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About the Handbook 

The author has been engaged in designing, testing and review of machine 
foundations for various industrial projects viz. Petrochemicals, Refineries, Power 
plants etc. for the last about three decades. 

The handbook is written primarily for practising engineers as well as for students 
at Post Graduate level. Handbook shares author's long experience on the subject 
and focuses on the improvements needed in the design process with the sole 
objective of making practising engineers physically understand and feel the 
dynamics of machine foundation system. 

The handbook covers basic fundamentals necessary for understanding and 
evaluating dynamic response of machine foundation system. The author has also 
conducted extensive tests on machine foundation models as well as on prototypes. 
For over two decades, the author has been associated with Failure Analysis 
Studies on various types of machines. 

Observations from all the above studies suggest need for improvement in the 
design o/foundationsfor better performance of machines. These include: 

a) More comprehensive evaluation of Site Soil Data 
b) Better understanding of Machine Data and its use infoundation design 
c) Improvement in the Design Philosophy that suggests 

i) Improvement in the Modeling Technique 
ii) Improvement in Analysis Technique 
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iii) Improvement in Structural Design process, and 
iv) Improvement in Construction Technology 

It is the author's concerned observation that in most of the cases, due recognition 
to Machine, Foundation and Soil data is lacking. More often than not, machine 
data as well as soil data is treated as black box and used in the design without its 
proper understanding. A better interaction between foundation designer and 
machine manufacturer would definitely improve the foundation performance and 
thereby machine performance. Over the years, author has observed that such 
interactions are lacking. It is the author's concerned opinion that such an 
interaction is not only desirable but essential too. 

It is anticipated that this handbook shall serve as a Reference Book. The author 
is confident that it shall bridge the knowledge gap and shall be beneficial to the 
practising engineers, students, academicians/researchers as well to the industry. 

The text is divided in to 5 Parts. 

Part I takes care of Theoretica( Aspects 

• An overview providing basic familiarization with the subject is covered 
in Chapter 1. 

• Necessary understanding of Theory of Vibration with specific application 
to machine foundation design is included in Chapter 2 and Chapter 3. 
Chapter 4 caters to Basic Theory of Vibration Isolation. 

Part II caters to Design Parameters 

• Chapter 5 provides reasonable coverage to Soil Dynamics and 
evaluation of Design Soil Parameters as applied to Machine Foundation 
Design. 

• Desired emphasis has been given to Design Machine Parameters. 
Translation of Machine Data to Design Data is given in Chapter 6. 

• Chapter 7 is attributed to Design Foundation Parameters. It covers all 
those aspects related to foundation that play vital role in computing 
Dynamic Response. 
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Part III deals with design of Foundations for Real Life Machines. 

• Chapter 8 is devoted to Modeling and analysis including Finite Element 
Analysis. All possible aspects of modeling related to design of foundation 
have adequately been covered. 

.• Chapter 9, 10 & 11 cover Design of Foundation for real life Rotary 
Machines, Reciprocating Machines and Impact Type Machines 
respectively. 

Part IV caters to Design of Foundations with Vibration Isolation System 

• A good amount of emphasis is given to Vibration Isolation of the 
Foundations. Design of Foundations with Isolation Devices is covered in 
Chapter 12. 

Part V caters to Construction Aspects and Case Studies related to machine 
foundation 

• Construction Aspects are covered in Chapter 13. 

• Case studies and observations are given in Chapter 14 
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FOREWORD 

Improvement in manufacturing technology has provided machines of higher ratings with better 
tolerances and controIIed behaviour. The increased dependence of society provides no room for 
failure and demands equipment and systems with higher performance reliability. 

Each and every machine does require detailed vibration analysis providing insight in to the 
dynamic behaviour of machine, foundation and their components. Complete knowledge of machine 
excitation forces and associated frequencies, knowledge of load transfer mechanism from the 
machine to the foundation and foundation to soil is a must for correct evaluation of machine 
performance. Thus for a technicaIIy correct and economical solution, it calls for that the designer 
must have a fairly good knowledge of Dynamic Soil Parameters, Dynamic Foundation Parameters 
as weII as Dynamic Machine Parameters. A close co-operation between manufacturer and the 
foundation designer is therefore a must. Development of analytical procedures backed by field 
monitoring, for evaluating dynamic response, is the need of the day. 

It is fortunate that Dr K G Bhatia, a person of eminence, who is not only a well known research 
scientist in the field of Structural Dynamics but also l!I1 expert in the profession of Machine 
Poundation Design, Seismic Qualification of MachinetY, Failure Analysis, Weight Optimization 
etc, has undertaken the challenging task to bring out this Handbook on Foundation for Industrial 
Machines. With his initial experience with Mis Engineers India Limited for about 4 years and his 
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association with MIs Bharat Heavy Electrical Limited for about 24 years, Dr Bhatia has carried out 
machine foundation design for many projects and has also conducted field studies on many 
machines and their foundations. 

It is this rich experience which Dr Bhatia has compiled and brought out in form of a Hand Book. 
He has touched all related aspects. required for machine foundation design including Vibration 
Isolation System. Starting with basic fundamentals of vibration analysis, he has given due 
coverage to analytical aspects, modeling aspects, design aspects and also included foundation 
design for real life machines backed up by field measurements based on his own experience and 
study. 

On behalf of the engineering community and on my own behalf, I wish to extend my hearty 
congratulations to Dr. Bhatia for having brought out this excellent Handbook. It is earnestly hoped 
that the book will be found useful by not only practising engineers but also by students, researchers 
and academicians. 

KP Mathur 

(Formerly) Executive Director 
Project Engineering Management 

Bharat Heavy Electricals Ltd, 
New Delhi, India 
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PREFACE 

This handbook reflects collection of author's works in analysis, design and field investigations 
during last about 30 years. The book, designed primarily for the practising engineers engaged in 
design of machine foundation, also provides a platform to students at Post Graduate level for 
developing professional skill in attaining desired proficiency in designing Foundations for 
Industrial Machines. Reference to problems, made at various stages, is for the real field problems. 
Emphasis, throughout, has been laid on applied analysis and design so as to provide deeper 
understanding to the reader about the physical understanding of the Dynamic Behaviour of 
Machine Foundation system. The text has been so arranged so as to provide an insight to the reader 
regarding the need for various design stages to complete the task. 

The performance, safety and stability of machines depend largely on their design, manufacturing 
and interaction with environment. In principle, machine foundations should be designed such that 
the dynamic forces of machines are transmitted to the soil through the-fuUndation in such a way 
that all kinds of harmful effects are eliminated. Many scientists have significantly contributed to 
the field of machine foundation laying greater emphasis on vibration response of both machine and 
foundation. The contributions to the practical and theoretical development of the subject, especially 
from authors like Geiger, Rauch, Barkan and Alexander Major, are noteworthy. 
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The design aids /methodologies provide insight to the dynamic behaviour of foundation and its 
elements for satisfactory performance of the machine thus suggesting the need for the complete 
knowledge of load transfer mechanism from the machine to the foundation and the knowledge of 
excitation forces and associated frequencies for correct evaluation of machine performance. 

This book covers basic fundamentals necessary for understanding and evaluating dynamic response 
of machine foundation system. Stress is laid on detailed dynamic analysis for evaluating the 
response. Use of commercially available Finite Element packages, for analysis and design of the 
foundation, is recommended. The author has carried out extensive field investigations on many 
foundations and some of the findings are presented for comparison with analytical results. 

This handbook is written with the sole objective of making the practising engineers physically 
understand and feel the dynamics of machine foundation system. Any suggestion from the readers 
that leads to improvement of the contents, style, etc of the handbook is welcome. 

K. G. Bhatia 
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SYMBOLS AND NOTATIONS 

a Amplitude Ratio 

aeir Pile Influence Coefficient 

P Frequency Ratio of one frequency to other frequency 

Px Frequency ratio 0)/ Px 

Py F!'equency ratio 0)/ p y 

pz Frequency ratio 0)/ Pz 

Po Frequency ratio 0)/ Po 

Pf// Frequency ratio 0)/ Pf// 

P¢ Frequency ratio 0)/ P¢ 

Ost Static Deflection 

Ox Static deflection along X 

Oy Static deflection along Y 

Oz Static deflection along Z 
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58 Static deflection along e 
5'11 Static deflection along If 

5¢ Static deflection along ¢ 

I: Linear strain 
¢ Rotation about Z-axis and also 

Phase angle 
r Shear Strain, also 

Mass moment of Inertia ratio 

rOl Site Shear Strain Value 

r02 Design Shear Strain Value 

'7 Isolation Efficiency, also 
Efficiency of drop of hammer 

A- Mass ratio 
fl Magnification Factor 

fll' fl2 Magn{fication factors 

flx Magnification in X-direction 

fly Magnification in Y-direction 

flz Magnification in Z-direction 

fl8 Magnification in e -direction 

fl'll Magnification in If -direction 

fl¢ Magnification in ¢ -direction 

v Poisson's ratio 

vs Poisson's Ratio for Soil 

vc Poisson's Ratio for Concrete 

e Rotation about X-axis 

(}o,!fo &¢o Rotations about X; Y & Z axes at DOF location '0' 

P Mass density & also Total Amplitude 

Ps Mass Density of Soil 

Pc Mass density of Concrete 

cr Direct Stress 

crl,cr2 Static stress 
- Site Static Stress (Overburden Pressure) cro1 

cr02 Design Static Stress (Overburden Pressure) 

r Pulse Duration 
(0 Excitation Frequency 

(01 (02 (03 Excitationfrequencies of machine 1, 2 and 3 

If Rotation about Y-axis 
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xxx 

S Damping Constant 

sx Damping in X-direction 

Sy Damping in Y-direction 

sz Damping in Z-direction 

se Damping in () -direction 

SIfI Damping in If/ -direction 

S¢ Damping in ¢ -direction 

A Amplitude, also 
Area 

AO) Base Contact Area corresponding to site test method 

A02 Design Base Contact Area/or the/oundation 

Ab Base Contact Area with the Soil 

A),A2 ,A3 Amplitudes o/masses 1,2.3 etc. 

Ax Amplitude in X-direction 

Ay Amplitude in Y-direction 

Az Amplitude in Z-direction 

Ae Amplitude in () -direction 

Alfl Amplitude in If/ -direction 

A¢ Amplitude in ¢ -direction 

A'&A" Amplitudes corresponding to lSI and 2nd mode resp. 

Ap Area 0/ Piston, also 
Area of Plate 

B Width 0/ Foundation 
bx Mass Ratio in X-direction 

by Mass Ratio in Y-direction 

bz Mass Ratio in Z-direction 

be Mass Ratio in () -direction 

bw Mass Ratio in If/ -direction 

b¢ Mass Ratio in ¢ -direction 

c Viscous Damping 

[c] Damping Matrix 

Cu Coefficient o/Uniform Compression o/Soil 

CUO) Site Evaluated Coefficient o/Uniform Compression o/the soil 

CU02 Design Coefficient o/Uniform Compression o/the soil 
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Cr 
Coefficient of Uniform Displacement of Soil 

Co&C¢ Coefficient of Non-Uniform Compression of Soil 

C", Coefficient of Non-Uniform Displacement of Soil 

C r 
CG of Crank rod 

D Depth q[pit 

do) Effective depth (consideredfor site test) 

d02 Effective depth (consideredfor foundation design) 

d Pile Diameter 

E Elastic Modulus 

Ey Elastic Modulus in Y 

EO) Site Evaluated Dynamic Elastic Modulus 

E02 Design Dynamic Elastic Modulus 

Ec Elastic Modulus of concrete 

Es Elastic Modulus of soil and aiso 
Elastic Modulus o[Sheet Isolators 

Ep Elastic Modulus of pile 

Estatic Static Elastic Modulus 

Edynamic Dynamic Elastic Modulus 

e Rotor Eccentricity and also 
Coefficient of Restitution 

ex&ez Eccentricity in X & Z direction respectively. 

F(t) Dynamic Force 

Fx Force in X-direction 

Fy Force in Y-direction 

Fz Force in Z-direction 

Fox Force at point '0' in X-direction 

Foy Force at point '0' in Y-direction 

Foz Force at point '0' in Z-direction 

FE Applied Excitation Force 

Fr Transmitted Force 

Fi,F2 Unbalance Force 

FA Force at point A 

F8 Force at point B 

FJx. F2x X-Component offorce F) & F2 respectively 

Fi y ' F2y Y-Component of force FJ & F2 respectively 
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f Frequency in Cycle per sec (Hz) 

fn Natural Frequency in Cycle per sec (Hz) 

fb Observed Frequency in Cycle per sec (Hz) 

fck Characteristic Compressive Strength of Concrete 

Fcy,Fez Force at point C in Y & Z direction respectively 

g Acceleration due to gravity 
G Shear Modulus 

Gs Shear Modulus of Soil 

Gx Shear Modulus in X 

Gz Shear Modulus in Z 

GOl Site Evaluated Dynamic Shear Modulus 

G02 Design Dynamic Shear Modulus 

Gr Rotor Balance Grade 

H Depth of Foundation, Height of Portal Frame 

h Height of Centroid from Base, also 
HeiRht offall of hammer 

ha ,hb & he Height of Centroid for Drive Machine, Driven Machine and 
Coupling from CG of Base RE point '0' 

Ixx Moment of Inertia of an Area about X- axes 

Iyy Moment of Inertia of an Area about Y- axes 

I zz Moment of Inertia of an Area about Z- axes 

Ih Moment of Inertia of Beam 

Ie Moment of inertia of Column 

J Polar Moment of Inertia 

k Stiffness 

ks Stiffness of Soil 

k, kJ, k2 ·.etc Stiffness 

[k J Stiffness Matrix 

k pv Vertical Pile Stiffness 

kph Lateral Pile Stiffness 

kv Vertical Stiffness 

kh Horizontal Stiffness 

kx Translational Stiffness along X-direction 

ky Translational Stiffness along Y-direction 

kz' kh Translational Stiffness along Z-direction 
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ko Rotational Stiffness about X-direction 

k", Rotational Stiffness about Y-direction 

k¢ Rotational Stiffness about Z-direction 

kh Beam Stiffness Factor (Ib / L) Beam MIIBeam Span 

ke Column Stiffness Factor (Ie / H) Col MIICol Height 

kr Stiffness ratio (kb / kJ 
L Length of Foundation, Span of Beam 

I Length of Crank rod 

II Distance ofCG of connecting rodfrom its end I i.e. point A 

12 Distance of CG of connecting rod from its end 2 i. e. point B 

M(t) Dynamic Moment 

Mo Moment about X-axis 

M", Moment about Y-axis 

M¢ Moment about Z-axis 

Moo Moment at '0' about X-axis 

M o", Moment at '0' about Y-axis 

M o¢ Moment at '0' about Z-axis 

m Mass 

mb Mass of Block 

mm Mass of Machine 

mo Mass of Oscillator, also 
Mass ofTup (falling mass) 

[m] Mass Matrix 

Mm Mass Moment of Inertia 

Mmx Mass Moment of Inertia at Centroid about X-axis 

Mmy Mass Moment of Inertia at Centroid about Y-axis 

Mmz Mass Moment of Inertia at Centroid about Z-axis 

Mmox Mass Moment of Inertia at '0' about X-axis 

Mmoy Mass Moment of Inertia at '0' about Y-axis 

Mmoz Mass Moment of Inertia at '0' about Z-axis 

M20,M25,M30 Grade of Concrete 

mr Mass of Rotor, also 
Mass of Crank rod 

mrl,mr2 Mass of rotor I & rotor 2 respectively 
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mp Mass of Piston 

mA . Mass at point A 

mB Mass at point B 

me Mass of connecting rod 

Mex Moment at point C about X-axis. 

N Rotor speed (rpm) 
n Number of Piles, also 

Number of Cylinders (in Recip}"ocatingEngine) 
p Natural Frequency in raJ/sec, also 

Number of Springs, bearing pressure 

Px Translational Natural Frequency in X-direction, also 
Uniform Shear Stress 

Py Translational Natural Frequency in Y-direction, also 
Pressure in Vertical Y -direction 

pz Translational Natural Frequency in Z-direction, also 
Uniform Shear Stress 

Po Rotational Natural Frequency about X-axis 

P'l/ Rotational Natural Frequency about Y-axis 

P'l/r Torsional Shear Stres$ at radius r 

P¢ Rotational Natural Frequency about Z-axis 

PLI,PL2 ]"1 and 2na Limiting Frequencies 

Pr Pressure/Load Intensity 

PI,P2,P3 First six natural frequency in ascending order 

P4,P5,P6 

p, Pressure acting on the piston 

q Bearing capacity, also Number of Springs 

R Radius Vector 

ro Equivalent Radius 

SI Total settlement 

Se Elastic settlement 

Sp Settlement after removal of loadfrom plate 

s Pile Spacing 
TR Transmissibility Ratio 
t Time 
T Time Period 

Vs Shear Wave Velocity 

VII Rayleigh Wave velocity 
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Ve Compression Wave Velocity 

v Velocity 
v;) Velocity offalling mass 

v1 
Initial velucity imparted to the foundation after impact 

vO,v1 Velocity after Impact 
, , 

vO,v1 Velocity before Impact 

Wm Total Machine load 

Wmi Machine load at point 'i' 

Wf ] ,W(2 &Wj3 Weight of Foundation Block part I, 2 &3 resp. 

Wfi Weight of Foundation Block 'i' 

x,y&z Displacement in X, Y & Z-directions respectively 

x,y&z Overall centroid coordinates 

xo,Yo & Zo Amplitudes along X, Y & Z direction at DOF location '0' 

Xj'YI &zI 
Amplitudes along X, Y & Z direction at Center of Foundation 
Top 

X/c'Yrc & Z Ie 
Amplitudes along X; Y & Z direction at Corners of Foundation 
Top 

XI'Yr &ZI 
Maximum Amplitudes in X, Y & Z direction at Foundation Top 

xmi'Ymi &Zmi X, Y and Z Coordinate of load point Wmi 

xm &zm X & Z Coordinates of machine centroid 

X1' x2' x3 Displacements of masses m1, m2, m3 in X-direction 

Y1' Y2' Y3 Displacements of masses m1, m2, m3 in Y-direction 

z1,z2,z3 Displacements of masses m1, m2, m3 in Z-direction 

x,y&z ]"" Differential of x, y & z with respect to time 

x,y&Z 2nd Differential of x, y & z with respect to time 

Yg Ground Acceleration in Y -Direction 

X, Y, Z X, Y & Z Coordinate axes 

Yf Height of Foundation Centroid 

Ym Height of Machine Centroid 

zp Displacement of Piston from its extreme position 

zp Acceleration of piston 
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MACHINES AND FOUNDATIONS 

• Overview 
• Design Philosophy 
• Foundation Types 
• Tuning of Foundation 
• Foundation Material 

• Soil 
• Vibration isolation 
• Field Perfonnance & Feedback 
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Machines and Foundations 1-3 

MACHINES AND FOUNDATIONS 

The performance, safety and stability of machines depend largely on their design, manufacturing 
and interaction with environment. In principle machine foundations should be designed such that 
the dynamic forces of machines are transmitted to the soil through the foundation in such a way 
that all kinds of harmful effects are eliminated. 

In the past, simple methods of calculation were used most often involving the multiplication of 
static loads by an estimated Dynamic Factor, the result being treated as an increased static load 
without any knowledge of the actual safety factor. Because of this uncertainty, the value of the 
adopted dynamic factor was usually too high, although practice showed that during operation 
harmful deformations did result in spite of using such excessive factors. This necessitated a 
deeper scientific investigation of dynamic loading. A more detailed study became urgent 
because of development of machines of higher capacities. 

Machines of higher ratings gave rise to considerably higher stresses thereby posing problems with 
respect to performance and safety. This called for development partly in the field of vibration 
technique and partly in that of soil mechanics. Hence new theoretical procedures were developed 
for calculating the dynamic response of foundations. 

It is well established that the cost of foundation is but a small fraction of that of the 
machine and inadequately constructed foundations may result in failures and 
shutdowns exceeding many times the cost of the capital investment required for 
properly designed and built foundations. 

1.1 AN OVERVIEW 

A brief review indicates that over the years, many scientists have contributed to the field of 
machine foundation design. Gieger in 1922 carried out investigations to determine the natural 
frequencies of foundations. Rauch in 1924 dealt with the machine and turbine foundation and 
contributed greatly to the practical and theoretical development of the science. A great emphasis 
was thus laid on to vibration problems in machine foundations. Timoshenko (1928) & Den Hartog 
(1934) dealt with many vibration problems in engineering practices. Later Wilson (1942), Arya 
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1-4 Machines and Foundations 

(1958), Norris (1959), Harris and Crede (1961) contributed a lot in the field of vibration. D.Q 
Barkan (1938) published his findings on dynamic effects on machine foundation. His basic work 
on the results of theoretical and experimental investigation in the field of machine foundations 
affected by dynamic action was published in 1948 and translated into English in 1962. Alexander 
Ml'tior has also made a significant contribution in the field of machine foundation. His book on 
"vibration analysis and design of foundations for machines and turbines" published in 1962 
(translated from Hungarian) had been a very useful tool to deal with machine foundation problems. 

Based on the scientific investigations carried out in the last few decades it has been established that 
it is not enough to base the design only on vertical loads multiplied by a dynamic factor, even 
if this factor introduces a dynamic load many times greater than original one. It should be 
remembered that operation of the machines generated not only vertical forces, but also forces 
acting perpendicular to the axis; it is thus not enough to take into account the vertical load and to 
multiply it by a selected dynamic factor. It has also been found that the suitability of machine 
foundations depends not only on the forces to which they will be subjected to, but also on their 
behaviour when exposed to dynamic loads which depends on the speed on the machine and natural 
frequency of the foundation. Thus a vibration analysis became necessary. In other words, it can be 
said that each and every machine foundation does require detailed vibration analysis providing 
insight in to the dynamic behaviour of foundation and its components for satisfactory performance 
of the machine. The complete knowledge of load transfer mechanism from the machine to the 
foundation and also the complete knowledge of excitation forces and associated frequencies are a 
must for correct evaluation of machine performance. 

The performance, safety and stability of machines depend largely on their design, manufacturing 
and interaction with environment. In principle machine foundations should be designed such that 
the dynamic forces of machines are transmitted to the soil through the foundation in such a way 
that all kinds of harmful effects are eliminated. Hence, all machine foundations, irrespective of size 
and type of machine, should be regarded as engineering problem and their design should be based 
on sound engineering practices. The dynamic loads from the machines causing vibrations must 
duly be accounted for to provide a solution, which is technicalIy sound and economical. For a 
technically correct and economical solution, a close co-operation between manufacturer and the 
foundation designer is a must. 

Vibration problems have been drawing attention of scientists and engineers, since decades, world 
over to find ways and means to have desired satisfactory performance of machines and to minimize 
failures. In the past, due importance was not given to the machine foundation design. Simple 
methods of calculation were used for strength design of the foundation by multiplying static loads 
with an estimated Dynamic Factor. This resulted in consideration of increased static loads without 
any knowledge of actual safety factor. Even with these so-called excessive loads, harmful effects 
were observed during operation. Based on the scientific investigations carried out in the last few 
decades it has been established that it is not enough to base the design on vertical loads only, 
multiplied by an arbitrary Dynamic Factor. 

Improvement in manufacturing technology has provided machines of higher ratings with better 
tolerances and controlled behaviour. The increased dependence of society on machines provides 
no room for failure and deinands equipment and systems with higher performance reliability. All 
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problems could not be solved theoretically because a good amount of assumptions had to be made 
for the analysis and these assumptions needed validation through experiments. Laboratory and field 
measurements were thus introduced to determine carefully the effects of various parameters on the 
dynamic response of machine foundation. Thus a detailed vibration analysis became necessary. It 
was also realised that a careful dynamic investigation of soil properties is essential as the elastic 
properties of the soil exercise considerable influence on the design of the foundation. 

It is obvious that the cost of machine foundation is a small fraction of that of the equipment and 
inadequately constructed foundations may result in failures and shutdowns whose cost itself may 
exceed many times the cost of the properly designed and built foundations. Though, advanced 
computational tools are available for precise evaluation of dynamic characteristics of machine­
foundation system, their use in design office, which was limited in the past, has now been found to 
be quite common. 

The machine foundation system can be modeled either as a two-dimensional structure or three­
dimensional structure. For mathematical modeling and analysis, valid assumptions are made 
keeping in view the following: 

• The mathematical model should be compatible to the Prototype structure within a 
reasonable degree of accuracy 

• The mathematical model has got be such that it can be analysed with the available 
mathematical tools 

• The influence of each assumption should be quantitatively known with regard to the 
response of the foundation 

Vibration isolation techniques have also been used to reduce vibrations in the machines. Isolation 
leads to reduction in the transmissibility of the exciting forces from the machine to the foundation 
and vice-versa. Uses of vibration isolation devices is one of the methods by which one can achieve 
satisfactory performance which in tum can result in minimising failures and reduce downtime on 
account of high vibrations. However, for equipment on elevated foundations, it is desirable to have 
support structure stiffness sufficiently higher than overall stiffuess of isolation system in order to 
get the desired isolation efficiency. 

The support structure, a 3-D elevated structural system, possesses many natural frequencies. The 
vibration isolation system, comprising o[machine, inertia block and the isolation devices, also has 
six modes of vibration having specific stiffuess values corresponding to each mode of vibration. 
Hence the comparison between stiffuess of structure and isolator becomes complex task. It is of 
interest to note that lateral stiffness of elevated structures is very much lower than its vertical 
stiffness. If this lower, (lateral) stiffuess is comparable to the stiffuess of isolators, it certainly 
affects the overall stiffness and thereby the response of the machine foundation system. Hence, 
lateral stiffness of support structure must also be computed and considered while selecting the 
isolators. Finally it may be desirable to carry out detailed dynamic analysis of the complete system 
including substructure. . 

'\ 

https://engineersreferencebookspdf.com



1-6 Machines and Foundations 

1.2 DESIGN PIDLOSOPHY 

Machine foundation system, in broader sense, comprises of machine, supported by foundation 
resting over soil subjected to dynamic loads i) generated by machine itself; ii) applied externally, 
or iii) caused by external sources and transmitted through soil. A typical system is as shown in 
Figure 1.2-1. 

f-F~r~;-fu,Di~j~int;g ----I 
: machine & due to shock, !-o' -I~---' 
,. arthk ' : Impact, e qua e etc ,/ 
1 ______ ---------------_/ 

i-i);~~i~lC~~ct;: , , 
, Internally : 
'" generated : ,,, ____________ J 

O.K. 

Figure 1.2-1 Machine Foundation System Qualification Subjected to Dynamic Loads 

Irrespective of the source of dynamic load, the basic philosophy underlying design of machine 
foundat·ion is that: 

• The dynamic forces of machines are transmitted to the soil through the foundation in such 
a way that all kinds of harmful effects are eliminated and the amplitudes of vibration of 
the machine as well as that of the foundation are well within the specified limits. 

https://engineersreferencebookspdf.com



Machines and Foundations 1-7 

• Foundation is structurally safe to withstand all static and dynamic forces generated by the 
machine. To accomplish these objectives, every foundation needs to be analysed for 
Dynamic Response, and thereafter for Strength Design 

1.3 MACHINE FOUNDATION SYSTEM 

In any. machine foundation system, the equipment (the machine) is considered supported by a 
foundation and the foundation in tum rests on the soil. A typical machine foundation system is as 
shown in Figure 1.3-1. 

Foundation 

Interface 
Machine & Foundation 

Interface 
Foundation & Soil 

Figure 1.3-1 A Typical Machine Foundation System 

At this stage it is necessary to address as to how the equipment, foundation and soil are 
interconnected. 

• Machine could either be connected to the foundation directly through the foundation bolts, 
or it could be connected through isolation devices. 

• Foundation could either be a solid block resting diI:ectly on the soil or it may be resting on 
the piles. 

• The foundation could also be a frame structure (Frame Foundation) resting directly on the 
soil or it could be resting on the group of piles. 

These interfaces, therefore, are essential to be appropriately addressed, for evaluating the dynamic 
response of the machine correctly. Thus, the three main constituents of machine foundation system 
that play significant role in overall controlling machine performance are, machine, foundation 
and soil and these need to be adequately addressed. Modeling and Analysis are adequately 
covered in Chapter 8. 
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1.4 MACHINES 

Based on type of motion, the machines are broadly classified as: 

a) Rotary Machines 
b) Reciprocating Machines 
c) Impact Type Machines 

Based on the speed of operation, the machines are grouped as: 

a) Very low speed machines (up to 100 rpm) 

b) Low speed machines (100 tol500rpm) 

c) Medium speed machines (1500 to 3000rpm) 

d) High speed machines (3000 rpm and above) 

For foundation design, broadly, the following information is needed: 

• Geometric configuration of the machine 

• Loads from machine: Mass of the stationary as well as rotating parts of the machine and 
load-transfer mechanism from the machine to the foundation 

• Critical machine performance parameters: Critical speeds of rotors, balance grade and 
acceptable levels of amplitudes of vibration 

• Dynamic forces generated by the machine: Forces generated under various operating 
conditions and their transfer mechanism to the foundation for dynamic response analysis 

• Additional Forces: Forces generated under emergency or faulted conditions, Test 
condition, Erection condition & Maintenance condition of the machine, Forces due to 
bearing failure (ifappJicable) for strength analysis of the foundation 

These parameters are covered in detail in Chapter 6. 

1.5 FOUNDATION 

Machine type and its characteristics do play a significant role while selecting the type of 
foundation. Most commonly used foundations in the industry are Block foundations and Frame 
foundations that are covered in this handbook. 
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Foundation Block 

Figure 1.5-1 A Typical Block Foundation 

1.5.1 Block Foundation 

In this case, machine is mounted over a solid block, generally made of concrete. This block in tum 
rests directly on the soil. In this case both machine and foundation block are considered as non­
elastic inertia bodies and the soil is treated as mass less elastic media i.e. having only stiffness and 
no inertia. Schematic view of a typical block foundation is shown in Figure 1.5-1. 

Machine 

Deck Slab 

Figure 1.5-2 A Typical Frame Foundation 

1.5.2 Frame Foundation 

In this type of foundation, machine is supported on the deck slab. This deck slab in tum is 
supported on base raft through columns and base raft rests directly over soil or on group of piles. 
Size of deck slab, number of columns, height of columns above base raft etc. are primarily 
dependent on machine layout. In this case machine is treated as nOn-elastic inertia body whereas 
deck slab, and columns are considered as elastic inertia bodies and soil is considered as elastic 
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media. In certain specific cases, base raft is also considered as elastic inertia body. Schematic view 
of a typical frame foundation is shown in Figure 1.5-2. 

1.5.3 Tuning of the Foundation 

Foundation, for which its vertical natural frequency is above the operating speed of the machine, is 
termed as over-tuned foundation or high-tuned foundation and the foundation, for which its 
vertical natural frequency is below the operating speed of the machine, is termed as under-tuned 
foundation or low-tuned foundation. 

1.5.4 Foundation Material 

Plain Concrete, Brick, Reinforced Cement Concrete, Pre-Stressed Concrete and Steel are the 
material employed for machine foundation construction. Foundations using steel structures have 
also been used for frame foundations. The sizes of structural members in steel foundations are less 
than those for RCC foundations and accordingly their space requirement is much less. As regards 
vibration, steel structures undoubtedly involve' higher risk. Natural frequencies are low and the 
foundation is deeply under-tuned. The resistance to fire of a steel structure is lower than that of 
reinforced concrete one. Most high tuned foundations are built of reinforced concrete. Vibration 
amplitudes are reduced due to relatively higher damping present in the concrete. 

1.5.5 Foundation Analysis and Design 

Every foundation is analysed for its dynamic response and checked for strength and stability. Using 
the machine, soil and foundation parameters, amplitUdes of vibration are computed at machine as 
well as foundation level. In addition foundation is designed for its strength and stability to 
withstand applicable static and dynamic forces. For this the dynamic forces of the machine are 
translated into equivalent static forces on the foundation. Strength check of the foundation is also 
done for forces due to environmental effects like wind & earthquake etc. 

Should the strength analysis indicate need for change in the foundation size, a recheck on the 
dynamic analysis with the revised foundation size is a must. Typical foundation parameters needed 
for design of machine foundation system are: 

• Foundation geometry 
• Material properties i.e. mass density, dynamic modulus of elasticity, Poisson's ratio, 

coefficient of thermal expansion, etc. 
• Strength parameters i.e. Yield stress, UTS, Allowable stress in compression, tension, 

bending and shear, etc. 

These parameters in detail are covered in chapter 7. Construction aspects of these foundations are 
covered in Chapter 13. 
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1.6 SOIL 

It is an established fact that the soil properties significantly influence the dyrtamic response of 
machine foundation system. Identical machines with identical foundations have been reported to 
behave differently in different soil conditions. For block foundation, the soil influence is 
predominant. The dynamic response largely depends upon mass of the machine, mass of the block, 
the geometry of the block and soil dynamic properties. However for frame foundations, it is 
generally reported that consideration of soil structure interaction i) induces additional modes 
pertaining to soil deformation with relatively low frequencies and ii) has a tendency to marginally 
enhance structural frequencies. 

Soil system is a complex entity in itself and there are many uncertainties associated with its 
modeling. Correct evaluation of dynamic soil properties, however, is the most difficult task. These 
properties may vary from site to site, from location to location and from machine to machine as 
well as with variation of depth of foundation. Under the influence of dynamic forces, the 
foundation interacts with the soil activating dynamic soil structure interaction, which significantly 
influences the dynamic response of machine foundation system. 

Depending upon type of analysis, soil is represented as an elastic half space with the help of 
equivalent soil springs represented by elastic sub-grade reaction coefficients. Typical soil 
parameters and dynamic properties of soil used in machine foundation design are: 

E Young's Modulus of Elasticity 

G Shear modulus 

v Poisson's ratio 

p Mass density 

S Soil damping 

Cu Coefficients of uniform compression of the soil 

C; Coefficients of non-uniform compression of the soil 

Cr Coefficients of uniform shear of the soil 

c", -' Coefficients of non-uniform shear of the soil 

The significant aspects of soil properties, which influence soil structure interaction, are: Energy 
Transfer Mechanism, Soil Mass Participation in Vibration of Foundations, Effect of Embedment of 
Foundation, Applicability of Hook's Law to Soil, Reduction in Permissible Soil Stress and 
Dynamic Soil Parameters. 

These influences have suitably been addressed in Chapter 5. 
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1.7 VIBRATION ISOLATION 

Isolation means reduction in the transmissibility of the exciting forces from the machine to the 
foundation and vice-versa. Vibration isolation devices have been used to achieve satisfactory 
performance. Isolation in broader sense includes the following: 

• Control of transmission of dynamic forces from machine to the foundation and thereby to 
the adjoining structures and equipment 

• Isolation of equipment from the vibration effects of the adjoining system 
• Isolation from external forces like Earthquake Shock, Blast etc. 

For cases, where a bunch of vibratory machines are to be mounted on a common elevated platform, 
vibration isolation may tum out to be a better proposition. Vibration Isolation Design for machine 
foundation systems includes, isolation requirement, isolation design, selection of isolation devices, 
influence of sub-structure (wherever applicable) on the response, etc. 

Basic theory of Vibration Isolation is dealt in Chapter 4 and the design of foundations with 
Vibration Isolation System is covered in Chapter 12. 

1.8 FIELD PERFORMANCE AND FEED BACK 

It goes without saying that proof of the pudding is in eating only. A feed back from the site for the 
machine's performance therefore is essential. The data needs to be recorded at frequent intervals at 
site, compiied over a period of time and feedback provided to design office for drawing necessary 
inferences from the same and use these for design updates. 

It is the general practice in the industry to pay more attention only to those machines that do 
not perform well. More often than not, for every malfunction one keeps on trying modifications in 
the machine like better balancing, replacing bearings etc till satisfactory results are achieved. It is 
worth noting that every time the malfunction occurs the cause may not be machine alone but it 
could be foundation too. In certain cases, desired results could be achieved by correcting the 
source, which may be other than the machine. 

In the opinion of the author, the data for healthy machines also need to be studied at regular interval 
and feedback given to designers. This will certainly help in improving design methodologies. 

Some case studies are covered in Chapter 14. 
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PART - I 

THEORY OF VIBRATION 

Basic Understanding with Specific Application 
To 

Machine Foundation Design 

2. Single Degree of Freedom System 
3. Multi Degree of Freedom System 
4. Vibration Isolation 
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SINGLE DEGREE OF FREEDOM SYSTEM 

• Free and Forced Vibration 
• Undamped System 
• Damped System 
• Equivalent SDOF System - Columns and Beams 
• Dynamic Load Externally Applied 
• Dynamic Load Internally Generated 
• Impact Loads 
• Impulsive Loads 

• EXample p'roblems 
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SINGLE DEGREE OF FREEDOM SYSTEM 

In order to understand the dynamic behaviour of machine foundation system, the knowledge of 
theory of vibration is essential. Simplest system for basic understanding of vibration is a spring 
mass system. For understanding basic vibration, let us consider some of the aspects associated with 
vibration. 

• Degree of Freedom System: Number of coordinates required to locate displaced position 
of the mass is called its Degree Of Freedom (DOF) 

• Single Degree of Freedom System: A system is said to be a Single Degree of Freedom 
System (SDOF) when the displaced position of the mass is expressed by a single 
coordinate. For example, a one spring mass system as shown in Figure 2-1, is a Single 
Degree of Freedom (SDOF) system as the deformation of the spring takes place only in 
one direction and the displaced position of the mass m is defined by a single coordinate. 
For the system as shown in Figure 2-1, the degree of freedom is y coordinate of center of 

mass m 
• Free vibration: A structural system, when disturbed from its position of equilibrium and 

released, oscillates about its mean position of equilibrium. This state of vibration of the 
structure without any external excitation force is termed as free vibration 

• Forced vibration: If a system vibrates under the influence of an applied dynamic (time 
dependent) force, it is termed as forced vibration of the system 

• Damping: Any engineering system, when disturbed from its position of rest, will show 
vibration, which will die out eventually with time. The process by which vibration 
steadily diminishes in amplitude is called damping. In other words it can be said that every 
physical system has inherent damping associated with it. If we ignore damping, the 
system is called undamped system and if damping is considered, it is called damped 
system 

For better understanding of the dynamic behaviour of the SDOF system, the spring properties are 
considered linear and the presentation is developed in stages. Each stage contains its 
Mathematical Treatment and Example Problems. The stages considered are: 
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2-4 Single Degree of Freedom System 

I) Free vibration 
o Undamped System 
o Damped System 

2) Forced vibration 

y 

: ------J --------y Di,pI""d P",ition 

, m'----; , '. , , 
~ _________________ J 

y 

m 

~ 

Figure 2-1 Single Degree of Freedom (SDOF) System 

2.1 FREE VmRA TION 

2.1.1 Undamped System - SDOF Spring Mass System 

Let us consider two types of SDOF spring mass system: 

i) System with Translational DOF and 
ii) System with Rotational DOF 

2.1.1.1 SDOF System - Spring Having Translational Stiffness 

Unidirectional Translational Stiffness along Y -direction 

Consider one spring mass (SDOF) system without damping as shown in Figure 2.I.l-I. The 
system has mass m and unidirectional spring in y direction having stiffness ky • Before we 

consider vibration of this SDOF system, let us consider the system under static equilibrium i.e. 
mass at rest position. 

System at Rest i.e. Static Equilibrium Position: The gravity force acting on the mass is mg. 

Here g is acceleration due to gravity acting downward in (-) Y direction. Under this force, the 

spring deflects by an amount by in (-) Y direction. This deformed position of the mass is termed as 

position of static equilibrium (also termed as mean position) and is shown in Figure 2. I. I -I (a). 
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Let us now consider equilibrium of forces at DOF location i.e. center of mass location for this 
system at rest. The free body diagram showing forces acting on the mass is shown in Figure 
2.1. I-I (b). Considering equilibrium, we get 

(2.1.1-1) 

Solving, we get o =mg 
y k (2.1.1-la) 

y 

m 

3y 

y 

Undeformed 
Position 

Jj--------- ---k--------L Position 

I I L________ _~ _______ ~ after Deformation 

(a) System at Rest 

mg 

m 

(b) Free Body Diagram 

Figure 2.1.1-1 Undamped SDOF System-Static Equilibrium 

System under Motion: Let us now impart a motion to the system at rest position. Let us 
disturb the mass by pulling/pushing it slightly (by an amount y ) along Y and release it. The mass 

starts oscillating about the mean position i.e. position at rest as shown in Figure 2.1.1-2. 

The displaced position of the mass at any instant of time t is shown in Figure 2.1.1-3. Consider 
that at any instant of time t, the position of the mass is at a distance y upward from the mean 

position as shown in Figure 2.1.1-3. Let us consider the equilibrium at the DOF location i.e. center 
of mass at mean position. Forces acting on the mass, as shown in Figure 2.1.1-3 (b) are: 

a) Inertia force my 

b) Elastic resisting force (spring force) kyY 

It is important to note that all the internal forces i.e. inertia force and elastic resisting force oppose 
the motion. Accordingly their direction of application is in the direction opposite to direction of 
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motion of the mass. For the displaced position of the mass in (+) Y direction, as shown in Figure, 
these forces act opposite to direction of motion i.e. (-) Y direction. 

It is to be noted that the motion of the mass is about position of static equilibrium Le. 
the position where the gravity force and corresponding spring reaction force are in 
equilibrium. Hence these forces do not appear in the set of forces considered for 
dynamic equilibrium condition. In other words we can also say that the gravity force 
and the corresponding spring reaction force do not contribute to vibration of the 
spring mass system. 

Thus the net forces acting on the mass are only inertia force and elastic resisting force (spring 
reaction force). Free body diagram for the mass m under set of these forces is shown in Figure 
2.l.l-.3 (b). 

y 

r----------jt----------, ' , ' , ' 
T ' m ~ , , L _____________________ J 

Displaced 
Position 

y 

t 
y 

m Mean Position 
(System at Rest) 

1 r--------- -----------1 
: ky!+ Displaced 
L_________ _ ________ J Position 

Figure 2.1.1-2 Undamped SDOF System-System under Motion 

Considering the equilibrium of all forces acting on the mass at any instant t, the equation of motion 
is written as: 

(2.l.l-2) 

This equation is called equation of motion of free vibration of an undamped SDOF System. 

The solution to equation of motion (See SOLUTION 2.1.1-2) gives natural frequency Py and 

amplitude offree vibration Py of the mass. 
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Natural frequency Py =~ki radls (2.1.1-3) 

We can also express this in terms of static deflection Oy and acceleration due to gravity g. 

Substituting equation (2.1.1-1) in (2.1.1-3) it gives 

Py = ~ ;loy radls (2.1.1-4) 

Since system is undamped, it will continue vibrating indefinitely. The vibration motion of the mass 
depends upon initial conditions. For initial conditions y(t) = y(O) & y(t) = y(O) at time t = 0, the 

motion of the mass and maximum amplitude of free vibration are given as 

y = y(O) cos P t + j>(O) sin p t 
Y Py Y 

Maximum amplitude as 

y 

T '----__ m __ --' 
y 

1 m 

(a) System Under Motion 

Displaced 
Position 

Mean Position 
(System at Rest) 

my 

m 

(b) Free Body Diagram 

Figure 2.1.1-3 Undamped SooF System-Free Vibration 

(2.1.1-5) 

(2.1.1-6) 

Since system is undamped, it will continue vibrating indefinitely. The plot of the equation (2.1.1-
5), showing motion of the mass for initial conditions y(t) = y(O) & y(t) = y(O) at time t = 0, is 
shown in Figure 2.1.1-4. 
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y(t) 

4 t 

T ~ 
Py 1. 

lY~)~+---~----~---+~--~--~h----h+ 
o 

-1 

System Parameters y (0) = 1; yeO) = 7.85; T= 2 sec 

Figure 2.1.1-4 Free Vibration Response ofSDOF System 

SOLUTION 2.1.1-2 

Rewriting equation (2.1.1-2) 

For solution of the equation, let y be represented as y = eSI 

Thus .. 2 sl y=s e 

Substituting equation (b) in equation (a), equation becomes (ms 2 + ky)eSI = 0 

Since exponent est is not zero, therefore for solution to exist, (ms 2 + k y) = 0 

This gives two values of S S=±iJF; 

Denoting p y = ~ , the solution takes th~ form y=e 
+. t _IPy 

Here Py represents thefrequency offree vibration or natural frequency in radls 

Py =~ rad/s; or f =_1 {k; 
y 21( V-; Hz 

Where fy is the cyclic frequency in cycles/sec (Hz) 

The solution (c) is thus written as 

Using De Moivre 's theorem, the equation is rewritten as 

(a) 

(b) 

(c) 

(d) 
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y = A cos p y t + B sin p y t (e) 

The values of A & B are obtained using initial conditions. 

Considering initial displacement y(t) = y(O) and velocity y (t) = y (0) at time t=O and substituting 

in (e), we get A = y(O) & B = y(O) 
Py 

Solution becomes 
'(0) 

y = y(O) cos Py t+L-sinpy t 
Py 

Maximum amplitude 

For specific initial condition of y(t) = y(O) & y(t) = 0 ; 

Equation (f) becomes y = y(O) cos pi 

It is to be noted that equation (2.1.1-2) my + ky y = 0 is the equation of motion for 

translational DOF y. For system with translational DOF X or z, this equation & its 

solution need to be modified by replacing y with X or Z respectively. 

2.1.1.2 SDOF System - Spring Having Rotational Stiffness (Rocking Stiffness) 
Connected At CG of Base Area of the Block 

(f) 

(g) 

(h) 

Consider the block having mass m and Mass Moment of Inertia M mz about centroid Z-axis 

passing through centroid C. A rotational spring having rotational stiffness k; is attached to the 

support point (center of the base point) 0 of the block as shown in Figure 2.1.1-5. The block is 
constrained such that it cannot move either in X or Y direction but it can only rotate in XY plane 
about Z-axis (perpendicular to plane of paper) passing through O. The centroid C is at a distance h 
from the center of the base of the block O. The DOF of the system is rotation ¢ at point O. 

Static Equilibrium: Let us first consider the position of the mass at rest i.e. mean position of 
the mass. The gravity force mg is taken care of by reaction R at support point O. 

System under motion: Let us disturb the block so as to cause it to rotate slightly about point 0 
and then release the block. The block shall start oscillating about the mean position (i.e. position at 
rest) at point 0 in X-Y plane. Consider that at any instant oftime t, the block position is rotated 
anti-clockwise by an angle ¢ as shown in Figure 2.1.1-6. Due to rotation, centroid point C moves 

to new location point C' . Rotation ¢ at 0 induces rotation ¢ and translation h¢ at centroid C' 
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y 

T 
h 

Figure 2.1.1-5 Undamped SOOF System with Rotational Spring 
attached at Center of Base of Block 

Forces acting on the system are as shown in Figure 2.1.1-6. These are: 

i) Rotational Inertia = M mz ¢ acting clockwise (opposite to direction of motion) at centroid 

C'. 

ii) Translational Inertia force (along direction perpendicular to line OC') = mh¢ (opposite 

to direction of motion) 

iii) Resisting moment offered by spring (clock wise) at 0 = k;,p 

iv) Moment due to self-weight (anticlock wise) at 0 = mgx hsin,p = mgh,p 

(For ,p to be small sin,p = ,p ) 

Considering equilibrium of forces at DOF location i.e. at point 0, we get 

Rearranging terms, we get 

mg - R = 0 or mg = R 

(M mz¢ + mh¢ x h) + k;,p - mgh,p = 0 

(Mmz +mh2)¢ +(k; -"mgh),p = 0 

Or 

(2.1.1-7) 

(2.1.1-8) 

(2.1.1-9) 

Here M moz = M mz + mh2 is the mass moment of inertia of the block about Z-axis passing through 

support point o. This is the equati0!l of motion of an undamped SDOF system with rotational DOF 

at pointO. 
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y 

~ 
(a) System at Rest 

T 
h 

R 

(b) Rotation about 0 (c) Free body Diagram 

Figure 2.1.1-6 Undamped SDOF System with Rotational Spring attached at center of 
Base of Block - Free Vibration 

Solution to this equation (see SOLUTION 2.1.1-9) gives: 

Motion of the block ¢ = A cos P, t + Bsin P, t 

P, = (k, - mgh) rad/s 
Mmoz 

2-11 

(2.1.1-10) 

(2. 1.1-1 Oa) 

Here P, represents rotational natural frequency of the system and constants A & B are evaluated 

using initial conditions. 

For all practical real life cases, it is seen that term mgh is negligible compared to k, and can be 

conveniently be ignored without any loss of accuracy in the frequency value. Hence the natural 

frequency becomes: 

P, = ~ k, rad/s 
Mmoz 

(2.1.1-lOb) 

SOLUTION 2.1.1-9 

Rewriting equation (2.1.1-9) 

M moz ¢ +(k, -mgh)¢ = 0 (a) 

For solution o/the equation let ¢ be represented as 

(b) 

Substituting equation (b) in equation (a), equation becomes 
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Since exponent est is not zero, therefore for solution to exist, 

Denoting 

(k¢ -mgh) 
This gives two values of S s = ±i /-'----

Mmoz 

(k¢ -mgh) 
p¢ = , the solution (b) takes the form 

Mmoz 

This can be rewritten as 

Using De Moivre 's theorem, the equation is rewritten as 

¢ = Acosp¢ t+ Bsinp¢ t 

The values of constants A & B are obtained using initial conditions. 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

It is to be noted that equation (2. I. I -9) M moz ¢ + (k¢ - mgh) ¢ = 0 is the equation of motion for 

Rocking about Z-axis i.e. DOF ¢. For system with Rocking DOF (), this equation & its solution 

need to be modified by replacing M mz with M mx , M moz with M mox and k¢ with ke i.e. 

appropriately replacing all ¢ parameters with () parameters. 

2.1.1.3 SDOF System - Spring Having Rotational Stiffness (Torsional Stiffness) 
Connected At CG of Base Area of the Block 

Consider a block having mass m and Mass Moment ofInertia Mmy about Y-axis passing through 

CG of the Base Area. A Torsional spring having rotational stiffness kip is attached to the block at 

the CG of the Base area point 0 as shown in Figure 2.1.1-7. The block is constrained such that it 
can neither move in X nor in Z direction but it can only rotate in XZ plane about Y-axis passing 
through o. 

Proceeding on the similar lines, we get equation of motion as 

M moy ti/ + kip If/ = 0 (2.1.1-1 I) 
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Here M moy = M my is the mass moment of inertia of the block about Y-axis passing through 

support point O. This is the equation of motion of an undamped SDOF system with Torsional DOF 
at point O. 

Solution to this equation gives: 

Motion of the block (2.1.1-]2) 

Here p. ~ ~ k. radls represents Torsional natural frequency oftbe system. Constants A & B 
Mmoy 

are evaluated using initial conditions. 

y 

~ 

(a) System at Rest 

T 
h 

rF X ----------\ -_---=---'T'"I"", ~---+', 
r --- \ \ 

Z \, " '" 1 ._!----
I~--."."...__I_='-.:::.:--=--..L-1_4" 

_--------- \ I 
\ \ 

\ \ \ 
\ \ I 

\ \ ------, ----
\------_ ... --

(b) Rotation about Y-axis 

Figure 2.1.1-7 Undamped SDOF System with Torsional Spring attached at center of 
Base of Block- Free Vibration 

2.1.1.4 Equivalent SDOF Systems 

Any physical system, for the purpose of analysis, needs to be modeled mathematically and the 
model must represent the prototype nearly truly i.e. the mathematical model and prototype must be 
equivalent. 

For mathematical modeling, the machine is generally considered as rigid body consisting of only 
mass whereas the foundation is considered a) as a rigid body having only mass as in the case of 
block foundation and b) as an elastic body having both mass and stiffness for the case where 
machine is supported on structural system comprising of beams and columns. 

Block Foundation: In case of block foundation resting directly over soil the foundation 
rigidity is much higher compared to that of the soil. Thus the foundation is considered as a rigid 
body. Hence only mass of the block needs to be accounted for. 
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Machine supported on Structural System: For cases, where machine is supported over a 
column, a beam, a portal frame or their combination, contribution of both mass and stiffness of the 
support system become significant. For such systems, equivalent structural mass should be added 
to machine mass for computation of frequency and response. Frequency computation based on 
massless springs would turn out to be erroneous. It is therefore desirable to develop equivalent 
systems, which include influence of mass content of support system. 

Following basic systems are considered and equivalent SDOF system developed for each of these: 

i. A column supporting the mass 

ii. A cantilever beam supporting the mass 

iii. A simply supported beam supporting the mass 

iv. A fixed beam supporting the mass 

v. A Portal Frame supporting the mass 

a) Vertical Motion 

b) Transverse Motion 

vi. A Rigid Beam Supported by number of columns - Lateral Motion 

2.1.1.4.1 A column supporting the mass - axial motion 

Consider a mass m supported by a column having cross-section area A, Elastic modulus E 
height h and mass me as shown in Figure 2.1.1-8 (a). Consider that the system is constrained to 

move only in vertical Y direction. 

Column stiffness in Y direction = axial stiffness of column = k y = E x A N/m 
h 

Representing column by an equivalent spring, the system represents a SDOF spring mass system as 
shown in Figure 2.1.1-8 (b), where spring is not a mass-less spring but has mass same as that of 

column i.e. mass me' This system is identical to the system shown in Figure 2.1.1-1 except that in 

this case the spring (i.e. column) has a mass me . 

If we neglect the column mass (i.e. neglect the spring mass), we get 

Natural frequency is p = ~ rad/s 

/ This is same as given by equation (2.1.1-3). 

(2.1.1-13) 
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T 
h ~===+==l 

(a) Column Supporting Mass m (b) Spring Mass same as Column Mass 

m' = m + 0.33mc 

( c) Column represented as massless Spring 

Figure 2.1.1-8 Column Supporting Mass-Equivalent Mass 

Now let us include the column mass i.e. consider the spring having mass me' Consider that 

the mass is displaced from its position of equilibrium and released. The spring mass system 
exhibits vibration. Let the displacement of the mass at any instant of time t be y. Consider that 

the variation of the displacement at spring top y to the displacement at spring bottom zero is 

linear. This represents column deformation y at the top to zero deformation at the column base. 

The displacement is shown in Figure 2.1.1-8 (b). 

Consider a small element of the column at a distance a from fixed end. 

Vertical displacement at this point of the column 

Mass of this element of column 

a 
= y-

h 

m 
= -.f...da 

h 
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Kinetic energy of the spring mass system I h I(m J( a)2 E=-m(y)2+ f- -.£.da y-
2 02 h h 

Here y represents the velocity 

SimplifYing this equation becomes 

E='!m(yf + S.!(mc da 1r y~)2 =.!m(y)2 +.!(mc ~)(y)2fa2da 
2 02 h }. h 2 2 h h2 0 

(2.1.1-14) 

• • m 
m =m+m =m+_c 

C 3 (2.1.1-15) 

Here m; is termed as generalised mass of the column, & 

'" m is termed as equivalent mass or generalised mass of the total system. 

This indicates that if one third of the column mass is added to the mass m then the spring could be 
considered as massless. The model thus becomes as shown in Figure 2.1.1-8( c). 

The natural frequency of the system thus becomes 

radls (2.1.1-16) 

2.1.1.4.2 A Column supporting the mass -lateral motion or a Cantilever Beam 
supporting the mass - flexural deformation 

/ 
Lateral motion of a column supporting the mass or flexural deformation of a cantilever beam 
supporting the mass is the same. Let us therefore analyse the case as a cantilever beam. 

Consider a mass m supported by a cantilever beam having cross-section area A, Elastic 

Modulus E , length L and mass mb as shown in Figure 2.1.1-9. Consider that the beam deforms 

only in X-Y plane thus constraining the system such that mass m moves only in vertical Y 
direction. 

Now consider that the beam mass system is displaced from its position of equilibrium and released, 
the system shall exhibit vibration. 
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Beam stiffness in bending: Representing beam by an equivalent spring, the system represents a 
SDOF spring mass system. This system is identical to the system shown in Figure 2.1.1-1 except 

that in this case the spring (i.e. beam) has a mass mb . From the principles of statics, one can write 

equation of deflection curve of the cantilever beam. 

Consider a small element of the beam d a at a distance a from fixed end. 

Mass of this element of beam dm = mb da 
L 

The deflection of the beam 0 a at this location 

For a = L, we get deflection at the free end of the beam = 

o _ (mg)L3 

L - 3EI 

Beam stiffness (in bending) 

(2.1.1-17) 

(2.1.1-18) 

(2.1.1-19) 

Neglecting beam mass, the natural f'equency is p = ~ ,.dls that is same as given by 

equation (2.1.1-3). 

If the mass of the beam mh is small (but not negligible) in comparison to the applied mass m it can 

be assumed with sufficient accuracy & with good level of confidence that the deflection curve of 
the beam during vibration has the same shape as the static deflection curve under influence of mass 
m. 

Denoting the deflection of the beam at the free end as y, we get from equation (2.1.1-18) 

_ 0 _ (mg)L3 

Y - I. - 3EI 

Substituting in equation (2.1.1-17) we get oa in terms ofy as oa = -;'(3a2 L -a3
) 

2L 

KE of the system 
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1 . 2 Ll(mbda){ Y (2 3)}2 E=-m(y) + f- -- - 3a L-a 
2 02 L 2L3 

=.!.m(y)2 +.!.(y)2 mb (~)2f{(3a2L_a3)}2da 
2 2 L 2L 0 

Simplifying further, it gives: 

E _ 1 (.)2 1 ( ')2 mb ( 1 )2 33 L7 --my +-y - - -
2 2 L 2L3 35 

1 ( .)2 1 ( .)2 33 1 ( 33 )( .)2 =-m y +- Y -mh =- m+-mb y 
2 2 140 2 140 

_ I ( • \, .)2 
--m IY 

2 

Here m· = m+m; = m+O.23 mb & Y represents the velocity 

Where m; is termed as generalised mass of the beam, & 
• m is termed as equivalent mass or generalised mass of the total system. 

l d. 

a~1 

m* = m + 0.23 mb 

,. L 

Y 2 3 
c5a = zt(3a L -a) 

(a) Beam Deflected Shape 

(b) Beam Represented as Spring; (c) Beam represented 
Spring Mass same as Beam as massless Spring 
Mass 

Figure 2.1.1-9 Cantilever Beam Supporting Mass m - Equivalent Mass 

(2.1.1-20) 

(2.1.1-21) 

This indicates that if (33/140 ~ 0.23) of the beam mass mb is added to the applied mass m then 

the spring could be considered as massless. The model thus becomes as shown in Figure 2.1.1-
9(c). 

The natural frequency of the system thus becomes 
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k 
radls (2.1.1-22) 

2.1.1.4.3 A simply supported beam supporting the mass 

a) Mass at beam center location 

Consider a mass m supported by a simply supported beam at center. The beam has cross-section 
area A , Elastic modulus E , length L and mass mb as shown in Figure 2.1.1-1 O(a). Consider that 

the beam deforms only in X-V plane thus constraining the system such that mass m moves only in 
vertical Y direction. Now consider that the beam mass system is displaced from its position of 
equilibrium and released, the system shall exhibit vibration. 

Beam stiffness in bending: Representing beam by an equivalent spring, as shown in Figure 
2.1.1-1O(b) the system represents a SDOF spring mass system. This system is identical to the 
system shown in Figure 2.1.1-1 except that in this case the spring (i.e. beam) has a mass mb . 

From the principles of statics, one can write equation of deflection curve of the simply supported 
beam. Consider a small element of the beam da at a distance a from fixed end as shown. 

Mass of this element of beam dm= mb da 
L 

The deflection of the beam 80 at this location 

For a = 7i ' we get deflection at the beam center 

8 _ (mg)L3 

Ll2 - 48El 

Beam stiffness at beam center (in bending) 

(2.1.1-23) 

(2.1.1-24) 

ky = :~ = 48;1 N/m (2.1.1-25) 
UL/2 L 

Neglecting beam mass, the natural frequency is p = ~ radls that is same as given by equation 

(2.1.1-3). 

https://engineersreferencebookspdf.com



2-20 Single Degree of Freedom System 

If the mass of the beam mb is small (but not negligible) in comparison to the applied mass m it can 

be assumed with sufficient accuracy & with good level of confidence that the deflection curve of 
the beam during vibration has the same shape as the static deflection curve under influence of mass 
m. 

Denoting deflection at the center ofthe beam as y, we get from equation (2.1.1-24) 

L 

(mg)L3 

y= 48£1 

Y 2 3 
Ba= 3 (3aL -4a) 

F=L1 
(a) Beam Mass system­

Deflected shape 

(b) Equivalent Spring 
Mass system; Spring 
Mass same as beam 
mass 

m* = m + 0.485 mb 

(c) Equivalent Spring 
Mass system; Spring 
is massIes 

Figure 2.1.1-10 Simply Supported Beam - Mass at Center - Equivalent Mass 

Substituting in equation (2.1.1-23) we get oa in terms ofy as 0 = L(3aL2 -4a3
) 

a L3 

KE of the system 

Solving we get 

1(.17 ).2 =- m+-mb (y) 
2 35 

Where mO = m+m; = m+0.485mb 

Here y represents the' velocity of the mass 

(2.1.1-26) 
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* Here m; & m are termed as generalised mass of the beam and generalised mass of the total 

system respectively. 

This indicates that if (17/35'" 0.485) of the beam mass mb is added to the applied mass m then 

the spring could be considered as massless. The model thus becomes as· shown in Figure 2.1.1-
10(c). 

The natural frequency of the system thus becomes 

k 
rad/s (2.1.1-27) 

b) Mass m at Beam Center and another Mass ml at off-center- Beam is mass less 

(a) Beam Deflected shape 
due to Mass m 

m* =m + amI 

(b) Equivalent Spring 
Mass system; Spring 
is massless 

Figure 2.1.1-11 Simply Supported Beam - One Mass at Center and Other mass 
at Off-center -Beam Massless- Equivalent Mass of System 

Consider mass m supported at beam center and another mass ml supported at a distance a from 

support as shown in Figure 2.1.1-11. In this case mass participation of the beam will depend upon 
ratio aIL. 

Following the procedure as in case (a) above, we get Kinetic energy equation of the system as: 
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E _I *(.)2 --m y 
2 

Where • m =m+am j ; 

Plot of a vs. aiL is shown in Figure 2.1.1-12 

jl.O 
6 

• .0:: 0.8 

:i a 0.6 
0.. 
<II 

~ 0.4 

u 
~ 0.2 

Single Degree of Freedom System 

(2.1.1-28) 

~ O+--=~~------.------.-----.r---~ 
o 0.1 0.2 0.3 0.4 0.5 

Machine Mass Location vs. Span-Ratio aiL 

Figure 2.1.1-12 Simply Supported Beam-Mass at Off-center Location­
Machine Mass Participation Factor-Beam Massless 

2.1.1.4.4 A fixed beam supporting the mass - Consider Mass at beam center 
location 

Consider a mass m supported by a fixed beam at center. The beam has cross-section area A, 
Elastic modulus E, length L and mass mb as shown in Figure 2.1.1-15(a). Consider that the beam 

deforms only in X-Y plane thus constraining the system such that mass m moves only in vertical Y 
direction. 

Now consider that the beam mass system is displaced from its position of equilibrium and released, 
the system shall exhibit vibration. 
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Beam stiffness in bending: Representing beam by an equivalent spring, as shown in Figure 2.1.1-
15(b) the system represents a SDOF spring mass system. This system is identical to the system 
shown in Figure 2.1.1-1 except that in this case the spring (i.e. beam) has a mass mb . 

From the principles of statics, one can write equation of deflection curve of the fixed beam. 
Consider a small element of the beam 'da' at a distance a from fixed end as shown. 

Mass of this element of beam 
m 

dm=~da 
L 

The deflection of the beam at this location 

2 4 2 o = mga (3L-4a)=~(3L-4a) 
a 48EI L3 

For a = ~ , we get deflection at the beam center = 

-0 _ (mg)L
3 

y - Ll2 - 192EI 

Beam stiffness at beam center (in bending) 

k = mg = 192EI N/m 
y 0Ll2 L3 

(2.1.1-29) 

(2.1.1-30) 

(2.1.1-31) 

Neglecting beam mass, the natural frequency is p = f¥ rad/s that is same as given by equation 

(2.1.1-3). 

Substituting equation (2.1.1-30) in equation (2.1.1-29) we get 

4ya2 
oa =-3-(3L+4a) 

L 
(2.1.1-32) 

Consider that the deflection curve of the beam during vibration has the same shape as the static 
deflection curve under influence of mass m. 

KE of the system 

Solving the equation gives us E = .!..(m +.!2.mb)(y)2 = .!..(m· }y)2 
2 35 2 

(2.1.1-33) 

Where m· =m+m; =m+0.37mb &yrepresentsvelocityo!thesystem 
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Here m; & m' are termed as generalised mass of the. beam and generalised mass of the total 

system respectively. 

m* =- m + 0.37 mb 

(a) Beam Mass System 
Deflected Shape 

(b) Equivalent Spring Mass 
System; Spring Mass 
Same as Beam Mass 

(c) Equivalent Spring 
Mass System; Spring 
is MassIes 

Figure 2.1.1-13 Fixed Beam - Mass at Center - Equivalent Mass 

2.1.1.4.5 A Portal Frame supporting the mass 

Consider a portal frame supporting mass m at beam center as shown in Figure 2.1.1-14. Material 
and section properties are as under: 

Elastic Modulus of Material (Both column & Beam) E 
Mass density ofthe material p 

Span of Beam is L 
Height of Frame H 
Area of Beam Crossection Ab 

Area of Column Crossection Ac 

Moment of Inertia Beam Crossection I b 

Moment oflnertia Column Crossection Ie 

Consider that portal frame is constrained to move only in X -Y plane. Possible motion directions are 
a) motion along Y and b) motion along X. 
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y 
m 

+ 
[tJL 

k=-­
IjH 

(i) Basic Frame supporting Mass at Frame Beam Center 

~I' ~-------~ ~.;: 

Deflection 

Deflection 

(ii) Vertical vibration mode (along) Y 

Bending Moment Diagram 

(iii) Transverse vibration mode (along) X 

MgL 
MA=MD= 8(k+2) 

-mgL 
MB=MC= 4(k+2) 

-mgH 3k+ 1 
MA = -2- 6k+l 

MgH 3k 
MB = -2- 6k+l 

MD=-MA Mc=-MB 

2-25 

Figure 2.1.1-14 Portal Frame with Machine Mass m at Beam Center - Deflection and Bending 
Moments" Vibration in Vertical & Translational Mode 

To represent the motion as SDOF system, the frame shall have one DOF for each of the motion 
along X and Y. For motion along Y the DOF is Oy and for motion along X the DOF is ox' Let us 

consider these cases one by one. 

Beam Stiffness factor 

Column Stiffness factor 

kb=(lb IL ) 

ke = (Ie I H) 
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Beam to Column Stiffuess ratio 

a) Motion along Y (Vertical Motion) 

Degree of Freeedom 

This has two components, one pertaining to beam deformation a yb and other pertaining to 

column deformation aye. 

i) Beam Deformation a yb : 

Machine Mass on the frame Beam m 

Mass of Frame Beam 

Generalised mass of Frame Beam (for vertical motion) 

Note: For simply supported beam the factor for equivalent mass is 0.485 (see equation 

2.1.1-26) and for fixed fixed beam this is close to 0.37 (see equation 2.1.1-33). For a 

frame this value is taken as 0.45 (close to average). 

Total Effective mass on Frame Beam for deflection ayb mO = m+0.45mb 

Considering bending moment diagram of beam alone (as shown in the Figure), and using 

basics of theory of structures, we get: 

a) Deflection due to span moment mOg L 
4 

mO gL 
b) Due to support moments 4(k +2) 

mO gL3 
a --=-­ybl- 4SElb 

a mO gL L2 
yb2 = 4(k+2( SElb 

Net beam deflection at center a - a a _ mO g L3 _ mO g L x~ 
yb'- ybl- yb2 - 48Elb 4(k+2) SElh 

a = mO gL
3 

x 2k +1 Here mO =m+0.45mb 
yb 96E1b k+2 

ii) Column Deformation aye: 

Mass of each column 

Generalised Mass of each column (equation 2.1.1-15) 
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Effective Mass on frame column top ,causing deflection Oye of the columns: 

m· = (m+mb)+2xO.33xme 

Vertical deflection of columns 

m·xg • ( ) 
Oye = ( /); Herem = m+mb +2x0.33xme 

2x EAe H 

Overall vertical deflection at mass location 

Natural Frequency p =Jt rad/s y 0 
y 

b) Motion along X (Transverse Motion) 

(2.1.1-35) 

(2.1.1-36) 

For transverse motion along X, consider toatal mass acting on the frame acting along X. For this 
motion only columns undergo flexural deformation and beam moves like a rigid body. 

Generalised mass of each column top (equation 2.1.1-21) 

-mgH 3k+ 1 
MA= -2- 6k+l 

mgH 3k 
MB= -2- 6k+l 

MA+MB = -mgH 
2 

Total Effective mass on Frame column top (both columns) causing transverse deflection 

Lateral deflection at column top this load applied along X: 

Considering bending moment diagram of column (as shown in sketch above), we get: 

(2.1.1-37a) 
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o _ mO xgxH3 2+3k 

x - 12E lei + 6k 

Natural Frequency Px =/f rad/s 

Representing in terms of mass and stiffness, we get: 

Lateral Stiffness 

Mass 

Natural Frequency 

Px =~ ~ =/f radls 

2.1.2 Damped System 

k _ mO xg _ 12E1c 1+6k 
x -~-Ji3 2+3k 

(Same as equation 2.1.1-38) 

y 

Figure 2.1.2-1 Damped SDOF System 

(2.1.1-37b) 

(2.1.1-38) 

(2.1.1-39) 

(2.1.1-40) 

(2.1.1-41) 

It is well known that most engineering systems, during their vibratory motion, encounter resistance 
in the form of damping. Any engineering system, when disturbed from its position of rest, will 
show vibration, which will die out eventually with time. The process by which vibration steadily 
diminishes in amplitude is called damping. There are various forms of damping viz. air damping, 
coulomb damping, viscous damping, internal damping etc. and for detailed mathematical treatment 
to damping; readers are advised to refer to any standard text/reference book on structural dynamics/ 
vibration. 
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For the application specific to machine foundation, let us consider damping as viscous damping 
where, the resisting force is proportional to velocity. Damping, denoted by cy ' is represented by a 

dashpot. Damped SDOF System is shown in Figure 2.1.2-1. 

The system under motion is shown in Figure 2.1.2-2 (a). Internal forces acting on the mass at any 
instant of time tare: 

Inertia force proportional to acceleration 
Damping force proportional to velocity 
Spring force proportional to displacement 

These forces are shown in the free body diagicun as shown in Fig. 2.1.2-2b. It is to be noted that all 
the internal forces oppose the motion i.e. if mass is moving towards positive y direction, the 

forces are directed towards negative y direction. 

Considering the equilibrium of the forces acting on the mass, equation of motion is written as: 

(2.1.2-1) 

Solution to this equation suggests three types of systems 

i) Critically Damped System 
ii) Over-damped System 
iii) Under-damped System 

j-------------, 
T : ______ ~ ______ r-Displaced Position 

y 

J.- Mean Position 

(a) System Under Motion (b) Free Body Diagram 

Figure 2.1.2-2 Damped SooF System under Motion 
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Consider the solution to be of the form 

SubstitUting equation (2.1.2-la & b) in equation (2.1.2-1), the equation becomes 

(ms 2 +cys+ky)est 
= 0 

Since est is non-zero, for solution to exist 

This gives two roots of s 

Substituting Py =~~ , 

Cy 
sl2 =--± . 2m 

Cy 
s12 =--± , 2m 

it gives 

The solution to the equation of motion becomes 

(2.1.2- Ia) 

(2.1.2-1 b) 

(2.1.2- Ic) 

(2.1.2- Id) 

(2.l.2-le) 

(2.1.2-1 t) 

This expression represents three types of motion depending upon whether the radical in equation 
(2.1.2-1 e) is zero, positive or negative. Thus: 

i) If radical is zero, this represents critically damped system 
ii) If radical is positive, it represents over damped system, and 
iii) Ifradical is negative, it represents under damped system 

Let us examine these cases one by one. 

2.1.2.1 Critically Damped System 

Rewriting equation (2.1.2-1 e) 
Cy 

812 =--± , 2m { 

Cy }2 2 
- -p 
2m y 

For critically damped system, the radical in equation (2.1.2-le) is zero, then 
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{ }

2 
Cy 2 

- -p =0 
2m y 

This gives 

This damping is termed as Critical Damping. 

Denoting critical damping as Cycr , eyer = 2mpy 

Since there is only one value of s, the solution therefore, becomes: 

cy 
--t 

y=(AI+A2t)e 2m 

or 

Constants Al & A2 are evaluated using initial conditions. 

Cycr 
-=p 2m y 

2-31 

(2.1.2-2) 

(2.1.2-3) 

(2.1.2-4) 

Equation (2.1.2-4) indicates decaying amplitude y with time. It can be seen that the value of y 

reaches zero quickly and the mass comes to rest. In other words the mass shall not have any 

oscillation. 

The damping value for which the radical becomes zero is termed as Critical Damping of the 

system. 

(2.1.2-5) 

Constants A 1 and A2 are evaluated using initial conditions. 

Considering initial displacement y(t) = y(O) and velocity y(t) = y(O) at time t=0 and substituting 

in to equation (2.1.2-4)& (2.1.2-5), it gives 

AI = y(O); A2 = yeO) + Pyy(O) 

Equation (2.1.2-4) thus becomes 

Equation (2.1.2-6) thus represents solution for critically damped system. 

For a typical case of initial zero velocity i.e. yeO) = 0 

Equation (2.1.2-6) becomes 

(2.1.2-6) 
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or --L = (I + P t)e -Pyl 

y(O) y 
(2.1.2-7) 

Defining damping coefficient as ratio of damping c y to critical damping C ycr and representing it 

(2.1.2-8) 

Plot of equation (2.1.2-7) is shown in Figure 2.1.2-3 

It is seen from this figure that the free vibration response of a critically damped system does not 
show any oscillation about the zero deflection position, instead the displacement quickly returns to 
zero (depending upon its exponential decay term). 

In other words the critically damped system has the smallest amount of damping for which no 
oscillation takes place. 

1.2 

1.0 

0.8 

S :?: 0.6 
~ 

0.4 

0.2 

0 
0 0.5 1.5 2.0 

tIT 

Figure 2.1.2-3 Response of Critically Damp~d System - Initial velocity y (0) = 0 

2.1.2.2 Over Damped System 

Rewriting equation (2.1.2-le) 
Cy 

Sl2 =--± 
. 2m 

For over damped system, the radical in this equation is positive 

{2}2 _p 2 
2m y 
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Substituting cy = 2mp/;y from equation (2.1.2-8), equation becomes 

sl,2 =-Py'y±py~~/-1 
For radical to be positive, 

2-33 

(2.1.2-9) 

In other words, the system is said to be over damped when, y is greater than unity i.e. damping of 

the system is more than its critical damping. 

Substituting values of S I & S 2 from equation (2.1.2-9), solution for over damped system, equation 

(2.1.2-1j) becomes 

(2.1.2-10) 

The constants AI & A2 are determined based on initial conditions. 

Equation (2.1.2-10) indicates that the system does not vibrate and returns to equilibrium position at 

a relatively slower rate compared to critically damped system. 

Differentiating equation (2.1.2-10), it gives 

(2.1.2-11 ) 

For a typical case of initial displacement of y = y(O) and initial velocity of y(O) = 0 and 

substituting in equation (2.1.2-10) & (2.1.2-11), it gives 

{ -, y + ~k / -1 J} { 'y + ~k / -I}} 
AI = y(O) If J ; A2 = y(O) IT ) 

2'J\'/ -1 2...;\'/-1 

(2.1.2-12) 

Substituting equation (2.1.2-12) in equation (2.1.2-10), the equation becomes 
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0-
'-' 
~ 
'C' 
~ 

1.2 

1.0 

0.8 

0.6 

0.4 ;,= 1 

0.2 

0 
0 2 3 4 

tiT 

Fig 2.1.2-4 Response of Critically Damped System (;, = 1) & 
Over Damped System (~> 1) 

(2.1.2-13) 

5 

Plot of equation (2.1.2-13) is shown in Figure 2.1.2-4. Figure also shows plot of critically damped 
system for comparison. 

Since structural systems having damping greater than critical damping are normally not 
encountered in practice, and neither there is any application to the machine foundation design, the 
details are not discussed further. 

2.1.2.3 Under-Damped System 

Rewriting equation (2.1.2-1 e) 
Cy 

Sl2 =--± 
. 2m 

For under damped system, the radical in the equation is negative 

Substituting c y = 2mp yS y from equation (2.1.2-8), equation becomes 

(2.1.2-14) 
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1.2 

1.0 

;:...'" 0.8 
~ 

~ 0.6 
0 
.~ 

~ 0.4 

0.2 

0 
0 0.5 1.0 

Damping Coefficient 

Figure 2.1.2-5 Damped Frequency vs. Damping Coefficient 

(2.1.2-15) 

For radical to be negative, S y < 1 i.e. the system is said to be under damped when S y is less than 

unity i.e. damping of the system is less than its critical damping. 

Denoting P dy = P y ~(l-(n (2.1.2-16) 

Equation (2.1.2-15) becomes (2.1.2-17) 

Here P d Y represents damped natural frequency of the system. 

Plot of equation (2.1.2-16) is shown in Figure 2.1.2-5. It is seen that for damping values up to 20%, 

there is hardly any appreciable change in damped frequency. 

Substituting values of Sj & s2 from equation (2.1.2-17), solution for under damped system, equation 

(2.1.2-1j) becomes 

(2.1.2-18) 

This equation can also be expressed in trigonometric function as . 

-p S t( ) Y = e y y Acos Pdyt + Bsin Pdyt (2.1.2-19) 

Differentiating we get: 
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y = -PySy e -Py':yl (ACOSPdyf + Bsinpdyf) 

+e-
Py

':
yl

(- PdyAsinpdyf+ PdyBCOSPdyf) 

The constants A & B are determined based on initial conditions. 

1.5 Sy= 0.1 

1.0 

0.5 
S 
~ 
'C' 0 ~ 

-0.5 

-1.0 
tIT --+ 

-1.5 

Figure 2.1.2-6 Variation of Amplitude with Damping 

(2.1.2-20) 

Considering initial displacement yet) = yeO) and velocity yet) = yeO) at time t=0 and substituting 

in equations (2.1.2-19) & (2.1.2-20), we get 

A = yeO) ; B =_1_(v(0)+ PySyy(O») 
Pdy 

Substituting for A & B in equation (2.1.2-19), the solution becomes 

y(t) = e Py y y(O)coSPdyt+ y y sinpdyt - .: I[ (y(O) + P S yeO»~ ) 

Pdy 

For a particular case of initial velocity yeO) = 0, the solution becomes 

(2.1.2-21) 
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--=e Y Y (cosp t+~sinpd t) 
y(t) -p, I { P , } 
y(O) dY Pdy y 

(2.1.2-22) 

In this equation e -P,'v' indicates exponential decay of the motion and rate of decay depends upon 
value of damping. The other part within parenthesis indicates harmonic motion with damped 

frequency P d Y • 

Plot of equation (2.1.2-22) for various values of damping coefficient is shown in Figure 2.1.2-6. It 
is seen that with 10% damping, motion practically diminishes after about 4 cycles. For comparison 
sake, free vibration motion for over damped, critically damped, under damped & undamped system 
is shown in Figure 2.1.2-7 

1.5 

1.0 

0.5 
,-.. 
0 

~ 
~ 0 
~ 

-0.5 

-1.0 

-1.5 tlT----' 

Figure 2.1.2-7 Free Vibration Response for Undamped System Sy = 0, Under-Damped 

Sy < 1, Critically Damped l;y = 1 & Over-Damped l;y > 1 

2.2 FORCED VIBRATION 

A structural system, when subjected to time dependent excitation force, is set to motion. This state 
of vibration of the structure is termed as forced vibration. For machine foundation application, 
more often than not, the machine internally generates the excitation force. However in some cases, 
this force could also come from external sources. It is of interest to note that whether the excitation 
force is applied externally or generated internally, the structure always vibrates with the frequency 
of the excitation force. 
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2.2.1 Undamped System - Dynamic Force Externally Applied 

2.2.1.1 System having Translational Stiffness & Dynamic Force Externally Applied 

A SDOF system subjected to dynamic excitation (whether internally generated or externally 
applied) is a simplest form of representation of a machine foundation system. The mass represents 
mass of machine and foundation whereas elasticity of the bedding (soil or support system) is 
represented by spring stiffness ky and the system experiences a dynamic excitation force F(t). 

As a machine foundation designer, the basic interests are: 

• To compute natural frequency 
• To compute vibration of the mass i.e. response under dynamic force F(t) 

• To compute force transmitted to the ground! fixed support base 

Consider an undamped SDOF system subjected to externally applied dynamic excitation force 
F(t) as shown in Figure 2.2.1-1. Consider the applied excitation force to be harmonic with 

excitation frequency OJ. Let this excitation force be F(t) = Fy sin{ut and let it be applied to the 

mass' m ' as shown. Considering equilibrium of forces, equation of motion is written as 

This is the equation of motion for forced vibration of Undamped SDOF System. 

F(t) = Fy sin rot 

r--------t--------, 

lr ,--------~--------. 
y 

1 m 

~ 
(a) System under Motion 

my F(t) = Fy sin rot 

m 

(b) Free Body Diagram 

Figure 2.2.1-1 Forced Vibration - Undamped SDOF System 

(2.2.1-1 ) 
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Solution to this equation (See SOLUTION (2.2.1~l» gives total response as: 

y(t)= AcosPi+Bsinpyt + Fy ~sinIV t 
, • ' k \1- fJy J 

Complimentary solution ,y / ' 
Particular Solution 

(2.2.1~2) 

Complimentary solution represents transient vibration whereas particular solution represents 

steady~state vibration. Constants A & B are evaluated based on given initial conditions. It is seen 

that system vibrates with natural frequency Py = ~kiz during transient phase (see equation 2.1.1~ 
3) and with natural frequency IV during steady-state phase. 

For initial conditions y = y(O) & Y = y(O) , solution becomes 

y(t)=y(O)cosPyt+ [yeo) -Oy rAn] sin Pi + 
Py \1-fJyJ 

, ,I 

complement;ry solution 
(Transient Vibration) 

s: 1 . 
u y -;,---;;n SID IV t 
, ~ - fJy J , 
particular v solution 
(Steady State Vibration) 

Here Oy = X represents the static deflection due to applied force ry 

For specific initial condition of 

Complementary solution 

yeO) = 0 & .Y(O) = 0, we get 

F fJ 
Y (t) = _-1'..f-Pny sin p t 

c k I-fJ2 Y 
y Y 

Yc(t) fJy . 
=-~smp t 

(Fylky) \1-fJ;J y 
Or 

Plot of equation (2.2.1-4) is shown in Figure 2.2.1-2 

Particular solution (Steady State Response) 

F 1 
Yp (t) = -1'..;,----;:;-nsin IV t 

ky \1- fJy J 

Or 
Yp(t) Yp(t) t. 8 = Fy 

(Fylky) =8;= (t_fJ;)smOJt; y ky 

Total Response becomes 

(2.2.1-3) 

(2.2.1-4a) 

(2.2.1-4) 

(2.2.l-5a) 

(2.2.1-5b) 
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Total Response Amplification is given by: 

Plot ofthese three equations (2.2.1-4, 5 & 6) is as shown in Figure 2.2.1-3. 

0.3 

0.2 

0.1 
00;>" 
~ O~--~~~~----~r---~--+-~--~~--~---,h 

-0.1 

-0.2 

-0.3 tlT---. 

Figure 2.2.1-2 Undamped Transient Response - Forced Vibration 

Force transmitted to support 

(2.2.1-6a) 

(2.2.1-6) 

The force Fry(t) transmitted to support in V-direction is only the spring reaction force in Y­

direction, i.e. Fry (t) = k y yet) . Considering that every physical system possesses inherent 

damping, the transient response dies out with time (as we shall see later in this chapter) and the 
transmitted force to the support is only on account of steady-state response i.e. Fry (1) = ky y p (I) , 

where y p is the steady-state response. 

Substituting for y p from equation (2.2.1-5), we get: 

Maximum value of transmitted force (2.2.1-7) 
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From the above, we can summarize as: 

Natural Frequency py = ~klm radls 

Steady state response 

Max. Force transmitted to support 

1.5 

1.0 

0.5 

tIT ----. 

Figure 2.2.1-3 Forced Vibration Response - Undamped SDOF System 

SOLUTION (2.2.1-1) 

Rewriting equation (2.2.1-1) 

my+kyy=Fy sinwt (a) 

Solution to this equation has two parts 

i) Complimentary solution represents Transient response of the system 

ii) Particular solution represents Steady-state response of the system 

Complimentary solution: 

It's the free vibration response of the system. 

Setting RHS of equation (2.2.1-1) equal to zero, equation becomes 

myc + kyYc = 0 (b) 

Here subscript 'c' in Yc refers to complimentary solution 
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System vibrates with its natural frequency Py and the response is given as 

yc(t) = Acos p/ + Bsin P/ 

For solution of this equation - see solution 2.1.1-2 equation (f) 

Particular solution: 

(c) 

Particular solution is the forced response of the system. The system vibrates with the frequency of 

the excitation force i. e. frequency' m '. 

Equation ojmotion, i.e. equation (a) is rewritten as 

(d) 

Here subscript r in y r refers to particular solution 

Thus for particular solution of equation (d), let solution be of the form 

y r (I) = C sin m t 

Differentiating twice we get 

Substituting in (d), we get 

-mm 2Csin mt + kyCsin mt = Fy sin mt 

F 
Or (_m 2 + p;)Csinmt = ~sin mt 

m 

Here Py = J¥ denotes natural frequency. 

Denoting ratio of excitation frequency to natural frequency as 13 y =!!..... and substituting, we get 
Py 

Fy Fy Fy I 

C=-m (_m 2 +p;) = mp; (-13;+1) =1:; (1-13;) 

Substituting in equation (e), solution becomes 

F 1 
yp(t)=~RJsinmt 

k 1-13 y y 

The complete solution i.e. total response therefore becomes y(t) = y c (t) + Y p (t) 

(e) 

(f) 
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B 
. Fy 1 . 

yet) = Acosp/+ smp/+-~smOJ t 
, v ,k \1- Pi J 

Complimentary solution ,y y , 
v 

(g) 

Particular Solution 

Let us evaluate constants A & B for initial conditions y = yeO) & y = yeO) and examine the 

response. 

Differentiating equation (g), we get 

y(t)=-pyAsinp/+pyBCOSP/+OJ
Fy 

12 cosOJt 
ky (l-{3y) 

Substituting initial conditions in equations (g) & (h), we get 

A = yeO) B = j>(0) _ P Fy 1 
Py Yky (1-P;) 

Substitutingfor A & B in equation (g), solution becomes 

yet) = y(O)cosP/+ [yeo) _ Fy ~lsinp/ + 
Py ky \l-py J 

complementary solution 
(Transient Vibration) 

F 1 ...2..r-::;nsin OJ t 
ky \1- P; J 

\ J 

particular • solution 
(Steady State Vibration) 

yet) = y(O) cos Pyt + [yeo) -8 ~lsin P t 
Py y \1-p;} y 

+ ~ 1 . 
u y r,---;:;n SIn OJ t 
,\I-p;} , 

complemen';ry solution 
(Transient Vibration) 

particular • solUlion 
(Steady State Vibration) 

Here 8 y = Fy / ky represents the static deflection of the mass due to force Fy 

For specific initial condition of yeO) = 0 & y(O) = 0, we get 

Fy /3y . 
Yc(t)=--~smpyt 

ky \I-p;} 
Complementary solution 

F 1 
Yp(t) = 2..r.-;;nsioOJ t 

ky \1- p;} 
Particular solution 

(h) 

(i) 

(j) 

(k) 

Since 8y = Fy/ky represents static deflection of the mass, term y(t)/(Fy / ky) thus represents 

response amplification. 
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2.2.1.2 System having Rotational Stiffness & Dynamic Moment Externally Applied 

Ro~king about Z-axis 

Consider the undamped SDOF system having rotational stiffuess (about Z-axis) in X-Y plane as 
shown in Figure 2.2.1-4. System mass is m and M mz is the mass moment of inertia about Z-axis 

passing through centroid C located at a height h above point O. Consider that a dynamic moment 
M(t) = M ¢ sin OJ t is applied externally at point O. 

Proceeding on the similar lines, we get equation of motion as: 

M moz ;p +(k¢ -mgh) ¢ = M¢ sinOJt (2.2.1-8) 

Here M moz = M mz + mh2 is the mass moment of inertia of the system about Z-axis passing through 

CG of base area point O. 

We can write the solution to the equation as: 

¢(t)=Acosp;t+Bsinp;t+( M; )-r-Pn1 
2 sinmt 

, v • k; -mgh 1-/3, 
Complimentary solution, y;' 

Particular Solution 

Here P ¢ = ~ k¢ - mgh is the rocking natural frequency and f3 ¢ = OJ/represents frequency ratio 
Mmoz / P¢ 

of operating frequency to natural frequency. 

y T 

J-.x 
z 

h 

'----_~--->-------' 1 

Figure 2.2.1-4 Undamped SDOF System - Rotational Spring Attached at Center of 
Base of Block - Dynamic Moment M(t) = McjI sin rot applied at point '0' 
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As mentioned in § 2.2.t.2, the term mgh is negligible compared to k¢ and can be conveniently be 

ignored for all practical real life cases, without any loss of accuracy in the response. Hence the 
response becomes: 

¢(t)=Acosp¢t+Bsinp¢t+ M¢~l 2 sinwt 
, v 'k¢ 1- f3. 

Complimentary solution, v ¢ , 

(2.2.1-9) 

Particular Solution 

The steady State response (Particular solution) is given as: 

(2.2.1-10) 

Rocking about X-axis 

Similarly for system having rotational stiffness ke (about X-axis) in Y -Z plane and a dynamic 

moment M(t) = Me sin OJ t about X-axis applied at CO of Base area point 0, we get 

Mmox B+(ke -mgh) (J = Mx sin OJt 

We can write the solution to the equation as: 

e(t) = Acos Po t + Bsin Po t + Mo ~1 ') sin w t 
, , k 1 f3.~ 

Complimcn(ary solution ,0 - v 0 , 
Particular Solution 

(2.2.1-11) 

(2.2.1-12) 

Here Pe = ~ k() is the rocking natural frequency (see § 2. t. t.2) and Pe = OJ/ Pe represents 
Mmox 

frequency ratio of operating frequency to natural frequency. 

The steady State response (Particular solution) (J p (I) is given as: 

L1 () Me I . 
up t =-~smOJt 

ke \1- Pe J 
(2.2.1-13) 

Torsional Motion about Y-axis 

Consider a system having Torsional stiffness kIll (about Y-axis) in X-Z plane and a dynamic 

moment M (t) = M'I' sin OJ t is applied at CO of Base area point ° about Y-axis. 
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Proceeding on the similar lines, we get 

Mmoy Vi+k'l' If/=M'I'sinOJt (2.2.1-14) 

We can write the solution to the equation as: 

If (t) = Acos PIf t+ BsinPIf t + MIf ~1 2 sinOJt 
, v ,k 1-[3, 

Complimentary solution ,If v If , 
Particular Solution 

Steady state response is given as 

(2.2.1-15) 

Here p. ~ J k. is the rocking natural frequency (see § 2.1.1.3) and p. = "Ik. represents 
Mmoy 

frequency ratio of operating frequency to natural frequency. 

The steady State response (Particular solution) is given as: 

Mw 1 
If/ p (t) = --~sin OJ t 

kw \1- fJ~} 

2.2.2 Damped System - Dynamic Force Externally Applied 

(2.2.1-16) 

Consider damped SDOF System with excitation force Fy sin OJ t as shown in Figure. 2.2.2-1. 

Considering equilibrium of forces (see free body diagram) 

Equation of motion is written as 

(2.2.2-1 ) 

Denoting 
OJ 
-= Py and. 
Py 

The equation becomes 

(2.2.2-2) 
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Solution to this equation (See equation (k) - Solution 2.2.2-2) gives total response as: 

yet) = ~-pyt;y I (Acos ~di + Bsin Pdi~ 
Comp lim entary Solulion 
Transient Response 

- 1 
+ Oy sinew t - ¢) 

, ~(l-P;J +(2PySy~ , 
Parllcular Solulion 
Sleady-slale response 

Here 0 y = ( X) is the static deflection of the spring mass system. 

Constants A, & B, are evaluated based on initial conditions. 

2-47 

(2.2.2-3) 

The first term on RHS (equation 2.2.2-3) represents Transient Response and the second term 

represents Steady-State Response of the system. 

F(t) ;: Fy sin rot 

r--------!--------I 
I I 

T 
: m :...--Displaced Position 
I I 
I I ~ _________________ J 

y 

1
r-----, 

m ...--Mean Position 

(a) System under Motion 

F(t) = Fy sin rot my 

m 

(b) Free Body Diagram 

Figure. 2.2.2-1 Forced Vibration-Damped SDOF System Translational Stiffness in 
Y-direction - Dynamic force F(t) = Fy sin rot applied along Y 
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2--48 Single Degree of Freedom System 

For a specific case of initial conditions yeO) = 0 and yeO) = 0 at t = 0 , we get: 

Transient Response as (see equation (q) -Solution 2.2.2-2) 

(2.2.2-4) 

Steady-state response as (see equation (s) - Solution 2.2.2-2) 

(2.2.2-5) 

F 
Here t5 y = f Represents static deflection under the force Fyand 

y 

¢ = tan -I( 2fl yS; 1 Represents the phase angle (see equation (t) - Solution 2.2.2-2), which gives 
(I-fly) 

the time by which the steady state response lags behind the excitation force .. 

Total Response thus becomes 

Transient response plot (equation 2.2.2-4) for Sy = 0.2 is shown in Figure 2.2.2-2. 

1.5 

1.0 

-0.5 

-1.0 

-1.5 

2.0 2.5 3.0 3.5 4.0 

t/T~ 

Figure 2.2.2-2 Damped SDOF System Sy = 0.2 - Forced Vibration - Transient 

Response 

(2.2.2-6) 

It is seen that transient response dies out with time in a few cycle. Thus it is the steady state 
response that is really important. 
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2.5 

1.0 

1.5 

1.0 

00;>" 0.5 
S O~~~~---r~~~~~~-==±=--=~~----~~ 

~ =:·:1° 
-2.0 

-2.5 

4.0 

tIT 

Figure 2.2.2-3 Forced Vibration Response - Damped SDOF System 
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Plot of equation (2.2.2-5) giving Steady-state Response and equation (2.2.2-6) giving Total 
Response is shown in Figure 2.2.2-3. Transient response is shown for comparison only. 

Rewriting equation (2.2.2-5) in terms of response amplification, we get 

Yp(t) . 
--=11 sm(mt-¢) (j ry 

y 

Where 

fly Represents Dynamic Magnification Factor along Y 

Plot of Dynamic Magnification Factor (equation 2.2.2-8) is shown in Figure 2.2.2-4 

Force transmitted to support: 

(2.2.2-7) 

(2.2.2-8) 

Since the system is damped system, the force Fr (t) transmitted to support is force due to spring 

reaction + force due to damping. Thus we get 

Fr(t)=kyYp+CyYp (2.2.2-9) 

From equation (2.2.2-5), integrating Y p (t) , we get 

(2.2.2-10) 

https://engineersreferencebookspdf.com



2-50 Single Degree of Freedom System 

Substituting (2.2.2-5) and (2.2.2-10) in equation (2.2.2-9), we get 

F,(') d y 8y 1 ,in(w'-¢)+cy 8y w ~ 1 oo,(w'-¢) 

J(l- f3;'f + (2f3y Sy Y (1- f3;) + (2f3y S y Y 
F 

Using relationships ky Oy = Fy; cyOJ Oy = 2mpysy OJf = 2f3y Sy and simplifying, we get 
y 

Fr(t) = Fy 1 {sin(OJ t -¢) + 2 f3y Sy cos(OJ t - ¢)} 

J(l-f3;) + (2f3y Syy 

Maximum value of transmitted force thus becomes: 

(2.2.2-11 ) 

5 

4 

:t 
1-0 

B 3 g 
~ 
c 
0 

'.0 
~ 2 !+:: 

'fo 
ctI 

~ 

oL---~--~~~==~~~~ 
o 0.5 1.0 1.5 2.0 2.5 3.0 

Frequency Ratio ~ 

Figure 2.2.2-4 Magnification Factor 11 vs. Frequency Ratio ~ 

At this point it is worth mentioning that: 

• Since there is no appreciable variation in damped and undamped natural frequency for 
damping value up to 20 % (see Figure 2.1.2-5), the response has been plotted for time 
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period corresponding to natural frequency of the system instead of its damped natural 
frequency. 

• The transient response dies out in about 3 cycles 
• The total response, which is sum of transient and steady state response, therefore remains 

same as that of steady state response 
• For frequency ratio of unity i.e. Py = 1, response shoots up significantly (see Figure 2.2.2-

4). This condition is termed as resonance condition 

It is also seen from the Figure 2.2.2-4 that under this resonance condition i.e. Py = 1, response 

rises to infinity for 0 % damping. (This statement is only for academic interest and of least practical 
significance as every system has some amount of damping and amplitude shall never rise to 
infinity). 

From the point of view of machine foundation design, it is thus desirable to avoid resonance 
condition to avoid building up of the amplitude of vibration. In other words it is desirable to keep 
natural frequency sufficiently away from excitation frequency. 

From the above, we can summarize as: 

• Natural Frequency (undamped) py=R rad/s 

• Steady state response 

• Max. Force transmitted to support 

SOLUTION (2.2.2-2) 

Rewriting equation (2.2.2-2) 

y+2py SyY+ p~y=Syp~sin()) t (a) 

The solution to the equation (2.2.2-2) has two parts: 

i) Complimentary solution 

ii) Particular solution 

Complimentary solution: It is the free vibration response of the system. 

For complimentary solution, equation (a) becomes (jor free vibration RHS = 0) 

Yc +2pySy Yc + P;Yc = 0 (b) 

Here subscript 'c' in Yc refers to complimentary solution 
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System vibrates with naturalfrequency Py and the response is given as (see equation (2.1.2-19)): 

Particular solution: It is the forced vibration response of the system. 

For particular solution, equation (a) is written as 

Yp +2pyl;y Yp + P~yp = OyP~ sinaJt 

Here subscript' p , in y p refers to particular solution 

The system vibrates with the frequency of the excitation force i. e. frequency' (Q '. 

Let solution be oftheform 

yp(t) = C sin w t + Dcosw t 

Differentiating, we get 

Yp(t) = w (C cos w t-Dsinw t) 

Yp (t) = _w 2 (C sin w t+Dcosw t) 

Substituting in (a), equation becomes 

-w2(Csinw t + Dcosw t}+ 2pyC;yw (C cosw t - Dsinw t) 

+ p2(Csinw t+Dcosw i) = Oy p; sinw t 

Rearranging terms, we get 

(-C w 2 
-2pyC;y wD+ p;C-oy p;)siow t 

+(_w2 D+ 2pyC;y w C + p;D)cosw t = 0 

(c) 

(d) 

(e) 

(f) 

For equation (f) to be truefor all values oft, coefficients of sin OJ t & cos OJ t should independently 

be equal to zero. Thus we get 

_COJ
2 

-2pySyOJD+ P~C-OyP~ =0; Or 

C(p~ _OJ 2
)_ D(2pySYOJ )-Oy P~ = 0 

_OJ 2 D+2pySyOJC+p;D=0 

c(2pySy OJ)+ D(p; - OJ2)= 0 

(g) 

(h) 

https://engineersreferencebookspdf.com



Single Degree of Freedom System 2-53 

Multiplying equation (g) by (p; _co 2) and equation (h) by (2py(yco) and rearranging terms, we 

get 

C(P.~ _(0
2)2 - D(p; -co 2)(2py(yco) = 8y p;(p; _co 2) 

C(2py(yCO)2 + D(p; -co 2 )(2py(yco) = 0 

Solving, we get 

C=8 2 (p;_co
2

) =8 (1-,8;) 
y Py (p; _co 2)2 + (2py(yco)2 y (1- ,8;)2 + (2(y,8y)2 

D=-8 2 (2py(yco) =-8 (2(y,8y) 

y Py (p; _co2)2 +(2py(yco)2 y (1- ,8;)2 + (2(y,8y)2 

Substituting (i) in equation (d), particular solution becomes 

The complete solution then becomes y(t) = y c (I) + y p (I) 

- Py r; I 
y(t)=~ y (ACOSPdyt+Bsinpdyt~ 

Comp limenlary Solut ion 
TranSient Response 

Particular Solution 
Steady-state response 

Constants A, & B, are evaluated based on initial conditions y = yeO) and y = yeO) at t=O 

Differentiating equation (k), it gives 

(i) 

(I) 
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Substituting initial condition y = yeO) and y = y (0) in equations (k & I), it gives 

(m) 

(n) 

For a specific case of yeO) = 0 and yeO) = 0 , we get 

A = 8 (2SyfJy ) 
y (1- fJ;)2 + (2SyfJy )2 

(0) 

B- 1 { S J (2Syf3y ) J (1-13;) } 
- Pdy P

y 
Y Y (1-13;)2 + (2Syf3y )2 -OJ y (l-f3;)2+(2Sy f3y )2 

(p) 

(q) 

F 
Where 8 y = ~ represents static deflection under the influence of force F 

ky Y 

Rearranging terms of equation 0), Particular Solution becomes 

y (t)=8 y sinaJt+ y y cosmt 
{ 

(1- fJ2) - 2S fJ } 

P y [(I- fJ;) +(2Sy fJyf]· [(I- fJ;) +(2sy fJyf] 
(r) 

By combining terms, the equation becomes 

(s) 

(t) 
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Here ¢ is the phase angle, which gives the time by which the steady state response lags behind the 

excitation force. 

Response becomes y p (I) = is y J.i y sin( w t - ¢) (u) 

I 
J1 y = is Dynamic Magnification Factor along Y 

~(l- p{f + ~Sy Py ~ 
(v) 

Total Response thus becomes y(t) = y c (t) + Y p (t) (w) 

2.2.3 Damped System - Dynamic Force Internally Generated 

In machine foundation design, more often than not, the dynamic force is internally generated by 
machine itself. Let us address this issue by considering a SDOF System as given below: 

Consider a damped SDOF system having'mass m, sprin~ stiffness ky and damping cy as shown 

in Figure 2.2.3-1. Machine mass m has a rotating component of mass mr rotating at speed 0) 

having eccentricity e. 

m r = Rotating mass 

e Eccentricity 
0) Speed of rotation in rad/sec 

Dynamic force generated by the system 

The system considered is same as that of Figure 2.2.2-1 with the difference that dynamic force 

applied to the mass is m r e0)2 sinO) t instead of Fy sinwt . 

Equation of motion: 

Substituting Fy = mr eO) 2 in equation 2.2.2-2, we get 

2 
.. 2 r' 2 mreO) 2· y+ Py'=>yy+Pyy= PySlnO)t 

ky 
(2.2.3-1) 
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Steady state response 

m e/V 2 
• 

With _r - = t5 y' equatIon (2.2.3-1) becomes identical to equation (2.2.2-2». Steady-state 
ky 

response thus becomes (See equation (2.2.2-5) 

Substituting p; = k ylm & fly = /VI Py and rewriting, equation becomes 

F(t) = mrero2 sin rot 

r--------!--------, , , 

T : m :..--Displaced Position , , , , ~ _________________ J 

y 

1 m 
m +---Mean Position 

(a) System under Motion (b) Free Body Diagram 

Figure 2.2.3-1 Forced Vibration-Damped SDOF System Dynamic Force Internally 
Ge,nerated 

(2.2.3-2) 

(2.2.3-3) 

(2.2.3-4) 
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For a given ratio of rotating mass to system mass, equation 2.2.3-3. represe~ts magnification of 
dynamic amplitude over eccentricity as a function of frequency ratio fJy (or various values of 

damping. Plot of steady state response (equation (2.2.3-3» is shown in Figure 2.2.3-2. 

Rewriting in non-dimensional form 

(2.2.3-5) 

yle () --= J.l sin OJ t -; 
mrlm y 

(2.2.3-6) 

Here (2.2.3-7) 

Plot of equation (2.2.3-7) for various values of damping is shown in figure 2.2.3-3 

Force transmitted to support: 

Since the system is damped system, the force F r (I) transmitted to support is force due to spring 

reaction + force due to damping. Thus we get 

(2.2.3-8) 

From equation (2.2.3-3), integrating y p (t), we get 

(2.2.3-9) 

Substituting (2.2.3-3) and (2.2.3-9) in equation (2.2.3-8), we get 

Fr(t)=kyemr fJ; sin{OJt-;} 

m ~(l- fJ;'f +(2SyfJy~ 
em fJ; () +cy_ r OJ cos\OJ t-; 
m ~(l-fJ;r + (2SyfJyY 

(2.2.3-9a) 
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0.10 

0.08 
0.06 

0.04 

~ 0.02 
S 0+7~---'~~--.---~-'----~~-----r+---~ 

;;...."" 
-0.02 
-0.04 
-0.06 
-0.08 
-0.10 tiT 

Figure 2.2.3-2 Ratio of Steady-State Response to Rotor Eccentricity-Forced Vibration 
- Damped System - Dynamic Force Internally Generated 

Representing in terms of generated dynamic force Fy = m, em 2 and simplifying RHS of equation 

(2.2.3-9a), we get 

and 

2 cyem, 2 cyem, OJ 
--/3ym =---2 m = Fo2Sy/3y 

m m py 

With this equation (2.2.3-9a) becomes 

Maximum value of transmitted force thus becomes: 

~I + (2 fly Sy)2 2 ~1 + (2 fly Sy)2 

F;. =Fy ~(l-fl;Y + (2flySyY =mreOJ ~(I-fl;Y +(2flysyY 
(2.2.3-10) 

It is seen that this equation is same as equation (2.2.2-11) where the force Fy sinOJt is externally 

applied. 
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From the above, we can summarize as: 

• Natural Frequency (undamped) Py ::: ~k% rad/s 

• Steady state response 

• Max. Force transmitted to support 

6 

::i', 
.~ 

8 • .;:1 
os 4 
to) 

!-5 

I 3 

~ 
Q 

2\ 0 

~ 
~ 

0 
0 0.5 1.0 1.5 2.0 2.5 3.0 

Frequency Ratio ~y 

Figure 2.2.3-3 Response Amplification ~ vs. Frequency Ratio fly -Forced 
Vibration-Damped System - Dynamic Force Internally Generated 

2.2.4 Damped System - Dynamic Excitation Applied At Base 

2-59 

Consider a damped SDOF system having mass m. spring stiffness ky and damping cyas shown 

in Figure 2.2.4-1. A dynamic excitation in form of ground acceleration jig (t) is applied at the base 

of the system. 

Equation of motion: Let the displacement of the mass be Y m & that of the base be Y g • The 

inertia force developed is m jim & acts opposite to direction of motion. 
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The spring deformation = Y m - Y g 

Spring reaction force = k/Ym - Yg } 

Damping force = Cy<Ym - Yg } 

Considering equilibrium of forces (see free body diagram), the equation of motion is written as 

mYm +cy(Ym - Yg)+ky(Ym - Yg) = 0 

Rewriting equation by subtracting m ji g from both LHS & RHS, it gives 

Representing Y m - Y g = Y; Y m - Y g = Y; ji m - jig = ji and substituting, it gives 

my .. 

j-----------------I r-----------------, , , I , , , 
T ~ ________ ~ ________ i 

, , 
T ~ ________ ~ ________ i m 

Ym l.-----m----. Ym l.-----m----. 
kyCYm-Yg) cyCYm-Yg) 

(b) Free Body Diagram 

(a) Forced Vibration-Damped SDOF System - Dynamic Excitation 
Applied at Base 

Figure 2.2.4-1 Forced Vibration-Damped SDOF System - Dynamic Excitation Applied 
at the Base . 

Considering ground excitation acceleration as sinusoidal i.e. jig (I) = jig sin OJ t, the equation 

becomes: 

(2.2.4-] ) 
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becomes 

.. F 
.. 2 1'. 2 mYg. y . Y+ P'3 y+p y=---smaJt=-smaJt y y Y m m 

F F 
Substituting Dy = -2. = ~ the equation becomes 

ky mpy 

y+2pySy y+ p;y = P;Dy sinaJt 

2-61 

(2.2.4-2) 

(2.2.4-3) 

It is noticed that equation (2.2.4-3) is similar to equation (2.2.2-2). Thus we can write the steady­

state response on the same lines as equation (2.2.2-5). 

yplt)"O, ~ 2 1 sin(<Vt-;) 
(1-PyY +(2pysyY 

my 
Here Dy =--g (see equation 2.2.4-2) 

ky 

We can write this in terms of magnification factor as 

Yp(t) = Dy,uy(sinaJI-¢) 

Where 

Force transmitted to support: 

(2.2.44) 

(2.2.4-5) 

• 

Since the system is damped system, the force Fr(t)transmitted to support is force due to spring 

reaction + force due to damping. Thus we get 

Fr(t) = ky Yp +cj, yP (2.2.4-6) 

From equation (2.2.4-4), integrating Y p (I), we get 

(2.2.4-7) 

https://engineersreferencebookspdf.com



2-62 Single Degree of Freedom System 

Substituting (2.2.4-4) and (2.2.4-7) in equation (2.2.4.6), simplifying and rearranging the terms (on 

the similar lines as given in § 2.2.2), we get 

FT =kyoy ~ 2 I sin(wt-~)+CyOyW ~ 2 I cos(wt-~) 
(l-pyY +(2Py'y~ (1-.oyY +(2Py'y~ 

Maximum value of transmitted force as: 

(2.2.4-8) 

(2.2.4-9) 

From the above, we can summarize as: 

• Natural Frequency (undamped) Py == ~ky/m rad/sec 

• Steady state response 
my I 

Yp(t) == ---g (sinwt-q}) 
ky ~(l-/3;r +(2,"y/3yY 

• Max. Force transmitted to support 
.. ~1+(2/3y'y)2 

FT ;-mYg ~(I-/3;r +(2/3y'yy 
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2.2.5 Undamped System - Subjected to Impact Loads 

Let us consider a freely falling mass' ma ' falling from height' h' and striking mass' m} , of an 

undamped SDOF spring-mass system, initially at rest, as shown in Figure 2.2.5-1. Let us consider 
that mass ml is at rest before the impact and the impact is centra-i. 

Let Vo & vi represent velocity of masses ma & ml before impact and Va & VI represent velocity 

of masses mo & ml after impact. 

From conservation of momentum, we get: 

ml x VI + mo x Vo = ml x VI + mo x Vo 
• J \ 4 

BeforeVImpact After Impact 

Since vi = 0 , we get 

(2.2.5-1 ) 

~n order to evaluate VI' we use Newton's hypothesis, which states that for central impact of the two 

b~dies, the relative velocity of the two bodies after the impact is in constant ratio to their relative 
velocities before impact and is in opposite direction. 

r~~~:· 
h Mass at rest 

~ 
(a) Before Impact 

~ 
(b) Just after Impact 

Mass ml moves Downwards 
Mass moRebounds Upward 

Figure 2.2.5-1 Undamped SDOF Spring Mass System Subjected to Impact Load 
Mass mo Freely FaUing over Mass ml from Height h 
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This gives: 

e= 
VI -Vo vI -Vo 

=--
(vi -vo) Vo 

or (2.2.5-2) 

Here e is called Coefficient of Restitution that depends upon properties of the material of the 
masses mo & ml . For perfectly plastic central impact, the value of e is zero and for perfectly elastic 

central impact e is equal to unity. For real bodies in practice, the value lies in the range 
0< e < 1 and for all practical purposes it's reasonably good to use e = 0.5 . 

Substituting 2.2.5-2 in 2.2.5-1 and simplifying, we get 

I (l +e) 
VI =vox---

(l+At) 
(2.2.5-3) 

Here At represents ratio of mass ml to mass mo' That is: 

(2.2.5-4) 

For freely falling body of mass mo from height h, the velocity just before impact is given as 

Vo = ~2gh 
Substituting this in 2.2.5-3, we get 

h"::i: (l + e) 
VI = ,,2ghx---

(l+At) 

This is the initial velocity imparted by the falling mass to stationary mass ml at time t = 0 . 

, 
(2.2.5-5) 

(2.2.5-6) 

Hence, solution of a SDOF system subjected to impact load, thus this becomes an initial 

velocity problem of a SDOF system having mass mj and spring stiffness kj • 

Equation of motion (refer equation 2.1.1.2) of the SDOF system, as shown in Figure 2.2.5-1, is 

written as 

mdij +kjYj = 0 (2.2.5-7) 

This gives natural frequency (refer equation 2.1.1.3) as 

PI = IT; V-;;;; rad Is (2.2.5-8) 

https://engineersreferencebookspdf.com



Single Degree of Freedom System 

The response of the SDOF system is given as (refer equation 2. (1.5) 

. (0) 
YI ::: YI (0) cos PI t +1L-sin PI t 

PI 

Here YI (0) & YI (0) represent initial displacement and initial velocity at time t::: 0 . 

Maximum amplitude of the SDOF system is given as (refer equation 2.1.1-6) 

( (
. (0»)2] PI ::: YI (0)2 + Y~l 

For the present case, we know that: 

YI (0) = 0 & .vI (0) ::: VI at t = 0 

2-65 

(2.2.5-9) 

(2.2.5-10) 

(2.2.5-11 ) 

Substituting equation (2.2.5-12) in to equations (2.2.5-9) & (2.2.5-10), we obtain response of 

SDOF system as: 

YI = YI (O)cos PI t +.vl (0) sin PI t::: .vI (0) sin PI t ::: ~sin PI t (2.2.5-12) 
PI PI PI 

(2.2.5-13) 

This approach shall be useful for Design of Foundation for Impact Machines covered in 
Chapter 11. 

2.2.6 Undamped System - Subjected to Impulsive Loads 

Impulsive loading is a special class of dynamic loading and generally consists of a single impulse 
of short duration. 

Force Force Force 

L, L, ~, 
I- to ---I Time I+- t...j Time I-- 't ---l Time 

(a) Half Sine Wave Pulse (b) Rectangular Pulse (c) Traingular Pulse 

Figure 2.2.6-1 Typical Pulse Loading 
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Typical example of impulsive loads that could be expressed by simple analytical functions are a 
half sine wave pulse, a rectangular pulse, a triangular pulse etc. having very short duration. These 
are shown in Figure 2.2.6-1. 

Consider a SDOF system subjected to impulsive loading (applied one at a time) as shown in Figure 
2.2.6-2. 

The mpulsive load F(t) is applied at the mass i.e. the applied pulse has maximum force amplitude 

of Fy and pulse duration T where T = !!... . 
tV 

y 
F(t) Force F,tL, 

I+- T-oj Time 

(a) 

Force 

Fti, 
I+-- t--ol Time 

(b) 

Force 

F'L, 
Jo,-- t ---01 Time 

(c) 

Figure 2.2.6-2 SDOF System Subjected to Impulsive Load 

Equation of Motion: 

(a) When applied load is a Half Sine Pulse 

mji + kyY = F(t) = Fy sintVt O<t<T 

mji+kyY= 0 t~T 
(2.2.6-1) 

(b) When applied load is a Rectangular Pulse 

mji + kyY = F(t) = Fy O<t<T 

mji+kyY=O t~T 
(2.2.6-2) 

(c) When applied load is a Triangular Pulse 

mji+kyY = F(t) = Fy{T-t}1T O<t<T 

mji+kyY=O t~T 
(2.2.6-3) 

For each of the above loading case, the first equation of motion gives response during the pulse i.e. 
Phase I - Forced Vibration Response and the second equation gives response after the pulse i.e. 
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Phase II - Free Vibration Response. It is also note worthy that the maximum response 
reaches in a very short time before system damping gets effective. 

Natural Time Period of the system T T= 21t; Py =~klm 
Py 

Pulse duration T 

Frequency Ratio 

We know that 

fJy <1; (t) < Py ; 

fJy > 1 ; (t) > Py ; 

1t 
T = -; (t) is the excitation frequency 

(t) 

fJ = ~ = (1t IT) =!.... 
y Py (21tIT) 2T 

1t 21t T I 
& -<-' ->-

T T' T 2 
1t 21t T 1 
->-; -<-
T. T T 2 

(2.2.6-4) 

(2.2.6-5) 

(2.2.6-6) 

It can be shown (derivation not given) that for fJy < I i.e. for ~ > 1. maximum response occurs 
T 2 

during forced vibration phase i.e. Phase I and for fJy > 1 i.e. for ~ < 1., maximum response 
T 2 

occurs during Free Vibration Phase i.e. Phase II. Let us now compute response of the SDOF 
system subjected to applied impulsive loading. 

(a) When applied load is Half Sine Pulse 

Response in Phase I for t ::; r 

For undamped SDOF system subjected to harmonic loading F(t) = Fy sin(t)t, the steady state 

response is given as (Refer equation 2.2.1-7a): 

For t ::; r (2.2.6-7) 

Differentiating equation 2.2.6-7 and equating it to zero, we get the time when the response yet) is 

maximum. This gives 

y(t) = Fy ~((t)cos(t)t-fJypycoSPi)= Fy ~(cos(t)t-cosPi)=O 
~~-~J ~~-~J 
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This gives (cosmt- cos Pyt)= 0 or mt = 2tr - Pyl 

Simplifying, we get 

2tr /3 
This gives m t = (P y) 

y +1 

Substituting this in equation (22.6-7), we get maximum response as: 

Fy 1 (. 2tr/3y . 2tr) 
Ymax(t)=-r:-;;n sm (P r/3ysm (P ) 

ky \I-/3y) y+l y-rl 

/I = Ymax (I) 
ry F 

.-!.-
This gives 

ky 

This is valid only for /3 y < 1 

1 (. 2tr/3 /3. 2tr) r:-;;n sm (P ) y sm ~ 
\1-/3y) y+1 \py+IJ 

T 
or ->0.5 

T 

Response in Phase II for t ~ r 

(22.6-8) 

The free vibration response (Refer equation 2.1. I -5) depends upon displacement and velocity of the 

system at t = r i.e. Y(T) & Y(T) 

At time t = T 

tr 
tV =_. , 

T 

tV 
tVT =tr; /3y =-; 

Py 

tr 
P T=-

Y /3y 

yeT) = :: (I-~; )(0 - /3y sin(1PJ) 

yeT) = - Fy ~Sin( trl/3 ) 
ky \1-/3y) / t y 

Differentiating equation 2.2.6-7, we get 

(2.2.6-9) 
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(2.2.6-10) 

Maximum amplitude is given as (refer equation 2.1.1-6) 

Py = (Y(T)2 +(Y(T»)2] = Fy b (sin~)2 +(I+COS~)2 
P y ky \1- P; J Py Py 

(2.2.6-11) 

F P ( 1t) F 2P 1t Py =-L~ 2+2cos- =-L~cos--
ky \1- P; J Py ky \1- P; J 2Py 

From this we get Response Magnification fJy as: 

(2.2.6-12) 

r 
This is valid only for f3y > 1 or T < 0.5 

The derivation of Response Magnification Factor fJ y for other shapes of Impulsive Loads is not 

presented here in the text. The same could easily be evaluated on the similar lines. From the above 
it can be generalized that for any given SDOF system subjected to impUlsive load F(t) having a 

specific pulse shape, maximum Response of the system thus becomes: 

(2.2.6-13) 

Here Fy is the peak magnitude of the applied load, k y is the stiffness and fJ y is the Response 

Magnification Factor. 
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Table 2.2.6-1 Dynamic Magnification Factor vs. Ratio of Pulse Duration to Natural Time 
period .. IT 

Ratio of Pulse Duration to Natural Time period TIT 

Pulse Type 
o 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 

Rectangular Pulse o 1.18 1.9 2 2 2 2 2 2 2 2 

Half Sine Pulse o 0.8 1.38 1.7 1.8 1.75 1.67 1.6 1.52 1.42 1.34 

Triangular Pulse o 0.68 1.05 1.3 1.46 1.55 1.61 1.66 1.7 1. 72 1.75 

Plot of Response Magnification factor l1y vs. Ratio of Pulse Duration .. to Natural Time Period 

T ora SDOF system subjected to Impulsive Load is given in Figure 2.2.6-3 for each of the pulse 
shape. The tabulated values are given in Table 2.2.6-1. 

It can also be shown that (derivation not given): 

i) When the Pulse Duration is Very Short compared to time period of the system i.e. 

!... ;S; 0.5 , the maximum response occurs during its free vibration mode and the shape of the pulse 
T 

has no influence on the response of the system. 

The applied force becomes an impulse and is given by 

.. 
1= f F(t) dt (2.2.6-14) 

o 

Maximum amplitude becomes 

I Ixpy Ixpy 
y =--=--=--

max mxpy mxp; ky 
(2.2.6-15) 

Here product I x p y represents equivalent force i.e. Feq = I x p y and k y represents system 

stiffuess. 
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ii) When the pulse duration is relatively long compared to time period of the system i.e. 

~ > 0.5 , the maximum response occurs during the pulse duration and the shape of the 
T 

pulse has significant influence on the response. Overall response maxima depend upon the 
rate of rise of the loading. In other words this suggests that the maximum amplitude will 
be higher in case of rectangular pulse compared to half sine wave or triangular pulse 
because the rate of rise of the loading is higher in case of rectangular pulse. 

:to 2.4 
... 
~ 0.2 
t>.. 
= 1.6 0 

'';::; a q:: 1.2 
.~ 

'" 0.8 ~ 

/~------- -----------------------
II ~~~ 

/ --/// }Z~---------
// 

~ 
I " 

1 " 1/ ~ 
I,' 

~ 
0.4 I' 

~ 0 
0 0.2 0.4 0.6 08 1.0 1.2 1.4 1.6 1.8 2.0 

Ratio of Pulse Duration to Natural Period tIT 

Figure 2.2.6-3 SDOF System - Response Magnification Factor vs. 
Ratio of Pulse Duration to Natural Period 

EXAMPLE PROBLEMS: Free Vibration - SDOF System 

Units used throughout the text 

Force, Weight 
Mass 

Length 
Time 

Gravity g 

Elastic Modulus 

Pressure 

Density (Mass density) 

N 
kg 

m 
s 

mls 2 

N/m2 

N/m2 

kg/m3 

Note: Units given other than these are converted to these units for computation 
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P 2.1-1 

A machine having mass of m = 500 kg is supported by a linear translational spring having 

stiffness of ky = 200 kN/m along V-direction as shown in Figure P 2.1-1. Consider the system 

as undamped. Compute a) natural frequency of the spring mass system; b) the static 
deflection of the spring and c) compute its natural frequency using the static deflection and 
compare with (a) above? 

Solution: 

a) Natural Frequency 

k y = 200000 N/m; 

p =~ky= 
y m 

f = (~) = 
Y 27r 

m = 500 kg 

200000 

500 

3.183 

'" 20 rad/s 

cycles/sec = 3.183 

m=500kg 

ky =200kN/m 

Hz 

Machine 

Figure P2.1-1 Machine Supported by Vertical Spring 

b) Static deflection ofthe spring (along Y-direction) 0 '" Force/stiffuess 

Weight m g = 500x9.81 = 4905 N; 

Stiffuess ky = 200000 N/m; 

o = Weight/Stiffness = 4905/200,000= .024525 m 

c) Natural frequency in terms of 0 

p",fk":",fg 
y V-;;;- V8 
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K= 9.81 0 
Py = -;;= =2 

v 0.24525 
rad/s, 

1 20 f =-p =-=3.183 Hz 
y 27i Y 27i 

The frequency thus computed is the same as that computed in (a) above. 

2-73 

Note: One can also represent 0 in other units, say in mm, cm, inch, feet etc. In that case, while 

computing Py = Jf ' value of g should be in units compatible with deflection i.e. if 0 is in mm, 

g should be in mm/sec2 and so on. 

P 2.1-2 

A machine of mass m = 500 kg is supported at the end of a RCC cantilever beam 100mm 

wide and 200mm deep having span of 2000 mm as shown in Figure P 2.1-2. Consider the 
system as undamped. Mass density of beam material is 2500 kg/cu.m. Consider motion of the 
mass only along Y direction in X-Y plane as shown. Elastic modulus of concrete is E = 3 X 107 

kN/m2
• 

Find Natural frequency of the beam mass system 

When beam is considered mass-less 
When beam mass is considered 

y 

Machine 
m = 500 kg 

W~----~------L-~X 

A 

~2000 ·1 
Section A-A 

Figure P2.1-2 Machine Supported by Cantilever Beam 
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Solution: 

(i) Beam is considered as mass-less 

a) Natural frequency of the beam mass system 

Stiffness ofCanti[ever Beam in V-direction 

App[y unit load (P =1.0 N) at free end of the beam along Y 

PL3 

Deflection at the free end = c5 = -
3EI 

P =1.0 N 

E = 3 X 107 kN/m 2 = 3 x IO JO N/m2 

I =: (0.1 X 0.23 )1[2 = 0.667 x 10-4 m4 

Single Degree of Freedom System 

Stiffuess k =: P = 3El = 3 x3 xl 010 x.667xI0-
4 

=: 750375 N/m 
y c5 L3 23 

Frequency = Py = ~ki = ~75037YsOO = 38.73 rad/s 

i y = 6.16 Hz 

Let us also compute natural frequency using static deflection under given loading condition. 

(b) Static Deflection 

W = 500 x 9.81 = 4905 N L = 2000 mm = 2.0 m 

1 = 0.667 x [0 4 m 4 

c5 = (WL3 13£1) = 4905 x 2
3 

=: 0.0065 m 
3x3xlOIO xO.667xlO- 4 
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(c) Natural frequency using static deflection 

H~·81 
Py = - = -- = 38.84 rad/s; 

t5 0.0065 
fy =6.18 Hz 

This is same as obtained above. (The minor difference is only due to rounding off the numbers) 

ii) Beam Mass is considered 

Mass of the beam 

Generalised mass of beam 

Total Equivalent mass 

Natural frequency 

mh = 0.1 xO.2x 2.0x 2500 = 100 kg 

m~ = 0.23 x 100 = 23 kg 

m' = 500 + 23 = 523 kg 

Py = 750375 = 37.88 radls; fy = 6.028 Hz 
523 

(Consideration of beam mass thus causes about 2.5 % reduction in natural frequency in this case.) 

P 2.1-3 

A Machine of mass 5000 kg is supported at the center of a simply supported RCC beam 200 
mm x 500 mm deep and span 4000 mm as shown in Figure P 2.1-3. Consider the system as 
undamped. Consider motion of the mass only along Y direction in X-Y plane as shown. Econc 

= 3 X 1010 N/m 2
; Beam mass density 2500 kg/m3

• Beam mass to be ignored. Consider beam as 
(a) Simply Supported Beam and (b) Fixed-Fixed Beam. Find Natural frequency when: i) 
Beam Mass is ignored & ii) Beam mass is considered 

y 

Machine 

7'Oook' 
W~~ ____________ ~~X 

4000 

200 

D'oo 

Figure P2.1-3 Machine Supported at Center of Simply Supported Beam 
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Solution: 

i) When Beam Mass is ignored 

a) Natural Frequency when Beam is Simply-Supported 

.. WL3 SOOOx9.81x43 
Static deflectIOn at beam center = <5 = -- = ( ) = 0.001046 m 

48£1 48x3xl01O x ~0.2xO.S3 
12 

Stiffness k = W = SOOOx9.81 = 4.687Sx107 N/m 
y <5 0.001046 

J¥ 4.687Sxl07 
Py = 2. = = 96.82 radls; Iy = IS.41 Hz 

m SOOO 

We can also compute natural frequency from static deflection <5 

If 9.81 
P = - = = 96.82 radls 

y <5 0.001046 

b) Natural Frequency when beam is Fixed-Fixed 

10 1 ( 3) 
192£1 192x3xl0 X-\O.2xO.S 

ky =--= 12 =18.7SxI07 N/m; 
L3 43 

P = (k; = 18.7Sx10
7 

=193.6radls 
y V-,;;- SOOO 

ii) When Beam Mass is considered 

Beam Mass mh = 0.2xO.Sx4.0x2S00 = 1000 kg 

Generalised mass of beam m; = 0.37x 1000 = 0.37x 1000 = 370 kg 

Total Mass m* = SOOO+370 = S370 kg 
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Natural Frequency 

(a) J¥. 4.6875 x 10 7 

Beam Simply Supported Py = m~ = = 93.43 rad/s 
5370 

(b) Beam Fixed-Fixed p =~ky = 18.75xl0
7 

=186.85radls 
y m' 5370 

NOTE: In both the case, a reduction of about 3.5 % in Natural frequency is seen compared to 
when beam mass is ignored. 

P2.1-4 

A RCC Block having Length (along Z-axis) L = 2500 mrn, Width B = 1500 mm and Height 

H = 400 mm is supported by a rotational spring (Rocking about Z-axis) having stiffness of 

kIP = 2 x 106 Nmlrad attached at center point of base of the block, point 0 as shown as shown 

in Figure P 2 .. 1-4. Consider the system as undamped. Density of concrete is 2500 kg/m3. 

Find natural frequency of the system 

a) Considering that the system performs only rocking motion about Z-axis passing 
through CG of the base area point 0 

b) If the applied spring at point 0 is in Rocking direction about X-axis and the system 
performs only rocking motion about X-axis passing through center point 0 

c) If the applied spring at point 0 is in Torsional direction about Y-axis and the system 
performs only torsional motion about Y-axis passing through center point 0 

y 

T m 
H=400 c.----------r--

I Mmz h=200 
~~ ______ ~o------~~~x 

Figure P2.1-4 Block Supported by Rotational Spring Attached at Point 0 
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Solution: 

a) Rocking about Z axis 

Mass of the block m = 2500x2.5x1.5x0.4 = 3750 kg 

Rotational Stiffness of spring (Rocking about Z-axis) k t/J = 2 x 106 N mlrad 

Height of centroid C above center of base 0 h = 0.5 x H = 0.5 x 0.4 = 0.2 m 

Mass moment of inertia of the block about Z axis passing through centroid C= M mz 

M =!!!...[B2 +H2J = 3750[1.52 +0.42J = 753.125 
mz 12 12 

Mass moment of inertia of the block about Z axis passing through point 0 = Mmoz 

Mmoz =Mmz +mh2 = 753.125+3750x(0.2)2 =903.125 

Rocking Natural Frequency (about Z axis) 

P;= (k;-mgh) = (2xl0
6

-3750x9.8Ix0.2) =46.97 radls 
Mmoz 903.125 

b) Rocking about X axis 

Mass of the block m=3750 kg 

Rotational Stiffness of spring (Rocking about X -axis) ke = 2 x 106 Nmlrad 

Height of centroid C above center of base 0 h=O.2 m 

Mass moment of inertia of the block about X axis passing through centroid C = M mx 

M = !!!...[L2 + H2 J = 3750 [2.52 + 0.42 J = 2003.125 
mx 12 . 12 

Mass moment of inertia of the block about X axis passing through point 0 = M mox 

Mmox =Mmx +mh2 =2003.125+3750x(0.2)2 =2153.125 

Rocking Natural Frequency (about X axis) 

(ke -mgh) = (2xl0
6 

-3750x9.81x0.2) = 30.421 radls 
Pe = Mmox 2153.125 
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c) Torsional motion about Y-axis 

Mass of the block m =3750 kg 

Torsional Stiffness of spring (about Y-axis) k'l-' = 2x10
6 

Nmlrad 

Height of centroid C above center of base 0 h = 0.5 x H = 0.5 x 0.4 = 0.2 m 

Since point C and point 0 lie on the same vertical line, Mass Moment of Inertia of the blQck about 

Y-axis passing through point C i.e. M myjs the same as the Mass moment of inertia of the block 

about Y-axis passing through point 0 i.e. M moy • 

M = ~[L2 +B2]= 3750 r2.52 + 1.52 ]= 2656.25 
moy 12 12 1 

Torsional Natural Frequency (about Y axis) 

P = _'1-'_ = = 27.44 radls fE 2x106 

'I-' M moy 2656.25 

P 2.1-5 

For the data given in Problem P 2.1-1, consider that system has 10% damping i.e. ;y = 0.1. 

Initial conditions are yeO) = 30 mm and yeO) = 200 mm/sec. Find 

a) Natural frequency (both undamped and damped natural frequencies) 
b) Also compute free vibration response history for damping ratio of 10% as well as 

5%. 

Solution: 

a) Natural frequency 

m 500 kg 

ky 200,000 N/m 

yeO) 30 mm = 0.03 m 

y (0) 0.2 m1sec 
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P = ~ky / = 200000 = 20 rad/s 
y 1m 500 

. . .. d 27f 27f 0 14 This corresponds to Time PerlO T = - = - =.3 16 s 
Py 20 

Damping constant S y = 0.10 

Damped Natural Frequency for 10% damping 

Pdy = Py~(I-s/) = 20~(1-0.12) = 19.9 rad/s 

Machine 
m= 500 kg 

lry == 0.1 

Single Degree of Freedom System 

Figure P 2.1-5 Machine Supported by Vertical Spring - System Damping 10% 

b) Response time history for damped system for 5% & 10 % damping 

Damped Natural Frequency for 5 % damping 

Pdy = py~(I-s;) = 20~(1-0.052) = 19.975 rad/s 

Rewriting equation (2.1.2-21) 

y(t)=e Py 
y y(O)coSPdyt+ y y smpdyt - '" t( (y(O) + P r; yeO»~ . 1 

Pdy 

Substituting for Py,Sy,Pdy,Y(O)&y(O) the equation gives free vibration response for damped 
I 

system. Response history is shown in Figure P 2.1-5a for S = 5 % & S = 10% 
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P 2.1-6 

0.03 
..::-
~ 0.02 

] 0.01 

t O+O~+-Tor-r,~r7~~~~~~~~~~~ 
~ 2.5 3.0 
;J - 0.01 

t -0.02 
~ 

-0.03 
Time - sec 

Figure P2.t-5a Free Vibration Response Time History for 
Damping ~y = 0.1 and ~ = 0.05 

2-81 

A Machine of mass 5000 kg is supported at the center of a RCC portal frame beam as shown 
in Figure P 2.1 -7. Frame beam is 200 mm x 500 mm deep and column section is 200 X 400 
mm: Frame span is 4000 mm (cneter to center) and height of frame is 6000 mm (up to beam 
center) as shown. Consider the system as undamped. Elastic Modulus of concrete is 

Ec = 3xl010 N/m2 and its mass density is Pc = 2500 kg/m 3
• Find Natural frequency for a) 

Frame motion along Y only & b) Frame motion along X only for the following two 
conditions: 

i) Beam is Elastic 
ii) Beam material is considered rigid 

Solution: 

i) Beam is Elastic 

Elastic Modulus of Material 

Mass density of the material 

Span of Beam is 

Height of Frame 

Area of Beam Crossection 

Ec = 3x 107 kN/m2 

Pc = 2.5 tlm 3 

L=4.0 m 

H -- f.C m 

Ab = 0.2xO.5 = 0.10 m2 
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Area of Column Crossection Ae = O.2xO.4 = 0.08 m2 

Moment of Inertia Beam Crossection 
1 3 4 

Ib =-x0.2xO.5 =0.00208 m 
12 

Moment of Inertia Column Crossection 
1 3 4 Ie =-xO.2xO.4 = 0.00107 m 

Stiffness ratio factor 

y 

o o o 
\0 

12 

k = Ib/L = 0.00208/4 =2.916 
Ie/H 0.00107/6 

5000 
~ 300 

r-----------T -0500 
I Bel 
I I 
I I 
I I 
I I 
I I 

X I I 
L--...!--. ~ A D ~ 

400 
cp 4000 cp 300 

/- -I 

Figure P 2.1-6 Machine mass supported at Frame Beam center 

a) Motion along Y (Vertical motion) 

• Deflection 0 yb at beam center: 

Machine mass at frame beam center 

Beam Mass 

Generelaised Beam Mass at beam center 

Effective Mass at Beam Center 

m =5.0 t 

mh = 0.10x4x2.5 = 1.0 t 

m; = 0.45mh = 0.45x 1= 0.45 t 

m·=m+0.45mh=5~+0.45=5.45t 

Deflection at beam center Oyh (see equation 2.1.1-34) 

o m* gL
3 

2k+l 5.45x9.81x4
3 

x2x2.916+1 =7.938xlO-4 m 
yh = 96EIh x k+2 96x3x107 xO.00208 2.916+2 
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• Deflection 0 ye at column top 

• 
• 
• 

Mass of each column me = 0.08x6x2.5 = 1.2 t 

Generalised column mass (each column) m; = 0.33 x 1.2 = 0.396 t 

Total Effective mass at column top 

m* = 5.0+1.0+2x0.396 = 6.792 t 

Vertical deflection of columns Oye (see equation 2.1.1-35) 

o = m*xg = 6.792x9.81 =08329xl0-4 m 
ye 2x(EA/H) 2x(3xl07 xO.08/6) . 

Total vertical deflection Oy = Oyb +Oye 

Oy = 7.938x 10-4 + 0.8329x 10-4 = 8.771 x 10-4 m 

Natural Frequency p = - = = 105.75 ra s Jt 9.81 d/ 
y Oy 8.771 x 10-4 

Just for the academic interest, let us compare the results with that of Problem P 
2.1-3 having same Beam size, Beam Span and Machine Mass. From the results 
ofP 2.1-3, we notice that: 

When Beam is simply supported, Natural Frequency is 

When Beam is fixed - fixed, Natural Frequency is 

When considering as portal frame (the present case), 
Frequency is Py = 105.75 radls 

Py = 93.43 radls 

P y = 186.85 radls 

Vertical Natural 

For the portal frame, it is noticed that stiffness ratio k is close to 3. This 
indicates that beam is about 3 times stiffer than column. In other words, beam 
beahaviour is more biased towards simply supported case rather than fixed beam 
case. This gets confirmed from the present results. 

b) Motton along X (Transverse motion) 

Machine mass m =5.0 t 

Generalised beam mass 

2-83 
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Generalised column mass (each column) m; = 0.23 me == 0.23 x 1.2 = 0.276 t 

Total Effective Mass at Frame Column top m· =5.0+1.0+2x0.276 ==6.552 t 

Transverse deflection at column top t5x (see equation 2.1.1-37) 

15 == m· xgxH
3 

2+3k == 6.552x9.8Ix6
3 

2+3x2.916 =0.02 m 
x 12E1c 1+6k 12x3xl07 x 0.00107 1+6x2.916 

Natural Frequency H: Mf·81 
Px = - = -- = 22.14 rad/s 

Ox 0.02 

ii) Beam is Material is considered Rigid 

Stiffness ratio factor (beam Elastic Modulus is considered infinite) 

k- (Elb/L)_oo 
-(E1c/H )-

a) Motion along Y (Vertical motion) 

Since beam is rigid, there is no elastic deformation of the beam. Thus t5yb == 0 

Only deformation along Y is that due to column. 

Total Effective Mass at Column Top 

m· ==5.0+1.0+2x0.33x1.2 ==6.792 t 

Vertical deflection of columns t5yc (see equation 2.1.1-35) 

15 = m·xg = 6.792x9.81 ==08329xlO-4 m 
ye 2x{EAc/H ) 2x(3x107 x 0.08/6) . 

Total vertical deflection 

Natural Frequency Py = ~y == 9.81 == 343 radls 
V t5y 8.329xl0-5 
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b) Motion along X (Transverse motion) 

Effective Mass at Frame column top 

m· =5.0+1.0+2xO.23x1.2=6.552 t 

Transverse deflection at column top Ox (see equation 2.1.1-37) 

° = m· xgxH
3 

2+3k 
x 12EIe 1+6k 

for k = 00, we get ° =m·xgxH
3 

x 24E Ie 

• H3 ° = me xgx 
x 24EIe 

Natural Frequency 

6.552x9.81x(j~ = 0.018 m 
24x 3 x 107 xO.00l07 

Px == [i = ~ 9.81 = 23.34 radls V8.: 0.018 

EXAMPLE PROBLEMS: (SDOF System - Forced Vibration Response) 

P 2.2-1 

2-85 

In Example Problem P 2.1-1, consider that the system has 10% damping & the mass is acted 
upon by external dynamic load (harmonic load) of Fy == 20 N with excitation frequency OJ of 

a) 10 rad/s, b) 20 rad/s, c) 30 rad/s, d) 80 rad/s. Compute: 

i. Maximum amplitude of vibration for each ofthe above loading case 
ii. Maximum Reaction Force transmitted to support in each case 

iii. Plot Response history (Transient and steady state response) for case a) & b) for initial 
conditions of y(O) = 0 & 5'(0) = 0 

Solution: 

Natural Frequency (see solution P 2.1-1) 

ky =200 kN/m ; m= 500 kg; C; y = 0.1 

Undamped NaturalFrequency co= 20 radls 

Damped Natural Frequency cod = 19.8997 radls 
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Machine m = 500 kg 

Y ky= 200 kN/m 

Lx 
Figure P2.2-1 Forced Vibration-Damped SDOF System - Damping 10% 

Dynamic Force Externally Applied 

It is seen that there is hardly any appreciable change in damped frequency. Hence for all practical 
purposes, it is good enough to compute only undamped natural frequency. 

i) Maximum Amplitude of vibration 

a) Dynamic Force = 20 sin 10 1 

Fy = 20 N; lD = 10 radls; Py = 20 radls; 

Dynamic Magnification factor 11 y = 1 /= 1.32164 

~(I-/3;,r + (2/3ySyt 

w 
/3y=-=O.5 

Py 

F 
Amplitude = y(l) = -2:.. l1y sin(lD 1 -¢) ; for maximum amplitude, sin(lDt -¢) = 1 

ky 

Fy 
Max. Amplitude y(t)max = k l1y 

y 

y(t)max = (20/200000) x 1.32164 = 0.00013 m = 130 microns 

b) Dynamic Force = 20 sin 20 t 

Fy = 20N ; lD = 20 radls; Py = 20 radls; 

=5 

w 
/3 =-=1 

y P
y 
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Fy 
Max. Amplitude y(t)max = k f.J y 

y 

y(ljmax = (201200000) x 5 = 0.0005 m = 500 microns 

c) Dynamic Force = 20 sin 30 t 

F = 20 N . OJ = 30 rad/s' Y , . ' Py = 20 rad/s; 

. M 'fi . Co I 0 778 DynamIc agm IcatIon lactor f.J y = I 2 = . 

,,(1- f3y ) + (2f3y Sy Y 

Maximum Amplitude 

y(ljmax = (201200000)xO.778xlxI06 = 77.8 microns 

d) Dynamic Force = 20 sin 80 t 

F = 20N' OJ = 80 rad/sec' y' , Py = 20 rad/sec; Sy = 0.1; 

. M 'fi . Co 1 0 066 DynamIc agm IcatlOn lactor f.J y = I 2 = . 

,,(1- f3y ) + (2f3y Sy t 
Maximum Amplitude 

y(ljmax = (201200000)xO.066xlxl06 = 6.6 microns 

From these results, following observations are made: 

w 
f3 =-=4 

y P
y 

I. Magnification factor rises sharply with frequency ratio approaching unity 

2-87 

2. Though stiffness is of the order of 200 kN/m, even a small dynamic force of 20 N is able 
to cause amplitudes as high as 500 microns at resonance. 

Maximum Reaction Force transmitted to support: 

From equation (2.2.2-11), we get max-transmitted force as Fr = Fy f.Jy ~1+(2f3y Sy)2 
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Max. Reaction force transmitted 

Case a) 

Case b) 

Case c) 

Case d) 

Fr =20x1.32164x~I+(2xO.5xO.l)2 =26.56 N 

Fr =20x5x~I+(2xlxO.l)2 =101.98 N 

Fr =20xO.778x~I+(2x1.5x0.1)2 =16.245 N 

Fr = 20xO.066x~I+(2x4XO.l)2 = 1.69 N 

150 Steady-state 

Time-sec 

Figure P2.2-1a Respose History for Force F(t) = 20 sin lOt 

iii) Response history 

For initial conditions ofy (0) = 0 & yeO) = 0 use equation (2.2.2-4) for Transient Response & use 

equation (2.2.2-5) for Steady State Response. As mentioned earlier, use natural frequency Py 

instead of Pdy for all response computations. 

Transient Response: 
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300 Steady-state 

200 

100 

o 5 

CI) 

!9 -100 

! 
-200 

Transient 

-300 Time - sec 

Figure P2.2-1b Response History for Force F(t) = 20 sin 20 t 

Steady State Response: 

Case a) Force 20 sin 10 t 

w=10, p y =20, f3y =O.5, Sy=O.l, Fy =20, ky =200000 

Response history plot giving transient as well as steady state response is as shown in Figure P 2.2-

1a. 

Case b) Force 20 sin 20 t 

w=20, Py =20, f3y =1, Sy =0.1, Fy =20, ky =200000 

Response history plot giving transient as well as steady state response is shown in Figure P 2.2-1 b 

P2.2-2 

In Example Problem P 2.1-2, consider that the system has 5 % damping and the mass is 
acted upon by external dynamic load of a) 20 sin 25 t , b) 20 sin 50 t. Compute Maximum 
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Amplitude of vibration and Maximum Reaction Force Transmitted to Support. Contribution 
of Beam Mass is to be considered. 

y 

F(t) Machine 
m=500kg 

----~------~--~x 

., Section A-A 

Figure P2.2-2 Machine supported by cantilever beam system damping z = 5%, 
Dynamic Force F(t) = F(t) externally applied 

Solution: 

(i) Beam mass is considered 

Stiffness of Cantilever Beam in V-direction (see solution P 2.1-2) 

Stiffness ky = 750375 N/m 

Natural frequency Py = 37.88 rad/s 

i) Maximum Amplitude of vibration 

Case a) Force 20sin25t 

(l) = 25 rad/sec; Fy = 20 N; 

F 
. f3 (l) 25 

requency ratIO y = -- = --= 0.66 
Py 37.88 

Dynamic Magnification factor 

https://engineersreferencebookspdf.com



Single Degree of Freedom System 2-91 

20 xl.76xl 46.9xl0-6 m 
750375 

= 46.9 microns 

Case b) Force 20sin50t 

OJ = 50 radls; Fy = 20 N; 

Frequency ratio Py =~=~=1.32 
Py 37.88 

Dyn~mic Magnification factor Ji y = ~ . 1 
(1-1.322f +(2x1.32 x O.05Y 

= 1.326 

Amplitude (max) = 20 x1.326 = 35.3xl0-6 m=35.3microns 
750375 

ii) Maximum Reaction Force Transmitted to Support 

Max. Force transmitted to support Fr = Fy Jiy ~1 + (2 Py Sy)2 

Case a) Fr = 20 x 1.76 x ~1 + (2 x 0.66 x 0.05)2 = 35.2 N 

Case b) Fr = 20x1.326x~I+(2x1.32xO.05)2 = 26.75 N 

P 2.2-3 

A machine of mass 500 kg is supported on a RCC Block of size 

L = 2500 mm; B = 1500 mm; & H = 400 mm. Density of concrete is 2500 kg/m3. The block in 

turn is supported by a Lateral Translational spring in X direction having stiffness of 

kx = 2xl07 N/m attached at CG of the base area of the block (point 0) as shown in Figure P 

2.2-3. Height of the CG of machine (point C) above top of the Block is hI = 100 mm. CG of 

Block and CG of the machine lie on the same vertical line. Consider that the system is 
undamped and it is constrained to translate only along X-axis. A dynamic force of 
Fx = 200 N at excitation frequency of (l) = 50 radls is applied at the machine mass CG along 

X-axis. Find natural frequency of the system and compute maximum amplitude of vibration 
at the machine center point C. 
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Machine y 

_ J ________ _ 
hi = lOOT __ "' ________ ... --~ F(t) = 200 sin 50 t 

I CC m, Block 
H=400 h 

LL ~TsOOf-=====~X 

Figure P2.2-3 Machine on Block - Block Supported by Translational Spring 
in X-Direction attached at Base Center Point 0 

Solution: 

Spring applied in X-direction and Dynamic Force acts in X-direction 

Machine mass 

Block size 

Mass of Block 

Total Mass (m] + m2 ) 

= 500 kg 

=2.5xI.5x0.4 m 

2.5 x 1.5 x 0.4 x 2500 = 3750 kg 

=4250 kg 

System is constrained to translate only along X -axis 

Stiffuess of supporting spring kx =2x107 N/m 

Natural Frequency fix 2x107 
P = - = -- =68.6rad/s 

x m 4250 

Since the system is constrained to translate only along X-axis, the dynamic force at 0 is same as 

Fx applied at machine center. 

Dynamic Force at 0 

Frequency ratio 

Magnification factor 

Fx (I) = 200sin 50t 

OJ 50 fJx =-=-=0.73 
Px 68.6 

J1x =~! 21 =2.14 v-Pn 
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Amplitude at point 0 (see equation 2.2.1-5a; With appropriate changes made for force in X­

direction) 

xp(t} = Fx Dn1 
2 sinm t 

k I-P x x 

Maximum amplitude at point 0 

x(max}= 200
7 

x2.14=0.214xl0-4 m=21.4microns 
(2 x10 ) 

Maximum amplitude at point C: Since the system is constrained to translate only along X-axis, 

amplitude at C is same as amplitude at 0 i.e. 21.4 microns. 

P 2.2-4 

A machine of mass 500 kg is supported on a RCC Block of size 

L = 2500 mm; B = 1500 mm; & H = 400 mm. Density of concrete is 2500 kg/m3. The block in 

turn is supported by a rotational spring having stiffness of kIP = 2 x 106 Nmlrad attached at 

center of the base of the block (point 0) as shown in Figure P 2.2-4. Height of the CG of 
machine (point C) above top of the Block is hi = 100 mm . CG of Block and CG of the machine 

lie on the same vertical line. Consider system to be undamped. System is constrained to 
perform only rocking motion about Z-axis passing through O. A dynamic force of 
Fx = 200 N at excitation frequency of m = 50 rad/s is applied at the machine mass CG along 

X-axis. 

a) Compute natural frequency and maximum amplitude of vibration at the machine 
center point C. 

b) If rotational stiffness acts at 0 about X-axis and the applied dynamic force at point C 
acts along Z-axis, compute natural frequency and maximum amplitude of vibration 
at the machine center point C. 

Solution: 

a) Rotational stiffness acts at 0 about Z-axis and the applied dynamic force at point C 
acts along X-axis 

Machine mass m2 = 500 kg 

Block size 

Mass of Block 

Total Mass (ml + m2 ) 

=2.5x1.5x0.4 m 

2.5 x 1.5 x 0.4 x 2500 = 3750 kg 

=4250 kg 
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Machine 
y 

hI = l00TJ~~~~-~~~ ____ -e---t·F(t) = 200 sin 50 t 

I C Block 
H=400 h C ml 

Li.. 0 x 
B= 1500 

Figure P2.2-4 Machine on Block - Rotational Spring Attached to Base Center Point 0 
about Z-axis - Dynamic Force F(t) = 200 sin 50 t applied at Machine 
Center along X-axis 

Let us denote Overall centroid (Block +Machine) as CC 

Height of overall centroid CC above base 

h = 3750x 0.2 + 500x (0.1 + 0.4) = 0.2354 
4250 

m 

System rotates about Z-axis passing through base center point 0 

Mass Moment of Inertia about base center point 0 = M moz 

3750 ( 2) Mmoz =--x 1.52 +0.4 +3750x0.22 +500x(0.1 +0.4)2 = 1028.125 
12 

Stiffuess of supporting spring NmJrad 

Natural Frequency 

P, =~ k, = 2x10
6 

=44.10 rad/s 
Mmoz 1028.125 

Just for academic interest let us compute natural frequency by including the term' mgh', we 

get (2x10
6 

-4250x9.81xO.2354) = 44. rad/s .. 
1028.125 
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It is seen that by ignoring the term mgh there is hardly any difference in the result. Thus the 

simplification of ignoring the term mgh both for frequency and amplitude computations is OK. 

The dynamic force Fx at machine center causes dynamic moment M tP about 0 

Dynamic moment about 0 

Frequency ratio 

MtP =200 (0.1+0.4) = 100 Nm 

PtP =(5%4.1)=1.134 

Magnification factor PtP ='~21 =3.5 

~ 
Amplitude at point 0 (see equation 2.2.1-10) 

M 1 M 
';p(t) =_tP ~sinO) t =_tP PtP sinO) t 

ktP \1-Pi) ktP 

Maximum amplitude ,;(max)= 100 6 x3.5=1.75xI0-4 rad 
(2xlO ) 

Amplitude at point C in X-direction 

(O.l+0.4)xO.1.75xl0-4 = 8.75xlO-5 m = 87.5 microns 

b) Rotational stiffness acts at 0 about X-axis and the applied dynamic force at point C 
acts along Z-axis 

System rotates about X-axis passing through base center point 0 

Mass Moment of Inertia about base center point 0= M inox 

3750 ( ) 
Mmox =--x 2.52 +0.42 +3750xO.22 +500x(0.1+0.4)2 =2278.125 

12 

Stiffness of supporting spring 

Natural Frequency 

~
e 2xl06 

Pe = -- = = 29.6 rad/s 
Mmox 2278.125 

ke = 2xl06 Nmlrad 
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The dynamic force Fz at machine center causes dynamic moment M 0 about 0 

Dynamic moment about 0 

Frequency ratio 

Magnification factor 

Mo = 200 (0.1+0.4) = 100 Nm 

/30 = (5%9.6)= 1.69 

I 
Po = 2 = 0.537 

(1- /30 ) 

Amplitude at point 0 (see equation 2.2.1-10) 

(}p(f) = Mo ~sinO) t = Me. Po sinO) t 
ko ~I- /30 J ko 

Maximum amplitude (}(max)= 100
6 

x3.43=0.2685xIQ-4 rad 
(2xl0 ) 

Amplitude at point C in Z direction 

(O.l+OA)xO.2685xIQ-4 = 1.34 x 10-5 m =13Amicrons 

P 2.2-5 

A machine of mass 500 kg is supported on a RCC Block of size 

L = 2500 mm; B = 1500 mm; & H = 400 mm. Density of concrete is 2500 kg/ml. The block in 

turn is supported by a rotational spring having stiffness of kif! = 2 x 106 Nmlrad attached at 

center of the base of the block (point 0) as shown in Figure P 2.2-5. Height of the CG of 
machine (point C) above top of the Block is hI = 100 mm .CG of Block and CG of the machine 

lie on the same vertical line. Consider that the system only perform rocking motion about Y­
axis passing through O. Consider machine radius of gyration ry = 300 mm. Find natural 

frequency of the system? Also compute maximum amplitude ofvibration at the corners at the 
top of the block when a dynamic couple of M If! = 100 Nm at excitation frequency of 

(J) = 50 radls is applied at the machine mass CG about Y-axis. Consider system to be 

undamped. 

Solution: 

The entire problem data is same as that for Problem P 2.2-4 except that the applied spring is in 'I' 

direction and the applied dynamic couple is about Y-axis and the block is allowed to rotate about 
Y-axis passing through 0 
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Machine 
M'I'= lOOsin50t 

Block 

x 

Figure P2.2-5 Machine on Block - Block Supported by Rotational Spring Attached to 
Base Center Point 0 - Dynamic Moment M. = 100 sin SOt applied at 
Machine Center about-Y 

Machine mass 

Mass of Block 

Total Mass (m) + m2 ) 

= 500 kg 

=3750 kg 

=4250 kg 

Let us denote Overall centroid (Block +Machine) as CC 

Height of overall centroid CC above base h = 0.2354 m 

System rotates about Y-axis passing through base center point 0 

Radius of Gyration ry =300mm 

Mass Moment of Inertia about Y at base center point 0 = M moy 

Mm = 3750 X(2.52 + 1.52 )+500X(0.3)2 = 2701.25 
oz 12 

Stiffness of supporting spring 

Natural Frequency 

p _ ~ k, _ 2x10
6 

=27.2 rad/s 
'" - Mmoy - 2701.25 

Nmlrad 

Dynamic moment about Y at 0 M", = 100 sin50t Nm 

2-97 
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Frequency ratio 

Magnification factor 

Amplitude at point 0 

I 
f.J, = ~ =0.42 

\1- P, / 

M 1 M 
If/ p (t) = ~~sin m t = -'11-11'11 sin m t 

k'll \1- Pi } k'll 

Single Degree of Freedom System 

Maximum amplitude If/(max) = 100 6 x 0.42 = 0.21 x 10-4 rad 
(2xlO ) 

Amplitude at Top comer of the foundation 

Since all the four comer points at top of the foundation are equidistant from point 0, consider right 
top comer for purpose of computation. 

Distance of comer point from 0 along X-axis =750 mm 

Distance of comer point from 0 along Z-axis =1250 mm 

X amplitude thus becomes Ax = 0.75x0.21xlO-4 = 1.575xlO-s m = 15.75 microns 

We get Z amplitude as Az =1.25xO.21xI0-4 =2.625xIO-s m=26.25 microns 

Total amplitude of comer point A = ~ A/ + A/ = ~15.752 +26.252 = 30.6 microns 

P 2.2-6 

A mass mo = 3500 kg falls freely from a height of h = 2.0 m over a foundation having mass 

m\ = 250000 kg. The foundation is supported by a linear spring having stiffness of 

k\ =4.2xl06 kN/m. Considere =:= 0.5. Compute maximum amplitude of the foundation. 

Solution: 

m\ = 250000 kg; mo =3500 kg; 

e=O.5; h=2.0m 
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r----------------------
: : I 

T
: mO=3500kg ! .. 
L _____________________ J 

h=200m 

ml = 250000 kg 

6 
kl = 4.2 x 10 kN/m 

Figure P2.2-6 SDOF System Subjected to Impact Load 

4.2xl06 xl03 

----- = 129.6 rad/s Natural Frequency 

Mass Ratio 

PI= 
250000 

At = 250000 = 71.42 
3500 

Velocity of mass mo before impact 

vo = ~2gh = .J2x9.81x2 = 6.26 mls 

Velocity of mass ml after impact (see equation 2.2.5-3) 

v =v' x (l+e) =6.26x (1+0.5)) =0.1296 mls 
I 0 (l+At) (1+71.42) 

We get response of the SDOF system as (refer equation 2.2.5-12) 

VI • 0.1296 . 1296 Yl =-smPlt=--sm . t 
PI 129.6 

Maximum Amplitude (refer equation 2.2.5-13) 

_ VI _ 0.1296 -0001 1 
PI ------. m or PI = mm 

PI 129.6 

2-99 
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P 2.2-7 

A SDOF system having mass m) = 2500 kg and stiffness k) = 4.2 x 104 kN/m is subjected to 

an impulsive load. The pulse shape is rectangular and peak magnitude of the applied force is 
Fo = 50 kN and pulse duration is (a) 50 milisec and (b) 10 milisec. Compute maximum 

amplitude ofthe foundation. 

Solution: 

m) =2500 kg 

k) =4.2xI04 kN/m 

Natural Frequency p) = 4.2 x 10
4 

x 10
3 

= 129.6 rad/s 
2500 

21r 21r 
Natural Time Period of the system T = - = --= 0.048 s 

P 129.6 

Magnitude of the applied Force Fo =50kN 

~i 
~°tL 
~ 

0.05 sec 

m1 =2500 kg 

4 
k1 = 4.2 x 10 kN/m 

Figure P 2:2-7 SDOF System Subjected to Rectangular Pulse 

(a) Pulse Duration 

Excitation Frequency 

Frequency Ratio 

T = 50x103 = 0.05 s 

1r 1r 
OJ = - = -- = 62.83 rad/s 

T 0.05 

P = ~ = 62.83 = 0.485 
P 129.6 
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Ratio ~ = 0.05 = 1.031 
T 0.048 

Response Magnification from Figure 2.2.6-3 

Maximum Amplitude 

f.i = 2.0 

(b) 

= x Fo =2.0x 50xl0
3 

=2.4xI0-3 m 
Ymax f.i kJ 4.2 x 107 

=2.4xl0-3xI03 =2.4- rom 

Pulse Duration 

Excitation Frequency 

Frequency Ratio 

Ratio 

T = lOxl03 = 0.01 s 

1{ 1{ 
OJ =-=- = 314.16 rad/s 

T 0.01 

fJ = OJ = 314.16 = 2.424 
p 129.6 

~ = 0.01 = 0.2083 
T 0.048 

Response Magnification from Figure 2.2.6-3 

Maximum Amplitude 

f.i = 1.22 

Fo 50xl03 -3 
Ymax =f.ix-=1.22x 7 = 1.452 x 10 m=1.452 rom 

kJ 4.2x10 

2-101 

It is noted that when pulse duration is short, amplitude reduces for the same applied force. Since 

pulse duration is short compared to natural time period, we can also evaluate maximum amplitude 

by equation (2.2.6-15). 

Ixp 
Ymax =-k-

Here I is the Impulse i.e. area of the pulse diagram, p is the natural frequency and k is the 

stiffness. Substituting values we get: 

I=FoxT=50x103xO.01=500 Ns 

I x P = 500x129.6 = 64800 N 

Ixp 64800 -3 
Ymax =--= 7 = 1.543 x 10 m=1.543mm 

k 4.2x10 
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It is noticed that this amplitude is nearly same as computed above using Response Magnification 
Factor. 

P 2.2-8 

In problem P 2.1-3, consider that system has 5 % damping and mass is acted upon by a 
dynamic force 200 N at excitation frequency of 15 Hz. Compute maximum amplitude of 
vibration of the mass. 

Solution: (see solution 2.1-3) Beam mass ignored 

a) When beam is Simply- Supported 

Stifthess k y = 4.6875 xI 07 N/m 

Py = 96.82 radls 

Excitation Frequency 

Frequency Ratio 

Damping 

y 

r 
i 

OJ = 15 x2 x 7i = 94.24 radls 

fJ = OJ = 94.24 = 0.97 
P 96.82 

S =0.05 

Machine FY~r'inro/ 
m=500kg 

100 

1000 
f .X 0200 

Figure P2.2-8 Machine Supported at Center ofSimply Supported Beam 
Subjected to Dynamic Force Fy = 200 sin rot 

Dynamic magnification factor 

= 1 =8~ 
J(t-0.97 2

) +(2 x O.97 x O.05Y 

Excitation Force Magnitude Fy =200 N 
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Static deflection o = 200 = 4.267xl0-6 m 
SI 4.6875xl07 

Maximum Amplitude Ay =4.267xl0-6 x8.8=37.55xl0-6 m=37.55 microns 

b) When beam is Fixed-fixed 

ky = 18.75 xl0 7 N/m; Py = 193.6 radls 

Excitation Frequency OJ=15x2x1l'=94.24 radls 

Frequency Ratio f3 = OJ = 94.24 = 0.48 
P 193.6 

Damping S =0.05 

Dynamic magnification factor 

= 1 = 1.3 
~(1-0.482j +(2x0.48xO.05)2 

Excitation Force Magnitude Fy =200 N 

Static deflection 
200 -6 

OSI = 7 = 1.067xl0 m 
18.75xl0 

Maximum Amplitude Ay = 1.067 x 10-6 x 1.3 = 1.39 xl 0-6 m = 1.4 microns 

ii) When Beam Mass is considered 

a) Beam Simply Supported 

Py =93.43 radls; f3 = 1.008; S = 0.05;.u =9.8; Ay = 41.8xl0-6 m = 41.8 microns 

b) Beam Fixed-Fixed 

Py = 186.85 radls; f3 = 0.504; S = 0.05;.u = 1.38; Ay = 1.47 x 10-6 m = 1.5 microns 
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P 2.2-9 

In Problem P 2.1.6, consider a dynamic force F(t) = Fo sin (l) t, as given below, is applied at 

frame beam center vertically along Y as well as horizontally along X (one at a time). Consider 
damping ( = 5 % • Compute response of the mass when excitation frequency of the applied 

force is: 

i) Applied Force F(t) = 0.2sin lOOt 

ii) Applied Force F(t) = 0.2 sin 15t 

Solution: 

a) Motion along Y (Vertical motion) 

Effective Mass at Beam Center m' =5.45 t 

Deflection at beam center Oyb = 7.938x 10-4 m 

'ffn ffra b k m'g 5.45x9.81 6 3 kNI Su esso me eam= beam =--= 4 = 7 53 m 

Effective mass at column top 

Deflection 0 ye at column top 

Column Stiffness (both columns) 

Oyb 7.938x 10-

m' = 6.792 t 

Oye = 0.8329xI0-4 m 

k =m'g= 6.792x9.81 =800000kN/m 
column Oye 0.8329xI0-4 

Beam and column stiffness are in series. 

Total vertical stiffness ky is given as: 

I 1 I (I I) -5 -=--+--= --+ = 1.6097 x 10 
ky kbeam kcolumn 67353 800000 

ky = 62123 kN/m 

Natural Frequency Py = 105.75 radls 

i) Applied Force F(t) = 0.2 sin lOOt 
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Excitation Frequency tV = 100 rad/s 

Frequency ratio Py =.!!!..- = ~ = 0.946 
. Py 10S.7S 

Damping S =O.OS 

Magnification factor Jl y 

Static deflection ;: _ Fo _ 0.2 _ 322 10-6 
u ------ x m 

sl k 62123 . 
y 

Vertical Amplitude y 

y = ~Sl X Jl y = 3.22 x 10-6 x 7.07 = 22.8x 10-6 m = 22.8 microns 

Note: Just for academic interest, if system is considered as undamped, we 

get 

y = 3.22 X 10-6 x9.52 = 30.6Sx 10-6 m = 30.6 microns 

ii) Applied Force F(t) = 0.2 sin 1St 

Excitation Frequency 

Frequency ratio 

Damping 

Magnification factor Jl y 

tV = IS rad/sec 

tV IS Py =-=--=0.142 
Py 10S.7S 

S =;=O.OS 

1 
Jl = =104 

Y ~{t-0.1422} +(2xO.142 xO.OS)2 . 

;: - Fo _ 0.2 _ 322 10-6 
u ------ x m 

sl k 62123 . 
y 

Static deflection 

2-105 
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Vertical Amplitude y 

y = ~st XPy = 3.22x 10-6 x 1.04 = 3.4x 10-6 m = 3.4 microns 

b) Motion along X (Transverse motion) 

Total Effective Mass at Frame Column top 

Transverse deflection at column top 

m" = 6.SS2 t 

Ox =0.02 m 

Frame stiffness (Transverse) k = 6.5S2x9.81 =3213.7 kN/m 
x 0.02 

Natural Frequency 

i) Applied Force F(t) = 0.2 sin lOOt 

Excitation Frequency 

Frequency ratio 

Damping 

IV = 100 rad/s 

Px =~=~=4.51S 
Px 22.14 

s =O.OS 

Px = 22.14 rad/s 

Magnification factor: As frequency ratio is more than 2, damping effect on the 

magnification will be insignificant 

Px = I( 1 =0.OSI6 
1-4.5IS2 

Static deflection 

Transverse Amplitude x 

x =~st XPx = 6.22 x 10-5 xO.OSI6 = 3.21xlO-6 m = 3.2 mic~ns 

ii) Applied Force F(t) = 0.2 sin 1St 

Excitation Frequency IV = IS rad/s 
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Frequency ratio 
0) IS 

fJx =-=--=0.677S 
Px 22.14 

Damping , =O.OS 

Magnification factor f1 x 

1 
f1x = = 1.834 

~(1-0.677S2) +(2xO.677SxO.OS)2 

Static deflection 

Transverse Amplitude x 

~SI = 6.22 X 10-5 m 

x = ~Sl X J1.x = 6.22 X 10-5 x 1.834 = 1.14 x 10-4 m = 114 microns 

2-107 
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3 

MULTI- DEGREE OF FREEDOM SYSTEMS 

• Free and Forced Vibration 
• Two Spring Mass System 
• Three Spring Mass System 
• Multiple Spring Mass System Connected by a Rigid Bar 
• Rigid Block supported by Translational and Rotational Springs 
• Portal Frame 
• Harmonic Loads 
• Impact Loads 

Example Problems 
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Multi Degree of Freedom Systems 3-3 

MUL TI- DEGREE OF FREEDOM SYSTEMS 

Every physical system is a complex system and requires mathematical idealization to a fairly good 
degree of accuracy for good results. Though SDOF System is the simplest way to understand 
vibration behaviour, its application to physical problems gets restricted, as, in most of the cases, it 
does not adequately represent behaviour of the prototype. It may be desirable to adopt appropriate 
mathematical idealization for nearly true representation of the prototype. Mathematical idealization 
by a higher degree freedom system (2DOF, 3DOF, ---, nDOF) may be the right choice. In the 
present context and for machine foundation design application, development of analysis is 
restricted to only two and three degree of freedom system as this is adequate for most of the 
problems. However, where mathematical modeling calls for idealization with further higher DOF 
systems, it is advisable to use standard computer packages as it may turn out to be too tedious to 
perform manual computations. 

After SDOF system, next step is to understand vibration behaviour of Two Degrees Of Freedom 
System and Three Degrees of Freedom System from the point of view of machine foundation 
design. Two degrees of freedom system is one where two coordinates are required to define 
disp laced position of the structure. Similarly for three degrees of freedom system, three coordinates 
are required to define displaced position of the structure. 

From the study of SDOF System, we note the following: 

i) Equation of motion for SDOF y is 

ii) Frequency equation is \(k y - mp; ) = 0 , t~at gives natural frequency as p y = ~ 
iii) It is observed that there is hardly any appreciable change in the damped natural frequency 

vs. undamped natural frequency for systems having damping less than 20%. 
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In view of iii) above, for all future cases, analysis is restricted to only undamped system as majority 
of the structural systems considered for machine foundation design application have damping less 
than 20%. However, influence of damping is considered for computation of amplitudes only in case 
of resonance (as will be seen later for forced vibration response). 

The analysis is developed for most commonly used systems for machine foundation applications. 
These are: 

• Two Spring Mass System 
• Rigid Block supported by Vertical, Translational & Rotational Springs 
• Three Spring Mass System 

From the above we see that a SDOF system has only one stiffuess term and one mass term. For a 
two DOF system, we shall get stiffuess matrix [k] of the order of [2 x 2] and mass matrix [m] also 

of the order of [2x 2]. Similarly for a 3-DOF system, we shall have stiffuess matrix [k ] of the order 

of [3 x 3] and mass matrix [m] also of the order of [3 x 3] and the frequency equation shall 

be I(k - mp2l = 0 . 

Coordinate System followed throughout the text is right hand thumb rule as shown in Figure 3-1. 

y Z 

e 
Z 

(a) Z-Axis towards Reader (b) Z-Axis away from Reader 

Displacements x,y & z are +ve along X, Y & Z Axes. Rotations 9, '1', cj> about X, Y & Z 
Axes are +ve considering rotations from Y to Z, Z to X & X to Y 

Figure 3-1 Notations for Displacements and Rotations 

3.1 TWO DEGREES OF FREEDOM SYSTEM - FREE VIBRATION 

Both the systems, i.e. Spring Mass System as well as Block-Foundation System are covered for 
analysis. The spring mass system has been added only for academic purposes. 
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3.1.1 Two Spring Mass System- Linear Springs 

Consider a two spring mass system, having masses m} & m], spring stiffness k} & k2 as shown in 
Figure 3.1.1-1. Two coordinates namely Yl & Y2 are the two degrees of freedom that define 

displaced position of the masses ml & m2 . 

Equation of Motion: 

For any given system, there are many ways of writing equation of motion. We use only method 
Considering equilibrium of forces. 

Let us write equations of motion using eqUilibrium of forces acting on free body diagram. Figure 
3.1.1-1(a) shows position of the massesm1 & m2 at rest. Masses are disturbed and set free for 

motion. At any instant of time t, let the displaced positions of masses ml & m2 be Yl & Y2 
respectively as shown in figure 3.1.1-1 (b). Forces acting on the masses are shown in the free body 
diagram of figure 3.1.1-1(c). Inertia force acts opposite to direction of motion. 

Y2 
J.. 
Y2 
T 

(a) System at Rest (b) Displaced Position 

~
2Yz 

m2 

!cz(Y2-Yl? 

ml~(Y2-YI) 

~ 
k\YI 

(c) Free Body Diagram 

Figure 3.1.1-1 An Undamped 1\vo Spring Mass System 

Considering equilibrium of forces on the free body diagram, we get the equation of motion as: 

md,\ +klYI -k2(Y2 - YI) = 0 

m2Y2 +k2(Y2 -YI)=O 

Rewriting in Matrix form, equation becomes 

(3.1.1-1) 
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3-6 Multi Degree of Freedom Systems 

(3.1.1-2) 

[

ml 
Here 0 represents mass matrix and o ] [kl + k2 

m2 -k2 
-k2 ] 

k2 
represents stiffness matrix 

As seen from equation (3.1.1-2), though there is no coupling in mass matrix but stiffness matrix is 
coupled through off-diagonal terms. Thus equation of motion is a coupled one. 

Solution to Equation of Motion: 

Natural Frequency 

In chapter 2, for solution to SDOF system, we obtained natural frequency pyas 

{k;. 
p y = f-;;; I.e. (3.1.1-3) 

k y - mp~ = 0 is termed as Frequency Equation (3.1.1 -4) 

For two DOF system, (equation of motion equation 3.1.1-2), the frequency equation is given by 

Determinant (3.1.1-5) 

Or 
l
(kl+k2-mlP2) (-k2) 1=0 

(-k2) (k2 -m2p2) 
(3.1.1 -6) 

Expanding the determinant, we get 

(3.1.1-7) 

(3.1.1-8) 
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Since masses ml & m2 are non-zero, roots of f:,(p4) = 0 will give two natural frequencies 

PI & P2 corresponding to 1st mode and 2nd mode of vibration respectively. 

(3.1.1-9) 

Solution of this equation will give two natural frequencies. Solving, we get 

Or (3.1.1-10) 

At times it is convenient to express the frequency equation in terms of limiting frequencies. 
Expressing these in terms of Limiting Frequencies, we get: 

Denoting 

PLI = (Ii" as limiting frequency for mass m l V-;;;: 
Pu = ~ k2 as limiting frequency for mass m 2 

m2 

& A, = !!!l as mass ratio 
ml 

Equation (3.1.1-10) is re-written in terms of limiting frequencies as 

Two natural frequencies PI & P2 are 

p? = ~ {(PZ2 (I + A,)+ PZ,)- ~(PZ2 (1 + A,)+ pzJ - 4(pz, pzJ} 

p~ = ~{(PZ2(1+A,)+ PZ,)+~(PZ2(1 +A,)+ pzJ -4(PZ, PZ2)} 

(3. I. I-lOa) 

(3.1.1-11) 

(3.l.l-12) 

(3.1.1-13) 
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Since PI & P2 are roots of l1(p 4 ) = 0, l1(p 4 ) could also be represent~d in terms of its roots i.e. 

its natural frequencies PI & P2 . Expressing in terms of natural frequencies PI & P2' (derivation 

not given, readers may please derive themselves), we get: 

(3.1.1-14) 

From equation 3.1.1-12 & 13, it can be seen that 

(3.1.1-14a) 

Mode Shapes: 

As we have seen that a SDOF system has only one frequency and vibrates in one mode only. 
Similarly a 2 Degrees of Freedom (2DOF) Sy~tem has two natural frequencies and two modes of 
vibration. Let us first evaluate its mode shapes. 

Let the general solution of the equation of motion be of the form 

YI = Al sin(pt + ¢) 

Y2 = A2 sin(pt + ¢) 
(3.1.1-15) 

In the I sl mode since the system vibrates with frequency PI , we can consider the solution to be of 

the form 

YI = AI sin(p)t+¢') 

Y2 = A2 sin(Plt+¢') 

Here quantities with single prime are indicative of the first mode. 

(3.1.1-16) 

Here YI & Y2 represent the response of mass ml & m2' AI & A2 are the amplitudes of 

mass m) & m2 and ¢' represents the phase angle in the 1 sl mode. Differentiating, we get the 2nd 

derivative as 

•• , 2 A , . ( ¢') YI = -PI I SIO plt+ 

•• , 2 A,· ( ¢') Y2 =-PI 2 SIO plt+ 
(3.1.1-17) 

Substituting equation (3.1.1-16) and (3.1.1-17) in equation of motion, (equation 3.1.1-2), it gives 
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Rearranging terms, we get 

(3.1.1-18) 

Solution of this gives 

(3.1.1-19) 

Here a' represents amplitude ratio of mass m2 to the mass ml in the first mode of vibration. This 

indicates that for a given system, there exists a constant ratio between amplitudes of masses 
m\ & m2 for the first mode. 

Similarly for the 2nd mode the system will vibrate with frequency P2 

We can consider the solution to be of the form 

yj = Ajsin(p2t +(r) 

yi = Ai sin(p2t + <p") 

Here quantities with double prime are indicative of the second mode. 

(3.1.1-20) 

Here yj & yi represent the response of mass m\ & m2, Ai & Ai are the amplitudes of mass 

m\ & m2 and <p" is the phase angle in the 2nd mode. 

Substituting equation (3.1.1-20) and its 2nd derivative in equation (3.1.1-2), and solving, we get 

Aj k2 k2 -m2p~ 1 

Ai = k\ + k2 - m\P~ = k2 = a" 
(3.1.1-21) 

Here a" represents amplitude ratio of second mass to the first mass in second mode of vibration. 
This indicates that for a given system, there exists a constant ratio between amplitudes of masses 
m\ & m2 for the second mode too. 
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Values of constants AI, A;, At & A; are determined based on initial conditions. It can well be 

proved that equation (3.1.1-19), that represents Mode I, is always positive i.e. both the masses 
move in phase in relation to equilibrium position. Similarly it can be proved that equation 3.1.1-21, 
that represents Mode II, is always negative i.e. both the masses move out of phase in relation to 
equilibrium position. It is also interesting to note that the first natural frequency (lower natural 
frequency) is always lower than the lowest limiting frequency (given by equation 3.1.1-1Oa) and 
the second natural frequency (higher natural frequency) is always higher than the highest limiting 
frequency. (Proof not given- readers may attempt the same on their own). 

The two modes are shown in Figure 3.1.1-2. 

The mode when both masses move in phase in relation to equilibrium position is termed as 
Fundamental Mode or Principal Mode or Normal Mode of Vibration. In this mode the system 
vibrates with lowest frequency called the fundamental frequency. In the second mode the system 
vibrates with next higher frequency or second frequency 

Free Vibration Response 

Having obtained natural frequencies of vibration, the next step is to evaluate its free vibration 
response. The general solution (see equation 3.1.1-15) thus becomes: 

Response of mass m l 

YI = y{ + Yl = Al sin(pi t + (J') + AI sin(p2t + (J") 
'------.r------ '-----v-------­
I st Mode Response 2nd Mode Response 

= AI sin(plt + (J') + AI sin(p2t + (J") 

Response of mass m2 

Y2 = Y2 + Y2 = A; sin(plt + (J') + A2 sin(p2t + ¢") 
'-----v-------- '-----v----' 
I st Mode Response 2nd Mode Response 

= A2 sin(plt + (J') + A2 sin(p2t + ¢") 

= a' AI sin(Plt + (J') + a"Ai sin(p2t + ¢") 

The values of constants are determined from initial conditions. 

Let the initial conditions be 

At t = 0 ~ YI (t) = YI (0); jil (t) = YI (0); Y2 (t) = Y2 (0); Y2 (t) = Y2 (0) 

Differentiating equation 3.1.1-22 & 3.1.1-23, we get 

YI = pIA{ cos(Plt + (J') + P2Alcos(P2t+¢") 

Y2 = PI A{a' cos{Plt + (J') + P2 Ata" COS{P2 t + ¢") 

(3.1.1-22) 

(3.1.1-23) 

(3.1.1-24) 

(3.1.1-25) 

(3.1.I-26) 
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Substituting equation 3.1.1-24 into equations 3.1.1-22, 23, 25 & 26, we. get the values ofth~ four 
constants Ai, A; , ¢)' & ¢" . Using equations 3.1.1-19 & 21 we get values of A[ & Ai . 

Basic System 1st Mode 

A" 2 

2nd Mode 

Figure 3.1.1-2 Mode Shapes of an Undamped Two Spring Mass System 

Having evaluated these constants, equation 3.1.1-22 & 23 yields the free vibration response of the 
system. It is well known that every physical system has some inherent damping present in it. Since 
free vibration response is only transient response it dies out quickly depending upon the value of 
the damping present in the system. Therefore it is not of much interest from the point of view of 
machine foundation design. However in specific cases (as we will see later) it may be desirable to 
compute this transient response too. 

3.1.2 A Rigid Block supported by Vertical and Translational Springs 

(This combination of springs does not represent any practical application. The 
derivation is given for academic purposes only to demonstrate that Vertical and 
Translational modes are uncoupled) 

Consider a rigid block of mass m having its centroid at C. The block is supported by vertical spring 
of stiffness ky and translational spring of stiffness kx attached at center of base O. The height of 

centroid, from base is h. The block is constrained to move only in X & Y direction as shown in 
part (a) of the Figure 3.1.2-1. 

Static Equilibrium: The vertical spring k y supports the self-weight of the block and 

develops vertical reaction R to counteract the self-weight mg . This position of the block is termed 

as position at rest and has been shown in part (b) of the Figure 3.1.2-1. 
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Considering equilibrium at rest position, we get mg-R=O (3.1.2-1 ) 

T 
h 
1 

fR 

(a) Block with Centroid C-Rotation $ at 0 
restrained. Translational spring stiffiless kx 

and Vertical spring stiffness ky 

(b) Block Position at Rest. Self Weight mg 
Supported by Reaction R at support 
point 0 

, 
• e" 

----- -,-----1--, , ' , eC C. ' 
, I ' 
: '0'" f , , y 
: ____ --QL--Q1J- _____ t_ 

/<-x-+/ 

(c) Displaced Position 

Figure 3.1.2-1 A Rigid Block Supported by Translational & Vertical Springs 

Equation of motion 

The block is displaced and released to oscillate freely. The displaced position of the block at any 
instant of time t is as shown in part (c) of the Figure 3.1.2-1. It is seen that dueto x translation, 
point 0 moves to 0' and centroid C moves to C'. Similarly due to y displacement, point 0' 

moves to 0" and centroid C'moves to C". 

Let us consider these displacements and corresponding forces developed one by one. Reaction 
force and inertia force developed are shown in Figure 3.1.2-2. 

Consider first x - translation as shown. Inertia force and reaction force act in direction opposite to 
direction of motion. Reaction forces and inertia forces developed are shown in part (a) of the 
figure. We get: 

Spring reaction force at 0' along X- direction 
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Inertia force at C' along X~direction mx 

Now consider displacement along Y direction. Reaction force and inertia force developed are 
shown in part (b) of the figure. We get: 

Spring reaction force at 0" along Y ~ direction 

Inertia force at C" along Y ~direction 

Considering equilibrium of forces (at DOF location), we get: 

LF =0 y 

Substituting 3 .1.2~ 1, we get 

my+ky y+mg-R = 0 

my+ky y=O 

L M z = 0 as the rotation about 0 is constrained 

These equations are called equation of motion. 

my 

(3.1.2~2) 

(3.1.2~3) 

Figure (c) shows total reaction forces developed due to both the displacement as well as due to 
static equilibrium. 

It is seen that these equations of motion are un-coupled. In other words these equations are 
independent. Each of this equation represents SDOF system. Solution to these equations will yield 
natural frequencies and free vibration response of the block. (For Solution to SDOF System - See 
Chapter 2) 

Solving equation (3.1.2-2), we get: 

Natural frequency in X translation Px = ~ (3.1.2-4) 

Free Vibration Response is given as x = A sin Pxt+ Bcos Pxt (3.1.2~5) 

Solution of equation (3.1.2-3) gives 

Natural frequency in Y - direction (3.1.2~6) 

Free Vibration Response is given as y = A sin p y t + B cos P y t (3.1.2-7) 
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r - - ..-----t--I--~----. , , , , , , , 

", mx, , , , , 

(a) x - Displacement 
Forces acting on the Mass 

my 

~ c" 
mx 

R 

mg 
k ' yY 

Multi Degree of Freedom Systems 

my 

(!,- - --

, 
.. ------

kyY 

(b) Y - Displacement 
Forces acting on the Mass 

(c) Total Forces acting on the Mass 

Figure 3.1.2-2 Forces Acting on the Mass 

3.1.3 A Rigid Block Supported by Vertical and Rotational Springs 

(This spring combination also does not represent any practical application, The 
derivation is given for academic purposes only to demonstrate that Vertical and 
Rotational modes are uncoupled) 

Consider a rigid block supported by vertical and Rotational spring. The block has its center at C, 
and two springs one vertical and one rotational spring is connected at base center point O. The 
block has mass m and Mass Moment of Inertia about Z-axis passing thro~gh block centroid C 
is M mz' The height of centroid C above base center 0 is h. The block is constrained to move only 

in vertical Y direction and rotate about Z-axis passing through O. The block is as shown in part (a) 
of the Figure 3.1.3-1. 

Static Equilibrium: The vertical spring ky supports the self-weight of the block and 

develops vertical reaction R to counteract the self-weight mg. This position of the block is 

termed as position at rest and has been shown in part (b) of the Figure 3.1.3-1. 

Considering equilibrium at rest position, we get mg-R=O (3.1.3-1) 
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Equation of motion 

The block is displaced slightly and released to oscillate freely. Consider that due to 
y displacement, point 0 moves to 0' and centroid C moves to C' . Similarly due to rotation ¢ 

centroid C' moves to CW 
• The displaced position of the block at any instant of time t is as shown 

in part (c) of the Figure 3.1.3-1. 

C,m T 
:Mz h 

'----""'71.' ;;;--_....J J... 
DOF Location 

~ 
(a) Block with Centroid C -x Displacement at 0 

restrained - Vertical Spring ky & Rotational 

Spring kcjl attached at 0 

, 

11:1 LLJ 
tR 

(b) Block Position at Rest. Self Weight mg 
supported by Reaction R at Support 
point 0 

(c) Displaced Position 

Figure 3.1.3-1 Rigid Block Supported by Vertical & Rotational Springs 

Let us consider these displacements and corresponding reactions developed one by one. Reaction 
forces and inertia forces developed are shown in Figure 3.1.3-2. 

Consider ftrst displacement along Y direction. Reaction force and inertia force developed are 
shown in part (a) of the ftgure. We get, 

Spring reaction force at 0' along Y - direction 

Inertia force at C' along Y -direction my 
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Now consider rotation ¢ . It is interesting to note that rotation ¢ at 0' gives rise to rotational inertia 

as well as translational inertia at C W 
• Reaction force and inertia force developed are shown in part 

(b) of the Figure. 

Spring reaction force at 0' along ¢ 

Inertia force developed at C W along direction normal to centerline 

Inertia force developed at C" along ¢ 

Figure (c) shows total reaction forces developed due to both the displacement as well as due to 

static equilibrium. 

Considering equilibrium offorces at DOF location (See Figure c), equation of motion is written as 

IF =0 y my+ky y+mg-R=O 

Substituting 3.1.3-1, we get 

Mmz ¢ +(mh¢xh)+(k¢ x¢)-(mghsin¢) =0 

For ¢ to be small, h sin ¢ = h¢. Substituting, we get 

(Mmz +mh2)¢ +(k,>-mgh~ = 0 

Or (Mmoz)¢+(k,>-mgh~ =0 

Here M moz = M mz + mh2 represents Mass Moment of Inertia of the block about O. 

(3.1.3-2) 

(3.1.3-3) 

It is seen that equation 3.1.3-2 & 3.1.3-3 are uncoupled. Each of this equation, when solved (see 
Chapter 2), gives natural frequency and response. 

The solution to equation (3.1.3-2) gives 

P --j¥y Vertical natural frequency 
y m 

The solution to equation (3.1.3-3) gives 

Rotational natural frequency 

F or response for each case, see § 2.1. t 

k,>-mgh 
P,> = 

Mmoz 

(3.1.3-4) 

(3.1.3-5) 
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my 

f_-_-__ -_-::_nJ Tt-
kyY 

(a) Forces acting on the Mass 
due to Y Displacement 

R 

(b) Forces acting on the Mass 
due to cp Rotation 

(c) Total Forces acting on the Mass 

Figure 3.1.3-2 Forces acting on the Mass 

3.1.4 A Rigid Block supported by Translational and Rotational Springs 

3-17 

(This spring combination in itself does not represent any practical application. In 
order to simulate a real practical situation, this combination needs to be clubbed 
with the vertical support spring. Since vertical mode of vibration is uncoupled with 
lateral mode or rotational mode (see 3.1.2 & 3.1.3), vertical spring is not included in 
the formulation. The present derivation is given to demonstrate the coupling between 
Translational and Rotational modes) 

3.1.4.1 Motion in X-V Plane (Y being vertical axis) 

Consider a rigid block supported by a Translational and a Rotational spring. The block has its 
centroid at C, and two springs, one Translational, having stiffness kx and the other Rotational, 

having stiffness k¢ are connected at base center point 0 . 

The block has mass m and Mass Moment of Inertia about Z-axis passing through block centroid 
C as M mz • The height of centroid C above base center 0 is h. The block is constrained 

such that it can have only x - translation and ¢ rotation about 0 and the movement along Y is 

restrained. The block is as shown in part (a) of the Figure 3.1.4-1. 
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Static Equilibrium: Let us first consider the position of the mass at rest i.e. mean position of 
the mass. The gravity force mg is taken care of by reaction R by the restraint at support a . Part 

(b) of the figure shows position at rest. Considering equilibrium at rest position, we get 

mg-R=O 

, , 

c-: T 
h 

'0 ~ 
~ DOF Location 

(a) Block with Centroid C,y - Displacement at 0 
restrained. Lateral Spring Stiffness kx & 

Rotational Spring Stiffness k+ 

( c) Displaced Position 

, , 
c+ 
lmg , , 
':'0 
t 
R 

(b) Block Position at Rest-Self 
Weight mg Supported by 
Reaction R at Support point 0 

Figure 3.1.4-1 A Rigid Block Supported by Translational & Rotational Springs 

Equation of motion: 

(3.1.4-1) 

Consider that at any instant of time t, the block has moved by x and rotated by angle ¢. Due to x 

translation, point a moves to 0' and centroid C moves to C' and due to rotation ¢ at 

0' centroid C' moves to C" . Figure 3.1.4-1 Part (c) shows the displaced position of the block. 

Let us consider these displacements and corresponding reactions one by one. Reaction forces and 
inertia forces developed are shown in Figure 3.1.4-2. 
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Consider first x translation. Forces developed are shown in part (a) of the figure. We get, 

Spring reaction force at 0' along X- direction 

Inertia force at C' along X-direction 

3-19 

Now consider rotation. ¢ at 0' . This rotation gives rise to rotational inertia as well as translational 

inertia at C . Reaction force and inertia force developed are shown in part (b) of the Figure 3.1.4-2. 

:-x-
I c. C ~ mx 

I 
I 
I 

kxx 
0 0' 

(a) x - Displacement 
Forces acting on the Mass 

(b) . cI> - Rotation 
Forces acting on the Mass 

(c) Total Forces acting on the Mass 

Figure 3.1.4-2 Forces acting on the Mass 

Spring reaction force at 0' alpng ¢ 

Translational Inertia force developed at C" (as shown) = 

Rotational Inertia force developed at C" (as shown) = Mmz~ 
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Figure (c) shows total reaction forces developed due to both the displacement as well as due to 

static equilibrium. 

Considering equilibrium ofthe forces (at DOF location point 0' ), we get 

For ¢ to be small 

mx-mh¢cosr/Hkx x::::O 

mh~ cos,p :::: mh~ , we get 

mx-mh¢+kx x:::: 0 

Mmz ~ +(mh~x h)-(m x)xhcos¢+(k¢ x¢)-(mghsin ¢):::: 0 

For ¢ to be small, h cos ¢ :::: h & h sin ¢ :::: h¢ . Substituting, we get 

(Mrnz +mh2)~-mh x+(k¢ -mgh) ¢::::O 

Or 

(3.1.4-2) 

(3.1.4-3) 

Here Mmoz :::: Mmz +mh2 represents Mass Moment oflnertia of the block about Z-axis at o. 

IF =0 y mg-R-mh~sin¢:::: 0 

For small ¢ , the component m h~ sin ¢ is very small and can be equated to zero i.e. mh~ sin ¢ = 0 . 

This gives mg - R :::: 0 and that is equation (3.1.4-1). 

Writing in matrix form, we get 

[ 
m -mh]{x} [kx 0 ]{x} {O} 

-mh Mmoz ~ + 0 (k¢ -mgh) ¢ :::: 0 

It is seen from this equation that there is no coupling in stiffness matrix but mass matrix is 
coupled through off-diagonal terms. Thus equations of motion are said to be coupled one. 

It may be noted that for all practical real life problems, the influence of the term mgh is 

insignificant and hence ignored in the equation of motion. The equation of motion thus 
becomes: 

[ 
m -mh]{x} [kx 0 ]{x} {O} 

- mh M moz ~ + 0 k; ¢ :::: 0 
(3.1.4-4) 
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Solution to equation of motion 3.1.4-4 gives two natural frequencies and associated mode shapes. 
Natural Frequencies are given as (see equations (h) & (i) - Solution 3.1.4-4). 

2 1 (2 2) 1 ~( 2 2 \2 2 2 PI =2 Px+P; -2 Px+P;) -4Yzpxp; 
Yz Yz 

(3.1.4-5) 

2 1 (2 2) 1 ~( 2 2 \2 2 2 P2 =-2 Px+P; +-2 Px+P;) -4Yzpxp; 
yz yz . 

(3.1.4-6) 

Here 
Mm-y =--". 

z Mmoz' 

k 
P

2 =-2... 
x ' m 

k 
P

2 _ ; , 
;---

Mmoz 
(3.1.4-7) 

Associated mode shapes are given as (see equations (I) & (m) - SOLUTION 3.1.4-4). 

~=-h( /~ 2)= -Mmoz((P~ ~p~)l 
BI P x - PI mh PI 

(3.1.4-8) 

.6. = -h( /~ 2) = -M moz [(P~ ~ p~)l 
B2 P x - P2 mh P2 

(3.1.4-9) 

-.IX .... 
Q I 

i\ ! ... _"'\ 

y 

tLx 
,-~1~;-:{1jI '. 
\ • \ I \ 
\ ! 'i \ 
\ I \:,.." \ 

'.C+.~ '. 
\' j\ , 
\ i i\ ' 
\! \ ... , ... ~ 
~~ - \ 
i \ 

x -Y Plane - DefOrmations 
st 

1 ..M2sk 

Figure 3.1.4-3 Mode Shapes in X-Y Plane 

From equations (3.1.4-8) it is noticed that amplitUde ratio (AlIBI) is always negative because the 
value of the quantity in parenthesis is always positive as PI < (Px & p;). On the other hand 

equation (3.1.4-9) indicates that ratio (A2 IB2) is always positive because the value of the quantity 
in parenthesis is always negative as P2 > (p x & p;). This, in other words, indicates that in the 1 sl 

mode if the block translates say in positive X-direction, its rotation shall be in negative t/J direction 
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i.e. clockwise whereas in 2nd mode if the translation is in positive X-direction then rotation shall 
also be in positive ¢ direction i.e. anticlockwise. These mode shapes are shown in Figure 3.1.4-3. 

Free vibration response being transient response is not of much interest from the point of view of 
machine foundation design since it dies- out quickly based on the damping present in the system. 

I 

Only in specific cases (as we will see later) it may be desirable to compute transient response too. 
Constants AI> BI & A2, B2, are evaluated using initial conditions. 

SOLUTION 3.1.4-4 

A) Natural Frequency 

Rewriting equation 3.1.4-4: 

[ 
m - mh ]{x} [kx 0 ]{x} {O} 

- mh M moz ¢ + 0 k; ¢ = 0 

Frequency Equation 

Substituting equation (a) in equation (b), we get frequency equation as 

Simplifying, we get 

(kx -mp2)(k; -Mmozp2)-m2h~ p4 = 0 

kx(k; -Mmozp2)-mp2(k; -Mmozp2)-m 2h 2 p4 = 0 

(kxk; -Mmozkxp2)-(mp2k; _mp2 M mozp2)-m 2h2 p4 = 0 

mMmozp4 - p2(mk; + MmozkJ+ kxk; _m2h2 p4 = 0 

Since M moz = (M mz + mh2 ) a~d denoting r = M mz and simplifying, we get 
Mmoz 

m(Mmz +mh2 )p4 - p2(mk; + Mmozkx}+kxk; _m2h2 p4 = 0 

mMmzp4 - p2(mk; +MmozkJ+kxk; = 0 

{ 4 2 I (2 2) I 2 2} ( 4) 
mMmz p - p -y\P; + Px +-y P;Px = mMmzll p = 0 

(a) 

(b) 

(c) 

(d) 
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2 k¢ 
P¢=-­

Mmoz 

Here p] represents lower frequency and P2 represents higher frequency 

Frequency equation thus becomes: 

(e) 

(j) 

Roots of Mp4) = 0 will give two natural frequencies; one corresponding to translational mode and 

other to rotational mode. Solving we get 

2 1 (2 2 )- 1 ~{ 2 2 }2 2 2 P =- Px + P¢ +- Px + P¢ -4yz PxP¢ 
2yz 2yz 

(g) 

This gives: 

2 1 f.2 2) 1 I{ 2 2 }2 2 2 
PI =2\Px + P¢ -2'/ Px + P¢ -4yz PxP¢ 

yz yz 
(h) 

2 1 (2 2) 1 I{ 2 2 }2 2 2 
P2 = 2 Px + P¢ +2'/ Px + P¢ -4yz PxP¢ 

yz yz 
(i) 

Here p] representing 1s1 naturalfrequency (lower naturalfrequency) corresponds to 1s1 mode of 

vibration & P2 representing 2nd natural frequency (higher naturalfrequency) corresponds to 2nd 

mode of vibration. 

From the equations (h) & (i), it can be proved that 

B) Free Vibration Response 

Two natural frequencies have been obtained as given by equations (h) & (i). There are two 
associated modes of vibration. In the r l mode the system will vibrate with frequency p] & in 2nd 

mode with frequency P2. Let us now evaluate the two mode shapes: 
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Let the solution be represented as 

Equation (aJ 

x = Asin(pt +a) 

¢=Bsin(pt+a) 

[ 
m - mh ]{x} [kx 0 ]{x} {O} 

-mh Mmoz ¢ + 0 k¢ ¢ = 0 

Substituting equation 0) in to equation o/motion (a), we get 

SimplifYing, we get amplitude ratios in lSI mode as (use frequency PI/or thejirst mode): 

~=-h[ P1
2 l= -Mm()z((P~ -pf)] 

B p2 _p2 mh p2 
1 x I I 

Solving/or amplitude ratios in 2nd mode (use/requency P2/or the second mode), we get: 

3.1.4.2 Motion in Y - Z plane (Y being vertical axis) 

0) 

(k) 

(I) 

(m) 

Consider the same rigid block (as in §3.1.4.1) supported by a Translational spring along Z having 
stiffness kz and a Rotational spring about X having stiffness ke . These springs are connected at 

base center point O. The block is as shown in Figure 3.1.4-4. 
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1 
1 

c* T 1 
1 

h : 
I 1 

3-25 

1 ~ L--_7"~0 ---'--~6f:,U 
~ DOF Location 

___ -6 _________ 1 

(a) Block with Centroid C,y - Displacement at 0 
restrained. Lateral Spring Stiffness kz & 

Rotational Spring Stiffness ka 

0' 0 
j+-z--l 

(b) Displaced Position 

Figure 3.1.4-4 A Rigid Block Supported by Translational & Rotational Springs in Y-Z Plane 

The block has mass m and Mass Moment of Inertia about Z-axis passing through block centroid 
C as M mx • The height of centroid C above base center a is h. The block is constrained such 

that it can have only z - translation and () rotation about a and the movement along Y is 
restrained. The block is as shown in part (a) of the Figure 3.1.4-1. 

Following procedure similar to that for X-V Plane, we get equation of motion as: 

Writing in matrix form, we get 

[ 
m mh ]{z} [k' ° ]{z} {a} 
mh M mox (j + 0' ko () = ° (3.104-10) 

Proceeding on the similar lines as for § 3.104.1, we get natural Frequencies as: 

2 1 (2 2) I ~( 2 2 \2 2 2 PI = 2 Pz + Po -2 \pz + Po) -4yxPzpo 
Yx Yx 

(3.1.4-11) 

2 I (2 2) I ~( 2 2 \2 2 2 PI =- pz +Po +-- \pz +Po) -4yxPzpo 
2yx 2yx 

(3.1.4-12) 

Here Y = M mx • p; = kz • P02 = ~ 
x M '. , 

mox m Mmox 
(3.104-13) 

Associated mode shapes are given as 

(3.1.4-14) 
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y 

k-z 
y- Z Plane - Defonnations 

I 

" j I 
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"; (-9) "! r, 
\ \!C'!\ , J.:., 
\ "!r Ie' \ I' i \ 
\ ! \ i .......... ' \ I' ... ; 
\ ....... T " ! 

. II 
I I' 

i & 
~ 

st 
I Mode 

Figure 3.1.4-5 Mode Shapes in Y-Z Plane 

(3.1.4-15) 

From equations (3.1.4-14) it is noticed that amplitude ratio (A)IB) is always positive because the 
value of the quantity in parenthesis is always positive as PI < Pe . On the other hand equation 

(3.104-15) indicates that ratio (Az IBz) is always negative because the value of the quantity in 
parenthesis is always negative as P2 > Pe. This, in other words, indicates that in the 1 sl mode if 

the block translates say in positiveZ-direction, its rotation shall be in positive B direction i.e. anti­
clockwise whereas in 2nd mode if the translation is in positive Z-direction then rotation shaH be in 
negative Bdirection i.e. anticlockwise. These mode shapes are shown in Figure 3.1.4-5. 

SOLUTION 3.1.4-10 

A) Natural Frequency 

Rewriting equation I: 

[ m mh ]{z} [kz 0 ]{z} {O} mh Mmox jj + 0 ke B = 0 
(a) 

Frequency Equation (b) 

Substituting equation (a) in equation (b), we get frequency equation as 
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SimplifYing, we get 

(kz -mp2)(ko -Mmoxp2)-m2h2 p4 = 0 

kz(ko - Mmoxp2)-mp2(ko - Mmoxp2)-m 2h2 p4 = 0 

k k 2 2k 2M 2 2h2 4 0 kz O-Mmax zp -mp o+mp moxP -m P = 

mM mox p4 - p2 (mko + M moxkz)+ kzkO - m2 h2 p4 = 0 

m{M mox - mh2 )p4 - p2(mko + M maxkz)+ kzkO = 0 

m(MmJp 4 - p2(mko + Mmoxkz )+ kzkO _m 2h2 p4 = 0 

{
4 2 (mko+Mmoxkz) kzko} 0 mM p -p +-- = 

mx mMmx mMmx 

M {
4 2 mM max (ko kz) kzko} - 0 m mx P -p --+- +-- -

mMmx Mmox m mMmx 

mMmx{p4 - p2 ~(p~ + p;)+ p;p~~} = 0 

mMmxA{p4)= 0 

A(P4)= {p4 _ p2 ~(P~ + p; )+~ p;p~} 

mM mx{p4 - p2 _1 (P~ + p; )+_1 p~p;} = mMmxA(P4)= 0 
Yx Yx 

Roots of A(p4)= 0 will yield two natural frequencies 

4 2 1 (2 2) 1 2 2 P -p -PO+Pz +-POPz=O 
Yx Yx 

Solving we get 

2· 1 (2 2 )- 1 '{ 2 2 }2 2 2 p =2 pz + Po +2'1 pz + Po -4yx pzpo 
Yx Yx 

M k Here Y =~. p2 =..2.... 
x M 'z , 

mox m 

2 kO 
PO=--

Mmox 

Here PI represents lower frequency and P2 represents higher frequency 

3-27 

(c) 

(d) 

(e) 
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Frequency equation thus becomes: 

(f) 

Roots 0/ ll(p4) = 0 will give two natural frequencies; one corresponding to translational mode and 

other to rotational mode. Solving we get 

2 1 (2 2)- I ~{ 2 2 }2 2 2 p =2pz+Po+2 Pz+Po -4yxPzpo 
Yx Yx 

(g) 

This gives: 

2 1 (2 2) 1 ~f 2 2}2 2 2 
PI = 2 pz + Po --2- lPz + Po -4yx PzPo 

Yx Yx 
(h) 

(i) 

Here PI representing)'1 naturalfrequency (lower naturalfrequency) corresponds to),1 mode 0/ 
vibration & P2 representing 2nd naturalfrequency (higher naturalfrequency) corresponds to r 
mode o/vibration. 

From the equations (h) & (i), it can be proved that pf x pi =_l_p;p~ 
Yx 

B) Free Vibration Response 

Two naturalfrequencies have been obtained as given by equations (h) & (i). There are two 
associated modes o/vibration. In the )'1 mode the system will vibrate with frequency PI & in 2"d 
mode with frequency Pl. Let us now evaluate the two mode shapes: 

Let the solution be represented as 

z=Asin(pt+a) 

B = Bsin(pt+a) 

Equation (a) 
[ 

m mh ]{z} [kz 0 ]{z} {O} 
mh M max ij + 0 ko B = 0 

0) 
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Substituting equation 0) in to equation of motion (a), we get 

(k) 

Simplifying, we get amplitude ratios in 1" mode as (use frequency PI for the first mode): 

(I) 

Solvingfor amplitude ratios in 2nd mode (use frequency pdor the second mode), we get: 

(m) 

3.1.5 Multiple Spring Mass Systems connected by a massless Rigid Bar 

Consider a Multi-Spring Mass System connected by a massless rigid bar as shown in Figure 3.1.5-
1. Figure (a) shows distances of each spring from an arbitrary axis. Let Ck &Cm represent Center 

of Stiffness and of the System respectively. Let xm & xk represent distance of Center of Mass and 

center of stiffness from arbitrary axis. Let e represent eccentricity between Center of Mass & 
Center of Stiffness. The system is constrained to move only in X-Y plane. 

Two coordinates namely translation y (along Y) and rotation ¢ (about Z) represent two degrees 

of freedom that define displaced position of the system. Let Xi represent the distance of i1h frame 

from any arbitrary axis parallel to Y as shown in part (a) of the figure. 

CG overall mass m (point Cm ) from that arbitrary axis 

\ 

m = "'m.· 
L..- " 

CG of Overall stiffness k (point Ck ) from that arbitrary axis 

'" kx - L..- I I 
Xk =---

k 
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y 

x 

, , 
: ' 

kn-I kn~2! k3 
, ' , ' , : Arbitrary Axis 

Springs n n-l n-2: : 3 _ 2 
: !'t-- Xm ---~ 

, , , , , , , , , , , , 

, 
: ,1+'4---- Xk , , 
: I !+-X1 

: I ~X2 
: !'t--X3 

;.-l· ----Xn_2 

i+:.----xn_J ------01 

,1+' ------Xn 

(a) Distances from Arbitrary Axis (b) Origin @ Center of Mass - Distances from 
Center of Mass and Center of Stiffuess 

Figure 3.1.5-1 Multiple Spring Mass Systems Connected 
by Massless Rigid Bar 

Let us consider center of mass C m as origin. 

x 

Let ai represent distance of fh frame from center of mass point C m and bi represent distance of 

th 
frame from center of stiffness point Ck as shown in part (b) ofthe figure. 

Eccentricity e (distance between C m & C k ) 

We can represent the system as a Two Degree of Freedom System with a simplified model having 
Mass m, Mass Moment oflnertiaMm , Translational Spring Stiffnessky (along Y) and Rotational 

Spring Stiffness k; (about Z) as shown in Fig. 3.1.5-2. 

Equation of motion: Consider the motion in X-Y plane at any instant of time t. Mass moves 

by a distance y and rotates about Z by ¢. Let center of mass point em represent DOF location 

for equation of motion. Equation of motion thus becomes: 
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Figure 3.1.5-2 Equivalent Two DOF System Supported by 
Translational & Rotational Springs 

3-31 

(3.1.5-1) 

(3.1.5-2) 

Here m represents overall Mass, M m represents Mass moment of Inertia, k y represents overall 

linear stiffness and k¢ represents overall rotational stiffness of the system. Based on the system 

parameters, let us evaluate m, M m' k & k¢ 

From the figure, we get (3.1.5-3) 

a) Total Mass of the system @DOF 

Total Inertia force :Lm,y, = :Lmi(y+a,¢)= y:Lm, +¢:Lm,a, 

Since a, is the distance from center of mass L mia, = 0 

b) Total Linear Stiffness @DOF 

Total resisting force at DOF location (point em) 

:Lk;y, = :L {ki(y+ a,¢)} = :L {kiy+k;(e+b,)¢} 
= :L(k,y+k,e¢+k,b,¢)= y:Lki +e¢:Lki +¢:Lk,b, 

Since bi is the distance from center of stiffness, summation :L k,b, = 0 

:L(k,y,) = ky y+ky e¢ 

ky = :Lk, 

(3.1.5-4) 

(3.1.5-5) 
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c) Total Mass moment of Inertia of the system @ DOF 

Total Rotary Inertia Moment 

Since a; is the distance from center of mass L m,a; = 0 

d) Total Rotational Stiffness of the system @DOF 

Total resisting moment at DOF location 

L(k;y;a;)=L{k;a;(y+ai ¢)}= L(k;a;y)+ L(k;a?¢) 

= ¢L(k;a?)+ YL {k;(e+b;)} = ¢L{k;a?}+ L(Yk;e)+ L(Yk;b;) 

= ¢L(k,a? )+eYLk; + Y Lk;b; = ¢L(k;a? )+key 

= ky eY+¢L(k;(b, +ef)= keY+¢L(k;(b,2 +e2 +2eb;)) 

= ky eY+¢Lk;b/ +¢e2 Lk, +2e¢ Lk;b, 

= ky eY+¢Lk;b/ +ke2¢+2e¢Lk;b, 

Since b; is the distance from center of stiffness, summation L k;b; = 0 

L(k;y;a;) = ky ey+ k¢ ¢+ky e2¢ 

k¢ = Lk;b? 

Substituting equations 3.1.5-4 to 7 into the equations 3.1.5-1 &2, we get: 

my+ky(y+e¢) = 0 

•• 2 
M m ¢ + k y e Y + k¢ ¢ + k y e ¢ = 0 

Here m = Lm;; ky = Lk;; Mm = Lm;a;; k¢ = L(k; b,2) 

(3.1.5-6) 

(3.1.5-7) 

(3.1.5-8) 

(3.1.5-9) 
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Simplifying equations 3.1.5-8, we get 

Here py=J¥ (3.1.5-10) 

Simplifying equations 3.1.5-9, we get 
•• 2 

Mm¢+kyye+kye ¢+k¢¢=O 

.. ky ky 2 k¢ 
¢+-ye+-e ¢+-¢=O 

Mm Mm Mm 
(3.1.5-11) 

•• 2 e 2 e2 
2 

¢+PY Y2+ PY-2 ¢+p¢¢=O 
r r 

Terms Py = [k; ; P¢ = ~ k¢ & r = ~ M m represent limiting translational frequency, limiting V-; Mm m 

rotational frequency and equivalent radius of gyration respectively. 

It is also noted that both these equations 3.1.5-10 & 11 are coupled through eccentricity term e. If 

eccentricity becomes zero, i.e. e = 0, both these equations get uncoupled and the limiting 
frequencies become natural frequencies. 

Natural Frequencies: 

Rewriting equations 3.1.5-10 & 11 in matrix form, we get 

(3.1.5-12) 

Frequency equation 

(3.1.5-13) 
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Simplifying, we get 

4 2 ( 2 [ e
2 

) 2) 2 2 P -P Py I+? +P¢ +PyP¢ =0 

p4 _ p2(a P; + pJ)+ p;pJ = 0 (3.1.5-14) 

Here a = [I + :~ ) 

Roots of the equation 3.1.5-14 will yield two natural frequencies. 

2 _~{{ 2 2)+~{ 2.2\2_ 22} P'2 - 2 \a Py + P¢ - \a Py + P¢} 4pyp¢ (3.1.5-15) 

3.1.6 A Portal Frame supporting mass at Beam Center 

Consider a portal frame supporting mass m at beam center as shown in Figure 3.1.6-1. Consider 
that portal frame is constrained to move only in X-Y plane. Possible motion directions are i) 
motion along X and ii) motion along Y. 

Single Degree of Freedom representation of the system for motion along X as well as along Y is 
described in Chapter 2 (§2.1.IA.5). 

Representing motion along Y as Two Degrees of Freedom system, consider the portal frame with 
the properties (same as those used in (§2.1.IA.5) as under: 

Elastic Modulus of Material (Both column & Beam) E 
Mass density of the material p 

Span of Beam is L 
Height of Frame H 
Area of Beam Cross-section Ah 

Area of Column Cross-section Ac 

Moment of Inertia Beam Cross-section I h 

Moment ofInertia Column Cross-section Ie 

Mathematical model is shown in Figure (d). 

Equations of motion are (see equation 3.1.1-1) 

m,y, +k,y, -k2(Y2 -y,)=O 

m2Y2 +k2(Y2 -Yl)=O 
(3.1.6-1) 
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Let us evaluate m\, m2 , k\ & k2 • 

Degrees of Freedom Y\&Y2 

i) Mass m\ & m2 

a) Mass m2 

Machine Mass on the frame beam m 

Mass of Beam 

Generalised mass of frame beam 

Note: For simply supported beam the factor for equivalent mass is 0.485 (see equation 2.1.1-26) 
and for fixed-fixed beam this is close to 0.37 (see equation 2.1.1-33). For a frame this value is 
taken as 0.45 (close to average). 

Mass m2 

1 

m2 = m+0.45mb (3.1.6-2) 

k= filL 
IjH L 

MA =MD= 8(k+2) 

-L 
4(k + 2) 

(b) Bending Moment Diagram under Unit Load 

Y2 

MIt 
~ 

(c) Deflection Under unit Load (d) Mathematical Model 

Figure 3.1.6.-1 Portal Frame with Machine Mass m at Beam Center - Deflection 
and Bending Moments - Vibration in Vertical Mode 
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b) Mass m] 

Mass of each column 

Generalised mass of each column (see equation 2.1.1-15) 

Mass m] =Total mass on column top - Mass m2 

m] = {(m+mb +2xO.33xmJ-m2} 

m] = {(m+mb +2xO.33xmJ-(m+0.45mh)} 

m] = O.55mb + 2 xO.33x me 

ii) Stiffness k] & k2 

(3.1.6-3) 

It is seen from the mathematical model that DOF Y2 pertains to beam deflection 0Yb and 

DOF Y] pertains to column deflection Oye. 

a) Beam Deformation under unit Load Oyh: 

Stiffness Ratio Factor 
k _ (Elb/L) _ (/h/ L) 

- (Elc/H) - (Ie/H) 

From bending moment diagram of beam alone (as shown in the Figure), we get: 

Deflection due to span moment 

L 
Due to support moments 4(k + 2) 

Net beam deflection at center 

L 

4 

L3 
0=--yh] 4SEl

b 

L3 L L2 L3 2k + I 
Oyb= 4SEh - 4(k+2( SE1b = 96Elb x k+2 

Stiffness k2 k2 =_1_= 96E1b x k+2 
Oyh L3 2k+l 

(3.1.6-4) 
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b) Column Deformation under unit Load ()ye: 

Vertical deflection of columns () _ 1 
yc - 2x(EAc/ H) 

Stiffness k, 

iii) Natural Frequencies (see § 3.1.1) 

We can represent the system as shown with m" m2 , k, & k2 as given below 

m2 = m+0.45mh 

m, = O.55mb +2xO.33xmc 

k 
_ 2EAc ,-

H 

Natural frequencies: Rewriting equation 3.1.1-11 

Roots of this equation give two natural frequencies p, & P2 . 

3.2 TWO DEGREES OF FREEDOM SYSTEM - FORCED VIBRATION 
3.2.1 Un-damped Two Spring Mass System Subjected to Harmonic Loads 

3-37 

(3.1.6-5) 

(3.1.6-6) 

Consider a two spring mass system having dynamic excitation force as shown in Figure 3.2.1-1. In 
any practical system, the excitation force can be considered in four ways: 

a) Dynamic force on mass m2 

b) Dynamic force on mass m, 
c) Dynamic force on masses m2 & m, 
d) Dynamic force applied at the base 
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Let us consider these loading cases one by one. 

a) Dynamic force on mass m2: System is shown in Figure 3.2.1-1 (a) 

Equation of motion is written as 

[
ml 0 ]{YI} [kl + k2 - k2 ]{YI} { 0 } 
o m2 Y2 + - k2 k2 Y2 = F2 sin OJ t 

(3.2.1-1) 

i) Complimentary Solution: For complimentary solution (see § 3.1.1) 
ii) Particular Solution: 

Under the influence of excitation force, the system will vibrate with frequency of excitation force 
OJ. Consider the solution to be of the form 

YI = CI sin OJ t 

Y2 = C2 sin OJ t 
(3.2.1-2) 

Differentiating, we get 2nd derivative as 

.. 2C · YI = -OJ I sm OJ t 

Y2 = -OJ
2C2 sin OJ t 

(3.2.1-3) 

Substituting equation (3.2.1-2) & (3.2.1-3) in equation (3.2.1-1), it gives 

(3.2.1-4) 

Solution of this gives (see SOLUTION 3.2.1-4) dynamic response YI & Y2 of the masses 

ml & m2 (see equation (h) & (i); 

F2 1 . 
YI = - ( 2 , ( 2 )sm OJ t 

kl I -,81 J 1 - ,82 
(3.2.1-5) 

( 1 + A, ,8~1 - ,811 ) 
F2 ,8n . 

Yz = ( 2 J ( 2 J sm OJ t k2 I - ,81 I - ,82 
(3.2.1-6) 
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(a) Excitation Force on Mass m2 

F2 sin rot 

F1 sin rot 

(c) Excitation Force on Mass m2 & m] 

F1 sin rot 

(b) Excitation Force on Mass m1 

8 
.S 
en 

~ 
" -;::-
~ 

(d) Excitation Force Applied at the base 

Figure 3.2.1-1 An Undamped Two Spring Mass System with Excitation Force (a) on Mass m2 

(b) on Mass ml (c) on Both Masses m2& ml & (d) atbasey(t) = Yo sin rot 

Resonance condition 

3-39 

It is seen from the equations (3.2.1-5& 6) that amplitude rises to infinity when either /31 or /32 

becomes unity. Such a condition is termed as resonance condition at first or second natural 
frequency. Thus for a 2 DOF undamped system there exist 2 resonance conditions where amplitude 
rises to infinity. As every physical system has inherent damping present in the system, this 
damping plays a predominant role in reducing the amplitude of motion at resonance. 
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Taking advantage of the derivation done for damped SDOF system, it can be said that in case of 
resonance with fIrst natural frequency, the response of the system at resonance is obtained by 

replacing the term (1- pn in these equations by ~(1- p? r + (2P1sY . Similarly in case of 

resonance with second natural frequency, the response to the system at resonance is obtained by 

replacing the term (1- pn by ~(1-pi r + (2P2SY . 

b) Dynamic force on mass m l : 

System is as shown in Figure 3.2.1-1 (b). Equation of motion is written as: 

(3.2.1-7) 

Complimentary solution to the equation of motion remains the same as for case (a) above. Since 
there is a change only on the right hand side of the equation of motion, only particular solution will 
get affected. Using the same procedure as in (a) above, the response becomes: 

(3.2.1-8) 

(3.2.1-9) 

For resonance amplitudes see explanation given in case (a). 

c) Dynamic force applied at mass ml & m2 

System is as shown in Figure 3.2.1-1 (c). Equation of motion is written as: 

Equation of motion is written as 

(3.2.1-10) 

Since there is a change only on the right hand side of the equation, using the same procedure as in 
(a) above, the response becomes: \ 
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(3.2.1-11) 

(3.2.1-12) 

It is noticed that equation (3.2.1-11) is summation of equations (3.2.1-5) & (3.2.1-8). Similarly 
equation (3.2.1-12) is summation of equations (3.2.1-6) & (3.2.1-9). Thus one can evaluate 
response for separate load cases and perform linear summation for overall response. 

For resonance amplitudes see explanation given in case (a). 

d) Dynamic Force applied at the base 

For machine foundlltion application in industrial environment, it is the dynamic displacement 
transmitted through base of the system that is generally encountered rather than applied force. 
Hence the case of Dynamic displacement y(t) = Yo sin 0) t applied at the base is considered. 

System as given in Figure 3.2.1-1 (d) is shown again in Figure 3.2.1-2 along with its free body 
diagram. 

Equation of motion: 

When the base exhibits a dynamic displacement y(t) = Yo sin 0) t , under the displaced condition, the 

net displacement of the spring k 1 becomes y\ - Yo sin 0) t . 

Considering equilibrium of forces on the free body diagram, we get 

m\y\ + k\(y\ - Yo sinO) t) - k2(Y2 - y\) = 0 

m2h + k2(Y2 - y\) = 0 

Simplifying we can write 

m\)\ + k\y\ - k2 (Y2 - y\) = k\yo sin 0) t 

m2Y2 + k2(Y2 - y\) = 0 

Writing in matrix form, Equation of motion is written as 

(3.2.1-13) 

(3.2.1-14) 

(3.2.1-15) 
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Solution to equation (3.2.1-15): Complimentary solution remains the same as for case (a) 
above. Since there is a change only on the right hand side of the equation of motion, only particular 
solution will get affected. 

Base Excitation yet) = Yo sin cot 

~ 
~ ~(Y2-YI) 

ml~(Y2-Y) 

~ 
k) (YI - Yo sin rot) 

Free Body Diagram 

Figure 3.2.1-2 Two DOF System with Base Excitationy(t) = Yo sin rot 

Particular solution: Comparing equation of motion (3.2.1-15) with equation (3.2.1-7), it is seen 
that for Fj = k,yo , these equations are identical 

Thus replacing Pi = k,yo in equations (3.2.1-11) & (3.2.1-12), the solution to equation (3.2.1-21) 

becomes: 

y, = Yo -r---'--:::V'=-",-::-,! sin tV t (3.2.1-16) 

(3.2.1-17) 

For resonance amplitudes see explanation given in case (a). 

SOLUTION 3.2.1-4 

Rewriting equation 3.2.1-4 
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(a) 

]

-1 

- k22 on both LHS & RHS, it gives: 
k2 - OJ m2 

(For inverse of matrix refer any relevant book on Matrices) 

Simplifying we get, 

Simplifying the denominator, we get 

Substituting, we get 

(b) 

Since PI & P2 are the two natural frequencies of the system, ~(OJ4) is written as 

Substituting, the equation (b) becomes: 

(c) 
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Solving for C1 & C2 , it gives 

We can also compute amplitudes using Crammer's rule (for Crammer's rule refer any book on 
engineering mathematics). This simplifies the computation process. From equation (a), we get: 

1

0 -k2 I 

F2 k2 -ro
2
m2 F2k2 

C1 = = ---=-=-~ 

/

k\ +k2 -ro 2m\ -k2 / mlm2~(ro4) 
-k2 k2 -ro 2m2 

(d) 

(e) 

(f) 

(g) 

It is noticed that C1 & C2 as given by equations (f) & (g) are same as those in equation (d) & 

(e). Thus it may be convenient and simple to use Crammer's rule any subsequent derivation. 

SimplifYing further, we get 
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Substitut~ngfor CI & C2 in equation (3.2.1-2), particular solution becomes 

(h) 

(1+..1 P~I -Pil) 
F2 PL2 . 

Y2 = - r 2) r 2) sm OJ t 
k2 \1 - PI \1 - P2 

(i) 

Here P ~I . P - ~2 . 1 - m2 . P _ OJ • P _ OJ • P _ OJ • P _ OJ LI = -, L2 - -, IL--, 1--' 2 --, L1 --, L2 ---
ml m2 ml PI P2 PLI PL2 

0) 

3.2.2 Un-damped Two Spring Mass System- Subjected to Impact Load 

Consider mass mo freely falling from height h on a two spring mass system as shown in Figure 

3.2.1-3. Let us consider that mass m2 is at rest before the impact and the impact is central. The 

problem is initial velocity problem and its treatment is similar to one discussed in 
Chapter 2 - § 2.2.5. 

Let Vo & v; represent velocity of masses mo & m2 before impact and Vo & v2 represent velocity 

of masses mo & m2 after impact. 

From conservation of momentum, we get: 

~2 x v2 ~ mo x vo, = ~2 x v2 + mo x VO, 
Before Imjl'act After Impact 

Since mass m2 is at rest before the impact, i.e. v2 = 0 . Substituting, we get 

(3.2.1-18) 

To eVllluate v2 (see equation 2.2.5-2), using Coefficient of Restitution e , we get 
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e = _ v2 - vo = v2 - Vo Or 

..... ------1 
I I 

r:---~~--! 
h 

(a) Before hnpact 
Mass mO freely falling from 

height h over Mass m2 

(v; -vo) Vo 

(b) Just after hnpact 
Mass m2 moves downwards 
Mass mo rebounds upward 

Figure 3.2.1-3 An Undamped Two DOF System-Subjected to an hnpact Load 
Mass mo Freely Falling over Mass m2 from Height h 

(3.2.1-19) 

Coefficient of Restitution e depends upon properties of the material of the masses mo & m2 . For 

perfectly plastic central impact, the value of e is zero and for perfectly elastic central impact e is 
equal to unity. For real bodies in practice, the value lies in the range 0 < e < I and for all practical 

purposes it's reasonably good to use e = 0.5 . 

Substituting 3.2.1-19 in 3.2.1-18 and simplifying, we get 

, (1 + e) 
v = v x -'------''-

2 0 (1+~) 

Here ~ = m2 ~ represents ratio of mass m2 to mass mo 
mo 

(3.2.1-20) 

(3.2.1-21) 

For freely falling body of mass mo from height h , the velocity just before impact is given as 
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Vo =~2gh (3.2.1-22) 

Substituting this in 3.2.1-20, we get 

(3.2.1-22a) 

This is the initial velocity imparted by the falling mass to stationary mass m2 at time t = O. Thus, 

solution to Two Spring Mass System subjected to Impact Loads becomes an Initial Velocity 
problem. 

Equation of motion of the Two Mass System (refer equation 3.1.1-1) 

mlYI + klYI - k2 (Y2 - yd = 0 

m2Y2 + k2 (Y2 - YI ) = 0 

Let the general solution of the equation of motion be of the form (see 3.1.1-15) 

YI = AI sin(pt + ¢) 

Y2 = A2 sin(pt + ¢) 

The two natural frequencies are (see equation 3.1.1-12 & 3.1.1-13): 

pf =±{(PZ2(I+A)+ pZI)-~(pL(I+A)+ PZI) -4(PZIPZ2)} 

pi =±{(PZ2(I+A)+ pil)+~(PZ2(I+A)+ PZI) -4(PZIP},2)} 

Here, _f,fl. _HE2 PLI - - , PL2 - -
ml m2 

Free Vibration Response (see equations 3.1.1-22 & 23): 

In 1 st mode the system vibrates with frequency PI . The solution becomes: 

yi = Ai sin(plt + ¢') 

Y2 = A2 sin(Plt + ¢') 

(3.2.1-23) 

(3.2.1-23a) 

(3.2.1-24) 

(3.2.1-25) 

(3.2.1-26) 
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In 2nd mode the system vibrates with frequency P2' The solution becomes: 

yj = Aj sin(p2t + rp") 
yi = Ai sin(p2t + rp") 

Here, quantities with single prime are indicative of the 1 st mode and quantities with double prime 
are indicative of the 2nd mode. 

Total solution (combining both the modes) thus becomes: 

Yl = Aj sin(pl t + rp') + Ai sin(p2t + rp") 
Y2 = A2 sin(plt + rp') + Ai sin(p2t + ¢") 

Amplitude Response in 1st mode is given as (see equations 3.l.l-19): 

A' _I 

A2 a' 
2 

PLl . A' = a'A' 
2 2 '2 I 

P[.2-PI 

Amplitude Response in 2nd mode is given as (see equations 3.1.1-21): 

Ar k2 _ k2 -m2pi 

A~ kl + k2 -mlPi - k2 a" 

a" = k2 PZ2. A2" = a"A
I
" 

2 2 2 ' k2 -m2P2 PLl - P2 

By rearranging terms, we get 

a' 
(a'-a") = 

Substituting A2 = a'Aj & Ai = a"Aj in to equation (3.2.1-27), the equation becomes: 

(3.2.1-27) 

(3.2.1-28) 

(3.2.1-29) 

(3.2.1-30) 
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YI = Ai sin(Plt+¢')+ Aisin(p2t +¢") 

Y2 = a~{ sin(plt + ¢') + a" Afsin(p2t + ¢") 
(3.2.1-31) 

The values of constants AI, A; , Ai, Ai are determined from initial conditions. 

The initial conditions are: 

At t=O~ (3.2.1-32) 

Differentiating equation 3.2.1-31, we get 

11 = PI Ai cos(Plt + ¢') + P2 Ai cos(P2t + ¢") 

12 = PI Aja' COS(Plt + ¢') + P2 Afa" cos(P2t + ¢") 
(3.2.1-33) 

Substituting equation 3.2.1-32 into equations 3.2.1-31 & 33, we get: 

0= A{ sin(¢') + Ai sine¢") (i) 

O=a' A{sin(¢')+a" Aisin(¢") (ii) 

o = PI A{ cos(¢') + P2 Ai cos(¢") (iii) 

v2 = a' PI A{ cos(¢') + a" P2Ai cos(¢") (iv) 

Solving equations (i) & (ii) gives 

sin ¢'(a' Aj - a" AD = 0 

Since Ai, Af,a' & a" are non-zero quantities, it yields that 

¢'=O&¢" =0; 

sin ¢' = sin ¢" = 0 & cos¢' = cos¢" = 1 

Equations (iii) & (iv) thus become 

0= PIAj + P2Af (v) 

v2=a'PIAj+a"P2Ai (vi) 

Solving (v) & (vi), we get, 
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A' _ 1 v2 
1-(, ") a -a PI 

Substituting for (a' -a") from 3.2.1-30, we get 

Since 

Substituting for a'A{ we get 

Equation (v) gives 

Since 

A"- PI A' 1'--- 1 
P2 

Rewriting solution YI from equation 3.2.1-27 

Substituting (3.2.1-35& 37), we get: 

Rewriting solution Y2 from equation 3.2.1-27 

Multi Degree of Freedom Systems 

(3.2.1-34) 

(3.2.1-35) 

(3.2.1-36) 

(3.2.1-37) 

(3.2.1-38) 

(3.2.1-39) 
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Substituting (3.2.1-36& 38), we get: 

(3.2.1-40) 

Coefficients of sin PI t represent amplitudes in 1 st mode of vibration and that of sin P2 t represent 

amplitudes in 2nd mode of vibration. 

This approach shall be useful for Design of Foundation for Impact Machines covered in Chapter 
11. 

3.2.3 
3.2.3.1 

A Rigid Block supported by Translational & Rotational Springs 
A Rigid Block supported by Translational & Rotational Springs in X-Y 
Plane (Y being vertical axis) 

Consider the motion in X-Y plane having two DOF i.e. translation along X and rotation ¢ about z­

axis. Since the system has only two DOF i.e. x & ¢ , only two types of forces could be applied, one 

along x and the other along ¢. It is to be noted that these forces could be applied at any point but 

these have to be transferred to the DOF location as equation of motion is at DOF location. Let us 
consider these dynamic forces one by one. 

3.2.3.1.1 Dynamic Force along X-axis applied at DOF location 

Consider the rigid block (supported by Translational and Rotational spring as in § 3.1.4.1) 
subjected to dynamic forces FI: sin tV t in x direction acting at point 0 as shown in Figure 3.2.2-1. 

Two springs, one translational & one rotational, are connected to the block at base center point 
O. The block has its centroid at C & height of centroid C above base center 0 is h. The block has 
mass m and mass moment of Inertia M mz about Z-axis passing through block centroid C. The 

block is constrained to move only in lateral X direction and rotate about Z-axis passing through O. 

Degrees of freedom: 

Dynamic Force: 

DOF 1 - Translation along X-axis at point 0; and 

DOF 2 - Rotation about Z-axis passing through O. 

Force Fx sin tV t acting at point 0 as shown. 

Transfer the dynamic forces to DOF Locations: Let the equivalent dynamic forces at 0 be 
Fi along DOF 1 & F2 along DOF 2. 

Since the applied dynamic force is applied at DOF location, it does not need to be transferred. 
Considering equilibrium of forces, by statics, we get 
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Hence Dynamic Force at DOF location: 

(a) Dynamic Forces @ DOF (b) Amplitudes @DOF &@FoundationTop 

Figure 3.2.2-1 Block with Centroid C - y - Displacement at 0 Restrained 
Dynamic Force Fx sin rot applied at Point 0 

Equation of Motion: 

Rewriting equation (3.1.4-4) for free vibration: 

[ m -mh ]{x} [kx 0 ]{x} {O} -mh M moz ¢ + 0 kp ¢ == 0 

(3.2.2-1 ) 

(3.2.2-2) 

Substituting equation (3.2.2-1) on RHS for forcing function, the equation of motion for forced 
vibration becomes: 

[_ m -mh ]{~} + [k x ° ]{x} == {Fx sin OJ t} mh M moz ¢ 0 kp ¢ 0 
(3.2.2-3) 
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Solution to this equation of motion has two parts viz. 

i) Complimentary Solution 
ii) Particular solution 

Complimentary solution: (See solution 3.1.4-4) 

Natural frequencies are given as (see equations 3.1.4-5 & 6): 

2 I (2 2 ) I I( 2 2 \2 2 2 
PI =-2 Px + P¢ -2'1 Px + P¢} -4yz PxP¢ 

yz yz 

2 I (2 2 ) I I( 2 2 \2 2 2 
P2 = 2yz Px + P¢ + 2yz V Px + P¢} -4yz PxP¢ 

(3.2.2-4) 

Here Y 
= Mm; . p2 = ~. 

z M 'x , 
mOl m 

2 k¢ 
P¢=--

Mmoz 

Particular solution: 

Solving the equation (see solution 3.2.2-3), we get the steady state response equations (g) & (h). 

The steady state response at point 0 is given as 

Here Ox = Fx represents static deflection & x & ¢ are the amplitudes at DOF Locations 
kx 

i.e. point O. 

For maximum response @ point 0, substituting sin OJ t = I , we get 

x - o} (1- pJ) 
o - { x (1 - Pl2 Xl - pi) (3.2.2-5) 

_ 0 mh pJ 
¢o - - x M moz (I - p? )(1- pi ) (3.2.2-6) 
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Here Xo & tPo represent maximum response @ 0 along X & about Z axes respectively 

SOLUTION 3.2.2-3 

Rewriting the equation (3.2.2-3) 

[
_ m - mh ]{~} + [k x 0 ]{x} = {Fx sin ro t} 

mh M moz tP 0 k¢ tP 0 

Let solution be of the form 

x = C sin m t; x = -m2C sin m t 

tP = Dsin mt; ~ = _m2 Dsin mt 

Substituting in (a) it gives 

[

kx -mro2 

mhro 2 

Using Crammer's rule we get 

Fx mhro 2 

o k¢-ro2Mmoz 

mMmzl1(ro
4

) 

FAk¢-ro
2
M moJ Fx (I-pi) 

= mM mz p]2 pi (I - p]2 XI- pi ) = k; (1- p? XI- pi J 
C= 

Substituting in (b) & (c), we get response amplitude as: 

Here is = Fx 
x kx 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 
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3.2.3.1.2 Dynamic Moment about Z-axis applied at DOF location 

Consider that the block is subjected to dynamic moment M; sin (0 t along ¢ direction acting at 

point 0 as shown in Figure 3.2.2-2. 

Hence Dynamic Force at DOF location: 

(3.2.2-7) 

Equation of Motion: The equation of motion for forced vibration thus becomes: 

[ m -mh]{X} [kx 0 ]{x} { 0 } -mh Mmoz ¢ + 0 k; ¢ = M; sin(Ot (3.2.2-8) 

Solving the equation (see equations (e) & (f) solution 3.2.2-8), we get the steady state response as: 

T 
H 

1 __ I 

0' 

~:-X-1 .1 

(a) Dynamic Moment @ DOF (b) Amplitude@DOF &@FoundationTop 

Figure 3.2.2-2 Block having Centroid C - y Displacement at 0 Restrained 
Dynamic Moment M~ sin rot applied at point 0 
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Maximum response @ point 0 is written as: 

x h8 fJ; 
o = - ¢ (1 - fJ

l
2 )(1 - fJ} ) (3.2.2-9) 

(3.2.2-10) 

Here Xo & ¢o represent amplitudes at DOF Locations point 0 along X & about Z respectively. 

SOLUTION 3.2.2-8 

Rewriting the equation (3.2.2-8) 

[ 
m -mh]{X} [kx 0 ]{x} { 0 } 

-mh Mmoz ¢ + 0 k¢ ¢ = M¢sinmt 
(aJ 

Let solution be oftheform 

x = Csinmt; x = -w2Csinwt (b) 

¢ = Dsin wt; ¢ = _w 2 Dsin wt (c) 

Substituting in (a) it gives 

(d) 

Using Crammer's rule, we get 

o mhm2 

C = M ¢ k¢ - m
2 
M moz 

mMmzt!{m 4
) 
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D= 

k -m0)2 0 
x 

mh0)2 M¢ 

mM mzLl{O) 4 
) 

-r--'-::-tr-::....L.--.:;-;: sin 0) t 

M 
Here o¢ =_¢ 

k¢ 

3-57 

(j) 

3.2.3.1.3 Dynamic Force acting at a point above the block along X - Direction 

Now consider that the block is subjected to dynamic forces Fx sin 0) t in x direction acting at point 

T at a distance s above base of the block as shown in Figure 3.2.2-3. 

Transfer the dynamic forces to DOF Locations: 

Let the equivalent dynamic forces at 0 be F) along DOF 1 & F2 along DOF 2. Considering 

equilibrium of forces, by statics, we get 

F\ = Fx sin 0) t & F2 = -s Fx sin 0) t 
(Anticlockwise moment in X-V plane is positive -for notations see Figure 3-1) 

Hence Dynamic Force at DOF locatiori: 

(3.2.2-11 ) 

It is noted that the dynamic force Fx acting at a distance s above the DOF location point 0 results 

in a dynamic force equal to Fx and a dynamic moment equal to M ¢ = -Fx x s applied at o. 

Equation of Motion: Equation of motion for forced vibration becomes: 

[ 
m -mh]{X} [kx 

-mh Mmoz ¢ + 0 
o ]{x} { Fx sin 0) t } 

(k¢ -mgh) ¢ = M¢ sinO)t 
(3.2.2-12) 

Where M¢ = -Fx xs 

Forced Vibration Response to this equation is nothing but summation of responses given by 
equations (3.2.2-5), (3.2.2-6), (3.2.2-9) & (3.2.2-10). 
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Response x in X-direction thus becomes summation of x -response given by equation (3.2.2-5) 
& equation (3.2.2-9) and so is the case with ¢ -response which is summation of equation (3.2.2-6) 

& equation (3.2.2-10). Maximum response @ point 0 is thus written as: 

x - {{o} (1- pi ) ho p; ) 
o - x (1 - p? )(1 - pi) ; (I - p? Xl - pi) (3.2.2-13) 

'f--,-::-w::.'-'---;:-'t _ 0 mh pi 
x M moz (1 - p? )(1 - pi ) (3.2.2-14) 

Fx lM;) 
Here 0 =- 0", =--

x k' I" k and Xo & ¢o represent amplitudes at DOF Location point 0 
x ; . 

along X & about Z respectively. 

Y 

~x 

Figure 3.2.2-3 Block with Centroid C - y - Displacement at 0 Restrained 
Dynamic Force Fx sin rot applied at Point T 

3.2.3.2 A Rigid Block supported by Translational & Rotational Springs in Y-Z 
Plane (Y being vertical axis) 

Consider the motion in Y-Z plane (Y being vertical axis) having two DOF i.e. translation along Z 
and rotation () about X-axis. Since the system has only two DOF i.e. Z & (), only two types of 
forces could be applied, one along z and the other along (). It is to be noted that these forces could 
be applied at any point but these have to be transferred to the DOF location as equation of motion 
is at DOF location. 

Let us consider these dynamic forces one by one. 
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3.2.3.2.1 Dynamic Force along Z-axis applied at DOF location 

Consider the rigid block subjected to dynamic forces Fz sin rol in z direction acting at point '0' as 

shown in Figure 3.2.2-4. 

HT 
h 

I 
I 
I 

C· 
I 

(a) Block with Centroid C, y - Displacement at 0 
restrained. Lateral Spring Stiffuess kz & 

Rotational Spring Stiffness ka 

i z+H9 i ,4 a, 
I 

(b) Displaced Position 

Figure 3.2.2-4 A Rigid Block Supported by Translational & Rotational Springs in Y-Z Plane 
Dynamic Force FJ &F2 applied at DOF Location Point 0 

Two springs, one translational & one rotational, are connected to the block at base center point 
o. The block has its centroid at C & height of centroid C above base center 0 is h. The block has 
mass m and mass moment of Inertia M mx about X-axis passing through block centroid C. The 

block is constrained to move only in lateral Z direction and rotate about X-axis passing through O. 

Degrees of freedom: DOF I - Translation along Z-axis at point 0 & DOF 2 - Rotation about 
X-axis passing through O. 

Dynamic Force: Consider only Force Fz sin ro I acting at point 0 as shown. 

Transfer the dynamic forces to DOF Locations: Let the equivalent dynamic forces at 0 be 
Fj along DOF 1 & F2 along DOF 2. 

Since the applied dynamic force is applied at DOF location, it does not need to be transferred. 
Considering equilibrium of forces, by statics, we get 

Fj = Fz sinrol & 
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Hence Dynamic Force at DOF location: 

(3.2.2-15) 

Equation of Motion: 

Rewriting equation (3.1.4-4) for free vibration: 

. [m mh ]{z} [kz 0 ]{z} {O} mh M max jj + 0 ke () = 0 
(3.2.2-16) 

Substituting equation (3.2.2-1) on RHS for forcing function, the equation of motion for forced 
vibration becomes: 

[ m mh ]{~}+[kz 0 ]{z} = {Fz sin OJ I} mh M max () 0 ke () 0 
(3.2.2-17) 

Solution to this equation of motion has two parts viz. 

i) Complimentary Solution 
ii) Particular solution. 

Complimentary solution: (See solution 3.1.4-4) 

Natural frequencies are given as (see equations 3.1.4-5 & 6): 

2 1 ( .. 2 2) 1 '{ 2 2}2 2 2 
P2 =2\f'z +Pe +-2-'1 Pz +Pe -4Yx pzPe 

Yx Yx 
(3.2.2-18) 

Here Here y = Mmx • p2 =12. Pe2 =.l:L 
x M 'Z , M 

max m max 

Particular solution: 

Solving the equation 3.2.2-17 (see solution 3.2.2-17), we get the steady state response. The steady 
state response at point 0 is given as 
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These ( Z & (J) are the amplitudes at DOF Locations i.e. point O. 

For maximum response @ point 0, substituting sin OJ t = 1 , we get 

Here Zo & (Jo represent maximum response @ 0 along X & about Z axes respectively 

SOLUTION 3.2.2-17 

Rewriting the equation (3.2.2-17) 

[
m mh ]{~}+[kz O]{Z}={FzsinOJt} 
mh M mox (J 0 ke (J 0 

Let solution be of the form 

Z = CsinOJt; z = -OJ2C sin OJt 

Substituting in (a) it gives 

[
kz -mOJ2 

-mhOJ2 

Using Crammer's rule we get 

3-61 

(3.2.2-19) 

(3.2.2-20) 

(a) 

(b) 

(c) 

(d) 
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Since PI & P2 are the roots of the frequency equation, we can represent ~(aJ 4 ) as 

~(aJ4 )= (aJ 2 
- pf XaJ 2 

- p~)= pf p~ (1- p? Xl- pi) 

Mmox --=-
Mmx Yx 

Similarly we get 

Substituting in (b) & (c), we get response amplitude as: 

Here 0 = Fz 
z k 

z 

(e) 

(f) 

(g) 

(h) 
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3.2.3.2.2 Dynamic Moment about X -axis applied at DOF location 

Consider that the block is subjected to dynamic moment M 0 sin tV t along 0 direction acting at 

point a as shown in Figure 3.2.2-2. 

Hence Dynamic Force at DaF location: 

Equation of Motion: The equation of motion for forced vibration thus becomes: 

[ m mh ]{z} [kz 0 ]{z} { 0 } mh M mox ij + 0 ko 0 = M 0 sin tV t 

Solving the equation (see solution 3.2.2-22), we get the steady state response as 

M 
Here °0 =_0 ko 

Maximum response @ point a is written as: 

(3.2.2-21 ) 

(3.2.2-22) 

(3.2.2-23) 

(3.2.2-24) 

Here Zo & 00 represent amplitudes at DaF Locations point a along Z & about X respectively. 
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SOLUTION 3.2.2-22 

Rewriting the equation (3.2.2-22) 

[ 
m mh ]{z} [kz 0 ]{z} { 0 } 

mh M mox ij + 0 ko () = M 0 sin IV t 
(a) 

Let solution be of the form 

z =Csinwt; Z = -w2Csinwt (b) 

() = Dsinwt; ij = _W2 Dsinwt (c) 

Substituting in (a) it gives 

(d) 

Using Crammer's rule, we get 

(e) 

2 2 1 2 2. 
PI P2 = -pz Po, 

Yx 
Mmx Y' M 22M 2 2 --= x' mxPI P2 = moxPzpO 
Mmox 
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M Here 00 =_0 
ko 

3.2.3.2.3 Dynamic Force acting at a point above the block along Z - Direction 

(j) 

Now consider that the block is subjected to dynamic forces Fz sin (J) t in z direction acting at point 
T at a distance s above base of the block as shown in Figure 3.2.2-5. 

T F z 4~--->)( ______ n __ ---

HT 
h 

c-, , 
Ff:> 

s 

(a) Block with Centroid C,y - Displacement at 0 
restrained. Lateral Spring Stiffness kz & 

Rotational Spring Stiffness ka 

z+H9 i j. .., , 

, , , , , , 
,--__ ---.0 _________ , 

0' 0 
t-z-+l 

(b) Displaced Position 

Figure 3.2.2-5 A Rigid Block Supported by Translational & Rotational Springs in Y-Z Plane 
Dynamic Force Fz applied at Point T above the block 
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Transfer the dynamic forces to DOF Locations: 

Let the equivalent dynamic forces at 0 be Fj along DOF I & F2 along DOF 2. 

Considering equilibrium of forces, by statics, we get 

Hence Dynamic Force at DOF location: 

{Fi} {FzsinOJt} 
F2 = s Fz sin OJ t (3.22-25) 

It is noted that the dynamic force Fz acting at a distance s above the DOF location point 0 results 

in a dynamic force equal to Fz and a dynamic moment equal to Me = Fz x s applied at O. 

Equation of Motion: Equation of motion for forced vibration becomes: 

[ 
m mh ]{z} [k' 
mh Mmox ij + 0' 

o ]{z} {Fz sin OJt} 
ke () = Me sin OJ t 

(3.2.2-26) 

Where Me = Fz xs 

Forced Vibration Response to this equation is nothing but summation of responses given by 
equations (3.2.2-19), (3.2.2-20), (3.2.2-23) & (3.2.2-24). 

Maximum response @ point 0 is thus writte~ as: 

(3.2.2-27) 

(3.2.2-28) 

Here and Zo & ()o represent amplitudes at DOF Location point 0 along 

Z & about X resp~ctively. 
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3.2.3.3 Amplitude at resonance 

Response given by the equations 3.2.2-5 & 6, 9 &10, 13 &14 are for undamped conditions and do 
not hold well at or near to resonance. For evaluating amplitudes in the proximity of resonance, refer 
to § 3.4.2.1.1. 

3.2.4 Multiple Spring Mass Systems connected by a massless Rigid Bar 

f 

Figure 3.2.3-1 Multiple Spring Mass Systems Connected by massless Rigid Bar Subjected to 
Dynamic Force & Dynamic Moment applied at Center of Mass 

Consider a multi spring mass system (as considered in § 3.1.5) connected by a massless rigid bar 
subjected to dynamic force F(t) = Fosinm( and dynamic moment M(t)=Mosinmt applied at 

center of Mass em ,as shown in Figure 3.2.3-1. 

Rewriting equations of motion for free vibration (equations 3.1.5-8 &9), we get 
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my + ky(Y + e¢) = 0 
- 2 

Mm¢+kyeY+k¢¢+kye ¢=O 
(3.2.3-1 ) 

Substituting Dynamic Forces on RHS of the equations, we get equations of motion for forced 

vibration as: 

my+kiy+e¢) = Fo sinmt 
.. 2· 

M m ¢+ ky ey+k¢ ¢+ky e ¢ = Mo slDmt 
(3.2.3-2) 

Solving the equation (see solution 3.2.3-2 equations (f) & (g), we get the steady state response as: 

0y(stotiC) [1 + P~ x e: - PJ]-O¢(stotiC) x e Py r 
y - (V J sin m t -1- p? Al- Pi. 

( 2) pJ e 
O¢(stotiC) I-Py -Oy(stotiC) a 2x -Z 

Py r 
¢ = ( 2 V 2 J sin m t 

\1 - PI }.1 - P2 

For maximum amplitude, sin m t = 1 . We get maximum amplitudes as: 

Y(max) = (t - p? XI- Pi.) 

( 2) pi e 
o¢(stotiC) 1- P y -Oy(stotiC) a 2 -Z 

_ Py r 

¢(max) = (1- p? Xl- Pi.) 

Here 

Fo Mo 
Oy(stotiC) =-; o¢(static) =-; 

ky k¢ 

Amplitude at Resonance 

(3.2.3-3) 

(3.2.3-4) 

(3.2.3-5) 

(3.2.3-6) 

2 Mm r =--
m 

For computing response at resonance, let us consider damping coefficient as (; . In case excitation 

frequency is in resonance with frequency PI' replace (1- PI2 ) with ~(l- p? r + (2PI (;)2 in the 
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denominator and in case excitation frequency is in resonance with frequency P2' replace {I - p} ) 

with ~(1- p}) + (2132 ()2 in the denominator in the equations 3.2.3-5 & 6. 

Solution 3.2.3-2 

Rewriting equation 3.2.3-2 

my + kyCy+ e¢) = Fo sin mt 
- 2· Mm¢+kyey+k¢¢+kye ¢=MosInmt 

(a) 

Let the solution be of the form y=Csinmt; ¢=Dsinmt (b) 

Differentiating, we get 

Substituting in equation (a), we get 

- m2mC + ky(C + e D) = Fo 

_m2 DMm + ky eC +k¢ D+ky e2 D = Mo 

SimplifYing and writing in matrix form, we get 

(c) 

Applying Crammer's rule, we get 

SimplifYing, we get 

Fo{k¢ + ky e2 - m2 M m)- Moky e Fo{k¢ + ky e
2 

- m2 M m)- Moky e 

C= mMmpfpi(l-p?XI-p}) = mMmP;p~(1-p12XI-p}) 
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ky -m2m Fo 

kye 

k¢+kye2-m2Mm 

kye Mo 

mMmLl(m 4
) 

Mo{ky - m2m)_ Foky e Mo{ky -m2m)- Foky e 

D = mMmpf pi{l- p?Xl- pir mMmp;P~(I- p?Xl- pi) 

Mo (1- m2m)_ Fo kYe Mo (l_p2)_ Fo pi ~ 
k¢ ky ky k¢ k¢ y ky pi r2 

(1- Pl2 Xl- pi ) = (1- p? Xl- pi ) 

( 2) pi e 
O¢(static) 1- Py - 0y(static) n 2 2 

Py r 

Substituting in equation (b), we get 

( 2) p; e 
O¢(static) I-Py -Oy(static) n 22 

Py r 

(d) 

(e) 

(f) 

(g) 
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3.2.5 A Portal Frame supporting mass at Beam Center 

Consider a portal frame (as considered in § 3.1.6) subjected to dynamic force F(t) = Fo sin w( 

applied to the Mass, as shown in Figure 3.2.4-1. 

~ 

(b) Mathematical Model 

Figure 3.2.4-1 Portal Frame with Machine Mass m at Beam Center - Subjected to 
Dynamic Force applied at mass location - Vibration in Vertical Mode 

Equation of motion: 

Equation of motion for the system as shown thus becomes (see equation 3.2.1-4) 

[(kl +k~~,"'ml) k, =;~J~:} = UJ (3.2.4-1 ) 

For portal frame mass and its stiffness, see equations 3.1.6-2, 3,4 &5 

(3.2.4-2) 

k _ 2EAc . 
I-Ii' k2 = _1_ = 96E I h x k + 2 

<5 L3 2k + 1 yi> 

(3.2.4-3) 

Natural frequencies: 

Frequency equation (see equation 3. 1.6-6) 

(3.2.4-4) 
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Here 

Roots of this equation give two natural frequencies PI & P2 . 

Steady-State response: 

Steady-State response is given as (see equations 3.2.1-5 & 6) 

(3.2.4-5) 

(3.2.4-6) 

Here 

Maximum Response: 

Fo I 
YI (max) = kl (1- pl )(1- pi ) (3.2.4-7) 

(3.2.4-8) 

Amplitude at Resonance: (3.2.4-9) 

In case of resonance, taking advantage of the derivation done for damped SDOF system, it can be 
said that in case of resonance with vertical natural frequency PI' the response to the system at 

resonance is obtained by replacing the term (1- pl) in denominator by ~(1- P12) + (2 PI sf and 

In case of resonance with vertical natural frequency P2' the response to the system at resonance is 

obtained by replacing the term (1- pn in denominator by ~(I-pi) + (2P2S)2 in equations 

3.2.4-7 & 8. 
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3.3 THREE DEGREES OF FREEDOM SYSTEM - FREE VIBRATION 

From the point of view of application to machine foundation design, development of analysis, in 
this section, is limited to only i) A Three Spring Mass System Undamped and ii) A Rigid Block 
supported by Vertical, Translational and Rotational Springs. Again, the spring mass system has 
been added only for academic purposes. 

3.3.1 Three Spring Mass System 

Consider a three spring mass system, having masses m), m2 & m3' spring stiffness k), k2 & k3 as 

shown in Figure 3.3.1-1. Three DOF are Y),Y2&Y3associated with masses m),m2&m3 
respectively. Following steps similar to that for two spring mass system (see 3.1.1), equation of 
motion is developed. Forces acting on the masses are shown in the free body diagram. 

Masses at rest 
~ 

Displaced position 

m1Yl 
~2-Yl) 

~ 
k1Yl 

Free Body Diagram 

Figure 3.3.1-1 Three Spring Mass System-Undamped 

Considering equilibrium of forces (as shown on the free body diagram), we get the equation of 
motion as: 
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mlj\ + k1Yl - k2(Y2 - Yl) = 0 

m2Y2 + k2(Y2 - Yl) - k3(Y3 - Y2) = 0 (3.3.1-1) 

m3Y3 + k3(Y3 - Y2) = 0 

Rewriting in Matrix form, equation becomes 

[~ 
0 o Jr'} [(kl +k,) -k, -~l~H~} m2 o ~2 + -k2 (k2+k3) 

0 m3 Y3 0 -k3 

(3.3.1-2) 

[~ 
0 

~ ] represents mass mam, Here m2 

0 m3 

represents stiffness matrix ofthe system 

It is seen from equation (3.3.1-2) that there is no coupling in mass matrix but stiffness matrix is 
coupled through off-diagonal terms. Thus equations of motion are coupled. 

Frequency equation is written as Ik - mp2 1 = 0 

(k1 + k2 - mlP2) - k2 o 
- k2 (k2 + k3 - m2p2) -k3 =0 (3.3.1-3) 

o - k3 (k3 - m3P2) 

Expanding the determinant, we get 

6 [k1+k2 k2+k3 k3] 4 P - ---+ +- P 
m1 m2 m3 

+[(klk2 +k2k3 +k3k l) + (k2 k3) + (k1 +k2)k3 ]p2 _ klk2 k3 =0 
mlm2 m2 m3 m3 ml m1m2 m3 

(3.3.1-4) 

https://engineersreferencebookspdf.com



Multi Degree of Freedom Systems 3-75 

Solution to this equation gives three natural frequencies PI' P2 & P3 corresponding to 1 s" 2nd &3rd 

mode of vibration respectively. 

Let the amplitudes of the mass m" m2 & m3 be represented as A" B/ & e/ in lSI mode, A2• B2 & e2 

in 2nd mode & A3• B3 & e3 in 3rd mode respectively. Following the procedure similar to that 
developed for two spring mass system, we get equation for the free vibration amplitudes as: 

Equations for 1 sl mode amplitudes: 

This gives 

Equations for 2nd mode amplitudes: 

This gives 

Equations for 3rd mode amplitudes: 

- k2 

(k2 + k3 - m2P/) 

-k3 

-k2 

(k2 + k3 - m2P/) 

-k3 

-k2 

(k2 + k3 - m2P3
2
) 

-k3 

This gives 

(3.3.1-5) 

(3.3.1-6) 

(3.3.1-7) 

Values of constants (A" B" e" A2• B2• e2• A3• B3 & e3) are determined based on initial conditions. 
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Since free vibration response is only transient response, which dies out quickly due to damping 
present in the system, it is not of much interest from the point of view of machine foundation 
design. However in specific cases (as we will see later) it may be desirable to compute transient 
response also. 

3.3.2 
3.3.2.1 

A Rigid Block supported by Vertical, Translational & Rotational Springs 
Center of Mass lies vertically above Center of Stiffness 

y 

I 

C;m 
:Mmz 
I 

T 
h 

I C, 
I 

... mg 
I 
I 

0: 
t 
R 

(b) Block position at rest - Se1fweight mg 
Supported by Reaction R at Support 
point '0' 

(a) Block with centroid 'C' 
Lateml Spring Stiffuess kx 
Vertical Spring Stiffness ky & 

Rotational Spring Stiffness k~ 

(c) Displaced position 

Figure 3.3.2-1 A Rigid Block Supported by Lateral, Vertical and 
Rotational Springs 

Consider a rigid block supported by Vertical, Translational and Rotational spring. The block 
considered in X-V plane is constrained to move only in Vertical Y & Lateral X direction and rotate 
about Z-axis passing through o. 

The block has its centroid at C, and has two translational and one rotational springs i.e. one 
translational spring in X direction having stiffness k x' one in vertical Y direction having stiffness 
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ky and one rotational spring about Z-axis having stiffness k¢. All the three springs are connected 

at base center point O. The block has mass m and Mass Moment of Inertia about Z-axis passing 
through block centroid C is M mz . 

The block is considered such that the centroid C lies vertically above base center point 0 and 
the height of centroid C above base center 0 is h. The block is shown in Figure 3.3.2-1 (a). 

Static Equilibrium: The vertical spring k y supports the self-weight of the block and offers 

vertical reaction R to counteract the self-weight mg. This position of the block at rest has been 

shown in part (b) of the Figure 3.3.2-1. 

Considering equilibrium at rest position, we get mg-R=O (3.3.2-1) 

Equation of motion: Consider that the block is displaced slightly and released. The block is 
set into motion i.e. free vibration. At any instant of time t, the block has moved by x along X 
direction, y along Y direction and rotated by angle ¢ about Z-axis passing through O. The 

displaced position of the block is shown in part (c) of Figure 3.3.2-1. It is seen that centroid C 
moves to position C' due to x-translation (see part a), C' moves to C" due to y-translation & 
C" moves to C'" location due to ¢ rotation. 

Let us consider these displacements and corresponding reactions one by one. Reaction forces and 
inertia forces developed are shown in Figure 3.3.2-2. 

For better understanding, let us visualize the displaced position in stages viz. x- displacement, y­
displacement and rotation about Z-axis and their corresponding reaction and inertia forces. 

Part (a) of Figure 3.3.2-2 shows x displacement and the corresponding forces, part (b) shows y 

displacement and the corresponding forces & part (c) shows ¢ - rotation and the corresponding 

forces. 

Let us consider each movement and the corresponding forces developed. Consider first x 
translation. Forces developed are (as shown in part (a) of the Figure): 

Inertia force along X-axis = mx 

Spring Reaction force along X-axis = 

Now consider y translation. Forces developed are (as shown in part (b) of the Figure): 
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Inertia force along Y-axis = 

Spring Reaction force along Y-axis = 

Now consider ¢ - rotation. Forces developed are shown in part (c) of the figure. 

We get, 

Rotational Inertia force along ¢ (about Z-axis) = Mmz¢ 

Translational Inertia force (along normal to center line)= 

Spring Reaction force along ¢ (about Z-axis) = 

This translational Inertia Force has both X & Y components. For ¢ to be small, X-component 

mh¢ cos ¢ = mh¢ and Y -component mh¢ sin ¢ = 0 . 

_x_ 
I--r-~--+---~~ 

I e....: 
'e' mX: 

o 0' 

(a) x-Displacement 
Forces acting on the Mass 

(c) cP-Rotation 
Forces acting on the Mass 

----- -c'- --
e. 

0' 

1---Q-------1 L 
-".;y--_!t ,- - - --

(b) y-Displacement 
Forces acting on the Mass 

R 

(d) Total Forces acting on the Mass 

Figure 3.3.2-2 A Rigid Block Supported by Lateral, Vertical and 
Rotational Springs - Forces Acting on the Mass 
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Total forces acting on the mass including gravity force and corresponding reactions are shown in 
part (d) of the figure. 

Considering equilibrium at DOF location 0, we get 

'L Fx = 0 mX - mh¢ + x k x = 0 

'LFy = 0 mji+ yky +mg-R = 0 

'LM z = 0 M mz ¢+(mh¢xh)-(m x)xhcos¢+(k¢ x¢)-(mghsin¢) = 0 

(3.3.2-2) 

(3.3.2-3) 

(3.3.2-4) 

For small ¢, h cos ¢ = h & h sin ¢ = h¢ . Substituting equation 3.3.2-1 in equations 3.3.2-2, 3.3.2-

3 & 3.3.2-4, we get 

mX-mh¢+kxx=O 

mji+kyy = 0 

(3.3 .2-5) 

(3.3.2-6) 

(3.3.2-7) 

Here M moz = M mz + mh2 represents Mass Moment oflnertia of the block about Z-axis at DOF 

location Point O. 

It is seen from equations (3.3.2-5, 3.3.2-6 & 3.3.2-7) that 2nd equation i.e. equaLion 3.3.2-6 
representing motion in Y direction, is totally uncoupled whereas 1 sl and 3rd equations are coupled. 

Writing these equations in matrix form, we get 

(3.3.2-8) 

It is noticed that the equation 3.3.2-6 is same as equation 3.1.2-3 and Natural Frequency & Free 
Vibration Response equations are given by equations (3.1.2-6) & (3.1.2-7). These equations are 
reproduced as under: 

Natural frequency in Y- direction p = {k; 
y V--;;;- (3.3.2-8a) 
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Response is given as y = A sin pi + B cos Pi (3.3 .2-8b) 

The other two equations representing translation in x and rotation ¢ are coupled. Representing 

these in Matrix form, we get 

[ 
m - mh ]{x} [k 0 ]{x} {O} 

-mh Mmoz ¢ + t (k¢-mgh) ¢ = 0 

This equation is same as equation (3.1.4-4) and Natural Frequency & Free Vibration 
Response equations are given by equations 3.1.4-5 to 3.1.4-8 (also see SOLUTION 3.1.4-4). 
These equations are repr.oduced as under: 

P 2 =_I_(p 2+ p 2) __ I_/(p 2+ p 2)2 -4y.p 2p 2 
I 2yz x ¢ 2yz ~ x ¢ . x ¢ 

p. 2 =_l_(p 2+ p 2)+_I_/(p 2+ p 2)2 -4y.p 2p 2 
2 2yz x ¢ 2yz ~ x ¢ . x ¢ 

M 2 k Here y =~. p =--2:... 
Z M 'x , 

moz m 

2 k¢-mgh 
P¢ = 

Mmoz 

(3.3.2-8c) 

(3.3.2-8d) 

(3.3.2-8e) 

Associated mode shapes are given by equations (3.1.4-8) & (3.1.4-9) and are reproduced here for 
convenience. 

(3.3.2-8t) 

(3.3.2-8g) 

It can be noted that the given 3-00F system provides: 

a) One SDOF System which can be solved independently (solution given in § 2.1.1) 
b) One two degree of freedom system (solution given in § 3.1.4) 

It is thus confirmed that for a rigid block supported by vertical, translational and rotational spring, 
the vertical mode of vibration is uncoupled from the rest of the two modes of vibration subject to 
the condition that there is no eccentricity i.e. the common centroid' C lies on the same 
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vertical line as base center point o. The system can be analysed as a SDOF system for vertical 
mode and as a Two Degree of Freedom System for Translational and Rotational Modes (which are 
coupled). 

3.3.2.2 Center of Mass is not in line with Center of Stiffness 

(a) Block with centroid C, 
Lateral spring stiffuess kx 
Vertical spring stiffness ~v & 

Rotational spring stiffuess koll 

I 
I 
I 

0: 

R 
M 

(b) Block position at rest Self weight mg 
Supported by reaction R at 
support point 0 

(c) Displaced position 

Figure 3.3.2-3 A Rigid Block Supported by Translational, Vertical and Rotation 
Springs - Center of Mass eccentric to Center of Stiffness 

Now consider the same block as of Figure 3.3.2-1 but baving eccentricity a between Center of 
Mass C and Center of Stiffness o. The system is as shown in part (a) of Figure 3.3.2-3. 

Let the distance of centroid C from 0 be h' and OC make an angle a with X-axis such that: 

a=h'cosa & h=h'sina (3.3.2-9) 

Static Equilibrium: Since center of mass is eccentric to center of stiffness, the block exerts 
vertical force and" a moment at the static equilibrium position. The vertical spring k y offers 

vertical reaction R to countera~t the self-weight mg, whereas rotational spring kIP offers 
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rotational moment reaction M to counteract the moment caused by eccentric location of mass 
mg. This position at rest is shown in part (b) of Figure 3.3.2-3. 

Considering equilibrium at rest position, we get 

mg-R=O 

mgxa-M=O 

-- x t--I--
I -i-mX I 

I I C 
I I I 

" I 
I I I 

I I I I I 

I I I I I 

I ~' 
I I 

I 

kxX 0 0' 

(a) x-Displacement 
Forces acting on the Mass 

(c) ~-Rotation 
Forces acting on the Mass 

my 

I ------r-
I I 
I I 

,,: " o " 
I IY ------- -------r-

kyY 
(b) y-Displacement 

Forces acting on the Mass 

M 
R 

my 

(d) Total Forces acting on the Mass 

Figure 3.3.2-4 A Rigid Block Supported by Translational, Vertical and Rotation 
Springs - Center of Mass eccentric to Center of Stiffness - Forces acting on the Mass 

(3.3.2-10) 

Equation of motion: Consider that the block is displaced slightly and released. The block is 
set into motion i.e. free vibration. At any instant of time t, the block has moved by x along X 
direction, y along Y direction and rotated by angle ¢ about Z-axis passing through '0'. The 

displaced position of the block is shown in part (c) of Figure 3.3.2-3. It is seen that centroid C 
moves to position C' due to x-translation, C' moves to Cn due to y-translation & Cn moves to 
C", location due to ¢ rotation. 

Reaction forces and inertia forces corresponding to x- displacement, y-displacement and rotation ¢ 
about Z-axis are shown in part (a), (b) & (c) of Figure 3.3.2-4 respectively. Part (d) shows overall 
reaction & inertia forces acting on the mass. 
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Considering equilibrium at DOF location i.e. L Fx = 0 ; L Fy = 0 & L M z = 0 , we get 

my+kyy+mg-R+mh'¢cosa = 0 

Mmz ¢+mh'¢xh' +k¢¢-M +mgx(a-h'¢sina)-mixh+mya = 0 

3-83 

(3.3.2-11) 

(3.3.2-12) 

(3.3.2-13) 

Substituting equation 3.3.2-9 & 3.3.2-10 in equations 3.3.2-11, 3.3.2-12 & 3.3.2-13, we get 

mi-mh¢ +kxx = 0 

my+ma¢+kyy=O 

Mmoz ¢ -mhx+may+(k¢ -mgh)¢ = 0 

(3.3.2-14) 

(3.3.2-15) 

(3.3.2-16) 

Here Mmoz = M mz +m(h,)2 is Mass Moment of Inertia of the block about Z-axis at DOF location 

point O. 

Writing in matrix form, the equation of motion becomes: 

(3.3.2-17) 

It is seen from equation (3.3 .2-17) that all the three motions are coupled. It is this aspect that 
dictates the limits on eccentricity. It is therefore desirable that the eccentricity (distance 
between center of mass and center of stiffness) should as far as possible, be close to zero 
otherwise the Vertical motion shall also get coupled with Translational and Rotational 
motion. 

For a = 0, the equation (3.3.2-17) reduces to same equation as equation (3.3.2-8). 

Free Vibration Response: It is relatively difficult to write closed form solution for 
equation (3.3.2-17). Contrary to earlier cases, the solution to this equation would be relatively 
complex. Use of computer is therefore recommended for computation of natural frequencies and 
response. 
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3.4 THREE DOF SYSTEM - FORCED VIBRATION 

In this section we consider only undamped systems. Here also the analysis is limited to i) A Three 
Spring Mass Undamped System and ii) A Rigid Block supported by Vertical, Translational and 
Rotational Springs. Again, the spring mass system has been added only for academic purposes. 

3.4.1 Three Spring Mass System subjected to Harmonic Excitation 

Consider the system as shown in Figure 3.3.3-1. Consider that a dynamic force F3 sin(() I is applied 

to mass m3 only. 

Under the influence of forcing function, equation (3.3.3-1) gets modified. Equation of motion thus 
becomes: 

(3.4.1-1) 

Solution to this equation of motion has two parts viz. 

i) Complimentary Solution 
ii) Particular solution. 

For complimentary solution, RHS of equation (3.4.1-1) is zero. This gives 

For solution to this equation, see § 3.3.1. Solution gives natural frequencies given by equation 
(3.3.1-4) and free vibration response given by equations (3.3.1-5) to (3.3.1-7). 

Particular solution: 

System will vibrate with forcing frequency (() . Thus we can represent 

Y1 = D1 sin Q) t ; Y2 = D2 sin Q) t ; Y3 = D3 sin Q) t 

ji1 = -Q) 2 D1 sin Q) t ; ji2 = -Q) 2 D2 sin Q) t ; h = -Q) 2 D3 sin Q) t 
(3.4.1-2) 
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Substituting and rearranging terms, we get 

- k2 

(k2 + k3 - m2O( 2) 

- k3 

Using Crammer's rule, we get 

o 
o 

F3 
Dl = 2 

(kJ +k2 -mJOJ ) 

-k2 

o 

-k2 

(k2 + k3 - m2O( 2) 

-k3 

(k J +k2 -mJO(2) 0 0 

-k2 0 -k3 

o F3 (k3 -m3O(2) 
D2 = 2 

(kJ +k2 -mJOJ ) 

-k2 

o 

-k2 

(k2 +k3 -m2O( 2) 

-k3 

(kJ +k2 -mJO(2) 

-k2 

-k2 

(k2 +k3 -m2O( 2) 

-k3 o 
D3=~~------------------------~~ 

(kJ +k2 -mJO(2) -k2 0 

(k2 +k3 -m2O( 2) -k3 

(k3- m3OJ2 ) 

3-85 

(3.4.1-3) 

(3.4.1-4) 

It may be noted that the denominator in equation 3.4.1-4 could also be represented in terms of 
natural frequencies PJ' P2 & P3 . 

(kJ +k2 -mJO(2) 

-k2 

o 

-k2 

(k2 +k3 -m2O( 2) 

-k3 
(3.4.1-5) 
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Substituting the values of constants Db D; & D3 in equation (3.4.1-2), we get amplitudes 
YI ,Y2 &Y3 whereas constants Db D; & D3 represent maximum value of the amplitude. 

3.4.2 A Rigid Block supported by Vertical, Translational & Rotational Springs 
subjected to Harmonic Excitation 

3.4.2.1 Center of Mass is in line with Center of Stiffness. Dynamic Forces applied 
at a point above the block. 

Now consider the same block as of Figure 3.3.2-1 (in X-V Plane) subjected to Dynamic Forces 

Fx sin OJ t & Fy sin OJ t applied at point T as shown in Figure 3.4.2-1. 

Fy sin rot 

Fx sin rot ---I.~~T------------------r 
~,Mmz T s 

09g~~~--~~~.-~~ 

Figure 3.4.2-1 Dynamic Force Fx sin rot & Fy sin rot applied at point T 

Transfer the dynamic forces to DOF Locations: Let the equivalent dynamic forces at 0 be 
Fj along DOF I, F2 along DOF 2 & F3 along DOF 3. 

Considering equilibrium of forces, by statics, we get 

where M¢ = -s Fx (3.4.2-1) 

Adding equation (3.4.2- 1) to RHS of equation of motion for free vibration i.e. equation (3.3.2-8), 
we get equation of motion for forced vibration as: 
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(3.4.2-2) 

Since vertical motion is uncoupled, separating from the equation, we get 

(3.4.2-3) 

[
m 0 ]{x} [kx 0 ]{X} {Fx sin cot} 
o Mmoz ¢ + 0 (k,-mgh) t/J = M,sincot 

where M, = -sFx (3.4.2-4) 

Equation 3.4.2-3 represents vertical motion of the system. It is seen that this equation is same as 
equation (2.2.1-1). The solution to equation gives response at point O. Maximum response @ 0 
thus becomes (see equation 2.2.1-5a): 

Fy 
0=­

y k 
y 

(3.4.2-5) 

Equation 3.4.2-4 represents motion of the system in X-V plane having coupling inX &t/J. 

Substituting (M, = -sFx), it is seen that this equation becomes same as equation (3.2.2-12). 

Following solution on the similar lines as that for equation (3.2.2-12), we get x&t/J response at 

point 0 as: 

(3.4.2-6) 

(3.4.2-7) 

Here 

3.4.2.1.1 Amplitudes at resonance 

For motion in X-V plane, response amplitudes Xo'Yo & t/Jo, as given by equations 3.4.2-5,6 &7 

represent undamped response that holds good for conditions away from resonance. 
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When natural frequencies are in proximity to operating speed i.e. conditions of near resonance, the 
responses given by the above equations do not hold good. For evaluating response at resonance, the 
equations 3.4.2-5,6 &7 are modified as under: 

In case of resonance, taking advantage of the derivation done for damped SDOF system, it can be 
said that: 

i) In case of resonance with vertical natural frequency Py , the response to the system at 

resonance is obtained by replacing the term (1- /3~ ) in denominator by 

~(1- /3; r + (2/3ys f in equation 3.4.2-5. 
ii) For coupled motion x & ¢, in case of resonance with first natural frequency the response 

at resonance is obtained by replacing the term (1- /312 ) in denominator by 

~(1- /312 r + (2/31Sl in equations 3.4.2-6 &7, keeping the sign of the term 

~(l- /312 r + (2/31Sl same as that for (1- /3l). 
iii) In case of resonance with second natural frequency for coupled motion x & 1, the 

response at resonance is obtained by replacing the term (1- /31) by J(l- /31 r + (2/32s)2 

in equations 3.4.2-6 &7, keeping the sign of the term J(l- /31 r + (2/32S)2 same as that 

for (1- /31). 

Similar modifications must be made while considering motion in Y -Z plane involving 
responses y, z & () . 

Further, since torsional motion in X-Z plane (about Y) involving response If/ is uncoupled, 

response at resonance is obtained by equations: 

1 
If/o = Ow ~ (undamped 

\1- /3w ) 
response) 

1 
(damped response at resonance) (3.4.2-8) 
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It may be noted that responses Xo,Yo & tPo (whether undamped or damped) represent amplitudes at 

DOF Locations point 0 in X Y & tP directions respectively. For response at any other location viz. 

top of the foundation, bearing location etc, computations need to be modified accordingly. 

3.4.2.2 Center of Mass is not in line with Center of Stiffness - Dynamic Forces 
applied at a point above the block 

Now consider the same block as of Figure 3.3.2-2 (in X-V Plane). Center ofstiffuess is point 0 and 
center of Mass point C is at distance 'a' from point O. The block is subjected to Dynamic Forces 
Fx sin rot & Fy sin rot applied at point T as shown in Figure 3.4.2-2. These dynamic forces are to 

be transferred at DOF location. 

Transfer the dynamic forces to DOF Locations: Let the equivalent dynamic forces at 0 be 
Fj along DOF 1, F2 along DOF 2 & F3 along DOF 3. Considering equilibrium of forces, by 

statics, we get 

(3.4.2-9) 

Fx sin rot 

I 1m 

: ~Mmz T s 

'7"i1"i1'\7'0---L-~~ 1 __ L 

Figure 3.4.2-2 Dynamic Force Fx sin rot & Fy sin rot applied at point T 
Overall Centroid is offset by distance 'a' from center of Stiffness 
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Equation of Motion 

Adding equation (3.4.2-9) to RHS of equation of motion for free vibration i.e. equation (3.3 .2-17), 
we get 

llX) 1 Fx sin oJt ) 
o Y = Fy sinoJt 

(krjJ-mgh) rjJ (-sFx)sinaJt 

(3.4.2-10) 
o 

For free vibration response, see § 3.3.2.2. 

Forced Response: 

Solution of equation 3.4.2-10, using closed form solution techniques, is not only 
difficult but complex too. We leave it at this stage itself. Should a situation 
arise, it may be desirable to resort to advanced computational tools/packages for 
solution to the problem. 

EXAMPLE PROBLEMS (§3.1) 

(Free Vibration 2-DOF System - Natural Frequency Computation) 

P 3.1-1 

A 2DOF spring mass system, as shown in Figure P 3.1-la, has mass ml = 1000 kg, 

mass m2 = 500 kg, spring stiffness kl = 25 kN / m and k2 = 2 kN / m . Compute natural 

frequency of the above spring mass system. 

Figure P3.1-1 2 DOF Spring Mass System 
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Solution 

Limiting frequencies 

ml = 1000 kg 

m2 = 500 kg 

k, = 25000 N/m 

k2 = 2000 N/m 

P II = ~ = 25000 = 5 rad/s 
, V -;;;; 1000 

Pn = ~ k2 = J2000 = 2 rad/s 
m2 500 

Natural frequencies are: 

pf = i{(PZ2(1 +A)+ pzJ-~(pZ2(1+A)+ PZ" -4X(PZIPZ2)} 

= i{ (4x (1.5) + 25)-~(4x (1.5) + 25)2 -4(25 X4)} 

PI = 1.91 rad/s 

pi =i{(PZ2(1+A)+ PZI)+~(PZ2(1+A)+ pJ.J2 -4(PJ.IPZ2)} 

= i{ (4 x (1.5)+ 25)+ ~(4 x (1.5) + 25)2 -4(25 x 4)} 

P2 = 5.23 radls 

3-91 

It is noticed that the lower natural frequency of the system PI is lower than the lowest limiting 

frequency and the higher natural frequency P2 is higher than the highest limiting frequency. 

P 3.1-2 

In problem P 3.1-1, k1 &ml is interchanged withk2 &m2' Thus, the spring mass system has 

masses ml = 500 kg, m2 = 1000 kg , spring stiffness k1 = 2 kN/m and k2 = 25 kN/m as shown 

in Figure P 3.1-2. Compute natural frequency of the spring mass system. 
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Solution 

Limiting frequencies 

mJ =500 

m2 =1000 

kJ =2000 

k2 =25000 

Figure P3.1-2 2 DOF Spring Mass System 

PLJ = [k: = ~2000 = 2 radls V-;;;; 500 

PL2 = ~ k2 = 25000 = 5 radls 
m2 1000 

Natural frequencies are: 

pl =~{(PZ2(1 +A)+ PZJ)-~(pZ2(1 +A)+ pLJ2 r -4(PZJPZ2)} 

= ~{(25 x(l + 2)+ 4)-~(25 x (I + 2) + 4)2 -4(25 x4)} 

PJ = 1.134 radls 

Multi Degree of Freedom Systems 
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pi = ~{(PZ2 (1 + ,1)+ PZI)+ J(PZ2 (1 + ,1)+ PZI 'f -4(PZIPZ2)} 

= ~{(25X (1 + 2) + 4)+ ~(25 x (1 + 2)+4)2 -4(25 x 4)} 

P2 = 8.82 radls 

3-93 

It is noticed that the lower natural frequency of the system PI is lower than the lowest limiting 

frequency and the higher natural frequency P2 is higher than the highest limiting frequency. 

P 3.1-3 

A machine of mass 500 kg is supported on a RCC Block of size L= 2500 mm, B=1500 mm & 
H=400 mm deep. Density of concrete is 2500 kg/ml. The block in turn is supported by a 

rotational spring having stiffness of k¢ = 2 x 106 Nm/rad and Translational spring having 

stiffness of kx = 2xl07N/m attached at base center of the block (point 0) as shown. The 

height of the machine mass above top of Block is 100 mm. Block Centroid C and CG of 
machine lie on the same vertical line. The system is constrained such that it can move only in 
translational X direction rock about Z-axis. passing through O. Find natural frequency of the 
system? 

Solution: 

k¢ = 2xl06 Nmlrad 

_ J ________ _ Machine 
hi = 100 

T--r --------flm 
CC 2 Block 

H=400 

6 k+ = 2 x 10 Nmlrad 

Figure P3.1-3 Machine on RCC Block Supported by Rotational 
Spring attached to Base Center Point 0 

Machine mass ml = 500 kg 

2.5x1.5xOAx2500 = 3750 kg Mass of Block m2 
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Spring Stiffness in X direction 

Spring Stiffness in ¢ direction 

Let us denote Overall centroid (Block +Machine) as CC 

Height ofCC from center of base of the block point 0 

h = 500x(O.l +0.4) +3750x (0.5x 0.4) = 0.2354 m 
4250 

Mass Moment of Inertia about Z-axis at centroid CC= M mz 

Multi Degree of Freedom Systems 

=4250 kg 

3750 ( ) M mz = 12x 1.52 of: 0.42 + 3750x (0.2354 - 0.2)2 + 500x(0.1 + 0.4 -0.2354)2 = 792.83 

Mass Moment of Inertia about base center point 0= M moz 

3750 ( ) Mmoz =--x 1.52 +0.42 +3750x0.22 +500x(0.1+0.4)2 = 1028.125 
12 

Yz = Mmz = 792.83 = 0.77 
M moz 1028.125 

fk: 2xlO7 
Px = V-:; = 4250 = 68.6 rad/s 

P; = ~ (k;) = (2 x 10
6

) = 44.10 rad/s 
Mmoz 1028.125 

As mentioned earlier in the text, the influence of term mgh for all practical real life problems is 

practically insignificant. This can be checked here it self. Considering effect of term mgh, we get: 

(k; -mgh) 
P; = 

Mmoz 

(2x10
6 

-4250x9.81x0.2354) =44 rad/s 
1028.125 

It is seen that this value is practically same as obtained above. Hence one can conveniently and 
safely ignore term mgh for all practical purposes. 
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Substituting for p x ' P ¢ & r z , we get 

p2 = 1 {(68.662 + 44.1 2 )+ ~(68.662 + 44.1 2 ') - 4 x 0.77 x 68.662 
X 44.1 2 } 

2xO.77 

= 4318+ 2606.7 

Two positive Roots of p2 give two natural frequencies as 

PI = .J4318-2606.7 = 41.36 rad/s 

P2 = .J 4318 + 2606.7 = 83.21 rad/s 

EXAMPLE PROBLEMS (§3.2) 

(Forced Vibration -2-DOF System - Response Computations) 

P 3.2-1 

3-95 

A machine of mass 5000 kg is supported on a RCC Block of size 

L = 4m, B = 2 m & H = 3m deep. Density of concrete is 2500 kg/m 3 
• The block in turn is 

supported by a rotational spring having stiffness of k¢ = 2.1 x 1 08 Nmlrad and Translational 

spring having stiffness of k x = 1.6 x I 08 N/m attached at base center of the block (point 0) as 

shown. The height of the machine mass above base of the Block is 3500 rom. Overall 

Centroid C and center of Stiffness point 0 lie on the same vertical line. The system is 
constrained so as to translate only along X & rotate about Z-axis passing through O. A 
dynamic force of Fx = 5000 N @ 15 Hz is applied at the machine mass center along X-axis. 

Find the undamped amplitudes of vibration at foundation base (point 0). 

Solution: 

Mass of Machine 

Mass of foundation Block 

Total Mass 

Spring Stiffness in X direction 

5000 kg 

2500x (4x 2 x 3) = 60000 kg 

m = 5000 + 60000 = 65000 kg 

kx =1.6xI08 N/m 
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Spring Stiffuess in ¢ direction 

Excitation Frequency 

k¢ = 2.1 x 108 Nm/rad 

(i) = 15 Hz = 15 x 21l" = 94.24 rad/s 

Applied Dynamic Force: 

Magnitude of Dynamic Force: Fx = 5000N 

y 

I 

.. Fx = 5000 N @ 15 Hz 
I T B=2m T a 8 

kx = 1.6 x 10 N/m ~ 
s 

Figure P3.2-1 Machine on RCC Block Supported by Rotational Spring and 
Translational Spring attached at Base Center Point 0 

Equivalent Dynamic Forces transferred @ point 0: 

Transferring forces @ DOF location point 0, we get 

Fi =5000N, F2 = -5000x3.5= -17500 Nm 

Let us denote Overall centroid (Block +Machine) as C 

Height of overall centroid C from center of base of the block point 0 

h = (5000 x 3.5+60000 x 3.0/2)/65000 =1.654 m 

Mass Moment ofInertia (Machine + Block) about Z-axis at base Overall centroid C= M mz 

M mz = 60000 x (3 2 + 22 )+ 60000 x (1.654 -1.5)2 + 5000 x (3.5 -1.654)2 = 83461 kg m 2 
12 

Mass Moment of Inertia about Z-axis at base center point 0 = M moz 
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Mmoz = 83461 +65000x (1.654)2 =261283 kgm 2 

y z = M mz = 83461 = 0.319 
Mmoz 261283 

Px = fk:mx = 1.6x10
8 

= 49.6 rad / s V--;;; 65000 

P¢ = k¢ - mgh = ~ 10
8 

- 65000 x 9.81 x 1.654 = 28.27 radls 
Mmoz V- 261283 

Response in x & ¢ direction: 

Natural Frequencies: 

Frequency equation is 2 I (2 2)- 1 ~{ 2 2 \2 2 2 P =-2 - Px + P¢ +2 \px + P¢} -4yz PxP¢ 
yz yz 

Substituting for P x , P ¢ & y z , we get natural frequencies as: 

PI = 25.38 radls; & P2 = 97.84 radls 

fJI = ~ = 94.24 = 3.71; fJ2 = ~ = 94.24 = 0.963 
PI 25.38 P2 97.84 

fJx = ~ = 94.24 = 1.899 ; fJ¢ = ~ = 94.24 = 3.32 
Px 49.6 P¢ 28.35 

fJ; = 3.6, fJi = 1l.02, fJ? = 13.69, fJi. = 0.925 

(i-fJ;) =-2.6, (l-fJj) =-10.02, (i-fJ?)=-12.76, (l-fJi) = 0.073 

3-97 
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(1- p?)(1- pi) = -12.76xO.073 = -0.93 

(I~Pi) 2 = -10.02 =10.77 
(1- PI Xl- P2 ) - 0.93 

fi 2 =~=-3.87 
(1- PI 1-P2 ) -0.93 

pi = 11.02 = -11 85 
(l-p?XI-pi) -0.93 . 

h = 1.654 m; ~ = 65000 x 1.654 = 0.4115 
Mmoz 261283 

Ox = Fx = 5000
8 

= 3.125xI0-5 m 
kx 1.6xlO 

s: _ M; _ -17500 _ 833 10-5 d U; - - - 8 - -. x ra 
k; 2.lx10 

x - Amplitude at DOF Location (point 0) 

Xo =3.125xl0-5 x(10.77)-1.654x(-8.33xI0-5)x(-3.87) 

= -19AxI0-5 m 

¢ - Amplitude at DOF Location (Point 0) 

¢o = (-8.33) x 10-5 x(2.79)-3.125xlO-5 xOAI15x(-11.85) 

=-8.0xI0-5 rad 

P 3.2-2 

Multi Degree of Freedom Systems 

A 2DOF spring mass system, as shown in Figure P 3.2-2, has mass ml =1000 kg, mass m2 =500 
kg, spring stiffness kl = 25 kN/m and k2 = 2 kN/m. Compute maximum amplitudes of 

vibration for: 
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Excitation force F2(t) = 100 sin 10 t on Mass m2 

Excitation force Flt) = 100 sin 10 t on Mass ml 

Excitation force FJ(t) = 100 sin 10 t on Mass ml & F2(t) = 100 sin 10 t on Mass m2 

Base Excitation displacement y(t) = 0.001 sin 10 t 

F(t) F(t) 

3-99 

(a) Excitation Force 
F(t) on Mass m2 

(b) Excitation Force 
F(t) on Mass m) 

(c) Excitation Force (c) Base Excitation 
F(t) on Mass ml & m2 

Figure P3.2-2 Two Mass System-Forced Vibration 

Solution: 

System Data 

m\ = 1000 kg ; m2 = 500 kg ; k\ = 25000 N/m; k2 = 2000 N/m 

FJ = 100 N; F2 = 100 N; Xo = 0.001 m; to = 10 rad/sec 

Limiting Frequency PLJ = ~2500r.OOO = 5 rad/sec 

Limiting Frequency P L2 = ~200%00 = 2 rad/sec 

Using equations 3.1.1-12 & 13, and substituting for PLJ , PL2 & A, we get natural frequencies 

https://engineersreferencebookspdf.com



3-100 Multi Degree of Freedom Systems 

pf = ~{(PZ2(1 + A)+ PZI )-~(PZ2(1 + A)+ PZI f -4(PZI PZ2)} (3.1.1-12) 

pi =~{(PZ2(I+A)+ PZI)+~(PZ2(I+A)+ PZlf -4(PZI PZ2)} (3.1.1-13) 

Natural Frequency PI = 1.912 radls; P2 = 5.229 radls 

Amplitudes of vibration 

Excitation Frequency 0) = 10 radls; 

Frequency Ratios 
0) 10 0) 10 

/31 =-=--=5.23; /32 =-=--=1.912 
PI 1.912 P2 5.229 

(a) Excitation force F2 (t) = 100 sin 10 t on Mass m2 

For amplitude of mass ml &m2' refer equations (3.2.1-5) & (3.2.1-6). 

F2 I k2 . 
Y = sm O)t 

I k2 (1- /3/ Xl- /322 )} kl 

For maximum amplitude sinO) t = 1.0, substituting the values, we get 

Amplitude of mass m 1 

100 I 2000 

YI = 2000 (1- 5.232 Xl-1.912 2 )} 25000 

YI = 5.715xl0-5 m = 57.15 microns 

Amplitude of mass m2 

100 I (25000 + 2000-10
2 

x 1000) 
Y2 = 2000 {1-5.232 Xl-1.9122» 25000 

Y2 = -2.086 x 10-3 m = -2086 microns 
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(b) Excitation force FJ(t) = 100 sin 10 t on Mass ml 

For maximum amplitude sin OJ t = 1.0 , substituting the values, we get 

Amplitude of mass ml 

_ 100 1 {(2000-10
2 

X500)} 
YI - 25000 {1-5.232 Xl-1.9122» 2000 

YI = -1.371 x 1 0-3 m = -1371 microns 

Amplitude of mass m2 

100 1 

12 = 25000 {1-5.232 Xl-1.9122 )} 

Y2 = 5.7l5x 10-5 m = 57.15 microns 

Excitation force 

For maximum amplitude sin OJ t = 1.0 , substituting the values, we get 

Amplitude of mass ml 

3-101 
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_ 1 {~(2000-102 X500)+~ 2000} 
YI - {1-5.232XI-1.9122» 25000 2000 200025000 

YI =-1.314xl0-3 m=-1314microns 

Amplitude of mass m2 

1 { 100 (25000 + 2000 _102 xl 000) 100} 
Y2 = (1-5.232Xl-1.9122» 2000 25000 + 25000 

Y2 = -2.029 x 10-3 m = -2029 microns 

(c) Base Excitation y(t) = 0.001 sin 10 t 

Refer equations (3.2.1-16) & (3.2.1-17) 

1 {(k2 _0)2 m2 )} . 
YI = Yo J( 2 X 2 )1 sm 0) t 

Rl- PI 1-1'2) k2 

1 . 
Y2 =yo V 2X 2J~smO)t 

~1-PI 1- 1'2 'f 

For maximum amplitude sin 0) t = 1.0 , substituting the values, we get 

Amplitude of mass m I 

-0001 1 {(2000-10
2

X500)} 
YI -. (1-5.232Xl-1.9122)} 2000 

YI =-3.429xl0-4 m=-343microns 

Amplitude of mass m2 

Y2 = 0.001 { 2 X 2» = 1.43 x 10-
5 

m = 14.3 microns 
1-5.231-1.912 

P 3.2-3 

A 2DOF spring mass system, as shown in Figure P 3.2-3, has mass ml = 170 t, mass 

m2 = 34 t, spring stiffness kl = 8.01 x 105 kN/m and k2 = 2.35 x 106 kN/m • A mass mo = 1.38 t 

freely falls on mass m2 from a height of h = 1.70 m. Considering coefficient of restitution for 

the impact e = 0.6, compute the amplitudes of masses ml & m2 • 
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Solution: 

ml = 170 t; m2 = 34 t; mo = 1.38 t 

kl =8.01xl05 kN/m; k2 = 2.35xl06 kN/m; h = 1.7 m; e=0.6 

Limiting Frequencies: 

2 _ kl _ 8.012x10
6 

_ 4697 . 
PLI--- -, 

ml 170 
2 _ k2 _ 2.345xl0

6 
_ 68978 

PL2 --- -
m2 34 

Mass Ratio 

~---------------I 

·-f-L_~~=~~~~:-j + 
h= 1.70m 

5 kz = 2.35 x 10 kN/m 

y} 

5 
k} c= 8.01 x 10 kN/m 

Figure P3.2-3 (a) 1\vo Spring Mass System Subjected to Impact Load 

Natural Frequencies: 

P~ = ~{(68978X (1 +0.2)+4697)-~(68978x(1 +0.2)+4697)2 -4X(4697X68978)} = 3876 

PI = 62.26 rad/s 

3-103 
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P~ = ~{(68978x (1 + O.2)+4697)+~(68978x (1 +0.2)+4697)2 -4x(4697x 68978)} = 8.355 x104 

P2 = 289 rad/s 

Initial Velocity of mass m2 

Velocity of mass mo before impact 

v~ = ~2gh = . .J2x9.8Ix1.7 = 5.775 m1s 

~ = m2 =~ =24.63 
mo 1.38 

Velocity of mass m2 after impact 

v =v' x (l+e) =5.775x (1+0.6)) =0.36 m1s 
2 0 (l+~) {I +24.63) 

We get response of the Two Spring Mass System as under (refer equation 3.2.1-39 & 40): 

Amplitude of mass ml (see equation 3.2.1-39) 

Amplitude of mass m2 (see equation 3.2.1-40) 

Amplitude of mass ml in 1 st mode 

PI 

, = 0.36x (68978 -3876X68978-83550) sin 62.26t x 103 = 0.99918 sin 62.26t 
YI 68978{3876 - 83550) 62.26 

mm 

Amplitude of mass ml in 2nd mode 

sin(P2t ) 
Yr=-V2~=-~~~~~~--~~ 

P2 
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• = -0.36 x (68978-3876X68978-83550) sin289t x103 = -0.215 sin 289t 
Y\ 68978{3876 - 83550) 289 

rom 

Amplitude of mass 2 

Amplitude of mass m2 in 151 mode 

, - 0.36 (68978-83550) 103 • 6226 - -1 05 . 6226 Y2 - --x ( ) x SIn . t - . SIn . t 
62.26 3876-83550 

mm 

Amplitude of mass m2 in 2nd mode 

• V2 Y2 = --x -'f-'=-~-+ 
P2 

• 0.36 (68978-3876) 103 . 289 10' 289 Y2 = ---x ( )x sm t = . sm t 
289 3876-83550 

rom 

2.0 Yl 

1.5 

1.0 

~ 0.5 
.S 
~ 0 
~ 
'-0.5 

-1.0 

-1.5 

-2.0 

Figure P 3.2-3 (b) Response of Masses m1 & m2 Subjected to Impact Loading 
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Amplitude vs. time plots of mass m) and mass m2 are shown in Figure 3.2-3 (b). From the figure 

we get 

Overall Amplitude of mass m) 

Overall Amplitude of mass m2 

P 3.2-4 

y) = 1.213 mm 

Y2 =2.06mm 

A 6 spring mass system connected by a rigid bar, as shown in Figure P 3.2-4, is subjected to 
dynamic force of F(t) = 50sin lOOt N applied at each mass point. Find response of the 

system. 

Solution 

Mass Data: 

Spring Data: 

(See §3.1.5 & §3.2.3) 

m) =100 kg=O.1 t 

m2 =0.15 t; m3 =0.2 t 

m4 = 0.3 t; m5 = 0.2 t; m6 = 0.1 t 

k) = 1000 kN/m 

k2 = 1500 kN/m; k3 = 2000 kN/m 

k4 = 1000 kN/m; k5 = 2000 kN/m; k6 = 2500 kN/m 

I I 
I I 

ml = 100 kg 
m2 = 150 
m3 =200 
m4 =300 

ms =200 

m6 = 100 

k} = 1000 kN/m 
k2 = 1500 
k3 =2000 

k4 = 1000 
ks = 2000 
k6 =2500 

Figure P 3.2-4 Six Spring Mass Systems Connected 
by Massless Rigid .Bar 
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Center of Mass xm 

Total Mass m = 0.10+0.15+0.20+0.3+0.2+0.1 = 1.05 t 

Taking moment about axis passing through spring 1, we get 

Xm = 0.15xl+0.2x2+0.3x4+0.2x5+0.1x7 = 3.45 =3.286 m 
1.05 1.05 

Center of Stiffness 

Total Spring Stiffness ky = (1000+ 1500+2000+ 1000+2000+2500)= 10000 kN/m 

Taking moment about axis passing through spring 1, we get 

x = (1500xl+2000x2+1000x4+2000x5+2500 x 7) = 37000 =3.7 m 
k 10000 10000 

Eccentricity: e=xm -xk =3.286-3.7 =-0.414 m 

Distances of springs from center of mass: 

al =3.286 m; a2 =3.286-1=2.286 m; a3 =3.286-2=1.286 m 

a4 =3.286-4=-0.714 m; a5 =3.286-5=-1.714 m; a6 =3.286-7=-3.714 m 

Distances of springs from center of stiffness: 

q =3.7 m; b2 =3.7-1=2.7 m; b3 =3.7-2=1.7 m 

b4 =3.7-4=-0.3 m; b5 =3.7-5=-1.3 m; b6 =3.7-7=-3.3 m 

It is seen that these values of aj, bj & e satisfy equation aj = bj + e 

Mass Moment of Inertia M m : It is the second moment of mass about center of mass 

Mm = L:(mjal)= 0.lx3.2862 +0.15x2.2862 + 0.2 x 1.2862 

+0.3x(-0.714f +0.2x(-1.714f +0.lx(-3.714)2 =4.314 tm2 
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Rotational stiffness about center of stiffness 

k; = L(k;bn=1000x3.72 +1500x2.72 +2000x1.72 

+ 1000 x {-O.3f +2000x{-1.3f +2500x{-3.3f =61100 kNm 

Limiting Translational Frequencies Py = fk; = ~10000 = 97.6 radls V -;;;- 1.05 . 

L · .. R . IF . at; 61100 119 dI ImltIng otatIona requencles P;: -- = -- = ra s 
Mm 4.314 

Equivalent radius of gyration r=~Mm =~4.314 =2.027 m 
m 1.05 

Natural Frequencies: (see equation 3.1.5-15) 

P~2 = 0.5 x {(I. 042 x 97.62 + 1192)+ ~(1.042X97.62 + 1192 r -4x97.62 x 1192 } 

Pl·: 94.1 radls; P2: 123.4 radls 

Response: 

Dynamic force and moment transferred at center of mass point em 

Total dynamic force @ center of mass 

F(t) = 50sin 100 tx6 = 300sin 100 t N: 0.30 sin 100 t kN 

P · f \. . fd . ~ - 50 x{I+2+4+5+7) 350 omt 0 app IcatIOn 0 ynamlc Lorce x F = = - = 3.167 m 
50x6 300 

Centroid of dynamic force from center of mass xm -xF = 3.286-3.167= 0.12 m 

Dynamic Moment @ center of mass 

M(t) = {0.30x0.12)sin 100 t: 0.036sin 100 t kNm 

Maximum Amplitude: (See equation 3.2.3-5 & 6) 
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Since system has no damping, let us compute response for undamped condition. 

~ Fo 0.3 0 0-5 Mo 0.036 -7 
y(static) = ky = 10000 =3. xl m; ~¢(static) =~= 61100 =5.89x1O rad 

OJ = 97.6 rad/sec; Py = 97.6 rad/sec; P; = 119 rad/sec; PI = 94.1 rad/sec; P2 = 123.4 rad/sec; 

OJ 100 
Py = P

y 
= 97.6 = 1.0246; P; = 0.84; PI = 1.0627; P2 = 0.8104; 

e2 

r = 2.027 m; e = -0.414 m; a = 1 +-2 = 1.042 
r 

[
1+ PJ ~-fJ21=1+ 0.84

2 
xO.042-0.842 =0.3226 P; r 2 ; 1.02462 

(1- PI2 )(1- pi ) = (1-1.06272 )(1- 0.81 042) = -0.214 

= 3.0x 10-
5 

x0.3226- 5.89x 10-
7 

x {-0.414} = -4 64x 10-5 
Y{max} -0.214 . m 

5.89 XI0-7 (1-1.02462)-3.0XI0-5( 0.84 )2(-0.41;) 
"" = 1.0246 2.027 =-9.6xl0-6 rad 
'f'\max} -0.214 

Maximum Translational Amplitude shall occur at the extreme end of the bar 

Max Amplitude 
Ay =Ymax +¢{max}xlai(max)1 

la;(max)1 = a6 = 3.714 m 

Ay = -4.64 x 10-5 -9.6x1O-6 x3.714 = -82.l5xl0-6 m 

{AY)max = 82.15 microns 
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P 3.2-5 

A Machine of mass 5000 kg is supported at the center of a RCC portal frame beam as shown 
in Figure P 3.2 -5. Frame beam is 200 mm x 500 mm deep and column section is 200 X 400 
mm. Frame span is 4000 mm (center to center) and height of frame is 6000 mm (up to beam 
center) as .shown. Consider that the mass is subjected to a dynamic force F(l) = 0.2 sin lOOt 

applied along Y. Elastic Modulus of concrete is Ec =3x101o N/m 2 and its mass density 

is Pc = 2500 kg/m 3 
• Consider damping C; = 5 % • Compute the response. 

Solution: 

i) Beam is Elastic 

Material properties of Concrete 

Span & Height of Frame 

Area of Beam Cross-section 

Area of Column Cross-section 

Mass of Beam 

Mass of each column 

Moment of Inertia Beam Cross-section 

Moment ofInertia Column Cross-section 

Stiffness ratio factor 

Ec = 3xl07 kN/m2; Pc = 2.5 tlm 3 

L = 4.0 m; H = 6.0 m ; 

Ab = 0.2 x 0.5 = 0.10 m2 

Ac = O.2x 004 = 0.08 m2 

mb = 0.lx4.0x2.5 = 1.0 t 

me =0.08x6x2.5=1.2 t 

I 3 4 Ib = -xO.2x0.5 = 0.00208 m 
12 

134 Ie =-xO.2xOo4 =0.00107 m 
12 

k = Ib/L = 0.00208/4 =2.916 
Ic/H 0.00107/6 

Motion along Y (Vertical motion): Mathematical model is as shown in the Figure 

Mass & Stiffness Properties: (see equations 3.2.4-2 & 3) 
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y 

F(t) 

m = 5000 300 
r-----------T -0500 
I Bel 
I I 
I I 
I I 
I I 
I I 

X I I 
'----L--, I A D I 

400 
ctJ 4000 ctJ 300 

I' ·1 
Figure P 3.2-5 Machine mass supported at Portal Frame Beam center 

Subjected to Dynamic Force F(t) 

Mass 

ml = 0.55mb +2x0.33xmc = 0.55xl.O+2x0.33x1.2 = 1.342 t 

m2 = m+0.45mb = 5.0+0.45 = 5.45 t 

Stiffness 

kl = 2EAc = 2x3xl07 xO.08 =8x105 kN/m 
}{ 6.0 

k = 96E1b x k+2 = 96x3x107 xO.00208 x 2.916+2 = 6.735xl04 kN/m 
2 L3 2k+l 43 2x2.916+1 

Natural Frequency (see equation 3.2.4-4) 

PLI = _I = -- = 772.1 radls ~ 
8xl0s 

ml 1.342 

PL2=~k2 = 6.735xl0
4 

=111.16 radls 
m2 5.45 

A = m2 = 5.45 = 4.06 
ml 1.342 

Frequency Equation 

3-111 
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Substituting values, we get 

PI = 107.23 rad/sec; P2 = 804.67 rad/s 

Steady-State response: 

i) Maximum Undamped Response: (see equations 3.2.4-7 & 8) 

[ 1 + A, P~I - Pll) 
Fo PL2 

Y2 (max) = k; 1(1- p? ll(l-pi l 
Applied Force F(t) = 0.2 sin lOOt 

OJ 100 100 100 100 PI =-=--=0.93; P2 =--=0.124; PLI =--=0.13;.Bt2 =--=0.9 
PI 107.23 804.67 772.1 111.16 

1 = 1 =7517 
1(I-pnl(l-pi) 1(1-0.932)1(1-0.1242) . 

YI(max) =~X7.517=1.88XlO-6 m=1.88 microns 
. 8xlO 

Y2 (max) = 0.2 4 xl.068x7.517 = 2.38xlO-5 m = 23.8 microns 
6.735xl0 

ii) Maximum Damped Response: 

Since frequency ratio PI is in resonance range (± 20%), Equations 3.2.4-7 & 8 get modified as 
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Fo 1 

YI(max) =-,;; ~(I-PI2f + (2PIS)2 x\(I-Pil; 
Substituting, we get 

0.2 6 9 4 0-6 • YI (max) = --5 X .1 = 1.5 xl m = 1.54 mIcrons 
8xl0 

Y2 (max) = 0.2 4 X 1.068 X 6.19 = 1.963 X 10-5 m = 19.63 microns 
6.735xl0 

EXAMPLE PROBLEMS (§3.4) 

P 3.4-1 

A machine of mass 5000 kg is supported on a RCC Block of size 

L = 4m, B = 2 m & H = 3m deep. Density of concrete is 2500 kg/m 3 
• The block in turn is 

supported by a rotational spring having stiffness of k~ = 2.1 X 108 Nmlrad and Translational 

springs having stiffness of k x = 1.6 X 108 N/m & k y = 3.2 X 108 N/m attached at base center of 

the block (point 0) as shown in Figure P 3.4-1. Height of CG of the machine mass above 
foundation base of the Block is 3500 mm. Overall Centroid CC and center of Stiffness 

point 0 lie on the same vertical line. The system is constrained to move only in X-Y plane i.e. 
it can translate along X & Y directions & rotate about Z-axis passing through O. Dynamic 
force Fx = 5000 N @ 15 Hz along X-axis, Fy = 10000 N @ 15 Hz along Y-axis and dynamic 

moment M ~ = 20000 Nm about Z- axis are applied at the machine mass center. Find the 

amplitudes of vibration at foundation base (point 0). In case of resonance, use damping 
constant S = 10% . 

Solution: 

Mass of Machine 

Mass offoundation Block 

Total Mass 

5000 kg 

2500x (4x2x 3) = 60000 kg 

m = 5000 + 60000 = 65000 kg 
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Spring Stiffness in X direction 

Spring Stiffness in Y direction 

kx = 1.6xlOB N/m 

ky = 3.2 x lOB N/m 

Multi Degree of Freedom Systems 

Spring Stiffness in ¢ direction kIP = 2.1 X lOB Nmlrad 

Excitation Frequency (J) = 15 Hz = 15 x 2JT = 94.24 rad/s 

m = 5000 kg Fy= 10000N@ 15Hz 

M+ = 20000 Nm @ 15 Hz ... 

T I 

tee 

Fx= 5000N@ 15Hz 

T 
is 8 

kx= 1.6 x 10 Nlm T 

Figure P 3.4-1 Machine on RCC Block Supported by vertical, Translational and 
Rotational Springs Subjected to Dynamic Forces Fx. Fy• & M, at 

Machine center Location 

Magnitude of Dynamic Force: 

Fx = 5000 N. Fy = 10000 N. M" = 20000 Nm 

Transferring forces @ DOF location point 0, we get 

Fj = 5000 N, F2 = 10000 N & F3 =20000-5000x3.5=2500 Nm 

Let us denote Overall centroid (Block +Machine) as CC 

Height ofCC from center of base of the block point 0 

h = (5000 x 3.5+60000 x 3.0/2)/65000 =1.654 m 
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Mass Moment of Inertia (Machine + Block) about Z-axis at base Overall centroid CC = M mz 

Mass Moment of Inertia about Z-axis at base center point 0 = M moz 

Mmoz = 83461+65000 x (1.654)2 =261283 kgm2 

r. = M mz = 83461 = 0.319 
• Mmoz 261283 

Limiting Frequencies 

Px =1£ = 
1.6xl08 

=49.6 radls 
65000 

P =J¥= 3.2xl08 
= 70.16 radls 

y m 65000 

J;E 2.lxl08 
P; = -;- = = 28.35 radls 

Mmoz 261283 

Note: For real life problem it is customary to ignore the effect of term mgh while computing 

limiting frequency, as its influence is negligible. Considering effect of mgh we get frequency of 

28.27 radls (see below) 

P; = ~ k; - mgh = 2.1 x 10
8 

- 65000 x 9.81 x 1.654 = 28.27 radls 
AfmM 261283 

Response in vertical Y - direction (Undamped): 

t5 = Fy = 10000 = 3.125xlO-5 m 
y ky 3.2xl08 

fly = ~ = 94.24 = 1.34 
Py 70.16 
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Vertical Amplitude @ 0 

YO=OyXpl =3.l25 XIO-
SX/( 1 l=39.2XlO-

6 
m 

1\1- P; ~ 1 -1.34
2 

= 39.2 microns 

Response in x&¢ direction: (Undamped) 

Natural Frequencies: 

Frequency equation is 2 1 (2 2 )- 1 ~( 2 2 \2 2 2 
P =-2 \px + P¢ +-2 Px + P¢} -4yz PxP¢ 

yz yz 

Substituting for Px ,P¢ & Yz' we get natural frequencies as: 

PI = 25.43 rad/s; & P2 = 97.90 rad/s 

PI = ~ = 94.24 = 3.70; P2 = ~ = 94.24 = 0.962 
PI 25.43 P2 97.90 

Px =~ = 94.24 = 1.899; P¢ =~ = 94.24 = 3.32 
Px 49.6 P¢ 28.35 

P; = 3.6, pi = 11.02, p? = 13.69, pi = 0.925 

Amplitudes: Response at DOF location 0 

o = Fx 5000 =3.125xlO-s m 
x kx 1.6xI08 
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Multi Degree of Freedom Systems 

(1- P;) = -2.6, (1- pi) = -10.02, (1- p?) = -12.69, (1- pi) = 0.075 

(1-p?)(l- piJ = -12.69xO.075 = -0.95 

(I-pi) = -10.02 =1053 
(I-A2XI-Pi) -0.95 . 

h = 1.654 m; ~= 65000x1.654 =0.4115 
Mmoz 261283 

x - Amplitude at DOF Location (Point 0) 

Xo =3.l25xI0-5 x(10.53)-1.654x(1.l9xI0-5 )x(-3.78) 

=40.34xI0-5 m 

; - Amplitude at DOF Location (Point 0) 

;0 = (1.19) x 10-5 x(2.754)-3.125xI0-5 x0.4115x(-11.58) 

= 18.25xI0-5 rad 

Response in x &; direction: (Damped) 

3-117 

It is seen that frequency ratio P2 is close to unity hence evaluate response using damping s = 0.1 . 

Step I (1- pi) = 0.075 

Step 2 ~(I-pi) +(2xP2 xsY = ~0.0752 +(2xO.962xO.I)2 = 0.206 
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3-118 Multi Degree of Freedom Systems 

Replacing the term (1- pi) by ~(1- pi r + (2 x P2 x r;f ' keeping the sign of the term under 

radical same as that of term (1- pi), the denominator becomes: 

(1- p? ~(1- pi r +(2XP2 xr;f = (-12.69)xO.206 = -2.618 

Substituting this we get 

(1- pi) = -10.02 = 3.827 

(I-Pl~(I-pir +(2XP2 xr;)2 -2.618 

P; = 3.6 = -1.375 

(I-P?~(I-pir +(2XP2 xr;)2 -2.618 

pi = 11.02 = -4.21 

(I-P12~(I-pir +(2XP2 Xr;)2 -2.618 

(1- pn = - 2.6 = 1 

(I-P12~(I-pir +(2XP2 Xr;f -2.618 

Substituting these, we get amplitudes as: 

x - Amplitude at DOF Location (Point 0) - Damped 

Xo =3.l25xlO-5 x (3.827)-1.654 x (1.19 xl0-5 )x (-1.375) 

= 14.66x 10-5 m 

¢ - Amplitude at DOF Location (Point 0) 

¢o = (1.l9)xl0-5 x(1)-3.125xl0-5 xOAI15x(-4.21) 
= 6.6x 10-5 rad 
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4 

VIBRATION ISOLATION 

• Principle of Isolation 
• Transmissibility Ratio 
• Isolation Efficiency 
• Isolation Requirements 
• Selection of Isolators 

Example Problems 
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Vibration Isolation 4-3 

VIBRATION ISOLATION 

In reference to machine foundation design, the term ISOLATION means reduction in the 
transmission of vibration from machine to the found?tion and vice-versa. In other words it means 
control of transmission of dynamic forces from machine to the foundation and thereby to the 
adjoining structures and equipment or from the adjoining structures and equipment to the machine 
through its foundation. 

Here we discuss theory of Vibration Isolation covering Principle of Isolation and Isolation 
Requirements. A brief description of Selection of Isolators has also been included. 

4.1 PRINCIPLE OF ISOLATION 

Let us consider a damped spring mass system, having mass m, stiffness k and damping c, 
subjected to dynamic excitation. Consider following two cases: 

a) Dynamic Excitation Force FJi (t) is applied at the mass and the Transmitted Force at the base 

(foundation) is Fr (t) as shown in Figure 4.1-1 (a). 

b) Dynamic Excitation Force FI, (t) is applied at the base (foundation) and the Transmitted 

Force at the mass is Fr (t) as shown in Figure 4.1-1 (b). 

In either case, the interest is thatthe transmitted force from the mass to the foundation (as in case 
(a») or from the foundation to the mass (as in case (b» should be least. 

4.2 TRANSMISSIBILITY RATIO 

Let us denote the Transmissibility Ratio as TR that is defined as the ratio of transmitted force to 
excitation force. 

(4.1-1) 
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4-4 Vibration Isolation 

Consider the two systems as shown in case (a) and case (b) in Figure 4.1-1. For vibration isolation 
the interest is that the transmitted force should be minimum in either case i.e. TR should be 
minimum and it is also true that TR depends upon the dynamic response of SDOF system. 

m m 

(a) Excitation on Mass (b) Excitation on Base 

Figure 4.1-1 SDOF Spring Mass System 
(a) Excitation on mass 
(b) Excitation at base 

Let us consider dynamic response of each case: 

Case (a) Dynamic Excitation Force FE (t) is applied at the mass and the Transmitted 

Force at the base (foundation) is Fr(t). The dynamic force could either be externally applied or 

internally generated by the machine itself. 

i) Let us first consider that the dynamic force is externally applied 

Let this excitation force be FE (t) == Fo sin OJ t 

Maximum transmitted force Fr (t) to the support is (see equation 2.2.2-11) given as; 

Where S is the damping constant & f3 == OJ/ p is the frequency ratio 

Thus, we get Transmissibility Ratio TR as 

ii) Let us now consider that the dynamic force is internally generated 

(4.1-2) 

(4.1-3) 

(4.1-4) 
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Vibration Isolation 4-5 

Maximum value of transmitted force is given by (see equation 2.2.3-10) 

(4.1-5) 

This equation also gives the Transmissibility ratio TR same as equation 4.1-4 for 

FE = Fa = mr em 2 

~ 2.00 
0 
.~ 

~ 1.50 

.~ 
1.00 :;::l. 

:9 
'" '" ·s 0.50 

j 0.00 

0 2 3 4 5 6 

Frequency Ratio ~ 

Figure 4.1-2 Transmissibility Ratio TR vs. Frequency Ratio t3 

Case (b) Dynamic Excitation Force FJi (t) is applied at the base (foundation). 

For this case, maximum value of transmitted force is given by (see equation 2.2.4-9) 

(4.1-6) 

This equation also gives the Transmissibility ratio TR same as equation 4.1-4 
forFE =Fa =-myg • 

Thus it is clear that irrespective of whether the dynamic force is applied on the mass or applied at 
the base, the transmitted force remains the same for same system characteristics ofSDOF system. 

Plot of equation 4.1-4 giving Transmissibility Ratio TR vs. Frequency ratio is shown in Figure 
4.1-2. 

4.3 ISOLATION EFFICIENCY 

Let us denote Isolation Efficiency as 1]. Isolation efficiency is thus defined as: 

1] = (\- TR) (4.1-7) 
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4-6 Vibration Isolation 

(Generally it is convenient to represent isolation efficiency (17 x 100) in percentage.) 

It is clear from this equation that lesser the Transmissibility Ratio TR better is the Isolation 
Efficiency 17. Having determined Transmissibility Ratio TR (equation 4.1-4), we work out the 

Isolation Efficiency 17 . 

Table 4.1-1 Isolation Efficiency" vs. Frequency Ratio f3 for different 
Damping Ratios c; 

Isolation Efficiency 

Frequency 
Damping 

Frequency 
Damping 

ratio ratio 

/3 (=0.0 (=0.1 (=0.2 /3 (=0.0 (=0.1 (=0.2 

2 0.67 0.64 0.59 4.2 0.94 0.92 0.88 
2.2 0.74 0.72 0.66 4.4 0.95 0.93 0.89 
2.4 0.79 0.77 0.71 4.6 0.95 0.93 0.9 
2.6 0.83 0.81 0.75 4.8 0.95 0.94 0.9 
2.8 0.85 0.83 0.78 5 0.96 0.94 0.91 
3 0.88 0.85 0.81 5.2 0.96 0.94 0.91 

3.2 0.89 0.87 0.83 5.4 0.96 0.95 0.92 
3.4 0.91 0.89 0.84 5.6 0.97 0.95 0.92 
3.6 0.92 0.9 0.85 5.8 0.97 0.95 0.92 
3.8 0.93 0.91 0.87 6 0.97 0.96 0.93 
4 0.93 0.91 0.87 

Substituting equation 4.1-4 in equation 4.1-7, we get: 

~ = (1-17/) =[1 ~1+(2P;)' 1 
~(1- /3

2 Y + (2/3 (f 
(4.1-8) 

Plot of equation (4.1-8) is given in Figure 4.1-3. 

Isolation efficiency values for frequency ratio p ~ 2 are tabulated and given in Table 4.1-1 for 

different values of isolator damping. 

From the Figure 4. I -2 and Figure 4. I -3, following observations are made: 

i) Transmissibility Ratio TR is less than unity i.e. TR < I only for frequency ratio 

greater than .fi i.e. /3 >.fi 
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Vibration Isolation 4-7 

ii) For frequency ratio greater than.fi . TR decreases with decrease in damping value. 
In other words, TR is lower for zero damping compared to 10% damping Le. 
damping is not desirable for Isolation. 

1.50 
~=O.5 (,=0.2 

1.00 t 
8 -x 
~ 

0.50 ~=O.8 

1 0.00 
4 5 

u 
I£: 
J:t.l -0.50 
.g 
i -1.00 -

-1.50 

-2.00 
Frequency Ratio 13 --+ 

Figure 4.1-3 Isolation Efficiency TJ vs. Frequency Ratio p for different 
Damping Values of ~ 

o o .... 

1. ----------~-----------~----------f----------

I I 

I 
I 
I 
I 

x 0.95 
~ 

I I 
- - - - - - - - - - , - - - - - - - - - - -1- - -

(,=0.1 

i 
~ 
§ 
'p 

] 

0.9 
I 

I I I 

____ : _____ ~_=: 9:.2_:_ - - - - - - - - --: 
I I I 0.85 - - - - - - - -

I I 
I 
I 
I 

0.8:+---~~--~--------_T----------r'--------~ 
2 3 4 

Frequency Ratio 13 
5 6 

Figure 4.1-4 Isolation Efficiency TJ > 80% vs. Frequency Ratio p > 2 
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4-8 Vibration Isolation 

4.4 ISOLATION REQUIREMENTS 

Generally speaking, for machine foundation applications, one would be interested in isolation 
above 85 % otherwise the very purpose of isolation gets defeated. In view of this, let us view the 
isolation plot for 17 > 80 %, which obviously means fJ > 2 as shown in Figure 4.1-4. It is noticed 

from the plot that even for zero damping it requires fJ = 3 for 17 = 88 % and fJ = 5 for '7 = 96 % . It 

gives an impression that one can achieve as high isolation as desired by just increasing frequency 
ratio. In reality, this impression, however, does not hold any ground. It is evident from Figure 4.1-3 
that there is hardly any appreciable gain in 17 for fJ > 6 which corresponds to '7 = 97 % . 

This implies that one can at best target for isolation efficiency of about '7 = 97 % knowing that 

presence of damping in isolators, if any, shall reflect in reduction of '7 . 

.... 
] 
0 2 
~ 

0 
0 10 20 30 40 50 

Static Deflection ofIsolator 0 - mm 

Figure 4.1-5 Isolator system frequency fvs. static deflection of isolator 
unit cS 

Let us examine a few more aspects related to this issue 

• It is obvious that higher the 17, higher shall be fJ and lower shall be the frequency of 

isolation system p (p = OJ/ fJ ). 
• It is also known that lower the p, lower shall be stiffness of the isolation system k and 

this lower stiffuess would result in higher static deflection 0 under self-weight of the 
system. 

We know that 
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Vibration Isolation 4-9 

This gives p = ~ rad/s; or f = 2~ f-f Hz (4.1-9) 

Plot of equation 4.1-9 is given in Figure 4.1-5. 

4.5 SELECTION OF ISOLATORS 

Consider a machine foundation system on isolators as shown in Figure 4.1-6. Figure shows 
Machine housed on Inertia Block supported by Isolators, which in turn rests on Support System 
(Support Structure/Ground). Let us briefly describe inertia block and isolators. 

Inertia Block: Inertia block, generalIy made of RCC, is provided to support the machine. It is 
made heavy enough (mass 2 to 3 times that of the machine) so as to keep the overall Centroid in 
stable position. It should be rigid enough so as to have its natural frequencies much above machine 
speed and its harmonics. 

Isolators: These are commercialIy available devices (as per required specifications) to be 
installed between inertia block and support system. There are many types of isolators available 
commercially. We limit our discussions to only two types a) Mechanical Isolators (spring type with 
or without damping) and b) Sheet/Pad type isolators (Cork, Rubber sheets etc). 

Machine FE 
Pad type 
Isolator Inertia block 

Support system 
Fr 

;::::===-::===-===-===.---1 F T 

(a) Mechanical Isolators (b) Sheet/pad type Isolators 

Figure 4.1-6 Machine Foundation Isolation System 

Selection of Isolator: It is totalIy dependent on machine excitation frequency, target isolation 
efficiency and overall maSS of machine + mass of inertia block. There are many ways one can 
arrive at the specification for required isolators. One of the selection criteria for a) Mechanical 
isolators and b) Sheet/Pad type isolators is given as under. 

Let us consider machine and isolation block parameters as under: 

Machine mass ml kg 

Isolator Mass m2 kg 

Machine speed (rpm) N rpm 
Excitation Frequency (OJ = 2 7r N /60) rad/sec OJ rad/sec 

Target Transmissibility Ratio TR 
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Target Isolation Efficiency (see equation 4.1-7) 

For this 17, required frequency ratio (From Table 4.1-1) 

Thus, the required frequency of isolation system 

(p = ())I fJ & f = pl2tt) 

For this f , required deflection of isolator (from Figure 4.1-5) 

Select the isolator to match this static deflection 

a) Mechanical isolators (spring damper unit) 

Let the isolator capacity (single isolator) be 
Total mass of machine + isolator (m = ml + m2 ) 

Number of isolators required ( q = mg I R ) 

Vertical stiffness of each isolator (ky = Rio) 
Lateral stiffness (as specified by manufacturer) 

Damping of isolator (as specified by manufacturer) 

b) Sheet! Pad Type isolators (Cork sheets, Rubber pads etc) 

Elastic modulus of sheet isolator 

Area of isolation block in contact with sheet/pad isolator 

Required Thickness of Sheet/Pad isolator (t = E, Ah 0) 
mg 

Here g is in mls2 & 0 is in mm 

17 

fJ 
f 

R 
m 

q 

ky 

kx 

C; 

Vibration Isolation 

Hz 

mm 

N 
kg 

N/mm 

N/mm 

% 

mm 

Design of Vibration Isolation System for Real Life Machines is covered in Chapter 12 

EXAMPLE PROBLEMS 

P 4.1-1 

A Machine having mass of 1000 kg operating at 600 rpm is supported on the Foundation 
resting on the soil. Consider that the machine generates only vertical unbalance force of 500 
N at operating speed, design the isolation system with 90 % isolation efficiency such that 
dyn~mic force of only 50 N (max) gets transferred to the soil. 

Solution: 

Provide inertia block to support the machine. 

Mass of machine 

Assume Mass of inertia block be (twice machine mass) 

1000 kg 

2000 kg 
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Vibration Isolation 

Total Mass 

Operating speed N 

Excitation frequency 

Required Isolation efficiency 90 % 

Assume Isolator damping as 10 % 

From Figure 4.1-4 or Table 4.1-I(for S = 0.1 ) 

Isolator frequency 

Or f= 17.45 =2.78 Hz 
2" 

3000 kg 

600 rpm 

2" N 
OJ = -- = 62.S3 rad/s 

60 

'7 = 0.9 

fJ = 3.6 

62.S3 
P = --::::: 17.45 rad/s 

3.6 

Required isolator deflection ( p ::::: ff ) a::::: 9S1 0 /(17.45)2 ::::: 32.21 mm 

Provide 4 isolators one at each corner underneath inertia block q ::::: 4 

Required capacity of each isolator R::::: mg = 3000x9.S1 = 7357 N 
q 4 

4-11 

Let us assume that nearest available isolator (From manufacturers catalogue) gives isolator of 

capacity of SOOO N and deflection value of 35 mm ± 10% . 

Minimum Deflection 

Maximum Deflection 

amin :::::35-0.lx35=31.5 mm 

amin =35+0.lx35:::::3S.5 mm 

Vertical stiffness of each isolator 

k y(max) = (SOOO 131.5) = 253.97 N/mm = 2.54 x 105 N/m 

ky(min) ::::: (SOOO/3S.5) = 207.79 N/mm = 2.078 x 105 N/m 

With this let us analyse the system. Let us assume that common centroid of machine and inertia 

block lies at center of inertia block. Let us also consider that isolators are placed symmetrically 

around inertia block such that center of stiffness matches well with the center of mass (common 

centroid). 

Let us first consider maximum isolator stiffness: 

Total vertical stiffness (max) 4x2.54x105 =1.016x\06 N/m 
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4-12 Vibration Isolation 

Undamped frequency p= 

Frequency ratio 

For this fJ we get isolation efficiency 

1] = 89% 

TR = (1-1]) = (1-.89) = 0.11 

1.016x \06 /---- = 18.4 rad/s 
3000 

fJ = (J) = 62.83 = 3.41 
p 18.4 

(Figure4.1-4 orTable4.1-1 (=0.1) 

Thus maximum force transmitted to support structure is = O. I I x 500 = 55 N 

Vertical amplitude at machine location 

Ay = 500 6 1 = 0.4615x 10-4 m = 46 microns 
1.016xlO ~(l-(3.41)2)2 +(2x3.41xO.l)2 

Let us first consider minimum isolator stiffuess: 

Total vertical stiffuess (min) 

Undamped frequency p= 

Frequency ratio 

For this fJ we get isolation efficiency 

TR = (1-1]) =(1-.91) = 0.09 

4x2.078x105 =8.312xl05 N/m 

8.312x105 

---- = 16.64 rad/s 
3000 

fJ = (J) = 62.83 = 3.776 
P 16.64 

(Figure4.1-40rTable4.1-1 (=0.1) 

Thus maximum force transmitted to support structure is = 0.09 x 500 = 45 N 

Vertical amplitude at machine location 

A = 500 1 = 4.53x 10-5 m = 45.3 microns 
y 8.312xlO

s ~(l-(3.776)2)2 +(2x3.776xO.I)2 

1] = 91 % 

It is clear that isolation efficiency is approximately 90 % whether we consider higher or lower 

stiffness value. Force transmitted is also close to the requirement. Hence OK. 
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PART - II 

DESIGN PARAMETERS 

5. Design Sub-grade Parameters 
6. Design Machine Parameters 
7. Design Foundation Parameters 
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5 

DESIGN SUBGRADE PARAMETERS 

• Soil Mass participation 
• Embedment Effect 
• Soil damping 
• Dynamic Soil Modulus 
• Coefficient of Sub grade Reaction 
• Design Soil Parameters 
• Equivalent Soil Springs 
• Foundation Supported over Elastic Pad 
• Foundation Supported over a set of springs 
• Foundation Supported over Piles- Equivalent Pile Springs 

Example Problems 
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Design Subgrade Parameters 5-3 

DESIGN SUB GRADE PARAMETERS 

5.1 INTRODUCTION 

Following Foundation Support Systems are commonly employed in practice for supporting 
machines: 

i) Foundation Supported directly over soil 
ii) Foundation Supported over an Elastic Pad 
iii) Foundation Supported over a Set of Springs 
iv) Foundation Supported over Piles 

Equivalent Springs for all the four systems are covered in § 5.5. The first system i.e. Foundation 
Supported directly over soil, is discussed in relatively more detail whereas the rest of the systems 
are discussed briefly. 

Soil system is a complex entity in itself and there are many uncertainties 
associated with it. Only application oriented aspects related to machine 
foundation design are discussed in this Chapter. 

5.2 SOIL ASPECTS INFLUENCING SOIL STRUCTURE INTERACTION 

There are many uncertainties associated with site soil exploration, evaluation of dynamic properties 
and its modeling. Even for static case, modeling of soil, at times, becomes a difficult task. Its 
representation becomes still more difficult for dynamic case, especially for machine foundation 
design as soil structure interaction significantly influences the response of the machine foundation 
system. 

Soil investigation of a site is an essential part of the project. For any site, the dynamic soil data is 
never a unique value. There are various factors that do affect the dynamic soil properties but 
quantification of their influence is rather difficult. At times the dynamic soil parameters of a site 
evaluated by one test agency may be in variance with that of other. Such variations could be on 
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5-4 Design Subgrade Parameters 

account of the method of the test, the quality and level of automation of test equipment, 
interpretation of the results, etc. 

The process of evaluating critical soil properties that influence soil structure interaction is probably 
the most difficult part of the machine foundation design. The significant aspects of soil properties, 
which influence soil structure interaction, are: 

• Energy Transfer Mechanism 
• Soil Mass Participation in Vibration of Foundations 
• Effect of Embedment of Foundation 
• Applicability of Hook's Law to Soil 
• Reduction in Permissible Soil Stress 
• Dynamic Soil Parameters 

It is well founded that for mathematical modeling of any system, assumptions and approximations 
are often made in order to simplify the level of complexity resulting in reduced size of the problem. 
Whereas most of the assumptions made for foundation are generally quantifiable, it is not so with 
those made for the soil. It requires enormous computational effort to quantity these assumptions 
and approximations. In majority of the cases, quantification is not attempted at all. A careful 
investigation of soil characteristics that primarily influence soil structure interaction, therefore, 
becomes essential. These variations themselves occur in a broad band and so is their influence on 
the dynamic response. 

5.2.1 Energy Transfer Mechanism 

The basic principle underlying machine foundation design is that the dynamic forces of machine 
are transmitted to the soil through the foundation in such a way that all kinds of harmful effects are 
eliminated. In other words, the energy content of the dynamic forces is transmitted to the soil 
through the foundation. The energy travels in form of waves in all direction in the soil and gets 
absorbed in the soil itself. If the soil underneath the foundation is not a single layer (but constitutes 
of several layers), part of the energy trom the lower layer will reflect back into the upper layer and 
thereby into the system. 

A typical machine foundation system would mean a machine supported by a foundation block, 
which in tum rests on the soil. The foundation block is generally embedded to a certain depth 
below tree surface of the soil. A realistic soil representation may contain some variation-in the soil 
strata along the depth. A schematic representation of such a system is shown in Figure 5.2-1. Part 
(a) of the figure shows single infinite layer of the soil whereas part (b) shows soil as layered media 
having number of layers (three layers chosen arbitrarily- one layer is considered horizontal and the 
other inclined). 

Under static condition, combined machine and foundation mass exerts pressure on the soil and soil 
in tum deforms. Under dynamic conditions, machine exerts dynamic forces to the soil through the 
foundation and under the influence of these dynamic forces, the foundation interacts with the soil 
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activating dynamic soil structure interaction, which significantly influences the dynamic response 
of machine foundation system. The influence is very predominant for block type of foundations 
whereas it is not so for frame type of foundations. 

Foundation Foundation 

(a) One Soil Layer only (b) Three Soil Layers - Horizontal & Inclined 

Figure 5.2-1 A Schematic Representation of Machine - Foundation on 
Layered Soil Media - T, IT, III Represent Soil Layers 

In reality, there may be many more layers below the foundation that influence the process of energy 
transfer. Such energy transmission takes place by three types of waves namely, Primary Wave or 
Compression wave (P-Wave), Secondary Wave or Shear Waves (S- Wave) and Surface Wave or 
Rayleigh Wave (R-Wave). 

Dynamic Force Dynamic Force 

Surface of Soil 

----------- Infinite Soil Media 
----+------- Soil Layer 

(a) Soil as Single layer (b) Soil as Layered Media 

Figure 5.2-2 Typical Representation of Energy Transmission from Foundation to Soil 

Out of these, Rayleigh waves carry a much larger proportion of the total input energy (say about 60 
% or more) compared to Shear waves and Primary waves. Hence, from the point of view of 
machine foundation design, it is the Rayleigh wave that bears more importance. 
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5-6 Design Subgrade Parameters 

Computation of such energy transfers from the foundation to the soil through layered media 
involving various refractions & reflections is a complex task and its evaluation in true sense is 
not only difficult but at times becomes impossible. 

5.2.2 

In summary, this aspect of soil is not quantifiable from the point of view of 
machine foundation design. 

Soil Mass Participation in Vibration of Foundations 

It is a reality that part of the soil mass vibrates along with foundation vibration. The issues that 
need to be addressed are: 

• What is the extent of soil that vibrates with the foundation? 

• Does the vibrating soil mass depend upon mode of vibration? 
• Does it have any influence on the soil stiffness and damping? 
• Can these aspects be quantified? ., ... and so on. 

Just for the sake of understanding, a schematic representation of soil mass participation along with 
the foundation is shown in Figure 5.2-3. All the shapes shown are arbitrary and carry no relevance 
to any particular type of soil. These are shown only to present the idea. It can be said qualitatively 
that quantum of participating soil mass depends not only on various soil parameters but could also 
depend upon type of dynamic force generated by machine. 

Dynamic Force 

Foundation 

Soil type-A 
Soil mass 

participation 

Dynamic Force 

Foundation 

Soil type - B 

Dynamic Force 

Soil Surface 

,---'----"---1 J. 
Foundation ~ 

Soil type - C 

Figure 5.2-3 Typical Representation of Soil Mass Participation with Foundation 
Vibration for different soil types 
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There are various opinions expressed by different authors regarding the soil mass participation. 
According to some, the mass of soil moving with the foundation varies with the dead load, exciting 
force, base contact area, mode of vibration and the type of soil. As per some other authors, the size 
of soil participating mass is related to bulb shaped stress distribution curve under the effect of 
uniformly distributed load. 

Till date no concrete formulation is available giving quantification of soil mass participation for 
different types of soils and what is lacking is perhaps the validation of the results? It is generally 
the view that soil mass participation will increase the overall effective mass of the machine 
foundation system and thereby tend to reduce the natural frequency. 

Here again, this aspect of soil is also not quantifiable from the point of view 
of machine foundation design. 

For the design purposes, author therefore recommends: 

a) For under-tuned foundations, soil mass participation to be ignored 
b) For over-tuned foundations, the frequency margin to be increased by additional 5% i.e. 

natural frequencies to be kept away from operating speed by 25% instead of normal 20 % 

5.2.3 Effect of Embedment of Foundation 

All machine foundations are invariably embedded partly in to the ground. Many authors have 
studied this effect and have made varying observations. Some have reported that effect of 
embedment causes increase in natural frequency and some have reported that it causes reduction in 
amplitudes. By and large, it has been generally agreed that embedment tends to reduce the 
dynamic amplitudes. The reduction in the amplitudes could either be on account of change in 
stiffness, change in damping, change in soil mass participation or their combinatiori. This aspect 
has also not been quantified for all types of soils. 

Here again, this aspect of soil is also not quantifiable from the point of view 
of machine foundation design. 

For design purposes, author recommends that it will be on the safe side to ignore the embedment 
effect while computing dynamic response. 

5.2.4 Applicability of Hook's Law to Soil 

From theory of elasticity, we know that all homogeneous and isotropic materials follow Hook's 
law i.e. 

Young's modulus of elasticity E = stress = (J' 

strain e 
(5.2-1) 
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Where, 

& 
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is the direct stress (tension/compression) 

is the associated linear strain 

Let us first examine whether soil behaves like an elastic body? In other words, if the soil is to be 
represented as an elastic material, it must obey Hook's law. If it does, it becomes convenient to 
mathematically represent the soil as any other elastic material. 

In this context, it may be noted that Modulus of Elasticity as well as Poisson's Ratio have been 
found to change with normal pressure. Further, certain soil types exhibit large settlements of 
foundations under vibratory loads and in certain cases soils even lose their resistance to shear and 
behave more like liquids. In view of such characteristics, it is difficult to straight away accept the 
soil as an elastic body for all type of soi Is. 

As a general guideline, it is considered good enough to assume that the foundation undergoes 
elastic vibrations as long as the total pressure (including static & dynamic pressure) on the 
soil is lower than its elastic limit. 

5.2.5 Reduction in Permissible Soil Stress 

For the soil to behave as an elastic material, it is necessary that the total pressure (static + dynamic) 
exerted by the foundation on the soil remains within elastic limits. A reasonable margin therefore 
should be kept while assigning bearing capacity to the soil intended to be used for machine 
foundation application. The dynamic pressure produced by machines not only' affects the 
foundation directly under the machine but to other foundations too, which are away from machine, 
as the energy gets transmitted through soil in all directions. 

It is therefore desirable to keep intended margins for even static foundations i.e. foundations for 
static equipment including foundations of the building housing machines etc. 

Generally recommended guidelines for permissible soil pressures for machine foundations and 
buildings/structures housing machine foundations are: 

~ For low rpm machines, no reduction of soil stress is needed i.e. one can go up to 100% of the 
bearing capacity. 

~ For medium rpm machines, reduction factor should be 10% i.e. permissible bearing pressure 
should be limited to 90% of the allowable bearing capacity. 

~ For high rpm machineries, reduction factor should be 20% i.e. permissible bearing pressure 
should be limited to 80% of the allowable bearing capacity. 

~ For machines like crushers & hammers producing impact loads, the reduction factor should be 
30 % to 50 % i.e. permissible bearing pressure shall be 70% to 50% of the bearing capacity. 
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5.2.6 Damping in Soil 

Damping is an inherent property of soil and its influence on Forced Vibration Response is 
significant but during resonance or near resonance conditions. Different soils exhibit different 
damping properties depending upon their soil composition and other characteristic parameters. In 
case of embedded foundations, the depth of embedment also influences damping properties. 

Soil Damping comprises of a) Geometrical Damping and b) Material Damping. Whereas 
Geometrical Damping represents energy radiated away from the foundation, the Material Damping 
represents the energy lost within the soil due to Hysteresis effects. In the context of application to 
machine foundation design, the contribution of geometrical damping to Rocking modes of 
vibration has been reported to be of low order compared to Translational and Torsional modes of 
vibration. 

Damping in the soil has been observed to be both strain and frequency dependent. Same soil 
exhibits different damping characteristics at different strain levels and similar is the variation for 
the frequency of excitation. In other words, soil damping not only depends upon 
stress/strain/contact pressure distribution but also on frequency of vibration. Representation of 
frequency dependant soil damping has not found appropriate place in Design Industry for Real 
Life Design Problems. On the other hand, representatkm in form of Equivalent Viscous 
Damping has found larger acceptability. 

It is to be remembered that damping plays role only dttring resonance. If one is able to avoid 
resonance of foundation with the machine excitation frequencies at the design stage itself, the 
significance of damping could be felt only during Transient Resonance. 

In author's opinion, considering strain and frequency dependent geometrical/radiation damping, as 
design office practice, is not only difficult but inconvenient too. The commonly available 
mathematical tools with industry in general are not geared to accommodate this type of 
damping. Use of high-end analytical tools, however, is not recommended for design purposes in 
view of tight project schedules. 

In the absence of any specified data for damping value of a site, the damping coefficient equal to 8 
to 10% i.e. C; = 0.08 to 0.1 could safely be considered for computing response at resonance. 

5.3 DYNAMIC SOIL PARAMETERS 

The Basic Dynamic Soil Properties (Dynamic Soil Modulus) that are required for machine 
foundation design are Dynamic Shear Modulus G /Elastic Modulus E , Poisson's Ratio v, Damping 
Constant C; and Mass Density p . 
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In addition, evaluation of Coefficients of Subgrade Reaction viz. Coefficient of Uniform 
Compression Cu , Coefficient of Uniform Shear C, , Coefficient of Non-Uniform Compression 

C¢ & Coefficient of Non-Uniform Shear CV1 for each site is also recommended. 

5.3.1 Dynamic Soil Modulus 

From theory of elasticity, we know that the ratio of stress to strain for any elastic material is called 
its modulus. Ratio of normal stress to normal strain is termed as Elastic Modulus' E ' and ratio of 
shear stress to shear strain is termed as Shear Modulus G. 

We can write this as: 
Nomal Stress (J" 

E=-----
Normal Strain E: 

G = Shear Stress =!... 
ShearStrain r 

We also know from theory of elasticity that: 

G= E 
2(1 + v) 

Here II is the Poisson's Ratio 

For a given soil strata, these properties are determined using either laboratory or field tests. 

From theory of wave propagation, we know that 

2 G 
VR =-

P 

(5.3-1 ) 

(5.3-2) 

(5.3-3) 

(5.3-4) 

Here V, re~resents Shear Wave Velocity, Vn represents Rayleigh Wave Velocity & Vc represents 

Compression Wave Velocity and p represents Mass density. These velocities, for a site, are 

evaluated using laboratory or field test methods. The commonly employed laboratory and field test 
methods are: 

Laboratory methods: 
~ Resonant Column Test 
~ Cyclic Simple Shear Test 
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~ Cyclic Torsional simple Shear 
~ Cyclic Triaxial Compression Test 

Field methods: 
~ Cross- Borehole Wave Propagation Test 
~ Up-Hole or Down-Hole Wave Propagation Test 
~ Surface Wave Propagation Test 

5-11 

Only application oriented aspects of dynamic soil modulus are discussed here. For details of the 
test methods, readers are advised to refer applicable codes of practices and standard text 
bookslreference books on this subject. Having determined these velocities with the help of one or 
more of these tests, E & G are computed as per above equation 5.3-4 and Poisson's Ratio v is 

computed using equation 5.3-3. 

It may be noted that these values of E & G are applicable at the Overburden-Pressure and Shear 
Strain Levels corresponding to respective test methods. For the design purposes, these values are 
modified for Overburden Pressure and Shear Strain Level corresponding to the actual 
foundation (See § 5.4). 

5.3.2 Coefficients of Subgrade Reaction 

Coefficient of Subgrade Reaction, in a specified deformation mode, is defined as the ratio of the 
applied pressure to the induced deformation in that deformation mode. 

z 

y -YT 
H 

1 

/-----------------~~X 

(a) Foundation Block 

~x 
z 

(b) Six DOF - Three translation x, y, z along X, Y & Z 
axes & three rotations e, \1', 4> about X, Y & Z axes 

Figure 5.3-1 Degree of freedom (DOF's) ofa Typical Foundation Block 
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Consider a foundation block resting on the soil as shown in Figure 5.3-1 (a). The six deformation 
modes of the block represent six degrees of freedom of the foundation i.e., the block exhibit six 
deformations namely three translations x, y, z and three rotations e, 'I' & ¢ as shown in Figure 

5.3-1 (b). 

Here, vertical deformation y represents uniform compression of the soil along Y-axis, lateral 
translation x & z represent uniform shear of the soil along X & Z axes respectively, rotation 
e & ¢ represent rocking about X & Z axes respectively causing non-uniform compression of the 

soil and rotation 'I' represents rotation about Y-axis causing non-uniform shear of the soil. 

Thus in effect, there are only Four Independent Soil Deformation Modes namely: 

i) Uniform Compression 
ii) Uniform Shear 
iii) Non-uniform Compression 
iv) Non-uniform Shear 

Thus there will be 4 Coefficients of·Subgrade Reaction each related to the deformation mode as 
given above. These Coefficients are termed as: 

~ Cu Coefficient of Uniform Compression 

~ C, Coefficient of Uniform Shear 

~ C~ Coefficient of Non-Uniform Compression & 

~ Cw Coefficient of Non-Uniform Shear 

Let us first understand evaluation of Coefficient of Uniform Compression and thereafter we shall 
discuss its correlation with other Coefficients as well as with Dynamic Soil Modulus. 

5.3.2.1 Coefficient of Uniform Compression Cu 

For a specified deformation mode, Coefficient of Subgrade Reaction is defined as the ratio of the 
pressure to the deformation. Thus Coefficient of Uniform Compression Cu becomes ratio of 

pressure (vertical pressure causing compression) to the corresponding vertical (compressive) 
deformation. 

Consider a foundation block, as shown in Figure 5.3-2, having base contact area A in X-Z Plane. 
Consider that the block rests over the soil and a Compressive Force Fy is applied to the block along 

Y -direction. 
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YA~ 

------~------
Foundation 

Block 
)« ---------- X< x ~ 
5X 8< xrY 

. xxx 
x Soil :x 

:">< .. x 
Soil under Unifonn Compression 

z 

Figure 5.3-2 Force Fy Applied to the Foundation Block Resting over the Soil 

Uniform Pressure Py developed in the soil is given as 

Consider that this pressure causes uniform compression y to the soil. The Coefficient of Uniform 

Compression eu is therefore given as ratio of pressure P y to deformation y . This gives: 

Fy 

e
u

:!!.!...: A :Fy 
y y Ay 

This is how we understand Coefficient of Uniform Compression ell. 

(5.3-5) 

Methods of Evaluation: Various jtteld and -laboratory test methods are available for evaluation 
ofeu • Designers may choose any of the method for evaluation ofeu but author, however, prefers 

use of field tests. Following field tests are normally recommended for evaluation of Coefficient of 
Uniform Compression: 

5.3.2.1.1 Cyclic Plate Load Test 

This test is based on the elastic settlement of a test plate under the influence of uniform loading 
intensity. For details of test set-up and test method, readers are requested to refer to relevant books 
on soil dynamics and applicable codes. The basic steps involved (listed for reference) are as under: 

i. A pit is excavated at the desired location up to the depth at which the soil properties are to be 
evaluated. The pit dimensions ;are oot less than 5 times the width of the plate. 
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ii. A plate (of specified dimension and thickness) is placed in the pit. 
iii. First incremental static load is applied to the plate. The load intensity is maintained constant 

till the rate of settlement becomes negligible. The associated settlement for the load intensity 
is recorded. 

iv. The static load is totally removed (after deformation is stabilized). 
v. The next incremental load is applied, load intensity is maintained constant till the rate of 

settlement becomes negligible and the settlement recorded. 
vi. The entire procedure (loading, unloading and incremental re-Ioading) is repeated till 

estimated ultimate load is reached. 
vii. Ratio of load intensity (pressure) to elastic settlement (for each load) gives Coefficient of 

Uniform Compression. 

Computatio!1 of Coefficient of Elastic Uniform Compression 

a. Depth of pit D m 

b. Size of the plate Ap m2 

c. Loading intensity (pressure) Pr kN/m2 

d. Total settlement for the loading intensity S[ m 

e. Settlement after removal of load Sp m 

f. Elastic Settlement Se = S[ -Sp m 

g. Coefficient of Elastic Uniform Compression of soil elf 

kN/m 3 (5.3-6) 

The value of Cu thus evaluated is applicable for Area of the foundation equal to Area of the Plate 

A p and the corresponding Overburden Pressure. The overburden pressure at the level of the test 

plate is taken as the pressure corresponding to the depth equal to depth of the test plate+ half the 
width of the plate. Tltis is as recommended by tlte books giving test procedures for tlte Cyclic 
Plate Load Test. 

For a given foundation, the value of Cu is to be modified for actual Area of the Foundation and 

corresponding Overburden Pressure (See § 5.4). 

5.3.2.1.2 Vertical Resonance Test on the Foundation Test Block 

This test is based on the resonance of the test block excited by an oscillator producing only vertical 
dynamic force. For details of test set-up and test method, readers are requested to refer to relevant 
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books on soil dynamics and applicable codes. The ,basic steps involved (listed for reference) are as 
under: 

I. A pit is excavated at the desired location up to the depth at which the soil properties are 
to be evaluated 

ii. A RCC block is cast in the pit. Pit dimensions should be such that there is a clear gap of 
minimum I m all around the block. Desired anchor bolts, to hold the oscillator on top of 
the block, are placed in position during casting of the block. 

111. The oscillator is mounted over the block and held down with the help of anchor bolts. 
(The Oscillator must be placed centrally over the block i.e. CG of the oscillator must lie 
on the vertiCal line passing through CG of the block). The oscillator should be such that 
it produces only vertical excitations. 

iv. Two transducers (acceleration/ displacement) pick-ups are mounted on the top of the 
block to record vertical oscillations of the block. 

v. A known eccentricity is set for the eccentric masses of the oscillator so as to produce a 
known vertical dynamic force as function of frequency. 

VI. The oscillator frequency is increased in steps from the initial value and swept through a 
range (from minimum of 1 Hz. to maximum operating frequency of the oscillator). 

vii. The vertical amplitude is measured at each speed of operation. 
viii. The entire procedure is repeated for another set of eccentricity/forces. 

Computation of Coefficient of Elastic Uniform Compression 

a. Mass of the test block 

b. Mass of oscillator 

c. Total Mass 

kg 

kg 

kg 

d. Base contact area of the block with soil Ab m 2 

e. Resonant frequency observed Ib Hz 

f. Coeff. of Elastic Uniform Compression of soil Cu N/m 3 

g. Stiffness of soil k, = C u x Ab N / m 

h. Natural Frequency of the block /" = _1_x (k; "t" xA,) H, 
21f V-;;; m 

This is nothing but the resonant frequency observed i.e. Ih = In 

This gives 

Rearranging terms, we get Coefficient of Elastic Uniform Compression Cu 

N/m 3 
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Or kN/m 3 (5.3-7) 

The value of C u thus evaluated is applicable for Area of the foundation equal to ' Ab ' and the 

corresponding Overburden Pressure which is taken as equal to the depth of the test block + half the 
width of the block. 

For a given foundation, the value of C u is to be modified for actual Area of the Foundation and 

corresponding Overburden Pressure (See § 5.4). 

(Justfor i1iformation, reference is made to Indian standard code of practice IS 5249 that gives test 
procedure for evaluation of C u) 

5.3.2.1.3 Correlation with Soil Modulus E, G & v 

Qualitative assessments of these variations have been reported in the literature by many authors but 
the quantification has been restricted to Empirical Relations only. The empirical relationship 
presented by Barkan (1962) is considered most appropriate one and practically every other author 
refers to it till date. The expression (Barkan -1962) giving relationship of Cu with E, G & v is 

given as: 

E I 
C = 1.13 r,----n r: 

u \1- v- )" A 
(5.3-8) 

Here A is the area of the foundation, E is the Elastic Modulus of the soil and v is the Poisson's 
Ratio of the soil. 

Substituting A = 1f ro 2 
, where ro represents the radius of equivalent circular plate and G = E 

2(1 + v) 

(see equation 5.3-3), equation 5.3-8 becomes: 

(5.3-9) 

Though equations 5.3-8 & 5.3-9 are for circular footing, these have been considered (as reported) 
applicable for rectangular footings as well. . 
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It is seen from equations 5.3-8 & 5.3-9 that Cu not only depends upon Soil Modulus 

E & v (orG & v) but also depends upon Base Contact Area of the foundation. In other words, 

Foundation Shape and Size has significant effect on the Coefficient of Uniform 

Compression Cu' 

5.3.2.2 Coefficient of Uniform Shear of the Soil- C" 

For understanding C", consider that a shear force Fx is applied to the block (see Figure 5.3-3) 

along X-direction. 

Uniform Shear stress p x developed in the soil is given as 

y 

z 

Foundation 
Block 

x 

Soil under Uniform Shear 

Figure 5.3-3 Force Fx Applied to the Foundation Block Resting over the Soil 

Consider that this shear stress produces uniform shear deformation x of the soil. The ratio of the 
pressure (shear stress) to the deformation therefore gives Coefficient of Subgrade Reaction in 
Uniform Shear. This is also termed as Coefficient of Uniform Shear Cr. Thus we can write: 

C == Px == Fx ..!.. 
" x A x 

(5.3-10) 

For coefficient of uniform shear along Z, repladng x by z in equation 5.3-10, we get 
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(5.3-lOa) 

Evaluation of C r may be done using field test methods. The literature review indicates that the 

work presented by Barkan (1962) giving correlation of C r' C t/J' and ell' with C u is generally 

accepted by majority of the authors. Correlation of Cr with Cu is given as: 

(5.3-11) 

5.3.2.3 Coefficient of Non-Uniform Compression of Soil- C t/J 

For understanding C t/J' consider that a Moment M ¢ is applied to the block about Z-direction (see 

Figure 5.3-4). 

Let the Moment of Inertia of the base area of the block about Z-axis be 1 zz . This moment causes 

rotation t/J of the block about Z-axis. Due to this rotation soil experiences non-uniform vertical 

pressure underneath the base of the block. This rotation also causes soil to undergo non-uniform 
vertical deformation (termed as non-uniform compression) under the base of the block. 

Vertical Pressure Py developed at a distance x from center is given as 

M 
P =_¢ x 

y lzz 

Vertical deformation y (compression/tension) at distance x from center is y=xt/J 

The ratio of the pressure to the deformation therefore gives Coefficient of Subgrade Reaction in 
non-uniform compression. This is also termed as Coefficient of Non-Uniform Compression C t/J. 

Thus we can write: 

(5.3-12) 
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y 

z 

Foundation 
Block 

Soil under Non-Uniform Compression 

Figure 5.3-4 Moment Mq. Applied about Z axis to the Foundation Block Resting 

over the Soil 

5-19 

For rocking mode about -X, substitute e in place of ¢ and I zz by I xx in equation 5.3-12, we get 

(5.3-12a) 

Though desirable, the evaluation of C ¢ using dynamic test setup has been found to be difficult. In 

the absence of the test, it may be evaluated based on the Cu using Barkan's correlation: 

C¢ Co 
-=--=2.0 
Cu C" 

(5.3-13) 

5.3.2.4 Coefficient of Non-Uniform Shear of the Soil - CIf 

For understanding C'I" consider that a Moment M'If is applied to the block (see Figure 5.3-5) in 

Z-X Plane about Y-axis. 

This moment causes rotation lfI of the block about Y-axis. This rotation generates non-uniform 

shear in the soil underneath the base of the block and causes soil to undergo non-uniform shear 
deformation underneath the base of the block. 
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y 

~--------------------~x 

z 
Soil under Non-Unifonn Shear 

Figure 5.3-5 Moment M'l' Applied about Y axis to the Foundation 

Block Resting over the Soil 

Let the Moment of Inertia of the base area of the block about Y-axis be I yy. Shear pressure (Shear 

Stress) PVIf developed at a radius r from center is given as 

M", 
P",r =--r 

lyy 

Shear deformation at distance r from center is r Iff 

The ratio of the shear stress to the shear deformation therefore gives Coeftkient of &ibgrade 
Reaction in non-uniform shear. This is also termed as Coefficient of Non-Uniform Shear Clf . 

Thus we can write: 

(5.3-14) 

Evaluation of C", using dynamic test setup is considered difficult. It is recommended that to use 

Barkan's correlation for its determination, as given below: 

(5.3-15) 
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5.4 DESIGN SOIL PARAMETERS 

So far we have discussed evaluation of Dynamic Soil Parameters. For a given machine foundation, 
these Dynamic Soil Parameters need to be converted to Design Soil Parameters. 

For a project of reasonable magnitude, it is common that machines are located spread over the 
entire area of the project and their foundation depth may also vary depending upon machine type 
and size. Considering same value of E , G & v and C u' C ¢, C T' C IjI for all foundation sizes and 

all depths obviously is not the right approach. Design Soil Parameters thus are different from 
Dynamic Soil Parameters and must account for such variations namely foundation size, foundation 
depth, etc. 

Consider two similar machines founded at two different levels at the same site. The question 
arises whether it would be appropriate to use same dynamic soil properties for both the machines? 
Obvious answer would be 'no'. Similarly if the two different machines founded at the same level 
at the same site have different base contact area, it may also not be appropriate to use same 
dynamic soil properties for both these machines. Similar is the case with Machines exerting 
different pressures on the soil i.e. static stress or overburden pressure. Thus the dynamic soil 
properties need to be modified for each such effect. 

For design offJee practices, these effects are generalized as: 

i) 
ii) 

Effect due to Static stress level or Overburden Pressure 
Effect due to Base Contact Area 

The evaluated site soil properties, therefore, need to be suitably modified for a particular machine 
foundation. Thus, for each foundation, the evaluated site soil parameters are to be converted to 
design soil parameters accounting for these effects. These modified soil parameters are termed as 
Design Soil Parameters. 

Though the basic dynamic soil parameters required for design of machine foundation are E, G, 
C ,C A., C ,C ,the discussion here is restricted to only two parameters namely (1) Dynamic u 'I' T IjI 

shear modulus G and (2) Coefficient of Uniform Compression Cu as other parameters are inter-

related as given above in § 5.3. 

The recommended Effective depth for Computing Static Stress (Overburden Pressure) for 
different test method is as under: 

i) For Cyclic Plate Load Test Method: Effective depth for computing static stress is 
considered equal to founding depth of the plate + half the width of the plate 

ii) For Vertical Resonance Test Method: Effective depth is considered equal to 
founding depth of the test block + half the width of the test block 
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iii) For Wave Propagation Test Method: 
distance between geo-phones 

Effective depth is considered equal to half the 

For the sake of clarity, let us use suffix '01' for the Site Evaluated Parameters and suffix '02' for 
the Design Parameters. Thus Site and Design Parameters are referred as: 

Site Parameters: 

GOI Represents Site Evaluated Dynamic Shear Modulus of the soil 

EOl Represents Site Evaluated Dynamic Elastic Modulus of the soil 

CuO ) Represents Site Evaluated Coefficient of Uniform Compression of the soil 

0'01 Represents Static Stress or Overburden Pressure for site test conditions 

YOI Represents Shear Strain Value corresponding to site test method 

AOl Represents Base Contact Area corresponding to site test method 

Design Parameters: 

E02 Represents Design Dynamic Elastic Modulus of the soil 

G02 Represents Design Dynamic Shear Modulus of the soil 

CU02 Represents Design Coefficient of Uniform Compression of the soil 

0'02 Represents Design Static Stress or Overburden Pressure for the foundation 

Y02 Represents Design Shear Strain Value for the foundation 

A02 Represents Design Base Contact Area for the foundation 

Many authors have discussed influence of the above effects on the design soil parameters and 
suggested expressions for accounting for these effects. The commonly adopted and recommended 
correlations between Site Parameters and Design Parameters (applicable to machine foundation) 
are listed in § 5.4.1, § 5.4.2 & §5.4.3. 

5.4.1 Variation with respect to Static Stress or Overburden Pressure 

Guidelines available in the literature are for variation of Dynamic Shear Modulus with respect to 
Mean Effective Confining Pressure. Author feels that for machine foundation application, it is 
considered good enough to use Static Stress (Overburden Pressure) instead of Mean Effective 
Confining Pressure for determining variation of Dynamic Shear Modulus. Variation with 
respect to static stress may be computed using the same correlation as for Mean Effective 
Confining Pressure. The relationship is given as under: 
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(S.4-1) 

Same correlation could be used for evaluating influence of Static Stress (Overburden Pressure) on 
Coefficient of Uniform Compression. In authors opinion it would not lead to any appreciable 
error and the converted data could be used with good level of confidence. 

(S.4-la) 

5.4.2 Variation with respect to Base Contact Area of Foundation 

The only acceptable guideline available in the literature for computing variation of Coefficient of 
Uniform Compression with respect to Base Contact Area of Foundation is that given by 
Barkan. It is recommended that variation of C"02 be considered for base area up to 10 m2 and no 

variation be considered for area greater than 10 m2
. The correlation (After Barkan -1962) is given 

as: 

C - C AOI 
( )

0.5 

U02 UOI A
02 

(S.4-2) 

For A02 > 10 m2 
C"02 = C U02 for 10 m 2 (S.4-3) 

5.5 EQUIVALENT SPRINGS 

In practice, following three types of sub-grade systems are commonly employed for supporting 
machine foundations. It is necessary to represent these sub-grade systems in terms of Equivalent 
Springs: 

i. Foundation Supported directly over soil 
ii. Foundation Supported over an Elastic Pad 

iii. Foundation Supported over Piles 

5.5.1 Foundation Supported Directly over Soil 

For analysis and design of Machine Foundation, which is a 3-D system, soil is represented as 
Equivalent Soil Springs attached to the foundation in each of the six OOF. These equivalent soil 
springs are evaluated using Design Soil Parameters viz. Design Shear Modulus, Design 
Coefficient of Uniform Compression, Poisson's Ratio etc. (as in § 5.4). 
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For evaluation of equivalent soil springs, various soil models have been proposed by various 
authors but the two models, (i) Elastic Half Space model and (ii) Coefficients of Sub-grade 
Reaction are considered generally acceptable in the industry. Evaluation of Equivalent Soil 
Springs using these two models is given as under: 

5.5.1.1 Equivalent Soil Springs using Elastic Half Space Model 

The model is based on the Dynamic Response of an Isolated Rigid Circular Disk resting on the 
Surface of the Infinite Soil Medium. The infinite soil medium, termed as Elastic Half Space, is 
considered as Elastic, Homogeneous and Isotropic, whose elastic properties are defined by Shear 
Modulus G and Poisson's Ratio v. Equivalent Soil Springs and Damping Constants (in each of 

the six DOF) are evaluated using Design Soil Parameters. 

Rigid Rectangular Footings: The mathematical expressions for evaluation of 
Equivalent Soil Springs and associated Damping Constants have been taken from the 
following references and are reproduced here. 

(i) Whitman R.V., and Richart F.E., Jr., "Design Procedures for Dynamically 
Loaded Foundations," Journal of the Soil Mechanics and Foundation 
Division, ASCE Vol. 93, No. SM 6, November 1967 

(ii) Richart F.E., Jr., and Whitman R.V., "Comparison of Footing Vibration 
Tests with Theory," Journal of the Soil Mechanics and Foundation Division, 
ASCE Vol. 93, No. SM 6, November 1967 

(iii) "Vibrations of Soils and Foundations" by Richart, Hall and Woods, Prentice 
Hall Incorporated, Englewood Cliffs, New Jersey 
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Figure 5.5-1 Coefficients Px' f3z & Pol> for Rectangular Footings 

(After Whitman & Richart, Jr.) 
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Representing L as the length of the foundation along Z-axis (axis of rotation), B as width of the 
foundation along X-axis (perpendicular to axis of rotation) and H as the height of the foundation 
(along V-direction i.e. Vertical direction), the expressions for Equivalent Spring Constants and 
Damping Constants in each DOF (vibration mode) are given as under. For B/L or LIB ratio of the 
foundation, coefficients Px,Py,Pz,/Je &Pq, are as given in Figure 5.5-1. The symbols and 

notations have appropriately been changed to be in line with those given in this Book. 

Equi¥alent Soil Springs and Damping Constants: 

i) Translational Mode (along X) 

Equivalent Spring Constant 
(L>03 

kx = fix x4 x (1+v)xGxV4-
4

-

Equivalent Radius ro = lL: B); Mass Ratio b = (I-v)~ 
x 4 3 

Ps ro 

Damping Constant ( = 0.288 
x A 

ii) Vertical Mode of Vibration (along Y) 

Equivalent Spring Constant ky =fiy x-( G )x.JLXB 
I-v 

Equivalent Radius P¥IXB . (I-v) m 
ra = --; Mass RatIO by = ----3 

JT 4 p" ra 

Damping Constant ( = 0.42S 
Y.jb; 

iii) Translational Mode (along Z) 

Equivalent Spring Constant F¥XB 
k. = p. x4x(1 +v)xG x --• • 4 

Equivalent Radius ra = lL: B) ; Mass Ratio b = (I-v) ~ 
Z 4 3 

Ps ra 

(S.S-Ia) 

(S.S-Ib) 

(S.S-Ic) 

(S.S-2a) 

(S.5-2b) 

(S.S-2c) 

(S.S-3a) 

(S.S-3b) 
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Damping Constant 

iv) Rocking Mode (about X) 

Equivalent Spring Constant G 2 
ko = f30 x-( -)x BxL 

I-v 

1/ 

{
BL3}/4 3(I-v))M 

Equivalent Radius ro = -- ; Mass Ratio ho = . .!I10; 

3/T 8 P, ro 

Damping Constant 

v) Torsional mode about Y axis 

Equivalent Spring Constant 

Damping Constant 

vi) Rocking Mode (about Z) 

Equivalent Spring Constant 
G 2 

k¢=f3¢x-(-)XB xL 
I-v 

Equivalent Radius r. = {L B3 }J;;. Mass Ratio b = 3 (I - v)) M !I10Z 

o 3' ¢ 8 5 
/T ~~ 

Damping Constant 

(S.S-3c) 

(S.5-4a) 

(5.S-4b) 

(S.S-4c) 

(S.S-Sa) 

(S.S-Sb) 

(S.S-Sc) 

(S.S-6a) 

(S.S-6b) 

(S.S-6c) 
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5.5.1.2 Equivalent Soil Springs using Coefficients of Subgrade Reaction 

Soil is represented as Equivalent Springs and Dashpots in all six DOFs. The Equivalent Soil 
Springs are represented as function of a) Coefficient of Subgrade Reaction of the soil and b) 
Foundation Geometric Parameters. 

It may be noted that only the corrected values of Coefficients of Subgrade Reaction (Design Soil 
Parameters as in § 5.4) should be used for computing Equivalent Soil Springs. Mathematical 
expressions (After Barkan) for these equivalent springs are given as under: 

a) Soil spring in Lateral X - directions 

Rewriting equation 5.3-10 and rearranging terms, we get 

F. 
k =--'-=C xA 

x x T 

b) Soil Spring in Vertical Y -Direction 

Rewriting equation 5.3-5 and rearranging terms, we get 

Fy 
k)' =-' =C" xA 

y 

c) Soil spring in Lateral Z- direction 

Rewriting equation 5.3-1 Oa and rearranging terms, we get: 

k =Fz=C xA 
Z z T 

d) Soil Spring in rocking () mode (rocking about X-axis) 

Rewriting equation 5.3-12a and rearranging terms, we get 

Me kg =-=Cgx! () xx 

e) Soil Spring in Torsional lfI mode (Rotation about vertical Y-axis) 

Rewriting equation 5.3-14, and rearranging terms, we get 

(5.5-7) 

(5.5-8) 

(5.5-9) 

(5.5-10) 

(5.5-11) 

https://engineersreferencebookspdf.com



5-28 Design Subgrade Parameters 

y 

H 

1 

r-------------------~X 

z (a) Foundation Block 

z 
~x 

A==-LB 
I 3 

Ixx=T2BL 

1 3 
Izz ==-12 L B 

I 2 2 
Iyy = 12 B L (L + B) 

ky 

A · 
k+ k k.~ 
k e 
z 

kx=C'f: xA 

ky==- Cu xA 

kz=C'f: xA 

kO ==- Co xIxx 
kljl==- CljI x Iyy 

k4> ==- C, x lzz 

Three Translations x, y, z & 
Three Rotations e, IV, cI> 

Three Linear and three Rotational Springs 

(b) Deformations along X, Y, Z (c) Springs along DOF's 
and rotations about X, y, Z axes 

Figure 5.5-2 Spring Constants for a Typical Foundation Block in all Six DOF's 

t) Soil Spring in rocking ¢ mode (rocking about Z-axis) 

Rewriting equation 5.3-12 and rearranging terms, we get 

M; 
k", ::::-::::C", x/ 

'I' ¢ 'I' zz 

For a typical foundation block, these Equivalent Soil Springs are shown in Figure 5.5-2. 

5.5.2 Foundation Supported over an Elastic Pad 
/ 

(5.5-12) 

Tliis derivation may be found useful incase the foundation rests directly over elastic pads (Rubber 
pads, Cork Slabs, Isolation pads etc). The elastic pad is mathematically represented as Equivalent 
springs in all six DOFs i.e. Three Translational Springs and Three Rotational springs. 

Consider a Rigid Plate of area A resting on an Elastic Pad of area A and thickness t as shown in 
Figure 5.5.3a and DOFs are as shown in Figure 5.5-3b The elastic pad is mathematically 
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represented as Equivalent springs in all six DOFs i.e. Three Translational Springs along X, Y & Z 
and Three Rotational springs about X, Y & Z. 

Equivalent Spring along Vertical Y direction (In Compression/Tension): 

Consider a vertical force Fy applied on the rigid plate of area A producing uniform vertical 

deformation y in the pad (Figure 5.5-4a). 

Compressive Stress in the elastic pad 

Strain in the elastic pad & = 1:'. 
y t 

Fy 

Elastic Modulus of Pad 
E _ Stress _ O"y _ A _ Fy t 

y - Strain -~ -y- - Ay 

k = Fy = Ey A 
y y 

a) Equivalent Spring along Lateral X & Z directions (In Shear): 

Fy 
0" =­

y A 

(5.5-13) 

Consider a horizontal shear force Fx applied along X direction on the plate of area A as shown in 

Figure 5.5-4b. The force produces shear deformation x along X direction. 

y 

T 
Rigid Plate t 

~ 

r-----------------------~x 

z 
(a) Rigid Plate of Area A over Elastic Pad of 

Area A and thickness t 

y 

z 
Jirx 

Three Translation x, y, z & 
three Rotations 9, 'V,IP 

(b) Defonnations and Rotations 

Figure 5.5-3 A Rigid Plate resting over an Elastic Pad 
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y 

~ 
~~~MT~~~~Y 

/---------------------~X 

z 
(a) Uniform Compression 

y 

/---------------------~X 

z 
(b) Uniform Shear 

z 
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y 
Deformation 

/---------------------~X 
Non - uniform Compression 

(c) Rocking about Z axis 

y 

Plate after 
deformation 

L----------------------l~ X 
Non - uniform Shear 

(d) Torsion about Y axis 

Figure 5.5-4 Rigid Plate Over Elastic Pad (a) Uniform Compression (b) Uniform 
Shear ( c) Rocking about Z axis & (d) Torsion about Y axis 

Shearing Stress developed in the pad 

Here T x represents shear stress on the XZ plane in X direction. 

Shear strain 

Shear Modulus G is the ratio of shear stress to shear strain 

Substituting for G = E and rearranging, we get 
x 2(\+v) 

x 
y =­

x t 
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Lateral Sti ffness k x of Elastic Pad as: k = Fx EA 
x x 2(l+v)t 

(5.5-14) 

Similarly, replacing x with z , we get k = Fz = EA 
z z 2(l+v)t 

(5.5-15) 

(b) Equivalent Spring rocking about X & Z axes (Rotational Stiffness): 

Now consider a moment M ¢ applied at the center of the rigid plate about Z-axis. This causes the 

plate to rotate by angle rjJ about Z-axis passing through center of plate as shown in Figure 5.5-4c. 

Moment generates non-uniform vertical pressure in the pad that varies from zero at the center to its 
maximum value at the ends as shown. 

Vertical stress developed in the pad at a distance 'x' from the center is 

Here 1:z is the moment of inertia of the plate about Z-axis 

Vertical deformation at the same point (i.e. at distance x) is 

Strain at the same point 

y=xrjJ 

M¢ 
-x 

Elastic Modulus E=E'<;={::l 

M 
(j =-¢ x 

y 1zz 

We can represent Rotational Stiffuess k¢ (Rocking about Z-axis) of Elastic Pad as: 

k
' _M¢_E1:z 

¢ -----
rjJ t 

(5.5-16) 

On the similar lines, we can represent Rotational Stiffness ko (Rocking about X-axis) of Elastic 

Pad as: 

(5.5-17) 

Here In is the moment of inertia of the plate about X-axis 
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(c) Equivalent Spring rotating about Y axis (Torsional Stiffness): 

Now consider a moment M'If applied at the center of the rigid plate about Y-axis. This causes the 

plate to rotate by an angle If! about Y-axis passing through center of plate as shown in Fig. 5.5-4d. 

Shear stress developed (in X-Z Plane) at a point at a distance r from the center on the pad due to 
the moment M'If is: 

Here Tr represents shear stress in X-Z plane normal to radius vector r (along rotation about Y axis 

i.e. direction /If and I yy is the polar moment of inertia of the base contact surface of the plate 

about Y-axis passing through center of the pad. 

Rotation of the pad (about Y axis passing through center of the pad) = If! 
Shear displacement (normal to vector r) at the same point is = rlf! 

Thickness of pad = t 

Shear strain at the same point 
rlf! r =­

r t 

M'If --r 

Shear Modulus G is G = G. = Shear Stress T r I yy M VI t 
x • Shear Strain = r: = (r~ ) = I yylf! 

Substituting G = E we get Torsional Stiffness kVI as 
2(1 + v) 

M'If Glyy E lyy 
k'lf =--=--=---

If! t 2(1 + v) t 
(5.5-18) 

5.5.3 Foundation Supported over a set of Springs 

This derivation may be found useful incase the foundation is supported directly 
over a set of springs having vertical and translational stiffness. These springs are 
mathematically represented as Equivalent springs, one along each of the six 
DOFs i.e. Three Translational Springs and Three Rotational springs. 

Consider a foundation block of Length L, width B and Height H supporting a machine of 
mass m. Consider that the foundation is supported over a set of n springs. 
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Consider that there are odd numbers of springs 2 p + I in each row along length and even number 

of springs 2q in each row along width of the foundation. Let the. spacing of springs along length of 

the foundation be a and that along width be b. Consider that each spring has a vertical stiffness 
of kv and horizontal stiffuess of kh . The arrangement is as shown in Figure 5.5-5 

Z 

T 
H 

1 

/ 

Machine 

Foundation Block 

,. L 

I 

e-~~~'--'~~'--'~~'--~ •. -4~~-e~.-~~~.-~-q 

.. - _._ .. _.- _._ .. _._ .. _.- -.-.. -.- _._. 

p r 

I 

I 

i 
i 

Y 
X 

2 

Spring Locations in Plan 

r p 

Figure 5.5-5 Foundation Supported Over a set of Springs 
Springs Spacing along Length a & Number of Springs 2p + 1 
Springs Spacing along width - b & N~ber of Springs 2q 

For the purpose of analysis, these springs need to be mathematically represented as equivalent 
springs one along each of the six DOFs i.e. Three Translational Springs and Three Rotational 
springs. 
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Equivalent Stiffness at CG of Base area of Foundation Block 

Number of springs along Length 

Number of springs along Width 

Total number of springs 

Vertical Stiffness of each spring along Y 

Lateral Stiffness of each spring along X / Z 

Equivalent Translational Stiffness 

2p+1 

2q 

n=(2p+l)x2q 

kl' 

kh 

Equivalent Translational Stiffness is the summation of stiffness of all the springs in respective 

directions. 

Equivalent Vertical Stiffness along Y 

Equivalent Lateral Stiffness along X 

Equivalent Vertical Stiffness along Z 

Equivalent Rotational Stiffness 

ky = nxkv 

kx =nxkh 

kz=nxkh 

Let us now compute Equivalent Rotational Stiffness ke about X, k¢l about Z and k'lf about Y­

axis. 

Equivalent Rocking Stiffness ke about X 

y 

I· L t ·1 
Foundation Block 

ra ra 

r r 

Figure 5.5-6 Rotation about X-axis 
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Consider a moment M (J applied at the CO of the base of the foundation about X-axis. Let the 

resulting rotation of the foundation be S(J . This rotation ofthe foundation block produces vertical 

deflection in each of the spring on either side of the CO. The rotation and the corresponding 
deflection is as shown in Figure 5.5-6 

Consider spring on the LHS of CO 

Distance of rfh row spring from CO 

Rotation of the foundation Block 

The deflection of the spring at the rfh row 

Force developed in the spring 

Resisting Moment developed 

Resisting Moment by the spring at LHS & RHS 

Number of spring in /h row 

Total Resisting Moment developed by rfh row springs 

Total Moment Developed by all the springs 

~p ~p 

Mr = ~)qx2k,,(ra)2SIi =2qx2k"xa2SIi.L(r)2 
r=1 

ra 

2q 

=2qx2k xa2S x p (p+l}(2 p +l)=2qx(2p+l)xk xa 2S x p (p+l) 
I' Ii 6 I' Ii 3 

=k xa2S x p (p+l) 
y Ii 3 

Equating resisting moment with applied moment, we get 

M =k xa2S x p(p+l) 
(J y (J 3 

This gives rotational Stiffness k(J as 

In case number of springs along length is an even number i.e. '2 P " then the stiffuess 

becomes: 

(5.5-19) 
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ko = Mo =k xa2 x(2p+I)(2p-l) (5.5-19a) 
00 y 12 

y 

1+-1---- B --t+--------oI.1 

q 

I 
i 
i 
i 
iM~ o 

(sb-b/2) : 

I 
s 2 

I I 
2 s q 

Figure 5.5-7 Rotation about Z-axis 

Equivalent Rotational Stiffness k; about Z 

Consider a moment M; applied at the CG of the base of the foundation about Z-axis (Figure 5.5-

7). Let the resulting rotation of the foundation be 0;. This rotation of the foundation block 

produces vertical deflection in each of the spring on either side of the CG. 

Consider spring on the LHS of CG 

Distance of i h row spring from CG 

Rotation of the foundation Block 

The deflection of the spring at the i h row 

Force developed in the spring 

Resisting Moment developed at center 

Number of spring in i h row 

(sb-bI2) 

0; 

0" = (sb-bI2)xo; 

Ol'~ = kvo" = kv(sb-bI2)0; 

2x {kv{sb -bI2)o;x {sb-bI2)J 

(2p+l) 
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Total Resisting Moment developed by slh row springs 

OM,. = (2p + l)x 2kv(sb -b/2)2 0; 

Total Moment Developed by all the springs 

~q I=q 

M, = ~::<2p+l)x2kv(sb-b/2)20; =(2p+l)x2kv xb2o;L(s-I/2)2 
1=1 

M, = (2p + l)x2kv xb
2
0, %(S2 -s + 114) = (2p+ l)x 2kv x b

2
0;[%s2 - %(s) + %0 /4)] 

M, = (2p+ l)x2kv x b20, x{ q(q+ 1~2q+ 1) - q(q2+ 1) +~} 

= (2p + 1)x 2kv x b20, x { 2q(2q2 + 3q+ ~);6q(q + 1) + 3q } 

M. = (2p+ l)x2qxkv xb20, x{ (2q+ li~2q-l)} = kyb20,{ (2q+ li~2q-l)} 

Equating resisting moment with applied moment, we get 

M, = ky xb20, x{ (2q+ 1;~2q-l)} 

This gives rotational Stiffness k, as 

k = M, =k Xb 2 X{(2q +1)(2q -l)} 
, 0 y 12 , (5.5-20) 

In case number of springs along width is an odd number i.e. (2q + 1), then the stiffness becomes: 

(5.5-20a) 

Equivalent Torsional Stiffness k", about Y 

Consider a moment M", applied at the CG of the base of the foundation about Y-axis. Let the 

resulting rotation of the foundation be ow. This rotation of the foundation block produces lateral 

'deflection in each of the spring on either side of the CG along normal to the radius vector joining 
spring location to the CG of base area. 
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~ 
b 
1 

._-- _._ . . _._ . . _.-

P 

q 

S 

2 
1 
1 
2 
S 

q 

Deflection of point r, S Force Developed in the spring 

(b) Detail AA 

Figure 5.5-8 Torsion about Y-axis 

Consider spring at location r,s on the LHS of CG as shown in Figure 5.5-8. Let R be the 

distance of this point from CG and consider that this radius vector R makes an angle If! with 

respect to Z-axis. 

Rotation of the foundation Block about CG 

Lateral deflection (normal to radius vector R) of the spring 

Force developed in the spring 

Resisting Moment developed at center 

Total Resisting Moment developed 
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M(r,s) = f fOM(r,S) => 
p q 2 

M(r,.,) = L Lkh xR 0", 
r=-ps=-q 

Distance of rth row spring from CO 

Distance of sth row spring from CO 

This gives 

Substituting in equation (5.5-21), we get 

r=-p s=-q 

ra . 

(sb-b/2) 

R2 = (ra) 2 +(sb-b/2)2 

M(r,s) = f fkh x ((raf +(sb-b/2)2 )0", 
r=-p s=-q 

Solution of this equation yields 

[

{ kha2 x 2 x 2q x,!-P.o.!..(P_+---"1~~(2..!-P_+-"-1)} 

M(r,,) =0'1' + {k
h
b2 X2X(2

P
+l)X( q(q+l~2q+l) 

M =0 [{a2k P(P+I)}+{b2 Xk (2q +I)(2q -I)}] 
(r,s) '" x 3 Z 12 

Here kx =kz =kh x2qx(2p+l) 

We can also get the same solution by considering components offorce in X & Z 
direction and taking moment of these force components about CG and taking 
summation over all the springs. 

Equation (5.5.3-5) gives Torsional Stiffness k", as 

k = M", = M(r,s) =[{a2k P(P+l)}+{b2Xk. (2q +l)(2q -I)}] 
'" 0 0 x 3 • 12. 

'I' 'I' 

In case number of springs along width is also odd number i.e. (2q + 1), then the stiffness 

becomes: 

5-39· 

(5.5-21) 

(5.5-22) 

(5.5-23) 

(5.5-24) 
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(5.5-24a) 

In case number of springs along length is also even number i.e. 2p , then the stiffuess 

becomes: 

k = M'I/ =[{a2k (2P+1)(2P-I)}+{b2Xk (2q +I)(2q -1)}] 
v' is x 12 z 12 

'1/ 

(5.5-24b) 

5.5.4 Foundation Supported over Piles 

For machine foundation application, piles are provided in the following cases: 

i. When soil is weak in bearing capacity to withstand pressures due to both static and 
dynamic loads 

ii. When significant loss of soil strength is postulated under dynamic loads on account of 
critical soil and water table conditions 

iii. When it is required to increase natural frequency of the machine foundation system 
iv. When dynamic amplitudes are required to be reduced 
v. When it is required to stiffen the support system on account of seismic considerations 

In each case selection of pile type, pile size, pile depth, number of piles etc is an involved task and 
is accomplished using standard pile design procedures based on soil data and the load data (both 
dynamic and static loads). In certain cases, selection of pile type, pile size, pile depth, number of 
piles etc becomes a tricky issue and for all practical purposes may tum out to be a difficult task. In 
either case, evaluation of dynamic characteristics of piles is a complex task and suffers with many 
associated uncertainties. 

More often than not, a machine foundation block itself serves as rigid pile cap that connects piles at 
the top. Evaluation of dynamic characteristics of a single pile, in itself, is a difficult task and 
evaluation of dynamic characteristics of a group of piles connected by a rigid pile cap becomes 
complex and calls for many assumptions resulting in added levels of uncertainties. 

Even in current era of advanced technology, most of the authors, who have significantly 
contributed to Pile Supported Machine Foundations, do corroborate that: 

i. Understanding of Dynarnic Behaviour of Group of Piles is still in its Infancy 
ii. Evaluation of dynamic characteristics of piles is a complex task and suffers with many 

associated uncertainties 
iii. As the reliability of dynamic characteristics of group of piles is faced with many 

questions, so shall be the status of computed dynamic response. 
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Regarding evaluation of stiffness and damping of pile-supported foundations, general observations 
by various authors, as reported in the literature, are as under: 

1. Elastic resistance of pile to vertical loads changes with lapse of time i.e. the elastic 
resistance offered by a fresh driven pile to vertical loads is different than the resistance 
offered by it after lapse of some time. 

2. Elastic resistance of pile to vertical loads changes with increase in length of pile. 
3. Elastic resistance of pile to lateral loads primarily depends upon its cross-section and its 

fixation length and any increase in length of pile beyond fixation length has no influence 
on its lateral resistance. The fixation length of a pile is the length of the pile in the soil, 
where it is assumed fixed when subjected to lateral loads. This is generally of the order of 
1 to 1.5 m for all piles -Barkan 1962. 

4. Dynamic stiffness of a single pile is generaIly found to be greater than its static stiffness. 
5. Both stiffuess and damping of pile have been found to be frequency dependent i.e. these 

vary with change in frequency. The reliability of response using frequency independent 
stiffness and damping values, in dynamic domain, would therefore be questionable. 

6. Damping increases with increase in pile length. 
7. Embedment of pile cap results in increased stiffness and damping of the pile group. 

However its quantification is not yet established. 
8. Damping of group of pile is more frequency dependent than that for a single pile. 
9. Dynamic group effect of piles differs considerably from static group effect. 
10. Frequency dependence of stiffness and damping of pile group could safely be ignored for 

translational and rocking modes of vibration. 
11. Rocking and Torsional stiffuess of individual pile could safely be ignored while 

evaluating dynamic response of group of piles. 
12. Elastic resistance of each pile in a group is a function of pile spacing. Inter-influence of 

piles is observed to be quite significant. The elastic resistance of each pile increases with 
the increase in the pile spacing and decreases with the decrease in pile spacing. When the 
pile spacing becomes sufficiently large, the elastic resistance of each pile in a group 
approaches the resistance of a single pile. 

13. The combined stiffuess, for a group of n piles, is not the linear summation of individual 
stiffuess of n piles. 

14. The effective stiffness of a single pile (in a group of piles) is its individual stiffness 
multiplied by an influence factor aej} that depends upon the ratio of pile spacing s to its 

diameterd. 

These common observations lead to the broad conclusions that i) definite gaps exist in 
understanding the dynamic behaviour of a single pile as weIl as group of piles and the ii) Dynamic 
Interaction for group of piles is a very complicated task. 

There is huge amount of work available in the literature that appears to be good for R&D 
purposes and its translation as a design tool is lacking for practical applications in the industry. In 
view of the limitations and associated uncertainties, practicaIly every author suggests that the 
method be used with caution till better design methods are available. It goes without saying that 
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judicious engineering judgment needs to be exercised in accepting the results for practical 
applications. 

In light ofthe above:-

• Author feels challenged in recommending any single approach for dynamic response of 
pile supported machine foundation systems as the reliability of dynamic properties of 
group of piles derived from that of single pile is low. 

• Notwithstanding the above, it is recommended that Elastic Resistance of a Pile, to both 
vertical and lateral loads, must necessarily be determined from pile test. 

• In author's opinion, most of the approaches suggested in the literature are good enough for 
R&D purposes and may not be suitable for industry. 

• The ground reality is that the industry cannot wait till validated solutions are available. 
• It has to continue with the designs with the best available practical approaches/solutions 

such that the machine performance is acceptable, and 
• The designer should be able to complete the task in a specified time schedule with a good 

level of confidence in his design. 

Author, based on his long field experience, however, suggests the following design approach for 
evaluating equivalent springs for pile-supported foundations: 

5.5.4.1 Equivalent Pile Springs 

Consider a pile-supported foundation having length L ,width B and depth H. It is implied that 
soil exploration for the site has been done. Based on the load data and soil data for the site, design 
of the piles for the foundation is done using normal pile design procedures/methods for static loads. 
This provides data regarding pile type, pile diameter d , pile length I , number of piles n & pile 
spacing s . Piles are so placed that their spacing s along length and width of the foundation remains 
same. It is strongly recommended that vertical pile stiffuess k pv and lateral pile stiffuess k ph of 

each pile be evaluated from pile test. 

Effective pile stiffness: Let us consider that the combined stiffness for a group of n piles is the 
linear summation of effective pile stiffness of each pile in the pile group, where the effective pile 
stiffuess is considered dependant upon ratio of pile spacing to its diameter and is given as under: 

Effective vertical stiffuess kv of each pile 

Effective lateral stiffuess kh of each pile 

(5.5-25) 

(5.5-26) 

Here aejr is the influence coef~cient that depends upon ratio of pile spacing to its diameter 
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Regarding influence coefficient, various relationships given in the literature by many authors have 
been reviewed. It is noted that there is no consistency and each of the relationship is in variance 
with the other. This keeps the designers in dilemma. In view of this, an empirical equation is 
proposed for evaluating influence coefficient aejj. Here influence coefficient is defined as a 

function of s/ d , where s is the pile spacing and d is the pile diameter. 

( )

0.65 

aejJ = 0.212 ~ (5.5-27) 

This empirical relationship provides a fairly good estimate of influence coefficient of a single pile. 

The equation gives influence coefficients for 2.0 < ( ; ) < 10.0 as: 

It is noted that these numbers are reasonably in good agreement with those given by Barkan, which 
are derived based on experimental observations. Comparison is listed in Table 5.5-1. 

Table 5.5-1 Influence Coefficients for Piles 

{ 
Pile Spacing (!...)} 

Pile Diameter d 

0.33 
3 
4 
4.5 
5 
6 
10 

Overall Stiffness of group of piles: 

{ 

. aetf } 

Coefficient as Proposed 

0.43 
0.52 
0.56 
0.60 
0.68 
0.95 

{coeffi~nt After Barkan} 

Table 1-14 pp 48 

0.41 

0.64 

0.65 

Using the same approach as given in § 5.5.3 for Foundation Supported on Set of springs, let us 
develop the formulations for the pile group. 

Linear Stiffness 

Equivalent Vertical Stiffness along Y 

Taking summation of effective vertical stiffness of each pile over all the piles, we get 

(5.5-28) 
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Here, kv is the Effective Vertical Stiffuess of each Pile, n is the Total Number of Piles and ky is 

the Total Vertical Stiffuess of Pile Group. 

Similarly we get, 

Equivalent Lateral Stiffuess along X 

Equivalent Lateral Stiffness along Z 

(5.5-29) 

(5.5-30) 

Here, kh is the Effective Lateral Stiffness of each Pile, n is the Total Number of Piles and 

kx & kz is the Total Lateral Stiffness of Pile Group in X & Z directions respectively. 

Rotational Stiffness 

Let us consider that there are odd numbers of piles 2 p + 1 along one side of the foundation and 

even numbers of piles 2q along other side of the foundation. 

Total number of piles n = (2 p + I) x (2q) 

Pile spacing (same along length & width of the foundation) s 

Following the same approach as given in § 5.5.3 for Foundation Supported on Set of springs, we 
get Equivalent Rotational Stiffuess. 

Equivalent Rotational Stiffness k(J about X 

k k 
2 p(p+l) 

(J = y xs x 
3 

(5.5-31) 

Equivalent Rotational Stiffness k¢ about Z 

k - k 2 {(2q +1)(2q -I)} 
¢ - y xs x 

12 
(5.5-32) 

Here, ky is the Total Vertical Stiffuess of Pile Group, s is Pile Spacing and k(J & k¢ is the total 

Rotational Stiffuess of Pile Group about X & Z axis respectively. 
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Equivalent Torsional Stiffuess kif about Y 

(5.5-33) 

Here, kx is the total Lateral Stiffuess of Pile Group along X axis and kif is the total Torsional 

Stiffuess of Pile Group about Y-axis. It may be noted that total lateral stiffuess of pile group in X 
and Z direction is the same i.e. kx = kz . Hence either kxor kz appears in the equation (5.5-33). 

5.5.4.2 Damping 

The damping offered by pile-supported foundation does depend upon length of pile and 
embedment of pile cap. Though the observations confirm increase in value of damping with 
increase in length of pile as well as embedment of pile cap, its quantification, however, is not yet 
established. It is to be noted that: 

• Damping of group of pile has been found to be more frequency dependent than that for a 
single pile. 

• Damping exhibited at resonance is far different than at non-resonant frequencies. 
• Damping of pile-supported system has been found to be less than soil-supported system. 

Whether piles are provided for improving load carrying capacity of the weak soil or provided on 
account of increasing the natural frequency of the machine foundation system, the objective of 
keeping the natural frequencies away from excitation frequencies is achieved in either case. This, in 
other words, confirms that the response of the foundation is required at non-resonant frequencies. It 
is suggested to use a nominal value of about 5% damping for response computation because the 
quantification of pile damping is not yet fully established. Any value higher than this, in practice, 
would obviously result in lower amplitudes. 

EXAMPLE PROBLEMS (§5.4) 

P5.4-1 

For a site, dynamic soil investigation is carried out using Wave Propagation Test. The test 
data is as under: 

Distance between geo-phones 
Shear wave velocity 

Mass density of soil 

Poisson's Ratio 

6 m 
140 m / s 
Ps = 2000 kg/m 3 

v =0.3 
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Compute Design Shear Modulus G02 & Design Coefficient of Uniform Compression 

CU02 for a machine foundation with details as under: 

Foundation Size 

Depth of foundation 

Mass Density of Concrete 

Mass of Machine 

Ht. of machine CG above foundation top 

Solution: 

Mass density of soil 

Poisson's Ratio 

Site Data (Data_Ol) 

Site Static Stress (Overburden Pressure) 

Distance between geo-phones 

Effective considered depth (see § 5.4) 

Overburden Pressure at the considered depth is 

2 m x 4 m x 4 m deep 

3m 

2500 kglm 3 

20000 kg 

0.5m 

6m 

P.I = 2000 kglm 3 

v =0.3 

dOl =(6/2)=3.0m 

I 
0'1 =p,xgxdol =2000x9.81x3x-- =58.86 kN/m2 

. 1000 

UOI = 0'1 = 58.86 kN/m 2 

Site Dynamic Shear Modulus 

Shear wave velocity V, 140 m/s 

GOI =PsV/ =2000x1402 =392x105N/m2; 3.92x104 kN/m2 

Design Data (Data_02) 

Base Contact Area of the Foundation .402 =2x4=8m
2 

Static Stress (Overburden Pressure) 0=02 : 

Width of Foundation = 2m 
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3 m Depth of Foundation = 

Effective depth (See §5A) 

Mass of foundation block 

Mass of machine 

d 02 = 0.5x2+3 = 4 m 

mh = 8x4x2500 = 80000 kg 

mm =20000 kg 

Total Mass 

0") = Ps x d 02 x g = Over burden pressure due to soil at depth d 02 

I 
0"1 = 2000x4x9.8Ix-- = 780480 kN/m2 

1000 

0"2 = Over burden pressure due to test block + machine 

= 100000x9.81 x_l- = 122.625 kN/m2 
8 1000 

0'"02 =(0") +0"2) 

0'02 = (78.480+ 122.625) = 201.105 kN/m2 

Design Shear Modulus G 02 : Rewriting equations 5 A-I, we get 

Substituting values, we get 

{
_ }o.s 
0"02 

G02 = GO) x -=-
0"0) 

G02 = GO) x{~02 }0.5 = 3.92xI04 x{201.105}0.5 = 7.246x104 kN/m 2 

0"01 58.86 

Design Coeffjcient of Uniform Compression CU02 

Rewriting equation 5.3-9, we get 

C _ 4 G02 ro 
u02 - I-v A ' 

02 

(A; 
Where ro = V--;-

G02 = 7.246x104 kN/m2; Ao2 = 8 m 2; ro = ~ = 1.5957 m; v = 0.3 

Substituting, we get C - 4x7.246x104 x 1.5957 _ 8 2588 104 k I 3 
u02 - () -. x N m 

1-0.3 x8 
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P 5.4-2 

For a site, dynamic soil investigation is carried out using Vertical Vibration Resonance Test. 
The test data is as under: 

Size of test block 

Mass density of concrete test block 
Depth of test pit 

Mass of Oscillator system 

Resonant Frequency 
Amplitude of Vibration 

Mass density of soil 

Poisson's Ratio 

I.5m xO.75m xO.7m high 

Pc == 2500 kglm 3 

4m 

mo == 160kg 

fz == 30 Hz 
200 microns 

p" == 2000 kglm 3 

v == 0.3 

Compute Design Coefficient of Uniform Compression Cu02 & Design Shear Modulus for a 
machine foundation with details as under: 

Foundation Size 
Depth of foundation 

Mass Density of Concrete 

Mass of Machine 

Ht. of machine CG above foundation top 

Solution: 

Mass density of concrete test block 

Mass density of soil 

Poisson's Ratio 

Site Data (Data_Ol) 

Area of Test Block 

Height of Test Block 

Mass of Test Block (including mlc) 

2mx4mx4m deep 

3m 

2500 kglm 3 

20000 kg 

0.5m 

Pc == 2500 kglm 3 

PI == 2000 kglm 3 

v == 0.3 

AOI ==I.5xO.75 == 1.125 m2 

h==0.7 m 

mOl == 2500x1.125xO.7 + 160 == 2128.75 kg 
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Site Coefficient of Uniform Compression 
22m 2 2 2128.75 1 4 

COl =4Xff xf. X-=4Xff x30 X x--=6.723xlO 
U - AOI 1.125 1000 

Site Static Stress 

Effective depth dOl = 4+(0.75/2) = 4.375 m 

1 
0"1 = P.I x dOl x g = 2000 x 4.375 x 9.81 x 1000 = 85.8375 kN/m 

2 

1 
0"2 =hxPcxg=0.7x2500x9.81x--=17.1675 kN/m2 

1000 

Design Data (Data_02) 

Area of Foundation Block 

Effective depth d02 = 3+0.5x2 = 4 m 

Mass of foundation block mh = 8x4x2500 = 80000 kg 

mm =20000 kg Mass of machine 

Total Mass 

Static Stress 

1 1 
O"J = Ps xdo2 xgx-- = 2000x4x9.81x--= 78.48 kN/m2 

1000 1000 
m02 1 100000 1 

0"2 =-xgx--=--x9.81x--=122.625 
A02 1000 8 1000 

0'02 =0"1 +0"2 =201.105 kN/m2 
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kN/m 3 

Design Coefficient of Uniform Compression CU02 : Since C U is directly proportional 

to G • we can consider variation of C u with static stress in the same manner as that for G . 

CU02 =CU01 x~~02 x~AOl =6.723IxJ04 x 201.105 x~1.125 =3.5228xI04 kN/m3 
0"01 A02 103.005 8 
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P 5.4-3. 

Design Shear Modulus G02 

(l-v) 
G02 =Cu02 xA02 x--; 

4xyo 

{A; (8 
Yo = v7 = V; =1.5957 m 

Substituting the values, we get 

Go2 =3.5228xI04x 8x (1-0.3) =3.09x\04 kN/m2 
4xl.5957 

Design Subgrade Parameters 

For a site, dynamic soil investigation is carried out using Cyclic Plate Load Test. The test data 
is as under: 

Size of Test Plate 

Depth of test pit 

. 600 mm x600 mm 

4m 
Test Results (Only the last test value is presented here) 

Pressure p = 240 kN/m 2 

Elastic settlement 

Mass density of soil 

se = 1.2 mm 

p., = 2000 kglm 3 

Ht. of machine CO above foundation top 0.5 m 

Poisson's Ratio v = 0.3 
Compute Design Coefficient of Uniform Compression Cu02 & Design Shear Modulus for a 

machine foundation with details as under: 
Foundation Size 

Depth of foundation 

Mass Density of Concrete 

Mass of Machine 

Maximum permissible Amplitude 

Solution: 

Mass density of soil 

Poisson's Ratio. 
Size of Test Plate 

Contact area of test plate 
Depth of test pit 

Applied Pressure on the plate 

Resulting Elastic settlement 

2mx4mx4m deep 

3m 

2500 kglm 3 

20000 kg 

100 microns 

p., = 2000 kg/m 3 

v =0.3 
600 mm x 600 mm 

AO] = 0.6 x 0.6 = 0.36 m 2 

4m 

p = 240 kN/m2 

se = 1.2 mm = 1.2xlO-3 m 
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Site Data (Data_Ol) 

Coefficient ofUnifonn Compression 

Coefficient of Unifonn Compression 
P 240 4 3 

C 01 =-= =20xlO kN/m 
u Se 1.2x10-3 

Static Stress (Overburden Pressure) aO) for the test 

Effective Depth d01 = 4.0 +0.5x 0.6 = 4.3 m 

I 
0') = p, X d01 X g = 2000 x 4.3 x 9.81 x -- = 84.366 kN/m 2 

. 1000 

0'2 = Over burden pressure = Applied Pressure I p' on the test plate = 240 kN/m 2 

a01 = (84.366 + 240) = 324.366 kN/m2 

Design Data (Data_02) 

Area of Foundation Block 

Effective depth 

Mass offoundation block 

Mass of machine 

Total Mass 

Static Stress 

A02 =4x2=8m2 

d02 = 3+0.5x2 = 4 m 

mh = 8x4x2500 = 80000 kg 

mm = 20000 kg 

m02 = mb + mm = 100000 kg 

1 I 
0') = ps xd02 xgx-- = 2000x4x9.8Ix-- = 78.48 kN/m2 

1000 1000 

m I 100000 I 
0'2 =-..N. xgx-- = ---x9.81x-- = 122.625 kN/m2 

A02 1000 8 1000 

a02 =0') +0'2 =201.105 kN/m2 

Design Coefficient of Unifonn Compression CU02 

C - C ~a02 ~01 - 20 104 201.105 ~0.36 - 334 104 kN/m 3 
U02 - UO) X - x - - x x x -- -. x 

aO) A02 324.366 8 
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Design Shear Modulus 

G02 =Cu02 xAm x ~:~); ro = ~~2 = J! = 1.5957 m 

G =3.34xIQ4 x 8x (1-.3) 2.9303xl04 kN/m2 
02 4x 1.5957 

P 5.4-4 

For a site, dynamic soil investigation is carried out using Vertical Vibration Resonance Test. 
The test data is as under: 

Size of test block 

Mass density of concrete test block 

Depth of test pit 

Mass of Oscillator system 

Resonant Frequency 

Amplitude of Vibration 

Mass density of soil 

Ht. of machine CG above foundation top 

1.5 m xO.75 rnxO.7 m high 

Pc = 2500 kglrn 3 

4 m 
mo = 160 kg 

Iz =30 Hz 
200 microns 

p, = 2000 kglrn 3 

0.5 rn 

Poisson's Ratio v = 0.3 

Compute Design Coefficient of Uniform Compression Cu02 & Design Shear Modulus 

for a machine foundation with details as under: 
Foundation Size 3 m x 5 rn x 5 rn deep 

Depth of foundation 4 m 

Mass Density of Concrete 2500 kglrn 3 

Mass of Machine 20000 kg 

Maximum permissible Amplitude 100 microns 

Solution: 

Mass density of concrete test block 

Mass density of soil 

Poisson's Ratio of soil 

Site Data (Data_Ol) 

Area of Test Block 

Height of Test Block 

Pc = 2500 kglm 3 

P.I = 2000 kglm 3 

v=0.3 

AOI = 1.5xO.75 = 1.125 m 2 

h = 0.7 rn 
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Mass of Test Block (including m/c) 

mOl =2500x1.125xO.7+160=2128.75 kg 

Site Coefficient of Uniform Compression 

C 4 2 f2 mOl 4 2302 2128.75 1 6723104 
uO 1 = x 1l x z X - = x 1l x x x --=. x 

AOl 1.125 lOOO 

Site Static Stress 

Effective depth dOl =4+(0.75/2)=4.375m 

1 
0"1 =Ps xd01 xg=2000x4.375 x 9.8Ix--=85.8375 kN/m2 

. 1000 

I 
0"2 = hx Pc xg = 0.7x2500x9.81 x-- = 17.1675 kN/m 2 

1000 

Design Data (Data_02) 

Area of Foundation Block 

Effective depth 

Mass of foundation block 

Mass of machine 

Total Mass 

A02 =5x3=15m 2 

d02 = 4+0.5x3 = 5.5 m 

mh =15x5x2500=187500 kg 

mm =20000 kg 

m02 = mh + mm = 187500+ 20000 = 207500 kg 

Static Stress 
1 1 

0"1 = PI' xd02 xgx-- = 2000x5.5x9.81x-- = 107.91 kN/m2 
. 1000 lOOO 

m02 1 207500 1 
0"2 =-xgx--= x9.8Ix--=135.705 

A02 1000 15 1000 

Design Coefficient of Uniform Compression CU02 

Since area of foundation is greater than 10m2, consider Ao2 = 10 m2 (See § 5.4.2) 
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C -C Ja02 ~Ol -67231 104 243.615 f¥oI.125 -347 104 kNI 3 U02 - UOl X - X - -. x x x -- -. x m 
aOl A02 103.005 10 
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Design Shear Modulus G02 

Since area of foundation is greater than 10 m2 
, consider A02 = 10 m2 

(1- v) f:02 f!0 G02=Cu02xAo2x--; ro= -= -=1.7841 m 
4xro 1r 1r 

Substituting the values, we get 

G02 =3.47xI04 xIOx (1-0.3) =3.4016xI04 kN/m2 
4x1.7841 

EXAMPLE PROBLEMS (§ 5.5) 

P 5.5-1 

For the data given in Problem P 5.4-1, compute Equivalent Soil Springs in all six DOFs. 

Solution: 

Machine Foundation details as given in Problem P 5.4-1: 
Foundation Size 2 m x 4 m x 4 m deep 

Depth of foundation 

Base Contact Area of the Foundation 

Mass of foundation block 

Mass of machine 

Ht. of machine CG above foundation top 

Total Mass 

Mass density of soil 

Poisson's Ratio of soil 

3m 

mb = 8x4x2500 = 80000 kg 

mm =20000 kg 

0.5 m 

Ps = 2000 kglm 3 

v = 0.3 

From the solution to problem P 5.4-1, we get: 

Design Shear Modulus G02 = 7.246 x 104 kN/m 2 

Design Coefficient of Uniform Compression ClI02 =8.2588xI04 kN/m 3 
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Soil Spring Stiffness 

Elastic Half Space method 

Length of Foundation 

Width of Foundation 

LIB ratio of the foundation 

B/L ratio of the foundation 

4.0 m 

2.0m 

LIB = 2.0 

BI L = 2/4 = 0.5 

From Figure 5.5-1, for LIB = 2.0, we get Py = 2.2; pz = 0.962 

For rocking mode (about Z axis), for BI L = 0.5 we get P; = 0.45 

For rocking mode (about X axis), for LIB = 2.0 we get Po = 0.6 

Vertical (Y -direction) 

ky = 6.44 x 1 05 kN/m 

Lateral Z -direction 

kz =/3z X4X(1+V)XGX~L:B = kz =5.13xl05 kN/m 

Lateral X -direction 

kx = Px x4x(1 +V)XGX~L: B = kx = 5.60x 105 kN/m 

Rocking about Z-axis (¢ direction) 

G 2 5 
k; = P; x-( -)x B xL = 7.45x 10 kN m/rad 

I-v 

Rocking about X-axis (e direction) 

G 
ko = Po x-( -)x Bx L2 = 19.87x105 kNm/rad 

I-v 

Torsional Mode about Y( lfI direction) 
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Coefficient of Sub grade Reaction Method 
Base area of Foundation 

Moment of Inertia of Base area: 

1 3 4 
/xx =-x2x4- = 10.667 m ; 

12 

/ yy = 10.667 + 2.667 = 13.334 m 4 

1 3 4 I.. =-x4x2- =2.667 m •• 12 

Coefficient of Uniform Compression Cu =8.2588xI04 kN/m 3 

Cr = 0.5xCu = 4.1294xl04 kN/m 3 

C¢ =2xCu =16.57xI04 kN/m 3 

CV1 =0.75xCu = 6.20 X 104 kN/m 3 

Coefficient of Uniform Shear 

Coefficient of Non-Uniform Compression 

Coefficient of Non-Uniform Shear 

Equivalent Spring Constants 

Lateral X -direction 

Vertical (Y -direction) 

Lateral Z -direction 

kx=CrxA=4.129xl04x8=3.3xI05 kN/m 

ky = Cu x A = 8.2588x104 x8 = 6.61xl05 kN/m 

kz = Cr x A = 4.129x104 x8 = 3.3x 105 kN/m 

Rocking about X-axis «() direction) 

ke = C¢ x/xx = 16.57xl04 x10.667 = 17.6x105 kN m/rad 

Torsional Rotation about Y- axis (If/ direction) 

k", = C¢ x/xx = 6.20x104 x13.334 = 8.26x105 kN m/rad 

Rocking about Z-axis (¢ direction) 

k¢ = C¢ x/ zz = 16.57 x 1 04 x 2.667 = 4.41 x 105 kN m/rad 

For the sake of academic interest let us compare the st(lJness (all six stiffness) as obtained by these 
two methods. The ratio of stiffness by Elastic Half Space Method to that by Coefficient of Sub­
grade Reaction Methodfor all the six DOFs is: 

ky kz 

Ratio 0.974 1.55 

k¢ 

1.69 

ke 

1.13 

k", 

2.33 

It is noticed from these numbers that except for vertical stiffness, Elastic Half Space gives 
sufficiently higher stitfuess in all the modes of vibration. 
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PS.S-2: 

For the data given in Problem P S.S-I, compute Radiation Damping in all six DOFs for 
Elastic Half Space method. 

Solution: 

For evaluating Geometric Damping, we need to compute equivalent radius 'b and Mass 

Ratio b for all the six oOFs. Let us first compute equivalent radius in each oOF 

Equivalent radius 

Vertical (Y -direction) 
[Lx8~ 

ro = V7 = V----;- = 1.5957 m 

Equivalent radius in Lateral Z - direction and Lateral X - direction is the same as that for 

Vertical (Y -direction). 

Lateral Z - direction 

Lateral X - direction 

ro = 1.5957 m 

ro = 1.5957 m 

Rocking about Z-axis (¢ direction) '0 ~ ( B:; L r" ~ ( 2
:; 

4 J''' ~ 1.3574 m 

Rocking about X-oxi, (B d;,ection) '0 ~ ( L'3:
B J''' ~ ( 4:;2

)'" ~ 1.9197 m 

Torsional Rotation about Y «(jI direction) 

Mass Ratio: To compute Mass ratio, we need to compute Mass m and Mass Moment of 
Inertia M mo (for both mass of the foundation block as well as mass of the machine) along the three 

translational oOFs and the three rotational oOFs passing through CG of the base area point O. 
Foundation Mass 80000 kg 

Machine Mass 

Total Mass (see solution P 5.5-1) 

Thus Mass m along three translational oOFs 

20000 kg 

100000 kg 

m = 100000 kg 
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Mass Moment of Inertia (MMI) 

About Z-axis ( M moz ) 

About X-axis (Mmox) 

About Y-axis ( M moy ) 

Design Subgrade Parameters 

MMI of the foundation is directly computed based on its geometrical data and for MMI of 
machine about Y -Y axis, its Radius of Gyration need to be evaluated. This information is 
either given by the manufacturer or computed based on its geometrical layout data. In the 
absence of any given data for the present case, it is assumed that radius of gyration of 
machine about YY is equal to 75% of equivalent radius of foundation. (This is an 
assumption made only for this problem). 

Radius of Gyration r=O.75xro =O.75xI.5957 =1.1968m 

Let us now compute Mass Ratios for each DOF. 

b = b. = b = (1- v)~_1 = (1-0.3) x 100000 x_l- = 2.153267 
x • y 4 p, r/ 4 2000 1.5957' 

bi/J = 3(I-v))x Mmoz =3(1-0.3)) 858333 =24.44 
8 p" x ro5 8 2000x 1.35745 

be = 3(I-v))x Mmox = 3(1-0.3)) 938333 =4.72 
8 p,xro5 8 2000xl.91975 

b,=3(I-V))x Mmoy =3(1-0.3)) 161981 =1.4673 
v 8 ps x ro 5 8 2000x 1.70695 

Geometrical Damping Constant 

( = 0.425 = 0.425 = 0.2896 
y Jb; h.153267 

(. = 0.2875 = 0.2875 = 0.1959 
. Jb; .J2.153267 
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( = 0.28755 = 0.2875 = 0.1959 
x ..jb; .J2.153267 

,,= 0.15 = 0.15 =00012 
¢ (I + b¢)J"b; (I + 24.44 )h4.44 . 

((} = 0.15 = 0.15 =0.0120 
(I + b¢ ').fb;; (1 + 4.72).!4Yi 

,,= 0.5 = 0.5 = 0 1270 
VI (I + 2bV') (I + 21.4673) . 

P 5.5-3 

A machine having Mass of 20000 kg is supported over a concrete block of length 4m, width 2 
m and depth 4 m (Machine and Foundation data same as that for Problem P 5.5-1). The 
concrete block in turn is supported over an elastic cork pad 200 mm thick as shown in Figure 

5.5-3. Mass Density of Concrete is 2500 kg/m 3 • Elastic Modulus of cork is 

Ecork = 1.2 x I 05 kN/m 2 and that of concrete is Econc = 3 x 107 kN/m 2 • Poisson's ratio of the 

cork is Vcork = 0.04 and that of concrete is Vconc = 0.15. Compute equivalent springs 

representing cork stiffness in all six DOFs. 

( Machine1 

Foundation Block 

II . [ Cork Pad i 

:x xx. ;.x.xxx :.x.. L Rigid Floor 

Figure P5.5-3 Foundation Block Supported over cork Pad 

Solution: 

Area of the cork pad 

Thickness of cork pad 

Elastic Modulus of cork 

Poisson's Ratio of cork 

t =0.2 m 

v = 0.04 
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Moment of Inertia about axes passing through CO of Base Area 

About XX 

AboutZZ 

AboutYY 

Stiffuess of Cork: 

Linear Stiffuess 

1 3 4 
Ixx =-x2x4 = 10.6667 m 

12 

I .. = J... x4x23 = 2.6667 m4 

•• 12 

1 
fyy =-x(4x23 + 2x43)=13.3333 m4 

12 

Along Vertical Y direction ky = Ecork x A = 1.2 X 10
5 

x 8 = 4.8 x 1 06 kN/m 
t 0.2 

EA 
Along Lateral Z direction k. = --­

• 2(1 + v)t 

Along Lateral X direction k = EA 
x 2(1+v)t 

Rotational Stiffness 

1.2 x 10
5 

X 8 = 2.307 X 106 kN/m 
2x(1+0.04)xO.2 

1.2 x 1 0
5 

X 8 = 2.307 X 106 kN/m 
2x(J +0.04)x0.2 

About X- axis k(} = Efxx = 1.2xl0
5 

x 10.6667 =6.4xI06 kNmlrad 
t 0.2 

About Z- axis k; = E 1 zz = 1.2 x I 0
5 

x 2.6667 = 1.6 x 106 kN mlrad 
t 0.2 

About Y-axis k = E fyy 

'1/ 2(1 + v) t 
1.2 x 1 0

5 
x 13.3333 = 3.84x 106 kN mlrad 

2 x (1 + 0.04) 0.2 

A machine having Mass of 20000 kg is supported over a concrete foundation block of length 
5m, width 2 m and depth 2 m. The concrete block in turn is supported over 48 springs (9 
springs along length and 5 springs along width) as shown in Figure P 5.5-4. Vertical Stiffness 

of each spring is kv = I x 1 05 kN/m and Lateral Stiffness is kh = 0.6 xl 05 kN/m. Mass 

Density of Concrete is 2500 kglm 3. Elastic Modulus of concrete is Econe = 3 x 107 kN/m 2 • 

Poisson's ratio of concrete is veonc = 0.15 • Compute equivalent springs at CG of the base of 

the block in all six DOFs. 
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Solution: 

Given Data 

Length of the Foundation Block 5m 

Width of the Foundation Block 2m 

Vertical Stiffness of each spring kv :::;: 1 x 105 kN/m 

Lateral Stiffness of each spring kh = 0.6xl05 kN/m 

Springs along length 9 & springs along width 5 & total number of springs = 45 

It is seen that there are odd number of springs both along length and width. 

9 

5 

2p+l =9; 

2q+ 1= 5; 

p=4 

q=2 

Springs along length 

Springs along width 

Totalnumber of springs 

Spacing along Length: There are 9 springs hence 8 spacing 

n =9x5 =45 

a=5/8=0.625 m 

Spacing along Width: There are 5 springs hence 4 spacing 

Machine 

Foundation Block 

x 
t ________ .1. 

iiillii b 
-.-.-.-.-.-.-.- T I I 1 I I I I 

-4 .-t'-~'-~-~'-'~-'~-'~-'-i .~ z 
-.-.-.-e-.-e-e-

I I I I I I I 

....\al-

Spring Locations shown in PLAN 

b = 2/4=0.5 m 

Springs 

Figure PS.S-4 Foundatio~ SUpported over 45 Springs 
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Equivalent Stiffness 

Translational Stiffness 

Vertical Stiffness k y = n x k" = 45 x I x I 05 = 4.5 x 106 
. kN/m 

Lateral Stiffness 

Rotational Stiffness 

Rocking Stiffness about x-x (Equation 5.5.3-1) 

k(} = M () = k x a 2 x pep + I) 
<5{} Y 3 

k(} = 4.5 x I 06 x (0.625)2 x 4 x (4 + I) ::: 11.72 x 106 kN m/rad 
3 

Rocking Stiffness about Z-Z (Equation 5.5.3-2a) 

k = M¢ = k xb2 x{q(q+ I)} 
¢ <5¢ y 3 

k¢ = 4.5 x 106 x (0.5)2 x 2 x (2 + I) = 2.25 x I 06 kN m/rad 
3 

Torsional Stiffness about Y -Y (Equation 5.5 J-6a) 

kip = ~ =[{a2kxP(~+I)}+{b2xk= q(q3+1)}] 

PS.S.S 

A machine having Mass of 20000 kg is supported over a concrete foundation block of length 
Sm, width 4 m and depth 2 m. The concrete block in turn is supported over 20 Piles (S piles 
along length and 4 Piles along width) as shown in Figure P S.S-S. Each pile is 400 mm dia and 
20 m long. Pile spacing is ).0 m, both along length and width. Vertical Stiffness of each Pile is 

k pv ::: 6.4 X 105 kN/m and Lateral Stiffness is k ph ::: 3.84 x 105 kN/m. Compute equivalent 

springs at CG of the base of the block in all six DOFs. 
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Machine 

Foundation Block 

Piles 

I 

• • • • • T 
s 

• • ~ • • ..1. 
i Z .... -.-.-.-.-.-.-.-.-.-.~.-.-.-.-.-.-.-.-.-.-.-.-.-.-
i 

• • • • • 
! 
I 

• • • • • I 

i---s--ol • X 
Pile Location shown in PLAN 

Figure PS.5-S Foundation Supported over 20 Piles 

Solution: 

Total number of piles 

Piles along Length = 5; 

Piles along Width = 4; 

n=20 

2p+l = 5; P = 2 

2q =4; q=2 

Pile Spacing s = 1 ; Pile diameter d = 0.40 ; sl d = 2.5 

Vertical stiffness of each pile 

Lateral stiffness of each pile 

Influence Coefficient for sId = 2.5 

kpv =6.4xl05 kN/m 

kph = 3.84x105 kN/m 

( )

0.65 
aeg' = 0.212x ~ = 0.212x(2.5)0.65 = 0.3845 

Effective Vertical Stiffness kv of each pile 
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kv =0.3845x6,4xl05 =2,46xl05 kN/m 

Effective Lateral Stiffness kh of each pile 

kh =0.3845x3.84xI05 = 1.476 x 105 kN/m 

Equivalent Springs 

Linear springs along Vertical Y Direction 

ky =nxkv =20x2,46xI05 =4.92xl06 kN/m 

Along Lateral X Direction kx =nxkh =20x1.476x105 =2.952xI06 kN/m 

Along Lateral Z Direction kz = n x kh = 20 x 1 ,476 x 1 05 = 2.952 xl 06 kN/m 

Rotational Springs 
Rotational Spring Constant about X-axis 

k k 
2 p(p+ 1) 

()=yXSX 3 

= 4.92 xl 06 x 12 x 2(2 + 1) = 9.84 x 106 kNmlrad 
3 

Rotational Spring Constant about Z-axis 

k -k 2 {(2q +1)(2q -l)} ;-yXSX 12 

= 4.92 x 106 xl 2 x { (2 x 
2 + 1:~2 x 2 -1)} = 6.15 x 1 06 kNm/rad 

Torsional Spring Constant about Y-axis 

k =s2k {P(P+I) + (2q +l)(2q -l)} 
'I' x 3 12 

= 12 x2.952x 106{2(2 + 1)+ (2 x 2 + 1)(2 x 2 -1)} = 6.344x 106 kNmlrad 
3 12 
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DESIGN MACHINE PARAMETERS 

• Rotary Machines 
• Reciprocating Machines 
• Impact Machines 
• Impulsive Load Machines 
• Amplitudes of Vibration 
• Rotor Eccentricity 
• Unbalance Force 
• Transient Resonance 
• Critical Speeds 
• Emergency Loads 
• Coupling of Machines 

Example Problems 
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Design Machine Parameters 

In the context of machine foundation design, a machine would necessarily include: 

• A Drive Machine 
• A Driven Machine 
• A Coupling Device 

Machine data is required both for drive machine and driven machine along with coupling 
details. The complete knowledge of excitation forces, associated frequencies and load transfer 
mechanism from the machine to the foundation is a must for correct evaluation of dynamic 
response. A close interaction between the foundation designer and machine supplier as well as 
appreciation of each other's limitations, therefore, is essential. 

Before we go to the details of machine data for Drive Machine, Driven Machine & Coupling 
Device, it may be desirable to note the following: 

• Though the supplier for all the three machines may be a single agency, invariably 
manufacturer would be different for each machine 

• Each machine, according to its footprint, has its own base frame and bolting arrangement 
with the foundation 

• Each machine is balanced independently as a separate unit 
• Each machine rotor has its own critical speed 
• When these machines are coupled together and supplied as a set, the data for individual 

machine may not fully hold good for the coupled machines. It may need appropriate 
correction/modification. At times, these machines may be mounted on a common base 
frame instead of their individual base frame and that will reflect as a change in the mass 
CG location. 

The equipment drawings and data-sheets supplied by the machine manufacturer do provide a: host 
of information about the machine and out of this, only the information required for the foundation 
design needs to be selected. In certain cases, some data may have to be processed for design 
purposes. Thus, for a properly designed foundation, careful determination of those design machine 
parameters that influence response of machine foundation becomes essential. 

The available Machine data, therefore, needs to be suitably converted and translated in to 
Design Machine Parameters for use in Machine Foundation design. 

A typical data set required for each machine (drive machine, driven machine & coupling) is 
listed as under: 

https://engineersreferencebookspdf.com



6-4 Design Machine Parameters 

For Dynamic Response Analysis 

I. Total mass of Machine (including rotating parts), Radius of Gyration and its Overall Centroid 
location. 

2. Mass of rotating parts of the machine, operating speed, height of centerline of rotor from 
machine base frame, etc. 

3. Footprint of machine, base frame details and holding down bolts. 
4. Dynamic forces generated by the machine under operating conditions. 

Additional information regarding number of blades in case of fans & turbines, number of poles in 
case of motors etc. may tum out to be helpful in specific cases (see $ 6.1), 

Coupling 

Drive Machine Driven Machine 

r-

I I 

Figure 6.1-1 A Typical Rotary Machine 

For Strength Design 

1. Static loads from the machine. 
2. Equivalent Static forces i.e. dynamic forces converted as Equivalent Static Forces 
3. Forces generated under Emergency and Faulted conditions e.g. Bearing Failure Forces, Short 

Circuit Forces and Forces due to Loss of Blade etc. 
4. Forces during Erection, Maintenance & Test Conditions of the machine 

In this chapter we refer to machine parameters for 

a) Rotary Machines 
b) Reciprocating Machines 
c) Impact Machines 
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6.1 PARAMETERS FOR ROTARY MACHINES 

Conceptually, a rotary machine comprises of a rotary drive machine, a rotary driven machine 
connected through a coup ling device. A typical schematic arrangement is shown in Figure 6.1-1. 

6.1.1 Dynamic Forces 

Every rotating machine possesses some amount of residual unbalance even after balancing. This 
residual unbalance is termed as rotor eccentricity and the rotor, due to this eccentricity, produces 
unbalance dynamic force. The unbalance dynamic force therefore is a function of rotor mass, rotor 
eccentricity and rotor speed. 

Rotor generates dynamic forces at all speeds. During start-up it generates dynamic forces right 
from zero speed to its full operating speed, whereas during shutdown it generates dynamic forces 
right from full operating speed to halt position (zero speed). The dynamic force shall be at its 
maximum speed of operation. Dynamic Forces are normally supplied by the manufacturer/supplier. 
The generated unbalance forces are function of rotor mass, rotor eccentricity and rotor speed. These 
forces are computed at bearing levels for all possible combinations. 

6.1.1.1 Rotor Eccentricity 

600 I I 

~ 
500 

~ 
0 

~ 400 

.~ 
0 300 ·S 
~ 
0 200 ~ 

J 100 

Rotor Balance Grades 

\ G~3 
. 

r V 

\ 
1~·5 \ 

X v~ '-..... 
"--- --:---

o 
o 250 500 750 1000 1250 1500 

Rotor Speed (rpm) 

Figure 6.1.1-1 Rotor Eccentricity Vs. Rotor Speed for Rigid Rotors 

The rotor (of every rotating machine) is balanced to a required balance quality grade. Balance 
quality grade for a rotor gets decided based on operating speed and the intended use of the 
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machine. International Standard Organization code 'ISO 194011' gives the recommended balance 
quality grades for rotors (only Rigid Rotors) of all types of rotating machines. 

The residual balance present in the rotor gives rise to unbalance dynamic forces. Thus the 
generated unbalance forces are directly proportional to the balance quality grade. Balance quality 
grade is represented as Gr (e.g. GO.4, G 1, G2.5, G6.3, G 16, G40 etc.) where the letter G is used as 
a notation for Grade and r is the number (in mm/sec) that represents product of eccentricity (in 
mm) and rotation speed 0) (in rad/sec). In other words r could also be expressed as e per 0) Thus 

ratio rIO) gives eccentricity in mm. 

Thus for a rotor balanced to balance quality grade Gr and operating at speed 0) rad/sec, the 
eccentricity of rotor e (in meters) is given as: 

m (6.1.1-1) 

Thus a balance grade G6.3 for a rotor operating at 900 rpm ( 0) = 94.25 rad/s ) would mean that the 

rotor eccentricity is: 

6.3 10-3 668 10-6 e=--x =. x m = 66.8 microns 
94.25 

Figure 6.1.1-1 gives Rotor Eccentricity in microns vs. Rotor speed for Balance 
grades G2.5 & G6.3 . 

Normally machine manufacturer provides either rotor eccentricity or rotor balance quality grade for 
the rotor. In certain cases unbalanced forces generated by the rotor are furnished. In the absence of 
any such information, it is recommended to use the following relationship: 

a) 

b) 

For rigid rotors use balance grade as per ISO 1940/1, and 

For Flexible Rotors e = 50~ m (after Barkan (1962» 
N 

(6.1.1-2) 

Here e represents eccentricity in meters & N represents operating speed of the rotor in rpm. 

6.1.1.2 Unbalance Forces 

The eccentricity e represents the residual unbalance left in the rotor after balancing. The rotor 
generates dynamic unbalance force, which is nothing but the centrifugal force generated by the 
rotor of mass m, (in kg) having eccentricity e (in meters), rotating at frequency 0) rad/s. 
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Thus the dynamic unbalance force F in (Newton) is given as 

z 

F(t) = mr x e x o} sin 0) t 

Unbalance Force 

F= mre 00
2 

Plane Nonnal to 
Rotor Axis 

N 

y 

Rotor 

C 

F=m eoo2 
r 

.-.-.-.----X 

(a) Rotor Support on Bearings (b) Unbalance Force acting in a plane 
normal to Rotor axis 

Figure 6.1.1-2 Rotor Unbalance Force 

6-7 

(6.1.1-3) 

This is also expressed as F(t) = Fo sin (J) t where Fo represents magnitude of the unbalance force 

in Newton and (J) represents the excitation frequency in radls. 

The magnitude of the dynamic unbalance force is Fo = mr xex 0)2 and excitation frequency 

equals to the running speed of the rotor i.e. (J) radls or N rpm. This force acts in a plane normal to 
rotor axis and is directed radially outward from the center of the rotor. 

Let us consider a rotor of mass mr (in kg) having eccentricity e (in meters), rotating at frequency 

(J) radlsec having rotor axis as Z-axis as shown in Figure 6.1.1-2. Consider at any instant of time 

t, that the force F(t) = m,. x e x 0)2 sin 0) t is directed at an angle· ¢ from the horizontal axis (X-X) 

passing through center of the rotor point C. The two components of this force in X-X & y-y 
direction are: 

In X-X direction Fxx = mr e 0)2 cos ¢ 

In Y-Y direction Fyy = mr e{J)2 sin ¢ 

Maximum Horizontal component (cos¢ = 1) Fzz = mr e0)2 

Maximum Vertical component (sin ¢ = 1) Fyy = mr e{J)2 

(6.l.l-4) 

(6.1.1-5) 

(6.1.1-6) 

(6.1.1-7) 
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Design Machine Parameters 

Rotor 2 

'*~ 
\ Bearing 2A 

a 

Bearing 2B 

Bearing IB 

(a) X Component of Unbalance Force 1800 Out of Phase 

Rotor 2 

Coupling 

Bearing 2B 

Bearing 1B 

(b) Y Component of Unbalance Force 1800 out of Phase 

Figure 6.1.1-3 Machine Having two Rotors - Rotor 1 & Rotor 2 - Unbalance Forces 
out of Phase in Each rotor 
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This force is transferred from the rotor to its two bearings in the same ratio as that of the rotor static 
reactions. If the reactions on the two bearings due to rotor weight are in the ratio of say a : b, then 

the dynamic force transferred from the rotor to the bearings shall also be in the ratio a: b . 
Considering that the bearing pedestals are rigid not to cause any amplification, the transfer of the 
force from the bearing to the foundation takes place as per law of Statics. 

For machines having more than one rotor, the unbalance force generated in each rotor mayor may 
not have same phase angle. Let us examine this also in detail. Let FI , F2, F3 , ••••• represent dynamic 

forces generated by rotors (rotor 1, rotor 2, rotor 3 etc). 

Consider a machine comprising of two rotors, say rotor 1 & rotor 2 having same mass mrl & mr2 , 

eccentricity el & e2 and speed WI & W2 respectively as shown in Figure 6.1.1-2. Let Rotor 1 be 

supported by Bearing 1 A & 1 B & Rotor 2 be supported by Bearing 2A & 2B respectively. Let the 
unbalance forces generated by Rotor 1 & 2 be FI & F2 respectively. Let CI and C2 represent the 

points of action of forces F] & F2 respectively. Let the distance between CI & C2 be L and that 

between CI and bearing 1 A be a. 

We can write the Unbalance forces as 

(6.1.1-8) 

Consider that at any instance of time t, the forces F] & F2 are at an angle rA & ¢2 with respect to 

X-axis respectively. 

Components of the unbalance forces are: 

X-Components are 

Y -Components are 

Case 1: Both the forces FI & F2 have same phase angle i.e. rA = ¢2 = ¢ 

The total Maximum Reaction along Y-axis shall be (sin ¢ = 1) 

(6.1.1-9) 

The total Maximum Reaction along X-axis shall also be (cos¢ = 1) 
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(6.1.l-1O) 

ease 2: Both the forces FJ&F2 are 180° out of phase i.e. ¢I =¢ & ¢2 =180-¢ 

The total Maximum Reaction along Y-axis shall be (sin ¢ = I) 

(6.1.1-11) 

The total Maximum Reaction along X-axis shall also be (cos¢ = I) 

(6.1.1-12) 

In addition, the unbalance forces shall give rise to two couples: 

Moment at any point say at bearing I (@ distance a (along Z) from center of Rotor I) 

Maximum Moment about Y-axis M VI = F2x x (L + a) - Fix x a (6.1.1-13) 

Maximum Moment about X-axis Me = F2y x(L+a)- Fly xa (6.1.1-14) 

Thus it is clear that though the generated unbalance forces have components only in X & Y 
direction, these will also generate moments about Y & X axes. Hence it becomes obvious that it is 
not enough to compute amplitudes for vibration modes in Y and X translation, but amplitudes must 
also be computed for rocking (about X-axis) as well as Torsional Mode (about Y axis) for the 
moments thus generated as above. 

Caution: At times it has been noticed that dynamic forces given by 
some machine suppliers contain an arbitrary Multiplication Factor. This is 
undesirable and must be corrected at this stage itself otherwise it may lead to 
unrealistic dynamic design of the foundation. Forces generated must be in 
accordance with rotor eccentricity, rotor speed and rotor mass (as above). 

6.1.2 Transient Resonance 

6.1.2.1 Unbalance Forces during Start-up and Shutdown 

During start-up the rotor generates dynamic forces at all speeds, right from start (zero speed) till 
full operating speed (see $ 6.1). Similarly during shutdown, it generates dynamic forces at all 
speeds i.e. from full speed right up to halt position. 
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The dynamic forces at operating speed contribute to Steady-State Response of the system, 
whereas the dynamic forces during startup and shutdown contribute to Transient Response. Its 
significance becomes more for under-tuned foundations where foundation natural frequencies are 
below operating speed of the machine. With every start-up & shutdown, machine speed comes into 
resonance with foundation natural frequencies called Transient Resonance. Though unbalance 
force is relatively low at transient resonance, resulting amplitudes become higher on account of 
resonance. 

Maximum magnitude of dynamic force generated by rotor (see equation 6.1.1-3) is: 

Fa = mr xexo/ 

In non-dimensional form, we can write 

Fa 

mrg mrg g 

(6.1.2-1 ) 

(6. I .2-2) 

LHS term is the ratio of Unbalance Force to the Rotor Weight. Plot of equation 6.1.2-2 for a 
machine with rotor eccentricity of 50 microns and maximum operating speed of 50 Hz. is shown in 
Figure 6.1.2-1. 

II,) 

~ ~ 
~ 

~ ~ .... 
«l B 

~ ~ 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.503 

Rotor Eccentricity 
50 microns 

O~~r--r--'--.---r------r--.--,,--.--'~~ 

o 10 20 30 40 50 50 40 30 20 10 0 

Start - up Steady - State Shut- down 

+ + -j 

.. ~ 

Speed Hz 

Figure 6.1.2-1 Unbalance Force During Start-up, Steady-State & Shut-Down for Rotor 
Eccentricity 50 Microns - Max Machine Speed 50 Hz. 
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It is seen that during start-up, the force rises and reaches its maximum at full operating speed and 
during shutdown it drops down to zero value at halt position. It is also seen that the maximum 
value of the force is 0.503 times the weight of the rotor. 

For transient resonance, though the unbalance force is lesser but the magnification shall be high 
because of resonance giving high amplitudes. 

6.1.2.2 Nozzle Passing Frequencies 

Nozzle passing frequencies are expressed as rotor speed multiplied by number of blades. In case of 
machines like pumps, fans, turbines, compressors, etc. high vibrations have been encountered when 

. foundation/support system frequencies are in resonance with nozzle passing frequencies. 

As these frequencies are multiple of operating speed, possibility of occurrence of transient 
resonance exists only in over-tuned machines. It is desirable to avoid these frequencies while 
computing natural frequencies of foundations. 

6.1.3 Critical Speeds of Rotors 

Critical Speeds of Rotors correspond to flexural frequencies of the rotors. Normally machine 
supplier furnishes these. Ifnot, one should ask for these. 

In some cases, high vibrations have been reported on account of resonance with critical speeds. It is 
only desirable to avoid these frequencies while computing natural frequencies of foundations. 

6.1.4 Rotor Bearing Supports 

Generally one comes across the machines having either Pedestal Bearings or End-shield 
Bearings. In case of Pedestal Bearings, the pedestal is independently supported on the foundation 
and the dynamic force from the rotor are transmitted to the foundation at the pedestal support 
location. 

In case of End-shield Bearings, the bearing is housed in the machine casing itself and the dynamic 
force from the rotor are transmitted to the foundation through the machine stator support points. 

This aspect is important from the point of view of Amplitude Computations and must be taken 
care of while mathematical modeling of machine foundation system. 

6.1.5 Forces Due To Emergency And Faulted Conditions 

Invariably every machine, during its life cycle, sustains very high forces, which occur due to 
malfunction of one or other features. Such conditions are termed as Emergency and Faulted 
Conditions. Machine develops very high forces during these conditions. Adequacy of foundation 
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must be ensured to withstand these forces. Hence, these forces must be considered for strength 
design of the foundation only. 

Without going into further details, we list some of the known faulted conditions related to 
machines. These are: 

6.1.5.1 Bearing Failure Forces 

Cases of Bearing Seizure, on one account or the other, have been reported in the past. In certain 
cases, inadequate supply or no supply of lube oil to bearings (for whatsoever reason), have resulted 
in Seizure of Bearings. Due to this machine running at full speed comes to grinding halt in very­
very short time (may be in seconds or in a couple of minutes). This phenomenon results in very 
high dynamic forces developed by the rotor. These are termed as Bearing Failure Forces. 

The damage to the machine obviously cannot be prevented but the objective is that the foundation 
should structurally be strong enough to withstand such high forces. 

It is difficult to quantify these forces specifically. Based on the experience, it is however suggested 
that a Force equal to 3 to 5 times the Rotor Weight should be considered in vertical as well as 
transverse direction transmitted through rotor bearings to the foundation. It is to be ensured that 
Foundation should be capable to withstand this force. An increase in the allowable stress to the 
tune of 50 % could be considered for strength check. Similar increase could also be considered for 
bearing pressure check. 

6.1.5.2 Short Circuit Forces 

These forces occur due to short circuit in motors. These are generally furnished by the supplier and 
should be considered for strength design of the foundation. An increase in the allowable stress to 
the tune of25 % could be considered for strength check. Similar increase could also be considered 
for bearing pressure check. 

6.1.5.3 Forces due to Loss of moving part like Blade, Hammer and Fins etc. 

For machines such as Fans, Pumps, Compressors, Crushers, etc. often one encounters condition of 
loss of blade or loss of hammer as the case may be. These give rise to very high forces. An increase 
in the allowable stress to the tune of 25 % could be considered for strength check. Similar increase 
could also be considered for bearing pressure check. These forces are furnished by the 
supplier/manufacturer and should be considered for strength design of the foundation. 

6.1.6 Coupling of Machines 

Different types of coupling arrangements are seen for different machines. Drive machine could be 
coupled directly to the driven machine or through a gearbox. When the machines are directly 
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coupled, the operating speed of drive and driven machine remain the same and the unbalance forces 
for both drive and driven machine develop at the same speed. 

On the other hand, when coupling is through gearbox, the operating speeds of drive and driven 
machine become different (in proportion to gear ratio) and the unbalance forces developed by both 
drive and driven machine are at different speeds. In this case transient resonance amplitudes are 
computed with respect to speeds of both the machines. 

6.2 PARAMETERS FOR RECIPROCATING MACHINES 

Conceptually, a reciprocating machine comprises of i) crank rod, ii) connecting rod and iii) piston 
(including piston rod). In this type of machine, linear motion of the piston, through a connecting 
rod, results in rotary motion of the crankshaft. 

Consider a single cylinder-reciprocating machine placed in Y-Z plane. Movement of piston is along 
Z-axis and rotation of the crank about X-axis (X-axis is normal to plane of paper). A typical 
schematic arrangement showing system under motion is as given in Figure 6.2-1. 

Extreme and 
position 

Cylinder 

Y 

Crank rod 

l'---__ l~+r ~z __ r ---' 

CG of Engine Base Frame 

Figure 6.2-1 A Typical arrangement of a Single Cylinder Reciprocating 
Machine System Under Motion - Position at any time t 
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6.2.1 Dynamic Forces 

The motion of the connecting rod is a complex motion i.e. one end of the connecting rod performs 
linear motion and the other end performs rotary motion. For evaluation of dynamic forces, let us 
define the machine parameters as under: 

6.2.1.1 Single Cylinder Machine 

Consider machine centerline along Z-axis. Y-axis represents vertical direction. 

Crank rod: 

(Center of rotation point 0 connected to connecting rod at point A) 

Mass of crank rod 

Length of crank rod 

Distance of its CG (Cr ) from center of rotation point '0' 

Speed of rotation (rad/sec) 

Connecting rod: 

(End A connected to crank rod & end B connected to piston): 

Piston: 

Mass of connecting rod 

Length of connecting rod 

Distance of CG of connecting rod ( C c) from point A 

Distance of CG of connecting rod ( C c) from point B 

Mass (Piston assembly including piston rod, cross head etc) 

mr 

r 

rl 

Consider the position of piston at any time t is as shown in Figure 6.2-1. Let the piston 

displacement from its extreme end position be z p • At this position, connecting rod makes an angle 

¢ and crank rod makes an angle e with machine axis OZ as shown. Rotary motion of the crank 

rod generates linear motion of the piston. 

For computation of dynamic forces, consider that the distributed mass of connecting rod is lumped 
at points A & B and that of crank rod is lumped at point A & 0 using principle of statics. 
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Center of 
rotation of y 
crank rod 

Connecting Rod 

B 
FB .----......,. 

BaseFrame~ 
~ Fcx 

Z~------------------~-------------~ 

CG of Machine @ Base Frame Lavel ------' 

z~-----------------------------------------------. 
I 

CG of Machine @ Base Frame Level:-\ : 

--fE--------------1------b---1J---
Base Frame I :. z ·1 

Figure 6.2-2 Single Machine - Position at any Instant t - Dynamic Forces 
Transferred at CG of Machine @ Base Frame Level 

Mass at A mA =mr(rj/r)+mc(t2/1) 

Mass at B mH =mc(tl/l)+m" 

Dynamic force 

x 

Dynamic force generated at point A FA = m A x r x 0;2 

(This force acts radially outwards along OA) 

Dynamic force generated at point B FH = mH x Z" 

(This force acts linearly along OZ) 

Let us now evaluate z p in terms of motion parameters of the machine. 

(6.2-1 ) 

(6.2-2) 
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Zp = 1 + r - (rcose + 1 cos¢)= r(l- cose)+ 1(1- cos¢) (6.2-3) 

From Figure 6.2-1, we get 

Also AQ = r sin e = 1 sin ¢; this gives 

Using series expansion and ignoring higher order terms, it gives 

(6.2-4) 

Substituting 6.2-4 in equation 6.2-3, we get 

zp = r(l-cosO)+~C(1-COS20) = r(1 +...c..)-r(cos 0 +...c.. cos 20) 
4 , ~ ~ 

Since 0 = OJ t ; substituting we get 

(6.2-5) 

Differentiating it gives 

ip =rOJ(sinOJt+ ;,sin2OJt) 

(6.2-6) 

Substituting in equation 6.2-2, we get 

FIJ = mlJ x Z p = mlJ x {rOJ 2( cos OJ t +fcOS2OJ t)}z p 

= ~BrOJ2~cosOJ t )+ mlJrOJ2( fCOS2OJ t) 
primary component ' v ' 

(6.2-7) 

secondary component 

It is seen that the Dynamic force generated at point A that acts radially outwards along OA has 
only one component at machine speed whereas Dynamic force generated at point B that acts 
along OZ, has two components, one at machine speed and the other at twice the machine speed. 
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These dynamic forces in turn are transferred to the foundation through the base trame of the 
machine. Resolving these forces and transferring to CG of Base Frame point C at instant of time t , 
we get: 

(6.2-8) 

Here FA & FB are as given by equations 6.2-1 and 6.2-7 respectively. M ex is the moment at C 

about X -axis and y & z are distances of point 0 trom point C in Y & Z direction respectively. 

These forces are shown in Figure 6.2-2. From this equation, we get forces: 

At () = 0° , forces and moments acing at point Care: 

Fey = 0; F;.,z = (FA + FE}, Mcx = (FA + FE)x Y (6.2-9) 

At () = 90° , forces and moments acing at point Care: 

(6.2-10) 

6.2.1.2 Multi-Cyliuder Machine 

Consider a multi-cylinder engine having n cylinders. The placement of these n cylinders in Plan 
(X-Z Plane) is as shown in Figure 6.2-3. Let us consider that at any instant of time t , the crank rod 

in /h cylinder makes an angle (}i with the O-Z. 

Dynamic forces are computed in line with the procedure for a single cylinder machine. The net 
force developed by the machine in a specific direction is the algebraic sum of the force developed 
in each cylinder in that direction. 

Forces developed in the /h cylinder machine 

Force along Z-direction at CG of the base trame level point C: 

Fezi = (FBI +FAI cos(};) (6.2-11) 

Force along V-direction at CG of the base trame level point C: 

Feyi = FAi sin(}i (6.2-12) 

Moment about X-axis at CG of the base trame level point C: 

M . = F . X Yi + F . X Zi eXI ez I eyl (6.2-13) 

In addition there shall be one more moment Mcz developed at point C about Z-axis. 
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Connecting Rod 

Base Frame~ 
• Fez 

z ... 

CG of Machine @ Base Frame Lavel----' 

Center of 
rotation of 
crank rod 

y 

z ~---------------------------------------------, 

~--------------~-------off---3 

X2 

X3 . 

C,"- CGofMachine I 
xn ; @ Base Frame Level 

1f-------------;~-------O,t----~ 
Base FrameJ I z I 

Figure 6.2-3 Multi Cylinder Machine - (n Cylinders) Position at any 
instant t - Dynamic Forces Transferred at CG of Machine 
C @ Base Frame Level 

Moment at point C about Z- axis by /h cylinder Machine 

M .=(F .xx,)+(F .xx;) 
cz I CZ I Cyl 

x 

6-19 

(6.2-14) 

Here xi' Y i & Z i are the distances of the /h machine from CG of the base frame level point C in 

X,Y and Z direction respectively. 
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Total Force at point C in Z direction 

Total Force at point C in Y direction 

Total Moment at point C about X- axis 

Total Moment at point C about Z- axis 

6.2.2 Transient Resonance 

n 
F ='[.F . 

ez 1=1 ez 1 

n 
F ='[.F . 

ey 1=1 C}'l 

n 

M ='[.M . 
ex 1=1 eXl 

n 
M ='[.M . 

ez i=1 ez 1 

(6.2-15) 

(6.2-16) 

(6.2-17) 

(6.2-18) 

In case the rotary forces of the crankshaft are not counterbalanced, transient resonance conditions 
will be setup during each start-up and shutdown. Thus for under-tuned foundations, Transient 

Resonance Amplitudes are to be computed as per provisions given in $ 6.1.2. 

6.2.3 Forces Due to Emergency and Faulted Conditions 

Machine develops very high forces during these conditions. Adequacy of foundation must be 
ensured to withstand these forces. Thus provisions as given in $ 6. J.5 are to be considered, if 
applicable, for strength design of the foundation only. 

6.2.4 Coupling of Machines 

Provisions as given in $ 6.1.6 are to be considered, ifapplicable. 

6.3 PARAMETERS FOR IMPACT MACHINES 

Various types of Impact Machines are in use by the industry. Impact produced by these machines 
fall under one of the following categories: 

i) Machines Producing Repeated Impacts e.g. Forge Hammers & Drop Hammers 
ii) Machines Producing Impulse/Pulse Loading e.g. Drop Crushers, Pig Breakers, Jolters, Forging 

and Stamping Press, etc. . 

6.3.1 Machines producing repeated Impacts- Forge Hammers 

Typical examples of Impact Machine are Forge Hammers. A Forge Hammer comprises of a Tup, 
an Anvil and a Frame. The complete assembly is mounted over a rigid RCC Foundation, which in 
tum rests on the soil. 
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Foundation Block 

(a) Forge Hammer 

Guide Frame attached to Foundation 
Elastic Pad below Anvil 

Tup + Upper Die 

Material 
for Forging 

Lower die 

Elastic Pad 

(b) Drop Hammer 

Guide Frame attached to Anvil 
Elastic Pad below Anvil 

Figure 6.3-1 A Typical Arrangement ofa Hammer Foundation 

6-21 

Drop Hammer is also a sub-set of Forge Hammer. Drop Hammers are used for Die Stampings, 
whereas Forge Hammers are used for Forging Operations. In case of Drop Hammers, Guide-frame 
is mounted over Anvil whereas in case of Forge Hammers, Guide-frame and Anvil are supported 
independently over the foundation block. 

The Tup, which is a block of heavy mass, falIs from a height and strikes the material, to be forged, 
placed on the Anvil. The Anvil is invariably placed over an elastic pad and the pad rests on the 
Foundation Block supported over soil. The elastic pad helps in preventing the bouncing of the 
Anvil over the Foundation. 

The force produced during the strike is termed as the Impact Force. The energy imparted by the 
impact force results in motion of the Anvil. The energy from the Anvil is then transmitted to the 
soil through the foundation. Thus for both these machines i.e. Forge and Drop Hammers, Machine 
parameters, therefore are those parameters that are necessary to compute initial velocity generated 
by the Anvil as well as stiffness properties of the elastic pad below the Anvil. 

Typical parameters required are: 

i) Total Mass of the Hammer i.e. Mass of the Tup, Anvil, Die & Frame 
ii) Mass offalling part i.e. Tup (also Mass of Upper Die in case of Drop Hammers) 
iii) Height of fall for the Tupf Energy of Impact 
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iv) Area of the Piston 
v) Pressure in the Cylinder 
vi) Frequency of Impact 
vii) Mass of Anvil (also Mass of Guide Frame if attached to Anvil) 
viii) Frequency i.e. Number of Blows/min 
ix) Base area of the Anvil 
x) Details of Anchor Bolts connecting frame base to the foundation 
xi) Thickness of Elastic Pad placed below Anvil and its Elastic Modulus 
xii) Coefficient of Restitution/Impact 

Depending upon machine type, additional parameters may be needed for evaluating dynamic 
forces. 

6.3.1.1 Dynamic Forces 

Vibration of the foundation subjected to impact by the hammer is basically an Initial Velocity 
Problem. We can represent the complete Hammer-Foundation System in two parts: 

1. A faIling Mass rno from a height h producing Impact 

ii. Remaining System that withstands this impact 

Let us first evaluate Initial Velocity of the Falling Mass 

Consider that the mass is falling freely. From basic law of dynamics, we write the Initial Velocity 
of the freely falling mass rno from a height has: 

vb =J2gh (6.3-1) 

(a) Single Acting Drop Hammers 

For a single acting Drop Hammer, initial velocity of the falling mass (mass of Tup and mass of 
Top Die) from a height h is written as: 

vb = "J2g h (6.3-2) 

h Represents total height offan of the falling mass 
g Represents acceleration due to gravity 

" Represents Efficiency of Drop 

Factor " depends upon energy lost in overcoming the friction to the Tup's movement and the 

resistance of the steam/air counter pressure. From practical considerations, the recommended value 
of Efficiency of Drop " is 0.65. 
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Tup + Upper Die 

Lower die 

Elastic Pad 

Foundation Block 

(a) Drop Hammer 
Guide Frame attached to Anvil 
Elastic Pad below Anvil 

T~ 
I 

h : 

1 1 

k 

(b) Equivalent Spring Mass System 

Figure 6.3-2 Atypical Arrangement of a Hammer Foundation - Equivalent 
Spring Mass System 

(b) Double Acting Hammers 

6-23 

In this case hammer is operated by pneumatic/steam pressure and initial velocity is given 
as: 

, (mo xg+ Ps XAp ) 
Vo = 17 2g hx 

moxg 
(6.3-3) 

The quantity in the bracket represents influence offorce on the piston to the initial velocity. 

Here: 
Ap Represents area of the piston 

Ps Represents pressure (steam/air) acting on the piston 

mo Represents total mass of the falling parts 

g Represents acceleration due to gravity 
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mo c=J Tup 

Anvil + Foundation Foundation 

(a) (b) 

Figure 6.3-3 (a) Foundation Represented as Single Spring Mass System 
(b) Foundation Represented as two Spring Mass System 

The impact of the Tup is resisted by the Anvil and transferred to soil through the foundation. Let us 
consider two cases that could be considered representative of Anvil-Foundation System. These are: 

i. Ifthere is no elastic pad below Anvil, then the Anvil becomes part of the foundation and 
the impact is resisted by the anvil and foundation together. In this case, Foundation 
System is represented as a Single Spring Mass System subjected to initial velocity. 
System is as shown in Figure 6.3-3 (a) 

ii. If there is an elastic pad below Anvil, then the Anvil first resists the impact. Due to 
impact, the Anvil develops an initial velocity. In this case, Foundation System is 
represented as a Two Spring Mass System subjected to initial velocity. System is as 
shown in Figure 6.3-3 (b) 

For both these cases, we need to compute only initial velocity of the AnvillFoundation as the case 
may be due to impact of the Tup. 

For Single Spring Mass System shown in Figure 6.3-3 (a), initial velocity imparted to the anvil 
(Anvil + Foundation) by the impact of the Tup is given by equation (2.2.5-3) and the same is 
reproduced below: 
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, (1 + e) 
Vj =vox---

(1+~) 
(6.3-4) 

Here A. = m/mo represents ratio of mass of Anvil + Foundation to mass of Tup. 

For Two Spring Mass System shown in Figure 6.3-3 (b), initial velocity of the anvil is given by 
equation (3.2.1-20) and the same is reproduced below: 

, (1 +e) 
Vz = Vo x 

(1 + A.z) 
(6.3-5) 

Here ,.1,2 = mz / mo represents ratio of mass of Anvil to mass of Tup. 

Here e represents Coefficient of Restitution that depends upon properties of the material of the 
masses mo & m or mo & mz as the case may be. For perfectly plastic central impact, the value 

of e is zero and for perfectly elastic central impact e is equal to unity. For real bodies in practice, 
the value lies in the range 0 < e < I and for all practical purposes it's reasonably good to 

usee = 0.5. 

6.3.2 Machines Producing Impulse/Pulse Loading 

i) Forging and Stamping Press 

These presses may be of Hydraulic type, Friction Type or Eccentric. Generally these are very large 
capacity presses having pressing capacity in the range ofa few thousand tons say 10,000 t. Though 
dynamic forces transmitted to the foundation are small because of low speed of operation, stresses 
due to impact/shock is of significant order and may cause overloading to the order of 50 to 100% of 
the material to be forged. 

ii) Drop Weight Crushers 

These crushers, through dropping of ram, impart very high kinetic energy to the foundation 
resulting in transmission of high vibrations in the soil. Adjoining structures therefore need to be 
isolated from these crusher foundations. Impact forces are evaluated like those for hammers. 

iii) Crushing, Rolling and Grinding Mills 

These mills, due to presence of unbalance masses, produce high dynamic forces that in tum are 
transmitted to soil through foundation. Due to presence of unbalance masses, dynamic forces are 
evaluated in line with those for rotating machines. 
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Typical machine parameters/data required are: 

i) Mass Parameters 

a. Total Mass of machine 
b. Mass of cross head 
c. Mass of material to be forged 

ii) Dynamic Force Parameters 

d. Stroke of the press/ height offall of ram 
e. Pressure exerted by the press 
f. Load time history of the pulse 
g. Frequency ofImpact i.e. Number of Blows/min 
h. Unbalance force (in case ofmiIIs) 

iii) Height & Cross section area of steel columns (in case of Press) 
iv) Details of Anchor Bolts and other embedded parts 

6.3.2.1 Dynamic Forces 

The force produced during operation is termed as the Impulsive Force. Two types of pulse loading 
are considered: 

i) Short duration Impulse Loading 
ii) Long duration Pulse Loading 

Short Duration Impulse Loading: For machines producing Short Duration Impulse 
Loading, dynamic response depends upon dynamic excitation force and frequency of excitation. It 
is therefore desirable to consider Frequency of Impact i.e. Number of Blows/min for amplitude 
computation. Here dynamic magnification factor depends upon ratio of Frequency of Impact to 
natural frequency. Dynamic force is nothing but Impulse loading I as shown in Figure 6.3-4. 

Impulse I=FxT (6.3-6) 

In case Force Time History/Impulse Momentum is not defined by the manufacturer, its value may 
be considered as: 

Impulse 1 = mo xVo (6.3-7) 

Here mo represents total mass of the falling part and Vo = ~2gh is the terminal velocity, h being 

height offalI. 
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Natural frequency 

Number of strike per minute 

Frequency of Impact 

Frequency ratio 

Dynamic Magnification 

Amplitude 

P=Jf 
N 

OJ = 21C N 
60 

fJ=OJ 
P 

I 3 
Y=-flyXIO mm 

mp 

6-27 

rad/s 

rad/s 

(6.3-8) 

(6.3-9) 

Long Duration Pulse Loading: For machines producing Long Duration Pulse Loading. pulse 
shape showing load time history must be considered for computing dynamic magnification for 
amplitude computation. Dynamic magnification factor depends upon ratio of pulse duration to 
natural time period of foundation. For such loadings, maximum response reaches in a very short 
time before system damping gets effective. Depending upon ratio of duration of the pulse to natural 
time period, maximum response may occur either during the pulse or after the pulse. 

F /=FXt 

Figure 6.3-4 System Subjected to Impulsive Load 

System Response: Response due to pulse/impulse loading is discussed in detail in Chapter 
2 (see $ 2.2.6). Response of the system during the pulse duration (Phase I) is the Forced Vibration 
Response and the response after the pulse (Phase II) is the Free Vibration Response. 
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Irrespective of shape of the pulse, for frequency ratio fJy < I i.e. for ~ >..!. maximum response 
T 2 

occurs during forced vibration phase i.e. Phase I and for fJ y > I i.e. for ~ < ..!. , maximum response 
T 2 

occurs during Free Vibration Phase i.e. Phase II. 

We know that for a spring mass system having stiffness k and mass m 

Natural frequency is p = [k rad/s. This gives Time Period T = 2" . 
V~ P 

For Peak Dynamic Force induced by machine as Fy 

Amplitude thus becomes (6.3-10) 

Here q is the Fatigue Factor. In case fatigue factor is not defined, it may be taken equal to 2. 

Magnification Factor f.Jy vs. T / T is shown in Figure 2.2.6-3. 

6.4 AMPLITUDES OF VIBRATION 

The acceptable norms of vibration tolerance and accordingly the permissible amplitudes of 
vibration for different types of machines depend upon machine type, its class, its placement in the 
plant cycle and applicable codes of practices. The acceptance norms may differ from industry to 
industry and from country to country. Hence it is suggested that one should refer to applicable 
codes of practices in his respective country or follow the provisions laid down in International 
Codes/Standards. In addition, guidelinesl restrictions given by machine manufacturer must also 
be given due consideration. 

Before setting the limit to the permissible values of the amplitudes, the following considerations 
must be looked into: 

i. Computed amplitudes are always half amplitudes, whereas limiting amplitudes, as given 
by machine manufacturer, are invariably double amplitudes. 

ii. Limiting amplitudes, given by machine manufacturer, are at machine bearing locations 
whereas computed amplitudes are normaIly at the foundation level. 

iii. Machines also can withstand much higher amplitudes (3 to 5 times higher) than 
permissible without getting damaged. 

iv. Even when the amplitudes for a given machine are within permissible limits, it could be 
destructive /unacceptable to adjoining machines/structures. 

v. Similar machines would have different vibration limits when used in different 
environment viz. a pump required to supply lube-oil to machine bearing would certainly 
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have stringent vibration limits compared to similar pump for normal pumping applications 
as failure of pump in earlier case would have serious consequences. 

In view of the above, no common guidelines could be defined for setting permissible limits of 
vibration for all types of machines and for all applications. The governing criteria therefore are the 
permissible amounts of vibrations that the machine, its surroundings or the persons in the vicinity 
of the machines can tolerate. 

Vibration measurements on the machine are done a) during test at the shop floor at the test bed, b) 
during commissioning at the site and during normal running of the machine throughout its life 
cycle at specified time interval. For some machine, vibration monitoring is done continuously 24 
hours during operation of machine. Invariably, vibration measurements are taken at all salient 
points on the machine. These are: 

EXAMPLE PROBLEMS - ROTARY MACHINES 

P 6.1-1 

Compute eccentricity for a rotor having mass mr = 1000 kg, operating speed of 3000 rpm 
and balance grade 06.3 

Solution: 

Operating speed N = 3000 rpm; or 

0) = 50x 2 Xl! = 314.16 radls 

3000 . f = -- = 50 Hz. (cps) 
60 

Balance quality grade 06.3 (This means eO) = 6.3 mm/sec ) 

Eccentricity (in - m) e=~xl0-3 =2.00xl0-5 

314.16 

Thus we can say that eccentricity is e = 20 microns 

m 

Note: For computation purposes, Eccentricity value must be expressed in meters. 

P 6.1-2 

Compute unbalance force for the rotor, having mass mr = 1000 kg, balance grade 06.3 

and rotating at speed of 3000 rpm. 

https://engineersreferencebookspdf.com



6-30 

Solution: 

3000 
Operating speed N = 3000 rpm; or m = -- x 2 x 1l" = 314.16 radls 

60 

Balance quality grade (This means em = 6.3 mm/s) 

Design Machine Parameters 

Eccentricity corresponding to G6.3 (see P 6.1-1) e = 2.00xlO-5 m 

Unbalance force F; = Fo sin m t; Fo = m r e m2 

Fo = 1000x-2.0xlO-5 x(314.16)2 = 1974 N 

The force of 1974 N acts at excitation frequency m = 314.16 radls or 3000 rpm 

P 6.1-3 

A machine has its rotor having mass mr = 1000 kg, operating speed of 3000 rpm and 

balance grade G6.3. Consider that the rotor is along Z-Z axis, supported on two pedestal 
bearings A & B and the height of centerline of the rotor above the bottom of the bearing 
pedestal is 800 mm as shown in Figure P 6.1-3. Static reactions RA & Rn due to rotor at the 

bearing A and bearing B respectively are in the ratio oft:1. Compute the unbalance dynamic 
force a) at the bearing top points and b) at bearing bottom points. 

y 

T 
~ 
g 
00 

Bearing A 
L-----,~ Z 

Rotor 

Static Rotor Reaction 
RA =RB 

BearingB 

Figure P 6.1-3 Rotor Supported on Bearing A & B 

Solution: 

Rotor data is same as that in P 6.1-2. 

Unbalance force (see P 6.1-2) =1974 N 
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Since RA = RB ' the reactions due to dynamic force on bearings A & B shall bj:: equal. Thus reaction 
\ 

due to dynamic force at each bearing = FA = FB = 0.5 x 1974 = 987 N 

a) Unbalance dynamic force at rotor support point of bearing 

Max. Vertical Unbalance Force (sin ¢ = 1) along Y -Y at each bearing 

Max. Horizontal Unbalance Force (cos ¢ = 1) along X-X at each bearing 

b) Unbalance dynamic· force at bottom of bearing 

Fy =987N 

Fx =987 N 

The vertical force gets transmitted to bearing bottom as it is whereas horizontal force also generates 
moment at the bearing bottom. 

Max. Vertical Unbalance Force (along V-V) at each bearing (Same as Fy) = 987 N 

Max. Horizontal Unbalance Force (along X-X) at each bearing (Same as Fx) =987 N 

Max. Moment at bearing pedestal bottom (About Z-axis) M; = 987xO.8 = 789.6 Nm 

P 6.1-4 

For the data given in Problem 6.1-3, consider static reactions due to rotor at the two bearing 
ends are such that RA : RB :: 7: 3. Compute the unbalance dynamic force a) at the bearing top 

points and b) at bearing bottom points. 

y 
Rotor 

T 
8 RA RB 
8 

0 Static Rotor Reaction 0 
00 RA : RB :: 7: 3 

~ 
Z Bearing A BearingB 

Figure P 6.1-4 Rotor Supported on Bearing A & B 
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Solution: 

Unbalance force (see Problem 6.1-2) =1974 N 

a) Unbalance dynamic force at rotor support point of bearing 

Max. Vertical Unbalance Force (along V-V) 

At Bearing A 

At Bearing B 

Fy@A = 0.7x1974 = 1381.8 N 

Fy@8 = 0.3 x 1974 = 592.2 N 

Max. Horizontal Unbalance Force (along X-X) 

At Bearing A 

At Bearing B 

Fx@A = 0.7x1974 = 1381.8 N 

Fx@8 = 0.3x1974 =: 592.2 N 

b) Unbalance dynamic force at bottom of bearing 

Max. Vertical Unbalance Force (along V-V) at Bearing A 

Max. Vertical Unbalance Force (along V-V) at Bearing B 

Max. Horizontal Unbalance Force (along X-X) at Bearing A 

Max. Horizontal Unbalance Force (along X-X) at Bearing B 

= 1381.8 N 

= 592.2 N 

= 1381.8 N 

=592.2 N 

Max. Moment M; at base of Bearing Pedestal A 

Maximum moment M; at base of Bearing Pedestal B 

M¢@A = 131B.BxO.B = 1055.04 Nm 

M¢@8 = 592.2xO.B = 473.76 Nm 

EXAMPLE PROBLEMS - RECIPROCATING MACHINES 

P 6.2-1 

A horizontal single cylinder reciprocating engine is mounted on a base frame supported by a 
foundation block as shown in Figure P 6.2-1. Compute unbalanced forces and moments @ 
CG of Base Frame point C. 

The data for the engine is as under: 

Mass of the piston & piston rod 
Mass of the crank 
Distance of crank Centroid C r from axis of rotation point 0 

19.5 kg 
15.8 kg 
150mm 

https://engineersreferencebookspdf.com



Design Machine Parameters 

Mass of connecting rod 
Length of connecting rod 
Distance of connecting rod Centroid Ce from point B 

Crank Radius 
Operating Speed of the engine 
Distance of point 0 from Base frame Centroid (along Z) 
Distance of point 0 from Base frame Centroid (along Y) 

y 

J 
Z4---r--+--ttIe""------+---<J 

B 

y 
Base Frame z 

c 

Foundation 

9.7 kg 
650mm 
400mm 

270mm 
300 rpm 
1200 mm 
500mm 

Figure P6.2-1 Single Cylinder Horizontal Reciprocating Engine 

Solution 

Rewriting basic data in to working units:-

Mass ofthe piston & piston rod 

Mass of the crank 

Distance of crank Centroid Cr from axis of rotation point 0 

Mass of connecting rod 

Length of connecting rod 

Distance of connecting rod Centroid Cc from point B 

Crank Radius 

Distance of point 0 from Base Frame Centroid (along Z) 

mp 19.5 kg 

mr 15.8 kg 

1j 0.15 m 

me 9.70 kg 

/ 0.65m 

/2 0.40m 

r 0.27m 

z 1.20m 

6-33 
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Distance of point 0 from Foundation Centroid (along Y) y 0.50m 

Operating Speed 
300 

llJ = -X2ll = 31.42 rad/s 
60 

Computation of Masses at points A & B 

Mass atA: 
r I 12 0.15 0.4 

rnA =mr-+mc-=15.8x--+9.7x--=14.75 kg 
r 1 0.27 0.65 

Mass atB: = (t-/2) =97 (0.65-0.4) 195=2323 k 
m B me 1 + m p • x 0.65 +. . g 

Unbalance Forces: 

a) When crank shaft is parallel to Z axis - Crank makes an angle e = O· with Z axis 

i) Force generated by mass rnA at A 

Along Y axis FAy = 14.75 x 0.27 x 31.422 sin(O) = 0.0 N @sinllJt 

Along Z axis FAz = 14.75 x 0.27 x 31.422 cos(O) = 3929.8 N @ COSllJ t 

ii) Force generated by mass m B at B 

FSzI =23.23x0.27x31.422 =6190.5 N@cosllJt 

FBZ2 =6190.5X(0.27)=2571.5 N@cos2llJt 
0.65 

Forces Transferred at CG of Base Frame (C) 

F;.'ZI = F Az + FSzI = 3929.8+6190.5 = 10120.3 N@cosllJt 

Fez2 = F Bz2 = 2571.5 N @cos2llJt 

Mexl = Fezl x y = 10120.3 x 0.5 = 5060.15 Nm@cosllJt 

Mex2 = F.:z2 X Y = 2571.5 x 0.5 = 1285.75 Nm@cos2llJt 
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b) When crank shaft is parallel to Y axis - Crank makes an angle () = 900 with Z axis 

i) Force generated by mass m A at A 

Along Yaxis 

Along Z axis 

FAy = 14.75 x 0.27 x 31.422 sin(1l' I 2)= 3929.8 N @sinwt 

FA: = 14.75x0.27x31.422 cos(1l' 12) = 0.0 N@cosliJt 

ii) Force generated by mass m H at B 

FBz1 = 6190.5 N @ coswt 

F Bz2 = 2571.5 N @ cos2w/ 

Forces Transferred at CG of Base Frame (C) 

Fey = FAy = 3929.8 N @sinwt 

Fczl = F Bzl = 6190.5 N @coswt 

Fcz2 = F Hz2 = 2571.5 N @cos2w/ 

Mcxl = FAy x Z + F Hzl x y = 3929.8 X 1.2 + 6190.5 X 0.5 = 7811 Nm@cosw/ 

Mcx2 = FBz2 xy=2571.5x0.5 = 1285.75 Nm@cos2liJ/ 

6-35 

For the foundation design, these forces are finally transferred at DOF location of the foundation. 
Amplitudes of vibration are evaluated for both these conditions as above. 

P 6.2-2 

A horizontal twin cylinder reciprocating engine is mounted on a base frame supported by a 
foundation block as shown in Figure P 6.2-2. The data for each cylinder of engine is same as 

that of example P 6.2-1. Consider the crank angles as a = 0 & a = 1800 for 1 II and 2nd 

cylinder respectively. Compute unbalanced forces and moments @ CG of Base Frame point 
C. Both the cylinders are placed equidistant from Z axis along X as shown in figure. 

Distance of point 0 from Base frame Centroid (along Z) 
Distance of point 0 from Base frame Centroid (along Y) 
Distance of point 0 of each cylinder from Base frame Centroid (along X) 

Solution 

Distance of point 0 from Base Frame Centroid (along Z) 

1200 mm 
500mm 
800mm 

z = 1.20 m 
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y 

z~ 
X 

Foundation 

Figure P 6.2-2 Twin Cylinder - Horizontal Reciprocating Engine with Crank: 
angle 00 & 1800 

Distance of point 0 from Foundation Centroid (along Y) 

Distance of point 0 of from Base frame Centroid (along X) 

300 
Operating Speed OJ = - X 2:r = 31.42 rad/s 

60 

Masses at points A & B for each cylinder 

Mass atA: mA = 14.75 kg Mass at B: mB =23.23 kg 

Unbalance Forces: 

y=0.50 m 

x =0.80 m 

a) When crank shaft is parallel to Z axis - consider that crank of cylinder 1 makes an angle 

() = O· with Z axis 

Cylinder I: 

i) Force at A FAy =0.0 FAz =3929.8 N@cosOJt 

https://engineersreferencebookspdf.com



Design Machine Parameters 6-37 

ii) Force at B FSz ] =6190.5 N@cosmt 

FSz2 = 2571.5 N @ cos20Jt 

Cylinder 2: When crank of cylinder 1 makes an angle () = 0 0 with Z axis, crank of cylinder 2 

makes angle () = 1800 

iii) 

iv) 

Force at A 

Force at B 

FAy =0.0 FAz = -3929.8 N @cosOJt 

FBz ] = -6190.5 N @ cOSOJt 

FSz2 = -2571.5 N @ cos20Jt 

Forces Transferred at CG of Base Frame (C) 

Cy]] cy] 2 
~~ 

Fey = FAy + FAy = 0.0 @ cOSOJt 

cy] ] cy] 2 
~~ 

Fez] = FA z + FSz ] + FA z + FSz ] 

= (3929.8 + 6190.5)+ (- 3929.8 - 6190.5) = 0 N @cosOJt 

cy] ] cy] 2 

Fez2 =~ +~ =(2571.5)+(-2571.5)=0.0 N@cos20Jt 

cy] J cy] 2 

M ex ] = (FAZ + FBZ])X Y + (FA z + FSZ ] )xy 
cyJ ] cy] 2 

= (3929.8 + 6190.5)x 0.5 + (- 3929.8 - 6190.5)x O.S = 0.0 Nm @cosOJt 

cyJ 1 cy] 2 cyJ ] cyJ 2 
~~~~ 

Mcx2 = FSz2 X Y + FSz2 X Y = 2571.5 X 0.5 + - 2571.5 X 0.5 = 0.0 Nm @cos20Jt 

Equal and opposite forces of cylinder 1 & 2 along Z produce Torsional Moment at C about Y axis 
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At engine order frequency, we get 

cyl 1 cyl 2 

M eyl = (FAz + FBZl)X; + {FAZ + F;Zl)X (-x) 

cyl 1 cyl 2 

= (3929.8 + 6
A

I90.5)x O.S + {- 3929.8 - 6190.5)x (- 0.8) = 16192.5 Nm @ cOSOJ t 

At 1 sl harmonic, we get 

cyl 1 cyl 2 
~~ 

M ey2 = FBz2 xx+FBz2 xx 

cyl 1 cyl 2 

= (2571.5)XO.8+(-2571.5)x(-0.8)= 4114.4 Nm @ cos20Jt 

b) When crank shaft is parallel to Y axis - Consider that Crank of cylinder 1 makes an 
angle () = 90° with Z axis 

Cylinder I: 

v) 

vi) 

Cylinder 2: 

vii) 

Force at A 

Force at B 

Force at A 

FAy = 3929.8 N @ sin OJ!; F Az = 0.0 

FBzl = 6190.5 N @ cosOJ!; FBz2 = 2571.5 N @ cos20Jt 

FAy = -3929.8 N @ sin OJ! ; FAz =0.0 

viii) Force at B F Bzl = -6190.5 N @ cosOJ!; FBz2 = -2571.5 N@ cos20Jt 

Forces Transferred at CG of Base Frame (C) 

cyll cyl 2 
...-"-. ...-"-. 

Fey = FAy + FAy = 3929.8 - 3929.8 = 0.0 N @sin OJ t 

cyl 1 cyl 2 
~~ 

Fezl = FBzl + FBzl = 6190.5 -6190.5 = 0.0 N@cOSOJt 

cyl 1 cyl 2 

Fez2 = F;;; + F;;; = (2571.5)+ (- 2571.5) = 0.0 N @ cos2 OJ t 
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cyl I cyl 2 

Mcxl = tFBZI)XY'+ FAy x; + (Fnzl)xy'+ FAy x; 
~I ~2 

= {6190.5}x 0.5: (3929.8}x 1.2 + (-6190.5)x 0.5: (- 3929.8)x 1.2 = O.ONm@cosaJt 

cyl 1 cyl 2 
~~ 

Mcx2 = (FBzl)Xy+(FBzl}xY 
cyl I cyl 2 
~~ 

= (2571.5)x 0.5 + (- 2571.5)x 0.5 = 0.0 Nm@cos2aJt 

Equal and opposite forces of cylinder 1 & 2 at point B along Z produce Torsional Moment at C 
about Y axis 

At engine order frequency, we get 

cyl 1 cyl 2 

Mcyl =~+FBZI ;(-x) 
cyl I cyl 2 

=~+{-6190.5)x(-0.8)=9904.8 Nm @cosaJt 

At 1 sl harmonic, we get 

cyl I cyl 2 

Mcy2 =~+FBZ2;(-X) 
cyl I cyl 2 

=~+(-2571.5)x(-0.8)=4114.4 Nm @cos2aJt 

Equal and opposite forces of cylinder 1 & 2 at point A along Y produce Rocking Moment at C 
about Z axis 

cyl I cyl 2 

Me; =~+FAY;(-X) 
cyl I cyl 2 

= {3929.8)x 0.8+(-3929.8)x (-0.8)= 6287.7 Nm @sinaJt 

For the foundation design, these forces are finally transferred at DOF location of the foundation. 
Amplitudes of vibration are evaluated for both these conditions as above. 
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P 6.2-3 

A vertical single cylinder reciprocating engine is mounted on a base frame supported by a 
foundation block as shown in Figure P 6.2-3. The data for the engine is same as that for P 6.2-
1. The motion of the piston is along Y axis. Compute unbalanced forces and moments @ CG 
of Base Frame point C. 

Distance of point 0 from Base frame Centroid (along Y) 500mm 

y 

A 

y 
Base Frame CG 

c 
Foundation 

Figore P 6.2-3 Single Cylinder - Vertical Reciprocating Engine 

Solution: 

Computation of Masses at points A & B 

Mass at A: mA = 14.75 kg Mass at B : mB = 23.23 kg 

Unbalance Forces: 

a) When crank shaft is parallel to Y axis - Crank makes an angle () = O· with Y axis 

i) Force generated by mass m A at A 

Along Yaxis FAy = 3929.8 N @ coswt 

Along Z axis FAz = 0.0 N@sinwt 
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ii) Force generated by mass m B at B 

Along Z axis FBy1 =6190.5 N @coswt at engine order frequency 

Along Z axis F By2 = 2571.5 N @cos2wt at First Harmonic 

Forces Transferred at CG of Base Frame (C) 

Fey1 =FAy+FByl =10120.3 N @coswt 

F<y2 = FBy2 = 2571.5 N @ cos2wt 

Fez = F Az = 0.0 N @ sinwt 

Mcx = FAz xy = 0.0 Nm @ sinwt 

b) When crank shaft is parallel to Z axis - Crank makes an angle ():::;: 90° with Yaxis 

iii) Force generated by mass m A at A 

Along Y axis 

Along Z axis 

FAy = 0.0 N @coswt 

FAz = 3929.8 N @ sinaJ t 

iv) Force generated by mass m B at B 

Along Z axis 

Along Z axis 

F By1 = 6190.5 N @coswt 

F By2 = 2571.5 N @cos2wt 

Forces Transferred at CG of Base Frame (C) 

Fey1 =FBy1 :::;:6190.5 N @cosaJt 

Fcy2 = F By2 = 2571.5 N @cos2wt 

Fez = FA: = 3929.8 N @ sinwt 

Mex =FAz xy=3929.8 xO.5=1964.9 Nm @sinwt 

For the foundation design, these forces are finally transferred at DOF location of the foundation. 
Amplitudes of vibration are evaluated for both these conditions as above. 
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P 6.2-4 

A vertical twin cylinder reciprocating en~ine is mounted on a base frame supported by a 
foundation block as shown in Figure P 6.2-4. The data for each cylinder of engine is 
same as that of example P6.2-1. Motion of the piston is along Y and crank moves in Y-Z 

plane. Consider the crank angles as a = O&a = 180· for lSI and 2nd cylinder respectively. 
Compute unbalanced forces and moments @ CG of Base Frame point C. Both the cylinders 
are placed such that the eccentricity along Z with respect to CG of Base frame is zero and the 
cylinders are equidistant from point C along X as shown in Figure. 

Distance of point 0 from Base frame Centroid (along Y) 
Distance of point 0 of each cylinder from Base frame Centroid (along X) 

POll 
I1dat' 1011 

y 

Figure P 6.2-4 Twin Cylinder Vertical Reciprocating Engine 
with Crank angle 00 & 1800 

500mm 
800mm 
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Solution 

Distance of point 0 from C along Y (for each cylinder) 

Distance of point 0 from C along X (for each cylinder) 
300 

y 0.50m 

x Q.8Om 

Operating Speed co = - X 2Ji = 31.42 radls 
60 

Masses at points A & B for each cylinder 

mA = 14.75 kg mB =23.23 kg 

Unbalance ForceS! 

a) When crank shaft is parallel to Y axis - consider that crank shaft of cylinder 1 makes an 
angle () = O· with Y axis 

Cylinder 1: () = O· 

Cylinder 2: 

i) ForceatA FAy =3929.8 N @coscot; F Az = 0.0 N @sincot 

ii) ForceatB FRyl =6190.5 N@coswt; FBy2 =2571.5 N@cos2cot 

iii) 

When crank of cylinder I makes an angle () = O· with Y axis, crank of cylinder 2 

makes angle () = 180· 

Force at A FAy = -3929.8 N @ coswt ; FA: = 0.0 N @sincot 

iv) Force at B FRyl = -6190.5 N @ COSlYt ; FBy2 = -2571.5 N @ cos2wt 

Fm-ces Transferred at CG of Base Frame (C) 

cyl 1 cyl 2 
~~ 

Feyl = FAy + F Byl + FAy + FByl 

= (3929.8+6190.5)+(-3929.8-6190.5)= 0.0 N@coslDt 

cyl 1 cyl 2 

Fey2 = F;;; +F;;;; =(2571.5)+(-2571.5)=0.0 N@cos2cot 

Cyl 1 cyl 2 
~ ~ 

Fez = FAz + FAz = 0.0 + 0.0 = 0.0 N @ sin co t 

cyl 1 cyl 2 
r--"---. r--"---. 

Mex = F Az xy + FA: xy = 0.0 Nm@sincot 
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Equal and opposite forces of cylinder 1 & 2 at point A along Z produce Torsional Moment at C 
about Y axis 

cyl I cyl 2 

Mcy = ~+ FAz ;(-X) 
cyl I cyl 2 

= o.o;-o.s+O.Ox(-0.8)= 0.0 Nm @ sinalt 

Equal and opposite forces of cylinder 1 & 2 at point A & point B along Y produce Rocking 
Moment at C about Z axis at engine order frequency as well as it's 1st harmonic. 

cyll cyl 2 

Mczl = (FAY +FBYI}X;+(FAY +F;YI}X(-X) 
cyl I cyl 2 

= (3929.8 + 6
A

I90.5)x 0.8 + (-3929.8 -6190.5)x (-0.8)= 16192.5 Nm @COSalt 

cyll cyl 2 

Mcz2 = (FBY~}X; + (FBY2 )X (-x) 
cyl I cyl 2 

= (2571.5)x 0.8 + ( - 257 1.5)x (- 0.8) = 4114.4 Nm @ cos2al t 

b) When crank shaft is parallel to Z axis i.e. Crank of cylinder 1 makes an angle () = 90' 
with Yaxis 

Cylinder 1: 

v) Force at A FAy = 0.0 N @COSalt; FAz = 3929.8 N @sinalt 

vi) ForceatB FByl =6190.5 N@cosalt; FBy2 =2571.5 N@cos2alt 

Cylinder 2: 

vii) Force at A FAy = 0.0 N @COSalt ; FAz = -3929.8 N @sinalt 

viii) Force at B FByl = -6190..5 N @COSalt; FBy2 = -2571.5 N @cos2alt 

Forces Transferred at CG of Base Frame (C) 

cyll cyl 2 ....--.... ....--.... 
Feyl =FByl +FByl =6190.5-6190.5=0.0 N@cosalt 

cyl I cyl 2 

FCY2 =F;;; +F;;; =(2571.5)+(-2571.5)=0.0 N@cos2alt 

cyl I cyl 2 
~~ 

Fez = FAz + FAz = 3929.8 - 3929.8 = 0.0 N @ COSal t 
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cy\ \ cy\ 2 cy\ \ cy\ 2 
~ ~ r---A---, ~ 

Mcx = FAz X Y + FAz x Y = 3929.8 x 0.5 + - 3929.8 x 0.5 = 0.0 Nm @ sinlV t 

Equal and opposite forces of cylinder I & 2 at point A along Z produce Torsional Moment at C 
about Y axis 

cy\ \ cy\ 2 cy\ \ cy\ 2 

Mcy =~ +FAZ;(-X)=~ + (-3929.8)x(-0.8) 

= 6287.7 Nm @ sinlVt 

Equal and opposite forces of cylinder 1 & 2 at point B along Y produce Rocking Moment at C 
about Z axis 

cy\ \ cy\ 2 
~~ 

Mcz\ = FBy\ xx+ FBy\ x{-x} 
cy\ \ cy\ 2 

= (6190.5)xO.S+(-6190.5)x(-0.8)= 9904.8 Nm @coslVt 
cy\ \ cy\ 2 

Mcz2 = ~+'FBy2 :(-x) 
cy\ \ cy\ 2 

= (2571.5)xO.S+(-2571.5)x(-0.8)= 4114.4 Nm @ COS2lVt 

For the foundation design, these forces are finally transferred at DOF location of the foundation 
and amplitudes of vibration are evaluated for both these conditions as above. 

EXAMPLE PROBLEMS - IMPACT MACHINES 

P 6.3-1 

For the system shown in Figure P 6.3-1, compute velocity developed by the Anvil after impact. 
Assume Efficiency of Drop 17 = 0.65 and coefficient of Restitution e = 0.5 • 

Solution: 

The data for a hammer is as under: 

Mass ofTup 

Mass of Anvil 

Height of fall 

mo =3500 kg 

m2 =80000 kg 

h=2m 
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mo I Tup mo = 3500 kg 

1------,-_--1 
Anvil m2 = 80000 kg 

Figure P6.3-1 A Spring Mass System SUbjected to Impact 

Stiffness of Elastic Pad below Anvil k2 = 3.9 xl 06 kN/m 

Efficiency of Drop 1] = 0.65 

Coefficient of Restitution for the impact e=O.5 

m2 = 80000 kg; mo = 3500 kg; 

k2 =3.9xI06 kN/m; h=2m; 

Initial Velocity of mass m2 

Velocity of mass mo before impact 

vo = 0.65~2gh = 0.65·h x 9.81 x2 = 4.07 mls 

~ = m2 = 80000 = 22.857 
mo 3500 

Velocity of mass ~ after impact 

v= v' x (I + e1 =4.0'H< (1 + 0.5») = 0.256 mlsec 
2 0 (l+~) (1+22.86) 

1] = 0.65 

e=O.5 

https://engineersreferencebookspdf.com



Design Machine Parameters 6-47 

P 6.3-2 

Compute the velocity developed by the Anvil for a double acting hammer having data as 
under: 

Mass ofTuj> 

Mass of upper die 

Height of Tup Stroke 

Area of Piston 

Steam Pressure 

Mass of Anvil 

Mass of Frame 

Anvil Base Area 

Elastic Pad below Anvil: 

Elastic Modulus 

Thickness of Pad 

Efficiency of Drop 

Coefficient of Restitution for the impact 

Solution: 

Initial Velocity developed by Anvil 

Let us designate falling mass to be mo 

mo = 2000 + 500 = 2500 kg 

2000 kg 

500 kg 

h = 1.0 m 

Ap =0.2m2 

Ps = 1000 kN/m2 

40000 kg 

15000 kg 

6m 2 

Ep =3.0 x10 5 kN/m2 

t = 0.4 m 
17 = 0.65 

e=0.5 

Velocity of mass mo before impact Vo (see equation 6.3-3) 

(
moXg+psXAp) Vo = 17 2g hx 

moxg 

Vo =0.65 2X9.81XIX(2500X9.81+1000XI0
3

XO.2) =8.71 rnIs 
2500x9.81 

Velocity of mass m2 after impact v2 
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Let us designate mass of Anvil along with mass of frame as m2 

m2 = 40000+ 15000 = 55000 kg 

~ = m2 = 55000 =22 
mo 2500 

v =v' x O+e) =8.7Ix (1+0.5)) =0.568 m/sec 
2 0 O+~) (1+22) 
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7 

DESIGN FOUNDATION PARAMETERS 

• Foundation Type 
• Foundation Material 
• Foundation Eccentricity 
• Foundation Tuning 
• Isolation from adjoining Structures 
• Vibration Limits 
• Block Foundation 
• Frame Foundation 
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DESIGN FOUNDATION PARAMETERS 

There are many foundation-associated parameters viz. Foundation Type, Foundation Material. 
Foundation Eccentricity. Foundation Tuning. Vibration Limits. Foundation Sizing. & Stiffness, 
Strength adequacy etc that are briefly introduced in Chapter 1. Discussion is oriented to highlight 
their influence on machine foundation response. 

7.1 FOUNDATION TYPE 

Machine type and its characteristics playa significant role while selecting the type of foundation. 
Other parameters like high dynamic response; weak soils. etc may also influence foundation type , 
and size. Most commonly used foundations in the industry. are Block Foundations and Frame 
Foundations and only these are addressed here in this chapter. 

Block Foundation: Block Foundations have commonly been used for supporting all types of 
machines viz. rotary. recipr.ocating & impact machines. irrespective of their speed of operation. In 
this case. machine is mounted over a solid block. generally made of concrete. The foundation block 
in tum rests on the soil. A typical Block Foundation is shown in Figure 7.1-1. 

Foundation Block 

Figure 7.1-1 A Typical Block Foundation 

Frame Foundation: Frame foundations are used for turbo-generators. turbo-compressors 
and various other machines whose mechanical system requires frame type of supporting system. 

The foundation is a 3-D frame structure. having base raft. a set of columns and beams and top deck 
to support the machine. These frame foundations have a number of cross frames in transverse 
direction tied up by longitudinal beams and/or thick slab components. 
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Top Deck 

Figure 7.1-2 A Typical Frame Foundation 

Machine is supported over a RCC deck called top deck that in tum is supported by a set of 
columns. These columns are attached to base raft that rests either directly over soil or through a set 
of piles. Suitable openings are provided in the top deck for taking out piping, locating other 
equipment directly below the machine and so on. A typical frame foundation supporting the 
machine is shown in Figure 7.1-2. 

7.2 FOUNDATION MATERIAL 

Most common material used for mach.ine foundation is Reinforced Cement Concrete (RCC). In 
specific cases, Structural Steel has also been used for Frame Foundations. As the percentage of 
Structural Steel Frame Foundations for real application is much less compared to RCC Frame 
foundations, the discussion is restricted to RCC foundations only. 

7.2.1 Concrete 

Properties required are: Mass Density, Dynamic Elastic Modulus (for dynamic ~alysis), Static 
Elastic Modulus (for strength analysis) and Poisson's Ratio. In addition allowable $tresses (bending 
compression, bending tension, direct compression, direct tension and shear) are needed for strength 
analysis. 
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I. Grade of concrete: 

The grade of concrete depicts its Characteristic Compressive Strength. For example, concrete grade 

M 20 corresponds to the Characteristic Compressive Strength lek of 20 N/mm 2 for 150 mm 

Cube at 28 days. Letter M followed by two numeral digits designates grade of concrete e.g. 
M20, M 25, M 30. The two digits just after letter M represent the Characteristic Strength of that 

grade of concrete in MPa or N/mm 2 • 

Characteristic Strength lek for any concrete grade represents its Compressive Strength in N/mm2 

of 150 mm cube at 28 days. This nomenclature is as per Indian Standard Code of Practice 
- IS 456. 

Conc. Grade 

Characteristic Strength· lek N/mm 2 

Mass Density of Concrete kg/m 3 (all grades) 

Poisson's Ratio (all grades) 

M20 

20 

2500 

0.15 

M25 

25 

M30 

30 

The Grades of Concrete recommended for Machine Foundation are M 20, M 25, M 30. It is 

generally considered good enough to use M 20 grade concrete for Block Foundations and 

M 25 or M 30 grade for Frame foundations. Higher grades, if desired, may also be used. 

II. Elastic Modulus 

The elastic modulus of concrete varies with grade of concrete. The values of Elastic Modulus 

(kN/m 2) both static and dynamic, as given by IS 2974, reproduced hereunder lie in ± 20 % range 

(approximately). 

Estatic E*dynamic 

M20 20xl06 24xl06 25xl06 to 30xl06 

M25 22xl06 26xl06 28x 106 to 34xl06 

M30 25xl06 29xl06 31x 106 to 37xl06 

There are different schools of thought regarding Dynamic Modulus of Elasticity (E~nami'.)' For 

dynamic response computation, recommendations given by various codes, handbooks and 
textbooks, have been found to be in variance. Some codes recommend use of dynamic modulus 
of elasticity for dynamic analysis whereas some are silent about it. 
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As the design value of Elastic modulus of concrete is strain dependent, reported test results do not 
indicate any appreciable variation between Dynamic Elastic Modulus and Static Elastic Modulus of 
concrete at low strain levels. Author has also performed tests on certain foundations and observed 
that strain levels developed in the machine foundations under dynamic operating conditions are of 
low order. Similar observations are reported by some other authors too. 

In view of the above, author recommends use of Static Elastic Modulus for all machine 
foundation design computations except those cases where associated strain levels during dynamic 
response are likely to be of higher order. 

III. Pennissible Stresses (All Stresses in MPa or N/mm 2 ) 

Besides Elastic modulus, stress Properties of Concrete with respect to its grade may differ from 
conntry to GOOntr}' depending upon their practices and applicable standards. The Properties of 
Concrete given below are as listed in Indian Standard Code of Practice IS 456. 

Cone. Grade M20 M25 M30 

Tensile Stress 2.8 3.2 3.6 
Bending Compression Stress 7.0 8.5 10.0 
Direct Compression 5.0 6.0 8.0 
Bond Stress (Plain Bars) 0.8 0.9 1.0 
Bond Stress (Defomted Bars) 1.28 1.44 1.6 

7.2.2 Reinforcement 

Both Mild Steel Bars, as well as High Yield strength Deformed Bars are recommended. Here again, 
stress Properties of Reinforcing bars may differ from country to country depending upon their 
practices and applicable standards. The Properties of Reinforcing bars given below are as listed in 
Indian Standard Code of Practice IS 456 

As per Indian Standard Code of practice, the Mild Steel Bars conforming to IS 432 (Part I & Part 
2) and High Yield strength Deformed Bars conforming to IS 1786 meet the requirements. The 
Properties of Reinforcement Steel (conforming to IS 432 and IS 1786) given below are as listed in 
Indian Standard Code of Practice IS 456. 

Allowable Stresses (MPa or N/mm 2 ) 

Steel Reinforcing Bars 

Tensile Stress 

Upto20mm 
Over20mm 

Mild Steel 
(IS 432) 

140 
130 

High Yield (Deformed) Bars 
(IS 1786) 

230 
230 
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Compressive Stress (MPa orN/mm2) 

Up to 20 mm 
Over20mm 

140 
130 

190 
190 
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Designer's Note: Designers are advised to use equivalent grades of concrete and steel as 
applicable in their respective countries. 

7.3 FOUNDATION ECCENTRICITY 

It is one of the controlling parameter for sizing the foundation. It is defined as the distance between 
center of mass and center of stiffness along either length or width of the foundation. Thus the 
eccentricity along length may be different than that along width ofthe foundation. 

Eccentricity it is defined as the distance between center of mass of overall system (machine + 
foundation) and center of stiffness (i.e. CG of the base contact area of the foundation with the 
soil). All components of machine foundation system that contribute to inertia must be included in 
computing combined CG. In other words machine mass, mass of base frame, mass of grout (if 
considered significant), and soil mass (if any) over the extended potion of the foundation base and 
foundation mass (duly accounting for all large openings) must be considered while computing 
eccentricity . 

Absence of eccentricity not only ensures uniform pressure on the soil but also makes vertical mode 
decoupled from translational and rocking modes (see § 3.3.2.1). The presence of eccentricity 
results in generating rocking modes of vibration. For example, for a foundation in X-Z plane, the 
presence of eccentricity along Z direction induces moments about X-axis and eccentricity along X 
direction induces moments about Z-axis. These moments contribute to amplitudes in rocking 
modes of vibration. For higher eccentricity values, these modes may tum out to be significant 
modes of vibration and if not properly accounted could tum out to be a cause for high vibration. 
That's why it is desirable to control foundation eccentricity while sizing the foundation (see § 
7.3). 

Eccentricity should be kept to a bare mlfllmum but in no case should exceed 5 % of the 
corresponding dimension of foundation i.e. eccentricity along X direction should be within 5 % of 
foundation dimension along X and so is the case along Z. For very long foundation dimensions, it 
is recommended to keep the eccentricity within 2 %. 

7.4 FOUNDATION TUNING 

The three parameters that influence natural frequency of foundation are Machine, Soil and 
Foundation and any variation in the design data of these main components affects natural frequency 
of the machine foundation system. 
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It is also true that the possibility of variation in the design data vis-it-vis actual data cannot be 
ruled out. For example variation in soil data may be attributed to soil test methods, test agency, 
type and quality of instrumentation used, effect of embedment, influence of ground water table etc. 
Similarly variation in machine data may be attributed to the change in design data vis-a-vis actual 
data supplied with the machine, last minute change of vendor for the supply etc. 

Such variations put a question mark on the confidence level of the computed values of natural 
frequencies, amplitudes and the transmitted force. It is for these reasons that computed natural 
frequencies are kept sufficiently away from operating speeds to avoid resonance. In other words 
computed natural frequencies should have sufficient frequency margin with respect to operating 
speed so as not to encounter direct or indirect resonance. 

Based on practical experience, it is recommended to keep the frequency margin as ± 20 % i.e. 

the combined natural frequencies of the foundation should be at least 20 % away from operating 
speeds and preferably from their harmonics too. 
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Just for the sake of understanding, Figure 2.2.2-4 giving variation of Magnification Factor ' f.1 ' 

with Frequency Ratio f3 has been reproduced as Figure 7.4-1 by blocking the zone for ± 20 % f3 
i.e. 0.8 < f3 > 1.2. It is seen from the Figure that the frequency separation of ± 20 % ensures a 

significant reduction in magnification factor even for zero damping thus ensuring reduction in 
amplitudes of vibration. 

7.4.1 Under-Tuned Foundation 

For high-speed machines it is desirable to design the foundation as under-tuned foundation by 
keeping its vertical natural frequency below the operating speed of the machine. Such under-tuned 
foundatibns, however, would always face resonance during every startup and shutdown of the 
machine on account of its natural frequency being less than operating speed. Such a condition is 
termed as transient resonance and computation of amplitudes during transient resonance is 
therefore a must. 

7.4.2 Over-Tuned Foundation 

For low speed machines it is desirable to have over-tuned foundation i.e. keeping its vertical 
natural frequency above the operating speed of the machine. For such foundations it is desirable to 
check for likelihood of resonance with higher harmonics of the machine. It is however desirable, 
though not essential, to avoid resonance with these higher harmonics. If not, these could tum out to 
be the cause of high vibration on account of resonance with 2-X & 3-X frequency components i.e. 
frequencies corresponding to twice the operating speed and thrice the operating speed of the 
machine respectively. 

At times difficulty is encountered with medium-speed machines. Here, one or more natural 
frequencies faU in the operating speed range and it becomes difficult to maintain ±20 % margin 

with the operating speed. In such a case the dynamic amplitUdes are computed with ± 20 % values 

of the computed natural frequencies so as to account for possibility of any direct/indirect resonance. 
Ifamplitudes show higher values, it is desirable to re-size the foundation (within layout constraints) 
and reanalyze till satisfactory results are obtained. 

7.5 ISOLATION FROM ADJOINING STRUCTURES 

Foundation inust be isolated from adjoining structures, their foundations as well as from the 
operating floors. A clear air gap of 25 mm to 100 mm all around the foundation must be 
maintained. If this condition is not met, the reliability of results of the analysis i.e. frequencies and 
amplitUdes becomes questionable. 

For under-tuned foundations, flexible bel10ws must be provided for all inward and outward 
piping connected to machine otherwise the piping stiffness would definitely influence the natural 
frequency as well as amplitudes of vibration and it may not be feasible to account for this effect in 
mathematical modeling of machine foundation system. 
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7.6 OTHER MISCELLANEOUS EFFECTS 

Pockets, Notches, Projections: All such effects like pockets, notches, projections, primary and 
secondary grout, etc. are to be 'accounted for mass effect only. Their influence on stiffness, since 
not significant, is normally ignored. 

High vibrations have been witnessed by the author on account of carbonization of the grout. All 
efforts to control the vibration failed till grout was replaced under HP turbine Seating Plate. It is 
recommended to use only non-shrink grout and carry out periodic monitoring for grout health. 

7.7 VIBRATION LIMITS IN MACHINE FOUNDATION DESIGN 

No common guidelines could be defined for setting permissible limits of vibration for all types of 
machines and for all applications. The governing criteria therefore are the permissible amounts of 
vibrations that the machine, its surroundings or the persons in the vicinity of the machines can 
tolerate. 

Based on the information available in the literature, and also based on the measured vibration 
records on various types of machines, general recommendations of permissible/allowable 
amplitudes for machine foundation design for different machines are given as under: 

Table 7.7-1 Permissible Amplitudes 

Machine Type Permissible Amplitudes 

Foundations for Rotary Type Machines 

Low Speed Machines (100 'to 1500 rpm) 

Operating Speed 100 to 500 rpm 
Operating Speed 500 to 1500 rpm 

Medium Speed Machines 

Operating Speed 1500 to 3000 rpm 

High Speed Machines 

Operating Speed 3000 to 10000 rpm and above 

Microns 

200 to 80 
80 to 40 

40 to 20 

20 to 5 
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Foundations for Reciprocating Type Machines 

Machines (300 to 1500 rpm) 
Machines (100 to 300 rpm) 

Foundations for Impact Type Machines 

Hammer Foundations 

Foundations for Hammer Crushers 

Operating Frequency up to 300 rpm 
Operating Frequency above 300 rpm 

7.S BLOCK FOUNDATION 

1000 to 200 
1000 

1000 to 4000 

300 
100 
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The foundation should have adequate strength to withstand forces imparted by the machine and 
should be able to withstand other environmental effects like wind & earthquake. 

7.S.1 Foundation sizing 

Foundation should be so dimensioned such that the derived eccentricity, in both the lateral 
directions, is bare minimum (see § 7.3). As far as possible, the eccentricity should be close to zero 
and in no case it should exceed 5 % of the base dimension in the respective direction. For very 
long foundations having LIB >3, it is further desirable (but not necessary) that the eccentricity be 
contained within 2 % along the length, whereas the eccentricity along width may still remain 
within 5 %. 

Foundation should extend by a reasonable margin (say minimum 100 mm or more depending upon 
layout constraints) on all sides of machine base frame and in no case; machine base frame should 
protrude outside foundation boundaries. 

The pressure developed in the soil due to static loads should preferably be below 80% of the 
allowable safe bearing capacity keeping balance 20 % as the margin for pressure produce by 
dynamic forces. However for machines producing high dynamic force, the bearing pressure and 
stability is checked both for static and dynamic loads (see § 5.2.5). 

Though, from strength point of view it may appear adequate to have foundation mass equal to that 
of the machine, a higher mass ratio is desirable as it indirectly helps in keeping the foundation 
eccentricity low even if there are minor variations in actual machine data vis-Ii-vis design data. 
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Foundation Mass Ratio: It is ratio of the mass of foundation to that of machine. Recommended 
guidelines for different machine types are as under: 

• Rotary Machines: Foundation mass ratio of 2.5 to 4 is generally considered adequate for 
rotary machines 

• Reciprocating Machines: The foundation mass ratio required for reciprocating machines 
is much larger than that for rotary machines. This ratio could be as high as 8 and for 
specific cases, based on practical considerations, this ratio could as well be as low as 1.5 

• Impact Machines: The foundations for impact machines require provision of adequate 
depth of concrete below the Anvil and it is linked with the mass of the falling part. It is 
recommended to have foundation thickness of at least 1.0 m, below the Anvil, for falling 
mass of 1000 kg. Foundation thickness of about 2.5 m to 3 m is recommended for higher 
falling mass, say, 6000 kg and above. Mass of Anvil is generally in the range of20 to 25 
times that of the falling mass and the mass of the foundation should be 2.5 to 3 times that 
of the anvil. For unfavourable soil conditions, this ratio could be 4 to 5 times or even 
higher 

7.8.2 Foundation Stiffness 

Foundation parameters that govern the dynamic response are its mass and its area in contact with 
the soil. In specific cases, projected parts of the foundation having finite stiffness also influence 
dynamic response. There are no other foundation related parameters that influence the response. 

The rigidity the foundation is much higher compared to that of the soil supporting it. The elastic 
deformation of the block, under the influence of static and dynamic forces, is of negligible order 
compared to that of the soil. The foundation, therefore, is considered as a rigid body consisting of 
mass only. In other words, foundation is considered as non-elastic (rigid) inertia body. In case the 
foundation has some structural members whose stiffness is comparable with that of the soil, 
such members should be modeled for their stiffness as well as mass effect. 

One can represent the system as an assemblage of spring mass system (SDOF or MDOF) or one 
can use FE modeling technique, as the case may be and analyse the system for its dynamic 
response. 

7.8.3 Strength Design 

Since the block foundation behaves like a rigid body supported on soft media like soil, invariably 
the block foundations would tum out to be having adequate strength vis-a-vis forces imparted by 
the machine. . 
For strength and stability analysis, material parameters required are the same as those required for 
analysis & design of any other structure. Permissible Stresses for design, both for concrete and 
steel, are to be taken as per applicable design codes. 
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Strength design is done considering forces and moments on the foundation due to Static Loads, 
Dynamic Loads, Emergency loads and applicable Earthquake/Wind loads. Necessary 
reinforcement is provided to withstand these forces and moments as per applicable codes of 
practice. When Emergency/Earthquake/Wind loads are considered, the permissible stresses shall 
be enhanced by 25 %. 

In case the foundations has any extensions/projections, these must be designed for forces and 
moments at critical sections due to Static, Dynamic and Emergency loads and necessary 
reinforcement is provided as such projections behave elastically and not like a rigid body. 

Anchor Bolts: All anchor bolts should be checked for pullout force caused due to Static, 
Dynamic and Emergency loads. 

Though not necessary, but recommended to perform overall stability check for the foundation 
after the design process is complete. 

7.8.4 Minimum Reinforcement 

Block Foundation: Provisions for minimum reinforcement have been found to vary from 

25 to 50 kg/m 3 of volume of concrete for foundations of different machines. From his 

experience, the author recommends as under: 

• Diameter of the reinforcing bar shall not be less than 12 mm and spacing of bars shall not 
exceed 200 mm. Where thickness of concrete exceeds 1 m, additional layer of 

reinforcement (both ways) to be provided as shrinkage reinforcemel}t 

• Overall steel quantity should not be less than 25 kg/m 3 of concrete. 

• Further, it must be ensured that all faces are covered with two-way reinforcement. 
• All faces of the openings, pockets, cot-outs etc must be reinforced appropriately with the 

same provisions as above. 

More often than not, one may find that minImum reinforcement, as recommended above, is 
adequate to withstand the applied/generated forces. Those extensions/projections that make the 
concrete section to behave elastically must be adequately reinforced in accordance with the strength 
design requirements (see § 7.3.8). 

7.9 FRAME FOUNDATION 

Dynamic Behaviour of Frame Foundation is relatively complex compared to that of Block 
foundation. There are many foundation related parameters that significantly influence the response 
viz. stiffness of frame structure, individual vibration characteristics of frame columns, frame 
beams, cantilever projections etc. Due attention, therefore, must be paid to these aspects while 
sizing the foundation. 
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7.9.1 Foundation Sizing 

Foundation Plan Layout containing foundation dimensions, details of cut-outs, trenches, notches, 
depressions, pedestals, machine static loads, dynamic loads etc are provided by customer/machine 
supplier. In addition, machine loads at base raft, intermediate deck (if any) and other locations are 
also provided by customer/machine supplier. 

For Frame foundations, there are two connotations to the term eccentricity as given below: 

i) Overall Eccentricity: It is defined as the distance between center of mass of overall 
system (machine + foundation) and center of stiffness (i.e. CG of the base contact area of the 
foundation with the soil) as given in § 7.3. This should be restricted to 5 % of the respective base 
dimension of the foundation. 

ii) Top Deck Eccentricity: It is defined as the distance between center of mass Cm (i.e. 

combined CG of machine mass, top deck mass and 23% of column mass) and center of stiffness of 
frames Ck in transverse (perpendicular to machine axis) as well as longitudinal direction (along 

machine axis). It is desirable that this eccentricity should be restricted to 1 % of the respective 
dimension of the top deck. 

General recommendations for sizing of various elements of foundation are as under: 

i) Top Deck: Top Deck comprises of transverse beams, longitudinal beams, slab connecting 
these beams, projections on all sides of beams, depressions, cut-outs, notches, openings etc. 

a) Weight of the top deck should in no case be less than weight of the machine 

b) Span to depth ratio of the beams should be 3 to 4. 

c) Depth to width ratio for the beams should be I to 1.5 

d) Extent of cantilever projections (in plan) should not be more than half the width 
of corresponding beam 

e) Depth of slab should invariably be same as that of the encompassing beams 
except the areas where recess or depressions are provided to accommodate 
machine 

Though from strength consideration, it is possible to design slender sections of the members, yet it 
is recommended to follow the above guide line as it helps in controlling overall eccentricity. 

ii) Columns: Total weight of all the columns should be close to weight of the machinery. This 
condition is desirable but not essential. Column sizes (as marked on the layout drawing) are 
generally provided by the customer/supplier. More often than not, it has become the practice 
by the designers to stick to these dimensions. 
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Such a practice is undesirable and must be discouraged. These should be taken as indicative 
only and the designer must assess the validity of these sizes keeping in view the followings: 

a) It is desirable that Center of Stiffness of all the Frames should coincide with Center 
of Mass of machine and top deck. 

b) Lateral natural frequencies of each of the column (along transverse as well as 
longitudinal directions), considering fixed-fixed at top and bottom, should not 
coincide with Machine frequency or its harmonics. 

iii) Base Raft: 

a) Raft plan dimensions are selected such that Bearing Pressure is well within the 
allowable safe bearing capacity of the soil keeping a reasonable margin of about 30% 
to 40 % for pressure induced by dynamic loads (see § 5.2.5). 

b) Overall eccentricity between center of mass and center of stiffness should lie within 
5% ofthe respective base dimension in plan. For very large dimensioned foundations, 
eccentricity should, as far as possible, be restricted to 2 % only 

c) While finalizing base raft thickness, it is to be borne. in mind that differential elastic 
deformation of the base raft (at the frame support locations) is highly undesirable. It 
directly influences machine alignment of various machine segments, i.e. it contributes 
to misalignment resulting in higher dynamic forces and thereby higher amplitudes of 
vibration. Hence, base raft must have adequate thickness so as not to generate any 
differential settlement/deformation. A general guide line is that weight of the base raft 
should be about twice that of the machine weight. 

7.9.2 Stiffness Parameters for Frame Foundation 

Unlike block foundation, elastic deformation of the structural members of frame foundation is of 
finite order. Thus, the foundation is considered as an elastic body consisting of both stiffness and 
mass. Whereas mass and stiffness of foundation are duly taken care of using FE modeling, these 
are to be evaluated for each of the structural element of the foundation while considering it as 
lumped-mal>s model using SDOF or MDOF system. It is therefore desirable to explicitly quantify 
such influences for lumped-mass modeling of frame foundations. Generalised mass for various 
structural elements like beams, columns, portal frames etc, using kinetic energy equivalence, is 
covered in Chapter 2 and 3. 

Mass contribution of beam and column of a typical frame is different for vertical vibration than for 
lateral vibration (see chapter 2 & 3). Further, the mass and stiffness contribution do depend upon 
whether the model is SDOF or MDOF System. 

For cases, where, machine is supported over a column or a beam, mass content of support system is 
described in Chapter 2.0. For portal frames generalized stiffness and generalized mass 
contributions are described as under: 

https://engineersreferencebookspdf.com



7-16 Design Foundation Parameters 

For a structural portal frame supporting mass m at frame beam center and constrained to move 
only in X-Y Plane, evaluation of generalised mass and stiffness considering frame as SDOF system 
is covered in Chapter 2 and that for a Two DOF System is covered in Chapter 3. There are a couple 
of factors that make Frame Foundations different from. normal structural frame such as shear 
deformation on account of lower span to depth ratio, provision of haunches at beam column 
junction etc. Hence the formulations for normal structural frame need to be suitably modified for 
Frame Foundations. A typical portal frame with haunches is shown in Figure 7.9-1. 

Some of the scientists / authors have suggested corrections to frame span and height 
on account of larger column widths and beam depths. It may not be out of place to 
mention that variation in frequency due to correction applied to frame center line 
dimensions H & L is only of the order of 2 to 3 % and hence can be ignored as well. 

7.9.2.1 Haunches 
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i 
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I ! 
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! ! 
! ' 
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!,I--' ------' Ii 
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Figure 7.9-1 A Typical Frame with Haunches 

Provision of haunches at beam column junction at top deck soffit is a common phenomenon. 
Though its contribution to mass effect is insignificant, its influence on stiffness has been reported 
to be of significant order and it depends upon size of the haunch. 

Based on Finite element analysis of a number of portal frames with different haunch sizes (haunch 
width b varying from 5 to 10 % of span and haunch depth a varying from 5 to 10 % of frame 
height), following observations are made: 

i) The presence of haunches tends to increase Lateral Stiffness of the frame. The 
increase in lateral frequency is in the range of 3% to 6% depending upon haunch 
sizes. 

ii) The presence of haunches does not show any influence on vertical stiffness. The 
influence on vertical frequency is very insignificant (of the order of 0.2 to 0.3 %). 

iii) There is significant influence on higher order column frequencies 
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(a) Portal Frame 

Figure 7.9-2 A typical Portal Frame Supporting Machine Mass at Beam Center 

7.9.2.2 Shear Deformation 

Since span to depth ratio of beams is relatively low for frame foundation the frame beam behaves 
like a deep beam making the shear deformation influence significant. This aspect therefore must be 
included while evaluating stiffness of frame beam in vertical direction. 

For a typical Frame as shown in Figure 7.9-2, the shear deformation of the beam is given as 

(7.9-1) 

This is added to flexural deformation of the beam for computing beam stiffness. Let us compute 
stiffness ky of the frame. 

Beam to Column Stiffness ratio (see § 2.1.1-4-5) 

Vertical deformation under unit load at beam center 

i) Flexural Deformation of frame beam 

ii) Shear deformation of the beam 

k=!!:L= [biL 
kc Icl H 

(see equation see equation 2.1.1-34) 
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Total deformation at Frame Beam Center under Unit Load 

Stiffness (7.9-2) 

7.9.3 Strength Design 

For frame foundations, reinforcement is provided as dictated by strength design of structural 
members i.e. columns, beams, slabs etc. It is generally recommended to check the strength 
adequacy considering forces and moments on the foundation due to Static Loads, Dynamic 
Loads, Emergency loads and applicable EarthquakelWind loads. Foundation must also be 
checked for thermal stresses wherever applicable. 

Necessary reinforcement is provided to withstand these forces & moments as per applicable codes 
of practice. When emergency/earthquake/wind loads are considered, the permissible stresses shall 
be enhanced by 25 %. 

7.9.4 Minimum Reinforcement 

Generally speaking, reinforcement in the range of 100 to 120 kglm 3 has been found to meet the 

structural safety requirements for frame foundations. This is however a guideline and actual steel 
requirement should be based on design. 

• Reinforcement for top deck and columns to be in the range of 100 to 120 kglm 3 

• Reinforcement for base raft to be in the range of 70 to 80 kglm 3 

These figures are considered adequate even for estimation and found handy for cross checking. 
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FOR 

REAL LIFE MACHINES 

8. Modeling & Analysis 
9. Foundation for Rotary Machines 
10. Foundation for Reciprocating Machines 
11. Foundations for Impact Type Machines 
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MODELING AND ANALYSIS 

• Manual Computational Method 
• Finite Element method 
• Dynamic Analysis 
• Strength Analysis and Design 

• Example problems 
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For better clarity, all Figures related to FE 
analysis, including animations of frequencies 
and mode shapes, in color, are given in the CD 
attached at the end of the handbook 
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Modeling and Analysis 

MODELING AND ANALYSIS 

Every foundation designer should remember that he is dealing with 
machines weighing several tons and is required to design the 
foundations having dimensions of several meters but amplitudes 
restricted to only a few microns. The designer therefore must 
clearly understand the assumptions, approximations and 
simplifications made during modeling and recognize their 
influence on the response. 

It is this aspect that makes modeling and analysis very important 
part of the design. 

8-3 

A physical system is represented by mathematical model with the basic objective that mathematical 
model should be compatible with prototype. For each mathematical representation, a host of 
assumptions, approximations are made. The extent of complexity introduced in mathematical 
model directly influences the reliability of results. In broad sense, mathematical representation not 
only depends upon Machine and Foundation parameters but also depends upon Analysis Tools. 

Let us consider some of the combinations of Machine Type, Foundation Type and Analysis Tools 
and consider level of modeling for each case: 

i) Low RPM Machines (300 to 1500 RPM) 

Low RPM machines generally develop very high unbalance forces and permissible amplitude 
limits are also high. In case of resonance, these give rise to very high amplitudes. For such 
machines, one should not attempt isolation both for block and frame foundation. 

a) Low RPM Machines on Block Foundations: Foundation lowest natural frequency 
normally turns out to be much higher than machine frequency thus ruling out any possibility of 
response magnification. Hence one can resort to very simple model. Care should be taken to avoid 
direct resonance with engine order frequencies of I st, 2nd & 3rd order i.e. if engine frequency is aJ, 

one should avoid having foundation natural frequencies as I aJ, 2 aJ & 3 aJ • 

b) Low RPM Machines on Frame Foundations: From operational constraints 
dictated by plant layout, at times these machines are mounted on frame foundations. In view of 
very high unbalance forces, foundation must have large size columns and beams. In view of heavy 
machine mass, lateral natural frequencies of frame foundations are low with likely possibility of 
resonance with machine frequency. Hence, one must include all those structural elements which are 
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likely to contribute to low frequency. Any approximation to ignore such elements while modeling 
may lead to overalI high vibrations. In such cases, effect of soil must be included in the model as 
presence of soil tends to lower down the 1 st frequency of the system. Here again, care should be 
taken to avoid direct resonance with engine order frequencies of I st, 2nd & 3rd order. 

ii) Medium RPM Machines (1500 to 3000 RPM) 

Medium RPM machines have stringent balancing requirements resulting in lower rotor eccentricity 
and thereby lower unbalance forces. Permissible amplitude limits are also low for these machines. 
In view of low permissible amplitudes, foundation sizing should be so done so as to have 
foundation eccentricity to bare minimum. 

These machines are very sensitive to rotor alignment. This necessitates that beams supporting 
bearing must not structurally deflect to cause misalignment. Further, base raft should also be 
sufficiently thick so as to permit overalI settlement but certainly no differential settlement. 

In view of lower foundation frequencies, there is a possibility of recording higher transient 
amplitudes. Further there is every possibility of resonance with rotor critical speeds. It is desirable, 
though not essential, to look in to these aspects too. 

Provision of Vibration Isolation System (VIS) for such machines turns out to be quite effective. 

a) Medium RPM Machines on Block Foundations: Machine must be modeled along 
with the foundation. As computed natural frequencies are comparatively of lower order than 
machine frequency, even a simple model would be adequate. Care should be taken to avoid direct 
resonance with sub harmonics i.e. 0)/2 & 0)/3 that develop due to certain bearing phenomenon. 

b) Machines on Frame Foundations: Machine must be modeled along with the 
foundation. Such foundations have generalIy strong top deck but relatively slender column sizes. 
On account of higher column height, lateral natural frequencies turn out to be low. Higher 
structural natural frequencies are of comparable order to machine frequency having likelihood of 
being in resonance with machine frequencies. Further, there is every possibility that higher mode 
foundation frequencies (mainly higher beam and column modes) may come in resonance with 
engine order frequencies. 

A higher order mathematical model is therefore essential. Effect of soil can conveniently be 
ignored unless warranted by specific soil characteristics. 

iii) High RPM Machines (above 3000 RPM) 

High RPM machines have highly stringent balancing requirements. Rotor eccentricity is quite low. 
Unbalance forces are also low and so are permissible amplitudes. These machines are very 
sensitive to rotor alignment; hence beams supporting bearing, if not properly designed, could 
become a source for misalignment. Further, base raft should also be sufficiently rigid so as not to 
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permit any differential settlement especially at frame location points. Foundation eccentricity 
should be bare minimum. During every start-up and shut-down, there is every possibility of high 
transient amplitudes at engine sub harmonics, foundation frequencies as well as at rotor critical 
speeds. Though not essential, it is recommended that these aspects should also be looked in to. 
Higher order structural frequencies in case of frame foundation must be evaluated to avoid any 
direct resonance. 

Provision of Vibration Isolation System (VIS) for such machines turns out to be quite effective. 

8.1 MANUAL COMPUTATIONAL METHOD 

8.1.1 Block Foundations 

For machines on block foundations, it is good enough to use the procedures and formulations 
described in Chapters 2 & 3. Whereas majority of the machine and foundation aspects are well 
taken care of by these procedures, yet there are some aspects, as given below, that can not be fully 
managed by these manual computational methods: 

Foundation Eccentricity: If foundation eccentricity is higher than permissible, the 
vertical mode of vibration will no longer remain un-coupled from lateral and rotational modes. 
Hence equations of motion given by equation 3.4.2-2 (as reproduced below) will not remain valid. 

In such a case one has to use equation of motion given by equation (3.4.2-10) as reproduced below: 

Getting closed-form solutions for these equations is not that simple and computations may turn out 
to be complex. Further getting Transient Response History may be a tedious task, though it is 
possible to evaluate transient response at any of the defined frequency. 

It is therefore recommended to use FE analysis, wherever feasible, to include all these aspects. 
Further it gives improved reliability on account of lesser number of approximations/assumptions. It 
also permits visualization of animated mode shapes, view response amplitude build-up and viewing 
of stress concentration locations. 
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8.1.2 Frame Foundations 

Analytical Procedures for machines on frame foundations as given in Chapters 2 & 3 provide clear 
insight into the free and forced vibration of portal frame subjected to dynamic loading. 

It may not be out of place to mention that the formulations cover only standard frames i.e. frame 
beam is a rectangular in cross-section having machine mass at its center. The premise, that 
longitudinal beams of a frame fouQdation are flexible enough to permit transverse frames vibrate 
independently, does not hold good for real life machines. These are very ideal cases and most of the 
real life machine foundations do not fall under this category. Some of the aspects that can not 
be suitably accounted for by manual computational methods are: 

• Haunches 
• Machine mass at beam off center locations 
• Beams extended as cantilever on one side/both sides of frame beam 
• Beams inclined in elevation supporting heavy machine mass 
• No frame beam at column locations 
• Higher order frame column vibration frequencies 
• Presence of solid thick deck within the frames 
• Depression/recess in the top deck 

Based on many design studies carried out by author, it is observed that: 

1. Variation in natural frequencies a frame by Manual method compared to FE method is of the 
order of 10 to 20 %. 

2. FE analysis confirms presence of many additional frequencies (3 to 4 frequencies) between 
151 vertical and 2nd vertical mode as computed by Manual Method of Analysis. These 
additional frequencies lie well within operating range of the medium RPM machines and may 
significantly contribute to response. 

3. An example Problem P 8.1-1 at the end of this chapter is included for this purpose. The 
observations made clearly highlight limitations of Manual Method of Analysis for design of 
Frame Foundations. 

4. In recognition of higher reliability by FE Method, and the. fact that manual method gives 
results that are in variance by 10 to 20 % compared to FE Analysis, it is suggested that no 
corrections need to be applied on account of either frame center line dimensions or inclusion of 
haunches etc. All corrections put together shall easily get absorbed by the available margins. 

It is therefore recommended to use FEM analysis with appropriate element types for modeling of 
Frame Foundation. It is also recommended to use analytical approach to evaluate free vibration 
response for each frame to get a first hand feeling of the frequency range of frames vis-A-vis 
operating frequency, their sub and super harmonics. 
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8.2 FINITE ELEMENT METHOD 

Finite Element (FE) is the most commonly accepted analysis tool for solution of engineering 
problems. Effective Pre & Post-processing capabilities make modeling and interpretation of 
results simple. It is relatively easy to incorporate changes if any and re-do the analysis without 
much loss of time. Viewing of Animated Mode Shapes and Dynamic Response makes 
understanding of the dynamic behaviour of the machine foundation system, relatively simpler. 

Design of machine foundation involves consideration of Machine, Foundation and Soil together as 
a system subjected to applied or generated dynamic forces. Development of specific FE based 
package for design of machine foundation is generally not feasible on account of a) tight project 
schedules and b) validation of results. 

Use of Commercially Available Packages is more effective for design offices. There are many 
issues that need careful examination before finalizing the package e.g. user friendliness, pre­
processor capabilities (modeling capabilities), analysis capabilities, post-processor capabilities 
(processing of results) etc but the most important one is the validation of results. Every package is a 
Black Box for the user and it has its associated limitations some of which are explicit and some 
implicit. Validation, for some sample known cases, therefore, becomes a must before one accepts 
the results. 

Author himself has used many commercially available packages for analysis and design of 
Machine Foundation during the course of his professional carrier. 

8.2.1 Mathematical Modeling 

Most of the issues related to modeling have been discussed in 8.1. 

A machine foundation involves modeling of Machine, Foundation and Soil. Finite Element 
Method (FEM) enables modeling of Machine, Foundation and Soil in one go that brings behaviour 
of the machine foundation system closer to the prototype resulting in improved reliability. 

Rigid Beam Elements are used for modeling the machine whereas Solid Elements are used for 
modeling the Foundation. In case soil is represented as continuum, it is also modeled using Solid 
Elements. In case Soil is represented by equivalent springs it could be modeled using spring 
elementslboundary elements. 

Note: The terminology used here may not comply with the terminology of each package. Readers 
may modify the terminology in accordance with that of the package under use. 

Modeling of each of the constituent is an art in itself and is briefly discussed here under. 
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8.2.2 Machine 

Machine is relatively rigid compared to foundation and soil. It is considered contributing to mass 
only with its CG lying above Foundation level. 

(a) Machine Mass lumped at 
Foundation top 

(b) Machine Masses lumped (c) Rotor and Stator 
at Machine CO level Modeled separately - Masses 

lumped at respective CO level 

Figure 8.2-1 Modeling of Machine with Foundation 

While modeling the machine, the broad objective is to represent the machine in such a way that its 
mass is truly reflected and overall mass CG of the model matches with that of the prototype. Thus, 
modeling of machine with Rigid Links / Rigid Beam Elements is considered good enough. 
Machine mass is considered lumped at appropriate locations so as to simulate the CG location. This 
should be cross checked with the mass distribution given by the supplier/manufacturer. 

Be it a block foundation or a Frame Foundation, lumping of Machine Mass at foundation top level 
is not desirable as this will result in mismatch of the CG of machine mass (in vertical direction) of 
model with that of the prototype. Figure 8.2-1a shows such lumping for a typical block foundation. 
Such a representation does affect mass moment of inertia and thereby natural frequencies and 
response. It is therefore essential that CG of the machine mass in vertical direction must be 
matched with that of the prototype as given by manufacturer. Machine mass should be lumped at 
appropriate level above the foundation as shown in Figure 8.2-1 b. Similar concept should be used 
for modeling bearing pedestals. 

For Advanced Modeling, it is desirable to model the Rotor and Stator independently. Rotor is 
represented using a set of beam elements with corresponding section and material properties that 
represent variation of rotor section along machine axis, whereas Stator is modeled using Rigid 
Links with stator mass lumped at appropriate locations such that CG of mal's matches with that 
provided by supplier. Rotor support at the Bearing locations should be modeled with 
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corresponding stiffness and damping properties offered by bearings. Model is as shown in Figure 
8.2-lc. The Bearing Pedesta ls, however, are modeled as rigid links. 

8.2.3 Foundation 

8.2.3.1 Blm::k Foundation 

A foundation block is a solid mass made of RCC with required openings, depressions, raised 
pedestals, cutouts, bolt pockets and extended cantilever projections. 

Solid Elements are good enough for modeling foundation block. A coarse mesh for the block and 
relatively finer mesh in the vicinity of openings, pockets and cutouts is considered reasonably OK. 
Solid Model & FE Mesh of a typical foundation block is shown in Figure S.2-2 . 

., 

Solid Model 

Solid Model 

Figure 8.2-2 

. ' 

A Typical Block Foundation FE Mesh 

ATypical Fan Foundation 
(Portion below Ground Level not shown) 

Foundation Block - Solid Model and FE Mesh 

FE Mesh 
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Generally speaking, modeling the foundation block with 8-node<!. Brick Elements or IO-noded 
Tetrahedral Elements works reasonably well and is considered good enough. A higher order solid 
element would increase the size of the model - requiring more computational time & powcr- while 
improvement in the result 's accuracy may only be marginal. Choice of element size is fairly 
subjective. as it is problem dependent. It is therefore nOI possible to define finn guidelines 
regarding choice of right element size that will be applicable to all types of problems. The 
judgment of optimum mesh density, however, would emerge after experience. 

8.2.3.2 Frame Foundation 

Solid Model (a) Solid Elements 

Ooomdric Model (b) Sbell & Beam Elements FEMosh 

• • 

• II. . -,. 
Solid Model FE Mesh 

(0) A Typical toR Peck view 
Openings. notches, cutouts, pockets etc. 

Figure 8.2-3 Frame Foundation - Solid Element Model & Shell Beam Model 
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A Frame Foundation comprises of Base Raft, Set of Columns (Number of Frames), Top Deck 
consisting of Beams (Longitudinal and Transverse) and Slabs. Top deck is made of RCC with 
required openings, depressions, raised pedestals, cutouts, bolt pockets and extended cantilever 
projections. In certain cases, haunches may also be provided between column and top deck. 

There are many ways of representing model of a Frame foundation. One can model using Beam· 
Elements, Shell Elements, Solid Elements or a combination of all these. Models with solid 
elements as well as Beam & Shell elements are shown in Figure 8.2-3 (a) & (b) respectively. Each 
modeling style, however, shall have associated limitations. For example, while modeling using 
solid elements, one may not be able to get bending moments and shear forces in the columns, 
beams and slabs needed for structural design of these members. Whereas it is possible to get 
bending moments and shear forces in flexural members like beams, columns, slabs etc, it however 
does not permit inclusion of effect like haunches, depressions, cut-outs, raised blocks, projections 
etc as shown Figure 8.2-3(c). 

It may be noted that FE Mesh of Frame foundation with all the openings, pockets, cutouts, notches 
etc as shown in Figure 8.2-3(c), though feasible, is basically undesirable. It may unnecessarily add 
to increased problem size and thereby computational time without any significant gain in the 
results. Only those elements that contribute significantly to stiffness and mass like large openings, 
sizeable depressions etc must be accounted and modeled in detail whereas elements like pockets, 
small notches etc could easily be ignored while modeling. 

Since modeling of top deck and base raft by shell element is done at their mid surface locations, it 
usually results in increased column heights thus making the system more flexible than the 
prototype. Necessary modifications therefore are necessary to overcome this deficiency. Similar is 
the case while modeling machine. Use of rigid links is recommended to cover up such deficiencies. 
Here again a coarse mesh for the foundation in general and relatively finer mesh in the vicinity of 
openings, depressions, raised pedestals, pockets and cutouts is considered reasonably OK. The 
judgment of optimum mesh density, however, would emerge after experience 

8.2.4 Soil 

Similar Machines having identical foundations but having different.soil conditions have been found 
to behave differently. Hence it is important to study the affect of soil on overall response of 
machine. For elastic properties of soil, see Chapter 5. 

There are many ways of mathematical representation of soil. We limit our discussion here to only 
two ways that are common as Design Office Practice for FE Analysis & Design of Foundations. 

i) Soil represented by a set of equivalent springs 
ii) Soil represented as continuum 

i) Soil represented by a set of equivalent springs: Two types of representations are 
commonly used in FE modeling the foundation: 
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a) Soil is represented by a 3 Translational Springs and 3 Rotational Springs attached at CG of 
the Base. This kind of representation yields results (Frequ~ncies and Amplitudes) that are 
found to be in close agreement with manual computations. This type of representation is 
shown in figure 8.2-4 (a). 

b) Soil is represented by a set of 3 Translational Springs attached at each node at the Base of 
the Foundation, in contact with the soil. This kind of representation provides an upper 
bound to overall rotational stiffuess offered by soil about X, Y & Z axes. This type of 
representation is shown in Figure 8.2-4 (b). 

Stiffness Properties of these equivalent springs are discussed in detail in Chapter 5. 

ii) Soil Represented as Continuum: Soil domain, in true sense, is an infinite domain and 
for analysis purposes, it becomes necessary to confine it to a finite domain when soil is 
considered as continuum. The broad issues, that need to be addressed are: 

• What should be the extent of soil domain to be considered for modeling? 
• Whether to consider soil domain only below the foundation base (in which case 

foundation becomes un-embedded) or to consider the foundation embedded in to the soil 
domain (in which case foundation becomes embedded in to the soil)? 

Extent of Soil Domain: For FE Modeling, it is well known that a narrow domain with fixed 
boundaries is not likely to represent realistic soil behaviour whereas a very large domain would 
result in increased problem size. It is therefore necessary to find an optimum value that should 
reflect realistic behaviour of soil without significant loss in accuracy. 

Let us consider a stand alone isolated foundation. Different designers adopt their own thumb-rule 
practices while deciding on the extent of soil domain to be modeled with the foundation. The extent 
of soil domain has been found to vary from 3 to 8 times the width of the foundation to be provided 
on all 5 side of the foundation. It is to be noted that such a consideration is good enough for the 
academic purposes only. In a real industrial situation, no foundation could remain isolated from 
other equipment/structure foundations within this finite soil domain. In other words, many other 
equipment/structure foundations would exist within the range of 3 to 8 times the dimension of the 
foundation in each X, Y & Z direction. Thus, in the author's opinion, the computed behaviour of a 
foundation as a stand-alone foundation is likely to differ with the actual one. It is also true that 
modeling of all the equipment and structure foundations of a project, in one single go, is neither 
feasible nor necessary. Here too, a mesh consisting of solid elements is good enough. As the soil 
domain is very large compared to foundation, a relatively coarser mesh of the soil is considered to 
be adequate. Refinement of the mesh size may be adopted if considered necessary for specific 
cases. The choice of element size remains subjective. 

The precise decision on extent of soil domain still remains a question mark. Even from academic 
side there is no definite answer to this issue. It is also true that a practicing engineer, in view of 
tight time schedule, can neither afford to do R&D nor can ignore the problem. In author's 
considered opinion, soil domain equal to 3 to 5 times the lateral dimensions in plan on either side 
of the foundation and 5 times along the depth should work out to be reasonably OK. The finite soil 
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domain is modeled along with the roundation block using FE idealization. Appropriate soil 
properties in terms or Elastic Modulus/Shear Modulus and Poisson's Ratio are assigned to the soil. 
Ir soil profile indicates presence or layered media, appropriate soil properties are assigned to 
respective soil layers wilh variation in soil properties along length. width and depth or the soil 
domain. 

(a) Soil represented by a set of throe: translatiOllal 
sprinp. i" i)' • • , Ir1d throe: rotational sprillgs i •. 
i • • i.applied at CO of Base of the foundation 

Block Un-embedded 

(4;) Soil represented by a continuum below the 
foundation base extendillg throe: limes the width of 
the foundation along length and width lOCI S times 
the depth of the foundation along depth 

(b) Soil ~prese,"ed by. SCI of throe: translational 
springs ... • 1'., applied at each node in contact 
with the soil at the foundation base 

Solid Mockl- Cut View 

Block Embedded 

(d) Soil represented by a continuum starting ftom 
the ground levcl cxtcndina throe: times the width of 
the foundatiOll a)ooglcngth and width lOCI S times 
the depth of the foundalion along depth 

Figure 8.2-4 Various Methods or Soil Representation for FE Modeling 
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Un-Embedded and Embedded Foundation: While modeling soi l along with foundation, 
the two cases arise: 

i) Soil domain is modeled below the foundation up 10 3 to 5 limes the width of the 
foundation along length and breadth and depth of the foundation. This makes the 
foundation un-embedded in the soi\. Th'is representation is shown in Figure 8.2-4 (c). 

ii) Soil domain is modeled right from the ground level encompassing the foundation up 
to 3 to 5 times the width of the foundation along length nnd breadth and depth of the 
foundation. This makes the foundation embedded in the soil, which is a realistic 
situation. This representation is shown in Figure 8.2-4 (d). 

To investigate as to how each method of soil representation compares with others. free vibration 
analysis of a typical Block foundation has been perfonned using each method of soil 
represenlation, as shown in figure 8.2-4, having same/compatible soi l properties. The data 
considered is as under: 

• Foundation Block dimensions (along Z, X, Y) 4m x 2mx3.75m deep 

C. = 4.48xI0· kN/ml • Coefficient of uniform compression 

Mode I 3.62 Hz 

Mode. 10.89Hz 

Figure 8.2-5 

... ~ ..• J 
,~ . . . 
Mode 2 5.63 Hz Mode 3 944 Hz 

, 

~' .'. , 
~", -' 

Mood 1S.39 I·b: Mode 6 1S.44 Hz 

Frequencies and Mode shapes - Soil represented by 3 translational 

and 3 rotational springs at CG of foundation base 
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• Soil spring stiffness 
i. Translational 

ii. Rotational 

8. k8 =95.5 )( 104 kNmlrad {aboutX) 

b. k., =44.8)(104 kNmlrad(aboutY) 

c. ,,~= 23.9 )( 10' kNmlrad (about Z) 

• Pfl:li l = 1.8 tlm l ; vIOI1 =0.33; £1Oi1 =-89218kN/m2 

• p~= 2.5t1m J; vCQK= 0.I5; ErotK:=2 )( IO'kN/m2 

Mode I 3.24 Hz 

Mode 4 10.99 ~Iz 

Figure 8.2-6 

Mode 2 4.91 Hz 
Mode 3 8.86 Hz 

Mode S 14.2 Hz Mode6 IS.21 Hz 

Frequencies and Mode shapes - Soil represented by 3 Equivalent 

translational springs at each node at foundation base 

8-15 
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Case- I 

Case-2 

Case-3 

c ..... 

Modeling and Analysis 

Soil represented by a set ofsi)( springs attached at the CG or Base of Foundation. 
Frequencies and mode shapes are shown in Figure 8.2-5. 

Soi l represented by a sel of three springs attached at each node in COnlae! with 
soil al Foundation base of Foundation. In total 45 nodes are considered in contact 
with the soil. Translational stiffness al each node is therefore (1 /45) of "~."y ,lc: 

as given above. Frequencies and mode shapes nre shown in Figure 8.2-6. 

Soil represented as continuum below Foundation base level i.e. un-embedded 
foundation . Soil domain considered is 10 m on all the five sides of the 
foundation . Frequencies and mode shapes are shown in Figure 8.2-7. 

Soil represented as continuum right from ground level a ll around the foundation 
i.e. embedded foundation. Here again. soil domain considered is 10 m on all the 
four sides (in plan) of the foundation . Ground Level is considered at 0.75 m 
below top of the block. Soil domain along depth is taken as 10+3=13 m from 
Ground Level. Frequencies and mode shapes are shown in Figure 8.2-8. 

Mode I S. t6 Hz 

Mode 4 6.97 Hz 

f igure 8.2-7 

Mode 2 6.1 Hz Mode) 6.8 Hz 

'II' 

Mode S 6.99 Hz Mode 6 7.6 Uz 

Frequencies and mode shapes - Soil represenled as continuum 
below foundation base up to 5 times the width all around as 
well as along depth 
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Frequencies and mode shapes are listed in Table 8.2-1 

Table 8.2-1 Mode shapes & Frequencies - Frequencies in Hz 

2 

3 

4 

Pridominant Mode Direction 

Soil Representation Type x y z 0 " ; Figure 
Refcrence 

Soil represented by 6 spring (3 linear & 3 15.4 10.89 15.39 5.63 9.44 3.62 Fig 8.2-5 
rotational) @CG of foundation base 

Soil represented by 3 equivalent linear 15.2 10.99 14.2 4.91 8.86 3.24 Fig 8.2-6 
spring@each node@ foundation base 

Soil Continuum - Foundation considered as 5.16· 6.8· 6.1· 6.99· 7.6- 6.97· Fig 8.2·7 
unembcdded 

Soil Continuum - Foundation considered as 6.52 5.96· 6.29 7.03· 7.3 7.23 Fig 8.2-8 
embedded 

• Modes not elearly identifiable from the figure 

Mode I 5.96 Hot Mode 2 6.29 Hz Mode] 6.52 Hz 

Mode 4 7.0] Hz 

Figure 8.2-8 

Mode 5 7.23 Hz Mode 6 7.30 Hz 

Frequencies and mode shapes - Soil represented as continuum 
from Ground Level all around the foundation as well as along 
depth up to 5 times the width of the foundation 
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The comparison reveals interesting observations that are as under: 

i. Translational mode frequencies for case 3 & 4 i.e. when soil is considered as continuum 
are much lower than those obtained for case I & 2 

ii. Variation in rotational frequencies of case 3 &4 is also significant compared to those of 
casel&2 

iii. For case 2, both linear as well as rotational frequencies are marginally lower than those for 
case 1 

Author' observation, based on field measured data, is that measured frequencies are close to those 
obtained by soil models as in case 1 & 2. For Block foundations, since soil flexibility is a 
controlling parameter that governs its response, author recommends modeling of soil as in case I & 
2 only. In view of the above observations, modeling of soil as continuum is NOT 
RECOMMENDED for Block Foundations., Designers, however, may take their own decisions on 
need basis. 

Whichever modeling criteria is finally chosen by the designer, it is strongly 
recommended that validation of FE results with manual computation must be 
done for very simple problem using same modeling criteria, before the 
modeling criteria is adopted for actual design. Such a caution is essential as 
often one tends to feel that whatsoever results are obtained by using computer 
code, these are bound to be correct 

8.2.5 Dynamic Forces 

The Dynamic Forces generated by the rotor are applied at the bearing location points. It is often 
noticed that many suppliers list dynamic forces at the point of contact of machine with the 
foundation or point of contact of bearing pedestals with the foundation. Such a practice is 
acceptable only if forces from the bearing levels are transferred at foundation top in terms of 
forces and corresponding moments. If only forces are transferred at foundation top, it results in 
lower values of dynamic moments at the foundation base and thereby in reduced computed 
amplitudes than actual, hence such a pr)lctice is undesirable. This influence is seen to be more 
predominant in Block Foundations than Frame Foundations. 

Magnitude and directions of dynamic forces generated by machines are discussed in detail in 
Chapter 6. Though, it is possible to consider more than one set of the dynamic forces 
simultaneously (if applicable), it would be desirable to consider these forces independently and 
total response is obtained by finally adding the response of each case. 

8.2.6 Boundary Conditions 

Having finalized machine and foundation mass data, the first six modes of a block foundation 
depend primarily on stiffness properties of soil. It is therefore essential to choose and apply right _ 
boundary conditions to the FE Model to represent near to realistic situation. One needs to focus at 
the following: 
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i) Support conditions at interface between Foundation and Soil 
ii) Support conditions at Soil terminating boundary 

Interface between Foundation and Soil: In case soil is represented by equivalent springs 
(Case 1 & 2 above) applied at the base ofthe foundation, one end of each spring is connected to 
foundation and the other end is restrained. In case soil is modeled as a continuum i.e. a finite soil 
domain, the displacement restraints are recommended as under: 

a) It is recommended to apply roller boundary conditions at all the nodes on the 
terminating boundary of soil domain. 

b) At the vertical interface between soil and foundation, it is advisable to apply roller 
boundary conditions at all the nodes of soil domain. This is due to the consideration 
that a loss of contact develops at the vertical interface between foundation and soil 
during course of operation of machine. 

c) All nodes at the interface offoundation to the soil at the base should be merged. 

8.2.7 Material Data 

i) Foundation: 

a. Material properties viz. Elastic Modulus, Mass Density, Poisson's ratio, as 
applicable for the required grade of concrete, are assigned to the respective 
elements. 

b. It has been quite a common practice to use Dynamic Elastic Modulus for 
Dynamic Analysis and Static Elastic Modulus for Static/Strength Analysis. 
Some of the design Codes also recommend the same. However opinions of some 
of the authors differ from the above. 

The studies in the recent past indicate that at low strain levels there is hardly any 
appreciable difference between Dynamic Elastic Modulus and Static Elastic 
Modulus. Thus for machine foundation application, where strain levels due to 
dynamic loading are reasonably low, the author recommends use of Static 
Elastic Modulus both for Dynamic as well as Static Analyses of Machine 
Foundation. For Elastic Modulus refer to "Design Foundation Parameters" 
given in Chapter 7. 

ii) Soil: 

Values of Shear Modulus / Elastic Modulus, Poisson's Ratio and Mass Density, 
assigned to soil media, should be in accordance with the corresponding soil report. 
Same values should be used to compute soil springs. General values (only for 
reference purposes) are given in Chapter 5 "Design Sub-grade Parameters". 

https://engineersreferencebookspdf.com



8-20 Modeling and Analysis 

8.2.8 Degree of Freedom - Incompatibility: 

Such a problem is common in FE modeling of physical systems and arises when two elements 
having different DOF per node are attached at a particular node. If the corrective action is not 
taken, it will end up in giving wrong results of nth order. 

Foundation Block is modeled using Solid Elements that has 3 DOF per node whereas Boundary 
Elements (springs) representing soil stiffness have 6 DOFper node. Once a Boundary Element is 
attached at a node to the foundation block modeled by solid elements, it causes Degree of 
Freedom Incompatibility at that particular node. 

Similar situation occurs at the interface of i) beam elements and solid elements ii) rigid links & 
solid elements etc. It is not only desirable but necessary to resolve this issue at the modeling stage 
itself otherwise the resulting information may be highly misleading. The process of resolving this 
issue is package dependent and should be undertaken in line with the provisions in the respective 
CAE package. 

8.3 DYNAMIC ANALYSIS 

Dynamic analysis includes evaluation of: 

• Free Vibration Response 
• Forced Vibration Response 

8.3.1 Free Vibration Response 

It is recommended to review free vibration results before proceeding for forced response. Review 
of natural frequencies and associated mode shapes provides understanding of the likely behaviour 
of the foundation. At times, erroneous results may be encountered, on one count or the other while 
evaluating dynamic response and the entire sequence of results may become misleading. In view of 
this, author strongly recommends the following: 

a) Before attempting dynamic analysis, it is desirable to conduct static analyses 
subjected to I g acceleration load (g stands for acceleration due to gravity) in each 
X, Y and Z direction. In other words, the machine foundation system is analyzed for 
self weight alone (self weight of machine & foundation) acting in X, Y or Z direction 
(one at a time). 

b) After ensuring that the displacements due to I g static load are of acceptable order 
(Le. as expected), one should proceed with the free vibration analysis. 

c) In case free vibration results show a pattern that does not appear to be logical, it is an 
indication to precisely review the mathematical model and make necessary 
amendments and repeat steps as above. 
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8.3.1.1 Frequencies & Mode Shapes 

It is rrequently asked question as to how many freq uencies are required to be extracted ror a 
roundation. The general criterion is that highest frequency evaluated should be at least 20% higher 
than operating speed. However, it primarily depends upon roundation type and range or operating 
frequency. 

Block Foundation : Not withstanding the above, evaluation or frequencies corresponding to 
first ~Modes is considered good enough both ror Over-tuned as well as Under-tuned Block 
Foundations. First s ix modes or vibration pertain to rigid body modes or the block and higher 
modes correspond to nexural derormation or the block. 

Mode I J.56 Hz 

Mode. 10.94 Hz 

Figure 8.3-1 

Machine ~nted by rigid links and its mass 
lumped at machine CG location 

Soil represented by three Translational springs and 
three rotational springs at CG or Foundaiion Base 

Mode 2 5.S8 Hz Mode J 9.06 Hz 

ModeS 14.7 Hz Mode6 1 •. 9 Ih 

Frequencies and Mode shapes ofa typical Block Foundation 
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The contribution ofhighcr modes is observed to be practically insignificant except in specific cases 
such as extended cantilever projections or similar other structural elements where frequency 
corresponding to elastic deformation mode may lie near to operating frequency_ Mode Shapes ora 
typical foundation block, where soil is represented by 8 set of equivalent springs is shown in Figure 
8.3-1 

~,- . 
I 

i 'IIiJ 

Mode I 2.94 Hz 

Mode 4 26.S Hz 

Mode 18 42.7 Hz 

Mode 2 3.02 I-Iz Mode 3 3.67 Hz 

Mode S 32.4 Hz Mode 10 36.6 1·lz 

Mode 19 4.5.8 Hz Mode 21 58.9 Hz 

Machine modeled usjn& Ri&id Links. Mode shapes up 10 20 % bieber Ibm" opemtinr:: soccd 

Figure 8.3-2 Mode shapes and frequencies ora typical Frame Foundation 
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Frame Foundation: The number of frequencies to be extracted must follow the criteria as 
above i.e. the highest extracted frequency should be 20 % more than operating speed. Mode 
Shapes of a typical frame foundation, considering base raft as fixed at its base are shown in Figure 
8.3-2 

Observations from mode shapes: Unlike block foundation, study of mode shapes, generally 
reveals quite interesting information. Let us try to make certain observations from the study of 
made shapes for the typical foundation, as shown in Fig 4.2-2. 

• The uniform colour of top deck in mode 1 (along Z) and mode 2 (along X) are indicative 
that center of stiffuess and center of mass are nearly coincident. 

• On the other hand if center of mass and stiffness are not coincident, the colour of top deck 
deformation would show a mixture of colour depending upon magnitude of displacement. 
This calls for modification in column stiffness at this stage itself. 

There are many more meaningful observations that can be made once all mode shapes are 
examined 

8.3.1.2 Resonance Check 

After evaluation of natural frequencies, a check is made for the resonance. Evaluated Natural 
Frequencies must be critically examined vis-A-vis machine operating frequency and also its 
harmonics. 

It may be desirable, though not necessary, to examine these frequencies with respect to critical 
speeds of the rotors too. In case of direct Resonance with Operating Speed, necessary 
modifications in the foundation are implemented at this stage itself. Amplitudes of vibration are 
then computed at the foundation as well as at the bearing locations. In case amplitudes are found to 
be more than permissible, necessary change in the foundation must be made and the entire analysis 
is repeated. 

For the permissible limits of vibration, reference should be made to applicable codes. 
Recommended values of permissible amplitudes for different machines are given in Chapter 7. 

8.3.2 Forced Vibration response 

8.3.2.1 Steady State Response 

Dynamic Forces at bearing levels (for dynamic forces see chapter 6) are applied at steady state 
operating frequency and amplitudes computed at a) bearing levels, b) base ofbearin~ pedestals and 
c) salient locations at top of the foundation and d) for frame foundation at 113' height of the 
column, mid height of the column and at column top. The forces are applied simultaneously at all 
bearing levels or these could also be applied one bearing at a time and amplitudes summed up 
using SRSS (Square Root of Sum of Squares). 
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Frequency Hz 

Figure 8.3-3 Transient Response Amplitudes of a 'JYpical Machine 

8.3.2.2 Transient Vibration Response 

During every start-up and shut down operation of the machine, resonance is noticed at all the 
system frequencies below operating speed of the machine. This results in sudden rise of amplitude 
at each frequency of the system and thereafter amplitude diminishes. 

It is noteworthy that dynamic force no longer remains constant and changes with change in speed 
(See chapter 6). It is therefore essential to evaluate the transient resonance amplitudes at bearing 
levels as well as at other points of interest. Typical plot showing transient amplitudes vs. frequency 
is shown in Figure 8.3-3 

8.4 STRENGTH ANALYSIS & DESIGN 

Having ensured that amplitudes are within permissible limits, foundation is checked for strength 
and stability. Invariably same model, as developed for dynamic analysis, is used for strength 
analysis. Necessary changes are made for Elastic Modulus properties (i.e. Dynamic Elastic 
Modulus is changed to Static Elastic Modulus, if considered different). 

Stresses in the foundation are computed for all possible load cases including loads due to 
AbnormaIlFaulted Conditions (See Chapter 6). 
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8.4.1 Block Foundalions 

Block foundations are rigid and have in·built adequate strength to withstand all kinds of forces 
right ITom nonnal operating loads to abnonnalloads. 

Thus these found8lions need not be checked against strength. However anchorage length of holding 
down bolls either anchored or in pockets, due to earthquake loads, short circuit loads and bearing 
failure loads must be checked. In addition any cantilever projection supporting equipment mass 
must also be checked for its strength adequacy. 

8.4.2 Frame Foundations 

In general, von·mises stresses are reviewed and compared with allowable stresses. However for 
specific structural components, like cantilever projections, bending & shear stresses may also be 
reviewed. 

Necessary reinforcement is provided in the fou ndation for the developed Forces and Bending 
Moments as per applicable codes. For Elastic Modulus properties & allowable stresses, refer 
Chapter 7. For a typical foundation , stresses developed due to Earthquake Force and Bearing 
Failun: Loads are shown in Figure 8.4-1 . 

. 1»'" 

. !~1Jl 

l.\iCi 

l.I" 

1.)1\ 

!.Ill 

Figure 8.4-1 

1.1 11 

1.1'1 

1.16} 

:.:)4 

:,i(ll 

:."1 

1. 1\.1 

Frame Foundation - Stresses (mPa) due to Short Circuit 
Forces, Earthquake force and Bearing fai lure Loads 
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EXAMPLE PROBLEMS 

P8.1·1 

Consider a concrele portal frame of Problem 7.9-1 (as shown in Figure P 7.9-1) using FE 
Analysis. Frame data is reproduced here. 
Portal span 6.0 m 
Portal height 10.0 m 
Column 1.0 m x 1.2 m 
Portal beam 1.0 m wide x 1.5 m deep 
Machine of mass 50 t supported at the center of the beam 
Portal Is restrained to move only in X-V plane. 

EC'OM :c 2)(101 kN/ml ; G:::: 8.7x 106 kN/m2 & Mass density p:::: 2.5 tim) 

Find lateral nalural frequencies of the system ignoring Shear Odormations 

'0.0 

16.24 
Displacement in mm 

Machine mass ~o t 
Machine Mass SO t 

0.0 

0.7.5 

Displacemem in mm 

Static Load I g along X (Lateral) Sunie Load IS along Y (VcnicaJ) 

Figure P 8.1-18 Deflection under Ig'X forte and Ig Y Force 

SoluUon: FE Model 

}:> Portal Frame is modeled usi ng Brick Elements 
:> All nodes at column base are constrained i.e. (fixed) in X, Y & Z. 
» All nodes on one face of frame constrained in Z i.e. Frame is allowed to move only in X·Y 

Plane 
» Machine mass located at beam center as lumped mass element 
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}to Shear Deformation not included 
);> Static Force equal 10 Ig applied along X & Y (one at a time) - Deflection shown in Figure 

8.1-la 
);> Solved for Eigenvalue - Mode shapes and Natural Frequencies shown in Figure 8. 1-1 b 

It is recommended 10 always carry out equivalent static analysis by applying Ig force (here g stands 
for gravity loading) along X & Y directions (one at a time) to rule OUI possibility of making slips 
while modeling/analysis. It is noticed that maximum displacement by Ig load along X is 16.24 mm 
and for I g load along Y it is 0.75 mm. These static deflections correspond to: 

I Jt I S810 f • • -x - '-x -- :: 3.91 Hz 
21f t5x 2!r 16.24 

I if, I S810 f ·-x -.-x --",, 18.20Hz 
y 2!r 6 y 21r 0.75 

Mode I 4.097 Hz Mode 2 18.659 Hz Mode3 31.771 Hz 

Mode4 31.99Hz Mode 5 54.866 Hz Mode 6 66.32 Hz 

Figure P 8.1-lb Mode Shape! and Frequencies - Ponal Frame - Beam Rectangular Cross-section 
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From Figure P 8.1-lb, we get frequency corresponding to lSI lateral mode (along X) as 4.1 Hz and 
frequency corresponding to 1 sl vertical mode is 18.66 Hz. This kind of a check confirms correctness 
of modeling in broader sense. 

For academic interest let us compare the results with those obtained with the manual solution (see 
Problem P 7.9-1). Comparison of frequencies is shown in Table P 8.1-1. 

Table P 8.1-1 Comparison of Frequencies - FE Analysis with Manual Computational Method 
(see Problem P 7.9-1) 

Frequency in Hz 

Mode # 

fl 
f2 
f3 
f4 
f5 
f6 

FE Analysis 
Frequency Mode 

4.097 
18.66 
31.77 
31.99 
54.86 
66.32 

1 st Lateral mode along X 
1st Vertical mode along Y 
Column 1st mode along X 
Column 1 st mode along X 
2nd lateral mode along X 
2nd vertical mode along Y 

The comparison leads to the following observations: 

Manual Method 
Frequency Mode 

3.45 
22.76 

73.31 

Lateral along X 
1 st Vertical along Y 

2nd Vertical along Y 

1. Vertical natural Frequencies by FE Analysis are about 20 % lower in the lSI mode and about 

10% lower in 2nd mode with respect to those obtained by manual computation method. 

2. Lateral frequency by FE method however is about 20 % higher than Manual method. 

3. FE analysis yields 3 additional frequencies (frequencies f3, f4 & f5) between lSI vertical and 

2nd vertical mode of manual method of analysis. 

4. It is interesting to note that for medium rpm machines, these 3 additional frequencies lie within 

operating range and may significantly contribute to response. 

5. This highlights limitations of manual method of analysis for design of Frame Foundations. 

P 8.1-2 

For Portal Frame of Problem P 8.1-1, consider that a pair of haunches is provided (details 
given below). Find lateral natural frequencies of the system. 

i) Haunch size 300 X 500 mm 
ii) Haunch size 400 X 600 mm 
iii) Haunch size 500 X 800 mm 
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Solution: 

Modeling is done on the similar lines as for Problem P 7.9-1. Mode shapes and frequencies for 
haunch size of 300 X 500 mm are shown in Figure P 8.1-2. Frequencies for other haunch sizes are 
given in Table P 8.1-2. Just for academic interest, ftequencies for plane frame without haunch are 
also listed in the Table. 

Mode I 4 .2~2 I-Iz Mode 2 18.822 Hz Mode 3 33.014 Hz 

Mode 4 33 .097 Hz 
Mode ~ ~4.89 Hz 

Figure P 8.1·2 Mode Shapes and Frequencies - Frame with Haunches 3()() X 5()() 

Table P 8.1-2 Influence of Haunches on Frequencies ofa typical portal frame 

No Haunch Haunch Haunch Haunch 
300X500 400X600 500X8OO % varjation 

N fl 4.10 4.25 4.302 4.38 6.91 

'" fl 18.66 18.82 18.82 18.84 0.97 
/;' 0 31.77 33.01 33.38 33.9 6.70 • , f4 31.99 33.1 33.46 33.97 6.19 
~ f5 54.86 54.89 54.78 54.65 0.38 
~ 

Ri 66.32 66.23 66.112 65.77 0.83 
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From the results following salient observations are made: 

1. Variation in frequency is of the order of7 % and 0.4 % in lSI lateral and 2nd lateral mode 
(mode I & mode 5) respectively. 

2. A marginal difference of the order of 6 to 7% is however noticed in column lateral 
frequencies (mode 3 & 4) . 

Hence for all manual method of analysis, it may be reasonably OK to ignore haunches and in FE 
analysis, these will get taken care of automatically. 
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FOUNDATIONS FOR ROTARY MACHINES 

• Design Examples 

~ Block Foundation for a Typical Rotary Machine 
~ Frame Foundation for Turbo Generator 
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For better clarity, all Figures related to FE 
analysis, including animations of frequencies 
and mode shapes, in color, are given in the CD 
attached at the end of the handbook 
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FOUNDATIONS FOR ROTARY MACHINES 

Various types of machines that come under this category have been adequately addressed in 
Chapter 6. Both Block type foundations as well as Frame Type foundations, normally used to 
support such machines, have been covered in Chapter 7. Modeling aspects have adequately been 
covered in Chapter 8. Case studies on various machines and foundations, covering field 
measurements, failure studies, remedial measures and site feedback are reported in Chapter 14. 

A real life machine foundation system is a 3-D system. Machine is supported by the 
structure/foundation which in tum rests directly on the soil or through piles. The complete system 
is mathematically modeled and analyzed. Machine generates Dynamic forces in a plane 
perpendicular to axis' of rotation. The system vibrates in all six DOFs and thus requires 
computation of frequencies and amplitudes corresponding to all six DOF's. Design Procedures for 
a) Block Foundation and b) Frame Foundations are given hereunder. The application of these 
design methodic for evaluation of natural frequencies and amplitudes are common for all types of 
machines irrespective of their speed. 

9.1 DESIGN OF BLOCK FOUNDATION 

Machine is considered supported by a block foundation resting directly over soil. The complete 
system is mathematically modeled and analyzed for natural frequencies and amplitudes. 

Summary of Design Steps 

l. Sizing of Foundation 
2. Equivalent Soil Stiffness 
3. Dynamic Forces 
4. Analysis 
I. Dynamic Analysis 

a. Natural Frequencies 
b. Dynamic Amplitudes 

~ Steady State Amplitudes 
~ Transient Amplitudes 

II. Strength and Stability Analysis 
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a. Equivalent Static Forces (Normal Operating Conditions) 
b. Bearing Failure Loads (Abnormal conditions) 
c. Handling loads 
d. Short Circuit Loads 
e. Environmental Loads e.g. Earthquake Loads, Wind Loads etc. 
f. Thermal Loads (ifany) 

Required Input Data 

a) Foundation Data 
i) Foundation outline geometry, Levels etc 
ii) Cut-outs, pockets, trenches, notches, projections etc 

b) Machine Data 
i) Machine Layout 
ii) Machine Load Distribution at Load Points 
iii) Machine Dynamic Loads 

iv) 
v) 

c) Soil Data 

a. Magnitude of Dynamic Loads 
b. Location of application 
c. Associated excitation Frequencies 

Other Loads like Short Circuit Torque, Bearing Failure Loads etc. 
Allowable Amplitudes at Bearing Locations 

i) Site Specific Dynamic Soil Data 
ii) Soil type and its basic characteristic properties 
iii) Bearing capacity 
iv) Depth of water table 
v) Liquefaction potential 

d) Environmental Data 
i) Site related Seismic data 
ii) Wind Load Data 

At this stage it is implied that: 

• Site Soil data is converted to Design Sub-grade Parameters duly accounting for affects 
of overburden pressure and area in line with provisions given in Chapter 5. 

• Machine data is converted to Design Machine Parameters in line with provisions given 
in Chapter 6 . 

• Foundation data is converted to Design Foundation Parameters in line with provisions 
given in Chapter 7 

• Intricacies of Modeling and Analysis, as given in Chapter 8, have been well understood 

The mathematical representation of a typical foundation is shown in Figure 9.1-1. Here point 
o represents CG of Base Area of Foundation in contact with soil. This point is also termed as 
Degree of F~eedom (DOF) Location. 
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Rotor Centerline 

y 

J-x 
z 

Coordinate System 

Figure 9.1-1 Mathematical Model of a Typical Block Foundation 

Design Data: The design data at this stage is summarized as under: 

Mass 

Total Mass of Machine and Foundation 

Height of Overall Centroid C from 0 

m 

h 

Mass Moment of Inertia (Machine+ Foundation) @ Overall Centroid. C 

Mass Moment of Inertia about X axis 

Mass Moment of Inertia about Y axis 

Mass Moment of Inertia about Z axis 

Mass Moment of Inertia (Macbine+ Foundation) @ DOF Location 0 

Mass Moment of Inertia about X axis Mmox 

Mass Moment of Inertia about Y axis Mmoy 

s 
h 

9-5 
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9-6 Foundations for Rotary Machines 

Mass Moment of Inertia about Z axis Mmoz 

Area and Moment of Inertia of Foundation Base in contact with soil 

Area of Foundation A 

Moment of Inertia about X 

Moment of Inertia about Y 

Moment of Inertia about Z 

Equivalent Soil Stiffness at the foundation base level (at DOF location point 0) duly 
corrected for a) area effect and b) overburden pressure effect 

Translational Soil Stiffness along X 

Translational Soil Stiffness along Y 

Translational Soil Stiffness along Z 

Rotational Soil Stiffness about X 

Rotational Soil Stiffness about Y 

Rotational Soil Stiffness about Z 

Operating FrequencylFrequencies of machine 

Dynamic Loads 

~ For FE Analysis, Dynamic Forces need to be specified only at respective bearing 
locations. 

~ For manual method of computation, Dynamic Forces acting at bearing locations are 
transferred at DaF Location point 0 in terms of Forces and Moments. 

~ One can have as many sets of forces and moments as number of excitation frequencies 

Here we describe forces and moments @ DaF location point 0 for manual method of 
computation. 

Forces @ DaF location point 0 along X, Y & Z direction 
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Moments about X, Y & Z @ DOF location point 0 

9.1.1 Dynamic Analysis 

The dynamic analysis of a machine foundation system involves computation of natural frequencies 
and amplitudes of vibration. 

From this stage onwards, one can choose either Finite Element Method of Analysis (Chapter 
8) or Manual Method of Analysis (Chapters 2 &3). 

Natural Frequencies: The machine foundation system undergoes Six Modes of Vibration i.e. 
three Translational Modes and three Rotational Modes (see chapter 3). Natural frequencies 
corresponding to these six modes of vibration are reproduced as under: 

1. Motion along Y (Vertical direction): This vibration mode is always uncoupled. We get 
Natural frequency corresponding to Vertical Mode of Vibration (along Y) - (see equation 
3.1.2-6): 

Vertical Natural frequency (9.1-1) 

2. Motion about Y (Torsional): This vibration mode is also uncoupled. We get Natural 
frequency corresponding to Torsional Mode of Vibration (about Y) as (see equation 3.4.2-8): 

Torsional Natural frequency P = _If/_ ~ If/ Mmoy 
(9.1-2) 

3. Motion in X-V Plane - (Translation along X and Rocking about Z - x&(J modes) - This 

vibration mode is always coupled (see 3.3.2-8c). We get natural frequencies as: 

2 1 I 2 2) 1 ~I 2 2 \2 2 2 
PI =2\Px + P; -2 \Px + P;) -4yz PxP; 

yz yz 

M 
Here y z = -1!!L; 

Mmoz 

k 2 k; 
P; =2..; P; =--

m Mmoz 

(9.1-3) 

(9.1-4) 
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4. Motion in Y-Z Plane - (Translation along Z and Rocking about X - z&B modes) - This 
vibration mode is always coupled. On the similar lines, as for the motion in X-Y plane given in 
(3) above, we get frequency as: 

M 
Here r =~. 

x M ' 
max 

2 k 
pz =2..; 

m 

(9.1-5) 

(9.1-6) 

2 ko 
Po =--

Mmox 

As far as possible, effort is made to ensure that these frequencies are not in direct resonance with 
operating speed/speeds of the machine. In fact these frequencies should preferably be away by a 
margin of ± 20% from operating speed/speeds. In case resonance is noticed, it may be desirable to 
suitably alter the foundation dimensions and repeat the computations till the natural frequencies are 
found to be away from operating speed/speeds of the mach-ine. 

9.1.2 Amplitudes of Vibration 

Vibration Amplitude is the response of the Machine Foundation System subjected to unbalance 
force acting on the machine. When the natwral frequencies are in resonance with excitation 
frequency, damping plays a significant role and amplitudes need to be computed considering 
system with damping. However, when natural frequencies are not in resonance with operating 
speed, the damping has hardly any influence on the response and it is good enough to compute 
amplitudes for undamped conditions. 

Response Computation using FE Analysis: For response computation, these unbalance 
forces are applied directly at the bearing level locations. Amplitudes at desired locations viz. 
Foundation top or bearing levels are obtained directly. 

Response Computation using Manual Methods of Analysis: While evaluating response using 
manual method of analysis, these unbalance forces are transferred at the OOF location (CO of base 
area of foundation in contact with the soil i.e. point 0 ). Thus we get three force 
components Fx , Fy & Fz and three moment components M 0' M'I/ & M; @ point o. Amplitudes 

are evaluated at OOF location point 0 . Amplitudes at any other location viz. at foundation top or 
at bearing locations are computed using geometrical relationships. Amplitudes at OOF point 0 are 
reproduced as under: 
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9.1.2.1 Amplitudes (undamped) 

Motion along Y (vertical) and motion about Y (Torsional): For Uncoupled Modes i.e. Vertical 
motion along Y and torsional motion about Y, amplitudes are given by equations 3.4.2-5 & 3.4.2-8 
and these are reproduced here as under: 

i) Applied dynamic force Fy sin (J) t 

Amplitude 
1 

Yo =Oy I(l-p;) (9.1-7) 

Here Oy = :Y; Py =~ & py =~k% 
y Py 

ii) Applied dynamic moment M", sin (J) t 

Amplitude (9.1-8) 

Absolute value of magnification factor is considered in above equations so as to get positive value 
of amplitudes. This is done only for uncoupled modes i.e. motion along Y and motion about Y. 

Motion in X-Y plane: For coupled modes i.e. translation along X and rocking about Z, 
considering one force at a time, we get: 

iii) Applied dynamic force Fx sin (J) t 

Amplitudes (9.1-9) 

iv) Applied dynamic moment M; sin (J) t 
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Amplitude (9.1-10) 

~ __ Fx M, 
U x k & 0, = k' /3x & /3, are frequency ratios corresponding to limiting 

x , 
Here 

frequencies Px & P, and /31 & /32 are frequency ratios corresponding to natural frequencies 

PI & P2 (see equations 9.1-3 & 9.1-4 for PI & P2 ). 

Motion in Y -Z plane: For coupled modes i.e. translation along Z and rocking about X, we get: 

v) Applied dynamic force F: sin OJ t 

Amplitude (9.1-11) 

vi) Applied dynamic moment M 0 sin (j) t 

Amplitude 

z - ho /3i 
o - 0 (1 - /3l 1- /3i ) 

(9.1-12) 

Here Oz = ;z & 00 = ~ 0 ; /3z & /30 are frequency ratios corresponding to limiting 
z 0 

frequencies pz & Po and /31 & /32 are frequency ratios corresponding to natural frequencies 

PI & P2 ( PI & P2 are as given by equations 9.1-5 & 9.1-6). 

Note: The amplitudes given by equations 9.1-7 to 9.1-12 are amplitudes @ pointOfor 
undamped system (as the mathematical formulation is developed for undamped system). 

9.1.2.2 Amplitudes at resonance 

Whenever natural frequency corresponding to a specific mode lies within ±20 % of normal 

operating speed of the machine, foundation is considered to be in RESONANCE for that 
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particular mode of vibration. Should such a condition exist, amplitudes are to be computed under 
damped conditions. Amplitudes under resonance condition @ point 0 are given in § 3.4.2.1.1 and 
are reproduced here as under: 

Uncoupled Modes: 

Motion along Y (vertical) and motion about Y (Torsional): 

i) Applied dynamic force Fy sin cot - Resonance in vertical mode 

1 (9.1-13) 

ii) Applied dynamic moment M'i/ sin OJ t - Resonance in Torsional mode 

(9.1-14) 

s is damping constant 

Coupled Modes: 

Motion in X-Y plane: For natural frequencies PI & P2 ' see equations 9.1-3 & 9.1-4. 

iii) Applied dynamic force Fx sin OJ t 
a) Resonance with 1 sl natural frequency PI i.e. 0.8 < /31 < 1.2 

= [8 (1- /3i) j. ¢ = [-8 mh /3i 1 
Xo x (J(I-/3?f +(2/31,)2 )xV-/3i) '0 x Mmoz (J(I-/3?f +(2/31,)2 )x(l-/3i) 

............................... (9.1-15a) 

Note 1: If term {1- /3nis negative then term (~(1- /312 f + (2/31,)2 )shOUld also be negative. 

Retaining sign is important from the point of view of overall response evaluation which is 
vector sum of corresponding response quantities. 
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.................................. (9.l-15b) 

Note 2: If term (I ~ Pi) is negative then term ( ~(I- pi) + (2P2C;Y )shall also be negative (see 

Note I). 

iv) Applied dynamic Moment M; sin Q) t 

a) Resonance with 1 sl natural frequency PI i.e. 0.8 < PI < 1.2 

.................................... (9.1-16a) 
Note 3: (see Note I) 

b) Resonance with 2nd natural frequency P2 i.e. 0.8 < P2 < 1.2 

................................. (9.1-16b) 

Note 4: (see Note 2) 
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Motion in Y-Z plane: Here we use natural frequencies as given by equations 9.1-5 & 9.1-6. 

v) Applied dynamic force Fz sin 0) t 

a) Resonance with 151 natural frequency PI i.e. 0.8 < /31 < 1.2 

= 0 \1- /30 . B = 0 mh Po · [ (, 2) } [ 2] 
Zo z (~(I-/3?r + (2/3IS)2 )x(I- Pi ) 0 Z Mmox (~(l-/3?r + (2PIS)2 )x(I-/3i) 

......................... (9.1-17a) 
Note 5: (see Note l) 

b) Resonance with 2nd natural frequency P2 i.e. 0.8 < /32 < 1.2 

= [0 (1- /3J ) 1· B = [0 mh pJ 1 
Zo z (~(I-/3ir +(2/32,)2 )x (1-/3n '0 Z Mmox (~(l-/3if + (2/32S)2 )xV-/312) 

............................ (9.1-17b) 

Note 6: (see Note 2) 

vi) Applied dynamic moment M () sin 0) t 

a) Resonance with 151 natural frequency PI i.e. 0.8 < /31 < 1.2 

............................ (9.1-18a) 
Note 7: (see Note I) 

............................ (9.1-18b) 

Note 8: (see Note 2) 
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9.1.2.3 Amplitudes at foundation top 

The amplitudes xo ,Yo' zo,{}o , If/o &;0 (as obtained above) are at DOF location point O. Let 

xf.Ji[ &zf represent amplitudes at center of Top of Foundation. Amplitudes at foundation top 

are obtained using law of statics as shown in Figure 9.1-2. 

y 

...i. ~ /' 
cl>0(BI2) ~ ~~~;: : \ 

f\ \:: \ 
\ \ I I I 

I \1 ..... I , \ tva: 
\ I~ \ 

1\ I \ 
1\ I \ 

\ : \ : \ 
\ I \1 \ 

H 

\ 0 : \: 9~~~ ~~ 
~~~~-J~~----.X 

I '~~~ I 
I 

Xo 
• - I 

B 

JYpical Block Motion in X -Y Plane 

H9 Y 
.,..J IL t-".: i -, ! ',I • __ -. I 

'1'0 (BI2) 
jo- ~ . , ... , 

\ ! ... ",,'" 

90(LI2) ~ ~ ~~ ~ ~~ ~\eO!! i " } 
T~ w i \ 

'. \! j " H , '.! i \ 
\ \! i .... , 

~ I O'\! • ~.i-. ~ 

Motion in Y-Z Plane Motion in Z-X Plane 

Figure 9.1-2 Amplitude Components at Foundation Top 

Amplitudes at foundation top (at center) 

Amplitude X f due to Xo & ¢o 

Amplitude Y f due to Yo 

X f(max) = I(xo - H (0)1 

Y f(max) = IYol 

(9.1-19) 

(9.1-20) 
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Amplitude Z f due to Zo & eo (9.1-21) 

Amplitudes at" corners of foundation top 

Let x fe ' Y fe & Z fe represent amplitudes at comer of Top of Foundation. Let L & B represent 

length and width of the foundation along Z and X axes respectively. 

Amplitude X fe & Z fe due to If 0 

x fe(max) = I(L/2}1{I 01 ; Z fe(max) = I(B/2}1{I 01 

Amplitude Y fe due to ¢o & Bo 

Y fe = I(B/2}¢01 ; 

Y jc(max) = I(L/2}Bol + I(B/2}¢01 

Maximum amplitude along X 

x f(max) = X f(max) + X fe(max) = I(xo - H ¢o) + I(L/2}1{I 01 

Maximum amplitude along Y 

Y f(max) = Y f(max) + Y fe(max) = IYol + ~(L/2}Bol+ I{B/2)¢0j} 

Maximum amplitude along Z 

Z f(max) = zf(max) +z fe(max) = I(zo +H Bo)I+I{B/2}l{Iol 

(9.1-22) 

(9.1-23) 

(9.1-24) 

(9.1-25) 

(9.1-26) 

(9.1-27) 

Here x f' Y f & Z f represent amplitudes @ Foundation top. Quantities L, B & H represent Length, 

Breadth and Height as shown in Figure 9.1-2. 

On the similar lines, we can evaluate amplitudes at bearing locations too. It should ultimately be 
ensured that the amplitudes of vibration are within the allowable values. If analysis shows higher 
amplitudes, it is essential to redesign the foundation and reanalyze the system till one gets 
acceptable levels of vibration amplitudes. 

DESIGN EXAMPLES 

Design Examples are those encountered in real life practice. Comparison 
with Finite Element Analysis (FEA) is also given for specific cases to build 
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9-16 Foundations for Rotary Machines 

up the confidence level. Effort is made to highlight the influence of certain 
slips commonly committed while computing response of the foundation. 

Example D 9.1: Foundation for Low Speed Machine (600 rpm) 

Design a Block Foundation for a Rotary Machine set consisting of a Drive machine and a 
Non-Drive Machine, coupled directly. Foundation outline showing Machine-loading diagram, 
sectional elevation showing machine CG line, rotor-center line and bearing locations, is given 
in Figure D 9.1-1. Machine, foundation and soil parameters are as under: 

Machine Data: 

o Weight of Drive Machine (excluding Rotor) 

o Weight of the Non-Drive Machine (excluding Rotor) 

o Weight of Drive Machine Rotor 

o Weight of Non-Drive Machine Rotor 

o Bearings: Both the rotors have Pedestal bearings 
o Weight of bearing pedestal 

100 kN 

200 kN 

10 kN 

20 kN 

• Drive machine 2 kN (each pedestal) 

• Non-drive machine 4 kN (each pedestal) 

Consider CG of bearing pedestals and coupling at rotor Centre Line level. 

o Weight of Coupling 

o Rotor Speed 

o Balance Grade for both the rotors 

o Height of Rotor Centerline above Ground level 

o Height of Machine Centroid below rotor centerline 

Foundation Data 

o Length of Foundation Block 

o Width of Foundation 

o Height ofFo~dation block is above ground level 
• Drive end side 

• Non drive end side 

o Mass Density of concrete 

6 kN 

600 rpm 

06.3 

2000 mm 
100 mm 

5200 mm 
2200 mm 

1000 mm 
200 mm 

Pc = 2500 kglm3 
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Soil Data 

o Mass Density 

o Poisson's Ratio 
o Damping constant 

Ps = 1800 kg/m 3 

v =0.25 
, =0.1 

o Site Coefficient of Uniform Compression normalized to 10 m 2 Area 

CIIOI =4.6xl04 kN/m3 

o Site Static Stress (TOI @ 3.5 m depth 100 kN/m2 

o Net Bearing capacity at 3.5 m depth 

Data for Strength Design 

.0 Bearing failure force 

o Seismic Coefficient 

Anchor Bolts 

250 kN/m2 

5 x rotor weight 

ah =0.20 

o Drive machine 4 # - 20 mm dia bolts - Embedded Length of300 mm 

9-17 

o Non~ drive machine by 4 # - 25 mm dia bolts - Embedded Length of 400 
mm 

Increase in Allowable stress & soil bearing pressure 

o For Earthquake condition 

o For Bearing Failure condition 

SOLUTION: 

Machine Data: 

25% 

50% 

Machine layout is shown in Figure D 9.1-2. Drive machine weight is distributed at 4 points @ 
25 kN each and Non-drive machine weight is distributed at 4 points @ 50 kN each as shown in 

the Figure. 

Weight of Drive Machine (excluding rotor) 

Rotor weight 

Weight of bearing pedestals 

Total (Rotor + pedestal) 

4x25 = 100kN 

2x5=10kN 

2x2=4kN 

2x7=14kN 
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Weight of Non-Drive Machine (excluding rotor) 4 x SO = 200 kN 

Rotor weight 2 x 10 = 20 kN 

Weight of bearing pedestals 2 x 4 = 8 kN 

Total (Rotor + pedestals) 2 x 14 = 28 kN 

Weight of coupling 6 kN 

Total Machine weight 100 + 14 + 200 + 28 + 6 = 348 kN 

Foundation sizing: 

Foundation outline Plan dimension L=S.2m & B=2.2m 

Area of foundation block AI = S.2 x2.2 = 11.44 m2 

Consider foundation weight equal to 3.0 times the machine weight (see § 9.1.1) 

Desired Foundation Weight 3x348 = 1044 kN 

Mass Density of concrete Pc = 2S00 kg/m 3 = 2.S tlm 3 

Wt. of foundation above Ground Level 

{2.2 x2.2 xl.O+3.0x2.2xO.2 + 0.6x 0.8x 0.8}x2.Sx9.81 = 160.S kN 

Required Foundation Height below GL 

Provide Foundation Depth below GL 

H= (1044-160.5) =3.ISm 
11.44x9.8Ix2.S 

H=3.Sm 

Weight of foundation WI = 1 1,44x3.Sx2.5x9.81 + 160.5 = 1142 kN 

Total weight of Machine + Foundation 

Bearing Pressure 

Direct Bearing Pressure 

Net Bearing Capacity @ 3.5 m depth 

Allowable Bearing Capacity 

W = 1142+348 = 1490 kN 

= 1490 = 130.3 kN/m2 
q 11.44 

2S0kN/m2 

= 250 +3.5 x 1.8x9.81 = 312 kN/m2 
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Wm 1 =25kN Wm2=25kN Wm3=25kN Wm4=25kN 
Wm 5 = 7 kN Wm 6 = 7 kN Wm 7 = 6 kN Wm 8 = 50 kN 
Wm 9 = 50 kN Wml0 = 50 kN Wmll = 50 kN Wm12 = 14 kN 
Wm13= 14kN 

400 
I 

---t __ 

I 
I 
I 

Wml0 o Wm8 

250 

--1:-
I :0 

.-----1 :Wm3 

250 

-:1-
I 

Wml: llOO 
700 700 

Z_ 
:Wm13 Wm12 Wm7 :Wm6 800 Wm5 : 
- ---------------------------EJ---- ----0---- Ef----------- ----------------Elt-t---I-
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Figure D 9.1-1 Block Foundation Supporting Machines Coupled Directly 
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Ratio of Bearing Pressure to Bearing Capacity 

Margin for other loads (dynamic loads, emergency loads etc.) 

Margin available> 30%, hence OK 

OveraU Centroid 

Foundations for Rotary Machines 

130.3 = 0.42 
312 

= (1-0.42)x 100 = 58% 

Overall Centroid with respect to CG of Base area: Consider CG of Base area poirit 0 as 

shown in Figure 0 9.1-2. This is also called DOF location. 

a) Machine 

DrivfMlc B~ngs Coupling Non·D~ive We Bearings , , , ....... ~ 

IV; 25.0 25.0 25.025.0 7.0 7.0 6.0 50.0 50.0 50.0 50.0 14.014.0 kN 

.xi 0.7 -0.7 0.7 -0,7 0.0 0.0 0.0 0.7 -0.7 0.7 -0.7 0.0 0.0 m 

Yi 5.4 5.4 5.4 5.4 5.5 5.5 5.5 5.4 5.4 5.4 5.4 5.5 5.5 m 
Zj -2.1 -2.1 -0.9 -0.9 -2.35 -0.65 -0.1 0.9 0.9 1.9 1.9 0.6 2.2 m 

Let xmo,Ymo,zmo represent Machine Centroid with respect to CG of Base Area point O. We get 

- LWixj 0 x =--= . 
mo LWi ' Y- = LWiYi = 5.414' 

mo LWi ' 

b) Foundation 

Distance of CG 
Dimension from Point 0 
~ , 

Block x y z xi yi zi 

1 2.2 4.5 2.2 0.0 2.25 -1.5 

2 2.2 3.7 3.0 0.0 1.85 1.1 

3 0.8 0.8 0.6 0.0 4.10 -0.1 
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Weight of Foundation 

Wf ) = 2.2x2.2x4.5x2.5x9.81 = 534 kN 

Wf2 = 3.0x2.2x3.7x2.5x9.81 = 599 kN 

Wf3 = O.6xO.8xO.8x2.5x9.8J = 9.5 kN 

Total weight = 1142.5 kN 

400 " 250 
~ 100~: -+ -+ +- 1 ..-

1 · , 1 
1 II 1 
1 0 • 1 1 0 " 
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1 II 1 
1 • 1 1 

0 1 
i 1 
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Figure D 9.1-2 Machine Layout with Respect to CG of Base Area 0 
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Let x jo,Yjo,Z jorepresent Foundation Centroid with respect to CG of Base Area point O. We get 

- - rw:x; -0' 
xfo - rw: - , 
Let Xo ,Yo & Zo represent overall centroid of Machine + Foundation system with respect to CG of 

Base Area point 0 

x = L(WmXmo +WfXfO ) = 348xO+1142.5xO = 0 

o L(Wm+Wf ) 348+1142.5 

Yo = L(WmYmo +WfYfO ) = 348x5.414+ 1142.5x2.066 = 2.8477 

L( Wm + Wf ) 1490.5 

Z = L(WmZmo +Wfzfo ) = 348x0.424+ 1142.5x(-O.125) = 0.0032 

o L(Wm +Wf ) 1490.5 

Eccentricity 

Eccentricity in X-Z plane: 

Eccentricity along X -direction 

Eccentricity along Z-direction ez = (Zi'r) x 100 = 0.0032 xl00 =0.06% <5% OK 
5.2 

Both the values of eccentricity are less than 5 %, hence OK 

Dynamic Analysis 

Site Soil Parameters 

Site Coefficient of Uniform Compression (as given) 

Corresponding base area (given) 

Site Static Stress @ 3.5 m depth (as given) 

CuO ! =4.6xI04 kN/m3 

AO! =IOm 2 

(TO! = 100 kN/m2 
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Design Soil Parameters 

Width of Foundation B = 2.2 m 

Foundation depth Below GL D = 3.5 m 

Effective depth (See §S.4) dl)2 = 0.5 x 2.2 + 3.5 = 4.6 m 

Overburden pressure due to soil at depth d02 0"1 = l.8x4.6x9.81= 8l.23 kN/m2 

Area of Foundation A02 = 2.2x5.2 = 11.44 m2 

Total Wt. of Machine + Foundation 1490 kN 

Overburden pressure due to foundation + machine 1490 
0"2 =--= 130.2 kN/m2 

11.44 

Design Static Stress U02 = 0"1 +0"2 = (81.23+ 130.2) = 211.43 kN/m2 

Design Coefficient of Unifonn Compression C.02 ~ C,OI X l ::: ) x l ~: ) 
Since Ao2 = 11.44 m2 > 10 m2

; effective Ao2 = 10 m2 

Cu02 = 4.6xl04 x e:~;3) x~C~) =6.7xl0
4 

kN/m
3 

Design Coefficients 

Uniform Compression (as given) Cu =Cu02 =6.7xl04 kN/m3 

9-23 

Uniform Shear 

Non-Uniform Compression 

Non-Uniform Shear 

Cr =0.5xCu =0.5x6.7xl04 =3.35xl04 kN/m 3 

Co = C; = 2xCu = 2x6.7xl04 = 13.4 x 104 kN/m 3 

C", = 0.75xCu = 0.75x6.7xl04 = 5.03xl04 kN/m3 

Soil Stiffness (Equivalent Springs): 

Translational Soil Stiffness values along X, Y & Z 

Rotational Soil Stiffness values about X, Y & Z ko,k""k; 

Foundation Base area Af = 11.44 m2 
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Moment ofInertia of Base Area about X-axis 1 3 4 In =-x2.2x5.2 =25.78 m 
12 

Moment of Inertia of Base Area about Z-axis 1 3 4 
I zz =12x2.2 x5.2=4.614 m 

Moment of Inertia of Base Area about Y-axis 

Substituting values, we get: 

kx = CT X AI = 3.35x 104 x 11.44 = 38.32x 104 kN/m 

ky = Cu x AI = 6.7x104 xl 1.44 = 76.65x104 kN/m 

kz = CT X AI = 38.32x 104 kN/m 

ko = Co x In = 13.4 X 104 x 25.78 = 3.45 x 106 kNmlrad 

klf/ = CIf/ xl yy = 5.03 x 104 x 30.4 = 1.53 x 106 kNmlrad 

k; = C; xl zz = 13.4 x 104 x4.614 = 0.62 x 106 kNmlrad 

Mass and Mass Moment of Inertia 

a) Mass Moment of Inertia about CG of Base Point 0 

Machine load distribution and locations with respect to point 0 (see Figure 9.1-2) 

i) Machine 

Dri"'(Mle B~ngs Coupling Non.D~ve Mle Bearings . 
25.0 25.0 7.0 - ,---J'----, 

~ 25.0 25.0 7.0 6.0 50.0 50.0 50.0 50.0 14.0 14.0 kN 

Xj 0.7 -0.7 0.7 -0.7 0.0 0.0 0.0 0.7 -0.7 0.7 -0.7 0.0 0.0 m 

y/ 5.4 5.4 5.4 5.4 2.7 2.7 2.7 5.4 5.4 5.4 5.4 2.7 2.7 m 

Zj -2.1 -2.1 -0.9 -0.9 -2.35 -0.65 -0.1 0.9 0.9 1.9 1.9 0.6 2.2 m 

Total machine Mass = 348/9.81 = 35.474 t 

Mass Moment of Inertia of Machine 
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Mmoy_machine == ~jw; I g)x{x; +z;)}== 9S.3 t m
2 

M moz_machine == L ~w; I g)x {x; + y;)}== 1054.7 t m
2 

ii) Foundation 

Distance of CO 
Dimension from Point 0 
~ 

. , 
Block X y z xi yi zi Density Mass 

2.2 4.5 2.2 0.0 2.25 -1.5 2.5 2.2 x 4.5 x 2.2 x 2.5 = 54.45 

2 2.2 3.7 3.0 0.0 I.S5 1.1 2.5 2.2x3.7x3.0x 2.5 = 61.05 

3 0.8 O.S 0.6 0.0 4.10 -0.1 2.5 O.SxO.Sx 0.6x2.5 = 0.96 

Total Mass = 116.46 t 

Mass Moment of Inertia of Foundation 

Mmox_foundatlon = L ~mi 112Xl +z2 )+mi~; + z;)}= 926.49 tm
2 

Mmoy_foundalion == L~m;l12Xx2 +z2)+mi{x; +z;)}==31O.S1 tm
2 

Mmoz_foundalion == L ~mi 112h
2 

+x2 )+mi~; +x; )}== 70S.95 t m
2 

Total Mass Moment of Inertia about CG of Base Point 0 

Mmox= 1123.1+926.49=2049.6 tm 2 

M moy= 98.3+310.S1 =409.12tm2 

Mmoz= 1054.7+70S.95 =1763.7 tm2 

b) Mass Moment of Inertia about Overall Centroid 

Total Mass (Machine + Foundation) m == 35.47 + 116.46 = 151.93 t 

Coordinates of Overall Centroid with respect to CG of Base Area point 0 

Xo=O; Yo=2.S477; zo=0.0032 

M nIX = M mox -m ~o 2 +Zo 2) = ~049.6-151.93x(2.84772 +0.00322 )}= 817.5 t m2 
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Mmy = Mmoy -m (x/ +z/) = ~09.12-151.93x(0+0.00322 )}= 409.12 t m2 

Mmz = Mmoz -m ~/ +xo 2) = ~763.7 -151.93x(2.84772 +O)}= 531.64 t m2 

Ratio of Mass Moment of Inertia at overall centroid to Mass Moment of Inertia at CG of 
base area point 0 

_ Mmx _ 817.5 -0399' _ Mmy _409.12_ 10 , _ Mmz _531.64_ 030 yx---- -., yy------- . ,Yz- ---- . 
Mmox 2049.6 Mmoy 409.12 Mmoz 1763.7 

Natural Frequencies 

Limiting Frequencies: 

fk: 38.32x10
4 

=50.22radls 
Px=V-;;;= 151.93 

P = fk; = 
y V-; 

(k; 
Pz = V-;;; = 

76.65 x 10
4 

= 71.03 radls 
151.93 

38.32 x 10
4 

= 50.22 radls 
151.93 

pe=~ ke = 3.45x10
6 

=41.02radls 
Mmox 2049.6 

p _~k. _ I.S3xIO':6I.1Smdls 
'" - Mmoy - 409.12 

P; =J k; = 0.62x10
6 

=18.75radls 
Mmoz 1763.7 

Uncoupled Modes: Since vertical and torsional modes (corresponding to Y&1fI deformation) are 

uncoupled modes Py & P", also represent the natural frequencies in respective modes. 

Py = 71.03 radls; Iy = 11.30 Hz 

P", = 61.15 radls; I", = 9.73 Hz 
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Coupled Modes are: 

Modes corresponding to x & ¢ deformation (X -Y Plane) 

Modes corresponding to z & () deformation (Y -Z Plane) 

Natural Frequencies corresponding to x & ¢ deformation see equation 

2 1 f 2 2) 1 If 2 2 \2 2 2 
PI =2\Px+P; -2V\Px+P;} -4Yzpxp; 

Yz Yz 

Pf = 1 (50.222 + 18.752
)- 1 (50.222 + 18.752

)2 -4xO.30x50.222 x18.75 2 

2x0.30 2x0.30 

Pf = 4789.35 - 4469.03 = 320.32 

PI = 17.9 radls; fi = 2.84 Hz 

2 1 f 2 2) 1 If 2 2 \2 2 2 
P2 =2\PX + P; +2V\Px + P;} -4y. PxP; 

Y. Y. 

pi = __ 1_{50.222 + 18.752 )+ __ 1_~{50.222 + 18.752 r -4x0.30x50.222 x18.752 

2x0.30 2x0.30 

pi = 4789.35 + 4469.03 = 9258.3; 

P2 = 96.22 rad/s; 12 = 15.3 Hz 
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It is noted that since limiting frequency P; < Px ' the lower natural frequency fi = 2.84 Hz shall 

predominantly correspond to ¢ mode of deformation and 12 = 15.3 Hz shall predominantly 

correspond to x mode of deformation. On the similar lines, we get natural frequencies 
corresponding to another coupled mode i.e. mode corresponding to z & B deformation. 
Substituting Pz = 50.22, Po = 41.02 & Yx = 0.399, we get the two natural frequencies as: 

2 1 (2 2) PI = 50.22 + 41.02 
2 x 0.399 

1 ~(50.222 +41.022 j -4xO.399x50.222 X 41.022 
2xO.399 

PI 2 = 5269-4139 = 1130; 

PI = 33.6 radls; fi = 5.35 Hz 

pi = 1 (50.222 +41.022)+ 1 ~(50.222 + 41.022 j -4x 0.399x 50.222 x 41.022 
2 x 0.399 2 x 0.399 

p~ = 5269+ 4138.46 = 9407.46; 

P2 = 96.99 radls ; 12 = 15.43 Hz 
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Here also, since Po < Pz ' the lower natural frequency fi = 4.57 Hz shall predominantly 

correspond to B mode of deformation and 12 = 15.69 Hz shall predominantly correspond to 

z mode of deformation. 

Machine operating speed 600 rpm =10 Hz 

Rewriting the six natural frequencies (in ascending order) corresponding to six modes of 
vibration, we get: 

PI =17.9 rad/s ~ fi =2.84 Hz ~ predominantly tP mode 

P2 =33.6 rad/s ~ h =5.35 Hz ~ predominantly B mode 

P3 =61.15 rad/s ~ 13 =9.73 Hz ~ uncoupled 'l'mode 

P 4 = 71.03 rad/s ~ 14 = 11.30 Hz ~ uncoupled y mod e 

Ps = 96.22 rad/s ~ Is = 15.30 Hz ~ predominantly z mode 

P6 = 96.99 rad/s ~ 16 = 15.44 Hz ~ predominantly x mode 

margin wit h respect to 
operating speed of 10Hz 

,---J'---.. 

71.6% 

46.5% 

2.7% 

13.0% 

53.0% 

54.4% 

It is seen that 3rd & 4th frequencies (13 & 14) are in resonance zone (Le. frequencies lie within 

±20 % of operating speed) and rest of the frequencies are sufficiently away from operating speed. 

Hence amplitudes corresponding to P3 & P4 shall be computed with damping whereas for other 

frequencies, undamped amplitude would be OK. 

Unbalance Forces 

Operating speed of machine = 600 rpm = 600 x 
2 

x 1r = 62.83 rad/s 
60 

a) Dynamic force Fi generated by Drive Machine 

Mass of Rotor 

Excitation frequency 

Rotor Balance Grade 

10 
=-=1.02 t 

9.81 

= 62.83 radls 

=G6.3 
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Rotor eccentricity 

Unbalance Force 

e=(6.3/63.S3)=0.lmrn =0.lxI0-3 m 

Fj =1.02xO.lxI0-3 x(63.S3)2 =0.404 kN 

b) Dynamic force F2 generated by Non-Drive Machine 

Mass of Rotor 

Rotor Balance Grade 

Rotor eccentricity 

20 
=-=2.04 t 

9.S1 

=G6.3 

e=O.lxI0-3 m 

Unbalance Force F2 = 2.04xO.lxlO-3 x(62.S3)2 = O.SOS kN 

Dynamic Force - Load cases 
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Dynamic forces FJ and F2 are considered acting in vertical as well as in lateral directions (one at 

a time). These forces are considered acting (a) in-phase and (b) out of phase. Figure D 9.1-3 

shows dynamic forces applied at bearing locations. Bearings I & 2 (Brl & Br2) correspond to 

Drive machine whereas bearings 3 & 4 (Br3 & Br4) correspond to Non-drive machine. For each 

such combination, forces are finally transferred @ point 0 and amplitudes are computed for 

each such combination. 

Case 1 Forces in-phase acting in (+) X-Direction 

Excitation frequency 62.83 rad/s 

Force at Bearings Brl & Br2 each (+X direction) = (0.404/2) = 0.202 kN 

Force at Bearing Br3 & Br4 each (+X direction) = (0.808/2) = 0.404 kN 

Transferring Forces at CG of Base area point 0 ,we get 

(Moment from X to Y, Y to Z and Z to X is positive) 

Fx = 2xO.202+2x0.404 = 1.212 kN 

M; = -(0.404 x 5.5 + 0.404 x 5.5 +0.202x5.5 + 0.202 x 5.5) = -6.66 kNm 

M'I/ = 0.404x(2.2+0.6)-0.202x(2.35+0.65)= 0.52 kNm 
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z 
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y 

(a) Dynamic Forces - in Phase (b) Dynamic Forces - out Phase 

y 

Dynamic Forces applied along X aixs 

y 

(c) Dynamic Forces - in Phase (d) Dynamic Forces - out Phase 

Dynamic Forces applied along Y aixs 

Figure D 9.1-3 Dynamic Forces at Bearing Locations 

Case 2 Forces out of Phase acting in X-Direction 

Force at Bearings BrI & Br2 each (-X direction) 

Force at Bearing Br3 & Br4 each (+X direction) 

=-0.202 kN 

=0.404 kN 

Transferring Forces at CG of Base area point 0 ,we get 

Fx = 2x(0.404-0.202) = 0.404 kN 

M; = -2x(0.404xS.S)+2x(0.202xS.S)= -2.22 kNm 
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M", = 0.404 x (2.2 +0.6)+0.202(0.65+2.35)= 1.74 kNm 

Case 3 Forces Pi & F2 acting in-phase acting in Y -Direction 

Force at Bearing Brl & Br2 each (+Y direction) 

Force at Bearing Br3 & Br4 each (+Y direction) 

=0.202 kN 

=0.404 kN 

Transferring Forces at CG of Base area point 0 ,we get 

Fy = 2xO.202+2x0.404 = 1.212 kN 

Me = -00404(2.2 + 0.6)+ 0.202(2.35 + 0.65) = -0.525 kNm 

Case 4 Forces out of Phase acting in Y -Direction 

Force at Bearing Br 1 & Br2 each (-Y direction) = 0.202 kN 

Force at Bearing Br3 & Br4 each (+Y direction) = 00404 kN 

Transferring Forces at CG of Base area point 0 ,we get 

Fy = -2 x 0.202 + 2 x 0.404 = 0.404 kN 

Me =-00404x(2.2+0.6)-0.202x(2.35+0.65)=-1.735 kNm 

Dynamic forces transferred at point 0 are shown in Figure D 9.1-4. 

Amplitudes of Vibration 

9-31 

For amplitude computation (see § 9.1.6). Rewriting parameters required for computation of 

amplitudes: 

Stiffness and mass moment of inertia 

kx =38.32xl04 ; ky =76.65xl04 ; kz =38.32xl04 kN/m 

ke =3045xl06 ; k", = 1.53 x 106 ; k; =0.62xl06 kNm/rad 

m=IS1.93 t; h=yo =2.8477 m; ;=0.1 

H = 4.5 m; L = 5.2 m; B = 2.2 m 
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M 2049.6 t m2 ; M 409.12 t m 2 ; M 1763.7 t m2 
max = moy = moz = 

Mmx =817.5 tm2 Mmy =409.12 tm2 Mmz =531.64 

Yx = 0.399; Yy = 1.0; Yz = 0.30 

Limiting Frequencies: 

Px = 50.22 radls; Py = 71.03 radls ; pz = 50.22 radls 

Pe = 41.02 radls; PIf/ = 61.15 radls; P, = 18.75 radls 

Natural Frequencies: 

For motion in X-Y Plane PI = 17.9 radls; P2 = 96.22 radls 

For motion in Y -Z Plane PI = 33.6 radls; P2 = 96.99 radls 

Frequency Ratios: 

Case 1 

Limiting Frequency Ratios: 

f3x = (m/px) = 1.25; f3y = (m/py)= 0.88; f3z = (m/pJ=1.25 

f3e = (m/Pe) = 1.53; I3I/f = (m/plf/)= 1.03; 13, =(m/p~)=3.35 

Natural Frequency Ratios: 

For motion in X-Y Plane 131 = (m/ PI) = 3.52; 132 = (m/ P2) = 0.65 

For motion in Y-Z Plane PI = (m/ PI) = 1.87; 132 = (m/ P2) = 0.65 

Force along X in Phase 

Fx = 1.21 kN; M, = -6.66 kNm; MIf/ = 0.52 kNm 

Excitation Frequency (Operating Speed of 600 rpm) = 62.83 radls 

Natural Frequencies PI = 17.9 radls; P2 = 96.22 radls 
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Since PI > 1.2 & /32 < 0.8 hence no resonance; use equation (9.1-9 & 10) for undamped 

amplitudes. Further, since 0.8 < fJ'I/ < 1.2, use equation 9.1-14 for amplitude with damping. 

Note: For amplitude computation, it is more cOftvenient to consider one force at a time, evaluate 
amplitudes and finally obtain the resultant by taking the sum ofthe amplitudes. 

i) F~ = 1.21 kN 

m 

ii) M; = -6.66 kNm 

rad 

iii) Amplitudes for Moment M'I/ = 0.52 kNm 

P'I/ = 61.15 rad /sec; /3'1/ = 1.03 

0'1/ = (M'I//k'l/) = (0.52/1.53 x l06)= 3.43x 1 0-7 rad 
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IJIp =3.43 x lO-7x I =1.61xlO-6 rad 

~(1-1.032 r +(2x 1.03 x 0.1)2 

Total Amplitudes: Total amplitudes xo' ¢o & IJI 0 @ point 0 

LXo = (4.96 x 10-6 -7.32xlO-6)= -2.37 x 10-6 m 

L¢o = (1.33 x 10-6 -9.31xl0-7)= 4.0xlO-7 rad 

LlJlo = 1.61 X 10-6 rad 

Amplitudes @ Foundation Top 

Rewriting equations 9.1-25 to 9.1-27 and substituting ~>o, LYo, LZo, LBo, LlJlo & L¢o in 

place of xo,yo,zo,Bo,lJIo&¢o, we get: 

xf(max) =j(LXO -HL ¢o)+!(L/2)LIJIO! 

Yf(max) = ILYol +1(L/2)L Bol +I(B/2)L¢ol 
zf(max) =1(Lzo +HLBo)I+I(B/2)LlJlol 

Substituting values, we get . 

x f(max) = I{ -2.37 x 10-
6 

-4.5 x( 4.00x 1O-
7 )}1 +I(5.2/2)x 1.61x 10-

6
1 = 8.35x 10-

6 
m 

Y f(max) = 0+ 0+ /(2.2/2)x (4.00 x 10-7) = 4.4 x 10-7 m 

Z f(max) = j(B/2)LlJlo! = /(2.2/2)x1.61 x 10-
6

/ = 1.77xl0-6 m 

ease 2 Force along X Out of Phase 

Fx = 0.4 kN; M¢ = -2.22 kNm; M'If = 1.74 kNm 

OJ = 62.83 radls PI = 17.9 radls; P2 = 96.22 radls 

P¢ = (OJ/ p;) = 3.35 
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i) Fx = 0.4 kN 

Following computations on similar lines, substituting the values, we get 

[ 
mh Pi] -7 ¢() =- Ox ( 21. 2) =4.44xlO rad 

M moz 1-PI }..1- P2 

ii) M; = -2.22 kNm 

0; = {M;/k;}= (-6.66/0.62 x 106 )= -3.58xlO-6 rad 

Xo = -[ ht5; (I -pti -pi )] 
= -[2.84 x (- 3.58 x 10-

6
) (I _ 3.5~;2~~ 0.652 )] = -2.44 x I 0-

6 
m 

rad 

i) Amplitudes for Moment M'I/ = 0.52 kNm 

P'I/ = 6l.l5 rad/sec; P'I/ = 1.03 

0", = (M'I/ / k",)= (I. 74/1.53 x 1 06 )= 1.14x 1 0-0 rad 

lJ!o=1.l4xI0-6 x 1 =5.33xlO-6 rad 
~(1-1.032r +(2xl.03xO.l)2 

Total Amplitudes: Total amplitudes xo' tPo & IJI 0 @ point 0 

LXo = (1.65 x 10-0 ...: 2.44 x 10-0 ~ = -7.89xlO-7 m 
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"[,;0 = (4.44 x 10-7 -3.10xI0-7)= 1.33 x 10-7 rad 

L'I'o =5.33xlO-6 rad 

Foundations for Rotary Machines 

Amplitudes @ Foundation Top: 

Substituting values, we get 

Case 3 

X!(max)=1.52xl0-5 m; Y!(max)=1.47xlO-7 m; z!(max)=5.86xl0-6 m 

Force along Y in Phase (Motion in Y -Z Plane) 

Fy = 1.21 kN; Me = -0.52 kNm 

m = 62.83 radls PI = 33.62 radls; P2 = 96.99 radls 

PI = (m/PI) = 1.87; P2 = (m/P2) = 0.65 

Px = (m/ Px) = 1.25; Py = (tV/ py)= 0.88; pz = (m/ pz) = 1.25 

Pe = (m/Pe) = 1.53; Pili = (m/PIII )= 1.03; P; = (m/p,) = 3.35 

Since PI > 1.2 & P2 < 0.8 hence no resonance; use equation (9.1-11 & 12) for undamped 

amplitudes. Further, since 0.8 < Py < 1.2, use equation 9.1-13 for amplitude with damping. 

i) Fy = 1.21 kN 

ii) Me = -0.52 kNm . oe = Me = -0.52 =-1.52xlO-7 
ke 3.45x106 
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rad 

Total Amplitudes: Total amplitudes xo' ¢o &lfIo@ point 0 

LYo = 5.63xlO-6 m; LZo = 4.67xlO-7 m; LBo = -5.94xlO-8 rad 

y 

F:x= 1.212 kN 

M, = - 6.66 kNm 

M,¥ = 0.52 kNm 

In Phase 

F:x=O.4kN 

M,=2.22kNm 

M,¥= 1.74kNm 

Out of Phase 

Case 1 & 2 Dynamic Forces along X 

i Fy 

Z.J--.X 

r--_ .. J .-__ 0-

F.v= 1.21 kN 

Me = - 0.52 kNm 

In Phase 

F.y=OAOkN 

Me=-1.74kNm 

Out of Phase 

Case 3 & 4 Dynamic Forces along Y 

Figure D 9.1-4 Dynamic Forces and Moments Transferred @ Point 0 
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Amplitudes @ Foundation Top: Substituting values, we get 

Case 4 

Y f(max) = 15.63 xl 0-6 1 + 1(5.2/2)x(-5.94 X 10-8
) = 5.79x 10-6 m 

Zf(max) = IC4.67 x 10-7 +4.5x(-5.94)XIO-8)1+0=2.0xlO-7 m 

Force along Y Out of Phase (Motion in Y -Z Plane) 

Fy = 0.40 kN; Me == -1.74 kNm 

Following procedure same as for case 3, substituting values, we get 

i) Fy == 0.40 kN; C>y =5.26xlO-7 m Yo = 1.88 X IO--{; 

ii) Me == -1.74 kNm; oe =-5.03xlO-7 

Zo = 1.55 X 10-6 m' , eo =-1.97xlO-7 rad 

Total Amplitudes: Total amplitudes xo , ¢o &/f/o@ point 0 

m 

LYo =1.88xI0--{; m; LZo ==1.55xlO-6 m; Leo ==-1.97xlO-7 rad 

Amplitudes @ Foundation Top: Substituting values, we get 

Y f(max) == 11.88XlO--{;1 +1(5.2/2)x(-1.97)x 10-71 = 2.39x 10--{; m 

Z f(max) = 1(I.55X 10--{; +4.5 x{-1.97}x 10-7~ ~ 6.6x 10-7 m 

Finite Element Analysis 

This very problem is modeled and analyzed using Finite Element Method. Solid Model and FE 
Model are shown in Figure D 9.1-5. The results are presented herewith through Figures D 9.1-6 to 
D 9.1-8. 

• Mode Shapes and associated frequencies are shown in Figure D 9.1-6 
• Steady State Amplitudes are shown in Figure D 9.1-7 
• Transient Amplitudes are shown in Figure D 9.1-8 
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Comparison of FE results with Analylica l resu lts 

Solid Mode! FE Model 

Figure D 9.1-5 Foundation Block - Solid Mode:! & FE Model 

Mode I 2.6 Hz 
Mode 2 5 Hz Mode 3 9.2 Hz 

Mode 4 10 Hz Mode 5 13.8 Hz Mode 6 13.77Hz 

FigureD9.1-6 Foundation Block - Mode Shapes & Frequencies 
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Figure D 9.1-7 Dynamic Force alongX & Y - Steady-State Response - Damping 10 % 

frequencies and Mode Shapes: Comparing the natural frequencies with those obtained using 
manual computational method (see 9.1 .5.1 ), it is noticed thai frequency evaluated by both the 
analysis methods show II: good agreement and variation is of the order of 10 % for all the six modes 
of vibration. A good agreement is noticed in Frequencies and Mode Shapes by both the methods 
given as under: 
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Natural Frequencies - Hz 

Mode # 1 2 3 

Analytical Method 2.85 5.35 9.73 
FE Analysis 2.6 5 9.1 

Amplitudes of Vibration are given as under: 

Dynamic Force 

Along X In-phase 
Along X Out of Phase 
Along YIn-phase 
Along Y Out of Phase 

Amplitudes in microns 

Analytical Method 

8.4 
15.2 
5.8 
2.4 

4 

11.3 
10 

FE Analysis 

6.7 
10.8 
1.3 
2.1 

9-41 

5 6 

15.31 15.44 
13.8 13.8 

Transient amplitudes: These are computed using FE analysis only and have been shown in 
Figure D 9.1-8. 

Since applied dynamic force is computed at 50 Hz and same force is applied for the sweep analysis, 
all transient amplitudes are to be scaled down by a factor of square of ratio of frequency i.e. 

transient amplitudes at 5 Hz are to be scaled down by a factor of{5/50 Y and amplitude at 10 Hz 

are to be scaled down by a factor of{IO/50)2. For Dynamic force along X acting in-phase and out 

-of-phase, transient amplitudes are 280 & 900 microns whereas for force along Y acting in-phase 
and out-of-phase these are 320 and 200 microns respectively. 

It is interesting to note that Transient Response (FE analysis results) shows a three fold increase in 
X amplitude when dynamic force is applied out of phase compared to when force applied is in 
phase. On the other hand, when forces are applied in Y direction, such a sharp increase is not 
reflected. 

There are may be many factors that may influence margins between natural frequency of the 
system and excitation frequency. These in tum cause near resonance conditions resulting in higher 
amplitudes. Some of these factors are: 

i) Variation in soil stiffness properties with time 
ii) For electrically operated machines drawing power from the grid, variation in the grid 

frequency (a very common factor) results in changed excitation frequency 
iii) Variation in machine parameters given at the design stage to the actual one at the time of 

supply 
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It is to be noted that both these methods suffer with inaccuracies on account of ignoring soil 
surrounding the foundation at all vertical interfaces. The soil effect tends to result in reduced 
amplitudes than those evaluated by analysis 
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Figure D9.1-8 Transient Response at Bearing # 4 

Strength Design 

I. Block foundations are rigid body mass and have sufficient strength to withstand all possible 
force exerted by machine and as such do not need design computations for strength except 
those parts of the foundation which are overhang or cantilever. 

2. Minimum reinforcement to be provided is 25 to 50 kglm 3 . It is recommended that bar 

diameter shall not be less than 12 mm and spacing shall not be more than 200 mm. For thick 
concrete blocks, it is desirable to provide intermediate cross reinforcement layers along the 
height. 
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3. Though not necessary, check for Safe Bearing Pressure and stability, due to normal as well 
as abnormal loading conditions is desirable. 

4. Check for Strength & Embeddement of Anchor Bolts for applicable forces is a must 

The foundation is designed using applicable codes of practice. Typical reinforcement arrangement 
for the foundation is shown in Figure D 9.1-9 
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Pocket Detail 

I. 2200 .1 
SectionB-B 

Figure D 9.1-9 Typical RIF For Block Foundation 

9.2 DESIGN OF FRAME FOUNDATION 

Design of Frame Foundation is relatively a complex task compared to Block foundation. There are 
many parameters that influence machine-foundation response. The stiffness of Frame Structure 
plays a vital role and more often than not becomes The Governing Parameter. Individual 
vibration characteristics of columns, beams, cantilever projections etc, besides being part of the 
system, have also been found to significantly influence the response. 
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Author has been associated for about three decades with Turbo-Generators and as<;ociated 
machinery for Thermal Power Plants, Nuclear Power Plants and Petrochemical Plants. Studies on 
the dynamic behaviour of Turbo Generator Foundations of various ratings have shown that there 
are various parameters that influence machine foundation response. Though it may not be possible 
to account for all of these effects in the design, it may still be desirable to take note of these and 
take precautionary measures, as far as possible, at the design stage itself. Some of these are listed 
hereunder: 

i) Similar machines on the similar foundations have been observed to behave differently on 
different soil. Amplitudes of vibration on a 200 MW (3000 rpm) TG Foundation show 
high amplitudes on foundation built on hard rock compared to the other built on alluvial 
soil (see Chapter 14). 

ii) Identical machines on identical foundations built on identical soil have also been found to 
exhibit different responses. Response of two identical foundations housing identical 
machines built side by side has been found to be different (see Chapter 14). 

iii) Variation in Load (in case of Turbo-Generators), at times, has been found to influence 
response. 

iv) Variation in grid frequency has also been f'Jund to influence response. 

v) Deterioration of grout under sole plate, with time, has also been found to influence 
vibration response. 

vi) Tightening torque of holding down bolts does influence the response. 

vii) Honey-combing in the frame beams and columns. 

viii) Loss of Contact underneath machine support plates supported embedded in the concrete. 

ix) Resonance with elements of foundation (beam, colurnfi, cantilever projection etc has been 
found to influence the response significantly. 

It is interesting to note that some of these parameters are machine related; some are installation 
related; some are construction related; some are design related and some may be attributed to 
combination of these. Author strongly recommends that the designer must touch upon all such 
issues that are possible to be included at the design stage itself. 

A Frame Foundation typically consists of a Top Deck, a set of Frames/Columns and a Base Raft. 
In certain cases, a mid level platform is provided, on need basis, for supporting certain equipment. 
In some cases, equipment like condenser is supported over pedestals raised from the base raft and 
connected to machine at the top deck. Such equipment is either rigidly or flexibly mounted over the 
pedestals depending upon its connection to the turbine at the top deck. A typical Foundation is 
shown in Figure 9.2-1 

The complete system is mathematically modeled and analyzed for natural frequencies and 
amplitudes. The extent, to which machine and foundation elements are modeled, depends upon 
machine and foundation characteristics. 
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Summary of Design Steps 

1. Sizing of Foundation. 
2. Locating machine load points over the foundation top deck 
3. Locating machine components supported at base raft, mid height deck/platform etc and their 

connections with machine at the top deck 
4. Evaluation of Design Soil Stiffness Parameters 
5. Identification/evaluation of Dynamic Forces 

6. Analysis 

I. Dynamic Analysis 
a. Natural Frequencies and Mode Shapes 
b. Identification of modes likely to be in resonance with machine speeds (engine orders 

and harmonics) 
c. Evaluation of Dynamic Amplitudes 

» Steady State Amplitudes 
» Transient Amplitudes 

II. Strength and Stability Analysis 
a. Equivalent Static Forces (Normal Operating Conditions) 
b. Bearing Failure Loads (Abnormal conditions) 
c. Handling loads 
d. Short Circuit Loads 
e. Environmental Loads e.g. Earthquake Loads, Wind Loads etc. 
f. Thermal Loads (ifany) 

Top Deck Plan 

l. ) 

I I 
Sectional Elevation A JSpjcal View - Foundation 

sypportinK Machine 

Figure 9.2-1 A Typical Frame Foundation 
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Required Input Data 

A) Foundation Data 

i) Foundation outline geometry, Levels etc 
ii) Cut-outs, pockets, trenches, notches, projections etc 

B) Machine Data 

iii) Machine Layout 
iv) Machine Load Points 
v) Machine Dynamic Loads 
vi) Associated excitation Frequencies 
vii) Emergency Loads e.g. Short Circuit Torque, Bearing Failure Loads, Earthquake 

Loads, loss of blade etc. 
viii) Allowable Amplitudes at Bearing Locations 

C) Soil Data 

ix) Site SpeCific Dynamic Soil Data 
x) Soil type and its basic characteristic properties 
xi) Bearing capacity 
xii) Depth of water table 
xiii) Liquefaction potential 

D) Environmental Data 

xiv) Site related Seismic data 
xv) Wind Load Data 

At this stage it is implied that Design Sub-grade Parameters, Design Machine Parameters and 
Design Foundation Parameters have duly been evaluated in line with provisions given in Chapters 
5, 6, 7 and intricacies of Modeling and Analysis, as given in Chapter 8, have been well 
understood. 

9.2.1 Dynamic Analysis: 

From the point of view of dynamic amplitudes, following modes of vibration are of interest to 
designer: 

i) Transverse Mode (perpendicular to rotor axis) 

ii) Vertical Mode 

iii) Lateral Vibrations Coupled with Torsional Vibrations 
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Frame foundation, being a 3-D StI\lctural system, all these linear modes get associated with 
corresponding rotational modes of vibration. Whereas it is simple to evaluate all these modes with 
the help of computational tool, it is next to impossible to evaluate response of such a 3-D structure 
by manual method of analysis. Thus for manual computations, lot many assumptions and 
approximations are made to be able to tackle such foundations. In view of the limitations of the. 
manual analysis procedures, the following practices are generally employed: 

i) Foundation is split in to as many number of portal frames as present 

ii) Transverse and Vertical vibrations are evaluated for these portal frames 

iii) Top deck being rigid, lateral vibrations coupled with torsional vibrations are 
evaluated using lateral stiffness properties of each portal frame 

Note: Longitudinal vibration is generally not attempted using manual method of analysis 

These cases are discussed one by one. 

9.2.1.1 Loads on Frame Beam 

From the overall machine and structural mass at the top deck and keeping in view the dynamics of 
the problem, the most important part is to identify mass associated with each frame for the purpose 
of frame analysis. 

d z 

Frame I Frame II 

WI' W2• W3>W4&WS are machine load points 

Ws - Weight of Solid Slab 

'I 

Figure 9.2-2. Machine Loads @ Top Deck & Deck Self Weight - Typical Top Deck Plan 

Consider a typical top deck plan with three frames showing distribution of machine loads on deck 
slab as shown in Figure 9.2-2a. For load nomenclature, refer a representative typical portal frame as 
shown in Figure 9.2-2b. In order to evaluate loads associated with each frame, it requires: 
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i) Identify machine loads at the deck and allocate the same to the nearest frame beam or 
longitudinal beam as the case may be using law of statics 

ii) Evaluate self weight of each member at the top deck and transfer the same on to the frame 
beams/longitudinal beams using law of static 

iii) Evaluate self weight of each column 

y 
~~ 1 T 1 

• - - - - - - - - - WI5 - - - - - -, 

BeamAb• Ib 

We We 
Ae·Ie Ae. Ie 

Col 

~~m~ 
X 

L 

AT)l!ical Frame 

H 

~ 

H 

I· L 'I 
Frame Center Line Model 

Figure 9.2-2b A representative Portal Frame showing Machine Loads &Top Deck Self Weight 

Thus on each frame we get machine loads, self weight of transverse and longitudinal beams, self 
weight of deck slab etc. Load nomenclature associated with each frame is defined as under: 

Let us denote the loads on the portal frame as under: 

Total Machine Weight on Frame Beam (9.2-1) 

At times, depending on machine layout over foundation, weight of machine may be located at beam 
center or off-center location. It is therefore essential to compute equivalent machine weight (based 
on KE equivalence) at beam center 

WmB Equivalent Machine Weight at Frame Beam Center 

This includes: 
i) Weight of Machine directly located at frame beam center 
ii) For Machine loads at off-center locations, equivalent machine weight at Frame Beam 

center using principles of kinetic energy equivalence as described in § 9.2.1.2 (see also 
Figure 9.2-3) 
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WmC Remaining Machine Weight transferred to Column Top i.e. W mC = Wm - W mB 

Total Distributed Weight on Frame Beam (9.2-2) 

This includes: 
i) Beam self weight 
ii) Concrete Pedestal weight (if any) 
iii) Weight of other structural elements Transferred to frame beam through Deck slab 
iv) Weight of other machine elements (if any) transferred to frame beam through deck slab 

Weight Transferred from Longitudinal beams @ top of Left column 

This includes: 
i) Weight of structural members transferred through longitudinal beams@ column top 
ii) Weight of machine elements transferred through longitudinal beams @ column top 

Weight Transferred from Longitudinal beams @ top of Right column 

This includes: 
i) Weight of structural members transferred through longitudinal beams@ column top 
ii) Weight of machine elements transferred through longitudinal beams @ column top 

Weight of Each Column 

(9.2-3) 

(9.2-4) 

(9.2-5) 

This is to account for the cases when LHS column size is different than RHS column of the 
same frame. 

9.2.1.2 Machine mass at off-center location 

In many cases, machine mass may not be at frame beam center location. This requires equivalent 
generalised mass placed at frame beam center to be evaluated using principle of energy equivalence 
(see Chapter 2). The graph giving mass participation factor a as shown in Figure 2.1.1-12 is 
reproduced here for convenience in Figure 9.2-3. For machine mass mm at beam center and another 

mass m) placed at a distance a from one end, equivalent mass at frame beam center becomes: 

(9.2-6) 

Here a is machine mass participation factor as given in Figure 9.2-3. 
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m* 

I--- L ----j 

Machine Mass mm at Beam center & another 
Mass m 1 at off center - Beam is Massless 

Machine Mass Location vs. Span-Ratio aiL Effective Mass m* at Beam Center 

Figure 9.2-3 Mass participation Factor a - when Machine mass 
is at Off-centerLocation -Beam is Massless- Equivalent Mass of System 

9.2.1.3 Computation of Loads on Frame Beams and Column Top 

Consider a representative plan of a typical top deck (SAMPLE EXAMPLE) having three 
transverse frames i.e. Frame I, Frame II & frame III as shown in· Figure 9.2-4 

z 
" 

L W 

Frame I Frame IT Frame III 

WI,W2,W3,W4&WS are machine load points 
31.32.33.&34 are weight of deck slab 

Figure 9.2-4 Machine Loads @ Top Deck & Deck Self Weight 

Here Wj,W2 ,W3,W4 &WS represent machine loads and SI,S2,S3&S4represent self weight of 

deck slab segments. Member self weights (like beams) are also there but not indicated in the figure 
for clarity. 

Let us consider load associated with each Frame one by one: 
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Frame I: This frame has opening on deck side i.e. no deck slab weight transferred to frame 
beam. Machine weight is located at Frame beam center. This gives: 

Wm = WI (Total Machine Load on Frame Beam) 

WmB = WI (Machine loads at Frame Beam center) 

Wmc = Wm -WmB =0 (Mchine Loads at Column Top) 

Distributed Loads 

W D = self weight of beam only 

WLL = Reaction from Self weight of Longitudinal Beam 

on top of Left side column 

WLR = Reaction from Self weight of Longitudinal Beam 

on top of Right side column 

Frame 1I: This frame has opening on one side, deck slab on other side, machine weight W2 

located at Frame beam center and machine weight W3 adjacent to beam located on the deck slab 

at a distance a from one end of the frame. This gives: 

Wm =W2 +W3 

WmB = W2 +aW3 
Wmc =Wm -WmB = (l-a)W3 
W D = Beam self weight + Slab weight 81 

Wu. = Reaction from LHS Longitudinal Beam 

This includes its self weight, slab weight S4 & Machine weight Ws 

WLR = Reaction from RHS Longitudinal Beam 

This includes its self weight & slab weight S3 

Frame III: This frame has deck slab on one side, machine weight W4 located on the deck 

slab adjacent to beam at a distance b from one end of the frame. This gives: 

Wm =W4 

WmB =aW4 

Wmc = (l-a)W4 
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WD = Beam self weight + Slab weight S2 

WLL = Reaction from LHS Longitudinal Beam 

This includes its self weight, slab weight S4 & Machine weight Ws 

WLR = Reaction from RHS Longitudinal Beam 

This includes its self weight & slab weight S3 

Here a represents mass participation factor takim from Figure 9.2-3 for ratio blL 

9.2.2 Lateral Mode of Vibration along - X 

Consider a Typical Frame as shown in Figure 9.2-5 showing loads as welJ as masses on the frame. 
Here Wm,WD,WC,WLL & WLR are as given by equations 9.2-1 to 9.2-5. 

WD 

H We We 

c,Ic Ac,Ic 

j. 
L 'j 

ill Frame - Center Line Model (m Mathematical Model - Lateral Vibration 

Figure 9.2-5 A Typical Frame - Mathematical Model - Lateral Vibration 

Mass 
m = Wm +WD +WLL +WLR +0.23x2xWc 

x (9.2-7) 
g 

Note: For mass participation factor 0.23, refer equation 2.1.1-21. 

Stiffness: (see equation 2.1.1-39) 

Lateral Stiffness (9.2-8) 
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Here represents ratio of beam to column stiffness (9.2-9) 

Natural Frequency (92-10) 

Amplitude: Under influence of Dynamic Force Fx sin w( applied to the mass, maximum steady­

state amplitude of mass m is given equation 2.2.2-5. 

(9.2-11) 

Here ax represents static deflection, 
w f3 x = - represents frequency ratio and s x represents 
Px 

damping constant. 

9.2.3 Vertical mode ofVibratioQ along-Y 

Consider a Typical Frame as shown in Figure 9.2-6 showing -loads as well as masses on the frame. 
Here Wm,WD,WC,WLL &WLR are as given by equations 9.2-1 to 92-5. 

For vertical motion (motion along V), system can be represented as SDOF System or Two DOF 
System. Let us consider these' two systems one by one. 

i) Portal Frame represented as SDOF System: (Figure 9.2-6 (a» 

Mass 
m = Wm +WJ) +Wu. +W',R +O.33x2xWc 

Y g 

Vertical Stiffness ky: 

Beam to Column Stiffness ratio (see § 2.1.1.4.5) k=~=lbIL 
ke lei H 

a) Flexural Deformation of frame beam under unit load (see equation 3.1.6-4) 

FIe,3!!,raJ L3 2k + 1 
Y2 =---x--

96Elb k+2 

(9.2-12) 

(9.2-13) 
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b) Shear deformation of Frame beam under unit load (see equation 7.9-2) 

s~ 3L 
Y2 = 8CA

h 

(9.2-14) 

c) Vertical deformation of columns under unit load (see equation 3.1.6-5) 

s~ 3L Co~n 

Y2 = 8CA
b 

YI 
H H 

= E (2 x Ac) = 2 E Ac 
(9.2-15) 

Total deformation at Frame Beam Center under Unit Load 

(9.2-16) 

Vertical Stiffness k =~ 
y Y (9.2-17) 

Natural Frequency p =fty 
y m 

y 

(9.2-18) 

Amplitude: Under influence of Dynamic Force Fy sin wI applied to the mass, steady - state 

amplitude of mass m is given equation 2.2.2-5. 

(9.2-19) 

Hereoy = Fy represents static deflection, fly = ~ represents frequency ratio, ?:y represents 
ky Py 

damping constant and ¢ = tan -I( 2fl y?:; J represents the phase angle. 
(I-fly) 

ii) Portal Frame represented as Two - DOF System (Figure 9.2-6 (b» 

(WmB +0.45xWD ) 
Mass m2 m2 = -'--'''''-----~ 

g 

m _ Wmc +0.55xWD +Wu +WLII +2 x 0.33xWc 
1-

g 

(9.2-20) 

(9.2-21) 
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H 

/. 
L '/ 

(a) Vertical Vibration - SDOF System 

(O.5)WmC 
m2 = (WmB+ 0.45 x WD)/g 

m1= (WmC+0.55WD+ WLL+ WLR+ 2 x O.33Wc)/g 

H 

/. 
L '/ 

(b) Vertical Vibration - Two DOF System 

Figure 9.2-6 A Typical Frame - Mathematical Model-Vertical Vibration 

Stiffness: 

Stiffness k2 

a) Flexural Deformation of frame beam under Unit Load 

Fl~al L3 2k + 1 

Y2 = 96 E I h X k + 2 
(9.2-22) 

b) Shear deformation of Frame beam under Unit Load 

(9.2-23) 

https://engineersreferencebookspdf.com



9-56 

Total deformation at Frame Beam Center under Unit Load 

Stiffness 

Stiffness kl 

Vertical deformation of columns under Unit Load 

Stiffness 

Column ......, 

Natural Frequencies: 

H H 

Limiting Frequencies & Mass ratio (see equations 3.1.6-6) 

-Frequency equation (see equation 3.1.6-6) 

Foundations for Rotary Machines 

(9.2-24) 

(9.2-25) 

(9.2-26) 

(9.2-27) 

(9.2-2S) 

(9.2-29) 

Substituting for P LI , P L2 & IL , roots ofthis equation give two natural frequencies PI & P2 . 

Amplitude: 

Under influence of Dynamic Force Fy sin OJ/ applied to the mass m2' maximum steady - state 

response of masses ml & m2 are given by equations (32.4-7 & 8) 
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Maximum Response: 

Fo I 

YI (max) = kl 1(1 - p? ll(1 - pi l (9.2-30) 

(92-31) 

Amplitude at Resonance: (see equation 3.2.4-9) 

In case of resonance, taking advantage of the derivation done for damped SDOF system, it can be 
said that in case of resonance with vertical natural frequency PI' the response to the system at 

resonance is obtained by replacing the term 1(1- pl) in denominator by ~(I-Pl2 r + (2PI()2 . 

Similarly, in case of resonance with vertical natural frequency P2, the response to the system at 

resonance is obtained by replacing the term 1(1- pi) in denominator by ~(1- pi r + (2P2()2 in 

equations 9.2-30 & 31. 

9.2.4 Lateral Vibrations Coupled with Torsional Vibrations 

Consider a typical frame foundation as shown in Figure 9.2-7. System consists of n frames. Rotor 

center line is oriented towards Z axis. Figure 9.2-7 (i) shows coupling of lateral mode with 
torsional mode of vibration. This mode of vibration occurs due to presence of Top Deck 
Eccentricity i.e. eccentricity between center of mass and center of lateral stiffness of Frame 
foundation. In the absence of eccentricity, foundation exhibits pure translational vibration as shown 
in Figure 9.2-7 (ii). 

Let mxi & kXirepresent mass and stiffness associated with frame 'i' as given by equations 9.2-7 

& 8 respectively. Let Cm represent center of mass and Ck represent center of stiffness. Top Deck 

Eccentricity e is the distance between center of mass Cm and center of stiffness Ck • 

Mathematical representation of the frame foundation in Z-X plane is shown in Figure 9.2-8. Two 
coordinates namely translation x (along X) and rotation I{I (about Y) represent two degrees of 

freedom that define displaced position of the system. 
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(i) System with eccentricity e -Motion along X 
causes Torsional Vibration about Y 

(ii) Motion along X - No eccentricity 

Figure 9.2-7 Lateral Vibration of a typical frame foundation -
Foundation with and without Top Deck Eccentricity 

Let Z m & Z k denote distances of CG of overall mass m x (point C m) and stiffness k x (point C k ) 

from Frame 1 and Zj represent distance of i 'h frame from frame I. 

(9.2-32) 

(9.2-33) 

Eccentricity e (9.2-34) 

It is desirable to restrict this ecceritricity in Plan to be :;::; 1% of corresponding top deck dimension 
(See Chapter 7 - § 7.9.1). 

Equation of Motion 

Let us consider center of mass Cm as origin (OOF location). Let aj & hj represent distance of 

i1h frame from center of mass point Cm and center of stiffness point Ck as shown in part (ii) of 

the figure. Analysis for such a system vibrating in X -Y plane is given in § 3.1.5 and response 
is given in § 3.2.3. Interchanging y with x and ¢ with If, we get solution the lateral and torsional 

vibration of frame foundation. 
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x 
Center ofStiffiiess Center of Mass 

Eccentricity 
,/ 

---- ____ ~ e 

I I 
--"")er- ---

I I 
mxn m;tn-l m:m-2 m;t m;t3 

I 

: 

I. I...:L 
zn-2 

z3 
I 

zn_l ! 

zn i 

i zm 
! 
! Zt 

(i) z,- Distance of frame i from frame-l 
Motion in X-Z plane 

(ii) aj & hi are Distances of frame i from 
Center of mass and Center of stiffiiess 

Figure 9.2-8 Mathematical Representation of A Typical Frame Foundation with n Frames -
Motion in Z-X plane - Lateral vibration along X and Torsional vibration about Y 

Total Mass Moment of Inertia of the system about Y @ DOf (see equation 3.1.5-6) 

Total Torsional Stiffness of the system about Y @ DOF (see equation 3.1.5-7) 

Equations of motion (see equations 3.1.5-10 & 11) 

x + p; x + e P; fjI = 0 
2 

-- 2 e 2 e 2 0 
fjI+ Px x-2 + Px -2 fjI+ P,!/ fjI = 

r r 

(9.2-35) 

(9.2-36) 

(9.2-37) 

Terms Jf ~'!/ - J¥my 
Px = _x ; P,!/ = -- & r = --

mx Mmy mx 
represent limiting translational frequency, 

limiting torsional frequency and equivalent radius of gyration 'respectively. 
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It is also noted that both these equations are coupled through e:ccentricity term e. If eccentricity 

becomes zero, i.e. e = O. both these equations get uncoupl.ed and the limiting frequencies become 
natural frequencies. 

Frequency equation (see equation 3.1.5-14) 

p4 _ p2(a p; + p;,)+ p;p;, = 0 

Here a = ( 1 + :: ) 
(9.2-38) 

Roots of the equation 9.2-38 will yield tw~ natural frequencies. We get 

(9.2-39) 

f 

Flgare 9.2-9 Frame Foundation with n Frames subjected to Dynamic Force & Moment applied 
at Center of Mass - Motion in Z-X Plane - Lateral vibration along X and 
Torsional vibration about Y 
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Amplitudes: Foundation in X-Z plane subjected to dynamic force Fx sin OJ! and moment 

M'I/ sin OJ t applied at center of mass is shown in Figure 9.2-9. Amplitudes are given by equation 

3.2.3-5 & 6 by interchanging terms y by x & ¢ by If. We get response as: 

(9.2-40) 

(9.2-41 ) 

Here 
2 Mmy 

r =--, 

(9.2-42) 

mx 

When eccentricity is negligible, (e / r)2 '" 0 , there is no coupling and we get limiting frequencies 

PI & P2 same as Px & PVI . With this, equations 9.2-41 & 42 become: 

It is seen that equation 9.2-43 is same as equation 9.2-11 for uncoupled lateral vibration. 

Maximum Lateral amplitude due to translational motion and torsional motion shall occur at 
extreme end of the foundation. 

(9.2-43) 

(9.2-44) 

Maximum amplitude (9.2-45) 

Here an is the maximum distance from center of mass to extreme end of foundation. 
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DESIGN EXAMPLE 

D 9.2 Foundation for Turbo Generator 

Design a frame foundation for a turbo generator. General arrangement and section of TG 
Foundation is shown in Figure D 9.2-1. Frame Plan and elevation showing center line dimensions 
is shown in Figure D 9.2-2. Machine Loads and unbalance forces are shown in Figure D 9.2-3. 
Data for machine and foundation is listed as under: 

Machine Data 
Machine Weight (Total including Rotor) 
Turbine @ Bearing 1 
Turbine @ Bearing 2 
Generator Seating Plate location 3 -1 
Generator Seating Plate location 3 -2 
Generator Seating Plate location 4 -1 
Generator Seating Plate location 4 -2 
Total Machine weight 

Weight of Rotor 
Turbine Rotor weight @ Bearing 1 
Turbine Rotor weight @ Bearing 2 
Generator Rotor weight at generator Seating Plate location 3 -1 
Generator Rotor weight at generator Seating Plate location 3 -2 
Generator Rotor weight at generator Seating Plate location 4 -1 
Generator Rotor weight at generator Seating Plate location 4 -2 
Total Rotor Weight 

Machine Operating Speed 
Unbalance Force 
Along Y (Vertical) 
Turbine @ Bearing I 
Turbine @ Bearing 2 
Generator Seating Plate location 3 -1 
Generator Seating Plate location 3 -2 
Generator Seating Plate location 4 -1 
Generator Seating Plate location 4 -2 
Total Unbalance Force along Y (Vertical) 

Along X (Lateral) 
Turbine @ Bearing 1 
Turbine @ Bearing 2 
Generator Seating Plate location 3 -1 
Generator Seating Plate location 3 -2 
Generator Seating Plate location 4 -1 

5.00 
7.00 
7.50 
7.50 
7.50 

400.00 kN 
360.00 kN 
100.00 kN 
100.00 kN 
100.00 kN 
100.00 kN 
1160.00 kN 

25.00 
35.00 
35.00 
35.00 
35.00 
35.00 
200.00 

50.00 

5.00 
7.00 
7.50 
7.50 
7.50 
7.50 
42.00 

kN 
kN 
kN 
kN 
kN 

kN 
kN 
kN 
kN 
kN 
kN 
kN 

Hz 

kN 
kN 
kN 
kN 
kN 
kN 
kN 
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Figure D 9.2-1 General Arrangement TG Foundation 

Generator Seating Plate location 4 -2 
Total Unbalance Force along X (Lateral) 

7.50 kN 
42.00 kN 
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Force due to Blade Loss along X N 

Turbine @ Bearing 1 
Turbine @ Bearing 2 
Total 
Short circuit Torque 
Distance between Seating Plate (along X) 
Vertical Reaction @ seating Plate 3-1 
Vertical Reaction @ seating Plate 3-2 
Vertical Reaction @ seating Plate 4-1 
Vertical Reaction @ seating Plate 4-2 

4300 

Foundations for Rotary Machines 

3.00 kN 
11.00 kN 
14.00 kN 
2160.00 kNm 
2.40 m 
450.00 kN 
450.00 kN 
450.00 kN 
450.00 kN 

7000 I 
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Figure D 9.2-2 Frame Plane & Elevation (center line) 
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Machine Load points 

2 3 4 
Load point • • • • Total (kN) 

TotalMlCWT 400 360 200 200 1160kN 

RotorWT 25 35 70 70 200kN 

Unbalance 

LateraWertical 5 7 15 15 42kN 

Longitudinal 2 3 6 6 17kN 

Blade loss force 3 11 14kN 

Short Circuit Torque 2160 kNro 

Machine Loads 

Figure D 9.2-3 Machine Loads & Unbalance Forces at Top Deck 

Foundation Data 

Foundation material properties 
Concrete Grade 
Mass density of concrete 
Elastic Modulus E 
Poisson's ratio 
Shear Modulus G 
Top Deck L=13.80 m 
Base Raft L =13.30 m 

M25 
2.50 tlm3 
3.00E+07 kN/m2 
0.15 # 
l.30E+07 kN/m2 

B = 8.00 m 
B = 8.00 m 

Thickness =1.80 m 
Thickness = 2.00 m 

9-65 

https://engineersreferencebookspdf.com



9-66 Foundations for Rotary Machines 

Opening on Turbine Side (Trapezoidal Shape 4.8 m x 3.3 m as shown in Figure) 

Frame Sizes: 

Frame Beam width 
Frame Beam depth 
Frame span 
Beam Moment of Inertia 
Column Moment of Inertia 

Soil Data 

Coefficient of Uniform Compression 

Coefficient of Non-Uniform Compression 

Coefficient of Uniform Shear 

Coefficient of Non-Uniform Shear 

Other Loads 

i) Earthquake loads 

Frame I 
I 
1.8 
9.7 
0.49 
0.08 

Frame 2 Frame 3 
I 
1.8 
9.7 
0.49 
0.08 

e'l == 4 x 104 
kN/m 3 

e¢ ==8x104 kN/m 3 

I 
1.8 
9.7 
0.49 
0.11 

e, ==2x104 kN/m 3 

eV1 == 3 x 104 kN/m 3 

Equivalent seismic coefficient = 0.05 g 

m 
m 
m 
m4 
m4 

ii) Bearing Failure loads 5 times rotor weight acting at bearing locations 

iii) Thermal Loads Temperature differential of 25 degree C applied as a body force at the top 
surface of the top deck as well as inside surface of cut-out 

Machine Mass on Frames: (see Figure D 9.2-3 &4) 
Frame 1 
Mass @ frame Beam center 
Total Mass on Frame 1 

Frame 2 
Mass @ frame Beam center 
Mass W3 @ 1.7 m from Left column 
Mass W3 @ 1.7 m from Right column 
Total Mass on Frame 2 
Frame 3 
Mass @ frame Beam center 
Mass W4 @ 1.7 m from Left column 
Mass W4 @ 1.7 m from Right column 
Total Mass on Frame 3 
Total Machine Mass 

WI=400 kN 
= 400 kN 

W2 =360 kN 
W3 = 100 kN 
W3 = 100 kN 

= 560 kN 

Nil 
W4 = 100 kN 
W4 = 100 kN 

=200 kN 
1160 kN 
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B c K L 

A D 
I- 5800 -l 

E 
I- 5800 -l 

J M 
I- 5800 -l 

Frame - I Frame - II Frame - III 

(i) Machine Loads on Frames 

1500 

·1· ·1· 4300 4000 I· 
1500 

·1· ·1 
o o 
t-

o 
~ -

i 
i 

------- -0 

iS2 
I 

C G ! L-__________ ~ ______ ~ ____ ~L 

SI & S2 show Partitioned ~eck Slab 

(m Machine Loads @ TW Deck -

4300 7000 
(iii) Eccentricity - Center of mass & Center of Shiftness 

Figure D 9.2-4 Machine Loads and Eccentricity 

Design 

Sizing of Foundation 

o 
N -

Top deck total weight (without cut-out) 1.8x13.8x8x2.5x9.81 = 4874 kN 
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Weight of Opening size @ turbine side (Trapezium shape) 

{~(4.8 +3)x 1 + 2.3 x 4.8}X 1.8 x2.5 x9.81 = 660 kN 

Net weight of top deck 

Weight ratio of top deck to machine 

4874-660=4214 kN 

421411 160 = 3.63 

Weight ratio is very high. For the present case i.e. real life Turbo- Generator Foundation, top deck 

thickness of 1.8 m is required by supplier. At this stage it is considered OK. This, however, needs 

to be checked from dynamic consideration i.e. frequency of frame beams. 

Top Deck Eccentricity: Frame Lateral stiffness: 

Frame 1 & Frame 2 

Lateral Stiffness 

k= (Ib/L ) =(0.49/5.8)=975' 
(Ie/H) (0.08/9.7) . , 

k _ 12Ele 1+6k 
x -Jj3 2+3k 

Frame 3 

Frame 1 k = 12x3xl07 XO.08(1+6 X9.75)=6.0IXI04 kN/m 
x 9.73 2+3x9.75 

Frame 2 k = 12x3xl0
7 

XO.08(1+6 X9.75)=6.0IXI04 kN/m 
x 9.73 2+3x9.75 

Frame 3 k = 12x3xl07 XO.II(I+6 X7.33)=8.14XI04 kN/m 
x 9.73 2+3 x7.33 

Total Lateral Stiffness 

kx =(6.01+6.01+8.14)xI04 =2.02xI05 kN/m 

Center of Stiffness with respect frame 1 

Zk =(6.0Ix4.3+8.14x(4.3+7»xI04 /2.02xI05 =5.83 m 

Masses associated with each Frame - see Figure D 9.2-4 
(For Weight Nomenclature refer Figure 9.2-2b') 

k = (0.486/5.8) = 7.33 
(0.1 1 1/9.7) 
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Machine weight on Frame Beam 

Distributed loads on Frame Beam 

Column weight (each) 

9-69 

Weight at Column Top (Left) transferred from Longitudinal Beam 

Weight at Column Top (Right) transferred from Longitudinal Beam 

Frame 1 

Machine weight on Frame Beam 

W D Distributed Load on Frame Beam 

Self weight of Frame Beam BC 

Weight of Cantilever slab projection 

Wm =400 kN 

1.0x1.8x5.8x2.5 x9.81 = 256 kN 

0.5 x 1.8x 5.8 x2.5 x9.81 = 128 kN 

WD =256+128=384 kN 

WLL Load Transferred from Longitudinal Beam on column Top - Left 

Self Weight of Beam BF + Projection (4 -2.4)x 1.8x 0.5x4.3 x 2.5 x 9.81 = 151.8 kN 

Portion of the slab at comer (4-2.4)x 1.8xl.0x2.5x9~81 = 70.6 kN 

Wu =222 kN 

WLR Load Transferred from Longitudinal Beamon column Top - Left 

Reaction from Beam BF (Self Weight of Beam BF + Projection) 

Portion of the slab at comer 

(4 - 2.4) x 1.8x 0.5 x 4.3 x 2.5 x 9.81 = 152 kN 

(4 -2.4) x 1.8 x LOx 2.5 x 9.81 = 70 kN 

WLR = 152 + 70 = 222 kN 

We Self Weight of each Column We = LOx 1.0x9.7x2.5x9.81 = 238 kN 

Total Mass of Frame 1 mx = (400+384+222+222+0.23x2x238)/9.81 = 136 t 

Frame 2 

Machine weight on Frame Beam 

W D Distributed Load on Frame Beam 

Self weight of Frame Beam BC 

Weight of deck slab portion S 1 

Wm =560 kN 

1.0x1.8x5.8x2.5x9.81=256 kN 

0.5x4.8x2.4x1.8x2.5x9.81 = 254 kN 

WD = 256+224 = 510 kN 
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WLL Load Transferred from Longitudinal Beam on column Top - Left 

Reaction from Beam BF & Beam FK - Self Weight of Beams + cantilever Projection 

(4 -2.4) x 1.8 x (0.5x (4.3 + 7»x 2.5 x 9.81 = 399 kN 

Half of deck slab S2 0.5x (0.5 x (6+ 6 -4.8»x2.4 x 1.8x 2.5 x9.81 = 191 kN 

Wu = 399+ 191 = 590 kN 

WLR Load Transferred from Longitudinal Beam on column Top - Left 

Reaction from Beam CG & Beam GL - (Self Weight of Beams + cantilever Projection) 

(4 -2.4) x 1.8x (0.5 x (4.3 + 7»x 2.5 x9.81 = 399 kN 

Half of deck slab S2 0.5x(0.5x (6+ 6 -4.8»x2.4 x 1.8x 2.5 x 9.81 = 191 kN 

WLR = 399+ 191 = 590 kN 

We Self Weight of each Column We = 1.0xl.Ox9.7x2.5x9.81 = 238 kN 

Total Mass of Frame 2 mx = (560+510+590+ 590+0.23x2x238)/9.81 = 240 t 

Frame 3 

Machine weight on Frame Beam 

W D Distributed Load on Frame Beam 

Self weight of Frame Beam KL 

Weight of deck slab portion S I 

Weight of cantilever projection of slab 

Wm =200 kN 

1.0x1.8x5.8x2.5x9.81 = 256 kN 

0.5x4.8x2.4x1.8x2.5x9.81 = 254 kN 

1.0x1.8x5.8x2.5x9.81 = 256 kN 

WD = 256+254+256 = 766 kN 

WLL Load Transferred from Longitudinal Beam on column Top - Left 

Reaction from Beam FK + cantilever Projection 

Half of deck slab S2 

(4-2.4)x1.8x(0.5x7+1.5)x2.5x9.81 =353 kN 

0.5x(0.5x (6+ 6 -4.8»x 2.4 x 1.8 x 2.5 x9.81 = 191 kN 

WLL =353+191=544 kN 

WLR Load Transferred from Longitudinal Beam on column Top - Left 

Reaction from Beam GL + cantilever Projection 
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(4 -2.4)x 1.8x (O.5x 7 + 1.5) x 2.5 x 9.81 = 353 kN 

Half of deck slab S2 0.5x (O.5x (6+ 6 -4.8»x 2.4 x 1.8x 2.5 x 9.81 = 191 kN 

WLR = 353 + 191 = 544 kN 

We Self Weight of each Column We = l.lx 1.0x9.7x2.5x9.81 = 262 kN 

Total Mass of Frame 3 mx = (200+ 766+544+544+0.23x2x262)/9.81 = 222 t 

Total Mass ofall the three frames mx = L(136+240+222)= 598 t 

Center of Mass 

CG of Masses from Frame I Zm = (240x4.3+222xl1.3)/597 =5.93 m 

TopDeckEccentricity e=zm -zk =5.93-5.83=0.10 m; e=(O.IO/13.8)xl00=0.72% OK 

Dynamic Analysis 

Lateral Vibration (along X) 

Total lateral stiffness 

Natural Frequency 

kx = L(6.01+6.01+8.14)xI04 =2.02xI05 kN/m 

Px = 2.02 x 10
5 

= 30.16 rad/s 
222 

Vertical Vibration (Two DOF System Model) 

Frame 1 

Mass 

Total Machine weight on frame I 

Machine weight at Frame Beam center 

Machine weight @ off center location 

Total Machine weight at Frame Beam center 

Machine weight transferred to" column top 

400kN 

400kN 

Nil 

WmB =400 kN 

WD =384 kN; Wu =222 kN; WLR =222 kN; We =238 kN 
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m2 = (WmB + 0.45 WD ) = (400 + 0.45 x 384) = 58.4 t 
g 9.81 

(Wmc +0.55WD +WLL +WLR +0.33x2xWc ) (O+0.55x384+222+222+0.33x2x238) 
m1 = = =83 t 

g 9.81 

Stiffness 

Deflection @ beam center under unit load 

_( 5.8
3 

.2 X 9.75+1) 3x5.8 -334 10-7 Y2 - x + -. x m 
96x3xl07 x 0.49 9.75+2 8x 1.3 x 107 x(lx1.8) 

1 1 6 
k2 = - = = 3 x 10 kN/m 

Y2 3.34xI0-7 

k1 = (2 x Ex Ac) :;: 2 x 3 x ) 0
7 

x 1 = 6.18 xl 06 kN/m 
h 9.7 

Limiting Frequencies and Mass Ratio 

PL2 =~k2 =~3XI06 =226.4 rad/s; 
m2 58.4 

Frequency Equation 

PLI = rx;- = 6.18x 10
6 

= 273 rad/s 
V-;;;; 83 

Substituting values, we get two natural frequencies 
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Frame 2 

Mass 

Total Machine weight on frame 2 

Machine weight at Frame Beam center 

Machine weight @ off center location 

360+ I 00+ 1 00 = 560 kN 

360kN 

lOO kN @ 1.7 m from Left end column & 100 kN @ 1.7 m from Right end column 

Mass Participation Factor for aiL = 1.7/5.8 = 0.29 (see Figure 9.2-3) a = 0.6 

Total Machine weight at Frame Beam center 

Machine weight transferred to column top 

WmB = 360+ 120 = 480 kN 

Wmc = Wm -WmB = 560-480 = 80 kN 

9-73 

WI) =510 kN; Wu =590 kN; WLR =590 kN; We =238 kN 

m2 = (480+0.45 x5lO) = 72.3 t 
9.81 

m
1 

= (80+0.55x510+590+590+0.33x2x238) = 173 

9.81 

Stiffness (same as for frame 1) 

k2 = 3xl06 kN/m; k1 = 6.18x 106 kN/m 

Limiting Frequencies and Mass Ratio 

~2 ~xIQ6 PL2 = - = -- =203.7 rad/s; 
m2 72.3 

A, = m2 = 72.3 = 0.42 
m1 173 

6.18x10
6 

= 189.3 radls 
173 

Substituting values in to Frequency Equation, we get two natural frequencies as 
P1 = 140.8 rad/s; P2 = 273.1 radls 

Frame 3 

Mass 

Total Machine weight on frame 3 100+ 1 00 = 200 kN 

Machine weight at Frame Beam center Nil 

Machine weight @ off center location 

100 kN @ 1.7 m from Left end column & 100 kN @ 1.7 m from Right end column 
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Mass Participation Factor for aiL = 1.7/5.S = 0.29 (see Figure 9.2-3) a = 0.6 

Effective Mass at Beam center 0.6 x (I 00 + 100) = 120 kN 

Total Machine weight at Frame Beam center 

Machine weight transferred to column top 

WmB =120 kN 

Wme =Wm -WmB =200-120=SO kN 

WD = 766 kN; Wu = 544 kN; WLR = 544 kN; We = 262 kN 

m2=(120+0.45X766)=47.4 t 
9.S1 

Stiffness 

m) = (SO+0.55x766+544+544+0.33x2x262) = 179.6 t 

9.S1 

_[ 5.S
3 

2X7.33+1) 3x5.S -325 10-7 Y2 - x + -. x m 
96x3x107 x 0.49 7.33+2 8x 1.3 x 107 x(lxI.8) 

I 1 6 
k2 =-= =3.08xlO kN/m 

Y2 3.25 x I 0-7 

k) = (2 x Ex AJ = 2 x 3 x 10
7 

X l.l = 6.8 x 106 kN/m 
h 9.7 

Limiting Frequencies and Mass Ratio 

PL2 =~k2 = 3.08xl0
6 

=254.8 rad/s; PLI = & = 6.8x10
6 

=194.6 rad/s 
m2 47.4 V-;;;; 179.6 

A, = m2 = 47.4 = 0.26 
m) 179.6 

Substituting values in to Frequency Equation, we get two natural frequencies as 

p) = 162 rad/s P2 = 306 rad/s 

Coupled Lateral and Torsional Vibration 

Since eccentricity is practically absent (within 1 %) these shall not be any coupling between 
translational and torsional mode. However, just for academic interest, computations are presented 
for coupled mode of vibration. 

https://engineersreferencebookspdf.com



Foundations for Rotary Machines 9-75 

Distances of each frame from center of mass em: 

a l = 0-5.93 = -5.93 m; a2 =4.3-5.93 = -1.63 m; a3 = (4.3+7)-5.93 = 5.37 m 

Here al,a2 &a3 represent distance of Frame 1,2 & 3 from Center of Mass em respectively (see 

Figure 9.2-9) 

Distances of each frame from center of stiffness e k : (refer Figure 9.2-9) 

b l =0-5.83=-5.83 m; b2 =4.3-5.83=-1.53 m; b3 =(4.3+7)-5.83=5.47 m 

Here q, b2 & b3 represent distance of Frame I, 2 & 3 from Center of Stiffness e k respectively 

(see Figure 9.2-9) 

Rewriting mass, stiffness and distances associated with each frame, we get 

Frame I Frame 2 Frame 3 

kx 6.01x104 6.01x104 8.14x104 kN/m 

mx 136 240 222 

ai -5.93 -1.63 5.37 m 

bi -5.83 -1.53 5.47 m 

Substituting values, we get 

Mmy =1.18x104 tm 2
; k'l' =4.62xI06 kNrnlrad; kx =2.02xI05 kN/m; mx =598 

Eccentricity e = 0.1 m; radius of gyration r = ~ M my = 4.45 m; a = I + (e/r)2 = 1.0 
mx 

Limiting Frequencies 

Frequency Equation 

2.02x105 

--- = 18.36 rad/s; 
598 

p. = ~ k. = 4.62
x

10; = 19.77 radls 
Mmy 1.18x10 

2 I {( 2 2 )- ~( 2 2 \2 2 2} PI,2='2 apx+P'I' + apx+P'I'J -4pxP'I' 

Substituting values, we get PI =18.33 rad/s P2 =19.77 rad/s 

It is worth noticing that natural frequencies are same as limiting frequencies because there is no 

eccentricity and hence no coupling of modes. 
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Amplitudes of Vibration 

Machine operating Speed 50 Hz = 314 rad/s 

A) Coupled lateral & Torsional Vibration 

Since there is no coupling because eccentricity is negligible, we use equations 9.2-43 & 44. 

_ Ox(sfafic)(I-,8;) _ Ox _ O' _ 1 
X-I( 211( 21-P2 - xlix' lix -P2 1-,8) ~ 1-,8q 1\1-,8x~ 1\1-,8x~ 

i) Unbalance forces in-phase 

Consider forces along (+) X 

Fx = 5+ 7 +4x7.5 = 42 kN; 

M'I/ = 5x5.93 + 7 x {5.93 -4.3 )-(4x 7.5 x (4.3 + 2 + 1.5 -5.93»)= -15.04 kNm 

kx = 2.02 x 105 kN/m; k'l/ = 4.62 x 106 kNmlrad; 

<>x = Fx/kx =2.08xlO-4 m; <>'1/ = M'I//k'l/ = -3.25xlO-6 m 

1 
Px =18.36 radls; Px =OJ/Px =17.1; Px =p = 0.004 

1\1- P; ~ 
1 

P'I/ = 19.77 radls; P'I/ = OJ/ Px = 15.88; P'I/ = P = 0.004 
1\1- P; ~ 

Amplitude 

Amplitude 

x = <>x xPx = 2.08xI0-4 x 0.004 = 0.832xI0-6 m = 0.8 microns 

If! =<>'1/ xP'I/ = -3.25xl0-6 x 0.004 = I.3x10-8 rad 

This torsional amplitude shall result in lateral amplitudes along X & Z. 

(9.2-43) 

(9.2-44) 

Total Lateral amplitude along X x = 0.8+ 1.3 x 10-8 x5.93x106 =0.88 microns 

This number is as good as zero and hence of no significance. 
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ii) Unbalan<;e forces out-of-phase 

Fx = 5 + 7 - 4 x 7.5 = -18 kN; 

M'I/ = 5 x 5.93 + 7 x (5.93 -4.3)+ (4 x 7.5 x (4.3 + 2 + 1.5 - 5.93») = 97.16 kNm 

Moment is about 6.5 times that when forces are in phase 

If! = 6.5 x 1.3 x 10-8 = 8.45 x 10-8 rad; x = 8.45 x 10-8 
X 5.93 x 106 = 0.5 microns 

This also is too small a value and hence of no significance. 

B) Vertical Vibration along Y 

Maximum Response: (see equations 9.2-30 & 31) 

Fo I 
YI (max) = k I 

I (1-f3nv(I-f3i) + (2 f32 sf 
Unbalance Forces on each frame: 

Transferring unbalance forces from the machine to individual frames, we get; 

Force on Frame I = 5 kN 

Force on Frame 2 = 7 + 4 x 7.5 x (3.5/7) = 22 kN 

Force on Frame 3 = 15 kN 

Frame 1 

kl =6.18xI06 kN/m; k2 =3x106 kN/m; ,1=0.7 

PLI = 273 radls; PL2 = 226.4 rad/s; PI = 169.4 radls; P2 = 365 radls 

co = 314 radls; P LI = l.l5; PL2 = 1.3 8; PI = 1.85; P2 = 0.86 

Substituting values into amplitude equation, we get: 

YI = -1.21 x 1O-{) m = -1.21 microns; Y2 = -0.4 x 10-6 m = -0.4 microns 

Total amplitude Y = ~1.212 +0.4 2 = 1.27 microns 

Frame 2 

kl =6.18xI06 kN/m; k2 =3x106 kN/m; ,1=0.42 

PLI =189.3 radls; PL2 =203.7 radls; PI =140.8 radls; P2 =273.1 radls 

co = 314 radls; Pu = 1.66; PL2 = 1.54; PI = 2.23; P2 = 1.15 

Substituting values into amplitude equation, we get: 

YI = -5.62 microns; Y2 = 14.6.5 microns 

9-77 
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Total amplitude y = ~ 5.622 + 14.652 = 15.7 microns 

Frame 3 
kl = 6.8 x 106 kN/m; k2 = 3.08 x 106 kN/m; A. = 0.26 

PLI = 194.6 radls; PL2 = 254.8 radls; PI = 162 radls; P2';' 306 radls 

w = 314 radls; P LI = 1.6 I; P L2 = 1.23; PI = 1.94; P2 = 1.03 

Substituting values into amplitude equation, we get: 

YI = -6.93 microns; Y2 = 17.71 microns 

Total amplitude y=~6.932+17.712 =19 microns 

Overall Total Vertical vibration of the top deck = y=~1.272 +15.72 +192 =24.7 microns 

Strength Design 

D) Other Loads 

i) Earthquake loads: 

Equivalent seismic coefficient = 0.05 g 

Weight of Top deck + machine + 23% of Column weight = 5452 kN 

Total seismic force (Considered along X) = 0.05 x 5452 = 273 kN 

ii) Bearing Failure loads 

Bearing Failure loads equal to 5 times rotor weight acting at bearing locations 

Total rotor weight = 200 kN 

Bearing Failure Load (acting at bearing level) along X = 5 x 200 = 1000 kN 

This is much higher than earthquake load, hence, governs the design. Design the foundation for this 

force using normal design procedures. Readers may use codes as applicable in their respective 

countries. 

iii) Thermal Loads 

Temperature differential applied as a body force at the top surface of the top deck as well as inside 

surface of cut-out is 25° C . Manual computations for thermal loads are quite complex hence not 
presented here, but these are included in Finite Element analysis and presented in the following 
section. 
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FINITE ELEMENT ANALYSIS 

The TO Foundation as designed above by manual method of analysis has also been analysed using 
Finite Element (FE) Method. Salient results are presented here. Comparison with manual method 
of analysis is presented at the end of the analysis. 

k ". L,' • • • 

' ~ .•. 
i 

. 1 ••• I ••• 
" 

Actual TO Foundation Solid Model Simplified FE Mesh - Solid Elements 

Solid Element Model 

Model with element thickness ON 
FE Mesh 

Shell-Beam -Element Model 

Figure 0 9.2-7 TO Foundation Solid Model and Shell beam Model 

Mathematical Model 

Mathematical model has been generated based on the foundation and machine data. Actual 
Foundation with all openings, cut-outs, recesses, notches etc as shown in Figure 0 9.2-7 becomes 
too complex to model and analyze and moreover it is not necessary to analyze such complex 
model. Necessary assumptions and simplifications have been made to arrive at a model that is good 
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enough to represent the actual system. All major openings and depressions/recesses have been 
included in the mathematical model whereas all minor cutouts, notches, depressions etc have been 
excluded. Turbine and Generator masses are lumped at four bearing location al the top deck. Solid 
Model and FE Mesh of the foundation are shown in Figure 09.2-7. 

Soil is represented by six equivalent springs (3 translational and 3 rotational) applied at the CG of 
the base area of the base raft along respective ooF's i.e. 3 translational springs along X, Y & Z 
axes and 3 rotational springs about X, Y & Z axes. Since there are neither any haunches nor any 
depression/recess in deck slab, the system could as well be modeled using Shell and Beam 
elements. Just for academic interest, the system is modeled using both these element types namely 
i) Solid Elements & ii) Shell Beam elements. Comparison of natural frequencies and associated 
mode shapes, by both the models, indicates a fair ly good agreement. . 

ANALYSIS 

Initially, the foundation dimension suggested by the suppl ier had column sizes same for all the 
frames. The results of Ig-X static analysis revealed higher top deck eccentricity than pennissible. 
To overcome the problem, the generator side columns were made slitTer by increasing their 
dimensions along frame. The results indicated a un ifonn movement when subjected to I 'g' X load. 
Just for academic interest, results of both the analysis cases are presented here. The results of Ig-X 
analysis is with unmodified columns is shown in Figure part (a) of the Figure D 9.2-8 and that with 
modified column is shown in part (b) of the figure. The difference in color code at top deck as in 
pan (a) indicates translation associated with rotation whereas unifonn color as in part (b) indicates 
true translation. The remaining results are for model with modified columns only as used for 
manual method of analysis. 

Max Displacement 38.7 mm Max Displacement 28.8 mm 

Columns Ode-ina! Columns Modified 

Figure 0 9.2-8 Transverse Displacement - I 'g' X Load 
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Free Vibration Ana lysis: 

Natural Frequencies for various modes is listed in Table D 9.2· 1. Fist four mode shapes are shown 
in Figure D 9.2-9 and some of the modes associated with column defonnation mode are shown in 
Figure D 9.2·10. From the mode shapes il is seen thallhe first two modes are translational modes in 
Z & X direction, Jrd mode represents torsional mode of the lOp deck about Y and 4111 mode 
represents venical mode of vibration along Y. 

Mode 1 • 2.9.5 Hz 

Mode J - 3.67 Hz Mode 4 • 26.47 Hz 

Figu re 0 9.2·9 First Four Modes of Vibration 

It is also seen from above frequency table that modes S to 17 show frequencies lying in a close 
cluster. Study of mode shapes reveal lhat these modes correspond 10 column deformation mode 
along X & z directions. 
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From manual computation. it is seen that lateral translational frequency along X axis is 4.8 Hz as 
against 3.02 Hz given by FE Analysis. Comparing vertical natural frequency, it is seen that lower 
vertical nalural frequencies, obtained by manual computation, for Frames I, 2 & 3 are 27, 22.4 & 
25.8 Hz and FE analysis gives vertical mode frequency as 26.5 Hz, which is in the same range. 

Mode 6 Mode 9 
Mode 10 

Mode 12 Mode 15 Mode 16 

figure 0 9.2-10 Modes representing column vibration 
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Table D 9.2-1 Modes and Natural Frequencies 

Mode Frequency Mode Frequency Mode Frequency Mode Frequency 
# Hz # Hz # Hz # Hz 

I 2.95 6 33.2 11 36.75 16 39.43 
2 3.02 7 35.57 12 36.78 17 39.83 
3 3.67 8 36.4 13 36.8 18 42.67 
4 26.48 9 36.45 14 37:05 19 45.81 
5 32.36 10 36.62 15 38.7 20 58.88 

Response Analysis 

Dynamic forces (see manual analysis above) are applied at the respective bearing level locations. 
These Forces are applied simultaneously at all the bearings but in one direction at a time. Steady 
State response is evaluated at salient locations, as under: 

1. At all the bearing locations 
2. At all the comers of the top deck 
3. At all the mid points of columns 
4. At all the comers·ofthe base raft 

4 points 
4 points 
6 points 
4 points 

The response is evaluated for ±5% of operating frequency Le. from 47.5 Hz to 52.5 Hz and 
maximum value is reported. Damping used for response evaluation is considered as 5 % of critical. 
Maximum amplitudes are listed is in Table D 9.2-2. 

Transient response 

Table D 9.2-2 

Excitation 
Frequency 

Hz 

47.5 
50 

52.5 

Maximum Amplitudes 

Dynamic Forces 

In Phase Out of Phase 
Amplitude - Microns 

3.19 
1.75 
0.65 

4.6 
2.3 

0.77 

During Machine startup and coast-down conditions, all components of machine and foundation get 
excited at their respective natural frequencies resulting in enhanced amplitudes. For the transient 
response, the dynamic forces generated by the machine are applied at the respective bearing 
locations and a sweep run is performed for frequency 1 Hz to 52.5 Hz (in the present case sweep 
run is performed up to 65 Hz). Amplitudes are evaluated at desired locations of interest. 

It is to be noted that the magnitude of the dynamic force is same as that computed for full operating 
speed. This force is however applied at frequencies from 1 to 65 Hz at an increment of about t,4 Hz. 
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The transient amplitudes so evaluated at transient resonant frequency (as shown in Figure D 9.2-
11) are to be scaled down by square of the ratio of resonant frequency to operating frequency. In 
other words, amplitude say at transient resonance of 3 Hz is to be scaled down by a factor of square 
(3/50). The sweep response is shown in Figures D 9.2-11. 

10000 10000 
AU?U'1'\Jct 

1000 I 1000 
7Y 
'.:z 

,I 

g 100 g 100 
0 
Il ~ 
\; E 

I 
10 ! 10 

10 t 1.0 

0.1 0.1 
0 8 16 24 32 40 43 56 64 72 80 0 8 16 24 32 40 48 56 64 72 80 

Fr~Hz Fr~Hz 

Top Deck Drive End Top Deck NOfI.Dmre End 

i) Dynamic Forces In-Phase 

10000 10000 
Wt!!Vt! 

1000 lll' 

III 100 g ~ 100 
.~ 

10 
cI> 

i 
.~ 10 I'n """c+ 

110 1.0 

8 16 24 32 40 48 56 64 72 80 
Frequency Hz 

Top Deck Non-Drive End 

8 16 24 32 40 48 56 64 72 8 
Frequency Hz 

Top Oed<: Drive End 

ii) Dynamic Forces Out of Phase 

NOTE: These transient amplitudes are to be scaled down by square of the ratio of 
resonant frequency to operating frequency i,e, for transient resonance at 3 Hz, 
amplitudes to be scaled down by a factor of square (3/50), 

Figure D 9.2-11 Transient Response 
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Bearing Failure Loads - X 

Stress 3.3 MPa 

Thermal Loading 

Stress 7 MI)a 

Blade Loss - X 

Stress 0. 1 MPa 

Short Circuit Loading 

Stress 0.5 MPa 

Enrthquake Loading 

Stress 5.2 MPa 

Figure 0 9.2-12 Stresses due to Bearing Failure, Btade Loss. Short circuit, 

Thermal Loading & Earthquake Loading 

Strength Analys is 

9·85 

Foundation is analysed for equivalent static forces besides normal machine loads and self-weight of 
foundation. 

Bta ring Fa ilu re Loads: Bearing Failure Loads, equal to 5 times the rotor weight, are applied at 
the respective bearing locations along transverse and 10ngiwdinal directions, one at a lime and 
stresses are computed in the fou ndation. 
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Blade loss forces: Blade loss forces are applied at the respective bearing pedestal locations 
and Short Circuit Forces are applied on the generator seating plate locations. Earthquake Loads are 
applied as equivalent static loads as body force on the machine as well as foundation. 

Thermal Loads: A temperature differential of 25° C is considered for thermal analysis. 

This differential temperature is applied as a body force at the top surface of the top deck while the 
rest of TG is considered to be at ambient temperature. Further the surface inside the opening on 
turbine side is also subjected to this differential temperature. 

Stresses due to these loads are shown in Figure D 9.2-12. Strength adequacy of the foundation is 
ensured to withstand these forces. 

In addition to the above stresses are also computed due to operating dynamic loads. Since the 
stresses on account of these dynamic loads are much smaller than bearing failure loads, these no 
longer remain governing loads. 
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FOUNDATIONS FOR RECIPROCATING 
MACHINES 

• Design Examples 

~ Block Foundation for a Typical Reciprocating Machine 
~ Frame Foundation for a Typical Low Speed Compressor 
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For better clarity, all Figures related to FE 
analysis, including animations of frequencies 
and mode shapes, in color, are given in the CD 
attached at the end of the handbook 
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FOUNDATIONS FOR RECIPROCATING 
MACHINES 

10 -3 

Different types of reciprocating machines that come under this category these have been adequately 
addressed in Chapter 6. Normally, both Block and Frame foundations are used to support these 
machines and these have been addressed in Chapter 7. Modeling aspects have been covered in 
Chapter 8. 

Dynamic Forces developed by Reciprocating Machines are much higher compared to those 
generated by Rotary Machines. These dynamic forces are predominant along piston axis and 
dynamic forces are generated at operating speed as well as its 1 sl Harmonic i.e. twice the operating 
speed. Allowable limits for amplitudes are higher for reciprocating machines compared to those for 
rotary machines. 

The system vibrates in all six DOFs and thus requires computation of frequencies and amplitudes 
corresponding to all six DOF's. Procedures for design of foundations for machines supported on 
a) Block Foundation and b) Frame Foundations are given hereunder. The application of these 
design methodic for evaluation of natural frequencies and amplitudes are common for all types of 
machines irrespective of their speed. 

10.1 DESIGN OF BLOCK FOUNDATION 

Machine is considered supported by a block foundation resting directly over soil. The complete 
system is mathematically modeled and analyzed for natural frequencies and amplitudes. 
Mathematical treatment and Design steps are same as those for Rotary Machines given in Chapter 
9. Representation of a typical foundation is shown in Figure 9.1-1 and necessary formulae required 
for computation of natural frequencies and response are given by equations 9.1-1 to 9.1-27. 

Significant steps are reproduced for convenience. 
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Summary of Design Steps 

1. Sizing of Foundation 
2. Equivalent Soil Stiffness 
3. Dynamic Forces 
4. Analysis 

1. Dynamic Analysis 
i. Natural Frequencies 

ii. Dynamic Amplitudes 
II. Strength and Stability Analysis 

Required Input Data 

a) Machine Data 
1. Machine Layout 
2. Machine Load Distribution at Load Points 
3. Dynamic Loads 

a. Magnitude of Dynamic Loads 
b. Point of application and associated excitation Frequencies 

4. Allowable Amplitudes 
b) Foundation Data 

1. Foundation outline geometry, Levels etc 
2. Cut-outs, pockets, trenches, notches, projections etc 

c) Soil Data 
I. Site Specific Dynamic Soil Data 
2. Bearing capacity 

At this stage it is implied that a) Site Soil data b) Machine data & c) Foundation data are 
converted to respective Design Parameters in line with provisions given in Chapter 5, 6 & 7. It is 
also anticipated that intricacies of Modeling and Analysis, as given in Chapter 8, have been weB 
understood. 

Design Data: The design data at this stage is summarized as under: 

CG of Base area of Foundation, marked 0 represents DOF Location and is considered as 
Origin analysis and design. 

Mass & Mass Moment of Inertia 

Total Mass of Machine and Foundation 
Height of Overall Centroid C from 0 

m 
h 

Mass Moment of Inertia (Machine+ Foundation) @ Overall Centroid C 
Mass Moment of Inertia about X axis M mx 
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Mass Moment of Inertia about Y axis 

Mass Moment of Inertia about Z axis 

Mass Moment of Inertia (Machine+ Foundation) @ DOF Location 0 

Mass MomentofInertia about X axis 

Mass Moment of Inertia about Y axis 

Mass Moment of Inertia about Z axis 

Area and Moment of Inertia of Foundation Base in contact with soil 

Area of Foundation 

Moment of Inertia about X 

Moment of Inertia about Y 

Moment of Inertia about Z 

Mmox 

Mmoy 

Mmoz 

A 

10 -5 

Equivalent Soil Stiffness at the foundation base level (at DOF location point 0) duly 
corrected for a) area effect and b) overburden pressure effect 

Translational Soil Stiffness along X 

Translational Soil Stiffness along Y 

Translational Soil Stiffness along Z 

Rotational Soil Stiffness about X 

Rotational Soil Stiffness about Y 

Rotational Soil Stiffness about Z k~ 

Dynamic Loads: 

~ For FE Analysis, Dynamic Forces need to be specified only at respective bearing 
locations. 

~ For manual method of computation, Dynamic .Forces acting at bearing locations are 
transferred at DOF Location point 0 in terms of Forces and Moments. 
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}> One can have as many sets of forces and moments as number of excitation frequencies 

Here we describe forces and moments @ DOF location point 0 for manual method of 
computation. 

Forces @ DOF location point 0 along X, Y & Z direction 

Moments about X, Y & Z @ DOF location point 0 

10.1.1 Dynamic Analysis 

The dynamic analysis of a machine foundation system involves computation of natural frequencies 
and amplitudes of vibration. 

From this stage onwards, one can choose either Finite Element Method of Analysis (Chapter 
8) or Manual Method of Analysis (Chapters 2 &3). 

Natural Frequencies: The machine foundation system undergoes Six Modes of Vibration i.e. 
three Translational Modes and three Rotational Modes (see chapter 3). Natural frequencies 
corresponding to these six modes of vibration are reproduced as under: 

1. Motion along Y (Vertical direction): This mode is uncoupled (see equation 9.1-1) 

Vertical Natural frequency (10.1-1) 

2. Rotation about Y (Torsional): This vibration mode is also uncoupled (see equation 9.1-2). 

Torsional Natural frequency ~ 
PIf/ =~ Mmoy 

(10.1-2) 

3. Motion in X-Y Plane - (Translation along X and Rocking about Z - i.e. x & ¢ modes) - These 

modes are always coupled (see equation 9.1-3). 

21(2 2) 1~(2 2\2 22 PI =-2 Px +P¢ -2 Px +P¢} -4Yzpxp¢ 
Yz Yz 

(10.1-3) 

2 1 (2 2 ) 1 ~( 2 2 \2 2 2 P2 =2 Px + P¢ +2 Px + P¢) -4yz PxP¢ 
yz yz 

(10.1-4) 
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Here 
Mm· Here y. = --"-; 

" Mmoz 

2 k¢ -mgh 
P¢ = and 

Mmoz 
PI & P2 represent lower & higher natural frequencies 

PI & P2 represent lower & higher natural frequencies 

\0 -7 

4. Motion in Y -Z Plane - (Translation along Z and Rocking about X - i.e. z & () modes) - These 
modes are always coupled. 

2 1{2 2) 1~(2 2\2 22 PI =-lPz + Po -- pz + Po} -4yx pzPo 
2yx 2yx 

2 I (2 2) 1 ~( 2 2\2 2 2 P2 =-lPz + Po +- pz + Po) -4yx Pzpo 
2yx 2yx 

M 
Here Yx=~; 

Mmox 

2 k. 
pz =~; 

m 

2 ko -mgh 
Po = 

Mmox 

(10.1-5) 

(10.1-6) 

As far as possible, effort is made to ensure that these frequencies are not in direct resonance with 
operating speed/speeds of the machine. In fact these frequencies should preferably be away by a 
margin of ± 20% from operating speed/speeds. In case resonance is noticed, it may be desirable to 
suitably alter the foundation dimensions and repeat the computations till the natural frequencies are 
found to be away from operating speed/speeds of the machine. 

10.1.2 Amplitudes of Vibration 

Vibration Amplitude is the response of the Machine Foundation System subjected to unbalance 
force acting on the machine. When the natural frequencies are in resonance with excitation 
frequency, damping plays a significant role and amplitudes need to be computed considering 
system with damping. 

Response Computation using FE Analysis: For response computation, these unbalance 
forces are applied directly at the bearing level locations. Amplitudes at desired locations viz. 
Foundation top or bearing levels are obtained directly. 

Response Computation using Manual Methods of Analysis: While evaluating response using 
manual method of analysis, these unbalance forces are transferred at the DOF location (CO of base 
area of foundation in contact with the soil i.e. point 0 ). Thus we get three force 

components Fx, Fy & Fz and three moment components M 0' M'I/ & M ¢ @ point o. Undamped 

response is evaluated using equations 9.1-7 to 9.1-12 whereas equations 9.1-13 to 9.1-18 are used 
for evaluating damped response. 
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AmpJitudesare evaluated at DOF location point O. Amplitudes at any other location viz. at 
foundation top or at bearing locations are computed using geometrical relationships given by 
equations 9.1-19 to 9.1-27. 

DESIGN EXAMPLES 

Design Examples are those which are encountered in real life practice. 
Comparison with Finite Element Analysis (FEA) is also given for specific 
cases to build up the confidence level. Effort is made to highlight the 
influence of certain slips commonly committed while computing response of 
the foundation. 

EXAMPLE D 10.1: Foundation for a Reciprocating Engine 

Design a foundation for a Single Cylinder Horizontal Reciprocating engiD1! coupled with 
motor through gear box. Foundation outline showing machine-loading diagram, sectional 
elevation showing machine cg line, rotor-center line and bearing locations, is given in Figure 
D 10.1-1. Machine, foundation and soil parameters are as under: 

A. Machine Data 

Machine Weight 

Compressor 
Motor (excluding Rotor) 
Motor Rotor 
Weight of Motor Bearing Pedestar (2kN each) 
Weight of Operating Gear 

Machine Speed 

Operating Speed of engine 
Operating Speed of Motor 
Height of Rotor Centerline above Ground level 
Height of Machine Centroid below rotor centerline 

220 kN 
100kN 

14 kN 
4 kN 
8kN 

360 rpm 
720 rpm 
2000 mm 
100mm 

Unbalance Forces Generated by Reciprocating Machine (engine) 

Reciprocating engine is mounted over a base Frame. Unbalance Forces generated by engine are 
given at point Q (Point Q represents CG of Base Frame in contact with the foundation as shown in 
Figure 10.1-1) 
Dynamic forces at point Q 
Force along Z @ engine frequency F1z @cosOJt = 10 kN 
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Figure D 10.1-1 Reciprocating Machine Coupled with Motor Through 
Gear Box supported on Block Foundation 

10 -9 

1 100 

1 100 

1000 

1000 
OL 

3500 

https://engineersreferencebookspdf.com



10-10 

Force along Z @ twice the engine frequency 

Moment about X at engine frequency 

Moment about X @ twice the engine frequency 

Unbalance Forces generated by Motor 

Foundations for Reciprocating Machines 

F2z @cos2mt = 2.6 kN 

MIx @cosmt = 13.5 kNm 

M2x @cos2mt = 6.7 kNm 

Dynamic forces considered along Y (Vertical) @ center of rotor 

Motor Excitation Frequency (speed of motor) 
Balance Grade for motor rotor 
Unbalance force @ center of rotor considered along Y 

75.40 rad/s 
G 16 i.e. ew = 16 mmls 

14 _ 720 
Fy = mem2 =--xI6xlO 3 x-x2x1r = 1.72 kN 

9.81 60 
B. Foundation Data 

Mass Density of Concrete 2.5 t 1m3 

Foundation Length 5.2 m 
Foundation width 2.2 m 
Foundation depth below Ground level 3.5 m 
Foundation Part above Ground level 

Supporting Drive machine 1.0 m 
Supporting Compressor 0.2 m 

Gear Box Pedestal Along length = 0.60 m; Along Width = 0.8 m; Height = 0.8 m 
Foundation Plan and Section is shown in Figure D 10.1-2 

C. Soil Data 

Basic Soil Data 
Mass density of soil 2.0 t 1m3 

Poisson's Ratio 0.25 
Soil Damping Constant 0.1 
Foundation depth for bearing capacity evaluation 3.5 m 
Bearing capacity 250 kN 1m2 

Coefficient of Uniform compression normalized for Area 10 m2 

Site Coefficient of Uniform Compression Cu = 5x 104 kN/m 3 

Corresponding Static Stress 100 kN/m2 

DESIGN 

Foundation Sizing 

Consider Foundation as shown in Figure D 10.1 & D 10.2 

Consider Foundation to Machine Weight Ratio 3 
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Figure D 10.1-2 Machine Layout with Respect to CO of Base Area 0 (Origin) 

Weight of Machine 

Desired weight of Foundation 

Overall Centroid 

346kN 

1038 kN 
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Overall Centroid with respect to CG of Base area: Consider CO of Base area point 0 (also 

termed as DOF location) as shown in Figure D 10.1-2. 
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a) Machine 

DriVXMlc Bearings + Pedestals Coupling Non-D!:ive Mlc , , ~ ,......, , 

~ 25.0 25.0 25.0 25.0 9.0 9.0 8.0 55.0 55.0 55.0 55.0 kN 

Xi 0.7 -0.7 0.7 -0.7 0.0 0.0 0.0 0.7 -0.7 0.7 -0.7 m 

Yi 5.4 5.4 5.4 5.4 5.5 5.5 5.5 5.4 5.4 5.4 5.4 m 

Zj -2.1 -2.1 -0.9 -0.9 -2.35 -0.65 -0.1 0.9 0.9 1.9 1.9 m 

Let xmo,Ymo,zmorepresent Machine Centroid with respect to CO of Base Area point O. We get 

- L~Xi 0 X ---- • mo - L~ - , - = LW;Yi =541' Ymo LW; ., 

b) Foundation 

Distance of CO 
Dimension from Point 0 
~ 

Block X y z xi yi zi 

2.2 4.5 2.2 0.0 2.25 -1.5 
2 2.2 3.7 3.0 0.0 1.85 1.I 

3 0.8 0.8 0.6 0.0 4.10 -0.1 

Weight of Foundation 

Wf ) = 2.2x2.2x4.5x2.5x9.81 = 534 kN 

W(2 =3.0x2.2x3.7x2.5x9.81=599 kN 

Wf3 =0.6xO.8xO.8x2.5x9.81=9.5 kN 

Total weight = 1142 kN 

- - LW;Zi - 038 Z ----mo L~ . 

Let Xfo , Y fo' Z fo represent Foundation Centroid with respect to CO of Base Area point O. We get 

Y-fi =LWiYi =2.066' 
o LWi ' 

- LWiZi -0 125 
zlo= LWi = . 
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Let xo,Yo & Zo represent overall centroid of Machine + Foundation system with respect to CG of 

Base Area point o. Substituting values we get: 

x = L(WmXmo +WfxfO) = 346xO+ 1142xO = 0 

o L(Wm +Wf ) 346+1142 

- = L( WmYmo +WfYfO) = 346x5.41 + 1142x2.066 = 284 
Yo L(Wm+Wf ) 1488 . 

Z = L(WmZmo +WjZjo) = 346x0.38+1142x(-0.125) = -0.008 

o L(Wm +Wj ) 1488 

Eccentricity 

Eccentricity in X-Z plane: 

Eccentricity along X-direction 

Eccentricity along Z-direction 

ex =(Xrs)XI00 = 0.0 xl00 = 0.0% < 5 % OK 
2.2 

ez = (Z1r) x 100 = 0.008 xlOO =0.15% <5% OK 
5.2 

Both the values of eccentricity are less than 5 %, hence OK 

Bearing Pressure 

Foundation Base Area 

Soil bearing pressure 

Margin for other loads 

Greater than 30 % 

Dynamic Analysis 

Site Soil Parameters 

5.2 x 2.2 = 11.44 m2 

(1142+346)111.44 = 130 kN/m 2 

100 x (1- (130/250))= 48 % 

Hence OK 

Site Coefficient of Uniform Compression (as given) 
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Corresponding base area (given) AOI = 10 m2 

Site Static Stress @ 3.5 m depth (as given) 0'01 = 100 kN/m 2 

Design Soil Parameters 

Width of Foundation B = 2.2 m 

Foundation depth Below GL D = 3.5 m 

Effective depth (See $5.4) d02 = 0.5 x 2.2 + 3.5 = 4.6 m 

Overburden pressure due to soil at depth d02 0"1 = 2x4.6x9.81= 90.25 kN/m2 

Area of Foundation A02 = I 1.44 m2 

Total weight of Machine + Foundation 1490 kN 

Overburden pressure due to foundation + machine 0" = 1488 = 130.07 kN/m2 
2 11.44 

Design Static Stress 0'02 = 0"1 +0"2 = (90.25+ 130.07) = 220.32 kN/m2 

Design Coefficient ofUnifonn Compression C.,," C.OI x ~( ::: ) x ~( ~: ) 
Since A02 = 11.44 m2 > 10 m2

; effective A02 = 10m 2 

Other design coefficients: 

Coefficient of Uniform Shear Cr =O.5xCu =0.5x7.42xI04 =3.71xI04 kN/m 3 

Coefficient of Non-Uniform Compression 

Co =C¢ =2xCu =2x7.42xl04 =14.84xl04 kN/m 3 

. Non-Uniform Shear CIf/ =O.75xCu =O.75x7.42xI04 =5.565xl04 kN/m 3 
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Soil Stiffness (Equivalent Springs): 

Moment of Inertia of Base Area: 

About X-axis 
1 3 

Ixx =-x2.2x5.2 = 25.78 
12 

About Z-axis 
I 3 

I zz =-x2.2 x5.2=4.614 
12 

About Y-axis 

Substituting values, we get: 

kx = Cr x A = 3.71x 104 xl 1.44 = 4.25x 105 kN/m 

ky = Cu x A = 7.42 x 104 x 11.44 = 8.49 x 105 kN/m 

kz = kx = Cr x A = 4.25xl05 kN/m 

k(} =C(}xlxx =14.84xl04 x25.78=3.83xI06 kNm/rad 

k'l' = C'I' xl yy = 5.565x 104 x 30.4 = 1.69x 106 kNmlrad 

k; = C; x Izz = 14.84x104 x4.614 = 6.85x105 kNmlrad 

Mass and Mass Moment of Inertia 

a) Mass Moment of Inertia about CG of Base Point 0 

Machine load distribution and locations with respect to point 0 (see Figure 10.1-2) 

i) Machine 

DrivxM/e Bearings Coupling Non-Drive Mle , , r-----"-, - , \ 

Wj 25.0 25.0 25.0 25.0 9.0 9.0 8.0 55.0 55.0 55.0 55.0 kN 

Xj 0.7 -0.7 0.7 -0.7 0.0 0.0 0.0 0.7 -0.7 0.7 -0.7 m 

y; 5.4 5.4 5.4 5.4 2.7 2.7 2.7 5.4 5.4 5.4 5.4 m 

Z; -2.1 - 2.1 -0.9 -0.9 -2.35 -0.65 -0.1 0.9 0.9 1.9 1.9 m 

Total machine Mass = 346/9.81 = 35.27 t 

Mass Moment of Inertia of Machine 

10 -15 
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Mmox machine = I Kw; / g)x~; +z;)} = 1113 tm
2 

M moy_machine = I ~Wi / g)x (x; + z; )}= 97.6 t m
2 

Mmoz_machine = I ~w; / g)x{x;2 + Y; )}= 1047.4 t m
2 

ii) Foundation 

Distance of CO 
Dimension from Point 0 
~ A , 

Block X y z Xl yi zi Density Mass 

2.2 4.5 2.2 0.0 2.25 -1.5 2.5 2.2x4.5x2.2x2.5 = 54.45 

2 2.2 3.7 3.0 0.0 1.85 1.1 2.5 2.2x3.7x3.0x2.5 = 61.05 

3 0.8 0.8 0.6 0.0 4.10 -0.1 2.5 0.8xO.8xO.6x2.5 = 0.96 

Total Mass = 116.46 t 

Mass Moment of Inertia of Foundation 

Mmox foundation = I {(mi 112~2 + zl)+ mi~,2 + z; )}= 926.49 t m2 

Mmoy_foundation = IKmi 1I2)(x2 +z2 )+m;(x,2 +z; )}=31O.81 tm 2 

Mmoz_foundation = IKml1I2~2 +x2)+mi~? +x?)}=708.95 tm
2 

Total Mass and Mass Moment of Inertia about CG of Base Point 0 

m = 35.27 + 116.46 = 151.73 t 

M mox= 1113 +926.49 = 2039.5 t m 2 

M moy= 97.6+310.81 =408.42tm 2 

M moz= 1047.4 + 708.95 = 1756.35 t m 2 

b) Mass Moment of Inertia about Overall Centroid 

Coordinates of Overall Centroid with respect to CG of Base Area point 0 
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Xo = 0; Yo = 2.S; Zo = -O.OOS 

M mx = M mox -m ~o 2 + z/) = {2039.5-151.73x (2.82 +(-0.008)2 )}= 820.2 t m2 

Mmy = Mmoy -m (Xc/ +z/) = ~OS,42-151.93X(0+(-0.00S)2 )}= 40S,4 t m2 

Mmz = Mmoz -m ~()2 +Xo2) = {1756.35 -151.93x(2.S2 +O)}= 537.04 t m 2 

10 -17 

Ratio of Mass Moment of Inertia at overall centroid to Mass Moment of Inertia at CG of base 
area point 0 

Y = Mmx = 820.2 =0.4; Yy = Mmy = 408.4 =1.0; Yz = Mmz = 537.04 =0.31 
x M max 2039.5 M may 408.4 M maz 1756.35 

Natural Frequencies 

Limiting Frequencies: 

fi 4.25xl05 

= 52.89 rad/s Px = -;;; = 151.73 

P =J¥= 
S,49xl05 

=74.8 rad/s 
y m 151.73 

5 
4.25xl0 =52.S9 radls 

151.73 

pe=~ ke = 3.S3xl0
6 

=43.31 radls 
Mmox 2039.5 

1.69xl06 

--- = 64.36 rad/s 
40S.42 

P, =~ k, = 6.S5xl0
5 

=19.75 radls 
M moz 1756.35 

Uncoupled Modes: Since vertical and torsional modes (corresponding to y & IJI deformation) are 

uncoupled modes, Py & PIfl also represent the natural frequencies in respective modes. 
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Py = 74.8 rad/sec; Iy = 11.90 Hz 

P'I/ = 64.36 rad/sec; 1'1/ = 10.24 Hz 

Coupled Modes are: 

Modes corresponding to x & ¢ deformation (X -Y Plane) 

Modes corresponding to z & () deformation (Y -Z Plane) 

Natural Frequencies corresponding to x& ¢deformation 

Frequency Equation 

Substituting Values, we get 
PI = 18.82 rad/s; fi = 3.0 Hz 

P2 = 100.35 rad/s; 12 = 15.97 Hz 

Natural Frequencies corresponding to z & () deformation (Y -Z Plane) 

Frequency Equation 

Substituting values, we get 

Unbalance Forces 

2 1 (2 2)- 1 ~[ 2 2 \2 2 2 
PI.2=2 Pz + Pe +2 \Pz+PeJ -4YxPzPe 

Yx Yx 

PI = 35.49 rad/s; fi = 5.65 Hz 

P2 = 10 1.8 rad/s; 12 = 16.2 Hz 

Unbalance forces generated by machine areas given above (see machine data). 

Amplitude computations are done in two stages: 

a) Dynamic forces acting at frequency of 6 Hz correspond to load case 1 

b) Dynamic forces acting at frequency of6 Hz correspond to load case 2 

Load Case I Dynamic forces @ 6 Hz (37.7 rad/s) 

Point of Application - Point Q (see Figure D 10.1-1&2) 

Force along Z Flz =10 kN 

Moment about X Mix = 13.5 kNm 
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Load Case 2 Dynamic forces @ 12 Hz ( 75.4 rad/s) 

Point of Application - Point Q 

Force along Z F2z = 2.6 kN 

Moment about X M 2x =6.7 kNm 

Point of Application - Motor Rotor Center 

Force along Y Fy =1.72 kN 

Transferring these forces at CG of Base area point 0 ,we get 

Load Case 1 COl =37.7 radls; Fz =10 kN; Mx =13.5+10x3.7=50.5 kNm 

Load Case 2 
CO2 = 75.4 radls; Fy = 1.72 kN; Fz = 2.6 kN 

Mx = 6.7 +2.6x3.7 + 1.72 x 1.5 = 18.9 kNm 

Amplitudes of Vibration 

Rewriting parameters required for computation of amplitudes: 

Stiffness 

Limiting Frequencies 

Natural Frequencies 

kx =4.25xl05
; ky =8.49xl05

; kz =4.25x105 kN/m 

kf:) =3.83xl06; kif' =1.69xl06; k¢ =6.85xl05 kNmlrad 

Px = 52.9 radls; Py = 74.8 radls; pz = 52.9 radls 

Po = 43.3radls; PIf' =64.3 radls; P¢ =19.75 rad/s 

In X - Y Plane PI = 18.82 radls & P2 = 100.35 radls 

In Y - Z Plane PI = 35.49 radls & P2 = 101.80 radls 

Mass and mass moment of inertia 

Mmox =2039.5 tm2; Mmoy = 408.42tm2; Mmoz =1756.35 tm 2 

Yx =0.4; Yy =1.0; Yz =0.31; m=151.73 
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Foundation size, height of centroid and damping constant 

H=4.5 m; L=5.2 m; B=2.2 m; h=yo =2.84 m; (=0.1 

Machine operating speeds 6Hz& 12 Hz 

Load Case 1 Forces and Moments @ 6 Hz 

ml =37.7 rad/s; Fz =10 kN; Mx =13.5+lOx3.7=50.5 kNm 

These dynamic forces i.e. Fz & M x correspond to motion in Y -Z Plane. 

Frequency ratios corresponding to Y -Z plane are: 

13z = (mdpz)= (37.7/52.9)= 0.71; 13B = (aidpB) = (37.7/43.3)= 0.87 

131 = (md PI)= (37.7/35.49)= 1.06; 132 = (m l / P2)= (37.7/101.8)= 0.37 

It is seen that only 131 lies in ± 20 % range. Thus amplitudes corresponding to 131 shall be 

computed considering damping and for other, undamped amplitude shall be good enough. 

Note: For amplitude computation, it is more convenient to consider one force at a time, evaluate 
amplitudes and finally obtain the resultant by taking the sum of the amplitudes. 

i) Force Fz = 10 kN (For amplitude, see equation 9.1-17a) 

Displacement Zo along Z and Rotation eo about X @ 0 

= 0 (1- 13J ) & () = 0 mh 13J 
Zo z ((-N(I-1312 j + (213I(Y }(I-13i) 0 Z Mmox ((-N(I-1312 j + (2131()2 )x(I-13i) 

It may be noted that since (1- 13? )is negative, sign of the term J(I- 13)2 J + (2131;)2 shall also be 

negative (see Note 2 § 9.1.2.2). Accordingly (-) sign is applied to the radical in denominator. 

Oz = (Fz/k.) = 10/4.25xI05 = 2.35xlO-s m 

Zo = 2.35 X 10-5 (1- 0.87
2

) = -2.69 x 1 0-5 m 

(-)J(I-1.06
2 J +(2xl.06xO.lY }(1-0.37

2
) 
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ii) Moment M (J = Mx = 50.5 kNm (For amplitude, see equation 9.1-17b) 

Displacement Zo along Z and Rotation eo about X @ 0 

150 = Mo/ko = SO.S/(3.83xl06)= 1.32 x 10-5 rad 

zo=2.84x1.32xlO-5 0.71
2 

=-8.86xlO-5 m 

(1-0.37 2 )x( (-~(t -1.062) + (2x 1.06x 0.1)2 ) 

eo = 1.32 x 10-5 (1-0.7t2). =-3.09xlO-5 rad 

(1-0.372)Xe-~(1-1.062) +(2Xl.06XO.l)2) 

Total amplitudes @ 0 

Zo =(-2.69-8.86)xl0-5 =-1.l6xl0-4 m 

eo = (-1.75-3.09)xlO-5 =-4.84xl0-5 rad 

Amplitudes @ Foundation Top: 

Amplitude "if due to zo&Bo (seeequations9.1-21) 

Z f(Ihax) = I(zo + H eo)1 = 1-1.l6 X 10-4 + 4.5 x (- 4.85 x 10-5 )1 

",,= 3.4 x 10-4 m = 340 microns 

Amplitude Y fc due to eo (see equations 9.1-23) 
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Y Ie = I(L/2 }Ool = 1(5.2/2)x (- 4.84 X 16-5
) 

= 1.25 X 10-4 m = 125 microns 

Total Amplitude = ~(340f +(125Y =362 microns 

Load Case 2 m2 =75.4 rad/s; Fy =1.72 kN; Fz =2.6 kN; Mx =18.9 kNm 

Dynamic forces Fz & M x relate to coupled motion in Y -Z Plane whereas Dynamic 

force Fy relates to uncoupled motion along Y. Corresponding frequency ratios are: 

/3z =(m2/pz}=(75.4/52.9)=1.42; /3e = (m2/Pe)= (75.4/43.3)= 1.74 

/3y = (m21 py)= (75.4/74.8) = 1.008 

/31 = (m2/PI) = (75.4/35.49)=2.12; /32 = (m2/P2)=(75.4/101.8)= 0.74 

Since only /3y lies in ± 20 % range, amplitudes corresponding to Py shall be computed 

considering damping and for others, undamped amplitude is good enough. 

i) Force Fz = 2.6 kN (For amplitude, see equation 9.1 - II) 

Amplitude 

m 

o =6.1xI0-6 X 151.73x2.84 1.74
2 

=-2.43xlO-6 rad 
o 2039.5 (1-2.122XI-O.742) 

ii) Moment Me = Mx = 18.9 kNm (For amplitude, see equation 9.1-12) 

Amplitudes @ 0 - Zo along Z and 00 about X 
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t5e = Me/ke = IS.9/(3.S3xI06)= 4.93xl0-6 rad 

Zo = 2.S4x4.93xl0-6 ( \12 2r -1.7Sxl0-
5 

m 
1-2.12 1-0.74 

Total amplitudes @ 0 

Zo = (7.Sxl0-6 -1.7Sx10-5 )= -1.0xl0-5 m 

eo = (-2.43 Xl0-6 +3.17xl0-6 )= 7.4xl0-7 rad 

iii) Force Fy F'.v = 1.72 kN (For amplitude, see equation 9.1-13) 

Resonance in vertical mode of vibration 

Amplitude @O 

Amplitudes @ Foundation Top: 

Amplitude z( due to Zo & eo (see equation 9.1-21) 

Z/(max) = I(zo + H eo)1 = 1(-1.0 x 10-
5 

+4.5X7.4xl0-7)1 

= 6.67 x 10-6 m = 6.7 microns 

Amplitude Y /e due to eo (see equation 9.1-23) 

Y /e = I(L/2}eol = (5.21 2}x 7.4 x 1 0-7 = 1.9 x 10-6 

Maximum amplitude along Y (see equation 9.1-26) 

Y /(max) = Y /(max) + Y/e(max) = IYol + ~(L/2}e(}l} = 11 x 1 0-
5
1 + {(5.2/2}x 7.4 xl 0-71} 

= 1.19xl0-5 m = 12 mic;rons 

Total amplitude at foundation top ~(6.7f +(12Y = 13.74 microns 

10 -23 
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Finite Element Analysis 

This very problem is modeled and analyzed using Finite Element Method. Frequencies and mode 
shapes are shown in figurc D 10.1·3 and steady state response is shown in Figure D 10.1-4. 

From the mode shllpes it is noticed that 3n1 mode lind 4!h mode represent pure torsional and vertical 
vibration whereas other modes are coupled modes. lSI and 5th modes are coupled modes and 
represent rocking about Z and translation along X axis respectively. 2001 and 6111 modes are coupled 
and represent rocking about X and translation along Z axis respectively. 

Amplitudes: Dynamic forces are applied at machine locations at center line of machine axis. 
Amplitudes obtained are shown in Figure 010.\-4. 

Model 2.76 Hz Mode2 !i .29Hz Model 9.6 Ht: 

MOlU4 105 fh Mode!i 14.3!i Hz MOlU6 14.36Ht: 

figure 0 10.1 ·3 Frequencies and Mode Shapes 
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Co mpa rison of FE Method of Analysis with Manual method of Analysis 

Table 10.1-1 Natul1l1 Frequencies (Hz) 

Mode # 
Manual Method of Analysis 
FE Analysis 

I 
3.00 
2.76 

Amplitudes of Vi bra lion are given as under: 

Amplitudes in microns 

Amplitude in Microns 

Manual Method of Analysis 

FE Analysis 

@ 6Hz 

362 

337 

Both the results show a good degree ofagreemcnt. 

• 

2 
~.6~ 

~.29 

• 
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. ... no • 

• llTllZ .-.zues, .--.ann 
.IIIIZIl 

.Z",U 

.IIUIU 

.IIU"" 

AIrri!!ydoI • pillA btMpq § H.! 

3 
10.24 
9.60 

@ 12Hz 

13.8 

14.4 

4 
11.90 
10.50 

Figure D 10.1-4 Vibration Amplitudes@6Hzand@ 12 Hz 

~ 
15.97 
14.35 

6 
18.82 
14.36 

Transient a mplitudes : Since system frequenc ies are low, transient amplitude need not be 
evaluated 

~Irength Design 

I. Block foundatio ns are rigid body mass and have sufficient strength to withstand all possible 
force exerted by machine and as such do not need design computations for strength except 
those parts of the foundation which are overhang or cantilever. 
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2. Minimum reinforcement to be provided is 25 to 50 kglm 3 subject to condition that bar 

diameter shall not be less than 12 mm and spacing shall not be more than 200 mm. For thick 
concrete blocks, it is desirable to provide intermediate cross reinforcement layers along the 
height. 

3. Though not necessary, check for Safe Bearing Pressure and stability, due to normal as well 
as abnormal loading conditions is desirable. 

4. Check for Strength & Embeddement of Anchor Bolts for applicable forces is a must 

10.2 DESIGN OF FRAME FOUNDATION 

Design of Frame Foundation for reciprocating machines is relatively more complex compared to 
those for rotary machines. These machines are generally row frequency machines and unbalance 
force developed is very large. The member sizes i.e. sizes of beams and columns are relatively 
heavier compared to similar foundations for rotary machines. Analysis procedure, using manual 
method of analysis, is same as that for rotary machine with modifications as necessitated by the 
problem. In certain cases, columns of the same frame may have different sizes. This m'akts 
computation little more complex. Contribution of soil to the response of the foundation is 
significant for such foundations. For horizontal reciprocating machines, dynamic forces are along 
piston axis which invariably is the longitudinal direction of the frame foundation and response 
evaluation of frame foundations with 3 or more sets of transverse frames, using manual method of 
analysis, would necessitate making many more assumptions and approximations compared to those 
for rotary machines. 

In view of the above, author strongly recommends use of advanced computational tools for design 
of such foundations. 

DESIGN EXAMPLE 

EXAMPLE D 10.2: Foundation for a Reciprocating Compressor 

Design a frame foundation, as shown in Figure D 10.2-1 for a reciprocating compressor for 
machine data as under: 

Machine Data 

Weight of Motor @PointA, B, P, Q 
Weight of Compressor @point R 
Speed of Motor Compressor 

Dynamic Force @ point R 

i) At Engine Frequency Fx (Lateral along X) 

Fy (Vertical along Y) 

440.00 kN 
1200.00 kN 
200.00 rpm 

130.00 kN 

40.00 kN 
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,.1500.,. 2100 .,.100~,. 2400 .,. 1700 ., 

Col .B Col Col 
Cl lOt C2 C3 

z 
16 t r 7t 118 t .. • • • 

p Q R 

Col Col Col 
Cl .A C2 C3 

lOt 

g 
0\ -

PLAN 

_____ J_C~.~fshaf!..Beari~ __ _ 8 
00 

y 

z~ -j s 
j 

Sectional View 

Figure D 10.2-1 Reciprocating Compressor on Frame Foundation 

Mx (About X) 

My (About Y) 

ii) At 1st harmonic @ 400 rpm 

My (AboutY) 

240.00 kNm 

800.00 kNm 

40.00 kN 

130.00 kNm 
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Short Circuit Force Motor @ point A & B 

Maximum permissible half amplitude 

Foundation: 

240.00 kN 

0.10 mm 

Concrete Grade M20 

Top Deck: Length = 8.7 m Width = 7.3 m Thickness = 1.4 m 

Columns (B x D) Frame 1 1.5x1.9m; Frame2 1.0x1.9m; Frame3 1.7x1.9m 

Column Height (From top of raft up to beam bottom) 6.0 m 

Raft: Length = 9.7 m Width = 8.3 m Thickness = 2.0 m 

Material properties: E=3xl07 kN/m2; v=0.15; G=I.3xl07 kN/m2; p=2.5 tlm 3 

Depth of Foundation below GL 2.5 m 

Soil: 

Dynamic Soil Parameters 

C =4x104 kN/m 3• C =2xl04 kN/m 3 
U , t 

Co =C~ =8x104 kN/m 3
; C,!/ =8x104 kN/m 3 

Design: 

Sizing of Foundation: For Layout see Figure DlO.2-1 

Overall Eccentricity 

Eccentricity between Center of Mass and CG of Base area of Foundation 

Top deck Mass (without opening) = 8.7 x 7.3 x 1.4 x 2.5 = 222 t 

Mass of opening = 2.1 x 3.5 x 1.4 x (-2.5) = -26 t 

Mass of Base Raft = 9.7 x 8.3 x 2.0 x 2.5 = 403 t 

Column Mass (both column inclusive) 

Frame I 

Frame II 

2 x (1.5 x 1.9 x 6x 2.5) = 86 

2x{1.0x1.9x6x2.5)= 57 t 
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Frame III 2x(1.7xI.9x6x2.5)=97 t 

Machine Mass 

Motor 440/9.81 = 45 t; Compressor 1200/9.81 = 122 t 

Let us denote CG of Base area of Raft as point 0 

Overall Centroid 

CG of machine and foundation with respect to point 0 

Mass (t) X, z; v· • I 

Motor 45 0.0 -1.80 10.2 

Compressor 122 0.0 1.45 10.2 

Top Deck (Without cut-out) 222 0.0 0.0 8.7 

Cut-out -26 0.0 -\.80 8.7 

Raft 403 0.0 0.0 1.0 

Columns Frame 1 86 0.0 -3.6 5.0 

Frame 2 57 0.0 -0.25 5.0 

Frame 3 97 0.0 3.5 5.0 

Here Xi' Y; & Z; represent CG of mass element mj from point 0 

Centroid of Mass from Point 0 

Total Mass m= Im; =222-26+86+57+97+403+45+122=1006 t 

Z = {45x(-1.8)+122xl.45-26x(-1.8)+86x(-3.6)+57x(-0.25)+97x3.5} 158.35 =0.16 m 
m 1006 1006 

- = {45 x lO.2+122 x lO.2+222x8.7-26x8.7+403xl+(86+57+97)xS} = 5012 =4.98 m 
~ 1~ 1~ 

Eccentricity e; =(0.16/9.7)xI00=1.65% <5% OK 
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DYNAMIC ANALYSIS 

Vibrations on account of i) Structural Effect and ii) Soil Effect influence response of machine 
foundation system. For manual computation, it may tum out to be too complex to combine both 
these effects and therefore these are evaluated independently. Overall response is the summation of 
the two individual responses. 

STRUCTURAL VIBRATIONS 

Top Deck Eccentricity 

Eccentricity between Center of Mass (Machine weight +top deck weight + 23 % of column weight) 
& Center of lateral stiffness of Frames: 

Center of Mass (Machine weight +top deck weight + 23 % of column weight) 

Z = {45 x (-1.8)+ 122 x 1.45 - 26 x (-1.8) + 0.23 x (86 x (-3.6) + 57 x (-0.25) + 97 x 3.5)} 

m 45 + 122 +222-26+0.23x(86+57 +97) 

= 146.3 = 0.35 m 
418.2 

CG of Lateral Stiffness of Frames with respect to point 0: 

Frame 1 Frame 2 Frame 3 

Frame span (m) (centerline) 5.4 5.4 5.4 

Frame Height (m) 6+ (1.4/2) = 6.7 6.7 6.7 
(Up to beam center line) 
Beam Moment ofInertia Ib 0.34 0.23 0.39 

Column Moment ofInertia Ie 0.86 0.57 0.97 

k = (Ib/L ) 
(Ie/H) 

0.50 0.50 0.50 

k = 12£1 c I + 6k 
x H3 2+3k 

(kN 1m) 1.17x 106 7.78x105 I.33x106 

CG with respect to Point 0 -1.8 -0.25 +3.5 

Zk = ~)XjZj = 1.17X106X(-3.6)+7.78XI05X(-0.25~+I.33X106X3.5 =0.08 m 

~)Xj (1.17 +.778+ I.33)x10 
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Eccentricity e. = 0.35-0.08 x100 =3.1% >1% Hence NotOK 
• 8.7 

This calls for changes in foundation size. There are many ways of implementing this change. 
This is best done by the close interaction with machine group. In the present case it is achieved by 
increasing column depth of Frame 3 from 1900 mm to 2100 mm keeping overall foundation size 

/ 

same. 

Foundation Plan with modified column is shown in Figure D 10.2-2 . 

• ,,1700 ., 

Col .B Col Col 
Cl lOt C2 C3 

r 16 t 7t 118 t 
• • • 
p Q R 

Col Col Col 
CI .A C2 C3 

lOt 

g 
0\ 

Figure D 10.2-2 Foundation Plan - Frame III Columns Modified 

Design with revised sizes: Re-doing the computations with the revised column sizes of frame III, 
we get the changed parameters as: 

Frame III 

Span L = 5.2 m; Ie = 1.31 m 4
; k = 0.38; kx = 1.64 X 106 kN/m 

Mass of frame III columns (both columns) 

=1.7x2.1x6x2.5x2=107 t i.e. increase of lOt 

Check for Overall Eccentricity 

Total mass (M/c + Foundation + Columns + Raft) = 1006+10=1016 t 

Centre of Mass Z = Lmizi = 158.35+ 10x3.5 = 193.35 = 0.19 m 
m Lmj 1006+10 1016 
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ez =10.19IXIOO=1.96% <5% Hence OK 
9.7 

Check for Top Deck Eccentricity: 

Foundations for Reciprocating Machines 

Z = {45 x (-1.8) + 122 x 1.45 - 26x (-1.8)+ 0.23 x (86 x (-3.6)+ 57 x (-0.25)+ 107 x 3.5)} 

m 45+ 122+222-26+0.23x(86+57 + 107) 

= 154.35 = 0.37 m 
420.5 

Lateral Stiffness: (with modified frame III columns) 

Frame I 1.17x106 kN/m; Frame 2 7.78x105 kN/m; Frame 3 1.64 x 106 kN/m 

~)Xi =3.59xI06 kN/m; 

Total Lateral stiffness 

Z = 1.17 x 106 x(-3.6)+7.78xI05 x (-0.25)+ 1.64 x 10
6 

x3.5 = l.33xlO6 =0.37 m 
k 3.59x106 3.59x106 

e
z

=(Zk- Zm)xI00=(0.37-0.37)xI00=0.0% <1% Hence OK 
8.7 8.7 

Natural Frequencies 

a) Lateral & Torsional Vibration 

Since top deck eccentricity is less than I %, there shall not be any coupling between translational 
and Torsional Mode of Vibration. 

i) Lateral Vibration 

Total Lateral stiffness 

Total Mass (Mlc + Top deck + 23 % column) 

Natural Frequency 

3.59x106 kN/m 

420.5 t 

Px = 3.59x 10
6 

= 92.34 radls 
420.5 
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ii) Torsional Vibration 

CG of machine and foundation with respect to center of top deck mass 

Mass (t) Zj 

Motor 45 -1.8-0.37=-2.17 

Compressor 122 1.45-0.37=1.08 

Top Deck (Without cut-out) 222 0.0-0.37=-0.37 

Cut-out -26 -1.80-0.37=-2.17 

23 % of Columns Frame 1 19.8 -3.6-0.37=-3.97 

Frame 2 13.1 -0.25-0.37=-0.62 

Frame 3 24.6 3.5-0.37=3.13 

Total Mass 420.5 t 

Mass Moment of Inertia M my(Deck) about Y axis passing through top deck center of mass 

M my(Deck) = 45 x 2.17 2 + 122 x 1.082 + ~222112)x (8.7 2 + 7.3 2)+ 222x 0.372 } 

+ k- 26/12)x(2.1 2 +3.52 )+ (-26)x2.172 }= 2612 tm 2 

Torsional Stiffness 

klJl(Deck) = 1.17xl06 x(-3.6-0.37)2 +7.78xI05 x(-0.25-0.37)2 

+ 1.64 x 106 x(3.5 -0.37)2 = 3.48x 1 07 kNmlrad 

10 -33 

Center of Stiffness is 3.95 m from Frame I center line. Let b i denote distance of each frame from 

center of stiffness. Substituting values, we get: 

Natural Frequency 

b) Vertical Vibration 

PIJI = 3.48xl0
7 

=115.4 radls 
2612 

Mass associated with each frame (M/c + top deck + 33 % columns) 
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Frame I Frame II Frame III Total 

Motor 22.5 22.5 0 45 t 

Compressor 0 61 61 122 t 

Deck (without opening) 222 x 2.55 = 65 222 x 3.25 = 83 222x 2.9 = 74 222 t 
8.7 8.7 8.7 

Opening -13 -13 0 -26 t 

33 % of Columns 28.7 19 35.7 8304 t 

Mass on each frame 103.2 172.5 170.7 446.4 t 

Vertical Stiffness associated with each frame (equation 9.2-17) 

Deflection of portal frame under unit (see equation 9.2-16) 

F'~,ra' S~r Co~n [L3 2k + 1 ) 3L H 
y= Y2 + Y2 + y, = ---x-- +--+--

96 E I h k + 2 8 GAb 2 E Ac 

Frame 1 Frame 2 Frame 3 

Frame span (m) 5.4 5.4 5.2 

Frame Height (m) 6.7 6.7 6.7 
(Up to beam center line) 

Beam area m2 2.1 104 2.38 

Beam Moment of Inertia I b 0.34 0.23 0.39 

Area of column m 2 2.85 1.9 3.57 

k= {Ih/L} 
(Ie/ H) 

0.50 0.50 0.38 

Frame I Deflection under unit load 

[ 
5.43 2XO.5+1) 3x504 6.7 

y= x + +-------
96x3xlO7 x0.34 0.5+2 8x1.3x107 x (1.5 x 1.4) 2x3xlO7 x(l.5xI.9) 

=6AxlO-8 +7042xl0-8 +3.92xlO-8 =1.77xl0-7 m 

116 
Vertical Stiffness Frame I k,y = - = 7 = 5.65 x 10 kN/m 

y 1.77 x 10-

Similarly for frame II & III, we get 
Framell y=2.66xlO-7 m; ky=3.76xI06 kN/m 

Frame III y=lo47xlO-7 m; ky =6.8xI06 kN/m 
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Total Vertical Stiffness L,ky = 1.62 x 107 kN/m 

Vertical Natural Frequency Py = 

Amplitudes 

Dynamic Force @ point R 

Fx 

kN 

@200 rpm 130 

@400 rpm 40 

1.62 x 107 

--- = 190.4 rad/s 
446.4 

Fy Mx My 

kN kNm kNm 

40 240 800 

130 

Center of mass at top deck is at 0.35 m along Z direction from point O. 

Transferring forces @ center of mass location, we get: 

Dynamic Force @ center of mass 

Fx Fy Mx My 

kN kN kNm kNm 

@200 rpm 130 40 240 800 + 130x (1.45 -0.35) = 943 

@400 rpm 40 130 + 40x (1.45 - 0.35)= 174 

i) Lateral Vibration 

a) Amplitude @ engine frequency of200 rpm i.e. 20 94 rad/s 

Fx =130 kN; kx =3.59xl06 
kN/m; Px =92.34 rad/s; OJ =20.94 rad/s; fix =0.23 

Amplitude X= 130
6XI

( 1 l=3.83xlO-S m=38microns 
3.59xlO 1-0.232 

I 

b) Amplitude @ 1 sl harmonic (400 rpm) i.e. 41.84 rad/s 

Fx =40 kN; kx =3.59xI06 kN/m; Px =92.34 rad/s; OJ =41.84 rad/s; fix =0.45 

Amplitude X= 40 6 X

l
( 1 l =1.4xl0-s m = 14 microns 

3.59xlO 1-0.452 

10 -35 

https://engineersreferencebookspdf.com



10 - 36 Foundations for Reciprocating Machines 

ii) Torsional Vibration 

a) Amplitude @ engine frequency of200 rpm i.e. 20 94 radls 

M", = 943 kNm; k", = 3.48 x 107 kNm/rad; P", = 1I5A radls; lO = 20.94 radls; fJ", = 0.18 

943 1 _ 
Amplitude If! = x = 2.8 x 10 5 rad 

3.48x10
7 

/(1-0. 182l 
b) Amplitude @ 1 sl harmonic (400 rpm) i.e. 41.84 radls 

M", =174 kNm; k", =3.48xI07 kNmlrad; PIIf =1l5.4 rad/s; lO=41.84 radls; fJ", =0.36 

Amplitude If! = 174 x 1 = 5.8 x 1 0-6 rad 
3.48x10

7 
/(1-0.3621 

iii) Vertical Vibration 

a) Amplitude @ engine frequency of200 rpm i.e. 20 94 radls 

Fy =40 kN; ky = 1.62 x 107 kN/m; Py =190.4 radls; lO=20.94 radls; fJx =0.1 

Amplitude y = 40 x 1 = 2.5 x 10-6 m = 2.5 microns 
1.62x10

7 R 
iv) Rotational Vibration about X 

Computation of amplitudes due to rocking moment about X axis is a complex task from the point 
of view of manual computations hence not attempted here. 

Total Amplitudes 

Total amplitudes are as under: 

Amplitudes @ engine order frequency 

Along X 3.83xlO-5 +2.8xlO-5 x(8.7/2)=1.6xlO-4 m = 160 microns 

Along Y 2.5 microns 

Along Z 2.8xlO-5 x(7.3/2)= 1.02 x 10-4 m = 102 microns 
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Amplitudes @ 1 st harmonic 

Along X 1.4xl0-5 +5.SxlO-{j x(S.7 12)= 3.9xl0-5 m = 39 microns 

Along Y 0.0 microns 

Along Z 5.Sxl0-6 x(7.3/2)= 2.1xl0-5 m = 21 microns 

Total Amplitudes (SRSS) microns 

Direction engine order 1 st harmonic' Total 

Along X 160 39 165 

AlongY 2.5 0 2.5 

AlongZ 102 21 104 

SOIL EFFECT 

10 -37 

Computation of Frequencies and Amplitudes considering overall system along with soil is a 
complex and involved task using manual method of analysis. We need to make some 
approximations for its simplification. 

a) Consider foundation as rigid: Let us consider the foundation including base raft as 
rigid body resting over soil and let us evaluate parameters required for frequency estimation. 

Base Raft Size 9.7 x S.3 m 

Area 9.7xS.3=S0.5 m 2; Ixx = S0.5x9.7
2 

=631.2 m4'I = SO.5xS.3
2 

=462.2 m4 
12 ' zz 12 

Soil Stiffness 

Substituting values we get 

kx =kz =SO.5x2xI04 =1.61x106 kN/m; ky =S0.5x4xI04 =3.22xl06 kN/m 

ke =631.2x8xI04 =5.05xI07 kN/m; k, =462.2x8xI04 =3.7xI07 kN/m 

k", = (631.2+462.2)x3xI04 =3.28xl07 kN/m 
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Mass & Mass Moment of Inertia @ CG of Base Area about X, Y & Z axes 

Total Mass m=1016 t 

Height of overall centroid from point 0 

- = {45 x lO.2+122xlO.2+222xS.7-26xS.7+403x1+(S6+57+107)x5} = 5062 =4.9S m 
Ym 1016 . 1016 

h= Ym =4.9S m 

Mass moment of Inertia M mox ' M moy & M moz about X, Y & Z axes respectively 

M mox = (222112) x (S.72 + 1.42)+222x(S.72)+(-26/12)x(2.1 2 + 1.42 )+(-26)x(S.7 2 + I.S2) 

+(403/12)x(9.72 +22)+403x{l2)+S6x(3.62 +5 2)+57x(0.252 +5 2)+107x(3.52 +5 2
) 

+45x(I.S2 +10.22)+122x{l.452 +10.2 2
) 

= 46326 tm 2 

M moz = (222/12)x (7.3 2 + 1.42
) + 222 x (S. 72) + (-261l2)x (3.5 2 + 1.42) + (-26) x (S.72) 

+ (403112) x (S.32 + 22) + 403 x (12) +S6 x(52) + 57 x(52) + 107 x (52) 

+45 x{lO.22)+ 122 x (10.22
) 

=42302 tm 2 

M moy = (222/12)x (7.3 2 + S.7 2) + (-26/12)x (2.1 2 + 3.52) + (-26) x (3.62) + (403/12)x (8.3 2 + 9.72
) 

+S6x(3.62) + 57x (0.25 2
) + 107 x (3.52) + 45 x (I.S2) + 122x (1.452) 

=10317 tm 2 

Note: In the present case Mass Moment of Inertia of columns about their own centroid has been 
ignored just for the purpose of simplification. 

Motion in Y- Z Plane (Only due to soil influence): 

Translational motion along Z and Rotational motion about X axis passing through point 0 

m=1016 t; Mmox =46326 tm 2
; k z =1.61x106 kN/m; k(} =5.05xI07 kNm/rad 
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Limiting Frequencies: 

Translational Frequency along Z 

Rotational Frequency about X 

Coupled Frequencies: . 

P
z 

= 1.61xl0
6 

=39.8 radls 
1016 

Po = 
5.05x 107 

---- = 33 radls 
46326 

Frequency equation is (refer equations 9.1-5 & 6): 

2 1(2 2)-1~(2 2\2 22 Pl,2 =2 pz + Po +2 pz + Po) -4yx PzPo 
Yx Yx 

M 
Here Yx =~; 

Mmox 
P

2 = kz . 2 kO 
z ,PO=--

m Mmox 

M mx = 46326-1016x 4.982 = 21129; Yx = Mmx = 21129 = 0.46 
Mmox 46326 

Substituting in frequency equation, we get 

PI = 27 rad/s; P2 = 71 rad/s 

Motion in X- Y Plane (Only due to soil influence): 

10 -39 

Translational motion along X and Rotational motion about Z axis passing through point 0 

m = 1016 t; Mmoz =42302 tm 2
; k, =1.61xl06 kN/m; k; =3.7x107 kNm/rad 

Limiting Frequencies: 

Translational Frequency along Z 

Rotational Frequency about X 

6 
P

x 
= 1.61 x 10 = 39.8 radls 

1016 

P; = 
3.7xl07 

--- = 29.6 radls 
42302 
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Coupled Frequencies: 

Frequency equation is (refer equations 9.1-3 & 4): 

2 1(2 2)_1~(2 2\2 22 
PI,2 =2" Px + P¢ +2" Px + p¢J -4yz PxP¢ 

yz Yz 

Here y. = Mmz ; 
• Mmoz 

2 k¢ 
P¢=--

Mmo= 

Mmz =42302-1016x4.982 =17105; y. = Mmz = 17105 =0.4 
• Mmnz 42302 

Substituting in frequency equation, we get 

PI = 25 rad/s; P2 = 74 rad/s 

Motion in X-Z Plane 

Torsional vibration about Y axis passing through point 0 

klf/ =3.28xl07 kNm/rad; Mmoy =10317 tm 2 

Natural Frequency 

Vertical Vibration along Y 

3.28 x 107 

---- = 56.4 rad/s 
10317 

3.22x106 

m=1016t; ky=3.22xI06 kN/m; Py = =56.3 rad/s 
1016 

Amplitude: 

Dynamic Force @ point R 

Fx Fy Mx My 

kN kN kNm kNm 

@200 rpm 130 40 240 800 

@400 rpm 40 130 
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Transferring forces and moments @ point 0, we get dynamic forces and moments @ point ° as: 

i) Dynamic loads @ engine frequency @ 20.94 rad/s (200 rpm) 

Fx = 130 kN; Fy = 40 kN; Fz = 0 

Me =240+40xl.45=298 kNm 

My} = 800+ 130x 1.45 = 989 kNm 

M¢ = 130x10.2 = 1326 kNm 

ii) Dynamic loads @ 151 harmonic i.e. twice the engine frequency @ 41.88 rad/s 

Fx =40 kN; My} =130+40x1.45=188 kNm; M¢ =40xI0.2=408 kNm 

i) Amplitudes @ Engine Frequency 

a) Dynamic Force Fy 

Fy = 40 kN; ky = 3.22 x 106 kN/m 

0) = 20.94 rad/s; Py = 56.3 rad/s (away from resonance range) 

f3y = (20.94/56.3)= 0.37 

Amplitude y= 3.224~\O6 X(I_0\72rI.44XI0-7 m 

b) Dynamic Moment My} 

M'I' =989 kNm; 

0) = 20.94 rad/s; PYI = 56.4 rad/s (away from resonance) 

f3YI =(20.94/56.4)=0.37 

I·- d 989 1 3 10-5 d Amp Itu e VI = 7 x ( 2 ) = .5 x ra 
3.28x10 1-0.37 

c) Dynamic Force F, and Moment M ¢ (motion in X-Y plane) 

Fx =130 kN; M¢ =1326 kNm; k, =1.61x106 kN/m; k¢ =3.7xI07 kNm/rad 

2 h = 4.98; m = 1016 t; M moz = 42302 tm ; 0) = 20.94 rad/s 

Px = 39.8 rad/s; P¢ = 29.6 rad/s PI = 25 rad/s; P2 '" 74 radls 

Px = 0.53; P¢ = 0.70; PI = 0.84; P2 = 0.28; S = 0.1 

Frequency ratio PI = 0.84 lies in resonance range. 
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Amplitude @Odueto Force Fx = 130 kN (see equation 9.l-15a) 

Substituting values, we get Xo = 1.32 x 10-4 m; "0 = -1.51 X 10-5 rad 

Amplitude @ 0 due to Moment M, = 1326 kNm (see equation 9.1-16a) 

Substituting values, we get Xo = -1.60 x 10-4 m; "0 = 8.25 x 10-5 rad 

d) Dynamic Moment Me (motion in Y-Z plane) 

Me = 298 kNm; ke = 5.05 x 10 7 kNmlrad; h = 4.98; (l) = 20.94 rad/s 

Pz =39.8 rad/s; Pe =33 rad/s PI =27 rad/s; P2 = 71 rad/s 

/3z =0.53; /3e =0.63; /31 =0.77; /32 =0.3; ;=0.1 

Amplitude @ 0 due to Me (see equation 9.1-12) 

Substituting values, we get 

Total amplitude @ 0 

Xo = 1.32 x 10-4 +m; Yo = 1.44 x 10-7
; Zo =-2.08xlO-5 m 

{}() = 1.07 x 10-5 rad; If' 0 = 3.5 x 10-5 rad; "0 = -1.51 x 10-5 rad 

Amplitudes at foundation top (equations 9.1-25 to 27) 

Let Xli:' Y ji;' & Z ji;' represent amplitudes at comer of Top of Foundation (Figure 9.1-2). Let 

L, B & H represent length, width and height of the foundation along Z, X and Y axes respectively. 
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x I(max) = I(xo - H rPo ~ + I(L/2)(jI 0 I 
= 16 .32 x 10-4 

- 9.4 x (-1.51 x 1O-5 )~ + 1(8.7/2)x 3.5 x 10-51 

=4.24xlO-4 m= 424 microns 

Y f(max) = IYo I + ~(L/2 )80 1+ I(B/2 )rPo J} 

= 11.44 x 10-71 + {(8.7/2)x 1.07 x 1 0-51 + 1(7.3/2)x (-1.51 x 1O-5)1}' 

= 1.017 x 10-4 m = 102 microns 

Zf(max) = I(zo + H 80)1 + I(B/2)(jI 01 

= 1(-2.08 x 10-5 +9.7 x 1.07 x 10-5 )1 + 1(7.3/2) x 3.5 x 10-51 

= 2.11x 10-4 m = 211 microns 

ii) Amplitudes @ 1st harmonic (@ Twice Engine Frequency) 

10 -43 

On the similar lines, as above, amplitudes can be computed for dynamic loads at 1 sl harmonics. 
Computations are not shown here and readers may attempt on their own. 

'Overall amplitudes 

Overall amplitudes are obtained by combining both the effects i.e. structural effect as well as soil 
effect. Combination is preferably obtained using Square Root of Sum of Squares (SRSS) method. 

From the results as above, following observations are made: 

a) Amplitudes are marginally higher than permissible (100 microns) even for 
structural vibration alone. This calls for structural stiffening of columns along X 

b) Amplitudes are much beyond permissible limit due to soil effect alone. It implies 
that even if structural stiffening of columns is done, amplitudes on account of soil 
effect shall still be much higher. The only answer to such problem is either to go 
in for 

i. Soil strengthening / stabilization 
ii. Vibration Isolation 
iii. Use of high stiffness material under base raft of Foundation 
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11 

FOUNDATIONS FOR IMPACT & IMPULSIVE 
LOAD MACHINES 

• Design Examples 

);> Foundation for a Forge Hammer 
);> Foundations For Machines Producing Impulsive Loads 
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Foundations for Impact Machines II - 3 

FOUNDATIONS FOR IMPACT & IMPULSIVE 
LOAD MACHINES 

Machines producing repeated impacts are i) Forge Hammers & ii) Drop Hammers whereas 
Machines Producing Impulse/Pulse Loading are i) Forging and Stamping Press, ii) Drop Weight 
Crushers, iii) Crushing, Rolling and Grinding Mills etc. Design Procedures given hereunder are 
for: 

a) For Impact Loading Machines - Hammer Foundations 
b) For Impulse Loading Machines - Coverage is restricted only to Typical 

Foundations falling under this category 

11.1 HAMMER FOUNDATIONS 

Machines producing repeated impacts are Forge Hammers & Drop Hammers. The Tup falls from a 
height and strikes the material, to be forged, placed on the Anvil. The Anvil is invariably placed 
over an elastic pad and the pad rests on the Foundation Block supported over soil. The elastic pad 
helps in preventing the bouncing of the Anvil over the Foundation. The force produced during the 
strike is termed as the Impact Force. The energy imparted by the impact force results in motion of 
the Anvil. The energy from the Anvil is then transmitted to the soil through the foundation. 

Summary of Design Steps 

l. Sizing of Foundation 
2. Equivalent Soil Stiffness 
3. Dynamic Forces 
4. Analysis 
l. Dynamic Analysis 

a. Natural Frequencies 
b. Dynamic Amplitudes 

II. Strength and Stability Analysis 
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Required Input Data 

Typical parameters required are as under. 

a) Foundation Data 

i) Foundation outline geometry 
ii) Details of cut-out for anvil 
iii) Support locations of frame on the foundation, if applicable 

Any other parameter that is specific to machine may also be needed. 

Foundation data viz. Foundation Type, Size, Mass, Stiffness, Material Properties is translated in to 
Design Foundation Parameters in line with the procedures given in Chapters 7. Necessary 
provisions must be made for Isolation of foundation from adjoining Structures. Wherever Isolation 
Pads are used below the Anvil &/or below the foundation, Stress-Strain properties of these 
Isolation Pads should also be listed. 

b) Machine data 

i) Total Mass of the Hammer i.e. Mass of the Tup, Anvil, Die & Frame 
ii) Mass of falling part i.e. Tup (also Mass of Upper Die in case of Drop Hammers) 
iii) Height of fall for the Tup/ Energy of Impact 
iv) Area ofthe Piston 
v) Pressure in the Cylinder 
vi) Frequency ofImpact 
vii) Mass of Anvil (also Mass of Guide Frame if attached to Anvil) 
viii) Frequency i.e. Number of Blows/min 
ix) Base area of the Anvil 
x) Details of Anchor Bolts connecting frame base to the foundation 
xi) Thickness of Elastic Pad placed below Anvil and its Elastic Modulus 
xii) Coefficient of Restitution/Impact 
xiii) Allowable Amplitudes at Anvil and Foundation 

Machine data, as above, is translated in to Design Machine Parameters in line with the 
procedures given in Chapters 6. 

c) Soil Data 

i) Site Specific Dynamic Soil Data 
ii) Soil type and its basic characteristic properties 
iii) Bearing capacity 
iv) Depth of water table 
v) Liquefaction potential 
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Site Soil Parameters as above are converted to Design Soil Parameters in line with provisions of 
Chapter 5. 

In addition, environmental data like Site related Seismic data, presence of any industry/ housing 
clusters sensitive to ill effects of vibration may also be needed. 

11.1.1 Foundation Sizing 

Design of Hammer Foundation is as good an Art as Science. The decision regarding mass ratio 
(Foundation/Anvil) is very subjective. It depends upon various factors e.g. mass of Tup, its initial 
velocity, desired foundation amplitude, depth of foundation, Coefficient of Uniform Compression 
etc. For initial sizing, procedure recommended is as under: 

1. Based on Tup mass, Anvil mass, Anvil size, and Soil parameters, select suitable depth of 
foundation D and approximate base area of the foundation 

2. Based on soil data, evaluate Design Coefficient of Uniform Compression of soil Cu for 

this depth and foundation base area 
3. Assign allowable amplitude value Yf for the foundation as given in this book or as per 

applicable codes of practice 
4. Corresponding to the Design Cu value, compute factor A (Factor for computing Mass Ratio) 

using the graph shown in Figure 11.1-1 
5. Compute Foundation Mass (first approximate size) using the relation ship as given below 

rnr+rna {vax .fi5) . = A.X 
rna Yf 

(11.1-1) 

Here, mr is mass of foundation, rna is mass of anvil, D is foundation depth in m, Yf is 

desired foundation amplitude in mm and va is tup initial velocity in m/sec (equations 11.1-2, 3 

&4) 

6. Proceed with the detailed design process 

Consider, for example a hammer foundation with anvil mass of 40 t and initial tup velocity of 4 
m/sec, desired foundation amplitude is 1.1 mm and Design Coefficient of Uniform Compression is 

Cu = 20 xl 04 kN/m 3 
• Mass of the foundation works out as under: 

Using the graph forCu = 20000 kN/m 3
, 

Tup initial velocity 

Foundation Depth 

A =0.8 

4.0 m/sec 

D = 3.5 m 
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Desired foundation amplitude 

Mass of Anvil 

l.l mm 

40 t 

We get 

This gives 

mf +ma =0.8 X{4Xm } =5.44 
ma l.l 

mf = 40x(5.44- I) = 178 t, which is about 4.5 time's mass of anvil. 

1.20 

1.00 

0.80 

r 
0.60 

0.40 

0.20 

\. 

0.00 
10 

'\ 
~~ 

20 30 

-I--I----
40 50 60 70 80 90 100 

Coefficient of Uniform Compression Cu X 10
3 
kN/m

3 

ml+ rna _'A. x {V'o +.!D} 
ma Yf 

mfis foundation mass & rna anvil mall; 

v' 0 is initial velocity of Tup before impact in mlsec; 

D is depth of foundation in m; Yf is foundation amplitude in mm 

Figure 11.1-1 Factor for Foundation to Anvil Mass ratio for different Cu Values 

1 I. 1.2 Dynamic Analysis 

Vibration of the foundation subjected to impact by the hammer is basically an Initial Velocity 
Problem. We can represent the complete Hammer-Foundation System in two parts: 

i. A falling Mass mo from a height h producing Impact 

ii. Remaining System that withstands this impact 
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Summary of Formulae: 

Initial Velocity of the Falling Mass 

Initial Velocity of the freely falling mass rno from a height h 

Va =~2gh (11.1-2) 

(a) Single Acting Drop Hammers 

For a single acting Drop Hammer, initial velocity of the falling mass (mass of Tup and mass of 
Top Die) from a height h is written as: 

Va = '7~2g h (11.1-3) 

h Represents total height offall of the falling mass 
g Represents acceleration due to gravity 

'7 Represents factor for Efficiency of Drop 

Factor 17 depends upon energy lost in overcoming the friction to the Tup's movement and the 

resistance of the steam/air counter pressure. From practical considerations, the recommended value 
of Efficiency of Drop 17 is 0.65. 

(b) Double Acting Hammers 

In this case hammer is operated by pneumatic/steam pressure and initial velocity is given 

as: 

, (rnOXg+PsXAp) 
Vo = 17 2ghx 

rnoxg 
(11.1-4) 

The quantity in the bracket represents influence of force on the piston to the initial velocity. 

Here: 
A p Represents area of the piston 

P,I Represents pressure (steam/air) acting on the piston 

Ino Represents total mass of the faIling parts 

g Represents acceleration due to gravity 
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Analysis: 

Analysis is done using manual method of computation as given in Chapters 2 & 3. Dynamic 
response is evaluated at anvil and at foundation. Recommended steps for analysis are as under: 

I. Consider anvil and foundation as one mass supported on soil i.e. no elastic pad between 
anvil and foundation. The system is represented as SOOF system as shown in Figure 11.1-
2a 

2. Consider elastic pad between anvil and foundation. Assume foundation as rigid. The 
system is represented as SDOF system as shown in Figure 11.1-2b 

3. Consider total system as Two DOF System as shown in Figure 11.1-2c 

(a) Single DOF System 

mo = Mass ofTup + Upper Die 
m 1 = Mass of Anvil +Foundation 
k1= Soil Stiffness 

(b) Single OOF System 

mo = Mass ofTup + Upper Die 

m2 = Mass of Anvil 
~= Stiffness of Elastic Pad 

(c) Two DOF System 

mo = Mass ofTup + Upper Die 

m2 = Mass of Anvil 
k2= Stiffness of Elastic Pad 

ml = Mass of Foundation 
k1= Soil Stiffness 

Figure 11.1-2 Typical Hammer Foundation Represented as Single DOF System and 
as Two DOF System 

1. Anvil and Foundation as One Mass supported over Soil - System represented as 
Single DOF System: (see Figure 11.1-2a). 

Velocity of foundation just after impact is given as 

(11.1-5) 
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Here AI =!!'!.L represents ratio of mass rnl to mass rno , rnl represents total mass of foundation & 
rno 

anvil, rno represents mass of falling part, e represents coefficient of restitution and v~ is velocity 

ofTup just before impact as given by equations 11.1-3 & 4. 

Coefficient of restitution (for real bodies in practice) 

Desired Foundation amplitude 

Required soil stiffness 

Required Base area of foundation 

Here At represents Base Area of Foundation. 

e = 0.6 (11.1-6) 

Yt mm; YI = Yr x10-3 m 

A =!L r c 
u 

(11.1-7) 

Note: Ensure that base area provided is equal to or higher than this value. If area provided is less 
than this value, increase the base dimensions suitably to match this value. 

2. Elastic pad between anvil and foundation. Assume foundation as rigid - System 
represented. as Single DOF System: (see Figure 11.1-2b). 

In this segment, we evaluate required Stiffness of Elastic Pad. 

Velocity of Anvil just after impact is given as 

(11.1-8) 

Here ~ = rn2 represents ratio of mass rn2 to mass rno, rn2 represents mass of anvil and 
rno 

rno, v~ & e are as defined above. 

Note: Ifframe is attached to anvil, it's mass to be added to anvil mass 

Desired anvil amplitude Yamm; Y2=YaxI0-3 m 

Required stiffness of elastic pad k2 = rn2 x(;: r (I 1.1-9~ 
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Required thickness of pad (11.1-10) 

Here E p represents Elastic modulus of pa<1 and Aa represents Area of Anvil Base 

3. Elastic pad between anvil and foundation and foundation supported over soil­
System represented as Two DOF System: (see Figure] 1.1-2c). 

Velocity of Anvil just after impact (as given by equation 11.1-8) v2 

Mass of Anvil m2 

Stiffness of Elastic pad below Anvil (as given by equation 11.1-9) k2 

Mass of Foundation (alone) ml 

Note: If frame is attached to foundation, it's mass to be added to foundation mass 

Foundation Base area (As provided) 

Stiffuess of soil (at foundation base) (11.1-11) 

Frequency Equation: 

P~2 = ~{(PZ2(1 + A)+ PZJf~(pJ2(1 +A)+ PZI) -4(PZIPZ2)} (11.1-12) 

Here, (11.1-13) 

Amplitude: 

Foundation Amplitude 

(I1.l-14) 

Anvil Amplitude 

( 11.1-15) 
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Here coefficient of term sin PIt represents First Mode Response and coefficient of term 

sin P2t represents Second Mode Response. 

Denoting V2~~~~~~~~~ & ..l:....:=----'~~;=..~~~, we represent 
PI 

foundation amplitude as; 

YI = Y; sin PIt - yf sin P2 t (11.1-16) 

-'f-!'-':-~-7'f, we represent anvil amplitude as; 

(11.1-17) 

DESIGN EXAMPLE 

Design Examples are those encountered in real life practice. Comparison with Finite 
Element Analysis (FEA) is also given for specific cases to build up the confidence 
level. Effort is made to highlight the influence of certain slips commonly committed 
while computing response of the foundation. 

Example D 11.1: Foundation for Drop Hammer 

Design the foundation for 1.1 t Drop Hammer, as shown in Figure D 11.1-1 having the 
following details: 

Machine Data: 

Mass of Tup + Upper Die 
Mass of Anvil 
Mass of Anvil with Frame 
Anvil Base dimension 

Length = 1.90 m; Width = 1.45 m; 
Anvil Height above FFF 
Factor for Impact Efficiency 
Coefficient of Restitution 

Operating Conditions 

Strike rate of hammer 
Case 1 Blows per minute 
Stroke length (Ht. fall ofTup) 

1.38 t 
34.00 t 
34.00 t 

Anvil Height = 1.30 m 
0.66m 
0.65 # 
0.60 

36.00 # 
1.70 m 
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11 - 12 Foundations for Impact Machines 

Case 2 Blows per minute 
Stroke length (Ht. fall ofTup) 

Max Permitted Amplitudes 

Anvil Amplitude 
Foundation Amplitude 

Soil Data 

Dynamic Soil Properties 

Design Coefficient of Uniform Compression 
Poisson's ratio 

Soil Density (Mass Density) 
Damping Constant 

Safe Gross Bearing Capacity @ 3.5 m depth 

Allowable Load Intensity at 3.5 m depth 

Foundation Data 

Concrete Grade 

Concrete Density 
Depth of foundation (proposed) 

Design of Foundation 

Design Machine Parameters 

Mass ofTup 

Mass of Anvil with frame 

Stroke (Height offall of Tup) 

Velocity ofTup before Impact 

75.00 # 
1.00 m 

2.00 mm 
1.50 mm 

rno = 1.38 t 

34.00 t 

1.70 m 

4x104 kN/m 3 

0.30 # 
2.00 tlm3 

0.10 
230.00 kN/m2 

184.00 kN/m2 

M25 

2.50 tlm
3 

3.50 m 

Vo =,,~2g1 =0.65x·hx9.8Ix1.7 =3.75 m/s 

Velocity of Anvil after Impact 

(I + e) , (I + 0.6) 
v2 = ( / )VO = ( / )X3.75=0.23 m/s 

1 + rna rno 1 + 34 1.3 8 
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Figure D 11.1-1 Foundation Plan & Elevation for 1.1 t Drop Hammer 

From Figure 11.1-1, forCu = 4xI04 kN/m 3
, we get factor A. = 0.58 

vi> x..fi5 = 3.75xN = 7.02 

YI 1.1 

_m..;;..I_+_m_o_ = 7.02 x 0.58 = 4.07 

Mass of anvil + foundation = 34x4.07 = 138 t 

Mass of Foundation mf =138-34=104 t 

11 - 13 
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This gives Foundation to Anvil Mass ratio as 

Foundation sizing 

Depth of Foundation 

Desired Foundation Base Area 

Provide Foundation Length 

Provide Foundation Width 

Area of Foundation as provided 

Design Soil parameters 

Cu = 4x 104 kN/m 3 

3.50m 

11.89 m 

4.00m 

3.40 m 

2 13.60 m 

Allowable Load Intensity at 3.5 m depth 

Soil Mass density 

Design of Foundation 

a) Foundation Response to Impact Loading: 

104 = 3.05 
34 

Foundations for Impact Machines 

184.00 kN/m2 

2.00 tlm3 

Let us consider that there is no pad below anvil i.e. anvil and foundation behave like a 
single unit. Foundation rests on the soil and the entire impact is borne by combined anvil­
foundation system (see Figure 11.1-2a). 

Representing Anvil + Foundation as SDOF System, we get 

Total Mass Foundation + Anvil 

Mass Ratio 

Velocity of foundation after impact 

ml = II4+34 = 148 t 

~ =!!!L = 148 = 1.07 
mo 1.38 

(I+e), (1+0.6) 
V2=-( -)vo=( )X3.75 =0.055 mls 

I + AI 1+107.25 

Desired Foundation Amplitude (consider 80 % of allowable) = 0.8x 1.5 = 1.2 mm 
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Required soil stiffness k = 148X( 0.055 )2 = 3.16x105 kN/m 
I 1.2x10-3 

Required Base Area of Foundation A = 3.16x10
5 

= 7.91 m 2 

f 4x 104 

Provided Base Area of Foundation 13.60 m2
, which is more than required hence OK 

b) Anvil Response due to Impact Loading: 

Let us consider an Elastic pad placed below the anvil and the foundation is fixed i.e. no 
deformation offoundation or soil. Anvil is considered as a SDOF System (see Figure 11.1-2b) 

Mass of Anvil 

Mass ratio 

Velocity of Anvil just after impact 

34 
~ =-=24.64 

1.38 

v = (I+e) v' = (1+0.6) x3.75 =0.23 mls 
2 (I +~) 0 (I +24.64) 

Desired Anvil Amplitude (80 % of allowable) 0.8 x 2 = 1.60 mm 

Required stiffness of pad below anvil k = 34X( 0.23 )2 = 7.3x 10-5 kN/m 
2 1.6x10-3 

Stress developed in pad a= 7.29xl0
5

xI.6xl0-
6 

=423.35 kN/m 2 = 0.423MPa 
1.9x1.45 

Elastic Modulus at this stress is obtained from stress strain plot for pad material as supplied by 
manufacturer / supplier (see Figure D 11.1-2). 

Stress =0.42 MPa; Strain = 0.0150; Elastic Modulus (stress/strain) = 28.22 MPa 

Multiplying Factor for Dynamic Modulus ( as recommended by pad supplier) = 1.1 

Dynamic Elastic Modulus of pad 

Required Pad Thickness 

Epad =31.05 MPa=3.lxI04 kN/m 2 

Epad x Aanvil t = -C--'---'--_ 

k2 
3.1x10

4 
x1.9xl.45 xlOOO = 117.33 mm 

7.29x105 
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Provide Pad Thickness 120mm 

Modified Stiffness with this pad thickness 

k = £pad xAa = 3.lx10
4 

x (1.9 x 1.45) = 7.12x105 kN/m 
2 t 120x 10-3 

Damping ratio of Pad material (data from supplier) 

0.16 

0.14 

0.12 
'It: 0.1 
s:: 

0.08 .~ 
rn 0.06 

0.04 
0.02 

.---~ ----~ ...-V'" 

V 
~ 

" o 
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 

Stress Mpa 

Figure D 11.1-2 Stress Strain Plot of Elastic Pad Material 

c) Anvil + Foundation response to impact loading: 

= 0.25 

Consider an elastic pad between anvil and foundation and foundation supported over soil - System 
is represented as Two DOF System (see Figure 11.1-2c): 

From cases a) & b), for Two DOF system, we get: 

m2 = 34 t; k2 = 7.13£ + 05 kN/m; m1 = 114 t; k1 = 5.44£ + 05 kN/m 

Limiting Frequencies and mass ratio 

Pi2 = k2 / m2 = 20963; Pi1 = k1 / m1 = 4772; 

PfJ =69.08 rad/s; Pn =144.79 rad/s; J.=m2/m1 =341114=0.3 

Frequency Equation (see equation 11.1-12) 

PI~2 = ~{(P;2(1 + J.)+ P;Jf:~(p;2(1 + J.)+ P;J -4(P;IP;J} 

Substituting Values, we get P1 = 59.27 rad/s; P2 = 168.74 rad/s 
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1.50,.--------------------, 
Maximum 1.17 rom 
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-1.50 -'---------------------' 
o 0.5 1.0 1.5 2.0 

Time in sec ---+ 
Foundation Response 

Figure D 11.1-3 Amplitude Response of Anvil and Foundation 

Response of Anvil and Foundation - (Modal Response) 

Maximum Anvil Response in first mode (see equation 11.l-15) 

11 - 17 
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II - 18 Foundations for Impact Machines 

Anvil Response in second mode 

Foundation response in first mode 

Foundation response in second mode m 

Total response for anvil as well as for Foundation is plotted and is as shown in Figure D 11.1-3 

Total Anvil Response: 

Total Foundation Response: 

Isolation Efficiency 

2.15 mm 

l.l7 mm 

Impact Energy from Tup transferred to Anvil 

Energy Transmitted from Anvil to Foundation 

Isolation Efficiency at Anvil Base level 

Energy Transmitted to Soil thro Foundation 

Isolation Efficiency at Foundation Base level 

Check for Bearing Pressure underneath foundation 

9.72 kNm 

1.64 kNm 

83.12 % 

0.37 kNm 

96.19 % 

Dynamic Load on the foundation FJ = k) x YI = 5.44 x 105 x I.I 7 x 10-3 = 636 kN 

Soil pressure due to dynamic Load = 636113.6 = 46.7 kN/m2 

Soil Pressure due to Static Load 

Total Bearing Pressure 

Allowable bearing capacity 

= 148x9.8l/13.6 = 106.75 kN/m2 

=46.7 + 106.7 = 153.4 

= 184.00kN/m2 

kN/m2 

Ratio of Bearing Pressure to Bearing Capacity 153/184 = 0.83 OK 

Dynamic response under Impact Frequency 

Usually Dynamic Analysis is not required for number of blows less than 150 per minute because 
there is hardly any dynamic interaction dynamic loading and the system experiencing dynamic 
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loads. However just for academic interest, response is computed for such a loading in order to 
demonstrate steps involved to do similar analysis for higher number of blows per minute. 

Case 1 Blows per minute 36 

Stroke length (Ht. fall of Tup) 

Damping Constant of soil 

Mass ofTup 

Factor for Impact Efficiency 

Velocity ofTup before Impact 

1.70m 

S =0.1 

mo = 1.38 t 

0.65 

vb =TJ~2gl =0.65x.J2x9.81xI.7 =3.75 mls 

Frequency of Impact (36 Blows/min) 0) = 3.77 radls 

a=voxO)=3.75x3.77=14.15 m/s 2 

mo xa = 1.38 x 14.15 = 19.53 kN 

5.44xl05 kN/m 

Acceleration 

Force of impact 

Stiffness (Lower of k1 or k2 ) 

Natural freq (lower of two values for Two DOF System) 

Frequency ratio 

Dynamic magnification factor 

59.27 radlsec 

fJ = O)/p = 3.77 / 59.27 = 0.06 

1 -10 
\(1-(0.06)2 1- . 

Amplitude of foundation = 19.53 x 1.0 = 3.6 x 10-5 m = 0.036 mm 
5.44xl05 

Case 2 Blows per minuet 75.00# 

Stroke length (Ht. fall ofTup) LOOm 

Following steps as above, we get amplitude of foundation as 0.06 mm. 

11.2 FOUNDATIONS FOR MACHINES PRODUCING IMPULSIVE LOADS 

Machines, Producing Impulse/Pulse Loading, cover Forging and Stamping Press, Drop Weight 
Crushers, Crushing, Rolling and Grinding Mills etc. 

In the absence of any real life machine data available with author, coverage is oriented towards 
broad spectrum of machines falling under this head. 
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Summary of Design Steps 

I. Sizing of Foundation 
2. Equivalent Soil Stiffness 
3. Dynamic Forces 
4. Analysis 

II. Dynamic Analysis 
a. Natural Frequencies 
b. Dynamic Amplitudes 

II. Strength and Stability Analysis 

Required Input Data 

Typical parameters required are as under. 

a) Foundation Data 

i) Foundation outline geometry, Machine Support locations on the foundation 
ii) Any other parameter that is specific to machine may also be needed 

b) Machine data 

In view of high level of automation, it is difficult to generalize specific machine data for this class 
of machines. A host of machine data is listed. User may select the applicable data for the machine 
to be designed. 

i) Mass Parameters 

a. Total Mass of machine 
b. Mass of Anvil 
c. Mass of cross head 
d. Mass of material to be forged 
e. Mass of Ram 

ii) Dynamic Force Parameters 

f. Stroke of the press/ height of fall of ram 
g. Pressure exerted by the press 
h. Load time history of the pulse 
i. Frequency of Impact i.e. Number of Blows/min 
j. Unbalance force (in case ofmiIls) 
k. Dynamic force and moments in case of eccentric presses 
1. Height of steel columns ( in case of Press) 
m. Cross section area of steel columns (in case of Press) 
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n. Details of Anchor Bolts and other embedded parts 
o. Properties of isolation pads placed below the machine if any 
p. Coefficient of Restitution/Impact 
q. Allowable Amplitudes of vibration 

c) Soil Data 

i) Soil type and its basic characteristic properties 
ii) Site Specific Dynamic Soil Data 
iii) Bearing capacity 
iv) Depth of water table 
v) Liquefaction potential 

Site Soil data, Machine data and Foundation data are converted to respective Design Parameters in 
line with provisions of Chapter 5, 6 & 7. 

Necessary provisions must be made for Isolation of foundation from adjoining Structures. 
Wherever Isolation Pads are used, Stress-Strain properties of these Isolation Pads should also be 
listed. 

In addition, environmental data like Site related Seismic data, presence of any industry/ housing 
clusters sensitive to ill effects of vibration may also be needed. 

11.2.1 Foundation Sizing 

Such machines are likely to cause overstressing. Hence, soil bearing pressure under normal loads 
should be kept at 50 % of bearing capacity keeping 100 % margin for overstressing. There should 
be no eccentricity between center of gravity of mass and center of stiffness i.e. combined CG of 
mass of machine and foundation system should coincide with the CG of Base area of the 
foundation. 

11.2.2 Dynamic Analysis 

Dynamic Forces 

Impulsive loading is a special class of dynamic loading and generally consists of a single impulse 
of short duration. The force produced during operation is termed as the Impulsive Force. Two types 
of pulse loading are considered: 

i) Short duration Impulse Loading 
ii) Long duration Pulse Loading 
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Short Duration Impulse Loading: Dynamic magnification depends upon ratio of 
Frequency ofImpact to natural frequency. 

Long Duration Pulse Loading: Dynamic magnification factor depends upon ratio of pulse 
duration to natural time period of foundation. 

Analysis: Analysis is done using manual method of computation as given in Chapter 2. 
Dynamic response is ev~luated at the foundation. 

Summary of Formulae: 

For a SDOF System (Single spring mass system): 

Stiffness of the system (Equivalent soil springs) (11.2-1) 

Here Ar is area of foundation base in contact with soil 

Mass ofthe system (I 1.2-2) 

Here ml represents mass of foundation and m2 represents mass of machine supported 

over foundation 

Natural frequency p = If radls (11.2-3) 

1. Machines producing Short duration Impulses applied as repeated blows with 
frequency OJ 

Load Impulse 

Number of strike 

Frequency of Repeated blows 

I 

Nrpm 

2,. 
OJ = - N radls 

60 

Frequency ratio 

Dynamic Magnification 

Static Deflection 

p = (J) (11.2-4) 

is _ Ixp _Ixp 
.<, - ---2 - -k­

mxp 

P 

(I 1.2-5) 

(11.2-6) 
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Amplitude (11.2-7) 

For certain machines having falling mass mo and height of fall being h , Impulse is given as: 

1= mo xVo (11.2-8) 

Here Vo = ~2 g h is the terminal velocity 

Substituting in equation 11.2-6, we get dynamic amplitudes as given by equation 11.2-7. 

2. Machines producing Long Duration Pulse: 

Response Magnification due to Pulse loading of a SDOF System, as given in Chapter 2, is 
reproduced here for convenience and is shown in Figure 11.2-1 

y 
F(t) Force Force Force 

FY~, Ft~l, FyL, 
I-t-\ Time I-- t---ol Time I+-- t ---.j Time 

(a) (b) (c) 

2.4 

j 0.2 

g I
//~------- -----------------------

~-1.6 I --/ """-,,, .~ 
/ / / , 

/ / 
/ ' 

/ / 
i 1.2 

~ 0.8 I / 
/ / 

Q) It' 
§ 0.4 I~/ 
~ 

0.2 0.4 0.6 08 1.0 1.2 

• -7-----­t:4 ------

1.4 1.6 1.8 2.0 

Ratio of Pulse Duration to Natural Period tiT 

Figure 11.2-1 SOOF System subjected to Pulse Loading -Magnification Factor vs. ratio 
of pulse duration to Time period of the system 
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Dynamic Force induced by machine as (Peak of the pulse loading) F, 

Static deflection 
Fy o =-

sf k ( 11.2-9) 

Magnification Factor 11 y vs. rI T (from Figure 11.2-1) (11.2-10) 

(11.2~11) Amplitude thus becomes y = 0" x ~ X 111' 

Here ~ is the Fatigue Factor. In case fatigue factor is not defined. it may be taken equal to 2. 

DESIGN EXAMPLE 

Example D 11.2: Machine Producing Impulsive Loads Applied at Repeated Interval 

System Data 

Machine Weight 
Impulse produced by machine 
Foundation weight 

Foundation Base Area 
Depth of Foundation 

Gross Bearing Capacity @ 3.5 m depth 

Coefficient of uniform compression of soil 
Frequency of repeated blows 

Design 

Total weight of Machine + foundation 

Soil Bearing pressure 

Margin for overload 

Excitation frequency (90 rpm) 

Mass (Machine + foundation) 

Soil Stiffuess 

Natural frequency of SDOF system 

1500 kN 
1=5000 Ns 
2500 kN 

35 m2 

3.5 m 
225 kN/m2 

4x 104 kN/m' 
90 rpm 

2500+ 1500 = 4000 kN 
, 

4000/35 = 114.29kN/mL 

49.21 % Hence OK 

9042 rad/s 

m = (4000/9.81)= 407.75 t 

k, =C"xA=4xI04x35=lo4xI06 kN/m 
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Frequency ratio 

Force due to Impulse 

Statit deflection 

Magnification 

/3y = 9.42/58.6 = 0.16 

Fy = I x Py = 5000x 58.6 = 293 kN 

293 = 2.09x 10-4 m 
1.4xl06 

I
( ~ = 1.026 
1-0.162 

11 - 25 

Amplitude of foundation y = OS! x,u = 2.09xlO-4 x 1.026 = 2.15x 10-4 m = 0.215 mm 

Example D 11.3: Machine producing long duration Impulsive Loads 

System Data: 

Machine weight 6000 kN 

Pulse Load Time History: Half Sine Pulse having pulse duration of 0.08 s and peak pulse force of 

5000N 

Base Area of foundation 

Foundation Weight 

Depth of Foundation 

Gross Bearing Capacity @ 4 m depth 

Design Coefficient of Uniform Compression 

Design 

Total weight of machine + foundation 

Soil Bearing pressure 

Margin for overload 

Mass (Machine + foundation) 

Soil Stiffness 

Natural frequency of SDOF system 

8000 kN 

4.0m 

300 kN/m2 

6000 + 8000 = 14000 kN 

14000/84 = 166.67 kN/m2 

(1-166.67/300)x 100 = 44.44 %; hence OK 

14000/9.81 = 1427.12 t 

ky =6x104 x84=5.04x106 kN/m 

P y = 
5.04x106 

( ) 
= 59.4 radls = 9.46 Hz 

14000/9.81 
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Natural Time period T = (1/9.46)= 0.10 s 

Pulse duration T = 0.8s 

Ratio of Pulse Duration to natural time period TIT =(0.08/0.1)= 0.8 

Peak pulse force 

Magnification from Figure 11.2-1 

Static deflection 

Amplitude of foundation 

Fy =5000 N 

,u = 1.78 

OS! = (5.0/(5.04 x 106 ))= 1 x 10-6 m 

y= 1.0x10.(i x 1.78 = 1.78 X 10.(i =2 microns 
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12 

vtSRATION ISOLATION SYSTEM 

• Design Examples 

• Vibration Isolation Design of a Fan Foundation 
• Vibration Isolation Design of a Crusher Foundation 
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For better clarity, all Figures related to FE 
analysis, including animations of frequencies 
and mode shapes, in color, are given in the CD 
attached at the end of the handbook 
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VIBRATION ISOLATION SYSTEM 

In industrial environment, need for Vibration Isolation arises on one count or the other. Some of the 
obvious reasons are listed as under: 

1. To control excessive vibration levels to the machine itself 
2. To control propagation of vibration to adjoining machines/ systems 
3. To house a new (higher rating) machine on an existing foundation 
4. To control vibrations on account of locating a machine at intermediate structural floors 
5. To overcome uncertainty of dynamic soil parameters, and so on ..... 

All machines do not need inertia block for providing vibration isolation. In certain cases of stand­
alone machines like utility DO sets, Utility compressors etc, Vibration Isolators have become a part 
and parcel of the machine system itself and are supplied by the manufacturer/ supplier bundled with 
the machine. On the other hand, in industrial environment, majority of machines, that need 
Vibration Isolation, are supported over inertia block which in tum rests on Vibration Isolators. 

Basic theory of Vibration Isolation is described in Chapter 4. Related aspects like Principle of 
Isolation, Transmissibility Ratio, Isolation Efficiency, Isolation Requirements and Selection of 
Isolators are adequately covered in Chapter 4. 

Sizing of Inertia block, selection of right type of isolators for a given application and identification 
of placement locations of the isolators beneath the inertia block are key parameters for efficient 
VIS (Vibration Isolation System) design. 

12.1 VIBRATION ISOLATION DESIGN 

Design of Vibration Isolation System for a Machine or a Machine Foundation System comprises of 
the followings: 

• Sizing of Inertia Block 
• Selection oflsolators - stiffness & damping properties of isolators 
• Location of Isolators 
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• Dynamic analysis -Evaluation of Amplitudes & Reaction forces on support structure 
• Strength analysis of Inertia Block 
• Evaluation of Stiffness & damping properties of sub-structure if any 

12.1.1 Sizing ofInertia Block 

While sizing inertia block, due consideration should be given to the following: 

i) Inertia block - Plan Dimensions are sized such that it is able to house complete machine 
including all its components with necessary cutouts, openings & pockets required by 
machine for its operation 

ii) It has sufficient room underneath for placement of isolators 
iii) The thickness of inertia block should be such that its flexural natural frequencies (with 

machine mass) are sufficiently away from 
a) The operating speed of machine and its harmonics 
b) Critical speed of machine & 
c) Frequencyof isolation system 

iv) It should provide stability to overall centroid (machine + inertia block) 
v) Net mass of inertia block should preferably be 2 to 3 times that of the machine. This is 

only recommendatory and not mandatory. A higher ratio, if needed, may also be provided. 

12.1.2 Selection ofIsolators 

Criteria for selection of Isolators are as under: 

i) It should be capable of supporting loads from machine and inertia block 
ii) Its stiffness parameters are selected so as to achieve desired frequency ratio 

required for effective isolation 
iii) It should have a good damping constant required to control transient 

vibration amplitudes 

12.1.3 Location of Isolators 

Isolators are located such that their center of stiffness (vertical stiffness along Y -direction) 
matches with overall center of mass (machine + inertia block) i.e. overall centroid location of 
machine + inertia block (in X-Z Plane). Needless to mention that presence of eccentricity would 
result in reduced isolation effectiveness. 

12.1.4 Dynamic Analysis 

The stiffness and damping properties of finally selected isolators to be considered while analyzing 
the system. More often than not, it may be possible to represent the system as SDOF system or two 
DOF system. In such a case, modeling and analysis is carried out in line with the procedure given 
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in Chapter 2 and Chapter 3 respectively. For complex systems, it may be advisable to resort to 
computer-based analysis using commercially available packages. 

Transient Resonance: For effective isolation, frequency of isolation system must always be 
lower than the operating speed of the machine by an order of 2 to 4. Thus the system will always 
undergo Transient Resonance with every start and shutdown operation. It is therefore desirable 
that amplitudes as well as reaction forces, even during transient resonance, are kept within 
control. Though damping is undesirable from the point of view of isolation efficiency (see Chapter 
4), it very much helps in bringing down amplitudes during transient resonance. In other words 
damping associated with the Isolator becomes instrumental in bringing down the amplitudes and 
thereby reaction forces during transient resonance. 

Flexural Frequencies ofInertia Block: Invariably, flexural frequencies of inertia block are 
sufficiently away from isolator frequencies. A frequency check, however, is recommended for the 
Inertia Block to ensure that none of its frequencies is in resonance with isolator frequency or 
machine operating speeds. 

Reaction Forces: Reaction forces are transmitted from the inertia block to the support 
block/support structure (sub-structure) through the isolators. It is desirable to check the isolator 
capacity against maximum reaction force. Similar check is required for maximum deflection the 
isolator would experience under maximum reaction force. The maximum deflection should never 
exceed the permissible value of the isolator. At times, either of these checks may suggest change in 
isolator specifications and the complete process to be repeated. 

Strength Analysis of Inertia Block: Inertia block should be strong enough to withstand the 
forces generated by the machine during normal operating condition as well as transient resonance 
condition. Inertia block is. Structural analysis of inertia block, modeled as supported on isolators, 
with all cutouts and openings is carried out to ensure its strength adequacy. Necessary 
reinforcement, required as per design codes, is provided. 

Stiffness of Support Structure/sub-structure: From layout constraints, at times, inertia 
block is supported on a support structure/ sub-structure. Such support structure should be strong 
enough to withstand the reaction forces transmitted through isolators. Further it must be 
sufficiently rigid in both vertical and lateral direction and not interfere with system frequencies 
desired for effective isolation. 

The support structure, if not sufficiently rigid, tends to reduce the effective stiffness of isolator. Let 
us understand this with the help offollowing example: 

Consider two springs having stiffness k] & k2 attached in series subjected to axial force F. 

F 
The deflection of spring k] is 6] =-

k] 
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The deflection of spring k2 is 

Total deflection 0 = 0) + 02 

Equivalent stiffness of combined springs in series = 

Equivalent stiffness is plotted with respect to stiffness ratio k2 / k) . 

It is seen that for k2 / k) > 20, keq becomes more or less constant. Thus it is clear that stiffness of 

support structure at the isolator support location should at least be 20 times that of isolator stiffness. 
If the support structure stiffness is less than 20 times the isolator stiffness, the computed frequency 
of the supported machine foundation system would be higher than actual. Thus one may not 
achieve the desired isolation efficiency. 

F ~~ 

l '" 0.95 0.97 '" 
~ F 

t '" 0.5 k) 5 -!k~ ~ 
k2 S- O 

0 10 20 30 

Ratio ofstiffuess kJ!k) 

Figure 12.1-1 Equivalent Stiffness for springs in series 

DESIGN EXAMPLES 

Design Examples are selected so as to cover up most of the conditions encountered 
in real life practice. Comparison with Finite Element Analysis (FEA) is also given 
for specific cases to build up the confidence level. Effort is made to highlight the 
influence of certain slips commonly committed while computing response of the 
foundation. 
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Vibration Isolation System 12-7 

Example D 12.1 Vibration Isolation for Fan Foundation 

Design Vibration Isolation System for FD Fan Foundation as shown in Figure D 12.1-1. 
Machine and Foundation data is given as under: 

20.0. 40.0- 40.0. 
--l !- -!- -!-

X 

8 t~ 0 N 0 .,., 
5 .,., 

0 .,., .,., 

0 .,., 
0 <'"I 
0 .... .... 0 .,., 

<'"I 

0 .,., 
0 <'"I .,., 0 
<'"I 0 

N 

!-
80.0. 

-!-

720. 720. 40.0. 
-!- -!- -!-

0 0 
7 9 

1840. 

50.0. 50.0. 
-!-

140.0. 

20.0. 
-! l<-

_._ CL off an & ~ Z 
motor shaft 

Machine mass location points 1 to 20. 

Figure D 12.1-1 Vibration Isolation for FD Fan Foundation out line 
and Machine Mass location 

Machine Data 

Machine weight 
Number of support points 
Height of center of shaft above foundation 
Speed 

Dynamic Force 

Rotor mass 
Rotor eccentricity 
Dynamic force @ center line of shaft level 

18.20 kN 
20 
1230 mm 
960 rpm 

0.19 t 
200 microns 
0.38 kN 

Layout of machine mass point over foundation is shown in Figure 12.1-1. For computation, 
consider Origin on left side top of inertia block as shown in the Figure. 
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12-8 Vibration Isolation System 

Machine Mass Points and coordinates with respect to Origin 

Mass Point Machine Weight Coordinates with respect to Origin 

# kN mm mm mm 

Wm; X ml Znll Ymi 

0.80 350.00 200.00 1230.00 

2 0.80 -350.00 200.00 1230.00 

3 0.80 350.00 600.00 1230.00 

4 0.80 -350.00 600.00 1230.00 

5 1.50 900.00 1000.00 1230.00 

6 1.50 -700.00 1000.00 1230.00 

7 1.50 900.00 1720.00 1230.00 

8 1.50 -700.00 1720.00 1230.00 

9 1.50 900.00 2440.00 1230.00 

10 1.50 -700.00 2440.00 1230.00 

II 0.70 350.00 2840.00 1230.00 

12 0.70 -350.00 2840.00 1230.00 

13 0.70 350.00 3340.00 1230.00 

14 0.70 -350.00 3340.00 1230.00 

15 0.70 350.00 3840.00 1230.00 

16 0.70 -350.00 3840.00 1230.00 

17 0.70 0.00 200.00 1230.00 

18 1.10 100.00 1000.00 1230.00 

19 1.10 100.00 2440.00 1230.00 

20 0.70 0.00 3840.00 1230.00 

Here xnll 'Yilli & zmi represent coordinates ofCG of machine load points with respect to Origin. 

Total Machine Weight 20.00 kN 

CG of Machine weight with respect to Origin 

I(Wm1xm;) 1120 - = I (Wnllzm;) = 37400 = 1870 & - = 1230 
Xiii = 

IWm; 
=--=56 mm' Zm I mm Ym mm 

20 ' Wnll 20 
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Foundation Data 

Foundation Geometry is as shown in Figure 12.1-1. Inertia block is divided in to 3 sub blocks 
marked 'A', 'B' & 'C' as shown in the Figure. Thickness of Inertia block (as considered for initial 
sizing) is 300 mm. 

Foundation Self Weight and its CG with respect to Origin 

Block # 

A 

B 

C 

Dimensions 

mm mm 

X Z 

1100 800 

2000 1840 

1100 1400 

Weight 

mm kN 

Y WI; 

300 6.47 

300 27.08 

300 11.33 

CG Coordinates 

Xli Zfi Yfi 

0 400 -150 

100 1720 -150 

0 3340 -150 

Here x f i, Y fi & z(i represent coordinates of CG of each foundation block element. 

Total Foundation Weight Wf = 44.8 "" 45 kN 

Y/ = -150 mm 

Total weight of Machine + Foundation W = 20+44.8 "" 65 kN 

Overall Centroid 

Let us represent Overall centroid by point C 

Center of Mass of Machine-Foundation System in X-Z Plane 

x= Wmxm +Wlxf = 20x56+45x60.33 =59 mm 

Wm +W{ 65 

y= WmYm +WIYf = 20xI230+45x(-150) =275 mm 

Wm +Wl 65 

z= Wmzm +Wlz/ = 20xI870+45x1938.56 =1917 mm 

Wm +Wl 65 
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.,., 
00 .,., 

1040 

(a) Proposed Locations 

1040 

(b) Final Location 

Vibration Isolation System 

1300 

" 1310 

Figure D 12.1-2 Isolator location points (Sl-S2) underneath the foundation Block 

Selection of Isolators 

Let us consider Target Isolation Efficiency lJ = 90 % . Consider isolator damping C; = 0 . 

For lJ = 90 % & C; = 0 frequency ratio (Table 4.1.1) = 3.2 

Operating Speed (960 rpm) OJ = 100.5 radls 

Required Isolator Frequency 100.5/3.2 = 31.4 radls 
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Static Deflection ofIsolator ~ = Py =31.4rad/s 
g 9810 

0= (31.4)2 = 986.3 = 9.95 mm 

Let us select 0 = 10 mm 

Total weight of machine foundation system W =65kN 

Consider number of isolators =8 

Load per Isolator 
65 

= -~8kN 
8 

Stiffness ofIsolator (vertical) k = 8xl000 = 800 N/mm 
y 10 

Isolator stiffness (Lateral) kx = kz = 0.6 x 800 = 480 N/mm 

Isolator Placement Locations Proposed Initial Location Shown In Figure D 12.1-2a 

Center of Stiffness of Isolators (Vertical Stiffness k y ) 

Isolator Stiffness Coordinates with respect to origin 
# N/mm mm mm mm 

kYi Xki zki Yki 

SI 800 350 400 -300 

S2 800 -350 400 -300 

S3 800 900 1200 -300 

S4 800 -700 1200 -300 

S5 800 900 2240 -300 

S6 800 -700 2240 -300 

S7 800 350 3540 -300 

S8 800 -350 3540 -300 

Total Stiffness 6400 N 
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12-12 Vibration Isolation System 

Center of Isolator Stiffness 

59-50 
Eccentricity with Center of Mass ex = ---xl00 =0.45 %; 

2000 
e. = 1917-1S45 x100 =l.S% 
" 4040 

For better performance, it is desirable to keep the eccentricity less than 0.5 % . 

Modified Locations of Isolators 

Isolator Stiffness Coordinates with respect to origin 
# N/mm mm mm mm 

kYi xki Zki Yki 

SI SOO 350 400 -300 

S2 SOO -350 400 -300 

S3 SOO 935 1290 -300 

S4 SOO -700 1290 -300 

S5 SOO 935 2330 -300 

S6 SOO -700 2330 -300 

S7 SOO 350 3640 -300 

SS SOO -350 3640 -300 

With these modified locations, we get Xk = 5S.S mm; "ik = 1915 mm; Yk = -300 mm 

e = 59-5S.S x 100 = 0.01 %. 
x 2000 ' 

e = 1917-1915 xlOO=0.05% 
z 4040 

Dynamic Analysis 

Mass and Mass moment of Inertia 

For Vibration Isolation Design, DOF location remains as center of mass only. 
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Mass and Mass moment of Inertia at Centroid (Center of Mass) 

i) Machine 

Point Mass Coordinates wrt Origin Centroid coordinates Mass Moment of Inertia 

# mm mm mm mm mm mm tm2 tm2 tm2 

mmi xmi Z/l1I Ymi X Z Y M m1x M miz M miy 

0.08 350 200 1230 59 1917 275 0.31 0.08 0.25 

2 0.08 -350 200 1230 59 1917 275 0.31 0.09 0.25 

3 0.08 350 600 1230 59 1917 275 0.22 0.08 0.15 

4 0.08 -350 600 1230 59 1917 275 0.22 0.09 0.16 

5 0.15 900 1000 1230 59 1917 275 0.27 0.25 0.24 

6 0.15 -700 1000 1230 59 .1917 275 0.27 0.23 0.22 

7 0.15 900 1720 1230 59 1917 275 0.15 0.25 0.11 

8 0.15 -700 1720 1230 59 1917 275 0.15 0.23 0.09 

9 0.15 900 2440 1230 59 1917 275 0.18 0.25 0.15 

10 0.15 -700 2440 1230 59 1917 275 0.18 0.23 0.13 

II 0.07 350 2840 1230 59 1917 275 0.13 0.07 0.07 

12 0.07 -350 2840 1230 59 1917 275 0.13 0.08 0.07 

13 0.07 350 3340 1230 59 1917 275 0.21 0.07 0.15 
• 

14 0.07 ~350 3340 1230 59 1917 275 0.21 0.08 0.16 

15 0.07 350 3840 1230 59 1917 275 0.33 0.07 0.27 

16 0.07 -350 3840 1230 59 1917 275 0.33 0.08 0.28 

17 0.07 0 200 1230 59 1917 275 0.28 0.07 0.21 

18 0.11 100 1000 1230 59 1917 275 0.20 0.10 0.09 

19 0.11 100 2440 1230 59 1917 275 0.13 0.10 0.03 

20 0.07 0 3840 1230 59 1917 275 0.33 0.07 0.26 

mm = Lmmi = 2.04 t; Mmx(machine) = LMmix = 4.51 tm
2 

Mmz(machine) = LMmiz =2.54 tm
2

; Mmy(machine) = LMmiy =3.34 tm
2 

https://engineersreferencebookspdf.com
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ii) Foundation 

Foundation Blocks 

Dimensions 

x 
z 
y 

Mass 

mm 

mm 

mm 

CG with respect to Origin 

mm 

mm 

mm 

A 

1100 

800 

300 

0.66 

o 

400 

-150 

Overall Centroid coordinates with respect to Origin 

x mm 59 

Z mm 1917 

Y mm 275 

Mass Moment ofInertia @ centroid 

M mix(FOlmdation) tm2 1.64 

M miz(Foundation ) tm2 0.12 

M miy(FOlmdation) tm2 1.52 

mf = 4.58 t; M mx(Foundation) = L M mix = 5.83 tm 
2 

B 

2000 

1840 

300 

2.76 

100 

1720 

-150 

59 

1917 

275 

0.61 

0.50 

0.11 

C 

1100 

1400 

300 

1.16 

o 

3340 

-150 

59 

1917 

275 

2.55 

0.21 

2.34 

Mmz(Foundation) = LMmiz =1.97 tm
2

; Mmy(Foundation) = LMmiy =6.08 tm
2 

Total for Machine and Foundation (Mass and Mass Moment ofInertia) 
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m =2.04+4.58=6.62 t; 

Mmz = 2.54+ 1.97 =4.51 tm
2

; 

Stiffness 

2 M mx = 4.51 + 5.83 = 10.34 tm 

Mmy =3.34+6.08=9.42 tm 2 

Translational and Rotational stiffness at Center of Stiffness 

ke; = kYi X(Zk -z}; k¢i = kyi X(Xk _X;)2; kVfi = kXi x(Zk -Zi)2 +kZi x(Xk -xi)2 

k(} = Ike;; kv' = Ikvn; k¢ = ~)¢i 

Stiffness computations are tabulated as under: 

Isolator Stiffness Coordinates wrt Origin Stiffness Centroid 

# 

Sl 

S2 

S3 

S4 

S5 

S6 

S7 

S8 

kN/m 

kyi 

800 

800 

800 

800 

800 

800 

800 

800 

mm mm 

xki zki 

350 400 

-350 400 

935 1290 

-700 1290 

935 2330 

-700 2330 

350 3640 

-350 3640 

We get overall stiffness as: 

mm mm mm mm 

Yki xk Zk Yk 

-300 58.8 1915 -300 

-300 58.8 1915 -300 

-300 58.8 1915 -300 

-300 58.8 1915 -300 

-300 58.8 1915 -300 

-300 58.8 1915 -300 

-300 58.8 1915 -300 

-300 58.8 1915 -300 

Stiffness (kNm Irad) 

ke; kVfi k,pi 

1841 1145 68 

1841 1185 134 

315 557 614 

315 465 461 

136 450 614 

136 358 461 

2375 1466 68 

2375 1505 134 

kX =3.84xl03 kN/m; ky =6.4xl03 kN/m; kz =3.84xl03 kN/m 

12-15 

k(} = 9.334 x 103 kNmlrad; kif = 7.132 x 1 03 kNmlrad; k¢ = 2.553 x 103 kNmlrad 
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Natural Frequency 

Px =JF£; Py =J¥; Pz =JF£. 
p, : ~ ~'; p.: ~ ~'; p.: J ~. 

mx mz my 

Rewriting Mass and Mass moment of Inertia 

Substituting values, we get 

Px = Tk:mx = 3.84x]03 =24 radls V-;;; 6.62 

P = (k; = 6.4 x ]03 = 31.1 radls 
y V-;- 6.62 

Pz = Px = 24 radls 

Po = ~ ko = 9.334x ]03 = 30 radls 
Mmx 10.34 

7.132x]03 =27.5 radls 
9.42 

P¢ = ~ k¢ = 2.553 xl 0
3 

= 23.8 rad/s 
Mmoz 4.51 

Amplitudes 

Dynamic force @ center line of shaft level 

Excitation Frequency (960 rpm) OJ = 100.5 rad/s 

Dynamic force transferred @ DOF location point 0 

Height of rotor center line from Overall Centroid 

... 

Vibration Isolation System 

Fx = 0.38 kN; Fy =0.38 kN 

s = 1.23 - 0.275 = 0.955 m 
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Moment about Z axis 

Net forces acting at Centroid 

Amplitude @ Centroid 

i) Force Fx = 0.38 kN 

Frequency Ratio 

Amplitude 

ii) Force Fy = 0.38 kN 

Frequency Ratio 

M¢ = Fx xs = 0.38xO.955 = 0.36 kNm 

Fx = 0.38 kN; Fy = 0.38 kN; M¢ = 0.36 kNm 

fJx = -.!3!.... = 100.5 = 4.18 
Px 24 

Amplitude y = Fy x 1 = 0.38 x 1 = 63 X 10-6 m 
C ky 1(1-.8n 6.4x10

3 
1(I-3.232 l . 

iii) Moment M¢ =0.36 kNm 

Frequency Ratio fJ¢ = -.!3!.... = 100.5 = 4.22 
P¢ 23.8 

Amplitude 

Amplitude @ Foundation top 

Maximum amplitude along X 

Height of foundation top from Point C H = -0.275 m 

Xf(max) =xc +H¢c =6xl0-6 + 18.4 x 10-6 X(-0.275~=8.31xlO-6 m = 8.3 microns 

Maximum amplitude along Y 

Maximum foundation width along X B=2.0m 

12-17 
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Y/(max) =Yc + (BI2},6c =6.3xI0-6 + 8.4xlO-6 x(2.0/2)= 14.7xI0-6 m = 15 microns 

Maximum Vertical Dynamic Force Transmitted by Isolator 

Maximum Isolator spacing along X (see Figure 12.1-2) = 350+350+350+585 = 1635 mm 

Maximum Vertical Dynamic force experienced by one isolator (placed along Z) 

Fy+.! M¢ =0.38+.!.x 0.58 =0.0475+0.237=0.285kN=285N 
8 3 (1.635 12) 8 3 (1.635/2) 

Maximum Vertical Dynamic force transmitted by single isolator 

Stiffness of single isolator = 0.8 x 103 kN/m 

Fry = ky; x{yc +¢c xXs ) 

=0.8xI03 x(6.3xI0-6 + 8.4xI0-6 x(1.635/2)) 

= 10.5 x 10-3 kN = 10.5 N 

Transmissibility Ratio TR = 10.5 = 0.037 
285 

Isolation Efficiency (Equation 4.1-8) 

Isolation Efficiency of Individual Isolator '7 = (l-0.037)x 100 = 96 % 

Example D 12.2 Vibration Isolation of a Crusher Foundation 

Design Vibration Isolation System for Crusher Foundation as shown in Figure D 12.2-1. 
Machine and Foundation data is given as under: 

Machine Data 

Machine mass 
Mass ofthe Crusher 
Mass of the Material in the crusher 
Mass of the Coupling 
Mass of the Motor 

Total Machine Mass 

18.00 
3.65 
5.20 
6.30 

33.15 

https://engineersreferencebookspdf.com



Vibration Isolation System . 
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Figure D 12.2-1 Crusher Foundation Supported over Steel Structure 
@Elevationof12.75 m 

Dynamic Force 

Mass of Crusher Rotor 
Mass of Motor Rotor 
Motor rotor speed 
Crusher speed 
Crusher rotor unbalance grade 
Motor rotor unbalance grade 

Hammer tip diameter (in position) 
Mass of hammer 
Max. Unbalance - one hammer missing 
Max. Unbalance - two hammer missing 
Max. Unbalance - three hammer missing 

CG of mass location (Above top of RCC Block) 

Motor 
Crusher 
Material 
Coupling 

0.80 m 
1.00 m 
1.00 m 
1.00 m 

8.40 t 
3.20 t 
720 rpm 
720 rpm 
Gl6 
Gl6 

1.220 m 
41.0 kg 
100 kN 
200 kN 
300 kN 

12-19 
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Centre to Centre distances 

Between Crusher and coupling 2.8 m 
Between Motor and coupling 1.8 m 
Eccentricity between crusher rotor and motor rotor 50.5 mm 

DESIGN: 

Machine Data (Mass) 
Crusher = 18 t; Material = 3.65 t; Coupling = 5.2 t; Motor = 6.3 t 

Total Mach ine Mass 33.15 

Sizing of Foundation 

Foundation Data: Inertia block Plan, Section and Elevation are shown in Figure 12.2-1 

Inertia Block size 

Length = 8.00 m; Width = 4.30 m; 

Opening = 2.6lm (along length) x 2.235 m (along width) 

Thickness of the inertia block is restricted to 1.00 m at Isolator Support Location and thickness in 
the middle portion can be higher. As initial proposal, thickness considered is shown in Figure 
12.1-2 and is given as under: 

Sides supporting mounts (as shown in Figure) 0.8 m wide 1.00 m thick 

Middle portion (all along length) 1.20 m thick 

Foundation Material properties 

Concrete Grade M30 

Elastic Modulus = 30,000 MPa; Mass Density = 2.5 tlm3 

Foundation mass 

m f = ({(43 - 2x 0.8}x 8x 1.2}+ {2 xO.8 x 8x 1.0}- {2.61 x 2.235 x 1.2})x 2.5 = 79.3 
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Ratio of Foundation mass to Machine mass 

T 
o o 

y 

~ Z 

-.-- 4. 
0 
0 
0 -

I 
I 
I 
I 

' ... 
I 

~ I, 500 + 2490 
Sl 
S5 

Mounts 

-r4• 
0 
0 
0 -

I 
I 
I 
I 

... , ... 
I I 

+ 2335 + 
S2 S3 
S6 S7 

Mounts Mounts 

ELEVATION 

79.3/33.15 = 2.4 

4~ -
0 
0 
00 

... 
I 

2175 + 500 -I 
S4 
S8 

Mounts 

Figure D 12.2-2 Crusher Foundation - Slab Thickness and Isolation 
Mount Support Locations 

Overall Centroid (Centre of Mass with respect to Origin) 

12-21 

Let us denote Overall centroid as point C. Consider Origin @ Left hand comer of the top deck as 
shown in Figure 12.2-1. Details of calculation steps are not given. Following the procedures similar 
to Example D12.1, we get coordinates of centroid with respect to origin as: 

Foundation Centroid mf=79.3t; xf=2.14m; Yf=-O.56m; zf=4.49m 

https://engineersreferencebookspdf.com



12-22 Vibration Isolation System 

Machine Centroid 

Overall centroid 

mm =33.15 t; Xm =2.18 m; Ym =0.96 m; Zm =3.10 m 

m = 112.45 t; x = 2.15 m; Y = -0.11 m; Z = 4.08 m 

Here mf,mm &m represent Mass of foundation, machine and total mass respectively and 

xf' Yf' zf & Xm, Ym' zm represent CG coordinates of foundation and machine elements with 

respect to Origin in X, Y & Z direction respectively. Terms X, Y & Z represent overall centroid 

with respect to Origin along X, Y & Z directions respectively. 

Mass Moment of Inertia about overall centroid (Center of Mass) (tm2
) 

Following procedure similar to that for Example D 12.1, we get 

m=112.45 t; Mmx =624.47 tm 2
; M my =693.52 tm 2

; Mmz =194.55 tm 2 

Here M mX' M my & M mz represent Mass Moment of Inertia at centroid about X, Y & Z axes 

respectively 

Isolator Data 

Total weight of Machine + Foundation 

No. of mounts 

Load per mount 

Machine speed 

Target Isolation Efficiency 

112.45x9.81=1103 kN 

8 

1103/8=138 kN 

720 rpm = 75.4 rad/s 

17 = 90t093% 

Frequency ratio for 17 = 90 to 93 % (Table 4.1-1) 3.2 to 4 

Let us select frequency ratio = 4 

Isolation Frequency 75.4/4= 19 rad/s 

[i = 19' 9810 Corresponding deflection V g y ,g y = {19 )2 = 27.17 mm 

Let us select deflection as 

Required vertical stiffness 

30mm 

138/30 = 4.6 kN/mm 

At this point one has to look for manufacturer's catalogue for supply of isolators. 

Specs for nearest available isolator (From the catalogue) are: 

Rated Load 

Effective Deflection 

159kN 

30mm 
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Vertical Stiffness 

Horizontal Stiffness 

Damping Vertical 

Damping Horizontal 

Location of Spring Isolators 

5.3 kN/mm 

4.24 kN/mm 

24.0 kN/m/s 

10.7 kN/m/s 

12-23 

Spring Isolators are so located such that Centre of Stiffness (springs) matches closely with Centre 
of Mass (machine + foundation). Final locations of Isolators S I to S8, given as under, are shown in 
Figure 12.2-2. 

Along Z direction: 

Isolator # 

Distance from origin (m) 

Along X direction 

Isolator # 

Distance along X from origin (m) 

Center of Stiffness from origin: 

SI& S5 

0.50 

S2&S6 

2.99 

SI,S2,S3,S4 

0.304 

Computing on the same lines as for D 12.1, we get 

S3 & S7 

5.325 

S4& S8 

7.50 

S5,S6,S7,S8 

4.00 

-" - - . - - L(kYh;) _ . - _ L(kYh;) -4078 k-L..,ky;-5.3x8-42.4 kN/mm,xk-" -2.15m, zk-" -. m 
L..,kYi L..,kYi 

Here ky ; represent vertical stiffness of isolator and X ki & Zki represent its distance from. origin. 

Terms xk & zk represent centroid of isolators with respect to origin. 

Eccentricity between Center of Mass (Centroid) and Center of Stiffness 

Comparing with Coordinates of Overall centroid with respect to origin x = 2.15 m; Z = 4.08 m , 

we get: 

e. = 4.08-4.078 xl00 = 0.025 % 
. 8 
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Dynamic Analysis 

Overall Translational and Rotational Stiffness at point of Center of Stiffness 

kx = Lkxi =8x4.24=33.92 kN/mm =3.392xI04 kN/m 

ky =Lkyi =8x5.3=42.4 kN/m =4.24xI034 kN/m 

kz = Lkzi =8x4.24=33.92 kN/mm =3.392xI04 kN/m 

ko = Lkyi(Zk -Zkif 

= 2x 5.3 x 103 x t4.078 -0.5)2 + (4.078 - 2.99)2 + (4.078 -5.325)2 + (4.078 -7.5)2 } 

=2.89xI05 kNm/rad 

k; = LkAXk -XkY = 4x5.3x103 x k2.15-0.304)2 +(2.15-4)2} 

= 1.45 x 105 kNm/rad 

k'l/ = Lkxi(Zk -ZkY + LkAxk -Xki)2 

= 2 x4.24x 103 x t4.078 - 0.5)2 + (4.078 -2.99)2 + (4.078-5.325f + (4.078 -7.5f } 

+4x4.24xI03 xt2.15-0.304f +(2.15-4)2} 

= 3.47 x I 05 kNmlrad 

Natural Frequency 

Px= fk:mx = 3.392x10
4 

=17.36 rad/s V-;; 112.45 

P = [k; = 4.24x104 = 19.42 radls 
y V-;; 112.45 

Pz = Px = 17.36 radls 

-/fO - 2.89x10
5 

- 215 dI Po - -- - - . ra s 
. Mmx 624.47 

Jf 3.47x105 
P'I/ = _'1/- = = 22.37 radls 

Mmy 693.52 

P; =~ k; = 1.45xl0
5 

=27.3 radls 
Mmz 194.55 
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Vibration Isolation System 

Amplitudes 

Dynamic Force 

Crusher Unbalance Force 

Mass of Crusher Rotor 

Excitation frequency (720 rpm) 

Balance Grade 

8.40t 

7S.40 rad Is 

016 

12-2S 

Dynamic Force F=8.4x(16xl0-3)x7S.4=1O.17 kN 

Point of application Crusher CG Xi =2.2 m;Yi =1.0 m;zi =1.8 m 

Dynamic Force acts in X & Y direction (one at a time) Fx =10.17 kN; Fy =10.17 kN 

Coordinates of Overall centroid x = 2.1S m; .y = -0.11 m; Z = 4.08 m 

Transferring Force at overall centroid, we get 

Fy =10.17 kN; M, =10.17x(2.1S-2.2)=-0.Sl kNm; Me =10.17x(4.08-1.8)=23.18 kNm 

OR 
Fx =10.17 kN; M, =10.17x(-.11-1)=-I1.3 kNm; Mrp =10.17x(4.08-l.8)=23.18 kNm 

Motor Unbalance Force 

Rotor Mass 3.2 t 

Excitation frequency (720 rpm) 

Dynamic Force 

Point of application at motor CG 

7S.4 rad Is 

F=3.2 x (16 x l0-3 )x7S.4=3.86 kN 

Xi =2.1S m;Yi =0.8 m;zi =6.33 m 

Dynamic Force acts in X & Y direction (one at a time) Fx = 3.86 kN; Fy = 3.86 kN 

Transferring Forces at overall centroid, we get 

Fy =3.86 kN; M, =3.86x(2.1S-2.1S)=0.0 kNm; Mo = 3.86x(4.08-6.33) =-8.7 kNm 

OR 
Fx =3.86 kN; M, =3.86x(-.1l-0.8)=-3.5 kNm; Mrp =3.86x(4.08-6.33) =-8.7 kNm 
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Total Force and Moment @ Centroid due to Motor and Compressor 

Fy =14 kN; M; =-0.5 kNm; Me =14.5 kNm 

OR 
Fx =14 kN; M; =-14.8 kNm; M"" =14.5 kNm 

Steady State Amplitudes 

Vibration Isolation System 

Steady State Amplitudes are obtained using procedure as that for Example DI 2.1. 

Force Fy 

Fy =14 kN; ky =4.24xI04 kN/m; 15y = (14j4.24xI04)= 3.3 X 10-4 m 

1 
Py = 19.42 rad/s; OJ = 7S.4 rad/s; Py = 3.88; -I -I = 0.071 m 

1- P; 
Amplitude Ye =3.3xI0-4 xO.071=2.3SxlO-5 m 

Moment M; 

M; =-0.49 kNm; k; =1.4Sx105 kNmlrad; 15; =(-0.49!1.4SxI05)=-3.37xI0-6 rad 

1 
P; = 27.27 rad/s; OJ = 7S.4 rad/s; P; = 2.76; -'--I = O.IS 

1- P; 
Amplitude tPe = -3.37 x 10-6 x O.lS = -S.07 x 10-7 rad 

Similarly for Me = 14.S kNm, we get amplit~de as Be = 4.43 x 10-6 rad 

Combining the amplitudes due to Fy,M; & Me, we get 

Ymax = t2.3Si x 10-5 + 1(-s.07x 10-7 )x 2.1S\ +\(4.43 x 1O-6)x 4.08\}x 106 = 42.6S microns 

Similarly for another force set of Fx , M; & M"" ' we get 

Xmax = 39.56 microns; Ymax = 33.1S mi(:rons; zmax = 8.6S microns 

Support reactions are obtained using procedure as that for Example 012.1. 
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Vibrmion Isolation System 12-27 

Force due to 3 hammer loss 

This is a faulted con4ition. The amplitudes thus obtained should be used on ly to check operational 
safety only. 

Dynamic Force of 300 kN acts in X & Y direction (one at a time) at Excitation frequency 720 rpm 

Crusher CO Coordinates x,:: 2.2 m; Y, = 1.0 m; 1 , ,.. 1.8 m 

Transferring Forces at overall centroid (on the same lines as above), we get 

Fy = 300 kN; Mo = 683 kNm: MI =-14.6 kNm 

F:J = 300 kN; M'I' = 683 kNm; MI =-333 kNm 

Computing on the similar lines. we get amplitudes as 

Due to Force along X x....,. = 1.27 mm; Y....,. = 0.7 mm; Imax = 0.4 mm 

Due to Force a long Y Y...." = 1.4 mm 

Figure 0 12.2-3 Model of Crusher Foundation with support structure 
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12·28 Vibration Isolation System 

FE Analysis 

The foundation has been analyzed using standard FE Package. The foundation is modeled using 
Shell elements. Rigid links have been used to locate machine mass over the RCC block at specified 
height. Machine mass is lumped at its CG location. Isolation mount at each support location is 
represented by three spring elements with appropriate stiffness properties in X, Y &Z directions. 

Free vibration analysis yields natural frequencies and mode shapes. Steady state response has been 
computed for unbalance forces due to crusher and motor. Amplitudes are also computed for forces 
due to faulted condition i.e. 3 hammer loss condition. Transient Response is obtained to simulate 
start-up and shut-down conditions. 

FE Model of tbe Foundation and Frequency Plots 

Crusher Foundation with steel support structure is shown in Figure 0 12.2-3. FE model of the 
foundation supported on Isolators considering support structure as rigid is shown in Figure 0 12.2-
4. Frequencies and mode shapes (first six modes) are as shown in Figure 0 12.2-5. Higher mode 
frequencies are much beyond operational range and are not of much interest from isolation point of 
view. 

Results of FE Analysis 

Table D 12.2-1 Natural Frequendes (First six Modes) 

Mode # Frequency 

2 

3 

4 

5 

6 

rad/s 
17.52 

17.52 

19.40 

23.78 

24.69 

27.28 

Hz 
2.79 

2.79 

3.09 

3.78 

3.93 

4.34 

Crusher Unbalance Force 

Maximum Amplitudes 

Max Amplitude in Lateral (Z) direction 

Max Amplitude in Lateral (X) direction 

Max Amplitude in Vertical (Y) direction 

Mode 

Translation along X (Lateral) 

Translation along Z (Longitudinal) 

Translation along Y ( Vertical) 

Rotation about X (Rocking) 

Rotation about Y (Torsion) 

Rotation about Z (Rocking) 

32 microns 

34 microns 

54 microns 
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Vibration Isolation System 

. '. 

Figure D 12.2-4 Crusher Foundation on Iso lators -Support Structure Rigid 

Motor Unba lance Force 

Maximum Amplitudes 

Max Amplitude in Lateral (Z) direction 

Max Amplitude in Lateral (X) direction 

Max Amplitude in vertical (Y) direction 

Force due to 3 hamm er loss 

Maximum Amplitudes 

Max. Amplitude in Lateral (Z) direction 

Max. Amplitude in Lateral (X) direction 

Max. Amplitude in Vertical (Y) direction 

12 microns 

13 microns 

20 microns 

0.95 mm 

1.01 mm 

1.34 mm 

12·29 

It is interesting to note that these results compare reasonably well with those obtained by manual 
computations. 

Stress and deflection due to 3 hammer loss force is shown in Figure 0 12.2-6. 
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Mode I · 2.68 Hz 

Mode 3- 3.08 Hz 

Mode 5- 3.92 Hz 

Figure 0 12.2 S 

Vibration Isolation System 

Mode 2- 2.78 Hz 

Mode4- 3.78Hz 

Mode 6- 4.34 Hz 

Frequencies and Mode Shapes 
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• 
.tHIM •. m 
.1""" 

. 111 

..... 
...... / . ..... .... .. ~ ..~ .... .. ~ 

, "' 
Deflect ion - mm 

Stress - MPa 

Figure D 12.26 3 Hammer Loss Force - 300 kN along Y 

Transient Vibrations 

During Stan up and Shut down the machine passes through natural frequencies of the foundation. 
At each foundation frequency, the machine foundation system remains in transient resonance till 
the frequency crossover. The damping of the isolator plays a very significant role in controlling 
build up of high amplitudes. 

The results of FE analysis show that maximum stress developed in the foundation due to three 
hammer loss force is of the order of 1.2 MPa. This is much below the a llowable compressive stress 
of8.5 MPa for un-reinforced concrete. 

Strength Requirement of Support Structure 

Foundation rests over isolators that in tum are supported by structural support system. Support 
structure stiffuess should be at least 20 times that of the isolator for isolation system to be as 
effective as designed. 

Frequency and mode shapes of Crusher Foundation with steel support structure are shown in Figure 
o 12.2-7. It is seen from the figure that first mode frequency is about 12 Hz which is same as 
operating speed. The member sizes of Support structure therefore need to be modified. 
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CONSTRUCTION ASPECTS 

• Construction Joints 
• Embedded Parts 
• Placing / Laying of Concrete 
• Grouting 
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Construction Aspects 13 - 3 

CONSTRUCTION ASPECTS 

Construction of a machine foundation is as important an aspect as design. Needless to mention that 
a machine foundation built using good construction practices becomes an asset for the industry and 
on the other hand, foundation built with improper construction practices becomes a liability for 
entire life of machine. This fact is known to one and all associated with the industry but not enough 
care is being exercised cap the practices responsible for shortcomings. 

Honeycombing, porosity, out of plumb columns, improper bonding of embedded parts, opening up 
of construction joints, etc are some of the common items encountered during construction of a 
machine foundation. Patchwork repair of concrete beams and columns with sole objective of 
hiding faults and shortcomings is a common sight practicalIy at every industrial set up. Whereas 
the executing agency walks away after carrying out the necessary repairs, it is the machine which 
has to live with the associated problems for its entire life. It then becomes a starting point of debate 
between customer lowner and manufacturer for all associated problems related to machine 
performance. 

AlI these issues are a clear & direct pointer to; 

• Lack of right infrastructure with the executing agency 
• Inadequate supervision during construction 
• Lack of clarity in communicating intricacies associated with each shortcomings 
• Laxity in acceptance norms 

It has been taken for granted that all possible Engineering Details required for casting a machine 
foundation deemed to have been transformed in to corresponding engineering drawings. All 
specifications regarding i) material i.e. concrete, reinforcing steel, structural steel (if any), ii) 
embedded parts, its material and fabrication, iii) cover to main reinforcement, etc are presumed to 
have been included in a ten line note placed in the body of the drawing. It is implied and taken for 
granted that the listed details are good enough to produce a flawless foundation. More often than 
not, this objective is not met and the end product i.e. foundation sufferers with one or the other 
form of shortcomings. It is therefore desirable that every drawing must address all the necessary 
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13 - 4 Construction Aspects 

issues explicitly and in detail. These are in addition to what is normally provided on each drawing. 
Some of the aspects that need attention are discussed hereunder. 

The subject matter, in principle, is very broad and needs deliberation by experts of concrete 
technology and construction practices. An effort has been made to address the machine foundation 
related construction aspects in as explicit manner as possible. For more details readers may look for 
expert advice. 

13.1 CONSTRUCTION JOINTS 

Every construction joint must be a designed construction joint. Its specific location, details of shear 
dowels etc must be clearly marked on the drawing. The procedure of joining old concrete with 
fresh concrete covering all possible aspects like cleaning surface of old concrete, use of bonding 
material if any, etc must be clearly indicated in the drawing. An improper construction joint leads 
to change in natural frequencies of the foundation and that in turn reflects on the performance of 
machine. It is the designer who must analyse the implications of misbehaviour of construction joint 
and take due care while designing these construction joints. 

13.2 EMBEDDED PARTS 

Every machine foundation, especially frame foundation, has many embedded parts that are used to 
support auxiliary components, instrumentation, piping etc. Invariably it is noticed that a structural 
angle with lugs provided at suitable interval/spacing is placed at each corner of practically every 
column. More often than not, these lugs are welded to the reinforcing steel to hold these in 
position. Such a practice reflects non-engineered approach and in author's opinion must be 
discouraged. It indirectly speaks of no planning with regard to what to support and where to 
support. More often than not these angles lose contact with the main concrete and become a source 
of transmission of vibration from columns to supported piece of equipment. 

Welding of lugs of embedded parts to reinforcing steel of beams, columns, deck it is highly 
undesirable. Due to shrinkage associated with concrete this process produces results in loss of 
contact between embedded parts and concrete and becomes a source of vibration especially when 
these embedded parts are machine seating plates. A note to this effect must clearly be included in 
the drawing. 

Proper contact of seating plate with concrete bears more importance for turbo Generator sets. 
During Start-up and cooling cycle, turbine casing undergoes differential thermal expansion and 
contraction. Casing slides over seating plates and frictional force is transferred to the foundation 
through these seating plates. This basic process demands proper contact and bond between seating 
plates and concrete. Quality assurance plans must be drawn to highlight these issues 

Wherever an embedded plate is just abutting the sides of the beam, more often than not, it ends up 
in loss of full contact with the concrete. This is perhaps due to inaccessibility to vibrator. Author 
has experienced such shortcomings at more than one sight. In such a case it is recommended to 
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extend the shuttering in a tapered manner so as to get proper ligament along the edge for vibrator 
and remove the excessive material after opening up of the side shuttering while concrete is still 
green. A typical arrangement is shown in Figure 13.1-1. Author has used this arrangement and 
found it to be useful. The details shown are only recommendatory and not mandatory. 

Seating Plate 

Concrete Beam 

Dummy Concrete to be chipped off after 
removal of side shuttering 
while Concrete is green 

Support lugs of Seating 
Plate or embedded plate 
must not be welded with 
main Rlf of the beam 

Figure 13.1-1 Sketch showing dummy concrete for proper embeddement of 
Seating Plate located abutting to beam edge 

13.3 PLACING / LAYING OF CONCRETE 

Quality plan: Quality plan of concrete production, laying of concrete, curing of concrete, field 
quality checks like slump, workability, cube strength etc must be drawn by the industry. Its 
reference must be made available to consultants for inclusion in all concerned drawings. The said 
document must address all the issues listed here under: 

Cold Joints: All efforts must be made to avoid cold joints. While laying concrete in thick 
blocks like base raft / top deck of a frame foundation, large size block foundations etc, limitation 
on thickness layer, time lapse between laying two successive layers of concrete, must be specified. 
In absence of any other recommendation by the designer, the concrete layer height should be 
limited to 400 mm and time gap between laying two layers of concrete should be restricted to 25 -
30 minutes. 

Segregation: Construction process for machine foundation, especially frame foundations, is a 
bit complex compared to normal building construction. Heights of columns, which are to be 
concreted in a single pour, are invariably larger than routine building construction jobs. Height of 
drop of concrete must explicitly be specified so as to avoid any segregation of concrete. This must 
also be specifically and clearly indicated in the design drawing. 
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Mass Concreting: Ambient temperature for laying concrete must be specified. In case 
concrete is laid in hot climate, concept of employing chillers must also be specified. 

13.4 GROUTING 

Various types of grouts are currently available to cover up shortcomings of concreting process. 
These are employed for filling honeycombs, cracks etc. These are also used for leveling under 
seating plates, filling up bolt pockets etc. Each grout compound has associated limitations that 
restrict its usage for all kind of environments. Specific Epoxy grouts show a significant variation of 
elastic modulus with temperature. Such grouts are not recommended for use in high temperature 
zones like area near HP turbine. Some grouts may show reaction with oil & chemical 
environments. These are unsuitable for grouting seating plates in zones where oils and chemicals 
are active. 
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CASE STUDIES 

• Motor Compressor 
• Turbo-Generator 
• Reciprocating Compressor 

• FD Fan 
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CASE STUDIES 

14.1 INTRODUCTION 

There is enough to learn from the field performance of machine foundation systems. Feed back 
from failure analysis, on one hand, serves as a guiding tool to update design philosophy and on the 
other, builds confidence level in one's own design. 

General understanding that similar machines on similar foundations and on similar soil would show 
similar performance behaviour no longer holds good. There are many variables linked to machine 
that may result in changed behaviour of one machine to another. Similarly identical foundations for 
two identical machines may also tum out to exhibit different behaviour because there are another 
set of variable parameters that may make one foundation behave differently than another. Figure 
14.1-1 shows a set of vibration recordings for identical foundations for identical machines. 
Vibration measurements are shown on the foundation so as to include both machine and foundation 
aspects. 

A uniform reduction of vibration amplitudes from top to bottom of bearing housing exhibits a 
healthy trend. In one of the case the trend was observed to be totally opposite i.e. vibration levels 
were found to have increasing trend from top to bottom of bearing housing. Records are shown in 
Figure 14.1-2. 

During routine overhaul, bearing housing was removed from the supporting pedestal. The grout 
underneath the bearing seating plate was totally carbonized. It behaved like charcoal powdery cake 
having no strength and it was fully soaked in oil. It was perhaps due to chemical reaction of the 
grout with spilled oil. After re-grouting the pedestal the problem disappeared. 
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Top of deck 
Unit - 2 

~ 110 

§ 90 
·s 70 
III 50 

Foundation on 
Hard Rock 

~ 30 
]. 
~ 10 -------
<: 

o 2 4 6 8 10 12 14 16 
Distance in meters along length from Turbine end 

(a) Vibration Along length of Top Deck 

Identical Machines on Identical Foundations 
and on different soil conditions 

11 
B .U ¢:: 

9 ~ / Unit -1 
Ill.;.: i 

gj ~ .i 
~O 7 / 

/ 

a 0.. .i 

.g~ 5 
i .Qi 3 ::t: 
Base 1+/-+---I--4---+--+--+-

o 20 40 60 

(b) Vibration along Column Height 

Identical Machines on Identical Foundations 
and on same soil 

Figure 14.1-1 Identical Machines having Identical Foundations 

It is a common norm that vibration measurements are taken only on the machine components and 
inference about the health of the machine is derived from these records. It is author's considered 
opinion that foundation and its elements must also be included for such vibration measurements. 
Foundation ultimately is a part of the total system that is responsible for healthy performance of 
machine. 

Bearing 

4 1325 

o 20 40 60 80 100 
Vibrations in microns 

Bearing 

Figure 14.1 -2 Amplitude along Bearing Height 200 MW TG Foundation 

Figure 14.1-3 shows records of vibration taken at the top deck of a 200 MW TO foundation deck. 
Only coast-up records are shown here. Figure shows high deck vibrations to the tune of 110 
microns at about 40 Hz. This indirectly hints that there exist structural frequencies of the deck 
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below operating speed. If these frequencies happen to coincide with rotor critical speeds or with 
sub-harmonics of engine frequency, it may result in increased vibration levels where ever these 
become governing parameters. 

8 
o .... 

,. 30m 

'f' 
o .... 
x 
....-­
N' 

Coast -up 500 - 1200 RPM - Horizontal 
LocationP2 

t 
~t 6.0 

4.0 

16 27.5 

Frequency ~ (Hz) 

109.6 
63.2 

45 

-, 

Generator 

Coast -UP 500 - 1200 RPM - Vertical 
Location - S3 

24 34.540.5 
Frequency --.. ~ (Hz) 

Figure 14.1-3 200 MW Turbo-Generator Unit - Coast Up Measurements at Top Deck 

It is also true that in that era when these foundations were designed, computational tools were not 
. available to evaluate foundation response to such level of specifications. But such tools are now 
easily available. It is strongly recommended that current design philosophy and practices must be 
in line with the available technology. One should not stick to age old methods of designing 
machine foundations 

Author has spent nearly 3 decades in designing of foundations and handling critical failure 
analysis cases starting from designing, field measurements, fault diagnosis and remedial 
measures. A few case studies are presented here. Each case study is a typical in itself. 

Study is presented here only to demonstrate that in 9 out of 10 cases, the blame always goes to 
machine manufacturer. In 50 % of the cases, the source of the problem may not be machine alone 
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and solution may lie somewhere else. It requires Right Attitude to tackle all failure problems with 
of course Right Team of Experts armed with Right Instrumentation. 

14.2 CASE STUDIES 

Example 14.2 High Vibrations of a Motor Compressor Unit 

Preamble: High vibrations were reported from a motor compressor unit of a plant. 
Schematic representation of the motor compressor unit is shown in Figure 14.2-1. Vibrations 
higher than permissible were reported on the foundation as well as on the motor and compressor 
units. As usual, manufacturers for the motor and compressor units were different agencies. Though 
all possible corrective steps were taken by both the manufacturers but the problem was not 
resolved. Each manufacturer was blaming the other for high vibrations. 

Action Plan: Vibration measurements were recorded at various pick-up locations, marked on 
the Figure 14.2-1, both on the foundation as well as on the machine including connected piping. 
Recorded vibration levels (Max value in microns) on foundation, base frame, equipment and 
connected piping are as under: 

Foundation 

Base frame Channel 

Base Plate 

Motor 

Tank 

Compressor 

NRV 

Piping 

x 
Longitudinal 

40 

600 

500 

1500 

Y 

Transverse 

20 

150 

150 

300 

1000 

2600 

Z 

Vertical 

40 

25 

60 1420 

125 

90 

500 

100 

800 

Step 1: High base plate vibration indicated loosening of foundation bolts. Close examination 
revealed broken welding of support lug to base frame. Repair of support lug and tightening 
foundation bolts brought down vibration level from 420 microns to 130 microns. This also brought 
down compressor vibration levels to 250 1300 1250 microns in X IY IZ direction. 

Step 2: High piping vibration levels suggested need to isolate NRV. Isolation ofNRV resulted in 
drastic reduction of vibration all through. NRV levels were still around 200 microns. 
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[J 

[J 

o Vibration pick-up Location 

Figure 14.2-1 Motor Compressor Unit on a Block Foundation 

Example 14.3 210 MW Turbo-Generator unit -High Vibration Problems 

Dissimilar vibration behaviour of two Identical Units on Identical 
Foundations placed next to each other 

14-7 

Preamble: Machine is running with high vibrations since a decade and a half. High column 
vibrations as well as high deck vibrations are reported in one unit whereas another identical unit 
just adjacent to it is reported running satisfactorily. Cracks at the column top below deck have also 
been observed. These are perhaps locations of construction joint of column with top deck. Top 
deck Plan is shown in Figure 14.3-1. 

I· 26.0m 
·1 

1 2 3 45 67 
~ ------ --@--------0----------@-------------@--@--------------------@---@ -----
.-4 Bearing # 

Figure 14.3-1 A 210 MW T G Foundation (Typical) - Top Deck Plan Showing 
Column and Bearing Locations 
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Figure 14.3-2 Bearing Level Amplitudes Turbo Generator Units 1 & 2 
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Figure 14.3-3 Amplitude at Top Deck Along Length from HP Side to Exciter Side 
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Figure 14.3-4 Amplitude Variation in Columns Along Height 
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Action Plan: In order to fix magnetic probes on the foundation, metal washers were fixed at 
1I4th, 112 & 3/4th height of all the columns as well as along top deck (both on left and right side of 
the machine). In addition, metal washers were also fixed at specific locations of interest at beam 
bottom. Vibration measurements were taken at all these points in addition to bearings. 

Bearing Vibrations are shown in Figure 14.3-2 and top deck vibrations are shown in Figure 14.3-3. 
Column vibration measurements along height of column are shown in Figure 14.3-4. 
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Figure 14.3-5 Column Amplitudes - FFT Record Unit 1 &2 
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Case Studies 14-11 

Observations: Ratio of bearing amplitudes of two units is of the order of 3 whereas ratio of top 
deck amplitudes is of the order of2. It is a wild guess and a question mark whether cracking of the 
columns at top (close to deck bottom (soffit of beam) is responsible for such a behaviour or such 
high vibrations have resulted in cracking of the column? Visual examination of the column 
vibration and plot of amplitudes indicate that its 2nd mode frequency of some of the individual 
columns in transverse direction has tendency to be in resonance with operating speed. Similar 
behaviour is also noticed for some columns in axial direction. 

Figure 14.3-5 shows FFT analysis of column vibration records. FFT analysis of records confirm to 
the above observation. It is seen that the resonant frequency of some of the columns lie close to 50 
Hz which is the machine running speed. Though the amplitude levels are low, the trend is not 
healthy. It is primarily because the analytical tools available about two decades back were not 
adequate to carry out such a detailed analysis and moreover the need was neither emphasized by 
the owner / customer nor by machine manufacturer. 

Example 14.4 Reciprocating Compressor on Isolation pads 

Preamble: A reciprocating compressor on a frame foundation is to be located inside a plant 
building. The forces developed by compressor are extremely high and supporting the foundation 
over the soil results in excessive amplitudes of vibration. The size of the base raft also can not be 
increased because of restrictions imposed by other structural foundation. The only options were i) 
either to strengthen the soil by whatsoever possible means, ii) resort to pile supported foundations 
or iii) use strong stiffness material underneath the base· of the foundation so as to limit the 
amplitudes within permissible levels. This is with reference to the design problem discussed in 
Chapter 10. The decision by the company was to resort to isolation technique and design the 
foundation. 

Machine 

'iA 
Isolation Padsl Cork Pad 
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14-12 Case Studies 

Action Plan: A common raft was provided spanning across width of the bUilding. Compressor 
foundation was placed over the raft with Cork as Isolation device so as to minimize transmission of 
forces from machine to the common foundation. This system was designed by the author in 1974. 
Schematic arrangement is shown in Figure 14.4 -I. With this arrangement Machine was installed 
and has run satisfactorily keeping the amplitudes within permissible limits. 

Cork thickness of 75 mm below the frame foundation was found to be adequate. Cork properties 
were tested at one of the national laboratory. Recommended values for computation are as under: 

• Compressive strength 500 kN/m2 

• Elastic Modulus (Static) 10 MPa 

• Elastic Modulus (Dynamic) 15 MPa 

• Coefficient of Uniform Compression Cu = 20x 104 kN/m' 

The concept was used once again by the author, in 1979, for design of a Frame Foundation for a 
Gas Turbine. The need arose because of slip during planning. While making the layout, not 
adequate space was left to accommodate the GT. Unlike previous case, the machine is a high rpm 
machine and it was rather easy to get the required frequency ratio for achieving desired isolation. 

The success has given improved confidence level for such designs. 

Example 14.5-1 Vibration Isolation of FD Fan Foundation 

Preamble: Vibration Isolation design of FD fan is discussed in Chapter 12. After machine 
installation, high vibrations were reported from the site. 
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Figure 14.8-1 Pick up Location at Foundation Top and Sides 
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Case Studies 14-13 

Action Plan: Vibrations were recorded at all pick up location points on the top as well as on 
sides of inertia block (Foundation). Pick up locations are as shown in Figure 14.5 -1. Here MB 
refers to motor bearing, FB 1 refers to fan bearing 1 at drive end and FB2 refers to fan bearing 2 at 
non-drive end. 

Recorded amplitudes are: 

Vertical amplitude @ pick up # 1,2, 7 & 8 
Axial amplitudes @ pick up # 4 & 10 
Transverse amplitudes @ pick up # 5 & 8 
Vertical amplitudes @ Steel frame for motor, fan etc 

about 600 microns 
50 microns 
100 microns 
600 microns 

High vertical vibration led to the conclusion that desired frequency ratio is not being achieved as 
designed. After a thorough examination, it emerged that the connection from fan to air outlet duct 
is rigid. It restrains motion of the fan and thereby motion of inertia block. The system is not able to 
achieve desired frequency ratio for isolation to be effective. After bellow was introduced between 
fan and the duct, vibration levels reduced drastically. 
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Advanced Modeling 

Allowable Stresses 

Amplitude 

-Anvil 

-Axial 

- Bearing levels 

- Centroid 

- Column 
- Engine Frequency 

- First Harmonic 

- Foundation top 

- Horizontal 

- Resonance 

- Top deck 
Anchor Bolts 

Block Foundation 
- Translational & Rotational Springs 
- Vertical and Rotational Springs 
- Vertical and Translational Springs 
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11 
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