.

Fig.	6.4:	Output	voltage	of	a	real	OpAmp	as	a	function	of	the	differential	input.



Real	 OpAmps	 are	 electronic	 semiconductor	 devices	 composed
of	several	transistors,	capacitors	and	diodes.	Fig.	6.5	shows	the
internal	circuit	of	a	µA741	OpAmp	from	STMicroelec-tronics.

Fig.	6.5:	Circuit	of	the	µA741	OpAmp	from	STMicorelectronics	(µA741	datasheet).

Due	to	its	properties	the	OpAmp	is	a	very	well	known	device	for
all	 kind	 of	 applications,	 from	 simple	 amplification	 to	 complex
analog	calculations.
Several	standardized	packages	are	available	 for	 the	packaging
of	 the	 silicon	 dies	 of	 an	 OpAmp.	 For	 example	 the	 µA741	 is
housed	 in	 a	 through	 hole	 DIP-8	 package	with	 8	 pins	 (see	 Fig.
6.6).	The	package	dimensions	are	9.5	mm	by	7.8	mm	and	 the
height	of	the	package	is	about	4	mm.	The	pins	have	a	length	of
3.2	mm.	A	smaller	surface	mount	package	type	is	SOP-8	with	a
size	of	4.2	mm	by	5	mm	and	a	height	of	1.5	mm.	The	pins	are
just	about	1	mm.



Fig.	6.6:	Examples	of	packages	for	operational	amplifier:	DIP-8	(package	of	µA741
OpAmp,	left);	SOP-8	(right).	Package	drawings	by	Infineon	Technologies	AG.

6.2	Operational	amplifier	circuits

Comparator
If	 the	 OpAmp	 is	 used	 without	 a	 feedback	 loop	 its	 function	 is
rather	 simple:	 Two	 voltages	 are	 supplied	 to	 the	 inverting	 and
non-inverting	input	respectively	and	the	output	is,	due	to	infinite
(or	at	least	very	high)	open	loop	gain	just	the	maximum	positive
or	negative	voltage,	depending	on	which	input	voltage	is	higher:
Ua	=	A	·	(UP	-	UN)	=	A	·	UD.	The	characteristics	of	a	comparator
is	depicted	in	Fig.	6.7.

Fig.	6.7:	Simple	comparator	circuit	(left)	and	output	voltage	as	a	function	of	UD
(right).

Inverting	amplifier
One	of	the	easiest	circuits	with	an	ideal	OpAmp	and	a	feedback
loop	 is	given	below	 (also	 refer	 to	 first	 example	of	 this	 chapter
with	the	voltage	controlled	voltage	source):



Fig.	6.8:	An	inverting	amplifier.

As	the	input	resistance	is	infinite	for	an	ideal	OpAmp,	KCL	at	the
inverting	input	P	yields	(notice	that	direction	of	I2	is	opposite	to
the	 direction	 of	 I2	 in	 the	 examples	 of	 the	 voltage	 controlled
voltage	source):

Expressing	 the	 currents	 by	 the	 voltage	 drops	 across	 the
resistors	gives:

With	the	open	loop	gain	Ua	=	A·UD:

For	limit	of	A	→	∞:	UD	→0	V.	Finally:

Thus	 this	 circuit	 inverts	 and	amplifies	 the	 input	 voltage	and	 is
called	 inverting	 amplifier.	 Due	 to	 the	 feedback	 loop	 of	 the
output	 to	 the	 inverting	 input	 the	 voltage	 difference	UD	 is	 zero
and	the	voltage	at	the	inverting	input	equals	the	voltage	at	the
non-inverting	 input.	As	 the	non-inverting	 input	 is	 connected	 to
ground	 the	 voltage	 at	 the	 inverting	 input	 is	 the	 same.	 This



voltage	 is	 called	 a	 virtual	 ground	 as	 it	 corresponds	 to	 the
ground	voltage	without	being	directly	connected	to	the	ground.
Unlike	the	real	ground	there	is	no	net	current	flow	to	the	virtual
ground.
	
Inverting	amplifier	with	a	real	OpAmp
The	calculations	were	done	so	far	using	an	ideal	OpAmp.	What
does	this	 result	 look	 like	 for	a	 real	OpAmp	with	 finite	gain	and
finite	input	resistance?
As	we	have	seen	a	real	OpAmp	has	a	finite	input	resistance	and
gain	(see	Fig.	6.9).	Input	voltage	u1(t)	(lower	case	if	we	consider
it	 to	be	 time-dependent)	 is	 transferred	 to	output	voltage	u2(t).
Resistors	R1	and	R2	are	given	as	well	as	the	open	 loop	gain	V.
Five	values	are	unknown	and	have	to	be	determined	to	describe
the	complete	behavior	of	the	real	OpAmp:	u2(t),	ui(t),	ii(t),	 i1(t),
i2(t).	Therefore	we	have	to	find	five	equations:

–	Functionality	of	OpApm

–	Voltage	drop	across	input	resistance

–	KCL	at	inverting	input

–	Mesh	equation	M1

–	Mesh	equation	M2



Fig.	6.9:	Real	OpAmp	with	input	resistance	and	finite	gain	V.

We	can	solve	this	equation	system	to	get	 the	closed	 loop	gain
u2(t)/u1(t).	 First	 we	 replace	 ii(t)	 from	 the	 third	 equation	 in	 all
other	equations:

Afterwards	we	substitute	ui(t)	from	the	second	equation:

From	 the	 first	equation	we	get	 the	unknown	 i1(t)	 for	 the	other
two	equations:

Using	the	fifth	equation	yields	for	the	closed	loop	gain:



To	 check	 the	 difference	 to	 the	 closed	 loop	 gain	 of	 the	 ideal
OpAmp	let’s	consider	following	values:
R1	=	10	kΩ,	R2	=	30	kΩ,	V	=	100000,	Ri	=	1	MΩ

So	the	result	for	a	real	OpAmp	with	realistic	values	is	very	close
to	 the	 result	 of	 the	 ideal	OpAmp	 (	=	1/3)	and	we	can	use	 the
behavior	 of	 an	 ideal	 OpAmp	 for	 most	 purposes.	 Similar
calculations	 can	 be	 done	 to	 show	 that	 a	 non-zero	 output
resistance	 Ra	 changes	 the	 behavior	 of	 the	 real	 OpAmp	 just
slightly	compared	to	the	ideal	OpAmp.
	
Non-inverting	amplifier
For	 the	 inverting	amplifier	 the	 input	signal	 is	connected	 to	 the
inverting	 input.	 To	 avoid	 the	 inversion	 the	 input	 signal	 can	be
connected	to	the	non-inverting	input,	keeping	the	feedback	loop
to	the	inverting	input:

Fig.	6.10:	A	non-inverting	amplifier.

The	differential	voltage	at	the	input	terminals	+	(non-inverting)
and	–	(inverting)	of	the	OpAmp	is	zero	due	to	the	feedback	loop
to	the	 inverting	 input.	According	to	voltage	divider	rule	we	get
for	the	inverting	input:



Hence	the	closed	loop	gain	of	the	circuit	is

Automotive	application
Many	sensors	are	used	all	over	modern	vehicles	for	all	kinds	of
measurements,	 such	 as	 in	 the	 motor	 compartment	 (e.g.	 for
rotational	 speed	 of	 the	 cam	 shaft,	 oil	 pressure,	 motor
temperature)	 as	well	 as	 in	 the	 interior	 (e.g.	 temperature,	 light
intensity)	 or	 on	 the	 chassis	 (e.g.	 speed,	 damping).	 The	 sensor
output	 signals	 are	 transferred	 to	 the	 corresponding	 electronic
control	unit	 (ECU,	e.g.	motor	control	system).	 Inside	the	ECU	a
microcontroller	 (µC)	 uses	 these	 data	 for	 the	 algorithms	 of	 the
control	system.
One	way	of	transferring	the	measured	data	to	an	ECU	is	to	use	a
simple	analog	voltage.	This	voltage	can	be	read	by	an	analog-
to-digital-converter	(ADC)	of	a	microcontroller.	Unfortunately	for
some	sensors	 the	output	voltage	 is	 rather	small	 (maybe	 just	a
few	mV).	On	the	way	to	the	ECU	this	small	analog	signal	might
be	 disturbed	 by	 the	 electromagnetic	 influence	 of	 other
electronic	systems.	A	wrong	value	is	then	read	by	the	ADC	and
the	control	algorithms	do	not	work	correctly	any	more.
Fig.	 6.11	 shows	 the	 connection	 from	an	 analog	 sensor	 via	 the
non-inverting	amplifier	to	the	ADC	input	of	 the	microcontroller.
Depending	on	the	maximum	value	of	the	output	voltage	of	the
sensor,	R1	and	R2	can	be	calculated	to	amplify	the	voltage	to	a
range	 that	 fits	 to	 the	 input	 characteristics	of	 the	ADC	 (e.g.	5V
maximum).

Fig.	6.11:	Amplification	of	an	analog	sensor	signal	by	a	non-inverting	amplifier,
measurement	by	ADC	of	microcontroller	(µC).



Unity	gain	buffer
A	 special	 case	 of	 the	 non-inverting	 amplifier	 is	 the	 unity	 gain
buffer.	Here	 the	output	 of	 the	OpAmp	 is	 connected	directly	 to
the	inverting	input,	i.e.	R2	=	0	kΩ	(Fig.	6.12).	If	the	resistor	R1	is
greater	than	zero	(infinite	in	 limit	case)	the	closed	loop	gain	of
the	unity	gain	buffer	is

Fig.	6.12:	A	unity	gain	buffer.

The	output	voltage	of	the	unity	gain	buffer	is	equal	to	the	input
voltage.	 The	 purpose	 of	 this	 OpAmp	 circuit	 is	 to	make	 use	 of
some	basic	properties	of	the	OpAmp	to	convert	the	impedance:
the	input	impedance	is	very	high	(infinite	for	the	ideal	OpAmp)
and	 the	 output	 impedance	 is	 very	 small	 (zero	 for	 the	 ideal
OpAmp).	The	OpAmp	acts	 like	a	nearly	 ideal	voltage	source	of
Ue	 with	 very	 small	 internal	 resistance.	 This	 eliminates	 any
feedback	 from	the	 load	connected	 to	 the	output	 to	 the	driving
circuit	(input	voltage)	as	can	be	seen	in	a	simple	example.
	
An	example	for	a	circuit	with	a	unity	gain	buffer
A	variable	load	is	connected	to	a	voltage	source	Uq	with	internal
resistance	Ri	like	depicted	in	Fig.	6.13.	Depending	on	the	value
of	 the	 load	 resistance	 the	 terminal	 voltage	 U	 (equal	 to	 the
voltage	 across	 the	 load	 resistor)	 of	 the	 source	 changes
according	 to	 the	 voltage	 divider	 rule.	 If	 the	 load	 resistance	 is
very	 high	 compared	 to	 the	 internal	 resistance	 the	 terminal
voltage	will	be	about	Uq	and	the	current	will	be	very	small.	If	the
load	 resistance	 is	equal	 to	 the	 internal	 resistance	 the	 terminal
voltage	will	be	 just	half	of	Uq	and	 the	current	will	be	Uq/2Ri.	 If



finally	the	load	resistor	is	very	small	the	terminal	voltage	will	be
roughly	zero	and	the	current	will	have	its	highest	value	of	about
Uq/Ri.	Thus	the	load	has	a	major	impact	on	the	behavior	of	the
voltage	source	and	the	total	circuit.	To	avoid	this	feedback	from
the	 load	 to	 the	 source	 a	 unity	 gain	 buffer	 can	 be	 used.	 The
symbol	for	the	unity	gain	buffer	is	a	triangle	with	a	1	as	shown
in	Fig.	6.13.
After	 insertion	 of	 a	 unity	 gain	 buffer	 to	 terminate	 the	 voltage
source	the	load	voltage	will	be	independent	of	the	load	(see	Fig.
6.13,	right).	The	 input	 impedance	of	the	converter	 is	very	high
and	 therefore	 the	 input	voltage	 is	equal	 to	Uq.	Due	 to	 its	very
small	 output	 impedance	 the	 OpAmp	 acts	 like	 a	 nearly	 ideal
voltage	source	and	thus	the	load	voltage	is	constant	and	equal
to	 Uq	 (at	 least	 as	 long	 as	 the	 load	 resistor	 is	 higher	 than	 the
output	 impedance).	 In	 general	 a	 unity	 gain	 buffer	 is	 used	 to
separate	parts	of	circuits	to	avoid	feedback	to	other	parts.

Fig.	6.13:	Voltage	source	with	internal	resistance	and	variable	load	(left);	same	circuit
like	on	the	left	side	but	with	a	unity	gain	buffer	to	separate	the	load	from	the	source

circuit.



7	Time	domain	circuit	analysis

In	previous	chapters	some	concepts	 for	 the	analysis	of	electric
circuits	like	mesh	or	nodal	analysis	were	introduced.	So	far	only
DC	 circuits	 have	 been	 considered,	 i.e.	 circuits	 with	 time-
independent	sources	(DC	sources)	and	after	initial	disturbances
(e.g.	 switching	 and	 transients)	 were	 settled.	 Even	 the	 few
examples	were	sources	were	time-dependent	transient	behavior
was	not	 taken	 into	account.	 If	 time-dependent	parameters	 like
current	 and	 voltage	 are	 considered,	 lower	 case	 symbols	 are
used	to	describe	these	parameters,	e.g.	u(t),	i(t).
Time	domain	circuit	analysis	will	be	split	into	two	parts:

1.	 Transient	effects	(switching	events)
2.	 AC	circuits

We	 will	 start	 with	 the	 introduction	 of	 two	 new	 elements	 in
electrical	circuits:	capacitors	and	inductors.

7.1	Capacitor

A	capacitor	is	an	electric	element	that	is	able	to	store	electrical
energy.	 In	a	 simplified	 image	an	 ideal	 capacitor	 is	built	 of	 two
plates	 (electrodes).	 The	 electrodes	 are	 separated	 by	 a	 non-
conducting	space	(dielectric)	and	each	electrode	is	connected	to
one	 terminal	 of	 the	 capacitor.	 A	 current	 through	 a	 capacitor
means	 that	 positive	 charges	 are	 accumulated	 inside	 the
capacitor	 on	one	electrode	and	negative	 charges	on	 the	other
electrode.

Fig.	7.1:	A	simple	image	of	a	capacitor;	current	i(t)	causes	positive	charges	to



Fig.	7.1:	A	simple	image	of	a	capacitor;	current	i(t)	causes	positive	charges	to
accumulate	on	one	electrode	and	negative	on	the	other;	circuit	symbol	of	a	capacitor

(center)	and	adjustable	capacitor	(right).

A	 separation	 of	 charges	 means	 there	 is	 an	 electric	 field
generated	 inside	 the	 capacitor	 storing	 electrical	 energy.	 The
difference	 of	 potentials	 due	 to	 the	 electric	 field	 can	 be
measured	 as	 voltage	 u(t)	 at	 the	 terminals.	 The	 ratio	 of
accumulated	 charges	 q(t)	 to	 created	 voltage	 u(t)	 is	 called	 the
capacitance	of	a	capacitor:

The	unit	of	capacity	C	is	Farad:

The	 capacity	 of	 1	 Farad	 of	 a	 capacitor	 means	 that	 a	 stored
charge	 of	 1	 Coulomb	 creates	 a	 voltage	 of	 1	 Volt	 at	 the
terminals.
The	capacitance	C	is	a	constant	for	a	given	capacitor	depending
on	 the	 geometric	 configuration	 and	 the	 dielectric	 of	 the
capacitor.	An	 ideal	capacitor	 just	has	a	capacitance	C,	with	no
resistance	R.
Taking	 the	 definition	 of	 the	 voltage	 and	 Maxwell’s	 second
equation	 into	 account	 for	 electrostatic	 cases	 the	 capacitance
can	be	expressed	in	terms	of	fields:

The	 calculation	 of	 the	 capacitance	 for	 arbitrary	 geometry	 is	 in
general	complex.	But	 for	simple	geometries	and	the	neglect	of
edge	effects	 it	can	be	calculated	rather	simply,	e.g.	for	a	plate
capacitor.	As	depicted	 in	Fig.	7.2	 the	capacitor	consists	of	 two
plates	with	surface	A,	distance	d	and	a	dielectric	ε.	Charges	+Q
and	 -Q	 (same	 amount,	 opposite	 polarity)	 are	 accumulated	 on



both	 plates	 respectively.	 The	 displacement	 field	 is
homogeneous	 between	 the	 plates	 and	 zero	 outside	 the	 plates
(good	 approximation	 if	 the	 plates	 are	 much	 bigger	 than	 the
distance	between	the	two	plates).

Fig.	7.2:	Plate	capacitor	with	charges	+Q	and	-Q	on	both	plates	respectively;	left:
stray	field	outside	the	capacitor;	right:	simplification:	displacement	field	just	inside

the	capacitor.

The	 integration	 to	 calculate	 the	 charge	 is	 achieved	 using	 the
closed	surface	shown	on	 the	 right	side	of	Fig.	7.2.	Outside	 the
capacitor	the	displacement	field	is	zero.	Between	the	plates	it	is
in	x-direction	and	parallel	to	the	normal	of	the	surface.	Thus	the
charge	yields:

The	voltage	between	the	plates	 is	calculated	using	the	electric
field	and	the	integration	is	done	from	the	left	plate	(at	A	=	–d/2)
to	 the	right	plate	 (at	B	=	d/2).	As	electric	 field	and	 integration
path	are	parallel	the	voltage	is	given	by:

Finally	the	capacitance	of	a	plate	capacitor	is:



It	 is	 directly	 proportional	 to	 the	 area	 of	 the	 plates	 and	 the
dielectric	between	 the	plates	and	 inversely	proportional	 to	 the
distance	between	the	plates.
Recall	the	definition	of	electric	current:

Thus	 the	 current	 entering	 a	 capacitor	 is	 equal	 to	 the	 rate	 of
buildup	 of	 charge	 on	 the	 plate	 attached	 to	 the	 terminal	 and
proportional	 to	 the	 buildup	 of	 the	 voltage	 between	 the	 plates.
Integration	 of	 the	 current	 equation	 above	 yields	 the	 integral
form:

Here	u(0)	is	the	initial	capacitor	voltage	at	t	=	0	s.
To	calculate	the	energy	stored	in	the	electric	field	of	a	capacitor
we	start	with	the	power	p(t)	delivered	to	the	capacitor:

The	 energy	 e(t)	 stored	 in	 the	 capacitor	 is	 obtained	 by
integrating:

Assuming	 the	 capacitor	 voltage	 to	 be	 zero	 at	 t	 =	 -∞	 s	 the
energy	stored	in	a	capacitor	at	time	t	represents	the	energy	of
the	 electric	 field	 between	 the	 plates	 due	 to	 the	 separation	 of
charges	and	just	depends	on	the	voltage	at	that	time



Some	properties	of	capacitors	based	on	the	equations	above:
–	In	the	special	case	that	the	voltage	across	the	capacitor
is	 constant	 there	 is	 no	 current	 flow	 through	 the
capacitor	 any	 more.	 In	 the	 case	 of	 DC	 (after	 any
switching	 effects,	 s.	 below)	 therefore	 the	 capacitor
behaves	 like	 an	 open	 load	 (in	 fact	 it	 is	 an	 open	 load
due	to	the	dielectric	between	the	plates).

–	 If	a	capacitor	 is	charged	and	disconnected	afterwards,
the	 current	 will	 be	 zero	 and	 the	 voltage	 across	 the
capacitor	will	stay	constant	(energy	storage	element)

–	 Energy	 in	 general	 cannot	 be	 changed	 instantaneously
(this	would	need	infinite	high	power).	Consequently	the
voltage	 u(t)	 across	 the	 capacitor	 cannot	 change
instantaneously.	 By	 contrast	 the	 current	 i(t)	 can
change	instantaneously.

Series	and	parallel	connection	of	capacitors
Like	 resistors	 capacitors	 can	 of	 course	 be	 connected	 in	 series
and	 parallel	 as	 depicted	 in	 Fig.	 7.3.	 For	 the	 series	 connection
the	 voltage	drop	u(t)	 across	 the	 terminals	A-C	 is	 split	 into	 the
voltages	across	the	capacitors,	A-B	and	B-C:

As	 the	same	current	 i(t)	 is	 flowing	 through	both	capacitors	we
get:

Here	 Ceq	 is	 the	 equivalent	 capacitance	 if	 we	 replace	 the	 two
capacitors	 by	 a	 single	 one.	 In	 a	more	 general	manner	we	 can
find	the	equivalent	capacitance	Ceq	for	a	series	connection	of	n



capacitors	with	capacitance	Ci	by:

Regarding	 the	 parallel	 connection	 of	 capacitors	 (refer	 to	 Fig.
7.3)	the	voltage	drop	across	both	capacitors	is	the	same	and	the
current	 i(t)	 is	 split	 into	 two	 parts	 through	 both	 capacitors
respectively,	i1(t)	and	i2(t).	According	to	KCL	at	node	B:

Again	 Ceq	 is	 the	 equivalent	 capacitance	 if	 we	 replace	 the	 two
capacitors	by	a	 single	one.	 For	n	 capacitors	 in	parallel	we	can
write:

Fig.	7.3:	Series	(left)	and	parallel	(right)	connection	of	capacitors.

Capacitors	and	OpAmps
Capacitors	can	be	used	also	in	combination	with	OpAmps.	In	this
example	 the	 feedback	 loop	of	 an	 ideal	OpAmp	 is	built	 up	of	 a
resistor	R,	the	inverting	input	is	connected	to	the	input	voltage
u1(t)	via	a	capacitor	C,	see	Fig.	7.4.



Fig.	7.4:	OpAmp	circuit	with	a	capacitor	in	the	input	line.	The	circuit	acts	as	a
differentiator.

As	the	OpAmp	is	 ideal	the	voltage	at	the	 inverting	 input	 is	0	V
(equal	to	non-inverting	input)	and	therefore	KCL	yields:

Using

we	get:

Hence	 the	 output	 voltage	 is	 proportional	 to	 the	 negative
derivative	 of	 the	 input	 voltage	 and	 the	 circuit	 realizes	 a
differentiator.	 The	 term	 τ	 =	 R·C	 is	 the	 time	 constant	 of	 the
differentiator.
	
Real	capacitors
Besides	 the	 simple	 capacitor	 built	 out	 of	 two	 plane	 plates	 (s.
above)	there	are	many	other	geometric	forms	for	capacitors	like
cylinder-type	 shapes	 (Fig.	 7.5).	 Without	 derivation	 the
capacitance	for	these	cylinder-types	is	given	by:



Here	the	parameters	are:
–	l:	length	of	cylinder
–	R:	radius	of	outer	electrode
–	r:	radius	of	inner	electrode

Fig.	7.5:	A	cylinder-type	capacitor.

Capacitors	are	often	made	of	tightly	rolled	sheets	of	metal	film
with	 a	 dielectric	 material	 (e.g.	 paper	 or	 nylon)	 in	 between	 in
order	 to	 increase	 the	 capacitance	 for	 a	 given	 size.	 Based	 on
geometry,	 dielectric	 and	 fabrication	 process	 values	 for	 the
capacitance	can	range	from	a	 few	pico	Farads	up	to	the	Farad
region.	Refer	to	Tab.	7.1	for	a	list	of	different	types	of	dielectric
material.	The	working	voltage	is	the	maximum	voltage	that	can
safely	be	applied	to	the	terminals	of	a	capacitor.	This	value	is	in
general	 given	 by	 the	 manufacturer.	 Exceeding	 this	 limit	 may
result	 in	 the	 breakdown	 of	 the	 dielectric	 (due	 to	 the	 small
distance	between	 the	electrodes	 the	electric	 field	between	 the
electrodes	 reaches	 very	 high	 values)	 and	 the	 formation	 of	 an
electric	 path	 between	 the	 capacitor’s	 plates.	 Values	 for	 the
working	voltage	can	range	from	a	few	volts	to	some	thousands
volts.

Tab.	7.1:	Characteristics	of	capacitors	with	different	dielectric.

Material Capacitance
range

Maximum	voltage
range	[V]

Mica 1	pF-0.1	µF 50–600
Ceramic 10	pF-1	µF 50–1600



Ceramic 10	pF-1	µF 50–1600
Paper 10	pF-50	µF 50–400
Electrolytic 0.1	µF–0.2	F 3–600

Due	 to	 connections,	 terminals	 and	 internal	 configuration	 real
capacitors	have	additional	resistive	elements	 in	addition	to	the
capacitive	 behavior.	 The	 resistive	 effect	 of	 these	 parts	 can	 be
modeled	 by	 a	 resistor	 in	 series	 (ESR,	 equivalent	 series
resistance)	 with	 an	 ideal	 capacitor.	 The	 ESR	 depends	 on	 the
capacitor’s	type	and	assembly	and	is	usually	in	the	range	of	mΩ
to	Ω	and	strongly	frequency	dependent.
As	 the	 dielectric	 between	 the	 electrodes	 are	 not	 perfect
isolators	there	will	be	a	(very	small)	amount	of	current	through
the	capacitor	called	leakage	current.	This	effect	can	be	modeled
by	 an	 ideal	 capacitor	 in	 parallel	 with	 a	 parasitic	 resistor	 (Fig.
7.6).	 These	 resistors	 create	 losses	 and	 the	 different	 technical
types	 of	 capacitors	 can	 be	 distinguished	 by	 the	 amount	 of
losses.

Fig.	7.6:	Model	of	capacitor	with	parasitic	resistor	in	parallel	to	the	capacitance	due	to
imperfect	dielectric.

There	 are	many	 different	 types	 of	 capacitors,	 all	 with	 specific
pros	and	cons.	Important	types	are:

–	Ceramic	capacitor:	 the	dielectric	 is	a	ceramic	material
(e.g.	TiO2,	BaTiO3),	capacitance	values	are	in	the	range
of	 0.5	 pF-100	 µF	 and	 more.	 Applications	 are
highfrequency	 applications	 as	 well	 as	 storage
elements;

–	 Film	 capacitor:	 a	 dielectric	 film	 (e.g.	 polyester,
metalized	 paper,	 Teflon)	 is	 sandwiched	 between	 the
metal	 layers,	 the	 complete	 sandwich	 is	 wound	 into	 a



tight	 roll.	 It’s	 the	 most	 common	 capacitor	 type	 with
many	different	forms,	capacitance	values	ranging	from
few	 pF	 up	 to	 100	 µF.	 Often	 used	 in	 high	 power
applications;

–	 Electrolytic	 capacitor:	 This	 type	 uses	 an	 electrolyte
(ionic	 conducting	 liquid)	 as	 one	 of	 the	 electrodes
(cathode).	The	dielectric	is	formed	by	a	very	thin	oxide
film	 on	 the	 anode	 (anode	material	 e.g.	 Al,	 Ta	 or	 Nb).
Due	 to	 the	 very	 thin	 dielectric	 the	 distance	 between
the	 electrodes	 is	 very	 small	 and	 due	 to	 a	 coarse
surface	of	the	anode	the	surface	is	rather	large.	These
two	 geometric	 parameters	 result	 in	 a	 rather	 high
capacitance	 of	 1	 µF	 up	 to	 47	 mF.	 Used	 in	 all
applications	needing	high	capacitance	values,	e.g.	DC
power	 supplies.	 As	 this	 type	 of	 capacitor	 is	 in	 most
cases	 polarized	 the	 terminals	 have	 to	 be	 connected
with	 the	 correct	 polarity	 (positive	 to	 +terminal,
negative	 to	 –terminal,	 otherwise	 the	 capacitor	 will	 be
destroyed	(explode);

–	 Double	 layer	 capacitor	 (supercap):	 A	 special	 kind	 of
electrolytic	 capacitor	where	 the	distance	between	 the
electrodes	 is	 in	 the	 nm	 range.	 Therefore	 the
capacitance	 is	very	high,	up	to	several	hundred	Farad
or	 even	 above.	 This	 type	 of	 capacitor	 is	 used	 as
storage	element	e.g.	in	electric	vehicles	for	short	term
storage	and	charging/discharging.



Fig.	7.7:	Typical	packages	for	capacitors:	ceramic	(top	left);	film	(top	right);
electrolytic,	positive	terminal	marked	with	+	(center);	supercap,	positive	terminal

marked	by	longer	pin	(bottom).

Automotive	application
Numerous	 capacitors	 can	 be	 found	 in	 almost	 every	 electronic
system	and	ECU	of	modern	vehicles.	For	example	 they	can	be
used	 for	 filter	 applications.	 Or	 they	 are	 used	 as	 blocking
capacitors	 for	 voltage	 stabilization	 as	 they	 can	 provide	 or
absorb	high	currents	 in	 the	short	 term.	This	application	makes
use	of	the	capability	of	capacitors	to	store	electrical	energy.	The
combination	 of	 energy	 storage	 and	 high	 current	 capability
makes	 supercaps	 very	 interesting	 in	 particular	 for	 HEV/EV
applications.	 During	 braking	 the	 electrical	 motor	 of	 HEV/EV	 is
used	as	a	generator	to	convert	mechanical	energy	into	electrical
energy.	 This	 recuperation	 of	 braking	 energy	 results	 in	 high
currents.	 As	 the	 battery	 is	 not	 able	 to	 cope	 with	 the	 high
currents	supercaps	can	be	used	as	high	power	storage	element
as	they	can	absorb	high	currents.



7.2	Inductors

Like	 the	 capacitor	 the	 inductor	 is	 an	 energy-storage	 circuit
element.	 However,	 it	 is	 not	 based	 on	 the	 electric	 field,	 but
rather	 the	magnetic	 field	 effect:	 a	 current	 flow	 in	 a	 conductor
produces	 a	 magnetic	 field	 around	 this	 conductor.	 Winding	 a
conductor	into	a	coil	(N	windings)	increases	the	magnetic	field.
This	magnetic	 field	 is	 described	 by	 the	magnetic	 flux	 N	 ·	 Φ(t)
that	is	directly	proportional	to	the	current	i(t):

The	constant	L	is	the	inductance	of	the	element.

Fig.	7.8:	A	single	inductive	coil	with	N	windings	(left);	American	circuit	symbol	of	an
inductor	(mid)	and	European	symbol	(right).

According	 to	Faraday’s	 law	of	 induction	 the	voltage	across	 the
inductor	is	proportional	to	the	change	of	the	total	magnetic	flux
N	 ·	 Φ(t)	 and	 hence	 to	 the	 change	 of	 current	 through	 the
inductor:

The	unit	for	inductance	is	Vs/A	=	H	(=	Henry):
An	inductor	has	the	inductance	of	1	Henry	if	the	induced	voltage
at	the	terminals	is	1	A	as	a	reaction	to	a	current	change	rate	of
1	A/s.	For	the	special	case	of	DC	current	the	voltage	across	an
inductor	is	zero	and	an	ideal	inductor	acts	like	a	short	circuit.
Integration	 of	 the	 voltage	 equation	 above	 yields	 the	 integral
form:



Here	i(0)	is	the	initial	inductor	current	at	t	=	0	s.
To	 calculate	 the	 energy	 stored	 in	 the	 magnetic	 field	 of	 an
inductor	we	start	with	the	power	p(t)	delivered	to	the	inductor:

The	energy	e(t)	stored	in	the	inductor	is	obtained	by	integrating:

Assuming	the	inductor	current	to	be	zero	at	t	=	-∞	s,	the	stored
energy	in	the	inductor	at	time	t	only	depends	on	the	current	at
that	time	and	the	inductance	of	the	element	and	is	given	by:

Like	for	the	capacitor	(and	always	in	physics)	the	energy	cannot
change	 instantaneously	and	according	 to	 the	 relation	between
energy	and	current	also	the	current	through	an	inductor	cannot
change	instantaneously	in	a	step	function	(but	the	voltage	can).
As	with	the	capacitor	the	step	of	a	current	through	an	inductor
would	 need	 an	 infinitely	 high	 voltage	 at	 the	 terminals	 which
cannot	be	generated.
In	other	words:	A	high	voltage	is	induced	if	a	current	is	switched
off	very	fast.	Be	careful	with	switching	off	a	current	through	an
inductor	as	this	high	voltage	may	damage	other	components	of
the	circuit.
	
Series	and	parallel	connection	of	inductors
Like	 resistors	 and	 capacitors	 inductors	 can	 of	 course	 be
connected	in	series	and	parallel	as	depicted	in	Fig.	7.9.
For	 the	 series	 connection	 the	 voltage	 drop	 u	 across	 the
terminals	A-C	is	split	into	the	voltages	across	the	inductors,	A-B
and	B-C	and	same	current	i(t)	flows	through	the	inductors:



Here	 Leq	 is	 the	 equivalent	 inductor	 if	 we	 replace	 the	 two
inductors	by	a	single	one.	In	a	more	general	manner	we	can	find
the	 equivalent	 inductance	 Leq	 for	 a	 series	 connection	 of	 n
inductors	with	inductance	Li	by:

Regarding	the	parallel	connection	of	inductors	(refer	to	Fig.	7.9)
the	voltage	drop	u(t)	across	both	capacitors	is	the	same	and	the
current	 i(t)	 is	 split	 into	 two	 parts	 through	 both	 inductors
respectively,	i1(t)	and	i2(t).	According	to	KCL	at	node	B:

Again	 Leq	 is	 the	 equivalent	 inductance	 if	 we	 replace	 the	 two
inductors	 by	 a	 single	 one.	 For	 n	 inductors	 in	 parallel	 we	 can
write



Fig.	7.9:	Series	(left)	and	parallel	(right)	connection	of	inductors.

Real	inductors
Ideal	 inductors	 have	 just	 the	 inductance	 and	 no	 resistance	 or
capacitance.	 Real	 inductors	 will	 have	 some	 associated
resistance	and	capacitance:	the	wiring	of	the	inductor	has	some
(small	 but	 non-zero)	 resistance,	 and	 sizable	 capacitances	may
exist	 between	 adjacent	 turns.	 A	 possible	 model	 for	 a	 real
inductor	 could	 be	 a	 combination	 of	 ideal	 elements:	 a
combination	 of	 resistance	 and	 inductance	 in	 series,	 with	 a
capacitance	in	parallel.	The	parasitic	resistance	can	range	from
a	few	Ohms	up	to	several	hundred	Ohms.
Real	inductor	(also	called	coil	or	choke)	values	range	from	about
0.1	 µH	 to	 several	 hundred	mH	 or	 even	 several	 H.	 Due	 to	 the
construction	 of	 the	 coils	 and	 the	 storage	 of	 energy	 in	 the
magnetic	field,	inductors,	in	particular	for	big	inductance	values,
can	 hardly	 be	 miniaturized,	 they	 are	 rather	 bulky	 and
expensive.	 The	 standardization	of	 inductors	 is	 not	done	 to	 the
same	degree	as	for	resistors	and	capacitors.	Some	examples	of
inductor	packages	are	depicted	in	Fig.	7.10.

Fig.	7.10:	Examples	for	inductor	packages:	shielded	SMD	(surface	mount	device,	left);
unshielded	SMD	(center);	unshielded	THD	(through	hole	device,	right).

Automotive	application



	
Inductors	are	often	used	as	chokes	to	filter	out	higher	frequency
AC	 currents	 due	 to	 the	 frequency	 dependence	 of	 their
impedance.	 Or	 they	 are	 used	 as	 short	 term	 energy	 storage
element,	e.g.	in	DC/DC	converters	to	convert	one	DC	voltage	to
another	DC	voltage.	Applications	 like	an	electrical	 relays	make
use	of	the	magnetic	properties	of	an	inductor	(see	Fig.	7.11).
The	 circuit	 is	 split	 into	 two	 parts,	 a	 control	 circuit	 and	 a	 load
circuit.	 Target	 is	 to	 switch	 the	 load	 without	 a	 direct	 electrical
contact	 to	 the	 control	 circuit.	 By	 applying	 a	 current	 to	 the
inductor	of	the	relays	a	magnetic	field	is	generated.	This	field	is
used	to	close	a	magnetic	switch	in	the	load	circuit	which.	Due	to
the	closed	magnetic	switch	the	load	circuit	is	electrically	closed
and	 the	 load	 is	 switched	 on.	 As	 soon	 as	 the	 control	 current	 is
switched	 off,	 the	 magnetic	 field	 fades	 away	 and	 the	 relays
opens	 the	 load	 circuit	 again.	 The	 load	 is	 switched	 off.	 Notice
that	 there	 is	 no	 direct	 electrical	 contact	 between	 control	 and
load	circuit.	Both	circuits	are	galvanically	isolated.

Fig.	7.11:	Circuit	of	an	electrical	relais	to	switch	a	load	circuit.

7.3	Transient	effects	and	switching

By	now	we	have	just	regarded	DC	voltages	and	currents	in	our
circuit	 analysis.	 The	 circuits	 themselves	 were	 pure	 resistive.



When	 starting	 with	 time-dependent	 analysis	 of	 circuits	 with
inductors,	 capacitors	 and	 resistors	 we	 have	 to	 analyze	 the
behavior	 of	 inductors	 and	 capacitors	 as	 a	 function	 of	 time.
However,	 laws	 as	 introduced	 in	 previous	 chapters	 (like	 KCL,
KCL)	are	still	valid.

7.3.1	First	order	circuit	–	the	natural	response

We	will	start	with	the	analysis	of	switching	events	and	transient
effects	in	first	order	circuits.	First	order	circuits	contain	a	single
capacitor	or	inductor	and	a	network	of	DC	sources,	resistors	and
switches.	Consider	the	circuit	as	shown	in	Fig.	7.12.	The	switch
is	 closed	 for	 times	 t	 	 0.	 At	 t	=	0	 the	 switch	 is	 opened.	What
about	 the	 voltage,	 the	 current	 and	 the	 energy	 stored	 in	 the
capacitor	for	t	 	0	s,	t	=	0	s	and	t	 	0	s?

Fig.	7.12:	A	simple	circuit	with	a	switch.

t	 	0	s
For	t	 	0	s	the	circuit	is	a	DC	circuit	and	the	capacitor	behaves
like	an	open	circuit.	The	current	 is	 flowing	through	the	resistor
R.	According	to	the	voltage	divider	rule	for	the	two	resistors	 in
series	the	capacitor	voltage	is

The	current	and	energy	in	the	capacitor	equals:



t	=	0	s
For	t	=	0	s	the	switch	is	opened	instantaneously	and	the	voltage
source	 (as	 well	 as	 the	 resistor	 Rg)	 are	 disconnected	 from	 the
resistor	and	capacitor	connected	 in	parallel.	The	circuit	we	are
looking	 at	 (the	 mesh	 containing	 the	 parallel	 capacitor	 and
resistor)	 contains	 no	 sources	 anymore	 and	 the	 result	 will	 be
called	 the	 natural	 response.	 As	 the	 voltage	 across	 a	 capacitor
and	 its	energy	cannot	change	 instantaneously	they	stay	at	the
value	of	t	 	0	s:

These	values	will	be	 the	 initial	 conditions	 for	 the	behavior	and
solution	of	times	t	 	0	s.
	
t	 	0	s
After	the	switch	opened	at	t	=	0	s	 it	stays	open	for	t	 	0	s.	As
the	 charged	 electrodes	 of	 the	 capacitor	 are	 connected	 via
resistor	 R	 in	 a	mesh,	 the	 capacitor	 will	 be	 discharged	 via	 the
resistor.	With	the	currents	given	as	indicated	in	Fig.	7.12	we	can
write	KCL	as:

Using	Ohm’s	law	for	the	resistor	yields:

The	current-voltage	equation	for	the	capacitor	is:

Finally	we	get:



Thus	 we	 have	 a	 homogenous,	 first-order,	 linear	 differential
equation	 (ordinary	 differential	 equation,	 ODE)	 for	 the	 voltage
across	 the	 capacitor	 (and	 the	 resistor)	 that	 is	 to	 be	 solved.
Solution:
Rewriting	the	ODE	gives:

Separation	of	variables	and	substituting	t	by	τ:

Integration	from	τ	=	0	s	to	τ	=	t:

So	we	have	the	solution	for	the	homogenous	ODE	with	a	(so	far
unknown)	 constant	 uC(0).	 This	 constant	 is	 determined	 by	 the
constraints	 of	 the	 initial	 condition,	 i.e.	 the	 voltage	 across	 the
capacitor	 at	 time	 t	 =	 0	 s	 (remember	 the	 voltage	 across	 a
capacitor	cannot	change	instantaneously	at	t	=	0	s).	This	initial
value	was	already	determined	above	(see	t	=	0	s)	and	therefore
the	final	solution	for	this	homogenous	ODE	is:



The	 function	of	uC(t)	 is	depicted	 in	Fig.	7.13:	The	voltage	 is	at
u(0)=uC(0)	at	t	=	0	s	and	decreases	exponentially	with	time,	so
it	will	never	be	equal	to	zero	for	finite	times.	The	constant	R·C	in
the	denominator	of	 the	exponential	 function	 is	 called	 the	 time
constant	(unit	of	R·C	is	Ω·F	=	Ω·s/Ω	=	s).	If	depicted	in	terms	of
R·C	 it	can	be	seen	 that	uC(t)	decreases	 to	defined	values	 (e.g.
36.8%	of	the	initial	value	for	t	=	R·C).	So	the	product	R·C	gives	a
direct	 measure	 for	 the	 speed	 of	 the	 voltage	 decrease.	 The
higher	R·C	is	the	longer	it	takes	for	the	voltage	to	decrease.

Fig.	7.13:	Voltage	across	the	capacitor	(and	the	resistor),	time	constant	τ=R·C
determines	how	quickly	the	voltages	decreases	and	settles	to	its	final	value..

After	 determination	 of	 the	 voltage	 the	 currents	 through	 the
resistor	and	the	capacitor	are:

The	energy	in	the	capacitor	will	also	decrease:

After	 a	 very	 long	 time	 the	 capacitor	 will	 be	 completely



discharged	 (never	 completely	 but	 nearly…)	 and	 hence	 the
energy	will	be	zero.	As	energy	cannot	vanish	and	as	the	resistor
is	 the	 only	 element	 in	 the	 circuit	 besides	 the	 capacitor	 it	 is
obvious	that	the	energy	is	dissipated	(converted	to	heat)	in	the
resistor.	The	power	absorbed	by	the	resistor	is

With	this	power	dissipation	at	time	t	the	total	energy	absorbed
by	the	resistor	from	t	=	0	s	until	t	yields:

Thus	 the	 total	 energy	 from	 the	 beginning	 is	 conserved	 and
transfers	from	the	capacitor	to	the	resistor	where	it	is	absorbed
and	dissipated:

Summarizing
At	 t	=	0	s	 the	capacitor	was	charged	 to	uC(0)	 (q(0)	=	C·uC(0))
and	 it	 discharges	 exponentially	 after	 the	 switch	 was	 opened.
Until	 t	=	 0	 s	 the	 current	 through	 the	 resistor	 is	 driven	 by	 the
voltage	 supply.	 After	 disconnection	 of	 the	 voltage	 supply	 the
current	 is	 maintained	 by	 the	 capacitor	 at	 t	 =	 0	 s	 and	 drops
exponentially.	 The	 rate	 at	 which	 the	 voltage	 decreases	 is
measured	by	 the	 time	constant	τ	=	R	 ·	C.	 In	5	 time	constants
the	voltage	is	within	1	%	of	its	final	value	(steady	state	value).
This	 behavior	 of	 the	 R	 ·	 C	 circuit	 with	 no	 external	 source	 of
excitation	 is	 called	 the	 natural	 response.	 The	 capacitor	 takes
the	role	of	a	voltage	supply	with	decreasing	voltage.



7.3.2	First	order	circuit	–	complete	response

After	 the	 study	 of	 the	 natural	 response	 (no	 source	 after	 the
switching	 event)	 circuits	 with	 a	 source	 as	 excitation	 after	 the
switching	 event	 such	 as	 depicted	 in	 Fig.	 7.14	 are	 considered.
This	 time	 the	 resistor	 and	 the	 capacitor	 are	 in	 series	 to	 the
switch	and	 the	 time-independent	voltage	source.	The	switch	 is
open	for	t	 	0	s,	closes	at	t	=	0	s	and	stays	closed	for	t	 	0	s.

Fig.	7.14:	A	first	order	circuit	with	a	RC	combination	and	a	voltage	source	as
excitation.

Before	 we	 analyze	 the	 circuit	 in	 detail	 let’s	 try	 to	 figure	 out
qualitatively	 what	 will	 happen,	 based	 on	 our	 experience	 from
the	natural	response.	With	the	switch	open	no	current	flows	and
the	 capacitor	 is	 uncharged.	 Closing	 the	 switch	 will	 make	 a
current	 flow,	 hence	 charging	 the	 capacitor.	 By	 charging	 the
capacitor	the	voltage	across	it	will	 increase	until	 it	reaches	the
final	value	of	Uq.	At	that	time	the	current	flow	will	stop	and	the
circuit	behaves	like	an	open	circuit.
The	detailed	analysis	looks	like:
	
t	 	0	s
As	the	switch	is	open	the	voltages	u10(t),	uR(t)	and	uC(t)	are	zero
and	no	current	flows	through	the	resistor	and	the	capacitor.
	
t	=	0	s
The	switch	is	closed	instantaneously.	According	to	KVL	for	mesh
M1	 voltage	 u10(0)	 equals	 to	 Uq(0).	 For	 mesh	 M2	 the	 voltage
across	 the	 capacitor	 cannot	 change	 instantaneously	 and	 thus
the	voltage	drop	across	 the	 resistor	equals	u10(0).	Writing	KVL
for	mesh	M2	yields



And	 the	 current	 i(0)	 is	 (remember	 that	 the	 current	 through	 a
capacitor	can	change	instantaneously	unlike	the	voltage):

t	 	0	s
The	switch	stays	closed	and	according	to	KVL	for	mesh	M1	the
voltage	will	be	constant:

The	current	 i(t)	(through	resistor	and	capacitor)	will	charge	the
capacitor

Writing	KVL	for	mesh	M2	yields:

Thus	 in	 the	 case	 of	 a	 source	 in	 the	 circuit	 after	 the	 switching
event	we	get	a	first	order	inhomogeneous	ODE:

1/RC	is	a	constant	coefficient	and	the	right	side	of	the	equation
is	a	function	f,	which	is	in	general	time-dependent,	f(t).
	
Excursus:	solution	of	first	order	inhomogeneous	ODE

The	 general	 form	 of	 a	 first	 order	 inhomogeneous
ODE	with	constant	coefficients	looks	like:



To	 find	 the	 solution	 of	 this	 ODE	 we	 multiply	 this
equation	with	eat:

Integration	of	both	sides	yields:

Multiplying	with	e-at:

This	formula	for	the	solution	of	a	first	order	ODE	with	x(0)	being
determined	 by	 the	 initial	 conditions	 is	 called	 the	 complete
response.	It	consists	of	two	parts	that	will	be	discussed	in	terms
of	our	problem	of	transients.
Let’s	 have	 a	 closer	 look	 at	 the	 two	 terms	 of	 the	 complete
response	 for	 the	 switching	 of	 the	 RC	 circuit	 with	 constant
voltage	source	Uq.
The	ODE	is:

With	x(t)	=	uC(t),	a	=	1/(R·C)	and	 f(t)	=	Uq/(R·C)	 the	complete
response	is:



Thus	the	complete	response	of	this	ODE	is	split	into	two	parts,	a
solution	 for	 the	homogeneous	and	a	 solution	 for	 the	particular
ODE:

The	solution	to	the	homogeneous	ODE	(f(t)	is	set	to	zero)

was	 already	 determined	 previously	 and	 corresponds	 to	 the
second	term	of	the	solution:

It	 is	 the	 natural	 or	 transient	 response	 with	 an	 exponential
behavior	 of	 the	 capacitor’s	 voltage.	 Constant	 uCh(0)	 is
determined	by	the	initial	conditions	of	the	complete	system.
The	first	term	of	the	solution	is	determined	by	the	function	f(t)
which	 describes	 the	 excitation	 of	 the	 circuit	 (by	 the	 voltage
source	Uq).	It	is	the	solution	of	the	particular	ODE	and	describes
the	steady-state	behavior	of	the	circuit	(t	→	∞	s)	forced	by	the
excitation	(forced	response).	For	a	constant	forcing	function	Uq
the	steady-state	response	yields	for	t	→	∞	s:

Looking	 at	 the	 circuit	 it	 is	 obvious	 that	 the	 steady-state
response	 will	 be	 just	 the	 voltage	 of	 the	 voltage	 source
(excitation	 voltage)	 as	 in	 the	 steady-state	 the	 circuit	 is	 a	 DC
circuit	without	 any	 current	 flowing	 and	 the	 capacitor’s	 voltage



corresponds	 to	 the	 voltage	 of	 the	 source.	 The	 complete
response	is	thus:

uCh(0)	 is	 to	 be	 determined	 by	 the	 initial	 conditions.	 In	 our
example	the	voltage	across	the	capacitor	uC(0)	is	zero	at	t	=	0
s.	Therefore	the	equation	above	yields:

The	complete	response	of	the	 inhomogeneous	ODE	 is	depicted
in	with	the	time	scaled	by	the	time	constant	τ	=	R·C	is	depicted
in	Fig.	7.15.

Fig.	7.15:	The	complete	response	of	inhomogeneous	first	order	ODE	for	an	RC	circuit.

Using	 the	 capacitor’s	 voltage	 uC(t)	 the	 voltage	 across	 the
resistor	uR(t)	and	the	current	i(t)	can	be	calculated:



Example	of	an	RC	circuit	with	a	charged	capacitor
In	 the	 discussion	 of	 the	 RC	 circuit	 above	 the	 capacitor	 was
uncharged	at	the	beginning	and	the	initial	condition	was	uC(0)	=
0	 V.	 Consider	 the	 same	 circuit	 like	 before	 (see	 Fig.	 7.14),	 but
this	time	the	capacitor	 is	charged	for	t	 	0	s	to	a	value	of	uC0.
The	 charging	 of	 the	 capacitor	 for	 t	 	 0	 does	 not	 change	 the
differential	equation	of	the	system:

The	steady-state	response	of	the	system	and	the	solution	of	the
homogeneous	differential	equation	are	the	same	like	before:

But	 the	 pre-charging	 of	 the	 capacitor	 changes	 the	 initial
conditions	of	the	system	at	t	=	0	s:

Hence	uCh(0)	can	be	calculated	to	be:

Finally	the	solution	yields:



The	capacitor	voltage	starts	at	uC0	and	rises	up	 to	 the	steady-
state	value	of	Uq.
For	given	values	of	C	=	75	nF,	uC0	=	25	V,	Uq	=	200	V	and	R	=
10	kΩ	the	solution	is:

The	time	constant	is:

Example	of	an	RL	circuit
Consider	 an	RL	 circuit	 like	 depicted	 in	 Fig.	 7.16.	 The	 switch	 is
open	for	t	 	0	s	and	it	is	closed	at	t	=	0	s.	For	t	 	0	s	the	circuit	is
not	closed	and	no	current	 flows.	At	 t	=	0	s	 the	current	cannot
change	 instantaneously	 and	 the	 voltage	 across	 the	 inductor
equals	the	voltage	of	the	source:

For	t	 	0	s	the	current	rises	to	its	steady-state	value	at	t	→	∞	s.
In	 steady-state	 the	 inductor	 acts	 like	 a	 short-circuit	 and	 the
current	is	given	by	Ohm’s	law

The	steady-state	current	corresponds	 to	 the	particular	solution
of	the	first	order	ODE.



Fig.	7.16:	RL	circuit	with	a	switch.	Switch	closes	at	t	=	0	s.

The	differential	equation	of	the	circuit	for	t	 	0	s	can	be	obtained
by	KVL	and	using	Ohm’s	law	and	the	inductor	relation:

The	general	solution	of	this	ODE	for	the	current	is:

The	 constant	 ih(0)	 can	be	 calculated	using	 the	 initial	 condition
and	the	final	result	is:

The	 time	 constant	 τ	 for	 the	 RL	 circuit	 in	 series	 connection	 is
given	by:

For	given	values	of	L	=	100	mH,	Uq	=	200	V	and	R	=	20	Ω	the
solution	is:



The	time	constant	is	τ	=	5	ms	and	it	takes	the	circuit	about	5·τ
≈	25	ms	to	be	within	1	%	of	the	steady-state	value.

7.3.3	Second	order	circuit	–	the	natural	response

In	 the	 previous	 chapter	 the	 circuits	 contained	 one	 energy
storing	 element,	 a	 capacitor	 or	 an	 inductor	 (besides	 resistors
that	do	not	 store	but	dissipate	energy).	As	a	consequence	 the
resulting	equations	were	first	order	ODEs.
If	 two	 energy	 storing	 elements	 are	 part	 of	 a	 circuit	 under
investigation	 this	circuit	 is	called	a	second	order	circuit	as	 this
kind	of	circuit	will	be	described	by	linear	second	order	ODEs.
An	example	 for	a	 second	order	 circuit	 is	depicted	 in	 Fig.	7.17.
No	 source	 is	 part	 of	 this	 series	 connection	 of	 an	 inductor,	 a
capacitor	 and	 resistor.	 The	 voltage	 across	 the	 capacitor	 is
denoted	with	uC(t)	and	the	current	with	i(t).	The	switch	is	open
for	t	 	0	s	and	is	closed	at	t	=	0	s,	initial	conditions	are	uC(0)	and
i(0)	respectively	(For	example,	the	capacitor	was	charged	by	an
external	voltage	source	-Uq	=	uC(0)).	Due	to	the	open	switch	the
current	is	zero	for	t	 	0	s	and	due	to	the	inductor	it	stays	zero	at
t	=	0	s.

Fig.	7.17:	Series	connection	of	resistor,	inductor	and	capacitor	as	an	easy	example	for
a	second	order	circuit.

Applying	KVL	to	the	circuit	yields	for	t	 	0	s:

In	 the	 next	 step	 the	 voltages	 across	 the	 inductor	 and	 the
resistor	are	expressed	 in	 terms	of	 the	capacitor’s	voltage	uC(t)
using	 Ohm’s	 law	 and	 the	 relation	 between	 the	 capacitor’s



voltage	and	the	current:

Finally	we	get	this	for	the	capacitor’s	voltage:

This	 is	 a	 homogeneous	 second	 order	 ODE	 for	 the	 capacitor’s
voltage.
	
Excursus	into	mechanics:	damped	harmonic	oscillator

A	 system	 which	 exhibits	 mathematically	 identical
behavior	to	that	of	a	similar,	but	physically	different
system	 is	 analogous	 to	 this	 system.	 In	 the	 case	 of
the	RLC-circuit	the	homogeneous	second	order	ODE
has	 the	 same	 structure	 (same	 but	 the	 constants)
like	the	ODE	for	a	damped	harmonic	oscillator	such
as	 given	 in	 Fig.	 7.18.	 A	mass	m	 is	 connected	 to	 a
spring	and	the	movement	x(t)	is	damped	by	friction.
Balance	of	forces	yields:

Here	 the	 force	 for	 the	 spring	 (proportional	 to	 the
position	of	the	mass)	was	used:



Also	the	damping	force	(proportional	to	the	velocity
v(t)	=	dx(t)/dt)	was	used:

Fig.	7.18:	A	mechanical	analog	to	the	electrical	RLC	circuit.

As	 the	 mathematical	 behavior	 of	 both	 mechanical
and	 electrical	 systems	 is	 identical,	 these	 systems
are	 analog.	 Force	 causes	 velocity	 just	 as	 voltage
causes	 current.	 A	 damper	 dissipates	 mechanical
energy	 into	 heat	 just	 like	 a	 resistor	 dissipates
electrical	 energy	 into	 heat.	 Springs	 and	 masses
store	energy	in	two	different	ways	(potential	energy
and	 kinetic	 energy	 respectively)	 just	 as	 capacitors
and	 inductors	 store	 energy	 in	 two	 different	 forms
(electric	and	magnetic	field	respectively).
Analog	quantities	are	listed	in	Tab.	7.2:

Tab.	7.2:	Analog	quantities	of	mechanical	and	electrical	systems.

Mechanical Electrical
Force Voltage
Velocity Current
Displacement Charge
Damper	(f(t)	=	d·v(t)) Resistor	(u(t)	=	R·i(t))
Spring	(f(t)	=
c·x(t)=c·∫v(t)dt)

Capacitor	(u(t)	=	1/C·∫i(t)dt



c·x(t)=c·∫v(t)dt)
Mass	(f(t)	=	m·dv(t)/dt) Inductor	(u(t)	=	L·di(t)/dt

Due	 to	 the	 analogy	 to	 the	 mechanical	 system	 we
can	 expect	 the	 behavior	 of	 the	 RLC-CIRCUIT	 to	 be
the	 same	 as	 known	 from	 the	 damped	 oscillator:
some	 kind	 of	 damped	 oscillations	 with	 different
solutions	depending	on	the	values	of	m,	c	and	d.

After	we	found	a	mechanical	analogy	to	the	RLC	circuit	(and	we
can	expect	what	the	solution	might	look	like)	we	have	to	solve
the	second	order	homogeneous	ODE	for	our	electrical	oscillating
circuit:

Excursus:	Solution	of	 linear	homogeneous	 second	order
ODE

A	linear	homogeneous	second	order	ODE

can	be	solved	by	the	following	approach:

Using	this	approach	for	the	ODE	yields

This	 polynomial	 is	 called	 the	 characteristic



polynomial	of	the	corresponding	ODE.	This	quadratic
equation	has	two	solutions:

All	functions	using	the	given	approach	and	the	roots
(nulls)	s1	and	s2	of	the	characteristic	polynomial	are
solutions	to	the	given	ODE:

Consequently	all	 linear	combinations	of	these	basic
solutions	 are	 also	 solutions	 to	 the	 ODE	 and	 the
general	solution	for	the	ODE	is:

A1	 and	A2	 are	constant	and	are	determined	by	 the
initial	conditions.	Depending	on	the	values	of	α	and
ωn	three	different	cases	have	to	be	distinguished:	α
	ωn,	α	 	ωn	and	α	=	ωn.
These	 three	 cases	 will	 be	 discussed	 during	 the
analysis	of	the	RLC	circuit.

Coming	back	to	our	original	problem	of	the	RLC	circuit:

We	can	determine	the	solution	using:



Depending	on	the	values	for	R,	L	and	C	we	have	to	distinguish
three	cases.
	
The	overdamped	case	(aperiodic	case):	α	 	ωn
If	α	 	ωn	R,	L	and	C	have	to	fulfill:

In	this	case	the	roots	of	the	characteristic	polynomial	s1	and	s2
are	real	and	negative:

Using	these	values	of	s1	and	s2	 the	solution	for	the	capacitor’s
voltage	is:

Constants	 A1	 and	 A2	 have	 to	 be	 determined	 by	 the	 initial
conditions	 of	 the	 system.	 Initial	 conditions	 are	 uC(0)	 and	 i(0)
respectively	 (e.g.	 the	 capacitor	 was	 charged	 by	 an	 external
voltage	source	Uq=	-uC(0)).	Due	to	the	open	switch	the	current
is	zero	for	t	 	0	s	and	due	to	the	inductor	it	stays	zero	at	t	=	0	s.
So	 there	 are	 two	 initial	 conditions	 to	 determine	 the	 two
constants	A1	and	A2.
For	t	=	0	s	we	get:

Due	 to	 the	 current	 being	 zero	 at	 t	 =	 0	 s	 the	 voltage	 change
across	the	capacitor	is	also	zero:



At	t	=	0	s	this	equation	yields:

With	these	two	equations	A1	and	A2	can	be	determined:

The	 voltage	 across	 the	 capacitor	 decreases	 according	 to	 two
exponential	functions	with	time	constants	1/s1	and	1/	s2	without
any	oscillation.	This	case	is	called	the	overdamped	or	aperiodic
case	 and	 is	 depicted	 in	 Fig.	 7.19.	 With	 knowledge	 of	 the
capacitor’s	voltage	the	current	i(t)	can	easily	be	calculated	by:



Fig.	7.19:	A	capacitor’s	voltage	as	a	function	of	time	for	the	overdamped	case.

The	underdamped	case	(periodic	case):	α	 	ωn
If	 α	 	 ωn	 then	 the	 roots	 of	 the	 characteristic	 polynomial	 are
conjugate	complex	numbers	(j	is	the	imaginary	unit,	j2	=	-1)):

Here	the	ωd	is:

Using	 these	 two	 complex	 number	 yields	 for	 the	 capacitor’s
voltage:

The	 first	 factor	 again	 describes	 the	 damping	 with	 a	 time
constant	 of	 1/α.	 What	 about	 the	 term	 in	 brackets?	 As	 the
voltage	has	to	be	a	real	number,	A1	and	A2	have	to	be	complex
conjugates	of	each	other.	We	can	rewrite	A1	and	A2	using	new
constants	a	and	b:



Using	the	new	constants	for	A1	and	A2	yields	for	the	voltage:

With	Euler’s	formular:

The	terms	in	brackets	can	be	rewritten	as:

This	expression	can	be	further	combined	into	a	single	sinusoidal
function:

To	obtain	this	last	equation	the	following	equations	for	the	new
(and	last…)	constants	have	to	hold	true:

Finally	 the	 following	 equation	 is	 the	 general	 solution	 to	 the
homogeneous	linear	second	order	ODE	given	above:



The	 constants	 C0	 and	 ψ	 have	 to	 be	 determined	 by	 the	 initial
conditions.
Looking	 at	 Fig.	 7.20	 the	 parameters	 can	 be	 interpreted	 as
follows:
The	capacitor’s	voltage	and	current	oscillate	with	the	frequency
ωd	 (damped	 frequency)	 around	 the	 steady-state	 value	 of	 zero
(both	 current	 and	 voltage).	 The	 peak	 value	 of	 the	 oscillations
decreases	 exponentially	 with	 a	 damping	 factor	 α.	 During	 the
oscillation	 energy	 is	 transferred	 from	 the	 capacitor	 to	 the
inductor	and	vice	versa,	during	the	transfer	energy	is	dissipated
in	the	resistor.	α	depends	linearly	on	the	resistance	value	R.	In
the	 ideal	 case	of	R	=	0	Ω	 there	 is	 no	damping	 (α	=	0)	 of	 the
oscillation	 and	 the	 damped	 frequency	 ωd	 equals	 the	 natural
frequency	 ωn	 that	 is	 just	 determined	 by	 the	 inductor	 and
capacitor.	 ψ	 is	 the	 phase	 angle	 that	 describes	 the	 shift	 of	 the
zero	crossing	of	the	oscillation	with	respect	to	t	=	0	s.

Fig.	7.20:	A	Capacitor’s	voltage	and	current	for	the	underdamped	case.

The	critically	damped	case:	α	=	ωn
In	case	of	α	=	ωn	the	roots	of	the	characteristic	polynomial	are
equal:

In	this	case	the	second	order	ODE	looks	like:



The	general	solution	is:

A1	 and	A2	 are	 again	 constants	 to	 be	 determined	 by	 the	 initial
conditions.	The	capacitor’s	voltage	decreases	exponentially	and
the	decay	is	faster	compared	to	all	other	overdamped	cases.

Fig.	7.21:	A	capacitor’s	voltage	for	the	critically	damped	case.

7.3.4	Second	order	circuit	–	the	complete	response

After	the	study	of	the	natural	response	(no	source)	circuits	with
a	 source	 as	 excitation	 such	 as	 depicted	 in	 Fig.	 7.22	 are
considered.	A	resistor	R,	an	inductor	L	and	a	capacitor	C	are	in
series	to	a	switch.	At	t	=	0	s	the	switch	is	closed	and	a	voltage
source	is	connected	in	series.

Fig.	7.22:	RLC	series	connection,	voltage	source	connected	at	t	=	0	s.

Before	we	analyze	the	circuit	in	detail	let’s	try	to	figure	out	what
will	 happen	 qualitatively,	 based	 on	 our	 experience	 from	 the
natural	response.	With	the	switch	open	no	current	flows	(i(0)	=



0	A)	and	the	capacitor	is	uncharged	(uC(0)	=	0	V).	No	energy	is
stored	 in	 the	 energy	 storing	 elements	 L	 and	 C.	 Closing	 the
switch	will	make	a	current	flow,	charging	the	capacitor	and	the
inductor.	For	a	constant	 source	U	 the	capacitor	will	 in	 the	end
block	any	 current	 flow.	At	 that	 time	 the	 current	 flow	will	 stop,
the	capacitor’s	voltage	uC(t)	will	be	equal	to	the	source	voltage
U	and	the	energy	will	be	stored	in	the	capacitor.	As	no	current
will	 be	 flowing	 no	 energy	will	 be	 stored	 in	 the	 inductor	 in	 the
end.
The	detailed	analysis	looks	like:
	
t	 	0	s
As	the	switch	is	open,	all	voltages	uL(t),	uR(t)	and	uC(t)	are	zero
and	no	current	flows	through	the	circuit.
	
t	=	0	s
The	switch	is	closed	instantaneously.	As	the	voltage	across	the
capacitor	cannot	change	instantaneously	it	will	be	zero,	uC(0)	=
0	 V.	 As	 the	 current	 through	 the	 inductor	 cannot	 change
instantaneously,	 it	 will	 also	 be	 zero,	 i(0)	 =	 0	 A.	 These	 two
equations	define	our	initial	conditions.
	
t	 	0	s
The	switch	stays	closed	and	according	to	KVL	we	get:

In	 the	 next	 step	 the	 voltages	 across	 the	 inductor	 and	 the
resistor	are	expressed	 in	 terms	of	 the	capacitor’s	voltage	uC(t)
using	 Ohm’s	 law	 and	 the	 relation	 between	 the	 capacitor’s
voltage	and	the	current:



Finally	we	get	for	the	capacitor’s	voltage:

This	is	an	inhomogeneous	second	order	ODE	for	the	capacitor’s
voltage.	As	for	the	inhomogeneous	first	order	ODE	we	will	split
the	 general	 solution	 into	 two	 parts,	 a	 solution	 to	 the
homogeneous	ODE	and	a	particular	solution:

The	homogeneous	solution	uCh(t)	was	already	determined	in	the
previous	 section.	 The	 roots	 of	 the	 characteristic	 polynomial	 of
the	ODE	are:

Using	the	abbreviations:

The	homogeneous	solution	is:



The	particular	solution	uCp(t)	is	determined	by	the	excitation	of
the	 circuit	 (by	 the	 voltage	 source	 U).	 It	 is	 the	 solution	 of	 the
particular	 ODE	 and	 describes	 the	 steady-state	 behavior	 of	 the
circuit	(t	→	∞	s)	forced	by	the	excitation	(forced	response).	For	a
constant	forcing	function	U	the	steady-state	response	yields	for
t	→	∞	s:

Looking	 at	 the	 circuit	 it	 is	 obvious	 that	 the	 steady-state
response	 will	 be	 just	 the	 voltage	 of	 the	 voltage	 source
(excitation	 voltage)	 as	 in	 the	 steady-state	 the	 circuit	 is	 a	 DC
circuit	without	 any	 current	 flowing	 and	 the	 capacitor’s	 voltage
corresponds	 to	 the	 voltage	 of	 the	 source.	 The	 complete
response	is	thus:

Based	 on	 the	 roots	 of	 the	 characteristic	 polynomial	 s1	 and	 s2
three	 cases	 can	 be	 distinguished	 (like	 of	 the	 homogeneous
second	order	ODE)	depending	on	the	values	of	R,	L	and	C	(and
therefore	 α	 and	 ωn):	 the	 overdamped,	 the	 underdamped	 and
the	 critically	 damped	 case.	 In	 all	 three	 cases	 the	 capacitor’s
voltage	will	tend	towards	the	steady-state	value	U.	Constants	A1
and	A2	are	determined	by	the	initial	conditions.
Based	on	uC(t)	all	other	values	can	be	calculated:



The	overdamped	case	(aperiodic	case):	α	 	ωn	For	α	 	ωn,
R,	L	and	C	have	to	fulfill:

In	this	case	the	roots	of	the	characteristic	polynomial	s1	and	s2
are	real	and	negative,	the	solution	is	a	function	that	changes	by
two	 exponential	 functions	 tending	 towards	 the	 steady-state
value	U:

The	behavior	is	depicted	in	Fig.	7.23.

Fig.	7.23:	A	capacitor’s	voltage	as	a	function	of	time	for	an	RLC	series	connection,
voltage	source	U	connected	at	t	=	0	s	:	1:	overdamped;	2:	underdamped;	3:	critically

damped.

The	underdamped	case	(periodic	case):	α	 	ωn
If	 α	 	 ωn	 than	 the	 roots	 of	 the	 characteristic	 polynomial	 are
conjugate	complex	numbers:

The	general	solution	is:



As	shown	in	Fig.	7.23	the	capacitor’s	voltage	oscillates	with	an
angular	 frequency	 ωd	 around	 the	 steady-state	 value	 U.	 The
peak	 value	 decreases	 with	 an	 exponential	 function	 with	 time
constant	1/α.
	
The	critically	damped	case:	α	=	ωn
In	case	of	α	=	ωn	the	roots	of	the	characteristic	polynomial	are
same:

The	solution	is:

In	 this	 case	 the	 capacitor’s	 voltage	 tends	 fastest	 towards	 the
final	steady-state	value	U	as	depicted	in	Fig.	7.23.
	
Example	of	an	RLC	series	circuit
The	 RLC	 circuit	 of	 Fig.	 7.22	 should	 be	 operated	 critically
damped.	The	values	U,	L	and	C	are	given:	U	=	100	V,	C	=	80	nF,
L	=	40	mH.	What	about	the	value	of	the	resistor	for	the	critically
damped	case?
In	critically	damped	case	α	=	ωn:

For	 a	 resistor	 of	 R	 =	 1.41	 kΩ	 the	 circuit	 operates	 in	 critically
damped	mode	and	reaches	the	steady-state	value	of	uC(∞)	=	U
=	100	V	in	minimum	time.	If	the	value	of	the	resistor	is	smaller
the	circuit	starts	to	oscillate	(underdamped	case),	if	it	is	higher



it	takes	more	time	to	reach	the	steady-state	value.
	
Automotive	application
Switching	 is	 frequently	 required	 in	 automotive	 applications.
Either	single	switching	events,	e.g.	by	the	driver	or	frequent	and
continuous	 switching	 within	 the	 electronic	 system.	 In	 general
the	 switching	 circuit	 consists	 of	 inductive,	 capacitive	 and
resistive	 elements	 (taking	 parasitic	 effects	 into	 account	 even
always).	 Depending	 on	 the	 size	 of	 these	 elements	 and	 the
frequency	a	detailed	analysis	 of	 the	 switching	behavior	 has	 to
be	done	to	avoid	an	unwanted	behavior,	e.g.	an	oscillation	or	an
overdamped	case.	Consider	a	switching	event	 from	0	V	 to	5	V
that	 has	 to	 be	 detected	 by	 a	 microcontroller	 (e.g.	 with	 an
interrupt	input	pin	or	even	with	an	ADC).	In	case	of	an	oscillation
the	 overshoot	 of	 the	 voltage	 (see	 curve	 2	 in	 Fig.	 7.23)	 can
disturb	or	even	destroy	the	microcontroller	input	pin	(and	hence
the	 microcontroller)	 as	 the	 maximum	 input	 value	 of	 the
microcontroller	 is	exceeded.	 In	 case	of	an	overdamped	case	 it
may	 take	 long	 time	 to	 reach	 the	 final	 value.	 So	 the	 switching
from	 0	 V	 to	 5	 V	 is	 maybe	 recognized	 to	 late	 by	 the
microcontroller.

7.4	AC	Analysis

During	 analysis	 of	 the	 oscillating	 circuits	 (like	 RC,	 RL	 and	RLC
circuits)	the	currents	and	voltages	turned	out	not	to	be	constant
but	time-dependent,	either	some	kind	of	exponentially	damped
dependence	 or	 an	 oscillating	 behavior.	 But	 the	 sources	 have
been	 (more	 or	 less)	 time	 independent	 so	 far.	 During	 the
following	AC	analysis	 just	steady	state	systems	will	be	studied.
All	 transient	 effects	 such	 as	 those	 previously	 discussed	 are
settled	and	the	system	is	in	a	steady	state.
When	using	AC	(alternating	current)	analysis	we	will	make	use
of	some	findings	from	DC	analysis:

–	All	events	happen	at	the	same	time	independent	of	the
location	within	the	circuit;



–	Kirchhoff’s	laws	are	valid	for	all	instances	of	time;
–	 Superposition	 is	 still	 valid	 for	 linear	 elements	 like
resistors,	 inductors,	 capacitors	 (these	 elements	 have
linear	 dependencies	 (direct	 linear	 or	 derivative)
between	electrical	properties	like	voltage	and	current);

Fig.	7.24:	Linear	elements	and	their	current-voltage	relation.

In	 this	 section	 of	 AC	 analysis	 we	 will	 now	 deal	 with	 time-
dependent	 sources	 (and	 of	 course	 voltages	 and	 currents),	 in
particular	 with	 periodically	 time-dependent	 elements.
Periodically	 time-dependent	 means	 that	 the	 shape	 u(t)	 of	 the
time-dependence	is	repeated	periodically	after	a	time	called	the
period	T	(k	is	some	arbitrary	integer	constant):

Fig.	7.25:	Periodical	functions	u(t):	arbitrary	shape	(left)	and	sinusoidal	shape	(right).

The	 dedicated	 value	 at	 a	 time	 t	 is	 the	 instantaneous	 value.
When	considering	currents	or	voltages	the	arithmetical	mean



of	 an	 alternating	 current	 or	 voltage	 is	 zero.	 In	 particular
sinusoidal	 functions	 like	 shown	 in	 Fig.	 7.25	 on	 the	 right	 side
have	an	arithmetic	mean	of	zero:

The	 parameter	 û	 of	 the	 sinusoidal	 function	 is	 called	 the	 peak
value	and	the	angular	frequency	ω	is	related	to	the	period	T	and
the	frequency	f	according	to

Unit	for	the	angular	frequency	ω	is	1/s	(whereas	for	frequency	it
is	Hz).	The	starting	point	of	the	oscillation	is	in	general	not	at	t
=	0	s	but	shifted	for	some	time	indicated	by	the	phase	angle	ϕ.
The	 difference	 of	 maximum	 and	 minimum	 value	 is	 called	 the
peak-to-peak	value.	For	sinusoidal	shape	the	peak-to-peak	value
is	2·û.
Sinusoidal	functions	play	a	major	role	in	AC	circuit	analysis:
The	 sinusoidal	 shape	 stays	 the	 same	 (for	 same	 frequency)	 for
addition	of	sinusoidal	functions	and	also	for	differentiation.	This
is	 important	 when	 using	 superposition	 and	 circuit	 analysis
techniques	like	KCL	and	KVL.
In	 addition,	 by	 using	 Fourier	 analysis	 every	 periodic	 function
may	be	represented	by	a	sum	of	sinusoidal	functions.	Therefore
the	 analysis	 of	 arbitrary	 shaped	 functions	 can	 be	 reduced	 to
analysis	of	the	sinusoidal	functions.
The	 sinusoidal	 time-dependence	 of	 a	 current	 and	 a	 voltage
looks	like:

û	 and	 î	 are	 the	 peak	 values	 of	 the	 voltage	 and	 the	 current
respectively.	 The	 frequency	 is	 in	 this	 case	 the	 same	 for	 both,



but	 the	 phase	 angle	 is	 different.	 The	 phase	 angle	 is	 counted
positive	 if	 pointing	 to	 the	 right	 and	 negative	 if	 otherwise.	 The
phase	difference	between	voltage	and	current	is

As	 shown	 in	 Fig.	7.26	 the	 zero-crossing	of	 the	voltage	 (shifted
by	ϕu	to	the	left)	is	earlier	than	the	zero-crossing	of	the	current
(shifted	by	ϕi	to	the	right):	the	voltage	leads	the	current.	In	the
opposite	case	(current	earlier	than	voltage)	the	phase	difference
is	negative	and	the	current	leads	the	voltage.	In	Fig.	7.26	both
current	 and	 voltage	 are	 depicted	 in	 one	 single	 diagram	 even
though	these	two	have	different	values	and	units.	On	the	y-axis
it	 is	 denoted	 that	 both	 current	 and	 voltage	 are	 used.	 Even
though	 this	 labeling	 of	 the	 y-axis	 will	 be	 omitted	 in	 following
figures	 (which	 is	 rather	 common	 in	 AC	 analysis)	 it	 should	 be
clear	that	voltage	and	current	differ	in	size	and	unit.

Fig.	7.26:	Sinusoidal	voltage	and	current	with	different	phase	angle	and	same
frequency.

The	 arithmetic	mean	 of	 an	 AC	 current,	 or	 voltage	 is	 zero.	 For
certain	applications	another	value,	the	rectified	value,	is	used	to
describe	the	average	effect	of	current	or	voltage:



Fig.	7.27:	Sinusoidal	current,	absolute	value	and	rectified	value.

For	 sinusoidal	 shape	 (e.g.	 current	 î·sin(ωt+ϕi))	 the	 rectified
value	is:

Besides	the	rectified	value	the	root-mean-square	value	(RMS)	is
more	important,	in	case	of	current	and	voltage:

By	definition:

The	RMS	value	of	an	AC	current	is	defined	as	the	DC
current	that	 leads	to	the	same	power	dissipation	 in
a	resistor.

For	sinusoidal	shape	(e.g.	current	î·sin(ωt+ϕi))	the	RMS	is:

The	RMS	of	a	sinusoidal	shape	is	just	the	peak	value	divided	by
√2.
Simple	 circuits	with	 just	 one	 element	 can	 easily	 be	 calculated



using	 the	 well	 known	 correlations	 of	 current	 and	 voltage	 for
resistors,	capacitors	and	inductors.
	
Resistor
Consider	a	resistor	connected	to	a	sinusoidal	voltage	source:

The	current	through	the	resistor	is	given	by	Ohm’s	law:

Current	and	voltage	are	in	phase	(no	phase	difference	between
current	and	voltage).	 In	Fig.	7.28	 the	 line	diagram	shows	both
voltage	and	current.	As	no	scaling	for	any	of	the	two	is	given	the
size	 of	 the	 curves	 is	 unimportant.	 And	 both	 have	 of	 course
different	units.	This	kind	of	line	diagram	just	serves	to	show	the
phase	 difference	 between	 voltage	 and	 current	 (no	 phase
difference	for	the	resistor).

Fig.	7.28:	A	resistor	connected	to	a	sinusoidal	voltage	source:	circuit	(left)	and	line
diagram	(right)	of	current	and	voltage.

Inductor
Consider	an	inductor	connected	to	a	sinusoidal	voltage	source:

The	current	through	the	inductor	is	given	by:



Current	 and	 voltage	 are	 not	 in	 phase	 this	 time	 as	 depicted	 in
Fig.	7.29,	the	voltage	leads	the	current	by	Π/2	or	90	°.

Fig.	7.29:	An	inductor	connected	to	a	sinusoidal	voltage	source:	circuit	(left)	and	line
diagram	(right)	of	current	and	voltage.

Capacitor
Consider	a	capacitor	connected	to	a	sinusoidal	voltage	source:

The	current	in	the	circuit	is	given	by:

Current	and	voltage	are	not	 in	phase	 this	 time,	as	 the	current
leads	 the	 voltage	 by	Π/2	 or	 90	 °.	 This	 behavior	 is	 depicted	 in
Fig.	7.30.



Fig.	7.30:	A	capacitor	connected	to	a	sinusoidal	voltage	source:	circuit	(left)	and	line
diagram	(right)	of	current	and	voltage.

7.4.1	Vector	diagram

Sinusoidal	currents	and	voltages	can	be	shown	in	line	diagrams
as	depicted	in	the	figures	above	and	by	equations	using	the	sine
and	 cosine	 functions.	 But	 for	 AC	 analysis	 these	 notations	 are
complex	 to	 use.	 To	 simplify	 the	 calculation	 of	 AC	 circuits,
pointers	 and	 vectors	 and	 the	 complex	 representation	 of
voltages	and	currents	are	used.	 Just	 imagine	a	simple	addition
of	two	currents	with	same	angular	frequency	but	different	phase
angle	as	depicted	in	Fig.	7.31:

Fig.	7.31:	Two	sinusoidal	currents	that	should	be	added	(left);	result	of	addition
(right).

The	resulting	current	will	have	a	new	peak	value	 î3	and	a	new
phase	angle	ϕ3.	Both	values	have	somehow	to	be	determined.
The	addition	can	be	done	graphically	as	shown	on	the	right	side
of	Fig.	7.31.	For	any	change	in	frequency	of	phase	this	graphical
solution	has	to	be	repeated.
Another	way	 is	 to	use	 the	 representation	with	 sine	and	cosine
functions,	e.g.	using	addition	theorem:

The	addition	theorem	used	for	addition	of	the	currents	yields:



As	 the	 cosine	 and	 the	 sine	 function	 are	 independent	 of	 each
other	the	equation	has	to	be	true	for	both	functions	and	hence
the	corresponding	coefficients	have	to	be	equal.	This	results	 in
two	equations	for	the	values	î3	and	ϕ3:

Even	the	simple	addition	of	two	currents	is	a	rather	complicated
matter.
Pointer	 diagrams	 can	 be	 used	 to	 simplify	 the	 calculation	 with
sinusoidal	currents	and	voltages.	Here	currents	and	voltages	are
depicted	 as	 a	 vector,	 or	 pointer	 that	 rotates	 with	 an	 angular
frequency	of	ω.	Fig.	7.32	shows	the	graphical	representation	of
a	 sinusoidal	 function	 î·sin(ωt)	 on	 the	 right	 side.	 At	 every
instance	of	 time	 the	value	of	 the	current	 is	determined	by	 the
peak	 value	 î	 and	 the	 angular	 frequency	ω.	On	 the	 left	 side	 of
this	figure	the	corresponding	vector	diagram	is	shown.	A	pointer
of	length	î	rotates	around	the	middle	of	the	x-y-diagram	with	an
angular	 frequency	 of	 ω.	 At	 any	 instance	 of	 time	 the	 angle	 ϕ
corresponds	to	the	angle	of	the	sinusoidal,	ωt.	The	sinusoidal	on
the	right	side	is	nothing	other	than	the	projection	of	the	pointer
in	the	vector	diagram	to	the	y-axis.	The	 left	side	 is	the	pointer
representation	of	the	sinusoidal.



Fig.	7.32:	Line	(right)	and	vector	representation	(left)	of	a	sinusoidal	function.

This	representation	with	rotating	vectors	makes	 it	much	easier
to	 add	 two	 sinusoidal	 functions	 by	 just	 using	 vector	 addition.
Consider	again	two	currents	that	should	be	added	as	shown	 in
Fig.	 7.31	 on	 the	 right	 side.	 Current	 i2	 leads	 current	 i1	 by	 the
phase	ϕ2.	Transfer	of	 this	 information	 to	 the	vector	diagram	 is
shown	 on	 the	 left	 side	 of	 Fig.	 7.33.	 The	 instance	 of	 time
(arbitrarily	 chosen)	 is	 t	 =	 0	 s.	 Current	 i1	 is	 represented	 by	 a
vector	 in	the	direction	of	the	x-axis	of	 length	 î1.	The	projection
to	the	y-axis	is	zero	in	correspondence	to	the	value	i1	of	at	t	=	0
s.	At	t	=	0	s	current	i2	is	non-zero	and	rotated	forward	by	phase
difference	ϕ2	.The	length	of	the	vector	is	the	peak	value,	î2.

Fig.	7.33:	Two	currents	with	the	same	frequency	but	phase	difference	ϕ:	line	(right)
and	vector	(left)	representation..

The	two	vector	representations	are	added	by	vector	addition	for
any	arbitrary	time	instance,	here	t	=	0	s,	the	resulting	vector	is
the	total	current	that	rotates	around	with	angular	frequency	ω.
The	addition	is	done	by	graphical	vector	addition	as	depicted	in
Fig.	7.34:



Fig.	7.34:	Vector	addition	of	two	currents	(left)	and	resulting	line	diagram	(right).

The	peak	value	of	the	total	current	is	î3	and	the	resulting	phase
angle	is	ϕ3	as	depicted	in	Fig.	7.34.	This	resulting	vector	rotates
with	angular	frequency	ω.	The	transfer	back	to	the	line	diagram
is	shown	on	the	right	side.	So	the	addition	of	to	time	dependent
currents	 with	 the	 same	 frequency	 is	 converted	 to	 a	 simple
vector	 addition.	 This	 is	 still	 a	 graphical	 approach,	 not	 a
mathematical	calculation	that	would	be	preferred	(in	particular
for	 simulations).	 However	 it	 is	 a	 good	 starting	 point	 for	 the
representation	by	 complex	numbers,	which	 is	 the	next	 step	 in
the	description	of	AC	values.
Of	 course	 the	 vector	 diagram	 method	 can	 also	 be	 used	 to
determine	the	phase	difference	between	current	and	voltage	for
a	 circuit	 element.	 Application	 of	 vector	 diagrams	 to	 the	 basic
elements	R,	L	and	C	yields:
	
Resistor
As	we	 have	 seen	 previously	 current	 and	 voltage	 are	 in	 phase
(no	 phase	 difference	 between	 current	 and	 voltage)	 for	 the
resistor.	Therefore	 the	vectors	 for	 the	current	 through	and	 the
voltage	across	the	resistor	are	parallel.
	
Inductor
As	calculated	above,	current	and	voltage	are	not	in	phase	at	the
inductor,	 the	 voltage	 leads	 the	 current	 by	 Π/2	 or	 90	 °.	 In	 the
vector	diagram	(Fig.	7.35)	the	current	is	rotated	clockwise	by	90
°	(π/2)	with	respect	to	the	voltage	vector.



Fig.	7.35:	Inductor	connected	to	a	sinusoidal	voltage	source:	circuit	(left),	line
diagram	(mid)	and	vector	diagram	of	current	and	voltage.

Capacitor
For	 the	 capacitor,	 the	 current	 and	 voltage	 are	 again	 not	 in
phase,	and	this	time	the	current	leads	the	voltage	by	Π/2	or	90
°.	In	the	vector	diagram	the	current	is	rotated	counterclockwise
by	90°	(π/2)	with	respect	to	the	voltage	vector	(Fig.	7.36).

Fig.	7.36:	Capacitor	connected	to	a	sinusoidal	voltage	source:	circuit	(left),	line
diagram	(mid)	and	vector	diagram	(right)	of	current	and	voltage.

Example	for	the	application	of	vector	diagrams
The	circuit	depicted	 inFig.	7.37	 is	build	up	of	 two	resistors	and
one	 capacitor	 and	 is	 excited	 by	 a	 sinusoidal	 voltage	 source
û·sin(ωt).	 Resistor	 R2	 and	 the	 capacitor	 C	 are	 connected	 in
parallel	and	together	they	are	connected	in	series	with	resistor
R1.	What	about	 the	voltages	and	currents	 in	 the	elements	and
the	total	behavior	of	the	circuit?



Fig.	7.37:	A	circuit	with	resistors,	a	capacitor	and	a	sinusoidal	voltage	source.

The	voltage	drop	u2(t)	is	the	same	for	the	parallel	connection	of
R2	 and	 C.	 From	 Ohm’s	 law	 we	 know	 that	 the	 current	 i2(t)
through	the	resistor	R2	 is	 in	phase	with	 the	voltage	drop	u2(t).
Using	a	vector	diagram	the	magnitude	û2	and	î2	of	the	resistor
point	in	the	same	direction	(here	arbitrarily	to	the	right,	see	Fig.
7.38).	For	the	capacitor	the	current	iC(t)	leads	the	voltage	u2(t)
by	90	°	and	therefore	points	up	as	indicated	in	Fig.	7.38.
According	to	KCL	the	total	current	 through	R2	and	C	has	 to	be
the	 same	 like	 the	 current	 i1(t).	 Hence	 the	 current	 i1(t)	 is	 the
vectorial	sum	of	the	current	vectors	as	given	in	Fig.	7.38.	Again
using	Ohm’s	law	the	voltage	across	resistor	R1	 is	in	phase	with
current	i1(t)	through	R1	and	both	voltage	and	current	of	R1	point
in	the	same	direction.	Current	i1(t)	is	of	course	the	current	that
is	provided	by	the	voltage	source	to	the	circuit.

Fig.	7.38:	Vector	diagram	of	the	RC	circuit.

Using	 KVL	 for	 the	 left	mesh	 (sinusoidal	 voltage	 source,	 R1,	 C)
yields	the	voltage	by	vectorial	sum	of	u1(t)	and	u2(t)	or	û1	and
û2.
As	can	be	seen	in	Fig.	7.38	the	current	(i1(t))	and	voltage	u(t)of
the	source	are	not	 in	phase	but	 the	current	 leads	 the	voltage.
Therefore	this	circuit	has	a	capacitve	behavior.

7.4.2	Complex	numbers

The	 vector	 diagram	 introduced	 above	 resembles	 the
representation	 of	 complex	 numbers.	 Recall	 the	 imaginary
number	to	be:



The	 sum	 of	 a	 real	 and	 imaginary	 number	 is	 called	 a	 complex
number	 and	 a	 complex	 number	 Z	 can	 be	 represented	 in	 a
Gaussian	 coordinate	 system	 by	 the	 rectangular	 form	 with	 the
real	 part	 R	=	Re(Z)	 on	 the	 x-axis	 and	 the	 imaginary	 part	 X	=
Im(Z)	on	the	y-axis:

Fig.	7.39:	Complex	number	Z	in	a	Gaussian	coordinate	system.

The	 magnitude	 of	 the	 complex	 number	 (length	 of	 the	 vector
from	origin	to	the	point	in	the	Gaussian	coordinate	system)	and
the	 corresponding	 angle	 to	 the	 x-axis	 (real	 axis)	 are	 (see	 Fig.
7.39):

Expressing	 the	 real	 and	 the	 imaginary	 part	 of	 the	 complex
number	by	the	magnitude	and	the	angle	yields:



Using	Euler’s	formula	(see	above)	the	complex	number	Z	can	be
written	in	exponential	or	polar	form:

Both	 representations	 of	 a	 complex	 number,	 rectangular	 and
polar	 form,	are	used	 in	AC	analysis	depending	on	the	purpose.
Sometimes	 the	 rectangular	 form	 is	 easier	 to	 handle,
nevertheless	 most	 of	 the	 time	 the	 polar	 form	 is	 used	 as	 AC
analysis	 deals	 a	 lot	 with	 differentiation,	 multiplication	 and
division.
Some	basic	calculations	with	complex	numbers:
	
Summation	and	subtraction
The	easiest	way	for	summation	and	subtraction	of	two	complex
numbers	Z1	and	Z2	 is	 in	 rectangular	 form,	as	 just	 the	real	and
imaginary	parts	are	added	(subtracted)	separately:

Multiplication	and	division
The	 easiest	 way	 for	 the	 multiplication	 and	 subtraction	 of	 two
complex	numbers	Z1	and	Z2	 is	in	polar	form,	as	the	magnitude
and	 the	 phase	 are	 treated	 separately.	 For	 multiplication	 the
magnitudes	are	multiplied	and	the	phases	are	added:

For	 division	 the	 magnitudes	 are	 divided	 and	 the	 phases	 are
subtracted:

A	special	case	of	division	(and	of	importance	for	AC	analysis)	is
the	reciprocal	value	of	a	complex	number	Z:



Differentiation	 of	 a	 complex	 harmonic	 time	 function	 can	 be
easily	done	in	polar	form.	Consider	ϕ	being	time	dependent,	e.g.
ϕ=ωt:

Differentiation	yields:

So	 the	differentiation	 in	polar	 form	 is	 just	a	multiplication	with
jω.	 In	 terms	 of	 the	 vector	 diagram	 this	 multiplication	 with	 jω
corresponds	 to	 counterclockwise	 rotation	 of	 the	 vector.	 For
every	complex	number	Z	there	is	a	complex	conjugate	number
Z*	that	differs	just	by	the	sign	of	the	imaginary	part:

Multiplication	of	a	complex	number	with	 its	complex	conjugate
gives	the	square	of	the	magnitude:

The	sum	of	a	complex	number	and	the	difference	of	a	complex
number	with	its	complex	conjugate	number	yields:

7.4.3	Application	of	complex	numbers	to	AC	circuits

Consider	 a	 sinusoidal	 voltage	 with	 peak	 value	 û,	 angular



frequency	ω	and	phase	angle	ϕu:

This	 voltage	 can	 be	 depicted	 as	 the	 real	 axis	 projection	 of	 a
rotating	vector	of	length	û	in	a	vector	diagram.	Considering	this
diagram	to	be	a	Gaussian	coordinate	system	we	can	write	 the
voltage	in	complex	form	as:

The	momentary	 value	 of	 the	 complex	 voltage	 is	 given	 by	 the
real	part	of	the	complex	voltage:

If	 we	 are	 not	 interested	 in	 the	 actual	 value	 of	 the	 current	 or
voltage,	 but	 just	 in	 the	 relation	 between	 these	 values	 (phase
difference)	 the	 time	 independent	part	 of	 the	 complex	quantity
can	be	considered	only:

This	is	the	phase	vector	or	phasor	representation	of	the	voltage
for	any	given	time	(e.g.	 t	=	0	s).	 It	 is	useful	 in	particular	 in	all
kinds	 of	 calculations	 with	 a	 common	 angular	 frequency	 of	 all
components	as	 it	separates	 the	 time-dependent	 term	from	the
time-independent	terms.

7.4.4	AC	circuits

When	using	complex	numbers	to	describe	AC	circuits	of	course
our	basic	rules	hold	true:

–All	events	happen	at	the	same	time	independent	of	the
location	within	the	circuit;

–Kirchhoff’s	and	Ohm’s	laws	are	valid	for	all	instances	of



time;
–Superposition	 is	 still	 valid	 for	 linear	 elements	 like
resistors,	 inductors,	 capacitors	 (these	 elements	 have
linear	 dependencies	 (direct	 linear	 or	 derivative)
between	 electrical	 propoerties	 like	 voltage	 and
current);

Very	 basic	 circuits,	 circuits	 with	 just	 a	 sinusoidal	 source
connected	to	one	element,	will	be	analyzed	first.	The	analysis	of
these	 circuits	 demonstrates	 the	 application	 and	 benefits	 of
notation	 with	 complex	 numbers.	 Afterwards	 more	 complex
circuits	will	be	studied.
	
AC	circuit	with	a	resistor
Given	is	a	sinusoidal	voltage	(arbitrarily	using	ϕu	=	0)

Using	Ohm’s	law	yields	for	the	complex	current:

As	already	seen	with	the	trigonometric	and	the	vector	approach
the	current	and	the	voltage	at	the	resistor	are	in	phase	and	the
peak	 value	 of	 the	 current	 is	 given	 by	 the	 peak	 value	 of	 the
voltage	divided	by	the	resistance	R.

Fig.	7.40:	A	simple	AC	circuit	with	just	a	resistor	(left),	line	diagram	of	current	and
voltage	(center)	and	vector	diagram	(right).

AC	circuit	with	an	inductor



Given	is	a	sinusoidal	current	(arbitrarily	using	ϕi	=	0)

Using	the	induction	law	yields	for	the	complex	voltage:

As	the	time	dependent	term	is	the	same	for	the	voltage	and	the
current	we	 can	 rewrite	 this	 equation	 using	 the	 phasors	 of	 the
voltage	and	the	current:

Thus	 the	 differentiation	 yields	 a	 multiplication	 with	 jω.
Multiplication	 with	 jω	 corresponds	 to	 a	 counterclockwise
rotation	of	90	°	of	the	phasor.	For	the	inductor	the	phasor	of	the
voltage	 leads	 the	 current	 by	 90	 °.	 The	 vectors	 of	 voltage	 and
current	are	not	in	phase	but	out	of	phase	by	90	°.	Formally	this
expression	equals	Ohm’s	law	and	the	term	ZL	=	jωL	is	called	the
impedance	of	the	inductor:

In	general	 the	 ratio	u/i	 is	called	 the	 impedance	of	an	element.
The	unit	 for	 the	 impedance	 is	Ohms	 (Ω)	 just	 as	 in	 case	of	 the
real	resistance.
The	reciprocal	of	the	impedance	is	called	the	admittance	Y	and
is	 given	 by	 the	 ratio	 of	 current	 phasor	 to	 the	 voltage	 phasor.
The	unit	for	the	admittance	is	Siemens	(S):



Fig.	7.41:	A	simple	AC	circuit	with	just	an	inductor	(left),	line	diagram	of	current	and
voltage	(center)	and	vector	diagram	(right).

AC	circuit	with	a	capacitor
Given	is	a	sinusoidal	voltage	(arbitrarily	using	ϕu	=	0)

Using	the	capacitor’s	relation	for	current	and	voltage	yields	for
the	complex	current:

In	phasor	notation	it	yields:

The	 differentiation	 is	 again	 a	 multiplication	 with	 jω.
Multiplication	 with	 jω	 corresponds	 to	 a	 counterclockwise
rotation	of	90	 °	of	 the	phasor.	 For	 the	capacitor	 the	phasor	of
the	 current	 leads	 the	 voltage	 by	 90	 °.	 The	 vectors	 of	 voltage
and	current	are	not	in	phase	but	out	of	phase	by	90	°.
Formally	this	expression	again	equals	Ohm’s	law	and	the	factor
ZC	=	1/jωC=-j/ωC	is	called	the	impedance	of	the	capacitor.	The
admittance	of	a	capacitor	is:



Fig.	7.42:	A	simple	AC	circuit	with	just	a	capacitor	(left),	a	line	diagram	of	current	and
voltage	(center)	and	a	vector	diagram	(right).

Summarizing	the	results	of	the	simple	R,	L	and	C	circuits	we	can
write	 the	voltage-current	 relations	 for	 these	 linear	elements	 in
phasor	form	as	follows:

Fig.	7.43:	Impedances	for	the	basic	elements	resistor,	inductor	and	capacitor	in
complex	form.

Even	 though	 the	 use	 of	 complex	 number	 phasors	 seems
complicated,	this	method	is	used	to	simplify	the	analysis	of	AC
circuits.	 Fig.	 7.44	 shows	 the	 steps	 it	 takes	 to	 analyze	 an	 AC
circuit,	e.g.	starting	with	a	sinusoidal	voltage.	Without	the	use	of
complex	numbers	and	phasors,	differential	equations	have	to	be
solved	 to	 calculate	 the	 corresponding	 currents.	 Depending	 on
the	complexity	of	the	circuit	this	will	be	a	very	difficult	task.
Using	complex	numbers	and	phasors	transforms	the	differential
equations	 into	 algebraic	 equations	 which	 are	 in	 general	much
easier	 to	 solve.	 After	 the	 current	 phasor	 is	 calculated	 it	 is
transferred	back	to	the	time	dependent	form.



Fig.	7.44:	Steps	for	analysis	of	an	AC	circuit	using	phasors.

7.4.5	Kirchhoff’s	laws	for	AC	circuits

In	general	the	behavior	of	a	circuit	 is	calculated	using	complex
numbers	and	the	real	currents	and	voltages	are	determined	by
the	resulting	real	part	of	the	rotating	vector	associated	with	the
phasor.	The	resulting	impedance	of	a	circuit	can	consist	of	a	real
and	an	imaginary	part:

The	real	part	R	is	called	resistance	and	the	imaginary	part	X	is
called	 reactance.	 The	 impedance	 of	 a	 resistor	 has	 just	 a
resistance	and	both	an	ideal	capacitor	and	an	ideal	inductor	just
have	a	reactance.
As	 in	 the	DC	case,	both	Kirchhoff’s	current	 law	and	Kirchhoff’s
voltage	 law	 are	 still	 valid	 for	 AC	 circuits.	 In	 complex	 notation
these	two	laws	read	like:

Consequently	(as	will	be	shown	in	the	following	section)	also	the
rules	 for	 calculation	 of	 elements	 connected	 in	 parallel	 and	 in
series	are	still	valid.
Series	connection	of	n	elements:



Parallel	connection	of	n	elements:

Series	connection	of	a	resistor	and	an	inductor
The	analysis	of	circuits	with	single	elements	revealed	that	there
is	 no	 phase	 shift	 between	 current	 and	 voltage	 in	 case	 of	 the
resistor	circuit	and	a	phase	shift	of	90	°	with	the	voltage	leading
the	current	in	the	case	of	the	inductor.	The	circuit	with	a	series
connection	 of	 a	 resistor	 and	 an	 inductor	 combines	 these	 two
elements	 with	 different	 behavior.	What	 about	 the	 current	 and
the	voltages?
Consider	now	Fig.	7.45	with	a	series	connection	of	a	resistor	and
an	 inductor.	 The	 voltage	 drop	 across	 the	 resistor	 and	 the
inductor	given	in	complex	form	are:

Applying	KVL	yields	for	this	circuit:

Fig.	7.45:	An	RL	circuit	with	a	sinusoidal	voltage	source.

The	voltage	of	 the	voltage	source	 is	 related	 to	 the	current	via
the	impedance	of	the	circuit.	As	in	case	of	series	connection	of
resistors	 in	DC	circuits	the	total	 impedance	of	the	circuit	 is	the
sum	 of	 the	 impedances	 of	 its	 elements.	 In	 polar	 form	 the
impedance	is:



The	magnitude	and	the	phase	angle	are	given	by:

Consider	a	source	voltage:

In	complex	form	this	voltage	is:

The	resulting	current	yields:

The	 current	 lags	 behind	 the	 voltage	 by	 a	 phase	 shift	 of	 ϕ	 =
arctan(ωL/R).
The	voltage	drop	across	the	resistor	is	in	phase	with	the	current
and	yields:

The	voltage	drop	across	the	inductor	is	given	by:



As	already	known,	the	voltage	at	the	inductor	leads	the	current
through	the	inductor	by	π/2	=	90	°.
Graphically	this	solution	is	depicted	in	Fig.	7.46.	As	there	is	just
one	current	we	use	this	current	as	a	starting	point	 for	drawing
the	 vector	 diagram.	Current	 i	 is	 drawn	horizontal.	 The	 voltage
across	 the	 resistor	 uR	 is	 in	 phase	 with	 the	 current	 and	 hence
also	horizontal,	whereas	the	voltage	across	the	inductor	uL	leads
the	current	by	π/2	and	points	upwards.	The	total	voltage	u	is	the
graphical	sum	of	the	two	voltages	represented	by	Z·i.	The	angle
ϕ	 is	 the	phase	shift	of	 the	voltage	 leading	the	current.	As	 long
as	the	voltage	vector	leads	the	current	vector	the	behavior	of	a
circuit	is	called	inductive	(if	the	current	vector	leads	it	is	called
capacitive).

Fig.	7.46:	Vector	diagrams	of	the	series	connection	of	resistor	and	inductor.

Starting	 from	 the	vector	diagram	of	 the	 series	 connection	and
dividing	 all	 terms	 by	 the	 current	 we	 get	 a	 similar	 triangle
formed	 by	 the	 inductances	 of	 the	 elements	 and	 the	 total
inductance.	As	we	have	seen	before	the	phase	angle	is	given	by
ϕ	=	arctan(ωL/R).
	
Series	connection	of	a	resistor	and	capacitor
The	 calculation	 for	 a	 series	 connection	 of	 a	 resistor	 and	 a
capacitor	 is	 done	 in	 the	 same	way	 as	 for	 the	 resistor-inductor
series	connection.	The	results	are:



Impedance:

Magnitude	of	impedance:

Current:

Magnitude	of	the	current:

Magnitude	of	the	total	voltage:

Fig.	7.47:	Series	connection	of	resistor	and	capacitor	(left),	vector	diagram	for
voltages	(center)	and	impedances

(right).

Graphically	 this	 solution	 is	 depicted	 in	 Fig.	 7.47.	 Again	 the
current	i	is	drawn	horizontal.	The	voltage	across	the	resistor	uR
is	in	phase	with	the	current	and	hence	also	horizontal,	whereas
the	voltage	across	 the	 inductor	uL	 lags	 the	current	by	π/2	and



points	downwards.	 The	 total	 voltage	u	 is	 the	graphical	 sum	of
the	 two	voltages	 represented	by	Z·i.	 The	angle	ϕ	 is	 the	phase
shift	 of	 the	 voltage	 leading	 the	 current.	Here	 the	 total	 current
vector	 leads	 the	 total	 voltage	 and	 the	 circuit	 has	 a	 capacitive
behavior.
	
Example	of	RC	series	circuit
A	bulb	should	be	operated	at	Ubulb	=	230	V	and	I	=	0.5	A	using	a
voltage	source	of	U	=	300	V	and	f	=	50	Hz.	What	is	the	value	of
the	capacitance	of	a	capacitor	in	series	with	the	bulb	to	achieve
the	required	operating	conditions?
The	 bulb	 is	 a	 resistive	 element	 and	 the	 circuit	with	 the	 series
connection	of	R	and	C	is	shown	in	Fig.	7.48.	The	current	in	this
circuit	is	the	same	for	all	elements.	According	to	KVL	the	voltage
of	 the	 source	 is	 the	 vectorial	 sum	 of	 the	 voltage	 across	 the
resistor	and	the	capacitor:

The	magnitudes	 of	 the	 voltage	 source	 and	 the	 bulb	 are	 given
and	the	magnitude	of	the	voltage	of	the	capacitor	is	just:

Using	this	voltage	of	 the	capacitor	 the	capacitance	 is	given	by
the	magnitude	of	the	capacitor’s	impedance



Fig.	7.48:	A	bulb	operated	in	series	with	a	capacitor.

Parallel	connection	of	a	resistor	and	a	capacitor
After	 the	 study	 of	 series	 connection	 of	 two	 elements	 in	 AC
circuits,	 the	 parallel	 connection	 of	 two	 elements	 is	 analyzed,
here	 a	 resistor	 and	 a	 capacitor.	 The	 circuit	 is	 depicted	 in	 Fig.
7.49.	The	total	current	of	the	voltage	source	is	split	according	to
KCL:

With

and

KCL	yields:

The	factor	(1/R+jωC)	is	the	admittance	of	the	total	circuit	and	is,
as	expected,	the	sum	of	the	admittances	of	the	single	elements:

The	magnitude	of	the	admittance	is:

And	the	magnitude	of	the	total	current	is:



Fig.	7.49:	Parallel	connection	of	resistor	and	capacitor	(left),	vector	diagram	for
currents	(middle)	and	admittances	(right).

Fig.	7.49	shows	the	vector	diagram	for	the	total	voltage	and	the
currents.	Starting	from	the	total	voltage	(in	horizontal	direction)
the	 current	 through	 the	 resistor	 is	 in	 phase	 with	 the	 total
voltage.	The	current	through	the	capacitor	leads	the	voltage	by
90	 °	 and	 points	 upwards.	 The	 total	 current	 of	 the	 source	 is
hence	 the	 geometrical	 sum	 of	 the	 two	 currents.	 Dividing	 the
currents	by	the	common	total	voltage	transforms	the	triangle	of
the	currents	to	the	triangle	of	admittances.
	
Example	of	RLC	circuit
A	circuit	with	series	and	parallel	connections	is	depicted	in	Fig.
7.50:	 A	 resistor	 R	 =	 100	 Ω	 is	 connected	 in	 series	 with	 an
inductor	of	L	=	10	mH	and	these	two	elements	are	connected	in
parallel	to	a	sinusoidal	voltage	source	(U	=	50	V,	f	=	1000	Hz)
and	a	capacitor	with	C	=	10	µF.

Fig.	7.50:	RLC	circuit	with	R	and	L	in	series.

To	determine	the	total	current	 i	of	the	circuit	we	start	with	the
RL	series	connection.	The	impedance	of	this	connection	is:



As	 the	voltage	drop	across	 the	series	connection	of	R	and	L	 is
equal	 to	 the	voltage	of	 the	source	(u)	 the	current	 i1	 through	R
and	L	yields:

The	current	through	the	capacitor	is	given	by:

According	to	KCL	the	total	current	is:

The	total	circuit	has	a	capacitive	behavior	as	the	current	 leads
the	voltage	by	82	°.	The	total	admittance	of	the	circuit	is:

Automotive	application
Parallel	 and	 series	 connections	 of	 resistors	 and	 capacitors	 are
frequently	used	in	automotive	applications,	e.g.	for	high-pass	or
low-pass	 filters.	 Another	 example	 is	 the	 use	 of	 a	 differential
capacitor	in	a	Wheatstone	bridge.	This	capacitive	bridge	is	used
for	 example	 in	 micromechanical	 acceleration	 or	 angular	 rate
sensors.	The	acceleration	sensor	makes	use	of	the	fact	that	the
acceleration	 	is	correlated	to	a	force	 .
A	differential	capacitor	 is	a	series	connection	of	two	capacitors
with	one	common	electrode,	such	as	depicted	schematically	 in
Fig.	7.51.	It	acts	like	a	frequency	dependent	voltage	divider.	 In
sensors	 this	common	electrode	with	mass	m	 is	 free	to	move	 if
an	external	force	due	to	the	acceleration	is	exerted	to	it.	By	the
movement	 of	 the	 common	 electrode	 the	 capacitances	 of	 the
two	capacitors	change	due	to	the	changing	distances	Δd	of	the



plates.	One	capacitance	increases	and	the	other	decreases:

To	measure	 these	changes	 the	differential	capacitor	 is	one	 leg
of	 a	 Wheatstone	 bridge.	 The	 other	 leg	 is	 built	 out	 of	 two
resistors.	 A	 sinusoidal	 voltage	 source	 excites	 the	 Wheatstone
bridge	 with	 frequency	 ω.	 In	 this	 configuration	 the	 voltage
difference	 ua	 is	 a	 direct	 measure	 for	 the	 distortion	 of	 the
differential	capacitor	and	hence	for	the	acceleration:

The	output	voltage	is	constant	for	constant	acceleration	and	can
be	measured	with	an	ADC.

Fig.	7.51:	The	capacitive	Wheatstone	bridge	of	an	acceleration	sensor	with	a
differential	capacitor.



8	Building	blocks

Just	 as	 any	 electric	 circuit	 with	 only	 two	 external	 terminals	 is
called	a	two-terminal	circuit,	two	port	networks	(or	four-terminal
networks)	are	circuits	with	two	pairs	of	terminals	such	as	shown
in	Fig.	8.1.	In	addition	two	port	networks	have	to	fulfill	the	port
condition:	 current	 entering	 one	 terminal	must	 be	 equal	 to	 the
current	flowing	out	of	the	other	one	of	the	same	port.	As	for	the
two-terminal	 networks	 two-port	 networks	 can	 be	 active
(containing	 sources)	 or	 passive	 (no	 sources	 inside).
Furthermore,	the	two	port	network	can	be	linear	(containing	just
linear	 elements	 like	 resistors,	 capacitors,	 inductors)	 or	 non-
linear	(e.g.	with	diodes).	The	theory	of	two-port	networks	is	not
discussed	here.	 Instead	we	make	use	of	a	special	case	of	 two-
port	 networks:	 building	 blocks	 or	 system	 blocks	with	 I1	 =	 0	 A
and	U2	 independent	of	I2.	This	special	case	can	be	obtained	by
adding	 a	 unity	 gain	 buffer	 to	 the	 input	 and	 output	 ports
respectively.	 Using	 this	 simplification	 with	 regard	 to	 two-port
networks	 we	 are	 able	 to	 analyze	 building	 blocks	 of	 complex
circuits	 and	 to	 determine	 the	 transfer	 characteristics	 of	 these
blocks.

Fig.	8.1:	An	arbitrary	two	port	network	fulfilling	the	port	conditions.

The	ports	connect	 to	other	circuits	 like	 in	 the	case	of	 the	 two-
terminal	 circuits.	 The	 construct	 of	 building	 blocks	 is	 used	 to
isolate	 parts	 of	 a	 larger	 circuit	 to	 simplify	 the	 analysis	 of	 the



complete	circuit.	In	this	case	often	one	port	is	the	input	port	and
the	 other	 one	 the	 output	 port,	 and	 the	 main	 property	 of	 the
circuit	 is	 the	 transfer	 function:	 how	 does	 the	 output	 voltage
depend	on	 the	 input	 voltage	and	 its	 frequency?	 If	 the	 transfer
function	 is	 known,	 the	 two	 port	 network	 can	 be	 treated	 as	 a
black	box	with	 the	 internal	structure	and	components	being	of
no	 further	 interest.	 The	 building	 blocks	 are	 often	 used	 for
analysis	of	filters	or	transmission	lines.

8.1	High-pass	filter

A	simple	building	block	of	just	a	resistor	R	and	an	inductor	L	is
depicted	in	Fig.	8.2.	It	resembles	the	series	connection	of	R	and
L	 treated	 above.	 The	 left	 port	 is	 the	 input	 port	 with	 an	 input
voltage	 u1(t)	 whereas	 the	 port	 on	 the	 right	 side	 is	 the	 output
port	with	output	voltage	u2(t).

Fig.	8.2:	-Two	port	network	consisting	of	R	and	L;	input	voltage	is	u1(t),	voltage	across
the	inductor	is	the	output	voltage	u2(t).

What	 about	 the	 transfer	 function	 for	 this	 building	 block?	 The
circuit	is	a	frequency	dependent	voltage	divider	and	the	ratio	of
the	voltages	is:

The	analysis	of	this	ratio	can	be	split	into	two	parts,	the	ratio	of
the	 magnitude	 and	 the	 phase	 difference	 between	 input	 and
output	 voltage.	 The	 transfer	 function	 of	 the	magnitude	 is	 also
referred	to	as	voltage	gain.
	



Magnitude

The	magnitude	 of	 the	 output	 voltage	 depends	 strongly	 on	 the
angular	 frequency	 ω	 of	 the	 voltages.	 For	 ω	 →	 0	 s-1	 the
magnitude	of	u2(t)	tends	to	zero.	In	the	DC	case	(in	the	limit	of
ω	=	0	s-1)	the	output	voltage	will	be	totally	damped	down	to	0
V.	This	is	exactly	the	behavior	of	an	inductor	that	is	expected	in
case	 of	 a	 DC	 circuit:	 the	 inductor	 acts	 as	 a	 short	 circuit	 and
there	is	no	voltage	drop	across	the	inductor.	In	this	case	the	full
voltage	drop	of	|u1|	will	be	at	the	resistor	R.
For	ω	→	∞	s-1	the	term	ω·L	dominates	the	denominator	and	the
ratio	of	the	voltages	tends	to
1.	In	this	case	the	output	voltage	will	be	(nearly)	undamped	and
will	have	the	same	magnitude	as	the	input	voltage.	The	voltage
at	the	resistor	will	tend	to	zero.
For	frequencies	between	these	two	limits	the	magnitude	of	the
voltage	ratio	is	a	steadily	increasing	function	as	depicted	in	Fig.
8.3	on	the	left	side.	How	fast	the	function	increases	depends	on
the	ratio	of	Ω	=	ω	·	L	/	R.	Therefore	it	is	very	common	to	rescale
the	 graph	 logarithmically	 using	 this	 ratio	 Ω	 instead	 of	 the
angular	frequency	(see	Fig.	8.3).



Fig.	8.3:	The	transfer	function	of	the	voltage;	left:	scaling	using	angular	frequency;
right:	logarithmical	scaling	using	Ω=ωL/R;	straight	lines	show	linear	approximations

for	high	and	low	frequencies.

Using	 the	 new	 scaling	 the	 functionality	 of	 the	 analyzed	 circuit
becomes	obvious:	 it	 is	a	high-pass	 filter.	High	 frequencies	well
above	Ω	=	1	can	pass	the	circuit	with	very	low	damping.	For	this
frequency	 range	 the	 voltage	 gain	 can	 be	 approximated	 by	 a
straight	 line	 |u1/u2|	 ≈	 1.	 Low	 frequencies	 well	 below	 Ω	 =	 1
cannot	 pass	 the	 circuit,	 they	 are	 strongly	 damped.	 Here	 the
transfer	function	can	be	approximated	by	another	straight	line,	|
u1/u2|	≈	Ω.	These	two	lines	(approximations	of	the	voltage	gain
for	high	and	low	frequencies)	intersect	at	Ω	=	1	and	the	voltage
gain	at	this	point	is:

The	 corresponding	 angular	 frequency	 is	 called	 the	 cut-off
frequency	ω0	and	is	given	for	the	RL	high-pass	by:

Frequencies	above	the	cut-off	frequency	pass	the	circuit	nearly
undamped,	 and	 frequencies	 below	 the	 cut-off	 frequency	 are



strongly	damped	and	can	hardly	pass	the	circuit.	In	this	blocking
region	 the	 reduction	 of	 the	 frequency	 by	 a	 factor	 of	 10	 also
reduces	the	voltage	gain	by	a	factor	of	10.
	
Phase	difference
Besides	 the	 voltage	 gain	 the	 phase	 difference	 also	 shows	 a
characteristic	 behavior	 given	 by	 the	 exponential	 part	 of	 the
transfer	function:

In	the	 limit	of	ω	→	0	s-1	 the	arctan	term	tends	to	zero	and	the
phase	difference	between	output	and	input	voltage	is	90	°.	For
ω	→	∞	s-1	the	arctan	term	tends	to	Π/2	and	the	output	voltage	is
in	phase	with	the	input	voltage.	In	between	the	phase	difference
steadily	decreases	as	shown	on	the	left	side	of	Fig.	8.4.

Fig.	8.4:	The	phase	difference	between	output	and	input	voltage;	left:	scaling	using
angular	frequency;	right:	logarithmical	scaling	using	Ω	=	ωL/R.

On	the	right	side	of	Fig.	8.4	the	scaling	Ω	=	ωL/R	is	used	again
and	the	characteristic	behavior	of	the	phase	difference	is	clearly
visible.	At	the	cut-off	frequency	ω0	=	R/L	the	phase	difference	is
45	°.



8.2	Bode	plot

Combination	of	the	two	logarithmic	diagrams	for	the	magnitude
and	 the	phase	difference	 results	 in	 the	 so	 called	Bode	plot.	 In
addition	 the	 gain	 of	 the	magnitude’s	 diagram	 is	 expressed	 in
decibels:

The	Bode	plot	of	a	high-pass	filter	is	shown	in	Fig.	8.5.	For	high
frequencies	 the	gain	 is	approximately	 constant	and	equal	 to	0
dB.	 At	 the	 cut-off	 frequency	ω0	 the	 gain	 drops	 down	 to	 –3	 dB
with	regard	to	the	high	frequency	limit.	For	low	frequencies	(ω	
ω0)	it	can	be	approximated	by:

The	gain	is	negative	and	strongly	frequency	dependent.	As	can
be	 seen	 in	 the	 formula	 above	 and	 Fig.	 8.5	 the	 slope	 of	 the
straight	 line	 at	 low	 frequencies	 is	 –20	 dB/decade,	 where	 a
decade	 denotes	 a	 change	 in	 frequency	 by	 a	 factor	 of	 10.	 So
using	 Bode	 plots	 the	 properties	 of	 the	 transfer	 functions	 for
magnitude	and	phase	difference	can	be	easily	seen.	In	addition
Bode	 plots	 of	 complex	 networks	 can	 be	 constructed	 by	 the
addition	of	simpler	Bode	plots.



Fig.	8.5:	A	Bode	plot	of	a	high-pass	filter.

8.3	Low-pass	filter

The	 complementary	 building	 block	 to	 a	 high-pass	 filter	 is	 of
course	 the	 low	 pass	 filter.	 Here	 low	 frequencies	 can	 pass	 the
circuit	 and	 high	 frequencies	 are	 damped	 and	 filtered	 out.	 A
simple	 low-pass	 filter	 can	 be	 designed	 by	 just	 changing	 the
inductor	of	the	previous	high-pass	filter	to	a	capacitor	as	shown
in	Fig.	8.6.

Fig.	8.6:	An	RC	low-pass	filter.



The	transfer	function	of	this	RC	low-pass	filter	is:

The	 corresponding	 Bode	 diagram	 is	 depicted	 in	 Fig.	 8.7.	 It
clearly	 shows	 the	 filter	 functionality	 of	 this	 building	 block:	 low
frequencies	 can	 pass	 the	 circuit,	 the	 gain	 is	 0	 dB.	 The	 cut-off
frequency	ω0	is	given	for	the	RC	low-pass	filter	by:

For	the	cut-off	frequency	the	attenuation	is	again	–3	dB	and	the
phase	 shift	 between	 output	 and	 input	 voltage	 is	 –45	 °.	 For
higher	frequencies	the	gain	drops	by	–20	dB	per	decade:



Fig.	8.7:	A	Bode	diagram	of	a	RC	low-pass.

Automotive	application
All	kind	of	filters	are	commonly	used	in	automotive	applications.
One	example	is	the	usage	of	a	low-pass	filter	as	an	anti-aliasing
filter.	Consider	an	electronic	 sensor	 system	as	depicted	 in	Fig.
8.8.	A	simple	sensor	 like	a	temperature	sensor	 is	connected	to
an	 analog	 input	 pin	 of	 a	 microcontroller.	 The	 output	 of	 the
sensor	 is	an	analog	signal	 in	the	range	of	0–5	V.	An	analog-to-
digital	 converter	 (ADC)	 inside	 the	microcontroller	 converts	 the
analog	sensor	signal	to	a	digital	representation	that	can	be	used
by	the	digital	logic	of	the	microcontroller.	This	conversion	takes
some	time	and	therefore	the	sampling	of	the	analog	signal	is	at
discrete	 time	 steps	 (e.g.	 every	 10	 µs,	 so	 sample	 rate	 is	 100
kHz).	 To	 be	 able	 to	 recover	 the	 signal	 after	 the	 conversion
correctly	without	any	aliasing	the	Shannon-Nyquist	criterion	has
to	be	fulfilled:	the	sample	rate	has	to	be	at	least	twice	the	value
of	the	highest	frequency	of	the	signal	to	be	sampled.	Therefore



the	 high	 frequencies	 of	 the	 analog	 sensor	 signal	 have	 to	 be
filtered	out	by	using	a	low-pass	filter	like	the	RC	low-pass	filter.
The	cut-off	frequency	of	this	filter	has	to	be	adjusted	to	fit	to	the
sampling	rate	of	the	ADC.

Fig.	8.8:	A	sensor	system	with	microcontroller	and	low-pass	(anti-aliasing)	filter	for
the	analog	sensor	signal.

8.4	Higher	order	filters

So	 far	 filters	with	 just	one	energy	storing	element,	an	 inductor
or	capacitor,	have	been	used	to	introduce	the	basic	concept	of
two-port	 network	 analysis	 and	 filters.	 These	 filters	 are	 called
first	 order	 filters.	 First	 order	 filters	 have	 an	 attenuation	 far
above	(or	below)	the	cut-off	frequency	of	–20	dB	per	decade.	To
increase	this	attenuation,	higher	order	 filters	can	be	used.	The
order	of	the	filter	corresponds	to	the	number	of	energy	storing
elements,	hence	a	 filter	 of	nth	 order	 contains	n	energy	 storing
elements.	 Furthermore	 the	 damping	 is	 increased	 by	 the	 order
according	to	n	time	–20	dB	per	decade.	A	 low-pass	 filter	of	4th
order	 filters	 out	 frequencies	 well	 above	 the	 cut-off	 frequency
with	a	damping	factor	of	–80	dB	per	decade.	One	possible	way
to	construct	a	higher	order	 filter	 is	 to	concatenate	 lower	order
filters	 (which	 is	 nothing	 else	 than	 connecting	 building	 blocks
with	known	transfer	function).
However,	 connecting	 any	 element	 to	 a	 building	 block,	 in
particular	 to	 the	output,	may	have	a	 feedback	 to	 its	behavior!
So	care	has	to	be	taken	to	avoid	any	feedback	from	one	to	the
other	network	 if	building	blocks	are	concatenated.	This	kind	of
feedback	has	already	been	discussed	in	terms	of	the	unity	gain
buffer.	 The	 example	 of	 the	 two	 building	 blocks	 connected	 to



each	 other	 showed	 that	 the	 load	 circuit	 (the	 second	 building
block)	has	an	influence	on	the	behavior	of	the	source	circuit	(the
first	building	block).
Fig.	8.9	 shows	an	example	of	 concatenated	building	blocks	on
the	 left	 side.	 The	 total	 network	 consists	 of	 two	 pure	 resistive
networks	 each	with	 resistor	 R.	 Separate	 analysis	 of	 these	 two
network	yields	a	 transfer	 function	of	1	 for	both.	 In	case	of	 the
first	one	there	is	no	current	flow	at	any	terminal,	for	the	second
a	current	enters	and	leaves	via	the	input	port	and	flows	through
the	 resistor.	 Any	 input	 voltage	 at	 the	 input	 of	 each	 network
passes	 without	 change	 to	 the	 output.	 But	 after	 concatenation
the	 behavior	 changes:	 the	 total	 transfer	 function	 is	 not	 again
equal	 to	1	but	 equal	 to	½.	 The	 concatenated	building	block	 is
nothing	 other	 than	 a	 voltage	 divider	 and	 the	 second	 network
has	an	influence	on	the	first	one.	As	soon	as	the	second	network
is	 connected	 to	 the	 first	 one	 a	 current	 also	 flows	 through	 the
first	resistor.

Fig.	8.9:	Concatenation	of	two	building	blocks:	without	output	termination	(left),	with
an	unity	gain	buffer	at	the	output	(right).

To	 avoid	 this	 kind	 of	 feedback	 the	 input	 impedance	 of	 the
second	 building	 block	 has	 to	 be	much	 higher	 than	 the	 output
impedance	of	the	first	one.	This	can	be	done	by	terminating	the
output	 of	 each	 building	 block	 with	 a	 unity	 gain	 buffer	 as
depicted	 on	 the	 right	 side	 of	 Fig.	 8.9.	 The	 unity	 gain	 buffer
makes	the	output	 impedance	of	the	first	circuit	very	small	and
its	output	voltage	corresponds	to	the	value	given	by	the	transfer
function	of	the	first	network.	The	input	impedance	of	the	second
network	 is	much	higher	than	the	output	 impedance	of	 the	first
network	and	there	 is	no	 feedback.	The	 transfer	 function	of	 the
total	network	is	equal	to	1	(product	of	the	transfer	functions	of



the	single	networks).
If	 the	 output	 ports	 are	 terminated	 in	 a	 proper	 way,	 a	 higher
order	 filter	 can	be	obtained	by	 concatenation.	 Fig.	 8.10	 shows
how	a	2nd	order	 low-pass	 filter	 is	obtained	by	concatenation	of
two	1st	order	 low-pass	filters	with	the	same	values	of	R	and	C.
The	output	of	the	first	filter	is	the	input	of	the	second	filter.	The
transfer	function	of	the	total	2nd	order	filter	is	the	product	of	the
transfer	functions	of	the	single	filters:

The	 cut-off	 frequency	 of	 the	 2nd	 order	 filter,	 given	 by	 the
frequency	with	a	damping	of	–3	dB	is:

Well	 above	 the	 cut-off	 frequency	 the	 damping	 is	 –40	 dB	 per
decade:

Compared	 to	 the	 used	 1st	 order	 filter	 the	 cut-off	 frequency	 is
shifted	to	a	lower	frequency	and	the	damping	is	doubled.
As	a	general	 rule	Bode	diagrams	of	higher	order	 filters	 (and	 in
more	general	of	all	complex	two	port	networks),	 if	constructed
of	lower	order	filters,	can	be	obtained	by	the	simple	addition	of
the	Bode	plots	of	the	lower	order	filters.



Fig.	8.10:	A	2nd	order	low-pass	filter,	constructed	by	concatenation	of	two	1st	order
low-pass	filters.

Also	 more	 complex	 functionalities	 can	 be	 realized	 by
concatenation	of	simpler	elements.	Consider	the	circuit	given	in
Fig.	8.11.	It	consists	of	a	high-pass	filter	followed	by	a	low-pass
filter,	both	of	1st	order.	High	frequencies	are	filtered	out	by	the
first	element	with	cut-off	 frequency	ω1,	 low	frequencies	by	the
second	 element	 with	 a	 different	 cut-off	 frequency	 ω2.	 In	 total
frequencies	 lower	 than	ω2	and	higher	 than	ω1	are	 filtered	out.
Just	a	frequency	band	between	the	two	cut-off	 frequencies	can
pass	 the	 circuit.	 This	 kind	 of	 circuit	 is	 consequently	 called	 a
band-pass	circuit.
Again,	the	total	transfer	function	is	just	the	product	of	the	single
transfer	functions	(if	output	termination	is	done	properly,	e.g.	by
unity	gain	buffers).	The	transfer	 function	 is	already	well	known
for	the	low-pass	filter,	for	the	RC	high-pass	filter	it	is:

Hence	the	total	transfer	function	is	given	by:

The	Bode	plot	of	this	band-pass	filter	is	shown	on	the	bottom	of



Fig.	8.11.	At	 low	 frequencies	 the	 first	 term	of	 the	voltage	gain
tends	 to	 zero,	 at	 high	 frequencies	 the	 second	 term.	 At	 a
frequency	 ωr	 between	 ω1	 and	 ω2	 it	 has	 a	 maximum.	 This
frequency	 is	 called	 resonant	 frequency	 and	 is	 given	 by	 the
mean	value	of	the	cut-off	frequencies.
Depending	on	the	values	of	the	resistors	and	capacitors	the	cut-
off	frequencies	and	the	resonant	frequency	can	be	calculated:

The	phase	difference	is	90	°	for	ω	→	0	s-1	and	–90	°	for	ω	→	∞	s-
1.	At	the	resonant	frequency	it	is	0	°	and	output	and	input	signal
are	in	phase:



Fig.	8.11:	A	2nd	order	band-pass	filter,	constructed	by	concatenation	of	a	1st	order
high-pass	and	low-pass	filter	(top);	Bode	plot	of	the	band-pass	filter	(bottom).

8.5	Active	filter

So	 far	 the	 filters	 have	 consisted	 of	 passive	 elements	 like
capacitors	 and	 resistors.	 To	 avoid	 any	 feedback	 from	 a	 load
connected	 to	a	passive	 filter	an	active	element,	 the	unity	gain
buffer,	was	 added	 to	 the	 output	 terminal.	 An	 active	 filter	 now
uses	 active	 elements	 like	 OpAmps	 to	 realize	 the	 required
functionality	 and	 the	 output	 termination.	 Fig.	 8.12	 shows	 an



active	 first	 order	 low-pass	 filter	 using	 an	 OpAmp	 in	 inverting
amplifier	configuration.	The	transfer	function	for	this	active	filter
yields	(see	transfer	function	of	the	inverting	amplifier,	feedback
resistor	replaced	by	parallel	connection	of	R2	and	C1):

The	 first	 factor	of	 the	 transfer	 function	 (–R2/R1)	corresponds	 to
the	inverted	amplification	of	the	inverting	amplifier,	the	second
part	 is	 similar	 to	 the	 transfer	 function	 of	 the	 passive	 low-pass
filter	 discussed	 above.	 In	 total	 this	 active	 filter	 combines	 the
low-pass	 filter	 functionality	with	 an	 amplification	 of	 the	 output
voltage.

Fig.	8.12:	An	active	high-pass	filter.



9	AC	power

Consider	an	arbitrary	linear	two	terminal	network,	consisting	of
resistors,	capacitor	and	inductors	as	depicted	in	Fig.	9.1.

Fig.	9.1:	Current	and	voltage	of	an	arbitrary	linear	two	terminal	network.

The	network	has	an	 internal	 impedance	Z	and	the	voltage	u(t)
and	 the	current	 i(t)	 at	 the	 terminals.	 The	 instantaneous	power
inside	the	network	is:

Depending	 on	 the	 internal	 composition	 of	 the	 two	 terminal
network	the	voltage	u(t)	=	û	·	cos(ωt+ϕu)	and	the	current	i(t)	=
î	 ·	 cos(ωt	 +	 ϕi)	 are	 in	 general	 not	 in	 phase	 Hence	 the
instantaneous	power	can	be	positive	or	negative.	In	case	of	p(t)
	0	W	power	is	consumed	by	the	network,	if	p(t)	 	0	W	power	is
generated	by	the	network.
Before	 the	 analysis	 of	 the	 AC	 power	 of	 an	 arbitrary	 linear
passive	network,	two	limit	cases	will	be	studied:	a	pure	resistive
and	a	pure	inductive	network.

9.1	AC	power	of	a	pure	resistive	two	terminal
network

For	a	pure	 resistive	network	voltage	and	current	are	always	 in
phase,	i.e.	ϕi	=	ϕu.Using	the	trigonometric	relation	yields:



Finally	the	resulting	instantaneous	power	is:

The	instantaneous	power	oscillates	with	the	double	frequency	of
the	voltage	and	current	(refer	to	Fig.	9.2)	around	a	finite	value
with	a	peak	power	of	p(t)peak	=	û	·	î.	As	current	and	voltage	are
in	 phase	 the	 power	 is	 always	 positive	 and	 the	 network
consumes	power	at	any	instance	of	time.

Fig.	9.2:	AC	power	of	a	resistive	network	with	voltage	û·cos(ωt+ϕu)	and	current
i(t)=î·cos(ωt+	ϕi).

What	 about	 the	 average	 power?	 Due	 to	 the	 sinusoidal	 shape,
both	average	voltage	and	average	current	are	zero.	But	for	the
power	the	average	value	is:

The	average	power	is	just	the	product	of	the	effective	values	of
current	and	voltage:

If	 an	 arbitrary	 time-dependent	 current	 (voltage)
dissipates	the	same	power	within	a	resistor	as	a	DC



current	 (voltage),	 then	 the	 RMS	 of	 the	 time-
dependent	current	 (voltage)	 is	 the	same	as	 the	DC
current	(voltage).

This	power	is	called	active	power	(or	effective	or	real	power)	as
it	describes	the	power	that	is	transferred	in	one	direction,	here
into	the	network,	and	that	can	be	used	inside	the	network.
The	unit	for	the	real	power	is,	as	usual	for	power,	the	Watt	(W).

9.2	AC	power	of	a	pure	inductive	two	terminal
network

If	 the	 internal	of	the	network	 is	pure	 inductive	 it	 is	the	voltage
that	leads	the	current	by	90	°:

Therefore	the	instantaneous	power	inside	the	network	is:

Again	 the	 instantaneous	 power	 oscillates	 at	 double	 the
frequency	of	the	voltage	and	current,	but	this	time	around	zero
as	can	be	seen	in	Fig.	9.3.	For	the	first	and	third	quarter	of	the
period	of	the	voltage,	the	power	is	positive	and	hence	power	is
consumed	by	 the	network.	The	corresponding	energy	 is	stored
within	the	inductor.	In	the	second	and	fourth	quarter,	the	power
is	negative.	Power	is	generated	by	the	network	and	the	energy
stored	in	the	inductor	declines	to	zero	again.	1



Fig.	9.3:	AC	power	of	a	pure	inductive	network.

As	the	oscillation	is	around	zero	this	time	the	average	value	of
the	power	is	zero:

For	a	pure	inductive	load	no	power	is	transferred	to	the	network
on	average	and	the	supply	circuit	(the	circuit	connected	to	the
inductive	two	port	network)	does	not	have	to	provide	any	power
to	 the	 network	 –	 on	 average.	 The	 amplitude	 of	 this	 oscillating
power	that	is	related	to	the	temporary	storage	of	energy	within
the	 inductor	 (and	 that	 has	 an	 average	 value	 of	 zero)	 is	 called
reactive	power	as	 it	 is	not	associated	with	a	permanent	power
transfer	to	the	network.
Instead	 the	 power	 oscillates	 to	 and	 fro:	 for	 half	 of	 the	 time
power	 is	 transferred	 to	 the	 network	 and	 the	 energy	 is	 stored
within	the	inductor.	For	the	other	half	it	is	transferred	back	from
the	network	and	the	inductor	is	discharged	again.	So	the	source
circuit	has	to	provide	power	 for	half	of	 the	time	and	gets	back
power	 the	 other	 half.	 The	 peak	 power	 it	 has	 to	 provide	 and
readopt	is	the	product	of	the	effective	voltage	and	current,	the
reactive	power	Q:

For	 a	 pure	 capacitive	 network	 the	 situation	 is	 similar	 to	 the



inductive	 network:	 current	 and	 voltage	 are	 out	 of	 phase,	 this
time	by	–90	°.	Energy	is	temporarily	stored	in	the	capacitor,	the
power	 oscillates	 with	 double	 frequency	 around	 zero	 and	 the
reactive	 power	 Q	 is	 the	 product	 of	 the	 effective	 voltage	 and
current.
So	in	both	cases,	pure	inductive	and	pure	capacitive,	no	work	at
all	 can	 be	 done	 by	 the	 two	 port	 network	 as	 no	 energy	 is
transferred	 to	 it	 on	 average.	 But	 the	 supply	 network	 has	 to
provide	 power	 and	 hence	 current	 for	 half	 of	 the	 time	 (and	 to
readopt	 the	 same	 amount	 of	 energy	 the	 other	 time).	 If	 the
supply	network	has	resistive	elements,	power	will	be	dissipated
and	therewith	wasted	which	is	highly	unwanted.	Fig.	9.4	shows
a	simple	example:	a	sinusoidal	voltage	source	with	an	 internal
resistance	 is	 connected	 to	 a	 pure	 capacitive	 network.	 The
average	 power	 is	 zero,	 but	 at	 the	 internal	 resistance	 power	 is
dissipated	(converted	into	heat)	due	to	the	reactive	power	and
the	associated	the	oscillating	current	flow.

Fig.	9.4:	A	voltage	source	with	internal	resistance	connected	to	a	pure	capacitive
network.

The	unit	for	the	reactive	power	is	the	var	(volt	ampere	reactive),
unlike	the	Watt	for	the	active	power.

9.3	AC	power	of	a	mixed	two	terminal
networkwith	L,	R	and	C

Based	 on	 the	 idealized	 configurations	 above,	 mixed	 networks
containing	 capacitive,	 inductive	 and	 resistive	 elements	 can	 be
analyzed.	As	already	seen	 in	the	analysis	of	AC	circuits,	mixed



networks	 will	 have	 a	 phase	 difference	 between	 voltage	 and
current	that	can	be	any	value	between	-90	°	and	90	°:

Using	 trigonometric	 functions	 the	 instantaneous	 power	 can	 be
transformed:

The	final	result	for	the	instantaneous	power	is:

An	example	for	the	instantaneous	power	of	a	mixed	network	is
depicted	in	Fig.	9.5.	The	two	terms	of	the	instantaneous	power
of	 a	 mixed	 two	 terminal	 network	 resemble	 the	 results	 of	 the
pure	resistive	and	inductive	network.
The	first	term	with	a	non-zero	average	corresponds	to	the	active
power	of	the	pure	resistive	network	multiplied	by	the	so	called
power	factor	cos(ϕu	-	ϕi).	The	power	factor	has	a	value	between
0	and	1.	If	the	power	factor	is	1,	the	voltage	and	current	are	in
phase	and	the	total	power	U	·	I	is	transferred	from	the	source	to
the	network.	If	the	power	factor	is	smaller	than	one,	less	power
is	transferred.	The	active	power	P	=	U	·	I	·	cos(ϕu	-	ϕi)	is	always
positive	 (as	 cos(x)	 =	 cos(–x)),	 no	 matter	 whether	 current	 or
voltage	is	leading	(capacitive	or	inductive	behavior).
The	 second	 term	 with	 a	 zero	 average	 corresponds	 to	 the
reactive	 power	 of	 the	 pure	 inductive	 (or	 capacitive)	 network
multiplied	by	sin(ϕu	-	ϕi).	The	reactive	power	Q	=	U	·	I	·	sin(ϕu	-



ϕi)	 can	 be	 positive	 (inductive	 network)	 or	 negative	 (capacitive
network).

Fig.	9.5:	AC	power	of	a	mixed	resistive-capacitive	network.

Reactive	and	active	power	have	a	phase	 shift	 of	 90	 °	 and	 the
vector	 sum	of	both	power	 components	 results	 in	 the	 so	 called
apparent	power	S.	This	yields	for	the	magnitude	of	the	apparent
power:

Even	though	just	 it’s	 just	the	active	power	that	can	be	used	to
do	any	work	within	the	network	all	elements	of	the	network	and
the	 supply	 circuit	 has	 to	 be	 able	 to	 cope	 with	 the	 apparent
power,	e.g.	the	wires,	generators,	etc.
The	common	unit	for	apparent	power	is	the	VA	(volt	ampere).
A	simple	visualization	of	the	AC	power	uses	sinusoidal	notation.
Of	course	AC	power	can	also	be	described	in	complex	notation
using	complex	voltage	and	current,	e.g.:

Using	complex	notation	yields	an	apparent	power	of:

Consequently	 active	 and	 reactive	 power	 are	 just	 the	 real	 and
imaginary	part	of	the	complex	apparent	power	respectively:



As	any	 two	port	network	can	be	described	by	 its	 impedance	Z
and	admittance	Y	respectively	the	apparent	power	can	also	be
written	as:

Fig.	9.6:	An	AC	power	diagram	with	active	(P),	reactive	(Q)	and	apparent	power	(S).

Using	 apparent	 power	 the	 power	 factor	 can	 be	 defined	 as	 the
ratio	of	active	power	by	reactive	power:

Using	this	definition	it	becomes	clear	that	a	high	power	factor	is
desirable,	 as	 it	 indicates	 a	 high	 portion	 of	 active	 power
compared	to	the	total	apparent	power	and	hence	is	a	measure
for	 the	 efficiency	 of	 the	 power	 transfer.	 In	 other	 words:	 the
higher	 the	 power	 factor,	 the	 smaller	 the	 reactive	 power	 and
therefore	 the	 lower	 the	 unwanted	 power	 losses	 due	 to	 the
reactive	power.	If	a	power	of	1	kW	has	to	be	transferred	to	the
two	port	network,	it	takes	an	apparent	power	of	1	VA	in	case	of
a	power	 factor	of	1	and	2	VA	 in	case	of	a	power	 factor	of	0.5.
This	additional	1	VA	has	 to	be	provided	by	 the	source	and	the
corresponding	 currents	 generate	 power	 losses	 in	 resistive



elements.
As	a	high	value	of	the	power	factor	 is	desired,	a	 lot	of	effort	 is
spent	 to	 increase	 the	 power	 factor.	 For	 linear	 networks
consisting	 of	 linear	 elements	 only	 (resistors,	 capacitors,
inductors)	 this	 can	 be	 done	 rather	 simply	 by	 adding	 the
complementary	 reactive	 element:	 In	 case	 of	 a	 network	 with
inductive	 behavior,	 a	 capacitor	 is	 added	 and	 vice	 versa.	 This
method	 of	 power	 factor	 correction	 is	 used	 for	 example	 for
electric	 motors	 such	 as	 asynchronous	 motors:	 capacitors	 are
placed	accordingly	close	to	the	 inductive	motor	windings.	Non-
linear	 loads	 require	 more	 complex	 measures	 for	 power	 factor
correction.
	
Example:	bulb	in	series	with	capacitor
Consider	the	bulb	operated	at	a	sinusoidal	voltage	source	of	U	=
300	V	and	f	=	50	Hz	as	discussed	in	chapter	7.4.5.	The	capacitor
is	8.25	µF	 to	achieve	a	voltage	drop	of	UR	=	230	V	across	 the
bulb	for	a	current	of	I	=	0.5	A.	What	about	the	apparent	power,
the	active	power	and	the	power	factor?
The	total	impedance	of	the	circuit	is:

The	active	power	and	reactive	power	are:

These	results	yield	for	the	apparent	power:

S	=	P	+	jQ	=	(115	-	j96.5)VA

Using	 the	magnitude	 of	 the	 apparent	 power	 the	 power	 factor
can	be	calculated:



The	power	factor	is	rather	low	and	a	rather	high	reactive	power
is	oscillating	to	and	fro	and	has	to	be	provided	by	the	source.

Fig.	9.7:	A	bulb	in	series	with	a	capacitor	to	be	operated	by	a	sinusoidal	voltage
source.



10	Oscillating	circuits

10.1	Series	configuration

2nd	order	RLC	circuits	have	been	discussed	previously	and	three
cases	 were	 identified	 and	 analyzed:	 the	 overdamped,	 the
critically	damped	and	the	underdamped	case,	depending	on	the
values	of	R,	 L	 and	C.	 The	underdamped	case	 can	be	obtained
with	 small	 values	 of	 the	 resistor	 and	 in	 this	 case	 the	 voltages
and	the	current	oscillate	with	the	damped	frequency	ωd.	 In	the
limit	of	R	=	0	Ω	the	circuit	consists	of	an	inductor	and	capacitor
only	and	the	voltage	and	the	current	oscillates	with	the	natural
angular	frequency	of:

Energy	 is	 transferred	 from	 the	 capacitor	 to	 the	 inductor	 back
and	forth.
If	a	sinusoidal	voltage	source	(that	acts	as	a	driving	force	for	the
circuit)	 is	 added	 to	 the	 series	 RLC	 circuit	 (see	 Fig.	 10.1)	 the
voltages	across	the	elements	and	the	current	will	oscillate	with
the	frequency	of	the	source	and	the	behavior	of	the	circuit	can
be	analyzed	in	terms	of	the	complex	impedance	of	the	circuit:

Magnitude	and	phase	angle	are:



Fig.	10.1:	An	RLC	oscillating	circuit	in	series	configuration	(left);	vector	diagram	of
voltages	and	current	(right).

The	general	behavior	of	the	voltages	and	the	current	is	depicted
in	 the	 vector	 diagram	 on	 the	 right	 side	 of	 Fig.	 10.1.	 As	 the
voltage	 at	 the	 inductor	 leads	 the	 current	 by	 90	 °	 and	 the
voltage	 at	 the	 capacitor	 lags	 the	 current	 by	 90	 °	 these	 two
voltages	 have	 opposite	 directions	 in	 the	 vector	 diagram.
Accordingly	 the	 voltage	 and	 the	 current	 of	 the	 source	 are	 in
phase	if	the	magnitudes	of	uL	and	uC	are	equal	and	therefore	if
the	 values	 of	 the	 reactance	 of	 the	 inductor	 and	 capacitor	 are
equal:

If	 this	 condition	 is	 true	 the	 circuit	 is	 in	 resonance	 and	 the
corresponding	 angular	 frequency	 is	 called	 the	 resonance
angular	 frequency.	 It	 has	 the	 same	 value	 such	 as	 the	 natural
angular	frequency	ωn	of	the	LC	circuit:



The	 resonance	 case	 of	 the	 series	 RLC	 circuit	 has	 some
interesting	properties:

–	Z	=	R	is	purely	real
–	Source	voltage	and	current	are	in	phase	(ϕ	=	0)
–	Smallest	value	of	Z	for	given	R,	L,	C
–	ω0	independent	of	R
–	Maximum	value	of	|uR|
–	 High	 voltages	 are	 possible	 at	 the	 inductor	 and	 the
capacitor

The	last	two	items	can	be	seen	by	analysis	of	the	magnitude	of
the	voltages	across	R,	L	and	C:

At	 the	 resonance	 angular	 frequency	 the	 magnitude	 of	 the
voltage	across	 the	 resistor	 is	 just	 the	magnitude	of	 the	source
voltage.	As	the	circuit	acts	in	resonance,	the	magnitudes	of	the
inductor	 and	 capacitor	 voltage	 are	 the	 same	and	equal	 to	 the
source	voltage	multiplied	by	a	factor	called	the	quality	factor

Depending	 on	 the	 values	 of	 R,	 L	 and	 C	 this	 factor	 can	 be
significantly	 greater	 than	 one	 and	 hence	 the	 voltages	 at	 the



capacitor	and	the	inductor	will	be	significantly	greater	than	the
source	voltage.	For	example	a	RLC	circuit	with	L	=	1	mH,	C	=	1
µF	and	R	=	4	Ω	has	a	resonance	angular	frequency	of	about	ω0
=	32000	s-1	and	a	quality	factor	of	about	Q	=	8.
The	magnitude	of	the	voltages	at	the	inductor	and	capacitor	are
8	 times	 higher	 than	 the	 source	 voltage	 and	 the	magnitude	 of
the	resistor	voltage.	This	voltage	 increase	has	to	be	taken	into
account	when	designing	RLC	circuits.
The	reciprocal	of	the	quality	factor	is	the	damping	factor	d	given
by:

As	in	the	mechanical	case	of	a	harmonic	oscillating	system	with
sinusoidal	 external	 force	 (e.g.	 a	 spring	 with	 damping	 and
external	 excitation),	 energy	 for	 the	 RLC	 circuit	 is	 provided	 by
the	 voltage	 source	 to	 the	 system.	 A	 part	 of	 the	 energy	 is
dissipated	by	the	resistor	and	the	other	part	 is	accumulated	 in
the	 circuit	 and	 resonates	between	 inductor	 and	 capacitor.	 The
energy	 stored	 in	 the	 circuit	 corresponds	 to	 the	 maximum
energy	 stored	 in	 the	 inductor	 when	 the	 current	 is	 at	 its
maximum	 value	 î	 (at	 this	 moment	 the	 voltage	 across	 the
capacitor	and	hence	the	energy	stored	 in	 the	capacitor	 is	zero
due	to	the	–90	°	phase	shift):

The	 energy	 that	 is	 dissipated	 at	 the	 resistor	 in	 each	 cycle	 is
given	by	the	effective	value	of	the	current:

The	 ratio	 of	 the	maximum	energy	 stored	 in	 the	 circuit	 (e.g.	 in
the	 inductor)	 to	 the	 dissipated	 energy	 in	 one	 cycle	 is	 related
again	to	the	quality	factor	Q:



The	 quality	 factor	 is	 therefore	 a	 measure	 for	 the	 amount	 of
energy	 stored	 in	 the	 RLC	 circuit.	 Besides	 the	 resonance	 case,
the	 frequency	 response	 of	 the	 circuit	 is	 also	 important.
According	to	the	formulas	for	 the	magnitude	of	 the	 impedance
and	 the	 phase	 angle,	 the	 series	 RLC	 circuit	 shows	 a	 very
characteristic	behavior:	capacitive	behavior	at	 low	frequencies,
purely	 resistive	 behavior	 at	 the	 resonance	 frequency	 and
inductive	 behavior	 at	 high	 frequencies.	 Fig.	 10.2	 shows	 this
characteristic	 for	 the	 magnitude	 of	 the	 impedance	 and	 the
phase	angle.

Fig.	10.2:	Magnitude	of	the	impedance	of	the	series	RLC	circuit	with	the	minimum
value	of	R	at	resonance	frequency	(top);	the	corresponding	phase	angle	(bottom).



The	capacitor	dominates	both	the	magnitude	of	the	impedance
and	 the	 phase	 angle	 at	 low	 frequencies:	 a	 nearly	 1	 /	 (ω	 ·	 C)
behavior	for	the	former	one	and	a	phase	angle	of	about	–90	°.	In
contrast,	 the	 almost	 linear	 behavior	 of	 the	magnitude	and	 the
phase	angle	of	about	90	°	clearly	show	the	dominating	behavior
of	the	inductor	at	high	frequencies.	At	the	resonance	frequency
the	 inductive	 and	 capacitive	 parts	 cancel	 each	 other	 out	 and
just	the	resistive	part	remains:	|Z|	=	R	and	the	phase	angle	is	0
°.
The	voltages	at	the	resistor,	the	inductor	and	the	capacitor	have
their	maximum	value	at	the	resonance	angular	frequency	as	the
impedance	 is	 minimal.	 Close	 to	 the	 resonance	 angular
frequency	the	voltages	drop	more	or	less	sharply	as	depicted	in
Fig.	 10.3.	 The	 cut-off	 angular	 frequencies	 ω1	 and	 ω2	 are	 the
angular	 frequencies	 on	 both	 sides	 of	 the	maximum	where	 the
voltage	dropped	down	to	1/√2	or	to	–3	dB	respectively.

Fig.	10.3:	The	frequency	dependence	of	the	voltages	across	the	inductor,	capacitor
and	resistor,	ω1	and	ω2	are	the	cut-off	frequencies.

In	terms	of	a	two	port	network	the	series	RLC	oscillating	circuit
acts	as	a	band-pass	filter.	Considering	the	voltage	source	to	be
the	input	voltage	of	a	two	port	network	and	the	resistor	voltage
to	be	the	output	voltage	just	frequencies	close	to	the	resonance
frequency	can	pass	the	network.	The	narrower	the	peak	is,	the
better	 the	 filtering	 of	 a	 small	 frequency	 band	 is	 around	 the



resonance	frequency.	A	characteristic	of	 the	band	pass	 filter	 is
the	bandwidth	given	by	the	difference	of	the	cut-off	frequencies
(cut-off	angular	frequencies	divided	by	2π)

The	 bandwidth	 can	 be	 calculated	 using	 the	 frequency
dependence	 of	 |uR|.	 At	 the	 cut-off	 frequencies	 the	 resistor
voltage	 dropped	 down	 to	 1/√2	 and	 hence	 the	 denominator	 of
|uR|	has	to	be:

Correspondingly	the	cut-off	angular	frequencies	yield

Finally	 the	 bandwidth	 is	 related	 to	 the	 quality	 factor	 of	 the
circuit:

The	 bandwidth	 of	 an	 oscillating	 circuit	 is	 the	 resonance
frequency	 divided	 by	 the	 quality	 factor	 Q.	 By	 changing	 the
quality	factor	the	bandwidth	can	be	tuned	even	if	the	resonance
frequency	 stays	 equal.	 Fig.	 10.4	 shows	 the	 frequency
dependence	of	the	resistor	voltage	for	different	values	of	L	and
C.



Fig.	10.4:	The	frequency	response	of	a	series	RLC	circuit	with	different	quality	factors
but	same	resonance	frequency.

The	resonance	angular	 frequency	stays	the	same	for	the	three
parameters	sets	of	R,	L	and	C,	but	the	quality	factor	is	changed
by	a	factor	of	10.	The	bandwidth	his	reduced	by	a	factor	of	10
accordingly	 and	 the	 filtering	 functionality	 of	 this	 oscillating
circuit	 is	 highly	 enhanced.	 The	 higher	 the	 quality	 factor,	 the
more	 pronounced	 the	 frequency	 response	 is,	 the	 smaller	 the
bandwidth	 is	and	the	higher	 the	voltage	amplification	 is	at	 the
energy	storing	elements	(inductor	and	capacitor).

10.2	Parallel	configuration

There	 are	 many	 different	 topologies	 for	 oscillating	 circuits
beside	the	series	RLC	circuit	given	here.	They	are	all	described
by	 the	 parameters	 derived	 for	 the	 series	 RLC	 circuit	 such	 as
resonance	frequency,	quality	factor	and	bandwidth	even	though
the	formulas	for	the	calculation	of	these	parameters	differ.	Just
as	an	example	the	parallel	RLC	circuit	such	as	given	in	Fig.	10.5
has	 the	 same	 resonance	 angular	 frequency	 and	 the	 same
bandwidth	as	the	series	circuit:



In	contrast	 to	 this	 identity	of	 the	 formulas	 the	quality	 factor	 is
the	inverse	of	the	quality	factor	of	the	series	circuit:

Fig.	10.5:	A	parallel	RLC	circuit.

Automotive	application
Oscillating	 circuits	 are	 used	 in	 numerous	 automotive
applications.	Analog	radios	use	these	circuits	as	tuning	circuits.
Radio	 stations	 transmit	 at	 different	 frequencies	 and	 the	 radio
antenna	receives	a	superposition	of	all	these	radio	signals.	The
oscillating	 circuit	 filters	 a	 small	 frequency	 band	 out	 of	 the
antenna	 signal	 to	 receive	 just	 one	 radio	 station.	 Tuning	 to
different	stations	can	be	done	by	using	a	variable	capacitor	 to
change	the	resonance	frequency.
Keyless	 entry	 systems	 for	 vehicles	 or	 electronic	 immobilizer
systems	 are	 other	 applications	 for	 oscillating	 circuits.	 These
systems	 are	 closely	 related	 to	 RFID	 (radio	 frequency
identification).	 Using	 keyless	 entry	 systems	 vehicles	 can	 be
unlocked	without	the	use	of	a	(mechanical)	key.	As	soon	as	the
vehicle	detects	an	approximation	 (e.g.	by	capacitive	or	optical
proximity	sensors)	antennas	of	the	keyless	entry	system	start	to
transmit	 signals,	 e.g.	 with	 frequencies	 of	 some	 hundred	 kHz.
The	 key	 has	 an	 oscillating	 circuit	 (very	 often	 just	 an	 LC
oscillating	circuit)	with	a	fitting	resonance	frequency	to	receive



the	signal	of	the	antennas.	Afterwards	the	key	sends	a	response
back	to	the	vehicle	and	in	case	of	a	correct	response	the	vehicle
is	unlocked.



11	Semiconductor	devices

Basic	elements	like	resistors,	capacitors	or	inductors	are	part	of
almost	 every	 electronic	 circuit.	 But	 besides	 these	 elements	 in
particular	 semiconductor	 devices	 are	 extremely	 important	 to
realize	any	complex	electronic	circuit.	Semiconductors	are	used
for	 devices	 like	 diodes	 or	 transistors	 as	 well	 as	 for	 rather
complex	 integrated	 circuits	 (IC)	 like	 microprocessors	 and
microcontrollers.	 These	 devices	 in	 general	 make	 use	 of	 the
properties	 of	 doped	 semiconductors	 and	 combine	 n-and	 p-
doped	 semiconductors	 and	 metals	 to	 realize	 different
functionalities.
The	 basis	 for	 most	 semiconductor	 devices	 is	 pure	 silicon	 and
compound	 semiconductors	 like	 SiC	 or	 GaN	 to	 some	 extent.
Highly	 sophisticated	 processes	 are	 used	 to	 produce	 these
semiconductor	 devices	 in	 the	 form	 of	 small	 rectangular	 dies.
Depending	 on	 the	 functionality	 of	 the	 device	 (MOSFET,
microprocessor,	 etc.)	 different	 process	 technologies	 are	 used,
but	 to	 some	 extent	 these	 techniques	 are	 rather	 similar.	 The
semiconductor	 industry	 is	 highly	 innovative	 in	 order	 to
continuously	 improve	 their	 technologies.	 In	 particular
semiconductor	 structures	 have	 shrunk	 very	 rapidly.	 According
to	 Moore’s	 law	 the	 number	 of	 transistor	 elements	 per	 area
doubles	every	12–24	months.
The	starting	point	for	silicon	dies,	or	chips	is	an	extremely	pure
( 99,99999999	 %	 purity)	 and	 crystallographically	 very	 well
defined	 (very	 few	 crystal	 defects)	 cylindrical	 tube	 of	 silicon
called	an	ingot.	The	diameter	of	the	ingots	ranges	from	100–400
mm.	 From	 the	 ingot	 thin	 plates	 of	 silicon	 of	 some	 hundred
micrometers	 thickness	 are	 cut.	 The	 surface	 of	 each	 wafer	 is
separated	 into	 small	 rectangular	 areas	 known	 as	 dies.
Dedicated	process	steps	like	photolithography,	ion	implantation
for	 n-and	 p-doping,	 chemical	 etching,	 oxidation	 or	 vapor
deposition	 are	 used	 repetitively	 to	 produce	 the	 required



structures	and	elements	onto	the	wafer.	Small	structures	of	the
elements	like	the	gate	length	of	the	transistors	are	is	just	about
20	 nm	 in	 2014!	Up	 to	 several	 billion	 transistors	 on	 one	 die	 of
some	cm2	size	can	be	realized	by	these	techniques.
The	connection	of	the	billions	of	transistors	on	a	die	is	achieved
using	many	metal	 lines	 deposited	 on	 top	 of	 the	wafer.	 At	 the
end	of	the	wafer	process	the	wafer	is	separated	into	the	single
dies	 of	 some	 mm2	 or	 cm2	 size.	 Finally	 the	 silicon	 dies	 are
mounted	into	dedicated	packages	or	modules.

Fig.	11.1:	A	wafer	with	dies,	complete	dies	are	marked	grey	(left);	packaged	die	(light
grey)	on	a	leadframe	(dark	grey)	with	bond	wires	(lines)	in	a	package	(right).

11.1	Diode

One	of	 the	 simplest	 semiconductor	 devices	 is	 the	 combination
of	 an	 n-and	 p-doped	 semiconductor	 to	 form	 a	 pn-junction	 as
depicted	 in	 Fig.	 11.2.	 The	 n-doped	 semiconductor	 has	 free
electrons	and	stationary	holes	 localized	at	 the	dopand.	For	 the
p-doped	 semiconductor	 it	 is	 vice	 versa.	 Both	 the	 n-and	 the	 p-
doped	 semiconductors	 are	 electrically	 neutral.	 At	 the	 pn-
boundary	 there	 is	 a	 strong	 concentration	 gradient	 of	 the	 free
charge	 carriers:	 free	 electrons	 in	 the	 n-doped	 region	 and	 free
holes	in	the	p-doped	region.	Due	to	the	concentration	gradient,
free	 charge	 carriers	 will	 diffuse	 into	 the	 other	 semiconductor
and	 recombine:	 electrons	 will	 diffuse	 into	 the	 p-doped	 region
and	 recombine	with	 the	 holes	 of	 the	 p-doped	 region	 and	 vice
versa.	 This	 diffusion	 and	 recombination	 results	 in	 a	 space-
charge	 region	 around	 the	 junction	 as	 a	 small	 region	 of	 the	 p-



doped	 semiconductor	 is	 now	 negatively	 charged	 and	 the	 n-
doped	semiconductor	positively.

Fig.	11.2:	From	top	to	bottom:	A	theoretical	pn-junction	without	electron	transfer;	a
pn-junction	with	charge	carrier	diffusion	and	space-charge	region;	an	electric	field	in

x-direction	and	electric	potential	of	the	pn-junction.

These	charged	regions	generate	an	electric	field	(see	Fig.	11.2).
Diffusion	 takes	 place	 as	 long	 as	 the	 electric	 field	 is	 not	 too
strong	and	the	potential	difference	is	not	too	big.	For	silicon	the
diffusion	stops	at	a	diffusion	voltage	between	the	two	regions	of
about	 0.6–0.7	V.	 The	 size	 of	 the	 space-charge	 region	depends
on	the	number	of	charge	carriers	that	recombine	and	within	the
space-charge	region	there	are	no	more	free	charge	carriers.
Applying	an	external	voltage	to	the	pn-junction	will	change	the
electric	potential	and	the	size	of	the	space-charge	region	of	the
pn-junction	as	the	internal	and	the	external	potential	superpose.
Depending	 on	 the	 polarity	 of	 the	 external	 voltage	 the	 pn-
junction	will	show	a	different	behavior.
If	the	higher	potential	of	the	external	voltage	is	applied	to	the	n-
type	semiconductor,	 the	 internal	and	the	external	electric	 field
have	 the	 same	 direction	 and	 the	 electric	 potentials	 add	 as
depicted	on	the	left	side	of	Fig.	11.3.	The	potential	difference	at
the	 terminals	 of	 the	 pn-junction	 increases	 and	 also	 the	 space-



charge	region	enlarges.	The	pn-junction	blocks	any	current	flow.

Fig.	11.3:	An	electric	potential	of	a	pn-junction	with	external	voltage	source.

If	the	higher	potential	of	the	external	voltage	is	applied	to	the	p-
type	semiconductor	the	internal	and	the	external	electric	fields
have	 the	 opposite	 direction.	 The	 internal	 electric	 potential	 is
reduced	 by	 the	 external	 electric	 potential	 (right	 side	 of	 Fig.
11.3).	The	voltage	at	the	terminals	of	the	pn-junction	decreases
and	also	 the	space-charge	 region	gets	smaller.	As	soon	as	 the
external	voltage	is	greater	than	the	internal	voltage,	conduction
is	possible	and	a	current	can	start	to	flow.
The	semiconductor	device	built	out	of	a	pn-junction	 is	called	a
diode.	The	two	terminals	of	a	diode	are	called	the	anode	(p-type
semiconductor)	 and	 cathode	 (n-type	 semiconductor).	 Fig.	 11.4
shows	 the	symbol	of	a	diode	with	 the	anode	and	 the	cathode.
The	behavior	of	a	real	semiconductor	diode	differs	slightly	from
the	ideal	pn-junction.

Fig.	11.4:	Symbol	of	a	diode	with	anode	and	cathode.

The	characteristic	of	a	diode	is	depicted	in	Fig.	11.5.	In	reverse
direction	the	anode	is	connected	to	the	lower	potential	and	the
diode	blocks	 the	 current	 flow	almost	 completely.	Due	 to	 small
amounts	of	minority	charge	carriers	that	diffuse	into	the	space-



charge	region	a	very	small	reverse	saturation	current	IS	of	about
some	 pA	 or	 nA	 can	 flow	 in	 real	 semiconductor	 diodes.	 This
reverse	 saturation	 current	 depends	 strongly	 on	 temperature
and	on	the	semiconductor	technology.	At	a	high	reverse	voltage
(50–1000	V)	the	reverse	current	increases	sharply.	This	voltage
is	 called	 the	 breakdown	 voltage	 and	 depends	 on	 the	 doping
concentration,	 the	 semiconductor	material	 and	 the	 technology
for	example.	Most	diodes	should	not	be	operated	in	breakdown
mode	as	this	operation	may	destroy	the	diode.	An	exception	is
the	Zener	diode	(see	below).

Fig.	11.5:	A	characteristics	of	a	diode.

In	 the	 forward	 direction	 the	 anode	 is	 connected	 to	 the	 higher
potential.	For	small	voltages	( 	0.7	V)	only	a	very	small	current
will	 flow.	 For	 voltages	 greater	 than	 about	 0.7	 V	 a	 significant
current	 will	 start	 to	 flow	 and	 the	 current	 I	 depends	 on	 the
voltage	 across	 the	 diode	 UD	 in	 an	 exponential	 manner	 (ideal
Shockley	equation):

UT	is	the	thermal	voltage	given	by	(e	is	the	elementary	charge):



At	room	temperature	the	thermal	voltage	is	about	26	mV.
The	functionality	of	the	diode	corresponds	to	a	valve.	In	reverse
direction	any	current	flow	is	(almost	completely)	blocked.	But	in
the	forward	direction	a	current	can	flow	if	the	applied	voltage	is
high	enough.	Based	on	 this	 functionality	diodes	are	 commonly
used	 for	 any	 kind	 of	 rectification,	 or	 switching.	 Other
applications	include	light	emitting	diodes	(LED),	photo	diodes	or
voltage	protection.
In	 Fig.	 11.6	 a	 schematic	 cross-section	 of	 a	 vertical	 diode	 is
shown.	A	p-doped	region	is	built	up	by	ion	implantation	into	the
n-doped	 silicon	wafer.	 The	 boundary	 of	 the	 two	 regions	 forms
the	pn-junction	in	the	vertical	direction.	The	metallization	on	top
of	the	p-doped	region	is	the	electric	contact	for	the	anode.	The
other	 parts	 of	 the	 top	 surface	 are	 coated	 with	 SiO2	 for
insulation.	The	bottom	surface	of	the	die	is	also	covered	with	a
metallization	layer	to	form	the	cathode’s	contact.

Fig.	11.6:	Cross-section	of	a	diode.

Several	 different	 packages	 are	 available	 for	 the	 packaging	 of
the	 silicon	 dies	 of	 a	 diode,	 and	 most	 of	 these	 packages	 are
standardized.	 These	 packages	 include	 cylindrical	 shape



packages	with	long	wires	as	well	as	packages	in	surface	mount
and	 through	 hole	 technology	 (SMD	 and	 THD).	 Three	 typical
package	 types	 for	 diodes	 are	 shown	 in	 Fig.	 11.7.	 The	 small
packages	 SOD-323	 and	 SC-74	 are	 SMD	 packages	 with	 short
pins.	 The	 cathode	 of	 the	 SOD-323	 package	 is	 marked	 with	 a
stripe,	 for	 the	 SC-74	 package	 the	 first	 pin	 (out	 of	 six	 pins)	 is
marked	with	a	dot.	The	dimensions	of	 these	 two	packages	are
rather	small,	 just	1.25	mm	by	2.5	mm	and	a	height	of	0.9	mm
for	the	SOD-323	and	2.9	mm	by	2.5	mm	and	a	height	of	1.1	mm
for	the	SC-74.
The	 TO-220	 is	 a	 through-hole	 device	 package	 (THD)	 for	 larger
die	sizes.	Packages	size	is	10.5	mm	by	16	mm	and	a	height	of
7.7	mm.	The	pins	of	this	package	are	13.6	mm.
Which	package	is	used	in	an	application	depends	on	the	power
requirements	 of	 the	 application,	 the	 available	 space	 and	 the
assembly	technology	for	example.

Fig.	11.7:	Diode	packages:	SOD-323	SMD	package	(left),	SC-74	SMD	package	(mid),
TO-220	THD	package	(right).	Package	drawings	by	Infineon	Technologies	AG.

Application
As	the	diode	blocks	the	current	in	one	direction	it	can	be	used	to
rectify	 an	AC	current	 as	 shown	 in	 Fig.	 11.8.	A	 sinusoidal	 input
voltage	is	applied	to	the	circuit	of	a	diode	and	a	resistor.	During
the	 negative	 half	 of	 the	 sinusoidal	 input	 voltage	 the	 diode
blocks	 the	 current	 and	 the	 voltage	 drop	 across	 the	 resistor	 is
zero.	 During	 the	 positive	 half	 the	 diode	 conducts	 if	 the	 input
voltage	 is	 greater	 than	 about	 0.7	 V	 and	 according	 to	 KVL	 the
voltage	drop	across	the	resistor	corresponds	to:



Fig.	11.8:	A	rectifier	circuit	with	diode	and	resistor(top);	an	AC	input	voltage	(bottom
left)	and	a	schematic	drawing	of	rectified	voltage	at	resistor	(bottom	right)

As	 depicted	 in	 Fig.	 11.8	 the	 resistor’s	 voltage	 is	 a	 periodical
function:	 half	 of	 the	 time	 it’s	 a	 sinusoidal,	 the	 other	 half	 zero.
The	RMS	value	of	 the	 resistor	 voltage	 is	 rather	 low	and	hence
the	power	 that	 is	 transferred	to	 the	resistor.	The	disadvantage
of	this	kind	of	rectification	is	that	half	of	the	period	of	the	input
frequency	 is	 blocked	 by	 the	 diode.	 To	 make	 use	 of	 the	 total
period	 a	 full	 bridge	 circuit	 of	 four	 diodes	 can	 be	 used	 as
depicted	in	Fig.	11.9.
For	the	positive	half	of	the	input	voltage’s	period,	diodes	D1	and
D4	 conduct	 (if	 the	 input	voltage	 is	greater	 than	2	 ·	0.7	V)	and
diodes	D2	 and	D3	 block.	 The	 current	 flows	 via	 D1	 through	 the
resistor	and	then	via	D4.	The	resistor’s	voltage	has	a	sinusoidal
shape.	 For	 the	 negative	 half	 D1	 and	 D4	 block	 and	 D2	 and	 D3
conduct.	The	current	flow	is	D3,	resistor,	D2	and	it	flows	again	in
the	same	direction	through	the	resistor	as	in	the	positive	half.	In
total	 the	resistor’s	voltage	 is	a	periodic	 function	again,	but	the
RMS	 value	 is	 higher	 than	 in	 the	 simple	 one	way	 rectifier	 with
just	one	diode.	By	adding	a	capacitor	parallel	to	the	resistor	the
resistor’s	 voltage	 can	 be	 smoothened	 after	 the	 rectification	 to
get	a	more	DC-like	voltage.



Fig.	11.9:	A	rectifier	circuit	with	full	bridge	and	resistor(top);	an	AC	input	voltage
(bottom	left)	and	a	schematic	drawing	of	rectified	voltage	at	resistor.

Another	application	for	diodes	 is	to	realize	voltage	stabilization
or	overvoltage	protection	using	a	Zener	diode.	The	Zener	diode
is	 a	 special	 type	 of	 diode	 that	 is	 particularly	 designed	 for
operation	 in	 breakdown	 mode	 (special	 doping	 and	 very	 thin
junction).	For	 reverse	voltages	above	 the	breakdown,	or	Zener
voltage	this	 type	of	diode	 is	able	to	conduct	high	currents	and
the	 voltage	 drop	 across	 the	 diode	 stays	 nearly	 constant	 and
equal	 to	 the	 Zener	 voltage.	 To	 achieve	 a	 well	 defined	 Zener
voltage	 it	 can	 be	 tuned	 and	 controlled	 during	 the	 fabrication
process	 (doping	 level,	 size	of	 the	very	 thin	pn-junction).	Zener
voltages	may	range	from	of	about	3–100	V.	In	forward	direction
the	Zener	diode	behaves	like	a	normal	diode.
Fig.	11.10	shows	the	symbol	of	a	Zener	diode	and	a	circuit	 for
overvoltage	 protection.	 The	 Zener	 diode	 is	 used	 in	 parallel	 to
the	 load	 resistor.	 Using	 this	 reverse	 biased	 Zener	 diode	 limits
the	 voltage	 across	 the	 load	 resistor	 to	 the	 Zener	 voltage	 and
hence	protects	the	load	from	overvoltage.



Fig.	11.10:	The	symbol	of	a	Zener	diode	(left)	and	circuit	for	overvoltage	protection
(right).

Besides	purely	 electrical	 applications,	 diodes	 are	 also	used	 for
optical	 applications	 in	 the	 form	of	 LEDs	 and	photo	 diodes.	 For
LEDs	compound	semiconductors	like	AlGaAs	or	InGaN	are	used.
The	LEDs	are	forward	biased.	Electrons	from	the	n-doped	region
cross	 the	 pn-junction	 and	 recombine	 with	 the	 holes	 in	 the	 p-
doped	 region.	 The	 energy	 that	 is	 set	 free	 during	 the
recombination	 is	 emitted	 in	 form	 of	 photons	 of	 a	 dedicated
wavelength	 and	 hence	 color.	 The	 luminous	 flux	 strongly
depends	 on	 the	 current	 through	 the	 LED.	 Therefore	 LEDs	 are
driven	by	a	constant	current	source.	LEDs	emit	different	colors
like	 red,	 blue	 or	 yellow	 depending	 on	 the	 semiconductor
material.	 An	 emission	 of	 white	 light	 from	 LEDs	 is	 not	 directly
possible	 without	 further	 optical	 components.	 One	 way	 to
generate	white	light	is	to	use	a	blue	LED	and	to	cover	it	with	a
photoluminescence	material.	 This	material	 converts	 the	 single
color	blue	into	white	light.
	
Automotive	Application
Diodes	are	used	very	often	in	all	kinds	of	electronic	control	unit
(ECU)	in	cars,	e.g.	for	rectification,	overvoltage	and	electrostatic
discharge	(ESD)	protection.	The	use	of	LEDs	ranges	from	small
signal	 lights	 in	 the	 interior	 to	 high	 brightness	 LEDs	 for
headlights.	 Photo	 diodes	 are	 used	 as	 light	 sensors.	 One
particular	 requirement	 for	 many	 automotive	 ECUs	 is	 reverse
polarity	 protection.	 Reverse	 polarity	means	 that	 the	 battery	 is
connected	in	the	reverse	direction.	This	can	happen	e.g.	during
maintenance	 work	 on	 the	 electronic	 system	 even	 though	 the
connectors	are	marked	with	colors	or	are	mechanically	different.
During	reverse	polarity	short	circuits	can	occur	via	elements	like



internal	 diodes	 or	 transistors.	 In	 Fig.	 11.11	 a	 simple	 ECU	 is
shown	 with	 a	 Zener	 diode	 for	 overvoltage	 protection.	 If	 the
voltage	 is	 applied	 in	 the	 correct	 direction	 (and	 is	 smaller	 than
the	 Zener	 voltage)	 the	 Zener	 diode	 is	 reverse	 biased	 and	 the
current	 is	 limited	 by	 the	 load	 resistor.	 If	 the	 voltage	 rises	 the
Zener	 diode	 protects	 the	 load	 by	 limiting	 the	 voltage	 to	 the
Zener	voltage.
In	 case	 of	 reverse	 applied	 voltage	 the	 Zener	 diode	 is	 forward
biased	 and	 a	 short	 circuit	 current	 via	 the	 Zener	 diode	 occurs.
This	excessive	current	may	damage	the	ECU.
Reverse	polarity	protection	 is	 required	 to	prevent	any	damage
to	an	ECU.	A	simple	and	cheap	way	 to	 realize	 reverse	polarity
protection	is	to	 insert	a	diode	into	the	power	line	of	an	ECU	as
depicted	in	Fig.	11.11.	If	the	battery	is	now	connected	in	reverse
direction	the	diode	D	prevents	any	current	flow	and	there	is	no
short	 circuit	 via	 the	 Zener	 diode.	 Hence	 the	 additional	 diode
protects	the	ECU.	If	the	battery	is	connected	correctly	the	diode
D	is	forward	biased.
A	disadvantage	of	this	solution	for	reverse	polarity	protection	is
the	reduction	of	the	voltage	at	the	ECU	by	the	forward	voltage
of	the	additional	diode	(0.7	V).	In	addition,	the	power	loss	at	this
diode	 reduces	 the	 efficiency	 of	 the	 system.	 The	 power	 loss	 of
the	diode	is:

In	 case	 of	 high	 currents	 (e.g.	 the	 current	 in	 applications	 like
electric	power	steering,	EPS,	might	be	rather	high,	at	more	than
100	 A)	 the	 power	 losses	 can	 be	 high	 and	 a	 non-negligible
amount	of	power	is	dissipated	into	heat	by	the	diode.	A	proper
selection	of	 the	diode	 is	needed	 to	 cope	with	 this	heat	and	 to
avoid	 excessive	 heating	 of	 the	 device,	 e.g.	 a	 package	 that
provides	 a	 good	 thermal	 path	 to	 conduct	 the	 heat	 from	 the
silicon	die	to	the	environment.



Fig.	11.11:	A	diode	for	reverse	polarity	protection	of	an	ECU.

11.2	Bipolar	transistor

The	 bipolar	 junction	 transistor	 (BJT)	 is	 a	 semiconductor	 device
with	 two	 pn-junctions.	 Two	 different	 types	 of	 bipolar	 junction
transistors	 exist,	 npn-and	 pnp-type.	 This	 nomenclature
describes	 the	structure	of	 the	BJT,	e.g.	n-doped	 layer,	p-doped
layer,	n-doped	layer	 like	for	the	npn-type	(see	Fig.	11.12).	One
of	 the	n-doped	 layers	 is	 heavily	 doped	and	 called	 the	emitter.
The	other	n-doped	layer	is	called	the	collector	and	the	p-doped
layer	in	between	is	the	base.	For	the	required	functionality	(see
below)	the	base	has	to	be	very	thin.	Each	of	the	three	layers	is
connected	to	external	terminals.

Fig.	11.12:	An	npn-BJT:	layer	structure	(left);	antiparallel	diodes	(center);	circuit
symbol	(right).

Due	 to	 this	 npn	 structure	 there	 are	 two	 antiparallel	 diodes
within	 the	 path	 from	 collector	 to	 emitter.	 If	 a	 voltage	 UCE	 is
applied	between	collector	and	emitter	 the	base-collector	diode
blocks	any	current	 flow.	 If	a	voltage	UBE	 is	additionally	applied
between	base	and	emitter	the	situation	changes.	As	soon	as	UBE
is	 greater	 than	 0.7	 V	 (and	 the	 collector	 diode	 is	 still	 reverse
biased,	 UCE	 	 UBE)	 the	 pn-diode	 between	 base	 and	 emitter



becomes	conductive.	A	small	current	IB	starts	to	flow:	holes	flow
from	base	to	emitter	and	electrons	are	emitted	from	the	emitter
towards	the	base.	As	the	base	is	very	thin,	most	of	the	electrons
are	able	to	cross	the	space-charge	region	of	the	base-collector
pn-junction	(which	is	still	reverse	biased).	These	electrons	form
a	 current	 IC	 from	 the	 emitter	 to	 the	 collector.	 Some	 of	 the
electrons	emitted	by	the	emitter	do	not	cross	the	base-collector
diode,	 but	 recombine	 within	 the	 base	 with	 the	 holes.	 This
recombination	would	 stop	any	 further	 current	 flow.	To	prevent
this	 stopping	 of	 the	 current,	 the	 base	 current	 IB	 removes	 the
electrons.	As	a	consequence	the	base	current	IB	can	control	the
collector	current	IC.
As	most	of	 the	electrons	 cross	 the	base	 into	 the	collector,	 the
collector	current	is	significantly	greater	than	the	base	current:

The	ratio	of	the	two	currents	is	the	current	gain:

The	 current	 gain	 for	 a	 real	 BJT	 can	 be	 in	 the	 range	 from	4	 to
1000.	 It	 depends	 on	 many	 technological	 and	 geometrical
parameters	such	as	density	of	donators	in	the	emitter	and	base,
the	size	of	the	base	and	diffusion	parameters.
This	is	an	important	functionality	of	a	BJT:	an	input	current	(base
current	 IB)	controls	an	output	current	 (collector	current	 IC)	and
the	output	current	is	the	input	current	amplified	by	the	current
gain.	 The	 input	 current	 itself	 is	 controlled	 by	 the	 base-emitter
voltage	UBE.



Fig.	11.13:	An	npn-BJT	with	external	circuit:	the	base	current	drives	the	collector
current.

The	behavior	of	a	pnp-type	BJT	 is	very	similar	 to	the	npn-type,
but	the	polarities	of	the	external	voltages	have	to	be	reversed.
The	structure	and	symbol	of	a	pnp	BJT	are	given	in	Fig.	11.14.

Fig.	11.14:	A	pnp-BJT:	layer	structure	(left)	and	circuit	symbol	(right).

The	 characteristics	 of	 the	 BJT	 are	 mainly	 controlled	 by	 the
voltages	UBE	and	UCE.	 In	Fig.	11.16	the	diode	characteristics	of
the	 base	 current	 is	 clearly	 visible.	 For	 base-emitter	 voltages
greater	 than	 0.7	 V	 a	 small	 base	 current	 IB	 flows,	 e.g.	 in	 µA
range.	As	the	output	current	IC	depends	on	the	base	current	its
shape	 is	very	similar	 to	 IB	 (Fig.	11.16,	 right).	Starting	at	about
UBE	=	0.7	V	(and	UCE	 	UBE)	a	significant	output	current	starts	to
flow.	 Slightly	 increasing	 the	 base-emitter	 voltage	 rises	 the
output	current	IC	sharply.	Depending	on	the	current	gain	of	the
BJT	the	output	current	is	much	greater	than	the	control	current.
In	 the	example	given	 in	Fig.	11.16	the	BJT	operates	 in	 forward
mode.	The	current	gain	 is	about	1000	and	a	control	current	 in
µA	range	controls	the	current	in	the	mA	range.



Fig.	11.15:	Input	characteristics	of	a	npn-BJT:	base	current	(control	current,	left);
collector	current	(output	current,	right).

Besides	 the	 dependence	 of	 UBE	 the	 collector	 current	 IC	 also
depends	 on	 the	 collector-emitter	 voltage	 UCE.	 This	 output
characteristics	 is	 depicted	 in	 Fig.	 11.16.	 For	 small	 collector-
emitter	 voltages	 up	 to	 the	 saturation	 voltage	 UCE,	 sat	 the
collector	 current	 rises	 sharply.	Above	 the	 saturation	 voltage	 IC
just	 slightly	 increases	 linearly	 with	 UCE.	 Important	 areas	 of
operating	are	the	cut-off,	forward	and	saturation	regions.

Fig.	11.16:	Output	characteristics	of	an	npn-BJT:	the	parameter	for	the	collector
current	is	the	base-emitter	voltage.



In	 the	 cut-off	 region	 both	 pn-junctions	 serve	 to	 block	 and	 no
collector	current	flows.	In	this	case	UBE	is	too	small	( 	0.6	V)	to
drive	a	base	current.	In	the	output	characteristics	this	operating
mode	is	a	straight	horizontal	line	with	IC	=	0	A	in	an	ideal	case.
In	 reality	 there	will	 be	 small	 leakage	currents.	Considering	 the
BJT	to	be	a	switch,	it	is	off	in	this	operating	mode.
The	forward	region	has	already	been	described	in	detail	above.
The	 emitter	 diode	 is	 forward	 biased	 and	 the	 collector	 diode	 is
reversed	 biased,	 UCE	 	 UBE.	 The	 collector-emitter	 voltage	 is
higher	 than	 the	 saturation	 voltage	 UCE,sat.	 In	 this	 operating
mode	the	collector	current	is	given	by	the	current	gain	and	the
base	 current,	 IC	 =	 B·IB	 and	 the	 BJT	 acts	 as	 an	 amplifier	 for	 a
small	current.	Small	changes	in	the	base	current	result	in	large
changes	in	the	collector	current.	Fig.	11.17	shows	the	example
already	 discussed	 in	 terms	 of	 depending	 sources.	 The	 base
current	and	the	base-emitter	voltage	are	set	by	resistors	R1	and
R2	 to	 operate	 the	 BJT	 in	 forward	 mode.	 By	 the	 current
amplification	of	B	=	100	the	collector	current	of	1.75	A	is	driven
by	the	BJT	to	light	the	21	W-bulb.	The	collector-emitter	voltage
is	2	V.
In	saturation	mode	both	diodes,	emitter	and	collector	diode,	are
forward	 biased.	 In	 terms	 of	 the	 circuit	 in	 Fig.	 11.17	 this
operating	mode	can	be	reached	by	increasing	the	base	current
(e.g.	by	changing	the	resistors	R1	and	R2):	the	higher	the	base
current,	 the	 higher	 the	 collector	 current.	 A	 higher	 collector
current	 corresponds	 to	 a	 higher	 voltage	 drop	 across	 the	 bulb
(resistance	 of	 the	 bulb	 is	 about	 6.9	 Ω).	 If	 the	 base	 current	 is
increased	to	19	mA	the	voltage	drop	across	the	bulb	is	13	V	and
the	collector-emitter	voltage	of	the	BJT	drops	down	to	1	V.	For	a
dedicated	 base	 current	 the	 saturation	 voltage	 UCE,sat	 of	 about
0.2	 V	 is	 reached	 and	 both	 diodes	 are	 forward	 biased.	 In	 this
case	the	collector	current	does	not	depend	on	the	base	current
anymore	and	the	collector-emitter	resistance	(=	UCE	/	IC)	has	its
smallest	value.	Considering	the	BJT	to	be	a	switch,	it	is	on	in	this
operating	mode	with	smallest	resistance	value.



Fig.	11.17:	A	circuit	with	a	bipolar	transistor,	the	bulb	acts	as	a	resistive	element	with
a	resistance	of	6.9	Ω.

Based	on	the	output	characteristics,	 two	major	applications	 for
the	BJT	are	amplification	and	switching.	For	amplification	the	BJT
is	 operated	 in	 forward	mode	 as	 in	 the	 example	 of	 Fig.	 11.17.
With	a	small	control	current	a	much	higher	current	is	controlled.
In	 the	 other	 application	 the	 BJT	 is	 used	 as	 a	 switch.	 It	 is
operated	 either	 in	 the	 off,	 or	 on	mode	 to	 switch	 on	 and	 off	 a
load.
To	 realize	 the	 required	 functionality	 the	operating	point	 of	 the
BJT	has	 to	be	 set,	 i.e.	 the	operating	voltages	UBE	 and	UCE	 and
currents	 IB	and	 IC.	Due	to	the	 interdependence	of	 these	values
two	 of	 these	 values	 determine	 the	 operating	 point.	 In	 the
example	above	the	power	and	voltage	of	the	bulb	determine	the
BJT’s	operating	parameters	UCE	and	IC.	With	these	values	given
the	other	two	values	UBE	and	IB	were	calculated	using	the	BJT’s
properties	such	as	current	gain.
In	all	applications	power	is	dissipated	within	the	BJT	due	to	the
two	currents,	IC	and	IB.	The	total	power	loss	is	a	sum	of	the	base
and	the	collector	losses:

The	 base	 loss	 is	 much	 smaller	 than	 the	 collector	 loss	 as	 the
base	 current	 is	 much	 smaller	 than	 the	 collector	 current.	 This
electrical	power	is	converted	into	heat	and	has	to	be	conducted
from	 the	 die	 to	 the	 environment	 by	 proper	 packaging	 and
mounting	of	the	device.
As	 for	 the	 diode	 the	 layer	 structure	 of	 a	 diode	 is	 obtained	 by
regions	of	different	doping	within	a	bulk	semiconductor.	For	an



npn-BJT	 a	 typical	 layer	 structure	 is	 depicted	 in	 Fig.	 11.18.	 The
smaller	 p-and	 n-doped	 regions	 are	 implemented	 within	 the	 n-
doped	bulk	semiconductor	by	ion	implantation.	The	emitter	and
base	 contacts	 are	 on	 the	 top	 surface	 of	 the	 die	 whereas	 the
collector	 contact	 is	 at	 the	 bottom	 side.	 Hence	 the	 collector
current	flows	in	a	vertical	direction	through	the	die.

Fig.	11.18:	The	layer	structure	of	an	npn-BJT.

Packages	 for	 BJT	 are	 manifold	 and	 many	 of	 these	 are
standardized.	 Both	 through-hole	 devices	 (THD)	 and	 surface
mount	devices	(SMD)	are	available	in	different	forms.	The	fitting
device	 has	 to	 be	 selected	 depending	 on	 application
requirements	 such	 as	 build	 space,	 mounting	 technology	 and
electrical	 and	 thermal	 properties.	 For	 example	 the	 SOT-23
package	 (2.9	 mm	 by	 2.4	 mm)	 with	 short	 pins	 is	 significantly
smaller	than	the	DPAK	package	(6.5	mm	by	6.2	mm	with	a	pin
length	 of	 3.7	mm).	But	 the	maximum	collector	 current	 for	 the
smaller	 package	 is	much	 smaller	 than	 for	 the	bigger	package.
TO-92	is	a	THD	package	with	5.2	mm	by	4.2	mm	and	a	height	of
5.2	mm	with	a	pin	length	of	14.5	mm

Fig.	11.19:	Typical	packages	for	BJT:	two	surface	mount	devices	(SMD),	small	SOT-23
(left)	and	DPAK	(TO-252,	mid);	TO-92	through	hole	device	(THD,	right).	Package

drawings	by	Infineon	Technologies	AG.



Automotive	application
The	 use	 of	 BJT	 as	 current	 amplifier	 has	 already	 been
demonstrated	in	the	example	of	the	bulb	lighting	above.	The	BJT
acts	as	a	constant	current	source	to	drive	the	bulb.	If	the	base
of	 the	 BJT	 is	 driven	 by	 a	 microcontroller	 the	 bulb	 can	 be
switched	on	and	off	by	the	small	base	current.	Instead	of	a	bulb
other	loads	that	require	a	constant	current	source,	like	LEDs	can
be	connected	to	this	simple	constant	current	source.
If	 the	 BJT	 transistor	 is	 used	 as	 a	 switch	 it	 is	 either	 off	 (cut-off
region),	 or	 on	 (saturation	 region).	 In	 the	 on-state	 the	 power
dissipated	within	the	BJT	is	rather	low	as	the	voltage	drop	is	just
UCE,sat.	Seat	heating	 is	an	application	that	can	be	realized	with
BJT	 use	 as	 a	 switch.	 In	 this	 typical	 convenience	 application	 a
heating	wire	is	embedded	in	the	seat.	As	soon	as	a	current	flows
through	 this	 wire,	 power	 is	 dissipated	 in	 the	 wire.	 The
corresponding	heating	of	the	wire	is	the	required	functionality	to
make	 the	 driver	 feel	more	 comfortable.	 To	 switch	 the	 heating
wire	BJT	can	be	used	as	shown	 in	Fig.	11.20.	A	microcontroller
controls	the	switching	of	the	seat	heating.	It	drives	the	npn-BJT
to	operate	in	the	forward	region.	Thus	the	small	output	current
of	 the	microcontroller	 is	 amplified	 to	 a	much	 larger	 current	 to
drive	the	pnp-BJT.	This	BJT	operates	in	saturation	mode	to	drive
a	 rather	 large	 current	 of	 5-10	 A	 required	 by	 the	 heating	 wire
with	 a	 low	 voltage	 drop	 UCE,sat	 and	 hence	 minimal	 power
dissipation.	 The	 two	 resistors	 are	 used	 to	 set	 the	 operating
points	of	the	BJT.

Fig.	11.20:	BJT	in	a	switching	application,	e.g.	for	seat	heating.



11.3	MOSFET

Like	 a	 BJT	 a	 MOSFET	 (metal-oxide-semiconductor	 field	 effect
transistor)	is	a	semiconductor	device	with	two	pn-junctions.	But
the	 structure	 and	 the	 operating	 principle	 of	 a	 MOSFET	 differs
significantly	from	that	of	a	BJT.	Like	the	BJT	a	MOSFET	has	three
external	terminals	called	the	gate,	source	and	drain	as	depicted
in	 Fig.	 11.21.	 A	 fourth	 connection,	 the	 bulk,	 is	 internally
connected	 to	 the	 source	 terminal.	 Both	 source	 and	 drain	 are
directly	contacted	to	the	semiconductor.	But	between	the	gate
contact	 and	 the	 semiconductor	 there	 is	 an	 insulating	 layer,	 in
most	 cases	 it	 is	 silicon	oxide.	This	 structure	 is	 reflected	 in	 the
naming	 of	 the	 device,	 as	 it	 has	 a	 metal	 (gate	 contact)-oxide
(insulator)-semiconductor	(MOS)	structure	to	build	a	field	effect
transistor	 (FET).	 In	 modern	 MOSFETs	 the	 metal	 of	 the	 gate
contact	 is	 replaced	by	poly	silicon,	nevertheless	 the	naming	of
the	device	remains.	The	gate	is	the	switching	part	of	the	device
as	 it	 controls	 the	 current	 flow	 from	 drain	 to	 source	 (or	 vice
versa).	 Several	 types	 of	 MOSFET	 exist	 but	 here	 just	 the
normally-off	 or	 enhancement	 MOSFET	 will	 be	 introduced.	 As
with	BJT	(npn-and	pnp-type)	two	different	types	of	enhancement
MOSFET	exist:	n-type	and	p-type.

Fig.	11.21:	Structure	of	a	lateral	n-type	MOSFET	with	the	four	connections	source,
drain,	gate	and	bulk	(left);	external	connections	for	operation	of	the	MOSFET.

In	 Fig.	 11.21	 the	 basic	 structure	 of	 an	 n-type	 MOSFET	 is



depicted.	For	normal	operation	a	drain-source	voltage	UDS	 	0	V
is	applied	to	the	two	terminals.	As	long	as	this	voltage	does	not
exceed	 the	 breakdown	 voltage	 of	 the	 device	 (the	 breakdown
voltage	 depends	 on	 the	 technology,	 and	 is	 given	 in	 the	 data
sheet	of	the	device	and	should	not	be	exceeded)	and	the	gate-
source	 voltage	 UGS	 is	 zero,	 there	 is	 no	 current	 flowing	 as	 the
drain-substrate	diode	 is	 reverse	biased.	The	gate	and	 the	bulk
connection	 form	 a	 capacitor	 that	 is	 charged	 by	 applying	 a
charge	 to	 it.	 As	 the	 bulk	 is	 internally	 short	 to	 the	 source,	 the
capacitor’s	voltage	corresponds	to	the	gate-source	voltage	UGS.
If	the	gate-source	voltage	rises	the	electrical	field	between	gate
and	 bulk	 (electrical	 short	 to	 source)	 will	 attract	 electrons
(minority	charge	carriers	in	the	p-doped	substrate)	towards	the
gate.	 Due	 to	 the	 insulating	 oxide	 these	 electrons	 will
accumulate	 beneath	 the	 gate.	 The	 higher	 UGS	 gets	 the	 more
electrons	 will	 be	 accumulated.	 If	 UGS	 is	 sufficiently	 high,	 the
electrons	 form	an	n-type	channel	beneath	 the	gate	 from	drain
to	source.	For	gate-source	voltages	above	this	threshold	voltage
Uth	 this	 n-type	 channel	 enables	 a	 current	 flow	 from	 drain	 to
source.	 The	 threshold	 voltage	 is	 in	 the	 range	 of	 2–3	 V	 for
MOSFET.	 The	 size	 and	 shape	 of	 the	 n-type	 channel	 depends
strongly	 on	UGS.	 The	 behavior	 of	 p-type	MOSFETs	 is	 similar	 to
the	 n-type,	 but	 the	 gate	 source	 voltage	has	 to	 be	 negative	 to
switch	the	p-type	MOSFET	on.

Fig.	11.22:	Circuit	symbols	of	an	n-type	MOSFET	(left)	and	a	p-type	MOSFET	(right).

As	 can	 be	 seen	 in	 the	 structure	 of	 a	 MOSFET	 there	 are	 two
antiparallel	diodes	between	the	drain	and	source	contact.	As	the
source	 is	 in	 general	 short	 to	 the	 bulk	 (and	 hence	 to	 the
substrate),	 the	 source-substrate	 diode	 has	 no	 functionality
anymore.	In	contrast	the	drain-substrate	diode	is	functional	and



forms	 the	 intrinsic	body	diode	of	a	MOSFET.	 In	 the	 symbols	of
the	MOSFET	this	body	diode	is	also	depicted	(see	Fig.	11.22).	If
the	device	is	reverse	biased	(UDS	 	0	V)	it	behaves	like	a	diode.
In	contrast	to	the	BJT,	which	is	a	current	controlled	device,	the
MOSFET	 is	 a	 voltage	 controlled	 device.	 The	 voltages	 UDS	 and
UGS	 control	 the	 behavior	 of	 the	 MOSFET	 as	 depicted	 in	 Fig.
11.23.	 Four	 regions	 of	 operation	 can	 be	 distinguished	 in	 the
output	characteristics	of	MOSFETs.
In	the	cut-off	region	the	gate-source	voltage	is	smaller	than	the
threshold	 voltage,	 UGS	 	 Uth	 and	 the	 drain-source	 voltage	 is
forward	biased	(UDS	 	0	V).	There	is	no	(or	just	very	small)	drain-
source	 current	 ID.	 The	 MOSFET	 blocks	 the	 current	 and
considering	the	MOSFET	to	be	a	switch	it	is	off	in	this	operating
mode.
In	 the	 ohmic	 region	 the	 voltage	 drop	 from	 drain	 to	 source	 is
rather	small	(UDS	 	UGS	-	Uth).	The	gate-source	voltage	is	above
the	 threshold	 voltage,	 UGS	 	 Uth	 and	 a	 conductive	 n-type
channel	 is	 formed.	 If	 the	gate-source	voltage	 is	well	above	the
threshold	voltage	 the	drain	current	 ID	 is	 rather	 independent	of
UGS	 but	 depends	 in	 a	 nearly	 linear	 manner	 from	 the	 drain-
source	voltage	UDS.	 This	behavior	 corresponds	 to	 the	behavior
of	 an	 ohmic	 resistance.	 In	 this	 operation	mode	 the	MOSFET	 is
switched	 on	 and	 behaves	 like	 a	 resistor	 with	 a	 drain-source
resistance	RDS(on).	Besides	in	the	cut-off	region	(no	current	flow
corresponds	to	no	power	loss	inside	the	MOSFET)	the	power	loss
of	the	MOSFET	in	the	ohmic	region	is	lowest.
In	saturation	mode	the	drain-source	voltage	drop	is	high	(UDS	
UGS	–	Uth)	and	the	ID	–	UDS	characteristics	are	almost	parallel	to
the	UDS	axis.	 Increasing	the	drain-source	voltage	has	nearly	no
effect	 on	 the	 drain	 current.	 Instead	 the	 drain	 current	 can	 be
controlled	 by	 the	 gate-source	 voltage.	 The	 higher	 the	 gate
source	voltage	the	higher	the	current,	the	MOSFET	behaves	like
a	voltage	controlled	current	source.	In	this	operation	mode	high
power	is	dissipated	in	the	MOSFET	due	to	the	high	drain-source



voltage	UDS	and	high	drain	current	ID.
In	 the	 reverse	 region	 (UDS	 	 0	 V)	 the	 MOSFET	 behaves	 like	 a
diode	 due	 to	 the	 intrinsic	 body	 diode.	 So	 in	 reverse	 operation
the	 MOSFET	 does	 not	 block	 a	 drain	 current	 but	 it	 starts
conducting	 is	 the	 forward	 voltage	 of	 the	 body	 diode	 is
exceeded.

Fig.	11.23:	Output	characteristics	of	a	n-type	MOSFET.

Due	to	 the	output	characteristics,	MOSFETs	are	mainly	used	 in
switching	applications	to	act	as	a	switch.	If	drain-source	voltage
is	 forward	 biased	 the	 MOSFET	 operates	 in	 cut-off	 and	 ohmic
mode.	In	the	first	mode	the	resistance	of	the	MOSFET	is	infinite
and	the	switch	is	off.	In	the	ohmic	mode	it	provides	a	(very	low)
on-state	 resistance	RDS(on)	 and	 the	 switch	 is	 on.	 In	 this	mode
the	power	 loss	 is	minimal	 for	a	 conduction	 state.	 The	on-state
resistance	for	Power	MOSFETs	(MOSFETs	designed	in	particular
for	high	power	applications)	can	be	 less	 than	1	mΩ	and	hence
very	low.	To	achieve	this	low	on-state	resistance	the	structure	of
Power	 MOSFETs	 differ	 from	 the	 structure	 introduced	 here.
Instead	Power	MOSFETs	have	a	vertical	trench	structure	and	the
drain	contact	is	on	the	bottom	side	of	the	Power	MOSFET.
An	operation	in	saturation	mode	is	not	desired	most	of	the	time.
But	 it	 cannot	 be	 avoided	 at	 least	 for	 short	 times	 during



switching	of	the	device	(either	on-off	or	off-on):	during	switching
the	 gate	 capacitance	 has	 to	 be	 charged	 (switching	 on)	 or
uncharged	 (switching	 off).	 During	 these	 switching	 events	 the
device	 operates	 in	 saturation	 mode	 for	 a	 short	 time	 with
significant	 power	 losses	 due	 to	 the	 simultaneously	 occurring
drain	current	and	drain	source	voltage.
The	 MOSFET	 is	 a	 voltage	 controlled	 device	 and	 the	 output	 is
determined	 by	 the	 gate-source	 voltage	 (and	 the	 drain-source
voltage).	If	the	MOSFET	is	on	or	off	no	current	has	to	be	supplied
to	 the	gate,	 just	a	voltage.	To	operate	a	Power	MOSFET	 in	on-
state	a	gate-source	voltage	of	5	V	(so	called	logic	level	MOSFET)
or	 10	 V	 (standard	 level	 MOSFET)	 has	 to	 be	 applied.	 But	 for
switching,	 the	gate	capacitor	has	to	be	charged	or	discharged.
To	keep	the	switching	time	short	a	suitable	gate	current	has	to
be	provided.
With	MOSFETs	the	power	loss	is	determined	by	the	drain	current
and	the	drain-source	voltage.	If	used	as	a	switch	the	total	power
loss	is	the	sum	of	the	losses	during	on-and	off-state	and	during
switching:

The	 power	 loss	 in	 off-state	 is	 (nearly)	 zero	 and	 can	 be
neglected.	 In	 on-state	 the	 MOSFET	 acts	 like	 a	 resistor	 with	 a
resistance	RDS(on)	and	the	on-loss	is:

The	 switching	 losses	 depend	 on	 many	 device	 specific
parameters	 and	 the	 external	 operating	 conditions	 and	 can
hardly	 be	 estimated	 in	 general.	 A	 rough	 estimation	 shows	 the
dependence	 of	 the	 power	 losses	 of	 switching	 time	 tsw	 and
switching	frequency	f:



Packages	 for	 MOSFETs	 are	 manifold	 and	 many	 of	 these	 are
standardized.	 Both	 THD	 and	 SMD	 packages	 are	 available	 in
different	 forms.	 Depending	 on	 application	 requirements	 like
build	 space,	 mounting	 technology	 and	 electrical	 and	 thermal
properties	 the	 fitting	 device	 has	 to	 be	 selected.	 Standard
packages	 for	 Power	 MOSFET	 are	 DPAK	 and	 D2PAK	 in	 SMD
technology	 and	 TO-220	 and	 TO-262	 in	 THD	 technology.	 For
small	signal	MOSFETs	also	small	packages	like	SOP-8	or	SOT-23
are	available.
	
Automotive	application
MOSFETs	and	in	particular	Power	MOSFET	are	frequently	used	in
automotive	 applications,	 for	 example	 for	 reverse	 polarity
protection	 (replacing	 the	 diode)	 or	 in	 any	 kind	 of	 switching
application.	 DC/DC	 converter	 is	 an	 application	 where	 the
MOSFET	is	used	as	a	switch.
The	standard	automotive	supply	system	on	board	has	a	voltage
level	 of	12	V.	But	many	devices,	 such	as	microcontroller	need
another	voltage	level,	e.g.	5	V	or	3.3	V.	To	convert	DC	voltages
DC/DC	 converters	 can	 be	 used.	 A	 buck	 converter	 is	 a	 DC/DC
converter	 that	 generates	 a	 lower	 output	 voltage.	 E.g.	 it	 can
provide	a	5	V	output	from	a	12	V	input	voltage.
A	schematic	of	a	buck	converter	 is	depicted	 in	Fig.	11.24.	The
DC	input	voltage	UE	is	converted	to	a	lower	output	voltage	UA.	It
consists	of	a	MOSFET,	a	diode,	an	inductor	and	a	capacitor.	The
MOSFET	 switches	 on	 and	 off	 with	 a	 high	 frequency	 of	 some
hundred	 kHz	 (e.g.	 400	 kHz).	 Using	 pulse	 width	 modulation
(PWM)	the	duty	cycle	d	of	the	switching	can	be	adjusted:

Here	 T	 is	 the	 period	 of	 the	 switching	 and	 ton	 is	 the	 time	 the
MOSFET	is	switched	on.
For	the	description	of	the	behavior	some	simplifications	can	be
made:	 the	 voltage	 drop	 across	 the	 MOSFET	 in	 the	 on-state	 is
neglected	 (good	 approximation	 if	 a	 device	with	 low	 RDS(on)	 is



used).	 In	 addition,	 the	 voltage	 drop	 across	 the	 diode	 is
neglected	 (this	 changes	 the	 calculation	 slightly	 if	 the	 forward
voltage	 of	 0.7	 V	 of	 the	 diode	 is	 taken	 into	 account).	 Also	 the
current	 through	 the	 inductor	 is	 never	 zero	 (continuous	mode)
and	a	steady	state	situation	is	analyzed.

Fig.	11.24:	Schematic	of	a	buck	converter.

If	the	MOSFET	is	switched	on,	the	diode	blocks	any	current	flow
and	the	voltage	across	the	inductor	is	according	to	KVL:

During	 the	 time	the	MOSFET	 is	switched	on	 (ton)	 the	current	 IL
through	the	inductor	rises	linearly:

During	 the	 off	 time	 (toff)	 of	 the	MOSFET	 the	 current	 keeps	 on
flowing	 (as	 it	 cannot	 change	 in	 a	 step	 function)	 through	 the
diode	and	the	voltage	drop	across	the	inductor	is:

Accordingly	 the	 current	 decreases	 linearly.	 In	 steady	 state
operation	the	rise	of	inductor	current	during	on	time	equals	the
decrease	during	off	time:



Using	 this	 steady	 state	 condition	 the	 output	 voltage	 can	 be
calculated:

The	 output	 voltage	 just	 depends	 on	 the	 duty	 cycle	 (and	 the
input	voltage	of	course).	By	modulation	of	the	duty	cycle	(that’s
why	 PWM	 is	 used)	 the	 output	 voltage	 can	 be	 changed	 over	 a
wide	range.
Both	 the	 output	 voltage	 and	 the	 inductor	 current	 are	 not
constant,	but	do	change	with	the	PWM	frequency	as	depicted	in
Fig.	11.25.	The	capacitor	 is	used	to	 filter	 the	output	voltage	to
get	a	more	DC-like	behavior.

Fig.	11.25:	Signals	of	a	buck	converter	in	continuous	mode.



12	Circuit	simulation

Circuit	 analysis	 can	 be	 achieved	 using	 the	 techniques
introduced	so	far.	Depending	on	the	circuit	under	investigation,
equation	 systems	 can	 be	 derived.	 Whether	 these	 equation
systems	can	be	solved	at	all	depends	on	the	complexity	of	the
circuit,	the	size	of	the	circuit,	the	elements	used	(e.g.	linear,	non
linear)	and	the	problem.	Besides	analytical	calculations	by	hand,
another	way	of	 finding	 the	 solution	 to	 a	 given	problem	of	 any
circuit	is	circuit	simulation.
Simulation	 in	 general	 transforms	 a	 complex	 system	 into	 an
adequate	 model	 representation	 and	 analyzes	 the	 model.	 The
result	 of	 this	 analysis	 is	 then	 transferred	 back	 to	 the	 original
system.	 Key	 topics	 for	 simulation	 are	 the	 development	 of	 a
proper	 model	 and	 the	 usage	 of	 the	 correct	 analysis	 and
calculation	methods.
In	 circuit	 simulation	 a	 real	 system	 is	 modeled	 by	 a	 circuit	 of
lumped	 elements.	 These	models	 can	 be	 as	 simple	 as	 a	 linear
resistor	 with	 just	 a	 resistance,	 or	 very	 complex	 like
semiconductors	 with	 parasitic	 inductances,	 capacitances,	 etc.
Even	for	the	simple	elements	the	level	of	idealization	has	to	be
considered,	 depending	 on	 the	 purpose	 of	 the	 simulation:	 is	 a
capacitor	just	an	ideal	capacitor,	or	do	parasitic	elements	like	an
ESR	 or	 a	 parallel	 resistor	 have	 to	 be	 taken	 into	 account?	 So
setting	 up	 a	 suitable	 representation	 of	 the	 circuit	 under
investigation	 is	a	major	task.	Once	the	model	 is	developed	the
calculations	 can	 be	 made	 by	 computer	 programs	 like	 PSPICE
which	is	introduced	here.
Circuit	 simulation	 can	 be	 used	 for	 different	 purposes.	 One
purpose	 is	 visualization:	 to	 observe	 a	 general	 behavior	 of	 a
circuit,	e.g.	the	frequency	response	of	a	two	port	network.	It	can
also	be	very	useful	 for	 teaching	and	 learning.	Another	purpose
is	for	supporting	circuit	design	for	determining	the	behavior	of	a
new	 circuit,	 checking	 for	 alternative	 solutions,	 determining



working	points	and	fitting	parameters	for	the	elements	used.	Or
it	can	be	used	for	design	validation,	to	prove	that	a	given	design
behaves	as	required	and	specified.
No	 matter	 what	 the	 purpose	 of	 simulation	 is,	 two	 points	 are
always	 valid:	 A	 simulation	 is	 not	 reality	 and	 cannot	 replace
reality,	 but	 it	 can	 help	 to	 improve	 reality.	 And	 a	 simulation
without	knowledge	is	worthless,	or	even	dangerous.
Most	 circuit	 simulation	 programs	 are	 based	 on	 the	 SPICE
(Simulation	Program	with	Integrated	Circuit	Emphasis)	software
developed	by	the	Electrical	Engineering	and	Computer	Sciences
department	at	the	University	of	California	in	Berkley	in	the	early
1970s.	This	software	can	be	used	for	all	kinds	of	DC	or	AC	circuit
analysis,	 time	or	 frequency	domain	analysis	or	power	analysis.
In	SPICE	 the	 circuit	 is	 described	 in	a	netlist,	 and	an	ASCII	 text
file	 that	 describes	 the	 circuit	 elements	 and	 their
interconnection.	The	circuit	elements	are	described	by	models,
either	simple	ones	such	as	 for	a	 resistor	with	 just	a	 resistance
value	 or	 more	 complex	 ones	 such	 as	 for	 a	 MOSFET.	 The
topology	 of	 the	 circuit	 and	 its	 elements	 determine	 the
differential	 equations.	 Finally	 the	 algorithms	 of	 the	 SPICE
software	are	used	to	solve	these	differential	equations.
As	 the	 SPICE	 software	 is	 an	 open	 source	 software,	 several
companies	 offer	 simulation	 software	 with	 additional	 features
based	on	SPICE.	Additional	features	are,	for	example,	a	GUI	for
the	 schematic	 entry	 of	 circuits,	 model	 editors	 to	 create	 own
models	or	a	graphical	output	of	 the	simulation	data.	Examples
of	simulation	software	are	PSPICE	by	Cadence	Design	Systems,
LTspice	 by	 Linear	 Technology	 or	 Multisim	 by	 National
Instruments.	 The	 examples	 in	 this	 chapter	 use	 PSPICE	 as	 a
simulation	 program.	 For	 students	 a	 free	 student	 version	 of
PSPICE	is	available	for	download	and	simulation.

PSPICE

The	workflow	for	a	simulation	with	PSPICE	is	shown	in	Fig.	12.1.
It	 is	 split	 into	 several	 parts:	 Circuit	 editors	 like	 Capture	 or



Schematics	 are	 used	 to	 design	 the	 circuit	 in	 a	 graphical	 way.
The	 schematic	 of	 a	 circuit	 is	 designed	 by	 drag	 and	 drop	 of
models	 of	 circuit	 elements	 and	 the	 wiring	 of	 these	 elements.
The	models	of	circuit	elements	are	stored	in	libraries	including	a
graphical	representation	and	its	electrical	behavior.	Examples	of
models	 are	 any	 kind	 of	 sources,	 resistors,	 capacitors,	 or
semiconductor	devices.	 In	addition	a	model	editor	can	be	used
to	 describe	 own	 models	 if	 necessary.	 There	 is	 only	 one
mandatory	 element	 that	 has	 to	 be	used	 in	 all	 schematics:	 the
ground	or	reference	potential.

Fig.	12.1:	Workflow	of	PSPICE	simulation.

Afterwards	 the	 graphical	 schematic	 can	 be	 automatically
translated	 into	 a	 netlist	 that	 can	 be	 used	 by	 the	 SPICE
algorithms	for	circuit	simulation.	Different	types	of	analysis	are
available:

–	Bias	point:	determination	of	DC	operating	point;
–	DC	sweep:	variation	of	a	DC	parameter	in	a	given	range
(e.g.	voltage	source	from	0–10	V	in	steps	of	0.1	V);

–	 AC	 sweep:	 variation	 of	 operating	 frequency	 (e.g.	 for
transfer	functions);

–	 Time	 domain:	 simulation	 of	 time	 dependent	 effects
(e.g.	transient	effects).

The	graphical	schematic	 is	translated	into	a	netlist	that	can	be
used	by	the	SPICE	algorithms	for	circuit	simulation.	The	results
of	 the	 simulation	 are	 graphically	 visualized	 in	 another	 PSPICE



module	 called	 PSPICE	 AD.	 Besides	 graphs	 of	 electrical
parameters	 like	currents	and	voltages,	derived	parameters	 like
power	 or	 any	 mathematical	 value	 can	 be	 calculated	 and
displayed.
A	simple	AC	circuit	with	a	sinusoidal	voltage	source,	a	 resistor
and	 a	 diode	 is	 used	 as	 an	 example	 (see	 Fig.	 12.2).	 The
mandatory	 ground	 element	 is	 denoted	 with	 0	 V.	 Simple
elements	 like	 the	 ideal	 AC	 voltage	 source,	 or	 a	 resistor	 are
described	 by	 a	 circuit	 element	 name	 (here	 V1,	 R1)	 and	 the
corresponding	parameter	like	the	peak	voltage	of	the	source	(10
V)	 and	 the	 frequency	 (50	 Hz)	 or	 2	 Ω	 for	 the	 resistor.	 These
parameters	can	easily	be	changed	after	the	model	 is	placed	to
the	schematic.	More	complex	element	 like	 the	diode	D1	 in	 the
circuit	use	more	complex	models	with	given	parameters.	These
models	 are	 in	 general	 provided	 by	 the	 manufacturer	 of	 the
device.	Here	the	diode	D1N914	is	to	be	used	in	the	design	and
the	corresponding	model	is	placed	into	the	schematic.	After	the
models	are	place	the	wiring	can	be	done	by	just	connecting	the
elements	with	lines.
After	 the	 circuit	 is	 completed	 the	 simulation	 setup	 has	 to	 be
done.	 This	 includes	 the	 selection	 of	 simulation	 type	 and
simulation	parameters	like	simulation	time.

Fig.	12.2:	A	schematic	of	a	simple	AC	circuit	with	probe	marks	in	PSPICS	capture.

The	next	step	is	the	generation	of	the	netlist	for	the	simulation.
The	netlist	of	 the	AC	circuit	 is	depicted	 in	Fig.	12.3.	The	 three
non-ground	elements	are	listed:	in	the	first	column	the	type	and



name	of	the	element,	in	the	next	columns	(here	2nd	and	3rd)	the
nets,	or	wires	that	are	connected	to	the	element	are	listed.	The
wiring	 information	 is	 followed	 by	 the	 information	 about	 the
parameters	 of	 the	 element,	 e.g.	 2	 for	 the	 2	Ω.	 The	parameter
information	 may	 extend	 to	 the	 next	 line	 like	 for	 the	 voltage
source.

Fig.	12.3:	The	netlist	of	the	circuit	depicted	in	Fig.	12.2.

Before	finally	starting	the	simulation	probe	marks	can	be	set	in
the	 circuit	 to	 probe	 voltages	 or	 currents.	 The	 values	 of	 these
marks	 are	 in	 the	 end	 graphically	 displayed	 in	 the	 simulation
output.	The	time	domain	simulation	of	the	example	circuit	yields
the	 expected	 behavior	 (see	 Fig.	 12.4):	 The	 diode	 blocks	 the
current	during	the	negative	half	period	of	the	source	voltage.	If
the	 source	 voltage	 is	 above	 about	 1	 V	 the	 diode	 starts	 to
conduct	 and	 the	 current	 causes	 a	 voltage	 drop	 across	 the
resistor.



Fig.	12.4:	Time	domain	simulation	with	PSPICE.

The	models	 that	 are	 used	 can	 be	 rather	 simple	 (e.g.	 resistor,
capacitor)	 or	 rather	 complex	 (e.g.	 diode,	 transistor).	 Complex
models	of	dedicated	elements	that	should	be	used	are	most	of
the	 time	 available	 from	 the	 manufacturer	 of	 this	 device.
Examples	 are	 all	 kind	 of	 semiconductor	 devices	 like	 bipolar
transistors	 or	 MOSFETs.	 Fig.	 12.5	 shows	 the	 electrical	 PSPICE
model	 of	 the	 NP50N04YUK	 Power	 MOSFET	 by	 Renesas
Electronics.	The	model	is	generated	to	reflect	the	real	behavior
of	the	device	as	well	as	possible.	Besides	the	basic	property	of
the	 on-resistance	 RDS(on)	 it	 takes	 capacitances	 like	 the	 gate-
source	capacitance	(CGS),	and	parasitic	resistances	like	the	gate
resistance	RG	or	the	body	diode	into	account.





Fig.	12.5:	PSPICE	model	of	a	Power	MOSFET	NP50N04YUK	by	Renesas	Electronics.

Automotive	Application
Like	 for	 any	 design	 of	 electronic	 systems	 circuit	 simulation	 is
carried	out	to	a	large	extent	for	automotive	applications.	As	with
all	circuit	simulations	it	serves	as	a	design	support	tool,	a	virtual
circuit	prototyping	and	circuit	validation	tool.	This	speeds	up	the
design	phase	and	 increases	 the	quality	of	 the	design	as	many
elements	 can	 be	 tested	 in	 advance.	 Besides	 the	 simulation	 of
electrical	 properties	 circuit	 simulation	 programs	 can	 perform
thermal	 simulations	 to	 some	 extent.	 In	 particular	 for	 power
electronics	this	additional	feature	can	be	very	helpful	in	finding
suitable	designs	and	solutions.
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