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About the Handbook

The author has been engaged in designing, testing and review of machine
foundations for various industrial projects viz. Petrochemicals, Refineries, Power
plants etc. for the last about three decades.

The handbook is written primarily for practising engineers as well as for students
at Post Graduate level. Handbook shares author’s long experience on the subject
and focuses on the improvements needed in the design process with the sole
objective of making practising engineers physically understand and feel the
dynamics of machine foundation system.

The handbook covers basic fundamentals necessary for understanding and
evaluating dynamic response of machine foundation system. The author has also
conducted extensive tests on machine foundation models as well as on prototypes.
For over two decades, the author has been associated with Failure Analysis
Studies on various types of machines.

Observations from all the above studies suggest need for improvement in the
design of foundations for better performance of machines. These include:

a) More comprehensive evaluation of Site Soil Data
b) Better understanding of Machine Data and its use in foundation design

c) Improvement in the Design Philosophy that suggests

i) Improvement in the Modeling Technique
i) Improvement in Analysis Technique
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iii) Improvement in Structural Design process, and
iv) Improvement in Construction Technology

It is the author’s concerned observation that in most of the cases, due recognition
to Machine, Foundation and Soil data is lacking. More often than not, machine
data as well as soil data is treated as black box and used in the design without its
proper understanding. A better interaction between foundation designer and
machine manufacturer would definitely improve the foundation performance and
thereby machine performance. Over the years, author has observed that such
interactions are lacking. It is the author’s concerned opinion that such an
interaction is not only desirable but essential too.

It is anticipated that this handbook shall serve as a Reference Book. The author
is confident that it shall bridge the knowledge gap and shall be beneficial to the
practising engineers, students, academicians/researchers as well to the industry.

The text is divided in to 5 Parts.
Part I takes care of Theoretical Aspects

o An overview providing basic familiarization with the subject is covered
in Chapter 1.

o Necessary understanding of Theory of Vibration with specific application
to machine foundation design is included in Chapter 2 and Chapter 3.
Chapter 4 caters to Basic Theory of Vibration Isolation.

Part II caters to Design Parameters

o Chapter 5 provides reasonable coverage to Soil Dynamics and
evaluation of Design Soil Parameters as applied to Machine Foundation
Design.

o Desired emphasis has been given to Design Machine Parameters.
Translation of Machine Data to Design Data is given in Chapter 6.

o Chapter 7 is attributed to Design Foundation Parameters. It covers all
those aspects related to foundation that play vital role in computing
Dynamic Response.
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Part I1I deals with design of Foundations for Real Life Machines.

e Chapter 8 is devoted to Modeling and analysis including Finite Element
Analysis. All possible aspects of modeling related to design of foundation
have adequately been covered.

‘e Chapter 9, 10 & 11 cover Design of Foundation for real life Rotary
Machines, Reciprocating Machines and Impact Type Machines
respectively.

Part IV caters to Design of Foundations with Vibration Isolation System
e A good amount of emphasis is given to Vibration Isolation of the
Foundations. Design of Foundations with Isolation Devices is covered in

Chapter 12.

Part V caters to Construction Aspects and Case Studies related to machine
foundation

e Construction Aspects are covered in Chapter 13.

o Case studies and observations are given in Chapter 14
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FOREWORD

Improvement in manufacturing technology has provided machines of higher ratings with better
tolerances and controlled behaviour. The increased dependence of society provides no room for
failure and demands equipment and systems with higher performance reliability.

Each and every machine does require detailed vibration analysis providing insight in to the
dynamic behaviour of machine, foundation and their components. Complete knowledge of machine
excitation forces and associated frequencies, knowledge of load transfer mechanism from the
machine to the foundation and foundation to soil is a must for correct evaluation of machine
performance. Thus for a technically correct and economical solution, it calls for that the designer
must have a fairly good knowledge of Dynamic Soil Parameters, Dynamic Foundation Parameters
as well as Dynamic Machine Parameters. A close co-operation between manufacturer and the
foundation designer is therefore a must. Development of analytical procedures backed by field
monitoring, for evaluating dynamic response, is the need of the day.

It is fortunate that Dr K G Bhatia, a person of eminence, who is not only a well known research
scientist in the field of Structural Dynamics but also an expert in the profession of Machine
Poundation Design, Seismic Qualification of Machinery, Failure Analysis, Weight Optimization
etc, has undertaken the challenging task to bring out this Handbook on Foundation for Industrial
Machines. With his initial experience with M/s Engineers India Limited for about 4 years and his
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association with M/s Bharat Heavy Electrical Limited for about 24 years, Dr Bhatia has carried out
machine foundation design for many projects and has also conducted field studies on many
machines and their foundations.

It is this rich experience which Dr Bhatia has compiled and brought out in form of a Hand Book.
He has touched all related aspects required for machine foundation design including Vibration
Isolation System. Starting with basic fundamentals of vibration analysis, he has given due
coverage to analytical aspects, modeling aspects, design aspects and also included foundation
design for real life machines backed up by field measurements based on his own experience and
study.

On behalf of the engineering community and on my own behalf, I wish to extend my hearty
congratulations to Dr. Bhatia for having brought out this excellent Handbook. It is earnestly hoped
that the book will be found useful by not only practising engineers but also by students, researchers
and academicians.

K P Mathur

(Formerly) Executive Director
Project Engineering Management
Bharat Heavy Electricals Ltd,
New Delhi, India
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PREFACE

This handbook reflects collection of author’s works in analysis, design and field investigations
during last about 30 years. The book, designed primarily for the practising engineers engaged in
design of machine foundation, also provides a platform to students at Post Graduate level for
developing professional skill in -attaining desired proficiency in designing Foundations for
Industrial Machines. Reference to problems, made at various stages, is for the real field problems.
Emphasis, throughout, has been laid on applied analysis and design so as to provide deeper
understanding to the reader about the physical understanding of the Dynamic Behaviour of
Machine Foundation system. The text has been so arranged so as to provide an insight to the reader
regarding the need for various design stages to complete the task.

The performance, safety and stability of machines depend largely on their design, manufacturing
and interaction with environment. In principle, machine foundations should be designed such that
the dynamic forces of machines are transmitted to the soil through the-foundation in such a way
that all kinds of harmful effects are eliminated. Many scientists have significantly contributed to
the field of machine foundation laying greater emphasis on vibration response of both machine and
foundation. The contributions to the practical and theoretical development of the subject, especially
from authors like Geiger, Rauch, Barkan and Alexander Major, are noteworthy.
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The design aids /methodologies provide insight to the dynamic behaviour of foundation and its
elements for satisfactory performance of the machine thus suggesting the need for the complete
knowledge of load transfer mechanism from the machine to the foundation and the knowledge of
excitation forces and associated frequencies for correct evaluation of machine performance.

This book covers basic fundamentals necessary for understanding and evaluating dynamic response
of machine foundation system. Stress is laid on detailed dynamic analysis for evaluating the
response. Use of commercially available Finite Element packages, for analysis and design of the
foundation, is recommended. The author has carried out extensive field investigations on many
foundations and some of the findings are presented for comparison with analytical results.

This handbook is written with the sole objective of making the practising engineers physically
understand and feel the dynamics of machine foundation system. Any suggestion from the readers
that leads to improvement of the contents, style, etc of the handbook is welcome.

K. G. Bhatia
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SYMBOLS AND NOTATIONS

a Amplitude Ratio

Ay Pile Influence Coefficient

yij Frequency Ratio of one frequency to other frequency
B, Frequency ratio o/ p, V
B, Frequency ratio w/p,

B. Frequency ratio o/ p,

Be - Frequency ratio o/ p,

B, Frequency ratio o/ p,,

B, Frequency ratio w/p,

J, Static Deflection

S, Static deflection along X

J, Static deflection along Y

5, Static deflection along Z
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Static deflection along 6

d, Static deflection along v
O, Static deflection along ¢
£ Linear strain
¢ Rotation about Z-axis and also
Phase angle
Y Shear Strain, also
Mass moment of Inertia ratio
o1 Site Shear Strain Value
Yo Design Shear Strain Value
n Isolation Efficiency, also
Efficiency of drop of hammer
A Mass ratio
H Magnification Factor
Ly, My Magnification factors
s Magnification in X-direction
78 Magnification in Y-direction
U, Magnification in Z-direction
U Magnification in 8 -direction
4y, Magnification in y -direction
Hy Magnification in ¢ -direction
1 Poisson’s ratio
v, Poisson’s Ratio for Soil
v, Paisson’s Ratio for Concrete
g Rotation about X-axis
0,,v, & 4, Rotations about X, Y & Z axes at DOF location ‘O’
4 Mass density & also Total Amplitude
Ds Mass Density of Soil
Pe Mass density of Concrete
o Direct Stress
oy, 0, Static stress
Go; Site Static Stress (Overburden Pressure)
Too Design Static Stress (Overburden Pressure)
4 Pulse Duration
7] Excitation Frequency
) 0, 0 Excitation frequencies of machine 1, 2 and 3
v Rotation about Y-axis

https://engineersreferencebookspdf.com

XX1X



XXX

¢ Damping Constant
¢, Damping in X-direction
$y Damping in Y-direction
<, Damping in Z-direction
&y Damping in @ -direction
Sy Damping in v -direction
Sy Damping in ¢ -direction
A Amplitude, also
Area
Ay Base Contact Area corresponding to site test method
Ay Design Base Contact Area for the foundation
A, Base Contact Area with the Soil
Ay, Ay, 4 Amplitudes of masses 1,2,3 etc.
A, Amplitude in X-direction
4, Amplitude in Y-direction
A, Amplitude in Z-direction
Ay Amplitude in @ -direction
4, Amplitude in v -direction
4, Amplitude in ¢ -direction
A&A Amplitudes corresponding to I° and 2" mode resp.
4, Area of Piston, also
Area of Plate
B Width of Foundation
b, Mass Ratio in X-direction
b, Mass Ratio in Y-direction
b, Mass Ratio in Z-direction
by Mass Ratio in @ -direction
b, Mass Ratio in y -direction
by Mass Ratio in ¢ -direction
c Viscous Damping
c] Damping Matrix
C, Coefficient of Uniform Compression of Soil
Cuot Site Evaluated Coefficient of Uniform Compression of the soil
Cun Design Coefficient of Uniform Compression of the soil
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C, Coefficient of Uniform Displacement of Soil
Cp&C,y Coefficient of Non-Uniform Compression of Soil
C, Coefficient of Non-Uniform Displacement of Soil
C, CG of Crank rod
D Depth of pit
do, Effective depth (considered for site test).
dy, Effective depth (considered for foundation design)
d Pile Diameter
E Elastic Modulus
E, Elastic Modulus in Y
Ey Site Evaluated Dynamic Elastic Modulus
Eg Design Dynamic Elastic Modulus
E, Elastic Modulus of concrete
E, Elastic Modulus of soil and also
Elastic Modulus of Sheet Isolators
E, Elastic Modulus of pile
E e Static Elastic Modulus
E gymamic Dynamic Elastic Modulus
e Rotor Eccentricity and also
Coefficient of Restitution
e, &e, Eccentricity in X & Z direction respectively.
F@®) Dynamic Force
F. Force in X-direction
Fy Force in Y-direction
F, Force in Z-direction
F, Force at point ‘O’ in X-direction
F, Force at point ‘O’ in Y-direction
F, Force at point ‘O’ in Z-direction
Fy Applied Excitation Force
Fr Transmitted Force
F,F, Unbalance Force
F, Force at point A
Fg Force at point B
Fi Foy X-Component of force F, & F, respectively
Fy, By Y-Component of force F, & F, respectively
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xxxii

f Frequency in Cycle per sec (Hz)
i Natural Frequency in Cycle per sec (Hz)
i Observed Frequency in Cycle per sec (Hz)
ok Characteristic Compressive Strength of Concrete
Fy,F,; Force at point C in 'Y & Z direction respectively
g Acceleration due to gravity
G Shear Modulus
G, Shear Modulus of Soil
G, Shear Modulus in X
G, Shear Modulus in Z
Gy Site Evaluated Dynamic Shear Modulus
Gy Design Dynamic Shear Modulus
G, Rotor Balance Grade
H Depth of Foundation, Height of Portal Frame
h Height of Centroid from Base, also
Height of fall of hammer
hy hy &h, Height of Centroid for Drive Machine, Driven Machine and
Coupling from CG of Base RE point ‘O’
I, Moment of Inertia of an Area about X- axes
I, Moment of Inertia of an Area about Y- axes
I, Moment of Inertia of an Area about Z- axes
I, Moment of Inertia of Beam
I Moment of inertia of Column
<
J Polar Moment of Inertia
k Stiffness
kg Stiffness of Soil
k &y, ky.ete Stiffness
[k] Stiffness Matrix
k Vertical Pile Stiffness
kpoh Lateral Pile Stiffness
k, Vertical Stiffness
k, Horizontal Stiffness
k, Translational Stiffness along X-direction
k, Translational Stiffness along Y-direction
k,, k, Translational Stiffness along Z-direction
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kg Rotational Stiffness about X-direction
k, Rotational Stiffness about Y-direction
kg Rotational Stiffness about Z-direction
k, Beam Stiffness Factor (I, / L) Beam Ml/Beam Span
k. Column Stiffness Factor (I, / H) Col MI/Col Height
k, Stiffness ratio (k, / k)
L Length of Foundation, Span of Beam
! Length of Crank rod .
A Distance of CG of connecting rod from its end 1 i.e. point A
I3 Distance of CG of connecting rod from its end 2 i.e. point B
M@ Dynamic Moment
M, Moment about X-axis
MW Moment about Y-axis
M, Moment about Z-axis
M, Moment at ‘O’ about X-axis
M,, Moment at ‘O’ about Y-axis
M,y Moment at ‘O’ about Z-axis
m Mass
m, Mass of Block
m,, Mass of Machine
m, Mass of Oscillator, also
Mass of Tup (falling mass)
[m] Mass Matrix
M, Mass Moment of Inertia
M,, Mass Moment of Inertia at Centroid about X-axis
M, Mass Moment of Inertia at Centroid about Y-axis
M,, Mass Moment of Inertia at Centroid about Z-axis
M o Mass Moment of Inertia at ‘O’ about X-axis
M oy Mass Moment of Inertia at ‘O’ about Y-axis
M, Mass Moment of Inertia at ‘O’ about Z-axis
M20,M25,M30 | Grade of Concrete
m, Mass of Rotor, also.
Mass of Crank rod
m, 1,y Mass of rotor 1 & rotor 2 respectively
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m, Mass of Piston

m, "Mass at point A

mg Mass at point B

m, Mass of connecting rod

M, Moment at point C about X-axis.

N Rotor speed (rpm)

n Number of Piles, also
Number of Cylinders (in Reciprocating Engine)

p Natural Frequency in rad/sec, also
Number of Springs, bearing pressure

P Translational Natural Frequency in X-direction, also
Uniform Shear Stress

Py Translational Natural Frequency in Y-direction, also
Pressure in Vertical Y -direction

P, Translational Natural Frequency in Z-direction, also
Uniform Shear Stress

Do Rotational Natural Frequency about X-axis

Py Rotational Natural Frequency about Y-axis

Pyr Torsional Shear Stress at radius r

Py Rotational Natural Frequency about Z-axis

PLi»Pr2 1" and 2" Limiting Frequencies

D, Pressure/Load Intensity

P> P2» D3 First six natural frequency in ascending order

Pas Ps, Ps :

P, Pressure acting on the piston

q Bearing capacity, also Number of Springs

R Radius Vector

o Equivalent Radius

S, Total settlement

S, Elastic settlement _

S, Settlement after removal of load from plate

s Pile Spacing

TR Transmissibility Ratio

t Time

T Time Period

V Shear Wave Velocity

Vi Rayleigh Wave velocity
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v, Compression Wave Velocity
Velocity
v, Velocity of falling mass
v Initial velocity imparted to the foundation after impact
Vo,V Velocity after Impact
Vo,V Velocity before Impact
W, Total Machine load
Wi Machine load at point ‘i’
W Wi &Wps | Weight of Foundation Block part 1, 2 &3 resp.
Wy Weight of Foundation Block ‘i’
x,y&z Displacement in X, Y & Z-directions respectively
x,y&z Overall centroid coordinates
Xy Vo & 2, Amplitudes along X, Y & Z direction at DOF location ‘O’
x’f, yf & Ef Amplitudes along X, Y & Z direction at Center of Foundation

Top

X Ve &2y

Amplitudes along X, Y & Z direction at Corners of Foundation

Top

X,y & z, Maximum Amplitudes in X, Y & Z direction at Foundation Top
Xpis Vi & Zpi 1 X, Y and Z Coordinate of load point W,

X, &2z, X & Z Coordinates of machine centroid

Xp5 Xy, X3 Displacements of masses m,, m,, my in X-direction
Yi> Y2, V3 Displacements of masses my, m,, ms in Y-direction
2y, 29,23 Displacements of masses m,, m,, my in Z-direction
x,y&z I* Differential of X,y & z with respect to time

X y&z 2™ Differential of x,y & z with respect to time
Ve Ground Acceleration in Y -Direction
XY Z X, Y & Z Coordinate axes ]

Vs Height of Foundation Centroid

Vm Height of Machine Centroid

z, Displacement of Piston from its extreme position
Z, Acceleration of piston
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Machines and Foundations 1-3

MACHINES AND FOUNDATIONS

The performance, safety and stability of machines depend largely on their design, manufacturing
and interaction with environment. In principle machine foundations should be designed such that
the dynamic forces of machines are transmitted to the soil through the foundation in such a way
that all kinds of harmful effects are eliminated.

In the past, simple methods of calculation were used most often involving the multiplication of
static loads by an estimated Dynamic Factor, the result being treated as an increased static load
without any knowledge of the actual safety factor. Because of this uncertainty, the value of the
adopted dynamic factor was usually too high, although practice showed that during operation
harmful deformations did result in spite of using such excessive factors. This necessitated a
deeper scientific investigation of dynamic loading. A more detailed study became urgent
because of development of machines of higher capacities.

Machines of higher ratings gave rise to considerably higher stresses thereby posing problems with
respect to performance and safety. This called for development partly in the field of vibration
technique and partly in that of soil mechanics. Hence new theoretical procedures were developed
for calculating the dynamic response of foundations.

It is well established that the cost of foundation is but a small fraction of that of the
machine and inadequately constructed foundations may result in failures and
shutdowns exceeding many times the cost of the capital investment required for
properly designed and built foundations.

1.1 AN OVERVIEW

A brief review indicates that over the years, many scientists have contributed to the field of
machine foundation design. Gieger in 1922 carried out investigations to determine the natural
frequencies of foundations. Rauch in 1924 dealt with the machine and turbine foundation and
contributed greatly to the practical and theoretical development of the science. A great emphasis
was thus laid on to vibration problems in machine foundations. Timoshenko (1928) & Den Hartog
(1934) dealt with many vibration problems in engineering practices. Later Wilson (1942), Arya
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1-4 Machines and Foundations

(1958), Norris (1959), Harris and Crede (1961) contributed a lot in the field of vibration. D.D
Barkan (1938) published his findings on dynamic effects on machine foundation. His basic work
on the results of theoretical and experimental investigation in the field of machine foundations
affected by dynamic action was published in 1948 and translated into English in 1962. Alexander
Major has also made a significant contribution in the field of machine foundation. His book on
“vibration analysis and design of foundations for machines and turbines” published in 1962
(translated from Hungarian) had been a very useful tool to deal with machine foundation problems.

Based on the scientific investigations carried out in the last few decades it has been established that
it is not enough to base the design only on vertical loads multiplied by a dynamic factor, even
if this factor introduces a dynamic load many times greater than original one. It should be
remembered that operation of the machines generated not only vertical forces, but also forces
acting perpendicular to the axis; it is thus not enough to take into account the vertical load and to
multiply it by a selected dynamic factor. It has also been found that the suitability of machine
foundations depends not only on the forces to which they will be subjected to, but also on their
behaviour when exposed to dynamic loads which depends on the speed on the machine and natural
frequency of the foundation. Thus a vibration analysis became necessary. In other words, it can be
said that each and every machine foundation does require detailed vibration analysis providing
insight in to the dynamic behaviour of foundation and its components for satisfactory performance
of the machine. The complete knowledge of load transfer mechanism from the machine to the
foundation and also the complete knowledge of excitation forces and associated frequencies are a
must for correct evaluation of machine performance.

The performance, safety and stability of machines depend largely on their design, manufacturing
and interaction with environment. In principle machine foundations should be designed such that
the dynamic forces of machines are transmitted to the soil through the foundation in such a way
that all kinds of harmful effects are eliminated. Hence, all machine foundations, irrespective of size
and type of machine, should be regarded as engineering problem and their design should be based
on sound engineering practices. The dynamic loads from the machines causing vibrations must
duly be accounted for to provide a solution, which is technically sound and economical. For a
technically correct and economical solution, a close co-operation between manufacturer and the
foundation designer is a must.

Vibration problems have been drawing attention of scientists and engineers, since decades, world
over to find ways and means to have desired satisfactory performance of machines and to minimize
failures. In the past, due importance was not given to the machine foundation design. Simple
methods of calculation were used for strength design of the foundation by multiplying static loads
with an estimated Dynamic Factor. This resulted in consideration of increased static loads without
any knowledge of actual safety factor. Even with these so-called excessive loads, harmful effects
were observed during operation. Based on the scientific investigations carried out in the last few
decades it has been established that it is not enough to base the design on vertical loads only,
multiplied by an arbitrary Dynamic Factor.

Improvement in manufacturing technology has provided machines of higher ratings with better

tolerances and controlled behaviour. The increased dependence of society on machines provides
no room for failure and demands equipment and systems with higher performance reliability. All
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problems could not be solved theoretically because a good amount of assumptions had to be made
for the analysis and these assumptions needed validation through experiments. Laboratory and field
measurements were thus introduced to determine carefully the effects of various parameters on the
dynamic response of machine foundation. Thus a detailed vibration analysis became necessary. It
was also realised that a careful dynamic investigation of soil properties is essential as the elastic
properties of the soil exercise considerable influence on the design of the foundation.

It is obvious that the cost of machine foundation is a small fraction of that of the equipment and
inadequately constructed foundations may result in failures and shutdowns whose cost itself may
exceed many times the cost of the properly designed and built foundations. Though, advanced
computational tools are available for precise evaluation of dynamic characteristics of machine—
foundation system, their use in design office, which was limited in the past, has now been found to
be quite common.

The machine foundation system can be modeled either as a two-dimensional structure or three-
dimensional structure. For mathematical modeling and analysis, valid assumptions are made
keeping in view the following:

o The mathematical model should be compatible to the Prototype structure within a
reasonable degree of accuracy

¢ The mathematical model has got be such that it can be analysed with the available
mathematical tools ‘

o The influence of each assumption should be quantitatively known with regard to the
response of the foundation

Vibration isolation techniques have also been used to reduce vibrations in the machines. Isolation
leads to reduction in the transmissibility of the exciting forces from the machine to the foundation
and vice-versa. Uses of vibration isolation devices is one of the methods by which one can achieve
satisfactory performance which in turn can result in minimising failures and reduce downtime on
account of high vibrations. However, for equipment on elevated foundations, it is desirable to have
support structure stiffness sufficiently higher than overall stiffness of isolation system in order to
get the desired isolation efficiency.

The support structure, a 3-D elevated structural system, possesses many natural frequencies. The
vibration isolation system, comprising of machine, inertia block and the isolation devices, also has
six modes of vibration having specific stiffness values corresponding to each mode of vibration.
Hence the comparison between stiffness of structure and isolator becomes complex task. It is of
interest to note that lateral stiffness of elevated structures is very much lower than its vertical
stiffness, If this lower (lateral) stiffness is comparable to the stiffness of isolators, it certainly
affects the overall stiffness and thereby the response of the machine foundation system. Hence,
lateral stiffness of support structure must also be computed and considered while selecting the
isolators. Finally it may be desirable to carry out detailed dynamic analysis of the complete system
including substructure.
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1.2 DESIGN PHILOSOPHY

Machine foundation system, in broader sense, comprises of machine, supported by foundation
resting over soil subjected to dynamic loads i) generated by machine itself, ii) applied externally,
or iit) caused by external sources and transmitted through soil. A typical system is as shown in
Figure 1.2-1.

__________________ jmmem ey
t '
[}

E- Specified i i Dynamic Loads |
| Dynamic Loads +—» Internally !
1Externally applied,-’ \._ generated |
Foundation ) Modification
No
System Safety
Response Check
Frequency
Yes
L oK
Soil
I Forces from adjt-)fﬁing f

f machine & due to shock,
i impact, earthquake etc
| -

Figure 1.2-1  Machine Foundation System Qualification Subjected to Dynamic Loads

Irrespective of the source of dynamic load, the basic philosophy underlying design of machine
foundation is that:

e The dynamic forces of machines are transmitted to the soil through the foundation in such

a way that all kinds of harmful effects are eliminated and the amplitudes of vibration of
the machine as well as that of the foundation are well within the specified limits.
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e  Foundation is structurally safe to withstand all static and dynamic forces generated by the
machine. To accomplish these objectives, every foundation needs to be analysed for
Dynamic Response, and thereafter for Strength Design

1.3 MACHINE FOUNDATION SYSTEM

In any. machine foundation system, the equipment (the machine) is considered supported by a
foundation and the foundation in turn rests on the soil. A typical machine foundation system is as

shown in Figure 1.3-1.
Interface

< .~ Machine & Foundation

Foundation

Interface

< ~~~ Foundation & Soil

i
%91 /////

Figure 1.3-1 A Typical Machine Foundation System

At this stage it is necessary to address as to how the equipment, foundation and soil are
interconnected.

e Machine could either be connected to the foundation directly through the foundation bolts,
or it could be connected through isolation devices.

e  Foundation could either be a solid block resting directly on the soil or it may be resting on
the piles.

e The foundation could also be a frame structure (Frame Foundation) resting directly on the
soil or it could be resting on the group of piles.

These interfaces, therefore, are essential to be appropriately addressed, for evaluating the dynamic
response of the machine correctly. Thus, the three main constituents of machine foundation system
that play significant role in overall controlling machine performance are, machine, foundation
and soil and these need to be adequately addressed. Modeling and Analysis are adequately
covered in Chapter 8.
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1.4 MACHINES

Based on type of motion, the machines are broadly classified as:

a) Rotary Machines
b) Reciprocating Machines
c) Impact Type Machines

Based on the speed of operation, the machines are grouped as:

a) Very low speed machines (up to 100 rpm)
b) Low speed machines (100 to1500rpm)

¢) Medium speed machines (1500 to 3000rpm)
d) High speed machines (3000‘rpm and above)

For foundation design, broadly, the following information is needed:

o  Geometric configuration of the machine

o Loads from machine: Mass of the stationary as well as rotating parts of the machine and

load-transfer mechanism from the machine to the foundation

e Critical machine performance parameters: Critical speeds of rotors, balance grade and

acceptable levels of amplitudes of vibration

o Dynamic forces generated by the machine: Forces generated under various operating

conditions and their transfer mechanism to the foundation for dynamic response analysis

e Additional Forces: Forces generated under emergency or faulted conditions, Test
condition, Erection condition & Maintenance condition of the machine, Forces due to

bearing failure (if applicable) for strength analysis of the foundation

These parameters are covered in detail in Chapter 6.

1.5 FOUNDATION

Machine type and its characteristics do play a significant role while selecting the type of
foundation. Most commonly used foundations in the industry are Block foundations and Frame

foundations that are covered in this handbook.
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Foundation Block .

/// .
Soil
ZZZ,

Figure 1.5-1 A Typical Block Foundation

.
\

1.5.1 Block Foundation

In this case, machine is mounted over a solid block, generally made of concrete. This block in turn
rests directly on the soil. In this case both machine and foundation block are considered as non-
elastic inertia bodies and the soil is treated as mass less elastic media i.e. having only stiffness and
no inertia. Schematic view of a typical block foundation is shown in Figure 1.5-1.

| DeckSlab |

Columns —j

Figure 1.5-2 A Typical Frame Foundation

1.5.2 Frame Foundation

In this type of foundation, machine is supported on the deck slab. This deck slab in turn is
supported on base raft through columns and base raft rests directly over soil or on group of piles.
Size of deck slab, number of columns, height of columns above base raft etc. are primarily
dependent on machine layout. In this case machine is treated as non-elastic inertia body whereas
deck slab, and columns are considered as elastic inertia bodies and soil is considered as elastic
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media. In certain specific cases, base raft is also considered as elastic inertia body. Schematic view
of a typical frame foundation is shown in Figure 1.5-2.

1.5.3 Tuning of the Foundation

Foundation, for which its vertical natural frequency is above the operating speed of the machine, is
termed as over-tuned foundation or high-tuned foundation and the foundation, for which its
vertical natural frequency is below the operating speed of the machine, is termed as under-tuned
foundation or low-tuned foundation.

1.5.4 Foundation Material

Plain Concrete, Brick, Reinforced Cement Concrete, Pre-Stressed Concrete and Steel are the
material employed for machine foundation construction. Foundations using steel structures have
also been used for frame foundations. The sizes of structural members in steel foundations are less
than those for RCC foundations and accordingly their space requirement is much less. As regards
vibration, steel structures undoubtedly involve higher risk. Natural frequencies are low and the
foundation is deeply under-tuned. The resistance to fire of a steel structure is lower than that of
reinforced concrete one. Most high tuned foundations are built of reinforced concrete. Vibration
amplitudes are reduced due to relatively higher damping present in the concrete.

1.5.5 Foundation Analysis and Design

Every foundation is analysed for its dynamic response and checked for strength and stability. Using
the machine, soil and foundation parameters, amplitudes of vibration are computed at machine as
well as foundation level. In addition foundation is designed for its strength and stability to
withstand applicable static and dynamic forces. For this the dynamic forces of the machine are
translated into equivalent static forces on the foundation. Strength check of the foundation is also
done for forces due to environmental effects like wind & earthquake etc.

Should the strength analysis indicate need for change in the foundation size, a recheck on the
dynamic analysis with the revised foundation size is a must. Typical foundation parameters needed
for design of machine foundation system are:

Foundation geometry
e  Material properties i.e. mass density, dynamic modulus of elasticity, Poisson’s ratio,
coefficient of thermal expansion, etc.

e Strength parameters i.e. Yield stress, UTS, Allowable stress in compression, tension,
bending and shear, etc. ‘

These parameters in detail are covered in chapter 7. Construction aspects of these foundations are
covered in Chapter 13.
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1.6 SOIL

It is an established fact that the soil properties significantly influence the dynamic response of
machine foundation system. Identical machines with identical foundations have been reported to
behave differently in different soil conditions. For block foundation, the soil influence is
predominant. The dynamic response largely depends upon mass of the machine, mass of the block,
the geometry of the block and soil dynamic properties. However for frame foundations, it is
generally reported that consideration of soil structure interaction i) induces additional modes
pertaining to soil deformation with relatively low frequencies and ii) has a tendency to marginally
enhance structural frequencies.

Soil system is a complex entity in itself and there are many uncertainties associated with its
modeling. Correct evaluation of dynamic soil properties, however, is the most difficult task. These
properties may vary from site to site, from location to location and from machine to machine as
well as with variation of depth of foundation. Under the influence of dynamic forces, the
foundation interacts with the soil activating dynamic soil structure interaction, which significantly
influences the dynamic response of machine foundation system.

Depending upon type of analysis, soil is represented as an elastic half space with the help of
equivalent soil springs represented by elastic sub-grade reaction coefficients. Typical soil
parameters and dynamic properties of soil used in machine foundation design are:

E Young’s Modulus of Elasticity

G Shear modulus

v Poisson’s ratio

P Mass density

¢ Soil damping

C, Coefficients of uniform compressioﬁ of the soil

Cy Coefficients of non-uniform compression of the soil
C, Coefficients of uniform shear of the soil

C,- * Coefficients of non-uniform shear of the soil

The significant aspects of soil properties, which influence soil structure interaction, are: Energy
Transfer Mechanism, Soil Mass Participation in Vibration of Foundations, Effect of Embedment of
Foundation, Applicability of Hook’s Law to Soil, Reduction in Permissible Soil Stress and
Dynamic Soil Parameters.

These influences have suitably been addressed in Chapter 5.
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1.7 VIBRATION ISOLATION

Isolation means reduction in the transmissibility of the exciting forces from the machine to the
foundation and vice-versa. Vibration isolation devices have been used to achieve satisfactory
performance. Isolation in broader sense includes the following:

o Control of transmission of dynamic forces from machine to the foundation and thereby to
the adjoining structures and equipment

o Isolation of equipment from the vibration effects of the adjoining system

o Isolation from external forces like Earthquake Shock, Blast etc.

For cases, where a bunch of vibratory machines are to be mounted on a common elevated platform,
vibration isolation may turn out to be a better proposition. Vibration Isolation Design for machine
foundation systems includes, isolation requirement, isolation design, selection of isolation devices,
influence of sub-structure (wherever applicable) on the response, etc.

Basic theory of Vibration Isolation is dealt in Chapter 4 and the design of foundations with
Vibration Isolation System is covered in Chapter 12,

1.8 FIELD PERFORMANCE AND FEED BACK

It goes without saying that proof of the pudding is in eating only. A feed back from the site for the
machine’s performance therefore is essential. The data needs to be recorded at frequent intervals at
site, compiled over a period of time and feedback provided to design office for drawing necessary
inferences from the same and use these for design updates.

It is the general practice in the industry to pay more attention only to those machines that do
not perform well. More often than not, for every malfunction one keeps on trying modifications in
the machine like better balancing, replacing bearings etc till satisfactory results are achieved. It is
worth noting that every time the malfunction occurs the cause may not be machine alone but it
could be foundation too. In certain cases, desired results could be achieved by correcting the
source, which may be other than the machine.

In the opinion of the author, the data for healthy machines also need to be studied at regular interval
and feedback given to designers. This will certainly help in improving design methodologies.

Some case studies are covered in Chapter 14.
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THEORY OF VIBRATION

Basic Understanding with Specific Application
| To
Machine Foundation Design

2. Single Degree of Freedom System
3. Multi Degree of Freedom System
4. Vibration Isolation
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SINGLE DEGREE OF FREEDOM SYSTEM

Free and Forced Vibration

Undamped System

Damped System

Equivalent SDOF System - Columns and Beams
Dynamic Load Externally Applied

Dynamic Load Internally Generated

Impact Loads :

Impulsive Loads - -

Example Problems
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Single Degree of Freedom System 2—3

SINGLE DEGREE OF FREEDOM SYSTEM

In order to understand the dynamic behaviour of machine foundation system, the knowledge of
theory of vibration is essential. Simplest system for basic understanding of vibration is a spring
mass system. For understanding basic vibration, let us consider some of the aspects associated with
vibration.

o Degree of Freedom System: Number of coordinates required to locate displaced position
of the mass is called its Degree Of Freedom (DOF)

o Single Degree of Freedom System: A system is said to be a Single Degree of Freedom
System (SDOF) when the displaced position of the mass is expressed by a single
coordinate. For example, a one spring mass system as shown in Figure 2-1, is a Single
Degree of Freedom (SDOF) system as the deformation of the spring takes place only in
one direction and the displaced position of the mass m is defined by a single coordinate.
For the system as shown in Figure 2-1, the degree of freedom is y coordinate of center of
mass m

¢ Free vibration: A structural system, when disturbed from its position of equilibrium and
released, oscillates about its mean position of equilibrium. This state of vibration of the
structure without any external excitation force is termed as free vibration

¢ Forced vibration: If a system vibrates under the influence of an applied dynamic (time
dependent) force, it is termed as forced vibration of the system

e Damping: Any engineering system, when disturbed from its position of rest, will show
vibration, which will die out eventually with time. The process by which vibration
steadily diminishes in amplitude is called damping. In other words it can be said that every
physical system has inherent damping associated with it. If we ignore damping, the
system is called undamped system and if damping is considered, it is called damped
system

For better understanding of the dynamic behaviour of the SDOF system, the spring properties are
considered linear and the presentation is developed in stages. Each stage contains its
Mathematical Treatment and Example Problems. The stages considered are:
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1) Free vibration
Q Undamped System
Q Damped System
2) Forced vibration

pooTToTTTRATIIT ' Displaced Position

L.

\

Figure 2-1 Single Degree of Freedom (SDOF) System

2.1 FREE VIBRATION

2.1.1 Undamped System - SDOF Spring Mass System
Let us consider two types of SDOF spring mass system:

i) System with Translational DOF and
ii) System with Rotational DOF

2.1.1.1 SDOF System - Spring Having Translational Stiffness
Unidirectional Translational Stiffness along Y-direction

Consider one spring mass (SDOF) system without damping as shown in Figure 2.1.1-1. The
system has mass m and unidirectional spring in y direction having stiffness k, . Before we

consider vibration of this SDOF system, let us consider the system under static equilibrium i.e.
mass at rest position.

System at Rest i.e. Static Equilibrium Position:  The gravity force acting on the mass is mg .
Here g is acceleration due to gravity acting downward in (~) Y direction. Under this force, the
spring deflects by an amount &, in(-) Y direction. This deformed position of the mass is termed as

position of static equilibrium (also termed as mean position) and is shown in Figure 2.1.1-1 (a).
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Let us now consider equilibrium of forces at DOF location i.e. center of mass location for this
system at rest. The free body diagram showing forces acting on the mass is shown in Figure
2.1.1-1 (b). Considering equilibrium, we get

k6, =mg (2.1.1-1)
m
Solving, we get 0, = ne (2.1.1-1a)
k y
¢— Undeformed
Position ”ig
m
««— Position ‘
1 after Deformation
k}' 8)’
(a) System at Rest (b) Free Body Diagram

Figure 2.1.1-1 Undamped SDOF System-Static Equilibrium

System under Motion: Let us now impart a motion to the system at rest position. Let us
disturb the mass by pulling/pushing it slightly (by an amount y ) along Y and release it. The mass

starts oscillating about the mean position i.e. position at rest as shown in Figure 2.1.1-2.

The displaced position of the mass at any instant of time t is shown in Figure 2.1.1-3. Consider
that at any instant of time ¢, the position of the mass is at a distance y upward from the mean
position as shown in Figure 2.1.1-3. Let us consider the equilibrium at the DOF location i.e. center
of mass at mean position. Forces acting on the mass, as shown in Figure 2.1.1-3 (b) are:

a) Inertia force my
b) Elastic resisting force (spring force) &,y

It is important to note that all the internal forces i.e. inertia force and elastic resisting force oppose
the motion. Accordingly their direction of application is in the direction opposite to direction of
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motion of the mass. For the displaced position of the mass in (+) Y direction, as shown in Figure,
these forces act opposite to direction of motion i.e. () Y direction.

It is to be noted that the motion of the mass is about position of static equilibrium i.e.
the position where the gravity force and corresponding spring reaction force are in
equilibrium. Hence these forces do not appear in the set of forces considered for
dynamic equilibrium condition. In other words we can also say that the gravity force
and the corresponding spring reaction force do not contribute to vibration of the
spring mass system.

Thus the net forces acting on the mass are only inertia force and elastic resisting force (spring
reaction force). Free body diagram for the mass m under set of these forces is shown in Figure
2.1.1-3 (b).

4 Displaced
Position

¢ Mean Position
(System at Rest)

i+ Displaced
Position

Figure 2.1.1-2 Undamped SDOF System-System under Motion

Considering the equilibrium of all forces acting on the mass at any instant t, the equation of motion
is written as:

my+k,y=0 2.1.1-2)

This equation is called equation of motion of free vibration of an undamped SDOF System.

The solution to equation of motion (See SOLUTION 2.1.1-2) gives natural frequency p, and

amplitude of free vibration p, of the mass.
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k
Natural frequency P, = % rad/s (2.1.1-3)

We can also express this in terms of static deflection &, and acceleration due to gravity g.
Substituting equation (2.1.1-1) in (2.1.1-3) it gives

py= %y rad/s 2.1.1-4)

Since system is undamped, it will continue vibrating indefinitely. The vibration motion of the mass
depends upon initial conditions. For initial conditions y(f) = y(0) & y(¢) = 3(0) at time ¢ =0, the
motion of the mass and maximum amplitude of free vibration are given as
y = y(0)cos p t+y—(025inp t (2.1.1-5)
y py Yy

2
Maximum amplitude as p. = || »0)? +[5’(0)] (2.1.1-6)
y

4

m «— Displaced
Position

—<—

m l¢— Mean Position m
(System at Rest)
k,y
(a) System Under Motion (b) Free Body Diagram

Figure 2.1.1-3 Undamped SDOF System-Free Vibration

Since system is undamped, it will continue vibrating indefinitely. The plot of the equation (2.1.1-
5), showing motion of the mass for initial conditions y(6) =y(0) & y(t) = (0) at time [ = 0,is
shown in Figure 2.1.1-4.
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v
-~

-2
-3 ] Time-Sec
System Parameters y (0) = 1; y(0)=7.85; T=2sec

Figure 2.1.1-4 Free Vibration Response of SDOF System

SOLUTION  2.1.1-2

Rewriting equation (2.1.1-2) my+k Y= 0 (a)
For solution of the equation, let y be represented as y = e"

Thus y=e"; y=s%e" (b)

Substituting equation (b) in equation (a), equation becomes (ms2 +k, Ye' =0

Since exponent €* is not zero, therefore for solution to exist, (ms* +k y)=0

k
This gives two values of § s=%i -2
m
) k, . tip,t
Denoting p, =,|— , the solution takes the form  y=e (c)
m .
Here p, represents the frequency of free vibration or natural frequency in rad/s
k k
p, =4 rad/s; or f, =L g (@
m S 2 Am

Where f, is the cyclic frequency in cycles/sec (Hz)
) . . ipyt ~ip !
The solution (c) is thus written as y=Ae 7V +4e ¥

Using De Moivre’s theorem, the equation is rewritten as
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y=Acosp,t+Bsinp,t ' (e

The values of A & B are obtained using initial conditions.

Considering initial displacement y(t) = y(0) andvelocity y(t)=y(0) at time t=0 and substituting

in (e), we get A=y(0) & B= >0
Py
: _ 0
Solution becomes y=y(0)cosp,t+ sinp,, ¢ 1)
Py

2
Maximum amplitude p,= 47 + B?)= [y(0)2+(&] ] ©®
p

¥y
For specific initial condition of y(t)=y(0) & y()=0;

Equation (f) becomes y=y(0)cos pt ")

It is to be noted that equation (2.1.1-2) my+k,y=0 is the equation of motion for

translational DOF ). For system with translational DOF X or Z, this equation & its
solution need to be modified by replacing y with X or Z respectively.

2.1.1.2 SDOF System - Spring Having Rotational Stiffness (Rocking Stiffness)
Connected At CG of Base Area of the Block

Consider the block having mass m and Mass Moment of Inertia M, about centroid Z-axis
passing through centroid C. A rotational spring having rotational stiffness % is attached to the
support point (center of the base point) O of the block as shown in Figure 2.1.1-5. The block is
constrained such that it cannot move either in X or Y direction but it can only rotate in XY plane
about Z-axis (perpendicular to plane of paper) passing through O. The centroid C is at a distance A
from the center of the base of the block O. The DOF of the system is rotation ¢ at point O.

Static Equilibrium: Let us first consider the position of the mass at rest i.e. mean position of
the mass. The gravity force mg is taken care of by reaction R at support point O.

System under motion:  Let us disturb the block so as to cause it to rotate slightly about point O
and then release the block. The block shall start oscillating about the mean position (i.e. position at
rest) at point O in X-Y plane. Consider that at any instant of time [, the block position is rotated
anti-clockwise by an angle ¢ as shown in Figure 2.1.1-6. Due to rotation, centroid point C moves

to new location point C'. Rotation ¢ at O induces rotation ¢ and translation 4¢ at centroid C’
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4> <

O | T
h
(0 | > X
ky
Z

Figure 2.1.1-5 Undamped SDOF System with Rotational Spring
attached at Center of Base of Block

Forces acting on the system are as shown in Figure 2.1.1-6. These are:

i) Rotational Inertia = M mz ¢ acting clockwise (opposite to direction of motion) at centroid
C'.
ii) Translational Inertia force (along direction perpendicular to line OC") = mhéf (opposite

to direction of motion)
iii) Resisting moment offered by spring (clock wise) at O = k, ¢
iv) Moment due to self-weight (anticlock wise) at O = mg x hsin ¢ = mghg
(For ¢ to be small sing=¢)
Considering equilibrium of forces at DOF location i.e. at point O, we get
2Y=0 mg—R=0 or mg=R (2.1.1-7)

M, =0 (M ;6 + mh x h) + k6 — mghg =0 (2.1.1-8)

Rearranging terms, we get

(M, + mh*)p +(k, ~mgh)p =0
Or M, $+(ks—mgh)$=0 (2.1.1-9)

Here M, =M, +mh? is the mass moment of inertia of the block about Z-axis passing through

support point O. This is the equation of motion of an undamped SDOF system with rotational DOF
at point O.
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¢

Ce

m
M,

&

0
ky

7

(a) System at Rest (b) Rotation about O (c) Free body Diagram

Figure 2.1.1-6 Undamped SDOF System with Rotational Spring attached at center of

Base of Block - Free Vibration

Solution to this equation (see SOLUTION 2.1.1-9) gives:
Motion of the block ¢=Acosp,t+Bsinp,t

fk— h
p¢= (LM.’Zg__)_ rad/s

2—I11

(2.1.1-10)

(2.1.1-10a)

Here p, represents rotational natural frequency of the system and constants A & B are evaluated

using initial conditions.

For all practical real life cases, it is seen that term mghis negligible compared to k; and can be

conveniently be ignored without any loss of accuracy in the frequency value. Hence the natural

frequency becomes:

ks

Py = rad/s

moz

SOLUTION 2.1.19
' Rewriting equation (2.1.1-9)
M, o ¢ +(ky —mgh)g =0
For solution of the equation let ¢ be represented as

p=e" Thus $=s%"

Substituting equation (b) in equation (a), equation becomes
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2—I12 Single Degree of Freedom System

(M, 8% +(ky ~mgh))e® =0 (©

Since exponent e is not zero, therefore for solution to exist,

(M oz > +(ky —mgh)) =0 (d)

(ky —mgh)
This gives two values of § s =+i |————— (e
Mmo:.'
. (kg —mgh) .
Denoting Py = — the solution (b) takes the form

= Y
This can be rewritten as ¢=Ae " + e (2
Using De Moivre’s theorem, the equation is rewritten as
¢=Acosp,t+Bsinp,t (h)
The values of constants A & B are obtained using initial conditions.
It is to be noted that equation (2.1.1-9) M, . é +(ky —mgh) ¢ =0 is the equation of motion for
Rocking about Z-axis i.e. DOF ¢ . For system with Rocking DOF &, this equation & its solution

need to be modified by replacing M,, win M., M,, with M,, and k,with k, ie.

appropriately replacing all ¢ parameters with § parameters.

2.1.1.3 SDOF System - Spring Having Rotational Stiffness (Torsional Stiffness)
Connected At CG of Base Area of the Block

Consider a block having mass m and Mass Moment of Inertia M,,, about Y-axis passing through

CG of the Base Area. A Torsional spring having rotational stiffness £, is attached to the block at

the CG of the Base area point O as shown in Figure 2.1.1-7. The block is constrained such that it
can neither move in X nor in Z direction but it can only rotate in XZ plane about Y-axis passing
through O.

Proceeding on the similar lines, we get equation of motion as

My W+, =0 2.1.1-11)
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Here M,,, =M,, is the mass moment of inertia of the block about Y-axis passing through

support point O. This is the equation of motion of an undamped SDOF system with Torsional DOF
at point O.

Solution to this equation gives:

Motion of the block w=Acosp,t+Bsinp,t (2.1.1-12)

ky

Here p, = rad/s represents Torsional natural frequency of the system. Constants A & B

moy

are evaluated using initial conditions.

Y X -
A —— a
i m e ‘\
CM, |
1
i
i
|
|
|

v
i \
my T Z \ Y _.-4
)

h - ‘\ “\
\ \ BN
0 Lyx S | W
ky
7
(a) System at Rest (b) Rotation about Y-axis

Figure 2.1,1-7 Undamped SDOF System with Torsional Spring attached at center of
Base of Block- Free Vibration

2.1.1.4 Equivalent SDOF Systems

Any physical system, for the purpose of analysis, needs to be modeled mathematically and the

model must represent the prototype nearly truly i.e. the mathematical model and prototype must be
equivalent.

For mathematical modeling, the machine is generally considered as rigid body consisting of only
mass whereas the foundation is considered a) as a rigid body having only mass as in the case of
block foundation and b) as an elastic body having both mass and stiffness for the case where
machine is supported on structural system comprising of beams and columns.

Block Foundation: In case of block foundation resting directly over soil the foundation
rigidity is much higher compared to that of the soil. Thus the foundation is considered as a rigid
body. Hence only mass of the block needs to be accounted for.
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Machine supported on Structural System: For cases, where machine is supported over a
column, a beam, a portal frame or their combination, contribution of both mass and stiffness of the
support system become significant. For such systems, equivalent structural mass should be added
to machine mass for computation of frequency and response. Frequency computation based on
massless springs would turn out to be erroneous. It is therefore desirable to develop equivalent
systems, which include influence of mass content of support system.

Following basic systems are considered and equivalent SDOF system developed for each ot: these:
i. A column supporting the mass
ii. A cantilever beam supporting the mass
iii. A simply supported beam supporting the mass
iv. A fixed beam supporting the mass
v. A Portal Frame supporting the mass
a) Vertical Motion
b) Transverse Motion

vi. A Rigid Beam Supported by number of columns — Lateral Motion

2.1.1.4.1 A column supporting the mass — axial motion

Consider a mass m supported by a column having cross-section area A, Elastic modulus E
height 7 and mass m, as shown in Figure 2.1.1-8 (a). Consider that the system is constrained to
move only in vertical Y direction.

ExA N/m

Column stiffness in Y direction = axial stiffness of column = & y =

Representing column by an equivalent spring, the system represents a SDOF spring mass system as
shown in Figure 2.1.1-8 (b), where spring is not a mass-less spring but has mass same as that of

column i.e. mass m, . This system is identical to the system shown in Figure 2.1.1-1 except that in

this case the spring (i.e. column) has a mass m,, .

If we neglect the column mass (i.e. neglect the spring mass), we get

k
Natural frequency is p="-—y rad/s 2.1.1-13)
m

" This is same as given by equation (2.1.1-3).
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Columns
™ | massm, =y
h Eia —
] - "k
iR
Z 3 ///
(a) Column Supporting Mass m (b) Spring Mass same as Column Mass

m =m+0.33m,

e

(c) Column represented as massless Spring

Figure 2.1.1-8 Column Supporting Mass-Equivalent Mass

2—15

Now let us include the column mass i.e. consider the spring having mass m_. Consider that

the mass is displaced from its position of equilibrium and released. The spring mass system
exhibits vibration. Let the displacement of the mass at any instant of time ¢ be y . Consider that

the variation of the displacement at spring top ) to the displacement at spring bottom zero is
linear. This represents column deformation ¥ at the top to zero deformation at the column base.

The displacement is shown in Figure 2.1.1-8 (b).

Consider a small element of the column at a distance @ from fixed end.

Vertical displacement at this point of the column = y—Z—
m
Mass of this element of column = —hc— da
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o . h 2
Kinetic energy of the spring mass system E- _;_m (y)z . jl[ ”e da](}) a )
0

Here y represents the velocity

Simplifying this equation becomes

1o mfm Y a1 o 1m0 )0k
E=Em(y)2+(j)5[7daj(y—) —-2-”1()*) +5[7;2—](Y) fa“da

h

1o 17 1 o3 1] m | o 1« i
=5m(y)2+5_h-_(,,)2_ 5{,,,\L_}(y)t_.g{m b)2 (2.1.1-14)

* * mC
m=m+m,=m+ (2.1.1-15)

Here  m, is termed as generalised mass of the column, &

* | . .
m is termed as equivalent mass or generalised mass of the total system.

This indicates that if one third of the column mass is added to the mass m then the spring could be
considered as massless. The model thus becomes as shown in Figure 2.1.1-8(c).

The natural frequency of the system thus becomes

rad/s (2.1.1-16)

2.1.1.4.2 A Column supporting the mass — lateral motion or a Cantilever Beam

supporting the mass — flexural deformation
/.

Lateral motion of a column supporting the mass or flexural deformation of a cantilever beam .
supporting the mass is the same. Let us therefore analyse the case as a cantilever beam.

Consider a mass m supported by a cantilever beam having cross-section area A, Elastic
Modulus E | length L and mass m, as shown in Figure 2.1.1-9. Consider that the beam deforms

only in X-Y plane thus constraining the system such that mass 7 moves only in vertical Y
direction.

Now consider that the beam mass system is displaced from its position of equilibrium and released,
the system shall exhibit vibration.
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Beam stiffness in bending: Representing beam by an equivalent spring, the system represents a
SDOF spring mass system. This system is identical to the system shown in Figure 2.1.1-1 except

that in this case the spring (i.e. beam) has a mass m, . From the principles of statics, one can write
equation of deflection curve of the cantilever beam.

Consider a small element of the beam d, at a distance @ from fixed end.

Mass of this element of beam dm = % da

The deflection of the beam &, at this location

6, Do o) 2.1.1-17)

For a =L, we get deflection at the free end of the beam =

(mg)L’
5, =2/ .
I 3E] (2.1.1-18)
m
Beam stiffness (in bending) ky = 7g = §L£3I N/m (2.1.1-19)

,k
Neglecting beam mass, the natural frequency is p = — rad/s that is same as given by
m

equation (2.1.1-3).

If the mass of the beam m, is small (but not negligible) in comparison to the applied mass m it can

be assumed with sufficient accuracy & with good level of confidence that the deflection curve of
the beam during vibration has the same shape as the static deflection curve under influence of mass
m.

Denoting the deflection of the beam at the free end as y, we get from equation (2.1.1-18)

_(mg)l
3E]

— YL

Substituting in equation (2.1.1-17) we get 5, intermsofyas &, = L}(&zzL - a3)
2L

KE of the system
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L . 2
E=Lim)?+ 11(&""—){!—3(%% _d )}
2 0 2 L 2L
=L 2 0? i"l’—(i)z a1~ a*f o
2 2 L \20)
Simplifying further, it gives:

2
| 1 ...m 1 33
E=5m(y)2+§<y>2—”-(~) Fred

L \2*) 35
=%m(y')2+%(y')2%m,, =-;-(m+%m,,](y-)2 (2.1.1-20)
=5k’
Here m =m+ m,: =m+023m, & represents the velocity (2.1.1-21)

Where m, is termed as generalised mass of the beam, &

* . . N
m  is termed as equivalent mass or generalised mass of the total system.

m*=m+0.23my,

7 d, -
——»X
a ——»
le N
l L —
7
M [m] .
y
3
8= (dL—d
a = ZL3( al-a) (b) Beam Represented as Spring; (c) Beam represented
Spring Mass same as Beam as massless Spring
(a) Beam Deflected Shape Mass

Figure 2.1.1-9 Cantilever Beam Supporting Mass m - Equivalent Mass

This indicates that if (33/140 ~0.23) of the beam mass m, is added to the applied mass m then

the spring could be considered as massless. The model thus becomes as shown in Figure 2.1.1-
9(c).

The natural frequency of the system thus becomes
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ko k

PN ( 33
m+——‘mb
140

2.1.1.4.3 A simply supported beam supporting the mass

rad/s (2.1.1-22)

a) Mass at beani center location

Consider a mass m supported by a simply supported beam at center. The beam has cross-section
area 4, Elastic modulus £, length L and mass m, as shown in Figure 2.1.1-10(a). Consider that

the beam deforms only in X-Y plane thus constraining the system such that mass m moves only in
vertical Y direction. Now consider that the beam mass system is displaced from its position of
equilibrium and released, the system shall exhibit vibration.

Beam stiffness in bending: Representing beam by an equivalent spring, as shown in Figure
2.1.1-10(b) the system represents a SDOF spring mass system. This system is identical to the
system shown in Figure 2.1.1-1 except that in this case the spring (i.e. beam) has a mass m, .

From the principles of statics, one can write equation of deflection curve of the simply supported
beam. Consider a small element of the beam da at a distance a from fixed end as shown.

Mass of this element of beam dm = % da

The deflection of the beam &, at this location

mg 2 3
S = 3al? -4 2.1.1-23
a 48E1( al? ~4a') . ( )

Fora= % , we get deflection at the beam center

(mg)L*
8,1y = 2.1.1-24
L2 = e ( )

Beam stiffness at beam center (in bending)

k=8 B ' : (2.1.1-25)
s L |
L2

,k

Neglecting beam mass, the natural frequency is p =,/—% rad/s that is same as given by equation
m

(2.1.1-3).
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If the mass of the beam m, is small (but not negligible) in comparison to the applied mass m it can

be assumed with sufficient accuracy & with good level of confidence that the deflection curve of

the beam during vibration has the same shape as the static deflection curve under influence of mass
m.

Denoting deflection at the center of the beam as ¥, we get from equation (2.1.1-24)

_(mg)l’
48E1
=m+0.485 my
4, []
— —7
L
Y
8,=— (3aL —4da
5 )
[m]
3, y (b) Equivalent Spring (c) Equivalent Spring
Mass system; Spring Mass system; Spring
Mass same as beam is massles
mass

(a) Beam Mass system-
Deflected shape

Figure 2.1.1-10 Simply Supported Beam - Mass at Center - Equivalent Mass

Substituting in equation (2.1.1-23) we get J,, intermsofyas &, = L%(3aL2 - 4a3)

KE of the system

_l m, da \| y 2 32
E=—m()’ +2(j) 2( - ){L3(3L —4a )}

Solving we get

;(m+;—5 ](y) =—(m+0485m,,)(y) (Xy) (2.1.1-26)

Where m' =m+m, = m+0.485m,

Here y represents the velocity of the mass

https://engineersreferencebookspdf.com



Single Degree of Freedom System 2—21

* * . -
Here m,& m are termed as generalised mass of the beam and generalised mass of the total
system respectively.

This indicates that if (17/35~ 0.485)of the beam mass m, is added to the applied mass m then

the spring could be considered as massless. The model thus becomes as shown in Figure 2.1.1-
10(c).

The natural frequency of the system thus becomes

p= k. = (2.1.1-27)
m
b) Mass mat Beam Center and another Mass m, at off-center— Beam is mass less

m*=m+otml

3, y (b) Equivalent Spring
Mass system; Spring
is massless

(a) Beam Deflected shape
due to Mass m

Figure 2.1.1-11 Simply Supported Beam - One Mass at Center and Other mass
at Off-center -Beam Massless- Equivalent Mass of System

Consider mass m supported at beam center and another mass m, supported at a distance a from

support as shown in Figure 2.1.1-11. In this case mass participation of the beam will depend upon
ratio a/L.

Following the procedure as in case (a) above, we get Kinetic energy equation of the system as:
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2
1 .5 1. 1 S 3 ’
E= '2—m(y)2 +5(Y)2 ml{—LT(3aL2 —'4(13 )} =5(y)2 m+m1 {-f—“(%) }

E=%m%w2 (2.1.1-28)

312
Where m'=m+aml; a= E—{ﬂ
L L

Plotof « vs. a/LL is shown in Figure 2.1.1-12

1.07
0.8
0.6
0.4+

0.2

Machine Mass Participation Factor a.

0 0.1 02 03 0.4 05
Machine Mass Location vs. Span-Ratio a/L

Figure 2.1.1-12 Simply Supported Beam-Mass at Off-center Location-
Machine Mass Participation Factor-Beam Massless

2.1.1.4.4 A fixed beam supporting the mass - Consnder Mass at beam center
location

Consider a mass m supported by a fixed beam at center. The beam has cross-section area A,
Elastic modulus E, length L and mass m), as shown in Figure 2.1.1-15(a). Consider that the beam

deforms only in X-Y plane thus constraining the system such that mass m moves only in vertical Y
direction.

Now consider that the beam mass system is displaced from its position of equlllbrlum and released,
the system shall exhibit vibration.
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Beam stiffness in bending: Representing beam by an equivalent spring, as shown in Figure 2.1.1-
15(b) the system represents a SDOF spring mass system. This system is identical to the system
shown in Figure 2.1.1-1 except that in this case the spring (i.e. beam) has a mass m, .

From the principles of statics, one can write equation of deflection curve of the fixed beam.
Consider a small element of the beam ‘da’ at a distance a from fixed end as shown.

m
Mass of this element of beam dm= b da

The deflection of the beam at this location

mga* 4 ya
S, = 3L-4a)= 3L-4a .
o =gpy L 4a)= = ) , (2.1.129)
For g = % , we get deflection at the beam center =
(mg)’
= 5 = -
Y =012 192E] (2.1.1-30)
Beam stiffness at beam center (in bending)
_mg _ 192E1
k, = N N/m (2.1.1-31)
L12

’k
Neglecting beam mass, the natural frequency is p =,/—= rad/s that is same as given by equation
m

(2.1.1-3).
Substituting equation (2.1.1-30) in equation (2.1.1-29) we get

4ya

5, = (3L+4a) - (2.1.1-32)

Consider that the deflection curve of the beam during vibration has the same shape as the static
deflection curve under influence of mass m.

L2 2
KE of the system E=—;-m(j1)2+2 I %(ﬂ”-;—“){“y 2 (BL-4a )}
0

Solving the equation gives us E = —;—(m +;—35-mb )( 7 = -;-(m’ b’/)z (2.1.1-33)

Where m" =m+m, =m+0.3Tm, & y represents velocity of the system
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Here m,& m’ are termed as generalised mass of the beam and generalised mass of the total

system respectively.

m*=m+0.37m,

7 \
A \
a —
- L §
’// [7] \
1y
e
r L "
(b) Equivalent Spring Mass  (c) Equivalent Spring
System; Spring Mass Mass System; Spring
(a) Beam Mass System Same as Beam Mass is Massles
Deflected Shape

Figure 2.1.1-13 Fixed Beam - Mass at Center - Equivalent Mass

2.1.1.4.5 A Portal Frame supporting the mass

Consider a portal frame supporting mass 7 at beam center as shown in Figure 2.1.1-14. Material
and section properties are as under:

Elastic Modulus of Material (Both column & Beam)
Mass density of the material

Span of Beam is
Height of Frame
Area of Beam Crossection

Area of Column Crossection

Moment of Inertia Beam Crossection
Moment of Inertia Column Crossection

Consider that portal frame is constrained to move only in X-Y plane. Possible motion directions are
a) motion along Y and b) motion along X.
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(i) Basic Frame supporting Mass at Frame Beam Center

o
My Mg x L/4 / Mc
oy ML
My=Mp= 3k+2)
Mo=M.= — mglL
M, M, B-TCT 4k+2)
TR XK
Deflection
(if) Vertical vibration mode (along) Y
. —om _ —mgH 3k+1
8 = U= T2 e+
_ MgH 3k
: Mg 6+ 1
M
D Mp=-My Mc=-Mg
Deflection Bending Moment Diagram

(iii) Transverse vibration mode (along ) X

Figure 2.1.1-14 Portal Frame with Machine Mass m at Beam Center - Deflection and Bending
Moments - Vibration in Vertical & Translational Mode

To represent the motion as SDOF system, the frame shall have one DOF for each of the motion
along X and Y. For motion along Y the DOF is &, and for motion along X the DOF is &, . Let us

consider these cases one by one.

Beam Stiffness factor kp=(p/L)
Column Stiffness factor k.=(,/H)
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a)

Single Degree of Freedom System

Beam to Column Stiffhess ratio k==t -0/%

Motion along Y (Vertical Motion)

Degree of Freeedom S,

This has two components, one pertaining to beam deformation J,, and other pertaining to

column deformation & o+

i) Beam Deformationd, :

Machine Mass on the frame Beam m

Mass of Frame Beam my =pxAd,xL
Generalised mass of Frame Beam (for vertical motion) my, =0.45xm,

Note:  For simply supported beam the factor for equivalent mass is 0.485 (see equation
2.1.1-26) and for fixed fixed beam this is close to 0.37 (see equation 2.1.1-33). For a

frame this value is taken as 0.45 (close to average).

Total Effective mass on Frame Beam for deflection J,, m* =m+0.45m,

Considering bending moment diagram of beam alone (as shown in the Figure), and using

basics of theory of structures, we get:

* . . 3
a) Deflection due to span moment mglL S = m gL
48E1,
* . » 2
b) Due to support moments m gL ) b2 = m g L 9 L
4(k +2) a(k+2) 8EI,

m gl m'gl I

Net beam deflection at center Sy =0y —Oypy = YA ~2 k+2) X 8E],

8= -’;%Lgli: x 2kk++21 Here m" = m+0.45m, (2.1.1-34)
i) Column Deformation . :
Mass of each column m,=pxA.xH
Generalised Mass of each column (equation 2.1.1-15) m; =0.33m,
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Effective Mass on frame column top causing deflection &, of the columns:

m* =(m+my)+2x0.33xm,

Vertical deflection of columns

m xXg »
6,=—7r———; Herem" =(m+m,}+2x0.33xm 2.1.1-35
= 2% (Ea /H) -+ m,) : 2.1.135)
Overall vertical deflection at mass location 0,=0,+0,
Natural Frequency P, = Bg— rad/s (2.1.1-36)
y
b) Motion along X (Transverse Motion)

For transverse motion along X, consider toatal mass acting on the frame acting along X. For this
motion only columns undergo flexural deformation and beam moves like a rigid body.

Generalised mass of each column top (equation 2.1.1-21) m; =0.23m,

M= —mgH 3k+1
4T 2 6k+1
M= mg H 3k
B~ 2 6k+1
M, + My = "”ng

My MMy Mg

Deflection 8 =8,(M,+Mp) — 5.(Mp)

Total Effective mass on Frame column top (both columns) causing transverse deflection

m* ={(m+m,)+0.23x2xm,} (2.1.1-37a)

Lateral deflection at column top this load applied along X:

Considering bending moment diagram of column (as shown in sketch above), we get:
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6x = 6x(MA+MB) “YxMp)

5 = m'xngx H? _ m'xng>< 3k 9 H*
g 2 3EI, 2 6k+1 2EI,

_m xgxH® 2+3k
* 12EI, 1+6k

(2.1.1-37b)

Natural Frequency Dy = —5— rad/s (2.1.1-38)

X

Representing in terms of mass and stiffness, we get:

Lateral Stiffness k=T 28 12E3’c 1+ 6k (2.1.1-39)
J, H’ 243k

Mass m* ={m+m,)+023x2xm,} (2.1.1-40)
Natural Frequency

P = f%r_: L;i rad/s (Same as equation 2.1.1-38) (2.1.1-41)
X

2.1.2 Damped System

Figure 2.1.2-1 Damped SDOF System

It is well known that most engineering systems, during their vibratory motion, encounter resistance
in the form of damping. Any engineering system, when disturbed from its position of rest, will
show vibration, which will die out eventually with time. The process by which vibration steadily
diminishes in amplitude is called damping. There are various forms of damping viz. air damping,
coulomb damping, viscous damping, internal damping etc. and for detailed mathematical treatment
to damping; readers are advised to refer to any standard text/reference book on structural dynamics/
vibration,
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For the application specific to machine foundation, let us consider damping as viscous damping
where, the resisting force is proportional to velocity. Damping, denoted by c, , is represented by a

dashpot. Damped SDOF System is shown in Figure 2.1.2-1.

The system under motion is shown in Figure 2.1.2-2 (a). Internal forces acting on the mass at any
instant of time t are:

. Inertia force proportional to acceleration
. Damping force proportional to velocity
. Spring force proportional to displacement

These forces are shown in the free body diagram as shown in Fig. 2.1.2-2b. It is to be noted that all
the internal forces oppose the motion i.e. if mass is moving towards positive y direction, the

forces are directed towards negative y direction.

Considering the equilibrium of the forces acting on the mass, equation of motion is written as:

my+e,y+k,y=0 @2.1.2-1)

Solution to this equation suggests three types of systems

i) Critically Damped System
if) Over-damped System
jii) Under-damped System

(a) System Under Motion (b) Free Body Diagram

Figure 2.1.2-2 Damped SDOF System under Motion

https://engineersreferencebookspdf.com



2—30 Single Degree of Freedom System

Consider the solution to be of the form

y=e" (2.1.2-1a)

2

y=se"; p=se" (2.1.2-1b)

Substituting equation (2.1.2-1a & b) in equation (2.1.2-1), the equation becomes

(ms*+c,s+k,)e" =0 (2.12-1c)
y Yy .

Since e” is non-zero, for solution to exist

(ms? +e,s+k,)=0 (2.1.2-1d)
- Sy Cy ’ ky
This gives two roots of s Sjg =———t {—p ——
’ 2m 2m m
ky
Substituting py= P it gives
c e, )’
y y 2
Sy =———F . R—¢ - 2.12-1e
M7 om {Zm} Py ( )

The solution to the equation of motion becomes

y=de’ + 4,6 @2.1.2-19)

This expression represents three types of motion depending upon whether the radical in equation
(2.1.2-1e) is zero, positive or negative. Thus:

i) If radical is zero, this represents critically damped system
ii) If radical is positive, it represents over damped system, and
iii) If radical is negative, it represents under damped system

Let us examine these cases one by one.

- 2.1.2.1 Critically Damped System

o >
Rewriting equation (2.1.2-1¢) ' S1.2 =__2C_'yn_i {%} -p)?

For critically damped system, the radical in equation (2.1.2-1¢) is zero, then -
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2
2 =0 ; This gives c, =2m
om py =V o g y - py

This damping is termed as Critical Damping.

c
Denoting critical damping as ¢,, , Cycr = 2mpy ; 2”;: =p, (2.1.2-2)

c C
. y yer
S =—— = -
12T T o py 2.1.2-3)

Since there is only one value of s, the solution therefore, becomes:

‘y

—Z

y=(4 +4,t)e 2"
or y=(4+A,0)e " (2.1.2-4)
Constants A} & A are evaluated using initial conditions.

Equation (2.1.2-4) indicates decaying amplitude y with time. It can be seen that the value of y
reaches zero quickly and the mass comes to rest. In other words the mass shall not have any
oscillation.

The damping value for which the radical becomes zero is termed as Critical Damping of the

system.

y=¢ " {4 -p)+ 4{1- po) 2.125)
Constants A| and Ay are evaluated using initial conditions.
Considering initial displacement y(f) = y(0) and velocity y(¢) = (0) at time t=0 and substituting
in to equation (2.1.2-4)& (2.1.2-5), it gives

4 =y0); 4, =y0)+p,y(0)
Equation (2.1.2-4) thus becomes

=0+ (0 + p,y @)k’ (2.12:6)

Equation (2.1.2-6) thus represents solution for critically damped system.
For a typical case of initial zero velocity i.e. y(0)=0

Equation (2.1.2-6) becomes

https://engineersreferencebookspdf.com



2—32 Single Degree of Freedom System

y={a+p,ne™
or ;% =(1+p, e 2.12-7)

Defining damping coefficient as ratio of damping ¢, to critical damping c,,, and representing it

by &,

¢ . Cy
¢, = ; Since ¢, =2mp, Cy =2mpy§y CT==Dpyy (2.1.2-8)
Cyer 2m

Plot of equation (2.1.2-7) is shown in Figure 2.1.2-3

It is seen from this figure that the free vibration response of a critically damped system does not
show any oscillation about the zero deflection position, instead the displacement quickly returns to
zero (depending upon its exponential decay term).

In other words the critically damped system has the smallest amount of damping for which no
oscillation takes place.

1.2
1.0
0.84
064 .
0.4
0.2

0 r v . —_—
0 0.5 1 L5 2.0

yr

yi(0)

Figure 2.1.2-3 Response of Critically Dampéd System - Initial velocity y (0) =0

'

2.1.2.2 Over Damped System

2
Rewriting equation (2.1.2-1¢) Si2= _.2%1: {ﬁ)*_} ~p,?

For over damped system, the radical in this equation is positive
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Substituting ¢, =2mp ¢, from equation (2.1.2-8), equation becomes

Sj2 =—Py6, £ py\}i y2 -1 (2.12-9)

For radical to be positive, g, >1
In other words, the system is said to be over damped when ¢, is greater than unity i.e. damping of
the system is more than its critical damping.

Substituting values of §, & §, from equation (2.1.2-9), solution for over damped system, equation

(2.1.2-1f) becomes

(‘Pygy‘Py fyz'lJ’ y (‘nyy“’y\)@z‘l]‘

y=A4e +Aye (2.1.2-10)
The constants A4, & A, are determined based on initial conditions.

Equation (2.1.2-10) indicates that the system does not vibrate and returns to equilibrium position at
arelatively slower rate compared to critically damped system.

Differentiating equation (2.1.2-10), it gives

y(t) = {— pyé'y -py\/(é?z__—l-)}Ale{_pyg)"Py (Jyz—l)}t
+{— Py, + pym}Aze{‘Py¢y+Pym}t

For a typical case of initial displacement of y = y(0)and initial velocity of y(0)=0and

(2.12-11)

substituting in equation (2.1.2-10) & (2.1.2-11), it gives

ol {6+’ -1}
2\/(§y2 _1) ’ 2‘/(§y2 '1)

Substituting equation (2.1.2-12) in equation (2.1.2-10), the equation becomes

Y@ _ {—g" i [{,, 2 —1:} {“-V‘ ¢u'-1 }p_vt

TN o

A = 3(0) Ay = y(0) (2.12-12)

https://engineersreferencebookspdf.com



2—34 Single Degree of Freedom System

. {é'y +,ﬂ§y2 -1 )} e{_;ﬁ\/(?fn)}w
2k, -1

(2.1.2-13)

Y(OH(0)

yT

Fig2.1.2-4  Response of Critically Damped System (¢, = 1) &
Over Damped System (gy >1)

Plot of equation (2.1.2-13) is shown in Figure 2.1.2-4. Figure also shows plot of critically damped
system for comparison.

Since structural systems having damping greater than critical damping are normally not

encountered in practice, and neither there is any application to the machine foundation design, the
details are not discussed further.

2.12.3 Under-Damped System

2
Rewriting equation (2.1.2-1¢) 8§12 = -2+ {—’f-} - py2 (2.1.2-14)

For under damped system, the radical in the equation is negative

Substituting €, = 2mpyC y from equation (2.1.2-8), equation becomes
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1.2,
1.04
&; 0.8
5 0.61
& 0.4
0.2/
0

0 0.5 1.0
Damping Coefficient

Figure 2.1.2-5 Damped Frequency vs. Damping Coefficient

$12 =Py, £ 21 (2.12-15)
For radical to be negative, & y < 1 i.e. the system is said to be under damped when ¢ , is less than
unity i.e. damping of the system is less than its critical damping.
Denoting 7, =P, 1-¢2 (2.12-16)
Equation (2.1.2-15) becomes Sj2=— py§ y TiPay 2.1.2-17)
Here p 4y Tepresents damped natural frequency of the system.

Plot of equation (2.1.2-16) is shown in Figure 2.1.2-5, It is seen that for damping values up to 20%,
there is hardly any appreciable change in damped frequency.

Substituting values of s, & s, from equation (2.1.2-17), solution for under damped system, equation

(2.1.2-1f) becomes
~PySy! ~Pay! +Pgy!
y=e (Ale Y4 dye Y ) (2.12-18)
This equation can also be expressed in trigonometric function as .

-p,¢,! .
y=e Pyoy (Acospdyt+Bsmpdyt) (2.1.2-19)

Differentiating we get:
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y=-p,3, e_pygy’(Ac05pdyt+Bsinpdyt)

g (2.12-20)
ye Préey! (_

PayAsinpy t+ pdyBcospdyt)

The constants 4 & B are determined based on initial conditions.

1.5

1.0

0.5

¥(O/»(0)

-0.5 1

-1.01

-15-

Figure 2.1.2-6 Variation of Amplitude with Damping

Considering initial displacement y(¢) = y(0) and velocity y(¢) = »(0) at time t=0 and substituting
in equations (2.1.2-19) & (2.1.2-20), we get
1 .
4=y0) ; B=—/{i0)+p,, )
Pa y
Substituting for 4 & B in equation (2.1.2-19), the solution becomes
(¥(0)+ p,¢, ¥(0)) g
Pay

y(t) = e'pygy'[y(O) cospy,t+ npy, t} 2.1.2-21)

For a particular case of initial velocity y(0) =0, the solution becomes
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() -p,¢ PySy .
—=¢ (cosp , t+ sin py ,t) (2.1.2-22)
.V(O) 4r pdy d

- t A . .
In this equation e P46+" indicates exponential decay of the motion and rate of decay depends upon
value of damping. The other part within parenthesis indicates harmonic motion with damped

frequency p .

Plot of equation (2.1.2-22) for various values of damping coefficient is shown in Figure 2.1.2-6. It
is seen that with 10% damping, motion practically diminishes after about 4 cycles. For comparison
sake, free vibration motion for over damped, critically damped, under damped & undamped system
is shown in Figure 2.1.2-7

1.57
1.0

0.5

0_

ADN0)

-0.57

—-1.0"7

t/T —>»

-1.5-

Figure 2.1.2-7 Free Vibration Response for Undamped System { y=0 Under-Damped
&y < 1, Critically Damped (;y =1 & Over-Damped Cy >1

2.2 FORCED VIBRATION

A structural system, when subjected to time dependent excitation force, is set to motion. This state
of vibration of the structure is termed as forced vibration. For machine foundation application,
more often than not, the machine internally generates the excitation force. However in some cases,
this force could also come from external sources. It is of interest to note that whether the excitation
force is applied externally or generated internally, the structure always vibrates with the frequency
of the excitation force.
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2.2.1 Undamped System - Dynamic Force Externally Applied
2.2.1.1 System having Translational Stiffness & Dynamic Force Externally Applied

A SDOF system subjected to dynamic excitation (whether internally generated or externally
applied) is a simplest form of representation of a machine foundation system. The mass represents
mass of machine and foundation whereas elasticity of the bedding (soil or support system) is

represented by spring stiffness &, and the system experiences a dynamic excitation force F(f).

As a machine foundation designer, the basic interests are:

To compute natural frequency
. To compute vibration of the mass i.e. response under dynamic force F(f)
. To compute force transmitted to the ground/ fixed support base

Consider an undamped SDOF system subjected to externally applied dynamic excitation force
F(t) as shown in Figure 2.2.1-1. Consider the applied excitation force to be harmonic with

excitation frequency . Let this excitation force be F(¢) = F sinews and let it be applied to the

mass ‘ m’ as shown. Considering equilibrium of forces, equation of motion is written as

my+k,y=F,sinot (2.2.1-1)

This is the equation of motion for forced vibration of Undamped SDOF System.

F(t) = F, sin ot my F(§)=F,sinot
A S
, I
k,y
1 " >
k}'
7
(a) System under Motion (b) Free Body Diagram

Figure 2.2.1-1 Forced Vibration - Undamped SDOF System
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Solution to this equation (See SOLUTION (2.2.1-1)) gives total response as:

F, 1

y(t)= Acospt+Bsinp,t + -l(——)sina) t 2.2.1-2

y y ky 1""ﬁ}2; ( )
Complimentary solution ~——~—"—

Particular Solution
Complimentary solution represents transient vibration whereas particular solution represents

steady-state vibration. Constants A & B are evaluated based on given initial conditions. It is seen

. . ’k . .
that system vibrates with natural frequency p, = % during transient phase (see equation 2.1.1-

3) and with natural frequency @ during steady-state phase.

For initial conditions y = y(0) & y = 3(0), solution becomes

(0 By .. 1.
y(&) = y(0)cos pyt + L(-l—5y -(——)y Slsinpt + 4, ysine ¢ (2.2.1-3)
p y 1- ﬁ y 1~ IB y
complemenlz‘zrry solution particular  solution
(Transient Vibration) (Steady State  Vibration)

F : : :
Here &, = % represents the static deflection due to applied force r,
y

For specific initial condition of y0)=0 & y(0)=0, weget

Complementary solution

y (t)=-—F—y— by sinp, t (2.2.1-42)
¢ k, h—ﬁji d -
yc(t) ﬂy :
Or —————=—I—~)5mp t (2.2.1-4)
(Fy/ky) l—ﬂf y

Plot of equation (2.2.1-4) is shown in Figure 2.2.1-2
Particular solution (Steady State Response)
yp(t) = Ey— ! sin@ ¢ (2.2.1-5a)
k, (- B} i .

yp®) v, 1. y
= = sinwt; 0,=— (2.2.1-5b)
(F,/k,) 6, (- B2 i Yk,

~

Or

Total Response becomes
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Yy =y () +y,)= :—y(l_—lﬁj(sm wt-p,sin pyt)

Y

| (2.2.1-6a)
=4 (sincot-,b’ sin p t)
¥y ( 2 ) Y ¥
1-4,
Total Response Amplification is given by:
t t G
W _ v, 0 221

(F,/k,) (F,/k,) (F,/k,)

Plot of these three equations (2.2.1-4, 5 & 6) is as shown in Figure 2.2.1-3.

./\ 7
2.5 3.0W4.0

Figure 2.2.1-2 Undamped Transient Response - Forced Vibration

0.3
0.2

0.1 /_\

g 0 O o5/ 10 1'5W
o . . . .
-021

~-03- HT—>

Force transmitted to support

The force Fy;, (¢) transmitted to support in Y-direction is only the spring reaction force in Y-
direction, i.e. Fp (1)=k, y(f). Considering that every physical system possesses inherent

damping, the transient response dies out with time (as we shall see later in this chapter) and the
transmitted force to the support is only on account of steady-state response i.e. f, () =k, y,(0),
where y , is the steady-state response.

Substituting for y, from equation (2.2.1-5), we get:

1
F,(t)=F sinw ¢
Iy yh_ﬂ)z/}

Maximum value of transmitted force Fp, =F 22.1-7)
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From the above, we can summarize as:

Natural Frequency py = ,/k% rad/s

Stead =J ! i
teady state response yp,()=6, msm ot
y

Max. Force transmitted to support Fp, =F, s

1.5
Total
1.0
Steady state

051

[< Transient
5
‘g 0

N

) -0.5 1.0 1.5

-0.57

- 1.0

-1.5-

Figure 2.2.1-3  Forced Vibration Response - Undamped SDOF System

SOLUTION (2.2.1-1)
Rewriting equation (2.2.1-1)

my+k,y=F,sinot (a)
Solution to this equation has two parts
i) Complimentary solution represents Transient response of the system
ii) Particular solution represents Steady-state response of the system

Complimentary solution:
It’s the free vibration response of the system.

Setting RHS of equation (2.2.1-1) equal to zero, equation becomes
my.+kyy. =0 ®

Here subscript ‘c’ in y, refers to complimentary solution
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System vibrates with its natural frequency p, and the response is given as

Y (t) = Acos p,t+ Bsin p ¢ (c)
For solution of this equation - see solution 2.1.1-2 equation (f)
Particular solution:
Particular solution is the forced response of the system. The system vibrates with the frequency of
the excitation force i.e. frequency‘w .
Equation of motion, i.e. equation (a) is rewritten as

my,+k,y,=F,sinot (d)
Here subscript p in y, refers to pdrticu/ar solution
Thus for particular solution of equation (d), let solution be of the form

y,()=Csinwt (e)

Differentiating twice we get Vp=-0 2Csinot
Substituting in (d), we get

—ma)2Csinwt+kstina)t=Fysina)t

F
Or (-0” + p})Csinwt =—Lsinwt
m

’k
Here p,= X denotes natural frequency.
m

. . o 4 N
Denoting ratio of excitation frequency to natural frequency as B, =— and substituting, we get

Py
Co F, 1 _ F, 1 B F, 1
. 2, 2y 2 2 Tk -2
m (-0 +py) mp, (=p,+1) k, (1-4))
Substituting in equation (e), solution becomes
F, 1.
yp(t)=-kl — sinw!? 7]

¥ Yy

The complete solution i.e. total response therefore becomes y(t) =y (1) +y ,(¢)
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F, 1
—_ : y .
y(t)—:4cospyt+Bsmpyt+—-k — sinw ¢ @
Complimen{;y solution N Y b4

Particular Solution
Let us evaluate constants A & B for initial conditions y =y(0)& y=3(0) and examine the
response.
Differentiating equation (g), we get
By
ky (1= 5))
Substituting initial conditions in equations (g) & (h), we get

5O _g B 1
py k(-8

Substituting for A & B in equation (g), solution becomes

y(t)=-p,Asinpt+p Bcosp,t+a coswt 0]

A=y(0)

yo) F, B, |. F, 1
y()=y(Q)cosp t+ |——=-— sinpt + -2~ sinw ¢
g Py ky (1‘13,3) g k, (1‘,3}%)
. , NEANC LA

complemenlc‘l'ry solution particular  solution
(Transient Vibration) (Steady State  Vibration)

¥(0) By | L :
y(t) = y(0)cos p,t+ {T—éy -(:?ﬂsm pt + 6, (:ﬂ—yz)smw t ]

y y

complement;ry solution particular  solution
(Transient Vibration) (Steady State  Vibration)

~

Here 6, =F, / k, represents the static deflection of the mass due to force F,

For specific initial condition of y(0)=0 & »(0)=0, weget

F, B
Complementary solution y,(t)=—— (——)y sinp,t 0
F, 1
Particular solution y,)= —1(———] sinw ¢ (k)

Since 6, = F, / k, represents static deflection of the mass, term y(©) I(F, y / ky) thus represents

response amplification.
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2.2.1.2 System having Rotational Stiffness & Dynamic Moment Externally Applied
Roc¢king about Z-axis

Consider the undamped SDOF system having rotational stiffness (about Z - axis) in X-Y plane as
shown in Figure 2.2.1-4. System mass is m and M, is the mass moment of inertia about Z-axis

passing through centroid C located at a height ~ above point O. Consider that a dynamic moment
M(t)=M sinwt is applied externally at point O.

Proceeding on the similar lines, we get equation of motion as:

M, §+(ky —mgh) =M, sinot (2.2.1-8)

Here M, =M, +mh?* is the mass moment of inertia of the system about Z-axis passing throu
moz mz Y P g

CG of base area point O.

We can write the solution to the equation as:

M, 1
o) = Acosp t+Bsinp,t+ sinwt
? - (k¢ mgj( 2)

Comphmentary solution

Parucular Solution

ky —mgh

moz

Here p, = is the rocking natural frequency and B, = % represents frequency ratio
¢

of operating frequency to natural frequency.

v “tu. T

' h

Mmooy )
Z k¢
7

Figure 2.2.1-4 Undamped SDOF System - Rotational Spring Attached at Center of
Base of Block - Dynamic Moment M(¢) = M¢ sin wt applied at point ‘O’
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As mentioned in § 2.2.1.2, the term mgh is negligible compared to k, and can be conveniently be

ignored for all practical real life cases, without any loss of accuracy in the response. Hence the
response becomes:

My 1
. ¢ :
g(t)= Acos pyt+ Bsin pyt +—— sinew ¢ 2.2.1-9
, (—)1—,3; ( )

Complimentary solution

Particular Solution

The steédy State response (Particular solution) is given as:

M, 1 .
=2 2.2.1-
¢I,(t) k, (——)1—,8; sinw t (2.2.1-10)

Rocking about X-axis

Similarly for system having rotational stiffness &, (about X-axis) in Y-Z plane and a dynamic
moment M () = M, sinwt about X-axis applied at CG of Base area point O, we get

M pyox é+(k6_mgh) 0=M, sinw!? 2.2.1-11)

We can write the solution to the equation as:

M, |1
O(t) = Acos p, t + Bsin pyt +—% Ssinet 2.2.1-12
ko (1—ﬂ.§) ( )

Complimentary solution

Particular Solution

f k . .
Here py = M” is the rocking natural frequency (see § 2.1.1.2) and S, =w/p, represents
mox

frequency ratio of operating frequency to natural frequency.

The steady State response (Particular solution) &,(¢) is given as:

_M,

1 .
6,1)= k, msmwt (2.2.1-13)

Torsional Motion about Y-axis

Consider a system having Torsional stiffness &, (about Y-axis) in X-Z plane and a dynamic

moment M(¢) = M, sinwt is applied at CG of Base area point O about Y-axis.
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Proceeding on the similar lines, we get
M,y W +k, =M, sinot : (2.2.1-14)

moy

We can write the solution to the equation as:

M, 1
w(t)=Acosp, t+ Bsinp t+——"L(———)sina}t

Complimentary solution

Particular Solution

Steady state response is given as

=5 1 . 5 M '
1) = smwt y = 2.2.1-15
"4 Wﬁtiiﬂ v k, ( )

is the rocking natural frequency (see § 2.1.1.3) and f§, = w/k, represents

Here p, =

moy

frequency ratio of operating frequency to natural frequency.

The steady State response (Particular solution) is given as:

M,

1 .
sinw ¢ (2.2.1-16)
k, 1-52)

2.2.2 Damped System - Dynamic Force Externally Applied

W) =

Consider damped SDOF System with excitation force F,sinot as shown in Figure. 2.2.2-1.

Considering equilibrium of forces (see free body diagram)
Equation of motion is written as

my+c, y+k,y=F,sinot @22-1)

Denoting (C%) = zpyé’y K (k%j = p}2} ; —;ﬁ)— = ﬁy and. 53_, :(%J
y .

The equation becomes

+2 st o2y = sinw = L m s t=36,plsi 2222
V4 py/,’yy+pyy—WSlpwtm—](—mpy51nw =4, p,sinwt 2.22-2)
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Solution to this equation (See equation ¢k) - Solution 2.2.2-2) gives total response as:

)= e "% (Acos Payt+Bsin py 1)

v
Complim entary Solution
Transient Re sponse

, 1 . 2.2.2-3)
+9, sin(w t — ¢)
S5 + s, 0, P

\

Particular Solution
Steady-state response

Here 6, = (% ) is the static deflection of the spring mass system.
Yy

Constants A, & B, are evaluated based on initial conditions.
The first term on RHS (equation 2.2.2-3) represents Transient Response and the second term

represents Steady-State Response of the system.

F(®)=F,sin ot

‘ F(t)=F, sin ot my

1 Displaced Position T l
m
{4¢——Mean Position l l
kyy el
Y
(a) System under Motion » ) (b) Free Body Diagram

Figure 2.2.2-1 Forced Vibration-Damped SDOF System Translational Stiffness in
Y-direction - Dynamic force F(f) = Fy sin ®f applied along Y
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For a specific case of initial conditions »(0)=0 and p(0)=0at =0, we get:
Transient Response as (see equation (q) -Solution 2.2.2-2)

(2¢,8,)
252 2 co
(l_ﬂy) +(2§yﬁy)

Spdyt

(t)=5,¢ " 2224
y()=86, RS C AL A DI (22.2-4)
d)
Ji=¢2) a-8,7+e¢,8,) g
Steady-state response as (see equation (s) - Solution 2.2.2-2)
y,()=6, 1 sin{fw ¢ - @) (2.2.2-5)

‘Kl—ﬁi)z +(2'3y§y)2

Here 6, = -k—y- Represents static deflection under the force £, and
¥

S

2
¢= tan‘[[(lﬂy;;y )J Represents the phase angle (see equation (t) - Solution 2.2.2-2), which gives
TFy

the time by which the steady state response lags behind the excitation force. -

Total Response thus becomes @) =y.0)+y,0) (2.2.2-6)

Transient response plot (equation 2.2.2-4) for &', =0.2 is shown in Figure 2.2.2-2.

1.51
1.0 1

‘QA 0.5 A /\
A0

~ . e . |
~0.5 | Ov.i 1.0 1.5 20 25 30 35 4.0
-~ 1.0 1

T —»

-15

Figure 2.2.2-2 Damped SDOF System Cy =0.2 - Forced Vibration - Transient
Response

It is seen that transient response dies out with time in a few cycle. Thus it is the steady state
response that is really important. '
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25 Steady-state
1.0 Response
Total

Transient
Response

W? ; \7 %0
°r

Figure 2.2.2-3 Forced Vibration Response - Damped SDOF System

15 Response
1.0

0.5
o
-050
-1.0
-1.5
-2.0
-2.5

v/,

Plot of equation (2.2.2-5) giving Steady-state Response and equation (2.2.2-6) giving Total
Response is shown in Figure 2.2.2-3. Transient response is shown for comparison only.

Rewriting equation (2.2.2-5) in terms of response amplification, we get

1
¥p) _ u, sin(@1 - ¢) (222-7)
5)’
1
Where u, = 2.2.2-8)
\/(I_ﬂg)z +(2§y 'By)z
Hy Represents Dynamic Magnification Factor along Y

Plot of Dynamic Magnification Factor (equation 2.2.2-8) is shown in Figure 2.2.2-4
Force transmitted to support:
Since the system is damped system, the force F (f)transmitted to support is force due to spring
reaction + force due to damping. Thus we get
Fr(y=k,y,+c,y, (2.2.2-9)

From equation (2.2.2-5), integrating y ,(¢), we get

1

yp(=6,0 \[( cos(wt - @) (2.2.2-10)

1-p2f +28,¢,
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Substituting (2.2.2-5) and (2.2.2-10) in equation (2.2.2-9), we get
1 1

sin(wt-@g)+c, 8, @
Ji-52f +(2s, 2, C l-p2Y +lse,Y

F
Using relationships £,6, =F,; c,0d,=2mp, , o 7(—y— =2,¢, and simplifying, we get
y

Fr(t)=k,6, cos(@ ! ~¢)

Ji-p2f +05,2, )

Maximum value of transmitted force thus becomes:

, 2
F; =F, 1+@5,¢)) =F, u,1+(28,¢,)? (2.2.2-11)
‘/(l_ﬂ)%)z+(2ﬂy;y)z

Fr @O =F, fin(i—g)+28,¢, cos@t - )}

Magnification Factor p

0 0.5 1.0 1.5 2.0 2.5

Frequency Ratio 8

Figure 2.2.2-4 Magnification Factor p vs. Frequency Ratio B

At this point it is worth mentioning that:

e  Since there is no appreciable variation in damped and undamped natural frequency for
damping value up to 20 % (see Figure 2.1.2-5), the response has been plotted for time

https://engineersreferencebookspdf.com



Single Degree of Freedom System 2—51

period corresponding to natural frequency of the system instead of its damped natural
frequency.
The transient response dies out in about 3 cycles

o The total response, which is sum of transient and steady state response, therefore remains
same as that of steady state response

*  For frequency ratio of unity i.e. B, =1, response shoots up significantly (see Figure 2.2.2-

4). This condition is termed as resonance condition

It is also seen from the Figure 2.2.2-4 that under this resonance condition i.e. B, =1, response
rises to infinity for 0 % damping. (This statement is only for academic interest and of least practical
significance as every system has some amount of damping and amplitude shall never rise to
infinity).

From the point of view of machine foundation design, it is thus desirable to avoid resonance

condition to avoid building up of the amplitude of vibration. In other words it is desirable to keep
natural frequency sufficiently away from excitation frequency.

From the above, we can summarize as:
k
¢ Natural Frequency (undamped) Py =47 n rad/s
1
2
\/(1 - 'By)2 +(2'By gy)z

e Max. Force transmitted to support Fr=F, pu, \/1 +28,¢ y)2

SOLUTION (2.2.2-2)
Rewriting equation (2.2.2-2)

e  Steady state response yp,()=96, sin{@ t — @)

j3+2py§yy+p§y=6ypf,sinwt : (a)
The solution to the equation (2.2.2-2) has two parts:
i) Complimentary solution
i) Particular solution

Complimentary solution: It is the free vibration response of the system.

For complimentary solution, equation (a) becomes (for free vibration RHS = 0)
Fe+2pyC, e+ Py =0 (®)

Here subscript ‘c’ in y, refers to complimentary solution
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System vibrates with natural frequency p, and the response is given as (see equation (2.1.2-19)):

yc(t)=e_pygyt(Acospdyt+Bsinpdyt); where Py, = py\ﬂl—gfj

Particular solution: It is the forced vibration response of the system.

For particular solution, equation (a) is written as
. . 2 2 . :
Ypt2p,0, Y, +DyY,=0,p,sinat (¢

Here subscript “p ‘in y, refers to particular solution

’

The system vibrates with the frequency of the excitation force i.e. frequency‘w "
Let solution be of the form
yp(O)=Csinwt+Dcoswt (@)
Differentiating, we get
Yp()=w (Ccoswt-Dsinwt)
j}p(t)=—a)2(Csina)t+Dcosa)t) @
Substituting in (a), equation becomes
—wz(Csina) t+Dcosw t)+ 2p,f,w(Ccosw t— Dsinw t)
+p2(Csina) t+Dcosw f) =94, pi sinw ¢
Rearranging terms, we get
(Cw’-2p,¢,wD+p2C~5, p2)sinat
+(-0* D+2p,¢, 0 C+ piD)coswt =0 0
For equation (f) to be true for all values of t, coefficients of sinw t & cosw t should independently
be equal to zero. Thus we get
~-Co®-2p,{,0D+piC-5,p=0; Or
C(pi - wz)_ D(2pyé'y a))—— Sy pf, =0
-0’ D+2p,¢,0 C+pyD=0
C(2py§y a))+ D(pﬁ - a)z)= 0

®

")

https://engineersreferencebookspdf.com



Single Degree of Freedom System 253

Multiplying equation (g) by ( pi —0%)and equation (h) by (2p, ¢, ®) and rearranging terms, we

get )
Cpy -0*)’ = D(p; -0*)2p,¢,0) =6, py(py -0)

C2p,¢,0)* +D(py~0*)2p,{,0)=0

Solving, we get

cos oD (-53)
T -0? v 2p, g 00 T (- B9 +(24,B,) 0
2 (2py ;ya)) (2Cyﬂv)
D=-0,py~—5— 7="9, PRy 2
(py‘w ) +(2pyé’yw) (1 ﬂy) +(2§yﬂy)
Substituting (1) in equation (d), particular solution becomes
2

(1-5,) 0l ¢,B,) st 1 0

=46 sinw t -
YR B L B, V(1= A+ L, B,

The complete solution then becomes yOH=y.(O+y p )

-pyéy ! .
w)y=e 7 (Acosp,t+Bsinpy,1)

Complimentary Solution
Transient Response

_n2 %
5y 2(12 ﬂy) 2sina)t—5y 2(22§yﬂy) 5 COS® ¢ W
(1-8,) +(2¢,8,) (-8, +(2¢,8,)

Particular Solution
Steady- state response

Constants A, & B, are evaluated based on initial conditions y = y(0) and y = y(0) at t=0
Differentiating equation (k), it gives

)= -—py{ye—pygy ’(Acospdyt-stin pdyt)+e'py{y ’(— pyAsin pdyt+decospdyt)

- B2 )
s, 2(]2 Ay) ~Cosw 1+ J, 2(22§yﬂy) ~sino ¢
(1-8,)"+(25,8,) (t-8,) +2¢,8))
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Substituting initial condition y = y(0) and y = y(0) in equations (k & 1), it gives
2¢,8))

A=y(0)+5 (m)
s v 87
: (2¢,8,)
0 2)
: WO +p,g, W0)+p,L, 0, (—F +L.p.7
B=—1 ) ()
pdy _ (] - 1B_y )
d (]_ﬂj)z +(2¢y/6y)2
For a specific case of y(0)=0 and y(0)=0, we get
(2¢,8,)
=% 2 fyﬂy 2 ©
(1-8,)"+(2¢,8,)
1 (2¢,5,) (-5
B=—1p,,9, IS ;=09 T 2 ®
Pay (=522 +(2¢,8,) (-8 +(2¢,B,)
Complimentary solution thus becomes
@B
O [ S Ne 0 |
Yet)=8, e ) @
1 Cy(zgyﬂy)_ﬂy(]_ﬁy)sinp P
1-¢2) a=Bnt+e,p) Y
Where 6, = Q represents static deflection under the influence of force F ¥
y
Rearranging terms of equation (j), Particular Solution becomes
. a2 _
y,()=6, (1 ﬂy) _sinw !+ 2%,y cosm? r)
(0-3F +Cc, 8| [-3F +0t, 8. |
By combining terms, the equation becomes
1
yp0)=3, sin(w - ¢) ()
Vi-52F +G, ¥
'Where ¢ =tan™" 2)523— ®
(1-5;)
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Here ¢ is the phase angle, which gives the time by which the steady state response lags behind the

excitation force.
Response becomes Yp()=96,u, sin(wt—¢) (1)
Uy, = ! is Dynamic Magnification Factor along Y v)
\m_ 'Byz)z * (24)/ 'By)z
Total Response thus becomes YO =y.O+y,0) (w)

2.2.3 Damped System - Dynamic Force Internally Generated

In machine foundation design, more often than not, the dynamic force is internally generated by
machine itself. Let us address this issue by considering a SDOF System as given below:

Consider a damped SDOF system having mass m, spring stiffness &, and damping ¢, as shown

in Figure 2.2.3-1. Machine mass m has a rotating component of mass m, rotating at speed @
having eccentricity e.

m,= Rotating mass
e = Eccentricity
o = Speed of rotation in rad/sec
Dynamic force generated by the system F@t)= m,ea)2 sinwt

The system considered is same as that of Figure 2.2.2-1 with the difference that dynamic force
applied to the mass is m,ew’ sinw ¢ instead of F, sinw:.

Equation of motion:

Substituting F), =m, eo? in equation 2.2.2-2, we get

2
TPl plsina ¢ (2.2.3-1)

J+2p, &, y+piy=
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2—56 Single Degree of Freedom System

Steady state response

m,en’

With
y

response thus becomes (See equation (2.2.2-5)

\/(1 "'B}%)Z + (2ﬂy gy)_z

m, ew?

b T ks )

y,,(t)=§y si{w t — @)

sin{(wt — @)

Substituting pf, =k,/m & p,=0/p, andrewriting, equation becomes
Yy =22 by
(=20
" Ni-52F +6z,5,F

Where ¢ =tan "'(M)

1- 8]

sin(w ¢ - ¢)

F@= m,eo)2 sin of

r ]
H ' = 2 . v
T m 14— Displaced Position Ft)=m,eo sin ot 1"}’
' ]
y
_L m
m | ¢~——Mean Position 1 l
kyy ¢,y
(a) System under Motion (b) Free Body Diagram

Figure 2.2.3-1 Forced Vibration-Damped SDOF System Dynamic Force Internally

Generated
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For a given ratio of rotating mass to system mass, equation 2.2.3-3. represents magnification of
dynamic amplitude over eccentricity as a function of frequency ratio B, for various values of

damping. Plot of steady state response (equation (2.2.3-3)) is shown in Figure 2.2.3-2.

Rewriting in non-dimensional form

y/e V ,By2 sin(w ¢
= -¢) (2.2.3-5)
m/m \Kl—ﬂj)z+(2¢yﬂy)z
yie _ . B
il sin(w 1 - ¢) (2.2.3-6)
2
Here by (2.2.3-7)

M W Ny

Plot of equation (2.2.3-7) for various values of damping is shown in figure 2.2.3-3
Force transmitted to support:

Since the system is damped system, the force Fr(f)transmitted to support is force due to spring
reaction + force due to damping. Thus we get

FT(I)=ky yp+cy j"p (223-8)

From equation (2.2.3-3), integrating y ,(¢), we get

2
7O="o <
o Jo-mf e,

Substituting (2.2.3-3) and (2.2.3-9) in equation (2.2.3-8), we get

2
em, Y

cos(w t - @) (2.2.3-9)

sin(w ¢ - ¢)

FT(t) = ky

(2.2.3-9a)
em, Yy

o w\m_ ;)2+(2¢yﬂy)2

+c
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m

: 0.107 7’ =0.05

0.08+ m

0.06J —£ =0.02
m

0.04-

0.02+

0 ¥ L T T T

0.0 0.5 1.0 1.5 3.0
~0.04-
~0.06-

~0.081
- 0.10A T

yp0le

Figure 2.2,3-2  Ratio of Steady-State Response to Rotor Eccentricity-Forced Vibration
- Damped System - Dynamic Force Internally Generated

Representing in terms of generated dynamic force F, =m, ew? and simplifying RHS of equation
(2.2.3-9a), we get

2
m, 2_kyem,a) —
kyeTn—ﬁy_— m —Z'—Fy and
Py
) 2
c,em c,em, o
S e e s,
Py

With this equation (2.2.3-9a) becomes

! sin(wt — @) + 256y
\/(l_ﬁi)z+(2ﬂy;y)2 \/(l"ﬂ)%)z*'(2'Byé,,v)2
Maximum value of transmitted force thus becomes:

. AIr@B L) . 1+@BLY 22310

SN W Uy BN WP Y.

1t is seen that this equation is same as equation (2.2.2-11) where the force F,sinwt is externally

Fr()=F, cos(w?—¢)

applied.
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From the above, we can summarize as:

e Natural Frequency (undamped) p,= \’k% rad/s

ew? : 1

b Ji-p2F +le,8,Y

) \/1+(2ﬂy ¢,y
Ji-p2F+s, ¥

sin(w ¢ - ¢)

e  Steady state response yp)= 7

e Max. Force transmitted to support Fr=m,ew

61 !
| gm0
5—
£
e ¢,=0.1
5 47
s | Gy=0.2
s
§ : |
2 2] |
3 :
[ 14 " S—
0 1 I' T T T T
0 0.5 1.0 15 20 2.5 3.0

Frequency Ratio By

Figure 2.2.3-3 Response Amplification Hy Vs, Frequency Ratio ﬁy - Forced
Vibration-Damped System - Dynamic Force Internally Generated

2.2.4 Damped System - Dynamic Excitation Applied At Base

Consider a damped SDOF system having mass m , spring stiffness k, and damping ¢, as shown
in Figure 2.2.4-1. A dynamic excitation in form of ground acceleration y, (¢) is applied at the base

of the system.

Equation of motion: Let the displacement of the mass be y,, & that of the base be y, . The

inertia force developed is m ¥,, & acts opposite to direction of motion.
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The spring deformation = y,, -y,

Spring reaction force = &, (y,, ~ y,)

Damping force = ¢, (¥, — V)

Considering equilibrium of forces (see free body diagram), the equation of motion is written as
MY +Cy(Vm = V) +ky (Y —yg) =0

Rewriting equation by subtracting m j, from both LHS & RHS, it gives
My —Myg +C, (Y=Y ) +k,(y—yg)=-my,

Representing y,, ~y, =¥; Vm =Yg =V; JVm—yp =y andsubstituting, it gives

my+c,y+k,y=-mp,

My

T n T "

. . I

1 i 1 . K, Om=3 ¢Gm-3p
(b) Free Body Diagram

(a) Forced Vibration-Damped SDOF System - Dynamic Excitation
Applied at Base

Figure 2.2.4-1 Forced Vibration-Damped SDOF System - Dynamic Excitation Applied
at the Base : )

Considering ground excitation acceleration as sinusoidal ie. y,(f)=y,sinwt?, the equation

becomes:

my+c,y+k,y=-my,sinat ‘ ‘ (2:24-1)
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Denoting (cy / m)= 2p8,s (ky / m)= pl  and F,=-mj, and substituting, the equation

y
becomes
my F
j}+2py;‘yy+p)2,y=———-—y—g-sinwt=——y—sina)t (2.24-2)
m m
. . Fy Fy .
Substituting &, = — =—=— the equation becomes
y m py
y+2p, ¢, y+piy=pld, sinot (2.2.4-3)

It is noticed that equation (2.2.4-3) is similar to equation (2.2.2-2). Thus we can write the steady-

state response on the same lines as equation (2.2.2-5).

1

Ji-p2 +s,¢,¥

(see equation 2.2.4-2)

=8, sin(o 1 —4) (2.2.4-4)

Here 6, = s
k

y

We can write this in terms of magnification factor as
yp()=8, p, (sinwt - ¢) (2.2.4-5)
Where
1

M Ry

2
¢=tan"! (I‘:—Lﬂﬂ—zy) is the phase angle
Py

Force transmitted to support:

is magnification factor &

Since the system is damped system, the force Fj(¢)transmitted to support is force due to spring
reaction + force due to damping. Thus we get ‘
Fr()=k,y,+c, 5, (2.2.4-6)
From equation (2.2.4-4), integrating y ,(¢), we get
1

y,()=6,w
’ ' \/(l‘ﬂ}zl)z'*(zﬂygy)z

cos(wt—¢) 2.24-7)
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Substituting (2.2.4-4) and (2.2.4-7) in equation (2.2.4-6), simplifying and rearranging the terms (on
the similar lines as given in § 2.2.2), we get

! sin(@t~@)+c, 6, @ !
J-gf +s,,¥ Jo-22F +Gs, 0¥

Fr=6 1 (, sin(@? - g)+c,0cos(0f - $))

i +Gs, ¢, ¥

Maximum value of transmitted force as:

Fr=k,3,

cos(wt—¢)

(c,0)
Fp = my, Jki +(cya))2 =£y_ ot kﬁ
Y t-g2f +Ca,g,p *r l-82f +6syc, )
2 2
] e
py mpy
Fr=

F =F
y\Kl—ﬁsz)z"'(zﬂycy)z y\/(l_ﬂﬁ)z*'(zﬂygy)z
1+@p, ¢,y | ' (2.2.4-8)
" 2.
J-p2f +s, ¢, ¥

Fr=-mj, 1+@5, ¢ (2.2.4-9)
Ji-82F +ls, 2, ¥

From the above, we can summarize as:

T

¢  Natural Frequency (undamped) Py =Jky /m rad/sec

my, 1
b Ji-s2f + s, 8,

F, - \/1+(2 B,¢,)

e Ji-52F +es, ¢, ¥

(sinwz-¢)

e  Steady state response Y=~

¢ Max. Force transmitted to support

https://engineersreferencebookspdf.com



Single Degree of Freedom System

2.2.5 Undamped System — Subjected to Impact Loads

Let us consider a freely falling mass ‘ m,° falling from height ‘ 7’ and striking mass ‘m, ’ of an
undamped SDOF spring-mass system, initially at rest, as shown in Figure 2.2.5-1. Let us consider

that mass , is at rest before the impact and the impact is central.

Let vy & v; represent velocity of masses my & m, before impact and v, & v; represent velocity

of masses my & m, after impact.
From conservation of momentum, we get:

17y XV + Mg X Vo = Iy XV + Mg XVy

Before Impact After i;npact
Since v =0, we get
1

My X Vo = my XV, + My XV

In order to evaluate v; , we use Newton’s hypothesis, which states that for central impact of the two
bodies, the relative velocity of the two bodies after the impact is in constant ratio to their relative

velocities before impact and is in opposite direction.

7
(a) Before Impact

(2.2.5-1)

oo

7
(b) Just after Impact
Mass m, moves Downwards

Mass m, Rebounds Upward

Figure 2.2.5-1 Undamped SDOF Spring Mass System Subjected to Impact Load
Mass my, Freely Falling over Mass m; from Height h
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This gives:

Vi=Vy V-V
e=——1_1 =13 o Vo =V —evy (2.2.5-2)
™ -w) Vo

Here e is called Coefficient of Restitution that depends upon propérties of the material of the
masses my & my . For perfectly plastic central impact, the value of e is zero and for perfectly elastic

central impact e is equal to unity. For real bodies in practice, the value lies in the range
0 < e <1 and for all practical purposes it’s reasonably good to usee = 0.5 .

Substituting 2.2.5-2 in 2.2.5-1 and simplifying, we get

v =V xf(ll},% (2.2.5-3)

Here A, represents ratio of mass m, to mass m, . That is:

m
my

(2.2.5-4)

For freely falling body of mass m, from height #, the velocity just before impact is given as
vy =+2gh (22.5-5)

Substituting this in 2.2.5-3, we get

(1+e)
Vy = \2gh x——— 2.2.5-6
1 & (+4) ( )
This is the initial velocity imparted by the falling mass to stationary mass m, at time r=0.

Hence, solution of a SDOF system subjected to impact load, thus this becomes an initial

velocity problem of a SDOF system having mass m; and spring stiffness %,.

Equation of motion (refer equation 2.1.1.2) of the SDOF system, as shown in Figure 2.2.5-1, is

written as
mlj}] +k]y] = 0 . (2.25'7)

This gives natural frequency (refer equation 2.1.1.3) as

D= fﬁ— rad /s (2.2.5-8)
m
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The response of the SDOF system is given as (refer equation 2.1.1.5)

n =y(0)cospyt+ 1O g, mt (2.2.5-9)
141 :

Here y,(0) & y,(0) represent initial displacement and initial velocity at time ¢ =0.

Maximum amplitude of the SDOF system is given as (refer equation 2.1.1-6)

RS
oy = |1 1©0? +[1'L02J , (2.2.5-10)
P

For the present case, we know that:

»@=0 & (0)=v; a =0 (2.2.5-11)
Substituting equation (2.2.5-12) in to equations (2.2.5-9) & (2.2.5-10), we obtain response of
SDOF system as:
=y (0)cos py t + 7 )sm pt= n( )sm nt= A sin pit (2.2.5-12)
P 141 P

o= ﬂy o +[Y1<°>]J _HO v (225-13)
by b P

This approach shall be useful for Design of Foundation for Impact Machines covered in
Chapter 11.

2.2.6 Undamped System — Subjected to Impulsive Loads

Impulsive loading is a special class of dynamic loading and generally consists of a single impulse
of short duration.

Force FoTe Force
t t t
b— —d Time - T Time — 1 — Time
(a) Half Sine Wave Pulse (b) Rectangular Pulse (c) Traingular Pulse

Figure 2.2.6-1 Typical Pulse Loading
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Typical example of impulsive loads that could be expressed by simple analytical functions are a
half sine wave pulse, a rectangular pulse, a triangular pulse etc. having very short duration. These
are shown in Figure 2.2.6-1.

Consider a SDOF system subjected to impulsive loading (applied one at a time) as shown in Figure
2.2.6-2.

The mpulsive load F(r) is applied at the mass i.e. the applied pulse has maximum force amplitude

of F, and pulse duration 7 wherez = z.

0]
F() Force Force Force
A
F) F() 20
F.V Fy F}’
ky t » ¢ t
fe— T Time k—1— Time f—— T — Time
= (@ () ©

Figure 2.2.6-2 SDOF System Subjected to Impulsive Load
Equation of Motion:

(a) When applied load is a Half Sine Pulse

my+k,y=F()=F, sinwt O<t<r
L7 g (2.2.6-1)
my+k,y=0 t27
(b) When applied load is a Rectangular Pulse
my+k,y=F(t)=F, O<t<r
7 g (2.2.6-2)
my+k,y=0 t27
(c) When applied load is a Triangular Pulse
mp+k,y=F@)=F (r-t)/t 0O<t<r
¢ 1) (2.2.6-3)

my+k,y=0 t27t

For each of the above loading case, the first equation of motion gives response during the pulse i.e.
Phase I - Forced Vibration Response and the second equation gives response after the pulse i.e.
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Phase II - Free Vibration Response. It is also note worthy that the maximum response
" reaches in a very short time before system damping gets effective.

2 k
Natural Time Period of the system T 7= 5 Py = % (2.2.6-4)
Py
Pulse duration r=Z ; @ isthe excitation frequency (2.2.6-5)
o
. o (z/ r) T
F ncy Ratio i et 2.2.6-6
requency b=, " laiT) 2 (2.26-6)
We know that
7 27 7t _1
<l; wo<p,; —<—; =>— &
by Py 571773
7 2x_ v 1
1; ; D= —<—
Fy>1i @>p, 7« T T 2

. : L . , 7 _ 1 . ]
It can be shown (derivation not given) that for 8, <1 ie. for I3 > 0 maximum response occurs

1
during forced vibration phase i.e. Phase I and for B, >1 ie. for %<-2—, maximum response

occurs during Free Vibration Phase i.e. Phase II. Let us now compute response of the SDOF
system subjected to applied impulsive loading.

(a) When applied load is Half Sine Pulse
Response in Phase I for 1 <7
For undambed SDOF system subjected to harmonic loading F(f) = F, sinw?, the steady state
response is given as (Refer equation 2.2.1-7a):
Fort<rt y(t)=£"— ! (sina)t—,B sin p t) 2.2.6-7)
= ( 2 ) ¥ y et
k, -8,

Differentiating equation 2.2.6-7 and equating it to zero, we get the time when the response y(f) is

maximum. This gives
£ B
y

y(t)=7€f(l—jlﬂ—3a)(wcoswt—ﬂypycospyt) p -(1_—%-)(cosa)t—cospyt)=0
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This gives (c05wt—cospyt)=0 or wt=27-p,t
Simplifying, we get t= ( i” 9 -
@
by a)[l + —l—)
' y
2z y a)t 2

This gives wt= & p,t
'§y+1§ ’ ,By ‘E},H)
Substituting this in equation (2.2.6-7), we get maximum response as:
F 1 . Z”ﬂy . 2n
Yenax () === sin - B, sin
ax k, ﬁ—ﬂz)( (ﬂy+l) Y wy-ﬂ)
ymax ® ] . 27p . 27
This gives u = - [, sin
. Fy (1 )( 1) g Cay + 1)

k,

(2.2.6-8)

This is valid only for 8, <1 or %> 0.5

Response in Phase Il for 7 27
The free vibration response (Refer equation 2.1.1-5) depends upon displacement and velocity of the

systemat =7 i.e. y(7)& y(7)

F, 1
Attime t=7 (r)=-% sinwr-p4,sinp,r
' , ll_ﬂi)( ySIDy )

4 . o T
wo=—; or=7x; f,=—; pT=—o"
4 Py By

Al *Uh)
" )———— —ﬂy (ﬁ;y)

Differentiating equation 2.2.6-7, we get

y(t)=—]jL 1 (a)coswt—ﬁpcospt)zfy- @ (coswt—cospi)

(2.2.6-9)
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Att=1 (t)——-(—) COSWT — COSpy )

(2.2.6-10)
@)y =— (——){ 1- c05——]
ﬂy 'By
Maximum amplitude is given as (refer equation 2.1.1-6)
2
y(r)z y( ) ] _f_ /32 (sm—] [1+cosﬁl]
y g (22.6-11)
—fl [2+2cos—] =£y— oS ——
Py k, [ ,By’ kyil ﬂyzj 2B,
From this we get Response Magnification u, as:
2
Py 2P s ® (22.6-12)

Ty AT

This is valid only for 8, >1 or %< 0.5

The derivation of Response Magnification Factor u, for other shapes of Impulsive Loads is not

presented here in the text. The same could easily be evaluated on the similar lines. From the above
it can be generalized that for any given SDOF system subjected to impulsive load F(¢) having a

specific pulse shape, maximum Response of the system thus becomes:

F

e = Hyx 2 (2.2.6-13)
y

Here F, is the peak magnitude of the applied load, k, is the stiffness and u, is the Response
Magnification Factor.
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Table 2.2.6-1 Dynamic Magnification Factor vs. Ratio of Pulse Duration to Natural Time
period 7/T

Ratio of Pulse Duration to Natural Time period /T

Pulse Type 0 02 04 06 08 1 12 14 16 18 2

Rectangular Pulse 0 118 19 2 2 2 2 2 2 2 2
HalfSinePulse 0 08 138 17 1.8 175 167 16 152 142 134

Triangular Pulse 0 068 105 13 146 155 161 166 1.7 172 175

Plot of Response Magnification factor 4, vs. Ratio of Pulse Duration 7 to Natural Time Period

T of a SDOF system subjected to Impulsive Load is given in Figure 2.2.6-3 for each of the pulse
shape. The tabulated values are given in Table 2.2.6-1.

It can also be shown that (derivation not given):

i) When the Pulse Duration is Very Short compared to time period of the system i.e.
-;—s 0.5, the maximum response occurs during its free vibration mode and the shape of the pulse

has no influence on the response of the system.

The applied force becomes an impuise and is given by

I= ?F(z) dt ' (2.2.6-14)
0

Maximum amplitude becomes

Ix Ix
S St Aot (2.2.6-15)
mxp, mxp, k,

Y max

Here product /xp, represents equivalent force ie. F,, =/xp, and k, represents system
stiffness.
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ii) When the pulse duration is relatively long compared to time period of the system i.e.

-TT:> 0.5, the maximum response occurs during the pulse duration and the shape of the

pulse has significant influence on the response. Overall response maxima depend upon the
rate of rise of the loading. In other words this suggests that the maximum amplitude will
be higher in case of rectangular pulse compared to half sine wave or triangular pulse
because the rate of rise of the loading is higher in case of rectangular pulse.

£ 2.4+

8

g 024 - - - ——————— -
= "

£ 167 Al ey

g A N Y Al y
g€ 124/

g’ /.

s 0.8 / /

2 Y7 he b=t ke

% 04~ 2

2 0

0 02 04 06 08 10 12 14 16 18 20
Ratio of Pulse Duration to Natural Period t/T

Figure 2.2.6-3 SDOF System - Response Magnification Factor vs.
Ratio of Pulse Duration to Natural Period

EXAMPLE PROBLEMS: Free Vibration - SDOF System

Units used throughout the text

Force, Weight N
Mass kg
Length m
Time s
Gravity g m/s?
Elastic Modulus N/m?
Pressure N/ m?
Density (Mass density) kg/ m?

Note: Units given other than these are converted to these units for computation
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P2.1-1

A machine having mass of m =500kg is supported by a linear translational spring having
stiffness of k, =200 kN/m along Y-direction as shown in Figure P 2.1-1. Consider the system

as undamped. Compute a) natural frequency of the spring mass system; b) the static
deflection of the spring and c¢) compute its natural frequency using the static deflection and
compare with (a) above?

Solution:
a) Natural Frequency
k, =200000 N/m; m=500 kg
k
P, = —L = 200000 = 20 rad/s
m 500
20
fy = (—) = 3.183 cycles/sec = 3.183 Hz
2n
/ Machine
m =500 kg &
Y
T ky, = 200 kN/m
X Z

Figure P2.1-1 Machine Supported by Vertical Spring

b) Static deflection of the spring (along Y-direction) § = Force/stiffness
Weight mg=500x9.81=4905 N;

Stiffness k, =200000 N/m;

8 = Weight/Stiffness = 4905/200,000= .024525 m
) Natural frequency in terms of &

mg Kk, g
5:——-; ——:-—,
K, m o DT \J \f
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2 [ 981 1 20
= 2= =20 rad/s, =—p,=—=3.183 Hz
Py=\'s Vo245 1y= 0 Pr= 0y

The frequency thus computed is the same as that computed in (a) above.

Note: One can also represent § in other units, say in mm, cm, inch, feet etc. In that case, while
computing p,, = \/% , value of g should be in units compatible with deflection i.e. if § is in mm,

g should be in mm/sec” and so on.

P2.1-2

A machine of mass m=500kg is supported at the end of a RCC cantilever beam 100mm
wide and 200mm deep having span of 2000 mm as shown in Figure P 2.1-2. Consider the
system as undamped. Mass density of beam material is 2500 kg/cu.m. Consider motion of the

mass only along Y direction in X-Y plane as shown. Elastic modulus of concrete is E =3 x 10’
kN/m’. :

Find Natural frequency of the beam mass system

- When beam is considered mass-less
- When beam mass is considered

Y
Machine
m=500 kg \
/
% I"A 100
L X 200
A

‘ 2000 ’ Section A-A

Figure P2.1-2 Machine Supported by Cantilever Beam
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Solution:
(i) Beam is considered as mass-less
a) Natural frequency of the beam mass system

Stiffness of Cantilever Beam in Y-direction

Apply unit load (P =1.0 N) at free end of the beam along Y

. pL
Deflection at the freeend = § =——
3El
P=10 N
E=3x10" kNm? =3x10° Nm?
I = (01 x02)/12 = 0667 x 10* m*
10 -4

Stiffness k, = =2 = 223X10 x8OTd0 75039

s 2

[k
- = [750375/
Frequency = P» = % = AOO =38.73 radls
f,=6.16Hz

Single Degree of Freedom System

N/m

Let us also compute natural frequency using static deflection under given loading condition.

(b) Static Deflection

W = 500 x 981 = 4905 N L =2000mm=20m
E=3x10"" N/m? 1=0.667x10* m*

3
§=(WL 13El = 4905x2 =0.0065 m

3x3x1010 x0.667x10™ 4
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(c) Natural frequency using static deflection

g [os1
=B =28 o388 rads; /=618 Hz
Pr=Vs "V0.0065 7y

This is same as obtained above. (The minor difference is only due to rounding off the numbers)

ii) Beam Mass is considered

Mass of the beam my, =0.1x0.2x2.0x 2500 =100 kg
Generalised mass of beam m, =0.23x100 =23 kg

Total Equivalent mass m" =500+23=523kg

Natural frequency Py = 1/ 755023375 =37.88 rad/s; f, =6.028 Hz

(Consideration of beam mass thus causes about 2.5 % reduction in natural frequency in this case.)
P2.1-3

A Machine of mass 5000 kg is supported at the center of a simply supported RCC beam 200
mm x 500 mm deep and span 4000 mm as shown in Figure P 2.1-3. Consider the system as
undamped. Consider motion of the mass only along Y direction in X-Y plane as shown. E,.
=3 x 10" N/m*; Beam mass density 2500 kg/ms. Beam mass to be ignored. Consider beam as
(a) Simply Supported Beam and (b) Fixed-Fixed Beam. Find Natural frequency when: i)
Beam Mass is ignored & ii) Beam mass is considered

Y
Machine
m = 5000 kg
H 200
y » X

e 4000 ——

500

Figure P2.1-3 Machine Supported at Center of Simply Supported Beam
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Solution:

i) When Beam Mass is ignored

a) Natural Frequency when Beam is Simply-Supported

3 3
Static deflection at beam center =6 = ks >000x9.81x4

= = =0.001046 m
48E1

48x3x10‘°x(1l20.2x0.53j

=4.6875x10" N/m

Stiffness ky = % = M

0.001046

k 4.6875x10’
=2 = 22027 96.82 rad/s; =15.41Hz
Py =V TV 3000 Sy

We can also compute natural frequency from static deflection &

p,= \/g = 1’—-—98# =96.82 rad/s
) 0.001046

b) Natural Frequency when beam is Fixed-Fixed

192x3x10‘°x.11§(o.2x0.53)

k=12 =18.75x107 N/m ;
k 7
p, = ‘}—l = JM =193.6 rad/s
m 5000
ii) When Beam Mass is considered
Beam Mass my, =0.2x0.5x4.0x2500 =1000 kg

Generalised mass of beam m, = 0.37x1000 = 0.37x1000 = 370 kg

Total Mass m’ =5000+370=5370 kg
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Natural Frequency

. k 7
(a) Beam Simply Supported p, =,/ = JM =93.43 rad/s
’ m 5370
% 7
(b)  Beam Fixed-Fixed py =t = [1BTSXA0T o6 g5 radss
m 5370

NOTE: In both the case, a reduction of about 3.5 % in Natural frequency is seen compared to
when beam mass is ignored.

P2.14

A RCC Block having Length (along Z-axis) L =2500 mm, Width B =1500 mm and Height
H =400 mm is supported by a rotational spring (Rocking about Z-axis) having stiffness of

ky =2x 10°Nm/rad attached at center point of base of the block, point O as shown as shown
in Figure P 2.1-4. Consider the system as undamped. Density of concrete is 2500 kg/m’,

Find natural frequency of the system

a) Considering that the system performs only rocking motion about Z-axis passing
through CG of the base area point O

b) If the applied spring at point O is in Rocking direction about X-axis and the system
performs only rocking motion about X-axis passing through center point O

¢) If the applied spring at point O is in Torsional direction about Y-axis and the system
performs only torsional motion about Y-axis passing through center point O

>

T ,

H =400 Commmmemmee -3

J_ M,, h=200

B=1500+
ky

Figure P2.1-4 Block Supported by Rotational Spring Attached at Point O
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Solutioﬁ:
a) Rocking about Z axis

Mass of the block m=2500x2.5x1.5x0.4 =3750 kg

Rotational Stiffness of spring (Rocking about Z-axis) & é =2 x 10° Nm/rad

Height of centroid C above center of base O ©A=0.5xH =0.5x04=0.2 m

Mass moment of inertia of the block about Z axis passing through centroid C= M

M =%[32+H2] 31750[152+042] 753.125

mz

mz

Mass moment of inertia of the block about Z axis passing through point O = M,

M, =M, +mh? =753.125+3750x(0.2)% = 903.125

Rocking Natural Frequency (about Z axis)

k;, —mgh 6 _
_ | Cky ~mgh) =J(2x10 3750x9.81x02) _,con o
M,,, 903.125
b) Rocking about X axis
Mass of the block m=3750 kg

Rotational Stiffness of spring (Rocking about X-axis) k,=2x 10 Nm/rad
Height of centroid C above center of base O h=02 m

Mass moment of inertia of the block about X axis passing through centroid C = M,

M _—._'ﬁ[L2+H2} 3750[252+042] 2003.125
mx = 12

Mass moment of inertia of the block about X axis passing through point O = M,

M, =M, +mh* =2003.125+3750%(0.2)% = 2153.125

Rocking Natural Frequency (about X axis)

=30.421 rad/s

(kp —mgh) _J(2x106—3750x9.81x0.2)
M B 2153.125

mox
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¢) Torsional motion about Y- axis

Mass of the block m=3750 kg
Torsional Stiffness of spring (about Y-axis) k&, =2x 108 Nm/rad

Height of centroid C above center of base O h=0.5xH =05%x04=02 m

Since point C and point O lie on the same vertical line, Mass Moment of Inertia of the block about

Y-axis passing through point C i.e. M, is the same as the Mass moment of inertia of the block

about Y-axis passing through point O i.e. My, .

Mooy = %[Lz +BY]= 3—59[2.52 +1.52]=265625

Torsional Natural Frequency (about Y axis)
k 2x10°

Py ==~ =1/ X107 _ 2744 radss
M oy 2656.25

P2.1-5

For the data given in Problem P 2.1-1, consider that system has 10% damping i.e. £, =0.1.
Initial conditions are y(0) =30 mm and y(0) =200 mm/sec. Find

a) Natural frequency (both undamped and damped natural frequencies)
b) Also compute free vibration response history for damping ratio of 10% as well as

5%.
Solution:
a) Natural frequency
m 500 kg
k, 200,000 N/m

»©) 30mm =003m
y(0) 0.2 m/sec
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b = k/= 2ooooo=20rad/s
Y m 500
2 2z

This corresponds to Time Period T=—=—=0.31416 s
py, 20

Damping constant ¢, =0.10

Damped Natural Frequency for 10% damping

pay = Pyli=¢,% )= 20(1-0.12) = 19.9 rass

‘ Machine
m =500 kg
Y 200kavm § J‘ =0.1
T Y & =0.
X ===

Figure P2.1-5 Machine Supported by Vertical Spring - System Damping 10%

b) Response time history for damped system for 5% & 10 % damping

Damped Natural Frequency for 5 % damping

Pay = Pyl1-¢2) =20/[1-0.05%) = 19.975 radts
Rewriting equation (2.1.2-21)

() +p,¢, ¥0)) .
sin
pdy

we) =e_py¢yt[ym)°05pdyt+ Payt

Substituting for p,,¢,, pay, (0)& y(0) the equation gives free vibration response for damped

system. Response history is sliown in Figure P 2.1-5afor {=5% & { =10%
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- 0.014
—0.02+
-0.03-

Response Amplitude ()
bt

Time - sec

Figure P2.1-5a Free Vibration Response Time History for
Damping Cy =0.1and C,y =0.05

P2.1-6

A Machine of mass 5000 kg is supported at the center of a RCC portal frame beam as shown
in Figure P 2.1 -7. Frame beam is 200 mm x 500 mm deep and column section is 200 X 400
mm. Frame span is 4000 mm (cneter to center) and height of frame is 6000 mm (up to beam
center) as shown. Consider the system as undamped. Elastic Modulus of concrete is

E, =3x10'"" N/m? and its mass density is p, = 2500 kg/m3 . Find Natural frequency for a)

Frame motion along Y only & b) Frame motion along X only for the following two
conditions:

i) Beam is Elastic
ii) Beam material is considered rigid
Solution:
i) Beam is Elastic
Elastic Modulus of Material E, =3x107 kN/m?
Mass density of the material p, =2.5 t/m?
Span of Beam is L=40m
Height of Frame H=€{m
Area of Beam Crossection 4, =0.2x0.5=0.10 m?
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Area of Column Crossection A, =02x04=0.08 m?

Moment of Inertia Beam Crossection Iy = —IIEX 0.2x0.5° =0.00208 m*

Moment of Inertia Column Crossection I, = Tlf x0.2x0.4* =0.00107 m*

_Ly/L _0.00208/4 _,

= =2.916
1./JH ~ 0.00107/6

Stiffness ratio factor

5000
LY L s
[]500
S
3
d
400
h 3300

4000

Figure P 2.1-6 Machine mass supported at Frame Beam center

a) Motion along Y (Vertical motion)

o Deflection &), at beam center:

Machine mass at frame beam center m=50t

Beam Mass my, =0.10x4x25=1.0t
Generelaised Beam Mass at beam center m, =0.45my =0.45x1= 0.45 t
Effective Mass at Beam Center . m' =m+045m, =5.0+045=545t

Deflection at beam center J,, (see equation 2.1.1-34)

s _m gl 2k+l__ 545x9.81x4>  2x2916+1
Y T96El, k+2 96x3x107 x0.00208 2.916+2

=7.938x10"* m
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b)

Deflection J,,; at column top

Mass of each column ‘ m,=0.08x6x25=12t
Generalised column mass (each column)  m =0.33x1.2=0.396 t
Total Effective mass at column top m* =m+my +2xm,

m" =50+1.0+2x0.396=6.792 t

Vertical deflection of columns &), (see equation 2.1.1-35)

5 = mxg _ 6792x9.81
¥ 2x(E4,/H) 2x[3x107x0.08 /6

)= 0.8329x10™* m

Total vertical deflection &, =4, +J,,

=7.938x107* +0.8329x107* =8.771x10™ m

Natural Frequency ’51 = 5%74— =105.75 rad/s
. X

Just for the academic interest, let us compare the results with that of Problem P
2.1-3 having same Beam size, Beam Span and Machine Mass. From the results
of P 2.1-3, we notice that:

When Beam is simply supported, Natural Frequency is py =93.43 rad/s
When Beam is fixed — fixed, Natural Frequency is p, =186.85 rad/s

When considering as portal frame (the present case), Vertical Natural
Frequency is py =105.75 rad/s

For the portal frame, it is noticed that stiffness ratio 4 is close to 3. This
indicates that beam is about 3 times stiffer than column. In other words, beam
beahaviour is more biased towards simply supported case rather than fixed beam
case. This gets confirmed from the present results.

Motion along X (Transverse motion)

Machine mass m=50t

Generalised beam mass my =m, =1.0 t
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ii)

Single Degree of Freedom System

Generalised column mass (each column) m, =0.23m, =0.23x1.2=0.276 t

Total Effective Mass at Frame Column top m*=50+1.0+2x O.276>= 6.552 t

Transverse deflection at column top &, (see equation 2.1.1-37)

_m xgxH¥2+3k  6552x9.81x6°  2+3x2916
12E1, 1+6k 12x3x107 x0.00107 146x2.916

Natural Frequency D= f—;i = 1’%—3—;— =22.14 rad/s

Beam is Material is considered Rigid

=0.02 m

X

Stiffness ratio factor (beam Elastic Modulus is considered infinite)

_(E1,/1) _
(E1/H)

a) Motion along Y (Vertical motion)

Since beam is rigid, there is no elastic deformation of the beam. Thus &), =0

Only deformation along Y is that due to column.

Total Effective Mass at Column Top
m' =50+1.0+2x033%x1.2=6.792 t

Vertical deflection of columns  J,. (see equation 2.1.1-35)

Spe =t = 6'7927" 08l o 0.8329x107 m
2x(EA./H) 2x(3x107 x0.08 /6)
Total vertical deflection 8,=0,,+5, =0+0.8329x10™ =8329x10~ m
g 9.81
Natural Frequenc = |2 = | ————— =343 rad/s
ey Py \j 5, V8329x107°
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b) Motion along X (Transverse motion)

Effective Mass at Frame column top
m' =50+1.0+2x023x1.2=6.552 t
Transverse deflection at column top &, (see equation 2.1.1-37)

_ m'xgxH® 2+3k
* 12EI, 1+6k

. 3
for k=w, we get §x=%%§]—£—
[

_mxgxH’  6.552x9.81x6>
¥ 24El, 24x3x107 x0.00107

Natural Frequency Py = —Sg— = "6%% =23.34 rad/s
. .

=0.018 m

EXAMPLE PROBLEMS: (SDOF System - Forced Vibration Response)

P2.2-1

In Example Problem P 2.1-1, consider that the system has 10% damping & the mass is acted
upon by external dynamic load (harmonic load) of F, =20 N with excitation frequency » of

a) 10 rad/s, b) 20 rad/s, ¢) 30 rad/s, d) 80 rad/s. Compute:

i.
ii.
fii.

Maximum amplitude of vibration for each of the above loading case

Maximum Reaction Force transmitted to support in each case

Plot Response history (Transient and steady state response) for case a) & b) for initial
conditions of y(0)=0 & y(0)=0

Solution:

Natural Frequency (see solution P 2,1-1)

k,=200kN/m ;m=500 kg, {, =0l

Undamped Natural Frequency = 20 rad/s

Damped Natural Frequency w, = 19.8997 rad/s

https://engineersreferencebookspdf.com



2—86 Single Degree of Freedom System
Fy sin ot

T

Machine m = 500 kg

= oo

%

Y k,= 200 kN/m

L.

Figure P2.2-1 Forced Vibration-Damped SDOF System - Damping 10%
Dynamic Force Externally Applied

It is seen that there is hardly any appreciable change in damped frequency. Hence for all practical
purposes, it is good enough to compute only undamped natural frequency.

i) Maximum Amplitude of vibration
a) Dynamic Force = 20 sin 10 ¢
F,=20 N; =10 rad/s; Py =20 radss; £,=01; B,=—=05
, Py
Dynamic Magnification factor u, = ! == 132164
\/(1 - 'B)%)z + (zﬁy gy)z
oo £, . . .
Amplitude = y(t) = . 4y sin(w ¢ — @) ; for maximum amplitude, sin(w1-¢) =1
y

. F

Max. Amplitude  J() s = 7{—)’- 4,
Y
V(e = (20/200000)x1.32164 = 0.00013 m = 130 microns
b) Dynamic Force = 20 sin 20 ¢
/
F,=20N; =20 rad/s; P, =20 radss; £,=0.1; By =2-=1
Py

Dynamic Magnification factor u, = 1 =5

Ji-52F +s,¢,¥
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Fy

Max. Amplitude y(#)pax = . Ky
y

YOmax = (20/200000)x5 = 0.0005m = 500 microns

¢) Dynamic Force = 20sin 30¢
F, =20 N; =30 rad/s; p, =20 rad/s; &, =0.1; B, =—=15
: P,
Dynamic Magpification factor x4, = ! =0.778
Vo528 +6s,c, P
. . F
Maximum Amplitude YO max = ?y— Uy
y
YOmax = (20/200000)x0.778x1x 10® = 77.8 microns
d) Dynamic Force = 20sin 80¢
F, =20N ; » =80 rad/sec; p}', =20 rad/sec; §y=0.1; B, =lv-=4
Py
Dynamic Magnification factor 4, = ! =0.066
Vi-2F +s,¢,F
. . F,
Maximum Amplitude YO max = o Uy
y
YOmax = (20/200000)x0.066x1x10° = 6.6 microns
From these results, following observations are made:
1. Magnification factor rises sharply with frequency ratio approaching unity
2, Though stiffness is of the order of 200 kN/m, even a small dynamic force of 20 N is able

to cause amplitudes as high as 500 microns at resonance.

Maximum Reaction Force transmitted to support:

From equation (2.2.2-11), we get max-transmitted force as Fp =F, u, \/1 +(28,¢ y)z
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Max. Reaction force transmitted

Case a) Fy =20x1.32164x/1+(2x0.5x0.1)% =26.56 N
Case b) Fp =20x5xy1+(2x1x0.)2 =101.98 N

Case c) Fr =20x0.778x+/1+(2x1.5x0.1)2 =16.245 N
Case d) Fp =20x0.066x/1+(2x4x0.1)2 =1.69 N

150+ Steady-state

100+
504
0 \/
50_0 \/0 b} 0
- 1004 Transient

- 150-

Amplitude (microns)

Time-sec

Figure P2.2-1a Respose History for Force F(f) = 20 sin 10 ¢

iii) Response history

For initial conditions of y(0)=0& y(0) =0 use equation (2.2.2-4) for Transient Response & use
equation (2.2.2-5) for Steady State Response. As mentioned earlier, use natural frequency p,

instead of p,, for all response computations.

Transient Response:

26,8,

g
Rz

F, _, -
J’c(f):;le Prey! CoS pgt +

w2 e n ] T N )
y[(l-ﬂ§)2+(2¢yﬂy)z] |

sin pt

https://engineersreferencebookspdf.com



Single Degree of Freedom System 2—89

300 7 Steady-state
- 2007 '
:
E 100
: AVA
é 0 T UA Al\/ ™ ~ Y
g 0 1V 2 3 4 5
0
g -100
2 —200 7
Transient
300 - Time - sec
Figure P2.2-1b Response History for Force F(f) = 20 sin 20 ¢
F 2
Steady State Response:  y, (1) = L, sin(wt- @) ¢ =tan” _’gl’g_y
k 1- 8%)
Y ( ﬂ y

Case a) Force20sin 10t
w=10, p,=20, B,=05 ¢,=01 F,=20, k, =200000

Response history plot giving transient as well as steady state response is as shown in Figure P 2.2-
la. '
Case b) Force 20 sin20t

w=20, p,=20, B,=1 ¢,=01 F, =20, k, =200000

Response history plot giving transient as well as steady state response is shown in Figure P 2.2-1b

e

P2.2-2

In Example Problem P 2.1-2, consider that the system has S % damping and the mass is
acted upon by external dynamic load of a) 20sin25¢, b) 20sin507. Compute Maximum
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Amplitude of vibration and Maximum Reaction Force Transmitted to Support. Contribution
of Beam Mass is to be considered.

Machine
£ m=500kg

7 rA 100

L *X 200

Y

) ] Section A-A
200 0 ection

Figure P2.2-2 Machine supported by cantilever beam system damping z = 5%,
Dynamic Force F(t) = F(f) externally applied

Solution:
(i) Beam mass is considered

Stiffness of Cantilever Beam in Y-direction (see solution P 2.1-2)

Stiffness ky =750375 N/m

Natural frequency p, =37.88 rad/s

i) Maximum Amplitude of vibration

Case a) Force 20sin25¢
w=25 rad/sec; F, =20 N; ¢, =005

Frequency ratio 8, = 2 - B 0.66
p, 3788

Dynamic Magnification factor

1 1

Hy = = =1.76
y \/(l‘ﬂyz)z+(2ﬂy4y)z \/(1—0.662)2+(2x0.66><0.05)2
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Amplitude (max) (F, /k,)x u, =75%5- x1.76x1 = 469107 m

= 46.9 microns

Case b) Force 20sin 50¢
o=50 rads; F,=20 N; ¢, =0.05

Frequency ratio f3, = Lo 2

1

Ji-1322f + (2x1.320.05F

x1.326 = 35.3x10™® m = 35.3 microns

Dynamic Magnification factor u, = =1.326

Amplitude (max) =
plitude (max) = =020

ii) Maximum Reaction Force Transmitted to Support

Max. Force transmitted to support  Fp = F), u, ,/1 +28,¢ y)2

Casea) Fr =20><l.76><\/l+(2><0.66><0.05)2 =352 N

Caseb) Fp =20x1.326xy1+(2x1.32x0.05)% =26.75 N

P2.2-3

A machine of mass 500kg is supported on a RCC Block of size
" L =2500 mm; B =1500 mm; & H = 400 mm . Density of concrete is 2500 kg/m®. The block in
turn is supported by a Lateral Translational spring in X direction having stiffness of
k, = 2x107 N/m attached at CG of the base area of the block (point O) as shown in Figure P
2.2-3. Height of the CG of machine (point C) above top of the Block is s =100 mm. CG of

Block and CG of the machine lie on the same vertical line. Consider that the system is
undamped and it is constrained to translate only along X-axis. A dynamic force of
F, =200 N at excitation frequency of @ =50rad/s is applied at the machine mass CG along
X-axis. Find natural frequency of the system and compute maximum amplitude of vibration
at the machine center point C.
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Machine Y

> F(f) = 200 sin 50 ¢

»X

B =1500}—————

\

Figure P2.2-3 Machine on Block - Block Supported by Translational Spring
in X-Direction attached at Base Center Point O

Solution:

Spring applied in X-direction and Dynamic Force acts in X-direction

Machine mass  m, =500 kg

Block size =2.5x15x04 m ,
Mass of Block  m, _ 2.5%1.5%0.4 x2500 = 3750/1’(g
Total Mass  (my +m; ) =4250 kg

System is constrained to translate only along X-axis

Stiffness of supporting spring k, =2x107 N/m

k 7
Natural Frequency D, = ‘;—3‘— = ‘,—2—1!—0— = 68.6 rad/s
m 4250

Since the system is constrained to translate only along X-axis, the dynamic force at O is same as

F, applied at machine center.

Dynamic Force at O F,(t) =200sin 50t
Frequency ratio . B, = @ _0 0.73
v p, 686
o ‘ 1
Magnification factor M= 5y =2.14
“Hx
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Amplitude at point O (see equation 2.2.1-5a; With appropriate changes made for force in X-

direction)

x(t)——F—"(——)1 sinw ¢
d kx 1—ﬂ3

Maximum amplitude at point O

x(max) = —2—00-7—><2.14 =0.214x10™* m =21.4 microns
(2x10")

Maximum amplitude at point C:  Since the system is constrained to translate only along X-axis,

amplitude at C is same as amplitude at O i.e. 21.4 microns.

P2.2-4

A machine of mass 500kg is supported on a RCC Block of size
L =2500 mm; B=1500 mm; & H =400 mm. Density of concrete is 2500 kg/m3. The block in

turn is supported by a rotational spring having stiffness of &, = 2x10% Nm/rad attached at

center of the base of the block (point O) as shown in Figure P 2.2-4. Height of the CG of
machine (point C) above top of the Block is 4 =100 mm. CG of Block and CG of the machine
lie on the same vertical line. Consider system to be undamped. System is constrained to
perform only rocking motion about Z-axis passing through O. A dynamic force of
F, =200 N at excitation frequency of @ =50rad/s is applied at the machine mass CG along

X-axis.

a) Compute natural frequency and maximum amplitude of vibration at the machine
center point C.

b) If rotational stiffness acts at O about X-axis and the applied dynamic force at point C
acts along Z-axis, compute natural frequency and maximum amplitude of vibration
at the machine center point C,

Solution:

a) Rotational stiffness acts at O about Z-axis and the applied dynamic force at point C
acts along X-axis

Machine mass  m, =500 kg

Block size =25x1.5%04 m

Mass of Block  m, 2.5x1.5x0.4 x2500 =3750kg

Total Mass  (m; +m,) =4250 kg
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> F(#) =200 sin 50 ¢

o Block
» X
B=1500
ky
7z

Figure P2.2-4 Machine on Block - Rotational Spring Attached to Base Center Point O
about Z-axis - Dynamic Force F(r) = 200 sin 50 7 applied at Machine
Center along X-axis

Let us denote Overall centroid (Block +Machine) as CC

Height of overall centroid CC above base

= 3750%0.2+500x (0.1+0.4)
4250

System rotates about Z-axis passing through base center point O

=02354 m

Mass Moment of Inertia about base center point O = M,

M, = 317—59x (1 52 +0.42 )+ 3750%0.2%2 +500x(0.1+0.4)* =1028.125
Stiffness of supporting spring k 6= 2x10° Nm/rad
Natural Frequency
k 6 :
Py = ’ =J 2x10 =44.10 rad/s
M,, Y1028.125

Just for academic interest let us compute natural frequency by including the term ¢ mgh’, we

=44 rad/s. -

(kg =mgh)  [(2x10° —4250x9.81x0.2354)
get Py = =

M 1028.125

moz
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It is seen that by ignoring the term mgh there is hardly any difference in the result. Thus the
simplification of ignoring the term mgh both for frequency and amplitude computations is OK.

The dynamic force F, at machine center causes dynamic moment M, about O

Dynamic moment about O M,=200(0.140.4) =100 Nm

Frequency ratio By = (50 44 1)= 1.134

L35
1“'ﬂ¢

Amplitude at point O (see equation 2.2.1-10)

¢ (t)—M¢ ! sinwt—M¢p sine ¢t
P\ T BRI o ]
ky (1-,33) ky

Magnification factor My =

100

x3.5=1.75x10"* rad
(2x10%)

Maximum amplitude ¢(max) =

Amplitude at point C in X-direction
(0.1+0.4)x0.1.75x10™* =8.75x10> m =87.5 microns

b) Rotational stiffness acts at O about X-axis and the applied dynamic force at point C
acts along Z-axis

System rotates about X-axis passing through base center point O

Mass Moment of Inertia about base center point O= M,, .

= 2‘17—;9-x (2.5% +0.42 )+ 3750%0.2% + 500 0.1+ 0.4)? = 2278.125 |
Stiffness of supporting spring kg = 2x10° Nm/rad
Natural Frequency

’ 6
Pe = ko = 2x10 =29.6 rad/s
M, 2278.125
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The dynamic force F, at machine center causes dynamic moment M, about O

Dynamic moment about O My =200(0.1+0.4) =100 Nm
Frequency ratio Bs = (5029 6)= 1.69
1
Magnification factor Hg =|——=0.537
- 55")
Amplitude at point O (see equation 2.2.1-10)
Gp(t)=—A—/-I-Q- 5 sinwt:—A—/{iygsina)t
k¢9 1- ﬂa ka
. . | 100 »
Maximum amplitude G(max) = 0 6) x3.43=0.2685x10 rad

Amplitude at point C in Z direction 4
(0.1+0.4)x0.2685x10™* =1.34x10° m =13.4 microns

P2.2-5

A machine of mass 500kg is supported on a RCC Block of size
L =2500 mm; B = 1500 mm; & H = 400 mm . Density of concrete is 2500 kg/m®. The block in

turn is supported by a rotational spring having stiffness of £, = 2x10® Nm/rad attached at

center of the base of the block (point O) as shown in Figure P 2.2-5, Height of the CG of
machine (point C) above top of the Block is # =100 mm. CG of Block and CG of the machine

lie on the same vertical line. Consider that the system only perform rocking motion about Y-
axis passing through O. Consider machine radius of gyration r, =300 mm. Find natural

frequency of the system? Also compute maximum amplitude of vibration at the corners at the
top of the block when a dynamic couple of M, =100Nm at excitation frequency of

o =50rad/s is applied at the machine mass CG about Y-axis. Consider system to be
undamped.

Solution:
The entire problem data is same as that for Problem P 2.2-4 except that the applied spring is in

direction and the applied dynamic couple is about Y-axis and the block is allowed to rotate about
Y-axis passing through O
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Machine Y .
~ A Mw=100 sin 50 ¢
C i
@ m2 )
1 o Block

—»X

Figure P2.2-5 Machine on Block - Block Supported by Rotational Spring Attached to
Base Center Point O - Dynamic Moment M,,= 100 sin 50z applied at
Machine Center about-Y

Machine mass  m, =500 kg
Mass of Block  m,; =3750 kg
Total Mass (m; +m,) =4250 kg

Let us denote Overall centroid (Block +Machine) as CC
Height of overall centroid CC above base 4 =0.2354 m

System rotates about Y-axis passing through base center point O

Radius of Gyration r, =300 mm

Mass Moment of Inertia about Y at base center point O = M moy

_ 3:;0 x(2.52 +1_52) +500%(0.3)2 =2701.25

moz
Stiffness of supporting spring k 4= 2x10%  Nm/rad
Natural Frequency /
k 6
Py = ¢ =\/ 2x10 =272 rad/s
M,, V270125

Dynamic moment about Y at O M, =1005in50¢ Nm

\
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i =150 -
Frequency ratio B, —‘( 47'2)— 1.838
Magnification factor Uy = ! 5y =042
1- 5,
Amplitude at point O
v (t)—M”’ ! sina)t—MW,u sinw ¢
p\V T 2 T M
k, (I By ) Ky
: . 100 i
Maximum amplitude w(max) = e-*0.42=021x10 rad
(2x10%)

Amplitude at Top corner of the foundation

Since all the four corner points at top of the foundation are equidistant from point O, consider right
top corner for purpose of computation.

Distance of comer point from O along X-axis =750 mm

Distance of corner point from O along Z-axis =1250 mm

X amplitude thus becomes 4, =0.75x0.21x10™* =1.575x10™°> m=15.75 microns

We get Z amplitude as A, =1.25x0.21x10™ =2.625x10™> m=26.25 microns

Total amplitude of corner point A = J A%+ 4.2 =+/15.75 +26.252 =30.6 microns

P2.2-6

A mass my =3500 kg falls freely from a height of 2=2.0m over a foundation having mass
m; =250000 kg. The foundation is supported by a linear spring having stiffness of

k, =42x10° kN/m . Consider e = 0.5 . Compute maximum amplitude of the foundation.

Solution:
my =250000 kg; my =3500 kg; k =4.2x10% kN/m
e=0.5; h=2.0m
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my = 250000 kg

ky =4.2 % 10° KN/m

Z_

Figure P2.2-6 SDOF System Subjected to Impact Load

’ 6,103
Natural Frequency D= 42x10"x107 =129.6 rad/s
, 250000

250000
3500

=71.42

Mass Ratio A=

Velocity of mass m, before impact

vy =42gh =v2x9.81x2 =6.26 m/s

Velocity of mass m; after impact (see equation 2.2.5-3)

_y e r9) _oo (140.5))

v, =V . =0.1296 m/s
(+4) (1+71.42)

We get response of the SDOF system as (refer equation 2.2.5-12)

= h-sinp1 t= %%sinlwﬁt

3
Maximum Amplitude (refer equation 2.2.5-13)
v 0.1296

G IPNRTTY?

=0.001 m or p1=1 mm
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P22-7

A SDOF system having mass m; =2500 kg and stiffness £, = 42x10* KN/m is subjected to

an impulsive load. The pulse shape is rectangular and peak magnitude of the applied force is
F, =S50kN and pulse duration is (a) 50 milisec and (b) 10 milisec. Compute maximum
amplitude of the foundation.

Solution:

my =2500 kg

k =42x10* KN/m

, 4 103
Natural Frequency p= ﬁ%%)ﬂ)— =129.6 rad/s

Natural Time Period of the system 7T = z_2m 0.048 s
p

Magnitude of the applied Force Fy =50kN

——  m=2500kg

ky = 4.2 % 10° KN/m

7
Figure P2.2-7 SDOF System Subjected to Rectangular Pulse

() Pulse Duration r=50x10%=0.05 s
L n 7z
Excitation Frequency 0 =—=——=062.83rad/s
0.05
Frequency Ratio B = o _028 0.485
p 1296

https://engineersreferencebookspdf.com



Single Degree of Freedom System _ 2--101

Ratio ——&Oi=1 31
.048
Response Magnification from Figure 2.2.6-3 u=20
Maximum Amplitude
Fy 50x10° 4
= pux—=20x—=24x10 m
Ymax =X 4.2x107
=24x107x10° =2.4- mm
()  Pulse Duration 7=10x10° =0.01 s
. ® 7
Excitation Frequency ®w=—=-—-=314.16rad/s
7 . 0.01
Frequency Ratio B = o 31416 2.424
p 1296
Ratio 700 _ 45083
T 0.048
Response Magnification from Figure 2.2.6-3 u=122
Maximum Amplitude
F 50x10° 3
=pux—=122x———=1452x107"m=1452 mm
Ymax =KX 4.2x10’

It is noted that when pulse duration is short, amplitude reduces for the same applied force. Since
pulse duration is short compared to natural time period, we can also evaluate maximum amplitude
by equation (2.2.6-15).

Ixp
YVmax = k

Here I is the Impulse i.e. area of the pulse diagram, p is the natural frequency and % is the

stiffness. Substituting values we get:
I=Fyx7=50x10>x0.01=500 Ns
Ix p=500x129.6=64800 N

Ixp 64800

"3 107=1.543x10'3m=1.543mm
X

Ymax
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It is noticed that this amplitude is nearly same as computed above using Response Magnification

Factor.

P2.2-8

In problem P 2.1-3, consider that system has 5 % damping and mass is acted upon by a
dynamic force 200 N at excitation frequency of 15 Hz. Compute maximum amplitude of

vibration of the mass.
Solution: (see solution 2.1-3) Beam mass ignored

a) When beam is Simply- Supported

Stiffness &, =4.6875x10" N/m

P, =96.82rad/s

Excitation Frequency ® =15x2x7 =94.24 rad/s
Frequency Ratio B= 2. 2424 =0.97
p 96.82
Damping ¢§ =0.05
Y
F,= 200 sin ot Machine
m=>500kg
100

>X
. : Dzoo

Figure P2.2-8 Machine Supported at Center of Simply Supported Beam
Subjected to Dynamic Force F,= 200 sin ot

Dynamic magnification factor

Ji-52F +@acy  l-0972F +(2x0.97x0.05)
Excitation Force Magnitude F, =200 N
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200 -
Static deflection 8y =—————=4267x10° m
4.6875x10
Maxiﬁum Amplitude A4, =4.267x 10°x8.8=37.55x10° m=37.55 microns
b) When beam is Fixed-fixed
k, =18.75x107 N/m ; p, =193.6 rad/s
Excitation Frequency o =15x2x7=94.24 rad/s
Frequency Ratio b= o %424 0.48
p 1936
Damping § =0.05
Dynamic magnification factor
J-22F+@pcP  (1-0.48 +(2x048x0.05)
Excitation Force Magnitude F, =200 N
Static deflection Sy = ——20—9——7 =1.067x10"% m
18.75x10
Maximum Amplitude A, =1.067x10°x1.3=1.39x10 m =1.4 microns
ii) When Beam Mass is considered

a) Beam Simply Supported
py =93.43radls; §=1.008; 4 =0.05; 4 =98, 4, = 41.8x107® m = 41.8 microns
b) Beam Fixed-Fixed

Py =186.85 rad/s; #=0.504;{=0.05 u=138 4, = 1.47x107® m =1.5 microns
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P2.2-9

In Problem P 2.1-6, consider a dynamic force F(¢) = Fysinw¢, as given below, is applied at
frame beam center vertically along Y as well as horizontally along X (one at a time). Consider
damping { =5% . Compute response of the mass when excitation frequency of the applied

force is:

i) Applied Force F(¢)=0.2sin100¢
ii) Applied Force F(t)=0.2sin15¢

Solution:

a) Motion along Y (Vertical motion)

Effective Mass at Beam Center m' =545t
Deflection at beam center Oy =7.938x 10* m

m'g  5.45x9.81

Stiffness of frame beam = £,,,,, = = + =67353 kN/'m
Oy 7.938x10°

Effective mass at column top m* =6.792 t

Deflection &, at column top Oy = 0.8329x10™* m

m'g  6.792x9.81

5, 0832910t 00000 KNm

Column Stiffness (both columns)  &,,pmn =

Beam and column stiffness are in series.

Total vertical stiffness &, is given as:

LI . =( L ! ):1.6097x10°5
ky  Koeam Keommn \67353 800000

k, =62123 kN/m

Natural Frequency p, =105.75 rad/s

i) Applied Force F(¢)=0.2sin100¢
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Excitation Frequency » =100 rad/s
Frequency ratio By = o 10 0.946
p, 10575
Damping § =0.05
Magnification factor u,
u, = ! = ! =707
=82 +08,¢, 0 i-0946F + (2x0.946x0.05)
Static deflection 8, = Fol 92 _350%10% m
k, 62123

Vertical Amplitude y
y=0yxu, =322x10°x7.07=228x10" m=22.8 microns

Note: Just for academic interest, if system is considered as undamped, we

get

By = ! = ! 5y =9.52
1= 52} (1-0.9462)

y=3.22x10"%9.52 =30.65x10™ m =30.6 microns

i) Applied Force F(¢)=0.2sin15¢

Excitation Frequency o =15 rad/sec

Frequency ratio B, = o _ 15 =0.142
p, 10575

Damping & =0.05

Magnification factor u,

Uy = ! =1.04
2 2
J1-0.1422 +(2x0.142x0.05)
Static deflection Oy = F_ 02 _ 3.22x107° m
k, 62123
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2—106 Single Degree of Freedom System

Vertical Amplitude y

y=0,xp, =322x107°x1.04=3.4x10° m =3.4 microns

b) Motion along X (Transverse motion)
Total Effective Mass at Frame Column top m* =6.552 t
Transverse deflection at column top J, =002 m
Frame stiffness (Transverse) k., = 9—5—50%;(—;31— =3213.7 kN/m
Natural Frequency P, =22.14 rad/s
i) Applied Force F(r)=02sin100¢
Excitation Frequency @ =100 rad/s
7 100
Frequency ratio =—=——-=45I15
quency XY
Damping ¢ =0.05
Magnification factor: As frequency ratio is more than 2, damping effect on the
_magnification will be insignificant
U= ! Y= 0.0516
Hl ~4.515 !
Static deflection Oy = K__02 _ 622x107° m
k, 32137

-

Transverse Amplitude x

x =8, xp, =622x107°x0.0516 =3.21x10™ m =32 microns
ii) Applied Force F(t)=0.2sin15¢

Excitation Frequency ® =15 rad/s
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Single Degree of Freedom System . 2107

Frequency ratio B, = o 15 0.6775
p, 2214
Damping §=0.05

Magnification factor y,
1

e = ~1.834
Y0675} +(2x0.6775x0.05

Static deflection d, =6.22x10° m
Transverse Amplitude x

X=0,xu, =622x107°x1.834=1.14x10" m =114 microns
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MULTI- DEGREE OF FREEDOM SYSTEMS

Free and Forced Vibration

Two Spring Mass System

Three Spring Mass System

Multiple Spring Mass System Connected by a Rigid Bar

Rigid Block supported by Translational and Rotational Springs
Portal Frame

Harmonic Loads

Impact Loads

Example Problems
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Multi Degree of Freedom Systems : 3—3

MULTI- DEGREE OF FREEDOM SYSTEMS

Every physical system is a complex system and requires mathematical idealization to a fairly good
degree of accuracy for good results. Though SDOF System is the simplest way to understand
vibration behaviour, its application to physical problems gets restricted, as, in most of the cases, it
does not adequately represent behaviour of the prototype. It may be desirable to adopt appropriate
mathematical idealization for nearly true representation of the prototype. Mathematical idealization
by a higher degree freedom system (2DOF, 3DOF, ---, nDOF) may be the right choice. In the
present context and for machine foundation design application, development of analysis is
restricted to only two and three degree of freedom system as this is adequate for most of the
problems. However, where mathematical modeling calls for idealization with further higher DOF
systems, it is advisable to use standard computer packages as it may turn out to be too tedious to
perform manual computations.

After SDOF system, next step is to understand vibration behaviour of Two Degrees Of Freedom
System and Three Degrees of Freedom System from the point of view of machine foundation
design. Two degrees of freedom system is one where two coordinates are required to define
displaced position of the structure. Similarly for three degrees of freedom system, three coordinates
are required to define displaced position of the structure.

From the study of SDOF System, we note the following:
i)  Equation of motion for SDOF y is my+k,y=0

k
ii Frequency equation is |\k, — mp2 =0, that gives natural frequency as ==
¥ y Py "

iii)  Itis observed that there is hardly any appreciable change in the damped natural frequency
vs. undamped natural frequency for systems having damping less than 20%.
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3—4 Multi Degree of Freedom Systems

In view of iii) above, for all future cases, analysis is restricted to only undamped system as majority
of the structural systems considered for machine foundation design application have damping less
than 20%. However, influence of damping is considered for computation of amplitudes only in case
of resonance (as will be seen later for forced vibration response).

The analysis is developed for most commonly used systems for machine foundation applications.
These are:

¢ Two Spring Mass System
s Rigid Block supported by Vertical, Translational & Rotational Springs
e  Three Spring Mass System

From the above we see that a SDOF sysfem has only one stiffness term and one mass term. For a
two DOF system, we shall get stiffness matrix [k] of the order of [2x 2] and mass matrix {m] also

of the order of [2x2]. Similarly for a 3-DOF system, we shall have stiffness matrix [k]of the order
of [3 X 3] and mass matrix [m] also of the order of [3 x3] and the frequency equation shall

be l(k—mp2]=0.

Coordinate System followed throughout the text is right hand thumb rule as shown in Figure 3-1.

Y Y Z

0
z (a) Z-Axis towards Reader (b) Z-Axis away from Reader

Displacements x, y & z are +ve along X, Y & Z Axes. Rotations 6, y, ¢ about X, Y & Z
Axes are +ve considering rotations fromYt0Z, Zto X & Xto Y

Figure 3-1 Notations for Displacements and Rotations
3.1 TWO DEGREES OF FREEDOM SYSTEM - FREE VIBRATION

Both the systems, i.e. Spring Mass System as well as Block-Foundation System are covered for
analysis. The spring mass system has been added only for academic purposes.
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Multi Degree of Freedom Systems 3—5

3.1.1 Two Spring Mass System- Linear Springs

Consider a two spring mass system, having masses m; & m,, spring stiffness k; & k, as shown in
Figure 3.1.1-1. Two coordinates namely y, & y, are the two degrees of freedom that define

displaced position of the masses m; & m, .

Equation of Motion:

For any given system, there are many ways of writing equation of motion. We use only method
Considering equilibrium of forces.

Let us write equations of motion using equilibrium of forces acting on free body diagram. Figure
3.1.1-1(a) shows position of the masses ‘'m, & m, at rest. Masses are disturbed and set free for

motion. At any instant of time t, let the displaced positions of masses m; & m,bey, & y,

respectively as shown in figure 3.1.1-1 (b). Forces acting on the masses are shown in the free body
diagram of figure 3.1.1-1(c). Inertia force acts opposite to direction of motion.

I3

ma 5 )
]

ka7
Mlj;lf sz(yz‘h)

kyyy

(a) System at Rest  (b) Displaced Position (c) Free Body Diagram
Figure 3.1.1-1 An Undamped Two Spring Mass System

Considering equilibrium of forces on the free body diagram, we get the equation of motion as:

mjy + ki —ky (- 31) =0 | G.1.1-1)
m,y, +ka(y, —=3)=0 N

Rewriting in Matrix form, equation becomes

https://engineersreferencebookspdf.com



3—6 Multi Degree of Freedom Systems

e
0 my ||y -k, ky 11>2 0

k1+k2

m 0
Here | ! represents mass matrix and
my - k2

-k
2 } represents stiffness matrix
2
As seen from equation (3.1.1-2), though there is no coupling in mass matrix but stiffness matrix is
coupled through off-diagonal terms. Thus equation of motion is a coupled one.
Solution to Equation of Motion:
Natural Frequency

In chapter 2, for solution to SDOF system, we obtained natural frequency p,, as

k, .
Py = —ml ie. ky=mp)2, or ky—mpf,=0 (3.1.1-3)
2 _n .
k,—mp, =0 is termed as Frequency Equation (3.1.1-4)

For two DOF system, (equation of motion equation 3.1.1-2), the frequency equation is given by

~ Determinant lk - mpzl =0 (3.1.1-5)

=0 _ (3.1.1-6)

Or l(kl +ky ~m; p?) (~ky)
(—k5) (ky —myp*)

Expanding the determinant, we get

(ky +ky —my p* Yy —=myp*)—(~ky )(~ky)=0  Or

k
m'mz{p4_pz[_hﬁJrﬁ}(k—]ﬁ]}:mlmzA(p“)=0 G.11-7)
my mm my my
Where A(p4)={p4~p2(52—+ﬁif‘l)+(-]ifz—j} (3.1.1-8)
my n my my
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Multi Degree of Freedom Systems

Since masses m; & m, are non-zero, roots of A( p*)=0 will give two natural frequencies
1 & p, corresponding to 1st mode and 2nd mode of vibration respectively.

k, +k kB k .
A(p“)={p4 —p2[£2—+i+—‘—)+[—‘—-i)}=o (3.1.1-9)
m; m my m,

Solution of this equation will give two natural frequencies. Solving, we get
2
pralfeorhiglfk kthk) kK
2m2 2m1 2 m2 my my m,
Uk &k k_ |k &k kY [k k
Or pre=—q24 2 g2 22 1) 4072 (3.1.1-10)
21my m m m, m m my m,

At times it is convenient to express the frequency equation in terms of limiting frequencies.
Expressing these in terms of Limiting Frequencies, we get:

Denoting
k o
P = . as limiting frequency for mass m,
|
’k
P2 = ;2— as limiting frequency for mass m, (3.1.1-10a)
2

m .
& A=—2 gs mass ratio
my

Equation (3.1.1-10) is re-written in terms of limiting frequencies as

Pl %{(pfz(l #2)r o2 (e 2) ¢ p2 f -2 pfz)} G.1.1-1)

Two natural frequencies p; & p, are

% =;{(p32(1+z>+ P - lp2 0 1)+ 2 a2 p,a)} (3.1.1-12)

=t e e )l e 2 -alot ) 61113
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3—8 Multi Degree of Freedom Systems

Since p, & p,are roots of A(p*)=0, A(p*) could also be representéd in terms of its roots i.e.
its natural frequencies p; & p, . Expressing in terms of natural frequencies p, & p,, (derivation

not given, readers may please derive themselves), we get:

A(p*)=(p* - ' )P* - P3) (3.1.1-14)
From equation 3.1.1-12 & 13, it can be seen that
PiXPy=PriXPr2 (3.1.1-14a)

Mode Shapes:

As we have seen that a SDOF system has only one frequency and vibrates in one mode only.
Similarly a 2 Degrees of Freedom (2DOF) System has two natural frequencies and two modes of
vibration. Let us first evaluate its mode shapes.

Let the general solution of the equation of motion be of the form

Y1 = Ay sin(pt + )

, (3.1.1-15)
Yy = Ay sin(pt + @)

In the 1¥ mode since the system vibrates with frequency p,, we can consider the solution to be of
the form

= A sin(pyt+¢")

oo s (3.1.1-16)
Yy = Ay sin(pyt +¢")

Here quantities with single prime are indicative of the first mode.

Here y; &y, represent the response of massm; & m,, A & A; are the amplitudes of

lst

mass m; & m,and @' represents the phase angle in the 1% mode. Differentiating, we get the 2™

derivative as

Ji =-p,> 4] sin(pt +¢)

’ o (3.1.1-17)
V2 =-pi Ay sin(pyt +4)

Substituting equation (3.1.1-16) and (3.1.1-17) in equation of motion, (equation 3.1.1-2), it gives
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Multi Degree of Freedom Systems 3—9

. Tm 04 Sk +k) k)][4) [0
-pi Sm(l’lt+¢)[0 mzHAé}‘*Sm(Plt"'¢)[ (=ky) (kz)]{Aé}_{O}

Rearranging terms, we get

(ki +kp-mpl) (k) |[4i] _[0
[ (=k2) (K, ‘mzpf)]{Ai} - {0} (?'1'1'18)

Solution of this gives

A4 ky _k2—m2p|2 -

(3.1.1-19)

1
4 _k1+k2"m1P12 ) ky a’

Here o’ represents amplitude ratio of mass m, to the mass my in the first mode of vibration. This

indicates that for a given system, there exists a constant ratio between amplitudes of masses
m, & m, for the first mode.

Similarly for the 2" mode the system will vibrate with frequency p,
We can consider the solution to be of the form

I = A'sin(pyt +¢"
yi = Arsin(pst +4°) (3.1.1220)
Y3 = Aysin(pyt +4")
Here quantities with double prime are indicative of the second mode.

Here y; &y, represent the response of massm; & m,, A& A; are the amplitudes of mass
my & m, and §" is the phase angle in the 2™ mode.

Substituting equation (3.1.1-20) and its 2" derivative in equation (3.1.1-2), and solving, we get

Ak _k-mp 1 G.1.121)
A ky+ky—mp; k2 a’

Here " represents amplitude ratio of second mass to the first mass in second mode of vibration.
This indicates that for a given system, there exists a constant ratio between amplitudes of masses
m; & m, for the second mode too.
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3—10 Multi Degree of Freedom Systems

Values of constants A, 45, A & A; are determined based on initial conditions. It can well be
proved that equation (3.1.1-19), that represents Mode I, is always positive i.e. both the masses
move in phase in relation to equilibrium position. Similarly it can be proved that equation 3.1.1-21,
that represents Mode II, is always negative i.e. both the masses move out of phase in relation to
equilibrium position. It is also interesting to note that the first natural frequency (lower natural
frequency) is always lower than the lowest limiting frequency (given by equation 3.1.1-10a) and
the second natural frequency (higher natural frequency) is always higher than the highest limiting
frequency. (Proof not given- readers may attempt the same on their own).

The two modes are shown in Figure 3.1.1-2.

The mode when both masses move in phase in relation to equilibrium position is termed as
Fundamental Mode or Principal Mode or Normal Mode of Vibration. In this mode the system
vibrates with lowest frequency called the fundamental frequency. In the second mode the system
vibrates with next higher frequency or second frequency

Free Vibration Response

Having obtained natural frequencies of vibration, the next step is to evaluate its free vibration
response. The general solution (see equation 3.1.1-15) thus becomes:

Response of mass m;

yi =Y+ = Aisin(pit +¢') + A'sin(pyt +¢")
1st Mode Response  2nd Mode Response (3.1.1-22)
= A sin(pyt + @)+ A'sin( pyt + ¢")

Response of mass m,

Y2 =Yy +yy = Aysin(pit+¢)+ Ay sin(pyt + ")
1st Mode Response 2nd Mode‘rResponse
= Ay sin(pyt +§') + A5 sin( pyt + ¢") (3.1.1-23)
=a' A sin(pit + @)+ A sin(p,t +¢")

The values of constants are determined from initial conditions.

Let the initial conditions be
At t=0- y; () =y (0);3,(O) =y (0); ¥2(1) = ¥, (0); 2 () =3, (0)  (3.1.1-24)
Differentiating equation 3.1.1-22 & 3.1.1-23, we get
V1 = D14 cos(pt+ @)+ py A cos(pyt +4") (3.1.1-25)
Vy = pAja’ cos(pit+ ")+ p, Al cos(p,t +¢") (3.1.1-26)
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Multi Degree of Freedom Systems 3—11

Substituting equation 3.1.1-24 into equations 3.1.1-22, 23, 25 & 26, we get the values of the four
constants 4;, 45,¢' & ¢" . Using equations 3.1.1-19 & 21 we get values of 4] & 4 .

4 a4

A

7 7
Basic System 1st Mode - 2nd Mode

Figure 3.1.1-2 Mode Shapes of an Undamped Two Spring Mass System

Having evaluated these constants, equation 3.1.1-22 & 23 yields the free vibration response of the
system. It is well known that every physical system has some inherent damping present in it. Since
free vibration response is only transient response it dies out quickly depending upon the value of
the damping present in the system. Therefore it is not of much interest from the point of view of
machine foundation design. However in specific cases (as we will see later) it may be desirable to
compute this transient response too.

3.1.2 ARigid Block supported by Vertical and Translational Springs

(This combination of springs does not represent any practical application. The
derivation is given for academic purposes only to demonstrate that Vertical and
Translational modes are uncoupled)

Consider a rigid block of mass m having its centroid at C. The block is supported by vertical spring
of stiffness &, and translational spring of stiffness , attached at center of base O. The height of

centroid from base is 4. The block is constrained to move only in X & Y direction as shown in
part (a) of the Figure 3.1.2-1.

Static Equilibrium: The vertical spring &, supports the self-weight of the block and

develops vertical reaction R to counteract the self-weight mg . This position of the block is termed
as position at rest and has been shown in part (b) of the Figure 3.1.2-1.
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Considering equilibrium at rest position, we get mg—-R=0 (3.1.2-1)
cé ”j,m T ceé
/ | : m
10 1 10
DOF Location +R
k,
7z

(b) Block Position at Rest. Self Weight mg

(a) Block with Centroid C-Rotation ¢ at O
Supported by Reaction R at support

restrained. Translational spring stiffness &,

and Vertical spring stiffness &, point O
1
‘ C”
T
E *C C%' ; [y
! | 0 :
! 1 y
S 0.0 . "
x4

(c) Displaced Position

Figure 3.1.2-1 A Rigid Block Supported by Translational & Vertical Springs

Equation of motion

The block is displaced and released to oscillate freely. The displaced position of the block at any
instant of time t is as shown in part (c) of the Figure 3.1.2-1. It is seen that due to x translation,

point O moves to O and centroid C moves to C’. Similarly due to y displacement, point O’
moves to O'"" and centroid C'movesto C''.

Let us consider these displacements and corresponding forces developed one by one. Reaction
force and inertia force developed are shown in Figure 3.1.2-2.

Consider first x - translation as shown. Inertia force and reaction force act in direction opposite to
direction of motion. Reaction forces and inertia forces developed are shown in part (a) of the
figure. We get:

Spring reaction force at O’ along X- direction k. x
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Inertia force at C' along X-direction mx

3—13

Now consider displacement along Y direction. Reaction force and inertia force developed are

shown in part (b) of the figure. We get:

Spring reaction force at O'' along Y- direction k,y

Inertia force at C'' along Y-direction my

Considering equilibrium of forces (at DOF location), we get:

2F, =0 mi+kx=0
TF, =0 mj+k, y+mg-R=0
Substituting 3.1.2-1, we get my+k,y=0

2 M, =0 as the rotation about O is constrained

These equations are called equation of motion.

(3.1.2-2)

(3.12-3)

Figure (c) shows total reaction forces developed due to both the displacement as well as due to

static equilibrium.

It is seen that these equations of motion are un-coupled. In other words these equations are
independent. Each of this equation represents SDOF system. Solution to these equations will yield
natural frequencies and free vibration response of the block. (For Solution to SDOF System - See

Chapter 2)

Solving equation (3.1.2-2), we get:

Natural frequency in X translation p, = k—"
m

Free Vibration Response is given as x=Asin p t+Bcosp,t

Solution of equation (3.1.2-3) gives

k
Natural frequency in Y- direction  p,, = [

m

Free Vibration Response is given as y = Asin p ¢t + Bcos p M
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my
e B |
A e o R R —
L[ ! -
! . -
| 1 ] —_—
e ! i
kx b eeemm i _______ 34
kyy
(a) x - Displacement (b) y - Displacement
Forces acting on the Mass Forces acting on the Mass

#_ -
m¥

r mg
vh
kx 4
R
(c) Total Forces acting on the Mass

A

Figure 3.1.2-2 Forces Acting on the Mass

3.1.3 A Rigid Block Supported by Vertical and Rotational Springs

(This spring combination also does not represent any practical application. The
derivation is given for academic purposes only to demonstrate that Vertical and
Rotational modes are uncoupled)

Consider a rigid block supported by vertical and Rotational spring. The block has its center at C,
and two springs one vertical and one rotational spring is connected at base center point O. The
block has mass m and Mass Moment of Inertia about Z-axis passing through block centroid C
is M ,,, . The height of centroid C above base center O is 4. The block is constrained to move only

in vertical Y direction and rotate about Z-axis passing through O. The block is as shown in part ()
of the Figure 3.1.3-1.

Static Equilibrium: The vertical spring &, supports the self-weight of the block and

develops vertical reaction R to counteract the self-weight mg . This position of the block is
termed as position at rest and has been shown in part (b) of the Figure 3.1.3-1.

Considering equilibrium at rest position, we get mg-R=0 3.1.3-1)
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Equation of motion

The block is displaced slightly and released to oscillate freely. Consider that due to
y displacement, point O moves to O' and centroid C moves to C’. Similarly due to rotation ¢

centroid C' moves to C” . The displaced position of the block at any instant of time t is as shown
in part (c) of the Figure 3.1.3-1.

M, h ymg
| 4 . o,
DOF Location TR

() Block Position at Rest. Self Weight mg
supported by Reaction R at Support
point O

(a) Block with Centroid C - x Displacement at O
restrained - Vertical Spring ky & Rotational

Spring ky attached at O

(c) Displaced Position

Figure 3.1.3-1 Rigid Block Supported by Vertical & Rotational Springs

Let us consider these displacements and corresponding reactions developed one by one. Reaction
forces and inertia forces developed are shown in Figure 3.1.3-2.

Consider first displacement along Y direction. Reaction force and inertia force developed are
shown in part (a) of the figure. We get,

Spring reaction force at O' along Y- direction kyy '

Inertia force at C’ along Y-direction my
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3—16 Multi Degree of Freedom Systems

Now consider rotation ¢ . It is interesting to note that rotation ¢ at O’ gives rise to rotational inertia

as well as translational inertia at C” . Reaction force and inertia force developed are shown in part
(b) of the Figure.

Spring reaction force at O’ along ¢ ky ¢
Inertia force developed at C” along direction normal to centerline mho
Inertia force developed at C” along ¢ M, zéf

Figure (c) shows total reaction forces developed due to both the displacement as well as due to
static equilibrium.

Considering equilibrium of forces at DOF location (See Figure c), equation of motion is written as

XF,=0 my+k,y+mg—R=0
Substituting 3.1.3-1, we get my+k,y=0 (3.1.3-2)
M, =0 Mmz¢'5+(mh¢'5xh)+(k¢><¢)—(mghsin¢)=o

For ¢ to be small, /sin ¢ = hg. Substituting, we get
(M, +m? )+ (k, ~mghlp =0
or (M o3 ) + (ks ~mgh)p =0 (3.1.3-3)

Here M,,, = M,,, +mh?* represents Mass Moment of Inertia of the block about O.

It is seen that equation 3.1.3-2 & 3.1.3-3 are uncoupled. Each of this equation, when solved (see
Chapter 2), gives natural frequency and response.

The solution to equation (3.1.3-2) gives

k
Vertical natural frequency Py === (3.1.3-4)
m

The solution to equation (3.1.3-3) gives

) ks —mgh
Rotational natural frequency Py = — (3.1.3-5)
moz

For response for each case, see § 2.1.1
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4
N : 2 Y
ky y T
(a) Forces acting on the Mass (b) Forces acting on the Mass
due to y Displacement due to ¢ Rotation

(c) Total Forces acting on the Mass

Figure 3.1.3-2 Forces acting on the Mass

3.1.4 A Rigid Block supported by Translational and Rotational Springs -

(This spring combination in itself does not represent any practical application. In
order to simulate a real practical situation, this combination needs to be clubbed
with the vertical support spring. Since vertical mode of vibration is uncoupled with
lateral mode or rotational mode (see 3.1.2 & 3.1.3), vertical spring is not included in
the formulation. The present derivation is given to demonstrate the coupling between
Translational and Rotational modes)

3.1.4.1 Motion in X-Y Plane (Y being vertical axis)

Consider a rigid block supported by a Translational and a Rotational spring. The block has its
centroid at C, and two springs, one Translational, having stiffness &, and the other Rotational,

having stiffness k, are connected at base center pointO .

The block has mass m and Mass Moment of Inertia about Z-axis passing through block centroid
C as M,, . The height of centroid C above base center O is /. The block is constrained

such that it can have only x - translation and ¢ rotation about O and the movement along Y is
restrained. The block is as shown in part (a) of the Figure 3.1.4-1.
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3—18 : ‘ Multi Degree of Freedom Systems

Static Equilibrium: Let us first consider the position of the mass at rest i.e. mean position of
the mass. The gravity force mg is taken care of by reaction R by the restraint at support O . Part

(b) of the figure shows position at rest. Considering equilibrium at rest position, we get

mg—-R=0 (3.14-1)
C é T Ce
v : h yme
K 1 |
R o 1 o
" DOF Location 0
k
¢ (b) Block Position at Rest-Self
Weight mg Supported by
(a) Block with Centroid C, y - Displacement at O Reaction R at Support point O
restrained. Lateral Spring Stiffness k, &
Rotational Spring Stiffness k¢

) VP o |

(c) Displaced Position
Figure 3.1.4-1 A Rigid Block Supported by Translational & Rotational Springs

Equation of motion:

Consider that at any instant of time ¢, the block has moved by x and rotated by angle ¢. Due to x
transiation, point O moves to O’ and centroid C moves to C’ and due to rotation ¢ at
O' centroid C’' moves toC” . Figure 3.1.4-1 Part (c) shows the displaced position of the block.

Let us consider these displacements and corresponding reactions one by one. Reaction forces and
inertia forces developed are shown in Figure 3.1.4-2.
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Consider first x translation. Forces developed are shown in part (a) of the figure. We get,

Spring reaction force at O’ along X- direction k,x

Inertia force at C’ along X-direction mx

Now consider rotation ¢ at O’. This rotation gives rise to rotational inertia as well as translational
inertia at C” . Reaction force and inertia force developed are shown in part (b) of the Figure 3.1.4-2.

Q
Q
I

e s

kxqe—l— & & 1 |
xx . 0 OI

(a) x - Displacement () 6- Rotation
Forces acting on the Mass Forces acting on the Mass

(c) Total Forces acting on the Mass

Figure 3.1.4-2 Forces acting on the Mass

Spring reaction force at 0" along ¢ ky ¢
Translational Inertia force developed at C” (as shown) = mhg
Rotational Inertia force developed at C” (as shown) = M, ¢

https://engineersreferencebookspdf.com



3—20 Multi Degree of Freedom Systems

Figure (c) shows total reaction forces developed due to both the displacement as well as due to
static equilibrium.

Considering equilibrium of the forces (at DOF location point O' ), we get

XF. =0 mi-mhgcosg+k,x=0
For ¢ to be small mhﬁ cosg = mh¢ , we get

mi-mhg+k, x=0 (3.1.4-2)
M, =0 M, ¢+ (mhgxh)—(m £)x hcos g+ (ky x$)—(mghsin ) = 0

For ¢ to be small, Acos¢ =h & hsin ¢.= h¢ . Substituting, we get

(M +mh*)§—mh 5+ (ks —mgh) ¢ =0

Or M, §—mhi+(ks—mgh)$=0 (3.143)
Here M,,,, = M,,, +mh’ represents Mass Moment of Inertia of the block about Z-axis at O.
2F,=0 mg—R—mhgsing =0

For small ¢, the component m hgsin ¢ is very small and can be equated to zero i.c. mhgsing=0.
This gives mg — R =0 and that is equation (3.1.4-1).

Writing in matrix form, we get

v SR B

It is seen from this equation that there is no coupling in stiffness matrix but mass matrix is
coupled through off-diagonal terms. Thus equations of motion are said to be coupled one.

It may be noted that for all practical real life problems, the influence of the term mgh is
insignificant and hence ignored in the equation of motion. The equation of motion thus

becomes:
m -mh || % N k, 0 |{x _ 0 3144
—mh Mmoz ¢ 0 k¢ ¢ _{0 ( o )
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Solution to equation of motion 3.1.4-4 gives two natural frequencies and associated mode shapes.
Natural Frequencies are given as (see equations (h) & (i) — Solution 3.1.4-4).

1 1

pt=——(p2+ pﬁ)——‘\/(pf +p2f 4y, p2 p? (3.14-5)

2y, 2y, :

1 1

pi = (o2 + 3o s lo2 + p2F - 47,0207 G.1.46)

Yz 2y, -

M, k k

Here 1y, = M’”‘ ; pg =;‘; pf, = M¢ s (3.14-7)

moz

Associated mode shapes are given as (see equations (1) & (m) - SOLUTION 3.1.4-4).

2 2 2
ﬂ:_h[ P |_ =M | (Ps —P) (3.14-8)
B, pi-pi) mh i |
2 2 2
f_z____h P2 _ My (py —p3) (3.1.4-9)
B, 2_52 17 mh 2 o
2 Px— D2 P
X W
HEE i
,"(_ ):l\," ~§“II t\"'id\\"'l!'( ) \\\
Y Ll i / Vi “\;!C' \‘\
ICe ,‘ Jd 7 \ + ! Y
’I‘ '5 ’I’SC I'l \“ ; :\‘\ “
¢ Ll
x e
o ! i \
. st nd
X-Y Plane - Deformations 1 Mode 2 Mode

Figure 3.1.4-3 Mode Shapes in X-Y Plane

From equations (3.1.4-8) it is noticed that amplitude ratio (A, /B,) is always negative because the
value of the quantity in parenthesis is always positive as p, <(p, & p;). On the other hand

equation (3.1.4-9) indicates that ratio (A, /B,) is always positive because the value of the quantity
in parenthesis is always negative as p, >(p, & p;). This, in other words, indicates that in the ¥

mode if the block translates say in positive X-direction, its rotation shall be in negative ¢ direction

https://engineersreferencebookspdf.com



3—22 Multi Degree of Freedom Systems

i.e. clockwise whereas in 2™ mode if the translation is in positive X-direction then rotation shall
also be in positive ¢ direction i.e. anticlockwise. These mode shapes are shown in Figure 3.1.4-3,

Free vibration response being transient response is not of much interest from the point of view of
machine foundation design since it dies-out quickly based on the damping present in the system.

Only in SpeClﬁC cases (as we will see later) it may be desirable to compute transient response too.

Constants A;, B; & A, B, are evaluated using initial conditions.

SOLUTION 3.1.44

A) Natural Ffequency

Rewriting equation 3.1.4-4:

vl P ‘

Frequency Equation = l(k - mpzl =0 (b)

Substituting equation (a) in equation (b), we get frequency equation as

ke-mp®y  mhp’

mhp2 (k¢_—-M,,,,,zp2) -

Simplifying, we get
(%, —mpz)(k¢ -—M,m,zpz)—mzhz'p" =0
ki (kg = My, p*) = mp? (kg = My, p7) =P p* = 0
(keky~ Mm,,,kxp2) —(mp*ky=mp* M . p*) ~m*h? p* =0
MM s P* = P2 (ks + Mk, )+ koky —m? 2 p* =0

(c)

Since M

moz

= (M mz ’”hz) and denoting y = A]:[”’-'

moz

and simplifying, we get

m(Mmz +'nh2 )P4 —pz(mk¢ +Mmo'k )+ kxk¢ _m2h2p4 =0
mM,,,zp4—p2(mk¢+ M,k )+k ky =0 \

mMm,{p4-p2-;-(p:+p§)+-;-pzp§} me{p*)=0 W
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My . 2_k 2 __ky
Here y, =—#5=,py =—; py = ()
moz * m ¢ Mmaz
Here p, represents lower frequency and p, represents higher frequency
Frequency equation thus becomes:
1 1
A(p4)=[p"—p27{pf+p§}+7—pﬁpﬁ}=0 Y

Roots of A( p4) =0 will give two natural frequencies; one corresponding to translational mode and
other to rotational mode. Solving we get

P’ =-2-}1,—z(pf +pl) 2, \/{pﬁ +p3f -4y, p2p2 ®
This gives:
pi= 2;2 (p2 + p3)- 2 \/ {2+ p2f -4y, p2p? | )
1
pi= 7, (p2+ 72 )+7\/ {p2+p2f —ay, p2p2 0

Here p, representing I° natural frequency (lower natural frequency) corresponds to I mode of
vibration & p, representing 2™ natural frequency (higher natural frequency) corresponds to 2
mode of vibration.

From the equations (h) & (i), it can be proved that p,2 X p22 L p; pf

F4

B) Free Vibration Response
Two natural frequencies have been obtained as given by equations (h) & (i). There are two

associated modes of vibration. In the I mode the system will vibrate with frequency p,& in 2™
mode with frequency p,. Let us now evaluate the two mode shapes:
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Let the solution be represented as

x = Asin(pt + )
= Bsin(pt+a)

) m  —-mhl{¥] |k, O|[x 0
Equation (a) b M ¢ + 0 k1o = 0

Substituting equation (j) in to equation of motion (a), we get

k, —mp? mhp? A |0 ®
mhpz (k¢_Mm()zp2) B - 0

Simplifying, we get amplitude ratios in I mode as (use frequency p, for the first mode):

0

_1_4]_=_ Iﬂhplz ____k¢_Mmozp12
By k,—mp] mhp]
2 2
ﬁl_=__h( plz J=_Mm()z (p¢ _pl) (l)
B, pi-pi) mh pi

Solving for amplitude ratios in 2™ mode (use frequency Py for the second mode), we get:

i—_ p% _,_Mmoz (p; —pg)
==h 2 27 3 (m)
Bz Px— P mh P2

3.1.42 Motion in Y - Z plane (Y being vertical axis)

Consider the same rigid block (as in §3.1.4.1) supported by a Translational spring along Z having
stiffness 4, and a Rotational spring about X having stiffness £, . These springs are connected at

base center point O. The block is as shown in Figure 3.1.4-4.

https://engineersreferencebookspdf.com



Multi Degree of Freedom Systems 3—25

T ce
h : \
: k, \
e
o DOF Location

q“

kg

(a) Block with Centroid C, y - Displacement at O
restrained. Lateral Spring Stiffness k, &

Rotational Spring Stiffness kg

(b) Displaced Position

Figure 3.1.4-4 A Rigid Block Supported by Translational & Rotational Springs in Y-Z Plane

The block has mass m and Mass Moment of Inertia about Z-axis passing through block centroid
C asM,, . The height of centroid C above base center Ois & . The block is constrained such

that it can have only z- translation and & rotation about Oand the movement along Y is
restrained. The block is as shown in part (a) of the Figure 3.1.4-1.

Following procedure similar to that for X-Y Plane, we get equation of motion as:

Writing in matrix form, we get

m mh ||Z k. 0 1[z} [O] 314
mh Mo 16710 &, {l6] 10 (3.14-10)

Proceeding on the similar lines as for § 3.1.4.1, we get natural Frequencies as:

1 1
pi =——(p? + p3)- \/(P2 +p3f ~47,p2p2 (3.14-11)
2y, 2y, .
1 1
P =——(p?+p}) \[(pz +p2fF ~4y, 0202 (3.1.4-12)
2y, 27,
k. k
Here y, = —™ ;p? =< pé =—¢ (3.14-13)
m M

mox mox

Associated mode shapes are given as

A [ et ) Mpox ((Ph —PD)
Ry - _ (3.14-14)
B \p:-pi) mh pi
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t2 2 2
i___h P2 - Mmox (p6 _p2) (3 14_15)
B, pi-p} mh P
! 4
“\ j”\ It "l :
P |r_}_‘\ / N‘l“:\\
:\‘ .- ) ‘\|§ ’ \\ / é(, ) \l.;
\ C' i\ / /
\ * [ A / 7
Y Y .\‘ C“\\ // ,'? ’i//
VI AL
(9) \ s T b l\\ 7N
- .i || " ~7 i
i \b H t
Z i
- -
d
Y- Z Plane - Deformations 1" Mode 2" Mode

Figure 3.1.4-5 Mode Shapes in Y-Z Plane

From equations (3.1.4-14) it is noticed that amplitude ratio (A, /B;) is always positive because the
value of the quantity in parenthesis is always positive as p, < py . On the other hand equation

(3.1.4-15) indicates that ratio (A, /B,) is always negative because the value of the quantity in
parenthesis is always negative as p, > p,. This, in other words, indicates that in the 1* mode if

the block translates say in positive: Z-direction, its rotation shall be in positive 8 direction i.e. anti-
clockwise whereas in 2™ mode if the translation is in positive Z-direction then rotation shall be in
negative 6 direction i.e. anticlockwise. These mode shapes are shown in Figure 3.1.4-5.

SOLUTION 3.1.4-10

A) Natural Frequency
Rewriting equation 1:

e s s ANt | g

Frequency Equation = I(k - mpzl =0 (b)
Substituting equation (a) in equation (b), we get frequency equation as

(k,=mp®)  —mhp’

2 2y =0
\—mhp (ka _Mmoxp )
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Simplifying, we get

(kz —mpz)(ka _Mmoxpz)—m2h2p4 =0

kz(kﬁ _Mmoxpz)_mpz(kﬁ _Mmoxp2)—m2h2p4 =0
ksz —Mmoxkzpz _mp2k0 +mp2Mmoxp2 —m2h2p4 =0
m‘}\/lmoxp4 "pz(mkb‘ +Mmoxkz)+kzk6 _m2h2p4 =0
m(Mmox _mhz)p4 “Pz(mka +Mmoxkz)+ k:ka =0
m(me)p4 _p2(mk9 +Mmoxkz)+kzk9 _m2h2p4 =0

mme{p4_p2 (mk0+Mmox z) k k0 }=0

mM,,, mM
mme p4_p2_%ﬂ(_£o_._+.k_z]+_k£ki. =0
mM mox MM mM

mme{p -p’ (pg+ ) m}=0
mme{p p~(pe+px) }

mM A(p*)=0
alp*)= {p" —p2%@§ +pf)+%p3p§} ©
'"Mm{p4 P22 {p2+ p2 )+—1—p3p3} = mM,A(p*)=0
Vs 2

Roots of A( ) 0 will yield two natural frequencies

1 1
p* —pzy—(pé +p2)e—p2p? =0 (@
X X

Solving we get

2.

L (p2+p2)

1 2, 202 2 2
= + -4
p 2}’x 7, \[{pz Pe} Yx Pz Py
k k
Here y, =—# pr =—%3 pp=—"F ©

mox mox

Here p, represents lower frequency and p, represents higher frequency
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Frequency equation thus becomes: ' -

dp)-[o*-»

» {p +pa}+—7l—png]—0 0

X

Roots of A( p4) =0 will give two natural frequencies; one corresponding to translational mode and
other to rotational mode. Solving we get

2
p =

" \[ p, +Pa -4y, pp; (g

X

27, (P +Po

This gives:

N

1
> (p +P9 +Pe} -4y, P2 P *)

X

2 1
P = +P9
2y, (p

+Pa} -4y, le’e (i)

Here p, representing I* natural frequency (lower natural frequency) corresponds to 1* mode of

vibration & p, representing 2" natural frequency (higher natural frequency) corresponds to 2™
mode of vibration.

From the equations (h) & (i), it can be proved that  p x p3 L plpa

X
B) Free Vibration Response

Two natural frequencies have been obtained as given by equations (h) & (i). There are two
associated modes of vibration. In the I* mode the system will vibrate with frequency p & in 2"
mode with frequency p,. Let us now evaluate the two mode shapes:

Let the solution be represented as

z= Asin(pt +a)
= Bsin(pt+a)

Eouati m  mh (2} [k, 0]|fz] [0
quation (a) mh M, § + 0 k|16 =10

0
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Substituting equation (j) in to equation of motion (a), we get

k, —mp® - mhp? A 0} ®
—mhp*  (kg-M,,.p*){\B |0
Simplifying, we get amplitude ratios in 1" mode as (use frequency p, for the first mode):
,fl_zh[ pi Jszox ((pé —pf)J 0
B \p;-pi) mh pi

Solving for amplitude ratios in 2™ mode (use frequency p, for the second mode), we get:

.A_1_=h[ P )=Mmox((l7§ _P%)J (m)
B \p;-p3) mh \ p

3.1.5 Mulitiple Spring Mass Systems connected by a massless Rigid Bar
Consider a Multi-Spring Mass System connected by a massless rigid bar as shown in Figure 3.1.5-
1. Figure (a) shows distances of each spring from an arbitrary axis. Let C, & C,, represent Center

of Stiffness and of the System respectively. Let X,, & X, represent distance of Center of Mass and

center of stiffness from arbitrary axis. Let e represent eccentricity between Center of Mass &
Center of Stiffness. The system is constrained to move only in X-Y plane.

Two coordinates namely translation y (along Y) and rotation ¢ (about Z) represent two degrees

of freedom that define displaced position of the system. Let X, represent the distance of i" frame
from any arbitrary axis parallel to Y as shown in part (a) of the figure.

CG overall mass m (pointC,, ) from that arbitrary axis

. _ mx;
m= Zm, ; X, = —Z—;'—'—
CG of Overall stiffness £ (point C, ) from that arbitrary axis

k, =3k ; fk=_z¥£
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Y
i
1
]
i ! Arbitrary Axis
]
i n mln2) 13 _2 1 r/
Springs R
P ) M A
! ! ' . i )
) | ! i ! e Xy
oo P e
R
E E :‘ Xn-2
i :‘ Xp-1
b *n
(a) Distances from Arbitrary Axis (b) Origin @ Center of Mass - Distances from

Center of Mass and Center of Stiffness

Figure 3.1.5-1 Multiple Spring Mass Systems Connected
by Massless Rigid Bar

Let us consider center of mass C,, as origin.

Let a, represent distance of i frame from center of mass point C,, and b, represent distance of

i" frame from center of stiffness point C, as shown in part (b) of the figure.

Eccentricity e (distance betweenC,, &C}) e=X, —X,

We can represent the system as a Two Degree of Freedom System with a simplified model having
Mass m , Mass Moment of Inertia M, , Translational Spring Stiffness &, (along Y) and Rotational

Spring Stiffness k, (about Z) as shown in Fig. 3.1.5-2.
Equation of motion: Consider the motion in X-Y plane at any instant of time ¢. Mass moves

by adistance y and rotates about Z by ¢ . Let center of mass point C,, represent DOF location
for equation of motion. Equation of motion thus becomes:

https://engineersreferencebookspdf.com



Multi Degree of Freedom Systems 3—31

Mm
ja DOF Location
ky

7

Figure 3.1.5-2 Equivalent Two DOF System Supported by
Translational & Rotational Springs

my+k,y=0 (3.1.5-1)

M, d+ks¢=0 (3.1.5-2)

Here m represents overall Mass, M, represents Mass moment of Inertia, k,represents overall
linear stiffness and k; represents overall rotational stiffness of the system. Based on the system

parameters, let us evaluate m, M, .k &k,

From the figure, we get yi=y+a,¢ & a;,=b+e (3.1.5-3)
a) Total Mass of the system @DOF

Total Inertia force 3 m, 5, = Y m,(5+a,6)= 5 m, +§> ma,
Since g, is the distance from center of mass z ma;, =0
2my; =y m=my
m=3m, (3.1.5-4)

b) Total Linear Stiffness @DOF
Total resisting force at DOF location (point C,, ) Z(k, i)

Yy =2 ragh=Y{ky+kle+s )
=S (ky+kep+kbg)=y> k+edd k,+4> kb,
Since b, is the distance from center of stiffness, summation Z kb =0

Z(kiyl)z ky y+kye¢

k, =k (3.1.5-5)

https://engineersreferencebookspdf.com



3—32 Multi Degree of Freedom Systems

c) Total Mass moment of Inertia of the system @ DOF
Total Rotary Inertia Moment

Ymia)=Y tmai+a =33 ma,+33 (ma?)

Since g is the distance from center of mass Z ma; =0

Z(miyiai)-‘- JZ(mia,-z)= M
M, = Zmiai2

d) Total Rotational Stiffness of the system @DOF

(3.1.5-6)

Total resisting moment at DOF location

Zky,a,) Z (y+a¢ Z(k-a-y) Z(k-a2¢)
=¢z(k,a,.)+yz {k(e+5,)} =93 (ka2 )+ 3 (vh,e)+ X (k,5,)
=3 (ka? J+ v Sk, + v kb, =83 (ka2 )+ ey
ke + o3 [k (b + e )= hey+ 43 (b2 + €% + 265, )
=k, ey+d ) kb’ +pe’ D k +2e4 kb,
=k, ey+p) kbl +ke’p+2e¢) kb,

Since b, is the distance from center of stiffness, summation z kb, =0

S(kya)=k,ey+k,p+k, ¢
ky = kb
Substituting equations 3.1.5-4 to 7 into the equations 3.1.5-1&2, we get:
my+k,(y+eg)=0 (3.1.5-8)

(3.1.5-7)

M, f+k,ey+k,d+k, e’¢=0 (3.1.5-9)

Here m=2m,; ky=Zk,-; M,,,=Zm,a,2; ky = Z(k,-b,z)
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Simplifying equations 3.1.5-8, we get

3 2 2 ky
y+p,ytep, $=0; Here p = - (3.1.5-10)
Simplifying equations 3.1.5-9, we get
M, b+k,yerk, e p+k, =0
.k k k
f+—Lyer—L et g+—g=0 (3.1.5-11)
Mm Mm Mm

3 2. € 262 2
¢+pyyr—2+py—r~2—¢+p¢¢=0

,k f k M
Terms p, = L Ps = M_¢ & r= " represent limiting translational frequency, limiting
m m m

rotational frequency and equivalent radius of gyration respectively.

It is also noted that both these equations 3.1.5-10 & 11 are coupled through eccentricity term e. If

eccentricity becomes zero, i.e. e=0, both these equations get uncoupled and the limiting
frequencies become natural frequencies.

Natural Frequencies:

Rewriting equations 3.1.5-10 & 11 in matrix form, we get

2 2
e
1oolly) | P Py y [0
Nl B4 s € 2 = (3]5-12)

0 1jl¢) |py— |pPy—+ps||l8) (O

r r .
Frequency equation ‘k -mp*|=0
py-p’ ep)

2 =0 (3.1.5-13)

e e

pﬁ:z- {Pﬁ;z-wi—pz]
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Simplifying, we get

2
p* —pz[pi[l+%J+ p§J+ pyps =0

p4—p2(ap§+p£)+p§p;=0 (3.1.5-14)

2
Here o = l+%
-

Roots of the equation 3.1.5-14 will yield two natural frequencies.

1 _
P, =5{(0‘va+!’§)’—“\[(api+ﬁ§)z—4p§p§} (3.1.5-15)

3.1.6 A Portal Frame supporting mass at Beam Center

Consider a portal frame supporting mass #2 at beam center as shown in Figure 3.1.6-1. Consider
that portal frame is constrained to move only in X-Y plane. Possible motion directions are i)
motion along X and ii) motion along Y.

Single Degree of Freedom representation of the system for motion along X as well as along Y is
described in Chapter 2 (§2.1.1.4.5).

Representing motion along Y as Two Degrees of Freedom system, consider the portal frame with
the properties (same as those used in (§2.1.1.4.5) as under:

Elastic Modulus of Material (Both column & Beam) E
Mass density of the material 0
L
H

Span of Beam is
Height of Frame

Area of Beam Cross-section . A,
Area of Column Cross-section A,
Moment of Inertia Beam Cross-section 1,
Moment of Inertia Column Cross-section 1,

Mathematical model is shown in Figure (d).

Equations of motion are (see equation 3.1.1-1)

miy+kyi—ky(yy =y)=0 (3.1.6-1)
myyy +ky(y2 =y1)=0
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Let us evaluate my,m;, k &k, .

Degrees of Freedom &y,

i) Mass my; & m,

a) Mass m,
Machine Mass on the frame beam m
Mass of Beam my =pxA4,xL
Generalised mass of frame beam my, =0.45m,

3—35

Note:  For simply supported beam the factor for equivalent mass is 0.485 (see equation 2.1.1-26)
and for fixed-fixed beam this is close to 0.37 (see equation 2.1.1-33). For a frame this value is

taken as 0.45 (close to average).

Mass m, my =m+0.45m, (3.1.6-2)
=
k=2
0 L
M=o~ g
_ _ ~L
My [|Mp Mp=Mc= 33
TXXXR
X mAC' IC ED AC IC
— 1—
(a) Portal Frame (b) Bending Moment Diagram under Unit Load
e
5yc N
Syb

(c) Deflection Under unit Load (d) Mathematical Model

Figure 3.1.6.-1 Portal Frame with Machine Mass m at Beam Center - Deflection

and Bending Moments - Vibration in Vertical Mode
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b)

ii)

Multi Degree of Freedom Systems

Mass m,
Mass of each column m,=pxA,xH
Generalised mass of each column (see equation 2.1.1-15) m; =0.33m,

Mass m, =Total mass on column top — Mass m,
my = {(m+m,, +2><O.33><mc)—mz}
m ={(m+mb +2><O.33><mL.)—(m+0,45mb)} (3.1.6-3)
m; =0.55m;, +2x0.33xm,

Stiffness k; &k,

It is seen from the mathematical model that DOF y, pertains to beam deflection &, and

DOF y, pertains to column deflectiond,..

Beam Deformation under unit Load &, :

Stiffness Ratio Factor k= ((5 ]ch // fl)) - (( 11 :» // II:I))

From behding moment diagram of beam alone (as shown in the Figure), we get:

3
Deflection due to span moment L Spp = L
4 48E 1,
L L L
Due to support moments ———— Oppr =X o
4(k+2) 4(k+2) 8EI,
Net beam deflection at center Oyp =081 = SOym2
L L 5 L 2+l

§yb= _ X: =
48E1, 4(k+2) 8EI, 96El, k+2

Stiffness £, k, _ 965;1[) o k+2
Sy L 2k+1

(3.1.6-4)
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b) Column Deformation under unit Load &, :
Vertical deflection of columns Oy = L
2x(EA,/H)
. 2FA
Stiffness £, k = Hc (3.1.6-5)

iii)  Natural Frequencies (see § 3.1.1)
We can represent the system as shown with m,,m,,k; & k, as given below

my =m+0.45m,

m; =0.55my, +2x0.33xm,

EA,
k1=2 <
H
by =L 96l k42
r 2k+1

Oy
k k m
Pu:"_]§ PL2=“—2‘-; A=—2%
m my m

Natural frequencies: Rewriting equation 3.1.1-11

(3.1.6-6)

o= a0 e oo 2 F -l )

Roots of this equation give two natural frequencies p, & p,.

32 TWO DEGREES OF FREEDOM SYSTEM - FORCED VIBRATION
3.2.1 Un-damped Two Spring Mass System Subjected to Harmonic Loads

Consider a two spring mass system having dynamic excitation force as shown in Figure 3.2.1-1. In
any practical system, the excitation force can be considered in four ways:

a)
b)
c)
d)

Dynamic force on mass m,
Dynamic force on mass m,
Dynamic force on masses m, & m,
Dynamic force applied at the base
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Let us consider these loading cases one by one.
a) Dynamic force on mass m,: System is shown in Figure 3.2.1-1 (a)

Equation of motion is written as

mo 0[] th+k —kiin]_[ 0 (3.2.1-1)
0 my ||py -k, ky ||ya F,sinot -

i) Complimentary Solution: For complimentary solution (see § 3.1.1)
i) Particular Solution:

Under the influence of excitation force, the system will vibrate with frequency of excitation force
o . Consider the solution to be of the form

»=Csinwt
. (B.2.1-2)
y, =C,sinot »
Differentiating, we get 2™ derivative as
. 2 .
=-@°Cisinat
7 ‘ (3.2.1-3)

Pp =~a’C,sinwt

Substituting equation (3.2.1-2) & (3.2.1-3) in equation (3.2.1-1), it gives

(k1 +k _wzml) —ky {C'}={O} (3.2.1-4)
-k, ky ~o’my ||Cy B

Solution of this gives (see SOLUTION 3.2.1-4) dynamic response y, & y, of the masses
m; & m, (see equation (h) & (1)):

_5

1
»n === sin@t (3.2.1-5)
k 1-82)1-43)

2

_Iy 12 : )
y = 5 (l—,b’lz)(l—ﬁzz) sinwt (3.2.1-6)

k k m o 7] @ w
Here p;, =‘/—L§ P2 =\"2_§ A=—1; Bi=—; Bo=—; Bu=—; Bo=—
m my m D D2 P P2
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F, sin ot

(a) Excitation Force on Mass m, (b) Excitation Force on Mass m,

F,sin ot

Fsinwt

Yo sin ot

)

(c) Excitation Force on Mass m, & m, (d) Excitation Force Applied at the base

Figure 3.2.1-1 An Undamped Two Spring Mass System with Excitation Force (a) on Mass m,
(b) on Mass m, (c) on Both Masses m, & m, & (d) at base y(¥) = y, sin ot

Resonance condition

It is seen from the equations (3.2.1-5& 6) that amplitude rises to infinity when either £, or 5,
becomes unity. Such a condition is termed as resonance condition at first or second natural
frequency. Thus for a 2 DOF undamped system there exist 2 resonance conditions where amplitude

rises to infinity. As every physical system has inherent damping present in the system, this
damping plays a predominant role in reducing the amplitude of motion at resonance.

https://engineersreferencebookspdf.com



3—40 Multi Degree of Freedom Systems

Taking advantage of the derivation done for damped SDOF system, it can be said that in case of
resonance with first natural frequency, the response of the system at resonance is obtained by

replacing the term (1~,312) in these equations by \/(1— ,Blz)z +(28¢ )2 . Similarly in case of
resonance with second natural frequency, the response to the system at resonance is obtained by

replacing the term (1 - ,822) by \[(1 - ,822)2 +(28,¢) .

b) Dynamic force on mass m,:

System is as shown in Figure 3.2.1-1 (b). Equation of motion is written as:

KIS 15 R S @21
0 m |5 -k ky > 0

Complimentary solution to the equation of motion remains the same as for case (a) above. Since
there is a change only on the right hand side of the equation of motion, only particular solution will
get affected. Using the same procedure as in (a) above, the response becomes:

yl——— 1-Bix sinwt (3.2.1-8)
ko \1- B N-5;

A

1 .
V= L sinwt (3.2.1-9)
b (1-p2Ji-82)

For resonance amplitudes see explanation given in case (a).
) Dynamic force applied at mass m; & m,
System is as shown in Figure 3.2.1-1 (c¢). Equation of motion is written as:

Equation of motion is written as

0 |ly ki +ky, —k Fsinot ’
m .J.’1 LAtk 2N _]h 51.n Z (3.2.1-10)
0 my {1y - k2 k2 Yy Fz smowt
Since there is a change only on the right hand side of the equation, using the same procedure as in
(a) above, the response becomes:
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-?‘(1“/322)+%

1 .
= sinwt (3.2.1-11)
i-520i-51)

K F 2
—kl+;2—(l+/1—§’2‘—‘—ﬂ1%1]
1 K2 12 .
Yy = sinwt (3.2.1-12)
U-sh-53)

It is noticed that equation (3.2.1-11) is summation of equations (3.2.1-5) & (3.2.1-8). Similarly
equation (3.2.1-12) is summation of equations (3.2.1-6) & (3.2.1-9). Thus one can evaluate
response for separate load cases and perform linear summation for overall response.

For resonance amplitudes see explanation given in case (a).
d) Dynamic Force applied at the base

For machine foundation application in industrial environment, it is the dynamic displacement
transmitted through base of the system that is generally encountered rather than applied force.
Hence the case of Dynamic displacement y(f) = y,sinw¢ applied at the base is considered.

System as given in Figure 3.2.1-1 (d) is shown again in Figure 3.2.1-2 along with its free body
diagram.

Equation of motion:

When the base exhibits a dynamic displacement y(f) = y, sinw ¢, under the displaced condition, the
net displacement of the spring k, becomes y; — y,sinw¢.

Considering equilibrium of forces on the free body diagram, we get

mp +k(yy = yosinw ) -k (y, - 1) =0

. (3.2.1-13)
my, + ky (¥, —3)=0
Simplifying we can write
my, +ky, -k —-y)=ky,sinwt
Wt~k -n)=ky, (3.2.1-14)

myy, + ky(y, = »)=0

Writing in matrix form, Equation of motion is written as

B R e
0 my ¥ -k ky j»n 0
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Solution to equation (3.2.1-15): Complimentary solution remains the same as for case (a)
above. Since there is a change only on the right hand side of the equation of motion, only particular
solution will get affected.

my ¥,
k(=)

ky(y1~yysin of)

Free Body Diagram

Base Excitation y(f) = y, sin ot
Figure 3.2.1-2  Two DOF System with Base Excitation y(f) =y, sin ¢

Particular solution: Comparing equation of motion (3.2.1-15) with equation (3.2.1-7), it is seen
that for Fj = k;y, , these equations are identical

Thus replacing F; = &, in equations (3.2.1-11) & (3.2.1-12), the solution to equation (3.2.1-21)

becomes:

=¥ (—il—;-fz—zl—;)sinwt (3.2.1-16)
1-Bi N- 5

1
Y2 =Y sinwt (3.2.1-17)
h"ﬂlz xl“ﬁzz )

For resonance amplitudes see explanation given in case (a).

SOLUTION 3.2.14

Rewriting equation 3.2.1-4
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b+ -0?m) -k, {qu} “
—k2 kz—wzmz C2 F2

(b +hy—0?m) -k
—'kz k2—0) m2

-1
Cl _ (kl +k2 @ m]) .'—kz O
C2 - k2 k2 - a)2m2 F2

(For inverse of matrix refer any relevant book on Matrices)

-1
Pre-multiplying by [ :\ on both LHS & RHS, it gives:

Simplifying we get,

{Cl} |:(kl+k2 o'm) -k, }'l{o}ikz_lzzmz kl+k2k2a) ml}{lgz}

C2 "‘kz k2 —(l)zmz

Simplifying the denominator, we get

= mm, {a)“ - wz(ﬁ— - £]+(ﬁk—2} =mm, Alo*)
m, m m m; m,
Substituting, we get ‘

C 1 ky—o’m, k, 0
c :——-—4- 2 (b)
2 mym, A(a) ) k2 kl +k2 — @ m F2

Since p, & p, are the two natural frequencies of the system, A(w*Y is written as
w0t ={la" ~2})lo? - £3)}={lef -7 (3 -7}

Substituting, the equation (b) becomes:

C]‘ _ ] k2 a) m2 k2 O
CJ ot pt -0t ke ktk F ©
1) mmy\py —@ \p, —@ 2 1k —0?m || F ‘

(k,+k2 - ml) —k2
-k, ky—w’m,
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Solving for C; & C,, it gives

- ko Fy .
@ ml'"2(l’12 ‘a’zx‘.’?zz ‘0)2) “
(k1 +k,y -wzm,)Fz
T mlmz(P12 —0)211922 —(02) ©

We can also compute amplitudes using Crammer’s rule (for Crammer’s rule refer any book on
engineering mathematics). This simplifies the computation process. From equation (a), we get:

O _k2
C = E, ky-o’m, Fk,
l k +ky —a)zml -k, mm,Maw*)
—k, ky~o*m,
4 2 2 2 2 2 2 2 2
Mo )={(0’ “PI)(w ‘Pz)}={(1’1 —w )(pz —w )}
Fok
C, = 2%3 0
m,mz(plz—a)z)(pz2 —w2)
k +ky, —0*m, 0
o & F Blth-o'm)  Eltk-o'm) @
= =
ky +ky —@*m, —k, k, +k, —0*m, ~k, mym, lz_wz)(pzz_wz)
—k, ky—a’m, —ky ky —@*m,

1t is noticed that C; & C, as given by equations (f) & (g) are same as those in equation (d) &
(e).Thus it may be convenient and simple to use Crammer’s rule any subsequent derivation.

Simplifying further, we get

C. = Fk, _ Fok, =i 1
] mlmzplzpzz(]—ﬂlz)(l‘ﬂzz) mlm2pl.12pL22(1—ﬂ12)(1_'822) Ky (]—ﬁlz)(l_ﬂzz)
Fzml(ﬁ+k—2——w2j Fzml(lcl—+k—2—a)2)
mem mm
Cz = =

mlmzplzpzz(l‘ﬂlz)(l“ﬂzz)_ mlmzpl,lzpwz(l_ 12)(1‘ﬂ22)
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( ﬂil—ﬂz,]
_Em (Puz +pL221—wﬁ=£ pu’
2 kkl--8) ke U-82)0-82)

Substituting for C; & C, in equation (3.2.1-2), particular solution becomes

ylzi 21 Sysin ot
ki \L- B0 - B3
( lﬂl,l _ﬂL]]
2=i '23“ —-sinwt

1 2

k )
Here p;, = s Pra = 2, —=; B =—P— B =;)— Bui _p_ Bz _p—
\) v L1 L2

3.2.2 Un-damped Two Spring Mass System- Subjected to Impact Load

3—45

)

0

Consider mass m, freely falling from height 4 on a two spring mass system as shown in Figure
3.2.1-3. Let us consider that mass m, is at rest before the impact and the impact is central. The
problem is initial velocity problem and its treatment is similar to one discussed in

Chapter 2 - § 2.2.5.

Let vy & v represent velocity of masses my & m, before impact and vy & v, represent velocity

of masses my, & m, after impact.

From conservation of momentum, we get:

My XVy + My XV =My XVy + My X Vg

Beforevlm;ract After fmpact
Since mass m; is at rest before the impact, i.e. v) =0. Substituting, we get
Mg XV = My XV + My XV

To evaluate v, (see equation 2.2.5-2), using Coefficient of Restitution e , we get
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e=— = 7 Or VO —_—vZ—eV(') (3.2.]'19)

(a) Before Impact (b) Just after Impact
Mass my, freely falling from Mass m, moves downwards
height 4 over Mass m, Mass mg rebounds upward

Figure 3.2.1-3 An Undamped Two DOF System-Subjected to an Impact Load
Mass m, Freely Falling over Mass m, from Height &

Coefficient of Restitution e depends upon properties of the material of the masses my & m, . For

perfectly plastic central impact, the value of e is zero and for perfectly elastic central impact e is
equal to unity. For real bodies in practice, the value lies in the range 0 < e <1and for all practical

purposes it’s reasonably good touse e =0.5.

Substituting 3.2.1-19 in 3.2.1-18 and simplifying, we get

v, =V} xél—t% (3.2.1-20)
+
Here 4, = A, represents ratio of mass m, to mass m, (3.2.1-21)
my

For freely falling body of mass m from height /, the velocity just before impact is given as
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vh=+2gh (3.2.1-22)

Substituting this in 3.2.1-20, we get

v, =2gh x—(%_% (3.2.1-222)

This is the initial velocity imparted by the falling mass to stationary mass m, at time £ = 0. Thus,
solution to Two Spring Mass System subjected to Impact Loads becomes an Initial Velocity
problem.

Equation of motion of the Two Mass System (refer equation 3.1.1-1)

m3 +kyyy —ka(yy - 31)=0

.. (3.2.1-23)
my2 +ka(y2 - 1)=0
Let the general solution of the equation of motion be of the form (see 3.1.1-15)
Y1 = Ay sin(pt + @) (32.1-232)
Y2 = Ay sin(pt + §)
The two natural frequencies are (see equation 3.1.1-12 & 3.1.1-13):
1
= {20 ot s )+ T -l ) 62124
1
i =t bttt T -t} 62129

Here, pj, = /k—‘ i P = J-ki & i1="2 (3.2.1-26)
m , m, m

Free Vibration Response (see equations 3.1.1-22 & 23):

In 1* mode the system vibrates with frequency p, . The solution becomes:
yi = Ajsin(pyt +¢')
¥y = Ay sin(pt +¢")
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In 2" mode the system vibrates with frequency p, . The solution becomes:

Wi = A{sin(pyt +¢")
y3 = A5 sin(pyt +¢")

Here, quantities with single prime are indicative of the 1% mode and quantities with double prime
are indicative of the 2™ mode.

Total solution (combining both the modes) thus becomes:

y1 = Apsin(pt + @) + Alsin(pyt +47)

. } Y ., (3.2.1-27)
Y2 = Ay sin(pyt +¢') + A3 sin(pt + ")
Amplitude Response in 1* mode is given as (see equations 3.1.1-19):
il'= k, =k2—’"21f712 =_1_
Ak + ky —my p? k a'
2 At hTmb 2 (3.2.1-28)
ek Ph . g g |
a = 3 = 3 5 A2 —_—aA]
ky—mypi  p,-pi
Amplitude Response in 2" mode is given as (see equations 3.1.1-21):
il”z ky =k2‘mzl7:§=i
Ak + ky —m p? k a”
2 AT mmpy 2 (3.2.1-29)
] k2 pfz . " ”4n
ky—-mypy  pL-P3
By rearranging terms, we get
L _(pha-pi ek -p3
2 —a" 22 2
( ) Pr2 (Pl P> ) (3.2.1-30)

«  _(ph-p3) o (-5

(@-a") (p?-p2) (@-a’) (p2-p2)

Substituting 4y = a’4] & 45 = a"4{ in to equation (3.2.1-27), the equation becomes:
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yi = A sin(pyt + ¢4+ Af sin(pyt +¢")

Yo = a'Ajsin(pit + @) +a” A'sin(pyt + ¢") (32131
The values of constants 4], 4;, Ay, A5 are determined from initial conditions.
The initial conditions are:

At =0 y(O=0 »®O=0 y,@=0 y@=v, (3.2.1-32)
Differentiating equation 3.2.1-31, we get |

Y1 = pyAi cos(pyt +¢') + py A cos(pyt +¢") (3.2.13%)

V2 = prAja’cos(pit +¢") + pa Aja" cos(pyt + ¢")

Substituting equation 3.2.1-32 into equations 3.2.1-31 & 33, we get:

0 = 4 sin(¢") + 4 sin(¢") o)
0 =o' 4 sin(¢")+a" Asin(¢") (ii)
0 = p4j cos(¢') + p, Af cos(¢") (iii)
v, =a’ piAjcos(¢’) +a” p, Al cos(4”) (iv)

Solving equations (i) & (ii) gives
sing'(a’ 4 —a” 4]} =0
Since A[, 4],a'& a" are non-zero quantities, it yields that

P=0&¢"=0;
sing’ =sing"=0 & cos¢'=cosg" =1

Equations (iii) & (iv) thus become

0= p1A4] + pr A (v)
vy=a' piA|+a’ prA] (vi)

Solving (v) & (vi), we get,
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I ' ”» ' 1 v
Aip@'-a)=vy; A= mﬁ (3.2.1-34)

Substituting for (&' — ") from 3.2.1-30, we get

A ;_2 (piz'—zlif Xl%ﬁz 2—)175 ) (32.1-35)
1 Pua\pr — P2

2
Since 4y=a'4 & a'= Zp“' 3
P2~ D1

Substituting for a'4; we get

2 2
4 =L2x%f+f2l% (3.2.1-36)
Pi 1 — P32

Equation (v) gives A= _A A
%)
2 2,2 2
A]'= _V_z (pLZ - b XPLZ - p2) (3.2-1_37)

2 {2 2
b PLz(Pl “PZ)
Pzz
Since Aj=a'4f & a'"= we get
‘ 2 2)
Pr2 = P2

2 2
A = oAl = -12—%%—"51)) - (3.2.1-38)
P2 \p1 — P

Rewriting solution y; from equation 3.2.1-27

yy = Ajsin(py1) + A{ sin(py?)

Substituting (3.2.1-35& 37), we get:

_ b p Lpda - p3)fsinte) _sin(pa) 3.2.1-39
N =V 77 2 2 (3.2.1-39)
pLZ(pl ~1’2) P P2

Rewriting solution y, from equation 3.2.1-27

Y2 = Ay sin(pyt) + 4 sin( )
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Substituting (3.2.1-36& 38), we get:

Y2 =Vy X5 (3.2.1-40)

(g2 p3)sinto)_  (pha = p?)sintpat)
2 V2XT e

i-r3) P wi-p3) r

Coefficients of sin p, ¢ represent amplitudes in 1* mode of vibration and that of sin p, ¢ represent

amplitudes in 2™ mode of vibration.

This approach shall be useful for Design of Foundation for Impact Machines covered in Chapter
11.

3.2.3 A Rigid Block supported by Translational & Rotational Springs
3.2.3.1 A Rigid Block supported by Translational & Rotational Springs in X-Y
Plane (Y being vertical axis)

Consider the motion in X-Y plane having two DOF i.e. translation along X and rotation ¢ about z-
axis. Since the system has only two DOF i.e. x& ¢, only two types of forces could be applied, one
along x and the other along ¢. It is to be noted that these forces could be applied at any point but

these have to be transferred to the DOF location as equation of motion is at DOF location. Let us
consider these dynamic forces one by one.

3.2.3.1.1 Dynamic Force along X-axis applied at DOF location

Consider the rigid block (supported by Translational and Rotational spring as in § 3.1.4.1)
subjected to dynamic forces F,sinw¢ in x direction acting at point O as shown in Figure 3.2.2-1.

Two springs, one translational & one rotational, are connected to the block at base center point
O. The block has its centroid at C & height of centroid C above base center O is 4. The block has
mass m and mass moment of Inertia M, about Z-axis passing through block centroid C. The

block is constrained to move only in lateral X direction and rotate about Z-axis passing through O.

Degrees of freedom: DOF 1 — Translation along X-axis at point O ; and
DOF 2 — Rotation about Z-axis passing through O.
Dynamic Force: Force F,sinwt? acting at point O as shown.
Transfer the dynamic forces to DOF Locations: Let the equivalent dynamic forces at O be

F, along DOF 1 & F, along DOF 2.

Since the applied dynamic force is applied at DOF location, it does not need to be transferred.
Considering equilibrium of forces, by statics, we get
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F=Fsinot & F, =0

Hence Dynamic Force at DOF location:

{FI}={FX sin wt} 322.1)
F, 0 ‘

Y
(B/2)% [ ¥~ o
¢ 1 |
z H : ¢,
7 ky ‘L OE E
—» F_sin o? Y
DOF Location I e —
r B
(a) Dynamic Forces @ DOF (b) Amplitudes @ DOF & @ Foundation Top

Figure 3.2.2-1 Block with Centroid C - y - Displacement at O Restrained
Dynamic Force F, sin of applied at Point O

Equation of Motion:

Rewriting equation (3.1.4-4) for free vibration:

il ls il

Substituting equation (3.2.2-1) on RHS for forcing function, the equation of motion for forced
vibration becomes:

m  —mh||X) |k, O \[x| [Fsinot
{‘ mh M i|{¢} +{ 0 k¢ :H¢} - { 0 } 3.2.2-3)
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Solution to this equation of motion has two parts viz.

i) Complimentary Solution
i) Particular solution
Complimentary solution: (See solution 3.1.4-4)

Natural frequencies are given as (see equations 3.1.4-5 & 6):

AL e 22 (o2 + o2 P -4y, p203

27,
7 (3.2.2-4)
1 1
pt=—(p? +p§)+——\&9§ +p§)2 -4y, pip;
2y, 2y,
M. K
Here rem g =k pp=—t
moz moz

Particular solution:
Solving the equation (see solution 3.2.2-3), we get the steady state response equations (g) & (h).
The steady state response at point O is given as
t-5)
Sy
1-B7 =53

2
s mh B,
¢ Mm()z (1—/Blle_ﬁ22—)

sinw¢

sinwt

F . . .
Here &, =-—> represents static deflection & x & ¢ are the amplitudes at DOF Locations

X

i.e. point O.

For maximum response @ point O, substitutingsinw¢ =1, we get

Y
X, =16} (1 - 5 ‘”) . (3.2.2-5)
(l“ﬁfil*ﬂz) .
2
4, = -5, 2~ P (3.2.2-6)

} Mmoz (l—ﬂlz)(l_ﬂzz)
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Here x, & ¢, represent maximum response @ O along X & about Z axes respectively

SOLUTION 3.2.2-3

Rewriting the equation (3.2.2-3)

m —mh {x} ke 0 {x} {Fx sin wt}
A = (a)
—mh Mmoz ¢ 0 k¢ ¢ 0
Let solution be of the form
x=Csinot, ¥=-0°Csinot (b)
¢=Dsinwt, ¢=-w’Dsinwt (c)
Substituting in (a)} it gives
k, —mo? mha? C F,
2 2 = (d
mho ky—0°M,,, || D 0

Using Crammer’s rule we get

F, mho®

o k-oM,|  Fly-om,,) £ (-8)

R 75 BT () ) ) ) ?
kx—ma)2 F,

plmh® 0|  Fmhe’ _ F, mh B o
M, Aot)  kk-BEN-B2) ke Mo (1-B2)1-52)

Substituting in (b) & (c), we get response amplitude as:

x={5, }{(’_(I:Iﬁj—)—)} sinwt ®

1- g7 - B3

_J) mh ﬂ; .
¢_{ O Mmoz}{(l—ﬂlle‘ﬂzz)}smwt »

Here 6, = L
ky
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3.2.3.1.2 Dynamic Moment about Z—axis applied at DOF location

Consider that the block is subjected to dynamic moment M sinw¢ along ¢ direction acting at
point O as shown in Figure 3.2.2-2.

F]'—'O & F2=M¢Sina)t

Hence Dynamic Force at DOF location:

Rl [ o
(1)

Equation of Motion: The equation of motion for forced vibration thus becomes:

m —-mh (% kx 0 ([x _ 0 22
I:_mh Mmoz {¢ ¥ 0 k¢ ¢ N M¢sina)t (3.2. -8)

Solving the equation (see equations (e) & (f) solution 3.2.2-8), we get the steady state response as:

2 @2
x=—h5¢(——7ﬂi‘———2—)sina)t; $=95, 12'3" sysin ot
I-Bi N-5; 1-Bi N-B;

M

Here §, = —*
ky

‘-—- x—H¢)

Y (B/2)$

=

(a) Dynamic Moment @ DOF (b) Amplitude @ DOF & @ Foundation Top

Figure 3.2.2-2 Block having Centroid C — y Displacement at O Restrained
Dynamic Moment M, sin ¢ applied at point O
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Maximum response @ point O is written as:

ﬂZ
—hs : (3.2.2-9)
Y ) ey |

4, =0, 1= (3.2.2-10)
© M -pti-82 ;
Here x, & ¢, represent amplitudes at DOF Locations point O along X & about Z respectively.

SOLUTION 3.2.2-8

Rewriting the equation (3.2.2-8)

m ~-mh|[x] (k. O]lfx B 0
~mh Mmoz ¢ * 0 k¢ ¢ - M¢ sinwt (a)
Let solution be of the form

x=Csinwt; ¥=-w’Csinwt (b)

¢=Dsinot;, ¢=-0’Dsinwt _ {c)

Substituting in (a) it gives

k,-mao* mho? cy o @
mho®  ky~0’M,,, [|D] | My

Using Crammer's rule, we get

0 mhaw?
mM,.Alo*) mM P30 - B N1-53) ks (1-BEN1-5)
2
x=-hd, ;B" sysinwt (e |
L= B N -5; |
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k. -mo* 0
b- mhao? My (k —ma ) _M, ( ﬁx)
 omM,Alet) K k¢( BN-8) ks U-B2N- 5)

1- 2 .
¢=5¢(]__%711_L_1322—‘)8ma)t (ﬁ

M,
Here 5¢ =—>
k

¢

3.2.3.1.3 Dynamic Force acting at a point above the block aleng X - Direction

Now consider that the block is subjected to dynamic forces F, sinw¢ in x direction acting at point
T at a distance s above base of the block as shown in Figure 3.2.2-3.

Transfer the dynamic forces to DOF Locations:

Let the equivalent dynamic forces at O be F; along DOF 1 & F, along DOF 2. Considering
equilibrium of forces, by statics, we get

Fi=F,sinot & F,=—sF, sinat
(Anticlockwise moment in X-Y plane is positive —for notations see Figure 3-1)

Hence Dynamic Force at DOF location:

F F,sinwt
= . (3.2.2-11)
F ~sF sinot

It is noted that the dynamic force F, acting at a distance s above the DOF location point O results
in a dynamic force equal to F, and a dynamic moment equal to M, =—F, xs applied at O.

Equation of Motion: Equation of motion for forced vibration becomes:

m —mh||X| |k, 0 x| | Fysinot 39912
-mh M, ||¢ "o (ky—mgh) ||| M,sinot (322-12)
Where M, =~F, xs |

Forced Vibration Response to this equation is nothing but summation of responses given by
equations (3.2.2-5), (3.2.2-6), (3.2.2-9) & (3.2.2-10).
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Response x  in X-direction thus becomes summation of x -response given by equation (3.2.2-5)
& equation (3.2.2-9) and so is the case with ¢ -response which is summation of equation (3.2.2-6)

& equation (3.2.2-10). Maximum response @ point O is thus written as:

] (-2) ;
T {{5"}6— =) " (l—ﬂlf;(l'ﬁzz )}

1- 52 mh A
#, =9, — 0 . (3.2.2-14)
W-gJ1-82) ™ Mu (1-82J1-52)

(3.2.2-13)

F M
Here &, =—k—:—’ Oy =£—k—;—)- and x, & ¢, represent amplitudes at DOF Location point O

along X & about Z respectively.

Y

Figure 3.2.2-3 Block with Centroid C - y - Displacement at O Restrained
Dynamic Force F,. sin of applied at Point T’

3.23.2 A Rigid Block supported by Translational & Rotational Springs in Y-Z
Plane (Y being vertical axis)

Consider the motion in Y-Z plane ( Y being vertical axis) having two DOF i.e. translation along Z
and rotation & about X-axis. Since the system has only two DOF i.e. z& 6, only two types of
forces could be applied, one along z and the other along . It is to be noted that these forces could
be applied at any point but these have to be transferred to the DOF location as equation of motion
is at DOF location.

Let us consider these dynamic forces one by one.
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3.2.3.2.1 Dynamic Force along Z-axis applied at DOF location

Consider the rigid block subjected to dynamic forces F,sinw¢ in z direction acting at point ‘O’ as
shown in Figure 3.2.2-4.

gl T e

h F,
l 1R k,
F 1« —
' ox DOF Location
ko

(a) Block with Centroid C, y - Displacement at O
restrained. Lateral Spring Stiffness £, &

Rotational Spring Stiffness kg

(b) Displaced Position

Figure 3.2.2-4 A Rigid Block Supported by Translational & Rotational Springs in Y-Z Plane
Dynamic Force F; &F, applied at DOF Location Point O

Two springs, one translational & one rotational, are connected to the block at base center point
O. The block has its centroid at C & height of centroid C above base center O is 4. The block has
mass m and mass moment of Inertia M, about X-axis passing through block centroid C. The

block is constrained to move only in lateral Z direction and rotate about X-axis passing through O.

Degrees of freedom: DOF 1 - Translation along Z-axis at point O & DOF 2 - Rotation about
X-axis passing through O.

Dynamic Force: Consider only Force F,sin@¢? acting at point O as shown.

Transfer the dynamic forces to DOF Locations: Let the equivalent dynamic forces at O be
F, along DOF 1 & F, along DOF 2.

Since the applied dynamic force is applied at DOF location, it does not need to be transferred.
Considering equilibrium of forces, by statics, we get

F=F,sinot & F,=0
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Hence Dynamic Force at DOF location:

{ F } {F, sin @ t}
= (3.2.2-15)
F, 0

Equation of Motion:

Rewriting equation (3.1.4-4) for free vibration:

Rl e i 2210

Substituting equation (3.2.2-1) on RHS for forcing function, the equation of motion for forced

vibration becomes:
m mh |[Z] |k, 0]z F,sinot
RS = (3.2.2-17)
mh M, |16 0 ky|l€ 0

Solution to this equation of motion has two parts viz.

i) Complimentary Solution
ii) Particular solution.
Complimentary solution: (See solution 3.1.4-4)

Natural frequencies are given as (see equations 3.1.4-5 & 6):

1 2
pt=——( f+p§)—2 \/{p3+p§}‘ ~4y, plp}
X 7x
1 2 1 \/ 2 2
p; = (Pz +P5)+'—‘ {Pf +P§} -4y, pips (3.2.2-18)
2y, 27,
Here Here y, = M e ; p? =£; ps= %o
mox m Mmox

Particular solution:

Solving the equation 3.2.2-17 (see solution 3.2.2-17), we get the steady state response. The steady
state response at point O is given as

https://engineersreferencebookspdf.com



Multi Degree of Freedom Systems 3—61

1- p2 : h ; :
Z, = {52}{(1—_%171'?—9:%}}smwt; 6, ={6z A/;n H(l—ﬂlzﬂfl—ﬂzz)}smwt

Here &, = L3

»
FA

These ( z & @) are the amplitudes at DOF Locations i.e. point O.

For maximum response @ point O, substitutingsinwt =1, we get

1- 2
z, =16, }{ﬁ?ﬁi_%z)} (3.2.2-19)

2
9, =15, " H L7 } 3.2.2-20
{ Mo J\1- B2 J1- 52) (2220

Here z, & 6, represent maximum response @ O along X & about Z axes respectively

SOLUTION 3.2.2-.17
Rewriting the equation (3.2.2-17)

m mh (|Z| |k, 0z F,sinwt
wet = (a)
mh M, [|€ 0 k|0 0 :
Let solution be of the form
z=Csinwt; 7=-w’Csinot )
0= Dsinwt;, 6=-w’Dsinwt (c)
Substituting in (a) it gives
k, —-mo* - mho? c F,
2 2 = (@
-mho®  ky-0 M, ||D 0

Using Crammer’s rule we get

F, —mha?
C= 0 kg —szmox
mMmA(w4)
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Since p, & p, are the roots of the frequency equation, we can represent A(af‘ ) as
Ao*)={o? - 4t Jo? - p3)= PR3- 5711~ )
o Fllo-0'Myy) _ Flt-0'My,)
M Ao*)  mMa P31 fi- B

k
e o N T
mM e ptp2 (1~ B2 N1-p2) mM,, p?p2(1- B2 1~ 52)
o FMuupd-p3) _F M p(-53)
mM i1 - B2 N1-52) m M, ptpHi-pENi-52)

L1 My 1
pixp; =—pipl; —IE=—
Y My 7:

c-F_ 1 Pg(l—ﬂ3L=Q 1 p-2)
m oy pipd W= N-p2) m pip? (1-B1-52)

F,_ (-5)
C=-=
ke \1- B2 N1~ B3 ©

Similarly we get

k,-mo® F

z

D -mho* 0 __ ~ F,mho*
mM o A0t)  kkell- 2 N1-B2) Y
F mhao? F, mh B2

D=—*% =z
kZ Mmoxpg(l—ﬁlle_ﬂg) kz Mmox (l“ﬂlle—ﬂg)
Substituting in (b) & (c), we get response amplitude as:

1- 33 .

=4{5

z { J{ 1—,,312 1—ﬂ22 }sma)t (g
h 8 :
0=1s,-2 g

{ 5 M, H (1—,6’,2 ﬁ- ’B?)}sm wt h

Here &, -5

k

z
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3.23.2.2 Dynamic Moment about X —axis applied at DOF location

Consider that the block is subjected to dynamic moment M,sinwt along @ direction acting at
point O as shown in Figure 3.2.2-2.

F]=0 & F2=Mgsinwt

Hence Dynamic Force at DOF location:

Al 0 3.2.2-21
F| |Mysinot (3.2.2-21)

Equation of Motion: The equation of motion for forced vibration thus becomes:

m  mh 2+kz 01z _ 0 32992
mh M, ||6] |0 kg||6] |Mysinwt (32222

Solving the equation (see solution 3.2.2-22), we get the steady state response as

ﬂz
z=hé, ——5ysin !
(-5 il“ﬁ2)
2
=3y 12 L sysin ot
L=Bi N-5;
Here 59=A—/[i
ke

Maximum response @ point O is written as:

ﬂ2
=hs, 22~
z, a(———i——)l_ﬂlz -y (3.2.2-23)

_n2
6, = 8y — i

=5, (3.22-24)
1B - B3

Here z, &6, represent amplitudes at DOF Locations point O along Z & about X respectively.
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SOLUTION 3.2.2-22

Rewriting the equation (3.2.2-22)

m  mh ||Z| |k, 0lfz] 0
mh M, |16] 710 & [|6] T M, sinor @

Let solution be of the form

z=Csinot;, %=-w’Csinwt )

@=Dsinwt, 6=-w’*Dsinwt (c)

Substituting in (a) it gives
_ 2 _ 2 C 0
k, me m}zzco _ (@
-mho®  ky-w’M,, ||D] (M,

Using Crammer’s rule, we get

0 - mha?
oMo ko = @* M, _ - Mymho?
mmeA(a)4) mmeplng(l—ﬂlle"ﬂg)
2
oo M
ko \1-57 - 5;

2

z=hoy, sinw? (e
5 h-7)

k, -ma® 0
=_—mha)2 M, 1 Mg(kz—mwz)

M A0®) MMy g =B N- 52

22_1 29 M
PP =7pzp9; - =Vxs meplng =Mmoxp22pg
x

mox
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1 Mylk,-mo?) 1 mM,(p2-0?)

D=— =
m Mmaxpzngh—ﬂlle_ﬂ%) m ngmoxpé(l—ﬁlle_ﬁ%)

po l mMy pU-B) My -5
T2k _2h-52) k. h—p2h_p2
mp; kg \I-Bi N-5; o =B N-5
) :
0=50(——(171ﬁiLz-)sinwt 0
1= 57 N-5;

HEI‘e 69 ='%;
k0

3.2.3.2.3 Dynamic Force acting at a point above the block along Z - Direction

Now consider that the block is subjected to dynamic forces F,sinw¢ in z direction acting at point
T at a distance s above base of the block as shown in Figure 3.2.2-5.

(L/Z)OI-

h Fz%j K \

i
ox DOF Location

|||| ke

(a) Block with Centroid C, y - Displacement at O
restrained. Lateral Spring Stiffness £, &

Rotational Spring Stiffness kg

(b) Displaced Position

Figure 3.2.2-5 A Rigid Block Supported by Translational & Rotational Springs in Y-Z Plane
Dynamic Force F, applied at Point T above the block
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Transfer the dynamic forces to DOF Locations:
Let the equivalent dynamic forces at O be F; along DOF 1 & F, along DOF 2.
Considering equilibrium of forces, by statics, we get
F=F,sinot & F, =sF,sinot
Hence Dynamic Force at DOF location:
AR
It is noted that the dynamic force F,acting at a distance s above the DOF location point O results

in a dynamic force equal to F, and a dynamic moment equal to M, = F, x5 applied at O.

Equation of Motion: Equation of motion for forced vibration becomes:

m mh {[Z| [k, O ||z F,sinot
e = ) (3.2.2-26)
mh M, |6 0 kyil0@ Mgsinot
Where My =F,xs

Forced Vibration Response to this equation is nothing but summation of responses given by
equations (3.2.2-19), (3.2.2-20), (3.2.2-23) & (3.2.2-24).

Maximum response @ point O is thus written as:

1- 33 A
=10 ho, 3.2.2-2
o {’>{(l—ﬂfil—ﬂ§)}+ 9(l—ﬁ3il—ﬂ§) (222D

2 2
6, ={az mh H 2/3& . }ﬂs(, (12 5) - (3.2.2-28)
Mmox (1"ﬂ1 xl—ﬂZ) H_ﬁ] XI—IBZ)
Here ¢, = Ez- Sy = (Mg) and z, & 6, represent amplitudes at DOF Location point O along

k, kg
Z & about X respectively.
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3.2.3.3 Amplitude at resonance

Response given by the equations 3.2.2-5 & 6, 9 &10, 13 &14 are for undamped conditions and do
not hold well at or near to resonance. For evaluating amplitudes in the proximity of resonance, refer
to § 3.4.2.1.1,

3.2.4 Multiple Spring Mass Systems connected by a massless Rigid Bar

Figure 3.2.3-1 Multiple Spring Mass Systems Coanected by massless Rigid Bar Subjected to
Dynamic Force & Dynamic Moment applied at Center of Mass

Consider a multi spring mass system (as considered in § 3.1.5) connected by a massless rigid bar
subjected to dynamic force F(f)= Fysinw¢ and dynamic moment M (t) = M,sinwt applied at

center of Mass C,, , as shown in Figure 3.2.3-1.

Rewriting equations of motion for free vibration (equations 3.1.5-8 &9), we get
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my+k,(y+ed)=0
. 5 (3.2.3-1)
M,p+k,ey+kyd+k,e’p=0
Substituting Dynamic Forces on RHS of the equations, we get equations of motion for forced
vibration as:
my+k,(y+ed)=Fysinot

. 5 (3.2.3-2)
M, ¢+k,ey+k,¢+k,e"p=M,sinwt

Solving the equation (see solution 3.2.3-2 equations (f} & (g)), we get the steady state response as:

ﬁ; e2 2
é ystaticy| 1+ ? x ;2— - ,3¢ - 5¢(szanc) x e
v

y= sinwt (3.2.3-3)
1-82h-5)
2
2 By e
5¢(slalic) (1 - ﬂy )__ dy(slaliC) Pyl r—Z
= sinw¢ (3.23-4)

(l‘ﬂlle‘ﬂzz)

For maximum amplitude, sin w7 =1 . We get maximum amplitudes as:

ﬁ; 62 2
5y(static) 1+—2—2—,B¢ '5¢(static) xe
by (3.2.3-5)
Y = 2.3-
frax) 1-2J1-53)
2
2 ﬂ¢ e
5¢(slalic) (1 - ﬂy )_ ay(static) F r_z
p - - Y (3.2.3-6)
(nex) -2 li-52)
Here
F M 1) ] 1) 1) M,
5y(sraric) =;9‘; 5¢(stalic) =“k—0; Bb=—& fy=—; ,By =— & ﬂ¢ =3 Pt =
y ¢ D P Py Pg m

Amplitude at Resonance

For computing response at resonance, let us consider damping coefficient as ¢ . In case excitation

frequency is in resonance with frequency p,, replace (1 - B )with \/ (1 - ﬂlz)z + (2,3, ¢ )2 in the
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denominator and in case excitation frequency is in resonance with frequency p, , replace (1 - ,322)

with \(ﬁ— ,622)2 +(28,¢ )2 in the denominator in the equations 3.2.3-5 & 6.

Solution 3.2.3-2
Rewriting equation 3.2.3-2

my+k,(y+eg)=Fysinot

. o (@
M,¢+k,eyt+k;¢p+k,ep=Mysinwt

Let the solution be of the form y=Csinwt; ¢=Dsinot ®)
Differentiating, we get y=-w’Csinot, ¢=-0’Dsinot
Substituting in equation (a), we get

~0*mC+k,(C+eD)=F,
~©’DM,,+k,eC+k,D+k,e’D =M,

Simplifying and writing in matrix form, we get

k,-o’m ke Cc)l (F
g > 2 = (c)
k,e ky+k,e—o°M, || D M,

Applying Crammer’s rule, we get

F kye J

Fy k,e
M, (k¢ +k, e’ —w’M,,

M, (k¢ +k, e’ —o’M,
mM ,Alo* )

C= >
ky—wm kye

ke ky +kye2——a>2Mm

Simplifying, we get
. Folky +k, 2 —0?M, )~ Mok e Fylk, +k, ¢ —0>M, )Mk, e
mM,,p? p3 (- B2 N1-B2) mM,, p2p3(l- B2 |1-52)
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370
ﬁ)- 1+k_y32_22£m_ __Aﬁ)_e
.. Folky+k, 2 =M, )-Mokye b, ki Kk, )k,
bR -EN-A) (-s2Ti-53)

2
m
Mo —&[H-—*pyz ez—ﬁj]‘—t’oe

Rl % 2]
—|l+—=e" ~f; |-—e
- ky( k¢ ’ k¢ - ky Mmp¢ é
- -20-5) W-s2h-52)
B &
ay(slatic)[l"' ﬂ¢ ﬂ¢ §¢(static) xe
C= : @
(1".31 Xl‘ﬂz)
ky—a)zm Fy ky—a)zm Fy
kye MO kye MO
D: = 4
ky—wzm k,e mMmA(a) )
kye kij+k,e’-0’M,

De Mo(k - m) Fokye Mo(k - m) Foky e
mM,, p? p}(i- 57 Xl—ﬂz) mM,, p2pi |l ﬂl )

2
Mofy_@'m) B by, Mof ) o Ps e
Mo(k -0 m) Fok,e kg ky ky ky ks Tk ,35 r?
W -aN-8) -8 N-5) W-p2h-52)
ﬂ
5¢(static) (1 - ﬂ 2 ) 5y(stallc) ﬂ
D= v (e
(l—ﬂlle‘ﬂzz)
Substituting in equation (b), we get
B; e
5y(static)[1 +— ﬂ r2 _ﬁ;J_dqb(staﬁc) xe
v .
y= sinot /]
- -ah-83)
) ﬂ¢ e
§¢(static) (l_ﬁ ) é‘y(.slatlc) ,B r2
sinwt (2

S ) 7
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3.2.5 A Portal Frame supporting mass at Beam Center

Consider a portal frame (as considered in § 3.1.6) subjected to dynamic force F(t)= F,sinwt
applied to the Mass, as shown in Figure 3.2.4-1.

bkl A ek

X Et]AC’ IC ED Ac' lc
— 7

(a) Portal Frame (b) Mathematical Model

Figure 3.2.4-1  Portal Frame with Machine Mass m at Beam Center - Subjected to
Dynamic Force applied at mass location - Vibration in Vertical Mode

Equation of motion:

Equation of motion for the system as shown thus becomes (see equation 3.2.1-4)

(6 +ky-0?m) -k, {C,}z{o} | (.24-1)
~k, ky-0’m, ||C2)  Fo |

For portal frame mass and its stiffness, see equations 3.1.6-2, 3, 4 &5

my =m+045m,; m =0.55m;, +2x0.33%xm, (3.24-2)
2EA, 1 96E [
f= e g L 6EL, k2 (324-3)
H vh L 2k+l

Natural frequencies:

Frequency equation (see equation 3.1.6-6)

= {62 e st el ) -t} G244

https://engineersreferencebookspdf.com



3—72 Multi Degree of Freedom Systems

-k k m
Here P =‘f‘L§ P12 =‘{_2 ; A=—2%
m ny m

Roots of this equation give two natural frequencies p; & p,.

Steady-State response:
Steady-State response is given as (see equations 3.2.1-5 & 6)

R 1

n=— sinwt (3.24-5)
ky (1*,312)(]—/322)

Bi 2]
T+ A== -p7
Fo[ ﬂzz "

y, =20 sinwf (3.2.4-6)
ke -p2)-52)
17 1) o 17
Here fy=-—; By=—: Pu=—: fo=—
J 4| 2 P P2

Maximum Response:

F, I
=9 3.24-7
B2 (max) kI ‘l—ﬂlz )h—ﬂ%) ( )
Bi 2]
1448 g2
[ Bis

b )
Y2 max) = %, F_ﬂl‘z)(l_ﬂzz) (3.2.4-8)

Amplitude at Resonance: (3.2.4-9)

In case of resonance, taking advantage of the derivation done for damped SDOF system, it can be
said that in case of resonance with vertical natural frequency p,, the response to the system at

resonance is obtained by replacing the term (l - ,6’12) in denominator by \/ (1 - ,812)2 + (2,8,;’ )2 and
In case of resonance with vertical natural frequency p,, the response to the system at resonance is

obtained by replacing the term (I—ﬂzz) in denominator by \/ (1—,822)2 +(2,32§’ )2 in equations
3.24-7&8.
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3.3 THREE DEGREES OF FREEDOM SYSTEM - FREE VIBRATION

From the point of view of application to machine foundation design, development of analysis, in
this section, is limited to only i) A Three Spring Mass System Undamped and ii) A Rigid Block
supported by Vertical, Translational and Rotational Springs. Again, the spring mass system has
been added only for academic purposes.

3.3.1 Three Spring Mass System

Consider a three spring mass system, having masses my,m, & ms, spring stiffness &, k, & k5 as
shown in Figure 3.3.1-1. Three DOF are y;,y, & y;associated with masses m;,m, & m,

respectively. Following steps similar to that for two spring mass system (see 3.1.1), equation of
motion is developed. Forces acting on the masses are shown in the free body diagram.

m3 ¥
ks(yy —yo)

ky(y3—yn)

My ¥y

2

H

kz()’z —}’1)
k'z(Yz —,Vl)

m

kyny

Masses at rest Displaced position Free Body Diagram
Figure 3.3.1-1 Three Spring Mass System-Undamped

Considering equilibrium of forces (as shown on the free body diagram), we get the equation of
motion as:
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miy +ky —k(y, - ) =0 :
my, + ka (¥, =) —k3(y3 —2) =0 (3.3.1-1)
myys + k3(y3 —y,) =0

Rewriting in Matrix form, equation becomes

m 0 0][5] [k+k) -k 0 7[n]| [0

0 m2 0 y2 + - k2 (k2 + k3) - k3 y2 = 0 (3.3.1'2)
0 0 msy j;'3 0 - k3 k3 y3 0
m 0 0
Here 0 m, O | represents mass matrix
0 0 m \

k+k) -k 0
& —ky  (kyt+hky) -k represents stiffness matrix of the system
0 — k3 ks '

It is seen from equation (3.3.1-2) that there is no coupling in mass matrix but stiffness matrix is
coupled through off-diagonal terms. Thus equations of motion are coupled.

Frequency equation is written as Ik - mpz, =0

(ky + &, _mlpz) —k, 0
—k, (ky + ky — my p?) -~k (=0 (3.3.1-3)
0 ~ ks (k3 ~myp?)

Expanding the determinant, we get

k ky+ky k
ps_[1+kz+ 2t 3+——3~}p4
m m; ms

(3.3.1-4)
=0

+ (kiky +kyks +k3k1)+7(k2k3) + (k1 +ky)ks Pl - kikyks
mmy, myms msm mymyms -
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Solution to this equation gives three natural frequencies p,, p, & p; corresponding to 1%, 2" &3™

mode of vibration respectively.

Let the amplitudes of the mass m,, mz & m; be represented as 4, B; & C, in 1" mode, 4,, B, & C,
in 2" mode & 4; B; & C; in 3™ mode respectively. Following the procedure similar to that

developed for two spring mass system, we get equation for the free vibration amplitudes as:

Equations for 1* mode amplitudes:

(ky + ky = myp;”) —ky 0 A
—k (ky + k3 —’"2P12) -k B =0
0 —k (ks - ma,Plz) G
2
This gives A ky - ;El_ _ks —mp)
B (k+ky-mp’) G ks

Equations for 2™ mode amplitudes:

(ky +ky — myp,) —k, 0 A
ko Gavkempd) -k B =0
0 —ks (ks —m3p,*) |G
This gives A ____1‘2_____ By, _(ky—-mpy)
BZ (kl + k2 m1p2 ) C2 k3

Equations for 3" mode amplitudes:

(ky +ky - m]p32) -k, 0 Ay
-k, (ky + ey = my p3?) ks Byt=0
0 ~ ks (ks = myps™) | |G
This gives A __ﬁ___._ By _(ky—mypy)
By (k+ky-mp) G ks

(3.3.1-5)

(3.3.1-6)

(3.3.1-7)

Values of constants (4,, B;, C,, A5, B, C,, A3, B; & C;) are determined based on initial conditions.
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Since free vibration response is only transient response, which dies out quickly due to damping
present in the system, it is not of much interest from the point of view of machine foundation
design. However in specific cases (as we will see later) it may be desirable to compute transient
response also.

3.3.2 A Rigid Block supported by Vertical, Translational & Rotational Springs
3.3.2.1 Center of Mass lies vertically above Center of Stiffness

a
&3

by b0 - - @ - -

(b) Block position at rest - Self weight mg
Supported by Reaction R at Support
point ‘O’

(a) Block with centroid ‘C’
Lateral Spring Stiffness k,

' Vertical Spring Stiffness k, &
Rotationa] Spring Stiffness ko

(c) Displaced position
Figure 3.3.2-1 A Rigid Block Supported by Lateral, Vertical and
Rotational Springs

Consider a rigid block supported by Vertical, Translational and Rotational spring. The block
considered in X-Y plane is constrained to move only in Vertical Y & Lateral X direction and rotate
about Z-axis passing through O.

The block has its centroid at C, and has two translational and one rotational springs i.e. one
translational spring in X direction having stiffness %, , one in vertical Y direction having stiffness
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k, and one rotational spring about Z-axis having stiffness k. All the three springs are connected

at base center point O . The block has mass m and Mass Moment of Inertia about Z-axis passing
through block centroid C is M,,, .

The block is considered such that the centroid C lies vertically above base center point O and
the height of centroid C above base center O is 4. The block is shown in Figure 3.3.2-1 (a).

Static Equilibrium: The vertical spring k,, supports the self-weight of the block and offers

vertical reaction R to counteract the self-weight mg . This position of the block at rest has been
shown in part (b) of the Figure 3.3.2-1.

Considering equilibrium at rest position, we get mg—-R=0 (3.3.2-1)

Equation of motion: Consider that the block is displaced slightly and released. The block is
set into motion i.e. free vibration. At any instant of time t, the block has moved by x along X
direction, y along Y direction and rotated by angle ¢ about Z-axis passing through O. The

displaced position of the block is shown in part (¢) of Figure 3.3.2-1. 1t is seen that centroid C
moves to position C’ due to x-translation (see part a), C' moves to C" due to y-translation &
C" moves to C" location due to ¢ rotation.

Let us consider these displacements and corresponding reactions one by one. Reaction forces and
inertia forces developed are shown in Figure 3.3.2-2.

For better understanding, let us visualize the displaced position in stages viz. x- displacement, y-
displacement and rotation about Z-axis and their corresponding reaction and inertia forces.

. Part (a) of Figure 3.3.2-2 shows x displacement and the corresponding forces, part (b) shows y
displacement and the corresponding forces & part (¢) shows ¢ - rotation and the corresponding
forces.

Let us consider each movement and the corresponding forces developed. Consider first x
translation. Forces developed are (as shown in part (a) of the Figure):

Inertia force along X-axis = mXx
Spring Reaction force along X-axis = kexx=xk,

Now consider y translation. Forces developed are (as shown in part (b) of the Figure):
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Inertia force along Y-axis = my
Spring Reaction force along Y-axis = k,xy=yk,

Now consider ¢ - rotation. Forces developed are shown in part (c) of the figure.

We get,

Rotational Inertia force along ¢ (about Z-axis) = M, ¢
Translational Inertia force (along normal to center line)= mhéf

Spring Reaction force along ¢ (about Z-axis) = kyx¢ =46k,

This translational Inertia Force has both X & Y components. For ¢ to be small, X-component

mhg cos ¢ = mhg and Y-component mhésing=0.

<
k.x

X

(a) x-Displacement (b) y-Displacement
Forces acting on the Mass Forces acting on the Mass

(c) ¢-Rotation (d) Total Forces acting on the Mass
Forces acting on the Mass

Figure 3.3.2-2 A Rigid Block Supported by Lateral, Vertical and
Rotational Springs - Forces Acting on the Mass
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Total forces acting on the mass including gravity force and corresponding reactions are shown in
part (d) of the figure.

Considering equilibrium at DOF location O, we get

ZF, =0 mi-mh+xk, =0 : (3.3.2-2)
XF,=0 mj+yk,+mg-R=0 (3.3.2-3)
IM, =0 M, ¢+(mhfxh)-(m $)x hoosg+(k s x$) - (mghsin ) =0 (3.3.24)

For small ¢, hcosg=h & hsin ¢ = hg . Substituting equation 3.3.2-1 in equations 3.3.2-2, 3.3.2-
3 & 3.3.2-4, we get

msi —mh + k. x =0 (3.32-5)
mj+k,y=0 (3.3.2-6)
Moz §—mh 5+ (k , ~mgh) ¢ =0 (332-7)

Here M,,, = M,,, +mh® represents Mass Moment of Inertia of the block about Z-axis at DOF
location Point O.

It is seen from equations (3.3.2-5, 3.3.2-6 & 3.3.2-7) that 2™ equation i.e. equaion 3.3.2-6
representing motion in Y direction, is totally uncoupled whereas 1% and 3™ equations are coupled.

Writing these equations in matrix form, we get

m 0 —-mhl||x kx 0 0 X
0 m 0 Ryt 0 k, 0 yb= (3.3.2-8)
-mh 0 M, || 0 0 (k¢—mgh) ¢

It is noticed that the equation 3.3.2-6 is same as equation 3.1.2-3 and Natural Frequency & Free
Vibration Response equations are given by equations (3.1.2-6) & (3.1.2-7). These equations are
reproduced as under:

k
Natural frequency in Y- direction p, = s (3.3.2-8a)
m
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‘Response is given as y=dAsinp,t+Bcosp,t (3.3.2-8b)

The other two equations representing translation in x and rotation ¢ are coupled. Representing
these in Matrix form, we get

S SO NS

This equation is same as equation (3.1.4-4) and Natural Frequency & Free Vibration
Response equations are given by equations 3.1.4-5 to 3.1.4-8 (also see SOLUTION 3.1.4-4).
These equations are reproduced as under:

2
2L, 2)1\/(2 2) 2 2
= - -4y, 3.32-8
PU=o, \Px TP )75, \\Px TPy Y:Py Py ( ©)
P2= ! P2+p 2)+———1 J(p2+p 2)2—4}/p2p2 (3.3.2-8d)
2 2y, % 7 27, x ¢ fx g =

k, —mgh

_Here y, = AA;'”Z S P =%; Py =lM—g— (3.3.2-8¢)

moz

Associated mode shapes are given by equations (3.1.4-8) & (3.1.4-9) and are reproduced here for
convenience.

2
A _y, . (3.3.2-80)
B \pi-pi
2
Ay P (3.3.2-8)
BZ x — P2

It can be noted that the given 3-DOF system provides:

a) One SDOF System which can be solved independently (solution given in § 2.1.1)
b) One two degree of freedom system (solution given in § 3.1.4)

It is thus confirmed that for a rigid block supported by vertical, translational and rotational spring,
the vertical mode of vibration is uncoupled from the rest of the two modes of vibration subject to
the condition that there is no eccentricity i.e. the common centroid C lies on the same
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vertical line as base center point O . The system can be analysed as a SDOF system for vertical
mode and as a Two Degree of Freedom System for Translational and Rotational Modes (which are
coupled). '

3.3.2.2 Center of Mass is not in line with Center of Stiffness

— a |~

C

mg

8)

AeM
R

(b) Block position at rest Self weight mg
Supported by reaction R at
support point O

(a) Block with centroid C,
Lateral spring stiffness &,

Vertical spring stiffness k, &
Rotational spring stiffness k

——— e ———

(c) Displaced position

Figure 3.3.2-3 A Rigid Block Supported by Translational, Vertical and Rotation
Springs - Center of Mass eccentric to Center of Stiffness

Now consider the same block as of Figure 3.3.2-1 but having eccentricity a between Center of

Mass C and Center of Stiffness O. The system is as shown in part (a) of Figure 3.3.2-3.

Let the distance of centroid C from Obe A’ and OC make an angle o with X-axis such that:
a=h'cose¢ & h="h'sina (3.3.2-9)

Static Equilibrium: Since center of mass is eccentric to center of stiffness, the block exerts
vertical force and a moment at the static equilibrium position. The vertical spring k, offers

vertical reaction R to counteralt the self-weight mg, whereas rotational spring k, offers
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rotational moment reaction M to counteract the moment caused by eccentric location of mass
mg . This position at rest is shown in part (b) of Figure 3.3.2-3.

Considering equilibrium at rest position, we get

mg—-R=0
(3.3.2-10)
mgxa-M=0

th,
i/ ‘ i
' \
s & vt
ko k,y T
(a) x-Displacement (b) y-Displacement

Forces acting on the Mass Forces acting on the Mass

M, b

(¢) ¢-Rotation

Forces acting on the Mass (d) Total Forces acting on the Mass

Figure 3.3.2-4 ARigid Block Supported by Translational, Vertical and Rotation
Springs - Center of Mass eccentric to Center of Stiffness - Forces acting on the Mass

Equation of motion: Consider that the block is displaced slightly and released. The block is
set into motion i.e. free vibration. At any instant of time t, the block has moved by x along X
direction, y along Y direction and rotated by angle ¢ about Z-axis passing through ‘O’. The
displaced position of the block is shown in part (c) of Figure 3.3.2-3. It is seen that centroid C
moves to position C' due to x-translation, C' moves to C” due to y-translation & C" moves to
C" location due to ¢ rotation.

Reaction forces and inertia forces corresponding to x- displacement, y-displacement and rotation ¢

about Z-axis are shown in part (a), (b) & (c) of Figure 3.3.2-4 respectively. Part (d) shows overall
reaction & inertia forces acting on the mass.
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Considering equilibrium at DOF locationi.e. 2 F, =0; X F, =0& X M, =0, we get

TF =0 mjé+kxx—mh';$sina=o (3.3.2-11)

TF, =0 my+k,y+mg—R+mh'$cosa =0 (3.3.2-12)
M, =0 |

M, §+mh §xh +kyp~M+mgx(a-h¢sina)-mixh+mja=0 (3.32-13)

Substituting equation 3.3.2-9 & 3.3.2-10 in equations 3.3.2-11, 3.3.2-12 & 3.3.2-13, we get

mi—mhe +k x=0 : (3.3.2-14)
my+mag+k,y=0 (3.3.2-15)
M oz § —mhii+maj+(k, —mgh)g =0 (3.3.2-16)

Here M,,,, = M, +m(h)* is Mass Moment of Inertia of the block about Z-axis at DOF location
point O. 4

Writing in matrix form, the equation of motion becomes:

m 0 -mhl|lx kx 0 0 x
0 m ma {yr+| 0 ky 0 yr=0 (3.3.2-17)
-mh ma M,, ||¢ 0 0 (k 4 mgh) || #

It is seen from equation (3.3.2-17) that all the three motions are coupled. It is this aspect that
dictates the limits on eccentricity. It is therefore desirable that the eccentricity (distance
between center of mass and center of stiffness) should as far as possible, be close to zero
otherwise the Vertical motion shall also get coupled with Translational and Rotational
motion.

For a =0, the equation (3.3.2-17) reduces to same equation as equation (3.3.2-8).

Free Vibration Response: It is relatively difficult to write closed form solution for
equation (3.3.2-17). Contrary to earlier cases, the solution to this equation would be relatively
complex. Use of computer is therefore recommended for computation of natural frequencies and
response.
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3.4 THREE DOF SYSTEM - FORCED VIBRATION

In this section we consider only undamped systems. Here also the analysis is limited to i) A Three
Spring Mass Undamped System and ii) A Rigid Block supported by Vertical, Translational and
Rotational Springs. Again, the spring mass system has been added only for academic purposes.

3.4.1 Three Spring Mass System subjected to Harmonic Excitation

Consider the system as shown in Figure 3.3.3-1. Consider that a dynamic force Fsinwtis applied
to mass m; only.

Under the influence of forcing function, equation (3.3.3-1) gets modified. Equation of motion thus
becomes:

ml 0 0 yl (k] + k2) - k2 0 yl 0
0 mz O yz + - kz (kz + k3) - k3 y2 = O (34]'1)

Solution to this equation of motion has two parts viz.

i) Complimentary Solution
i1) Particular solution.

For complimentary solution, RHS of equation (3.4.1-1) is zero. This gives

m 0 0[5 [k+k) -k  0](n] [0
0 0 ms y3 0 - k3 k3 y3

<

For solution to this equation, see § 3.3.1. Solution gives natural frequencies given by equation
(3.3.1-4) and free vibration response given by equations (3.3.1-5) to (3.3.1-7).

Particular solution:

System will vibrate with forcing frequency o . Thus we can represent

nw=Disinot; y,=D,sinwt; y;=Dysinwt
. 2 . . 2 . . 2 . (3.4.1-2)
W=-0"Disinot; y,=-0°Dsinot; y;=-0" Disinwt
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Substituting and rearranging terms, we get

(kl + k2 - mla)z) - k2 0 Dl O
~k, (ky + ky — myo?) — ks Dyp=40% (3.4.1-3)
0 —ky (ks —my0®) || Dy | \Fs

Using Crammer’s rule, we get

0 —k, 0
0 (ky+ky—myon?) —ks
D. = Fy — ks (ks —m;0°)
U7 |tk + &, —mo?) K, 0
~k, (ky +ky —my0?) ~k,
0 —ky (ks —m30°)
(ky +ky—mo°) 0 0
—k, 0 —k,
0 Fy (k3 —-myo”)
D, =
(ky +ky —m0?) —k, 0
-k, (ky +ky—my0°) ks
0 —ksy (ky —myw?)
(ky +ky —m0?) ~k, 0
—k, (ky + k3 —my0?) 0
0 —ky F,
Dy = - (3.4.1-4)
(ky +ky —my0*) ~k, 0
~k, (ky + k3 —my0?) —k;
0 ks (ky—myo?)

It may be noted that the denominator in equation 3.4.1-4 could also be represented in terms of
natural frequencies p;, p; & p;.

(ky +ky —my0*) ~k, 0
—k, (ky +hky —my0?) —k,
0 Tk, (ks —my0?) (3.4.1-5)

=mymymy (07 - p* Yw? = py* X0 - py?)
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Substituting the values of constants D, D, & D; in equation (3.4.1-2), we get amplitudes
»1,¥, & y; whereas constants D,, D, & D; represent maximum value of the amplitude.

3.4.2 A Rigid Block supported by Vertical, Translational & Rotational Springs

subjected to Harmonic Excitation
3.4.2.1 Center of Mass is in line with Center of Stiffness. Dynamic Forces applied

at a point above the block.

Now consider the same block as of Figure 3.3.2-1 (in X-Y Plane) subjected to Dynamic Forces
FE,sinot & F V sin@t applied at point T as shown in Figure 3.4.2-1.

¢

Figure 3.4.2-1 Dynamic Force F, sin ot & Fy sin ot applied at point T

Transfer the dynamic forces to DOF Locations: Let the equivalent dynamic forces at Obe

F, along DOF 1, F, along DOF 2 & Fjalong DOF 3.
Considering equilibrium of forces, by statics, we get
K F sinw¢

Fyp={ F,sinot where M, =-sF,
F M, sinot

(3.4.2-1)

Adding equation (3.4.2-1) to RHS of equation of motion for free vibration i.e. equation (3.3.2-8),
we get equation of motion for forced vibration as:
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m 0 -mh|{%| |k, O 0 x F,sinot
0 m 0 RKye+| O ky 0 yt=14 F,sinot (3.4.2-2)
—mh 0 My [|§) |0 0 (ky-mgh)|lg] |Mysinor

Since vertical motion is uncoupled, separating from the equation, we get

my+k,y=F,sinwt (3.4.2-3)

m 0 |[x] |k 0 x| | Fysinot here 1 =
[0 Moz {¢}+ 0 (ky—mgh) {¢}— Mysinot where M, =-sF,  (3.4.2-4)

Equation 3.4.2-3 represents vertical motion of the system. It is seen that this equation is same as
equation (2.2.1-1). The solution to equation gives response at point O. Maximum response @ O
thus becomes (see equation 2.2.1-5a):

1 F,

Yo =0, v Oy =— ' (3.4.2-5)
‘1— B ) k,

Equation 3.4.2-4 represents motion of the system in X-Y plane having coupling in X &¢.
Substituting (M, =—-sF,), it is seen that this equation becomes same as equation (3.2.2-12).
Following solution on the similar lines as that for equation (3.2.2-12), we get x& ¢ response at
point O as:

o -8) s
s, hs - 3.4.2-6
S REr e o o
o -p) mh___b
o = S, —5"' A
¢ L ’ (1_ﬂ12x1—ﬂ§) Mmoz (l—ﬂlle—ﬂzz)} ( N 7)
Here 5x=i&5¢='ﬂz_¢
x ¢

3.4.2.1.1 Amplitudes at resonance

For motion in X-Y plane, response amplitudes x,,y, & ¢,, as given by equations 3.4.2-5,6 &7
represent undamped response that holds good for conditions away from resonance.
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When natural frequencies are in proximity to operating speed i.e. conditions of near resonance, the
responses given by the above equations do not hold good. For evaluating response at resonance, the
equations 3.4.2-5,6 &7 are modified as under:

In case of resonance, taking advantage of the derivation done for damped SDOF system, it can be
said that:

i) In case of resonance with vertical natural frequency p, , the response to the system at

resonance is obtained by replacing the term (1— ﬂyz) in denominator by

\/(1 ~p2f +(B,¢) in equation 3.4.2-5,
ii) For coupled motion x& ¢, in case of resonance with first natural frequency the response

at resonance is obtained by replacing the term (1—,312) in denominator by

\/(1— /312)2+(2,B]§ )2 in equations 3.4.2-6 &7, keeping the sign of the term

\/(1 —p2f +(@B,¢) same as that for (1- 52).

iii) In case of resonance with second natural frequency for coupled motion x& g, the

response at resonance is obtained by replacing the term (1 - ﬂzz) by \/ (1 - ﬁzz)z +(28,¢)

in equations 3.4.2-6 &7, keeping the sign of the term \/ (1 - ,622)2 +(2ﬂ2§ )2 same as that
for (1 .y )

Similar modifications must be made while considering motion in Y-Z plane involving
responses y,z & O.

Further, since torsional motion in X-Z plane (about Y) involving response y is uncoupled,
response at resonance is obtained by equations:

1
=4, (undamped response
Yo "'(1—_,35) p ponse)
1

¥,=6, (damped response at resonance) (3.42-8)
Vi-52F +Ga,c)
M
5,=—%
k‘//
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It may be noted that responses x,,,y, & ¢, (whether undamped or damped) represent amplitudes at
DOF Locations point O in X Y & ¢ directions respectively. For response at any other location viz.
top of the foundation, bearing location etc, computations need to be modified accordingly.

3.4.2.2 Center of Mass is not in line with Center of Stiffness - Dynamic Forces
applied at a point above the block

Now consider the same block as of Figure 3.3.2-2 (in X-Y Plane). Center of stiffhess is point O and
center of Mass point C is at distance ‘a’ from point O. The block is subjected to Dynamic Forces
F,sinwt& F,sinwt applied at point T as shown in Figure 3.4.2-2. These dynamic forces are to

be transferred at DOF location.

Transfer the dynamic forces to DOF Locations: Let the equivalent dynamic forces at O be
F, along DOF 1, F, along DOF 2 & Fjalong DOF 3. Considering equilibrium of forces, by
statics, we get

F F.sinwt
Fyp=3 F,sinot (3.4.2-9)
F (-sF,)sinwt

Fysin(nt
F_sin mt—;:T _____________ .- -
Y
7
X
7 ¢

Figure 3.4.2-2 Dynamic Force F, sin of & Fy sin wt applied at point T
Overall Centroid is offset by distance ‘a’ from center of Stiffness
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Equation of Motion

Adding equation (3.4.2-9) to RHS of equation of motion for free vibration i.e. equation (3.3.2-17),
we get

m 0 -mhiix k. 0 0 x F.sinwt
0 m ma {yr+| 0 &k y 0 y=3 F,sinot (3.4.2-10)
—mh ma Mmoz ¢ 0 0 (k¢ - mgh) ¢ (—S F:\' )Sin wt

For free vibration response, see § 3.3.2.2.
‘Forced Response:

Solution of equation 3.4.2-10, using closed form solution techniques, is not only
difficult but complex too. We leave it at this stage itself. Should a situation
arise, it may be desirable to resort to advanced computational tools/packages for
solution to the problem.

EXAMPLE PROBLEMS (§3.1)

(Free Vibration 2-DOF System - Natural Frequency Computation)
P3.1-1

A 2DOF spring mass system, as shown in Figure P 3.I-1a, has mass m; =1000 kg,
mass m, =500 kg, spring stiffness £ =25iN/m and k,=2iN/m. Compute natural
frequency of the above spring mass system.

ky =25 kN/m

Figure P3.1-1 2 DOF Spring Mass System
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Solution

Limiting frequencies

m, = 1000 kg
my= 500 kg L_my 500 _
ky = 25000 N/m m, 1000

k, = 2000 N/m

P = K 25000 =5 rad/s
1= TV 1000

P2 = ’_’fg_ =J&9 =2rad/s
m, 500

Natural frequencies are:

7t =1t e ot )Nl i F oo

= %{(4><(1.5)+25)—\/(4><(1.5)+25)2 —4(25><4)}
p =191 rad/s

ot = 1ttt e oot o1 F -l )

=%{(4><(1.5)+25)+ J(ax(.5)+25) —4(25x4)}
py =523 rad/s

It is noticed that the lower natural frequency of the system p, is lower than the lowest limiting
frequency and the higher natural frequency p, is higher than the highest limiting frequency.

P3.1-2

In problem P 3.1-1, &, & m, is interchanged with k, & m,. Thus, the spring mass system has
masses m; =500 kg, m, =1000 kg, spring stiffness k£, =2 kN/m and %, =25kN/m as shown
in Figure P 3.1-2. Compute natural frequency of the spring mass system.
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Solution

Limiting frequencies

m, =500
m, =1000
k; =2000
ky = 25000

_my 1000 _
m 500

Figure P3.1-2 2 DOF Spring Mass System

Kk [2000
= |— =,]—— =2rad/s
P = TV 500
K, [25000
= |~= = |——— =5rad/s
P2 =% =\ 1000

Natural frequencies are:

pi= %{(Piz (1 + /1)+ Ph )—\/(sz (1 + /1)+ Pu2 )2 - 4(1’;,1 P )}

-1
2
py =1.134rad/s
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8= ot 20+ 8ol )+ 2 F -l )|

=%{(25><(1+2)+4)+\@5><(1+2)+4)2 —4(25><4)}
p, =8.82 rad/s

It is noticed that the lower natural frequency of the system p, is lower than the lowest limiting
frequency and the higher natural frequency p, is higher than the highest limiting frequency.

P3.1-3

A machine of mass 500 kg is supported on a RCC Block of size L= 2500 mm, B=1500 mm &
=400 mm deep. Density of concrete is 2500 kg/m’. The block in turn is supported by a

rotational spring having stiffness of £, =2x10° Nm/rad and Translational spring having

stiffness of &, = 2x10"N/m attached at base center of the block (point O) as shown. The

height of the machine mass above top of Block is 100 mm. Block Centroid C and CG of
machine lie on the same vertical line. The system is constrained such that it can move only in
translational X direction rock about Z-axis. passing through O. Find natural frequency of the
system?

k, =2x10°Nm/rad

T"r """" =omy Block
H=400 cc - 0¢
Ly o .

B=1500 >X

k,=2x 10" N/m
ky=2x 10° Nm/rad

7

Figure P3.1-3 Machine on RCC Block Supported by Rotational
Spring attached to Base Center Point O

Solution:
Machine mass  m, =500 kg
Mass of Block m, 2.5%1.5x0.4x2500=3750 kg
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Total Mass (m=m, +m,) =4250 kg

Spring Stiffness in X direction k, =2x10"N/m
Spring Stiffness in ¢ direction

Let us denote Overall centroid (Block +Machine) as CC

Height of CC from center of base of the block point O

500%(0.1+0.4)+3750x (0.5x 0.4)
4250

he= =0.2354m

Mass Moment of Inertia about Z-axis at centroid CC= M

mz

My =720 (157 +0.42 )+ 3750 (0.2354—0.2)% + 500 (0.1 + 0.4—0.2354)* =792.83
12

Mass Moment of Inertia about base center point O= M

moz

M, = 31750 (1.5 +0.42 )+ 3750 0.22 + 500 0.1+ 0.4)? =1028.125
o My _ 19283

M,,, 1028.125

’ 7
2x10 =68.6 rad/s
V 4250

k 6
_ | k) =\/(2X1° ) 4410 rad/s
M,,, V1028.125

As mentioned earlier in the text, the influence of term mgh for all practical real life problems is
practically insignificant. This can be checked here it self. Considering effect of term mgh , we get:

k, —mgh 6
5, = \/(¢ mgh) _ |(2x10° -4250x9.81x02354) _ . .

M 1028.125

It is seen that this value is practically same as obtained above. Hence one can conveniently and
safely ignore term mgh for all practical purposes.
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P’ =2—ly{(pf +p§)¢\/(pf +pif -4y, p,fpj}

Substituting for Py, Py & ¥, we get

2__ 1
2x0.77
=4318F2606.7

p {(68.662 raa2)F \/(68.662 +44.12 ] ~4%0.77x 68.667 ><44.12}

Two positive Roots of p2 give two natural frequencies as

py = 4318-2606.7 = 41.36 rad/s
Py =+/4318+2606.7 =83.21 rad/s

EXAMPLE PROBLEMS (§3.2)
(Forced Vibration —2-DOF System - Response Computations)
P 3.2-1

A machine of mass 5000kg is supported onm a RCC Block of size
L=4m,B=2m & H =3m deep. Density of concrete is 2500 kg/m3. The block in turn is
supported by a rotational spring having stiffness of &, = 2.1x108Nm/rad and Translational

_spring having stiffness of &, = 1.6x10*N/m attached at base center of the block (point O) as
shown. The height of the machine mass above base of the Block is 3500 mm. Overall

Centroid C and center of Stiffness point O lie on the same vertical line. The system is
constrained so as to translate only along X & rotate about Z-axis passing through O. A
dynamic force of F, =5000 N@ 15Hz is applied at the machine mass center along X-axis.

Find the undamped amplitudes of vibration at foundation base (point O).

Solution:

Mass of Machine 5000 kg

Mass of foundation Block 2500x(4x2x3) = 60000 kg

Total Mass m = 5000 + 60000 = 65000 kg
Spring Stiffness in X direction k,=1.6x10® N/m

https://engineersreferencebookspdf.com



3—96 Multi Degree of Freedom Systems

Spring Stiffness in ¢ direction ky = 2.1x10*  Nm/rad
Excitation Frequency @ =15 Hz=15x27 =94.24 rad/s

Applied Dynamic Force:
Magnitude of Dynamic Force: F, =5000N

5000 kg

)
T :»Fx=15000N@15 Hz

g * l’
k,=1.6x10"N/m 0 TC. =
7 hp Vg |R
e~y 1y

=2.1x 10 Nm/rad

Figure P3.2-1 Machine on RCC Block Supported by Rotational Spring and
Translational Spring attached at Base Center Point O

Equivalent Dynamic Forces transferred @ point O:
Transferring forces @ DQF location point O, we get
1 =5000N, F5 =-5000%3.5=-17500 Nm
Let us denote Overall centroid (Block +Machine) as C
Height of overall centroid C from center of base of the block point O
h=(5000 x 3.5+60000 x 3.0/2)/65000 =1.654 m

Mass Moment of Inertia (Machine + Block) about Z-axis at base Overall centroid C=M

M, =—6%Q9x(32 +22 )4 60000 (1.654~1.5)? +5000x (3.5-1.654)% = 83461 kg m?

Mass Moment of Inertia about Z-axis at base center point O = M

moz
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M,,, =83461+65000x(1.654)% =261283 kgm?

M,,,z 83461

¥, = = =0.319
f M, 261283

f 8
1/ 1.6x10 =49.6rad/s
65000

k, —mgh 8 _
py = [ke=meh _ ‘/2.1x10 65000x9.81x1.654 _ oo
M, 261283
Response in x& ¢ direction:
Natural Frequencies:
Frequency equation is p’= EI—(pi + p; )—T— ZL‘/ (pi + p;)z -4y, p? p;
}/z }/Z
Substituting for p,, p; & ¥, , we get natural frequencies as:
p=2538 radls; & p,=97.84 radls
4, .
g =L A2 _sg g -0 9246
p 2538 p, 97.84
B, =2 = 9424 899; B, o %24 ..,
p. 49.6 py 2835

Bl =36, B; =11.02, B} =13.69, B} =0.925

Amplitudes at DOF location O

 -5) g
. =6, ~hs ;
S R 73 (2] R ) (o
[ 1-p) mh__ B }

O 3 oy el v () ()

Substituting for B,, By, B1, f>,6,0, , we get:

(1-B2)=-26, (1- f5)=-10.02, (1- f})=-12.76, (1- B;) =0.073
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(1- (1~ B2) = -12.76x0.073 = —0.93

1-82)  -1002
s e
; 3.6
(1-ﬂ12f1- )" Toss Y
Jir 1102 _
7 —o; = 1185
(-g2) _-26 ..,

mh _ 65000x1.654

h=1.654m; =04115
M o 261283
x=5—= 5°°°8=3.125x10‘5m
k. 1.6x10
My -17500

=-8.33x107° rad

Tk, 2.1x108

x - Amplitude at DOF Location (Point O)

x, =3.125x107° x(10.77) - 1.654 x (-8.33x107°) x (-3.87)
=-19.4x10"m

¢ - Amplitude at DOF Location (Point O)

4, = (-8.33)x107° x(2.79) =3.125x10™ x 0.4115x (—11.85)
=-8.0x107° rad

P3.2-2
A 2DOF spring mass system, as shown in Figure P 3.2-2, has mass m;=1000 kg, mass m, =500

kg, spring stiffness £, =25 kN/mand %, =2 kN/m. Compute maximum amplitudes of
vibration for:
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Excitation force F,(2) =100 sin 10 ¢ on Mass m,
Excitation force F (1) =100 sin 10 ¢ on Mass m,

Excitation force Fi(2) =100 sin 10 ¢ on Mass m; & F,(1) =100 sin 10 ¢ on Mass m,
Base Excitation displacement y() =0.001 sin 10¢

F( F()

(a) Excitation Force (b) Excitation Force () Excitation Force (c) Base Excitation
F(p) on Mass m, F(f) on Mass m F(f) on Mass m; & m,

Figure P3.2-2 Two Mass System-Forced Vibration
Solution:

System Data :
m; =1000kg; m, =500kg; k& =25000N/m; ¥k, =2000N/m
F=100N; F,=100N; x,=0.001m; @ =10rad/sec

A="2_05
m

Limiting Frequency p;, = ,/2500%000 = 5 rad/sec
Limiting Frequency p;, = ,’200%00 =2 rad/sec

Using equations 3.1.1-12 & 13, and substituting for P;;, P;, & A, we get natural frequencies
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5 =;{(pzz(l+z)+pzl)—J(pzz(1+z)+pzl)z ~lp} pzz)} G.1.1-12)
9} = {(rta1 D+ ) lota1 20+ 3 F -4l )| SARED

Natural Frequency p; =1.912rad/s; p, =5.229 rad/s

Amplitudes of vibration
Excitation Frequency @ = 10 rad/s;
@ 10 @ 10

Frequency Ratios =—=—-=523; =—=——=1912
aueney A== Ton Pr= =59

(a) Excitation force F,(¢)=100sin /0t on Mass m,

For amplitude of mass m, & m,, refer equations (3.2.1-5) & (3.2.1-6).

F2 1 k2 .
yi=-— 5 Sy sSine!

b -5 -5
y, =2 1 [k1+k2—a)2m1]sinwt
, ==L

k2 (l-ﬂIZXI—,Bzz) kl

For maximum amplitude sinw ¢ = 1.0, substituting the values, we get

Amplitude of mass m

100 1 2000
~ 2000 {1-5.232 J1-1.9122 ) 25000

¥ =5.715x107° m = 57.15 microns

N

Amplitude of mass my

y 100 1 (25000+2000—102 xlOOO}
2

~ 2000 {1-5.232 J1-1.9122 25000
¥, =-2.086x10"> m = —2086 microns
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(b) Excitation force F(z) =100 sin 10 ¢ on Mass m,

Refer equations (3.2.1-8) & (3.2.1-9)

= 1 )}{(kz —“’ZMZ)}sinm

=;l_{(1—,31211—ﬂ22 ks

Yy = il ! sinwt
, =—L
b -5 - 5,°
For maximum amplitude sin @ ¢ = 1.0, substituting the values, we get

Amplitude of mass m,

=100 1 {Qooo-mzxsoo)} |
1

~ 25000 {1-5.23% f1-1.9122 2000
= ~1.371x10™> m = —1371 microns

Amplitude of mass m,

_ 100 1
72725000 {i=5232fi-1.9122)

y, =5.715x107° m = 57.15 microns

Excitation force

F()=100 sin 10 ¢ on Mass m; & F,(¢)=100sin/0¢ on Mass m,
Refer equations (3.2.1-11) & (3.2.1-12)

o Flky-0?m) F k)
}’1—{(1_'61211_%2)}{;:' 2 k) 2 +-I;j—-k—?-}sma)t

o F otk —o®m) R
yz_{(l—ﬂlle—ﬂzz)}{kz k +k1}sma)t

For maximum amplitude sin @ ¢ = 1.0, substituting the values, we get

Amplitude of mass m;,
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_ ! 100_(2000-102x500) | 100 2000
=523 fi-19122))| 25000 2000 2000 25000

»n= -1.314x10™* m = —1314 microns

Amplitude of mass m,

1 100 {25000+2000-102x1000) 100
Y2 = {( ) p) +
1-5.23% [1-1.9122 |} | 2000 25000 25000

¥y, =-2.029x 107 m = -2029 microns

(c) Base Excitation y(?)=0.001 sin 10¢

Refer equations (3.2.1-16) & (3.2.1-17)
=y : {(kz _wzmi)}sina)t
1=)o
w-sh-p2 L
1

Yy =y sinwt
e Kl-ﬂ12 xl‘ﬂzzn

For maximum amplitude sin @ ¢ = 1.0, substituting the values, we get

Amplitude of mass m;

I {(2000 ~10 xsoo)}

0 =090 {i-5232f1-1.9122) 2000

» =-3.429x 10~ m = —343 microns

Amplitude of mass my

1

& =0'001{(1—5.23211—1.9122

)} =1.43x10"° m =14.3 microns

P3.2-3

A 2DOF spring mass system, as shown in Figure P 3.2-3, has mass m; =170 t, mass

my =34 t, spring stiffness k; =8.01x10° kN/m and k, =2.35x10% kN/m . A mass m, =1.381
freely falls on mass m, from a height of % =1.70 m. Considering coefficient of restitution for
the impact e=0.6, compute the amplitudes of masses m; & m, .
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Solution:

m|=170 t,' m2=34 t,‘ m0=1.38t

k =8.01x10° kN/m;  k, =2.35x10°KkN/m; h=17m;

Limiting Frequencies:
6 6
le ___ﬁ__ 8.012x10 4607 . Pzz =k_2= 2.345%10 — 68978
) 170 )
Mass Ratio a=I2 34 =0.2
m 170
[ T mg=138¢ | |
h=170m

1 y
| my=34¢ #—T

ky =2.35 x 10" kN/m
’¢!

m,=170¢ l—T

k; =8.01 x 10" kN/m

===

Figure P3.2-3 (a) Two Spring Mass System Subjected to Impact Load

Natural Frequencies:

pi= %{(68978>< (14+0.2)+4697)- /(68978 (1 +0.2) + 4697)? —4x(4697><68978)} =3876

Py =62.26 rad/s
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= %{(68978x (1+0.2)+4697)+ /(68978 x (1+0.2)+ 4697 — 4x (4697 x 68978)} =8.355x10*
Py =289 rad/s

Initial Velocity of mass m,
Velocity of mass m, before impact

vy =2gh =J2x9.81x1.7 =5.775 nvs

Velocity of mass m, after impact

vy =V x—-——-(1 +e) =5775x% ———————(1 +9 6))
1+4,) (1+24.63)

We get response of the Two Spring Mass System as under (refer equation 3.2.1-39 & 40):

=036 m/s

Amplitude of mass m, (see equation 3.2.1-39)

=", (pLZ Xgn pz){sin(plt)_sin(pzt)}
PLz(Pl Pj P P2

Amplitude of mass m, (see equation 3.2.1-40)

e =p)sinen - lp’ = p2)singa)
& _\vzx ( 12—[722) P Y2 (PIZ—PZZ) P

Amplitude of mass m; in 1st mode

Y =v (sz nlsi Xsz - p%) sin(pyt)

phlpt-p)
V1 =036x (68978 -3876)68978 —83550) sin 62.26¢ <10 = 0.99918 sin 62267 mm
68978(3876 —83550) 62.26

Amplitude of mass m, in 2nd mode

W =, (PLz Py lpn - )Sm(Pzt)
145 (Pl - P2 ) P2
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(68978 387668978 ~83550) sin 289¢ y

10° = —0.2155in289¢ mm
68978(3876 - 83550) 289

¥ =-0.36x

Amplitude of mass 2

(P22~ p3) sin(pyt)
(plz - p3 ) P

Amplitude of mass m, in 1™ mode

r
Y2 =V X

0.36 (68978-83550)

X x10° sin 62.26¢ = ~1.05sin 62.26/ mm
62.26 (3876-83550)

V=

Amplitude of mass m, in 2nd mode

2 _ 2
.V ‘ - )
Yy =——2x pL; P21 sin p, t
Py \Pi P2

_ 036 _(68978-3876)
289~ (3876 -83550)

%10 sin 2897 =1.0sin 289 mm

v

2.0
1.5 7

=
(=]
!

Amplitude in mm

1.0 -

~151

-20~ Time in sec —»

Figure P3.2-3 (b) Response of Masses m; & m, Subjected to Impact Loading
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Amplitude vs. time plots of mass m, and mass m, are shown in Figure 3.2-3 (b). From the figure
we get

Overall Amplitude of mass m, » =1213mm

Overall Amplitude of mass m, ¥, =2.06 mm

P3.2-4

A 6 spring mass system connected by a rigid bar, as shown in Figure P 3.2-4, is subjected to
dynamic force of F(¢)=50sin100¢ N applied at each mass point. Find response of the
system.

Solution (See §3.1.5 & §3.2.3)

m =100 kg =0.1t
Mass Data: my =015 t, my=02 t
my=03 t;mg=02 t; mg=0.1t

k, =1000 kN/m
Spring Data: k, =1500 kN/m; k; =2000 kN/m
ks =1000 kN/m; k5 =2000 kN/m; k4 =2500 kN/m

m;=100kg &, =1000kN/m
m, =150 k, = 1500
my =200 k3 =2000
m, =300 k,= 1000
ms =200 ks =2000
mg =100 kg =2500

Figure P 3.2-4  Six Spring Mass Systems Connected
by Massless Rigid Bar
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Center of Mass X,

Total Mass m=0.10+0.15+0.20+0.3+0.2+0.1=1.05 ¢
Taking moment about axis passing through spring 1, we get

5 = 0.15x1+0.2x24+03x4+02x5+0.1x7 345

. =3286 m
1.05 1.05

Center of Stiffness
Total Spring Stiffness  k,, = (1000 +1500-+2000+1000-+2000+2500) = 10000 kN/m
Taking moment about axis passing through spring 1, we get

o _ (1500x1+2000x2+1000x4 +2000x5+2500x7) _ 37000
- _

= =37 m
10000 10000

Eccentricity: e=Xx, —X, =3286-37=-0414 m

Distances of springs from center of mass:

@, =3.286 m; a, =3.286-1=2.286 m; a; =3.286-2=1.286 m
a,=3286-4=-0.714 m; a5 =3.286-5=-1.714 m; a5 =3.286-7=-3.714 m

Distances of springs from center of stiffness:

b =37 m by =37-1=27m; by=37-2=17m
by =37-4=-03m; by=37-5=-13m; by =37-7=-33m

It is seen that these values of a;,b; & esatisfy equation g; =b; +e

Mass Moment of Inertia M, : 1t is the second moment of mass about center of mass

M, =Y (ma?)=0.1x3.2862 +0.15x 2286 +0.2x1.286
+0.3x(-0.714) +0.2x(-1.714)* +0.1x(~3.714)* =4.314 tm?
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Rotational stiffness about center of stiffness

ky = Z(kibf)= 1000%3.7% +1500x 2.7% +2000x1.7°
+1000x (- 0.3)* +2000x(~1.3)* +2500x (3.3 = 61100 kNm

, k ,
Limiting Translational Frequencies p, = 2= l?% =97.6 rad/s
m . .
k
Limiting Rotational Frequencies p, = Lo _ 81100 119rad/s
M, \) 4314
Equivalent radius of gyration r= 1/ 1’ 413615 =2.027 m

a=1+< 1+—————( 0414)
2

1.042

Natural Frequencies:  (see equation 3.1.5-15)

Pia =0.5x{(1.042x97.62 +1192)$\/(1.042x97.62 +1192)2 ~4x97.6 ><1192}

p1 =94.1 rad/s; p, =123.4 rad/s

Response:

Dynamic force and moment transferred at center of mass point C,,
Total dynamic force @ center of mass

F(t)=50sin100 #x6 =300sin100 ¢ N =0.30sin100¢ kN

50x(1+2+4+5+7) 350
50x6 300

Point of application of dynamic force xp = =3.167 m

Centroid of dynamic force from center of mass x,, —xp =3.286-3.167=0.12 m

. Dynamic Moment @ center of mass

M(#)=(0.30x0.12)sin100 £ = 0.036sin100 1 kNm

Maximum Amplitude: (See equation 3.2.3-5 & 6)
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Since system has no damping, let us compute response for undamped condition.

B; e
6y(stalic) [1 +— ,B ﬂ¢ ¢(rtanc) xe

Y

Vimax) = ;
) (1“:31 Ji-52)
.
5¢( static) ﬂ y y(stanc) ﬁ
— Y
e =a)0-7)
F, 03 M, 0036
Oy =L =—" =30x107° m; Sy =—t=— =589x107 rad
ysane) = g "= 10000 onaic) = = 61100 v

©=97.6 rad/sec; p,=97.6 rad/sec; p, =119 rad/sec; p, =94.1 rad/sec; p, =123.4 rad/sec;
o 100

B, =——-—=—-—_1 0246; B, =0.84; S =1.0627; B, =0.8104;
p, 976
e?
r=2027 m; e=-0414 m; a=1+— =1042
r

2
1+ 52 -6 |= 0.84 —x0.042-0.84 = 03226
B2 r? " 10246

(1- 82)(1- 2)=(1-1.06272 ) 1-0.81042 )= -0.214

- 30x107° x0.3226 - 5.89x10°77 x(-0.414)

y(max)_ _0 214 =_4.64X10-5 m
2
5.89x10'7(1—1.02462)—3.0x10'5(1%§26] (“0-413
P = 0.214 ' 2.027" ) _ 9.6x10" rad

Maximum Translational Amplitude shall occur at the extreme end of the bar

Ay = Vinax + Hax) x| (max)

Max Amplitude
la,(max)| =as=3714 m

A, =-4.64x107 - 9.6x10°x3.714=-82.15x10°% m
( ) =82.15 microns
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P3.2-5

A Machine of mass 5000 kg is supported at the center of a RCC portal frame beam as shown
in Figure P 3.2 -5. Frame beam is 200 mm x 500 mm deep and column section is 200 X 400
mm. Frame span is 4000 mm (center to center) and height of frame is 6000 mm (up to beam
center) as shown. Consider that the mass is subjected to a dynamic force F(r) = 0.25in100¢

applied along Y. Elastic Modulus of concrete is E, =3x10' N/m? and its mass density

is p, =2500 kg/m®. Consider damping ¢ =5% . Compute the response.

Solution:
i) Beam is Elastic
Material properties of Concrete E, =3x10" kN/m?; p, =25 tm’
Span & Height of Frame L=40m; H=6.0m;
Area of Beam Cross-section Ay =0.2x0.5=0.10 m?
Area of Column Cross-section 4, =02x0.4=0.08 m? ‘
Mass of Beam my, =0.1x4.0x25=1.0 t
Mass of each column m, =0.08x6x2.5=12t

Moment of Inertia Beam Cross-section I, = %xo.z x0.5% =0.00208 m*

Moment of Inertia Column Cross-section [, = IIE x0.2x0.4°> =0.00107 m*

_ IL,/L _0.00208/4

- - 2.916
1./JH 0.00107/6

Stiffness ratio factor

Motion along Y (Vertical motion): Mathematical model is as shown in the Figure

Mass & Stiffness Properties: (see equations 3.2.4-2 & 3)

my=m+045my,; m =0.55m, +2x0.33xm,

ky =—%; k2=—1—.—_96E1bx£ﬁ
Sy L 2k+1

https://engineersreferencebookspdf.com



Multi Degree of Freedom Systems 3—111

Figure P 3.2-5 Machine mass supported at Portal Frame Beam center
Subjected to Dynamic Force F(t)

Mass
m =0.55my +2x0.33xm, =0.55x1.0+2x0.33x1.2=1.342 t
my=m+045m, =5.0+045=545 1t
Stiffness
7
K = 2EA, _ 2x3x10" x0.08 ~8x10° KN/m
H 6.0
96E | 7 .
k, = 3 by k+2 96x3x10" x0. 00208 2.916+2 —6.735x10° KN/m
L Y 43 “2x2.916+1
Natural Frequency (see equation 3.2.4-4)

5
=R B0 o ) radss
m; V1342
4
1y = ’ 673554"10 ~111.16 rad/s

=M 545 Lo
m 1342
Frequency Equation
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p= b2y 2o 2 2 -l

Substituting values, we get

P =%{(111.162 x(1+4.06)+772.12)¢\[(111.162 ><(1+4.06)+772.12)Z [ x111.162)}
p =107.23 rad/sec; p, =804.67 rad/s

Steady-State response:

i) Maximum Undamped Response: (see equations 3.2.4-7 & 8)
[1+/1 A —'BLIJ
Fy 1 ﬁLz

F

Applied Force F(¢)=0.2sin100¢

o 100 100 100 100

=093 B, = =0.124; B, =—r=
A . Z 804.67 Pu 772.1 % P = 11116

lﬁ“ﬂﬁ] l(l_ﬂﬂ - ’5_0.932] K1_0'1242] =7.517

ﬂu 2 (0 13) 2
1+ A== +4.06 ~0.13° [=1.068
( 5, ﬂuJ ( 09 J

Y1 man), = 8—326547.517 =1.88x10° m =1.88 microns

0.2

WXIO68X7517 2.38x107° m = 23.8 microns

Y2 (maxy =

ii) Maximum Damped Response:

Since frequency ratio f, is in resonance range (i 20 %) , Equations 3.2.4-7 & 8 get modified as
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2
{H/lﬁ—é‘—ﬂf]]
1 FO ﬂL2

Fy
Pt max) = b Yaeey =
Uk emFeesori-g) T B i-a <Cacl «fi-51)

Substituting, we get

! = ! =6.19

Vi-52F +@a¢Y o182 Vi-093 +(2x093x0.058 x[f1-0.1247)

0.2 - :
Vi nay =555 X6.19.=1.54x10 ® m=154 microns

¥ g =~ x1.068x6.19 = 196310 m =19.63 microns
673510

EXAMPLE PROBLEMS (§3.4)

P3.4-1

A machine of mass 5000kg is supported on a RCC Block of size
L=4m,B=2m & H=3m deep. Density of concrete is 2500 kg/m>. The block in turn is
supported by a rotational spring having stiffness of &, =2.1x10*Nm/rad and Translational

springs having stiffness of &, = 1.6x10® N/m & k, = 3.2x10® N/m attached at base center of

the block (point O) as shown in Figure P 3.4-1. Height of CG of the machine mass above
foundation base of the Block is 3500 mm . Overall Centroid CC and center of Stiffness
point O lie on the same vertical line. The system is constrained to move only in X-Y plane i.e.
it can translate along X & Y directions & rotate about Z-axis passing through O. Dynamic
force F, =5000 N @15 Hzalong X-axis, F, =10000 N @15 Hz along Y-axis and dynamic

moment M, =20000 Nm about Z- axis are applied at the machine mass center. Find the

amplitudes of vibration at foundation base (point O). In case of resonance, use damping
constant§ =10%.

Solution:

Mass of Machine 5000 kg

Mass of foundation Block 2500x(4x2x3)=60000 kg

Total Mass m =5000+60000 = 65000 kg
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Spring Stiffness in X direction k, =1.6x10® N/m

Spring Stiffness in Y direction k, =3.2x 108 N/m
Spring Stiffness in ¢ direction kg =2.1x10® Nm/rad
Excitation Frequency =15 Hz=15x27 =94.24 rad/s

m=5000kg F,=10000N@ 15 Hz
M, =20000 Nm @ 15 Hz 4

T V/P——*Fx=5000N@ 15 Hz
vec |1
k=16x10'wm 5| T i £
7 1 !
1o Loy

ky=2.1x 10°'Nm/rad

Figure P 3.4-1 Machine on RCC Block Supported by vertical, Translational and
Rotational Springs Subjected to Dynamic Forces F,, F; W & M¢ at
Machine center Location

Magnitude of Dynamic Force:
F,=5000 N, F,=10000 N, M, =20000 Nm
Transferring forces @ DOF location point O, we get

F1=5000 N, F,=10000 N & F3 =20000-5000x3.5=2500 Nm

Let us denote Overall centroid (Block +Machine) as CC

Height of CC from center of base of the block point O
h = (5000 x 3.5+60000 x 3.0/2)/65000 =1.654 m
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Mass Moment of Inertia (Machine + Block) about Z-axis at base Overall centroid CC =M,

=6—°1°2-°2><(32 +22)1 60000x(1.654~1.5)% +5000x (3.5-1.654)2 =83461 kg m’

mz
Mass Moment of Inertia about Z-axis at base center point O = M,

M, =83461+65000x(1.654)> = 261283 kgm®

Limiting Frequencies

8
Py = k_"= 1.6x10 =49.6 rad/s
\lm V 65000
k 8
b, = /_y= /w=7o.16 rad/s
m 65000
k 8
po = |—2— =210 9835 radss
M, V261283

Note: For real life problem it is customary to ignore the effect of term mgh while computing

limiting frequency, as its influence is negligible. Considering effect of mgh we get frequency of
28.27 rad/s (see below)

=28.27 rad/s

_ kg —mgh _‘/2.1x108—65000><9.81><1.654
Pe V" u,,, 261283

Response in vertical Y — direction (Undamped):

F,
5,=—*L= 100008 =3.125x107° m
k, 3.2x10
gL A,
p, 70.16
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Vertical Amplitude @ O

1 1

y, =8, x =3.125%107° x =392x10° m
S ) [1-1342)

=39.2 microns

Response in x& ¢ direction: (Undamped)

Natural Frequencies:

. 1 -
Frequency equation is p? 2 (p,f +p} )+%\Kn£ + p;)z -4y, pip;
2z z

Substituting for p,,p, & y,, we get natural frequencies as:
P =2543 rad’s; & p, =97.90 rad/s
o 9424 o 9424

A 2543 ‘ py 9790
ﬂx=£=%ﬁ‘l=1_399; g, =2 2428 54
pe 496 ps 2835

Bl =36, B; =11.02, B} =13.69, p7 =0.925
Amplitudes: Response at DOF location O

(-5) 5
=|6, -hS 5
S ) ey ¢H—ﬂfxl—ﬂ§)}

[ ‘1—,33’ mh ,B;
={J —
¢0 i [ l_ﬂlz l—ﬂzz 5x Mmoz (l_ﬁ]?. Xl_ﬁ22)

=t 3005 1a5x10 m
K 16x10
M
el 25008 =1.19x107 rad
K, 2.1x10
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Substituting for B, By, B, 52,0x,94 , We get:
(1-BH=-26, A-B})=-1002, (1- B2)=-12.69, (1- B;)=0.075

(1- 831 - B2) = -12.69%0.075 = —0.95

1-82)  -1002
(I—ﬂlfxl—ﬂzz)— T0.95 =10.53
B2 _ 36 _
fi- ﬁffl— pi) -095 78
By 1102
R 11.58
(liﬂf |  _-26 =273

(1 ‘,312 ﬁ— /322) B -0.95

mh__ 65000x1.654

h=1.654m;
M 261283

=0.4115

moz

x - Amplitude at DOF Location (Point O)

x, =3.125x107° x(10.53) ~1.654 x (1.19% 1073 ) x (-3.78)
=40.34x10° m

¢ - Amplitude at DOF Location (Point O)

¢, = (1.19)x107° x(2.754) - 3.125x10™ x 0.4115x (-11.58)
=1825x107 rad

Response in x& ¢ direction: (Damped)

It is seen that frequency ratio S, is close to unity hence evaluate response using damping £ = 0.1,

Step1  (1-82)=0.075

Step 2 \[(1 - ,322)2 +(@x By x P =40.075% +(2x0.962x 0.1} = 0.206
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Replacing the term (l—ﬂzz) by \/(l—ﬂf‘)z +(2x By x¢& )2 , keeping the sign of the term under

radical same as that of term (1 - ,822) , the denominator becomes:

(1-ﬂ12)\/(1-,/322)2 +(2% By x¢ ) =(~12.69)x0.206 = -2.618

Substituting this we get
1- 52 _
( ﬂ")- = ;06'(:?;=3.827
(- NG-52F +@xxey 2
2
bi = 2'6618=—1.375
(-2 Nb-52F +xpyxgp >
2
By _ e o,

(1—,312)\/(1—,622)2 +@x By x ) T -2618

(1-52) _-26

(-s2Ni-2F +@xpxgy 2618

Substituting these, we get amplitudes as:

x - Amplitude at DOF Location (Point O) - Damped

x, =3.125x107° x(3.827) = 1.654 x(1.19 x107 ) x (~1.375)
=14.66x10"° m

¢ - Amplitude at DOF Location (Point O)

@, =(1.19)x107° x(1)-3.125x10™° x 0.4115x (—4.21)
=6.6x107 rad
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Principle of Isolation
Transmissibility Ratio
Isolation Efficiency
Isolation Requirements
Selection of Isolators

Example Problems
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Vibration Isolation 4-3

VIBRATION ISOLATION

In reference to machine foundation design, the term ISOLATION means reduction in the
transmission of vibration from machine to the foundation and vice-versa. In other words it means
control of transmission of dynamic forces from machine to the foundation and thereby to the
adjoining structures and equipment or from the adjoining structures and equipment to the machine
through its foundation.

Here we discuss theory of Vibration Isolation covering Principle of Isolation and Isolation
Requirements. A brief description of Selection of [solators has also been included.

4,1 PRINCIPLE OF ISOLATION

Let us consider a damped spring mass system, having mass m, stiffness & and damping c,
subjected to dynamic excitation. Consider following two cases:

a) Dynamic Excitation Force F); (¢) is applied at the mass and the Transmitted Force at the base
(foundation) is F,(f) asshown in Figure 4.1-1 (a).
b) Dynamic Excitation Force F, (t) is applied at the base (foundation) and the Transmitted

Force at the mass is F; (¢) as shown in Figure 4.1-1 (b).

In either case, the interest is that the transmitted force from the mass to the foundation (as in case
(a)) or from the foundation to the mass (as in case (b)) should be least.

42 TRANSMISSIBILITY RATIO

Let us denote the Transmissibility Ratio as 7R that is defined as the ratio of transmitted force to
excitation force.

TR = Fr (1)

= 4.1-1
Fr ) @1-D

https://engineersreferencebookspdf.com



4-4 Vibration Isolation

Consider the two systems as shown in case (a) and case (b) in Figure 4.1-1. For vibration isolation
the interest is that the transmitted force should be minimum in either case i.e. TR should be
minimum and it is also true that TR depends upon the dynamic response of SDOF system.

m P—-{F (0 m ——IF ()
k l_::_l c k |:|:cj
t )|
= ¢Fr(’) == ¢F5(t)

(a) Excitation on Mass

(b) Excitation on Base

Figure 4.1-1 SDOF Spring Mass System
(a) Excitation on mass
(b) Excitation at base

Let us consider dynamic response of each case:

Case (a) Dynamic Excitation Force Fj(¢) is applied at the mass and the Transmitted

Force at the base (foundation) is F7 (¢). The dynamic force could either be externally applied or
internally generated by the machine itself.

i) Let us first consider that the dynamic force is externally applied

Let this excitation force be F.()=F,sinat “.1-2)

Maximum transmitted force F; (¢)to the support is (see equation 2.2.2-11) given as;

Fo = Fy J1+28%)
Vi-5F +@82Y

¢ is the damping constant & S =w/p is the frequency ratio

4.1-3)
Where

Thus, we get Transmissibility Ratio 7R as

rroFr _Fr _ J1+@ S

- 4.1-4)
o Fo Ji-p2F ey

it) Let us now consider that the dynamic force is internally generated
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Maximum value of transmitted force is given by (see equation 2.2.3-10)

frepg? L hesd?
-2} +@pey -2 <)

This equation also gives the Transmissibility ratio 7R same as equation 4.1-4 for
2

Fr=F, 4.1-5)

Fp=Fy=m,ew

£=01
& 200 A =0.5
3
& 150 1 (=08
)
B 100 fFomooo NS S
B 050 - !

E 000 T : T T T L — 1

0 1 2 2 3 4 5 6

Frequency Ratio 8
Figure 4.1-2 Transmissibility Ratio TR vs. Frequency Ratio §

Case (b) Dynamic Excitation Force F;(¢) is applied at the base (foundation).

For this case, maximum value of transmitted force is given by (see equation 2.2.4-9)

J1+QBE)?
=g f +@pey

This equation also gives the Transmissibility ratio 7R same as equation 4.1-4
fOI’FE=F0=—-mj3g.

Fp=-mjy, (4.1-6)

Thus it is clear that irrespective of whether the dynamic force is applied on the mass or applied at
the base, the transmitted force remains the same for same system characteristics of SDOF system.

Plot of equation 4.1-4 giving Transmissibility Ratio TR vs. Frequency ratio is shown in Figure
4.1-2.

4.3 ISOLATION EFFICIENCY

Let us denote Isolation Efficiency as 7. Isolation efficiency is thus defined as:

n=(01-TR) 4.1-7)
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(Generally it is convenient to represent isolation efficiency (171x100) in percentage.)

It is clear from this equation that lesser the Transmissibility Ratio TR better is the Isolation
Efficiency 7. Having determined Transmissibility Ratio 7R (equation 4.1-4), we work out the

Isolation Efficiency 77 .

Table 4.1-1 Isolation Efficiency n vs. Frequency Ratio p for different
Damping Ratios §
Isolation Efficiency

Frequency
ratio

Frequency
ratio
B =00 (=01 (=02 yij ¢=0.0 ¢=0.1 (=02

Damping Damping

2 0.67 0.64 0.59 4.2 0.94 0.92 0.88
22 0.74 0.72 0.66 44 0.95 0.93 0.89
24 0.79 0.77 0.71 4.6 0.95 0.93 0.9
2.6 0.83 0.81 0.75 4.8 0.95 0.94 0.9
2.8 - 0.85 0.83 0.78 5 0.96 0.94 0.91

-3 0.88 0.85  0.81] 52 0.96 0.94 0.91
3.2 0.89 0.87 0.83 5.4 0.96 0.95 0.92
34 0.91 089 0.84 5.6 0.97 0.95 0.92
3.6 0.92 0.9 0.85 5.8 0.97 0.95 0.92
3.8 0.93 0.91 0.87 6 0.97 0.96 0.93

4 0.93 0.91 0.87

Substituting equation 4.1-4 in equation 4.1-7, we get:

V1+@ B¢
2
-52F +@se)
Plot of equation (4.1-8) is given in Figure 4.1-3.

n=(01-TR)=|1- (4.1-8)

Isolation efficiency values for frequency ratio £ =2 are tabulated and given in Table 4.1-1 for
different values of isolator damping.

From the Figure 4.1-2 and Figure 4.1-3, following observations are made:
i) Transmissibility Ratio 7R is less than unity i.e. TR <1 only for frequency ratio
greater than V2 ie. B >2
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ii)

4-7

For frequency ratio greater than V2. TR decreases with decrease in damping value.
In other words, TR is lower for zero damping compared to 10% damping i.e.
damping is not desirable for Isolation.

£=0.5 £=02

150 -
p 10 T
€ o050 A
X

=

fea)

& 000
8

5

& _0s0 -
=}

Q

2 J
2 100
~150 -
~200 -

Figure 4.1-3

1.04--

0.951--

0.94--

0.851--

Isolation Efficiency i x 100

£=0.1

Frequency Ratio p —»

Isolation Efficiency 1 vs. Frequency Ratio B for different
Damping Values of

[P NN O

Figure 4.1-4

WP
H
N m ==
o 21

Frequency Ratio B

Isolation Efficiency m > 80% vs. Frequency Ratio § > 2
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4-8 Vibration Isolation

44 ISOLATION REQUIREMENTS

Generally speaking, for machine foundation applications, one would be interested in isolation
above 85 % otherwise the very purpose of isolation gets defeated. In view of this, let us view the
isolation plot for 7 > 80 %, which obviously means £ > 2 as shown in Figure 4.1-4. It is noticed

from the plot that even for zero damping it requires #=3 for n=88% and f=5for 7=96%. It

gives an impression that one can achieve as high isolation as desired by just increasing frequency
ratio. In reality, this impression, however, does not hold any ground. It is evident from Figure 4.1-3
that there is hardly any appreciable gain in 7 for £ > 6 which correspondsto 7 =97% .

This implies that one can at best target for isolation efficiency of about 77 =97% knowing that
presence of damping in isolators, if any, shall reflect in reduction of 7.

— —
[} [ %]
L ]

oo oo
L —

44

Isolator System Frequency. /- Hz

0 T T T T —
0 10 20 30 40 50

Static Deflection of Isolator & - mm
Figure 4.1-5  Isolator system frequency fvs. static deflection of isolator
unit & .

Let us examine a few more aspects related to this issue

e It is obvious that higher the 77, higher shall be 4 and lower shall be the frequency of
isolation system p (p=a/f).
e It is also known that lower the p, lower shall be stiffness of the isolation system & and

this lower stiffness would result in higher static deflection § under self-weight of the
system.

We know that k=mp*& &=mg/k;
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o fg 1 /g
Th == radss; =—.= H 4.1-9
is gives p 5 rad/s; or f Vs z ( )

Plot of equation 4.1-9 is given in Figure 4.1-5.

45 SELECTION OF ISOLATORS

Consider a machine foundation system on isolators as shown in Figure 4.1-6. Figure shows
Machine housed on Inertia Block supported by Isolators, which in turn rests on Support System
(Support Structure/Ground). Let us briefly describe inertia block and isolators.

Inertia Block:  Inertia block, generally made of RCC, is provided to support the machine. It is
made heavy enough (mass 2 to 3 times that of the machine) so as to keep the overall Centroid in
stable position. It should be rigid enough so as to have its natural frequencies much above machine
speed and its harmonics.

Isolators: These are commercially available devices (as per required specifications) to be
installed between inertia block and support system. There are many types of isolators available
commercially. We limit our discussions to only two types a) Mechanical Isolators (spring type with
or without damping) and b) Sheet/Pad type isolators (Cork, Rubber sheets etc).

j_—M—;hi;_HF I Pad type { Machine H Fg

Inertia block Isolator Inertia block
. : . A
Mechanical F
LJIJ %L_,]_J L‘{?_' L']l'_L Isolators [ Support system J v T
LD UL LR L ap
r Support system ] v T
(a) Mechanical Isolators (b) Sheet/pad type Isolators

Figure 4.1-6 Machine Foundation Isolation System

Selection of Isolator: It is totally dependent on machine excitation frequency, target isolation
efficiency and overall mass of machine + mass of inertia block. There are many ways one can
arrive at the specification for required isolators. One of the selection criteria for a) Mechanical
isolators and b) Sheet/Pad type isolators is given as under.

Let us consider machine and isolation block parameters as under:

Machine mass m kg
Isolator Mass m, kg
Machine speed (rpm) N pm
Excitation Frequency (@ =27 N /60 ) rad/sec ' 17 rad/sec
Target Transmissibility Ratio TR
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Target Isolation Efficiency (see equation 4.1-7)
For this 77, required frequency ratio (From Table 4.1-1)

~ ™3

Thus, the required frequency of isolation system Hz

(p=0/B & f=p[27)
For this f, required deflection of isolator (from Figure 4.1-5) ) mm
Select the isolator to match this static deflection

a) Mechanical isolators (spring damper unit)
Let the isolator capacity (single isolator) be R N
Total mass of machine + isolator (m = m, + m,) m kg
Number of isolators required (¢ = mg/R) q
Vertical stiffness of each isolator (&, = R/J) k, N/mm
Lateral stiffness (as specified by manufacturer) k, N/mm
Damping of isolator (as specified by manufacturer) 4 %
b) Sheet/ Pad Type isolators (Cork sheets, Rubber pads etc)
Elastic modulus of sheet isolator E, N/m’
Area of isolation block in contact with sheet/pad isolator A m’

E,
Required Thickness of Sheet/Pad isolator (f = — . 5) t mm

Here gisinm/s’ & & is in mm
Design of Vibration Isolation System for Real Life Machines is covered in Chapter 12
EXAMPLE PROBLEMS
P4.1-1

A Machine having mass of 1000 kg operating at 600 rpm is supported on the Foundation
resting on the soil. Consider that the machine generates only vertical unbalance force of 500
N at operating speed, design the isolation system with 90 % isolation efficiency such that
dynamic force of only 50 N (max) gets transferred to the soil.

Solution:
Provide inertia block to support the machine.
Mass of machine 1000 kg

Assume Mass of inertia block be (twice machine mass) 2000 kg
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Total Mass 3000 kg
Operating speed N 600 rpm
2
Excitation frequency w= Z_()N = 62.83 rad/s
Required Isolation efficiency 90 % n=09
Assume Isolator damping as 10 %
From Figure 4.1-4 or Table 4.1-1(for{ = 0.1) p=3.6
Isolator frequency _ p= -6;‘% =17.45 rad/s
Or f= 1745 _ 278 Hz
2r

Required isolator deflection ( p = \/% ) 5 =9810/(17.45)2 =3221 mm

Provide 4 isolators one at each corner underneath inertia block qg=4

_mg 3000x9.81
q 4

Required capacity of each isolator R =7357 N

Let us assume that nearest available isolator (From manufacturers catalogue) gives isolator of

capacity of 8000 N and deflection value of 35 mm +10%.
Minimum Deflection Omin =35-0.1x35=31.5 mm
Maximum Deflection Omin =35+0.1x35=385 mm
Vertical stiffness of each isolator

K ymaxy = (8000/31.5)=253.97 N/mm =2.54x10° N/m

K yminy = (8000/38.5) =207.79 N/mm =2.078x 10° N/m

With this let us analyse the system. Let us assume that common centroid of machine and inertia
block lies at center of inertia block. Let us also consider that isolators are placed symmetrically
around inertia block such that center of stiffness matches well with the center of mass (common
centroid).

Let us first consider maximum isolator stiffness:

Total vertical stiffness (max) 4x2.54x10° =1.016x10° N/m

https://engineersreferencebookspdf.com



4-12 Vibration Isolation

{ 6
Undamped frequency p= E—;%;%O— =184 rad/s

Frequency ratio B = 2 _ 6283 =3.4]
p 184
For this # we get isolation efficiency (Figure 4.1-4 or Table 4.1-1 ¢ =0.1)

n=89%
TR=(1-7)=(1-.89)=0.11

Thus maximum force transmitted to support structure is = 0.11x500=55 N

Vertical amplitude at machine location

500 1

= =0.4615x10™* m =46 microns
1.016x10° \f(1-(3.41)2)? +(2x3.41x0.1)2

Ay

Let us first consider minimum isolator stiffness:

Total vertical stiffness (min) 4x2.078x10° =8.312x10° N/m
’8.312 x10°
Undamped frequenc =, [————— =16.64 rad/s
p quency 14 3000
Frequency ratio B = o _028 3.776
p 16.64
For this g we get isolation efficiency (Figure 4.1-4 or Table 4.1-1 £ =0.1) n=91%

TR=(-7)=(1-91)=0.09
Thus maximum force transmitted to support structure is = 0.09x500=45 N

Vertical amplitude at machine location

500 1

4, = : =453x107 m =453 microns
8.312x10° \J(1-(3.776)%)% + (2x3.776 x 0.1)*

It is clear that isolation efficiency is approximately 90 % whether we consider higher or lower

stiffness value. Force transmitted is also close to the requirement. Hence OK.
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DESIGN PARAMETERS

S.  Design Sub-grade Parameters
6. Design Machine Parameters
7.  Design Foundation Parameters
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Soil Mass participation

Embedment Effect

Soil damping

Dynamic Soil Modulus

Coefficient of Subgrade Reaction

Design Soil Parameters

Equivalent Soil Springs

Foundation Supported over Elastic Pad

Foundation Supported over a set of springs

Foundation Supported over Piles- Equivalent Pile Springs

Example Problems
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DESIGN SUBGRADE PARAMETERS

5.1 INTRODUCTION

Following Foundation Support Systems are commonly employed in practice for supporting
machines:

i) Foundation Supported directly over soil

ii) Foundation Supported over an Elastic Pad
iii) Foundation Supported over a Set of Springs
iv) Foundation Supported over Piles

Equivalent Springs for all the four systems are covered in § 5.5. The first system i.e. Foundation
Supported directly over soil, is discussed in relatively more detail whereas the rest of the systems
are discussed briefly.

Soil system is a complex entity in itself and there are many uncertainties
associated with it. Only application oriented aspects related to machine
foundation design are discussed in this Chapter.

5.2 SOIL ASPECTS INFLUENCING SOIL STRUCTURE INTERACTION

There are many uncertainties associated with site soil exploration, evaluation of dynamic properties
and its modeling. Even for static case, modeling of soil, at times, becomes a difficult task. Its
representation becomes still more difficult for dynamic case, especially for machine foundation
design as soil structure interaction significantly influences the response of the machine foundation
system.

Soil investigation of a site is an essential part of the project. For any site, the dynamic soil data is
never a unique value. There are various factors that do affect the dynamic soil properties but
quantification of their influence is rather difficult. At times the dynamic soil parameters of a site
evaluated by one test agency may be in variance with that of other. Such variations could be on

https://engineersreferencebookspdf.com



5-4 ' Design Subgrade Parameters

account of the method of the test, the quality and level of automation of test equipment,
interpretation of the results, etc.

The process of evaluating critical soil properties that influence soil structure interaction is probably
the most difficult part of the machine foundation design. The significant aspects of soil properties,
which influence soil structure interaction, are:

Energy Transfer Mechanism

Soil Mass Participation in Vibration of Foundations
Effect of Embedment of Foundation

Applicability of Hook’s Law to Soil

Reduction in Permissible Soil Stress

Dynamic Soil Parameters

It is well founded that for mathematical modeling of any system, assumptions and approximations
are often made in order to simplify the level of complexity resulting in reduced size of the problem.
Whereas most of the assumptions made for foundation are generally quantifiable, it is not so with
those made for the soil. It requires enormous computational effort to quantify these assumptions
and approximations. In majority of the cases, quantification is not attempted at all. A careful
investigation of soil characteristics that primarily influence soil structure interaction, therefore,
becomes essential. These variations themselves occur in a broad band and so is their influence on
the dynamic response.

5.2.1 Energy Transfer Mechanism

The basic principle underlying machine foundation design is that the dynamic forces of machine
are transmitted to the soil through the foundation in such a way that all kinds of harmful effects are
eliminated. In other words, the energy content of the dynamic forces is transmitted to the soil
through the foundation. The energy travels in form of waves in all direction in the soil and gets
absorbed in the soil itself. If the soil underneath the foundation is not a single layer (but constitutes
of several layers), part of the energy from the lower layer will reflect back into the upper layer and
thereby into the system.

A typical machine foundation system would mean a machine supported by a foundation block,
which in turn rests on the soil. The foundation block is generally embedded to a certain depth
below free surface of the soil. A realistic soil representation may contain some variation-in the soil
strata along the depth. A schematic representation of such a system is shown in Figure 5.2-1. Part
(a) of the figure shows single infinite layer of the soil whereas part (b) shows soil as layered media
having number of layers (three layers chosen arbitrarily- one layer is considered horizontal and the
other inclined).

Under static condition, combined machine and foundation mass exerts pressure on the soil and soil
in turn deforms. Under dynamic conditions, machine exerts dynamic forces to the soil through the
foundation and under the influence of these dynamic forces, the foundation interacts with the soil
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activating dynamic soil structure interaction, which significantly influences the dynamic response
of machine foundation system. The influence is very predominant for block type of foundations
whereas it is not so for frame type of foundations.

Foundation Foundation I
1 o 1l
Soil L?yer e Soil Layer.
(a) One Soil Layer only (b) Three Soil Layers - Horizontal & Inclined

Figure 5.2-1 A Schematic Representation of Machine - Foundation on
Layered Soil Media - I, T1, TIT Represent Soil Layers

In reality, there may be many more layers below the foundation that influence the process of energy
transfer. Such energy transmission takes place by three types of waves namely, Primary Wave or
Compression wave (P-Wave), Secondary Wave or Shear Waves (S- Wave) and Surface Wave or
Rayleigh Wave (R-Wave).

Dynamic Force Dynamic Force

m Surface of Soil Machine
‘7 Foundation Foundation |
7T
Energy Waves Reflected Energy Waves
///J{\\ Waves[/ &
. Soil Layer
----------- Infinite Soil Media — \
Refracted Wave

(a) Soil as Single layer (b) Soil as Layered Media

Figure 5.2-2 Typical Representation of Energy Transmission from Foundation to Soil

Out of these, Rayleigh waves carry a much larger proportion of the total input energy (say about 60
% or more) compared to Shear waves and Primary waves. Hence, from the point of view of
machine foundation design, it is the Rayleigh wave that bears more importance.
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Computation of such energy transfers from the foundation to the soil through layered media
involving various refractions & reflections is a complex task and its evaluation in true sense is
not only difficult but at times becomes impossible. :

In summary, this aspect of soil is not quantifiable from the point of view of
machine foundation design.

5.2.2  Soil Mass Participation in Vibration of Foundations

It is a reality that part of the soil mass vibrates along with foundation vibration. The issues that
need to be addressed are:

¢  What is the extent of soil that vibrates with the foundation?

¢ Does the vibrating soil mass depend upon mode of vibration?
o Does it have any influence on the soil stiffness and damping?
¢  Can these aspects be quantified? .....and so on.

Just for the sake of understanding, a schematic representation of soil mass participation along with
the foundation is shown in Figure 5.2-3. All the shapes shown are arbitrary and carry no relevance
to any particular type of soil. These are shown only to present the idea. It can be said qualitatively
that quantum of participating soil mass depends not only on various soil parameters but could also
depend upon type of dynamic force generated by machine.

Dynamic Force Dynamic Force Dynamic Force
. Soil Surf:
Machine Machine Machine ) S01 Surface
Foundation XX Foundation XA Foundation

t
lll:ll
t i 1 III I
1 ll
¥ II
I

[ []
!: i
H :':.
:n |:||: n,n "
" 'I:' v II 1]
Soil mass

Soil type - A participation

IS

Soil mass
participation

> Soil type - C

Figure 5.2-3 Typical Representation of Soil Mass Participation with Foundation
Vibration for different soil types
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There are various opinions expressed by different authors regarding the soil mass participation.
According to some, the mass of soil moving with the foundation varies with the dead load, exciting
force, base contact area, mode of vibration and the type of soil. As per some other authors, the size
of soil participating mass is related to bulb shaped stress distribution curve under the effect of
uniformly distributed load.

Till date no concrete formulation is available giving quantification of soil mass participation for
different types of soils and what is lacking is perhaps the validation of the results? It is generally
the view that soil mass participation will increase the overall effective mass of the machine
foundation system and thereby tend to reduce the natural frequency.

Here again, this aspect of soil is also not quantifiable from the point of view
of machine foundation design.

For the design purposes, author therefore recommends:

a) For under-tuned foundations, soil mass participation to be ignored
b) For over-tuned foundations, the frequency margin to be increased by additional 5% i.e.
natural frequencies to be kept away from operating speed by 25% instead of normal 20 %

5.2.3 Effect of Embedment of Foundation

All machine foundations are invariably embedded partly in to the ground. Many authors have
studied this effect and have made varying observations. Some have reported that effect of
embedment causes increase in natural frequency and some have reported that it causes reduction in
amplitudes. By and large, it has been generally agreed that embedment tends to reduce the
dynamic amplitudes. The reduction in the amplitudes could either be on account of change in
stiffness, change in damping, change in soil mass participation or their combination. This aspect
has also not been quantified for all types of soils.

Here again, this aspect of soil is also not quantifiable from the point of view
of machine foundation design.

For design purposes, author recommends that it will be on the safe side to ignore the embedment
effect while computing dynamic response.

5.2.4 Applicability of Hook’s Law to Soil

From theory of elasticity, we know that all homogeneous and isotropic materials follow Hook’s
law i.e.

stress _©
= —=— (5.2-1)
strain €

Young's modulus of elasticity E
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Where, o is the direct stress (tension/compression)

& £ is the associated linear strain

Let us first examine whether soil behaves like an elastic body? In other words, if the soil is to be
represented as an elastic material, it must obey Hook’s law. If it does, it becomes convenient to
mathematically represent the soil as any other elastic material.

In this context, it may be noted that Modulus of Elasticity as well as Poisson’s Ratio have been
found to change with normal pressure. Further, certain soil types exhibit large settlements of
foundations under vibratory loads and in certain cases soils even lose their resistance to shear and
behave more like liquids. In view of such characteristics, it is difficult to straight away accept the
soil as an elastic body for all type of soils.

As a general guideline, it is considered good enough to assume that the foundation undergoes
elastic vibrations as long as the total pressure (including static & dynamlc pressure) on the
soil is lower than its elastic limit.

5.2.5 Reduction in Permissible Soil Stress

For the soil to behave as an elastic material, it is necessary that the total pressure (static + dynamic)
exerted by the foundation on the soil remains within elastic limits. A reasonable margin therefore
should be kept while assigning bearing capacity to the soil intended to be used for machine
foundation application. The dynamic pressure produced by machines not only affects the
foundation directly under the machine but to other foundations too, which are away from machine,
as the energy gets transmitted through soil in all directions.

It is therefore desirable to keep intended margins for even static foundations i.e. foundations for
static equipment including foundations of the building housing machines etc.

Generally recommended guidelines for permissible soil pressures for machine foundations and
buildings/structures housing machine foundations are:

»  For low rpm machines, no reduction of soil stress is needed i.e. one can go up to 100% of the
bearing capacity.

» For medium rpm machines, reduction factor should be 10% i.e. permissible bearing pressure
should be limited to 90% of the allowable bearing capacity.

» For high rpm machineries, reduction factor should be 20% i.e. permissible bearing pressure
should be limited to 80% of the allowable bearing capacity.

> For machines like crushers & hammers producing impact loads, the reduction factor should be
30 % to 50 % i.e. permissible bearing pressure shall be 70% to 50% of the bearing capacity.
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5.2.6 Damping in Soil

Damping is an inherent property of soil and its influence on Forced Vibration Response is
significant but during resonance or near resonance conditions. Different soils exhibit different
damping properties depending upon their soil composition and other characteristic parameters. In
case of embedded foundations, the depth of embedment also influences damping properties.

Soil Damping comprises of a) Geometrical Damping and b) Material Damping. Whereas
Geometrical Damping represents energy radiated away from the foundation, the Material Damping
represents the energy lost within the soil due to Hysteresis effects. In the context of application to
machine foundation design, the contribution of geometrical damping to Rocking modes of
vibration has been reported to be of low order compared to Translational and Torsional modes of
vibration.

Damping in the soil has been observed to be both strain and frequency dependent. Same soil
exhibits different damping characteristics at different strain levels and similar is the variation for
the frequency of excitation. In other words, soil damping not only depends upon
stress/strain/contact pressure distribution but also on frequency of vibration. Representation of
frequency dependant seil damping has not found appropriate place in Design Industry for Real
Life Design Problems. On the other hand, representation in form of Equivalent Viscous
Damping has found larger acceptability.

It is to be remembered that damping plays role only during resonance. If one is able to avoid
resonance of foundation with the machine excitation frequencies at the design stage itself, the
significance of damping could be felt only during Transient Resonance.

In author’s opinion, considering strain and frequency dependent geometrical/radiation damping, as
design office practice, is not only difficult but inconvenient too. The commonly available
mathematical tools with industry in general are not geared to accommodate this type of
damping. Use of high-end analytical tools, however, is not recommended for de51gn purposes in
view of tight project schedules.

In the absence of any specified data for damping value of a site, the damping coefficient equal to 8
to 10% i.e. £ =0.081¢0 0.1 could safely be considered for computing response at resonance.

53 DYNAMIC SOIL PARAMETERS

The Basic Dynamic Soil Properties (Dynamic Soil Modulus) that are required for machine
foundation design are Dynamic Shear Modulus G /Elastic Modulus £, Poisson’s Ratio v , Damping
Constant ¢ and Mass Density p .
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In addition, evaluation of Coefficients of Subgrade Reaction viz. Coefficient of Uniform
Compression C,, Coefficient of Uniform Shear C,, Coefficient of Non-Uniform Compression

C, & Coefficient of Non-Uniform Shear C,, for each site is also reccommended.

5.3.1 Dynamic Soil Modulus

From theory of elasticity, we know that the ratio of stress to strain for any elastic material is called
its modulus. Ratio of normal stress to normal strain is termed as Elastic Modulus ¢ £ and ratio of
shear stress to shear strain is termed as Shear Modulus G .

We can write this as:
_ Nomal Stress o

= —=— (5.3-1)
Normal Strain ¢
_ Shear Stre..ss _z (5.3-2)
ShearStrain  y
We also know from theory of elastic#ty that:
G= £ (56.3-3)
20 +v)
Here v is the Poisson’s Ratio
For a given soil strata, these properties are determined using either laboratory or field tests.
From theory of wave propagation, we know that
G G E
V== Wl== &li== (5.3-4)
p P P

Here ¥V, represents Shear Wave Velocity, V), represents Rayleigh Wave Velocity & V,. represents
Compression Wave Velocity and p represents Mass density. These velocities, for a site, are

evaluated using laboratory or field test methods. The commonly employed laboratory and field test
methods are:

Laboratory methods:
> Resonant Column Test
> Cyclic Simple Shear Test.
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» Cyclic Torsional simple Shear
» Cyclic Triaxial Compression Test

Field methods:
» Cross- Borehole Wave Propagation Test
» Up-Hole or Down-Hole Wave Propagation Test
» Surface Wave Propagation Test

Only application oriented aspects of dynamic soil modulus are discussed here. For details of the
test methods, readers are advised to refer applicable codes of practices and standard text
books/reference books on this subject. Having determined these velocities with the help of one or
more of these tests, £ & G are computed as per above equation 5.3-4 and Poisson’s Ratio v is

computed using equation 5.3-3.

It may be noted that these values of £ & G are applicable at the Overburden-Pressure and Shear
Strain Levels corresponding to respective test methods. For the design purposes, these values are
modified for Overburden Pressure and Shear Strain Level corresponding to the actual
foundation (See § 5.4).

5.3.2 Coefficients of Subgrade Reaction

Coefficient of Subgrade Reaction, in a specified deformation mode, is defined as the ratio of the
applied pressure to the induced deformation in that deformation mode.

fA— B —»
Y
4 / 1 y
L H
V. 4 '
b x
0
z
» X
2 (a) Foundation Block (b) Six DOF - Three translation x, y, zalong X, Y & Z

axes & three rotations 0, v, ¢ about X, Y & Z axes

Figure 5.3-1  Degree of freedom (DOF’s) of a Typical Foundation Block
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Consider a foundation block resting on the soil as shown in Figure 5.3-1 (a). . The six deformation
modes of the block represent six degrees of freedom of the foundation i.e., the block exhibit six
deformations namely three translations x, y,z and three rotations 8,y & ¢ as shown in Figure

5.3-1 (b).

Here, vertical deformation y represents uniform compression of the soil along Y-axis, lateral
translation x & z represent uniform shear of the soil along X & Z axes respectively, rotation
6 & ¢ represent rocking about X & Z axes respectively causing non-uniform compression of the

soil and rotation  represents rotation about Y-axis causing non-uniform shear of the soil.

Thus in effect, there are only Four Independent Soil Deformation Modes namely:

)] Uniform Compression

ii) Uniform Shear

iii) Non-uniform Compression
iv) Non-uniform Shear

Thus there will be 4 Coefficients of Subgrade Reaction each related to the deformation mode as
given above. These Coefficients are termed as:

> C, Coefficient of Uniform Compression

> C, Coefficient of Uniform Shear

> Cy Coefficient of Non-Uniform Compression &
> C, Coefficient of Non-Uniform Shear

Let us first understand evaluation of Coefficient of Uniform Compression and thereafter we shall
discuss its correlation with other Coefficients as well as with Dynamic Soil Modulus.

5.3.2.1 Coefficient of Uniform Compression C,

For a specified deformation mode, Coefficient of Subgrade Reaction is defined as the ratio of the
pressure to the deformation. Thus Coefficient of Uniform Compression C, becomes ratio of

pressure (vertical pressure causing compression) to the corresponding vertical (compressive)
deformation.

Consider a foundation block, as shown in Figure 5.3-2, having base contact area A in X-Z Plane.
Consider that the block rests over the soil and a Compressive Force F, is applied to the block along

Y-direction.
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YA l

Block

X
/ Soil under Uniform Compression
Z

Figure 5.3-2  Force F Y Applied to the Foundation Block Resting over the Soil

Fy

Uniform Pressure p, developed in the soil is given as py= o

Consider that this pressure causes uniform compression y to the soil. The Coefficient of Uniform
Compression C, is therefore given as ratio of pressure p, to deformation y . This gives:

F)’
2 (5.3-5)
Ay

This is how we understand Coefficient of Uniform Compression C,,.

Methods of Evaluation: Various field and-laboratory test methods are available for evaluation
of C,. Designers may choose any of the method for evaluation of C, but author, however, prefers

use of field tests. Following field tests are normally recommended for evaluation of Coefficient of
Uniform Compression: ‘

5.3.2.1.1 Cyeclic Plate Load Test

This test is based on the elastic settlement of a test plate under the influence of uniform loading
intensity. For details of test set-up and test method, readers are requested to refer to relevant books
on soil dynamics and applicable code:s. The basic steps involved (listed for reference) are as under:

i. A pitis excavated at the desired location up to the depth at which the soil properties are to be
evaluated. The pit dimensions iare not less than 5 times the width of the plate.
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ii. A plate (of specified dimension and thickness) is placed in the pit.
iti. First incremental static load is applied to the plate. The load intensity is maintained constant
till the rate of settlement becomes negligible. The associated settlement for the load intensity
is recorded.
iv. The static load is totally removed (after deformation is stabilized).
v. The next incremental load is applied, load intensity is maintained constant till the rate of
settlement becomes negligible and the settlement recorded.
vi. The entire procedure (loading, unloading and incremental re-loading) is repeated till
estimated ultimate load is reached.
vii. Ratio of load intensity (pressure) to elastic settlement (for each load) gives Coefficient of
Uniform Compression.

Computation of Coefficient of Elastic Uniform Compression

a. Depth of pit D m

b. Size of the plate A, m?

c. Loading intensity (pressure) p, kN/m?

d. Total settlement for the loading intensity S, m

€. Settlement after removal of load Sy m

f. Elastic Settlement S, =8-S, m

8. Coefticient of Elastic Uniform Compression of soil C,

= Pr 3 -
Cu= kN/m (5.3-6)

The value of C, thus evaluated is applicable for Area of the foundation equal to Area of the Plate
A, and the corresponding Overburden Pressure. The overburden pressure at the level of the test

plate is taken as the pressure corresponding to the depth equal to depth of the test plate+ half the
width of the plate. This is as recommended by the books giving test procedures for the Cyclic
Plate Load Test.

For a given foundation, the value of Cu is to be modified for actual Area of the Foundation and

corresponding Overburden Pressure (See § 5.4).
53.2.1.2 Vertical Resonance Test on the Foundation Test Block

This test is based on the resonance of the test block excited by an oscillator producing only vertical
dynamic force. For details of test set-up and test method, readers are requested to refer to relevant
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books on soil dynamics and applicable codes. The basic steps involved (listed for reference) are as

under:

iii.

vi.

vii.
vii.

A pit is excavated at the desired location up to the depth at which the soil properties are
to be evaluated

A RCC block is cast in the pit. Pit dimensions should be such that there is a clear gap of
minimum 1 m all around the block. Desired anchor bolts, to hold the oscillator on top of
the block, are placed in position during casting of the block.

The oscillator is mounted over the block and held down with the help of anchor bolts.
(The Oscillator must be placed centrally over the block i.e. CG of the oscillator must lie
on the vertical line passing through CG of the block). The oscillator should be such that
it produces only vertical excitations.

Two transducers (acceleration/ displacement) pick-ups are mounted on the top of the
block to record vertical oscillations of the block.

A known eccentricity is set for the eccentric masses of the oscillator so as to produce a
known vertical dynamic force as function of frequency.

The oscillator frequency is increased in steps from the initial value and swept through a
range (from minimum of 1 Hz. to maximum operating frequency of the oscillator).

The vertical amplitude is measured at each speed of operation.

The entire procedure is repeated for another set of eccentricity/forces.

Computation of Coefficient of Elastic Uniform Compression

@ ™o op oo oo

Mass of the test block my, kg
Mass of oscillator m, kg
Total Mass m=my,+m, kg
Base contact area of the block with soil A, . m?
Resonant frequency observed T H,
Coeff. of Elastic Uniform Compression of soil C " N/m*
Stiffness of soil k, = Cu x Ay Nim

1 k, C, x4
Natural Frequency of the block fr=—x L= ]—4*4—— H,
2r ¥V m m

This is nothing but the resonant frequency observed i.e. f, = f,

, A
This gives s =_l_>< ffx_ - Gy x4,
2 m m

Rearranging terms, we get Coefficient of Elastic Uniform Compression C,

C, =4ntx f, x N/m®
4y
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or C, =4n2 x f,? ><§”_><‘1o—3 kN/m* (5.3-7)
b

The value of C, thus evaluated is applicable for Area of the foundation equal to * 4, and the

corresponding Overburden Pressure which is taken as equal to the depth of the test block + half the
width of the block.

For a given foundation, the value of Cu is to be modified for actual Area of the Foundation and

corresponding Overburden Pressure (See § 5.4).

(Just for information, reference is made to Indian standard code of practice IS 5249 that gives test
procedure for evaluation of C u

5.3.2.1.3 Correlation with Soil Modulus E, G & v

Qualitative assessments of these variations have been reported in the literature by many authors but
the quantification has been restricted to Empirical Relations only. The empirical relationship
presented by Barkan (1962) is considered most appropriate one and practically every other author
refers to it till date. The expression (Barkan -1962) giving relationship of C, WithE,G&v is

given as:

E 1
C =1.13 —_ 53-8
u (1—vziJA (5.3-8)

Here A is the area of the foundation, £ is the Elastic Modulus of the soil and v is the Poisson’s
Ratio of the soil.

Substituting 4 =7 r02 , where r, represents the radius of equivalent circular plate and G = 2(1E )
+v
(see equation 5.3-3), equation 5.3-8 becomes:
4Gry 1
= — 5.39
¥ 1-v 4 ( )

Though equations 5.3-8 & 5.3-9 are for circular footing, these have been considered (as repotted)
applicable for rectangular footings as well.
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It is seen from equations 53-8 & 5.3-9 that C, not only depends upon Soil Modulus

E& v (orG & v) but also depends upon Base Contact Area of the foundation. In other words,
Foundation Shape and Size has significant effect on the Coefficient of Uniform
Compression C u*

5.3.2.2 Coefficient of Uniform Shear of the Soil - C r

For understanding Cr , consider that a shear force F, is applied to the block (see Figure 5.3-3)

along X-direction.

. a F,
Uniform Shear stress p, developed in the soil is given as Dy = 7"
YA
X
} : d
: Foundation :
! Block :
i
Soil
X
/ Soil under Uniform Shear
z

Figure 5.3-3  Force F, Applied to the Foundation Block Resting over the Soil

Consider that this shear stress produces uniform shear deformation x of the soil. The ratio of the
pressure (shear stress) to the deformation therefore gives Coefficient of Subgrade Reaction in
Uniform Shear. This is also termed as Coefficient of Uniform Shear C, . Thus we can write:

F
c =2 fal (5.3-10)

For coefficient of uniform shear along Z, replacing x by z in equation 5.3-10, we get
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(5.3-10a)

Evaluation of C , may be done using field test methods. The literature review indicates that the

work presented by Barkan (1962) giving correlation ofCT, C¢, and C‘// with Cu is generally

accepted by majority of the authors. Correlation of Cr with Cu is given as:
L =05 (5.3-11)

53.23 Coefficient of Non-Uniform Compression of Soil - C¢

For understanding C ° consider that a Moment M, is applied to the block about Z-direction (see
Figure 5.3-4).

Let the Moment of Inertia of the base area of the block about Z-axis be /.. This moment causes
rotation ¢ of the block about Z-axis. Due to this rotation soil experiences non-uniform vertical

pressure underneath the base of the block. This rotation also causes soil to undergo non-uniform
vertical deformation (termed as non-uniform compression) under the base of the block.

Vertical Pressure p, developed at a distance x from center is given as

M
4
=—x
py [ZZ
Vertical deformation y (compression/tension) at distance x from center is y=x¢

The ratio of the pressure to the deformation therefore gives Coefficient of Subgrade Reaction in
non-uniform compression. This is also termed as Coefficient of Non-Uniform Compression C 4

Thus we can write:

M,
c.-Pr e M (53-12)
¢y xp 1.4
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YA

M,

Foundation
Block

V4

Figure 53-4 Moment M, Applied about Z axis to the Foundation Block Resting
over the Soil

For rocking mode about —X, substitute &in placeof ¢ and /.. by I, in equation 5.3-12, we get

My .
c, Py de My (5.3-12a)
v z0 1.0

Though desirable, the evaluation of C p using dynamic test setup has been found to be difficult. In
the absence of the test, it may be evaluated based on the C, using Barkan’s correlation:

C; C
.Y sy (5.3-13)
c, C,

u

5.3.2.4 Coefficient of Non-Uniform Shear of the Soil - Cw

For understanding C\V , consider that a Moment M, is applied to the block (see Figure 5.3-5) in
Z-X Plane about Y-axis.

This moment causes rotation  of the block about Y-axis. This rotation generates non-uniform

shear in the soil underneath the base of the block and causes soil to undergo non-uniform shear
deformation underneath the base of the block.
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Soil under Non-Uniform Shear

Figure 5.3-5 Moment M,, Applied about Y axis to the Foundation
Block Resting over the Soil

Let the Moment of Inertia of the base area of the block about Y-axis be / - Shear pressure (Shear
Stress) p,,, developed at a radius r from center is given as

M
Pyr =—*r

[yy

Shear deformation at distance r from center is ry

The ratio of the shear stress to the shear deformation therefore gives Coefficient of Subgrade

Reaction in non-uniform shear. This is also termed as Coefficient of Non-Uniform Shear CV/'

Thus we can write:

M,

_Pyr _ Ly, M,

Y ry  ory 1, w

C (53-14)

Evaluation of C,, using dynamic test setup is considered difficult. It is recommended that to use
Barkan’s correlation for its determination, as given below:

C
¥ 15 : (5.3-15)
CT
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5.4 DESIGN SOIL PARAMETERS

So far we have discussed evaluation of Dynamic Soil Parameters. For a given machine foundation,
these Dynamic Soil Parameters need to be converted to Design Soil Parameters.

For a project of reasonable magnitude, it is common that machines are located spread over the
entire area of the project and their foundation depth may also vary depending upon machine type
and size. Considering same value of £,G & v and Cu,C ¢,C 2_,Cl// for all foundation sizes and

all depths obviously is not the right approach. Design Soil Parameters thus are different from
Dynamic Soil Parameters and must account for such variations namely foundation size, foundation
depth, etc.

Consider two similar machines founded at two different levels at the same site. The question
arises whether it would be appropriate to use same dynamic soil properties for both the machines?
Obvious answer would be ‘no’. Similarly if the two different machines founded at the same level
at the same site have different base contact area, it may also not be appropriate to use same
dynamic soil properties for both these machines. Similar is the case with Machines exerting
different pressures on the soil i.e. static stress or overburden pressure. Thus the dynamic soil
properties need to be modified for each such effect.

For design office practices, these effects are generalized as:

i) Effect due to Static stress level or Overburden Pressure
if) Effect due to Base Contact Area

The evaluated site soil properties, therefore, need to be suitably modified for a particular machine
foundation. Thus, for each foundation, the evaluated site soil parameters are to be converted to
design soil parameters accounting for these effects. These modified soil parameters are termed as
Design Soil Parameters.

Though the basic dynamic soil parameters required for design of machine foundation are E, G,
Cu,C ¢’C1’Cw’ the discussion here is restricted to only two parameters namely (1) Dynamic

shear modulus G and (2) Coefficient of Uniform Compression Cu as other parameters are inter- -

related as given above in § 5.3.

The recommended Effective depth for Computing Static Stress (Overburden Pressure) for
different test method is as under:

i) For Cyclic Plate Load Test Method: Effective depth for computing static stress is
considered equal to founding depth of the plate + half the width of the plate
ii) For Vertical Resonance Test Method: Effective depth is considered equal to

founding depth of the test block + half the width of the test block
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iii) For Wave Propagation Test Method: Effective depth is considered equal to half the
distance between geo-phones

For the sake of clarity, let us use suffix ‘01’ for the Site Evaluated Parameters and suffix ‘02’ for
the Design Parameters. Thus Site and Design Parameters are referred as:

Site Parameters:

Gy Represents Site Evaluated Dynamic Shear Modulus of the soil

Ey Represents Site Evaluated Dynamic Elastic Modulus of the soil

C,o;  Represents Site Evaluated Coefficient of Uniform Compression of the soil
O Represents Static Stress or Overburden Pressure for site test conditions
Yol Represents Shear Strain Value corresponding to site test method

Ay Represents Base Contact Area corresponding to site test method

Design Parameters:

Ey Represents Design Dynamic Elastic Modulus of the soil
Gy Represents Design Dynamic Shear Modulus of the soil
C,»  Represents Design Coefficient of Uniform Compression of the soil
.Op Represents Design Static Stress or Overburden Pressure for the foundation
Vo2 Represents Design Shear Strain Value for the foundation
Ag Represents Design Base Contact Area for the foundation

Many authors have discussed influence of the above effects on the design soil parameters and
suggested expressions for accounting for these effects. The commonly adopted and recommended
correlations between Site Parameters and Design Parameters (applicable to machine foundation)
are listed in § 5.4.1, § 5.4.2 & §5.4.3.

5.4.1 Variation with respect to Static Stress or Overburden Pressure

Guidelines available in the literature are for variation of Dynamic Shear Modulus with respect to
Mean Effective Confining Pressure. Author feels that for machine foundation application, it is
considered good enough to use Static Stress (Overburden Pressure) instead of Mean Effective
Confining Pressure for determining variation of Dynamic Shear Modulus. Variation with
respect to static stress may be computed using the same correlation as for Mean Effective
Confining Pressure. The relationship is given as under:

https://engineersreferencebookspdf.com



Design Subgrade Parameters 5-23

— (U

g

Goy = GO,(—-%J (5.4-1)
Oy

Same correlation could be used for evaluating influence of Static Stress (Overburden Pressure) on
Coefficient of Uniform Compression. In authors opinion it would not lead to any appreciable
error and the converted data could be used with good level of confidence.

_\05
Cuz = Cum(ioz ] (5.4-1a)
091

5.4.2 Variation with respect to Base Contact Area of Foundation

The only acceptable guideline available in the literature for computing variation of Coefficient of
Uniform Compression with respect to Base Contact Area of Foundation is that given by
Barkan. It is recommended that variation of C,, be considered for base area up to 10 m? and no

variation be considered for area greater than 10 m”. The correlation (After Barkan -1962) is given
as:

05
_ Ay
Cupy = Cuon(g(;] (5-4-2)

For Ay > 10m>  C,q, =C,y, for 10 m* (5.4-3)

5.5 EQUIVALENT SPRINGS

In practice, following three types of sub-grade systems are commonly employed for supporting
machine foundations. It is necessary to represent these sub-grade systems in terms of Equivalent
Springs:

i. Foundation Supported directly over soil
ii. Foundation Supported over an Elastic Pad
iii. Foundation Supported over Piles

5.5.1 Foundation Supported Directly over Soil

For analysis and design of Machine Foundation, which is a 3-D system, soil is represented as
Equivalent Soil Springs attached to the foundation in each of the six DOF. These equivalent soil
springs are evaluated using Design Soil Parameters viz. Design Shear Modulus, Design
Coefficient of Uniform Compression, Poisson’s Ratio etc. (as in § 5.4).
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For evaluation of equivalent soil springs, various soil models have been proposed by various
authors but the two models, (i) Elastic Half Space model and (ii) Coefficients of Sub-grade
Reaction are considered generally acceptable in the industry. Evaluation of Equivalent Soil
Springs using these two models is given as under:

5.5.1.1 Equivalent Soil Springs using Elastic Half Space Model

The model is based on the Dynamic Response of an Isolated Rigid Circular Disk resting on the
Surface of the Infinite Soil Medium. The infinite soil medium, termed as Elastic Half Space, is
considered as Elastic, Homogeneous and Isotropic, whose elastic properties are defined by Shear
Modulus G and Poisson’s Ratio v . Equivalent Soil Springs and Damping Constants (in each of

the six DOF) are evaluated using Design Soil Parameters.

Rigid Rectangular Footings: The mathematical expressions for evaluation of
Equivalent Soil Springs and associated Damping Constants have been taken from the
following references and are reproduced here.

) Whitman R.V., and Richart F.E., Jr., "Design Procedures for Dynamically
Loaded Foundations," Journal of the Soil Mechanics and Foundation
Division, ASCE Vol. 93, No. SM 6, November 1967

(ii) Richart F.E., Jr., and Whitman R.V., "Comparison of Footing Vibration
Tests with Theory," Journal of the Soil Mechanics and Foundation Division,
ASCE Vol. 93, No. SM 6, November 1967

(iii) “Vibrations of Soils and Foundations” by Richart, Hall and Woods, Prentice
Hall Incorporated, Englewood Cliffs, New Jersey

3 - 1.5
B,
2 — 1.0
/.
gﬁ i B
BL
Ps == 2101 s
o B,
0 0
01 02 040610 2 4 638l0
L/B

Figure 5.5-1 Coefficients B,, B, & B, for Rectangular Footings
(After Whitman & Richart, Jr.)
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Representing L as the length of the foundation along Z-axis (axis of rotation), B as width of the
foundation along X-axis (perpendicular to axis of rotation) and H as the height of the foundation
(along Y-direction i.e. Vertical direction), the expressions for Equivalent Spring Constants and
Damping Constants in each DOF (vibration mode) are given as under. For B/L or L/B ratio of the
foundation, coefficients B,,8,,8.,B8, & B, are as given in Figure 5.5-1. The symbols and

notations have appropriately been changed to be in line with those given in this Book.
Equivalent Soil Springs and Damping Constants:

i) Translational Mode (along X)

Equivalent Spring Constant k, =B, x4x(1+1)x G x / L ’; B (5.5-1a)
Equivalent Radius r, = J EL X Bj ; MassRatio b, = (—]:V—)—m—{ (5.5-1b)
m 4 pr
0.2
Damping Constant = 88 (5.5-1c)

P

ii) Vertical Mode of Vibration ( along Y)

Equivalent Spring Constant k, = ﬂy X (1 ¢ )x VLxB (5.5-2a)
-V
Equivalent Radius ry = LxB ; Mass Ratio b, = (l—v) " 3 (5.5-2b)
7 Py
Damping Constant g, = 0425 (5.5-2¢)

b,

iii) Translational Mode (along Z)

Equivalent Spring Constant ;=P xAx(1+v)xGx, / L z B (5.5-3a)
Equivalent Radius ry = LxB ;  Mass Ratio 5, =(l—_l/—)-l—n—3 (5.5-3b)
n . P hy
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Damping Constant . = 0—2& (5.5-3¢)
0y
iv) Rocking Mode (about X)
. . G 2
Equivalent Spring Constant kg = o % (l )>< Bx L (5.5-4a)
-v
3 ]/ﬁ
3 7/ U A4
Equivalent Radius r, = BL ; Mass Ratio b, = 3(] ! ))J”?‘ (5.5-4b)
3z 8 oo
Damping Constant &y = 0.15 (5.5-4¢)
0= TN T =
{ +b9)\/b;
v) Torsional mode about Y axis
3
: . 16G |( LBlL? +B* )™
Equivalent Spring Constant k, = 3 [ (6 )] (5.5-5a)
z

Y4
12, g2 )74 30-v)\ M,
Equivalent Radius r, = {-L—Bl—ig—)} ; Mass Ratio 5, = 3(] V))———’l (5.5-5b)

67 8 o
Damping Constant <, = 0.5 (5.5-5¢)
2 e
0+ 25, i
vi) Rocking Mode (about Z )
. . G 2
Equivalent Spring Constant ky =Py x —(]—5 xB"x L (5.5-6a)
-V
31 /4 _
Equivalent Radius 7y = LB ; Mass Ratio b, = 3—(1——1/2—)/‘—43& (5.5-6b)
3 T 8 Py rOS

0.15

Damping Constant $y= (5.5-6¢)
"o,
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5.5.1.2 Equivalent Soil Springs using Coefficients of Subgrade Reaction

Soil is represented as Equivalent Springs and Dashpots in all six DOFs. The Equivalent Soil
Springs are represented as function of a) Coefficient of Subgrade Reaction of the soil and b)
Foundation Geometric Parameters.

It may be noted that only the corrected values of Coefficients of Subgrade Reaction (Design Soil
Parameters as in § 5.4) should be used for computing Equivalent Soil Springs. Mathematical
expressions (After Barkan) for these equivalent springs are given as under:

a) Soil spring in Lateral X - directions

Rewriting equation 5.3-10 and rearranging terms, we get

- .
k. = 7 =C x4 (5.5-7)

b) Soil Spring in Vertical Y-Direction

Rewriting equation 5.3-5 and rearranging terms, we get

FV
k,=—2=C, x4 . (5.5-8)
})

¢) Soil spring in Lateral Z- direction
Rewriting equation 5.3-10a and rearranging terms, we get:
F,

ko=—t=C_ x4 \ (5.5-9)
z

d) Soil Spring in rocking ¢ mode (rocking about X-axis)
Rewriting equation 5.3-12a and rearranging terms, we get

kg =A/[0—0=Cg><1xx (5.5-10)
¢) Soil Spring in Torsional v mode (Rotation about vertical Y-axis)

Rewriting equation 5.3-14, and rearranging terms, we get

M,
kl/’ :—l/-/——;("”xl,vv (5.5-11)
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f— B —y
H / T k,=C_ x4
L j’_ A=LB k,=C, x4
_/ Iy=15BL k,=C,x A
=L ;B kg=Cyx1
L, 12LB k9=C9x;:x
_ 1 2 2 A4 v »
L TmBies) ky=Cyx I,
Z (a) Foundation Block
y
v
X
M 0
z
Three Translations x, y, z & Three Linear and three Rotational Springs
Three Rotations 8, y, ¢
(b) Deformations along X, Y, Z (c) Springs along DOF’s

and rotations about X, Y, Z axes

Figure 5.5-2  Spring Constants for a Typical Foundation Block in all Six DOF’s

f) Soil Spring in rocking ¢ mode (rocking about Z-axis)
Rewriting equation 5.3-12 and rearranging terms, we get
M,y
ky =—¢—=C¢ xI, (5.5-12)
For a typical foundation block, these Equivalent Soil Springs are shown in Figure 5.5-2.

5.5.2 Foundation Supported over an Elastic Pad

/ .
This derivation may be found useful incase the foundation rests directly over elastic pads (Rubber
pads, Cork Slabs, Isolation pads etc). The elastic pad is mathematically represented as Equivalent
springs in all six DOFs i.e. Three Translational Springs and Three Rotational springs.

Consider a Rigid Plate of area A resting on an Elastic Pad of area A and thickness t as shown in
Figure 5.5.3a and DOFs are as shown in Figure 5.5-3b The elastic pad is mathematically
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represented as Equivalent springs in all six DOFs i.e. Three Translational Springs along X, Y & Z
and Three Rotational springs about X, Y & Z.

Equivalent Spring along Vertical Y direction (In Compression/Tension):

Consider a vertical force F), applied on the rigid plate of area A producing uniform vertical

deformation y in the pad (Figure 5.5-4a).

F
Compressive Stress in the elastic pad o, = 7y
Strain in the elasticpad ¢, =-J{—
Q F t
o)
Elastic Modulus of Pad £, =508 %y A _7v'
Strain €, Y Ay
t
F, E A
ky=—2=— (5.5-13)
y t

a) Equivalent Spring along Lateral X & Z directions (In Shear):

Consider a horizontal shear force F, applied along X direction on the plate of area A as shown in
Figure 5.5-4b. The force produces shear deformation x along X direction.

X y
A
Rigid Plat _’T— ¥
gidPlate
/1 4 ¢ x
TTTTITTT z 0
Elastic Pad
RERRENN Three Translation x, y, z &
three Rotations 0, v, ¢
» X
Z
(a) - Rigid Plate of Area 4 over Elastic Pad of (b) Deformations and Rotations
Area A and thickness ¢

Figure 5.5-3 A Rigid Plate resting over an Elastic Pad
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M,
Y FjV Y /%\
l Deformation
Xy Plate
el
IRRARA
i Pressure T
EREAREE
» X » X
/ / Non - uniform Compression
Z Z
(a) Uniform Compression (¢) Rocking about Z axis
Y Y

. A

v Fx
+r- —+ X |
WY/ii4

o ‘ — % Plate after
»X deformation
/ » X

Non - uniform Shear

(b) Uniform Shear (d) Torsion about Y axis

Figure 5.5-4  Rigid Plate Over Elastic Pad (a) Uniform Compression (b) Uniform
Shear (c) Rocking about Z axis & (d) Torsion about Y axis

Shearing Stress developed in the pad T,=—-

Here 7, represents shear stress on the XZ plane in X direction.

Shear strain Ve=—

Shear Modulus G is the ratio of shear stress to shear strain

£
G, = s _ 4 _Ft
Yo [X] Ax
:
Substituting for G, = and rearranging, we get
2(1+v)
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F, EA

Lateral Stiffness k, of Elastic Pad as: k,=—2t=——"—
x  2(0+v)t

(5.5-14)

F,
Similarly, replacing x with z , we get k,=—%= _E4_ (5.5-15)
z 2(0+v)t

(b) Equivalent Spring rocking.about X & Z axes (Rotational Stiffness):

Now consider a moment M, applied at the center of the rigid plate about Z-axis. This causes the
plate to rotate by angle ¢ about Z-axis passing through center of plate as shown in Figure 5.5-4c.

Moment generates non-uniform vertical pressure in the pad that varies from zero at the center to its
maximum value at the ends as shown.

M
Vertical stress developed in the pad at a distance ‘x’ from the center is o, = ? x
zz
Here I.. is the moment of inertia of the plate about Z-axis
Vertical deformation at the same point (i.e. at distance x) is y=x¢
Strain at the same point €, = )ti = xt—¢
M
74
. oy, [,
Elastic Modulus E=E, =—=-%—
€y (x_qﬁ)
t
We can represent Rotational Stiffness &, (Rocking about Z-axis) of Elastic Pad as:
- My El
ky =—t =l 5.5-16
4= ; ( )
On the similar lings, we can represent Rotational Stiffness k, (Rocking about X-axis) of Elastic
Pad as:
M E 1
k, =—8 =V X% 5.5-17
6= ; ( )

Here I is the moment of inertia of the plate about X-axis
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(c) Equivalent Spring rotating about Y axis (Torsional Stiffness):

Now consider a moment M,, applied at the center of the rigid plate about Y-axis. This causes the
plate to rotate by an angle i about Y-axis passing through center of plate as shown in Fig. 5.5-4d.

Shear stress developed (in X-Z Plane) at a point at a distance » from the center on the pad due to
the moment M, is:

7, =—Lr

»

Here 7, represents shear stress in X-Z plane normal to radius vector r (along rotation about Y axis
i.e. direction y and /,, is the polar moment of inertia of the base contact surface of the plate

about Y-axis passing through center of the pad.

Rotation of the pad (about Y axis passing through center of the pad) =
Shear displacement (normal to vector » ) at the same point is = ry
Thickness of pad =t
Shear strain at the same point ‘ ¥, = %
o
. Lt
Shear Modulus G is G,=G, = Shear Stress _ 7, _ w2

°  Shear Strain y, (ﬂ] 1w

Substituting G = we get Torsional Stiffness &, as

E
2(1+v)

M, GI !
K, My _Cly B 1y (5.5-18)
w t 2(+v) ¢

5.5.3 Foundation Supported over a set of Springs

This derivation may be found useful incase the foundation is supported directly
over a set of springs having vertical and translational stiffness. These springs are
mathematically represented as Equivalent springs, one along each of the six
DOFs i.e. Three Translational Springs and Three Rotational springs.

Consider a foundation block of Length L, width B and Height H supportmg a machine of
mass m . Consider that the foundation is supported over a set of » springs.
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Consider that there are odd numbers of springs 2p+1 in each row along length and even number
of springs 2¢g in each row along width of the foundation. Let the spacing of springs along length of

the foundation be a and that along width be 5. Consider that each spring has a vertical stiffness
of k, and horizontal stiffness of &, . The arrangement is as shown in Figure 5.5-5

Machine
I Foundation Block
| |
- L y
+ q
¢ i
Ji‘ﬁ s
- 2
s :
Z‘.-- ....... P FEPPEPUN RN [P . ——fmem e m e -;_vEG ---------- [ERNINY PRI N l_._
‘ —— q
o
r r 2 1 {1 2 r P
\
X

Spring Locations in Plan

Figure 5.5-5  Foundation Supported Over a set of Springs
Springs Spacing along Length a & Number of Springs 2p + 1
Springs Spacing along width - b & Number of Springs 2¢

For the purpose of analysis, these springs need to be mathematically represented as equivalent
springs one along each of the six DOFs i.e. Three Translational Springs and Three Rotational
springs.
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Equivalent Stiffness at CG of Base area of Foundation Block

Number of springs along Length 2p+1

Number of springs along Width 2q

Total number of springs n=02p+1)x2q
Vertical Stiffness of each spring along Y k,

Lateral Stiffness of each spring along X /Z k,

Equivalent Translational Stiffness

Equivalent Translational Stiffness is the summation of stiffness of all the springs in respective

directions.
Equivalent Vertical Stiffness along Y k, =nxk,
Equivalent Lateral Stiffness along X k, =nxk,
Equivalent Vertical Stiffness along Z k,=nxk,

Equivalent Rotational Stiffness

Let us now compute Equivalent Rotatienal Stiffness k, about X, k; about Z and &, about Y-

axis.

Equivalent Rocking Stiffness k£, about X

Y
| L T 1
Foundation Block
ra —m—— ra —
]
LM
S ST
N N .S e a1 B B
CG
I
i
]
—| q j— :
11T 1 1T "1 1T T 71T 1 1T 1T T 117 1T T71
P r 2 1 1 2 r )/

Figure 5.5-6  Rotation about X-axis
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Consider a moment M, applied at the CG of the base of the foundation about X-axis. Let the
resulting rotation of the foundation be J, . This rotation of the foundation block produces vertical

deflection in each of the spring on either side of the CG. The rotation and the corresponding
deflection is as shown in Figure 5.5-6

Consider spring on the LHS of CG

Distance of " row spring from CG ra

Rotation of the foundation Block Sy

The deflection of the spring at the " row 0, =rady
Force developed in the spring 6, =k,6, =k,rad,

Resisting Moment developed

Resisting Moment by the spring at LHS & RHS 2xk,radyxra
Number of spring in r" row 2q
Total Resisting Moment developed by " row springs Su, =2g% 2kv(ra)2§9

Total Moment Developed by all the springs

r=p r=p
M, = 2qx2k, (ra)’8, =2q%x2k,xa’Sy D (r)
r=l r=1

=2qxz"v"a25.9xw=2q><(2p+l)xk|,xa250x.—p(p;‘)

pp+1
=k, xa’8, S

Equating resisting moment with applied moment, we get
My=M,; Mg=kyxa25gx£(£;—2

This gives rotational Stiffness 4, as

kg =.}.\.4i.—_kyxa2xp(_ptl_)_ (5.5-19)
Sg 3

In case number of springs along length is an even number i.e. ‘2p°, then the stiffness

becomes:
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ky =
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5.5-19a
5 ( )

| —l b
T T T T 17T T 1
q s 2 1 1 2 s q
Figure 5.5-7 Rotation about Z-axis

Equivalent Rotational Stiffness £, about Z

Consider a moment M, applied at the CG of the base of the foundation about Z-axis (Figure 5.5-

7). Let the resulting rotation of the foundation bed,. This rotation of the foundation block

produces vertical deflection in each of the spring on either side of the CG.

- Consider spring on the LHS of CG
Distance of s” row spring from CG

Rotation of the foundation Block

The deflection of the spring at the s row
Force developed in the spring
Resisting Moment developed at center

Number of spring in s” row

(sb-b/2)

S

8, =(sb-b/2)x 5,

8y, =k, =k, (sb~b/2)J,
2x 4k, (sb=b/2)5, x (sb-b/2)]

@p+1)
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Total Resisting Moment developed by s” row springs

Sy, =Qp+1D)x2k, (sb-b/2)’5,

Total Moment Developed by all the springs

s=q s=q
M= Qp+D)x2k,(sb-b/2)’6, =(Q2p+1)x2k,xb’8, (s-1/2)*

s=1 s=1

§=q S=q s=q s=¢
M, =Qp+1)x2k,xb’8, (s’ —s+1/4)=(2p+1)x2k, xb25¢[2s2 —-Z(s)+2(l/4):|

s=1 s=1 s=1 s=1

M, =Qp+1)x2k, ><b25¢ x{q(q+l)6(2q+l) - q(q2+l) +Z—}

29(2q% +3q+1)-6g(g + l)+3q}

2
=Q2p+1)x2k,xb 5¢x{ =

M, =(@2p+1)x2gxk, xb*s, x{(z—"fil)giq;ll} = kyb25¢{9-‘—’i%2—q£2}

Equating resisting moment with applied moment, we get

. 25 . 12+ 1D)(29-1)
M¢=M‘, M¢=kyxb 5¢X{-———-—15————

This gives rotational Stiffness k; as

M -
ke=—f —k xb2x (2g+1)(2g9-1) (5.5-20)
s, 12

In case number of springs along width is an odd number i.e. (2¢g + 1), then the stiffness becomes:

M +1
ky = —57‘” =k, xb x {"—(‘73—2} | (5.5-20a)

Equivalent Torsional Stiffness k, about'Y

Consider a moment M, applied at the CG of the base of the foundation about Y-axis. Let the

resulting rotation of the foundation be &, . This rotation of the foundation block produces lateral

‘deflection in each of the spring on either side of the CG along normal to the radius vector joining
spring location to the CG of base area.
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; °
¢ 7
5{7’,3 /J? f
2 DRGSR G GRS, OV I SR G i g i .
3 R 4_, 2
s
]
v i
*- q
2 1 X 1 2 r »

P Detail AA ©

(a) Deflection due to torsional moment

rl, S' r!, S'

Deflection of point r, s Force Developed in the spring

(b) Detail AA

Figure 5.5-8  Torsion about Y-axis

Consider spring at location #,s on the LHS of CG as shown in Figure 5.5-8. Let R be the
distance of this point from CG and consider that this radius vector R makes an angle ' with

respect to Z-axis.

Rotation of the foundation Block about CG S,

Lateral deflection (normal to radius vector R) of the spring 6, . = RJ,,
Force developed in the spring S1i(r.s) = ky X RS,

Resisting Moment developed at center Ora(r.sy = kp % Rzé‘w

Total Resisting Moment developed
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M = i i‘sM(r.s) = Myy= Zp: ‘Z kyxR’S, (5.5-21)
r=-ps=-q r=-p s==q
Distance of r" row spring from CG ra .
Distance of s* row spring from CG (sb-b/2)
This gives R? =(ra)? +(sb-b/2)*

Substituting in equation (5.5-21), we get
P
Meo= 2, 3k, x{(ra)? +(sb— b/ 2))s, (5.522)
r=—p s=-q

Solution of this equation yields

{k,,a2 x2x2qx—ll(—lzil—zﬁlz+—l)-}
M5 =8, . :

1)(2g +1 1
+{k,,b2x2x(2p+l)x[q(q+ N2g+D) 2ax M%)}

{azthqu(2p+l)x—E(p3—+‘)-}

Mg =96, (g+1)2g+1) (g+1) 1
+{b2xkhx2q><(2p+1)x( = +_)}
i 6 2 4
M, =5, Hazkx p(p3 + 1)} . {bz <k, 24 +1])§2ﬁ__‘ I)H (5.523)

Here Kk, =k, =k, x2gx(2p+1)

X

We can also get the same solution by considering components of force in X & Z
direction and taking moment of these force components about CG and taking
summation over all the springs.

Equation (5.5.3-5) gives Torsional Stiffness &, as

M M -
k, v s {azkx !_’(L‘L_ll}+{b2 xk,@'_l)_(_z_‘!__l). - (5.5-24)
5‘// 5‘// 3 : 12 .

In case number of springs along width is also odd number i.e.(2g+1), then the stiffness

becomes:
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M
k==Y = {azk,, ”—(”ﬂ} + {bz xk, -‘7(—‘711)} (5.5-242)
s, 3 3
In case number of springs along length is also even number i.e.2p, then the stiffness
becomes:
M _ _
k, =—%= {a2kx (_2_1_)_+l(2£_1)} + {bz <k, (_2g_f1_)(_2_q_1_)_} (5.5-24b)
s, 12 12

5.5.4 Foundation Supported over Piles

For machine foundation application, piles are provided in the following cases:

i When soil is weak in bearing capacity to withstand pressures due to both static and
dynamic loads
ii. When significant loss of soil strength is postulated under dynamic loads on account of
critical soil and water table conditions
iii. When it is required to increase natural frequency of the machine foundation system

iv.  When dynamic amplitudes are required to be reduced
v.  When it is required to stiffen the support system on account of seismic considerations

In each case selection of pile type, pile size, pile depth, number of piles etc is an involved task and
is accomplished using standard pile design procedures based on soil data and the load data (both
dynamic and static loads). In certain cases, selection of pile type, pile size, pile depth, number of
piles etc becomes a tricky issue and for all practical purposes may turn out to be a difficulf task. In
either case, evaluation of dynamic characteristics of piles is a complex task and suffers with many
associated uncertainties.

More often than not, a machine foundation block itself serves as rigid pile cap that connects piles at
the top. Evaluation of dynamic characteristics of a single pile, in itself, is a difficult task and
evaluation of dynamic characteristics of a group of piles connected by a rigid pile cap becomes
complex and calls for many assumptions resulting in added levels of uncertainties.

Even in current era of advanced technology, most of the authors, who have significantly
contributed to Pile Supported Machine Foundations, do corroborate that:

i.  Understanding of Dynamic Behaviour of Group of Piles is still in its Infancy
ii.  Evaluation of dynamic characteristics of piles is a complex task and suffers with many
associated uncertainties
ili. As the reliability of dynamic characteristics of group of piles is faced with many
questions, so shall be the status of computed dynamic response.
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Regarding evaluation of stiffness and damping of pile-supported foundations, general observations
by various authors, as reported in the literature, are as under:

1.

11.

12.

13.

14.

Elastic resistance of pile to vertical loads changes with lapse of time i.e. the elastic
resistance offered by a fresh driven pile to vertical loads is different than the resistance
offered by it after lapse of some time.

Elastic resistance of pile to vertical loads changes with increase in length of pile,

Elastic resistance of pile to lateral loads primarily depends upon its cross-section and its
fixation length and any increase in length of pile beyond fixation length has no influence
on its lateral resistance. The fixation length of a pile is the length of the pile in the soil,
where it is assumed fixed when subjected to lateral loads. This is generally of the order of
1 to 1.5 m for all piles -Barkan 1962,

Dynamic stiffness of a single pile is generally found to be greater than its static stiffness.
Both stiffness and damping of pile have been found to be frequency dependent i.e. these
vary with change in frequency. The reliability of response using frequency independent
stiffness and damping values, in dynamic domain, would therefore be questionable.
Damping increases with increase in pile length.

Embedment of pile cap results in increased stiffness and damping of the pile group.
However its quantification is not yet established.

Damping of group of pile is more frequency dependent than that for a single pile.
Dynamic group effect of piles differs considerably from static group effect.

. Frequency dependence of stiffness and damping of pile group could safely be ignored for

translational and rocking modes of vibration.

Rocking and Torsional stiffness of individual pile could safely be ignored while
evaluating dynamic response of group of piles.

Elastic resistance of each pile in a group is a function of pile spacing. Inter-influence of
piles is observed to be quite significant. The elastic resistance of each pile increases with
the increase in the pile spacing and decreases with the decrease in pile spacing. When the
pile spacing becomes sufficiently large, the elastic resistance of each pile in a group
approaches the resistance of a single pile.

The combined stiffness, for a group of n piles, is not the linear summation of individual
stiffness of n piles.

The effective stiffness of a single pile (in a group of piles) is its individual stiffness
multiplied by an influence factor «,; that depends upon the ratio of pile spacing s to its

diameter d .

These common observations lead to the broad conclusions that i) definite gaps exist in
understanding the dynamic behaviour of a single pile as well as group of piles and the ii) Dynamic
Interaction for group of piles is a very complicated task.

There is huge amount of work available in the literature that appears to be good for R & D
purposes and its translation as a design tool is lacking for practical applications in the industry. In
view of the limitations and associated uncertainties, practically every author suggests that the
method be used with caution till better design methods are available. It goes without saying that
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judicious engineering judgment needs to be exercised in accepting the results for practical
applications.

In light of the above:-

e Author feels challenged in recommending any single approach for dynamic response of
pile supported machine foundation systems as the reliability of dynamic properties of
group of piles derived from that of single pile is low.

e Notwithstanding the above, it is recommended that Elastic Resistance of a Pile, to both
vertical and lateral loads, must necessarily be determined from pile test.

¢ In author’s opinion, most of the approaches suggested in the literature are good enough for
R&D purposes and may not be suitable for industry.

The ground reality is that the industry cannot wait till validated solutions are available.
It has to continue with the designs with the best available practical approaches/solutions
such that the machine performance is acceptable, and

o The designer should be able to complete the task in a specified time schedule with a good
level of confidence in his design.

Author, based on his long ﬁe]d experience, however, suggests the following design approach for
evaluating equivalent springs for pile-supported foundations:

55.4.1 Equivalent Pile Springs

Consider a pile-supported foundation having length L, width B and depth H . It is implied that
soil exploration for the site has been done. Based on the load data and soil data for the site, design
of the piles for the foundation is done using normal pile design procedures/methods for static loads.
This provides data regarding pile type, pile diameterd, pile length/, number of piles n & pile
spacing s . Piles are so placed that their spacing s along length and width of the foundation remains
same. It is strongly recommended that vertical pile stiffness£,, and lateral pile stiffness % ,, of

each pile be evaluated from pile test.

Effective pile stiffness: Let us consider that the combined stiffness for a group of » piles is the
linear summation of effective pile stiffness of each pile in the pile group, where the effective pile
stiffness is considered dependant upon ratio of pile spacing to its diameter and is given as under:

Effective vertical stiffness &, of each pile k, =ay xk,, (5.5-25)

Effective lateral stiffness  , of each pile ky = Qo Xk (5.5-26)

Here a4 is the influence coefficient that depends upon ratio of pile spacing to its diameter
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Regarding influence coefficient, various relationships given in the literature by many authors have
been reviewed. It is noted that there is no consistency and each of the relationship is in variance
with the other. This keeps the designers in dilemma. In view of this, an empirical equation is
proposed for evaluating influence coefficienta,, . Here influence coefficient is defined as a

function of s/d , where s is the pile spacing and d is the pile diameter.

s 0.65
Ay = o.zlz(gj (5.5-27)

This empirical relationship provides a fairly good estimate of influence coefficient of a single pile.

The equation gives influence coefficients for 2.0 < (%) <10.0 as:

It is noted that these numbers are reasonably in good agreement with those given by Barkan, which
are derived based on experimental observations. Comparison is listed in Table 5.5-1.

Table 5.5-1  Influence Coefficients for Piles

, u
Pile Spacing | § ety
respaomg | 9 ¢ Coefficint After Barkan
Pile Diameter \_d CoefTicient as Proposed

Table 1-14 pp 48

0.33

3 0.43 0.41
4 0.52

4.5 0.56 0.64
5 0.60

6 0.68 0.65
10 0.95

Overall Stiffness of group of piles:

Using the same approach as given in § 5.5.3 for Foundation Supported on Set of springs, let us
develop the formulations for the pile group.

Linear Stiffness
Equivalent Vertical Stiffness along Y
Taking summation of effective vertical stiffness of each pile over all the piles, we get

k, =nxk, (5.5-28)
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Here, k, is the Effective Vertical Stiffness of each Pile, n is the Total Number of Piles and &, is
the Total Vertical Stiffness of Pile Group.

Similarly we get,
Equivalent Lateral Stiffness along X k, =nxk, (5.5-29)
Equivalent Lateral Stiffness along Z k, =nxk, (5.5-30)

Here, k, is the Effective Lateral Stiffness of each Pile, n is the Total Number of Piles and
k, & k, is the Total Lateral Stiffness of Pile Group in X & Z directions respectively.

Rotational Stiffness

Let us consider that there are odd numbers of piles 2p+1 along one side of the foundation and
even numbers of piles 2¢ along other side of the foundation.

Total number of piles n=02p+)x(29)

Pile spacing (same along length & width of the foundation) s

Following the same approach as given in § 5.5.3 for Foundation Supported on Set of springs, we
get Equivalent Rotational Stiffness.

Equivalent Rotational Stiffness k, about X

by =k, x5t 22D (5.531)

Equivalent Rotational Stiffness &, about Z

ky =k, xs%x {Qﬂ-ll)_gzﬁ-‘_'l} (5.5-32)

Here, &, is the Total Vertical Stiffness of Pile Group, s is Pile Spacing and kg & &, is the total
Rotational Stiffness of Pile Group about X & Z axis respectively.
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Equivalent Torsional Stiffness k,, about Y

k, =5 kap(p+l)}+ {(2q+1)(2q—1)” (5.533)

3 12

Here, k, is the total Lateral Stiffness of Pile Group along X axis and &, is the total Torsional

Stiffness of Pile Group about Y- axis. It may be noted that total lateral stiffness of pile group in X
and Z direction is the same i.e. k, =%, . Hence either k or k,appears in the equation (5.5-33).

5.5.4.2 Damping

The damping offered by pile-supported foundation does depend upon length of pile and
embedment of pile cap. Though the observations confirm increase in value of damping with
increase in length of pile as well as embedment of pile cap, its quantification, however, is not yet
established. It is to be noted that:

e Damping of group of pile has been found to be more frequency dependent than that for a
single pile.
Damping exhibited at resonance is far different than at non-resonant frequencies.

e  Damping of pile-supported system has been found to be less than soil-supported system.

Whether piles are provided for improving load carrying capacity of the weak soil or provided on
account of increasing the natural frequency of the machine foundation system, the objective of
keeping the natural frequencies away from excitation frequencies is achieved in either case. This, in
other words, confirms that the response of the foundation is required at non-resonant frequencies. It
is suggested to use a nominal value of about 5% damping for response computation because the
quantification of pile dampmg is not yet fully established. Any value hlgher than this, in practice,

would obviously result in lower amplitudes.

EXAMPLE PROBLEMS (§5.4)
P 5.4-1

For a site, dynamic soil investigation is carried out using Wave Propagation Test. The test
data is as under:

Distance between geo-phones 6 m

Shear wave velocity 140 m/s
Mass density of soil P, =2000 kg/m3
Poisson’s Ratio v=03
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Compute Design Shear Modulus G, & Design Coefficient of Uniform Compression

Cyo, for a machine foundation with details as under:

Foundation Size 2mx4mx4m deep
Depth of foundation 3m
Mass Density of Concrete 2500 kg/m3
Mass of Machine 20000 kg
Ht. of machine CG above foundation top 0.5m
Solution:
Mass density of soil P, =2000 kg/m?
Poisson’s Ratio - v=03

Site Data (Data_01)

Site Static Stress (Overburden Pressure) E(;,
Distance between geo-phones 6m
Effective considered depth (see § 5.4) dg =(6/2)=3.0m

Overburden Pressure at the considered depth is

0, = p, x gxdy =2000x9.81x3x L 5886 kn/m?
) 1000
Gy =0 =58.86 KkN/m?
Site Dynamic Shear Modulus
Shear wave velocity V, 140 m/s

Gy = p, V.2 =2000x140% =392x10°N/m? ; 3.92x10* kN/m?
Design Data (Data_02)

Base Contact Area of the Foundation Ap =2x4=8 m?

Static Stress (Overburden Pressure) &y, :

Width of Foundation = 2m
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Depth of Foundation = 3m

Effective depth (See §5.4) dg; =0.5x2+3=4m
Mass of foundation block m;, =8x4x2500=80000 kg
Mass of machine m, =20000 kg
Total Mass mgy, = my +m, =100000 kg

0 = pg xdg; x g = Over burden pressure due to soil at depth d,

o, =2000x4x9.81x =78.480 KkN/m?

1000

o, = Over burden pressure due to test block + machine

_ 100000x9.81 « 1
8 1000

=122.625 kN/m?

00 =(°'1 +°'2)

Tyy = (78.480+122.625) = 201.105 KN/m?

— 05
Design Shear Modulus G, : Rewriting equations 5.4-1, we get Gyy =Gy x {9_;03-}

Ool

Substituting values, we get

305 0.5
Gyy = Gy x4 22 =3.92x104x{M} =7.246x10* kN/m?
001 58.86

Design Coeffjcient of Uniform Compression Cyqy

Rewriting equation 5.3-9, we get

4G 1 ,A
Cuoz = __Q?‘"’—'O—— M Where ro = —'92—
I-V A02 V4

Gy, =7.246x10* kN/m?; A4y, =8m?; r0=\/g=1.5957m; v=03
V4

4%7.246x10* x1.5957
(1-0.3)x8

Substituting, we get Copp = =8.2588x10* kN/m?
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P 5.4-2

For a site, dynamic soil investigation is carried out using Vertical Vibration Resonance Test.
The test data is as under:

Size of test block 1.5mx0.75mx0.7m high
Mass density of concrete test block 2. =2500 kg/m?

Depth of test pit 4m

Mass of Oscillator system my =160kg

Resonant Frequency f. =30 Hz

Amplitude of Vibration 200 microns

Mass density of soil P, = 2000 kg/m?
Poisson’s Ratio v=03

Compute Design Coefficient of Uniform Compression C,;,, & Design Shear Modulus for a
machine foundation with details as under:

"Foundation Size 2mx 4mx4m deep
Depth of foundation 3m

Mass Density of Concrete 2500 kg/m?

Mass of Machine 20000 kg

Ht. of machine CG above foundationtop  0.5m

Solution:
Mass density of concrete test block p. =2500 kg/m?
Mass density of soil p, = 2000 kg/m?
Poisson’s Ratio v=03

Site Data (Data_01)

Area of Test Block Ay =1.5x0.75=1.125 m?
Height of Test Block hA=0.7m
Mass of Test Block (including m/c) my; =2500x1.125x0.7+160=2128.75 kg
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Site Coefficient of Uniform Compression
212875 1

Coor =4x 7 x [} x— = 4x a2 %302 x 2222 x—— = 6.723x10*  kN/m®
S Ay 1.125 1000 :

Site Static Stress _

Effective depth do =4+(0.75/2)=4375m

=85.8375 kN/m?

1
= p xd, =2000x4.375%x9.81x
Oy =P XA X8 X X 1000

oy =hxp,xg=07x2500x9.81x 10100 =17.1675 KkN/m?

Gy =0, +0, =103.005 kN/m?

Design Data (Data_02)

Area of Foundation Block Ay =4x2=8m?

Effective depth dy =3+05x2=4m

Mass of foundation block m, =8x4x2500 =80000 kg
Mass of machine m, =20000 kg

Total Mass my, =my +m, =100000 kg

Static Stress

1

=2000x4x9.81x =78.48 kN/m?
1000

o7 = P, Xdpy X x]
] s 02g1000

) X gx ! = 100000 x9.81.><—]—— =122.625
Agy 1000 8 1000

0'2=

Gy =0y +0, =201.105 kN/m?

Design Coefficient of Uniform Compression Cyqp:  Since C, is directly proportional

to G , we can consider variation of C u with static stress in the same manner as that forG .

on |4 201,105 [1.125
Cyop = Cyor % =2 x |20 = 6,7231x10* x [ ——— x |2 =3.5228x10* KkN/m’
ez = Cuor = \}Ao2 Vio3.005 V8 * "
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Design Shear Modulus G,

- ‘A ‘
Goz =Cll02 XA02 X (] V); = =02 - '8— =1.5957m
4xry V4 T

Substituting the values, we get

(1-0.3)
4x1.5957

Gy =3.5228x10% x8x =3.09x10* kN/m?
P5.4-3

For a site, dynamic soil investigation is carried out using Cyclic Plate Load Test. The test data
is as under:

Size of Test Plate - 600 mmx 600 mm
Depth of test pit 4m

Test Results (Only the last test value is presented here)

Pressure p=240 kN/m?
Elastic settlement s, =1.2mm

Mass density of soil p, = 2000 kg/m*
Ht. of machine CG above foundation top 0.5m

Poisson’s Ratio v=03

Compute Design Coefficient of Uniform Compression C,;,, & Design Shear Modulus for a
machine foundation with details as under:

Foundation Size 2mx4mx4m deep
Depth of foundation 3m
Mass Density of Concrete 2500 kg/m’
Mass of Machine 20000 kg
Maximum permissible Amplitude 100 microns

Solution:
Mass density of soil p, =2000 kg/m*
Poisson’s Ratio . v=03
Size of Test Plate 600 mm x 600 mm
Contact area of test plate Ay =0.6x0.6=0.36m>
Depth of test pit 4m
Applied Pressure on the plate p =240 kN/m?
Resulting Elastic settlement 5,=12mm=12x10"m
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Site Data (Data_01)

Coefficient of Uniform Compression Cuor
. . . . p 240 4 3
Coefficient of Uniform Compression Cuor = =————=20x10" kN/m
S, 1.2x107
Static Stress (Overburden Pressure) &y, for the test
Effective Depth dy, =4.0+05%x0.6=43 m

1
1000

o, = p, x dy; xg =2000x4.3x9.81x =84.366 KkN/m?

o, = Over burden pressure = Applied Pressure ' p' on the test plate =240 kN/m?

To1 = (84366 +240)=324.366 kN/m?
Design Data (Data_02)

Area of Foundation Block Ay =4x2=8m?
Effective depth dy; =3+05x2=4m

Mass of foundation block m, =8x4x2500=80000 kg
Mass of machine m, =20000 kg

Total Mass myy = my, +m, =100000 kg

Static Stress
1

1 2
G =0 Xdy XgXx =2000x4x9.81x =78.48 kN/
1= Py X 02 X 8XT000 1000 m
oy =02y gy 1100000 g gi L 122625 KkNim?
do 277000 0 8 1000

Gy =0, +0, =201.105 kN/m?

Design Coefficient of Uniform Compression Cy,,

Cyon = Cyoy % 9_:22_)( i0—1—=20><104>< 20]'105>< ﬂ=3.34><]04 kN/m?
2 V322366 V8
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P 5.4-4

Design Shear Modulus
Go2 =Cuop % Ao Sk

G02 =3.34X104 sz—gl—ti)——-z
4x1.5957

2.9303x10*

Design Subgrade Parameters

" \/—'—] 5957 m
Xro

kN/m?

For a site, dynamic soil investigation is carried out using Vertical Vibration Resonance Test.
The test data is as under:

Size of test block

Mass density of concrete test block
Depth of test pit

- Mass of Oscillator system

Resonant Frequency

Amplitude of Vibration

Mass density of soil

Ht. of machine CG above foundation top
Poisson’s Ratio

1.5 mx0.75 mx0.7 m high
P, =2500 kg/m*
4 m

my =160 kg

f, =30 Hz
200 microns

p, = 2000 kg/m?

0.5m

v=03

Compute Design Coefficient of Uniform Compression C,4, & Design Shear Modulus

for a machine foundation with details as under:

Foundation Size

Depth of foundation
Mass Density of Concrete
Mass of Machine

- Maximum permissible Amplitude

Solution:

Mass density of concrete test block

Mass density of soil

Poisson’s Ratio of soil

Site Data (Data_01)

Area of Test Block
Height of Test Block

3 mx5 mx5 mdeep
4m

2500 kg/m*
20000 kg
100 microns

P, = 2500 kg/m*
p, =2000 kg/m*
v=0.3

Ay =1.5x0.75=1.125 m?
h=0.7m
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Mass of Test Block (including m/c)
my, =2500%1.125x0.7+160=2128.75 kg

Site Coefficient of Uniform Compression

Cuor =4x 72 x f1x70 2 ax 22 x30 x 2285 L _ 670310 k/m?
Ao 1125 1000

Site Static Stress
Effective depth dyy =4+(0.75/2)=4375m

0, = p, xdg; x g = 2000x4.375%9.81x 10100 ~85.8375 kN/m’?

=17.1675 kN/m?

1
=hxp,.xg=0.7x2500x9.81x
g, X P, X8 x X 1000

Ty =0, +0, =103.005 KkN/m?

Design Data (Data_02)

Area of Foundation Block Ay =5x3=15m?

Effective depth dy =4+05x3=55m 7

Mass of foundation block m, =15x5x2500=187500 kg

Mass of machine m,, =20000 kg

Total Mass Moy = my +m,, =187500+20000 = 207500 kg

Static Stress gy = p, xd, x gx—-—l—— =2000x5.5x9.81x ! =107.91 kN/m?
1000 1000

M2 gx—t = 201300 o g1 135705
A, E7T000 0 15 1000

Gy = 0y +0, =243.615 KkN/m?

Design Coefficient of Uniform Compression Cyq,

Since area of foundation is greater than 10 m?, consider A4y, =10 m? (See § 5.4.2)

Cuoz = Cugor X [ =2 x f-g-'—=6.723lx]04x\[243'615x\[l'lzs=3.47x104 KN/m’
Oo1 ¥ 4n 103.005 10
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Design Shear Modulus G,

Since area of foundation is greater than 10 m? , consider 4, =10 m?

1- [4 [
G02=Cu02xA02x( "); Fo =42 = 10 17841 m
4xny n V4

Substituting the values, we get

Gy =3.47x10* «10x-4=93)__ 3 4016x10*  kN/m?
4x1.7841
EXAMPLE PROBLEMS (§ 5.5)

‘P 5.5-1
For the data given in Problem P 5.4-1, compute Equivalent Soil Springs in all six DOFs.
Solution:

Machine Foundation details as given in Problem P 5.4-1:

Foundation Size 2mx4 mx4m deep

Depth of foundation 3m

Base Contact Area of the Foundation Agp =2x4=8m?

Mass of foundation block m, =8x4x2500=80000 kg
Mass of machine m,, =20000 kg

Ht. of machine CG above foundationtop  0.5m

Total Mass My, = my +m, =100000 kg
Mass density of soil P, = 2000 kg/m®
Poisson’s Ratio of soil v=0.3

From the solution to problem P 5.4-1, we get:
Design Shear Modulus Gy =7.246x10*  kKN/m?

Design Coefficient of Uniform Compression C,o2 = 8.2588x10* kN/m’
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Soil Spring Stiffness

Elastic Half Space method

Length of Foundation 4.0 m

Width of Foundation 20m

L/B ratio of the foundation L/B=2.0

B/L ratio of the foundation B/L=2/4=0.5

From Figure 5.5-1, for L/B=2.0, we get 8, =2.2; f.=0.962
For rocking mode (about Z axis), for B/L = 0.5 we get By =045
For rocking mode (about X axis), for L/B=2.0 we get 8, =0.6
Vertical (Y-direction)

k, =B x> xJIxB = k,=644x10° KN/m
Y y (I-V) .

Lateral Z —direction

LxB

k, =B, x4x(1+v)xG x = k, =5.13x10° kN/m

Lateral X —direction

k, = B, x4x(14+v)xGx /L:B = k, =5.60x10° kN/m

Rocking about Z-axis (¢ direction)

ky = By X ——x B? x L = 7.45x10° kKN m/rad

(1-v)

Rocking about X-axis (& direction)

ky =B, 8w Bx % =19.87x10° KN m/rad

(1-v)
Torsional Mode about Y( direction)
3

1

2, 2|V

i 16G LB(L +B) =19.22x10° kN m/rad
4 3 671

https://engineersreferencebookspdf.com



5-56 Design Subgrade Parameters

Coefficient of Sub grade Reaction Method
Base area of Foundation A=4x2=8m?

Moment of Inertia of Base area:
I, =%x2x43 =10.667 m*; I =]—'2-><4><23 =2.667 m*

1,,=10.667+2.667=13.334 m"

Coefficient of Uniform Compression C, =8.2588x10* KkN/m?
Coefficient of Uniform Shear C, =0.5xC, =4.1294x10* kN/m>
Coefficient of Non-Uniform Compression Cy =2xC, =16.57x 10* kN/m*
Coefficient of Non-Uniform Shear C, =0.75xC, =620x10* kN/m’
Equivalent Spring Constants ‘

Lateral X —direction k,=C,xA=4.129x10*x8=3.3x10° kN/m
Vertical (Y-direction) k,=C,xA=82588x10"x8=6.61x10" kN/m
Lateral Z —direction . =C,x A=4.129x10" x8=3.3x10° kN/m

Rocking about X-aiis (0 direction)
kg =C,x1, =1657x10*x10.667=17.6x10° kN m/rad
Torsional Rotation about Y- axis (y direction)
k, =C4x1, =620x10*x13334=826x10° kN m/rad
Rocking about Z-axis (¢ direction)
ky=Cyx1 =16.57x10*x2.667 =4.41x10° kN m/rad

For the sake of academic interest let us compare the stiffness (all six stiffness) as obtained by these
two methods. The ratio of stiffness by Elastic Half Space Method to that by Coefficient of Sub-
grade Reaction Method for all the six DOFs is:

k, k. k, ky kg Kk,

Ratio 0.974 1.55 1.70 1.69 1.13 2.33

It is noticed from these numbers that except for vertical stiffness, Elastic Half Space gives
sufficiently higher stiffness in all the modes of vibration.
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P 5.5-2:

For the data given in Problem P 5.5-1, compute Radiation Damping in all six DOFs for
Elastic Half Space method.

Solution:

For evaluating Geometric Damping, we need to compute equivalent radius », and Mass
Ratio b for all the six DOFs. Let us first compute equivalent radius in each DOF

Equivalent radius

Vertical (Y-direction) ry= " LxB _ |4x2_ 1.5957 m
7

/4

Equivalent radius in Lateral Z — direction and Lateral X — direction is the same as that for
Vertical (Y-direction).

Lateral Z — direction 7, =1.5957 m

Lateral X — direction r, =1.5957 m

o3 1/ 3 1/4
Rocking about Z-axis (¢ direction) r, = ( B3X LJ = [23)( 4] =1.3574 m
7 7

3 1/4 3 1/4
Rocking about X-axis (@ direction) 7, = [ L 3* B J = [43’( 2] =19197 m
Vi3 /4

Torsional Rotation about Y (y direction)

5 N 2 a4
ry = L><B><(L +B ) _ 4><2x(4 +2 ) 17069 m
67 6

Mass Ratio: To compute Mass ratio, we need to compute Mass m and Mass Moment of
Inertia M,,, (for both mass of the foundation block as well as mass of the machine) along the three

translational DOFs and the three rotational DOFs passing through CG of the base area point O.

Foundation Mass 80000 kg
Machine Mass | 20000 kg
Total Mass (see solution P 5.5-1) 100000 kg
Thus Mass m along three translational DOFs m =100000 kg
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Mass Moment of Inertia (MMI)
About Z-axis ( M,,,. )

My, =(8010200)><(22 +47)+80000x(4/2)? +20000x (4 +0.5)° 858333 kgm’
About X-axis (M,,,, )

My = (g;_oloz_oo)x (42 +42)+ 80000x(4/2)* +20000x(4+0.5)* =938333 kgm?

About Y-axis ( Mm()y )

MMLI of the foundation is directly computed based on its geometrical data and for MMI of
machine about Y-Y axis, its Radius of Gyration need to be evaluated. This information is
either given by the manufacturer or computed based on its geometrical layout data. In the
absence of any given data for the present case, it is assumed that radius of gyration of
machine about YY is equal to 75% of equivalent radius of foundation. (This is an
assumption made only for this problem).

Radius of Gyration r=0.75xr, =0.75x1.5957 =1.1968 m

80000 ,
M gy =(TJX(42 +22)+ 20000x(1.1968) =161981 kgm?

Let us now compute Mass Ratios for each DOF.

(1-v) m 1_(1-0.3))(100000)( 1

bo=b =b. = m =2.153267
TETYTTY o 4 2000  1.5957°
b, - 3(1-1/)))< M,,,,,z5 _3(1-03)) 858333 = 2044
8 PeX 1 8 2000x1.3574
b - 3(1—v))x Mo 3(1-0.3)) 938333
T8 T oy 8 2000x19197°
- M -
b, _3( V)))< L 3(1-03)) 161981 14673
8 DX 1 8 2000x1.7069

Geometrical Damping Constant
0425 0425

¢, =B = 0.2896
Joy V2153267
[ 02875 08TS oo

Jo- V2153267
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028755 02875

= = =0.1959
s Jbe 2153267
fya IS 0.1 00012
(+b)fbs  (1+24.02)24.44
o 015 015 00120
(1+b,\by  (1+472W4.72
Sy = ( 0> 0.3 =0.1270

1+25,)  (1+21.4673)

P 5.5-3

A machine having Mass of 20000 kg is supported over a concrete block of length 4m, width 2
m and depth 4 m (Machine and Foundation data same as that for Problem P 5.5-1). The
concrete block in turn is supported over an elastic cork pad 200 mm thick as shown in Figure

5.5-3. Mass Density of Concrete is 2500 kg/m3. Elastic Modulus of cork is

E.pn =12x10° kN/m? and that of concrete is £, =3x107 kN/m?. Poisson’s ratio of the
cork is v, =004 and that of concrete is v, =0.15. Compute equivalent springs
representing cork stiffness in all six DOFs.

@

Foundation Block

1]

o]
Loy ]
[= B

: t——- Rigid Floor

Figure P5.5-3 Foundation Block Supported over cork Pad

Solution:

Area of the cork pad A=2x4=8m?
Thickness of cork pad t=02m

Elastic Modulus of cork E,ou =12x10° kN/m?
Poisson’s Ratio of cork v=10.04
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Moment of Inertia about axes passing through CG of Base Area

About XX I, =%x2><43 =10.6667 m*

About ZZ “ I, =TIEX4X23 =2.6667 m*

About YY 1, =T‘5><(4><23 +2x4%)=13.3333 m*
Stiffness of Cork:

Linear Stiffness

. o E x4 12x10°
Along Vertical Y direction k), = ‘"”t‘ x4 _1 2><01(; x8 _ 4.8x10® kKN/m

EA 1.2x10°x8

= =2307x10% kN/m
2(1+v)t 2x(1+0.04)x0.2

Along Lateral Z direction £, =

EA 1.2x10° x8

= =2.307x10° KkN/m
20+v)r . 2x(1+0.04)x0.2

Along Lateral X direction &, =

Rotational Stiffness

El, 12x10°x10.6667
t 0.2

=6.4x10° kNm/rad

About X- axis kg =

5
About Z axis b, = El, _12x10°x2.6667

t 0.2

=1.6x10° kNm/rad

E 1, 12x10° 133333

Y= oo x =3.84x10° KNm/rad
20+v) t  2x(1+0.04) 02

About Y- axis k

P 5.5-4

A machine having Mass of 20000 kg is supported over a concrete foundation block of length
S5m, width 2 m and depth 2 m. The concrete block in turn is supported over 48 springs (9
springs along length and 5 springs along width) as shown in Figure P 5.5-4. Vertical Stiffness

of each spring is &, =1x10° kN/m and Lateral Stiffness is &, =0.6x10° kN/m. Mass

Density of Concrete is2500 kg/m®. Elastic Modulus of concrete is E,,,. =3x10’ kN/m?.
Poisson’s ratio of concrete is v, =0.15 . Compute equivalent springs at CG of the base of
the block in all six DOFs.
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Solution:

Given Data

Length of the Foundation Block
Width of the Foundation Block

Vertical Stiffness of each spring

Lateral Stiffness of each spring

5m

2m
k, =1x10° KkN/m

k, =0.6x10° kN/m

Springs along length 9 & springs along width 5 & total number of springs = 45

It is seen that there are odd number of springs both along length and width.

Springs along length 9
Springs along width 5

Total number of springs

Spacing along Length: There are 9 springs hence 8 spacing

2p+1=9;
2g+1=5;
n=9x5=45

Spacing along Width: There are 5 springs hence 4 spacing b=2/4=0.5m
Foundation Block .
Springs
Rigid Floor
X
oo i oo i
[ b
-9-9-9-e-9-0-e-¢ ¢
Ttz
9-0-0-0-0-0-0-0-0¢
PP P N S
- al-

Spring Locations shown in PLAN

Figure P5.5-4 Foundatio}l\Supponed over 45 Springs
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Equivalent Stiffness

Translational Stiffness

Vertical Stiffness k, =nxk, =45x1x10° =4.5x10° “kN/m

Lateral Stiffness k,=k, =nxk, =45x0.6x10°x=2.7x10° kN/m

X

Rotational Stiffness

Rocking Stiffness about X-X (Equation 5.5.3-1)
kg =-A&=k‘, xa’ x____p(p+1)
s, 3
ky = 4.5x10° x(0.625)> xﬁ‘—(;‘—f—ll =11.72x10° kNm/rad
Rocking Stiffness about Z-Z (Equation 5.5.3-2a)
M
ky =2 =k, xb? x{_—_"(q’" ')}
5, 3
ky =4.5x10°x(0.5)? x—2—>5%—12 =225x10° kN m/rad

Torsional Stiffness about Y-Y (Equation 5.5.3-6a)
b, =M Hazkx el l)}+{b2 ok, 222D DH

w

k, = {2.7x 106 ><((O.625)2 x i;iJ 2.7x10° x((o.s)2 x?%i)} ~838x10° KNm/rad

P5.5.5

A machine having Mass of 20000 kg is supported over a concrete foundation block of length
Sm, width 4 m and depth 2 m. The concrete block in turn is supported over 20 Piles (5 piles
along length and 4 Piles along width) as shown in Figure P 5.5-5, Each pile is 400 mm dia and
20 m long. Pile spacing is 1.0 m, both along length and width. Vertical Stiffness of each Pile is

k =6.4x10° kN/m and Lateral Stiffness is K on =3.84x10° kN/m. Compute equivalent
springs at CG of the base of the block in all six DOFs.
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Foundation Block
' ' / Piles
!
° ) [ ) ) T
i s
° ] b . ¢ 4
2> IE—— 1' ........................... _
° ° 'o ° .
i
° ° :o ° [
+ f— s —d
X
Pile Location shown in PLAN

Figure P5.5-5 Foundation Supported over 20 Piles

Solution:
Total number of piles n=20
Piles along Length = 5; 2p+1=5; p=2
Piles along Width = 4; 2g=4;, gq=2
Pile Spacing s=1; Pile diameterd =0.40; s/d=2.5
Vertical stiffness of each pile k,, =6.4x10° KN/m
Lateral stiffness of each pile ko =3.84x 10° KN/m

Influence Coefficient for s/d =2.5
N
Qg =0.212x (EJ =0.212x(2.5)"% =0.3845

Effective Vertical Stiffness &, of each pile ky =Qoy xkp,
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k, =0.3845x6.4x10° =2.46x10° kN/m

Effective Lateral Stiffness 4, of each pile ky =@y xky,

k, =0.3845x3.84x10° =1.476x10° kN/m

Equivalent Springs

Linear springs along Vertical Y Direction
k, =nxk, =20x2.46x10° =4.92x10° kN/m

Along Lateral X Direction k, =nxk, =20x1.476x10° =2.952x10° kN/m
Along Lateral Z Direction k, =nxk, =20x1.476x10° =2.952x 10° KkN/m
Rotational Springs
Rotational Spring Constant about X-axis
kg =k, x s2x —p—(—’éf—]-)-
=4.92x10° x12 x-z%i”—) =9.84x10° KkNm/rad

Rotational Spring Constant about Z-axis

2g+1DQ2g~1
k,:kyxszx{———————( 9t l); 9 )}

(2x2+D(2x2-1)
12

=4.92x106x12><{ }=6.15x106 kNm/rad

Torsional Spring Constant about Y-axis

P {p(p+1)+(2q+1)(2q—1)}
U 12

22+1) (2x2+1)(2x2-1)

=12x2.952x106{
12

} =6.344x10° KkNm/rad
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Rotary Machines
Reciprocating Machines
Impact Machines
Impulsive Load Machines
Amplitudes of Vibration
Rotor Eccentricity
Unbalance Force
Transient Resonance
Critical Speeds
Emergency Loads
Coupling of Machines

Example Problems
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Design Machine Parameters

In the context of machine foundation design, a machine would necessarily include:

¢ A Drive Machine
e A Driven Machine
e A Coupling Device

Machine data is required both for drive machine and driven machine along with coupling
details. The complete knowledge of excitation forces, associated frequencies and load transfer
mechanism from the machine to the foundation is a must for correct evaluation of dynamic
response. A close interaction between the foundation designer and machine supplier as well as
appreciation of each other’s limitations, therefore, is essential.

Before we go to the details of machine data for Drive Machine, Driven Machine & Coupling
Device, it may be desirable to note the following:

e Though the supplier for all the three machines may be a smgle agency, invariably
manufacturer would be different for each machine

s Each machine, according to its footprint, has its own base frame and bolting arrangement
with the foundation
Each machine is balanced independently as a separate unit
Each machine rotor has its own critical speed
When these machines are coupled together and supplied as a set, the data for individual
machine may not fully hold good for the coupled machines. It may need appropriate
correction/modification. At times, these machines may be mounted on a common base
frame instead of their individual base frame and that will reflect as a change in the mass
CG location.

The equipment drawings and data-sheets supplied by the machine manufacturer do provide a host
of information about the machine and out of this, only the information required for the foundation
design needs to be selected. In certain cases, some data may have to be processed for design
purposes. Thus, for a properly designed foundation, careful determination of those design machine
parameters that influence response of machine foundation becomes essential.

The available Machine data, therefore, needs to be suitably converted and translated in to
Design Machine Parameters for use in Machine Foundation design.

A typical data set required for each machine (drive machine, driven machine & coupling) is
listed as under:
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For Dynamic Response Analysis

1.

2.

3.
4.

Total mass of Machine (including rotating parts), Radius of Gyration and its Overall Centroid
location.

Mass of rotating parts of the machine, operating speed, height of centerline of rotor from
machine base frame, etc.

Footprint of machine, base frame details and holding down bolts.

Dynamic forces generated by the machine under operating conditions.

Additional information regarding number of blades in case of fans & turbines, number of poles in
case of motors etc. may turn out to be helpful in specific cases (see $ 6.1),

Coupling

Drive Machine Driven Machine

Figure 6.1-1 A Typical Rotary Machine

For Strength Design

1. Static loads from the machine.

2. Equivalent Static forces i.e. dynamic forces converted as Equivalent Static Forces

3. Forces generated under Emergency and Faulted conditions e.g. Bearing Failure Forces, Short

4.

Circuit Forces and Forces due to Loss of Blade etc.
Forces during Erection, Maintenance & Test Conditions of the machine

In this chapter we refer to machine parameters for

a) Rotary Machines
b) Reciprocating Machines
) Impact Machines
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6.1 PARAMETERS FOR ROTARY MACHINES

Conceptually, a rotary machine comprises of a rotary drive machine, a rotary driven machine
connected through a coupling device. A typical schematic arrangement is shown in Figure 6.1-1.

6.1.1 Dynamic Forces

Every rotating machine possesses some amount of residual unbalance even after balancing. This
residual unbalance is termed as rotor eccentricity and the rotor, due to this eccentricity, produces
unbalance dynamic force. The unbalance dynamic force therefore is a function of rotor mass, rotor
eccentricity and rotor speed.

Rotor generates dynamic forces at all speeds. During start-up it generates dynamic forces right
from zero speed to its full operating speed, whereas during shutdown it generates dynamic forces
right from full operating speed to halt position (zero speed). The dynamic force shall be at its
maximum speed of operation. Dynamic Forces are normally supplied by the manufacturer/supplier.
The generated unbalance forces are function of rotor mass, rotor eccentricity and rotor speed. These
forces are computed at bearing levels for all possible combinations.

6.1.1.1 Rotor Eccentricity

600 T I
500 Rotor Balance Grades

G6.3 .
400 -

300
\

G25
200 -\ N
\

Rotor Eccentricity (Microns)

100
\—
\;
0
0 250 500 750 1000 1250 1500
Rotor Speed (rpm)

Figure 6.1.1-1 Rotor Eccentricity Vs. Rotor Speed for Rigid Rotors

The rotor (of every rotating machine) is balanced to a required balance quality grade. Balance
quality grade for a rotor gets decided based on operating speed and the intended use of the
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machine. International Standard Organization code ‘ISO 1940/1° gives the recommended balance
quality grades for rotors (only Rigid Rotors) of all types of rotating machines.

The residual balance present in the rotor gives rise to unbalance dynamic forces. Thus the
generated unbalance forces are directly proportional to the balance quality grade. Balance quality
grade is represented as Gr (e.g. G0.4, G1, G2.5, G6.3, G16, G40 etc.) where the letter G is used as
a notation for Grade and r is the number (in mm/sec) that represents product of eccentricity (in
mm) and rotation speed @ (in rad/sec). In other words r could also be expressed as e per @ Thus

ratio r/@ gives eccentricity in mm.

Thus for a rotor balanced to balance quality grade Gr and operating at speed @ rad/sec, the
eccentricity of rotor e (in meters) is given as:

e=Lx102 m (6.1.1-1)
w

-

Thus a balance grade (6.3 for a rotor operating at 900 rpm ( @ = 94.25 rad/s ) would mean that the
rotor eccentricity is:

6.3
94.25

%107 =66.8x107* m = 66.8 microns

e =
Figure 6.1.1-1 gives Rotor Eccentricity in microns vs. Rotor speed for Balance
grades G2.5& G6.3.

Normally machine manufacturer provides either rotor eccentricity or rotor balance quality grade for
the rotor. In certain cases unbalanced forces generated by the rotor are furnished. In the absence of
any such information, it is recommended to use the following relationship:

a) For rigid rotors use balance grade as per 1SO 1940/1, and

b) For Flexible Rotors e= —S—A(I)Zg m (after Barkan (1962)) (6.1.1-2)

Here e represents eccentricity in meters & N represents operating speed of the rotor in rpm.

6.1.1.2 Unbalance Forces

The eccentricity e represents the residual unbalance left in the rotor after balancing. The rotor
generates dynamic unbalance force, which is nothing but the centrifugal force generated by the
rotor of mass m, (in kg) having eccentricity e (in meters), rotating at frequency @ rad’s.
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Thus the dynamic unbalance force F* in (Newton) is given as
F(t)=m,xexo’ snwt N (6.1.1-3)

Unbalance Force

_ 2
F=meo

Bearing 2

(along Z-Axis)

Plane Normal to
Rotor Axis

(a) Rotor Support on Bearings (b) Unbalance Force acting in a plane
normal to Rotor axis

Figure 6.1.1-2 Rotor Unbalance Force

This is also expressed as F(¢) = Fysinwt where F, represents magnitude of the unbalance force
in Newton and @ represents the excitation frequency in rad/s.

The magnitude of the dynamic unbalance force is F, =m, xexw? and excitation frequency

equals to the running speed of the rotor i.e. @ rad/s or N rpm. This force acts in a plane normal to
rotor axis and is directed radially outward from the center of the rotor.,

Let us consider a rotor of mass m, (in kg) having eccentricity e (in meters), rotating at frequency

o rad/sec having rotor axis as Z — axis as shown in Figure 6.1.1-2. Consider at any instant of time

1, that the force F(f)=m, xexw?® sinwt is directed at an angle’ ¢ from the horizontal axis (X-X)

passing through center of the rotor point C. The two components of this force in X-X & Y-Y
direction are:

In X-X direction F,=m, ew’ cos¢ (6.1.1-4)
In Y-Y direction F,=m,e w0 sin ¢ (6.1.1-5)
Maximum Horizontal component (cos¢g =1) F,=m,en’ (6.1.1-6)
Maximum Vertical component (sing =1) Fy =m, ew? (6.1.1-7)
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Rotor 2

<

Bearing 2B

Bearing 2A
Bearing 1B

Bearing 1A
Rotor 1

(a) X Component of Unbalance Force 180° Out of Phase

Bearing 2A
Bearing 1B F,
y

Bearing 1A

Rotor 1

(b) Y Component of Unbalance Force 180° out of Phase

Figure 6.1.1-3 Machine Having two Rotors - Rotor 1 & Rotor 2 - Unbalance Forces
out of Phase in Each rotor
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This force is transferred from the rotor to its two bearings in the same ratio as that of the rotor static
reactions. If the reactions on the two bearings due to rotor weight are in the ratio of say a: b, then

the dynamic force transferred from the rotor to the bearings shall also be in the ratio a:b.
Considering that the bearing pedestals are rigid not to cause any amplification, the transfer of the
force from the bearing to the foundation takes place as per law of Statics.

For machines having more than one rotor, the unbalance force generated in each rotor may or may

not have same phase angle. Let us examine this also in detail. Let F}, F,, F5,..... represent dynamic
forces generated by rotors (rotor 1, rotor 2, rotor 3 etc).

+

Consider a machine comprising of two rotors, say rotor 1 & rotor 2 having same massm, & m,, ,
eccentricity e; & e, and speed o, & w, respectively as shown in Figure 6.1.1-2. Let Rotor 1 be

supported by Bearing 1A & 1B & Rotor 2 be supported by Bearing 2A & 2B respectively. Let the
unbalance forces generated by Rotor 1 & 2 be F| & F, respectively. Let C; and C, represent the

points of action of forces F, & F, respectively. Let the distance between C; & C, be L and that
between C, and bearing 1A be a.
We can write the Unbalance forces as

Fi=m, e’ Fy=m,, ¢; 0,° (6.1.1-8)

Consider that at any instance of time ¢, the forces F; & F; are at an angle ¢ & ¢, with respect to
X-axis respectively.

Components of the unbalance forces are:
X-Components are Fi,=Fcosg; F, =F,cosg,
Y-Components are R, =FRsing; F,=Fsing,
Case 1: Both the forces F, & F, have same phase angle ie. ¢, =¢, =¢
The total Maximum Reaction along Y-axis shall be (sing =1)
Ry +F,=FR+F (6.1.1-9)

The total Maximum Reaction along X-axis shall also be (cos¢g =1)
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P+ by =FR+F (6.1.1-10)
Case 2: Both the forces F, & F, are 180° out of phase ie. ¢y =9 & ¢, =180—¢
The total Maximum Reaction along Y-axis shall be (sing=1)
F,~F,=FR~-F (6.1.1-11)
The total Maximum Reaction along X-axis shall also be (cos¢g =1)
Fio-Fyy=h-F (6.1.1-12)
In addition, the unbalance forces shall give rise to two couples:

Moment at any point say at bearing 1 (@ distance a (along Z) from center of Rotor 1)

Maximum Moment about Y - axis M, =Fx(L+a)-F, xa (6.1.1-13)
Maximum Moment about X-axis My =F,, x(L+a)-F, xa (6.1.1-14)

Thus it is clear that though the generated unbalance forces have components only in X & Y
direction, these will also generate moments about Y & X axes, Hence it becomes obvious that it is
not enough to compute amplitudes for vibration modes in Y and X translation, but amplitudes must
also be computed for rocking (about X-axis) as well as Torsional Mode (about Y axis) for the
moments thus generated as above.

Caution: At times it has been noticed that dynamic forces given by
some machine suppliers contain an arbitrary Multiplication Factor. This is
undesirable and must be corrected at this stage itself otherwise it may lead to
unrealistic dynamic design of the foundation. Forces generated must be in
accordance with rotor eccentricity, rotor speed and rotor mass (as above).

6.1.2 Transient Resonance
6.1.2.1 Unbalance Forces during Start-up and Shutdown

During start-up the rotor generates dynamic forces at all speeds, right from start (zero speed) till
full operating speed (see $ 6.1). Similarly during shutdown, it generates dynamic forces at all
speeds i.e. from full speed right up to halt position.
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The dynamic forces at operating speed contribute to Steady-State Response of the system,
whereas the dynamic forces during startup and shutdown contribute to Transient Response. Its
significance becomes more for under-tuned foundations where foundation natural frequencies are
below operating speed of the machine. With every start-up & shutdown, machine speed comes into
resonance with foundation natural frequencies called Transient Resonance. Though unbalance
force is relatively low at transient resonance, resulting amplitudes become higher on account of
resonance,

Maximum magnitude of dynamic force generated by rotor (see equation 6.1.1-3) is:

Fy =m, xexw* (6.12-1)
In non-dimensional form, we can write

= = (6.1.2-2)
meg mg g

LHS term is the ratio of Unbalance Force to the Rotor Weight. Plot of equation 6.1.2-2 for a
machine with rotor eccentricity of 50 microns and maximum operating speed of 50 Hz. is shown in
Figure 6.1.2-1. '

0.6
0.503
0.5
8.,
S fp 0.4
v
g% 03
AR Rotor Eccentricity
g e 0.2 50 microns
0.1
0 T T T 1 T T T 1
0 10 20 30 40 50 50 40 30 20 10 0
Start - up Steady - State Shut - down
a o+ + y
Speed Hz

Figure 6.1.2-1 Unbalance Force During Start-up, Steady-State & Shut-Down for Rotor
Eccentricity 50 Microns - Max Machine Speed 50 Hz.
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It is seen that during start-up, the force rises and reaches its maximum at full operating speed and
during shutdown it drops down to zero value at halt position. It is also seen that the maximum
value of the force is 0.503 times the weight of the rotor.

For transient resonance, though the unbalance force is lesser but the magnification shall be high
because of resonance giving high amplitudes.

6.1.2.2 Nozzle Passing Frequencies

Nozzle passing frequencies are expressed as rotor speed multiplied by number of blades. In case of
machines like pumps, fans, turbines, compressors, etc. high vibrations have been encountered when
foundation/support system frequencies are in resonance with nozzle passing frequencies.

As these frequencies are multiple of operating speed, possibility of occurrence of transient
resonance exists only in over-tuned machines. It is desirable to avoid these frequencies while
computing natural frequencies of foundations.

6.1.3 Criﬁcal Speeds of Rotors

Critical Speeds of Rotors correspond to flexural frequencies of the rotors. Normally machine
supplier furnishes these. If not, one should ask for these.

In some cases, high vibrations have been reported on account of resonance with critical speeds. It is
only desirable to avoid these frequencies while computing natural frequencies of foundations.

6.1.4 Rotor Bearing Supports

Generally one comes across the machines having either Pedestal Bearings or End-shield
Bearings. In case of Pedestal Bearings, the pedestal is independently supported on the foundation
and the dynamic force from the rotor are transmitted to the foundation at the pedestal support
location.

In case of End-shield Bearings, the bearing is housed in the machine casing itself and the dynamic
force from the rotor are transmitted to the foundation through the machine stator support points.

This aspect is important from the point of view of Amplitude Computations and must be taken
care of while mathematical modeling of machine foundation system.

6.1.5 Forces Due To Emergency And Faulted Conditions

Invariably every machine, during its life cycle, sustains very high forces, which occur due to
malfunction of one or other features. Such conditions are termed as Emergency and Faulted
Conditions. Machine develops very high forces during these conditions. Adequacy of foundation
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must be ensured to withstand these forces. Hence, these forces must be considered for strength
design of the foundation only.

Without going into further details, we list some of the known faulted conditions related to
machines. These are:

6.1.5.1 Bearing Failure Forces

Cases of Bearing Seizure, on one account or the other, have been reported in the past. In certain
cases, inadequate supply or no supply of lube oil to bearings (for whatsoever reason), have resulted
in Seizure of Bearings. Due to this machine running at full speed comes to grinding halt in very-
very short time (may be in seconds or in a couple of minutes). This phenomenon results in very
high dynamic forces developed by the rotor. These are termed as Bearing Failure Forces.

The damage to the machine obviously cannot be prevented but the objective is that the foundation
should structuraily be strong enough to withstand such high forces.

It is difficult to quantify these forces specifically. Based on the experience, it is however suggested
that a Force equal to 3 to 5 times the Rotor Weight should be considered in vertical as well as
transverse direction transmitted through rotor bearings to the foundation. It is to be ensured that
Foundation should be capable to withstand this force. An increase in the allowable stress to the
tune of 50 % could be considered for strength check. Similar increase could also be considered for
bearing pressure check.

6.1.5.2 Short Circuit Forces

These forces occur due to short circuit in motors. These are generally furnished by the supplier and
should be considered for strength design of the foundation. An increase in the allowable stress to
the tune of 25 % could be considered for strength check. Similar increase could also be considered
for bearing pressure check.

6.1.5.3 Forces due to Loss of moving part like Blade, Hammer and Fins etc.

For machines such as Fans, Pumps, Compressors, Crushers, etc. often one encounters condition of
loss of blade or loss of hammer as the case may be. These give rise to very high forces. An increase
in the allowable stress to the tune of 25 % could be considered for strength check. Similar increase
could also be considered for bearing pressure check. These forces are furnished by the
supplier/manufacturer and should be considered for strength design of the foundation.

6.1.6 Coupling of Machines

Different types of coupling arrangements are seen for different machines. Drive machine could be
coupled directly to the driven machine or through a gearbox. When the machines are directly
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coupled, the operating speed of drive and driven machine remain the same and the unbalance forces
for both drive and driven machine develop at the same speed.

On the other hand, when coupling is through gearbox, the operating speeds of drive and driven
machine become different (in proportion to gear ratio) and the unbalance forces developed by both
drive and driven machine are at different speeds. In this case transient resonance amplitudes are
computed with respect to speeds of both the machines.

6.2 PARAMETERS FOR RECIPROCATING MACHINES

Conceptually, a reciprocating machine comprises of i) crank rod, ii) connecting rod and iii) piston
(including piston rod). In this type of machine, linear motion of the piston, through a connecting
rod, results in rotary motion of the crankshatft.

Consider a single cylinder-reciprocating machine placed in Y-Z plane. Movement of piston is along
Z-axis and rotation of the crank about X-axis (X-axis is normal to plane of paper). A typical
schematic arrangement showing system under motion is as given in Figure 6.2-1.

Piston rod Crank rod

Cylinder

Extreme and
position

Z‘__ ....... 7{ ..............................................................

Connecting

K” rod
Piston

I+r

CG of Engine Base Frame

Figure 6.2-1 A Typical arrangement of a Single Cylinder Reciprocating
Machine System Under Motion - Position at any time ¢
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6.2.1 Dynamic Forces
The motion of the connecting rod is a complex motion i.e. one end of the connecting rod performs

linear motion and the other end performs rotary motion. For evaluation of dynamic forces, let us
define the machine parameters as under:

6.2.1.1 Single Cylinder Machine

Consider machine centerline along Z-axis. Y-axis represents vertical direction.

Crank rod:

(Center of rotation point O connected to connecting rod at point A)

Mass of crank rod m,
Length of crank rod or
Distance of its CG (C, ) from center of rotation point ‘O’ ry
Speed of rotation (rad/sec) 7]

Connecting rod:

(End A connected to crank rod & end B connected to piston):

Mass of connecting rod m,
Length of connecting rod /
" Distance of CG of connecting rod (C, ) from point A I8
Distance of CG of connecting rod (C, ) from point B {y
Piston:
Mass (Piston assembly including piston rod, cross head etc) m,

Consider the position of piston at any time tis as shown in Figure 6.2-1. Let the piston
displacement from its extreme end position be z , . At this position, connecting rod makes an angle

¢ and crank rod makes an angle & with machine axis OZ as shown. Rotary motion of the crank
rod generates linear motion of the piston.

For computation of dynamic forces, consider that the distributed mass of connecting rod is lumped
at points A& B and that of crank rod is lumped at point 4 & O using principle of statics.
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Center of
F rotation of Y
4 crankrod A

Connecting Rod

Py @ TR .
Base Frame
& F, C
N
- RN
CG of Machine @ Base Frame Lavel

VA

. /‘ |
Base Frame ‘ z

\ 4
X

Figure 6.2-2  Single Machine - Position at any Instant ¢ - Dynamic Forces
Transferred at CG of Machine @ Base Frame Level

Mass at 4 my=m,(ry/r)+m.ly /1)
Mass at B my =ml,/])+m,
Dynamic force
Dynamic force generated at point A Fy=myxrx w? (6.2-1)

(This force acts radially outwards along OA)

Dynamic force generated at point B Fy=mgxZ (6.2-2)

14
(This force acts linearly along OZ)

Let us now evaluate z, in terms of motion parameters of the machine.

p
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z, =1+r—(rcos@+Icosg)=r(l—-cosd)+I(1—cosg)

From Figure 6.2-1, we get

2 W
Also AQ-=rsinf =[sing; this gives cos ¢ =(1—-;—2—sin2 9]

Using series expansion and ignoring higher order terms, it gives

1 I‘2 )
cosg=1-——sin“ g Or

1r2 5 172 1-cos26 r?
l1-cosg) =——=s8in" 0 =—m = ——
(1-cos) =7 7

1
L (1-
e 5 a2 ( cos26)

Substituting 6.2-4 in equation 6.2-3, we get
2
z, =l —cos@)+lf——(1 ~€0s20) = r[l +-r~)—r cos 0+ —cos 20
r 4 1 4/ 4]

Since # = w ¢t ; substituting we get

z_=vr I+I— —r‘cosa)t+Lcos2a)t
r 4] 4]

. . ro.
zZ, =rw (sma)t+§sm2(ot)

Differentiating it gives

p

. 2 r
Z,=ro coswt+70052wt

Substituting in equation 6.2-2, we get

. 2 r ) .
Fyp=myxZ, =myxiro coswt+7cos wt |z,

r
= mBra)z(cosa)t)+ m,,ra)z(7c032wt]
—_——

primary component
secondary component

6-17

(6.2-3)

(6.2-4)

(6.2-5)

(6.2-6)

6.2-7)

It is seen that the Dynamic force generated at point A that acts radially outwards along OA has
only one component at machine speed whereas Dynamic force generated at point B that acts
along OZ, has two components, one at machine speed and the other at twice the machine speed.
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These dynamic forces in turn are transferred to the foundation through the base frame of the
machine. Resolving these forces and transferring to CG of Base Frame point C at instant of time¢,
we get:

k. =Fg+F cos0;, F,=Fysin€, M, =F.xy+F,xz (6.2-8)

Here F, & F; are as given by equations 6.2-1 and 6.2-7 respectively. M, is the moment at C
about X —axis and y & zare distances of point O from point C in Y & Z direction respectively.
These forces are shown in Figure 6.2-2. From this equation, we get forces:

At 6 =0°, forces and moments acing at point C are:

Fopy=0; Fo=(Fy+Fy} M, =(F+Fy)xy (6.2-9)

At @=90°, forces and moments acing at point C are:

Foy=Fy Fo=Fg M =Fyxz+Fyxy (6.2-10)
6.2.1.2 Multi-Cylinder Machine

Consider a multi-cylinder engine having » cylinders. The placement of these » cylinders in Plan
(X-Z Plane) is as shown in Figure 6.2-3. Let us consider that at any instant of time ¢, the crank rod

in it cylinder makes an angle 6, with the O-Z.

Dynamic forces are computed in line with the procedure for a single cylinder machine. The net
force developed by the machine in a specific direction is the algebraic sum of the force developed
in each cylinder in that direction.

Forces developed in the i’h

cylinder machine
Force along Z-direction at CG of the base frame level point C:

F., ;= (Fp, +Fy cos6) (6.2-11)

Force along Y-direction at CG of the base frame level point C:

Frpp = Faising, (6.2-12)

Moment about X-axis at CG of the base frame level point C:
Mcxi=Fczixy"+Fcyixzi (6.2-13)

In addition there shall be one more moment M ., developed at point C about Z-axis.
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Center of
F; rotationof Y
. crank rod

VA

CG of Machine @ Base Frame Lavel

Z <

e e | e — Fo—————— o-f-—-Jt----

«

@ Base Frame Level

_/ !
Base Frame z

Figure 6.2-3  Multi Cylinder Machine - (» Cylinders) Position at any
instant f - Dynamic Forces Transferred at CG of Machine

C @ Base Frame Level

L I C: CG of Machine ' \

Moment at point C about Z- axis by ith cylinder Machine

Mczi:(FCZl.xx,)+(Fcyl.><x,) (6.2-14)

Here x;,y; & z;are the distances of the i’ machine from CG of the base frame level point C in

X,Y and Z direction respectively.
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Total Force at point C in Z direction Fcz = Z”; Fczi (6.2-15)

=l
Total Force at point C in Y direction Fcy = éFcyi (6.2-16)
Total Moment at point C about X- axis M = Z. M, (6.2-17)
Total Moment at point C about Z- axis M, = i Mcz i (6.2-18)

6.2.2 Transient Resonance

In case the rotary forces of the crankshaft are not counterbalanced, transient resonance conditions
will be setup during each start-up and shutdown. Thus for under-tuned foundations, Transient

Resonance Amplitudes are to be computed as per provisions given in $ 6.1.2.
6.2.3 Forces Due to Emergency and Faulted Conditions

Machine develops very high forces during these conditions. Adequacy of foundation must be
ensured to withstand these forces. Thus provisions as given in $ 6.1.5 are to be considered, if
applicable, for strength design of the foundation only.

6.2.4 Coupling of Machines
Provisions as given in $ 6.1.6 are to be considered, if applicable.
6.3 PARAMETERS FOR IMPACT MACHINES

Various types of Impact Machines are in use by the industry. Impact produced by these machines
fall under one of the following categories:

i) Machines Producing Repeated Impacts e.g. Forge Hammers & Drop Hammers
ii) Machines Producing Impulse/Pulse Loading e.g. Drop Crushers, Pig Breakers, Jolters, Forging
and Stamping Press, etc. ‘ ‘

6.3.1 Machines producing repeated Impacts- Forge Hammers

Typical examples of Impact Machine are Forge Hammers. A Forge Hammer comprises of a Tup,
an Anvil and a Frame. The complete assembly is mounted over a rigid RCC Foundation, which in
turn rests on the soil.
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Tup + Upper Die
Material
Tup [ ] for Forging
Material / Lower die
for Forging
[]
Flastic Pad A

D~ Elastic Pad

Foundation Block

Soil / ’ Soil
(a) Forge Hammer (b) Drop Hammer
Guide Frame attached to Foundation Guide Frame attached to Anvil
Elastic Pad below Anvil Elastic Pad below Anvil

Figure 6.3-1 A Typical Arrangement of a Hammer Foundation

Drop Hammer is also a sub-set of Forge Hammer. Drop Hammers are used for Die Stampings,
whereas Forge Hammers are used for Forging Operations. In case of Drop Hammers, Guide-frame
is mounted over Anvil whereas in case of Forge Hammers, Guide-frame and Anvil are supported
independently over the foundation block.

The Tup, which is a block of heavy mass, falls from a height and strikes the material, to be forged,
placed on the Anvil. The Anvil is invariably placed over an elastic pad and the pad rests on the
Foundation Block supported over soil. The elastic pad helps in preventing the bouncing of the
Anvil over the Foundation.

The force produced during the strike is termed as the Impact Force. The energy imparted by the
impact force results in motion of the Anvil. The energy from the Anvil is then transmitted to the
soil through the foundation. Thus for both these machines i.e. Forge and Drop Hammers, Machine
parameters, therefore are those parameters that are necessary to compute initial velocity generated
by the Anvil as well as stiffness properties of the elastic pad below the Anvil.

Typical parameters required are:

i) Total Mass of the Hammer i.e. Mass of the Tup, Anvil, Die & Frame
i) Mass of falling part i.e. Tup (also Mass of Upper Die in case of Drop Hammers)
iii) Height of fall for the Tup/ Energy of Impact
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iv) Area of the Piston
v) Pressure in the Cylinder
vi) Frequency of Impact

vii) Mass of Anvil (also Mass of Guide Frame if attached to Anvil)

viii) Frequency i.e. Number of Blows/min

ix) Base area of the Anvil

X) Details of Anchor Bolts connecting frame base to the foundation

Xi) Thickness of Elastic Pad placed below Anvil and its Elastic Modulus
Xii) Coefficient of Restitution/Impact

Depending upon machine type, additional parameters may be needed for evaluating dynamic
forces.

6.3.1.1 Dynamic Forces

Vibration of the foundation subjected to impact by the hammer is basically an Initial Velocity
Problem. We can represent the complete Hammer-Foundation System in two parts:

i. A falling Mass m, from a height ~# producing Impact
ii.  Remaining System that withstands this impact

Let us first evaluate Initial Velocity of the Falling Mass

Consider that the mass is falling freely. From basic law of dynamics, we write the Initial Velocity
of the freely falling mass m; from a height 4 as:

vo=+2gh (6.3-1)

@ Single Acting Drop Hammers

For a single acting Drop Hammer, initial velocity of the falling mass (mass of Tup and mass of
Top Die) from a height 4 is written as:

vo=n+J28h (6.3-2)
h Represents total height of fall of the falling mass
g Represents acceleration due to gravity
n Represents Efficiency of Drop

Factor 7 depends upon energy lost in overcoming the friction to the Tup’s movement and the

resistance of the steam/air counter pressure. From practical considerations, the recommended value
of Efficiency of Drop 7 is 0.65.
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Tup + Upper Die

Material
for Forging

=]

Lower die

m

Elastic Pad

Foundation Block

(a) Drop Hammer
Guide Frame attached to Anvil
Elastic Pad below Anvil

(b) Equivalent Spring Mass System

Figure 6.3-2  Atypical Arrangement of a Hammer Foundation - Equivalent
Spring Mass System :

(b) Double Acting Hammers

In this case hammer is operated by pneumatic/steam pressure and initial velocity is given
as:

myxg+p;xA
v(') =77\/2ghx[_9__g_e.___p] (6.3'3)

myxg

The quantity in the bracket represents influence of force on the piston to the initial velocity.

Here:

A, Represents area of the piston

Ds Represents pressure (steam/air) acting on the piston
my Represents total mass of the falling parts

g Represents acceleration due to gravity
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mo [ Tup

my Anvil
™My [:j Tup

Elastic Pad
m Anvil + Foundation m Foundation
Soil Soil
~_ -
@ (b)

Figure 6.3-3  (a) Foundation Represented as Single Spring Mass System
(b) Foundation Represented as two Spring Mass System

The impact of the Tup is resisted by the Anvil and transferred to soil through the foundation. Let us
consider two cases that could be considered representative of Anvil-Foundation System. These are:

i. Ifthere is no elastic pad below Anvil, then the Anvil becomes part of the foundation and
the impact is resisted by the anvil and foundation together. In this case, Foundation
System is represented as a Single Spring Mass System subjected to initial velocity.
System is as shown in Figure 6.3-3 (a)

ii. If there is an elastic pad below Anvil, then the Anvil first resists the impact, Due to
impact, the Anvil develops an initial velocity. In this case, Foundation System is
represented as a Two Spring Mass System subjected to initial velocity. System is as
shown in Figure 6.3-3 (b)

For both these cases, we need to compute only initial velocity of the Anvil/Foundation as the case
may be due to impact of the Tup.

For Single Spring Mass System shown in Figure 6.3-3 (a), initial velocity imparted to the anvil
(Anvil + Foundation) by the impact of the Tup is given by equation (2.2.5-3) and the same is
reproduced below:
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— x (1+e)

Vi =V (1+ﬂ,|) (63-4)

Here A =m/m, represents ratio of mass of Anvil + Foundation to mass of Tup.

For Two Spring Mass System shown in Figure 6.3-3 (b), initial velocity of the anvil is given by
equation (3.2.1-20) and the same is reproduced below:

5 (1+e)

e 6.3-5
U+ ) 63-3)

!
V=%

Here A, = m,/m, represents ratio of mass of Anvil to mass of Tup.

Here e represents Coefficient of Restitution that depends upon properties of the material of the
masses my&m or my& m, as the case may be. For perfectly plastic central impact, the value

of e is zero and for perfectly elastic central impact e is equal to unity. For real bodies in practice,
the value lies in the range O<e<land for all practical purposes it’s reasonably good to

usee=0.5.
6.3.2 Machines Producing Impulse/Pulse Loading
i) Forging and Stamping Press

These presses may be of Hydraulic type, Friction Type or Eccentric. Generally these are very large
capacity presses having pressing capacity in the range of a few thousand tons say 10,000 t. Though
dynamic forces transmitted to the foundation are small because of low speed of operation, stresses
due to impact/shock is of significant order and may cause overloading to the order of 50 to 100% of
the material to be forged.

if) Drop Weight Crushers

These crushers, through dropping of ram, impart very high kinetic energy to the foundation
resulting in transmission of high vibrations in the soil. Adjoining structures therefore need to be
isolated from these crusher foundations. Impact forces are evaluated like those for hammers.

jii) Crushing, Rolling and Grinding Mills

These mills, due to presence of unbalance masses, produce high dynamic forces that in turn are
transmitted to soil through foundation. Due to presence of unbalance masses, dynamic forces are
evaluated in line with those for rotating machines.
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Typical machine parameters/data required are:
i) Mass Parameters

a. Total Mass of machine
b. Mass of cross head
c. Mass of material to be forged

i) Dynamic Force Parameters

d. Stroke of the press/ height of fall of ram

e. Pressure exerted by the press

f.  Load time history of the pulse

g. Frequency of Impact i.e. Number of Blows/min

h. Unbalance force (in case of mills)
iif) Height & Cross section area of steel columns ( in case of Press)
iv) Details of Anchor Bolts and other embedded parts

6.3.2.1 Dynamic Forces

The force produced during operation is termed as the Impulsive Force. Two types of pulse loading
are considered:

i) Short duration Impulse Loading
ii) Long duration Pulse Loading
Short Duration Impulse Loading: For machines producing Short Duration Impulse

Loading, dynamic response depends upon dynamic excitation force and frequency of excitation. It
is therefore desirable to consider Frequency of Impact i.e. Number of Blows/min for amplitude
computation. Here dynamic magnification factor depends upon ratio of Frequency of Impact to
natural frequency. Dynamic force is nothing but Impulse loading / as shown in Figure 6.3-4.

Impulse I=Fxt (6.3-6)

In case Force Time History/Impulse Momentum is not defined by the manufacturer, its value may
be considered as: ‘

Impulse I =myxv 6.3-7)

Here m, represents total mass of the falling part and v, = /2 g/ is the terminal velocity, 4 being
height of fall.
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Natural frequency p= ‘/z rad/s
m
Number of strike per minute N
27
Frequency of Impact o= 50 N rad/s
Frequency ratio B= 2
p
Dynamic Magnification Hy = ! > (6.3-8)
i-7%)
. ! 3
Amplitude y=—p,x10" mm (6.3-9)
mp

Long Duration Pulse Loading:  For machines producing Long Duration Pulse Loading, pulse
shape showing load time history must be considered for computing dynamic magnification for
amplitude computation. Dynamic magnification factor depends upon ratio of pulse duration to
natural time period of foundation. For such loadings, maximum response reaches in a very short
time before system damping gets effective. Depending upon ratio of duration of the pulise to natural
time period, maximum response may occur either during the pulse or after the pulse.

ﬂ‘
I’ i
m
F I=Fxt
k
77 ‘ —> ¢

k-

Figure 6.3-4  System Subjected to Impulsive Load

System Response: Response due to pulse/impulse loading is discussed in detail in Chapter
2 (see $ 2.2.6). Response of the system during the pulse duration (Phase I) is the Forced Vibration
Response and the response after the pulse (Phase I1) is the Free Vibration Response.
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Irrespective of shape of the pulse, for frequency ratio 8, <1 i.. for %>—:lz maximum response

occurs during forced vibration phase i.e. Phase [ and for 8, >1 i.e. for% < —;— , maximum response

occurs during Free Vibration Phase i.e. Phase II.
We know that for a spring mass system having stiffness & and mass m

Natural frequency is p = \/Z rad/s . This gives Time Period 7 = —
m

o
For Peak Dynamic Force induced by machine as F,

Amplitude thus b 5 10° 6.3-10

mplitude thus becomes y—Txfxyyx mm (6.3-10)

Here ¢ is the Fatigue Factor. In case fatigue factor is not defined, it may be taken equal to 2.
Magnification Factor u, vs. 7/T is shown in Figure 2.2.6-3.

64  AMPLITUDES OF VIBRATION

The acceptable norms of vibration tolerance and accordingly the permissible amplitudes of
vibration for different types of machines depend upon machine type, its class, its placement in the
plant cycle and applicable codes of practices. The acceptance norms may differ from industry to
industry and from country to country. Hence it is suggested that one should refer to applicable
codes of practices in his respective country or follow the provisions laid down in International
Codes/Standards. In addition, guidelines/ restrictions given by machine manufacturer must also
be given due consideration.

Before setting the limit to the permissible values of the amplitudes, the following considerations
must be looked into:

i.  Computed amplitudes are always half amplitudes, whereas limiting amplitudes, as given
by machine manufacturer, are invariably double amplitudes.

ii.  Limiting amplitudes, given by machine manufacturer, are at machine bearing locations
whereas computed amplitudes are normally at the foundation level.

iii. =~ Machines also can withstand much higher amplitudes (3 to 5§ times higher) than
permissible without getting damaged.

iv.  Even when the amplitudes for a given machine are within permissible limits, it could be
destructive /unacceptable to adjoining machines/structures.

v.  Similar machines would have different vibration limits when used in different
environment viz. a pump required to supply lube-oil to machine bearing would certainly
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have stringent vibration limits compared to similar pump for normal pumping applications
as failure of pump in earlier case would have serious consequences.

In view of the above, no common guidelines could be defined for setting permissible limits of
vibration for all types of machines and for all applications. The governing criteria therefore are the
permissible amounts of vibrations that the machine, its surroundmgs or the persons in the vicinity
of the machines can tolerate.

Vibration measurements on the machine are done a) during test at the shop floor at the test bed, b)
during commissioning at the site and during normal running of the machine throughout its life
cycle at specified time interval. For some machine, vibration monitoring is done continuously 24
hours during operation of machine. Invariably, vibration measurements are taken at all salient
points on the machine. These are:

EXAMPLE PROBLEMS - ROTARY MACHINES
P6.1-1

Compute eccentricity for a rotor having mass m, =1000 kg, operating speed of 3000 rpm
and balance grade G6.3

Solution:
. 3000
Operating speed N =3000rpm; or f= o0 =50 Hz. (cps)
®=50x2xm =314.16 rad/s
Balance quality grade (6.3 (This means ew = 6.3 mm/sec)
s 6.3 -3 -5
Eccentricity (in - m) e= x107" =2.00x10 m
314.16

Thus we can say that eccentricity is e =20 microns

Note: For computation purposes, Eccentricity value must be expressed in meters.

P6.1-2

Compute unbalance force for the rotor, having mass m, =1000 kg, balance grade G6.3
and rotating at speed of 3000 rpm.
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Solution:

x2xm=314.16 rad/s

Operating speed N =3000rpm; orw = 3280

Balance quality grade (This means ew =6.3 mm/s)
Eccentricity corresponding to G6.3 (see P 6.1-1) e=2.00x10" m
Unbalance force F, =Fysinot; Fy=m, e o’

Fy =1000x2.0x107 x(314.16)2 =1974 N

The force of 1974 N acts at excitation frequency w =314.16 rad/s or 3000 rpm

P 6.1-3

A machine has its rotor having mass m, =1000 kg, operating speed of 3000 rpm and
balance grade G6.3. Consider that the rotor is along Z-Z axis, supported on two pedestal
bearings A & B and the height of centerline of the rotor above the bottom of the bearing
pedestal is 800 mm as shown in Figure P 6.1-3. Static reactions R, & R, due to rotor at the

bearing A and bearing B respectively are in the ratio of 1:1. Compute the unbalance dynamic
force a) at the bearing top points and b) at bearing bottom points.

Y Rotor
A
E Ry Ry
= Static Rotor Reaction
Bearing 4 Bearing B
L >y 4 anng

Figure P 6.1-3 Rotor Supported on Bearing 4 & B

Solution:
Rotor data is same as that in P 6.1-2.

Unbalance force (see P 6.1-2) =1974 N
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Since R, = Ry, the reactions due to dynamic force on bearings A & B shall bF equal. Thus reaction

due to dynamic force at each bearing = F,=Fg=0.5x1974=987 N

a) Unbalance dynamic force at rotor support point of bearing

Max. Vertical Unbalance Force (sin¢ = 1) along Y-Y at each bearing F,=987N
Max. Horizontal Unbalance Force (cos¢ = 1) along X-X at each bearing F, =987 N
b) Unbalance dynamic-force at bottom of bearing

The vertical force gets transmitted to bearing bottom as it is whereas horizontal force also generates
moment at the bearing bottom.

Max. Vertical Unbalance Force (along Y-Y) at each bearing (Same as F)) =987 N

Max. Horizontal Unbalance Force (along X-X) at each bearing (Same as F,) =987 N

Max. Moment at bearing pedestal bottom (About Z-axis) M, =987x0.8 =789.6 Nm

P 6.1-4

For the data given in Problem 6.1-3, consider static reactions due to rotor at the two bearing
ends are such that R, : R; ::7:3. Compute the unbalance dynamic force a) at the bearing top

points and b) at bearing bottom points.

K / Rotor
E R, Ry
=4 Static Rotor Reaction
@ Ry:Rg:7:3
» 7 Bearing 4 Bearing B

Figure P 6.1-4 Rotor Supported on Bearing 4 & B
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Solution:
Unbalance force (see Problem 6.1-2) =1974 N
a) Unbalance dynamic force at rotor support point of bearing

Max. Vertical Unbalance Force (along Y-Y)

At Bearing A F,@4=0.7x1974=1381.8 N

At Bearing B Fyap =0.3x1974=5922 N

Max. Horizontal Unbalance Force (along X-X)

At Bearing A Fr@4 =0.7x1974=1381.8 N

At Bearing B Fo@s =03x1974=5922 N

b) Unbalance dynamic force at bottom of bearing
Max. Vertical Unbalance Force (along Y-Y) at Bearing A =1381.8 N
Max. Vertical Unbalance Force (along Y-Y) at Bearing B =5922 N
Max. Horizontal Unbalance Force (along X-X) at Bearing A =]1381.8 N
Max. Horizontal Unbalance Force (along X-X) at Bearing B =5922 N

Max. Moment M, at base of Bearing Pedestal A Myq4=1318.8x0.8=1055.04 Nm

Maximum moment M at base of Bearing Pedestal B M,qp =592.2x0.8=473.76 Nm

EXAMPLE PROBLEMS - RECIPROCATING MACHINES
P6.2-1

A horizontal single cylinder reciprocating engine is mounted on a base frame supported by a
foundation block as shown in Figure P 6.2-1. Compute unbalanced forces and moments @
CG of Base Frame point C.

The data for the engine is as under:

Mass of the piston & piston rod 19.5 kg
Mass of the crank 15.8 kg
Distance of crank Centroid C, from axis of rotation point O 150 mm
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Mass of connecting rod 9.7kg
Length of connecting rod 650 mm
Distance of connecting rod Centroid C, from point B 400 mm
Crank Radius 270 mm
Operating Speed of the engine 300 rpm
Distance of point O from Base frame Centroid (along Z) 1200 mm
Distance of point O from Base frame Centroid (along Y) 500 mm
Z<
y

Foundation

Figure P6.2-1  Single Cylinder Horizontal Reciprocating Engine

Solution

Rewriting basic data in to working units:-

Mass of the piston & piston rod m,
Mass of the crank m,
Distance of crank Centroid Cr from axis of rotation point O n
Mass of connecting rod m,
Length of connecting rod ]
Distance of connecting rod Centroid Cc from point B L
Crank Radius r
Distance of point O from Base Frame Centroid (along Z) z
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0.15m
9.70 kg

0.65m
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0.27m
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Distance of point O from Foundation Centroid (along Y) y 0.50 m
. 300
Operating Speed o= 0 x27x =31.42 rad/s

Computation of Masses at points A & B

Mass at 4 my =m,—r—'+mc£2—=15.8x9'—12+9.7x 0.4 =14.75 kg
r ! 027 0.65
Mass at B : my =mc£t;12—)+mp 07, (065-04) 15530 kg

Unbalance Forces:

a) When crank shaft is parallel to Z axis - Crank makes an angle & =0° with Z axis

i) Force generated by mass m 4 at A

Along Y axis  F,, =14.75x0.27x31.42%5in(0) =0.0 N @sinwt

Along Z axis F,. =14.75x0.27x31.42? cos(0) = 3929.8 N @ coswt

i) Force generated by mass m atB

Fy, =23.23x027x31.42% =6190.5 N@cosat

Fg,, =6]90.5x(%—§%)=2571.5 N@cos2mt

Forces Transferred at CG of Base Frame (C)

Fcy =FA}/ =0.0

F=F,,+Fg, =3929.8+6190.5=10120.3 N@ coswt

4

FL‘ZZ = FBZZ = 25715 N@cosza}t

M

M, n =F,,xy=2571.5x0.5=1285.75 Nm@ cos2at

F,,; x y=10120.3% 0.5 =5060.15 Nm @ coswt

cxl —
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b) When crank shaft is parallel to Y axis - Crank makes an angle 8 =90° with Z axis

i) Force generated by mass m 4 at A
Along Y axis  F,, =14.75x0.27x31.42% sin(7/2)=3929.8 N@sinwt
Along Zaxis  F,, =14.75x0.27x31.42% cos(7/2)=0.0 N@ coswt

ii) Force generated by mass m, atB

Fp,; =6190.5 N @ coswt
Fg,, =2571.5 N @ cos2wt

Forces Transferred at CG of Base Frame (C)

F,, =F,, =3929.8 N@sinwt
F, = F3,,=6190.5 N@coswt

FCZZ = FBZ2 =2571.5 N@Cos2wt
Moy = Fyyxz+ Fgyy xy =3920.8x1.246190.5x0.5 = 7811 Nm @cos

M,y = Fyyxy=2571.5%0.5=1285.75 Nm @ cos2wt

For the foundation design, these forces are finally transferred at DOF location of the foundation.
Amplitudes of vibration are evaluated for both these conditions as above.

P 6.2-2

A horizontal twin cylinder reciprocating engine is mounted on a base frame supported by a
foundation block as shown in Figure P 6.2-2. The data for each cylinder of engine is same as

that of example P 6.2-1. Consider the crank angles as o =0&a =180 for 1* and 2™
cylinder respectively. Compute unbalanced forces and moments @ CG of Base Frame point
C. Both the cylinders are placed equidistant from Z axis along X as shown in figure.

Distance of point O from Base frame Centroid (along Z) 1200 mm
Distance of point O from Base frame Centroid (along Y) 500 mm
Distance of point O of each cylinder from Base frame Centroid (along X) 800 mm

Solution

Distance of point O from Base Frame Centroid (along Z) z=120m
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Base Frame

Foundation

Figure P 6.2-2 Twin Cylinder - Horizontal Reciprocating Engine with Crank
angle 0° & 180°

Distance of point O from Foundation Centroid (along Y) y=0.50m
Distance of point O of from Base frame Centroid (along X) x=0.80m
Operating Speed w= 3—600_0 x27=3142 rad/s

Masses at points A & B for each cylinder
Mass at 4 : my =14.75 kg Mass at B : my =23.23 kg

Unbalance Forces:

a) When crank shaft is parallel to Z axis — consider that crank of cylinder 1 makes an angle
6 =0° with Z axis
Cylinder 1: f=0°

i) Force at A F,

y =00 F4, =3929.8 N@cosawt
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i) Force at B Fy,; =6190.5 N@coswt

Fy., =2571.5 N@ cos2wt

Cylinder 2: When crank of cylinder 1 makes an angle 8 =0° with Z axis, crank of cylinder 2
makes angle 6 =180°

iii) Force at A Fy=0.0 3 F,, =-3929.8 N @coswt
iv) Force at B Fg,, =-6190.5 N @ cosw?

Fg., =-2571.5 N @ cos2w!

Forces Transferred at CG of Base Frame (C)

Cyll eyl 2
F =F4 +F,, =00 @ coswt

cyl 1 cyl 2
—— N A
For=Fg + Fp+Fy. +Fpy
=(3929.8 + 6190.5)+ (- 3929.8 - 6190.5) =0 N @cosat

cyl 1 cyl 2
F,,=Fg,y+Fg., =(2571.5)+(-2571.5)= 0.0 N @cos2w?

cyl i cyl 2
M =(FAz +FB;)xy+(FAz +FH:1)X.V
cyl 1 cyl 2

=(3929.8+6190.5)x 0.5+ (- 3929.8 - 6190.5)x0.5=0.0 Nm @cosw?

cyl 1 cyl 2 cyl 1 cyl 2
—r— /N A ~ 7 st ~
M, =Fyaxy+Fy,xy=2571.5x0.5+-2571.5x0.5=0.0 Nm @cos2w!?

Equal and opposite forces of cylinder 1 & 2 along Z produce Torsional Moment at C about Y axis
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At engine order frequency, we get

cyl 1 oyl 2
Mcyl =(FAz +Fle)xx+(FAz +Fle)x(—x)
c):!l cyl 2
=(3929.8+6190.5)x 0.8 + (- 3929.8-6190.5)x (- 0.8)=16192.5 Nm @ coswt

At 1* harmonic, we get ~
cyl 1 cyl 2
——t——
My = Fgpy xx+ Fpy xx
c;ﬂl chL2
=(2571.5)x0.8+(~2571.5)x(~0.8)= 41144 Nm @ cos2mt

b) When crank shaff is parallel to Y axis — Consider that Crank of cylinder 1 makes an
angle 8 =90° with Z axis

Cylinder 1:

v) Force at A F,, =39298N @ sinwt; F, =00

vi) Force at B Fp,1=61905 N @ coswt; Fp., =2571.5 N @ cos2wt
Cylinder 2:

vii) Force at A Fu =-3929.8N @ sinw¢; Fy . =00

viii)  Force atB Fy,; =-6190.5 N @ coswt; Fy,, =-2571.5 N@ cos2wt

Forces Transferred at CG of Base Frame (C)

cyll ¢yl 2

—_—— —t— .
F,, = Fyy + F4, =3929.8~3929.8 = 0.0 N@sin ot

cyl 1 cyl 2

—— ——
F, 1 =FBZ] +Fle =6190.5—6190.5=0.0 N@Cosa)t

cz

cyl 1 cyl 2
Fipy = Fp.y+Fy.p =(2571.5)+(~2571.5)=0.0 N@cos2 ot
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cyll cyl 2
M.y = (Fle)xy+ Fyxz +(F,,.,)xy+ Fyqyxz
cyl 1 cyl 2

= (6190.5)x 0.5 + (3929.8)x1.2 + (- 6190.5)x 0.5 + (- 3929.8)x 1.2 = 0.0 Nm @ cost
cyl 1 cyl 2
My = (FBz])xy+(Fle)‘)<y
cyl 1 (:yl 2

= (2571. 5)><0 5+(—2571 5)x0.5=0.0 Nm @ cos2ot

Equal and opposite forces of cylinder 1 & 2 at point B along Z produce Torsional Moment at C
about Y axis

At engine order frequency, we get

eyl cyl 2

PG F__A_-)
Mcyl = Fg1 xx+ Fg, x(—x
cyl | cyl 2

=6190.5%0.8+(-6190.5)x (- 0.8)=9904.8 Nm @ coswt

At 1* harmonic, we get

cyl 1 eyl 2
A, '__ﬁ
My = Fpy xx+ Fp, x(—x
cyll cyl 2

-25715x08+(—25715 08) 41144 Nm @ cos2wt

Equal and opposite forces of cylinder 1 & 2 at point A along Y produce Rockmg Moment at C
about Z axis

/

cyl 1 cyl 2
—— r—‘\——)
M, =FAy><x+FAyx(—x
cyll cyl2

~(3929.8)x 0.8 + (- 3929. 8)>< (-0.8)=6287.7 Nm @sinwt

For the foundation design, these forces are finally transferred at DOF location of the foundation,
Amplitudes of vibration are evaluated for both these conditions as above.
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P6.2-3 .

A vertical single cylinder reciprocating engine is mounted on a base frame supported by a
foundation block as shown in Figure P 6.2-3. The data for the engine is same as that for P 6.2-
1. The motion of the piston is along Y axis. Compute unbalanced forces and moments @ CG
of Base Frame point C. ‘

Distance of point O from Base frame Centroid (along Y) 500 mm

Y

1

Base Frame CG
'Y —1

Foundation

Figure P 6.2-3 Single Cylinder - Vertical Reciprocating Engine

Solution:

Computation of Masses at points A & B

Massat4: m,=14.75 kg Massat B: my =23.23 kg
Unbalance Forces:
a)  When crank shaft is parallel to Y axis - Crank makes an angle 6 =0° with Y axis
i) Force generated by mass m 4, at A

Along Y axis Fy, =39298 N @coswt

Along Z axis F,, =00 N @sinwt

https://engineersreferencebookspdf.com



Design Machine Parameters ’ 6-41

ii) Force generated by mass m, atB

Along Z axis Fyy1 =6190.5 N @ cosort at engine order frequency

Along Z axis Fj ), =2571.5 N @ cos2et at First Harmonic

Forces Transferred at CG of Base Frame (C)

Fcyl = FAy +FHy| = 10120.3 N @COS(O!
Foy = Fyy =25715 N @cos20t
F,=F,, =00 N@ sinot

M, =F;xy=0.0 Nm @ sinot

b) When crank shaft is parallel to Z axis - Crank makes an angle & =90° with Y axis

iii) Force generated by mass m 4 at A

Along Y axis Fy =00N @coswt

Along Z axis F,.=3929.8 N @sinwt
iv) Force generated by mass m; atB

Along Z axis Fg,1 =6190.5 N @coswt
Along Z axis Fgyy =2571.5 N @cos2wt

Forces Transferred at CG of Base Frame (C)
F. = Fg,; =6190.5 N @cosw!

F‘c 2 = FBy2 =2571.5 N @COSth

Y
F.,=F, =39298 N @sinot
M., =F,, xy=3929.8x0.5=1964.9 Nm @sinwt

For the foundation design, these forces are finally transferred at DOF location of the foundation.
Amplitudes of vibration are evaluated for both these conditions as above.
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Pé6.24

A vertical twin cylinder reciprocating engine is mounted on a base frame supported by a
foundation block as shown in Figure P 6.2-4. The data for each cylinder of engine is
same as that of example P6.2-1. Motion of the piston is along Y and crank moves in Y-Z
plane. Consider the crank angles as @ =0&a =180° for 1* and 2™ cylinder respectively.
Compute unbalanced forces and moments @ CG of Base Frame point C. Both the cylinders

are placed such that the eccentricity along Z with respect to CG of Base frame is zero and the
cylinders are equidistant from point C along X as shown in Figure.

Distance of point O from Base frame Centroid (along Y) 500 mm
Distance of point O of each cylinder from Base frame Centroid (along X) 800 mm

Figure P 6.2-4 Twin Cylinder Vertical Reciprocating Engine
with Crank angle 0° & 180°
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Solution
Distance of point O from C along Y (for each cylinder) y 050m
Distance of point O from C along X (for each cylinder) X 0.80 m
Operating Speed = 36%0 x27 =31.42 rad/s

Masses at points A & B for each cylinder
m, =14.75 kg mg =23.23 kg

Unbalance Forces:

a) When crank shaft is parallel to Y axis — consider that crank shaft of cylinder 1 makes an
angle 6 =0° with Y axis

Cylinder 1: 6=0°
i) ForceatA F,, =3929.8 N @coswt; F,, =00 N@sinot

ii) ForceatB  Fy,; =6190.5 N@coswt; Fp,, =2571.5 N@cos2wt

Cylinder 2: When crank of cylinder 1 makes an angle 8 =0° with Y axis, crank of cylinder 2
makes angle & =180°

iii) Forceat A F,, =-3929.8 N@coswt; F,. =00 N@sinot
iv) Force at B Fp, =-6190.5 N@coswt; Fg,y =-2571.5 N@ cos2at

Forces Transferred at CG of Base Frame (C)

cyl t cyl 2
r A # A ~
I=FAy+FByl+FAy+FHyI -
=(3929.8+6190.5)+(-3929.8-6190.5)= 0.0 N @cosat

F

cyl 1 cyl 2

—t— —A—
F.p = Fyyy +Fyyp =(2571.5)+(-2571.5)= 0.0 N@cos2ot

Cyll cyl 2
—— ——
F,=F4+F,;,=00+0.0=00 N@sinwt

cyl 1 cyl 2
—t— N
M, =F,xy+F,;xy=00 Nm@sinot
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Equal and opposite forces of cylinder 1 & 2 at point A along Z produce Torsional Moment at C
about Y axis

cylt cyl 2
—t———
M, =FAZ><X+FA,><(—x
cyl 1 cyl 2

———
=0.0x0.8+0.0x(-0.8)=0.0 Nm @sinwt

Equal and opposite forces of cylinder 1 & 2 at point A & point B along Y produce Rocking
Moment at C about Z axis at engine order frequency as well as it’s 1* harmonic.

c)il cyl 2
MCzl =(FAy +FBy1)Xx+(FAy +FByl ix(—xs
c):{] T ) CYL
=(3929.8+6190.5)x 0.8+ (- 3929.8 -6190.5)x (- 0.8)= 16192.5 Nm @ coswt

cyl 1 cyl 2
M, = (FByZ )Xx +(FBy2 )x (— x)
cyl 1 cyl 2

=(2571.5)x0.8+ (- 2571.5)x (- 0.8) = 4114.4 Nm @ cos20t

b) When crank shaft is parallel to Z axis i.e. Crank of cylinder 1 makes an angle 6 =90°
with Y axis

Cylinder 1:

V) ForceatA F,, =00N@coswt; F,, =3929.8N@sinwt

vi) ForceatB  Fjy, =6190.5 N@coswt; Fp,, =2571.5 N@ cos2wt
Cylinder 2: .

vii) ForceatA F,, =0.0 N@coswt; F,, =-3929.8N@sinwt

viii) Force at B Fjp,; =—6190.5 N@coswt; Fp,, =-2571.5 N@ cos2wt

Forces Transferred at CG of Base Frame (C)
cyl 1 cyl 2
P Py
Fopr = Fgy + Fg, =6190.5-6190.5=0.0 N@coswt

cyl 1 cyl 2
Fly=Fgy+Fy,, =(2571.5)+(-2571.5)= 0.0 N@cos2 wt

cyl 1 cyl 2
—~— -
F, =F,+F, =3929.8-3929.8=0.0 N@ cosot
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cyl 1 cyl 2 cyl 1 cyl 2
—t— —A - A ~ - A
M, =F;xy+F;xy=39298x0.5+-3929.8x0.5=0.0 Nm@sin@t

Equal and opposite forces of cylinder 1 & 2 at point A along Z produce Torsional Moment at C
about Y axis

cyl 1 cyl 2 cyl 1 cyl 2

M., =FgxX +Fy,x(-x)=3929.8x0.8 +{-3929.8)x(-0.8)
=6287.7Nm @ sinot

Equal and opposite forces of cylinder 1 & 2 at point B along Y produce Rocking Moment at C
about Z axis

cyl 1 cyl 2
—A— —A—
Mczl = FByl Xx+FBy1 x(—x)
cle C)iZ_
={6190.5)x0.8+(-6190.5)x(~0.8)=9904.8 Nm @ cosot
cyl 1 cyl 2
M.,= FBy2 xx+F,,y2 x(—xb
cyl 1 cyL2

=(2571.5)x0.8+ (L 2571.5)x(~0.8)=41144 Nm @ cos2at

For the foundation design, these forces are finally transferred at DOF location of the foundation
and amplitudes of vibration are evaluated for both these conditions as above.

EXAMPLE PROBLEMS - IMPACT MACHINES
P 6.3-1

For the system shown in Figure P 6.3-1, compute velocity developed by the Anvil after impact.
Assume Efficiency of Drop 77 =0.65 and coefficient of Restitutione =0.5.

Solution:

The data for a hammer is as under:

Mass of Tup my =3500 kg
Mass of Anvil m, =80000 kg
Height of fall h=2m
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Anvil m, = 80000 kg

Figure P6.3-1 A Spring Mass System Subjected to Impact

Stiffness of Elastic Pad below Anvil k, =3.9x10° kN/m
Efficiency of Drop n =0.65

Coefficient of Restitution for the impact e=05

m, =80000 kg; my =3500 kg; n =0.65

k, =39x10% KNm; h=2m; e=0.5

Initial Velocity of mass m,

Velocity of mass m; before impact

vy =0.65,2gh = 0.65v2x9.81x2 =4.07 nvs

Velocity of mass -, after impact

(1+6) _ 4 o9, (140.5)

i) . (1+22.86) =0.256 m/sec

-
Vy =y X
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P 6.3-2

Compute the velocity developed by the Anvil for a double acting hammer having data as
under:

Mass of Tup 2000 kg
Mass of upper die 500 kg
Height of Tup Stroke h=1.0m
Area of Piston A4,=02 m?
Steam Pressure , p, =1000 kN/m?
Mass of Anvil 40000 kg
Mass of Frame 15000 kg
Anvil Base Area 6 m?
Elastic Pad below Anvil:
Elastic Modulus E,=3.0x10" kN/m?
Thickness of Pad t=04m
Efficiency of Drop 1 =0.65
Coefficient of Restitution for the impact e=0.5
Solution:

Initial Velocity developed by Anvil

Let us designate falling mass to be m,
my =2000+500 = 2500 kg

Velocity of mass m, before impact v, (see equation 6.3-3)

moxg+p x4
vé:qJZghx(————————————o £ Ps ”J

myxg

3
v =065 [2x0.81x1x| 2200x2811000x107 x02 | _¢,) )¢
2500%9.81

Velocity of mass m, after impact v,
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Let us designate mass of Anvil along with mass of frame as m,

my = 40000+15000 = 55000 kg |

vy =y HO) g7y, (+09) oo e
(1+22)
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DESIGN FOUNDATION PARAMETERS

Foundation Type

Foundation Material

Foundation Eccentricity
Foundation Tuning

Isolation from adjoining Structures
Vibration Limits

Block Foundation

Frame Foundation

https://engineersreferencebookspdf.com



https://engineersreferencebookspdf.com



Design Foundation Parameters 73

DESIGN FOUNDATION PARAMETERS

There are many foundation-associated parameters viz. Foundation Type, Foundation Material,
Foundation Eccentricity, Foundation Tuning, Vibration Limits, Foundation Sizing, & Stiffness,
Strength adequacy etc that are briefly introduced in Chapter 1. Discussion is oriented to highlight
their influence on machine foundation response.

7.1 FOUNDATION TYPE

Machine type and its characteristics play a significant role while selecting the type of foundation.
Other parameters like high dynamic response; weak soils, etc may also influence foundation type ,
and size. Most commonly used foundations in the industry, are Block Foundations and Frame
Foundations and only these are addressed here in this chapter.

Block Foundation: Block Foundations have commonly been used for supporting all types of
machines viz. rotary, reciprocating & impact machines, irrespective of their speed of operation. In
this case, machine is mounted over a solid block, generally made of concrete. The foundation block
in turn rests on the soil. A typical Block Foundation is shown in Figure 7.1-1.

Foundation Block

Soil

Figure 7.1-1 A Typical Block Foundation

Frame Foundation: Frame foundations are used for turbo-generators, turbo-compressors
and various other machines whose mechanical system requires frame type of supporting system.

The foundation is a 3-D frame structure, having base raft, a set of columns and beams and top deck
to support the machine. These frame foundations have a number of cross frames in transverse
direction tied up by longitudinal beams and/or thick slab components.
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Longitudinal
Beams

Transverse
Beams

Columns

Figure 7.1-2 A Typical Frame Foundation

Machine is supported over a RCC deck called top deck that in turn is supported by a set of
columns. These columns are attached to base raft that rests either directly over soil or through a set
of piles. Suitable openings are provided in the top deck for taking out piping, locating other
equipment directly below the machine and so on. A typical frame foundation supporting the
machine is shown in Figure 7.1-2.

7.2 FOUNDATION MATERIAL

Most common material used for machine foundation is Reinforced Cement Concrete (RCC). In
specific cases, Structural Steel has also been used for Frame Foundations. As the percentage of
Structural Steel Frame Foundations for real application is much less compared to RCC Frame
foundations, the discussion is restricted to RCC foundations only.

7.2.1 Concrete

Properties required are:  Mass Density, Dynamic Elastic Modulus (for dynamic analysis), Static
Elastic Modulus (for strength analysis) and Poisson’s Ratio. In addition allowable stresses (bending
compression, bending tension, direct compression, direct tension and shear) are needed for strength
analysis.
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I. Grade of concrete:

The grade of concrete depicts its Characteristic Compressive Strength. For example, concrete grade
M 20 corresponds to the Characteristic Compressive Strength f,, of 20 N/mm?for 150 mm
Cube at 28 days. Letter M followed by two numeral digits designates grade of concrete e.g.
M?20, M 25, M 30. The two digits just after letter M represent the Characteristic Strength of that

grade of concrete in MPa or N/mm? .

Characteristic Strength £, for any concrete grade represents its Compressive Strength in N/mm?

of 150 mm cube at 28 days. This nomenclature is as per Indian Standard Code of Practice
- IS 456.

Conc. Grade M20 M25 M30
Characteristic Strength’ f,, N/mm? 20 25 30
Mass Density of Concrete kg/m® (all grades) - 2500

Poisson’s Ratio (all grades) 0.15

The Grades of Concrete recommended for Machine Foundation are M 20, M 25, M30. It is
generally considered good enough to use M 20 grade concrete for Block Foundations and
M 25 or M 30 grade for Frame foundations. Higher grades, if desired, may also be used.

II. Elastic Modulus

The elastic modulus of concrete varies with grade of concrete. The values of Elastic Modulus
(kN/m?) both static and dynamic, as given by IS 2974, reproduced hereunder lie in + 20 % range
(approximately).

Etatic E‘dynamic
M20 20x10° 24x10®  25x10°¢0 30x10°
M25 22x10% 26x10°  28x10%10 34x10°
M30 25x10% 29x10®  31x10%# 37x10°

There are different schools of thought regarding Dynamic Modulus of Elasticity (E:,y,,a,,,,-‘. ). For

dynamic response computation, recommendations given by various codes, handbooks and
textbooks, have been found to be in variance. Some codes recommend use of dynamic modulus
of elasticity for dynamic analysis whereas some are silent about it.
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As the design value of Elastic modulus of concrete is strain dependent, reported test results do not
indicate any appreciable variation between Dynamic Elastic Modulus and Static Elastic Modulus of
concrete at low strain levels. Author has also performed tests on certain foundations and observed
that strain levels developed in the machine foundations under dynamic operating conditions are of
low order. Similar observations are reported by some other authors too.

In view of the above, author recommends use of Static Elastic Modulus for all machine
foundation design computations except those cases where associated strain levels during dynamic
response are likely to be of higher order.

1. Permissible Stresses (ANl Stresses in MPa or N/mm? )

Besides Elastic modulus, stress Properties of Concrete with respect to its grade may differ from
country to country depending upon their practices and applicable standards. The Properties of
Concrete given below are as listed in Indian Standard Code of Practice IS 456.

Cone. Grade M20 M25 M30
Tensile Stress 2.8 32 3.6
Bending Compression Stress 7.0 8.5 10.0
Direct Compression 5.0 6.0 8.0
Bond Stress (Plain Bars) 0.8 0.9 1.0
Bond Stress (Deformed Bars) 1.28 1.44 1.6

7.2.2 Reinforcement

Both Mild Steel Bars, as well as High Yield strength Deformed Bars are recommended. Here again,
stress Properties of Reinforcing bars may differ from country to country depending upon their
practices and applicable standards. The Properties of Reinforcing bars given below are as listed in
Indian Standard Code of Practice IS 456

As per Indian Standard Code of practice, the Mild Steel Bars conforming to IS 432 (Part 1 & Part
2) and High Yield strength Deformed Bars conforming to IS 1786 meet the requirements. The
Properties of Reinforcement Steel (conforming to IS 432 and IS 1786) given below are as listed in
Indian Standard Code of Practice IS 456.

AHowable Stresses (MPa or N/mm? )

Steel Reinforcing Bars Mild Steel High Yield (Deformed) Bars
(IS 432) (IS 1786)
Tensile Stress
Up to 20 mm 140 230
Over 20 mm 130 230
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Compressive Stress (MPa or N/mm?)

Up to 20 mm 140 190
Over 20 mm 130 190
Designer’s Note: Designers are advised to use equivalent grades of concrete and steel as

applicable in their respective countries.
7.3 FOUNDATION ECCENTRICITY

It is one of the controlling parameter for sizing the foundation. It is defined as the distance between
center of mass and center of stiffness along either length or width of the foundation. Thus the
eccentricity along length may be different than that along width of the foundation.

Eccentricity it is defined as the distance between center of mass of overall system (machine +
foundation) and center of stiffness (i.e. CG of the base contact area of the foundation with the
soil). All components of machine foundation system that contribute to inertia must be included in
computing combined CG. In other words machine mass, mass of base frame, mass of grout (if
considered significant), and soil mass (if any) over the extended potion of the foundation base and
foundation mass (duly accounting for all large openings) must be considered while computing
eccentricity.

Absence of eccentricity not only ensures uniform pressure on the soil but also makes vertical mode
decoupled from translational and rocking modes (see § 3.3.2.1). The presence of eccentricity
results in generating rocking modes of vibration. For example, for a foundation in X-Z plane, the
presence of eccentricity along Z direction induces moments about X-axis and eccentricity along X
direction induces moments about Z-axis. These. moments contribute to amplitudes in rocking
modes of vibration. For higher eccentricity values, these modes may turn out to be significant
modes of vibration and if not properly accounted could turn out to be a cause for high vibration.
That’s why it is desirable to control foundation eccentricity while sizing the foundation (see §
71.3).

Eccentricity should be kept to a bare minimum but in no case should exceed 5 % of the
corresponding dimension of foundation i.e. eccentricity along X direction should be within 5 % of
foundation dimension along X and so is the case along Z. For very long foundation dimensions, it
is recommended to keep the eccentricity within 2 %.

7.4 FOUNDATION TUNING

The three parameters that influence natural frequency of foundation are Machine, Soil and
Foundation and any variation in the design data of these main components affects natural frequency
of the machine foundation system.
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It is also true that the possibility of variation in the design data vis-a-vis actual data cannot be
ruled out. For example variation in soil data may be attributed to soil test methods, test agency,
type and quality of instrumentation used, effect of embedment, influence of ground water table etc.
Similarly variation in machine data may be attributed to the change in design data vis-a-vis actual
data supplied with the machine, last minute change of vendor for the supply etc.

Such variations put a question mark on the confidence level of the computed values of natural
frequencies, amplitudes and the transmitted force. It is for these reasons that computed natural
frequencies are kept sufficiently away from operating speeds to avoid resonance. In other words
computed natural frequencies should have sufficient frequency margin with respect to operating
speed so as not to encounter direct or indirect resonance.

Based on practical experience, it is recommended to keep the frequency margin as £20% i.e.

the combined natural frequencies of the foundation should be at least 20 % away from operating
speeds and preferably from their harmonics too.
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Figure 7.4-1 Magnification Factor n vs. Frequency Ratio
+ 20% Frequency Margin Region
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Just for the sake of understanding, Figure 2.2.2-4 giving variation of Magnification Factor *
with Frequency Ratio S has been reproduced as Figure 7.4-1 by blocking the zone for £20 %
ie. 0.8<@>12. Itis seen from the Figure that the frequency separation of +20 % ensures a

significant reduction in magnification factor even for zero damping thus ensuring reduction in
amplitudes of vibration.

7.4.1 Under-Tuned Foundation

For high-speed machines it is desirable to design the foundation as under-tuned foundation by
keeping its vertical natural frequency below the operating speed of the machine. Such under-tuned
foundations, however, would always face resonance during every startup and shutdown of the
machine on account of its natural frequency being less than operating speed. Such a condition is
termed as transient resonance and computation of amplitudes during transient resonance is
therefore a must.

7.4.2 Over-Tuned Foundation

For low speed machines it is desirable to have over-tuned foundation i.e. keeping its vertical
natural frequency above the operating speed of the machine. For such foundations it is desirable to
check for likelihood of resonance with higher harmonics of the machine. It is however desirable,
though not essential, to avoid resonance with these higher harmonics. If not, these could turn out to
be the cause of high vibration on account of resonance with 2-X & 3-X frequency components i.e.
frequencies corresponding to twice the operating speed and thrice the operating speed of the
machine respectively.

At times difficulty is encountered with medium-speed machines. Here, one or more natural
frequencies fall in the operating speed range and it becomes difficult to maintain +20 % margin

with the operating speed. In such a case the dynamic amplitudes are computed with +20% values

of the computed natural frequencies so as to account for possibility of any direct/indirect resonance.
If amplitudes show higher values, it is desirable to re-size the foundation (within layout constraints)
and reanalyze till satisfactory results are obtained.

7.5 ISOLATION FROM ADJOINING STRUCTURES

Foundation must be isolated from adjoining structures, their foundations as well as from the
operating floors. A clear air gap of 25 mm to 100 mm all around the foundation must be
maintained. If this condition is not met, the reliability of results of the analysis i.e. frequencies and
amplitudes becomes questionable.

For under-tuned foundations, flexible bellows must be provided for all inward and outward
piping connected to machine otherwise the piping stiffness would definitely influence the natural
frequency as well as amplitudes of vibration and it may not be feasible to account for this effect in
mathematical modeling of machine foundation system. '
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7.6 OTHER MISCELLANEOUS EFFECTS

Pockets, Notches, Projections:  All such effects like pockets, notches, projections, primary and
secondary grout, etc. are to be accounted for mass effect only. Their influence on stiffness, since
not significant, is normally ignored.

High vibrations have been witnessed by the author on account of carbonization of the grout. All
efforts to control the vibration failed till grout was replaced under HP turbine Seating Plate. It is
recommended to use only non-shrink grout and carry out periodic monitoring for grout health.

7.7 VIBRATION LIMITS IN MACHINE FOUNDATION DESIGN

No common guidelines could be defined for setting permissible limits of vibration for all types of
machines and for all applications. The governing criteria therefore are the permissible amounts of
vibrations that the machine, its surroundings or the persons in the vicinity of the machines can
tolerate.

Based on the information available in the literature, and also based on the measured vibration
records on various types of machines, general recommendations of permissible/allowable
amplitudes for machine foundation design for different machines are given as under:

Table 7.7-1 Permissible Amplitudes

Machine Type Permissible Amplitudes

Microns

Foundations for Rotary Type Machines
Low Speed Machines (100°to 1500 rpm)

Operating Speed 100 to 500 rpm 200 to 80

Operating Speed 500 to 1500 rpm 80 to 40
Medium Speed Machines

Operating Speed 1500 to 3000 rpm 40t0 20
High Speed Machines

Operating Speed 3000 to 10000 rpm and above 20to 5
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Foundations for Reciprocating Type Machines

Machines (300 to 1500 rpm) 1000 to 200
Machines (100 to 300 rpm) 1000

Foundations for Impact Type Machines
Hammer Foundations 1000 to 4000
Foundations for Hammer Crushers

Operating Frequency up to 300 rpm 300
Operating Frequency above 300 rpm 100

7.8 BLOCK FOUNDATION

The foundation should have adequate strength to withstand forces imparted by the machine and
should be able to withstand other environmental effects like wind & earthquake.

7.8.1 Foundation sizing

Foundation should be so dimensioned such that the derived eccentricity, in both the lateral
directions, is bare minimum (see § 7.3). As far as possible, the eccentricity should be close to zero
and in no case it should exceed 5 % of the base dimension in the respective direction. For very
long foundations having L/B >3, it is further desirable (but not necessary) that the eccentricity be
contained within 2 % along the length, whereas the eccentricity along width may still remain
within 5 %.

" Foundation should extend by a reasonable margin (say minimum 100 mm or more depending upon
layout constraints) on all sides of machine base frame and in no case; machine base frame should
protrude outside foundation boundaries.

The pressure developed in the soil due to static loads should preferably be below 80% of the
allowable safe bearing capacity keeping balance 20 % as the margin for pressure produce by
dynamic forces. However for machines producing high dynamic force, the bearing pressure and
stability is checked both for static and dynamic loads (see § 5.2.5).

Though, from strength point of view it may appear adequate to have foundation mass equal to that
of the machine, a higher mass ratio is desirable as it indirectly helps in keeping the foundation
eccentricity low even if there are minor variations in actual machine data vis-a-vis design data.
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Foundation Mass Ratio: It is ratio of the mass of foundation to that of machine. Recommended
guidelines for different machine types are as under:

* Rotary Machines: Foundation mass ratio of 2.5 to 4 is generally considered adequate for
rotary machines

¢ Reciprocating Machines: The foundation mass ratio required for reciprocating machines
is much larger than that for rotary machines. This ratio could be as high as 8 and for
specific cases, based on practical considerations, this ratio could as well be as low as 1.5

¢ Impact Machines: The foundations for impact machines require provision of adequate
depth of concrete below the Anvil and it is linked with the mass of the falling part. It is
recommended to have foundation thickness of at least 1.0 m, below the Anvil, for falling
mass of 1000 kg. Foundation thickness of about 2.5 m to 3 m is recommended for higher
falling mass, say, 6000 kg and above. Mass of Anvil is generally in the range of 20 to 25
times that of the falling mass and the mass of the foundation should be 2.5 to 3 times that
of the anvil. For unfavourable soil conditions, this ratio could be 4 to 5 times or even
higher

7.8.2 Foundation Stiffness

Foundation parameters that govern the dynamic response are its mass and its area in contact with
the soil. In specific cases, projected parts of the foundation having finite stiffness also influence
dynamic response. There are no other foundation related parameters that influence the response.

The rigidity the foundation is much higher compared to that of the soil supporting it. The elastic
deformation of the block, under the influence of static and dynamic forces, is of negligible order
compared to that of the soil. The foundation, therefore, is considered as a rigid body consisting of
mass only. In other words, foundation is considered as non-elastic (rigid) inertia body. In case the
foundation has some structural members whose stiffness is comparable with that of the soil,
such members should be modeled for their stiffness as well as mass effect.

One can represent the system as an assemblage of spring mass system (SDOF or MDOF) or one
can use FE modeling technique, as the case may be and analyse the system for its dynamic
response.

7.8.3 Strength Design

Since the block foundation behaves like a rigid body supported on soft media like soil, invariably
the block foundations would turn out to be having adequate strength vis-a-vis forces imparted by
the machine. .

For strength and stability analysis, material parameters required are the same as those required for
analysis & design of any other structure. Permissible Stresses for design, both for concrete and
steel, are to be taken as per applicable design codes.
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Strength design is done considering forces and moments on the foundation due to Static Loads,
Dynamic Loads, Emergency loads and applicable Earthquake/Wind loads. Necessary
reinforcement is provided to withstand these forces and moments as per applicable codes of
practice. When Emergency/Earthquake/Wind loads are considered, the permissible stresses shall
be enhanced by 25 %.

In case the foundations has any extensions/projections, these must be designed for forces and
moments at critical sections due to Static, Dynamic and Emergency loads and necessary
reinforcement is provided as such projections behave elastically and not like a rigid body.

Anchor Bolts:  All anchor bolts should be checked for pullout force caused due to Static,
Dynamic and Emergency loads.

Though not necessary, but recommended to perform overall stability check for the foundation
after the design process is complete.

7.8.4 Minimum Reinforcement

Block Foundation: Provisions for minimum reinforcement have been found to vary from
25 t050 kg/m® of volume of concrete for foundations of different machines. From his
experience, the author recommends as under:

e Diameter of the reinforcing bar shall not be less than 12 mm and spacing of bars shall not
exceed 200 mm. Where thickness of concrete exceeds 1m, additional layer of

reinforcement (both ways) to be provided as shrinkage reinforcement
e Overall steel quantity should not be less than 25 kg/m® of concrete.

Further, it must be ensured that all faces are covered with two-way reinforcement.
All faces of the openings, pockets, cot-outs etc must be reinforced appropriately with the
same provisions as above.

More often than not, one may find that minimum reinforcement, as recommended above, is
adequate to withstand the applied/generated forces. Those extensions/projections that make the
concrete section to behave elastically must be adequately reinforced in accordance with the strength
design requirements (see § 7.3.8).

7.9 FRAME FOUNDATION

Dynamic Behaviour of Frame Foundation is relatively complex compared to that of Block
foundation. There are many foundation related parameters that significantly influence the response
viz. stiffness of frame structure, individual vibration characteristics of frame columns, frame
beams, cantilever projections etc. Due attention, therefore, must be paid to these aspects while
sizing the foundation.
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7.9.1 Foundation Sizing

Foundation Plan Layout containing foundation dimensions, details of cut-outs, trenches, notches,
depressions, pedestals, machine static loads, dynamic loads etc are provided by customer/machine
supplier. In addition, machine loads at base raft, intermediate deck (if any) and other locations are
also provided by customer/machine supplier.

For Frame foundations, there are two connotations to the term eccentricity as given below:

i) Overall Eccentricity: It is defined as the distance between center of mass of overall
system (machine + foundation) and center of stiffness (i.e. CG of the base contact area of the
foundation with the soil) as given in § 7.3. This should be restricted to 5 % of the respective base
dimension of the foundation.

i) Top Deck Eccentricity: It is defined as the distance between center of mass C,, (i.e.

combined CG of machine mass, top deck mass and 23% of column mass) and center of stiffness of
frames C, in transverse (perpendicular to machine axis) as well as longitudinal direction (along

machine axis). It is desirable that this eccentricity should be restricted to 1 % of the respective
dimension of the top deck.

General recommendations for sizing of various elements of foundation are as under:

i) TopDeck: Top Deck comprises of transverse beams, longitudinal beams, slab connecting
these beams, projections on all sides of beams, depressions, cut-outs, notches, openings etc.

a) Weight of the top deck should in no case be less than weight of the machine
b) Sban to depth ratio of the beams should be 3 to 4.
¢) Depth to width ratio for the beams should be 1 to 1.5

d) Extent of cantilever projections (in plan) should not be more than half the width
of corresponding beam

e) Depth of slab should invariably be same as that of the encompassing beams
except the areas where recess or depressions are provided to accommodate
machine

Though from strength consideration, it is possible to design slender sections of the members, yet it
is recommended to follow the above guide line as it helps in controlling overall eccentricity.

ii) Columns: Total weight of all the columns should be close to weight of the machinery. This
condition is desirable but not essential. Column sizes (as marked on the layout drawing) are
generally provided by the customer/supplier. More often than not, it has become the practice
by the designers to stick to these dimensions.

https://engineersreferencebookspdf.com



Design Foundation Parameters 7-15

Such a practice is undesirable and must be discouraged. These should be taken as indicative
only and the designer must assess the validity of these sizes keeping in view the followings:

a) It is desirable that Center of Stiffness of all the Frames should coincide with Center
of Mass of machine and top deck.

b) Lateral natural frequencies of each of the column (along transverse as well as
longitudinal directions), considering fixed-fixed at top and bottom, should not
coincide with Machine frequency or its harmonics.

iii) Base Raft:

a) Raft plan dimensions are selected such that Bearing Pressure is well within the
allowable safe bearing capacity of the soil keeping a reasonable margin of about 30%
to 40 % for pressure induced by dynamic loads (see § 5.2.5).

b) Overall eccentricity between center of mass and center of stiffaess should lie within
5% of the respective base dimension in plan. For very large dimensioned foundations,
eccentricity should, as far as possible, be restricted to 2 % only

¢) While finalizing base raft thickness, it is to be borne in mind that differential elastic
deformation of the base raft (at the frame support locations) is highly undesirable. It
directly influences machine alignment of various machine segments, i.e. it contributes
to misalignment resulting in higher dynamic forces and thereby higher amplitudes of
vibration. Hence, base raft must have adequate thickness so as not to generate any
differential settlement/deformation. A general guide line is that weight of the base raft
should be about twice that of the machine weight.

7.9.2 Stiffness Parameters for Frame Foundation

Unlike block foundation, elastic deformation of the structural members of frame foundation is of
finite order. Thus, the foundation is considered as an elastic body consisting of both stiffness and
mass. Whereas mass and stiffness of foundation are duly taken care of using FE modeling, these
are to be evaluated for each of the structural element of the foundation while considering it as
lumped-mass model using SDOF or MDOF system. It is therefore desirable to explicitly quantify
such influences for lumped-mass modeling of frame foundations. Generalised mass for various
structural elements like beams, columns, portal frames etc, using kinetic energy equivalence, is
covered in Chapter 2 and 3.

Mass contribution of beam and column of a typical frame is different for vertical vibration than for
lateral vibration (see chapter 2 & 3). Further, the mass and stiffness contribution do depend upon
whether the model is SDOF or MDOF System.

For cases, where, machine is supported over a column or a beam, mass content of support system is
described in Chapter 2.0. For portal frames generalized stiffness and generalized mass
contributions are described as under: :

https://engineersreferencebookspdf.com



7-16 Design Foundation Parameters

For a structural portal frame supporting mass m at frame beam center and constrained to move
only in X-Y Plane, evaluation of generalised mass and stiffness considering frame as SDOF system
is covered in Chapter 2 and that for a Two DOF System is covered in Chapter 3. There are a couple
of factors that make Frame Foundations different from. normal structural frame such as shear
deformation on account of lower span to depth ratio, provision of haunches at beam column
junction etc. Hence the formulations for normal structural frame need to be suitably modified for
Frame Foundations. A typical portal frame with haunches is shown in Figure 7.9-1.

Some of the scientists / authors have suggested corrections to frame span and height
on account of larger column widths and beam depths. It may not be out of place to
mention that variation in frequency due to correction applied to frame center line
dimensions H & L is only of the order of 2 to 3 % and hence can be ignored as well.

7.9.2.1 Haunches

R Beam -

/

Haunch

Column

:

Figure 7.9-1 A Typical Frame with Haunches

Provision of haunches at beam column junction at top deck soffit is a common phenomenon.
Though its contribution to mass effect is insignificant, its influence on stiffness has been reported
to be of significant order and it depends upon size of the haunch.

Based on Finite element analysis of a number of portal frames with different haunch sizes (haunch
width b varying from 5 to 10 % of span and haunch depth g varying from 5 to 10 % of frame
height), following observations are made:

i) The presence of haunches tends to increase Lateral Stiffness of the frame. The
increase in lateral frequency is in the range of 3% to 6% depending upon haunch
sizes.

ii) The presence of haunches does not show any influence on vertical stiffness. The
influence on vertical frequency is very insignificant (of the order of 0.2 to 0.3 %).

iii) There is significant influence on higher order column frequencies
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(a) Portal Frame

Figure 7.9-2 A typical Portal Frame Supporting Machine Mass at Beam Center

7.9.2.2 Shear Deformation

Since span to depth ratio of beams is relatively low for frame foundation the frame beam behaves
like a deep beam making the shear deformation influence significant. This aspect therefore must be
included while evaluating stiffness of frame beam in vertical direction.

For a typical Frame as shown in Figure 7.9-2, the shear deformation of the beam is given as

Shear
—~—

Y2

3L
8GA4,

(1.9-1)

This is added to flexural deformation of the beam for computing beam stiffness. Let us compute
stiffness &, of the frame.

k=1‘1=__1b/L

B to Column Stiffness ratio (see § 2.1.1-4-5
eam to Colum s ratio (see § ) PR

Vertical deformation under unit load at beam center  (see equation see equation 2.1.1-34)

e P k4
i) Flexural Deformation of frame beam Y, = X
: 9 El, k+2
y . Y’
ii) Shear deformation of the beam vy =
8G4,
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Total deformation at Frame Beam Center under Unit Load

e e (P 2k+1), 3L
2= TN BeeE T kv2 ) 8G4,

Stiffness ky=— (1.9-2)

7.9.3 Strength Design

For frame foundations, reinforcement is provided as dictated by strength design of structural
members ie. columns, beams, slabs etc. It is generally recommended to check the strength
adequacy considering forces and moments on the foundation due to Static Loads, Dynamic
Loads, Emergency loads and applicable Earthquake/Wind loads. Foundation must also be
checked for thermal stresses wherever applicable.

Necessary reinforcement is provided to withstand these forces & moments as per applicable codes
of practice. When emergency/earthquake/wind loads are considered, the permissible stresses shall
be enhanced by 25 %.

7.94 Minimum Reinforcement

Generally speaking, reinforcement in the range of 100 to 120 kg/m® has been found to meet the

structural safety requirements for frame foundations. This is however a guideline and actual steel
requirement should be based on design.

e  Reinforcement for top deck and columns to be in the range of 100 to 120 kg/m?

e Reinforcement for base raft to be in the range of 70 to 80 kg/m?

These figures are considered adequate even for estimation and found handy for cross checking.
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MODELING AND ANALYSIS

Every foundation designer should remember that he is dealing with
machines weighing several tons and is required to design the
foundations having dimensions of several meters but amplitudes
restricted to only a few microns. The designer therefore must
clearly understand the assumptions, approximations and
simplifications made during modeling and recognize their
influence on the response.

It is this aspect that makes modeling and analysis very important
part of the design.

A physical system is represented by mathematical model with the basic objective that mathematical
model should be compatible with prototype. For each mathematical representation, a host of
assumptions, approximations are made. The extent of complexity introduced in mathematical
model directly influences the reliability of results. In broad sense, mathematical representation not
only (fepends upon Machine and Foundation parameters but also depends upon Analysis Tools.

Let us consider some of the combinations of Machine Type, Foundation Type and Analysis Tools
and consider level of modeling for each case:

i) Low RPM Machines (300 to 1500 RPM)

Low RPM machines generally develop very high unbalance forces and permissible amplitude
limits are also high. In case of resonance, these give rise to very high amplitudes. For such
machines, one should not attempt isolation both for block and frame foundation.

a) Low RPM Machines on Block Foundations: Foundation lowest natural frequency
normally turns out to be much higher than machine frequency thus ruling out any possibility of
response magnification. Hence one can resort to very simple model. Care should be taken to avoid
direct resonance with engine order frequencies of 1%, 2" & 3" order i.e. if engine frequency is o,
one should avoid having foundation natural frequencies as 1o,20 & 3w .

b) Low RPM Machines on Frame Foundations: From  operational  constraints
dictated by plant lay out, at times these machines are mounted on frame foundations. In view of
very high unbalance forces, foundation must have large size columns and beams. In view of heavy
machine mass, lateral natural frequencies of frame foundations are low with likely possibility of
resonance with machine frequency. Hence, one must include all those structural elements which are
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likely to contribute to low frequency. Any approximation to igriore such elements while modeling
may lead to overall high vibrations. In such cases, effect of soil must be included in the model as
presence of soil tends to lower down the 1* frequency of the system. Here again, care should be
taken to avoid direct resonance with engine order frequencies of 1%, 2™ & 3™ order.

ii) Medium RPM Machines (1500 to 3000 RPM)

Medium RPM machines have stringent balancing requirements resulting in lower rotor eccentricity
and thereby lower unbalance forces. Permissible amplitude limits are also low for these machines.
In view of low permissible amplitudes, foundation sizing should be so done so as to have
foundation eccentricity to bare minimum.

These machines are very sensitive to rotor alignment. This necessitates that beams supporting
bearing must not structurally deflect to cause misalignment. Further, base raft should also be
sufficiently thick so as to permit overall settlement but certainly no differential settlement.

In view of lower foundation frequencies, there is a possibility of recording higher transient
amplitudes. Further there is every possibility of resonance with rotor critical speeds. It is desirable,
though not essential, to look in to these aspects too.

Provision of Vibration Isolation System (VIS) for such machines turns out to be quite effective.

a) Medium RPM Machines on Block Foundations: Machine must be modeled along
with the foundation. As computed natural frequencies are comparatively of lower order than
machine frequency, even a simple model would be adequate. Care should be taken to avoid direct
resonance with sub harmonics i.e. w/2& w/3 that develop due to certain bearing phenomenon,

b) Machines on Frame Foundations: Machine must be modeled along with the
foundation. Such foundations have generally strong top deck but relatively slender column sizes.
On account of higher column height, lateral natural frequencies turn out to be low. Higher
structural natural frequencies are of comparable order to machine frequency having likelihood of
being in resonance with machine frequencies. Further, there is every possibility that higher mode
foundation frequencies (mainly higher beam and column modes) may come in resonance with
engine order frequencies.

A higher order mathematical model is therefore essential. Effect of soil can conveniently be
ignored unless warranted by specific soil characteristics.

iii) High RPM Machines (above 3000 RPM)

High RPM machines have highly stringent balancing requirements. Rotor eccentricity is quite low.
Unbalance forces are also low and so are permissible amplitudes. These machines are very
sensitive to rotor alignment; hence beams supporting bearing, if not properly designed, could
become a source for misalignment. Further, base raft should also be sufficiently rigid so as not to
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permit any differential settlement especially at frame location points. Foundation eccentricity
should be bare minimum. During every start-up and shut-down, there is every possibility of high
transient amplitudes at engine sub harmonics, foundation frequencies as well as at rotor critical
speeds. Though not essential, it is recommended that these aspects should also be looked in to.
Higher order structural frequencies in case of frame foundation must be evaluated to avoid any
direct resonance.

Provision of Vibration Isolation System (VIS) for such machines turns out to be quite effective.

8.1 MANUAL COMPUTATIONAL METHOD
8.1.1 Block Foundations

For machines on block foundations, it is good enough to use the procedures and formulations
described in Chapters 2 & 3. Whereas majority of the machine and foundation aspects are well
taken care of by these procedures, yet there are some aspects, as given below, that can not be fully
managed by these manual computational methods:

Foundation Eccentricity: If foundation eccentricity is higher than permissible, the
vertical mode of vibration will no longer remain un-coupled from lateral and rotational modes.
Hence equations of motion given by equation 3.4.2-2 (as reproduced below) will not remain valid.

m 0 -mhix| |k, 0 0 x F,sinot
0 m 0 y +1 0 ky 0 yr=1 F,sinot
-mh 0 Mg, [\¢) |0 0 (kg —mgh) ¢ |Msinot

In such a case one has to use equation of motion given by equation (3.4.2-10) as reproduced below:

m 0 -mhi[%l [k, O 0 X F.sinwt
0 m ma {y:+] 0 k 0 yp=4 F,sinot
-mh ma M, 6] |0 0 (hy-mgh|(#] \(-sF)sinos

Getting closed-form solutions for these equations is not that simple and computations may turn out
to be complex. Further getting Transient Response History may be a tedious task, though it is
possible to evaluate transient response at any of the defined frequency.

It is therefore recommended to use FE analysis, wherever feasible, to include all these aspects.
Further it gives improved reliability on account of lesser number of approximations/assumptions. It
also permits visualization of animated mode shapes, view response amplitude build-up and viewing
of stress concentration locations. ‘
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8.1.2 Frame Foundations

Analytical Procedures for machines on frame foundations as given in Chapters 2 & 3 provide clear
insight into the free and forced vibration of portal frame subjected to dynamic loading.

It may not be out of place to mention that the formulations cover only standard frames i.e. frame
beam is a rectangular in cross-section having machine mass at its center. The premise, that
longitudinal beams of a frame foundation are flexible enough to permit transverse frames vibrate
~ independently, does not hold good for real life machines. These are very ideal cases and most of the
real life machine foundations do not fall under this category. Some of the aspects that can not
be suitably accounted for by manual computational methods are:

Haunches

Machine mass at beam off center locations

Beams extended as cantilever on one side/both sides of frame beam
Beams inclined in elevation supporting heavy machine mass

No frame beam at column locations

Higher order frame column vibration frequencies

Presence of solid thick deck within the frames

Depression/recess in the top deck

Based on many design studies carried out by author, it is observed that:

1. Variation in natural frequencies a frame by Manual method compared to FE method is of the
order of 10 to 20 %.

2. FE analysis confirms presence of many additional frequencies (3 to 4 frequenciesy between
1* vertical and 2™ vertical mode as computed by Manual Method of Analysis. These
additional frequencies lie well within operating range of the medium RPM machines and may
significantly contribute to response.

3. An example Problem P 8.1-1 at the end of this chapter is included for this purpose. The
observations made clearly highlight limitations of Manual Method of Analysis for design of
Frame Foundations.

4. In recognition of higher reliability by FE Method, and the fact that manual method gives
results that are in variance by 10 to 20 % compared to FE Analysis, it is suggested that no
corrections need to be applied on account of either frame center line dimensions or inclusion of
haunches etc. All corrections put together shall easily get absorbed by the available margins.

It is therefore recommended to use FEM analysis with appropriate element types for modeling of
Frame Foundation. It is also recommended to use analytical approach to evaluate free vibration
response for each frame to get a first hand feeling of the frequency range of frames vis-a- vxs
operating frequency, their sub and super harmonics.
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8.2 FINITE ELEMENT METHOD

Finite Element (FE) is the most commonly accepted analysis tool for solution of engineering
problems. Effective Pre & Post-processing capabilities make modeling and interpretation of
results simple. It is relatively easy to incorporate changes if any and re-do the analysis without
much loss of time. Viewing of Animated Mode Shapes and Dynamic Response makes
understanding of the dynamic behaviour of the machine foundation system, relatively simpler.

Design of machine foundation involves consideration of Machine, Foundation and Soil together as
a system subjected to applied or generated dynamic forces. Development of specific FE based
package for design of machine foundation is generally not feasible on account of a) tight project
schedules and b) validation of results.

Use of Commercially Available Packages is more effective for design offices. There are many
issues that need careful examination before finalizing the package e.g. user friendliness, pre-
processor capabilities (modeling capabilities), analysis capabilities, post-processor capabilities
(processing of results) etc but the most important one is the validation of resuits. Every package is a
Black Box for the user and it has its associated limitations some of which are explicit and some
implicit. Validation, for some sample known cases, therefore, becomes a must before one accepts
the results. '

Author himself has used many commercially available packages for analysis and design of
Machine Foundation during the course of his professional carrier.

8.2.1 Mathematical Modeling
Most of the issues related to modeling have been discussed in 8.1.

A machine foundation involves modeling of Machine, Foundation and Soil. Finite Element
Method (FEM) enables modeling of Machine, Foundation and Soil in one go that brings behaviour
of the machine foundation system closer to the prototype resulting in improved reliability.

Rigid Beam Elements are used for modeling the machine whereas Solid Elements are used for
modeling the Foundation. In case soil is represented as continuum, it is also modeled using Solid
Elements. In case Soil is represented by equivalent springs it could be modeled using spring
elements/boundary elements.

Note: The terminology used here may not comply with the terminology of each package. Readers
may modify the terminology in accordance with that of the package under use.

Modeling of each of the constituent is an art in itself and is briefly discussed here under.
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8.2.2 Machine

Machine is relatively rigid compared to foundation and soil. It is considered contributing to mass
only with its CG lying above Foundation level.

(2) Machine Mass lumped at (b) Machine Masses lumped (c) Rotor and Stator
Foundation top at Machine CG level Modeled separately - Masses
lumped at respective CG level

Figure 8.2-1 Modeling of Machine with Foundation

While modeling the machine, the broad objective is to represent the machine in such a way that its
mass is truly reflected and overall mass CG of the model matches with that of the prototype. Thus,
modeling of machine with Rigid Links / Rigid Beam Elements is considered good enough.
Machine mass is considered lumped at appropriate locations so as to simulate the CG location. This
should be cross checked with the mass distribution given by the supplier/manufacturer.

Be it a block foundation or a Frame Foundation, lumping of Machine Mass at foundation top level
is not desirable as this will result in mismatch of the CG of machine mass (in vertical direction) of
model with that of the prototype. Figure 8.2-1a shows such lumping for a typical block foundation.
Such a representation does affect mass moment of inertia and thereby natural frequencies and
response. It is therefore essential that CG of the machine mass in vertical direction must be
matched with that of the prototype as given by manufacturer. Machine mass should be lumped at
appropriate level above the foundation as shown in Figure 8.2-1b. Similar concept should be used
for modeling bearing pedestals. ‘

For Advanced Modeling, it is desirable to model the Rotor and Stator independently. Rotor is
represented using a set of beam elements with corresponding section and material properties that
represent variation of rotor section along machine axis, whereas Stator is modeled using Rigid
Links with stator mass lumped at appropriate locations such that CG of mass matches with that
provided by supplier. Rotor support at the Bearing locations should be modeled with
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corresponding stiffness and damping properties offered by bearings. Model is as shown in Figure
8.2-1c. The Bearing Pedestals, however, are modeled as rigid links.

8.2.3 Foundation

8.2.3.1 Block Foundation

A foundation block is a solid mass made of RCC with required openings, depressions, raised
pedestals, cutouts, bolt pockets and extended cantilever projections.

Solid Elements are good enough for modeling foundation block. A coarse mesh for the block and
relatively finer mesh in the vicinity of openings, pockets and cutouts is considered reasonably OK.
Solid Model & FE Mesh of a typical foundation block is shown in Figure 8.2-2.

Solid Model A Typical Block Foundation FE Mesh

Solid Model A Typical Fan Foundation FE Mesh

(Portion below Ground Level not shown)

Figure 8.2-2 Foundation Block — Solid Model and FE Mesh

https://engineersreferencebookspdf.com
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Generally speaking, modeling the foundation block with 8-noded Brick Elements or 10-noded
Tetrahedral Elements works reasonably well and is considered good enough. A higher order solid
element would increase the size of the model — requiring more computational time & power— while
improvement in the result’s accuracy may only be marginal. Choice of element size is fairly
subjective as it is problem dependent. It is therefore not possible to define firm guidelines
regarding choice of right element size that will be applicable to all types of problems. The
judgment of optimum mesh density, however, would emerge after experience.

8.2.3.2 Frame Foundation

T ©

Solid Model (a) Solid Elements
I } I
Geometric Model (b) Shell & Beam Elements FE Mesh
Solid Model FE Mesh

()  ATypical Top Deck View
Openings, notches, cutouts, pockets etc.

Figure 8.2-3 Frame Foundation — Solid Element Model & Shell Beam Model
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A Frame Foundation comprises of Base Raft, Set of Columns (Number of Frames), Top Deck
consisting of Beams (Longitudinal and Transverse) and Slabs. Top deck is made of RCC with
required openings, depressions, raised pedestals, cutouts, bolt pockets and extended cantilever
projections. In certain cases, haunches may also be provided between column and top deck.

There are many ways of representing model of a Frame foundation. One can model using Beam-
Elements, Shell Elements, Solid Elements or a combination of all these. Models with solid
elements as well as Beam & Shell elements are shown in Figure 8.2-3 (a) & (b) respectively. Each
modeling style, however, shall have associated limitations. For example, while modeling using
solid elements, one may not be able to get bending moments and shear forces in the columns,
beams and slabs needed for structural design of these members. Whereas it is possible to get
bending moments and shear forces in flexural members like beams, columns, slabs etc, it however
does not permit inclusion of effect like haunches, depressions, cut-outs, raised blocks, projections
etc as shown Figure 8.2-3(c).

It may be noted that FE Mesh of Frame foundation with all the openings, pockets, cutouts, notches
etc as shown in Figure 8.2-3(c), though feasible, is basically undesirable. It may unnecessarily add
to increased problem size and thereby computational time without any significant gain in the
results. Only those elements that contribute significantly to stiffness and mass like large openings,
sizeable depressions etc must be accounted and modeled in detail whereas elements like pockets,
small notches etc could easily be ignored while modeling.

Since modeling of top deck and base raft by shell element is done at their mid surface locations, it
usually results in increased column heights thus making the system more flexible than the
prototype. Necessary modifications therefore are necessary to overcome this deficiency. Similar is
-the case while modeling machine. Use of rigid links is recommended to cover up such deficiencies.
Here again a coarse mesh for the foundation in general and relatively finer mesh in the vicinity of
openings, depressions, raised pedestals, pockets and cutouts is considered reasonably OK. The
judgment of optimum mesh density, however, would emerge after experience

8.24 Soil

Similar Machines having identical foundations but having different soil conditions have been found
to behave differently. Hence it is important to study the affect of soil on overall response of
machine. For elastic properties of soil, see Chapter 5.

There are many ways of mathematical representation of soil. We limit our discussion here to only
two ways that are common as Design Office Practice for FE Analysis & Design of Foundations.

i) Soil represented by a set of equivalent springs
ii) Soil represented as continuum

i) Soil represented by a set of equivalent springs: Two types of representations are
commonly used in FE modeling the foundation:
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a) Soil is represented by a 3 Translational Springs and 3 Rotational Springs attached at CG of
the Base. This kind of representation yields results (Frequencies and Amplitudes) that are
found to be in close agreement with manual computations. This type of representation is
shown in figure 8.2-4 (a).

b) Soil is represented by a set of 3 Translational Springs attached at each node at the Base of
the Foundation, in contact with the soil. This kind of representation provides an upper
bound to overall rotational stiffness offered by soil about X, Y & Z axes. This type of
representation is shown in Figure 8.2-4 (b).

Stiffness Properties of these equivalent springs are discussed in detail in Chapter 5.

ii) Soil Represented as Continuum: Soil domain, in true sense, is an infinite domain and
for analysis purposes, it becomes necessary to confine it to a finite domain when soil is
considered as continuum. The broad issues, that need to be addressed are:

What should be the extent of soil domain to be considered for modeling?

Whether to consider soil domain only below the foundation base (in which case
foundation becomes un-embedded) or to consider the foundation embedded in to the soil
domain (in which case foundation becomes embedded in to the soil)?

Extent of Soil Domain: For FE Modeling, it is well known that a narrow domain with fixed
boundaries is not likely to represent realistic soil behaviour whereas a very large domain would
result in increased problem size. It is therefore necessary to find an optimum value that should
reflect realistic behaviour of soil without significant loss in accuracy.

Let us consider a stand alone isolated foundation. Different designers adopt their own thumb-rule
practices while deciding on the extent of soil domain to be modeled with the foundation. The extent
of soil domain has been found to vary from 3 to 8 times the width of the foundation to be provided
on all § side of the foundation. It is to be noted that such a consideration is good enough for the
academic purposes only. In a real industrial situation, no foundation could remain isolated from
other equipment/structure foundations within this finite soil domain. In other words, many other
equipment/structure foundations would exist within the range of 3 to 8 times the dimension of the
foundation in each X, Y & Z direction. Thus, in the author’s opinion, the computed behaviour of a
foundation as a stand-alone foundation is likely to differ with the actual one. It is also true that
modeling of all the equipment and structure foundations of a project, in one single go, is neither
feasible nor necessary. Here too, a mesh consisting of solid elements is good enough. As the soil
domain is very large compared to foundation, a relatively coarser mesh of the soil is considered to
be adequate. Refinement of the mesh size may be adopted if considered necessary for specific
cases. The choice of element size remains subjective.

The precise decision on extent of soil domain still remains a question mark. Even from academic
side there is no definite answer to this issue. It is also true that a practicing engineer, in view of
tight time schedule, can neither afford to do R&D nor can ignore the problem. In author’s
considered opinion, soil domain equal to 3 to 5 times the lateral dimensions in plan on either side
of the foundation and 5 times along the depth should work out to be reasonably OK. The finite soil
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domain is modeled along with the foundation block using FE idealization. Appropriate soil
properties in terms of Elastic Modulus/Shear Modulus and Poisson’s Ratio are assigned to the soil.
If soil profile indicates presence of layered media, appropriate soil properties are assigned to
respective soil layers with variation in soil properties along length, width and depth of the soil
domain.

(a) Soil represented by a set of three translational (b) Soil represented by a set of three translational
springs, k, , k,, k, and three rotational springs &, , springs k,, k, k, applicd at each node in contact
k, . k, applied at CG of Base of the foundation with the soil at the foundation base

Solid Model
Solid Model — Cut View

FE Mesh

Block Un-embedded Block Embedded
(c) Soil represented by a continuum below the (d) Soil represented by a continuum starting from
foundation base extending three times the width of the ground level extending three times the width of
the foundation along length and width and 5 times the foundation along length and width and 5 times
the depth of the foundation along depth the depth of the foundation along depth

Figure 8.2-4 Various Methods of Soil Representation for FE Modeling
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Un-Embedded and Embedded Foundation: While modeling soil along with foundation,
the two cases arise:
i) Soil domain is modeled below the foundation up to 3 to 5 times the width of the

foundation along length and breadth and depth of the foundation. This makes the
foundation un-embedded in the soil. This representation is shown in Figure 8.2-4 (c).

ii) Soil domain is modeled right from the ground level encompassing the foundation up
to 3 to 5 times the width of the foundation along length and breadth and depth of the
foundation. This makes the foundation embedded in the soil, which is a realistic
situation. This representation is shown in Figure 8.2-4 (d).

To investigate as to how each method of soil representation compares with others, free vibration
analysis of a typical Block foundation has been performed using each method of soil
representation, as shown in figure 8.2-4, having same/compatible soil properties. The data
considered is as under:

* Foundation Block dimensions (along Z, X, Y) dmx=x2mx3.75m deep

e Coefficient of uniform compression C, =4.48x10* kN/m’

Mode2 5.63 Hz

Mode4 10.89 Hz Mode5 1539 Hz Mode 6 1544 Hz

Figure 8.2-5 Frequencies and Mode shapes — Soil represented by 3 translational
and 3 rotational springs at CG of foundation base
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e Soil spring stiffness
i. Translational &, =35.84x10* KN/m; &, =k. =17.97x10" kN/m
ii. Rotational
a.  ky=95.5x10" kNm/rad (about X)

b. k, =44.8x10" kNm/rad (about Y)
¢. k,=23.9x10" kNm/rad (about Z)
o poi=18tm% v, =033 E.; =89218kN/m?
®  Peone =2.5UMY; Ve =0.15; E e =2x107 kKN/m?

Mode 1 3.24 Hz Mode2 491 Hz Mode3 8,86 Ha
Mode4  10.99 He Mode 5 14.2 Hz Mode 6 1521 Hz

Figure 8.2-6 Frequencies and Mode shapes — Soil represented by 3 Equivalent
translational springs at each node at foundation base
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Case-1

Case-2

Case-3

Case-4

Modeling and Analysis

Soil represented by a set of six springs attached at the CG of Base of Foundation.
Frequencies and mode shapes are shown in Figure 8.2-5.

Soil represented by a set of three springs attached at each node in contact with
soil at Foundation base of Foundation. In total 45 nodes are considered in contact
with the soil. Translational stiffness at each node is therefore (1/45) of &,k k.

as given above. Frequencies and mode shapes are shown in Figure 8.2-6.

Soil represented as continuum below Foundation base level i.e. un-embedded
foundation. Soil domain considered is 10 m on all the five sides of the
foundation. Frequencies and mode shapes are shown in Figure 8.2-7,

Soil represented as continuum right from ground level all around the foundation
i.e. embedded foundation. Here again, soil domain considered is 10 m on all the
four sides (in plan) of the foundation. Ground Level is considered at 0.75 m
below top of the block. Soil domain along depth is taken as 10+3=13 m from
Ground Level. Frequencies and mode shapes are shown in Figure 8.2-8.

Mode |

5.16 Hz Mode2 6. Mode 3 Hz

Moded 697 Hz Mode5 699 Hz Mode6 7.6

Figure 8.2-7 Frequencies and mode shapes - Soil represented as continuum

below foundation base up to 5 times the width all around as
well as along depth
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Frequencies and mode shapes are listed in Table 8.2-1

Table 8.2-1 Mode shapes & Frequencies - Frequencies in Hz
Pridominant Mode Direction
Soil Representation Type X F4 7] y Figure
PR 7 4 y ¥ ¢ Reference
1 Soil represented by 6 spring ( 3 lincar & 3 154 10.89 1539 5.63 944 362 Fig8.2-5
rotational) @CG of foundation base
2 Soil represented by 3 equivalent linear 152 1099 142 491 8.86 324 Fig82-6

spring @each node @ foundation base

3 Soil Continuum - Foundation considered as 5.16* 6.8* 6.1* 6.99* 7.6* 6.97* Fig8.2-7
unembedded

4 Soil Continuum - Foundation considered as 6.52 5.96* 629 7.03* 7.3 723 Fig8.2-8

embedded
* Modes not clearly identifiable from the figure

Model 596 Hz Mode2 629 Hz Mode3 6.52 Hz

Mode4 703 Hz 723 Hz Mode6 730 Hz

Figure 8.2-8 Frequencies and mode shapes - Soil represented as continuum
from Ground Level all around the foundation as well as along
depth up to 5 times the width of the foundation
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The comparison reveals interesting observations that are as under:

i.  Translational mode frequencies for case 3 & 4 i.e. when soil is considered as continuum
are much lower than those obtained for case 1 & 2
ii.  Variation in rotational frequencies of case 3 &4 is also significant compared to those of
case | & 2
iii.  For case 2, both linear as well as rotational frequencies are marginally lower than those for
case 1
Author’ observation, based on field measured data, is that measured frequencies are close to those
obtained by soil models as in case 1 & 2. For Block foundations, since soil flexibility is a
controlling parameter that governs its response, author recommends modeling of soil as in case 1 &
2 only. In view of the above observations, modeling of soil as continuum is NOT
RECOMMENDED for Block Foundations., Designers, however, may take their own decisions on
need basis.

Whichever modeling criteria is finally chosen by the designer, it is strongly
recommended that validation of FE results with manual computation must be
done for very simple problem using same modeling criteria, before the
modeling criteria is adopted for actual design. Such a caution is essential as
often one tends to feel that whatsoever results are obtained by using computer
code, these are bound to be correct

8.2.5 Dynamic Forces

The Dynamic Forces generated by the rotor are applied at the bearing location points. It is often

noticed that many suppliers list dynamic forces at the point of contact of machine with the

foundation or point of contact of bearing pedestals with the foundation. Such a practice is
acceptable only if forces from the bearing levels are transferred at foundation top in terms of

forces and corresponding moments. If only forces are transferred at foundation top, it results in

lower values of dynamic moments at the foundation base and thereby in reduced computed

“amplitudes than actual, hence such a practice is undesirable. This influence is seen to be more

predominant in Block Foundations than Frame Foundations. ‘

Magnitude and directions of dynamic forces generated by machines are discussed in detail in
Chapter 6. Though, it is possible to consider more than one set of the dynamic forces
simultaneously (if applicable), it would be desirable to consider these forces independently and
total response is obtained by finally adding the response of each case.

8.2.6 Boundary Conditions

Having finalized machine and foundation mass data, the first six modes of a block foundation
depend primarily on stiffness properties of soil. It is therefore essential to choose and apply right
boundary conditions to the FE Mode! to represent near to realistic situation. One needs to focus at
the following:
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i) Support conditions at interface between Foundation and Soil
i) Support conditions at Soil terminating boundary

Interface between Foundation and Soil: I[n casesoil is represented by equivalent springs
(Case 1 & 2 above) applied at the base of the foundation, one end of each spring is connected to
foundation and the other end is restrained. In case soil is modeled as a continuum i.e. a finite soil
domain, the displacement restraints are recommended as under:

a) It is recommended to apply roller boundary conditions at all the nodes on the
terminating boundary of soil domain.

b) At the vertical interface between soil and foundation, it is advisable to apply roller
boundary conditions at all the nodes of soil domain. This is due to the consideration
that a loss of contact develops at the vertical interface between foundation and soil
during course of operation of machine.

c) All nodes at the interface of foundation to the soil at the base should be merged.

8.2.7 Material Data

i) Foundation:

a. Material properties viz. Elastic Modulus, Mass Density, Poisson’s ratio, as
applicable for the required grade of concrete, are assigned to the respective
elements.

b. It has been quite a common practice to use Dynamic Elastic Modulus for
Dynamic Analysis and Static Elastic Modulus for Static/Strength Analysis.
Some of the design Codes also recommend the same. However opinions of some
of the authors differ from the above.

The studies in the recent past indicate that at low strain levels there is hardly any
appreciable difference between Dynamic Elastic Modulus and Static Elastic
Modulus. Thus for machine foundation application, where strain levels due to
dynamic loading are reasonably low, the author recommends use of Static
Elastic Modulus both for Dynamic as well as Static Analyses of Machine
Foundation. For Elastic Modulus refer to “Design Foundation Parameters”
given in Chapter 7.

ii) Soil:
Values of Shear Modulus / Elastic Modulus, Poisson’s Ratio and Mass Density,
assigned to soil media, should be in accordance with the corresponding soil report.

Same values should be used to compute soil springs. General values (only for
reference purposes) are given in Chapter 5 “Design Sub-grade Parameters”.
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8.2.8 Degree of Freedom - Incompatibility:

Such a problem is common in FE modeling of physical systems and arises when two elements
having different DOF per node are attached at a particular node. If the corrective action is not
taken, it will end up in giving wrong results of n™ order.

Foundation Block is modeled using Solid Elements that has 3 DOF per node whereas Boundary
Elements (springs) representing soil stiffness have 6 DOF per node. Once a Boundary Element is
attached at a node to the foundation block modeled by solid elements, it causes Degree of
Freedom Incompatibility at that particular node.

Similar situation occurs at the interface of i) beam elements and solid elements ii) rigid links &
solid elements etc. It is not only desirable but necessary to resolve this issue at the modeling stage
itself otherwise the resulting information may be highly misleading. The process of resolving this
issue is package dependent and should be undertaken in line with the provisions in the respective
CAE package.

8.3 DYNAMIC ANALYSIS
Dynamic analysis includes evaluation of:

»  Free Vibration Response
= Forced Vibration Response

8.3.1 Free Vibration Response

It is recommended to review free vibration results before proceeding for forced response. Review
of natural frequencies and associated mode shapes provides understanding of the likely behaviour
of the foundation. At times, erroneous results may be encountered, on one count or the other while
evaluating dynamic response and the entire sequence of results may become misleading. In view of
this, author strongly recommends the following:

a) Before attempting dynamic analysis, it is desirable to conduct static analyses
subjected to 1 g acceleration load ( g stands for acceleration due to gravity) in each
X, Y and Z direction. In other words, the machine foundation system is analyzed for
self weight alone (self weight of machine & foundation) acting in X, Y or Z direction
(one at a time).

b) After ensuring that the displacements due to 1 g static load are of acceptable order
(i.e. as expected), one should proceed with the free vibration analysis.

c) In case free vibration results show a pattern that does not appear to be logical, it is an
indication to precisely review the mathematical model and make necessary
amendments and repeat steps as above.

https://engineersreferencebookspdf.com



Modeling and Analysis 8-21

8.3.1.1 Frequencies & Mode Shapes

It is frequently asked question as to how many frequencies are required to be extracted for a
foundation. The general criterion is that highest frequency evaluated should be at least 20% higher
than operating speed. However, it primarily depends upon foundation type and range of operating
frequency.

Block Foundation: Not withstanding the above, evaluation of frequencies corresponding to
first 6-Modes is considered good enough both for Over-tuned as well as Under-tuned Block
Foundations. First six modes of vibration pertain to rigid body modes of the block and higher
modes correspond to flexural deformation of the block.

* Machine represented by rigid links and its mass
lumped at machine CG location

» Soil represented by three Translational springs and
three rotational springs at CG of Foundation Base

Mode 1 3.56 Hz Mode2 558 Hz

Mode4 10.94 Hz Mode5 14.7 Hz Mode 6 14.9 Hz

Figure 8.3-1 Frequencies and Mode shapes of a typical Block Foundation
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The contribution of higher modes is observed to be practically insignificant except in specific cases
such as extended cantilever projections or similar other structural elements where frequency
corresponding to elastic deformation mode may lie near to operating frequency. Mode Shapes of a
typical foundation block, where soil is represented by a set of equivalent springs is shown in Figure
8.3-1

T

Mode | 2.94 Hz Mode2 3.02 Hz Mode3 3.67Hz

Mode4 26.5 Hz Mode5 324 Hz Mode 10 36,6 Hz

Mode 18 42.7 Hz Mode 19 45.8 Hz Mode 21 589 Hz

Machine modeled using Rigid Links. Mode shapes up to 20 % higher than operating speed

Figure 8.3-2 Mode shapes and frequencies of a typical Frame Foundation
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Frame Foundation: The number of frequencies to be extracted must follow the criteria as
above i.e. the highest extracted frequency should be 20 % more than operating speed. Mode
" Shapes of a typical frame foundation, considering base raft as fixed at its base are shown in Figure
8.32

Observations from mode shapes: Unlike block foundation, study of mode shapes, generally
reveals quite interesting information. Let us try to make certain observations from the study of
made shapes for the typical foundation, as shown in Fig 4.2-2.

¢ The uniform colour of top deck in mode 1 (along Z) and mode 2 (along X) are indicative
that center of stiffness and center of mass are nearly coincident.

o  On the other hand if center of mass and stiffness are not coincident, the colour of top deck
deformation would show a mixture of colour depending upon magnitude of displacement.
This calls for modification in column stiffness at this stage itself. '

There are many more meaningful observations that can be made once all mode shapes are
examined

8.3.1.2 Resonance Check

After evaluation of natural frequencies, a check is made for the resonance. Evaluated Natural
Frequencies must be critically examined vis-a-vis machine operating frequency and also its
harmonics.

It may be desirable, though not necessary, to examine these frequencies with respect to critical
speeds of the rotors too. In case of direct Resonance with Operating Speed, necessary
modifications in the foundation are implemented at this stage itself. Amplitudes of vibration are
then computed at the foundation as well as at the bearing locations. In case amplitudes are found to
be more than permissible, necessary change in the foundation must be made and the entire analysis
is repeated.

For the permissible limits of vibration, reference should be made to applicable codes.
Recommended values of permissible amplitudes for different machines are given in Chapter 7.

8.3.2 Forced Vibration response
8.3.2.1 Steady State Response

Dynamic Forces at bearing levels (for dynamic forces see chapter 6) are applied at steady state
operating frequency and amplitudes computed at a) bearing levels, b) base of bearin§ pedestals and
¢) salient locations at top of the foundation and d) for frame foundation at 1/3™ height of the
column, mid height of the column and at column top. The forces are applied simultaneously at all
bearing levels or these could also be applied one bearing at a time and amplitudes summed up
using SRSS (Square Root of Sum of Squares).
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Figure 8.3-3  Transient Response Amplitudes of a Typical Machine

8.3.2.2 Transient Vibration Response

During every start-up and shut down operation of the machine, resonance is noticed at all the
system frequencies below operating speed of the machine. This results in sudden rise of amplitude
at each frequency of the system and thereafter amplitude diminishes.

It is noteworthy that dynamic force no longer remains constant and changes with change in speed
(See chapter 6). It is therefore essential to evaluate the transient resonance amplitudes at bearing
levels as well as at other points of interest. Typical plot showing transient amplitudes vs. frequency
is shown in Figure 8.3-3

84 STRENGTH ANALYSIS & DESIGN

Having ensured that amplitudes are within permissible limits, foundation is checked for strength
and stability. Invariably same model, as developed for dynamic analysis, is used for strength
analysis. Necessary changes are made for Elastic Modulus properties (i.e. Dynamic Elastic
Modulus is changed to Static Elastic Modulus, if considered different).

Stresses in the foundation are computed for all possible load cases including loads due to
Abnormal/Faulted Conditions (See Chapter 6).
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8.4.1 Block Foundations

Block foundations are rigid and have in-built adequate strength to withstand all kinds of forces
right from normal operating loads to abnormal loads.

Thus these foundations need not be checked against strength. However anchorage length of holding
down bolts either anchored or in pockets, due to earthquake loads, short circuit loads and bearing
failure loads must be checked. In addition any cantilever projection supporting equipment mass
must also be checked for its strength adequacy.

8.4.2 Frame Foundations

In general, von-mises stresses are reviewed and compared with allowable stresses. However for
specific structural components, like cantilever projections, bending & shear stresses may also be
reviewed.

Necessary reinforcement is provided in the foundation for the developed Forces and Bending
Moments as per applicable codes. For Elastic Modulus properties & allowable stresses, refer
Chapter 7. For a typical foundation, stresses developed due to Earthquake Force and Bearing
Failure Loads are shown in Figure 8.4-1.

£S5 RESULTS - EARTHOUAKE LOAD (ALOMG-X

Figure 8.4-1 Frame Foundation — Stresses (mPa) due to Short Circuit
Forces, Earthquake force and Bearing failure Loads
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EXAMPLE PROBLEMS
P8.1-1

Consider a concrete portal frame of Problem 7.9-1 (as shown in Figure P 7.9-1) using FE
Analysis. Frame data is reproduced here.

Portal span 6.0 m

Portal height 10.0 m

Column 1.0mx1.2m

Portal beam 1.0 m wide x 1.5 m deep

Machine of mass 50 t supported at the center of the beam

Portal is restrained to move only in X-Y plane.
E.,. =2x10" kN/m?; G=8.7x10° kN/m? & Mass density p = 2.5 /m’
Find lateral natural frequencies of the system ignoring Shear Deformations

Machine mass 50 t Machine Mass 50 t

0.0 0.0
16.24 0.75
Displacement in mm Displacement in mm
Static Load 1g along X (Lateral) Static Load Ig along Y (Vertical)

Figure P 8.1-1a Deflection under 1g X force and 1g Y Force

Solution: FE Model

Portal Frame is modeled using Brick Elements

All nodes at column base are constrained i.e. (fixed) in X, Y & Z.

All nodes on one face of frame constrained in Z i.e. Frame is allowed to move only in X-Y
Plane

» Machine mass located at beam center as lumped mass element

v VvV
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» Shear Deformation not included

» Static Force equal to 1g applied along X & Y (one at a time) — Deflection shown in Figure
8.1-1a

» Solved for Eigenvalue — Mode shapes and Natural Frequencies shown in Figure 8.1-1b

It is recommended to always carry out equivalent static analysis by applying 1g force (here g stands
for gravity loading) along X & Y directions (one at a time) to rule out possibility of making slips
while modeling/analysis. It is noticed that maximum displacement by 1g load along X is 16.24 mm
and for 1 g load along Y it is 0.75 mm. These static deflections correspond to:

fx=Lx i:—l—»x M=3.9I HZ
2r 6, 2n \’16.24

L [2810 820 H2

27 V075

Mode2 18.659 Hz

Mode4 31.99 Hz Mode5 54.866 Hz Mode 6 66.32 Hz

Figure P 8.1-1b  Mode Shapes and Frequencies - Portal Frame ~Beam Rectangular Cross-section
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From Figure P 8.1-1b, we get frequency corresponding to 1* lateral mode (along X) as 4.1 Hz and
frequency corresponding to 1% vertical mode is 18.66 Hz. This kind of a check confirms correctness
of modeling in broader sense.

For academic interest let us compare the results with those obtained with the manual solution (see
Problem P 7.9-1). Comparison of frequencies is shown in Table P 8.1-1.

Table P 8.1-1 Comparison of Frequencies - FE Analysis with Manual Computational Method
(see Problem P 7.9-1)
Frequency in Hz

FE Analysis Manual Method

Mode # Frequency Mode Frequency Mode

fl 4.097 1st Lateral mode along X 3.45  Lateral along X

2 18.66 Ist Vertical mode along Y 22.76 st Vertical along Y

3 31.77 Column 1st mode along X

4 31.99 Column [st mode along X

5 54.86 2nd lateral mode along X

f6 66.32 2nd vertical mode along Y 73.31  2nd Vertical along Y

The comparison leads to the following observations:

1. Vertical natural Frequencies by FE Analysis are about 20 % lower in the 1* mode and about
10% lower in 2™ mode with respect to those obtained by manual computation method.

2. Lateral frequency by FE method however is about 20 % higher than Manual method.

3. FE analysis yields 3 additional frequencies (frequencies f3, f4 & f5) between 1 vertical and
2™ vertical mode of manual method of analysis.

4. It is interesting to note that for medium rpm machines, these 3 additional frequencies lie within
operating range and may significantly contribute to response.

5. This highlights limitations of manual method of analysis for design of Frame Foundations.

P8.1-2

For Portal Frame of Problem P 8.1-1, consider that a pair of haunches is provided (details
given below). Find lateral natural frequencies of the system.

i) Haunch size 300 X 500 mm

ii) Haunch size 400 X 600 mm

iii) Haunch size 500 X 800 mm
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Solution:

Modeling is done on the similar lines as for Problem P 7.9-1. Mode shapes and frequencies for
haunch size of 300 X 500 mm are shown in Figure P 8.1-2. Frequencies for other haunch sizes are
given in Table P 8.1-2. Just for academic interest, frequencies for plane frame without haunch are
also listed in the Table.

Mode | 4,252 Hz Mode2 18.822 Hz Mode3 33.014 Hz

89
Mode 4 33.097 Hz Made3 94.89. He

Figure P8.1-2  Mode Shapes and Frequencies - Frame with Haunches 300 X 500

Table P 8.1-2 Influence of Haunches on Frequencies of a typical portal frame

No Haunch Haunch Haunch Haunch
300X500 400X600 500X800 % variation

“ fl 4.10 4.25 4.302 438 6.91
T 2 18.66 18.82 18.82 18.84 0.97
g‘ f3 31.77 33.01 33.38 33.9 6.70
3 f4 31.99 33.1 33.46 33.97 6.19
E 5 54.86 54.89 54.78 54.65 0.38

f6 66.32 66.23 66.112 65.77 0.83
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From the results following salient observations are made:

1. Variation in frequency is of the order of 7 % and 0.4 % in 1* lateral and 2™ lateral mode
(mode 1 & mode 5) respectively.

2. A marginal difference of the order of 6 to 7% is however noticed in column lateral
frequencies (mode 3 & 4) .

Hence for all manual method of analysis, it may be reasonably OK to ignore haunches and in FE
analysis, these will get taken care of automatically.
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e Design Examples

» Block Foundation for a Typical Rotary Machine
» Frame Foundation for Turbo Generator
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FOUNDATIONS FOR ROTARY MACHINES

Various types of machines that come under this category have been adequately addressed in
Chapter 6. Both Block type foundations as well as Frame Type foundations, normally used to
support such machines, have been covered in Chapter 7. Modeling aspects have adequately been
covered in Chapter 8. Case studies on various machines and foundations, covering field
measurements, failure studies, remedial measures and site feedback are reported in Chapter 14.

A real life machine foundation system is a 3-D system. Machine is supported by the
structure/foundation which in turn rests directly on the soil or through piles. The complete system
is mathematically modeled and analyzed. Machine generates Dynamic forces in a plane
perpendicular to axis' of rotation. The system vibrates in all six DOFs and thus requires
computation of frequencies and amplitudes corresponding to all six DOF’s. Design Procedures for
a) Block Foundation and b) Frame Foundations are given hereunder. The application of these
design methodic for evaluation of natural frequencies and amplitudes are common for all types of
machines irrespective of their speed.

9.1 DESIGN OF BLOCK FOUNDATION

Machine is considered supported by a block foundation resting directly over soil. The complete
system is mathematically modeled and analyzed for natural frequencies and amplitudes.

Summary of Design Steps
1. Sizing of Foundation

2. Equivalent Soil Stiffness
3. Dynamic Forces

4. Analysis

1. Dynamic Analysis

a.  Natural Frequencies
b. Dynamic Amplitudes
> Steady State Amplitudes
» Transient Amplitudes
II. Strength and Stability Analysis
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9-4 Foundations for Rotary Machines

Equivalent Static Forces (Normal Operating Conditions)
Bearing Failure Loads (Abnormal conditions)

Handling loads

Short Circuit Loads

Environmental Loads e.g. Earthquake Loads, Wind Loads etc.
Thermal Loads (if any)

mo Ao o

Required Input Data

a) Foundation Data
i) Foundation outline geometry, Levels etc
i) Cut-outs, pockets, trenches, notches, projections etc
b) Machine Data
i) Machine Layout
ii) Machine Load Distribution at Load Points
iii) Machine Dynamic Loads
a. Magnitude of Dynamic Loads
b. Location of application
¢. Associated excitation Frequencies
iv) Other Loads like Short Circuit Torque, Bearing Failure Loads etc.

) Allowable Amplitudes at Bearing Locations
¢) Soil Data

i) Site Specific Dynamic Soil Data

ii) Soil type and its basic characteristic properties

iii) Bearing capacity

iv) Depth of water table

V) Liquefaction potential
d) Environmental Data

i) Site related Seismic data

ii) Wind Load Data

At this stage it is implied that:

e Site Soil data is converted to Design Sub-grade Parameters duly accounting for affects
of overburden pressure and area in line with provisions given in Chapter 5.

e  Machine data is converted to Design Machine Parameters in line with provisions given
in Chapter 6 ‘

¢ Foundation data is converted to Design Foundation Parameters in line with provisions
given in Chapter 7

s Intricacies of Modeling and Analysis, as given in Chapter 8, have been well understood

The mathematical representation of a typical foundation is shown in Figure 9.1-1. Here point
Orepresents CG of Base Area of Foundation in contact with soil. This point is also termed as

Degree of Freedom (DOF) Location. |
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Rotor Centerline

7

Coordinate System

Figure 9.1-1 Mathematical Model of a Typical Block Foundation

Design Data: The design data at this stage is summarized as under:

Mass
Total Mass of Machine and Foundation m
Height of Overall Centroid C from O h

Mass Moment of Inertia (Machine+ Foundation) @ Overall Centroid. C

Mass Moment of Inertia about X axis M,,
Mass Moment of Inertia about Y axis M,,
Mass Moment of Inertia about Z axis ' M

mz

Mass Moment of Inertia (Machine+ Foundation) @ DOF Location O

Mass Moment of Inertia about X axis M pox

Mass Moment of Inertia about Y axis My
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9-6 Foundations for Rotary Machines

Mass Moment of Inertia about Z axis M

moz

Area and Moment of Inertia of Foundation Base in contact with soil

Area of Foundation . A
Moment of Inertia about X .
Moment of Inertia about Y 1 W
Moment of Inertia about Z 1

Equivalent Soil Stiffness at the foundation base level (at DOF location pointO) duly
corrected for a) area effect and b) overburden pressure effect

Translational Soil Stiffness along X k,
Translational Soil Stiffness along Y k,
Translational Soil Stiffness along Z k,
Rotational Soil Stiffness about X kg
Rotational Soil Stiffness about Y k,
Rotational Soil Stiffness about Z ky
Operating Frequency/Frequencies of machine W, 0, etc

Dynamic Loads

> For FE Analysis, Dynamic Forces need to be specified only at respective bearing
locations.

> For manual method of computation, Dynamic Forces acting at bearing locations are
transferred at DOF Location point O in terms of Forces and Moments.

» One can have as many sets of forces and moments as number of excitation frequencies

Here we describe forces and moments @ DOF location pointO for manual method of
computation.

Forces @ DOF location point O along X, Y & Z direction  F, , F, & F,
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Moments about X, Y & Z @ DOF location point O M, M, & M,

9.1.1 Dynamic Analysis

The dynamic analysis of a machine foundation system involves computation of natural frequencies
and amplitudes of vibration.

From this stage onwards, one can choose either Finite Element Method of Analysis (Chapter
8) or Manual Method of Analysis (Chapters 2 &3).

Natural Frequencies:  The machine foundation system undergoes Six Modes of Vibration i.e.
three Translational Modes and three Rotational Modes (see chapter 3). Natural frequencies
corresponding to these six modes of vibration are reproduced as under:

1. Motion along Y (Vertical direction): ~ This vibration mode is always uncoupled. We get
Natural frequency corresponding to Vertical Mode of Vibration (along Y) — (see equation
3.1.2-6):

Vertical Natural frequency py = s 9.1-1)
m

2. Motion about Y (Torsional): This vibration mode is also uncoupled. We get Natural
frequency corresponding to Torsional Mode of Vibration (about Y) as (see equation 3.4.2-8):

k
4 9.1-2)
M moy

Torsional Natural frequency py =

3. Motion in X-Y Plane - (Translation along X and Rocking about Z - x& ¢ modes) - This
vibration mode is always coupled (see 3.3.2-8c). We get natural frequencies as:

1 1
ot =+ pf)- (e + 5§} ~47. p2} ©0.13)
Yz Yz
1 1
P2 == (p2 + p2)e = \(o2 + p2 -7, p2p2 ©9.1-4)
2y, 2y,
k k,
Here y, =—"2; .p2=-%X; pi=
: moz ¥ m ¢ Mmoz
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4. Motion in Y-Z Plane — (Translation along Z and Rocking about X - z& & modes) - This
vibration mode is always coupled. On the similar lines, as for the motion in X-Y plane given in
(3) above, we get frequency as:

1
pi= 5 2+ p2f -4y, p2p? (9.1-5)
Vx
2 _ 1 )2
py= +P0 2+ pi) -4y, plp} (9.1-6)
2y,
M k k
Here 7x = mx ; pf =_Z_; pg = g
Mmox m Mmox

As far as possible, effort is made to ensure that these frequencies are not in direct resonance with
operating speed/speeds of the machine. In fact these frequencies should preferably be away by a
margin of +£20% from operating speed/speeds. In case resonance is noticed, it may be desirable te
suitably alter the foundation dimensions and repeat the computations till the natural frequencies are
found to be away from operating speed/speeds of the machine.

9.1.2 Amplitudes of Vibration

Vibration Amplitude is the response of the Machine Foundation System subjected to unbalance
force acting on the machine. When the natwral frequencies are in resonance with excitation
frequency, damping plays a significant role and amplitudes need to be computed considering
system with damping. However, when natural frequencies are not in resonance with operating
speed, the damping has hardly any influence on the response and it is good enough to compute
amplitudes for undamped conditions.

Response Computation using FE Analysis: For response computation, these unbalance
forces are applied directly at the bearing level locations. Amplitudes at desired locations viz.
Foundation top or bearing levels are obtained directly.

Response Computation using Manual Methods of Analysis: While evaluating response using
manual method of analysis, these unbalance forces are transferred at the DOF location (CG of base
area of foundation in contact with the soil ie. pointO). Thus we get three force

components F., F, & F, and three moment components My, M, & M point O . Amplitudes
Ly z 6Py ¢

are evaluated at DOF location point O . Amplitudes at any other location viz. at foundation top or
at bearing locations are computed using geometrlcal relationships. Amplitudes at DOF point O are
reproduced as under:
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9.1.2.1 Amplitudes (undamped)

Motion along Y (vertical) and motion about Y (Torsional): For Uncoupled Modes i.e. Vertical
motion along Y and torsional motion about Y, amplitudes are given by equations 3.4.2-5 & 3.4.2-8
and these are reproduced here as under:

i) Applied dynamic force F, sinw¢?
1
Amplitude Yo =90, 9.1-7)
(&
F. k
sl o/
y Py
if) Applied dynamic moment M, sin ¢
Amplitude v, =8, (9.1-8)

wlh_ﬂ;]

M, k
H =Y.z 2 & W
ere 5 = H = ——— p = /
v ky v Py ¥ Moy

Absolute value of magnification factor is considered in above equations so as to get positive value
of amplitudes. This is done only for uncoupled modes i.e. motion along Y and motion about Y.

Motion in X-Y plane:  For coupled modes i.e. translation along X and rocking about Z,
considering one force at a time, we get:

iii) Applied dynamic force F, sinat

: 2
v e (-23)
Amplitudes ' Ai b 5 (9.1-9)
4, =6 mh By
(4

' Mmoz (l—ﬂlle_ﬂzz)

iv) Applied dynamic moment M|, sin w?
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, X, =—hd, 3
Amplitude =B N -5y (9.1-10)
4= 1- B
R W) (>

x

Here 4, = i" & & =—k—¢ » B, &P, are frequency ratios corresponding to limiting
(4

frequencies p, & p, and B, & B, are frequency ratios corresponding to natural frequencies
p1& p2 (see equations 9.1-3 & 9.1-4 for p; & p, ).

Motion in Y-Z plane:  For coupled modes i.e. translation along Z and rocking about X, we get:
v) Applied dynamic force F, sinw?

1- f2
%0 =0 1- g2 10_;;2
Amplitude ! 2 ©.1-11)

mh B
" Myox 1-BEN1- 52

vi) Applied dynamic moment M, sin @t

o

e
: 1- B N-5;

Amplitude 5 9.1-12)

8, =8, lgﬂz .

1- 57 N- 53

F, z M 2] : s 2 ee
Here 4, o & & =k—; B, & By are frequency ratios corresponding to limiting
z (4

frequencies p, & p, and p, & B, are frequency ratios corresponding to natural frequencies
& p, ( py& p, areas given by equations 9.1-5 & 9.1-6).

Note: The amplitudes given by equations 9.1-7 to 9.1-12 are amplitudes @ point O for
undamped system (as the mathematical formulation is developed for undamped system).

9.1.2.2 Amplitudes at resonance

Whenever natural frequency corresponding to a specific mode lies within +20% of normal
operating speed of the machine, foundation is considered to be in RESONANCE for that
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particular mode of vibration. Should such a condition exist, amplitudes are to be computed under
damped conditions. Amplitudes under resonance condition @ point O are given in § 3.4.2.1.1 and
are reproduced here as under:

Uncoupled Modes:

Motion along Y (vertical) and motion about Y (Torsional):

i) Applied dynamic force F;sinwt - Resonance in vertical mode
Vo =0, 1 9.1-13)
Vi- 52 +Caye)
ii) Applied dynamic moment M, v sin@t - Resonance in Torsional mode
1
0 =0, (9.1-14)
O R baey
\/ 1-p2f +(28,¢
¢ is damping constant
Coupled Modes:
Motion in X-Y plane:  For natural frequencies p; & p,, see equations 9.1-3 & 9.1-4.
iii) Applied dynamic force F, sinm?
a) Resonance with 1% natural frequency p, i.e. 0.8< 83 <1.2
(- 52) mh A
xa=5x 4 ;¢o=—5xM ¢
[\/(1-,83)’ +@pCY )x(l—ﬂ%) o (‘\/(l-ﬂf)z +@pe) )x(l—ﬂ%)
............................... (9.1-15a)

Note 1: If term (l - ﬂlz)is negative then term (\/ (l— ﬂlz)z +(2,B14' )2 )should also be negative.

Retaining sign is important from the point of view of overall response evaluation which is
vector sum of corresponding response quantities.
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b) Resonance with 2™ natural frequency p, ie 08<p, <12

(1—,33) . mh ﬂ:

(J(l—ﬂ%f +@BCY )x(l—ﬂf) I [\/(1 -5 +@pe) )x(l—ﬂf)

x0= ax

.................................. (9.1-15b)

Note 2: If term (l—ﬂzz)is negative then term (\/(l - ,822)2 +(285¢ )z } shall also be negative (see

Note 1).

iv) Applied dynamic Moment M, sin@¢

a) Resonance with 1¥ natural frequency p, ie. 0.8<f, <12

(l—ﬂf)x(\/(l—ﬂ.z)’ +@BLY ] | (-2 )X(\/(l—ﬁf)z +(2ﬂ1{)2)

xo = — h6¢

.................................... (9.1-16a)
Note 3: (see Note 1)
b) Resonance with 2™ natural frequency p, ie. 0.8< /5, <1.2
2
x, =—| hé, Bs s 6, =| 6, Q"'sz)
(-2 )x(\/(l -2 +Cpacy ) (-5 )x(J(l -B3f +@pie) )
................................. (9.1-16b)

Note 4: (see Note 2)
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Motion in Y-Z plane: Here we use natural frequencies as given by equations 9.1-5 & 9.1-6.

V) Applied dynamic force F, sinw!
a) Resonance with 1* natural frequency p, ie. 0.8<p <1.2

s (-82) 0,|s, B}
[«/(1—/3.2)’ +2B¢) ]x(l—ﬂ%) s (f(l—ﬂ?)z +@p¢Y )x(l—ﬂ%)
v (9.1-17a)
Note 5: (see Note 1)
b) Resonance with 2™ natural frequency p, ie. 0.8<f, <12
2,=|9, t-si) 0, =|6, A;"h be
(\/(1—/33)2 +2p¢ ) JX(I—ﬂ.Z) s (J(l-ﬂ%)’ +280 Jx(l—ﬁf)
............................ (9.1-17b)
Note 6: (see Note 2)
vi) Applied dynamic moment M, sinwt
a) Resonance with 1¥ natural frequency p, ie. 0.8<f <1.2
2, = hd, £ 9, =|6, t-£2)
(-5 )x(\/(l -pf +(a¢y ) (& )X(\/(l—ﬂf)z +28¢) ) ~
............................ (9.1-18a)
Note 7: (see Note 1)
b) Resonance with 2™ natural frequency p, ie. 0.8<f, <12
2, =| hé, B .9, =|5, 1-52)
(-5 )x(\/(l - +@pe) ] (-5 )x(J(l -2 +@pcY )
............................ (9.1-18b)

Note 8: (see Note 2)
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9.1.2.3 Amplitudes at foundation top

The amplitudes x,,y,,z,.6,,¢, &¢@, (as obtained above) are at DOF locationpoint O. Let
X7, Vs &Z, represent amplitudes at center of Top of Foundation. Amplitudes at foundation top
are obtained using law of statics as shown in Figure 9.1-2.

Y
i !
Ho,
B2 ==
WD
‘\‘ ‘\\ 1) E \
) \/0:, \ H
/"L ¢ X “\ 1 “\‘: ’ \“\
1/ \‘ : \‘: Qf‘ -
v —\%«E, Bz »X
g 2
A B
Typical Block Motion in X-Y Plane
Y
HY,
- L T v (B/2)
TR (R R
0L12) -t i % a
- v ] ' .- L] ,)‘d'
A T H 4 wo o
! \‘: \ X .._.<_.1?::,,'¢'.‘_' ........... 1 1/ B
‘\ 0'.‘-'! —r‘-“ - ‘"\ P F»WO ( )
2 %= N A
. “—ZT’ \\‘ e
L -7 X\L
L |
Motion in Y-Z Plane Motion in Z-X Plane
Figure 9.1-2 Amplitude Components at Foundation Top
Amplitudes at foundation top (at center)
Amplitude X, dueto x, & ¢, X f(max) =| (%0 —H 8,) (9.1-19)
Amplitude ¥, dueto y, ¥ fmax) =|Vol (9.1-20)
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Amplitude Z, dueto z, & 6, Z e =|(Zo +HO,) 9.121)

Amplitudes at corners of foundation top

LetX .,V &z 1o Tepresent amplitudes at corner of Top of Foundation. Let L & B represent
length and width of the foundation along Z and X axes respectively.

Amplitude X, &z, dueto Y,
* pomaxy = [LI2Wol5 2 peqmany = [(B/2)wo] (9.1-22)

Amplitude Y, dueto ¢ &6,

vz =(B/2),|5 vz =|(L/2)6,| (9.1-23)

Y omay =(L/2)6,] +|(B/2)4,] 9.1-24)
Maximum amplitude along X

% pnan) = % fnax) *+ X peqman) = [(Fo = Ho ) +[(L/2)w,| (9.1-25)
Maximum amplitude along Y

Y swe) = P a0 + P semany = Dol + 421208+ |(B/2)8,} (9.1-26)
Maximum amplitude along Z

2 fmax) = Z (o) * 2 feimany = (20 + H 6)| +|(B/2)y, | (9.1-27)

Here x/,y; & z; represent amplitudes @ Foundation top. Quantities L, B& H represent Length,
Breadth and Height as shown in Figure 9.1-2.

On the similar lines, we can evaluate amplitudes at bearing locations too. It should ultimately be
ensured that the amplitudes of vibration are within the allowable values. If analysis shows higher
amplitudes, it is essential to redesign the foundation and reanalyze the system till one gets
acceptable levels of vibration amplitudes.

DESIGN EXAMPLES

Design Examples are those encountered in real life practice. Comparison
with Finite Element Analysis (FEA) is also given for specific cases to build
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up the confidence level. Effort is made to highlight the influence of certain
slips commonly committed while computing response of the foundation.

Example D 9.1: Foundation for Low Speed Machine (600 rpm)

Design a Block Foundation for a Rotary Machine set consisting of a Drive machine and a
Non-Drive Machine, coupled directly. Foundation outline showing Machine-loading diagram,
sectional elevation showing machine CG line, rotor-center line and bearing locations, is given
in Figure D 9.1-1. Machine, foundation and soil parameters are as under:

Machine Data:

0 0O O O ©O

Weight of Drive Machine (excluding Rotor) 100 kN
Weight of the Non-Drive Machine (excluding Rotor) 200 kN
Weight of Drive Machine Rotor 10 kN
Weight of Non-Drive Machine Rotor 20 kN
Bearings: Both the rotors have Pedestal bearings
Weight of bearing pedestal

= Drive machine 2 kN (each pedestal)

*  Non-drive machine 4 kN (each pedestal)

Consider CG of bearing pedestals and coupling at rotor Centre Line level.

O 0 0 0 O

Weight of Coupling

Rotor Speed

Balance Grade for both the rotors

Height of Rotor Centerline above Ground level
Height of Machine Centroid below rotor centerline

Foundation Data

Length of Foundation Block
Width of Foundation

Height of Foundation block is above ground level
*  Drive end side

®  Non drive end side

Mass Density of concrete
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600 rpm
G6.3
2000 mm
100 mm

5200 mm
2200 mm

1000 mm
200 mm

P, =2500 kg/m®
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Soil Data
o Mass Density P, =1800 kg/m>
o Poisson’s Ratio v =025
o Damping constant § =0.1
o Site Coefficient of Uniform Compression normalized to 10 m? Area
C,o =4.6x10* KN/m®
o Site Static Stress & @ 3.5 m depth 100 kN/m?
o Net Bearing capacity at 3.5 m depth 250 kN/m?2
Data for Strength Design
o Bearing failure force 5 x rotor weight
o Seismic Coefficient ay = 0.20
Anchor Bolits
o Drive machine 4#-20mmdiabolts - Embedded Length of 300 mm
o Non- drive machine by 4 # - 25 mm dia bolts - Embedded Length of 400

mm

Increase in Allowable stress & soil bearing pressure

o For Earthquake condition 25%
o For Bearing Failure condition 50%
SOLUTION:
Machine Data:

Machine layout is shown in Figure D 9.1-2. Drive machine weight is distributed at 4 points @
25kN each and Non-drive machine weight is distributed at 4 points @ 50 kN each as shown in

the Figure.

Weight of Drive Machine (excluding rotor) 4x25=100kN
Rotor weight 2x5=10kN
Weight of bearing pedestals 2x2=4kN
Total (Rotor + pedestal) 2x7=14kN
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Weight of Non-Drive Machine (excluding rotor) 4 x50 =200 kN
Rotor weight 2x10=20kN
Weight of bearing pedestals 2x4=8kN
Total (Rotor + pedestals) 2x14 =28kN
Weight of coupling 6 kN
Total Machine weight 100+14+200+28+6 =348 kN

Foundation sizing:

Foundation outline Plan dimension L=52m & B=22m
Area of foundation block A =52x22=1144 m’
Consider foundation weight equal to 3.0 times the machine weight (see § 9.1.1)
Desired Foundation Weight 3x348 =1044 kN
Mass Density of concrete p. =2500 kg/m® =2.5 t/m*

Wt. of foundation above Ground Level
{22x22x1.0+3.0x2.2x0.2+0.6x0.8x0.8}x2.5x9.81 = 160.5 kN

e (1044-160.5)

Required Foundation Height below GL =3.15m
11.44x9.81%2.5

Provide Foundation Depth below GL H=35m

Weight of foundation W, =1144x3.5x2.5x9.81+160.5=1142kN

Total weight of Machine + Foundation W =1142+348 =1490 kN

Bearing Pressure

Direct Bearing Pressure g= Tlli%oi =1303 KkN/m?

Net Bearing Capacity @ 3.5 m depth 250 kN/m?

Allowable Bearing Capacity =250+3.5x1.8x9.81 =312 kN/m?
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25kN Wm4=25kN
250

25kN Wm3

400

1100

1100
1000
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3500

700
700

BR1
1
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Bearing
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00
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Bearing
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Wm5 =7kN Wm6=7kN Wm7= 6kN Wm8=50kN
Wm 9= 50kN Wml0=50kN Wmll=50kN Wml2=14kN

Wm1l=25kN Wm2
Wmi3= 14 kN
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Ratio of Bearing Pressure to Bearing Capacity l:—?;— =042

Margin for other loads (dynamic loads, emergency loads etc.) =(1-0.42)x100=58%
Margin available > 30% , hence OK

Overall Centroid

Overall Centroid with respect to CG of Base area: Consider CG of Base area point O as
shown in Figure D 9.1-2. This is also called DOF location.

a) Machine

Drive M/c Bearings Coupling Non-Drive M/c Bearings
~ ~A- —i— - ey
W, 250 250 250250 70 7.0 6.0 500 50.0 500 500 14.014.0 kN
x; 07 -07 07 -07 00 0.0 0.0 0.7 -0.7 07 -07 0.0 0.0 m
yi 54 54 54 5455 55 55 54 54 54 54 55 55 m
z; <21 -2.1 -09 -0.9 -2.35 -0.65 -0.1 09 09 1.9 1.9 06 22 m

Let X0, Ymo»>Zmo represent Machine Centroid with respect to CG of Base Area point O. We get

D W, =100+14+6+200+28=348kN; D Wx; =0.0; D Wy, =1884; > Wz, =147.6

. _IWx - _SWy, . _IWe

Xmo =S =05 =Stb=5414; F,, il 0.424
ST 7 "~ W,
b) Foundation
Distance of CG
Dimension from Point O
— e

Block x y z xi yi zi

1 22 45 22 00 225 -15
2 22 37 30 00 185 1.1
3 08 08 06 00 410 -0.
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Weight of Foundation

W =22x22x45%x2.5x9.81=534 kN

Wy =3.0x22x3.7x2.5x9.81=599 kN

W3 =06x0.8x0.8x2.5x9.81=9.5 kN
Total weight =1142.5kN

400 f 250 250
= s -
- 0 i O~
§ i i 700 1100
PR U R T B
8 )
e T 0 e |™
. R NN [ N— 500
700 ! 1000 100 600 : 400! 500 ! 1200 !
N i
Rotor i
X Igécﬂ:: Center Line i PLAN
100 } \\,‘ inl
3 S
4 =4
2 S 1 I N | CL
2 1 g
5 a
P

CG Base Area/#i}
200 b—ere—sj 400

]
2600 2600 1

Figure D 9.1-2 Machine Layout with Respect to CG of Base Area O
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Let X 15,3 fo,Z fo represent Foundation Centroid with respect to CG of Base Area point O. We get

D WS, =534+599+9.5=1142.5kN; Y W;x, =0.0; D Wy, =2360.4; > W,z =-143

- X; — Wy, _ Wz
Xp = Z;I;/x, =0; yp =———-ZZV;/y’ =2.066; z, = Mz, _ -0.125
g :

i i

Let ¥,,y, &z, represent overall centroid of Machine + Foundation system with respect to CG of

Base Area point O

__ E(WaFno +WFpo)  348x0+1142.5%0 _

X, = =
(W +W,) 348+1142.5
;- Z(WuTno +WyFs) _ 348x5.414+1142.5x2066 _, oo
- = =2.
(W +#y) 1490.5
- Z(WnZmo +W,%s,) _348x0.424+1142.5%(=0.125) _ o o0,
= = =0.
S(Wn+W,) 1490.5
Eccentricity

Eccentricity in X-Z plane:

Eccentricity along X-direction e, = (E %jx 100 = %:gx 100=0.0% <5% OK

Eccentricity along Z-direction e, = (E % )x 100 = 0'(5)0232 x100=006% <5% OK

Both the values of eccentricity are less than 5 %, hence OK

Dynamic Analysis

Site Soil Parameters

Site Coefficient of Uniform Compression (as given) C,o1 =4.6x10* kKN/m*
Corresponding base area (given) Ay =10m?
Site Static Stress @ 3.5 m depth (as given) o1 =100 kN/m?
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Design Soil Parameters

Width of Foundation : B=22m
Foundation depth Below GL D=35m
Effective depth (See §5.4) dy =0.5%x22+35=4.6m

Overburden pressure due to soil at depth dy, o, =1.8x4.6x9.81=81.23 kN/m?
Area of Foundation Ay =22x52=1144m?
Total Wt. of Machine + Foundation 1490 kN

Overburden pressure due to foundation + machine ¢, = 11:33 =130.2 kN/m?

Design Static Stress Ty =0y +0, =(81.23+130.2) =211.43  kN/m?

Design Coefficient of Uniform Compression C,q, = C,q; ¥ (E‘P—J x (ﬁo—‘]

Since =11.44m? >10m?; effective 4y, =10m?
2 2

Cuop = 4.6x10%x [ 21430, 19} _ 6 7210¢ kNim?
100 ) Y10

Desigh Coefficients

Uniform Compression (as given) C, =Cyop = 6.7x10* KN/m>
Uniform Shear C, =0.5xC, =0.5x6.7x10* =3.35x10* kN/m>
Non-Uniform Compression Cy =C4 =2%C, =2x6.7x10* =13.4x10* KkN/m®
Non-Uniform Shear C, =0.75xC, =0.75x6.7x10* =5.03x10* KN/m’
Soil Stiffness (Equivalent Springs):

Translational Soil Stiffness values along X, ¥ & Z kesky ok,

Rotational Soil Stiffness values about X, Y & Z kg, ky,ky

Foundation Base area A =1144 m?
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Moment of Inertia of Base Area about X-axis I, = %x 22x52%*=2578 m*

Moment of Inertia of Base Area about Z-axis 1, = %x 223%x52=4614 m*

Moment of Inertia of Base Area about Y-axis

1, =I,+I,=2578+4614=304 m"

Substituting values, we get:

k. =C,xA; =3.35x10*x11.44 =38.32x10* kN/m

k,=C,xA; =6.7x10*x11.44 =76.65x10* KkN/m
k,=C,xA; =38.32x10* kN/m

kg =Cpx1I,, =13.4x10%x25.78 =3.45x10° kNm/rad
k, =C, %1, =503x10*x304=1.53x10° kNm/rad

ky =Cyx1,, =13.4x10*x4.614=062x10° KNm/rad

Mass and Mass Moment of Inertia
a) Mass Moment of Inertia about CG of Base Point O
Machine load distribution and locations with respect to point O (see Figure 9.1-2)

i) Machine

Drive M/c Bearings Coupling Non-Drive M/c Bearings

[ A N A ey - - N ——A——
W, 250 25.0 25.0 250 7.0 7.0 6.0 500 50.0 50.0 50.0 140140 kN
x; 07 -07 07 -07 00 00 00 07 -07 07 -07 00 00 m
Y 54 54 54 5427 27 27 54 54 54 54 27 27 m
-21 -21 -09 -09-235-065 -0.1 09 09 1919 06 22 m

Z;

Total machine Mass =348/9.81=35.474 t

Mass Moment of Inertia of Machine

Maes_machine = Y. AW, 1@)x (2 +22 }=1123.1 tm?
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Mmoy_machine = ZKW', /g)x(xiz +Z,-2 )}= 98.3 t m?

Mmoz_machine = Z {(;'V, /g)x (x,2 +y,2 )}= 10547 t m?

ii) Foundation
Distance of CG
Dimension from Point O
Block x y z xi yi zi  Density Mass

1 2.2 45 22 00 225 -15 25 2.2x4.5x2.2x2.5=54.45

2 2.2 37 30 00 185 1.1 25 22x3.7x3.0x2.5=61.05

3 0.8 08 06 00 410 -01 25 0.8x0.8x0.6x2.5= 0.96
Total Mass =116.46 t

Mass Moment of Inertia of Foundation

Maooe_ pondation = 3., 112)0% + 22 )+ m, (2 + 22 )} = 926.49 tm?
Moy soundaron = A 112)6% +22 )+ m (2 + 22 )} = 31081 tm?
Mo poundation = 24 112y + 52 )+ m, (32 + 57 )} =708.95 t m?
Total Mass Moment of Inertia about CG of Base Point O

M, 1123.1+926.49 =2049.6 t m>

mox=

M, _983+310.81 =409.12tm?

moy=

M, 1054.7+708.95 =1763.7 t m*
b) Mass Moment of Inertia about Overall Centroid
Total Mass (Machine + Foundation) m=3547+11646=15193 t

Coordinates of Overall Centroid with respect to CG of Base Area point O

%,=0; 7,=2.8477; Z,=0.0032

My = Mgy —m (5,2 +2,%) = {2049.6-151.93x (2.8477% +.0.0032% }= 817.5 t m?
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M, =M

Foundations for Rotary Machines

oy~ (5,2 +2,%) = $109.12-151.93x(0 +0.00322 )} = 409.12 ¢ m?

My = My, —m (7,2 +%,2) = 17637 ~151.93x(2.8477% +0)}=531.64 tm?

Ratio of Mass Moment of Inertia at overall centroid to Mass Moment of Inertia at CG of

base area point O

M
ye s Mpy _ 8175 -0399; 7, = my 409.12
Mmox 20496 Mpgy 40912
Natural Frequéncies

Limiting Frequencies:

4
_ /f&: /Mﬂo,zz rad/s
m 151.93
k 4
P, = ’_y=‘/-76;65-51()—=71.03rad/s
m 151.93
4
_ ,1‘!_: ‘/3533.‘_10_=5o.22 rad/s
m 151.93
6
3.45x10 =41.02 rad/s
M, V 2049.6
[k ‘/1 53x10°
Pv M.,V a0912

oy = |t _‘/0.62><106
$ VM, 1763.7

=61.15rad/s

=18.75 rad/s

=1.0; y,=

Mm; _531.64

=0.30
T17637

M moz

Uncoupled Modes: Since vertical and torsional modes (corresponding to y & i deformation) are
uncoupled modes p, & p,, also represent the natural frequencies in respective modes.

py=T7103 radls; f,=11.30 Hz

p, =61.15 radls; f,=9.73 Hz
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Coupled Modes are:

Modes corresponding to x & ¢ deformation (X-Y Plane)

Modes corresponding to z & & deformation (Y-Z Plane)

Natural Frequencies corresponding to x & ¢ deformation see equation

5 =i(1)§ +p3)- 2;2 \/(p§ +03f -4y, p2p2

1

- (50.222+18.752)—2 30
X

P =2%030
p? = 4789.35-4469.03 = 320.32
p=179rad/s; f;=2.84Hz

2
\/(50.222 +18.752) —4%0.30x50.22% x18.752

p;= 51——(;72 Pl = \f(p2 +p2f ~47, p2p3
7 2y,
1
2x0.30
p3 = 4789.35+4469.03 = 9258.3;

p2=9622radls; f,=153Hz

1

(50.222 +18.752)+m\/(50.222 +13.752)Z -4x0.30x50.22% x18.757
X

P} =

It is noted that since limiting frequency p; < p, , the lower natural frequency f =2.84 Hzshall
predominantly correspond to ¢ mode of deformation and f, =15.3 Hz shall predominantly

correspond to x mode of deformation. On the similar “lines, we get natural frequencies
corresponding to another coupled mode i.e. mode corresponding to z& @& deformation.
Substituting p, = 50.22, p, =41.02 & y, =0.399, we get the two natural frequencies as:

21
P = 0399
Py’ =5269-4139=1130;

p,=336rad/s; f,=535Hz

1
2x0.399

(s0.222 + 41.022)— J (50.222 + 41.022)z -4x0.399x50.22% x 41,022

2 1
P2 = 0399
P2 =5269+4138.46 =9407.46 ;

Py =9699rad/s; f,=1543Hz

1
2x0.399

(50.22 +41.02% (50227 + 41,022 - 4x0.399x50.22% x41.022
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Here also, since py < p,, the lower natural frequency f; =4.57 Hzshall predominantly
correspond to & mode of deformation and f, =15.69 Hz shall predominantly correspond to
z mode of deformation.

Machine operating speed 600 rpm =10 Hz

Rewriting the six natural frequencies (in ascending order) corresponding to six modes of
vibration, we get:

margin with respect to

operating speed of 10 Hz

. —_—
p =179 rad/s >  f,=2.84 Hz — predominantly ¢ mode 71.6%
py=33.6rads—»> f, =535 Hz —» predominantly & mode 46.5%
p3 =61.15rad’s—> f;=9.73 Hz — uncoupled y mode 2.7%
P4 =71.03 rad/s > f, =11.30 Hz — uncoupled y mode 13.0%
ps =96.22 rad/s &> f5 =15.30 Hz — predominantly z mode 53.0%
D6 =96.99 rad/s & f; =15.44 Hz — predominantly x mode 54.4%

It is seen that 3 & 4™ frequencies ( f; & f4) are in resonance zone (i.e. frequencies lie within
120% of operating speed) and rest of the frequencies are sufficiently away from operating speed.

Hence amplitudes corresponding to p; & p, shall be computed with damping whereas for other
frequencies, undamped amplitude would be OK.

Unbalance Forces

Operating speed of machine =600 rpm = 20—0—262—)(1 =62.83 rad/s

a) Dynamic force F, generated by Drive Machine
10
Mass of Rotor =——=1.02 t
9.81 :
Excitation frequency =62.83 rad/s
Rotor Balance Grade =G6.3
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Rotor eccentricity e=(63/63.83)=0.1mm =0.1x107 m
Unbalance Force F =1.02x0.1x 107 x(63.83)2 =0.404 kN
b) Dynamic force F,generated by Non-Drive Machine
Mass of Rotor , = 20 =2.04 t

9.81
Rotor Balance Grade =(G6.3
Rotor eccentricity e=0.1x107 m
Unbalance Force F, =2.04x0.1x107 x (62.83)2 =0.808 kN

Dynamic Force — Load cases

Dynamic forces F; and F, are considered acting in vertical as well as in lateral directions (one at

a time). These forces are considered acting (a) in-phase and (b) out of phase. Figure D 9.1-3
shows dynamic forces applied at bearing locations. Bearings 1 & 2 (Br1 & Br2) correspond to
Drive machine whereas bearings 3 & 4 (Br3 & Br4) correspond to Non-drive machine. For each

such combination, forces are finally transferred @ point O and amplitudes are computed for

each such combination.

Case 1 Forces in-phase acting in (+) X-Direction
Excitation frequency 62.83 rad/s
Force at Bearings Brl & Br2 each (+X direction) =(0.404/2)=0.202 kN
Force at Bearing Br3 & Br4 each (+X direction) =(0.808/2)=0.404 kN
Transferring Forces at CG of Base area point O , we get

(Moment from Xto Y, Y to Z and Z to X is positive)
F,=2x0202+2x0404=1212 kN

M, =~(0.404x5.5+0.404x5.5+0.202x5.5+0.202x5.5) = —6.66 kNm

M, =0.404x(2.2+0.6)-0.202x(2.35+0.65)=0.52 kNm
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(a) Dynamic Forces - in Phase - (b) Dynamic Forces - out Phase
Dynamic Forces applied along X aixs

(c) Dynamic Forces - in Phase (d) Dynamic Forces - out Phase

Dynamic Forces applied along Y aixs

Figure D 9.1-3 Dynamic Forces at Bearing Locations

Case 2 Forces out of Phase acting in X—Direction

Force at Bearings Br1 & Br2 each (-X direction) =-0.202 kN
Force a¥ Bearing Br3 & Br4 each (+X direction) =0.404 kN
Transferring Forces at CG of Base area point O , we get

F, = 2x (0.404-0.202)=0.404 kN

M, =-2x(0.404x5.5)+2x(0.202x5.5)=-2.22 kNm
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M, =0.404x(2.2+0.6)+0.202(0.65+2.35)=1.74 kNm

Case 3 Forces F| & F, acting in-phase acting in Y ~Direction
Force at Bearing Brl & Br2 each (+Y direction) =0202 kN
Force at Bearing Br3 & Br4 each (+Y direction) =0.404 kN
Transferring Forces at CG of Base area point O , we get

Fy =2x0.202+2x0.404 =1.212 kN

M, =-0.404(2.2 +0.6)+0.202(2.35+0.65) = —0.525 kNm

Case 4 Forces out of Phase acting in Y -Direction

Force at Bearing Brl & Br2 each (-Y direction)=0.202 kN
Force at Bearing Br3 & Br4 each (+Y direction) =0.404 kN
Transferring Forces at CG of Base area point O , we get

F, =-2x0202+2x0.404=0.404 kN

My =-0.404x(2.2+0.6)-0.202x(2.35+0.65)= -1.735 kNm

Dynamic forces transferred at point O are shown in Figure D 9.1-4.

Amplitudes of Vibration
For amplitude computation (see § 9.1.6). Rewriting parameters required for computation of
amplitudes:

Stiffness and mass moment of inertia

k, =3832x10%; &, =76.65x10%; k, =3832x10* KN/m
ke =3.45x108; K, =1.53x10%; &, =0.62x10®  KNm/rad
m=15193 t; h=3,=28477 m; {=0.1

H=45 m; L=52 m; B=22 m
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M 20496 tm2; M _409.12tm2%; M 17637 tm?
mox = moy = moz =

M,, =817.5 tm® M,, =409.12 tm® M,, =531.64 tm?
7, =0399; y,=10; 7,=030

Limiting Frequencies:

px=5022rad/s; p,=71.03rad/s; p,=5022rad/s
Po =41.02rad/s; p, =61.15rad/s; p, =18.75rad/s

Natural Frequencies:

For motion in X-Y Plane p, =179rad/s; p, =96.22rad/s

For motion in Y-Z Plane  p, =33.6 rad/s; p, =96.99 rad/s

Frequency Ratios:

Limiting Frequency Ratios:
Be=(0/p,)=125 B,=lo/p,)=088 B,=(0/p,)=125
By =(0/ps)=153 B,=0/p,)=103 B,=(0/p,)=335

Natural Frequency Ratios:
For motion in X-Y Plane g, =(w/p,)=3.52; B, =(w/p,)=0.65

For motion in Y-Z Plane 8, = (o/ p, ) =187, B, =(w/p,)=0.65

Case 1 Force along X in Phase

F, =121 kN; M,=-6.66 kNm; M, =052 kNm
Excitation Frequency (Operating Speed of 600 rpm) = 62.83 rad/s
Natural Frequencies p =179 rad/s; p, =9622 rad/s

b= (“’/Pl)= 3.52, phr= (w/P2)= 0.65
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Since B, >12& S, <0.8 hence no resonance; use equation (9.1-9 & 10) for undamped
amplitudes. Further, since 0.8 <, <1.2, use equation 9.1-14 for amplitude with damping.

Note:  For amplitude computation, it is more convenient to consider one force at a time, evaluate
amplitudes and finally obtain the resultant by taking the sum of the amplitudes.

i) F, =121 kN

5, =(F./k.)=121/(832x10* )}=3.16x10¢ m
o082 11 eingms 0=335) 1, o oo
xo—|:5x-(]_—ﬁlle_—ﬂzz):|—[3.l6 10 (1—3.522X1—0.652) =4.96x10"° m
N mh ﬂ¢2
R )

151.93x2.848 3.35%
17637 " {1-3.52%)x(1-0.652

¢,,=—|:3.16x10"6x ):i=1.33x10—6 rad

ii) . M,=-666 kNm

8,=(M, [k,)=(- 6.66/0.62x10°)=-1.07x10™* rad

%, = {2.84x (-107x107) i _3.5221')2:(1 — )} =-732x10"° m

_ 1-82) 11 orene-shen 0-1282) 1 oo
¢”{5"(:(pﬂ1_L—ﬂ§‘)}{( 107107 )x (1_3.52211_0.652)]_ 9.31x107 rad

iii) Amplitudes for Moment M, =0.52 kNm

p, =6115 rad/sec; B, =1.03

8, =M, /k,)=(0.52/1.53x10° )= 3.43x107 rad
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v, =3.43x107 x !
‘/(1—1.032)z +(2x1.03x0.1)°
Total Amplitudes:

=1.61x107% rad

Total amplitudes x,, ¢, &y, @ point O
Tx, = (4.96x10 ~7.32x107% )= 2.37x10% m

54, =(1.33x10 -9.31x107 )=4.0x107" rad

Ty, =1.61x107 rad

Amplitudes @ Foundation Top

Rewriting equations 9.1-25 to 9.1-27 and substituting Zxo, Z Yor Zzo, 200, Zl//o &Z¢0 in
place of x4,.20.00, W& dy , We get:

X rmaxy = (Z %0 = HEZ 4o )+ [(L/2)Zwo
Y o = |2 70| +|(L/2) 2 66| +|(B/2) X 1|
Z f(max) =|(Zzo +HY6,) +|(B/2)ZW0|

Substituting values, we get |

¥ f(max) =H~2-37><10‘6—4.5x(4.oox10‘7)} +|(5.2/2)x1.61x10‘6 =8.35x10"% m

¥ oy =0+0+[2:2/2)x(4.00x107 | = 44107 m

2 w0 =(B/2)Z 00| = |22/2)1 61x1078| =1.77x107 m

Case 2 Force along X  Out of Phase

F,=04 kN; M,=-222 kNm; M, =174 kNm

0=6283 rads p =179 radls; p,=96.22 rad/s

B =(0/p)=35% B,=(0/p,)=065 B, =lo/p,)=335
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i) F,=04 kN
Following computations on similar lines, substituting the values, we get

8, =(F, /k,)=0.4/(38.32x10* )}=1.05x10¢ m

_ (l_ﬂ;) _ -5
X, = 6xﬁ——,51211——,5_22) =1.65x10" m

_ mh )B¢2 _ ~7
é,= [é‘x M (1 = ﬂ12 xl — ,322)] =4.44x10"" rad

i) M,=-222 KNm
8, =M, [ky)=(-6.66/0.62x10°)= -3.58x107 rad

] B;
Yo T {h‘s" R )}

= —[2.84>< (—3.58>< 10‘6) (1 _3.521;21512_0.652

_ 1- B} L 6\ (1—1.252) _ 7
¢0—|:6¢ﬁt£ﬂlz—1:)ﬁ—22‘)}— l:( 3.58x10 )x (1—3.52211—0.652):'_ 3.10x107" rad

i) Amplitudes for Moment M, =0.52 kNm

)] =-244x10"° m

p, =61.15 rad/sec; ﬂy, =1.03
8, =M, /k,)=(1.74/1.53x10°)=1.14x10"® rad

1
\/(1—1.032)2+(2><1.03><o.1)2

v, =1.14x1076 x =5.33x107° rad

Total Amplitudes: Total amplitudes x,, ¢, &y, @ point O

Tx, = (1.65x107 =2.44x10% k= -7.89x107 m
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T4, = (4.44x1077 ~3.10x107 )=1.33x1077 rad

Y, =533x107% rad

Amplitudes @ Foundation Top:

Substituting values, we get

xf(mx)=1,.52><10'5 m; yf(max)=1-47x10-7 m; Zf(max)=5.86x10_6 m

Case 3 Force along Y in Phase (Motion in Y —Z Plane)

F, =121 kN; My=-0.52 kNm
®=62.83 rad/s p, =33.62 rad/s; p, =96.99 rad/s
B =(0/p)=187; B, =(o/p,)=065

B.=(o/p.)=125 B,=(0/p,)=088 B, =(v/p,)=125
Bs=(0/ps)=153% B, =(0/p,)=1.03, B, =(0/ps)=335

Since f; >1.2& B, <0.8 hence no resonance; use equation (9.1-11 & 12) for undamped

amplitudes. Further, since 0.8 < B, <1.2, use equation 9.1-13 for amplitude with damping.

i) F,=121 kN

5, =(F, Jk,)=121/(7.67x10° }}=1.58x10 m

Y.=0, ! =1.58x10"° L =5.63%10"° m
Ji-52F +Gp 0} V10882 + (2x0.88x0.1)
ii) M, =-0.52 kNm (,50=M_o;=_i-5_2_6=_1_52x10-7
kg  3.45x10
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—

Z = 2.84x(-1.52><10'7)x( 1.25°

=4.67x10"7 m
1—1.872F0.65—2)]

[ 1- B2 }
6,=6
-2 - 2)

6, = (-1.52><10'7 )x (1 _1'(:;7'2}??0).652 J =-594%10"% rad

L

Total Amplitudes: Total amplitudes x,, ¢, &y, @ point O

Yy, =563x10"° m; Tz, =4.67x107 m; £0, =-594x10"" rad

F,=1212kN F,=04kN

M¢=—6.66 kNm M, =222 KkNm F,=121kN F,=0.40kN

M, = 0.52 kNm M, = 1.74 KNm My =-0.52 KNm My=-1.74 kNm
In Phase Out of Phase In Phase Out of Phase
Case 1 & 2 Dynamic Forces along X Case 3 &4 Dynamic Forces along Y

Figure D 9.1-4 Dynamic Forces and Moments Transferred @ Point O
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Amplitudes @ Foundation Top: Substituting values, we get

¥ ro = 563107 +|(5.2/2)><(— 5.94x 10‘8] =5.79x10% m

2w =|4:67x107 +4.5%(-5.94)x107%) +0=2.0x107 m

Case 4 ForcealongY OutofPhase (Motion in Y —Z Plane)

F, =040 kN; M,=-1.74 kNm

Following procedure same as for case 3, substituting values, we get

i) F,=040 kN; 5,=526x10"m ; y,=188x10° m
ii) My =-1.74 KNm; 5, =-5.03x107"

2o =155x10% m; 6, =-1.97x107" rad

Total Amplitudes: Total amplitudes x,, ¢, &y, @ point O

Ty, =188x10° m; ¥z,=155x10°m; 36, =-1.97x10" rad

Amplitudes @ Foundation Top: Substituting values, we get
¥y = |1-88x1070|+[(5.2/2)x(=1.97) 107]=239x10° m
2 man = [(155X10°° +4.5x(-1.97)x107) <6.6x107 m
Finite Element Analysis

This very problem is modeled and analyzed using Fihite Element Method. Solid Model and FE
Model are shown in Figure D 9.1-5. The results are presented herewith through Figures D 9.1-6 to
D9.1-8.

e Mode Shapes and associated frequencies are shown in Figure D 9.1-6
e  Steady State Amplitudes are shown in Figure D 9.1-7
e Transient Amplitudes are shown in Figure D 9.1-8
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Comparison of FE results with Analytical results

SolidModel ~ FEModel

Figure D 9.1-5  Foundation Block — Solid Model & FE Model

Mode2 S5Hz Mode 3 92 Hz

Mode ! 2.6Hz

Moded4 10Hz Mode5 13.8 Hz Mode6 13.77Hz

Figure D 9.1-6  Foundation Block — Mode Shapes & Frequencies
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Steady-State Response Damping - Amplitudes in mm

Figure D 9.1-7 Dynamic Force along X & Y - Steady-State Response — Damping 10 %

Frequencies and Mode Shapes: Comparing the natural frequencies with those obtained using
manual computational method (see 9.1.5.1), it is noticed that frequency evaluated by both the
analysis methods show a good agreement and variation is of the order of 10 % for all the six modes
of vibration. A good agreement is noticed in Frequencies and Mode Shapes by both the methods
given as under:
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Natural Frequencies - Hz

Mode # 1 2 3 4 5 6
Analytical Method 2.85 5.35 9.73 113 15.31 15.44
FE Analysis 2.6 5 9.1 10 13.8 13.8

Amplitudes of Vibration are given as under:

Amplitudes in microns

Dynamic Force Analytical Method FE Analysis
Along X In-phase 84 6.7
Along X Out of Phase 15.2 10.8
Along Y In-phase 5.8 1.3
Along Y Out of Phase 24 2.1

Transient amplitudes: These are computed using FE analysis only and have been shown in
Figure D 9.1-8.

Since applied dynamic force is computed at 50 Hz and same force is applied for the sweep analysis,
all transient amplitudes are to be scaled down by a factor of square of ratio of frequency i.e.

transient amplitudes at 5 Hz are to be scaled down by a factor of (5/ 50)2 and amplitude at 10 Hz

are to be scaled down by a factor of (1 0o/ 50)2 . For Dynamic force along X acting in-phase and out

—of-phase, transient amplitudes are 280 & 900 microns whereas for force along Y acting in-phase
and out—of-phase these are 320 and 200 microns respectively.

It is interesting to note that Transient Response (FE analysis results) shows a three fold increase in
X amplitude when dynamic force is applied out of phase compared to when force applied is in
phase. On the other hand, when forces are applied in Y direction, such a sharp increase is not
reflected.

There are may be many factors that may influence margins between natural frequency of the
system and excitation frequency. These in turn cause near resonance conditions resulting in higher
amplitudes. Some of these factors are:

i) Variation in soil stiffness properties with time

ii) For electrically operated machines drawing power from the grid, variation ih the grid
frequency (a very common factor) results in changed excitation frequency

iii) Variation in machine parameters given at the design stage to the actual one at the time of
supply
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It is to be noted that both these methods suffer with inaccuracies on account of ignoring soil
surrounding the foundation at all vertical interfaces. The soil effect tends to result in reduced
amplitudes than those evaluated by analysis

400 250
g 320 S 200
b ' S Amplitud
Amplitud
5 240 yAmpltuce = 150 y Ampitude __
:g 160 B 1
E‘ 80 g 50
A <
0 \ 0 N
0 4 8 12 16 20 0 4 8 12 16 20
Frequency Hz Frequency Hz
Transient Response at Bearing # 4 Transient Response at Bearing # 4
Dymnamic Load Vertical (F,) In-Phase Dynamic Load Vertical (Fy) Out-of-Phase
4000 1000
:
§ 3200 § 800
= 2400 xAmplitude | % co0 x Amplitude _|
(V] (]
2 1600 2 400
= =
E E
: 800 < 200 -
0 4 8 12 16 20 0 4 8 12 16 20
Frequency Hz Frequency Hz
Transient Response at Bearing # 4 . Transient Response at Bearing # 4
Dynamic Load Lateral (F,) In-Phase Dynamic Load Lateral (F,) Out-of-Phase
Figure D9.1-8 Transient Response at Bearing # 4
Strength Design

1. Block foundations are rigid body mass and have sufficient strength to withstand all possible
force exerted by machine and as such do not need design computations for strength except
those parts of the foundation which are overhang or cantilever.

2. Minimum reinforcement to be provided is 25 to 50 kg/m®. It is recommended that bar

diameter shall not be less than 12 mm and spacing shall not be more than 200 mm. For thick
concrete blocks, it is desirable to provide intermediate cross reinforcement layers along the
height.
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3. Though not necessary, check for Safe Bearing Pressure and stability, due to normal as well
as abnormal loading conditions is desirable.
4. Check for Strength & Embeddement of Anchor Bolts for applicable forces is a must

The foundation is designed using applicable codes of practice. Typical reinforcement arrangement
for the foundation is shown in Figure D 9.1-9

4B

o o o a g %10 @200 C/C
+
[
4| o o O o o Jé g
A A _FN S
o D D c\ § = 4% 10
" | _,| 150
(Typ)
2400 60(?' 2200 .
T \-IOOx 100 Pockets ~ Pocket Detail
5200 (Typ)
Plan
4+
(]
2
1T
18
v
b q4 <
X 16 5 o
@1s50c/c p q
s 8 o 9 I
L 5200 4 | 2200 |
Section A-A Section B-B

Figure D 9.1-9  Typical R/F For Block Foundation

9.2 DESIGN OF FRAME FOUNDATION

Design of Frame Foundation is relatively a complex task compared to Block foundation. There are
many parameters that influence machine-foundation response. The stiffness of Frame Structure
plays a vital role and more often than not becomes The Governing Parameter. Individual
vibration characteristics of columns, beams, cantilever projections etc, besides being part of the
system, have also been found to significantly influence the response. .
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Author has been associated for about three decades with Turbo-Generators and associated
machinery for Thermal Power Plants, Nuclear Power Plants and Petrochemical Plants. Studies on
the dynamic behaviour of Turbo Generator Foundations of various ratings have shown that there
are various parameters that influence machine foundation response. Though it may not be possible
to account for all of these effects in the design, it may still be desirable to take note of these and
take precautionary measures, as far as possible, at the design stage itself. Some of these are listed
hereunder:

i) Similar machines on the similar foundations have been observed to behave differently on
different soil. Amplitudes of vibration on a 200 MW (3000 rpm) TG Foundation show
high amplitudes on foundation built on hard rock compared to the other built on alluvial
soil (see Chapter 14).

ii) Identical machines on identical foundations built on identical soil have also been found to
exhibit different responses. Response of two identical foundations housing identical
machines built side by side has been found to be different (see Chapter 14).

iii) Variation in Load (in case of Turbo-Generators), at times, has been found to influence
response.

iv) Variation in grid frequency has also been found to influence response.

V) Deterioration of grout under sole plate, with time, has also been found to influence
vibration response.

vi) Tightening torque of holding down bolts does influence the response.

vii) Honey-combing in the frame beams and columns.

viii) Loss of Contact underneath machine support plates supported embedded in the concrete.

ix) Resonance with elements of foundation (beam, column, cantilever projection etc has been
found to influence the response significantly.

It is interesting to note that some of these parameters are machine related; some are installation
related; some are construction related; some are design related and some may be attributed to
combination of these. Author strongly recommends that the designer must touch upon all such
issues that are possible to be included at the design stage itself.

A Frame Foundation typically consists of a Top Deck, a set of Frames/Columns and a Base Raft.
In certain cases, a mid level platform is provided, on need basis, for supporting certain equipment.
In some cases, equipment like condenser is supported over pedestals raised from the base raft and
connected to machine at the top deck. Such equipment is either rigidly or flexibly mounted over the
pedestals depending upon its connection to the turbine at the top deck. A typical Foundation is
shown in Figure 9.2-1

The complete system is mathematically modeled and analyzed for natural frequencies and
amplitudes. The extent, to which machine and foundation elements are modeled, depends upon
machine and foundation characteristics.
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Summary of Design Steps

D=

Sizing of Foundation,

Locating machine load points over the foundation top deck

Locating machine components supported at base raft, mid height deck/platform etc and their
connections with machine at the top deck

Evaluation of Design Soil Stiffness Parameters

Identification/evaluation of Dynamic Forces

Analysis

I. Dynamic Analysis _

a. Natural Frequencies and Mode Shapes

b. Identification of modes likely to be in resonance with machine speeds (engine orders
and harmonics)

c. Evaluation of Dynamic Amplitudes
» Steady State Amplitudes
» Transient Amplitudes

II. Strength and Stability Analysis

a. Equivalent Static Forces (Normal Operating Conditions)
b. Bearing Failure Loads (Abnormal conditions)
c. Handling loads
d. Short Circuit Loads
e. Environmental Loads e.g. Earthquake Loads, Wind Loads etc.
f. Thermal Loads (if any)
[
|
O M 10
Top Deck Plan /' M
ﬁJ W
[T T
= )
I |
| Elevati ATypical View - Foundation

supporting Machine

Figure 9.2-1 A Typical Frame Foundation
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Required Input Data

A) Foundation Data

B)

0

D)

i) Foundation outline geometry, Levels etc

i) Cut-outs, pockets, trenches, notches, projections etc

Machine Data

iii) Machine Layout

iv) Machine Load Points

v) Machine Dynamic Loads

vi) Associated excitation Frequencies

vii) Emergency Loads e.g. Short Circuit Torque, Bearing Failure Loads, Earthquake
Loads, loss of blade etc.

viii) Allowable Amplitudes at Bearing Locations

Soil Data

ix) Site Specific Dynamic Soil Data

X) Soil type and its basic characteristic properties

Xxi) Bearing capacity

Xii) Depth of water table

xiii)  Liquefaction potential

Environmental Data

Xiv)
XV)

Site related Seismic data
Wind Load Data

At this stage it is implied that Design Sub-grade Parameters, Design Machine Parameters and
Design Foundation Parameters have duly been evaluated in line with provisions given in Chapters
5, 6, 7 and intricacies of Modeling and Analysis, as given in Chapter 8, have been well
understood.

9.2.1 Dynamic Analysis:

From the point of view of dynamic amplitudes, following modes of vibration are of interest to
designer:

i)
ii)

iii)

Transverse Mode (perpendicular to rotor axis)
Vertical Mode

Lateral Vibrations Coupled with Torsional Vibrations
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Frame foundation, being a 3-D Structural system, all these linear modes get associated with
corresponding rotational modes of vibration. Whereas it is simple to evaluate all these modes with
the help of computational tool, it is next to impossible to evaluate response of such a 3-D structure
by manual method of analysis. Thus for manual computations, lot many assumptions and
approximations are made to be able to tackle such foundations. In view of the limitations of the
manual analysis procedures, the following practices are generally employed:

i) Foundation is split in to as many number of portal frames as present
ii) Transverse and Vertical vibrations are evaluated for these portal frames
iii) Top deck being rigid, lateral vibrations coupled with torsional vibrations are

evaluated using lateral stiffness properties of each portal frame

Note: Longitudinal vibration is generally not attempted using manual method of analysis
These cases are discussed one by one.
9.2.1.1 Loads on Frame Beam

From the overall machine and structural mass at the top deck and keeping in view the dynamics of
the problem, the most important part is to identify mass associated with each frame for the purpose
of frame analysis.

I d 4
Je
¢ 'I
-
i o wse
Opening—— [®F/; .
gyl ..M W-iSolidSiab |
‘I—b
X
Frame 1 Frame II Frame III

W\ Wo, W3, Wy&Ws are machine load points
W, - Weight of Solid Slab
Figure 9.2-2a Machine Loads @ Top Deck & Deck Self Weight - Typical Top Deck Plan

N

Consider a typical top deck plan with three frames showing distribution of machine loads on deck
slab as shown in Figure 9.2-2a. For load nomenclature, refer a representative typical portal frame as
shown in Figure 9.2-2b. In order to evaluate loads associated with each frame, it requires:

-
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i) Identify machine loads at the deck and allocate the same to the nearest frame beam or
longitudinal beam as the case may be using law of statics
it) Evaluate self weight of each member at the top deck and transfer the same on to the frame
beams/ longitudinal beams using law of static
iii) Evaluate self weight of each column
W,
Y WLL Wm WLR W, ¢
A r_l T L L ? s
I 77— . —_ m
E Beam Ay 1, \
! W,
e W ?
L 4er Ic Ac' Ic H H WC WC
1
1 1Col
TEeY w -
—~4
: | N
L ‘ L L
A Typical Frame F enter Line Model

Figure 9.2-2b A representative Portal Frame showing Machine Loads &Top Deck Self Weight

Thus on each frame we get machine loads, self weight of transverse and longitudinal beams, self
weight of deck slab etc. Load nomenclature associated with each frame is defined as under:

Let us denote the loads on the portal frame as under:

w,

m

Total Machine Weight on Frame Beam 9.2-1)

At times, depending on machine layout over foundation, weight of machine may be located at beam
center or off-center location. It is therefore essential to compute equivalent machine weight (based
on KE equivalence) at beam center

W,z Equivalent Machine Weight at Frame Beam Center

This includes:

i) Weight of Machine directly located at frame beam center

il) For Machine loads at off-center locations, equivalent machine weight at Frame Beam
center using principles of kinetic energy equivalence as described in § 9.2.1.2 (see also
Figure 9.2-3)
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W, Remaining Machine Weight transferred to Column Top i.e. W, =W, —-W,»
Wp Total Distributed Weight on Frame Beam 9.2-2)

This includes:

i) Beam self weight

ii) Concrete Pedestal weight (if any)

iii) Weight of other structural elements Transferred to frame beam through Deck slab

iv) Weight of other machine elements (if any) transferred to frame beam through deck slab

W, Weight Transferred from Longitudinal beams @ top of Left column (9.2-3)

This includes:
i) Weight of structural members transferred through longitudinal beams@ column top
ii) Weight of machine elements transferred through longitudinal beams @ column top

W,r  Weight Transferred from Longitudinal beams @ top of Right column (9.2-4)

This includes:
i) Weight of structural members transferred through longitudinal beams@ column top
if) Weight of machine elements transferred through longitudinal beams @ column top

We Weight of Each Column (9.2-5)

This is to account for the cases when LHS column size is different than RHS column of the
same frame. ’

9.2.1.2 Machine mass at off-center location

In many cases, machine mass may not be at frame beam center location. This requires equivalent
generalised mass placed at frame beam center to be evaluated using principle of energy equivalence
(see Chapter 2). The graph giving mass participation factor « as shown in Figure 2.1.1-12 is
reproduced here for convenience in Figure 9.2-3. For machine mass m,, at beam center and another

mass m, placed at a distance a from one end, equivalent mass at frame beam center becomes:

m*=m, +am (9.2-6)

Here « is machine mass participation factor as given in Figure 9.2-3.
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3 " m : m*
R -~ [107 Ol
t
[
g 08 ! o )
'ﬁ : m*=m, + am,
E" 0.6 N 1
g i
4 '
& 0 ' £ L 1 +
g 02; ; —— L— b— ——
i
g2 9 i . : : ; Machine Mass m,, at Beam center & another
lg 0 01 02 03 04 05 Mass m, at off center - Beam is Massless
2 Machine Mass Location vs. Span-Ratio a/L Effective Mass m* at Beam Center

Figure 9.2-3 Mass participation Factor o - when Machine mass
is at Off-centerLocation -Beam is Massless- Equivalent Mass of System

9.2.1.3 Computation of Loads on Frame Beams and Column Top

Consider a representative plan of a typical top deck (SAMPLE EXAMPLE) having three
transverse frames i.e. Frame I, Frame Il & frame III as shown in'Figure 9.2-4

VA
'__—'IC ;
( Wse
. 84
Opening oW, s
W, W. 2
L l' ................... 2 [ YR WS S N i -
51
w9
| RN
i I
Frame 1 Frame II Frame 1II

W.Wo W3, W,&Ws are machine load points
51,5583, &s,  are weight of deck slab

Figure 9.2-4 Machine Loads @ Top Deck & Deck Self Weight
Here W, W, ,W,,W, & W5 represent machine loads and S,,S,,S; & S,represent self weight of
deck slab segments. Member self weights (like beams) are also there but not indicated in the figure

for clarity.

Let us consider load associated with each Frame one by one:
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Frame I: This frame has opening on deck side i.e. no deck slab weight transferred to frame
beam. Machine weight is located at Frame beam center. This gives:

W, =W, (Total Machine Load on Frame Beam)
W,z =W, (Machine loads at Frame Beam center)
Woo =W, —W,z =0 (Mchine Loads at Column Top)

Distributed Loads
W, =self weight of beam only

W,, = Reaction from Self weight of Longitudinal Beam
on top of Left side column

W, r = Reaction from Self weight of Longitudinal Beam
on top of Right side column

Frame I1: This frame has opening on one side, deck slab on other side, machine weight W,
located at Frame beam center and machine weight W; adjacent to beam located on the deck slab
at a distance a from one end of the frame. This gives:

WmB = Wz +aW3
WmC =Wm _WmB =(l—a)W3
W,, = Beam self weight + Slab weight S|

W, =Reaction from LHS Longitudinal Beam
This includes its self weight, slab weight S, & Machine weight W

W, = Reaction from RHS Longitudinal Beam
This includes its self weight & slab weight S,

Frame III: This frame has deck slab on one side, machine weight W, located on the deck
slab adjacent to beam at a distance b from one end of the frame. This gives:

Wm =W4
WmB =C¥W4
Wae =(1~a)W,
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W, =Beam self weight +Slab weight S,
W,; = Reaction from LHS Longitudinal Beam

This includes its self weight, slab weight S, & Machine weight W
W;p = Reaction from RHS Longitudinal Beam

This includes its self weight & slab weight S

Here « represents mass participation factor taken from Figure 9.2-3 for ratio b/L

9.2.2 Lateral Mode of Vibration along - X

Consider a Typical Frame as shown in Figure 9.2-5 showing loads as well as masses on the frame.
Here W, W, , W ,W,; & W,, are as given by equations 9.2-1 to 9.2-5.

m
w, Wi
3 \ Ab’ Ib
WD

H W, w, _—

e I A1,

| N

| J3 |

(i)_Frame - Center Line Model (i) Mathematical Model - Latera] Vibration

Figure 9.2-5 A Typical Frame - Mathematical Model - Lateral Vibration

_ W + Wi+ Wy + Wi +0.23x2x W, 9.2-7)
g

Mass m,
Note:  For mass participation factor 0.23, refer equation 2.1.1-21.

Stiffness: (see equation 2.1.1-39)

_12EI, 1+6k ©2.8)

Lateral Stiffness k="t ——
HY 2+3k
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Here k= Ii"—/%- represents ratio of beam to column stiffness .29
c
ky
Natural Frequency Py = |- . 9.2-10)
mI

Amplitude: Under influence of Dynamic Force F, sinwt applied to the mass, maximum steady-
state amplitude of mass m is given equation 2.2.2-5.

1

Ji-52F +s. .Y

. . o . ,
Here &, represents static deflection, S, =— represents frequency ratio and ¢, represents

X

x(t)=4, ; 0=

R

9.2-11)

damping constant.
9.2.3 Vertical mode of Vibration along -Y

Consider a Typical Frame as shown in Figure 9.2-6 showing loads as well as masses on the frame.
Here W,,,Wp W W, & W, are as given by equations 9.2-1 to 9.2-5.

For vertical motion (motion along Y), system can be represented as SDOF System or Two DOF
System. Let us consider these two systems one by one.

i) Portal Frame represented as SDOF System: (Figure 9.2-6 (a))

- Wa+Wp+Wy +Wip+0.33x2x W 9.2-12)
g

Mass

Vertical Stiffness & vt

Beam to Column Stiffness ratio (see § 2.1.1.4.5) k=Ko D/
: k, I./H

a) Flexural Deformation of frame beam under unit load (see equation 3.1.6-4)

Flexural 3
— L 2k +1
_ 9.2-13
Y2 TS6El, k+2 ©-2-13)
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b) Shear deformation of Frame beam under unit load (see equation 7.9-2)

Shear
= 3L
= 9.2-14
Y2 8GA, ( )
¢) Vertical deformation of columns under unit load (see equation 3.1.6-5)
) e H
Yy =25~ N = = (9.2-15)
8GA4, E(2xA4.) 2EA.
Total deformation at Frame Beam Center under Unit Load
_'F]E_)gl_l_‘ral-FS’lLe_af-’-Co’l_L&nn— L3 X2k+] . 3L N H (92 16)
Y= R N RSk " k+2 | 8G4,  2E 4, '
. . 1
Vertical Stiffness k,=— 9.2-17)
y
ky
Natural Frequency Py == (9.2-18)
m
v

Amplitude: Under influence of Dynamic Force F, sinw? applied to the mass, steady - state
amplitude of mass m is given equation 2.2.2-5.

1
\/(1 _'H}%)Z +(2'By gy)z

F, . . » .
Here 6, = — represents static deflection, B, = — represents frequency ratio, ¢, represents
y Py

=6,

sin(fwt -~ @) (9.2-19)

2
Fyty )] represents the phase angle.

damping constant and ¢ = tan™
(-5

ii) Portal Frame represented as Two - DOF System (Figure 9.2-6 (b))

Mass m, my = (W +045%Hp) (9.2-20)

g

Mass m] ml - WmC +0'55XWD+W[,L +WLR+2><O'33XW(Z' (9.2_21)

g
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Wm
Wi PR -
m, =W, tWpt W+ Wip+2x033W0g
T \ A
7p
H We We
% A1,
e N
I L !

(a) _ Vertical Vibration - SDOF System

my = (W, 5+ 0.45 x Wp)/g

05, W 5 0.5)W,,¢
my= (W, c+0.55Wp+ Wi+ Wit 2 x033W)/g

47 Wir
T \ Ap: 1y
b
H We We =
A Al
U
[ |
I L '|

b Vertical Vibration - Two DOF System

Figure 9.2-6 A Typical Frame - Mathematical Model -Vertical Vibration

Stiffness:
Stiffness £,

a) Flexural Deformation of frame beam under Unit Load

Flexural 3
- k+1
L 2kx (9.222)

X

Y2 To6El, k2

b) Shear deformation of Frame beam under Unit Load

3L
= 9.2-23
Y2 8GA, ( )
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Total deformation at Frame Beam Center under Unit Load

Flexural  Shear 3
~= —~ L 2k +1 3L
= + = x + 9.2-24
2= 2 T [9651,, k+2] 8GA4, (02-24)
Stiffness ky = 1 (9.2-25)
Y2
Stiffness £,
Vertical deformation of columns under Unit Load
Column
-~ H H
= = 9.2-26
M TElx4) 2E4, (0-2-26)
2E A,
Stiffness k = 1. < (9.2-:27)
Y1 H

Natural Frequencies:

Limiting Frequencies & Mass ratio (see equations 3.1.6-6)

‘k ’k m
p“ = —l—; pL2 = -—g— N Z,:—Z- . . (9.2'28)
m, my m

Frequency equation (see equation 3.1.6-6)

P = %{(pfz(l + )+ g2 JE (P2 0+ 2)s p2f ~lo2 2 )} | | 9229)

Substituting for p,,, p;, & 4 , roots of this equation give two natural frequencies p, & p,.

Amplitude:

Under influence of Dynamic Force £, sinw! applied to the mass m,, maximum steady - state v

response of masses m; & m, are given by equations (3.2.4-7 & 8)
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Maximum Response:

Fy 1 .
Vi max) = (9.2-30)
1 (max) kl!]-‘ﬂlz ‘l_ﬂzz »
2
(1 + Aﬁg—l - B3 ]
Fo ﬁLZ

oy =2 (9.2-31)
Y20 T, -5 ll‘ﬂzz

Amplitude at Resonance: (see equation 3.2.4-9)

In case of resonance, taking advantage of the derivation done for damped SDOF system, it can be
said that in case of resonance with vertical natural frequency p,, the response to the system at

resonance is obtained by replacing the term l(l - ,b’f] in denominator by \[(] - ,6,2)2 + (2,3,./,’ )2

Similarly, in case of resonance with vertical natural frequency p,, the response to the system at

resonance is obtained by replacing the term I(l - /3221 in denominator by \/ (1 -p; )z +(28,¢ )2 in
equations 9.2-30 & 31.

9.2.4 Lateral Vibrations Coupled with Torsional Vibrations

Consider a typical frame foundation as shown in Figure 9.2-7. System consists of » frames. Rotor

center line is oriented towards Z axis. Figure 9.2-7 (i) shows coupling of lateral mode with
torsional mode of vibration. This mode of vibration occurs due to presence of Top Deck
Eccentricity i.e. eccentricity between center of mass and center of lateral stiffness of Frame
foundation. In the absence of eccentricity, foundation exhibits pure translational vibration as shown
in Figure 9.2-7 (ii).

Let m, & k,represent mass and stiffness associated with frame 'i' as given by equations 9.2-7
& 8 respectively. Let C,, represent center of mass and C, represent center of stiffness. Top Deck
Eccentricity e is the distance between center of mass C,, and center of stiffness C, .

Mathematical representation of the frame foundation in Z-X plane is shown in Figure 9.2-8. Two
coordinates namely translation x (along X) and rotation y (about Y) represent two degrees of

freedom that define displaced position of the system.
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(i) System with eccentricity e -Motion along X
causes Torsional Vibration about Y

(ii) Motion along X - No eccentricity

Figure 9.2-7  Lateral Vibration of a typical frame foundation -
Foundation with and without Top Deck Eccentricity

Let z,, & z, denote distances of CG of overall mass m, (pointC,, ) and stiffness &, (pointC,)

from Frame 1 and z, represent distance of i” frame from frame 1.

mo=mg; I, L (9.2:32)
mx
_ kaizl
ko= kys  Z= (9.2-33)
ke
Eccentricity e e=2z, -2, (9.2-34)

It is desirable to restrict this eccentricity in Plan to be <1% of corresponding top deck dimension
(See Chapter 7 - § 7.9.1).

Equation of Motion

Let us consider center of mass C,, as origin (DOF location). Let @, & b, represent distance of

i" frame from center of mass point C,, and center of stiffness point C, as shown in part (ii) of
the figure. Analysis for such a system vibrating in X -Y plane is given in § 3.1.5 and response
is given in § 3.2.3. Interchanging y with xand ¢ with i, we get solution the lateral and torsional

vibration of frame foundation.
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Center of Stiffess Center of Mass

Eccentricity

4

Zk b : b
n : 1
() z- Distance of frame i from frame -1 (i) a; & b; are Distances of frame i from
Motion in X-Z plane Center of mass and Center of stiffness

Figure 9.2-8 Mathematical Representation of A Typical Frame Foundation with n Frames -
Motion in Z-X plane - Lateral vibration along X and Torsional vibration about Y

Total Mass Moment of Inertia of the system about Y @ DOF (see equation 3.1.5-6)
M, =Y m,a} (9.2-35)
Total Torsional Stiffness of the system about Y @ DOF (see equation 3.1.5-7)
k, =D kb’ (9.2-36)
Equations of motion (see equations 3.1.5-10 & 11)

5c'+pfx+ep£ w=0

2 (9.2-37)
.. e e
w+p§x;2-+pfr—2w+p3,w=0

k, k, M,, N .
Terms p,=[—; p, = & r= represent limiting translational frequency,
my M my my

limiting torsional frequency and equivalent radius of gyration ‘respectively.
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It is also noted that both these equations are coupled through gccentricity term e. If eccentricity

becomes zero, i.e. e=0, both these equations get uncoupled and the limiting frequencies become
natural frequencies.

Frequency equation (see equation 3.1.5-14)

P - ple p? +p§,)+pfp3, =0
& ' (9.2-38)
Here a = 1+-2
,

Roots of the equation 9.2-38 will yield two natural frequencies. We get

Py = %{(a P+ py ) \/ wp?+p2f -4p2n} } (9.2-39)

Figure 9.2-9 Frame Foundation with n Frames subjeéted to Dynamic Force & Moment applied
at Center of Mass - Motion in Z-X Plane - Lateral vibration along X and
Torsional vibration about Y
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Amplitudes: Foundation in X-Z plane subjected to dynamic force F,sinw?and moment
M, sinwt applied at center of mass is shown in Figure 9.2-9. Amplitudes are given by equation
3.2.3-5 & 6 by interchanging terms y by x & ¢ by . We get response as:

B, '
("
5x(slatic) 1+— ,3 ﬂu/ w(stauc)

: 9.2-40
' l( Bi ] Il /3 ( |
2
5W(Slanc)(l - ’3 ) 6X(s1auc) ﬂV; ;eiz_
: x 9.2-41
T heslk-A .
— Fx _ ‘Aiyf_ ) ﬂ _ -ai
Here o ke’ % k, > A 12 &b Py (9.2-42)
=L &p =2 2= M,, 5.
x” . v pV/ s F = m.

When eccentricity is negligible, (e/r)2 ~ 0, there is no coupling and we get limiting frequencies
p & p, sameasp, & p, . With this, equations 9.2-41 & 42 become:

8 ey 1~ 2) P (9.2-43)
T T-#l-5] lr/”xl s

o,0-81) _ 4 _; ft = — (9.2-44)
l(ﬂll\ gl -g) " s

It is seen that equation 9.2-43 is same as equation 9.2-11 for uncoupled lateral vibration.

Maximum Lateral amplitude due to translational motion and torsional motion shall occur at
extreme end of the foundation.

Maximum amplitude Xnax =X+a, XY (9.2-45)

Here a, isthe maximum distance from center of mass to extreme end of foundation.
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DESIGN EXAMPLE
D 9.2 Foundation for Turbo Generator

Design a frame foundation for a turbo generator. General arrangement and section of TG
Foundation is shown in Figure D 9.2-1. Frame Plan and elevation showing center line dimensions
is shown in Figure D 9.2-2. Machine Loads and unbalance forces are shown in Figure D 9.2-3.
Data for machine and foundation is listed as under:

Machine Data

Machine Weight (Total including Rotor)

Turbine @ Bearing 1 400.00 kN
Turbine @ Bearing 2 360.00 kN
Generator Seating Plate location 3 -1 100.00 kN
Generator Seating Plate location 3 -2 100.00 kN
Generator Seating Plate location 4 -1 100.00 kN
Generator Seating Plate location 4 -2 100.00 kN
Total Machine weight 1160.00 kN
Weight of Rotor

Turbine Rotor weight @ Bearing 1 25.00 kN
Turbine Rotor weight @ Bearing 2 35.00 kN
Generator Rotor weight at generator Seating Plate location 3 -1 35.00 kN
Generator Rotor weight at generator Seating Plate location 3 -2 3500 kN
Generator Rotor weight at generator Seating Plate location 4 -1 35.00 kN
Generator Rotor weight at generator Seating Plate location 4 -2 35.00 kN
Total Rotor Weight 200.00 kN
Machine Operating Speed 50.00 Hz
Unbalance Force

Along Y (Vertical)

Turbine @ Bearing | : 500 kN
Turbine @ Bearing 2 7.00 kN
Generator Seating Plate location 3 -1 7.50 kN
Generator Seating Plate location 3 -2 7.50 kN
Generator Seating Plate location 4 -1 7.50 kN
Generator Seating Plate location 4 -2 7.50 kN
Total Unbalance Force along Y (Vertical) 42.00 kN
Along X (Lateral)

Turbine @ Bearing 1 500 kN

Turbine @ Bearing 2 7.00 kN
Generator Seating Plate location 3 -1 7.50 kN
Generator Seating Plate location 3 -2 7.50 kN
Generator Seating Plate location 4 -1 7.50 kN
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[ 8800 4500 K
F L
Sectional Elevation
Figure D 9.2-1  General Arrangement TG Foundation
Generator Seating Plate location 4 -2 750 kN
Total Unbalance Force along X (Lateral) 42.00 kN
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Force due to Blade Loss along X /Y

Turbine @ Bearing 1 300 kN
Turbine @ Bearing 2 11.00 kN
Total 14.00 kN
Short circuit Torque 2160.00 kNm
Distance between Seating Plate (along X) 240 m
Vertical Keaction @ seating Plate 3-1 : 450.00 kN
Vertical Reaction @ seating Plate 3-2 450.00 kN
Vertical Reaction @ seating Plate 4-1 450.00 kN
Vertical Reaction @ seating Plate 4-2 450.00 kN
| 4300 | 7000
i ! L3500
B F . K
g
o !
B € Turbine| 5 1
&i
S
C G L
Plan '
9300
S+ oRotor € Level B f'-'B%ting ------------- PR 2t -
S 2900 2900 , &l o S il J S
] N v 7100
B C i 8 A I L
i ] A "Deck Bottom
. : Frame-1 | Frame-1I i
S ! § r/ / Frame - IIT
=% t (=) |
i : \7 +00
: S S - A
I VI b b £
o i (= !
3 i & Base Raft ! ~4600
XIS : e i A 2
: g k 8800 7500
4000 4000
Side view Front view

Figure D 9.2-2  Frame Plane & Elevation (center line)
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hi . .
1 2 &

f-——

a
(=3
5 g
° ° =
Tk s
. . S .
oot .o sl !
L | J | I
) 4300 115001 2000 | 2000 T 1500 !
Machine L oad points
1 2 3 4
Load point . . ° ° Total (kN)
Total M/C WT 400 360 200 200 1160 kN
Rotor WT 25 35 70 70 200 kN
Unbalance
Lateral/Vertical 5 7 15 15 42 kN
Longitudinal 2 3 6 6 17kN
Blade loss force 3 11 — — 14 kN
Short Circuit Torque 2160 kKNm
Machine Loads
Figure D 9.2-3  Machine Loads & Unbalance Forces at Top Deck
Foundation Data
Foundation material properties
Concrete Grade M25
Mass density of concrete 2.50 t/m3
Elastic Modulus E 3.00E+07 kN/m2
Poisson's ratio 0.15 #
Shear Modulus G 1.30E+07 kN/m2
Top Deck L=13.80 m B=8.00m Thickness =1.80 m
Base Raft L=13.30 m B=8.00m Thickness = 2.00 m
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Opening on Turbine Side (Trapezoidal Shape 4.8 m x 3.3 m as shown in Figure)

Frame Sizes:

Frame | Frame 2 ~ Frame 3
Frame Beam width 1 1 1 m
Frame Beam depth 1.8 1.8 1.8 m
Frame span 9.7 9.7 9.7 m
Beam Moment of Inertia 0.49 0.49 049 m4
Column Moment of Inertia 0.08 0.08 0.11 m4
Soil Data
Coefficient of Uniform Compression C, =4x10* kN/m*
Coefficient of Non-Uniform Compression C, =8x 10* kN/m*
Coefficient of Uniform Shear C, =2x10* kN/m®
Coefficient of Non-Uniform Shear C, =3x10* kN/m’
Other Loads
i)  Earthquake loads Equivalent seismic coefficient =0.05 g
ii)  Bearing Failure loads S times rotor weight acting at bearing locations

ili) Thermal Loads Temperature differential of 25 degree C applied as a body force at the top
surface of the top deck as well as inside surface of cut-out

Machine Mass on Frames: (see Figure D 9.2-3 &4)

Frame !

Mass @ frame Beam center W1=400 kN
Total Mass on Frame 1 ' =400 kN
Frame 2 .

Mass @ frame Beam center W2 =360 kN
Mass W3 @ 1.7 m from Left column W3 =100 kN
Mass W3 @ 1.7 m from Right column W3 =100 kN
Total Mass on Frame 2 =560 kN
Frame 3

Mass @ frame Beam center Nil
Mass W4 @ 1.7 m from Left column W4 =100 kN
Mass W4 @ 1.7 m from Right column W4 =100 kN
Total Mass on Frame 3 =200 kN
Total Machine Mass 1160 kN
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w W, W. W, W,
- b S L
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f— 5800 — — 5800 —i — 5800 —]
Frame - [ Frame - I1 Frame - 111
(i) Machine Loads on Frames
| 4300 1 1503 4000 1 150(?
I o ) M 1 —
Iél/ F K 8
o~
S, -
W3' (] W4 —{—8
W4 W2 ® : =
! S S, 2
a
W3o S 2 (J W4 + 8
~
C G I 41—
51 & 82 show Partitioned Deck Slab
(ii) Machine Loads @ Top Deck ~
'_”x] ’:'xZ k. m, ’:’xB
Ky ke ke
%
z"l
I
4300 7000 '
(iii) Eccentricity - Center of mass & Center of Shiftness
Figure D 9.2-4  Machine Loads and Eccentricity
Design

Sizing of Foundation

Top deck total weight (without cut-out) 1.8x13.8x8x2.5%x9.81=4874 kN
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Weight of Opening size @ turbine side (Trapezium shape)

{%(4.8+3)x1 +2.3x4.8}x1.8><2.5x9.81 =660 kN
Net weight of top deck 4874-660=4214 kN
Weight ratio of top deck to machine 4214/1160 = 3.63

Weight ratio is very high. For the present case i.e. real life Turbo- Generator Foundation, top deck
thickness of 1.8 m is required by supplier. At this stage it is considered OK. This, however, needs

to be checked from dynamic consideration i.e. frequency of frame beams.

Top Deck Eccentricity: Frame Lateral stiffness:

Frame 1 & Frame 2 k= (I” /L) = (0'49/5'8) =9.75; Frame3 k= M@ =7.33
(1./H) (0.08/9.7) (0.111/9.7)
Lateral Stiffness k.= 12B1 1+6k
H® 2+3k
7 .
Frame 1, = 12x3x10 x0.08(1+6x9.75)=6'01x104 KN/m
9.73 2+3x9.75
7
Frame2 &, = 12x3x10" x0.08( 1+6x9.75 ~6.01x10* KN/m
9.7° 2+3x9.75

Frame 3 k., =

]2><3x107><0.11(1+6x7.33

=8.14x10* kN/m
9.7 2+3x7.33

Total Lateral Stiffness

k, =(6.01+6.01+8.14)x10* =2.02x10° kN/m

Center of Stiffness with respect frame 1

7, =(6.01x4.3+8.14x(4.3+7))x10%/2.02x10° =5.83 m

Masses associated with each Frame - see Figure D 9.2-4
(For Weight Nomenclature refer Figure 9.2-2b)
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Machine weight on Frame Beam W,
Distributed loads on Frame Beam Wy
Column weight (each) We
Weight at Column Top (Left) transferred from Longitudinal Beam Wi
Weight at Column Top (Right) transferred from Longitudinal Beam Wir
Frame 1

W,  Machine weight on Frame Beam W, =400 kN

W,  Distributed Load on Frame Beam

Self weight of Frame Beam BC 1.0x1.8x5.8x2.5x9.81=256 kN
Weight of Cantilever slab projection 0.5x1.8x5.8x2.5x9.81=128 kN
Wy =256+128 =384 kN

W,  Load Transferred from Longitudinal Beam on column Top - Left
Self Weight of Beam BF + Projection  (4-2.4)x1.8x0.5%x4.3x2.5x9.81=151.8 kN
Portion of the slab at corner (4-24)x1.8x1.0x2.5x9.81=70.6 kN
W, =222 kN

W;x  Load Transferred from Longitudinal Beam on column Top - Left

Reaction from Beam BF (Self Weight of Beam BF + Projection)
(4-2.4)x1.8x0.5x4.3x2.5x9.81=152 kN

Portion of the slab at corner (4-2.4)x1.8x1.0x2.5%x9.81=70 kN
W,p =152+70=222 kN

We Self Weight of each Column We =1.0x1.0x9.7x2.5%x9.81 =238 kN
Total Mass of Frame 1 m, = (400 + 384 +222 +222 +0.23x2x 238)/9.81=136 t
Frame 2

W,  Machine weight on Frame Beam W, =560 kN

Wy  Distributed Load on Frame Beam

Self weight of Frame Beam BC 1.0x1.8x5.8%x2.5%x9.81=256 kN
Weight of deck slab portion S1 0.5%4.8%x2.4x1.8x2.5x9.81 =254 kN
Wy =256+224=510 kN
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w, Load Transferred from Longitudinal Beam on column Top - Left

Reaction from Beam BF & Beam FK - Self Weight of Beams + cantilever Projection

(4-2.4)x1.8x(0.5x(4.3+7))x2.5x9.81=399 kN
Half of deck slab S2 0.5x(0.5%x(6+6-4.8))x2.4x1.8x2.5x9.81=191 kN
W, =399+191=590 kN
W, Load Transferred from Longitudinal Beam on column Top - Left

Reaction from Beam CG & Beam GL - (Self Weight of Beams + cantilever Projection)
(4-24)x1.8x(0.5x(43+7))x2.5x9.81=399 kN

Half of deck slab S2 0.5x(0.5x(6+6-4.8))x2.4x1.8x2.5x9.81=191 kN
W, =399+191=590 kN

W Self Weight of each Column W =10x1.0x9.7x2.5x9.81=238 kN
Total Mass of Frame 2 m, =(560+510+590+590+0.23x2x238)/9.81=240 t
Frame 3 |
W Machine weight on Frame Beam W, =200 kN

Wy  Distributed Load on Frame Beam

Self weight of Frame Beam KL 1.0x1.8x5.8x2.5x9.81=256 kN
Weight of deck slab portion S1 0.5x4.8x2.4x1.8x2.5x9.81 =254 kN

Weight of cantilever projection of slab 1.0x1.8x5.8x2.5x9.81=256 kN
' W, =256+254+256 =766 kN

W,,  Load Transferred from Longitudinal Beam on column Top - Left

Reaction from Beam FK + cantilever Projection

(4-2.4)x1.8x(0.5x7+1.5)x2.5x9.81 =353 kN
Half of deck slab S2 0.5%(0.5%(6+6-4.8))x2.4x1.8x2.5x9.81=191 kN
W, =353+191=544 kN
W,  Load Transferred from Longitudinal Beam on column Top - Left

Reaction from Beam GL + cantilever Projection

https://engineersreferencebookspdf.com



Foundations for Rotary Machines 9-71

(4-2.4)x1.8x(0.5x7+1.5)x2.5x9.81=353 kN
Half of deck slab S2 0.5%(0.5x(6+6-4.8))x2.4x1.8x2.5x9.81=191 kN
Wyp =353+191=544 kN

We Self Weight of each Column We =1.1x1.0x9.7x2.5x9.81 =262 kN
Total Mass of Frame 3 m, =(200+766+544 + 544 +0.23x2x262)/9.81=222 t
Total Mass of all the three frames m, = 2(136 +240+222) =598 t
Center of Mass

CG of Masses from Frame 1 zZ,, =(240x4.3+222x11.3)/597 =5.93 m

Top Deck Eccentricity e=Zz, -z, =5.93-5.83=0.10 m; ¢=(0.10/13.8)x100=0.72% OK

Dynamic Analysis

Lateral Vibration (along X)

Total lateral stiffness k=Y (6.01+6.01+8.14)x10* =2.02x10° KN/m
, 5
Natural Frequency Py = 2.02x10” =30.16 rad/s
222
Vertical Vibration (Two DOF System Model)
Frame 1
Mass
Total Machine weight on frame 1 400 kN
Machine weight at Frame Beam center 400 kN
Machine weight @ off center location Nil
Total Machine weight at Frame Beam center W, =400 kN
Machine weight transferred to' column top Wae =Wy -W,p =0

W, =384 kN; W, =222 kN; W, =222 kN; W, =238 kN
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_ (W +0.45%,)  (400+0.45x384)

=584 t
g 9.81
. (W +0.55W + Wy + W ip +0-33><2><Wc)_(0+o.55><384+222+222+0.33><2><238)_83 .
1 g 9.81
Stiffness
1 L 2k+1] 3L
ky=—; » = X +
s 96EI, k+2 | 8GA4,

Deflection @ beam center under unit load

3
)y = 5.87 (2X975+1] 3x75.8 —334x10”" m
96x3x107x0.49  9.75+2 ) 8x1.3x10” x(1x1.8)
1 1 6
k2=—-——-—~————_7-—-3>(10 kN/m
¥ 3.34x10

(2xEx4,) 2x3x10"x1

= =6.18x10° kN/m
h 9.7

k1=

Limiting Frequencies and Mass Ratio

6 6
P2 = ("—2_43"10 =2264 rads;  p, = \fk‘ ,/6188’;10 =273 rad/s

Frequency Equation  pf, = %‘{(Piz (1+2)+ 2 (pha 1+ 2)+ p2. ] ~4phip?, )}

Substituting values, we get two natural frequencies

p= \/%{(sz 1+4)+ iy )- \/ (P12,2(1 +A)+ p,ﬂ)2 -4(p,%, p,%z)} =169.4 rad/s

p2= \[%{(Pzz(l +A)+ ply )+ \/(Pzz (1 + /1)+ Pgl)z —4(p§,pz2 )} =365 rad/s
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Frame 2

Mass

Total Machine weight on frame 2 360+100+100 = 560 kN
Machine weight at Frame Beam center 360 kN

Machine weight @ off center location
100 kN @ 1.7 m from Left end column & 100 kN @ 1.7 m from Right end column

Mass Participation Factor for a/L = 1.7/5.8 = 0.29 (see Figure 9.2-3) a=0.6
Total Machine weight at Frame Beam center W,p =360+120=480 kN
Machine weight transferred to column top W.c=W,-W,z =560-480=280 kN

WD = 510 kN; W[‘L = 590 kN; WLR = 590 kN, WC = 238 kN

m, = (480+0.45x510) _ 73 1
9.81
(80+0.55%510+590 + 590 +0.33x 2 x 238)
m] = =173 t
9.81
Stiffness (same as for frame 1)

ky =3x10% kN/m; K =6.18x10° kN/m

Limiting Frequencies and Mass Ratio

6 6
Pi2= 52—=\/3“° 22037 radls;  p, = ﬁ=,/—6i§’-‘l‘l-=1s9.3 rad/s
my, \ 723 m, 173

A= 723 o4
m, 173

Substituting values in to Frequency Equation, we get two natural frequencies as
p, =140.8 rad/s; p, =273.1 rad/s

Frame 3

Mass

Total Machine weight on frame 3 100+100 =200 kN
Machine weight at Frame Beam center Nil

Machine weight @ off center location
100 kN @ 1.7 m from Left end column & 100 kN @ 1.7 m from Right end column
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Mass Participation Factor for a/L = 1.7/5.8 = 0.29 (see Figure 9.2-3) a=0.6
Effective Mass at Beam center | 0.6x(100+100)=120 kN
Total Machine weight at Frame Beam center W, =120 kN
Machine weight transferred to column top W =W,y -Wpp =200-120=80 kN

W, =766 kN; W, =544 kN; W, =544 kN; W, =262 kN
_(120+0.45x766)
, =

=474 t
9.81
m =(80+0.55x766+544+544+0.33><2x262)=179.6 .
9.81
Stiffness
3
= 5.87 (2X733+41) 3x75.8 =325%107 m
96x3x10"x049  7.33+2 | 8x1.3x107 x(1x1.8)
1 1 6
ky =—=———=3.08x10° kN/m
¥ 325x10 .

2xExAC)_2x3x107><1.1

k= ( =6.8x10% kN/m
h 9.7

Limiting Frequencies and Mass Ratio

6 6
P2 = .£2_.= ,M =254.8 rad/s; Pn= ﬁ="68)<10 =194.6 rad/s
m, 47.4 my 179.6

A= _A14 406
m  179.6

Substituting values in to Frequency Equation, we get two natural frequencies as

p =162 rad/s p, =306 rad/s

Coupled Lateral and Torsional Vibration

Since eccentricity is practically absent (within 1 %) these shall not be any coupling between
translational and torsional mode. However, just for academic interest, computations are presented
for coupled mode of vibration.
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Distances of each frame from center of mass C,, : ‘

a,=0-593=-593m; a,=43-593=-1.63m; a,=(43+7)-593=537 m

Here a,,a, & a; represent distance of Frame 1, 2 & 3 from Center of Mass C,, respectively (see
Figure 9.2-9)

Distances of each frame from center of stiffness C, : (refer Figure 9.2-9)

b, =0-583=-583m; b,=43-583=-153m; by=(43+7)-583=547 m

Here b,b, & by represent distance of Frame 1, 2 & 3 from Center of Stiffness C, respectively
(see Figure 9.2-9)

Rewriting mass, stiffness and distances associated with each frame, we get

Framel Frame 2 Frame 3
k, 6.01x10*  6.01x10*  8.14x10* kN/m
m, 136 240 222 t
a -5.93 -1.63 5.37 m
b -5.83 -1.53 5.47 m

Mmy=zmiai2; kw=zkibi2; kx=zkxi; mxzzmxi

Substituting values, we get

M,, =1.18x10* tm?; k, =4.62x10° kNm/rad; k, =2.02x10° kN/m; m, =598 t

.. . . Mmy 2
Eccentricity e=0.1 m; radius of gyration r= =445 m; a=1+(er) =10
m

X

Limiting Frequencies

k , 02x10° k 62x10°
pe= == 2.02x10° =18.36 rad/s; p, = v =J4 62x104 =19.77 rad/s
m, 598 M,, 1.18x10

. 1 _
Frequency Equation Pha= 5 {(a pl+ Py )+ \/ (a pl+ p,f,)z -4p? pvz, }

Substituting values, we get P =1833 rads  p, =19.77 rad/s

It is worth noticing that natural frequencies are same as limiting frequencies because there is no

eccentricity and hence no coupling of modes.
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Amplitudes of Vibration
Machine operating Speed 50 Hz = 314 rad/s
A) Coupled lateral & Torsional Vibration

Since there is no coupling because eccentricity is negligible, we use equations 9.2-43 & 44.
§x(.\'m!ic)(l - ﬂq,z, ) S,

_ _ o X
N (7 ) ey R () 9.2:43)

5”’(1"8’3) % __s 1 9.2-44
= = =0, N = B )
() I ) A O |
i) Unbalance forces in-phase

Consider forces along (+) X

F,=5+7+4x7.5=42 kN;
M, =5x593+7x(5.93-4.3)-(4x7.5x(43+2+1.5-5.93))=-15.04 kNm

. =2.02x10° kN/m; k,, =4.62x10° kNm/rad;
8, =Fy/k, =2.08x107"m; 8, =M, [k, =-325x10"°m

p,=1836 radls; B, =w/p, =17.1; u, =KI—ZI =0.004
l_ﬁx

p, =19.77 rad/s; B, =w/p, =15.88; u, = L. 0.004

Amplitude x=0,xu, =2.08x10™x0.004 = 0.832x10™° m = 0.8 microns
Amplitude w=0,xp, =-3.25x107x0.004 =1.3x10° rad

This torsional amplitude shall result in lateral amplitudes along X & Z.

Total Lateral amplitude along X x=0.8+1.3x10"%x5.93x10® = 0.88 microns

This number is as good as zero and hence of no significance.
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ii) Unbalance forces out-of-phase
F,=5+7-4x7.5=~18 kN;
M, =5x593+7x(5.93-4.3)+(4x7.5x(4.3+2+1.5-5.93))=97.16 kNm

Moment is about 6.5 times that when forces are in phase
w=65x13x10"8 =845x10® rad; x=845x10"x593x10° =0.5 microns
This also is too small a value and hence of no significance.

B) Vertical Vibration along Y

Maximum Response: (see equations 9.2-30 & 31)

B _
1+ AL -
Fy ( + ﬂ2 ﬂu]

L2

k(g -2 F + oy

K !
BT WY Sy

Unbalance Forces on each frame:

> Y2 (max) =

Transferring unbalance forces from the machine to individual frames, we get;
Force on Frame 1 =S5kN

Force on Frame 2 =7 +4x7.5x(3.5/7)=22KkN

Force on Frame 3 = 15 kN

Frame 1

k =6.18x10° kN/m; &, =3x10° kN/m; A=0.7

pp =273 rad/s; p;,=2264 rad/s; p =1694 rad/s; p, =365 rad/s
w=314 radls; B, =1.15 pB,,=138 p, =185 pS,=086

Substituting values into amplitude equation, we get:

y1=—1.21x10”6 m =-121 microns; y, =-04x10° m =-0.4 microns

Total amplitude y=+1.21>+0.42 =127 microns

Frame 2

k =6.18x10% kN/m; &, =3x10® kN/m; 4=0.42

pry =189.3 radfs; p;, =203.7 rad/s; p, =140.8 rad/s; p, =273.1 rad/s
w=314 radls; B, =166, f,,=154 S =223 p,=115
Substituting values into amplitude equation, we get:

¥ =-5.62 microns; y, =14.65 microns
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Total amplitude y=+5.622 +14.652 =15.7 microns

Frame 3

k =68x10° kN/m;  k, =3.08x10° kN/m; 1=0.26

Py =194.6 radls; p;, =254.8 rad/s; p, =162 rad/s; p, =306 rad/s
w=314 rads; B, =161 p;,=123; B =194 pB,=103
Substituting values into amplitude equation, we get:

Y =—6.93 microns; y, =17.71 microns

Total amplitude y=v6.93% +17.71% =19 microns
Overall Total Vertical vibration of the top deck =y= \/ 1272 +15.7% +19% =24.7 microns
Strength Design

D) Other Loads

i)  Earthquake loads:

Equivalent seismic coefficient = 0.05g

Weight of Top deck + machine + 23% of Column weight = 5452 kN

Total seismic force (Considered along X) = 0.05x5452=273 kN

ii)  Bearing Failure loads

Bearing Failure loads equal to 5 times rotor weight acting at bearing locations

Total rotor weight = 200 kN

Bearing Failure Load (acting at bearing level) along X =5 x 200 = 1000 kN

This is much higher than earthquake load, hence, governs the design. Design the foundation for this
force using normal design procedures. Readers may use codes as applicable in their respective
countries.

iii)  Thermal Loads

Temperature differential applied as a body force at the top surface of the top deck as well as inside

surface of cut-out is 25° C . Manual computations for thermal loads are quite complex hence not
presented here, but these are included in Finite Element analysis and presented in the following
section.

https://engineersreferencebookspdf.com



Foundations for Rotary Machines 9-79

FINITE ELEMENT ANALYSIS

The TG Foundation as designed above by manual method of analysis has also been analysed using
Finite Element (FE) Method. Salient results are presented here. Comparison with manual method
of analysis is presented at the end of the analysis.

Actual TG Foundation Solid Model Simplified FE Mesh — Solid Elements

Solid Element Model

A
Model with element thickness ON Fhbdo
l- —~Element Model
Figure D 9.2-7 TG Foundation Solid Model and Shell beam Model

Mathematical Model

Mathematical model has been generated based on the foundation and machine data. Actual
Foundation with all openings, cut-outs, recesses, notches etc as shown in Figure D 9.2-7 becomes
too complex to model and analyze and moreover it is not necessary to analyze such complex
model. Necessary assumptions and simplifications have been made to arrive at a model that is good
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enough to represent the actual system. All major openings and depressions/recesses have been
included in the mathematical model whereas all minor cutouts, notches, depressions etc have been
excluded. Turbine and Generator masses are lumped at four bearing location at the top deck. Solid
Model and FE Mesh of the foundation are shown in Figure D 9.2-7.

Soil is represented by six equivalent springs (3 translational and 3 rotational) applied at the CG of
the base area of the base raft along respective DOF’s i.e. 3 translational springs along X, Y & Z
axes and 3 rotational springs about X, Y & Z axes. Since there are neither any haunches nor any
depression/recess in deck slab, the system could as well be modeled using Shell and Beam
elements. Just for academic interest, the system is modeled using both these element types namely
i) Solid Elements & ii) Shell Beam elements. Comparison of natural frequencies and associated
mode shapes, by both the models, indicates a fairly good agreement.

ANALYSIS

Initially, the foundation dimension suggested by the supplier had column sizes same for all the
frames. The results of 1g-X static analysis revealed higher top deck eccentricity than permissible.
To overcome the problem, the generator side columns were made stiffer by increasing their
dimensions along frame. The results indicated a uniform movement when subjected to 1 ‘g’ X load.
Just for academic interest, results of both the analysis cases are presented here. The results of 1g-X
analysis is with unmodified columns is shown in Figure part (a) of the Figure D 9.2-8 and that with
modified column is shown in part (b) of the figure. The difference in color code at top deck as in
part (a) indicates translation associated with rotation whereas uniform color as in part (b) indicates
true translation. The remaining results are for model with modified columns only as used for
manual method of analysis.

Max Displacement 38.7 mm Max Displacement 28.8 mm
lumns Origin Columns Modified
Figure D 9.2-8 Transverse Displacement — | ‘g’ X Load
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Free Vibration Analysis:

Natural Frequencies for various modes is listed in Table D 9.2-1. Fist four mode shapes are shown
in Figure D 9.2-9 and some of the modes associated with column deformation mode are shown in
Figure D 9.2-10. From the mode shapes it is seen that the first two modes are translational modes in
Z & X direction, 3" mode represents torsional mode of the top deck about Y and 4" mode
represents vertical mode of vibration along Y.

Mode 3 - 3.67 Hz Mode 4 - 26.47 Hz

Figure D 9.2-9 First Four Modes of Vibration

It is also seen from above frequency table that modes 5 to 17 show frequencies lying in a close
cluster. Study of mode shapes reveal that these modes correspond to column deformation mode
along X & z directions.
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From manual computation, it is seen that lateral translational frequency along X axis is 4.8 Hz as
against 3.02 Hz given by FE Analysis. Comparing vertical natural frequency, it is seen that lower
vertical natural frequencies, obtained by manual computation, for Frames 1, 2 & 3 are 27, 224 &
25.8 Hz and FE analysis gives vertical mode frequency as 26.5 Hz, which is in the same range.

'

1 .

2 ; s s
2 1
i

8%

Mode 10
Mode 6 Mode 9 i

3 ar
AR

Mode 12 Mode 15 Mode 16

Figure D 9.2-10 Modes representing column vibration
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Table D 9.2-1 Modes and Natural Frequencies

Mode Frequency Mode Frequency Mode  Frequency Mode  Frequency
# Hz # Hz # Hz # Hz
1 2.95 6 33.2 11 36.75 16 3943
2 3.02 . 7 35.57 12 36.78 17 39.83
3 3.67 8 36.4 13 36.8 18 42.67
4 26.48 9 36.45 14 37.05 19 45.81
5 3236 10 36.62 15 38.7 20 58.88

Response Analysis

Dynamic forces (see manual analysis above) are applied at the respective bearing level locations.
These Forces are applied simultaneously at all the bearings but in one direction at a time. Steady
State response is evaluated at salient locations, as under:

1. At all the bearing locations 4 points
2. At all the corners of the top deck 4 points
3. At all the mid points of columns 6 points
4, At all the corners of the base raft 4 points

The response is evaluated for +5% of operating frequency i.e. from 47.5 Hz to 52.5 Hz and
maximum value is reported. Damping used for response evaluation is considered as 5 % of critical.
Maximum amplitudes are listed is in Table D 9.2-2.

Table D 9.2-2 = Maximum Amplitudes

Excitation Dynamic Forces
Frequency
Hz In Phase Out of Phase

Amplitude - Microns

47.5 3.19 4.6
50 1.75 23
52.5 0.65 0.77

Transient response

During Machine startup and coast-down conditions, all components of machine and foundation get
excited at their respective natural frequencies resulting in enhanced amplitudes. For the transient
response, the dynamic forces generated by the machine are applied at the respective bearing
locations and a sweep run is performed for frequency 1 Hz to 52.5 Hz (in the present case sweep
run is performed up to 65 Hz). Amplitudes are evaluated at desired locations of interest. '

It is to be noted that the magnitude of the dynamic force is same as that computed for full operating
speed. This force is however applied at frequencies from 1 to 65 Hz at an increment of about % Hz.
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The transient amplitudes so evaluated at transient resonant frequency (as shown in Figure D 9.2-
11) are to be scaled down by square of the ratio of resonant frequency to operating frequency. In
other words, amplitude say at transient resonance of 3 Hz is to be scaled down by a factor of square
(3/50). The sweep response is shown in Figures D 9.2-11.

_10000 : . 30000 A AMPLITULE
1000 | =

g g 100,

k] =3

E g

& €

g g 10

? ? 1.0

0.t - - 01 : —
0 8 1B 24 32 40 48 5 64 T2 80 0 8 18 24 32 40 48 56 &4 72 80
Froauency Hz Frequency Hz
Top Deck Drive End Tap Deck Non-Drive End
) Dynamic Forces In-Phase
; : ; : . 10000 - i e
10000 : : : AMPLITUDE : L ANELYTODE

- Amplitude microns

0.1

0 8 16 24 32 40 48 56 64 T2 80

0.1 - - - : ]
0 8 16 24 32 40 48 556 64 72 8 Frequency Hz
Frequency Hz .
Top Deck Drive End Top Deck Non-Drive End
ii namic Forces Out of Phase

NOTE: These transient amplitudes are to be scaled down by square of the ratio of
resonant frequency to operating frequency i.e. for transient resonance at 3 Hz,
amplitudes to be scaled down by a factor of square (3/50).

Figure D 9.2-11 Transient Response
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3inde Liots . b g :
Bearing Failure Loads - X Blade Loss - X Short Circuit Loading

Stress 0.1 MP Stress 0.5 MP
Stress 3.3 MPa e a Stress 0.5 MPa

Thersal Loading Earthquake Loading

Stre 5.2 MP
Stress 7 MPa e .

Figure D 9.2-12 Stresses due to Bearing Failure, Blade Loss, Short circuit,

Thermal Loading & Earthquake Loading

Strength Analysis

Foundation is analysed for equivalent static forces besides normal machine loads and self-weight of
foundation.

Bearing Failure Loads: Bearing Failure Loads, equal to 5 times the rotor weight, are applied at
the respective bearing locations along transverse and longitudinal directions, one at a time and
stresses are computed in the foundation.
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Blade loss forces: Blade loss forces are applied at the respective bearing pedestal locations
and Short Circuit Forces are applied on the generator seating plate locations. Earthquake Loads are
applied as equivalent static loads as body force on the machine as well as foundation.

Thermal Loads: A temperature differential of 25°C is considered for thermal analysis.

This differential temperature is appliéd as a body force at the top surface of the top deck while the
rest of TG is considered to be at ambient temperature. Further the surface inside the opening on
turbine side is also subjected to this differential temperature.

Stresses due to these loads are shown in Figure D 9.2-12. Strength adequacy of the foundation is
ensured to withstand these forces.

In addition to the above stresses are also computed due to operating dynamic loads. Since the
stresses on account of these dynamic loads are much smaller than bearing failure loads, these no
longer remain governing loads.
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FOUNDATIONS FOR RECIPROCATING
MACHINES

¢ Design Examples

» Block Foundation for a Typical Reciprocating Machine
» Frame Foundation for a Typical Low Speed Compressor
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For better clarity, all Figures related to FE
analysis, including animations of frequencies
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https://engineersreferencebookspdf.com




Foundations for Reciprocating Machines : 10 -3

FOUNDATIONS FOR RECIPROCATING
- MACHINES

Different types of reciprocating machines that come under this category these have been adequately
addressed in Chapter 6. Normally, both Block and Frame foundations are used to support these
machines and these have been addressed in Chapter 7. Modeling aspects have been covered in
Chapter 8.

Dynamic Forces developed by Reciprocating Machines are much higher compared to those
generated by Rotary Machines. These dynamic forces are predominant along piston axis and
dynamic forces are generated at operating speed as well as its 1* Harmonic i.e. twice the operating
speed. Allowable limits for amplitudes are higher for reciprocating machines compared to those for
rotary machines.

The system vibrates in all six DOFs and thus requires computation of frequencies and amplitudes
corresponding to all six DOF’s. Procedures for design of foundations for machines supported on
a) Block Foundation and b) Frame Foundations are given hereunder. The application of these
design methodic for evaluation of natural frequencies and amplitudes are common for all types of
machines irrespective of their speed.

10.1 DESIGN OF BLOCK FOUNDATION

Machine is considered supported by a block foundation resting directly over soil. The complete
system is mathematically modeled and analyzed for natural frequencies and amplitudes.
Mathematical treatment and Design steps are same as those for Rotary Machines given in Chapter
9. Representation of a typical foundation is shown in Figure 9.1-1 and necessary formulae required
for computation of natural frequencies and response are given by equations 9.1-1 to 9.1-27.

Significant steps are reproduced for convenience.

https://engineersreferencebookspdf.com



10-4 Foundations for Reciprocating Machines

Summary of Design Steps

Sizing of Foundation
Equivalent Soil Stiffness
Dynamic Forces
Analysis
I. Dynamic Analysis
i. Natural Frequencies
ii. Dynamic Amplitudes
II. Strength and Stability Analysis

L=

Required Input Data

a) Machine Data
1. Machine Layout
2. Machine Load Distribution at Load Points
3. Dynamic Loads
a. Magnitude of Dynamic Loads
b. Point of application and associated excitation Frequencies
4. Allowable Amplitudes
b) Foundation Data
1. Foundation outline geometry, Levels etc
2. Cut-outs, pockets, trenches, notches, projections etc
¢) Soil Data
1. Site Specific Dynamic Soil Data
2. Bearing capacity

At this stage it is implied that a)  Site Soil data b) Machine data & c) Foundation data are
converted to respective Design Parameters in line with provisions given in Chapter 5, 6 & 7. It is
also anticipated that intricacies of Modeling and Analysis, as given in Chapter 8, have been well
understood.

Design Data: The design data at this stage is summarized as under:

CG of Base area of Foundation, marked O represents DOF Location and is considered as
Origin analysis and design.

Mass & Mass Moment of Inertia

Total Mass of Machine and Foundation m
Height of Overall Centroid C from O - h

Mass Moment of Inertia (Machine+ Foundation) @ Overall Centroid C

Mass Moment of Inertia about X axis M,,
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Mass Moment of Inertia about Y axis M
Mass Moment of Inertia about Z axis M, .

Mass Moment of Inertia (Machine+ Foundation) @ DOF Location O

Mass Moment of Inertia about X axis [ mox

S

Mass Moment of Inertia about Y axis moy

Mass Moment of Inertia about Z axis M

moz

Area and Moment of Inertia of Foundation Base in contact with soil

Area of Foundation ' A
Moment of Inertia about X o
Moment of Inertia about Y ' I W
Moment of Inertia about Z I,

Equivalent Soil Stiffness at the foundation base level (at DOF location pointO) duly
corrected for a) area effect and b) overburden pressure effect

Translational Soil Stiffness along X k,
Translational Soil Stiffness along Y k,
Translational Soil Stiffness along Z k,
Rotational Soil Stiffness about X kg
Rotational Soil Stiffness about Y k,
Rotational Soil Stiffness about Z ky

Dynamic Loads:

» For FE Analysis, Dynamic Forces need to be specified only at respective bearing
locations.

» For manual method of computation, Dynamic Forces acting at bearing locations are
transferred at DOF Location point O in terms of Forces and Moments.
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> One can have as many sets of forces and moments as number of excitation frequencies

Here we describe forces and moments @ DOF location pointO for manual method of
computation.

Forces @ DOF location point O along X, Y & Z direction F, ,F, & F,

Moments about X, Y & Z @ DOF location point O M, ., M, & M,

10.1.1 Dynamic Analysis

The dynamic analysis of a machine foundation system involves computation of natural frequencies
and amplitudes of vibration.

From this stage onwards, one can choose either Finite Element Method of Analysis (Chapter
8) or Manual Method of Analysis (Chapters 2 &3).

Natural Frequencies:  The machine foundation system undergoes Six Modes of Vibration i.e.
three Translational Modes and three Rotational Modes (see chapter 3). Natural frequencies
corresponding to these six modes of vibration are reproduced as under:

1.  Motion along Y (Vertical direction):  This mode is uncoupled (see equation 9.1-1)

Vertical Natural frequency p, = =~ (10.1-1)
m

2. Rotation about Y (Torsional): This vibration mode is also uncoupled (see equation 9.1-2).

——

kU/
moy

Torsional Natural frequency Py = (10.1-2)

M

3. Motion in X-Y Plane - (Translation along X and Rocking about Z —i.e. x& ¢ modes) - These
modes are always coupled (see equation 9.1-3).

pt=——(p2 4 p2)-= \/(pf+p$)z—4}'zpfp§ (10.1-3)
2y, 2y,
P =51;(p3 +p£)+517\/(p§ +p2f 4y, p2p2 (10.1-4)
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M 2
Here . = = N =—— and
Here ", 7 Pe ="

moz

mz 2 ﬁr_ . k¢ —mgh
m

p, & p, represent lower & higher natural frequencies

p & p, represent lower & higher natural frequencies

4. Motion in Y-Z Plane — (Translation along Z and Rocking about X — i.e. z& € modes) ~ These
modes are always coupled.

1 1

p12=2 (pf+p§)-2 \/(P3+p§)2—4rx pip (10.1-5)
Ve Ve
1

p3 == (o2 + p3Je (2 + 92 -4, p2p3 (10.1-6)

2y, 2y,

Here Y= ——:/[4"”‘ 5 pg = kz 5 p; = _—_.kGA; mgh
m

mox mox

As far as possible, effort is made to ensure that these frequencies are not in direct resonance with
operating speed/speeds of the machine. In fact these frequencies should preferably be away by a
margin of +20% from operating speed/speeds. In case resonance is noticed, it may be desirable to
suitably alter the foundation dimensions and repeat the computations till the natural frequencies are
found to be away from operating speed/speeds of the machine.

10.1.2 Amplitudes of Vibration

Vibration Amplitude is the response of the Machine Foundation System subjected to unbalance
force acting on the machine. When the natural frequencies are in resonance with excitation
frequency, damping plays a significant role and amplitudes need to be computed considering
system with damping.

Response Computation using FE Analysis: For response computation, these unbalance
forces are applied directly at the bearing level locations. Amplitudes at desired locations viz.
Foundation top or bearing levels are obtained directly.

Response Computation using Manual Methods of Analysis: While evaluating response using
manual method of analysis, these unbalance forces are transferred at the DOF location (CG of base
area of foundation in contact with the soil i.e. pointO). Thus we get three force

components F,, F, & F, and three moment components My, M, & M, @ pointO. Undamped

response is evaluated using equations 9.1-7 to 9.1-12 whereas equations 9.1-13 t0 9.1-18 are used
for evaluating damped response.
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10-8 Foundations for Reciprocating Machines

Amplitudes are evaluated at DOF location pointO. Amplitudes at any other location viz. at
foundation top or at bearing locations are computed using geometrical relationships given by
equations 9.1-19 to 9.1-27.

DESIGN EXAMPLES

Design Examples are those which are encountered in real life practice.
Comparison with Finite Element Analysis (FEA) is also given for specific
cases to build up the confidence level. Effort is made to highlight the
influence of certain slips commonly committed while computing response of
the foundation.

EXAMPLE D 10.1: Foundation for a Reciprocating Engine

Design a foundation for a Single Cylinder Horizontal Reciprocating engine coupled with
motor through gear box. Foundation outline showing machine-loading diagram, sectional
elevation showing machine cg line, rotor-center line and bearing locations, is given in Figure
D 10.1-1. Machine, foundation and soil parameters are as under:

A. Machine I_)ata

Machine Weight

Compressor 220 kN
Motor (excluding Rotor) 100 kN
Motor Rotor 14 kN
Weight of Motor Bearing Pedestal (2kN each) 4 kN
Weight of Operating Gear 8 kN
Machine Speed

Operating Speed of engine 360 rpm
Operating Speed of Motor 720 rpm
Height of Rotor Centerline above Ground level 2000 mm
Height of Machine Centroid below rotor centerline 100 mm

Unbalance Forces Generated by Reciprocating Machine (éngine)

Reciprocating engine is mounted over a base Frame. Unbalance Forces generated by engine are
given at point Q (Point Q represents CG of Base Frame in contact with the foundation as shown in
Figure 10.1-1)

Dynamic forces at point Q

Force along Z @ engine frequency F. @coswt =10 kN
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10-10 Foundations for Reciprocating Machines

Force along Z @ twice the engine frequency F,, @cos2wt=2.6 kN
Moment about X at engine frequency M, @coswt=13.5 kNm
Moment about X @ twice the engine frequency M,, @cos2wt=6.7 kNm

Unbalance Forces generated by Motor
Dynamic forces considered along Y (Vertical) @ center of rotor

Motor Excitation Frequency (speed of motor) 75.40 rad/s
Balance Grade for motor rotor G l6ie. ew=16 mm/s
Unbalance force @ center of rotor considered along Y

Fy = mew’ =—li—><16><10'3x29x2x7r=1.72 kN
9.81 60

B. Foundation Data

Mass Density of Concrete 2.5t/m’
Foundation Length 52m
Foundation width 22m
Foundation depth below Ground level 35m
Foundation Part above Ground level
Supporting Drive machine 1.0m
Supporting Compressor 02m

Gear Box Pedestal ~ Along length =0.60 m; Along Width=0.8 m; Height=0.8m
Foundation Plan and Section is shown in Figure D 10.1-2

C. Soil Data

Basic Soil Data

Mass density of soil 20t/m
Poisson’s Ratio 0.25

Soil Damping Constant 0.1
Foundation depth for bearing capacity evaluation 3.5m
Bearing capacity 250 kN /m’
Coefficient of Uniform compression normalized for Area 10 m?

Site Coefficient of Uniform Compression C, =5x10* kN/m’
Corresponding Static Stress 100 kN/m?
DESIGN

Foundation Sizing

Consider Foundation as shown in Figure D 10.1 & D 10.2
Consider Foundation to Machine Weight Ratio 3
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Figure D 10.1-2 Machine Layout with Respect to CG of Base Area O (Origin)

Weight of Machine 346 kN
Desired weight of Foundation 1038 kN
Overali Centroid

Overall Centroid with respect to CG of Base area: Consider CG of Base area point O (also
termed as DOF location) as shown in Figure D 10.1-2,
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a) Machine

Drive M/c Bearings + Pedestals  Coupling Non-Drive M/c
r A e A— - - — ~
W, 250 250 25.0 25.0 9.0 9.0 80 550 550 550 55.0 kN
x; 07 -07 0.7 -0.7 0. 0.0 00 07 -07 07 -07m
y, 54 54 54 54 55 55 55 54 54 54 54m

z; -2.1 -2.1 -09 -09-235 -065 -01 09 095 19 1.9 m

Let X0, Vmos Zmo FEPTESENt Machine Centroid with respect to-CG of Base Area point O. We get

D W, =100+18+8+220=346 kN; Y Wx; =0.0; Y Wy, =1871;, )" W,z; =130.2

- X, _ Wy, _ Wz
x,,,o:ZW,x, =0; J’mo=§~'_y"'=5-4l; zmo=—z__—’i=0'38
¥, W, ¥,

b) Foundation
Distance of CG
Dimension from Pgiknt (o]

Block x y z xi yi zi
1 22 45 22 00 225 -15
2 22 37 30 00 185 1.1
3 08 08 06 00 410 -0.1

Weight of Foundation

Wy =22x2.2x4.5%x2.5x9.81=534 kN

Wy =3.0%22x3.7x2.5x9.81=599 kN

W,y =06x08x0.8x2.5x9.81=9.5 kN
Total weight =1142 kN

Let X, V4, Z, represent Foundation Centroid with respect to CG of Base Area point O. We get

D WS, =534+4599+9.5=1142.5kN; > Wx; =0.0; > Wy, =2360.4; Y Wz, =143

;fo=zWi"f 0; ¥ =w=2.066; 'f0=szi=-o.125

sw, > TP sw, R
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Let x,,y, & z, represent overall centroid of Machine + Foundation system with respect to CG of
Base Area point O. Substituting values we get:

_ Z(WaFwo W %) 346x041142x0

Xo =
(W +W,) 346+1142
5 E(WuTmo +W o) _346x541+1142x2.066 _ o,
© o s(w, W) 1488 '
5 - Z(Wmfma +Wf?rfo) _346x0.38+1142x(-0.125) _ o
Z(Wm +Wf) 1488
Eccentricity

Eccentricity in X-Z plane:

Eccentricity along X-direction e, = (f%) x100 = (2)—'(2)>< 100=0.0% <5% OK

Eccentricity along Z-direction e, = (E% )x 100 = 959-2-% x100=0.15% <5% OK

Both the values of eccentricity are less than 5 %, hence OK

Bearing Pressure

Foundation Base Area 52x22=1144 m’

Soil bearing pressure (1142+346)/11.44=130 kN/m?

Margin for other loads 100 (1 - (130/250))= 48 %
Greater than 30 % Hence OK

Dynamic Analysis

Site Soil Parameters

Site Coefficient of Uniform Compression (as given) C,o1 = 5x10* kKN/m?
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Corresponding base area (given) Ay =10 m?

Site Static Stress @ 3.5 m depth (as given) oo =100 kN/m?

Design Soil Parameters

Width of Foundation B=22m
Foundation depth Below GL D=35m
Effective depth (See $5.4) dy, =05%x2243.5=4.6m

Overburden pressure due to soil at depth dy, o, =2x4.6x9.81=90.25 kN/m?

Area of Foundation » Ay =11.44 m?
Total weight of Machine + Foundation 1490 kN
Overburden pressure due to foundation + machine ¢, = 1]4ii =130.07 kN/m?
Design Static Stress Gy =0, +0, =(90.25+130.07) = 22032 kN/m?
. . . . 5w ) [ 4
Design Coefficient of Uniform Compression C,q, =C,q; ¥ [9-;91) X (j}—'j
%o1 02

Since Ay, =11.44 m> >10 m?; effective Ay, =10m?

Coop =5%x10% x 220323 (E)=7.42x104 kN/m*
100 10

C, =C,4 =742x10% kKN/m?

Other design coefficients:

Coefficient of Uniform Shear C, =0.5xC, =0.5x7.42x10* =3.71x10* kN/m’
Coefficient of Non-Uniform Compression

Cp=C, =2xC, =2x7.42x10* =14.84x10* KkN/m’

‘Non-Uniform Shear C, =0.75xC, = 0.75x7.42x10* =5.565x10*  kN/m’
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Soil Stiffness (Equivalent Springs):
Moment of Inertia of Base Area:

1
About X-axis Iy, =1—2—><2.2><5.23 =25.78 m*

About Z-axis I, =1—‘2-><2.23 x5.2=4.614 m*

About Y-axis [, =1, +I,=2578+4.614=304 m*

Substituting values, we get:

k, =C,xA=3.71x10*x11.44 =425x10> kN/m

k, =C,xA=17.42x10*x11.44 =8.49x10> kN/m

k, =k, =C,xA=425x10° KN/m

kg =CyxI, =14.84x10*x25.78=3.83x10° kNm/rad
k, =C, %1, =5565x10*x30.4 =1.69x10° KkNm/rad

ky=Cyx1,, =14.84x10" x4614=6.85x10° KNm/rad

Mass and Mass Moment of Inertia
a) Mass Moment of Inertia about CG of Base Point O

Machine load distribution and locations with respect to point O (see Figure 10.1-2)
i) Machine

Drive M/c Bearings  Coupling Non-Drive M/
W, 250 250 250 250 90 90 80 550 550 550 550 kN
x; 07 -07 07 -07 00 00 00 07 -07 07 -07 m
yi 54 54 54 5427 27 27 54 54 54 54 m
z; -2.1 -21 -09 -09-235-065 -0.1 09 09 19 19 m

Total machine Mass =346/9.81=35.27t

Mass Moment of Inertia of Machine
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Mmox_machine =Z{(VVI /g)x(y,z +Z,2)}=1113 tm?
Mmoy_machine = Z{(W, /g)x(x,-z +Z,-2 )}= 97.6 tm?

Mmoz_machine = Z {(VV; /g)>< (x,-2 + y,2 )}= 10474 t m2

ii) Foundation
Distance of CG
Dimension from Point O
Block  x y z xi yi zi  Density Mass

1 2.2 45 22 00 225 -15 25 2.2x4.5x2.2x2.5=54.45

2 22 37 3.0 00 185 1.1 25 22x3.7x3.0x25=61.05

3 0.8 08 06 00 410 -0.1 25 0.8x0.8x0.6x2.5= 0.96
Total Mass =116.46 t

Mass Moment of Inertia of Foundation

M ox - foundation = Z {(ml /12xy2 +2° )+ m/(ylz + Z,-Z )}: 926.49 tm*
Mgy _omaion = 3. 4m, /126> +22 Jm, (x7 + 22 )} =310.81 tm?

M 0z _foundation = z {(m: “2)(,V2 +x° )+ n; ()/,2 +x,-2 )}= 708.95 t m?

Total Mass and Mass Moment of Inertia about CG of Base Point O

m=3527+116.46=151.73 t

M, _1113+926.49 =2039.5 t m?

mox=

M, _97.6+310.81 =408.42tm?>

moy=

M 1047.4+708.95 =1756.35 t m?

moz=

b) Mass Moment of Inertia about Overall Centroid

Coordinates of Overall Centroid with respect to CG of Base Area point O
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X =0; y,=28;, z,=-0.008
Mo = Mo ~m (5,2 +2,%) = 2039.5-151.73x (2.87 + (-0.008) )} = 820.2 t m?

My =My, -m(%,2 +7,2) = {408.42-151.93x(0+(~0.008)’ )} =408.4 tm?

my
My, =M, - m(y ): {1756.35 ~151.93x2.82 +0)}=537.o4 tm’

Ratio of Mass Moment of Inertia at overall centroid to Mass Moment of Inertia at CG of base
area point O

M, 802 . y = Muy _4084 . . , M, _ 53704
T My 20395 0 YT My, 4084 T T M, 175635

Natural Frequencies

Limiting Frequencies:

5
= _ki= M=52.89rad/5
\/m V 151.73
{k / 5o
p, = A 8'—49-519—=74.8 rad/s
Y m 151,73
5 .
L'.-_- M=52.89 rad/s
m V 151.73
6
,/383"‘0 =4331 radls
M, 2039.5
P, = ky J‘ 69x10° _ 426 radss
My 408.42

k 5
ps =~ =‘/6'85"10 =19.75 rads
M 1756.35

moz

Uncoupled Modes: Since vertical and torsional modes (corresponding to y & y deformation) are
uncoupled modes, p, & p,, also represent the natural frequencies in respective modes.
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p, =748 rad/sec; f,=11.90 Hz

p, =64.36 rad/sec; f,=1024 Hz

Coupled Modes are:

Modes corresponding to x & ¢ deformation (X-Y Plane)

Modes corresponding to z & & deformation (Y-Z Plane)

Natural Frequencies corresponding to x & ¢ deformation

. 1
Frequency Equation pf )= 27 px + p¢ + P¢)2 -4y, Px P¢

py =18.82 rad/s; f =3.0Hz

Substituting Values, we get
pp =100.35 rad/s; f,=1597Hz

Natural Frequencies corresponding to z & ¢ deformation (Y-Z Plane)

+p@)2 ~4y, plp;

Frequency Equation pﬁz = 2+ pl 0

27

X

p1=3549 radls; f;=5.65Hz

Substituting values, we get
p,=101.8 rad/s; f,=162Hz

Unbalance Forces

Unbalance forces generated by machine areas given above (see machine data).
Amplitude computations are done in two stages:
a) Dynamic forces acting at frequency of 6 Hz correspond to load case 1
b) Dynamic forces acting at frequency of 6 Hz correspond to load case 2
Load Case 1 Dynamic forces @ 6 Hz ( 37.7 rad/s)
Point of Application - Point Q (see Figure D 10.1-1&2)

Force along Z F,=10 kN

Moment about X M, =135 kNm
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Load Case 2 Dynamic forces @ 12 Hz ( 75.4 rad/s)
Point of Application - Point Q

Force along Z F,=26 kN
Moment about X M, =67 kNm

Point of Application — Motor Rotor Center

Force along Y F, =172 kN

Transferring these forces at CG of Base area point O , we get
Load Case 1 @, =377 rad/s; F,=10 kN; M, =13.5+10x3.7=50.5 kNm

w, =754 rad/s; F, =172 kN; F,=2.6 kN
M, =67+2.6x3.7+1.72x1.5=18.9 kNm

Load Case 2

Amplitudes of Vibration

Rewriting parameters required for computation of amplitudes:

k, =425x10°; k, =8.49x10°; k, =4.25x10° kN/m
ko =3.83x10% k, =1.69x10% k,; =6.85x10° kNm/rad

Stiffness

px =529 radls; p, =T74.8 rad/s; p,=52.9 rad/s

Limiting Frequencies
pg =43.3radls; p, =643 radls; p,; =19.75 rad/s

InX-Y Plane p, =18.82 rad/s & p, =100.35 rad/s

Natural Frequencies
InY-ZPlane p, =35.49 rad/s & p, =101.80 rad/s

Mass and mass moment of inertia

My =2039.5 tm%; M, = 40842tm% M, =175635 tm?
7x=04; 7,=10; 7,=03 m=15173 t
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Foundation size, height of centroid and damping constant

H=45 m; L=52 m; B=22 m; h=)70=2.84 m; ¢ =0.1

Machine operating speeds 6 Hz & 12 Hz
Load Case 1 Forces and Moments @ 6 Hz

w; =37.7 rad/s; F, =10 kN; M, =13.5+10%x3.7=50.5 kNm
These dynamic forces i.e. F, & M, correspond to motion in Y-Z Plane.

Frequency ratios corresponding to Y-Z plane are:

B. =(w/p,)=37.7/52.9)=0.71; B, =(,/py)=(37.7/43.3)=0.87
B =01/ p)=(37.7/35.49)=1.06; B, =(a,/p,)=(37.7/101.8)=0.37

It is seen that only f, liesin £20%range. Thus amplitudes corresponding to S, shall be
computed considering damping and for other, undamped amplitude shall be good enough.

Note:  For amplitude computation, it is more convenient to consider one force at a time, evaluate
amplitudes and finally obtain the resultant by taking the sum of the amplitudes.

i) Force F,=10 kN  (For amplitude, see equation 9.1-17a)

Displacement z, along Z and Rotation 6, about X @ O

z =6 ﬁ—ﬂaz & 0 =65 mh ,802
,=6, =6,
((-k/(l - B2 +(@pey )x(l -52) [(~)\/(1 -p2f +@B¢Y J (-5

It may be noted that since (1 - ,Bf)is negative, sign of the term \/ (1 - ,612)2 +(28,¢ )2 shall also be
negative (see Note 2 § 9.1.2.2). Accordingly (-) sign is applied to the radical in denominator.

N——

5, =(F,/k,)=10/4.25x10° =2.35x10™° m
(1-0.87%)

=-2.69x10"° m
((—)\/(1 1.062) +(2x1.06x0.1) )x(l—0.372)

z, =2.35x107°
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2
6, =235x107° 15]207;9"52 3 087 =-1.75x10"" rad
[(—)\/(1——1.062)2 +(2x1.06x0.1) )x](1—0.372}
ii) Moment Mg=M, =505 kNm (For amplitude, see equation 9.1-17b)
Displacement z, along Z and Rotation 8, about X @ O
2
z, = h(Se A . 0, =5 (1 )
(-2 [( Wi- 2} 2/314)2J ( (W-5F +Cae )j
8y = My /ky =50.5/3.83x10°)=1.32x10" rad
2
z, =2.84x1.32x107° 0.71 =-8.86x107°m
(1-0372) ((-)\/(1 ~1.062) +(2x1.06x0.1) j
_ 2
6, =1.32x107° (1 0.71 ) - =-3.09x107° rad
(i —0.372){(-)\](1—1.062)2 +(2x1.06x0.1) )
Total amplitudes @ O

z, =(-2.69-8.86)x107° =-1.16x10™* m
6, =(~1.75-3.09)x10"° = -4.84x10™° rad

Amplitudes @ Foundation Top:

Amplitude Z, dueto z, & 6, (see equations 9.1-21)

Z ) =20 + H6,) ='—1.16x10‘4 +4.5><(—4.85><10'5)[
“=34x10™" m =340 microns

Amplitude y, dueto &, (see equations 9.1-23)
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v =|(L/2)6,|= |(5.2/2)>< (- 4.84x15‘5]

=125x10"* m = 125 microns

Total Amplitude = /(340) + (125)? =362 microns

Load Case 2 @y =754 rad/s; F,=172 kN; F,=2.6 kN; M, =189 kNm

Dynamic forces F, & M relate to coupled motion in Y-Z Plane whereas Dynamic
force F, relates to uncoupled motion along Y. Corresponding frequency ratios are:

B. =(0,/p,)=(75.4/52.9)=1.42; B, =(,/ps)=(75.4/43.3)=1.74
B, =@,/ p,)=(75.4/74.8)=1.008

By =(oy/p,)=(75.4/35.49)=2.12; B, =(0,/p,)=(75.4/101.8)=0.74

Since only B, liesin £20 % range, amplitudes corresponding to B, shall be computed
considering damping and for others, undamped amplitude is good enough.

i) Force F,=2.6 kN (For amplitude, see equation 9.1-11)
iy 2
Amplitude Z, = 52(——11—21@1%4); 8,=96, mh ;8 g >\
1_/81 1‘ﬂ2 Mmox (]_,61 Xl—ﬂz)
5, =(F,/k,)=26/425x10° =6.1x10™5 m

2, =6.1x10 x (1_2%2‘2113:‘2742): 78107 m

2
0, =6.1x1076 x 12 L73x2.84 L = 243x107 rad
2039.5  (1-2.122J1-0.74?
ii) Moment Myz=M,=189 kNm (For amplitude, see equation 9.1-12)

Amplitudes@ O - z, along Z and &, about X

ik . 1- 2

z, = hd, 5 0,=3,
° (l—ﬂfil—ﬂzz) 1-BE -3
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8y = My [ky =18.9/(3.83x10°)=4.93x10" rad

2
z, =2.84x4.93x10° ( 1.42

=-1.78x10" m
1-2.122J1-0.74)

_ 6 (1—1.4221 o B
6, =4.93x10 (1_2.12%_0'742)_3.17“0

Total amplitudes @ O

2o =(7.8x107 ~1.78x10™ )= ~1.0x10™° m
6, =(-2.43x107 +3.17x10° )= 7410”7 rad

iii) Force F, F, =172 kN  (For amplitude, see equation 9.1-13)

Resonance in vertical mode of vibration

Yo=0 1 -T2 ] =1x10° m

o~ Yy - s =
\/(1—/33)2 +ep,cP 349710 210087 ) + (2x1.008x0.1)

Amplitude @ O 1x10° m

Amplitudes @ Foundation Top:

Amplitude Z, dueto z, & 6, (see equation 9.1-21)

% ommey =|(Z0 + H 6,) = [<1.0x107* +4.5x7.4x107)
=6.67x10° m = 6.7 microns
Amplitude y .. dueto 6 (see equation 9.1-23)
v =|(L/2)8,] = (52/2)x7.4x107 =1.9x107°
Maximum amplitude along Y (see equation 9.1-26)
 ronany = 7 ywn + Penany = |Yol +H{(L/2)8,[}= 1107+ {(5.2/2)x 7.4x107 [}

=1.19x10° m=12 microns

Total amplitude at foundation top \/(6.7)2 +(1 2)2 =13.74 microns
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Finite Element Analysis

This very problem is modeled and analyzed using Finite Element Method. Frequencies and mode
shapes are shown in figure D 10.1-3 and steady state response is shown in Figure D 10.1-4.

From the mode shapes it is noticed that 3 mode and 4™ mode represent pure torsional and vertical
vibration whereas other modes are coupled modes. 1* and 5th modes are coupled modes and
represent rocking about Z and translation along X axis respectively. 2™ and 6™ modes are coupled
and represent rocking about X and translation along Z axis respectively.

Amplitudes: Dynamic forces are applied at machine locations at center line of machine axis.
Amplitudes obtained are shown in Figure D 10.1-4.

Mode 2 529Hz Mode 3 96Hz

Mode 4 105Hz Mode 5 1435 Hz Mode 6 1436 Hz

Figure D 10.1-3 Frequencies and Mode Shapes
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Comparison of FE Method of Analysis with Manual method of Analysis

Table 10.1-1 Natural Frequencies (Hz)
Mode # |

Manual Method of Analysis 3.00
FE Analysis 2.76

Amplitudes of Vibration are given as under:

Table 10.1-2 Amplitudes in microns
Amplitude in Microns @ 6 Hz
Manual Method of Analysis 362
FE Analysis 337

Both the results show a good degree of agreement.

o
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@ 12 Hz
13.8
14.4

Figure D 10.1-4 Vibration Amplitudes @ 6 Hz and @ 12 Hz

Transient amplitudes:  Since system frequencies are low, transient amplitude need not be

evaluated

Strength Design

1. Block foundations are rigid body mass and have sufficient strength to withstand all possible
force exerted by machine and as such do not need design computations for strength except
those parts of the foundation which are overhang or cantilever.
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2. Minimum reinforcement to be provided is 25 to 50 kg/m® subject to condition that bar

diameter shall not be less than 12 mm and spacing shall not be more than 200 mm. For thick
concrete blocks, it is desirable to provide intermediate cross reinforcement layers along the
height.

3. Though not necessary, check for Safe Bearing Pressure and stability, due to normal as well
as abnormal loading conditions is desirable.

4. Check for Strength & Embeddement of Anchor Bolts for applicable forces is a must

10.2 DESIGN OF FRAME FOUNDATION

Design of Frame Foundation for reciprocating machines is relatively more complex compared to
those for rotary machines. These machines are generally fow frequency machines and unbalance
force developed is very large. The member sizes i.e. sizes of beams and columns are relatively
heavier compared to similar foundations for rotary machines. Analysis procedure, using manual
method of analysis, is same as that for rotary machine with modifications as necessitated by the
problem. In certain cases, columns of the same frame may have different sizes. This makgs
computation little more complex. Contribution of soil to the response of the foundation is
significant for such foundations. For horizontal reciprocating machines, dynamic forces are along
piston axis which invariably is the longitudinal direction of the frame foundation and response
evaluation of frame foundations with 3 or more sets of transverse frames, using manual method of
analysis, would necessitate making many more assumptions and approximations compared to those
for rotary machines.

In view of the above, author strongly recommends use of advanced computational tools for design
of such foundations. '

DESIGN EXAMPLE
EXAMPLE D 10.2:  Foundation for a Reciprocating Compressor

Design a frame foundation, as shown in Figure D 10.2-1 for a reciprocating compressor for
machine data as under:

Machine Data

Weight of Motor @ Point A, B, P, Q 440.00 kN
Weight of Compressor @ point R 1200.00 kN
Speed of Motor Compressor 200.00 rpm
Dynamic Force @ point R

i) At Engine Frequency F, (Lateral along X) 130.00 kN

F, (Vertical along Y) 40.00 kN
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Figure D 10.2-1 Reciprocating Compressor on Frame Foundation

M (About X)

M, (About Y)
ii) At tst harmonic @ 400 rpm

F,

X
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Short Circuit Force Motor @ point A & B 240.00 kN
Maximum permissible half amplitude 0.10 mm
Foundation:

Concrete Grade M20

Top Deck: Length=8.7m Width =73 m Thickness = 1.4 m
Columns (B x D) Framel 1.5x1.9m; Frame2 1.0x1.9m; Frame3 1.7x1.9m
Column Height (From top of raft up to beam bottom) 6.0 m

Raft: Length=9.7m Width =83 m Thickness =2.0 m

Material properties: E =3x10" kN/m?; v=0.15; G=13x10" kN/m?; p=2.5 t/m?
Depth of Foundation below GL 2.5 m

Soil:
Dynamic Soil Parameters

C, =4x10* KNm*; C, =2x10* kN/m®
Cy=C, =8x10* kN/m*; C, =8x10* kN/m’

Design:

Sizing of Foundation:  For Layout see Figure D10.2-1
Overall Eccentricity

Eccentricity between Center of Mass and CG of Base area of Foundation

Top deck Mass (without opening) =8.7x7.3x1.4x2.5=222 t
Mass of opening =2.1x3.5x1.4x(-2.5)=-26t
Mass of Base Raft = 9.7x8.3x2.0x2.5 = 403 t

Column Mass (both