


The theory of how solid metals conduct electricity has, until recently,
been confined to crystalline metals in which the constituent atoms form
regular arrays. The discovery of how to make solid amorphous metallic
alloys (often called metallic glasses), in which the atoms are no longer
ordered, led to an explosion of measurements on these new materials. A
whole range of new and unexpected behaviour was found, particularly at
low temperatures and in a magnetic field. At the same time theories to
explain the electrical properties of disordered metals began to emerge.

To understand this new behaviour, conventional Boltzmann theory,
which assumes that the free path of the conduction electrons is long
and only occasionally interrupted by scattering, has to be extended and
modified when the mean free path becomes comparable with the wave-
length of the electrons and with the distance between neighbouring
atoms.

The theory is explained in physical terms and the results are compared
to experimental results on metallic glasses.

The book is designed to be self-contained and to appeal to non-spe-
cialist physicists, metallurgists and chemists with an interest in disordered
metals or to students beginning to study these materials.
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Preface

The purpose of this book is to explain in physical terms the many striking
electrical properties of disordered metals or alloys, in particular metallic
glasses. The main theme is that one central idea can explain many of the
otherwise puzzling behaviour of these metals, particularly at low tem-
peratures and in a magnetic field. That idea is that electrons in such
metals do not travel ballistically between comparatively rare scattering
events but diffuse through the metal. These new effects are not large but
they are so universal in high-resistivity metals, so diverse and qualita-
tively so different from anything to be expected in metals where the
electrons have a long mean free path, that they cry out for an explana-
tion.

The book is not a critical research review; the motivation is mainly to
explain. In interpreting theory there are always the dangers of overinter-
pretation, misinterpretation and failure to interpret and I do not expect
to have escaped these completely. Nonetheless, our new understanding of
disordered metals and alloys constitutes a substantial addition to con-
ventional Boltzmann theory and deserves to be more widely known and
appreciated.

The book is aimed at those who know little of the subject such as
students starting work in this field or those outside the field who wish
to know of developments in it. There is no attempt at rigorous deriva-
tions; the aim is to present the physics as clearly as possible so that
readers can think about the subject for themselves and be able to apply
their thinking in new contexts.

For those whose knowledge of electron transport properties is limited
to what they learned in undergraduate courses I outline briefly the main
points of conventional theory in the first part of the book. This is not

xni



xiv Preface

meant to be an exhaustive treatment but a reminder of ideas already
encountered and here put in the context of what is to follow.

I am greatly indebted to many friends and colleagues for discussions,
reading the manuscript or parts of it and help in understanding the sub-
ject. I cannot attempt to mention them all but I am particularly grateful
to the following: Denis Greig (who introduced me to the subject), Bryan
Gallagher, Bryan Hickey, Mark Howson, Jim Morgan and Davor
Pavuna, with all of whom I had the pleasure of working on aspects of
this subject. I found the thesis of Dr A. Sahnoune most clear and helpful.
I am indebted to Dr Moshe Kaveh for reading the manuscript and to
Nathan Wiser for helpful discussions. I must also record my deep grati-
tude to the editor, Ian Ward, for much help and encouragement; to Dr B.
M. Watts, who as copy editor did so much to improve the manuscript;
and to Mrs Mary Edmundson for her tireless help in preparing drafts and
organising the related correspondence.

To all these and to many others, my sincere thanks.

J. S. Dugdale
November 1994



1

Context and content

Introduction

1.1 Ordered crystalline metals

Our understanding of the electrical conductivity of metals began almost a
century ago with the work of Drude and Lorentz, soon after the discov-
ery of the electron. They considered that the free electrons in the metal
carried the electric current and treated them as a classical gas, using
methods developed in the kinetic theory of gases.

A major difficulty of this treatment was that the heat capacity of these
electrons did not appear in the experimental measurements. This diffi-
culty was not cleared up until, in 1926, Pauli applied Fermi-Dirac sta-
tistics to the electron gas; this idea, developed by Sommerfeld and his
associates, helped to resolve many problems of the classical treatment.
The work of Bloch in 1928 showed how a fully quantal treatment of
electron propagation in an ordered structure could explain convincingly
many features of the temperature dependence of electrical resistance in
metals. In particular it showed that a pure, crystalline metal at absolute
zero should show negligible resistance.

From these beginnings followed the ideas of the Fermi surface, band
gaps, Brillouin zones, umklapp processes and the development of scatter-
ing theories: the scattering of electrons by phonons, impurities, defects
and so on. By the time of the Second World War, calculations of the
resistivity of the alkali metals showed that the theory was moving from
qualitative to quantitative success.

In 1950, the recognition that the de Haas-van Alphen effect provided a
measure of the extremal cross-section of the Fermi surface normal to the
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2 Context and content

applied magnetic field made possible a big advance in the experimental
study of Fermi surfaces. This was matched by a corresponding develop-
ment of their theoretical calculation.

The isotope effect in superconductivity was discovered about this time
and provided the clue that the electron-phonon interaction was impli-
cated in the phenomenon. In 1957 the BCS theory of superconductivity,
giving an explanation of many of its aspects, was published by Bardeen,
Cooper and Schrieffer. This was a problem that had for a long time
resisted a satisfying theoretical understanding1.

Experimental improvements made possible the measurement of elec-
tron velocities over the Fermi surface and also the electron lifetimes
under different scattering mechanisms. By putting together all this infor-
mation within the theoretical framework that had been developed it was
possible, by the 1970s, to explain the electrical conductivity of simple
metals in considerable detail. But this was not universally accepted;
there was a protracted argument as to whether the ground state of, for
example, potassium, involved charge density waves. Most people
involved finally concluded that the answer was no.

Transition metals, having the added complication of an incompletely
filled d-band, had not received such detailed study either by experiment
or theory. Nonetheless, it was felt that the same experimental methods
and theory that had been so successful for the simple metals could lead to
a comparable understanding of the pure transition metals if the effort
were forthcoming. In short, pure crystalline metals were thought to be
understood2.

1.2 Disordered metals

The simplest examples of disordered metals are the liquid alkali metals
and though their electrical properties had been measured, the under-
standing of their conductivity had not made much progress until the
Ziman theory of 1961. The problem in a liquid metal is twofold: How
do you describe the structure of the ions in the liquid and how do you
calculate the scattering of conduction electrons from them? Ziman
exploited the use of the structure factor to answer both questions. The
diffraction of neutrons and X-rays yields the structure factor of liquid
metals; this gives directly the probability of scattering of the incident
waves as a function of scattering angle. These diffraction experiments

1 2 See Notes, commencing on p.223.
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are so designed that as far as possible only one scattering event takes
place within the target material and so these results can also be used to
describe the scattering of plane-wave electrons. Moreover, although the
structure of liquids cannot be described theoretically in a fully satisfac-
tory way, there are approximate methods that allow one to calculate it so
that experimental or theoretical structure factors of the metals provide a
fairly direct way of calculating the electrical resistivity.

The Hall coefficient of most simple metals is free-electron-like.
Therefore the dynamics of the electrons in the liquid are straightforward
and all that is required in addition to the structure factor is the form
factor or scattering cross-section of the appropriate ions. This is usually
deduced from the pseudopotential of the ion, which in turn can be cal-
culated or found semi-empirically from suitable measurements on the
corresponding crystal.

The Ziman theory and its development have been able to account for
the magnitude and temperature coefficient of the resistivity of a number
of simple metals as well as the thermoelectric power (thermopower, for
short) and pressure coefficient of resistivity. It can also explain the sys-
tematic differences between the temperature coefficients of resistance of
monovalent and polyvalent simple metals. It has, however, been less
successful with liquid transition metals.

A different class of disordered metals is provided by alloys. Let us con-
sider for simplicity an alloy of two components, which we can call A and
B. A crystalline alloy can be formed either in an ordered structure with
appropriate numbers of A and B ions corresponding to its molecular
composition (e.g. AiBi) or in a disordered but still crystalline structure,
in which the two (or more) components are distributed randomly on the
lattice sites of the crystal. The latter are sometimes referred to as random
solid solutions and it is these that concern us here; the ordered alloys can
be treated in much the same way as single component crystals.
Calculations on, for example, the silver-palladium series, which form
continuous random solid solutions right across the composition range,
have indicated that notions such as the Fermi surface and k-vector
derived from ordered structures can still be useful in such materials,
and experiments with angle-resolved photo-emission have tended to sup-
port this view. Calculations of electron transport properties by means of
theories derived originally for ordered metals have been reasonably suc-
cessful, at least in broad outline.
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1.3 Beyond Boltzmann theory

All these successes of our theoretical understanding, with the exception of
the BCS theory of superconductivity, have been achieved within the
compass of what is usually referred to as Boltzmann theory. Essentially
this means that the mean free path of the conduction electrons is assumed
to be long compared to the wavelength of the electrons at the Fermi level.
This in turn implies that one scattering event is independent of another
and any interference between the scattered wave and the wave before
scattering can be ignored. If, however, the mean free path is very short
as it is in highly disordered metals or alloys, this interference can become
important. This book is largely concerned with the consequences of this
new situation.

1.4 Metallic glasses
The discovery of how to make solid amorphous alloys by rapid quench-
ing from the melt led to an explosion of measurements of the electronic
properties of these new materials. These alloys are generally referred to as
metallic glasses because like window glass they have a structure that
resembles that of a liquid when the constituent atoms are frozen in
their instantaneous positions. As a consequence of the high disorder
the conduction electrons have a very short mean free path and thus
their behaviour does not correspond with Boltzmann theory. The mea-
surements on metallic glasses coincided with the extension of the theory
to take account of these interference effects and so, at least for bulk
materials, metallic glasses became the testing ground for the new theories.
In what follows, therefore, I shall try to explain what the theories have to
say and consider how far they account for the experimental measure-
ments on metallic glasses.

As we have seen, liquid metals have been much studied as examples of
highly disordered metals but because they are liquids they suffer from a
number of severe disadvantages as experimental subjects. They do not
exist at low temperatures; indeed their range of stability (between freezing
point r F and boiling point 7B) is very limited when expressed as a ratio
TB/T?. They are subject to convection currents when heated and can be
corrosive and difficult to handle and contain.

Metallic glasses, although unstable at higher temperatures because they
revert to the crystalline phase, can be studied at low temperatures where
many of the most interesting phenomena reveal themselves. As it turns
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out many alloys, albeit in restricted ranges of composition, are fairly easy
to make in ribbon form, which is very suitable for measurement of their
electrical properties such as conductivity, Hall coefficient and thermo-
power.

In order to understand the methods of making metallic glasses and the
limitations that their stability in terms of composition and temperature
range imposes, I outline some of the main features of the production and
structure of these glasses in the next chapter. Thereafter the important
ideas of the Boltzmann theory of electrical conduction are explained,
culminating in Chapter 5 in their application in the Ziman theory to
the electrical properties of simple liquid metals.

In Chapter 6 the specifically low-temperature behaviour of metals
including the electron-phonon interaction is examined since these fea-
tures are not involved in the Ziman theory; in Chapter 7 the notion of
quasi-particles and interactions between electrons are discussed and in
Chapter 8 the properties of transition metals are outlined. Then as a final
consideration of Boltzmann theory the Hall effect and magnetoresistance
are considered because these properties are very important to our under-
standing of high-resistivity materials.

Chapters 11 to 14 then concentrate on how recent theories have gone
beyond Boltzmann theory in their attempts to explain a wide range of
unusual low-temperature behaviour. The theories are here applied speci-
fically to the resistivity and magnetoresistance of metallic glasses. Before
finally attempting a quantitative comparison of experiment and theory,
Chapter 15 is concerned with the thermopower of metallic glasses, a
property that gives valuable information about the behaviour of electrons
but is not so directly responsive to the new interference and interaction
effects. Chapter 16 provides a comparison between theory and experi-
ment in a selection of metallic glasses; it attempts to show how far the
new theories can account naturally and convincingly for electron conduc-
tion in highly disordered metallic conductors.

I have made no attempt to deal with strongly magnetic metals, whose
electrical properties, even in the crystalline state, are still not fully under-
stood; nor have I discussed the two-level systems found in glasses, since
they appear to make no significant contribution to the properties of
metallic glasses in the temperature range discussed here.
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Production and structure of metallic glasses

2.1 What are metallic glasses?

The word 'glass' as we normally use it refers to window glass. As we all
know, this is a brittle, transparent material with vanishingly small elec-
trical conductivity. It is in fact a material in which the constituent mole-
cules are arranged in a disordered fashion as in a liquid but not moving
around; that is to say, each molecule keeps its same neighbours and the
glass behaves like a solid. Most of the solids that physicists have hitherto
dealt with are crystalline i.e. their atoms or molecules are arranged in
strictly ordered arrays. This is the essential difference between a so-called
'glass' and a crystal: a glass has no long-range order. Although the word
'glass' was originally used to designate only window glass it has now
taken on this generalised meaning of what we may call an amorphous
solid.

Electrically insulating glasses have been studied for a long time and it
was generally thought that in order to form a glass by cooling a liquid
it was necessary to have a material composed of fairly complicated
molecules so that, on cooling through the temperature range at which
crystallisation would be expected to occur, the molecules would have
difficulty in getting into their proper places and could be, as it were,
frozen in a disordered pattern at lower temperatures without the ther-
mal energy necessary to get into their ordered positions. This general
picture is correct and helpful although the expectations based on it have
proved in some respects wrong. It was thought that because metals and
alloys are usually of simple atoms, it would be impossible to form a
glass from such constituents. It therefore came as a considerable sur-
prise when, in 1959, Pol Duwez and his co-workers at the California
Institute of Technology showed that an alloy of gold and silicon could
be made to form a glass. The secret in part was to increase the rate of
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cooling from the melt to such an extent that even with such simple
constituents, their atoms did not have time to take up their ordered
positions before diffusive motion became impossible through lack of
thermal energy.

Since then many alloys have been made to form glasses although, as we
shall see, there are limits to the combinations of metals and to the ranges
of concentrations for which glass formation is readily possible. These
glassy alloys are typically characterised by metallic properties: they con-
duct electricity comparatively well, they have a shiny appearance and
they are ductile i.e. not brittle. In fact they are, as we shall see, truly
metallic and this explains why they are called 'metallic glasses'.

2.2 Properties of glasses in general

Before we discuss the question of how to produce metallic glasses, let us
first look at some of the properties of glasses in general. Figure 2.1 shows
how the volume (per unit mass, say) of a glass-forming material changes
with temperature. Consider first what happen when the material is cooled
very slowly and crystallises; we assume for simplicity that we are dealing
with a system of a single component since this does not alter the essential
points. The volume changes abruptly at the freezing point 7> (in almost
all systems it contracts as shown in the figure). Thereafter, as it cools
further, the volume slowly diminishes as indicated by the dashed line
marked A in Figure 2.1. If however we cool the material in such a way
that it forms a glass there is no discontinuity at the freezing point and the
volume diminishes smoothly through this region as shown by the line
marked B in the figure. In this case, however, the path followed and the
ultimate volume reached depend on the cooling rate as indicated by the
two lines B and C which correspond to different cooling rates, C being
the faster.

At sufficiently low temperatures, it is possible to make changes to the
state of the glassy material in a perfectly reversible manner by, for
example, changes in pressure or temperature. If however the tempera-
ture is too high, spontaneous irreversible changes may occur. This is
because there is always a tendency for the glass to move towards the
truly stable thermodynamic state which is that of the crystal. For this
reason the glassy state is an unstable state although it is often referred
to as metastable. The term 'metastable' is however better reserved for
the supercooled liquid which is a liquid cooled carefully below its freez-
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Fig. 2.1 Specific volume of a glass as a function of temperature, showing also the
crystal and supercooled liquid. The final volume of the glass depends on the
cooling rate.

ing point so as to retain its full liquid properties. Such a liquid can
undergo perfectly reversible changes provided that there are no nuclea-
tion sites which would trigger crystallisation. When this does occur it is
sudden and complete. One may think of the supercooled liquid as
separated by a large free energy barrier from the crystalline state.
The glassy state, on the other hand, is separated from the crystalline
state by a succession of quite small potential barriers each leading to
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further unstable states which lead ultimately to that of the crystal. The
supercooled liquid is as it were at the bottom of a substantial valley
whereas the glass is perched rather precariously on the side of a hill at
whose base is the crystalline state.

In Figure 2.1 the supercooled liquid is shown as existing below the freez-
ing point and the line that shows the volume of this liquid is continued to
low temperatures even though it might in practice be very difficult or
even impossible to achieve this metastable state at such temperatures.
This line is, however, a useful extrapolation. The temperature at which
the line referring to the glass departs from the equilibrium line of the
supercooled liquid is called the glass transition temperature Tg. As we see,
different cooling rates yield different transition temperatures and in
metallic glasses these can differ by as much as 100 K with the correspond-
ing densities differing by up to 0.5%.

If the glass is allowed to warm up from low temperatures, it begins to
recrystallise at some temperature which depends on how it was cooled
and on how quickly is it warmed. It is therefore clear that the properties
of glassy materials depend on their past history. Fortunately the electrical
properties in which we are interested are reasonably reproducible if the
specimens are made with standard techniques and are not allowed to
become too warm. In practice this means confining experiments to sys-
tems that are stable at temperatures up to at least room temperature.
Even so it is sometimes necessary to store the specimens at low tempera-
tures in, for example, liquid nitrogen when they are not being used for
experiments. In general, however, if suitable fairly straightforward pre-
cautions are taken, the reproducibility of the measurements on these
metallic glasses is quite adequate to produce a clear picture of their
electrical properties.

2.3 How are metallic glasses produced?

As we know from experience most liquids tend to crystallise on cooling
and as we have already seen, a glass will be formed from the liquid only if
we can cool it through the region of the freezing point sufficiently fast.
The key to producing metallic glasses is thus to be able to cool them
rapidly from the melt. As we shall see, there are other techniques that can
be used but we shall first consider those based on rapid cooling because
they have been most commonly used and with great success.
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2.3.1 Melt spinning

In the melt spinning process a jet of molten alloy is squirted onto a
rapidly rotating roller which absorbs the heat and so continuously
cools the liquid as it strikes the moving surface. A typical apparatus is
illustrated in Figure 2.2. This shows the quartz crucible which has a jet at
its bottom end. The alloy is melted by a radiofrequency heating coil
around the crucible. The roller is usually made of copper because of its
good thermal conductivity and when it is spinning at high speed the alloy
is driven onto it through the jet by increasing the pressure of gas (helium
or argon, say) above the liquid. In this way a ribbon of metallic glass
about 50 um thick flies off the roller. For a typical charge of order 10 g
some 20 or so metres of ribbon are produced in a tenth of a second. It can
be quite spectacular. Even more so if it goes wrong! Cooling rates
achieved in this way can be as high as a million degrees a second. The
ribbons are necessarily thin; the thickness cannot be increased beyond
about 100 jim for most alloys as it would be impossible to achieve high

Quartz crucible

Radio frequency ^ ^ ^ ^ S T ^ Liquid alloy
heating coil

Rotating
wheel

Copper rim

Fig. 2.2 Melt spinning apparatus, showing the copper-rimmed wheel, the molten
alloy in the crucible and RF heating coil.
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enough cooling rates to form a glass. On the other hand, the width can be
increased and in industrial processes sheets up to about 30 cm have been
produced.

There are variants on this process with, for example, the use of two
rollers in order to cool both surfaces of the ribbon. Another possibility
is to enclose the whole apparatus in a container which can be evacu-
ated or filled with a suitable inert gas. This not only protects the alloy
from exposure to the atmosphere but can also improve the uniformity
of the ribbon. This is because the flow of the liquid alloy into the
puddle that forms on the wheel and the emergence of the solid ribbon
from it are affected by the viscosity and thermal conductivity of the gas
around it.

2.3.2 Atomic deposition techniques
Atomic deposition techniques include several which produce thin films of
material, for example, electrolytic and chemical deposition, vacuum
deposition on a cold substrate and radiofrequency sputtering. This last
has been quite widely used because it can, at least in principle, extend the
range of alloys that can be made to form glasses. It does, however, suffer
from the disadvantage that it produces rather thin films on a substrate
and this has tended to concentrate attention on the thin film aspect of the
specimens rather than their bulk character. The technique does, however,
have its place in the array of valuable methods for making metallic
glasses.

2.4 Alloys that can form stable glasses

It is found by experience that only alloys in a limited range of composi-
tions can be quenched to form glasses that are stable at room tempera-
ture. For our purposes it is convenient to divide these into three main
classes as follows:

1 Metal-metalloid alloys consisting typically of about 80% of a transi-
tion metal such as Fe, Ni, Co and around 20% of one or more metal-
loid elements: B, C, N, Si, P. Examples are Fe8OB2o or Fe4oNi4oPi4B6

where subscripts refer to atomic percentages.
2 A late transition metal combined with an early transition metal, such

as Cu5oTi5o or Ni6ONb4o. Here the range of compositions may be rather
wider than in class 1. Moreover a rare earth may be substituted for a
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transition metal, for example, Gd-Co. This general group of alloys has
proved of great interest and value in studying electron transport prop-
erties.

3 Alloys of simple i.e. non-transition metals such as Mg7oZn3O or
Ca3oAl7o. These alloys have a special importance because they are
rather simpler to treat theoretically than alloys of transition metals
with incomplete d-shells. They will, however, form glasses in only a
rather restricted range of compositions.

There are certain features of the classes listed above that can perhaps be
understood in fairly simple terms. First of all it is clear that the pure
metals do not readily form glasses and possibly not at all. In other
words we have to have at least two components. In the alloys of
class 1 we find that the compositions that are favourable for glass
formation are primarily those close to the eutectic compositions. The
eutectic composition has the lowest melting point of all the alloys with
compositions near it. The difference between the melting temperature
and the glass transition temperature is thus comparatively small so that
the system can be cooled very quickly into the glassy state. Moreover a
eutectic alloy is an intimate mixture of two distinct crystalline phases.
Here I emphasise the word 'mixture' because it shows that the molten
alloy refuses to form an ordered compound or a disordered solid solu-
tion even when cooled slowly with plenty of time to take up its equili-
brium configuration. It is therefore the more willing to form a glass
when cooled quickly. Indeed a feature common to all the alloys that
form glasses is that they have components and compositions which do
not readily form either solid crystalline compounds or crystalline solid
solutions. In order to crystallise they would have to form a mixture of
crystals of very different composition. It seems that these conditions
favour glass formation.

An important consequence of this feature of glass formation is that
when a glassy alloy crystallises or devitrifies, as it is called, it does not
yield a uniform crystal of well-defined character and composition but
rather a mixture of crystals of different compositions, probably in the
form of a brittle solid or powder. This makes comparison of the glass
with its corresponding crystal, a comparison that would often be very
revealing, difficult or impossible.

To sum up this picture of glass formation we can say that, for a
given cooling rate, a metallic glass tends to form if the forces between
the constituent atoms and the relative concentration of the components
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inhibit crystallisation long enough for the alloy to reach a temperature
at which rearrangement of the atoms has become virtually impossible
through lack of thermal energy. The glass then is quite similar in
structure to the liquid; it is as if the liquid had been suddenly frozen
in time.

2.5 Structure of metallic glasses

The X-ray diffraction patterns of crystalline solids show sharp peaks
corresponding to Bragg reflections from parallel planes of atoms in the
crystal. By contrast metallic glasses show only broad diffuse peaks as
indicated in Figure 2.3. This brings out the important structural differ-
ence between the crystalline and the glassy or, more generally, the amor-
phous state. The crystalline state shows long-range order, the amorphous
or glassy state does not.

Figure 2.3 shows the diffraction pattern of a metallic glass. Such a
pattern, whether derived from X-rays or neutrons, is obtained by allow-
ing a parallel stream of particles characterised by a wave vector k to fall
on the amorphous sample and observing the intensity of the diffracted
beam of wave vector k' as a function of the angle 6 between k and k'. We
will confine our attention to elastic scattering which implies that the
energies of the particles are the same before and after scattering so that

Co80P20

m Neutron diffraction
X-ray diffraction
Polarised neutron diffraction

12

Fig. 2.3 Total scattered intensity of neutrons, polarised neutrons and X-rays
diffracted from Co80P2o- (After Sadoc and Dixmier 1976.)



14 Production and structure of metallic glasses

k and k' have the same magnitude. It is often convenient to use as our
variable not 6 but the scattering vector K defined as:

K = k - k (2.1)

Figure 2.4 shows this equation in diagrammatic form and the relationship
between 9 and the magnitude of K:

K = 2k0 sin(0/2) (2.2)

where ko = k = k'.
We can think of the physics of structure determination in the following

way. The incident wave k is modulated by the scattering field inside the
material and if we concentrate on a particular Fourier component of this
field, of wave vector q, say, this modulation produces a scattered wave of
wave vector k' = k + q. Rearranged, this gives q = k' — k = K. Thus we
see that the scattering of the incident waves from k to k' explores the
structure of the material under study by looking in turn at the strengths
of the different Fourier components as k' and hence K changes. If there is
a prominent periodicity q in the material this will produce a strong
response in the outgoing beam when K = q. In all this we are assuming
that the incoming particle (X-ray or neutron or whatever) undergoes only
one scattering event during its passage through the material and indeed
the experiments are arranged so that this condition is satisfied. Under

K

Fig. 2.4 Scattering vector and scattering angle.



2.5 Structure of metallic glasses 15

these conditions we see that the result of this kind of diffraction experi-
ment is to produce a Fourier analysis of the scattering field inside the
material.

2.5.7 The structure factor

In calculating the response of a material to the incident waves we must
remember that interference effects lie at the heart of the diffraction pat-
tern so that we must first evaluate the scattering amplitude, which takes
account of the phase of the combining waves, before evaluating the
square modulus of this, which gives the diffracted intensity. It is the
intensity that is measured in a typical experiment.

The total scattering amplitude depends not only on the structure of the
material but also on the scattering power of the constituent atoms.
Indeed after taking the square modulus of the amplitude to obtain the
intensity, it turns out that the intensity of the scattered radiation in any
given direction is given by the product of two factors, one of which, the
structure factor, depends only on the structure, i.e. only on the positions
of the scattering centres, and the other, called the form factor, which
depends only on the scattering strength of the individual scatterers. In
general we can assume that the form factor is known independently from
measurements of the scattering cross-sections or scattering lengths of the
individual atoms or nuclei. From the diffraction pattern of the glass we
can therefore find the structure factor of the glass, which gives us the
Fourier transform of the scattering field.

The structure factor, or interference function, of a metallic glass is a
very important feature of the glass so that we need to have some famil-
iarity with it. As I have already emphasised the structure factor of a
crystal vanishes except at certain angles where sharp lines occur; these
are the Bragg reflections. In a gas, by contrast, the structure factor is
everywhere unity (at least insofar as it is an ideal gas of point particles)
since the atoms are randomly distributed in space at any instant and so
can give rise to no coherent interference effects. The diffraction pattern of
a gas is just the sum of the diffracted intensities of the individual atoms.

The structure factor of glasses or liquids (Figure 2.5) is characterised
by a large broad peak followed by a few heavily damped oscillations
before tending towards unity as K increases. How does this come
about? Although there is no long-range order in the amorphous phase
there is considerable short-range order imposed by the hard cores of the
ions which essentially prevent their overlap. The glass or liquid is like a
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2 4 6 8

Scattering vector K, A~1

Fig. 2.5 Structure factor of metallic glass (schematic).
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fairly close-packed collection of almost hard spheres. There is thus a ring
of first neighbours around any given ion at an average distance of, say,
d\, a less well-defined ring of second neighbours at d2 and so on. These
give rise to prominent periodicities and so the first ring produces a peak
in the diffracted intensity whose centre is at about K = 2n/d\ and whose
breadth arises from variations in the separation of neighbouring ions; it is
followed by further peaks at the same periodicity but smaller amplitude.
The second ring contributes similar peaks of period 2n/d2 but more
heavily damped. At small values of K, the structure factor is very small
because at these long wavelengths the material appears homogeneous
with no significant periodicities and only small fluctuations. Thus the
composite pattern starts from the origin at small values, rises to a
broad peak with contributions from the innermost rings and then
shows smaller peaks. At large values of K the probing wavelength has
become so short that the disparities in inter-neighbour distance quickly
destroy any favourable phase coherence. Thus the structure factor tends
to unity as in the gas.

As we saw earlier the scattering amplitude of the diffracted beam is the
Fourier transform of the scattering field so that the diffraction pattern
picks out the important spatial periodicities of the structure.
Unfortunately as I have already stressed, we measure not amplitudes
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but intensities. In consequence we cannot derive the complete structure
from the diffraction pattern but only the pair distribution function which
in isotropic systems is the radial distribution function (see below).

What I have said so far applies if one type of atom only is present. In
an alloy however there are partial structure factors which depend on the
type of atom under consideration. For example in a binary alloy AB there
is a partial structure factor SAA that depends on the position of A-atoms
relative to a central A-atom, a corresponding SBB, and a cross term SAB

that depends on the position of B-atoms with respect to a central A-atom
or vice versa.

2.5.2 The radial distribution function

From these structure factors or partial structure factors we can derive by
Fourier transforms the radial distribution functions appropriate to the
alloy. These tell us the average number density of the different types of
atom as we move radially outward from a given type of atom. An exam-
ple is shown in Figure 2.6a. The positions of the peaks indicate the
approximate distances of first, second, etc. neighbours from the atom
chosen as origin, while the areas under the peaks indicate the numbers
in the corresponding shells. The radial distribution function does not,
however, give us any information about the angular positions of the
neighbours. To that extent therefore there is a lack of detail.

From measurements on a number of metal-metalloid glasses we find
that the number of nearest neighbours of the major component lies
between 11.5 and 13 and the nearest-neighbour distance is about 12%
greater than the effective diameter of the metal species. The partial struc-
ture factors of metal-metalloid alloys also reveal that in most of these
alloys the metalloid ions, such as the boron in Fe8oB2o, are rarely nearest
neighbours of each other, while the metal ions (here Fe) take up positions
similar to those of a somewhat distorted close-packed crystal.
Presumably the smaller metalloid atoms occupy the interstices of this
structure.

This type of measurement confirms what direct measurements of the
density show, that metallic glasses are densely packed materials. In gen-
eral we find that, in terms of the fractional volume occupied by the
atoms, the density of packing in metallic glasses is about 0.67, compared
to about 0.64 for a liquid alloy and 0.74 for a face-centred cubic lattice.

The radial distribution function of a metallic glass looks very similar to
that of the corresponding liquid (see Figure 2.6(b)), although there is a
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2nd coordination shell

continuum
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Fig. 2.6 Radial distribution function g(r) of amorphous material, (a) Coordin-
ation shells; (b) radial distribution function. (After Ziman 1979.)

small systematic difference in the short-range order. This is seen as a
splitting of the second peak for the glass as is shown in the figure; it
has two shoulders instead of one as in the liquid.
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Although the main source of short-range order is the close packing of
the ion cores, another source of such order arises if there are directed
bonding forces between the ions, which may then try to form molecules in
the liquid; these near-molecules may persist into the glassy state.

Having seen briefly how metallic glasses are prepared and what we can
tell about their structure, we turn now to a study of the conductivity and
other electrical properties of metals to find out how far present theories
can explain these and how the theory has to be extended to describe the
properties of metallic glasses1.



3

Electron transport in metals: introduction to
conventional theory

3.1 The source of electrical resistance

In trying to understand the electron transport properties of metallic
glasses - properties such as electrical conductivity, Hall coefficient and
thermopower - we shall start by using conventional theories that have
been successful in accounting for the corresponding properties in crystal-
line metals and alloys and see how far these theories are successful in
describing the properties of metallic glasses. I will explain what I mean by
'conventional' theories as we go along.

The starting point in understanding the electrical conductivity, a, or
resistivity, p(= \/a) of metals is the fact that the de Broglie waves
which represent the conduction electrons can propagate without
attenuation through a perfectly periodic lattice, such as that formed
by the positive ions of an ideally pure and perfect crystalline metal at
absolute zero. There is thus no electrical resistivity. More strictly, the
electrons are scattered by the ions but only coherently as in Bragg
reflections from the lattice planes. Such coherent scattering alters the
way the electrons respond to applied electric and magnetic fields but
does not cause electrical resistance. Such resistance comes about
through random, incoherent scattering of the electron waves; this occurs
only when the periodicity of the lattice and its associated potential is
upset.

This means that, if you now add to your pure and perfect crystal
chemical impurities randomly distributed, they will disturb the perfect
periodicity and cause resistance to the flow of the electric current.
Likewise, physical imperfections such as vacancies, dislocations or
grain boundaries will produce electrical resistance even at the absolute
zero. These imperfections and chemical impurities upset the perfect per-
iodicity and so scatter the electrons that carry the electric current.

20
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The same is true of the lattice vibrations that arise when the tempera-
ture is raised. These vibrations likewise destroy the perfect periodicity of
the lattice and cause resistance. This time, however, the resistance
depends on the temperature; usually the higher the temperature of the
metal the greater its resistivity because the amplitude of the lattice vibra-
tions increases and this increases the scattering. In quantum terms, we
would say it is because the number of phonons increases with rising
temperature. To sum up: departures from perfect periodicity of the
potential through which the conduction electrons flow cause electrical
resistance. This tells us at once that amorphous systems, whether liquid
or glass, will, because of their disordered structure, tend to have high
resistivity at all temperatures.

3.2 The conduction electrons

To understand electrical conduction in metals or alloys we have to under-
stand the properties of the conduction electrons, that is, those electrons
that actually carry the current. In some simple metals such as sodium or
potassium, even in the liquid state, and even in some glasses composed of
simple elements, these electrons behave very much as if they were free
charged particles except that they are confined within the volume of the
metal and subjected to occasional scattering processes. This may seem a
remarkable state of affairs given the strong electrostatic Coulomb forces
between the electrons themselves and between the electrons and the ions.
Let us, however, accept this unlikely suggestion, see where it leads us and,
later on, try to understand how it comes about.

Electrons are charged particles of spin 1/2: this means that they obey
the Pauli exclusion principle and are subject to Fermi-Dirac statistics.
Consider first the implications of this at the absolute zero of temperature.
The kinetic energy levels of a free particle in a box are known from
quantum mechanics. Each such level can accommodate two electrons
of opposite spin; at the absolute zero all the lowest of these levels that
are needed to accommodate the conduction levels are filled. If there are N
conduction electrons per unit volume, then in unit volume of the metal,
the lowest N/2 kinetic energy levels will be filled up as indicated in Figure
3.1. Above them the levels are completely empty. The energy which sepa-
rates the two sets is called the Fermi level (strictly speaking, the Fermi
level at absolute zero). If we calculate this energy for the conduction
electrons in potassium, which has just one conduction electron per ion,
we find that the energy is about 2 eV. If you bear in mind that, at room
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Fig. 3.1 Electrons in a metal at absolute zero; all levels are occupied by opposite
spin pairs up to the Fermi level. Above that they are empty.

temperature, thermal energies are of the order of 1/40 eV, you see that the
Fermi energy is a very large energy indeed, in this example, correspond-
ing to the thermal energy of a classical gas at about 25 000 K. In most
metals it is even higher. The important point, therefore, is that the elec-
trons at the top of this distribution are very energetic with velocities of
106ms-1 or more, approaching 1% of that of light. Although non-rela-
tivistic these velocities are large and indeed go some way to explaining
why these electrons can be treated as quasi-free particles.

3.2.1 The Fermi energy in a free-electron gas

If the kinetic energy of a particle of mass mis E and its momentum is p,
then in classical terms:

E = p2/2m (3.1)

From the de Broglie relationship, the wavelength associated with p is:

A = h/p (3.2)
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or, in terms of the wave vector k — 2n/X:

p = hk, (3.3)

where h is Planck's constant and fr is h/2n.
Thus

E = n2k2/2m (3.4)

or, written in component form:

E = h2(k2
x + k2

y + k2
z)/2m (3.5)

This shows that if we plot the constant energy surfaces as a function of
kx, ky, kz (this is called A>space) they form a set of concentric spheres
about the origin. If the energy of the highest occupied level is Eo, then all
the states inside the sphere corresponding to Eo are full and all those
outside it are empty. The surface dividing the occupied from the unoccu-
pied states is called the Fermi surface.

The boundary conditions on the electron waves show that in A>space
the allowed quantum states are uniformly distributed. Different bound-
ary conditions lead to differences in detail but the same result. Here we
take the periodic boundary conditions according to which the size of each
quantum state in A>space is (2n)3/V where Fis the volume of the metal.
To find the number of A>states below the energy JEb, we must determine
the number of such states within the sphere corresponding to this energy.
This sphere has a radius kF, the Fermi radius, such that:

n2k2
F/2m = Eo (3.6)

It therefore contains 4nklV/3(2n)3 states. If this sphere is to accommo-
date N conduction electrons then, given that each fc-state can hold two
electrons of opposite spin, we require that:

= 4nk3
FV/3(2n)3 (3.7)

Thus,
kF = (3n2N/V){/3 and Eo = H2(3n2N/V)2/3/2m (3.8)

So we see that if we know the density of conduction electrons (N/ V) we
can find Eo.

Some values of £o for a number of metals are given in Table 3.1. The
energies are expressed in electron-volts (eV) and also as equivalent Fermi
temperatures TF where k^T? = E? (kB is Boltzmann's constant). We see
that these temperatures are in the range 104-105K. Because the values of
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Table 3.1 Fermi energy and temperature, and density of states at EQ for
some metals.

Fermi energy Eo dn/dE (states per Fermi temp. 7>
at 0 K (eV) electron per eV) (K)Metal

Li
Na
K
Rb
Cs
Cu
Ag
Au

4.74
3.16
2.06
1.79
1.53
7.10
5.52
5.56

0.16
0.24
0.36
0.42
0.49
0.106
0.134
0.135

55,000
37,000
24,000
21,000
18,000
82,000
64,000
65,000

Eo are so high compared to normal thermal energies, changing the tem-
perature of a metal has very little effect on the Fermi distribution of
energy among the electrons. Only those states within about k#T of the
Fermi level (at Eo) are perturbed since only these have empty states into
which their electrons can be excited. In lithium at room temperature, for
example, this is only about 1% of the states. Moreover, it is only those
electrons near to Eo that can be scattered by the impurities, defects or
lattice vibrations. The reason is the same, i.e. there are no other unoccu-
pied states of comparable energy into which the electrons can be scat-
tered. Bear in mind that the electric field that produces a current in a
metal is of the order of a few volts per cm and imparts negligible energy
of the electrons (about 10~4-10~7eV). Even if the electrons can pick up
energy from the lattice this is either of order k^T or the maximum energy
of a phonon. The latter is about &B#D, where #D is the Debye temperature
of the lattice, typically around 100 to 400 K. Thus the so-called Fermi
electrons, those within about k^T or k^6^> of the Fermi level, have an
overriding importance in determining the electronic properties of the
metal or alloy.

For this reason, we often need to know as much as possible about these
electrons. One property of importance is the number of states per unit
energy range to which they have access in the neighbourhood of Eo. This
quantity is called the density of states at the Fermi level. We can easily
calculate the density of states in fc-space because the states are uniformly
distributed there; then we convert to the density in terms of energy from
the relationship between E and k.
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The number of A>states in a sphere of radius k about the origin is, as
before:

So the number of states lying between k and k + dk is:

dn{k) = 4nVk2dk/(2n)3 (3.9)

(We ignore the spin states at this stage.)
To complete the calculation, we must now express this in terms of

energy instead of k by using the relationship:

E = h2k2/2m (3.10)

or

k=(2mE/H2)l/2 (3.11)

Finally we get for each spin direction:

dn(E)/dE= V[{2m/H2)3/2El/2/2n2} (3.12)

This is the required density of states of a free-electron gas confined to a
volume V. Some values of this quantity are listed in Table 3.1.

3.3 Calculation of electrical conductivity

In the conventional calculation of electrical conductivity, a number of
approximations are made, which for the most part are valid for metals
that are fairly pure with not too many defects and also for simple liquid
metals and metallic glasses.

The most important of these approximations, the one-electron approx-
imation, assumes that each conduction electron moves in the potential
field of the ions and in the average field of all the other electrons. This
means that each conduction electron experiences a potential that depends
only on the ionic positions and on the coordinates of that electron alone;
the potential does not depend on the distances between the electron of
interest and all the other conduction electrons. This is a huge simplifica-
tion but we shall assume its validity for the present and see where it leads
us.
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3.3.1 The distribution function

To describe the behaviour of a collection of conduction electrons, we use
a distribution function g(k, r) d3A;d3r which tells us the number of elec-
trons in a volume d3r around the point r with k-vectors lying in a volume
d3k around the value k. In our case we shall consider only homogeneous
metals at a uniform temperature so that in fact g(k, r) is independent of r.
Moreover it is convenient to use, not the number of particles with values
around k, but the fraction of the states that are occupied there. Since, as
we saw, the states in A>space are uniformly distributed we can readily go
from the fraction of states occupied to the number of electrons in the
same volume of A>space by multiplying by the number of states per unit
volume, which is just F/(2TT)3 (where V is the volume of the metal), or
one-half of this when we take account of spin. Thus we write for the
distribution function:

/(k) = f[kx,ky,kz)dkxdkydkz (3.13)

In the absence of applied fields and when we thus have an equilibrium
distribution, the function/depends on k only through the energy E and is
just the Fermi distribution:

fo = l/[l+exp(E-EF)/kBT] (3.14)

Here E? is the Fermi energy which at the absolute zero is the same as E$
which we have already discussed.

3.3.2 The Boltzntann equation

We wish now to find out how the distribution function / changes when
the metal and hence the electron gas is subjected to external influences
such as electric or magnetic fields. To do this we follow the method that
Boltzmann used in treating the properties of classical gases. We focus
attention on a small region of phase space, here A>space, and ask how/(k)
at that point is influenced on the one hand by the applied fields and on
the other by scattering processes which tend to restore the electron gas to
its equilibrium state. Quite formally we write:

df/dt = (d//dOfields + (d//dOcollisions (3.15)

to indicate the two quite different processes that are going on. We are
concerned here only with steady-state conditions as they occur in, for
example, the steady flow of a current through a metal wire. Thus the left-
hand side of equation (3.15), which represents the total rate of change off
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with time, is zero. This means that the changes in / brought about by
fields are just compensated by the scattering or collision processes. We
now look at each of these in turn.

3.3.3 The influence of fields

Suppose that we apply a uniform electric field e in the x-direction to the
electrons in a metal in order to produce an electric current. The force
on each electron is ee where e is the charge on the electron. (We make it
an algebraic quantity, which would in this context be negative.) The
equation of motion of the electron with wave vector k we take to be of
the same form as that of the free particle (the quantum analogue of
Newton's second law with the rate of change of momentum written as
hdk/dt):

hdkx/dt = ee (3.16)

This implies that in a short time interval St all the occupied states/in k-
space are displaced by an amount:

(3.17)

Thus the new distribution/is the same as/o but displaced by bkx. Thus:

kz) (3.18)

Since we are concerned only with very small displacements in A>space (we
assume in effect that Ohm's law is obeyed) we can expand this and take
only the first term sp that we have, making use of equation (3.17):

f = fo-(dfo/dkx)ee8t/h (3.19)

Since, however, / 0 depends on kx only through E we can write:

= (dfo/dE)(dE/dkx) (3.20)

or, since dE/dkx = tivx, where vx is the x-component of the electron
velocity, we have:

/ = / 0 - (dfo/dE)hvx(ee/h)8t (3.21)

Finally, therefore, we get:

(d//d/)fields = -(dfo/dE)vxee (3.22)
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3.3.4 The influence of collisions or scattering

In considering the influence of scattering processes on the distribution
function / , we must bear in mind that these processes go on all the time
whether or not the electrons are in equilibrium. These scattering pro-
cesses maintain equilibrium when there are no perturbations (other
than temperature) and strive to restore equilibrium when it is disturbed.

We assume that at any point on the Fermi surface the rate of change of
/ d u e to scattering is given by:

(d/(k)/dOcollisions = -[/Ik) - /o(k)]/r (3.23)

where /o is the equilibrium distribution function. This implies that if at
any instant the actual distribution at a point k on the Fermi surface
differs from that at equilibrium, the distribution will, if left to itself,
return exponentially to equilibrium with a characteristic time r.

Let us now put together equations (3.22,3.23) and the Boltzmann
equation (3.15) so that we get:

-(dfo/dE)vxee - \f(k) -/0(k)]/r = 0 (3.24)

which on rearrangement gives:

/(k) =/0(k) - (dfo/dE)vxeer (3.25)

This is the distribution function that describes the electron population
under the combined influence of a steady electric field e and random
scattering processes characterised by a relaxation time r. We can now
use this to calculate the electrical conductivity of a metal.

3.4 The electrical conductivity

Let us apply an electric field ex in the x-direction of the metal and then
calculate the resulting current density j x in that direction. If vx is the x-
component of the velocity of an electron with charge e, then the current
density is given by:

j x = Zevx (3.26)

where the sum is over all the conduction electrons in unit volume of the
metal. It is, however, much easier to deal with an integral rather than a
sum so the next step is to make this transition by means of the distribu-
tion function. This gives us the fraction of states occupied in any small
region of A>space and we combine this with the fact that for unit volume
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of metal each electron state occupies a volume of 4TT3 in A>space. Thus
equation (3.26) can be rewritten:

J d 3 f c (3.27)

where d3k stands for an elementary volume of A>space. We now use
equation (3.25) for/(k) and obtain:

jx = (e/4n3) J[f0 - vxeexr(df0/dE)]vxd
3k (3.28)

The integral has two parts, of which the first involves/o; this contributes
nothing since it describes a distribution that is completely symmetrical
about the origin. The second involves dfo/dE; this is a function which, for
metals at temperatures with which we are normally concerned, is vanish-
ingly small for all values of E except those in the immediate vicinity of £o,
that is to say, within about ±k^T of E$. It is shown schematically in
Figure 3.2. This indicates that contributions to the integral come only
from regions in fc-space that hug the Fermi surface i.e. the constant
energy surface at E$. This suggests that we should choose our element
of volume d3k in a special way. We write the volume element as bShkn

where hS is an element of area of a constant energy surface and 6kn is an
element of length in A>space normal to 6S. Thus the element of volume in
fc-space is a small cylinder lying on a constant energy surface with its axis
normal to this surface, as pictured in Figure 3.3.

bkn has the direction of the velocity of the electrons in its neighbour-
hood and can be expressed in terms of this velocity. If the two neighbour-
ing constant energy surfaces linked by Skn differ in energy by 6E, we can
write

8kn = (dkn/dE)8E (3.29)

where dkn/dE = \/frv and v is the electron group velocity at this point.
Thus finally the volume element can be written as:

d3k={l/hv)dSdE (3.30)

If we put this in equation (3.28) we get:

j x = -(e2ex/4n3n)^(rv2
x/v)dS(df0/dE)dE (3.31)

where the first integral is over a surface of constant energy E and the
second over all energies.
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6fJ6E

Fig. 3.2 The Fermi function and its derivative for a degenerate gas.

E+bE

Fig. 3.3 Volume element between constant energy surfaces at E and E + 8E in
A>space.
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Since we shall almost always be dealing with metals in which the
electron gas is highly degenerate, we can make an important simplifica-
tion to equation (3.31): we can treat -dfo/dE as a delta function, since it

has the property that — (dfo/dE)dE =fo(O) — fo(oo) = 1. This implies
Jo

that only the surface at E$ contributes to the integral i.e. that only elec-
trons on the Fermi surface determine the conductivity. So finally we
have:

j x = (e2/4n3n)exr^v2
x/v)dS (3.32)

where the integral is over the Fermi surface. In taking r outside the
integral we are assuming it is the same over the whole surface, an assump-
tion valid for isotropic systems such as glasses but often not valid for
crystals.

Again, if we confine ourselves to isotropic systems, then we know that:

v' = v2
y = t = v2/3 (3.33)

so that more generally equation (3.32) becomes:

j=(e2/l2n3n)er ivdS (3.34)

If we compare this with Ohm's lawy = ere we see that the conductivity is:

a=(e2r/l2n3h) IvdS (3.35)

In cubic and, of course, isotropic metals a is a scalar quantity.
If we now apply this to conduction by isotropically distributed elec-

trons, we can put for their velocity at the Fermi level: mv = ftk^ where v is
the same over the whole surface. Moreover jdS = Anklp and if we also
put for the number of electrons in states inside the Fermi surface
n = 47rfcjy3(47r3), we get:

a = ne2r/m (3.36)

which is just the simple Drude expression for a.
Almost everything that we have derived here can be applied to amor-

phous metals, in particular equations (3.31), (3.35) and sometimes (3.36)
provided that the mean free path of the electrons is large compared to
their wavelength at the Fermi level. There are some many-body and
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multiple-scattering effects that we shall need to introduce but the basic
ideas considered so far will take us some way in our understanding of
metallic glasses.

3.5 Conductivity and diffusion coefficient of conduction electrons

There is another way of writing the conductivity of a metal that will be
useful to us later. We start with equation (3.28) and, because the first
term in the integral contributes nothing, we rewrite it as:

jx = -(e2e/4n3)^r(df0/dE)v2
xd

3k (3.37)

We now use equation (3.33) to replace v2 by v2/3. We also exploit the
isotropy of the electron properties to replace d3k/4n3, which is just the
number of conduction electron states in the volume element d3fc, by
N(E)dE. N(E) is the density of such states with energy E and so
N(E)dE is the number of states with energies between E and E + dE.
Because r, dfo/dE and v depend only on E, we can in this way replace
the integral over k with a more convenient integral over E. We now have:

:J(rv2/3)(d/0/d£)JV(£)d£ (3.38)

where I have dropped the x-subscripts because the metal is isotropic. If
now we use the fact that the function dfo/dE approximates to a 6-func-
tion at the Fermi level, we can carry out the integration and find for the
conductivity:

a = e2(rv2/3)N(EF) (3.39)

where the density of states is now that appropriate to the Fermi energy.
Finally, we know from kinetic theory that the diffusion coefficient D of a
gas of non-interacting particles with velocity v and mean free time
between collisions r is given by:

D = v2r/3 (3.40)

so that equation (3.39) can be written:

a = e2DN(EF) (3.41)

This expression, often called the Einstein relation, tells us that the con-
ductivity of a metal or alloy with isotropic properties is proportional to
the density of states at the Fermi level and to the diffusion coefficient of

J =
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the Fermi electrons; it is frequently used in discussions of the conductivity
of metallic glasses.

Equation (3.40) is usually derived for a gas of particles scattering off
each other but it applies equally well if the particles are scattered by other
independent scatterers, which thus determine the mean free path of the
gas particles. This corresponds to the conditions in which we shall apply
it. The derivation implies that the particles are independent, that the
material is isotropic and that the scattering processes randomise the
directions of the scattered particles. This last condition in turn implies
that r refers to what has been called 'catastrophic' scattering i.e. the
electron loses all memory of its past history. This is consistent with its
significance in equation (3.39) for the electrical conductivity.

In all the derivations based on the Boltzmann equation, we are assum-
ing that the electrons follow semi-classical paths in the sense that there is
no interference between the wave functions at different places along their
path. This is valid provided that the mean free path, /, between scattering
events is very long compared to the electron wavelength. When this is no
longer true, new and important features come into the story.
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Scattering

The results that we have just obtained are rather formal but do give us
some important insights into the nature of electrical conduction in
metals. We see from equation (3.35) that this conductivity depends
entirely on the properties of the conduction electrons at the Fermi
level. Moreover, the properties involved are of two distinct kinds: the
first kind relates to the dynamics of the electrons, as represented by the
distribution of electron velocities over the Fermi surface. The second
kind represented by r is concerned with scattering, our theme in this
chapter.

As we have already noted, scattering in a metal arises from anything
that upsets the periodicity of the potential: disorder of the ionic positions,
which is paramount in metallic glasses; random changes in chemical
composition, which are of great importance in random alloys; impurities,
physical imperfections, thermal vibrations, random magnetic perturba-
tions and so on. Let us therefore see how the scattering from some of
these can be treated.

In this chapter we deal in section 4.1 with some basic ideas about
scattering theory; in 4.2 there is a very brief discussion of Fourier trans-
forms because they appear so frequently in scattering problems; in 4.3 we
look at the influence of scattering angle on resistivity; in 4.4 at the effect
of the Pauli exclusion principle on scattering; in 4.5 we consider electron
screening in metals because the mobile electrons can markedly alter the
scattering potential by electrical screening of the scatterer; and in 4.6 the
pseudopotential because this has been used very successfully to represent
the scattering potential in some simple amorphous metals.

34
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4.1 Some definitions and formulae of scattering theory

Suppose that a beam of electrons all with velocity v falls on a set of fixed
scattering centres, N per unit volume, with scattering cross-section a and
sufficiently far apart that they scatter independently. The mean free path
for scattering is then 1/Ncr and the mean time between scattering events is
r = l/Nav. a refers to the total scattering cross-section, integrated over all
scattering angles. We shall need to pay attention to the angle through
which an electron is scattered and so the differential cross-section is
important for our purposes. Thus we think of the scattering into an ele-
mentary solid angle dQ at polar angles 6, cj> to the direction of the beam,
the z-direction, say. The differential cross-section is then dcr(#, <j))/dQ; in-
general we assume that the scattering potential has spherical symmetry so
that there is no dependence on <j) (see Figure 4.1).

We now consider in outline how to calculate the cross-section for
scattering of free electrons from a single scattering centre whose potential
is represented by V(r) where r is measured from the centre of the scat-
terer. The range of the potential is a so that V = 0 when r > a. This
means that the scattered particles or waves then have the same energy
or frequency as before they were scattered.

Let us assume that the electron in the presence of the scatterer has a
wavefunction -0k (r) and we wish first to know what is the probability that
it will be scattered into a specific state </v in which we are interested. The
scattering probability per unit time is then given by Fermi's golden rule:

Pk,k = (2n/h)\(<%,\V\rM\2N(Eo) (4.1)

Here (</>£/|K|̂ k) is the matrix element of the scattering potential between
the two states involved. N(Eo) is the density of states at energy E$ into
which the electrons can be scattered.

Parallel beam of particles
in z-direction

Scattering
centre

V
z-direction

Fig. 4.1 Scattering of particles from a spherically symmetrical scattering centre.
The particles are scattered through an angle 0 into an element of solid angle dQ.



36 Scattering

To proceed further, we make a substantial approximation, which is
commonly made, although better approximations are now well developed
and often used. We replace the initial state wavefunction ifa by 0k, the
wavefunction of the electron in the absence of the scattering centre. This
approximation, known as the first Born approximation, is valid if
{V/\mv2)(ka) <C 1. I have written the condition in this form to bring
out the physics implied by the restriction. For the first bracket to be
small, the kinetic energy of the electron must be large compared to the
strength V of the scattering potential; for the second bracket to be small,
the wavelength of the electron must be large compared to a, the range of
the scattering potential. Thus if one bracket amply satisfies the condition
it takes the pressure off the other. In practice we usually think of the Born
approximation as useful for particles of relatively high energy. Moreover
if we are permitted to treat the electrons as free particles, the unnorma-
lised wavefunctions corresponding to k and kf are exp(ik • r) and
exp(ik' • r); we can omit the time-dependent factor because it is
unchanged in this elastic scattering process. Thus the matrix element in
equation (4.1) becomes:

= |[exp(-ik / • r)]F[(exp(ik • r)]d3r (4.2)

where d3r is an element of volume and the integration is over all space.
We now write k' — k = K where K is called the scattering vector.
Equation (4.2) can then be written as:

^kk' = [ V(r) exp(iK • r)d3r (4.2a)

which is the Fourier transform of V. It means that the scattering from k
to k' involves that Fourier component q of the scattering potential which
is just equal to the scattering vector K i.e. the difference between the
outgoing and incident wave vectors. This in turn means that the promi-
nent wave vectors in the scattered waves will be those corresponding to
the strong Fourier components in the scattering potential. This seems
physically very reasonable. Indeed we encountered a similar result in
our earlier discussion of the determination of the structure of metallic
glasses by scattering experiments and we shall frequently find that
Fourier components and transforms provide a convenient language in
which to describe the results of scattering processes. Let us therefore
familiarise ourselves a little with these ideas before going further.
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4.2 Fourier transforms

Electrons are described in terms of their wavefunctions whose important
features are their frequency UJ and wave vector k. The wave vector is as its
name implies a vector, which can therefore be resolved into components
along directions of interest. That is why it is used in preference to the
wavelength, which is more readily visualised but does not have this desir-
able property. That is also why A>space or reciprocal space plays such a
prominent role in discussions of electrons in metals.

One of the valuable features of Fourier transforms is that it enables us
to express some quantity (electrostatic potential, say) that varies from
place to place in real space in terms of a set of periodic variations that can
be compared directly with those of the electrons of interest. This sort of
analysis is familiar in sound. A long note of a single frequency produces a
sinusoidal variation in air pressure; this is one method of describing its
properties, in this case its behaviour in real time. Alternatively it can be
described by its frequency spectrum which here consists of a large spike at
the signal frequency together with some smaller amplitude at other fre-
quencies associated with the beginning and ending of the sound wave.
More complex sounds will give rise to more complex spectra. Just as an
infinitely long signal of a single frequency produces a delta function
spectrum at that frequency, so reciprocally an infinitely sharp spike of
signal in real time has a frequency spectrum involving a uniform distri-
bution of the full (infinite) range of frequencies. Representations of
variations in real space are analogous. The Fourier transform of a
delta function in real (or direct) space is a constant distribution of
wave numbers in reciprocal space.

A central feature of the study of electrons in crystals is the crystal
lattice itself. This, in its ideal form, is a three-dimensional periodic
array of points filling all space. Its Fourier transform is another periodic
array of points forming a lattice in reciprocal space. This so-called reci-
procal lattice represents all the periodicities that are present in the direct
lattice.

If we wish to determine what waves will be scattered elastically from
such a crystal lattice we first represent the incident wave by a vector k
drawn from one of the reciprocal lattice points chosen as origin; then we
draw from its tip another vector of equal length to represent the scattered
wave k' (see Figure 4.2). This represents a possible scattering process only
if the resultant vector K = k' — k lands on another reciprocal lattice point
(Figure 4.2(b)). When this happens, it defines a possible Bragg reflection.
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Reciprocal lattice point

Fig. 4.2 Reciprocal lattice of a crystal, (a) No scattering possible because the
vector k + k' does not end on a reciprocal lattice point, (b) Possible scattering
process because k + k' does so end.

If it lands anywhere else it means that there is no Fourier component of
the lattice potential with which to interact and so no scattering can occur
(Figure 4.2(a)).

We shall often be concerned with the Coulomb interaction between
electrons and between electrons and ions. In a metal the conduction
electrons and positive ions screen the interaction and produce a screened
Coulomb potential of the form:

V(r)=e2exp(-ar)/e0r (4.3a)

where a is the reciprocal of the screening radius. The Fourier transform
of this function, which will be useful to us later is:

V(q)=e2/e0(q
2 + a2) (4.3b)
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4.2.1 Better scattering approximations

There are higher approximations in scattering theory than the first Born
approximation and, as the name implies, we can improve on the first
approximation by using higher-order approximations to the incident
wave. Another technique is known as phase shift analysis. In this the
incident and outgoing waves are spherical waves and since we are assum-
ing a spherically symmetrical scattering centre, there is conservation of
angular momentum in addition to that of energy and number of particles.
The consequence is that the only property of the wave that can change on
scattering is its phase. The analysis gives the phase shifts of the different
angular momentum components, which are labelled s,p,d,f, . . . accord-
ing as the particle has zero, one, two, three . . . units of angular momen-
tum about the scattering centre expressed in terms of ft. This is often a
convenient way of describing the scattering especially when one angular
momentum component is known to be dominant.

4.3 The influence of scattering angle

The effect of a scattering process on the electric current must depend on
the angle through which the electron is scattered. Suppose that we apply
to the metal an electric field in the x-direction. The contribution to the
electric current of a given electron is proportional to the x-component of
its velocity and so when it is scattered the change in its contribution is
proportional to the change in this component. Thus:

4/ocK-v*) (4.4)

where the dash indicates the quantity after scattering. Moreover if the
electrons can be treated as quasi-free as is often true in simple metals then
their velocities are proportional to their wave vectors so we can write:

AJ<x(k'x-kx) (4.5)

where kx and k'x are the x components of the ^-vector before and after
scattering.

If we take the special case of an electron initially moving in the x-
direction, the change in its x-component of k on being scattered through
an angle 6 is (see Figure 4.3):

Ak = kF(l -cos6) (4.6)

Moreover this turns out to be quite generally true of electrons on a
spherical Fermi surface so that if the probability of scattering from
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x- direction
| k | = | k ' | = kF

Fig. 4.3 The change of A: on scattering: Akx = kp(\ — cosO).

state k to state k' is P(0), which depends only on 0, the angle between k
and k', then the relaxation time r appropriate to electrical conductivity is
given by:

l / r = P(0)(l -COS6) (4.7)

This result can be expressed in terms of the differential cross-section for
scattering by using the relation:

P(6) = vda/<W (4.8)

Equation (4.7) shows that, as we would expect, large-angle scattering is
much more effective in reducing the current than small-angle scattering.
This is particularly important when we come to consider scattering by
phonons.

4.4 The influence of the exclusion principle

Conduction electrons are subject to the Pauli exclusion principle, which
we have so far ignored in our discussion of scattering. At first sight we
might think that as the temperature rose the spread of states into which
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electrons could be scattered would increase in proportion to the tempera-
ture and that the resistance would rise correspondingly even though the
scattering didn't change. But we would be wrong. Let us first consider
scattering processes that take electrons out of the state k into state k'.
This involves the probability that k is occupied, the probability that k' is
empty and the probability P(k,k') of a transition between them. Then we
must consider the inverse scattering processes that take electrons from
state k' into k. This involves the probability that k' is occupied, the
probability that k is empty and the probability P(k',k) of a transition
between them. Because of the requirement of detailed balance at equili-
brium, P(kjk') must equal P(k',k) and so finally it turns out that the
expression for the rate of change of the population of any particular k-
state is exactly what we would have got if we had ignored the exclusion
principle. That is why if the scattering cross-section is independent of
temperature the associated resistivity is likewise independent of tempera-
ture.

4.5 Electron screening in metals

One important difference between an isolated scattering centre and one in
a metal is that in the metal the conduction electrons, being mobile, can
move to screen the field of the scattering centre. Let us first consider a
simple example, Thomas-Fermi screening, which has application to
metallic glasses.

An impurity is introduced into the metal so replacing an ion of the host
metal by one whose charge differs from that of the host by Ze where e is
the magnitude of the electronic charge and Z is the valence difference
between impurity and host.

Figure 4.4(a) shows the filled states and the potential energy of an
electron at the bottom of the band in the metal before the impurity is
introduced; in this approximation it is everywhere constant. The positive
ions of the pure metal are represented by a uniform positive charge of N$e
per unit volume to compensate exactly for the negative charge on the No

conduction electrons per unit volume. Figure 4.4(b) shows how the
potential energy at the bottom of the band is changed when we introduce
the impurity. If Z is positive, the impurity introduces an excess of elec-
trons which tend to stay in its neighbourhood filling up the region of low
potential around it shown in the figure. (If Z is negative, the electrons are
correspondingly repelled.) Close to the impurity the change in potential
hcj) is just the bare Coulomb potential Ze/4ne$r where r is the distance
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Bottom of band

Distance along band

(a)

CD

Distance along band

(b)

Fig. 4.4 Occupied energy states inside metal (a) before and (b) after introducing
an impurity. Note the change in energy of an electron at the bottom of the band
corresponding to the change in potential there.

from the ion. At large distances, because of screening, the change in
potential at the bottom of the band goes to zero, as indicated in the
figure.

To find the form of the screened potential 50 we use Poisson's equation:

= -p/e0 = -e[N0 - N(r)}/e0 (4.9)

where p is the charge density and N(r) is the number of electrons per unit
volume at a distance r from the impurity. The second term in the bracket
gives the local density of charge due to the electrons and the first term that
of the uniform positive background due to the ions, assumed to be fixed.

We now make use of the fact that if the electrons are in equilibrium the
Fermi level, which represents the chemical potential of the conduction
electrons, remains constant everywhere. This implies that where the
potential energy of the electrons is reduced in the neighbourhood of
the ion their kinetic energy must increase to compensate for it. The
required kinetic energy is related to the local density of electrons and
so allows us to express N(r) in terms of the change in the local electro-
static potential 50 that appears in Poisson's equation. For simplicity and
as a good approximation in the circumstances where we shall employ it,
we assume that the metal is at absolute zero. The argument goes as
follows. Since the potential at a distance r from the impurity differs
from that without the impurity by an amount 50, the corresponding
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energy change is ebcj) and so the number of electron states required to
compensate for this is:

8/1 = D(EF)e5(/> (4.10)

where D(EF) is the density of states at the Fermi level. (We use D instead
of N to avoid confusion with TV the number density of electrons.) Thus in
equation (4.9), N(r) — No = 8n = D(Eo)eS</) so that we get:

\72b(f) = e2D(Eo)S(t)/6o (4.11)

The solution to this equation that satisfies the boundary conditions that
we specified above is:

50 = +Ze exp(-xr)/47ie0r (4.12)

where X
2 = e2D(E0)/e0 (4.13)

X has the dimensions of reciprocal length and 1/x is called the screening
radius; it is a rough measure of the effective range of the screened poten-
tial. The bare Coulomb potential with which we started is now exponen-
tially damped. Thus, as we see from equation (4.13), if there is a high
density of mobile electrons and so a high density of states at the Fermi
level the screening is strong and the effective radius small and vice versa.

The Fourier transform of equation (4.12) is:

= Ze/D(E0)[q2 + X
2) (4.12a)

Notice that this increases as q tends to zero, whereas according to equa-
tion (4.12) 5<f)(r) goes to zero as r tends to infinity. This behaviour as a
function of q is important to us later and we shall there discuss its sig-
nificance in more detail.

This result shows how we can take account of electron screening of a
single scattering centre. There are better approximations and the one
most often used for the ionic potential in simple metals is the Lindhard
screening function. It acts in a manner analogous to the dielectric con-
stant in an insulator. If the Fourier component corresponding to the
wave number q of the bare (unscreened) potential is V(q), the screened
potential can be written as:

U(q) = V(q)/e(q) (4.14)

where

e(q) = 1 + (3K2N0/q
2EF){l + [(1 - /32)/2/?] In |(1 + /?)/(! - /?)|} (4.15)
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Here (3 = q/2kF. Equation (4.15) is the Lindhard function for screening
by a highly degenerate gas consisting of iVo quasi-free electrons per unit
volume, whose Fermi energy is EF and Fermi wave vector kF.

Without going into any detail, we can understand some of the physics
underlying this expression as follows. The component q of the screening
function comes into play when an electron is scattered from k to k' (both
on the Fermi surface) so that q = K = k' — k where K is the scattering
vector. This at once tells us that q must lie between 0 and 2kF. This also
implies that the electron's ability to screen depends on the wavelength
that results from the scattering. For example the shortest wavelength
available arises from the scattering of an electron diametrically across
the Fermi sphere, which produces a value of 2kF for the wave number.
This therefore sets a limit to the perfection of screening that can be
achieved by the conduction electrons and leaves a residual ripple in the
screening charge. Such ripples are referred to as Friedel oscillations and
are implicit in equation (4.15). At the long-wavelength end (i.e. as q tends
to zero and therefore describes features at large distances) the expression
becomes the same as that for Thomas-Fermi screening. In this limit as we
saw above the screening gets better and better and ultimately becomes
perfect, thereby cutting off any long-range effects of the unscreened
Coulomb force.

Equation (4.15) implies that the A>states of the electrons are well
defined and can satisfy the above relation between k, k' and q. In a
disordered system, however, the wave trains that represent the electrons
are limited by scattering to an average length of /, the mean free path, and
this produces uncertainties in k and kf of order 1//. Consequently if
q < 1//, q becomes meaningless and under these conditions the disorder
will upset the screening, an effect we shall discuss in more detail below.

4.6 The pseudopotential1

For non-transition metals the so-called pseudopotential provides a com-
paratively simple way of describing the potential of an ion as seen by a
conduction electron. The great problem of this electron-ion potential is
that at distances close to the nucleus it becomes very large and ultimately
diverges. The situation is saved, however, because inside the ion where this
happens, there are the so-called core electrons which form completely
closed shells and through the operation of the Pauli exclusion principle
these repel the conduction electrons that seek to intrude. They provide an
effective repulsive potential inside the ion and also partly screen the con-
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duction electrons from the full nuclear charge. Outside the ion core we
would thus expect the potential to be the Coulomb potential of a point
charge Ze (we assume that the ion is spherical) where Z is the valence of
the ion i.e. the number of electrons lying outside the closed shells. This
potential is further screened by the conduction electrons which, as we have
seen, can move very rapidly into regions of low potential.

Strictly, the effect of the core electrons should be represented by mak-
ing the conduction electron wavefunctions orthogonal to the ion core
states. Alternatively the potential can be made into an operator acting
on free electron wavefunctions to achieve the same effect. In some ver-
sions of the pseudopotential method, however, the operator is treated as
aa algebraic quantity and its effect is simulated by replacing the ion core
by a repulsive term in the potential.

The combination of the repulsive term and the screening by the con-
duction electrons has the effect of removing the troublesome divergent
inner potential and making the electron-ion pseudopotential weak
enough that perturbation methods can be used in calculations. This
makes the calculation of the necessary matrix elements straightforward
and justifies the application of the nearly-free-electron model to many
non-transition metals and alloys in crystalline, liquid and glassy form.

In discussing the pseudopotential, as in our discussion of scattering
probabilities, it is convenient to work in terms of its Fourier transform.
Thus we write it as follows:

U(q) = [-(Ze2/eoq
2) + A]/Qoe(q) (4.16)

where Qo is the volume per atom, A is the repulsive term and e(q) is the
Lindhard screening function already discussed in section 4.5.

The first term in the square bracket is the Fourier transform of the
Coulomb potential of the ionic charge Ze\ this is of long range and so
dominates at small values of q. The repulsive part of the potential can
take many forms; here it is represented in real space by a delta function of
strength A at the origin, whose Fourier transform is just the constant A.
This form was used by Harrison, who has tabulated the value of A (he
uses the symbol (3) for many ions. This repulsive term is positive and
dominates at short range i.e. at large values of q.

The screening by the conduction electrons is described by e(q) which as
we saw earlier acts as a dielectric function. As q —> 0 we can use Thomas-
Fermi screening as given in equation (4.12a) and write equation (4.16) as:

U{q) = -[Ze2/eoq
2][q2/(q2 + a2)} (4.17)
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with a2 = N(Eo)Ze2/eo and N(Eo) the density of states. In the limit of
q = 0, U(q) becomes simply —\/N(Eo). This is now constant so that
there is no electric field and the screening is perfect. Moreover, the
value of the pseudopotential in this limit has become independent of
the character of the ion, a very remarkable result. One way to under-
stand this apparently strange consequence of equation (4.17) is to recog-
nise that the Fourier transform of a potential is closely related to the
diffraction pattern formed by waves scattered from that potential (here
the screened Coulomb potential). The component q is then the scatter-
ing vector of the diffraction pattern and, as we saw earlier, is related to
the scattering angle 0; for Fermi electrons q = 2k? sin 6. Therefore q = 0
corresponds to those waves that pass through the scattering centre
undeflected. They are analogous to the central maximum of the diffrac-
tion pattern of light falling normally on a slit. The light that contributes
passes through without any change of phase. Here the details are dif-
ferent but the principle is the same. We shall come across this effect
again later.

The great advantage of the pseudopotential is that for a given density
of screening electrons it is quite independent of its surroundings so that
for a given ion it can be used when the ion is an impurity or part of the
host metal or the constituent of an alloy. The screening function e is
calculated for free electrons at a density appropriate to the host metal
or alloy.

The main features of the pseudopotential are illustrated in Figure 4.5
where you see that it begins at q = 0 large and negative, changes sign in
the region of q = 2&F and continues positive, although it may thereafter
change sign again. These features have important implications for the
electrical properties of amorphous metals as we shall see.

The pseudopotentials are a valuable approximation but they have
important limitations. They are not unique; they depend on the energy
of the electron concerned, although this can often be ignored in the
energy range for which they are chosen and used; the formalism is not
valid when electrons from incomplete inner shells such as d-electrons
are also involved. Nonetheless these potentials can be used to correlate
many different properties of non-transition metals, in particular, elec-
tron transport, the band structure and Fermi surface, defects and cohe-
sion. Often, for example, the empirical Fermi surface in the crystal is
used to fix the parameters of the pseudopotential, which can then be
used for other calculations, notably those relating to the amorphous
state.
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V(q)

2/cF

Fig. 4.5 The main features of the Fourier transform of the pseudopotential
(schematic).

In the next chapter all the diverse elements of this and the preceding
chapter come together in the Ziman theory of simple liquid metals to
show that, at least in some examples, we can advance a long way in
accounting for the electrical conductivity of amorphous metals.
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Simple liquid metals: Ziman theory

5.1 A-states in disordered metals

The simplest amorphous metals are probably the liquid non-transition
metals such as liquid sodium or liquid zinc. The simplicity arises partly
because no d-electrons are involved and partly because the liquids are
of a single component whereas by contrast all metallic glasses involve at
least two components. So let us see how far we can understand the
electron transport of these amorphous metals before we tackle systems
with the additional complication of two or more components.

As soon as we confront the problem of electron transport in highly
disordered systems like liquids or glasses several questions spring to
mind. How useful is the concept of a &-state when we are so far
from having translational symmetry? How valid is the concept of a
Fermi surface? The answers depend, not surprisingly, on the degree
of scattering involved. Thus it is not just the degree of disorder involved
but also the strength of the individual scattering processes. If the mean
free path of the electrons is / and the electron wavelength at the Fermi
level is A we require that / be much greater than A. More commonly we
choose the almost equivalent condition k^l > 1 where k? = 2n/X. In a
highly disordered system the mean free path tends to be only weakly
temperature dependent so that the condition itself is essentially tem-
perature independent. Experience with other systems of limited mean
free path, for example, calculations on concentrated random binary
crystalline alloys which give results in accord with experiment, suggests
that a Fermi surface and its associated ^-vectors for the conduction
electrons are useful and satisfactory concepts provided that kpl^> 1.
From the conductivity of liquid sodium, for example, we can infer
that at its melting point k?l is of the order of 1000, so amply satisfying
the above criterion.
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When an electron is heavily scattered its quantum state can no longer
be represented by unique values of its energy E and wave vector k.
Instead the range of values of E and k (in a particular direction) that
are needed is shown by the 'spectral function' of the electron. Thus the
E—k curve is no longer a two-dimensional graph but becomes a three-
dimensional picture. The dispersion curve now looks like a range of hills
rising above the E—k plane with the height above the plane at any point
representing the probability density that the electron should have that
value of E and k. The cross-section through the mountain range parallel
to the is-axis shows the spread of k values needed to represent the state at
that value of E and the cross-section parallel to the &-axis the spread of E
values. If there were no scattering the E—k curve would be a line of 6-
functions.

5.2 The Ziman model

The low field Hall coefficient of many of these metals is free-electron-
like i.e. has the value Rn = l/ne where n is the number of conduction
electrons per unit volume (see Chapter 9). This suggests that as a good
first approximation we can treat these liquid metals as quasi-free-elec-
tron metals with spherical Fermi surfaces and an electrical conductivity
a given by the simple Drude-type formula:

a = ne2r/m or p = m/ne2r (5.1)

where m is an appropriate mass, which we take to be the free-electron
mass, and 1/r is the scattering probability. For our purposes, it is more
convenient to use the equivalent expression (3.39):

a = e2v2N(E)r/3 with p=l/a (5.2)

If this simple idea is correct the problem of calculating p resolves itself
into that of calculating r. This raises two questions: first, how do we
calculate and describe the structure of the liquid? This is a question not
yet fully answered. Second, how do we calculate the diffraction of the
electron waves from this amorphous and hence rather complex structure.
Ziman in 1961 suggested a way of answering both these questions simul-
taneously by use of the structure factor of the liquid. If we know this
either from neutron or X-ray experiments or by calculation, we can use
this directly to calculate the probability of electron scattering. As we saw
in Chapter 2, the structure factor gives the relative intensity of the waves
scattered from the target (here the liquid metal) when plane waves are
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incident on it (here the conduction electrons); the intensity is given as a
function of scattering angle. If therefore we combine this information
with the scattering cross-section of an individual ion of the liquid, we
can get the total scattering rate of the electrons.

As we saw earlier, the structure factor is usually expressed in terms of
the scattering vector K defined in terms of the wave vectors k and k'
before and after scattering

K = k ' - k (5.3)

For electrons on a spherical Fermi surface

K=2kFsin(6/2) (5.4)

where 6 is the angle between k and k' and the radius of the Fermi surface
is kF. The maximum value of the scattering vector K is thus 2kF i.e. when
the scattering is diametrically across the Fermi sphere.

On the basis of these ideas we now wish to calculate the probability
that a conduction electron in a simple liquid metal is scattered. We start
from equation (4.1) and convert it into the probability per unit time (1/r)
that an electron with velocity vF is scattered into a solid angle dQ. We
also take account of the influence of scattering angle 0 on resistivity with
the factor (1 — cos#). Thus we find:

= vF l(2n/h)\ Vkk>\2N(E)(\ - cos0)dQ/4n (5.5)

where Fkk> is the appropriate matrix element for the transition from state
k to k' and N(E) is the density of states at the appropriate energy, here
the Fermi energy of the electrons EF. Usually Kkk' is calculated in the
Born approximation using a screened pseudopotential to represent the
electron-ion interaction (see section 4.6), modified by the structure factor
of the liquid S(K) to take account of diffraction effects of the disordered
ionic arrangement in the liquid.

We now put equation (5.5) into equation (5.2), with dQ = sin OdOdcf) to
get:

p=[3/(evF)2][vF2n/h}\ f S(K)\V(K)\2(l - cos<9) sin<9d(9d0 (5.6)
Jo Jo

If we now choose the polar axis in the current direction, we can integrate
over cf) since there is symmetry about this direction. Finally, since
(1 -cos#) = 2sin2(#/2) and sin# = 2sin(0/2)cos(#/2), we can rewrite
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the expression in terms of sin(0/2) and then substitute sin(0/2) = K/2kF

(see equation (5.4)). We then find:

p= (\2n/e2vFh) f \Vkk>(K)\2S(K)(K/2kF)3 d(K/2kF) (5.7)
Jo

This is the final expression for the resistivity of a disordered metal whose
structure factor is S(K) and Fermi radius kF.

There are a number of approximations in this result.

1 It relies upon the notion that the electrons are free-electron-like.
2 The Born approximation is used.
3 Linear screening is assumed which implies in effect that the ion cores

do not overlap each other.
4 Multiple scattering is ignored.
5 We have assumed that elastic scattering is all that matters so that

inelastic scattering and the consequent change of energy have been
neglected; these can be incorporated into the argument without too
much difficulty but their contribution is not usually very significant.

From equation (5.7) we see that the K3 factor gives a heavy weighting to
contributions to the integral at high values of K, that is, near the upper
limit of K around 2kF. It is therefore very important to know accurately
the value of the pseudopotential in this region. We must also be able to
determine accurately the value of kF, which is determined by the number
of conduction electrons per unit volume of the metal.

5.3 The temperature dependence of resistivity

For many simple liquid metals the approximations mentioned above are
quite adequate and the theory gives a good representation of the con-
ductivity of many simple liquid metals.

The idea of using the structure factor in this way was introduced by
Ziman, following in the steps of earlier workers. By using this idea and
combining it with the pseudopotential, he revolutionised the subject and
thereby suggested natural explanations of many aspects of liquid metals
that had previously been baffling.

One example is the temperature dependence of their resistivity. It is
found that the temperature coefficient of resistivity, (\/p)dp/dT, mea-
sured at constant volume for the liquid just above the melting point is
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positive for monovalent metals and negative for divalent metals. The
Ziman theory offers a convincing explanation of this observation.

When the temperature changes (at constant volume), the structure
factor S(K) is the only quantity that changes significantly so that if we
know how S(K) changes, the temperature dependence of the resistivity
can be found. To understand how the valence of a liquid metal influences
its resistivity we must understand something of the shape of the structure
factor and of the pseudopotential, and of their position relative to 2kF.
These are illustrated in Figure 5.1. The essential features are twofold.
First, the shape and position of the first peak of the structure factor
plotted as a function of Ka (where a is the mean separation of the ions
and varies as Qx^) is roughly the same (though not in detail) for all the
simple metals. This comes about because as we saw earlier the peak in the
structure factor occurs at a value of roughly 2n/a. Similarly the general
pattern of the pseudopotential plotted in the same way is approximately
the same. Second and very important, the value of 2kF varies system-
atically with the valence n of the metal. Suppose there are N ions in a

K

V(K)
2kF 2/cF

(Mono-valent (Divalent
metals) metals)

Fig. 5.1 The structure factor S(K) and pseudopotential V(K) of liquid metals
(schematic).
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volume Q. In a free-electron-like metal kF is determined by the relation:

4nk3
FQ/\2n3 = Nn (5.8)

which shows that kF varies as n1^ for a fixed density of ions i.e. for a
given value of a. Thus the value of 2kFa is 21/3 or about 25 % larger for a
divalent metal than for a monovalent metal. From this it transpires that,
as indicated in the figure, the value of 2kF falls to the left of the peak in
S(K) for the monovalent liquid metals and to the right for divalent or
higher-valent metals.

We are now in a position to discuss the temperature dependence of p.
As the temperature increases the liquid becomes more disordered and so
tends to become more gas-like. We can therefore expect that S(K) will
tend towards unity at all values of K. Where S(K) is below unity it tends
to rise and where it is above unity to fall. This means that at the lower
values of K which determine the value of p for the monovalent metals
(remember that in the integral in equation (5.7) K goes from 0 to 2kF) the
value of S(K) everywhere increases, thereby increasing the value of the
integral and hence that of p. So for these metals p increases with tem-
perature and the temperature coefficient is positive. For the divalent
metals, however, the main contribution to the integral comes from
around the region of the peak in S(K) where now the values of S(K),
being greater than unity, are decreasing. So p diminishes and its tempera-
ture coefficient is negative.

This is just one example of the successes of the Ziman theory. It can
also account for the magnitude of the resistivities of simple liquid metals
at their melting points as illustrated in Table 5.1.

Table 5.1 Resistivity of some simple liquid metals.

Metal

Li
Na
K
Rb
Cs
Zn
Al
Pb

Data from Faber (1969)

Pexp.
(lift cm)

24.7
9.6

13.0
22.5
37
37
24
95

Aheory
Gift cm)

25
7.9

23
10
10
37
27
64
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The theory can also tackle the problems of the conductivity of liquid
metal alloys. Now instead of the structure factor of the pure metal the
partial structure factors of the alloy must be used; in a binary alloy of
components A (concentration c\) and B (concentration C2), these are
SAA? SBB and SAB

 a s w e n a v e already discussed in relation to the struc-
ture of metallic glasses in section 2.5. The pseudopotentials of the two
constituents VA and VB are used to describe the scattering potential and
the factor |Fkk ' | S(K) for a single component is replaced by:

V2
A(K)Cl[SAA(K) - 1] + V2

B(K)c2[Sm - 1]

The Lindhard screening function is that appropriate to the density of
the conduction electrons in the alloy. To calculate this density we need to
use the valence of the two components, their concentrations and the
molar volume of the alloy at the composition under study. Thereafter
the calculation is analogous to that above.

Strangely enough we have been able to discuss the resistivity of the
liquid metals, which exist only at high temperatures, in terms of elastic
scattering because this is so overwhelmingly important in both the mag-
nitude and the temperature dependence of the resistivity. On the other
hand when we come to the metallic glasses, which so closely resemble
liquids except that they can exist at low temperatures, we have to take
into account inelastic scattering. This means that before we consider
glasses we have to familiarise ourselves with some aspects of phonon
behaviour in disordered systems, in particular, how they scatter electrons.



6

Phonons in disordered systems

6.1 Normal modes in glasses

Thermal energy causes the ions in a metallic glass, as in a crystal, to
vibrate about their mean positions; in a glass there may be additional
ionic motion in which ions actually shift between two or more sites but
we ignore this for the present. The complex vibrational motion can, as a
first approximation, be resolved into a superposition of normal modes,
each of which is to this approximation a harmonic motion independent
of all the other modes. This ignores anharmonicity and tunnelling
modes, which can be very important in glasses. For our present purposes
we take the normal mode description as adequate but bear in mind its
limitations. These modes introduce into the solid changes in charge
density that are periodic in time and cause corresponding changes to
the potential seen by the conduction electrons. These changes scatter the
electrons.

When such harmonic motions are quantised we associate with each
mode phonons in accordance with the intensity of the particular mode.
In disordered materials the normal modes of vibration exist although
they are not necessarily extended waves; some may be localised to the
neighbourhood of particular ions. As long as the vibrations are quasi-
harmonic, however, phonons are a valid concept in disordered materials
although it may not be possible to assign to them a well-defined wave
vector if the mode is strongly localised. Specific heat measurements on
metallic glasses have demonstrated that such glasses show larger anhar-
monic effects at higher temperatures than do crystals (as might be
expected); nevertheless we shall treat the phonons in these materials as
essentially the same as in crystals, except for their spectrum of frequencies
and the general caveat noted above.
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6.2 Scattering of electrons by phonons

What is the effect of phonons on electrons in metallic glasses? A phonon
of frequency UJ and wave vector q interacting with an electron of energy E
and wave vector k increases the electron energy by hu; and changes its
wave vector to:

k' = k + q (6.1)

Alternatively the electron can emit such a phonon, reducing the energy of
the electron and changing the electron wave vector as in equation (6.1)
with a minus sign. Because there is an energy exchange, such processes
are termed inelastic.

But equation (6.1) represents a rather restricted class of processes. In
addition, the electron may interact with a suitable Fourier component g
of the potential inside the metal as well as with the phonon q. Here we
think of the potential as described by the structure factor and, for exam-
ple, the screened electron-ion pseudopotential. Previously we have
labelled such Fourier components by q but since q is conventionally
used to denote a phonon wave vector, I thought it important to retain
that usage. Moreover the vector g is sometimes used to denote a vector in
the reciprocal lattice of a crystal and this has some analogy with the
Fourier component here. Interactions of this more general form are pos-
sible provided that:

k' = k + g + q (6.2)

To find out how the resultant scattering depends on temperature, we
look at the consequences first at low temperatures and then at high
temperatures. In considering these questions it is important to bear in
mind that as the temperature changes from the absolute zero to room
temperature, the Fermi wave vector kF scarcely changes in size whereas
the predominant magnitudes of the phonon wave vector q go from zero
to about the same size as kF. The energy of the electrons at the Fermi
level EF hardly alters: that of the typical phonons increases from zero to
&B#D where #D is the Debye temperature of the glass, typically around
250-350 K. Even at its highest value the phonon energy is only of the
order of 1% of that of the Fermi electrons. These striking differences
between the electrons and the phonons are important in their mutual
scattering processes.
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6.3 Low-temperature scattering of electrons by phonons

First we consider only phonons spontaneously generated in the solid. In
addition there are phonons generated, as it were, as a by-product of the
scattering of the electrons by the ions (the ions are set in motion by the
scattering); their number is determined by the Debye-Waller factor,
which we discuss below in section 6.3.2.

By low temperatures here we mean temperatures that are small com-
pared to the Debye temperature 0D of the glass. The Debye temperature
is a measure of the highest frequency u;max in the normal mode spectrum,
defined so that nujmax — k^Oj). If therefore we consider temperatures less
than, say, one-twentieth of #D, the phonons predominantly excited at
these temperatures will have frequencies of at most about o;max/20.
Moreover the wavelength will be at least twenty times bigger than at
<̂max> which is itself about the interionic spacing a. At low temperatures
therefore we are dealing with long-wavelength phonons with correspond-
ingly small q vectors, less than about rc/lOtf. We must also remember that
in all metals with typically a few conduction electrons per ion, kF is about
2n/a so that the value of q for phonons at low temperatures is always
small compared to the wave vectors of the Fermi electrons. As a first
approximation therefore we can neglect q in equation (6.2); we then see
that the predominant g-vectors will be almost the same as those that
promote strong elastic scattering and mainly determine the resistivity of
the glass. Thus this type of low-temperature inelastic scattering will be in
proportion to the total resistivity of the glass at low temperatures.

To see how the scattering depends on temperature, we note that the
final state k' must satisfy equation (6.2) and its energy E' must differ by
fiu from that of k. If A:, k' and q are well defined, the tip of q must
therefore lie on a two-dimensional surface in A>space with the conse-
quence that the number of phonons at temperature T that can participate
in the scattering is the number whose wave vectors measured from a
common origin terminate in such two-dimensional surfaces. In the tem-
perature range involved here, where the isotropic continuum Debye
model should be satisfactory, this number varies as T2. (The total num-
ber in three dimensions varies as T3 as seen in the Debye T3 law.)

As we saw above, the g-vectors involved will be predominantly those
with large-amplitude Fourier components in the structure factor and in
the pseudopotential. These typically occur at large scattering angles,
which therefore make the final scattering angles effectively independent
of the tiny values of q involved at low temperatures. Thus the (1 — cos 6)



58 Phonons in disordered systems

factor that we discussed earlier does not vary with temperature. So the
only temperature-dependent term is that due to the number of participat-
ing phonons and consequently the inelastic scattering due to phonons in a
disordered metal or alloy at low temperatures increases as T2.

As we shall soon see, however, not all low-temperature phonons are
fully effective in scattering electrons when their wavelength is greater
than the electron mean free path. We may also suspect that, with the
high degree of disorder characteristic of glasses, k, k' and especially q will
not be well defined and processes other than those allowed by equation
(6.2) will occur. Indeed, more detailed studies suggest that the tempera-
ture variation is different for longitudinal and transverse phonons and
together the temperature variation, although predominantly as T2 , can
include powers of T from 2 to 4.

6.3.1 Phonon drag

The T2 temperature dependence of the scattering that we have looked at
is very different from that of, for example, the pure crystalline alkali
metals where the resistance at low temperatures increases as
exp(—c/T), where c is constant.

One reason for the big difference in this case is that in the alkali metals
the phonon distribution is greatly altered by the electron flow. We can
say that the electron current tends to drag the phonon gas along with it
and, unless there is a mechanism that tries to hold the phonon distribu-
tion at rest with respect to the lattice, the phonons can drift with the
electron current and, in extreme cases, almost cease to impede its flow. At
low temperatures in the alkalis this is indeed what happens. In metallic
glasses, however, the disorder in the ionic positions is enough at most
temperatures, except perhaps below about 1 K, to scatter the phonons
and keep them from drifting. This completely alters the response of the
electrons to the phonon scattering and makes possible the T2 dependence
described above.

The general absence of phonon drag in disordered systems is also
important in the thermopower of metallic glasses.

6.3.2 The Debye-Waller factor

This is not yet the whole story. In addition to the phonons that are
spontaneously generated by the thermal motion of the ions, there are
other phonons generated by the scattering of the electron from the dis-
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order of the ions; these are also inelastic processes. When an electron is
scattered by the ionic disorder at low temperatures such scattering is
usually elastic, with no phonon generated. However, as the temperature
is raised from absolute zero the probability of inelastic scattering from
the disordered ions increases and the probability of elastic scattering
correspondingly decreases. Thus the elastic scattering contribution to
the resistivity (usually called the residual resistivity) decreases as the
temperature rises, this decrease varying as T2 and in direct proportion
to the residual resistivity po- It is accounted for by the so-called Debye-
Waller factor, which tells us the fraction of events at any temperature that
are inelastic.

This decrease of resistance is, at low temperatures, more than offset by
the increased inelastic scattering, which causes the resistance to increase,
also as T2. Moreover this resistance is about twice as big as the reduction
caused by the fall-off in elastic scattering. (At high temperatures the
elastic scattering falls off in direct proportion to the temperature as
does the associated inelastic scattering but now the two terms are equal
and opposite and so cancel.)

The Debye-Waller factor describes an effect which is of wider sig-
nificance than is apparent from the way I have introduced it. It was
calculated originally, by the scientists whose name it bears, to account
for the temperature dependence of X-ray scattering in crystals. If we
consider a crystal at absolute zero and allow its temperature to rise we
find that the intensity of a Bragg reflection falls and correspondingly
scattering at neighbouring frequencies associated with the absorption or
emission of phonons increases. Likewise in the Mossbauer effect the
recoilless emission and absorption of 7-rays from nuclei in a crystal
has its greatest intensity at absolute zero and diminishes as the tem-
perature rises. The importance of all this is that there are two quite
distinct classes of process involving the lattice. In one, the lattice
responds to the stimulus (scattering of X-rays or conduction electrons
or the emission of a 7-ray by a nucleus) with absolutely no change in its
degree of excitation: such processes are truly elastic as far as the lattice
is concerned. In the other, phonons are emitted or absorbed and so the
processes are inelastic. Even in the liquid phase, surprisingly enough,
such completely phononless processes, though rarer, still occur. Of
course although I have referred to crystals in this discussion, it applies
equally to glasses.

Later on we shall be greatly concerned with scattering processes that
leave the wavefunction of the electron coherent with its state before
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scattering. These elastic processes that we are discussing precisely satisfy
that condition whereas all inelastic processes (in which the quantum
energy state of the scatterer is changed) introduce incoherence, i.e. the
phase of the electron wavefunction after scattering is randomised.

The existence of these phononless processes so dramatically demon-
strated by the Mossbauer effect seems contrary to one's intuition and one
therefore immediately suspects that quantum effects are at work. This is,
however, not so. A classical analogue is to be found in frequency mod-
ulation. In classical terms we can think of the 7-ray or X-ray or electron
wave as being frequency-modulated by the vibrations of the ion or ions in
the solid. In such modulation, however, there is always a contribution
corresponding to the unmodulated carrier. Here this is equivalent in
quantum terms to the phononless processes.

The Debye-Waller factor depends only on the vibrational properties of
the scattering system and is similar for all stimuli. What causes the scat-
tering depends of course on the nature of the incident wave: for X-rays it
is the electron density; for neutrons the nuclear scattering cross-section or
scattering length; and for electrons the electrical potential. In all cases the
scattering is modified by the motion of the ions.

There is a further interesting feature of the Debye-Waller factor: even
at the absolute zero the elastic scattering is modified because the zero-
point motion of the ions makes their positions 'fuzzy' and effectively
alters their form factor. Thus the zero-point motion, unlike zero-point
energy, is a physical reality whose effects show up in, for example, this
change of form factor. This zero-point motion does not upset the coher-
ence of the electron waves that propagate through it and produces no
electrical resistance.

6.3.3 Phonon ineffectiveness

There is a further effect that has been widely discussed in relation to
metallic glasses but has only recently been clearly identified, not in a
glass but in concentrated potassium-rubidium alloys. It involves the
Pippard ineffectiveness condition (strictly its inverse), according to
which a phonon becomes ineffective in scattering an electron when the
mean free path of the electron / is very short compared to the wavelength
A of the phonon. In classical terms it is as if the electron begins to interact
with a sound wave but is scattered by an ion after seeing only a tiny
fraction of the sound wave (the phonon) and before it has had chance to
recognise the existence of the wave motion. This means that as we go to
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low temperatures and as the dominant phonon wavelength gets longer
and longer, the scattering of the electrons as discussed above falls below
that predicted and is ultimately killed. It is as if phonons for which
q < n/l are incapable of scattering electrons. If at high temperatures
there are enough phonons that have short wavelengths the effect is
masked but shows up as the temperature falls. This is found experimen-
tally and with quantitative agreement in K-Rb alloys at temperatures
below 1 K.

This effect is thought to have been seen in metallic glasses but the
disorder of the glassy state means that the criterion in terms of a single
wave vector q is hard to apply since the phonons may not be represen-
table by a small range of wave vectors clustered around q.

It will, I think, be clear from what we discussed earlier that the Debye-
Waller factor is not influenced by this sort of effect.

6.4 Scattering of electrons by phonons at high temperatures

We return now to the scattering of conduction electrons by sponta-
neously generated phonons, this time at high temperatures, i.e. at tem-
peratures comparable to the Debye temperature.

At these temperatures we can use the Einstein model to describe the
ionic motion in a glass. In this, each ion is assumed to vibrate indepen-
dently and harmonically about its mean position in the average field of all
its neighbours. Incidentally this, if taken literally, would be the ultimate
in localisation of a normal mode. The position of the mode is essentially
represented as a ^-function at the site of the ion and so would require, as
we know from the Fourier transform of a ^-function, an infinite range of
^-vectors to represent it. This is an extreme and rather unphysical ex-
ample of what I referred to earlier in discussing local modes. Nonetheless
we can still use the model at high temperatures provided we recognise
its limitations.

Consider now the effect of a single ion displaced by a small amount X
in the x-direction. If the potential at a point (x,y,z) due to the ion is
F(JC, j>, z) when in its mean position, the potential at the same point when
the ion is displaced is V(x — X,y, z) on the assumption that the potential
moves bodily with the ion. This neglects any motion of the conduction
electrons to screen out the effect. The change in potential is thus:

AV= V(x-X,y,z) - V(x,y,z) = -X(OV/dx) (6.3)
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The matrix element associated with scattering an electron from states k to
k' is therefore:

^kk' = -X \i/>l(dV/dx)il\ dr (6.4)

where the integral is over one ionic cell only, in order to take into account
in a crude way the screening effects to which reference has already been
made. To calculate the transition probability of scattering the electron
from states k to k' we need the square of this matrix element. This is
proportional to X2 or on average to the mean value of X2. Likewise for
displacements in the other two independent coordinate directions. The
upshot is that the probability of scattering from this ion is proportional
to its mean square displacement, which at high temperatures is propor-
tional to the absolute temperature T. We therefore conclude that the
scattering of electrons at high temperatures is also proportional to T.
In many pure metals the behaviour of the resistance shows that this is
indeed true. In concentrated alloys and glasses the resistance itself does
not directly reflect this temperature dependence; the effects are more
subtle, as we shall see.
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Interactions and quasi-particles

7.1 The validity of the independent electron picture

We have treated the electrons as effectively independent particles subject
to occasional scattering processes even though we know that there are
strong Coulomb forces between electrons and between electrons and ions.
This picture certainly has some validity which can be partly understood
in the following way. First of all, as we have seen in Chapter 4, the range
of the Coulomb interaction between electrons is screened out over a
distance of the order of the interionic separation because the conduction
electrons are attracted to the neighbourhood of the positive ions and so
produce electrical neutrality when viewed from a short distance away.
Thus the cross-section for scattering of an electron is of the same order as
that of an ion, i.e. of atomicJlrnensions.

Second, the Pauli exclusion principle drastically reduces the number
of processes by which conduction electrons can interact and be scat-
tered by other conduction electrons. We can see this from the following
argument. Consider an electron gas at absolute zero with all the states
up to Eo filled and those above empty. Assume that we give one elec-
tron a small amount of energy e above Eo. It can only be scattered by
another electron in the Fermi sea if, after the collision, both particles
have empty states of the right energy to go to. This means that, since
energy is conserved in the collision, the initial state of the second elec-
tron must lie within an energy range e of the Fermi level; otherwise the
collision could not raise its energy above Eo where there are empty
states. Thus the number of electrons that can take part in scattering
is severely reduced, being proportional to the number of states from
which the second electron can be chosen. If the density of states at the
Fermi level is D(Eo), the number of states in an energy range e is
D(Eo)e.
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In a classical scattering process the scattered particle can go into any
energy state allowed by conservation of energy. In the Fermi-Dirac gas,
however, both particles after colliding must find empty states i.e. states
above Eo. So the range of energy available to the scattered particle is
limited to between Eo and Eo + e. This therefore further reduces the
possible scattering processes and the probability of scattering is propor-
tional to a further factor of D(Eo)e. This shows that the probability of
scattering of one electron by another in a given metal varies as e2. In
particular this means that an electron at the Fermi level and at absolute
zero (for which therefore e = 0) cannot be scattered in this way.

We can apply this argument to find the temperature dependence of
electron-electron scattering. Suppose the electron gas is at temperature
T, which we take to be small compared to the Fermi temperature TF of
the electrons (&B7F = Eo). The fraction of electrons that are excited is
of order T/Ty. Thus by an argument similar to that just outlined we
find that the effect of electron-electron scattering is reduced by a factor
of (T/TF)2 compared to that to be expected classically. At room tem-
perature this is typically (see Table 3.1, p. 24) of order 10~4. Moreover
since the cross-section for an electron in electron-electron scattering is
similar to the cross-section of an ion in electron-ion scattering, the
resistivity due to electron-electron scattering is small compared to nor-
mal high-temperature resistivities. Only at low temperatures where the
scattering by phonons has substantially diminished is electron-electron
scattering manifest as a T2 term in the resistivity.

7.2 Quasi-particles

Landau tackled the problem of interacting particles from a different
point of view, originally to try to understand the properties of liquid
He3. His starting point is not the independent particle picture but a
strongly interacting system of N particles (the Fermi liquid) with a
small number of excitations of low energy e, very much smaller than
the Fermi energy EF. Landau called these excitations 'quasi-particles'
or, here, 'quasi-electrons' because they are the interacting analogues of
the non-interacting particles. If we start with TV non-interacting elec-
trons and allow the interaction between them to increase gradually, the
states of the non-interacting electrons evolve into excitations of the
strongly interacting Fermi liquid, with which they have a one-to-one
correspondence (at least in the low-lying excitations). The quasi-elec-
trons have charge e and spin 1/2 and so obey the Pauli exclusion
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principle. The argument given in the previous paragraph about its influ-
ence in limiting the effects of the interaction still apply and a quasi-
electron of energy e above the Fermi level has a probability of being
scattered that varies as e2. In particular it vanishes when e = 0.
Therefore at the Fermi level, these quasi-particles have the same proper-
ties as their independent counterparts and, because of the restriction on
the scattering, they remain, at low energies, weakly interacting entities.

As their energy moves away from EF, the interactions cause their
properties to differ from those of independent particles. The quasi-par-
ticles are still labelled by their A>vectors but now, because of the inter-
action, their energy e(k) is altered and the excitations have a limited
lifetime. The state can be represented by a complex number whose real
part is the new energy e (the self-energy) and the imaginary part gives the
lifetime 7 of the quasi-particle. Quasi-particles are well defined if the
uncertainty in their energy A/7 is small compared to e, measured from
the Fermi level, and under these conditions we can treat the quasi-elec-
tron as a nearly free particle, although with a different effective mass. For
this reason the density of electron states is altered; nevertheless it changes
smoothly with energy through the Fermi level.

The quasi-particle concept explains and justifies the treatment of the
electrons in a metal as weakly interacting particles and we shall use this
idea throughout the rest of the book, although its limitations have to be
borne in mind, especially when we treat the enhanced electron interaction
brought about by disorder.

Another important aspect of the quasi-particle is its interaction with
the ions, which are set in motion as an electron passes near. The quasi-
particle can absorb this kind of interaction into its properties (for exam-
ple, its effective mass). As we shall see this ion-mediated interaction turns
out to be of great importance not only in superconductivity, but also in
electron-electron scattering and in the thermopower.

An electron in a metal repels other electrons that approach it; it has
what is often called a 'correlation hole' around it. This hole can also be
thought of as arising from displaced electrons and its effects reduce the
interaction with other electrons, thereby helping to explain why the con-
duction electrons can be treated as almost free particles unless they are
specifically scattered by, for example, impurities or phonons.
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7.3 Particle-hole pairs

When we are dealing with a highly degenerate gas of electrons as in a
metal, there are, at normal temperatures and particularly at low tempera-
tures, comparatively few electrons excited above the Fermi level. This
also means that there are correspondingly few empty states in the
Fermi sea of the remaining electrons. These ideas have been formalised
and the concepts and terminology that result are often used. Let us briefly
look at them here since they will be of use later.

The idea is to simplify the description of our Fermi system by record-
ing just changes from the ground state and so referring only to the
electrons excited above the Fermi level and the unoccupied states
below it. The rest of the electrons (or Fermions) are omitted as illustrated
in Figure 7.1. The word 'particle' then takes on the special meaning of an
electron above the Fermi level. The empty states are called 'holes' in this
particle-hole description and, with the rest of the Fermi sea removed,
behave like anti-particles or, in some respects, like the holes familiar in
the band theory of metals and semiconductors. They have states below
the Fermi level.

The hole represents a particle removed from the system so its energy is
negative. The wavefunction of the hole has the same form as that of the
absent particle but suitably modified. For example if we consider a par-
ticle of energy E\ whose wavefunction has the time-dependent part
exp(—\E\t/fi), the wavefunction of the hole in the same state (with energy
-E\) would be exp(+\E\t/ft). This is then reinterpreted by associating the

(1) Ground (2) Excited (1a) Ground (2a) Excited
state state state state

< Conventional • < Particle-hole •
description description

Fig. 7.1 Particle-hole description of degenerate Fermi system. It shows only the
excited electrons and the vacant states below the Fermi level.
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change of sign, not with the energy, but with the time; in this way the hole
becomes a particle moving backwards in time. This convention was intro-
duced by Feynman in his work on positrons and is used in interpreting
Feynman diagrams.

Further properties of a hole are as follows:

the hole charge = — the particle charge;
the hole spin = the opposite of the particle spin;

the hole wave vector k = — k of the particle.

This provides a formal framework which is convenient for calculations
that involve, for example, the electrons in a metal or alloy and can be
applied to quasi-particles. It is a formalism frequently used in the litera-
ture and some of it spills over into common use.

7.4 Electron-electron interaction mediated by phonons

We know that the electron-phonon interaction causes the scattering of
conduction electrons by phonons. It also shows itself in the equilibrium
state of metals as the commonest cause of superconductivity. The theory
of superconductivity devised by Bardeen, Cooper and Schrieffer (BCS) is
based on this interaction; it gives rise to an attraction between electrons
near the Fermi level and thereby to the superconducting state. Even in
those metals that do not show superconductivity, such as the alkali
metals, the interaction shows up as a modification of electron-electron
scattering and also as an enhancement of the electronic heat capacity.

Let us now look at this electron-phonon interaction in classical terms
to see how it brings about the superconducting state. As an electron
moves through the positively charged ions they are drawn to it by the
Coulomb attraction and are set into oscillatory motion. These create a
periodic variation of positive charge which influences the energy of other
electrons. If the motion of another electron is suitable in timing and
position in relation to this oscillating charge it can use the lower potential
of the excess positive charge to reduce its own energy. The resulting
interaction between the two electrons of opposite momenta and spin
(referred to commonly as a Cooper pair) is thus attractive. When many
electrons cooperate to produce a dynamic pattern that exploits this
reduction in energy, it can be sufficient to offset the lowering of their
entropy S which necessarily comes about through sustaining the ordered
pattern.



68 Interactions and quasi-par'tides

The stable state is that of lowest free energy E — TS. We assume that
the major changes in E and S are due to the electrons, i.e. that the ions
are essentially unaffected. Thus since the penalty from the entropy term
TS gets smaller as we lower the temperature the cooperatively ordered
state of lower energy eventually, at some specific temperature, becomes
the stable state. This state is the superconducting state.

We can put the matter in another way. Suppose the metal is at the
absolute zero in its ordered superconducting state and we allow its
temperature to rise a little. There are now unpaired electrons thermally
excited that rush about in a completely uncoordinated way, each one a
loose cannon, as it were, seeking to play havoc with the disciplined
ranks of the superconducting electrons. As the temperature rises the
effect of this disorder grows. Eventually when the temperature is high
enough, the disorder is sufficient to disrupt the coherence of the super-
conducting electrons and the metal goes over to the normal state.

We are interested in the consequences of the electron-phonon inter-
action for the normal state of a metal. In order to understand some of
the detail we have to recognise that the ionic vibrations are quantised so
that their interactions with the electrons take place through phonons,
although in this instance these are not the thermally excited phonons
that cause electrical resistivity. The interaction here comes about
through 'virtual' processes, which can exist even at absolute zero.
They consist of the excitation and de-excitation of phonons of energy
AE (say) in a time interval At so short that At • AE < h. An electron
involved in the interaction by the absorption of a virtual phonon must
have an unoccupied state into which it can go. Thus the only electrons
involved in the interaction are those at the top of the Fermi distribution.
If ^max is the highest frequency of oscillation sustainable by the ions,
only electrons within an energy range of Humax of the Fermi level can
participate in the interaction. If for convenience we use a Debye model
for the ionic vibrations, we can use the approximation that

From this discussion it will, I think, be evident that as the temperature
is raised, thermal fluctuations will tend to disrupt this interaction. Empty
states that would otherwise be available for the virtual processes are
occupied by thermally excited electrons and so weaken the interaction;
in fact when temperatures of the order of the Debye temperature are
reached, the interaction is completely destroyed. The thermal excitations
of the electrons are now so fast and violent that the lattice vibrations can
no longer follow them.
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Our picture therefore is of a Fermi electron moving through the ions
and setting them in motion. This alters the energy levels to which the
electron has access and affects electron states that lie within ± kB0D of the
Fermi level. Since moving an electron entails also setting in motion the
other electrons or ions with which it interacts, one can think of the
electron as having a greater effective mass so that (see equation (3.12))
the density of states within ± £B#D of the Fermi level is increased and the
electron velocity correspondingly decreased. The electrical conductivity is
thus unaffected but the result can be seen in the low-temperature electro-
nic heat capacity. For example in the crystalline alkali metals the mea-
sured values are significantly bigger than the theoretical values calculated
from the band structure of the metals. When this 'band' contribution to
the heat capacity is corrected by the calculated enhancement due to the
electron-phonon interaction (and a smaller correction due to electron-
electron interaction) agreement is achieved. The effect is also to be
expected in metallic glasses but it cannot be inferred from the measured
electronic heat capacity because we cannot accurately establish what the
unenhanced value should be; the band structure is not known accurately
enough.

As we have seen the interaction also leads to an attractive force
between electrons that can overcome the Coulomb repulsion and lead
to superconductivity. In the normal state the attraction modifies the
electron-electron scattering and its associated resistivity. For a long
time such scattering was attributed solely to the Coulomb repulsion
until finally it was realised that the phonon-mediated attraction is also
involved. This has the additional feature that, unlike the Coulomb repul-
sion, it is temperature-dependent: its strength is greatest at low tempera-
tures, weakens as the temperature rises and finally vanishes completely.
Finally this interaction plays an important role in the thermopower of
metallic glasses as we shall see in Chapter 15.

The strength of the electron-phonon interaction can be characterised
in various ways. The electron-phonon mass-enhancement factor Aep

(which determines the enhancement of the electronic heat capacity at
the lowest temperatures) is defined as:

Aep= f[a2F(u;)/u;]du; (7.1)

where a is the electron-phonon coupling constant, u is the phonon fre-
quency and the combination a2F(u) is the Eliashberg function, important
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in superconductivity. This function also appears in the probability of
scattering of electrons at the Fermi level by phonons:

1/Tph - l[a2F(u;)/smh(Htj/kBT))du> (7.2)

Here rph is the lifetime of the electron state, not the transport relaxation
time. In crystalline metals, a is normally constant at small values of UJ
while F(uS) varies as w2 so that the probability of scattering at these
frequencies (i.e. at low temperatures) varies as T3. On the other hand,
calculations on weakly scattering crystalline alloys and metallic glasses
show that the function varies as u at low frequencies so that the lifetimes
now vary as T2 at low temperatures, a feature derived by other means
above.

7.5 Collective electron modes

We have seen how the concept of a quasi-particle can restore the idea of
independent electrons in metals while still taking account of the mutual
Coulomb repulsion and the phonon-mediated attraction between elec-
trons. Nonetheless, one is tempted to ask: Why do we not use collective
modes to describe the highly interacting electron-ion assembly? After all,
the motion of the ions is described, not in terms of the individual ions,
but through the collective modes, the normal modes of vibration of the
assembly and their quantisation as phonons.

Such a description of the interacting ions and electrons in terms of their
collective modes was carried out by Bohm and Pines. The collective
modes that are familiar in such an assembly are the plasma modes that
involve the positive and negative ions oscillating in antiphase.These are
not usually excited. There are other modes which together describe the
screening of the electrons and lead to results not too unlike the exponen-
tial screening derived by more elementary and less rigorous methods (e.g.
the Fermi-Thomas approximation). Both descriptions, that in terms of
quasi-particles and that in terms of collective modes, have their appro-
priate place and usefulness in the theory of metals.
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Transition metals and alloys

The obvious success of the Ziman theory does not extend to the liquid
transition metals and, as we shall see in the next chapter, the Hall coeffi-
cient of a number of glasses containing a substantial proportion of tran-
sition metal is positive, thereby posing a powerful challenge to
conventional theories. Before we try to compare theory and experiment,
however, let us look at some of the important properties of transition
metals and their alloys, in both crystalline and glassy forms.

8.1 Crystalline transition metals

A transition metal is one whose atoms have incomplete d-shells, such as
iron or tungsten. Typically in the free atom there are also s electrons from
a higher electron shell, for example, there may be two 3d-electrons and
one 4s. In the solid state the wavefunctions overlap and the single states
of the free atom spread out into bands whose electrons can therefore take
part in the conduction process. The s-levels broaden much more than the
d-levels as the atoms get closer. This is because the s-electrons come from
the outer reaches of the atom with wavefunctions that overlap strongly
with those of their neighbours in the solid. The d-electrons by contrast
are more tightly bound within the atom and so in the solid form a much
narrower band whose electrons tend to have much lower velocities. The
d-electrons, because they are so much more confined, tend to retain more
of their atomic character in the solid state including some of the angular
momentum associated with their quantum number 1=2.

In general the s- and d-states in the free atom from which the corre-
sponding bands arise are close in energy and so the broadening causes the
d-band and the s-band to overlap in energy as illustrated in Figure 8.1.
There the d-band is seen as a rather craggy structure straddling the Fermi
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N(E)

d-band
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Fig. 8.1 The density of states of overlapping s- and d-bands (schematic).

level, which lies across both s- and d-bands indicating that neither is full.
Where precisely the Fermi level lies alters systematically with the position
of the element in the periodic table: it lies at low energies for elements
with few d-electrons and rises progressively through the band as the
number of d-electrons increases. An important feature of the d-band is
its high density of states, a consequence of its narrowness in energy and
the fact that it must contain ten electron states per atom.

Cu, Ag and Au are sometimes referred to as late transition metals
although the d-band in the pure metals is completely filled.
Nonetheless the electrons on some parts of the Fermi surface of these
metals do have quite strong d-character. What does it mean to talk about
s-, p- or d-character? The phase of the electron wavefunction changes in a
free-electron-like manner as it propagates through the lattice but inside
the ion cores the wavefunction takes on something of the character of an
electron in the field of the corresponding nucleus. Thus an s-like electron
partakes of an s-type atomic wavefunction in the neighbourhood of the
nucleus and so has a non-zero probability of being found there. This
shows up in experiments such as the measurement of the Knight shift
in nuclear magnetic resonance (NMR) and contrasts with the behaviour



8.1 Crystalline transition metals 73

of p- or d-like wavefunctions which have almost vanishing probability of
being found at the nucleus.

The character of the electron wavefunction may also be important in
scattering: suppose that in a scattering centre such as an impurity all the
scattering potential is concentrated in the region around its nucleus. Such
an impurity will tend to scatter s-like electrons strongly because they have
a large amplitude there whereas the p- or d-like electrons will be largely
unaffected.

A further characteristic of electrons as they propagate through the ion
cores is that they can locally participate in the angular motion of the
corresponding atomic state. When the atom is in a solid the electron states
may be seriously modified through interaction with the electric field of its
neighbours. Nonetheless the spin-orbit coupling that acts on electrons in
the free atom also affects conduction electrons and has important con-
sequences for transport properties, in particular the Hall coefficient and
quantum interference effects. In fact, of course, s-like wavefunctions have
no angular momentum about the nucleus and do not participate in the
spin-orbit coupling whereas the p- and d-like wavefunctions do.

Figure 8.2 illustrates the overlap of the d- and s-bands by showing the
energy E of the electron versus its wave number k. Where the E—k curves
for s- and d-electrons cross a phenomenon known as hybridisation may
occur. If the symmetry of the wavefunctions of the s- and d-electrons in
the particular crystallographic direction considered is appropriate the
two curves as it were repel each other and do not cross (Figure 8.3).
The analogy here is with two independent classical oscillators of the
same frequency. If now the two are coupled to each other by a harmonic
coupling, two normal modes (harmonic oscillations of a single frequency)
result, one of a lower and one of a higher frequency than the original. The
lower and higher electron energy states, in the neighbourhood of the
place where they would have coincided if there was no interaction, ori-
ginate in this way. The character of the wavefunctions in this region is
changed so that the d-electrons are no longer purely d-like but assume
some s-character and the s-electrons change in the opposite sense. So
each becomes a hybrid with the other, just as each classical normal
mode involves both oscillators. In the region of hybridisation the values
of k for a given E are not necessarily greatly changed but the correspond-
ing velocities (measured by the slope of the curves) can alter dramatically.
This feature is of great importance in some metallic glasses.

Because the s-electrons usually have higher velocities than d-electrons,
we tend to think of them as the main current carriers but if the Fermi
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s-band
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Fig. 8.2 The E—k relation for s- and d-electrons without hybridisation.

level lies in the region of hybridisation the distinction between the two
sets is blurred and their velocities, as we have seen, may be substantially
changed.

8.2 The Mott model
We now consider the Mott model of crystalline transition metals and how
far it applies to amorphous metals and alloys. The main feature of the
Mott model is that in a transition metal or alloy there are two rather
separate groups of mobile electrons, the s-like and the d-like. The electric
current is assumed to be carried mainly by the more mobile s-electrons
but these can be scattered by phonons into empty d-states at the Fermi
level. Since these d-states have a high density in energy compared to an
sp-type metal the resistivity due to phonon scattering is greatly enhanced
in the transition metal compared to its non-transition metal counterpart.
This is indeed broadly speaking true.

On the other hand, one has to be more careful in the analysis of the
residual resistivity of an alloy that contains a transition metal (call it T)
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Fig. 8.3 The E—k relation for s- and d-electrons with hybridisation.

mixed randomly with a non-transition metal N, say. N is a metal with no
d-states or one in which all the d-states are fully unoccupied and lie well
below the Fermi level of the alloy.

To see what is involved let us consider what happens in a crystalline
alloy. Suppose that the N atoms (e.g. Ag atoms) in the alloy ionise to
contribute one s-electron to the s-band but no d-electrons to the d-band
since the d-states all lie well below the Fermi level. We assume that T
atoms contribute one s-electron to the s-band and one d-electron to the d-
band (the precise numbers we choose do not alter the argument except
that it is important that the transition metal contributes, as it usually will,
to both the s- and d-bands). There are thus occupied s-states on every
site, N or T, and so in the alloy we assume that the s-electron wavefunc-
tions overlap and form an s-band over all sites throughout the crystal.

For the d-sites the situation is different because the d-states are more
localised and in any case do not exist on the N ions. Thus the d-band, at
those concentrations at which it exists, is confined to the T sites. This has
important consequences for the transport properties. First of all it means
that at sufficiently low concentrations of the transition metal there will be
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no d-band, just a random arrangement of isolated T ions. These have
unoccupied d-states at the Fermi level which mix with the continuum of
s-bound states of similar energy to form what are commonly referred to
as virtual bound states. These are not true bound states but we may think
of the conduction electrons visiting the site and for a short time taking on
the character of a d-electron before rejoining the conduction band. These
virtual bound states thus scatter conduction electrons but are not numer-
ous enough to form a d-band. Only when the concentration of T is
sufficient to provide continuous chains of neighbouring T sites through-
out the crystal will a d-band form. This is a so-called percolation problem
and we might expect a d-band to form at somewhere around 15% of T.

At the other end of the concentration range, where T is the predomi-
nant element, there undoubtedly exists a d-band with its associated high
density of states. We might therefore expect strong scattering of the
mobile s-electrons from the N impurity ions into these high density d-
states. This does not happen for the following reason. The matrix ele-
ments for scattering of an s-electron into an s- or a d-state at an N site are
given respectively by:

dr3 and [ i/fd A V^k dr3

where V>k refers to the incoming s-electron and the other wavefunctions
refer to final state s- or d-states, respectively. AFis the scattering poten-
tial at the site. Since we assume that there is everywhere a typical s-band,
I/JS has a typical amplitude at this site. On the other hand there is, we
assume, very little overlap of a d-wavefunction onto an N site from a
neighbouring T site. So ipd has a very small amplitude and scattering into
d-states from the N site is improbable. Thus the high density of d-states is
inaccessible and the scattering by an N impurity in a largely T matrix is
not unusually large by comparison with that of N in a non-transition
matrix. The validity of this argument is illustrated in the dilute alloys at
both ends of the crystalline Ag-Pd system.

This argument does not persist, however, at appreciable concentrations
of the T element for two reasons. First the scattering at a T site (which is
measured by its deviation from the average potential, averaged, that is,
over both N and T sites) involves more and more d-character as the
concentration of T increases. Second, there may well be more and
more hybridisation of the wavefunctions, which therefore are no longer
purely s-like. This reason would be specially cogent in a metallic glass.
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8.3 Transition metal glasses

Let us now look at some features of the electronic structure of metallic
glasses containing transition metals, to compare with what has just been
said about the crystalline metals.

The electronic structure of glassy alloys cannot be examined by many
of the refined techniques that have been developed for pure crystalline
metals because these techniques, for example, the de Haas-van Alphen
effect, the radio-frequency size effect, cyclotron resonance and high field
magneto-resistance, exploit the long mean free path of the conduction
electrons. Positron annihilation and Compton scattering do not rely on
this feature and have been used to give information about the momen-
tum distribution of the conduction electrons in glassy materials. They
confirm the free-electron behaviour of many of the simple metal glasses.
Where d-electrons are involved, however, the results are difficult to
interpret.

A successful method that gives information on the electron density of
states is that of photoemission, essentially an application of the photo-
electric effect. In this technique, high energy monochromatic photons,
usually derived from synchrotron radiation, fall on the alloy and the
energy spectrum of the electrons emitted gives a measure of their density
of states in the glass. To obtain the energy of the conduction band state
from which the electron is emitted, you subtract the measured kinetic
energy of the emitted electron from the known energy of the photon;
the remainder is then corrected for the work function of the glass (the
energy difference between an electron at the Fermi level and one at rest
just outside the material) to obtain the required energy relative to the
Fermi level. It is then assumed that the number of such electrons is
proportional to the density of states at that energy. This presupposes
that all the electrons in the conduction band interact equally with the
photons, which is not true since the probability depends on the wavefunc-
tion of the electron involved. Sometimes a correction can be applied but
often this is not known or is ignored. This difference in response can,
however, be exploited to distinguish the contributions of different types
of ion. Figure 8.4 shows the spectra of amorphous Cu60Zr40 for photons
at two very different energies, 60 eV and 120eV. The scattering cross-
section of Cu d-electrons is much higher than that of Zr d-electrons at
photon energies above 70 eV and this makes it possible to identify the Cu
d-band as responsible for the lower peak at around — 3.5eV. The other
peak seen at higher energy in the first diagram is due to the Zr d-band. It
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Fig. 8.4 Photoemission from Cu-Zr glass with photons of two different energies:
(a) 60 eV (b) 120 eV. (After Greig et al 1988.)

seems likely that the technique can be extended to give more detailed
information about the different distributions of s- and d-states.

Many photoemission experiments have been made on metallic glasses
because the information they give is so hard to get by other means. An
instructive comparison between glass and crystal is made in Figure 8.5,
which shows photoemission data on pure Cu and Cu3Zr2 in the crystal-
line form compared to Cu60Zr40 in the glassy state. In the Cu results you
can see the s-band from the small dip at the Fermi level: in the alloys this
is masked by the high density of d-states. The alloy results are surpris-
ingly similar to those of the crystal, although they do show that the
crystalline material has sharper features, as one would expect. The
peak at lower energies comes from the Cu d-band, which is fully occu-
pied, and the upper one from the Zr d-band, which is incompletely filled,
having about two d-electrons per Zr atom out of a possible ten for a full
band. There are thus two d-bands associated with the sites of the two
types of ion; this is because the bands are well separated in energy. If they
were close in energy they would form a common d-band in which d-
electrons could move from one site to another having a different ion.
We assume that this is what happens to the s-bands, which of course
overlap much more both in energy and space.

The data also show that there is some interaction between the two d-
bands which shifts their position relative to the pure metal. The Cu ri-
band is pushed to lower energies in the alloys. This is a general phenom-
enon whereby the d-band of the late transition metal (here Zr) is pushed
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Fig. 8.5 Photoemission from crystalline Cu and Cu3Zr2 and Cu6OZr4o glass.
(After Giintherodt et al 1980.)

to higher energy and the early transition metal (here Cu) is pushed to
lower energy.

Photoemission experiments on a series of glassy Zr alloys have shown
that in alloys with Fe,Co,Ni,Cu and Pd two d-bands are formed with the
states at the Fermi level always dominated by the Zr band. This leads to a
great similarity in the electronic properties of these alloys.

Theoretical calculations of the density of states of amorphous alloys
have been made and these show what we have already seen, that the
crystalline and amorphous forms have very similar features. This is lar-
gely because the density of states of the d-electrons is determined by
short-range interactions, that is, by the overlap of the d-wavefunctions
with neighbouring ions whose type, distance and number are quite similar
in the amorphous or crystalline form. The long-range order which dis-
tinguishes the crystalline state, although of great importance to the trans-
port properties, has little effect on the density of states.

Finally, then, we ask: How are we to think of the electronic structure of
a metallic glass that contains a transition element? In particular is it
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legitimate to picture this in &-space? Figure 8.6 shows how the Fermi
surface of an alloy having an s- and a d-band might appear. The d-
band might have a lot of d-character but the so-called s-band would
probably be strongly hybridised with mixed s-, p- and d-character on
the Fermi surface. The relative size of the two spheres would reflect the
relative numbers of the two groups of electrons and their boundaries
would not be very well defined.

d-like

sp-like

Fig. 8.6 Fermi surface of a disordered metal with s- and d-like electrons. All the
states inside the d-like surface are occupied by d-like electrons and the s-like
electrons are accommodated inside the s-like sphere. The surfaces will not be
sharp because of the short mean free path of the electrons.



9
The Hall coefficient of metallic glasses

The Hall coefficient of simple liquid metals is, for the most part, free-
electron-like. This is true, for example, of liquid Na, K, Rb, Cs, Al, Ga,
In, Zn, Ge, Sn, and of liquid Cu, Ag and Au. This is also true of a wide
range of non-transition metal glassy alloys of which some examples (out
of many) are given in Table 9.1. Departures from the free-electron value
are, however, found, for example in Ca-Al alloys and, as the table
shows, in metallic glasses containing transition metal elements, which
can show positive Hall coefficients in circumstances where hole conduc-
tion can scarcely be involved. To explain these positive values thus
poses a problem; it emphasises still more the importance of the transi-
tion metal alloys. We must therefore look at the theory of the Hall
coefficient, in particular that of alloys containing transition metals,
whose behaviour forces us to recognise that the Ziman theory cannot
be the whole story.

9.1 Conventional theory

Let us first consider the predictions of conventional theory for the Hall
coefficient of a metal. In a crystalline metal the Hall coefficient can be
difficult to calculate because it depends in a fairly complicated way on the
shape of the Fermi surface and on how the electron velocities and relaxa-
tion times vary over the surface. For our purposes however we need not
delve into these complexities because in amorphous metals the spherical
symmetry that we assume simplifies the derivation of the Hall coefficient
to the point that we can for simple alloys use the elementary expression:

RK = l/Ne (9.1)
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Table 9.1 Hall coefficient and other data on some metallic glasses. Liquid and crystalline Cu are

included for comparison.

Material

Cu5oTi5o
Cu5OZr5o
Cu5OHf5O

Liquid Cu
Cryst. Cu
Ag5oCu5o
Ca7oAl3o
Ca6oAl4O

Ca70Mg30
Mg75Zn25

Mg8o.4Cu19.6

Sn86Cui4

RH
(10 n m 3 C l)

+ 10-13
+7.0
+4.0
-8 .3
-5 .1
-9 .1

-19.6
-15.8
-12.4

-6 .8
-6 .7
-4 .3

Density
(10 3kgm-3)

7.36

9.75
1.85
1.96
1.45
2.65
2.73
7.5

Molar
volume

(10-6m3)

10.54

7.8
7.1

24.4

Electrons/
atom

1.5

1
1
1
2.3
2.4
2
2
1.8
3.6

kp
(A-1)

1.27
0.98
1.06
1.14
1.4
1.4
1.6

kFl

80
2.3

15
15
16

RH [Free
electron]

(10-1 1m 3C-1 )

-7 .3

-8 .3
-7 .5
-9 .1
-8 .8
-7 .5

-12.4
-6 .8
-6 .7
-4 .3
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where e is the charge on the appropriate carrier (the electronic charge,
negative for electrons, positive for holes) and TV is the number of charge
carriers per unit volume of the metal.

The elementary classical derivation of this result, which demonstrates
the essential physics, is as follows.

We apply a magnetic field B (in the z-direction) at right angles to the
direction of a current carried by a conductor. The current density is j and
if the drift velocity of the electrons under the influence of the electric field
alone (in say the x-direction) is 8vx, then:

j = Nebvx (9.2)

In the presence of the magnetic field B the drifting charge carriers are
subject to the Lorentz force at right angles to both B and j :

F=Be8vx (9.3)

This causes the charge carriers to be deflected (see Figure 9.1) so that a
charge builds up on the sides of the conductor until the transverse electric
field ey which results just compensates the effect of the Lorentz force. We
then have:

eey = Bebvx (9.4)

which with the use of equation (9.2) becomes:

ey = Bj/Ne (9.5)

By comparing this with the definition of the Hall coefficient:

ey = RuBj (9.6)

we see that:

RH = l/Ne (9.7)

In general this is positive for holes and negative for electrons although as
we shall see this is not invariably so because equation (9.3) hides a
subtlety which we shall explore later.

Equation (9.7) is valid if, as is implicit in the treatment, all the car-
riers that respond to the applied fields respond in the same way. As we
have already seen, the only electrons that can respond independently to
the applied fields are those at the Fermi level; the remainder are con-
strained by the Pauli exclusion principle to, as it were, follow their
leaders. In simple metal glassy alloys there is only one set of carriers
and all have similar properties because of the essential isotropy of the
material. We can therefore reasonably expect the result in equation (9.7)
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The Hall coefficient of metallic glasses
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Fig. 9.1 Charge carriers of opposite signs in the Hall effect.

to be applicable and so the Hall coefficient will be independent of
temperature since in a metal the number of carriers does not change.

In a transition metal alloy, however, there are, as we have seen, two
types of charge carrier, the sp-like electrons and the d-like electrons. Let
us therefore extend the model to include two types of charge carrier. We
use the notation above with subscripts 1 and 2 to denote the properties of
the two groups, remembering that the sign of the charge may also differ.

For both groups (with suitable subscripts) the current density in
response to an electric field ex in the x-direction is:

jx — ne8vx = aex so that bvx = aex/ne

In the presence of the field B there is a Lorentz force:

Fy = Be8vx = Bjx/n

(9.8)

(9.9)

This Lorentz force is different for the two groups and so, although there
is ultimately no net transverse current, there are transverse currents, one
associated with each group. They are in opposite directions and so cancel.
The Lorentz forces cause a build-up of charge at the boundaries of the
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specimen, which ultimately create the transverse Hall field, eH- Let us
now apply these results to the two groups of carrier for which:

a = (Ti+o-2 (9.10)

The total transverse force on electrons of group 1 is:

which is equivalent to an effective transverse electric field:

en (9.11)

and so the transverse current carried by the group 1 electrons is found by
multiplying equation (9.11) by a\. The transverse current carried by the
group 2 electrons is derived in a similar way. Since these must add up to
zero, we get:

Bcr\jx\/n\e\ + Ba2Jx2/n2e2 - <xieH - <r2eH = 0 (9.12)

From this it follows that:

6H = B[a\jx\/n\e\ + c r ^ / ^ ^ l / k i + <r2] (9.13)

and so:

+ o2
2/n2e2)/o

2 (9.14)

since 7*1 = jxtot&\/o' and likewise for j x 2 .
This shows that the Hall coefficient depends on both the relative con-

ductivity and the concentrations of the two groups of charge carriers.
A full theory of the Hall coefficient in a crystalline metal shows that, if

the electron scattering rate is uniform over the whole Fermi surface, the
Hall coefficient is given by:

RH = (12TT»{ [ j(l/»yds] / ( Jyds)} (9.15){ [ j(l/»yds]
The integration is over the whole Fermi surface and 1/r =
(1/ri + \/r2)/2. Here r\ and r2 are the principal radii of curvature of
the Fermi surface at any point. If this is evaluated for a spherical
Fermi surface of radius rF we get:

RH = 3n2/er3 (9.16)

For a single type of carrier this reduces to the simple formula (9.7).
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9.2 Preliminary comparison with experiment

Let us now see how far the expectations of conventional theory are met
by the actual behaviour of the Hall effect in metallic glasses. The predic-
tions of conventional theory are clear and simple when there are no d-
electrons and the scattering is isotropic as expected in metallic glasses: the
sign of the Hall coefficient is that of the current carriers, positive for holes
and negative for electrons. It is independent of temperature. Even if there
are d-electrons, equation (9.14) shows that provided that the carriers of
both groups make contributions of the same sign, the sign of the Hall
coefficient is that of the carriers.

As we have already seen for some of the metallic glasses made from
simple metals, these predictions are found to be fulfilled but in many
alloys that involve transition metals the Hall coefficient is found to be
positive even though the electronic structure of the constituents makes it
clear that the charge carriers, both sp-like and d-like, are electrons.
Strangely enough the size of the Hall coefficient is roughly what you
would expect from the sp-like electron density; only the sign is wrong.
This is a very potent challenge to the theory; here, even a qualitative
feature of the theory is wrong. Let us now seek an explanation of this
contradiction.

Table 9.1 gives the value of the Hall coefficient of a number of metallic
glasses containing transition metals. The glasses with positive values
include Cu-Ti, Cu-Zr and Cu-Hf all at 50-50 composition. In these
we may expect that the Cu ions will each contribute one sp-electron to
the conduction band; this would be in keeping with the behaviour of Cu
ions in crystalline alloys. The Ti, Zr and Hf atoms in the free state have
two s-electrons and two d-electrons in their outermost shells. As we saw
earlier the d-electrons contribute to a d-band associated with the Ti, Zr or
Hf sites in the glass and the s-electrons form a common sp-band with the
Cu ions.

It does not follow from this, however, that the numbers of s- and d-
electrons will reflect those in the free atom. This depends on the relative
positions of the s- and d-bands. As we saw in Chapter 8, the photo-
emission spectrum of these glasses gives an indication only of the density
of d-states of the corresponding alloy because the density of sp-states is
masked by the d-states; the data are consistent with a d-band that is very
much less than half full. There is thus no reason to suppose that hole
conduction is in any way involved. Therefore the sign of the Hall coeffi-
cient should, in our interpretation, be negative.
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9.3 Hybridisation of s- and d-electrons

What we have neglected and what, almost certainly, contains the key to
the puzzle is the effect of hybridisation. The s-like and d-like electron
states do not behave as entirely independent groups: they affect each
other and dramatically alter the electron dynamics of the composite sys-
tem. We have already seen how hybridisation can occur in crystalline
metals and analogous effects will also occur in glasses. Indeed they will
be much more pronounced because in crystals hybridisation occurs only
between Bloch states of the same wave vector whereas in glasses the
electron states should mix freely.

In those glassy alloys which have both s- and d-like states the E—k
curve of the s-like electrons can be severely modified by interaction
with the d-like states at energies where the curve passes through the d-
band. There is a resonant effect analogous to that which occurs in optical
dispersion when the energy (or frequency) of the incident light is close to
that of a bound electron in an atom of the dispersive medium through
which the light passes.

9.3.1 An optical analogy

Let us first look at this optical counterpart before considering the beha-
viour of the conduction electrons. When an electromagnetic wave passes
through a dielectric medium, the electric field associated with the wave
exerts a force on an electron in the material and, by displacing it from the
centre of positive charge, creates a dipole moment, proportional to the
displacement. Since, in an insulator, the electrons are bound inside an
atom, the response of the bound electron depends critically on the fre-
quency of the incident radiation. In the quasi-classical picture of the atom
the bound electron is represented as an oscillator of a certain frequency
CJO, say. The aim of the theory is to calculate the dielectric constant rj of
the medium (from the electric dipole moment per unit volume in unit
electric field) as a function of frequency. From this the refractive index
fx = rj{/2 and hence the velocity of propagation v can be found from
v = c/fi where c is the speed of light in vacuo.

Figure 9.2 shows how the dielectric constant varies with frequency in
this idealised model in which bound electrons of only one frequency are
involved and damping effects are neglected. At low frequencies well away
from uo, the contribution to the dielectric constant from the bound elec-
trons is small; the motion of each in response to the electric field is limited
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Fig. 9.2 Dielectric constant around a resonance, without damping. The change of
phase from 0 to n occurs at CJQ-

and follows the direction of the field. As the frequency approaches UJ$ the
tendency of the electron to oscillate at this, its natural frequency, becomes
more and more pronounced until when the applied force has exactly the
natural frequency ĉ o, resonance occurs and the amplitude of the oscilla-
tion, and hence the dipole moment, become infinite. This is of course
unphysical and, when damping is included to take account of interactions
and radiation, this divergence disappears (see Figure 9.3). Above u;o the
driving force is now trying to make the electron go faster than its natural
inclination whereas below CJO, the situation was reversed. Thus at UJQ there
is a change of phase and the sign of the contribution of the bound
electrons to the dielectric constant is reversed. Thereafter as the frequency
of the applied field increases and moves away from CJO, the amplitude of
the electron's motion diminishes and ultimately dies away as the inertia of
the electron manifests itself in its reluctance to respond to higher and
higher frequencies.

The results when damping is included are indicated in the figure which
shows that the sudden reversal of the phase from 0 to n in the undamped
case is now spread over the range of frequencies at which the damping is
appreciable and in this range the dielectric constant and hence refractive
index diminishes as the frequency rises.
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Fig. 9.3 Dielectric constant with damping. The change of phase is now spread out
over the region of negative slope.

Thus, whereas well above and below the resonant frequency, the velo-
city of the light decreases with increased frequency, around the resonance
in the region of heavy damping the reverse is true. We have 'anomalous'
dispersion. This is the classical description of the phenomenon: the quan-
tum description involves a transition of the electron between states that
differ in energy by HLJO but in essence is similar to the classical argument.
For comparison with the behaviour of electrons in a metallic glass, it is
instructive to plot the dispersion curve as frequency u versus wave num-
ber q as in Figure 9.4. This gives the same information as in Figure 9.3
but in a different form. In this the group velocity of the waves is given by
the slope of the curve du/Aq\ the phase velocity (uj/q) by the slope of the
chord joining the point of interest to the origin. What is important to
notice is that there is a region around resonance where the group velocity
of the waves is negative; it occurs in the region where damping is signifi-
cant.

The negative group velocity here arises from the change of phase velo-
city with increasing frequency. It means that the individual components
of a wave packet all have positive velocities (phase velocity) but their
envelope, which determines the group velocity and the total amplitude of
the wave, moves in the opposite direction. There is a further point about
the notion of group velocity in a spectral region where, as here, damping
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co0

No-dispersion line

Fig. 9.4 u—q relation corresponding to Figure 9.3.

is important. The damping is frequency dependent and so acts selectively
on the components of the wave packet, which thus changes shape as it
moves. The group velocity is then no longer well defined. Instead one
considers the velocity with which energy can propagate or that at which a
signal can be sent. It then turns out that the signal velocity cannot, for
example, exceed the speed of light.

These effects are well known in optics and have been intensively stu-
died. Let us now look at their analogue in the propagation of electrons.

9.3.2 Anomalous dispersion of electrons through s-d hybridisation

Consider first the states of s-like and d-like electrons when there is no
interaction between them as shown in Figure 9.5 on an E—k diagram; this
is the exact analogue of the u>-q curve just discussed with E = huj. The s-
like states are shown as free-electron-like, which, though an idealisation,
is not too absurd since in the absence of the d-states these electrons would
behave like those in a simple metal and have fairly long mean free paths.
The E—k curve is thus a parabola representing the dependence
E = h2k2/2m. The d-states are idealised to a single infinitely narrow
band at energy E&.
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Figure 9.5(a) shows the situation before and after hybridisation but
without damping. The consequences of the interaction between the two
sets of states is quite similar to what happens in the optical dispersion we
have discussed. In the electron case the wavefunction is modified so that

(a)

3
II

Ui

Free-electron curve

d-electron curve

Hybridised curves

Wave vector

(b)

Ui

Wave vector k

Fig. 9.5 Anomalous dispersion in s-d system, (a) Without, and (b) with damping.
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the quasi-free electron whose energy is not too far from that of the d-state
can be thought of as spending part of its time in that state; it is no longer
a purely s-like electron but takes on some d-character and its dispersion
curve is modified as shown. There are no longer separate s- and d-like
electrons but hybrids of intermediate character analogous to those dis-
cussed in the section on crystalline transition metals.

In this illustration there is no damping and the d-band is unrealistically
narrow. As in the optical analogue, when damping is included to take
account of the scattering of the electron, the sudden phase change of n
that occurs at Ed is now spread over the range of frequencies at which the
damping is appreciable. This modifies the dispersion curve as before to
produce a region of negative group velocity (Figure 9.5(b)). In real alloys,
moreover, the d-band spans a range of energies, between E\ and Ei, say.
In addition, because of heavy scattering, the electrons in such states have
quite short lifetimes so that the associated wavefunctions are heavily
damped. In consequence the electron states have to be represented by
their spectral functions, which can be fairly broad, and the dispersion
curve is taken from the maxima of these functions. The results for a more
realistic model are given in Figure 9.6, which shows that there is a region
of energies in which the electron has a negative group velocity. If there-
fore the Fermi level of the alloy lies in this range, the electrons that
determine the transport properties of the alloy will have negative group
velocities and we shall now see that this reverses the sign of the Hall
coefficient.

If we look at the expression for the Lorentz force on an electron of
charge e and negative velocity v in a magnetic field B:

F = evxB (9.17)

there is an alternative and formally equivalent interpretation of this equa-
tion in addition to the literal one. We can say that the force on the
electron is due to a positive value of v and a reversed sign of e, that is,
we can replace the electron by a particle with normal dynamics but a
positive charge. Then the Hall coefficient is positive even though the
charge carriers are negative. The formula for the Hall coefficient, equa-
tion (9.16), is still valid except that the sign of the effect is reversed. The
size of the coefficient can be calculated from the radius of the Fermi
sphere which now depends on both the relative positions of the s- and
d-bands and the hybridisation effects.

The resistivity of the glass will also be altered by hybridisation because
the size as well as the sign of the group velocity of the electrons is
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Fig. 9.6 More realistic model for s-d hybridised dispersion curve.

changed. I should, however, stress that the sign of the thermopower is not
affected, a feature which will become clear when we discuss the origin and
theory of thermopower in Chapter 15.

We have now some clear predictions about the sign of the Hall coeffi-
cient in metallic glasses. Where we have conduction by sp-like electrons
(not holes) in a metal or alloy and the Fermi level lies within a well-defined
d-band, we can expect a positive contribution to the Hall coefficient. The
stress on 'well-defined d-band' is because in an alloy of two components,
of which only one is a transition metal, there is, as we saw in section 8.2, a
minimum concentration of this component before a d-band is established.
At concentrations below this, the glass will behave like a metal with a
normal dispersion relation and so have a negative Hall coefficient.

Not all the d-electrons hybridise and so we have two groups of con-
duction electrons. Insofar as the Fermi surface is a valid concept we must
therefore think of two such spherical surfaces, one nesting inside the
other. The transport properties are then derived from the contributions
of these two groups, the s—d hybridised and the unhybridised d-electrons.
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We must look at the consequences of this for the magnitude of the Hall
coefficient. There is theoretical evidence that in some transition metals
and alloys the contribution to the conductivity from the d-electrons is
comparable with or greater than that of the s-electrons, presumably
because the effect of their low velocities is approximately offset by their
greater number. If this is so, their contribution to the Hall coefficient will
be small. This follows from equation (9.14) if a\ and GI are comparable
but «2 (the concentration of d-electrons, say) is much larger than n\. In
physical terms this is because the large number of d-electrons implies that
they have a small drift velocity and so a small Lorentz force.

Model calculations confirm that the d-electron contribution may be
very important to the conductivity but not to the Hall coefficient. We
shall therefore for the present ignore the contribution from the d-band to
the Hall coefficient, although recognising that it could make a negative
contribution, partly offsetting the positive contribution of the hybridised
s-electrons.

9.4 Skew scattering and the Hall coefficient

There are other mechanisms that can cause the Hall coefficient to depart
from its free-electron value even when the electron properties are uniform
and isotropic. One of these is skew scattering. This arises when the prob-
ability W(k, k') of an electron being scattered by an ion from state k to k'
is different from the probability W(k',k) of the inverse process. One
source of such scattering is spin-orbit coupling within the scattering
ion. A conduction electron that is scattered by the ion behaves while
inside the ion somewhat like an atomic electron and so if the spin-
orbit coupling is strong its spin couples to its orbital motion. Thus, just
as the energy of the atomic electron in a state designated by (/ + )̂ (where
/ is its orbital quantum number) can differ from one designated by (/ — 5),
an electron entering the scattering field can have different energy accord-
ing to its spin direction. Conversely, given its spin direction, the scattered
electron takes on the orbital motion appropriate to its energy, which
means that its energy and spin direction determine whether it goes
round the ion in one direction or the other. Thus if you reverse the
direction of the outgoing electron it will not retrace its path but go
round the scatterer in the opposite sense. The two scattering events are
thus not equivalent:
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We write the total scattering amplitude/totai =fiOn +/so where / ion is the
scattering amplitude due to the electron-ion potential and/so that due to
spin-orbit coupling. The probability of scattering is then:

^(k,k /) = vwI-S(̂ )|̂ totai|2 (9.18)

where v is the electron speed, S(q) the structure factor and «,- the number
of scatterers per unit volume. As before q = 2k? sin(0/2) where 9 is the
scattering angle. From the definition of/totai already given, we see that:

1/iotall2 = Won)' + 2/;on/So + (fso)2 (9.19)

The first term is large and gives rise to the usual ionic scattering, the
second gives rise to the skew scattering and the third produces a change
of spin direction but is a second-order effect. The second or cross term
concerns us. It involves the factor:

a z - k x k ' (9.20)

where az is a unit vector in the field direction, + for spin up and — for
spin down. The vector product shows that interchanging k and k'
changes the sign of this term in the scattering probability and is thus
the source of the skew scattering. Other factors in the cross term,
which are not included since they influence only the magnitude and not
the mechanism of the effect, are the Pauli susceptibility of the electrons
and the spin-orbit parameters. These parameters obviously depend on
the angular momentum of the electron; for example, they are zero for s-
electrons for which / = 0. They are different in detail from the atomic
parameters because of the different boundary condition on the electron
wavefunction when the ion is in a solid.

The factor given by equation (9.20) enables us to see how the Hall
effect comes to be altered. We can interchange the dot and the cross in
equation (9.20) so that the first two factors involve the vector product of
a unit vector in the spin direction and a vector in the direction of the
electron motion. Since, in the magnetic field which is present in the Hall
effect, there are more spins pointing along the field direction than against
it, we consider an electron with spin in this majority direction, that of B.
We also consider a fc-vector in the electron current direction j because a
majority of electrons must possess components in this direction to sustain
the current. Thus equation (9.20) is proportional to:

B x j k' (9.20a)



96 The Hall coefficient of metallic glasses

Because in the Hall effect we measure the potential transverse to the field
and current direction, we are concerned only with k' vectors normal to B
and j . Thus the expression (9.20a) varies as B x j which has the same
angular dependence as the Lorentz force. In this way it contributes to the
Hall coefficient.

The final magnitude of the spin-orbit effect depends on combining
equation (9.20) with the structure factor and the scattering amplitude
of the electron-ion potential, both of which usually depend on scattering
angle. Since, however, they do not depend on B, the angular dependence
of the result is not altered and the skew scattering makes a true contribu-
tion to the Hall coefficient.

The effects of spin-orbit interaction are thought to explain the reduc-
tion in the Hall coefficient of liquid mercury when it forms alloys. Pure
liquid mercury, in spite of strong spin-orbit coupling, has a Hall coeffi-
cient quite close to the free-electron value and this is thought to arise
because the angular dependence of the other factors mentioned above
fortuitously annul the spin-orbit contribution. The alloying additives
which all reduce the Hall coefficient have one thing in common, namely,
a small spin-orbit parameter relative to mercury. The general idea is that
the masked effect of the strong spin-orbit coupling in mercury itself is
revealed when the fortuitous cancellation is removed on alloying.

Spin-orbit effects tend to be confined to the metals of high atomic
number such as gold, platinum and mercury, because the spin-orbit
coupling parameter increases very markedly with atomic number. It
seems clear that skew scattering cannot be the explanation of the positive
Hall coefficient in so many transition metal glasses made from elements
that are of comparatively low atomic number.

There is one further point about spin-orbit coupling that will be of use to
us later: because of this coupling the spin is no longer a good quantum
number when the electron is inside the ion. Spin-orbit coupling can thus
disorient the spin in the scattering process and randomise its direction. This
has important consequences for the phase of the electron wavefunction.

There are other effects such as side-jump scattering that have been
invoked to explain the anomalous Hall coefficient in ferromagnetic
metals and considered as possible explanations of the sign change of
the Hall coefficient that we have been discussing. Their origin and applic-
ability are controversial and will not be discussed here but references to
publications where they are discussed are given in the notes1.

We now turn to a comparison of experimental results with the theore-
tical ideas that we have been discussing.
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9.5 Experimental results

When the Hall coefficients of metallic glasses were first measured they
were thought to be independent of temperature but later, more careful
measurements showed that there was a slight temperature dependence.
This is a subtle effect whose origin we shall explore later when we have
studied the nature of scattering processes in these materials more thor-
oughly. In the meantime we ignore this slight dependence on temperature
and generally quote room temperature values.

Figure 9.7 provides a way of comparing the Hall coefficient for a range
of noble metal alloys and of pure metals in the amorphous state, some
liquid, some glassy, Rn is plotted against alloy concentration after nor-
malisation to the free-electron values, calculated by assuming that each
atom contributes one electron to the conduction band. At low concen-
trations of the noble metal, where the open d-band would not be expected
to exist, the Hall coefficient is negative but where the d-band is securely
formed the sign is positive right up to the pure liquid. These findings
accord with the anomalous dispersion theory.

In Table 9.2 we see values for a number of metallic glasses in the series
of Cu with Ti, Zr and Hf. Liquid and crystalline Cu are included for
comparison. The table demonstrates again the change in sign of the Hall
coefficient when the proportion of Cu becomes high. (It was found
impossible to make a glass of Cu90Tii0.) In alloys rich in Ti, Zr or Hf
values of i?H not quoted in the table do not vary much from those given
for the 50-50 alloys. Presumably this is because, once the non-copper
element dominates, the Fermi level is determined by the density of states
in the open d-band and so does not change much. However, as the
proportion of Cu increases beyond about 65 %, RH declines before chan-
ging sign. This, like the similar effect in Figure 9.7, may reflect the weak-
ening of the hybridisation before the open d-band ceases to exist.

There is clearly a systematic change in the Hall coefficient of the con-
centrated alloys as we go from Ti to Zr to Hf but its origin is not clear. It
could be due to a change in the band structure, for example, the position
and width of the open d-band. In the crystalline transition metals, the d-
band tends to widen and sink in energy relative to the s-band as you go
from the 3d to 4d to 5d. If this occurred here and the s-band remained
unchanged, it would suggest a systematic reduction in kF for the hybri-
dised electrons and so, contrary to what is observed, an increasing Hall
coefficient (see equation (9.14)). The systematic change could be due to
an increasing contribution from the d-electrons but, as we saw earlier, the
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Fig. 9.7 Normalised Hall coefficient versus electron concentration. Rn is the
measured Hall coefficient and RQ the free-electron value. (After Weir et at. 1983.)

theoretical models suggest that this contribution should be small whereas
the changes to be explained are substantial.

The change is unlikely to be related to spin-orbit effects since these are
small in ions of the atomic numbers involved here. At present we do not
have enough detailed knowledge to explain the trend. It would be instruc-
tive to see how Ru changes as we move the Fermi level through the region
of anomalous dispersion. To do this one would like measurements on
alloys of Cu with, say, the 4d series Y,Zr,Nb,Mo,(Tc),Ru and Rh. Apart
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Table 9.2 Hall coefficient of some copper-based
metallic glasses

Hall coefficient
Alloy (10-1 1m3C-1)

Cu5OTi5o
Cu5oZr5o

Cu68Ti32

Cu70Zr30

Cu70Hf30

Cu9OTiio
Cu9OZrio
Cu90Hf10

Liquid Cu
Cryst. Cu

+ 10-13
+7.0
+4.0
+6.5
+4.6
+2.2

-5.1
-5.2
-8.3
-5.1

from Y and Zr, it has so far proved impossible to make and measure such
samples.

Other alloy series that have been systematically measured and which
show a change with concentration of the sign of the Hall coefficient are
NiZr and CoZr. Liquid Ni and liquid Co both have negative values as do
the glassy alloys rich in these elements. Where the Zr is dominant the
values are positive. In these alloys both elements contribute d-electrons to
the conduction process.

The explanation of the positive Hall coefficient in some metallic glasses
is a key problem. The s-d hybridisation theory seems to be well founded2

and, although not perhaps universally accepted, appears to be the most
plausible.



10

Magnetoresistance

10.1 Qualitative picture

First of all we concentrate on the transverse magnetoresistance in which
the magnetic field is applied normal to the current direction. The calcula-
tion of the magnetoresistance of a crystalline material is very difficult
unless there are simplifying features. In the metallic glasses fortunately
there are indeed such features. If we make the same assumptions as in our
first derivation of the Hall coefficient we find zero magnetoresistance.
The effect of the magnetic field is so perfectly compensated by the trans-
verse electric field (the Hall field) that the resultant current is completely
unperturbed and so there is no change in resistance i.e. no magnetoresis-
tance.

In the alloys of non-transition metals there is only one type of charge
carrier and no obvious source of anisotropy so the magnetoresistance due
to conventional mechanisms must be vanishingly small.

If there is to be a non-zero magnetoresistance some additional feature
has to come into the story. One example of such a feature is the presence
of the two different types of charge carrier that we postulated for transi-
tion metal alloys.

10.2 Two-band model

If we assume that there are two kinds of carrier, we can perhaps under-
stand the physics of this type of magnetoresistance in macroscopic terms
as we did for the Hall effect. The first effect of the magnetic field is, as we
saw, to produce a transverse component to the electric current; in the
normal geometry of resistance measurement this current is suppressed by
the boundaries of the specimen: the transverse Hall field builds up until

100
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there is no net transverse current. If there are two types of carrier each
type has a different drift velocity in the electric field and thus experiences
a different Lorentz force. Suppose that group 1 have a low drift velocity
and group 2 have a high one. Clearly a transverse electric field cannot
exactly balance both Lorentz forces; to suppress the transverse current
the field builds up to a value which overcompensates the weaker Lorentz
force and undercompensates the stronger one. When we take account of
the combined effect of the Lorentz force and that due to the Hall field,
both of which act in a direction transverse to the current direction, it is
clear that the group 1 electrons will produce a transverse current in one
sense and group 2 an equal current in the other.

The magnetic field will now act on the resulting transverse current
components to produce additional currents at right angles to their trans-
verse direction. The current which suffered the greater Lorentz force in
the first instance will do so again and this time will be turned through
another right angle so as to run counter to the original current direction;
it will thus reduce the total current and so tend to increase the resistance
to flow. The transverse component in the opposite direction will suffer a
Lorentz force that moves it into the direction of the main current thus
tending to reduce the resistance. It turns out that the net effect i.e. the
difference between the additional currents flowing with and against the
main stream is always in the opposite sense to the primary current and so
always increases the resistance (for the two-group model just described
this can be demonstrated straightforwardly). Thus the magnetoresistance
defined as Ap(B)/p(B = 0) due to this mechanism is always positive.

The above argument envisages two stages to the evolution of the mag-
netoresistance: first the establishing of the transverse Hall field, which is
proportional to B, and then the operation of B again on the resulting
transverse components of the current to produce the final change in the
applied current which causes the resistance change Ap. This second stage
is also proportional to B at low fields and so the magnetoresistance under
these conditions is proportional to B2. The magnetoresistance calculated
for this two-group model (in the same notation as in Chapter 9) is:

Ap/p(B = 0) = a^iax/mex) - (a2/n2e2)}
2B2/a2 (10.1)

Here the electronic charge e is to be thought of as having the appropriate
sign.

The effect we have so far discussed is the transverse magnetoresistance
but there is also a longitudinal effect observed when the magnetic field is
directed along the direction of the current. This vanishes in the two-group
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model we have just discussed. Clearly this is a more subtle effect since
there is no Lorentz force on an electron travelling parallel to the magnetic
field. We must however remember that in general the electron velocities
are not all equal and are not parallel to the current direction although of
course they have components in that direction. These components are
unchanged by the longitudinal magnetic field but the components normal
to this direction are altered by it and would cause the electrons to spiral
around the field direction if they were not scattered. Where there are
sources of anisotropy this longitudinal magnetoresistance is also positive
and proportional to B2 at low fields.

10.3 Kohler's rule

The magnetoresistance that I have just described is often referred to as
the Kohler magnetoresistance after the theorist who first identified its
main features. Kohler also devised a criterion known as Kohler's Rule to
determine whether this type of magnetoresistance is likely to be large or
small.

A dimensional argument allows us to work out a useful criterion ana-
logous to Kohler's Rule. If an electron of mass m and charge e moves at
right angles to a magnetic field B with angular velocity u, it describes a
circle of radius r given by:

mruj2 = evB (10.2)

where v is the linear speed given by v = rcu. So the so-called 'cyclotron
frequency' of the electron is:

CJC = eB/m (10.3)

The reciprocal of this frequency is of the order of the time the electron
takes to execute one orbit in the field B. We can compare this with the
mean time r between collisions to see how much effect the magnetic field
has before the electron is scattered out of its orbit and its direction
randomised. The dimensionless quantity UJCT is a measure of this; it is
the angle through which the radius vector of the electron in its cyclotron
orbit turns before the electron is scattered. If UJCT <C 1, it means that the
electron is scattered almost as soon as it begins its orbit; it is deflected
through a very small angle and so the effect of the field B is very small.
Since we know that the low-field magnetoresistance is proportional to B2

and that LUC is proportional to B, we can get a rough measure of the likely
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size of the low-field magnetoresistance Ap/p by taking it as of order
(^cT)2.

Since in the simplest model, we can write a = ne2r/m, LUCT can then be
expressed as aB/en.

10.4 Rough estimates

Let us make a crude estimate of the magnetoresistance in a simple two-
band model with s- and d-electrons. If we assume that half the current is
carried by the d-electrons (say) and that they constitute 80 % of the
number of carriers, the magnetoresistance, according to equation (10.1)
works out at about (o;cr)

2. The contribution of the d-electrons is small
because their number is relatively large and their velocity small; this tends
to make their drift velocity small (in a given electric field) and so make
the Lorentz force and hence the d-contribution to the Hall field and
magnetoresistance small. In this calculation I have also assumed that
the s-electrons have an effective charge opposite in sign to that of the
d-electrons (because of the anomalous dispersion) so that the two terms
in the square brackets of equation (10.1) add up. The calculation is then
not sensitive to the precise numbers, which it could be if the two terms in
the square brackets were of opposite sign. In that case of course the
magnetoresistance would be smaller.

To get an idea of the magnitudes involved we note that according to
equation (10.3) the cyclotron frequency of a free electron in a field of one
tesla (1 T) is 1.6 x 10~19 -=- 9.1 x 10~31 = 1.76 x 1011 s"1. So in any mate-
rial in which r is of order 10~13 s or less we can expect the magnetore-
sistance in such a field to satisfy the condition uocr <C 1; in typical alloys
with which we are concerned where r is about 10~16s the Kohler mag-
netoresistance in magnetic fields of 10 to 20 T is going to be completely
negligible (of order 10~7).

Measurements show, however, that at low temperatures the magne-
toresistance in some of these glasses is substantial, much bigger than
predicted by the Kohler criterion and quite easily measurable.
Moreover, although it varies as B2 at very low fields, it changes in
some samples to a 2?1/2 dependence at higher fields, which suggests that
something unusual is involved. In other samples and circumstances, the
behaviour is a good deal more complex. Here then is another mystery to
be explained.
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The brief survey in this and the previous chapter has shown that although
the Boltzmann-type theories that we have already looked at can give us
some insight into the interpretation of the electronic properties of metal-
lic glasses, there are some outstanding features that demand the revision
or extension of our theoretical picture. We now look at what these exten-
sions are and how far they explain the details of the resistance and
magnetoresistance of metallic glasses.



11
Electrical conductivity of metallic glasses:

weak localisation

Having looked at some of the ideas in terms of which the electrical
conductivity of metals has conventionally been interpreted, we now
look at the conductivity of metallic glasses to see how far we can under-
stand it in terms of what we have learned. The broad features of the
conductivity of glasses made from simple metals have been interpreted
in terms of the Ziman model (as established for simple metal liquids).
Those that contain a substantial proportion of at least one transition
metal have properties that cannot, for the most part, be so interpreted
and indeed it was soon recognised that even simple metal alloys require
an extension of the theory. Because all these materials we are considering
are highly disordered, we can be sure that their electrical resistivity will be
large at all temperatures and will not vary a great deal with temperature;
its precise magnitude will of course depend on the specific constituents of
the alloy.

There is one generalisation that can be made at the outset. Experimental
data show that, as we would expect, the residual resistivity, po? of a glass
is comparable to that of the corresponding liquid and indeed its resis-
tance looks like the natural continuation of that of the liquid to low
temperatures. This is illustrated in Figure 11.1 for Ni6oNb4O and
Pd8iSii9, which also shows that the crystalline form at low temperatures
with its much higher degree of order has a much lower resistivity. All this
is reassuring.

Let us first consider the alloy Cu60Ti40 whose resistivity is about
190ufJcm. What does this tell us about the mean free path of the con-
duction electrons in this alloy? To get a rough idea we assume that the
conduction electrons are free-electron-like and use the relation
a — ne2r/m. To estimate n we suppose that each Cu atom and each Ti

105
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Fig. 11.1 The resistivity of alloys, Ni6ONb4o and Pd8iSii9 in liquid, glassy and
crystalline form as a function of temperature. Notice that the resistivity of the
glassy phase appears to form a reasonable extrapolation of that of the liquid.
(After Giintherodt et al 1978.)

atom contribute one electron to the s-band and hence to the conduction
process; for our present estimate we ignore the contribution of the d-
electrons. From n we can then calculate k? to be 1.3 x 108 cm"1 and the
Fermi velocity vp to be about 108cms~1. From the relation / = vpr we
find for the mean free path a value of about 4 x 10~8 cm, which is little
more than the interionic spacing. With such a short mean free path we
can no longer maintain our picture of conduction electrons travelling
distances long compared to both the interatomic spacing and the Fermi
electron wavelength, with just occasional scattering processes to interrupt
their progress. This is only part of the problem.

11.1 The negative temperature coefficient of resistivity

The temperature coefficient of resistivity a = (l/p) dp/dTof most glasses
is small as we would expect but the resistivity of many glasses falls slightly
with rising temperature, which we would not expect. This is a compara-
tively rare phenomenon in crystalline metals and is not explained by
Boltzmann theory unless there are special circumstances. Moreover
there is an interesting correlation: those alloys with po less than
150|ificm tend to have positive temperature coefficients (around room
temperature) whereas those with po greater than 150 \ifi, cm tend to have
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Table 11.1 The resistivity and its temperature coefficient in some
metallic glasses and liquid iron

Material

Cu5oZr5o
Cu5oTi5o
Cu60Hf40

Ni 2 0Zr 8 0

Ni5oZr5o
Ni7oZr3o
Ni5ONb5o

Co3oZr7o

Fe3 3Zr6 7

Liquid Fe

Pd8OSi2o
Pd8OGe2o

Resistivity, p
(jifi cm)

178
204
190

160
184
164
195

173

168
135

102
101

130

(l/p)dp/dT
(lO^K"1)

-1.0
-1.0
-1.2
-0.9
-1.4
-0.3
-0.08
-1.3
-1.0
+2.0
+0.7
+ 1.87
+0.6

negative ones. This is known as the Mooij correlation after its discoverer
(Mooij 1973) and is illustrated in Table 11.1 and Figure 11.2.

Metallic glasses with po > 150 JIQ cm often show a resistance minimum,
i.e. as we start from low temperatures the resistance first falls and then
rises. The fall in resistivity in those metallic glasses that have negative
temperature coefficients is small, typically a few per cent between low
temperatures and room temperature. Nonetheless this is important
because in all our discussions of phonon scattering the effect of increasing
the temperature has been to increase the disorder in the system and so to
increase the resistivity.

A well-established cause of a negative temperature coefficient is the
presence of magnetic scatterers. One example is the Kondo effect, which
occurs in very dilute alloys containing impurities that carry a magnetic
moment in solution. Another example is found in ferromagnetic pluto-
nium in the neighbourhood of the Curie point.

A negative temperature coefficient of resistivity can also arise in metals
or alloys which have a very sharp drop in the density of states near to the
Fermi level, an effect seen for example in some alloys of palladium. It is,
however, unlikely to be present in glasses where the disorder usually
smears out any such sharp features.
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Fig. 11.2(a) The temperature coefficient of resistivity a versus resistivity p for a
range of metals and alloys to illustrate the Mooij correlation, (b) The same plot
for two particular alloys. (After Howson and Gallagher 1988.)

We have also seen how changes in the structure factor in some mono-
valent liquid metals can cause the resistivity at high temperatures to fall
with rising temperature.
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All these are however rather special conditions that do not apply in
most of the metallic glasses that concern us. Thus, whereas the generally
high value of the resistivity is understandable, the Mooij correlation and
the details of the temperature dependence are not. These matters ulti-
mately demand an extension of conventional theory.

The position can be summarised in the following way. Hitherto we
have considered the Fermi electrons as travelling large distances
(compared to their wavelength and the interatomic spacing) without
being scattered. The scattering events could thus be treated quite inde-
pendently and the structure factor, which describes the consequences of
single scattering processes, is sufficient to account for this aspect of the
scattering. Now, however, we are confronted with scattering processes so
frequent that we are forced to consider the possibility of interference
between incident and scattered waves. Moreover the electron progresses
from ion to ion by almost a random walk so that we are led to think of its
motion as diffusive rather than ballistic. In the detailed treatment that
follows, the classical diffusion equation allows us to treat interference
between the scattered waves (neglected in the Boltzmann approach) at
least in an approximate way and to achieve a remarkable insight into the
behaviour of these electrons.

11.2 Interference effects

The conduction electrons propagate through the metallic crystal or glass
as waves and, where interference is possible, its consequences depend on
the relative phase of the interfering waves. If a wave of wavelength A
moves from point A to point B its phase changes and if A and B are in the
line of propagation and are one wavelength apart the difference in phase
of the wave at A and at B is In. Correspondingly if the wave goes a
distance dq in the direction of propagation its phase changes by 2ndq/X
or, in terms of the wave number k — 2n/X, by kdq; from the de Broglie
relation p — ftk, where p is the momentum of the electron, this phase
change can be written as pdq/ft. If the direction dq is not that of/? or
k, we can use vectors and write k • dq or p • dq//i. For a specific path the
total phase change is obtained by integrating along it. Notice that the
value of p • dq integrated over the path is just the classical action A
associated with the path. So the total phase change along the path is A/ft.

Since the phase of the wavefunction is so important in what follows, let
us digress slightly to see how its connection with the Principle of Least
Action links classical and quantum mechanics.
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When a quantum particle travels from A to B, the path it follows is
determined by the relative probability of all possible paths between A and
B. But these probabilities are expressed as amplitudes (dependent on
phase) and not intensities. The ultimate behaviour is then determined
by finding the resultant probability amplitude and taking the square
modulus to find the final probability intensity. Let us suppose that the
path and object are macroscopic so that the number of de Broglie wave-
lengths contained in the path is enormous. Any arbitrary path therefore
has close to it other paths whose phase is quite different to its own
because a tiny change in path length produces a big change of phase.
So in general these paths tend to cancel each other. Only in the neigh-
bourhood of a path for which the phase and hence the action is an
extremum do the neighbouring paths, differing only infinitesimally
from the extremum, have phases that to first order are the same as that
of the original path. The associated probability waves are therefore in
phase and reinforce each other. Thus the only path that survives with
appreciable quantum probability is that associated with an extreme value
of the action; this is just the classical path determined by the Principle of
Least Action.

Because we have to deal with electrons in a magnetic field, let us
determine how the phase of the electron wavefunction is altered when
exposed to a magnetic field B. In writing down the phase change in the
absence of a field we used the so-called 'canonical coordinates' p and q of
the Hamiltonian formulation of classical mechanics. This then must be
our guide in extending the expression to include a magnetic field. To do
this in classical mechanics we replace the momentum p by (p — eA) where
e is the electronic change and A (not to be confused with the action A) is
the vector potential corresponding to B i.e. B = curl A. Thus in the cor-
responding quantal system the phase change associated with a displace-
ment dq is (p — eA)dq/h. To find the change of phase when the electron
executes an arbitrary closed path O, we must integrate the above expres-
sion for the phase around the path O. We have two terms: the first is just
the path integral of p//z which we have already discussed and which we
take to be independent of the magnetic field. The second is proportional
to A • dq integrated around O. We can, however, rewrite this since:

•dq= [curl A • dS (11.1)

where dS is an element of area and the integral on the right-hand side is
over any surface bounded by O. Since B = curl A we see that the right-
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hand side of equation (11.1) is JB • dS which is the total flux of B through
the closed path O. If we call this flux </> then the phase change induced by
the field B when the electron traverses the path O is e<j)/h. Thus we see
that the change of phase induced by the field is just equal to the change in
flux through the circuit expressed in units of e/h.

11.3 The Aharonov-Bohm effect

The result just stated has long been known but it acquired additional
interest and importance when Aharonov and Bohm (1959) predicted that
if a charged particle encircled a region of magnetic field it would suffer a
change of phase in proportion to the magnetic flux enclosed by the path
even though the particle never itself entered the magnetic field. This was at
once verified with electrons in a very elegant experiment by Chambers,
using an electron microscope as the source of the electrons and an iron
whisker to confine the magnetic flux. In this way he could divide the
electron beam to pass outside the whisker and then recombine it to
form an interference pattern which he could use to measure the phase
shift.

These results were achieved with electrons in free space. We now turn
to analogous work with conduction electrons in metals. Altshuler,
Aronov and Spivak (1981) predicted that the Aharonov-Bohm effect
just described should be observable with conduction electrons in a
metal at low temperatures. The prediction was verified by Sharvin and
Sharvin (1981) in the following experiment.

They took a thin-walled cylinder of lithium metal at low temperatures
inside which they could generate a magnetic field parallel to the axis of
the cylinder but totally confined inside the cylinder with no stray field in
the metal itself (see Figure 11.3). They then measured the resistance of the
cylinder between its ends as a function of the interior magnetic field and
found that the resistance showed oscillatory variations of period h/2e in
the flux as illustrated in Figure 11.4.

Why does this happen? The main effects arise because of interference in
a special class of electron trajectories, namely those that contain closed
loops. This interference comes about because an electron can execute
such a closed path in two different senses as illustrated in Figure 11.5.
In fact there is an additional condition that must be satisfied: the scatter-
ing processes that produce the closed path must all be elastic so that
phase coherence is maintained throughout; scattering at low tempera-
tures by the static disorder is in general elastic with no phonons involved.
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B

Fig. 11.3 Thin-walled cylinder with magnetic flux confined within the inner wall.
The conduction electrons never enter the magnetic field itself.

Any inelastic scattering event would introduce an arbitrary phase change
and destroy the interference effects.

Let us now calculate the probability W of an electron leaving and
returning to the point X on a closed path. If ij)\ is the probability ampli-
tude of the anticlockwise path and ^ the probability amplitude of the
clockwise path, then the total probability of the path is:

W =

where the sum is over all possible paths. Here this is:

(11.2)

(11.3)

The first two terms are just classical probabilities and the second two
terms are interference terms that would not appear in a classical argu-
ment. Even in a quantal argument they would generally average to zero
when summing over all possible paths since there would usually be arbi-
trary phase differences between the contributions to ip\ and ip2- In the
particular case considered here however the two paths are of identical
length and involve identical scattering events although encountered in the
reverse sequence. Moreover phase coherence is maintained throughout.
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Fig. 11.4 Change in resistance of hollow cylinder versus magnetic field showing
its periodic variation with the flux. (After Altshuler et al. 1982.)

Fig. 11.5 Possible electron paths including a closed path in which an electron
returns to its starting point. On the closed path there are two paths of equal length
corresponding to the two senses in which the path can be traversed; these are
indicated by the arrows.
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Thus the probability amplitudes ip\ and -02 associated with the two paths
are completely in phase and all four terms on the right-hand side of
equation (11.3) have the same value: for these special paths W has
twice its classical value. This means that processes in which an electron
returns to its starting point after a succession of elastic scattering events
have a probability enhanced above that expected in a classical calculation
and the electrical resistivity of the cylinder is enhanced above its
'classical' value by this quantum interference. Moreover, in some of
these special processes the electron travels right round the cylinder before
returning to its starting point, as indicated in Figure 11.6. Let us con-
centrate our attention on these.

When a magnetic field is applied there is a change in the magnetic flux
through these paths. Call this A</>. This, as we have seen, alters the phase
of the associated wavefunction by eA(f>/h. The effect of this is of one sign
for ip\ and of the opposite sign for ^2 since it describes an electron
executing the path in the opposite sense. There is thus a relative phase
shift of 2eA<f)/h~ between the two and as the field, and hence the flux 0, is
increased from zero the two wavefunctions change from being exactly in
phase and become more and more out of phase. The enhanced resistance
due to quantum interference thus gets smaller and when the waves are in
antiphase the enhancement of the resistance is completely destroyed.
Thereafter as the field increases further there will be a periodic variation
in resistance as the flux through the cylinder changes. The period of this
change is fi/2e exactly as observed in the experiment.

Starting point

Magnetic
field B
confined within

Fig. 11.6 Electron closed path that goes right around the cylinder.
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11.4 Weak localisation

This remarkable result demonstrates beyond doubt the existence of quan-
tum interference effects in the behaviour of conduction electrons. We
shall now see how these effects influence the behaviour of metallic glasses
(or indeed any highly resistive metal) when the geometry of the sample is
of conventional form.

The electron paths that interest us here are those that contain closed
loops. As we saw they have a probability enhanced by quantum inter-
ference above that of non-intersecting paths. This means that the chance
of an electron returning to its starting point is increased and because of
this the phenomenon is often referred to as 'weak localisation'. It also
means that the material will show a higher resistivity than would be
expected from theories that neglect this enhanced scattering.

We can now understand why the resistance of a metallic glass falls as
the temperature rises. Let us start with the specimen at absolute zero
where inelastic scattering is at a minimum. The resistance is thus enhanced
by the tendency to weak localisation that we have just discussed. Now we
raise the temperature gradually; inelastic scattering becomes more prob-
able as, for example, more and more phonons are excited and this inelastic
scattering destroys the coherence of the wavefunction of some of the
electrons that were participating in the enhanced scattering. This in turn
destroys the quantum interference in these loops, reduces the probability
of back-scattering and so reduces the resistance. Thus we expect to see the
resistivity fall with rising temperature. We can now understand the two
features of the resistivity of metallic glasses that I have already mentioned:
first, why the temperature coefficient is negative and second why this
negative temperature coefficient is correlated with high resistivity.

We are able to take the argument a stage further if we assume that the
electron is executing a random walk from scattering site to scattering site
and that the probability of its return to its starting point can be calculated
on the basis of classical diffusion theory. In three dimensions the prob-
ability per unit volume that a particle leaving the origin at time t = 0
should be at a distance r at time t is:

p(r, t) = [cxp(-r2/4nDt)/(4nDt)3/2] (11.4)

(This is valid in three dimensions; in one or two dimensions the result is
different and leads to different behaviour for the conductivity.) D is the
diffusion coefficient of the conduction electrons and can be deduced from
the electrical conductivity using the Einstein relation (equation (3.41)).
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To find the probability of the electron returning to its starting point we
put r = 0 in the above expression and estimate the volume of space
occupied by the electron in an element of time dt. We may think of the
electron as having the dimensions of its wavelength A and travelling with
the Fermi velocity vp. In a time dt it therefore sweeps out a volume
X2vFdt. The probability that its path will return to the origin and find
itself in this volume is thus approximately:

p(t)dt ~ \2vFdt/(4nDt)3/2 (11.5)

Now we need the value of this probability integrated over the period
during which the electron wavefunction remains coherent. If rm is the
inelastic scattering time after which, on average, the coherence of the
electronic wavefunction is destroyed by an inelastic scattering event, we
must integrate equation (11.5) from the minimum time of a scattering
process TO (the mean free time for elastic scattering) to rin. This then
yields the probability of enhanced back-scattering as:

p(Tm) ~ A2vF[(r0)-1/2 - (rinr1/2]/(47LD)3/2 (11.6)

This reduces the value of the diffusion coefficient D by the same fraction
and we know from the Einstein relation (equation (3.41)) that:

cr = e2DN(EF) (11.7)

Thus if D is reduced (without change in the density of states) a is reduced
in proportion. Since the change is small we can write for the reduction in
conductivity ACT and the enhancement of the resistivity Ap:

AD/D = Aa/ao = -Ap/p0 = -p(rm) (11.8)

If now in equation (11.6) we write D = vFl/3 and A = 2n/kF, we find:

Ap/po = -Aa/o-o = *[l - (To/T-in)1/2]/(M2 (11.9)

where a is a numerical constant, shown by a full calculation to be 3.
We see from this that when the inelastic scattering time equals that for

elastic scattering Ap or ACT vanishes, as we would expect. Moreover the
temperature dependence is determined by that of the inelastic scattering
time, as seen in the second term of the square bracket. The size of the
effect is determined by the quantity (kFl)2; if this is large, so that the
mean free path of the electrons is large compared to their wavelength, the
effect is small and vice versa.
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From equations (11.6) and (11.9) we can put the temperature-depen-
dent part of ACT very simply by writing cro = (e2/3n2ti)k^l (which follows
from equation (3.35) with vpr = / and S = 47iA:p):

Aa(T) = (<?/2v*h)(Drm)-l/2 (11.10)

Let me recapitulate this important argument. In materials in which the
conduction electrons have a very short mean free path (causing a high
resistivity) interference between scattered waves may occur. If the elec-
tron waves maintain phase coherence along their path, closed loop paths
offer the electron two paths of equal phase change, namely the closed
path executed in opposite senses. The two waves thus return to their
starting point exactly in phase and reinforce each other, thereby doubling
the probability of this path in comparison with classical expectations and
in comparison with other open paths where interference effects average to
zero. There is thus an enhanced probability of an electron returning to its
starting point and this is referred to as weak localisation. It leads to an
enhanced resistance at low temperatures but this additional resistance is
destroyed as the temperature is raised because of dephasing processes,
such as inelastic scattering by phonons. Classical diffusion theory sug-
gests that the temperature dependence of this additional resistance will be
governed by the temperature dependence of the term (rin)"1^2 where r\n is
the dephasing or inelastic scattering time1'2.

11.5 The temperature dependence of resistivity

The results embodied in equations (11.9) and (11.10) enable us to under-
stand many features of the behaviour of the conductivity of metallic
glasses and other high-resistivity metals. Let me emphasise that the
only conditions that are needed to bring about these weak localisation
effects are essentially (a) that the mean free path of the conduction elec-
trons should be comparable with their wavelength so that k?l is small and
(b) that any scattering that can randomise the phase of the electron
wave function is small. In practice, this means that the temperature
must be low enough to limit inelastic scattering. These conditions can
be met in crystalline as well as in glassy alloys, in non-transition as well
as transition metal alloys. In other words we can expect to see the possi-
bility of the resistivity of metals or alloys falling with rising temperature
whenever they have sufficiently high resistivity. In qualitative terms this
offers a natural explanation of the Mooij correlation.
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To determine how the resistivity of a metallic glass depends on tem-
perature, insofar as it is due to weak localisation, we must know how the
dephasing of the wavefunctions depends on temperature; often this
means knowing how the inelastic scattering of conduction electrons
depends on temperature. The most probable source of such scattering
is the phonons and we shall assume here that they are responsible for the
dephasing. In the next section we shall look more carefully at how coher-
ence is sustained and how it is destroyed.

We have already discussed the scattering of electrons by phonons in a
disordered alloy in Chapter 6, where we saw that scattering by the dis-
ordered ions could be elastic (without phonons) or inelastic. The prob-
ability of inelastic processes with the generation of a phonon increases as
T2 at low temperatures and as Tat high temperatures (T> 0D/3 or so).

The scattering of electrons in a disordered metal by spontaneously
generated phonons (that is, those phonons that are not generated by
the scattering of electrons by the disordered ions) generally follows this
same temperature dependence (as we saw in Chapter 6).

We see therefore that l/rm induced by ionic motion varies as T2 at low
temperatures (T much lower than 6D) and as T at high temperatures.
Thus is follows from equation (11.10) that if the temperature-dependent
part of the conductivity is determined by this mechanism it must vary as
(Tin)"1/2, ie. as Tat low temperatures and as Txl2 at high temperatures.

If therefore we plot a versus T at low temperatures it should, if weak
localisation dominates the temperature variation, vary linearly with T; by
extrapolation to T — 0 we can determine <J$.

Figure 11.7 is a log-log plot of Aa against T for Cu5oZr5o and
Cu5oHf5O; it shows that Aa does indeed vary as T at low temperatures,
although this does not persist at still lower temperatures. Other effects
come into play and produce a T1/2 dependence, as we see in the figure
and as we shall discuss in Chapters 12 and 13.

11.6 Coherence and processes that destroy it

11.6.1 Coherence

The scattering processes that leave the electron wavefunction coherent are
those which leave all the ions in their original state. This must leave the
state of the individual ions unchanged (e.g. their magnetic spin state) and
also leave their collective state unchanged. Thus the scattering must be a
phononless process, analogous to the emission of a 7-ray in the
Mossbauer effect. The measure of how the probability of such phononless
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dependence at still lower temperatures. (After Howson and Grieg 1984.)

transitions changes with temperature is the Debye-Waller factor W. The
probability of elastic (phononless) scattering, represented by I/TO, is
reduced by the factor exp(-2W) which is temperature dependent. The
inelastic part of the scattering varies as 1— exp(—2W), which since
W <C 1 can be written simply as 2 W. At low temperatures, in the limit
that the glass can be treated as a continuum, W varies as T2 and at high
temperatures, where classical statistics hold, W varies as T. In between,
the temperature-dependence depends on the details of the frequency spec-
trum (normal mode spectrum) of the glass.

Clearly, if the scattering of the electrons by the ionic disorder is to be
coherent, there have to be enough such processes to make possible
necessary closed paths for the electrons.



120 Electrical conductivity of metallic glasses: weak localisation

Even at absolute zero, the Debye-Waller factor does not vanish. This is
because, as we saw earlier, the zero-point motion of the ions can cause
physical effects. Here it causes the ions to have positions that are blurred
and in fact their scattering potential is modified by the Debye-Waller
factor W(0) at absolute zero. This does not dephase the electron wave-
function but it alters the form factor of the ions. On the Debye model:

W(0) = (7>h2K2)/%Mk*6u (H-U)

Here K is the magnitude of the scattering vector of the electron, M the
mass of the ions and 6D the Debye temperature. In fact the Debye-Waller
factor as given by the Debye model is not very reliable since the Debye
spectrum gives too much prominence to the higher normal mode frequen-
cies compared to those in a real glass.

11.6.2 Processes that destroy coherence

The most obvious such processes are inelastic scattering processes in
which the energy state of the electron is altered. Of these the commonest
are likely to be scattering by phonons as we have already discussed.

There are, of course, other sources of inelastic scattering and, as we
saw, other power laws for phonon scattering. The other sources include
electron-electron scattering (see Appendix A6), scattering by ions that
carry a magnetic moment (see section 11.9.4) and so on. Moreover, it is
possible for the energy of the electron to be changed during scattering
without destroying phase coherence: for example, a very low-frequency
phonon can compress the metal locally, thereby causing an electron to
change direction but because the process is slow the electron wavefunc-
tion remains coherent throughout the scattering process. In this case the
phonon ultimately causes a change of momentum without a change in
energy; such processes are not usually considered in conventional theory
because they are second order processes and likely to be of low prob-
ability. In general we can take it that phonon scattering destroys the
phase coherence of the electron wavefunction but we must bear in
mind the complexity and subtlety of the notion of phase coherence;
whereas it is often convenient to identify the phase coherence time with
the inelastic scattering time this is not always so.

We now turn to the effects of a magnetic field on weak localisation and
then to the remarkable consequences of spin-orbit scattering.
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11.7 Magnetic field dependence of resistivity

Our discussion of the Aharonov-Bohm effect leads us naturally to expect
that the quantum interference effects just described will be altered by a
magnetic field. As we saw earlier, the relative phase of the two counter-
propagating waves is altered by 2e(f)/n if magnetic flux <f> passes through a
closed path executed by an electron. In a high-resistance specimen there
are many such orbits of different dimensions and orientations with
respect to the applied magnetic field and indeed there is no reason for
them to be planar orbits.

To make an estimate of the scale of the effect, consider first a planar
closed path normal to the field. We suppose that all the scattering is
elastic and that the path length is L with area of order L2. (The precise
coefficient here will depend on the shape of the closed path.) If now a
magnetic field B is applied, the flux through the orbit is Bl? and the
consequent change in phase between the two partial waves is 2{e/fi)BL2.
If the motion of the electron along this path is diffusive, the time taken to
execute the path is given by L2 ~ Dt where as before D is the electron
diffusion coefficient. Thus we can think of the dephasing of the partial
waves as progressing in time at a rate determined by (e/H)BDt, which is
independent of the size of the path; this of course applies only to paths of
the same shape. Since there are paths of different shapes (not necessarily
planar) and of different inclinations to the field direction, the rate of
dephasing will vary according to the flux through the particular orbit,
i.e. according to its area projected normal to the 5-field. Thus, although
for a particular orbit the phase change is periodic in the strength of the B-
field and will return to the in-phase condition at the appropriate value of
B, this will not be true for the whole diverse range of orbits. As the field
increases from zero all partial waves are at first dephased; at higher fields
the fall in resistivity will be moderated as some orbits approach phase
matching again and so partly offset those which are still moving out of
phase. The upshot is a general randomising of the phases which com-
pletely destroys the constructive interference that gave rise to the
enhanced resistance. Thus the magnetic field gradually reduces this resis-
tance and gives rise to the comparatively rare phenomenon, a negative
magnetoresistance.

The orbits that contribute most to the dephasing are those which for a
given value of L have the greatest projected area normal to B. There is
thus a characteristic time-scale after which the constructive interference
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in such orbits is effectively destroyed. From the argument above, the
dephasing at time t is of order (e/K)BDt so that when this reaches the
value 7i the partial waves from these important closed paths will be in
antiphase and their contribution to the enhanced scattering will be
destroyed. We assume that in this time the range of variation of the
phase from other orbits is sufficient to kill any increase in resistivity
from the periodic variation of particular groups of orbits.

Let us call this characteristic time rB since it refers to a specific value of
B; it is defined by the relation:

n ~ (e/h)BDrB or rB ~ h/eBD

This derivation merely suggests the form of the answer and gives some
insight into the physics of the process. The correct definition of rB is:

rB = h/4eBD (11.12)

For a typical metallic glass of the kind we are discussing (with a value of
D about 5 x 10~5m2s~1) placed in a magnetic field of IT, this has a
value of about Kr12-10~13 s.

To find out what the magnetic field does to the enhanced resistance, we
must now find the probability of generating closed loop paths in this time
interval. To do this we must integrate equation (11.5) from r0 to rB and so
get:

p(rB) ~ A2vF[(r0)-
1/2 - (rB)-l/2}/(4nD)3/2 (11.13)

This is proportional to the enhanced resistivity in the presence of a mag-
netic field B. The second term on the right-hand side is the field-depen-
dent part and from equation (11.12) is seen to be proportional to —i?1/2,
i.e. the magnetoresistance at high fields is negative, proportional to the
square root of the field and is independent of temperature and field
direction. This is a most striking result and quite unlike the behaviour
we previously attributed to the magnetoresistance of metals or alloys.

We can estimate the size of this magnetoresistance at low temperatures
in the following way. The first term in equation (11.13) is proportional to
the enhanced part of the resistivity in zero field whereas the second is
proportional to the change due to the field. The ratio of the second term
to the first is (TO/TB)^2. For an alloy in a field of 1 T with TO of about
10~16s and D = 5 x 10~5m2s~1 this ratio is about 10~2. Since at low
temperatures the enhanced part of the resistivity is typically about 1 %
of the total, the magnetoresistance at 1 T should be of order 10~4. This is
enormously larger than any realistic value for the Kohler magnetoresis-



11.7 Magnetic field dependence of resistivity 123

tance, which in such a high-resistivity glassy alloy would be almost
immeasurably small. Thus the magnitude and the unusual field depen-
dence (i?1/2) are clear and striking predictions.

We can rewrite equation (11.13) in terms of the conductivity as follows.
We concentrate on the field-dependent term, putting r# = h/AeBD and
recognising that p{rB) = Ap(B)/p0. If therefore we multiply both sides by
<r0 = e2k^l/3n2h, we obtain:

Aa(B) = constant x (e2/2n2h)(eB/h)l/2 (11.14)

where we have also used D = vp//3 and A = In/k?. The astonishing
feature of this result is that the change in conductivity for a given field
is independent of temperature or the metal!

In equation (11.14) the factor e2/2n2H has the dimension of conduc-
tance and has the value of about (SOkQ)"1 ~ 10~5 ft~l. It recurs in many
of the results which follow, just as does the combination (eB/ti), which
has the dimensions of reciprocal area or reciprocal length squared (L~2).
At 1 T, the value of (eB/h)l/2 is about (1/4 x l O ^ m " 1 .

Thus the magnitude of ACT in equation (11.14) in a field of 1 T, calcu-
lated with the correct constant of proportionality, is 290 (fim)"1. In mak-
ing measurements, however, one is concerned with relative changes of
conductivity and so, if we take 500 \ift cm for the resistivity of a metallic
alloy, the relative change in a field of IT is about 10~3. For higher
conductivity metals the effect is correspondingly smaller and may well
be masked by other changes. Another way of looking at this result is
through the relationship ACT = —Ap/p2, which implies that since Aa for a
given field is fixed, the magnetoresistance Ap/p oc p, i.e. the higher the
resistivity, the bigger the magnetoresistance from this source.

11.7.1 Magnetoresistance at low fields

This Bxl2 field-dependence does not persist down to low fields for the
following reason. As we saw in the experiment of the hollow cylinder, the
effect on a given electron orbit is to produce an oscillatory variation in
the resistance as the phase difference between the two partial waves
increases with the flux. In the normal geometry and moderate fields,
this is not seen because the different orbits all have different periodicities
which ultimately randomise the phases. But at very low fields, all the
orbits have their phases changed in concert and so all contribute together
to dephase the partial waves and lower the resistance. Suppose that two
waves of the same amplitude A combine to produce an intensity /Q when
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in phase. If they now differ in phase by 6, the new combined amplitude is
2A cos(<S/2) and the intensity will then be reduced to:

/ocos2(<V2)-/o(l-<52/4) (11.15)

if 6 is small. Here the phase changes are small at low fields and, with
S — (e/ti)BL2, all are proportional to B. Each closed orbit will contribute
such terms and so the field-dependent terms add up to give a negative
term proportional to B2, which determines the low-field magnetoresis-
tance. The other factor is L4, which is limited by the possible path
lengths. At a given temperature L2 oc Dr{n and so L4 contributes a factor
(Z>Tin)

2 in the numerator. On the other hand /o has a factor (/>Tin)
1//2 in

the denominator (see equation (11.10)) so that the field-dependent term
varies as —(eB/h)2(Dr[n)

3^2. This is confirmed by a full calculation.
The dependence on T[n shows that unlike the high-field effect the low-

field magnetoresistance depends on temperature and thus measurements
of the B2 magnetoresistance enable one to find r\n and its temperature
dependence. Such measurements have been made on a number of metallic
glasses at low temperatures (see Chapter 16) and many of them show that
rin varies as T^2.

As the temperature falls, thereby reducing rin, the Bxl2 dependence per-
sists to lower and lower fields. This is because larger and larger orbits
come into play and in these a small change of field produces a big change
of flux. Consequently the disparity in phase between the largest and
smallest orbits increases and the B2 region in which all the phases change
in harmony gets smaller. At absolute zero the magnetoresistance varies as
Bxl2 over the full range of fields.

Conversely, as the temperature rises, the B2 dependence persists to
higher and higher fields. Indeed the weak localisation contribution to
the magnetoresistance of amorphous Cu65Ti35 has been observed up to
temperatures of 85 K and shown to vary as B2 up to a field of 12 T at this
temperature (Lindqvist 1992).

The full expression for the change in conductivity at low fields due to
weak localisation, in the absence of spin-orbit effects (see below), is given
in Appendix Al.

So far we have assumed that there is only one type of charge carrier in
the alloy, although we know that when one or more component is a
transition metal we can expect to have s- and d-electrons present. The
theory outlined above can still be applied if the parameters involved are
properly interpreted. This is explained in Appendix A2.
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These predictions for the magnetoresistance, that it should be negative,
vary as B2 at low fields and vary as Bxl2 at high fields, cannot yet be fully
compared with experiment because other effects that we have not yet
discussed occur simultaneously, in particular, the influence on these
quantum interference effects of the electron spin and the consequent
importance of spin-orbit coupling in the scattering. We now turn to
these matters.

11.8 The influence of electron spin

We have been looking at the special properties of closed electron paths
and their influence on the resistivity of metallic glasses without consider-
ing the effect of electron spin. We must now remedy this.

The two partial electron waves that propagate in opposite senses round
the closed path can either have the same or have opposite spin directions
and these two combinations have opposite effects when the partial waves
interfere. If the two partial waves have the same spin they recombine after
counter-propagation to enhance the probability above its classical value.
If however they carry opposite spins they recombine to reduce the classi-
cal probability.

There is a further important point. We must recognise that if we have a
pair of electrons they can form four independent spin functions, which we
can represent by (ft), (fj), Qf) and ( | | ) . These in turn can be combined
into orthonormal combinations with the total eigenvalues projected in
the field direction as indicated in Table 11.2.

The first three form the triplet combination, often written with total
spiny = 1 and projections in the magnetic field direction m = +1, 0, —1;
the last term forms the singlet combination withy = 0 and m = 0. These
combinations will also be important to us when we discuss the interaction
between electrons.

If therefore the two partial waves have opposite spins there is only a
single state corresponding to this but if the two partial waves have the
same spin direction there are three such states. The singlet and triplet
states just described are exactly analogous to those familiar from the
spectroscopic states of electrons in atoms. Incidentally, and the signifi-
cance of this will be clear later, we are assuming so far that there is no
spin-orbit coupling involved in the scattering.

We wish now to write down the probability of an electron executing a
closed path as in equation (11.3) but taking account of electron spin.
Since the classical terms are unchanged, let us concentrate on the inter-
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Table 11.2 Spin states of electron pairs

Combination Eigenvalue m

(TT) h +1
2-1/2[(U) + UT)] o o

(II) ~h - 1

2"1/2[(TI) - (IT)] o o

ference terms only. We denote by ôo the singlet state in which the spins
are in opposition and by ipu, Vio and ip\-\ the three components of the
triplet state. Then the interference term / is given by:

/ = (l/2){|Vii|2 + h M 2 + NAi-il2 - |V>oo|2} (11.16)

In the absence of spin-orbit effects the first three terms are each equal
(numerically) to the fourth so that / = |^oo|2; i.e. the interference term is
positive and just equal to the classical value as we saw earlier when we
ignored the spin variable. In the presence of spin-orbit effects this is no
longer generally true.

11.9 Spin-orbit scattering (see also section 9.4)

Within an atom the spin of an electron may couple to its orbital motion.
Formally the interaction looks like the interaction of two magnetic
dipoles and depends on the angle between the orbital angular momentum
and the spin. However its origin is not magnetic but electrostatic. Its
strength rises sharply with the nuclear charge and so the effect is mainly
associated with the heavy elements. As we saw in section 9.4 on skew
scattering, conduction electrons are also influenced by spin-orbit cou-
pling when they penetrate inside the core of an ion, the orbital motion of
the electron being simply its angular motion inside the ion. The spin-
orbit scattering then depends on the product:

a z - k x k ' (11.17)

where k and k' are the wave vector of the electron before and after
scattering and <JZ is the unit vector in the magnetic field direction, +
for spin up and — for spin down. Since in this expression the dot and
cross can be interchanged, we can think of the scattering as dependent on
the vector product between the spin direction vector and the wave vector
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of the incident electron. Thus, as we shall now see, the scattering has
different effects according to the spin states of the partial waves executing
a closed path.

If the two waves have opposite spins then, since they perform the path
in opposite senses and their velocities are also opposite, the angle between
the spin and velocity is the same at corresponding scattering events. Thus
the scattering processes are the same for the two waves, though per-
formed in inverse order, and the two arrive back at their starting point
in phase. If the two waves have the same spin direction, however, the two
partial waves now behave quite differently. Their spin directions are
initially the same but their velocities round the path are reversed so
that induced changes of spin direction are of opposite sign. At each
scattering event the initial conditions are different and consequently so
are the final ones.

When the partial waves return to their starting point their phases tend
to be randomised and so to cancel each other. The time this takes to
occur depends on the strength of the spin-orbit coupling and on the
concentration of such scattering centres; it is usually designated rso

with a typical value for the 50-50 alloys in the middle range of atomic
numbers of 10~12-10"13 s independent of temperature. It can of course be
deliberately shortened by doping the specimen with a heavy metal such as
gold.

11.9.1 Spin-orbit scattering and temperature-dependence

To calculate the quantum interference effect in the presence of spin-orbit
scattering, we recognise that the singlet contribution to a is positive and
unchanged by spin-orbit effects, whereas the triplet contribution is nega-
tive and decays exponentially with a time constant rso. We can thus
rewrite the integrated form of equation (11.5) as:

~ - J[A2vFdV^3/2]{(3/2)exp(-//rso) - 1/2} (11.18)

In this all the terms are just as in equation (11.5) except that an additional
factor in the curly brackets has been added. In the curly brackets the
exponential factor describes the decay of the triplet term from spin-orbit
scattering. This term has a threefold weighting compared to the constant
term —1/2, which is the singlet contribution. The factor of 1/2 in both
terms comes from the same factor in equation (11.16).

If rso is long compared to the inelastic scattering time rin, the triplet
term is hardly altered by the exponential decay and the curly bracket has
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the value unity throughout the time of integration. Then the spin-orbit
coupling has almost no effect. If, however, rso is short compared to rin,
the triplet contribution is quickly wiped out; only the singlet term sur-
vives unchanged and is negative. The quantum interference term is now
negative instead of positive and the forward (not the backward) scattering
is enhanced. This new phenomenon induced by the strong spin-orbit
scattering is referred to as anti-localisation and all our previous results
are turned on their head. What before was positive is now negative and
vice versa (see Table 11.3).

The qualitative consequences of spin-orbit scattering for the tempera-
ture dependence of the conductivity can be made clear by means of
Figure 11.8, where the changes induced by weak localisation are plotted
with reference to Boltzmann theory. We shall often find that this brings
out clearly the physics of the situation.

As we have just seen, there are two contributions to ACT, one from
partial waves with parallel spins Acr(TT) and the other A<r(TI) from
those with antiparallel spins; they are of opposite signs and, in the
absence of spin-orbit scattering, |Acr(|T)| is three times as big as
|Acr(t|)|. Let us suppose for simplicity that the dephasing probability
is due to inelastic scattering by phonons with \lrm varying as T2. This
means that both Acr(TT) and Acr(| j) change linearly with T as the tem-
perature rises from absolute zero; this is illustrated in Figure 11.8(a). The
ACT'S are measured from the Boltzmann value of the conductivity, which
we assume, again for simplicity, is so dominated by elastic scattering from
the disorder that it is temperature independent. The total change in con-
ductivity, which is the algebraic sum of Acr(|t) and Acr( j j), is shown in
Figure 11.8(b) by the lowest curve. Now we turn on the spin-orbit scat-
tering, which alters only Acr(||). At absolute zero, the effect is to reduce
the value of A<J(TT); at higher temperatures Acr(tt) stays constant at this
absolute zero value as long as spin-orbit scattering is dominant (i.e.
1/̂ so >• lMn)- When, however, the inelastic phonon processes become
appreciable with rising temperature Acr(tt) begins to change with tem-
perature and, when these phonon processes dominate the scattering
(1/̂ in > 1/Tso), A(j(|t) behaves as if there was no spin-orbit scattering,
i.e. it joins the original curve that represents zero spin-orbit scattering.
This is illustrated for an intermediate value of the spin-orbit scattering in
Figure 11.8(a) and the consequence for Acr(total) in Figure 11.8(b).

Each increase in the spin-orbit scattering reduces the absolute zero
value of Acr(tt) and its subsequent low-temperature contribution; in
the extreme limit, spin-orbit scattering destroys Acr(||) altogether.
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Fig. 11.8 Temperature dependence of the conductivity due to weak localisation in
the presence of spin-orbit scattering (schematic), (a) Parallel and antiparallel spin
contributions shown separately with the Boltzmann value chosen as zero. The
scattering is assumed to be from phonons at low temperatures with l/rin varying
as T2. The upper curve Acr(||) is independent of spin-orbit scattering. The lower
curve Acr(tt) is modified by intermediate spin-orbit scattering as shown; this
contribution can be destroyed entirely if, in the range of measurement,
1/TSO > l/rm. (b) The total conductivity change, being the sum of Acr(TT) and
Ar(t |) , under conditions of very strong (top curve), intermediate (dashed curve)
and zero (bottom curve) spin-orbit scattering. Notice that the intermediate spin-
orbit scattering curve starts parallel to the very strong spin-orbit scattering line
and ultimately joins that of zero spin-orbit scattering, (c) The total conductivity
change with a new origin for which Acr(T) is zero at T = 0. Notice that the curve
for intermediate spin-orbit scattering starts off along the very strong spin-orbit
scattering line but becomes parallel to that of zero spin-orbit scattering at high
enough temperatures.
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Table 11.3 Some effects of strong elastic scattering through weak
localisation

Effect of weak localisation

Without spin-orbit With strong spin-orbit
Property scattering* scattering

Conductivity ACT increasing Aa decreasing
Aa<xT Aacx-T
(phonons at low (phonons at low
temperature*) temperature*)

Magnetoresistance Ap(B)/p negative Ap(B)/p positive at low
oc B2 at low fields fields
oc Bxl2 at high fields negative at very high

fields

a There is always some spin-orbit scattering, so this is an idealisation.
b The temperature dependence caused by phonon scattering may differ from T.

Then the weak-localisation contribution to the conductivity comes
entirely from A ( | | ) . This is shown by the topmost curve in Figure

Now of course the Boltzmann zero is not accessible to experiment so
that to see what experimental measurements would show, we must plot
Acr(total) versus temperature from a common origin as in Figure 11.8(c).
Notice that all the curves start from absolute zero with the same positive
slope, that of Aa(Ti), because when there is any spin-orbit scattering, no
matter how small, Aa(|T) sets out from absolute zero with zero slope,
leaving the unchanged Acr(tl) to determine that of the total. A further
point is that, once phonon scattering dominates over spin-orbit scatter-
ing, the curve of Acr(total) is parallel to that with zero spin-orbit scatter-
ing, but displaced by the shift of origin.

These very striking effects of spin-orbit scattering can be derived essen-
tially from equation (11.18) by recognising that, whereas the singlet con-
tribution is unchanged, the probability of scattering (per unit time) in the
presence of both inelastic and spin-orbit scattering is given for the triplet
terms by:

l/7total = l/7in + tf/Tso (11.19)

where a is a weighting factor to take account of spin degeneracy and the
definition of TcO.
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Thus for the singlet term we integrate the classical probability as before
from ro to Tin because the spin-orbit scattering has no effect on this term.
For the triplet terms, however, the upper limit of integration is now rtotai
in equation (11.19). The resulting expression for the temperature-depen-
dent part of the conductivity is given by:

Aa(T) ~ (e2/47i2)/)-1/2[3(l/rin + a/rso)
l/2 - 3(a/rso)

l/2 - (l/rin)1/2]
(11.20)

The constant term has been chosen to ensure that ACT starts from zero
when T= 0. (See also Appendix Al for more details.)

11.9.2 Spin—orbit scattering and magnetoresistance

There is a further important consequence of spin-orbit scattering. If a
magnetic field is applied, we know that it causes the partial waves to get
out of phase in a time r# which decreases as the field gets stronger. If this
time becomes shorter than the spin-orbit scattering time, spin-orbit scat-
tering has insufficient time to operate and spin-orbit effects disappear.

As with the temperature dependence, the magnetic field dependence
can be illustrated qualitatively by a suitable diagram. First let us consider
the effect of a magnetic field at absolute zero; we see in Figure 11.9 the
separate contributions Acr(||) and Acr(TJ) measured from the
Boltzmann value as zero. As before they are of opposite signs and if
there is no spin-orbit scattering |Acr(j|)| = 3|Acr(|[)\. As the magnetic
field is increased, the two contributions vary as B1/2 and so, if we plot the
changes against i?1/2, the changes are linear as shown in Figure 11.9(a).
The total change is the algebraic sum of the two parts as shown in Figure

We now turn on the spin-orbit scattering, which is a random dephas-
ing mechanism that reduces the contribution from Acr(ft) but leaves
Acr(t|) unchanged; this is shown for one intermediate value of the
spin-orbit scattering in Figure 11.9(a). The effect of spin-orbit scatter-
ing on Acr(tT) is formally the same as inelastic scattering in that at low
fields (see section 11.7.1) it causes Acr(||) to increase as B2. Because at
B — 0 the slope due to Aor(TT) is thus zero, the initial slope of Acr(total)
is determined by that of A<r(tj), i-e- a s B^2 a s shown in Figure 11.9(b).
Finally at high fields where \/rB > l/rso, Aa(|T) is unaffected by
spin-orbit scattering and resumes the value it would have in its absence.
This is shown in Figure 11.9(a) and the resulting values of Acr(total) in
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Independent of spin-orbit
scattering
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Fig. 11.9 The effect of spin-orbit scattering on the magnetoconductivity due to
weak localisation (schematic), (a) Parallel and antiparallel spin contributions at
T = 0 plotted against Bxl2 with reference to the Boltzmann value as zero. Acr(||)
is unchanged by spin-orbit scattering but |Acr(Jt)| is reduced as shown by the
dashed line, which starts at low fields as B2; with sufficiently strong spin-orbit
scattering Acr(TT) can be made to vanish within the range of fields used. (Only at
T = 0 and with no spin-orbit scattering does the Bxl2 behaviour persist down to
B = 0; at higher temperatures the curves start as B2.) (b) The total conductivity
change, being the sum of Acr(TT) and Acr(TI), under very strong (top curve),
intermediate (dashed curve) and zero spin-orbit scattering at T = 0. These curves
are analogous to those of Figure (11.8). (c) The same curves as in (b) but now
referred to a common origin, (d) The same curves as in (c) but plotted against B
instead of Bxl2.
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Figure 11.9(b). Figure 11.9(c) shows Aa(B) versus B where all the curves
have a common origin to correspond to what is measured experimentally.
Figure 11.9(d) shows schematically what Figure 11.9(c) would look like if
the changes were plotted against B instead of Bx/2.

All this refers to the magnetoresistance at absolute zero. At higher tem-
peratures, phonon scattering changes both Acr(TT) and Aa(]l), reducing
them proportionately at zero field and tending to keep them constant at
low magnetic fields. Spin-orbit scattering alters only Acr(tt) and so, as
the field is increased, the total conductivity rises slowly (as B2 at first)
until when rB becomes comparable with rin the conductivity begins to
recover the value it would have in the same field at absolute zero. At
absolute zero, moreover, spin-orbit scattering always produces regions of
positive magnetoresistance at low fields. Phonon scattering reduces these
and ultimately eliminates them completely. This occurs when l/r{n

becomes so large compared to l/rso that it suppresses any change in
Acr(||) up to fields large enough to 'kill' the spin-orbit scattering.
Appendix Al gives expressions for the magnetoconductivity in the pre-
sence of spin-orbit scattering.

11.9.3 Experimental evidence for spin-orbit scattering

Table 11.3 sums up the changes in resistivity due to quantum interference
by contrasting the behaviour with and without strong spin-orbit scatter-
ing. These are striking predictions. The following examples where the
magnetoresistance is due to quantum interference demonstrate their
validity.

Figure 11.10(a) shows the magnetoresistance of amorphous Mg8OCu2o
at 4.2 K; it is negative because spin-orbit effects are small in this alloy.
Figure 11.10(b) shows the magnetoresistance of amorphous Cu5oLu5o; it
is positive because here spin-orbit effects are large. In Figure 11.10(c) the
alloy is amorphous CU50Y50 in which spin-orbit effects are of moderate
strength. Consequently at low fields where the magnetic scattering time
rB is long compared to rso, the spin-orbit scattering has time to destroy
the coherence of the triplet state waves and the magnetoresistance is
positive. At higher fields r# diminishes (it varies as l/B) and becomes
too short to allow spin-orbit effects to be fully effective; the magnetore-
sistance then ceases to grow, begins to fall and would ultimately become
negative at high enough fields. These results are discussed more fully in
Chapter 16.
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Fig. 11.10 Magnetoresistance versus B1/2 of (a) Mg8OCu2o, which has only small
spin-orbit scattering, so the magnetoresistance is negative at all appreciable fields;
(b) Cu5oLu5o, in which the spin-orbit scattering is strong enough to make the
magnetoresistance positive throughout the field range; and (c) Cu5oY5o, where the
spin-orbit scattering is of moderate strength so that the magnetoresistance starts
positive, reaches a maximum and would ultimately go negative at high enough
fields. (The ordinates here are Ap/p2 — —ACT and so have the dimensions of
conductivity.) (After Bieri et al. 1986.)
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Figure 11.11 shows how adding 3 atomic % gold to a Ca-Al metallic
glass changes the magnetoresistance from negative (because spin-orbit
effects are small in Ca and Al) to positive because of the large spin-orbit
scattering from the gold.

These remarkable results of spin-orbit scattering demonstrate the
range and diversity of the effects predicted to follow from weak localisa-
tion.
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Fig. 11.11 Effect of adding 3% Au to CaAl glass, showing how the sign of the
magnetoresistance is reversed. In curve A spin-orbit scattering is negligible: in
curve B the alloy has been doped with gold to introduce strong spin-orbit scatter-
ing. (After Howson et al. 1988.)

11.9.4 Spin-spin or spin-flip scattering

The presence of magnetic impurities which carry a local magnetic
moment can cause the partial waves to get out of phase; this comes
about in the following way. When the electron is scattered by the mag-
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netic impurity, the spin direction of the incident electron is rotated in the
process and, since the two partial waves travel in opposite directions, the
rotations of the spin occur in reverse sequence for the one as compared to
the other. In three dimensions rotation A followed by rotation B does not
in general produce the same result as B followed by A. This means that
the final spin directions of the two partial waves are different and their
phases become randomised. This is true of both types of partial waves,
those with parallel and those with antiparallel spins: both are put out of
phase and so both contributions to the back-scattering are reduced. In
this respect magnetic impurities produce effects quite different from spin-
orbit scattering, which alters only the triplet contribution from the partial
waves.

To emphasise the difference between the two types of scattering, we
can say that in spin-orbit scattering, the angle between the momentum of
the electron and its spin direction is important whereas in spin-flip scat-
tering it is the relative spin directions and sequence of scattering events
that matter.

Before we conclude this chapter we will look at a method of deriving the
general form of the results of weak localisation from a very different
point of view.

11.10 Scaling theory and weak localisation3

It is possible to derive some of the results already derived on quantum
interference by rather general arguments with very few assumptions. This
is achieved by means of scaling theory applied to non-interacting elec-
trons. Such theories are concerned with the response of systems when
their properties reach extreme values, and their size but not their physical
shape is changed; they demonstrate how the dimensionality of the system
alters its response. They can give information about the approach to the
metal-insulator transition when the conductance of a system becomes
very small; they can also identify the important parameters of the system
and the range of validity of certain approximations, in particular pertur-
bation treatments.

We shall be concerned only with the range of validity of weak localisa-
tion theories and what scaling theory can tell us about the form of such
effects. It is not surprising that the information is not quantitative but it
does serve to define the limits of Boltzmann theory.
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The electrical conductance G of a system is just the reciprocal of its
resistance R and is a convenient quantity to work with. If the conductiv-
ity is a and its resistivity p, we have:

R = lp/A and G = A/lp (H-21)

Here /is the length and A the cross-section of the specimen. Clearly if we
are in the normal regime where p and a are independent of size and if L is
a measure of the linear size of the system, R scales with L~l and G with L
in three dimensions. In two dimensions R and G are independent of scale
and in one dimension R goes as L and G as L"1.

According to Boltzmann theory we can write:

a0 = (e2/l2n3H)S\ (11.22)

where S is the area of the Fermi surface and A is used to denote the mean
free path of the electrons averaged over S (A is used instead of / to avoid
confusion with the length of the sample). For a spherical surface we can
write S = 4nk^. This shows that if we wish to define conductance in
dimensionless form in three dimensions we must put:

G=(n/e2)aL (11.23)

where L as before is a linear measure of the system size.
The quantity commonly used in these discussions is the dimensionless

derivative (3 = d log G/d log L. In the regime where a is independent of
size we know from what was said earlier that this derivative is a constant;
its value is +1 in three dimensions, 0 in two and —1 in one dimension.
The scaling theory of non-interacting electrons of Abrahams et al. (1979)
indicates that there must be departures from this constancy and that a
plot of d log G/d log L versus log G would have the form shown in Figure
11.12.

Many authors have worked on this problem. Thouless for example has
shown how three-dimensional wires take on the characteristics of one
dimension at high enough resistance. This means that d log G/d log L
for three dimensions (d = 3) must move in the direction of the one-
dimensional (d = 1) curve in Figure 11.12 as the conductance diminishes.
This is indicated in the figure.

This also means that as G decreases (increasing resistance) the loga-
rithmic derivative falls below +1 for three-dimensional systems and
eventually goes negative. Let us therefore take the simplest representation
of this and write:
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dlnG/dlnL

d = 3

Fig. 11.12 dlog G/dlog L versus the logarithm of the conductance G to show
scaling effects (schematic); L is a linear dimension of the sample.

d logG/dlogL = 1 - A/G + higher-order terms in \/G (11.24)

Here A is a constant of order unity. We add the condition that G = Go
when L = Lo, the minimum value of L at which Boltzmann theory holds
i.e. the minimum value for which the derivative (3 remains essentially + 1.

If we integrate (11.24) we then get:

or

(G - A)/(Go -A)

G = L(G0 - A)/Lo + A

(11.25)

(11.26)

We now write this in terms of the conductivity with G = (h/e2)aL and
Go = (h/e2)aoLo and get:

a = <7O-A(h/e2)[(l/Lo) (11.27)

Finally we set a — <JO = Aa and put L$ — A, the mean free path of the
electrons; this must be the value of L at which d log G/d log L departs
from unity because below this the conductivity becomes size-dependent.
In the limit of L large compared to Lo we therefore get:
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= -Ah/e2a0\ (11.28)

We consider the conductivity at absolute zero so that A = /e, the elastic
mean free path. We use equation (11.22) with S = 4nk^ and find:

Aa/ao = -3n2A/(kFlQ)2 (11.29)

This can be compared with equation (11.9), with rxn put equal to infinity,
and shows how this rather general argument leads to a correction at
absolute zero with the same qualitative features as our more detailed
argument.

11.11 Summary

The argument of this chapter has been that in highly disordered metals,
of which metallic glasses are excellent examples, the short mean free path
of the conduction electrons implies that interference between incident and
scattered waves can be important. This feature, which is neglected in
Boltzmann theory, gives a special prominence to electron paths that
form closed loops because there are then two paths of equal length for
the electron wavefunction, namely the closed path executed in opposite
senses. If therefore the electron wave functions retain phase coherence the
two partial waves can reinforce each other after traversing these two
paths and double the probability of such paths by comparison with clas-
sical expectations. The quantum probability can thus be deduced from
the classical theory of diffusion applied to the electron paths.

This enhanced back-scattering, referred to as weak localisation,
reduces the conductivity of the metal at absolute zero but as the tempera-
ture is raised phonon scattering can destroy the phase coherence and
cause the resistance to fall. Likewise a magnetic field applied to the
metal can cause the partial waves to get out of phase and so cause the
resistance to fall. Thus a negative temperature coefficient of resistance
and a negative magnetoresistance are natural consequences of the high
resistivity and are indeed found experimentally. Both are unusual features
according to Boltzmann theory. Spin-orbit scattering can reverse the sign
of these two effects and the theory accounts for these reversals in a
natural way. The agreement between theory and experiment in bulk
metallic glasses and in, for example, thin crystalline films (not discussed
here) is impressive.
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The interaction effect or Coulomb anomaly

12.1 Introduction

There is a further effect that arises in systems in which there is heavy
elastic scattering of the conduction electrons; it shows itself at low
temperatures through the unusual temperature and magnetic field
dependence of the electrical resistance and since its contribution can
be confused with that from weak localisation it is important to
describe its consequences before we try to complete the survey of
that effect.

The localisation effect described in the last chapter involves single
electrons and would exist even if these electrons did not interact with
each other. By contrast this new effect, sometimes called the Coulomb
anomaly, arises ultimately from the interaction of one electron with
another. Hence its rather uninformative alternative name 'the interaction
effect', which does however emphasise that it could not occur with non-
interacting electrons. The 'enhanced interaction effect' is perhaps a better
name1

If, in an ordered metal, an electron in a plane wave state of wave vector
k is scattered into state k', we must have k' = k + q where q is a Fourier
component of the scattering potential. In a disordered metal, however,
there is an uncertainty in k because of the scattering; this uncertainty is of
order 1//, where / is the relevant mean free path. Thus the above relation
will break down if the scattering vector q is less than 1//. This suggests
that any unusual effects will occur at small q and that our interest will
focus on states for which ql < 1; this means that the smaller the mean free
path involved, the greater the range of ^-vectors that can contribute to
the effects.

An electron that is repeatedly scattered by the disordered ions can be
thought of as diffusing through the material. At large distances and time

140
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intervals, this diffusive motion must approximate to classical diffusion
and we use this classical picture to describe what happens: the diffusive
motion of the electrons alters the time dependence of their motion and
hence the energy dependence of their properties; this is reflected in
changes to the density of electron states and the conductivity.

The behaviour of the conduction electrons is obviously very complex
and much of it contributes nothing of interest. Theory, usually based on
the use of Feynman diagrams, tries to pick out those pairs of electrons
that behave in special ways that lead to significant contributions to the
thermodynamic and transport properties of their host. There are various
modes of interaction, of which some involve closed paths like those dis-
cussed in weak localisation so it is no accident that the two effects show
similarities.

What is important to realise at the outset is that the fundamental beha-
viour of the electrons that leads to these changes arises by chance or, to be
more precise, from the randomness implicit in the diffusive motion, and not
from the Coulomb interaction itself. The Coulomb interaction is, of
course, necessary to make the effects manifest and, in part, determines
their size but it does not of itself produce the effects. Finally we note that
the diffusive motion of the electrons alters the screening of electron pairs
that are widely separated and that this alters the strength of the interac-
tion.

Let us now look at the effect in more detail. In order to make the
argument as simple as possible we begin by deriving the effect of the
interaction on an equilibrium property, the density of electron states at
absolute zero. The Einstein relation connects this to the conductivity and
so we shall achieve some insight into this property as well.

12.2 Electron-electron interaction and the density of states
To calculate the density of states for a free-electron gas (section 3.2), we
use the fact that the states are labelled by their ^-vectors and that these
states are uniformly distributed in fc-space. Then from the density of
states in A>space we can easily derive the density in energy from the
E—k relation of the electrons at the Fermi level; this involves dE/dk,
which is essentially the electron group velocity. Here we do something
quite different: we assume we know the density of states of the non-
interacting electrons and then calculate how this is changed by the inter-
action.
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The change in density of states brought about by the interaction is
derived by finding out how the energy of a given state, originally E, is
altered when the interaction is turned on. Suppose the new energy is E*,
then:

E*=E+SE (12.1)

where SE is the so-called self-energy. Clearly, if SE is independent of E,
the energy of all the states is altered by the same amount and the density
of states is unchanged. In fact (see Figure 12.1), the change in density of
states depends on the rate of change of SE and is given by:

AN(E)/N(0) = -dSE/dE (12.2)

To calculate SE we imagine a single electron at an energy e above the
Fermi level and a single vacant state or hole in the Fermi sea (this is thus
the so-called 'particle-hole channel'). If the interaction energy between
the electron at e and one at energy e' is s(e, e'), the total self energy is:

= f
J—o

N(e')s(e,6')def (12.3)

where the sum is over all occupied states below the Fermi level and, in the
second part of equation (12.3), the sum has been replaced by an integral
with e' going from — oo to 0 at the Fermi level. Ultimately, however, we
are going to differentiate equation (12.3) with respect to e and so if the
interaction energy depends, as we assume2, only on the difference in
energy HLJ = e — e', we can change the variable from e' to w. Equation
(12.3) then becomes:

SE = - [ N(e - Hu;)s(uj)nduj (12.4)
ie/n

and the limits on UJ are e/h and +oo. When we differentiate with respect
to e, the lower limit, this cancels out the integral, changes the sign again
and leaves only the contribution from a state at the Fermi level. The
upshot is that the relative change in the density of states at energy e
above the Fermi level is given by:

AN/N(0) = -s(e, 0) N(0) (12.5)

This is a valuable simplification and reduces our problem to the calcula-
tion of the energy of interaction between two electrons, one at e above E?
and the other at EF. Of course if the new one-electron energies are to be
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Energy levels Energy levels
without interaction after interaction
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Energy levels Energy levels
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Fig. 12.1 Electron energy levels before and after interaction, with the interaction
(a) increasing with energy; (b) decreasing with energy.

meaningful, the self-energy must be small compared to the original
energy of the state.

Our problem now is to calculate this interaction energy between two
electrons. To do this we have to understand (1) the interaction forces
between electrons; (2) the perturbation method of calculating the inter-
action energy, which in turn involves wavefunctions that contain Hartree
and exchange terms; (3) the special form of the exchange term; and (4)
how to take account of the diffusive motion of the electrons in a disor-
dered metal. We tackle these in turn.

12.3 Interaction energy in a disordered metal

12.3.1 The Coulomb interaction

The main interaction between a pair of electrons is the Coulomb repul-
sion, although as we have already seen there is an attractive force
mediated by the phonons. For simplicity we concentrate first on the
Coulomb force. A given electron will experience a repulsion from another
electron while the remaining mobile electrons and the ions, which
together produce overall electrical neutrality, provide screening; the
total effect is to reduce the force from one of long-range to one that is
exponentially damped. If the two electrons are a long way apart (many
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interatomic spacings) one electron will be almost unaffected by the force
from the other because of this electrical neutrality. On the other hand,
because the screening is imperfect, there is, as we saw in Chapter 4, at
least in the Thomas-Fermi approximation, an exponentially damped
Coulomb potential:

V[r) = e2 exp(-r/ro)/47ieor (12.6)

Here r0 is a screening radius of the order of the average interelectron
separation, which in metals is of the order of the interionic spacing. This
is called static screening because it depends only on distance and not on
time. This interaction occurs in ordered or disordered systems but when,
in the latter, the electrons are far apart diffusion alters the screening,
which then depends on time. We call this dynamic screening and write
the effective potential between electrons as F(r, i) or, since it is usually
more convenient to work with wavenumber q and frequency u, in terms
of the Fourier transform of the potential V(q,uj).

For simplicity we shall at first deal only with static screening even
though we recognise that ultimately a correction will be needed. In sec-
tion 12.5.1 we consider how the screening is changed by diffusion.

The Fourier transform of the static potential, equation (12.6), is:

V(q)=x2/N(E0)(q
2 + X

2) (12.7)

where \2 = (ro)~2 — e2N(Eo)/eo with N(Eo) the density of states at the
Fermi level (see Chapter 4). As we noted earlier we are concerned with
small values of q, where V(q) is insensitive to the value of q. For later use,
we note that when q —• 0, equation (12.6) assumes its maximum value:

V(0) = l/N(Eo) (12.8)

In this respect it is the same as the pseudopotential, which we discussed in
section 4.6, whose value as q tends to zero is —l/N(0), independent of the
ion whose charge is being screened. We may also note that the q = 0
Fourier component is just the volume average of the interaction poten-
tial. We can see this immediately if, in equation (4.2a) for the Fourier
transform, we put K = 0 (equivalent to q — 0).

The interaction strength in the limit q — 0 (equation (12.8)) is thus
independent of the electronic charge and depends, through the density
of states, only on the screening medium.
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12.3.2 The Hartree and exchange terms

This section is a digression to review the conventional treatment of the
interaction between two electrons in the simplest approximation, where
the wavefunction of the two electrons is written as a product of two
single-electron wavefunctions. Quantum theory requires that the wave-
function of the two electrons should not distinguish one from the other
and this requirement leads to the presence of two types of term in the
final wavefunction, the Hartree and the exchange terms, as we now see.

If we consider the two electrons, one in a state of energy E at r and one
in a state of energy E' at r', and if we use product wavefunctions, we must
distinguish between electron pairs with parallel spins and those with
antiparallel spins. The total wavefunctions for both sets have to be anti-
symmetrical, that is, they must change sign when the coordinates of the
particles are interchanged. The space part of the product wavefunction
integrated over space is symmetric and so, since with antiparallel spin
pairs the spin part of the wavefunction is antisymmetric (see Table 11.2),
the total wavefunction for such pairs is also antisymmetric. With the
parallel spin pairs, however, the spin component is symmetric and so
the space part of the wavefunction must be made antisymmetric. Thus
we write for the space part of the wavefunction of a parallel spin pair of
electrons:

This changes sign if you interchange r and r'. Moreover, as r approaches
r' this tends to zero (reflecting the Pauli exclusion principle) so that there
is a region around each electron which tends to exclude electrons of the
same spin direction.

The interaction energy to first order in perturbation theory is:

- r', 0^(TT)]d3rdV (12.10)

where d3r and d3r' are volume elements at r and r' respectively,
V(r — r',t) the interaction energy and the integration is throughout the
volume of the material. The separation of the two electrons is r - r' and
the factor \ prevents double counting when the result is summed over all
electrons. If now from equation (12.9) we put into equation (12.10) the
explicit form of (̂TT)> w e find two types of term: the first, the so-called
Hartree term, has the form:
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'E(r)nr-r',0V'E'(r')#'(r')d3rd3r' (12.11)

The second, called the exchange term, has the form:

^CrOnr-r' .O^W^'Wd^r' (12.12)

The Hartree term can be interpreted in analogy with a classical interac-
tion: the terms ^ E ^ E represent essentially the charge density at r and
V>E'^E'

 t n a t a t r ' s o t n a t equation (12.11) represents the energy of inter-
action due to appropriate charges at r and r'.

By contrast, the exchange terms, which arise from making the total
wavefunction of the electron pairs antisymmetric, cannot be interpreted
classically. Their name arises from the fact that the exchange term, equa-
tion (12.12), resembles the Hartree term, equation (12.11), except that r
and r' are interchanged in two of the wavefunctions so that in these E is
associated with r' and E' with r. As already noted the main purpose of
the exchange terms is to ensure that when r approaches r', i.e. the two
electrons get close to each other, the total wavefunction for parallel spin
pairs become small and so prevents two electrons of like spin from coin-
ciding.

Having now seen the form of the two types of term, Hartree and
exchange, in the interaction energy of pairs of electrons, we now treat
each type in turn because their contributions to the interaction energy are
of quite different nature with different physical behaviour associated with
each.

12.4 The exchange contribution

We begin with the exchange terms in the so-called particle-hole channel;
the particle-particle channel, involving a different type of interaction, is
dealt with in section 12.8.

These exchange terms in the interaction make an important contribu-
tion to the density of states because they are strongly energy dependent.
The electron pairs that contribute most are, as we anticipated, those that
interact through the small q components of the Thomas-Fermi potential.
They are also those whose frequency difference w is small. As we shall see,
their diffusive motion makes possible access to states in A>space that
ballistic electrons (electrons in free motion) cannot reach.
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12.4.1 Calculation of the exchange interaction energy3

Let us begin by evaluating the contribution to the interaction energy of a
typical exchange term:

Or(r-r0^'(r)^r0d3rdV (12.13)

which is just a re-ordered version of equation (12.12). We want to find the
energy of interaction of two electrons, one at EF (let this be E1) and the
other at an energy e above it (let this be E).

As we saw earlier, conventional theory fails for electron pairs for which
the scattering vector q is small; in order to identify such pairs we are
obliged to work in reciprocal space and so we replace the potential in
equation (12.13) by its Fourier transform:

V(r - r') = (2n)-3 J V(q) exp[iq • (r - r')]d3q (12.14)

We now separate the exponential so that the terms in r become:

| ^ ( r ) e x p ( i q . r ) ^ ( r ) d 3 r (12.15)

and those in r':

| i q . r > ^ ( r / ) d 3 r ' (12.16)

Given that r and r' are dummy variables, equations (12.15) and (12.16)
are just complex conjugates and so their product is just the square mod-
ulus, which can be written in a different and more compact notation as:

| ( ^ | e x p ( i q - r ) | ^ ) | 2 (12.17)

where the bra (ipE\ and ket \ipE') vectors imply integration over volume
elements at r (see, for example, Cottrell 1988, p. 177). Equation (12.13)
can then be rewritten as:

\ exp(iq • r)|^)|2d3<7 (12.18)

For values of q tending to zero, however, equation (12.18) becomes:

^ ' ) | 2 d 3 ^ (12.19)

where the integral is for values of q for which ql < 1; the definition of /
will become clear later.
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This is an enormous simplification because we have now reduced a
typical exchange term (in the range of small q) from a two-electron
function in equation (12.13) to the one-electron function of (12.19).
The square modulus of the scalar product or matrix element (I/JEI^E')
in (12.19) measures the probability that an electron will change its energy
by e (from E to E') and it is also, from the argument just given and under
the conditions of our approximation, the probability that two electrons
whose energies differ by e should interact through their exchange terms.

12.4.2 Evaluation of \(IPE\IPE')\

One's first reaction is that \(^E\^E')\ must be zero unless E—E1 since
the electron undergoes only elastic scattering and cannot change energy.
This is indeed true of ballistic electrons but is no longer true of electrons
that move by diffusion.

Such transitions must, of course, be virtual transitions, whose duration
5/ is short enough not to violate conservation of energy, i.e. 5/ is limited
by the uncertainty principle so that ebt < h.

To go further we ought to use the Fourier transform of the classical
diffusion probability to evaluate the square of the matrix element but to
do so at this point would obscure the essential physics. Instead, let us first
assume that the diffusive motion makes possible transitions from Ef to E
and that, to satisfy the uncertainty principle, the average electron lifetime
in the higher energy state is proportional to but less than h/e.

To evaluate \(IPE\^E')\2 for a single electron, we note that when E—E'
the normalisation of the wavefunctions ensures that K^EI^E ' ) ! 2 = 1»
otherwise it is zero. Therefore the value of \{^E\^E')|2 averaged over
time is proportional to the time spent in the higher energy state, i.e. to
h/e. Finally, according to equation (12.19) we must integrate the square
of the matrix element over all the q states for which ql < 1, where / is the
mean free path associated with the energy change e. Call this mean free
path Le. Le is thus the distance the electron diffuses during the lifetime of
the state, i.e. in the time 5/ ~ h/e. It is given by (L€)

z ~ Dht ~ Dh/e or
L€ ~ (Dh/e)xl2. q must therefore lie between zero and its maximum value
\/L€ = (e/Dh)l/2.

The integral over q gives the volume 4nq3/3 in £-space with q having its
maximum value, so that this volume becomes 4n(e/hD)3^2/3.

Thus in equation (12.19), \(IPE\^E')\2 is proportional to 1/e and the
integral over q is proportional to {e/hD'f'1. The interaction energy
thus varies as:
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-V(O)(l/e)(e/hD)3/2 (12.20)

This, with a factor of N(0) and a reversal of sign, gives us the change in
the density of states:

AN(e) oc N(0)V(0)el/2/(hD)3/2 (12.21)

Thus the density of states varies as e1/2 near the Fermi level.
The critical features in deriving this result are that: (1) the diffusive

motion makes possible the transition from E' to E with a probability that
is assumed independent of q and (2) the diffusive motion makes accessible
a three-dimensional volume of /r-space which is strongly energy
dependent. To emphasise this last point, it is worth noting that for
ballistic electrons, of energy E = h2k2/2m, a small change in energy e
causes a change in k, bk, given by e = 6E = h2kbk/m. With 3k = q, we
see that now q oc e. Moreover, for ballistic electrons bk must lie in the
direction of k and so, for electrons on a small area of Fermi surface, 5S,
the volume made accessible is q5S, which is proportional to e. In the final
result this would eliminate all dependence on e.

12.4.3 The full effect of diffusion on | ( ^ E | ^ E ' ) | 2

The derivation of the result in equation (12.20) is, however, oversimpli-
fied in that it ignores the q dependence of the transition probability,
K^EI^E ' ) ! 2 ' which, as we shall soon see, is required by classical diffusion
theory. We shall therefore now follow this fuller treatment to see this in
detail.

We start with the expression (12.19) and assume that the probability
for an electron in diffusive motion to change its wavenumber by q and its
energy by e = hcu is given by classical diffusion theory. This probability,
denoted by n(q,oS), is the Fourier transform of the direct space probabil-
ity:

P(r, t) = [exp(-r2/4nDt)]/(4nDt)3/2 (12.22)

The required transform is:

n(q,uj) = l/(Dq2 -icu) (12.23)

or n(quo) = (iu + Dq2)/[uj2 + (Dq2)2} (12.24)

This gives us the classical probability per unit frequency range of finding
a particle with Fourier components q and UJ\ Figure 12.2 shows the shape
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Fig. 12.2 If the real part of the function in equation (12.24) is J[q), this shows
how (e/H]f[q) varies with (fiD/e)1 q. Our oversimplified model corresponds to
taking (e/fr)f(q) as constant independent of q.

of the real part of this function in dimensionless form and the result
(12.23) is derived in Appendix A3.

In classical terms this tells us nothing very surprising since it shows
that, after a long time (small ui), the probability is high (large n) that a
diffusing particle will be found at large distances (small q); the imaginary
part indicates that the space and time parts are out of phase.

The physical meaning of equation (12.24) in our terms is that the
diffusive motion of an electron alters its momentum states (^-states) in
a rapid and irregular manner and so links them to the frequency response
of the electron. The fact that the probability is complex implies that the
transitions are virtual processes: their probability is given by the real part
of equation (12.24) and the lifetime of the state by the imaginary part.

Our earlier oversimplified discussion is equivalent to assuming that the
curve in Figure 12.2 is a constant independent of q instead of varying as
shown: it starts from zero when q = 0 and reaches the value \/2UJ = fr/2e
when q reaches its upper limit (e/SZ))1'2. Thus the average value of the
real part over this range of q, which measures the probability of the
transition, is proportional to 1/e as we assumed. Nevertheless the varia-
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tion with q has to be taken into account in the integration over q and that
is the reason why we need this fuller treatment.

We take the real part of equation (12.24) as giving the probability
intensity (not amplitude because we are using a classical result) of finding
a change q in wave number and hu; in energy; the real part is thus equal to
the square modulus in equation (12.19).

To use equation (12.24) in equation (12.19), however, we must convert
it from unit frequency range to the probability per state. We first convert
to unit energy range by means of Planck's constant and thence by means
of the density of states to the probability per state. Finally we get:

K V * ' ) | 2 = [nnN(E)}-l[Dq2/{(Dq2)2 +u/}} (12.25)

We now put equation (12.24) into equation (12.19) with w = e/h. We also
multiply by — N(0) to convert the expression from the interaction energy
to the relative change in the density of states and find:

AN(e)/N(0) = (27i)-3JV(0)n0) \{nhN{e)}-\Dq2/{{Dq2)2

J (12.26)
+ (e/h)2}]4nq2dq

where the volume element d3q has been replaced by 4nq2dq appropriate
to three dimensions; in one or two dimensions it would, of course, be
different.

The density of states N(e) can be taken as N(0) and so the two cancel.
In Figure 12.3 the integrand is shown in dimensionless form expressed as
a function of the dimensionless variable (hD/e)l'2q.

The limits on q are as before: we require that qLe < 1 and so q goes
from 0 to (e/Dft)1/2. Since we now know how important this upper limit
is, we will discuss it more fully after we have finished the derivation.

To evaluate the integral we change the variable to y = (hD/e)x'2q so
that the limits are now 0 to 1. The change in the density of states apart
from a numerical factor becomes:

[V (12.27)

The definite integral gives a positive constant and the upshot is:

AN(e) oc N(0)V(0)el/2/(hD)3/2 (12.28)

which is the same result as equation (12.21) but now derived consistently.
Equation (12.28) is valid for both positive and negative values of e and

shows that there is a singularity in the density of states at the Fermi level.
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Fig. 12.3 Integrand of equation (12.26) as a function of q in dimensionless form.

The density of states varies as |e|^2 on each side of the Fermi level as
shown in Figure 12.4.

As we shall discuss in more detail later, this means that, as the tem-
perature rises from absolute zero, the electrons at the Fermi level, which
are the only ones excited and which have an average thermal energy of
about kBT, sample more and more states at the higher density and so the
density of states increases as T1//2; the conductivity does likewise and
causes the resistivity of the metal to fall with rising temperature.

Let us now return to the upper limit of q. It arises from the argument
that, in interactions that involve large values of q, conventional theory is
valid and these interactions make no contribution to the change in the
density of states. The interactions that do change the density of states are
those that involve small values of q where in conventional theory q would
be ill defined. In this range of interaction we need to use a better approx-
imation to the wavefunctions than plane waves and so, fante de mieux, we
use classical diffusion theory to give us this better approximation. But
this implies that we must stay in the realm of small u and q, where
classical theory should be valid. The upper limit of q thus marks the
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Fig. 12.4 Minimum in the density of states at the Fermi level due to the interac-
tion effect (schematic).

boundary between the realm where our diffusion model is valid and that
where conventional Boltzmann theory is appropriate. Moreover, it is not
the precise magnitude of q at the boundary that is of prime importance
but its dependence on e. The appropriate mean free path that determines
this limit on q is not the elastic mean free path: the critical distance for the
transition between energy states is the mean distance the electron travels
in the new state, which is the mean free path Le as derived above. The
elastic mean free path k is, of course, involved; it enters through the
diffusion coefficient D = vp/o/3.

A final point is that the Hartree terms, of which equation (12.11) is an
example, produce no similar contribution to the density of states because
the time-dependent factors in the wavefunctions ^ ( r ) a nd ^ E M are
Qxp(—iEt/h) and Qxp(+iEt/h) respectively so that their product is inde-
pendent of energy. Likewise for those in E1. Thus, although the energy of
the electron states might be altered, their energy dependence would not.
That is the reason for the importance of the exchange terms.

12.4.4 Summary

To find the density of states at an energy e above the Fermi level we need
to know how an electron at e interacts with all the other electrons in the
Fermi sea. In fact we need to know only how this energy differs from that
of an electron in the state next higher in energy to e so that ultimately we
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need only the interaction between the electron at e and one at the Fermi
level. The exchange terms, which intimately mix the wavefunctions of the
two electrons, are the important ones with strong energy dependence.
This energy dependence arises from electron pairs whose A>vectors differ
by small values of q and whose frequency difference u — e/fr is also small.
Interaction depends on transitions between these energy states and is only
possible because of diffusion. This diffusive motion not only alters the
dependence of q on e but also, unlike ballistic motion, allows q to take on
all possible directions in space. Finally the density of states varies as

N1 / 2 .
To complete the derivation of the change in density of states, we still

have to calculate the dimensionless coupling constant N(0) V(0) in equa-
tion (12.28). This we shall do in the next section.

12.5 Coupling constant for the exchange terms

To complete the evaluation of the contribution to the change in density of
states from the exchange terms that we have been discussing, we must
now determine the strength of the interaction in the uo = 0 limit. We call
this K(0,0) to remind us that although we take the limiting value of
u = 0, the screening is, because of diffusion, time dependent and differs
from its static value, as we now discuss.

72.5.7 Diffusive screening

A physical argument to derive a measure of this type of screening is as
follows. We consider the Fourier components q and uo of the interaction
to be screened, which are therefore also the Fourier components of the
charge distribution that the screening electrons must generate. A wave
with these components propagates a distance \\q in a time l/|o;|. If the
screening is instantaneous, this is also the screening time over this dis-
tance. (Incidentally the assumption of instantaneous screening is implicit
in static screening, which shows that such screening, far from being static,
is really superfast.) The time taken to travel the distance \\q by an elec-
tron with diffusion coefficient D is \/Dq2 so the total time of propagation
and screening in the presence of diffusion is then \/\LJ\ + l/Dq2. Hence
the ratio of the time taken when diffusion is important to that when it is
absent is:

(l/Dq2 + /M)/( l /M) = {Dq2 + \u>\)/Dq2 (12.29)
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We see at once that the ratio is greater than or equal to unity: thus, as we
would expect, any diffusive effects increase the screening time. Moreover
for the small values of a; that concern us, fast diffusion (large values of D)
or close encounters of the primary electrons (large values of q) take the
ratio towards unity and diffusion makes no difference.

12.5.2 Size of the change in the density of states

For our purposes, we need the value of equation (12.29) in the limit that
both q and u —> 0. But q and u are related because the Fourier compo-
nents of the interaction between the primary electrons are related. As we
saw in the preceding section, for an energy change e, q1 must be less than
or equal to e/HD. Thus here with u = e/H we must have Dq2 < LJ. Since
this is true for the pair of primary electrons, it must also be true of the
screening charge. Moreover there is another constraint on the response of
the screening charge: the component with the largest q provides the fast-
est screening (see equation (12.29)) and so prevails. Thus the two condi-
tions, (1) that q be a maximum and (2) that Dq2 be less than or equal to UJ,
mean that Dq2 = u. Thus u and Dq2 tend to remain equal as they both
tend to zero. The limit of equation (12.29) is therefore 2, i.e. the screening
time is doubled.

We now wish to find how this alters the screening radius. Because we
are dealing with diffusive motion of the screening charge, we expect that
the screening time will be proportional to the square of the screening
radius, (ro)2 in the notation of equation (12.7), according to which:

x2) (12.30)

where X
2 = (^o)"2 = e2N(E0)/e0.

Doubling the screening time means that the new screening radius is
21/2ro and implies a halving of x2- Finally therefore we see from equation
(12.7) above that, when q = 0, the interaction potential is:

K(0,0) = 2e2/eoX
2 = 2/N(0) (12.31)

which is twice its static value.
(In highly disordered systems the screening of the pseudopotential

should be similarly reduced so that the value of the pseudopotential at
q = 0 and T = 0 would be doubled, i.e. -2/N(0).)
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Finally if we use this value of N(0) V(0) and do a full calculation to
determine the numerical constants, the result is:

A7V(0) = (\e\)l/2/n2(2hD)V2 (12.32)

which shows the characteristic e1/2 dependence already discussed.
This completes our discussion of the exchange contribution to the

density of states at absolute zero. We turn now to the Hartree contribu-
tion.

12.6 The Hartree terms in the particle-hole channel

12.6.1 The interaction mechanism

In the Hartree terms, as we saw in equation (12.11), each electron is
associated with a wavefunction that describes in a quasi-classical fashion
its own charge distribution and so we can describe the interaction in
quasi-classical terms. The mode of interaction is, however, rather indirect
and so let me first give an outline of it before we go into detail. This
outline is based on the treatment by Bergmann (1987) of the enhanced
interaction effect4.

Under the conditions of strong elastic scattering there is, as we have
seen in weak localisation, a substantial probability that a conduction
electron will traverse a closed path and return to its starting point still
retaining phase coherence. When this happens, the wavefunction can
interfere with itself and set up a charge distribution that reflects the
phase difference between the original and the returning wave. In the
words of Bergmann this charge pattern forms 'an electron hologram',
that is, a record of the phase change suffered by the electron in its closed
path. For example, the returning wave could be exactly out of phase and
so tend to cancel the original wave. At the other extreme, the returning
wave could be exactly in phase so that the resultant would have its max-
imum possible amplitude. Likewise for intermediate phases. The impor-
tant point is that this phase change can be inherited by another electron
wave that passes through the charge hologram.

We imagine now that an electron and a hole execute the same closed
path in opposite senses. On returning to its starting point, the electron, as
we saw, leaves a charge record of the phase change that it has suffered on
its path and the hole traversing the same closed path suffers the same
phase change but as it passes through the charge hologram in the reverse
sense this phase change is precisely reversed. This therefore restores the
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phase of its wavefunction to its original value and in this way the inter-
action increases the amplitude of this second particle.

We can reinterpret this behaviour in terms of two electrons instead of
an electron and a hole and since this is more familiar we adopt this
description. We then have two electrons executing the same closed path
in the same sense, with the second electron traversing the hologram in the
reverse direction to that of the first.

The probability of executing the closed paths is determined entirely by
the randomness of diffusion: the Coulomb interaction comes into play
only when the second electron encounters the charge hologram left by the
first.

The effect of this complex scattering mechanism is twofold: it contri-
butes to a change in the density of states and it enhances the amplitude of
the scattered wave. In this way the scattering via the Hartree interaction
tends to increase the mean free path of one of the electrons involved and
so leads to an increase in the conductivity compared to that expected by
Boltzmann theory. We shall deal with this change of mean free path in
the next chapter, which deals with the conductivity. In the meantime, we
concentrate on the change in density of states.

12.6.2 Hartree contribution to the density of states

To determine how the Hartree terms in the particle-hole channel alter the
density of states we must, as we saw in section 12.2, find the interaction
energy of two electrons, one of energy e and one at the Fermi level. The
calculation thus involves two steps. First we must calculate the probabil-
ity of forming suitable closed paths; second, we must calculate the inter-
action energy involved when the two electrons interact at the site of the
charge hologram. We take these in turn.

12.6.3 Probability of a closed path

We ask what is the probability of an electron executing a closed path
through a succession of elastic scattering events and a second electron
following this path. We answer this by treating the electrons as diffusing
from site to site. Suppose that the probability amplitude of the first
electron executing a closed path is A\ and that of the second A2. The
combined probability intensity is \A\ + A2\

2 = \A\\2 + \A2\
2 + 2ReA\A2.

The first term describes the probability of the first electron describing a
closed path, the second term that for the second electron. The cross terms
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refer to the combined probabilities that if electron 1 executes a closed
path, electron 2 does likewise; they are the interference terms that depend
on the phase of the two components and would not exist in a classical
calculation. If the two amplitudes are in phase, the interference terms are
both equal to A2, which can be taken as the classical probability of a
particle diffusing round a closed path, a quantity with which we are
already familiar.

The second electron need not enter the closed path of the first electron
at the same point; all that is required is that it should execute the same
complete closed path and that, at the place where the hologram is, the
second electron should traverse it in the appropriate sense. Any electron
on the path of the first is a candidate for the interaction. Why does this
imply that the second electron follows the same path as the first? The
reason is that of all possible closed paths that start on the original path,
only those at a phase extremum (which are just those we have chosen)
survive; the others cancel each other out.

We now concentrate on the phase relationship of two electrons that
must retain phase coherence throughout their closed paths. In addition
to all the processes that can destroy phase coherence already discussed for
weak localisation, we now have another effect. If the two electrons have
different frequencies they cannot remain indefinitely in phase. Suppose
that the two electrons in which we are interested differ in energy by e,
which corresponds to a frequency difference ACJ = e/H. If two waves start
off in phase, they remain effectively in phase only for a time that is short
compared to 1/Aa;; 1/Aa; is roughly the time it takes to get completely
out of phase due to the frequency difference. There will also be a difference
in wave number Ak of the two electrons, which will alter their relative
phase; this too is proportional to e. From these effects we can define a time
re, which is the time that elapses from when the two waves start out in
phase until they get out of phase through their difference in energy. This
gives re ~ h/e, which is the time for A\ and Ai to get out of phase.

We must therefore determine the classical probability of completing a
closed path in the time rc. To do this, we turn to equation (11.5) for the
classical diffusion time for a closed path and integrate it from TO, the
elastic scattering time, to TC, the available coherence time. This gives
for the probability that our two electrons execute closed paths in phase:

p(e) ~ A2vF[(T0r1/2 - ( T , ) - I / 2 ] / ( 4 K / > ) 3 / 2 (12.33)

This shows that the probability of achieving suitable closed paths
diminishes as (r€)~

1^2 (i.e. as e1/2) and the Hartree interaction between
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an electron at an energy e above the Fermi level and one at the Fermi
level does likewise. We must bear in mind, however, that this contribu-
tion only exists provided that there are no dephasing processes which on
average operate in a time that is shorter than rc.

How do we justify the use of classical diffusion in this case? In so far as
the two waves are in phase the product of the two probability amplitudes
gives a classical probability intensity for a closed path, which can there-
fore be calculated from the classical diffusion equation. Where the phases
do not coincide, we take account of this failure by limiting the time over
which the classical probability is calculated.

This brief description does not do full justice to the detailed derivation
of the results (see Bergmann 1987) but it does give us enough physical
insight to understand the factors that can destroy the interference, such as
temperature, spin-orbit scattering and magnetic field, which we shall
later discuss in some detail.

In the meantime, we turn to the second element in the interaction,
which is the strength of the coupling between the two electrons that
occurs in a localised region of space around the charge hologram.

12.6.4 The magnitude of the Hartree coupling strength

We must now work out the average energy of interaction of two elec-
trons, both essentially at the Fermi level, which approach each other
from random directions. We therefore evaluate this interaction by calcu-
lating its value when an electron is scattered from a given point on the
Fermi surface to all other points and take the average. The Fourier
transform V{q) of the screened Coulomb potential can be written as
(equation (12.7)):

N(0)V(q) = X
2/(<l2 + X2) (12.34)

where N(0) is the density of states at the Fermi level and x, the inverse of
the screening radius, is given by:

X
2 = e2N(0)/e0 (12.35)

Our task is to find the average value of V(q), given that the A>vector of
the final state points into an element of solid angle sin 6d6d(f) around the
arbitrary direction 0, <f> and the initial A>vector points in the z-direction. If
the average of V over the complete solid angle 4n is written as (V) we
have from equation (12.34):
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N(0)(V) = f * f U
 {4TT[1 + (q/xf\YX sin0d0# (12.36)

Jo J-TT/2

The integration over 0 gives 2n and we then put q = 2kF sin(0/2) with
kF the radius of the Fermi sphere. To integrate we write
sinOdO = (l/2)d[sin2(<9/2)]. This gives:

2N(0)(V) = [ln(l + x2)]/x2 (12.37)

where x = 2fep/x- This interaction energy is conventionally denoted by F
so that:

N(0)(V)=F/2 (12.38)

If x is small, the function F tends to unity; if x is large, F becomes small.
Therefore, if x <^ 2&F, or, in words, if the screening radius is much bigger
than the Fermi wavelength, F is small. This at first seems paradoxical
because one would expect that if the screening radius is large, thereby
increasing the effective range of the Coulomb interaction, the interaction
energy would also be large. The reason why this is not so is that the
Fourier components of the potential that come into play are those for
which 0 < q < 2k?. If therefore q is limited to small values, equation
(12.34) shows that only the large-amplitude components are involved
whereas if q extends well above \ the small-amplitude components
come to dominate the strength of the potential. Physically one can say
that, if the screened potential varies rather slowly over several wave-
lengths of the electron wavefunction, the positive and negative regions
can largely cancel. If on the other hand the strong potential is concen-
trated in a small part of the wave, the full effect shows itself.

12.6.5 The total contribution from the Hartree terms

We can now put together the two parts of our calculation to find the
Hartree contribution to the density of states at absolute zero. This
requires the product of the probability of suitable closed paths as given
by the energy-dependent part of equation (12.33) with the coupling
strength given in equations (12.37) and (12.38). Together these give:

AN(e)/N(0) ~ -F\2vF(e/h)l/2/(4nD)3/2 (12.39)

If now we write for the unperturbed density of states N(0) = 3mk2/(nh)2

and A = 2n/kF, we reach the final result:

AN(0) ~ -Fel/2/(hD)3/2 (12.40)
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This holds for negative as well as positive values of e. Thus the Hartree
contribution to the density of states produces a singularity at the Fermi
level varying as |e|^2. It is similar to that of the exchange contribution but
of opposite sign (compare equations (12.11) and (12.12)) and with the
additional factor F.

The Hartree contribution, and the exchange contribution given in
equation (12.32), originate in quite different ways. The Hartree part
comes from electron pairs executing closed paths and involves interfer-
ence and coherence. In the exchange contribution the two electrons do
not require coherence, only diffusive motion, similar energies and large
separations.

The Hartree interaction is so subtle and intricate that one wonders if
there may be other and perhaps even more elaborate modes of interaction
that have not yet been identified. One can only rely on the systematics of
theoretical methods and detailed comparison with experiment to reduce
this possibility.

12.6.6 The importance of diffusion

We have now seen how the enhanced electron-electron interaction
changes the density of states in a disordered metal in the neighbourhood
of the Fermi level. Why is the singularity at the Fermi level?

Because we are dealing with a highly degenerate Fermi gas, the Fermi
level is the natural reference level that separates the domain of electrons
from that of holes. Alternatively we can say that it is only at this energy
that there are enough occupied electron states with empty states nearby in
energy to allow the transitions that the interaction induces (see the dis-
cussion of interactions and quasi-particles in Chapter 4). By itself, how-
ever, this factor is not enough to explain the change in density of states
because highly degenerate ballistic electrons, interacting through a
screened Coulomb potential, do not produce a singularity at the Fermi
level. The other essential feature is the diffusive motion of the electrons.
In diffusion there is a non-linear relation between the distance a particle
travels and the time that elapses. The zero from which time is measured is
thus critical. For ballistic motion the distance travelled depends only on
the time interval and the zero of time does not matter. Thus only energy
differences are important as we assumed at the outset for the unperturbed
electron states (see Note 2).

When we convert this classical description of diffusion into quantum
terms it means that, in the relation between energy and change of
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momentum q, the zero of energy (which is at the Fermi level) is now of
critical importance. That is why there is a singularity at all and why it is
found at that energy.

12.7 The combined contribution of Hartree and exchange terms

In evaluating the total coupling strength, we have to take proper account
of the possible spin states of the two electrons. When this is done, the
total change in the density of states due to the electron-electron interac-
tion is:

AW(0) = [\e\l/2/{2n2(2hD)3/2}}[2 - 3F/2] (12.41)

The term 2 in the second square bracket is the exchange term and the
3F/2 the Hartree contribution; usually the exchange term dominates and
if V is positive, as assumed in the simplest approximations, the combined
effect is to produce a minimum in the density of states as illustrated in
Figure 12.4. Equation (12.41) assumes that Fis small. It also implies that
we consider only the Coulomb repulsion between electrons and not the
phonon-mediated attraction. To correct this we must replace F/2 by
(F/2) — Aep where Aep is the electron-phonon interaction parameter
already introduced at the end of Chapter 7. Even then the expression
for Fin equation (12.37) has to be treated with some caution because the
matrix elements of the interaction potential at short distances may
require a better approximation to the real wavefunctions than plane
waves.

When F is not very small compared to unity, we have then to take
account of the fact that diffusion alters the screening of the interaction
for small values of q (large separation of the electrons). This is already
taken into account in the exchange term but not in the Hartree term,
which consequently has to be modified to take account of the diffusion
rate. It turns out that the form of the density of states is unchanged; only
the coupling strength is slightly altered. Moreover this new coupling
parameter can still be expressed in terms of F. The physical origin of
this correction is clear and the final results are not greatly altered.
They are given in Appendix A4.

12.8 Interactions in the particle-particle or Cooper channel

As we have frequently noted the interaction between electrons is not
simply their mutual Coulomb repulsion, which has hitherto in this chap-
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ter been our main concern. There is also the phonon-mediated attraction
that can lead to superconductivity. This is important for electron pairs
with opposite A>vectors, which, as it were, interact head on.

The particle-particle channel, as distinct from the particle-hole chan-
nel, is concerned with just such electron pairs. As its name implies, it
involves interaction between two electrons in states above the Fermi level
but which, in addition, have equal and opposite momenta, that is, they
are just the electron pairs that participate in superconductivity at low
enough temperatures. The important point, however, is that this interac-
tion is significant well above the superconducting transition temperature
and, even if it is not strong enough to cause superconductivity at all, can
still influence the density of states in a disordered system. The electron
pairs are not unlike Cooper pairs, although they do not have to have
opposite spin directions, and one may perhaps think of their effect as that
of enhanced, fluctuation-induced Cooper pairs. For obvious reasons this
channel is also referred to as the Cooper channel.

To calculate the change in the density of states, we proceed in the
same way as for the particle-hole channel. As before, the calculation
involves finding the energy of interaction of an electron at the energy of
interest (at an energy e above the Fermi level) and an electron at the
Fermi level. The difference between the Cooper channel and the Hartree
terms in the particle-hole channel is that now the two electrons execute
closed paths in opposite senses instead of in the same sense. As before
the interaction energy depends on the product of two factors: the clas-
sical probability of executing a closed path and the interaction energy
between the two oppositely directed electrons. The calculation of the
probability of closed paths is the same as in our previous calculations
and gives rise to the same e1/2 dependence for the density of states.
Now, however, the interaction at the charge hologram has quite a
different form. It does not involve the parameter F but rather the
electron-phonon coupling parameter Aep, which we have already dis-
cussed.

We therefore concentrate only on this aspect of the Cooper channel.
The interaction is essentially that which produces superconductivity and
so it is not surprising that it involves a competition between the energy of
the electron e and an energy characteristic of superconductivity. For an
electron with energy e above the Fermi level, the coupling strength is of
the form:

l/ln(kBTc/e) (12.42)
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where, if the material is a superconductor, Tc is the superconducting
transition temperature. The rather strange form of equation (12.42) is
perhaps explained if one recalls from the theory of superconductivity that
Tc can be written:

Tc = 0Dexp(l/Ao) or Ao = l / l n ( r c / 0 D ) (12.43)

where 6D is the Debye temperature and Ao is the bare electron-phonon
interaction parameter (here Ao is negative because the material is a super-
conductor). Thus if we put e = &B#D in equation (12.42), the coupling
strength is just Ao.

If the net interaction between electrons is repulsive (A positive) so that
there is no superconductivity, equation (12.43) takes the form:

l/\n(kBTF/e) (12.44)

where TF is the Fermi temperature of the electrons. These two definitions
of Tc reflect the fact that for the superconducting material the range of
interaction is limited by the phonon energies whereas the Coulomb repul-
sion is limited only by the Fermi energy.

Given that the interaction in the Cooper channel involves electron
pairs of opposite momenta for which k + k ' ~ 0, there is no exchange
contribution comparable to that in the particle-hole channel, which
required that k — k' ~ 0. In the Cooper channel the electrons tend to
interact at close range so that the exchange terms simply tend to offset
the Hartree terms with parallel spin (see equations (12.9) and (12.12) and
the discussion there). Indeed if the bare electron-phonon interaction Ao
does not depend on energy or momentum transfer (u and q), then the
exchange terms will almost completely cancel these parallel spin Hartree
terms; if the interaction is a ^-function, the cancellation is complete. Thus
the only remaining contribution is from Hartree terms of opposite spin
pairs.

The total change in the density of states at absolute zero, when F is not
very small and when the correction for diffusive screening is included,
then becomes:

1}

-l/ln(*B7-c/|e|)]

If the value of F is small and we neglect the log term, the coupling
strength reduces to that in equation (12.41).
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12.9 Change of density of states with temperature

When the temperature T is raised above absolute zero, the change in the
density of states due to the interaction effect depends on both tempera-
ture and e. If we consider states at an energy e <g: k^T, we may expect that
they will be perturbed by temperature because their self-energy depends
on electron pairs with frequencies that differ by only e/h. Their interac-
tion will be modified in two ways: first, some of the virtual processes can
become real through thermal excitation and, second, some virtual pro-
cesses will be inhibited because the states into which the virtual process
would take the electron are now occupied.

The density of states in this region of energy thus tends to lose its
dependence on e but become dependent on the temperature. In particular
this is true of the density of states around the Fermi level, which is of
special concern to us since it is this that determines, at least in part, how
the conductivity itself varies with temperature.

If, as is usual, the total coupling strength is dominated by the exchange
terms in the particle-hole channel and so is positive, there is, as we saw, a
minimum in the density of states at the Fermi energy. The main effect of
temperature is to average the density of states over the range of energies
&B T around EF and, because of the minimum in the density of states at
EF, the average value of N(EF) will rise as the temperature rises and as
the electron distribution samples more and more states with higher den-
sity. Given that AN(e) at absolute zero varies as |e|^2 in this region, we
can expect that the average of AN(EF) will vary as Txl2. Thus we have:

N(EF) =A + B(kBT)l/2 (12.46)

where A and B are positive constants.
Finally let us note that the change in density of states has a direct effect

on the conductivity as is clear from the Einstein relation, which in differ-
ential form tells us that:

Aa/a = AN(EF)/N(EF) + AD/D (12.47)

where D is the diffusion coefficient. (We assume the validity of this
expression even in the presence of interactions.)

As a first approximation we can say that weak localisation alters the
diffusion rate (the second term on the right) but leaves the density of
states unchanged whereas the enhanced electron-electron interaction
alters the density of states but leaves the diffusion coefficient almost
untouched. In fact, as we have hinted earlier, the interaction does alter
the scattering and hence /), as we discuss in the next chapter.
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12.10 Summary

The interaction of electrons diffusing through a disordered metal causes a
singularity in the density of states at the Fermi level which in turn alters
the temperature dependence of the conductivity.

There are three main contributions. The most important is from the
exchange terms associated with electron-hole pairs that interact with
small momentum change q. In the realm where q => 0, the screened
Coulomb interaction is at its maximum. Moreover the diffusive motion
of the electrons makes possible and amplifies interactions between elec-
trons with different energies, in particular by making accessible regions of
A>space that are inaccessible to ballistic electrons.

The other two contributions involve electron pairs that execute closed
paths; their wavefunctions interfere in such a way that the interaction
depends on energy and so alters the density of states. In one case the
electrons interact through the screened Coulomb force and in the other,
the so-called Cooper channel, through the phonon-mediated interaction
that can lead to superconductivity. All three contributions cause the
density of states to vary as the square root of the energy difference
from the Fermi level.
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The effect of the Coulomb interaction on

conductivity

13.1 Introduction

We have now seen how the enhanced interaction effect changes the den-
sity of states in the neighbourhood of the Fermi level. In this chapter we
consider how this interaction alters the conductivity, first by contribu-
tions from the exchange and Hartree terms in the particle-hole channel
and then those from the Cooper channel.

13.2 The particle-hole channel

13.2.1 Exchange terms

The exchange part of the Coulomb interaction in the particle-hole channel
makes its contribution to the change in conductivity essentially through the
change in density of states. Let us estimate the size of the effect from these
terms at a temperature of, say, 1 K in a metallic glass. We use equation
(12.32) and put e = fcBrwith T= 1. We take/) = 5 x l O ^ m V 1 . Forthe
density of states at the Fermi level in, say, 50-50 CuTi, we take 2\ conduc-
tion electrons per atom and a Fermi energy about 5 eV above the bottom of
the band. The density of states is thus about 0.5 states per eV per atom,
which, converted to MKS units, gives about 1047 states J"1 m~3. The final
estimate of the relative change in the density of states, and hence of the
conductivity, is of the order of 1 %.

When properly calculated, the exchange contribution to the change in
conductivity is:

Aa = 0.9\5[e2/3n2h](kBT/hD)l/2 (13.1)

which in relative terms corresponds quite closely to the change in the
density of states that arises from the exchange terms in the particle-
hole channel.

167
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13.2.2 Hartree terms

The mechanisms that underlie the Hartree terms in the interaction have
already been described but let me summarise them briefly. An electron,
under the influence of elastic scattering from the disordered ions, dif-
fuses round a closed path and on returning to its starting point leaves a
charge distribution, which, like a hologram, records the change in phase
of the wave in going round the circuit. A hole traverses the same circuit
in the opposite sense, thereby suffering the same phase change as the
first. It can then traverse the charge hologram in the opposite sense to
the electron and so recover its initial phase. The effect of this complex
scattering mechanism is thus, as we saw, to amplify the amplitude of the
scattered wave so that it tends to increase the mean free path of the
hole involved and so increase the conductivity. The effect is thus oppo-
site to that of the change in density of states.

Instead of a hole executing the closed path in the opposite sense to
the electron it is easier to think of the equivalent electron traversing the
closed path in the same sense as the first electron and having its phase
restored by the hologram by time reversal.

To estimate the change in conductivity brought about by these scat-
tering processes, we need to know how the amplitude of the wavefunc-
tion of the second electron is altered. An outline argument is as follows.
The first electron starts with unit amplitude and after completing its
closed path has amplitude A\. This determines the intensity of the
charge hologram. The second electron likewise sets out and completes
the circuit, ending with amplitude A2 and now interacts with the holo-
gram charge with a scattering amplitude 6^2- Thus the final amplitude is
1 x A\ x A2X £f2 since all the processes are in phase. The two ampli-
tudes A\ and A2 both refer to the same path and are in fact the same,
so that their product is just \A\2 and is the probability of completing the
closed path; this is taken from the classical diffusion probability.

y 2 is the scattering amplitude for an electron scattered by the
screened Coulomb potential of another electron; in the Born approx-
imation, if q is the magnitude of the scattering vector, the scattering
amplitude is just the ^-component of the Fourier transform of the
scattering potential. This is given in equation (12.34). If we average
this for values of q that describe all scattering processes on the Fermi
surface, we are in fact repeating the calculation already carried out in
section 12.6.4; we thus get the quantity F as evaluated there.
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We have assumed that the second electron completes its closed path
before interacting with the other electron but this is not necessary; it can
enter the closed path at any point, interact at the place of the hologram
and then complete its circuit.

Thus the change in the scattering probability of the second electron is
given by the product of F and the diffusion probability for a closed path.
Before we can estimate this, however, we must know how long the two
electrons maintain phase coherence. In general this is destroyed by the
effects of temperature as we now see.

When we considered the Hartree contribution to the density of states,
we found that an energy difference between the two electrons produces a
phase difference that increases with time. At a temperature T this energy
difference can be of order k^T. Moreover, the nature of the interaction
we have just discussed implies that the electrons involved are well loca-
lised and this in turn means that their wavefunctions must correspond to
quite well-defined wave packets. Such packets are composed of waves
from a range of frequencies centred on the one that dominates and the
range of frequencies involved depends on the thermal spread of electrons
around the Fermi level, i.e. also on k^T. Consequently a typical differ-
ence in energy between waves is of this order and their frequency differ-
ence of order AUJ = k^T/fi. Two waves with a frequency difference ALJ
get completely out of phase in a time of order:

r r ~ l/Au = h/kBT (13.2)

which is the thermal coherence time. At 10 K this has a value of about
10~13 s, which is long compared to a typical elastic scattering time in a
highly resistive alloy. (Incidentally, the reason why thermal incoherence
does not influence the mechanism of weak localisation is that in this case
each harmonic component of the electron wavefunction interferes with
itself.)

To determine the required probability of the two electrons executing a
closed path, we turn to equation (11.5):

p(t)dt ~ X2v¥dt/(4nDt)3/2 (13.3)

Now we assume that the diffusion processes are terminated by thermal
incoherence rather than by inelastic scattering and so we integrate from
ro, the elastic scattering time, to rT, the thermal coherence time, to give us
the appropriate probability. Moreover to get the relative change in mean
free path and hence conductivity, we multiply by F to get:



170 The effect of the Coulomb interaction on conductivity

Aa/a ~ FA2vF[(r0)-1/2 - (rT)-l/2]/(4nD)3/2 (13.4)

The first term in the square brackets is constant but the second is tem-
perature dependent and shows that the probability of achieving suitable
closed paths diminishes as {rT)~X^2 i.e. as Txl2. This means that the prob-
ability of enhancing the electron wavefunction through the Hartree inter-
action diminishes as Txl2 at low temperatures and that the corresponding
part of the conductivity decreases with the same power law. If now we
concentrate on the temperature-dependent part of equation (13.4) and we
put a = (ekF)2l/3n2h with A = 2n/kF, we find:

ACT ~ -e2F(kBT/hD)l/2/6n3/2h (13.5)

This is the required result except that the numerical constant is not reli-
able and we must bear in mind that the Hartree contribution only exists
provided that there are no additional dephasing processes to destroy the
phase coherence of the two electrons.

Let us write equation (13.5) as:

Aa = -constant F(e2/h)(kBT/hD)l/2 (13.6)

which refers to the interaction effect, and compare it with equation
(11.10):

ACT = constant (e2/h){\/r{JiD)l/2 (13.7)

which refers to weak localisation. As we have seen, this very close resem-
blance is not accidental.

13.2.3 Total change in conductivity from the particle-hole channel

A full calculation of the contributions to the change in conductivity from
both exchange and Hartree terms in the particle-hole channel gives:

Aa(T) = 0.915[e2/47i2/z]{(4/3) - 3F/2}(kBT/hD)l/2 (13.8)

where the first term in the curly brackets is from the exchange and the
second from the Hartree processes; they have opposite signs because the
density of states increases as T increases and so raises the conductivity
while the Hartree enhancement of the conductivity is reduced by the
rising temperature. Since in general the exchange terms tend to dominate,
the conductivity rises as Txl2 and so provides another mechanism for a
negative temperature coefficient of resistance. Such a temperature depen-
dence with this small power law (T1/2) tends to prevail at the lowest
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temperatures and is indeed so found in the conductivity of metallic
glasses; it is thus attributed to the interaction effect.

The coupling strength in the Hartree processes is not exactly F but F.
The change in value, which is given in Appendix A4, comes about
because the interaction between the electron pairs is altered by the diffu-
sive motion of the screening electrons as was the contribution of these
pairs to the density of states (section 12.5.1).

What we have seen so far is valid in the absence of spin-orbit scattering
but the contribution involving Fin equation (13.8) is strongly influenced
by such scattering, as we now discuss.

13.3 Enhanced interaction effect and spin-orbit scattering

The influence of spin-orbit scattering on the interaction effect does not
appear to have been treated in the literature but we can gain a quali-
tative picture of its influence in the same way that we discussed its
influence on weak localisation in Chapter 11. There the spin-orbit
scattering destroyed the phase relationship between partial waves of
like spin electrons executing closed paths in opposite senses: here by a
similar argument, spin-orbit scattering destroys the phase relationship
of electron pairs of opposite spin executing paths in the same sense.
Moreover of the two contributions to the conductivity, Aaex and
A<TH? that come from exchange and Hartree terms, only ACTH is altered
by spin-orbit scattering. Acrex is unaltered because it does not depend
on interference.

The two contributions, of opposite sign, but, in the absence of spin-
orbit scattering, both varying as T1/2, are shown, measured from the
Boltzmann value as origin, in Figure 13.1(a). Plotted against T1/2 they
are straight lines.

We can treat spin-orbit scattering as a random dephasing mechanism,
analogous to temperature, except that it acts selectively only on the anti-
parallel spin pairs. Spin-orbit scattering thus reduces the value of AcrH at
absolute zero and keeps it constant until, with rising temperature, ther-
mal incoherence begins to rival the rate of spin-orbit scattering and,
having overtaken it, causes AcrH to return towards the value it would
have without spin-orbit scattering. These effects are shown for several
increasing values of this scattering in Figure 13.1 (a); in the limit, AcrH is
reduced to zero.

Figure 13.1(b) shows Acrtotai? which is the algebraic sum of the two
parts; it shows that Acrtotal starts at absolute zero with the slope of Acrex,
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Zero spin-orbit scattering

0 / f/2
Zero spin-orbit scattering

(a)
(c)

Spin-orbit scattering
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Lowest measuring
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(e.g. 1K)

Normalisation
temperature
(e.g. 4.2K)
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Fig. 13.1 The temperature dependence of the conductivity due to the enhanced
interaction effect in the presence of spin-orbit scattering (schematic), (a) The
Hartree contribution A<TH and the exchange contribution Acrex to the conductiv-
ity with respect to the Boltzmann value as zero plotted against T1//2. Aaex is
unchanged by spin-orbit scattering but AcrH is gradually reduced as the strength
of this scattering is increased (successively lower curves in the diagram), (b) The
total conductivity change, being the sum of Acrex and AOH. Since in general
|Acrex| > |AcrH|, the slope of Acrtotai (T) is always positive but the slope increases
as the spin-orbit scattering increases. When this scattering dominates throughout
the temperature range, only Acrex contributes to the total, (c) The total conduc-
tivity change measured from a common origin for which Aa(T) is zero when
T = 0. (d) The same as in (c) but plotted as change in resistivity, (e) The same data
as in (d) over a limited temperature range and normalised at some upper tem-
perature (say, 4.2 K) as done with experimental data.

except in the physically unrealistic case of zero spin-orbit scattering. As

the spin-orbit scattering increases, the curves approach closer and closer

to the lowest line in Figure 13. l(b), which is Acrex alone and corresponds
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to a sample in which spin-orbit scattering is dominant throughout the
temperature range plotted.

Finally Figure 13.1 (c) shows all curves starting from a common origin
at absolute zero. Notice that the slope, while always positive, is altered by
the spin-orbit scattering and becomes smaller at temperatures where rso

becomes comparable to rT. We shall see in section 16.4 how these pre-
dictions compare with experiment.

Figure 13. l(d) shows the corresponding changes in resistivity
(Acr/cr = -Ap/p) and Figure 13.1(e) shows what happens when the
curves are normalised at some specific temperature (not absolute zero).
This is done with experimental data because it is not possible to measure
ACT in absolute terms.

We can make the previous argument quantitative in the following way.
In equation (13.8), the second term in the curly bracket, involving F, is
altered by spin-orbit scattering. The electron pairs that contribute to it
are put out of phase not only by thermal incoherence in a time
rT = h/kBT but also by the competing mechanism of spin-orbit scatter-
ing in a characteristic time rso. The combined probability of scattering is
thus:

1/rtotai = 1 A T + a/rso = kBT/h + a/rso (13.9)

where a is a weighting factor, or order unity to take account of the
degeneracy of the spin states and the definition of rso.

This means that the temperature involved in the coefficient of F must
be replaced by an effective temperature:

so (13.10)

where Tso = afr/kBrso. If we pu t this in equa t ion (13.8) we get:

Aa(T) = 0.9\5(e2/4n2h)[(4/3)(kBT/hD)l/2 - (3F/2){(kBTen/HD)l/2

- (kTso/hD)l/2}}

(13.11)

with reff given by equation (13.10). The second term in the curly brackets
ensures that ACT is zero at T = 0.

In the limit that H/rso > kBT, Terr becomes effectively independent of
T so that the curve of ACT versus Txl2 is a straight line whose slope is
determined by the factor (4/3)(kBT/hD)l/2. In the other limit where
7z Aso <̂  ^B T, the curve is again a straight line but now the slope is
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determined by the factor [(4/3) - (3/2)f)(kBT/hD)l/2. Thus the ratio of
these two extreme slopes provides a way of finding F.

A further consequence of spin-orbit scattering is that, at temperatures
where neither the spin-orbit scattering nor thermal incoherence domi-
nates, the change in conductivity is no longer linearly proportional to

2; the plots of Ap versus Txl2 have a positive curvature.

13.4 The Cooper channel: additional effects

As we have already discussed in Chapter 12, additional contributions
from the Cooper channel arise from the electron-phonon interaction
which promotes superconductivity. The interaction in the Cooper chan-
nel can be thought of as similar to that of the Hartree terms of the
particle-hole channel except that now the two electrons travel round
the same closed path in opposite senses and thus interact with each
other, as it were, head on as in the superconductive interaction.

The superconducting fluctuations in the neighbourhood of the super-
conducting transition temperature Tc are well known and do not concern
us here. As we have seen, however, the fluctuation-induced formation of
Cooper pairs at temperatures far from Tc causes a change in the density
of states and this influences the conductivity even in alloys that do not
become superconducting.

The change in conductivity at temperatures much greater than Tc is:

Aac = -0.9\5[e2/2n2h](kBT/hD)l/2 [\n(Tc/T)}-1 (13.12)

The temperature dependence is dominated by the Txf2 term and is thus
similar to that in equation (13.5). The sign of the contribution depends on
the sign of the interaction between the electron pair at short distances. It
makes the conductivity grow with increasing temperature if attractive
and vice versa. The relation between equation (13.12) and the last term
of the density of states expression in equation (12.45) is clear.

Another manifestation of the superconducting fluctuations is the so-
called Maki-Thompson correction, which is small compared to that in
equation (13.12) but is particularly important in the presence of a mag-
netic field (Appendix A5).
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13.5 Summary

The enhanced interaction effect alters the conductivity of highly dis-
ordered alloys in three main ways, which have similar temperature
dependences.

1 The exchange terms in the particle-hole channel decrease the density of
states and hence the conductivity at absolute zero and cause it to rise as
r1//2 as the temperature goes up.

2 The Hartree contribution in the particle-hole channel arises from
electron-hole pairs which interfere in such a way as to increase their
mean free path and hence the conductivity at absolute zero. Thermal
incoherence destroys the interference and causes the conductivity to
fall as 77l/2.The interference also alters the density of states in a sense
opposite to that in 1 above.

3 Electrons in the Cooper channel alter the density of states through the
phonon-mediated attraction between electrons, the sign depending on
that of the net interaction between electrons. There is also an effect on
the mean free path analogous to that in 2.
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Influence of a magnetic field on the

enhanced interaction effect

14.1 Magnetoresistance in the particle-hole channel

14.1.1 High fields

When a magnetic field is applied to the material, the relative phase of the
two electrons in the processes we discussed in section 13.2.2 is not chan-
ged by the flux that passes through their common orbit because the
electrons execute this in the same sense (not in opposite senses as in
weak localisation) and so the effect on the phase is the same for both.
On the other hand if the two electrons have antiparallel spins the mag-
netic field B changes their relative energy by the Zeeman splitting g/iB.
Here \i is the Bohr magneton and g is the splitting factor, which looks
after any change in the magnetic moment of the electron introduced by its
environment. In fact we are here considering electron-hole pairs so that
since the hole has a spin opposite in sign to that of an electron the triplet
state occurs when the electron and hole have antiparallel spins and the
singlet state when they are parallel.

If we refer to Table 11.2 (p. 126), we see that in the triplet state only
two out of the three spin wavefunctions involve parallel spins; the third
is a composite state, which, like the singlet state, involves antiparallel
spins. Thus the two components of the electron-hole pair with parallel
spins are the ones that are split in energy by the magnetic field. The
frequencies of the electron and the hole are correspondingly altered and
for this reason dephasing occurs. Thus the contribution to the anom-
alous resistance from two of the triplet states is reduced. On the other
hand the contributions from the other wavefunctions are unchanged by
this mechanism, including those electrons described by the exchange
terms, and being uninfluenced by the magnetic field they can be ignored
in this discussion.
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When the magnetic field causes a dephasing of the electron-hole pairs
this diminishes the Hartree contribution. As we saw earlier, the Hartree
term enhances the amplitude of the wavefunction and so increases the
conductivity of the material. If therefore we apply a magnetic field and
reduce this contribution we diminish the conductivity, i.e. we produce a
positive magnetoresistance, which is thus opposite in sign to that of weak
localisation. (Remember, however, that spin-orbit scattering can reverse
the sign of the weak localisation effect.)

The field dependence of the magnetoresistance at low temperatures due
to the interaction effect can be derived from the above argument. The
energy difference g/iB induced by the magnetic field produces a difference
in frequency of g/^B/h between the two relevant components. They thus
get out of phase in a time rB of order h/gfiB. Of course there are closed
paths of different lengths with different completion times so that there is
a spectrum of phase differences among the different pairs that complete
closed paths, some greater and some smaller than that corresponding to
rB. Thus some pairs will tend to increase and some to decrease the resis-
tivity and we take rB to be the time taken for the total contribution from
these terms to be reduced to some fraction of its initial value.

To find out how this alters the resistance we proceed as we did for
thermal incoherence; here we integrate equation (13.3) from TO to r# to
determine the probability of the electrons (we think now in terms of two
electrons instead of the electron and hole) returning to their starting point
before the magnetic field causes them to cease contributing. The analogue
of equation (13.4) then becomes:

p(B) ~ A2vF[(r0)-
1/2 - (rB)-i/2}/(4nDf2 (14.1)

The relative change in conductivity is found by multiplying by F:

Aa/a ~ -[FA2vF/(47ii))3/2][(ro)1/2 - ^gB)x/1] (14.2)

and hence, by putting a = (e2/3n2h)k^l, A = 2n/kF and D = vF//3, we
get for the change in conductivity Aa due to the appropriate Hartree
terms, apart from a numerical constant:

Aa(B) ~ -F(e2/2n2h){gfiB/hD)l/2 (14.3)

This is valid at absolute zero; the behaviour at higher temperatures is
discussed below.
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14.1.2 Low fields

What we have discussed so far is strictly valid at absolute zero but is
approximately true at fields for which gfiB >̂ k^ T. At small fields where
gfiB -c k&T the magnetoresistance has a different field dependence.
Because the field is so small, the coherent lifetime of the electrons that
interact is limited, as in zero field, by the temperature but in addition
each electron that interacts with a suitable partner differs from it in
energy by the Zeeman splitting g[iB. The two electrons thus progressively
get out of phase with a difference of g/^Bt/H after time t. They lose
coherence after the thermal coherence time rT = h/k^T by which time
the phase difference 8 due to the magnetic field is 6 = g^B/k^ T. This is
true of all the pairs that respond to the field so that whereas the influence
of temperature is random, that of the field is the same for all.
Consequently, as we saw earlier in our discussion of the low-field mag-
netoresistance due to weak localisation, the intensity of the coherent
contribution is reduced by a factor cos2(<5/2). The magnetoconductivity
thus is proportional to:

[1 - (gnB/2kBT)2} (14.4)

These are the first two terms in the expansion of cos2 (6/2) and we see
therefore that the magnetoresistance Ap/p = —Aa/a is positive and var-
ies in this low-field regime as

14.2 Temperature dependence of magnetoresistance

To demonstrate more clearly how the conductivity depends on the mag-
netic field and temperature, Figure 14.1 (a) shows the Hartree contribu-
tion to the conductivity in relation to the Boltzmann value, which we take
to be independent of temperature or magnetic field.

The figure shows Aa at different temperatures as a function of Bxl2.
The uppermost curve is for absolute zero and, in the absence of spin-
orbit scattering, which we treat below, is a straight line since, under these
conditions, the conductivity falls as Bxl2 even down to the lowest fields.
At higher temperatures, as shown in the figure, the value in zero field
Acr(7,0) is reduced by thermal incoherence and, as the field is turned on,
the conductivity is still further reduced, varying as B2. Eventually when
[iB >̂ k% T all the curves asymptotically approach the absolute zero curve
as shown because ultimately the magnetic field dephases the electron
pairs before thermal incoherence has time to operate.
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Absolute zero and
no spin-orbit scattering

Higher temperature and/or
increased spin-orbit scattering

Boltzmann
/ value

Still higher temperature
and/or higher spin-orbit scattering

Bv2

(a)
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Absolute zero and
no spin-orbit
scattering

Higher temperature and/or
spin-orbit
scattering

(b)

Fig. 14.1 The effect of spin-orbit scattering on the magnetoconductivity due to
the enhanced interaction effect (schematic), (a) The change in conductivity due to
the field B plotted against Bxl2 in relation to the Boltzmann value as zero. The
dot-and-dash line is for T = 0 and no spin-orbit scattering. The two other curves
show how ACT alters as either the temperature is raised; or spin-orbit scattering is
increased; or both happen together. The two effects are exactly similar, (b) The
changes in conductivity plotted from a common origin at which Acr(B) is zero at
B = 0. The curves, apart from the physically unrealistic line for T = 0 and no
spin-orbit scattering, all start off as B2 and at high enough fields become parallel
to the zero-temperature and zero spin-orbit line.

The magnetoconductivity, however, is not measured from the
Boltzmann value but from the value of ACT for B = 0 at the relevant
temperature. The curves are replotted with this new origin in Figure
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14.1(b), which shows that as the temperature rises, the magnetoconduc-
tivity approaches its asymptotic form at higher and higher fields. Another
way of expressing this is that the asymptotic form for high fields inter-
sects the zero-conductivity line at approximately g/iB ~ kB T. This fol-
lows from the slope of the asymptote, given in equation (14.3) for ACT
versus i?1/2, and the shift of origin with temperature given in equation
(13.5).

If now we take the exact theoretical results, we find that the magneto-
conductivity due to spin-splitting at high fields (g/^B > kBT) is:

Aa(B) = (e2/47r2h)F(kT/2hD)l/2[(giiB/kBT)l/2 - 1.294] (14.5)

At low fields we have:

= (e2/4n2h)F0.056(gfjJB/kBT)2 (14.6)

where F is defined in equation (A4.4).
We saw earlier that if F <C 1, F ~ F. A further point is that if F and

therefore F are zero, then according to equations (14.5) and (14.6) Aa(B)
vanishes. This confirms that the exchange terms in the particle-hole
channel make no contribution to the magnetoresistance. Equation
(14.5) shows that the high-field asymptote intersects the axis at
(g^B/kBT)l/2 = 1.294.

This is a bare outline of the interaction effect insofar as the Zeeman
splitting alters the contribution from the Hartree terms. There are, how-
ever, additional effects and contributions which we must look at before
we attempt any comparison with experiment.

14.3 Spin-orbit scattering and magnetoresistance

We have discussed qualitatively how spin-orbit scattering alters the con-
ductivity due to the interaction effect and its temperature dependence.
We now apply a similar method to the magnetoconductivity, to which we
have only one major contribution, that from the Hartree terms, which
produce a positive magnetoresistance through the Zeeman splitting of the
spin states.

Suppose now that the coherence time of an electron pair is limited not
only by the temperature but also by the random effects of spin-orbit
scattering. As we have already discussed in section 13.3, when both tem-
perature and spin-orbit scattering act together, the probabilities of the
two types of scattering add and the total probability becomes:
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7^so (14.7)

where l/rj = k^T/h and a' is a suitable weighting factor of order unity.
Thus the net effect of spin-orbit scattering is, according to these argu-
ments, to increase the effective temperature as seen by the magnetic field
to reff given by:

Terr=T+afh/kBTso (14.8)

In the absence of spin-orbit scattering, we know that Aa(B) first
decreases as B2 and at higher fields it approaches the asymptotic line
(see preceding section) and finally varies almost as Bxl2 as shown sche-
matically in Figure 14.1(a).

When spin-orbit scattering is turned on, it raises the effective tempera-
ture and thereby reduces the magnetoresistance until, when
(h/2gfiB) <c TSO, ACT takes on the value it would have without spin-
orbit scattering. The effects for several strengths of spin-orbit scattering
are shown schematically in Figure 14.1(a). Identical effects could be pro-
duced by temperature. To complete the picture, in Figure 14.1(b) we plot
Aa(B) as a function of B from a common origin at B = 0. This shows
that, as the spin-orbit scattering increases, the magnetoconductivity
decreases until ultimately there is no magnetoconductivity within the
limited range of the magnetic fields employed. In section 16.4, these
predictions are looked at in the light of experiment.

14.4 The Cooper channel

In the Cooper channel the two electrons execute the same path but in
opposite senses and in the process one electron can still make use of the
charge hologram of the other to recover its initial phase. Then, as in weak
localisation, a magnetic field will induce a phase difference in the two
wavefunctions from the magnetic flux that passes through the common
orbit since they now execute it in opposite senses. This is called the orbital
effect, as opposed to the effect of Zeeman splitting, and it makes a small
contribution to the magnetoresistance.

The exchange terms make no Zeeman contribution to the magnetore-
sistance but the exchange terms in the Cooper channel contribute in a
small way through the orbital effect.

The various possible contributions are summarised in Table 14.1.
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Table 14.1 Magnetoresistance contributions in the interaction effect.

Exchange terms
particle-hole
Cooper channel
Hartree terms
particle-hole

Cooper channel

Spin combination

parallel
parallel

parallel
antiparallel
parallel
antiparallel

Contribution

none
orbital

none
Zeeman
orbital
Zeeman and orbital

14.5 Zeeman splitting in weak localisation

The importance of Zeeman splitting in the magnetoresistance due to the
interaction effect suggests that such splitting can also cause the dephasing
of partial waves of opposite spin in weak localisation. This is indeed true.
Let us therefore estimate the relative size of the two contributions, the
orbital part discussed in Chapter 11 and the Zeeman splitting discussed
here.

Let us define the critical field for the orbital contribution in weak
localisation as that magnetic field whose dephasing time just equals
that from inelastic scattering. This field (from equation (11.12)) is:

(14.9)

The comparable field for the Zeeman splitting BZWL is the field that just
dephases the two partial waves in the same time rin. The rate of change of
phase between the two waves in such a field is w = gfiBzwh/h and so the
critical field occurs when u ~ l/rin. This gives:

BzWL=n/gfJLTm (14.10)

The ratio of the two critical fields in weak localisation is thus:

£OWL/#ZWL = g»/4eD (14.11)

If we put the Bohr magneton /i = eH/2m, g — 2 and D = vp//3, we find:

h/mvFro ~ l/k¥l ~ h/e^ro (14.12)

Normally in Boltzmann-type metals we expect EF > h/ro; this will also
be true of metallic glasses made from non-transition metals so that in
these the orbital field will be very small compared to the Zeeman field.
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Generally therefore in weak localisation the Zeeman contribution is small
compared to the orbital contribution to the magnetoresistance. For some
of the alloys that we discuss, however, h/Epro may approach unity so
that the two effects may be comparable and for them the full formulae for
the magnetoconductivity due to weak localisation must include the
Zeeman contribution.

14.6 The Maki-Thompson correction

This correction (Maki 1968, Thompson 1970) came originally from a
study of superconducting fluctuations, from which it derives. It can,
however, contribute at temperatures far from the superconducting transi-
tion temperature. It arises from electron pairs in the Cooper channel,
which thus execute closed paths in opposite senses. These electron pairs
resemble the partial waves in weak localisation except that they require a
coupling mechanism. Indeed the resulting change in conductivity is essen-
tially just the singlet contribution in weak localisation modified by a
temperature-dependent coupling parameter. The correction is important
in magnetoresistance and often has to be included there. Some details are
given in Appendix A5.

14.7 Electron-electron scattering in disordered metals

There is another effect of the enhanced electron interaction in a disor-
dered metal that is important, not for the interaction effect itself, but
because it has possible consequences for weak localisation. This is the
scattering of electrons by each other; even if this causes no significant
resistance, it can cause dephasing and so alter the temperature depen-
dence of the resistance.

In section 7.1 we saw that electron-electron collisions varied with tem-
perature as T2 in ordered metallic materials. We can now show how this
temperature dependence is altered in a disordered metal. We saw in
Chapter 12 and Appendix A3 that the self-energy of the interacting elec-
trons was complex and that the imaginary part gave rise to a finite life-
time of the interacting state. So we can use the imaginary part of the self-
energy to find the lifetime of an electron in diffusive motion interacting
with another and thus get the probability of electron-electron scattering
in a disordered metal. This is given in Appendix A6 and shows that now
the scattering varies with temperature as /
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14.8 Diagrammatic techniques

Some of the effects of disorder are so strange and subtle that you may
wonder if there are still more elaborate modes of interaction yet to be
found. After all, if electrons can do all these weird things, why can't they
do still weirder ones?

The answer is that they may, but there are two points to bear in mind.
First, diagrammatic techniques in perturbation theory make it possible to
examine systematically the different possible modes of interaction and
identify those that are likely to be significant. It was through such tech-
niques that these effects were first discovered. Second, experiments can
help to guide the theory and show up any major gaps that may exist. The
effects we are discussing show up even more dramatically in low-dimen-
sional systems and their two-dimensional counterparts have been exam-
ined experimentally with considerable thoroughness and success in thin
films.

A final point is that diagrammatic techniques do not reveal the physi-
cal nature of the interactions and the physical interpretation of the
theoretical findings can take time. Bergmann (1983, 1987) in a series of
papers has played an important and valuable role in this process and I
think most of us would accept his arguments that not only does such
interpretation make the subject clearer and may even show up errors or
incompleteness but it often reveals unsuspected links with other parts of
physics.

14.9 The Hall effect
We have discussed the Hall effect in the context of its 'anomalous' sign in
many transition metal alloys. Now we must look at how the enhanced
interaction effect alters it.

We can write the Hall coefficient in terms of the conductivity compo-
nents axx and axy. Here we envisage the magnetic field B applied in the z-
direction with the current and Hall field in the xy-plane. The Hall coeffi-
cient Rn can then be written:

Ru=c7xy/B(axx)
2 (14.13)

Theory indicates that weak localisation causes no change in RH but the
enhanced interaction effect, while leaving axv unchanged, causes RH to
change in response to the change Acrint induced in crVY, i.e. the ordinary
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conductivity a. If Acrint represents the change in conductivity due to the
enhanced interaction effect we have:

ARH/RH = -2A*int/a = 2Apmt/p (14.14)

This relationship shows that the Hall coefficient becomes slightly tem-
perature dependent because, as we saw in Chapter 13, Acrint changes with
temperature although, as we saw there, such changes are small. Indeed
the early measurements of the Hall effect in metallic glasses suggested
that Rn was independent of temperature and it needed the subsequent
more accurate measurements to reveal a temperature dependence, which
in fact tallies with equation (14.14).

Acrint varies as +T1/2 and so equation (14.14) predicts that, if RH is
positive, the Hall coefficient should decrease with this power law; if, on
the other hand, i?H is negative, it should increase with this power law.

Figure 14.2 shows the experimental values of the Hall coefficient of six
metallic glasses together with the T,1/2 dependence which is the least-
square-lit to the points. The Ni64Zr36 alloy has a negative Hall coeffi-
cient; the others are positive. Moreover there is no measurable tempera-
ture variation in the resistivity of the relatively low-resistance alloy
Pd8OSi2o. The curves fit the data qualitatively and there is order of mag-
nitude agreement with the resistivity data. Later, more accurate measure-
ments by Drewery and Friend (1987) on Cu-Ti amorphous thin films give
quantitative agreement with the theory (Figure 14.3).

There seems little doubt that the temperature dependence of RH is due
to the enhanced interaction effect and potentially this dependence, which
discriminates between weak localisation and the interaction effect, is
most valuable. Unfortunately the change with temperature is small
and, in typical glasses, the Hall effect itself is small. Moreover any tiny
amounts of crystallinity in the samples can cause large errors. Since speci-
men perfection is difficult to achieve, all these factors make it very hard
to measure Ru with the necessary high accuracy to exploit its potential
usefulness.
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enhanced electron interaction. (After Drewery and Friend 1987.)



15
The thermopower of metals and alloys

15.1 Definitions

The origin of the thermoelectric effects is very simple. They arise because
an electric current in a conductor carries not only charge but also heat.
Consequently when an electric current flows through the junction of one
conductor with another, although the charge flow is exactly matched,
there is in general a mismatch in the associated heat flow; the difference
is made manifest as the Peltier heat. If the current flows through a con-
ductor in which there is a temperature gradient the heat shows up as the
Thomson heat which is the heat that must be added to or subtracted from
the conductor to maintain the temperature gradient unchanged; the elec-
tric current behaves as if it were a fluid with a heat capacity (either
positive or negative). The third manifestation of thermoelectricity is the
Seebeck effect which is the inverse of the other two. In this a heat current
is established by means of a temperature gradient and this produces an
electric current. However this cannot be done with a single material since
in such a closed circuit the current induced in one part would cancel that
in the other. Instead two materials are needed; moreover it is more con-
venient to measure not the circulating current that results but the emf
that arises when the electrical circuit is broken. More explicitly, if con-
ductor A is connected to conductor B at its two ends and the two junc-
tions are maintained at different temperatures, an emf appears in the
circuit.

All these effects are related quantitatively to each other by the
Thomson or Kelvin quasi-thermodynamic relations. The definitions
and relationships can be summarised as follows: if in the Seebeck effect
a temperature difference AT between the junctions of the conductors A
and B produces a voltage difference AV (see Figure 15.1) the Seebeck
coefficient SAB is defined as:

188
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T+AT

189

Fig. 15.1 The Seebeck effect.

(15.1)

in the limit as AT tends to zero.
If the two conductors A and B are joined at an isothermal junction and

a charge q flows across the junction the Peltier heat n A B is defined as:

= Q/q (15.2)

where Q is the heat reversibly given out or absorbed at the junction. If q is
positive and heat is reversibly given out the Peltier heat is defined as
positive and A is positive with respect to B.

The Thomson coefficient fiA of conductor A measures the heat
absorbed (or given out) reversibly when unit positive charge passes
through unit positive temperature difference in the conductor. It is
defined as positive if this heat is absorbed.

The Thomson coefficient thus characterises a single material; it turns
out that the Peltier and Seebeck coefficients can themselves be split up so
as to refer to individual materials. Thus we write:

and

n A B = n A - n B

SAB = SA —

(15.3)

(15.4)

where IIA, SA etc. are characteristic of materials A or B alone. SA or SB is
then referred to as the absolute thermoelectric power of the particular
material.
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The Thomson (Kelvin) relations state that:

and

S= I WT)dT (15.6)
Jo

Here T is the absolute temperature. Relation (15.5) is analogous to the
equilibrium thermodynamic relation between the entropy (analogous to
thermopower) and latent heat (analogous to IIAB). Relation (15.6) is
analogous to that between entropy and specific heat and indicates how
the absolute thermopower of a metal could be measured; it turns out
however that, because superconducting electrons carry zero entropy,
superconductors have zero thermopower so that in the temperature
range where these exist the absolute thermopower of a conducting mate-
rial can be determined directly by measurements on a thermocouple of
which the other material is a superconductor.

Although I have referred to the 'heat' carried by the electric current the
reader may be suspicious of this usage since in learning thermodynamics,
we are repeatedly warned that we can only recognise heat in what we may
call 'external transactions'. This is a perfectly proper objection and we
ought more strictly to confine our attention to entropy. Since, however,
some people are frightened by this word it seems worthwhile to use the
more comfortable and familiar notion of heat provided that we exercise
due care in defining what we mean by 'heat' in this context. The foregoing
description gives correctly the essential ideas and we turn now to the
actual calculation of the thermopower of a metal.

15.2 The calculation of thermopower in a metal

Conceptually the easiest thermoelectric effect is the Peltier effect; the
Peltier heat of a metal is just the heat per unit charge carried by an electric
current through the metal. No temperature gradients are involved which
helps to simplify the calculations. If we can calculate the Peltier coeffi-
cient we can then use equation (15.5) to derive the thermopower, which is
the quantity most commonly measured and considered.

If we establish an electric current in a metal by the application of an
electric field, the Peltier coefficient can be written:

II = heat current/charge current.
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If the electric field is ex in the x-direction, we know from equation (3.31)
that the charge current j x is given by:

jx = -(e2ex/4n3fi) ^r(v2
x/v)dSE(df0/dE)dE (15.7)

where the first integral is over a surface SE of constant energy E and the
second over all energies.

Let us now introduce the partial conductivity for electrons of energy E
defined as:

ax(E) = (e2/4n3h) ^r(v2Jv)dSE (15.8)

Then j x can be written:

jx = -€x^ax(E)(df0/dE)dE (15.9)

In this ax(E) is the conductivity of those conduction electrons that have
energy E; we confine ourselves to elastic scattering so that electrons on a
given energy shell stay on it even after scattering. We thus know the
charge current as the integral over the different energy shells and the
limitation to elastic scattering is not too severe in practice. Such scatter-
ing includes scattering by chemical impurities, by many physical defects
and, perhaps surprisingly, by phonons at temperatures above about one-
third of the Debye temperature. This last type of scattering, while not
truly elastic, is effectively so.

Having calculated the charge current, our next task is to calculate the
corresponding heat current. To do this we must first define the heat
carried by an electron of given energy in a degenerate Fermi gas. Let
the Fermi energy of the gas be EF, its pressure p and its volume per
electron V. Now consider an electron whose energy is E and entropy s
(this is the entropy per electron associated with all the electrons of energy
E). The chemical potential of such electrons is the same as their Fermi
energy:

EF = E-Ts+pV (15.10)

and at constant temperature the chemical potential of the electron gas
must be everywhere the same, i.e. it is common to the two metals at a
junction.

We take for the heat carried by this electron the quantity E — EF. This
is a basic tenet of the thermodynamics of irreversible processes. Since by
equation (15.10) it is equal to Ts — pVit can be interpreted as saying that
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the heat associated with the electron is determined by its entropy s and
the absolute temperature and that the pV term takes into account the
work done if, for example, the gas moves into a region where its density is
changed.

If we take the expression (15.9) for the charge current, we can convert
it into an expression for the corresponding heat current as follows.
Dividing equation (15.9) by e, the electronic charge, we get an integral
over the number of electrons flowing in unit time at each energy. If
therefore we multiply the number at each energy by the energy carried
by such electrons, i.e. by (E — EF), we then get the heat current for that
energy. For the total heat current we then integrate over all energies. The
heat current is thus:

r+oo
[<jx(E)(E-EF)(df0/dE)dE]/e (15.11a)

J—OO

the charge current is:

r+oo
ax(df0/dE)dE (15.11b)

J-oo

and the ratio of heat current to charge current becomes:

° ax(E)(E - EF)(df0/dE)dE^ je [|+°° ax(df0/dE)d

(15.11c)

Since in cubic or amorphous metals a is a scalar quantity we can omit the
suffix x.

This expression can already give us useful information. The denomi-
nator is just —ae, the negative of the electrical conductivity times the
electronic charge. The numerator is best considered as a function not
of E but of e = E - EF. We can then write (cf. 3.14):

fo = l/[l+exp(e/kBT)]

so that

dfo/dE = d/0/d€ - -exp(e/kBT)/kBT[\ + exp{e/kBT)]2 (15.12)

which is always negative and completely symmetrical about the origin of
e. Moreover the new limits of integration are +oo and — EF; the latter is
so large compared to kBT that the integrand is completely negligible at
this and more negative values of e. Thus we can write the lower limit as
- oo. If therefore a(E) is constant, independent of E, the numerator
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vanishes because the factor (E — EF) = e ensures that all contributions to
the integral at energies below EF are exactly cancelled by the correspond-
ing contributions above EF. This therefore tells us that unless the partial
conductivity cr(E) varies with energy the thermopower of the metal that
arises from elastic scattering is zero.

If, as is usually the case, there is an energy dependence of cr(E) we can
take account of it and use equation (15.11c) to derive an expression for
the thermopower. We take only the first-order dependence on energy and
write:

a(E) = <T(EF) + (da/dE)(E-EF) (15.13)

where the derivative is understood to be evaluated at EF. If we put this in
the numerator of equation (15.1 lc) the first term on the right of equation
(15.13) contributes nothing because it is constant. If for convenience we
put

(E-EF)/kBT=e/kBT= u (15.14)

the limits on u are from - oo to + oo. The numerator of equation (15.1 lc)
then becomes:

p+oo

(da/dE)(kBT)2 u2(df0/du)du (15.15)
J-oo

so that finally, putting in the value of the definite integral in equation
(15.15), which is — TT2/3, we get for the Peltier heat:

n - (nkBT)2(da/dE)/3ea (15.16)

This in turn yields the Mott formula for the thermopower:

S = n2k2
BT(dloga/dE)/3e (15.17)

This shows that the thermopower arising from elastic scattering is
directly proportional to the absolute temperature. Its sign depends on
the sign of the charge e of the carriers and of the derivative of a(E) with
respect to energy at the Fermi level.

It is as if the conductivity, or rather its change with energy, acted as an
energy filter. If it discriminates in favour of the electrons of high energy
(above the Fermi level) and lets through more of them than those below
the Fermi level, the sign of d(\oga)/dE\s positive and the sign of S is that
of the charge carriers. If, on the other hand, it favours the low energy
electrons, the sign of S is opposite to that of the charge carriers. Finally if
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it is undiscriminating and lets through all electrons equally then there is
no thermopower at all.

We saw earlier that the thermopower is simply the entropy per unit
charge of the charge carriers. The fact that it is proportional to the
absolute temperature reflects the fact that the entropy (and specific
heat) of a degenerate electron gas behaves in just this way.

The Mott formula, equation (15.17) is, apart from the restriction to
elastic scattering, of very general application in metals or alloys; it can
apply to crystals, liquids or glasses. We shall find it of great value in our
discussions of the thermopower of metallic glasses but I should emphasise
that only the temperature dependence of S is readily predicted by the
theory; the calculation of dcr/dE may be beyond the power of present
calculations.

This is however not the whole story. The heat or entropy that contri-
butes to the Peltier or Seebeck effects has so far been ascribed to the
electron gas alone. However we have already seen that an electric current
can carry with it phonons and these phonons will then contribute to the
heat or phonon drag component; it simply adds to the other intrinsic or
'diffusive' component. In metallic glasses however the disorder is so great
that for the most part it suppresses the phonon drag. For this reason we
shall not consider it further here.

15.3 The thermopower of metallic glasses

Let us now see how this theory applies to metallic glasses. Since the
electrical conductivity is largely limited to elastic scattering of the con-
duction electrons from the disorder in the metallic glass, the thermo-
power should be given by the Mott formula, equation (15.17). The
high disorder will, as we saw, 'kill off any phonon drag component
and so we should expect to find that the thermopower of these glasses
is directly proportional to the absolute temperature i.e. S oc T. This
expectation is securely based on equation (15.17), which is of wide gen-
erality and the few conditions that limit it are well satisfied by the metallic
glasses. To test the prediction of the formula, it is convenient, instead of
the obvious plot of S versus T, to plot S/T versus 7, which should,
according to equation (15.17), yield a constant independent of T. The
results of experiment on some metallic glasses are shown as a plot of S
versus Tin Figure 15.2(a) and as S/T versus Tin Figure 15.2(b). These
demonstrate unequivocally that the simple theory is inadequate.
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(a)
100 150 200 250

7\K

Fig. 15.2 Thermopower of metallic glasses Cu5oTi5o, Cu5oZr5o and Cu5OHf5O. (a)
S versus T. (b) S/T versus T (After Gallagher and Hickey 1985.) At temperatures
above about 150K, S is directly proportional to T as expected by conventional
theory. At lower temperatures there are departures from proportionality. These
departures are seen in the plot of S/T versus Tand show that the thermopower is
enhanced at low temperatures.

The source of the discrepancy lies in some many-body effects that have
been neglected in our theoretical account, although, as we shall see, the
same effect has already been seen under different circumstances in crys-
talline metals.

As Figure 15.2 illustrates for CuTi, CuZr and CuHf, the thermopower
of many metallic glasses does not vary in direct proportion to the abso-
lute temperature as we would expect from equation (15.17). There is
approximate proportionality to T at high temperatures (above about
150K) and again, with a larger constant of proportionality, at low
temperatures. How can we account for this temperature variation?
The answer lies in an effect already well known in crystalline metals,
to which we have already alluded, namely the interaction of the conduc-
tion electrons with the ions. As we discussed earlier, the theory of super-
conductivity devised by Bardeen, Cooper and Schrieffer (the BCS
theory) is based on this interaction; it gives rise to an attraction between
electrons near the Fermi level and thereby ultimately to the supercon-
ducting state. Even in those metals that do not show superconductivity,
the interaction shows up as an enhancement of the electronic heat capa-
city and the associated entropy. (This additional entropy of the Fermi
electrons can be thought of as arising from the interaction with the ions
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at low temperatures; the electrons acquire a greater effective mass and so
a higher density of states.)

It is this last feature that gives the clue to what is happening to the
thermopower. I have described the thermopower of a conductor as the
entropy per unit charge carried by the current. If this description is
correct, then any phenomenon that alters the entropy of these current
carriers should alter the thermopower. This intuitive argument is correct
and allows us to understand the main features of the thermopower of
metallic glasses.

We saw earlier that if u;max is the highest frequency of oscillation sus-
tainable by the ions, only electrons within an energy range of Hujmax of the
Fermi level can participate in the interaction. If for convenience we use a
Debye model for the ionic vibrations, we can use the approximation that
Hiax = kB0D.

The dispersion curve of the electrons around the Fermi level is as
shown in Figure 15.3, which is valid for low temperatures. The slope of
the curve at the Fermi level is reduced, implying that the density of states
is enhanced by the electron-phonon interaction. This also means that the
entropy at a given low temperature is correspondingly enhanced. At high
temperatures, however, (T about #D) the electrons shake off the interac-
tion with the ions, the dispersion curve reverts to its unenhanced shape
and the entropy is correspondingly reduced to the value it would have
without the interaction. As we have already noted the effect can be seen
in the electronic heat capacity of the alkali metals. The measured values
are significantly larger than the theoretical values calculated from the
band structure of the metals. The specific-heat enhancement is also to
be expected in metallic glasses but it cannot be inferred from the mea-
sured electronic heat capacity because we cannot accurately establish the
unenhanced value. It should, however, show up in the thermopower
because this depends on the entropy associated with the Fermi electrons
and this, in turn, depends on the density of states at the Fermi level. The
anomalous temperature dependence of the thermopower already men-
tioned is ascribed to this effect.

What happens is as follows. At low temperatures the entropy of the
Fermi electrons is fully enhanced and this shows itself as an enhancement
of the thermopower. As the temperature is raised the enhancement is
reduced by thermal excitations until at high temperatures it is completely
destroyed and the unenhanced thermopower is revealed. This explains
why the thermopower is approximately proportional to T at low and at
high temperatures but with different coefficients. The ratio of the two
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Electron-phonon mass
enhancement

Fig. 15.3 Dispersion curve of electrons illustrating the change of slope due to
electron-phonon interaction within about ±kOs of the Fermi level.

coefficients should therefore be a measure of the full enhancement factor.
Inasmuch as the enhancement of the thermopower is the same as that
involved in the heat capacities (which is unlikely to be strictly true though
a useful first approximation) we can test the theory by comparing the
two. In those glasses that show superconductivity a measure of the
enhancement can be derived from their superconducting properties.
This is expressed through the parameter Aep discussed in section 7.4. If
this can be found from the superconducting properties, we can use it to
compare with the thermopower results. The ratio of the fully enhanced to
the unenhanced heat capacity is 1 + Aep and this should be approximately
the same for the thermopower. A comparison is made for several metallic
glasses in Table 15.1. The agreement is convincing evidence that we have
indeed found the source of the 'anomalous' temperature dependence.

As well as the magnitude of the effect, we can also compare the tem-
perature dependence of the thermopower in different alloys. This is
expected and indeed found to scale with T/0U.
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Table 15.1 Comparison between enhancement factors Aep (at OK,) derived
from thermopower and from superconductivity

Metallic glass 1 + Aep (Thermopower)
1+Aep

(Superconductivity)

Cu5oTi5o
Cu5OZr5o
Cu5oHf5o
La76Al24
La78Ga22

1.4
1.5
1.5
2.0"
2.0*

1.33
1.43
1.40
1.8
1.8

a Negative thermopower; the others are positive.

The treatment so far gives the essential physics of the thermopower of
these metallic glasses but a more complete treatment recognises that the
enhancement is a function of the energy of the electrons (just as the
partial conductivity is) and this must be put into the calculation.
Likewise the calculation has to be made as a function of the temperature.
Such calculations have been made and compared with more detailed
experimental values of the thermopower at low temperatures. These are
show in Figure 15.41.

1.0

£ 0.5

o Cu60Zr40

+ Cu27.5Zr72.5
o Cu4 3Ti5 7

100 200
T,K

Fig. 15.4 The electron-phonon enhancement factor versus temperature as
derived from thermopower measurements (Gallagher 1981). Solid lines are theo-
retical fits and the temperature is scaled according to the Debye temperature.
(After Kaiser 1982.)
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The conclusion is that the thermopower shows very directly the influ-
ence of the phonon-induced interaction between conduction electrons;
indeed if we measure S(T) and plot (S/T) — (S/r)high temp, as a function
of temperature, we have the simplest experimental way of showing (at
least approximately) how Aep changes with temperature.



16
Comparison with experiment

16.1 Introduction

We have now seen in some detail how weak localisation and the interac-
tion effect can modify the electron transport properties of electrons in
metallic glasses or, more specifically, of electrons that are subject to
strong elastic scattering, whether this be in the crystalline or the amor-
phous phase. What this survey shows is that many of the qualitative
features to be expected are indeed observed in the resistivity, magnetore-
sistance and Hall coefficient of metallic glasses. The final question is: how
far do the theories provide a quantitative account of the experiments?

It is at once clear, I think, why it is difficult to answer this question
unequivocally. There are so many parameters that can influence the
behaviour of these properties that unless some can be controlled or elimi-
nated there are too many adjustable quantities to make possible a con-
vincing comparison between theory and experiment.

One common way to overcome this problem is to make measurements
of a range of properties so that a given specimen is very well characterised
and as few as possible of the relevant parameters are left undetermined.
So let us decide what quantities we know or can deduce with some
reliability from experiment.

We can measure the low-temperature heat capacity of the metallic glass
to find the term linear in temperature, which allows us to deduce the
density of states at the Fermi level. In order to interpret the thermopower
we would like to know the electron-phonon enhancement factor in the
alloy; if it is a superconductor we can derive this from our knowledge of
its superconducting properties.

From the density of states, the measured conductivity and the Einstein
relation we can deduce the electron diffusion coefficient D. For this we
must use the fully enhanced value of the density of states; the physical

200
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argument for this is that the electrons are subject to all the many-body
effects present in the metal and must respond to them in their diffusion.
The view that we should use the bare density of states probably comes
from the mistaken belief that this is always appropriate when discussing
electron transport.

What we would next like to know is the number of conduction elec-
trons per unit volume. In simple metals the composition of the alloy and
the valence of the constituents should give us the answer. That means
that, with a knowledge of the molar volume, we can calculate the Fermi
radius kF and, insofar as the Fermi surface is a valid concept, this radius
is reliable, depending only on the volume in &-space required to house the
requisite number of electron states. From this and the density of states we
can also infer the Fermi velocity.

The Hall coefficient can be used to test whether the glass is behaving
like a single band, free-electron metal and if so we can then calculate the
Thomas-Fermi screening radius and thence the value of the interaction
parameter F.

With transition metal alloys there is no simple, direct way of getting
information about the radii of the two spherical parts of the Fermi sur-
face. The Hall coefficient may in some circumstances give us an estimate
of the more mobile hybridised s-d electrons and hence an estimate of the
number of the d-like electrons. But in general there are severe uncertain-
ties about the band structure of these alloys.

16.2 Conductivity of Cu-Ti metallic glasses

Let us start our experimental comparison with some measurements on a
range of Cu-Ti glasses at low temperatures made by Schulte and Fritsch
(1986). The problem is to disentangle the weak localisation from the
interaction effect. In evaluating the weak localisation contribution,
spin-orbit scattering has to be included and the first step is to analyse
the low-field magnetoresistance, quadratic in B. In the interaction effect
only the particle-hole channel with Zeeman splitting is needed since the
Cooper channel and the orbital terms are very small. The authors derive
the value of D as indicated above and take the value of F from earlier
work on the Hall coefficient. This enables them to determine the strength
of the interaction contribution to the low-field magnetoresistance and so,
by subtraction from the measured total, to find the part due to weak
localisation. An analysis of this part gives (a) the spin-orbit scattering
time, which is independent of temperature; and (b) the inelastic scattering
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or, more generally, the dephasing time together with its temperature
dependence.

Having analysed the low-field magnetoresistance, the authors then
look at how the conductivity in zero field varies with temperature.
Again there are the two contributions: one from weak localisation
and one from the interaction effect. The two contributions behave
quite differently and this is illustrated very clearly in Figure 16.1,
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Fig. 16.1 Conductivity change plotted against Txl2 for a range of CuTi metallic
glasses (the copper concentration increases from the top curve downwards). The
upper straight lines show the theoretical contribution from the Coulomb interac-
tion, with the different values of F as shown, fitted to the experimental data. The
lower curves are the contributions from weak localisation with different degrees
of spin-orbit scattering. i?so in tesla is defined as i?so = h/4eDrso. (After Schulte
and Fritsch 1986.)
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which is a plot of the conductivity changes versus Txl2. The interaction
part is seen as a series of straight lines, one for each of the different
alloys. The lines are straight because the interaction contribution to the
conductivity is assumed to vary as Txl2 and the different slopes corre-
spond to different values of F. The weak localisation part is shown in
the lower curves which start off with a negative slope and then change
to a positive one. This set again refers to the same alloys but now the
spin-orbit scattering determines their different shapes. Finally, the two
sets of curves are added together in pairs to generate the theoretical
totals that are compared with experiment in Figure 16.2. The para-
meters F and rso have here been chosen to optimise the fit in all
cases but there is also one curve, shown as a dot-dash, which is calcu-
lated for Cu44Ti56 from the parameters derived from the magnetoresis-
tance.

This analysis ignores the effect of spin-orbit scattering on the enhanced
interaction effect which, as we discussed in Chapter 13, alters the tem-
perature variation of the associated conductivity from the simple T1//2

dependence. The positive curvature induced by the spin-orbit scattering
is, at least qualitatively, in the right sense to improve the agreement in
Figure 16.2.

Even without this additional correction, the overall impression is, I
think, that the theory gives a good account of the experimental results.
The temperature dependence of the conductivity is not simple and the
theory explains it in a natural way, with reasonable values of the para-
meters and without having to invoke special conditions.

There have been several other investigations of Cu-Ti glasses and the
data from a number of these are collected in Table 16.1. These serve to
indicate that there are differences between the parameters derived by
different observers, partly through different modes of analysis and
partly through the use of different versions of the theory.

Table 16.1 shows that there is some consistency between the different
observers; the commonest problem, however, is to reconcile the data
from the magnetic field dependence, which in general fit the theory with
reasonable values of the parameters, with the data derived from the
temperature dependence in zero field, which not only tend to yield
different but sometimes unphysical values of the associated parameters.
Partly this is due to the neglect of spin-orbit scattering on the enhanced
electron interaction on the conductivity but it may also be that the
electronic structure of these transition metal alloys prevents a very
close fit of theory and experiment.
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Fig. 16.2 Conductivity change as a function of Txl2 for the alloys of the preced-
ing figure. The points represent the experimental data and the continuous curves
are derived by adding together the two contributions shown in the previous
figure. The dot-dash curve is calculated from parameters derived from the mag-
netoconductivity of Cu44Ti56. (After Schulte and Fritsch 1986.)

Before we turn to an example of a rather simpler alloy system, let us look
at a wider range of metallic glasses to gain a general impression of how
well and how widely the theory can be applied.

16.3 Magnetoresistance in a wide range of glasses

16.3.1 Weak localisation

Bieri et al. (1986) reported measurements on a wide range of metallic
glasses made by the technique of sputtering: Mg8OCu2o, Cu5oLu5o,
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Table 16.1 Some data on Cu-Ti metallic glasses

205

Alloy

Cu35Ti65

Cu41Ti59

Cll42.5Ti57.5
Cu44Ti56

Cu5OTi5o

Cu6OTi4o

Cu63Ti37

Cu65Ti35

Resistivity
(jaO cm)

182

182

187

182

D
(cm2s-1)

0.24

0.24
(0.31)
0.25

(0.31)
0.24

(0.31)

(0.31)
0.28

(0.31)
0.30
0.31

F

0.40

0.45
0.41
0.26
0.54
0.37
0.58

0.72
0-0.32
0.76

0.45

Tso

(ps)

7.3(7)
6.0(5)

10.4
3.5
2.5
2.9
1.0
1.8
2.2
0.5
0.08-0.25
0.4

0.2
1.2

Pa

(2)
2.53

(2)
2.64

(2)
2.78

2.99
2.0-2.5
2.84

(2)

Source

(a)

(b)
(c)
(b)
(c)
(b)
(c)
(d)
(c)
(e)
(d)
(e)
(b)
(d)

a p is defined by the relation: a/rm oc 7*\
(a) Hickey et al. (1987) - the symbol (7) indicates a value derived from the
temperature dependence of conductivity and (B) that from magnetic field
dependence; (b) Hickey et al. (1986) - the value of p = 2 is assumed; (c)
Schulte and Fritsch (1986) - the value of D = 0.31 was estimated for all the
alloys; (d) Howson et al. (1986); (e) Lindqvist and Rapp (1988) - the values
for Cu60Ti40 are just one of five possible fits that they give for their data.

Pd8OSi2o, CU50Y50, Cu57Zr43, Y8OSi2o and some ternary alloys. Their aim
was to work in a range of temperatures and magnetic fields where weak-
localisation effects were predominant in most of the alloys and to illus-
trate the importance of spin-orbit scattering on these effects. They esti-
mated that if the magnetoresistance were due to the interaction effect, the
Bxl2 dependence at 4.2 K would not be seen until B reached a value of
about 10 T, whereas their measurements showed that the magnetoresis-
tance varied as Bxl2 at less than 0.6 T in CU50Y50 and at less than 0.2 T in
Cu5yZr43. So they concluded that the magnetoresistance was due largely
to weak localisation.

The general results of the experiments confirmed that the magnetore-
sistance does not depend on the field direction, that any Kohler contri-
bution is negligible, that the coefficient of the B2 term from low-field
measurements depends on temperature and that of the Bxl2 term at
high fields does not. We have already discussed the impressive qualitative
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features of some of these experiments in Chapter 11 and now we turn to
the quantitative comparison between theory and experiment.

The magnetoresistance of the first four alloys mentioned above was
analysed in terms of weak localisation only. First the high-field measure-
ments were used to find how closely the data agreed with the theoretical
predictions. Since there were small discrepancies in the size of the Bxl2

term, these were absorbed in a factor a placed in front of equations
(A1.4) and (A1.5). Values of a for various alloys are given in Table
16.2. They range in value between 1 and 1.5.

Then the low-field data were analysed to determine rin as a function of
temperature. By fitting the full field dependence of the magnetoresistance
values of the spin-orbit lifetime could be found; these are most accurately
determined where the maximum in the magnetoresistance occurs within
the field range of the experiments.

Figure 16.3 shows the experimental results and theoretical fits for
MggoC^o; the parameters used in fitting the curves are shown in Table
16.2. Values of D were derived from the conductivity and the free-elec-
tron density of states. If there were no spin-orbit scattering, the magne-
toresistance would be negative at all fields but the fact that there is a
small region at low fields where the magnetoresistance is positive (not

- 200

-600

e1/2,r/:

Fig. 16.3 Magnetoresistance of Mg8OCu2o. The points are the experimental data
and the continuous curves the theoretical fit. (After Bieri et al. 1986.)
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Table 16.2 Data from Bieri et al. (1986)

Alloy Mg8oCu2o Cu5oLu5o Pd8oSi2o CU50Y50 Cu57Zr43 Y8oSi2o

p(\iQ cm) 52
0.80
1.23
3.74
_
0.096
7.7

163
3.33
1.13
1.64
—
16.8
2.2

78
1.78
1.1
2.27
4.1
11.5
4.5

159
3.00
1.5
1.17
6.9
1.4
2.3

180
4.33
1.0
0.46
2.5
1.69
1.9

505
11.22
1.27
0.52
1.07
2.12
0.70

p is the resistivity at 4.2 K and 1/r the corresponding elastic scattering
probability.
a is a 'fudge factor' inserted in front of equations (A 1.4) and (A 1.5) for the
magnetoconductivity due to weak localisation.
1/rin is the inelastic scattering probability at 4.2K, which varies as AT2 at
other temperatures.
1/TSO is the spin-orbit scattering probability and D the diffusion coefficient,
calculated on the nearly-free-electron model.

visible in the figure) implies that there is weak spin-orbit scattering and
allows its lifetime to be found.

By contrast the spin-orbit scattering in Cu5OLu5o and Pd8OSi2o is strong
enough to keep the magnetoresistance positive at all fields in the experi-
ments. The results are shown in Figures 16.4 and 16.5 with the corre-
sponding theoretical comparisons. The parameters are again given in
Table 16.2. For Cu5oY5o the results and comparison are shown in
Figure 16.6 and the table. In this glass there are serious discrepancies
at very low temperatures and high fields.

The inelastic scattering time, or more generally the phase-breaking
time, is determined from the experiments, which show that above 5K
l/r in varies as T2 and is of the right size to be attributed to phonon
scattering. Below 1—2K the variation is as T1/2; the origin of this is not
explained. The spin-orbit relaxation times for the range of alloys mea-
sured can be calculated on the assumption that the spin-orbit scattering
arises from the d-states of the transition metal and not from the non-
transition element (Mg,Cu,Si). This provides reasonable agreement with
the values deduced from the experiments.

The overall impression from all these data is that the fit at low fields is
good but tends to worsen at large values of B/T. The exception is the
behaviour of the simple metal combination Mg8OCu2o which seems to
give reasonable agreement over the whole range.
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Fig. 16.4 Magnetoresistance of Cu5OLu5o. The points are the experimental data
and the continuous curves the theoretical fit. (After Bieri et al. 1986.)

240

180

^ 120
i

60

0.5 1.0 1.5

BV2,T/2

2.0 2.5

Fig. 16.5 Magnetoresistance^ of Pd8oSi2o- The points are the experimental data
and the continuous curves the theoretical fit. (After Bieri et al. 1986.)
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Fig. 16.6 Magnetoresistance of C1150Y50. The points are the experimental data
and the continuous curves the theoretical fit. (After Bieri et al. 1986.)

16.3.2 The enhanced interaction effect

The alloy Y8OSi2o has by far the highest resistivity and the smallest value
of the diffusion coefficient D of the glasses considered. This already
suggests that the enhanced interaction effect may be important here;
indeed the temperature dependence of the Bxl2 term at high fields con-
firms that weak localisation alone cannot account for the magnetoresis-
tance.

The behaviour can, however, be explained as a combination of weak
localisation and the enhanced interaction effect (again neglecting the
effect of spin-orbit scattering), the latter increasing in importance at
low temperatures and high fields. The results for this alloy are shown
in Figure 16.7 in comparison with theory, calculated with F = 0.62 and
the other parameters as in Table 16.2.

16.3.3 Superconducting fluctuations: Maki- Thompson correction

Bieri and colleagues also studied Cu57Zr43, which is a superconductor
with a transition temperature of about 0.7 K. They therefore had to
take account of the Maki-Thompson correction, which we referred to
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Fig. 16.7 Magnetoresistance of Y8OSi2o. The points are the experimental data and
the continuous curves the theoretical fit. (After Bieri et al. 1986.)

in section 14.6 and Appendix A5. For this material it is expected that the
correction /3(T) is independent of B for fields and temperatures at which
5 / I C 0 . 7 T K " 1 . The experimental results and theoretical calculations
are compared in Figure 16.8; the parameters used are given in Table 16.2.

Figure 16.9 compares the values of /3(T) needed to fit the data with the
curve calculated from the theory with Tc = 0.8 K. At high values of B/T
the correction /3(B, T) is expected to be smaller and so account for the
divergence seen at high fields.

16.3.4 Magnetic impurities

By adding 0.5 atomic % of Gd to the CuY and CuLu glasses, Bieri and
colleagues hoped to test the effect on weak localisation of impurities that
carry a magnetic moment. The results were not what the authors expected
and it has since become clear that the effect of magnetic impurities is
much more subtle and complex than was realised at the time. [See note (1)
of this chapter.]

16.3.5 Provisional conclusions

The outcome of these wide-ranging experiments is the conviction that the
theory goes a long way to account for the experimental findings, not only
qualitatively but semi-quantitatively. The use of the a-factor (see Table
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Fig. 16.8 Magnetoresistance of Cu57Zr43. The points are the experimental data
and the continuous curves the theoretical fit, which includes the Maki-Thompson
correction to take account of superconducting fluctuations. This is shown in
Figure 16.9. (After Bieri et al 1986.)

16.2) is rather unsatisfactory and the fact that the T1/2 dependence for
phase breaking cannot yet be explained raises doubts about the com-
pleteness of the theory. But this is rather to be expected at this stage of
the subject (see, however, comments at the end of Appendix A.5).

The value of the wide-ranging set of experiments carried out by Bieri et
al. (1986) lies partly in the diversity of the materials studied but also in
the attempts at each stage to link the experiments with different aspects of
the theory. Each aspect is then analysed to find out if the data bear a
credible relationship to independently determined data, such as, for
example, the spin-orbit numbers, the electron-phonon scattering rate
and the (3(T) values in the Maki-Thompson correction.

16.4 Ca-Al alloys

This set of metallic glasses has proved very popular with experimentalists,
partly because it can be made in a wide range of compositions, partly
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Fig. 16.9 The Maki-Thompson corrections f3(T) used in fitting the data of Figure
16.8. The continuous line is calculated from the theoretical expression of Larkin
(1980).

because it provides a wide range of resistivities including some very high
ones (the resistivities reach more than 4OOjif2cm at a composition of just
over 40 atomic % Al) and mainly perhaps because the alloys are made
from non-transition metals.

The immediate question is: why is the resistivity so high? Although Ca
is next door in the periodic table to the first of the transition metals,
scandium, pure Ca metal is clearly a simple metal with no occupied d-
band. Nevertheless the possibility arises that alloying in the amorphous
state with the trivalent metal Al might raise the Fermi level enough to
reach some of the unoccupied d-states and so form a small d-band.
Indeed the Fermi energy is so close to the d-states that it makes the
pseudopotentials very sensitive to its details and the calculation of the
resistivity of the liquid unreliable.

It is also possible that the nearness in energy of the unoccupied d-states
brought about by the addition of Al may cause strong d-hybridisation of
the sp-band without actually causing a separate band to form and be
enough together with quantum interference to explain the big resistivity.
Let us look at the experimental data with these ideas in mind.

Table 16.3 shows values of 7 derived from specific-heat data, where jT
is the electronic part of the low-temperature specific heat and is propor-
tional to the density of states at the Fermi level. The measured values are
rather higher than the ideal free-electron values but this is in any case to
be expected from electron-phonon enhancement. The ratio of measured
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Table 16.3 Ca-Al glasses: electronic specific heat and Hall coefficient

Alloy

Ca75Al25
Ca7OAl3O

Ca65Al35

Ca60Al40

7 (mJmol" 1 K- 2 ) a

2.11
1.82

(1.68)
1.74
1.67

(1.64)

'(gcm-3) R]

1.80
1.85

1.90
1.96

^ l O ^ m 3 ^ 1

-26.0
-19.6

-14.4
-15.8

) (e/aU

0.82
1.03

1.34
1.16

(e/a)FE

2.25
2.30

2.35
2.40

Data from Mitzutani and Matsuda (1983); values in parentheses from
Mitzutani et al. (1987).
(e/a) is the electron to atom ratio; FE = free-electron value.

to ideal of 1.4 for Ca6OAl4o is to be compared with a measured thermo-
power enhancement of 1.3 (see Chapter 15). This is not unreasonable and
the density of states as a function of concentration of Al shows no anom-
aly. The Hall coefficient RH is also shown in Table 16.3; it is negative and
independent of temperature but its values are very different from the free-
electron values. Indeed the table shows that the electron to atom ratio
(e/a) deduced from 7?H is only about one-half that derived from the
composition. We cannot therefore assume free-electron behaviour; on
the other hand, strong hybridisation with the neighbouring d-states
may be able to explain the anomalous Hall coefficients without invoking
an occupied d-band.

Whether or not there is a separate d-band in some or all of the alloys, it
is generally thought that the number of electrons in the d-band would be
small enough that they would make only a minor contribution to the
conductivity.

The low-temperature behaviour of the resistivity of this alloy series has
been much investigated as a function of magnetic field; another variable
has been the concentration of small additions of heavy elements to
increase the spin-orbit scattering. The data have been analysed in
terms of weak localisation and the interaction effect in the way we
have already seen and some of the recent measurements have yielded
impressive agreement with the form of the theory as Figures 16.10 to
16.15 illustrate.

Sahnoune, Strom-Olsen and Fischer (1992) measured the resistivity of
Ca7oAl3o (about 310 JI^ cm) at temperatures up to 25 K and at fields up to
10T; they then replaced some Al with small amounts of Ag and Au to
study the effects of spin-orbit scattering. The Figures 16.10-16.12 show
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10

Fig. 16.10 Normalised magnetoresistance of Ca7oAl3o at different temperatures.
Points are from experiment; curves from the theoretical fit. (After Sahnoune et al.
1992.)

the field dependence of Ca7oAl3o and the ternary alloys containing two
different levels of Au as examples.

Mayeya and Howson (1992) chose to study Ca8OAl2o because of its
comparatively low resistivity (about 14O|if2cm and kFl about 2.5) so
that they could try to satisfy the condition kFl > 1 and still clearly see
the effects of weak localisation. They also wished to contrast this alloy
with the high-resistance alloy Ca6OAl4o (about 33Ouf2cm). They added
small concentrations of Ag and Au to the two host alloys to bring into
prominence the effects of spin-orbit scattering. Figures 16.13-16.15 show
their data on Ca8OAl2o by itself and also alloyed with 0.35 and 1.34
atomic % Au.

In these two sets of experiments, three host and seventeen dilute tern-
ary alloys were measured with concentrations of up to nearly 6 atomic %
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10

Fig. 16.11 Normalised magnetoresistance of Ca7oAl29.6Auo.4 at different tem-
peratures. Points are from experiment; curves from the theoretical fit. (After
Sahnoune et al 1992.)

Au and 2 atomic % Ag. As the data in Table 16.4 show, the change in
resistivity with the addition of Ag or Au is not monotonic and the reason
for this is not clear. In the absence of heat-capacity data to give us the
density of states at the Fermi level, this makes the derivation of the
appropriate values of D uncertain, as we shall see below.

All the results for the magnetic field dependence were found to con-
form to the curve derived from theory as closely as the examples shown.
From the analysis the dephasing time rin, the spin-orbit scattering time
rso and the interaction parameter F were determined. The values are
collected in Table 16.4; to test the theory we need to satisfy ourselves
that not only do the functional forms fit the data but the parameters are
reproducible and make physical sense.
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10

Fig. 16.12 Normalised magnetoresistance of CayoA^^Auo.g at different tem-
peratures. Points are from experiment; curves from the theoretical fit. (After
Sahnoune 1992.)

16.4.1 Values of D

The diffusion coefficient D is found from the Einstein relation, which
requires a knowledge of the density of states. This has been measured
only for the host alloys and some assumption must then be made to find
D for the dilute ternary samples. In one case the authors assumed that the
density of states remained unchanged and in the other that D remained
unchanged on alloying. The value of D does not influence the quality of
fit between experiment and theory as shown in the figures but does alter
the absolute magnitude of the scattering times. To illustrate this I have
calculated D in the data from source (1) in Table 16.4 on the basis of
unchanged density of states and given the values in brackets in Table
16.4. I also include the corresponding values of rso. On the other hand,
the value of D used by Sahnoune et al. (1992) suggests that they were
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Fig. 16.13 Magnetoconductivity of Ca8OAl2o at different temperatures. Points are
from experiment; curves from the theoretical fit. (After Mayeya and Howson
1992.)
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Fig. 16.14 Magnetoconductivity of Ca8OAl2o with 0.35 atomic % Au added. The
different curves correspond to different temperatures. Points are from experi-
ment; curves from the theoretical fit. (After Mayeya and Howson 1992.)



Table 16.4 Characteristic parameters of Ca-Al-(Ag,Au) amorphous alloys

Alloy

(Ca80Al20)ioo-xMx

x = 0
M = Ag

x = 0.5
x = 2.5

M = Au
x = 0.35
x= 1.3
x = 2.9
x-5.9

x = 0
x = 0.2
x = 0.5

x = o"
M = Ag

x = 0.3
x = 0.7
x = 2

M = Au
x = 0.1
x = 0.2
x = 0.4
x = 0.8
x = 2
x = 3

p(\iQ cm)

167

130
122

133
159
133
168

330
271
310

310

264
270
245

297
280
280
290
220
210

^ ( 1 0 - 5 m 2 s - ' )

9.6 (9.6)*

9.6 (12)
9.6 (13)

9.6 (12)
9.6 (10)
9.6 (13)
9.6 (9.5)

6.7
6.7 (8.2)
6.7 (7.1)

15 (10)

18 (12)
17 (11)
19 (13)

16 (11)
17 (11)
17 (11)
16 (11)
21 (14)
23 (15)

F(B)

0.25

0.23
0.10

0.10
0
0
0

0.10
0.05
0.05

0.56

0.47
0.40
0.24

0.19
0.10
0.08
0.02
0.0
0.0

F(T)

0.18

0.22
0.19
0.08

0.02
0.01

-0.08
-0.08
-0.11
-0.25

7"so

33

22
15

5.8
1.7
1.0
0.9

73
8.2
1.9

12.2

6.1
4.3
1.8

1.6
0.76
0.41
0.21
0.14
0.07

(ps)

(18)
(11)

(4.6)
(1.6)
(0.7)
(0.9)

(6.7)
(1.8)

(18)

(9)
(6-5)
(2.7)

(2.4)
(1.1)
(0.6)
(0.3)
(0-2)
(0.1)

Source"

(1)

(2)

308 15 (10) 0.29 8.6 (3)

x = 0 261 9.1 57
Ca65Al35

x = 0 582 4.5 110 (4)

a (1) Mayeya and Howson (1992); (2) Sahnoune et al. (1992), where the values of F given are in fact F; they
can be changed into F approximately by adding F/\2. (3) Lindqvist et al (1990); (4) Gey and Weyhe (1992).

b Values of D in brackets relating to data from source (1) are derived from the enhanced density of states on
the assumption that N{E?) is unchanged on alloying. Those relating to sources (2), (3) are derived on the same
assumption from the enhanced density of states, not the bare value used by the authors. Bracketed values are
thus derived on a consistence basis and show broad agreement.
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Fig. 16.15 Magnetoconductivity of Ca8OAl2o with 1.34 atomic % Au added. The
different curves correspond to different temperatures. Points are from experi-
ment; curves from the theoretical fit. (After Mayeya and Howson 1992.)

using the bare density of states and that their values of D are a factor of
about 1.5 too high. If their values of r are corrected (i.e. increased by a
factor of 3/2 as shown in the bracketed values) there is much more con-
sistency between the different sets of data in the table.

16.4.2 Spin-orbit scattering

The spin-orbit scattering rate was found to increase with concentration
of heavy element (Ag or Au). At lower concentrations the spin-orbit
scattering rate is proportional to the concentration of the heavy element
and the ratio of the slopes for Au and for Ag is about 20 in both sets of
experiments. Mayeya and Howson (1992) point to a possible explanation
of this ratio. A calculation of the matrix element for spin-orbit coupling
in an atom, using hydrogen-like wavefunctions, shows that it should vary
as Z4/n3 where Z is the atomic number (nuclear charge) and n is the
principal quantum number of the orbital involved. Thus the scattering
rates here should scale as Z8/«6 with Z = 79 and n ~ 5 for Au; for Ag,
Z = 47 and n = 4, so that the ratio is about 20, in excellent agreement
with the experiments.
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16.4.3 The value of' F

Because it is possible to isolate the consequences of the enhanced inter-
action effect fairly accurately from those due to weak localisation, the
experiments by Sahnoune et al. (1992) on Ca7oAl3o are able to demon-
strate how spin-orbit scattering alters the magnetoresistance due to
enhanced electron interaction. Sahnoune et al. interpret this as reducing
the effective value of F, as shown in the table and also in Figure 16.16.
This was probably done more for convenience than a belief that this
represented the physics of what was happening.

What is clear, however, before any interpretation is made, is the very
important point that adding small concentrations of Ag or Au can elim-
inate the magnetoresistance associated with the interaction effect within
the field range explored.

According to our discussion in section 14.3, we would interpret the
result as meaning that spin-orbit scattering disrupts the interference of
the electron pairs with antiparallel spins and that the effects are to leave F
unchanged (to a first approximation) but to alter the effective tempera-
ture in the expression for the magnetoresistance. If we use the values of
rso derived from weak localisation, this interpretation appears to work as
far as it is possible to judge from the data in the published diagrams. One
would also expect the corresponding temperature-dependent contribu-
tion to be altered and indeed this is found (see below).

Cao.7Alo.3_x Mx

M - Au, Ag; x<0.02

Fig. 16.16 Fas a function of l/rso. (Data from Sahnoune et al. 1992 as replotted
by Rapp 1993.)
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16.4.4 Dephasing times T[n

The temperature dependence of l/r in was determined from the effects of
weak localisation for both Ca8OAl2o and Ca7oAl3o and their ternary coun-
terparts. The important feature is that for a given host all the specimens
give very similar results almost independent of the added Ag or Au; this is
to be expected on the grounds that the host material is not likely to be
much changed by small additions of impurity. The results thus demon-
strate the consistency of the measurements.

The Ca70Al30-based group of alloys show that at higher temperatures
1/rin varies as T3 while the Ca8OAl2o-based group give a T2 dependence.
Both are only approximate power laws and the difference is not as pro-
nounced as that bald statement implies. Both can be and have been
attributed to phonon scattering.

At low temperatures rjn becomes independent of temperature. This is
attributed to spin-flip scattering from residual magnetic impurities and
comes about as follows. The inelastic scattering by phonons, which
destroys the enhanced resistance due to weak localisation, falls off as
the temperature is reduced until the associated coherence time rin

becomes comparable with the spin-flip scattering time rs. Then spin
flips, which alter the spin direction of the scattered electron, begin to
dephase the coherent wavefunctions, whether with parallel or antiparallel
spins. Thus the dephasing time becomes independent of temperature and
assumes the value rs. The value determined from the experiments appears
to be consistent with the concentration of residual magnetic impurities in
the host materials (at the level of parts per million).

16.4.5 Analysis of the temperature dependence

The final part of the analysis concerns the temperature dependence of the
resistivity, which so far has been carried out only on their data by
Sahnoune et al. (1992). The low-temperature end of this, where we expect
the enhanced electron interaction effect to dominate, is illustrated in
Figure 16.17, where ApDl/2/p2 is plotted against Tl/2. Though the
data fit this power law approximately, the values of / so determined
are very different from those found from the field dependence and in
the high-concentration alloys have to be negative. This discrepancy of
an inconsistency between the values of F found from field dependence
and temperature dependence has been found in other systems.
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Fig. 16.17 Temperature dependence of Aa for Ca7oAl3o and alloys with Ag and
Au. (After Sahnoune et al 1992.)

The analysis shows clearly that the temperature dependence of the
ternary alloys, in this region where the interaction effect is dominant, is
altered by the addition of a heavy element, which implies that the change
is due to spin-orbit scattering. The argument given in section 13.3 sug-
gests that the excess resistance due to the enhanced interaction effect does
not vary exactly as Txl2 unless rso is much less than or much greater than
TT. The coefficients of T1/2 are different in the two cases. Qualitatively
this causes a positive curvature to the plot of A<rint versus T1/2. This is
indeed seen in Figure 16.17 although it is not possible to make a reliable
quantitative comparison. Nonetheless there is no doubt that spin-orbit
scattering alters the contribution to the conductivity of the enhanced
electron interaction and, at least qualitatively, it behaves as one would
expect.
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16.5 Conclusions

We have looked at a very limited number of the experimental data avail-
able; there have been very many measurements to show that the theory of
weak localisation and the enhanced interaction effect can explain the
main features of the electron transport in metallic glasses. There is no
doubt that the unusual temperature dependence of the conductivity of
metallic glasses, for example its increase with increasing temperature and
its alteration by the addition of small concentrations of heavy elements,
the size, isotropy and field dependence of the magnetoresistance all con-
form to the predictions of theory. The theory applies equally to simple,
non-transition metal alloys as to those containing transition metals but
the former are at present more amenable to theoretical comparison
because the carriers are confined to a single band and thus their numbers
are known. The extension and modification of Boltzmann theory to meet
the circumstance of strong elastic scattering have been very successful.
The introduction of the simple notion of diffusion by conduction elec-
trons and the exploitation of the classical theory of diffusion together
with the subtleties of the interference of electron waves have opened up
the whole study of disordered metals which had previously seemed so
opaque and intractable.

The final question of whether the theory is fully complete is still to be
answered. It will certainly continue to develop under the impulse of more
exact and more exacting measurements.
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Al Some formulae in weak localisation

Al.l Temperature dependence
The very striking effects of spin-orbit scattering are summed up in the following
expression for the conductivity due to weak localisation in the presence of spin-
orbit scattering:

M J ) - (e2/47i2)D-l/2[i{l/rm +4/r s o}1 / 2 - 3(4/rso)l/2 - (l/r in)I/2] (Al.l)

where rin is the dephasing, often the inelastic, scattering time. If rso > nn so that
there is effectively no spin-orbit scattering, ACT is positive and the square bracket
reduces to 2/(Tin)1/2. On the other hand, if rso becomes short, the term in l/rso
dominates the expression in curly brackets which becomes constant. The
temperature dependence is thus dominated by the term -(l /r in)^2 , which gives a
negative temperature coefficient of conductivity, thus reversing the previous state
of affairs.

A 1.2 Magnetic field dependence
The expression for the change in conductivity at low magnetic fields due to weak
localisation, in the absence of spin-orbit effects (see below), is:

Aa(B) = (e2/l2n2h)(DTm)3/2(eB/h)2 (A1.2)

and at high fields:

Aa(B) = (0.605e2/2n2h)(eB/h)l/2 (A1.3)

I have written these results in terms of the change in conductivity rather than as
relative magnetoresistance partly because the formulae are perhaps simpler in this
form but also because that is the way they are usually presented in the literature.
Experimentalists usually measure AR/R = Ap/p and so you often see Ap/p2,
which is just -ACT, plotted against magnetic field or quoted in formulae in
experimental papers.

The expression (A 1.2) is not physically realistic since there is always some spin-
orbit scattering and this must manifest itself at low enough fields. The more
general expressions that take account of spin-orbit scattering are as follows:

225
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Aa(B) = -(e2/4n2h)(eB/h)l/2\f[n/4eDBrm) -

where l/r*n = (l/r in + 2/rso) and the function/has the following limiting
behaviour:

J[x) = 0.605 for x < 1; f(x) = x3/2 for J C > 1.

The sign of ACT depends, as we have seen, on the relationship of the magnetic field
lifetime to the spin-orbit scattering time and the dephasing time rin.

We distinguish four regimes:

1 At low magnetic fields the conductivity, as we have seen, varies as B2. If there
were no spin-orbit scattering the magnetoconductivity would be positive,
giving the unusual negative magnetoresistance as discussed in section 11.7.1.

A<T(B) = +{e2 /96n2h){4Drm)3/2(eB/h)2 (A1.5a)

2 If, however, there is spin-orbit scattering, there is necessarily a low-field regime
where TB > rso and so the magnetoresistance is positive; then we have:

Aa(B) = -(e2/\92n2h)(4Drm)3/2{eB/h)2 (A1.5b)

3 At higher fields we can move into the Bxl2 regime but, if we still have rg > rso,
we continue with the positive magnetoresistance (negative magnetoconduct-
ivity):

Aa(B) = -(0.605e2/4n2h)(eB/h)l/2 (A 1.5c)

4 Finally at very high fields TB < TSO and so the spin-orbit scattering does not
have time to operate before the field has dephased the wavefunctions. Then
spin-orbit scattering is ineffective and the magnetoresistance becomes negative
again:

= +(0.605e2/4n2h)(eB/h)l/2 (A1.5d)

Equation (A 1.4) derives originally from Altshuler et al. (1981) and is widely used.
It has been discussed by Lindqvist and Rapp (1988), who point out that it differs
significantly from the results of Fukuyama and Hoshino (1981). This difference
arises because the latter put in the so-called Zeeman contribution, discussed in
section 14.5. The difference disappears when D is small; it also disappears when D
is greater than 10~4 m2 s"1 but there are regions of practical importance where the
Zeeman contribution is significant.

A2 Weak localisation with s- and d-bands
We have seen in our discussion of alloys that contain transition metals that there
are two groups of conduction electrons, the s- and d-electrons, the former almost
certainly strongly hybridised with p- and d-character. We must now ask: How
does this affect the weak localisation and mechanism we have been discussing?

The answer is that the formalism developed for a single isotropic band is valid
for an anisotropic, multi-band alloy provided that the characteristic parameters,
D the diffusion coefficient, N(Ep) the density of states and the relaxation times
are all properly interpreted. (See Rainer and Bergmann 1985.)
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We denote the density of states N9 conductivity a, elastic scattering time r and
diffusion coefficient D of the two bands by the subscripts s and d. The probability
of finding an electron in band s is then:

and correspondingly for pd. In a time interval t, an electron thus spends a time
/s = pst in the s-band and pdt in the d-band. In the time ts the electron diffuses a
distance (in three dimensions):

(rs)
2 = 3ZV. (A2.2)

Correspondingly for band d. Since in diffusive motion the square of the distances
add, the total distance travelled is:

r2 = (rs)
2 + (rd)2 = 3(psDs + PdDd)t = 3Dt

where D = (NSDS + NdDd)/(Ns + Nd) (A2.3)

The total conductivity is given by:

a = as + ad = e2(DsNs + DdNd) = e2DN (A2.4)

where N = Ns + Nd.

If the inelastic scattering times are different in the two bands, the effective
probability of inelastic scattering is an average weighted according to the time
spent in each band:

1/̂ in =/>,(lAin,.) +/M(l/7in,d) (A2.5)

Similar results apply to the spin-orbit and other scattering times. In all this we are
assuming that the electrons change bands often enough to sample their different
properties impartially.

The upshot is that the formalism of weak localisation is valid provided that the
parameters are interpreted according to equations (A2.3), (A2.4) and (A2.5) with
appropriate generalisations of these in more complex systems.

There is no reason why the properties of the two bands should not differ
widely. For example, if the s-electrons were purely s-like, they would undergo no
spin-orbit coupling in the s-band and only when scattered into the d-band would
they suffer spin-orbit scattering. This extreme situation does not arise in practice
because the so-called s- and d-wavefunctions are hybrids, but there could still be a
marked difference in spin-orbit scattering in the two bands. This means that
changing the concentration of the components can alter the spin-orbit scattering
not only because the relative number and strength of spin-orbit scatterers change
but also because the proportions of s- and d-like electrons can alter.

A3 Fourier transform of the classical diffusion probability

We wish to find the Fourier transform of the probability:

P(r, 0 = [exp(-r2/4nDt)]/(4nDtf2 (A3.1)

To do so we proceed somewhat indirectly and use the equation of continuity for n
particles per unit volume at position r and time t, forming a current of particles of
density j :
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dn/dt = S(r, t) - divj (A3.2)

This says that the rate of change of n in an infinitesimal volume equals the rate at
which particles are produced (the source term S) minus the rate they flow out (the
div term). If the particles move by diffusion:

j = -D grad n (A3.3)

and div j = -DV2n (A3.4)

If the source produces a particle at t = to and r — ro, S becomes the product of
two ^-functions: S = S(r — ro)6(t — to), which represents the effect of producing a
single particle repeatedly and then averaging. Thus we have for equation (A3.2):

dn/dt - DV2n = 6(r - ro)6(t - t0) (A3.5)

We now take the Fourier transform of this equation, turning «(r, t) into w(q,a;);
the Fourier transform of the ^-functions is just unity while that of the left-hand
side of equation (A3.5) is (—ia; + Dq2)n(q,u).

We therefore get:

(-iu + Dq2)n(q,Lu) = 1 (A3.6)

so that finally we have:

n(q,u) = \/{Dq2 -\u) (A3.7)

or n(q, u) = (iu + Dq2)/[u? + (Dq2)2] (A3.8)

This gives us the classical probability per unit frequency range of finding a
particle with Fourier components q and u when the particle is free to diffuse with
a diffusion coefficient D.

A4 Modified values of F

A 4.1 Density of states
It is easy to see that Fis often not small compared to unity. In a typical alloy with
one or two conduction electrons per ion, kF is typically of order \/a where a is the
ionic separation. The reciprocal of the screening radius x is als° roughly I/a and
so x in equation (12.37), which is their ratio, is about 1. This makes F= In 2,
which is not small compared to unity.

When F is not small compared to unity, a more exact treatment of screening at
small values of q is needed to take account of diffusive effects when the two
interacting electrons are far apart. The form of the density of states is unchanged
and only the coupling strength is altered. Moreover, this new coupling parameter
F* can still be expressed in terms of F and becomes:

F* = 4 [ ( l + F / 2 ) 1 / 2 - l ] (A4.1)

As F tends to unity, this tends to the original value F. When F= 1, its maximum
value, F* = 0.9 so the differences introduced are surprisingly small.

The total coupling strength with the correction is:

Stotai = 2{1 - 3[(1 + F/2)l/2 - 1]} (A4.2)
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A4.2 Electrical conductivity

A4.2.1 The total change in conductivity in the particle-hole channel

A full calculation of the contributions to the change in conductivity from both
exchange and Hartree terms in the particle-hole channel gives:

Aa(T) = 0.9l5(e2/4n2ti)(4/3 - 3F/2)(kBT/hD)l/2 (A4.3)

The coupling strength in the Hartree processes is not exactly F but F given by:

F = 32[(1 + F/lf'2 - 1 - 3F/4J/3F (A4.4)

The rather complex form of F arises as before because the interaction between the
electron pairs is altered by the diffusive motion of the screening electrons. Since
the correction to Fis always small, an expansion of the terms in the round bracket
of equation (A4.4) shows that to an approximation adequate for many purposes:

F = F(\-F/\2) (A4.5)

For example, when F —> 0, F —• F; when F= 1, F = 0.93 according to the exact
formula and F = 0.92 according to the approximation.

A4.3 Magnetoresistance due to the enhanced interaction effect
In quoting the final results it is convenient to give here only those for the spin-
splitting or Zeeman effect; results including the orbital contribution can be found,
for example, in Lindqvist and Rapp (1988).

The change in conductivity due to spin-splitting at high fields (g^B ^> kBT) is:

Aa(B) = (e2/4n2h)F(kBT/2hD)l/2[(g»B/kBT)l/2 - 1.294]

~ (e2/4n2h)F(gvB/2hD)l/2

At low fields we have:

Aa(B) = (e2/4n2h)F(0.056gnB/kBT)2 (A4.7)

where F is defined in equation (A4.4).

A5 The Maki-Thompson correction
So far we have assumed that all contributions from the enhanced electron
interaction that involve interference are killed off by the energy difference
(typically kB T) between the two interacting electrons; this leads to the
characteristic Txl2 temperature dependence. In some circumstances, however,
other dephasing mechanisms can be important. This is true of the Maki-
Thompson correction (Maki 1968, Thompson 1970), which is a contribution from
the Cooper channel in addition to that which alters the density of states.

As we have seen, the interactions in the Cooper channel come from coherence
between pairs of counter-propagating electrons executing the same closed path.
For this reason, the change in conductivity that it causes resembles that due to
weak localisation, except that: (1) The two electrons need a coupling mechanism;
for the partial waves in weak localisation this is intrinsic. (2) Because the coupling
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is due to the superconducting mechanism, only the antiparallel spin pairs (in the
singlet state) participate and the coupling depends on temperature.

The coupling, usually designated J3(T), depends on temperature through the
parameter Ac = (In Tc/T)~l (Tc is the superconducting transition temperature), a
parameter we have already met. Although in three dimensions the correction to
the conductivity in zero field is not seen, it provides a potentially important
correction to the magnetoresistance. If the applied field B is small we expect the
correction /3(T) to depend only on temperature and not on B but, since the field
tends to favour parallel spin combinations, it can at higher fields diminish the
strength of the coupling, which, as we saw, depends on antiparallel spin
combinations.

The function /3(T) has the following limiting forms (for the low fields just
discussed):

When | In Tc/T\ > 1, /3(T) = n2/6\n2 Tc/T {ASA)

When - l n r c / r < 1, f3{T) = -K2/4\nTc/T (A5.2)

In between these limits, (3(T) has been tabulated (Larkin 1980); it is shown for a
particular alloy as a function of Tin Figure 16.9. To give some idea of its size in
general, we note that when T— 2.7TC, j3(T) ~ 1. It increases rapidly as T
approaches Tc. From our discussion of the effect of spin-orbit scattering on weak
localisation, it is clear that, unlike the triplet state, the singlet state, and hence the
Maki-Thompson correction, are unchanged by such scattering. Finally the
magnetoconductivity due to weak localisation in the presence of spin-orbit
scattering and including the Maki-Thompson correction is:

Aa(B) = (e2/2n2h)(eB/h)l/2{3f(4DeBT*Jh) - [1 + 20(T)]f[4DeBTm/h)} (A5.3)

where rin is the phase breaking or inelastic scattering time and

(The term in l/r so has a different coefficient for different definitions of rso.) The
function / , which comes from the theory of weak localisation, is defined in
Appendix Al.

Notice that only the second term in the curly brackets, which is the singlet term
in weak localisation, is affected by the Maki-Thompson correction. In this term
the correction simply adds to that from weak localisation.

At higher fields, strong enough to suppress spin-orbit effects, we get:

Aa(B) = (0.605e2/2n2h)(eB/h)l/2[\ - 0(T)] (ASA)

which is valid for fields in the B1/2 realm.
This discussion suggests that there could also be a correction to the

magnetoresistance arising from the Hartree terms in the particle-hole channel.
This would come from scattering that causes incoherence in the electronic
wavefunction in addition to thermal incoherence.

Such a correction would, however, be quite different from that just discussed
because in these Hartree terms, the magnetoresistance arises from Zeeman
splitting rather than the orbital effect. Moreover the coupling constant is Fand so
does not vary with temperature or field but the correction would be modified by
spin-orbit scattering. In general, however, we assume that thermal incoherence is
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dominant (TT about 10~12 s at 1 K) and that other sources of incoherence can here
be ignored.

A6 Electron-electron scattering in disordered metals
There is another effect of electron-electron interaction in a disordered metal that
is important, not for the interaction effect itself, but because it has possible
consequences for weak localisation. This is the scattering of electrons by each
other; even if this causes no significant resistance, it can cause dephasing and so
alter the temperature dependence of the resistance. (See, for example, Kaveh and
Wiser 1984.)

In section 7.1 we saw that electron-electron collisions varied with temperature
as T2 in ordered metallic materials. We are now in a position to see how this
temperature dependence is altered in a disordered metal. We have already seen
that the self-energy SE of interacting electrons is complex and that the imaginary
part gives rise to a finite lifetime of the interacting state. So we can use the
imaginary part of the self-energy to find the lifetime of an electron interacting
with another and thus get the probability of electron-electron scattering. The
imaginary part of the self-energy is given in equation (A3.8). From this we deduce
that the probability of electron-electron scattering through the Coulomb
interaction is given by:

= -[nhN(0)(2n)3}-1 f N{u)du; f V(0,0)[u/{(Dq2)2 + cj}]4nq2dq

In dealing with the density of states we were dealing with the particle-hole
interaction whereas here we wish to study the interaction of two particles with
energies above the Fermi energy so the limits of integration are different. At
absolute zero, one electron is given energy e, the rest being below the Fermi level.
This electron interacts with another electron and excites it above EQ to an energy
e', which must therefore lie between 0 and e. Consequently hu, the difference in
energy between the two. must also lie between 0 and e. As before we change the
variable to y = (D/u)1^ q with the range of q limited to (UJ/D)1^2; the integral
over q now becomes a definite integral with a factor u;1/2//)3^ outside:

re/fi

h/T* oc (D)-y2 F(0,0)h~l ul/2du (A6.2)
Jo

and finally:

Vree oc {e/k¥lf
2 /(EFf2 (A6.3)

Thus the disorder changes the energy dependence of the scattering probability
from e2 to e3/2 and the corresponding temperature dependence of electron-
electron scattering from T2 to J"3/2. In the regime where these results are valid
(e <C Eo), the 3/2 power law implies a stronger interaction than that of the square
law. Nonetheless it is still small in the sense that h/ree is much less than the energy
of the electron so that the quasi-particle concept retains its validity.

The total scattering rate due to electron-electron collisions in a disordered
alloy contains both these power laws: the T2 term arising from the large-angle
scattering and the T3/2 term from the scattering at small values of q.
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Finally therefore we can write:

\/Tee = A'T2 + B'T3/2 (A6.4)

where A' and B' are positive constants.



Notes

Chapter 1

, A detailed account of the historical development of the electron theory of
metals is given in chapters 2 and 3 of Out of the Crystal Maze - Chapters
from the History of Solid State Physics edited by Hoddeson, Braun,
Teichmann and Weart and published by Oxford University Press in 1992.
The history includes references and useful summaries of the physics involved.
There are many books on the electrical properties of metals and alloys, both
in specialist accounts and as part of the broader context of solid state
physics. Here are a few that deal only with metals and are not too
advanced; they are concerned with Boltzmann-type theories:
Cottrell (1988); Dugdale (1977); Mott and Jones (1936).
A book that deals in detail with the electrical resistance of concentrated
alloys, which may also be inhomogeneous, is by Rossiter (1987).

Chapter 2

A history of the methods of production of metallic glasses is given by P.
Duwez (1981). In the same publication Glassy Metals 1 (1981) and its
successor Glassy Metals 2 (1983) by the same editors and publishers there
are other articles of interest though some are, not surprisingly, out of date.
For a general account of the properties of metallic glasses, see, for example,
the article by Cahn (1980). For accounts of disordered materials in general,
see, for example, Elliot (1984) and Ziman (1979).

Chapter 3

1. See note 2 in chapter 1.

Chapter 4

1. An excellent account of the pseudopotential and of screening is given by
Cottrell (1988).

233
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Chapter 5

1. A useful review of the subject of this chapter is given by Faber (1969).

Chapter 9

1. See the review by Movaghar and Cochrane (1991).
2. The s-d hybridisation theory has been largely developed by Morgan and

coworkers. See, for example, Nguyen-Mahn et al. (1987), which contains
references to important earlier papers.

Chapter 11

1. I found papers on weak localisation in thin films by Bergmann (1983, 1984)
very helpful and clear. A review [entitled Localisation — Theory and
Experiment] has recently been presented by Kramer and MacKinnon (1993).
See also the list of reviews in note 1 of Chapter 12, which, although
concerned primarily with interacting electrons, also deal with weak
localisation.

2. This explanation which ascribes weak localisation to the possibility of closed
electron paths, with the electron wavefunction thus able to execute the same
path in opposite senses and so double the classical probability, was given by
Khmelnitzkii (1984) some considerable time after the original discovery had
been made by diagrammatic techniques; Khmelnitzkii's paper gives an
account of how this came about.

3. For a general non-mathematical account of localisation and interaction in
the context of scaling theories and the metal-insulator transition, see
Altshuler and Lee (1988).

Chapter 12

1. There are a number of reviews of the enhanced electron interaction (often
including weak localisation). Those that concentrate on theory include:
Altshuler and Aronov (1985); Fukuyama (1985); Lee and Ramakrishnan
(1985). One that is more concerned with experimental data is by Howson
and Gallagher (1988). A review that is concerned with the transition from
metal to insulator in non-crystalline systems but which contains material
pertinent to the subject of this book is by Mott and Kaveh (1985).

2. We assume that the interaction depends only on the energy difference
between the states involved because for free-electron states only time
intervals matter, not the zero of time. This means that only energy
differences are significant, not the origin of energy. In the perturbed states,
however, this is no longer true, as we shall see: the origin of energy is then
the Fermi level.

3. The review of electron-electron scattering in conducting materials by Kaveh
and Wiser (1984) provides a very clear account of many aspects of electron-
electron interaction that are relevant to this book. I found their treatment of
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the exchange contribution to the density of states due to the enhanced
interaction effect most helpful and have followed their path.
This account makes no attempt to do justice to the full treatment of the
Hartree contribution in the particle-hole channel. The reader is referred to
the paper by Bergmann (1987).

Chapter 13

1. See the treatment by Bergmann (1987).

Chapter 14

1. The treatment of the enhanced interaction effect given by Fukuyama (1985)
differs in many respects from that of Altshuler and Aronov (1985),
particularly in the treatment of the coupling constants.

Chapter 15

1. A brief and clear introduction to the calculation of thermopower
enhancement is given by Kaiser (1982).

Chapter 16

1. Work on the magnetoresistance of metallic glasses containing magnetic
impurities has recently been extended by Amaral et al. (1993). They show
that, of the two different effects that have to be taken into account in
interpreting the results, the second is modified by the impurity.
First there is the effect of spin disorder scattering; the resistance due to this
is reduced by a magnetic field because the field tends to align the spins and
so reduce the disorder.
Second there is the effect of weak localisation, which in their host alloy is
dominated by spin-orbit scattering, so giving a positive magnetoresistance.
The addition of magnetic impurities is then found to increase this positive
contribution instead of reducing it, as one would expect if the only effect
was to increase the dephasing of the partial waves by the scattering from
magnetic impurities.
The reason for this apparent anomaly is that the localisation contribution to
the magnetoresistance is due to both orbital and Zeeman splitting effects.
The exchange interaction associated with the magnetic impurities enhances
the paramagnetic susceptibility of the host alloy and thus, for a given field,
increases the Zeeman splitting between the spin-up and the spin-down
conduction bands (and hence their frequency difference). Thus the magnetic
field 'kills' the enhanced resistance more rapidly than before and so
increases the low-field magnetoresistance.

2. For further details and references to experimental work on metallic glasses,
see the review by Howson and Gallagher (1988).
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Aharonov-Bohm effect, 111, 121
with conduction electrons, 111-14

anomalous dispersion
in electron wavefunctions, 90-4, 97
in optics, 87-90

anti-localisation, 128

Boltzmann equation, 26, 33
Boltzmann theory of electrical conduction,

25-32
Born approximation, 36, 39, 51

Ca-Al metallic glasses
band structure, 212-13
characteristic parameters, 218-19
conductivity of, 211-23
dephasing times, 222
electronic heat capacity and Hall

coefficient, 213
magnetic impurities in, 222
magnetoresistance, 213-23
resistivity, temperature dependence,

222-3
effect of spin-orbit scattering on, 220-2

value of F, 218-19,221
closed paths, probability of, 115-16, 157-9
coherence of electron wavefunction, 111-12,

115-20
collective electron modes, 70
comparison of experiment and theory,

200-24
conductivity, electrical (see also resistivity),

calculation by Boltzmann theory, 25-32
of Ca-Al metallic glassess, 211-23
of Cu-Ti metallic glassess, 201-5
and diffusion, 32-3
effect of Coulomb interaction on, 167-75

Cooper channel, 174
particle-hole channel, 167-70

Einstein relation, 32

and weak localisation, 105-39
temperature dependence due to weak

localisation, 117-18
conduction electrons, 21-3
Cooper channel interactions, 162^4, 174

and magnetoresistance, 181-2
Coulomb interaction between conduction

electrons, 143-62
Coulomb anomaly (see also enhanced

interaction effect), 140-75
Coupling constant in exchange interaction,

154-6
for Hartree terms, 159-60, 230-1
in Cooper channel, 162-4, 174,

229-31
Cu-Ti metallic glasses, conductivity of,

201-5

Debye-Waller factor, 58-60
density of states (for free electrons),

24^5
changes due to enhanced electron

interaction, \4\ et seq.
changes with temperature, 165

dephasing processes, 117-18, 120-3, 207,
211

characteristic time in Ca-Al glasses, 222
diffusion, effect on electron wavefunctions,

149-55
importance of, in enhanced interaction

effect, 161-2
diffusion coefficient of electrons, 32-3, 115

et seq., 200-1
values in Ca-Al glasses, 216, 218-20
values in Cu-Ti glasses, 205
values in a range of metallic glasses, 207

diffusive screening, 154-5, 171

Einstein relation, 32, 165, 200
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electrical conductivity {see conductivity,
electrical)

electron, independent, picture, 63-4
electron transport in metals, conventional

theory, 20-33
electron-electron interaction,

collective electron modes, 70
in crystalline metals, 64, 231—2
in disordered metals, 183, 231-2
mediated by phonons, 67-9
via screened Coulomb potential, 38

electrons, conduction, 21-3
electrons, collective modes, 70
enhanced interaction effect, 140-75

and conductivity, 167-75
and density of states, 140-66
and Hall effect, 184^7
and magnetoresistance, 176-82
effect of spin-orbit scattering, 171-4
exchange terms in particle-hole channel,

147-53
Hartree terms in particle-hole channel,

156-9
exchange contribution to interaction energy,

145-56

F coupling constant, 159-60, 228-30
Fermi electrons, 24

energy, 22-4
surface, 23, 48, 80, 201

Fourier transforms, 37-8, 227-8

glass, insultating, 6
nature of, 6
properties in general, 7
transition temperature, 9

glasses, metallic {see metallic glasses)

Hall coefficient, Hall effect, 81-99, 184-7
hybridisation theory of, 87-94,

97-9, 234
influence of enhanced interaction effect,

184-7
in metallic glasses, 81-2, 86, 97-9
in terms of Fermi surface, 85
simple theory, 81-3
with two types of carrier, 84-5

Hartree terms in interaction energy, 145-6
contribution to density of states, 157-9

hybridisation,
of electron wavefunctions in crystalline

metals, 73-5
of s- and d-character in transition metal

glasses, 87-94
theory of Hall coefficient, 87-94, 97-9,

234

independent electron picture,
inelastic scattering, 116-18, 120, 124, 201,

207, 222
interaction effect {see also enhanced

interaction effect), 140-87
interaction mechanism in Hartree terms of

particle-hole channel, 156-7, 168-9
interactions and quasi-particles, 63-70

Kohler's rule in magnetoresistance, 102-3
A:-space, 23
^-states in disordered metals, 44, 48-9

Lindhard screening, 43-4, 53
liquid metals, Ziman theory, 48-54
localisation, weak {see weak localisation)

magnetoresistance, 100^
due to weak localisation, 121-5

at high fields, 122-3
at low fields, 123-5

due to enhanced interaction effect,
176-84
at high fields, 176-7
at low fields, 178
in the Cooper channgel, 181-2
spin-orbit effects, 180-1
temperature dependence, 178-80

Kohler's rule, 102-3
of metallic glasses, 204-23
simple theory, 100-4
two-band model, 100-2

Maki-Thompson correction, 183, 209-12,
229-31

melt spinning, 10-11
metallic glasses,

atomic deposition techniques, 11
Hall coefficient, 81-2, 86, 97-9, 184-7
how produced, 9-11
magnetoresistance, 204-23
range of stability,

in composition, 11-12
in temperature, 9

resistivity {see also conductivity), 105-9,
201-4

structure of, 13-19
thermopower, 194—9
what are they? 6

metals, liquid, Ziman theory of, 48-54
Mooij correlation, 107-9, 118
Mott model of transition metal, 74-6

normal modes in glasses, 55

particle-hole pairs, 66-7
Peltier heat, 188-93
phonon drag, 58, 194
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phonons in disordered systems, 55-62
phonon ineffectiveness, 60—1
pseudopotential, 44-7

applied to liquid metals, 49, 51-2
Principle of Least Action, 109-10

quantum interference, 109-11, 121
and Aharonov-Bohm effect, 111, 121

with conduction electrons, 111—4
and Principle of Least Action,

109-10
quasi-particles, 64-5

radial distribution function, 17-18
resistance, resistivity, electrical (see also

conductivity),
Mooij correlation, 107-9, 118
magnetic field dependence,

due to enhanced electron interaction,
176-83
due to weak localisation, 121-5

temperature dependence due to enhanced
electron interaction, 167-75
with spin-orbit scattering, 171-4

temperature dependence due to weak
localisation, 117-18
with spin-orbit scattering, 127-31

sources of, 20-1

s- and d-electrons, 71-6, 78, 86-7,
90^, 97-9, 103, 124, 201, 226-7

scaling theory and weak localisation, 136-9
scattering, 34^47

angle, influence on resistivity, 39^0, 51
of electrons by phonons, 56

at low temperatures, 57-8
at high temperatures, 61-2

inelastic, 116-18, 120, 124, 201, 207, 222
influence of Pauli principle, 40-1
by phonons in disorder systems, 140

screening by electrons in metals, 41-4
influence of diffusion, 154-5, 171
Thomas-Fermi, 41-3, 45, 144, 201

self-energy of electrons, 65, 142-3
short-range order, 15, 18-19
singularity in density of states, 153, 161-2
skew-scattering of electrons, 94-6
spectral function of electrons, 49

spin-orbit interaction, 94—6
spin-orbit scattering,

in the enhanced interaction effect, 171-4
in weak localisation, 126-35

spin-spin or spin-flip scattering,
135-6, 222

structure factor, 49-53
superconducting fluctuations, 163 174, 183
superconductivity mechanism via phonons,

67-9

temperature coefficient of resistance,
negative, 106-9

thermopower, 188-99
absolute, 189-90
calculation of, in metals, 190^
electron phonon enhancement,

195-9
general and definitions, 188-94
in metallic glasses, 194-9
Mott formula, 193

Thomas-Fermi screening, 41-3, 45, 144, 201
transition metals and alloys, 71-80

crystalline, 71—4
Fermi surface in glasses, 79-80
glasses, 77-80
Mott model, 74-6

virtual processes, 68

weak localisation, 105-39
and diffusion of electrons, 115-17
and conductivity, some formulae for

temperature and magnetic field
dependence, 225-6

and electron spin, 125-36
and quantum interference, 115
and scaling theory, 136-9
and spin-orbit scattering, 126-35
and Zeeman splitting, 182-3
with s- and d-bands, 226-7

Zeeman splitting in magnetoresistance,
due to enhanced electron interaction,

177-8
due to weak localisation, 182-3

Ziman model of liquid metals, 48-54
applied to metallic glasses, 105




